
OpenVMS Compatibility Between
VAX and Alpha
Order Number: AA–PYQ4C–TE

May 1995

This manual compares and contrasts OpenVMS on VAX and Alpha
computers, focusing on the features provided to end users, system
managers, and programmers.

Revision/Update Information: This manual supersedes OpenVMS
Compatibility Between VAX and Alpha,
OpenVMS AXP Version 6.1 and
OpenVMS VAX Version 6.1.

Software Version: OpenVMS Alpha Version 6.2
OpenVMS VAX Version 6.2

Digital Equipment Corporation
Maynard, Massachusetts

May 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1995. All rights reserved.

The following are trademarks of Digital Equipment Corporation: ACMS, ALL–IN–1, Bookreader,
BI, CDA, CDD/Repository, CI, DATATRIEVE, DBMS, DDCMP, DEC, DEC ACCESSWORKS, DEC
Ada, DECamds, DEC BASIC, DEC COBOL, DEC DBMS, DECdirect, DECdns, DECdtm, DEC
EDI, DECevent, DECforms, DEC Fortran, DEC GKS, DECmessageQ, DECmigrate, DECnet,
DEC Open 3D, DEC OPS5, DEC OSF/1, DEC Pascal, DEC PHIGS, DEC PL/I, DECpresent,
DECram, DEC RALLY, DEC Rdb, DECscheduler, DECset, DECterm, DECthreads, DECtp,
DECTPU, DECwindows, DECwrite, Digital, DNA, DSSI, EDT, FMS, HSC, InfoServer, LAT,
MicroVAX, ObjectBroker, OpenVMS, OpenVMS RMS, OpenVMS Volume Shadowing, PATHWORKS,
POLYCENTER, Q–bus, Rdb/VMS, SQL Access Services, SQL Multimedia, StorageWorks, TMSCP,
TURBOchannel, UNIBUS, VAX, VAX Ada, VAX C, VAXcluster, VAX COBOL, VAX DOCUMENT,
VAX FORTRAN, VAX MACRO, VMS, VMScluster, VMS RMS, XMI, and the DIGITAL logo.

The following are third-party trademarks:
ACUMATE is a registered trademark of Kenan Technologies.
ADABAS is a trademark of Software AG of North America, Inc.
ADINA is a registered trademark of ADINA R&D, Inc.
Anvil 5000 is a registered trademark of Manufacturing and Consulting Services, Inc.
Application Browser is a trademark of Hypersoft Corporation.
ARC/INFO is a registered trademark of Environmental Systems Research Institute.
ASPEN PLUS is a registered trademark of Aspen Technology, Inc.
CADRA-III is a registered trademark of ADRA Systems, Inc.
DL Pager is a registered trademark of Datalogics, Inc.
FlexiLab System and FlexiRad are registered trademarks of Sunquest Information Systems, Inc.
Futurebus+ is a registered trademark of Force Computers GMBH, Fed. Rep. of Germany.
GRAFkit is a registered trademark of Geocomp Corporation.
Intel is a trademark of Intel Corporation.
IBS-90 is a registered trademark of Information Builders, Inc.
Macintosh is a registered trademark of Apple Computer, Inc.
MANMAN is a registered trademark of ASK Computer Services, Inc.
MANTIS is a registered trademark of Cincom Systems, Inc.
MAPS is a registered trademark of Logica Industry Limited.
Mathematica is a registered trademark of Wolfram Research, Inc.
Motif, OSF, OSF/1, OSF/Motif, and Open Software Foundation are registered trademarks of the
Open Software Foundation, Inc.
MS–DOS is a registered trademark and Windows NT is a trademark of Microsoft Corporation.
Multinet is a registered trademark of TGV, Inc.
NAG is a registered trademark of Numerical Algorithms Group Ltd.
NATURAL is a trademark of Software AG of North America, Inc.
NETRON/CAP and NETRON/Client are registered trademarks of NETRON, Inc.
ORACLE and Oracle Financials are registered trademarks of Oracle Corporation.
OS/2 is a registered trademark of International Business Machines Corporation.
PixTex/EFS is a trademark of Excalibur Technology.
POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.
PostScript is a registered trademark of Adobe Systems Incorporated.
PowerHouse is a registered trademark of Cognos, Inc.
PROMIS is a registered trademark of I.P. Sharp Associates Limited.
Promix and Renaissance are registered trademarks of Ross Systems, Inc.

This document was prepared using VAX DOCUMENT Version 2.1.

SAP R/3 System is a registered trademark of SAP of America. Inc.
SAS is a registered trademark of SAS Institute, Inc.
Supercache is a trademark of EEC Systems, Inc.
SuperDisk is a registered trademark of TPS Electronics.
SYBASE is a registered trademark of Sybase, Inc.
Synchrony is a trademark of Henco Software, Inc.
TCM-EMS is a trademark of Effective Management Systems, Inc.
Timeserver is a registered trademark of Pilot Software Ltd.
TROPOS is a registered trademark of Strategic Systems International.
Unidata RDBMS is a registered trademark of Unidata, Inc.
Uniface Development Environment is a registered trademark of Uniface and Uniface Int.
UNIGRAPHICS is a registered trademark of Electronic Data Systems Corporation.
UNIX is a registered trademark of Unix System Laboratories, Inc. a wholly-owned subsidiary of
Novell, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

ZK6310

This document is available on CD–ROM.

Send Us Your Comments
We welcome your comments on this or any other OpenVMS manual. If you have
suggestions for improving a particular section or find any errors, please indicate
the title, order number, chapter, section, and page number (if available). We also
welcome more general comments. Your input is valuable in improving future
releases of our documentation.

You can send comments to us in the following ways:

• Internet electronic mail: openvmsdoc@zko.mts.dec.com

• Fax: 603-881-0120 Attn: OpenVMS Documentation, ZKO3-4/U08

• Online form

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT.
Send the completed online form by electronic mail to our Internet address, or
send the completed hardcopy form by fax or through the postal service.

Please send letters or the form to:

Digital Equipment Corporation
Information Design and Consulting
OpenVMS Documentation
110 Spit Brook Road, ZKO3-4/U08
Nashua, NH 03062-2698
USA

Thank you.

iv

How To Order Additional Documentation
Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

DTN: 264.3030 Fax: 603.884.3960 U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063−1260

approved distributor

800.267.6215 Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

809.781.0505

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

DECdirect
800.DIGITAL
800.344.4825

Digital Equipment Caribbean, Inc.Puerto Rico
3 Digital Plaza, 1st Street, Suite 200

International

P.O. Box 11038

Internal Orders
603.884.3030

Fax: 613.592.1946Canada

Fax: 809.749.8300

Local Digital subsidiary or

U.S.A. Fax: 800.234.2298

Metro Office Park

Location

San Juan, Puerto Rico 00910−2138

WriteFaxCall

ZK−7654A−GE

v

Contents

Preface . xi

1 Overview

1.1 Introduction . 1–1
1.2 Lineage of OpenVMS Alpha . 1–1
1.3 End-User’s Environment . 1–2
1.3.1 DIGITAL Command Language (DCL) . 1–2
1.3.2 DCL Help . 1–2
1.3.3 DCL Command Procedures . 1–2
1.3.4 Databases . 1–2
1.3.5 DECforms . 1–2
1.3.6 DECwindows Motif . 1–3
1.3.7 Editors and Formatter . 1–3
1.3.8 Help Message Utility . 1–3
1.3.9 Password Generator . 1–3
1.4 System Manager’s Environment . 1–3
1.4.1 Common Components With Implementation Differences 1–4
1.4.1.1 Disk Quotas . 1–4
1.4.1.2 I/O Subsystem Configuration Commands 1–5
1.4.1.3 Menu-Driven Maintenance Procedure . 1–5
1.4.1.4 MONITOR POOL Command . 1–5
1.4.1.5 Name Changes for Files Supplied with the Operating Systems

. 1–6
1.4.1.6 Page Size . 1–6
1.4.1.7 Security . 1–7
1.4.1.8 VMScluster Systems . 1–7
1.4.2 System Management Features Not Available on Both Systems 1–7
1.4.2.1 DECevent Event Management Utility . 1–8
1.4.2.2 MSCP Dynamic Load Balancing . 1–8
1.4.2.3 Installation of the Operating System with PCSI 1–8
1.4.2.4 Optional Software Products Not Supported 1–9
1.4.2.5 Patch Utility . 1–9
1.4.2.6 Snapshot Facility . 1–9
1.5 Programming Environment . 1–9
1.5.1 RISC Architecture of Alpha . 1–9
1.5.2 User-Written Device Drivers . 1–10
1.5.3 Compilers . 1–10
1.5.4 Native Assembler . 1–10
1.5.5 DECmigrate for OpenVMS AXP . 1–10
1.5.6 Linker . 1–11
1.5.7 Librarian . 1–11
1.5.8 Debuggers . 1–11
1.5.9 System Dump Analyzer . 1–11

vii

1.5.10 Programming Components Not Available on Both Systems 1–11
1.5.10.1 Floating-Point Data Types . 1–12
1.5.10.2 Vector Processing . 1–12

2 Interoperability of OpenVMS VAX and OpenVMS Alpha

2.1 Interoperability on a Network . 2–1
2.1.1 Interoperability Using DECnet for OpenVMS and DECnet/OSI 2–1
2.1.2 Interoperability Using TCP/IP Networking on OpenVMS Systems . . . 2–2
2.1.3 Network Interfaces . 2–2
2.1.3.1 Network Protocols . 2–2
2.1.3.2 Buses . 2–3
2.1.3.3 Interconnects . 2–4
2.1.3.4 FDDI Boot Support on OpenVMS Alpha . 2–4
2.2 DECnet (Phase IV) Network Features and Management 2–6
2.2.1 Similarities . 2–6
2.2.2 Differences . 2–6
2.3 DECnet/OSI Network Features . 2–7
2.4 Interoperability in a VMScluster System . 2–8
2.4.1 Booting in a Mixed-Architecture VMScluster System 2–9
2.4.2 Upgrades in a Mixed-Architecture VMScluster System 2–9
2.4.3 Restrictions of Selected Features in Mixed-Version VMScluster

Systems . 2–9
2.4.3.1 Process Identifiers Limit . 2–9
2.4.3.2 Virtual I/O Cache . 2–9
2.4.3.3 Remote Monitoring . 2–9
2.4.4 ANALYZE/ERROR and ANALYZE/IMAGE in a Mixed-Architecture

VMScluster System . 2–10
2.4.5 VMScluster Configuration Support . 2–10

3 Migration When You’re Ready

3.1 OpenVMS Alpha Base Operating System Features 3–1
3.2 Digital Optional Software for OpenVMS Alpha . 3–3
3.3 Third-Party Applications for OpenVMS Alpha . 3–3
3.4 Application Migration Paths to OpenVMS Alpha . 3–7
3.5 Hardware and Software Investment Protection Programs 3–7
3.6 Migration Services . 3–7
3.7 Migration Training . 3–8
3.8 Migration Software . 3–8
3.8.1 Mixing Native Alpha and Translated Images . 3–8
3.9 Migration Documentation . 3–9
3.9.1 Obtaining Migration Documentation . 3–10
3.10 Alpha Systems on the Internet . 3–10

4 Ensuring the Portability of Applications

4.1 How to Assess the Portability of an Application . 4–1
4.1.1 Identifying Dependencies on the VAX Architecture in Your

Application . 4–2
4.1.2 Compiler Differences . 4–4
4.2 Software Support for Portability . 4–5
4.2.1 VAX MACRO–32 Compiler for OpenVMS Alpha 4–5
4.2.2 Compiler Support . 4–5

viii

4.2.3 DECmigrate for OpenVMS AXP . 4–6
4.2.4 PALcode . 4–7
4.3 Differences in OpenVMS Alpha Programming . 4–7
4.3.1 Linker . 4–7
4.3.2 MACRO–64 Assembler for OpenVMS Alpha Systems 4–9
4.3.3 User-Written Device Drivers . 4–9
4.3.4 OpenVMS Debugger . 4–10
4.3.5 Delta/XDelta Debugger . 4–10
4.3.6 OpenVMS Alpha System-Code Debugger . 4–11
4.3.7 System Dump Analyzer . 4–11
4.3.8 Crash Log Utility Extractor . 4–12
4.3.9 Mathematics Libraries . 4–12
4.3.10 Determining the Host Architecture . 4–13
4.3.11 Uncovering Latent Bugs . 4–14
4.4 Application Compatibility with Future OpenVMS Alpha Releases 4–14
4.5 Guidelines for Developing Applications for OpenVMS VAX and OpenVMS

Alpha . 4–14
4.6 Guidelines for Developing Applications for Mixed-Architecture

VMScluster Systems . 4–15
4.6.1 User Interface . 4–16
4.6.2 System Management . 4–16
4.6.3 File Format Compatibility . 4–16
4.6.4 Data Packing . 4–16
4.6.5 Data-Type Selection . 4–17
4.6.6 Buffer Size . 4–17
4.6.7 Data Access and Locking . 4–18
4.6.8 Missing Features . 4–18
4.7 Application Compatibility Checklist . 4–18

A DCL Differences

A.1 DIGITAL Command Language (DCL) . A–1

Index

Examples

4–1 Using the ARCH_TYPE Keyword to Determine Architecture Type . . . 4–13

Figures

1–1 Comparison of VAX and Alpha Page Size . 1–7
2–1 VMScluster Version Pairings . 2–11

Tables

1–1 Components That Achieved Functional Equivalence in OpenVMS
Version 6.2 . 1–4

1–2 Larger Disk Quotas Needed on OpenVMS Alpha 1–4
1–3 A Comparison of I/O Subsystem Configurations 1–5
1–4 Operating System File Name Changes . 1–6
1–5 System Management Features Not Available on Both Systems 1–8

ix

1–6 Programming Components Not Available on Both Systems 1–12
2–1 Applications of TCP/IP Software for OpenVMS 2–2
2–2 Network Protocol Support . 2–3
2–3 Bus Support . 2–3
2–4 Interconnect Support . 2–4
2–5 FDDI Boot Support for OpenVMS Alpha Version 6.2 2–5
2–6 Differences of DECnet Features and Management Tasks 2–6
2–7 DNA Phases . 2–8
2–8 Booting in a Mixed-Architecture VMScluster System 2–9
2–9 Remote Monitoring Compatibility in a VMScluster 2–10
2–10 VMScluster Documentation Sources . 2–11
3–1 Status of Selected OpenVMS VAX Base Operating System Features

on OpenVMS Alpha . 3–1
3–2 Sampling of Third-Party Applications Available as of June 1994 3–4
3–3 Application Migration Paths . 3–7
3–4 Locations of Engineering and Technical Support Centers 3–8
4–1 Floating-Point Data Type Support . 4–3
4–2 Linker Qualifiers and Options Specific to OpenVMS Alpha

Systems . 4–8
4–3 Linker Options Specific to OpenVMS VAX Systems 4–9
4–4 CLUE Differences Between OpenVMS VAX and OpenVMS Alpha 4–12
4–5 $GETSYI Item Codes That Specify Host Architecture 4–13
A–1 DCL Differences Between OpenVMS VAX and OpenVMS Alpha A–1

x

Preface

Intended Audience
This manual is of primary interest to current OpenVMS VAX users who are
considering the addition of an OpenVMS Alpha system to their computing
environment and to users who are planning to migrate OpenVMS VAX
applications to OpenVMS Alpha systems.

Document Structure
This manual consists of the following chapters and an index:

• Chapter 1 describes the similarities and differences between OpenVMS VAX
and OpenVMS Alpha and some of the new features introduced for both
systems.

• Chapter 2 describes how OpenVMS VAX and OpenVMS Alpha systems can
interoperate in networks and VMSclusters.

• Chapter 3 lists the features available with the OpenVMS Alpha Version 6.2
operating system. It also lists some of the third-party applications that are
available on OpenVMS Alpha systems and describes the migration products
and services available from Digital.

• Chapter 4 describes how to assess the portability of an OpenVMS VAX
application. It also discusses the differences between the OpenVMS VAX and
the OpenVMS Alpha programming environments and presents guidelines for
new program development on OpenVMS VAX.

Related Documents
To find out more about topics discussed in this manual, refer to the following
table for the topic and related document.

Topic Document

Debugger features that contribute to
migration

OpenVMS Debugger Manual

DECnet for OpenVMS DECnet for OpenVMS Networking Manual

DECnet for OpenVMS utilities DECnet for OpenVMS Network Management
Utilities

Delta/XDelta changes for OpenVMS
Alpha

OpenVMS Delta/XDelta Debugger Manual

xi

Device drivers, user-written, for
OpenVMS Alpha

Creating an OpenVMS AXP Step 2 Device
Driver from a Step 1 Device Driver

Creating an OpenVMS AXP Step 2 Device
Driver from an OpenVMS VAX Device Driver

OpenVMS AXP Device Support: Reference

DPML (Digital Portable Mathematics
Library)

Digital Portable Mathematics Library

Help Message Utility OpenVMS System Messages: Companion
Guide for Help Message Users

Linker changes for OpenVMS Alpha OpenVMS Linker Utility Manual

MACRO–64 assembler MACRO–64 Assembler for OpenVMS AXP
Systems Reference Manual

PALcode Alpha Architecture Reference Manual

Planning for migration Migrating to an OpenVMS AXP System:
Planning for Migration

Porting applications written in mid- and
high-level languages

Migrating to an OpenVMS AXP System:
Recompiling and Relinking Applications

Porting VAX MACRO applications Migrating to an OpenVMS AXP System:
Porting VAX MACRO Code

SDA commands for OpenVMS Alpha OpenVMS AXP System Dump Analyzer Utility
Manual

Security OpenVMS Guide to System Security

Translating OpenVMS VAX images into
OpenVMS Alpha images

DECmigrate for OpenVMS AXP Systems
Translating Images

System management differences and
similarities between OpenVMS Alpha
and OpenVMS VAX

A Comparison of System Management on
OpenVMS AXP and OpenVMS VAX

VAXcluster and VMScluster systems VMScluster Systems for OpenVMS

Guidelines for VMScluster Configurations

VMScluster system restrictions OpenVMS Version 6.2 Release Notes

Conventions
The name of the OpenVMS AXP operating system has been changed to OpenVMS
Alpha. Any references to OpenVMS AXP or AXP are synonymous with OpenVMS
Alpha or Alpha.

The following conventions are used in this manual:

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information
that varies in system messages (Internal error number),
in command lines (/PRODUCER=name), and in command
parameters in text (where device-name contains up to five
alphanumeric characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

xii

- A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

numbers All numbers in text are assumed to be decimal, unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xiii

1
Overview

This chapter describes:

• Lineage of OpenVMS Alpha

• Similarities and differences at the DCL level

• Similarities and differences between OpenVMS VAX and OpenVMS Alpha in
the end-user, system management, and programming environments

1.1 Introduction
The purpose of this manual is to provide OpenVMS VAX users with the
information they need to assess the impact of adding one or more OpenVMS
Alpha systems to their computing environments. The manual focuses on the
similarities and differences between OpenVMS Alpha Version 6.2 and OpenVMS
VAX Version 6.2.

OpenVMS Alpha runs on Digital’s Alpha computers, which are reduced
instruction set computers (RISC). OpenVMS Alpha systems provide as much
compatibility as possible with OpenVMS VAX systems without compromising the
advantages offered by the Alpha architecture. OpenVMS VAX customers can use
the RISC technology of OpenVMS Alpha with little change in their computing
environment.

Experienced OpenVMS VAX system managers will find their knowledge and
most of their practices transferable to the OpenVMS Alpha environment.
Many OpenVMS Alpha system managers compare the degree of change to that
introduced by the change from VAX VMS Version 4.n to VAX VMS Version 5.0.

Many Digital customers use OpenVMS VAX to run their applications that require
high standards of availability, scalability, and data integrity. They depend on
its reliability, robust engineering, and leadership features, such as VAXcluster
systems. Digital anticipates that many of its customers will add OpenVMS
Alpha systems to their computing environments. Digital recognizes that this
is an evolutionary process and will differ from customer to customer. Digital
is committed to providing a clear coexistence environment and migration path
between OpenVMS VAX and OpenVMS Alpha.

1.2 Lineage of OpenVMS Alpha
In 1978, Digital Equipment Corporation released Version 1.0 of the VMS
operating system. Each new release since Version 1.0 represents a balance
between compatibility with earlier releases and the introduction of new features
and new technology that enable users to do their work more cost-effectively. A
further development in this evolution was the introduction of OpenVMS AXP in
November 1992.

1–1

Overview
1.2 Lineage of OpenVMS Alpha

Since the release of OpenVMS AXP Version 1.0, which was based on VMS Version
5.4–2, additional OpenVMS VAX features have been added to each new release.
OpenVMS AXP Version 1.0 was followed by OpenVMS AXP Version 1.5. The
next release of OpenVMS AXP was numbered Version 6.1 to acknowledge its
functional equivalence with OpenVMS VAX Version 6.1. For Version 6.2, Digital
changed the name of OpenVMS AXP to OpenVMS Alpha.

For the purposes of this manual, functional equivalence between OpenVMS VAX
and OpenVMS Alpha is defined as the same type of functionality with possible
slight variations in the implementation or the user interface.

When OpenVMS VAX Version 6.1 and OpenVMS AXP Version 6.1 were released,
some exceptions to functional equivalence existed. Most of these exceptions are
eliminated with this release (see Table 3–1).

1.3 End-User’s Environment
The end-user’s environment on OpenVMS Alpha Version 6.2 is virtually the same
as that on OpenVMS VAX Version 6.2, as described in the following sections.

1.3.1 DIGITAL Command Language (DCL)
The DIGITAL Command Language (DCL), the standard user interface to
OpenVMS, remains essentially unchanged with OpenVMS Alpha. All commands
and qualifiers available on OpenVMS VAX are also available on OpenVMS
Alpha, except for a few, as shown in Appendix A. In addition, a few qualifiers are
available only on OpenVMS Alpha, as shown in Appendix A.

1.3.2 DCL Help
DCL help is available on OpenVMS Alpha. Most of the DCL help text is
common to both OpenVMS Alpha and OpenVMS VAX systems. For a few
topics, information that is specific to one system is included in the display for
both systems. System-specific information is identified by the phases On VAX and
On Alpha.

1.3.3 DCL Command Procedures
DCL command procedures that use commands, qualifiers, and lexical functions
available on OpenVMS VAX will continue to work on OpenVMS Alpha systems
without change, except for command procedures that contain those few qualifiers
not available on OpenVMS Alpha.

1.3.4 Databases
Standard databases, such as Oracle Rdb, function the same on OpenVMS VAX
and OpenVMS Alpha systems. Most third-party databases that are available for
OpenVMS VAX are also available for OpenVMS Alpha. Many of them are shown
in Table 3–2.

1.3.5 DECforms
The DECforms interface is unchanged. Applications that use the predecessor to
DECforms, TDMS, can be moved to OpenVMS Alpha with the aid of a TDMS
emulator or a TDMS converter. The VAX TDMS Emulator for OpenVMS and the
VAX TDMS to DECforms Converter for OpenVMS VAX are produced by Praxa
Limited of Melbourne, Australia and available through Digital.

1–2

Overview
1.3 End-User’s Environment

1.3.6 DECwindows Motif
DECwindows Motif for OpenVMS VAX and DECwindows Motif for OpenVMS
Alpha contain virtually identical functionality. The X11R5 display server that
ships with OpenVMS Alpha does, however, contain additional extensions (for
example, Shape, which gives the ability to create non-rectangular windows, and
scalable fonts) that are not available on the OpenVMS VAX platform.
For more information about these X11R5 features and extensions, see Managing
DECwindows Motif for OpenVMS Systems.

1.3.7 Editors and Formatter
The EVE and EDT editors are unchanged. EVE is the default editor for
OpenVMS VAX and for OpenVMS Alpha. EDT was the default editor for
OpenVMS VAX prior to Version 6.0.

The TECO editor and the DSR formatter are also provided with OpenVMS Alpha.
They, too, are unchanged.

1.3.8 Help Message Utility
The Help Message utility is available on both OpenVMS VAX and OpenVMS
Alpha systems. It enables users to access online descriptions of system messages
on a character-cell terminal (including DECterm windows).

Help Message operates through a DCL interface that accesses message
descriptions in a text file. This text file is derived from the latest version of
the OpenVMS system messages documentation and, optionally, from other source
files, including user-supplied message documentation. For more information
about Help Message, see OpenVMS System Messages: Companion Guide for Help
Message Users.

1.3.9 Password Generator
Both OpenVMS VAX and OpenVMS Alpha have random password generators,
which can be used in place of passwords created by users. However, the random
password generator on OpenVMS Alpha systems has a new mechanism for
generating passwords. This new mechanism produces nonsense passwords such
as dramnock, inchworn, mycousia, and pestrals that seem ‘‘natural’’ to users. It
makes possible the future development of language-specific random passwords.
The list of possible passwords presented by an OpenVMS Alpha system is not
hyphenated.

1.4 System Manager’s Environment
Most of the OpenVMS VAX Version 6.2 system management utilities, command
formats, and tasks are identical in the OpenVMS Alpha environment.

Some components that were available only on OpenVMS VAX Version 6.1 or only
on OpenVMS AXP Version 6.1 are now available on both systems, as shown in
Table 1–1.

1–3

Overview
1.4 System Manager’s Environment

Table 1–1 Components That Achieved Functional Equivalence in OpenVMS
Version 6.2

Component Previously Available

Cluster event notification system services Alpha only

DECamds Data Analyzer VAX only

Dynamic device recognition Alpha only

Full name support, including support by DECdtm VAX only

LAT selected features Alpha only

New proxy service and new security server VAX only

RECALL command, additional support Alpha only

SCSI–2 device support for Tagged Command Queuing VAX only

However, there are some system management differences that must be considered
to properly set up, maintain, secure, and optimize OpenVMS Alpha systems
and to establish proper network connections. These differences fall into two
categories:

• Implementation differences for common components

• System management components not available on both OpenVMS VAX and
OpenVMS Alpha

The differences are briefly described in this section and in greater detail in A
Comparison of System Management on OpenVMS AXP and OpenVMS VAX and in
the OpenVMS System Manager’s Manual.

1.4.1 Common Components With Implementation Differences
The components described in this section exist on both OpenVMS VAX and
OpenVMS Alpha systems, but the implementations on VAX and Alpha differ, or
the OpenVMS VAX implementation differs from earlier versions of OpenVMS
VAX.

1.4.1.1 Disk Quotas
You might need to increase disk quotas on OpenVMS Alpha disks that
store translated OpenVMS VAX images and native OpenVMS Alpha images.
Translated images are OpenVMS Alpha executable images produced by the VAX
Environment Software Translator (VEST), the major component of DECmigrate
(described in Section 4.2.3). The reasons why increased disk quotas are usually
needed are listed in Table 1–2.

Table 1–2 Larger Disk Quotas Needed on OpenVMS Alpha

Condition Explanation

Translated images Require more disk space because each image
includes both Alpha code and the original VAX
code.

Native OpenVMS Alpha images Require more disk space because RISC images
typically contain more instructions and code to
establish the linkage between procedure calls. The
default values for related memory quotas have been
adjusted on OpenVMS Alpha systems.

1–4

Overview
1.4 System Manager’s Environment

1.4.1.2 I/O Subsystem Configuration Commands
On OpenVMS VAX systems, the System Generation utility (SYSGEN) is used to
configure the I/O subsystem. On OpenVMS Alpha systems, SYSGEN is used for
some configuration tasks, and the System Management utility (SYSMAN) and the
AUTOGEN command procedure are used for others, as shown in Table 1–3.

Table 1–3 A Comparison of I/O Subsystem Configurations

OpenVMS VAX OpenVMS Alpha

SYSGEN Modify system parameters1

Load page and swap files
Create additional page files
Create additional swap files
Load device drivers

Modify system parameters1

Load page and swap files
Create additional page files
Create additional swap files

SYSMAN Not used Load device drivers

1Although SYSGEN is available for modifying system parameters, Digital recommends that you
use AUTOGEN and its data files instead, or that you use SYSMAN between boots, for dynamic
parameters.

OpenVMS VAX command procedures that use commands such as
SYSGEN AUTOCONFIGURE ALL must be modified if they are copied to
OpenVMS Alpha systems as part of your migration effort.

1.4.1.3 Menu-Driven Maintenance Procedure
A replacement for the standalone BACKUP utility was introduced with the
OpenVMS AXP Version 6.1 distribution CD–ROM. It was also provided on
the OpenVMS VAX Version 6.1 distribution CD–ROM as an alternative to the
standalone BACKUP utility (which is still currently supported on OpenVMS VAX
systems).

It is a menu-driven procedure which enables you to enter a DCL environment,
from which you can perform backup and restore operations on the system disk
(instead of using standalone BACKUP).

For more detailed information about using the menu-driven procedure, see the
following documentation:

• On OpenVMS VAX, see the OpenVMS System Manager’s Manual

• On OpenVMS Alpha, see the OpenVMS Alpha Version 6.2 Upgrade and
Installation Manual

1.4.1.4 MONITOR POOL Command
The Adaptive Pool Management feature of OpenVMS VAX and OpenVMS
Alpha has made the DCL command MONITOR POOL obsolete. Adaptive Pool
Management automatically manages the creation and sizing of nonpaged pool
lookaside lists.

You can obtain information about nonpaged and paged dynamic pool on OpenVMS
VAX through the use of the DCL command SHOW MEMORY and the System
Dump Analyzer (SDA) command SHOW POOL. You can obtain the same
information on OpenVMS Alpha with the SDA command SHOW POOL and
its qualifiers /RING_BUFFER and /STATISTICS.

1–5

Overview
1.4 System Manager’s Environment

1.4.1.5 Name Changes for Files Supplied with the Operating Systems
The name changes for certain files supplied with the operating system are shown
in Table 1–4.

Table 1–4 Operating System File Name Changes

OpenVMS VAX Version 5.5
OpenVMS VAX Version 6.0
and later

OpenVMS AXP Version
1.0 and later

SYSTARTUP_V5.COM SYSTARTUP_VMS.COM SYSTARTUP_VMS.COM

VAXVMSSYS.PAR VAXVMSSYS.PAR ALPHAVMSSYS.PAR

1.4.1.6 Page Size
OpenVMS VAX and OpenVMS Alpha systems allocate and deallocate memory for
processes in units called pages. On OpenVMS VAX systems, a page is 512 bytes.
On OpenVMS Alpha systems, a page will be one of four values, 8K, 16K, 32K,
or 64K bytes. An OpenVMS Alpha system implements only one of the four page
sizes; the initial set of Alpha computers use an 8K byte (8192 bytes) page.

This difference in page size is significant to OpenVMS system managers in two
ways:

• Process quotas and limits, and system parameters might require adjustment
to account for the additional resources (especially memory resources) users
might require. For example, higher values might be necessary for the
PGFLQUOTA process quota and the GBLPAGES system parameter.

• In a number of cases, OpenVMS Alpha interactive utilities present to and
accept from users units of memory in a 512-byte quantity called a pagelet.
Thus, one Alpha pagelet is the same size as one VAX page. On an Alpha
computer with 8K byte pages, 16 Alpha pagelets equal 1 Alpha page.

In your OpenVMS Alpha environment, you will need to notice when page or
pagelet values are being shown in memory displays. If a memory value represents
a page on an Alpha system, the documentation might refer to ‘‘CPU-specific
pages.’’ This convention indicates possible significant differences in the size of the
memory being represented by the page unit, depending on the Alpha computer
in use (8K, 16K, 32K, or 64K byte pages). In general, OpenVMS Alpha utilities
display CPU-specific page values when the data represents physical memory.

Internally, for the purposes of memory allocation, deletion, and protection,
OpenVMS Alpha will round up (if necessary) the value you supply in pagelets
to a number of CPU-specific pages.

The use of pagelets provides compatibility for OpenVMS VAX system managers
and application programmers who are accustomed to thinking about memory
values in 512-byte units. In a VMScluster system with OpenVMS VAX and
OpenVMS Alpha nodes, it is helpful to know that a VAX page and an Alpha
pagelet represent a common unit of 512 bytes. Also, existing OpenVMS VAX
applications do not need to change parameters to the memory management
system services when the applications are ported to OpenVMS Alpha.

OpenVMS Alpha does not allocate or deallocate a portion of a page. The user-
interface quantity called a pagelet is not used internally by the operating system.
Pagelets are accepted and displayed by utilities so that users and applications
operate with the information that each VAX page value and each Alpha pagelet
value equal a common 512-byte quantity.

1–6

Overview
1.4 System Manager’s Environment

Figure 1–1 illustrates the relative sizes of a VAX page, an Alpha 8K byte page,
and an Alpha pagelet.

Figure 1–1 Comparison of VAX and Alpha Page Size

Alpha Page = 16 Alpha Pagelets

VAX Page or Alpha Pagelet

512 512 512

512

512

512

512

512

512

512

512

512 512 512 512

512

ZK−6059A−GE

512 Bytes

(For Alpha Systems with 8K Byte Pages)

1.4.1.7 Security
On Alpha systems, OpenVMS contains all the security features of OpenVMS VAX
with the exception of DECnet connection auditing. OpenVMS VAX Version 6.0
was successfully evaluated at the C2 level in September 1993. A Security RAMP
(Rating Maintenance Phase) is currently underway for OpenVMS VAX Version
6.1, and the C2 rating is expected in the very near future. A Security RAMP is
also currently underway for OpenVMS Alpha Version 6.1. OpenVMS VAX Version
6.2 and OpenVMS Alpha Version 6.2, and all future releases, will also be entered
in the RAMP process in order to maintain the C2 Security rating.

1.4.1.8 VMScluster Systems
A VMScluster system can consist entirely of OpenVMS Alpha nodes or a
combination of one or more OpenVMS VAX nodes and one or more OpenVMS
Alpha nodes. The system management of a VMScluster system is essentially the
same as that of a VAXcluster system.

For more information on VMScluster systems, see Section 2.4.

1.4.2 System Management Features Not Available on Both Systems
The features described in this section are not available on both OpenVMS VAX
and OpenVMS Alpha systems. Components that exist only on OpenVMS VAX or
only on OpenVMS Alpha are either planned, under investigation, or not planned
for the other system, as shown in Table 1–5.

1–7

Overview
1.4 System Manager’s Environment

Table 1–5 System Management Features Not Available on Both Systems

Feature
On VAX
or Alpha Status

Card reader and input symbiont VAX Not planned for Alpha

DECevent utility Alpha Under investigation for VAX

DECnet connection auditing VAX Planned for Alpha

DECnet DDCMP support VAX Not planned for Alpha

DECnet host-based routing VAX Not planned for Alpha

Dump file off the system disk VAX Planned for Alpha

Installation of the operating system with
PCSI

Alpha Planned for VAX

MSCP dynamic load balancing VAX Planned for Alpha

Patch utility VAX Limited functionality under
investigation for Alpha

SCSI VMSclusters Alpha Under investigation for VAX (see
Section 2.4)

Selected optional software products VAX or
Alpha

See Section 1.4.2.4, Section 3.2,
and Section 3.3

Shadowing dump file failover VAX Under investigation for Alpha

Snapshot facility VAX Not planned for Alpha

SYSMAN I/O function for loading device
drivers1

Alpha Under investigation for VAX

1For an example of the SYSMAN I/O function for loading device drivers, see Table 1–3.

1.4.2.1 DECevent Event Management Utility
OpenVMS AXP Version 6.1 includes the DECevent utility (DECevent),
which provides the interface between a system user and the system’s
event log files. DECevent allows system users to produce ASCII reports
derived from system event entries. DECevent uses the system event log file,
SYS$ERRORLOG:ERRLOG.SYS, as the default input file for event reporting
unless another file is specified.

1.4.2.2 MSCP Dynamic Load Balancing
MSCP dynamic load balancing is used by VMScluster systems to balance the
I/O load efficiently among systems within a VMScluster. Dynamic load balancing
automatically checks server activity every five seconds. If activity to any server is
excessive, the serving load automatically shifts to other servers in the cluster.

1.4.2.3 Installation of the Operating System with PCSI
The POLYCENTER Software Installation (PCSI) utility is provided with
OpenVMS VAX and OpenVMS Alpha. On VAX, the use of PCSI is limited to
installing layered products. On Alpha, PCSI is also used to install OpenVMS.

1–8

Overview
1.4 System Manager’s Environment

1.4.2.4 Optional Software Products Not Supported
Some optional Digital software products that are supported on OpenVMS VAX are
not yet supported on OpenVMS Alpha Version 6.2. If you copy existing startup
procedures from one of your OpenVMS VAX computers to an OpenVMS Alpha
computer, you must comment out the calls to the startup procedures of currently
unsupported optional software products. The Alpha Applications Catalog lists all
the available Digital optional software products and third-party applications (to
obtain a copy, see Section 3.2).

1.4.2.5 Patch Utility
The Patch utility is not offered on OpenVMS Alpha. However, investigation is
underway regarding support for the PATCH/ABSOLUTE function on OpenVMS
Alpha.

1.4.2.6 Snapshot Facility
The Snapshot facility (Snapshot), sometimes referred to as Fastboot, lets you
reduce system startup time by booting OpenVMS VAX from a saved system image
disk file. Snapshot can be used only for a standalone system (that is, a system
that is not in a VAXcluster environment).

For more information, see the OpenVMS System Manager’s Manual.

1.5 Programming Environment
The similarities and differences in the programmer’s environment between
OpenVMS VAX Version 6.2 and OpenVMS Alpha Version 6.2 are outlined in
this section and described in more detail in Chapter 4, except where noted
otherwise. Chapter 4 also provides guidelines for developing applications that
will run on both OpenVMS VAX and OpenVMS Alpha and additional guidelines
for developing applications that will run in a mixed-architecture VMScluster.

The same types of program development tools that you are accustomed to using
on OpenVMS VAX are available on OpenVMS Alpha systems including the Linker
utility, the Librarian utility, the OpenVMS Debugger (also known as the symbolic
debugger), the Delta/XDelta Debugger, and run-time libraries, including the
parallel processing run-time library (PPL RTL).

1.5.1 RISC Architecture of Alpha
The RISC architecture of Alpha computers differs from the complex instruction
set computer (CISC) architecture of VAX computers. The differences are
particularly apparent when multiple processes or multiple execution threads
in the same process access the same region of memory. An asynchronous system
trap (AST) routine whose execution preempts the processing of a main routine is
one example of concurrent threads within a single process.

The VAX architecture, through its microcode, provides instruction semantic
guarantees that the Alpha architecture does not. Complex atomic operations and
synchronization guarantees incur overhead that RISC architectures are designed
to avoid.

For example, on a VAX computer, you can perform complex memory operations
atomically and can access data at byte and word memory locations. If your code
contains such VAX architectural dependencies, you likely will need to either use a
compiler qualifier that mitigates the dependencies or make changes to your code.

1–9

Overview
1.5 Programming Environment

1.5.2 User-Written Device Drivers
Both OpenVMS VAX and OpenVMS Alpha support user-written device drivers.
The overall structure of device drivers is the same on each architecture but
source changes are required to migrate a device driver from one architecture to
the other. In addition, on OpenVMS Alpha, device drivers can be written in C.

For more information, see Section 4.3.3.

1.5.3 Compilers
Most DEC compilers (and the MACRO–64 assembler) are available on OpenVMS
Alpha Version 6.2 as shown in the following list:

• DEC Ada

• DEC BASIC

• DEC C

• DEC C++

• DEC COBOL

• DEC Fortran

• DEC Pascal

• MACRO–32

• DEC OPS5

• DEC PL/I

A Bliss compiler is also available for OpenVMS Alpha, although it is unsupported.
It is included on the OpenVMS Freeware CD that ships with OpenVMS VAX
Version 6.2 and with OpenVMS Alpha Version 6.2.

These compilers are also available on OpenVMS VAX Version 6.2, except for the
MACRO–32 compiler, which converts VAX MACRO code into Alpha machine code.
The MACRO–32 compiler is bundled with OpenVMS Alpha to ease migration.

The differences between the compilers on VAX and Alpha may require some
minor changes to your code. For more information, see Chapter 4.

1.5.4 Native Assembler
The native assembler, MACRO–64, is not bundled with the OpenVMS Alpha
operating system. Instead, it is available as an optional software product. For
more information, see Section 4.3.2.

1.5.5 DECmigrate for OpenVMS AXP
DECmigrate for OpenVMS AXP is an optional Digital software product that
translates OpenVMS VAX images into OpenVMS Alpha images. If the native
compiler for your application is not available, you can translate it.

DECmigrate for OpenVMS AXP can also be used to analyze code to determine
how easy or difficult it would be to migrate it. For more information about
DECmigrate for OpenVMS AXP, see Section 4.2.3.

1–10

Overview
1.5 Programming Environment

1.5.6 Linker
The way certain linking tasks, such as creating shareable images, are performed
is different on OpenVMS Alpha systems. You may need to modify the LINK
command used to build your application. For example, instead of creating a
transfer vector file for a shareable image, you must create a linker options file
and declare universal symbols by specifying the SYMBOL_VECTOR= option. For
more information, see Section 4.3.1.

1.5.7 Librarian
The Librarian utility provides a new qualifier, /VAX. The /VAX qualifier directs
the Librarian utility to create an OpenVMS VAX object module library when used
with the /CREATE and /OBJECT qualifiers or an OpenVMS VAX shareable image
library when used with the /SHARE qualifier. OpenVMS Alpha libraries are the
default on OpenVMS Alpha systems. For more information, see the OpenVMS
Command Definition, Librarian, and Message Utilities Manual.

1.5.8 Debuggers
The OpenVMS Debugger provides several features that facilitate debugging
OpenVMS Alpha code. These features address the architectural differences that
exist between VAX and Alpha computers. For example, the /UNALIGNED_DATA
qualifier used with the SET command enables you to detect unaligned data.
On VAX, the OpenVMS Debugger offers a new facility, the Heap Analyzer, that
represents graphically, in real time, the utilization of dynamic memory (heap).
This can be used for user-mode utility or application code and is only available
on OpenVMS VAX at this time. For more information about the OpenVMS
Debugger, see Section 4.3.4.

The Delta/XDelta Debugger provides several new commands and changes
to existing commands for debugging OpenVMS Alpha programs. For more
information, see Section 4.3.5.

The OpenVMS Alpha System-Code Debugger lets you use the familiar OpenVMS
Debugger interface to observe and manipulate system code interactively as
it executes. This debugger is not available on OpenVMS VAX. For more
information, see Section 4.3.6.

1.5.9 System Dump Analyzer
The System Dump Analyzer on OpenVMS Alpha systems is almost identical to
the utility provided on OpenVMS VAX systems. Most commands, qualifiers, and
displays are the same. For more information, see Section 4.3.7.

The Crash Log Utility Extractor (CLUE) is available on both OpenVMS VAX and
OpenVMS Alpha. It was created to make the information for debugging crash
dumps more accessible and more useful. For more information, see Section 4.3.8.

1.5.10 Programming Components Not Available on Both Systems
Some programming components are not available on both OpenVMS VAX and
OpenVMS Alpha. They are shown in Table 1–6 and described in this section.

1–11

Overview
1.5 Programming Environment

Table 1–6 Programming Components Not Available on Both Systems

Component
On VAX
or Alpha Status

H_float and D_float floating-point data
types

VAX Not planned for Alpha (see
Section 1.5.10.1)

Heap Analyzer in Debugger VAX Under investigation for Alpha
(see Section 1.5.8)

OpenVMS Alpha System-Code Debugger Alpha Not planned for VAX (see
Section 1.5.8)

Support for device drivers written in C Alpha Not planned for VAX (see
Section 4.3.3)

Before moving any OpenVMS VAX applications to an OpenVMS Alpha system,
Digital recommends that you become familiar with the differences in the
OpenVMS Alpha program development environment as described in this section
and in Chapter 4.

1.5.10.1 Floating-Point Data Types
Support for the H_float floating-point and full-precision D_float floating-point
data types has been eliminated from the hardware to improve overall system
performance.

Alpha hardware converts D_float floating-point data to G_float floating-point data
for processing. On VAX computers, the D_float floating-point data type has 56
fraction bits (D56) and 16 decimal digits of precision.

The H_float floating-point and D_float floating-point data types can usually be
replaced by the G_float floating-point data type or one of the IEEE formats.
However, if you require the H_float floating-point data type or the extra precision
of the D_float floating-point data type, you may have to translate part of your
application with DECmigrate for OpenVMS AXP.

1.5.10.2 Vector Processing
Vector processors were an option for VAX 6500 and VAX 9000 computers to
provide higher performance for numerically intensive applications. Alpha
computers and later versions of VAX computers do not provide this option because
their basic designs provide high-speed calculations.

If you used this option for Fortran applications, you do not have to make any
changes to your code for it to run on Alpha computers or later models of VAX
computers. You only have to recompile it with the DEC Fortran for OpenVMS
Alpha compiler. If you used vector-specific support in VAX MACRO applications,
you will need to make changes to your code before recompiling it with the
MACRO–32 compiler for OpenVMS Alpha.

Image files whose source files included vector instructions cannot be translated.
The VAX Environment Software Translator (VEST) component of DECmigrate
does not support them.

1–12

2
Interoperability of OpenVMS VAX and

OpenVMS Alpha

This chapter describes the similarities and differences, where they exist, of the
following topics:

• Interoperability of OpenVMS VAX and OpenVMS Alpha on a DECnet
network and on a TCP/IP network

• DECnet (Phase IV) network features and management

• DECnet/OSI network features

• Interoperability of OpenVMS VAX and OpenVMS Alpha in a VMScluster

2.1 Interoperability on a Network
OpenVMS Alpha and OpenVMS VAX systems can interoperate in a network,
sharing system resources and enabling communication with local and remote
nodes, in the same way that OpenVMS VAX systems interoperate. Network
management of OpenVMS Alpha nodes is also similar to network management of
OpenVMS VAX nodes. However, some differences exist due to architectural and
implementation differences.

2.1.1 Interoperability Using DECnet for OpenVMS and DECnet/OSI
DECnet for OpenVMS and DECnet/OSI are used to establish networking
connections with other OpenVMS VAX and OpenVMS Alpha nodes. Both
products are available for OpenVMS VAX systems and for OpenVMS Alpha
systems.

DECnet for OpenVMS, formerly known as DECnet–VAX, implements Phase IV of
DNA (Digital Network Architecture). The features of DECnet for OpenVMS AXP
are similar to those of the DECnet–VAX software that is part of VMS Version
5.4–3, with a few exceptions, as noted in Section 2.2. This product is included
with the OpenVMS operating system and ships on the OpenVMS CD.

DECnet/OSI for OpenVMS, which implements Phase V of DNA, is an ISO-
compliant product. DECnet/OSI for OpenVMS conforms to the Open Systems
Interconnection (OSI) networking standards defined by the International
Organization for Standardization (ISO). DECnet/OSI provides all the features
of DECnet Phase IV as well as OSI features that enable participation in open
standards based networks. DECnet/OSI is a layered product on OpenVMS and
ships on the layered product CD.

Full names support for DECnet/OSI was introduced in OpenVMS VAX Version
6.1 and is now available on both OpenVMS VAX Version 6.2 and OpenVMS Alpha
Version 6.2.

2–1

Interoperability of OpenVMS VAX and OpenVMS Alpha
2.1 Interoperability on a Network

File transfers over the DECnet network, including copying and printing, can
be done between OpenVMS VAX and OpenVMS Alpha systems running either
DECnet for OpenVMS or DECnet/OSI.

The SET HOST command enables full interoperability for DECnet remote
login between OpenVMS VAX and OpenVMS Alpha nodes running DECnet for
OpenVMS or DECnet/OSI.

2.1.2 Interoperability Using TCP/IP Networking on OpenVMS Systems
TCP/IP software supports communication between computer systems of similar or
different design as well as interconnection of various physical networks to form
larger networks. There are several vendors of TCP/IP software for OpenVMS
(see Appendix A of TCP/IP Networking on OpenVMS Systems). Users on an
OpenVMS system running TCP/IP software can execute the basic applications
shown in Table 2–1.

Table 2–1 Applications of TCP/IP Software for OpenVMS

Application Type Vendor Specific 1 Vendor Common 2

Virtual terminal service RLOGIN SET HOST/RLOGIN

TELNET SET HOST/TELNET

File access FTP COPY/FTP, DIR/FTP

RCP COPY/RCP

Disk service NFS3

1Same commands available but qualifiers and parameters may differ
2Commands, qualifiers, and parameters identical for all named vendors
3Not all implementations support the Network File System (NFS)

The TCP/IP software can also be used to connect to and access the global
Internet. For more information about TCP/IP networking on OpenVMS, see
TCP/IP Networking on OpenVMS Systems.

2.1.3 Network Interfaces
Most of the network protocols, buses, and interconnects that are supported on
OpenVMS VAX systems are also supported on OpenVMS Alpha systems, as
shown in the following tables.

2.1.3.1 Network Protocols
The network protocols supported on OpenVMS VAX and OpenVMS Alpha systems
are shown in Table 2–2.

2–2

Interoperability of OpenVMS VAX and OpenVMS Alpha
2.1 Interoperability on a Network

Table 2–2 Network Protocol Support

OpenVMS VAX OpenVMS Alpha

Protocol Versions V5.5-2 through 6.2 Versions 1.5 through 6.2

DECnet (Phase IV) Yes Yes

DECnet/OSI (Phase V) Yes Yes

LAD/LAST Yes Yes

LAT Yes Yes

LAVC Yes Yes

TCP/IP1 Yes Yes

X.25 Yes2 Yes3

1Provided by one of the TCP/IP for OpenVMS vendors listed in Appendix A of TCP/IP Networking on
OpenVMS Systems.
2For OpenVMS VAX Version V5.5-2, provided by VAX P.S.I.; for OpenVMS VAX Version 6.0 and later,
provided by DECnet/OSI.
3For OpenVMS AXP Version 1.5 and Version 1.5-1H1, provided by DEC X.25 Client for OpenVMS
AXP software. Running this software, a node can connect to an X.25 network via an X.25 gateway.
For systems running DECnet/OSI, X.25 support is provided by X.25 for OpenVMS AXP, which includes
both client and native X.25 functionality.

2.1.3.2 Buses
The buses supported on OpenVMS VAX and OpenVMS Alpha systems are shown
in Table 2–3. Support is also dependent on the computer model.

Table 2–3 Bus Support

OpenVMS VAX OpenVMS Alpha

Bus Versions V5.5-2 through 6.2 Versions 1.5 through 6.2

BI-bus Yes No1

DSSI Yes Yes

EISA bus No Yes2

Futurebus+ No Yes2

ISA No Yes3

PCI No Yes4

Q–bus Yes No1

SCSI Yes Yes

TURBOchannel Yes Yes

UNIBUS Yes No1

VME Yes No5

XMI Yes Yes

1Support not planned.
2Except for OpenVMS AXP Version 1.5.
3OpenVMS AXP Version 6.1-1H1 and later.
4OpenVMS AXP Version 6.1 and later.
5A custom Digital offering is available.

2–3

Interoperability of OpenVMS VAX and OpenVMS Alpha
2.1 Interoperability on a Network

2.1.3.3 Interconnects
The interconnects (including their respective protocols and drivers) that are
supported on OpenVMS VAX and OpenVMS Alpha systems are shown in
Table 2–4.

Table 2–4 Interconnect Support

Interconnect DECnet 1 TCP/IP2 LAT
Cluster: Computer
to Computer

Cluster: Computer
to Tape or Disk

Asynchronous
line

V – – – –

ATM3 A A A A –

CI V – – A,V A,V

DSSI – – – A,V A,V

Ethernet A,V A,V A,V A,V –

FDDI4 A,V A,V A,V A5,V –

SCSI – – – – A6,V7

Synchronous
line

V – – – –

Token ring – A8 – – –

1Provided by DECnet for OpenVMS and DECnet/OSI.
2Provided by one of the TCP/IP for OpenVMS vendors listed in Appendix A of TCP/IP Networking on
OpenVMS Systems.
3Available on TurboChannel only, in point-to-point configurations.
4Boot support is not available for all computer models (see Table 2–5).
5OpenVMS AXP Versions 1.5 and 1.5-1H1 do not use an FDDI adapter for cluster communications,
but Ethernet bridging to FDDI backbones can be used. OpenVMS Alpha, starting with Version 6.1
can use an FDDI adapter for cluster communications.
6One computer per SCSI bus, serving tape and disk. Two computers on the SCSI bus, with disks only,
starting with OpenVMS Alpha Version 6.2.
7One computer per SCSI bus, serving tape and disk.
8Available only on OpenVMS Alpha, starting with Version 6.1.
Key

A = OpenVMS Alpha Version 1.5 through Version 6.2
V = OpenVMS VAX Version V5.5-2 through Version 6.2
– = Neither

2.1.3.4 FDDI Boot Support on OpenVMS Alpha
While FDDI is supported as an interconnect, it does not provide boot support
for any VAX computer models. However, it does provide boot support for several
Alpha computer models, as shown in Table 2–5.

2–4

Interoperability of OpenVMS VAX and OpenVMS Alpha
2.1 Interoperability on a Network

Note

Configurations without FDDI boot support must also be wired to an
Ethernet circuit if either of the following conditions exists:

• Operating system software installations or updates are to be
performed from an InfoServer

• System is to be a VMScluster satellite (unlikely for larger systems)

Table 2–5 FDDI Boot Support for OpenVMS Alpha Version 6.2

Interconnect Adapter Alpha Computer Boot Support

EISA

DEFEA 1000 Yes

DEFEA 2000 Yes (Except DEC
2000)

DEFEA 2100 Yes

XMI

DEMFA 7000 Yes

DEMFA 8200 Yes

DEMFA 8400 Yes

Futurebus+

DEFAA 4000 No

DEFAA 7000 No

TURBOchannel

DEFZA 3000 No

DEFTA 3000 Yes

PCI

DEFPA 200 No

DEFPA 250 No

DEFPA 400 No

DEFPA 600 No

DEFPA 1000 No

DEFPA 2000 No

DEFPA 2100 No

DEFPA 8200 No

DEFPA 8400 No

2–5

Interoperability of OpenVMS VAX and OpenVMS Alpha
2.2 DECnet (Phase IV) Network Features and Management

2.2 DECnet (Phase IV) Network Features and Management
The similarities and differences in the network features and management
for DECnet for OpenVMS AXP (Phase IV) and for DECnet–VAX for
VMS Version 5.4–3 are described in this section.

2.2.1 Similarities
The features and management of DECnet for OpenVMS AXP (Phase IV) are
similar to those of DECnet–VAX for VMS Version 5.4–3, with some exceptions.
The following list shows the features and management tasks that are identical:

• DECnet objects

• DECnet Test Sender/DECnet Test Receiver utility (DTS/DTR)

• Downline load and upline dump operations

• Event logging

• Ethernet monitor (NICONFIG)

• File access listener (FAL)

(Identical between Alpha nodes and between Alpha and VAX nodes.)

• Loopback mirror testing

• NETCONFIG_UPDATE.COM procedure

• Node name rules

• Product Authorization Key (PAK) name for end-node license (DVNETEND)

• SET HOST capabilities

(Identical between Alpha nodes and between Alpha and VAX nodes.)

• Size of network

• Task-to-task communication

2.2.2 Differences
The features and management tasks of DECnet for OpenVMS AXP (Phase IV) are
similar to those of DECnet–VAX for VMS Version 5.4–3, with some exceptions, as
shown in Table 2–6.

Table 2–6 Differences of DECnet Features and Management Tasks

Feature or Task OpenVMS VAX OpenVMS Alpha

Cluster alias Level 1 and Level 2 routing
supported on nodes acting as
routers for a cluster alias.

Only Level 1 routing supported on
nodes acting as routers for a cluster
alias.

(continued on next page)

2–6

Interoperability of OpenVMS VAX and OpenVMS Alpha
2.2 DECnet (Phase IV) Network Features and Management

Table 2–6 (Cont.) Differences of DECnet Features and Management Tasks

Feature or Task OpenVMS VAX OpenVMS Alpha

Configuring DECnet
databases and starting
OpenVMS Alpha
computer’s access to
the network

Process for both is the same but
subject to the routing limitations
and the lack of support for CI,
DDCMP, the Distributed Name Service
(DNS) node name interface, VAX
P.S.I., and certain Network Control
Program (NCP) utility command
parameters. The functions of the
SYS$MANAGER:STARTNET.COM
procedure are similar.

Lines supported CI, asynch (DDCMP), Ethernet,
and FDDI

Ethernet and FDDI

NETCONFIG.COM
procedure (part for
specifying a router)

NETCONFIG.COM prompts you,
‘‘Do you want to operate as a
router?’’

NETCONFIG.COM does not
prompt you. You have to enable
Level 1 routing manually. Otherwise,
NETCONFIG.COM is the same on
OpenVMS Alpha systems.

Network management via
Network Control Program
(NCP) utility and the
network management
listener (NML) object

In many cases, the NCP commands
and parameters are identical.
However, the NCP command
parameters for SET and SHOW
operations for DDCMP, full host-based
routing, the Distributed Name Service
(DNS), and VAX P.S.I. have no effect
on OpenVMS Alpha.

Product Authorization
Key (PAK) name for
cluster alias routing
support

DVNETRTG DVNETEXT

Routing Level 1 and Level 2 routing are
supported.

Level 1 routing is supported only on
nodes acting as routers for a cluster
alias. Level 2 routing is not supported.

VAX P.S.I. Supported (except DEC 2000) Not supported. For DECnet for
OpenVMS AXP Version 1.5, DEC X.25
Client for OpenVMS AXP replaces
VAX P.S.I. For DECnet/OSI, X.25 for
OpenVMS AXP provides both client
and native X.25 functionality.

For more information about the system management differences between DECnet
for OpenVMS (Phase IV) on OpenVMS VAX and OpenVMS Alpha systems, see A
Comparison of System Management on OpenVMS AXP and OpenVMS VAX.

2.3 DECnet/OSI Network Features
Digital’s open DECnet/OSI network is a family of hardware and software products
that allows Digital operating systems to communicate with each other and with
systems produced by other vendors.

The DECnet/OSI network includes the following features:

• Remote system communication

• Resource sharing

• Support for distributed processing

2–7

Interoperability of OpenVMS VAX and OpenVMS Alpha
2.3 DECnet/OSI Network Features

• Distributed network management

• Optional use of distributed system services for networkwide names and
synchronized time

Network users can access resources on any system in the network and the
resources of other vendors’ systems on multivendor networks.

DECnet/OSI for OpenVMS is Digital’s implementation for OpenVMS systems of:

• The Open Systems Interconnection (OSI) communications specifications, as
defined by the International Standards Organization (ISO).

• Digital’s communications architecture, Digital Network Architecture (DNA)
Phase V, which is also backward compatible with the Phase IV architecture.

Phase V integrates the DNA and OSI layers. The DNA Phase V Reference Model
is the architectural model on which DECnet/OSI networking implementations are
based.

Table 2–7 shows the changes that have evolved with each new phase.

Table 2–7 DNA Phases

Phase I Limited to two nodes

Phase II Up to 32 nodes: file transfer, remote file access, task-to-task
programming interfaces, network management

Phase III Up to 255 nodes: adaptive routing, downline loading, record access

Phase IV Up to 64,449 nodes: Ethernet local area networks, area routing,
host services, VMScluster support

Phase V Virtually unlimited number of systems: OSI protocol support,
transparent transport level links to TCP/IP, multivendor
networking, local or distributed name service, distributed network
management

DECnet/OSI for OpenVMS provides the integration of DECnet and OSI network
protocols that continues support for DECnet applications and enables support
for OSI applications on OpenVMS. With a separate TCP/IP running on the same
system, DECnet/OSI supports a multivendor, multiprotocol network environment.
DECnet applications can be run over NSP, CLNP, or TCP/IP transports. OSI
applications can be run over CLNP or TCP/IP transports.

A full implementation of the Digital Network Architecture (DNA) Phase V
for OpenVMS systems, the OSI component of the DECnet/OSI software is
implemented and tested in accordance with the current U.S. and UK GOSIP
requirements. GOSIP is the Government OSI Profile that defines OSI capabilities
required by government procurement.

For more information about DECnet/OSI, see the DECnet/OSI documentation.

2.4 Interoperability in a VMScluster System
VMScluster systems for OpenVMS Alpha offer all the software features of
VAXcluster systems. All the related VAXcluster software products, including the
Business Recovery Server (BRS), are available for OpenVMS Alpha nodes. BRS,
formerly named the Multi-Datacenter Facility, was released in June 1994.

2–8

Interoperability of OpenVMS VAX and OpenVMS Alpha
2.4 Interoperability in a VMScluster System

In addition, VMScluster systems running OpenVMS Alpha Version 6.2 support
the Small Computer System Interface (SCSI) interconnect as a multihost shared
storage interconnect, a feature not available on OpenVMS VAX.

For configurations with VAX and Alpha nodes running the same version or
different versions, additional capabilities and restrictions exist, as described in
this section.

2.4.1 Booting in a Mixed-Architecture VMScluster System
The capabilities and restrictions of booting in a mixed-architecture VMScluster
system are shown in Table 2–8.

Table 2–8 Booting in a Mixed-Architecture VMScluster System

Function Description

System disk Separate system disk required for VAX and
Alpha

Cross-architecture satellite booting
(VAX boot node provides booting
services to Alpha satellites and Alpha
boot node provides booting services to
VAX satellites)

Enabled for systems running Version 6.1
or later of OpenVMS and DECnet for
OpenVMS (Phase IV). Satellite booting across
architectures is under investigation for nodes
running DECnet/OSI.

2.4.2 Upgrades in a Mixed-Architecture VMScluster System
Rolling upgrades in a mixed-architecture VMScluster system are performed
in the same way that rolling upgrades in a single-architecture VMScluster or
VAXcluster system are performed. Cross-architecture upgrading is not enabled.

2.4.3 Restrictions of Selected Features in Mixed-Version VMScluster Systems
New features or improvements to existing features are introduced with each new
release. Even though a feature or improvement is available on both platforms, its
use may be restricted in a mixed-version or mixed-architecture VMScluster, if it
was not available in earlier versions.

2.4.3.1 Process Identifiers Limit
Starting with Version 6.1, OpenVMS Alpha and OpenVMS VAX support up
to 1024 identifiers. Previous versions of OpenVMS Alpha and OpenVMS VAX
support up to 256 identifiers. If any nodes in a VMScluster system are running
versions prior to Version 6.1, the limit of 256 identifiers is in effect.

2.4.3.2 Virtual I/O Cache
Virtual I/O cache became available in OpenVMS Alpha Version 1.5 running
standalone and OpenVMS VAX Version 6.0. If any nodes in a mixed-version or
mixed-architecture VMScluster system are running OpenVMS VAX Version 5.5–2
or OpenVMS Alpha Version 1.5, the virtual I/O cache disables itself.

2.4.3.3 Remote Monitoring
Remote monitoring is a feature of the Monitor utility (MONITOR) that enables
you to monitor any node in a VMScluster system. You can do this either by
issuing the MONITOR CLUSTER command or by adding the /NODE qualifier to
any interactive MONITOR request.

Remote monitoring is limited across nodes running different versions of
OpenVMS. Table 2–9 shows which versions enable this feature and which do
not.

2–9

Interoperability of OpenVMS VAX and OpenVMS Alpha
2.4 Interoperability in a VMScluster System

In addition, a second difference exists when you are monitoring remote nodes in a
VMScluster. The limit on the number of disks that can be monitored remotely on
OpenVMS VAX Version 6.2 and OpenVMS Alpha Version 6.2 was raised from 799
to 909 for record output and from 799 to 1817 for display and summary outputs.
If you are monitoring a remote node running OpenVMS Version 6.2 from a system
running an earlier version of OpenVMS, its limit of 799 is in effect.

Table 2–9 Remote Monitoring Compatibility in a VMScluster

OpenVMS VAX
Version 6. n

OpenVMS Alpha
Version 6. n

OpenVMS Alpha
Version 1.5 & VAX
Version 5. n

OpenVMS VAX
Version 6.n

Yes Yes No

OpenVMS Alpha
Version 6.n

Yes Yes No

OpenVMS Alpha
Version 1.5 and
VAX Version 5.n

No No Yes

If you attempt to monitor a remote node that is incompatible, the following
message is displayed:

%MONITOR-E-SRVMISMATCH, MONITOR server on remote node is an incompatible
version

If you receive this error message, you can still obtain data about the remote node
with MONITOR. You do this by recording the data on the remote node and then
using the MONITOR playback feature to examine it on the local node.

For more information on MONITOR, see the OpenVMS System Management
Utilities Reference Manual.

2.4.4 ANALYZE/ERROR and ANALYZE/IMAGE in a Mixed-Architecture
VMScluster System

The ANALYZE/ERROR (ERF) utility is architecture-specific. In other words, in
a mixed-architecture VMScluster, a user on a VAX node cannot use ANALYZE
/ERROR to analyze the ERRLOG.SYS of an Alpha node, nor can a user on an
Alpha node use ANALYZE/ERROR to analyze the ERRLOG.SYS of a VAX node.

Support for using ANALYZE/ERROR across architectures is under investigation.

On Alpha, using ANALYZE/IMAGE, you can analyze both Alpha and VAX images.
On VAX, you can only analyze VAX images. If you attempt to analyze an Alpha
image from an OpenVMS VAX system, an unclear message is displayed.

A correction to the message is planned for a future release of OpenVMS VAX. A
change to the OpenVMS VAX functionality is under investigation.

2.4.5 VMScluster Configuration Support
OpenVMS Alpha Version 6.2 and OpenVMS VAX Version 6.2 provide two levels
of support for mixed-version and mixed-architecture VMSclusters: warranted
support and migration support.

Warranted support means that Digital has fully qualified the two versions to
coexist in a VMScluster, and will answer all problems identified by customers
using these configurations.

2–10

Interoperability of OpenVMS VAX and OpenVMS Alpha
2.4 Interoperability in a VMScluster System

Migration support is a superset of the rolling upgrade support provided in
earlier releases of OpenVMS and is available for mixes that are not warranted.
Migration support means that Digital has qualified the versions for use together
in configurations that are migrating in a staged fashion to a newer version of
OpenVMS VAX or to OpenVMS Alpha. Digital will answer problem reports
submitted against these configurations. However, in exceptional cases, Digital
may request that you move to a warranted configuration as part of answering the
problem. Migration support will help customers move to warranted VMScluster
version mixes with minimal impact on their cluster environments.

Figure 2–1 shows which level of support is provided for all possible version
pairings.

Figure 2–1 VMScluster Version Pairings

AXP Version 6.1

Migration

VAX Version 6.1 VAX Version 6.0 AXP Version 1.5

VAX Version 6.2

Alpha Version 6.2

WARRANTED

ZK−7496A−GE

Migration

Migration

Migration

Migration

VAX Version 5.5−2 Alpha Version 6.2

Migration Migration

Migration Migration Migration

Note that Digital does not support the use of more than two versions in a
VMScluster at a time. In many cases, more than two versions will successfully
operate, but Digital cannot commit to resolving problems experienced with such
configurations.

For more VMScluster information, see the documentation listed in Table 2–10.

Table 2–10 VMScluster Documentation Sources

Topic Documentation

Configuration rules and
restrictions

OpenVMS Cluster Software Product Description

Configuration guidelines Guidelines for VMScluster Configurations

Differences between managing
VAXclusters and VMSclusters

A Comparison of System Management on OpenVMS
AXP and OpenVMS VAX

SCSI VMSclusters OpenVMS Version 6.2 New Features Manual

SCSI tape support OpenVMS Version 6.2 New Features Manual

VMScluster systems that span
multiple sites

OpenVMS Version 6.2 New Features Manual

All other VMScluster
information

VMScluster Systems for OpenVMS and the OpenVMS
Version 6.2 Release Notes

2–11

3
Migration When You’re Ready

This chapter provides information that will help you decide when to include one
or more OpenVMS Alpha systems in your computing environment and which
migration resources to use. The following topics are discussed:

• OpenVMS Alpha base operating system features

• Digital optional software products for OpenVMS Alpha

• Third-party applications for OpenVMS Alpha

• Application migration paths

• Hardware and software investment protection program

• Migration services, training, software, and documentation

• Alpha systems on the Internet

Most of the OpenVMS VAX features and many of the Digital optional software
products and third-party applications are already available on OpenVMS Alpha.

To help protect your investment in Digital products, Digital offers a single
uniform upgrade program known as the ADVANTAGE-UPGRADE program.
Digital also provides a full range of migration resources so that you can select
what is appropriate for your organization. The offerings include an array of
migration services, training, software, documentation, and access to Alpha
systems on the Internet.

3.1 OpenVMS Alpha Base Operating System Features
Table 3–1 shows the availability, on OpenVMS Alpha, of selected features of the
OpenVMS VAX base operating system. The list is not complete; it represents the
features that are most important to Digital customers. For more information,
contact your Digital account representative or authorized reseller.

Table 3–1 Status of Selected OpenVMS VAX Base Operating System Features
on OpenVMS Alpha

Feature OpenVMS Alpha Version 6.2

Adaptive pool management1 Yes

Batch and print queuing system2 Yes

Class scheduler system services1 Yes

1OpenVMS VAX Version 6.0 feature.
2OpenVMS VAX Version 5.5 feature.

(continued on next page)

3–1

Migration When You’re Ready
3.1 OpenVMS Alpha Base Operating System Features

Table 3–1 (Cont.) Status of Selected OpenVMS VAX Base Operating System
Features on OpenVMS Alpha

Feature OpenVMS Alpha Version 6.2

C2 Security1 Yes3

DECdtm full names support Yes

DECthreads2 Yes

Debugger Yes

EMA base system support Yes

Extended LAT integration2 Yes

DECnet/OSI full names support4 Yes

Heap Analyzer in the OpenVMS Debugger4 No5

Help Message1 Yes

InfoServer booting Yes

ISO 9660 support1 Yes

LMF V1.12 Yes

Media management enhancements (MME)4 Yes

MSCP dynamic load balancing1 No6

MoveFile function with enhancements2 Yes

Multiple queue manager support1 Yes

POLYCENTER Software Installation (PCSI) utility Yes

SCSI-2 Tagged Command Queuing (TCQ)7 Yes

Snapshot facility1 No8

Symmetric multiprocessing (SMP) Yes

TPU and EVE Yes

Virtual I/O cache for standalone machines Yes

Virtual I/O cache clusterwide Yes

VMScluster support Yes

VMScluster support: FDDI interconnect of Alpha
systems

Yes

X-terminal support Yes

User-written device driver support Yes9

1OpenVMS VAX Version 6.0 feature.
2OpenVMS VAX Version 5.5 feature.
3C2 security features available but not yet evaluated by the U.S. government. Auditing DECnet
connections is not yet supported on Alpha.
4OpenVMS VAX Version 6.1 feature.
5Under investigation for a future release.
6Planned for a future release.
7OpenVMS VAX Version 5.5-2H4 feature.
8Not planned for a future release.
9Step 2 drivers.

3–2

Migration When You’re Ready
3.2 Digital Optional Software for OpenVMS Alpha

3.2 Digital Optional Software for OpenVMS Alpha
Many Digital optional software products were available on earlier versions of
OpenVMS Alpha and many more are available now. The optional software
product releases are cumulative. For example, the CD–ROM for Digital optional
software products released in March 1995 contains all the optional products that
have been released for OpenVMS Alpha.

Note

Optional software products that run on OpenVMS AXP Version 1.5 or
earlier that contain device drivers will not run on OpenVMS AXP Versions
6.1 or OpenVMS Alpha 6.2, because the device driver interface changed
significantly. The device drivers in such applications must be revised.
Although many OpenVMS Alpha products are available, the versions that
can run on OpenVMS AXP Version 6.1 and OpenVMS Alpha Version 6.2
may not be available yet.

A Digital layered product CD–ROM is released concurrently with each
new version of OpenVMS Alpha. All layered products on this CD–ROM
run on the version of OpenVMS Alpha that is released at the same time.
The CD–ROM includes all Digital OpenVMS Alpha software products
(including products previously released that were upgraded to run on the
latest version of OpenVMS Alpha).

Digital software products are released quarterly. All Digital optional software
products that run on OpenVMS Alpha Version 6.2 and on OpenVMS VAX Version
6.2 are listed in the OpenVMS Version 6.2 Release Notes.

The Alpha Applications Catalog lists all available applications: Digital optional
software and third-party applications. The catalog is updated regularly. To
obtain this catalog in the United States and Canada, call 1-800-DIGITAL
(1-800-344-4825). In other locations, contact your Digital account representative
or authorized reseller.

To find out when products not listed in the catalog will be available, contact your
Digital account representative or authorized reseller.

3.3 Third-Party Applications for OpenVMS Alpha
More than 2000 third-party applications are currently available for
OpenVMS Alpha. Some of them are shown in Table 3–2.

The Alpha Applications Catalog, which is updated regularly, lists all the available
third-party applications and Digital optional software products. The catalog is
available in printed form and also online on the World-Wide Web (WWW).

For a printed copy, in the United States and Canada, call 1-800-DIGITAL (1-
800-344-4825). In other locations, you can obtain the catalog from your Digital
account representative or authorized reseller. To view it on the World-Wide Web,
use the following command:

http://www.digital.com/cgi-bin/www-swdev/PRODUCTS/CATALOG/catalog

3–3

Migration When You’re Ready
3.3 Third-Party Applications for OpenVMS Alpha

To find out when products not listed in the catalog will be available, contact your
Digital account representative or authorized reseller.

Table 3–2 Sampling of Third-Party Applications Available as of June 1994

Application Company

ACUMATE Kenan Technologies

ADABAS Software AG of North America, Inc.

ade EKO Adedata AB.

ade INV Adedata AB.

ade T/D Adedata AB.

ADINA ADINA R&D, INC.

ALK-GIAP AED Graphics GmbH

Anvil 5000 Manufacturing and Consulting Services, Inc.

Application Browser Hypersoft Corporation

ARC/INFO Environmental Systems Research Institute,
Inc.

ASPEN PLUS Aspen Technology, Inc.

Auto. Library System Dynix, Inc.

BEV-PAK Turn-Key Distribution Systems, Inc.

Blood Bank Systems Antrim Corporation

BLAST BLAST, Inc.

BROKERMAX Citymax Integrated Information System Ltd.

Business Intelligence Network (BIN) Henco Software, Inc.

Cadim/EDB EIGNER + PARTNER GmbH

CADRA-III ADRA Systems, Inc.

Client Server Interfaces Sybase, Inc.

DADisp DSP Development Corporation

DL Pager Datalogics, Inc.

ECLIPSE Intera Information Technologies

Financial Systems Antrim Corporation

FlexiLab System Sunquest Information Systems, Inc.

FlexiRad Sunquest Information Systems, Inc.

FOCUS for Alpha Information Builders, Inc.

Gembase Open Systems 4GL Ross Systems, Inc.

GENSTAT 5 Numerical Algorithms Group, Ltd.

GLIM Numerical Algorithms Group, Ltd.

GRAFkit Centera Information Systems, Inc.

Graphics Language Interpreter Centera Information Systems, Inc.

IAS CODA, Incorporated

IBS-90 Winter Partners

IMPALA EEC SYSTEMS, INC.

(continued on next page)

3–4

Migration When You’re Ready
3.3 Third-Party Applications for OpenVMS Alpha

Table 3–2 (Cont.) Sampling of Third-Party Applications Available as of June
1994

Application Company

Information Support Systems Antrim Corporation

"Integra" Application Management
Environment

G.C. McKeown & Co. (UK) Ltd.

Integrated Graphics System Datalogics, Inc.

Integration Services Antrim Corporation

IPS CODA, Incorporated

MANMAN (including Process) ASK Computer Services, Inc.

MANTIS Cincom Systems, Inc.

MAPS Logica Industry Limited

MARGO SEMA GROUP-PROGICIELS

Mathematica Wolfram Research, Inc.

MESSIDOR SEMA GROUP-PROGICIELS

Mobile KINGSTON_SCL LTD.

Multinet TGV, Inc.

NAG FORTRAN Library Numerical Algorithms Group, Ltd.

NAG Graphics Library Numerical Algorithms Group, Ltd.

NAGWave Fortran 90 Compiler Numerical Algorithms Group, Ltd.

NATURAL Software AG of North America, Inc.

NETRON/CAP NETRON, Inc.

NETRON/Client NETRON, Inc.

Oasys 680x0 Cross Tools Oasys

ORACLE V7 (Developer’s release) Oracle Corporation

ORACLE V7 (Production release) Oracle Corporation

Oracle Financials and Human Resources Oracle Corporation

Oracle Manufacturing Oracle Corporation

Page Station/X Datalogics, Inc.

PixTex/EFS Excalibur Technology

PLEIADES HOSPITAL
ADMINISTRATION

SEMA GROUP-PROGICIELS

PLEIADES HRM/PRIVATE AND
PUBLIC SECTORS

SEMA GROUP-PROGICIELS

PLEIADES LOCAL COMMUNITIES SEMA GROUP-PROGICIELS

Polyserver Uniface Int.

PowerHouse 4GL Cognos, Inc.

PROGRESS 4GL/RDBMS Progress Software Corporation

PROGRESS Application and
Development Environment

Progress Software Corporation

PROGRESS Developer’s Toolkit Progress Software Corporation

(continued on next page)

3–5

Migration When You’re Ready
3.3 Third-Party Applications for OpenVMS Alpha

Table 3–2 (Cont.) Sampling of Third-Party Applications Available as of June
1994

Application Company

PROGRESS FAST TRACK Progress Software Corporation

PROGRESS RESULTS Query/Reporting
Tool

Progress Software Corporation

PROMIS Promis Systems Corporation

Promix Distribution Series Ross Systems, Inc.

Promix Manufacturing Series Ross Systems, Inc.

Renaissance CS Financial Series Ross Systems, Inc.

Renaissance CS Human Resource Series Ross Systems, Inc.

RSC-PR Payroll Resource Systems Corporation

SAP R/3 System SAP of America, Inc.

SAS System SAS Institute, Inc.

SmartStar Report Painter SmartSystems (UK) Ltd.

SmartStar Vision SmartStar Corporation

STADEN Package Medical Research Council

STUDENTS+ J.H. Leskin Associates, Inc.

Supercache EEC Systems, Inc.

SuperDisk EEC Systems, Inc.

SUPRA Cincom Systems, Inc.

Sybase Lifecycle Tools Sybase, Inc.

Sybase SQL Server Sybase, Inc.

Synchrony Henco Software, Inc.

TCM-EMS Time Critical Manufacturing
System V

Effective Management Systems, Inc. (EMS)

TGRAF-X Grafpoint, Inc.

Timeserver Pilot Software Ltd.

TROPOS Strategic Systems International

Unidata RDBMS Unidata, Inc.

Uniface Development Environment Uniface and Uniface Int.

UNIGRAPHICS Electronic Data Systems Corporation

VAX TDMS Emulator for OpenVMS Praxa Limited

VAX TDMS to DECforms Converter for
OpenVMS VAX

Praxa Limited

WIN/TCP Wollongong

VIDEOTELEFAX Monaco Telematique MC-TEL

VIDEONET Monaco Telematique MC-TEL

Wisconsin Sequence Analysis Package Genetics Computer Group

WITNESS (U.S.) AT&T ISTEL

3–6

Migration When You’re Ready
3.4 Application Migration Paths to OpenVMS Alpha

3.4 Application Migration Paths to OpenVMS Alpha
Table 3–3 shows several paths for application migration from OpenVMS VAX to
OpenVMS Alpha systems.

Table 3–3 Application Migration Paths

AXP V1.0 AXP V1.5 AXP V6.1 Alpha V6.2

VAX V5.4–2 Recommended Recommended Supported1 Supported1

VAX V5.4–3 Recommended Recommended Supported1 Supported1

VAX V5.5, V5.5–1 Supported1 Recommended Supported1 Supported1

VAX V5.5–2 Supported1 Recommended Recommended Recommended

VAX V6.0 Not Recommended Supported1 Recommended Recommended

VAX V6.1 Not Recommended Not Recommended Recommended Recommended

VAX V6.2 Not Recommended Not Recommended Not Recommended Recommended

1 Supported means that most applications will run, but applications that depend on features that are not available either
in a particular version of OpenVMS Alpha or in an OpenVMS Alpha compiler will not run or will not run correctly.

3.5 Hardware and Software Investment Protection Programs
Digital offers hardware and software investment protection in a single, uniform
upgrade program known as the ADVANTAGE-UPGRADE Program. By offering
all of Digital’s upgrade selections under a single program, selection of the proper
and most cost-effective upgrade has become simpler.

While the names have changed, the upgrade features remain the same. For
example, you can:

• Lock in a not-to-exceed price for upgrading to Alpha systems (within a
specified period of time) when you purchase new VAX or MIPS computers.

• Purchase a simple Alpha upgrade from older VAX computers or use the
trade-in credit from your existing VAX computers.

• Trade in the original operating system licenses for credit towards an
alternative operating system that will run on the same computers. This gives
you the flexibility of switching to another operating system at a later date.

For Digital layered software products, user-based licenses are valid across
hardware architectures so no special program has been introduced. New
clusterwide and capacity-based licenses are significantly discounted. For more
information, contact your Digital account representative or authorized reseller.

3.6 Migration Services
The ISV (independent software vendor) Engineering and Technical Support
Centers provide migration services worldwide, as shown in Table 3–4. Migration
experts staff the centers and assist Digital’s business partners with their porting
efforts.

For detailed information on migration services, contact your Digital account
representative or authorized reseller, or call 1-800-832-6277 or 1-603-884-8990.

3–7

Migration When You’re Ready
3.6 Migration Services

Table 3–4 Locations of Engineering and Technical Support Centers

Europe United States Asia

Basingstoke Marlboro MA Hong Kong

Galway Palo Alto CA Tokyo

Munich

3.7 Migration Training
Digital offers a two-day seminar, the Alpha AXP Planning seminar (EY-L570E-
S0-W3), which presents issues in planning for systems based on the Alpha
architecture. You can learn more about this seminar by contacting your Digital
account representative or authorized reseller or by reading about it in the Digital
Learning Services (DLS) Internet Catalog. The DLS Internet Catalog provides
course descriptions, the course schedule, and directions for registering. To access
the DLS Internet Catalog on the World-Wide Web, use the following command:

http://www.digital.com/.i/digest/htdocs/digest/html/dis.ht

3.8 Migration Software
Compilers are available on OpenVMS Alpha for almost all the languages
supported on OpenVMS VAX. Most programs can be recompiled and relinked
for execution, in native mode, on OpenVMS Alpha. For more information, see
Chapter 4.

In addition to the OpenVMS Alpha compilers, Digital also offers DECmigrate for
OpenVMS AXP, a Digital optional software product. DECmigrate is used for the
following purposes:

• To analyze code to determine how easy or difficult it might be to translate it

• To translate images for which you have no sources or whose native compiler
is not yet available on OpenVMS Alpha systems

For more information about DECmigrate, see Section 4.2.3.

3.8.1 Mixing Native Alpha and Translated Images
You can mix migration methods among the individual images that comprise an
application, that is, you can recompile some modules with the native OpenVMS
Alpha compilers and translate other modules with DECmigrate. You can also
partially translate an application as one stage in a migration. This enables you
to run and test an application on an Alpha computer before it is completely
recompiled.

For more information about interoperability of native Alpha and translated
VAX images within an application, see Migrating to an OpenVMS AXP System:
Recompiling and Relinking Applications.

3–8

Migration When You’re Ready
3.9 Migration Documentation

3.9 Migration Documentation
Digital offers several documents for migration from OpenVMS VAX to OpenVMS
Alpha. Migration information is also provided in the language user’s guides for
the DEC compilers. The differences in the DEC compilers between OpenVMS
Alpha and OpenVMS VAX systems are described in the DEC compilers’ users’
guides. In some guides, such as the DEC C User’s Guide for OpenVMS Systems,
the differences are described in the context of the description of a language
element; in other guides, such as the DEC COBOL User Manual, the differences
are described in separate appendixes.

The following list describes the migration manuals and includes their order
numbers.

• Migrating to an OpenVMS AXP System: Planning for Migration

Order number: AA-PV62A-TE

This manual describes the general characteristics of RISC architectures,
compares the Alpha architecture to the VAX architecture, and presents an
overview of the migration process and a summary of migration tools provided
by Digital. The information in this manual is intended to help you define the
optimal migration strategy for your application.

• Migrating to an OpenVMS AXP System: Recompiling and Relinking
Applications

Order number: AA-PV63A-TE

This manual provides detailed technical information for programmers who
must migrate mid- and high-level language applications to OpenVMS Alpha
systems. It describes how to set up a development environment to facilitate
the migration of applications, helps programmers identify application
dependencies on elements of the VAX architecture, and introduces compiler
features that help resolve these dependencies. Individual sections of this
manual discuss specific application dependencies on VAX architectural
features, data porting issues (such as alignment concerns), and the process of
migrating VAX shareable images.

• Migrating to an OpenVMS AXP System: Porting VAX MACRO Code

Order number: AA-PV64A-TE

This manual describes how to use the MACRO–32 compiler for OpenVMS
Alpha to port VAX MACRO code to an OpenVMS Alpha system. It describes
the features of the compiler, presents a methodology for porting VAX MACRO
code, identifies nonportable coding practices, and recommends alternatives to
such practices. The manual also provides detailed descriptions of the compiler
qualifiers, directives, built-ins, and the system macros created for porting to
an OpenVMS Alpha system.

• A Comparison of System Management on OpenVMS AXP and OpenVMS VAX

Order number: AA-PV71B-TE

This manual compares system management on OpenVMS Alpha and
OpenVMS VAX systems. It is intended for experienced system managers
who need to learn quickly how specific tasks differ or remain the same on
OpenVMS Alpha and OpenVMS VAX.

• DECmigrate for OpenVMS AXP Systems Translating Images

Order number: AA-PSGMB-TE

3–9

Migration When You’re Ready
3.9 Migration Documentation

This manual describes the VAX Environment Software Translator
(VEST) utility, discussed in Section 3.8. It describes how to use VEST
to convert most user-mode OpenVMS VAX images to translated images
that can run on OpenVMS Alpha systems; how to improve the run-time
performance of translated images; how to use VEST to trace OpenVMS Alpha
incompatibilities in an OpenVMS VAX image back to the original source files;
and how to use VEST to support compatibility among native and translated
run-time libraries.

• Creating an OpenVMS AXP Step 2 Device Driver from a Step 1 Device Driver

Order number: AA-Q28TA-TE

This manual describes how to convert a Step 1 OpenVMS AXP device driver,
written in VAX MACRO, to a Step 2 OpenVMS Alpha device driver, also
written in VAX MACRO.

• Creating an OpenVMS AXP Step 2 Device Driver from an OpenVMS VAX
Device Driver

Order number: AA-Q28UA-TE

This manual describes how to convert an OpenVMS VAX device driver—
written in VAX MACRO—to a Step 2 OpenVMS Alpha device driver, also
written in VAX MACRO.

• OpenVMS AXP Device Support: Reference

Order number: AA-Q28PA-TE

This manual provides reference material for creating OpenVMS Alpha device
drivers, and it describes the macros, system routines, and entry points used
in converting OpenVMS VAX and Step 1 OpenVMS AXP device drivers to
Step 2 OpenVMS Alpha device drivers.

3.9.1 Obtaining Migration Documentation
When you purchase an OpenVMS Alpha media kit, you receive the migration
documentation in Bookreader format (DECW$BOOK) on the compact disc.
When you purchase the printed full OpenVMS documentation set, the migration
documentation is included. You can also order any of the manuals separately.
DECmigrate for OpenVMS AXP Systems Translating Images in Bookreader
format accompanies the optional product, DECmigrate for OpenVMS AXP. To
obtain a printed copy, you must order it separately.

For instructions on ordering documentation, see How to Order Additional
Documentation in the front of this manual.

3.10 Alpha Systems on the Internet
As a service to the Internet community, Digital has made available two DEC 4000
Alpha systems. These systems can be used for evaluating the Alpha architecture
and for testing the features of the supporting OpenVMS Alpha and DEC OSF/1
for Alpha operating systems, compilers, tools, and utilities.

Application developers who have access to the Internet can use these systems to
test, qualify, or port their software for the Alpha architecture. Other Internet
users interested in Alpha computing are invited to log in and evaluate these
systems.

3–10

Migration When You’re Ready
3.10 Alpha Systems on the Internet

One DEC 4000 Alpha system (Internet address: axpvms.pa.dec.com) has the
OpenVMS operating system installed. The other DEC 4000 Alpha system
(Internet address: axposf.pa.dec.com) is running the Digital UNIX (formerly
named DEC OSF/1) operating system. These systems can be reached either via
telnet or rlogin.

To register for an account, Internet users connect to the desired machine, log in
as axpguest (no password), and answer the short qualifying questionnaire. Users
are asked to read all information in the motd/login banner and comply with all
rules for machine usage/restrictions.

Users with questions about their accounts should send mail to Internet address:
axpvms-system@pa.dec.com for the OpenVMS Alpha system and to Internet
address: axposf-root@pa.dec.com for the Digital UNIX system.

3–11

4
Ensuring the Portability of Applications

This chapter describes:

• How to assess the portability of an application

• Software support for portability

• Differences in OpenVMS Alpha programming

• Guidelines for developing applications for OpenVMS VAX and
OpenVMS Alpha

• Guidelines for developing applications for mixed-architecture VMScluster
systems

In general, if your application is written in a high-level programming language,
you should be able to run it on an Alpha system with a minimum amount
of effort. High-level languages insulate applications from dependence on the
underlying machine architecture, and, for the most part, the programming
environment on Alpha systems duplicates the programming environment on VAX
systems. Using native Alpha versions of the language compilers and the Linker
utility (linker), you can recompile and relink the source files that make up your
application to produce a native Alpha image.

If your application is written in VAX MACRO, you may be able to run it on an
Alpha system with a minimum amount of effort, although it is more likely to
contain some dependencies on the underlying VAX architecture, some of which
may require your intervention.

4.1 How to Assess the Portability of an Application
The portability of an application depends on the language in which it is written,
the amount of nonstandard code it might contain, the number of architectural
dependencies it might contain, and whether a compiler is available for the
language in which the application is written. While it is possible to introduce
architectural dependencies in applications written in high-level languages, they
are more likely to occur in applications written in mid- and low-level languages.

Privileged applications, which run in inner modes or at elevated interrupt
priority levels (IPLs), may require significant changes because of assumptions
incorporated in the code about the internal operation of the operating system.
Typically, such applications also require significant changes after a major release
of the OpenVMS VAX operating system.

Recently, Digital introduced new versions of several compilers. It is likely that
the applications that you might want to move to an OpenVMS Alpha system were
compiled using the earlier VAX compilers.

To assess the portability of an application, consider the following:

• The application’s dependencies on the VAX architecture

4–1

Ensuring the Portability of Applications
4.1 How to Assess the Portability of an Application

• The differences between the VAX and DEC language compilers

To help you in your assessment, you can use DECmigrate for OpenVMS AXP and
the compiler features designed to identify potential porting problems.

You may also need to identify nonstandard coding practices. They are generally
more common in code written in lower-level languages, such as VAX MACRO.
For information about such practices for VAX MACRO, refer to Migrating to an
OpenVMS AXP System: Porting VAX MACRO Code.

4.1.1 Identifying Dependencies on the VAX Architecture in Your Application
Even if your application recompiles successfully with a compiler that generates
native Alpha code, it may still contain subtle dependencies on the VAX
architecture. The OpenVMS Alpha operating system has been designed to provide
a high degree of compatibility with OpenVMS VAX; however, the fundamental
differences between the VAX and Alpha architectures can create problems for
applications that depend on certain VAX architectural features. The following list
highlights those areas of your application you should examine.

• Check the data declarations contained in your application.

The high-level language data types you selected to represent data items on
an OpenVMS VAX system may not be the best choice on an OpenVMS Alpha
system. In particular, consider the following:

Data packing—Applications on VAX systems typically use the smallest
available data type to represent a data item to achieve efficient use of
memory resources. For various reasons, using larger data types may be
more efficient on OpenVMS Alpha systems. For example, unaligned data
can take 100 times longer to process than aligned.

Data-type selection—The Alpha architecture supports most of the VAX
native data types; however, certain VAX data types, such as the H_float
floating-point data type, are not supported (see Table 4–1). Check to
see if your application depends on the size or bit representation of an
underlying native data type.

Shared access to data—Check any writable data item that is accessed
by multiple threads of execution. The VAX architecture includes
instructions that can perform certain complex operations, such as
incrementing a variable, that appear as a single, noninterruptable
operation to other threads of execution. The Alpha architecture is a
load-store architecture that does not support atomic memory-to-memory
modifications so different program constructs may be required.

In addition, the VAX architecture supports instructions that can
manipulate byte- and word-sized data in a single noninterruptable
operation. The Alpha architecture supports noninterruptable access only
to aligned longword- or aligned quadword-sized data.

Buffer size—Your application may determine the size of certain data
buffers based on the VAX page size. Different implementations of the
Alpha architecture can support 8K, 16K, 32K, or 64K byte pages. Search
your application for the text strings ‘‘512’’ and ‘‘511’’ (or the hexadecimal
equivalents, ‘‘200’’ and ‘‘1FF’’) to find dependencies on the VAX page size.

• Check any condition handlers your application may include.

4–2

Ensuring the Portability of Applications
4.1 How to Assess the Portability of an Application

While the condition handling facility on OpenVMS Alpha systems is
functionally equivalent to the VAX condition handling facility, certain aspects
of the facility have changed, such as the format of the mechanism array. In
addition, the way in which arithmetic exceptions are reported has changed.

• Check for dependence on the AST parameter list.

While the AST parameter list on OpenVMS Alpha systems has the same
format as on VAX systems, only the AST parameter field can be used. The
other fields in the AST parameter list (contents of R0, R1, program counter
[PC], and processor status [PS]) are provided for compatibility only and have
no subsequent use after the AST procedure exits. For example, on OpenVMS
VAX systems, some user-written AST procedures are designed to change one
or more of the values in the other fields in the AST parameter list so that
these new values take effect upon completion of the AST procedure. Because
ASTs are handled differently on OpenVMS Alpha systems, such changes
by the AST procedure to the other fields in the AST parameter list have no
effect. Anything an AST procedure writes to the last four parameters on an
Alpha computer is lost when the AST procedure exits.

Table 4–1 Floating-Point Data Type Support

Data Type On VAX On Alpha

D53_float (G_
float) (Default
double-precision
format)

Not supported. Supported. Using D53_float instead of D56_float
drops three bits of precision and yields slightly
different results.

D56_ float (Default
double-precision
format)

Supported. Not supported. You can obtain full support
by translating your code with DECmigrate.
Alternatively, you can substitute D53_float for
D56_float, if your application does not require
the extra three bits of precision.

F_float Supported. Supported.

G_float Supported. Supported.

H_float (128-bit
floating-point)

Supported. Not supported. You can obtain full H_float
support with DECmigrate. You can use it to
translate the code module that contains H_float
structures, or you can recode your application,
using a supported data type.

S_float (IEEE) Not supported. Supported.

T_float (IEEE) Not supported. Supported.

X_float (128-bit
floating-point
(IEEE))

Not supported. Supported by DEC Fortran Version 6.2 and by
DEC C Version 4.0. The X_float data format is
not identical to H_float, but both cover a similar
range of values. For Fortran applications,
automatic conversion between X_float memory
format and H_float on-disk is possible by use
of the /CONVERT compiler qualifier, or the
CONVERT= option on OPEN statements.

For more information about dependencies on the VAX architecture, see Migrating
to an OpenVMS AXP System: Recompiling and Relinking Applications and
the user’s guides for the particular language you are using. For applications
written in VAX MACRO, see Migrating to an OpenVMS AXP System: Porting
VAX MACRO Code.

4–3

Ensuring the Portability of Applications
4.1 How to Assess the Portability of an Application

4.1.2 Compiler Differences
Compiler differences can exist for two reasons: differences between earlier and
current versions of compilers running on OpenVMS VAX and differences between
the DEC versions running on the VAX and Alpha computers. The OpenVMS
Alpha compilers are intended to be compatible with their OpenVMS VAX
counterparts. They include several qualifiers that contribute to compatibility,
as described in Section 4.2.2.

The languages conform to language standards and include support for most
OpenVMS VAX language extensions. The compilers produce output files with the
same default file types as they do on OpenVMS VAX systems, such as .OBJ for an
object module.

Note, however, that some features supported by the compilers on OpenVMS
VAX systems may not be available OpenVMS Alpha systems. For example,
the OpenVMS Alpha run-time libraries (RTLs) do not contain the routine
LIB$ESTABLISH, which the OpenVMS VAX RTLs contain. Due to the nature of
the OpenVMS Alpha calling standard, setting up condition handlers is done by
compilers.

For those programs that need to dynamically establish condition handlers, some
Alpha languages give special treatment for apparent calls to LIB$ESTABLISH
and generate the appropriate code without actually calling an RTL routine. The
following languages support LIB$ESTABLISH semantics in a compatible fashion
with the corresponding VAX language:

• DEC C and DEC C++

Although DEC C and DEC C++ for OpenVMS Alpha systems treat
LIB$ESTABLISH as a built-in function, the use of LIB$ESTABLISH is
not recommended on OpenVMS VAX or OpenVMS Alpha systems. C and C++
programmers should call VAXC$ESTABLISH instead of LIB$ESTABLISH
(VAXC$ESTABLISH is a built-in function on DEC C and DEC C++ for
OpenVMS Alpha systems).

• DEC Fortran

DEC Fortran allows declarations to LIB$ESTABLISH and converts them to
DEC Fortran RTL specific entry points.

• DEC Pascal

DEC Pascal provides the built-in routines, ESTABLISH and REVERT, to use
in place of LIB$ESTABLISH. If you declare and try to use LIB$ESTABLISH,
you will get a compile-time warning.

• MACRO–32

The MACRO–32 compiler will attempt to call LIB$ESTABLISH if it is
contained in the source code.

If MACRO–32 programs establish dynamic handlers by storing a routine
address at 0(FP), they will work correctly when compiled on an OpenVMS
Alpha system. However, you cannot set the condition handler address from
within a JSB (Jump to Subroutine) routine, only from within a CALL_ENTRY
routine.

4–4

Ensuring the Portability of Applications
4.1 How to Assess the Portability of an Application

If you are recompiling VAX C code, either an entire application or one or more
modules, you will want to pay particular attention to any external symbols that it
contains. Unlike the VAX C compiler which supports one external symbol model,
the DEC C compiler supports four models. The default external symbol that is
produced by the DEC C compiler is not the same as the single VAX C external
symbol.

Furthermore, when you link such code, due to changes in the linker, if you did
not specify the /SHARE qualifier when you recompiled the C code module, you
will need to specify a related linker qualifier.

For more information about compiler differences between OpenVMS VAX and
OpenVMS Alpha, refer to Migrating to an OpenVMS AXP System: Recompiling
and Relinking Applications. For more information about the compiler differences
for each language, refer to its documentation, especially the user’s guides and the
release notes. For more information about the linker, refer to Section 4.3.1.

4.2 Software Support for Portability
The OpenVMS Alpha operating system and many of the optional products it
supports, such as the DEC compilers and DECmigrate for OpenVMS AXP,
include features that contribute to portability. Some of the features are primarily
diagnostic while others compensate for architectural dependencies.

4.2.1 VAX MACRO–32 Compiler for OpenVMS Alpha
The VAX MACRO–32 Compiler for OpenVMS Alpha is used to convert existing
VAX MACRO code into machine code that runs on OpenVMS Alpha systems. It is
included with OpenVMS Alpha for that purpose.

While some VAX MACRO code can be compiled without any changes, most code
modules will require the addition of entry point directives. Many code modules
will require other changes as well.

The compiler generates code that is optimized for OpenVMS Alpha systems, but
many features of the VAX MACRO language that provide the programmer with a
high level of control make it more difficult to generate optimal code for OpenVMS
Alpha systems. For new program development for OpenVMS Alpha, Digital
recommends the use of mid- and high-level languages. For more information on
the MACRO–32 compiler, see Migrating to an OpenVMS AXP System: Porting
VAX MACRO Code.

4.2.2 Compiler Support
The DEC compilers can produce messages that are very useful for identifying
potential porting problems. For example, the MACRO–32 compiler provides the
/FLAG qualifier with 10 options. Depending on which options you include, the
compiler reports all unaligned stack and memory references, any run-time code
generation (such as self-modifying code), branches between routines, or several
other conditions.

The DEC Fortran compiler qualifier, /CHECK, produces messages about any of
the various options you specify.

Some compilers on OpenVMS Alpha systems support new features not supported
by their counterparts on OpenVMS VAX systems. To provide compatibility, some
compilers support compatibility modes. For example, the DEC C compiler for
OpenVMS Alpha systems supports a VAX C compatibility mode that is invoked
by specifying the /STANDARD=VAXC qualifier.

4–5

Ensuring the Portability of Applications
4.2 Software Support for Portability

In some cases, the compatibility is limited. For example, VAX C implements
built-in functions that allow access to special VAX hardware features. Since the
hardware architecture of VAX computers differs from Alpha computers, these
built-ins are not available in DEC C for OpenVMS Alpha systems even when the
/STANDARD=VAXC qualifier is used.

The compilers can also compensate for some architectural dependencies that
may exist in your code. For example, the MACRO–32 compiler provides the
/PRESERVE qualifier that can preserve granularity or atomicity or both.

The DEC C compiler provides a header file that defines macros for each data
type. These macros map a generic data-type name, such as int64, to the machine-
specific data type, such as -64. For example, if you must have a data type that is
64 bits long, use the int64 macro.

Review the documentation for your compiler to become familiar with all its
features that support portability.

4.2.3 DECmigrate for OpenVMS AXP
DECmigrate for OpenVMS AXP is used to translate images for which the
source code is not available. The VAX Environment Software Translator
(VEST) component of DECmigrate translates the VAX binary image file into
a native Alpha image. The translated image runs under the Translated Image
Environment (TIE) on an Alpha computer. (TIE is a shareable image that is
included with the OpenVMS Alpha operating system.) Translation does not
involve running an OpenVMS VAX image under emulation or interpretation (with
certain limited exceptions). Instead, the new OpenVMS Alpha image contains
Alpha instructions that perform operations identical to those performed by the
instructions in the original OpenVMS VAX image.

A translated image generally runs as fast on an Alpha computer as the original
image runs on a VAX computer. However, a translated image does not benefit
from the optimizing compilers that take full advantage of the Alpha architecture.
Therefore, a translated image typically runs about 25% to 40% as fast as a native
OpenVMS Alpha image. The primary causes for this reduced performance are
unaligned data and the extensive use of complex VAX instructions.

DECmigrate translation support is limited to the language features, system
services, and run-time library entry points that existed on OpenVMS VAX Version
5.5-2. This limitation and a method for overcoming it (in case your application
uses features introduced after the OpenVMS VAX Version 5.5-2 release) are
described in the OpenVMS Version 6.2 Release Notes.

A second function of DECmigrate is to analyze images to identify specific
incompatibilities for an Alpha computer. Depending on the type of incompatibility,
you can choose to specify a compiler qualifier that will compensate for the problem
or make changes to the code.

For more information on image translation and VEST, see DECmigrate for
OpenVMS AXP Systems Translating Images.

4–6

Ensuring the Portability of Applications
4.2 Software Support for Portability

4.2.4 PALcode
The Alpha architecture does not favor a particular operating system. To
accommodate different operating systems, it enables the creation of privileged
architecture library code (PALcode).

Furthermore, certain OpenVMS Alpha compilers, such as C and the MACRO–32
compiler, provide PALcode built-ins that supplement the instructions available in
the Alpha instruction set. For example, the MACRO–32 compiler provides built-
ins that emulate those VAX instructions for which there are no Alpha equivalents
and a built-in that enables you to write your own PALcode.

PALcode can be used to access internal hardware registers and physical memory.
PALcode can provide direct correspondence of physical and virtual memory. For
more information about PALcode, see the Alpha Architecture Reference Manual.

4.3 Differences in OpenVMS Alpha Programming
Differences in OpenVMS Alpha programming are discussed in this section.

4.3.1 Linker
Once you successfully recompile your source files, you must relink your
application to create a native Alpha image. The linker produces output files
with the same file types as on current VAX systems. For example, by default, the
linker uses the file type .EXE to identify image files.

Because the way in which you perform certain linking tasks is different on
OpenVMS Alpha systems, you will probably need to modify the LINK command
used to build your application. The following list describes some of these linker
changes that may affect your application’s build procedure. See the OpenVMS
Linker Utility Manual for more information.

• Declaring universal symbols in shareable images—If your application
creates shareable images, your application build procedure probably includes
a transfer vector file, written in VAX MACRO, in which you declare the
universal symbols in the shareable image. On OpenVMS Alpha systems,
instead of creating a transfer vector file, you must declare universal symbols
in a linker options file by specifying the SYMBOL_VECTOR= option.

• Linking against the OpenVMS executive—On OpenVMS VAX systems,
you link against the OpenVMS executive by including the system symbol
table file (SYS.STB) in your build procedure. On OpenVMS Alpha systems,
you link against the OpenVMS executive by specifying the /SYSEXE qualifier.

• Optimizing the performance of images—On OpenVMS Alpha systems,
the linker can perform certain optimizations that can improve the
performance of the images it creates. In addition, the linker can create
shareable images that can be installed as resident images, which enhances
performance.

• Processing shareable images implicitly—On OpenVMS VAX systems,
when you specify a shareable image in a link operation, the linker also
processes all the shareable images to which that shareable image was linked.
On OpenVMS Alpha systems, to include these shareable images in your build
procedure, you must explicitly specify them.

4–7

Ensuring the Portability of Applications
4.3 Differences in OpenVMS Alpha Programming

The linker supports several qualifiers and options, listed in Table 4–2, that are
specific to OpenVMS Alpha systems. Some linker options, listed in Table 4–3, are
not supported on OpenVMS Alpha systems.

Table 4–2 Linker Qualifiers and Options Specific to OpenVMS Alpha Systems

Qualifiers Description

/DEMAND_ZERO Controls how the linker creates demand-zero image
sections.

/DSF Directs the linker to create a file called a debug
symbol file (DSF) for use by the OpenVMS Alpha
System-Code Debugger.

/GST Directs the linker to create a global symbol table
(GST) for a shareable image (the default). More
typically specified as /NOGST when used to create
shareable images for run-time kits.

/INFORMATIONALS Directs the linker to output informational messages
during a link operation (the default). More typically
specified as /NOINFORMATIONALS to suppress
these messages.

/NATIVE_ONLY Directs the linker to not pass along the procedure
signature block (PSB) information, created by the
compilers, in the image it is creating (the default).

If /NONATIVE_ONLY is specified during linking, the
image activator uses the PSB information, if any,
provided in the object modules specified as input
files to the link operation to invoke jacket routines.
Jacket routines are necessary to allow native Alpha
images to work with translated VAX images.

/REPLACE Directs the linker to perform certain optimizations
that can improve the performance of the image it is
creating, when requested to do so by the compilers
(the default).

/SECTION_BINDING Directs the linker to create a shareable image that
can be installed as a resident image.

/SYSEXE Directs the linker to process the OpenVMS executive
image (SYS$BASE_IMAGE.EXE) to resolve symbols
left unresolved in a link operation.

Options Description

SYMBOL_TABLE= option Directs the linker to include global symbols as
well as universal symbols in the symbol table file
associated with a shareable image. By default, the
linker includes only universal symbols.

SYMBOL_VECTOR= option Used to declare universal symbols in Alpha shareable
images.

4–8

Ensuring the Portability of Applications
4.3 Differences in OpenVMS Alpha Programming

Table 4–3 Linker Options Specific to OpenVMS VAX Systems

Options Description

BASE= option Specifies the base address (starting address) that you
want the linker to assign to the image.

DZRO_MIN= option Specifies the minimum number of contiguous,
uninitialized pages that the linker must find in
an image section before it can extract the pages
from the image section and place them in a newly
created demand-zero image section. By creating
demand-zero image sections (image sections that do
not contain initialized data), the linker can reduce
the size of images.

ISD_MAX= option Specifies the maximum number of image sections
allowed in the image.

UNIVERSAL= option Declares a symbol in a shareable image as universal,
causing the linker to include it in the global symbol
table of a shareable image.

4.3.2 MACRO–64 Assembler for OpenVMS Alpha Systems
The MACRO–64 assembler for OpenVMS Alpha systems is the native assembler
for all Alpha computers. Unlike the VAX MACRO assembler which is included
with the OpenVMS VAX operating system, the MACRO–64 assembler is not
included with the OpenVMS Alpha operating system. It can be purchased
separately. In general, the mid- and high-level language compilers generate
higher performance code for OpenVMS Alpha systems than the MACRO–
64 assembler. Therefore, Digital recommends you use mid- and high-level
compilers for new program development for OpenVMS Alpha systems. For more
information about the MACRO–64 assembler, see MACRO–64 Assembler for
OpenVMS AXP Systems Reference Manual.

4.3.3 User-Written Device Drivers
Formal support for user-written device drivers and a new interface known as the
Step 2 driver interface were introduced in OpenVMS Alpha Version 6.1. The Step
2 driver interface supports user-written device drivers in the C programming
language. It replaced the temporary Step 1 driver interface that was provided in
OpenVMS Alpha Versions 1.0 and 1.5.

There is no formal support for writing OpenVMS VAX device drivers in C. For
example, OpenVMS VAX does not provide .h files for internal VMS (lib) data
structures.

The Step 2 driver interface has increased the differences between OpenVMS
Alpha and OpenVMS VAX device drivers. Device driver source files written in
VAX MACRO or Bliss can be kept common between OpenVMS Alpha and VAX
through the use of conditional compilation and user-written macros.

The advisability of this approach depends greatly on the nature of the individual
driver. It is likely that in future versions of OpenVMS Alpha, the I/O subsystem
will continue to evolve in directions that will have an impact on device drivers.
This could increase the differences between OpenVMS Alpha and VAX device
drivers and add more complexity to common driver sources. For this reason,
a fully common driver source file approach might not be advisable for the long
term.

4–9

Ensuring the Portability of Applications
4.3 Differences in OpenVMS Alpha Programming

Depending on the individual driver, it might be advisable to partition the driver
into a common module and an architecture-specific one. For example, if one
were writing a device driver that does disk compression, then the compression
algorithm could readily be isolated into an architecture independent module.
One could also avoid operating-system-specific data structures in such common
modules with the intent of having some common modules across various types of
operating systems; for example, OpenVMS, Windows NT, and OSF.

For more information about writing OpenVMS Alpha device drivers in C, see the
OpenVMS AXP Device Support: Developer’s Guide.

4.3.4 OpenVMS Debugger
On OpenVMS Alpha systems you can use the debugger with programs written in
the following DEC languages:

• Ada

• BASIC

• C

• C++

• COBOL

• Fortran

• MACRO–32 (compiled with the MACRO-32 compiler)

• MACRO–64

• Pascal

• DEC PL/I

The OpenVMS Debugger includes several features that address the architectural
differences of OpenVMS Alpha code. These enable you to more easily debug code
that you are porting to OpenVMS Alpha systems. For example, you can use the
/UNALIGNED_DATA qualifier with the SET command to cause the debugger to
break directly after any instruction that accesses unaligned data (such as a load
word instruction which accesses data that is not on a word boundary).

You can use the /RETURN qualifier with the SET command for any routine. It
is not limited to routines called with a CALLS or CALLG instruction as it is
on an OpenVMS VAX system. For more information about features specific to
OpenVMS Alpha systems, see the OpenVMS Debugger Manual.

4.3.5 Delta/XDelta Debugger
The Delta/XDelta Debugger (DELTA/XDELTA), running on OpenVMS Alpha
systems, provides enhancements to existing commands and several new
commands necessitated by the Alpha architecture. The enhancements include
the display of base registers in decimal instead of hexadecimal notation and the
ability to look at the internal process identification (PID) number of another
process. The new commands include ;Q, used to validate queues, and ;I, used
to locate and display information about the current main image. For the Delta
Debugger, the ;I command can also display information about all shareable
images activated by the current main image. For more information about
how the Delta/XDelta Debugger operates on OpenVMS Alpha systems, see the
OpenVMS Delta/XDelta Debugger Manual.

4–10

Ensuring the Portability of Applications
4.3 Differences in OpenVMS Alpha Programming

4.3.6 OpenVMS Alpha System-Code Debugger
The OpenVMS Alpha System-Code Debugger is available for debugging
nonpageable system code and device drivers running at any IPL. The OpenVMS
Alpha System-Code Debugger is a symbolic debugger. You can specify variable
names, routine names, and so on, precisely as they appear in your source code.
You can also display the source code where the software is executing and step
through it by source line.

You can use this debugger to debug code written in the following languages:

• C

• Bliss

• VAX MACRO

Note

A Bliss compiler is available on the OpenVMS Freeware CD that ships
with OpenVMS VAX Version 6.2 and OpenVMS Alpha Version 6.2.

The OpenVMS Alpha System-Code Debugger recognizes the syntax, data typing,
operators, expressions, scoping rules, and other constructs of a given language.
If your program is written in more than one language, you can change the
debugging context from one language to another during a debugging session.

For more information about Step 2 drivers and the OpenVMS Alpha System-Code
Debugger, see the OpenVMS AXP Device Support: Developer’s Guide.

4.3.7 System Dump Analyzer
The System Dump Analyzer (SDA) utility on OpenVMS Alpha systems is almost
identical to the utility provided on OpenVMS VAX systems. Most commands,
qualifiers, and displays are identical, although there are some additional
commands and qualifiers, including several for accessing functions of the Crash
Log Utility Extractor (CLUE) utility. Some displays have been adapted to show
information specific to OpenVMS Alpha systems, such as processor registers and
data structures.

While the SDA interface has changed only slightly, the contents of VAX and Alpha
dump files and the entire process of analyzing a system crash from a dump differ
significantly between the two computers. The Alpha execution paths leave more
complex structures and patterns on the stack than VAX execution paths do.

To use SDA on a VAX computer, you must first familiarize yourself with the
OpenVMS calling standard for VAX systems. Similarly, to use SDA on an Alpha
system, you must familiarize yourself with the OpenVMS calling standard for
Alpha systems before you can decipher the pattern of a crash on the stack.

The changes to SDA include the following:

The displays of the SHOW CRASH and SHOW STACK commands contain
additional information that make debugging fatal system exception bugchecks
simpler.

The SHOW EXEC command display includes additional information about
executive images if they were loaded using image slicing. Slicing is a
function performed by the executive image loader for executive images and by
the OpenVMS Install utility for user-mode images. Slicing an executive image

4–11

Ensuring the Portability of Applications
4.3 Differences in OpenVMS Alpha Programming

(or a user-mode image) greatly improves performance by reducing contention
for the limited number of translation buffer entries.

The MAP command, a new SDA command, enables you to map an address in
memory to an image offset in a map file.

A new symbol, FPCR, has been added to the symbol table. This symbol
represents a floating-point register.

4.3.8 Crash Log Utility Extractor
The Crash Log Utility Extractor (CLUE) is a tool for recording a history of
crash dumps and key parameters for each crash dump and for extracting and
summarizing key information. Unlike crash dumps, which are overwritten
with each system crash and are available only for the most recent crash, the
crash history file (on OpenVMS VAX) and the summary crash history file with a
separate listing file for each crash (on OpenVMS Alpha), are permanent records
of system crashes.

The implementation differences between OpenVMS VAX and OpenVMS Alpha
are shown in Table 4–4.

Table 4–4 CLUE Differences Between OpenVMS VAX and OpenVMS Alpha

Attribute OpenVMS VAX OpenVMS Alpha

Access method Invoked as a separate utility. Accessed through SDA.

History file A cumulative file that contains a
one-line summary and detailed
information from the crash dump
file for each crash.

A cumulative file that contains only
a one-line summary for each crash
dump. The detailed information
for each crash is put in a separate
listing file.

Uses in addition
to debugging
crash dumps

None. CLUE commands can be used
interactively to examine a running
system.

Documentation OpenVMS System Manager’s
Manual and OpenVMS System
Management Utilities Reference
Manual

OpenVMS System Manager’s
Manual and OpenVMS AXP
System Dump Analyzer Utility
Manual

4.3.9 Mathematics Libraries
Mathematical applications using the standard VMS call interface to the
OpenVMS Mathematics (MTH$) Run-Time Library (RTL) need not change their
calls to MTH$ routines when migrating to an OpenVMS Alpha system. Jacket
routines are provided that map MTH$ routines to their math$ counterparts in
the Digital Portable Mathematics Library (DPML) for OpenVMS Alpha systems.
However, there is no support in the DPML for calls made to JSB routine entry
points and vector routines. Note that DPML routines are different from those in
the OpenVMS MTH$ RTL, and you should expect to see small differences in the
precision of the mathematical results.

To maintain compatibility with future libraries and to create portable
mathematical applications, Digital recommends that you use the DPML routines
available through the high-level language of your choice (for example, DEC
Fortran or DEC C) rather than using the call interface. Significantly higher
performance and accuracy are also available to you with DPML routines.

4–12

Ensuring the Portability of Applications
4.3 Differences in OpenVMS Alpha Programming

For more information about the DPML routines, see the Digital Portable
Mathematics Library manual.

4.3.10 Determining the Host Architecture
Your application may need to determine whether it is running on an OpenVMS
VAX system or an Alpha system. From within your program, you can obtain
this information by calling the $GETSYI system service (or the LIB$GETSYI
RTL routine), specifying the ARCH_TYPE item code. When your application is
running on a VAX computer, the $GETSYI system service returns the value 1.
When your application is running on an Alpha computer, the $GETSYI system
service returns the value 2.

Example 4–1 illustrates how to determine the host architecture in a DCL
command procedure by calling the F$GETSYI lexical function and specifying the
ARCH_TYPE item code. For an example of calling the $GETSYI system service
in an application to determine the page size of an Alpha computer, see Migrating
to an OpenVMS AXP System: Recompiling and Relinking Applications.

Example 4–1 Using the ARCH_TYPE Keyword to Determine Architecture Type

$! Determine architecture type
$ type_symbol = f$getsyi("arch_type")
$ if type_symbol .eq. 1 then goto ON_VAX
$ if type_symbol .eq. 2 then goto ON_ALPHA
$ ON_VAX:
$!
$! Do VAX-specific processing
$!
$ exit
$ ON_ALPHA:
$!
$! Do ALPHA-specific processing
$!
$ exit

Note, however, that the ARCH_TYPE item code is available only on VAX
computers running OpenVMS VAX Version 5.5 or later. If your application needs
to determine the host architecture for earlier versions of the operating system,
use one of the other $GETSYI system service item codes listed in Table 4–5.

Table 4–5 $GETSYI Item Codes That Specify Host Architecture

Keyword Usage

ARCH_TYPE Returns 1 on a VAX computer; returns 2 on an Alpha computer.
Supported on Alpha computers and on VAX computers running
OpenVMS VAX Version 5.5 or a later version.

ARCH_NAME Returns text string ‘‘VAX’’ on VAX computers and text string ‘‘Alpha’’
on Alpha computers. Supported on Alpha computers and on VAX
computers running OpenVMS VAX Version 5.5 or a later version.

HW_MODEL Returns an integer that identifies a particular hardware model. All
values equal to or larger than 1024 identify Alpha computers.

CPU Returns an integer that identifies a particular CPU. The value 128
identifies a system as ‘‘not a VAX.’’ This code is supported on much
earlier versions of VMS than the ARCH_TYPE and ARCH_NAME
codes.

4–13

Ensuring the Portability of Applications
4.3 Differences in OpenVMS Alpha Programming

4.3.11 Uncovering Latent Bugs
Despite your best efforts, and following all the previous suggestions, you may
encounter bugs that were in your program all along, but never caused a problem
on an OpenVMS VAX system. For example, a failure to initialize some variable
in your program might have been benign on a VAX computer but could produce
an arithmetic exception on an Alpha computer. The same could be true moving
between any other two architectures, because the available instructions and the
way compilers optimize them is bound to change. There is no magic answer for
bugs that have been in hiding, but you should test your programs after porting
them before making them available to other users.

4.4 Application Compatibility with Future OpenVMS Alpha
Releases

Programs that run on OpenVMS Alpha systems will continue to run unmodified
on future OpenVMS Alpha releases, except for those programs that use inner
modes or are linked against the system symbol table. As on OpenVMS VAX
systems, you will need to recompile and relink any programs that use inner
modes or are linked against the system symbol table for them to run on future
OpenVMS Alpha releases.

4.5 Guidelines for Developing Applications for OpenVMS VAX and
OpenVMS Alpha

The following guidelines are provided to facilitate the development of applications
intended to run on both OpenVMS VAX systems and OpenVMS Alpha systems:

1. Familiarize yourself with the changes and the new features of the DEC
compiler that you will use. For example:

• If you are writing any C code with external symbols, familiarize yourself
with the changes in DEC C to coding external symbols and compiling
such code.

• If your program needs to dynamically establish condition handlers,
you may need to make some changes to your code, as described in
Section 4.1.2.

2. Write your code in mid- or high-level languages whenever possible.

3. Follow good programming practices for program modularity.

4. Avoid creating any VAX architectural dependencies in your code. One area
that can be troublesome is that of shared memory. The VAX architecture
makes certain implicit guarantees about synchronization. If a program
requires the same synchronization on the Alpha architecture, it must request
it explicitly. This potential problem and others are briefly described in
Section 4.1.1. For more information, see Migrating to an OpenVMS AXP
System: Recompiling and Relinking Applications and the user’s guide for the
compiler you will use.

If you cannot avoid relying on the VAX architecture for one or more
operations, conditionalize your code for each architecture, as shown in
Example 4–1.

5. Familiarize yourself with the differences between the linker on OpenVMS
VAX and the linker on OpenVMS Alpha. Some of the differences are described
in Section 4.3.1.

4–14

Ensuring the Portability of Applications
4.5 Guidelines for Developing Applications for OpenVMS VAX and OpenVMS Alpha

6. Examine your OpenVMS VAX build procedures and note what changes may
be necessary for recompiling and relinking on an OpenVMS Alpha system.

7. Do not use OpenVMS VAX features that are not yet supported by the
OpenVMS Alpha operating system. If in doubt, check with your Digital
account representative or authorized reseller.

8. Use at least aligned longwords for in-memory data structures wherever
possible. This has always been more efficient on VAX computers. On Alpha
computers, the performance difference becomes even greater.

4.6 Guidelines for Developing Applications for Mixed-Architecture
VMScluster Systems

These guidelines are provided to facilitate the evaluation and modification, if
necessary, of applications intended to run in a mixed-architecture VMScluster
system.

A basic assumption about applications running in a mixed-architecture
VMScluster system is that they should work just as they do in a single-
architecture VMScluster or VAXcluster system. VMScluster components, such
as the lock manager, RMS, and the connection manager, behave the same in a
mixed-architecture VMScluster as they do in a single-architecture VMScluster or
VAXcluster system.

Most OpenVMS VAX applications require some migration work to run on an
Alpha computer. The exceptions are the few applications that utilize only simple
DCL commands, that is, they do not run any application images. In general, you
need to at least recompile and relink your application so that it will run on an
Alpha computer.

For an application to work in a mixed-architecture VMScluster system, consider
the following aspects of an application:

• User interface

• System management interface

• Interactions between the application executing on VAX and Alpha nodes

File format compatibility

Data packing

Data-type selection

Buffer size

Data access and locking

• Missing features

Neither users nor system managers should notice a difference in the behavior
of the application, regardless of whether the node in a VMScluster system is
a VAX or an Alpha computer. Users should expect to see better application
performance on OpenVMS Alpha systems. System managers should expect to
maintain architecture-specific copies of image files. Other differences should be
minimized.

4–15

Ensuring the Portability of Applications
4.6 Guidelines for Developing Applications for Mixed-Architecture VMScluster Systems

Application compatibility with mixed-architecture VMScluster systems can vary,
depending on the degree of differences visible to users and system managers.
The following sections should help you determine how well your application will
function in a mixed-architecture VMScluster environment and what modifications
may be necessary.

4.6.1 User Interface
User interfaces for a given application should be identical on both VAX and Alpha
nodes. At a minimum, one implementation of the user interface should be a
subset of the other. In addition, the differences may need to be noted in user
documentation.

4.6.2 System Management
The system management aspects of an application pertain to the similarity of the
installation and licensing mechanisms on both VAX and Alpha. The goal for the
application developer is to minimize the work required for managing different
architectural versions of applications that are running in the mixed-architecture
VMScluster system.

4.6.3 File Format Compatibility
It is important to clearly differentiate between two kinds of files—image files
(including shareable images (.EXE)) and application data files. Image files cannot
be activated across architectures. An image built for VAX will run only on a VAX
computer and an image built for Alpha will run only on an Alpha computer. If an
application kit is to be shared by Alpha and VAX systems, it must either contain
separate images for each platform, perform the link during the installation, or
use DECmigrate for OpenVMS Alpha Systems to translate the application. Note
that DECmigrate is an optional product, released separately from the OpenVMS
VAX operating system.

A common kit will probably need conditional statements for linking, as the
process for linking shareable images differs between VAX and Alpha systems.
F$GETSYI (‘‘ARCH_TYPE’’) can be used from DCL, as described in Section 4.3.10.

Applications should be able to share data files across the Alpha and VAX
systems; doing so is usually required for the application to run properly in a
mixed-architecture VMScluster environment.

Note

If full data file compatibility cannot be achieved, applications should
ensure that the incompatible format is recognized by both types of
systems and an error message is issued.

4.6.4 Data Packing
Aligned data can provide significant performance improvements on VAX systems
(up to 4 times faster) and on Alpha systems (up to 100 times faster). Unaligned
data was typical on older VAX systems where minimal consumption of memory
was very important and data was packed tightly together, ignoring alignment
issues.

If you share data between Alpha and VAX systems, avoid unaligned data
structures. Use at least longword alignment for in-memory data structures
whenever possible; quadword alignment is preferred, if possible.

4–16

Ensuring the Portability of Applications
4.6 Guidelines for Developing Applications for Mixed-Architecture VMScluster Systems

If you have a real-time application or an application that exhibits poor file I/O
characteristics and shares data through a file, you may find it advantageous to
align the file data structures.

For more information, see OpenVMS Compatibility Between VAX and Alpha and
Migrating to an OpenVMS AXP System: Recompiling and Relinking Applications.

4.6.5 Data-Type Selection
Check to see if your application depends on the size or bit representation of
an underlying data type. Ideally, all data accessed by different nodes in the
VMScluster system should have the identical format on VAX and Alpha nodes.
Examples include the following:

• Only ASCII, integer, or F and G VAX floating-point data formats are used in
files (no H_float, no IEEE float, no machine instructions).

For Fortran, this can be relaxed, since Fortran provides run-time support
for automatic conversion between floating-point types via the /CONVERT
compiler qualifier, and so forth.

• All structures stored in files are equally aligned for VAX and Alpha systems.

Different data formats can be used if format translation is transparent to the
user.

Support for floating-point data types differs between OpenVMS VAX and
OpenVMS Alpha systems, as shown in Table 4–1.

You may want to use the IEEE floating-point formats on Alpha systems for
coexistence with other open systems. However, using the IEEE floating-point
formats may impede mixed-architecture VMScluster interoperability, because the
T, S, and X IEEE floating-point data types are not supported on VAX systems.

For Fortran programs, this is not a major obstacle because of the /CONVERT
compiler qualifier or the CONVERT= option on OPEN statements. For C
programs, the automatic conversion of binary floating-point data in files is not
possible, so this is an issue.

If your VAX application requires full 56-bit precision, that is, the D56_float data
type, or if it requires the H_float data type, you can translate your image with
DECmigrate. Because a translated image runs significantly slower than a native
Alpha image, isolate the set of routines requiring 56-bit D_float precision or the
H_float data type into its own small image for translation, and run the rest of the
application native.

If your application contains data types that are not supported on OpenVMS
Alpha, you can make the changes that are appropriate for it (either translation
or recoding). You can then port your application to OpenVMS Alpha systems and
share data between Alpha and VAX systems in a mixed-architecture VMScluster
system. For more information about translation support, see the Section 4.2.3.
For more information about supported data types, see the documentation for the
compiler you are using.

4.6.6 Buffer Size
If you need to make changes to your code, such as aligning data structures
and using different data types, you will need to review the buffer sizes in your
application. Such changes generally require larger buffers.

4–17

Ensuring the Portability of Applications
4.6 Guidelines for Developing Applications for Mixed-Architecture VMScluster Systems

4.6.7 Data Access and Locking
Data access is synchronized using the same resource names and locking
sequences on VAX and Alpha nodes. This is not new for mixed-architecture
VMScluster systems, since the need to ensure resource naming conventions
is standard for VMScluster systems today. However, you should test your
application to ensure correct operation.

4.6.8 Missing Features
Check your application for dependencies on features that might not exist on the
target system (see Chapter 1). Also, check your application for dependencies on
features provided by middleware applications that might not exist on the target
system. Because a feature or application may not be available on both platforms,
using the feature or application in a mixed-architecture VMScluster system could
yield unanticipated results.

4.7 Application Compatibility Checklist
Use the following checklist to determine how well your application will work in a
mixed-architecture VMScluster environment.

1. User Interface

Does the application present the same user interface on both
architectures?

• If not, is one interface an easily described subset of the other?

Does the application use the same documentation on both architectures?

Are user interface differences documented for the user?

Are error messages the same across the architectures for the same error
condition?

2. System Management

Are version numbers for feature-compatible versions identical for both
architectures?

Is a single version of the License Management Facility (LMF) possible?
Can both the VAX and Alpha versions of the application run using
comparable licensing mechanisms? There should not be a requirement
that the application use LMF Version 1.x on a VAX system and a different
LMF version on an Alpha system.

Are separate installations required for each architecture?

Does the application use the same installation procedure and
documentation?

Does the application work across architectures without additional system
management steps?

Does the application present comparable failure scenarios and recovery
capabilities on both architectures?

3. File Format Compatibility

Are all files associated with the application accessible and used equally on
each architecture? Remember that object and image libraries and image
files are different between VAX and Alpha systems. (Other library types,
such as .TLB and .HLB, do not present a problem. They are the same.)

4–18

Ensuring the Portability of Applications
4.7 Application Compatibility Checklist

Can files that do not contain machine instructions be used equally on
either architecture?

• Is full compatibility the default or is user action required?

• How does the application manage differences in file formats?

• If your application does not allow files to be shared, does it
recognize an incompatible file format and present a suitable warning
message?

4. Data Packing

Does your application use unaligned data structures?

• If so, what is the performance impact for your application?

5. Data-Type Selection

Does your product use D56_float or H_float on VAX?

• If so, what is the performance impact if you use the emulation
routines that provide full D56_float or full H_float support?

• What is the precision-loss impact if you replace D56_float with D53_
float?

6. Buffer Size

Will you need to change the alignment of any data structures or any data
types in your application?

• If so, what are the implications on buffer size?

7. Data Access and Locking Compatibility

Does your product provide compatibility of resource names?

Does your product provide compatibility of locking sequences?

8. Missing Features

Does your product utilize features that are only available on one platform?

Are you documenting these differences to your users so they will know
what will work in a mixed-architecture VMScluster?

4–19

A
DCL Differences

A.1 DIGITAL Command Language (DCL)
The DIGITAL Command Language (DCL), the standard user interface to
OpenVMS, remains essentially unchanged with OpenVMS Alpha. All commands
and qualifiers available on OpenVMS VAX are also available on OpenVMS Alpha,
except for a few, as shown in Table A–1.

Because of architectural differences between VAX and Alpha computers, some
differences exist in the implementation of DCL commands, qualifiers, and lexical
functions. These differences are noted in Table A–1.

Note

The RECALL command and the SET HOST/LAT command achieved
functional equivalence with the release of OpenVMS VAX Version 6.2 and
OpenVMS Alpha Version 6.2.

Table A–1 DCL Differences Between OpenVMS VAX and OpenVMS Alpha

Command/Qualifier On VAX On Alpha

ANALYZE/IMAGE System versions displayed are the
versions of the system symbol table,
the image that is linked against the
executive.

System versions displayed are the
versions of the system shareable
image, the image that is linked against
the executive.

Cannot analyze an OpenVMS Alpha
image.

Can analyze both OpenVMS Alpha and
OpenVMS VAX images.

ANALYZE/PROCESS You use the OpenVMS Debugger to
analyze the dumped image.

In some cases, you cannot use the
OpenVMS Debugger, such as when
the dumped image’s PC is set to an
invalid address. Instead, you can use
the Delta Debugger.

CLUE Invokes CLUE. CLUE commands are accessed through
SDA. For more information, see
Section 4.3.8.

DIAGNOSE Not available; under investigation. Invokes the DECevent utility and
selectively reports the contents of one
or more event log files.

(continued on next page)

A–1

DCL Differences
A.1 DIGITAL Command Language (DCL)

Table A–1 (Cont.) DCL Differences Between OpenVMS VAX and OpenVMS Alpha

Command/Qualifier On VAX On Alpha

FONT Converts an ASCII bitmap
distribution format (BDF) into binary
server natural form (SNF).

Converts an ASCII bitmap distribution
format (BDF) into binary portable
compiled format (PCF).

INITIALIZE
/STRUCTURE=level

Supports Files–11 On-Disk Structure
Level 1 Disks.

Does not support Files–11 On-Disk
Structure Level 1 Disks.

MACRO/ALPHA Not available. Invokes the native MACRO–64
assembler, if installed. For more
information, see Section 4.3.2.

MACRO/MIGRATION Not available. Invokes the MACRO–32 compiler. For
more information, see Section 4.2.1.

PATCH Invokes the Patch utility. Not available; limited functionality
under investigation.

SET HOST/DUP Commands for installing FYDRIVER
differ from those used on Alpha.

Commands for installing FYDRIVER
differ from those used on VAX.

SET PASSWORD The random password generator
differs from that on Alpha. One
difference is that the passwords
presented on VAX are hyphenated.

The random password generator
presents passwords that are not
hyphenated. For more information,
see Section 1.3.9.

SET TERMINAL
/PROTOCOL=DDCMP

Controls whether the terminal
port specified is changed into an
asynchronous DDCMP line.

Not available.

SET TERMINAL
/SWITCH=DECNET

Causes the terminal lines at
each node to be switched to
dynamic asynchronous DDCMP
lines when specified with the
/PROTOCOL=DDCMP qualifier.

Not available.

SHOW MEMORY/GH_
REGIONS

Not available. Displays information about the
granularity hint regions (GHR) that
have been established.

SHOW MEMORY
dynamic memory
parameter

Each dynamic memory area displayed
in bytes and pages.

Each dynamic memory area displayed
in pagelets.

Working set qualifiers
such as /WSDEFAULT,
/WSEXTENT, and
/WSQUOTA

Specified in units of 512-byte pages Specified in units of 512-byte pagelets,
rounded to the nearest CPU-specific
page. For more information, see
Section 1.4.1.6.

(continued on next page)

A–2

DCL Differences
A.1 DIGITAL Command Language (DCL)

Table A–1 (Cont.) DCL Differences Between OpenVMS VAX and OpenVMS Alpha

Lexical Functions On VAX On Alpha

F$CONTEXT Base priority valid range 0–31. Base priority valid range 0–63.

F$GETSYI For CPU, the integer that identifies
the processor type is stored in the
processor’s system identification (SID)
register.

For CPU, the integer that identifies
the processor type is stored in the
hardware restart parameter block
(HWRPB).

Not available For CONSOLE_VERSION, returns
the console firmware version of your
system.

For HW_MODEL, the integer that
identifies the model type is less than
or equal to 1023

For HW_MODEL, the integer that
identifies the model type is greater
than 1023

Not available For PALCODE_VERSION, returns
the PALcode (privileged architecture
library) version of your system.

A–3

Index

A
Ada, 1–10
Aliases

See Cluster aliases
Alpha Applications Catalog, 1–9, 3–3
Alpha Migration Centers (AMCs)

See Technical support centers
Alpha Resource Centers (ARCs)

See Technical support centers
ANALYZE/ERROR (ERF) utility

in mixed-architecture VMScluster system, 2–10
ANALYZE/IMAGE command, A–1
ANALYZE/IMAGE utility

in mixed-architecture VMScluster system, 2–10
ANALYZE/PROCESS command, A–1
Application compatibility

in mixed-architecture VMScluster system, 4–18
nonprivileged applications, 4–14
privileged applications, 4–14
with future OpenVMS Alpha releases, 4–14

Applications
assessing portability, 4–1
available third-party, 3–3
catalog, 3–3
Digital, 3–3
for mixed-architecture VMScluster systems,

4–15
guidelines for new program development, 4–14
mixing native Alpha and translated images,

3–8
recompiling and relinking documentation, 3–9
VAX dependency checklist, 4–2

Architecture
atomic operations, 1–9
CISC, 1–9
dependencies, 4–2
differences, 1–9
RISC, 1–9
semantic guarantees, 1–9

ARCH_NAME keyword
determining host architecture, 4–13

ARCH_TYPE keyword
determining host architecture, 4–13

Assemblers
MACRO–64, 1–10

AST routine, 1–9
parameter list dependence, 4–3

AUTOGEN.COM command procedure, 1–5
Availability of products

base operating system features, 3–1
Digital optional software products, 3–3
third-party applications, 3–3

B
Backup operations, 1–5
BASIC, 1–10
Buffer size

in mixed-architecture VMScluster system,
4–17, 4–19

Buffer sizes, 4–2
Bugs

latent, 4–14
Bus support, 2–3

C
C, 1–10

header files for defining macros, 4–6
LIB$ESTABLISH, 4–4

C++, 1–10
C2 security

features, 1–7
Card reader driver, 1–7
Catalog

optional software products, 1–9
third-party applications, 1–9

Checklist
application compatibility in mixed-architecture

VMScluster system, 4–18
CISC architecture, 1–9
CLUE (Crash Log Utility Extractor)

See Crash Log Utility Extractor
Cluster aliases

supported with DECnet on OpenVMS Alpha
systems, 2–6

COBOL, 1–10
Command procedures, 1–2

system startup on OpenVMS Alpha, 1–6
system startup on OpenVMS VAX, 1–6

Index–1

Compatibility of images
mixing native and translated images, 3–8

Compilers, 1–10
architectural differences, 4–6
Bliss, 1–10, 4–11
DEC Ada, 1–10
DEC BASIC, 1–10
DEC C, 1–10
DEC C++, 1–10
DEC COBOL, 1–10
DEC Fortran, 1–10
DEC OPS5, 1–10
DEC Pascal, 1–10
DEC PL/I, 1–10
differences, 4–4
MACRO–32, 1–10
PALcode built-ins, 4–7
use of LIB$ESTABLISH, 4–4

Condition handlers, 4–2
establishing dynamic, 4–4

Configuring the DECnet database, 2–6
CPU keyword

determining the host architecture, 4–13
Crash Log Utility Extractor (CLUE), 1–11, 4–12,

A–1

D
Data

shared access, 4–2
Data access

synchronization in mixed-architecture
VMScluster system, 4–18, 4–19

Databases
on OpenVMS Alpha systems, 1–2, 3–4

Data packing, 4–2
Data types

compatibility in mixed-architecture VMScluster
system, 4–17, 4–19

D_float floating-point, 1–12
G_float floating-point, 1–12
H_float floating-point, 1–12, 4–2
not supported, 1–12

DCL (DIGITAL Command Language), 1–2, A–1
help, 1–2

Debugger
Delta/XDelta, 1–11, 4–10
differences, 1–11
OpenVMS, 1–11, 4–10
OpenVMS Alpha System-Code, 1–11, 4–11

DEC Ada
See Ada

DEC BASIC
See BASIC

DEC C
See C

DEC C++
See C++

DEC COBOL
See COBOL

DECevent utility, 1–8, A–1
DECforms, 1–2
DEC Fortran

See Fortran
DECmigrate for OpenVMS AXP, 1–4, 1–10, 1–12

documentation, 3–9
vector instructions, 1–12

DECnet/OSI, 2–1
features, 2–7

DECnet for OpenVMS, 2–1
cluster alias supported, 2–6
DECnet object, 2–6
Phase IV, 2–1

DECnet Phase V
See DECnet/OSI

DECnet Test Sender/DECnet Test Receiver utility
(DTS/DTR), 2–6

DECnet–VAX, 2–1
DEC OPS5

See OPS5
DEC Pascal

See Pascal
DEC PL/I

See PL/I
DEC Rdb for OpenVMS

See Rdb
DEC TCP/IP Services for OpenVMS

See TCP/IP Services for OpenVMS
DECwindows Motif software, 1–3
DEC X.25 Client for OpenVMS AXP

See X.25 support
Delta/XDelta Debugger (DELTA/XDELTA)

differences, 1–11
OpenVMS Alpha, 4–10

Device drivers
debugging, 4–11
documentation, 3–10
Step 1 interface, 4–9
Step 2 interface, 4–9
user-written, 1–10, 4–9
written in C, 4–9

Diagnostic features
compilers, 4–5
VEST, 4–5

Digital home page, 3–8
Digital Learning Services Internet Catalog, 3–8
Digital Portable Mathematics Library

See DPML
Digital writers

sending comments to, iv

Index–2

Disk quotas, 1–4
DNA

Reference Model, 2–8
Documentation

how to order, 3–10
sending comments to Digital writers, iv

Downline loading, 2–6
DPML (Digital Portable Mathematics Library)

compatibility, 4–12
DTS/DTR (DECnet Test Sender/DECnet Test

Receiver utility)
See DECnet Test Sender/DECnet Test Receiver

utility
Dump files

See System dump files
DVNETEND PAK

DECnet end-node license, 2–6
DVNETEXT PAK

DECnet for OpenVMS Alpha extended license,
2–7

DVNETRTG PAK
DECnet for OpenVMS VAX routing license, 2–7

Dynamic load balancing
See MSCP dynamic load balancing

D_float floating-point data type, 1–12

E
Editors

OpenVMS Alpha, 1–3
OpenVMS VAX, 1–3

End-user’s environment
OpenVMS Alpha, 1–2
OpenVMS VAX, 1–2

ERF
See ANALYZE/ERROR utility, 2–10

Ethernet monitor (NICONFIG), 2–6
Event logging, 2–6
Executive images

slicing, 4–11

F
F$CONTEXT, A–2
F$GETSYI, A–3
F$GETSYI lexical function

to identify target system, 4–16
FAL (file access listener)

on Alpha, 2–6
Fastboot, 1–9
FDDI (Fiber Distributed Data Interface)

support on Alpha, 2–7
Feedback on documentation

sending comments to Digital writers, iv
Fiber Distributed Data Interface (FDDI)

See FDDI

File access listener
See FAL

File format
compatibility in mixed-architecture VMScluster

system, 4–16, 4–18
File names

changes, 1–6
File transfers

DECnet network, 2–1
TCP/IP network, 2–2
with FAL, 2–6

File types
on Alpha systems, 4–7

FONT command, A–1
Fonts

scalable, 1–3
Fortran, 1–10

/CHECK qualifier, 4–5
LIB$ESTABLISH, 4–4

FYDRIVER
installing, A–2

G
$GETSYI system service

determining host architecture, 4–13
Guidelines

application development for mixed-architecture
VMScluster systems, 4–15

new program development, 4–14
G_float floating-point data type, 1–12

H
Heap Analyzer, 1–11
Help

DCL, 1–3
messages, 1–3

Help Message utility (MSGHLP), 1–3
HW_MODEL keyword

determining the host architecture, 4–13
H_float floating-point data type, 1–12, 4–2

I
I/O subsystem

configuration commands, 1–5
Image compatibility

mixing native and translated images, 3–8
Images

creating, 4–7
INITIALIZE/STRUCTURE command, A–2
Interconnect support, 2–4
Internet

accounts for Alpha systems, 3–10
Alpha Applications Catalog, 3–3
Digital Learning Services catalog, 3–8

Index–3

Interoperability
in mixed-architecture VMScluster system, 4–15
of native Alpha and translated images, 3–8
on a network, 2–1

Investment protection
hardware, 3–7
software, 3–7

L
Lexical functions, A–2
LIB$ESTABLISH, 4–4
Librarian utility (LIBRARIAN)

differences, 1–11
Lineage

OpenVMS Alpha operating system, 1–1
Linker, 1–11

differences, 1–11
features specific to OpenVMS Alpha, 1–11, 4–8

Linking
creating native Alpha images, 4–7

Locking
synchronization in mixed-architecture

VMScluster system, 4–18, 4–19
Logging events, 2–6
Logins

remote, 2–2
TCP/IP network, 2–2

Loopback mirror testing, 2–6

M
MACRO–32 compiler, 1–10, 4–5

documentation, 3–9
MACRO–64 assembler, 1–10, 4–9
MACRO/ALPHA command, A–2

See also MACRO–64 assembler
MACRO/MIGRATION command, A–2

See also MACRO–32 compiler
Maintenance procedure

menu-driven, 1–5
Mathematic routines

compatibility, 4–12
Migration

application paths, 3–7
documentation, 3–9
software, 3–8
training, 3–8

Mixing native Alpha and translated images
as a stage in migration, 3–8
possibility of, 3–8

MONITOR POOL command, 1–5
Monitor utility (MONITOR), 2–9
MSCP dynamic load balancing, 1–8
MTH$ routines

compatibility, 4–12

N
NETCONFIG.COM command procedure, 2–7
NETCONFIG_UPDATE.COM command procedure,

2–6
Network management tasks

differences on Alpha and VAX systems, 2–6
DECnet/OSI for OpenVMS, 2–1
routing support, 2–7

similarities on Alpha and VAX systems, 2–6
configuring the DECnet database, 2–6
DECnet cluster alias, 2–6
DECnet objects and associated accounts,

2–6
downline loading, 2–6
DTS/DTR, 2–6
DVNETEND end-node license, 2–6
end-node support, 2–7
Ethernet monitor (NICONFIG), 2–6
Ethernet support, 2–7
event logging, 2–6
FDDI support, 2–7
file access listener, 2–6
file transfer, 2–6
loopback mirror testing, 2–6
NETCONFIG.COM, 2–7
NETCONFIG_UPDATE.COM, 2–6
network size, 2–6
node name rules, 2–6
SET HOST capabilities, 2–6
starting network access, 2–6
STARTNET.COM, 2–6
task-to-task communications, 2–6
upline dump, 2–6

Networks
file transfers on TCP/IP, 2–2
interfaces, 2–2
protocols, 2–2
size

comparison on Alpha and VAX systems,
2–6

starting access procedure, 2–6
NICONFIG

Ethernet monitor, 2–6
Node names

rules, 2–6

O
OpenVMS Alpha operating system

diagnostic features, 4–5
lineage, 1–1
portability features, 4–5

OpenVMS Alpha System-Code Debugger, 4–11
OpenVMS Debugger

See Debugger

Index–4

OpenVMS Mathematics Run-Time Library
compatibility, 4–12

OPS5, 1–10
Optional software products

catalog, 1–9
startup procedures that include, 1–9

Order information
documentation, 3–10
migration training, 3–8

P
Pagelets

size, 1–6
Pages

in a VMScluster system, 1–6
size, 1–6

PAKs (Product Authorization Keys)
DVNETEND DECnet end-node license on Alpha

and VAX systems, 2–6
DVNETEXT DECnet for OpenVMS Alpha

extended license, 2–7
DVNETRTG DECnet for OpenVMS VAX routing

license, 2–7
PALcode (privileged architecture library), 4–7
Pascal

LIB$ESTABLISH, 4–4
Password generators, 1–3
Passwords

on OpenVMS Alpha, 1–3
PATCH command, A–2
Patch utility (PATCH), 1–7, 1–9
PCSI (POLYCENTER Software Installation utility)

See POLYCENTER Software Installation utility
Performance

of translated images, 4–6
PL/I, 1–10
POLYCENTER Software Installation utility, 1–5
Porting checklist, 4–2
Process identifiers

limit in mixed-version VMScluster system, 2–9
Processor type identifier

Alpha, A–3
VAX, A–3

Programming environment
differences on Alpha and VAX, 1–12
similarities on Alpha and VAX, 1–12

Protocols, 2–2

Q
Quotas

process, 1–6

R
Remote monitoring

mixed-version VMScluster systems, 2–9
Remote nodes

monitoring, 2–9
monitoring in a VMScluster system, 2–9

Restore operations, 1–5
RISC architecture, 1–9

S
SDA

See System Dump Analyzer utility
Security features, 1–7
Sending comments to Digital writers, iv
SET HOST command, A–2

on OpenVMS Alpha systems, 2–6
SET PASSWORD command, A–2

See also Password generator
SET TERMINAL command, A–2
Shadow sets

dump file failover, 1–8
SHOW MEMORY command, 1–5, A–2
Sliced images, 4–11
Snapshot facility (Snapshot), 1–8, 1–9
Standalone Backup utility, 1–5
Starting network access, 2–6
STARTNET.COM command procedure, 2–6
Symbol vectors

declaring universal symbols, 4–7
SYSGEN (System Generation utility)

See System Generation utility
SYSMAN (System Management utility)

See System Management utility
System Dump Analyzer utility (SDA)

differences, 1–11
SHOW POOL command, 1–5

System Dump Analyzer utility(SDA)
OpenVMS Alpha, 4–11

System dump files
analyzing, 4–11
off the system disk, 1–8
shadowing failover, 1–8

System Generation utility (SYSGEN), 1–5
System management differences on Alpha and

VAX systems
availability of optional software products, 1–9
disk quotas, 1–4
file names, 1–6
I/O commands in SYSMAN, 1–5
MONITOR POOL command, 1–5
page size, 1–6
Patch utility, 1–7
VMScluster support, 1–7

Index–5

System management similarities on Alpha and
VAX systems, 1–3

System Management utility (SYSMAN), 1–5

T
Task-to-task communications, 2–6
TCP/IP Services for OpenVMS, 2–1, 2–2, 2–3, 2–4
Technical support centers, 3–7
Training

migration, 3–8
Translated images

performance of, 4–6

U
UCX

See TCP/IP Services for OpenVMS
Unaligned data

reduced performance, 4–6
Upline dumping, 2–6
User environment

OpenVMS Alpha, 1–2
OpenVMS VAX, 1–2

User-mode images
slicing, 4–11

User-written device drivers
on OpenVMS Alpha systems, 4–9

V
VAX dependency checklist, 4–2
VAX Environment Software Translator

See VEST
VAX instructions

reduced performance, 4–6
VAX MACRO

See also MACRO–32 compiler
LIB$ESTABLISH, 4–4
recompiling on OpenVMS Alpha systems, 4–5

Vector processing, 1–12
VEST (VAX Environment Software Translator),

1–4, 1–12, 3–8
See also DECmigrate for OpenVMS AXP
documentation, 3–9

VMScluster systems, 2–1
application development guidelines, 4–15
cluster aliases supported on OpenVMS Alpha

systems, 2–6
configuration support, 2–10
interoperability, 2–8

VMS/ULTRIX Connection
See TCP/IP Services for OpenVMS

W
Working sets

qualifiers, A–2
WSDEFAULT qualifier, A–2
WSEXTENT qualifier, A–2
WSQUOTA qualifier, A–2

X
X.25 support, 2–3, 2–7

Index–6

