OpenVMS VAX System Dump Analyzer Utility Manual

Order Number: AA-PV6TD-TE

April 2001

This manual explains how to use the System Dump Analyzer (SDA) to investigate system failures and examine a running system.

Revision/Update Information:	This manual supersedes the <i>VMS</i> <i>System Dump Analyzer Utility Manual</i> , Version 6.0
Software Version:	OpenVMS VAX Version 7.3

Compaq Computer Corporation Houston, Texas Compaq, AlphaServer, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark Office.

OpenVMS, Alpha, and DECdirect are trademarks of Compaq Information Technologies Group, L.P. in the United States and other countries.

UNIX and X/Open are trademarks of The Open Group in the United States and other countries.

All other product names mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information in this document is provided "as is" without warranty of any kind and is subject to change without notice. The warranties for Compaq products are set forth in the express limited warranty statements accompanying such products. Nothing herein should be construed as constituting an additional warranty.

ZK4556

The Compaq OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

^{© 2001} Compaq Computer Corporation

Contents

Preface .		vii
SDA Desc	cription	SDA-1
1	System Management and SDA	SDA-4
1.1	Understanding the System Dump File	SDA-4
1.1.1	Choosing Between SYSDUMP.DMP and PAGEFILE.SYS Files	SDA-4
1.1.2	Choosing a Dump File Style	SDA-6
1.2	Saving System Dumps	SDA-6
1.3	Invoking SDA in the Site-Specific Startup Command Procedure	SDA-7
2	Analyzing a System Dump	SDA-8
2.1	Invoking SDA	SDA-9
2.2	Mapping the Contents of the Dump File	SDA-9
2.3	Building the SDA Symbol Table	SDA-10
2.4	Executing the SDA Initialization File (SDA\$INIT)	SDA-10
3	Analyzing a Running System	SDA-11
4	SDA Context	SDA-12
5	CPU Context	SDA-12
6	Process Context	SDA-13
7	SDA Command Format	SDA-15
7.1	General Command Format	SDA-15
7.2	Expressions	SDA-15
7.2.1	Radix Operators	SDA-16
7.2.2	Arithmetic and Logical Operators	SDA-16
7.2.3	Precedence Operators	SDA-17
7.2.4	Symbols	SDA-17
8	Investigating System Failures	SDA-19
8.1	General Procedure for Analyzing System Failures	SDA-19
8.2	Fatal Bugcheck Conditions	SDA-20
8.2.1	Fatal Exceptions	SDA-20
8.2.2	Illegal Page Faults	SDA-23
9	A Sample System Failure	SDA-24
9.1	Identifying the Bugcheck	SDA-25
9.2	Identifying the Exception	SDA-25
9.3	Locating the Source of the Exception	SDA-26
9.3.1	Finding the Driver by Using the Program Counter	SDA-26
9.3.2	Calculating the Offset into the Driver's Program Section	SDA-27
9.4	Finding the Problem Within the Routine	SDA-28
9.4.1	Examining the Routine	SDA-28
9.4.2	Checking the Values of Key Variables	SDA-29
9.4.3	Identifying and Correcting the Defective Code	SDA-30
10	Inducing a System Failure	SDA-31
10.1	Meeting Crash Dump Requirements	SDA-31
10.2	Examples of How to Cause System Failures	SDA-32

SDA Usage Su	Immary	SDA-35
SDA Qualifiers	3	SDA-36
/	CRASH_DUMP	SDA-37
/	RELEASE	SDA-38
/	SYMBOL	SDA-39
/	SYSTEM	SDA-40
SDA Comman	ds	SDA-41
	② (Execute Procedure)	SDA-44
	ATTACH	SDA-45
	СОРУ	SDA-46
	DEFINE	SDA-47
	EVALUATE	SDA-51
	EXAMINE	SDA-53
	EXIT	SDA-57
I	FORMAT	SDA-58
	HELP	SDA-60
	READ	SDA-62
	REPEAT	SDA-67
S	SEARCH	SDA-69
	SET CPU	SDA-71
	SET LOG	SDA-74
S	SET OUTPUT	SDA-75
S	SET PROCESS	SDA-76
	SET RMS	SDA-79
S	SHOW CALL FRAME	SDA-82
	SHOW CLUSTER	SDA-85
	SHOW CONNECTIONS	SDA-90
S	SHOW CPU	SDA-94
S	SHOW CRASH	SDA-98
S	SHOW DEVICE	SDA-103
S	SHOW EXECUTIVE	SDA-110
2	SHOW HEADER	SDA-112
S	SHOW LAN	SDA-113
5	SHOW LOCK	SDA-121
5	SHOW LOGS	SDA-125
5	SHOW PAGE_TABLE	SDA-126
5	SHOW PFN_DATA	SDA-131
S	SHOW POOL	SDA-135
S	SHOW PORTS	SDA-142
S	SHOW PROCESS	SDA-149
S	SHOW RESOURCE	SDA-161
5	SHOW RMS	SDA-166
S	SHOW RSPID	SDA-167
S	SHOW SPINLOCKS	SDA-169
S	SHOW STACK	SDA-176
S	SHOW SUMMARY	SDA-178

SHOW SYMBOL	SDA-181
SHOW TRANSACTIONS	SDA-182
SPAWN	SDA-183
VALIDATE QUEUE	SDA-185

Index

Figures

SDA–1	Pointer Argument List on the Stack	SDA-21
SDA–2	Mechanism Array	SDA-22
SDA–3	Signal Array	SDA-22
SDA–4	Stack Following an Illegal Page-Fault Error	SDA-24
SDA–5	Call Frame	SDA-83

Tables

SDA-1	Selecting and Displaying Information About Processes	SDA-1
SDA-2	Displaying Information about Data Structures	SDA-2
SDA-3	Examining, Evaluating, and Validating Information	SDA-2
SDA-4	Searching for, Formatting, and Copying Information	SDA-3
SDA–5	Managing the SDA Utility and the SDA Symbol Table	SDA-3
SDA-6	Displaying Information Produced by DECdtm	SDA-3
SDA-7	Comparison of Full and Subset Dump Files	SDA-6
SDA-8	SDA Operators	SDA-16
SDA-9	SDA Symbols	SDA-17
SDA-10	Descriptions of SDA Qualifiers	SDA-36
SDA-11	Descriptions of SDA Commands	SDA-41
SDA-12	Modules Containing Global Symbols and Data Structures Used by	
	SDA	SDA-63
SDA-13	Modules Defining Global Locations Within the Executive Image	SDA-63
SDA-14	SET RMS Command Keywords for Displaying Process RMS	
	Information	SDA-79
SDA-15	Contents of the SHOW LOCK and SHOW PROCESS/LOCKS	004 400
0.0.0	Displays	
SDA-16	Virtual Page Information in the SHOW PAGE_TABLE Display	
SDA-17	Physical Page Information in the SHOW PAGE_TABLE Display	SDA-128
SDA–18	Page Frame Number Information in the SHOW PFN_DATA	CDA 101
SDA-19	Display	5DA-131
5DA-19	Process Section Table Entry Information in the SHOW PROCESS Display	SDA-154
SDA-20	Process I/O Channel Information in the SHOW PROCESS Display	
SDA-21	Resource Information in the SHOW RESOURCE Display	
SDA-22	Static Spin Locks	
SDA-23	Process Information in the SHOW SUMMARY Display	
	1 0	

Preface

Intended Audience

The *OpenVMS VAX System Dump Analyzer Utility Manual* is primarily intended for the system programmer who must investigate the causes of system failures and debug kernel-mode code, such as a device driver. This programmer should have some knowledge of OpenVMS data structures to properly interpret the results of System Dump Analyzer (SDA) commands.

This manual also includes information required by the system manager in order to maintain the system resources necessary to capture and store system crash dumps. Those who need to determine the cause of a hung process or improve system performance can refer to this manual for instructions for using SDA to analyze a running system.

Document Structure

The *OpenVMS VAX System Dump Analyzer Utility Manual* contains the following sections:

Section	Description of Contents
SDA Description	Includes the following information:
	• An introduction to the functions of the System Dump Analyzer (SDA)
	A description of SDA features
	A discussion of key concepts of SDA
	• An illustration of the use of SDA
	This section also includes instructions for maintaining the optimal environment for the analysis of system failures and notes the requirements for processes invoking SDA.
SDA Usage Summary	Summarizes how to use SDA, including invoking SDA, exiting from SDA, and recording the output of an SDA session. It also describes required privileges.
SDA Qualifiers	Describes ANALYZE command qualifiers that govern the behavior of SDA: /CRASH_DUMP, /RELEASE, /SYMBOL, and /SYSTEM.

Section	Description of Contents
SDA Commands	Describes each SDA command; descriptions include the following information about each command:
	• Function
	• Format
	Parameters
	This section also provides examples of situations in which specific commands are useful.

Related Documents

Additional information is available in the following documents:

- OpenVMS System Manager's Manual, Volume 1: Essentials
- OpenVMS System Manager's Manual, Volume 2: Tuning, Monitoring, and Complex Systems
- OpenVMS System Management Utilities Reference Manual
- Guide to Creating OpenVMS Modular Procedures
- OpenVMS Performance Management
- OpenVMS VAX Device Support Manual¹
- OpenVMS DCL Dictionary
- OpenVMS System Services Reference Manual

Investigators of VMScluster failures will find the discussion in *OpenVMS Cluster Systems* and the discussion of the Show Cluster utility in the *OpenVMS System Management Utilities Reference Manual* helpful in understanding the output of several SDA commands.

For additional information about Compaq *OpenVMS* products and services, access the Compaq website at the following location:

http://www.openvms.compaq.com/

Reader's Comments

Compaq welcomes your comments on this manual. Please send comments to either of the following addresses:

Internet	openvmsdoc@compaq.com
Mail	Compaq Computer Corporation OSSG Documentation Group, ZKO3-4/U08 110 Spit Brook Rd. Nashua, NH 03062-2698

¹ This manual has been archived but is available on the OpenVMS Documentation CD-ROM.

How To Order Additional Documentation

Use the following World Wide Web address to order additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call 800-282-6672.

Conventions

The following conventions are used in this manual:

Ũ	
Ctrl/x	A sequence such as $Ctrl/x$ indicates that you must hold down the key labeled Ctrl while you press another key or a pointing device button.
PF1 x	A sequence such as PF1 x indicates that you must first press and release the key labeled PF1 and then press and release another key or a pointing device button.
Return	In examples, a key name enclosed in a box indicates that you press a key on the keyboard. (In text, a key name is not enclosed in a box.)
	In the HTML version of this document, this convention appears as brackets, rather than a box.
	A horizontal ellipsis in examples indicates one of the following possibilities:
	 Additional optional arguments in a statement have been omitted.
	• The preceding item or items can be repeated one or more times.
	• Additional parameters, values, or other information can be entered.
	A vertical ellipsis indicates the omission of items from a code example or command format; the items are omitted because they are not important to the topic being discussed.
()	In command format descriptions, parentheses indicate that you must enclose choices in parentheses if you choose more than one.
[]	In command format descriptions, brackets indicate optional choices. You can choose one or more items or no items. Do not type the brackets on the command line. However, you must include the brackets in the syntax for OpenVMS directory specifications and for a substring specification in an assignment statement.
I	In command format descriptions, vertical bars separate choices within brackets or braces. Within brackets, the choices are optional; within braces, at least one choice is required. Do not type the vertical bars on the command line.
{}	In command format descriptions, braces indicate required choices; you must choose at least one of the items listed. Do not type the braces on the command line.
bold text	This typeface represents the introduction of a new term. It also represents the name of an argument, an attribute, or a reason.

italic text	Italic text indicates important information, complete titles of manuals, or variables. Variables include information that varies in system output (Internal error <i>number</i>), in command lines (/PRODUCER= <i>name</i>), and in command parameters in text (where <i>dd</i> represents the predefined code for the device type).
UPPERCASE TEXT	Uppercase text indicates a command, the name of a routine, the name of a file, or the abbreviation for a system privilege.
Monospace text	Monospace type indicates code examples and interactive screen displays.
	In the C programming language, monospace type in text identifies the following elements: keywords, the names of independently compiled external functions and files, syntax summaries, and references to variables or identifiers introduced in an example.
-	A hyphen at the end of a command format description, command line, or code line indicates that the command or statement continues on the following line.
numbers	All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

SDA Description

When a fatal error causes the system to fail, the operating system copies the contents of memory to a system dump file; the system also records the hardware context of each processor in the system.

The System Dump Analyzer (SDA) provides a means of interpreting the contents of the system dump file, thus enabling you to examine the status of each processor at the time of the failure and to investigate the probable causes of the crash.

To examine the system dump file, you invoke SDA by using the DCL command ANALYZE/CRASH_DUMP. You can also invoke SDA to analyze a running system, using the DCL command ANALYZE/SYSTEM. Most SDA commands generate useful output in this mode of operation.

Caution

Although the analysis of a running system might be instructive, be aware that system context, process context, and a processor's hardware context remain fluid during any given display. In a multiprocessing environment, a process running SDA might be rescheduled to a different processor frequently during analysis. Therefore, Compaq recommends that you not examine the hardware context of processors in a running system.

Following are brief explanations of SDA qualifiers. Details about these qualifiers are in the SDA Qualifiers section.

Qualifier	Description
/CRASH_DUMP	Invokes SDA to analyze a specified dump file
/RELEASE	Invokes SDA to release those blocks that are occupied by a crash dump in a specified system paging file
/SYMBOL	Specifies a system symbol table for SDA to use in place of the system symbol table it uses by default (SYS\$SYSTEM:SYS.STB)
/SYSTEM	Invokes SDA to analyze a running system

The following tables show the SDA commands that you can use to perform operations within the SDA utility. These commands are in groups of related information. Details about SDA commands are in the SDA Commands section.

Table SDA-1 describes information that you can select and display about processes.

Table SDA–1 Selecting and Displaying Information About Processes

Operation	SDA Command
Display the condition of the operating system and the hardware context of each processor in the system at the time of a crash	SHOW CRASH
Display a summary of all processes on the system	SHOW SUMMARY (continued on next page)

SDA Command
SET PROCESS
SHOW PROCESS
SET CPU
SHOW CPU
SHOW SPINLOCKS
SHOW STACK
SHOW EXECUTIVE

Table SDA-1 (Co	nt) Se	electing a	nd Display	ving Informat	ion About Proces	Ses
	11.) 51	electing al	iu Dispiay	ing intornat	IOII ADOUL FIOCES	363

Table SDA-2 describes information that you can display about data structures.

Table SDA-2	Displaying Information about Data Structures	
	Displaying information about Data off detailes	

Operation	SDA Command	
Display memory management data structures	SHOW POOL, SHOW PFN_DATA, SHOW PAGE_TABLE	
Display device status, as reflected in system data structures	SHOW DEVICE	
Display OpenVMS RMS data structures of a process	SHOW PROCESS/RMS	
Display lock management data structures	SHOW RESOURCE, SHOW LOCK	
Display information contained in various local area network (LAN) data structures	SHOW LAN	
Display VAXcluster management data structures	SHOW CLUSTER, SHOW CONNECTIONS, SHOW RSPID, SHOW PORTS	

Table SDA-3 describes SDA commands that you can use to examine, evaluate, and validate information.

Table SDA–3	Examining,	Evaluating,	and Validating	Information
-------------	------------	-------------	----------------	-------------

Operation	SDA Command
Evaluate an expression in hexadecimal and decimal, interpreting its value as a symbol, a condition value, a page table entry (PTE), or a processor status longword (PSL)	EVALUATE
Examine the contents of memory locations, optionally interpreting them as MACRO instructions, a PTE, or a PSL	EXAMINE
Validate the integrity of the links in a queue	VALIDATE QUEUE

Table SDA-4 describes the SDA commands that you can use to search for, format, and copy information.

SEARCH
FORMAT
SHOW CALL_FRAME
COPY

Table SDA-4 Searching for, Formatting, and Copying Information

Table SDA–5 describes the operations you can perform to manage the SDA utility and the SDA symbol table.

Operation	SDA Command
Define keys to invoke SDA commands	DEFINE/KEY
Switch control of your terminal from your current process to another process in your job	ATTACH
Direct (or echo) the output of an SDA session to a file or device	SET OUTPUT or SET LOG
Repeat execution of the last command issued	REPEAT
Create a subprocess of the process currently running SDA	SPAWN
Change the options shown by the SHOW PROCESS/RMS command	SET RMS
Define symbols to represent values or locations in memory and add them to the SDA symbol table	DEFINE
Read a set of global symbols into the SDA symbol table	READ
Display the hexadecimal value of a symbol and, if the value is equal to an address location, the contents of that location	SHOW SYMBOL
Exit from the SDA display or from the SDA utility	EXIT

Table SDA-6 describes the commands that you can use to display information produced by DECdtm.

Table SDA–6	Displaying	Information	Produced by	y DECdtm
-------------	------------	-------------	-------------	----------

Operation	SDA Command
Display information about all transactions on the node or about a specified transaction	SHOW TRANSACTIONS
Display information about transaction logs currently open for the node	SHOW LOGS

Although SDA provides a great deal of information, it does not analyze all the control blocks and data contained in memory. For this reason, in the event of system failure it is extremely important that you send Compaq a Software Performance Report (SPR) and a copy of the system dump file written at the time of the failure.

1 System Management and SDA

The system manager must perform the following operations in regard to the system dump file:

- Ensure that the system writes a dump file whenever the system fails.
- Ensure that the dump file is large enough to contain all the information to be saved.
- Ensure that the dump file is saved for analysis.

The following sections describe these tasks.

1.1 Understanding the System Dump File

The operating system attempts to write information into the system dump file only if the system parameter DUMPBUG is set. ¹ If DUMPBUG is set and the operating system fails, the system writes the contents of the error log buffers, processor registers, and physical memory into the system dump file, overwriting its previous contents.

If the system dump file is too small, it cannot contain all of memory when a system failure occurs. For most systems, this means that the system's page table (SPT) is not included in the dump. SDA cannot analyze a dump unless the entire SPT is included in the dump.

1.1.1 Choosing Between SYSDUMP.DMP and PAGEFILE.SYS Files

SYS\$SYSTEM:SYSDUMP.DMP (SYS\$SPECIFIC:[SYSEXE]SYSDUMP.DMP) is furnished as an empty file in the software distribution kit. To successfully store a crash dump, you must make SYS\$SYSTEM:SYSDUMP.DMP large enough to hold all the information to be written when the system fails. If this is not possible, you can have dumps written into the system paging file, SYS\$SYSTEM:PAGEFILE.SYS. You can enlarge or adjust the size of either of these files by using the CREATE command of the System Generation utility (SYSGEN), as described in the *OpenVMS System Management Utilities Reference Manual*.

Using SYSDUMP.DMP

To calculate the correct size for SYS\$SYSTEM:SYSDUMP.DMP, use the following formula:

You can use the DCL command SHOW MEMORY to determine the total size of physical memory on your system. In addition, you must account for any MA780 multiport memory installed on your system. The number of error log buffers in any given system varies, depending on the setting of the ERRORLOGBUFFERS system parameter. (See the *OpenVMS System Management Utilities Reference Manual* for additional information about this parameter.)

The DUMPBUG parameter is set by default. To examine or change its value, consult the *OpenVMS System Management Utilities Reference Manual*.

Using PAGEFILE.SYS

If SYS\$SYSTEM:SYSDUMP.DMP does not exist, the operating system writes the dump of physical memory into SYS\$SYSTEM:PAGEFILE.SYS, the system's paging file, overwriting the contents of that file. If the SAVEDUMP system parameter is set, the dump file is retained in PAGEFILE.SYS when the system is booted. If it is clear, the entire paging file is used for paging, and any dump written to the paging file is lost.²

Do not use a selective dump (DUMPSTYLE=1) style with PAGEFILE.SYS. If the PAGEFILE is used for a selective dump, and if the PAGEFILE is not large enough to contain all the logical memory blocks, the dump fills the entire pagefile and the system may hang on reboot. When selective dumping is setup, all available space will be used to write out the logical memory blocks. If the pagefile is large enough to contain all of physical memory, there is no reason to use selective dumping and a full memory dump (DUMPSTYLE=0) should be used.

To calculate the minimum size for SYS\$SYSTEM:PAGEFILE.SYS, use the following formula:

Caution

This formula calculates only the minimum size requirement for saving a dump in the system's primary page file. For most systems, the page file must be larger than this to avoid hanging the system. (See the *OpenVMS System Manager's Manual, Volume 1: Essentials* and *OpenVMS System Manager's Manual, Volume 2: Tuning, Monitoring, and Complex Systems* for more information.)

Freeing Space in PAGEFILE.SYS

If you use SYS\$SYSTEM:PAGEFILE.SYS to hold system crash dumps, you must later free the space occupied by the dump so that the pager can use it. Usually, you include SDA commands in the site-specific startup command procedure (SYS\$MANAGER:SYSTARTUP_VMS.COM) to free this space; if you do not, your system might hang during the startup procedure.

A common method of freeing space is to copy the dump from SYS\$SYSTEM:PAGEFILE.SYS to another file, using the SDA COPY command. (Although you can also use the DCL COPY command to copy a dump file, only the SDA COPY command frees the pages occupied by the dump from the system's paging file.)

Occasionally, you might want to free the pages in the paging file that are taken up by the dump without having to copy the dump elsewhere. When you issue the ANALYZE/CRASH_DUMP/RELEASE command, SDA immediately releases the pages to be used for system paging, effectively deleting the dump.

² The SAVEDUMP parameter is clear by default. To examine or change its value, consult the *OpenVMS System Management Utilities Reference Manual*.

Note ____

The ANALYZE/CRASH_DUMP/RELEASE command does not allow you to analyze the dump before deleting it.

1.1.2 Choosing a Dump File Style

In certain system configurations, it might be impossible to preserve the entire contents of memory in a disk file. For instance, a large memory system or a system with small disk capacity might not be able to supply enough disk space for a full memory dump. In normal circumstances, if the system dump file cannot accommodate all of memory, SDA cannot analyze the dump.

To preserve those portions of memory that contain information most useful in determining the causes of system failures, a system manager sets the static system parameter DUMPSTYLE to 1. When the DUMPSTYLE parameter is set, AUTOGEN attempts to create a dump file large enough to contain ample information for SDA to analyze a failure. When the DUMPSTYLE parameter is clear (the default), AUTOGEN attempts to create a dump file large enough to contain all of physical memory.

A comparison of full and subset style dump files appears in Table SDA-7.

	Full	Subset
Available Information	Complete contents of physical memory in use, stored in order of increasing physical address (for instance, system and global page tables are stored last).	System page table, global page table, system space memory, and process and control regions (plus global pages) for all saved processes.
Unavailable Information	Contents of paged-out memory at the time of the crash.	Contents of paged-out memory at the time of the crash, process and control regions of unsaved processes, and memory not mapped by a page table (such as the free and modified lists).
SDA Command Limitations	None.	The following commands are not useful for unsaved processes: SHOW PROCESS/CHANNELS, SHOW PROCESS/RMS, SHOW STACK, and SHOW SUMMARY/IMAGE.

Table SDA–7 Comparison of Full and Subset Dump Files

1.2 Saving System Dumps

Every time the operating system writes information to the system dump file, it writes over whatever was previously stored in the file. For this reason, as system manager, you need to save the contents of the file after a system failure has occurred.

Using the SDA COPY Command

You can use the SDA COPY command or the DCL COPY command in your sitespecific startup procedure. Compaq recommends using the SDA COPY command because it marks the dump file as copied. This is particularly important if the dump was written into the paging file, SYS\$SYSTEM:PAGEFILE.SYS, because the SDA COPY command releases to the pager the pages that were occupied by the dump.

Using /IGNORE=NOBACKUP

Because system dump files are set to NOBACKUP, the Backup utility (BACKUP) does not copy dump files to tape unless you use the qualifier /IGNORE=NOBACKUP when invoking BACKUP. When you use the SDA COPY command to copy the system dump file to another file, the new file is not set to NOBACKUP.

As included in the distribution kit, SYS\$SYSTEM:SYSDUMP.DMP is protected against world access. Because a dump file can contain privileged information, Compaq recommends that you continue to protect dump files from universal read access.

1.3 Invoking SDA in the Site-Specific Startup Command Procedure

Because a listing of the SDA output is an important source of information in determining the cause of a system failure, it is a good idea to have SDA produce such a listing after every failure. The system manager can ensure the creation of a listing by modifying the site-specific startup command procedure SYS\$MANAGER:SYSTARTUP_VMS.COM so that it invokes SDA when the system is booted.

When invoked in the site-specific startup procedure, SDA executes the specified commands only if the system is booting immediately after a system failure. SDA examines a flag in the dump file's header that indicates whether it has already processed the file. If the flag is set, SDA merely exits. If the flag is clear, SDA executes the specified commands and sets the flag. This flag is clear when the operating system initially writes a crash dump, except for those resulting from an operator-requested shutdown (for instance, SYS\$SYSTEM:SHUTDOWN.COM).

Using SYSDUMP.DMP

The following example shows typical commands that you might add to your site-specific startup command procedure to produce an SDA listing after each failure.

```
$
 1
$!
        Print dump listing if system just failed
$!
$ ANALYZE/CRASH_DUMP SYS$SYSTEM:SYSDUMP.DMP
  COPY SYS$SYSTEM:SAVEDUMP.DMP ! Save dump file
  SET OUTPUT DISK1:SYSDUMP.LIS
                                   ! Create listing file
  READ/EXEC
                   ! Read symbols into the SDA symbol table
  SHOW CRASH
                    ! Display crash information
  SHOW STACK
                    ! Show current stack
  SHOW SUMMARY
                    ! List all active processes
  SHOW PROCESS/PCB/PHD/REG
                                     ! Display current process
  SHOW SYMBOL/ALL ! Print system symbol table
  EXIT
$ PRINT DISK1:SYSDUMP.LIS
```

The COPY command in the preceding example saves the contents of the file SYS\$SYSTEM:SYSDUMP.DMP. If your system's startup command file does not save a copy of the contents of this file, this crash dump information is lost in the next system failure, when the system saves the information about the new failure, overwriting the contents of SYS\$SYSTEM:SYSDUMP.DMP.

Using PAGEFILE.SYS

If you are using the SYS\$SYSTEM:PAGEFILE.SYS as the crash dump file, you must include SDA commands in SYS\$MANAGER:SYSTARTUP_VMS.COM that free the space occupied by the dump so that the pager can use it. For instance:

```
$ ANALYZE/CRASH_DUMP SYS$SYSTEM:PAGEFILE.SYS
.
.
.
.
.
COPY dump_filespec
EXIT
```

2 Analyzing a System Dump

SDA performs certain tasks prior to bringing a dump into memory, presenting its initial displays, and accepting command input. This section describes those tasks, which include the following:

- · Verifying that the process invoking it has privileges to read the dump file
- Using RMS to read in pages upon request
- Reading the system symbol tables (SYS\$SYSTEM:SYS.STB and SYS\$SYSTEM:REQSYSDEF.STB)
- Executing the commands in the SDA initialization file

For detailed information about the investigation of a system failure, see Section 8.

Requirements

To be able to analyze a dump file, your process must have the following:

- *Read access* to the file that contains the dump and to copies of the following symbol tables, which SDA reads by default:
 - SYS\$SYSTEM:SYS.STB (the system symbol table)
 - SYS\$SYSTEM:REQSYSDEF.STB (the required subset of the symbols in the file SYSDEF.STB)
- *A system UIC* or *SYSPRV privilege* for a process to read the dump file.

As included in the distribution kit, SYS\$SYSTEM:SYSDUMP.DMP, SYS\$SYSTEM:SYS.STB, and SYS\$SYSTEM:REQSYSDEF.STB are protected against world access.

• *Sufficient virtual address space* for SDA to access the entire dump and any required symbol tables.

To ensure that SDA has the correct amount of virtual address space, a value of 16,000 of the system parameter VIRTUALPAGECNT should be sufficient to analyze any dump, unless there is an exceptionally large number of symbols. You might need to increase the size if your particular installation places heavy demands on the virtual address space of the process.

2.1 Invoking SDA

If your process satisfies these conditions, you can issue the DCL command ANALYZE/CRASH_DUMP to invoke SDA. If you do not specify the name of a dump file in the command, SDA prompts you for the name of the file, as follows:

\$ ANALYZE/CRASH_DUMP
_Dump File:

The default file specification is as follows:

disk:[default-dir]SYSDUMP.DMP

disk and *[default-dir]* represent the disk and directory specified in your last SET DEFAULT command.

2.2 Mapping the Contents of the Dump File

SDA first attempts to map the contents of physical memory as stored in the specified dump file. To do this, it must first locate the system page table (SPT) among its contents. The SPT contains one entry for each page of system virtual address space.

The SPT appears at the largest physical addresses in a typical configuration. As a result, if a dump file is too small, the SPT cannot be written to it in the event of system failure.

If SDA cannot find the SPT in the dump file, it displays either of the following messages:

%SDA-E-SPTNOTFND, system page table not found in dump file

SDA-E-SHORTDUMP, the dump only contains *m* out of *n* pages of physical memory

If SDA displays either of these error messages, you cannot analyze the crash dump, but must take steps to ensure that any subsequent dump can be preserved. To do this, you must increase the size of the dump file, as indicated in Section 1.1, or adjust the system DUMPSTYLE parameter, as discussed in Section 1.1.2.

Under certain conditions, the system might not save some memory locations in the system dump file. For instance, during halt/restart bugchecks, the system does not preserve the contents of general registers. If such a bugcheck occurs, SDA indicates in the SHOW CRASH display that the contents of the registers were destroyed. Additionally, if a bugcheck occurs during system initialization, the contents of the register display might be unreliable. The symptom of such a bugcheck is a SHOW SUMMARY display that shows no processes or only the swapper process.

Also, if you use an SDA command to access a virtual address that has no corresponding physical address, SDA displays the following error message:

%SDA-E-NOTINPHYS, 'location' not in physical memory

When you analyze a subset dump file, if you use an SDA command to access a virtual address that has a corresponding physical address but was not saved in the dump file, SDA displays the following error message:

%SDA-E-MEMNOTSVD, memory not saved in the dump file

2.3 Building the SDA Symbol Table

After locating and reading the system dump file, SDA attempts to read the system symbol table file into the SDA symbol table. This file, named SYS\$SYSTEM:SYS.STB by default, contains most of the global symbols used by the operating system. SDA also reads into its symbol table a subset of SYS\$SYSTEM:SYSDEF.STB, called SYS\$SYSTEM:REQSYSDEF.STB, that it requires to identify locations in memory.

If SDA cannot find the system symbol table file, or if it is given a file that is not a system symbol table in the /SYMBOL qualifier to the ANALYZE command, it halts with a fatal error.

When SDA finishes building its symbol table, it displays a message identifying itself and the immediate cause of the crash. In the following example, the cause of the crash was an illegal exception occurring at an IPL above IPL\$_ASTDEL or while using the interrupt stack.

Dump taken on 28-Jan-1993 18:10:09.79 INVEXCEPTN, Exception while above ASTDEL or on interrupt stack

2.4 Executing the SDA Initialization File (SDA\$INIT)

After displaying the crash summary, SDA executes the commands in the SDA initialization file, if you have established one. SDA refers to its initialization file by using the logical name SDA\$INIT. If SDA cannot find the file defined as SDA\$INIT, it searches for the file SYS\$LOGIN:SDA.INIT.

The initialization file can contain SDA commands that read symbols into SDA's symbol table, define keys, establish a log of SDA commands and output, or perform other tasks. For instance, you might want to use an SDA initialization file to augment SDA's symbol table with definitions helpful in locating system code.

If you issue the following command, SDA includes those symbols that define many of the system's data structures, including those in the I/O database:

READ SYS\$SYSTEM:SYSDEF.STB

You might also find it very helpful to define those symbols that identify the modules in the images that make up the executive. You can do this by issuing the following command:

READ/EXECUTIVE SYS\$LOADABLE_IMAGES

After SDA executes the commands in the initialization file, it displays its prompt, as follows:

SDA>

The SDA> prompt indicates that you can use SDA interactively and enter SDA commands.

An SDA initialization file can invoke a command procedure with the @ command. However, such command procedures cannot themselves invoke a command procedure (that is, you cannot have nested command procedures).

3 Analyzing a Running System

Occasionally, an internal problem hinders system performance but does not cause a system failure. By allowing you to examine the running system, SDA provides the means to search for the solution to the problem without disturbing the operating system. For example, you can use SDA to examine the stack and memory of a process that is stalled in a scheduler state, such as a miscellaneous wait (MWAIT) or a suspended (SUSP) state (see *OpenVMS Performance Management*).

If your process has change-mode-to-kernel (CMKRNL) privilege, you can invoke SDA to examine the system. Use the following DCL command:

\$ ANALYZE/SYSTEM

SDA then does the following:

- 1. Attempts to load the system symbol table (SYS\$SYSTEM:SYS.STB) and symbol table SYS\$SYSTEM:REQSYSDEF.STB.
- 2. Executes the contents of any existing SDA initialization file, as it does when invoked to analyze a crash dump (see Sections 2.3 and 2.4, respectively).
- 3. Displays its identification message and prompt, as follows:

OpenVMS System analyzer SDA>

The SDA> prompt indicates that you can use SDA interactively and enter SDA commands. When analyzing a running system, SDA sets its process context to that of the process running SDA.

If you are undertaking an analysis of a running system, take the following considerations into account:

• When used in this mode, SDA does not map the entire system but instead retrieves only the information it needs to process each individual command. To update any given display, you must reissue the previous command.

____ Caution

When using SDA to analyze a running system, use caution in interpreting its displays. Because system states change frequently, it is possible that the information SDA displays might be inconsistent with the actual, volatile state of the system at any given moment.

• Certain SDA commands are illegal in this mode, such as SHOW CPU and SET CPU. If you use these commands, SDA displays the following error message:

%SDA-E-CMDNOTVLD, command not valid on the running system

• The SHOW CRASH command, although valid, does not display the contents of any of the processor's set of hardware registers. Also, the "Time of system crash" information refers to the time you entered the ANALYZE/SYSTEM command.

4 SDA Context

When invoked to analyze either a crash dump or a running system, SDA establishes a default context from which it interprets certain commands.

When the subject of analysis is a uniprocessor system, SDA's context is solely **process context**. That is, SDA can interpret its process-specific commands in the context of either the process current on the uniprocessor or some other process in some other scheduling state.

When you initially invoke SDA to analyze a crash dump, its process context defaults to that of the process that was current at the time of the crash. When you invoke SDA to analyze a running system, its process context defaults to that of the current process; that is, the one executing SDA.

You can change SDA's process context by issuing any of the following commands:

SET PROCESS/INDEX=nn SET PROCESS name SHOW PROCESS/INDEX=nn

5 CPU Context

In a uniprocessor system only one CPU exists, and the concept of SDA CPU context is not an issue. However, for a multiprocessor system with more than one active CPU, SDA must maintain an idea of CPU context to provide a way of displaying information bound to a specific CPU, such as the reason for the bugcheck exception, the currently executing process, the current IPL, the contents of CPU registers, and any owned spin locks. When you first invoke SDA to analyze a crash dump, the "SDA current CPU" is the CPU that induced the system failure.

Changing the CPU Context

You can use several SDA commands to change the CPU context. When you change the CPU context, the "SDA current process" is changed to the current process on the "SDA current CPU" to synchronize CPU context and process context. If no current process is on the "SDA current CPU," the "SDA current process" is undefined; no process context information will be available until you set SDA process context to a specific process.

Type HELP PROCESS_CONTEXT for specific information about the "SDA current process."

The following SDA commands change the "SDA current CPU":

Command	Description
SET CPU cpu_id	Changes the "SDA current CPU" to CPU cpu_id
SHOW CPU cpu_id	Changes the "SDA current CPU" to CPU cpu_id
SHOW CRASH	Changes the "SDA current CPU" to the CPU that induced the system failure

If you select a process that is the current process on a CPU, the following commands change the "SDA current CPU" to that CPU:

SET PROCESS name SET PROCESS/INDEX=nn SHOW PROCESS name SHOW PROCESS/INDEX=nn

No other SDA commands affect the "SDA current CPU."

_ Note _

When you analyze the running system, you cannot use the SET CPU and SHOW CPU commands because SDA does not have access to all the CPU-specific information about the running system.

6 Process Context

In a uniprocessor system, process context might be the process that is current on the CPU or the process in whose context process-specific SDA commands are interpreted. For a multiprocessor system with more than one active CPU, however, the meaning of "SDA process context" changes so that it includes a way to display information relevant to a specific process both when the process is current on a processor and when the process is not.

You can use several SDA commands to change SDA process context. Following is a list of the results of some of these changes:

- When you change the "SDA current process" to the current process on a CPU, the "SDA current CPU" is changed to the new CPU to synchronize CPU context and process context.
- When you change the "SDA current process" to a process that is not current on any processor, the "SDA current CPU" is not changed.
- When you change the SDA CPU context to a CPU that has no current process, the "SDA current process" is undefined; no process context information is available until you set SDA process context to a specific process.

Type HELP CPU_CONTEXT for specific information about the "SDA current CPU."

The following SDA commands change the "SDA current process":

Command	Description	
SET PROCESS name	Changes the "SDA current process" to the named process	
SET PROCESS /INDEX=n	Changes the "SDA current process" to the process with index n	
SHOW PROCESS name	Changes the "SDA current process" to the named process	
SHOW PROCESS /INDEX=n	Changes the "SDA current process" to the process with index n	

The following commands change the SDA process context if the "SDA current process" is not the current process on the selected CPU:

Command	Description
SET CPU cpu_id	Changes the "SDA current process" to the current process on CPU cpu_id
SHOW CPU cpu_id	Changes the "SDA current process" to the current process on CPU cpu_id
SHOW CRASH	Changes the "SDA current process" to the current process on the CPU that induced the system failure

No other SDA commands affect the "SDA current process."

Note

When you analyze the running system, CPU context is not used because all the CPU-specific information might not be available.

Changing the SDA CPU Context

When you invoke SDA to analyze a crash dump from a multiprocessing system with more than one active CPU, SDA maintains a second dimension of context—its **CPU context**—that allows it to display certain processor-specific information, such as the reason for the bugcheck exception, the currently executing process, the current IPL, the contents of processor-specific registers, the interrupt stack pointer (ISP), and the spin locks owned by the processor. When you invoke SDA to analyze a multiprocessor's crash dump, its CPU context defaults to that of the processor that induced the system failure.³

You can change the SDA CPU context by using any of the following commands:

SET CPU **cpu-id** SHOW CPU **cpu-id** SHOW CRASH

Changing CPU context involves an implicit change in process context in either of the following ways:

- If there is a current process on the CPU made current, SDA process context is changed to that of that CPU's current process.
- If there is no current process on the CPU made current, SDA process context is undefined and no process-specific information is available until you set SDA process context to that of a specific process.

Likewise, changing process context can involve a switch of CPU context as well. For instance, if you issue a SET PROCESS command for a process that is current on another CPU, SDA automatically changes its CPU context to that of the CPU on which that process is current. The following commands can have this effect if the **name** or index number (**nn**) refers to a current process:

SET PROCESS name SET PROCESS/INDEX=nn SHOW PROCESS name SHOW PROCESS/INDEX=nn

³ When you are analyzing a running system, CPU context is not accessible to SDA. Therefore, the SET CPU and SHOW CPU commands are not permitted.

7 SDA Command Format

The following sections describe the format of SDA commands and the expressions you can use with SDA commands.

7.1 General Command Format

SDA uses a command format similar to that used by the DCL interpreter. You issue commands in this general format:

command-name[/qualifier...] [parameter][/qualifier...] [!comment]

where:

command-name	Is an SDA command. Each command tells the utility to perform a function. Commands can consist of one or more words, and can be abbreviated to the number of characters that make the command unique. For example, SH stands for SHOW and SE stands for SET.
/qualifier	Modifies the action of an SDA command. A qualifier is always preceded by a slash (/). Several qualifiers can follow a single parameter or command name, but a slash must precede each. You can abbreviate qualifiers to the shortest string of characters that uniquely identifies the qualifier.
parameter	Is the target of the command. For example, SHOW PROCESS RUSKIN tells SDA to display the context of the process RUSKIN. The command EXAMINE 80104CD0;40 displays the contents of 40 bytes of memory, beginning with location 80104CD0.
	When you supply part of a file specification as a parameter, SDA assumes default values for the omitted portions of the specification. The default device SYS\$DISK and default directory are those specified in your most recent SET DEFAULT command. See the <i>OpenVMS DCL Dictionary</i> for a description of the DCL command SET DEFAULT.
!comment	Consists of text that describes the command, but this text is not actually part of the command. Comments are useful for documenting SDA command procedures. When executing a command, SDA ignores the exclamation point (!) and all characters that follow it on the same line.

7.2 Expressions

You can use expressions as parameters for some SDA commands, such as SEARCH and EXAMINE. To create expressions, you can use any of the following elements:

- Numerals
- Radix operators
- Arithmetic and logical operators
- Precedence operators
- Symbols

The following sections describe elements other than numerals.

7.2.1 Radix Operators

Radix operators determine which numeric base SDA uses to evaluate expressions. You can use one of three radix operators to specify the radix of the numeric expression that follows the operator:

- ^X (hexadecimal)
- ^O (octal)
- ^D (decimal)

The default radix is hexadecimal. SDA displays hexadecimal numbers with leading zeros and decimal numbers with leading spaces.

7.2.2 Arithmetic and Logical Operators

Operator

_..

_

There are two types of arithmetic and logical operators, both of which are listed in Table SDA-8.

- Unary operators affect the value of the expression that follows them.
- Binary operators combine the operands that precede and follow them.

In evaluating expressions containing binary operators, SDA performs logical AND, OR, and XOR operations, and multiplication, division, and arithmetic shifting before addition and subtraction. Note that the SDA arithmetic operators perform integer arithmetic on 32-bit operands.

Operator	Action
Unary Opera	ators
#	Performs a logical NOT of the expression
+	Makes the value of the expression positive
-	Makes the value of the expression negative
@	Evaluates the following expression as a virtual address, then uses the contents of that address as value
G	Adds 8000000016 to the value of the expression ¹
Н	Adds $7FFE0000_{16}$ to the value of the expression ²

 Table SDA-8
 SDA Operators

Action

Binary O	Derators
+	Addition
-	Subtraction
*	Multiplication
&	Logical AND
	Logical OR
\setminus	Logical XOR

 ^1The unary operator G corresponds to the first virtual address in system space. For example, the expression GD40 can be used to represent the address $80000D40_{16}.$

 $^2 {\rm The}$ unary operator H corresponds to a convenient base address in the control region of a process (7FFE0000_{16}). You can therefore refer to an address such as 7FFE2A64_{16} as H2A64.

Table SDA–8 (Cont.) SDA Operators

Operator	Action	
Binary Oper	rators	
/	Division ³	
@	Arithmetic shifting	

³In division, SDA truncates the quotient to an integer, if necessary, and does not retain a remainder.

7.2.3 Precedence Operators

SDA uses parentheses as **precedence operators**. Expressions enclosed in parentheses are evaluated first. SDA evaluates nested parenthetical expressions from the innermost to the outermost pairs of parentheses.

7.2.4 Symbols

Names of symbols can contain from 1 to 31 alphanumeric characters and can include the dollar sign (\$) and underscore (_) characters. Symbols can take values from $-7FFFFFF_{16}$ to $7FFFFFF_{16}$.

By default, SDA copies symbols into its symbol table from the files SYS\$SYSTEM:SYS.STB and SYS\$SYSTEM:REQSYSDEF.STB. To add more symbols to the symbol table, you can use the following SDA commands:

- READ—to add symbols from other symbol tables or object modules
- DEFINE—to create symbols and add them to the symbol table

In addition, SDA provides the symbols described in Table SDA-9.

Symbol	Meaning
. (period)	Current location
2P_CDDB	Address of alternate CDDB for MSCP-served device ¹
2P_UCB	Address of alternate UCB for dual-pathed device ¹
AMB	Associated mailbox UCB pointer ¹
AP	Argument pointer ²
CDDB	Address of class driver descriptor block for MSCP-served device ¹
CLUSTRLOA	Base address of loadable VAXcluster code
CRB	Address of channel request block ¹
DDB	Address of device data block ¹
DDT	Address of driver dispatch table ¹

Table SDA–9 SDA Symbols

 $^1{\rm The}$ SHOW DEVICE command defines this symbol, if appropriate, to represent information pertinent to the last displayed device unit. See the description of the SHOW DEVICE command for additional information.

(continued on next page)

²The value of those symbols representing the current SDA process context changes whenever you issue a command that changes the context (see Section 4). These symbols include the general-purpose registers (R0 through R11, AP, FP, PC, and SP); the per-process stack pointers (USP, SSP, KSP); the page table base and length registers (P0BR, P0LR, P1BR, and P1LR); and the processor status longword (PSL).

Symbol	Meaning
nnDRIVER	Base address of a driver prologue table (DPT); such a symbol exists for each loaded device driver in the system ³
ESP	Executive stack pointer ²
FP	Frame pointer ²
FPEMUL	Base address of the code that emulates floating-point instructions
G	8000000_{16} , the base address of system space
Н	7FFE0000 ₁₆
IRP	Address of I/O request packet ¹
JIB	Job information block
KSP	Kernel stack pointer ²
LNM	Address of logical name block for mailbox ¹
МСНК	Address within loadable CPU-specific routines
MSCP	Address of loadable MSCP server code
ORB	Address of object rights block ¹
P0BR	Base register for the program region $(P0)^2$
P0LR	Length register for the program region (P0) ²
P1BR	Base register for the control region (P1) ²
P1LR	Length register for the control region (P1) ²
PC	Program counter ²
PCB	Process control block
PDT	Address of port descriptor table ¹
PHD	Process header
PSL	Processor status longword ²
R0 through R11	General registers ²
RMS	Base address of the RMS image
RWAITCNT	Resource wait count for MSCP-served device ¹
SB	Address of system block ¹
SCSLOA	Base address of loadable common SCS services
SP	Current stack pointer of a process ²
SSP	Supervisor stack pointer ²
SYSLOA	Base address of loadable processor-specific system code
TMSCP	Address of loadable TMSCP server code
UCB	Address of unit control block ¹

Table SDA–9 (Cont.) SDA Symbols

¹The SHOW DEVICE command defines this symbol, if appropriate, to represent information pertinent to the last displayed device unit. See the description of the SHOW DEVICE command for additional information.

²The value of those symbols representing the current SDA process context changes whenever you issue a command that changes the context (see Section 4). These symbols include the general-purpose registers (R0 through R11, AP, FP, PC, and SP); the per-process stack pointers (USP, SSP, KSP); the page table base and length registers (P0BR, P0LR, P1BR, and P1LR); and the processor status longword (PSL).

 $^3 {\rm The}$ notation nn within the symbol $nn {\rm DRIVER}$ represents a 2-letter, generic device/controller name (for example, $LP {\rm DRIVER}).$

Table SDA–9 (Cont.) SDA Symbols

Symbol	Meaning
USP	User stack pointer ²
VCB	Address of volume control block for mounted device ¹

 $^1 {\rm The}$ SHOW DEVICE command defines this symbol, if appropriate, to represent information pertinent to the last displayed device unit. See the description of the SHOW DEVICE command for additional information.

²The value of those symbols representing the current SDA process context changes whenever you issue a command that changes the context (see Section 4). These symbols include the general-purpose registers (R0 through R11, AP, FP, PC, and SP); the per-process stack pointers (USP, SSP, KSP); the page table base and length registers (P0BR, P0LR, P1BR, and P1LR); and the processor status longword (PSL).

When SDA displays an address, it displays that address both in hexadecimal and as a symbol, if possible. If the address is within FFF_{16} of the value of a symbol, SDA displays the symbol plus the offset from the value of that symbol to the address. If more than one symbol's value is within FFF_{16} of the address, SDA displays the symbol whose value is the closest. If no symbols have values within FFF_{16} of the address, SDA displays no symbol. (For an example, see the description of the SHOW STACK command.)

8 Investigating System Failures

This section discusses how the operating system handles internal errors and suggests procedures that can aid you in determining the causes of these errors. To conclude, it illustrates, through detailed analysis of a sample system failure, how SDA helps you find the causes of operating system problems.

For a complete description of the commands discussed in the sections that follow, refer to the SDA Commands section.

8.1 General Procedure for Analyzing System Failures

When the operating system detects an internal error so severe that normal operation cannot continue, it signals a condition known as a fatal bugcheck and shuts itself down. A specific bugcheck code describes each such error.

To resolve the problem, you must find the reason for the bugcheck. Most failures are caused by errors in user-written device drivers or other privileged code not supplied by Compaq. To identify and correct these errors, you need a listing of the code in question.

Occasionally, a system failure is the result of a hardware failure or an error in code supplied by Compaq. A hardware failure requires the attention of Compaq Services. To diagnose an error in code supplied by Compaq, you need listings of that code, which are available from Compaq on CDROM.

Following are the steps you can take to diagnose an error:

- 1. Start the search for the error by locating the line of code that signaled the bugcheck. Invoke SDA and use the SHOW CRASH command to display the contents of the program counter (PC). The PC contains the address of the instruction immediately following the instruction that signaled the bugcheck.
- 2. Use the SHOW STACK command to display the contents of the stack. The PC often contains an address in the exception handler. This address is the address of the instruction that signaled the bugcheck, but not the address of the instruction that caused it. In this case, the address of the instruction that

caused the bugcheck is located on the stack. See Section 8.2 for information about how to proceed for several types of bugchecks.

- 3. Once you have found the address of the instruction that caused the bugcheck, you need to find the module in which the failing instruction resides. Use the SHOW DEVICE command to determine whether the instruction is part of a device driver.
 - If the module is not part of a driver, examine the linker's map of the module or modules you are debugging to determine whether the instruction that caused the bugcheck is in your programs.
 - If the module is not within a driver or other code supplied by Compaq, perform the following steps:
 - a. Issue the following SDA command:

SDA> SHOW EXECUTIVE

This command shows the location and size of each of the loadable images that make up the executive.

- b. Compare the suspected address with the addresses of the system images.
- c. If the address is within one of the images, issue the following command:

SDA> READ/EXECUTIVE SYS\$LOADABLE_IMAGES:

This command loads the symbols that define locations within the loadable portion of the executive. (READ/EXECUTIVE is the default display.)

d. Examine the failing address by issuing the following command:

SDA> EXAMINE @PC

SDA then displays the address in the PC as an offset from the nearest global symbol. This symbol might be the module's starting address, although it is possible that the code you are examining might not be in the module whose name is displayed.

4. To determine the general cause of the system failure, examine the code that signaled the bugcheck.

8.2 Fatal Bugcheck Conditions

Several conditions result in a bugcheck. Normally, these occasions are rare. When they do occur, it is likely that they are in the nature of a fatal exception or an illegal page fault occurring within privileged code. This section describes the symptoms of these bugchecks. A discussion of other exceptions and condition handling in general appears in the *OpenVMS System Services Reference Manual*.

8.2.1 Fatal Exceptions

An exception is fatal when it occurs while the following conditions exist:

- The process is using the interrupt stack.
- The process is executing above IPL 2 (IPL\$_ASTDEL).
- The process is executing in a privileged (kernel or executive) processor access mode and has not declared a condition handler to deal with the exception.

When the system fails, the operating system reports the approximate cause of the failure on the console terminal. SDA displays a similar message when you issue a SHOW CRASH command. For instance, for a fatal exception, SDA can display one of these messages:

FATALEXCPT, Fatal executive or kernel mode exception INVEXCEPTN, Exception while above ASTDEL or on interrupt stack SSRVEXCEPT, Unexpected system service exception

Although several exception conditions are possible, access violations are the most common. When the hardware detects an access violation, information useful in finding the cause of the violation is pushed onto either the kernel stack or the interrupt stack. If the access violation occurs when the hardware is using the interrupt stack, this information appears on the interrupt stack.

The INVEXCEPTN, SSRVEXCEPT, and FATALEXCPT bugchecks place two argument lists, known as the mechanism and signal arrays, on the stack.

The SSRVEXCEPT and FATALEXCPT bugchecks push an additional argument list onto the stack above these arrays; INVEXCEPTN does not. This pointer array (see Figure SDA-1) contains the number 2 in its first longword, indicating that the following two longwords complete the array. The second longword contains the stack address of the **signal array**; the third contains the stack address of the **mechanism array**.

Figure SDA-1 Pointer Argument List on the Stack

0000002
Signal Array Address
Mechanism Array Address

ZK-1920-GE

The first longword of the **mechanism array** (see Figure SDA–2) contains a 4, indicating that the four subsequent longwords complete the array. These four longwords are used by the procedures that search for a condition handler and report exceptions.

00000004
Frame
Depth
R0
R1

ZK-1921-GE

The values in the mechanism array are the following:

Value	Meaning
00000004	Number of longwords that follow. In a mechanism array, this value is always 4.
Frame	Address of the FP (frame pointer) of the establisher's call frame.
Depth	Depth of the search for a condition handler.
R0	Contents of R0 at the time of the exception.
R1	Contents of R1 at the time of the exception.

The **signal array** (see Figure SDA–3) appears somewhat further down the stack. A signal array contains the exception code, zero or more exception parameters, the PC, and the PSL. The size of a signal array can thus vary from exception to exception.

Figure SDA–3 Signal Array

0000005
000000C
Reason Mask
Virtual Address
PC
PSL

ZK-1922-GE

Value	Meaning							
0000005	Number of longwords that follow. For access violations, this value is always 5.							
0000000C	Exception code. The value $0C_{16}$ represents an access violation. You can identify the exception code by using the SDA command EVALUATE/CONDITION.							
Reason mask	Longword mask. If bit 0 of this longword is set, the failing instruction (at the PC saved below) caused a length violation. If bit 1 is set, it referred to a location whose page table entry is in a "no access" page. Bit 2 indicates the type of access used by the failing instruction: it is set for write and modify operations and clear for read operations.							
Virtual address	Virtual address that the failing instruction tried to reference.							
PC	PC whose execution resulted in the exception.							
PSL	PSL at the time of the exception.							

For access violations, the signal array is set up as follows:

In the case of a fatal exception, you can find the code that signaled it by examining the PC in the signal array. Use the SHOW STACK command to display the stack in use when the failure occurred and then locate the mechanism and signal arrays. Once you obtain the PC, which points to the instruction that signaled the exception, you can identify the module where the instruction is located by following the instructions in Section 9.3.

8.2.2 Illegal Page Faults

A PGFIPLHI bugcheck occurs when a page fault occurs while the interrupt priority level (IPL) is greater than 2 (IPL\$_ASTDEL). When the system fails because of an illegal page fault, the following message appears on the console terminal:

PGFIPLHI, page fault with IPL too high

When an illegal page fault occurs, the stack appears as shown in Figure SDA-4.

R4
R5
Reason Mask
Virtual Address
PC
PSL

Figure SDA-4 Stack Following an Illegal Page-Fault Error

ZK-1923-GE

Six longwords describe the error:

Longword	Contents
R4	Contents of R4 at the time of the bugcheck.
R5	Contents of R5 at the time of the bugcheck.
Reason mask	Longword mask. If bit 0 of this longword is set, the failing instruction (at the PC saved below) caused a length violation. If bit 1 is set, it referred to a location whose page table entry is in an "access" page. Bit 2 indicates the type of access used by the failing instruction: it is set for write and modify operations and clear for read operations.
Virtual address	Virtual address being referenced by the instruction that caused the page fault.
PC	PC containing the address of the instruction that caused the page fault.
PSL	PSL at the time of the page fault.

If the operating system detects a page fault while the IPL is higher than IPL\$_ ASTDEL, you can obtain the address of the instruction that caused the fault by examining the PC pushed onto the current operating stack. Follow the steps outlined in Section 9.3 to determine which module issued the instruction.

9 A Sample System Failure

This section steps through the analysis of a system failure using, as an example, a printer driver. Three events lead up to this failure:

- 1. The line printer goes off line for 3 hours.
- 2. The line printer comes back on line.
- 3. The operating system signals a bugcheck, writes information to the system dump file, and shuts itself down.

The following sections describe the actions to take in investigating the causes of this system crash.

9.1 Identifying the Bugcheck

First, invoke SDA to analyze the system dump file. The initialization message indicates the type of bugcheck that occurred as follows:

```
Dump taken on 31-JAN-1993 16:34:31.23
INVEXCEPTN, Exception while above ASTDEL or on interrupt stack
SDA>
```

An exception occurred that caused the system to signal a bugcheck, and signal and mechanism arrays have been created on the current operating stack.

9.2 Identifying the Exception

Use the SHOW STACK command to display the current operating stack. In this case, it is the interrupt stack. The following example shows the interrupt stack and the signal and mechanism arrays. See the SHOW STACK command for a complete description of the format of the stack display.

CPU 01 Processor stack									
Current operating stack (INTERRUPT)									
	8006A378	8000844B	ACP\$WRITEBLK+0A0						
•									
•									
SP =>	8006A398	7FFDC340							
	8006A39C	8006A3A0							
	8006A3A0	80004E7D	EXE\$REFLECT+0D4						
	8006A3A4	04080009							
	8006A3A8	00000004							
	8006A3AC	7FFDC368							
	8006A3B0	FFFFFFD							
	8006A3B4	8001774E							
	8006A3B8	0000074F							
	8006A3BC	00000001							
	8006A3C0	00000005							
	8006A3C4	000000C							
	8006A3C8	00000000							
	8006A3CC	80069E00							
	8006A3D0	8005D003							
	8006A3D4	04080000							
	8006A3D8	80009604	EXE\$FORKDSPTH+01C						

The mechanism array begins at address $8006A3A8_{16}$ and ends at address $8006A3B8_{16}$. Its first longword contains 00000004_{16} . The signal array begins at address $8006A3C0_{16}$ and ends at $8006A3D4_{16}$. Its first longword contains 00000005_{16} and its second longword contains $0000000C_{16}$. Examination of the signal array shows the following:

- The exception code is 0C₁₆, indicating an access violation.
- The reason mask is zero, indicating that the instruction caused a protection violation (instead of a length violation) when it tried to read the location (rather than write to it).
- The virtual address that the instruction attempted to reference was $80069 {\rm E00}_{16}.$

• The PC of the instruction that referred to the bad virtual address was 8005D003₁₆.

Issuing the SDA command EVALUATE/PSL 04080000 makes the following information apparent:

- The IPL was 8 at the time of the exception (shown by bits 16 through 20 of the PSL).
- The current operating stack was the interrupt stack (bit 26 of the PSL is set to 1).
- The process was executing in kernel mode at the time of the exception (shown by bits 24 and 25 of the PSL).

Use the SHOW PAGE_TABLE command to display the system page table, as shown in the following example. The page containing location $80069E00_{16}$ is not available to any access mode (a null page); thus, the virtual address is not valid.

SDA> SHOW PAGE_TABLE

System page table

ADDRESS	SVAPTE	PTE	TYPE	PROT	BITS	PAGTYP	LOC	STATE	TYPE	REFCNT	BAK	SVAPTE	FLINK	BLINK
•														
80068400	80777B08	7C40FFC8	STX	UR	K									
80068600		7C40FFC8	STX	UR	K									
80068800	80777B10	7C40FFC8	STX	UR	K									
80068A00	80777B14	7C40FFC8	STX	UR	K									
80068C00	80777B18	7C40FFC8	STX	UR	K									
80068E00	80777B1C	7C40FFC8	STX	UR	K									
80069000	80777B20	7C40FFC8	STX	UR	K									
80069200	80777B24	7C40FFC8	STX	UR	K									
80069400	80777B28	7C40FFC8	STX	UR	K									
80069600	80777B2C	7C40FFC8	STX	UR	K									
80069800	80777B30	7C40FFC8	STX	UR	K									
80069A00	80777B34	780016C9	TRANS	UR	K	SYSTEM	FREEL	ST 00	01	0	0040FFC8	80777B34	03AF	0E15
80069C00	80777B38	78000E15	TRANS	UR	K	SYSTEM	FREEL	ST 00	01	0	0040FFC8	80777B38	16C9	2592
40 NULL PAGES														
•														

•

•

9.3 Locating the Source of the Exception

Because the printer went off line and then came back on line, as shown on the console listing in Section 9.2, the problem might exist in the driver code. SDA can help you determine which driver might contain the faulty code.

9.3.1 Finding the Driver by Using the Program Counter

The first step in determining whether the failing instruction is within a driver is to examine the PC in the signal array using the EXAMINE/INSTRUCTION command. This has two results:

- If possible, it displays the contents of the address as a MACRO instruction.
- It identifies the address as an offset from the symbol, *nn*DRIVER, if the address lies within the first FFF₁₆ bytes of such a symbol. SDA defines a symbol in the form of *nn*DRIVER for each device driver connected to the system. This symbol represents the base of the driver prologue table (DPT). Each DPT is part of the device driver it describes and is immediately followed by that driver's code.

In the following example, the instruction that caused the exception is located within the printer driver.

SDA> EXAMINE/INSTRUCTION 8005D003 LPDRIVER+2B3 MOVB (R3)+,(R0)

If SDA is unable to find a symbol within FFF_{16} bytes of the memory location you specify, it displays the location as an absolute address. This often, but not always, means the instruction that caused the exception is not part of a device driver.

To determine whether an instruction is part of a driver, use the SHOW DEVICE command to display the starting addresses and lengths of all the drivers in the system. If the address of the failing instruction falls within the range of addresses shown for a given driver, the failing instruction is a part of that driver. The following example shows a partial list of the drivers in the display generated by the SHOW DEVICE command.

I/O data structures

DDB list

Address	Controller	ACP	Driver	DPT	DP'	T size
80000ECC 80001040 8000126C 80001460 801E2800 801E2980	HELIUM\$DBA OPA MBA NLA HELIUM\$DMA HELIUM\$DLA	F11XQP F11XQP F11XQP	DBDRIVER OPERATOR MBDRIVER NLDRIVER DMDRIVER DLDRIVER	800F7A 800016 800015 800015 800B5C 800B6A	22 B0 E9 B0	08FD 0061 0578 05A3 0AA0 08D0
•						

9.3.2 Calculating the Offset into the Driver's Program Section

The offsets that SDA displays from *nn*DRIVER are actually offsets from the DPT. As such, these offsets do not exactly correspond to the offsets shown in driver listings, which represent offsets from the beginning of the program section (PSECT) in which a given instruction appears. Because a driver usually contains more than one PSECT, you must use the driver's map to determine the location of the failing instruction within the driver listing.

To calculate the location of the instruction within the driver listing, refer to the "Program Section Synopsis" section of the driver's map. Determine in which PSECT the offset given by SDA occurs and subtract the base of the PSECT from the offset. You can then use the resulting figure as an index into the driver listing.

If SDA does not display the address as an offset from *nn*DRIVER, but the address *is* within the address range of a driver in the SHOW DEVICE display, you must first subtract the address of the DPT from the failing address. Using the result as the offset, you can then follow the steps previously outlined for determining the index of the instruction into a driver listing.

9.4 Finding the Problem Within the Routine

To find the problem within the routine, examine the printer's driver code. In the system failure discussed in this example, the instruction that caused the exception is MOVB (R3)+,(R0). To check the contents of R3, use the EXAMINE command as follows:

SDA> EXAMINE R3 R3: 80069E00 "...."

The invalid virtual address, as recorded in the signal array, is stored in R3. In the following driver code excerpt, the instruction in question appears at line 599. It is likely that the contents of R3 have been incremented too many times.

582 583 584 585 586 587 588		MOVL MOVW MOVL MOVAB MOVL	IRP\$L_MEDIA+2(R3),- UCB\$W_BOFF(R5) UCB\$L_SVAPTE(R5),R3 12(R3),R3 UCB\$L_CRB(R5),R4	;Retrieve address of I/O packet ;Set number of characters to print ;Get address of system buffer ;Get address of data area ;Get address of CRB B(R4),R4 ;Get device CSR address
591 592 593 594 595 596	; ST. ; 10\$:	ADDL3 MOVZWL MOVW BRB		;Calculate address of data buffer register ;Get number of characters remaining ;Get control register test mask ;Start output ;Printer ready or have paper problem?
598 599 600 601 602	24\$: 25\$:	BLEQ MOVB ASHL	30\$ (R3)+,(R0) 2 #1,G^EXE\$GL_UBDELAY,- (SP),24\$ #4,SP	<pre>;If LEQ not ready or paper problem ;Output next character -(SP) ;Delay 3*2 u-seconds ;Delay loop calibrated to machine speed ;Pop extra longword off stack ;Any more characters to output? ;All done, BRW to set return status</pre>

Explanations of the circled numbers in the example are in Section 9.4.1.

9.4.1 Examining the Routine

The MOVB instruction is part of a routine that reads characters from a buffer and writes them to the printer. The routine contains the loop of instructions that starts at the label 20\$ and ends at 25\$. This loop executes once for each character in the buffer, performing these steps:

- **1** The driver checks the printer's status register to see if the printer is ready.
- **2** If the printer is ready, the driver gets a character from the buffer and moves it to the printer's data register, to which R0 points.
- **③** It then decrements R1, which contains the count of characters left to print. If R1 contains a number greater than 0, control is passed back to the instruction at 20\$, and the loop begins again.

Steps 1 and 2 are repeated until the contents of R1 are 0 or the printer signals that it is not ready.

If the printer signals that it is not ready, the driver transfers control to 30\$ (line 598), the beginning of a routine that waits for an interrupt from the printer. When the printer becomes ready, it interrupts the driver and execution of the loop resumes.

Examine the code to determine which variables control the loop.

The byte count (BCNT) is the number of characters in the buffer. Note that BCNT is set by a function decision table (FDT) routine and that this routine sets the value of BCNT to the number of characters in the buffer. In line 586, the starting address of a buffer that is BCNT bytes in size is moved into R3.

Note also that the number of characters left to be printed is represented by the byte offset (BOFF), the offset into the buffer at which the driver finds the next character to be printed. This value controls the number of times the loop is executed.

Because the exception is an access violation, either R3 or R0 must contain an incorrect value. You can determine that R0 is probably valid by the following logic:

- The instruction at 10\$ (ADDL3 #LP_DBR,R4,R0) places an address in R0 and R0 is not modified again until the failing instruction (line 599).
- The value in R4 at the time that the instruction at 10\$ is executed was derived from the addresses of the device's unit control block (UCB) (line 587) and CRB (line 599). Although it is possible that these data structures might contain wrong information, it is unlikely.

Thus, the contents of R3 seem to be the cause of the failure.

The most likely reason that the contents of R3 are wrong is that the MOVB instruction at line 599 executes too many times. You can check this by comparing the contents of UCB\$W_BOFF and UCB\$W_BCNT. If UCB\$W_BOFF contains a larger value than that in UCB\$W_BCNT, then R3 contains a value that is too large, indicating that the MOVB instruction has incremented the contents of R3 too many times.

9.4.2 Checking the Values of Key Variables

Because the start-I/O routine requires that R5 contain the address of the printer's UCB, and because several other instructions reference R5 without error before any instruction in the loop does, you can assume that R5 contains the address of the right UCB. To compare BOFF and BCNT, use the command FORMAT @R5 to display the contents of the UCB, as shown in the following session.

SDA> READ SYS\$SYSTEM:SYSDEF.STB SDA> FORMAT @R5

8005D160	UCB\$L_FQFL UCB\$L_RQFL UCB\$W_MB_SEED	800039A8
	UCB\$W_UNIT_SEED	
8005D164	UCB\$L_FQBL	800039A8
	UCB\$L_RQBL	
8005D168	UCB\$W_SIZE	0122
8005D16A	UCB\$B_TYPE	10
8005D16B	UCB\$B_FIPL	34
	UCB\$B_FLCK	

		000000000
8005D1C8	UCB\$L_SVAPTE	80062720
8005D1CC	UCB\$W_BOFF	0795
8005D1CE	UCB\$W_BCNT	006D
8005D1D0	UCB\$B_ERTCNT	00
8005D1D1	UCB\$B_ERTMAX	00
8005D1D2	UCB\$W_ERRCNT	0000
•		
•		
•		
SDA>		

If you have only one printer in your system configuration, you do not need to use the FORMAT command. Instead, you can use the command SHOW DEVICE LP. Because only one printer is connected to the processor, only one UCB is associated with a printer for SDA to display.

The output produced by the FORMAT @R5 command shows that UCB\$W_BOFF contains a value greater than that in UCB\$W_BCNT; it should be smaller. Therefore, the value stored in BOFF is incorrect.

Thus, the value of BOFF is not the number of characters that remain in the buffer. This value is used in calculating an address that is referenced at an elevated IPL. When this address is within a null page (unreadable in all access modes), an attempt to reference it causes the system to fail.

9.4.3 Identifying and Correcting the Defective Code

Examine the printer driver code to locate all instructions that modify UCB\$W_BOFF. The value changes in two circumstances:

- Immediately after the driver detects that the printer is not ready and that the problem is not a paper problem (line 609).
- When the wait-for-interrupt routine's timeout count of 12 seconds is exhausted (lines 616 and 630). At this time, the contents of R1, plus 1, are stored in UCB\$W_BOFF (line 631).

When the printer times out, the driver should not modify UCB\$W_BOFF. It does so, however, in line 631. The driver should modify the contents of UCB\$W_BOFF only when it is certain that the printer printed the character. When the printer times out, this is not the case. Furthermore, the wait-for-interrupt routine preserves only registers R3, R4, and R5, so that only those registers can be used unmodified after the execution of the wait-for-interrupt routine. Thus, the use of R1 in line 631 is an error.

To correct the problem, change the WFIKPCH argument (line 616) so that, when the printer times out, the WFIKPCH macro transfers control to 50\$ rather than to 40\$.

SDA Description

```
607
608 30$: BNEO
                 40$
                                      ; If NEQ paper problem
                 #1,R1,UCB$W BOFF(R5) ;Save number of characters remaining
609
         ADDW3
610
         DEVICELOCK -
                 LOCKADDR=UCB$L_DLCK(R5), - ;Lock device interrupts
611
                 SAVIPL=-(SP) ;Save current IPL
#^X80,LP_CSR(R4) ;Is it ready now?
612
613
         BITW
                 35$ ;If NEQ, yes, it's ready
#^X40,LP_CSR(R4) ;Set interrupt enable
614
         BNEO
615
         BISB
616
         WFIKPCH 40$,#12
                                      ;Wait for ready interrupt
                                      ;Create a fork process
617
         IOFORK
                 10$
618
         BRB
                                      ; ...and start next output
619
620 35$:
         DEVICEUNLOCK -
621
                 LOCKADDR=UCB$L_DLCK(R5), - ;Unlock device interrupts
622
623
                 NEWIPL=(SP)+
                                      ;Restore IPL
624
         CLRW
                LP_CSR(R4)
                                      ;Disable device interrupts
625
         BRB
                 10$
                                      ;Go transfer more characters
626 ;
627 ; PRINTER HAS PAPER PROBLEM
628 ;
629
630 40$: CLRL
                 UCB$L LP OFLCNT(R5) ;Clear offline counter
631
        ADDW3
                 #1,R1,UCB$W_BOFF(R5) ;Save number of characters remaining
632 50$: CLRW
                 LP_CSR(R4)
                                      ;Disable printer interrupt
         IOFORK
633
                                      ;Lower to fork level
                 #UCB$V_CANCEL,UCB$W_STS(R5),80$ ;If set, cancel I/O operation
634
         BBS
635
        TSTW
                 LP_CSR(R4) ;Printer still have paper problem?
636
                                      ; If LSS yes
         BLSS
                 55$
                 #15,UCB$L_LP_TIMEOUT(R5) ;Set timeout value
637
         MOVL
638
         BRB
                 10$
                                      ; ...and start next output
```

10 Inducing a System Failure

If the operating system is not performing well and you want to create a dump you can examine, you must induce a system failure. Occasionally, a device driver or other user-written, kernel-mode code can cause the system to execute a loop of code at a high priority, interfering with normal system operation. This can occur even though you have set a breakpoint in the code if the loop is encountered before the breakpoint. To gain control of the system in such circumstances, you must cause the system to fail and then reboot it.

If the system has suspended all noticeable activity (if it is "hung"), see the examples of causing system failures in Section 10.2.

If you are generating a system crash in response to a system hang, be sure to record the PC at the time of the system halt as well as the contents of the general registers. Submit this information to Compaq, along with the Software Performance Report (SPR) and a copy of the generated system dump file.

10.1 Meeting Crash Dump Requirements

The following requirements must be met before the system can write a complete crash dump:

• You must not halt the system until the console dump messages have been printed in their entirety and the memory contents have been written to the crash dump file. Be sure to allow sufficient time for these events to take place or make sure that all disk activity has stopped before using the console to halt the system.

• There must be a crash dump file in SYS\$SYSTEM: named either SYSDUMP.DMP or PAGEFILE.SYS.

This dump file must be either large enough to hold the entire contents of memory (as discussed in Section 1.1) or, if the DUMPSTYLE system parameter is set, large enough to accommodate a subset dump (see Section 1.1.2).

If SYSDUMP.DMP is not present, the operating system attempts to write crash dumps to PAGEFILE.SYS. In this case, the SAVEDUMP system parameter must be 1 (the default is 0).

• The DUMPBUG system parameter must be 1 (the default is 1).

10.2 Examples of How to Cause System Failures

The following examples show the sequence of console commands needed to cause a system failure on each type of processor. In each instance, after halting the processor and examining its registers, you place the equivalent of -1 (for example, FFFFFFF₁₆) into the PC. The value placed in the PSL sets the processor access mode to kernel and the IPL to 31. After these commands are executed, an INVEXCEPTN bugcheck is reported on the console terminal, followed by a listing of the contents of the processor registers.

The console volume of most processors contains a command file named either CRASH.COM or CRASH.CMD, which you can execute to perform these commands. Note that the console sessions recorded in this section omit much of the information the console displays in response to the listed commands.

VAX 85x0/8700/88x0

The following series of console commands causes a system failure on the VAX 85x0/8700/88x0 systems. (Note that the console prompt for the VAX 8810, 8820, and 8830 systems is PS-CIO-0> and not >>>.)

```
$ Ctrl/P
>>> SET CPU CURRENT PRIMARY
>>> HALT
?00
         Left CPU -- CPU halted
         PC = 8001911C
>>> @CRASH
!
! Command procedure to force bugcheck via access violation
SET VERIFY
SET CPU CURRENT_PRIMARY !Select primary
EXAMINE PSL
                          !Display PSL
       M 0000000 00420008
EXAMINE/I/NEXT 4 0
DEPOSIT PC FFFFFFF
                          !Set PC=-1 to force ACCVIO
DEPOSIT PSL 41F0000
                           !Set IPL=31, interrupt stack
CONTINUE
                           !Execute from PC=-1
```

VAX 82x0/83x0, VAXstation 3520/3540, 6000 Series, and 9000 Series

The following console commands cause a system failure on a VAX 82*x*0/83*x*0 system, a VAX station 3520/3540 system, a VAX 6000 series system, or a VAX 9000 series system.

\$ Ctrl/P

PC = 80008B1F >>> E P >>> E/I 0 >>> E/I + >>> D/G F FFFFFFF >>> D P 41F0000 >>> C

VAX 8600/8650

The following console commands cause a system failure on the VAX 8600/8650 systems.

```
$ Ctrl/P
>>> @CRASH
   SET QUIET OFF
                          !Make clearer
   SET ABORT OFF
                          !Don't abort on E/VIR command
   HALT
       CPU stopped, INVOKED BY CONSOLE (CSM code 11)
       PC 80008B1F
   UNJAM
                          !Clear the way
                          !Display PSL
   E PSL
       U PSL 0000000
   E/I/N:4 0
                           !Display stack pointers
   .
   E SP
                          !Get current stack pointers
       G 0E 80000C40
   E/vir/next:40 @
                          !Dump top of stack
   D PC FFFFFFFF
                          !Invalidate the PC
   D PSL 1F0000
                          !Kernel mode, IPL 31
   SET ABORT ON
                          !Restore abort flag
                           !Shut output off
   SET QUIET ON
   CONTINUE
                           !Force a machine check
```

VAX-11/780 and VAX-11/785

The following console commands cause a system failure on the VAX-11/780 and VAX-11/785 processors.

\$ Ctrl/P	
>>> @CRASH HALT HALTED AT 80008A89	!Halt system, examine PC,
EXAMINE PSL 00000000	!PSL,
EXAMINE/INTERN/NEXT:4 0	!and all stack pointers
DEPOSIT PC = -1 DEPOSIT PSL = 41F0000	!Invalidate PC !Kernel mode, IPL 31

CONTINUE

VAX-11/750

The following code causes a system failure on a VAX-11/750. On this processor, the HALT command is a NOP; a Ctrl/P automatically halts the processor.

\$ Ctr/P >>> H >>> E P >>> E/I 0 >>> E/I + >>> D/G F FFFFFFFF >>> D P 41F0000 >>> C

MicroVAX 3400/3600/3900 Series, VAXstation/MicroVAX 3100, VAXstation/MicroVAX 2000, MicroVAX II, and VAX 4000 Series

To force a crash of a MicroVAX, you must first halt the processor. (After you halt the processor, press the HALT button again so that it is popped out and is not illuminated.) Then, issue the following console commands:

>>> E PSL >>> E/I/N:4 0 >>> D PC FFFFFFF >>> D PSL 41F0000 >>> C

VAX-11/730

The following console commands cause a system failure on a VAX-11/730. Ctrl/P automatically halts the processor.

\$ Ctr/P >>> H >>> E PSL >>> E/I/N:4 0 >>> D PC FFFFFFFF >>> D PSL 1F0000 >>> C

SDA Usage Summary

The System Dump Analyzer is a utility that you can use to help determine the causes of system failures. This utility is also useful for examining the running system.

Format

analyze {/CRASH_DUMP [/RELEASE] filespec | /SYSTEM} [/SYMBOL=system-symbol-table]

Command Parameter

filespec

Name of the file that contains the dump you want to analyze. At least one field of the **filespec** is required, and it can be any field. The default **filespec** is the highest version of SYSDUMP.DMP in your default directory.

Usage Summary

Operation	Command	Explanation or Requirements
Invoke SDA to analyze a system dump	\$ ANALYZE/CRASH_ DUMP <i>filename</i>	If you do not specify a file name, SDA prompts you for one.
		Reading the dump file usually requires system privilege (SYSPRV), but your system manager can allow less privileged processes to read dump files.
		Your process needs change-mode-to-kernel (CMKRNL) privilege to release page file dump blocks, whether you use the /RELEASE qualifier or the SDA COPY command.
Invoke SDA to analyze a running system	\$ ANALYZE/SYSTEM	Your process must have change-mode-to-kernel (CMKRNL) privilege. You cannot specify a file name with the /SYSTEM qualifier.
Send all output from SDA to a file	SDA> SET OUTPUT filename	The file produced is 132 columns wide and is formatted for output to a printer.
Redirect the output to your terminal	\$ SET OUTPUT SYS\$OUTPUT	
Send a copy of all the commands you enter and all the output those commands produce to a file	SDA> SET LOG filename	The file produced is 132 columns wide and is formatted for output to a printer.
Exit an SDA display or the SDA utility	SDA> EXIT	If SDA is in display mode, you must use the EXIT command twice: once to exit display mode and a second time to exit SDA.

The following table summarizes how to perform key SDA operations.

SDA Qualifiers

The following qualifiers, described in this section, determine whether the object of an SDA session is a crash dump or a running system. They also help create the environment of an SDA session. Table SDA–10 briefly describes the SDA qualifiers.

Table SDA-10 Descriptions of SDA Qualifiers

Qualifier	Description
/CRASH_DUMP	Invokes SDA to analyze a specified dump file
/RELEASE	Invokes SDA to release those blocks that are occupied by a crash dump in a specified system paging file
/SYMBOL	Specifies a system symbol table for SDA to use in place of the system symbol table it uses by default (SYS\$SYSTEM:SYS.STB)
/SYSTEM	Invokes SDA to analyze a running system

/CRASH_DUMP

Invokes SDA to analyze the specified dump file.

Format

/CRASH_DUMP filespec

Parameter

filespec

Name of the crash dump file to be analyzed. The default file specification is:

SYS\$DISK: [default-dir]SYSDUMP.DMP

SYS\$DISK and *[default-dir]* represent the disk and directory specified in your last SET DEFAULT command. If you do not specify **filespec**, SDA prompts you for it.

Description

See Section 2 for additional information on crash dump analysis.

Examples

- 1. \$ ANALYZE/CRASH_DUMP SYS\$SYSTEM:SYSDUMP.DMP
 - \$ ANALYZE/CRASH SYS\$SYSTEM

These commands invoke SDA to analyze the crash dump stored in SYS\$SYSTEM:SYSDUMP.DMP.

2. \$ ANALYZE/CRASH SYS\$SYSTEM:PAGEFILE.SYS

This command invokes SDA to analyze a crash dump stored in the system paging file.

/RELEASE

Invokes SDA to release those blocks in the specified system paging file occupied by a crash dump.

Format

/RELEASE filespec

Parameter

filespec

Name of the system page file (SYS\$SYSTEM:PAGEFILE.SYS). The default file specification is:

SYS\$DISK: [default-dir]SYSDUMP.DMP

SYS\$DISK and *[default-dir]* represent the disk and directory specified in your last SET DEFAULT command. If you do not specify **filespec**, SDA prompts you for it.

Description

You use the /RELEASE qualifier to release from the system paging file those blocks occupied by a crash dump. When invoked with the /RELEASE qualifier, SDA immediately deletes the dump from the paging file and allows no opportunity to analyze its contents.

When you specify the /RELEASE qualifier in the ANALYZE command, you must also do the following:

- 1. Use the /CRASH_DUMP qualifier.
- 2. Include the name of the system paging file (SYS\$SYSTEM:PAGEFILE.SYS) as the **filespec**.

If you do not specify the system paging file or the specified paging file does not contain a dump, SDA generates the following messages:

%SDA-E-BLKSNRLSD, no dump blocks in page file to release, or not page file %SDA-E-NOTPAGFIL, specified file is not the page file

Example

\$ ANALYZE/CRASH_DUMP/RELEASE SYS\$SYSTEM:PAGEFILE.SYS

This command invokes SDA to release to the paging file those blocks in SYS\$SYSTEM:PAGEFILE.SYS occupied by a crash dump.

/SYMBOL

Specifies a system symbol table for SDA to use in place of the system symbol table it uses by default (SYS\$SYSTEM:SYS.STB).

Format

/SYMBOL =system-symbol-table

Parameter

system-symbol table

File specification of the SDA system symbol table needed to define symbols required by SDA to analyze a dump from a particular system. The specified **system-symbol-table** must contain those symbols required by SDA to find certain locations in the executive image.

If you do *not* specify the /SYMBOL qualifier, SDA uses SYS\$SYSTEM:SYS.STB by default. When you *do* specify the /SYMBOL qualifier, SDA assumes the default disk and directory to be *SYS\$DISK*: that is, the disk and directory specified in your last SET DEFAULT command. If SDA is given a file that is not a system symbol table in the /SYMBOL qualifier, it halts with a fatal error.

Description

The /SYMBOL qualifier allows you to specify a system symbol table, other than SYS\$SYSTEM:SYS.STB, to load into the SDA symbol table. This might be necessary, for instance, to analyze a crash dump taken on a processor running a different version of OpenVMS.

You can use the /SYMBOL qualifier whether you are analyzing a system dump or a running system.

Example

\$ ANALYZE/CRASH_DUMP/SYMBOL=SYS\$CRASH:SYS.STB SYS\$SYSTEM

This command invokes SDA to analyze the crash dump stored in SYS\$SYSTEM:SYSDUMP.DMP, using the system symbol table at SYS\$CRASH:SYS.STB.

/SYSTEM

Invokes SDA to analyze a running system.

Format

/SYSTEM

Parameters

None.

Description

See Section 3 for a full discussion of using SDA to analyze a running system.

You cannot specify the /CRASH_DUMP or /RELEASE qualifiers when you include the /SYSTEM qualifier in the ANALYZE command.

Example

\$ ANALYZE/SYSTEM

This command invokes SDA to analyze the running system.

SDA Commands

Table SDA–11 briefly describes the SDA commands that are explained fully in the following section.

Command	Description
@ (Execute Procedure)	Causes SDA to execute SDA commands contained in a file
ATTACH	Switches control of your terminal from your current process to another process in your job
COPY	Copies the contents of the dump file to another file
DEFINE	Assigns a value to a symbol or associates an SDA command with a terminal key
EVALUATE	Computes and displays the value of the specified expression in both hexadecimal and decimal
EXAMINE	Displays either the contents of a location or range of locations in physical memory, or the contents of a register
EXIT	Exits from an SDA display or exits from the SDA utility
FORMAT	Displays a formatted list of the contents of a block of memory
HELP	Displays information about the SDA utility, its operation, and the format of its commands
READ	Loads the global symbols contained in the specified object module into the SDA symbol table
REPEAT	Repeats execution of the last command issued
SEARCH	Scans a range of memory locations for all occurrences of a specified value
SET CPU	Selects a processor to become the SDA current CPU
SET LOG	Initiates or discontinues the recording of an SDA session in a text file
SET OUTPUT	Redirects output from SDA to the specified file or device
SET PROCESS	Selects a process to become the SDA current process
SET RMS	Changes the options shown by the SHOW PROCESS/RMS command
SHOW CALL_ FRAME	Displays the locations and contents of the longwords representing a procedure call frame
SHOW CLUSTER	Displays connection manager and system communications services (SCS) information for all nodes in a cluster
SHOW CONNECTIONS	Displays information about all active connections between SCS processes or a single connection
SHOW CPU	Displays information about the state of a processor at the time of the system failure

Table SDA-11 Descriptions of SDA Commands

(continued on next page)

Command	Description
SHOW CRASH	In the analysis of a system failure, displays information about the state of the system at the time of the failure; in the analysis of a running system, provides information identifying the system
SHOW DEVICE	Displays a list of all devices in the system and their associated data structures or displays the data structures associated with a given device or devices
SHOW EXECUTIVE	Displays the location and size of each loadable image that makes up the executive
SHOW HEADER	Displays the header of the dump file
SHOW LAN	Displays information contained in various local area network (LAN) data structures
SHOW LOCK	Displays information about all lock management locks in the system, cached locks, or a specified lock
SHOW LOGS	Displays information about transaction logs currently open for the node
SHOW PAGE_ TABLE	Displays a range of system page table entries, the entire system page table, or the entire global page table
SHOW PFN_ DATA	Displays information that is contained in the page lists and PFN database
SHOW POOL	Displays information about the disposition of paged and nonpaged memory, nonpaged dynamic storage pool, and paged dynamic storage pool
SHOW PORTS	Displays those portions of the port descriptor table (PDT) that are port independent
SHOW PROCESS	Displays the software and hardware context of any process in the balance set
SHOW RESOURCE	Displays information about all resources in the system or about a resource associated with a specific lock
SHOW RMS	Displays the RMS data structures selected by the SET RMS command to be included in the default display of the SHOW PROCESS/RMS command
SHOW RSPID	Displays information about response IDs (RSPIDs) of all SCS connections or, optionally, a specific SCS connection
SHOW SPINLOCKS	Displays information taken from the data structures that provide system synchronization in a multiprocessing
	environment
SHOW STACK	Displays the location and contents of the four process stacks (of the SDA current process) and the interrupt stack (of the SDA current CPU)
SHOW	Displays a list of all active processes and the values of the
SUMMARY	parameters used in swapping and scheduling those processes
	(continued on next page)

Command	Description
SHOW SYMBOL	Displays the hexadecimal value of a symbol and, if the value is equal to an address location, the contents of that location
SHOW TRANSACTIONS	Displays information about all transactions on the node or about a specified transaction
SPAWN	Creates a subprocess of the process currently running SDA, copying the context of the current process to the subprocess
VALIDATE QUEUE	Validates the integrity of the specified queue by checking the pointers in the queue

Table SDA-11 (Cont.) Descriptions of SDA Commands

@ (Execute Procedure)

Causes SDA to execute SDA commands contained in a file. Use this command to execute a set of frequently used SDA commands.

Format

@filespec

Parameter

filespec

Name of a file that contains the SDA commands to be executed. The default file type is .COM.

Example

SDA> @USUAL

The Execute Procedure command executes the following commands, as contained in a file named USUAL.COM:

SET OUTPUT LASTCRASH.LIS SHOW CRASH SHOW PROCESS SHOW STACK SHOW SUMMARY

This command procedure first makes the file LASTCRASH.LIS the destination for output generated by subsequent SDA commands. Next, the command procedure sends to the file information about the crash and its context, a description of the process executing at the time of the process, the contents of the stack on which the crash occurred, and a list of the processes active on the CPU that crashed.

An EXIT command within a command procedure terminates the procedure at that point, as would an end-of-file marker.

You cannot nest command procedures.

ATTACH

Switches control of your terminal from your current process to another process in your job.

Format

ATTACH [/PARENT] process-name

Parameter

process-name

Name of the process to which you want to transfer control.

Qualifier

/PARENT

Transfers control of the terminal to the parent process of the current process. When you specify this qualifier, you cannot specify the **process-name** parameter.

Examples

1. SDA> ATTACH/PARENT

This ATTACH command attaches the terminal to the parent process of the current process.

2. SDA> ATTACH DUMPER

This ATTACH command attaches the terminal to a process named DUMPER in the same job as the current process.

System Dump Analyzer COPY

COPY

Copies the contents of the dump file to another file.

Format

COPY output-filespec

Parameter

output-filespec

Name of the device, directory, and file to which SDA copies the dump file. The default file specification is:

SYS\$DISK:[default-dir]filename.DMP

SYS\$DISK and *[default-dir]* represent the disk and directory specified in your last SET DEFAULT command. You must supply at least the file name.

Description

Each time the system fails, it copies the contents of physical memory and the hardware context of the current process (as directed by the DUMPSTYLE parameter) into the file SYS\$SYSTEM:SYSDUMP.DMP (or the paging file), overwriting its current contents. If you do not save this crash dump elsewhere, it will be overwritten the next time the system fails.

The COPY command allows you to preserve a crash dump by copying its contents to another file. It is generally useful to invoke SDA during system initialization (from within SYS\$MANAGER:SYSTARTUP_VMS.COM) to execute the COPY command. This ensures that a copy of the dump file is made each time the system fails.

The COPY command does not affect the contents of SYS\$SYSTEM:SYSDUMP.DMP.

If you are using the paging file (SYS\$SYSTEM:PAGEFILE.SYS) as the dump file instead of SYSDUMP.DMP, you can use the COPY command to explicitly release the blocks of the paging file that contain the dump, thus making them available for paging. Although the copy operation succeeds nonetheless, the release operation requires that your process have change-mode-to-kernel (CMKRNL) privilege. Once the dump pages have been released from the paging file, the dump information in those pages might be lost. You need to analyze the copy of the dump created by the COPY command.

Example

SDA> COPY SYS\$CRASH:SAVEDUMP

The COPY command copies the dump file into the file SYS\$CRASH:SAVEDUMP.DMP.

DEFINE

Assigns a value to a symbol or associates an SDA command with a terminal key.

Format

DEFINE [symbols-name [=] expression | /KEY key-name command | [/qualifier....]]

Parameters

symbol-name

Name, containing from 1 to 31 alphanumeric characters, that identifies the symbol. See Section 7.2.4 for a description of SDA symbol syntax and a list of default symbols.

expression

Definition of the symbol's value. See Section 7.2 for a discussion of the components of SDA expressions.

key-name

Name of the key to be defined. You can define the following keys under SDA:

Key Name	Key Designation
PF1	LK201, VT100, VT52 Red
PF2	LK201, VT100, VT52 Blue
PF3	LK201, VT100, VT52 Black
PF4	LK201, VT100
KP0 KP9	Keypad 0–9
PERIOD	Keypad period
COMMA	Keypad comma
MINUS	Keypad minus
ENTER	Keypad Enter
UP	Up arrow
DOWN	Down arrow
LEFT	Left arrow
RIGHT	Right arrow
E1	LK201 Find
E2	LK201 Insert Here
E3	LK201 Remove
E4	LK201 Select
E5	LK201 Prev Screen
E6	LK201 Next Screen
HELP	LK201 Help
DO	LK201 Do
F7 F20	LK201 function keys

command

SDA command the key is to be defined as. The command must be enclosed in quotation marks (" ").

Qualifiers

/ECHO

/NOECHO

Determines whether the equivalence string is displayed on the terminal screen after the defined key has been pressed. The /NOECHO qualifier functions only with the /TERMINATE qualifier. The default is /ECHO.

/IF_STATE=(state-name, ...) /NOIF_STATE

Specifies a list of one or more states, one of which must be in effect for the key definition to be in effect. States are placed in effect by the /SET_STATE qualifier, which is described in this section.

The **state-name** is an alphanumeric string, enclosed in quotation marks (" "). By including several state names, you can define a key to have the same function in all the specified states. If you specify only one state name, you can omit the parentheses.

If you omit the /IF_STATE qualifier—or use /NOIF_STATE—the current state is used.

/KEY

Defines a key as an SDA command. You need only to press the defined key and the Return key to issue the command. If you use the /TERMINATE qualifier as well, you do not need to press the Return key.

When you define some keys as SDA commands, you must press Ctrl/V first before those keys will execute the commands. This is because of the escape sequences the keys generate and the way the terminal driver handles those escape sequences. The following keys, when defined as SDA commands, must be preceded by a Ctrl/V:

Key Name	Key Designation
LEFT	Left arrow
RIGHT	Right arrow
F7 F14	LK201 function keys

/SET_STATE=state-name

Causes the key being defined to cause a key state change rather than issue an SDA command. When you use the /SET_STATE qualifier, you supply the name of a key state in place of the **key-name** parameter. In addition, you must define the **command** parameter as a pair of quotation marks (" ").

The key state can be any name you think appropriate. For example, you can define the PF1 key to set the state to GOLD and use the /IF_STATE=GOLD qualifier to allow two definitions for other keys, one in the GOLD state and one in the non-GOLD state.

/TERMINATE /NOTERMINATE

Causes the key definition to include termination of the command, which causes SDA to execute the command when the defined key is pressed. Therefore, you do not have to press the Return key after you press the defined key if you specify the /TERMINATE qualifier.

Description

The DEFINE command causes SDA to evaluate an expression and then assign its value to a symbol. Both the DEFINE and EVALUATE commands perform computations in order to evaluate expressions. DEFINE adds symbols to the SDA symbol table but does not display the results of the computation. EVALUATE displays the results of the computation but does not add symbols to the SDA symbol table.

The DEFINE/KEY command associates an SDA command with the specified key, in accordance with any specified qualifiers.

If the symbol or key is already defined, SDA replaces the old definition with the new one. Symbols and keys remain defined until you exit SDA.

Examples

1. SDA> DEFINE BEGIN = 80058E00 SDA> DEFINE END = 80058E60 SDA> EXAMINE BEGIN:END

> In this example, DEFINE defines two addresses, called BEGIN and END. These symbols serve as reference points in memory, defining a range of memory locations that the EXAMINE command can inspect.

```
2. SDA> DEFINE NEXT = @PC
SDA> EXAMINE/INSTRUCTION NEXT
NEXT: MOVL @00(R6),R0
```

Symbol NEXT defines the address contained in the program counter so that you can use the symbol in an EXAMINE/INSTRUCTION command.

3. SDA> DEFINE VEC SCH\$GL_PCBVEC SDA> EXAMINE VEC VEC: 80B7D31C ".O.."

> After the value of global symbol SCH\$GL_PCBVEC has been assigned to the symbol VEC, VEC is used to examine the memory location or value represented by the global symbol.

4. SDA> DEFINE COUNT = 7
SDA> DEFINE RESULT = COUNT * COUNT
SDA> EVALUATE RESULT
Hex = 00000031 Decimal = 49 PR\$_SBIS

RESULT

The first DEFINE command assigns the value 7 to symbol COUNT. The second DEFINE command defines RESULT to be the result of the evaluation of an arithmetic expression using the symbol COUNT. Evaluation of RESULT shows that system symbol PR\$_SBIS has an equivalent value.

```
5. SDA> DEFINE/KEY PF1 "SHOW STACK"
   SDA> PF1 SHOW STACK RETURN
   Process stacks (on CPU 00)
    _____
   Current operating stack (KERNEL):
                 7FFE8DD4 00001703
                                       SGN$C MAXPGFL+703
                 7FFE8DD8 80127920
                 7FFE8DDC 0000000
                 7FFE8DE0 0000000
                 7FFE8DE4 00000000
                 7FFE8DE8 0000000
                 7FFE8DEC 7FF743E4
                 7FFE8DF0 7FF743CC
          SP => 7FFE8DF4 8000E646
7FFE8DF8 7FFEDE96
                                       EXE$CMODEXEC+1EE
                                       SYS$CMKRNL+006
                 7FFE8DFC 03C00000
```

The DEFINE/KEY command defines PF1 as the SHOW STACK command. When you press the PF1 key, SDA displays the command and waits for you to press the Return key.

The DEFINE/KEY command defines PF1 as the SHOW STACK command. Also specifying the /TERMINATE qualifier causes SDA to execute the SHOW STACK command without waiting for you to press the Return key.

The first DEFINE command defines PF1 as a key that sets command state GREEN. The trailing pair of quotation marks is required syntax, indicating that no command is to be executed when you press this key.

The second DEFINE command defines PF3 as the SHOW STACK command, but using the /IF_STATE qualifier makes the definition valid only when the command state is GREEN. Thus, you must press PF1 before pressing PF3 to issue the SHOW STACK command. The /TERMINATE qualifier causes the command to execute as soon as you press the PF3 key.

EVALUATE

Computes and displays the value of the specified expression in both hexadecimal and decimal. Alternative evaluations of the expression are available with the use of the qualifiers defined for this command.

Format

EVALUATE {/CONDITION_VALUE | /PSL | /PTE | /SYMBOLS} expression

Parameter

expression

SDA expression to be evaluated. Section 7.2 describes the components of SDA expressions.

Qualifiers

/CONDITION_VALUE

Displays the message that the \$GETMSG system service obtains for the value of the expression.

/PSL

Evaluates the specified expression in the format of a processor status longword.

/PTE

Interprets and displays the expression as a page table entry (PTE). The individual fields of the PTE are separated and an overall description of the PTE's type is provided.

/SYMBOLS

Specifies that *all* symbols that are known to be equal to the evaluated expression are to be listed in alphabetical order. The default behavior of the EVALUATE command displays only the first several such symbols.

Description

If the expression is equal to the value of a symbol in the SDA symbol table, that symbol is displayed. If no symbol with this value is known, the next lower valued symbol is displayed with an appropriate offset if the offset is small enough for the selected symbol to be considered useful.

Examples

1. SDA> EVALUATE -1
Hex = FFFFFFF Decimal = -1

PR\$ XSID N8NNN

The EVALUATE command evaluates a numeric expression, displays the value of that expression in hexadecimal and decimal notation, and displays a symbol that has been defined to have an equivalent value.

System Dump Analyzer EVALUATE

```
2. SDA> EVALUATE 1
Hex = 00000001 Decimal = 1 ACP$V_SWAPGRP
```

ACP\$V_SWAPGRP ACP\$V_WRITECHK EVT\$_EVENT

The EVALUATE command evaluates a numeric expression and displays the value of that expression in hexadecimal and decimal notation. This example also shows the symbols that have the displayed value. A finite number of symbols are displayed by default.

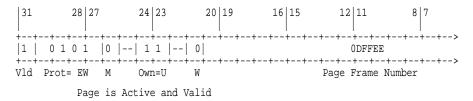
3. SDA> DEFINE TEN = A SDA> EVALUATE TEN Hex = 0000000A Decimal = 10 EXE\$V_FATAL_BUG SGN\$C_MINWSCNT TEN

This example shows the definition of a symbol named TEN. The EVALUATE command then shows the value of the symbol.

Note that A, the value assigned to the symbol by the DEFINE command, could be a symbol. When SDA evaluates a string that can be either a symbol or a hexadecimal numeral, it first searches its symbol table for a definition of the symbol. If SDA finds no definition for the string, it evaluates the string as a hexadecimal number.

4. SDA> EVALUATE (((TEN * 6) + (-1/4)) + 6) Hex = 00000042 Decimal = 66

This example shows how SDA evaluates an expression of several terms, including symbols and rational fractions. SDA evaluates the symbol, substitutes its value in the expression, and then evaluates the expression. Note that the fraction -1/4-is truncated to 0.


5. SDA> EVALUATE/CONDITION 80000018 %SYSTEM-W-EXQUOTA, exceeded quota

This example shows the output of an EVALUATE/CONDITION command.

6. SDA> EVALUATE/PSL 04080009 CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV T N Z V C 0 0 0 1 KERN KERN 08 0 0 0 0 1 0 0 1

SDA interprets the entered value 04080009 as though it were a processor status longword (PSL) and displays the resulting field values of that longword.

7. SDA> EVALUATE/PTE ABCDFFEE

The EVALUATE/PTE command displays the expression ABCDFFEE as a page table entry (PTE) and labels the fields. It also describes the status of the page.

EXAMINE

Displays either the contents of a location or range of locations in physical memory, or the contents of a register. You can use location parameters to display specific locations or use qualifiers to display entire process and system regions of memory.

Format

EXAMINE [/qualifier[,...]] [location]

Parameter

location

Location in memory to be examined. You can represent a location by any valid SDA expression (see Section 7.2). To examine a range of locations, use the following format:

- *m*:*n* Range of locations to be examined, from *m* to *n*
- m;n Range of locations to be examined, starting at m and continuing for n bytes

The default location that SDA uses is initially 0 in the program region (P0) of either of the following:

- The process that was executing at the time the system failed (if you are examining a crash dump)
- Your process (if you are examining the running system)

Subsequent uses of the EXAMINE command with no parameter specified increase the last address examined by 4. Use of the /INSTRUCTION qualifier increases the default address as appropriate to the translation of the instruction. To examine memory locations of other processes, you must use the SET PROCESS command.

Qualifiers

/ALL

Examines all the locations in the program and control regions and parts of the writable system region, displaying the contents of memory in hexadecimal longwords. Do not specify parameters when you use this qualifier.

/CONDITION_VALUE

Examines the specified longword, displaying the message the \$GETMSG system service obtains for the value in the longword.

/INSTRUCTION

Translates the contents of the specified range of memory locations into MACRO instruction format. If more than 16 bytes are specified in the range, /INSTRUCTION processing might skip some bytes at the beginning of the range to ensure that SDA is properly synchronized with the start of each instruction. You can override this synchronization by specifying the /NOSKIP qualifier.

The length of the instruction displayed varies according to the opcode and addressing mode. If SDA cannot decode a memory location, it issues the following message:

%SDA-E-NOINSTRAN, cannot translate instruction

When you use this qualifier with the EXAMINE command, SDA calculates subsequent default addresses by adding the length of the last instruction, including all operands, to the last address examined.

/NOSKIP

Causes the EXAMINE command not to skip any bytes in the range when translating the contents of memory into MACRO instructions. The /NOSKIP qualifier causes the execution of the /INSTRUCTION qualifier by default.

/NOSUPPRESS

Inhibits the suppression of zeros when displaying memory with one of the following qualifiers: /ALL, /P0, /P1, /SYSTEM.

/P0

Displays the entire program region for the default process. Do not specify parameters when you use this qualifier.

/P1

Displays the entire control region for the default process. Do not specify parameters when you use this qualifier.

/PSL

Examines the specified longword, displaying its contents in the format of a processor status longword. This qualifier must precede any parameters used in the command line.

/PTE

Interprets and displays the specified longword as a page table entry (PTE). The display separates individual fields of the PTE and provides an overall description of the PTE's type.

/SYSTEM

Displays portions of the writable system region. Do not specify parameters when you use this qualifier.

/TIME

Examines the specified quadword, displaying its contents in the format of a system-date-and-time quadword.

Description

The following sections describe how to use the EXAMINE command.

Examining Locations

When you use the EXAMINE command to look at a location, SDA displays the location in symbolic notation (symbolic name plus offset), if possible, and its contents in hexadecimal and ASCII formats:

SDA> EXAMINE G6605C0 806605C0: 80002119 ".!.."

If the ASCII character that corresponds to the value contained in a byte is not printable, SDA displays a period (.). If the specified location does not exist in memory, SDA displays this message:

%SDA-E-NOTINPHYS, address : not in physical memory

To examine a range of locations, you can designate starting and ending locations separated by a colon. For example:

SDA> EXAMINE G40:G200

Alternatively, you can specify a location and a length, in bytes, separated by a semicolon. For example:

SDA> EXAMINE G400;16

When used to display the contents of a range of locations, the EXAMINE command displays six columns of information:

- Each of the first four columns represents a longword of memory, the contents of which are displayed in hexadecimal format.
- The fifth column lists the ASCII value of each byte in each longword displayed in the previous four columns.
- The sixth column contains the address of the first, or rightmost, longword in each line. This address is also the address of the first, or leftmost, character in the ASCII representation of the longwords. Thus, you read the hexadecimal dump display from right to left, and the ASCII display from left to right.

If a series of virtual addresses does not exist in physical memory, SDA displays a message specifying the range of addresses that were not translated. For example:

SDA> EXAMINE 100:220

Virtual locations 00000100 through 000001FF are not in physical memory

 0130011A
 0120011B
 0130011E
 0110011F
0..
 00000200

 01200107
 02300510
 04310216
 04210218
 ..!.1...0...
 00000210

 01100103
 01100104
 01200105
 01200106

 00000220

Addresses 100_{16} through $1FF_{16}$ do not exist in memory, as the message indicates. SDA displays the contents of those addresses that do exist (200_{16} through 220_{16}).

If a range of virtual locations contains only zeros, SDA displays this message:

Zeros suppressed from 'loc1' to 'loc2'

Note that if you make a mistake specifying a virtual address for the EXAMINE command and you are examining global page table entries, your system may crash with a bugcheck. This occurs rarely and only when you use ANALYZE/SYSTEM.

Decoding Locations

You can translate the contents of memory locations into MACRO instruction format by using the /INSTRUCTION qualifier. This qualifier causes SDA to display the location in symbolic notation (if possible) and its contents in instruction format. The operands of decoded instructions are also displayed in symbolic notation.

If the specified range of locations does not begin on an instruction boundary, SDA skips bytes until it locates the next valid instruction and issues the following message:

%SDA-W-INSKIPPED, unreasonable instruction stream - n bytes skipped

In this message, *n* represents the number of bytes that SDA could not translate.

Examining Memory Regions

You can display an entire region of virtual memory by using one or more of the qualifiers /ALL, /SYSTEM, /P0, and P1, with the EXAMINE command.

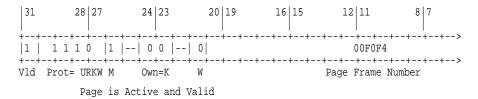
Other Uses

Other uses of the EXAMINE command appear in the following examples.

Examples

1. SDA> EXAMINE/SYSTEM

This example shows only the first two lines of the display generated by the EXAMINE/SYSTEM command. Note that in the dump the fifth byte from the right contains the value 38_{16} . The ASCII value of 38_{16} , the character 8, is represented in the fifth character from the left in column 5.


Likewise, the thirteenth byte from the right in the dump columns contains the value 39_{16} . The ASCII value of 39_{16} is 9, and 9 is represented in the ASCII column as the thirteenth character from the left.

2. SDA> EXAMINE/PSL G1268

 $\begin{array}{ccccccc} \text{CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV T N Z V C} \\ 1 & 0 & 0 & 0 & \text{KERN} & \text{KERN} & 00 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ \end{array}$

This example shows the display produced by the EXAMINE/PSL command. The address of the longword examined is 80001268₁₆.

3. SDA> EXAMINE/PTE G775F480

The EXAMINE/PTE command displays and formats the system page table entry at 8775F480₁₆.

4. SDA> EXAMINE/TIME EXE\$GQ_SYSTIME

18-FEB-1993 02:07:25.88

The EXAMINE/TIME command displays the formatted value of the system time quadword (EXE\$GQ_SYSTIME).

EXIT

Exits from an SDA display or from the SDA utility.

Format

EXIT

Parameters

None.

Qualifiers

None.

Description

If SDA is displaying information about a video display terminal—and if that information extends beyond one screen—SDA displays a **screen overflow prompt** at the bottom of the screen:⁴

Press RETURN for more. SDA>

If you want to discontinue the current display at this point, enter the EXIT command. If you want SDA to execute another command, enter that command. SDA discontinues the display as if you entered EXIT, and then executes the command you entered.

When the screen overflow prompt does not immediately precede the SDA> prompt, entering EXIT causes your process to cease executing the SDA utility. When you issue EXIT within a command procedure (either the SDA initialization file or a command procedure invoked with the @ command), SDA terminates execution of the procedure and returns to the SDA prompt.

⁴ On hardcopy terminals, SDA does not display such a prompt.

FORMAT

Displays a formatted list of the contents of a block of memory.

Format

FORMAT [/qualifier] location

Parameter

location

Location of the beginning of the data block. The location can be given as any valid SDA expression.

Qualifier

/TYPE=block-type

Forces SDA to characterize and format a data block at **location** as the specified type of data structure. The /TYPE qualifier thus overrides the default behavior of the FORMAT command in determining the type of a data block, as described in the Description section. The **block-type** can be the symbolic prefix of any data structure.

Description

The FORMAT command performs the following actions:

- · Characterizes a range of locations as a system data block
- Assigns, if possible, a symbol to each item of data within the block
- Displays all the data within the block

Normally, you use the FORMAT command without the /TYPE qualifier. Used in this manner, it examines the byte in the structure that contains the type of the structure. In most data structures, this byte occurs at an offset of $0A_{16}$ into the structure. If this byte does not contain a valid block type, the FORMAT command halts with this message:

%SDA-E-INVBLKTYP, invalid block type in specified block

However, if this byte does contain a valid block type, SDA checks the next byte (offset $0B_{16}$) for a secondary block type. When SDA has determined the type of block, it searches for the symbols that correspond to that type of block.

If SDA cannot find the symbols associated with the block type it has found (or that you specified in the /TYPE qualifier), it issues this message:

No "block-type" symbols found to format this block

If you receive this message, you might want to read additional symbols into the SDA symbol table and retry the FORMAT command. Most symbols that define data structures are contained within SYS\$SYSTEM:SYSDEF.STB. Thus, you would issue the following command:

\$ READ SYS\$SYSTEM:SYSDEF.STB

Certain data structures do *not* contain a block type at offset $0A_{16}$. If this byte contains information other than a block type—or the byte does not contain a valid block type—SDA displays this message:

%SDA-E-INVBLKTYP, invalid block type in specified block

To format such a block, you must reissue the FORMAT command, using the /TYPE qualifier to designate a **block-type**.

The FORMAT command produces a 3-column display:

- The first column shows the virtual address of each item within the block.
- The second column lists each symbolic name associated with a location within the block.
- The third column shows the contents of each item in hexadecimal format.

Example

SDA> READ SYS\$SYSTEM:SYSDEF.STB SDA> FORMAT 800B81F0

800B81F0	UCB\$L_FQFL UCB\$L_RQFL UCB\$W_MB_SEED UCB\$W UNIT SEED	80000F10
800B81F4	UCB\$L_FQBL UCB\$L_RQBL	800026A8
800B81F8	UCB\$W SIZE	00E0
800B81FA	UCB\$B_TYPE	10
800B81FB	UCB\$B_FLCK	07
800B81FC	UCB\$L_ASTQFL UCB\$L_FPC UCB\$T_PARTNER	800F80E0
800B8200	UCB\$L_ASTQBL UCB\$L_FR3	8002CF80
800B8204	UCB\$L_FIRST UCB\$L_FR4 UCB\$W_MSGMAX UCB\$W_MSGCNT	8002CA00

From SYS\$SYSTEM:SYSDEF.STB, the READ command loads into SDA's symbol table the symbols needed for formatting system data structures. The FORMAT command displays the data structure that begins at 800B81F0₁₆, a unit control block (UCB). If a field has more than one symbolic name, all such names are displayed. Thus, the field that starts at 800B8204₁₆ has three designations: UCB\$L_FIRST and UCB\$L_FR4, alternative names for the longword; and the two subfields, UCB\$W_MSGMAX and UCB\$W_MSGCNT.

The contents of each field appear to the right of the symbolic name of the field. Thus, the contents of UCB L_FIRST are $8002CA00_{16}$.

System Dump Analyzer HELP

HELP

Displays information about the SDA utility, its operation, and the format of its commands.

Format

HELP [command-name]

Parameter

command-name

Command for which you need information.

You can also specify the following keywords in place of **command-name**.

Keyword	Function			
CPU_CONTEXT	Describes the concept of CPU context as it governs the behavior of SDA in uniprocessor and multiprocessor environments			
EXECUTE_ COMMAND	Causes SDA to execute SDA commands contained in a file			
EXPRESSIONS	Prints a description of SDA expressions			
INITIALIZATION	Describes the circumstances under which SDA executes an initialization file when first invoked			
OPERATION	Describes how to operate SDA at your terminal and by means of the site-specific startup procedure			
PROCESS_CONTEXT	Describes the concept of process context as it governs the behavior of SDA in uniprocessor and multiprocessor environments			
SYMBOLS	Consists of up to 31 letters and numbers, and can include the dollar sign (\$) and underscore (_) characters. When you invoke SDA, it reads in the global symbols from symbols table psect of SYS\$BASE_ IMAGE.EXE, and from REQSYSDEF.STB, a required subset of the symbols in the file SYSDEF.STB. You can add other symbols to SDA's symbol table by using the DEFINE and READ commands.			

Qualifiers

None.

Description

The HELP command displays brief descriptions of SDA commands and concepts on the terminal screen (or sends these descriptions to the file designated in a SET OUTPUT command). You can request additional information by specifying the name of a topic in response to the Topic? prompt. If you do not specify a parameter in the HELP command, it lists those commands and topics for which you can request help, as follows:

Information available:

ATTACH	COPY	CPU_Contex	t DEFIN	IE	EVALUATE	EXAMINE
Execute_Command		EXIT	Expressions		FORMAT	HELP
Initializa	ation	Operation	Process_Co	ontext	READ	REPEAT
SEARCH	SET	SHOW	SPAWN	Symbols	VALIDATE	QUEUE

Topic?

READ

Loads the global symbols contained in the specified object module into the SDA symbol table.

Format

READ {/EXECUTIVE directory-spec| [RELOCATE=expression] | filespec}

Parameter

filespec

Name of the device, directory, and file that contains the object module from which you want to copy global symbols. The **filespec** defaults to SYS\$DISK:[*default-dir*]*filename*.STB, where SYS\$DISK and *[default-dir]* represent the disk and directory specified in your last SET DEFAULT command. You must specify a file name.

Qualifiers

/EXECUTIVE directory-spec

Reads into the SDA symbol table all global symbols and global entry points defined within all loadable images that make up the executive. (See Table SDA–13 for a list of those images.)

The **directory-spec** is the name of the directory containing the loadable images of the executive. This parameter defaults to SYS\$LOADABLE_IMAGES.

/RELOCATE=expression

Adds the value of **expression** to the value of each symbol in the symbol table file to be read. You can use the /RELOCATE qualifier only if you also specify a **filespec**. The /RELOCATE qualifier is useful for examining images that are position independent and are loaded at a base of zero.

Description

The READ command symbolically identifies locations in memory for which the default symbol table (SYS\$SYSTEM:SYS.STB) provides no definition. In other words, the required global symbols are located in modules that have been compiled and linked separately from the executive.⁵

The object module file specified in the READ command can be one of the following:

- Output of a compiler or assembler (for example, an .OBJ file)
- Output generated by the linker qualifier /SYMBOL_TABLE (for example, an .STB file)

Most often the object module file is a file provided by the operating system in SYS\$SYSTEM or SYS\$LOADABLE_IMAGES. Many SDA applications, for instance, need to load the definitions of system data structures by issuing a READ command specifying SYS\$SYSTEM:SYSDEF.STB. Others require the definitions of specific global entry points within the executive image that are contained within those object modules included in the executive.

⁵ SDA extracts no local symbols from the object module.

Table SDA-12 lists those object module files provided in SYS\$SYSTEM. Table SDA-13 lists those loadable images in SYS\$LOADABLE_IMAGES that define locations within the executive image.

Table SDA-12	Modules Containing	Global	Symbols	and	Data	Structures	Used
	by SDA						

File	Contents
CLUSTRLOA.STB	Symbols for loadable VAXcluster management code
DCLDEF.STB	Symbols for the DCL interpreter
IMGDEF.STB	Symbols for the image activator
NETDEF.STB	Symbols for DECnet data structures
RMSDEF.STB	Symbols that define RMS internal and user data structures and RMS\$_xxx completion codes
SCSDEF.STB	Symbols that define data structures for system communications services
SYSDEF.STB	Symbols that define system data structures, including the I/O database
TCPIP\$NET_ GLOBALS.STB ¹	Data structure definitions for TCP/IP internet driver, execlet, and ACP data structures
TCPIP\$NFS_ GLOBALS.STB ¹	Data structure definitions for TCP/IP NFS server
TCPIP\$PROXY_ GLOBALS.STB ¹	Data structure definitions for TCP/IP proxy execlet
TCPIP\$PWIP_ GLOBALS.STB ¹	Data structure definitions for TCP/IP PWIP driver, and ACP data structures
TCPIP\$TN_ GLOBALS.STB ¹	Data structure definitions for TCP/IP TELNET/RLOGIN server driver data structures

¹Only available if TCP/IP has been installed. These are found in SYS\$SYSTEM, so that all files are not automatically read in when you issue a READ/EXEC command.

File	Contents
CPULOA.EXE	Processor-specific data and initialization routines
ERRORLOG.EXE	Error logging routines and system services
EVENT_FLAGS_AND_ASTS.EXE	Event flag and AST delivery routines and system services
EXCEPTION.EXE	Bugcheck and exception handling routines and those system services that declare condition and exit handlers
IMAGE_MANAGEMENT.EXE	Image activator and the related system services
	(continued on next nage)

Table SDA-13 Modules Defining Global Locations Within the Executive Image

(continued on next page)

IIIage	
File	Contents
IO_ROUTINES.EXE	\$QIO system service, related system services (for example, SYS\$CANCEL and SYS\$ASSIGN), and supporting routines
LMF\$GROUP_TABLE.EXE	Data for valid, licensed product groups
LOCKING.EXE	Lock management routines and system services
LOGICAL_NAMES.EXE	Logical name routines and system services
MESSAGE_ROUTINES.EXE	System message routines and system services (including SYS\$SNDJBC and SYS\$GETTIM)
PAGE_MANAGEMENT.EXE	System pager, its supporting routines, and page management system services (including SYS\$CRMPSC, SYS\$CREDEL, and SYS\$ADJSTK)
PRIMITIVE_IO.EXE	Console I/O routines
PROCESS_MANAGEMENT.EXE	Scheduler, report system event, and supporting routines and system service
RECOVERY_UNIT_SERVICES.EXE	Recovery unit system services
RMS.EXE	Global symbols and entry points for RMS
SECURITY.EXE	Security management routines and system services
SYSDEVICE.EXE	Mailbox driver and null driver
SYSGETSYI.EXE	Get System Information system service (SYS\$GETSYI)
SYSLICENSE.EXE	Licensing system service (SYS\$LICENSE)
SYSMSG.EXE	System messages
SYSTEM_PRIMITIVES.EXE	Miscellaneous basic system routines, including those that allocate system memory, maintain system time, create fork processes, and control mutex acquisition
SYSTEM_SYNCHRONIZATION.EXE	Routines that enforce synchronization i a multiprocessing system
TCPIP\$BGDRIVER.STB ¹	TCP/IP internet driver
TCPIP\$INETACP.STB ¹	TCP/IP internet ACP
TCPIP\$INTERNET_SERVICES.STB ¹	TCP/IP internet execlet

Table SDA–13 (Cont.) Modules Defining Global Locations Within the Executive Image

¹Only available if TCP/IP has been installed. These are found in SYS\$SYSTEM, so that all files are not automatically read in when you issue a READ/EXEC command.

File	Contents
TCPIP\$NFS_SERVICES.STB ¹	Symbols for the TCP/IP NFS server
TCPIP\$PROXY_SERVICES.STB ¹	Symbols for the TCP/IP proxy execlet
TCPIP\$PWIPACP.STB ¹	TCP/IP PWIP ACP
TCPIP\$PWIPDRIVER.STB ¹	TCP/IP PWIP driver
TCPIP\$TNDRIVER.STB ¹	TCP/IP TELNET/RLOGIN server driver
WORKING_SET_	Swapper, its supporting routines,
MANAGEMENT.EXE	and working set management system
	services

 Table SDA-13 (Cont.)
 Modules Defining Global Locations Within the Executive Image

 $^1 Only$ available if TCP/IP has been installed. These are found in SYS\$SYSTEM, so that all files are not automatically read in when you issue a READ/EXEC command.

Examples

 SDA> READ SYS\$SYSTEM:SYSDEF.STB %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYSEXE]SYSDEF.STB;1

The READ command causes SDA to add all the global symbols in SYS\$SYSTEM:SYSDEF.STB to the SDA symbol table. Such symbols are useful when you are formatting an I/O data structure, such as a unit control block or an I/O request packet.

2. SDA> EXAM/INST EXE\$QIO+2;4

EXE\$QIO+00002: CHMK #001F EXE\$QIO+00006: RET SDA> EXAM/INST V_EXE\$QIO %SDA-E-BADSYM, unknown symbol "V_EXE\$QIO" SDA> READ/RELOCATE=IO_ROUTINES SYS\$LOADABLE_IMAGES:IO_ROUTINES.EXE %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]IO_ROUTINES.EXE;1 SDA> EXAM/INST EXE\$QIO+2;4 EXE\$QIO+00002: MOVZBL 04(AP),R3 EXE\$QIO+00006: CMPB R3,#3F

V_EXE\$QIO+00002: CHMK #001F V EXE\$QIO+00006: RET

SDA> EXAM/INST V_EXE\$QIO+2;4

This SDA session shows that the initial examination of the instructions at EXESQIO+2 and EXESQIO+6 produces the vector for the system service, not the system service code itself. The subsequent READ instruction brings into the SDA symbol table the global symbols defined for the system's I/O routines, including one that redefines the entry point of the system service to be the start of the routine EXESQIO. Thus, the second examination of the same memory locations produces the first two instructions in the routine. The READ command creates a special symbol, V_EXESQIO, that points to the system service vector.

System Dump Analyzer READ

```
3. SDA> SHOW STACK
   Process stacks (on CPU 01)
   _____
   Current operating stack (KERNEL):
                  7FF8F2B0 806BA870
                  7FF8F2B4 7FF8F4C0
                  7FF8F2B8 8016F33E
                                       PAGE MANAGEMENT+0053E
   SDA> READ/RELOCATE=PAGE MANAGEMENT SYS$LOADABLE IMAGES:PAGE MANAGEMENT.EXE
   %SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]PAGE_MANAGEMENT.EXE;1
   SDA> SHOW STACK
   Process stacks (on CPU 01)
     _____
   Current operating stack (KERNEL):
                  7FF8F2B0 806BA870
                  7FF8F2B4 7FF8F4C0
                  7FF8F2B8 8016F33E
                                      MMG$LOCK_SYSTEM_PAGES+00188
```

The initial SHOW STACK command contains an address that SDA resolves into an offset from the PAGE_MANAGEMENT module of the executive. The READ command loads the corresponding symbols into the SDA symbol table such that the reissue of the SHOW STACK command subsequently identifies the same location as an offset within a specific page management routine.

4. READ/EXEC

%SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]RECOVERY_UNIT_SERVICES.EXE;1 \$SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]RMS.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]CPULOA.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]LMF\$GROUP_TABLE.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]SYSLICENSE.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]SYSGETSYI.EXE;1 \$SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]SYSDEVICE.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]MESSAGE_ROUTINES.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]EXCEPTION.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON: [SYS\$LDR]LOGICAL_NAMES.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]SECURITY.EXE;1 \$SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]LOCKING.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON: [SYS\$LDR]PAGE_MANAGEMENT.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]WORKING_SET_MANAGEMENT.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]IMAGE_MANAGEMENT.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]EVENT_FLAGS_AND_ASTS.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]IO_ROUTINES.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]PROCESS_MANAGEMENT.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]ERRORLOG.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON: [SYS\$LDR]PRIMITIVE_IO.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]SYSTEM_SYNCHRONIZATION.EXE;1 %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]SYSTEM_PRIMITIVES.EXE;1

This READ command brings all global symbols defined in the modules of SYS\$SYSTEM:SYS.EXE (as listed in Table SDA–13) into the SDA symbol table. Included in its results is the work performed by the READ commands illustrated in the two previous examples. The READ/EXECUTIVE command, however, does not load those symbols contained in the modules described in Table SDA–12.

REPEAT

Repeats execution of the last command issued. On terminal devices, the KP0 key performs the same function as the REPEAT command.

Format

REPEAT

Parameters

None.

Qualifiers

None.

Description

The REPEAT command is useful for stepping through a linked list of data structures or for examining a sequence of memory locations.

Examples

1.

SDA> FORM	AT @IOC\$GL_DEVLIST	
8000B540 8000B544 8000B548	DDB\$L_LINK DDB\$L_UCB DDB\$W_SIZE	8000B898 8000B5E0 0044
•		
8000B554	DDB\$B_NAME_LEN DDB\$T_NAME	03 "OPA"
•		
SDA> FORM	IAT @.	
8000B898	DDB\$L_LINK	8000BBE0
8000B89C		8000B9E0
8000B8A0	DDB\$W_SIZE	0044
·		
8000B8AC	DDB\$B NAME LEN	03
000020110	DDB\$T_NAME	"MBA"
SDA> KPO		
8000BBE0	DDB\$L_LINK	807F85C0
8000BBE4	DDB\$L_UCB	8000BC80
8000BBE8	DDB\$W_SIZE	0044
•		
•)
8000BBF4	DDB\$B_NAME_LEN	03
	DDB\$T_NAME	"NLA"

This series of FORMAT commands pursues the chain of device data blocks (DDBs) from the system global symbol IOC\$GL_DEVLIST. The second FORMAT command is constructed so that it refers to the contents of the address at the current location (see Section 7.2.4 for a discussion of SDA symbols). Subsequently,

pressing the KP0 key—or issuing the REPEAT command—is sufficient to display each DDB in the device list.

2. SDA> SHOW CALL_FRAME

Call Frame Information ------Call Frame Generated by CALLG Instruction 7FFE7D78 0000000
 Condition Handler
 7FFE7D78
 00000000

 SP Align Bits = 00
 7FFE7D7C
 00000000

 Saved AP
 7FFE7D80
 7FFE7DC0
 CTL\$GL_KSTKBAS+005C0

 Saved FP
 7FFE7D84
 7FFE7D94
 CTL\$GL_KSTKBAS+00594
 Condition Handler SDA> SHOW CALL FRAME/NEXT FP Call Frame Information _____ Call Frame Generated by CALLS Instruction Condition Handler7FFE7D9400000000SP Align Bits = 007FFE7D9820FC0000Saved AP7FFE7D9C7FFED024CTL\$GL_KSTKBAS+005E4Saved FP7FFE7DA07FFE7DE4SYSTEM_PRIMITIVES+020AA SDA> REPEAT Call Frame Information _____ Call Frame Generated by CALLG Instruction Condition Handler 7FFE7DE4 0000000 . .

The first SHOW CALL_FRAME displays the call frame indicated by the current FP value. Because the /NEXT_FP qualifier to the instruction displays the call frame indicated by the saved FP in the current call frame, you can use the REPEAT command to repeat the SHOW CALL_FRAME/NEXT_FP command and follow a chain of call frames.

SEARCH

Scans a range of memory locations for all occurrences of a specified value.

Format

SEARCH [/qualifier] range[=]expression

Parameters

range

Location in memory to be searched. A location can be represented by any valid SDA expression (see Section 7.2). To search a range of locations, use the following format:

m:*n* Range of locations to be searched, from *m* to *n*

m;*n* Range of locations to be searched, starting at *m* and continuing for *n* bytes

expression

Indication of the value for which SDA is to search. SDA evaluates the **expression** and searches the specified **range** of memory for the resulting value. For a description of SDA expressions, see Section 7.2.

Qualifiers

/LENGTH={LONGWORD|WORD|BYTE}

Specifies the size of the **expression** value that the SEARCH command uses for matching. If you do not specify the /LENGTH qualifier, the SEARCH command uses a longword length by default.

/STEPS={QUADWORD|LONGWORD|WORD|BYTE}

Specifies the granularity of the search through the specified memory **range**. After the SEARCH command has performed the comparison between the value of **expression** and memory location, it adds the specified step factor to the address of the memory location to determine the next location to undergo the comparison. If you do not specify the /STEPS qualifier, the SEARCH command uses a step factor of one longword.

Description

SEARCH displays each location as each value is found.

Examples

 SDA> SEARCH GB81F0;500 60068 Searching from 800B81F0 to 800B86F0 in LONGWORD steps for 00060068... Match at 800B8210 SDA>

The SEARCH command finds the value 0060068 in the longword at 800B8210.

2. SDA> SEARCH/STEPS=BYTE 80000000;1000 6 Searching from 80000000 to 80001000 in BYTE steps for 00000006... Match at 80000A99 SDA>

The SEARCH command finds the value 00000006 in the longword at 80000A99.

```
3. SDA> SEARCH/LENGTH=WORD 8000000;2000 6
Searching from 80000000 to 80002000 in LONGWORD steps for 0006...
Match at 8000054
Match at 800001EC
Match at 800012AC
Match at 800012B8
SDA>
```

The SEARCH command finds the value 0006 in the longword locations 80000054, 800001EC, 800012AC, and 800012B8.

SET CPU

Selects a processor to become the SDA current CPU.

Format

SET CPU cpu-id

Parameter

cpu-id

Numeric value from 00_{16} to $1F_{16}$ indicating the identity of the processor to be made the current CPU. If you specify a value outside this range or a **cpu-id** of a processor that was not active at the time of the system failure, SDA displays the following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

Qualifiers

None.

Description

When you invoke SDA to examine a system dump, the SDA current CPU context defaults to that of the processor that caused the system to fail. When analyzing a crash from a multiprocessing system, you might find it useful at times to examine the context of another processor in the configuration.

The SET CPU command changes the current SDA CPU context to that of the processor indicated by **cpu-id**. The CPU specified by this command becomes the current CPU for SDA until you exit SDA or change SDA CPU context by issuing one of the following commands:

SET CPU **cpu-id** SHOW CPU **cpu-id** SHOW CRASH

The following commands also change SDA CPU context if the **name** or index number (**nn**) refers to a current process:

SET PROCESS **name** SET PROCESS/INDEX=**nn** SHOW PROCESS **name** SHOW PROCESS/INDEX=**nn**

Changing CPU context can cause an implicit change in process context under the following circumstances:

- If there is a current process on the CPU made current, SDA changes its process context to that of that CPU's current process.
- If there is no current process on the CPU made current, SDA process context is undefined and no process-specific information is available until you set SDA process context to that of a specific process.

See Section 4 for further discussion on the way in which SDA maintains its context information.

System Dump Analyzer SET CPU

You cannot use the SET CPU command when examining the running system with SDA.

Example

```
$ ANALYZE/CRASH SYS$SYSTEM:SYSDUMP.DMP
Dump taken on 22-FEB-1993 14:22:17.66
NOBUFPCKT, Required buffer packet not present
SDA> SHOW CPU
CPU 01 Processor crash information
_____
CPU 01 reason for Bugcheck: NOBUFPCKT, Required buffer packet not present
  .
SDA> SHOW STACK
CPU 01 Processor stack
------
Current operating stack (INTERRUPT):
      80DAFB4C 8018BC20
      80DAFB50 7FFC653E
  .
SDA> SET CPU 00
SDA> SHOW CPU
CPU 00 Processor crash information
CPU 00 reason for Bugcheck: CPUEXIT, Shutdown requested by another CPU
  .
SDA> SHOW STACK
CPU 00 Processor stack
------
Current operating stack (INTERRUPT):
      8016ABD8 00011F4C
8016ABDC 00010F56
  .
SDA> SHOW CRASH
System crash information
_____
Time of system crash: 22-FEB-1993 14:22:17.66
  .
  .
SDA> SHOW STACK
CPU 01 Processor stack
-----
Current operating stack (INTERRUPT):
```

80DAFB4C 8018BC20 80DAFB50 7FFC653E

•

The series of SHOW CPU and SHOW STACK commands in this example illustrates the switching of CPU context within an SDA session:

- 1. When you first invoke SDA, it is, by default, within the CPU context of the processor that caused the crash (CPU 01). This is illustrated by the first set of SHOW CPU and SHOW STACK commands.
- 2. The SET CPU 00 command explicitly changes SDA CPU context to that of CPU 00, as illustrated by the second sequence of SHOW CPU and SHOW STACK commands.

Note that a SHOW CPU 00 command would have the same effect as the two commands SET CPU 00 and SHOW CPU, changing the SDA CPU context in addition to displaying the processor-specific information. Unlike the SHOW CPU **cpu-id** command, no display is associated with the SET CPU **cpu-id** command.

3. The SHOW CRASH command resets the SDA CPU context to that of the processor that caused the crash (CPU 01).

SET LOG

Initiates or discontinues the recording of an SDA session in a text file.

Format

SET [NO]LOG filespec

Parameter

filespec

Name of the file in which you want SDA to log your commands and their output. The default **filespec** is SYS\$DISK: *[default_dir]filename*.LOG, where SYS\$DISK and *[default-dir]* represent the disk and directory specified in your last SET DEFAULT command. You must specify a file name.

Qualifiers

None.

Description

The SET LOG command echoes the commands and output of an SDA session to a log file. The SET NOLOG command terminates this behavior.

There are the following differences between the SET LOG command and the SET OUTPUT command:

- When logging is in effect, your commands and their results are still displayed on your terminal. The SET OUTPUT command causes the displays to be redirected to the output file such that they no longer appear on the screen.
- If an SDA command requires that you press Return to produce successive screens of display, the log file produced by SET LOG will record only those screens that are actually displayed. SET OUTPUT, however, sends the entire output of all SDA commands to its listing file.
- The SET LOG command produces a log file with a default file type of .LOG; the SET OUTPUT command produces a listing file whose default file type is .LIS.
- The SET LOG command does not record output from the HELP command in its log file. The SET OUTPUT command can record HELP output in its listing file.
- The SET LOG command does not record SDA error messages in its log file. The SET OUTPUT command can record SDA error messages in its listing file.
- The SET OUTPUT command generates a table of contents, each item of which refers to a display written to its listing file. SET OUTPUT also produces running heads for each page of output. The SET LOG command does not produce these items in its log file.

Note that, if you have used the SET OUTPUT command to redirect output to a listing file, you cannot use a SET LOG command to direct the same output to a log file.

SET OUTPUT

Redirects output from SDA to the specified file or device.

Format

SET OUTPUT filespec

Parameter

filespec

Name of the file to which SDA is to send the output generated by its commands. The default **filespec** is SYS\$DISK:/*default_dir/filename*.LIS, where SYS\$DISK and *[default-dir]* represent the disk and directory specified in your last SET DEFAULT command. You must specify a file name.

Description

When you use the SET OUTPUT command to send the SDA output to a file or device, SDA continues to display the SDA commands that you enter but sends the output generated by those commands to the file or device that you specify. (See the description of the SET LOG command for a list of differences between SET LOG and the SET OUTPUT command.)

When you finish directing SDA commands to an output file and want to return to interactive display, issue the following command:

SDA> SET OUTPUT SYS\$OUTPUT

If you use the SET OUTPUT command to send the SDA output to a listing file, SDA builds a table of contents that identifies the displays you selected and places the table of contents at the beginning of the output file. The SET OUTPUT command formats the output into pages and produces a running head at the top of each page.

SET PROCESS

Selects a process to become the SDA current process.

Format

SET PROCESS {process-name | /INDEX=nn | /SYSTEM}

Parameter

process-name

Name of the process to become the SDA current process. The **process-name** is a string containing up to 15 uppercase or lowercase characters; numerals, the dollar sign (\$) character, and the underscore (_) character can also be included in the string. If you include characters other than these, you must enclose the entire string in quotation marks (" ").

Qualifiers

/INDEX=nn

Specifies the process to be made current by its index into the system's list of software process control blocks (PCBs). You can supply either of the following values for **nn**:

- The process index itself
- The process identification (PID) or extended PID longword, from which SDA extracts the correct index

To obtain these values for any given process, issue the SDA command SHOW SUMMARY.

/SYSTEM

Specifies that the system process be made the SDA current process. Each system (uniprocessor or multiprocessor) uses a single system process control block (PCB) and process header (PHD) as dummy structures, located in system space, that record the system working set, global section table, global page table, and other systemwide data.

Description

When you issue an SDA command such as an EXAMINE command, SDA displays the contents of memory locations in its current process. To display any information about another process, you must change the current process with the SET PROCESS command.

When you invoke SDA to analyze a crash dump, its process context defaults to that of the process that was current at the time of the crash. If the crash occurred on a multiprocessing system, SDA sets the CPU context to that of the processor that crashed the system and the process context to that of the process that was current on that processor.

When you invoke SDA to analyze a running system, its process context defaults to that of the current process; that is, the one executing SDA.

The SET PROCESS command changes the current SDA process context to that of the process indicated by **name** or /INDEX=**nn**. The process specified by this command becomes the current process for SDA until you exit SDA or change SDA process context by issuing one of the following commands:

SET PROCESS/INDEX=nn SET PROCESS process-name SHOW PROCESS/INDEX=nn

In the analysis of a crash dump from a multiprocessing system, changing process context can involve a switch of CPU context as well. For instance, if you issue a SET PROCESS command for a process that is current on another CPU, SDA will automatically change its CPU context to that of the CPU on which that process is current. The following commands can have this effect if **process-name** or index number (**nn**) refers to a current process:

SET PROCESS process-name SET PROCESS/INDEX=nn SHOW PROCESS process-name SHOW PROCESS/INDEX=nn

See Section 4 for further discussion on the way in which SDA maintains its context information.

Example

SDA> SHOW PROCH Process index:		: NETACP	Extended	PID: 2	8C00092		
Process status	: 00149001	RES,WAKE	PEN , NOACN	T,PHDRE	S,LOGIN		
PCB address PHD address	81	00F1140 0477200	JIB addr Swapfile	ess disk a	ddress	801FDA00 01000F01	
SDA> SHOW SUMMA Current process							
Extended Indx PID			ame St	ate Pri	PCB	PHD	Wkset
28C00080 0000 28C00081 0001 28C00483 0003 28C00085 0005 28C00087 0007	SWINGER SWAPPER KLINGON ERRFMT	KLING SYSTE	H ON M M C	IB 16 WAIT 6 OM 10	800B5A10	80002250 803F8600 8061DA00	0 323 69
SDA>SET PROCESS SDA> SHOW PROCE Process index:	ESS	: ERRFMT	Extended	PID: 2	8C00085		
Process status:	: 00040001	RES, PHDR	ES				
PCB address	8	00B5A10	JIB addr	ess		801E5C00	

The first SHOW PROCESS command shows the current process to be NETACP. The SHOW SUMMARY command shows the names of the processes that exist. The SET PROCESS command sets the current process to ERRFMT, as shown by the second SHOW PROCESS command. Note that the SET PROCESS command could also have been issued as one of the following:

SDA> SET PROCESS/INDEX=5 SDA> SET PROCESS/INDEX=801E5C00

SET RMS

Changes the options shown by the SHOW PROCESS/RMS command.

Format

SET RMS =(option[,...])

Parameter

option

Data structure or other information to be displayed by the SHOW PROCESS/RMS command. Table SDA-14 lists those keywords that you can use as options.

Table SDA-14 SET RMS Command Keywords for Displaying Process RMS Information Information

Keyword	Meaning
[NO]ALL[: ifi] ¹	All control blocks (default)
[NO]ASB	Asynchronous context block
[NO]BDB	Buffer descriptor block
[NO]BDBSUM	BDB summary page
[NO]BLB	Buffer lock block
[NO]BLBSUM	Buffer lock summary page
[NO]CCB	Channel control block
[NO]DRC	Directory cache
[NO]FAB	File access block
[NO]FCB	File control block
[NO]FWA	File work area
[NO]GBD	Global buffer descriptor
[NO]GBDSUM	GBD summary page
[NO]GBH	Global buffer header
[NO]GBSB	Global buffer synchronization block
[NO]IDX	Index descriptor
[NO]IFAB[: ifi] ¹	Internal FAB
[NO]IFB[: ifi] ¹	Internal FAB
[NO]IRAB	Internal RAB
[NO]IRB	Internal RAB
[NO]JFB	Journaling file block
[NO]NAM	Name block
[NO]NWA	Network work area

 1 The optional parameter **ifi** is an internal file identification. The default **ifi** (ALL) is all the files the current process has opened.

(continued on next page)

Keyword	Meaning
[NO]PIO	Image I/O (NOPIO), the default, or process I/O (PIO) ²
[NO]RAB	Record access block
[NO]RLB	Record lock block
[NO]RU	Recovery unit structures, including the recovery unit block (RUB), recovery unit stream block (RUSB), and recovery unit file block (RUFB)
[NO]SFSB	Shared file synchronization block
[NO]WCB	Window control block
[NO]XAB	Extended attribute block
[NO]*	Current list of options displayed by the SHOW RMS command

Table SDA-14 (Cont.) SET RMS Command Keywords for Displaying Process RMS Information

 $^2 Specifying the PIO option causes the SHOW PROCESS/RMS command to display the indicated structures for process-permanent file I/O.$

The default **option** is ALL:ALL,NOPIO, designating for display by the SHOW PROCESS/RMS command all structures for all files related to the image I/O of the process.

To list more than one option, enclose the list in parentheses and separate options by commas. You can add a given data structure to those displayed by ensuring that the list of keywords begins with the * (asterisk) symbol. You can delete a given data structure from the current display by preceding its keyword with NO.

Qualifiers

None.

Description

The SET RMS command determines the data structures to be displayed by the SHOW PROCESS/RMS command. (See the examples included in the discussion of the SHOW PROCESS command for an indication of the information provided by various displays.) You can examine the options that are currently selected by issuing a SHOW RMS command.

Examples

1. SDA> SHOW RMS RMS Display Options: IFB, IRB, IDX, BDB, BDBSUM, ASB, CCB, WCB, FCB, FAB, RAB, NAM, XAB, RLB, BLB, BLBSUM, GBD, GBH, FWA, GBDSUM, JFB, NWA, RU, DRC, SFSB, GBSB Display RMS structures for all IFI values. SDA> SET RMS=IFB SDA> SHOW RMS RMS Display Options: IFB Display RMS structures for all IFI values. The first SHOW RMS command shows the default selection of data structures

SDA-80

that are displayed in response to a SHOW PROCESS/RMS command. The SET RMS command selects only the IFB to be displayed by subsequent SET/PROCESS commands.

2. SDA> SET RMS=(*,BLB,BLBSUM,RLB) SDA> SHOW RMS

RMS Display Options: IFB, RLB, BLB, BLBSUM

Display RMS structures for all IFI values.

The SET RMS command adds BLB, BLBSUM, and RLB to the list of data structures that the SHOW PROCESS/RMS command currently displays.

3. SDA> SET RMS=(*,NORLB,IFB:05) SDA> SHOW RMS

RMS Display Options: IFB, BLB, BLBSUM Display RMS structures only for IFI=5.

The SET RMS command removes the RLB from those data structures displayed by the SHOW PROCESS/RMS command and causes only information about the file with the **ifi** of 5 to be displayed.

4. SDA> SET RMS=(*,PIO)

The SET RMS command indicates that the data structures designated for display by SHOW PROCESS/RMS be associated with process-permanent I/O instead of image I/O.

SHOW CALL_FRAME

Displays the locations and contents of the longwords representing a procedure call frame.

Format

SHOW CALL_FRAME [starting-address|/NEXT_FP]

Parameter

starting-address

Expression representing the starting address of the procedure call frame to be displayed. The default **starting-address** is the longword contained in the FP register of the SDA current process.

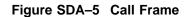
Qualifier

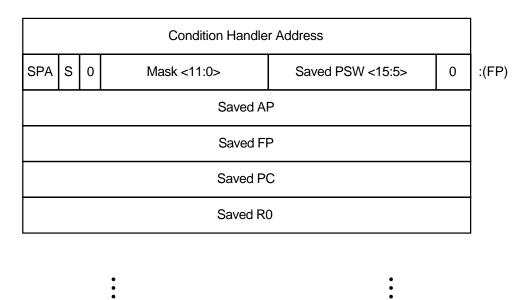
/NEXT_FP

Displays the procedure call frame starting at the address stored in the FP longword of the last call frame displayed by this command. You must have issued a SHOW CALL_FRAME command previously in the current SDA session to use the /NEXT_FP qualifier to the command.

Description

Whenever a procedure is called using CALLG or CALLS instructions, information is stored on the stack of the calling routine in the form of a procedure call frame. Figure SDA-5 illustrates the format of a call frame.⁶


The SHOW CALL_FRAME command interprets the contents of the designated call frame and displays whether the call frame was generated by a CALLG or CALLS instruction. If it locates nonzero bits in the portion of the second longword that represents the upper byte of the processor status word (PSW), it presents a message that indicates the fault or trap in effect. For example:


Nonzero PSW Bits (15:8) => Reserved Operand Fault on RET

SHOW_CALL_FRAME then produces four columns of information:

- The components of the call frame.
- The virtual addresses that are part of the call frame.
- The contents of the longwords at these addresses.
- A symbolic representation of the contents of each longword, if possible. SDA does not attempt to symbolize the second longword in the call frame (mask-PSW longword), which contains the register save mask and the processor status word (PSW).

⁶ In Figure SDA–5, the second longword contains the stack pointer alignment (SPA) bits, which indicate the zero to three bytes needed to align the frame to a longword boundary. The S bit is set if the frame resulted from a CALLS instruction; it is clear if it resulted from a CALLG instruction.

Saved R11

The SHOW CALL_FRAME command follows this listing with an indication of how many bytes were used to align the call frame to a longword boundary.

For call frames generated by a CALLS instruction, the SHOW CALL_FRAME instruction displays the argument list to the call frame in three columns containing the virtual address of each item, its contents, and its symbolic representation.

All valid procedure call frames begin on a longword boundary. If the specified address expression does not begin on a longword boundary, the call frame is invalid and SDA displays the following message:

Invalid Call Frame: Start Address Not On Longword Boundary

If you attempt to format an address that is not a call frame or is an invalid call frame (that is, bit 28 of the second longword is not 0), SDA displays the following message:

Invalid Call Frame: Bit 28 is Set in "Mask-PSW" Longword

When using the SHOW CALL_FRAME/NEXT_FP command to follow a chain of call frames, SDA signals the end of the chain by this message:

%SDA-E-NOTINPHYS, 00000000 : not in physical memory

This message indicates that the saved FP in the previous call frame has a zero value.

ZK-6564-GE

System Dump Analyzer SHOW CALL FRAME

Example

SDA> SHOW CALL FRAME Call Frame Information _____ Call Frame Generated by CALLG Instruction Condition Handler7FFE7D780000000SP Align Bits = 007FFE7D7C0000000Saved AP7FFE7D807FFE7DC0Saved FP7FFE7D847FFE7D94Return PC7FFE7D8880152027Align State11
 7FFE7D80
 7FFE7DC0

 7FFE7D84
 7FFE7D94

 7FFE7D88
 8015303F
 CTL\$GL_KSTKBAS+005C0 CTL\$GL_KSTKBAS+00594 EXCEPTION+0043F Align Stack by 0 Bytes => SDA> SHOW CALL_FRAME/NEXT_FP Call Frame Information _____ Call Frame Generated by CALLS Instruction Condition Handler7FFE7D9400000000SP Align Bits = 007FFE7D9820FC0000Saved AP7FFE7D9C7FFED024Saved FP7FFE7DA07FFE7DE4Return PC7FFE7DA4801D58AAR27FFE7DA87FFE7DD07FFE7DAC7FFE3D8F8 CTL\$GL_KSTKBAS+005E4 MMG\$IMGRESET+00066 CTL\$GL KSTKBAS+005D0 7FFE7DAC 7FFDB9F8 7FFE7DB0 8026C720 R4 R5 7FFE7DB4 7FFDBA00 7FFE7DB8 7FFE6300 Rб CTL\$A DISPVEC+00500 7FFE7DBC 0000003 R7 Align Stack by 0 Bytes => Argument List 7FFE7DC0 0000003 7FFE7DC4 7FFE7DD0 CTL\$GL KSTKBAS+005D0 7FFE7DC8 0000000 7FFE7DCC 0000000 SDA> SHOW CALL FRAME/NEXT FP Call Frame Information -----Call Frame Generated by CALLG Instruction ndition Handler Align Bits = 00 Saved AP Saved FP 7FFE7DE4 0000000 Condition Handler SP Align Bits = 00 7FFE7DE8 0000000 7FFE7DEC 7FFED024 7FFE7DF0 7FFECFF8 Saved FP
 Saved
 FP
 7FFE7DF0
 7FFECFF8

 Return
 PC
 7FFE7DF4
 8015303F

> The SHOW CALL_FRAME commands in this SDA session follow a chain of call frames from that specified in the FP of the SDA current process.

EXCEPTION+0043F

Align Stack by 0 Bytes =>

SHOW CLUSTER

Displays connection manager and system communications services (SCS) information for all nodes in a cluster.

Format

SHOW CLUSTER {/CSID=csid | /NODE=name | /SCS}

Parameters

None.

Qualifiers

/CSID=csid

Displays VAXcluster system information for a specific VAXcluster member node. The value **csid** is the cluster system identification number (CSID) of the node to be displayed.⁷

/NODE=name

Displays VAXcluster system information for a specific VAXcluster member node. The value **name** is the name of the node to be displayed.

/SCS

Displays a view of the cluster as seen by SCS.

Description

By default, the SHOW CLUSTER command provides a view of the VAXcluster system from the perspective of the connection manager. When you use the /SCS qualifier, however, SHOW CLUSTER provides a view of the cluster from the perspective of the port driver or drivers.

VAXcluster as Seen by the Connection Manager

The SHOW CLUSTER command provides a series of displays.

The VAXcluster summary display supplies the following information:

- Number of votes required for a quorum
- Number of votes currently available
- Number of votes allocated to the quorum disk
- Status summary indicating whether a quorum is present

The **CSB list** displays information about the VAXcluster system blocks (CSB) currently in operation; there is one CSB assigned to each node of the cluster. For each CSB, the **CSB list** displays the following information:

- Its address
- Name of the VAXcluster node it describes
- CSID associated with the node

⁷ You can find the CSID for a specific node in a cluster by examining the **CSB list** display of the SHOW CLUSTER command. Other SDA displays refer to a system's CSID. For instance, the SHOW LOCK command indicates where a lock is mastered or held by CSID.

- Number of votes (if any) provided by the node
- Its state⁸
- Its status

The **cluster block** display includes information recorded in the cluster block (CLUB), including a list of activated flags, a summary of quorum and vote information, and other data that applies to the cluster from the perspective of the node for which SDA is being run.

The **cluster failover control block** display provides detailed information concerning the cluster failover control block (CLUFCB), and the **cluster quorum disk control block** display provides detailed information from the cluster quorum disk control block (CLUDCB).

Subsequent displays provide information for each CSB listed previously in the **CSB list** display. Each display shows the state and flags of a CSB, as well as other specific node information. (See the Show Cluster utility section of the *OpenVMS System Management Utilities Reference Manual* for information about the flags for VAXcluster nodes.)

VAXcluster as Seen by the Port Driver

The SHOW CLUSTER/SCS command provides a series of displays.

The **SCS listening process directory** lists those processes that are listening for incoming SCS connect requests. For each of these processes, this display records the following information:

- Address of its directory entry
- Connection ID
- Name
- Explanatory information, if available

The **SCS systems summary** display provides the system block (SB) address, node name, system type, system ID, and the number of connection paths for each SCS system. An **SCS system** can be a VAXcluster member, HSC, UDA, or other such device.

Subsequent displays provide detailed information for each of the system blocks and the associated path blocks. The system block displays include the maximum message and datagram sizes, local hardware and software data, and SCS poller information. Path block displays include information that describes the connection, including remote functions and other path-related data.

Examples

1. SDA> SHOW CLUSTER

2

3

VAXcluster data structures ----- VAXcluster Summary ---Quorum Votes Quorum Disk Votes Status Summary

1

quorum

⁸ For information about the state and status of nodes, see the description of the ADD command in the Show Cluster utility section of the *OpenVMS System Management Utilities Reference Manual*.

--- CSB list ---

Address	Node	CSID	Votes	State	Status
0000000		00010000	-		
803686F0	SOLLY	000100C8	T	open	member,qf_active
80368550	GUS	000100C9	1	open	member,qf_active
80367B90	DORIS	000100C5	1	open	member,qf_active

--- Cluster Block (CLUB) 801C3F70 ---

Flags: 10080001 cluster,init,quorum

Quorum/Votes	2/3	Last transaction code	02
Quorum Disk Votes	1	Last trans. number	1126
Nodes	3	Last coordinator CSID	00000000
Quorum Disk	\$255\$DUA2	Last time stamp	26-MAR-1993
Found Node SYSID	0A800000008A0		18:52:32
Founding Time	3-DEC-1992	Largest trans. id	00000466
	00:01:44	Resource Alloc. retry	0
Index of next CSID	00D2	Figure of Merit	00000000
Quorum Disk Cntrl Bl	ock 80334E00	Member State Seq. Num	0190
Timer Entry Address	00000000	Foreign Cluster	00000000
CSP Queue	empty		

--- Cluster Failover Control Block (CLUFCB) 801C407C ---

Flags: 00000000

Failover Step Index	0000028	CSB of Synchr. System	803686F0
Failover Instance ID	00000466		

--- Cluster Quorum Disk Control Block (CLUDCB) 80334E00 ---

State: 0001 qs_not_ready Flags: 0000

Iteration Counter	0	UCB address	00000000
Activity Counter	0	TQE address	80419F40
Quorum file LBN	0000000	IRP address	803665A0

--- SOLLY Cluster System Block (CSB) 803686F0 ---

State: 01 open

Flags: 02020302 member,cluster,qf_active,selected,status_rcvd

Quorum/Votes 2/1 Quor. Disk Vote 1	<u>-</u>	247 314	Send queue Resend queue	00000000 00000000
ĈSID 000100C8	Last ack. seq num 0	247	Block xfer Q.	empty
Eco/Version 0/12	Unacked messages	1	CDT address	801C28F0
Reconn. time 00000059	Ack limit	-	PDT address	801CEA20
Ref. count 2	Incarnation 18-DEC-1	.993	TQE address	00000000
Ref. time 18-DEC-1993	08:52		SB address	8041B6E0
08:53:58	Lock mgr dir wgt	1	Current CDRP	00000000

This example shows the screen displays for the SHOW CLUSTER command. (Displays for nodes GUS and DORIS, similar to that for node SOLLY, are also included in the SHOW CLUSTER output but have been omitted from this example.)

System Dump Analyzer SHOW CLUSTER

2. SDA> SHOW CLUSTER /CSID=000100C8

VAXcluster data structures --------- SOLLY Cluster System Block (CSB) 803686F0 ---State: 01 open Flags: 02020302 member, cluster, qf active, selected, status rcvd Quorum/Votes2/1Next seq. number0247Send queueQuor. Disk Vote1Last seq num rcvd0314Resend queueCSID000100C8Last ack. seq num0247Block xfer Q.Eco/Version0/12Unacked messages1CDT addressReconn. time00000059Ack limit4PDT address 00000000 00000000 empty 801C28F0 801CEA20 Ref. count 2 Incarnation 18-DEC-1993 TQE address 00000000 Ref. time 18-DEC-1993 08:52:20 SB address 8041B6E0

08:53:58 Lock mgr dir wgt 1 Current CDRP

This example shows the use of the /CSID qualifier to obtain information about a specific node (in this instance, node SOLLY).

00000000

3. SDA> SHOW CLUSTER /NODE=LEON01

VAXcluster data structures _____ --- LEON01 Cluster System Block (CSB) 9863BC00 ---State: 01 open Status 0206E1A2 member, qf_noaccess, cluster, selected, status_rcvd cwps,rangelock,dyn remaster,dts,vcc Cpblty 00000001 rm8sec Quorum/Votes4/1Next seq. number5D8BSend queueQuor. Disk Vote10Last seq num rcvd3302Resend queueCSID00200093Last ack. seq num5D8ABlock xfer Q.Eco/Version0/24Unacked messages0CDT addressReconn. time0000000Ack limit3PDT address 987C3F80 00000000 empty 9830C600 98388590 Ref. count 2 Incarnation 26-JAN-1993 TQE address 00000000 Ref. time 26-JAN-1993 15:14:37 SB address 98638140 15:28:43 Lock mgr dir wgt 1 Current CDRP 00000000

This example shows the use of the /NODE qualifier to obtain information about a specific node (in this instance, node LEON01).

4. SDA> SHOW CLUSTER /SCS

VAXcluster data structures

Detroy Address		5	Process Directory	 Information
Entry Address		tion ID	Process Name	
80419D60 80419E20		0000	SCS\$DIRECTORY VMS\$VAXcluster	
	S	CS Systems	Summary	
SB Address	Node	Туре	System ID	Paths
8041A120 8041AA20 8041AB40 8041B6E0 8041B6E0 8041D420	PINTO DORIS GUS SOLLY DODGER	HSC VMS VMS VMS HSC	 00000000510E 000000008A9 000000008A1 0000000008A0 000000000500F	 1 1 1 1 1

--- PINTO System Block (SB) 8041A120 ---

System ID	00000000F10E	Local software type	HSC
Max message size	66	Local software vers.	X301
Max datagram size	62	Local software incarn.	8355FE00
Local hardware type	HS50		008DA59A
Local hardware vers.	022702220222	SCS poller timeout	000F
	022202220222	SCS poller enable mask	01

--- Path Block (PB) 8041C400 ---

Status: 0000

Remote sta. addr.	00000000000E	Remote port type	HSC
Remote state	00000000000E	Number of data paths	2
Remote hardware rev.	00000225	Cables state	A-OK B-OK
Remote func. mask	4F710200	Local state	OPEN
Resetting port	0 E	Port dev. name	PABO
Handshake retry cnt.	1	SCS MSGBUF address	80390270
Msg. buf. wait queue	empty	PDT address	801CEA20

--- DORIS System Block (SB) 8041AA20 ---

System ID	000000008A9	Local software type	VMS
Max message size	112	Local software vers.	V5.0
Max datagram size	576	Local software incarn.	A9D31760
Local hardware type	V780		008DA59B
Local hardware vers.	010E0138207A	SCS poller timeout	000C
	000030030E10	SCS poller enable mask	00

--- Path Block (PB) 80437E80 ---

Status: 0000

Remote sta. addr.	00000000002	Remote port type	CI780
Remote state	ENAB	Number of data paths	2
Remote hardware rev.	00040003	Cables state	A-OK B-OK
Remote func. mask	FFFFFF00	Local state	OPEN
Resetting port	02	Port dev. name	PAB0
Handshake retry cnt.	1	SCS MSGBUF address	8036F0B0
Msg. buf. wait queue	empty	PDT address	801CEA20

This example shows a subset of a typical output for the SHOW CLUSTER/SCS command. In this system, there are three nodes (DORIS, GUS, and SOLLY), and there are two HSCs (PINTO and DODGER). After the summary information in the first two screen displays, specific information for each system block and its associated path block is shown.

SHOW CONNECTIONS

Displays information about all active connections between systems communications services (SCS) processes or a single connection. This command displays information that is in the connection descriptor table (CDT).

Format

SHOW CONNECTIONS {/ADDR or /ADDRESS=cdt-address | /NODE=name | /SYSAP=name}

Parameters

None.

Qualifiers

/ADDR or /ADDRESS=cdt-address

Displays information contained in the connection descriptor table (CDT) for a specific connection. $^{9}\,$

/NODE=name

Displays information contained in the connection descriptor table (CDT) for a specific node.

/SYSAP=name

Displays information contained in the connection descriptor table (CDT) for a specific system application (SYSAP).

Description

The SHOW CONNECTIONS command provides a series of displays.

The **CDT summary page** lists information regarding each connection on the local system, including the following:

- CDT address
- Name of the local process with which the CDT is associated
- Connection ID
- Current state
- Name of the remote node (if any) to which it is currently connected

The **CDT summary page** concludes with a count of CDTs that are free and available to the system.

SHOW CONNECTIONS next displays a page of detailed information for each active CDT listed previously.

⁹ You can find the *cdt-address* for any active connection on the system in the **CDT summary page** display of the SHOW CONNECTIONS command. In addition, CDT addresses are stored in many individual data structures related to SCS connections. These data structures include class driver request packets (CDRPs) and unit control blocks (UCBs) for class drivers that use SCS and cluster system blocks (CSBs) for the connection manager.

Examples

1. SDA> SHOW CONNECTIONS

VAXcluster data structures

--- CDT Summary Page ---

CDT Address	Local Process	Connection ID	State	Remote Node
801C2670	SCS\$DIRECTORY	08EE0000	listen	
801C2710	VMS\$VAXcluster	08EE0001	listen	
801C27B0	VMS\$VAXcluster	08FF0002	open	DORIS
801C2850	VMS\$DISK_CL_DRVR	08FD0003	open	PINTO
801C28F0	VMS\$VAXcluster	08EF0004	open	SOLLY
801C2990	VMS\$VAXcluster	08F00005	open	GUS

Number of free CDTs: 32

--- Connection Descriptor Table (CDT) 801C2670 ---

State: 0001 listen Blocked State: 0000	Local Process:	SCS\$DIRECTORY
Local Con. ID 08EE0000 Remote Con. ID 78A30017 Receive Credit 0 Send Credit 1 Min. Rec. Credit 0 Pend Rec. Credit 0 Initial Rec. Credit 0 Rem. Sta. 00000000000 Rej/Disconn Reason 0 Queued for BDT 0 Queued Send Credit 0	Datagrams rcvd Datagram discard Messages Sent Messages Rcvd. Send Data Init. Req Data Init. Bytes Sent Bytes rcvd	0Message queueempty0Send Credit Q.empty0PB address804383000PDT address801CEA200Error Notify8022B8160Receive Buffer00000000Connect Data00000000Aux. Structure00000000

This example shows the CDT summary page and the first page of the detailed displays for each CDT.

2. SDA> SHOW CONNECTIONS /ADDRESS=801C27B0

VAXcluster data structures ----- Connection Descriptor Table (CDT) 801C27B0 ----State: 0002 open Local Process: VMS\$VAXcluster Blocked State: 0000 Remote Node::Process: DORIS::VMS\$VAXcluster Local Con. ID 08FF0002 Datagrams sent 0 Message queue empty Remote Con. ID 33440003 Datagrams rcvd 0 Send Credit Q. empty Receive Credit 4 Datagram discard 0 PB address 80437E80 .

This example shows the use of the /ADDRESS qualifier to obtain information about a specific connection.

System Dump Analyzer SHOW CONNECTIONS

3. SDA> SHOW CONNECTIONS/NODE=MOON

VAXcluster data structures

--- Connection Descriptor Table (CDT) 98310EE0 ---State: 0002 open Local Process: MSCP\$DISK Blocked State: 0000 Remote Node::Process: MOON::VMS\$DISK_CL_DRVR --- Connection Descriptor Table (CDT) 98310540 ---State: 0002 open Local Process: SCA\$TRANSPORT Blocked State: 0000 Remote Node::Process: MOON::SCA\$TRANSPORT Local Con. ID7CCD0047Datagrams sent0Message queueemptyRemote Con. ID817F005DDatagrams rcvd0Send Credit Q.empty . . --- Connection Descriptor Table (CDT) 9830F0A0 ---State: 0002 open Local Process: VMS\$DISK_CL_DRVR Blocked State: 0000 Remote Node::Process: MOON::MSCP\$DISK Local Con. ID7C790038Datagrams sent0Message queueemptyRemote Con. ID4B51005BDatagrams rcvd0Send Credit Q.empty . . . --- Connection Descriptor Table (CDT) 9830EF40 ---State: 0002 open Local Process: VMS\$TAPE_CL_DRVR Blocked State: 0000 Remote Node::Process: MOON::MSCP\$TAPE Local Con. ID7C790037Datagrams sent0Message queueRemote Con. ID23B20068Datagrams rcvd0Send Credit Q. empty empty . .

The command in this example displays information in the CDT about the node MOON.

4. SDA> SHOW CONNECTIONS/SYSAP=SCA\$TRANSPORT

CDT	Summary Page			
CDT Address	Local Process	Connection ID	State	Remote Node
9830A7C0	SCA\$TRANSPORT	7C790003	listen	
98310540	SCA\$TRANSPORT	7CCD0047	open	METEOR
98310800	SCA\$TRANSPORT	7CD50049	open	OCALA

Number of free CDT's: 158

--- Connection Descriptor Table (CDT) 9830A7C0 ---

State: 0001 listen Loca Blocked State: 0000	al Process:	SCA\$TRANSF	ORT	
Local Con. ID 7C790003 Remote Con. ID 0000000 Receive Credit 0 Send Credit 0 Min. Rec. Credit 0 Pend Rec. Credit 0 Initial Rec. Credit 0 Rem. Sta. 00000000000 Rej/Disconn Reason 0 Queued for BDT 0 Queued Send Credit 0	Datagrams sent Datagrams rcvd Datagram discard Messages Sent Messages Rcvd. Send Data Init. Req Data Init. Bytes Sent Bytes rcvd Total bytes map	0 0 0 0 0 0 0 0	Message queue Send Credit Q. PB address PDT address Error Notify Receive Buffer Connect Data Aux. Structure	empty 00000000 0000000 968D9E8B 00000000 0000000
Connection Descripto	or Table (CDT) 9833	10540		
State: 0002 open Local Blocked State: 0000	Process: SC Remote Node			NSPORT
Local Con. ID 7CCD0047 Remote Con. ID 817F005D				
Connection Descripto	or Table (CDT) 983	10800		
State: 0002 open Local Blocked State: 0000				SPORT
Local Con. ID 7CD50049 Remote Con. ID EFB80009	Datagrams sent Datagrams rcvd	0 0	Message queue Send Credit Q.	

This example shows the use of the /SYSAP qualifier to show which nodes in the cluster are connected to SCA\$TRANSPORT.

SHOW CPU

Displays information about the state of a processor at the time of the system failure.

Format

SHOW CPU [cpu-id]

Parameter

cpu-id

Numeric value from 00 to $1F_{16}$ indicating the identity of the processor for which context information is to be displayed. If you specify a value outside this range, or you specify the **cpu-id** of a processor that was not active at the time of the system failure, SDA displays the following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

If you use the **cpu-id** parameter, the SHOW CPU command performs an implicit SET CPU command, making the processor indicated by **cpu-id** the current CPU for subsequent SDA commands. (See the description of the SET CPU command and Section 4 for information about how this can affect the CPU context—and process context—in which SDA commands execute.)

Qualifiers

None.

Description

The SHOW CPU command displays crash information about the processor specified by **cpu-id** or, by default, the SDA current CPU, as defined in Section 4. You cannot use the SHOW CPU command when examining the running system with SDA.

The SHOW CPU command produces several displays. First, there is a brief description of the crash and its environment that includes the following:

- Reason for the bugcheck
- Name of the currently executing process. If no process has been scheduled on this processor, SDA displays the following message:

Process currently executing: no processes currently scheduled on the processor

- File specification of the image executing within the current process (if there is a current process)
- Interrupt priority level (IPL) of the processor at the time of the system failure

Next, the **general registers** display shows the contents of the processor's general-purpose registers (R0 through R11) and the AP, FP, SP, PC, and PSL at the time of the crash.

The **processor registers** display consists of the following three parts:

- Common processor registers
- Processor-specific registers

• Stack pointers and memory interconnect silos

The first section includes registers that maintain the virtual address space, system space, or other system functions of the current process. The following registers are among those displayed:

Register	Description
P0BR	Program region (P0 space) base register
P0LR	Program region length register
P1BR	Control region (P1 space) base register
P1LR	Control region length register
SBR	System region (S0 space) base register
SLR	System region length register
PCBB	Process control block base register
SCBB	System control block base register
ASTLVL	Asynchronous system trap level
SISR	Software interrupt summary register
ICCS	Internal clock control and status register
SID	System identification register

The second section of the **processor registers** display shows those registers that are specific to the type of processor being examined. (The SHOW CRASH command displays the processor type.) The contents of the register display vary according to the type of processor involved in the crash and are used primarily in hardware diagnostics.

The final section of the display includes the five stack pointers: the interrupt stack pointer (ISP) and the four pointers of the kernel, executive, supervisor, and user stacks (KSP, ESP, SSP, and USP, respectively). Certain processors, such as the VAX 8800 and VAX 8600 processors, also display the contents of the silos of their memory interconnects in this section.

The SHOW CPU command concludes with a listing of the spin locks, if any, owned by the processor at the time of the crash, reproducing some of the information given by the SHOW SPINLOCKS command. The spin lock display includes the following information:

- Name of the spin lock.
- Address of the spin lock data structure (SPL).
- IPL and rank of the spin lock.
- Number of processors waiting for this processor to release the spin lock.
- Indication of the depth of this processor's ownership of the spin lock. A number greater than 1 indicates that this processor has nested acquisitions of the spin lock.

System Dump Analyzer SHOW CPU

Example

SDA> SHOW CPU

CPU 00 Processor crash information

CPU 00 reason for Bugcheck: $\ensuremath{\texttt{INVEXCEPTN}}$, $\ensuremath{\texttt{Exception}}$ while above ASTDEL or on interrupt stack

Process currently executing: NETACP

Current image file: \$254\$DUA200:[SYS6.SYSCOMMON.]<SYSEXE>NETACP.EXE;3

Current IPL: 8 (decimal)

General registers:

RO	=	80000008	R1	=	00080000	R2	=	8047FC40	R3	=	000003AC
R4	=	00000002	R5	=	8047FC40	R6	=	0000036	R7	=	00000000
R8	=	00000000	R9	=	00000062	R10	=	7ffe7d70	R11	=	0000747C
AP	=	0000BE34	FP	=	7FFE7DD0	SP	=	7ffe7d30	PC	=	80146682
PSL	=	00080009									

Processor registers:

POBR POLR P1BR P1LR	= 816EB600 = 00000C0C = 80FFCE00 = 001FFC5F	SBR SLR PCBB SCBB	= =	01A6A800 00065600 008AF2A0 01A62600	ASTLVL SISR ICCS SID	= =	00000004 00000000 00000041 067F014F
ICR TODR COR	= FFFFEDEA = 2B914C0F = 00000001	REVR1 REVR2 CPUINF(=	11121111 FF00FF12 000009F7			000C0000 2243F830
ISP	= 8016AC00						

KSP	=	7FFE7D30
ESP	=	7FFE9E00
SSP	=	7ffede00
USP	=	7FF8E590

NMI bus silo:

00000000	
00000000	
00000000	
00000000	
00000000	
00000000	
00000000	
00000000	
00000000	
00000000	
00000000	
00000000	
00000000	
00000000	
00000000	
00000000	

Spinlocks currently owned by CPU 00 IOLOCK8 Address : 80185E50 Owner CPU ID : 00 IPL : 08 : 14 Ownership Depth : 0001 Rank Index : 34 : 0000 CPUs Waiting SDA> EXAMINE R5 "@üG." R5: 8047FC40 SDA> SHOW PROCESS Process index: 000D Name: NETACP Extended PID: 33C0010D _____ Process status: 00148001 RES, NOACNT, PHDRES, LOGIN . . SDA> SHOW CPU 01 CPU 01 Processor crash information ------CPU 01 reason for Bugcheck: CPUEXIT, Shutdown requested by another CPU Process currently executing: no processes currently scheduled on this CPU Current IPL: 31 (decimal) . . No spinlocks currently owned by CPU 01 SDA> EXAMINE R5 R5: 83ED5E00 ".^í." SDA> SHOW PROCESS

%SDA-E-BADPROC, no such process

This SDA session illustrates the output of the SHOW CPU command in the analysis of a crash dump from a VAX 8800 multiprocessing system with two active processors. The first SHOW CPU command displays the crash information particular to CPU 00, which initially posted an INVEXCEPTN bugcheck from within process NETACP and then requested CPU 01 to take a bugcheck (CPUEXIT) as well. That the crash occurred at IPL 8 signifies, perhaps, that a driver fork process is involved.

The second instance of the SHOW CPU command (SHOW CPU 01) corroborates that CPU 01 was requested to crash by CPU 00.

Significantly, the second SHOW CPU command changes both the SDA current CPU context and current process context. The two EXAMINE R5 commands are executed under different CPU contexts; the values they produce differ. In the CPU context of CPU 00, the current process context is that of process NETACP. There is no current process on CPU 01; thus, SDA process context is initially undefined when its CPU context is changed to that of CPU 01.

SHOW CRASH

In the analysis of a system failure, displays information about the state of the system at the time of the failure. In the analysis of a running system, provides information identifying the system.

Format

SHOW CRASH

Parameters

None.

Qualifiers

None.

Description

The SHOW CRASH command has two different manifestations, depending upon whether you use it while analyzing a running system or a system failure.

In either case, if the SDA current CPU context is not that of the processor that signaled the bugcheck, the SHOW CRASH command performs an implicit SET CPU command to make that processor the SDA current CPU. (See the description of the SET CPU command and Section 4 for a discussion of how this can affect the CPU context—and process context—in which SDA commands execute.)

When used during the analysis of a *running system*, the SHOW CRASH command produces a display that describes the system and the version of OpenVMS that it is running. The **system crash information** display contains the following information:

- Date and time that the ANALYZE/SYSTEM command was issued (titled "Time of system crash" in the display)
- Name and version number of the operating system
- Major and minor IDs of the operating system
- Identity of the system, including an indication of its VAXcluster membership
- CPU ID of the primary CPU
- Two bit masks indicating which processors in the system are active and which are available for booting, respectively

When used during the analysis of a *system failure*, the SHOW CRASH command produces several displays that identify the system and describe its state at the time of the failure.

The **system crash information** display in this context provides the following information:

- Date and time of the system crash.
- Name and version number of the operating system.
- Major and minor IDs of the operating system.

- Identity of the system, including an indication of its VAXcluster membership and the location of the primary CPU in a multiprocessing configuration.
- CPU IDs of both the primary CPU and the CPU that initiated the bugcheck. In a uniprocessor system, these IDs are identical.
- Two bit masks indicating which processors in the system are active and which are available for booting, respectively.
- For each active processor in the system, the name of the bugcheck that caused the failure. Generally, there will be only one significant bugcheck in the system. All other processors typically display the following as their reason for taking a bugcheck:

CPUEXIT, Shutdown requested by another CPU

Subsequent screens of the SHOW CRASH command display information about the state of each active processor on the system at the time of the system failure. The information in these screens is identical to that produced by the SHOW CPU command, including the general-purpose registers, processor-specific registers, stack pointers, and records of spin lock ownership. The first such screen presents information about the processor that caused the crash; others follow according to the numerical order of their CPU IDs.

Examples

1. \$ ANALYZE/SYSTEM

OpenVMS VAX System analyzer SDA> SHOW CRASH System crash information -----Time of system crash: 25-FEB-1993 11:18:06.84 Version of system: OpenVMS VAX VERSION 6.0 System Version Major ID/Minor ID: 10/11 VAXcluster node: BIGTOP, a VAX 8800 - primary CPU (left) was booted Primary CPU ID: 01 Bitmask of CPUs active/available: 00000003/00000003 SDA> SHOW PROCESS %SDA-E-BADPROC, no such process

When issued from within the analysis of a running system, the SHOW CRASH command displays the time the ANALYZE/SYSTEM command was issued as the "Time of system crash." The display indicates that the OpenVMS VAX system in use is a VAX 8800 multiprocessing system, the left CPU of which is the primary CPU. The bit mask indicates that there are two processors available and both are running.

Note that no SDA current process is defined at this time.

```
2. $ ANALYZE/CRASH SYS$SYSTEM
```

```
OpenVMS VAX System dump analyzer
Dump taken on 23-FEB-1993 12:44:30.23
INVEXCEPTN, Exception while above ASTDEL or on
                  interrupt stack
SDA> SHOW CRASH
System crash information ①
    _____
Time of system crash: 23-FEB-1993 12:44:30.23
Version of system: OpenVMS VAX VERSION 6.0
System Version Major ID/Minor ID: 10/11
VAXcluster node: MOOSE, a VAX 8800 - primary CPU (left) was booted
Crash CPU ID/Primary CPU ID: 00/01
Bitmask of CPUs active/available: 00000003/00000003
CPU bugcheck codes: 2
     CPU 00 -- INVEXCEPTN, Exception while above ASTDEL or on
                      interrupt stack
   1 other -- CPUEXIT, Shutdown requested by another CPU
CPU 00 Processor crash information
_____
CPU 00 reason for Bugcheck: INVEXCEPTN, Exception while above ASTDEL
or on interrupt stack 3
Process currently executing on this CPU: NETACP 3
Current image file: $254$DUA200:[SYS6.SYSCOMMON.][SYSEXE]NETACP.EXE;3
Current IPL: 8 (decimal)
General registers:

        R0
        =
        00000008
        R1
        =
        00080000
        R2
        =
        8047FC40
        R3
        =
        000003AC

        R4
        =
        00000002
        R5
        =
        8047FC40
        R6
        =
        0000036
        R7
        =
        0000000

        R8
        =
        0000000
        R9
        =
        0000062
        R10
        =
        7FFE7D70
        R11
        =
        0000747C

        AP
        =
        0000BE34
        FP
        =
        7FFE7DD0
        SP
        =
        7FFE7D30
        PC
        =
        80146682

      PSL = 00080009
Processor registers:
      POBR = 816EB600
                                           SBR = 01A6A800
                                                                            ASTLVL = 00000004

        POLR
        =
        01010000

        P1BR
        =
        00000000

        P1LR
        =
        001FFC5F

        SLR
        =
        01065600
        SISR
        =
        0000000

        PCBB
        =
        008AF2A0
        ICCS
        =
        00000041

        SCBB
        =
        01A62600
        SID
        =
        067F014F

               = FFFFEDEA
                                           REVR1 = 11121111 NMIFSR = 000C0000
      ICR

        REVR2
        =
        FF00FF12
        NMIEAR
        =
        2243F830

        CPUINFO=
        000009F7
        MEMCSR0=
        000700F0

      TODR = 2B914C0F
                 = 00000001
                                          CPUINFO= 000009F7
      COR
               NBIA0 CSR0 = 00203810
                                                          NBIA1 CSR0 = 00000000
      ISP
               = 8016AC00
                = 7FFE7D30
= 7FFE9E00
      KSP
      ESP
      SSP
               = 7FFEDE00
      USP
                = 7FF8E590
```

NMI bus silo:

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Spinlocks currently owned by CPU 00

IOLOCK8		Address	:	80185E50
Owner CPU ID	: 00	IPL	:	08
Ownership Depth	: 0001	Rank	:	14
CPUs Waiting	: 0000	Index	:	34

CPU 01 Processor crash information

CPU 01 reason for Bugcheck: CPUEXIT, Shutdown requested by another CPU

Process currently executing on this CPU: None

Current IPL: 31 (decimal)

General registers:

RO	=	00000020	R1	=	00000000	R2	=	8000CA78	R3	=	80DAF000
R4	=	80487000	R5	=	83ED5E00	R6	=	7FFA4188	R7	=	7FF28EB8
R8	=	7FF28E68	R9	=	7FFA2808	R10	=	7FFA4000	R11	=	7FFE0070
AP	=	7FF28D90	FP	=	7FF28D98	SP	=	80DAFBF8	PC	=	80765465
PSL	=	041F0000									

Processor registers:

POBR	= 83EE8E00	SBR =	= 01A6A800	ASTLVL	= 00000004
POLR	= 000001C1	SLR =	= 00065600	SISR	= 00000000
P1BR	= 837FA600	PCBB =	= 00BB62A0	ICCS	= 00000041
P1LR	= 001FF935	SCBB =	= 01A62600	SID	= 06FF014F
ICR	= FFFFE7C1	REVR1 =	= 11121111	NMIFSR	= 000C0000
TODR	= 2B914C0F	REVR2 =	= FF00FF12	NMIEAR	= 24080000
COR	= 00000001	CPUINFO:	= 000009F7	MEMCSR0	= 000700F0
NBIA0	CSR0 = 00203810		NBIA1 CSR0	= 00000000)

ISP	= 80DAFBF8
KSP	= 7FFE7E00
ESP	= 7FFE9E00
SSP	= 7FFED04E
USP	= 7FF28D90

NMI bus silo:

No spinlocks currently owned by CPU 01

This long display reflects the output of the SHOW CRASH command within the analysis of a system failure that occurred on a VAX 8800 multiprocessing system.

The first part of the display includes the following information:

- Identification of the system and the version of OpenVMS it was running at the time of the crash.
- Indication that the failed processor (CPU 00) was not the primary processor (CPU 01), but requested CPU 01 to take a CPUEXIT bugcheck. (CPU 01 was, in fact, idle at the time of the crash.)

The next part of the display shows information particular to CPU 00:

- **③** CPU 00 encountered an INVEXCEPTN bugcheck while executing the NETACP process.
- **④** Although the next step in the analysis might be to examine the interrupt stack of CPU 00, the fact that the failure occurred at IPL 8 might indicate that an I/O driver is involved.

At the end of the example, SDA CPU context remains that of CPU 00; its current process context is that of the NETACP process.

SHOW DEVICE

Displays a list of all devices in the system and their associated data structures or displays the data structures associated with a given device or devices.

Format

SHOW DEVICE {device-name | /ADDRESS=ucb-address}

Parameter

device-name

Device or devices for which data structures are to be displayed. There are several uses of the **device-name** parameter.

To Display the Structures for	Action
All devices in the system	Do <i>not</i> specify a device-name (for example, SHOW DEVICE).
A single device	Specify an entire device-name (for example, SHOW DEVICE VTA20).
All devices of a certain type on a single controller	Specify only the device type and controller designation (for example, SHOW DEVICE RTA or SHOW DEVICE RTB).
All devices of a certain type on any controller	Specify only the device type (for example, SHOW DEVICE RT).
All devices whose names begin with a certain character or character string	Specify the character or character string (for example, SHOW DEVICE D).
All devices on a single node or HSC	Specify only the node name or HSC name (for example, SHOW DEVICE GREEN\$).

In a VAXcluster environment, device information is displayed for each device in the cluster with the specified **device-name**. You can limit the display to those devices that are on a particular node or HSC by specifying the node name or HSC name as part of the **device-name** (for example, GREEN\$D or GREEN\$DB).

Qualifier

/ADDRESS=ucb-address

Indicates the device for which data structure information is to be displayed by the address of its unit control block (UCB). The /ADDRESS qualifier is thus an alternate method of supplying a device name to the SHOW DEVICE command. If both the **device-name** parameter and the /ADDRESS qualifier appear in a single SHOW DEVICE command, SDA responds only to the parameter or qualifier that appears first.

Description

The SHOW DEVICE command produces several displays taken from system data structures that describe the devices in the system configuration.

If you use the SHOW DEVICE command to display information for more than one device or one or more controllers, it initially produces the **DDB list** display to provide a brief summary of the devices for which it renders information in subsequent screens.

Information in the **DDB list** appears in six columns, the contents of which are as follows:

- Address of the device data block (DDB)
- Controller name
- Name of the ancillary control process (ACP) or extended QIO processor (XQP) associated with the device
- Name of the device driver
- Address of the driver prologue table (DPT)
- Size of the DPT

The SHOW DEVICE command then produces a display of information pertinent to the device controller. This display includes information gathered from the following structures:

- Device data block (DDB)
- Primary channel request block (CRB)
- Interrupt dispatch block (IDB)
- Driver dispatch table (DDT)

If the controller is an HSC controller, SHOW DEVICE also displays information from its system block (SB) and each path block (PB).

Many of these structures contain pointers to other structures and driver routines. Most notably, the DDT display points to various routines located within driver code, such as the start I/O routine, unit initialization routine, and cancel I/O routine.

For each device unit subject to the SHOW DEVICE command, SDA displays information taken from its unit control block, including a list of all I/O request packets (IRPs) in its I/O request queue. For certain mass-storage devices, SHOW DEVICE also displays information from the primary class driver data block (CDDB), the volume control block (VCB), and the ACP queue block (AQB). For units that are part of a shadow set, SDA displays a summary of shadow set membership.

As it displays information for a given device unit, SHOW DEVICE defines the following symbols as appropriate.

Symbol	Meaning
UCB	Address of unit control block
SB	Address of system block

Symbol	Meaning
ORB	Address of object rights block
DDB	Address of device data block
DDT	Address of driver dispatch table
CRB	Address of channel request block
AMB	Associated mailbox UCB pointer
IRP	Address of I/O request packet
2P_UCB	Address of alternate UCB for dual-pathed device
LNM	Address of logical name block for mailbox
PDT	Address of port descriptor table
CDDB	Address of class driver descriptor block for MSCP-served device
2P_CDDB	Address of alternate CDDB for MSCP-served device
RWAITCNT	Resource wait count for MSCP-served device
VCB	Address of volume control block for mounted device

If you are examining a driver-related crash, you might find it helpful to issue a SHOW STACK command after the appropriate SHOW DEVICE command, examining the stack for any of these symbols. Note, however, that although SHOW DEVICE defines those symbols relevant to the last device unit it has displayed, and redefines symbols relevant to any subsequently displayed device unit, it does not undefine symbols. (For instance, SHOW DEVICE DUA0 defines the symbol PDT, but SHOW DEVICE MBA0: does not undefine it, even though the PDT structure is not associated with a mailbox device.)

To maintain the accuracy of symbols that appear in the stack listing, use the DEFINE command to modify the symbol name. For example:

SDA> DEFINE DUA0_PDT PDT SDA> DEFINE MBA0 UCB UCB

See the descriptions of the READ and FORMAT commands for additional information about defining and examining the contents of device data structures.

For a detailed explanation of I/O data structures displayed by SDA, consult the *OpenVMS VAX Device Support Manual*.

Examples

1. SDA>SHOW DEVICE VTA20

VTA20 ==> LTA20	VT200_Series	UCB address:	8042E4C0
Device status: 00010110 Characteristics: 0C040007 00000200			
Owner UIC [000001,000004] PID 00010064 Class/Type 42/6E Def. buf. size 80 DEVDEPEND 180093A0 DEVDEPND2 7962100C FLCK/DLCK 00000012	Reference count BOFF 01: Byte count 010 SVAPTE 8048010	0 DDB address 2 DDT address 55 CRB address 00 IRP address C0 I/O wait queue	8042E590 80CEF2E0 807696FB 80BC8B00 80BE2B00 empty

I/O request queue

STATE	E IRP	PID	MODE	CHAN	FUNC	WCB	EFN	AST	IOSB	STATUS
	80BE2B00 nop bufio		Е	FFC0	C000	00000000	29	80127458	7FFA800C	0003

This example reproduces the SHOW DEVICE display for a single device unit, VTA20. Whereas this display lists information from the UCB for VTA20, including some addresses of key data structures and a list of pending I/O requests for the unit, it does not display information about the controller or its device driver. To display the latter sort of information, specify the **device-name** as VTA (for example, SHOW DEVICE VTA).

2. SDA> SHOW DEVICE DU

I/O ċ	lata structu	res				
		DD 	B list 			
	Address	Controller	ACP	Driver	DPT DPT si	ze
	80D0B3C0 8000B2B8 80D0B9C0 80D08BA0 80D08AE0	BLUES\$DUA RED\$DUA RED\$DUS BIGTOP\$DUA TIMEIN\$DUA	F11XQP F11XQP F11XQP F11XQP F11XQP	DSDRIVER DSDRIVER DSDRIVER DSDRIVER DSDRIVER	807735B0 679D 807735B0 679D 807735B0 679D 807735B0 679D 807735B0 679D 807735B0 679D)))
Press	RETURN for	more.				

This excerpt from the output of the SHOW DEVICE DU command illustrates the format of the **DDB list** display. In this case, the **DDB list** concerns itself with those devices whose device type begins with DU (that is, DUA and DUS). It displays devices of these types attached to various HSCs (RED\$ and BLUES\$) and systems in a cluster (BIGTOP\$ and TIMEIN\$).

Following the **DDB list**, SHOW DEVICE DU produces displays for each controller and each unit on each controller, as illustrated in the next example.

3. SDA> SHOW DEVICE DUS

	D: -	DB list				
Address	Controller	ACP	Driver	DPT 	DPT size	
80D0B9C0	RED\$DUS	F11XQP	DSDRIVER	807735E	30 679D	
Controller: RE						
	LOVE Syst	em Block (SB) 80D0C500			
Max message si Max datagram s Gocal hardware	00000000 ze ize type vers. 27227222 00000027	HSSO	cal software cal software cal software S poller tim S poller ena		008FCC83	
	Path Bloc	k (PB) 80D	OBEA0			
St	atus: 0028					
Remote sta. ad Remote state Remote hardwar Remote func. m Resetting port Handshake retr Msg. buf. wait	dr. 00000000 00000000 e rev. 0000 ask 4F71 y cnt. queue e	000B Re 000B Nu 0225 Ca 0200 Lo 05 Po 1 SC mpty PD	mote port ty mber of data bles state cal state rt dev. name S MSGBUF add T address	pe paths ress	HSC 2 A-OK B-OK OPEN PAA0 80BCD510 803B38D0	
	- Device Data B	lock (DDB)	80D0B9C0	-		
Driver name ACP ident ACP class	DUDRIVER F11 PACK	Alloc. c SB addre UCB addr	lass ss 80D0C ess 803B9	254 DI 500 C60	DT address	80773640
P:	rimary Channel	Request Bl	ock (CRB) 80	BF7000 -		
Reference coun Due time IDB address	t 17 W 00012DCC T 80D0C440 80BF7F70	ait queue imeout rou	empt t. 807743D		x. struct. meout link cl. init.	

Errlog buf sz	0	Diag buf sz	104	FDT size	244
Start I/O	80773B21	Register dump	return	FDT address	80773680
Alt start I/O	return	Unit init	80775970	Mnt verify	80775BC2
Cancel I/O	807763A7	Unsol int	80774602	Cloned UCB	return

RED\$DUS3	RA81	UCB address:	803B9C60
	<pre>online,valid,unload,lcl_valid dir,fod,shr,avl,mnt,elg,idv,odv,</pre>	,rnd	

System Dump Analyzer SHOW DEVICE

Owner UIC [1000 PID Alloc. lock ID Alloc. class Class/Type Def. buf. size DEVDEPEND DEVDEPEND FLCK/DLCK	0000000 00010161 254 01/15 512 04E00E33 0000000 00000012	Operation count Error count Reference count Online count BOFF Byte count SVAPTE DEVSTS RWAITCNT	2 0 2 3 0000 0A00 835C7738 0004 0000	PDT address CDDB address I/O wait queue	80BF7000 803B38D0 803B4150
	Primary Cla	lss Driver Data H	Block (CDDB)	803B4150	
Status: Controller Flag		lcls_set,bshadov f_shadw,cf_mlths		_misc,cf_attn,cf_	replc
Allocation clas System ID Contrl. ID Response ID MSCP Cmd status	0000FFF2 0000 0000FFF2 01010000 00000000	CDRP Queue Restart Queue DAP Count Contr. timeout Reinit Count Wait UCB Count	1 75 0		8000B2B8 80BF7000 803C01C0 803B38D0 00000000 803B89A0
*** I/0 req	uest queue i	s empty ***			
	Volume Cont	rol Block (VCB)	8044D940	-	
	fid,system tethru,mount	ock name: VMSCMSN ver,nohighwater mvbegun	MASTER		
Mount count Transactions Free blocks Window size Vol. lock ID Block. lock ID Shadow lock ID	01A50139	Rel. volume Max. files Rsvd. files Cluster size Def. extend sz Record size	0 111384 9 3 5 0	AQB address RVT address FCB queue Cache blk. Shadow mem. FL Shadow mem. BL	80D0BAE0 803B9C60 80BD87B0 8044DA30 80CF5C40 80CF5BE0
Shadow set \$254\$DUS3 member summary					
Volume: JAZZLOR	E				
Physical unit	Primary p	oath Seconda	ary path M	lember status	

inybicai anic	rrrmary pacin	becondary path	Hellber beacab
\$254\$DUA129	RED	none	Shadow set member
\$254\$DUA139	RED	none	Shadow set member

--- ACP Queue Block (AQB) 80D0BAE0 ---ACP requests are serviced by the eXtended Qio Processor (XQP) Status: 14 defsys, xqioproc Mount count 56 ACP type f11v2 Request queue 0000000 ACP class 0 *** ACP request queue is empty *** RED\$DUS5 RA80 UCB address: 803B9DF0 Device status: 00021810 online,valid,unload,lcl_valid Characteristics: 1C4D4008 dir, fod, shr, avl, mnt, elg, idv, odv, rnd 000002A1 clu,mscp,srv,nnm . • . This example illustrates the output of the command SHOW DEVICE DUS,

where two shadow sets (RED\$DUS3 and RED\$DUS5) are associated with the HSC RED\$. There is a controller display for RED\$DUS and a unit display for each of the two shadow sets.

SHOW EXECUTIVE

Displays the location and size of each loadable image that makes up the executive.

Format

SHOW EXECUTIVE

Parameters

None.

Qualifiers

None.

Description

The executive consists of a fixed portion and a loadable portion. The fixed portion is known as SYS\$SYSTEM:SYS.EXE and consists of three parts:

- System service dispatch vectors
- Universal executive routine vectors
- Globally referenced data cells

The loadable portion consists of a number of independent images that perform the work of the operating system.

The SHOW EXECUTIVE command lists the location and size of each image within the loadable portion of the executive image. It can thus enable you to determine whether a given memory address falls within the range occupied by a particular loadable image. (Table SDA–13 describes the contents of each loadable image.)

By default, SDA displays each location within the loadable portion of the executive as an offset from the beginning of one of the loadable images; for instance, EXCEPTION+00282. Similarly, those symbols that represent system services point to the vector region and not to the system service's loadable code. When tracing the course of a system failure through the listings of modules contained within a given loadable executive image, you might find it useful to load into the SDA symbol table all global symbols and global entry points defined within one or all modules that make up the loadable portion of the executive image. See the description of the READ command for additional information.

The SHOW EXECUTIVE command usually shows all components of the executive image, as illustrated in the following example. In rare circumstances, you might obtain a partial listing. For instance, once it has loaded the EXCEPTION module (in the INIT phase of system initialization), the system can successfully post a bugcheck exception and save a crash dump. Later, if the system should fail sometime during initialization, it might not have been able to load some of the modules that appear above EXCEPTION in the SHOW EXECUTIVE display (see the example).

Example

SDA> SHOW EXECUTIVE

VMS Executive Layout			
Image	Base	End	Length
SYSMSG	8015AA00	80183600	00028C00
RECOVERY_UNIT_SERVICES	80211400	80212000	00000000
RMS	80183600	801A7E00	00024800
CPULOA	801B2800	801B3200	00000000
LMF\$GROUP_TABLE	801B3800	801B3C00	00000400
SYSLICENSE	801B4000	801B5400	00001400
SYSGETSYI	801B5A00	801B7000	00001600
SYSDEVICE	801B7400	801B8A00	00001600
MESSAGE_ROUTINES	801B9000	801BB600	00002600
EXCEPTION	801CBA00	801D3E00	00008400
LOGICAL_NAMES	801D4600	801D6000	00001A00
SECURITY	801D6600	801D7C00	00001600
LOCKING	801D8200	801DA800	00002600
PAGE_MANAGEMENT	801DAE00	801E2600	00007800
WORKING_SET_MANAGEMENT	801E2E00	801E7200	00004400
IMAGE_MANAGEMENT	801E7C00	801EA400	00002800
EVENT_FLAGS_AND_ASTS	801EAA00	801EBE00	00001400
IO_ROUTINES	801EC400	801F2C00	00006800
PROCESS_MANAGEMENT	801F3200	801F9400	00006200
ERRORLOG	80204C00	80205600	00000000
PRIMITIVE_IO	80205C00	80206C00	00001000
SYSTEM_SYNCHRONIZATION	80207000	80208C00	00001C00
SYSTEM_PRIMITIVES	80209200	8020C400	00003200

The SHOW EXECUTIVE command displays the location and length of the loadable images included in the executive.

SHOW HEADER

Displays the header of the dump file.

Format

SHOW HEADER

Parameters

None.

Qualifiers

None.

Description

The SHOW HEADER command produces a 10-column display, each line of which displays both the hexadecimal and ASCII representation of the contents of the dump file header in 32-byte intervals. Thus, the first eight columns, when read right to left, represent the hexadecimal contents of 32 bytes of the header; similarly, the ninth column, when read left to right, records the ASCII equivalent of the contents. (Note that the period character [.] in this column indicates an ASCII character that cannot be displayed.)

After it displays the contents of the first header block, the SHOW HEADER command displays the hexadecimal contents of the saved error log buffers.

See the *VAX/VMS Internals and Data Structures* manual for a discussion of the information contained in the dump file header.

SDA> SHOW HEADER	
Dump file header	
7FF03944 7FFED04E 000000C1 0000000	D9 0000000
0000000 0000000 00040000 80185200	.R
0000000 0000000 0000000 0000000	
00020000 00000000 15000011 00000000	
414E454C 45480800 0000012C 00000000	,
FE9E007F F74D7C0A 00000000 00002020	%.@.o41M 000000A0
Saved error log messages	
00000000 00000009 801D8739 00000300	95
7B0090AC 2FCBCEC2 414E454C 45480800	GARNER&.zxcv.O 801D8620
00202041 4E454C45 01080100 0000C30A	.AdGARNER . 801D8640

The SHOW HEADER command displays the contents of the dump file's header from address $6B0_{16}$ to address $C90_{16}$. Ellipses indicate hexadecimal information omitted from the display.

SHOW LAN

Displays information contained in various local area network (LAN) data structures. The default qualifiers are /CSMACD/FDDI.

Format

SHOW LAN [/qualifier[,...]]

Parameters

None.

Qualifiers

/CLIENT=xx

Specifies that information be displayed for the specified client. Valid client designators are SCA, DECNET, LAT, MOPRC, TCPIP, DIAG, ELN, BIOS, LAST, USER, ARP, MOPDL, LOOP, BRIDGE, DNAME, ENCRY, DTIME, and LTM. /CLIENT, /DEVICE, and /UNIT are synonymous and mutually exclusive; each must be the last qualifier stated on an SDA command line.

/CLUEXIT

Specifies that cluster protocol information be displayed.

/COUNTERS

Specifies that the LAN station block (LSB) and unit control block (UCB) counters be displayed.

/CSMACD

Specifies that Carrier Sense, Multiple Access with Collision Detect (CSMACD) information for the LAN be displayed.

/CSMACD/FDDI (default)

Displays both Ethernet and FDDI information.

/DEVICE=xx[dn]

Specifies that information be displayed for the specified device. Device designators are specified in the format **xxdn**, where **xx** is the type of device, **d** is the device letter, and **n** is the unit number. The device letter and unit number are optional. /CLIENT, /DEVICE, and /UNIT are synonymous and mutually exclusive; each must be the last qualifier stated on an SDA command line.

/ERRORS

Specifies that the LSB and UCB error counters be displayed.

/FDDI

Specifies that Fiber Distributed Data Interface (FDDI) controller information for the LAN be displayed.

/FULL

Specifies that all information from the LAN, LSB, and UCB data structures be displayed.

System Dump Analyzer SHOW LAN

/SUMMARY

Specifies that only a summary of LAN information (a list of flags, LSBs, UCBs, and base addresses) be printed. This is the default.

/TIMESTAMPS

Specifies to print time information (start and stop times and error times) from the device and unit data structures. SDA displays the data in chronological order.

/UNIT=xx/[dn]

Specifies that information be displayed for the specified unit. Unit designators are specified in the format $\mathbf{xx}/[\mathbf{dn}]$, where \mathbf{xx} is the type of unit, \mathbf{d} is the device letter, and \mathbf{n} is the unit number. The device letter and unit number are optional. /CLIENT, /DEVICE, and /UNIT are synonymous and mutually exclusive; each must be the last qualifier stated on an SDA command line.

Description

The SHOW LAN command displays information contained in various local area network (LAN) data structures. By default, or when you specify the /SUMMARY qualifier, SHOW LAN displays a list of flags, LSBs, UCBs, and base addresses. When you specify the /FULL qualifier, SHOW LAN displays all information found in the LAN, LSB, and UCB data structures.

Examples

```
1. SDA> SHOW LAN
                                 -- LAN Device Summary 26-JAN-1993 20:57:41 --
      LAN block address = 9834C680 (6 stations)
      LAN flags: 0002 LAN init
      LSB address = 98358B40
      Device state = 001B Inited, Run, Ctl_Rdy, Timer
                                   -- EXA Unit Summary 26-JAN-1993 20:57:41 --
                                                                      Client
      UCB UCB Addr Fmt Value
                                                                                            State
      ___
                   ----- ----
                                                                          -----
      EXA0 98358540

        98376340
        Eth
        60-07
        SCA
        0017
        Strtn, Len, Uniq, Strtd

        98ACD240
        Eth
        60-03
        DECNET
        0004
        Uniq

        983A9580
        Eth
        80-41
        LAST
        0015
        Strtn, Uniq, Strtd

      EXA1
      EXA3
      EXA5
      LSB address = 98369B40
      Device state = 4013 Inited, Run, Timer
                                    -- FXA Unit Summary 26-JAN-1993 20:57:41 --
      UCB
                   UCB Addr Fmt Value
                                                                          Client
                                                                                         State
      _ _ _
                   _____
                                    ___
                                               ____
                                                                           -----
      FXA0 98369840

        98309840
        98309840

        98391980
        Eth
        60-07
        SCA
        0017 Strtn,Len,Uniq,Strtd

        98AC9680
        Eth
        60-03
        DECNET
        0017 Strtn,Len,Uniq,Strtd

        98AC7100
        Eth
        60-01
        MOPDL
        001F Strtn,Uniq,Share,Strtd

        98AC9B80
        Eth
        90-00
        LOOP
        001D Strtn,Uniq,Share,Strtd

        98395380
        Eth
        60-04
        LAT
        0015 Strtn,Uniq,Strtd

      FXA1
      FXA2
      FXA3
      FXA4
      FXA5
      LSB address = 9836CE00
      Device state = 001B Inited, Run, Ctl Rdy, Timer
                                    -- EXB Unit Summary 26-JAN-1993 20:57:41 --
```

UCB	UCB Addr	Fmt	Value	Client	State
EXB0	98358880 983B8B00	Eth	60-07	SCA	0017 Strtn,Len,Uniq,Strtd 0004 Uniq
	dress = 98 state = 00) ted,Run,Ctl_Rdy.	,Timer	
		EXC	Unit Summary 20	5-JAN-199	93 20:57:41
UCB	UCB Addr		Value	Client	State
EXCO EXC1	9836CA80 983C08C0	Eth	60-07	SCA	0017 Strtn,Len,Uniq,Strtd 0004 Uniq
	dress = 98 state = 00) .ted,Run,Ctl_Rdy	,Timer	
		EXD) Unit Summary 20	5-JAN-199	93 20:57:41
UCB	UCB Addr		Value		State
EXD0 EXD1	9836FA80 983C8680	Eth		SCA	0017 Strtn,Len,Uniq,Strtd
	dress = 98 state = 40) .ted,Run,Timer		
		FXE	3 Unit Summary 20	5-JAN-199	93 20:57:41
UCB FXB0			Value	Client	
FXB1	98377F80 983D0440 98AC9900	Eth	60-07 60-03		0017 Strtn,Len,Uniq,Strtd 0004 Uniq

The SHOW LAN command in this example displays information about LAN data structures, including CSMACD and FDDI information.

2. SDA> SHOW LAN/COUNTERS/DEV=DECNET

-- EZA1 60-03 (DECNET) Counters Information 19-JUL-1993 14:27:02 --

Last receive Octets received	None 580539	Last transmit Octets sent	19-JUL 14:26:51 2399353240
	8194		
PDUs received	0101	PDUs sent	5618
Mcast octets received	0	Mcast octets sent	0
Mcast PDUs received	0	Mcast PDUs sent	0
Unavail user buffer	0	Last start attempt	None
Last start done 19-JU	L 06:40:22	Last start failed	None

The SHOW LAN command in this example displays the counters for device DECNET.

3. SDA> SHOW LAN/CSMACD

-- LAN Device Summary 26-JAN-1993 20:57:22 --LAN block address = 9834C680 (6 stations) LAN flags: 0002 LAN_init LSB address = 98358B40 Device state = 001B Inited,Run,Ctl_Rdy,Timer -- EXA Unit Summary 26-JAN-1993 20:57:22 -- UCB UCB Addr Fmt Value Client State -----EXA0 98358540
 EXA1
 98376340
 Eth
 60-07
 SCA
 0017
 Strtr

 EXA3
 98ACD240
 Eth
 60-03
 DECNET
 0004
 Uniq

 EXA5
 983A9580
 Eth
 80-41
 LAST
 0015
 Strtr
 0017 Strtn, Len, Unig, Strtd LAST 0015 Strtn, Uniq, Strtd LSB address = 9836CE00 Device state = 001B Inited, Run, Ctl Rdy, Timer -- EXB Unit Summary 26-JAN-1993 20:57:22 --UCB Addr Fmt Value UCB Client State _____ ____ ----- --- -----_ _ _ EXB0 98358880
 EXB1
 983B8B00
 Eth
 60-07
 SCA
 0017
 Strtn,Len,Uniq,Strtd

 EXB2
 98ACD500
 Eth
 60-03
 DECNET
 0004
 Uniq
 LSB address = 9836FE00 Device state = 001B Inited, Run, Ctl_Rdy, Timer -- EXC Unit Summary 26-JAN-1993 20:57:22 --UCB UCB Addr Fmt Value Client State ----- ---------9836CA80 EXC0
 EXC1
 983C08C0
 Eth
 60-07
 SCA
 0017
 Strtn,Len,Uniq,Strtd

 EXC2
 98ACD7C0
 Eth
 60-03
 DECNET
 0004
 Uniq
 LSB address = 98376600 Device state = 001B Inited,Run,Ctl_Rdy,Timer -- EXD Unit Summary 26-JAN-1993 20:57:22 --UCB UCB Addr Fmt Value Client State -----EXD0 9836FA80
 EXD1
 983C8680
 Eth
 60-07
 SCA
 0017
 Strtn,Len,Uniq,Strtd

 EXD2
 98ACDA80
 Eth
 60-03
 DECNET
 0004
 Uniq
 The SHOW LAN command in this example displays CSMACD information for the LAN.

```
4. SDA SHOW LAN/FDDI
                                    -- LAN Device Summary 26-JAN-1993 20:57:07 --
       LAN block address = 9834C680 (6 stations)
      LAN flags: 0002 LAN_init
       LSB address = 98369B40
       Device state = 4013 Inited, Run, Timer
                                     -- FXA Unit Summary 26-JAN-1993 20:57:07 --
      UCB UCB Addr Fmt Value
                                                                               Client
                                                                                                  State
       _ _ _
                     ----- ----
                                                                                 -----
                  98369840
       FXA0

      FXA0
      98391980
      Eth
      60-07
      SCA
      0017
      Strtn,Len,Uniq,Strtd

      FXA2
      98AC9680
      Eth
      60-03
      DECNET
      0017
      Strtn,Len,Uniq,Strtd

      FXA3
      98AC7100
      Eth
      60-01
      MOPDL
      001F
      Strtn,Uniq,Strtd

      FXA4
      98AC9B80
      Eth
      90-00
      LOOP
      001D
      Strtn,Uniq,Share,Strtd

      FXA5
      98395380
      Eth
      60-04
      LAT
      0015
      Strtn,Uniq,Strtd

      LSB address = 98378340
      Device state = 4013 Inited, Run, Timer
```

-- FXB Unit Summary 26-JAN-1993 20:57:07 --

UCB	UCB Addr	Fmt	Value	Client	State
FXBO FXB1 FXB2	98377F80 983D0440 98AC9900		60-07 60-03	SCA DECNET	0017 Strtn,Len,Uniq,Strtd 0004 Uniq

The SHOW LAN command in this example displays FDDI information.

5. SDA> SHOW LAN/FULL

LAN Data Structures

-- LAN Information Summary 27-JAN-1993 09:54:50 --

LAN flags: 0002 LAN_init

LAN module version LAN address Number of stations First LSB address	1 80EA8C00 1 80ECE700	First SVAPTE Number of PTEs SVA of pages	81FAFC14 4 80A00A00
FIRST LSB address	SOFCE 100		

-- LAN CSMACD Network Management 27-JAN-1993 09:54:50 --

	5		
Creation time Deletion time Module EAB Port EAB Station EAB	None None 00000000 00000000 00000000		0 0 00000000
LAN FDDI Netw	ork Manageme	nt 27-JAN-1993 09:54:50	
Creation time Deletion time Module EAB Port EAB Station EAB Link EAB PHY port EAB	None None 00000000 0000000 0000000 0000000 000000	Times created Times deleted Latest EIB	0 0 00000000
ESA Device	Information	27-JAN-1993 09:54:50	
LSB address LAN version 00000001 LAN code address		Active unit count Driver version 00000001 Driver code address	2 06000009 80EC68B0

LAN code address Device name Device version	80EC8BF9 ES_LANCE 00000000 00000000	Driver code address Device type DLL type	24
Data chaining Controller mode CRC generation mode Physical address	ON		OFF 0000
Flags: 0000 Status: 0013 Inited	,Run,Timer	Characteristics: 000	00
DAT stage DAT number started DAT number failed Creation time Deletion time Enabled time Disabled time		DAT xmt complete DAT rcv found Create count Enable count	26-JAN 13:20:31 None 0 0
Last receive Last transmit Last fork sched Last fork time	27-JAN 09:54:50	Last fatal error Prev fatal error Last exc collision	

Xmt en Xmt en		l by de l by ho	vice st	000	# resta Events	depend irts pe logged	lent longword ending	0 0
Contro Contro Transm Receiv Post p Delay Auto r	el hold queu el request q il pending q it request it pending re buffer qu re pending q rocess queu	ae queue queue queue aeue queue aeue ae	80ECE838 80ECE840 80ECE848 80ECE850 80ECE858 80ECE860	Statu Statu Statu Statu Statu Statu Statu Statu Statu	s: Vali s: Vali s: Vali s: Vali s: Vali s: Vali s: Vali s: Vali	d, emp d, emp	bty bty bty bty bty elements bty bty bty bty	
	ESA Mu	lticas	t Address	Inform	ation 27	JAN-	L993 09:54:50	
	00-04-00-00 2B-04-00-00							
09-00-	20-04-00-00		. Unit Sumr	narv 27	-JAN-199	3 09:	54:50	
UCB	UCB Addr	Fmt	Value	1	Client		ate	
ESA0 ESA2 ESA4	80EC61C0 80EFD600 80F505C0	Eth			DECNET LAST		Strtn,Len,Unic Strtn,Uniq,St	

-- ESA Internal Counters Information 27-JAN-1993 09:54:50 --

Internal counters address	80ECF6E8	Internal counters size	30
Number of ports	0	Global page transmits	0
No work transmits	0	SVAPTE/BOFF transmits	0
Bad PTE transmits	0	Buffer_Adr transmits	0
Fatal error count Transmit timeouts Restart failures Power failures Hardware errors Control timeouts	0 0 0 0 0	RDL errors Last fatal error Prev fatal error Last error CSR Fatal error code Prev fatal error	0 None 00000000 None None
Loopback sent	0	Loopback failures	0
System ID sent	121	System ID failures	0
ReqCounters sent	0	ReqCounters failures	0

-- ESA0 Template Unit Information 27-JAN-1993 09:54:50 --

System Dump Analyzer SHOW LAN

LSB address	80ECE700	VCIB address	0000000
Packet format	Ethernet	Error count	0
Device buffer size	1500	LAN medium	CSMACD
Maximum buffer size	1500	Eth protocol type	00-00
Hardware buffer quota	9	802E protocol ID	00-00-00-00-00
Receive buffer quota	0	802.2 SAP	00
Allow prom client	ON	802.2 Group SAPs	00,00,00,00
Promiscuous mode	OFF	Maximum header size	e 0
802.2 service	OFF	Hardware address	08-00-2B-2A-D7-F7
Data chaining	OFF	Physical address	FF-FF-FF-FF-FF
Padding mode	ON	Can change address	OFF
Automatic restart	OFF	Access mode	EXCLUSIVE
CRC generation mode	ON	Controller mode	NORMAL
Maintenance state	ON	Rcv buffs to queue	1
P2 parameters	00000000	Starter's PID	0000000
All multicast mode	OFF	Creator's PID	0000000
Rcv buffer quota	0	LSB size	5986

-- ESA2 60-03 (DECNET) Unit Information 27-JAN-1993 09:54:50 --

LSB address	80ECE700	VCIB address	0000000
Packet format	Ethernet	Error count	0
Device buffer size	1500	LAN medium	CSMACD
Maximum buffer size	1498	Eth protocol type	60-03
Hardware buffer quota	9	802E protocol ID	00-00-00-00-00
Receive buffer quota	15040	802.2 SAP	00
Allow prom client	ON	802.2 Group SAPs	00,00,00,00
Promiscuous mode	OFF	Maximum header size	e 16
802.2 service	OFF	Hardware address	08-00-2B-2A-D7-F7
Data chaining	OFF	Physical address	AA-00-04-00-50-FD
Padding mode	ON	Can change address	OFF
Automatic restart	OFF	Access mode	EXCLUSIVE
CRC generation mode	ON	Controller mode	NORMAL
Maintenance state	ON	Rcv buffs to queue	10
P2 parameters	00374395	Starter's PID	0001000C
All multicast mode	OFF	Creator's PID	0001000C
Rcv buffer quota	15040	LSB size	5986

-- ESA2 60-03 (DECNET) Counters & Misc Info 27-JAN-1993 09:54:50 --

Last receive Octets received PDUs received Mcast octets receive Mcast PDUs received Unavail user buffer Last start done	9877 11	Last transmit Octets sent PDUs sent Mcast octets sent Mcast PDUs sent Last start attempt Last start failed Share UCB total quot	27-JAN 09:54:47 2310540 29121 246850 4937 None None a 0
Receive IRP queue	80EFD7C4 Statu	us: Valid, 1 element	

Shared users queue80EFD7B4Status:Valid, emptyReceive pending queue80EFD7BCStatus:Valid, empty

-- ESA2 60-03 (DECNET) Multicast Address Info 27-JAN-1993 09:54:50 --Multicast address table, embedded:

AB-00-00-04-00-00

.

-- ESA4 80-41 (LAST) Unit Information 27-JAN-1993 09:54:50 --

LSB address Packet format	80ECE700 Ethernet	VCIB address Error count	80F504F3 0

The SHOW LAN/FULL command in this example displays information for all LAN, LSB, and UCB data structures.

6. SDA> SHOW LAN/TIMESTAMPS

The SHOW LAN command displays LAN timestamp information.

SHOW LOCK

Displays information about all lock management locks in the system, cached locks, or a specified lock.

Format

SHOW LOCK {lock-id|/ALL|/CACHED|/NAME=resource-name}

Parameters

lock-id

Name of a specific lock. You cannot specify both a **lock-id** and a **resource-name** in the same command line.

Qualifiers

/ALL

Lists all locks that exist in the system. This is the default behavior of the SHOW LOCK command.

/CACHED

Shows only cached lock blocks (LKBs).

/NAME=resource-name

Displays information about the resource associated with the lock whose resource name begins with the specified **resource-name**. For case-sensitive names, enclose the **resource-name** in quotation marks. You cannot specify both a **lock-id** and **resource-name** in the same command line.

Description

The SHOW LOCK command displays the information described in Table SDA-15 for each lock management lock in the system or for the lock indicated by **lock-id**. (Use the SHOW SPINLOCK command to display information about spin locks.) You can obtain a similar display for the locks owned by a specific process by issuing the appropriate SHOW PROCESS/LOCKS command. See the *OpenVMS System Services Reference Manual* for additional discussion of the significance of this information.

You can display information about the resource to which a lock is queued by issuing the SHOW RESOURCE command and specifying the **lock-id** of the resource.

Display Element	Description
	·
Process Index ¹	Index into the PCB array to a pointer to the process control block (PCB) of the process that owns the lock.
Name ¹	Name of the process that owns the lock.
Extended PID ¹	Clusterwide identification of the process that owns the lock.
Lock ID	Identification of the lock.
PID	Systemwide identification of the lock.
Flags	Information specified in the request for the lock.
Par. ID	Identification of the lock's parent lock.
Granted at	Lock mode at which the lock was granted.
Sublocks	Identification numbers of the locks that the lock owns.
LKB	Address of the lock block (LKB). If a blocking AST has been enabled for this lock, the notation "BLKAST" appears next to the LKB address.
Resource	Dump of the resource name. The two leftmost columns of the dump show its contents as hexadecimal values, the least significant byte being represented by the rightmost two digits. The rightmost column represents its contents as ASCII text, the least significant byte being represented by the leftmost character.
Status	Status of the lock, information used internally by the lock manager.
Length	Length of the resource name.
_	Processor access mode of the name space in which the resource block (RSB) associated with the lock resides.
_	Owner of the resource. Certain resources owned by the operating system list "System" as the owner. Resources owned by a group have the number (in octal) of the owning group in this field.
_	Indication of whether the lock is mastered on the local system or is a process copy.

Table SDA-15 Contents of the SHOW LOCK and SHOW PROCESS/LOCKS Displays

¹You produce this display element only by using the SHOW PROCESS/LOCKS command.

Examples

```
1. SDA> SHOW LOCK
     Lock database
      _____
     Lock id: 00010001 PID: 00000000 Flags: NOQUEUE SYNCSTS SYSTEM
     Par. id: 00000000 Granted at EX
                                                                                 CVTSYS
     Sublocks: 1
     LKB: 80D0B8A0

        RES
        Stress
        Stress
        Stress
        Stress
        Stress
        NOQUOTA

        Length
        16
        00000000
        4C774449
        IDwL....
        Exec. mode
        00000000
        0......

        System
        00000000
        0000000
        ......
        ......

     Local copy
     Lock id: 00010004 PID: 00000000 Flags: CONVERT SYNCSTS CVTSYS
     Par. id: 00000000 Granted at CR
     Sublocks: 16
LKB: 80D091A0 BLKAST
     Resource: 4D567624 42313146 F11B$vVM Status: NOQUOTA
Length 18 20204E41 4A353153 S15JAN
      Kernel mode 0000000 00002020 .....
      System 0000000 0000000 .....
     Local copy
     Lock id: 00280009 PID: 0000000 Flags: VALBLK CONVERT SYNCSTS
Par. id: 00000000 Granted at CR NOQUOTA CVTSYS
     Sublocks: 0
     LKB: 80CDA880
     Resource: 52414B5F 24535953 SYS$_KAR Status: MSTCPY
      Length 17 30415544 24455441 ATE$DUA0
      Kernel mode 0000000 000003A :.....
      System 0000000 0000000 .....
     Master copy of lock 001C00F5 on system 000100A1
        .
          .
      SDA> SHOW RESOURCE/LOCK=280009
     Resource database
      -----
      Address of RSB: 80BD2150 Group grant mode: CR
     Parent RSB:00000000Conversion grant mode:CRSub-RSB count:0BLKAST count:0

      Value block:
      00000000
      00000000
      00000000
      seq. #:
      0000002D

      Resource:
      52414B5F
      24535953
      SYS$_KAR
      sys$_Length
      17
      30415544
      24455441
      ATE$DUA0
      CSID:
      0000000

      Kernel mode
      00000000
      0000003A
      :.....
      System
      00000000
      0000000
      .....

      Granted queue (Lock ID / Gr mode):

        00DA1269
        CR
        00280009
        CR
        0094054D
        CR

        00270B9F
        CR
        00D70BFE
        CR
        000D0F4F
        CR

        000D1017
        CR
        00601418
        CR
        01131450
        CR

        000F1964
        CR
        000200DF
        CR
        00101017
        CR
        000200DF
        CR

      Conversion queue (Lock ID / Gr/Rq mode):
             *** EMPTY OUEUE ***
      Waiting queue (Lock ID / Rq mode):
              *** EMPTY QUEUE ***
```

This SDA session shows the output of the SHOW LOCK command for several locks. The SHOW RESOURCE command, executed for the last displayed lock, verifies that the lock is in the resource's granted queue, among many other locks given concurrent read (CR) access to the resource. (See Table SDA–21 for a full explanation of the contents of the display of the SHOW RESOURCE command.)

2. SDA SHOW LOCK/CACHE

cached lock blocks (LKBs).

Lock database

Lock id: 6D000032 PID: 00010028 Flags: VALBLK SYNCSTS SYSTEM Par. id: 01000002 SUBLCKs: 0 NOQUOTA LKB: 80F67C00 BLKAST: 00000000 PRIORTY: 0000 Granted at PW 0000000-FFFFFFF F11B\$s%. Status: NOQUOTA CACHED 00257324 42313146 Resource: Length 10 0000000 0000000 Kernel mode 00000000 00000000 System 0000000 00000000 Local copy Lock id: 7B00003B PID: 0001000B Flags: VALBLK SYNCSTS SYSTEM NOQUOTA Par. id: 01000002 SUBLCKs: 0 LKB: 80F51F80 BLKAST: 0000000 PRIORTY: 0000 Granted at PW 0000000-FFFFFFF Resource: 08E97324 42313146 F11B\$sé. Status: NOQUOTA CACHED Length 10 0000000 0000000 Kernel mode 00000000 00000000 System 0000000 0000000 Local copy This example of the SHOW LOCK/CACHE command displays the contents of

SDA-124

SHOW LOGS

Displays information about transaction logs currently open for the node.

Format

SHOW LOGS [/qualifier[,...]]

Qualifier

/DISPLAY=(item [,...])

Specifies the type of information to be displayed. The argument to /DISPLAY can be either a single item or a list. The following items can be specified.

Item	Description
ALL	All transaction log control structure information. This is the default behavior.
OPENS	Transaction log open requests.
READS	Transaction log read requests.
WRITES	Transaction log write requests.

Example

SDA> SHOW LOGS/DISPLAY=(OPENS, WRITES)

The SHOW LOGS command displays the log open request and log write request information for all open transaction logs for the node.

SHOW PAGE_TABLE

Displays a range of system page table entries, the entire system page table, or the entire global page table.

Format

SHOW PAGE_TABLE [/qualifier[,...]] [range]

Parameter

range

Range of virtual addresses for which SDA is to display page table entries. You can express a range using the following format:

- Range of virtual addresses from *m* to *n* m:n
- Range of virtual addresses starting at *m* and continuing for *n* bytes m;n

Qualifiers

/GLOBAL

Lists the global page table.

/SYSTEM

Lists the system page table.

/ALL

Lists both the global and system page tables. This is the default behavior of SHOW PAGE TABLE.

Description

For each virtual address displayed by the SHOW PAGE_TABLE command, the first six columns of the listing provide the associated page table entry and describe its location, characteristics, and contents (see Table SDA-16). SDA obtains this information from the system page table.

If the virtual page has been mapped to a physical page, the last nine columns of the listing include information from the page frame number (PFN) database (see Table SDA-17). Otherwise, the section is left blank.

SDA indicates pages are inaccessible by displaying the following message:

----- n NULL PAGES

Here, *n* indicates the number of inaccessible pages.

Table SDA–16 Virtual Page Information in the SHOW PAGE TABLE Display

Value	Meaning
ADDRESS	System virtual address that marks the base of the virtual page.
SVAPTE	System virtual address of the page table entry that maps the virtual page.

(continued on next page)

System Dump Analyzer SHOW PAGE_TABLE

Uispiay		
Value	Meaning	
PTE	Contents of the page table entry, a longword that describes a system virtual page.	
Туре	Type of virtual page. There are the following eight types:	
	 VALID Valid page (in main memory). 	
	 TRANS Transitional page (between main memory and page lists). 	
	DZERO Demand-allocated, zero-filled page.	
	PGFIL Page within a paging file.	
	STX Section table's index page.	
	• GPTX Index page for a global page table.	
	 IOPAG Page in I/O address space. 	
	 NXMEM Page not represented in physical memory. The page frame number (PFN) of this page is not mapped by any of the system's memory controllers. This indicates an error condition. 	
PROT	Protection code, derived from bits in the PTE, that designates the type of access (read or write, or both) granted to processor access modes (kernel, executive, supervisor, or user).	
	(continued on next page)	

Table SDA–16 (Cont.) Virtual Page Information in the SHOW PAGE_TABLE Display

SDA-127

Value	Meaning
Bits	Letters that represent the setting of a bit or a combination of bits in the PTE. These bits indicate attributes of a page. The following codes are listed:
	 M Page has been modified. L Page is locked into a working set. K Owner can access the page in kernel mode. E Owner can access the page in executive mode. S Owner can access the page in supervisor mode.
	• U Owner can access the page in user mode.

Table SDA–16 (Cont.) Virtual Page Information in the SHOW PAGE_TABLE Display

Table SDA-17 Physical Page Information in the SHOW PAGE_TABLE Display

Category	Meaning
PAGTYP	Type of physical page. One of the following six types:
	 PROCESS Page is part of process space. SYSTEM Page is part of system space.
	 GLOBAL Page is part of a global section.
	• PPGTBL Page is part of a process's page table.
	• GPGTBL Page is part of a global page table.
	• GBLWRT Page is part of a global, writable section.
	(continued on next nade)

Category	Meaning					
LOC	Location of the page within the system. One of the following eight locations:					
	• ACTIVE					
	Page is in a working set.					
	• MDFYLST					
	Page is in the modified page list.					
	• FREELST					
	Page is in the free page list.					
	• BADLST					
	Page is in the bad page list.					
	• RELPEND					
	Release of the page is pending.					
	• RDERROR					
	Page has had an error during an attempted read operation.					
	• PAGEOUT					
	Page is being written into a paging file.					
	• PAGEIN					
	Page is being brought into memory from a paging file.					
STATE	Byte that describes the state of the physical page.					
TYPE	 Byte that describes the type of virtual page. The types in this column are the hexadecimal codes that stand for the page types that appear in column PAGTYP of this display, described previously. Count of the processes that are referencing this PFN. If the value of REFCOUNT is nonzero, the page is used in at least of working set. If the value is zero, the page is not used in any working set. 					
REFCOUNT						
BAK	Address of the backing store; location on a disk device to which pages can be written.					
SVAPTE	Virtual address associated with this page frame. The two SVAPTEs indicate a valid link between physical and virtual address space.					
FLINK	Forward link within PFN database that points to the next virtual page. This longword also acts as the count of the numbe of processes that are sharing this global section.					
BLINK	Backward link within PFN database. Also acts as an index into the working set list.					

Table SDA–17 (Cont.) Physical Page Information in the SHOW PAGE_TABLE Display

System Dump Analyzer SHOW PAGE_TABLE

Example

SDA>SHOW PAGE_TABLE

System page table

ADDRESS	SVAPTE	PTE	TYPE	PROT	BITS	B PAGTYP	LOC	STATE	TYPE	REFCNT	BAK	SVAPTE	FLINK	BLINK
•														
•														
8014B000	8AD22E00	F8020725	VALID	UR	ł									
8014B200	8AD22E04	F8020726	VALID	UR	ł									
8014B400	8AD22E08	F8020727	VALID	UR	ł									
8014B600	8AD22E0C	F8020728	VALID	UR	ł									
	8AD22E10			-	ł									
				•	MI	•								
8014BC00	8AD22E18	F402072B	VALID	URKW	M I	2								
•														
•														
8014BE00	8AD22FEC	F801F10F	νλιτρ	TID	Ţ	SYSTEM	λΟΨΤΩ	т. 07	01	1 004	በድድድያ	8AD22FEC	00000000	00000258
					_	SYSTEM			01	1 0040		8AD22FEC	000000000	00000250
	8AD22FF4				_	SYSTEM			01	1 004		8AD22FF4	000000000	00000237
	8AD22FF8			-	_	SYSTEM			01	1 004		8AD22FF8	000000000	00000301
					_	SYSTEM			01	1 004		8AD22FFC	00000000	000000F5
	8AD23000				-	SYSTEM		·	01	1 004		8AD23000	00000000	00000174
8014CA00	8AD23004	7801EBC6	TRANS	UR	ł	SYSTEM	FREEL	ST 00	01	0 004	OFFF8	8AD23004	0000D38B	0001EBC7

•

SHOW PFN_DATA

Displays information that is contained in the page lists and PFN database.

Format

SHOW PFN_DATA [pfn] [/qualifier]

Parameter

pfn

Page frame number (PFN) of the physical page for which information is to be displayed.

Qualifiers

/ALL

Displays the free page list, modified page list, and bad page list. This is the default behavior of the SHOW PFN_DATA command. SDA precedes each list with a count of the pages it contains and its low and high limits.

/BAD

Displays the bad page list. SDA precedes the list with a count of the pages it contains, its low limit, and its high limit.

/FREE

Displays the free page list. SDA precedes the list with a count of the pages it contains, its low limit, and its high limit.

/MODIFIED

Displays the modified page list. SDA precedes the list with a count of the pages it contains, its low limit, and its high limit.

/SYSTEM

Displays the entire PFN database in order by page frame number, starting at PFN 0000.

Description

For each page frame number it displays, the SHOW PFN_DATA command lists information used in translating physical page addresses to virtual page addresses. Table SDA-18 lists the contents of the display.

Table SDA–18 Page Frame Number Information in the SHOW PFN_DATA Display

Item	Contents
PFN	Page frame number
PTE ADDRESS	System virtual address of the page table entry that describes the virtual page mapped into this physical page
	(continued on next ness)

(continued on next page)

	DATA Display							
ltem	Contents							
BAK	Place to find context, as information about this page when al links to this PTE are broken: either an index into a process section table or the number of a virtual block in the paging fi							
REFCNT	Number of references being made to this page							
FLINK	Address of the next page in the list in which this virtual page currently resides							
BLINK	Address of the previous page in the list in which this virtual page currently resides							
TYPE	Type of virtual page; one of the following:							
	 00 Process page 01 System page 02 Global, read-only page 03 Global, read/write page 							
	04 Process page-table page							
	• 05 Global page-table page							
	(continued on next page)							

Table SDA-18 (Cont.) Page Frame Number Information in the SHOW PFN_ DATA Display

ltem	Contents						
STATE	State of the virtual page, the low nibble of which can be one of the following:						
	 the following: 0 Page is on the free page list. 1 Page is on the modified page list. 2 Page is on the bad page list. 3 Release of the page to the free or modified page list is pending. 4 Error occurred as the page was being read from the disk. 5 Modified page writer is currently writing the page to the disk. 6 Page fault handler is currently reading the page from the disk. 7 						
	Page is active and valid.						

Table SDA-18 (Cont.)	Page Frame Number Information in the SHOW PFN_	
	DATA Display	

System Dump Analyzer SHOW PFN_DATA

Example

SDA>SHOW PFN_DATA

Free page list ------Count: 225 Low limit: 57 High limit: 1073741824

PFN	PTE ADDRESS	BAK	REFCNT	FLINK BLINK		TYPE	STATE	
1329	8047AF3C	03002A83	0	1963	0000	00 PROCESS	00 FREELST	
1963	8047AB10	03002A43	0	017C	1329	00 PROCESS	00 FREELST	
017C	8047B3F8	03002A84	0	14B4	1963	00 PROCESS	00 FREELST	
14B4	8047B464	03002A85	0	1529	017C	00 PROCESS	00 FREELST	
1529	8047AA34	03002A87	0	1485	14B4	00 PROCESS	00 FREELST	
1485	8047AC80	030010B3	0	1707	1529	00 PROCESS	00 FREELST	

In this example, the SHOW PFN_DATA command displays the information for the free page list, the modified page list, and the bad page list, and then all of the PFN database, including the first three lists.

SHOW POOL

Displays information about the disposition of paged and nonpaged memory, nonpaged dynamic storage pool, and paged dynamic storage pool.

Format

SHOW POOL [range][/ALL|/FREE|/HEADER|/NONPAGED| /PAGED|/RING_BUFFER|/STATISTICS| /SUMMARY|/TYPE=block-type]

Parameters

range

Range of virtual addresses in pool that SDA is to examine. You can express a range using the following format:

- *m:n* Range of virtual addresses in pool from *m* to *n*
- *m*;*n* Range of virtual addresses in pool starting at *m* and continuing for *n* bytes

Qualifiers

/ALL

Displays the entire contents of allocated pool, including the pool lists, nonpaged dynamic storage pool, and paged dynamic storage pool. This is the default behavior of the SHOW POOL command.

/FREE

Displays the entire contents, both allocated and free, of the specified region or regions of pool. You cannot use the /FREE qualifier when you use a **range** to indicate a region of pool to be displayed.

/HEADER

Displays only the first 16 longwords of each data block found within the specified region or regions of pool.

/NONPAGED

Displays the contents of the nonpaged dynamic storage pool currently in use.

/PAGED

Displays the contents of the paged dynamic storage pool currently in use.

/RING_BUFFER

Displays the contents of the nonpaged pool history ring buffer if pool-checking has been enabled. Entries are displayed in reverse chronological order, that is, the most recent to the least recent. You cannot use this qualifier with any other SHOW POOL qualifier. This qualifier is most useful when analyzing crash dumps; output might not be consistent when used on a running system.

/STATISTICS

Displays usage statistics about each pool list if pool-checking has been enabled. For each list, the following are displayed:

- Queue header address
- Packet size

System Dump Analyzer SHOW POOL

• Attempts, failures, and deallocations

SDA does not synchronize its access to these last three counters with other CPUs in a symmetric multiprocessing (SMP) system. Therefore, the numbers might not add up to what you would expect in a multiprocessor configuration. However, the statistics do provide a good indicator of overall pool activity.

/SUMMARY

Displays only an allocation summary for each specified region of pool.

/TYPE=block-type

Displays the blocks within the specified region or regions of pool that are of the indicated **block-type**. If SDA finds no blocks of that type in the pool region, it displays a blank screen, followed by an allocation summary of the region.

Description

The SHOW POOL command displays information about the contents of any specified region of pool in an 8-column format. Following are explanations and examples of the contents of the full display.

• Column 1 contains the type of control block that starts at the virtual address in pool indicated in column 2. If SDA cannot interpret the block type, it displays a block type of "UNKNOWN." Column 3 lists the number of bytes (in decimal) of memory allocated to the block. The block size is fixed for SRPs, IRPs, and LRPs, and is variable in the paged and nonpaged pools. For example:

Col. 1 Col. 2 Col. 3 ----- CIMSG 80BADE00 208

• The remaining columns contain a dump of the contents of the block, in 4longword intervals, until the block is complete. Columns 4 through 7 display, from right to left, the contents in hexadecimal; column 8 displays, from left to right, the contents in ASCII. If the ASCII value of a byte is not a printing character, SDA displays a period (.) instead. For example:

• For each region of pool it examines, the SHOW POOL command displays an allocation summary. This 4-column table lists, in column 2, the types of control blocks identified in the region and records the number of each in column 1. The last two columns represent the amount of the pool region occupied by each type of control block: column 3 records the total number of bytes, and column 4 records the percentage. The summary concludes with an indication of the number of bytes used within the particular pool region, as well as the number of bytes remaining. It provides an estimate of the percentage of the region that has been allocated. For example: Col.1 Col. 2 Col.3 Col. 4 3 UNKNOWN = 176 (29% 2 CIDG = 288 (48% 1 CIMSG = 144 (24%) Total space used = 608 out of 608 total bytes, 0 bytes left Total space utilization = 100%

Examples

	-								
1.	SDA> SHOW POOL G0BADE00;260								
	Non-paged dynamic storage pool								
	Dump of blocks allocated from non-paged pool								
	CIMSG	80BADE00	D9B3001C 41414141 41414141	00000000 00000600 41414141	A0B5001D 65EA0004 41414141	35E60017 00000600 41414141	.0		
	UNKNOWN	80BADE90	$\begin{array}{c} 41414141\\ 41414141\end{array}$	41414141 41414141	41414141 41414141	41414141 41414141	ААААААААААААААА ААААААААААААААА ААААААА		
	CIDG	80BADED0	61616161 61616161	61616161 61616161	61616161 61616161	016CE87C 61616161			
	UNKNOWN	80BADF60	61616161 61616161	61616161 61616161	61616161 61616161	61616161 61616161	aaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaa aaaa		
	CIDG	80BADFA0	61616161 61616161	61616161 61616161	61616161 61616161	016CE94C 61616161	w. L.l.aaaaaaaaaaaaa aaaaaaaaaaaaaaaaaa aaaaaa		
	UNKNOWN	80BAE030	61616161	61616161	61616161	61616161	aaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaa aaaa		

System Dump Analyzer SHOW POOL

Summary of non-paged pool contents

3	UNKNOWN	=	176	(29%)
2	CIDG	=	288	(48%)
1	CIMSG	=	144	(24%)

Total space used = 608 out of 608 total bytes, 0 bytes left

Total space utilization = 100%

This example, which uses a range of values, examines 608 (260_{16}) bytes of nonpaged pool, starting at address $80BADE00_{16}$. SDA attempts to identify allocated blocks as it proceeds through the specified region of pool, and displays an allocation summary when it completes the listing.

2. SDA> SHOW POOL/FREE

•

Non-paged dynamic storage pool

Dump of blocks allocated from non-paged pool

UNKNOWN 80E7C400 67136

0000E53B	80E9EC00	00010000	80F16625	%fñìé.;å
0000E53B	80E9EC00	00010001	80F16625	%fñìé.;å
0000E53B	80E9EC00	00010000	80F166A3	£fñìé.;å
0000E53B	80E9EC00	00010001	80F166A3	£fñìé.;å
0000E53B	80E9EC00	00010000	80F16066	fìé.;å
0000E53B	80E9EC00	00010001	80F16066	fìé.;å
0000E53B	80E9EC00	00010000	80F16F32	2oñìé.;å
0000E53B	80E9EC00	00010001	80F16F32	2oñìé.;å
0000E53D	80EA1B08	00010000	80F16F48	Hoñê.=å
0000E53D	80E9EC00	00010001	80F16F48	Hoñìé.=å
0000E53D	80E9EC00	00010000	80F170D8	Øpñìé.=å

The SHOW POOL/FREE command in this example produces a display similar in format and extent to that presented in Example 1. However, it displays the unallocated portions of pool in addition to those that are used.

```
3. SDA> SHOW POOL/PAGED/HEADER
```

```
Paged dynamic storage pool
Dump of blocks allocated from paged pool
RSHT
       8024FE00
                  528
                    802DC710 00380210 00000000 FFFFFF80 .....8...-.
LNM
       80250010
                   96
                    8015B847 00400060 802D75A0 00000000 ....u-.`.@.G...
       80250070
                   48
LNM
                    8015B847 01400030 802500A0 802D7400 .t-...%.0.@.G...
LNM
       802500A0
                   96
                    8015B847 02400060 802DC170 80250070 p.%.p.-.'.@.G...
       80250100
                   48
LNM
                    8015B847 00400030 802DC510 802E1B60 `....-.0.@.G...
   •
   •
   .
```

The SHOW POOL/PAGED/HEADER command displays only the name of each block allocated from paged pool, its starting address, its size, and the first four longwords of its contents.

4. SDA SHOW POOL/RING_BUFFER

(Non-Paged (512 entri		-	5			
Packet Adr	Size	Туре	Subtype	Caller's PC	Routine called	Entry Adr
DA9EE5C0	168	IRP	3	D8012BF1	EXE\$DEANONPAGED	DA4C7750
DAA27EC0	192	DSRV	3	DA591941	EXE\$DEANONPAGED	DA4C7740
DAD47B40	168	IRP	0	DA591918	EXE\$DEANONPAGED	DA4C7730
DAAB5400	24	FRK	52	DA590252	EXE\$DEANONPAGED	DA4C7720
DAAB5400	24	TQE	0	DA591276	EXE\$ALONONPAGED	DA4C7710
DAD47B40	168	IRP	64	DA59184A	EXE\$ALONONPAGED	DA4C7700
•						
DAA66500	172	IRP	64	DB251C80	EXE\$ALONONPAGED	DA4C7770
DAA32300	192	CIMSG	0	DA54C2C8	EXE\$DEANONPAGED	DA4C7760

This example of the SHOW POOL/RING_BUFFER command displays the contents of the nonpaged pool history ring buffer, with the most recent entries displayed first.

System Dump Analyzer SHOW POOL

5. SDA SHOW POOL/STATISTICS

List head Address	List Size	Alloc. Attempts	Alloc. Failures	Deallocs.
D80A9030 D80A9038 D80A9040 D80A9048 D80A9050 D80A9058 D80A9050 D80A9060 D80A9068 D80A9070 D80A9078 D80A9078 D80A9088 D80A9090	64 128 192 256 320 384 448 512 576 640 704 768 832	$\begin{array}{c} 2077039\\ 6323789\\ 21085351\\ 502388\\ 1372168\\ 32649\\ 2463316\\ 357170\\ 293998\\ 168145\\ 83645\\ 34852\\ 21263\\ \end{array}$	$1121 \\ 4502 \\ 1903 \\ 2025 \\ 3512 \\ 774 \\ 1025 \\ 2181 \\ 2438 \\ 645 \\ 2043 \\ 120 \\ 44$	$\begin{array}{c} 2073964\\ 6309357\\ 21078538\\ 499705\\ 1367707\\ 31899\\ 2462243\\ 354754\\ 291476\\ 167482\\ 81547\\ 34726\\ 21215\\ \end{array}$
D80A9290 D80A9298 D80A92A0 D80A92A8	4928 4992 5056 5120	2305645 9 0 1	3283 0 0 0	2302249 6 0 0

This example of the SHOW POOL/STATISTICS command displays usage statistics about each pool list.

51136 bytes left

6. SDA SHOW POOL/SUMMARY

Summary of non-paged pool contents

145 2 35 3 17 16 355 3 16 42 20 48 70 5 299 287 5 2 3 15 5 14	UNKNOWN ADP ACB AQB CRB DDB FCB FRK IDB IRP PCB TQE UCB VCB WCB BUFIO TYPAHD MVL NET CXB NDB DPT		1280 2624 192 2368 2048 113600 18240 1088 8064 10240 3072 21696 1280 51008 112128	$\begin{array}{c} (0\$) \\ (0\$) \\ (0\$) \\ (0\$) \\ (0\$) \\ (0\$) \\ (0\$) \\ (11\$) \\ (0) \\ (0) \\ ($			
Total	space use	d =	1016896 o	ut of	1068032	total	bytes,
Total	Total space utilization = 95%						
Summar	y of page	d po	ol conten	ts			

33	UNKNOW	IN =	36480	(15%	5)					
1	PQB	=	2256	(0%)						
224	GSD	=	14240	(6%)						
153	KFE	=	10864	(4%)						
3	MTL	=	96	(0%)						
118	KFRH	=	46736	(208	5)					
1	RSHT	=	528	(0%)						
1	XWB	=	18048	(7%)						
225	LNM	=	16720	(7%)						
4	KFD	=	224	(0%)						
1	KFPB	=	16	(0%)						
2	CIA	=	29264	(128	5)					
1	CHIP	=	9216	(4%)						
41	ORB	=	5248	(2%)						
2	ARB	=	34912	(158	5)					
1	PTC	=	3072	(1%)						
7	OCB	=	1344	(0%)						
1	PGD	=	208	(0%)						
Total	space u	ised =	229472 o	ut of	524800	total	bytes,	295328	bytes	left
Total	space u	ıtiliza	ation = 4	38						

This example of the SHOW POOL/SUMMARY command displays an allocation summary for each region of pool.

SHOW PORTS

Displays those portions of the port descriptor table (PDT) that are port independent.

Format

SHOW PORTS [/qualifier[,...]]

Parameters

None.

Qualifiers

/ADDRESS=pdt-address Displays the specified port descriptor table (PDT).¹⁰

/BUS[=bus-address] Displays BUS (LAN device) structure data.

/CHANNEL[=channel-address] Displays channel (CH) data.

/DEVICE

Displays the network path description for a channel.

/MESSAGE

Displays the message data associated with a virtual circuit (VC).

/NODE=name

Displays virtual circuit (VC) information associated with the named node on the specified PDT. You must use this qualifier with /ADDRESS qualifier.

/VC[=vc-address]

Displays the virtual circuit data.

Description

The SHOW PORTS command provides port-independent information from the port descriptor table (PDT) for those CI ports with full SCS connections. This information is used by all system communications services (SCS) port drivers.

Note that the SHOW PORTS command does *not* display similar information about UDA ports, BDA ports, and similar controllers.

The SHOW PORTS command also defines symbols for PEDRIVER based on the cluster configuration. These symbols include the following information:

Virtual circuit (VC) control blocks for each of the remote systems

¹⁰ You can find the **pdt-address** for any active connection on the system in the **PDT summary page** display of the SHOW PORTS command. This command also defines the symbol PE_PDT. CDT addresses are also stored in many individual data structures related to SCS connections; for instance, in the path block displays of the SHOW CLUSTER/SCS command.

- BUS data structure for each of the local LAN adapters
- Some of the data structures used by both PEDRIVER and the LAN drivers

The following symbols are defined automatically:

Symbol	Explanation or Example
VC_nodename	VC_NODE1, address of the local node's virtual circuit to node NODE1
CH_nodename	The preferred channel for the virtual circuit; for example, CH_NODE1, address of the local node's preferred channel to node NODE1
BUS_busname	BUS_ETA, address of the local node's BUS structure associated with LAN adapter ETA0
PE_PDT	Address of PEDRIVER's port descriptor table
MGMT_VCRP_busname	MGMT_VCRP_ETA, address of the management VCRP for BUS ETA
HELLO_VCRP_busname	HELLO_VCRP_ETA, address of the HELLO message VCRP for BUS ETA
VCIB_busname	VCIB_ETA, address of the VCIB for BUS ETA
UCB_LAVC_busname	UCB_LAVC_ETA, address of the LAN device's UCB used for the local area VAXcluster protocol
UCB0_LAVC_busname	UCB0_LAVC_ETA, address of the LAN device's template UCB
LDC_LAVC_busname	LDC_LAVC_ETA, address of the LDC structure associated with LAN device ETA
LSB_LAVC_busname	LSB_LAVC_ETA, address of the LSB structure associated with LAN device ETA

These symbols equate to system addresses for the corresponding data structures. You can use these symbols, or an address, after the equal sign in SDA commands.

The SHOW PORTS command produces several displays. The initial display, the **PDT summary page**, lists the PDT address, port type, device name, and driver name for each PDT. Subsequent displays provide information taken from each PDT listed on the summary page.

You can use the /ADDRESS qualifier of the SHOW PORTS command to produce more detailed information about a specific port. The first display of the SHOW PORTS/ADDRESS command duplicates the last display of the SHOW PORTS command, listing information stored in the port's PDT. Subsequent displays list information about the port blocks and virtual circuits associated with the port.

System Dump Analyzer SHOW PORTS

Examples

1. SDA> SHOW PORTS/ADDR=PE_PDT

VAXcluster data structures

--- Port Descriptor Table (PDT) 806C37A0 ---

Type: 03 pe Characteristics: 0000

Msg Header Size Max Xfer Bcnt DG Header Size Poller Sweep	32 FFFFFFF 288 31	Connect Dealloc_Dg_Buf Disconnect Unmap	80799F94 8079AFDA 8079A06B 8079B510	Recyclh_Msg_Buf Request_Data Send_Data Send_Dq_Buf	8079AD8A 8079B1CC 8079B215 8079B03E
Fork Block W.Q.	empty	Map	8079B111	Send_Msg_Buf	8079AEA8
UCB Address	806C0E50	Map_Bypass	8079B0F8	Send_Cnt_Msg_Buf	8079AEAF
ADP Address	00000000	Map_Irp	8079B101	Read_Count	80796D59
Accept	80799FEC	Map_Irp_Bypass	8079B0F0	Rls_Read_Count	80796DD3
Alloc_Dg_Buf	8079AFC6	Queue_Dg_Buf	8079AFE0	Mreset	80799C94
Alloc_Msg_Buf	8079AD05	Queue_Mult_Dgs	8079AFE8	Mstart	80799C9E
Dealloc_Msg_Buf	8079ADE3	Recycl_Msg_Buf	8079AD94	Stop_Vcs	8079BEDD
Dealloc_Msg_Buf_Reg	8079ADF6	Reject	8079A036	Send_Dg_Reg	8079B031

--- Port Block 80B091B0 ---

Status: 0001 a VC Count: 5 Secs Since Las	uthorize t Zeroed: 311728	
SBUF Size	436	LBUF Size 1788
SBUF Count	12	LBUF Count 1
SBUF Max	768	LBUF Max 384
SBUF Quo	13	LBUF Quo 1
SBUF Miss	18	LBUF Miss 12235
SBUF Allocs	499579	LBUF Allocs 16824
SBUFs In Use	0	LBUFs In Use 0
Peak SBUF In U	se 14	
SBUF Queue Emp	ty O	LBUF Queue Empty 0
TR SBUF Queue	Empty 0	
No SBUF for AC	к 0	
Bus Addr Bus	LAN Address	Error Count Last Error Time of Last Error
	00-00-00-00-00-00	0 0
		D 75 00000334 25-MAR-1993 23:39:28.27
		B 12 000002C 23-MAR-1993 12:43:59.07
~	08-00-2B-08-CB-B8	
-		

--- Virtual Circuit (VC) Summary ---

VC Addr	Node	SCS ID	Lcl ID	Status Summary	Last Event Time
806CD1A0	NODE12			open,path	1-JAN-1993 00:00:00.03
806CD6E0	NODE13	64856	222/DE	open,path	1-JAN-1993 00:00:07.
806CD9A0	NODE14	64587	221/DD	open,path	22-MAR-1993 18:34:10.18
8070D530	NODE15	64555	220/DC	open,path	22-MAR-1993 18:57:33.
8074AB60	NODE16	64841	219/DB	open,path	25-MAR-1993 20:42:38.20

The SHOW PORTS/ADDRESS command displays the port descriptor table (PDT) structure, some of the fields in the PORT structure, the BUS summary, and the virtual circuit summary.

2. SDA>SHOW PORTS/BUS=BUS_ESA

VAXcluster data structures							
BUS: 80B08090 (ESA	BUS: 80B08090 (ESA) Device: ES_LANCE LAN Address: AA-00-04-00-33-FD LAN Hardware Address: 08-00-2B-12-AE-A1						
Status: 00000A03 run,on	line,xmt_chaining_disabled,restart						
Transmit	Receive Structure Addresses						
Msg Xmt 434107	Msg Rcv 1170090 PORT Address 80B091B0						
Mcast Msgs 103939	Mcast Msgs 859601 VCIB Addr 80B08248						
Mcast Bytes 13304192	Mcast Bytes 96272072 HELLO Message Addr 80B082D8						
Bytes Xmt 59789962	Bytes Rcv 146674695 BYE Message Addr 80B08468						
Outstand I/Os 0	Buffer Size 1424 Delete BUS Rtn Adr 8079E424						
	Rcv Ring Size 8						
	Time of Last Xmt Error 25-MAR-1993 23:39:28.27						
	BUS Timer Datalink Events						
TR Mcast Rcv 0	Handshake TMO 8079FA50 Last 22-MAR-1993 18:25:25.12						
Rcv Bad SCSID 0	Listen TMO 8079FA54 Last Event 00001202 HELLO timer 1 Port Usable 1						
Rcv Short Msg 0	HELLO timer 1 Port Usable 1						
Fail CH Alloc 0	HELLO Xmt err 38 Port Unusable 0						
Fail VC Alloc 0	jj						
Wrong PORT 0	Port Restart Fail 0						

The SHOW PORTS/BUS=BUS_id command displays the data for the specified BUS structure. The last event time is at the top of the lower right-hand column. If an error was counted, the last error time is displayed under Xmt Errors. The normal status is: RUN, ONLINE, and RESTART.

The Xmt Error field indicates a problem detected during transmission of a message. The error rate should be less than one per hour.

3. SDA> SHOW PORTS/VC=VC_BREE

VAXcluster data structures				
Remote System Name: BRI Local System ID: 222 (1	DE) Status	SCSSYSTEMID: 64856		
Msg Rcv 194492 Unsequence 1 Sequence 178905 ReRcv 30 Lone ACK 15531	- Messages Discarded No Xmt Chan Rcv Short Msg Illegal Seq Msg Bad Checksum TR DFQ Empty	Pipe Quota 31 Channel Selection 0 Preferred Channel & 80704320 0 Delay Time FB7E6F80 0 Buffer Size 1424 0 Channel Count 6 0 Channel Selections 3920 0 Protocol 1.3.0 0 Open 1-JAN-1993 00:00:07.03 0 Cls 17-NOV-1858 00:00:00.00		
Channel Summary for Virtual Circuit (BREE) 806CD6E0 Address Type Xmt Time Size Preferred Best Last State Change				
80704320 Preferred FB71 807043E0 Active FB71 807050D0 Active FB71 806CD820 Active FB71	266F80 1424 812 2735E 1424 95 27FED 1424 431 2728E 1424 868 27043 1424 738	617 22-MAR-1993 18:14:07.01 4 25-MAR-1993 20:01:15.18 0 25-MAR-1993 20:01:15.18 1470 25-MAR-1993 20:01:15.18		

The SHOW PORTS/VC=VC_id command displays the virtual circuit data for the specified remote node and a channel summary. In this display, the upper center of the display contains the virtual circuit status. The lower right-hand corner contains the virtual circuit open and close times.

The ReXmt field indicates a problem sending messages to the remote system. The error rate per hour should be less than the Pipe Quota field.

The ReRcv field indicates a problem receiving messages from the remote system. The error rate per hour should be less than the Pipe Quota field.

4. SDA> SHOW PORTS/MESSAGE/VC=address

This SHOW PORTS command displays the virtual circuit data for the specified remote node, followed by the message data for the remote node. The virtual circuit message display shows the counters for the following items:

- Sequenced message delivery
- Any messages in the process of being transmitted or in the receive cache

The following is an example of part of a display resulting from the SHOW PORTS/MESSAGE/VC=vc-address command:

5. SDA> SHOW PORTS/CHANNEL=CH_BREE

This SHOW PORTS command displays the data for the specified channel. The normal state is OPEN, with a status of PATH, OPEN, and RMT_HWA_ VALID.

In the following example display resulting from this command, the top of the display shows the remote device name, the remote device type, and the channel open and close times. VAXcluster data structures

State: 0004 oper BUS: 80B008B0 Rmt Name: XQB Rmt Seq #: 0002	n (XQA) Lc Rm Open:2	Status: l Device: XQ_DE t Device: XQ_DE 2-MAR-1993 18:1	0B path,c LQA Lcl I QTA Rmt I 4:07.01 C	uit (VC:806CD6E0) BF pen,rmt_hwa_valid AN Address: 08-00-2E AN Address: 08-00-2E Closed:17-NOV-1858 00 Channel Selec	8-0A-6A-6B 8-13-70-88 0:00:00.00
				Average Xmt Time	
Msg Xmt	66/0/	Mcast Msgs	T03906	Remote Buffer Size	1424
Ctrl Msgs	1	Mcast Bytes	10182788	Max Buffer Size	1424
Ctrl Bytes	98	Ctrl Msgs	2	Best Channel	615
Bytes Xmt	9130385	Ctrl Bytes	196	Best Channel Preferred Channel	810
Rmt Ring Size		Bytes Rcv	22654333	Retransmit Penalty	2
	Channel	Errors		Xmt Error Penalty	12
Handshake TMO	0	Short CC Msgs	0	Channel Tim	er
Listen TMO	0	Incompat Chan	0	Timer Entry Flink	8079FA3C
Bad Authorize	0	No MSCP Srvr	0	Blink	80705010
				Last Ring Index	08
Bad Multicast	0	Old TR Msgs	0		1.3.0
Topology Change			0	Supported Services	

6. SDA> SHOW PORTS/DEVICE/CHANNEL/VC=vc-address

This SHOW PORTS command displays the following information:

- Virtual circuit data for the specified remote node
- Channel data
- The network path description for each channel to the remote node

The following is an example of a display resulting from the SHOW PORTS/DEVICE/CHANNEL/VC=vc-address command:

VAXcluster data structures

This display is useful after the local area VAXcluster network failure analysis data has been loaded. After a network failure analysis, this display indicates primary and secondary failed component suspects in the following ways:

- P: Primary suspect
- S: Secondary suspect
- ?: Component that cannot be proved to be working
- 7. SDA> SHOW PORTS /DEVICE /CHANNEL=address

This SHOW PORTS command displays the channel data and the network path description if it was provided by the network failure analysis. 8. SDA> SHOW PORTS/BUS/CHANNEL/DEVICE/MESSAGE/VC/ADDRESS=PE_PDT

This command displays all of the bus structures, all of the virtual circuits and their message counters, and channels, including network path descriptions when available.

9. SDA> SHOW PORTS/ADDR=862C8D80/NAME=DAVID3

VAXcluster data structures				
Remote System Nam Local System ID:	e: DAV 213 (D	VC) 862C8D80 YID3 (0:VAX) Remot D5) Statu VC Closures - SeqMsg TMO	s: 0	SSYSTEMID: 64588 005 open,path Congestion Control Pipe Quota/Slo/Max 1/31/31 Pipe Quota Reached 0 Xmt C/T 0/1 RndTrp uS 300000+0
Unsequence	16	CC DFQ Empty	0	Pipe Quota Reached 0
Sequence	3	Topology Change	0	Xmt C/T 0/1
ReXmt	0/0	NPAGEDYN Low	0	RndTrp uS 300000+0
Lone ACK	0			UnAcked Msgs 0 CMD Queue Len/Max 0/0
Bytes Xmt				
Receive -		- Messages Discarde	d -	Channel Selection
Msg Rcv	10	No Xmt Chan	0	Preferred Channel 0000000 Delay Time 003266DB Buffer Size 1424
Unsequence	16	Rcv Short Msg	0	Delay Time 003266DB
Sequence	0	Illegal Seq Msg	0	Buffer Size 1424
ReRcv	0	Bad Checksum	0	Channel Count 2
Lone ACK	0	TR DFQ Empty	0	Channel Selections 9
Cache	0	TR MFQ Empty	0	Protocol 1.3.0
Ill ACK	0	CC MFQ Empty	0	Open 8-FEB-1993 11:30:43.60
Bytes Rcv	440	Cache Miss	0	Channel Count 2 Channel Selections 9 Protocol 1.3.0 Open 8-FEB-1993 11:30:43.60 Cls 8-FEB-1993 11:28:30.69
Channel Summary for Virtual Circuit (DAVID3) 862C8D80				
Address Type	Xmt	Time Size Preferred	Be	st Last State Change
	0009	27BF 1424 3 27BF 1424 6		4 8-FEB-1993 11:30:53.69 2 8-FEB-1993 11:30:43.60

The command in this example displays virtual connect information associated with the DAVID3 node, which is associated with the port descriptor table whose address is 862C8D80.

SHOW PROCESS

Displays the software and hardware context of any process in the balance set.

Format

SHOW PROCESS [/qualifier[,...]][ALL | process-name | /INDEX=nn | /SYSTEM]

Parameters

ALL

Shows information about all processes that exist in the system.

process-name

Name of the process for which information is to be displayed.¹¹

You can determine the names of the processes in the system by issuing a SHOW SUMMARY command.

The **process-name** can contain up to 15 letters and numerals, including the underscore (_) and dollar sign (\$) characters. If it contains any other characters, you must enclose the **process-name** in quotation marks (" ").

Qualifiers

/ALL

Displays all information shown by the following qualifiers: /CHANNEL, /PAGE_ TABLES, /PCB, /PHD, /PROCESS_SECTION_TABLE, /REGISTERS, and /WORKING_SET.

/CHANNEL

Displays information about the I/O channels assigned to the process.

/IMAGES

Displays the address of the image control block, the start and end addresses of the image, the activation code, the protected and shareable flags, the image name, and the major and minor IDs of the image.

/INDEX=nn or /ID=nn

Specifies the process for which information is to be displayed by its index into the system's list of software process control blocks (PCBs). You can supply either of the following values for **nn**:

- The process index itself
- The process identification (PID) or extended PID longword, from which SDA extracts the correct index

To obtain these values for any given process, issue the SDA command SHOW SUMMARY.

¹¹ Use of the **process-name** parameter, the /INDEX qualifier, or the /SYSTEM qualifier causes the SHOW PROCESS command to perform an implicit SET PROCESS command, making the indicated process the current process for subsequent SDA commands. (See the description of the SET PROCESS command and Section 4 for information about how this can affect the process context—and CPU context—in which SDA commands execute.)

/LOCKS

Displays the lock management locks owned by the current process.

The /LOCKS qualifier produces a display similar in format to that produced by the SHOW LOCKS command. See Table SDA-15 for additional information.

/P0

Displays the page tables for P0 space. See the description of the /PAGE_TABLES qualifier.

/P1

Displays the page tables for P1 space. See the description of the /PAGE_TABLES qualifier.

/PAGE_TABLESor /PPT [range | /P0 | /P1]

Displays the page tables P0 and P1 spaces, or, optionally, either the page table or the page table entries for a **range** of addresses.

You can express a **range** using the following format:

- m:n Displays the page table entries that correspond to the range of virtual addresses from m to n
- *m*;*n* Displays the page table entries that correspond to a range of *n* pages, starting with page *m*

/PARTICIPANTS[=DISPLAY=(item [,...])]

Displays information about all transactions for the process. The argument to DISPLAY can be either a single item or a list. The following items can be specified.

Item	Description
ALL	All transaction control structures for the transactions. This is the default behavior.
BRANCHES	Control structures for branches of the transactions.
PARTICIPANTS	Control structures for resource managers participating in the transactions.
THREADS	Control structures for threads of the transactions.
TRANSACTIONS	Transaction control structures for the transactions.

/PCB

Displays the information contained in the software process control block (PCB). This is the default behavior of the SHOW PROCESS command.

/PHD

Lists information included in the process header (PHD).

/PROCESS_SECTION_TABLE or /PST

Lists the information contained in the process section table (PST).

/REGISTERS

Lists the hardware context of the process, as reflected in the registers of the process stored in the hardware PCB and—if the process is current on a processor in the system—the registers of the processor.

/RMS[=option[,...]]

Displays certain specified RMS data structures for each image I/O or processpermanent I/O file the process has open. To display RMS data structures for process-permanent files, specify the PIO option to this qualifier.

SDA determines the structures to be displayed according to either of the following methods:

- If you provide the name of a structure or structures in the **option** parameter, SHOW PROCESS/RMS displays information from only the specified structures. (See Table SDA-14 for a list of keywords that you can supply as options.)
- If you do not specify an **option**, SHOW PROCESS/RMS displays the current list of options as shown by the SHOW RMS command and set by the SET RMS command.

/SYSTEM

Displays the system process control block.¹² The system PCB and process header (PHD) are dummy structures that are located in system space. These structures contain the system working set, global section table, global page table, and other systemwide data.

/TRANSACTIONS=(option[,...])

Displays information about all transactions, or the specified transaction, for the process. The following two options can be specified either together or separately:

• DISPLAY=(item [,...])

Specifies the type of information to be displayed. The argument to DISPLAY can be either a single item or a list. The following items can be specified.

ltem	Description
ALL	All transaction control structures for the specified transaction. This is the default behavior.
BRANCHES	Control structures for branches of the specified transaction.
PARTICIPANTS	Control structures for resource managers participating in the specified transaction.
THREADS	Control structures for threads of the specified transaction.
TRANSACTIONS	Transaction control structures for the specified transaction.

¹² Use of the **process-name** parameter, the /INDEX qualifier, or the /SYSTEM qualifier causes the SHOW PROCESS command to perform an implicit SET PROCESS command, making the indicated process the current process for subsequent SDA commands. (See the description of the SET PROCESS command and Section 4 for information about how this can affect the process context—and CPU context—in which SDA commands execute.)

TID=tid

Specifies the transaction for which information is to be displayed. If you omit the TID option, the SHOW PROCESS/TRANSACTIONS command displays information about all transactions for the process.

If you omit these options, the SHOW PROCESS/TRANSACTIONS command displays all information about all transactions for the process.

Note that the SHOW PROCESS/TRANSACTIONS and SHOW PROCESS/PARTICIPANTS commands display the same information about transactions, but in different orders. The SHOW PROCESS/TRANSACTIONS command walks down a transaction queue. The SHOW PROCESS/PARTICIPANTS command walks down a resource manager queue.

/VECTOR_REGS

Displays the saved process vector registers.

/WORKING_SET or /WSL

Displays the working set list of the process.

Description

The SHOW PROCESS command displays information about the process specified by **process-name**, the process specified with the /INDEX qualifier, the system process, or all processes. By default, the SHOW PROCESS command produces information about the SDA current process, as explained in Section 4.

The SHOW PROCESS command performs an implicit SET PROCESS command under certain uses of its qualifiers and parameters, as explained in Section 4, Section 5, and Section 6. If you use the SHOW PROCESS command and name a process that is the current process on a CPU, SDA temporarily assigns the symbols shown in Table SDA–9 to the values in the process. You can then refer to those symbols when you use the FORMAT command.

The default of the SHOW PROCESS command provides information taken from the software process control block (PCB).¹³ This information describes the following characteristics of the process:

- Software context
- Condition-handling information
- Information about interprocess communication
- Information about counts, quotas, and resource usage

Among the displayed information are the PID, EPID, priority, job information block (JIB) address, and process header (PHD) address of the process. SHOW PROCESS also describes the resources owned by the process, such as event flags and mutexes. The "State" field records the current scheduling state of the process; in a multiprocessing system, the display indicates the CPU ID of any process whose state is CUR.

The SHOW PROCESS/ALL command displays additional process-specific information, also provided by several of the individual qualifiers to the command.

¹³ This is the first display provided by the /ALL qualifier and the only display provided by the /PCB qualifier.

The **process header** display, also produced by the /PHD qualifier, provides information taken from the process header (PHD), which is swapped into memory when the process becomes part of the balance set. Each item listed in the display reflects a quantity, count, or limit for the process's use of the following resources:

- Process memory
- The pager
- The scheduler
- Asynchronous system traps
- I/O activity
- CPU activity

The **process registers** display, also produced by the /REGISTERS qualifier, describes the hardware context of the context, as reflected in its registers.

The hardware context of a process is stored in two places:

- If the process is currently executing on a processor in the system (that is, in the CUR scheduling state), its hardware context is contained in that processor's registers. (That is, the registers of the process and the registers of the processor contain identical values, as illustrated by a SHOW CPU command for that processor or a SHOW CRASH command if the process was current at the time of the system failure.)
- If the process is not executing, its hardware context is stored in the part of the PHD known as the hardware PCB.

The **process registers** display first lists those registers stored in the hardware PCB ("Saved process registers"). If the process to be displayed is currently executing on a processor in the system, the display then lists the processor's registers ("Active registers for the current process"). In each section, the display lists the registers in the following groups:

- General-purpose registers (R0 through R11 and the AP, FP, and PC)
- Stack pointers (KSP, ESP, SSP, and USP)
- Special-purpose registers (PC and PSL)
- Base and length registers (P0BR, P1BR, P0LR, and P1LR)

The **working set information** and **working set list** displays, also produced by the /WORKING_SET qualifier, describe those virtual pages that the process can access without a page fault. After a brief description of the size, scope, and characteristics of the working set list itself, SDA displays the following information for each entry in the working set list.

Column	Contents
INDEX	Index into the working set list at which information for this entry can be found
ADDRESS	Virtual address of the page in the process address space that this entry describes

Column	Contents
STATUS	Three columns that list the following status information:
	• Page type
	Location of the page in physical memory
	• Indication of whether the page is locked into the working set

When SDA locates one or more unused working set entries, it issues the following message:

--- n empty entries

In this message, *n* is the number (in decimal) of contiguous, unused entries.

The **process section table information** and **process section table** displays, also produced by the /PROCESS_SECTION_TABLE qualifier, list each entry in the process section table (PST) and display the offsets to the first free entry and last used entry.

SDA displays the information listed in Table SDA-19 for each PST entry.

	Display
Part	Definition
INDEX	Offset into the PST at which the entry is found. Because entries in the process section table begin at the highest location in the table, and the table expands toward lower addresses, the following expression determines the address of an entry in the table: PHD + PSTBASOFF—INDEX.
ADDRESS	Virtual address that marks the beginning of the first page of the section described by this entry.
PAGES	Length, in pages, of the process section.
VBN	Virtual block number, the number of the file's virtual block that is mapped into the section's first page.
CLUSTER	Cluster size used when faulting pages into this process section.
REFCNT	Number of pages of this section that are currently mapped.
FLINK	Forward link, the pointer to the next entry in the PST list.
BLINK	Backward link, the pointer to the previous entry in the PST list.
FLAGS	Flags that describe the access that processes have to the process section.

Table SDA–19 Process Section Table Entry Information in the SHOW PROCESS Display

The **P0 page table** and **P1 page table** displays, also produced by the /PAGE_ TABLES qualifier, display listings of the page table entries of the process in the same format as that produced by the SHOW PAGE_TABLE command (see Tables SDA-16 and SDA-17).

The **process active channels** display, the last produced by SHOW PROCESS/ALL and the only one produced by the /CHANNEL qualifier, displays the following information for each I/O channel assigned to the process.

Column	Contents
Channel	Number of the channel
Window	Address of the window control block (WCB) for the file if the device is a file-oriented device; zero otherwise
Status	Status of the device: "Busy" if the device has an I/O operation outstanding; blank otherwise
Device/file accessed	Name of the device and, if applicable, name of the file being accessed on that device

The information listed under the heading "Device/file accessed" varies from channel to channel and from process to process. SDA displays certain information according to the conditions listed in Table SDA-20.

Table SDA-20 Process I/O Channel Information in the SHOW PROCESS Display

Information Displayed ¹	Type of Process
dcuu:	SDA displays this information for devices that are not file structured, such as terminals, and for processes that do not open files in the normal way.
dcuu:filespec	SDA displays this information only if you are examining a running system and only if your process has enough privilege to translate the <i>file-id</i> into the <i>filespec</i> .
dcuu:(file-id)filespec	SDA displays this information only when you are examining a dump. The <i>filespec</i> corresponds to the <i>file-id</i> on the device listed. If you are examining a dump from your own system, the <i>filespec</i> is probably valid. If you are examining a dump from another system, the <i>filespec</i> is probably meaningless in the context of your system.
dcuu:(file-id)	The <i>file-id</i> no longer points to a valid <i>filespec</i> , as when you look at a dump from another system; or the process in which you are running SDA does not have enough privilege to translate the <i>file-id</i> into the corresponding <i>filespec</i> .

¹This table uses the following formulas to identify the information displayed: *dcuu:(file-id)filespec* where: *dcuu*: is the name of the device. *file-id* is the RMS file identification. *filespec* is the full file specification, including directory name.

System Dump Analyzer SHOW PROCESS

Examples

1. SDA> SHOW PROCESS

Process index: 001B Na	me: PUTP1	Extended PID: 27E0011B	
Process status: 0004400	1 RES,BATC	CH,PHDRES	
PCB address PHD address		JIB address Swapfile disk address	806B9100 02002FA1
Master internal PID		Subprocess count	0
Internal PID	0001001B	Creator internal PID	0000000
Extended PID	27E0011B	Creator extended PID	0000000
		Termination mailbox	
Current priority	3	AST's enabled	KES
Base priority	3	AST's active	E
UIC [0001	1,000176]	AST's remaining	39
Mutex count	0	Buffered I/O count/limit	
Waiting EF cluster	0	Direct I/O count/limit	18/18
Starting wait time	1B001C1C		
Event flag wait mask	BFFFFFFF	# open files allowed lef	t 90
Local EF cluster 0	20000001	Timer entries allowed le	ft 9
Local EF cluster 1	C0000000	Active page table count	0
Global cluster 2 pointer	00000000	Process WS page count	1020
Global cluster 3 pointer	00000000	Global WS page count	233

The SHOW PROCESS command displays information taken from the software PCB of PUTP1, the SDA current process. According to the "State" field in the display, process PUTP1 is current on CPU 00 in the multiprocessing system.

2. SDA> SHOW PROCESS/ALL

Process index: 00AD Na	me: GLOBE	Extended PID: 462002AD			
Process status: 02040001 RES,PHDRES					
PCB address	8044E650	JIB address	806E0010		
• •					
Process header					
Limit on CPU time Maximum page file count	276902 7FEF2200 24234 16 2 0002 509 827 0000000 25600 7589 50 10	CPU since last quantum Subprocess quota AST limit Process header index Backup address vector WSL index save area PTs having locked WSLs PTs having valid WSLs Active page tables Maximum active PTs Guaranteed fluid WS pa Extra dynamic WS entri Locked WSLE counts arr	FFEE 8 50 0020 00003E12 00003980 5 20 21 26 ges 20 es 698 ay 1CD8		
Saved process registers					
R0 = 00000001 R1 R4 = 8044E650 R5 R8 = 00001F60 R9	= 00000000 = 00000000 = 7FF9FB38	R2 = 8000CA78 R3 R6 = 00000000 R7 R10 = 7FF9FA08 R11	= 00000003		

		= 801622B4 = 7FFED04E	PSL = 03C00000 USP = 7FEF4AE4		
POBR = 82D43600 POLR =	000003EB P1BR	= 82654E00	P1LR = 001FF792		
Active registers for curre					
R0 = 00000001 R1 = R4 = 7FFA05A0 R5 = R8 = 00001F60 R9 = AP = 7FFE9D70 FP = KSP = 7FFE7E00 ESP =	80002398 R2 00000000 R6 7FF9FB38 R10 7FFE9D58 PC	= 0007D400 = 7FF9FA08 = 801620A5	R3 = 00000000 R7 = 0000010 R11 = 7FFE0070 PSL = 01400000 USP = 7FFF4AE4		
Working set information					
First locked entry C First dynamic entry C Last entry replaced C	074 Curren 0A6 Defaul 0B9 Maximu 18C 561	lt (initial) v	working set size working set size allowed (quota)	2048 512 2048	
Working set list					
INDEX ADDRESS STA	TUS				
0074 7FFE7C00 VA 0075 7FFE7A00 VA 0076 7FFE7800 VA	LID PROCESS WSLOG LID PROCESS WSLOG LID PROCESS WSLOG				
Process section table info					
Last entry allocated First free PST entry	FFA0 0000				
Process section table					
INDEX ADDRESS PAGES W	INDOW VBN	CLUSTER CHAI	NEL REFCNT FLINK	BLINK FLAGS	
FFF8 00000200 0000000A 8 FFF0 00001600 00000007 8 FFE8 00002400 00000012 8	082C400 0000000	C 0 7FF0	CCFDO O FFF8	FFF0 FFE8 WRT CRF FFF8	
DO maga tabla					
P0 page table					
	TYPE PROT BITS	5 PAGTYP 1	JOC STATE TYPE REFC	NT BAK SVAPTE	E FLINK BLINK
	TYPE PROT BIT:	5 PAGTYP I	OC STATE TYPE REFC	NT BAK SVAPTE	E FLINK BLINK
ADDRESS SVAPTE PTE	VALID UR U VALID UR U	J PROCESS ACT: J PROCESS ACT:	IVE 07 00 1 IVE 07 00 1	0040FFF8 82D43604 0040FFF8 82D43608	4 0000 0153 3 0000 0154
ADDRESS SVAPTE PTE 1 NULL PAGE 00000200 82D43604 F9804F73 00000400 82D43608 F9806905	VALID UR U VALID UR U	J PROCESS ACT: J PROCESS ACT:	IVE 07 00 1 IVE 07 00 1	0040FFF8 82D43604 0040FFF8 82D43608	4 0000 0153 3 0000 0154
ADDRESS SVAPTE PTE 1 NULL PAGE 00000200 82D43604 F9804F73 00000400 82D43608 F9806905 00000600 82D4360C F9807565 P1 page table	VALID UR U VALID UR U VALID UR U	J PROCESS ACT: J PROCESS ACT: J PROCESS ACT:	IVE 07 00 1 IVE 07 00 1 IVE 07 00 1	0040FFF8 82D43604 0040FFF8 82D43608 0040FFF8 82D43600	4 0000 0153 3 0000 0154 2 0000 0155

•

System Dump Analyzer SHOW PROCESS

•

Process active channels

Channel	Window	Status	Device/file accessed
0010	00000000		ROCK\$DJA233:
0020	8082C400		ROCK\$DJA233:(1008,48490,0)
0030	807F2260		LOVE\$DUA200:(209,1,0)[V5COMMON.SYSLIB]SMGSHR.EXE;1 (section file)
0040	00000000		VTA71:
0050	00000000		VTA71:
0060	807EFFE0		LOVE\$DUA200:(195,1,0)[V5COMMON.SYSLIB]LIBRTL.EXE;1 (section file)
0070	807EECC0		LOVE\$DUA200:(199,1,0)[V5COMMON.SYSLIB]MTHRTL.EXE;1 (section file)
0080	80838E80		LOVE\$DUA200:(196,1,0)[V5COMMON.SYSLIB]LIBRTL2.EXE;1
0090	807E4880		LOVE\$DUA200:(210,1,0)[V5COMMON.SYSLIB]SORTSHR.EXE;1
00A0	80818720		LOVE\$DUA200:(191,1,0)[V5COMMON.SYSLIB]FDLSHR.EXE;1
00B0	8083CFC0		LOVE\$DUA200:(169,1,0)[V5COMMON.SYSLIB]CONVSHR.EXE;1
00C0	8083DEC0		ROCK\$DJA233:(1026,16,0)

The SHOW PROCESS/ALL command displays information taken from the software PCB of process GLOBE, and then proceeds to display the process header, the registers of the process, the process section table, the P0 page table, the P1 page table, and information about the I/O channels owned by the process. You can also obtain these displays by using the /PCB, /PHD, /REGISTERS, /PROCESS_SECTION_TABLE, /P0, /P1, and /CHANNEL qualifiers, respectively.

Lock data:

Lock id: Par. id: Sublocks: LKB:		PID: Granted	000100 at	OA PW	Flags:	VALBL. SYSTEI		SYNCSTS
Resource:	003C0	248 2453	4D52	RMS\$	H.<.	Status:	ASYNC	
Length	26 444B4	C4F 4602	0000	E	OLKD			
Kernel mc	de 00202	020 2020	2024	\$				
System	00000	000 0000	0000					
Local copy	,							

The SHOW PROCESS/LOCKS/INDEX=0A command displays information about the locks held by process JOB_CONTROL, whose PCB is at index 0A, into the system's PCB list. This command implicitly makes JOB_CONTROL the SDA current process for subsequent commands that display process context information. It has no effect on SDA CPU context because JOB_ CONTROL is not current on any processor in the multiprocessing system.

RMS Display Options: IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM,XAB,RLB, BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB

^{3.} SDA> SHOW PROCESS/LOCKS/INDEX=0A

^{4.} SDA> SHOW RMS

11.

512.

0.

Ο.

Ο.

Ο.

0.

Display RMS structures for all IFI values. SDA> SHOW PROCESS/RMS . . Process index: 0032 Name: BEASSEM_MTHRTL_ Extended PID: 27200132 _____ IFAB Address: 7FF9C808 IFI: 0002 Organization: Sequential -----1C4D4108DIR,FOD,SHR,AVL,ELG,IDV,ODV,RND00080020ACCESSED,NORECLK PRIM_DEV: BKPBITS: 3A 58. 00 BLN: BID: 0B EFN: MODE: 03
 MODE:
 03

 ASBADDR:
 0000000

 WAIT_Q_FLINK:
 0000000

 ARGLST:
 7FF21418

 WAIT_Q_BLINK:
 0000000

 AGENT_MODE:
 03
 00000001 TOS: IOS2: 0000

 1052:
 0000

 1054:
 0000000

 ATJNLBUF:
 0000000

 FSBPTR:
 0000000

 SHR:
 02
 SHRGET

 IRAB_LNK:
 7FF9C958

 FAC:
 02
 GET

 ORGCASE:
 00

 LACT EAD:
 00001ED0

 CHNL: 00C0 ORGCASE: 00 LAST_FAB: 00081FD0 Sequential NWA_PTR: 00000000 0002 0000 ECHO_ISI: IFI: 7FF9CCUu 7FF9CBB0 7FF9CB60 22 VAR CR FWA_PTR: BDB_FLNK: DEVBUFSIZ: 00000200 BDB_BLNK: RTDEQ: 0000 RFMORG: VAR CR 004C 76. 0084 132. 00 RAT: HBK_DISK: EBK_DISK: LRL: 000C0000 FFB: 000C0000 0. 0. FSZ: BKS: 00 0000 MRS: 0000 DEO: 000000C 12. 0000 GBC: HBK: EBK: 000000C LAST_GOOD_EBK: 0000000 0. LAST_GOOD_FFB: 0000 LOCK_BDB: 0000000 RNS_LEN: 00000000

. .

The SHOW PROCESS/RMS command displays RMS data structures for the current SDA process.

5. SDA> SHOW PROCESS/IMAGES

Process activated images _____

ICB	Start	End	Туре	Image Name Major ID,Minor ID
7FF83878	00000200	00000DFF	MAIN	SHOW_PROC_IMAGES 0,0
7FF84100	0003AC00	0003FBFF	GLOBAL PRT SHR	DECW\$TRANSPORT_COMMON 12,12
7FF84400	00036200	0003ABFF	GLOBAL	CONVSHR 1,0
7FF84470	0002E400	000361FF	GLOBAL	FDLSHR 1,0
7FF84560	00021A00	0002E3FF	GLOBAL	SORTSHR 2,28
7FF845D0	00000E00	000089FF	GLOBAL	LIBRTL2 1,12
7FF835F8	00008A00	000219FF	GLOBAL SHR	LIBRTL 1,14
7FF84800	00060C00	000767FF	MERGED SHR	ADARTL 0,0
7FF84720	00076800	000A03FF	GLOBAL SHR	MTHRTL 129,32781
Total ima	iges = 9		Pages allocat	ed = 1017

The SHOW PROCESS/IMAGES command displays the address of the image control block, the start and end addresses of the image, the activation code, the protected and shareable flags, the image name, and the major and minor IDs of the image.

6. SDA> SHOW PROCESS/TRANSACTIONS=(DISPLAY=THREADS, TID=FAC21DE2-BA88-0092-8FA6-B24B)

The SHOW PROCESS command displays the transaction thread information for the transaction whose identifier is FAC21DE2-BA88-0092-8FA6-B24B.

SHOW RESOURCE

Displays information about all resources in the system or about a resource associated with a specific lock.

Format

SHOW RESOURCE {/ALL | /LOCKID=lock-id | /NAME=resource-name}

Parameters

None.

Qualifiers

/ALL

Displays information from all resource blocks (RSBs) in the system. This is the default behavior of the SHOW RESOURCE command.

/LOCKID=lock-id

Displays information about the resource associated with the lock with the specified **lock-id**.

/NAME=resource-name

Displays information about the resource whose resource name begins with the specified **resource-name**. For case-sensitive names, enclose **resource-name** in quotation marks.

Description

The SHOW RESOURCE command displays the information listed in Table SDA–21 for each resource in the system or for the specific resource associated with the specified **lock-id**.

Field	Contents
Address of RSB	Address of the resource block (RSB) that describes this resource.
Parent RSB	Address of the RSB that is the parent of this RSB. This field is 00000000 if the RSB itself is a parent block.
Sub-RSB count	Number of RSBs of which this RSB is the parent. This field is 0 if the RSB has no sub-RSBs.
	(continued on next page)

Table SDA-21 Resource Information in the SHOW RESOURCE Display

Field	Contents
Group grant mode	Indication of the most restrictive mode in which a lock on this resource has been granted. This field can contain the following values (shown in order from the least restrictive mode to the most restrictive):
	NL Null mode
	CR Concurrent-read mode
	CW Concurrent-write mode
	PR Protected-read mode
	PW Protected-write mode
	EX Exclusive mode
	For information about conflicting and incompatible lock modes, see the <i>OpenVMS System Services Reference Manual</i> .
Conversion grant mode	Indication of the most restrictive lock mode to which a lock on this resource is waiting to be converted. This does not include the mode for which the lock at the head of the conversion queue is waiting.
BLKAST count	Number of locks on this resource that have requested a blocking AST.
Value block	Hexadecimal dump of the 16-byte block value block associated with this resource.
Sequence #	Sequence number associated with the resource's value block. If the number indicates that the value block is not valid, the words "Not valid" appear to the right of the number.
CSID	Cluster system identification number (CSID) of the node that owns the resource.
	(continued on next page)

Field Contents	
Table SDA–21 (Cont.) Resource Information in the SHOW RESOU	RCE Display

Field	Contents		
Resource	Dump of the name of this resource, as stored at the end of the RSB. The first two columns are the hexadecimal representation of the name, with the least significant byte represented by the rightmost two digits in the rightmost column. The third column contains the ASCII representation of the name, the least significant byte being represented by the leftmost character in the column. Periods in this column represent values that correspond to nonprinting ASCII characters.		
Length	Length in bytes of the resource name.		
_	Processor mode of the name space in which this RSB resides.		
_	Owner of the resource. Certain resources, owned by the operating system, list "System" as the owner. Locks owned by a group have the number (in octal) of the owning group in this field.		
Granted queue	List of locks on this resource that have been granted. For each lock in the list, SDA displays the number of the lock and the lock mode in which the lock was granted.		
Conversion queue	List of locks waiting to be converted from one mode to another. For each lock in the list, SDA displays the number of the lock, the mode in which the lock was granted, and the mode to which the lock is to be converted.		
Waiting queue	List of locks waiting to be granted. For each lock in the list, SDA displays the number of the lock and the mode requested for that lock.		

Table SDA-21 (Cont.) Resource Information in the SHOW RESOURCE Display

Examples

1. SDA> SHOW RESOURCE

Resource database Address of RSB: 807F6120 Group grant mode: NT. Parent RSB: 806EA180 Conversion grant mode: NL Sub-RSB count: 0 BLKAST count: 0
 Sub-RSB count:
 0
 BLKAST count:
 0

 Value block:
 806CE510
 00000000
 00000002
 Seq. #:
 00000008

 Resource:
 09ED7324
 42313146
 F11B\$sí.
 Elength
 10
 00000000
 0000200

 CSID:
 00020041

 Kernel mode
 00000000
 00000000

 System
 00000000

 Granted queue (Lock ID / Gr mode): 006801AE NL Conversion queue (Lock ID / Gr/Rq mode): *** EMPTY QUEUE *** Waiting queue (Lock ID / Rq mode): *** EMPTY QUEUE *** Address of RSB: 807EB9E0 Group grant mode: PW Parent RSB: 0000000 Conversion grant mode: EX Sub-RSB count: 0 BLKAST count: 1 0 BLKAST count: .

The SHOW RESOURCE command displays information taken from the RSBs of all resources in the system. For instance, the RSB at $807EB9E0_{16}$ is a parent block with no sub-RSBs. The most restrictive lock granted on this resource is in protected-write (PW) mode. There is a lock on the conversion queue waiting to be converted from PW mode to exclusive (EX) mode.

```
2. SDA> SHOW PROCESS/LOCKS
```

Process index: 001C Name: STARTQ Extended PID: 4800011C Lock data: Lock id: 0117054F PID: 0001001C Flags: VALBLK SYNCSTS SYSTEM Par. id: 0000000 Granted at PW NOQUOTA Sublocks: 0 LKB: 808091A0 Resource: 45527624 42313146 F11B\$vRE Status: NOQUOTA Length 18 20205241 4D323053 S02MAR Kernel mode 0000000 0002020 System 00000000 0000000 Process copy of lock 008209CF on system 0002001 . . . SDA> SHOW RESOURCE/LOCKID=117054F

SDA-164

Resource database -------Address of RSB: 806BB050 Group grant mode: NL Parent RSB: 0000000 Conversion grant mode: NL Sub-RSB count: 4 BLKAST count: 0 Value block: 00960102 0000330B 000735AA 5A020005 Seq. #: 00006D9F Resource: 45527624 42313146 F11B\$vRE Length 18 20205241 4D323053 S02MAR CSID: 0002001A Kernel mode 00000000 00002020 System 00000000 0000000 Granted queue (Lock ID / Gr mode): 0117054F PW 00060545 CR Conversion queue (Lock ID / Gr/Rq mode): **** EMPTY QUEUE *** Waiting queue (Lock ID / Rq mode): *** EMPTY QUEUE ***

> The SHOW PROCESS/LOCKS command lists all locks associated with the SDA current process, STARTQ. Its display is identical to that of the SHOW LOCK command, illustrated in Table SDA–15. The SHOW RESOURCE/LOCKID=117054F command determines that this particular lock is on the granted queue in protected-write mode for the resource at 806BB050₁₆.

3. SDA> SHOW RESOURCE/NAME=RMS\$

Resource database _____ Address of RSB: 80EFBE40 GGMODE: EX Status: DIRENTR VALID Parent RSB:0000000CGMODE:EXSub-RSB count:2FGMODE:EXLock Count:1CSID:0000000BLKAST count:1RQSEQNM:0000 Resource: 00030014 24534D52 RMS\$.... Valblk: 00000000 00000000 Length 26 4D565841 56020000 ...VAXVM 0000000 0000000 Exec. mode 00202035 35305653 SV055 . 00000000 00000000 Seqnum: 00000000 System Granted queue (Lock ID / Gr mode / Range): 6400004C EX 0000000-FFFFFFF Conversion queue (Lock ID / Gr mode / Range -> Rq mode / Range): *** EMPTY QUEUE *** Waiting queue (Lock ID / Rq mode / Range): *** EMPTY QUEUE *** . .

This example of the SHOW RESOURCE/NAME command displays information about the resource whose name begins with RMS\$.

SHOW RMS

Displays the RMS data structures selected by the SET RMS command to be included in the default display of the SHOW PROCESS/RMS command.

Format

SHOW RMS

Parameters

None.

Qualifiers

None.

Description

The SHOW RMS command lists the names of the data structures selected for the default display of the SHOW PROCESS/RMS command.

For a description of the significance of the options listed in the SHOW RMS display, see the description of the SET RMS command and Table SDA-14.

For an illustration of the information displayed by the SHOW PROCESS/RMS command, see the examples included in the description of the SHOW PROCESS command.

Examples

1. SDA> SHOW RMS

RMS Display Options: IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM, XAB,RLB,BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB Display RMS structures for all IFI values.

> The SHOW RMS command displays the full set of options available for display by the SHOW PROCESS/RMS command. SDA, by default, selects the full set of RMS options at the beginning of an analysis.

2. SDA> SET RMS=(IFB,CCB,WCB) SDA> SHOW RMS

> RMS Display Options: IFB,CCB,WCB Display RMS structures for all IFI values.

> > The SET RMS command establishes the IFB, CCB, and WCB as the structures to be displayed when you issue the SHOW PROCESS/RMS command. The SHOW RMS command verifies this selection of RMS options.

SHOW RSPID

Displays information about response IDs (RSPIDs) of all SCS connections or, optionally, a specific SCS connection.

Format

SHOW RSPID [/CONNECTION=cdt-address]

Parameters

None.

Qualifier

/CONNECTION=cdt-address

Displays RSPID information for the specific SCS connection whose connection descriptor table (CDT) address is provided in **cdt-address**.¹⁴

Description

Whenever a local system application (SYSAP) requires a response from a remote SYSAP, the local system assigns a unique number, called an RSPID, to the response. The RSPID is transmitted in the original request (as a means of identification), and the remote SYSAP returns the same RSPID in its response to the original request.

The SHOW RSPID command displays information taken from the response descriptor table (RDT), which lists the currently open local requests that require responses from SYSAPs at a remote node. For each RSPID, SDA displays the following information:

- RSPID value
- Address of the class driver request packet (CDRP), which generally represents the original request
- Address of the CDT using the RSPID
- Name of the local process using the RSPID
- Remote node from which a response is required (and has not yet been received)

¹⁴ You can find the **cdt-address** for any active connection on the system in the **CDT** summary page display of the SHOW CONNECTIONS command. CDT addresses are also stored in many individual data structures related to SCS connections. These data structures include class driver request packets (CDRPs) and unit control blocks (UCBs) for class drivers that use SCS and cluster system blocks (CSBs) for the connection manager.

System Dump Analyzer SHOW RSPID

Examples

1. SDA> SHOW RSPID

VAXcluster	r data structures			
Si	ummary of Response	e Descriptor Tab	ole(RDT) 8037A4A8	
RSPID	CDRP Address	CDT Address	Local Process Name	Remote Node
04C30000 06260001 0C390002	803917B0 80804FA0 807E0460	8037AB50 8037AF10 8037AD30	VMS\$DISK_CL_DRVR VMS\$VAXcluster VMS\$VAXcluster	SOWHAT WALKIN OLEO
•				
•				

The SHOW RSPID command shows the response IDs that are currently open for all local connections in the VAXcluster system.

2. SDA> SHOW RSPID/CONNECTION=G37B7D0

VAXcluster	data structures			
Su	mmary of Response	Descriptor Tab	le(RDT) 8037A4A8	
RSPID	CDRP Address	CDT Address	Local Process Name	Remote Node
08B8001C 0915001D	807F0300 807F08A0	8037B7D0 8037B7D0	VMS\$VAXcluster VMS\$VAXcluster	METEOR METEOR

The SHOW RSPID/CONNECTION=G37B7D0 command displays only those RSPIDs in use that are associated with the SCS connection whose CDT is at address $8037B7D0_{16}$.

SHOW SPINLOCKS

Displays information taken from the data structures that provide system synchronization in a multiprocessing environment.

The default qualifiers are /STATIC and /DYNAMIC.

Format

SHOW SPINLOCKS [/OWNED][/BRIEF |/FULL][/DYNAMIC |/STATIC] [name |/ADDRESS=expression |/INDEX=expression]

Parameter

name

Name of the spin lock, fork lock, or device lock structure to be displayed. You can obtain the names of the static system spin locks and fork locks from Table SDA–22. Device lock names are of the form *[node\$]lock*, where *node* optionally indicates the VAXcluster node name (allocation class) and *lock* indicates the device and controller identification (for example, HAETAR\$DUA).

Qualifiers

/ADDRESS=expression

Displays the lock at the address specified in **expression**. You can use the /ADDRESS qualifier to display a specific device lock; however, the name of the device lock is listed as "Unknown" in the display.

/BRIEF

Produces a condensed display of the lock information displayed by default by the SHOW SPINLOCKS command, including the following: address, spin lock name or device name, IPL or device IPL, rank, index, ownership depth, number of waiting CPUs, CPU ID of the owner CPU, and interlock status (depth of ownership).

/DYNAMIC

Displays information for all device locks in the system.

/FULL

Displays full descriptive and diagnostic information for each displayed spin lock, fork lock, or device lock.

/INDEX=expression

Displays the system spin lock whose index is specified in **expression**. You cannot use the /INDEX qualifier to display a device lock.

/OWNED

Displays information for all spin locks, fork locks, and device locks owned by the SDA current CPU. If a processor does not own any spin locks, SDA displays the following message:

No spinlocks currently owned by CPU xx

The *xx* represents the CPU ID of the processor.

/STATIC

Displays information for all system spin locks and fork locks.

Description

The SHOW SPINLOCKS command displays status and diagnostic information about the multiprocessing synchronization structures known as spin locks.

A **static spin lock** is a spin lock whose data structure is permanently assembled into the system. Static spin locks are accessed as indexes into a vector of longword addresses called the **spin lock vector**, the address of which is contained in SMP\$AR_SPNLKVEC. System spin locks and fork locks are static spin locks. Table SDA-22 lists the static spin locks.

A **dynamic spin lock** is a spin lock that is created based on the configuration of a particular system. One such dynamic spin lock is the device lock SYSGEN creates when configuring a particular device. This device lock synchronizes access to the device's registers and certain UCB fields. The operating system creates a dynamic spin lock by allocating space from nonpaged pool, rather than assembling the lock into the system as it does in creating a static spin lock.

See the *OpenVMS VAX Device Support Manual*¹⁵ for a full discussion of the role of spin locks in maintaining synchronization of kernel mode activities in a multiprocessing environment.

Name	Description
QUEUEAST	Fork lock for queuing ASTs at IPL 6
FILSYS	Lock on file system structures
IOLOCK8	Fork lock for executing a driver fork process at IPL 8
PR_LK8	Primary CPU's private lock for IPL 8
TIMER	Lock for adding and deleting timer queue entries and searching the timer queue
JIB	Lock for manipulating job nonpaged pool quotas as reflected by the fields JIB\$L_BYTCNT and JIB\$L_BYTLM in the job information block (JIB)
MMG	Lock on memory management, PFN database, swapper, modified page writer, and creation of per-CPU database structures
SCHED	Lock on process control blocks (PCBs), scheduler database, and mutex acquisition and release structures
IOLOCK9	Fork lock for executing a driver fork process at IPL 9
PR_LK9	Primary CPU's private lock for IPL 9
IOLOCK10	Fork lock for executing a driver fork process at IPL 10
PR_LK10	Primary CPU's private lock for IPL 10
IOLOCK11	Fork lock for executing a driver fork process at IPL 11
PR_LK11	Primary CPU's private lock for IPL 11

Table SDA-22 Static Spin Locks

(continued on next page)

 $^{^{\}rm 15}$ This manual has been archived but is available on the OpenVMS Documentation CD-ROM.

Name	Description
MAILBOX	Lock for sending messages to mailboxes
POOL	Lock on nonpaged pool database
PERFMON	Lock for I/O performance monitoring
INVALIDATE	Lock for system space translation buffer (TB) invalidation
VIRTCONS	Lock for ownership of the virtual console
HWCLK	Lock on hardware clock database, including the quadword containing the due time of the first timer queue entry (EXE\$GQ_1ST_TIME) and the quadword containing the system time (EXE\$GQ_SYSTIME)
MEGA	Lock for serializing access to fork-wait queue
MCHECK	Lock for synchronizing certain machine error handling
EMB	Lock for allocating and releasing error logging buffers

Table SDA-22 (Cont.) Static Spin Locks

_ Note _

The MCHECK and EMB spin locks, formerly separate spin locks in previous releases of OpenVMS, have been merged. When you analyze a crash, you might see one or both names when you display static spin locks.

For each spin lock, fork lock, or device lock in the system, SHOW SPINLOCKS provides the following information:

- Name of the spin lock (or device name for the device lock)
- Address of the spin lock data structure (SPL)
- The owner CPU's CPU ID
- IPL at which allocation of the lock is synchronized on a local processor
- Number of nested acquisitions of the spin lock by the processor owning the spin lock ("Ownership Depth")
- Rank of the spin lock
- Number of processors waiting to obtain the spin lock
- Spin lock index (for static spin locks only)
- Timeout interval for spin lock acquisition (in terms of 10 milliseconds)

SHOW SPINLOCKS/BRIEF produces a condensed display of this same information.

If the system under analysis was executing with full-checking multiprocessing enabled (according to the setting of the MULTIPROCESSING system parameter), SHOW SPINLOCKS/FULL adds to the spin lock display the last eight PCs at which the lock was acquired or released. If applicable, SDA also displays the PC of the last release of multiple, nested acquisitions of the lock.

System Dump Analyzer SHOW SPINLOCKS

Examples

```
1. SDA> SHOW SPINLOCKS
    System static spinlock structures
    _____
                                       Address : 801
IPL : 1F
Rank : 00
                                            Address : 801B9EF8
    EMB
    Owner CPU ID : None
    Ownership Depth : 0000
CPUs Waiting : 0000
                                            Index : 20
    Timeout interval 002DC60
                                             Address : 801B9F48
    MCHECK
    Ownership Depth : 0000
CPUS Waiting : 0000
Timeout
    Owner CPU ID : None
                                            IPL : 1F
Rank : 01
                                             Index : 21
    Timeout interval 002DC60
    IOLOCK8
                                             Address : 801BA538
    Owner CPU ID : 02
Ownership Depth : 0001
CPUs Waiting : 0000
                                             IPL : 08
Rank : 14
                                             Index : 34
    Timeout interval 002DC60
    System dynamic spinlock structures
   Address : 801BA178

June CPU ID : None IPL : 0B

Ownership Depth : 0000 Rank : 08

CPUs Waiting : 0000 Index

Timeout interval 002DG60
    HAETAR$NLAAddress : 801BA178Owner CPU ID : NoneIPL : 08Ownership Depth : 0000Rank : 08CPUs Waiting : 0000Index : 28
    Timeout interval 002DC60
                                     Address : 8063A620
DIPL : 14
    HAETAR$PAA
    Owner CPU ID : 02
    Ownership Depth : 0001
                                            Rank : 14
    CPUs Waiting : 0000
    Timeout interval 002DC60
       .
       .
```

This excerpt illustrates the default output of the SHOW SPINLOCKS command. Note that the CPU whose CPU ID is 2 owns the fork lock IOLOCK8. CPU 2 must have an IPL of at least 8, which is the acquisition IPL of the fork lock. CPU 2 has no nested ownership of the fork lock. The rank of IOLOCK8 is 14_{16} , indicating that CPU 2 could not own any locks with a logical rank of 15_{16} or higher when it acquired IOLOCK8.

Similarly, while owning IOLOCK8, CPU 2 cannot obtain any additional spin locks with a logical rank of 14_{16} or lower.

No CPUs are waiting for the fork lock; its index is 34_{16} .

2. SDA> SHOW SPINLOCKS/BRIEF

Address	Spinlock Name		Rank	Index	Depth	#Waiting	Owner CPU	Interlock
801B9EF8		1F	00	20	00	0000	None	Free
801B9EF8		1F	00	20	00	0000	None	Free
801B9F98		1F	02	22	00	0000	None	Free
801B9FE8	HWCLK	16	03	23	00	0000	None	Free
801BA038	VIRTCONS	14	04	24	00	0000	None	Free
801BA088	INVALIDATE	13	05	25	00	0000	None	Free
801BA0D8	PERFMON	OF	06	26	00	0000	None	Free
801BA128	POOL	0B	07	27	00	0000	None	Free
801BA178	MAILBOX	0B	08	28	00	0000	None	Free
801BA1C8	PR_LK11	0B	09	29	00	0000	None	Free
	IOLOCK11	0B	0A	2A	00	0000	None	Free
801BA268	PR_LK10	0A	0B	2B	00	0000	None	Free
801BA2B8	IOLOCK10	0A	0C	2C	00	0000	None	Free
801BA308		09	0D	2D	00	0000	None	Free
801BA358		09	0E	2E	00	0000	None	Free
801BA3A8		08	0F	2F	00	0000	None	Free
801BA3F8		08	10	30	00	0000	None	Free
801BA448		08	11	31	00	0000	None	Free
801BA498		08	12	32	00	0000	None	Free
801BA4E8		08	13	33	00	0000	None	Free
801BA538		08	14	34	01	0000	02	00
801BA588		08	15	35	00	0000	None	Free
	QUEUEAST	06	16	36	00	0000	None	Free
8016A628	ASTDEL	02	17	37	00	0000	None	Free
	Device Name			Index	Depth	#Waiting	Owner CPU	Interlock
801BA178	HAETAR\$MBA	0B	08	28	00	0000	None	Free
	HAETAR\$NLA	08	08	28	00	0000	None	Free
8063A620	HAETAR\$PAA	14	14		01	0000	02	00
8063C5C0	HAETAR\$XEA	15	FF		00	0000	None	Free
8063C4A0	HAETAR\$XGA	15	FF		00	0000	None	Free
8063C380	HAETAR\$PEA	14	FF		00	0000	None	Free
	HAETAR\$TXA	15			00	0000	None	Free
	HAETAR\$LCA	15			00	0000	None	Free
801BA538	HAETAR\$CNA	08	14	34	01	0000	02	00

This excerpt illustrates the condensed form of the display produced in the first example.

System Dump Analyzer SHOW SPINLOCKS

```
3. SDA> SHOW SPINLOCKS/OWNED
```

```
System static spinlock structuresIOLOCK8Address : 801BA538Owner CPU ID : 02IPL : 08Ownership Depth : 0001Rank : 14CPUs Waiting : 0000Index : 34Timeout interval 002DC60.....System dynamic spinlock structuresHAETAR$PAAAddress : 8063A620Owner CPU ID : 02DIPL : 14Ownership Depth : 0001Rank : 14CPUs Waiting : 0000Index : 34Timeout interval 002DC60.HAETAR$CNAAddress : 801BA538Owner CPU ID : 02IPL : 08Ownership Depth : 0001Rank : 14CPUs Waiting : 0000Index : 34Timeout interval 002DC60.HAETAR$NETAddress : 801BA538Owner CPU ID : 02IPL : 08Ownership Depth : 0001Rank : 14CPUs Waiting : 0000Index : 34Timeout interval 002DC60.HAETAR$NDAAddress : 801BA538Owner CPU ID : 02IPL : 08Owner Ship Depth : 0001Rank : 14CPUs Waiting : 0000Index : 34Timeout interval 002DC60.....
```

The SHOW SPINLOCKS/OWNED command shows all owned spin locks in the system.

4. SDA> SHOW SPINLOCKS/FULL

```
System static spinlock structures
_____

        Address
        801

        ne
        IPL
        1F

        00
        Rank
        00

        00
        Index
        20

                                              Address : 801B9EF8
EMB
EMBOwner CPU ID: NoneOwnership Depth: 0000CPUs Waiting: 0000Timeout interval002DC60
Spinlock EMB was last acquired or released from:
(Most recently) 80195146 ERL$WAKE+00089
                                    801950EF ERL$WAKE+00032
         .
                                    80195146 ERL$WAKE+00089
         .
                                     801950EF ERL$WAKE+00032
         .
                                    80195146 ERL$WAKE+00089
         .
                                   801950EF ERL$WAKE+00032
         .
                              80195146 ERL$WAKE+00089
801950EF ERL$WAKE+00032
(Least recently)
   .
Last release of multiple acquisitions occurred at:
                                     801194F9 EXE$INSIOQ+00044
    .
    .
AddressAddress801BA538Owner CPU ID: 02IPL: 08Ownership Depth: 0001Rank: 14CPUs Waiting: 0000Index: 34Timeout interval002DC60Index: 34
Spinlock IOLOCK8 was last acquired or released from:
(Most recently) 801BBE08 EXE$FORKDSPTH+0007E
                                    80198EBF EXE$OIOACPPKT+00052
         .
                                   80198E7E EXE$QIOACPPKT+00011
         .
                                   80199BB2 IOC$CHECK_HWM+0032D
         .
                                   80182DE5 LCK$QUEUED_EXIT+0001D
                                   80182884 LCK$AR_COMPAT_TBL+0007C
         .

        8018357E
        EXE$DEQ+00189

        (Least recently)
        80183428
        EXE$DEQ+00033

    .
    .
```

The SHOW SPINLOCKS/FULL command displays a list of the last eight PCs that have accessed the spin lock. For instance, the fork dispatcher contains the code that most recently acquired the fork lock.

SHOW STACK

Displays the location and contents of the four process stacks of the SDA current process and the interrupt stack of the SDA current CPU.

Format

SHOW STACK [range | /qualifier[,...]]

Parameters

range

Range of memory locations you want to display in stack format. You can express a **range** using the following format:

m:n Range of virtual addresses from *m* to *n*

m;*n* Range of virtual addresses starting at *m* and continuing for *n* bytes

Qualifiers

/ALL

Displays the locations and contents of the four process stacks for the SDA current process and the interrupt stack for the SDA current CPU.

/EXECUTIVE

Shows the executive stack for the SDA current process.

/INTERRUPT

Shows the interrupt stack for the SDA current CPU.

/KERNEL

Shows the kernel stack for the SDA current process.

/SUPERVISOR

Shows the supervisor stack for the SDA current process.

/USER

Shows the user stack for the SDA current process.

Description

The SHOW STACK command, by default, displays the stack that was in use when the system failed or, in the analysis of a running system, the current operating stack. For any other process made the SDA current process, the SHOW STACK command by default shows its current operating stack.

The various qualifiers to the command can display any of the four per-process stacks for the SDA current process, as well as the interrupt stack for the SDA current CPU.

You can define SDA process and CPU context by using the SET CPU, SHOW CPU, SHOW CRASH, SET PROCESS, and SHOW PROCESS commands as indicated in their command descriptions. A complete discussion of SDA context control appears in Section 4.

Section	Contents				
Identity of stack	SDA indicates whether the stack is a process stack (user, supervisor, executive, or kernel) or the processor interrupt stack. If the interrupt stack is being displayed, SDA displays the CPU ID of the processor that owns it. Similarly, if the SDA current process is currently scheduled on a processor in the system, SHOW STACK also specifies the CPU ID of the processor on which the process is scheduled.				
Stack pointer	The stack pointer identifies the top of the stack. The display indicates the stack pointer by the symbol SP =>.				
Stack address	SDA lists all the virtual addresses that the operating system has allocated to the stack. The stack addresses are listed in a column that increases in increments of 4 bytes (one longword).				
Stack contents	SDA lists the contents of the stack in a column to the right of the stack addresses.				
Symbols	SDA attempts to display the contents of a location symbolically, using a symbol and an offset. If the address is not within FFF_{16} of the value of any existing symbol, this column is left blank.				

SDA provides the following information in each stack display.

If a stack is empty, the display shows the following:

SP => (STACK IS EMPTY)

Example

```
SDA> SHOW STACK
Process stacks (on CPU 00)
-----
Current operating stack (USER):
              7FF73278 200C0000
              7FF7327C 00001518
                                    SGN$C MAXPGFL+518
              7FF73280 7FF732F0
              7FF73284 000187A7
                                    RMS$_ECHO+72E
        SP => 7FF73288 0000060A
                                    BUG$_NOHDJMT+002
              7FF7328C 0000000
              7FF73290 0000003
              7FF73294
                       7FF73800
              7FF73298 7FF73800
```

The SHOW STACK command displays a user stack that was the current operating stack for a process scheduled on CPU 00. The data shown above the stack pointer might not be valid. The symbol to the right of the columns, BUG\$_NOHDJMT+002, is the result of the SDA attempt to interpret the contents of the longword at the top of the stack as a symbol meaningful to the user. In this case, the value on the stack and the value of BUG\$_NOHDJMT are unrelated.

SHOW SUMMARY

Displays a list of all active processes and the values of the parameters used in swapping and scheduling those processes.

Format

SHOW SUMMARY [/IMAGE]

Parameters

None.

Qualifier

/IMAGE

Causes SDA to display, if possible, the name of the image being executed within each process.

Description

The SHOW SUMMARY command displays the information in Table SDA–23 for each active process in the system.

Table SDA-23 F	Process	Information	in the	SHOW	SUMMARY	Display
----------------	---------	-------------	--------	------	---------	---------

Column	Contents
Extended PID	32-bit number that uniquely identifies the process
Indx	Index of this process into the PCB array
Process name	Name assigned to the process
Username	Name of the user who created the process

(continued on next page)

Column	Contents
State	Current state of the process, one of the following 14 states:
	• COM
	Computable and resident in memory
	• COMO
	Computable but outswapped
	• CUR
	Currently executing ¹
	• CEF
	Waiting for a common event flag
	• LEF
	Waiting for a local event flag
	• LEFO
	Outswapped and waiting for a local event flag
	• HIB
	Hibernating
	• HIBO
	Hibernating and outswapped
	• SUSP
	Suspended
	• SUSPO
	Suspended and outswapped
	• PFW
	Waiting for a page that is not in memory (page-fault wait)
	• FPG
	Waiting to add a page to its working set (free-page wait
	• COLPG
	Waiting for a page collision to be resolved (collided-page wait); this usually occurs when several processes cause page faults on the same shared page
	• MWAIT
	Waiting for a system resource (miscellaneous wait)
Pri	Current scheduling priority of the process
ID of the process	the CUR state executing in a multiprocessing environment, SDA indicates the CP or on which the process is current. This information, however, might not be accura ARY displays produced in the analysis of a running system.

Table SDA-23 (Cont.) Process Information in the SHOW SUMMARY Display

(continued on next page)

Column	Contents
РСВ	Address of the process control block
PHD	Address of the process header
Wkset	Number (in decimal) of pages currently in the working set of the process

Table SDA–23 (Cont.) Process Inform	ation in the SHOW S	SUMMARY Display
-------------------------------------	---------------------	-----------------

Example

SDA> SHOW SUMMARY/IMAGE

Current p	rocess summary	ł						
	Indx Process					PCB	PHD	Wkset
	0001 SWAPPER					8000C3C0	8000C200	0
33C00205	0005 _RTA5:		SIVAD	LEF	4	80482FE0	82120E00	293
33C00106	0006 ERRFMT		SYSTEM	HIB	8	80432950	80DB4600	126
	\$254\$DUA200:	[SYS6.S	SCOMMON.][S	(SEXE]ER	RRFMT.I	EXE;1		
33C00107	0007 CACHE_SI						81121E00	120
	\$254\$DUA200:	[SYS6.S	SCOMMON.][S	(SEXE]FI	LESERV	/.EXE;400		
33C00108	0008 CLUSTER						81246600	313
	\$254\$DUA200:	[SYS6.S	SCOMMON.][SY	(SEXE]CS	SP.EXE	;300		
•								
	0.000 37577 65				00 10	00449650	01650600	1 - 0 0
33C0010D	000D NETACP		-				816D8600	1500
22000105	\$254\$DUA200:	SIS6.S	-				01856500	C 0
33C00I0E	000E EVL		DECNET			8044CD60	8T\FGE00	68
	\$254\$DUA200:	SIS6.S	SCOMMON.] <s< td=""><td>(SEXE>EV</td><td>/L.EXE</td><td></td><td></td><td></td></s<>	(SEXE>EV	/L.EXE			
•								
•								
•								

The SHOW SUMMARY/IMAGE command describes all active processes in the system at the time of the system failure. Note that the process NETACP is in the CUR state on CPU 00 of a multiprocessor system at the time of the failure.

SHOW SYMBOL

Displays the hexadecimal value of a symbol and, if the value is equal to an address location, the contents of that location.

Format

SHOW SYMBOL [/ALL] symbol-name

Parameter

symbol-name

Name of the symbol to be displayed. You must provide a symbol-name.

Qualifier

/ALL

Displays information about all symbols whose names begin with the characters specified in **symbol-name**.

Description

The SHOW SYMBOL/ALL command is useful for determining the values of symbols that belong to a symbol set, as illustrated in the examples.

Examples

 SDA> SHOW SYMBOL G G = 80000000 : 8FBC0FFC

The SHOW SYMBOL command evaluates the symbol G as 8000000_{16} and displays the contents of address 8000000_{16} as $8FBC0FFC_{16}$.

2. SDA> SHOW SYMBOL/ALL BUG

Symbols sorted by name						
BUG\$BUILD_HEADE	80002038	=>	24A89F16	BUG\$_CONSOLRX50	00000640 =>	10A2020E
BUG\$DUMP_REGIST	80002040	=>	24A89F16	BUG\$_CONTRACT	00000000	
BUG\$FATAL	80002048	=>	24A89F16	BUG\$_CPUBUSYWAI	00000780 =>	6501FB30
BUG\$L_BUGCHK_FL	80004108	=>	0000001	BUG\$_CPUCEASED	000005E8 =>	5EDD0000
BUG\$L_FATAL_SPS	8000410C	=>	7FFE7C6C	BUG\$_CPUEXIT	000006B8 =>	218FD007
BUG\$READ_ERR_RE	80002050	=>	24A89F16	BUG\$_CPUSANITY	00000778 =>	8A031164
BUG\$REBOOT	80002058	=>	6E9E9F17	BUG\$_CTERM	00000678 =>	00000004
BUG\$TABLE	8000D09E	=>	00280001	BUG\$_CWSERR	00000698 =>	004C414E
•						

This example shows the display produced by the SHOW SYMBOL/ALL command. SDA searches its symbol table for all symbols that begin with the string "BUG" and displays the symbols and their values. Although certain values equate to memory addresses, it is doubtful that the contents of those addresses are actually relevant to the symbol definitions in this instance.

SHOW TRANSACTIONS

Displays information about all transactions on the node or about a specified transaction.

Format

SHOW TRANSACTIONS [/qualifier[,...]]

Qualifiers

/DISPLAY=(item [,...])

Specifies the type of information to be displayed. The argument to /DISPLAY can be either a single item or a list. The following items can be specified.

ltem	Description
ALL	All transaction control structures for the specified transaction. This is the default behavior.
BRANCHES	Control structures for branches of the specified transaction.
PARTICIPANTS	Control structures for resource managers participating in the specified transaction.
THREADS	Control structures for threads of the specified transaction.
TRANSACTIONS	Transaction control structures for the specified transaction.

/SUMMARY

Displays statistics for transactions on the node. The /SUMMARY qualifier cannot be used with the /TID or /DISPLAY qualifier.

/TID=tid

Specifies the transaction for which information is to be displayed. If you omit the /TID qualifier, the SHOW TRANSACTIONS command displays information about all transactions on the node.

Examples

1. SDA> SHOW TRANSACTIONS/TID=FAC21DE2-BA88-0092-8FA6-0000000B24B

The SHOW TRANSACTIONS command displays all the transaction control structure information for the transaction identified by the transaction identifier.

2. SDA> SHOW TRANSACTIONS/DISPLAY=(PARTICIPANTS, BRANCHES)

The SHOW TRANSACTIONS command displays the transaction branch and resource manager information for all transactions on the node.

SPAWN

Creates a subprocess of the process currently running SDA, copying the context of the current process to the subprocess and, optionally, executing within the subprocess a specified command.

Format

SPAWN [/qualifier[,...]] [command]

Parameter

command

Name of the command that you want executed by the subprocess.

Qualifiers

/INPUT=filespec

Specifies an input file containing one or more command strings to be executed by the spawned subprocess. If you specify a command string with an input file, the command string is processed before the commands in the input file. Once processing is complete, the subprocess is terminated.

/NOLOGICAL_NAMES

Specifies that the logical names of the parent process are not to be copied to the subprocess. The default behavior is that the logical names of the parent process are copied to the subprocess.

/NOSYMBOLS

Specifies that the DCL global and local symbols of the parent process are not to be passed to the subprocess. The default behavior is that these symbols are passed to the subprocess.

/NOTIFY

Specifies that a message is to be broadcast to SYS\$OUTPUT when the subprocess completes processing or aborts. The default behavior is that such a message is not sent to SYS\$OUTPUT.

When you use this qualifier, you must also specify the /NOWAIT qualifier.

/NOWAIT

Specifies that the system is not to wait until the subprocess is completed before allowing more commands to be specified. This qualifier allows you to specify new commands while the spawned subprocess is running. If you specify /NOWAIT, you should use /OUTPUT to direct the output of the subprocess to a file to prevent more than one process from simultaneously using your terminal.

The default behavior is that the system waits until the subprocess is completed before allowing more commands to be specified.

/OUTPUT=filespec

Specifies an output file to which the results of the SPAWN operation are written. You should specify an output other than SYS\$OUTPUT whenever you specify /NOWAIT to prevent output from the spawned subprocess from being displayed while you are specifying new commands. If you omit the /OUTPUT qualifier, output is written to the current SYS\$OUTPUT device.

/PROCESS=process-name

Specifies the name of the subprocess to be created. The default name of the subprocess is *username_n*, where *username* is the user name of the parent process.

Example

```
SDA> SPAWN
$ MAIL
.
.
.
$ DIR
.
.
$ LO
Process SYSTEM_1 logged out at 5-MAR-1993 15:42:23.59
SDA>
```

This example uses the SPAWN command to create a subprocess that issues DCL commands to invoke the Mail utility. The subprocess then lists the contents of a directory before logging out to return to the parent process executing SDA.

VALIDATE QUEUE

Validates the integrity of the specified queue by checking the pointers in the queue.

Format

VALIDATE QUEUE [address] [/qualifier[,...]]

Parameter

address

Address of an element in a queue.

If you specify a period (.) as the **address**, SDA uses the last evaluated expression as the queue element's address.

If you do not specify an **address**, the VALIDATE QUEUE command determines the address from the last issued VALIDATE QUEUE command in the current SDA session.

If you do not specify an **address**, and no queue has previously been specified, SDA displays the following error message:

%SDA-E-NOQUEUE, no queue has been specified for validation

Qualifiers

/MAXIMUM_LINKS=nn

Specifies the number of entries in the queue that are to be validated.

/SELF_RELATIVE

Specifies that the selected queue is a self-relative queue.

Description

The VALIDATE QUEUE command uses the forward and backward pointers in each element of the queue to make sure that all such pointers are valid and that the integrity of the queue is intact. If the queue is intact, SDA displays the following message:

Queue is complete, total of n elements in the queue

In these messages, *n* represents the number of entries the VALIDATE QUEUE command has found in the queue.

If SDA discovers an error in the queue, it displays one of the following error messages:

Error in forward queue linkage at address nnnnnnnn after tracing x elements Error comparing backward link to previous structure address (nnnnnnnn) Error occurred in queue element at address oooooooo after tracing pppp elements

These messages can appear frequently when the VALIDATE QUEUE command is used within an SDA session that is analyzing a running system. In a running system, the composition of a queue can change while the command is tracing its links, thus producing an error message. If there are no entries in the queue, SDA displays this message:

The queue is empty

Examples

 SDA> VALIDATE QUEUE SCH\$GQ_LEFWQ/MAXIMUM_LINKS=3 The queue is consistent through 3 elements

This example validates three elements in the SCH\$GQ_LEFWQ queue.

2. SDA> VALIDATE QUEUE/SELF_RELATIVE IOC\$GL_IRPFL Queue is complete, total of 159 elements in the queue

This example validates the self-relative queue that is the IRP pool list. The validation is successful and determines that there are 159 IRPs in the list.

Index

Α

Access violations, SDA-21, SDA-23 ACP (ancillary control process), SDA-104 Addition operator (+), SDA-16 Addresses, examining, SDA-53 /ADDRESS qualifier, SDA-90, SDA-103, SDA-142 /ALL qualifier, SDA-53, SDA-121, SDA-131, SDA-149, SDA-161, SDA-181 SHOW PAGE_TABLE command, SDA-126 SHOW STACK command, SDA-176 AMB symbol, SDA-17 ANALYZE/CRASH_DUMP/RELEASE command, SDA-5 ANALYZE/CRASH_DUMP command, SDA-9, SDA-35 ANALYZE/SYSTEM command. SDA-3. SDA-35 ANALYZE command, SDA-35 /CRASH DUMP qualifier. SDA-37 /RELEASE qualifier, SDA-38 /SYMBOL qualifier, SDA-39 /SYSTEM qualifier, SDA-40 Analyzing a crash dump See Crash dumps See System failures Analyzing a running system, SDA-11, SDA-40 privileges required, SDA-11, SDA-35 AND operator (&), SDA-16 AP (argument pointer), SDA-17 AP symbol, SDA-17 AQBs (ACP queue blocks), SDA-105 Arithmetic operators, SDA-16 shifting (@), SDA-17 ASBs (asynchronous save blocks), SDA-79 ASTLVL register, displaying, SDA-95 AST routines, global symbols, SDA-63 ATTACH command, SDA-45

В

Backup utility (BACKUP), copying system dump file, SDA-7Bad page list, displaying, SDA-131 /BAD qualifier, SDA-131 BDBs (buffer descriptor blocks), SDA-79 BDBSUM (BDB summary page), SDA-79 Binary operators, SDA-16 to SDA-17 BLBs (buffer lock blocks), SDA-79 BLBSUM (BLB summary page), SDA-79 Bugchecks code, SDA-19 fatal conditions, SDA-20 to SDA-24 global symbols, SDA-63 halt/restart, SDA-9 handling routines, SDA-63 identifying, SDA-25 reasons for taking, SDA-99 /BUS qualifier, SDA-142

С

/CACHED qualifier, SDA-121 Call frames displaying in SDA, SDA-82 following a chain, SDA-82 Cancel I/O routine, SDA-104 CCBs (channel control blocks), displaying in SDA, SDA-79 CDDBs (class driver data blocks), SDA-105 CDDB symbol, SDA-17 CDRPs (class driver request packets), SDA-90, SDA-167 CDTs (connection descriptor tables), SDA-167 displaying contents, SDA-90 displaying SDA information, SDA-90 /CHANNEL qualifier, SDA-142, SDA-154 CLUBs (cluster blocks), SDA-86 CLUDCBs (cluster quorum disk control blocks), **SDA-86** CLUFCBs (cluster failover control blocks), **SDA-86** Cluster management code, global symbols, SDA-63 CLUSTRLOA.STB file, SDA-63 CLUSTRLOA symbol, SDA-17 Condition-handling routines, global symbols, SDA-63 **Condition values** evaluating, SDA-51 examining, SDA-53

/CONDITION_VALUE qualifier, SDA-51 Connection manager, displaying SDA information, SDA-85 /CONNECTION qualifier, SDA-167 Connections displaying SDA information about, SDA-142, SDA-167 Connections, displaying SDA information about, SDA-90 Context SDA CPU, SDA-14 SDA process, SDA-12 Control blocks, formatting, SDA-58 Control region, SDA-18 base register, SDA-18 examining, SDA-54 length register, SDA-18 page table, displaying, SDA-150 Control region operator (H), SDA-16 COPY command, SDA-5, SDA-6, SDA-46 CPU context changing, SDA-94 SDA current, SDA-71 using the SET PROCESS command, SDA-77 using the SHOW CPU command, SDA-94 using the SHOW CRASH command, **SDA-98** using the SHOW PROCESS command, SDA-149 displaying, SDA-94 CPU identification number, SDA-94 CPULOA.EXE file, global symbols, SDA-63 Crash dumps See System failures file headers, SDA-112 incomplete, SDA-9 privileges required, SDA-35 requirements, SDA-8 short, SDA-9 /CRASH_DUMP qualifier, SDA-9 CRBs (channel request blocks), SDA-104 CRB symbol, SDA-17 CREATE command, SDA-4 CSBs (cluster system blocks), SDA-85, SDA-90 /CSID qualifier, SDA-85 CSIDs (cluster system identification numbers), SDA-85, SDA-162 Current location symbol (.), SDA-17

D

Data structures formatting, SDA-58 stepping through a linked list, SDA-67 DCLDEF.STB file, SDA-63 DCL interpreter, global symbols, SDA-63 DDBs (device data blocks), SDA-104 DDB symbol, SDA-17 DDTs (driver dispatch tables), SDA-104 DDT symbol, SDA-17 Decimal value of an expression, SDA-51 DECnet data structures, global symbols, SDA-63 DEFINE command, SDA-47 Device driver routines, address, SDA-104 **Device** drivers base address of driver prologue table (DPT), SDA-18 locating, SDA-18 locating a failing instruction, SDA-27 /DEVICE qualifier, SDA-142 Devices, displaying SDA information, SDA-103 Division operator (/), SDA-17 DPT base address, SDA-27 DPTs (driver prologue tables), SDA-104 **DRIVER** symbol See nnDRIVER symbol DUMPBUG system parameter, SDA-4, SDA-32 Dump files analyzing, SDA-35 copying the contents, SDA-46 DUMPSTYLE system parameter, SDA-6 DUMP subset, SDA-6

Ε

/ECHO qualifier, DEFINE command, SDA-48 ERRORLOG.EXE file, SDA-63 ERRORLOGBUFFERS system parameter, SDA-4 Error logging global symbols, SDA-63 routines, SDA-63 ESP symbol. SDA-18 EVALUATE/PSL command, SDA-26 EVALUATE command, SDA-51 Event flag routines, global symbols, SDA-63 EVENT_FLAGS_AND_ASTS.EXE file, global symbols, SDA-63 EXAMINE/INSTRUCTION command, SDA-26 EXAMINE command, SDA-20, SDA-28, SDA-53 EXCEPTION.EXE file, global symbols, SDA-63 Exception-handling routines, global symbols, SDA-63 Exceptions fatal, SDA-20 identifying causes of, SDA-25 Execute procedure (@) command, SDA-44 **Executive** images contents, SDA-63, SDA-110 global symbols, SDA-62

/EXECUTIVE qualifier, SDA-62, SDA-176 Executive stack pointer, SDA-18 EXIT command, SDA-57 Expressions, SDA-15, SDA-19 Expressions, evaluating, SDA-51

F

FABs (file access blocks), SDA-79
Fatal exceptions, SDA-20
FATALEXCPT bugcheck, SDA-21
FCBs (file control blocks), SDA-79
Floating-point emulation code, base address, SDA-18
FORMAT command, SDA-29, SDA-58, SDA-67
FPEMUL symbol, SDA-18
FP symbol, SDA-18
Frame pointers, SDA-18
Free page list, displaying, SDA-131
/FREE qualifier, SDA-131, SDA-135
FWAs (file work areas), SDA-79

G

GBDs (global buffer descriptors), summary page, SDA-79
GBHs (global buffer headers), SDA-79
GBSBs (global buffer synchronization blocks), SDA-79
Global page tables, displaying, SDA-126
/GLOBAL qualifier, SDA-126
G operator, SDA-16
G symbol, SDA-18

Η

/HEADER qualifier, SDA-135 HELP command, SDA-60 HELP command, recording output, SDA-74 Hexadecimal value of an expression, SDA-51 H operator, SDA-16 H symbol, SDA-18

I/O databases, displaying SDA information, SDA-103
ICCS register, displaying, SDA-95
IDBs (interrupt dispatch blocks), SDA-104
/ID qualifier, SDA-149
IDXs (index descriptors), SDA-79
IFABs (internal file access blocks), SDA-79
IFIs (internal file identifiers), SDA-79
/IF_STATE qualifier, SDA-48
Image activator global symbols, SDA-63 Image activator, global symbol, SDA-63 Image I/O structures, SDA-80 /IMAGE qualifier, SDA-178 /IMAGES qualifier, SDA-149 IMAGE_MANAGEMENT.EXE file, global symbols, SDA-63 IMGDEF.STB file, SDA-63 /INDEX qualifier, SDA-76, SDA-149 /INPUT qualifier, SDA-183 /INSTRUCTION qualifier, on EXAMINE command, SDA-53 Interlocked queues, validating, SDA-185 /INTERRUPT qualifier, SDA-176 Interrupt stack, displaying contents, SDA-176 **INVEXCEPTN bugcheck**, SDA-21 IO ROUTINES.EXE file, global symbols, SDA-64 IPL\$_ASTDEL value, PGFIPLHI bugcheck, SDA-23 IRABs (internal record access blocks), SDA-79 IRPs (I/O request packets), SDA-104 IRP symbol, SDA-18

J

JFBs (journaling file blocks), SDA-79 JIBs (job information blocks), SDA-152 JIB symbol, SDA-18

Κ

/KERNEL qualifier, SDA-176 Kernel stacks displaying contents, SDA-176 pointer, SDA-18 /KEY qualifier, SDA-48 Keys (in records), defining for SDA, SDA-47 KSP symbol, SDA-18

L

Linker map, use in crash dump analysis, SDA-20 LKBs (lock blocks) definition, SDA-122 displaying only cached, SDA-121 LMF\$GROUP_TABLE.EXE file, global symbols, SDA-64 LNM symbol, SDA-18 Location in memory examining, SDA-53 SDA default, SDA-53 translating to MACRO instruction, SDA-53 /LOCKID qualifier, SDA-161 LOCKING.EXE file, SDA-64 Lock management routines, global symbols, SDA-64 Lock manager, displaying SDA information, SDA-121 Lock mode, SDA-162 Locks, displaying SDA information, SDA-161 /LOCKS qualifier, SDA-150 Logical operators, SDA-16 AND (&), SDA-16 NOT (#), SDA-16 OR (|), SDA-16 XOR (\), SDA-16 LOGICAL_NAMES.EXE file, global symbols, SDA-64

Μ

MA780 multiport memory, configuring a dump file for, SDA-5 Machine check code, base address, SDA-18 MACRO instruction, formatting memory with SDA, SDA-53 Mathematical operators, SDA-16 MCHK symbol, SDA-18 Mechanism arrays, SDA-21, SDA-25 Memory contents of a block formatting, SDA-58 locations decoding, SDA-55 examining, SDA-53, SDA-54 regions, SDA-56 /MESSAGE qualifier, SDA-142 MESSAGE_ROUTINES.EXE file, global symbols, SDA-64 Modified page list, displaying, SDA-131 /MODIFIED qualifier, SDA-131 Modules, finding failing, SDA-27 MSCP server code, base address, SDA-18 MSCP symbol, SDA-18 Multiplication operator (*), SDA-16 Multiprocessing, global symbols, SDA-64 Multiprocessors analyzing crash dumps, SDA-12 displaying synchronization structures, SDA-169

Ν

NAMs (name blocks), SDA-79 Negative operator (-), SDA-16 NETDEF.STB file, SDA-63 nnDRIVER symbol, SDA-18 /NODE qualifier, SDA-85, SDA-90 /NOLOGICAL_NAMES qualifier, SDA-183 Nonpaged dynamic storage pool, displaying contents, SDA-135 /NONPAGED qualifier, SDA-135 /NOSKIP qualifier, SDA-54 /NOSUPPRESS qualifier, SDA-54 /NOSYMBOLS qualifier, SDA-183 /NOTIFY qualifier, SDA-183 NOT operator (#), SDA-16 /NOWAIT qualifier, SDA-183 NWAs (network work areas), SDA-79

0

OpenVMS RMS See RMS Operators precedence of, SDA-16, SDA-17 ORB symbol, SDA-18 OR operator (|), SDA-16 /OUTPUT qualifier, SDA-183

Ρ

PFNs (page frame numbers) P0BR register, displaying, SDA-95 P0BR symbol, SDA-18 P0LR register, displaying, SDA-95 P0LR symbol, SDA-18 P0 page table, displaying, SDA-150 /P0 qualifier, SDA-150 P0 region, examining, SDA-54 P1BR register, displaying, SDA-95 P1BR symbol, SDA-18 P1LR register, displaying, SDA-95 P1LR symbol, SDA-18 P1 page table, displaying, SDA-150 /P1 qualifier, SDA-54, SDA-150 P1 region, examining, SDA-54 Paged dynamic storage pool, displaying contents, SDA-135 /PAGED qualifier, SDA-135 Page faults, illegal, SDA-23 Page files See SYS\$SYSTEM:PAGEFILE.SYS file using as system dump file, SDA-8 Page tables displaying, SDA-150 Page tables, displaying, SDA-126 PAGE_MANAGEMENT.EXE file, global symbols, SDA-64 /PAGE_TABLES qualifier, SDA-150 Parentheses (), as precedence operators, SDA-17 /PARENT qualifier, SDA-45 /PARTICIPANTS qualifier, SDA-150 PBs (path blocks), SDA-104 PCBB register, displaying, SDA-95 /PCB qualifier, SDA-150 PCBs (process control blocks), SDA-180 displaying, SDA-150, SDA-151 hardware, SDA-153

PCB symbol, SDA-18 PCs (program counters), SDA-18 PCs (program counters), in a crash dump, SDA-19 PC symbol, SDA-18 PDTs (port descriptor tables), SDA-142 PDT symbol, SDA-18 PFN database, SDA-126 PFN database, displaying, SDA-131 PGFIPLHI bugcheck, SDA-23 /PHD qualifier, SDA-150 PHDs (process headers), SDA-180 PHDs (process headers), displaying, SDA-150 PHD symbol, SDA-18 PID numbers SDA uses to extract correct index, SDA-149 Pool lists displaying contents, SDA-135 statistics about, SDA-135 Port drivers, displaying SDA information, **SDA-85** Ports, displaying SDA information, SDA-142 Positive operator (+), SDA-16 Precedence operators, parentheses used as, SDA-17 PRIMITIVE_IO.EXE file, global symbols, SDA-64 Process contexts, changing, SDA-71, SDA-76, SDA-98, SDA-149 Process control region, SDA-18 Process control region, operatior (H), SDA-16 Processes channel, SDA-149 displaying SDA information, SDA-149, SDA-178 examining hung, SDA-11 image, SDA-178 listening, SDA-86 lock, SDA-150 scheduling state, SDA-153, SDA-179 spawning a subprocess, SDA-183 Process indexes, SDA-149 Process names, SDA-149 Processor context, changing, SDA-71, SDA-77, SDA-94, SDA-98, SDA-149 Processor-specific loadable code, base address, SDA-18 Processor status longwords See PSLs Processor types, displaying, SDA-95 Process-permanent I/O structures, SDA-80 /PROCESS gualifier, SDA-184 PROCESS_MANAGEMENT.EXE file, global symbols, SDA-64 /PROCESS_SECTION_TABLE qualifier, SDA-150 Program regions base register, SDA-18 displaying page tables, SDA-150 examining, SDA-54

Program regions (cont'd) length register, SDA-18
/PSL qualifier, SDA-54
PSLs (processor status longwords) evaluating, SDA-26, SDA-51 examining, SDA-54 symbol, SDA-18
/PST qualifier, SDA-150
PSTs (process section tables) displaying, SDA-150
/PTE qualifier, SDA-51, SDA-54
PTEs (page table entries) evaluating, SDA-51 examining, SDA-51 examining, SDA-54
2P_CDDB symbol, SDA-17
2P_UCB symbol, SDA-17

Q

Queues stepping through, SDA-67 validating, SDA-185

R

RABs (record access blocks), SDA-80 Radixes, default, SDA-16 Radix operators, SDA-16 RDTs (response descriptor tables), SDA-167 **READ/EXECUTIVE command.** SDA-20 READ command. SDA-62 READ command, SYS\$DISK, SDA-63 Recovery unit system services, global symbols, SDA-64 RECOVERY_UNIT_SERVICES.EXE file, global symbols, SDA-64 Registers displaying, SDA-94, SDA-150 general, SDA-18 /REGISTERS qualifier, SDA-150 /RELEASE qualifier, SDA-5 /RELOCATE qualifier, SDA-62 **REPEAT command.** SDA-67 Report system event, global symbols, SDA-64 Resources, displaying SDA information, SDA-161 Ring buffer, nonpaged pool history, SDA-135 /RING_BUFFER qualifier, SDA-135 RLBs (record lock blocks), SDA-80 RMS data structures shown by SDA, SDA-79 displaying data structures, SDA-151, SDA-166 global symbols, SDA-63, SDA-64 image base address, SDA-18 symbol, SDA-18 RMS.EXE file. SDA-64 RMSDEF.STB file, SDA-63

/RMS qualifier, SDA-151
RSBs (resource blocks), SDA-122, SDA-161
RSPID (response ID), displaying SDA information, SDA-167
RUBs (recovery unit blocks), SDA-80
RUFBs (recovery unit file blocks), SDA-80
RUSBs (recovery unit stream blocks), SDA-80
RWAITCNT symbol, SDA-18

S

S0 region, examining, SDA-54 SAVEDUMP system parameter, SDA-5 SBR register, displaying, SDA-95 SBs (system blocks), SDA-86, SDA-104 SB symbol, SDA-18 SCBB register, displaying, SDA-95 Schedulers, global symbols, SDA-64 SCS (System Communications Services) base address, SDA-18 displaying SDA information, SDA-85, SDA-86, SDA-90, SDA-142, SDA-167 global symbols, SDA-63 SCSDEF.STB file, SDA-63 SCSLOA symbol, SDA-18 /SCS qualifier, SDA-85 SDA\$INIT logical name, SDA-10 SDA current CPU changing, SDA-14 displaying, SDA-176 implicitly setting using /SYSTEM qualifier, SDA-149 implicitly setting using SHOW CRASH command, SDA-98 selecting using SET CPU command, SDA-71 selecting using SET PROCESS command, SDA-77 using the SHOW CPU command, SDA-94 SDA current process changing, SDA-12 changing using SHOW CRASH command, SDA-98 displaying, SDA-176 implicitly changed, SDA-14, SDA-71 implicitly setting using /SYSTEM qualifier, SDA-149 selecting using SET PROCESS command. **SDA-76** SDA symbol table, SDA-17 building, SDA-10 expanding, SDA-10 SEARCH command, SDA-69 SECURITY.EXE file, global symbols, SDA-64 Self-relative queue, validating, SDA-185 /SELF_RELATIVE qualifier, SDA-185 SET CPU command, SDA-14, SDA-71

- SET CPU command, analyzing a running system, SDA-11
- SET LOG command, SDA-74
- SET LOG command, compared with SET OUTPUT command, SDA-74
- SET NOLOG command, SDA-74
- SET OUTPUT command, SDA-75
- SET OUTPUT command, compared with SET LOG command, SDA-74
- SET PROCESS command, SDA-12, SDA-76
- SET RMS command, SDA-79
- /SET_STATE qualifier, SDA-48
- SFSBs (shared file synchronization blocks), SDA-80
- Shadow sets, displaying SDA information, SDA-105
- Shifting operator (@), SDA-17
- SHOW CALL_FRAME command, SDA-68, SDA-82
- SHOW CLUSTER command, SDA-85
- SHOW CONNECTIONS command, SDA-90
- SHOW CPU command, SDA-14, SDA-71,
 - SDA-94
- analyzing a running system, SDA-11
- SHOW CRASH command, SDA-14, SDA-19, SDA-21, SDA-71, SDA-98
- SHOW CRASH command, analyzing a running system, SDA-11
- SHOW DEVICE command, SDA-20, SDA-27, SDA-103
- SHOW EXECUTIVE command, SDA-20, SDA-110
- SHOW HEADER command, SDA-112
- SHOW LAN command, SDA-113
- SHOW LOCK command, SDA-121
- SHOW LOGS command, SDA-125
- SHOW MEMORY command, SDA-4
- SHOW PAGE_TABLE command, SDA-26, SDA-126
- SHOW PFN_DATA command, SDA-131
- SHOW POOL command, SDA-135
- SHOW PORTS command, SDA-142
- SHOW PROCESS/ALL command, SDA-152
- SHOW PROCESS/LOCKS command, SDA-121
- SHOW PROCESS/RMS command, SDA-166
- SHOW PROCESS/RMS command, selecting display options, SDA-80
- SHOW PROCESS command, SDA-77, SDA-149
- SHOW RESOURCE command, SDA-121,
- SDA-161 SHOW RMS command, SDA-166
- SHOW RSPID command, SDA-160 SHOW RSPID command, SDA-167
- SHOW SPINLOCKS command, SDA-170
- SHOW STACK command, SDA-176
- SHOW STACK command, SDA-23, SDA-17 SHOW SUMMARY command, SDA-149,
 - SDA-178

SHOW SYMBOL command, SDA-181 SHOW TRANSACTIONS command, SDA–182 Shutdown, operator-requested, SDA-7 SID register, displaying, SDA-95 Signal array, SDA-22 SISR register, displaying, SDA-95 Site-specific startup procedure See SYS\$MANAGER:SYSTARTUP VMS.COM SLR register, displaying, SDA-95 SPAWN command, SDA-183 Spin locks displaying SDA information, SDA-169 owned, SDA-95 SPRs (Software Performance Reports), SDA-3, SDA-31 SP symbol, SDA-18 SPTs (system page tables) displaying, SDA-26, SDA-126 in system dump file, SDA-4, SDA-9 SSP symbol, SDA-18 SSRVEXCEPT bugcheck, SDA-21 Stack frames displaying in SDA, SDA-82 following a chain, SDA-82 Stack pointer, SDA-18 Stacks, displaying contents, SDA-176 Start I/O routine, SDA-104 /STATISTICS qualifier, SDA-135 Subprocesses, SDA-183 Subtraction operator (-), SDA-16 /SUMMARY qualifier, SDA-136 /SUPERVISOR qualifier, SDA-176 Supervisor stack displaying contents, SDA-176 pointer to, SDA-18 Swapper, global symbols, SDA-65 Symbols, SDA-17 to SDA-19 defining for SDA, SDA-47 displaying, SDA-19 evaluating, SDA-181 finding in memory location, SDA-27 listing, SDA-181 loading into the SDA symbol table, SDA-62 name, SDA-17, SDA-47 representing executive modules, SDA-110 user-defined, SDA-47 SYMBOLS qualifier, for SDA EVALUATE command, SDA-51 Symbol table files, reading into SDA symbol table, SDA-62 Symbol tables See SDA symbol table See system symbol table specifying an alternate SDA, SDA-39

SYS\$DISK logical name, SDA-63 SYS\$MANAGER:SYSTARTUP_VMS.COM command procedure invoking SDA, SDA-7 producing an SDA listing, SDA-7 releasing page file blocks, SDA-5 SYS\$SYSTEM:OPCCRASH.COM command procedure involvement in writing crash dump, SDA-7 SYS\$SYSTEM:PAGEFILE.SYS file, SDA-8, SDA-32 See System dump files as dump file, SDA-5 releasing blocks containing a crash dump, SDA-38 SYS\$SYSTEM:REQSYSDEF.STB file, SDA-8, SDA-10 SYS\$SYSTEM:SHUTDOWN.COM command procedure, involvement in writing crash dump, SDA-7 SYS\$SYSTEM:SYS.EXE file, SDA-62 SYS\$SYSTEM:SYS.EXE file, contents, SDA-63, SDA-110 SYS\$SYSTEM:SYS.STB file, SDA-8, SDA-10, SDA-11, SDA-20 SYS\$SYSTEM:SYSDEF.STB file, SDA-10 SYS\$SYSTEM:SYSDUMP.DMP file, SDA-32 See System dump files protection, SDA-7 size of, SDA-4 SYSAP (system application), SDA-167 /SYSAP qualifier, SDA-90 SYSDEVICE.EXE file, global symbols, SDA-64 SYSGETSYI.EXE file, global symbols, SDA-64 SYSLICENSE.EXE file, global symbols, SDA-64 SYSLOA symbol, SDA-18 SYSMSG.EXE file, global symbols, SDA-64 System Dump Analyzer utility (SDA) commands, SDA-15 to SDA-19 exiting, SDA-57 System dump files, SDA-4 to SDA-6 copying, SDA-6 header, SDA-7 mapping physical memory to, SDA-9 requirements for analysis, SDA-8 saving, SDA-6 size, SDA-4 System failures analyzing, SDA-19 to SDA-31 causing, SDA-31 to SDA-35 diagnosing from PC contents, SDA-19 example, SDA-24 to SDA-31 summary, SDA-98 System hang, SDA-31 System images contents, SDA-63, SDA-110 global symbols, SDA-62

System management, creating a crash dump file, SDA-4

System map, SDA-20

System message routines, global symbols,

SDA-64

- System page file
- as dump file, SDA-5

releasing blocks containing a crash dump, SDA-38

System page tables

See SPTs

System processes, SDA-76

/SYSTEM qualifier, SDA-54, SDA-76, SDA-126, SDA-131, SDA-151

System region, examining, SDA–54 Systems

analyzing running, SDA–3, SDA–11, SDA–35

investigating performance problems, SDA-11

- System space base address, SDA-18
- System space operator (G), SDA-16

System symbol table, SDA-8, SDA-17

- System time quadword, examining, SDA-54
- SYSTEM_PRIMITIVES.EXE file, global symbols, SDA-64

SYSTEM_SYNCHRONIZATION.EXE file, global symbols, SDA-64

Т

TCPIP\$BGDRIVER.STB, global symbols, SDA-64 TCPIP\$INTEETACP.STB, global symbols, SDA-64 TCPIP\$INTERNET_SERVICES.STB, global symbols, SDA-64 TCPIP\$NET_GLOBALS.STB file, SDA-63 TCPIP\$NFS_GLOBALS.STB file, SDA-63 TCPIP\$NFS_SERVICES.STB file, SDA-65 TCPIP\$PROXY_GLOBALS.STB file, SDA-63 TCPIP\$PROXY_SERVICES.STB file, SDA-65 TCPIP\$PWIPACP.STB, global symbols, SDA-65 TCPIP\$PWIPDRIVER.STB, global symbols, SDA-65 TCPIP\$PWIP GLOBALS.STB file, SDA-63 TCPIP\$TNDRIVER.STB, global symbols, SDA-65 TCPIP\$TN_GLOBALS.STB file, SDA-63 Terminal keys, defining for SDA, SDA-47

/TERMINATE qualifier, SDA-49

/TIME qualifier, SDA-54

TMSCP server code, base address, SDA-18 TMSCP symbol, SDA-18 /TRANSACTIONS qualifier, SDA-151 /TYPE qualifier, SDA-58, SDA-136

U

UCBs (unit control blocks), SDA-90 UCB symbol, SDA-18 Unary operators, SDA-16 /USER qualifier, SDA-176 User stacks displaying contents, SDA-176 pointer, SDA-19 USP symbol, SDA-19

V

VALIDATE QUEUE command, SDA-185 VAXcluster environments base address of loadable code, SDA-17 displaying SDA information, SDA-85 summary display, SDA-85 VCBs (volume control blocks), SDA-105 VCBs (volume control blocks), SDA-105 VCB symbol, SDA-19 /VC qualifier, SDA-142 /VECTOR_REGS qualifier, SDA-152 Virtual address operator (@), SDA-16 Virtual address space, sufficient for system dump analysis, SDA-8 VIRTUALPAGECNT system parameter, SDA-8

W

WCBs (window control blocks), SDA-80 Working set lists, displaying, SDA-152 /WORKING_SET qualifier, SDA-152 WORKING_SET_MANAGEMENT.EXE file, global symbols, SDA-65 /WSL qualifier, SDA-152

Х

XABs (extended attribute blocks), SDA-80 XOR operator (\), SDA-16 XQP (extended QIO processor), SDA-104