
OpenVMS VAX System Dump
AnalyzerUtilityManual
Order Number: AA–PV6TD–TE

April 2001

This manual explains how to use the System Dump Analyzer (SDA) to
investigate system failures and examine a running system.

Revision/Update Information: This manual supersedes the VMS
System Dump Analyzer Utility Manual,
Version 6.0

Software Version: OpenVMS VAX Version 7.3

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

Compaq, AlphaServer, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark
Office.

OpenVMS, Alpha, and DECdirect are trademarks of Compaq Information Technologies Group, L.P.
in the United States and other countries.

UNIX and X/Open are trademarks of The Open Group in the United States and other countries.

All other product names mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK4556

The Compaq OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . vii

SDA Description . SDA–1
1 System Management and SDA . SDA–4
1.1 Understanding the System Dump File . SDA–4
1.1.1 Choosing Between SYSDUMP.DMP and PAGEFILE.SYS Files . . . SDA–4
1.1.2 Choosing a Dump File Style . SDA–6
1.2 Saving System Dumps . SDA–6
1.3 Invoking SDA in the Site-Specific Startup Command Procedure SDA–7
2 Analyzing a System Dump . SDA–8
2.1 Invoking SDA . SDA–9
2.2 Mapping the Contents of the Dump File . SDA–9
2.3 Building the SDA Symbol Table . SDA–10
2.4 Executing the SDA Initialization File (SDA$INIT) SDA–10
3 Analyzing a Running System . SDA–11
4 SDA Context . SDA–12
5 CPU Context . SDA–12
6 Process Context . SDA–13
7 SDA Command Format . SDA–15
7.1 General Command Format . SDA–15
7.2 Expressions . SDA–15
7.2.1 Radix Operators . SDA–16
7.2.2 Arithmetic and Logical Operators . SDA–16
7.2.3 Precedence Operators . SDA–17
7.2.4 Symbols . SDA–17
8 Investigating System Failures . SDA–19
8.1 General Procedure for Analyzing System Failures SDA–19
8.2 Fatal Bugcheck Conditions . SDA–20
8.2.1 Fatal Exceptions . SDA–20
8.2.2 Illegal Page Faults . SDA–23
9 A Sample System Failure . SDA–24
9.1 Identifying the Bugcheck . SDA–25
9.2 Identifying the Exception . SDA–25
9.3 Locating the Source of the Exception . SDA–26
9.3.1 Finding the Driver by Using the Program Counter SDA–26
9.3.2 Calculating the Offset into the Driver’s Program Section SDA–27
9.4 Finding the Problem Within the Routine . SDA–28
9.4.1 Examining the Routine . SDA–28
9.4.2 Checking the Values of Key Variables . SDA–29
9.4.3 Identifying and Correcting the Defective Code SDA–30
10 Inducing a System Failure . SDA–31
10.1 Meeting Crash Dump Requirements . SDA–31
10.2 Examples of How to Cause System Failures . SDA–32

iii

SDA Usage Summary . SDA–35

SDA Qualifiers . SDA–36
/CRASH_DUMP . SDA–37
/RELEASE . SDA–38
/SYMBOL . SDA–39
/SYSTEM . SDA–40

SDA Commands . SDA–41
@ (Execute Procedure) . SDA–44
ATTACH . SDA–45
COPY . SDA–46
DEFINE . SDA–47
EVALUATE . SDA–51
EXAMINE . SDA–53
EXIT . SDA–57
FORMAT . SDA–58
HELP . SDA–60
READ . SDA–62
REPEAT . SDA–67
SEARCH . SDA–69
SET CPU . SDA–71
SET LOG . SDA–74
SET OUTPUT . SDA–75
SET PROCESS . SDA–76
SET RMS . SDA–79
SHOW CALL_FRAME . SDA–82
SHOW CLUSTER . SDA–85
SHOW CONNECTIONS . SDA–90
SHOW CPU . SDA–94
SHOW CRASH . SDA–98
SHOW DEVICE . SDA–103
SHOW EXECUTIVE . SDA–110
SHOW HEADER . SDA–112
SHOW LAN . SDA–113
SHOW LOCK . SDA–121
SHOW LOGS . SDA–125
SHOW PAGE_TABLE . SDA–126
SHOW PFN_DATA . SDA–131
SHOW POOL . SDA–135
SHOW PORTS . SDA–142
SHOW PROCESS . SDA–149
SHOW RESOURCE . SDA–161
SHOW RMS . SDA–166
SHOW RSPID . SDA–167
SHOW SPINLOCKS . SDA–169
SHOW STACK . SDA–176
SHOW SUMMARY . SDA–178

iv

SHOW SYMBOL . SDA–181
SHOW TRANSACTIONS . SDA–182
SPAWN . SDA–183
VALIDATE QUEUE . SDA–185

Index

Figures

SDA–1 Pointer Argument List on the Stack . SDA–21
SDA–2 Mechanism Array . SDA–22
SDA–3 Signal Array . SDA–22
SDA–4 Stack Following an Illegal Page-Fault Error . SDA–24
SDA–5 Call Frame . SDA–83

Tables

SDA–1 Selecting and Displaying Information About Processes SDA–1
SDA–2 Displaying Information about Data Structures SDA–2
SDA–3 Examining, Evaluating, and Validating Information SDA–2
SDA–4 Searching for, Formatting, and Copying Information SDA–3
SDA–5 Managing the SDA Utility and the SDA Symbol Table SDA–3
SDA–6 Displaying Information Produced by DECdtm SDA–3
SDA–7 Comparison of Full and Subset Dump Files . SDA–6
SDA–8 SDA Operators . SDA–16
SDA–9 SDA Symbols . SDA–17
SDA–10 Descriptions of SDA Qualifiers . SDA–36
SDA–11 Descriptions of SDA Commands . SDA–41
SDA–12 Modules Containing Global Symbols and Data Structures Used by

SDA . SDA–63
SDA–13 Modules Defining Global Locations Within the Executive Image SDA–63
SDA–14 SET RMS Command Keywords for Displaying Process RMS

Information . SDA–79
SDA–15 Contents of the SHOW LOCK and SHOW PROCESS/LOCKS

Displays . SDA–122
SDA–16 Virtual Page Information in the SHOW PAGE_TABLE Display SDA–126
SDA–17 Physical Page Information in the SHOW PAGE_TABLE Display SDA–128
SDA–18 Page Frame Number Information in the SHOW PFN_DATA

Display . SDA–131
SDA–19 Process Section Table Entry Information in the SHOW PROCESS

Display . SDA–154
SDA–20 Process I/O Channel Information in the SHOW PROCESS Display . . . SDA–155
SDA–21 Resource Information in the SHOW RESOURCE Display SDA–161
SDA–22 Static Spin Locks . SDA–170
SDA–23 Process Information in the SHOW SUMMARY Display SDA–178

v

Preface

Intended Audience
The OpenVMS VAX System Dump Analyzer Utility Manual is primarily intended
for the system programmer who must investigate the causes of system failures
and debug kernel-mode code, such as a device driver. This programmer should
have some knowledge of OpenVMS data structures to properly interpret the
results of System Dump Analyzer (SDA) commands.

This manual also includes information required by the system manager in order
to maintain the system resources necessary to capture and store system crash
dumps. Those who need to determine the cause of a hung process or improve
system performance can refer to this manual for instructions for using SDA to
analyze a running system.

Document Structure
The OpenVMS VAX System Dump Analyzer Utility Manual contains the following
sections:

Section Description of Contents

SDA Description Includes the following information:

• An introduction to the functions of the System Dump Analyzer
(SDA)

• A description of SDA features

• A discussion of key concepts of SDA

• An illustration of the use of SDA

This section also includes instructions for maintaining the optimal
environment for the analysis of system failures and notes the
requirements for processes invoking SDA.

SDA Usage
Summary

Summarizes how to use SDA, including invoking SDA, exiting from
SDA, and recording the output of an SDA session. It also describes
required privileges.

SDA Qualifiers Describes ANALYZE command qualifiers that govern the behavior
of SDA: /CRASH_DUMP, /RELEASE, /SYMBOL, and /SYSTEM.

vii

Section Description of Contents

SDA Commands Describes each SDA command; descriptions include the following
information about each command:

• Function

• Format

• Parameters

This section also provides examples of situations in which specific
commands are useful.

Related Documents
Additional information is available in the following documents:

• OpenVMS System Manager’s Manual, Volume 1: Essentials

• OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and
Complex Systems

• OpenVMS System Management Utilities Reference Manual

• Guide to Creating OpenVMS Modular Procedures

• OpenVMS Performance Management

• OpenVMS VAX Device Support Manual1

• OpenVMS DCL Dictionary

• OpenVMS System Services Reference Manual

Investigators of VMScluster failures will find the discussion in OpenVMS Cluster
Systems and the discussion of the Show Cluster utility in the OpenVMS System
Management Utilities Reference Manual helpful in understanding the output of
several SDA commands.

For additional information about Compaq OpenVMS products and services, access
the Compaq website at the following location:

http://www.openvms.compaq.com/

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

1 This manual has been archived but is available on the OpenVMS Documentation
CD-ROM.

viii

How To Order Additional Documentation
Use the following World Wide Web address to order additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you choose more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

ix

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

x

SDA Description
When a fatal error causes the system to fail, the operating system copies the
contents of memory to a system dump file; the system also records the hardware
context of each processor in the system.

The System Dump Analyzer (SDA) provides a means of interpreting the contents
of the system dump file, thus enabling you to examine the status of each processor
at the time of the failure and to investigate the probable causes of the crash.

To examine the system dump file, you invoke SDA by using the DCL command
ANALYZE/CRASH_DUMP. You can also invoke SDA to analyze a running system,
using the DCL command ANALYZE/SYSTEM. Most SDA commands generate
useful output in this mode of operation.

Caution

Although the analysis of a running system might be instructive, be aware
that system context, process context, and a processor’s hardware context
remain fluid during any given display. In a multiprocessing environment,
a process running SDA might be rescheduled to a different processor
frequently during analysis. Therefore, Compaq recommends that you not
examine the hardware context of processors in a running system.

Following are brief explanations of SDA qualifiers. Details about these qualifiers
are in the SDA Qualifiers section.

Qualifier Description

/CRASH_DUMP Invokes SDA to analyze a specified dump file

/RELEASE Invokes SDA to release those blocks that are occupied by a crash
dump in a specified system paging file

/SYMBOL Specifies a system symbol table for SDA to use in place of the
system symbol table it uses by default (SYS$SYSTEM:SYS.STB)

/SYSTEM Invokes SDA to analyze a running system

The following tables show the SDA commands that you can use to perform
operations within the SDA utility. These commands are in groups of related
information. Details about SDA commands are in the SDA Commands section.

Table SDA–1 describes information that you can select and display about
processes.

Table SDA–1 Selecting and Displaying Information About Processes

Operation SDA Command

Display the condition of the operating system and the
hardware context of each processor in the system at the
time of a crash

SHOW CRASH

Display a summary of all processes on the system SHOW SUMMARY

(continued on next page)

SDA–1

SDA Description

Table SDA–1 (Cont.) Selecting and Displaying Information About Processes

Operation SDA Command

Select a process to become the SDA current process SET PROCESS

Examine the memory of any process SHOW PROCESS

Select a specific processor in a multiprocessing system as
the subject of analysis

SET CPU

Display information about the state of a processor at the
time of the system failure

SHOW CPU

Display multiprocessor synchronization information SHOW SPINLOCKS

Display the contents of a specific process stack or the
interrupt stack of a specific processor

SHOW STACK

Display the layout of the loadable executive images SHOW EXECUTIVE

Table SDA–2 describes information that you can display about data structures.

Table SDA–2 Displaying Information about Data Structures

Operation SDA Command

Display memory management data structures SHOW POOL,
SHOW PFN_DATA,
SHOW PAGE_TABLE

Display device status, as reflected in system data
structures

SHOW DEVICE

Display OpenVMS RMS data structures of a process SHOW PROCESS/RMS

Display lock management data structures SHOW RESOURCE,
SHOW LOCK

Display information contained in various local area
network (LAN) data structures

SHOW LAN

Display VAXcluster management data structures SHOW CLUSTER,
SHOW CONNECTIONS,
SHOW RSPID,
SHOW PORTS

Table SDA–3 describes SDA commands that you can use to examine, evaluate,
and validate information.

Table SDA–3 Examining, Evaluating, and Validating Information

Operation SDA Command

Evaluate an expression in hexadecimal and decimal,
interpreting its value as a symbol, a condition value, a
page table entry (PTE), or a processor status longword
(PSL)

EVALUATE

Examine the contents of memory locations, optionally
interpreting them as MACRO instructions, a PTE, or a
PSL

EXAMINE

Validate the integrity of the links in a queue VALIDATE QUEUE

Table SDA–4 describes the SDA commands that you can use to search for, format,
and copy information.

SDA–2

SDA Description

Table SDA–4 Searching for, Formatting, and Copying Information

Operation SDA Command

Search memory for a given value SEARCH

Format system data structures FORMAT

Format a call frame from a stack location SHOW CALL_FRAME

Copy the system dump file COPY

Table SDA–5 describes the operations you can perform to manage the SDA utility
and the SDA symbol table.

Table SDA–5 Managing the SDA Utility and the SDA Symbol Table

Operation SDA Command

Define keys to invoke SDA commands DEFINE/KEY

Switch control of your terminal from your current process
to another process in your job

ATTACH

Direct (or echo) the output of an SDA session to a file or
device

SET OUTPUT or
SET LOG

Repeat execution of the last command issued REPEAT

Create a subprocess of the process currently running SDA SPAWN

Change the options shown by the SHOW PROCESS/RMS
command

SET RMS

Define symbols to represent values or locations in memory
and add them to the SDA symbol table

DEFINE

Read a set of global symbols into the SDA symbol table READ

Display the hexadecimal value of a symbol and, if the
value is equal to an address location, the contents of that
location

SHOW SYMBOL

Exit from the SDA display or from the SDA utility EXIT

Table SDA–6 describes the commands that you can use to display information
produced by DECdtm.

Table SDA–6 Displaying Information Produced by DECdtm

Operation SDA Command

Display information about all transactions on the node or
about a specified transaction

SHOW TRANSACTIONS

Display information about transaction logs currently open
for the node

SHOW LOGS

Although SDA provides a great deal of information, it does not analyze all the
control blocks and data contained in memory. For this reason, in the event
of system failure it is extremely important that you send Compaq a Software
Performance Report (SPR) and a copy of the system dump file written at the time
of the failure.

SDA–3

SDA Description

1 System Management and SDA
The system manager must perform the following operations in regard to the
system dump file:

• Ensure that the system writes a dump file whenever the system fails.

• Ensure that the dump file is large enough to contain all the information to be
saved.

• Ensure that the dump file is saved for analysis.

The following sections describe these tasks.

1.1 Understanding the System Dump File
The operating system attempts to write information into the system dump file
only if the system parameter DUMPBUG is set. 1 If DUMPBUG is set and the
operating system fails, the system writes the contents of the error log buffers,
processor registers, and physical memory into the system dump file, overwriting
its previous contents.

If the system dump file is too small, it cannot contain all of memory when a
system failure occurs. For most systems, this means that the system’s page table
(SPT) is not included in the dump. SDA cannot analyze a dump unless the entire
SPT is included in the dump.

1.1.1 Choosing Between SYSDUMP.DMP and PAGEFILE.SYS Files
SYS$SYSTEM:SYSDUMP.DMP (SYS$SPECIFIC:[SYSEXE]SYSDUMP.DMP)
is furnished as an empty file in the software distribution kit. To successfully
store a crash dump, you must make SYS$SYSTEM:SYSDUMP.DMP large
enough to hold all the information to be written when the system fails. If
this is not possible, you can have dumps written into the system paging file,
SYS$SYSTEM:PAGEFILE.SYS. You can enlarge or adjust the size of either of
these files by using the CREATE command of the System Generation utility
(SYSGEN), as described in the OpenVMS System Management Utilities Reference
Manual.

Using SYSDUMP.DMP
To calculate the correct size for SYS$SYSTEM:SYSDUMP.DMP, use the following
formula:

size-in-blocks(SYS$SYSTEM:SYSDUMP.DMP)
= size-in-pages(physical-memory)
+ (number-of-error-log-buffers * blocks-per-buffer)
+ 1

You can use the DCL command SHOW MEMORY to determine the total size of
physical memory on your system. In addition, you must account for any MA780
multiport memory installed on your system. The number of error log buffers in
any given system varies, depending on the setting of the ERRORLOGBUFFERS
system parameter. (See the OpenVMS System Management Utilities Reference
Manual for additional information about this parameter.)

1 The DUMPBUG parameter is set by default. To examine or change its value, consult the
OpenVMS System Management Utilities Reference Manual.

SDA–4

SDA Description

Using PAGEFILE.SYS
If SYS$SYSTEM:SYSDUMP.DMP does not exist, the operating system writes
the dump of physical memory into SYS$SYSTEM:PAGEFILE.SYS, the system’s
paging file, overwriting the contents of that file. If the SAVEDUMP system
parameter is set, the dump file is retained in PAGEFILE.SYS when the system
is booted. If it is clear, the entire paging file is used for paging, and any dump
written to the paging file is lost.2

Do not use a selective dump (DUMPSTYLE=1) style with PAGEFILE.SYS. If the
PAGEFILE is used for a selective dump, and if the PAGEFILE is not large enough
to contain all the logical memory blocks, the dump fills the entire pagefile and the
system may hang on reboot. When selective dumping is setup, all available space
will be used to write out the logical memory blocks. If the pagefile is large enough
to contain all of physical memory, there is no reason to use selective dumping and
a full memory dump (DUMPSTYLE=0) should be used.

To calculate the minimum size for SYS$SYSTEM:PAGEFILE.SYS, use the
following formula:

size-in-blocks(SYS$SYSTEM:PAGEFILE.SYS)
= size-in-pages(physical-memory)
+ (number-of-error-log-buffers * blocks-per-buffer)
+ 1
+ 1000

Caution

This formula calculates only the minimum size requirement for saving a
dump in the system’s primary page file. For most systems, the page file
must be larger than this to avoid hanging the system. (See the OpenVMS
System Manager’s Manual, Volume 1: Essentials and OpenVMS System
Manager’s Manual, Volume 2: Tuning, Monitoring, and Complex Systems
for more information.)

Freeing Space in PAGEFILE.SYS
If you use SYS$SYSTEM:PAGEFILE.SYS to hold system crash dumps, you must
later free the space occupied by the dump so that the pager can use it. Usually,
you include SDA commands in the site-specific startup command procedure
(SYS$MANAGER:SYSTARTUP_VMS.COM) to free this space; if you do not, your
system might hang during the startup procedure.

A common method of freeing space is to copy the dump from
SYS$SYSTEM:PAGEFILE.SYS to another file, using the SDA COPY command.
(Although you can also use the DCL COPY command to copy a dump file, only
the SDA COPY command frees the pages occupied by the dump from the system’s
paging file.)

Occasionally, you might want to free the pages in the paging file that are taken
up by the dump without having to copy the dump elsewhere. When you issue the
ANALYZE/CRASH_DUMP/RELEASE command, SDA immediately releases the
pages to be used for system paging, effectively deleting the dump.

2 The SAVEDUMP parameter is clear by default. To examine or change its value, consult
the OpenVMS System Management Utilities Reference Manual.

SDA–5

SDA Description

Note

The ANALYZE/CRASH_DUMP/RELEASE command does not allow you to
analyze the dump before deleting it.

1.1.2 Choosing a Dump File Style
In certain system configurations, it might be impossible to preserve the entire
contents of memory in a disk file. For instance, a large memory system or a
system with small disk capacity might not be able to supply enough disk space
for a full memory dump. In normal circumstances, if the system dump file cannot
accommodate all of memory, SDA cannot analyze the dump.

To preserve those portions of memory that contain information most useful in
determining the causes of system failures, a system manager sets the static
system parameter DUMPSTYLE to 1. When the DUMPSTYLE parameter is
set, AUTOGEN attempts to create a dump file large enough to contain ample
information for SDA to analyze a failure. When the DUMPSTYLE parameter is
clear (the default), AUTOGEN attempts to create a dump file large enough to
contain all of physical memory.

A comparison of full and subset style dump files appears in Table SDA–7.

Table SDA–7 Comparison of Full and Subset Dump Files

Full Subset

Available
Information

Complete contents of physical memory in
use, stored in order of increasing physical
address (for instance, system and global
page tables are stored last).

System page table, global page table,
system space memory, and process and
control regions (plus global pages) for
all saved processes.

Unavailable
Information

Contents of paged-out memory at the time
of the crash.

Contents of paged-out memory at the
time of the crash, process and control
regions of unsaved processes, and
memory not mapped by a page table
(such as the free and modified lists).

SDA Command
Limitations

None. The following commands are not
useful for unsaved processes: SHOW
PROCESS/CHANNELS, SHOW
PROCESS/RMS, SHOW STACK, and
SHOW SUMMARY/IMAGE.

1.2 Saving System Dumps
Every time the operating system writes information to the system dump file, it
writes over whatever was previously stored in the file. For this reason, as system
manager, you need to save the contents of the file after a system failure has
occurred.

Using the SDA COPY Command
You can use the SDA COPY command or the DCL COPY command in your site-
specific startup procedure. Compaq recommends using the SDA COPY command
because it marks the dump file as copied. This is particularly important if the
dump was written into the paging file, SYS$SYSTEM:PAGEFILE.SYS, because
the SDA COPY command releases to the pager the pages that were occupied by
the dump.

SDA–6

SDA Description

Using /IGNORE=NOBACKUP
Because system dump files are set to NOBACKUP, the Backup utility
(BACKUP) does not copy dump files to tape unless you use the qualifier
/IGNORE=NOBACKUP when invoking BACKUP. When you use the SDA COPY
command to copy the system dump file to another file, the new file is not set to
NOBACKUP.

As included in the distribution kit, SYS$SYSTEM:SYSDUMP.DMP is protected
against world access. Because a dump file can contain privileged information,
Compaq recommends that you continue to protect dump files from universal read
access.

1.3 Invoking SDA in the Site-Specific Startup Command Procedure
Because a listing of the SDA output is an important source of information
in determining the cause of a system failure, it is a good idea to have SDA
produce such a listing after every failure. The system manager can ensure the
creation of a listing by modifying the site-specific startup command procedure
SYS$MANAGER:SYSTARTUP_VMS.COM so that it invokes SDA when the
system is booted.

When invoked in the site-specific startup procedure, SDA executes the specified
commands only if the system is booting immediately after a system failure. SDA
examines a flag in the dump file’s header that indicates whether it has already
processed the file. If the flag is set, SDA merely exits. If the flag is clear, SDA
executes the specified commands and sets the flag. This flag is clear when the
operating system initially writes a crash dump, except for those resulting from an
operator-requested shutdown (for instance, SYS$SYSTEM:SHUTDOWN.COM).

Using SYSDUMP.DMP
The following example shows typical commands that you might add to your
site-specific startup command procedure to produce an SDA listing after each
failure.

$!
$! Print dump listing if system just failed
$!
$ ANALYZE/CRASH_DUMP SYS$SYSTEM:SYSDUMP.DMP

COPY SYS$SYSTEM:SAVEDUMP.DMP ! Save dump file
SET OUTPUT DISK1:SYSDUMP.LIS ! Create listing file
READ/EXEC ! Read symbols into the SDA symbol table
SHOW CRASH ! Display crash information
SHOW STACK ! Show current stack
SHOW SUMMARY ! List all active processes
SHOW PROCESS/PCB/PHD/REG ! Display current process
SHOW SYMBOL/ALL ! Print system symbol table
EXIT

$ PRINT DISK1:SYSDUMP.LIS

The COPY command in the preceding example saves the contents of the file
SYS$SYSTEM:SYSDUMP.DMP. If your system’s startup command file does not
save a copy of the contents of this file, this crash dump information is lost in
the next system failure, when the system saves the information about the new
failure, overwriting the contents of SYS$SYSTEM:SYSDUMP.DMP.

SDA–7

SDA Description

Using PAGEFILE.SYS
If you are using the SYS$SYSTEM:PAGEFILE.SYS as the crash dump file, you
must include SDA commands in SYS$MANAGER:SYSTARTUP_VMS.COM that
free the space occupied by the dump so that the pager can use it. For instance:

$ ANALYZE/CRASH_DUMP SYS$SYSTEM:PAGEFILE.SYS
.
.
.
COPY dump_filespec
EXIT

2 Analyzing a System Dump
SDA performs certain tasks prior to bringing a dump into memory, presenting its
initial displays, and accepting command input. This section describes those tasks,
which include the following:

• Verifying that the process invoking it has privileges to read the dump file

• Using RMS to read in pages upon request

• Reading the system symbol tables (SYS$SYSTEM:SYS.STB and
SYS$SYSTEM:REQSYSDEF.STB)

• Executing the commands in the SDA initialization file

For detailed information about the investigation of a system failure, see
Section 8.

Requirements
To be able to analyze a dump file, your process must have the following:

• Read access to the file that contains the dump and to copies of the following
symbol tables, which SDA reads by default:

SYS$SYSTEM:SYS.STB (the system symbol table)

SYS$SYSTEM:REQSYSDEF.STB (the required subset of the symbols in
the file SYSDEF.STB)

• A system UIC or SYSPRV privilege for a process to read the dump file.

As included in the distribution kit, SYS$SYSTEM:SYSDUMP.DMP,
SYS$SYSTEM:SYS.STB, and SYS$SYSTEM:REQSYSDEF.STB are protected
against world access.

• Sufficient virtual address space for SDA to access the entire dump and any
required symbol tables.

To ensure that SDA has the correct amount of virtual address space, a value
of 16,000 of the system parameter VIRTUALPAGECNT should be sufficient to
analyze any dump, unless there is an exceptionally large number of symbols.
You might need to increase the size if your particular installation places
heavy demands on the virtual address space of the process.

SDA–8

SDA Description

2.1 Invoking SDA
If your process satisfies these conditions, you can issue the DCL command
ANALYZE/CRASH_DUMP to invoke SDA. If you do not specify the name of a
dump file in the command, SDA prompts you for the name of the file, as follows:

$ ANALYZE/CRASH_DUMP
_Dump File:

The default file specification is as follows:

disk:[default-dir]SYSDUMP.DMP

disk and [default-dir] represent the disk and directory specified in your last SET
DEFAULT command.

2.2 Mapping the Contents of the Dump File
SDA first attempts to map the contents of physical memory as stored in the
specified dump file. To do this, it must first locate the system page table (SPT)
among its contents. The SPT contains one entry for each page of system virtual
address space.

The SPT appears at the largest physical addresses in a typical configuration. As
a result, if a dump file is too small, the SPT cannot be written to it in the event
of system failure.

If SDA cannot find the SPT in the dump file, it displays either of the following
messages:

%SDA-E-SPTNOTFND, system page table not found in dump file

%SDA-E-SHORTDUMP, the dump only contains m out of n pages of physical memory

If SDA displays either of these error messages, you cannot analyze the crash
dump, but must take steps to ensure that any subsequent dump can be preserved.
To do this, you must increase the size of the dump file, as indicated in Section 1.1,
or adjust the system DUMPSTYLE parameter, as discussed in Section 1.1.2.

Under certain conditions, the system might not save some memory locations in
the system dump file. For instance, during halt/restart bugchecks, the system
does not preserve the contents of general registers. If such a bugcheck occurs,
SDA indicates in the SHOW CRASH display that the contents of the registers
were destroyed. Additionally, if a bugcheck occurs during system initialization,
the contents of the register display might be unreliable. The symptom of such
a bugcheck is a SHOW SUMMARY display that shows no processes or only the
swapper process.

Also, if you use an SDA command to access a virtual address that has no
corresponding physical address, SDA displays the following error message:

%SDA-E-NOTINPHYS, ’location’ not in physical memory

When you analyze a subset dump file, if you use an SDA command to access a
virtual address that has a corresponding physical address but was not saved in
the dump file, SDA displays the following error message:

%SDA-E-MEMNOTSVD, memory not saved in the dump file

SDA–9

SDA Description

2.3 Building the SDA Symbol Table
After locating and reading the system dump file, SDA attempts to read
the system symbol table file into the SDA symbol table. This file, named
SYS$SYSTEM:SYS.STB by default, contains most of the global symbols used
by the operating system. SDA also reads into its symbol table a subset of
SYS$SYSTEM:SYSDEF.STB, called SYS$SYSTEM:REQSYSDEF.STB, that it
requires to identify locations in memory.

If SDA cannot find the system symbol table file, or if it is given a file that is not
a system symbol table in the /SYMBOL qualifier to the ANALYZE command, it
halts with a fatal error.

When SDA finishes building its symbol table, it displays a message identifying
itself and the immediate cause of the crash. In the following example, the cause
of the crash was an illegal exception occurring at an IPL above IPL$_ASTDEL or
while using the interrupt stack.

Dump taken on 28-Jan-1993 18:10:09.79
INVEXCEPTN, Exception while above ASTDEL or on interrupt stack

2.4 Executing the SDA Initialization File (SDA$INIT)
After displaying the crash summary, SDA executes the commands in the SDA
initialization file, if you have established one. SDA refers to its initialization
file by using the logical name SDA$INIT. If SDA cannot find the file defined as
SDA$INIT, it searches for the file SYS$LOGIN:SDA.INIT.

The initialization file can contain SDA commands that read symbols into SDA’s
symbol table, define keys, establish a log of SDA commands and output, or
perform other tasks. For instance, you might want to use an SDA initialization
file to augment SDA’s symbol table with definitions helpful in locating system
code.

If you issue the following command, SDA includes those symbols that define
many of the system’s data structures, including those in the I/O database:

READ SYS$SYSTEM:SYSDEF.STB

You might also find it very helpful to define those symbols that identify the
modules in the images that make up the executive. You can do this by issuing the
following command:

READ/EXECUTIVE SYS$LOADABLE_IMAGES

After SDA executes the commands in the initialization file, it displays its prompt,
as follows:

SDA>

The SDA> prompt indicates that you can use SDA interactively and enter SDA
commands.

An SDA initialization file can invoke a command procedure with the @ command.
However, such command procedures cannot themselves invoke a command
procedure (that is, you cannot have nested command procedures).

SDA–10

SDA Description

3 Analyzing a Running System
Occasionally, an internal problem hinders system performance but does not
cause a system failure. By allowing you to examine the running system,
SDA provides the means to search for the solution to the problem without
disturbing the operating system. For example, you can use SDA to examine
the stack and memory of a process that is stalled in a scheduler state, such
as a miscellaneous wait (MWAIT) or a suspended (SUSP) state (see OpenVMS
Performance Management).

If your process has change-mode-to-kernel (CMKRNL) privilege, you can invoke
SDA to examine the system. Use the following DCL command:

$ ANALYZE/SYSTEM

SDA then does the following:

1. Attempts to load the system symbol table (SYS$SYSTEM:SYS.STB) and
symbol table SYS$SYSTEM:REQSYSDEF.STB.

2. Executes the contents of any existing SDA initialization file, as it does when
invoked to analyze a crash dump (see Sections 2.3 and 2.4, respectively).

3. Displays its identification message and prompt, as follows:

OpenVMS System analyzer

SDA>

The SDA> prompt indicates that you can use SDA interactively and enter SDA
commands. When analyzing a running system, SDA sets its process context to
that of the process running SDA.

If you are undertaking an analysis of a running system, take the following
considerations into account:

• When used in this mode, SDA does not map the entire system but instead
retrieves only the information it needs to process each individual command.
To update any given display, you must reissue the previous command.

Caution

When using SDA to analyze a running system, use caution in interpreting
its displays. Because system states change frequently, it is possible that
the information SDA displays might be inconsistent with the actual,
volatile state of the system at any given moment.

• Certain SDA commands are illegal in this mode, such as SHOW CPU and
SET CPU. If you use these commands, SDA displays the following error
message:

%SDA-E-CMDNOTVLD, command not valid on the running system

• The SHOW CRASH command, although valid, does not display the contents
of any of the processor’s set of hardware registers. Also, the ‘‘Time of system
crash’’ information refers to the time you entered the ANALYZE/SYSTEM
command.

SDA–11

SDA Description

4 SDA Context
When invoked to analyze either a crash dump or a running system, SDA
establishes a default context from which it interprets certain commands.

When the subject of analysis is a uniprocessor system, SDA’s context is solely
process context. That is, SDA can interpret its process-specific commands
in the context of either the process current on the uniprocessor or some other
process in some other scheduling state.

When you initially invoke SDA to analyze a crash dump, its process context
defaults to that of the process that was current at the time of the crash. When
you invoke SDA to analyze a running system, its process context defaults to that
of the current process; that is, the one executing SDA.

You can change SDA’s process context by issuing any of the following commands:

SET PROCESS/INDEX=nn
SET PROCESS name
SHOW PROCESS/INDEX=nn

5 CPU Context
In a uniprocessor system only one CPU exists, and the concept of SDA CPU
context is not an issue. However, for a multiprocessor system with more than
one active CPU, SDA must maintain an idea of CPU context to provide a
way of displaying information bound to a specific CPU, such as the reason for
the bugcheck exception, the currently executing process, the current IPL, the
contents of CPU registers, and any owned spin locks. When you first invoke SDA
to analyze a crash dump, the ‘‘SDA current CPU’’ is the CPU that induced the
system failure.

Changing the CPU Context
You can use several SDA commands to change the CPU context. When you
change the CPU context, the ‘‘SDA current process’’ is changed to the current
process on the ‘‘SDA current CPU’’ to synchronize CPU context and process
context. If no current process is on the ‘‘SDA current CPU,’’ the ‘‘SDA current
process’’ is undefined; no process context information will be available until you
set SDA process context to a specific process.

Type HELP PROCESS_CONTEXT for specific information about the ‘‘SDA
current process.’’

The following SDA commands change the ‘‘SDA current CPU’’:

Command Description

SET CPU cpu_id Changes the ‘‘SDA current CPU’’ to CPU cpu_id

SHOW CPU cpu_id Changes the ‘‘SDA current CPU’’ to CPU cpu_id

SHOW CRASH Changes the ‘‘SDA current CPU’’ to the CPU that induced the
system failure

If you select a process that is the current process on a CPU, the following
commands change the ‘‘SDA current CPU’’ to that CPU:

SET PROCESS name
SET PROCESS/INDEX=nn
SHOW PROCESS name

SDA–12

SDA Description

SHOW PROCESS/INDEX=nn

No other SDA commands affect the ‘‘SDA current CPU.’’

Note

When you analyze the running system, you cannot use the SET CPU
and SHOW CPU commands because SDA does not have access to all the
CPU-specific information about the running system.

6 Process Context
In a uniprocessor system, process context might be the process that is current
on the CPU or the process in whose context process-specific SDA commands
are interpreted. For a multiprocessor system with more than one active CPU,
however, the meaning of ‘‘SDA process context’’ changes so that it includes a way
to display information relevant to a specific process both when the process is
current on a processor and when the process is not.

You can use several SDA commands to change SDA process context. Following is
a list of the results of some of these changes:

• When you change the ‘‘SDA current process’’ to the current process on a CPU,
the ‘‘SDA current CPU’’ is changed to the new CPU to synchronize CPU
context and process context.

• When you change the ‘‘SDA current process’’ to a process that is not current
on any processor, the ‘‘SDA current CPU’’ is not changed.

• When you change the SDA CPU context to a CPU that has no current process,
the ‘‘SDA current process’’ is undefined; no process context information is
available until you set SDA process context to a specific process.

Type HELP CPU_CONTEXT for specific information about the ‘‘SDA current
CPU.’’

The following SDA commands change the ‘‘SDA current process’’:

Command Description

SET PROCESS name Changes the ‘‘SDA current process’’ to the named
process

SET PROCESS /INDEX=n Changes the ‘‘SDA current process’’ to the process with
index n

SHOW PROCESS name Changes the ‘‘SDA current process’’ to the named
process

SHOW PROCESS /INDEX=n Changes the ‘‘SDA current process’’ to the process with
index n

The following commands change the SDA process context if the ‘‘SDA current
process’’ is not the current process on the selected CPU:

SDA–13

SDA Description

Command Description

SET CPU cpu_id Changes the ‘‘SDA current process’’ to the current process on
CPU cpu_id

SHOW CPU cpu_id Changes the ‘‘SDA current process’’ to the current process on
CPU cpu_id

SHOW CRASH Changes the ‘‘SDA current process’’ to the current process on
the CPU that induced the system failure

No other SDA commands affect the ‘‘SDA current process.’’

Note

When you analyze the running system, CPU context is not used because
all the CPU-specific information might not be available.

Changing the SDA CPU Context
When you invoke SDA to analyze a crash dump from a multiprocessing system
with more than one active CPU, SDA maintains a second dimension of context—
its CPU context—that allows it to display certain processor-specific information,
such as the reason for the bugcheck exception, the currently executing process,
the current IPL, the contents of processor-specific registers, the interrupt stack
pointer (ISP), and the spin locks owned by the processor. When you invoke SDA
to analyze a multiprocessor’s crash dump, its CPU context defaults to that of the
processor that induced the system failure.3

You can change the SDA CPU context by using any of the following commands:

SET CPU cpu-id
SHOW CPU cpu-id
SHOW CRASH

Changing CPU context involves an implicit change in process context in either of
the following ways:

• If there is a current process on the CPU made current, SDA process context
is changed to that of that CPU’s current process.

• If there is no current process on the CPU made current, SDA process context
is undefined and no process-specific information is available until you set SDA
process context to that of a specific process.

Likewise, changing process context can involve a switch of CPU context as well.
For instance, if you issue a SET PROCESS command for a process that is current
on another CPU, SDA automatically changes its CPU context to that of the CPU
on which that process is current. The following commands can have this effect if
the name or index number (nn) refers to a current process:

SET PROCESS name
SET PROCESS/INDEX=nn
SHOW PROCESS name
SHOW PROCESS/INDEX=nn

3 When you are analyzing a running system, CPU context is not accessible to SDA.
Therefore, the SET CPU and SHOW CPU commands are not permitted.

SDA–14

SDA Description

7 SDA Command Format
The following sections describe the format of SDA commands and the expressions
you can use with SDA commands.

7.1 General Command Format
SDA uses a command format similar to that used by the DCL interpreter. You
issue commands in this general format:

command-name[/qualifier...] [parameter][/qualifier...] [!comment]

where:

command-name Is an SDA command. Each command tells the utility to perform a
function. Commands can consist of one or more words, and can be
abbreviated to the number of characters that make the command
unique. For example, SH stands for SHOW and SE stands for SET.

/qualifier Modifies the action of an SDA command. A qualifier is always preceded
by a slash (/). Several qualifiers can follow a single parameter or
command name, but a slash must precede each. You can abbreviate
qualifiers to the shortest string of characters that uniquely identifies
the qualifier.

parameter Is the target of the command. For example, SHOW PROCESS RUSKIN
tells SDA to display the context of the process RUSKIN. The command
EXAMINE 80104CD0;40 displays the contents of 40 bytes of memory,
beginning with location 80104CD0.

When you supply part of a file specification as a parameter, SDA
assumes default values for the omitted portions of the specification.
The default device SYS$DISK and default directory are those specified
in your most recent SET DEFAULT command. See the OpenVMS DCL
Dictionary for a description of the DCL command SET DEFAULT.

!comment Consists of text that describes the command, but this text is not
actually part of the command. Comments are useful for documenting
SDA command procedures. When executing a command, SDA ignores
the exclamation point (!) and all characters that follow it on the same
line.

7.2 Expressions
You can use expressions as parameters for some SDA commands, such as
SEARCH and EXAMINE. To create expressions, you can use any of the following
elements:

• Numerals

• Radix operators

• Arithmetic and logical operators

• Precedence operators

• Symbols

The following sections describe elements other than numerals.

SDA–15

SDA Description

7.2.1 Radix Operators
Radix operators determine which numeric base SDA uses to evaluate
expressions. You can use one of three radix operators to specify the radix of
the numeric expression that follows the operator:

• ^X (hexadecimal)

• ^O (octal)

• ^D (decimal)

The default radix is hexadecimal. SDA displays hexadecimal numbers with
leading zeros and decimal numbers with leading spaces.

7.2.2 Arithmetic and Logical Operators
There are two types of arithmetic and logical operators, both of which are listed
in Table SDA–8.

• Unary operators affect the value of the expression that follows them.

• Binary operators combine the operands that precede and follow them.

In evaluating expressions containing binary operators, SDA performs logical
AND, OR, and XOR operations, and multiplication, division, and arithmetic
shifting before addition and subtraction. Note that the SDA arithmetic operators
perform integer arithmetic on 32-bit operands.

Table SDA–8 SDA Operators

Operator Action

Unary Operators

Performs a logical NOT of the expression

+ Makes the value of the expression positive

– Makes the value of the expression negative

@ Evaluates the following expression as a virtual address, then uses the
contents of that address as value

G Adds 8000000016 to the value of the expression1

H Adds 7FFE000016 to the value of the expression2

Binary Operators

+ Addition

– Subtraction

* Multiplication

& Logical AND

| Logical OR

\ Logical XOR

1The unary operator G corresponds to the first virtual address in system space. For example, the
expression GD40 can be used to represent the address 80000D4016.
2The unary operator H corresponds to a convenient base address in the control region of a process
(7FFE000016). You can therefore refer to an address such as 7FFE2A6416 as H2A64.

(continued on next page)

SDA–16

SDA Description

Table SDA–8 (Cont.) SDA Operators

Operator Action

Binary Operators

/ Division3

@ Arithmetic shifting

3In division, SDA truncates the quotient to an integer, if necessary, and does not retain a remainder.

7.2.3 Precedence Operators
SDA uses parentheses as precedence operators. Expressions enclosed in
parentheses are evaluated first. SDA evaluates nested parenthetical expressions
from the innermost to the outermost pairs of parentheses.

7.2.4 Symbols
Names of symbols can contain from 1 to 31 alphanumeric characters and can
include the dollar sign ($) and underscore (_) characters. Symbols can take
values from –7FFFFFFF16 to 7FFFFFFF16.

By default, SDA copies symbols into its symbol table from the files
SYS$SYSTEM:SYS.STB and SYS$SYSTEM:REQSYSDEF.STB. To add more
symbols to the symbol table, you can use the following SDA commands:

• READ—to add symbols from other symbol tables or object modules

• DEFINE—to create symbols and add them to the symbol table

In addition, SDA provides the symbols described in Table SDA–9.

Table SDA–9 SDA Symbols

Symbol Meaning

. (period) Current location

2P_CDDB Address of alternate CDDB for MSCP-served device1

2P_UCB Address of alternate UCB for dual-pathed device1

AMB Associated mailbox UCB pointer1

AP Argument pointer2

CDDB Address of class driver descriptor block for MSCP-served device1

CLUSTRLOA Base address of loadable VAXcluster code

CRB Address of channel request block1

DDB Address of device data block1

DDT Address of driver dispatch table1

1The SHOW DEVICE command defines this symbol, if appropriate, to represent information pertinent
to the last displayed device unit. See the description of the SHOW DEVICE command for additional
information.
2The value of those symbols representing the current SDA process context changes whenever you
issue a command that changes the context (see Section 4). These symbols include the general-purpose
registers (R0 through R11, AP, FP, PC, and SP); the per-process stack pointers (USP, SSP, KSP);
the page table base and length registers (P0BR, P0LR, P1BR, and P1LR); and the processor status
longword (PSL).

(continued on next page)

SDA–17

SDA Description

Table SDA–9 (Cont.) SDA Symbols

Symbol Meaning

nnDRIVER Base address of a driver prologue table (DPT); such a symbol exists
for each loaded device driver in the system3

ESP Executive stack pointer2

FP Frame pointer2

FPEMUL Base address of the code that emulates floating-point instructions

G 8000000016, the base address of system space

H 7FFE000016

IRP Address of I/O request packet1

JIB Job information block

KSP Kernel stack pointer2

LNM Address of logical name block for mailbox1

MCHK Address within loadable CPU-specific routines

MSCP Address of loadable MSCP server code

ORB Address of object rights block1

P0BR Base register for the program region (P0)2

P0LR Length register for the program region (P0)2

P1BR Base register for the control region (P1)2

P1LR Length register for the control region (P1)2

PC Program counter2

PCB Process control block

PDT Address of port descriptor table1

PHD Process header

PSL Processor status longword2

R0 through R11 General registers2

RMS Base address of the RMS image

RWAITCNT Resource wait count for MSCP-served device1

SB Address of system block1

SCSLOA Base address of loadable common SCS services

SP Current stack pointer of a process2

SSP Supervisor stack pointer2

SYSLOA Base address of loadable processor-specific system code

TMSCP Address of loadable TMSCP server code

UCB Address of unit control block1

1The SHOW DEVICE command defines this symbol, if appropriate, to represent information pertinent
to the last displayed device unit. See the description of the SHOW DEVICE command for additional
information.
2The value of those symbols representing the current SDA process context changes whenever you
issue a command that changes the context (see Section 4). These symbols include the general-purpose
registers (R0 through R11, AP, FP, PC, and SP); the per-process stack pointers (USP, SSP, KSP);
the page table base and length registers (P0BR, P0LR, P1BR, and P1LR); and the processor status
longword (PSL).
3The notation nn within the symbol nnDRIVER represents a 2-letter, generic device/controller name
(for example, LPDRIVER).

(continued on next page)

SDA–18

SDA Description

Table SDA–9 (Cont.) SDA Symbols

Symbol Meaning

USP User stack pointer2

VCB Address of volume control block for mounted device1

1The SHOW DEVICE command defines this symbol, if appropriate, to represent information pertinent
to the last displayed device unit. See the description of the SHOW DEVICE command for additional
information.
2The value of those symbols representing the current SDA process context changes whenever you
issue a command that changes the context (see Section 4). These symbols include the general-purpose
registers (R0 through R11, AP, FP, PC, and SP); the per-process stack pointers (USP, SSP, KSP);
the page table base and length registers (P0BR, P0LR, P1BR, and P1LR); and the processor status
longword (PSL).

When SDA displays an address, it displays that address both in hexadecimal
and as a symbol, if possible. If the address is within FFF16 of the value of a
symbol, SDA displays the symbol plus the offset from the value of that symbol
to the address. If more than one symbol’s value is within FFF16 of the address,
SDA displays the symbol whose value is the closest. If no symbols have values
within FFF16 of the address, SDA displays no symbol. (For an example, see the
description of the SHOW STACK command.)

8 Investigating System Failures
This section discusses how the operating system handles internal errors and
suggests procedures that can aid you in determining the causes of these errors.
To conclude, it illustrates, through detailed analysis of a sample system failure,
how SDA helps you find the causes of operating system problems.

For a complete description of the commands discussed in the sections that follow,
refer to the SDA Commands section.

8.1 General Procedure for Analyzing System Failures
When the operating system detects an internal error so severe that normal
operation cannot continue, it signals a condition known as a fatal bugcheck and
shuts itself down. A specific bugcheck code describes each such error.

To resolve the problem, you must find the reason for the bugcheck. Most failures
are caused by errors in user-written device drivers or other privileged code not
supplied by Compaq. To identify and correct these errors, you need a listing of
the code in question.

Occasionally, a system failure is the result of a hardware failure or an error in
code supplied by Compaq. A hardware failure requires the attention of Compaq
Services. To diagnose an error in code supplied by Compaq, you need listings of
that code, which are available from Compaq on CDROM.

Following are the steps you can take to diagnose an error:

1. Start the search for the error by locating the line of code that signaled the
bugcheck. Invoke SDA and use the SHOW CRASH command to display the
contents of the program counter (PC). The PC contains the address of the
instruction immediately following the instruction that signaled the bugcheck.

2. Use the SHOW STACK command to display the contents of the stack. The
PC often contains an address in the exception handler. This address is the
address of the instruction that signaled the bugcheck, but not the address of
the instruction that caused it. In this case, the address of the instruction that

SDA–19

SDA Description

caused the bugcheck is located on the stack. See Section 8.2 for information
about how to proceed for several types of bugchecks.

3. Once you have found the address of the instruction that caused the bugcheck,
you need to find the module in which the failing instruction resides. Use the
SHOW DEVICE command to determine whether the instruction is part of a
device driver.

• If the module is not part of a driver, examine the linker’s map of
the module or modules you are debugging to determine whether the
instruction that caused the bugcheck is in your programs.

• If the module is not within a driver or other code supplied by Compaq,
perform the following steps:

a. Issue the following SDA command:

SDA> SHOW EXECUTIVE

This command shows the location and size of each of the loadable
images that make up the executive.

b. Compare the suspected address with the addresses of the system
images.

c. If the address is within one of the images, issue the following
command:

SDA> READ/EXECUTIVE SYS$LOADABLE_IMAGES:

This command loads the symbols that define locations within the
loadable portion of the executive. (READ/EXECUTIVE is the default
display.)

d. Examine the failing address by issuing the following command:

SDA> EXAMINE @PC

SDA then displays the address in the PC as an offset from the nearest
global symbol. This symbol might be the module’s starting address,
although it is possible that the code you are examining might not be
in the module whose name is displayed.

4. To determine the general cause of the system failure, examine the code that
signaled the bugcheck.

8.2 Fatal Bugcheck Conditions
Several conditions result in a bugcheck. Normally, these occasions are rare.
When they do occur, it is likely that they are in the nature of a fatal exception
or an illegal page fault occurring within privileged code. This section describes
the symptoms of these bugchecks. A discussion of other exceptions and condition
handling in general appears in the OpenVMS System Services Reference Manual.

8.2.1 Fatal Exceptions
An exception is fatal when it occurs while the following conditions exist:

• The process is using the interrupt stack.

• The process is executing above IPL 2 (IPL$_ASTDEL).

• The process is executing in a privileged (kernel or executive) processor access
mode and has not declared a condition handler to deal with the exception.

SDA–20

SDA Description

When the system fails, the operating system reports the approximate cause of the
failure on the console terminal. SDA displays a similar message when you issue
a SHOW CRASH command. For instance, for a fatal exception, SDA can display
one of these messages:

FATALEXCPT, Fatal executive or kernel mode exception

INVEXCEPTN, Exception while above ASTDEL or on interrupt stack

SSRVEXCEPT, Unexpected system service exception

Although several exception conditions are possible, access violations are the most
common. When the hardware detects an access violation, information useful in
finding the cause of the violation is pushed onto either the kernel stack or the
interrupt stack. If the access violation occurs when the hardware is using the
interrupt stack, this information appears on the interrupt stack.

The INVEXCEPTN, SSRVEXCEPT, and FATALEXCPT bugchecks place two
argument lists, known as the mechanism and signal arrays, on the stack.

The SSRVEXCEPT and FATALEXCPT bugchecks push an additional argument
list onto the stack above these arrays; INVEXCEPTN does not. This pointer array
(see Figure SDA–1) contains the number 2 in its first longword, indicating that
the following two longwords complete the array. The second longword contains
the stack address of the signal array; the third contains the stack address of the
mechanism array.

Figure SDA–1 Pointer Argument List on the Stack

00000002

ZK−1920−GE

Mechanism Array Address

Signal Array Address

The first longword of the mechanism array (see Figure SDA–2) contains a 4,
indicating that the four subsequent longwords complete the array. These four
longwords are used by the procedures that search for a condition handler and
report exceptions.

SDA–21

SDA Description

Figure SDA–2 Mechanism Array

00000004

ZK−1921−GE

Frame

Depth

R0

R1

The values in the mechanism array are the following:

Value Meaning

00000004 Number of longwords that follow. In a mechanism array, this value is
always 4.

Frame Address of the FP (frame pointer) of the establisher’s call frame.

Depth Depth of the search for a condition handler.

R0 Contents of R0 at the time of the exception.

R1 Contents of R1 at the time of the exception.

The signal array (see Figure SDA–3) appears somewhat further down the stack.
A signal array contains the exception code, zero or more exception parameters,
the PC, and the PSL. The size of a signal array can thus vary from exception to
exception.

Figure SDA–3 Signal Array

00000005

ZK−1922−GE

0000000C

Reason Mask

Virtual Address

PC

PSL

SDA–22

SDA Description

For access violations, the signal array is set up as follows:

Value Meaning

00000005 Number of longwords that follow. For access violations, this
value is always 5.

0000000C Exception code. The value 0C16 represents an access violation.
You can identify the exception code by using the SDA command
EVALUATE/CONDITION.

Reason mask Longword mask. If bit 0 of this longword is set, the failing
instruction (at the PC saved below) caused a length violation.
If bit 1 is set, it referred to a location whose page table entry is
in a ‘‘no access’’ page. Bit 2 indicates the type of access used by
the failing instruction: it is set for write and modify operations
and clear for read operations.

Virtual address Virtual address that the failing instruction tried to reference.

PC PC whose execution resulted in the exception.

PSL PSL at the time of the exception.

In the case of a fatal exception, you can find the code that signaled it by
examining the PC in the signal array. Use the SHOW STACK command to
display the stack in use when the failure occurred and then locate the mechanism
and signal arrays. Once you obtain the PC, which points to the instruction that
signaled the exception, you can identify the module where the instruction is
located by following the instructions in Section 9.3.

8.2.2 Illegal Page Faults
A PGFIPLHI bugcheck occurs when a page fault occurs while the interrupt
priority level (IPL) is greater than 2 (IPL$_ASTDEL). When the system fails
because of an illegal page fault, the following message appears on the console
terminal:

PGFIPLHI, page fault with IPL too high

When an illegal page fault occurs, the stack appears as shown in Figure SDA–4.

SDA–23

SDA Description

Figure SDA–4 Stack Following an Illegal Page-Fault Error

R4

ZK−1923−GE

R5

Reason Mask

Virtual Address

PC

PSL

Six longwords describe the error:

Longword Contents

R4 Contents of R4 at the time of the bugcheck.

R5 Contents of R5 at the time of the bugcheck.

Reason mask Longword mask. If bit 0 of this longword is set, the failing
instruction (at the PC saved below) caused a length violation.
If bit 1 is set, it referred to a location whose page table entry is
in an ‘‘access’’ page. Bit 2 indicates the type of access used by
the failing instruction: it is set for write and modify operations
and clear for read operations.

Virtual address Virtual address being referenced by the instruction that caused
the page fault.

PC PC containing the address of the instruction that caused the
page fault.

PSL PSL at the time of the page fault.

If the operating system detects a page fault while the IPL is higher than IPL$_
ASTDEL, you can obtain the address of the instruction that caused the fault by
examining the PC pushed onto the current operating stack. Follow the steps
outlined in Section 9.3 to determine which module issued the instruction.

9 A Sample System Failure
This section steps through the analysis of a system failure using, as an example,
a printer driver. Three events lead up to this failure:

1. The line printer goes off line for 3 hours.

2. The line printer comes back on line.

3. The operating system signals a bugcheck, writes information to the system
dump file, and shuts itself down.

The following sections describe the actions to take in investigating the causes of
this system crash.

SDA–24

SDA Description

9.1 Identifying the Bugcheck
First, invoke SDA to analyze the system dump file. The initialization message
indicates the type of bugcheck that occurred as follows:

Dump taken on 31-JAN-1993 16:34:31.23
INVEXCEPTN, Exception while above ASTDEL or on interrupt stack

SDA>

An exception occurred that caused the system to signal a bugcheck, and signal
and mechanism arrays have been created on the current operating stack.

9.2 Identifying the Exception
Use the SHOW STACK command to display the current operating stack. In this
case, it is the interrupt stack. The following example shows the interrupt stack
and the signal and mechanism arrays. See the SHOW STACK command for a
complete description of the format of the stack display.

CPU 01 Processor stack

Current operating stack (INTERRUPT)

8006A378 8000844B ACP$WRITEBLK+0A0
.
.
.
SP => 8006A398 7FFDC340

8006A39C 8006A3A0
8006A3A0 80004E7D EXE$REFLECT+0D4
8006A3A4 04080009
8006A3A8 00000004
8006A3AC 7FFDC368
8006A3B0 FFFFFFFD
8006A3B4 8001774E
8006A3B8 0000074F
8006A3BC 00000001
8006A3C0 00000005
8006A3C4 0000000C
8006A3C8 00000000
8006A3CC 80069E00
8006A3D0 8005D003
8006A3D4 04080000
8006A3D8 80009604 EXE$FORKDSPTH+01C

.

.

.

The mechanism array begins at address 8006A3A816 and ends at address
8006A3B816. Its first longword contains 0000000416. The signal array begins
at address 8006A3C016 and ends at 8006A3D416. Its first longword contains
0000000516 and its second longword contains 0000000C16. Examination of the
signal array shows the following:

• The exception code is 0C16, indicating an access violation.

• The reason mask is zero, indicating that the instruction caused a protection
violation (instead of a length violation) when it tried to read the location
(rather than write to it).

• The virtual address that the instruction attempted to reference was
80069E0016.

SDA–25

SDA Description

• The PC of the instruction that referred to the bad virtual address was
8005D00316.

Issuing the SDA command EVALUATE/PSL 04080000 makes the following
information apparent:

• The IPL was 8 at the time of the exception (shown by bits 16 through 20 of
the PSL).

• The current operating stack was the interrupt stack (bit 26 of the PSL is set
to 1).

• The process was executing in kernel mode at the time of the exception (shown
by bits 24 and 25 of the PSL).

Use the SHOW PAGE_TABLE command to display the system page table, as
shown in the following example. The page containing location 80069E0016 is not
available to any access mode (a null page); thus, the virtual address is not valid.

SDA> SHOW PAGE_TABLE

System page table

ADDRESS SVAPTE PTE TYPE PROT BITS PAGTYP LOC STATE TYPE REFCNT BAK SVAPTE FLINK BLINK
.
.
.

80068400 80777B08 7C40FFC8 STX UR K
80068600 80777B0C 7C40FFC8 STX UR K
80068800 80777B10 7C40FFC8 STX UR K
80068A00 80777B14 7C40FFC8 STX UR K
80068C00 80777B18 7C40FFC8 STX UR K
80068E00 80777B1C 7C40FFC8 STX UR K
80069000 80777B20 7C40FFC8 STX UR K
80069200 80777B24 7C40FFC8 STX UR K
80069400 80777B28 7C40FFC8 STX UR K
80069600 80777B2C 7C40FFC8 STX UR K
80069800 80777B30 7C40FFC8 STX UR K
80069A00 80777B34 780016C9 TRANS UR K SYSTEM FREELST 00 01 0 0040FFC8 80777B34 03AF 0E15
80069C00 80777B38 78000E15 TRANS UR K SYSTEM FREELST 00 01 0 0040FFC8 80777B38 16C9 2592
-------- 40 NULL PAGES

.

.

.

9.3 Locating the Source of the Exception
Because the printer went off line and then came back on line, as shown on the
console listing in Section 9.2, the problem might exist in the driver code. SDA
can help you determine which driver might contain the faulty code.

9.3.1 Finding the Driver by Using the Program Counter
The first step in determining whether the failing instruction is within a driver
is to examine the PC in the signal array using the EXAMINE/INSTRUCTION
command. This has two results:

• If possible, it displays the contents of the address as a MACRO instruction.

• It identifies the address as an offset from the symbol, nnDRIVER, if the
address lies within the first FFF16 bytes of such a symbol. SDA defines a
symbol in the form of nnDRIVER for each device driver connected to the
system. This symbol represents the base of the driver prologue table (DPT).
Each DPT is part of the device driver it describes and is immediately followed
by that driver’s code.

SDA–26

SDA Description

In the following example, the instruction that caused the exception is located
within the printer driver.

SDA> EXAMINE/INSTRUCTION 8005D003
LPDRIVER+2B3 MOVB (R3)+,(R0)

If SDA is unable to find a symbol within FFF16 bytes of the memory location you
specify, it displays the location as an absolute address. This often, but not always,
means the instruction that caused the exception is not part of a device driver.

To determine whether an instruction is part of a driver, use the SHOW DEVICE
command to display the starting addresses and lengths of all the drivers in
the system. If the address of the failing instruction falls within the range of
addresses shown for a given driver, the failing instruction is a part of that driver.
The following example shows a partial list of the drivers in the display generated
by the SHOW DEVICE command.

I/O data structures

DDB list

Address Controller ACP Driver DPT DPT size
------- ---------- --- ------ --- --------

80000ECC HELIUM$DBA F11XQP DBDRIVER 800F7AD0 08FD
80001040 OPA OPERATOR 80001622 0061
8000126C MBA MBDRIVER 800015B0 0578
80001460 NLA NLDRIVER 800015E9 05A3
801E2800 HELIUM$DMA F11XQP DMDRIVER 800B5CB0 0AA0
801E2980 HELIUM$DLA F11XQP DLDRIVER 800B6A50 08D0
.
.
.

9.3.2 Calculating the Offset into the Driver’s Program Section
The offsets that SDA displays from nnDRIVER are actually offsets from the
DPT. As such, these offsets do not exactly correspond to the offsets shown in
driver listings, which represent offsets from the beginning of the program section
(PSECT) in which a given instruction appears. Because a driver usually contains
more than one PSECT, you must use the driver’s map to determine the location
of the failing instruction within the driver listing.

To calculate the location of the instruction within the driver listing, refer to the
‘‘Program Section Synopsis’’ section of the driver’s map. Determine in which
PSECT the offset given by SDA occurs and subtract the base of the PSECT from
the offset. You can then use the resulting figure as an index into the driver
listing.

If SDA does not display the address as an offset from nnDRIVER, but the address
is within the address range of a driver in the SHOW DEVICE display, you must
first subtract the address of the DPT from the failing address. Using the result
as the offset, you can then follow the steps previously outlined for determining
the index of the instruction into a driver listing.

SDA–27

SDA Description

9.4 Finding the Problem Within the Routine
To find the problem within the routine, examine the printer’s driver code. In
the system failure discussed in this example, the instruction that caused the
exception is MOVB (R3)+,(R0). To check the contents of R3, use the EXAMINE
command as follows:

SDA> EXAMINE R3

R3: 80069E00 "...."

The invalid virtual address, as recorded in the signal array, is stored in R3. In
the following driver code excerpt, the instruction in question appears at line 599.
It is likely that the contents of R3 have been incremented too many times.

581 STARTIO:
582 MOVL UCB$L_IRP(R5),R3 ;Retrieve address of I/O packet
583 MOVW IRP$L_MEDIA+2(R3),-
584 UCB$W_BOFF(R5) ;Set number of characters to print
585 MOVL UCB$L_SVAPTE(R5),R3 ;Get address of system buffer
586 MOVAB 12(R3),R3 ;Get address of data area
587 MOVL UCB$L_CRB(R5),R4 ;Get address of CRB
588 MOVL @CRB$L_INTD+VEC$L_IDB(R4),R4 ;Get device CSR address
589 ;
590 ; START NEXT OUTPUT SEQUENCE
591 ;
592
593 10$: ADDL3 #LP_DBR,R4,R0 ;Calculate address of data buffer register
594 MOVZWL UCB$W_BOFF(R5),R1 ;Get number of characters remaining
595 MOVW #^X8080,R2 ;Get control register test mask
596 BRB 25$;Start output
597 20$: BITW R2,(R4) ! ;Printer ready or have paper problem?
598 BLEQ 30$;If LEQ not ready or paper problem
599 MOVB (R3)+,(R0) " ;Output next character
600 ASHL #1,G^EXE$GL_UBDELAY,-(SP) ;Delay 3*2 u-seconds
601 24$: SOBGEQ (SP),24$;Delay loop calibrated to machine speed
602 ADDL #4,SP ;Pop extra longword off stack
603 25$: SOBGEQ R1,20$ # ;Any more characters to output?
604 BRW 70$;All done, BRW to set return status

Explanations of the circled numbers in the example are in Section 9.4.1.

9.4.1 Examining the Routine
The MOVB instruction is part of a routine that reads characters from a buffer
and writes them to the printer. The routine contains the loop of instructions
that starts at the label 20$ and ends at 25$. This loop executes once for each
character in the buffer, performing these steps:

! The driver checks the printer’s status register to see if the printer is ready.

" If the printer is ready, the driver gets a character from the buffer and moves
it to the printer’s data register, to which R0 points.

It then decrements R1, which contains the count of characters left to print. If
R1 contains a number greater than 0, control is passed back to the instruction
at 20$, and the loop begins again.

Steps 1 and 2 are repeated until the contents of R1 are 0 or the printer signals
that it is not ready.

If the printer signals that it is not ready, the driver transfers control to 30$ (line
598), the beginning of a routine that waits for an interrupt from the printer.
When the printer becomes ready, it interrupts the driver and execution of the loop
resumes.

SDA–28

SDA Description

Examine the code to determine which variables control the loop.

The byte count (BCNT) is the number of characters in the buffer. Note that
BCNT is set by a function decision table (FDT) routine and that this routine sets
the value of BCNT to the number of characters in the buffer. In line 586, the
starting address of a buffer that is BCNT bytes in size is moved into R3.

Note also that the number of characters left to be printed is represented by the
byte offset (BOFF), the offset into the buffer at which the driver finds the next
character to be printed. This value controls the number of times the loop is
executed.

Because the exception is an access violation, either R3 or R0 must contain an
incorrect value. You can determine that R0 is probably valid by the following
logic:

• The instruction at 10$ (ADDL3 #LP_DBR,R4,R0) places an address in R0 and
R0 is not modified again until the failing instruction (line 599).

• The value in R4 at the time that the instruction at 10$ is executed was
derived from the addresses of the device’s unit control block (UCB) (line 587)
and CRB (line 599). Although it is possible that these data structures might
contain wrong information, it is unlikely.

Thus, the contents of R3 seem to be the cause of the failure.

The most likely reason that the contents of R3 are wrong is that the MOVB
instruction at line 599 executes too many times. You can check this by comparing
the contents of UCB$W_BOFF and UCB$W_BCNT. If UCB$W_BOFF contains
a larger value than that in UCB$W_BCNT, then R3 contains a value that is too
large, indicating that the MOVB instruction has incremented the contents of R3
too many times.

9.4.2 Checking the Values of Key Variables
Because the start-I/O routine requires that R5 contain the address of the printer’s
UCB, and because several other instructions reference R5 without error before
any instruction in the loop does, you can assume that R5 contains the address of
the right UCB. To compare BOFF and BCNT, use the command FORMAT @R5 to
display the contents of the UCB, as shown in the following session.

SDA> READ SYS$SYSTEM:SYSDEF.STB
SDA> FORMAT @R5

8005D160 UCB$L_FQFL 800039A8
UCB$L_RQFL
UCB$W_MB_SEED
UCB$W_UNIT_SEED

8005D164 UCB$L_FQBL 800039A8
UCB$L_RQBL

8005D168 UCB$W_SIZE 0122
8005D16A UCB$B_TYPE 10
8005D16B UCB$B_FIPL 34

UCB$B_FLCK

SDA–29

SDA Description

.

.

.
8005D1C8 UCB$L_SVAPTE 80062720
8005D1CC UCB$W_BOFF 0795
8005D1CE UCB$W_BCNT 006D
8005D1D0 UCB$B_ERTCNT 00
8005D1D1 UCB$B_ERTMAX 00
8005D1D2 UCB$W_ERRCNT 0000

.

.

.
SDA>

If you have only one printer in your system configuration, you do not need to use
the FORMAT command. Instead, you can use the command SHOW DEVICE LP.
Because only one printer is connected to the processor, only one UCB is associated
with a printer for SDA to display.

The output produced by the FORMAT @R5 command shows that UCB$W_BOFF
contains a value greater than that in UCB$W_BCNT; it should be smaller.
Therefore, the value stored in BOFF is incorrect.

Thus, the value of BOFF is not the number of characters that remain in the
buffer. This value is used in calculating an address that is referenced at an
elevated IPL. When this address is within a null page (unreadable in all access
modes), an attempt to reference it causes the system to fail.

9.4.3 Identifying and Correcting the Defective Code
Examine the printer driver code to locate all instructions that modify UCB$W_
BOFF. The value changes in two circumstances:

• Immediately after the driver detects that the printer is not ready and that
the problem is not a paper problem (line 609).

• When the wait-for-interrupt routine’s timeout count of 12 seconds is
exhausted (lines 616 and 630). At this time, the contents of R1, plus 1,
are stored in UCB$W_BOFF (line 631).

When the printer times out, the driver should not modify UCB$W_BOFF. It does
so, however, in line 631. The driver should modify the contents of UCB$W_BOFF
only when it is certain that the printer printed the character. When the printer
times out, this is not the case. Furthermore, the wait-for-interrupt routine
preserves only registers R3, R4, and R5, so that only those registers can be used
unmodified after the execution of the wait-for-interrupt routine. Thus, the use of
R1 in line 631 is an error.

To correct the problem, change the WFIKPCH argument (line 616) so that, when
the printer times out, the WFIKPCH macro transfers control to 50$ rather than
to 40$.

SDA–30

SDA Description

607
608 30$: BNEQ 40$;If NEQ paper problem
609 ADDW3 #1,R1,UCB$W_BOFF(R5) ;Save number of characters remaining
610 DEVICELOCK -
611 LOCKADDR=UCB$L_DLCK(R5),- ;Lock device interrupts
612 SAVIPL=-(SP) ;Save current IPL
613 BITW #^X80,LP_CSR(R4) ;Is it ready now?
614 BNEQ 35$;If NEQ, yes, it’s ready
615 BISB #^X40,LP_CSR(R4) ;Set interrupt enable
616 WFIKPCH 40$,#12 ;Wait for ready interrupt
617 IOFORK ;Create a fork process
618 BRB 10$; ...and start next output
619
620 35$:
621 DEVICEUNLOCK -
622 LOCKADDR=UCB$L_DLCK(R5),- ;Unlock device interrupts
623 NEWIPL=(SP)+ ;Restore IPL
624 CLRW LP_CSR(R4) ;Disable device interrupts
625 BRB 10$;Go transfer more characters
626 ;
627 ; PRINTER HAS PAPER PROBLEM
628 ;
629
630 40$: CLRL UCB$L_LP_OFLCNT(R5) ;Clear offline counter
631 ADDW3 #1,R1,UCB$W_BOFF(R5) ;Save number of characters remaining
632 50$: CLRW LP_CSR(R4) ;Disable printer interrupt
633 IOFORK ;Lower to fork level
634 BBS #UCBV_CANCEL,UCBW_STS(R5),80$;If set, cancel I/O operation
635 TSTW LP_CSR(R4) ;Printer still have paper problem?
636 BLSS 55$;If LSS yes
637 MOVL #15,UCB$L_LP_TIMEOUT(R5) ;Set timeout value
638 BRB 10$; ...and start next output

10 Inducing a System Failure
If the operating system is not performing well and you want to create a dump
you can examine, you must induce a system failure. Occasionally, a device driver
or other user-written, kernel-mode code can cause the system to execute a loop of
code at a high priority, interfering with normal system operation. This can occur
even though you have set a breakpoint in the code if the loop is encountered
before the breakpoint. To gain control of the system in such circumstances, you
must cause the system to fail and then reboot it.

If the system has suspended all noticeable activity (if it is ‘‘hung’’), see the
examples of causing system failures in Section 10.2.

If you are generating a system crash in response to a system hang, be sure
to record the PC at the time of the system halt as well as the contents of the
general registers. Submit this information to Compaq, along with the Software
Performance Report (SPR) and a copy of the generated system dump file.

10.1 Meeting Crash Dump Requirements
The following requirements must be met before the system can write a complete
crash dump:

• You must not halt the system until the console dump messages have been
printed in their entirety and the memory contents have been written to the
crash dump file. Be sure to allow sufficient time for these events to take place
or make sure that all disk activity has stopped before using the console to
halt the system.

SDA–31

SDA Description

• There must be a crash dump file in SYS$SYSTEM: named either
SYSDUMP.DMP or PAGEFILE.SYS.

This dump file must be either large enough to hold the entire contents
of memory (as discussed in Section 1.1) or, if the DUMPSTYLE system
parameter is set, large enough to accommodate a subset dump (see
Section 1.1.2).

If SYSDUMP.DMP is not present, the operating system attempts to write
crash dumps to PAGEFILE.SYS. In this case, the SAVEDUMP system
parameter must be 1 (the default is 0).

• The DUMPBUG system parameter must be 1 (the default is 1).

10.2 Examples of How to Cause System Failures
The following examples show the sequence of console commands needed to cause
a system failure on each type of processor. In each instance, after halting the
processor and examining its registers, you place the equivalent of –1 (for example,
FFFFFFFF16) into the PC. The value placed in the PSL sets the processor access
mode to kernel and the IPL to 31. After these commands are executed, an
INVEXCEPTN bugcheck is reported on the console terminal, followed by a listing
of the contents of the processor registers.

The console volume of most processors contains a command file named either
CRASH.COM or CRASH.CMD, which you can execute to perform these
commands. Note that the console sessions recorded in this section omit much of
the information the console displays in response to the listed commands.

VAX 85x0/8700/88x0
The following series of console commands causes a system failure on the VAX
85x0/8700/88x0 systems. (Note that the console prompt for the VAX 8810, 8820,
and 8830 systems is PS-CIO-0> and not >>>.)

$ Ctrl/P

>>> SET CPU CURRENT_PRIMARY
>>> HALT
?00 Left CPU -- CPU halted

PC = 8001911C
>>> @CRASH
!
! Command procedure to force bugcheck via access violation
!
SET VERIFY
SET CPU CURRENT_PRIMARY !Select primary
EXAMINE PSL !Display PSL

M 00000000 00420008
EXAMINE/I/NEXT 4 0
.
.
.

DEPOSIT PC FFFFFFFF !Set PC=-1 to force ACCVIO
DEPOSIT PSL 41F0000 !Set IPL=31, interrupt stack
CONTINUE !Execute from PC=-1

SDA–32

SDA Description

VAX 82x0/83x0, VAXstation 3520/3540, 6000 Series, and 9000 Series
The following console commands cause a system failure on a VAX 82x0/83x0
system, a VAXstation 3520/3540 system, a VAX 6000 series system, or a VAX
9000 series system.

$ Ctrl/P

PC = 80008B1F
>>> E P
>>> E/I 0
>>> E/I +
>>> E/I +
>>> E/I +
>>> E/I +
>>> D/G F FFFFFFFF
>>> D P 41F0000
>>> C

VAX 8600/8650
The following console commands cause a system failure on the VAX 8600/8650
systems.

$ Ctrl/P

>>> @CRASH

SET QUIET OFF !Make clearer
SET ABORT OFF !Don’t abort on E/VIR command
HALT

CPU stopped, INVOKED BY CONSOLE (CSM code 11)
PC 80008B1F

UNJAM !Clear the way
E PSL !Display PSL

U PSL 00000000
E/I/N:4 0 !Display stack pointers
.
.
.

E SP !Get current stack pointers
G 0E 80000C40

E/vir/next:40 @ !Dump top of stack
.
.
.

D PC FFFFFFFF !Invalidate the PC
D PSL 1F0000 !Kernel mode, IPL 31
SET ABORT ON !Restore abort flag
SET QUIET ON !Shut output off
CONTINUE !Force a machine check

VAX-11/780 and VAX-11/785
The following console commands cause a system failure on the VAX-11/780 and
VAX-11/785 processors.

$ Ctrl/P

>>> @CRASH
HALT !Halt system, examine PC,
HALTED AT 80008A89

EXAMINE PSL !PSL,
00000000

EXAMINE/INTERN/NEXT:4 0 !and all stack pointers

DEPOSIT PC = -1 !Invalidate PC
DEPOSIT PSL = 41F0000 !Kernel mode, IPL 31

SDA–33

SDA Description

CONTINUE

VAX-11/750
The following code causes a system failure on a VAX-11/750. On this processor,
the HALT command is a NOP; a Ctrl/P automatically halts the processor.

$ Ctrl/P

>>> H
>>> E P
>>> E/I 0
>>> E/I +
>>> E/I +
>>> E/I +
>>> E/I +
>>> D/G F FFFFFFFF
>>> D P 41F0000
>>> C

MicroVAX 3400/3600/3900 Series, VAXstation/MicroVAX 3100,
VAXstation/MicroVAX 2000, MicroVAX II, and VAX 4000 Series
To force a crash of a MicroVAX, you must first halt the processor. (After you halt
the processor, press the HALT button again so that it is popped out and is not
illuminated.) Then, issue the following console commands:

>>> E PSL
>>> E/I/N:4 0
>>> D PC FFFFFFFF
>>> D PSL 41F0000
>>> C

VAX-11/730
The following console commands cause a system failure on a VAX-11/730. Ctrl/P
automatically halts the processor.

$ Ctrl/P

>>> H
>>> E PSL
>>> E/I/N:4 0
>>> D PC FFFFFFFF
>>> D PSL 1F0000
>>> C

SDA–34

SDA Usage Summary

The System Dump Analyzer is a utility that you can use to help determine the
causes of system failures. This utility is also useful for examining the running
system.

Format

analyze {/CRASH_DUMP [/RELEASE] filespec | /SYSTEM}
[/SYMBOL=system-symbol-table]

Command Parameter
filespec
Name of the file that contains the dump you want to analyze. At least one field
of the filespec is required, and it can be any field. The default filespec is the
highest version of SYSDUMP.DMP in your default directory.

Usage Summary

The following table summarizes how to perform key SDA operations.

Operation Command Explanation or Requirements

Invoke SDA to analyze a
system dump

$ ANALYZE/CRASH_
DUMP filename

If you do not specify a file name, SDA prompts
you for one.

Reading the dump file usually requires system
privilege (SYSPRV), but your system manager
can allow less privileged processes to read dump
files.

Your process needs change-mode-to-kernel
(CMKRNL) privilege to release page file dump
blocks, whether you use the /RELEASE qualifier
or the SDA COPY command.

Invoke SDA to analyze a
running system

$ ANALYZE/SYSTEM Your process must have change-mode-to-kernel
(CMKRNL) privilege. You cannot specify a file
name with the /SYSTEM qualifier.

Send all output from
SDA to a file

SDA> SET OUTPUT
filename

The file produced is 132 columns wide and is
formatted for output to a printer.

Redirect the output to
your terminal

$ SET OUTPUT
SYS$OUTPUT

Send a copy of all the
commands you enter
and all the output those
commands produce to a
file

SDA> SET LOG filename The file produced is 132 columns wide and is
formatted for output to a printer.

Exit an SDA display or
the SDA utility

SDA> EXIT If SDA is in display mode, you must use the
EXIT command twice: once to exit display mode
and a second time to exit SDA.

SDA–35

SDA Usage Summary

SDA Qualifiers
The following qualifiers, described in this section, determine whether the object
of an SDA session is a crash dump or a running system. They also help create
the environment of an SDA session. Table SDA–10 briefly describes the SDA
qualifiers.

Table SDA–10 Descriptions of SDA Qualifiers

Qualifier Description

/CRASH_DUMP Invokes SDA to analyze a specified dump file

/RELEASE Invokes SDA to release those blocks that are occupied by a crash
dump in a specified system paging file

/SYMBOL Specifies a system symbol table for SDA to use in place of the
system symbol table it uses by default (SYS$SYSTEM:SYS.STB)

/SYSTEM Invokes SDA to analyze a running system

SDA–36

System Dump Analyzer
/CRASH_DUMP

/CRASH_DUMP

Invokes SDA to analyze the specified dump file.

Format

/CRASH_DUMP filespec

Parameter

filespec
Name of the crash dump file to be analyzed. The default file specification is:

SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command. If you do not specify filespec, SDA prompts you
for it.

Description

See Section 2 for additional information on crash dump analysis.

Examples

1. $ ANALYZE/CRASH_DUMP SYS$SYSTEM:SYSDUMP.DMP

$ ANALYZE/CRASH SYS$SYSTEM

These commands invoke SDA to analyze the crash dump stored in
SYS$SYSTEM:SYSDUMP.DMP.

2. $ ANALYZE/CRASH SYS$SYSTEM:PAGEFILE.SYS

This command invokes SDA to analyze a crash dump stored in the system
paging file.

SDA–37

System Dump Analyzer
/RELEASE

/RELEASE

Invokes SDA to release those blocks in the specified system paging file occupied
by a crash dump.

Format

/RELEASE filespec

Parameter

filespec
Name of the system page file (SYS$SYSTEM:PAGEFILE.SYS). The default file
specification is:

SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command. If you do not specify filespec, SDA prompts you
for it.

Description

You use the /RELEASE qualifier to release from the system paging file those
blocks occupied by a crash dump. When invoked with the /RELEASE qualifier,
SDA immediately deletes the dump from the paging file and allows no opportunity
to analyze its contents.

When you specify the /RELEASE qualifier in the ANALYZE command, you must
also do the following:

1. Use the /CRASH_DUMP qualifier.

2. Include the name of the system paging file (SYS$SYSTEM:PAGEFILE.SYS)
as the filespec.

If you do not specify the system paging file or the specified paging file does not
contain a dump, SDA generates the following messages:

%SDA-E-BLKSNRLSD, no dump blocks in page file to release, or not page file
%SDA-E-NOTPAGFIL, specified file is not the page file

Example

$ ANALYZE/CRASH_DUMP/RELEASE SYS$SYSTEM:PAGEFILE.SYS

This command invokes SDA to release to the paging file those blocks in
SYS$SYSTEM:PAGEFILE.SYS occupied by a crash dump.

SDA–38

System Dump Analyzer
/SYMBOL

/SYMBOL

Specifies a system symbol table for SDA to use in place of the system symbol
table it uses by default (SYS$SYSTEM:SYS.STB).

Format

/SYMBOL =system-symbol-table

Parameter

system-symbol table
File specification of the SDA system symbol table needed to define symbols
required by SDA to analyze a dump from a particular system. The specified
system-symbol-table must contain those symbols required by SDA to find
certain locations in the executive image.

If you do not specify the /SYMBOL qualifier, SDA uses SYS$SYSTEM:SYS.STB
by default. When you do specify the /SYMBOL qualifier, SDA assumes the default
disk and directory to be SYS$DISK: that is, the disk and directory specified in
your last SET DEFAULT command. If SDA is given a file that is not a system
symbol table in the /SYMBOL qualifier, it halts with a fatal error.

Description

The /SYMBOL qualifier allows you to specify a system symbol table, other than
SYS$SYSTEM:SYS.STB, to load into the SDA symbol table. This might be
necessary, for instance, to analyze a crash dump taken on a processor running a
different version of OpenVMS.

You can use the /SYMBOL qualifier whether you are analyzing a system dump or
a running system.

Example

$ ANALYZE/CRASH_DUMP/SYMBOL=SYS$CRASH:SYS.STB SYS$SYSTEM

This command invokes SDA to analyze the crash dump stored in
SYS$SYSTEM:SYSDUMP.DMP, using the system symbol table at
SYS$CRASH:SYS.STB.

SDA–39

System Dump Analyzer
/SYSTEM

/SYSTEM

Invokes SDA to analyze a running system.

Format

/SYSTEM

Parameters

None.

Description

See Section 3 for a full discussion of using SDA to analyze a running system.

You cannot specify the /CRASH_DUMP or /RELEASE qualifiers when you include
the /SYSTEM qualifier in the ANALYZE command.

Example

$ ANALYZE/SYSTEM

This command invokes SDA to analyze the running system.

SDA–40

System Dump Analyzer

SDA Commands

Table SDA–11 briefly describes the SDA commands that are explained fully in the
following section.

Table SDA–11 Descriptions of SDA Commands

Command Description

@ (Execute
Procedure)

Causes SDA to execute SDA commands contained in a file

ATTACH Switches control of your terminal from your current process
to another process in your job

COPY Copies the contents of the dump file to another file
DEFINE Assigns a value to a symbol or associates an SDA command

with a terminal key
EVALUATE Computes and displays the value of the specified expression

in both hexadecimal and decimal
EXAMINE Displays either the contents of a location or range of locations

in physical memory, or the contents of a register
EXIT Exits from an SDA display or exits from the SDA utility
FORMAT Displays a formatted list of the contents of a block of memory
HELP Displays information about the SDA utility, its operation,

and the format of its commands
READ Loads the global symbols contained in the specified object

module into the SDA symbol table
REPEAT Repeats execution of the last command issued
SEARCH Scans a range of memory locations for all occurrences of a

specified value
SET CPU Selects a processor to become the SDA current CPU
SET LOG Initiates or discontinues the recording of an SDA session in a

text file
SET OUTPUT Redirects output from SDA to the specified file or device
SET PROCESS Selects a process to become the SDA current process
SET RMS Changes the options shown by the SHOW PROCESS/RMS

command
SHOW CALL_
FRAME

Displays the locations and contents of the longwords
representing a procedure call frame

SHOW
CLUSTER

Displays connection manager and system communications
services (SCS) information for all nodes in a cluster

SHOW
CONNECTIONS

Displays information about all active connections between
SCS processes or a single connection

SHOW CPU Displays information about the state of a processor at the
time of the system failure

(continued on next page)

SDA–41

System Dump Analyzer

Table SDA–11 (Cont.) Descriptions of SDA Commands

Command Description

SHOW CRASH In the analysis of a system failure, displays information
about the state of the system at the time of the failure;
in the analysis of a running system, provides information
identifying the system

SHOW DEVICE Displays a list of all devices in the system and their
associated data structures or displays the data structures
associated with a given device or devices

SHOW
EXECUTIVE

Displays the location and size of each loadable image that
makes up the executive

SHOW HEADER Displays the header of the dump file
SHOW LAN Displays information contained in various local area network

(LAN) data structures
SHOW LOCK Displays information about all lock management locks in the

system, cached locks, or a specified lock
SHOW LOGS Displays information about transaction logs currently open

for the node
SHOW PAGE_
TABLE

Displays a range of system page table entries, the entire
system page table, or the entire global page table

SHOW PFN_
DATA

Displays information that is contained in the page lists and
PFN database

SHOW POOL Displays information about the disposition of paged and
nonpaged memory, nonpaged dynamic storage pool, and
paged dynamic storage pool

SHOW PORTS Displays those portions of the port descriptor table (PDT)
that are port independent

SHOW PROCESS Displays the software and hardware context of any process in
the balance set

SHOW
RESOURCE

Displays information about all resources in the system or
about a resource associated with a specific lock

SHOW RMS Displays the RMS data structures selected by the SET RMS
command to be included in the default display of the SHOW
PROCESS/RMS command

SHOW RSPID Displays information about response IDs (RSPIDs) of all SCS
connections or, optionally, a specific SCS connection

SHOW
SPINLOCKS

Displays information taken from the data structures
that provide system synchronization in a multiprocessing
environment

SHOW STACK Displays the location and contents of the four process stacks
(of the SDA current process) and the interrupt stack (of the
SDA current CPU)

SHOW
SUMMARY

Displays a list of all active processes and the values of the
parameters used in swapping and scheduling those processes

(continued on next page)

SDA–42

System Dump Analyzer

Table SDA–11 (Cont.) Descriptions of SDA Commands

Command Description

SHOW SYMBOL Displays the hexadecimal value of a symbol and, if the value
is equal to an address location, the contents of that location

SHOW
TRANSACTIONS

Displays information about all transactions on the node or
about a specified transaction

SPAWN Creates a subprocess of the process currently running SDA,
copying the context of the current process to the subprocess

VALIDATE
QUEUE

Validates the integrity of the specified queue by checking the
pointers in the queue

SDA–43

System Dump Analyzer
@ (Execute Procedure)

@ (Execute Procedure)

Causes SDA to execute SDA commands contained in a file. Use this command to
execute a set of frequently used SDA commands.

Format

@filespec

Parameter

filespec
Name of a file that contains the SDA commands to be executed. The default file
type is .COM.

Example

SDA> @USUAL

The Execute Procedure command executes the following commands, as contained
in a file named USUAL.COM:

SET OUTPUT LASTCRASH.LIS
SHOW CRASH
SHOW PROCESS
SHOW STACK
SHOW SUMMARY

This command procedure first makes the file LASTCRASH.LIS the destination for
output generated by subsequent SDA commands. Next, the command procedure
sends to the file information about the crash and its context, a description of the
process executing at the time of the process, the contents of the stack on which
the crash occurred, and a list of the processes active on the CPU that crashed.

An EXIT command within a command procedure terminates the procedure at
that point, as would an end-of-file marker.

You cannot nest command procedures.

SDA–44

System Dump Analyzer
ATTACH

ATTACH

Switches control of your terminal from your current process to another process in
your job.

Format

ATTACH [/PARENT] process-name

Parameter

process-name
Name of the process to which you want to transfer control.

Qualifier

/PARENT
Transfers control of the terminal to the parent process of the current process.
When you specify this qualifier, you cannot specify the process-name parameter.

Examples

1. SDA> ATTACH/PARENT

This ATTACH command attaches the terminal to the parent process of the
current process.

2. SDA> ATTACH DUMPER

This ATTACH command attaches the terminal to a process named DUMPER
in the same job as the current process.

SDA–45

System Dump Analyzer
COPY

COPY

Copies the contents of the dump file to another file.

Format

COPY output-filespec

Parameter

output-filespec
Name of the device, directory, and file to which SDA copies the dump file. The
default file specification is:

SYS$DISK:[default-dir]filename.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command. You must supply at least the file name.

Description

Each time the system fails, it copies the contents of physical memory and the
hardware context of the current process (as directed by the DUMPSTYLE
parameter) into the file SYS$SYSTEM:SYSDUMP.DMP (or the paging file),
overwriting its current contents. If you do not save this crash dump elsewhere, it
will be overwritten the next time the system fails.

The COPY command allows you to preserve a crash dump by copying its contents
to another file. It is generally useful to invoke SDA during system initialization
(from within SYS$MANAGER:SYSTARTUP_VMS.COM) to execute the COPY
command. This ensures that a copy of the dump file is made each time the
system fails.

The COPY command does not affect the contents of
SYS$SYSTEM:SYSDUMP.DMP.

If you are using the paging file (SYS$SYSTEM:PAGEFILE.SYS) as the dump file
instead of SYSDUMP.DMP, you can use the COPY command to explicitly release
the blocks of the paging file that contain the dump, thus making them available
for paging. Although the copy operation succeeds nonetheless, the release
operation requires that your process have change-mode-to-kernel (CMKRNL)
privilege. Once the dump pages have been released from the paging file, the
dump information in those pages might be lost. You need to analyze the copy of
the dump created by the COPY command.

Example

SDA> COPY SYS$CRASH:SAVEDUMP

The COPY command copies the dump file into the file
SYS$CRASH:SAVEDUMP.DMP.

SDA–46

System Dump Analyzer
DEFINE

DEFINE

Assigns a value to a symbol or associates an SDA command with a terminal key.

Format

DEFINE [symbols-name [=] expression | /KEY key-name command | [/qualifier....]]

Parameters

symbol-name
Name, containing from 1 to 31 alphanumeric characters, that identifies the
symbol. See Section 7.2.4 for a description of SDA symbol syntax and a list of
default symbols.

expression
Definition of the symbol’s value. See Section 7.2 for a discussion of the
components of SDA expressions.

key-name
Name of the key to be defined. You can define the following keys under SDA:

Key Name Key Designation

PF1 LK201, VT100, VT52 Red
PF2 LK201, VT100, VT52 Blue
PF3 LK201, VT100, VT52 Black
PF4 LK201, VT100
KP0 . . . KP9 Keypad 0–9
PERIOD Keypad period
COMMA Keypad comma
MINUS Keypad minus
ENTER Keypad Enter
UP Up arrow
DOWN Down arrow
LEFT Left arrow
RIGHT Right arrow
E1 LK201 Find
E2 LK201 Insert Here
E3 LK201 Remove
E4 LK201 Select
E5 LK201 Prev Screen
E6 LK201 Next Screen
HELP LK201 Help
DO LK201 Do
F7 . . . F20 LK201 function keys

SDA–47

System Dump Analyzer
DEFINE

command
SDA command the key is to be defined as. The command must be enclosed in
quotation marks (" ").

Qualifiers

/ECHO
/NOECHO
Determines whether the equivalence string is displayed on the terminal screen
after the defined key has been pressed. The /NOECHO qualifier functions only
with the /TERMINATE qualifier. The default is /ECHO.

/IF_STATE=(state-name, . . .)
/NOIF_STATE
Specifies a list of one or more states, one of which must be in effect for the key
definition to be in effect. States are placed in effect by the /SET_STATE qualifier,
which is described in this section.

The state-name is an alphanumeric string, enclosed in quotation marks (" "). By
including several state names, you can define a key to have the same function
in all the specified states. If you specify only one state name, you can omit the
parentheses.

If you omit the /IF_STATE qualifier—or use /NOIF_STATE—the current state is
used.

/KEY
Defines a key as an SDA command. You need only to press the defined key and
the Return key to issue the command. If you use the /TERMINATE qualifier as
well, you do not need to press the Return key.

When you define some keys as SDA commands, you must press Ctrl/V first
before those keys will execute the commands. This is because of the escape
sequences the keys generate and the way the terminal driver handles those
escape sequences. The following keys, when defined as SDA commands, must be
preceded by a Ctrl/V:

Key Name Key Designation

LEFT Left arrow
RIGHT Right arrow
F7 . . . F14 LK201 function keys

/SET_STATE=state-name
Causes the key being defined to cause a key state change rather than issue an
SDA command. When you use the /SET_STATE qualifier, you supply the name of
a key state in place of the key-name parameter. In addition, you must define the
command parameter as a pair of quotation marks (" ").

The key state can be any name you think appropriate. For example, you can
define the PF1 key to set the state to GOLD and use the /IF_STATE=GOLD
qualifier to allow two definitions for other keys, one in the GOLD state and one in
the non-GOLD state.

SDA–48

System Dump Analyzer
DEFINE

/TERMINATE
/NOTERMINATE
Causes the key definition to include termination of the command, which causes
SDA to execute the command when the defined key is pressed. Therefore, you do
not have to press the Return key after you press the defined key if you specify the
/TERMINATE qualifier.

Description

The DEFINE command causes SDA to evaluate an expression and then assign
its value to a symbol. Both the DEFINE and EVALUATE commands perform
computations in order to evaluate expressions. DEFINE adds symbols to the SDA
symbol table but does not display the results of the computation. EVALUATE
displays the results of the computation but does not add symbols to the SDA
symbol table.

The DEFINE/KEY command associates an SDA command with the specified key,
in accordance with any specified qualifiers.

If the symbol or key is already defined, SDA replaces the old definition with the
new one. Symbols and keys remain defined until you exit SDA.

Examples

1. SDA> DEFINE BEGIN = 80058E00
SDA> DEFINE END = 80058E60
SDA> EXAMINE BEGIN:END

In this example, DEFINE defines two addresses, called BEGIN and END.
These symbols serve as reference points in memory, defining a range of
memory locations that the EXAMINE command can inspect.

2. SDA> DEFINE NEXT = @PC
SDA> EXAMINE/INSTRUCTION NEXT
NEXT: MOVL @00(R6),R0

Symbol NEXT defines the address contained in the program counter so that
you can use the symbol in an EXAMINE/INSTRUCTION command.

3. SDA> DEFINE VEC SCH$GL_PCBVEC
SDA> EXAMINE VEC
VEC: 80B7D31C ".O.."

After the value of global symbol SCH$GL_PCBVEC has been assigned to
the symbol VEC, VEC is used to examine the memory location or value
represented by the global symbol.

4. SDA> DEFINE COUNT = 7
SDA> DEFINE RESULT = COUNT * COUNT
SDA> EVALUATE RESULT
Hex = 00000031 Decimal = 49 PR$_SBIS

RESULT

The first DEFINE command assigns the value 7 to symbol COUNT. The
second DEFINE command defines RESULT to be the result of the evaluation
of an arithmetic expression using the symbol COUNT. Evaluation of RESULT
shows that system symbol PR$_SBIS has an equivalent value.

SDA–49

System Dump Analyzer
DEFINE

5. SDA> DEFINE/KEY PF1 "SHOW STACK"
SDA> PF1 SHOW STACK RETURN

Process stacks (on CPU 00)

Current operating stack (KERNEL):

7FFE8DD4 00001703 SGN$C_MAXPGFL+703
7FFE8DD8 80127920
7FFE8DDC 00000000
7FFE8DE0 00000000
7FFE8DE4 00000000
7FFE8DE8 00000000
7FFE8DEC 7FF743E4
7FFE8DF0 7FF743CC

SP => 7FFE8DF4 8000E646 EXE$CMODEXEC+1EE
7FFE8DF8 7FFEDE96 SYS$CMKRNL+006
7FFE8DFC 03C00000

The DEFINE/KEY command defines PF1 as the SHOW STACK command.
When you press the PF1 key, SDA displays the command and waits for you to
press the Return key.

6. SDA> DEFINE/KEY/TERMINATE PF1 "SHOW STACK"
SDA> PF1 SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

.

.

.

The DEFINE/KEY command defines PF1 as the SHOW STACK command.
Also specifying the /TERMINATE qualifier causes SDA to execute the SHOW
STACK command without waiting for you to press the Return key.

7. SDA> DEFINE/KEY/SET_STATE="GREEN" PF1 ""
SDA> DEFINE/KEY/TERMINATE/IF_STATE=GREEN PF3 "SHOW STACK"
SDA> PF1 PF3 SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

.

.

.

The first DEFINE command defines PF1 as a key that sets command state
GREEN. The trailing pair of quotation marks is required syntax, indicating
that no command is to be executed when you press this key.

The second DEFINE command defines PF3 as the SHOW STACK command,
but using the /IF_STATE qualifier makes the definition valid only when the
command state is GREEN. Thus, you must press PF1 before pressing PF3 to
issue the SHOW STACK command. The /TERMINATE qualifier causes the
command to execute as soon as you press the PF3 key.

SDA–50

System Dump Analyzer
EVALUATE

EVALUATE

Computes and displays the value of the specified expression in both hexadecimal
and decimal. Alternative evaluations of the expression are available with the use
of the qualifiers defined for this command.

Format

EVALUATE {/CONDITION_VALUE | /PSL | /PTE | /SYMBOLS} expression

Parameter

expression
SDA expression to be evaluated. Section 7.2 describes the components of SDA
expressions.

Qualifiers

/CONDITION_VALUE
Displays the message that the $GETMSG system service obtains for the value of
the expression.

/PSL
Evaluates the specified expression in the format of a processor status longword.

/PTE
Interprets and displays the expression as a page table entry (PTE). The individual
fields of the PTE are separated and an overall description of the PTE’s type is
provided.

/SYMBOLS
Specifies that all symbols that are known to be equal to the evaluated expression
are to be listed in alphabetical order. The default behavior of the EVALUATE
command displays only the first several such symbols.

Description

If the expression is equal to the value of a symbol in the SDA symbol table, that
symbol is displayed. If no symbol with this value is known, the next lower valued
symbol is displayed with an appropriate offset if the offset is small enough for the
selected symbol to be considered useful.

Examples

1. SDA> EVALUATE -1
Hex = FFFFFFFF Decimal = -1 PR$_XSID_N8NNN

The EVALUATE command evaluates a numeric expression, displays the
value of that expression in hexadecimal and decimal notation, and displays a
symbol that has been defined to have an equivalent value.

SDA–51

System Dump Analyzer
EVALUATE

2. SDA> EVALUATE 1
Hex = 00000001 Decimal = 1 ACP$V_SWAPGRP

ACP$V_WRITECHK
EVT$_EVENT

The EVALUATE command evaluates a numeric expression and displays the
value of that expression in hexadecimal and decimal notation. This example
also shows the symbols that have the displayed value. A finite number of
symbols are displayed by default.

3. SDA> DEFINE TEN = A
SDA> EVALUATE TEN
Hex = 0000000A Decimal = 10 EXE$V_FATAL_BUG

SGN$C_MINWSCNT
TEN

This example shows the definition of a symbol named TEN. The EVALUATE
command then shows the value of the symbol.

Note that A, the value assigned to the symbol by the DEFINE command,
could be a symbol. When SDA evaluates a string that can be either a symbol
or a hexadecimal numeral, it first searches its symbol table for a definition of
the symbol. If SDA finds no definition for the string, it evaluates the string
as a hexadecimal number.

4. SDA> EVALUATE (((TEN * 6) + (-1/4)) + 6)
Hex = 00000042 Decimal = 66

This example shows how SDA evaluates an expression of several terms,
including symbols and rational fractions. SDA evaluates the symbol,
substitutes its value in the expression, and then evaluates the expression.
Note that the fraction –1/4–is truncated to 0.

5. SDA> EVALUATE/CONDITION 80000018
%SYSTEM-W-EXQUOTA, exceeded quota

This example shows the output of an EVALUATE/CONDITION command.

6. SDA> EVALUATE/PSL 04080009
CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV T N Z V C
0 0 0 1 KERN KERN 08 0 0 0 0 1 0 0 1

SDA interprets the entered value 04080009 as though it were a processor
status longword (PSL) and displays the resulting field values of that
longword.

7. SDA> EVALUATE/PTE ABCDFFEE

|31 28|27 24|23 20|19 16|15 12|11 8|7
| | | | | | |
+-->
|1 | 0 1 0 1 |0 |--| 1 1 |--| 0| 0DFFEE
+-->
Vld Prot= EW M Own=U W Page Frame Number

Page is Active and Valid

The EVALUATE/PTE command displays the expression ABCDFFEE as a
page table entry (PTE) and labels the fields. It also describes the status of
the page.

SDA–52

System Dump Analyzer
EXAMINE

EXAMINE

Displays either the contents of a location or range of locations in physical memory,
or the contents of a register. You can use location parameters to display specific
locations or use qualifiers to display entire process and system regions of memory.

Format

EXAMINE [/qualifier[,...]] [location]

Parameter

location
Location in memory to be examined. You can represent a location by any valid
SDA expression (see Section 7.2). To examine a range of locations, use the
following format:

m:n Range of locations to be examined, from m to n
m;n Range of locations to be examined, starting at m and continuing for n

bytes

The default location that SDA uses is initially 0 in the program region (P0) of
either of the following:

• The process that was executing at the time the system failed (if you are
examining a crash dump)

• Your process (if you are examining the running system)

Subsequent uses of the EXAMINE command with no parameter specified increase
the last address examined by 4. Use of the /INSTRUCTION qualifier increases
the default address as appropriate to the translation of the instruction. To
examine memory locations of other processes, you must use the SET PROCESS
command.

Qualifiers

/ALL
Examines all the locations in the program and control regions and parts of
the writable system region, displaying the contents of memory in hexadecimal
longwords. Do not specify parameters when you use this qualifier.

/CONDITION_VALUE
Examines the specified longword, displaying the message the $GETMSG system
service obtains for the value in the longword.

/INSTRUCTION
Translates the contents of the specified range of memory locations into
MACRO instruction format. If more than 16 bytes are specified in the range,
/INSTRUCTION processing might skip some bytes at the beginning of the range
to ensure that SDA is properly synchronized with the start of each instruction.
You can override this synchronization by specifying the /NOSKIP qualifier.

The length of the instruction displayed varies according to the opcode and
addressing mode. If SDA cannot decode a memory location, it issues the following
message:

SDA–53

System Dump Analyzer
EXAMINE

%SDA-E-NOINSTRAN, cannot translate instruction

When you use this qualifier with the EXAMINE command, SDA calculates
subsequent default addresses by adding the length of the last instruction,
including all operands, to the last address examined.

/NOSKIP
Causes the EXAMINE command not to skip any bytes in the range when
translating the contents of memory into MACRO instructions. The /NOSKIP
qualifier causes the execution of the /INSTRUCTION qualifier by default.

/NOSUPPRESS
Inhibits the suppression of zeros when displaying memory with one of the
following qualifiers: /ALL, /P0, /P1, /SYSTEM.

/P0
Displays the entire program region for the default process. Do not specify
parameters when you use this qualifier.

/P1
Displays the entire control region for the default process. Do not specify
parameters when you use this qualifier.

/PSL
Examines the specified longword, displaying its contents in the format of a
processor status longword. This qualifier must precede any parameters used in
the command line.

/PTE
Interprets and displays the specified longword as a page table entry (PTE). The
display separates individual fields of the PTE and provides an overall description
of the PTE’s type.

/SYSTEM
Displays portions of the writable system region. Do not specify parameters when
you use this qualifier.

/TIME
Examines the specified quadword, displaying its contents in the format of a
system-date-and-time quadword.

Description

The following sections describe how to use the EXAMINE command.

Examining Locations
When you use the EXAMINE command to look at a location, SDA displays the
location in symbolic notation (symbolic name plus offset), if possible, and its
contents in hexadecimal and ASCII formats:

SDA> EXAMINE G6605C0
806605C0: 80002119 ".!.."

If the ASCII character that corresponds to the value contained in a byte is not
printable, SDA displays a period (.). If the specified location does not exist in
memory, SDA displays this message:

%SDA-E-NOTINPHYS, address : not in physical memory

SDA–54

System Dump Analyzer
EXAMINE

To examine a range of locations, you can designate starting and ending locations
separated by a colon. For example:

SDA> EXAMINE G40:G200

Alternatively, you can specify a location and a length, in bytes, separated by a
semicolon. For example:

SDA> EXAMINE G400;16

When used to display the contents of a range of locations, the EXAMINE
command displays six columns of information:

• Each of the first four columns represents a longword of memory, the contents
of which are displayed in hexadecimal format.

• The fifth column lists the ASCII value of each byte in each longword displayed
in the previous four columns.

• The sixth column contains the address of the first, or rightmost, longword
in each line. This address is also the address of the first, or leftmost,
character in the ASCII representation of the longwords. Thus, you read
the hexadecimal dump display from right to left, and the ASCII display from
left to right.

If a series of virtual addresses does not exist in physical memory, SDA displays a
message specifying the range of addresses that were not translated. For example:

SDA> EXAMINE 100:220

Virtual locations 00000100 through 000001FF are not in physical memory

0130011A 0120011B 0130011E 0110011F0... ...0. 00000200
01200107 02300510 04310216 04210218 ..!...1...0... . 00000210
01100103 01100104 01200105 01200106 00000220

Addresses 10016 through 1FF16 do not exist in memory, as the message indicates.
SDA displays the contents of those addresses that do exist (20016 through 22016).

If a range of virtual locations contains only zeros, SDA displays this message:

Zeros suppressed from ’loc1’ to ’loc2’

Note that if you make a mistake specifying a virtual address for the EXAMINE
command and you are examining global page table entries, your system
may crash with a bugcheck. This occurs rarely and only when you use
ANALYZE/SYSTEM.

Decoding Locations
You can translate the contents of memory locations into MACRO instruction
format by using the /INSTRUCTION qualifier. This qualifier causes SDA
to display the location in symbolic notation (if possible) and its contents in
instruction format. The operands of decoded instructions are also displayed in
symbolic notation.

If the specified range of locations does not begin on an instruction boundary, SDA
skips bytes until it locates the next valid instruction and issues the following
message:

%SDA-W-INSKIPPED, unreasonable instruction stream - n bytes skipped

In this message, n represents the number of bytes that SDA could not translate.

SDA–55

System Dump Analyzer
EXAMINE

Examining Memory Regions
You can display an entire region of virtual memory by using one or more of the
qualifiers /ALL, /SYSTEM, /P0, and P1, with the EXAMINE command.

Other Uses
Other uses of the EXAMINE command appear in the following examples.

Examples

1. SDA> EXAMINE/SYSTEM

System Region Memory

00040039 8FBC0010 00040038 8FBC00108.......9... 800000000

.

.

.

This example shows only the first two lines of the display generated by the
EXAMINE/SYSTEM command. Note that in the dump the fifth byte from the
right contains the value 3816. The ASCII value of 3816, the character 8, is
represented in the fifth character from the left in column 5.

Likewise, the thirteenth byte from the right in the dump columns contains
the value 3916. The ASCII value of 3916 is 9, and 9 is represented in the
ASCII column as the thirteenth character from the left.

2. SDA> EXAMINE/PSL G1268

CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV T N Z V C
1 0 0 0 KERN KERN 00 0 1 0 1 1 1 0 0

This example shows the display produced by the EXAMINE/PSL command.
The address of the longword examined is 8000126816.

3. SDA> EXAMINE/PTE G775F480

|31 28|27 24|23 20|19 16|15 12|11 8|7
| | | | | | |
+-->
|1 | 1 1 1 0 |1 |--| 0 0 |--| 0| 00F0F4
+-->
Vld Prot= URKW M Own=K W Page Frame Number

Page is Active and Valid

The EXAMINE/PTE command displays and formats the system page table
entry at 8775F48016.

4. SDA> EXAMINE/TIME EXE$GQ_SYSTIME

18-FEB-1993 02:07:25.88

The EXAMINE/TIME command displays the formatted value of the system
time quadword (EXE$GQ_SYSTIME).

SDA–56

System Dump Analyzer
EXIT

EXIT

Exits from an SDA display or from the SDA utility.

Format

EXIT

Parameters

None.

Qualifiers

None.

Description

If SDA is displaying information about a video display terminal—and if that
information extends beyond one screen—SDA displays a screen overflow
prompt at the bottom of the screen:4

Press RETURN for more.
SDA>

If you want to discontinue the current display at this point, enter the EXIT
command. If you want SDA to execute another command, enter that command.
SDA discontinues the display as if you entered EXIT, and then executes the
command you entered.

When the screen overflow prompt does not immediately precede the SDA>
prompt, entering EXIT causes your process to cease executing the SDA utility.
When you issue EXIT within a command procedure (either the SDA initialization
file or a command procedure invoked with the @ command), SDA terminates
execution of the procedure and returns to the SDA prompt.

4 On hardcopy terminals, SDA does not display such a prompt.

SDA–57

System Dump Analyzer
FORMAT

FORMAT

Displays a formatted list of the contents of a block of memory.

Format

FORMAT [/qualifier] location

Parameter

location
Location of the beginning of the data block. The location can be given as any
valid SDA expression.

Qualifier

/TYPE=block-type
Forces SDA to characterize and format a data block at location as the specified
type of data structure. The /TYPE qualifier thus overrides the default behavior of
the FORMAT command in determining the type of a data block, as described in
the Description section. The block-type can be the symbolic prefix of any data
structure.

Description

The FORMAT command performs the following actions:

• Characterizes a range of locations as a system data block

• Assigns, if possible, a symbol to each item of data within the block

• Displays all the data within the block

Normally, you use the FORMAT command without the /TYPE qualifier. Used in
this manner, it examines the byte in the structure that contains the type of the
structure. In most data structures, this byte occurs at an offset of 0A16 into the
structure. If this byte does not contain a valid block type, the FORMAT command
halts with this message:

%SDA-E-INVBLKTYP, invalid block type in specified block

However, if this byte does contain a valid block type, SDA checks the next byte
(offset 0B16) for a secondary block type. When SDA has determined the type of
block, it searches for the symbols that correspond to that type of block.

If SDA cannot find the symbols associated with the block type it has found (or
that you specified in the /TYPE qualifier), it issues this message:

No "block-type" symbols found to format this block

If you receive this message, you might want to read additional symbols into the
SDA symbol table and retry the FORMAT command. Most symbols that define
data structures are contained within SYS$SYSTEM:SYSDEF.STB. Thus, you
would issue the following command:

$ READ SYS$SYSTEM:SYSDEF.STB

SDA–58

System Dump Analyzer
FORMAT

Certain data structures do not contain a block type at offset 0A16. If this byte
contains information other than a block type—or the byte does not contain a valid
block type—SDA displays this message:

%SDA-E-INVBLKTYP, invalid block type in specified block

To format such a block, you must reissue the FORMAT command, using the
/TYPE qualifier to designate a block-type.

The FORMAT command produces a 3-column display:

• The first column shows the virtual address of each item within the block.

• The second column lists each symbolic name associated with a location within
the block.

• The third column shows the contents of each item in hexadecimal format.

Example

SDA> READ SYS$SYSTEM:SYSDEF.STB
SDA> FORMAT 800B81F0

800B81F0 UCB$L_FQFL 80000F10
UCB$L_RQFL
UCB$W_MB_SEED
UCB$W_UNIT_SEED

800B81F4 UCB$L_FQBL 800026A8
UCB$L_RQBL

800B81F8 UCB$W_SIZE 00E0
800B81FA UCB$B_TYPE 10
800B81FB UCB$B_FLCK 07
800B81FC UCB$L_ASTQFL 800F80E0

UCB$L_FPC
UCB$T_PARTNER

800B8200 UCB$L_ASTQBL 8002CF80
UCB$L_FR3

800B8204 UCB$L_FIRST 8002CA00
UCB$L_FR4
UCB$W_MSGMAX
UCB$W_MSGCNT

.

.

.

From SYS$SYSTEM:SYSDEF.STB, the READ command loads into SDA’s symbol
table the symbols needed for formatting system data structures. The FORMAT
command displays the data structure that begins at 800B81F016, a unit control
block (UCB). If a field has more than one symbolic name, all such names are
displayed. Thus, the field that starts at 800B820416 has three designations:
UCB$L_FIRST and UCB$L_FR4, alternative names for the longword; and the
two subfields, UCB$W_MSGMAX and UCB$W_MSGCNT.

The contents of each field appear to the right of the symbolic name of the field.
Thus, the contents of UCB$L_FIRST are 8002CA0016.

SDA–59

System Dump Analyzer
HELP

HELP

Displays information about the SDA utility, its operation, and the format of its
commands.

Format

HELP [command-name]

Parameter

command-name
Command for which you need information.

You can also specify the following keywords in place of command-name.

Keyword Function

CPU_CONTEXT Describes the concept of CPU context as it governs the
behavior of SDA in uniprocessor and multiprocessor
environments

EXECUTE_
COMMAND

Causes SDA to execute SDA commands contained in a
file

EXPRESSIONS Prints a description of SDA expressions
INITIALIZATION Describes the circumstances under which SDA executes

an initialization file when first invoked
OPERATION Describes how to operate SDA at your terminal and by

means of the site-specific startup procedure
PROCESS_CONTEXT Describes the concept of process context as it governs

the behavior of SDA in uniprocessor and multiprocessor
environments

SYMBOLS Consists of up to 31 letters and numbers, and
can include the dollar sign ($) and underscore (_)
characters. When you invoke SDA, it reads in the
global symbols from symbols table psect of SYS$BASE_
IMAGE.EXE, and from REQSYSDEF.STB, a required
subset of the symbols in the file SYSDEF.STB. You can
add other symbols to SDA’s symbol table by using the
DEFINE and READ commands.

Qualifiers

None.

Description

The HELP command displays brief descriptions of SDA commands and concepts
on the terminal screen (or sends these descriptions to the file designated in a SET
OUTPUT command). You can request additional information by specifying the
name of a topic in response to the Topic? prompt.

SDA–60

System Dump Analyzer
HELP

If you do not specify a parameter in the HELP command, it lists those commands
and topics for which you can request help, as follows:

Information available:

ATTACH COPY CPU_Context DEFINE EVALUATE EXAMINE
Execute_Command EXIT Expressions FORMAT HELP
Initialization Operation Process_Context READ REPEAT
SEARCH SET SHOW SPAWN Symbols VALIDATE QUEUE

Topic?

SDA–61

System Dump Analyzer
READ

READ

Loads the global symbols contained in the specified object module into the SDA
symbol table.

Format

READ {/EXECUTIVE directory-spec | [RELOCATE=expression] | filespec}

Parameter

filespec
Name of the device, directory, and file that contains the object module from which
you want to copy global symbols. The filespec defaults to SYS$DISK:[default-
dir]filename.STB, where SYS$DISK and [default-dir] represent the disk and
directory specified in your last SET DEFAULT command. You must specify a file
name.

Qualifiers

/EXECUTIVE directory-spec
Reads into the SDA symbol table all global symbols and global entry
points defined within all loadable images that make up the executive. (See
Table SDA–13 for a list of those images.)

The directory-spec is the name of the directory containing the loadable images
of the executive. This parameter defaults to SYS$LOADABLE_IMAGES.

/RELOCATE=expression
Adds the value of expression to the value of each symbol in the symbol table
file to be read. You can use the /RELOCATE qualifier only if you also specify
a filespec. The /RELOCATE qualifier is useful for examining images that are
position independent and are loaded at a base of zero.

Description

The READ command symbolically identifies locations in memory for which
the default symbol table (SYS$SYSTEM:SYS.STB) provides no definition. In
other words, the required global symbols are located in modules that have been
compiled and linked separately from the executive.5

The object module file specified in the READ command can be one of the
following:

• Output of a compiler or assembler (for example, an .OBJ file)

• Output generated by the linker qualifier /SYMBOL_TABLE (for example, an
.STB file)

Most often the object module file is a file provided by the operating system
in SYS$SYSTEM or SYS$LOADABLE_IMAGES. Many SDA applications, for
instance, need to load the definitions of system data structures by issuing a
READ command specifying SYS$SYSTEM:SYSDEF.STB. Others require the
definitions of specific global entry points within the executive image that are
contained within those object modules included in the executive.

5 SDA extracts no local symbols from the object module.

SDA–62

System Dump Analyzer
READ

Table SDA–12 lists those object module files provided in SYS$SYSTEM.
Table SDA–13 lists those loadable images in SYS$LOADABLE_IMAGES that
define locations within the executive image.

Table SDA–12 Modules Containing Global Symbols and Data Structures Used
by SDA

File Contents

CLUSTRLOA.STB Symbols for loadable VAXcluster management code
DCLDEF.STB Symbols for the DCL interpreter
IMGDEF.STB Symbols for the image activator
NETDEF.STB Symbols for DECnet data structures
RMSDEF.STB Symbols that define RMS internal and user data

structures and RMS$_xxx completion codes
SCSDEF.STB Symbols that define data structures for system

communications services
SYSDEF.STB Symbols that define system data structures, including

the I/O database
TCPIP$NET_
GLOBALS.STB1

Data structure definitions for TCP/IP internet driver,
execlet, and ACP data structures

TCPIP$NFS_
GLOBALS.STB1

Data structure definitions for TCP/IP NFS server

TCPIP$PROXY_
GLOBALS.STB1

Data structure definitions for TCP/IP proxy execlet

TCPIP$PWIP_
GLOBALS.STB1

Data structure definitions for TCP/IP PWIP driver, and
ACP data structures

TCPIP$TN_
GLOBALS.STB1

Data structure definitions for TCP/IP TELNET/RLOGIN
server driver data structures

1Only available if TCP/IP has been installed. These are found in SYS$SYSTEM, so that all files are
not automatically read in when you issue a READ/EXEC command.

Table SDA–13 Modules Defining Global Locations Within the Executive Image

File Contents

CPULOA.EXE Processor-specific data and initialization
routines

ERRORLOG.EXE Error logging routines and system
services

EVENT_FLAGS_AND_ASTS.EXE Event flag and AST delivery routines
and system services

EXCEPTION.EXE Bugcheck and exception handling
routines and those system services
that declare condition and exit handlers

IMAGE_MANAGEMENT.EXE Image activator and the related system
services

(continued on next page)

SDA–63

System Dump Analyzer
READ

Table SDA–13 (Cont.) Modules Defining Global Locations Within the Executive
Image

File Contents

IO_ROUTINES.EXE $QIO system service, related system
services (for example, SYS$CANCEL
and SYS$ASSIGN), and supporting
routines

LMF$GROUP_TABLE.EXE Data for valid, licensed product groups
LOCKING.EXE Lock management routines and system

services
LOGICAL_NAMES.EXE Logical name routines and system

services
MESSAGE_ROUTINES.EXE System message routines and system

services (including SYS$SNDJBC and
SYS$GETTIM)

PAGE_MANAGEMENT.EXE System pager, its supporting routines,
and page management system
services (including SYS$CRMPSC,
SYS$CREDEL, and SYS$ADJSTK)

PRIMITIVE_IO.EXE Console I/O routines
PROCESS_MANAGEMENT.EXE Scheduler, report system event, and

supporting routines and system services
RECOVERY_UNIT_SERVICES.EXE Recovery unit system services
RMS.EXE Global symbols and entry points for

RMS
SECURITY.EXE Security management routines and

system services
SYSDEVICE.EXE Mailbox driver and null driver
SYSGETSYI.EXE Get System Information system service

(SYS$GETSYI)
SYSLICENSE.EXE Licensing system service

(SYS$LICENSE)
SYSMSG.EXE System messages
SYSTEM_PRIMITIVES.EXE Miscellaneous basic system routines,

including those that allocate system
memory, maintain system time, create
fork processes, and control mutex
acquisition

SYSTEM_SYNCHRONIZATION.EXE Routines that enforce synchronization in
a multiprocessing system

TCPIP$BGDRIVER.STB1 TCP/IP internet driver
TCPIP$INETACP.STB1 TCP/IP internet ACP
TCPIP$INTERNET_SERVICES.STB1 TCP/IP internet execlet

1Only available if TCP/IP has been installed. These are found in SYS$SYSTEM, so that all files are
not automatically read in when you issue a READ/EXEC command.

(continued on next page)

SDA–64

System Dump Analyzer
READ

Table SDA–13 (Cont.) Modules Defining Global Locations Within the Executive
Image

File Contents

TCPIP$NFS_SERVICES.STB1 Symbols for the TCP/IP NFS server
TCPIP$PROXY_SERVICES.STB1 Symbols for the TCP/IP proxy execlet
TCPIP$PWIPACP.STB1 TCP/IP PWIP ACP
TCPIP$PWIPDRIVER.STB1 TCP/IP PWIP driver
TCPIP$TNDRIVER.STB1 TCP/IP TELNET/RLOGIN server driver
WORKING_SET_
MANAGEMENT.EXE

Swapper, its supporting routines,
and working set management system
services

1Only available if TCP/IP has been installed. These are found in SYS$SYSTEM, so that all files are
not automatically read in when you issue a READ/EXEC command.

Examples

1. SDA> READ SYS$SYSTEM:SYSDEF.STB
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYSEXE]SYSDEF.STB;1

The READ command causes SDA to add all the global symbols in
SYS$SYSTEM:SYSDEF.STB to the SDA symbol table. Such symbols are
useful when you are formatting an I/O data structure, such as a unit control
block or an I/O request packet.

2. SDA> EXAM/INST EXE$QIO+2;4

EXE$QIO+00002: CHMK #001F
EXE$QIO+00006: RET
SDA> EXAM/INST V_EXE$QIO

%SDA-E-BADSYM, unknown symbol "V_EXE$QIO"
SDA> READ/RELOCATE=IO_ROUTINES SYS$LOADABLE_IMAGES:IO_ROUTINES.EXE

%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]IO_ROUTINES.EXE;1
SDA> EXAM/INST EXE$QIO+2;4

EXE$QIO+00002: MOVZBL 04(AP),R3
EXE$QIO+00006: CMPB R3,#3F
SDA> EXAM/INST V_EXE$QIO+2;4

V_EXE$QIO+00002: CHMK #001F
V_EXE$QIO+00006: RET

This SDA session shows that the initial examination of the instructions at
EXE$QIO+2 and EXE$QIO+6 produces the vector for the system service,
not the system service code itself. The subsequent READ instruction brings
into the SDA symbol table the global symbols defined for the system’s I/O
routines, including one that redefines the entry point of the system service
to be the start of the routine EXE$QIO. Thus, the second examination of the
same memory locations produces the first two instructions in the routine. The
READ command creates a special symbol, V_EXE$QIO, that points to the
system service vector.

SDA–65

System Dump Analyzer
READ

3. SDA> SHOW STACK

Process stacks (on CPU 01)

Current operating stack (KERNEL):

7FF8F2B0 806BA870
7FF8F2B4 7FF8F4C0
7FF8F2B8 8016F33E PAGE_MANAGEMENT+0053E

.

.

.
SDA> READ/RELOCATE=PAGE_MANAGEMENT SYS$LOADABLE_IMAGES:PAGE_MANAGEMENT.EXE

%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]PAGE_MANAGEMENT.EXE;1

SDA> SHOW STACK

Process stacks (on CPU 01)

Current operating stack (KERNEL):

7FF8F2B0 806BA870
7FF8F2B4 7FF8F4C0
7FF8F2B8 8016F33E MMG$LOCK_SYSTEM_PAGES+00188

.

.

.

The initial SHOW STACK command contains an address that SDA resolves
into an offset from the PAGE_MANAGEMENT module of the executive. The
READ command loads the corresponding symbols into the SDA symbol table
such that the reissue of the SHOW STACK command subsequently identifies
the same location as an offset within a specific page management routine.

4. READ/EXEC

%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]RECOVERY_UNIT_SERVICES.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]RMS.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]CPULOA.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]LMF$GROUP_TABLE.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]SYSLICENSE.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]SYSGETSYI.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]SYSDEVICE.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]MESSAGE_ROUTINES.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]EXCEPTION.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]LOGICAL_NAMES.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]SECURITY.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]LOCKING.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]PAGE_MANAGEMENT.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]WORKING_SET_MANAGEMENT.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]IMAGE_MANAGEMENT.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]EVENT_FLAGS_AND_ASTS.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]IO_ROUTINES.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]PROCESS_MANAGEMENT.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]ERRORLOG.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]PRIMITIVE_IO.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]SYSTEM_SYNCHRONIZATION.EXE;1
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]SYSTEM_PRIMITIVES.EXE;1

This READ command brings all global symbols defined in the modules of
SYS$SYSTEM:SYS.EXE (as listed in Table SDA–13) into the SDA symbol
table. Included in its results is the work performed by the READ commands
illustrated in the two previous examples. The READ/EXECUTIVE command,
however, does not load those symbols contained in the modules described in
Table SDA–12.

SDA–66

System Dump Analyzer
REPEAT

REPEAT

Repeats execution of the last command issued. On terminal devices, the KP0 key
performs the same function as the REPEAT command.

Format

REPEAT

Parameters

None.

Qualifiers

None.

Description

The REPEAT command is useful for stepping through a linked list of data
structures or for examining a sequence of memory locations.

Examples

1. SDA> FORMAT @IOC$GL_DEVLIST

8000B540 DDB$L_LINK 8000B898
8000B544 DDB$L_UCB 8000B5E0
8000B548 DDB$W_SIZE 0044

.

.

.
8000B554 DDB$B_NAME_LEN 03

DDB$T_NAME "OPA"
.
.
.

SDA> FORMAT @.
8000B898 DDB$L_LINK 8000BBE0
8000B89C DDB$L_UCB 8000B9E0
8000B8A0 DDB$W_SIZE 0044

.

.

.
8000B8AC DDB$B_NAME_LEN 03

DDB$T_NAME "MBA"
SDA> KP0

8000BBE0 DDB$L_LINK 807F85C0
8000BBE4 DDB$L_UCB 8000BC80
8000BBE8 DDB$W_SIZE 0044

.

.

.)
8000BBF4 DDB$B_NAME_LEN 03

DDB$T_NAME "NLA"

This series of FORMAT commands pursues the chain of device data blocks
(DDBs) from the system global symbol IOC$GL_DEVLIST. The second FORMAT
command is constructed so that it refers to the contents of the address at the
current location (see Section 7.2.4 for a discussion of SDA symbols). Subsequently,

SDA–67

System Dump Analyzer
REPEAT

pressing the KP0 key—or issuing the REPEAT command—is sufficient to display
each DDB in the device list.

2. SDA> SHOW CALL_FRAME

Call Frame Information

Call Frame Generated by CALLG Instruction

Condition Handler 7FFE7D78 00000000
SP Align Bits = 00 7FFE7D7C 00000000

Saved AP 7FFE7D80 7FFE7DC0 CTL$GL_KSTKBAS+005C0
Saved FP 7FFE7D84 7FFE7D94 CTL$GL_KSTKBAS+00594

.

.

.
SDA> SHOW CALL_FRAME/NEXT_FP

Call Frame Information

Call Frame Generated by CALLS Instruction

Condition Handler 7FFE7D94 00000000
SP Align Bits = 00 7FFE7D98 20FC0000

Saved AP 7FFE7D9C 7FFED024 CTL$GL_KSTKBAS+005E4
Saved FP 7FFE7DA0 7FFE7DE4 SYSTEM_PRIMITIVES+020AA
.
.
.

SDA> REPEAT

Call Frame Information

Call Frame Generated by CALLG Instruction

Condition Handler 7FFE7DE4 00000000
.
.
.

The first SHOW CALL_FRAME displays the call frame indicated by the current
FP value. Because the /NEXT_FP qualifier to the instruction displays the call
frame indicated by the saved FP in the current call frame, you can use the
REPEAT command to repeat the SHOW CALL_FRAME/NEXT_FP command and
follow a chain of call frames.

SDA–68

System Dump Analyzer
SEARCH

SEARCH

Scans a range of memory locations for all occurrences of a specified value.

Format

SEARCH [/qualifier] range[=]expression

Parameters

range
Location in memory to be searched. A location can be represented by any valid
SDA expression (see Section 7.2). To search a range of locations, use the following
format:

m:n Range of locations to be searched, from m to n
m;n Range of locations to be searched, starting at m and continuing for n bytes

expression
Indication of the value for which SDA is to search. SDA evaluates the
expression and searches the specified range of memory for the resulting
value. For a description of SDA expressions, see Section 7.2.

Qualifiers

/LENGTH={LONGWORD | WORD | BYTE}
Specifies the size of the expression value that the SEARCH command uses for
matching. If you do not specify the /LENGTH qualifier, the SEARCH command
uses a longword length by default.

/STEPS={QUADWORD | LONGWORD | WORD | BYTE}
Specifies the granularity of the search through the specified memory range.
After the SEARCH command has performed the comparison between the value of
expression and memory location, it adds the specified step factor to the address
of the memory location to determine the next location to undergo the comparison.
If you do not specify the /STEPS qualifier, the SEARCH command uses a step
factor of one longword.

Description

SEARCH displays each location as each value is found.

Examples

1. SDA> SEARCH GB81F0;500 60068
Searching from 800B81F0 to 800B86F0 in LONGWORD steps for 00060068...
Match at 800B8210
SDA>

The SEARCH command finds the value 0060068 in the longword at
800B8210.

SDA–69

System Dump Analyzer
SEARCH

2. SDA> SEARCH/STEPS=BYTE 80000000;1000 6
Searching from 80000000 to 80001000 in BYTE steps for 00000006...
Match at 80000A99
SDA>

The SEARCH command finds the value 00000006 in the longword at
80000A99.

3. SDA> SEARCH/LENGTH=WORD 80000000;2000 6
Searching from 80000000 to 80002000 in LONGWORD steps for 0006...
Match at 80000054
Match at 800001EC
Match at 800012AC
Match at 800012B8
SDA>

The SEARCH command finds the value 0006 in the longword locations
80000054, 800001EC, 800012AC, and 800012B8.

SDA–70

System Dump Analyzer
SET CPU

SET CPU

Selects a processor to become the SDA current CPU.

Format

SET CPU cpu-id

Parameter

cpu-id
Numeric value from 0016 to 1F16 indicating the identity of the processor to be
made the current CPU. If you specify a value outside this range or a cpu-id of a
processor that was not active at the time of the system failure, SDA displays the
following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

Qualifiers

None.

Description

When you invoke SDA to examine a system dump, the SDA current CPU context
defaults to that of the processor that caused the system to fail. When analyzing a
crash from a multiprocessing system, you might find it useful at times to examine
the context of another processor in the configuration.

The SET CPU command changes the current SDA CPU context to that of the
processor indicated by cpu-id. The CPU specified by this command becomes the
current CPU for SDA until you exit SDA or change SDA CPU context by issuing
one of the following commands:

SET CPU cpu-id
SHOW CPU cpu-id
SHOW CRASH

The following commands also change SDA CPU context if the name or index
number (nn) refers to a current process:

SET PROCESS name
SET PROCESS/INDEX=nn
SHOW PROCESS name
SHOW PROCESS/INDEX=nn

Changing CPU context can cause an implicit change in process context under the
following circumstances:

• If there is a current process on the CPU made current, SDA changes its
process context to that of that CPU’s current process.

• If there is no current process on the CPU made current, SDA process context
is undefined and no process-specific information is available until you set SDA
process context to that of a specific process.

See Section 4 for further discussion on the way in which SDA maintains its
context information.

SDA–71

System Dump Analyzer
SET CPU

You cannot use the SET CPU command when examining the running system with
SDA.

Example

$ ANALYZE/CRASH SYS$SYSTEM:SYSDUMP.DMP

Dump taken on 22-FEB-1993 14:22:17.66
NOBUFPCKT, Required buffer packet not present

SDA> SHOW CPU

CPU 01 Processor crash information

CPU 01 reason for Bugcheck: NOBUFPCKT, Required buffer packet not present
.
.
.

SDA> SHOW STACK

CPU 01 Processor stack

Current operating stack (INTERRUPT):

80DAFB4C 8018BC20
80DAFB50 7FFC653E

.

.

.
SDA> SET CPU 00
SDA> SHOW CPU

CPU 00 Processor crash information

CPU 00 reason for Bugcheck: CPUEXIT, Shutdown requested by another CPU
.
.
.

SDA> SHOW STACK

CPU 00 Processor stack

Current operating stack (INTERRUPT):

8016ABD8 00011F4C
8016ABDC 00010F56

.

.

.
SDA> SHOW CRASH

System crash information

Time of system crash: 22-FEB-1993 14:22:17.66

.

.

.
SDA> SHOW STACK

CPU 01 Processor stack

Current operating stack (INTERRUPT):

SDA–72

System Dump Analyzer
SET CPU

80DAFB4C 8018BC20
80DAFB50 7FFC653E

.

.

.

The series of SHOW CPU and SHOW STACK commands in this example
illustrates the switching of CPU context within an SDA session:

1. When you first invoke SDA, it is, by default, within the CPU context of the
processor that caused the crash (CPU 01). This is illustrated by the first set
of SHOW CPU and SHOW STACK commands.

2. The SET CPU 00 command explicitly changes SDA CPU context to that of
CPU 00, as illustrated by the second sequence of SHOW CPU and SHOW
STACK commands.

Note that a SHOW CPU 00 command would have the same effect as the two
commands SET CPU 00 and SHOW CPU, changing the SDA CPU context in
addition to displaying the processor-specific information. Unlike the SHOW
CPU cpu-id command, no display is associated with the SET CPU cpu-id
command.

3. The SHOW CRASH command resets the SDA CPU context to that of the
processor that caused the crash (CPU 01).

SDA–73

System Dump Analyzer
SET LOG

SET LOG

Initiates or discontinues the recording of an SDA session in a text file.

Format

SET [NO]LOG filespec

Parameter

filespec
Name of the file in which you want SDA to log your commands and their output.
The default filespec is SYS$DISK:[default_dir]filename.LOG, where SYS$DISK
and [default-dir] represent the disk and directory specified in your last SET
DEFAULT command. You must specify a file name.

Qualifiers

None.

Description

The SET LOG command echoes the commands and output of an SDA session to a
log file. The SET NOLOG command terminates this behavior.

There are the following differences between the SET LOG command and the SET
OUTPUT command:

• When logging is in effect, your commands and their results are still displayed
on your terminal. The SET OUTPUT command causes the displays to be
redirected to the output file such that they no longer appear on the screen.

• If an SDA command requires that you press Return to produce successive
screens of display, the log file produced by SET LOG will record only those
screens that are actually displayed. SET OUTPUT, however, sends the entire
output of all SDA commands to its listing file.

• The SET LOG command produces a log file with a default file type of .LOG;
the SET OUTPUT command produces a listing file whose default file type is
.LIS.

• The SET LOG command does not record output from the HELP command
in its log file. The SET OUTPUT command can record HELP output in its
listing file.

• The SET LOG command does not record SDA error messages in its log file.
The SET OUTPUT command can record SDA error messages in its listing file.

• The SET OUTPUT command generates a table of contents, each item of
which refers to a display written to its listing file. SET OUTPUT also
produces running heads for each page of output. The SET LOG command
does not produce these items in its log file.

Note that, if you have used the SET OUTPUT command to redirect output to a
listing file, you cannot use a SET LOG command to direct the same output to a
log file.

SDA–74

System Dump Analyzer
SET OUTPUT

SET OUTPUT

Redirects output from SDA to the specified file or device.

Format

SET OUTPUT filespec

Parameter

filespec
Name of the file to which SDA is to send the output generated by its commands.
The default filespec is SYS$DISK:[default_dir]filename.LIS, where SYS$DISK
and [default-dir] represent the disk and directory specified in your last SET
DEFAULT command. You must specify a file name.

Description

When you use the SET OUTPUT command to send the SDA output to a file or
device, SDA continues to display the SDA commands that you enter but sends the
output generated by those commands to the file or device that you specify. (See
the description of the SET LOG command for a list of differences between SET
LOG and the SET OUTPUT command.)

When you finish directing SDA commands to an output file and want to return to
interactive display, issue the following command:

SDA> SET OUTPUT SYS$OUTPUT

If you use the SET OUTPUT command to send the SDA output to a listing file,
SDA builds a table of contents that identifies the displays you selected and places
the table of contents at the beginning of the output file. The SET OUTPUT
command formats the output into pages and produces a running head at the top
of each page.

SDA–75

System Dump Analyzer
SET PROCESS

SET PROCESS

Selects a process to become the SDA current process.

Format

SET PROCESS {process-name | /INDEX=nn | /SYSTEM}

Parameter

process-name
Name of the process to become the SDA current process. The process-name is
a string containing up to 15 uppercase or lowercase characters; numerals, the
dollar sign ($) character, and the underscore (_) character can also be included
in the string. If you include characters other than these, you must enclose the
entire string in quotation marks (" ").

Qualifiers

/INDEX=nn
Specifies the process to be made current by its index into the system’s list of
software process control blocks (PCBs). You can supply either of the following
values for nn:

• The process index itself

• The process identification (PID) or extended PID longword, from which SDA
extracts the correct index

To obtain these values for any given process, issue the SDA command SHOW
SUMMARY.

/SYSTEM
Specifies that the system process be made the SDA current process. Each system
(uniprocessor or multiprocessor) uses a single system process control block (PCB)
and process header (PHD) as dummy structures, located in system space, that
record the system working set, global section table, global page table, and other
systemwide data.

Description

When you issue an SDA command such as an EXAMINE command, SDA
displays the contents of memory locations in its current process. To display any
information about another process, you must change the current process with the
SET PROCESS command.

When you invoke SDA to analyze a crash dump, its process context defaults
to that of the process that was current at the time of the crash. If the crash
occurred on a multiprocessing system, SDA sets the CPU context to that of the
processor that crashed the system and the process context to that of the process
that was current on that processor.

When you invoke SDA to analyze a running system, its process context defaults
to that of the current process; that is, the one executing SDA.

SDA–76

System Dump Analyzer
SET PROCESS

The SET PROCESS command changes the current SDA process context to that
of the process indicated by name or /INDEX=nn. The process specified by this
command becomes the current process for SDA until you exit SDA or change SDA
process context by issuing one of the following commands:

SET PROCESS/INDEX=nn
SET PROCESS process-name
SHOW PROCESS/INDEX=nn

In the analysis of a crash dump from a multiprocessing system, changing process
context can involve a switch of CPU context as well. For instance, if you issue a
SET PROCESS command for a process that is current on another CPU, SDA will
automatically change its CPU context to that of the CPU on which that process is
current. The following commands can have this effect if process-name or index
number (nn) refers to a current process:

SET PROCESS process-name
SET PROCESS/INDEX=nn
SHOW PROCESS process-name
SHOW PROCESS/INDEX=nn

See Section 4 for further discussion on the way in which SDA maintains its
context information.

Example

SDA> SHOW PROCESS
Process index: 0012 Name: NETACP Extended PID: 28C00092

Process status: 00149001 RES,WAKEPEN,NOACNT,PHDRES,LOGIN

PCB address 800F1140 JIB address 801FDA00
PHD address 80477200 Swapfile disk address 01000F01

.

.

.

SDA> SHOW SUMMARY
Current process summary

Extended Indx Process name Username State Pri PCB PHD Wkset
-- PID -- ---- --------------- ----------- ----- --- -------- -------- -----
28C00080 0000 SWINGER COM 0 80002100 80001F88 0
28C00081 0001 SWAPPER HIB 16 800023C8 80002250 0
28C00483 0003 KLINGON KLINGON MWAIT 6 8010FEA0 803F8600 323
28C00085 0005 ERRFMT SYSTEM COM 10 800B5A10 8061DA00 69
28C00087 0007 OPCOM SYSTEM LEF 7 800C7000 80227A00 71
.
.
.

SDA>SET PROCESS ERRFMT
SDA> SHOW PROCESS
Process index: 0005 Name: ERRFMT Extended PID: 28C00085

Process status: 00040001 RES,PHDRES

PCB address 800B5A10 JIB address 801E5C00
.
.
.

The first SHOW PROCESS command shows the current process to be NETACP.
The SHOW SUMMARY command shows the names of the processes that exist.

SDA–77

System Dump Analyzer
SET PROCESS

The SET PROCESS command sets the current process to ERRFMT, as shown by
the second SHOW PROCESS command. Note that the SET PROCESS command
could also have been issued as one of the following:

SDA> SET PROCESS/INDEX=5

SDA> SET PROCESS/INDEX=801E5C00

SDA–78

System Dump Analyzer
SET RMS

SET RMS

Changes the options shown by the SHOW PROCESS/RMS command.

Format

SET RMS =(option[,...])

Parameter

option
Data structure or other information to be displayed by the SHOW PROCESS/RMS
command. Table SDA–14 lists those keywords that you can use as options.

Table SDA–14 SET RMS Command Keywords for Displaying Process RMS
Information

Keyword Meaning

[NO]ALL[:ifi]1 All control blocks (default)
[NO]ASB Asynchronous context block
[NO]BDB Buffer descriptor block
[NO]BDBSUM BDB summary page
[NO]BLB Buffer lock block
[NO]BLBSUM Buffer lock summary page
[NO]CCB Channel control block
[NO]DRC Directory cache
[NO]FAB File access block
[NO]FCB File control block
[NO]FWA File work area
[NO]GBD Global buffer descriptor
[NO]GBDSUM GBD summary page
[NO]GBH Global buffer header
[NO]GBSB Global buffer synchronization block
[NO]IDX Index descriptor
[NO]IFAB[:ifi]1 Internal FAB
[NO]IFB[:ifi]1 Internal FAB
[NO]IRAB Internal RAB
[NO]IRB Internal RAB
[NO]JFB Journaling file block
[NO]NAM Name block
[NO]NWA Network work area

1The optional parameter ifi is an internal file identification. The default ifi (ALL) is all the files the
current process has opened.

(continued on next page)

SDA–79

System Dump Analyzer
SET RMS

Table SDA–14 (Cont.) SET RMS Command Keywords for Displaying Process
RMS Information

Keyword Meaning

[NO]PIO Image I/O (NOPIO), the default, or process I/O (PIO)2

[NO]RAB Record access block
[NO]RLB Record lock block
[NO]RU Recovery unit structures, including the recovery unit block

(RUB), recovery unit stream block (RUSB), and recovery unit
file block (RUFB)

[NO]SFSB Shared file synchronization block
[NO]WCB Window control block
[NO]XAB Extended attribute block
[NO]* Current list of options displayed by the SHOW RMS

command

2Specifying the PIO option causes the SHOW PROCESS/RMS command to display the indicated
structures for process-permanent file I/O.

The default option is ALL:ALL,NOPIO, designating for display by the SHOW
PROCESS/RMS command all structures for all files related to the image I/O of
the process.

To list more than one option, enclose the list in parentheses and separate options
by commas. You can add a given data structure to those displayed by ensuring
that the list of keywords begins with the * (asterisk) symbol. You can delete a
given data structure from the current display by preceding its keyword with NO.

Qualifiers

None.

Description

The SET RMS command determines the data structures to be displayed by the
SHOW PROCESS/RMS command. (See the examples included in the discussion
of the SHOW PROCESS command for an indication of the information provided
by various displays.) You can examine the options that are currently selected by
issuing a SHOW RMS command.

Examples

1. SDA> SHOW RMS
RMS Display Options: IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM,
XAB,RLB,BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB

Display RMS structures for all IFI values.

SDA> SET RMS=IFB
SDA> SHOW RMS

RMS Display Options: IFB

Display RMS structures for all IFI values.

The first SHOW RMS command shows the default selection of data structures

SDA–80

System Dump Analyzer
SET RMS

that are displayed in response to a SHOW PROCESS/RMS command. The
SET RMS command selects only the IFB to be displayed by subsequent
SET/PROCESS commands.

2. SDA> SET RMS=(*,BLB,BLBSUM,RLB)
SDA> SHOW RMS

RMS Display Options: IFB,RLB,BLB,BLBSUM

Display RMS structures for all IFI values.

The SET RMS command adds BLB, BLBSUM, and RLB to the list of data
structures that the SHOW PROCESS/RMS command currently displays.

3. SDA> SET RMS=(*,NORLB,IFB:05)
SDA> SHOW RMS

RMS Display Options: IFB,BLB,BLBSUM
Display RMS structures only for IFI=5.

The SET RMS command removes the RLB from those data structures
displayed by the SHOW PROCESS/RMS command and causes only
information about the file with the ifi of 5 to be displayed.

4. SDA> SET RMS=(*,PIO)

The SET RMS command indicates that the data structures designated for
display by SHOW PROCESS/RMS be associated with process-permanent I/O
instead of image I/O.

SDA–81

System Dump Analyzer
SHOW CALL_FRAME

SHOW CALL_FRAME

Displays the locations and contents of the longwords representing a procedure
call frame.

Format

SHOW CALL_FRAME [starting-address | /NEXT_FP]

Parameter

starting-address
Expression representing the starting address of the procedure call frame to be
displayed. The default starting-address is the longword contained in the FP
register of the SDA current process.

Qualifier

/NEXT_FP
Displays the procedure call frame starting at the address stored in the FP
longword of the last call frame displayed by this command. You must have issued
a SHOW CALL_FRAME command previously in the current SDA session to use
the /NEXT_FP qualifier to the command.

Description

Whenever a procedure is called using CALLG or CALLS instructions, information
is stored on the stack of the calling routine in the form of a procedure call frame.
Figure SDA–5 illustrates the format of a call frame.6

The SHOW CALL_FRAME command interprets the contents of the designated
call frame and displays whether the call frame was generated by a CALLG or
CALLS instruction. If it locates nonzero bits in the portion of the second longword
that represents the upper byte of the processor status word (PSW), it presents a
message that indicates the fault or trap in effect. For example:

Nonzero PSW Bits (15:8) => Reserved Operand Fault on RET

SHOW_CALL_FRAME then produces four columns of information:

• The components of the call frame.

• The virtual addresses that are part of the call frame.

• The contents of the longwords at these addresses.

• A symbolic representation of the contents of each longword, if possible. SDA
does not attempt to symbolize the second longword in the call frame (mask-
PSW longword), which contains the register save mask and the processor
status word (PSW).

6 In Figure SDA–5, the second longword contains the stack pointer alignment (SPA) bits,
which indicate the zero to three bytes needed to align the frame to a longword boundary.
The S bit is set if the frame resulted from a CALLS instruction; it is clear if it resulted
from a CALLG instruction.

SDA–82

System Dump Analyzer
SHOW CALL_FRAME

Figure SDA–5 Call Frame

ZK−6564−GE

Condition Handler Address

SPA S 0 Mask <11:0> Saved PSW <15:5> 0

Saved AP

Saved FP

Saved PC

Saved R0

Saved R11

:(FP)

The SHOW CALL_FRAME command follows this listing with an indication of
how many bytes were used to align the call frame to a longword boundary.

For call frames generated by a CALLS instruction, the SHOW CALL_FRAME
instruction displays the argument list to the call frame in three columns
containing the virtual address of each item, its contents, and its symbolic
representation.

All valid procedure call frames begin on a longword boundary. If the specified
address expression does not begin on a longword boundary, the call frame is
invalid and SDA displays the following message:

Invalid Call Frame: Start Address Not On Longword Boundary

If you attempt to format an address that is not a call frame or is an invalid call
frame (that is, bit 28 of the second longword is not 0), SDA displays the following
message:

Invalid Call Frame: Bit 28 is Set in "Mask-PSW" Longword

When using the SHOW CALL_FRAME/NEXT_FP command to follow a chain of
call frames, SDA signals the end of the chain by this message:

%SDA-E-NOTINPHYS, 00000000 : not in physical memory

This message indicates that the saved FP in the previous call frame has a zero
value.

SDA–83

System Dump Analyzer
SHOW CALL_FRAME

Example

SDA> SHOW CALL_FRAME

Call Frame Information

Call Frame Generated by CALLG Instruction

Condition Handler 7FFE7D78 00000000
SP Align Bits = 00 7FFE7D7C 00000000

Saved AP 7FFE7D80 7FFE7DC0 CTL$GL_KSTKBAS+005C0
Saved FP 7FFE7D84 7FFE7D94 CTL$GL_KSTKBAS+00594
Return PC 7FFE7D88 8015303F EXCEPTION+0043F

Align Stack by 0 Bytes =>

SDA> SHOW CALL_FRAME/NEXT_FP

Call Frame Information

Call Frame Generated by CALLS Instruction

Condition Handler 7FFE7D94 00000000
SP Align Bits = 00 7FFE7D98 20FC0000

Saved AP 7FFE7D9C 7FFED024
Saved FP 7FFE7DA0 7FFE7DE4 CTL$GL_KSTKBAS+005E4
Return PC 7FFE7DA4 801D58AA MMG$IMGRESET+00066

R2 7FFE7DA8 7FFE7DD0 CTL$GL_KSTKBAS+005D0
R3 7FFE7DAC 7FFDB9F8
R4 7FFE7DB0 8026C720
R5 7FFE7DB4 7FFDBA00
R6 7FFE7DB8 7FFE6300 CTL$A_DISPVEC+00500
R7 7FFE7DBC 00000003

Align Stack by 0 Bytes =>
Argument List 7FFE7DC0 00000003

7FFE7DC4 7FFE7DD0 CTL$GL_KSTKBAS+005D0
7FFE7DC8 00000000
7FFE7DCC 00000000

SDA> SHOW CALL_FRAME/NEXT_FP

Call Frame Information

Call Frame Generated by CALLG Instruction

Condition Handler 7FFE7DE4 00000000
SP Align Bits = 00 7FFE7DE8 00000000

Saved AP 7FFE7DEC 7FFED024
Saved FP 7FFE7DF0 7FFECFF8
Return PC 7FFE7DF4 8015303F EXCEPTION+0043F

Align Stack by 0 Bytes =>

The SHOW CALL_FRAME commands in this SDA session follow a chain of call
frames from that specified in the FP of the SDA current process.

SDA–84

System Dump Analyzer
SHOW CLUSTER

SHOW CLUSTER

Displays connection manager and system communications services (SCS)
information for all nodes in a cluster.

Format

SHOW CLUSTER {/CSID=csid | /NODE=name | /SCS}

Parameters

None.

Qualifiers

/CSID=csid
Displays VAXcluster system information for a specific VAXcluster member node.
The value csid is the cluster system identification number (CSID) of the node to
be displayed.7

/NODE=name
Displays VAXcluster system information for a specific VAXcluster member node.
The value name is the name of the node to be displayed.

/SCS
Displays a view of the cluster as seen by SCS.

Description

By default, the SHOW CLUSTER command provides a view of the VAXcluster
system from the perspective of the connection manager. When you use the /SCS
qualifier, however, SHOW CLUSTER provides a view of the cluster from the
perspective of the port driver or drivers.

VAXcluster as Seen by the Connection Manager
The SHOW CLUSTER command provides a series of displays.

The VAXcluster summary display supplies the following information:

• Number of votes required for a quorum

• Number of votes currently available

• Number of votes allocated to the quorum disk

• Status summary indicating whether a quorum is present

The CSB list displays information about the VAXcluster system blocks (CSB)
currently in operation; there is one CSB assigned to each node of the cluster. For
each CSB, the CSB list displays the following information:

• Its address

• Name of the VAXcluster node it describes

• CSID associated with the node

7 You can find the CSID for a specific node in a cluster by examining the CSB list display
of the SHOW CLUSTER command. Other SDA displays refer to a system’s CSID. For
instance, the SHOW LOCK command indicates where a lock is mastered or held by
CSID.

SDA–85

System Dump Analyzer
SHOW CLUSTER

• Number of votes (if any) provided by the node

• Its state8

• Its status

The cluster block display includes information recorded in the cluster block
(CLUB), including a list of activated flags, a summary of quorum and vote
information, and other data that applies to the cluster from the perspective of the
node for which SDA is being run.

The cluster failover control block display provides detailed information
concerning the cluster failover control block (CLUFCB), and the cluster quorum
disk control block display provides detailed information from the cluster
quorum disk control block (CLUDCB).

Subsequent displays provide information for each CSB listed previously in the
CSB list display. Each display shows the state and flags of a CSB, as well as
other specific node information. (See the Show Cluster utility section of the
OpenVMS System Management Utilities Reference Manual for information about
the flags for VAXcluster nodes.)

VAXcluster as Seen by the Port Driver
The SHOW CLUSTER/SCS command provides a series of displays.

The SCS listening process directory lists those processes that are listening for
incoming SCS connect requests. For each of these processes, this display records
the following information:

• Address of its directory entry

• Connection ID

• Name

• Explanatory information, if available

The SCS systems summary display provides the system block (SB) address,
node name, system type, system ID, and the number of connection paths for each
SCS system. An SCS system can be a VAXcluster member, HSC, UDA, or other
such device.

Subsequent displays provide detailed information for each of the system blocks
and the associated path blocks. The system block displays include the maximum
message and datagram sizes, local hardware and software data, and SCS
poller information. Path block displays include information that describes the
connection, including remote functions and other path-related data.

Examples

1. SDA> SHOW CLUSTER

VAXcluster data structures

--- VAXcluster Summary ---

Quorum Votes Quorum Disk Votes Status Summary
------ ----- ----------------- --------------

2 3 1 quorum

8 For information about the state and status of nodes, see the description of the ADD
command in the Show Cluster utility section of the OpenVMS System Management
Utilities Reference Manual.

SDA–86

System Dump Analyzer
SHOW CLUSTER

--- CSB list ---

Address Node CSID Votes State Status
------- ---- ---- ----- ----- ------

803686F0 SOLLY 000100C8 1 open member,qf_active
80368550 GUS 000100C9 1 open member,qf_active
80367B90 DORIS 000100C5 1 open member,qf_active

--- Cluster Block (CLUB) 801C3F70 ---

Flags: 10080001 cluster,init,quorum

Quorum/Votes 2/3 Last transaction code 02
Quorum Disk Votes 1 Last trans. number 1126
Nodes 3 Last coordinator CSID 00000000
Quorum Disk 255DUA2 Last time stamp 26-MAR-1993
Found Node SYSID 0000000008A0 18:52:32
Founding Time 3-DEC-1992 Largest trans. id 00000466

00:01:44 Resource Alloc. retry 0
Index of next CSID 00D2 Figure of Merit 00000000
Quorum Disk Cntrl Block 80334E00 Member State Seq. Num 0190
Timer Entry Address 00000000 Foreign Cluster 00000000
CSP Queue empty

--- Cluster Failover Control Block (CLUFCB) 801C407C ---

Flags: 00000000

Failover Step Index 00000028 CSB of Synchr. System 803686F0
Failover Instance ID 00000466

--- Cluster Quorum Disk Control Block (CLUDCB) 80334E00 ---

State: 0001 qs_not_ready
Flags: 0000

Iteration Counter 0 UCB address 00000000
Activity Counter 0 TQE address 80419F40
Quorum file LBN 00000000 IRP address 803665A0

--- SOLLY Cluster System Block (CSB) 803686F0 ---

State: 01 open
Flags: 02020302 member,cluster,qf_active,selected,status_rcvd

Quorum/Votes 2/1 Next seq. number 0247 Send queue 00000000
Quor. Disk Vote 1 Last seq num rcvd 0314 Resend queue 00000000
CSID 000100C8 Last ack. seq num 0247 Block xfer Q. empty
Eco/Version 0/12 Unacked messages 1 CDT address 801C28F0
Reconn. time 00000059 Ack limit 4 PDT address 801CEA20
Ref. count 2 Incarnation 18-DEC-1993 TQE address 00000000
Ref. time 18-DEC-1993 08:52:20 SB address 8041B6E0

08:53:58 Lock mgr dir wgt 1 Current CDRP 00000000

This example shows the screen displays for the SHOW CLUSTER command.
(Displays for nodes GUS and DORIS, similar to that for node SOLLY, are also
included in the SHOW CLUSTER output but have been omitted from this
example.)

SDA–87

System Dump Analyzer
SHOW CLUSTER

2. SDA> SHOW CLUSTER /CSID=000100C8

VAXcluster data structures

--- SOLLY Cluster System Block (CSB) 803686F0 ---

State: 01 open
Flags: 02020302 member,cluster,qf_active,selected,status_rcvd

Quorum/Votes 2/1 Next seq. number 0247 Send queue 00000000
Quor. Disk Vote 1 Last seq num rcvd 0314 Resend queue 00000000
CSID 000100C8 Last ack. seq num 0247 Block xfer Q. empty
Eco/Version 0/12 Unacked messages 1 CDT address 801C28F0
Reconn. time 00000059 Ack limit 4 PDT address 801CEA20
Ref. count 2 Incarnation 18-DEC-1993 TQE address 00000000
Ref. time 18-DEC-1993 08:52:20 SB address 8041B6E0

08:53:58 Lock mgr dir wgt 1 Current CDRP 00000000

This example shows the use of the /CSID qualifier to obtain information about a
specific node (in this instance, node SOLLY).

3. SDA> SHOW CLUSTER /NODE=LEON01

VAXcluster data structures

--- LEON01 Cluster System Block (CSB) 9863BC00 ---

State: 01 open
Status 0206E1A2 member,qf_noaccess,cluster,selected,status_rcvd

cwps,rangelock,dyn_remaster,dts,vcc
Cpblty 00000001 rm8sec

Quorum/Votes 4/1 Next seq. number 5D8B Send queue 987C3F80
Quor. Disk Vote 10 Last seq num rcvd 3302 Resend queue 00000000
CSID 00200093 Last ack. seq num 5D8A Block xfer Q. empty
Eco/Version 0/24 Unacked messages 0 CDT address 9830C600
Reconn. time 00000000 Ack limit 3 PDT address 98388590
Ref. count 2 Incarnation 26-JAN-1993 TQE address 00000000
Ref. time 26-JAN-1993 15:14:37 SB address 98638140

15:28:43 Lock mgr dir wgt 1 Current CDRP 00000000

This example shows the use of the /NODE qualifier to obtain information about a
specific node (in this instance, node LEON01).

4. SDA> SHOW CLUSTER /SCS

VAXcluster data structures

--- SCS Listening Process Directory ---

Entry Address Connection ID Process Name Information
------------- ------------- ------------ -----------

80419D60 08EE0000 SCS$DIRECTORY
80419E20 08EE0001 VMS$VAXcluster

--- SCS Systems Summary ---

SB Address Node Type System ID Paths
---------- ---- ---- --------- -----

8041A120 PINTO HSC 00000000F10E 1
8041AA20 DORIS VMS 0000000008A9 1
8041AB40 GUS VMS 0000000008A1 1
8041B6E0 SOLLY VMS 0000000008A0 1
8041D420 DODGER HSC 00000000F00F 1

SDA–88

System Dump Analyzer
SHOW CLUSTER

--- PINTO System Block (SB) 8041A120 ---

System ID 00000000F10E Local software type HSC
Max message size 66 Local software vers. X301
Max datagram size 62 Local software incarn. 8355FE00
Local hardware type HS50 008DA59A
Local hardware vers. 022702220222 SCS poller timeout 000F

022202220222 SCS poller enable mask 01

--- Path Block (PB) 8041C400 ---

Status: 0000

Remote sta. addr. 00000000000E Remote port type HSC
Remote state 00000000000E Number of data paths 2
Remote hardware rev. 00000225 Cables state A-OK B-OK
Remote func. mask 4F710200 Local state OPEN
Resetting port 0E Port dev. name PAB0
Handshake retry cnt. 1 SCS MSGBUF address 80390270
Msg. buf. wait queue empty PDT address 801CEA20

--- DORIS System Block (SB) 8041AA20 ---

System ID 0000000008A9 Local software type VMS
Max message size 112 Local software vers. V5.0
Max datagram size 576 Local software incarn. A9D31760
Local hardware type V780 008DA59B
Local hardware vers. 010E0138207A SCS poller timeout 000C

000030030E10 SCS poller enable mask 00

--- Path Block (PB) 80437E80 ---

Status: 0000

Remote sta. addr. 000000000002 Remote port type CI780
Remote state ENAB Number of data paths 2
Remote hardware rev. 00040003 Cables state A-OK B-OK
Remote func. mask FFFFFF00 Local state OPEN
Resetting port 02 Port dev. name PAB0
Handshake retry cnt. 1 SCS MSGBUF address 8036F0B0
Msg. buf. wait queue empty PDT address 801CEA20

This example shows a subset of a typical output for the SHOW CLUSTER/SCS
command. In this system, there are three nodes (DORIS, GUS, and SOLLY), and
there are two HSCs (PINTO and DODGER). After the summary information in
the first two screen displays, specific information for each system block and its
associated path block is shown.

SDA–89

System Dump Analyzer
SHOW CONNECTIONS

SHOW CONNECTIONS

Displays information about all active connections between systems
communications services (SCS) processes or a single connection. This command
displays information that is in the connection descriptor table (CDT).

Format

SHOW CONNECTIONS {/ADDR or /ADDRESS=cdt-address | /NODE=name |
/SYSAP=name}

Parameters

None.

Qualifiers

/ADDR or /ADDRESS=cdt-address
Displays information contained in the connection descriptor table (CDT) for a
specific connection.9

/NODE=name
Displays information contained in the connection descriptor table (CDT) for a
specific node.

/SYSAP=name
Displays information contained in the connection descriptor table (CDT) for a
specific system application (SYSAP).

Description

The SHOW CONNECTIONS command provides a series of displays.

The CDT summary page lists information regarding each connection on the
local system, including the following:

• CDT address

• Name of the local process with which the CDT is associated

• Connection ID

• Current state

• Name of the remote node (if any) to which it is currently connected

The CDT summary page concludes with a count of CDTs that are free and
available to the system.

SHOW CONNECTIONS next displays a page of detailed information for each
active CDT listed previously.

9 You can find the cdt-address for any active connection on the system in the CDT
summary page display of the SHOW CONNECTIONS command. In addition, CDT
addresses are stored in many individual data structures related to SCS connections.
These data structures include class driver request packets (CDRPs) and unit control
blocks (UCBs) for class drivers that use SCS and cluster system blocks (CSBs) for the
connection manager.

SDA–90

System Dump Analyzer
SHOW CONNECTIONS

Examples

1. SDA> SHOW CONNECTIONS

VAXcluster data structures

--- CDT Summary Page ---

CDT Address Local Process Connection ID State Remote Node
----------- ------------- ------------- ----- -----------

801C2670 SCS$DIRECTORY 08EE0000 listen
801C2710 VMS$VAXcluster 08EE0001 listen
801C27B0 VMS$VAXcluster 08FF0002 open DORIS
801C2850 VMS$DISK_CL_DRVR 08FD0003 open PINTO
801C28F0 VMS$VAXcluster 08EF0004 open SOLLY
801C2990 VMS$VAXcluster 08F00005 open GUS

Number of free CDTs: 32

--- Connection Descriptor Table (CDT) 801C2670 ---

State: 0001 listen Local Process: SCS$DIRECTORY
Blocked State: 0000

Local Con. ID 08EE0000 Datagrams sent 0 Message queue empty
Remote Con. ID 78A30017 Datagrams rcvd 0 Send Credit Q. empty
Receive Credit 0 Datagram discard 0 PB address 80438300
Send Credit 1 Messages Sent 0 PDT address 801CEA20
Min. Rec. Credit 0 Messages Rcvd. 0 Error Notify 8022B816
Pend Rec. Credit 0 Send Data Init. 0 Receive Buffer 00000000
Initial Rec. Credit 0 Req Data Init. 0 Connect Data 00000000
Rem. Sta. 00000000000C Bytes Sent 0 Aux. Structure 00000000
Rej/Disconn Reason 0 Bytes rcvd 0
Queued for BDT 0 Total bytes map 0
Queued Send Credit 0

This example shows the CDT summary page and the first page of the detailed
displays for each CDT.

2. SDA> SHOW CONNECTIONS /ADDRESS=801C27B0

VAXcluster data structures

--- Connection Descriptor Table (CDT) 801C27B0 ---

State: 0002 open Local Process: VMS$VAXcluster
Blocked State: 0000 Remote Node::Process: DORIS::VMS$VAXcluster

Local Con. ID 08FF0002 Datagrams sent 0 Message queue empty
Remote Con. ID 33440003 Datagrams rcvd 0 Send Credit Q. empty
Receive Credit 4 Datagram discard 0 PB address 80437E80

.

.

.

This example shows the use of the /ADDRESS qualifier to obtain information
about a specific connection.

SDA–91

System Dump Analyzer
SHOW CONNECTIONS

3. SDA> SHOW CONNECTIONS/NODE=MOON

VAXcluster data structures

--- Connection Descriptor Table (CDT) 98310EE0 ---

State: 0002 open Local Process: MSCP$DISK
Blocked State: 0000 Remote Node::Process: MOON::VMS$DISK_CL_DRVR

Local Con. ID 7C79004E Datagrams sent 0 Message queue empty
Remote Con. ID 009F0069 Datagrams rcvd 0 Send Credit Q. empty
Receive Credit 16 Datagram discard 0 PB address 98348200
Send Credit 10 Messages Sent 964 PDT address 98336590
Min. Rec. Credit 1 Messages Rcvd. 808 Error Notify 98B6158D
Pend Rec. Credit 0 Send Data Init. 0 Receive Buffer 986791E8
Initial Rec. Credit 10 Req Data Init. 0 Connect Data 98B60079
Rem. Sta. 000000000009 Bytes Sent 0 Aux. Structure 98679A80
Rej/Disconn Reason 0 Bytes rcvd 0
Queued for BDT 0 Total bytes map 0
Queued Send Credit 0

--- Connection Descriptor Table (CDT) 98310540 ---

State: 0002 open Local Process: SCA$TRANSPORT
Blocked State: 0000 Remote Node::Process: MOON::SCA$TRANSPORT

Local Con. ID 7CCD0047 Datagrams sent 0 Message queue empty
Remote Con. ID 817F005D Datagrams rcvd 0 Send Credit Q. empty

.

.

.

--- Connection Descriptor Table (CDT) 9830F0A0 ---

State: 0002 open Local Process: VMS$DISK_CL_DRVR
Blocked State: 0000 Remote Node::Process: MOON::MSCP$DISK

Local Con. ID 7C790038 Datagrams sent 0 Message queue empty
Remote Con. ID 4B51005B Datagrams rcvd 0 Send Credit Q. empty

.

.

.

--- Connection Descriptor Table (CDT) 9830EF40 ---

State: 0002 open Local Process: VMS$TAPE_CL_DRVR
Blocked State: 0000 Remote Node::Process: MOON::MSCP$TAPE

Local Con. ID 7C790037 Datagrams sent 0 Message queue empty
Remote Con. ID 23B20068 Datagrams rcvd 0 Send Credit Q. empty

.

.

.

The command in this example displays information in the CDT about the
node MOON.

4. SDA> SHOW CONNECTIONS/SYSAP=SCA$TRANSPORT

--- CDT Summary Page ---

CDT Address Local Process Connection ID State Remote Node
----------- ------------- ------------- ----- -----------

9830A7C0 SCA$TRANSPORT 7C790003 listen
98310540 SCA$TRANSPORT 7CCD0047 open METEOR
98310800 SCA$TRANSPORT 7CD50049 open OCALA

Number of free CDT’s: 158

--- Connection Descriptor Table (CDT) 9830A7C0 ---

SDA–92

System Dump Analyzer
SHOW CONNECTIONS

State: 0001 listen Local Process: SCA$TRANSPORT
Blocked State: 0000

Local Con. ID 7C790003 Datagrams sent 0 Message queue empty
Remote Con. ID 00000000 Datagrams rcvd 0 Send Credit Q. empty
Receive Credit 0 Datagram discard 0 PB address 00000000
Send Credit 0 Messages Sent 0 PDT address 00000000
Min. Rec. Credit 0 Messages Rcvd. 0 Error Notify 968D9E8B
Pend Rec. Credit 0 Send Data Init. 0 Receive Buffer 00000000
Initial Rec. Credit 0 Req Data Init. 0 Connect Data 00000000
Rem. Sta. 000000000000 Bytes Sent 0 Aux. Structure 00000000
Rej/Disconn Reason 0 Bytes rcvd 0
Queued for BDT 0 Total bytes map 0
Queued Send Credit 0

--- Connection Descriptor Table (CDT) 98310540 ---

State: 0002 open Local Process: SCA$TRANSPORT
Blocked State: 0000 Remote Node::Process: METEOR::SCA$TRANSPORT

Local Con. ID 7CCD0047 Datagrams sent 0 Message queue empty
Remote Con. ID 817F005D Datagrams rcvd 0 Send Credit Q. empty

.

.

.

--- Connection Descriptor Table (CDT) 98310800 ---

State: 0002 open Local Process: SCA$TRANSPORT
Blocked State: 0000 Remote Node::Process: OCALA::SCA$TRANSPORT

Local Con. ID 7CD50049 Datagrams sent 0 Message queue empty
Remote Con. ID EFB80009 Datagrams rcvd 0 Send Credit Q. empty

.

.

.

This example shows the use of the /SYSAP qualifier to show which nodes in
the cluster are connected to SCA$TRANSPORT.

SDA–93

System Dump Analyzer
SHOW CPU

SHOW CPU

Displays information about the state of a processor at the time of the system
failure.

Format

SHOW CPU [cpu-id]

Parameter

cpu-id
Numeric value from 00 to 1F16 indicating the identity of the processor for which
context information is to be displayed. If you specify a value outside this range,
or you specify the cpu-id of a processor that was not active at the time of the
system failure, SDA displays the following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

If you use the cpu-id parameter, the SHOW CPU command performs an implicit
SET CPU command, making the processor indicated by cpu-id the current CPU
for subsequent SDA commands. (See the description of the SET CPU command
and Section 4 for information about how this can affect the CPU context—and
process context—in which SDA commands execute.)

Qualifiers

None.

Description

The SHOW CPU command displays crash information about the processor
specified by cpu-id or, by default, the SDA current CPU, as defined in Section 4.
You cannot use the SHOW CPU command when examining the running system
with SDA.

The SHOW CPU command produces several displays. First, there is a brief
description of the crash and its environment that includes the following:

• Reason for the bugcheck

• Name of the currently executing process. If no process has been scheduled on
this processor, SDA displays the following message:

Process currently executing: no processes currently scheduled on the processor

• File specification of the image executing within the current process (if there is
a current process)

• Interrupt priority level (IPL) of the processor at the time of the system failure

Next, the general registers display shows the contents of the processor’s
general-purpose registers (R0 through R11) and the AP, FP, SP, PC, and PSL at
the time of the crash.

The processor registers display consists of the following three parts:

• Common processor registers

• Processor-specific registers

SDA–94

System Dump Analyzer
SHOW CPU

• Stack pointers and memory interconnect silos

The first section includes registers that maintain the virtual address space,
system space, or other system functions of the current process. The following
registers are among those displayed:

Register Description

P0BR Program region (P0 space) base register
P0LR Program region length register
P1BR Control region (P1 space) base register
P1LR Control region length register
SBR System region (S0 space) base register
SLR System region length register
PCBB Process control block base register
SCBB System control block base register
ASTLVL Asynchronous system trap level
SISR Software interrupt summary register
ICCS Internal clock control and status register
SID System identification register

The second section of the processor registers display shows those registers
that are specific to the type of processor being examined. (The SHOW CRASH
command displays the processor type.) The contents of the register display vary
according to the type of processor involved in the crash and are used primarily in
hardware diagnostics.

The final section of the display includes the five stack pointers: the interrupt
stack pointer (ISP) and the four pointers of the kernel, executive, supervisor, and
user stacks (KSP, ESP, SSP, and USP, respectively). Certain processors, such as
the VAX 8800 and VAX 8600 processors, also display the contents of the silos of
their memory interconnects in this section.

The SHOW CPU command concludes with a listing of the spin locks, if any, owned
by the processor at the time of the crash, reproducing some of the information
given by the SHOW SPINLOCKS command. The spin lock display includes the
following information:

• Name of the spin lock.

• Address of the spin lock data structure (SPL).

• IPL and rank of the spin lock.

• Number of processors waiting for this processor to release the spin lock.

• Indication of the depth of this processor’s ownership of the spin lock. A
number greater than 1 indicates that this processor has nested acquisitions of
the spin lock.

SDA–95

System Dump Analyzer
SHOW CPU

Example

SDA> SHOW CPU

CPU 00 Processor crash information

CPU 00 reason for Bugcheck: INVEXCEPTN, Exception while above ASTDEL or
on interrupt stack

Process currently executing: NETACP

Current image file: 254DUA200:[SYS6.SYSCOMMON.]<SYSEXE>NETACP.EXE;3

Current IPL: 8 (decimal)

General registers:

R0 = 00000008 R1 = 00080000 R2 = 8047FC40 R3 = 000003AC
R4 = 00000002 R5 = 8047FC40 R6 = 00000036 R7 = 00000000
R8 = 00000000 R9 = 00000062 R10 = 7FFE7D70 R11 = 0000747C
AP = 0000BE34 FP = 7FFE7DD0 SP = 7FFE7D30 PC = 80146682
PSL = 00080009

Processor registers:

P0BR = 816EB600 SBR = 01A6A800 ASTLVL = 00000004
P0LR = 00000C0C SLR = 00065600 SISR = 00000000
P1BR = 80FFCE00 PCBB = 008AF2A0 ICCS = 00000041
P1LR = 001FFC5F SCBB = 01A62600 SID = 067F014F

ICR = FFFFEDEA REVR1 = 11121111 NMIFSR = 000C0000
TODR = 2B914C0F REVR2 = FF00FF12 NMIEAR = 2243F830
COR = 00000001 CPUINFO= 000009F7

ISP = 8016AC00
KSP = 7FFE7D30
ESP = 7FFE9E00
SSP = 7FFEDE00
USP = 7FF8E590

NMI bus silo:

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

SDA–96

System Dump Analyzer
SHOW CPU

Spinlocks currently owned by CPU 00

IOLOCK8 Address : 80185E50
Owner CPU ID : 00 IPL : 08
Ownership Depth : 0001 Rank : 14
CPUs Waiting : 0000 Index : 34

SDA> EXAMINE R5
R5: 8047FC40 "@üG."
SDA> SHOW PROCESS

Process index: 000D Name: NETACP Extended PID: 33C0010D

Process status: 00148001 RES,NOACNT,PHDRES,LOGIN

.

.

.
SDA> SHOW CPU 01

CPU 01 Processor crash information

CPU 01 reason for Bugcheck: CPUEXIT, Shutdown requested by another CPU

Process currently executing: no processes currently scheduled on this CPU

Current IPL: 31 (decimal)
.
.
.

No spinlocks currently owned by CPU 01

SDA> EXAMINE R5

R5: 83ED5E00 ".^í."
SDA> SHOW PROCESS

%SDA-E-BADPROC, no such process

This SDA session illustrates the output of the SHOW CPU command in the
analysis of a crash dump from a VAX 8800 multiprocessing system with two
active processors. The first SHOW CPU command displays the crash information
particular to CPU 00, which initially posted an INVEXCEPTN bugcheck from
within process NETACP and then requested CPU 01 to take a bugcheck
(CPUEXIT) as well. That the crash occurred at IPL 8 signifies, perhaps, that
a driver fork process is involved.

The second instance of the SHOW CPU command (SHOW CPU 01) corroborates
that CPU 01 was requested to crash by CPU 00.

Significantly, the second SHOW CPU command changes both the SDA current
CPU context and current process context. The two EXAMINE R5 commands are
executed under different CPU contexts; the values they produce differ. In the
CPU context of CPU 00, the current process context is that of process NETACP.
There is no current process on CPU 01; thus, SDA process context is initially
undefined when its CPU context is changed to that of CPU 01.

SDA–97

System Dump Analyzer
SHOW CRASH

SHOW CRASH

In the analysis of a system failure, displays information about the state of the
system at the time of the failure. In the analysis of a running system, provides
information identifying the system.

Format

SHOW CRASH

Parameters

None.

Qualifiers

None.

Description

The SHOW CRASH command has two different manifestations, depending upon
whether you use it while analyzing a running system or a system failure.

In either case, if the SDA current CPU context is not that of the processor that
signaled the bugcheck, the SHOW CRASH command performs an implicit SET
CPU command to make that processor the SDA current CPU. (See the description
of the SET CPU command and Section 4 for a discussion of how this can affect
the CPU context—and process context—in which SDA commands execute.)

When used during the analysis of a running system, the SHOW CRASH command
produces a display that describes the system and the version of OpenVMS that
it is running. The system crash information display contains the following
information:

• Date and time that the ANALYZE/SYSTEM command was issued (titled
‘‘Time of system crash’’ in the display)

• Name and version number of the operating system

• Major and minor IDs of the operating system

• Identity of the system, including an indication of its VAXcluster membership

• CPU ID of the primary CPU

• Two bit masks indicating which processors in the system are active and which
are available for booting, respectively

When used during the analysis of a system failure, the SHOW CRASH command
produces several displays that identify the system and describe its state at the
time of the failure.

The system crash information display in this context provides the following
information:

• Date and time of the system crash.

• Name and version number of the operating system.

• Major and minor IDs of the operating system.

SDA–98

System Dump Analyzer
SHOW CRASH

• Identity of the system, including an indication of its VAXcluster membership
and the location of the primary CPU in a multiprocessing configuration.

• CPU IDs of both the primary CPU and the CPU that initiated the bugcheck.
In a uniprocessor system, these IDs are identical.

• Two bit masks indicating which processors in the system are active and which
are available for booting, respectively.

• For each active processor in the system, the name of the bugcheck that
caused the failure. Generally, there will be only one significant bugcheck
in the system. All other processors typically display the following as their
reason for taking a bugcheck:

CPUEXIT, Shutdown requested by another CPU

Subsequent screens of the SHOW CRASH command display information about
the state of each active processor on the system at the time of the system failure.
The information in these screens is identical to that produced by the SHOW CPU
command, including the general-purpose registers, processor-specific registers,
stack pointers, and records of spin lock ownership. The first such screen presents
information about the processor that caused the crash; others follow according to
the numerical order of their CPU IDs.

Examples

1. $ ANALYZE/SYSTEM

OpenVMS VAX System analyzer

SDA> SHOW CRASH

System crash information

Time of system crash: 25-FEB-1993 11:18:06.84

Version of system: OpenVMS VAX VERSION 6.0

System Version Major ID/Minor ID: 10/11

VAXcluster node: BIGTOP, a VAX 8800 - primary CPU (left) was booted

Primary CPU ID: 01

Bitmask of CPUs active/available: 00000003/00000003
SDA> SHOW PROCESS
%SDA-E-BADPROC, no such process

When issued from within the analysis of a running system, the SHOW
CRASH command displays the time the ANALYZE/SYSTEM command
was issued as the ‘‘Time of system crash.’’ The display indicates that the
OpenVMS VAX system in use is a VAX 8800 multiprocessing system, the left
CPU of which is the primary CPU. The bit mask indicates that there are two
processors available and both are running.

Note that no SDA current process is defined at this time.

SDA–99

System Dump Analyzer
SHOW CRASH

2. $ ANALYZE/CRASH SYS$SYSTEM

OpenVMS VAX System dump analyzer

Dump taken on 23-FEB-1993 12:44:30.23
INVEXCEPTN, Exception while above ASTDEL or on

interrupt stack

SDA> SHOW CRASH

System crash information !

Time of system crash: 23-FEB-1993 12:44:30.23

Version of system: OpenVMS VAX VERSION 6.0
System Version Major ID/Minor ID: 10/11

VAXcluster node: MOOSE, a VAX 8800 - primary CPU (left) was booted

Crash CPU ID/Primary CPU ID: 00/01

Bitmask of CPUs active/available: 00000003/00000003

CPU bugcheck codes: "
CPU 00 -- INVEXCEPTN, Exception while above ASTDEL or on

interrupt stack
1 other -- CPUEXIT, Shutdown requested by another CPU

CPU 00 Processor crash information

CPU 00 reason for Bugcheck: INVEXCEPTN, Exception while above ASTDEL
or on interrupt stack #

Process currently executing on this CPU: NETACP #

Current image file: 254DUA200:[SYS6.SYSCOMMON.][SYSEXE]NETACP.EXE;3

Current IPL: 8 (decimal) $

General registers:

R0 = 00000008 R1 = 00080000 R2 = 8047FC40 R3 = 000003AC
R4 = 00000002 R5 = 8047FC40 R6 = 00000036 R7 = 00000000
R8 = 00000000 R9 = 00000062 R10 = 7FFE7D70 R11 = 0000747C
AP = 0000BE34 FP = 7FFE7DD0 SP = 7FFE7D30 PC = 80146682
PSL = 00080009

Processor registers:

P0BR = 816EB600 SBR = 01A6A800 ASTLVL = 00000004
P0LR = 00000C0C SLR = 00065600 SISR = 00000000
P1BR = 80FFCE00 PCBB = 008AF2A0 ICCS = 00000041
P1LR = 001FFC5F SCBB = 01A62600 SID = 067F014F

ICR = FFFFEDEA REVR1 = 11121111 NMIFSR = 000C0000
TODR = 2B914C0F REVR2 = FF00FF12 NMIEAR = 2243F830
COR = 00000001 CPUINFO= 000009F7 MEMCSR0= 000700F0

NBIA0 CSR0 = 00203810 NBIA1 CSR0 = 00000000

ISP = 8016AC00
KSP = 7FFE7D30
ESP = 7FFE9E00
SSP = 7FFEDE00
USP = 7FF8E590

NMI bus silo:

SDA–100

System Dump Analyzer
SHOW CRASH

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Spinlocks currently owned by CPU 00

IOLOCK8 Address : 80185E50
Owner CPU ID : 00 IPL : 08
Ownership Depth : 0001 Rank : 14
CPUs Waiting : 0000 Index : 34

CPU 01 Processor crash information

CPU 01 reason for Bugcheck: CPUEXIT, Shutdown requested by another CPU

Process currently executing on this CPU: None

Current IPL: 31 (decimal)

General registers:

R0 = 00000020 R1 = 00000000 R2 = 8000CA78 R3 = 80DAF000
R4 = 80487000 R5 = 83ED5E00 R6 = 7FFA4188 R7 = 7FF28EB8
R8 = 7FF28E68 R9 = 7FFA2808 R10 = 7FFA4000 R11 = 7FFE0070
AP = 7FF28D90 FP = 7FF28D98 SP = 80DAFBF8 PC = 80765465
PSL = 041F0000

Processor registers:

P0BR = 83EE8E00 SBR = 01A6A800 ASTLVL = 00000004
P0LR = 000001C1 SLR = 00065600 SISR = 00000000
P1BR = 837FA600 PCBB = 00BB62A0 ICCS = 00000041
P1LR = 001FF935 SCBB = 01A62600 SID = 06FF014F

ICR = FFFFE7C1 REVR1 = 11121111 NMIFSR = 000C0000
TODR = 2B914C0F REVR2 = FF00FF12 NMIEAR = 24080000
COR = 00000001 CPUINFO= 000009F7 MEMCSR0= 000700F0
NBIA0 CSR0 = 00203810 NBIA1 CSR0 = 00000000

ISP = 80DAFBF8
KSP = 7FFE7E00
ESP = 7FFE9E00
SSP = 7FFED04E
USP = 7FF28D90

NMI bus silo:

SDA–101

System Dump Analyzer
SHOW CRASH

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

No spinlocks currently owned by CPU 01

This long display reflects the output of the SHOW CRASH command within
the analysis of a system failure that occurred on a VAX 8800 multiprocessing
system.

The first part of the display includes the following information:

! Identification of the system and the version of OpenVMS it was running
at the time of the crash.

" Indication that the failed processor (CPU 00) was not the primary
processor (CPU 01), but requested CPU 01 to take a CPUEXIT bugcheck.
(CPU 01 was, in fact, idle at the time of the crash.)

The next part of the display shows information particular to CPU 00:

CPU 00 encountered an INVEXCEPTN bugcheck while executing the
NETACP process.

$ Although the next step in the analysis might be to examine the interrupt
stack of CPU 00, the fact that the failure occurred at IPL 8 might indicate
that an I/O driver is involved.

At the end of the example, SDA CPU context remains that of CPU 00; its
current process context is that of the NETACP process.

SDA–102

System Dump Analyzer
SHOW DEVICE

SHOW DEVICE

Displays a list of all devices in the system and their associated data structures or
displays the data structures associated with a given device or devices.

Format

SHOW DEVICE {device-name | /ADDRESS=ucb-address}

Parameter

device-name
Device or devices for which data structures are to be displayed. There are several
uses of the device-name parameter.

To Display the Structures
for . . . Action

All devices in the system Do not specify a device-name (for example,
SHOW DEVICE).

A single device Specify an entire device-name (for example,
SHOW DEVICE VTA20).

All devices of a certain type
on a single controller

Specify only the device type and controller
designation (for example, SHOW DEVICE RTA
or SHOW DEVICE RTB).

All devices of a certain type
on any controller

Specify only the device type (for example, SHOW
DEVICE RT).

All devices whose names
begin with a certain
character or character string

Specify the character or character string (for
example, SHOW DEVICE D).

All devices on a single node
or HSC

Specify only the node name or HSC name (for
example, SHOW DEVICE GREEN$).

In a VAXcluster environment, device information is displayed for each device in
the cluster with the specified device-name. You can limit the display to those
devices that are on a particular node or HSC by specifying the node name or HSC
name as part of the device-name (for example, GREEN$D or GREEN$DB).

Qualifier

/ADDRESS=ucb-address
Indicates the device for which data structure information is to be displayed by
the address of its unit control block (UCB). The /ADDRESS qualifier is thus an
alternate method of supplying a device name to the SHOW DEVICE command. If
both the device-name parameter and the /ADDRESS qualifier appear in a single
SHOW DEVICE command, SDA responds only to the parameter or qualifier that
appears first.

SDA–103

System Dump Analyzer
SHOW DEVICE

Description

The SHOW DEVICE command produces several displays taken from system data
structures that describe the devices in the system configuration.

If you use the SHOW DEVICE command to display information for more than
one device or one or more controllers, it initially produces the DDB list display
to provide a brief summary of the devices for which it renders information in
subsequent screens.

Information in the DDB list appears in six columns, the contents of which are as
follows:

• Address of the device data block (DDB)

• Controller name

• Name of the ancillary control process (ACP) or extended QIO processor (XQP)
associated with the device

• Name of the device driver

• Address of the driver prologue table (DPT)

• Size of the DPT

The SHOW DEVICE command then produces a display of information pertinent
to the device controller. This display includes information gathered from the
following structures:

• Device data block (DDB)

• Primary channel request block (CRB)

• Interrupt dispatch block (IDB)

• Driver dispatch table (DDT)

If the controller is an HSC controller, SHOW DEVICE also displays information
from its system block (SB) and each path block (PB).

Many of these structures contain pointers to other structures and driver routines.
Most notably, the DDT display points to various routines located within driver
code, such as the start I/O routine, unit initialization routine, and cancel I/O
routine.

For each device unit subject to the SHOW DEVICE command, SDA displays
information taken from its unit control block, including a list of all I/O request
packets (IRPs) in its I/O request queue. For certain mass-storage devices, SHOW
DEVICE also displays information from the primary class driver data block
(CDDB), the volume control block (VCB), and the ACP queue block (AQB). For
units that are part of a shadow set, SDA displays a summary of shadow set
membership.

As it displays information for a given device unit, SHOW DEVICE defines the
following symbols as appropriate.

Symbol Meaning

UCB Address of unit control block
SB Address of system block

SDA–104

System Dump Analyzer
SHOW DEVICE

Symbol Meaning

ORB Address of object rights block
DDB Address of device data block
DDT Address of driver dispatch table
CRB Address of channel request block
AMB Associated mailbox UCB pointer
IRP Address of I/O request packet
2P_UCB Address of alternate UCB for dual-pathed device
LNM Address of logical name block for mailbox
PDT Address of port descriptor table
CDDB Address of class driver descriptor block for MSCP-served device
2P_CDDB Address of alternate CDDB for MSCP-served device
RWAITCNT Resource wait count for MSCP-served device
VCB Address of volume control block for mounted device

If you are examining a driver-related crash, you might find it helpful to issue
a SHOW STACK command after the appropriate SHOW DEVICE command,
examining the stack for any of these symbols. Note, however, that although
SHOW DEVICE defines those symbols relevant to the last device unit it has
displayed, and redefines symbols relevant to any subsequently displayed device
unit, it does not undefine symbols. (For instance, SHOW DEVICE DUA0 defines
the symbol PDT, but SHOW DEVICE MBA0: does not undefine it, even though
the PDT structure is not associated with a mailbox device.)

To maintain the accuracy of symbols that appear in the stack listing, use the
DEFINE command to modify the symbol name. For example:

SDA> DEFINE DUA0_PDT PDT
SDA> DEFINE MBA0_UCB UCB

See the descriptions of the READ and FORMAT commands for additional
information about defining and examining the contents of device data structures.

For a detailed explanation of I/O data structures displayed by SDA, consult the
OpenVMS VAX Device Support Manual.

Examples

1. SDA>SHOW DEVICE VTA20

VTA20 ==> LTA20 VT200_Series UCB address: 8042E4C0

Device status: 00010110 online,bsy,deleteucb
Characteristics: 0C040007 rec,ccl,trm,avl,idv,odv

00000200 nnm

Owner UIC [000001,000004] Operation count 5793 ORB address 8042E590
PID 00010064 Error count 0 DDB address 80CEF2E0

Class/Type 42/6E Reference count 2 DDT address 807696FB
Def. buf. size 80 BOFF 0155 CRB address 80BC8B00
DEVDEPEND 180093A0 Byte count 0100 IRP address 80BE2B00
DEVDEPND2 7962100C SVAPTE 804801C0 I/O wait queue empty
FLCK/DLCK 00000012 DEVSTS 0000

I/O request queue

SDA–105

System Dump Analyzer
SHOW DEVICE

STATE IRP PID MODE CHAN FUNC WCB EFN AST IOSB STATUS

C 80BE2B00 00010064 E FFC0 C000 00000000 29 80127458 7FFA800C 0003
nop bufio,func

This example reproduces the SHOW DEVICE display for a single device unit,
VTA20. Whereas this display lists information from the UCB for VTA20,
including some addresses of key data structures and a list of pending I/O
requests for the unit, it does not display information about the controller
or its device driver. To display the latter sort of information, specify the
device-name as VTA (for example, SHOW DEVICE VTA).

2. SDA> SHOW DEVICE DU

I/O data structures

DDB list

Address Controller ACP Driver DPT DPT size
------- ---------- --- ------ --- --------

80D0B3C0 BLUES$DUA F11XQP DSDRIVER 807735B0 679D
8000B2B8 RED$DUA F11XQP DSDRIVER 807735B0 679D
80D0B9C0 RED$DUS F11XQP DSDRIVER 807735B0 679D
80D08BA0 BIGTOP$DUA F11XQP DSDRIVER 807735B0 679D
80D08AE0 TIMEIN$DUA F11XQP DSDRIVER 807735B0 679D

.

.

.
Press RETURN for more.

.

.

.

This excerpt from the output of the SHOW DEVICE DU command illustrates
the format of the DDB list display. In this case, the DDB list concerns
itself with those devices whose device type begins with DU (that is, DUA and
DUS). It displays devices of these types attached to various HSCs (RED$ and
BLUES$) and systems in a cluster (BIGTOP$ and TIMEIN$).

Following the DDB list, SHOW DEVICE DU produces displays for each
controller and each unit on each controller, as illustrated in the next example.

SDA–106

System Dump Analyzer
SHOW DEVICE

3. SDA> SHOW DEVICE DUS

I/O data structures

DDB list

Address Controller ACP Driver DPT DPT size
------- ---------- --- ------ --- --------

80D0B9C0 RED$DUS F11XQP DSDRIVER 807735B0 679D

Controller: RED$DUS

--- LOVE System Block (SB) 80D0C500 ---

System ID 00000000FFF2 Local software type HSC
Max message size 66 Local software vers. Y35Q
Max datagram size 62 Local software incarn. 6DF9E6E0
Local hardware type HS50 008FCC83
Local hardware vers. 2722722221A3 SCS poller timeout 0002

000000272272 SCS poller enable mask 01

--- Path Block (PB) 80D0BEA0 ---

Status: 0028

Remote sta. addr. 00000000000B Remote port type HSC
Remote state 00000000000B Number of data paths 2
Remote hardware rev. 00000225 Cables state A-OK B-OK
Remote func. mask 4F710200 Local state OPEN
Resetting port 05 Port dev. name PAA0
Handshake retry cnt. 1 SCS MSGBUF address 80BCD510
Msg. buf. wait queue empty PDT address 803B38D0

--- Device Data Block (DDB) 80D0B9C0 ---

Driver name DUDRIVER Alloc. class 254 DDT address 80773640
ACP ident F11 SB address 80D0C500
ACP class PACK UCB address 803B9C60

--- Primary Channel Request Block (CRB) 80BF7000 ---

Reference count 17 Wait queue empty Aux. struct. 803B4150
Due time 00012DCC Timeout rout. 807743D1 Timeout link 8039E03C
IDB address 80D0C440 Ctrl. init. 80773774
ADP address 80BF7F70

--- Driver Dispatch Table (DDT) 80773640 ---

Errlog buf sz 0 Diag buf sz 104 FDT size 244
Start I/O 80773B21 Register dump return FDT address 80773680
Alt start I/O return Unit init 80775970 Mnt verify 80775BC2
Cancel I/O 807763A7 Unsol int 80774602 Cloned UCB return

RED$DUS3 RA81 UCB address: 803B9C60

Device status: 00021810 online,valid,unload,lcl_valid
Characteristics: 1C4D4008 dir,fod,shr,avl,mnt,elg,idv,odv,rnd

000002A1 clu,mscp,srv,nnm

SDA–107

System Dump Analyzer
SHOW DEVICE

Owner UIC [100001,000063] Operation count 55595 ORB address 803B9D90
PID 00000000 Error count 0 DDB address 80D0B9C0

Alloc. lock ID 00010161 Reference count 3 DDT address 80773640
Alloc. class 254 Online count 2 VCB address 8044D940
Class/Type 01/15 BOFF 0000 CRB address 80BF7000
Def. buf. size 512 Byte count 0A00 PDT address 803B38D0
DEVDEPEND 04E00E33 SVAPTE 835C7738 CDDB address 803B4150
DEVDEPND2 00000000 DEVSTS 0004 I/O wait queue empty
FLCK/DLCK 00000012 RWAITCNT 0000

--- Primary Class Driver Data Block (CDDB) 803B4150 ---

Status: 1040 alcls_set,bshadow
Controller Flags: 80D6 cf_shadw,cf_mlths,cf_this,cf_misc,cf_attn,cf_replc

Allocation class 254 CDRP Queue 80BD1170 DDB address 8000B2B8
System ID 0000FFF2 Restart Queue empty CRB address 80BF7000

0000 DAP Count 1 CDDB link 803C01C0
Contrl. ID 0000FFF2 Contr. timeout 75 PDT address 803B38D0

01010000 Reinit Count 0 Original UCB 00000000
Response ID 00000000 Wait UCB Count 0 UCB chain 803B89A0
MSCP Cmd status FFFFFFFF

*** I/O request queue is empty ***

--- Volume Control Block (VCB) 8044D940 ---

Volume: VMSCMSMASTER Lock name: VMSCMSMASTER
Status: A0 extfid,system
Status2: 15 writethru,mountver,nohighwater
Shadow status: 21 shadmast,mvbegun

Mount count 1 Rel. volume 0 AQB address 80D0BAE0
Transactions 3 Max. files 111384 RVT address 803B9C60
Free blocks 205989 Rsvd. files 9 FCB queue 80BD87B0
Window size 7 Cluster size 3 Cache blk. 8044DA30
Vol. lock ID 00010167 Def. extend sz. 5 Shadow mem. FL 80CF5C40
Block. lock ID 01A50139 Record size 0 Shadow mem. BL 80CF5BE0
Shadow lock ID 00010168

--- Shadow set 254DUS3 member summary ---

Volume: JAZZLORE

Physical unit Primary path Secondary path Member status
------------- ------------ -------------- -------------
254DUA129 RED -- none -- Shadow set member
254DUA139 RED -- none -- Shadow set member

SDA–108

System Dump Analyzer
SHOW DEVICE

--- ACP Queue Block (AQB) 80D0BAE0 ---

ACP requests are serviced by the eXtended Qio Processor (XQP)

Status: 14 defsys,xqioproc

Mount count 56 ACP type f11v2 Request queue 00000000
ACP class 0

*** ACP request queue is empty ***

RED$DUS5 RA80 UCB address: 803B9DF0

Device status: 00021810 online,valid,unload,lcl_valid
Characteristics: 1C4D4008 dir,fod,shr,avl,mnt,elg,idv,odv,rnd

000002A1 clu,mscp,srv,nnm
.
.
.

This example illustrates the output of the command SHOW DEVICE DUS,
where two shadow sets (RED$DUS3 and RED$DUS5) are associated with the
HSC RED$. There is a controller display for RED$DUS and a unit display for
each of the two shadow sets.

SDA–109

System Dump Analyzer
SHOW EXECUTIVE

SHOW EXECUTIVE

Displays the location and size of each loadable image that makes up the
executive.

Format

SHOW EXECUTIVE

Parameters

None.

Qualifiers

None.

Description

The executive consists of a fixed portion and a loadable portion. The fixed portion
is known as SYS$SYSTEM:SYS.EXE and consists of three parts:

• System service dispatch vectors

• Universal executive routine vectors

• Globally referenced data cells

The loadable portion consists of a number of independent images that perform
the work of the operating system.

The SHOW EXECUTIVE command lists the location and size of each image
within the loadable portion of the executive image. It can thus enable you to
determine whether a given memory address falls within the range occupied by a
particular loadable image. (Table SDA–13 describes the contents of each loadable
image.)

By default, SDA displays each location within the loadable portion of the
executive as an offset from the beginning of one of the loadable images; for
instance, EXCEPTION+00282. Similarly, those symbols that represent system
services point to the vector region and not to the system service’s loadable code.
When tracing the course of a system failure through the listings of modules
contained within a given loadable executive image, you might find it useful to
load into the SDA symbol table all global symbols and global entry points defined
within one or all modules that make up the loadable portion of the executive
image. See the description of the READ command for additional information.

The SHOW EXECUTIVE command usually shows all components of the executive
image, as illustrated in the following example. In rare circumstances, you might
obtain a partial listing. For instance, once it has loaded the EXCEPTION module
(in the INIT phase of system initialization), the system can successfully post
a bugcheck exception and save a crash dump. Later, if the system should fail
sometime during initialization, it might not have been able to load some of the
modules that appear above EXCEPTION in the SHOW EXECUTIVE display (see
the example).

SDA–110

System Dump Analyzer
SHOW EXECUTIVE

Example

SDA> SHOW EXECUTIVE

VMS Executive Layout

Image Base End Length

SYSMSG 8015AA00 80183600 00028C00
RECOVERY_UNIT_SERVICES 80211400 80212000 00000C00
RMS 80183600 801A7E00 00024800
CPULOA 801B2800 801B3200 00000A00
LMF$GROUP_TABLE 801B3800 801B3C00 00000400
SYSLICENSE 801B4000 801B5400 00001400
SYSGETSYI 801B5A00 801B7000 00001600
SYSDEVICE 801B7400 801B8A00 00001600
MESSAGE_ROUTINES 801B9000 801BB600 00002600
EXCEPTION 801CBA00 801D3E00 00008400
LOGICAL_NAMES 801D4600 801D6000 00001A00
SECURITY 801D6600 801D7C00 00001600
LOCKING 801D8200 801DA800 00002600
PAGE_MANAGEMENT 801DAE00 801E2600 00007800
WORKING_SET_MANAGEMENT 801E2E00 801E7200 00004400
IMAGE_MANAGEMENT 801E7C00 801EA400 00002800
EVENT_FLAGS_AND_ASTS 801EAA00 801EBE00 00001400
IO_ROUTINES 801EC400 801F2C00 00006800
PROCESS_MANAGEMENT 801F3200 801F9400 00006200
ERRORLOG 80204C00 80205600 00000A00
PRIMITIVE_IO 80205C00 80206C00 00001000
SYSTEM_SYNCHRONIZATION 80207000 80208C00 00001C00
SYSTEM_PRIMITIVES 80209200 8020C400 00003200

The SHOW EXECUTIVE command displays the location and length of the
loadable images included in the executive.

SDA–111

System Dump Analyzer
SHOW HEADER

SHOW HEADER

Displays the header of the dump file.

Format

SHOW HEADER

Parameters

None.

Qualifiers

None.

Description

The SHOW HEADER command produces a 10-column display, each line of which
displays both the hexadecimal and ASCII representation of the contents of
the dump file header in 32-byte intervals. Thus, the first eight columns, when
read right to left, represent the hexadecimal contents of 32 bytes of the header;
similarly, the ninth column, when read left to right, records the ASCII equivalent
of the contents. (Note that the period character [.] in this column indicates an
ASCII character that cannot be displayed.)

After it displays the contents of the first header block, the SHOW HEADER
command displays the hexadecimal contents of the saved error log buffers.

See the VAX/VMS Internals and Data Structures manual for a discussion of the
information contained in the dump file header.

SDA> SHOW HEADER

Dump file header

7FF03944 7FFED04E . . . 000000C1 00000000N...D9.. 00000000
00000000 00000000 . . . 00040000 80185200 .R.............................. 00000020
00000000 00000000 . . . 00000000 00000000 00000040
00020000 00000000 . . . 15000011 00000000 00000060
414E454C 45480800 . . . 0000012C 00000000,.....................GARNER 00000080
FE9E007F F74D7C0A . . . 00000000 00002020%.@.o41......M....... 000000A0

.

.

.
Saved error log messages

00000000 00000009 . . . 801D8739 000003009.......5................... 801D8600
7B0090AC 2FCBCEC2 . . . 414E454C 45480800 ..GARNER&.zxcv.O... 801D8620
00202041 4E454C45 . . . 01080100 0000C30A .A........d............GARNER . 801D8640

.

.

.

The SHOW HEADER command displays the contents of the dump file’s header
from address 6B016 to address C9016. Ellipses indicate hexadecimal information
omitted from the display.

SDA–112

System Dump Analyzer
SHOW LAN

SHOW LAN

Displays information contained in various local area network (LAN) data
structures. The default qualifiers are /CSMACD/FDDI.

Format

SHOW LAN [/qualifier[,...]]

Parameters

None.

Qualifiers

/CLIENT=xx
Specifies that information be displayed for the specified client. Valid client
designators are SCA, DECNET, LAT, MOPRC, TCPIP, DIAG, ELN, BIOS, LAST,
USER, ARP, MOPDL, LOOP, BRIDGE, DNAME, ENCRY, DTIME, and LTM.
/CLIENT, /DEVICE, and /UNIT are synonymous and mutually exclusive; each
must be the last qualifier stated on an SDA command line.

/CLUEXIT
Specifies that cluster protocol information be displayed.

/COUNTERS
Specifies that the LAN station block (LSB) and unit control block (UCB) counters
be displayed.

/CSMACD
Specifies that Carrier Sense, Multiple Access with Collision Detect (CSMACD)
information for the LAN be displayed.

/CSMACD/FDDI (default)
Displays both Ethernet and FDDI information.

/DEVICE=xx[dn]
Specifies that information be displayed for the specified device. Device
designators are specified in the format xxdn, where xx is the type of device,
d is the device letter, and n is the unit number. The device letter and unit
number are optional. /CLIENT, /DEVICE, and /UNIT are synonymous and
mutually exclusive; each must be the last qualifier stated on an SDA command
line.

/ERRORS
Specifies that the LSB and UCB error counters be displayed.

/FDDI
Specifies that Fiber Distributed Data Interface (FDDI) controller information for
the LAN be displayed.

/FULL
Specifies that all information from the LAN, LSB, and UCB data structures be
displayed.

SDA–113

System Dump Analyzer
SHOW LAN

/SUMMARY
Specifies that only a summary of LAN information (a list of flags, LSBs, UCBs,
and base addresses) be printed. This is the default.

/TIMESTAMPS
Specifies to print time information (start and stop times and error times) from
the device and unit data structures. SDA displays the data in chronological order.

/UNIT=xx/[dn]
Specifies that information be displayed for the specified unit. Unit designators
are specified in the format xx/[dn], where xx is the type of unit, d is the device
letter, and n is the unit number. The device letter and unit number are optional.
/CLIENT, /DEVICE, and /UNIT are synonymous and mutually exclusive; each
must be the last qualifier stated on an SDA command line.

Description

The SHOW LAN command displays information contained in various local area
network (LAN) data structures. By default, or when you specify the /SUMMARY
qualifier, SHOW LAN displays a list of flags, LSBs, UCBs, and base addresses.
When you specify the /FULL qualifier, SHOW LAN displays all information found
in the LAN, LSB, and UCB data structures.

Examples

1. SDA> SHOW LAN

-- LAN Device Summary 26-JAN-1993 20:57:41 --

LAN block address = 9834C680 (6 stations)
LAN flags: 0002 LAN_init

LSB address = 98358B40
Device state = 001B Inited,Run,Ctl_Rdy,Timer

-- EXA Unit Summary 26-JAN-1993 20:57:41 --

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
EXA0 98358540
EXA1 98376340 Eth 60-07 SCA 0017 Strtn,Len,Uniq,Strtd
EXA3 98ACD240 Eth 60-03 DECNET 0004 Uniq
EXA5 983A9580 Eth 80-41 LAST 0015 Strtn,Uniq,Strtd

LSB address = 98369B40
Device state = 4013 Inited,Run,Timer

-- FXA Unit Summary 26-JAN-1993 20:57:41 --

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
FXA0 98369840
FXA1 98391980 Eth 60-07 SCA 0017 Strtn,Len,Uniq,Strtd
FXA2 98AC9680 Eth 60-03 DECNET 0017 Strtn,Len,Uniq,Strtd
FXA3 98AC7100 Eth 60-01 MOPDL 001F Strtn,Uniq,Share,Strtd
FXA4 98AC9B80 Eth 90-00 LOOP 001D Strtn,Uniq,Share,Strtd
FXA5 98395380 Eth 60-04 LAT 0015 Strtn,Uniq,Strtd

LSB address = 9836CE00
Device state = 001B Inited,Run,Ctl_Rdy,Timer

-- EXB Unit Summary 26-JAN-1993 20:57:41 --

SDA–114

System Dump Analyzer
SHOW LAN

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
EXB0 98358880
EXB1 983B8B00 Eth 60-07 SCA 0017 Strtn,Len,Uniq,Strtd
EXB2 98ACD500 Eth 60-03 DECNET 0004 Uniq

LSB address = 9836FE00
Device state = 001B Inited,Run,Ctl_Rdy,Timer

-- EXC Unit Summary 26-JAN-1993 20:57:41 --

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
EXC0 9836CA80
EXC1 983C08C0 Eth 60-07 SCA 0017 Strtn,Len,Uniq,Strtd
EXC2 98ACD7C0 Eth 60-03 DECNET 0004 Uniq

LSB address = 98376600
Device state = 001B Inited,Run,Ctl_Rdy,Timer

-- EXD Unit Summary 26-JAN-1993 20:57:41 --

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
EXD0 9836FA80
EXD1 983C8680 Eth 60-07 SCA 0017 Strtn,Len,Uniq,Strtd
EXD2 98ACDA80 Eth 60-03 DECNET 0004 Uniq

LSB address = 98378340
Device state = 4013 Inited,Run,Timer

-- FXB Unit Summary 26-JAN-1993 20:57:41 --

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
FXB0 98377F80
FXB1 983D0440 Eth 60-07 SCA 0017 Strtn,Len,Uniq,Strtd
FXB2 98AC9900 Eth 60-03 DECNET 0004 Uniq

The SHOW LAN command in this example displays information about LAN
data structures, including CSMACD and FDDI information.

2. SDA> SHOW LAN/COUNTERS/DEV=DECNET

-- EZA1 60-03 (DECNET) Counters Information 19-JUL-1993 14:27:02 --

Last receive None Last transmit 19-JUL 14:26:51
Octets received 580539 Octets sent 2399353240
PDUs received 8194 PDUs sent 5618
Mcast octets received 0 Mcast octets sent 0
Mcast PDUs received 0 Mcast PDUs sent 0
Unavail user buffer 0 Last start attempt None
Last start done 19-JUL 06:40:22 Last start failed None

The SHOW LAN command in this example displays the counters for device
DECNET.

3. SDA> SHOW LAN/CSMACD

-- LAN Device Summary 26-JAN-1993 20:57:22 --

LAN block address = 9834C680 (6 stations)
LAN flags: 0002 LAN_init

LSB address = 98358B40
Device state = 001B Inited,Run,Ctl_Rdy,Timer

-- EXA Unit Summary 26-JAN-1993 20:57:22 --

SDA–115

System Dump Analyzer
SHOW LAN

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
EXA0 98358540
EXA1 98376340 Eth 60-07 SCA 0017 Strtn,Len,Uniq,Strtd
EXA3 98ACD240 Eth 60-03 DECNET 0004 Uniq
EXA5 983A9580 Eth 80-41 LAST 0015 Strtn,Uniq,Strtd

LSB address = 9836CE00
Device state = 001B Inited,Run,Ctl_Rdy,Timer

-- EXB Unit Summary 26-JAN-1993 20:57:22 --

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
EXB0 98358880
EXB1 983B8B00 Eth 60-07 SCA 0017 Strtn,Len,Uniq,Strtd
EXB2 98ACD500 Eth 60-03 DECNET 0004 Uniq

LSB address = 9836FE00
Device state = 001B Inited,Run,Ctl_Rdy,Timer

-- EXC Unit Summary 26-JAN-1993 20:57:22 --

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
EXC0 9836CA80
EXC1 983C08C0 Eth 60-07 SCA 0017 Strtn,Len,Uniq,Strtd
EXC2 98ACD7C0 Eth 60-03 DECNET 0004 Uniq

LSB address = 98376600
Device state = 001B Inited,Run,Ctl_Rdy,Timer

-- EXD Unit Summary 26-JAN-1993 20:57:22 --

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
EXD0 9836FA80
EXD1 983C8680 Eth 60-07 SCA 0017 Strtn,Len,Uniq,Strtd
EXD2 98ACDA80 Eth 60-03 DECNET 0004 Uniq

The SHOW LAN command in this example displays CSMACD information for
the LAN.

4. SDA SHOW LAN/FDDI
-- LAN Device Summary 26-JAN-1993 20:57:07 --

LAN block address = 9834C680 (6 stations)
LAN flags: 0002 LAN_init

LSB address = 98369B40
Device state = 4013 Inited,Run,Timer

-- FXA Unit Summary 26-JAN-1993 20:57:07 --

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
FXA0 98369840
FXA1 98391980 Eth 60-07 SCA 0017 Strtn,Len,Uniq,Strtd
FXA2 98AC9680 Eth 60-03 DECNET 0017 Strtn,Len,Uniq,Strtd
FXA3 98AC7100 Eth 60-01 MOPDL 001F Strtn,Uniq,Share,Strtd
FXA4 98AC9B80 Eth 90-00 LOOP 001D Strtn,Uniq,Share,Strtd
FXA5 98395380 Eth 60-04 LAT 0015 Strtn,Uniq,Strtd

LSB address = 98378340
Device state = 4013 Inited,Run,Timer

-- FXB Unit Summary 26-JAN-1993 20:57:07 --

SDA–116

System Dump Analyzer
SHOW LAN

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
FXB0 98377F80
FXB1 983D0440 Eth 60-07 SCA 0017 Strtn,Len,Uniq,Strtd
FXB2 98AC9900 Eth 60-03 DECNET 0004 Uniq

The SHOW LAN command in this example displays FDDI information.

5. SDA> SHOW LAN/FULL

LAN Data Structures

-- LAN Information Summary 27-JAN-1993 09:54:50 --

LAN flags: 0002 LAN_init

LAN module version 1 First SVAPTE 81FAFC14
LAN address 80EA8C00 Number of PTEs 4
Number of stations 1 SVA of pages 80A00A00
First LSB address 80ECE700

-- LAN CSMACD Network Management 27-JAN-1993 09:54:50 --

Creation time None Times created 0
Deletion time None Times deleted 0
Module EAB 00000000 Latest EIB 00000000
Port EAB 00000000
Station EAB 00000000

-- LAN FDDI Network Management 27-JAN-1993 09:54:50 --

Creation time None Times created 0
Deletion time None Times deleted 0
Module EAB 00000000 Latest EIB 00000000
Port EAB 00000000
Station EAB 00000000
Link EAB 00000000
PHY port EAB 00000000

-- ESA Device Information 27-JAN-1993 09:54:50 --

LSB address 80ECE700 Active unit count 2
LAN version 00000001 06000036 Driver version 00000001 06000009
LAN code address 80EC8BF9 Driver code address 80EC68B0
Device name ES_LANCE Device type 24
Device version 00000000 00000000 DLL type CSMACD

Data chaining ON All multicast state OFF
Controller mode NORMAL Promiscuous mode OFF
CRC generation mode ON Hardware mode 0000
Physical address AA-00-04-00-50-FD Hardware address 08-00-2B-2A-D7-F7

Flags: 0000 Characteristics: 0000
Status: 0013 Inited,Run,Timer

DAT stage 00000000 DAT xmt status 0000001A 001A0001
DAT number started 1 DAT xmt complete 26-JAN 13:20:31
DAT number failed 0 DAT rcv found None
Creation time None Create count 0
Deletion time None Enable count 0
Enabled time None Fatal error count 0
Disabled time None Excessive collisons 0

Last receive 27-JAN 09:54:50 Last fatal error None
Last transmit 27-JAN 09:54:47 Prev fatal error None
Last fork sched 27-JAN 09:54:50 Last exc collision 26-JAN 16:36:26
Last fork time 27-JAN 09:54:50

SDA–117

System Dump Analyzer
SHOW LAN

Rcv buffers owned by device 9 System buffer quota 0
Xmt entries owned by device 0 Device dependent longword 00000000
Xmt entries owned by host 0 # restarts pending 0

NMgmt advised buffer count 0 Events logged 0
EIB address 00000000 NMgmt assigned adr 00-00-00-00-00-00
LPB address 00000000

-- ESA Queue Information 27-JAN-1993 09:54:50 --

Control hold queue 80ECE820 Status: Valid, empty
Control request queue 80ECE828 Status: Valid, empty
Control pending queue 80ECE830 Status: Valid, empty
Transmit request queue 80ECE818 Status: Valid, empty
Transmit pending queue 80ECE838 Status: Valid, empty
Receive buffer queue 80ECE840 Status: Valid, empty
Receive pending queue 80ECE848 Status: Valid, 9 elements
Post process queue 80ECE850 Status: Valid, empty
Delay queue 80ECE858 Status: Valid, empty
Auto restart queue 80ECE860 Status: Valid, empty
Netwrk mgmt hold queue 80ECE868 Status: Valid, empty

-- ESA Multicast Address Information 27-JAN-1993 09:54:50 --

AB-00-00-04-00-00
09-00-2B-04-00-00

-- ESA Unit Summary 27-JAN-1993 09:54:50 --

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
ESA0 80EC61C0
ESA2 80EFD600 Eth 60-03 DECNET 0017 Strtn,Len,Uniq,Strtd
ESA4 80F505C0 Eth 80-41 LAST 0015 Strtn,Uniq,Strtd

.

.

.

-- ESA Internal Counters Information 27-JAN-1993 09:54:50 --

Internal counters address 80ECF6E8 Internal counters size 30
Number of ports 0 Global page transmits 0
No work transmits 0 SVAPTE/BOFF transmits 0
Bad PTE transmits 0 Buffer_Adr transmits 0

Fatal error count 0 RDL errors 0
Transmit timeouts 0 Last fatal error None
Restart failures 0 Prev fatal error None
Power failures 0 Last error CSR 00000000
Hardware errors 0 Fatal error code None
Control timeouts 0 Prev fatal error None

Loopback sent 0 Loopback failures 0
System ID sent 121 System ID failures 0
ReqCounters sent 0 ReqCounters failures 0

-- ESA0 Template Unit Information 27-JAN-1993 09:54:50 --

SDA–118

System Dump Analyzer
SHOW LAN

LSB address 80ECE700 VCIB address 00000000
Packet format Ethernet Error count 0
Device buffer size 1500 LAN medium CSMACD
Maximum buffer size 1500 Eth protocol type 00-00
Hardware buffer quota 9 802E protocol ID 00-00-00-00-00
Receive buffer quota 0 802.2 SAP 00
Allow prom client ON 802.2 Group SAPs 00,00,00,00
Promiscuous mode OFF Maximum header size 0
802.2 service OFF Hardware address 08-00-2B-2A-D7-F7
Data chaining OFF Physical address FF-FF-FF-FF-FF-FF
Padding mode ON Can change address OFF
Automatic restart OFF Access mode EXCLUSIVE
CRC generation mode ON Controller mode NORMAL
Maintenance state ON Rcv buffs to queue 1
P2 parameters 00000000 Starter’s PID 00000000
All multicast mode OFF Creator’s PID 00000000
Rcv buffer quota 0 LSB size 5986

-- ESA2 60-03 (DECNET) Unit Information 27-JAN-1993 09:54:50 --

LSB address 80ECE700 VCIB address 00000000
Packet format Ethernet Error count 0
Device buffer size 1500 LAN medium CSMACD
Maximum buffer size 1498 Eth protocol type 60-03
Hardware buffer quota 9 802E protocol ID 00-00-00-00-00
Receive buffer quota 15040 802.2 SAP 00
Allow prom client ON 802.2 Group SAPs 00,00,00,00
Promiscuous mode OFF Maximum header size 16
802.2 service OFF Hardware address 08-00-2B-2A-D7-F7
Data chaining OFF Physical address AA-00-04-00-50-FD
Padding mode ON Can change address OFF
Automatic restart OFF Access mode EXCLUSIVE
CRC generation mode ON Controller mode NORMAL
Maintenance state ON Rcv buffs to queue 10
P2 parameters 00374395 Starter’s PID 0001000C
All multicast mode OFF Creator’s PID 0001000C
Rcv buffer quota 15040 LSB size 5986

-- ESA2 60-03 (DECNET) Counters & Misc Info 27-JAN-1993 09:54:50 --

Last receive 27-JAN 09:54:50 Last transmit 27-JAN 09:54:47
Octets received 5087025 Octets sent 2310540
PDUs received 34018 PDUs sent 29121
Mcast octets received 2189558 Mcast octets sent 246850
Mcast PDUs received 9877 Mcast PDUs sent 4937
Unavail user buffer 11 Last start attempt None
Last start done 26-JAN 13:20:32 Last start failed None

Share UCB total quota 0

Receive IRP queue 80EFD7C4 Status: Valid, 1 element
Shared users queue 80EFD7B4 Status: Valid, empty
Receive pending queue 80EFD7BC Status: Valid, empty

-- ESA2 60-03 (DECNET) Multicast Address Info 27-JAN-1993 09:54:50 --

Multicast address table, embedded:
AB-00-00-04-00-00

-- ESA4 80-41 (LAST) Unit Information 27-JAN-1993 09:54:50 --

LSB address 80ECE700 VCIB address 80F504F3
Packet format Ethernet Error count 0

.

.

.

SDA–119

System Dump Analyzer
SHOW LAN

-- ESA4 80-41 (LAST) Counters & Misc Info 27-JAN-1993 09:54:50 --

Last receive 27-JAN 09:54:39 Last transmit 27-JAN 09:54:38
Octets received 1941967 Octets sent 371740

.

.

.
-- ESA4 80-41 (LAST) Multicast Address Info 27-JAN-1993 09:54:50 --

Multicast address table, embedded:
09-00-2B-04-00-00

The SHOW LAN/FULL command in this example displays information for all
LAN, LSB, and UCB data structures.

6. SDA> SHOW LAN/TIMESTAMPS

LAN Data Structures

-- LAN History Information 19-JUL-1993 14:27:38 --

19-JUL 14:27:38.93 EZA Last receive
19-JUL 14:27:38.93 EZA Last fork scheduled
19-JUL 14:27:38.93 EZA Last fork time
19-JUL 14:27:36.05 EZA Last transmit
19-JUL 14:27:36.05 EZA1 DECNET Last transmit
19-JUL 14:23:54.41 EZA164 DIAG Last start completed
19-JUL 08:05:16.09 EZA Last excessive collision
19-JUL 06:40:22.94 EZA1 DECNET Last start completed
19-JUL 06:40:21.94 EZA Last DAT transmit

The SHOW LAN command displays LAN timestamp information.

SDA–120

System Dump Analyzer
SHOW LOCK

SHOW LOCK

Displays information about all lock management locks in the system, cached
locks, or a specified lock.

Format

SHOW LOCK {lock-id | /ALL | /CACHED | /NAME=resource-name}

Parameters

lock-id
Name of a specific lock. You cannot specify both a lock-id and a resource-name
in the same command line.

Qualifiers

/ALL
Lists all locks that exist in the system. This is the default behavior of the SHOW
LOCK command.

/CACHED
Shows only cached lock blocks (LKBs).

/NAME=resource-name
Displays information about the resource associated with the lock whose resource
name begins with the specified resource-name. For case-sensitive names,
enclose the resource-name in quotation marks. You cannot specify both a
lock-id and resource-name in the same command line.

Description

The SHOW LOCK command displays the information described in Table SDA–15
for each lock management lock in the system or for the lock indicated by lock-id.
(Use the SHOW SPINLOCK command to display information about spin locks.)
You can obtain a similar display for the locks owned by a specific process by
issuing the appropriate SHOW PROCESS/LOCKS command. See the OpenVMS
System Services Reference Manual for additional discussion of the significance of
this information.

You can display information about the resource to which a lock is queued by
issuing the SHOW RESOURCE command and specifying the lock-id of the
resource.

SDA–121

System Dump Analyzer
SHOW LOCK

Table SDA–15 Contents of the SHOW LOCK and SHOW PROCESS/LOCKS
Displays

Display Element Description

Process Index1 Index into the PCB array to a pointer to the process
control block (PCB) of the process that owns the lock.

Name1 Name of the process that owns the lock.
Extended PID1 Clusterwide identification of the process that owns the

lock.
Lock ID Identification of the lock.
PID Systemwide identification of the lock.
Flags Information specified in the request for the lock.
Par. ID Identification of the lock’s parent lock.
Granted at Lock mode at which the lock was granted.
Sublocks Identification numbers of the locks that the lock owns.
LKB Address of the lock block (LKB). If a blocking AST

has been enabled for this lock, the notation ‘‘BLKAST’’
appears next to the LKB address.

Resource Dump of the resource name. The two leftmost columns
of the dump show its contents as hexadecimal values,
the least significant byte being represented by the
rightmost two digits. The rightmost column represents
its contents as ASCII text, the least significant byte
being represented by the leftmost character.

Status Status of the lock, information used internally by the
lock manager.

Length Length of the resource name.
— Processor access mode of the name space in which the

resource block (RSB) associated with the lock resides.
— Owner of the resource. Certain resources owned by the

operating system list ‘‘System’’ as the owner. Resources
owned by a group have the number (in octal) of the
owning group in this field.

— Indication of whether the lock is mastered on the local
system or is a process copy.

1You produce this display element only by using the SHOW PROCESS/LOCKS command.

SDA–122

System Dump Analyzer
SHOW LOCK

Examples

1. SDA> SHOW LOCK

Lock database

Lock id: 00010001 PID: 00000000 Flags: NOQUEUE SYNCSTS SYSTEM
Par. id: 00000000 Granted at EX CVTSYS
Sublocks: 1
LKB: 80D0B8A0
Resource: 5F535953 24535953 SYS$SYS_ Status: NOQUOTA
Length 16 00000000 4C774449 IDwL....
Exec. mode 00000000 00000000
System 00000000 00000000
Local copy

Lock id: 00010004 PID: 00000000 Flags: CONVERT SYNCSTS CVTSYS
Par. id: 00000000 Granted at CR
Sublocks: 16
LKB: 80D091A0 BLKAST
Resource: 4D567624 42313146 F11B$vVM Status: NOQUOTA
Length 18 20204E41 4A353153 S15JAN
Kernel mode 00000000 00002020
System 00000000 00000000
Local copy

Lock id: 00280009 PID: 00000000 Flags: VALBLK CONVERT SYNCSTS
Par. id: 00000000 Granted at CR NOQUOTA CVTSYS
Sublocks: 0
LKB: 80CDA880
Resource: 52414B5F 24535953 SYS$_KAR Status: MSTCPY
Length 17 30415544 24455441 ATE$DUA0
Kernel mode 00000000 0000003A :.......
System 00000000 00000000
Master copy of lock 001C00F5 on system 000100A1

.

.

.
SDA> SHOW RESOURCE/LOCK=280009

Resource database

Address of RSB: 80BD2150 Group grant mode: CR
Parent RSB: 00000000 Conversion grant mode: CR
Sub-RSB count: 0 BLKAST count: 0
Value block: 00000000 00000000 00000000 00000019 Seq. #: 0000002D
Resource: 52414B5F 24535953 SYS$_KAR
Length 17 30415544 24455441 ATE$DUA0 CSID: 00000000
Kernel mode 00000000 0000003A :.......
System 00000000 00000000

Granted queue (Lock ID / Gr mode):
00DA1269 CR 00280009 CR 0094054D CR
00270B9F CR 00D70BFE CR 000D0F4F CR
000D1017 CR 00601418 CR 01131450 CR
000F1964 CR 000200DF CR

Conversion queue (Lock ID / Gr/Rq mode):
*** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode):
*** EMPTY QUEUE ***

SDA–123

System Dump Analyzer
SHOW LOCK

This SDA session shows the output of the SHOW LOCK command for several
locks. The SHOW RESOURCE command, executed for the last displayed lock,
verifies that the lock is in the resource’s granted queue, among many other
locks given concurrent read (CR) access to the resource. (See Table SDA–21
for a full explanation of the contents of the display of the SHOW RESOURCE
command.)

2. SDA SHOW LOCK/CACHE

Lock database

Lock id: 6D000032 PID: 00010028 Flags: VALBLK SYNCSTS SYSTEM
Par. id: 01000002 SUBLCKs: 0 NOQUOTA
LKB: 80F67C00 BLKAST: 00000000
PRIORTY: 0000

Granted at PW 00000000-FFFFFFFF

Resource: 00257324 42313146 F11B$s%. Status: NOQUOTA CACHED
Length 10 00000000 00000000
Kernel mode 00000000 00000000
System 00000000 00000000

Local copy

Lock id: 7B00003B PID: 0001000B Flags: VALBLK SYNCSTS SYSTEM
Par. id: 01000002 SUBLCKs: 0 NOQUOTA
LKB: 80F51F80 BLKAST: 00000000
PRIORTY: 0000

Granted at PW 00000000-FFFFFFFF

Resource: 08E97324 42313146 F11B$sé. Status: NOQUOTA CACHED
Length 10 00000000 00000000
Kernel mode 00000000 00000000
System 00000000 00000000

.

.

.
Local copy

This example of the SHOW LOCK/CACHE command displays the contents of
cached lock blocks (LKBs).

SDA–124

System Dump Analyzer
SHOW LOGS

SHOW LOGS

Displays information about transaction logs currently open for the node.

Format

SHOW LOGS [/qualifier[,...]]

Qualifier

/DISPLAY=(item [,...])
Specifies the type of information to be displayed. The argument to /DISPLAY can
be either a single item or a list. The following items can be specified.

Item Description

ALL All transaction log control structure information. This is the
default behavior.

OPENS Transaction log open requests.
READS Transaction log read requests.
WRITES Transaction log write requests.

Example

SDA> SHOW LOGS/DISPLAY=(OPENS, WRITES)

The SHOW LOGS command displays the log open request and log write request
information for all open transaction logs for the node.

SDA–125

System Dump Analyzer
SHOW PAGE_TABLE

SHOW PAGE_TABLE

Displays a range of system page table entries, the entire system page table, or
the entire global page table.

Format

SHOW PAGE_TABLE [/qualifier[,...]] [range]

Parameter

range
Range of virtual addresses for which SDA is to display page table entries. You
can express a range using the following format:

m:n Range of virtual addresses from m to n
m;n Range of virtual addresses starting at m and continuing for n bytes

Qualifiers

/GLOBAL
Lists the global page table.

/SYSTEM
Lists the system page table.

/ALL
Lists both the global and system page tables. This is the default behavior of
SHOW PAGE_TABLE.

Description

For each virtual address displayed by the SHOW PAGE_TABLE command,
the first six columns of the listing provide the associated page table entry and
describe its location, characteristics, and contents (see Table SDA–16). SDA
obtains this information from the system page table.

If the virtual page has been mapped to a physical page, the last nine columns of
the listing include information from the page frame number (PFN) database (see
Table SDA–17). Otherwise, the section is left blank.

SDA indicates pages are inaccessible by displaying the following message:

-------- n NULL PAGES

Here, n indicates the number of inaccessible pages.

Table SDA–16 Virtual Page Information in the SHOW PAGE_TABLE Display

Value Meaning

ADDRESS System virtual address that marks the base of the virtual page.
SVAPTE System virtual address of the page table entry that maps the

virtual page.
(continued on next page)

SDA–126

System Dump Analyzer
SHOW PAGE_TABLE

Table SDA–16 (Cont.) Virtual Page Information in the SHOW PAGE_TABLE
Display

Value Meaning

PTE Contents of the page table entry, a longword that describes a
system virtual page.

Type Type of virtual page. There are the following eight types:

• VALID
Valid page (in main memory).

• TRANS
Transitional page (between main memory and page lists).

• DZERO
Demand-allocated, zero-filled page.

• PGFIL
Page within a paging file.

• STX
Section table’s index page.

• GPTX
Index page for a global page table.

• IOPAG
Page in I/O address space.

• NXMEM
Page not represented in physical memory. The page frame
number (PFN) of this page is not mapped by any of the
system’s memory controllers. This indicates an error
condition.

PROT Protection code, derived from bits in the PTE, that designates the
type of access (read or write, or both) granted to processor access
modes (kernel, executive, supervisor, or user).

(continued on next page)

SDA–127

System Dump Analyzer
SHOW PAGE_TABLE

Table SDA–16 (Cont.) Virtual Page Information in the SHOW PAGE_TABLE
Display

Value Meaning

Bits Letters that represent the setting of a bit or a combination of
bits in the PTE. These bits indicate attributes of a page. The
following codes are listed:

• M
Page has been modified.

• L
Page is locked into a working set.

• K
Owner can access the page in kernel mode.

• E
Owner can access the page in executive mode.

• S
Owner can access the page in supervisor mode.

• U
Owner can access the page in user mode.

Table SDA–17 Physical Page Information in the SHOW PAGE_TABLE Display

Category Meaning

PAGTYP Type of physical page. One of the following six types:

• PROCESS
Page is part of process space.

• SYSTEM
Page is part of system space.

• GLOBAL
Page is part of a global section.

• PPGTBL
Page is part of a process’s page table.

• GPGTBL
Page is part of a global page table.

• GBLWRT
Page is part of a global, writable section.

(continued on next page)

SDA–128

System Dump Analyzer
SHOW PAGE_TABLE

Table SDA–17 (Cont.) Physical Page Information in the SHOW PAGE_TABLE
Display

Category Meaning

LOC Location of the page within the system. One of the following
eight locations:

• ACTIVE
Page is in a working set.

• MDFYLST
Page is in the modified page list.

• FREELST
Page is in the free page list.

• BADLST
Page is in the bad page list.

• RELPEND
Release of the page is pending.

• RDERROR
Page has had an error during an attempted read operation.

• PAGEOUT
Page is being written into a paging file.

• PAGEIN
Page is being brought into memory from a paging file.

STATE Byte that describes the state of the physical page.
TYPE Byte that describes the type of virtual page. The types in this

column are the hexadecimal codes that stand for the page
types that appear in column PAGTYP of this display, described
previously.

REFCOUNT Count of the processes that are referencing this PFN. If the
value of REFCOUNT is nonzero, the page is used in at least one
working set. If the value is zero, the page is not used in any
working set.

BAK Address of the backing store; location on a disk device to which
pages can be written.

SVAPTE Virtual address associated with this page frame. The two
SVAPTEs indicate a valid link between physical and virtual
address space.

FLINK Forward link within PFN database that points to the next
virtual page. This longword also acts as the count of the number
of processes that are sharing this global section.

BLINK Backward link within PFN database. Also acts as an index into
the working set list.

SDA–129

System Dump Analyzer
SHOW PAGE_TABLE

Example

SDA>SHOW PAGE_TABLE

System page table

ADDRESS SVAPTE PTE TYPE PROT BITS PAGTYP LOC STATE TYPE REFCNT BAK SVAPTE FLINK BLINK
.
.
.

8014B000 8AD22E00 F8020725 VALID UR K
8014B200 8AD22E04 F8020726 VALID UR K
8014B400 8AD22E08 F8020727 VALID UR K
8014B600 8AD22E0C F8020728 VALID UR K
8014B800 8AD22E10 F8020729 VALID UR K
8014BA00 8AD22E14 EC02072A VALID UREW M K
8014BC00 8AD22E18 F402072B VALID URKW M K

.

.

.
8014BE00 8AD22FEC F801F10E VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 8AD22FEC 00000000 00000258
8014C000 8AD22FF0 F801F10F VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 8AD22FF0 00000000 00000257
8014C200 8AD22FF4 F801F173 VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 8AD22FF4 00000000 000004B1
8014C400 8AD22FF8 F801F172 VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 8AD22FF8 00000000 00000301
8014C600 8AD22FFC F801F17F VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 8AD22FFC 00000000 000000F5
8014C800 8AD23000 F801F17E VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 8AD23000 00000000 00000174
8014CA00 8AD23004 7801EBC6 TRANS UR K SYSTEM FREELST 00 01 0 0040FFF8 8AD23004 0000D38B 0001EBC7

.

.

.

SDA–130

System Dump Analyzer
SHOW PFN_DATA

SHOW PFN_DATA

Displays information that is contained in the page lists and PFN database.

Format

SHOW PFN_DATA [pfn] [/qualifier]

Parameter

pfn
Page frame number (PFN) of the physical page for which information is to be
displayed.

Qualifiers

/ALL
Displays the free page list, modified page list, and bad page list. This is the
default behavior of the SHOW PFN_DATA command. SDA precedes each list
with a count of the pages it contains and its low and high limits.

/BAD
Displays the bad page list. SDA precedes the list with a count of the pages it
contains, its low limit, and its high limit.

/FREE
Displays the free page list. SDA precedes the list with a count of the pages it
contains, its low limit, and its high limit.

/MODIFIED
Displays the modified page list. SDA precedes the list with a count of the pages
it contains, its low limit, and its high limit.

/SYSTEM
Displays the entire PFN database in order by page frame number, starting at
PFN 0000.

Description

For each page frame number it displays, the SHOW PFN_DATA command lists
information used in translating physical page addresses to virtual page addresses.
Table SDA–18 lists the contents of the display.

Table SDA–18 Page Frame Number Information in the SHOW PFN_DATA
Display

Item Contents

PFN Page frame number
PTE ADDRESS System virtual address of the page table entry that describes

the virtual page mapped into this physical page
(continued on next page)

SDA–131

System Dump Analyzer
SHOW PFN_DATA

Table SDA–18 (Cont.) Page Frame Number Information in the SHOW PFN_
DATA Display

Item Contents

BAK Place to find context, as information about this page when all
links to this PTE are broken: either an index into a process
section table or the number of a virtual block in the paging file

REFCNT Number of references being made to this page
FLINK Address of the next page in the list in which this virtual page

currently resides
BLINK Address of the previous page in the list in which this virtual

page currently resides
TYPE Type of virtual page; one of the following:

• 00
Process page

• 01
System page

• 02
Global, read-only page

• 03
Global, read/write page

• 04
Process page-table page

• 05
Global page-table page

(continued on next page)

SDA–132

System Dump Analyzer
SHOW PFN_DATA

Table SDA–18 (Cont.) Page Frame Number Information in the SHOW PFN_
DATA Display

Item Contents

STATE State of the virtual page, the low nibble of which can be one of
the following:

• 0
Page is on the free page list.

• 1
Page is on the modified page list.

• 2
Page is on the bad page list.

• 3
Release of the page to the free or modified page list is
pending.

• 4
Error occurred as the page was being read from the disk.

• 5
Modified page writer is currently writing the page to the
disk.

• 6
Page fault handler is currently reading the page from the
disk.

• 7
Page is active and valid.

SDA–133

System Dump Analyzer
SHOW PFN_DATA

Example

SDA>SHOW PFN_DATA

Free page list

Count: 225
Low limit: 57
High limit: 1073741824

PFN PTE ADDRESS BAK REFCNT FLINK BLINK TYPE STATE
---- ----------- -------- ------ ----- ----- ---------- ----------
1329 8047AF3C 03002A83 0 1963 0000 00 PROCESS 00 FREELST
1963 8047AB10 03002A43 0 017C 1329 00 PROCESS 00 FREELST
017C 8047B3F8 03002A84 0 14B4 1963 00 PROCESS 00 FREELST
14B4 8047B464 03002A85 0 1529 017C 00 PROCESS 00 FREELST
1529 8047AA34 03002A87 0 1485 14B4 00 PROCESS 00 FREELST
1485 8047AC80 030010B3 0 1707 1529 00 PROCESS 00 FREELST

.

.

.

In this example, the SHOW PFN_DATA command displays the information for
the free page list, the modified page list, and the bad page list, and then all of the
PFN database, including the first three lists.

SDA–134

System Dump Analyzer
SHOW POOL

SHOW POOL

Displays information about the disposition of paged and nonpaged memory,
nonpaged dynamic storage pool, and paged dynamic storage pool.

Format

SHOW POOL [range][/ALL | /FREE | /HEADER | /NONPAGED |
/PAGED | /RING_BUFFER | /STATISTICS |
/SUMMARY | /TYPE=block-type]

Parameters

range
Range of virtual addresses in pool that SDA is to examine. You can express a
range using the following format:

m:n Range of virtual addresses in pool from m to n
m;n Range of virtual addresses in pool starting at m and continuing for n bytes

Qualifiers

/ALL
Displays the entire contents of allocated pool, including the pool lists, nonpaged
dynamic storage pool, and paged dynamic storage pool. This is the default
behavior of the SHOW POOL command.

/FREE
Displays the entire contents, both allocated and free, of the specified region or
regions of pool. You cannot use the /FREE qualifier when you use a range to
indicate a region of pool to be displayed.

/HEADER
Displays only the first 16 longwords of each data block found within the specified
region or regions of pool.

/NONPAGED
Displays the contents of the nonpaged dynamic storage pool currently in use.

/PAGED
Displays the contents of the paged dynamic storage pool currently in use.

/RING_BUFFER
Displays the contents of the nonpaged pool history ring buffer if pool-checking
has been enabled. Entries are displayed in reverse chronological order, that
is, the most recent to the least recent. You cannot use this qualifier with any
other SHOW POOL qualifier. This qualifier is most useful when analyzing crash
dumps; output might not be consistent when used on a running system.

/STATISTICS
Displays usage statistics about each pool list if pool-checking has been enabled.
For each list, the following are displayed:

• Queue header address

• Packet size

SDA–135

System Dump Analyzer
SHOW POOL

• Attempts, failures, and deallocations

SDA does not synchronize its access to these last three counters with other
CPUs in a symmetric multiprocessing (SMP) system. Therefore, the numbers
might not add up to what you would expect in a multiprocessor configuration.
However, the statistics do provide a good indicator of overall pool activity.

/SUMMARY
Displays only an allocation summary for each specified region of pool.

/TYPE=block-type
Displays the blocks within the specified region or regions of pool that are of the
indicated block-type. If SDA finds no blocks of that type in the pool region, it
displays a blank screen, followed by an allocation summary of the region.

Description

The SHOW POOL command displays information about the contents of any
specified region of pool in an 8-column format. Following are explanations and
examples of the contents of the full display.

• Column 1 contains the type of control block that starts at the virtual address
in pool indicated in column 2. If SDA cannot interpret the block type, it
displays a block type of ‘‘UNKNOWN.’’ Column 3 lists the number of bytes
(in decimal) of memory allocated to the block. The block size is fixed for
SRPs, IRPs, and LRPs, and is variable in the paged and nonpaged pools. For
example:

Col. 1 Col. 2 Col. 3
------ -------- ------
CIMSG 80BADE00 208

• The remaining columns contain a dump of the contents of the block, in 4-
longword intervals, until the block is complete. Columns 4 through 7 display,
from right to left, the contents in hexadecimal; column 8 displays, from left
to right, the contents in ASCII. If the ASCII value of a byte is not a printing
character, SDA displays a period (.) instead. For example:

Col. 4 Col. 5 Col. 6 Col. 7 Col. 8
-------- -------- -------- -------- ----------------
001000DA 003C0090 0000A900 00036FF0 .o........<.Ú...
D9B3001C 00000000 A0B5001D 35E60017 ...5............
41414141 00000600 65EA0004 00000600e....AAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA

• For each region of pool it examines, the SHOW POOL command displays
an allocation summary. This 4-column table lists, in column 2, the types
of control blocks identified in the region and records the number of each in
column 1. The last two columns represent the amount of the pool region
occupied by each type of control block: column 3 records the total number of
bytes, and column 4 records the percentage. The summary concludes with
an indication of the number of bytes used within the particular pool region,
as well as the number of bytes remaining. It provides an estimate of the
percentage of the region that has been allocated. For example:

SDA–136

System Dump Analyzer
SHOW POOL

Col.1 Col. 2 Col.3 Col. 4
----- ------- ----- ------

3 UNKNOWN = 176 (29%
2 CIDG = 288 (48%
1 CIMSG = 144 (24%)

Total space used = 608 out of 608 total bytes, 0 bytes left

Total space utilization = 100%

Examples

1. SDA> SHOW POOL G0BADE00;260

Non-paged dynamic storage pool

Dump of blocks allocated from non-paged pool

CIMSG 80BADE00 144
001000DA 003C0090 0000A900 00036FF0 .o........<.....
D9B3001C 00000000 A0B5001D 35E60017 ...5............
41414141 00000600 65EA0004 00000600e....AAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA

.

.

.
UNKNOWN 80BADE90 112

41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA

.

.

.
CIDG 80BADED0 144

807708BB 003B0090 0004D7E0 000008F0;...w.
61616161 61616161 61616161 016CE87C ..l.aaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa

.

.

.
UNKNOWN 80BADF60 64

61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa

.

.

.
CIDG 80BADFA0 144

807708BB 003B0090 0003FFC0 0004B1B0;...w.
61616161 61616161 61616161 016CE94C L.l.aaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa

.

.

.
UNKNOWN 80BAE030 48

61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa

SDA–137

System Dump Analyzer
SHOW POOL

Summary of non-paged pool contents

3 UNKNOWN = 176 (29%)
2 CIDG = 288 (48%)
1 CIMSG = 144 (24%)

Total space used = 608 out of 608 total bytes, 0 bytes left

Total space utilization = 100%

This example, which uses a range of values, examines 608 (26016) bytes of
nonpaged pool, starting at address 80BADE0016. SDA attempts to identify
allocated blocks as it proceeds through the specified region of pool, and displays
an allocation summary when it completes the listing.

2. SDA> SHOW POOL/FREE

Non-paged dynamic storage pool

Dump of blocks allocated from non-paged pool

UNKNOWN 80E7C400 67136
0000E53B 80E9EC00 00010000 80F16625 %fñ......ìé.;å..
0000E53B 80E9EC00 00010001 80F16625 %fñ......ìé.;å..
0000E53B 80E9EC00 00010000 80F166A3 £fñ......ìé.;å..
0000E53B 80E9EC00 00010001 80F166A3 £fñ......ìé.;å..
0000E53B 80E9EC00 00010000 80F16066 f........ìé.;å..
0000E53B 80E9EC00 00010001 80F16066 f........ìé.;å..
0000E53B 80E9EC00 00010000 80F16F32 2oñ......ìé.;å..
0000E53B 80E9EC00 00010001 80F16F32 2oñ......ìé.;å..
0000E53D 80EA1B08 00010000 80F16F48 Hoñ.......ê.=å..
0000E53D 80E9EC00 00010001 80F16F48 Hoñ......ìé.=å..
0000E53D 80E9EC00 00010000 80F170D8 Øpñ......ìé.=å..

.

.

.

The SHOW POOL/FREE command in this example produces a display similar
in format and extent to that presented in Example 1. However, it displays the
unallocated portions of pool in addition to those that are used.

SDA–138

System Dump Analyzer
SHOW POOL

3. SDA> SHOW POOL/PAGED/HEADER

Paged dynamic storage pool

Dump of blocks allocated from paged pool

RSHT 8024FE00 528
802DC710 00380210 00000000 FFFFFF808...-.

LNM 80250010 96
8015B847 00400060 802D75A0 00000000u-.‘.@.G...

LNM 80250070 48
8015B847 01400030 802500A0 802D7400 .t-...%.0.@.G...

LNM 802500A0 96
8015B847 02400060 802DC170 80250070 p.%.p.-.‘.@.G...

LNM 80250100 48
8015B847 00400030 802DC510 802E1B60 ‘.....-.0.@.G...

.

.

.

The SHOW POOL/PAGED/HEADER command displays only the name of each
block allocated from paged pool, its starting address, its size, and the first four
longwords of its contents.

4. SDA SHOW POOL/RING_BUFFER

(Non-Paged Pool History Ring-Buffer
(512 entries: Most recent first)
Packet Adr Size Type Subtype Caller’s PC Routine called Entry Adr
-------- ----- ----- ---- -------- --------------- --------
DA9EE5C0 168 IRP 3 D8012BF1 EXE$DEANONPAGED DA4C7750
DAA27EC0 192 DSRV 3 DA591941 EXE$DEANONPAGED DA4C7740
DAD47B40 168 IRP 0 DA591918 EXE$DEANONPAGED DA4C7730
DAAB5400 24 FRK 52 DA590252 EXE$DEANONPAGED DA4C7720
DAAB5400 24 TQE 0 DA591276 EXE$ALONONPAGED DA4C7710
DAD47B40 168 IRP 64 DA59184A EXE$ALONONPAGED DA4C7700
.
.
.
DAA66500 172 IRP 64 DB251C80 EXE$ALONONPAGED DA4C7770
DAA32300 192 CIMSG 0 DA54C2C8 EXE$DEANONPAGED DA4C7760

This example of the SHOW POOL/RING_BUFFER command displays the
contents of the nonpaged pool history ring buffer, with the most recent entries
displayed first.

SDA–139

System Dump Analyzer
SHOW POOL

5. SDA SHOW POOL/STATISTICS

List head List Alloc. Alloc.
Address Size Attempts Failures Deallocs.
-------- ----- ---------- ---------- ----------
D80A9030 64 2077039 1121 2073964
D80A9038 128 6323789 4502 6309357
D80A9040 192 21085351 1903 21078538
D80A9048 256 502388 2025 499705
D80A9050 320 1372168 3512 1367707
D80A9058 384 32649 774 31899
D80A9060 448 2463316 1025 2462243
D80A9068 512 357170 2181 354754
D80A9070 576 293998 2438 291476
D80A9078 640 168145 645 167482
D80A9080 704 83645 2043 81547
D80A9088 768 34852 120 34726
D80A9090 832 21263 44 21215
.
.
.
D80A9290 4928 2305645 3283 2302249
D80A9298 4992 9 0 6
D80A92A0 5056 0 0 0
D80A92A8 5120 1 0 0

This example of the SHOW POOL/STATISTICS command displays usage
statistics about each pool list.

6. SDA SHOW POOL/SUMMARY

Summary of non-paged pool contents

145 UNKNOWN = 191616 (18%)
2 ADP = 1280 (0%)
35 ACB = 2624 (0%)
3 AQB = 192 (0%)
17 CRB = 2368 (0%)
16 DDB = 2048 (0%)
355 FCB = 113600 (11%)
3 FRK = 18240 (1%)
16 IDB = 1088 (0%)
42 IRP = 8064 (0%)
20 PCB = 10240 (1%)
48 TQE = 3072 (0%)
70 UCB = 21696 (2%)
5 VCB = 1280 (0%)

299 WCB = 51008 (5%)
287 BUFIO = 112128 (11%)
5 TYPAHD = 1920 (0%)
2 MVL = 4736 (0%)
3 NET = 4160 (0%)
15 CXB = 23616 (2%)
5 NDB = 2112 (0%)
14 DPT = 132928 (13%)
.
.
.

Total space used = 1016896 out of 1068032 total bytes, 51136 bytes left

Total space utilization = 95%

Summary of paged pool contents

SDA–140

System Dump Analyzer
SHOW POOL

33 UNKNOWN = 36480 (15%)
1 PQB = 2256 (0%)

224 GSD = 14240 (6%)
153 KFE = 10864 (4%)
3 MTL = 96 (0%)

118 KFRH = 46736 (20%)
1 RSHT = 528 (0%)
1 XWB = 18048 (7%)

225 LNM = 16720 (7%)
4 KFD = 224 (0%)
1 KFPB = 16 (0%)
2 CIA = 29264 (12%)
1 CHIP = 9216 (4%)
41 ORB = 5248 (2%)
2 ARB = 34912 (15%)
1 PTC = 3072 (1%)
7 OCB = 1344 (0%)
1 PGD = 208 (0%)

Total space used = 229472 out of 524800 total bytes, 295328 bytes left

Total space utilization = 43%

This example of the SHOW POOL/SUMMARY command displays an allocation
summary for each region of pool.

SDA–141

System Dump Analyzer
SHOW PORTS

SHOW PORTS

Displays those portions of the port descriptor table (PDT) that are port
independent.

Format

SHOW PORTS [/qualifier[,...]]

Parameters

None.

Qualifiers

/ADDRESS=pdt-address
Displays the specified port descriptor table (PDT).10

/BUS[=bus-address]
Displays BUS (LAN device) structure data.

/CHANNEL[=channel-address]
Displays channel (CH) data.

/DEVICE
Displays the network path description for a channel.

/MESSAGE
Displays the message data associated with a virtual circuit (VC).

/NODE=name
Displays virtual circuit (VC) information associated with the named node on the
specified PDT. You must use this qualifier with /ADDRESS qualifier.

/VC[=vc-address]
Displays the virtual circuit data.

Description

The SHOW PORTS command provides port-independent information from the
port descriptor table (PDT) for those CI ports with full SCS connections. This
information is used by all system communications services (SCS) port drivers.

Note that the SHOW PORTS command does not display similar information
about UDA ports, BDA ports, and similar controllers.

The SHOW PORTS command also defines symbols for PEDRIVER based on the
cluster configuration. These symbols include the following information:

• Virtual circuit (VC) control blocks for each of the remote systems

10 You can find the pdt-address for any active connection on the system in the PDT
summary page display of the SHOW PORTS command. This command also defines
the symbol PE_PDT. CDT addresses are also stored in many individual data structures
related to SCS connections; for instance, in the path block displays of the SHOW
CLUSTER/SCS command.

SDA–142

System Dump Analyzer
SHOW PORTS

• BUS data structure for each of the local LAN adapters

• Some of the data structures used by both PEDRIVER and the LAN drivers

The following symbols are defined automatically:

Symbol Explanation or Example

VC_nodename VC_NODE1, address of the local node’s virtual
circuit to node NODE1

CH_nodename The preferred channel for the virtual circuit; for
example, CH_NODE1, address of the local node’s
preferred channel to node NODE1

BUS_busname BUS_ETA, address of the local node’s BUS structure
associated with LAN adapter ETA0

PE_PDT Address of PEDRIVER’s port descriptor table
MGMT_VCRP_busname MGMT_VCRP_ETA, address of the management

VCRP for BUS ETA
HELLO_VCRP_busname HELLO_VCRP_ETA, address of the HELLO

message VCRP for BUS ETA
VCIB_busname VCIB_ETA, address of the VCIB for BUS ETA
UCB_LAVC_busname UCB_LAVC_ETA, address of the LAN device’s UCB

used for the local area VAXcluster protocol
UCB0_LAVC_busname UCB0_LAVC_ETA, address of the LAN device’s

template UCB
LDC_LAVC_busname LDC_LAVC_ETA, address of the LDC structure

associated with LAN device ETA
LSB_LAVC_busname LSB_LAVC_ETA, address of the LSB structure

associated with LAN device ETA

These symbols equate to system addresses for the corresponding data structures.
You can use these symbols, or an address, after the equal sign in SDA commands.

The SHOW PORTS command produces several displays. The initial display, the
PDT summary page, lists the PDT address, port type, device name, and driver
name for each PDT. Subsequent displays provide information taken from each
PDT listed on the summary page.

You can use the /ADDRESS qualifier of the SHOW PORTS command to produce
more detailed information about a specific port. The first display of the SHOW
PORTS/ADDRESS command duplicates the last display of the SHOW PORTS
command, listing information stored in the port’s PDT. Subsequent displays list
information about the port blocks and virtual circuits associated with the port.

SDA–143

System Dump Analyzer
SHOW PORTS

Examples

1. SDA> SHOW PORTS/ADDR=PE_PDT

VAXcluster data structures

--- Port Descriptor Table (PDT) 806C37A0 ---

Type: 03 pe
Characteristics: 0000

Msg Header Size 32 Connect 80799F94 Recyclh_Msg_Buf 8079AD8A
Max Xfer Bcnt FFFFFFFF Dealloc_Dg_Buf 8079AFDA Request_Data 8079B1CC
DG Header Size 288 Disconnect 8079A06B Send_Data 8079B215
Poller Sweep 31 Unmap 8079B510 Send_Dg_Buf 8079B03E
Fork Block W.Q. empty Map 8079B111 Send_Msg_Buf 8079AEA8
UCB Address 806C0E50 Map_Bypass 8079B0F8 Send_Cnt_Msg_Buf 8079AEAF
ADP Address 00000000 Map_Irp 8079B101 Read_Count 80796D59
Accept 80799FEC Map_Irp_Bypass 8079B0F0 Rls_Read_Count 80796DD3
Alloc_Dg_Buf 8079AFC6 Queue_Dg_Buf 8079AFE0 Mreset 80799C94
Alloc_Msg_Buf 8079AD05 Queue_Mult_Dgs 8079AFE8 Mstart 80799C9E
Dealloc_Msg_Buf 8079ADE3 Recycl_Msg_Buf 8079AD94 Stop_Vcs 8079BEDD
Dealloc_Msg_Buf_Reg 8079ADF6 Reject 8079A036 Send_Dg_Reg 8079B031

--- Port Block 80B091B0 ---

Status: 0001 authorize
VC Count: 5
Secs Since Last Zeroed: 311728

SBUF Size 436 LBUF Size 1788
SBUF Count 12 LBUF Count 1
SBUF Max 768 LBUF Max 384
SBUF Quo 13 LBUF Quo 1
SBUF Miss 18 LBUF Miss 12235
SBUF Allocs 499579 LBUF Allocs 16824
SBUFs In Use 0 LBUFs In Use 0
Peak SBUF In Use 14 Peak LBUF In Use 34
SBUF Queue Empty 0 LBUF Queue Empty 0
TR SBUF Queue Empty 0
No SBUF for ACK 0

Bus Addr Bus LAN Address Error Count Last Error Time of Last Error
-------- --- ----------------- ----------- ---------- -----------------------
80B08920 LCL 00-00-00-00-00-00 0
80B08090 ESA AA-00-04-00-33-FD 75 00000334 25-MAR-1993 23:39:28.27
80B008B0 XQA 08-00-2B-0A-6A-6B 12 0000002C 23-MAR-1993 12:43:59.07
80AF6E90 XQB 08-00-2B-08-CB-B8 0

--- Virtual Circuit (VC) Summary ---

VC Addr Node SCS ID Lcl ID Status Summary Last Event Time
-------- -------- ------ ------ ----------------- -----------------------
806CD1A0 NODE12 64819 223/DF open,path 1-JAN-1993 00:00:00.03
806CD6E0 NODE13 64856 222/DE open,path 1-JAN-1993 00:00:07.
806CD9A0 NODE14 64587 221/DD open,path 22-MAR-1993 18:34:10.18
8070D530 NODE15 64555 220/DC open,path 22-MAR-1993 18:57:33.
8074AB60 NODE16 64841 219/DB open,path 25-MAR-1993 20:42:38.20

The SHOW PORTS/ADDRESS command displays the port descriptor table
(PDT) structure, some of the fields in the PORT structure, the BUS summary,
and the virtual circuit summary.

SDA–144

System Dump Analyzer
SHOW PORTS

2. SDA>SHOW PORTS/BUS=BUS_ESA

VAXcluster data structures

--- BUS: 80B08090 (ESA) Device: ES_LANCE LAN Address: AA-00-04-00-33-FD---

LAN Hardware Address: 08-00-2B-12-AE-A1
Status: 00000A03 run,online,xmt_chaining_disabled,restart
------- Transmit ------ ------- Receive ------- ---- Structure Addresses ---
Msg Xmt 434107 Msg Rcv 1170090 PORT Address 80B091B0
Mcast Msgs 103939 Mcast Msgs 859601 VCIB Addr 80B08248
Mcast Bytes 13304192 Mcast Bytes 96272072 HELLO Message Addr 80B082D8

Bytes Xmt 59789962 Bytes Rcv 146674695 BYE Message Addr 80B08468
Outstand I/Os 0 Buffer Size 1424 Delete BUS Rtn Adr 8079E424
Xmt Errors 75 Rcv Ring Size 8
Last Xmt Error 00000334 Time of Last Xmt Error 25-MAR-1993 23:39:28.27
--- Receive Errors ---- ------ BUS Timer ------ ----- Datalink Events ------
TR Mcast Rcv 0 Handshake TMO 8079FA50 Last 22-MAR-1993 18:25:25.12
Rcv Bad SCSID 0 Listen TMO 8079FA54 Last Event 00001202
Rcv Short Msg 0 HELLO timer 1 Port Usable 1
Fail CH Alloc 0 HELLO Xmt err 38 Port Unusable 0
Fail VC Alloc 0 Address Change 1
Wrong PORT 0 Port Restart Fail 0

The SHOW PORTS/BUS=BUS_id command displays the data for the specified
BUS structure. The last event time is at the top of the lower right-hand
column. If an error was counted, the last error time is displayed under Xmt
Errors. The normal status is: RUN, ONLINE, and RESTART.

The Xmt Error field indicates a problem detected during transmission of a
message. The error rate should be less than one per hour.

3. SDA> SHOW PORTS/VC=VC_BREE

VAXcluster data structures

--- Virtual Circuit (VC) 806CD6E0 ---
Remote System Name: BREE (0:VAX) Remote SCSSYSTEMID: 64856
Local System ID: 222 (DE) Status: 0005 open,path
------ Transmit ------- ------ VC Closures ---- ---- Congestion Control ----
Msg Xmt 216686 SeqMsg TMO 0 UnAcked Msgs 1
Unsequence 3 CC DFQ Empty 0 Pipe Quota Reached 33
Sequence 149643 Topology Change 0 CMD Queue Len 0
ReXmt 545 NPAGEDYN Low 0 Max CMD Queue Len 5
Lone ACK 66495 RSVP Threshold 15

Bytes Xmt 33309074 Pipe Quota 31
------- Receive ------- - Messages Discarded - ----- Channel Selection ----
Msg Rcv 194492 No Xmt Chan 0 Preferred Channel 80704320
Unsequence 1 Rcv Short Msg 0 Delay Time FB7E6F80
Sequence 178905 Illegal Seq Msg 0 Buffer Size 1424
ReRcv 30 Bad Checksum 0 Channel Count 6
Lone ACK 15531 TR DFQ Empty 0 Channel Selections 3920
Cache 26 TR MFQ Empty 0 Protocol 1.3.0
Ill ACK 0 CC MFQ Empty 0 Open 1-JAN-1993 00:00:07.03

Bytes Rcv 52086897 Cache Miss 0 Cls 17-NOV-1858 00:00:00.00

-- Channel Summary for Virtual Circuit (BREE) 806CD6E0 --

Address Type Xmt Time Size Preferred Best Last State Change
-------- --------- -------- ---- --------- -------- -----------------------
80704320 Preferred FB7E6F80 1424 812 617 22-MAR-1993 18:14:07.01
807043E0 Active FB7E735E 1424 95 4 25-MAR-1993 20:01:15.18
807050D0 Active FB7E7FED 1424 431 0 25-MAR-1993 20:01:15.18
806CD820 Active FB7E728E 1424 868 1470 25-MAR-1993 20:01:15.18
80705010 Active FB7E7043 1424 738 9 25-MAR-1993 20:00:58.17
806CD8E0 Active FB7E7BB5 1424 976 1744 25-MAR-1993 20:00:31.17

SDA–145

System Dump Analyzer
SHOW PORTS

The SHOW PORTS/VC=VC_id command displays the virtual circuit data for
the specified remote node and a channel summary. In this display, the upper
center of the display contains the virtual circuit status. The lower right-hand
corner contains the virtual circuit open and close times.

The ReXmt field indicates a problem sending messages to the remote system.
The error rate per hour should be less than the Pipe Quota field.

The ReRcv field indicates a problem receiving messages from the remote
system. The error rate per hour should be less than the Pipe Quota field.

4. SDA> SHOW PORTS/MESSAGE/VC=address

This SHOW PORTS command displays the virtual circuit data for the
specified remote node, followed by the message data for the remote node. The
virtual circuit message display shows the counters for the following items:

– Sequenced message delivery

– Any messages in the process of being transmitted or in the receive cache

The following is an example of part of a display resulting from the
SHOW PORTS/MESSAGE/VC=vc-address command:

VAXcluster data structures

--- Sequenced Message Counters Virtual Circuit (VC) 806CD6E0 ---

NSU: 4457 HAA: 4456 LAR: 4455 HSR: B3AA Cache Mask: 00000000

Messages Waiting for ACKs

VCRP adr Len Flgs Seq Ack Message Data
-------- ---- ---- ---- ---- ---
806CD2E0 137 0B 4456 B3AA 02 7D 00 04 00 0A 00 00 00 09 00 D 75 05 00 67

5. SDA> SHOW PORTS/CHANNEL=CH_BREE

This SHOW PORTS command displays the data for the specified channel.
The normal state is OPEN, with a status of PATH, OPEN, and RMT_HWA_
VALID.

In the following example display resulting from this command, the top of
the display shows the remote device name, the remote device type, and the
channel open and close times.

SDA–146

System Dump Analyzer
SHOW PORTS

VAXcluster data structures

: PEDRIVER Channel (CH:80704320) for Virtual Circuit (VC:806CD6E0) BREE --
State: 0004 open Status: 0B path,open,rmt_hwa_valid
BUS: 80B008B0 (XQA) Lcl Device: XQ_DELQA Lcl LAN Address: 08-00-2B-0A-6A-6B
Rmt Name: XQB Rmt Device: XQ_DEQTA Rmt LAN Address: 08-00-2B-13-70-88
Rmt Seq #: 0002 Open:22-MAR-1993 18:14:07.01 Closed:17-NOV-1858 00:00:00.00
------- Transmit ------ ------- Receive ------- ----- Channel Selection ----
Lcl CH Seq # 0001 Msg Rcv 139205 Average Xmt Time FB879740
Msg Xmt 66707 Mcast Msgs 103906 Remote Buffer Size 1424
Ctrl Msgs 1 Mcast Bytes 10182788 Max Buffer Size 1424
Ctrl Bytes 98 Ctrl Msgs 2 Best Channel 615

Bytes Xmt 9130385 Ctrl Bytes 196 Preferred Channel 810
Rmt Ring Size 31 Bytes Rcv 22654333 Retransmit Penalty 2
--------------- Channel Errors --------------- Xmt Error Penalty 12
Handshake TMO 0 Short CC Msgs 0 ------- Channel Timer ------
Listen TMO 0 Incompat Chan 0 Timer Entry Flink 8079FA3C
Bad Authorize 0 No MSCP Srvr 0 Blink 80705010
Bad ECO 0 Disk Not Srvd 0 Last Ring Index 08
Bad Multicast 0 Old TR Msgs 0 Protocol 1.3.0
Topology Change 0 Supported Services 00000000

6. SDA> SHOW PORTS/DEVICE/CHANNEL/VC=vc-address

This SHOW PORTS command displays the following information:

– Virtual circuit data for the specified remote node

– Channel data

– The network path description for each channel to the remote node

The following is an example of a display resulting from the
SHOW PORTS/DEVICE/CHANNEL/VC=vc-address command:

VAXcluster data structures

: Network Component List (CLST:80D36440) for Channel (CH:806DC420) --

COMP adr COMP Type Description
-------- --------- ---
80D30010 NODE SGRPOP:VAXstation 3300; RDO3-4/U10
80CC9300 ADAPTER ESA; SGRPOP:VAXstation 3300; RDO3-4/U10 (08-00-2B-12-AE-A1)
80D3CDB0 COMPONENT RD34C4, I-Cluster Segment DAMPR
80D40380 COMPONENT RD34C4, I-Cluster Segment SELNI
80D36AD0 COMPONENT I-Cluster Segment
80D2D4C0 P COMPONENT RDO3-4 Lab, DIVER: I-Cluster Segment SELNI

.

.

.
80D323F0 NODE PELLNM:rack mounted MicroVAX II; RDO3-4 Lab

This display is useful after the local area VAXcluster network failure analysis
data has been loaded. After a network failure analysis, this display indicates
primary and secondary failed component suspects in the following ways:

• P: Primary suspect

• S: Secondary suspect

• ?: Component that cannot be proved to be working

7. SDA> SHOW PORTS /DEVICE /CHANNEL=address

This SHOW PORTS command displays the channel data and the network
path description if it was provided by the network failure analysis.

SDA–147

System Dump Analyzer
SHOW PORTS

8. SDA> SHOW PORTS/BUS/CHANNEL/DEVICE/MESSAGE/VC/ADDRESS=PE_PDT

This command displays all of the bus structures, all of the virtual circuits and
their message counters, and channels, including network path descriptions
when available.

9. SDA> SHOW PORTS/ADDR=862C8D80/NAME=DAVID3

VAXcluster data structures

--- Virtual Circuit (VC) 862C8D80 ---
Remote System Name: DAVID3 (0:VAX) Remote SCSSYSTEMID: 64588
Local System ID: 213 (D5) Status: 0005 open,path
------ Transmit ------- ------ VC Closures ---- ---- Congestion Control ----
Msg Xmt 19 SeqMsg TMO 0 Pipe Quota/Slo/Max 1/31/31
Unsequence 16 CC DFQ Empty 0 Pipe Quota Reached 0
Sequence 3 Topology Change 0 Xmt C/T 0/1
ReXmt 0/0 NPAGEDYN Low 0 RndTrp uS 3000000+0
Lone ACK 0 UnAcked Msgs 0

Bytes Xmt 1058 CMD Queue Len/Max 0/0
------- Receive ------- - Messages Discarded - ----- Channel Selection ----
Msg Rcv 10 No Xmt Chan 0 Preferred Channel 00000000
Unsequence 16 Rcv Short Msg 0 Delay Time 003266DB
Sequence 0 Illegal Seq Msg 0 Buffer Size 1424
ReRcv 0 Bad Checksum 0 Channel Count 2
Lone ACK 0 TR DFQ Empty 0 Channel Selections 9
Cache 0 TR MFQ Empty 0 Protocol 1.3.0
Ill ACK 0 CC MFQ Empty 0 Open 8-FEB-1993 11:30:43.60

Bytes Rcv 440 Cache Miss 0 Cls 8-FEB-1993 11:28:30.69

-- Channel Summary for Virtual Circuit (DAVID3) 862C8D80 --

Address Type Xmt Time Size Preferred Best Last State Change
-------- --------- -------- ---- --------- -------- ----------------------
862CB600 Active 000927BF 1424 3 4 8-FEB-1993 11:30:53.69
862C8F00 Active 000927BF 1424 6 2 8-FEB-1993 11:30:43.60

The command in this example displays virtual connect information associated
with the DAVID3 node, which is associated with the port descriptor table
whose address is 862C8D80.

SDA–148

System Dump Analyzer
SHOW PROCESS

SHOW PROCESS

Displays the software and hardware context of any process in the balance set.

Format

SHOW PROCESS [/qualifier[,...]][ALL | process-name | /INDEX=nn | /SYSTEM]

Parameters

ALL
Shows information about all processes that exist in the system.

process-name
Name of the process for which information is to be displayed.11

You can determine the names of the processes in the system by issuing a SHOW
SUMMARY command.

The process-name can contain up to 15 letters and numerals, including the
underscore (_) and dollar sign ($) characters. If it contains any other characters,
you must enclose the process-name in quotation marks (" ").

Qualifiers

/ALL
Displays all information shown by the following qualifiers: /CHANNEL, /PAGE_
TABLES, /PCB, /PHD, /PROCESS_SECTION_TABLE, /REGISTERS, and
/WORKING_SET.

/CHANNEL
Displays information about the I/O channels assigned to the process.

/IMAGES
Displays the address of the image control block, the start and end addresses
of the image, the activation code, the protected and shareable flags, the image
name, and the major and minor IDs of the image.

/INDEX=nn or /ID=nn
Specifies the process for which information is to be displayed by its index into the
system’s list of software process control blocks (PCBs). You can supply either of
the following values for nn:

• The process index itself

• The process identification (PID) or extended PID longword, from which SDA
extracts the correct index

To obtain these values for any given process, issue the SDA command SHOW
SUMMARY.

11 Use of the process-name parameter, the /INDEX qualifier, or the /SYSTEM qualifier
causes the SHOW PROCESS command to perform an implicit SET PROCESS command,
making the indicated process the current process for subsequent SDA commands. (See
the description of the SET PROCESS command and Section 4 for information about
how this can affect the process context—and CPU context—in which SDA commands
execute.)

SDA–149

System Dump Analyzer
SHOW PROCESS

/LOCKS
Displays the lock management locks owned by the current process.

The /LOCKS qualifier produces a display similar in format to that produced by
the SHOW LOCKS command. See Table SDA–15 for additional information.

/P0
Displays the page tables for P0 space. See the description of the /PAGE_TABLES
qualifier.

/P1
Displays the page tables for P1 space. See the description of the /PAGE_TABLES
qualifier.

/PAGE_TABLESor /PPT [range | /P0 | /P1]
Displays the page tables P0 and P1 spaces, or, optionally, either the page table or
the page table entries for a range of addresses.

You can express a range using the following format:

m:n Displays the page table entries that correspond to the range of virtual
addresses from m to n

m;n Displays the page table entries that correspond to a range of n pages,
starting with page m

/PARTICIPANTS[=DISPLAY=(item [,...])]
Displays information about all transactions for the process. The argument
to DISPLAY can be either a single item or a list. The following items can be
specified.

Item Description

ALL All transaction control structures for the transactions.
This is the default behavior.

BRANCHES Control structures for branches of the transactions.
PARTICIPANTS Control structures for resource managers participating

in the transactions.
THREADS Control structures for threads of the transactions.
TRANSACTIONS Transaction control structures for the transactions.

/PCB
Displays the information contained in the software process control block (PCB).
This is the default behavior of the SHOW PROCESS command.

/PHD
Lists information included in the process header (PHD).

/PROCESS_SECTION_TABLE or /PST
Lists the information contained in the process section table (PST).

/REGISTERS
Lists the hardware context of the process, as reflected in the registers of the
process stored in the hardware PCB and—if the process is current on a processor
in the system—the registers of the processor.

SDA–150

System Dump Analyzer
SHOW PROCESS

/RMS[=option[,...]]
Displays certain specified RMS data structures for each image I/O or process-
permanent I/O file the process has open. To display RMS data structures for
process-permanent files, specify the PIO option to this qualifier.

SDA determines the structures to be displayed according to either of the following
methods:

• If you provide the name of a structure or structures in the option parameter,
SHOW PROCESS/RMS displays information from only the specified
structures. (See Table SDA–14 for a list of keywords that you can supply
as options.)

• If you do not specify an option, SHOW PROCESS/RMS displays the current
list of options as shown by the SHOW RMS command and set by the SET
RMS command.

/SYSTEM
Displays the system process control block.12 The system PCB and process header
(PHD) are dummy structures that are located in system space. These structures
contain the system working set, global section table, global page table, and other
systemwide data.

/TRANSACTIONS=(option[,...])
Displays information about all transactions, or the specified transaction, for the
process. The following two options can be specified either together or separately:

• DISPLAY=(item [,...])

Specifies the type of information to be displayed. The argument to DISPLAY
can be either a single item or a list. The following items can be specified.

Item Description

ALL All transaction control structures for the specified
transaction. This is the default behavior.

BRANCHES Control structures for branches of the specified
transaction.

PARTICIPANTS Control structures for resource managers
participating in the specified transaction.

THREADS Control structures for threads of the specified
transaction.

TRANSACTIONS Transaction control structures for the specified
transaction.

12 Use of the process-name parameter, the /INDEX qualifier, or the /SYSTEM qualifier
causes the SHOW PROCESS command to perform an implicit SET PROCESS command,
making the indicated process the current process for subsequent SDA commands. (See
the description of the SET PROCESS command and Section 4 for information about
how this can affect the process context—and CPU context—in which SDA commands
execute.)

SDA–151

System Dump Analyzer
SHOW PROCESS

• TID=tid

Specifies the transaction for which information is to be displayed. If you omit
the TID option, the SHOW PROCESS/TRANSACTIONS command displays
information about all transactions for the process.

If you omit these options, the SHOW PROCESS/TRANSACTIONS command
displays all information about all transactions for the process.

Note that the SHOW PROCESS/TRANSACTIONS and SHOW
PROCESS/PARTICIPANTS commands display the same information about
transactions, but in different orders. The SHOW PROCESS/TRANSACTIONS
command walks down a transaction queue. The SHOW
PROCESS/PARTICIPANTS command walks down a resource manager queue.

/VECTOR_REGS
Displays the saved process vector registers.

/WORKING_SET or /WSL
Displays the working set list of the process.

Description

The SHOW PROCESS command displays information about the process specified
by process-name, the process specified with the /INDEX qualifier, the system
process, or all processes. By default, the SHOW PROCESS command produces
information about the SDA current process, as explained in Section 4.

The SHOW PROCESS command performs an implicit SET PROCESS command
under certain uses of its qualifiers and parameters, as explained in Section 4,
Section 5, and Section 6. If you use the SHOW PROCESS command and name
a process that is the current process on a CPU, SDA temporarily assigns the
symbols shown in Table SDA–9 to the values in the process. You can then refer
to those symbols when you use the FORMAT command.

The default of the SHOW PROCESS command provides information taken
from the software process control block (PCB).13 This information describes the
following characteristics of the process:

• Software context

• Condition-handling information

• Information about interprocess communication

• Information about counts, quotas, and resource usage

Among the displayed information are the PID, EPID, priority, job information
block (JIB) address, and process header (PHD) address of the process. SHOW
PROCESS also describes the resources owned by the process, such as event
flags and mutexes. The ‘‘State’’ field records the current scheduling state of the
process; in a multiprocessing system, the display indicates the CPU ID of any
process whose state is CUR.

The SHOW PROCESS/ALL command displays additional process-specific
information, also provided by several of the individual qualifiers to the command.

13 This is the first display provided by the /ALL qualifier and the only display provided by
the /PCB qualifier.

SDA–152

System Dump Analyzer
SHOW PROCESS

The process header display, also produced by the /PHD qualifier, provides
information taken from the process header (PHD), which is swapped into memory
when the process becomes part of the balance set. Each item listed in the display
reflects a quantity, count, or limit for the process’s use of the following resources:

• Process memory

• The pager

• The scheduler

• Asynchronous system traps

• I/O activity

• CPU activity

The process registers display, also produced by the /REGISTERS qualifier,
describes the hardware context of the context, as reflected in its registers.

The hardware context of a process is stored in two places:

• If the process is currently executing on a processor in the system (that is,
in the CUR scheduling state), its hardware context is contained in that
processor’s registers. (That is, the registers of the process and the registers
of the processor contain identical values, as illustrated by a SHOW CPU
command for that processor or a SHOW CRASH command if the process was
current at the time of the system failure.)

• If the process is not executing, its hardware context is stored in the part of
the PHD known as the hardware PCB.

The process registers display first lists those registers stored in the hardware
PCB (‘‘Saved process registers’’). If the process to be displayed is currently
executing on a processor in the system, the display then lists the processor’s
registers (‘‘Active registers for the current process’’). In each section, the display
lists the registers in the following groups:

• General-purpose registers (R0 through R11 and the AP, FP, and PC)

• Stack pointers (KSP, ESP, SSP, and USP)

• Special-purpose registers (PC and PSL)

• Base and length registers (P0BR, P1BR, P0LR, and P1LR)

The working set information and working set list displays, also produced
by the /WORKING_SET qualifier, describe those virtual pages that the process
can access without a page fault. After a brief description of the size, scope,
and characteristics of the working set list itself, SDA displays the following
information for each entry in the working set list.

Column Contents

INDEX Index into the working set list at which information for this entry
can be found

ADDRESS Virtual address of the page in the process address space that this
entry describes

SDA–153

System Dump Analyzer
SHOW PROCESS

Column Contents

STATUS Three columns that list the following status information:

• Page type

• Location of the page in physical memory

• Indication of whether the page is locked into the working set

When SDA locates one or more unused working set entries, it issues the following
message:

--- n empty entries

In this message, n is the number (in decimal) of contiguous, unused entries.

The process section table information and process section table displays,
also produced by the /PROCESS_SECTION_TABLE qualifier, list each entry in
the process section table (PST) and display the offsets to the first free entry and
last used entry.

SDA displays the information listed in Table SDA–19 for each PST entry.

Table SDA–19 Process Section Table Entry Information in the SHOW PROCESS
Display

Part Definition

INDEX Offset into the PST at which the entry is found. Because entries
in the process section table begin at the highest location in
the table, and the table expands toward lower addresses, the
following expression determines the address of an entry in the
table: PHD + PSTBASOFF—INDEX.

ADDRESS Virtual address that marks the beginning of the first page of the
section described by this entry.

PAGES Length, in pages, of the process section.
VBN Virtual block number, the number of the file’s virtual block that

is mapped into the section’s first page.
CLUSTER Cluster size used when faulting pages into this process section.
REFCNT Number of pages of this section that are currently mapped.
FLINK Forward link, the pointer to the next entry in the PST list.
BLINK Backward link, the pointer to the previous entry in the PST list.
FLAGS Flags that describe the access that processes have to the process

section.

The P0 page table and P1 page table displays, also produced by the /PAGE_
TABLES qualifier, display listings of the page table entries of the process in the
same format as that produced by the SHOW PAGE_TABLE command (see Tables
SDA–16 and SDA–17).

The process active channels display, the last produced by SHOW
PROCESS/ALL and the only one produced by the /CHANNEL qualifier, displays
the following information for each I/O channel assigned to the process.

SDA–154

System Dump Analyzer
SHOW PROCESS

Column Contents

Channel Number of the channel
Window Address of the window control block (WCB) for

the file if the device is a file-oriented device; zero
otherwise

Status Status of the device: ‘‘Busy’’ if the device has an
I/O operation outstanding; blank otherwise

Device/file accessed Name of the device and, if applicable, name of
the file being accessed on that device

The information listed under the heading ‘‘Device/file accessed’’ varies from
channel to channel and from process to process. SDA displays certain information
according to the conditions listed in Table SDA–20.

Table SDA–20 Process I/O Channel Information in the SHOW PROCESS
Display

Information Displayed1 Type of Process

dcuu: SDA displays this information for devices that are not
file structured, such as terminals, and for processes that
do not open files in the normal way.

dcuu:filespec SDA displays this information only if you are examining
a running system and only if your process has enough
privilege to translate the file-id into the filespec.

dcuu:(file-id)filespec SDA displays this information only when you are
examining a dump. The filespec corresponds to the
file-id on the device listed. If you are examining a dump
from your own system, the filespec is probably valid. If
you are examining a dump from another system, the
filespec is probably meaningless in the context of your
system.

dcuu:(file-id) The file-id no longer points to a valid filespec, as when
you look at a dump from another system; or the process
in which you are running SDA does not have enough
privilege to translate the file-id into the corresponding
filespec.

1This table uses the following formulas to identify the information displayed:
dcuu:(file-id)filespec
where:
dcuu: is the name of the device.
file-id is the RMS file identification.
filespec is the full file specification, including directory name.

SDA–155

System Dump Analyzer
SHOW PROCESS

Examples

1. SDA> SHOW PROCESS

Process index: 001B Name: PUTP1 Extended PID: 27E0011B
--
Process status: 00044001 RES,BATCH,PHDRES

PCB address 803C7710 JIB address 806B9100
PHD address 81F5C400 Swapfile disk address 02002FA1
Master internal PID 0001001B Subprocess count 0
Internal PID 0001001B Creator internal PID 00000000
Extended PID 27E0011B Creator extended PID 00000000
State CUR 00 Termination mailbox 0000
Current priority 3 AST’s enabled KES
Base priority 3 AST’s active E
UIC [00011,000176] AST’s remaining 39
Mutex count 0 Buffered I/O count/limit 12/12
Waiting EF cluster 0 Direct I/O count/limit 18/18
Starting wait time 1B001C1C BUFIO byte count/limit 31968/31968
Event flag wait mask BFFFFFFF # open files allowed left 90
Local EF cluster 0 20000001 Timer entries allowed left 9
Local EF cluster 1 C0000000 Active page table count 0
Global cluster 2 pointer 00000000 Process WS page count 1020
Global cluster 3 pointer 00000000 Global WS page count 233

The SHOW PROCESS command displays information taken from the
software PCB of PUTP1, the SDA current process. According to the
‘‘State’’ field in the display, process PUTP1 is current on CPU 00 in the
multiprocessing system.

2. SDA> SHOW PROCESS/ALL

Process index: 00AD Name: GLOBE Extended PID: 462002AD
--

Process status: 02040001 RES,PHDRES

PCB address 8044E650 JIB address 806E0010
.
.
.

Process header

First free P0 address 0007D600 Accumulated CPU time 00000559
Free PTEs between P0/P1 276902 CPU since last quantum FFEE
First free P1 address 7FEF2200 Subprocess quota 8
Free page file pages 24234 AST limit 50
Page fault cluster size 16 Process header index 0020
Page table cluster size 2 Backup address vector 00003E12
Flags 0002 WSL index save area 00003980
Direct I/O count 509 PTs having locked WSLs 5
Buffered I/O count 827 PTs having valid WSLs 20
Limit on CPU time 00000000 Active page tables 21
Maximum page file count 25600 Maximum active PTs 26
Total page faults 7589 Guaranteed fluid WS pages 20
File limit 50 Extra dynamic WS entries 698
Timer queue limit 10 Locked WSLE counts array 1CD8
Paging file index 06000000 Valid WSLE counts array 2564

Saved process registers

R0 = 00000001 R1 = 00000000 R2 = 8000CA78 R3 = 8044E6A0
R4 = 8044E650 R5 = 00000000 R6 = 00000000 R7 = 00000003
R8 = 00001F60 R9 = 7FF9FB38 R10 = 7FF9FA08 R11 = 7FFE0070

SDA–156

System Dump Analyzer
SHOW PROCESS

AP = 7FEF4AE4 FP = 7FEF4AEC PC = 801622B4 PSL = 03C00000
KSP = 7FFE7E00 ESP = 7FFE9E00 SSP = 7FFED04E USP = 7FEF4AE4

P0BR = 82D43600 P0LR = 000003EB P1BR = 82654E00 P1LR = 001FF792

Active registers for current process

R0 = 00000001 R1 = 80002398 R2 = 00000000 R3 = 00000000
R4 = 7FFA05A0 R5 = 00000000 R6 = 0007D400 R7 = 00000010
R8 = 00001F60 R9 = 7FF9FB38 R10 = 7FF9FA08 R11 = 7FFE0070
AP = 7FFE9D70 FP = 7FFE9D58 PC = 801620A5 PSL = 01400000
KSP = 7FFE7E00 ESP = 7FFE9D58 SSP = 7FFED04E USP = 7FEF4AE4

Working set information

First WSL entry 0074 Current authorized working set size 2048
First locked entry 00A6 Default (initial) working set size 512
First dynamic entry 00B9 Maximum working set allowed (quota) 2048
Last entry replaced 018C
Last entry in list 0561

Working set list

INDEX ADDRESS STATUS

0074 7FFE7C00 VALID PROCESS WSLOCK
0075 7FFE7A00 VALID PROCESS WSLOCK
0076 7FFE7800 VALID PROCESS WSLOCK

.

.

.

Process section table information

Last entry allocated FFA0
First free PST entry 0000

Process section table

INDEX ADDRESS PAGES WINDOW VBN CLUSTER CHANNEL REFCNT FLINK BLINK FLAGS

FFF8 00000200 0000000A 8082C400 00000002 0 7FFCCFD0 10 FFE8 FFF0
FFF0 00001600 00000007 8082C400 0000000C 0 7FFCCFD0 0 FFF8 FFE8 WRT CRF
FFE8 00002400 00000012 8082C400 00000013 0 7FFCCFD0 18 FFF0 FFF8
.
.
.

P0 page table

ADDRESS SVAPTE PTE TYPE PROT BITS PAGTYP LOC STATE TYPE REFCNT BAK SVAPTE FLINK BLINK

-------- 1 NULL PAGE

00000200 82D43604 F9804F73 VALID UR U PROCESS ACTIVE 07 00 1 0040FFF8 82D43604 0000 0153
00000400 82D43608 F9806905 VALID UR U PROCESS ACTIVE 07 00 1 0040FFF8 82D43608 0000 0154
00000600 82D4360C F9807569 VALID UR U PROCESS ACTIVE 07 00 1 0040FFF8 82D4360C 0000 0155

.

.

.
P1 page table

ADDRESS SVAPTE PTE TYPE PROT BITS PAGTYP LOC STATE TYPE REFCNT BAK SVAPTE FLINK BLINK

7FEF2400 82E52C48 21800000 DZERO UW U
7FEF2600 82E52C4C 21800000 DZERO UW U
7FEF2800 82E52C50 21800000 DZERO UW U

.

SDA–157

System Dump Analyzer
SHOW PROCESS

.

.

Process active channels

Channel Window Status Device/file accessed
------- ------ ------ --------------------

0010 00000000 ROCK$DJA233:
0020 8082C400 ROCK$DJA233:(1008,48490,0)
0030 807F2260 LOVE$DUA200:(209,1,0)[V5COMMON.SYSLIB]SMGSHR.EXE;1 (section file)
0040 00000000 VTA71:
0050 00000000 VTA71:
0060 807EFFE0 LOVE$DUA200:(195,1,0)[V5COMMON.SYSLIB]LIBRTL.EXE;1 (section file)
0070 807EECC0 LOVE$DUA200:(199,1,0)[V5COMMON.SYSLIB]MTHRTL.EXE;1 (section file)
0080 80838E80 LOVE$DUA200:(196,1,0)[V5COMMON.SYSLIB]LIBRTL2.EXE;1
0090 807E4880 LOVE$DUA200:(210,1,0)[V5COMMON.SYSLIB]SORTSHR.EXE;1
00A0 80818720 LOVE$DUA200:(191,1,0)[V5COMMON.SYSLIB]FDLSHR.EXE;1
00B0 8083CFC0 LOVE$DUA200:(169,1,0)[V5COMMON.SYSLIB]CONVSHR.EXE;1
00C0 8083DEC0 ROCK$DJA233:(1026,16,0)

The SHOW PROCESS/ALL command displays information taken from the
software PCB of process GLOBE, and then proceeds to display the process
header, the registers of the process, the process section table, the P0 page
table, the P1 page table, and information about the I/O channels owned by
the process. You can also obtain these displays by using the /PCB, /PHD,
/REGISTERS, /PROCESS_SECTION_TABLE, /P0, /P1, and /CHANNEL
qualifiers, respectively.

3. SDA> SHOW PROCESS/LOCKS/INDEX=0A

Lock data:

Lock id: 09960A0F PID: 0001000A Flags: VALBLK CONVERT SYNCSTS
Par. id: 00000000 Granted at PW SYSTEM
Sublocks: 100
LKB: 8082B0E0

Resource: 003C0248 24534D52 RMS$H.<. Status: ASYNC
Length 26 444B4C4F 46020000 ...FOLKD
Kernel mode 00202020 20202024 $.
System 00000000 00000000
Local copy

The SHOW PROCESS/LOCKS/INDEX=0A command displays information
about the locks held by process JOB_CONTROL, whose PCB is at index 0A,
into the system’s PCB list. This command implicitly makes JOB_CONTROL
the SDA current process for subsequent commands that display process
context information. It has no effect on SDA CPU context because JOB_
CONTROL is not current on any processor in the multiprocessing system.

4. SDA> SHOW RMS

RMS Display Options: IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM,XAB,RLB,
BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB

SDA–158

System Dump Analyzer
SHOW PROCESS

Display RMS structures for all IFI values.

SDA> SHOW PROCESS/RMS
.
.
.

Process index: 0032 Name: BEASSEM_MTHRTL_ Extended PID: 27200132
--
IFAB Address: 7FF9C808 IFI: 0002 Organization: Sequential

PRIM_DEV: 1C4D4108 DIR,FOD,SHR,AVL,ELG,IDV,ODV,RND
BKPBITS: 00080020 ACCESSED,NORECLK
BLN: 3A 58. BID: 0B 11.
EFN: 00 MODE: 03
IOS: 00000001 ASBADDR: 00000000
IOS2: 0000 WAIT_Q_FLINK: 00000000
IOS4: 00000000 ARGLST: 7FF21418
ATJNLBUF: 00000000 WAIT_Q_BLINK: 00000000
FSBPTR: 00000000 AGENT_MODE: 03
SHR: 02 SHRGET
IRAB_LNK: 7FF9C958 CHNL: 00C0
FAC: 02 GET
ORGCASE: 00 Sequential
LAST_FAB: 00081FD0 NWA_PTR: 00000000
IFI: 0002 ECHO_ISI: 0000
FWA_PTR: 7FF9CC00
BDB_FLNK: 7FF9CBB0 DEVBUFSIZ: 00000200 512.
BDB_BLNK: 7FF9CB60 RTDEQ: 0000 0.
RFMORG: 02 VAR
RAT: 02 CR
LRL: 004C 76. HBK_DISK: 000C0000
FFB: 0084 132. EBK_DISK: 000C0000
FSZ: 00 0. BKS: 00 0.
DEQ: 0000 0. MRS: 0000 0.
HBK: 0000000C 12. GBC: 0000 0.
EBK: 0000000C
LAST_GOOD_EBK: 00000000 0. LAST_GOOD_FFB: 0000 0.
RNS_LEN: 00000000 LOCK_BDB: 00000000

.

.

.

The SHOW PROCESS/RMS command displays RMS data structures for the
current SDA process.

5. SDA> SHOW PROCESS/IMAGES

Process activated images

ICB Start End Type Image Name Major ID,Minor ID
-------- -------- -------- -------------- -----------------------------
7FF83878 00000200 00000DFF MAIN SHOW_PROC_IMAGES 0,0
7FF84100 0003AC00 0003FBFF GLOBAL PRT SHR DECW$TRANSPORT_COMMON 12,12
7FF84400 00036200 0003ABFF GLOBAL CONVSHR 1,0
7FF84470 0002E400 000361FF GLOBAL FDLSHR 1,0
7FF84560 00021A00 0002E3FF GLOBAL SORTSHR 2,28
7FF845D0 00000E00 000089FF GLOBAL LIBRTL2 1,12
7FF835F8 00008A00 000219FF GLOBAL SHR LIBRTL 1,14
7FF84800 00060C00 000767FF MERGED SHR ADARTL 0,0
7FF84720 00076800 000A03FF GLOBAL SHR MTHRTL 129,32781

Total images = 9 Pages allocated = 1017

SDA–159

System Dump Analyzer
SHOW PROCESS

The SHOW PROCESS/IMAGES command displays the address of the image
control block, the start and end addresses of the image, the activation code,
the protected and shareable flags, the image name, and the major and minor
IDs of the image.

6. SDA> SHOW PROCESS/TRANSACTIONS=(DISPLAY=THREADS,
TID=FAC21DE2-BA88-0092-8FA6-B24B)

The SHOW PROCESS command displays the transaction thread information
for the transaction whose identifier is FAC21DE2-BA88-0092-8FA6-B24B.

SDA–160

System Dump Analyzer
SHOW RESOURCE

SHOW RESOURCE

Displays information about all resources in the system or about a resource
associated with a specific lock.

Format

SHOW RESOURCE {/ALL | /LOCKID=lock-id | /NAME=resource-name}

Parameters

None.

Qualifiers

/ALL
Displays information from all resource blocks (RSBs) in the system. This is the
default behavior of the SHOW RESOURCE command.

/LOCKID=lock-id
Displays information about the resource associated with the lock with the
specified lock-id.

/NAME=resource-name
Displays information about the resource whose resource name begins with the
specified resource-name. For case-sensitive names, enclose resource-name in
quotation marks.

Description

The SHOW RESOURCE command displays the information listed in
Table SDA–21 for each resource in the system or for the specific resource
associated with the specified lock-id.

Table SDA–21 Resource Information in the SHOW RESOURCE Display

Field Contents

Address of RSB Address of the resource block (RSB) that describes this
resource.

Parent RSB Address of the RSB that is the parent of this RSB. This
field is 00000000 if the RSB itself is a parent block.

Sub-RSB count Number of RSBs of which this RSB is the parent. This
field is 0 if the RSB has no sub-RSBs.

(continued on next page)

SDA–161

System Dump Analyzer
SHOW RESOURCE

Table SDA–21 (Cont.) Resource Information in the SHOW RESOURCE Display

Field Contents

Group grant mode Indication of the most restrictive mode in which a
lock on this resource has been granted. This field can
contain the following values (shown in order from the
least restrictive mode to the most restrictive):

• NL
Null mode

• CR
Concurrent-read mode

• CW
Concurrent-write mode

• PR
Protected-read mode

• PW
Protected-write mode

• EX
Exclusive mode

For information about conflicting and incompatible lock
modes, see the OpenVMS System Services Reference
Manual.

Conversion grant mode Indication of the most restrictive lock mode to which a
lock on this resource is waiting to be converted. This
does not include the mode for which the lock at the
head of the conversion queue is waiting.

BLKAST count Number of locks on this resource that have requested a
blocking AST.

Value block Hexadecimal dump of the 16-byte block value block
associated with this resource.

Sequence # Sequence number associated with the resource’s value
block. If the number indicates that the value block is
not valid, the words ‘‘Not valid’’ appear to the right of
the number.

CSID Cluster system identification number (CSID) of the
node that owns the resource.

(continued on next page)

SDA–162

System Dump Analyzer
SHOW RESOURCE

Table SDA–21 (Cont.) Resource Information in the SHOW RESOURCE Display

Field Contents

Resource Dump of the name of this resource, as stored at the end
of the RSB. The first two columns are the hexadecimal
representation of the name, with the least significant
byte represented by the rightmost two digits in the
rightmost column. The third column contains the
ASCII representation of the name, the least significant
byte being represented by the leftmost character in the
column. Periods in this column represent values that
correspond to nonprinting ASCII characters.

Length Length in bytes of the resource name.
— Processor mode of the name space in which this RSB

resides.
— Owner of the resource. Certain resources, owned by

the operating system, list ‘‘System’’ as the owner.
Locks owned by a group have the number (in octal) of
the owning group in this field.

Granted queue List of locks on this resource that have been granted.
For each lock in the list, SDA displays the number
of the lock and the lock mode in which the lock was
granted.

Conversion queue List of locks waiting to be converted from one mode
to another. For each lock in the list, SDA displays
the number of the lock, the mode in which the lock
was granted, and the mode to which the lock is to be
converted.

Waiting queue List of locks waiting to be granted. For each lock in
the list, SDA displays the number of the lock and the
mode requested for that lock.

Examples

1. SDA> SHOW RESOURCE

SDA–163

System Dump Analyzer
SHOW RESOURCE

Resource database

Address of RSB: 807F6120 Group grant mode: NL
Parent RSB: 806EA180 Conversion grant mode: NL
Sub-RSB count: 0 BLKAST count: 0
Value block: 806CE510 00000000 00000002 00000002 Seq. #: 00000008
Resource: 09ED7324 42313146 F11B$sí.
Length 10 00000000 00000200 CSID: 00020041
Kernel mode 00000000 00000000
System 00000000 00000000

Granted queue (Lock ID / Gr mode):
006801AE NL

Conversion queue (Lock ID / Gr/Rq mode):
*** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode):
*** EMPTY QUEUE ***

Address of RSB: 807EB9E0 Group grant mode: PW
Parent RSB: 00000000 Conversion grant mode: EX
Sub-RSB count: 0 BLKAST count: 1
Value block: 00000000 00000003 00000000 0000FFF2 Seq. #: 0000027F Not valid
Resource: 32245F24 44414853 SHAD$_$2
Length 16 3A31534A 44243435 54$DJS1: CSID: 0002001A
Kernel mode 00000000 00000000
System 00000000 00000000
.
.
.

The SHOW RESOURCE command displays information taken from the RSBs of
all resources in the system. For instance, the RSB at 807EB9E016 is a parent
block with no sub-RSBs. The most restrictive lock granted on this resource is in
protected-write (PW) mode. There is a lock on the conversion queue waiting to be
converted from PW mode to exclusive (EX) mode.

2. SDA> SHOW PROCESS/LOCKS

Process index: 001C Name: STARTQ Extended PID: 4800011C

Lock data:

Lock id: 0117054F PID: 0001001C Flags: VALBLK SYNCSTS SYSTEM
Par. id: 00000000 Granted at PW NOQUOTA
Sublocks: 0
LKB: 808091A0
Resource: 45527624 42313146 F11B$vRE Status: NOQUOTA
Length 18 20205241 4D323053 S02MAR
Kernel mode 00000000 00002020
System 00000000 00000000
Process copy of lock 008209CF on system 0002001

.

.

.
SDA> SHOW RESOURCE/LOCKID=117054F

SDA–164

System Dump Analyzer
SHOW RESOURCE

Resource database

Address of RSB: 806BB050 Group grant mode: NL
Parent RSB: 00000000 Conversion grant mode: NL
Sub-RSB count: 4 BLKAST count: 0
Value block: 00960102 0000330B 000735AA 5A020005 Seq. #: 00006D9F
Resource: 45527624 42313146 F11B$vRE
Length 18 20205241 4D323053 S02MAR CSID: 0002001A
Kernel mode 00000000 00002020
System 00000000 00000000

Granted queue (Lock ID / Gr mode):
0117054F PW 00060545 CR

Conversion queue (Lock ID / Gr/Rq mode):
*** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode):
*** EMPTY QUEUE ***

The SHOW PROCESS/LOCKS command lists all locks associated with
the SDA current process, STARTQ. Its display is identical to that of
the SHOW LOCK command, illustrated in Table SDA–15. The SHOW
RESOURCE/LOCKID=117054F command determines that this particular lock is
on the granted queue in protected-write mode for the resource at 806BB05016.

3. SDA> SHOW RESOURCE/NAME=RMS$

Resource database

Address of RSB: 80EFBE40 GGMODE: EX Status: DIRENTR VALID
Parent RSB: 00000000 CGMODE: EX
Sub-RSB count: 2 FGMODE: EX
Lock Count: 1 CSID: 00000000
BLKAST count: 1 RQSEQNM: 0000

Resource: 00030014 24534D52 RMS$.... Valblk: 00000000 00000000
Length 26 4D565841 56020000 ...VAXVM 00000000 00000000
Exec. mode 00202035 35305653 SV055 .
System 00000000 00000000 Seqnum: 00000000

Granted queue (Lock ID / Gr mode / Range):
6400004C EX 00000000-FFFFFFFF

Conversion queue (Lock ID / Gr mode / Range -> Rq mode / Range):
*** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode / Range):
*** EMPTY QUEUE ***

.

.

.

This example of the SHOW RESOURCE/NAME command displays information
about the resource whose name begins with RMS$.

SDA–165

System Dump Analyzer
SHOW RMS

SHOW RMS

Displays the RMS data structures selected by the SET RMS command to be
included in the default display of the SHOW PROCESS/RMS command.

Format

SHOW RMS

Parameters

None.

Qualifiers

None.

Description

The SHOW RMS command lists the names of the data structures selected for the
default display of the SHOW PROCESS/RMS command.

For a description of the significance of the options listed in the SHOW RMS
display, see the description of the SET RMS command and Table SDA–14.

For an illustration of the information displayed by the SHOW PROCESS/RMS
command, see the examples included in the description of the SHOW PROCESS
command.

Examples

1. SDA> SHOW RMS

RMS Display Options: IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM,
XAB,RLB,BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB
Display RMS structures for all IFI values.

The SHOW RMS command displays the full set of options available for display
by the SHOW PROCESS/RMS command. SDA, by default, selects the full set of
RMS options at the beginning of an analysis.

2. SDA> SET RMS=(IFB,CCB,WCB)
SDA> SHOW RMS

RMS Display Options: IFB,CCB,WCB
Display RMS structures for all IFI values.

The SET RMS command establishes the IFB, CCB, and WCB as the structures to
be displayed when you issue the SHOW PROCESS/RMS command. The SHOW
RMS command verifies this selection of RMS options.

SDA–166

System Dump Analyzer
SHOW RSPID

SHOW RSPID

Displays information about response IDs (RSPIDs) of all SCS connections or,
optionally, a specific SCS connection.

Format

SHOW RSPID [/CONNECTION=cdt-address]

Parameters

None.

Qualifier

/CONNECTION=cdt-address
Displays RSPID information for the specific SCS connection whose connection
descriptor table (CDT) address is provided in cdt-address.14

Description

Whenever a local system application (SYSAP) requires a response from a remote
SYSAP, the local system assigns a unique number, called an RSPID, to the
response. The RSPID is transmitted in the original request (as a means of
identification), and the remote SYSAP returns the same RSPID in its response to
the original request.

The SHOW RSPID command displays information taken from the response
descriptor table (RDT), which lists the currently open local requests that require
responses from SYSAPs at a remote node. For each RSPID, SDA displays the
following information:

• RSPID value

• Address of the class driver request packet (CDRP), which generally represents
the original request

• Address of the CDT using the RSPID

• Name of the local process using the RSPID

• Remote node from which a response is required (and has not yet been
received)

14 You can find the cdt-address for any active connection on the system in the CDT
summary page display of the SHOW CONNECTIONS command. CDT addresses are
also stored in many individual data structures related to SCS connections. These data
structures include class driver request packets (CDRPs) and unit control blocks (UCBs)
for class drivers that use SCS and cluster system blocks (CSBs) for the connection
manager.

SDA–167

System Dump Analyzer
SHOW RSPID

Examples

1. SDA> SHOW RSPID

VAXcluster data structures

--- Summary of Response Descriptor Table(RDT) 8037A4A8 ---

RSPID CDRP Address CDT Address Local Process Name Remote Node
----- ------------ ----------- ------------------ -----------

04C30000 803917B0 8037AB50 VMS$DISK_CL_DRVR SOWHAT
06260001 80804FA0 8037AF10 VMS$VAXcluster WALKIN
0C390002 807E0460 8037AD30 VMS$VAXcluster OLEO

.

.

.

The SHOW RSPID command shows the response IDs that are currently open for
all local connections in the VAXcluster system.

2. SDA> SHOW RSPID/CONNECTION=G37B7D0

VAXcluster data structures

--- Summary of Response Descriptor Table(RDT) 8037A4A8 ---

RSPID CDRP Address CDT Address Local Process Name Remote Node
----- ------------ ----------- ------------------ -----------

08B8001C 807F0300 8037B7D0 VMS$VAXcluster METEOR
0915001D 807F08A0 8037B7D0 VMS$VAXcluster METEOR

The SHOW RSPID/CONNECTION=G37B7D0 command displays only those
RSPIDs in use that are associated with the SCS connection whose CDT is at
address 8037B7D016.

SDA–168

System Dump Analyzer
SHOW SPINLOCKS

SHOW SPINLOCKS

Displays information taken from the data structures that provide system
synchronization in a multiprocessing environment.

The default qualifiers are /STATIC and /DYNAMIC.

Format

SHOW SPINLOCKS [/OWNED][/BRIEF | /FULL][/DYNAMIC | /STATIC]
[name | /ADDRESS=expression | /INDEX=expression]

Parameter

name
Name of the spin lock, fork lock, or device lock structure to be displayed.
You can obtain the names of the static system spin locks and fork locks from
Table SDA–22. Device lock names are of the form [node$]lock, where node
optionally indicates the VAXcluster node name (allocation class) and lock
indicates the device and controller identification (for example, HAETAR$DUA).

Qualifiers

/ADDRESS=expression
Displays the lock at the address specified in expression. You can use the
/ADDRESS qualifier to display a specific device lock; however, the name of the
device lock is listed as ‘‘Unknown’’ in the display.

/BRIEF
Produces a condensed display of the lock information displayed by default by
the SHOW SPINLOCKS command, including the following: address, spin lock
name or device name, IPL or device IPL, rank, index, ownership depth, number
of waiting CPUs, CPU ID of the owner CPU, and interlock status (depth of
ownership).

/DYNAMIC
Displays information for all device locks in the system.

/FULL
Displays full descriptive and diagnostic information for each displayed spin lock,
fork lock, or device lock.

/INDEX=expression
Displays the system spin lock whose index is specified in expression. You cannot
use the /INDEX qualifier to display a device lock.

/OWNED
Displays information for all spin locks, fork locks, and device locks owned by the
SDA current CPU. If a processor does not own any spin locks, SDA displays the
following message:

No spinlocks currently owned by CPU xx

The xx represents the CPU ID of the processor.

SDA–169

System Dump Analyzer
SHOW SPINLOCKS

/STATIC
Displays information for all system spin locks and fork locks.

Description

The SHOW SPINLOCKS command displays status and diagnostic information
about the multiprocessing synchronization structures known as spin locks.

A static spin lock is a spin lock whose data structure is permanently assembled
into the system. Static spin locks are accessed as indexes into a vector of
longword addresses called the spin lock vector, the address of which is
contained in SMP$AR_SPNLKVEC. System spin locks and fork locks are static
spin locks. Table SDA–22 lists the static spin locks.

A dynamic spin lock is a spin lock that is created based on the configuration
of a particular system. One such dynamic spin lock is the device lock SYSGEN
creates when configuring a particular device. This device lock synchronizes
access to the device’s registers and certain UCB fields. The operating system
creates a dynamic spin lock by allocating space from nonpaged pool, rather than
assembling the lock into the system as it does in creating a static spin lock.

See the OpenVMS VAX Device Support Manual15 for a full discussion of the
role of spin locks in maintaining synchronization of kernel mode activities in a
multiprocessing environment.

Table SDA–22 Static Spin Locks

Name Description

QUEUEAST Fork lock for queuing ASTs at IPL 6
FILSYS Lock on file system structures
IOLOCK8 Fork lock for executing a driver fork process at IPL 8
PR_LK8 Primary CPU’s private lock for IPL 8
TIMER Lock for adding and deleting timer queue entries and searching the timer

queue
JIB Lock for manipulating job nonpaged pool quotas as reflected by the fields

JIB$L_BYTCNT and JIB$L_BYTLM in the job information block (JIB)
MMG Lock on memory management, PFN database, swapper, modified page

writer, and creation of per-CPU database structures
SCHED Lock on process control blocks (PCBs), scheduler database, and mutex

acquisition and release structures
IOLOCK9 Fork lock for executing a driver fork process at IPL 9
PR_LK9 Primary CPU’s private lock for IPL 9
IOLOCK10 Fork lock for executing a driver fork process at IPL 10
PR_LK10 Primary CPU’s private lock for IPL 10
IOLOCK11 Fork lock for executing a driver fork process at IPL 11
PR_LK11 Primary CPU’s private lock for IPL 11

(continued on next page)

15 This manual has been archived but is available on the OpenVMS Documentation
CD-ROM.

SDA–170

System Dump Analyzer
SHOW SPINLOCKS

Table SDA–22 (Cont.) Static Spin Locks

Name Description

MAILBOX Lock for sending messages to mailboxes
POOL Lock on nonpaged pool database
PERFMON Lock for I/O performance monitoring
INVALIDATE Lock for system space translation buffer (TB) invalidation
VIRTCONS Lock for ownership of the virtual console
HWCLK Lock on hardware clock database, including the quadword containing the

due time of the first timer queue entry (EXE$GQ_1ST_TIME) and the
quadword containing the system time (EXE$GQ_SYSTIME)

MEGA Lock for serializing access to fork-wait queue
MCHECK Lock for synchronizing certain machine error handling
EMB Lock for allocating and releasing error logging buffers

Note

The MCHECK and EMB spin locks, formerly separate spin locks in
previous releases of OpenVMS, have been merged. When you analyze
a crash, you might see one or both names when you display static spin
locks.

For each spin lock, fork lock, or device lock in the system, SHOW SPINLOCKS
provides the following information:

• Name of the spin lock (or device name for the device lock)

• Address of the spin lock data structure (SPL)

• The owner CPU’s CPU ID

• IPL at which allocation of the lock is synchronized on a local processor

• Number of nested acquisitions of the spin lock by the processor owning the
spin lock (‘‘Ownership Depth’’)

• Rank of the spin lock

• Number of processors waiting to obtain the spin lock

• Spin lock index (for static spin locks only)

• Timeout interval for spin lock acquisition (in terms of 10 milliseconds)

SHOW SPINLOCKS/BRIEF produces a condensed display of this same
information.

If the system under analysis was executing with full-checking multiprocessing
enabled (according to the setting of the MULTIPROCESSING system parameter),
SHOW SPINLOCKS/FULL adds to the spin lock display the last eight PCs at
which the lock was acquired or released. If applicable, SDA also displays the PC
of the last release of multiple, nested acquisitions of the lock.

SDA–171

System Dump Analyzer
SHOW SPINLOCKS

Examples

1. SDA> SHOW SPINLOCKS

System static spinlock structures

EMB Address : 801B9EF8
Owner CPU ID : None IPL : 1F
Ownership Depth : 0000 Rank : 00
CPUs Waiting : 0000 Index : 20
Timeout interval 002DC60

MCHECK Address : 801B9F48
Owner CPU ID : None IPL : 1F
Ownership Depth : 0000 Rank : 01
CPUs Waiting : 0000 Index : 21
Timeout interval 002DC60

.

.

.
IOLOCK8 Address : 801BA538
Owner CPU ID : 02 IPL : 08
Ownership Depth : 0001 Rank : 14
CPUs Waiting : 0000 Index : 34
Timeout interval 002DC60

.

.

.
System dynamic spinlock structures

HAETAR$MBA Address : 801BA178
Owner CPU ID : None IPL : 0B
Ownership Depth : 0000 Rank : 08
CPUs Waiting : 0000 Index : 28
Timeout interval 002DC60

HAETAR$NLA Address : 801BA178
Owner CPU ID : None IPL : 08
Ownership Depth : 0000 Rank : 08
CPUs Waiting : 0000 Index : 28
Timeout interval 002DC60

HAETAR$PAA Address : 8063A620
Owner CPU ID : 02 DIPL : 14
Ownership Depth : 0001 Rank : 14
CPUs Waiting : 0000
Timeout interval 002DC60

.

.

.

This excerpt illustrates the default output of the SHOW SPINLOCKS
command. Note that the CPU whose CPU ID is 2 owns the fork lock
IOLOCK8. CPU 2 must have an IPL of at least 8, which is the acquisition
IPL of the fork lock. CPU 2 has no nested ownership of the fork lock. The
rank of IOLOCK8 is 1416, indicating that CPU 2 could not own any locks with
a logical rank of 1516 or higher when it acquired IOLOCK8.

Similarly, while owning IOLOCK8, CPU 2 cannot obtain any additional spin
locks with a logical rank of 1416 or lower.

No CPUs are waiting for the fork lock; its index is 3416.

SDA–172

System Dump Analyzer
SHOW SPINLOCKS

2. SDA> SHOW SPINLOCKS/BRIEF

Address Spinlock Name IPL Rank Index Depth #Waiting Owner CPU Interlock
--
801B9EF8 EMB 1F 00 20 00 0000 None Free
801B9EF8 MCHECK 1F 00 20 00 0000 None Free
801B9F98 MEGA 1F 02 22 00 0000 None Free
801B9FE8 HWCLK 16 03 23 00 0000 None Free
801BA038 VIRTCONS 14 04 24 00 0000 None Free
801BA088 INVALIDATE 13 05 25 00 0000 None Free
801BA0D8 PERFMON 0F 06 26 00 0000 None Free
801BA128 POOL 0B 07 27 00 0000 None Free
801BA178 MAILBOX 0B 08 28 00 0000 None Free
801BA1C8 PR_LK11 0B 09 29 00 0000 None Free
801BA218 IOLOCK11 0B 0A 2A 00 0000 None Free
801BA268 PR_LK10 0A 0B 2B 00 0000 None Free
801BA2B8 IOLOCK10 0A 0C 2C 00 0000 None Free
801BA308 PR_LK9 09 0D 2D 00 0000 None Free
801BA358 IOLOCK9 09 0E 2E 00 0000 None Free
801BA3A8 SCHED 08 0F 2F 00 0000 None Free
801BA3F8 MMG 08 10 30 00 0000 None Free
801BA448 JIB 08 11 31 00 0000 None Free
801BA498 TIMER 08 12 32 00 0000 None Free
801BA4E8 PR_LK8 08 13 33 00 0000 None Free
801BA538 IOLOCK8 08 14 34 01 0000 02 00
801BA588 FILSYS 08 15 35 00 0000 None Free
801BA5D8 QUEUEAST 06 16 36 00 0000 None Free
8016A628 ASTDEL 02 17 37 00 0000 None Free

Address Device Name DIPL Rank Index Depth #Waiting Owner CPU Interlock
--
801BA178 HAETAR$MBA 0B 08 28 00 0000 None Free
801BA178 HAETAR$NLA 08 08 28 00 0000 None Free
8063A620 HAETAR$PAA 14 14 01 0000 02 00
8063C5C0 HAETAR$XEA 15 FF 00 0000 None Free
8063C4A0 HAETAR$XGA 15 FF 00 0000 None Free
8063C380 HAETAR$PEA 14 FF 00 0000 None Free
8063AC40 HAETAR$TXA 15 FF 00 0000 None Free
8063A520 HAETAR$LCA 15 FF 00 0000 None Free
801BA538 HAETAR$CNA 08 14 34 01 0000 02 00

.

.

.

This excerpt illustrates the condensed form of the display produced in the
first example.

SDA–173

System Dump Analyzer
SHOW SPINLOCKS

3. SDA> SHOW SPINLOCKS/OWNED

System static spinlock structures

IOLOCK8 Address : 801BA538
Owner CPU ID : 02 IPL : 08
Ownership Depth : 0001 Rank : 14
CPUs Waiting : 0000 Index : 34
Timeout interval 002DC60

.

.

.
System dynamic spinlock structures

HAETAR$PAA Address : 8063A620
Owner CPU ID : 02 DIPL : 14
Ownership Depth : 0001 Rank : 14
CPUs Waiting : 0000
Timeout interval 002DC60

HAETAR$CNA Address : 801BA538
Owner CPU ID : 02 IPL : 08
Ownership Depth : 0001 Rank : 14
CPUs Waiting : 0000 Index : 34
Timeout interval 002DC60

HAETAR$NET Address : 801BA538
Owner CPU ID : 02 IPL : 08
Ownership Depth : 0001 Rank : 14
CPUs Waiting : 0000 Index : 34
Timeout interval 002DC60

HAETAR$NDA Address : 801BA538
Owner CPU ID : 02 IPL : 08
Ownership Depth : 0001 Rank : 14
CPUs Waiting : 0000 Index : 34
Timeout interval 002DC60

.

.

.

The SHOW SPINLOCKS/OWNED command shows all owned spin locks in
the system.

SDA–174

System Dump Analyzer
SHOW SPINLOCKS

4. SDA> SHOW SPINLOCKS/FULL

System static spinlock structures

EMB Address : 801B9EF8
Owner CPU ID : None IPL : 1F
Ownership Depth : 0000 Rank : 00
CPUs Waiting : 0000 Index : 20
Timeout interval 002DC60

Spinlock EMB was last acquired or released from:
(Most recently) 80195146 ERL$WAKE+00089

. 801950EF ERL$WAKE+00032

. 80195146 ERL$WAKE+00089

. 801950EF ERL$WAKE+00032

. 80195146 ERL$WAKE+00089

. 801950EF ERL$WAKE+00032

. 80195146 ERL$WAKE+00089
(Least recently) 801950EF ERL$WAKE+00032

.

.

.
Last release of multiple acquisitions occurred at:

801194F9 EXE$INSIOQ+00044
.
.
.

IOLOCK8 Address : 801BA538
Owner CPU ID : 02 IPL : 08
Ownership Depth : 0001 Rank : 14
CPUs Waiting : 0000 Index : 34
Timeout interval 002DC60

Spinlock IOLOCK8 was last acquired or released from:
(Most recently) 801BBE08 EXE$FORKDSPTH+0007E

. 80198EBF EXE$QIOACPPKT+00052

. 80198E7E EXE$QIOACPPKT+00011

. 80199BB2 IOC$CHECK_HWM+0032D

. 80182DE5 LCK$QUEUED_EXIT+0001D

. 80182884 LCK$AR_COMPAT_TBL+0007C

. 8018357E EXE$DEQ+00189
(Least recently) 80183428 EXE$DEQ+00033

.

.

.

The SHOW SPINLOCKS/FULL command displays a list of the last eight PCs
that have accessed the spin lock. For instance, the fork dispatcher contains
the code that most recently acquired the fork lock.

SDA–175

System Dump Analyzer
SHOW STACK

SHOW STACK

Displays the location and contents of the four process stacks of the SDA current
process and the interrupt stack of the SDA current CPU.

Format

SHOW STACK [range | /qualifier[,...]]

Parameters

range
Range of memory locations you want to display in stack format. You can express
a range using the following format:

m:n Range of virtual addresses from m to n
m;n Range of virtual addresses starting at m and continuing for n bytes

Qualifiers

/ALL
Displays the locations and contents of the four process stacks for the SDA current
process and the interrupt stack for the SDA current CPU.

/EXECUTIVE
Shows the executive stack for the SDA current process.

/INTERRUPT
Shows the interrupt stack for the SDA current CPU.

/KERNEL
Shows the kernel stack for the SDA current process.

/SUPERVISOR
Shows the supervisor stack for the SDA current process.

/USER
Shows the user stack for the SDA current process.

Description

The SHOW STACK command, by default, displays the stack that was in use when
the system failed or, in the analysis of a running system, the current operating
stack. For any other process made the SDA current process, the SHOW STACK
command by default shows its current operating stack.

The various qualifiers to the command can display any of the four per-process
stacks for the SDA current process, as well as the interrupt stack for the SDA
current CPU.

You can define SDA process and CPU context by using the SET CPU, SHOW
CPU, SHOW CRASH, SET PROCESS, and SHOW PROCESS commands as
indicated in their command descriptions. A complete discussion of SDA context
control appears in Section 4.

SDA–176

System Dump Analyzer
SHOW STACK

SDA provides the following information in each stack display.

Section Contents

Identity of stack SDA indicates whether the stack is a process stack
(user, supervisor, executive, or kernel) or the processor
interrupt stack. If the interrupt stack is being displayed,
SDA displays the CPU ID of the processor that owns
it. Similarly, if the SDA current process is currently
scheduled on a processor in the system, SHOW STACK
also specifies the CPU ID of the processor on which the
process is scheduled.

Stack pointer The stack pointer identifies the top of the stack. The
display indicates the stack pointer by the symbol SP =>.

Stack address SDA lists all the virtual addresses that the operating
system has allocated to the stack. The stack addresses
are listed in a column that increases in increments of 4
bytes (one longword).

Stack contents SDA lists the contents of the stack in a column to the
right of the stack addresses.

Symbols SDA attempts to display the contents of a location
symbolically, using a symbol and an offset.
If the address is not within FFF16 of the value of any
existing symbol, this column is left blank.

If a stack is empty, the display shows the following:

SP => (STACK IS EMPTY)

Example

SDA> SHOW STACK
Process stacks (on CPU 00)

Current operating stack (USER):

7FF73278 200C0000
7FF7327C 00001518 SGN$C_MAXPGFL+518
7FF73280 7FF732F0
7FF73284 000187A7 RMS$_ECHO+72E

SP => 7FF73288 0000060A BUG$_NOHDJMT+002
7FF7328C 00000000
7FF73290 00000003
7FF73294 7FF73800
7FF73298 7FF73800

The SHOW STACK command displays a user stack that was the current
operating stack for a process scheduled on CPU 00. The data shown above the
stack pointer might not be valid. The symbol to the right of the columns, BUG$_
NOHDJMT+002, is the result of the SDA attempt to interpret the contents of the
longword at the top of the stack as a symbol meaningful to the user. In this case,
the value on the stack and the value of BUG$_NOHDJMT are unrelated.

SDA–177

System Dump Analyzer
SHOW SUMMARY

SHOW SUMMARY

Displays a list of all active processes and the values of the parameters used in
swapping and scheduling those processes.

Format

SHOW SUMMARY [/IMAGE]

Parameters

None.

Qualifier

/IMAGE
Causes SDA to display, if possible, the name of the image being executed within
each process.

Description

The SHOW SUMMARY command displays the information in Table SDA–23 for
each active process in the system.

Table SDA–23 Process Information in the SHOW SUMMARY Display

Column Contents

Extended PID 32-bit number that uniquely identifies the process
Indx Index of this process into the PCB array
Process name Name assigned to the process
Username Name of the user who created the process

(continued on next page)

SDA–178

System Dump Analyzer
SHOW SUMMARY

Table SDA–23 (Cont.) Process Information in the SHOW SUMMARY Display

Column Contents

State Current state of the process, one of the following 14 states:

• COM
Computable and resident in memory

• COMO
Computable but outswapped

• CUR
Currently executing1

• CEF
Waiting for a common event flag

• LEF
Waiting for a local event flag

• LEFO
Outswapped and waiting for a local event flag

• HIB
Hibernating

• HIBO
Hibernating and outswapped

• SUSP
Suspended

• SUSPO
Suspended and outswapped

• PFW
Waiting for a page that is not in memory (page-fault
wait)

• FPG
Waiting to add a page to its working set (free-page wait)

• COLPG
Waiting for a page collision to be resolved (collided-page
wait); this usually occurs when several processes cause
page faults on the same shared page

• MWAIT
Waiting for a system resource (miscellaneous wait)

Pri Current scheduling priority of the process

1For a process in the CUR state executing in a multiprocessing environment, SDA indicates the CPU
ID of the processor on which the process is current. This information, however, might not be accurate
in SHOW SUMMARY displays produced in the analysis of a running system.

(continued on next page)

SDA–179

System Dump Analyzer
SHOW SUMMARY

Table SDA–23 (Cont.) Process Information in the SHOW SUMMARY Display

Column Contents

PCB Address of the process control block
PHD Address of the process header
Wkset Number (in decimal) of pages currently in the working set of

the process

Example

SDA> SHOW SUMMARY/IMAGE

Current process summary

Extended Indx Process name Username State Pri PCB PHD Wkset
-- PID -- ---- --------------- ----------- ------- --- -------- -------- -----
33C00101 0001 SWAPPER HIB 16 8000C3C0 8000C200 0
33C00205 0005 _RTA5: SIVAD LEF 4 80482FE0 82120E00 293
33C00106 0006 ERRFMT SYSTEM HIB 8 80432950 80DB4600 126

254DUA200:[SYS6.SYSCOMMON.][SYSEXE]ERRFMT.EXE;1
33C00107 0007 CACHE_SERVER SYSTEM HIB 16 80432AC0 81121E00 120

254DUA200:[SYS6.SYSCOMMON.][SYSEXE]FILESERV.EXE;400
33C00108 0008 CLUSTER_SERVER SYSTEM HIB 10 804331F0 81246600 313

254DUA200:[SYS6.SYSCOMMON.][SYSEXE]CSP.EXE;300
.
.
.

33C0010D 000D NETACP DECNET CUR 00 10 8044C6D0 816D8600 1500
254DUA200:[SYS6.SYSCOMMON.]<SYSEXE>NETACP.EXE;3

33C0010E 000E EVL DECNET HIB 4 8044CD60 817FCE00 68
254DUA200:[SYS6.SYSCOMMON.]<SYSEXE>EVL.EXE

.

.

.

The SHOW SUMMARY/IMAGE command describes all active processes in the
system at the time of the system failure. Note that the process NETACP is in the
CUR state on CPU 00 of a multiprocessor system at the time of the failure.

SDA–180

System Dump Analyzer
SHOW SYMBOL

SHOW SYMBOL

Displays the hexadecimal value of a symbol and, if the value is equal to an
address location, the contents of that location.

Format

SHOW SYMBOL [/ALL] symbol-name

Parameter

symbol-name
Name of the symbol to be displayed. You must provide a symbol-name.

Qualifier

/ALL
Displays information about all symbols whose names begin with the characters
specified in symbol-name.

Description

The SHOW SYMBOL/ALL command is useful for determining the values of
symbols that belong to a symbol set, as illustrated in the examples.

Examples

1. SDA> SHOW SYMBOL G
G = 80000000 : 8FBC0FFC

The SHOW SYMBOL command evaluates the symbol G as 8000000016 and
displays the contents of address 8000000016 as 8FBC0FFC16.

2. SDA> SHOW SYMBOL/ALL BUG

Symbols sorted by name

BUG$BUILD_HEADE 80002038 => 24A89F16 BUG$_CONSOLRX50 00000640 => 10A2020E
BUG$DUMP_REGIST 80002040 => 24A89F16 BUG$_CONTRACT 000000C0
BUG$FATAL 80002048 => 24A89F16 BUG$_CPUBUSYWAI 00000780 => 6501FB30
BUG$L_BUGCHK_FL 80004108 => 00000001 BUG$_CPUCEASED 000005E8 => 5EDD0000
BUG$L_FATAL_SPS 8000410C => 7FFE7C6C BUG$_CPUEXIT 000006B8 => 218FD007
BUG$READ_ERR_RE 80002050 => 24A89F16 BUG$_CPUSANITY 00000778 => 8A031164
BUG$REBOOT 80002058 => 6E9E9F17 BUG$_CTERM 00000678 => 00000004
BUG$TABLE 8000D09E => 00280001 BUG$_CWSERR 00000698 => 004C414E

.

.

.

This example shows the display produced by the SHOW SYMBOL/ALL
command. SDA searches its symbol table for all symbols that begin with the
string ‘‘BUG’’ and displays the symbols and their values. Although certain
values equate to memory addresses, it is doubtful that the contents of those
addresses are actually relevant to the symbol definitions in this instance.

SDA–181

System Dump Analyzer
SHOW TRANSACTIONS

SHOW TRANSACTIONS

Displays information about all transactions on the node or about a specified
transaction.

Format

SHOW TRANSACTIONS [/qualifier[,...]]

Qualifiers

/DISPLAY=(item [,...])
Specifies the type of information to be displayed. The argument to /DISPLAY can
be either a single item or a list. The following items can be specified.

Item Description

ALL All transaction control structures for the specified
transaction. This is the default behavior.

BRANCHES Control structures for branches of the specified
transaction.

PARTICIPANTS Control structures for resource managers participating
in the specified transaction.

THREADS Control structures for threads of the specified
transaction.

TRANSACTIONS Transaction control structures for the specified
transaction.

/SUMMARY
Displays statistics for transactions on the node. The /SUMMARY qualifier cannot
be used with the /TID or /DISPLAY qualifier.

/TID=tid
Specifies the transaction for which information is to be displayed. If you omit the
/TID qualifier, the SHOW TRANSACTIONS command displays information about
all transactions on the node.

Examples

1. SDA> SHOW TRANSACTIONS/TID=FAC21DE2-BA88-0092-8FA6-00000000B24B

The SHOW TRANSACTIONS command displays all the transaction control
structure information for the transaction identified by the transaction identifier.

2. SDA> SHOW TRANSACTIONS/DISPLAY=(PARTICIPANTS, BRANCHES)

The SHOW TRANSACTIONS command displays the transaction branch and
resource manager information for all transactions on the node.

SDA–182

System Dump Analyzer
SPAWN

SPAWN

Creates a subprocess of the process currently running SDA, copying the context
of the current process to the subprocess and, optionally, executing within the
subprocess a specified command.

Format

SPAWN [/qualifier[,...]] [command]

Parameter

command
Name of the command that you want executed by the subprocess.

Qualifiers

/INPUT=filespec
Specifies an input file containing one or more command strings to be executed
by the spawned subprocess. If you specify a command string with an input file,
the command string is processed before the commands in the input file. Once
processing is complete, the subprocess is terminated.

/NOLOGICAL_NAMES
Specifies that the logical names of the parent process are not to be copied to the
subprocess. The default behavior is that the logical names of the parent process
are copied to the subprocess.

/NOSYMBOLS
Specifies that the DCL global and local symbols of the parent process are not
to be passed to the subprocess. The default behavior is that these symbols are
passed to the subprocess.

/NOTIFY
Specifies that a message is to be broadcast to SYS$OUTPUT when the subprocess
completes processing or aborts. The default behavior is that such a message is
not sent to SYS$OUTPUT.

When you use this qualifier, you must also specify the /NOWAIT qualifier.

/NOWAIT
Specifies that the system is not to wait until the subprocess is completed before
allowing more commands to be specified. This qualifier allows you to specify new
commands while the spawned subprocess is running. If you specify /NOWAIT, you
should use /OUTPUT to direct the output of the subprocess to a file to prevent
more than one process from simultaneously using your terminal.

The default behavior is that the system waits until the subprocess is completed
before allowing more commands to be specified.

/OUTPUT=filespec
Specifies an output file to which the results of the SPAWN operation are written.
You should specify an output other than SYS$OUTPUT whenever you specify
/NOWAIT to prevent output from the spawned subprocess from being displayed
while you are specifying new commands. If you omit the /OUTPUT qualifier,
output is written to the current SYS$OUTPUT device.

SDA–183

System Dump Analyzer
SPAWN

/PROCESS=process-name
Specifies the name of the subprocess to be created. The default name of the
subprocess is username_n, where username is the user name of the parent
process.

Example

SDA> SPAWN
$ MAIL

.

.

.
$ DIR

.

.

.
$ LO

Process SYSTEM_1 logged out at 5-MAR-1993 15:42:23.59
SDA>

This example uses the SPAWN command to create a subprocess that issues DCL
commands to invoke the Mail utility. The subprocess then lists the contents of a
directory before logging out to return to the parent process executing SDA.

SDA–184

System Dump Analyzer
VALIDATE QUEUE

VALIDATE QUEUE

Validates the integrity of the specified queue by checking the pointers in the
queue.

Format

VALIDATE QUEUE [address] [/qualifier[,...]]

Parameter

address
Address of an element in a queue.

If you specify a period (.) as the address, SDA uses the last evaluated expression
as the queue element’s address.

If you do not specify an address, the VALIDATE QUEUE command determines
the address from the last issued VALIDATE QUEUE command in the current
SDA session.

If you do not specify an address, and no queue has previously been specified,
SDA displays the following error message:

%SDA-E-NOQUEUE, no queue has been specified for validation

Qualifiers

/MAXIMUM_LINKS=nn
Specifies the number of entries in the queue that are to be validated.

/SELF_RELATIVE
Specifies that the selected queue is a self-relative queue.

Description

The VALIDATE QUEUE command uses the forward and backward pointers in
each element of the queue to make sure that all such pointers are valid and
that the integrity of the queue is intact. If the queue is intact, SDA displays the
following message:

Queue is complete, total of n elements in the queue

In these messages, n represents the number of entries the VALIDATE QUEUE
command has found in the queue.

If SDA discovers an error in the queue, it displays one of the following error
messages:

Error in forward queue linkage at address nnnnnnnn after tracing x elements
Error comparing backward link to previous structure address (nnnnnnnn)
Error occurred in queue element at address oooooooo after tracing pppp elements

These messages can appear frequently when the VALIDATE QUEUE command
is used within an SDA session that is analyzing a running system. In a running
system, the composition of a queue can change while the command is tracing its
links, thus producing an error message.

SDA–185

If there are no entries in the queue, SDA displays this message:

The queue is empty

Examples

1. SDA> VALIDATE QUEUE SCH$GQ_LEFWQ/MAXIMUM_LINKS=3
The queue is consistent through 3 elements

This example validates three elements in the SCH$GQ_LEFWQ queue.

2. SDA> VALIDATE QUEUE/SELF_RELATIVE IOC$GL_IRPFL
Queue is complete, total of 159 elements in the queue

This example validates the self-relative queue that is the IRP pool list. The
validation is successful and determines that there are 159 IRPs in the list.

SDA–186

Index

A
Access violations, SDA–21, SDA–23
ACP (ancillary control process), SDA–104
Addition operator (+), SDA–16
Addresses, examining, SDA–53
/ADDRESS qualifier, SDA–90, SDA–103,

SDA–142
/ALL qualifier, SDA–53, SDA–121, SDA–131,

SDA–149, SDA–161, SDA–181
SHOW PAGE_TABLE command, SDA–126
SHOW STACK command, SDA–176

AMB symbol, SDA–17
ANALYZE/CRASH_DUMP/RELEASE command,

SDA–5
ANALYZE/CRASH_DUMP command, SDA–9,

SDA–35
ANALYZE/SYSTEM command, SDA–3, SDA–35
ANALYZE command, SDA–35

/CRASH_DUMP qualifier, SDA–37
/RELEASE qualifier, SDA–38
/SYMBOL qualifier, SDA–39
/SYSTEM qualifier, SDA–40

Analyzing a crash dump
See Crash dumps
See System failures

Analyzing a running system, SDA–11, SDA–40
privileges required, SDA–11, SDA–35

AND operator (&), SDA–16
AP (argument pointer), SDA–17
AP symbol, SDA–17
AQBs (ACP queue blocks), SDA–105
Arithmetic operators, SDA–16

shifting (@), SDA–17
ASBs (asynchronous save blocks), SDA–79
ASTLVL register, displaying, SDA–95
AST routines, global symbols, SDA–63
ATTACH command, SDA–45

B
Backup utility (BACKUP), copying system dump

file, SDA–7
Bad page list, displaying, SDA–131

/BAD qualifier, SDA–131
BDBs (buffer descriptor blocks), SDA–79
BDBSUM (BDB summary page), SDA–79
Binary operators, SDA–16 to SDA–17
BLBs (buffer lock blocks), SDA–79
BLBSUM (BLB summary page), SDA–79
Bugchecks

code, SDA–19
fatal conditions, SDA–20 to SDA–24
global symbols, SDA–63
halt/restart, SDA–9
handling routines, SDA–63
identifying, SDA–25
reasons for taking, SDA–99

/BUS qualifier, SDA–142

C
/CACHED qualifier, SDA–121
Call frames

displaying in SDA, SDA–82
following a chain, SDA–82

Cancel I/O routine, SDA–104
CCBs (channel control blocks), displaying in SDA,

SDA–79
CDDBs (class driver data blocks), SDA–105
CDDB symbol, SDA–17
CDRPs (class driver request packets), SDA–90,

SDA–167
CDTs (connection descriptor tables), SDA–167

displaying contents, SDA–90
displaying SDA information, SDA–90

/CHANNEL qualifier, SDA–142, SDA–154
CLUBs (cluster blocks), SDA–86
CLUDCBs (cluster quorum disk control blocks),

SDA–86
CLUFCBs (cluster failover control blocks),

SDA–86
Cluster management code, global symbols,

SDA–63
CLUSTRLOA.STB file, SDA–63
CLUSTRLOA symbol, SDA–17
Condition-handling routines, global symbols,

SDA–63
Condition values

evaluating, SDA–51
examining, SDA–53

Index–1

/CONDITION_VALUE qualifier, SDA–51
Connection manager, displaying SDA information,

SDA–85
/CONNECTION qualifier, SDA–167
Connections

displaying SDA information about, SDA–142,
SDA–167

Connections, displaying SDA information about,
SDA–90

Context
SDA CPU, SDA–14
SDA process, SDA–12

Control blocks, formatting, SDA–58
Control region, SDA–18

base register, SDA–18
examining, SDA–54
length register, SDA–18
page table, displaying, SDA–150

Control region operator (H), SDA–16
COPY command, SDA–5, SDA–6, SDA–46
CPU context

changing, SDA–94
SDA current, SDA–71
using the SET PROCESS command,

SDA–77
using the SHOW CPU command, SDA–94
using the SHOW CRASH command,

SDA–98
using the SHOW PROCESS command,

SDA–149
displaying, SDA–94

CPU identification number, SDA–94
CPULOA.EXE file, global symbols, SDA–63
Crash dumps

See System failures
file headers, SDA–112
incomplete, SDA–9
privileges required, SDA–35
requirements, SDA–8
short, SDA–9

/CRASH_DUMP qualifier, SDA–9
CRBs (channel request blocks), SDA–104
CRB symbol, SDA–17
CREATE command, SDA–4
CSBs (cluster system blocks), SDA–85, SDA–90
/CSID qualifier, SDA–85
CSIDs (cluster system identification numbers),

SDA–85, SDA–162
Current location symbol (.), SDA–17

D
Data structures

formatting, SDA–58
stepping through a linked list, SDA–67

DCLDEF.STB file, SDA–63
DCL interpreter, global symbols, SDA–63
DDBs (device data blocks), SDA–104
DDB symbol, SDA–17
DDTs (driver dispatch tables), SDA–104
DDT symbol, SDA–17
Decimal value of an expression, SDA–51
DECnet data structures, global symbols, SDA–63
DEFINE command, SDA–47
Device driver routines, address, SDA–104
Device drivers

base address of driver prologue table (DPT),
SDA–18

locating, SDA–18
locating a failing instruction, SDA–27

/DEVICE qualifier, SDA–142
Devices, displaying SDA information, SDA–103
Division operator (/), SDA–17
DPT base address, SDA–27
DPTs (driver prologue tables), SDA–104
DRIVER symbol

See nnDRIVER symbol
DUMPBUG system parameter, SDA–4, SDA–32
Dump files

analyzing, SDA–35
copying the contents, SDA–46

DUMPSTYLE system parameter, SDA–6
DUMP subset, SDA–6

E
/ECHO qualifier, DEFINE command, SDA–48
ERRORLOG.EXE file, SDA–63
ERRORLOGBUFFERS system parameter, SDA–4
Error logging

global symbols, SDA–63
routines, SDA–63

ESP symbol, SDA–18
EVALUATE/PSL command, SDA–26
EVALUATE command, SDA–51
Event flag routines, global symbols, SDA–63
EVENT_FLAGS_AND_ASTS.EXE file, global

symbols, SDA–63
EXAMINE/INSTRUCTION command, SDA–26
EXAMINE command, SDA–20, SDA–28, SDA–53
EXCEPTION.EXE file, global symbols, SDA–63
Exception-handling routines, global symbols,

SDA–63
Exceptions

fatal, SDA–20
identifying causes of, SDA–25

Execute procedure (@) command, SDA–44
Executive images

contents, SDA–63, SDA–110
global symbols, SDA–62

Index–2

/EXECUTIVE qualifier, SDA–62, SDA–176
Executive stack pointer, SDA–18
EXIT command, SDA–57
Expressions, SDA–15, SDA–19
Expressions, evaluating, SDA–51

F
FABs (file access blocks), SDA–79
Fatal exceptions, SDA–20
FATALEXCPT bugcheck, SDA–21
FCBs (file control blocks), SDA–79
Floating-point emulation code, base address,

SDA–18
FORMAT command, SDA–29, SDA–58, SDA–67
FPEMUL symbol, SDA–18
FP symbol, SDA–18
Frame pointers, SDA–18
Free page list, displaying, SDA–131
/FREE qualifier, SDA–131, SDA–135
FWAs (file work areas), SDA–79

G
GBDs (global buffer descriptors), summary page,

SDA–79
GBHs (global buffer headers), SDA–79
GBSBs (global buffer synchronization blocks),

SDA–79
Global page tables, displaying, SDA–126
/GLOBAL qualifier, SDA–126
G operator, SDA–16
G symbol, SDA–18

H
/HEADER qualifier, SDA–135
HELP command, SDA–60
HELP command, recording output, SDA–74
Hexadecimal value of an expression, SDA–51
H operator, SDA–16
H symbol, SDA–18

I
I/O databases, displaying SDA information,

SDA–103
ICCS register, displaying, SDA–95
IDBs (interrupt dispatch blocks), SDA–104
/ID qualifier, SDA–149
IDXs (index descriptors), SDA–79
IFABs (internal file access blocks), SDA–79
IFIs (internal file identifiers), SDA–79
/IF_STATE qualifier, SDA–48
Image activator

global symbols, SDA–63

Image activator, global symbol, SDA–63
Image I/O structures, SDA–80
/IMAGE qualifier, SDA–178
/IMAGES qualifier, SDA–149
IMAGE_MANAGEMENT.EXE file, global symbols,

SDA–63
IMGDEF.STB file, SDA–63
/INDEX qualifier, SDA–76, SDA–149
/INPUT qualifier, SDA–183
/INSTRUCTION qualifier, on EXAMINE command,

SDA–53
Interlocked queues, validating, SDA–185
/INTERRUPT qualifier, SDA–176
Interrupt stack, displaying contents, SDA–176
INVEXCEPTN bugcheck, SDA–21
IO_ROUTINES.EXE file, global symbols, SDA–64
IPL$_ASTDEL value, PGFIPLHI bugcheck,

SDA–23
IRABs (internal record access blocks), SDA–79
IRPs (I/O request packets), SDA–104
IRP symbol, SDA–18

J
JFBs (journaling file blocks), SDA–79
JIBs (job information blocks), SDA–152
JIB symbol, SDA–18

K
/KERNEL qualifier, SDA–176
Kernel stacks

displaying contents, SDA–176
pointer, SDA–18

/KEY qualifier, SDA–48
Keys (in records), defining for SDA, SDA–47
KSP symbol, SDA–18

L
Linker map, use in crash dump analysis, SDA–20
LKBs (lock blocks)

definition, SDA–122
displaying only cached, SDA–121

LMF$GROUP_TABLE.EXE file, global symbols,
SDA–64

LNM symbol, SDA–18
Location in memory

examining, SDA–53
SDA default, SDA–53
translating to MACRO instruction, SDA–53

/LOCKID qualifier, SDA–161
LOCKING.EXE file, SDA–64
Lock management routines, global symbols,

SDA–64

Index–3

Lock manager, displaying SDA information,
SDA–121

Lock mode, SDA–162
Locks, displaying SDA information, SDA–161
/LOCKS qualifier, SDA–150
Logical operators, SDA–16

AND (&), SDA–16
NOT (#), SDA–16
OR (|), SDA–16
XOR (\), SDA–16

LOGICAL_NAMES.EXE file, global symbols,
SDA–64

M
MA780 multiport memory, configuring a dump file

for, SDA–5
Machine check code, base address, SDA–18
MACRO instruction, formatting memory with

SDA, SDA–53
Mathematical operators, SDA–16
MCHK symbol, SDA–18
Mechanism arrays, SDA–21, SDA–25
Memory

contents of a block
formatting, SDA–58

locations
decoding, SDA–55
examining, SDA–53, SDA–54

regions, SDA–56
/MESSAGE qualifier, SDA–142
MESSAGE_ROUTINES.EXE file, global symbols,

SDA–64
Modified page list, displaying, SDA–131
/MODIFIED qualifier, SDA–131
Modules, finding failing, SDA–27
MSCP server code, base address, SDA–18
MSCP symbol, SDA–18
Multiplication operator (*), SDA–16
Multiprocessing, global symbols, SDA–64
Multiprocessors

analyzing crash dumps, SDA–12
displaying synchronization structures,

SDA–169

N
NAMs (name blocks), SDA–79
Negative operator (–), SDA–16
NETDEF.STB file, SDA–63
nnDRIVER symbol, SDA–18
/NODE qualifier, SDA–85, SDA–90
/NOLOGICAL_NAMES qualifier, SDA–183
Nonpaged dynamic storage pool, displaying

contents, SDA–135
/NONPAGED qualifier, SDA–135

/NOSKIP qualifier, SDA–54
/NOSUPPRESS qualifier, SDA–54
/NOSYMBOLS qualifier, SDA–183
/NOTIFY qualifier, SDA–183
NOT operator (#), SDA–16
/NOWAIT qualifier, SDA–183
NWAs (network work areas), SDA–79

O
OpenVMS RMS

See RMS
Operators

precedence of, SDA–16, SDA–17
ORB symbol, SDA–18
OR operator (|), SDA–16
/OUTPUT qualifier, SDA–183

P
PFNs (page frame numbers)
P0BR register, displaying, SDA–95
P0BR symbol, SDA–18
P0LR register, displaying, SDA–95
P0LR symbol, SDA–18
P0 page table, displaying, SDA–150
/P0 qualifier, SDA–150
P0 region, examining, SDA–54
P1BR register, displaying, SDA–95
P1BR symbol, SDA–18
P1LR register, displaying, SDA–95
P1LR symbol, SDA–18
P1 page table, displaying, SDA–150
/P1 qualifier, SDA–54, SDA–150
P1 region, examining, SDA–54
Paged dynamic storage pool, displaying contents,

SDA–135
/PAGED qualifier, SDA–135
Page faults, illegal, SDA–23
Page files

See SYS$SYSTEM:PAGEFILE.SYS file
using as system dump file, SDA–8

Page tables
displaying, SDA–150

Page tables, displaying, SDA–126
PAGE_MANAGEMENT.EXE file, global symbols,

SDA–64
/PAGE_TABLES qualifier, SDA–150
Parentheses (), as precedence operators, SDA–17
/PARENT qualifier, SDA–45
/PARTICIPANTS qualifier, SDA–150
PBs (path blocks), SDA–104
PCBB register, displaying, SDA–95
/PCB qualifier, SDA–150
PCBs (process control blocks), SDA–180

displaying, SDA–150, SDA–151
hardware, SDA–153

Index–4

PCB symbol, SDA–18
PCs (program counters), SDA–18
PCs (program counters), in a crash dump,

SDA–19
PC symbol, SDA–18
PDTs (port descriptor tables), SDA–142
PDT symbol, SDA–18
PFN database, SDA–126
PFN database, displaying, SDA–131
PGFIPLHI bugcheck, SDA–23
/PHD qualifier, SDA–150
PHDs (process headers), SDA–180
PHDs (process headers), displaying, SDA–150
PHD symbol, SDA–18
PID numbers

SDA uses to extract correct index, SDA–149
Pool lists

displaying contents, SDA–135
statistics about, SDA–135

Port drivers, displaying SDA information,
SDA–85

Ports, displaying SDA information, SDA–142
Positive operator (+), SDA–16
Precedence operators, parentheses used as,

SDA–17
PRIMITIVE_IO.EXE file, global symbols, SDA–64
Process contexts, changing, SDA–71, SDA–76,

SDA–98, SDA–149
Process control region, SDA–18
Process control region, operatior (H), SDA–16
Processes

channel, SDA–149
displaying

SDA information, SDA–149, SDA–178
examining hung, SDA–11
image, SDA–178
listening, SDA–86
lock, SDA–150
scheduling state, SDA–153, SDA–179
spawning a subprocess, SDA–183

Process indexes, SDA–149
Process names, SDA–149
Processor context, changing, SDA–71, SDA–77,

SDA–94, SDA–98, SDA–149
Processor-specific loadable code, base address,

SDA–18
Processor status longwords

See PSLs
Processor types, displaying, SDA–95
Process-permanent I/O structures, SDA–80
/PROCESS qualifier, SDA–184
PROCESS_MANAGEMENT.EXE file, global

symbols, SDA–64
/PROCESS_SECTION_TABLE qualifier, SDA–150
Program regions

base register, SDA–18
displaying page tables, SDA–150
examining, SDA–54

Program regions (cont’d)
length register, SDA–18

/PSL qualifier, SDA–54
PSLs (processor status longwords)

evaluating, SDA–26, SDA–51
examining, SDA–54
symbol, SDA–18

/PST qualifier, SDA–150
PSTs (process section tables) displaying, SDA–150
/PTE qualifier, SDA–51, SDA–54
PTEs (page table entries)

evaluating, SDA–51
examining, SDA–54

2P_CDDB symbol, SDA–17
2P_UCB symbol, SDA–17

Q
Queues

stepping through, SDA–67
validating, SDA–185

R
RABs (record access blocks), SDA–80
Radixes, default, SDA–16
Radix operators, SDA–16
RDTs (response descriptor tables), SDA–167
READ/EXECUTIVE command, SDA–20
READ command, SDA–62
READ command, SYS$DISK, SDA–63
Recovery unit system services, global symbols,

SDA–64
RECOVERY_UNIT_SERVICES.EXE file, global

symbols, SDA–64
Registers

displaying, SDA–94, SDA–150
general, SDA–18

/REGISTERS qualifier, SDA–150
/RELEASE qualifier, SDA–5
/RELOCATE qualifier, SDA–62
REPEAT command, SDA–67
Report system event, global symbols, SDA–64
Resources, displaying SDA information, SDA–161
Ring buffer, nonpaged pool history, SDA–135
/RING_BUFFER qualifier, SDA–135
RLBs (record lock blocks), SDA–80
RMS

data structures shown by SDA, SDA–79
displaying data structures, SDA–151, SDA–166
global symbols, SDA–63, SDA–64
image

base address, SDA–18
symbol, SDA–18

RMS.EXE file, SDA–64
RMSDEF.STB file, SDA–63

Index–5

/RMS qualifier, SDA–151
RSBs (resource blocks), SDA–122, SDA–161
RSPID (response ID), displaying SDA information,

SDA–167
RUBs (recovery unit blocks), SDA–80
RUFBs (recovery unit file blocks), SDA–80
RUSBs (recovery unit stream blocks), SDA–80
RWAITCNT symbol, SDA–18

S
S0 region, examining, SDA–54
SAVEDUMP system parameter, SDA–5
SBR register, displaying, SDA–95
SBs (system blocks), SDA–86, SDA–104
SB symbol, SDA–18
SCBB register, displaying, SDA–95
Schedulers, global symbols, SDA–64
SCS (System Communications Services)

base address, SDA–18
displaying SDA information, SDA–85, SDA–86,

SDA–90, SDA–142, SDA–167
global symbols, SDA–63

SCSDEF.STB file, SDA–63
SCSLOA symbol, SDA–18
/SCS qualifier, SDA–85
SDA$INIT logical name, SDA–10
SDA current CPU

changing, SDA–14
displaying, SDA–176
implicitly setting using /SYSTEM qualifier,

SDA–149
implicitly setting using SHOW CRASH

command, SDA–98
selecting using SET CPU command, SDA–71
selecting using SET PROCESS command,

SDA–77
using the SHOW CPU command, SDA–94

SDA current process
changing, SDA–12
changing using SHOW CRASH command,

SDA–98
displaying, SDA–176
implicitly changed, SDA–14, SDA–71
implicitly setting using /SYSTEM qualifier,

SDA–149
selecting using SET PROCESS command,

SDA–76
SDA symbol table, SDA–17

building, SDA–10
expanding, SDA–10

SEARCH command, SDA–69
SECURITY.EXE file, global symbols, SDA–64
Self-relative queue, validating, SDA–185
/SELF_RELATIVE qualifier, SDA–185
SET CPU command, SDA–14, SDA–71

SET CPU command, analyzing a running system,
SDA–11

SET LOG command, SDA–74
SET LOG command, compared with SET OUTPUT

command, SDA–74
SET NOLOG command, SDA–74
SET OUTPUT command, SDA–75
SET OUTPUT command, compared with SET LOG

command, SDA–74
SET PROCESS command, SDA–12, SDA–76
SET RMS command, SDA–79
/SET_STATE qualifier, SDA–48
SFSBs (shared file synchronization blocks),

SDA–80
Shadow sets, displaying SDA information,

SDA–105
Shifting operator (@), SDA–17
SHOW CALL_FRAME command, SDA–68,

SDA–82
SHOW CLUSTER command, SDA–85
SHOW CONNECTIONS command, SDA–90
SHOW CPU command, SDA–14, SDA–71,

SDA–94
analyzing a running system, SDA–11

SHOW CRASH command, SDA–14, SDA–19,
SDA–21, SDA–71, SDA–98

SHOW CRASH command, analyzing a running
system, SDA–11

SHOW DEVICE command, SDA–20, SDA–27,
SDA–103

SHOW EXECUTIVE command, SDA–20,
SDA–110

SHOW HEADER command, SDA–112
SHOW LAN command, SDA–113
SHOW LOCK command, SDA–121
SHOW LOGS command, SDA–125
SHOW MEMORY command, SDA–4
SHOW PAGE_TABLE command, SDA–26,

SDA–126
SHOW PFN_DATA command, SDA–131
SHOW POOL command, SDA–135
SHOW PORTS command, SDA–142
SHOW PROCESS/ALL command, SDA–152
SHOW PROCESS/LOCKS command, SDA–121
SHOW PROCESS/RMS command, SDA–166
SHOW PROCESS/RMS command, selecting

display options, SDA–80
SHOW PROCESS command, SDA–77, SDA–149
SHOW RESOURCE command, SDA–121,

SDA–161
SHOW RMS command, SDA–166
SHOW RSPID command, SDA–167
SHOW SPINLOCKS command, SDA–170
SHOW STACK command, SDA–25, SDA–176
SHOW SUMMARY command, SDA–149,

SDA–178

Index–6

SHOW SYMBOL command, SDA–181
SHOW TRANSACTIONS command, SDA–182
Shutdown, operator-requested, SDA–7
SID register, displaying, SDA–95
Signal array, SDA–22
SISR register, displaying, SDA–95
Site-specific startup procedure

See SYS$MANAGER:SYSTARTUP_VMS.COM
SLR register, displaying, SDA–95
SPAWN command, SDA–183
Spin locks

displaying SDA information, SDA–169
owned, SDA–95

SPRs (Software Performance Reports), SDA–3,
SDA–31

SP symbol, SDA–18
SPTs (system page tables)

displaying, SDA–26, SDA–126
in system dump file, SDA–4, SDA–9

SSP symbol, SDA–18
SSRVEXCEPT bugcheck, SDA–21
Stack frames

displaying in SDA, SDA–82
following a chain, SDA–82

Stack pointer, SDA–18
Stacks, displaying contents, SDA–176
Start I/O routine, SDA–104
/STATISTICS qualifier, SDA–135
Subprocesses, SDA–183
Subtraction operator (–), SDA–16
/SUMMARY qualifier, SDA–136
/SUPERVISOR qualifier, SDA–176
Supervisor stack

displaying contents, SDA–176
pointer to, SDA–18

Swapper, global symbols, SDA–65
Symbols, SDA–17 to SDA–19

defining
for SDA, SDA–47

displaying, SDA–19
evaluating, SDA–181
finding in memory location, SDA–27
listing, SDA–181
loading into the SDA symbol table, SDA–62
name, SDA–17, SDA–47
representing executive modules, SDA–110
user-defined, SDA–47

SYMBOLS qualifier, for SDA EVALUATE
command, SDA–51

Symbol table files, reading into SDA symbol table,
SDA–62

Symbol tables
See SDA symbol table
See system symbol table
specifying an alternate SDA, SDA–39

SYS$DISK logical name, SDA–63
SYS$MANAGER:SYSTARTUP_VMS.COM

command procedure
invoking SDA, SDA–7
producing an SDA listing, SDA–7
releasing page file blocks, SDA–5

SYS$SYSTEM:OPCCRASH.COM command
procedure

involvement in writing crash dump, SDA–7
SYS$SYSTEM:PAGEFILE.SYS file, SDA–8,

SDA–32
See System dump files
as dump file, SDA–5
releasing blocks containing a crash dump,

SDA–38
SYS$SYSTEM:REQSYSDEF.STB file, SDA–8,

SDA–10
SYS$SYSTEM:SHUTDOWN.COM command

procedure, involvement in writing crash dump,
SDA–7

SYS$SYSTEM:SYS.EXE file, SDA–62
SYS$SYSTEM:SYS.EXE file, contents, SDA–63,

SDA–110
SYS$SYSTEM:SYS.STB file, SDA–8, SDA–10,

SDA–11, SDA–20
SYS$SYSTEM:SYSDEF.STB file, SDA–10
SYS$SYSTEM:SYSDUMP.DMP file, SDA–32

See System dump files
protection, SDA–7
size of, SDA–4

SYSAP (system application), SDA–167
/SYSAP qualifier, SDA–90
SYSDEVICE.EXE file, global symbols, SDA–64
SYSGETSYI.EXE file, global symbols, SDA–64
SYSLICENSE.EXE file, global symbols, SDA–64
SYSLOA symbol, SDA–18
SYSMSG.EXE file, global symbols, SDA–64
System Dump Analyzer utility (SDA)

commands, SDA–15 to SDA–19
exiting, SDA–57

System dump files, SDA–4 to SDA–6
copying, SDA–6
header, SDA–7
mapping physical memory to, SDA–9
requirements for analysis, SDA–8
saving, SDA–6
size, SDA–4

System failures
analyzing, SDA–19 to SDA–31
causing, SDA–31 to SDA–35
diagnosing from PC contents, SDA–19
example, SDA–24 to SDA–31
summary, SDA–98

System hang, SDA–31
System images

contents, SDA–63, SDA–110
global symbols, SDA–62

Index–7

System management, creating a crash dump file,
SDA–4

System map, SDA–20
System message routines, global symbols,

SDA–64
System page file

as dump file, SDA–5
releasing blocks containing a crash dump,

SDA–38
System page tables

See SPTs
System processes, SDA–76
/SYSTEM qualifier, SDA–54, SDA–76, SDA–126,

SDA–131, SDA–151
System region, examining, SDA–54
Systems

analyzing running, SDA–3, SDA–11, SDA–35
investigating performance problems, SDA–11

System space base address, SDA–18
System space operator (G), SDA–16
System symbol table, SDA–8, SDA–17
System time quadword, examining, SDA–54
SYSTEM_PRIMITIVES.EXE file, global symbols,

SDA–64
SYSTEM_SYNCHRONIZATION.EXE file, global

symbols, SDA–64

T
TCPIP$BGDRIVER.STB, global symbols, SDA–64
TCPIP$INTEETACP.STB, global symbols,

SDA–64
TCPIP$INTERNET_SERVICES.STB, global

symbols, SDA–64
TCPIP$NET_GLOBALS.STB file, SDA–63
TCPIP$NFS_GLOBALS.STB file, SDA–63
TCPIP$NFS_SERVICES.STB file, SDA–65
TCPIP$PROXY_GLOBALS.STB file, SDA–63
TCPIP$PROXY_SERVICES.STB file, SDA–65
TCPIP$PWIPACP.STB, global symbols, SDA–65
TCPIP$PWIPDRIVER.STB, global symbols,

SDA–65
TCPIP$PWIP_GLOBALS.STB file, SDA–63
TCPIP$TNDRIVER.STB, global symbols, SDA–65
TCPIP$TN_GLOBALS.STB file, SDA–63
Terminal keys, defining for SDA, SDA–47
/TERMINATE qualifier, SDA–49
/TIME qualifier, SDA–54

TMSCP server code, base address, SDA–18
TMSCP symbol, SDA–18
/TRANSACTIONS qualifier, SDA–151
/TYPE qualifier, SDA–58, SDA–136

U
UCBs (unit control blocks), SDA–90
UCB symbol, SDA–18
Unary operators, SDA–16
/USER qualifier, SDA–176
User stacks

displaying contents, SDA–176
pointer, SDA–19

USP symbol, SDA–19

V
VALIDATE QUEUE command, SDA–185
VAXcluster environments

base address of loadable code, SDA–17
displaying SDA information, SDA–85
summary display, SDA–85

VCBs (volume control blocks), SDA–105
VCB symbol, SDA–19
/VC qualifier, SDA–142
/VECTOR_REGS qualifier, SDA–152
Virtual address operator (@), SDA–16
Virtual address space, sufficient for system dump

analysis, SDA–8
VIRTUALPAGECNT system parameter, SDA–8

W
WCBs (window control blocks), SDA–80
Working set lists, displaying, SDA–152
/WORKING_SET qualifier, SDA–152
WORKING_SET_MANAGEMENT.EXE file, global

symbols, SDA–65
/WSL qualifier, SDA–152

X
XABs (extended attribute blocks), SDA–80
XOR operator (\), SDA–16
XQP (extended QIO processor), SDA–104

Index–8

	OpenVMSVAXSystem Dump Analyzer Utility Manual
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	How To Order Additional Documentation
	Conventions

	SDA Description
	1 System Management and SDA
	1.1 Understanding the System Dump File
	1.1.1 Choosing Between SYSDUMP.DMP and PAGEFILE.SYS Files
	1.1.2 Choosing a Dump File Style

	1.2 Saving System Dumps
	1.3 Invoking SDA in the Site-Specific Startup Command Procedure

	2 Analyzing a System Dump
	2.1 Invoking SDA
	2.2 Mapping the Contents of the Dump File
	2.3 Building the SDA Symbol Table
	2.4 Executing the SDA Initialization File (SDA$INIT)

	3 Analyzing a Running System
	4 SDA Context
	5 CPU Context
	6 Process Context
	7 SDA Command Format
	7.1 General Command Format
	7.2 Expressions
	7.2.1 Radix Operators
	7.2.2 Arithmetic and Logical Operators
	7.2.3 Precedence Operators
	7.2.4 Symbols

	8 Investigating System Failures
	8.1 General Procedure for Analyzing System Failures
	8.2 Fatal Bugcheck Conditions
	8.2.1 Fatal Exceptions
	8.2.2 Illegal Page Faults

	9 A Sample System Failure
	9.1 Identifying the Bugcheck
	9.2 Identifying the Exception
	9.3 Locating the Source of the Exception
	9.3.1 Finding the Driver by Using the Program Counter
	9.3.2 Calculating the Offset into the Driver’s Program Section

	9.4 Finding the Problem Within the Routine
	9.4.1 Examining the Routine
	9.4.2 Checking the Values of Key Variables
	9.4.3 Identifying and Correcting the Defective Code

	10 Inducing a System Failure
	10.1 Meeting Crash Dump Requirements
	10.2 Examples of How to Cause System Failures

	SDA Usage Summary
	SDA Qualifiers
	/CRASH_DUMP
	/RELEASE
	/SYMBOL
	/SYSTEM

	SDA Commands
	@ (Execute Procedure)
	ATTACH
	COPY
	DEFINE
	EVALUATE
	EXAMINE
	EXIT
	FORMAT
	HELP
	READ
	REPEAT
	SEARCH
	SET CPU
	SET LOG
	SET OUTPUT
	SET PROCESS
	SET RMS
	SHOW CALL_FRAME
	SHOW CLUSTER
	SHOW CONNECTIONS
	SHOW CPU
	SHOW CRASH
	SHOW DEVICE
	SHOW EXECUTIVE
	SHOW HEADER
	SHOW LAN
	SHOW LOCK
	SHOW LOGS
	SHOW PAGE_TABLE
	SHOW PFN_DATA
	SHOW POOL
	SHOW PORTS
	SHOW PROCESS
	SHOW RESOURCE
	SHOW RMS
	SHOW RSPID
	SHOW SPINLOCKS
	SHOW STACK
	SHOW SUMMARY
	SHOW SYMBOL
	SHOW TRANSACTIONS
	SPAWN
	VALIDATE QUEUE

	Index
	Figures
	Figure SDA–1 Pointer Argument List on the Stack
	Figure SDA–2 Mechanism Array
	Figure SDA–3 Signal Array
	Figure SDA–4 Stack Following an Illegal Page-Fault Error
	Figure SDA–5 Call Frame

	Tables
	Table SDA–1 Selecting and Displaying Information About Processes
	Table SDA–2 Displaying Information about Data Structures
	Table SDA–3 Examining, Evaluating, and Validating Information
	Table SDA–4 Searching for, Formatting, and Copying Information
	Table SDA–5 Managing the SDA Utility and the SDA Symbol Table
	Table SDA–6 Displaying Information Produced by DECdtm
	Table SDA–7 Comparison of Full and Subset Dump Files
	Table SDA–8 SDA Operators
	Table SDA–9 SDA Symbols
	Table SDA–10 Descriptions of SDA Qualifiers
	Table SDA–11 Descriptions of SDA Commands
	Table SDA–12 Modules Containing Global Symbols and Data Structures Used by SDA
	Table SDA–13 Modules Defining Global Locations Within the Executive Image
	Table SDA–14 SET RMS Command Keywords for Displaying Process RMS Information
	Table SDA–15 Contents of the SHOW LOCK and SHOW PROCESS/LOCKS Displays
	Table SDA–16 Virtual Page Information in the SHOW PAGE_TABLE Display
	Table SDA–17 Physical Page Information in the SHOW PAGE_TABLE Display
	Table SDA–18 Page Frame Number Information in the SHOW PFN_DATA Display
	Table SDA–19 Process Section Table Entry Information in the SHOW PROCESS Display
	Table SDA–20 Process I/O Channel Information in the SHOW PROCESS Display
	Table SDA–21 Resource Information in the SHOW RESOURCE Display
	Table SDA–22 Static Spin Locks
	Table SDA–23 Process Information in the SHOW SUMMARY Display

