
Migrating an Application from
OpenVMS VAX to OpenVMS Alpha
Order Number: AA-QSBKB-TE

November 1996

This manual describes how to create an OpenVMS Alpha version of an
OpenVMS VAX application.

Revision/Update Information: This manual supersedes Migrating an
Application from OpenVMS VAX to
OpenVMS Alpha, Version 7.0.

Software Version: OpenVMS Alpha Version 7.1
OpenVMS VAX Version 7.1

Digital Equipment Corporation
Maynard, Massachusetts

November 1996

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1996. All rights reserved.

The following are trademarks of Digital Equipment Corporation: ALL–IN–1, Bookreader, CI,
DDIF, DEC, DEC Ada, DEC Fortran, DECdirect, DECforms, DECmigrate, DECnet, DECset,
DECterm, DECthreads, DECwindows, Digital, Digital UNIX, OpenVMS, PATHWORKS, PDP–11,
SPM, TURBOchannel, VAX, VAX 6000, VAX Ada, VAX C, VAX COBOL, VAX DOCUMENT,
VAX FORTRAN, VAX MACRO, VAX Pascal, VAX SCAN, VAXft, VAXstation, VMS, XMI, XUI, and
the DIGITAL logo.

The following are third-party trademarks:

Futurebus/Plus is a registered trademark of Force Computers GMBH, Fed. Rep. of Germany.

IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

INGRES is a registered trademark of Ingres Corporation.

Motif is a registered trademark of Open Software Foundation, Incorporated.

Oracle Rdb, Oracle CODASYL DBMS are registered trademarks of Oracle Corporation.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Ltd.

Windows NT is a trademark of Microsoft Corporation.

X/Open is a trademark of X/Open Company Limited.

All other trademarks and registered trademarks are the property of their respective holders.

ZK6459

The OpenVMS documentation set is available on CD–ROM.

Contents

Preface . xi

1 Overview of the Migration Process

1.1 Compatibility of VAX and Alpha Systems . 1–1
1.2 Differences Between the VAX and Alpha Architectures 1–4
1.2.1 User-Written Device Drivers . 1–6
1.3 Migration Process . 1–7
1.4 Migration Paths . 1–8
1.5 Migration Support from Digital . 1–9
1.5.1 Migration Assessment Service . 1–9
1.5.2 Application Migration Detailed Analysis and Design Service 1–9
1.5.3 System Migration Detailed Analysis and Design Service 1–10
1.5.4 Application Migration Service . 1–10
1.5.5 System Migration Service . 1–10

2 Selecting a Migration Method

2.1 Taking Inventory . 2–1
2.2 How to Select a Migration Method . 2–2
2.3 Which Migration Methods are Possible? . 2–3
2.4 Coding Practices That Affect Recompilation . 2–5
2.4.1 VAX MACRO Assembly Language . 2–6
2.4.2 Privileged Code . 2–6
2.4.3 Features Specific to the VAX Architecture . 2–7
2.5 Identifying Dependencies on the VAX Architecture in Your Application . . . 2–7
2.5.1 Data Alignment . 2–7
2.5.2 Data Types . 2–8
2.5.3 Shared Access to Data . 2–10
2.5.4 Reading or Writing Data Smaller Than a Quadword 2–11
2.5.5 Page Size Considerations . 2–12
2.5.6 Order of Read/Write Operations on Multiprocessor Systems 2–13
2.5.7 Immediacy of Arithmetic Exception Reporting 2–14
2.5.8 Explicit Reliance on the VAX Procedure Calling Standard 2–14
2.5.9 Explicit Reliance on VAX Exception-Handling Mechanisms 2–15
2.5.9.1 Establishing a Dynamic Condition Handler 2–15
2.5.9.2 Accessing Data in the Signal and Mechanism Arrays 2–16
2.5.10 Modification of the VAX AST Parameter List . 2–16
2.5.11 Explicit Dependency on the Form and Behavior of VAX

Instructions . 2–16
2.5.12 Generation of VAX Instructions at Run Time . 2–17
2.6 Identifying Incompatibilities Between VAX and Alpha Systems 2–17
2.7 Deciding Whether to Recompile or Translate . 2–18
2.7.1 Translating Your Application . 2–22

iii

2.7.2 Combining Native and Translated Images . 2–23

3 Migrating Your Application

3.1 Setting Up the Migration Environment . 3–1
3.1.1 Hardware . 3–1
3.1.2 Software . 3–2
3.2 Converting Your Application . 3–3
3.2.1 Recompiling and Relinking . 3–4
3.2.1.1 Native Alpha Compilers . 3–4
3.2.1.2 VAX MACRO–32 Compiler for OpenVMS Alpha 3–5
3.2.1.3 Other Development Tools . 3–6
3.2.2 Translating . 3–6
3.2.2.1 VAX Environment Software Translator (VEST) and Translated

Image Environment (TIE) . 3–7
3.3 Debugging and Testing the Migrated Application 3–8
3.3.1 Debugging . 3–8
3.3.1.1 Debugging with the OpenVMS Debugger . 3–9
3.3.1.2 Debugging with the Delta Debugger . 3–10
3.3.1.3 Debugging with the OpenVMS Alpha System-Code Debugger 3–10
3.3.2 Analyzing System Crashes . 3–11
3.3.2.1 System Dump Analyzer . 3–11
3.3.2.2 Crash Log Utility Extractor . 3–12
3.3.3 Testing . 3–12
3.3.3.1 VAX Tests . 3–12
3.3.3.2 Alpha Tests . 3–13
3.3.4 Uncovering Latent Bugs . 3–13
3.4 Integrating the Migrated Application into a Software System 3–13

4 Recompiling and Relinking Overview

4.1 Recompiling Your Application with Native Alpha Compilers 4–1
4.2 Relinking Your Application on an Alpha System . 4–2
4.3 Compatibility Between the Mathematics Libraries Available on VAX and

Alpha Systems . 4–4
4.4 Determining the Host Architecture . 4–4

5 Adapting Applications to a Larger Page Size

5.1 Overview . 5–1
5.1.1 Compatibility Features . 5–1
5.1.2 Summary of Memory Management Routines with Potential Page-Size

Dependencies . 5–2
5.2 Examining Memory Allocation Routines . 5–6
5.2.1 Allocating Memory in Expanded Virtual Address Space 5–6
5.2.2 Allocating Memory in Existing Virtual Address Space 5–8
5.2.3 Deleting Virtual Memory . 5–9
5.3 Examining Memory Mapping Routines . 5–10
5.3.1 Mapping into Expanded Virtual Address Space 5–10
5.3.2 Mapping a Single Page to a Specific Location 5–12
5.3.3 Mapping into a Defined Address Range . 5–13
5.3.4 Mapping from an Offset into a Section File . 5–19
5.4 Obtaining the Page Size at Run Time . 5–20
5.5 Locking Memory in the Working Set . 5–21

iv

6 Preserving the Integrity of Shared Data

6.1 Overview . 6–1
6.1.1 VAX Architectural Features That Guarantee Atomicity 6–2
6.1.2 Alpha Compatibility Features . 6–3
6.2 Uncovering Atomicity Assumptions in Your Application 6–3
6.2.1 Protecting Explicitly Shared Data . 6–5
6.2.2 Protecting Unintentionally Shared Data . 6–8
6.3 Synchronizing Read/Write Operations . 6–9
6.4 Ensuring Atomicity in Translated Images . 6–10

7 Checking the Portability of Application Data Declarations

7.1 Overview . 7–1
7.2 Checking for Dependence on a VAX Data Type . 7–1
7.3 Examining Assumptions About Data-Type Selection 7–4
7.3.1 Effect of Data-Type Selection on Code Size . 7–4
7.3.2 Effect of Data-Type Selection on Performance 7–4

8 Examining the Condition-Handling Code in Your Application

8.1 Overview . 8–1
8.2 Establishing Dynamic Condition Handlers . 8–1
8.3 Examining Condition-Handling Routines for Dependencies 8–2
8.4 Identifying Exception Conditions . 8–6
8.4.1 Testing for Arithmetic Exceptions on Alpha Systems 8–8
8.4.2 Testing for Data-Alignment Traps . 8–10
8.5 Performing Other Tasks Associated with Condition Handling 8–11

9 Translating Applications

9.1 DECmigrate for OpenVMS Alpha . 9–1
9.2 DECmigrate: Translated Image Support . 9–2
9.3 Translated Image Environment (TIE) . 9–2
9.3.1 Problems and Restrictions . 9–3
9.3.1.1 Condition Handler Restriction . 9–3
9.3.1.2 Exception Handler Restrictions . 9–4
9.3.1.3 Floating-Point Restrictions . 9–4
9.3.1.4 Interoperability Restrictions . 9–5
9.3.1.5 VAX C: Translated Program Restrictions . 9–5
9.4 Translated Image Support . 9–6
9.5 Translated Run-Time Libraries . 9–9
9.5.1 CRF$FREE_VM and CRF$GET_VM: Translated Callers 9–11
9.6 Translated VAX C Run-Time Library . 9–11
9.6.1 Problems and Restrictions . 9–11
9.6.1.1 Functional Restrictions . 9–11
9.6.1.2 Interoperability Restrictions . 9–11
9.7 Translated VAX COBOL Programs . 9–12
9.7.1 Problems and Restrictions . 9–12

v

10 Ensuring Interoperability Between Native and Translated Images

10.1 Overview . 10–1
10.1.1 Compiling Native Images That Can Interoperate with Translated

Images . 10–1
10.1.2 Linking Native Images That Can Interoperate with Translated

Images . 10–2
10.2 Creating a Native Image That Can Call a Translated Image 10–2
10.3 Creating a Native Image That Can Be Called by a Translated Image 10–5
10.3.1 Controlling Symbol Vector Layout . 10–6
10.3.2 Creating Stub Images . 10–8

11 OpenVMS Alpha Compilers

11.1 Compatibility of DEC Ada Between Alpha Systems and VAX Systems . . . 11–1
11.1.1 Differences in Data Representation and Alignment 11–2
11.1.2 Tasking Differences . 11–2
11.1.3 Differences in Language Pragmas . 11–2
11.1.4 Differences in the SYSTEM Package . 11–3
11.1.5 Differences Between Other Language Packages 11–4
11.1.6 Changes to Predefined Instantiations . 11–4
11.2 Compatibility of DEC C for OpenVMS Alpha Systems with VAX C 11–4
11.2.1 Language Modes . 11–4
11.2.2 DEC C for OpenVMS Alpha Systems Data-Type Mappings 11–5
11.2.2.1 Specifying Floating-Point Mapping . 11–6
11.2.3 Built-in Functions That Access Alpha Instructions 11–6
11.2.3.1 Accessing Alpha Instructions . 11–6
11.2.3.2 Accessing Alpha Privileged Architecture Library (PALcode)

Instructions . 11–7
11.2.3.3 Ensuring the Atomicity of Combined Operations 11–7
11.2.4 Differences Between the VAX C and DEC C for OpenVMS Alpha

Systems Compilers . 11–8
11.2.4.1 Controlling Data Alignment . 11–8
11.2.4.2 Accessing Argument Lists . 11–8
11.2.4.3 Synchronizing Exceptions . 11–8
11.2.4.4 Dynamic Condition Handlers . 11–8
11.2.5 STARLET Data Structures and Definitions for C Programmers 11–8
11.2.6 VAX C Features Not Supported by /STANDARD=VAXC Mode 11–10
11.3 VAX COBOL and DEC COBOL Compatibility and Migration 11–11
11.3.1 DEC COBOL Extensions and Features Differences 11–11
11.3.2 Command Line Qualifiers . 11–12
11.3.2.1 /NATIONALITY={JAPAN | US} . 11–12
11.3.2.2 /STANDARD=MIA . 11–12
11.3.2.3 DEC COBOL-Specific Qualifiers . 11–12
11.3.2.4 /ALIGNMENT=PADDING . 11–13
11.3.2.5 VAX COBOL-Specific Qualifiers . 11–13
11.3.2.6 /STANDARD=V3 . 11–13
11.3.2.7 /STANDARD=OPENVMS_AXP . 11–14
11.3.3 DEC COBOL and VAX COBOL Behavior Differences 11–14
11.3.3.1 Program Structure Messages . 11–14
11.3.3.2 Program Listing Differences . 11–15
11.3.3.2.1 Machine Code . 11–15
11.3.3.2.2 Module Names . 11–15
11.3.3.2.3 COPY and REPLACE Statements . 11–15
11.3.3.2.4 Multiple COPY Statements . 11–16

vi

11.3.3.2.5 COPY Insert Statement . 11–17
11.3.3.2.6 REPLACE Statement . 11–18
11.3.3.2.7 DATE COMPILED Statement . 11–18
11.3.3.2.8 Compiler Listings and Separate Compilations 11–19
11.3.3.3 Output Formatting . 11–19
11.3.3.4 DEC COBOL and VAX COBOL Statement Differences 11–20
11.3.3.4.1 ACCEPT and DISPLAY Statements . 11–20
11.3.3.4.2 EXIT PROGRAM Clause . 11–21
11.3.3.4.3 LINAGE Clause . 11–21
11.3.3.4.4 MOVE Statement . 11–21
11.3.3.4.5 SEARCH Statement . 11–22
11.3.3.5 System Return Codes . 11–22
11.3.3.6 Diagnostic Messages . 11–22
11.3.3.7 Storage for Double-Precision Data Items . 11–24
11.3.3.8 High-Order Truncation of Data Items . 11–24
11.3.3.9 File Status Values . 11–24
11.3.3.10 Key of Reference . 11–24
11.3.3.11 RMS Special Registers . 11–24
11.3.3.12 Calling Shareable Images . 11–25
11.3.3.13 Sharing Common Blocks . 11–25
11.3.3.14 Arithmetic Operations . 11–26
11.3.4 File Compatibility Across Languages and Platforms 11–26
11.3.5 Reserved Words . 11–27
11.3.6 Debugger Support Differences . 11–27
11.3.7 DECset/LSE Support Differences . 11–28
11.3.8 DBMS Support . 11–28
11.4 Compatibility of Digital Fortran on OpenVMS Alpha and OpenVMS VAX

Systems . 11–28
11.4.1 Language Features . 11–28
11.4.1.1 Language Features Specific to Digital Fortran for OpenVMS

Alpha . 11–29
11.4.1.2 Language Features Specific to Digital Fortran 77 for OpenVMS

VAX Systems . 11–30
11.4.1.3 Interpretation Differences . 11–32
11.4.2 Command Line Qualifiers . 11–32
11.4.2.1 Qualifiers Specific to Digital Fortran for OpenVMS Alpha 11–33
11.4.2.2 Qualifiers Specific to Digital Fortran 77 for OpenVMS VAX

Systems . 11–34
11.4.3 Interoperability with Translated Shared Images 11–35
11.4.4 Porting Digital Fortran 77 for OpenVMS VAX Systems Data 11–36
11.5 Compatibility of DEC Pascal for OpenVMS Alpha Systems with VAX

Pascal . 11–36
11.5.1 New Features of DEC Pascal . 11–36
11.5.2 Establishing Dynamic Condition Handlers . 11–38
11.5.3 Modifying Default Alignment Rules for Record Fields 11–38
11.5.4 Recommended Use of Predeclared Identifiers . 11–38
11.5.5 Platform-Dependent Features . 11–39
11.5.6 Obsolete Features . 11–39
11.5.6.1 /OLD_VERSION Qualifier . 11–39
11.5.6.2 /G_FLOATING Qualifier . 11–39
11.5.6.3 OVERLAID Attribute . 11–40

vii

A Application Evaluation Checklist

Glossary

Index

Examples

4–1 Using the ARCH_TYPE Keyword to Determine Architecture Type . . . 4–5
5–1 Allocating Memory by Expanding Your Virtual Address Space 5–8
5–2 Allocating Memory in Existing Address Space 5–9
5–3 Mapping a Section into Expanded Virtual Address Space 5–11
5–4 Mapping a Section into a Defined Area of Virtual Address Space 5–15
5–5 Source Code Changes Required to Run Example 5–4 on an Alpha

System . 5–17
5–6 Using the $GETSYI System Service to Obtain the CPU-Specific Page

Size . 5–20
6–1 Atomicity Assumptions in a Program with an AST Thread 6–5
6–2 Version of Example 6–1 with Synchronization Assumptions 6–7
7–1 Assumptions About Data Types in VAX C Code 7–3
8–1 Condition-Handling Routine . 8–6
8–2 Sample Condition-Handling Program . 8–13
10–1 Source Code for Main Program (MYMAIN.C) 10–3
10–2 Source Code for Shareable Image (MYMATH.C) 10–3
11–1 Signed and Unsigned Differences . 11–21
11–2 Illegal Return Value Coding . 11–23

Figures

1–1 Methods for Moving VAX Applications to an Alpha System 1–8
2–1 Migrating a Program . 2–4
3–1 Migration Environments and Tools . 3–3
5–1 Virtual Address Layout . 5–7
5–2 Effect of Address Range on Mapping from an Offset 5–20
6–1 Synchronization Decision Tree . 6–4
6–2 Atomicity Assumptions in Example 6–1 . 6–6
6–3 Order of Read and Write Operations on an Alpha System 6–10
7–1 Alignment of mystruct Using VAX C . 7–6
7–2 Alignment of mystruct Using DEC C for OpenVMS Alpha Systems . . 7–6
8–1 32-Bit Signal Array on VAX and Alpha Systems 8–3
8–2 Mechanism Array on VAX and Alpha Systems 8–4
8–3 SS$_HPARITH Exception Signal Array . 8–9
8–4 SS$_ALIGN Exception Signal Array . 8–11

viii

Tables

1–1 Comparison of Alpha and VAX Architectures . 1–5
2–1 Floating-Point Data Type Support . 2–9
2–2 Migration Path Comparison . 2–19
2–3 Choice of Migration Method: Dealing with Architectural

Dependencies . 2–21
3–1 CLUE Differences Between OpenVMS VAX and OpenVMS Alpha 3–12
4–1 Linker Qualifiers and Options Specific to OpenVMS Alpha

Systems . 4–3
4–2 Linker Options Specific to OpenVMS VAX Systems 4–4
4–3 $GETSYI Item Codes That Specify Host Architecture 4–5
5–1 Potential Page-Size Dependencies in Memory Management

Routines . 5–2
5–2 Potential Page-Size Dependencies in Run-Time Library Routines 5–6
7–1 Comparison of VAX and Alpha Native Data Types 7–2
8–1 Architecture-Specific Hardware Exceptions . 8–7
8–2 Exception Summary Argument Fields . 8–9
8–3 Run-Time Library Condition-Handling Support Routines 8–12
9–1 Support for Translated Images on OpenVMS Alpha Versions 9–2
9–2 Run-Time Library Logical Names . 9–10
11–1 Modes of Operation of the DEC C for OpenVMS Alpha Systems 11–5
11–2 Arithmetic Data-Type Sizes in DEC C for OpenVMS Alpha

Compiler . 11–5
11–3 DEC C Floating-Point Mappings . 11–6
11–4 DEC C Compiler Features Specific to Alpha Systems 11–6
11–5 Atomicity Built-Ins . 11–7
11–6 VAX COBOL-Specific Qualifiers . 11–13
11–7 Digital Fortran for OpenVMS Alpha Qualifiers Not in Digital Fortran

77 for OpenVMS VAX Systems . 11–33
11–8 Digital Fortran 77 for OpenVMS VAX Systems Qualifiers Not in

Digital Fortran for OpenVMS Alpha . 11–34
11–9 Floating-Point Data on VAX and Alpha Systems 11–36
11–10 New Features of DEC Pascal . 11–36
11–11 Recommended Use of Predeclared Identifiers . 11–38

ix

Preface

Migrating an Application from OpenVMS VAX to OpenVMS Alpha is designed to
assist developers in moving OpenVMS VAX applications to an OpenVMS Alpha
system or a mixed-architecture> cluster.

Intended Audience
This manual is intended for experienced software engineers responsible for
migrating application code written in high- or mid-level programming languages.

Document Structure
The manual consists of the following chapters:

• Chapter 1 provides an overview of the relationship of OpenVMS and the VAX
and Alpha architectures, and of the process of migrating an application from
a VAX to an Alpha system. It includes information on the following:

• Areas in which OpenVMS Alpha is highly compatible with OpenVMS VAX

• Comparison of the Alpha architecture with other RISC architectures and
with the VAX architecture

• Overview of the stages in the migration process

• The two main migration paths—recompiling source code and translating
VAX images

• Migration support available from Digital

• Chapter 2 considers the differences between the two main migration paths
and the issues involved in choosing which path to take in migrating your
application. It also describes how to analyze the individual parts of your
application to identify architectural differences that affect migration and how
to assess what is involved in resolving those differences.

• Chapter 3 describes the steps in the actual migration, from setting up your
migration environment to integrating the migrated application into a new
environment.

• Chapter 4 provides an overview of converting your application by recompiling
and relinking.

• Chapter 5 describes how to handle dependencies your application may have
on the VAX page size.

• Chapter 6 describes how to handle dependencies your application may have
on the synchronization provided by the VAX architecture with regard to data
access by multiple processes.

• Chapter 7 describes the implications of data declarations on an Alpha system,
including alignment concerns.

xi

• Chapter 8 describes how to handle dependencies your application may contain
on the VAX condition-handling facility.

• Chapter 9 discusses translating VAX images to run on Alpha systems.

• Chapter 10 describes how to create native Alpha images that can call and be
called by translated VAX images.

• Chapter 11 contains brief summaries of the new and changed features
supported by the Ada, C, COBOL, FORTRAN, and Pascal programming
languages on Alpha systems.

• Appendix A contains a checklist that you can use to evaluate your application
for migration from OpenVMS VAX to OpenVMS Alpha.

Related Documents
This manual is part of a set of manuals that describes various aspects of
migrating from OpenVMS VAX to OpenVMS Alpha systems. The other manuals
in this set are as follows:

• Migrating an Environment from OpenVMS VAX to OpenVMS Alpha describes
how to migrate a computing environment from an OpenVMS VAX system to
an OpenVMS Alpha system or a Mixed-Architecture Cluster. It provides an
overview of the VAX to Alpha migration process and describes the differences
in system and network management on VAX and Alpha computers.

• Porting VAX MACRO Code to OpenVMS Alpha describes how to port
VAX MACRO code to an Alpha system using the MACRO–32 compiler
for OpenVMS Alpha. It describes the features of the compiler, presents a
methodology for porting VAX MACRO code, identifies nonportable coding
practices, and recommends alternatives to such practices. The manual also
provides a reference section with detailed descriptions of the compiler’s
qualifiers, directives, and built-ins, and the system macros created for porting
to Alpha systems.

• Creating an OpenVMS Alpha Device Driver from an OpenVMS VAX Device
Driver describes how to convert an OpenVMS VAX device driver to run on an
OpenVMS Alpha system. The book identifies the specific changes required to
prepare an OpenVMS VAX device driver to be compiled, linked, loaded, and
run as an OpenVMS Alpha device driver. It also contains reference material
about the entry points, system routines, data structures, and macros used in
OpenVMS Alpha device drivers.

In addition, the DECmigrate for OpenVMS AXP Systems Translating Images
manual describes the VAX Environment Software Translator (VEST) utility.
This manual is distributed with the optional layered product, DECmigrate for
OpenVMS Alpha, which supports the migration of OpenVMS VAX applications
to OpenVMS Alpha systems. The manual describes how to use VEST to convert
most user-mode VAX images to translated images that can run on Alpha systems;
how to improve the run-time performance of translated images; how to use VEST
to trace Alpha incompatibilities in a VAX image back to the original source files;
and how to use VEST to support compatibility among native and translated
run-time libraries. The manual also includes complete VEST command reference
information.

In addition, the following general programming manuals contain current
information on issues discussed here:

• VAX Architecture Reference Manual

xii

• Alpha Architecture Reference Manual

• VAX/VMS Internals and Data Structures

• OpenVMS AXP Internals and Data Structures

• OpenVMS Programming Concepts Manual

• OpenVMS Programming Interfaces: Calling a System Routine

• Guide to DECthreads

For additional information on the Open Systems Software Group (OSSG)
products and services, access the Digital OpenVMS World Wide Web site. Use the
following URL:

http://www.openvms.digital.com

Reader’s Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@zko.mts.dec.com

Fax 603 881-0120, Attention: OSSG Documentation, ZK03-4/U08

Mail OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

xiii

Telephone and Direct Mail Orders

DTN: 264−4446

approved distributor

Fax: 603−884−3960

800−267−6215

U.S. Software Supply Business

809−781−0505

Digital Equipment Corporation

Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

8 Cotton Road

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Nashua, NH 03063−1260

Digital Equipment Caribbean, Inc.

DECdirect

Puerto Rico

800−DIGITAL

3 Digital Plaza, 1st Street, Suite 200

800−344−4825

International

P.O. Box 11038
Metro Office Park

Location

Internal Orders

San Juan, Puerto Rico 00910−2138

603−884−4446

Write

Fax: 613−592−1946

Fax

Canada

Call

Fax: 809−749−8300

Local Digital subsidiary or

U.S.A.

ZK−7654A−GE

Fax: 800−234−2298

Conventions
The name of the OpenVMS AXP operating system has been changed to the
OpenVMS Alpha operating system. Any references to OpenVMS AXP or AXP are
synonymous with OpenVMS Alpha or Alpha.

VMScluster systems are now referred to as OpenVMS Cluster systems. Unless
otherwise specified, references to OpenVMS Clusters or clusters in this document
are synonymous with VMSclusters.

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for OpenVMS software.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

xiv

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

{ } In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

text style This text style represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

This style is also used to show user input in Bookreader
versions of the book.

italic text Italic text emphasizes important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where device-name contains up to five alphanumeric
characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xv

1
Overview of the Migration Process

For many applications, migrating from OpenVMS VAX to OpenVMS Alpha is
straightforward. If your application runs only in user mode and is written in
a standard high-level language, you most likely can recompile it with a native
Alpha compiler and relink it to produce a version that runs successfully on an
Alpha system. This book is intended to help you evaluate your application and to
handle the relatively few cases that are more complicated.

1.1 Compatibility of VAX and Alpha Systems
The OpenVMS Alpha operating system is designed to preserve as much
compatibility with the OpenVMS VAX user, system management, and
programming environments as possible. For general users and system managers,
OpenVMS Alpha has the same interfaces as OpenVMS VAX. For programmers,
the goal is to come as close as possible to a ‘‘recompile, relink, and run’’ model for
migration.

Many aspects of an application running on an OpenVMS VAX system remain
unchanged on an Alpha system:

User Interface

• DIGITAL Command Language (DCL)

The DIGITAL Command Language (DCL), the standard user interface
to OpenVMS, remains essentially unchanged with OpenVMS Alpha. All
commands, qualifiers, and lexical functions available on OpenVMS VAX also
work on OpenVMS Alpha.

• Command Procedures

Command procedures written for earlier versions of OpenVMS VAX continue
to work on an Alpha system without change. However, certain command
procedures, such as build procedures, must be changed to accommodate new
compiler qualifiers and linker switches. Linker options files will also require
modification, especially for shareable images.

• DECwindows

The window interface, DECwindows Motif, is unchanged.

• DECforms

The DECforms interface is unchanged.

• Editors

The two standard OpenVMS editors, EVE and EDT, are unchanged.

Overview of the Migration Process 1–1

Overview of the Migration Process
1.1 Compatibility of VAX and Alpha Systems

System Management Interface

The system management utilities are mostly unchanged. One major exception
is that device configuration functions, which appear in the System Generation
utility (SYSGEN) on VAX systems, are provided in the System Management
utility (SYSMAN) for OpenVMS Alpha.

Programming Interface

In general, the system service and run-time library (RTL) calling interfaces
remain unchanged.1 You do not need to change the definitions of arguments.
The few differences fall into two categories:

• Some system services and RTL routines (such as the memory
management system and exception-handling services) operate somewhat
differently on VAX and Alpha systems. See the OpenVMS System Services
Reference Manual and the OpenVMS RTL Library (LIB$) Manual for
further information.

• A few RTL routines are so closely tied to the VAX architecture that their
presence on an Alpha system would not be meaningful:

Routine Name Restriction

LIB$DECODE_FAULT Decodes VAX instructions.

LIB$DEC_OVER Applies to VAX Processor Status Longword
(PSL) only.

LIB$ESTABLISH Similar functionality supported by compilers
on Alpha systems.

LIB$FIXUP_FLT Applies to VAX PSL only.

LIB$FLT_UNDER Applies to VAX PSL only.

LIB$INT_OVER Applies to VAX PSL only.

LIB$REVERT Supported by compilers on Alpha systems.

LIB$SIM_TRAP Applies to VAX code.

LIB$TPARSE Requires action routine interface changes.
Replaced by LIB$TABLE_PARSE.

Most VAX images that call these services and routines will work when
translated and run under the Translated Image Environment (TIE) on
OpenVMS Alpha. For more information on TIE, see Section 3.2.2.1 and
DECmigrate for OpenVMS AXP Systems Translating Images.

Data

The on-disk format for ODS-2 data files is the same on VAX and Alpha
systems. However, ODS-1 files are not supported on OpenVMS Alpha.

Record Management Services (RMS) and file management interfaces are
unchanged.

The IEEE little-endian data types S_floating and T_floating have been added.

Most VAX data types are retained in the Alpha architecture; however,
support for H_floating and full-precision D_floating has been eliminated
from hardware to improve overall system performance.

1 Effective with Version 7.0, OpenVMS Alpha provided many system services and RTL
routines to support 64-bit addressing. Because these are not available on VAX systems
and are therefore not a VAX-to-Alpha migration issue, they are not discussed in this
manual.

1–2 Overview of the Migration Process

Overview of the Migration Process
1.1 Compatibility of VAX and Alpha Systems

Alpha hardware converts D_floating data to G_floating for processing. On
VAX systems, D_floating has 56 fraction bits (D56) and 16 decimal digits of
precision. On Alpha systems, D_floating has 53 fraction bits (D53) and 15
decimal digits of precision.

The H_floating and D_floating data types can usually be replaced by G_
floating or one of the IEEE formats. However, if you require H_floating or the
extra precision of D56 (56-bit D_floating), you may have to translate part of
your application.

Databases

Standard Digital databases (such as Oracle Rdb) function the same on VAX
and Alpha systems.

Network Interfaces

VAX and Alpha systems both support the following interfaces:

• Interconnects

– Ethernet

– X.25

– FDDI

• Protocols

– DECnet (Phase IV in Version 7.1; Phase V in the optional DECnet-
Plus kit)

– TCP/IP

– OSI

– LAD/LAST

– LAT (Local Area Transport)

• Peripheral connections

– TURBOchannel

– SCSI

– Ethernet

– CI

– DSSI

– XMI

– Futurebus/Plus

– VME

– PCI

Overview of the Migration Process 1–3

Overview of the Migration Process
1.2 Differences Between the VAX and Alpha Architectures

1.2 Differences Between the VAX and Alpha Architectures
The VAX architecture is a robust, flexible, complex instruction set computer
(CISC) architecture used across the entire family of VAX systems. The use
of a single, integrated VAX architecture with the OpenVMS operating system
permits an application to be developed on a VAXstation, prototyped on a small
VAX system, and put into production on a large VAX processor or run on a
fault-tolerant VAXft processor. The advantage of the VAX system approach is
that it enables individual solutions to be tailored and fitted easily into a larger,
enterprisewide solution. The hardware design of VAX processors is particularly
suitable for high-availability applications, such as dependable applications for
mission-critical business operations and server applications for a wide variety of
distributed client/server environments.

The Alpha architecture implemented by Digital is a high-performance reduced
instruction set computing (RISC) architecture that can provide 64-bit processing
on a single chip. It processes 64-bit virtual and physical addresses and 64-bit
integers and floating-point numbers. The 64-bit capability is especially useful for
applications that require high-performance and very large addressing capacity.
For example, Alpha processors are especially appropriate for graphics or numeric-
intensive software applications such as econometric or weather forecasting that
involve imaging, multimedia, visualization, simulation, and modeling.

The Alpha architecture is designed to be scalable and open. It can be
implemented on a single chip in a palmtop system or with thousands of chips
in a massively parallel supercomputer. The architecture is designed to support
multiple operating systems, including OpenVMS Alpha.

Table 1–1 summarizes some major differences between the Alpha and VAX
architectures.

1–4 Overview of the Migration Process

Overview of the Migration Process
1.2 Differences Between the VAX and Alpha Architectures

Table 1–1 Comparison of Alpha and VAX Architectures

Alpha VAX

• 64-bit addresses†

• 64-bit processing

• Instructions

– Simple

– All same length (32 bits)

• Load/store memory access

• Severe penalty for unaligned data

• Many registers

• Out-of-order instruction completion

• Deep pipelines and branch prediction

• Large page size (which varies
from 8 KB to 64 KB, depending
on hardware)

• 32-bit addresses

• 32-bit processing

• Instructions

– Some complex

– Variable length

• Permits combining operations and
memory access in a single instruction

• Moderate penalty for unaligned data

• Relatively few registers

• Instructions completed in order issued

• Limited use of pipelines

• Smaller page size (512 bytes)

†For information on 64-bit addressing, see the OpenVMS Alpha Guide to 64-Bit Addressing and VLM
Features.

General RISC Characteristics
Some features of the Alpha architecture are typical of newer RISC architectures
in general. The following features are especially important:

• A simplified instruction set

The Alpha architecture uses relatively simple instructions, all of which are 32
bits long. Common instructions require only one clock cycle. Uniformly sized
simple instructions allow a RISC implementation to achieve high performance
goals by adopting techniques such as multiple instruction issue and
optimized instruction scheduling.

• Multiple instruction issue

The earliest Alpha platform issued two instructions per clock cycle. Current
machines (EV5 or higher) issue four instructions per clock cycle.

• A load/store operation model

The Alpha architecture defines 32 64-bit integer registers and 32 64-bit
floating-point registers. Most data manipulation occurs between registers.
Typically, operands are loaded from memory into registers before an
operation; after the operation, the results are stored in memory from a
result register.

Restricting operations to register operands allows the use of a simple, uniform
instruction set. Moreover, the separation of memory access from arithmetic
operations results in a large performance gain in a system that can fully
exploit pipelining, instruction scheduling, and parallel operational units.

• Elimination of microcode

Overview of the Migration Process 1–5

Overview of the Migration Process
1.2 Differences Between the VAX and Alpha Architectures

Because the Alpha architecture does not use microcode, Alpha processors are
saved the time required to fetch microcode instructions from random-access
memory (RAM) in order to execute a machine instruction.

• Out-of-order completion of instructions

The Alpha architecture does not require that instructions always complete
in the order in which they are issued. As a result, an Alpha processor can
improve performance by delaying the reporting of an arithmetic or floating-
point exception until the execution stream allows the reporting without a
performance penalty.

Alpha Specific Characteristics
Besides these generic RISC characteristics, the Alpha architecture offers features
that promote running migrated VAX applications on an Alpha system. These
features include:

• Hardware support for all VAX data types except packed decimal, H_floating,
and D_floating. (For information on what to do if your application uses
H_floating or D_floating data, see Section 2.5.2.)

• Certain privileged architecture features, such as four processor modes (user,
supervisor, executive, and kernel), 32 interrupt priority levels (IPLs), and
asynchronous system traps (ASTs).

• A privileged architecture library (PAL), part of an environment known as
PALcode, that supports the atomic execution of certain VAX operations, such
as Change Mode (CHMx), Probe (PROBEx), queue instructions, and REI.

The Alpha architecture does not favor a particular operating system. To
accommodate different operating systems, it enables the creation of privileged
architecture library code (PALcode).

Furthermore, certain OpenVMS Alpha compilers, such as C and the MACRO–
32 compiler, provide PALcode built-ins that supplement the instructions
available in the Alpha instruction set. For example, the MACRO–32 compiler
provides built-ins that emulate those VAX instructions for which there are no
Alpha equivalents.

PALcode can be used to access internal hardware registers and physical
memory. PALcode can provide direct correspondence of physical and virtual
memory. For more information about PALcode, see the Alpha Architecture
Reference Manual.

1.2.1 User-Written Device Drivers
Formal support for user-written device drivers and a new interface known as the
Step 2 driver interface were introduced in OpenVMS Alpha Version 6.1. The Step
2 driver interface supports user-written device drivers in the C programming
language (as well as MACRO and BLISS). It replaced the temporary Step 1
driver interface that was provided in OpenVMS Alpha Versions 1.0 and 1.5. If
you have an existing OpenVMS VAX device driver that you want to run on an
Alpha system, and you have not made the changes required for OpenVMS Alpha
Version 6.1, see Creating an OpenVMS Alpha Device Driver from an OpenVMS
VAX Device Driver.

There is no formal support for writing OpenVMS VAX device drivers in C. For
example, OpenVMS VAX does not provide .h files for internal OpenVMS (lib) data
structures.

1–6 Overview of the Migration Process

Overview of the Migration Process
1.2 Differences Between the VAX and Alpha Architectures

The Step 2 driver interface has increased the differences between OpenVMS
Alpha and OpenVMS VAX device drivers. Device driver source files written in
VAX MACRO or BLISS can be kept common between OpenVMS Alpha and VAX
through the use of conditional compilation and user-written macros.

The advisability of this approach depends greatly on the nature of the individual
driver. (As of OpenVMS Version 7.0, the difference is even greater due to the
64-bit support.) It is possible that in future versions of OpenVMS Alpha, the
I/O subsystem will continue to evolve in directions that will have an impact on
device drivers. This could increase the differences between OpenVMS Alpha and
VAX device drivers and add more complexity to common driver sources. For this
reason, a fully common driver source file approach might not be advisable for the
long term.

Depending on the individual driver, it might be advisable to partition the driver
into a common module and an architecture-specific one. For example, if one
were writing a device driver that does disk compression, then the compression
algorithm could readily be isolated into an architecture independent module.
One could also avoid operating-system-specific data structures in such common
modules with the intent of having some common modules across various types of
operating systems; for example, OpenVMS, Windows NT, and Digital UNIX.

For more information about writing new OpenVMS Alpha device drivers, refer to
Writing OpenVMS Alpha Device Drivers in C.

1.3 Migration Process
The process for converting your VAX programs to run on an Alpha system
includes the following stages:

1. Evaluate the code to be migrated:

• Take inventory of the elements of your application and its environment.
Identify any dependencies on other programs.

• Review code in each element to find potential obstacles to migration.

• Decide on the best method for moving each part of the application to the
Alpha system.

2. Write a migration plan.

3. Set up the migration environment.

4. Migrate your application.

5. Debug and test the migrated application.

6. Integrate the migrated software into a software system.

There are a number of tools and Digital services available to help you migrate
your applications to OpenVMS Alpha. These tools are described in the context of
the process described in this manual. The migration services are summarized in
Section 1.5.

Overview of the Migration Process 1–7

Overview of the Migration Process
1.4 Migration Paths

1.4 Migration Paths
There are two ways to convert a program to run on an Alpha system:

• Recompiling and relinking, which creates native Alpha images

• Translating, which creates native Alpha images with some routines emulated
under TIE

These two methods are shown in Figure 1–1. Section 2.2 discusses factors to
consider when choosing a migration method.

Figure 1–1 Methods for Moving VAX Applications to an Alpha System

ZK−4988A−GE

Analyze the
application:
list components,
check for source
availability,
translatability,
and so forth.

Modify
sources if
necessary

Relink
objects
and
images

Debug the
application

Test the
application

Translate
VAX image

Recompile
sources

Recompiling and Relinking
The most effective way to convert a program from OpenVMS VAX to OpenVMS
Alpha is to recompile the source code using a native Alpha compiler (such as DEC
C or DEC Fortran) and then use the OpenVMS Linker to relink the resulting
object files and any required shareable images. This method produces a native
Alpha image that takes full advantage of the speed of the Alpha system.

Translating
Despite differences between VAX and Alpha systems, you can run most user-mode
VAX images without error on an Alpha system by using the VAX Environment
Software Translator (VEST), which is part of the DECmigrate for OpenVMS
Alpha layered product. For a list of exceptions, see Section 2.3. This process
provides a higher degree of VAX compatibility than recompiling the sources, but
since the translated image does not provide the same high performance as a
recompiled image, translation is used primarily as a safety net when recompiling
is impossible or impractical. For example, translation is used in the following
situations:

• When an appropriate compiler is not yet available for OpenVMS Alpha

• When source files are not available

VEST translates the VAX binary image file into a native Alpha image that runs
under the Translated Image Environment (TIE) on an Alpha system. (TIE is a
shareable image that is part of OpenVMS Alpha.) Translation does not involve
running a VAX image under emulation or interpretation (with certain limited
exceptions). Instead, the new Alpha image contains Alpha instructions that

1–8 Overview of the Migration Process

Overview of the Migration Process
1.4 Migration Paths

perform operations identical to those performed by the instructions in the original
VAX image.

A translated image should run as fast on an Alpha system as the original image
runs on a VAX system. However, since the translated image does not benefit from
the optimizing compilers that take full advantage of the Alpha architecture, it
will typically run only about 25 to 40 percent as fast as a native Alpha image.
Major causes of this reduced performance are unaligned data and extensive use
of complex VAX instructions.

For more information on image translation and VEST, see Section 3.2.2.1 and
DECmigrate for OpenVMS AXP Systems Translating Images.

Mixing Native Alpha and Translated Images
You can mix migration methods among the individual images that comprise
an application. An application can also be partially translated as one stage
in a migration: this allows the application to run and to be tested on Alpha
hardware before being completely recompiled. For more information about
interoperability of native Alpha and translated VAX images within an application,
see Section 2.7.2.

1.5 Migration Support from Digital
Digital offers a variety of services to help you migrate your applications to
OpenVMS Alpha.

Digital customizes the level of service to meet your needs. The VAX to Alpha
migration services available include the following:

• Migration Assessment

• Application Migration Detailed Analysis and Design

• System Migration Detailed Analysis and Design

• Application Migration

• System Migration

To determine which services are appropriate for you, contact a Digital support
representative or authorized reseller, or Digital Custom Systems at 800-344-4825.

1.5.1 Migration Assessment Service
The Migration Assessment service assesses the VAX system and application
environment to be migrated to the Alpha platform. The objectives of the
migration are reviewed and a complete current state configuration is completed.
The desired end state is determined and risks and constraints are identified.
Finally, several migration scenarios are developed.

1.5.2 Application Migration Detailed Analysis and Design Service
The Application Migration Detailed Analysis and Design service does a detailed
analysis of an in-house developed application, creating a report of all VAX
dependencies within all modules and recommendations as to what modifications
should be made to migrate the application to Alpha. Acceptance criteria is
specified for performance and functionality.

Overview of the Migration Process 1–9

Overview of the Migration Process
1.5 Migration Support from Digital

1.5.3 System Migration Detailed Analysis and Design Service
The System Migration Detailed Analysis and Design service performs a detailed
analysis of the current system environment which includes hardware, software
(Digital and third party, excluding in-house developed applications) and network
components. The best tools and migration methods are determined and a project
plan, which maps the steps from the current to the future state, is created.

1.5.4 Application Migration Service
The Application Migration service migrates an in-house developed application
from an OpenVMS VAX platform to an Alpha platform. Each code module is
either recompiled or translated depending on source code availability. VAX
dependencies are removed beforehand. Finally the entire application is relinked
and tested on the Alpha platform. The application is then deployed on the target
system(s).

1.5.5 System Migration Service
The System Migration service migrates an OpenVMS system (single node or
cluster) from the VAX platform to the Alpha platform. The customer’s system
availability and performance requirements are reviewed and acceptance testing
methodology and criteria are determined.

1–10 Overview of the Migration Process

2
Selecting a Migration Method

Evaluating your application identifies the work to be done and allows you to plan
the rest of the migration.

The evaluation process has three main stages:

1. General inventory, including identifying dependencies on other software

2. Source analysis to identify coding practices that affect migration

3. Selection of a migration method: rebuilding from source code or translating

When you have completed these steps, you will have the information necessary to
write an effective migration plan.

2.1 Taking Inventory
The first step in evaluating an application for migration is to determine exactly
what has to be migrated. This includes not only the application itself, but
everything that the application requires in order to run properly. To begin
evaluating your application, identify and locate the following items:

• Parts of the application

– Source modules for the main program

– Shareable images

– Object modules

– Libraries (object module, shareable image, text, or macro)

– Data files and databases

– Message files

– CLD files

– UIL and UID files for DECwindows support

• Other software on which your application depends, for example:

– Run-time libraries

– Digital layered products

– Third-party products
To help identify dependencies on other code, use VEST with the qualifier
/DEPENDENCY. VEST/DEPENDENCY identifies executable and shareable
images on which your application depends, such as run-time libraries, system
services, and other applications. For details on using VEST/DEPENDENCY,
see DECmigrate for OpenVMS AXP Systems Translating Images.

Selecting a Migration Method 2–1

Selecting a Migration Method
2.1 Taking Inventory

• Required operating environment

– System characteristics

What sort of system is required to run and maintain your application; for
example, how much memory is required, how much disk space, and so on?

– Build procedures

This includes Digital tools such as Code Management System (CMS) and
Module Management System (MMS).

– Testing suite

You will need your tests to confirm that the migrated application runs
correctly and to evaluate its performance.

Many of these items have already been migrated to OpenVMS Alpha, for example:

• Digital software bundled with OpenVMS

– RTLs

– Other shareable libraries, such as those supplying callable utility routines
and application library routines

• Digital layered products

– Compilers and compiler RTLs

– Database managers

– Networking environment

• Third-party products

Many third-party applications now run on OpenVMS Alpha. To determine
whether a particular application has been migrated, contact the application
vendor.

You will be responsible for migrating your application and your development
environment, including build procedures and testing suites.

2.2 How to Select a Migration Method
When you have completed the inventory of your application, you must decide how
to migrate each part of it: by recompiling and relinking or by translating. The
large majority of applications can be migrated just by recompiling and relinking
them. If your application runs only in user mode and is written in a standard
high-level language, it is probably in this category. For the major exceptions, see
Section 2.4.

The remainder of this chapter discusses how to choose a migration method for
the relatively few applications that require more work to migrate. To make this
decision, you will need to know which methods are possible for each part of the
application, and how much work will be required for each method.

Note

The following process assumes that you will recompile your application if
possible, and use translation only for parts that cannot be recompiled or
as a temporary measure in the course of your migration.

2–2 Selecting a Migration Method

Selecting a Migration Method
2.2 How to Select a Migration Method

The following sections outline a process for choosing a migration method. This
process includes the following steps:

1. Determine which of the two migration methods is possible.

Under most conditions, you can either recompile and relink your program
or translate the VAX image. Section 2.3 describes cases where only one
migration method is available.

2. Identify architectural dependencies that affect recompilation.

Even if your application is generally suitable to be recompiled, it may contain
code that depends on features of the VAX architecture that are incompatible
with the Alpha architecture.

Section 2.4 discusses these dependencies and provides information that allows
you to identify them and to begin to estimate the type and amount of work
required to accommodate any dependencies you find.

Section 2.6 describes tools and methods you can use to help answer the
questions that come up in evaluating your application.

3. Decide whether to recompile or translate.

After you have evaluated your application, you must decide which migration
method to use. Section 2.7 describes how to make the decision by balancing
the advantages and disadvantages of each method.

If you cannot recompile and relink your program, or if the VAX image
uses features specific to the VAX architecture, you may wish to translate
that image. Section 2.7.1 describes ways to increase the compatibility and
performance of translated images.

As shown in Figure 2–1, the evaluation process consists of a series of questions
and some tasks you can perform to help answer those questions. Digital provides
a number of tools that you can use to help answer the questions; these tools are
described at the relevant points in the process.

2.3 Which Migration Methods are Possible?
In most cases, you can either recompile and relink, or translate your application.
However, depending on the design of your application, only one of the two
migration paths may be available to you:

• Programs that cannot be recompiled

The following types of images must be translated:

– Software that is written in a programming language for which no Alpha
compiler is yet available, for example VAX SCAN or Dibol

– Executable and shareable images for which the source code is not
available

– Programs that require H_floating or 56-bit D_floating data

• Images that cannot be translated

The source code must be recompiled and relinked (and possibly revised) for
the following types of images:

– Images produced prior to OpenVMS VAX Version 4.0

Selecting a Migration Method 2–3

Selecting a Migration Method
2.3 Which Migration Methods are Possible?

Figure 2–1 Migrating a Program

ZK−4990A−GE

Source
code

available?

Identify
source

modules

Correcting
errors

practical?

Revise
code

Recompile/
relink/run
program

Errors?

Rewrite
program

Errors?

no

no

no

no

no no

yes

yes

yes

yes

yes

yes

yes

no

Identify
sources of

errors

Test program
with rest of
application

Can program
image be

translated?

Compilers
available?

Can program
image be

translated?

You are done

Translate
program

image

Translate
program

image

Translate
program

image

2–4 Selecting a Migration Method

Selecting a Migration Method
2.3 Which Migration Methods are Possible?

– Images produced after OpenVMS VAX Version 5.5-2, because the
translated RTLs and system services have not been updated since then

– Images written in Ada

– Images that call or are called by images written in Ada

– Images that use PDP–11 compatibility mode

– Based images

– Images that contain coding practices intended for the VAX architecture
These include code that:

– Runs in inner access modes or elevated IPL (for example, VAX device
drivers)

– Refers directly to addresses in system space

– Refers directly to undocumented system services

– Uses threaded code; for example, code that switches stacks

– Uses VAX vector instructions

– Uses privileged VAX instructions

– Inspects or modifies return addresses or makes other decisions based
on a program counter (PC)

– Depends on exact access-violation behavior due to 512-byte size
memory page dependencies

– Aligns global sections on boundaries other than the native machine
page boundary (for example, depends on a 512-byte memory page size)

– Uses most of the VAX P0 or P1 space or is otherwise sensitive to the
space taken up by the translated-image run-time support routines

Although the translated image’s run-time performance will be degraded
because of the amount of VAX code that TIE will be required to interpret,
VEST can probably translate the following kinds of images:

– Images that include self-modifying or created-on-the-fly VAX code, except
for the code generated at run time by TIE

– Images with code that inspects the instruction stream, except when TIE
interprets such code at run time

For more information on which images can be translated, see DECmigrate for
OpenVMS AXP Systems Translating Images.

2.4 Coding Practices That Affect Recompilation
Many applications, especially those that use only standard coding practices or are
written with portability in mind, will migrate from OpenVMS VAX to OpenVMS
Alpha with little or no trouble. However, recompiling an application that depends
on VAX specific features that are incompatible with the Alpha architecture will
require modifying your source code. Typical incompatibilities include use of the
following:

• VAX MACRO assembly language to obtain high performance on a VAX system
or to make use of features specific to the VAX architecture

• Privileged code

Selecting a Migration Method 2–5

Selecting a Migration Method
2.4 Coding Practices That Affect Recompilation

• Features specific to the VAX architecture

If none of these incompatibilities is present in your application, the rest of this
chapter does not apply to you.

2.4.1 VAX MACRO Assembly Language
On Alpha systems, VAX MACRO is not the assembly language, but just another
compiled language. However, unlike the high-level language Alpha compilers, the
VAX MACRO–32 Compiler for OpenVMS Alpha does not produce highly optimized
code in all cases. Digital strongly recommends that you use the VAX MACRO–32
Compiler for OpenVMS Alpha only as a migration aid, not for writing new code.

Many of the reasons for using assembly language on a VAX system are no longer
relevant on Alpha systems, for example:

• There is no inherent performance advantage in using assembly language
on a RISC processor. RISC compilers, such as those in the Alpha compiler
set, can generate optimized code that takes advantage of architecture-
and implementation-specific features more easily and efficiently than a
programmer can.

• New system services can perform some functions that previously required
assembly language.

For more information on migrating MACRO code, see Porting VAX MACRO Code
to OpenVMS Alpha.

2.4.2 Privileged Code
VAX code that executes in inner access mode (kernel, executive, or supervisor
mode) or that references system space is more likely to use coding practices
dependent on the VAX architecture or to refer to VAX data cells that do not exist
on OpenVMS Alpha. Such code will not migrate to an Alpha system without
change. These programs will require recoding, recompiling, and relinking.

Code in this category includes:

• User-written system services and other privileged shareable images

For more information, see the OpenVMS Programming Concepts Manual and
the OpenVMS Linker Utility Manual.

• Device drivers and performance monitors not supplied by Digital

• Code that uses special privileges; for example, code that uses $CMEXEC or
$CMKRNL system services, or code that uses the $CRMPSC system service
with the PFNMAP option

For more information on memory mapping, see Chapter 5.

• Code that uses internal OpenVMS routines or data, such as:

– Code that links against the system symbol table, SYS.STB, to access
locations in system address space

– Code that compiles against SYS$LIBRARY:LIB

For assistance in migrating inner-mode code that refers to the OpenVMS
executive, contact a Digital support representative.

2–6 Selecting a Migration Method

Selecting a Migration Method
2.4 Coding Practices That Affect Recompilation

2.4.3 Features Specific to the VAX Architecture
To achieve its high performance, the Alpha architecture differs significantly
from the VAX architecture. Software developers who have become accustomed to
writing code that relies on certain aspects of the VAX architecture must be aware
of architectural dependencies in their code in order to transport it successfully to
an Alpha system.

Common architectural dependencies, along with ways to identify them and
actions you can take to eliminate them, are described briefly in the following
sections. For a detailed discussion of ways to identify and eliminate these
dependencies, see Chapters 4 to 8.

2.5 Identifying Dependencies on the VAX Architecture in Your
Application

Even if your application recompiles successfully with a compiler that generates
native Alpha code, it may still contain subtle dependencies on the VAX
architecture. The OpenVMS Alpha operating system has been designed to
provide a high degree of compatibility with OpenVMS VAX; however, the
fundamental differences between the VAX and Alpha architectures can create
problems for applications that depend on certain VAX architectural features. The
following sections highlight areas of your application you should examine.

2.5.1 Data Alignment
Data is naturally aligned when its address is an integral multiple of the size of
the data in bytes. For example, a longword is naturally aligned at any address
that is a multiple of 4, and a quadword is naturally aligned at any address that
is a multiple of 8. A structure is naturally aligned when all its members are
naturally aligned.

Accessing data that is not naturally aligned in memory incurs a significant
performance penalty both on VAX and on Alpha systems. On VAX systems, most
languages align data on the next available byte boundary by default, because
the VAX architecture provides hardware support that minimizes the performance
penalty in referencing unaligned data. On Alpha systems, however, the default is
to align each data item naturally, so Alpha, like other typical RISC architectures,
does not provide hardware support to minimize the performance degradation from
using unaligned data. As a result, references to naturally aligned data on Alpha
systems are 10 to 100 times faster than references to unaligned data.

Alpha compilers automatically correct most potential alignment problems and
flag others.

Finding the Problem
To find instances of unaligned data, you can use the following methods:

• Use a qualifier provided by most Alpha compilers that allows the compiler
to report compile-time references to unaligned data. For example, for Digital
Fortran programs, compile with the qualifier /WARNING=ALIGNMENT.

• To detect unaligned data at run time, use the OpenVMS Debugger (SET
BREAK/UNALIGNED command) or DEC PCA (Performance and Coverage
Analyzer).

Selecting a Migration Method 2–7

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

Eliminating the Problem
To eliminate unaligned data, you will be able to use one or more of the following
methods:

• Maximize performance by aligning data items on quadword boundaries,
since Alpha systems generally provide only quadword granularity (see
Section 2.5.4).

• Compile with natural alignment, or, when language semantics do not provide
for this, move data to be naturally aligned. Where filler is inserted to ensure
that data remains aligned, there is a penalty in increased memory size.
A useful technique for ensuring naturally aligned data while conserving
memory is to declare longer variables first.

• Use high-level-language instructions that force natural alignment within
data structures. For example, in DEC C, natural alignment is the
default option. To define data structures that must match the VAX C
default alignment—such as on-disk data structures—use the construct
#PRAGMA NO_MEMBER_ALIGNMENT. With DEC Fortran, local variables
are naturally aligned by default. To control alignment of record structures
and common blocks, use the /ALIGN qualifier.

• Use compiler qualifiers that generate VAX compatible unaligned data-
structure mappings. Use of these qualifiers will result in Alpha programs
that are functionally correct but potentially slow.

Note

Software that is converted to natural alignment may be incompatible with
other software that is running translated on a VAX system in the same
OpenVMS Cluster environment or over a network; for example:

• An existing file format may specify records with unaligned data.

• A translated image may pass unaligned data to, or expect it from, a
native image.

In such cases, you will have to adapt all parts of the application to expect
the same type of data, either aligned or unaligned.

For more information on data alignment, see Chapter 7 and Section 8.4.2.

2.5.2 Data Types
The Alpha architecture supports most of the VAX native data types; however,
certain VAX data types, such as the H_floating data type, are not supported
(see Table 2–1). Check to see if your application depends on the size or bit
representation of an underlying native data type.

2–8 Selecting a Migration Method

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

Table 2–1 Floating-Point Data Type Support

Data Type On VAX On Alpha

D53_floating (G_
floating) (Default
double-precision
format)

Not supported. Supported. Using D53_floating instead of
D56_floating drops three bits of precision and
yields slightly different results.

D56_floating
(Default double-
precision format)

Supported. Not supported. You can obtain full support
by translating your code with DECmigrate.
Alternatively, you can substitute D53_floating
for D56_floating, if your application does not
require the extra three bits of precision.

F_floating Supported. Supported.

G_floating Supported. Supported.

H_floating (128-bit
floating-point)

Supported. Not supported. You can obtain full H_floating
support with DECmigrate. You can use it
to translate the code module that contains
H_floating structures, or you can recode your
application, using a supported data type.

S_floating (IEEE) Not supported. Supported.

T_floating (IEEE) Not supported. Supported.

X_floating (128-bit
floating-point
(Alpha; IEEE-like))

Not supported. Supported by Digital Fortran Version 6.2 or
later and by DEC C Version 4.0 or later. The
X_floating data format is not identical to H_
floating, but both cover a similar range of
values. For Fortran applications, automatic
conversion between X_floating memory format
and H_floating on-disk is possible by use of
the FOR$CONVERTnnn logical name, the
OPTIONS statement, the /CONVERT compiler
qualifier, or the CONVERT=keyword on OPEN
statements.

To improve their performance, Alpha processors implement the numeric string
and packed decimal string, H_floating, and full-precision D_floating data types by
using software, as follows:

• Decimal

Eighteen-digit decimal data is converted to 64-bit binary integers internally,
which provides very fast COBOL performance.

• H_floating

Alpha compilers do not support H_floating data; however, the Translated
Image Environment (TIE) provides emulated support for H_floating data in
translated images.

• D_floating

D_floating data is implemented on Alpha platforms in the following ways:

– Using G_floating hardware (D53). Alpha hardware converts D_floating
data (D53) to G_floating for processing. This provides speed and data-
type compatibility with existing binary files that contain D_floating data,
but loses 3 fraction bits compared to D_floating arithmetic on current
VAX systems. D_floating data is thus processed with 15 decimal digits
of precision instead of the 16 decimal digits supplied by D56 on a VAX
system.

Selecting a Migration Method 2–9

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

– Using software emulation (D56) for translated images. This gives exact
D56 format VAX results, but is slower than D53 or G_floating.

Eliminating the Problem
To eliminate data type problems, you will be able to use one or more of the
following methods:

• Instead of D_floating or H_floating, use G_floating or IEEE T_floating
whenever possible because both:

– Support data in the range 10�308 to 10308

– Have approximately 15 decimal digits of precision

• Instead of decimal data types, use integer data types whenever possible.

For more information on Alpha data types, see Chapter 7.

2.5.3 Shared Access to Data
An atomic operation is one in which:

• Intermediate or partial results cannot be seen by other processors or devices.

• The operation cannot be interrupted (that is, once started, the operation
continues until completion).

On OpenVMS Alpha, any operation that reads, modifies, and stores data in
memory will be broken into several instructions, and can be interrupted between
any of those instructions. As a result, if your application expects to modify data
in shared memory atomically, you must take steps to guarantee the atomicity of
the operation.

An application can depend on the atomicity of operations under any of the
following conditions:

• An AST routine within the process shares data with the mainline code.

• The process shares data in a writable global section with another process
that executes on the same CPU (that is, in a uniprocessor system).

• The process shares data in a writable global section with another process
that may execute concurrently on another CPU (that is, in a multiprocessor
system).

Finding the Problem
To find dependencies on atomicity, reexamine use of shared variables (writable
items accessed by multiple threads of execution) for hidden or explicit
assumptions of atomicity.

Eliminating the Problem
To eliminate general problems of instruction atomicity, you will be able to use one
or more of the following methods:

• Use language constructs, where available, that guarantee atomicity to protect
shared variables: for example, in C, the VOLATILE declaration.

• Use explicit synchronization rather than relying on assumptions of
atomicity.

• Use OpenVMS locking services (such as $ENQ and $DEQ) or LIB$ routines.

2–10 Selecting a Migration Method

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

• To synchronize with an AST thread, use the $SETAST system service in
the mainline code to block the AST and then reenable delivery after the
instruction has completed.

For more information on synchronization, see Chapter 6.

2.5.4 Reading or Writing Data Smaller Than a Quadword
Granularity refers to the size of the data that can be read or written to memory
as an atomic operation, without interfering with data in adjacent memory
locations. Machines such as the VAX that provide granularity at the byte level
are said to be byte granular. Alpha systems are quadword granular.1

Since OpenVMS Alpha is quadword granular, writes to a shared byte, word, or
longword may corrupt other data present in the same quadword as the shared
data. This occurs when:

• A program attempts to modify a byte, word, or longword.

• An unaligned field of any size crosses an aligned quadword boundary, which
creates a byte, word, or longword that must be written independently.

Note

All of the types of data sharing listed in the discussion of atomicity
(Section 2.5.3) can create granularity problems in the rest of the quadword
containing the intentionally shared data.

In addition, if a process invokes asynchronous system services or
asynchronously completing library functions that write a result back
to process space, then the data written back can create granularity
problems in the quadword that contains it; for example:

• An asynchronous system service that writes to a status block

• An I/O operation that writes to a process buffer

• An I/O operation in which a direct-memory-access (DMA) controller
writes to a process buffer

Finding the Problem
To find uses of byte, word, or longword granularity, you can use the following
methods:

• Look for intentionally shared data (between an AST and main thread or
between processes). Check whether the shared data occupies the same
quadword as other data that might be written.

• Look for data written back by asynchronous system services or library calls
that complete asynchronously. Check whether that data occupies the same
quadword as other data written by another process.

• Look for I/O buffers that contain data written back asynchronously from
a device. Check whether the start and end of the buffers occupy the same
quadword as data written by another process.

1 The Alpha architecture also supports longword granularity, but assuming longword
granularity is not recommended. Digital compilers assume by default that source code
does not depend on granularity finer than quadword, but most Digital languages allow
you to specify a smaller granularity by using the /GRANULARITY qualifier.

Selecting a Migration Method 2–11

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

Eliminating the Problem
To eliminate use of granularity at a level smaller than the quadword, you will be
able to use one or more of the following methods:

• Put shared items in private quadwords.

• Align I/O buffer heads on quadword boundaries and move any data after the
buffer into the next quadword.

• If the problem is not caused by data shared with the system, use a higher-
level synchronization mechanism to interlock both intentionally shared data
and background data in the same quadword.

Digital compilers assume quadword granularity by default, but to maintain
compatibility with your current code, they allow you to specify byte, word,
unaligned longword, and unaligned quadword granularity by using the
/GRANULARITY qualifier. For more information, see the documentation for
the individual compilers.

For more information on read/write granularity, see Chapter 6.

2.5.5 Page Size Considerations
Page size governs the amount of virtual memory allocated by memory
management routines and system services. For example, in mixed-architecture
OpenVMS Cluster systems, your application may determine the size of certain
data buffers based on the VAX page size. Page size is also the basis on which
protection is assigned to code and data in memory.

The OpenVMS VAX operating system allocates memory in multiples of 512 bytes.
To improve overall system performance, Alpha systems have much larger page
sizes, ranging from 8 KB to 64 KB, depending on the specific hardware platform.

Page size is a factor in the management of system resources, such as working set
quotas. In addition, memory protection on VAX systems can vary for each 512-
byte region of memory; on Alpha systems, the granularity of memory protection is
much larger, depending on the system’s page-size implementation.

Note

The change to a larger page size affects only applications that explicitly
rely on a 512-byte page size, for example, applications that:

• Use "512" to:

– Compute memory usage.

– Calculate page table requirements.

• Change protection on a 512-byte granularity.

• Use the system service Create and Map Section ($CRMPSC) to map a
file into a specific location in the process address space (for example,
to reuse memory when available memory is limited).

Finding the Problem
To find uses of the VAX page size, identify code that manipulates virtual memory
in 512-byte chunks or relies on 512-byte memory protection granularity. Search
your code for occurrences of numbers such as the decimal values 511, 512, or 513;
the hexadecimal values 1FF, 200, or 201; and so forth.

2–12 Selecting a Migration Method

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

Eliminating the Problem
To eliminate conflicts between the VAX and Alpha page sizes, you will be able to
use one or more of the following methods:

• Change hardcoded page size references to symbolic values (assigned at run
time using a call to $GETSYI).

• Reevaluate code that assumes that page size and disk (file) block size are
equal. On Alpha systems, this assumption is not correct.

• Do not depend on being able to use memory-management-related system
services (for example, $CRMPSC, $MGBLSC) to map a file into a fixed, page-
size-dependent range of addresses (global section). Consider instead using the
$EXPREG system service.

For more information on page size, see Chapter 5.

2.5.6 Order of Read/Write Operations on Multiprocessor Systems
The VAX architecture specifies that if a processor in a multiprocessing system
writes multiple data items to memory, these items are written to memory in the
order specified. This ordering ensures that the writes become visible to other
CPUs in the order in which they were specified by the program and I/O devices.

The guarantee that writes become visible to other CPUs in the same order in
which they are specified limits the performance optimization that the system can
make. It also makes caches more complex and limits the optimization of cache
performance.

To benefit overall system performance, Alpha systems, as well as other RISC
systems, can reorder reads and writes to memory. Therefore, writes to memory
can become visible to other CPUs in the system in an order different from that in
which they were issued.

Note

This section is relevant only to multiprocessor systems. On a uniprocessor
system, all memory accesses are completed in the order in which the
program requested them.

Finding the Problem
To find instances of reliance on read/write ordering for applications that may
execute on multiprocessor systems, identify algorithms that depend upon the
order in which data is written: for example, use of flag-passing protocols for
synchronization.

Eliminating the Problem
To eliminate problems with the ordering of read and write operations, you will be
able to use one or more of the following methods:

• Instead of flag-passing protocols, use system-supplied routines for
synchronization, such as the OpenVMS locking system services ($ENQ,
$DEQ).

• The Alpha architecture specifies a memory barrier instruction, which
causes the hardware to complete all previous memory reads and writes
before performing reads and writes following the barrier. Some Alpha
languages provide a way of inserting this instruction, but its use will degrade
performance.

Selecting a Migration Method 2–13

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

For more information on synchronization, see Chapter 6.

2.5.7 Immediacy of Arithmetic Exception Reporting
Alpha (and vector VAX) systems treat exceptions differently from scalar VAX
systems. Scalar VAX systems use ‘‘precise exception reporting;’’ that is, they
guarantee that if an instruction causes an exception, the program counter
(PC) that is reported is the address of the instruction that caused the exception.
Because no subsequent instructions have been issued or have affected the context
of the process, a condition handler can remedy the cause of the exception and
resume execution of the program at or after the failing instruction.

To achieve the best possible performance in a pipelined environment, vector VAX
and Alpha systems use ‘‘imprecise exception reporting;’’ that is, the PC reported
by the exception handler is not guaranteed to be that of the instruction that
caused the arithmetic exception. Furthermore, subsequent instructions may
complete before the exception is reported.

In practice, very few, if any, programs rely on knowing the specific instruction
that caused an arithmetic exception. Typically, when an arithmetic exception
occurs, a program does one of the following:

• Logs the exception and continues

• Prints an error message and aborts the subroutine or program

• Restarts the entire subroutine and uses a different algorithm that scales the
data to prevent overflow or underflow

If a VAX program performs one of these actions upon encountering an arithmetic
exception, it will not be affected by being migrated to a RISC system that uses
imprecise exception handling.

Note

Imprecise exception reporting applies only to arithmetic exceptions. For
other types of exceptions, such as faults and traps, OpenVMS Alpha uses
precise exception reporting, and the specific instruction that caused the
exception is reported.

For more information on exception handling, see Section 8.4.1.

2.5.8 Explicit Reliance on the VAX Procedure Calling Standard
The OpenVMS calling standard specifies significantly different calling conventions
for Alpha programs than for VAX programs. Application programs that depend
explicitly on certain details of the VAX procedure calling conventions must be
modified to run as native code on an Alpha system. Such dependencies include:

• Code that locates the placement of arguments relative to the argument
pointer (AP)

In many cases, however, the VAX MACRO–32 Compiler for OpenVMS Alpha
compensates for this.

• Code that modifies its return address on the stack

• Code that interprets the contents of a call frame

2–14 Selecting a Migration Method

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

Both VAX and Alpha compilers provide techniques for accessing procedure
arguments. If your code uses these standard mechanisms, you can simply
recompile it to run correctly on an Alpha system. If your code does not use
these mechanisms, you must rewrite it so that it does. For a description of these
standard mechanisms, see the OpenVMS Calling Standard.

Translated code mimics the behavior of VAX procedure calling. Images that
contain the dependencies listed here will execute properly under translation on
an Alpha system.

2.5.9 Explicit Reliance on VAX Exception-Handling Mechanisms
The mechanics of exception handling differ between VAX and Alpha systems.
Chapter 8 discusses the differences in how arithmetic exceptions are dispatched
on VAX and Alpha systems. This section focuses on the mechanisms by which
code dynamically establishes a condition handler and by which a condition
handler accesses the exception state.

2.5.9.1 Establishing a Dynamic Condition Handler
VAX systems provide a number of ways in which an application can establish
a condition handler dynamically at run time. The OpenVMS calling standard
facilitates this operation for VAX programs by providing a space at the top of a
call frame in which executing code can place the address of a condition handler
that is to service exceptions that occur in the context of that frame. However,
the OpenVMS calling standard provides no such writable area in the procedure
descriptor for Alpha procedures.

For instance, a VAX MACRO program might use the following instruction
sequence to move the address of a condition handler into a call frame:

MOVAB HANDLER,(FP)

The MACRO–32 Compiler for OpenVMS Alpha parses this statement and
generates appropriate Alpha assembly language code that results in the
establishment of the condition handler. For more information, see Porting
VAX MACRO Code to OpenVMS Alpha.

Note

On VAX systems, the run-time library routine LIB$ESTABLISH and
its counterpart LIB$REVERT allow an application to establish and
disestablish a condition handler for the current frame. These routines do
not exist on an Alpha system; however, compilers may handle these calls
properly (such as with FORTRAN intrinsic functions). For more precise
information, see Chapter 11 and the documentation for the compilers
relevant to your application.

Translated code mimics the VAX mechanism for dynamically establishing a
condition handler.

Certain Alpha compilers (and cross-compilers) provide a language-specific
mechanism to establish a dynamic condition handler.

For more information on condition handlers, see Chapter 8.

Selecting a Migration Method 2–15

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

2.5.9.2 Accessing Data in the Signal and Mechanism Arrays
During exception processing, both VAX and Alpha systems push the exception
processor status, an exception PC, a signal array, and a mechanism array onto
the stack.

Both the signal array and mechanism array have different contents on VAX
and Alpha systems; the mechanism array also has different formats on the two
platforms. To work properly in either system, a condition handler that accesses
data in the signal array or the mechanism array must use the appropriate CHF$
symbols rather than hardcoded offsets. For descriptions of the appropriate CHF$
symbols, see the Bookreader version of the OpenVMS Programming Concepts
Manual.

Note

The condition handler cannot successfully locate information in the
mechanism array by using hardcoded offsets from AP.

2.5.10 Modification of the VAX AST Parameter List
OpenVMS VAX passes five longword arguments to an AST service routine. AST
service routines written in VAX MACRO access this information by using offsets
from the argument pointer (AP). OpenVMS VAX allows an AST service routine
to modify any of these arguments, including the saved registers and the return
PC. These modifications can then affect the interrupted program once the AST
routine returns.

Although the AST parameter list on Alpha systems also consists of five
parameters, the only argument directly intended for the AST procedure is
the AST parameter. Although the other arguments are present, they are not
used after the AST procedure exits. Because modifying them has no effect on the
thread of operation to be resumed at AST exit, a program that relies on such an
effect must be changed to use more conventional argument-passing mechanisms
to run on an Alpha system.

2.5.11 Explicit Dependency on the Form and Behavior of VAX Instructions
Programs that rely specifically on the execution behavior of VAX MACRO
instructions or on binary encoding of VAX instructions must be modified before
being recompiled or relinked to run as native code on an Alpha system.

For example, the following coding practices will not work on an Alpha system:

• In VAX MACRO, embedding a block of VAX instructions in a program data
area, and modifying a PC to transfer control to this code block

• Examining condition codes or other information in the processor status
longword (PSL)

For more information on migrating VAX MACRO code, see Porting VAX MACRO
Code to OpenVMS Alpha.

2–16 Selecting a Migration Method

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

2.5.12 Generation of VAX Instructions at Run Time
Creating and executing conventional VAX instructions will not work in native
Alpha mode.

VAX instructions created at run time will execute by emulation in a translated
image.

For more information on code that generates specific VAX instructions at run
time, see Porting VAX MACRO Code to OpenVMS Alpha.

2.6 Identifying Incompatibilities Between VAX and Alpha Systems
To identify architectural incompatibilities in a module of your application, start
by doing a test compile of the module using the Alpha compiler. For information
on diagnostic compiler switches, see your language processor documentation.

Many modules will compile and run with no errors. If errors occur, you may have
to revise the module.

The DEC compilers can produce messages that are very useful for identifying
potential porting problems. For example, the MACRO–32 compiler provides the
/FLAG qualifier with 10 options. Depending on which options you include, the
compiler reports all unaligned stack and memory references, any run-time code
generation (such as self-modifying code), branches between routines, or several
other conditions.

The DEC Fortran compiler qualifier, /CHECK, produces messages about any of
the various options you specify.

Note

Even if a module runs without error in isolation, there may be latent
synchronization problems that will turn up only when the module is run
together with other parts of the application.

If a module does not run without error after being recompiled and relinked,
you can use the following methods to assess what must be revised to make the
program run well on an Alpha system:

• Examining the source code

A code review at this point can avoid many difficulties in the migration
process and save a great deal of time and effort in the later stages of
migration. To examine your code, use the checklist in Appendix A, as well
as the guidelines in Chapter 4. These migration issues are summarized in
Section 2.4.

If a direct code review of your entire application is not practical, an automated
search can still be useful: for example, using a combination of DCL SEARCH
and an editor to locate and tabulate instances of architectural dependencies.

• Using messages generated by the compiler in your initial test run

Compilers will give you information on:

– Differences between VAX and Alpha compilers

– Data alignment
Specific compilers may also identify other differences between the VAX and
Alpha architectures.

Selecting a Migration Method 2–17

Selecting a Migration Method
2.6 Identifying Incompatibilities Between VAX and Alpha Systems

• Analyzing the image using VEST

Even if you intend to recompile and relink a program, you can use VEST
as an analysis tool. It can provide a great deal of useful information about
changes that will make your program run most efficiently on an Alpha
system. For example, VEST can help identify the following problems:

– Static unaligned data (data declarations, including unaligned fields in
data structures) and unaligned stack operations

– Floating-point references (H_ and D_floating)

– Packed decimal references

– Privileged code

– Nonstandard coding practice

– References to OpenVMS data or code other than by using system
services

– Uninitialized variables

– Certain synchronization issues, such as multiprocess use of interlocked
instructions

VEST cannot identify some problems, including:

– Unaligned variables (in data structures created dynamically)

– Most synchronization issues

• Running the image using the PCA (Performance and Coverage Analyzer)

The PCA can point out the following issues:

– Run-time alignment faults

– Which sections of the application are executed most frequently and hence
are critical to performance

Once all the images of the application run without errors on an Alpha system,
you must combine the rebuilt images to test for problems of synchronization
between images. For more information on testing, see Section 3.3.3.

2.7 Deciding Whether to Recompile or Translate
If both methods are possible for a given image, you must balance the projected
performance of native and translated versions of the image on an Alpha system
against the effort required to translate the image or to convert it to a native
Alpha image.

In general, different images that make up an application can be run in different
modes: for example, a native Alpha image can call translated shareable images
and vice versa. For more information on mixed-architecture applications, see
Section 2.7.2.

The two migration paths are compared in Table 2–2.

2–18 Selecting a Migration Method

Selecting a Migration Method
2.7 Deciding Whether to Recompile or Translate

Table 2–2 Migration Path Comparison

Factor Recompile/Relink Translate

Performance Full Alpha capability Typically 25-40% of native
Alpha potential; equivalent to
performance on VAX

Effort required Varies: easy to difficult Easy

Schedule constraints Based on availability of
native compilers

None: available immediately

Programs supported

–Age Source for VAX/VMS
Version 4.0 or earlier
accepted

Only VAX/VMS Version 4.0 or later
supported

–Limitations Privileged code
supported

Only user-mode code supported

VAX compatibility High: most code will
recompile and relink
without difficulty

Complete by emulation

Ongoing support and
maintenance

Normal source code
maintenance

Maintain source code on VAX;
recompile and retranslate for each
new version

To determine how to proceed with the migration of your application, answer the
following questions:

• Do you build your application entirely from source code, or do you rely on
binary images for some functions?

If you rely on binary images, you will have to translate them.

• Do you have access to the source code for all images that are part of your
application?

If not, you will have to translate those images with missing source code.

• Which images are critical to the performance of your application?

You will want to recompile those images to take full advantage of the speed of
Alpha systems.

– Use the Performance and Coverage Analyzer to identify critical images.

– Only images that are produced by native Alpha compilers use Alpha
processing capabilities efficiently and achieve optimal performance. A
translated VAX image runs at one-third the speed of native Alpha code or
slower, depending on the translation options used.

• How much work will be required to convert each image under the two
methods?

– Depending on the complexity of the application, software translation
usually requires less effort and time than recompiling and relinking.

You may choose to translate some part of your application in order to get
it running on OpenVMS Alpha while you complete the migration to an
all-native version.

– Code that depends on details of the VAX architecture and the VAX
calling standard cannot be recompiled directly. It must either run under
translation, or it must be rewritten, recompiled, and relinked.

Selecting a Migration Method 2–19

Selecting a Migration Method
2.7 Deciding Whether to Recompile or Translate

You can remove architectural dependencies in several ways:

• Replace an architecture-dependent code sequence with high-level language
lexical elements that support the same operation in a platform-independent
manner.

• Use a call to an OpenVMS system service to perform the task in a way that is
appropriate for the processor architecture.

• Use a high-level language compiler switch to help guarantee correct program
behavior with minimal changes to the source code.

Table 2–3 summarizes how the architectural dependencies of a given program
can affect which method you use to migrate the program to an Alpha system. For
more detailed information, see the following chapters.

2–20 Selecting a Migration Method

Selecting a Migration Method
2.7 Deciding Whether to Recompile or Translate

Table 2–3 Choice of Migration Method: Dealing with Architectural
Dependencies

Recompiled, Relinked VAX Source Translated VAX Image

Data alignment1

By default, most compilers align data
naturally. For information on qualifiers
to retain VAX alignment, see Chapter 11.

Unaligned data supported, but the qualifier
/OPTIMIZE=ALIGNMENT can improve
overall execution speed by assuming that
data is longword aligned.

Data types

Replace H_floating with X_floating.

For D_floating, if the 15 decimal digits
of precision provided by the D53 format
are sufficient, replace D_floating with
G_floating. If the application requires
16-bit decimal precision (D56 format),
translate it.

COBOL packed decimal is automatically
converted to binary format for operations.

For more information on data types, see
Chapter 7.

To retain 16-bit decimal precision for D_
floating, use the /FLOAT=D56_FLOAT
qualifier. Performance using this qualifier
will be slower than when using the default,
/FLOAT=D53_FLOAT.

Atomicity of read-modify-write
operations

Support depends on options provided
by the individual compiler. (For more
information, see Chapter 6.)

Use the /PRESERVE=INSTRUCTION_
ATOMICITY qualifier. Execution speed may
drop by a factor of 2.

Atomicity and granularity of byte and
word write operations

Supported using compiler options with
appropriate source code changes. (For
more information, see Chapter 6.)

Use the /PRESERVE=MEMORY_ATOMICITY
qualifier. Execution speed may drop by a
factor of 2.

Page size

The OpenVMS Linker produces large,
Alpha style pages by default.

Most 512-byte page images are supported.
However, because of the permissive protection
assigned by VEST, images that rely on
restrictive protection to generate access
violations will not execute properly on an
Alpha system when translated.

1Unaligned data is primarily a performance issue. Whereas references to unaligned data were
only somewhat detrimental to VAX performance, loading unaligned data from memory and storing
unaligned data to memory in an Alpha system can be up to 100 times slower than the corresponding
aligned operations.

(continued on next page)

Selecting a Migration Method 2–21

Selecting a Migration Method
2.7 Deciding Whether to Recompile or Translate

Table 2–3 (Cont.) Choice of Migration Method: Dealing with Architectural
Dependencies

Recompiled, Relinked VAX Source Translated VAX Image

Read/write ordering

Supported by adding appropriate
synchronization instructions (MB) to
source code, but with a performance
penalty. (For more information, see
Chapter 6.)

Use the /PRESERVE=READ_WRITE_
ORDERING qualifier.

Immediacy of exception reporting

Partly supported using compiler options.
(For more information, see Chapter 8.)

Use the /PRESERVE=FLOAT_EXCEPTIONS
or the /PRESERVE=INTEGER_EXCEPTIONS
qualifier. Execution speed may drop by a
factor of 2.

Explicit reliance on details of the VAX
architecture and calling standard2

Unsupported; dependencies must be
removed.

Supported.

2Dependencies on details of the VAX architecture and calling standard include explicit reliance on the
VAX calling standard, VAX exception handling, the VAX AST parameter list, the format and behavior
of VAX instructions, and the generation of VAX instructions at run time.

2.7.1 Translating Your Application
If you are unable to recompile your application, or if it uses features specific to
the VAX architecture, you may decide to translate the application. You can choose
to translate only some parts of the application, or you can translate parts of it
temporarily as a means of staging the overall migration.

Many of the differences that affect recompilation discussed in Section 2.4 can
also affect the performance of a translated VAX image. You can use the following
methods to increase the compatibility of images that are dependent on the VAX
architecture. (For more information, see DECmigrate for OpenVMS AXP Systems
Translating Images.)

• Data alignment

Supply the VEST translate-time qualifier /OPTIMIZE=NOALIGNMENT
to make VEST generate extra inline Alpha code that avoids generating
exceptions for references to unaligned data. With this qualifier, VEST
produces Alpha code that executes about 10 times slower than code
that uses only aligned data references. (If you use the default option
/OPTIMIZE=ALIGNMENT, unaligned data causes an exception, which takes
about 100 times longer to execute than with aligned data.)

• Instruction atomicity

When you invoke the translator, supply the translate-time qualifier
/PRESERVE=INSTRUCTION_ATOMICITY to make VEST generate an
Alpha instruction sequence that is AST atomic for a specified set of VAX
instructions. Although an AST can be delivered in the middle of an Alpha
instruction sequence that performs such an atomic operation, the instruction
sequence will be restarted at the beginning when the AST routine completes.

2–22 Selecting a Migration Method

Selecting a Migration Method
2.7 Deciding Whether to Recompile or Translate

Execution speed for a particular code sequence may drop by a factor of 2 if the
/PRESERVE=INSTRUCTION_ATOMICITY qualifier is specified. (For a list of
VAX instructions for which the translator generates AST-atomic code, as well
as additional information about the software translator, see DECmigrate for
OpenVMS AXP Systems Translating Images.)

• Read/write granularity

VEST ensures the atomicity of byte or word writes when you use the
translate-time qualifier /PRESERVE=MEMORY_ATOMICITY. This qualifier
allows a mainline routine and an AST routine to update adjacent bytes within
a longword or quadword concurrently without interfering with each other.
The /PRESERVE=MEMORY_ATOMICITY qualifier guarantees atomic access
of longwords that are not naturally aligned and of data that crosses quadword
boundaries. Execution speed may drop by a factor of 2 when these qualifiers
are specified.

• Page size and permissive protection

To enable VAX images to run on an Alpha system, VEST, together with
the image activator, maps the VAX image sections into large pages. With
an Alpha processor that supports 8 KB pages, up to 16 VAX pages can fit
in a single page. However, because this big page is described by only a
single page-table entry, only one protection and a single backing store can be
assigned to the page. Consequently, VEST assigns the Alpha page the most
permissive protection associated with any of the Alpha image sections that it
maps. Thus, VAX images that rely on restrictive protection to generate access
violations will not execute properly on an Alpha system when translated.

One possible alternative is to relink the program on a VAX using the default
linker qualifier /BPAGE to align the pages on 64KB boundaries.

• Precise arithmetic exceptions

VEST allows you to set precise exception reporting for certain exception types
at translate time by using the /PRESERVE=FLOAT_EXCEPTIONS qualifier
or the /PRESERVE=INTEGER_EXCEPTIONS qualifier. If you specify either
of these qualifiers, execution speed for certain code segments may drop by a
factor of 2.

• Generating VAX instructions at run time

VAX instructions created at run time will execute by emulation under
translation. However, emulated instructions are significantly slower than
translated instructions, which can be important if the code is generated at
run time to speed up the performance of critical sections of your application.

Table 2–3 includes a summary of ways you can allow for various architectural
dependencies in a translated image.

2.7.2 Combining Native and Translated Images
In general, you can combine native Alpha images with translated images on an
Alpha system. For example, a native Alpha image can call translated shareable
images and vice versa.

Selecting a Migration Method 2–23

Selecting a Migration Method
2.7 Deciding Whether to Recompile or Translate

In order to run together, native and translated images must be able to make calls
between the VAX and Alpha calling standards. No special action is required if
the native and translated images meet the following conditions:

• Routine interface semantics and data alignment conventions for the native
Alpha image are identical to those on a VAX image.

• All the entry points are CALLx; that is, there are no external JSB entry
points. This is probably true of any code written in a high-level language.

• The inbound and outbound calls in the native image are not written in Ada.

When a source procedure that uses one calling standard calls a destination
procedure that uses a different calling standard, it does so indirectly through
a jacket routine. The jacket routine interprets the procedure’s call frame and
argument list and builds the equivalent destination call frame and argument
list, then transfers control to the destination procedure. When the destination
procedure returns, it does so through the jacket routine. The jacket routine
propagates the destination routine’s returned register values into the source
routine’s registers and returns control to the source procedure.

The OpenVMS Alpha operating system creates jacket routines automatically for
most calls. To make use of automatic jacketing, use the compiler qualifier /TIE
and the linker option /NONATIVE_ONLY to create the native Alpha parts of your
application.

In certain cases, the application program must use a specially written jacket
routine. For example, you may have to write jacket routines for nonstandard
calls to libraries such as the following:

• A VAX shareable library that includes external JSB entry points

• A library that includes read/write data in the transfer vector

• A library that contains VAX specific functions

• A library that uses resources that would need to be shared between a native
and a translated version of the library

• A native Alpha library that does not provide or export all the symbols that
the VAX image did

(The term exported means that a routine is included in the Global Symbol
Table (GST) for the image.)

For information on how to create a jacket image for one of these situations, see
DECmigrate for OpenVMS AXP Systems Translating Images.

Translated shareable images (such as run-time libraries for languages without
native Alpha compilers) that are shipped with the OpenVMS Alpha operating
system are accompanied by jacket routines that allow them to be called by native
Alpha images.

2–24 Selecting a Migration Method

3
Migrating Your Application

Actually migrating your application to an Alpha system involves several steps:

1. Setting up the migration environment

2. Testing the application on a VAX system to establish baselines for evaluating
the migration

3. Converting the application to run on an Alpha system

4. Debugging and testing the migrated application

5. Integrating the migrated application into a software system

3.1 Setting Up the Migration Environment
The native Alpha environment is a complete development environment equivalent
to that on VAX systems.

At present, you will have to complete the debugging and testing of your migrated
application on Alpha hardware.

An important element of the Alpha migration environment is support from
Digital, which can provide help in modifying, debugging, and testing your
application.

3.1.1 Hardware
There are several issues to consider when planning what hardware you will need
for your migration. To begin, consider what resources are required in your normal
VAX development environment:

• CPUs

• Disks

• Memory

To estimate the resources needed for an Alpha migration environment, consider
the following issues:

• Greater image size on Alpha systems

Compare VAX and Alpha compiled and translated images.

• Greater page size and physical memory size on Alpha systems

• CPU requirements

Using VEST tends to take a lot of CPU time. (It is difficult to predict how
much; it depends more on application complexity than size.) VEST also needs a
great deal of disk space for log files, for an Alpha image if you request one, for
flowgraphs, and so on. The new image includes both the original VAX instructions
and the new Alpha instructions, so it is always larger than the VAX image.

Migrating Your Application 3–1

Migrating Your Application
3.1 Setting Up the Migration Environment

A suggested configuration consists of:

• 6 VUP multiprocessing system with 256 MB of memory

• 1 GB system disk

• 1 GB disk per application

In a multiprocessing system, each processor should be able to support the image
analysis of a separate application.

If computer resources are scarce, Digital suggests that you do one or more of the
following:

• Run compilers or VEST as a batch job at off-peak hours.

• Lease additional equipment for the migration effort.

3.1.2 Software
To create an efficient migration environment, check the following elements:

• Migration tools

You need a compatible set of migration tools, including the following:

– Compilers

– Translation tools

– VEST and VEST/DEPENDENCY

– TIE

– RTLs

– System libraries

– Include files for C programs

• Logical names

Logical names must be consistently defined to point to VAX and Alpha
versions of tools and files. For more information, see Section 3.4.

• Compile and link procedures

These procedures must be adjusted for new tools and the new environment.

• Tools for maintaining sources and building images

– CMS

– MMS

Native Alpha Development
All of the standard development tools you have on VAX are also available as
native tools on Alpha systems.

Translation
The software translator VEST runs on both VAX and Alpha systems. The
Translated Image Environment (TIE), which is required to run a translated
image, is part of OpenVMS Alpha, so final testing of a translated image must
either be done on an Alpha system or at an Alpha Migration Center.

3–2 Migrating Your Application

Migrating Your Application
3.2 Converting Your Application

3.2 Converting Your Application
If you have thoroughly analyzed your code and planned the migration process,
this final stage should be fairly straightforward. You may be able to recompile
or translate many programs with no change. Programs that do not recompile or
translate directly will frequently need only straightforward changes to get them
up on an Alpha system.

For more detailed information on the actual conversion of your code, see the
following OpenVMS Alpha migration documentation:

• DECmigrate for OpenVMS AXP Systems Translating Images

• Porting VAX MACRO Code to OpenVMS Alpha

For descriptions of these books, see the Preface of this manual.

The two migration environments and the principal tools used in each are shown
in Figure 3–1.

Figure 3–1 Migration Environments and Tools

ZK−4989A−GE

VAX Hardware Alpha Hardware

Native
Compiler Linker

Native
Debugger

VEST

VEST

Native
Debugger

Native Development

Translation

OpenVMS

.EXE
VAX

OpenVMS

OpenVMS

.EXE

.EXE

Alpha

Alpha

Migrating Your Application 3–3

Migrating Your Application
3.2 Converting Your Application

3.2.1 Recompiling and Relinking
In general, migrating your application involves repeated cycles of revising,
compiling, linking, and debugging your code. During the process, you will resolve
all syntax and logic errors noted by the development tools. Syntax errors are
usually simple to fix; logic errors typically require significant modifications to
your code.

Your compile and link commands will require some changes, such as new
compiler and linker switches. For example, to allow portability among different
Alpha platforms, the linker default page size for Alpha systems is 64 KB, which
allows any OpenVMS Alpha image to run on any Alpha processor, regardless of
the system page size on that processor. Also, Alpha shareable images declare
their universal entry points and symbols by means of a symbol vector declaration
in a linker options file, not by means of the VAX transfer vector mechanism.

A number of native compilers and other tools are available for software
development and migration on an Alpha platform.

3.2.1.1 Native Alpha Compilers
Recompiling and relinking an existing VAX source produces a native Alpha
image that executes within the Alpha environment with all the performance
advantages of a RISC architecture. For Alpha code, Digital is using a series of
highly optimizing compilers. These compilers have a common optimizing code
generator. However, they use a different front end for each language, each of
which is compatible with a current VAX compiler.

For OpenVMS Alpha Version 7.1, native Alpha compilers are available for the
following languages:

• Ada

• BASIC

• C

• C++

• COBOL

• FORTRAN

• Pascal

• PL/I

• MACRO-32 (cross compiler)

Later releases of OpenVMS Alpha may provide native compilers for other
languages, including LISP.

VAX user-mode programs that are written in any other language can be run on
an Alpha system by translating them with VEST. Compilers for other languages
may be available through third-party vendors.

In general, the Alpha compilers provide command-line qualifiers and language
semantics to allow code with dependencies on the VAX architecture to run on
an Alpha system with little modification. For a list of such dependencies, see
Table 2–3.

3–4 Migrating Your Application

Migrating Your Application
3.2 Converting Your Application

Some compilers on OpenVMS Alpha systems support new features not supported
by their counterparts on OpenVMS VAX systems. To provide compatibility, some
compilers support compatibility modes. For example, the DEC C compiler for
OpenVMS Alpha systems supports a VAX C compatibility mode that is invoked
by specifying the /STANDARD=VAXC qualifier.

In some cases, the compatibility is limited. For example, VAX C implements
built-in functions that allow access to special VAX hardware features. Since the
hardware architecture of VAX computers differs from Alpha computers, these
built-ins are not available in DEC C for OpenVMS Alpha systems even when the
/STANDARD=VAXC qualifier is used.

The compilers can also compensate for some architectural dependencies that
may exist in your code. For example, the MACRO–32 compiler provides the
/PRESERVE qualifier that can preserve granularity or atomicity or both.

The DEC C compiler provides a header file that defines typedefs for each data
type. These typedefs map a generic data-type name, such as int64, to the
machine-specific data type, such as _ _int64. For example, if you must have a
data type that is 64 bits long, use the int64 typedef.

Review the documentation for your compiler to become familiar with all its
features that support portability.

Chapter 11 describes in greater detail the process of using Alpha compilers to
migrate OpenVMS VAX programs to an OpenVMS Alpha system.

3.2.1.2 VAX MACRO–32 Compiler for OpenVMS Alpha
The VAX MACRO–32 Compiler for OpenVMS Alpha is used to convert existing
VAX MACRO code into machine code that runs on OpenVMS Alpha systems. It is
included with OpenVMS Alpha for that purpose.

While some VAX MACRO code can be compiled without any changes, most code
modules will require the addition of entry point directives. Many code modules
will require other changes as well.

Note

The MACRO–32 compiler will attempt to call LIB$ESTABLISH if it is
contained in the source code.

If MACRO–32 programs establish dynamic handlers by storing a routine
address at 0(FP), they will work correctly when compiled on an OpenVMS
Alpha system. However, you cannot set the condition handler address
from within a JSB (Jump to Subroutine) routine, only from within a
CALL_ENTRY routine.

The compiler generates code that is optimized for OpenVMS Alpha systems, but
many features of the VAX MACRO language that provide the programmer with a
high level of control make it more difficult to generate optimal code for OpenVMS
Alpha systems. For new program development for OpenVMS Alpha, Digital
recommends the use of mid- and high-level languages. For more information on
the MACRO–32 compiler, see Porting VAX MACRO Code to OpenVMS Alpha.

Migrating Your Application 3–5

Migrating Your Application
3.2 Converting Your Application

3.2.1.3 Other Development Tools
Several other tools in addition to the compilers are available to create native
Alpha images:

• OpenVMS Linker

The OpenVMS Linker accepts VAX object files or Alpha object files to produce
either a VAX image or an Alpha image, respectively. It also functions as
a cross linker because it can produce Alpha images while running on VAX
hardware, or VAX images while running on Alpha.

• OpenVMS Debugger

The OpenVMS Debugger running on OpenVMS Alpha has the same command
interface as the current OpenVMS VAX debugger. The graphical interface on
OpenVMS VAX systems is also available on OpenVMS Alpha systems.

• OpenVMS Librarian utility

The OpenVMS Librarian utility creates either VAX or Alpha libraries.

• OpenVMS Message utility

The OpenVMS Message utility allows you to supplement the OpenVMS
system messages with your own messages.

• MACRO–64 Assembler for OpenVMS Alpha

The MACRO–64 assembler for OpenVMS Alpha systems is the native
assembler for all Alpha computers. Unlike the VAX MACRO assembler,
which is included with the OpenVMS VAX operating system, the MACRO–64
assembler is not included with the OpenVMS Alpha operating system. It
can be purchased separately. In general, the mid- and high-level language
compilers generate higher performance code for OpenVMS Alpha systems
than the MACRO–64 assembler. Therefore, Digital recommends you use mid-
and high-level compilers for new program development for OpenVMS Alpha
systems. For more information about the MACRO–64 assembler, see the
MACRO–64 Assembler for OpenVMS AXP Systems Reference Manual.

• ANALYZE/IMAGE

The Analyze/Image utility can analyze either VAX or Alpha images.

• ANALYZE/OBJECT

The Analyze/Object utility can analyze either VAX or Alpha objects.

• DECset

DECset, a comprehensive set of CASE tools, includes the Language Sensitive
Editor (LSE), Source Code Analyzer (SCA), Code Management System (CMS),
Module Management System (MMS), and other components.

3.2.2 Translating
The process of translating a VAX image to run on an Alpha system is described
in detail in DECmigrate for OpenVMS AXP Systems Translating Images. In
general, the process is straightforward, although you may have to modify your
code somewhat to get it to translate without error.

3–6 Migrating Your Application

Migrating Your Application
3.2 Converting Your Application

3.2.2.1 VAX Environment Software Translator (VEST) and Translated Image Environment (TIE)
The main tools for migrating VAX user-mode images to OpenVMS Alpha are a
static translator and a run-time support environment:

• The VAX Environment Software Translator (VEST) is a utility that analyzes
a VAX image and creates a functionally equivalent translated image. Using
VEST, you will be able to do the following:

– Determine whether a VAX image is translatable.

– Translate the VAX image to an Alpha image.

– Identify specific incompatibilities with OpenVMS Alpha within the
image and, when appropriate, obtain information on how to correct
those incompatibilities in the source files.

– Identify ways to improve the run-time performance of the translated
image.

• The Translated Image Environment (TIE) is an Alpha shareable image that
supports translated images at run time. TIE provides the translated image
with an environment similar to OpenVMS VAX and processes all interactions
with the native Alpha system. Items that TIE provides include:

• VAX instruction interpreter, which supports:

– Execution of VAX instructions (including instruction atomicity) that is
similar to their execution on a VAX system

– Complex VAX instructions, as subroutines

• VAX compatible exception handler

• Jacket routines that allow communication between native and translated
code

• Emulated VAX stack
TIE is invoked automatically for any translated image; you do not need to call
it explicitly.

VEST locates and translates as much VAX code as possible into Alpha code. TIE
interprets any VAX code that cannot be converted into Alpha instructions; for
example:

• Instructions that VEST could not statically identify

• H_ and D56 (56-bit D_floating) floating-point operations

Since interpreting instructions is a slow process, requiring perhaps 100 Alpha
instructions per average VAX instruction, VEST attempts to find and translate as
much VAX code as possible to minimize the need for interpreting it at run time.
A translated image runs at approximately one-third the speed of a comparable
native Alpha image, depending on how much VAX code TIE needs to interpret.
Translated VAX images run at least as fast as they would run on equivalent
(same technology) VAX hardware.

Note that you cannot specify dynamic interpretation of a VAX image on an
Alpha system. You must use VEST to translate the image before it can run on
OpenVMS Alpha.

Migrating Your Application 3–7

Migrating Your Application
3.2 Converting Your Application

Translating a VAX image produces an image that runs as a native image on Alpha
hardware. The Alpha image is not merely an interpreted or emulated version of
the VAX image, but contains Alpha instructions that perform operations identical
to those performed by the instructions in the original VAX image. The Alpha
.EXE file also contains the original VAX image in its entirety, which allows TIE to
interpret any code that VEST could not translate.

VEST’s analysis capability also makes it useful for evaluating programs that you
intend to recompile, rather than translate.

See DECmigrate for OpenVMS AXP Systems Translating Images for a complete
description of VEST and TIE. The manual explains in detail all the output that
VEST generates, such as flowgraphs, and how to interpret it. The manual also
explains how information provided in image information files (IIFs) created by
VEST can help you improve the translated image’s run-time performance.

3.3 Debugging and Testing the Migrated Application
Once you have migrated your application to OpenVMS Alpha, you may have to
debug it.

You will also need to test the application for correct operation.

3.3.1 Debugging
The OpenVMS operating system provides the following debuggers:

• The OpenVMS Debugger supports debugging of both VAX and native Alpha
programs. This debugger does not support the debugging of translated
images.

The OpenVMS Debugger is a symbolic debugger, that is, the debugger allows
you to refer to program locations by the symbols you used for them in your
program—the names of variables, routines, labels, and so on. You do not need
to specify memory addresses or machine registers when referring to program
locations, although you can if you wish.

Although the OpenVMS Debugger does not generally work for translated
images, it is helpful in one area. Since the translated image mimics the VAX
registers, you can use the commands SHOW CALLS and SHOW STATE to
get some VAX context for more detailed debugging.

• The Delta Debugger supports debugging of VAX and Alpha programs. This
debugger also supports the debugging of translated images.

The Delta Debugger is an address location debugger, that is, the debugger
requires you to refer to program locations by address location. This debugger
is primarily used to debug programs that run in privileged processor mode or
at an elevated interrupt level.

• The System-Code Debugger is a symbolic debugger that allows you to debug
nonpageable code and device drivers running at any IPL.

• The Heap Analyzer provides a graphical representation of memory use in real
time. This allows you to quickly identify inefficient memory usage in your
application such as allocations that are made too often, memory blocks that
are too large, fragmentation, or memory leaks.

Debugging must take place on Alpha hardware.

3–8 Migrating Your Application

Migrating Your Application
3.3 Debugging and Testing the Migrated Application

3.3.1.1 Debugging with the OpenVMS Debugger
On OpenVMS Alpha systems you can use the debugger with programs written in
the following Digital languages:

• DEC Ada

• DEC BASIC

• DEC C

• DEC C++

• DEC COBOL

• DEC Fortran (VAX systems)

• Digital Fortran (Alpha systems)

• MACRO–32 (compiled with the MACRO-32 compiler)

• MACRO–64

• DEC Pascal

• DEC PL/I

The OpenVMS Debugger includes several features that address the architectural
differences of OpenVMS Alpha code. These enable you to more easily debug code
that you are porting to OpenVMS Alpha systems. For example, you can use the
/UNALIGNED_DATA qualifier with the SET command to cause the debugger to
break directly after any instruction that accesses unaligned data (such as a load
word instruction which accesses data that is not on a word boundary).

You can use the /RETURN qualifier with the SET command for any routine. It
is not limited to routines called with a CALLS or CALLG instruction as it is
on an OpenVMS VAX system. For more information about features specific to
OpenVMS Alpha systems, see the OpenVMS Debugger Manual.

When you debug your migrated application on an Alpha system with the
OpenVMS Debugger, bear in mind the following considerations:

• You can use the debugger with programs written in any language for which
there is an Alpha compiler available.

• The debugger does not support debugging of installed resident images. For
more information on installed resident images, see the Bookreader version of
the OpenVMS System Manager’s Manual: Tuning, Monitoring, and Complex
Systems.

• The debugger does not support debugging of inlined routines. If you attempt
to debug an inlined routine, the debugger issues a message that it cannot
access the routine:

DBG> %DEBUG-E-ACCESSR, no read access to address 00000000

For more information on debugging with the OpenVMS Debugger, see the
OpenVMS Debugger Manual.

Migrating Your Application 3–9

Migrating Your Application
3.3 Debugging and Testing the Migrated Application

3.3.1.2 Debugging with the Delta Debugger
The Delta/XDelta Debugger (DELTA/XDELTA), running on OpenVMS Alpha
systems, provides enhancements to existing commands and several new
commands necessitated by the Alpha architecture. The enhancements include
the display of base registers in decimal instead of hexadecimal notation and the
ability to look at the internal process identification (PID) number of another
process. For more information about how the Delta/XDelta Debugger operates on
OpenVMS Alpha systems, see the OpenVMS Delta/XDelta Debugger Manual.

You can use the Delta Debugger to debug applications that are partly or
completely translated.

Translated Applications
When attempting to debug a translated image, you should:

• Make sure that the program you are translating works correctly under
OpenVMS VAX Version 7.1.

• Make sure that VEST and any IIF files for run-time libraries are of the same
release as the version of OpenVMS Alpha you are using.

• Use the VEST qualifiers /DEBUG, /LIST, and /SHOW=MACHINE_CODE to
capture Alpha and VAX instructions. (Note that in the listing, an asterisk
identifies a VAX instruction.) Have the VAX map and listing for the VAX
image at hand for comparison.

Mixed Applications
To debug an application that is partly native Alpha code and partly translated
code, make sure that the native parts of the application were compiled
using the /TIE qualifier; in addition, you must link the application with the
/NO_NATIVE_ONLY linker option.

For more information on debugging with the Delta Debugger, see the OpenVMS
Delta/XDelta Debugger Manual.

For more information on debugging translated images, contact a Digital support
representative.

3.3.1.3 Debugging with the OpenVMS Alpha System-Code Debugger
The OpenVMS Alpha System-Code Debugger is available for debugging
nonpageable system code and device drivers running at any IPL. The OpenVMS
Alpha System-Code Debugger is a symbolic debugger. You can specify variable
names, routine names, and so on, precisely as they appear in your source code.
You can also display the source code where the software is executing and step
through it by source line.

Note that running the System-Code Debugger requires two Alpha systems.

You can use this debugger to debug code written in the following languages:

• C

• BLISS

• VAX MACRO

Note

A BLISS compiler is available on the OpenVMS Freeware CD that ships
with OpenVMS VAX Version 7.1 and OpenVMS Alpha Version 7.1.

3–10 Migrating Your Application

Migrating Your Application
3.3 Debugging and Testing the Migrated Application

The OpenVMS Alpha System-Code Debugger recognizes the syntax, data typing,
operators, expressions, scoping rules, and other constructs of a given language.
If your program is written in more than one language, you can change the
debugging context from one language to another during a debugging session.

For more information about Step 2 drivers and the OpenVMS Alpha System-Code
Debugger, see Writing OpenVMS Alpha Device Drivers in C.

3.3.2 Analyzing System Crashes
OpenVMS provides two tools for analyzing system crashes: the System Dump
Analyzer and the Crash Log Utility Extractor.

3.3.2.1 System Dump Analyzer
The System Dump Analyzer (SDA) utility on OpenVMS Alpha systems is almost
identical to the utility provided on OpenVMS VAX systems. Many commands,
qualifiers, and displays are identical, although there are some additional
commands and qualifiers, including several for accessing functions of the Crash
Log Utility Extractor (CLUE) utility. Some displays have been adapted to show
information specific to OpenVMS Alpha systems, such as processor registers and
data structures.

While the SDA interface has changed only slightly, the contents of VAX and Alpha
dump files and the entire process of analyzing a system crash from a dump differ
significantly between the two computers. The Alpha execution paths leave more
complex structures and patterns on the stack than VAX execution paths do.

To use SDA on a VAX computer, you must first familiarize yourself with the
OpenVMS calling standard for VAX systems. Similarly, to use SDA on an Alpha
system, you must familiarize yourself with the OpenVMS calling standard for
Alpha systems before you can decipher the pattern of a crash on the stack.

The changes to SDA include the following:

The displays of the SHOW CRASH and SHOW STACK commands contain
additional information that make debugging fatal system exception bugchecks
simpler.

The SHOW EXEC command display includes additional information about
executive images if they were loaded using image slicing. Slicing is a
function performed by the executive image loader for executive images and by
the OpenVMS Install utility for user-mode images. Slicing an executive image
(or a user-mode image) greatly improves performance by reducing contention
for the limited number of translation buffer entries.

The MAP command, a new SDA command, enables you to map an address in
memory to an image offset in a map file.

A new symbol, FPCR, has been added to the symbol table. This symbol
represents a floating-point register.

Migrating Your Application 3–11

Migrating Your Application
3.3 Debugging and Testing the Migrated Application

3.3.2.2 Crash Log Utility Extractor
The Crash Log Utility Extractor (CLUE) is a tool for recording a history of
crash dumps and key parameters for each crash dump and for extracting and
summarizing key information. Unlike crash dumps, which are overwritten
with each system crash and are available only for the most recent crash, the
crash history file (on OpenVMS VAX) and the summary crash history file with a
separate listing file for each crash (on OpenVMS Alpha), are permanent records
of system crashes.

The implementation differences between OpenVMS VAX and OpenVMS Alpha
are shown in Table 3–1.

Table 3–1 CLUE Differences Between OpenVMS VAX and OpenVMS Alpha

Attribute OpenVMS VAX OpenVMS Alpha

Access method Invoked as a separate utility. Accessed through SDA.

History file A cumulative file that contains a
one-line summary and detailed
information from the crash dump
file for each crash.

A cumulative file that contains only
a one-line summary for each crash
dump. The detailed information
for each crash is put in a separate
listing file.

Uses in addition
to debugging
crash dumps

None. CLUE commands can be used
interactively to examine a running
system.

Documentation Bookreader versions of the
OpenVMS System Manager’s
Manual and OpenVMS System
Management Utilities Reference
Manual

Bookreader versions of the
OpenVMS System Manager’s
Manual and OpenVMS Alpha
System Dump Analyzer Utility
Manual

3.3.3 Testing
You must test your application to compare the performance and functionality of
the migrated version with those of the original VAX version.

The first step in testing is to establish baseline values for your application by
running your test suite on the VAX application.

Once your application is running on an Alpha system, there are two types of tests
you will want to apply:

• The standard tests used for the VAX version of the application

• New tests to check specifically for problems due to the change in architecture

3.3.3.1 VAX Tests
Because the changes in your application are combined with use of a new
architecture, testing your application after it is migrated to OpenVMS Alpha
is particularly important. Not only can the changes introduce errors into the
application, but the new environment may bring out latent problems in the VAX
version.

Testing your migrated application involves the following steps:

1. Get a complete set of standard data for the application prior to the migration.

2. Migrate your test suite along with the application (if the tests are not already
available on Alpha).

3–12 Migrating Your Application

Migrating Your Application
3.3 Debugging and Testing the Migrated Application

3. Validate the test suite on an Alpha system.

4. Run the migrated tests on the migrated application.

Both regression tests and stress tests are useful here. Stress tests are important
to test for platform differences in synchronization, particularly for applications
that use multiple threads of execution.

3.3.3.2 Alpha Tests
While your standard tests should go a long way toward verifying the function of
the migrated application, you should add some tests that look at issues specific to
the migration. Points to focus on include the following:

• Compiler differences—changes in optimization and data alignment

• Architectural differences—changes in instruction atomicity, memory atomicity,
and read/write ordering, for example

• Integration—modules written in different languages, or modules that had to
be translated

3.3.4 Uncovering Latent Bugs
Despite your best efforts, and following all the previous suggestions, you may
encounter bugs that were in your program all along, but never caused a problem
on an OpenVMS VAX system. For example, a failure to initialize some variable
in your program might have been benign on a VAX computer but could produce
an arithmetic exception on an Alpha computer. The same could be true moving
between any other two architectures, because the available instructions and the
way compilers optimize them is bound to change. There is no magic answer for
bugs that have been in hiding, but you should test your programs after porting
them before making them available to other users.

3.4 Integrating the Migrated Application into a Software System
After you have migrated your application by recompiling or translating it, check
for problems that are caused by interactions with other software and that may
have been introduced during the migration.

Sources of problems in interoperability can include the following:

• Alpha and VAX systems within an OpenVMS Cluster environment must use
separate system disks. You must make sure that your application refers to
the appropriate system disk.

• Image names

In a mixed environment, be sure that your application refers to the correct
version.

– Native VAX and native Alpha versions of an image have the same name.

– The translated version of an image has the string "_TV" added to its
name.

• Recompiled images may expect naturally aligned data, while translated
images have unaligned data, like the original VAX image.

Migrating Your Application 3–13

4
Recompiling and Relinking Overview

This chapter introduces the general process of moving an application that runs on
a VAX system to an Alpha system by recompiling and relinking the source files
that make up the application.

In general, if your application is written in a high-level programming language,
you should be able to run it on an Alpha system with a minimum of effort.
High-level languages insulate applications from dependence on the underlying
machine architecture. In addition, the programming environment on Alpha
systems for the most part duplicates the programming environment on VAX
systems. Using native Alpha versions of the language compilers and the
OpenVMS Linker utility (linker), you can recompile and relink the source files
that make up your application to produce a native Alpha image.

If your application is written in VAX MACRO, you may be able to run it on an
Alpha system with a minimum amount of effort, although it is more likely to
contain some dependencies on the underlying VAX architecture, some of which
may require your intervention.

Privileged applications, which run in inner modes or at elevated interrupt
priority levels (IPLs), may require significant changes because of assumptions
incorporated in the code about the internal operation of the operating system.
Typically, such applications have also required significant changes after a major
release of the OpenVMS VAX operating system.

Note

Remember that it is possible to introduce architectural dependencies even
in applications written in high-level languages. In addition, hidden bugs
in your application may come to light during the move to a new platform.

4.1 Recompiling Your Application with Native Alpha Compilers
Many of the languages supported on VAX systems, such as FORTRAN and C, are
also supported on Alpha systems. For information about the compilers for some
common programming languages on Alpha systems, see Chapter 11.

The compilers available on Alpha systems are intended to be compatible with
their counterparts on VAX systems. The compilers conform to language standards
and include support for most VAX language extensions. The compilers produce
output files with the same default file types as they do on VAX systems, such as
.OBJ for an object module.

Recompiling and Relinking Overview 4–1

Recompiling and Relinking Overview
4.1 Recompiling Your Application with Native Alpha Compilers

Note, however, that some features supported by the compilers on VAX systems
may not be available in the same compiler on Alpha systems. In addition,
some compilers on Alpha systems support new features not supported by their
counterparts on VAX systems. To provide compatibility, some compilers support
compatibility modes. For example, the DEC C for OpenVMS Alpha systems
compiler supports a VAX C compatibility mode that is invoked by specifying the
/STANDARD=VAXC qualifier.

4.2 Relinking Your Application on an Alpha System
Once you successfully recompile your source files, you must relink your
application to create a native Alpha image. The linker produces output files
with the same file types as on current VAX systems. For example, by default, the
linker uses the file type .EXE to identify image files.

Because the way in which you perform certain linking tasks is different on Alpha
systems, you will probably need to modify the LINK command used to build
your application. The following list describes some of these linker changes that
may affect your application’s build procedure. See the Bookreader version of the
OpenVMS Linker Utility Manual for more information.

• Declaring universal symbols in shareable images—If your application
creates shareable images, your application build procedure probably includes
a transfer vector file, written in VAX MACRO, in which you declare the
universal symbols in the shareable image. On Alpha systems, instead of
creating a transfer vector file, you must declare universal symbols in a linker
options file by specifying the option SYMBOL_VECTOR=option.

• Linking against the OpenVMS executive—On VAX systems, you link
against the OpenVMS executive by including the system symbol table file
(SYS.STB) in your build procedure. On Alpha systems, you link against the
OpenVMS executive by specifying the /SYSEXE qualifier.

• Optimizing the performance of images—On Alpha systems, the linker
can perform certain optimizations that can improve the performance of the
images it creates. The linker can also enhance performance by creating
shareable images that can be installed as resident images.

• Processing shareable images implicitly—On VAX systems, when you
specify a shareable image in a link operation, the linker also processes all
the shareable images to which that shareable image was linked. On Alpha
systems, you must specify these shareable images to include them in your
build procedure.

The linker supports several qualifiers and options, listed in Table 4–1, that are
specific to Alpha systems. Table 4–2 lists linker qualifiers supported on VAX
systems but not on Alpha systems.

4–2 Recompiling and Relinking Overview

Recompiling and Relinking Overview
4.2 Relinking Your Application on an Alpha System

Table 4–1 Linker Qualifiers and Options Specific to OpenVMS Alpha Systems

Qualifiers Description

/DEMAND_ZERO Controls how the linker creates demand-zero image
sections.

/DSF Directs the linker to create a file called a debug
symbol file (DSF) for use by the OpenVMS Alpha
System-Code Debugger.

/GST Directs the linker to create a global symbol table
(GST) for a shareable image (the default). More
typically specified as /NOGST when used to create
shareable images for run-time kits.

/INFORMATIONALS Directs the linker to output informational messages
during a link operation (the default). More typically
specified as /NOINFORMATIONALS to suppress
these messages.

/NATIVE_ONLY Directs the linker to not pass along the procedure
signature block (PSB) information, created by the
compilers, in the image it is creating (the default).

If you specify /NONATIVE_ONLY during linking, the
image activator uses the PSB information, if any,
provided in the object modules specified as input
files to the link operation to invoke jacket routines.
Jacket routines are necessary to allow native Alpha
images to work with translated VAX images.

/REPLACE Directs the linker to perform certain optimizations
that can improve the performance of the image it is
creating, when requested to do so by the compilers
(the default).

/SECTION_BINDING Directs the linker to create a shareable image that
can be installed as a resident image.

/SYSEXE Directs the linker to process the OpenVMS executive
image (SYS$BASE_IMAGE.EXE) to resolve symbols
left unresolved in a link operation.

Options Description

SYMBOL_TABLE=option Directs the linker to include global symbols as
well as universal symbols in the symbol table file
associated with a shareable image. By default, the
linker includes only universal symbols.

SYMBOL_VECTOR=option Used to declare universal symbols in Alpha shareable
images.

Recompiling and Relinking Overview 4–3

Recompiling and Relinking Overview
4.2 Relinking Your Application on an Alpha System

Table 4–2 Linker Options Specific to OpenVMS VAX Systems

Options Description

BASE=option Specifies the base address (starting address) that you
want the linker to assign to the image.

DZRO_MIN=option Specifies the minimum number of contiguous,
uninitialized pages that the linker must find in
an image section before it can extract the pages
from the image section and place them in a newly
created demand-zero image section. By creating
demand-zero image sections (image sections that do
not contain initialized data), the linker can reduce
the size of images.

ISD_MAX=option Specifies the maximum number of image sections
allowed in the image.

UNIVERSAL=option Declares a symbol in a shareable image as universal,
causing the linker to include it in the global symbol
table of a shareable image.

4.3 Compatibility Between the Mathematics Libraries Available on
VAX and Alpha Systems

Mathematical applications using the standard OpenVMS call interface to the
OpenVMS Mathematics (MTH$) Run-Time Library need not change their calls to
MTH$ routines when migrating to an OpenVMS Alpha system. Jacket routines
are provided that map MTH$ routines to their math$ counterparts in the Digital
Portable Mathematics Library (DPML) for OpenVMS Alpha systems. However,
there is no support in the DPML for calls made to JSB entry points and vector
routines. Note that DPML routines are different from those in the OpenVMS
MTH$ RTL and you should expect to see small differences in the precision of the
mathematical results.

To maintain compatibility with future libraries and to create portable
mathematical applications, Digital recommends that you use the DPML routines
available through the high-level language of your choice (for example, DEC
C or DEC Fortran) rather than using the call interface. Significantly higher
performance and accuracy are also available to you with DPML routines.

See the Digital Portable Mathematics Library manual for more information about
the DPML routines.

4.4 Determining the Host Architecture
Your application may need to determine whether it is running on an OpenVMS
VAX system or an Alpha system. From within your program, you can obtain
this information by calling the $GETSYI system service (or the LIB$GETSYI
RTL routine), specifying the ARCH_TYPE item code. When your application
is running on a VAX system, the $GETSYI system service returns the value 1.
When your application is running on an Alpha system, the $GETSYI system
service returns the value 2.

Example 4–1 shows how to determine the host architecture in a DCL command
procedure by calling the F$GETSYI DCL command and specifying the ARCH_
TYPE item code. (For an example of calling the $GETSYI system service to
obtain the page size of an Alpha system, see Section 5.4.)

4–4 Recompiling and Relinking Overview

Recompiling and Relinking Overview
4.4 Determining the Host Architecture

Example 4–1 Using the ARCH_TYPE Keyword to Determine Architecture Type

$! Determine architecture type
$ type_symbol = f$getsyi("arch_type")
$ if type_symbol .eq. 1 then goto ON_VAX
$ if type_symbol .eq. 2 then goto ON_ALPHA
$ ON_VAX:
$!
$! Do VAX-specific processing
$!
$ exit
$ ON_ALPHA:
$!
$! Do Alpha-specific processing
$!
$ exit

Note, however, that the ARCH_TYPE item code is available only on VAX systems
running OpenVMS Version 5.5 or later. If your application needs to determine
the host architecture for earlier versions of the operating system, use one of the
other $GETSYI system service item codes listed in Table 4–3.

Table 4–3 $GETSYI Item Codes That Specify Host Architecture

Keyword Usage

ARCH_TYPE Returns 1 on a VAX system; returns 2 on an Alpha system.
Supported on Alpha systems and on VAX systems running
OpenVMS Version 5.5 or later.

ARCH_NAME Returns text string ‘‘VAX’’ on VAX systems and text string ‘‘Alpha’’
on Alpha systems. Supported on Alpha systems and on VAX
systems running OpenVMS Version 5.5 or later.

HW_MODEL Returns an integer that identifies a particular hardware model. All
values equal to or larger than 1024 identify Alpha systems.

CPU Returns an integer that identifies a particular CPU. The value 128
identifies a system as ‘‘not a VAX.’’ This code is supported on much
earlier versions of OpenVMS than the ARCH_TYPE and ARCH_
NAME codes.

Recompiling and Relinking Overview 4–5

5
Adapting Applications to a Larger Page Size

This chapter describes how to identify dependencies your application may have on
the VAX page size and makes recommendations for correcting those dependencies.

5.1 Overview
In general, page size, the basic unit of memory manipulated by the operating
system, is below the level of applications, especially for applications written
in high- or mid-level programming languages. However, your application may
contain page-size dependencies if it calls system services or run-time library
routines to perform memory management functions such as the following:

• Allocating virtual memory

• Mapping sections into the virtual address space of your process

• Locking memory into your working set

• Protecting segments of your virtual address space

The system services and run-time library routines that perform these functions
manipulate memory in pages. The values you specified as arguments to these
routines are based on an assumption of a 512-byte page, the page size defined
by the VAX architecture. The Alpha architecture supports an 8KB, 16KB, 32KB,
or 64KB page size, depending on the implementation, so you should examine
the values you specify as arguments to the routines to make sure they still
satisfy the requirements of your application. The following sections provide more
information about examining the routines.

Note that this difference in page sizes does not affect memory allocation using
higher level routines, for example, the run-time library routines that manipulate
virtual memory zones or language-specific memory allocation routines such as the
malloc and free routines in C.

5.1.1 Compatibility Features
Wherever possible, system services or run-time library routines attempt to
present the same interface and return values on Alpha systems as they do on
VAX systems. For example, on Alpha systems, the routines that accept page-
count values as arguments still interpret these arguments in 512-byte quantities,
now called pagelets to distinguish them from the CPU-specific page size. The
routines convert pagelet values into CPU-specific pages. The routines that return
page-count values convert from CPU-specific pages to pagelets so that the return
values expected by your application are still measured in 512-byte units.

Adapting Applications to a Larger Page Size 5–1

Adapting Applications to a Larger Page Size
5.1 Overview

Note

On Alpha systems, when creating page frame sections using the
$CRMPSC system service (with the SEC$M_PFNMAP flag bit set),
the value specified in the page count argument (pagcnt) is interpreted as
the CPU-specific page size, not as a pagelet value.

5.1.2 Summary of Memory Management Routines with Potential Page-Size
Dependencies

Despite the compatibility, some routines behave differently on Alpha systems
than they do on VAX systems and may require you to modify your source code.
For example, on Alpha systems, the system services that map section files
($CRMPSC and $MGBLSC) require you to specify address value arguments that
are aligned on CPU-specific page boundaries. On VAX systems, these routines
round the address values specified in arguments to VAX page boundaries. On
Alpha systems, the routines do not round these addresses to CPU-specific page
boundaries.

Table 5–1 lists the memory management routines with the arguments they
support that may contain page-size dependencies. The table lists the arguments
with their intended function and describes how these arguments are interpreted
on Alpha systems. Note that the table does not attempt to list all the arguments
accepted by each routine. For more information about the routines and their
argument lists, see the OpenVMS System Services Reference Manual.

Table 5–1 Potential Page-Size Dependencies in Memory Management Routines

Routine Argument Behavior on Alpha Systems

Adjust Working Set Limit
($ADJWSL)

pagcnt specifies the number of
pages to add to (or subtract from)
the current working set limit.

Interpreted in pagelets, adjusted
up or down to represent CPU-
specific-sized pages.

wsetlm specifies the value of the
current working set limit.

Interpreted in pagelets, adjusted
up or down to represent CPU-
specific-sized pages.

Create Process
($CREPRC)

quota accepts several quota
descriptors that specify page counts,
such as the default working set size,
paging file quota, and working set
expansion quota.

Interpreted in pagelets, adjusted
up or down to represent CPU-
specific-sized pages.

Create Virtual Address
($CRETVA)

inadr specifies the start- and end-
addresses of the memory to be
allocated. If the end-address is the
same as the start-address, a single
page is allocated.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
affected by the call.

Unchanged.

(continued on next page)

5–2 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.1 Overview

Table 5–1 (Cont.) Potential Page-Size Dependencies in Memory Management Routines

Routine Argument Behavior on Alpha Systems

Create and Map Section
($CRMPSC)

inadr specifies the start- and end-
addresses that define the region to
be remapped. If the end-address
is the same as the start-address,
a single page is mapped, unless
the SEC$M_EXPREG flag is set,
in which case the start-address is
interpreted as determining whether
the allocation should be in P0 or P1
space.

Addresses must be aligned
on CPU-specific pages (unless
the SEC$M_EXPREG flag is
set); no rounding is done. (See
Section 5.3 for more information
about mapping.)

retadr specifies the actual start-
and end-addresses of the memory
affected by the call.

Returns the start- and end-
addresses of the usable range
of addresses, which may be
different than the total amount
mapped. This argument is
required when the relpag
argument is specified.

flags specifies the type and
characteristics of the section to
be created or mapped.

The flag bit SEC$M_NO_
OVERMAP indicates that
existing address space should
not be overmapped. When the
flag bit SEC$M_PFNMAP is
set, the pagcnt argument is
interpreted as CPU-specific
pages, not pagelets.

relpag specifies the page offset at
which mapping of the section file
should begin.

Interpreted as an index into
the section file, measured in
pagelets.

pagcnt specifies the number of
pages (blocks) in the file to be
mapped.

Interpreted in pagelets; no
rounding is done. When the
flag bit SEC$M_PFNMAP is
set, the pagcnt argument is
interpreted as CPU-specific
pages, not pagelets.

pfc specifies the number of pages
that should be mapped when a page
fault occurs.

Interpreted in CPU-specific-
sized pages. When specifying
a value for this argument,
remember that, because Alpha
systems support 8K, 16K, 32K,
and 64K byte physical page
sizes, at least 16 pagelets will be
mapped for each physical page.
The system cannot map less
than a physical page.

Delete Virtual Address
($DELTVA)

inadr specifies the start- and end-
addresses of the memory to be
deallocated.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was deleted.

Unchanged.

(continued on next page)

Adapting Applications to a Larger Page Size 5–3

Adapting Applications to a Larger Page Size
5.1 Overview

Table 5–1 (Cont.) Potential Page-Size Dependencies in Memory Management Routines

Routine Argument Behavior on Alpha Systems

Expand Program/Control Region
($EXPREG)

pagcnt specifies the amount of
memory to allocate, in 512-byte
units.

Interpreted in pagelets.

retadr specifies the actual start-
and end-addresses of the memory
affected by the call.

Unchanged.

Get Job/Process Information
($GETJPI)

itmlst specifies which information
about the process is to be returned.

Many items, such as JPI$_
WSEXTENT, interpreted
as pagelet values. See the
OpenVMS System Services
Reference Manual for more
information.

Get Queue Information
($GETQUI)

itmlst specifies information to be
used in performing the function
specified by the func argument.

Several items interpreted
as pagelet values. See the
OpenVMS System Services
Reference Manual for more
information.

Get Systemwide Information
($GETSYI)

itmlst specifies which information
is to be returned about the node or
nodes.

Several items interpreted as
pagelet values. One additional
item, SYI$_PAGE_SIZE,
specifies the page size supported
by the node. See the OpenVMS
System Services Reference
Manual for more information.

Get User Authorization
Information ($GETUAI)

itmlst specifies which information
from the user’s user authorization
file is to be returned.

Several items return pagelet
values. See the OpenVMS
System Services Reference
Manual for more information.

Lock Page
($LCKPAG)

inadr specifies the start- and end-
addresses of the memory to be
locked.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was locked.

Unchanged.

Lock Working Set
($LKWSET)

inadr specifies the start- and end-
addresses of the memory to be
locked.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was locked.

Unchanged.

Map Global Section
($MGBLSC)

inadr specifies the start- and end-
addresses that define the region to
be remapped. If the end-address
is the same as the start-address,
a single page is mapped, unless
the SEC$M_EXPREG flag is set,
in which case the start-address is
interpreted as determining whether
the allocation should be in P0 or P1
space.

Addresses must be aligned on
a CPU-specific page (unless
the SEC$M_EXPREG flag is
set); no rounding is done. (See
Section 5.3 for more information
about mapping.)

(continued on next page)

5–4 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.1 Overview

Table 5–1 (Cont.) Potential Page-Size Dependencies in Memory Management Routines

Routine Argument Behavior on Alpha Systems

retadr specifies the actual start-
and end-addresses of the memory
affected by the call.

Returns start- and end-
addresses of usable portion
of memory mapped.

relpag specifies the page offset at
which mapping of the section file
should begin.

Interpreted as an index into
the section file, measured in
pagelets.

Purge Working Set
($PURGWS)

inadr specifies the start- and end-
addresses of the memory to be
purged.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

Set Protection
($SETPRT)

inadr specifies the start- and end-
addresses of the memory to be
protected.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was protected.

Unchanged.

Set User Authorization File
($SETUAI)

itmlst specifies which information
from the user authorization file is to
be set.

Several items interpreted
in pagelet values. See the
OpenVMS System Services
Reference Manual for more
information.

Send to Job Controller
($SNDJBC)

itmlst specifies information to be
used in performing the function
specified by the func argument.

Several items interpreted
in pagelet values. See the
OpenVMS System Services
Reference Manual for more
information.

Unlock Page
($ULKPAG)

inadr specifies the start- and end-
addresses of the memory to be
unlocked.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was unlocked.

Unchanged.

Unlock Working Set
($ULWSET)

inadr specifies the start- and end-
addresses of the memory to be
unlocked.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was unlocked.

Unchanged.

Update Section
($UPDSEC)

inadr specifies the start- and end-
address of the section to write to
disk.

Rounds requests to CPU-
specific pages. Note that only
the address range actually
represented by on-disk storage
will be written to disk.

retadr specifies the actual start-
and end-addresses of the memory
that was written to disk.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

Adapting Applications to a Larger Page Size 5–5

Adapting Applications to a Larger Page Size
5.1 Overview

The run-time library routines listed in Table 5–2 allocate (or free) pages
of memory. For compatibility, these routines also interpret the page-count
information you specify in pagelets.

Table 5–2 Potential Page-Size Dependencies in Run-Time Library Routines

Routine Argument Behavior on Alpha Systems

LIB$GET_VM_PAGE number-of-pages argument
specifies the number of contiguous
pages to allocate.

Interpreted in pagelets, rounded
to CPU-specific pages.

LIB$FREE_VM_PAGE number-of-pages argument
specifies the number of contiguous
pages to free.

Interpreted in pagelets, rounded
to CPU-specific pages.

5.2 Examining Memory Allocation Routines
To determine if the memory allocation performed by your application requires
modification, check to see where the memory is allocated. The system service
routines that perform memory allocation ($EXPREG and $CRETVA) allow you to
allocate memory in two ways:

• By expanding the size of the P0 or P1 regions of your application’s virtual
address space

• By reclaiming a region of your application’s existing virtual address space,
starting at a location you specify

The Alpha architecture defines the same virtual address space layout as the VAX
architecture and allows for growth of the P0 and P1 regions in the same direction
as on VAX systems. Figure 5–1 shows this layout.

5.2.1 Allocating Memory in Expanded Virtual Address Space
If your application allocates memory by expanding virtual address space using
the $EXPREG system service, you may not need to make any source code changes
because the values you specified as arguments are valid on Alpha systems and
VAX systems. The reasons for this are as follows:

• On Alpha systems, the $EXPREG system service interprets the amount of
memory requested (specified as a page count in the pagcnt argument) in 512-
byte units, the same as on an VAX system. Thus, the value your application
specified still requests the same amount of memory. Note, however, that
because the system service rounds the value up to CPU-specific pages,
the actual amount of memory allocated by the system for your application
may be larger on an Alpha system than it is on a VAX system. The entire
amount of memory allocated is available for use by your application. Because
applications typically allocate memory to satisfy buffer requirements, which
do not change with different platforms, the value you specified should still
satisfy the requirements of your application.

• Because the allocation occurs in an expanded area of virtual address space,
the discrepancy between the amount requested and the amount actually
allocated by the system should have no effect on the function of your
application.

5–6 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.2 Examining Memory Allocation Routines

Figure 5–1 Virtual Address Layout

7FFFFFFF

ZK−0861−GE

40000000
3FFFFFFF

Program Region

Growth
Direction of

(P1)
Control Region

Length

Length

Growth
Direction of

00000000
Address
Virtual

(P0)

Recommendation
Your application may not need to be modified. However, Digital suggests that you
obtain the exact boundaries of the memory allocated by the system, because the
amount of memory returned by the $EXPREG system service may vary among
implementations of the Alpha architecture. To do this, specify the optional retadr
argument to the $EXPREG system service, if your application does not already
include it. The retadr argument contains the start-address and the end-address
of the memory allocated by the system service.

For example, the program in Example 5–1 calls the $EXPREG system service to
request 10 additional pages of memory. If you run this program on a VAX system,
the $EXPREG system service allocates 5120 bytes of additional memory. If you
run this program on an Alpha system, the $EXPREG system service allocates at
least 8192 bytes and possibly more, depending on the page size of the particular
implementation of the Alpha architecture.

Adapting Applications to a Larger Page Size 5–7

Adapting Applications to a Larger Page Size
5.2 Examining Memory Allocation Routines

Example 5–1 Allocating Memory by Expanding Your Virtual Address Space

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>
#include <dvidef.h>

#define PAGE_COUNT 10 1
#define P0_SPACE 0
#define P1_SPACE 1

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;
long bytes_allocated, addr_returned[2];

2 status = SYS$EXPREG(PAGE_COUNT, &addr_returned, 0, P0_SPACE);

bytes_allocated = addr_returned[1] - addr_returned[0];

if(status == SS$_NORMAL)
printf("bytes allocated = %d\n", bytes_allocated);

else
return (status);

}

The items in the following list correspond to the numbered items in Example 5–1:

1 The example defines a symbol, PAGE_COUNT, to stand for the number of
pages requested.

2 The example requests 10 additional pages to be added at the end of the P0
region of its virtual address space.

5.2.2 Allocating Memory in Existing Virtual Address Space
If your application reallocates memory that is already in its virtual address space
by using the $CRETVA system service, you may need to modify the values of the
following arguments to $CRETVA:

• If your application explicitly rounds the address specified in the inadr
argument to be a multiple of 512 in order to align on a VAX page boundary,
you need to modify the address. On Alpha systems, the $CRETVA system
service rounds the start-address down to a CPU-specific page boundary, which
will vary with different implementations.

• The size of the reallocation, specified by the address range in the inadr
argument, may be larger on an Alpha system than it is on a VAX system
because the request is rounded up to CPU-specific pages. This can cause the
unintended destruction of neighboring data, which also occurs with single-
page allocations. (When the start-address and the end-address specified in
the inadr argument match, a single page is allocated.)

Recommendations
To determine whether your application needs to be modified, Digital suggests
doing the following:

• For all potential page sizes, make sure the area of virtual address space
affected by the call does not destroy important data.

5–8 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.2 Examining Memory Allocation Routines

• For all potential page sizes, make sure the start-address at which the
allocation begins always falls on a page boundary.

• Specify the optional retadr argument, if not already included by your
application, to determine the exact boundaries of the memory allocated by
the call to the $CRETVA system service.

Example 5–2 shows how memory allocated to a buffer can be reallocated by using
the $CRETVA system service.

Example 5–2 Allocating Memory in Existing Address Space

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>
#include <dvidef.h>

char _align(page) buffer[1024];

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;
long inadr[2];
long retadr[2];

inadr[0] = &buffer[0];
inadr[1] = &buffer[1023];

printf("inadr[0]=%u,inadr[1]=%u\n",inadr[0],inadr[1]);

status = SYS$CRETVA(inadr, &retadr, 0);

if(status & STS$M_SUCCESS)
{

printf("success\n");
printf("retadr[0]=%u,retadr[1]=%u\n",retadr[0],retadr[1]);

}
else
{

printf("failure\n");
exit(status);

}
}

5.2.3 Deleting Virtual Memory
Calls to the $DELTVA system service to free memory allocated by the $EXPREG
and $CRETVA system services should require no modification if your application
uses the address range returned in the retadr argument (returned by the
routine used to allocate the memory) as the inadr argument to the $DELTVA
system service. Because the actual amount of the allocation will vary with the
implementation, your application should not make any assumptions regarding
the extent of the allocation.

Adapting Applications to a Larger Page Size 5–9

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

5.3 Examining Memory Mapping Routines
To determine if the memory mapping performed by your application requires
modification, check to see where in virtual memory your application performs
the mapping. The memory mapping system services ($CRMPSC and $MGBLSC)
allow you to map memory in the following ways:

• Map memory into an expanded area of your application’s virtual address
space

• Map a single page of memory into your application’s virtual address space,
starting at a location you specify (the location may be in existing virtual
address space)

• Map memory into an existing area of your virtual address space, defined by
the start- and end-addresses you specify

How your application maps a section is determined primarily by the following
arguments to the $CRMPSC and $MGBLSC system services:

• inadr argument—Specifies the size and location of the section by its start-
and end-addresses, interpreted by the $CRMPSC system service in the
following ways:

If both addresses specified in the inadr argument are the same and the
SEC$M_EXPREG bit is set in the flags argument, the system service
allocates the memory in whichever program region the addresses fall, but
does not use the specified location.

If both addresses specified in the inadr argument are the same and the
SEC$M_EXPREG flag is not set, a single page is mapped, starting at the
specified location. (Note that this mode of operation of the $CRMPSC
system service is not supported on Alpha systems. If your application
uses this mode, see Section 5.3.2 for recommendations about modifying
your source code.)

If both addresses are different, the system service maps the section into
memory using the boundaries specified.

• pagcnt (page count) argument—Specifies the number of blocks you want to
map from the section file.

• relpag (relative page number) argument—Specifies the location in the section
file at which you want mapping to begin.

The $CRMPSC and $MGBLSC system services map a miminum of one CPU-
specific page. If the section file does not fill a single page, the remainder of the
page is filled with zeros. The extra space on the page should not be used by your
application because only the data that fits into the section file will be written
back to the disk.

5.3.1 Mapping into Expanded Virtual Address Space
If your application maps a section file into an expanded area of your application’s
virtual address space, you may not need to modify the source code. Because
the mapping occurs in expanded virtual address space, there is no danger of
overmapping existing data, even if the amount of memory allocated is larger
on an Alpha system than on a VAX system. Thus, the values you specify as
arguments to the $CRMPSC system service on a VAX system should still work on
an Alpha system.

5–10 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Recommendation
While applications that map sections into expanded areas of virtual memory may
work correctly without modification, Digital suggests that you specify the retadr
argument, if not already specified by your application, to determine the exact
boundaries of the memory that was mapped by the call.

Note

If your application specifies the relpag argument, you must specify the
retadr argument; it is not an optional argument. For more information
about using the relpag argument, see Section 5.3.4.

Example 5–3 shows a call to the $CRMPSC system service that maps a section
file into expanded address space. The example maps a section file named
MAPTEST.DAT that was created using the DCL CREATE command, as follows:

$ CREATE maptest.dat
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data

Ctrl/Z

Example 5–3 Mapping a Section into Expanded Virtual Address Space

#include <ssdef.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>
#include <dvidef.h>
#include <rms.h>
#include <secdef.h>

struct FAB fab;

char _align(page) buffer[1024];
char *filename = "maptest.dat";

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;
long flags = SEC$M_EXPREG;
long inadr[2];
long retadr[2];
int fileChannel;

(continued on next page)

Adapting Applications to a Larger Page Size 5–11

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Example 5–3 (Cont.) Mapping a Section into Expanded Virtual Address Space

/******** create disk file to be mapped *************/

fab = cc$rms_fab;
fab.fab$l_fna = filename;
fab.fab$b_fns = strlen(filename);
fab.fab$l_fop = FAB$M_CIF | FAB$M_UFO; /* must be UFO */

status = sys$create(&fab);

if(status & STS$M_SUCCESS)
printf("%s opened\n",filename);

else
{

exit(status);
}

fileChannel = fab.fab$l_stv;

/********** create and map the section ****************/

inadr[0] = &buffer[0];
inadr[1] = &buffer[0];

status = SYS$CRMPSC(inadr, /* inadr=address target for map */
&retadr, /* retadr= what was actually mapped */

0, /* acmode */
flags, /* flags, with SEC$M_EXPREG bit set */

0, /* gsdnam, only for global sections */
0, /* ident, only for global sections */
0, /* relpag, only for global sections */

fileChannel, /* returned by SYS$CREATE */
0, /* pagcnt = size of sect. file used */
0, /* vbn = first block of file used */
0, /* prot = default okay */
0); /* page fault cluster size */

if(status & STS$M_SUCCESS)
{

printf("section mapped\n");
printf("retadr[0]=%u,retadr[1]=%u\n",retadr[0],retadr[1]);

}
else
{

printf("map failed\n");
exit(status);

}

}

5.3.2 Mapping a Single Page to a Specific Location
If your application maps a section file into a single page of memory, you will need
to modify your source code because this mode of operation is not supported on
Alpha systems. Because the page size on Alpha systems differs from that on VAX
systems and varies with different implementations of the Alpha architecture, you
must specify the exact boundaries of the memory into which you intend to map
a section file. The $CRMPSC system service returns an invalid arguments error
(SS$_INVARG) for this usage.

To see if your application uses this mode, check the start- and end-addresses
specified in the inadr argument. If both addresses are the same and the
SEC$M_EXPREG bit in the flags argument is not set, your application is using
this mode.

5–12 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Recommendations
Digital suggests the following guidelines when modifying calls to the $CRMPSC
system service in this mode:

• If the location into which the mapping occurs is unimportant, set the SEC$M_
EXPREG bit in the flags argument and let the system service map the section
into an expanded area of your application’s virtual address space. For more
information about this mode of operation, see Section 5.3.1.

• If the location into which the mapping occurs is important, define both the
start- and end-addresses in the inadr argument and map the section into a
defined area. For more information about this mode, see Section 5.3.3.

5.3.3 Mapping into a Defined Address Range
If your application maps a section into a defined area of its virtual address
space, you may need to modify your source code because, on Alpha systems,
the $CRMPSC and $MGBLSC system services interpret some of the arguments
differently than on VAX systems. The differences are as follows:

• The start-address specified in the inadr argument must be aligned on a
CPU-specific page boundary and the end-address specified must be aligned
with the end of a CPU-specific page. On VAX systems, the $CRMPSC and
the $MGBLSC system services round these addresses to page boundaries for
you. On Alpha systems, automatic rounding is not done because rounding to
CPU-specific page boundaries affects a much larger portion of memory due to
the larger page sizes on Alpha systems. Thus, on Alpha systems, you must
explicitly state where you want the virtual memory space mapped. If the
addresses you specify are not aligned on CPU-specific page boundaries, the
$CRMPSC system service returns an invalid arguments error (SS$_INVARG).

• The addresses returned in the retadr argument reflect only the usable
portion of the actual memory mapped by the call, not the entire amount
mapped. The usable amount is either the value specified in the pagcnt
argument (measured in pagelets) or the size of the section file, whichever
is smaller. The actual amount mapped depends on how many CPU-specific
pages are required to map the section file. If the section file does not fill a
CPU-specific page, the remainder of the page is filled with zeros. The excess
space on this page should not be used by your application. The end-address
specified in the retadr argument specifies the upper limit available to your
application. Note also that, when the relpag argument is specified, you must
also include the retadr argument; it is not an optional argument on Alpha
systems as it is on VAX systems. See Section 5.3.4 for more information.

Recommendations
Digital suggests that you change your application so that it maps data into
expanded virtual address space, if possible. If you cannot change the way your
application maps data, Digital recommends the following guidelines:

• Because the operating system maps a minimum of one physical page and
physical pages on Alpha systems are larger than pages on VAX systems,
you must make sure that when the system maps the section into the buffer
you define in your application it does not overwrite neighboring data. Most
applications on VAX systems define the buffer into which the section is to
be mapped in multiples of 512 bytes because that is the page size on VAX
systems, even if the section file to be mapped is less than 512 bytes in size.
To follow this strategy on Alpha systems, you would need to declare a buffer

Adapting Applications to a Larger Page Size 5–13

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

in your application as large as the largest possible Alpha page, 64K bytes,
which would waste memory.

A better way to make sure your section does not overwrite neighboring data
when it is mapped is to force the linker to isolate the buffer into a separate
image section. (The linker creates an image out of image sections. Each
image section defines the memory requirements of part of the image.) By
isolating the buffer into its own image section, you ensure that the mapping
operation will not overwrite neighboring data because the linker allocates
image sections on page boundaries; neighboring data will start on the next
page boundary. Thus, you can map a page of memory into your section
without disturbing neighboring data and without having to change the size of
the buffer.

To ensure that the linker puts your section into its own image section,
you must set the SOLITARY attribute of the program section in which
your section resides, using the linker’s PSECT_ATTR= option. (For more
information, see the Bookreader version of the OpenVMS Linker Utility
Manual.) Note that you may need to use the capabilities of whatever high- or
mid-level programming language you are using to ensure that the compiler
puts the buffer you define into a separate program section. See compiler
documentation for more information.

• Make sure that the start- and end-addresses of the section that you specify as
arguments to the $CRMPSC and $MGBLSC system services are aligned with
the start- and end-addresses of a CPU-specific page. On VAX systems, the
system services round the addresses to page boundaries for you. On Alpha
systems, the system services do not round the addresses you specify to page
boundaries.

If you isolate the section into its own image section, using the SOLITARY
program section attribute, the start-address is guaranteed to be on a page
boundary because the linker aligns image sections on page boundaries by
default, no matter what the page size of the host machine is at run time.

To make sure the end-address of the section is aligned on a CPU-specific page
boundary, you must know the page size supported by the machine on which
your application is being run. You can obtain the CPU-specific page size at
run time by calling the $GETSYI system service or the LIB$GETSYI run-time
library routine, and use this value to calculate an aligned end-address value
to pass in the inadr argument to the system services.

Note that you should specify the retadr argument to determine the amount of
usable memory the system mapped. The operating system maps a minimum
of one page; however, your application may use only part of the page. The
end-address specified in the retadr argument marks the upper limit of
usable memory. (On Alpha systems, if your application specifies the relpag
argument to the $CRMPSC system service, you must specify the retadr
argument.)

For example, the VAX program in Example 5–4 maps the section file created in
Section 5.3.1 into its existing virtual address space. The application defines a
buffer, named buffer, that is 512 bytes in size, reflecting the VAX page size. The
program defines the exact bounds of the section by passing the address of the
first byte of the buffer as the start-address and the address of the last byte of the
buffer as the end-address in the inadr argument.

5–14 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Example 5–4 Mapping a Section into a Defined Area of Virtual Address Space

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>
#include <dvidef.h>
#include <rms.h>
#include <secdef.h>

struct FAB fab;

char *filename = "maptest.dat";

char _align(page) buffer[512];

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;
long flags = 0;
long inadr[2];
long retadr[2];
int fileChannel;

/******** create disk file to be mapped *************/

fab = cc$rms_fab;
fab.fab$l_fna = filename;
fab.fab$b_fns = strlen(filename);
fab.fab$l_fop = FAB$M_CIF | FAB$M_UFO; /* must be UFO */

status = sys$create(&fab);

if(status & STS$M_SUCCESS)
printf("Opened mapfile %s\n",filename);

else
{

printf("Cannot open mapfile %s\n",filename);
exit(status);

}

fileChannel = fab.fab$l_stv;

/********** create and map the section ****************/

inadr[0] = &buffer[0];
inadr[1] = &buffer[511];

printf("inadr[0]=%u,inadr[1]=%u\n",inadr[0],inadr[1]);

status = SYS$CRMPSC(inadr, /* inadr=address target for map */
&retadr, /* retadr= what was actually mapped */

0, /* acmode */
0, /* flags */
0, /* gsdnam, only for global sections */
0, /* ident, only for global sections */
0, /* relpag, only for global sections */

fileChannel, /* returned by SYS$CREATE */
0, /* pagcnt = size of sect. file used */
0, /* vbn = first block of file used */
0, /* prot = default okay */
0); /* page fault cluster size */

(continued on next page)

Adapting Applications to a Larger Page Size 5–15

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Example 5–4 (Cont.) Mapping a Section into a Defined Area of Virtual Address
Space

if(status & STS$M_SUCCESS)
{

printf("Map succeeded\n");
printf("retadr[0]=%u,retadr[1]=%u\n",retadr[0],retadr[1]);

}
else
{

printf("Map failed\n");
exit(status);

}

}

To get the program in Example 5–4 to run correctly on an Alpha system, you
must make the following modifications:

• You must ensure that the start-address of the section specified in the inadr
argument is aligned on an Alpha page boundary and the end-address specified
is aligned with the end of an Alpha page.

• You must ensure that when a larger page on an Alpha system is mapped,
neighboring data is not overwritten.

One way to accomplish these goals is to isolate the program section that contains
the section data in its own image section by using the SOLITARY program section
attribute.

In the example, the section, named buffer, appears in the program section named
buffer. (Program section creation is different in various programming languages
on each platform. Check compiler documentation to ensure that the section is
placed in its own program section.), The following link operation illustrates how
to set the solitary attribute of this program section:

$ LINK MAPTEST, SYS$INPUT/OPT
PSECT_ATTR=BUFFER,SOLITARY

Ctrl/Z

To specify an end-address for the section buffer that is aligned with the end of
a CPU-specific page boundary, obtain the CPU-specific page size at run time,
subtract 1 from the returned value, and use it to take the address of the last
element of the array. Pass this value as the second longword in the inadr
argument. (To find out how to obtain the page size at run time, see Section 5.4.)
Note that you do not need to change the allocation of the buffer into which the
section is mapped.

To ensure that your application will run on an Alpha system with any page size,
specify the /BPAGE=16 qualifier to force the linker to align image sections on
64KB boundaries. Note that the total amount of memory mapped may be much
larger than the total amount of usable memory. The amount of usable memory is
determined by the value of the page count argument (pagcnt) or the size of the
section file, whichever is smaller. To avoid using memory that is not within the
bounds of the section, use the values returned in the retadr argument.

5–16 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Example 5–5 shows the source changes required for Example 5–4 to get it to run
on an Alpha system.

Example 5–5 Source Code Changes Required to Run Example 5–4 on an Alpha
System

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <string.h>
#include <stdlib.h>
#include <descrip.h>
#include <dvidef.h>
#include <rms.h>
#include <secdef.h>
#include <syidef.h> 1

char buffer[512]; 2
char *filename = "maptest.dat";
struct FAB fab;

long cpu_pagesize; 3

struct itm { /* item list */
short int buflen; /* length of buffer in bytes */
short int item_code; /* symbolic item code */
long bufadr; /* address of return value buffer */
long retlenadr; /* address of return value buffer length */

} itmlst[2]; 4

main(argc, argv)
int argc;
char *argv[];
{

int i;
int status = 0;
long flags = SEC$M_EXPREG;
long inadr[2];
long retadr[2];
int fileChannel;
char *mapped_section;

/******** create disk file to be mapped *************/

fab = cc$rms_fab;
fab.fab$l_fna = filename;
fab.fab$b_fns = strlen(filename);
fab.fab$l_fop = FAB$M_CIF | FAB$M_UFO; /* must be UFO */

status = sys$create(&fab);

if(status & STS$M_SUCCESS)
printf("%s opened\n",filename);

else
{

exit(status);
}

fileChannel = fab.fab$l_stv;

(continued on next page)

Adapting Applications to a Larger Page Size 5–17

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Example 5–5 (Cont.) Source Code Changes Required to Run Example 5–4 on
an Alpha System

/********** obtain the page size at run time ****************/

itmlst[0].buflen = 4;
itmlst[0].item_code = SYI$_PAGE_SIZE;
itmlst[0].bufadr = &cpu_pagesize;
itmlst[0].retlenadr = &cpu_pagesize_len;
itmlst[1].buflen = 0;
itmlst[1].item_code = 0;

5 status = sys$getsyiw(0, 0, 0, &itmlst, 0, 0, 0);

if(status & STS$M_SUCCESS)
{

printf("getsyi succeeds, page size = %d\n",cpu_pagesize);
}
else
{

printf("getsyi fails\n");
exit(status);

}

/********** create and map the section ****************/

inadr[0] = &buffer[0];
inadr[1] = &buffer[cpu_pagesize - 1]; 6

printf("address of buffer = %u\n", inadr[0]);

status = SYS$CRMPSC(&inadr, /* inadr=address target for map */
&retadr, /* retadr= what was actually mapped */

0, /* acmode */
0, /* no flags to set */
0, /* gsdnam, only for global sections */
0, /* ident, only for global sections */
0, /* relpag, only for global sections */

fileChannel, /* returned by SYS$CREATE */
0, /* pagcnt = size of sect. file used */
0, /* vbn = first block of file used */
0, /* prot = default okay */
0); /* page fault cluster size */

if(status & STS$M_SUCCESS)
{

printf("section mapped\n");
printf("start address returned =%u\n",retadr[0]);

}
else
{

printf("map failed\n");
exit(status);

}
}

The items in the following list correspond to the numbered items in Example 5–5:

1 The header file SYIDEF.H contains definitions of OpenVMS item codes for the
$GETSYI system service.

5–18 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

2 The buffer is defined without using the _align(page) storage descriptor.
Because the page size cannot be determined until run time on OpenVMS
Alpha systems, the DEC C for OpenVMS Alpha compiler aligns the data on
the largest Alpha page size (64 KB) when _align(page) is specified.

3 This structure defines the item list used to obtain the page size at run time.

4 This variable will hold the page-size value returned.

5 This call to the $GETSYI system service obtains the page size at run time.

6 The end-address of the buffer is specified by subtracting 1 from the page-size
value returned.

5.3.4 Mapping from an Offset into a Section File
Your application may map a portion of a section file by specifying the address at
which to start the mapping as an offset from the beginning of the section file. You
specify this offset by supplying a value to the relpag argument of the $CRMPSC
system service. The value of the relpag argument specifies the page number
relative to the beginning of the file at which the mapping should begin.

To preserve compatibility, the $CRMPSC system service interprets the value of
the relpag argument in 512-byte units on both VAX systems and Alpha systems.
Note, however, that because the CPU-specific page size on Alpha systems is
larger than 512 bytes, the address specified by the offset in the relpag argument
probably does not fall on a CPU-specific page boundary. The $CRMPSC system
service can map virtual memory in CPU-specific page increments only. Thus, on
Alpha systems, the mapping of the section file will start at the beginning of the
CPU-specific page that contains the offset address, not at the address specified by
the offset.

Note

Even though the routine starts mapping at the beginning of the CPU-
specific page that contains the address specified by the offset, the start-
address returned in the retadr argument is the address specified by the
offset, not the address at which mapping actually starts.

If your application maps from an offset into a section file, you may need to enlarge
the size of the address range specified in the inadr argument to accommodate the
extra virtual memory space that gets mapped on Alpha systems. If the address
range specified is too small, your application may not map the entire portion
of the section file you desire, because the mapping begins at an earlier starting
address in the section file.

For example, to map 16 blocks in a section file starting at block number 15 on a
VAX system, you could specify an address range 16*512 bytes in size in the inadr
argument and specify a value of 15 for the relpag argument. To accomplish this
same mapping on an Alpha system, you must allow for the difference in page
sizes. For example, on an Alpha system with an 8KB page size, the address
specified by the relpag offset might fall 15 pagelets into a CPU-specific page, as
shown in Figure 5–2. Because the $CRMPSC system service on an Alpha system
begins the mapping of the section file at a CPU-specific page boundary, it would
fail to map blocks 16 through 30. For the mapping to succeed, you would need to
increase the size of the address range to accommodate the additional 15 pagelets
mapped by the $CRMPSC system service (or the $MGBLSC system service) on

Adapting Applications to a Larger Page Size 5–19

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

an Alpha system. Otherwise, only one block of the portion of the section file you
specified would be mapped.

Figure 5–2 Effect of Address Range on Mapping from an Offset

0 3115

ZK−2499A−GE

$MGBLSC: =512*16

On OpenVMS Alpha system:

=15

$MGBLSC: =512*16
=15

(pagelets 0 through 15 mapped)

inadr
relpag

On OpenVMS VAX system:

(pagelets 15 through 30 mapped)

inadr
relpag

When trying to calculate how much to enlarge the size of the address range
specified in the relpag argument, the following formula may be helpful. The
formula calculates the maximum number of CPU-specific pages needed to map a
given number of pagelets.

(number of pagelets to map+ (2 � pagelets per page)� 2)

pagelets per page

For example, this formula can be used to calculate how much to enlarge the
address range specified in the previous scenario. In the following equation, the
page size is assumed to be 8K, so pagelets_per_page equals 16:

16+((2x16)-2)/16=2.87...

Rounding the result down to the nearest whole number, the formula indicates
that the address range specified in the inadr argument must encompass two
CPU-specific pages.

5.4 Obtaining the Page Size at Run Time
To obtain the page size supported by an Alpha system, use the $GETSYI system
service. Example 5–6 shows how to use this system service to obtain the page
size at run time.

Example 5–6 Using the $GETSYI System Service to Obtain the CPU-Specific
Page Size

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>

(continued on next page)

5–20 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.4 Obtaining the Page Size at Run Time

Example 5–6 (Cont.) Using the $GETSYI System Service to Obtain the
CPU-Specific Page Size

#include <dvidef.h>
#include <rms.h>
#include <secdef.h>
#include <syidef.h> /* defines page size item code symbol */

struct itm { /* define item list */
short int buflen; /* length in bytes of return value buffer */
short int item_code; /* item code */
long bufadr; /* address of return value buffer */
long retlenadr; /* address of return value length buffer */

} itmlst[2];

long cpu_pagesize;
long cpu_pagesize_len;

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;

itmlst[0].buflen = 4; /* page size requires 4 bytes */
itmlst[0].item_code = SYI$_PAGE_SIZE; /* page size item code */
itmlst[0].bufadr = &cpu_pagesize; /* address of ret_val buffer */
itmlst[0].retlenadr = &cpu_pagesize_len; /* addr of length of ret_val */
itmlst[1].buflen = 0;
itmlst[1].item_code = 0; /* Terminate item list with longword of 0 */

status = sys$getsyiw(0, 0, 0, &itmlst, 0, 0, 0);

if(status & STS$M_SUCCESS)
{

printf("getsyi succeeds, page size = %d\n",cpu_pagesize);
exit(status);

}
else
{

printf("getsyi fails\n");
exit(status);

}
}

5.5 Locking Memory in the Working Set
The $LKWSET system service locks into the working set the range of pages
identified in the inadr argument as an address range on both VAX and
Alpha systems. The system service rounds the addresses to CPU-specific
page boundaries if necessary.

However, because Alpha instructions cannot contain full virtual addresses,
Alpha images must reference procedures and data indirectly through a pointer
to a procedure descriptor. The procedure descriptor contains information about
the procedure, including the actual code address. These pointers to procedure
descriptors and data are collected into a new program section called a linkage
section.

Adapting Applications to a Larger Page Size 5–21

Adapting Applications to a Larger Page Size
5.5 Locking Memory in the Working Set

Recommendation
On Alpha systems, it is not sufficient to simply lock a section of code into memory
to improve performance. You must also lock the associated linkage section into
the working set.

To lock the linkage section in memory, determine the start- and end-addresses of
the linkage section and pass these addresses as values in the inadr argument to
a call to the $LKWSET system service.

5–22 Adapting Applications to a Larger Page Size

6
Preserving the Integrity of Shared Data

This chapter describes synchronization mechanisms that ensure the integrity of
shared data, such as the atomicity guaranteed by certain VAX instructions.

6.1 Overview
If your application uses multiple threads of execution and the threads share
access to data, you may need to add explicit synchronization mechanisms to your
application to protect the integrity of the shared data on Alpha systems. Without
synchronization, an access to the data initiated by one application thread can
potentially interfere with an access initiated simultaneously by a competing
thread, leaving the data in an unpredictable state.

On VAX systems, the degree of synchronization required depends on the
relationship of the different threads of execution, which can include the following:

• Multiple threads executing within a single process, such as a main thread
interrupted by an asynchronous system trap (AST) thread.

Note that the AST thread can either be initiated by the application or by
the operating system. For example, the operating system uses an AST to
write status to an I/O status block. The operating system also uses an AST to
complete a buffered I/O read operation to a specified user buffer.

• Multiple threads separated into multiple processes executing on a single
processor that access a global section.

• Multiple threads separated into multiple processes executing concurrently on
multiple processors that access a global section.

On VAX systems, applications that take advantage of the parallel processing
potential of a multiprocessor system have always had to provide explicit
synchronization mechanisms such as locks, semaphores, and interlocked
instructions to protect shared data. However, applications that use multiple
threads on uniprocessor systems may not explicitly protect the shared data.
Instead, these applications may depend on the implicit protection provided
by features of the VAX architecture that guarantee synchronization between
application threads executing on a VAX uniprocessor system (described in
Section 6.1.1).

For example, applications that use a semaphore variable to synchronize access
to a critical region of code by multiple threads depend on the semaphore being
incremented atomically. On VAX systems, this is guaranteed by the VAX
architecture. The Alpha architecture does not make the same synchronization
guarantees. On Alpha systems, access to this semaphore or any data that can
be accessed by multiple threads of execution must be explicitly synchronized.
Section 6.1.2 describes features of the Alpha architecture you can use to provide
equivalent protection.

Preserving the Integrity of Shared Data 6–1

Preserving the Integrity of Shared Data
6.1 Overview

6.1.1 VAX Architectural Features That Guarantee Atomicity
The following features of the VAX architecture provide synchronization among
multiple threads of execution running on a uniprocessor system. (Note that the
VAX architecture does not extend this guarantee of atomicity to multiprocessor
systems.)

• Instruction atomicity—Many of the instructions defined by the VAX
architecture are capable of performing a read-modify-write operation in a
single, noninterruptable sequence (called an atomic operation) from the
viewpoint of multiple application threads executing on a single processor.
The Alpha architecture does not support such instructions. Operations
that could be performed atomically on VAX systems require a sequence of
instructions on Alpha systems, which can be interrupted, leaving the data in
an unpredictable state.

For example, the VAX Increment Long (INCL) instruction fetches the contents
of a specified longword, increments its value, and stores the value back in the
longword, performing the operations without interruption. On Alpha systems,
each step must be explicitly performed by a separate instruction.

To provide compatibility with VAX systems, the Alpha architecture defines a
pair of instructions that you can use to ensure that a read/write operation is
done atomically. Section 6.1.2 describes these instructions and how compilers
on Alpha systems make this capability available to programs written in
high-level languages.

Note, however, that even on VAX systems, implicit dependence on the
atomicity of VAX instructions is not recommended. Because of the
optimizations they perform, compilers on VAX systems do not guarantee that
they implement certain program statements, such as an increment operation
(x = x + 1), using a VAX atomic instruction, even if such an instruction is
available.

• Memory access granularity—The VAX architecture supports instructions
that can manipulate byte- and word-sized data in a single, noninterruptable
operation. (The VAX architecture supports instructions to manipulate data
of other sizes as well.) The Alpha architecture supports instructions that
manipulate longword- and quadword-sized data. Manipulation of byte-
and word-sized data on Alpha systems requires multiple instructions: the
longword or quadword that contains the byte or word must be fetched, the
nontargeted bytes must be masked, the target byte or word manipulated, and
then the entire longword or quadword must be stored. Because this sequence
is interruptable, operations on byte and word data, which are atomic on VAX
systems, are not atomic on Alpha systems.

Note that this change in the granularity of memory access can also affect the
definition of which data is shared. On VAX systems, a byte- or word-sized
data item that is shared can be manipulated individually. On Alpha systems,
the entire longword or quadword that contains the byte- or word-sized item
must be manipulated. Thus, simply because of its proximity to an explicitly
shared data item, neighboring data may become unintentionally shared.

Compilers use the Alpha instructions described in Section 6.1.2 to ensure the
integrity of byte- and word-sized data.

6–2 Preserving the Integrity of Shared Data

Preserving the Integrity of Shared Data
6.1 Overview

• Read/write ordering—On VAX uniprocessor and multiprocessor systems,
sequential write operations and read operations appear to occur in the same
order in which you specify them from the viewpoint of all types of external
threads of execution. Alpha uniprocessor systems also guarantee that the
order of read and write operations appears synchronized for multiple threads
of execution running within a single process or within multiple processes
running on a uniprocessor. However, write operations visible to threads
executing concurrently on an Alpha multiprocessor system require explicit
synchronization.

To provide compatibility with VAX systems, the Alpha architecture supports
an instruction with which you can ensure that read/write operations occur
in the order specified, from the viewpoint of all the processors in the system.
Section 6.1.2 provides more information about this instruction and about how
high-level languages make this instruction available. Section 6.3 describes
the feature of the Alpha architecture that provides this synchronization and
how the compilers make it available to high-level language programs on
Alpha systems.

6.1.2 Alpha Compatibility Features
To provide compatibility with the atomicity capabilities of the VAX architecture,
the Alpha architecture defines two mechanisms:

• Load-locked/Store-conditional instructions—The Alpha instruction
set includes a pair of instructions, named Load-locked (LDxL) and Store-
conditional (STxC), that provide for atomic load and store operations
by setting and testing a lock bit. For complete information about these
instructions, see the Alpha Architecture Reference Manual.

Using the Load-locked/Store-conditional instructions, compilers can provide
atomic access to byte- and word-sized data on Alpha systems. In addition,
compilers may generate the Load-locked/Store-conditional instruction
sequence when accessing byte- and word-sized data that is declared with
the volatile attribute. (The Alpha architecture provides atomic load and
store operations of longword- and quadword-sized data.)

• Memory barriers—The Alpha instruction set includes an instruction that
can ensure that read/write operations, issued by multiple threads executing
on separate processors in a multiprocessor system, appear to occur in the
order specified. This instruction, named memory barrier (MB), guarantees
that all subsequent load or store instructions will not access memory until
after all previous load and store instructions have accessed memory from the
viewpoint of multiple threads of execution.

6.2 Uncovering Atomicity Assumptions in Your Application
One way to uncover synchronization assumptions in your application is to identify
data that is shared among multiple threads of execution and then examine each
access to the data from each thread. When looking for shared data, remember
to include unintentionally shared data as well as intentionally shared data.
Unintentionally shared data is shared because of its proximity to data that
is accessed by multiple threads of execution such as data written to by ASTs
generated by the operating system as a result of system services such as $QIO,
$ENQ, or $GETJPI.

Preserving the Integrity of Shared Data 6–3

Preserving the Integrity of Shared Data
6.2 Uncovering Atomicity Assumptions in Your Application

Because compilers on Alpha systems use quadword instructions by default in
certain circumstances, all data items within a quadword of a shared data item
may potentially become unintentionally shared. For example, compilers use
quadword instructions to access a data item that is not aligned on natural
boundaries. (Data is naturally aligned when its address is divisible by its size.
For more information, see Chapter 7. Compilers align explicitly declared data on
natural boundaries by default.)

When examining data access, determine if another thread could view the data
in an intermediate state and, if such a view is possible, whether it is important
to the application. In some cases, the exact value of the shared data may not be
important; the application depends only on the relative value of the variable. In
general, ask the following questions:

• Is the operation performed on the shared data atomic from the viewpoint of
other threads of execution?

• Is it possible to perform an atomic operation to the data type involved?

Figure 6–1 shows this decision process.

Figure 6–1 Synchronization Decision Tree

No

Yes

ZK−5204A−GE

Does your application
share data between
multiple threads of
execution?

No synchronization
required.

Is operation performed
on the data atomic?

Requires explicit
synchronization.

No synchronization required.

Requires explicit
synchronization.

No

No

Yes

Yes

Can data be accessed
atomically?

6–4 Preserving the Integrity of Shared Data

Preserving the Integrity of Shared Data
6.2 Uncovering Atomicity Assumptions in Your Application

6.2.1 Protecting Explicitly Shared Data
Example 6–1 is a simplified example of some possible atomicity assumptions
in a VAX application. The program uses a variable, flag, through which an
AST thread communicates with a main processing thread of execution. The
main processing loop continues working until the counter variable reaches a
predetermined value. The program queues an AST interruption that sets the flag
to the maximum value, terminating the processing loop.

Example 6–1 Atomicity Assumptions in a Program with an AST Thread

#include <ssdef.h>
#include <descrip.h>

#define MAX_FLAG_VAL 1500

int ast_rout();
long time_val[2];
short int flag; /* accessed by main and AST threads */

main()
{

int status = 0;
static $DESCRIPTOR(time_desc, "0 ::1");

/* changes ASCII time value to binary value */

status = SYS$BINTIM(&time_desc, &time_val);

if (status != SS$_NORMAL)
{

printf("bintim failure\n");
exit(status);

}

/* Set timer, queue ast */

status = SYS$SETIMR(0, &time_val, ast_rout, 0, 0);

if (status != SS$_NORMAL)
{

printf("setimr failure\n");
exit(status);

}

flag = 0; /* loop until flag = MAX_FLAG_VAL */
while(flag < MAX_FLAG_VAL)
{

printf("main thread processing (flag = %d)\n",flag);
flag++;

}
printf("Done\n");

}

ast_rout() /* sets flag to maximum value to stop processing */
{

flag = MAX_FLAG_VAL;
}

In Example 6–1, the variable named flag is explicitly shared between the
main thread of execution and an AST thread. The program does not use any
synchronization mechanism to protect the integrity of this variable; it implicitly
depends on the atomicity of the increment operation.

Preserving the Integrity of Shared Data 6–5

Preserving the Integrity of Shared Data
6.2 Uncovering Atomicity Assumptions in Your Application

On an Alpha system, this program may not always work as desired because the
mainline thread of execution can be interrupted in the middle of the increment
operation by the AST thread before the new value is stored back into memory,
as shown in Figure 6–2. (This would be more likely to fail in a real application
with dozens of AST threads.) In this scenario, the AST thread would interrupt
the increment operation before it completes, setting the value of the variable to
the maximum value. But once control returns to the main thread, the increment
operation would complete, overwriting the value of the AST thread. When the
loop test is performed, the value would not be at its maximum and the processing
loop would continue.

Figure 6–2 Atomicity Assumptions in Example 6–1

Time

ZK−5203A−GE

Main Thread

1500

126

:flag

AST ThreadShared Data

125

Read value
of flag.

Begin
increment operation.

Main
thread
resumes. Write incremented

value to flag.

Main thread overwrites value written by
AST thread.

AST thread

AST thread writes

reads value of

MAX_FLAG_VAL

AST interrupts

to flag variable.

flag (125).

increment operation.

125

:flag

:flag

:flag

Recommendations
To correct these atomicity dependencies, Digital recommends doing the following:

• Disable AST delivery, using the $SETAST system service, while the data is
being accessed and enable it after access is completed.

• Explicitly protect the data by using a compiler mechanism. For example,
DEC C for OpenVMS Alpha systems supports atomicity built-ins. In addition,
you can use other mechanisms to synchronize access to this data, such as the
$ENQ system service (for data accessed by multiple threads running on a
multiprocessor system) or run-time library routines, such as LIB$BBCCI or
LIB$BBSSI, and the interlocked queue routines.

6–6 Preserving the Integrity of Shared Data

Preserving the Integrity of Shared Data
6.2 Uncovering Atomicity Assumptions in Your Application

For example, in Example 6–1, replace the increment operation,
which is performed by the C increment operator (flag++) with the
atomicity built-in supported by DEC C for OpenVMS Alpha systems
(_ _ADD_ATOMIC_LONG(&flag,1,0)). See Example 6–2 for the complete
example.

Note that the shared variable must be an aligned longword or aligned
quadword to be protected by the atomicity built-ins.

• If you cannot change byte- or word-sized data to a longword or quadword,
change the granularity the compiler uses when accessing the data item.
Many compilers on Alpha systems allow you to specify the granularity they
will use when accessing a particular data item or when processing an entire
module. Note, however, that specifying byte and word granularity can have
an adverse effect on the performance of your application.

Example 6–2 shows how these changes are implemented in the program
presented in Example 6–1.

Example 6–2 Version of Example 6–1 with Synchronization Assumptions

#include <ssdef.h>
#include <descrip.h>
#include <builtins.h> 1

#define MAX_FLAG_VAL 1500
int ast_rout();
long time_val[2];
int 2 flag; /* accessed by mainline and AST threads */

main()
{

int status = 0;
static $DESCRIPTOR(time_desc, "0 ::1");

/* changes ASCII time value to binary value */

status = SYS$BINTIM(&time_desc, &time_val);

if (status != SS$_NORMAL)
{

printf("bintim failure\n");
exit(status);

}

/* Set timer, queue ast */

status = SYS$SETIMR(0, &time_val, ast_rout, 0, 0);

if (status != SS$_NORMAL)
{

printf("setimr failure\n");
exit(status);

}

(continued on next page)

Preserving the Integrity of Shared Data 6–7

Preserving the Integrity of Shared Data
6.2 Uncovering Atomicity Assumptions in Your Application

Example 6–2 (Cont.) Version of Example 6–1 with Synchronization
Assumptions

flag = 0;
while(flag < MAX_FLAG_VAL) /* perform work until flag set to zero */
{

printf("mainline thread processing (flag = %d)\n",flag);
__ADD_ATOMIC_LONG(&flag,1,0); 3

}
printf("Done\n");

}

ast_rout() /* sets flag to maximum value to stop processing */
{

flag = MAX_FLAG_VAL;
}

The items in the following list correspond to the numbers in Example 6–2:

1 To use the DEC C for OpenVMS Alpha systems atomicity built-ins, you must
include the builtins.h header file.

2 In this version, the variable flag is declared as a longword to allow atomic
access (the atomicity built-ins require it).

3 The increment operation is performed with an atomicity built-in function.

6.2.2 Protecting Unintentionally Shared Data
In Example 6–1, both threads clearly access the same variable. However, on
an Alpha system, it is possible for an application to have atomicity concerns
for variables that are inadvertently shared. In this scenario, two variables
are physically adjacent to each other within the boundaries of a longword or
quadword. On VAX systems, each variable can be manipulated individually. On
an Alpha system, which supports atomic read and write operations of longword
and quadword data only, the entire longword must be fetched before the target
bytes can be modified. (For more information about this change in data-access
granularity, see Chapter 7.)

To illustrate this problem, consider a modified version of the program in
Example 6–1 in which the main thread and the AST thread each increment
separate counter variables that are declared in a data structure, as in the
following code:

struct {
short int flag;
short int ast_flag;
};

If both the main thread and the AST thread attempt to modify their individual
target words simultaneously, the results would be unpredictable, depending on
the timing of the two operations.

6–8 Preserving the Integrity of Shared Data

Preserving the Integrity of Shared Data
6.2 Uncovering Atomicity Assumptions in Your Application

Recommendations
To remedy this synchronization problem, Digital suggests doing the following:

• Change the size of the shared variables to longwords or quadwords. Note,
however, that because compilers on Alpha systems use quadword instructions
in certain circumstances, you should use quadwords to ensure the integrity of
the data. For example, if the data is not aligned on a natural boundary, the
compilers use a quadword instruction to access the data.

In data structures, you can also insert extra bytes between data items to
force the elements of the structure onto natural quadword boundaries. The
compilers align data on natural boundaries by default on Alpha systems.

For example, to ensure that each flag variable in the data structure can be
modified without interference from other threads of execution, change the
declarations of the variables so that they are 64-bit quantities. Using DEC C,
you could use the double data type, as in the following code:

struct {
double flag;
double ast_flag;
};

• Explicitly protect the data by using a compiler mechanism, such as the
atomicity built-ins or the volatile attribute. In addition, you can synchronize
access to data by multiple threads of execution running on a multiprocessor
system by using the $ENQ system service or a run-time library routine, such
as LIB$BBCCI or LIB$BBSSI, or by using interlocked queue operations.

6.3 Synchronizing Read/Write Operations
VAX multiprocessing systems have traditionally been designed so that if one
processor in a multiprocessing system writes multiple pieces of data, these
pieces become visible to all other processors in the same order in which they
were written. For example, if CPU A writes a data buffer (represented by X in
Figure 6–3) and then writes a flag (represented by Y in Figure 6–3), CPU B can
determine that the data buffer has changed by examining the value of the flag.

On Alpha systems, read and write operations to memory may be reordered
to benefit overall memory subsystem performance. Processes that execute on
a single processor can rely on write operations from that processor becoming
readable in the order in which they are issued. However, multiprocessor
applications cannot rely on the order in which write operations to memory become
visible throughout the system. In other words, write operations performed by
CPU A may become visible to CPU B in an order different from that in which
they were written.

Figure 6–3 depicts this problem. CPU A requests a write operation to X, followed
by a write operation to Y. CPU B requests a read operation from Y and, seeing the
new value of Y, initiates a read operation of X. If the new value of X has not yet
reached memory, CPU B receives the old value. As a result, any token-passing
protocol relied on by procedures running on CPUs A and B is broken. CPU A
could write data and set a flag bit, but CPU B may see the flag bit set before the
data is actually written and erroneously use stale memory contents.

Preserving the Integrity of Shared Data 6–9

Preserving the Integrity of Shared Data
6.3 Synchronizing Read/Write Operations

Figure 6–3 Order of Read and Write Operations on an Alpha System

Time
Writable global section

write #123,X

write #1,Y

0

0

0 or 123

1

:X

ZK−5202A−GE

read Y
if Y = 1 then read X
(even if Y = 1, X can be either
0 or 123; if y = 0, X can also
be either 0 or 123)

:Y

:X

:Y

Code on
CPU A

Code on
CPU B

Recommendations
Programs that run in parallel and that rely on read/write ordering require some
redesigning to execute correctly on an Alpha system. One or more of the following
techniques may be appropriate, depending on the application:

• Use the Alpha memory barrier instruction (MB) before and after all read and
write instructions for which the completion order is crucial. For example, the
DEC C for OpenVMS Alpha systems compiler supports the memory barrier
instruction as a built-in function.

• Redesign the application to use the memory interlocks available in the VAX
interlocked instruction routines available in the LIB$ run-time library.

• Redesign the application to use the $ENQ and $DEQ system services to
protect the data with a lock.

6.4 Ensuring Atomicity in Translated Images
The VEST command’s /PRESERVE qualifier accepts keywords that allow
translated VAX images to run on Alpha systems with the same guarantees of
atomicity that are provided on VAX systems. Several /PRESERVE qualifier
keywords provide different types of atomicity protection. Note that specifying
these /PRESERVE qualifier keywords can have an adverse effect on the
performance of your application. (For complete information about specifying the
/PRESERVE qualifier, see DECmigrate for OpenVMS AXP Systems Translating
Images.)

To ensure that an operation that can be performed atomically on a VAX system
by a VAX instruction is performed atomically in a translated image, specify the
INSTRUCTION_ATOMICITY keyword to the /PRESERVE qualifier.

6–10 Preserving the Integrity of Shared Data

Preserving the Integrity of Shared Data
6.4 Ensuring Atomicity in Translated Images

To ensure that simultaneous updates to adjacent bytes within a longword or
quadword can be accomplished without interfering with each other, specify the
MEMORY_ATOMICITY keyword to the /PRESERVE qualifier.

To ensure that read/write operations appear to occur in the order you specify
them, specify the READ_WRITE_ORDERING keyword to the /PRESERVE
qualifier.

Preserving the Integrity of Shared Data 6–11

7
Checking the Portability of Application Data

Declarations

This chapter describes how to check the data your application uses for
dependencies on the VAX architecture. The chapter also describes the effect your
choice of data type can have on the size and performance of your application on
an Alpha system.

7.1 Overview
The data types supported by high-level programming languages, such as int
in C or INTEGER*4 in FORTRAN, provide applications with a degree of data
portability because they hide the machine-specific details of the underlying
native data types. The languages map their data types to the native data types
supported by the target platform. For this reason, you may be able to successfully
recompile and run an application that runs on VAX systems on an Alpha system
without modifying the data declarations it contains.

However, if your application contains any of the following assumptions about data
types, you may need to modify your source code:

• Assumptions about data-type mappings—Your application may depend
on the underlying VAX data type to which a high-level language maps. The
Alpha architecture supports most of the VAX data types; however, there
are some data types that are not supported. Your application may make
assumptions about the size or bit format of a data type that may no longer be
valid on an Alpha system. Section 7.2 provides more information about this
topic.

• Assumptions about data-type selection—Your choice of data type may
have different implications on an Alpha system. For example, on VAX
systems, you may have chosen the smallest data type available to represent
data items to conserve memory usage. On an Alpha system, this strategy
may actually increase memory usage. Section 7.3 provides more information
about this topic.

7.2 Checking for Dependence on a VAX Data Type
To provide data compatibility, the Alpha architecture has been designed to
support many of the same native data types as the VAX architecture. Table 7–1
lists the native data types supported by both architectures. (See the Alpha
Architecture Reference Manual for more information about the formats of the data
types.)

Checking the Portability of Application Data Declarations 7–1

Checking the Portability of Application Data Declarations
7.2 Checking for Dependence on a VAX Data Type

Table 7–1 Comparison of VAX and Alpha Native Data Types

VAX Data Types Alpha Data Types

byte byte

word word

longword longword

quadword quadword

octaword –

F_floating F_floating

D_floating (56-bit precision) D_floating (53-bit precision)

G_floating G_floating

H_floating X_floating

– S_floating (IEEE)

– T_floating (IEEE)

Variable-length bit field –

Absolute queue Absolute longword queue

– Absolute quadword queue

Self-relative queue Self-relative longword queue

– Self-relative quadword queue

Character string –

Trailing numeric string –

Leading separate numeric string –

Packed decimal string –

Recommendations
Unless your application depends on the format or size of the underlying native
VAX data types, you may not have to modify your application because of changes
to the data-type mappings. Wherever possible, the compilers on Alpha systems
map their data types to the same native data types as they do on VAX systems.
For those VAX data types that are not supported by the Alpha architecture,
the compilers map their data types to the closest equivalent native Alpha data
type. (For more information about how the compilers on Alpha systems map the
data types they support to native Alpha data types, see Chapter 11 and compiler
documentation.)

The following list provides guidelines that can be helpful for certain types of data
declarations:

• D_floating data—Most compilers on Alpha systems map their double-
precision floating-point data type to the VAX native G_floating data type by
default because the Alpha architecture does not support the VAX D_floating
data type. The OpenVMS VAX compilers map their double-precision floating-
point data type to the D_floating data type. For example, VAX C maps the
double data type to D_floating and DEC C for OpenVMS Alpha systems
compiler maps the double data type to the G_floating data type.

This change may not affect most applications. Note, however, that the
value returned by the G_floating data type (significant to 15 digits after
the decimal) is slightly less precise than the value returned by the D_floating
data type (significant to 16 digits after the decimal).

7–2 Checking the Portability of Application Data Declarations

Checking the Portability of Application Data Declarations
7.2 Checking for Dependence on a VAX Data Type

The OpenVMS Run-Time Library supports a conversion routine
(CVT$CONVERT_FLOAT) that can convert floating-point data from one
format to another. For example, using this routine you can convert data in
D_floating format to IEEE format and back again. Note also that the Alpha
architecture supports the IEEE double-precision floating-point format (T_
floating).

DEC C for OpenVMS Alpha systems issues a warning message when it
encounters declarations that use the long float data type. On VAX systems,
the long float data type is a synonym for double. On Alpha systems, the long
float data type is obsolete, even when the DEC C compiler is used in VAX C
mode.

• Pointer data—Check for assumptions that an address (pointer) data type is
equivalent in size to an integer data type. On Alpha systems, an address is
64 bits.

For example, in VAX C, some programs may make this assumption, as shown
in Example 7–1.

Example 7–1 Assumptions About Data Types in VAX C Code

typedef struct {
char small;
short medium;
long large;
} MYSTRUCT ;

main()
{

int a1;
long b1;
MYSTRUCT c1;

1 a1 = &c1;
2 b1 = &c1;

3 a1->small = 1;
b1->small = 2;

}

The items in the following list correspond to the numbered items in
Example 7–1:

1 The example assigns the address of the structure to the variable a1,
declared as an int data type.

2 The example assigns the address of the structure to the variable b1,
declared as a long data type.

3 The example accesses the first field in the structure by using the variables
assigned to int and long data types.

To move this example to an Alpha system, you should change the declarations
of a1 and b1 to be pointers to the data structure (MYSTRUCT), as in the
following:

MYSTRUCT *a1,*b2;

Checking the Portability of Application Data Declarations 7–3

Checking the Portability of Application Data Declarations
7.3 Examining Assumptions About Data-Type Selection

7.3 Examining Assumptions About Data-Type Selection
Even though your application may recompile and run successfully on an Alpha
system, your data-type selection may not take full advantage of the benefits of
the Alpha architecture. In particular, data-type selection can impact the ultimate
size of your application and its performance on an Alpha system.

7.3.1 Effect of Data-Type Selection on Code Size
On VAX systems, applications typically use the smallest size data type adequate
for the data. For example, to represent a value between 32,768 and -32,767
in an application written in C, you might declare a variable of type short. On
VAX systems, this practice conserves storage and, because the VAX architecture
supports instructions that operate on all sizes of data types, does not affect
efficiency.

On an Alpha system, byte- and word-sized data incurs more overhead than
longword- or quadword-sized data because the Alpha architecture does not
support instructions that manipulate these smaller data types. Each reference to
a byte or word, which generates a single instruction on a VAX system, generates
a sequence of instructions on an Alpha system, in which the longword containing
the byte or word is fetched, manipulated so that only the target bytes are
modified, and then stored. For frequently referenced data, these additional
instructions can significantly add to the total size of your application on an Alpha
system.

7.3.2 Effect of Data-Type Selection on Performance
Another aspect of data-type selection is data alignment. Alignment is an attribute
of a data item that refers to its placement in memory. The mixture of byte-sized,
word-sized, and larger data types, typically found in data-structure definitions
and static data areas in applications on VAX systems, can lead to data that is not
aligned on natural boundaries. (A data item is naturally aligned when its address
is a multiple of its size in bytes.)

Accessing unaligned data incurs more overhead than accessing aligned data
on both VAX and Alpha systems. However, VAX systems use microcode to
minimize the performance impact of unaligned data. On Alpha systems, there
is no hardware assistance. References to unaligned data trigger a fault, which
must be handled by the system’s PALcode. While the fault is being handled, the
instruction pipeline must be stopped. Thus, the cost of an unaligned reference in
performance is dramatically higher on Alpha systems.

The compilers on Alpha systems attempt to minimize the performance impact by
generating a special unaligned reference instruction sequence when an unaligned
reference is known at compile time. This prevents a run-time unaligned fault
from occurring. Unaligned references that appear at run time must be handled
as unaligned reference faults.

Recommendations
Given the potential impact of data-type selection on code size and performance,
you might think you should change all byte- and word-sized data declarations to
longwords to eliminate the extra instructions required for byte and word accesses
and improve alignment. However, before making sweeping changes to your data
declarations, consider the following factors:

• Frequency of access/Number of replications—If a byte- or word-sized
data item is frequently referenced, changing it to a longword eliminates the
extra instructions required at each reference and can reduce application

7–4 Checking the Portability of Application Data Declarations

Checking the Portability of Application Data Declarations
7.3 Examining Assumptions About Data-Type Selection

size significantly. However, if the byte or word is not referenced frequently
and is replicated a large number of times (for example, in a data structure
instantiated many times), the change to a longword can add up to more than
the cost of the additional instructions at each reference. The three bytes
added when changing to a longword can significantly increase virtual memory
usage if the data item is replicated thousands of times. Before changing a
data declaration, consider how it is used and how much virtual memory (and
thus physical memory) you want to spend for this performance improvement.
Such trade-offs between size and performance are a frequent consideration
during design.

• Interoperability requirements—If the data object is shared with a
translated component or a native VAX component, you may be unable to
make changes that would improve its layout because the other components
depend on the binary layout of the data. Compilers (and the VEST utility)
attempt to minimize the performance impact in this case by including the
unaligned reference instruction sequence in the code they generate.

Taking these factors into consideration, use the following guidelines when
examining data-type selections:

• For data that is frequently referenced but not frequently replicated, change
byte- and word-sized fields to longwords, especially for performance-critical
fields.

• For data that is not frequently referenced but that is frequently replicated, no
change is recommended.

• For data that is both frequently referenced and frequently replicated,
the decision must be made after carefully examining the code size versus
performance impact of the change.

• For static data, always use a longword instead of a byte. It does incur
three extra bytes of storage; however, a single reference requires three extra
instructions, each of which is a longword.

• Use the capabilities of the compilers on Alpha systems to uncover data that
is not aligned on natural boundaries. Many compilers on Alpha systems (for
example, Digital Fortran) support the /WARNING=ALIGNMENT qualifier,
which checks for data that is not aligned on natural boundaries).

• Use the capabilities of the run-time analysis tools, Program Coverage and
Analyzer (PCA) and the OpenVMS Debugger, to uncover at run time data
that is not aligned on natural boundaries. For more information, see the
Guide to Performance and Coverage Analyzer for VMS Systems and the
OpenVMS Debugger Manual.

• Take advantage of the natural alignment provided by the compilers on
Alpha systems, wherever interoperability concerns allow. On Alpha systems,
compilers align data on natural boundaries by default, wherever possible. On
VAX systems, compilers use byte alignment.

Note that the compilers on Alpha systems support qualifiers and language
pragmas that allow you to request they use the same byte alignment
they use on VAX systems. For example, the DEC C for OpenVMS Alpha
systems compiler supports the /NOMEMBER_ALIGNMENT qualifier and a
corresponding pragma that allow you to control data alignment. For more
information, see the DEC C compiler documentation.

Checking the Portability of Application Data Declarations 7–5

Checking the Portability of Application Data Declarations
7.3 Examining Assumptions About Data-Type Selection

The data structure defined in Example 7–1 shows these data-type selection
concerns. The structure definition, called mystruct, is made up of byte-, word-,
and longword-sized data, as follows:

struct{
char small;
short medium;
long large;
} mystruct ;

When compiled using VAX C, the structure is laid out in memory as shown in
Figure 7–1.

Figure 7–1 Alignment of mystruct Using VAX C

63 0

ZK−5209A−GE

31

Large Medium Small
:0

When compiled using the DEC C for OpenVMS Alpha systems compiler, the
structure is padded to achieve natural alignment, as shown in Figure 7–2. Note
that by adding a byte of padding after the first field, Small, both the following
members of the structure are aligned.

Figure 7–2 Alignment of mystruct Using DEC C for OpenVMS Alpha Systems

63 0

ZK−5210A−GE

31

Large Medium Small
:0

Note that the byte- and word-sized fields of the data structure still require
multiple instruction sequences for access. If the fields Small and Medium are
frequently referenced, and the entire structure is not frequently replicated,
consider redefining the data structure to use longword data types. If, however,
the fields are not frequently referenced or the data structure is frequently
replicated, the cost of the byte or word references is a design trade-off the
programmer must make.

7–6 Checking the Portability of Application Data Declarations

8
Examining the Condition-Handling Code in

Your Application

This chapter describes the effect of differences between the VAX architecture and
the Alpha architecture on the condition-handling code in your application.

8.1 Overview
For the most part, the condition-handling code in your application will work
correctly on an Alpha system, especially if your application uses the condition-
handling facilities provided by the high-level language in which it is written,
such as the END, ERR, and IOSTAT specifiers in FORTRAN. These language
capabilities insulate applications from architecture-specific aspects of the
underlying condition-handling facility.

However, there are certain differences between the Alpha condition-handling
facility and the VAX condition-handling facility that may require you to modify
your source code, including:

• Changes to the mechanism array format

• Changes to the condition codes returned by the system

• Changes to how other tasks related to condition handling in your application
are accomplished, such as enabling exception signaling and specifying
condition-handling routines dynamically at run time.

The following sections describe these changes in more detail and provide
guidelines to help you decide if modifying your source code is necessary.

8.2 Establishing Dynamic Condition Handlers
The OpenVMS Alpha run-time libraries (RTLs) do not contain the routine
LIB$ESTABLISH, which the OpenVMS VAX RTLs contain. Due to the nature of
the OpenVMS Alpha calling standard, setting up condition handlers is done by
compilers.

For those programs that need to dynamically establish condition handlers,
some Alpha languages give special treatment for calls to LIB$ESTABLISH and
generate the appropriate code without actually calling an RTL routine. The
following languages support LIB$ESTABLISH semantics in a compatible fashion
with the corresponding VAX language:

• DEC C and DEC C++

Although DEC C and DEC C++ for OpenVMS Alpha systems treat
LIB$ESTABLISH as a built-in function, the use of LIB$ESTABLISH is
not recommended on OpenVMS VAX or OpenVMS Alpha systems. C and C++
programmers should call VAXC$ESTABLISH instead of LIB$ESTABLISH

Examining the Condition-Handling Code in Your Application 8–1

Examining the Condition-Handling Code in Your Application
8.2 Establishing Dynamic Condition Handlers

(VAXC$ESTABLISH is a built-in function on DEC C and DEC C++ for
OpenVMS Alpha systems).

• Digital Fortran

Digital Fortran allows declarations to the LIB$ESTABLISH and
LIB$REVERT intrinsic functions, and converts them to Digital Fortran
RTL specific entry points.

• DEC Pascal

DEC Pascal provides the built-in routines, ESTABLISH and REVERT, to use
in place of LIB$ESTABLISH and LIB$REVERT. If you declare and try to use
LIB$ESTABLISH, you will get a compile-time warning.

• MACRO–32

The MACRO–32 compiler will attempt to call LIB$ESTABLISH if it is
contained in the source code.

If MACRO–32 programs establish dynamic handlers by storing a routine
address at 0(FP), they will work correctly when compiled on an OpenVMS
Alpha system. However, you cannot set the condition handler address from
within a JSB (Jump to Subroutine) routine, only from within a CALL_ENTRY
routine.

8.3 Examining Condition-Handling Routines for Dependencies
The calling sequence of user-written condition-handling routines remains the
same on Alpha systems as it is on VAX systems. Condition-handling routines
declare two arguments to access the data the system returns when it signals
an exception condition. The system uses two arrays, the signal array and the
mechanism array, to convey information that identifies which exception condition
triggered the signal and to report on the state of the processor when the exception
occurred.

The format of the signal array and the mechanism array is defined by the system
and is documented in the Bookreader version of the OpenVMS Programming
Concepts Manual. On Alpha systems, the data returned in the signal array and
its format is the same as it is on VAX systems, as shown in Figure 8–1.

8–2 Examining the Condition-Handling Code in Your Application

Examining the Condition-Handling Code in Your Application
8.3 Examining Condition-Handling Routines for Dependencies

Figure 8–1 32-Bit Signal Array on VAX and Alpha Systems

Argument Count

Condition Code

Optional Message Sequence Arguments

Program Counter (PC)

Processor Status Longword (PSL)

31 0

ZK−5208A−GE

The following table describes the arguments in the signal array:

Argument Description

Argument Count On Alpha and VAX systems, this argument contains a positive
integer that indicates the number of longwords that follow in the
array.

Condition Code On Alpha and VAX systems, this argument is a 32-bit code that
uniquely identifies a hardware or software exception condition.
The format of the condition code, which remains unchanged
on Alpha systems, is described in OpenVMS Programming
Interfaces: Calling a System Routine. Note, however, that Alpha
systems do not support every condition code returned on VAX
systems and define condition codes that cannot be returned on a
VAX system. Section 8.4 lists VAX condition codes that cannot
be returned on Alpha systems.

Optional Message
Sequence

These arguments provide additional information about the
particular exception returned and vary for each exception. The
Bookreader version of the OpenVMS Programming Concepts
Manual describes these arguments for VAX exceptions.

Program Counter (PC) The address of the next instruction to be executed when the
exception occurred, if the exception is a trap; or the address of
the instruction that caused the exception, if the exception is a
fault. On Alpha systems, this argument contains the lower 32
bits of the PC (which is 64 bits long on Alpha systems).

Processor Status
Longword (PSL)

A formatted 32-bit argument that describes the status of the
processor when the exception occurred. On Alpha systems,
this argument contains the lower 32 bits of the Alpha 64-bit
processor status (PS) quadword.

On Alpha systems, the mechanism array returns much of the same data that
it does on VAX systems; however, its format is different. The mechanism array
returned on Alpha systems preserves the contents of a larger set of integer
scratch registers as well as the floating-point scratch registers. In addition,
because these registers are 64 bits long, the mechanism array is constructed of
quadwords (64 bits) on Alpha systems, not longwords (32 bits) as it is on VAX
systems. Figure 8–2 compares the format of the mechanism array on VAX and
Alpha systems.

Examining the Condition-Handling Code in Your Application 8–3

Examining the Condition-Handling Code in Your Application
8.3 Examining Condition-Handling Routines for Dependencies

Figure 8–2 Mechanism Array on VAX and Alpha Systems

63 0

ZK−5207A−GE

Argument Count

Frame (FP)

Depth

R0

R1

31 0 31

Flags Argument Count

Frame (FP)

Reserved Depth

Handler Data Address

Signal Array Address

R0

R1

R16

Integer Registers R17 − R27

R28

F0

F1

F10

Floating Registers F11 − F29

F30

Exception Stack Frame Address

The following table describes the arguments in the mechanism array:

Argument Description

Argument Count On VAX systems, this argument contains a positive
integer that represents the number of longwords that
follow in the array. On Alpha systems, this argument
represents the number of quadwords in the mechanism
array, not counting the argument count quadword (always
43 on Alpha systems).

Flags On Alpha systems, this argument contains various flags to
communicate additional information. For example, if bit 0
is set, it indicates that the process has already performed
a floating-point operation and the floating-point registers
in the array are valid (no equivalent in the mechanism
array on VAX systems).

8–4 Examining the Condition-Handling Code in Your Application

Examining the Condition-Handling Code in Your Application
8.3 Examining Condition-Handling Routines for Dependencies

Argument Description

Frame Pointer (FP) On VAX and Alpha systems, this argument contains the
address of the call frame on the stack that established the
condition handler.

Depth On VAX and Alpha systems, this argument contains an
integer that represents the frame number of the procedure
that established the condition-handling routine, relative
to the frame that incurred the exception.

Reserved Reserved.

Handler Data Address On Alpha systems, this argument contains the address of
the handler data quadword, when a handler is present (no
equivalent in the mechanism array on VAX systems).

Exception Stack Frame
Address

On Alpha systems, this argument contains the address
of the exception stack frame (no equivalent in the
mechanism array on VAX systems).

Signal Array Address On Alpha systems, this argument contains the address of
the signal array (no equivalent in the mechanism array
on VAX systems).

Registers On VAX and Alpha systems, the mechanism array
includes the contents of scratch registers. On Alpha
systems, this includes a much larger set of registers
and also includes a corresponding set of floating-point
registers.

Recommendations
Because the 32-bit signal array is the same on Alpha systems as it is on VAX
systems, you may not need to modify the source code of your condition-handling
routine. However, the changes to the mechanism array may require changes to
your source code. In particular, check the following:

• Check the source code of your condition-handling routine for assumptions
about the size of array elements or the ordering of array elements in the
mechanism array.

• If the condition-handling routine in your application uses the depth argument
to unwind a specific number of stack frames, you may need to modify your
source code. Because of architectural changes, the depth argument returned
on an Alpha system may be different from that returned on a VAX system.
(The depth argument in the mechanism array indicates the number of frames
between the procedure that established the handler, relative to the frame that
incurred the exception.)

Applications that unwind to the establisher frame by specifying the address
of the depth argument to the SYS$UNWIND system service, or unwind to
the caller of the establisher frame by using the default depth argument of
the SYS$UNWIND system service, will continue to work correctly. Depths
specified as negative numbers still indicate exception vectors (as on VAX
systems).

Example 8–1 presents a condition-handling routine written in C.

Examining the Condition-Handling Code in Your Application 8–5

Examining the Condition-Handling Code in Your Application
8.3 Examining Condition-Handling Routines for Dependencies

Example 8–1 Condition-Handling Routine

#include <ssdef.h>
#include <chfdef.h>

.

.

.
1 int cond_handler(sigs, mechs)

struct chf$signal_array *sigs;
struct chf$mech_array *mechs;

{
int status;

2 status = LIB$MATCH_COND(sigs->chf$l_sig_name, /* returned code */
SS$_INTOVF); /* test against */

3 if(status != 0)
{

/* ...Condition matched. Perform processing. */
return SS$_CONTINUE;

}
else
{

/* ...Condition does not match. Resignal exception. */
return SS$_RESIGNAL;

}
}

The items in the following list correspond to the numbered items in Example 8–1:

1 The routine defines two arguments, sigs and mechs, to access the data
returned by the system in the signal array and the mechanism array.
The routine declares the arguments using two predefined data structures,
chf$signal_array and chf$mech_array, defined by the system in the
CHFDEF.H header file.

2 This condition-handling routine uses the LIB$MATCH_COND run-time
library routine to compare the returned condition code with the condition code
that identifies integer overflow (defined in SSDEF.H). The condition code is
referenced as a field in the system-defined signal data structure (defined in
CHFDEF.H).

3 The LIB$MATCH_COND routine returns a nonzero result when a match is
found. The condition-handling routine executes different code paths based on
this result.

8.4 Identifying Exception Conditions
Application condition-handling routines identify which exception is being
signaled by checking the condition code returned in the signal array. The
following program fragment, taken from Example 8–1, shows how a condition-
handling routine can accomplish this task by using the run-time library routine
LIB$MATCH_COND:

status = LIB$MATCH_COND(sigs->chf$l_sig_name, /* returned code */
SS$_INTOVF); /* test against */

On Alpha systems, the format of the 32-bit condition code and its location in the
signal array are the same as they are on VAX systems. However, the condition
codes your condition-handling routine expects to receive on VAX systems may
not be meaningful on Alpha systems. Because of architectural differences, some

8–6 Examining the Condition-Handling Code in Your Application

Examining the Condition-Handling Code in Your Application
8.4 Identifying Exception Conditions

exception conditions that are returned on VAX systems are not supported on
Alpha systems.

For software exceptions, Alpha systems support the same set supported by VAX
systems, as documented in the online Help Message utility or in the OpenVMS
system messages documentation. Hardware exceptions, however, are more
architecture specific, especially the arithmetic exceptions. Only a subset of the
hardware exceptions supported by VAX systems (documented in the Bookreader
version of the OpenVMS Programming Concepts Manual) are also supported on
Alpha systems. In addition, the Alpha architecture defines several additional
exceptions that are not supported by the VAX architecture.

Table 8–1 lists the VAX hardware exceptions that are not supported on Alpha
systems and the Alpha hardware exceptions that are not supported on VAX
systems. If the condition-handling routine in your application tests for any
of these VAX-specific exceptions, you may need to add the code to test for the
equivalent Alpha exceptions. (Section 8.4.1 provides more information about
testing for arithmetic exceptions on Alpha systems.)

Note

A translated VAX image run on an Alpha system can still return these
VAX exceptions.

Table 8–1 Architecture-Specific Hardware Exceptions

Exception Condition Code Comment

Exceptions Specific to Alpha Systems

SS$_HPARITH–High-performance arithmetic
exception

Replaces VAX arithmetic exceptions
(see Section 8.4.1)

SS$_ALIGN–Data alignment trap No equivalent on VAX systems

Exceptions Specific to VAX Systems

SS$_ARTRES–Reserved arithmetic trap No equivalent on Alpha systems

SS$_COMPAT–Compatibility fault No equivalent on Alpha systems

SS$_DECOVF–Decimal overflow1 Replaced by SS$_HPARITH
(see Section 8.4.1)

SS$_FLTDIV–Float divide-by-zero (trap)1 Replaced by SS$_HPARITH
(see Section 8.4.1)

SS$_FLTDIV_F–Float divide-by-zero (fault) Replaced by SS$_HPARITH
(see Section 8.4.1)

SS$_FLTOVF–Float overflow (trap)1 Replaced by SS$_HPARITH
(see Section 8.4.1)

SS$_FLTOVF_F–Float overflow (fault) Replaced by SS$_HPARITH
(see Section 8.4.1)

SS$_FLTUND–Float underflow (trap)1 Replaced by SS$_HPARITH
(see Section 8.4.1)

1May be generated by software on Alpha systems

(continued on next page)

Examining the Condition-Handling Code in Your Application 8–7

Examining the Condition-Handling Code in Your Application
8.4 Identifying Exception Conditions

Table 8–1 (Cont.) Architecture-Specific Hardware Exceptions

Exception Condition Code Comment

Exceptions Specific to VAX Systems

SS$_FLTUND_F–Float underflow (fault) Replaced by SS$_HPARITH
(see Section 8.4.1)

SS$_INTDIV–Integer divide-by-zero1 Replaced by SS$_HPARITH
(see Section 8.4.1)

SS$_INTOVF–Integer overflow1 Replaced by SS$_HPARITH
(see Section 8.4.1)

SS$_TBIT–Trace pending No equivalent on Alpha systems

SS$_OPCCUS–Opcode reserved to customer No equivalent on Alpha systems

SS$_RADMOD–Reserved addressing mode No equivalent on Alpha systems

SS$_SUBRNG–INDEX subscript range check No equivalent on Alpha systems

1May be generated by software on Alpha systems

8.4.1 Testing for Arithmetic Exceptions on Alpha Systems
On a VAX system, the architecture ensures that arithmetic exceptions are
reported synchronously; that is, a VAX arithmetic instruction that causes an
exception (such as an overflow) enters any exception handlers immediately and
no subsequent instructions are executed. The program counter (PC) reported to
the exception handler is that of the failing arithmetic instruction. This allows
application programs, for example, to resume the main sequence, with the failing
operation being emulated or replaced by some equivalent or alternate set of
operations.

On Alpha systems, arithmetic exceptions are reported asynchronously; that is,
implementations of the architecture can allow a number of instructions (including
branches and jumps) to execute beyond that which caused the exception. These
instructions may overwrite the original operands used by the failing instruction,
thus causing information integral to interpreting or rectifying the exception
to be lost. The PC reported to the exception handler is not that of the failing
instruction, but rather is that of some subsequent instruction. When the
exception is reported to an application’s exception handler, it may be impossible
for the handler to fix up the input data and restart the instruction.

Because of this fundamental difference in arithmetic exception reporting, Alpha
systems define a single condition code, SS$_HPARITH, to indicate all of the
arithmetic exceptions. Thus, if your application contains a condition-handling
routine that performs processing when an integer overflow exception occurs, on
VAX systems it expects to receive the SS$_INTOVR condition code. On Alpha
systems, this exception is indicated by the condition code SS$_HPARITH. In
this way, condition-handling routines in applications cannot mistake an Alpha
arithmetic exception with the corresponding VAX exception. This is important
because the processing performed by the applications may be architecture specific.

Figure 8–3 shows the format of the SS$_HPARITH exception signal array.

8–8 Examining the Condition-Handling Code in Your Application

Examining the Condition-Handling Code in Your Application
8.4 Identifying Exception Conditions

Figure 8–3 SS$_HPARITH Exception Signal Array

Argument Count

Condition Code (SS$_HPARITH)

Integer Register Write Mask

Floating Register Write Mask

Exception PC

Exception PS

31 0

ZK−5206A−GE

Exception Summary

This signal array contains three arguments that are specific to the SS$_HPARITH
exception: the integer register write mask, the floating register write
mask, and the exception summary arguments. The integer and floating
register mask arguments indicate the registers that were targets of instructions
that set bits in the exception summary argument. Each bit in the mask
represents a register. The exception summary argument indicates the type of
exception (or exceptions) that is being signaled by setting flags in the first seven
bits. Table 8–2 lists the meaning of each of these bits when set.

Table 8–2 Exception Summary Argument Fields

Bit Meaning

0 Software completion.

1 Invalid floating arithmetic, conversion, or comparison operation.

2 Invalid attempt to perform a floating divide operation with a divisor of zero.
Note that integer divide-by-zero is not reported.

3 Floating arithmetic or conversion operation overflowed the destination
exponent.

4 Floating arithmetic or conversion operation underflowed the destination
exponent.

5 Floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.

6 Integer arithmetic or conversion operation from floating point to integer
overflowed the destination precision.

Recommendations
The following recommendations provide guidelines for determining if a condition-
handling routine that performs processing in response to an arithmetic exception
needs modification to run on an Alpha system:

• If the condition-handling routine in your application only counts the number
of arithmetic exceptions that occurred, or aborts when an arithmetic exception
occurs, it does not matter that the exception is delivered asynchronously on
Alpha systems. These condition-handling routines require only the addition
of a test for the SS$_HPARITH condition code.

Examining the Condition-Handling Code in Your Application 8–9

Examining the Condition-Handling Code in Your Application
8.4 Identifying Exception Conditions

• If your application attempts to restart the operation that caused the
exception, you must either rewrite your code or use a compiler qualifier
that ensures the exact reporting of arithmetic exceptions. For compatibility,
most Alpha compilers provide a compiler option that allows a programmer to
specify at compile time whether or not precise exception reporting is required
(DEC C: /IEEE_MODE; DEC Fortran: /IEEE_MODE or /SYNCHRONOUS_
EXCEPTIONS).

Note, however, that specifying these instructions can affect performance
adversely. If only certain operations in an application require precise
exception reporting, you should use this option to compile only the portions of
the application that contain those operations. For more information, see the
documentation for the individual compilers.

• To guarantee precise reporting of arithmetic exceptions in translated images,
specify the /PRESERVE=FLOAT_EXCEPTIONS qualifier on the VEST
command line when translating the image. When this qualifier is used, the
VEST utility generates code that allows an exception to be reported after each
instruction that could result in a floating-point fault. This qualifier adversely
affects the performance of the translated image. For more information about
using the VEST command, see DECmigrate for OpenVMS AXP Systems
Translating Images.

Note

A translated VAX image running on an Alpha system can return VAX
exception conditions, including arithmetic exception conditions.

8.4.2 Testing for Data-Alignment Traps
On an Alpha system, a data-alignment trap is generated when an attempt is
made to load or store a longword or quadword to or from a register using an
address that does not have the natural alignment of the particular data reference,
without using an Alpha instruction that takes an unaligned address as an
operand (LDQ_U). (For more information about data alignment, see Chapter 7.)

Compilers on Alpha systems typically avoid triggering alignment faults by:

• Aligning static data on natural boundaries by default. (This default behavior
can be overridden by using a compiler qualifier.)

• Generating special inline code sequences for data that is known to be
misaligned at compile time.

Note, however, that compilers cannot align dynamically defined data. Thus,
alignment faults may be triggered.

An alignment exception is identified by the condition code SS$_ALIGN.
Figure 8–4 shows the elements of the signal array returned by the SS$_ALIGN
exception.

8–10 Examining the Condition-Handling Code in Your Application

Examining the Condition-Handling Code in Your Application
8.4 Identifying Exception Conditions

Figure 8–4 SS$_ALIGN Exception Signal Array

Argument Count

Condition Code (SS$_ALIGN)

Virtual Address

Register Number

Exception PC

Exception PS

31 0

ZK−5205A−GE

This signal array contains two arguments specific to the SS$_ALIGN exception:
the virtual address argument and the register number argument. The virtual
address argument contains the address of the unaligned data being accessed. The
register number argument identifies the target register of the operation.

Recommendation

• Use this exception to detect alignment exceptions during the development
of your application. In this phase, you have the opportunity to fix the data
alignment before it can impact performance for a user of your application.
Once this exception is reported, your application has already experienced the
performance impact.

8.5 Performing Other Tasks Associated with Condition Handling
In addition to condition-handling routines, applications that include condition
handling must perform other tasks, such as identifying their condition-handling
routine to the system. The run-time library provides a set of routines that
allows applications to perform these tasks. For example, applications can call
the run-time library routine LIB$ESTABLISH to identify (or establish) the
condition-handling routine they want executed when an exception is signaled.

Because of differences between the VAX architecture and the Alpha architecture
and between the calling standards for both architectures, the way in which many
of these tasks are accomplished is not the same. Table 8–3 lists the run-time
library condition-handling support routines available on VAX systems and
indicates which are supported on Alpha systems.

Examining the Condition-Handling Code in Your Application 8–11

Examining the Condition-Handling Code in Your Application
8.5 Performing Other Tasks Associated with Condition Handling

Table 8–3 Run-Time Library Condition-Handling Support Routines

Routine Support on Alpha Systems

Arithmetic Exception Support Routines

LIB$DEC_OVER–Enable or disable signaling of decimal
overflow

Not supported

LIB$FIXUP_FLT–Change floating-point reserved operand
to a specified value

Not supported

LIB$FLT_UNDER–Enable or disable signaling of floating-
point underflow

Not supported

LIB$INT_OVER–Enable or disable signaling of integer
overflow

Not supported

General Condition-Handling Support Routines

LIB$DECODE_FAULT–Analyze instruction context for
fault

Not supported

LIB$ESTABLISH–Establish a condition handler Not supported by RTL but
supported by compilers to
provide compatibility

LIB$MATCH_COND–Match condition value Supported

LIB$REVERT–Delete a condition handler Not supported by RTL but
supported by compilers to
provide compatibility

LIB$SIG_TO_STOP–Convert a signaled condition to a
condition that cannot be continued

Supported

LIB$SIG_TO_RET–Convert a signal to a return status Supported

LIB$SIM_TRAP–Simulate a floating-point trap Not supported

LIB$SIGNAL–Signal an exception condition Supported

LIB$STOP–Stop execution by using signaling Supported

Recommendations
The following list provides specific guidelines for applications that use run-time
library routines:

• If your application enables the signaling of exceptions by calling one of the
run-time library routines that enable exception reporting, you will need to
change your source code. These routines are not supported on Alpha systems.
Note, however, that certain types of arithmetic exceptions are always enabled
on Alpha systems. The following types of arithmetic exceptions are always
enabled:

– Floating-point invalid operation

– Floating-point division by zero

– Floating-point overflow

Those exceptions that are not enabled by default must be enabled at compile
time.

8–12 Examining the Condition-Handling Code in Your Application

Examining the Condition-Handling Code in Your Application
8.5 Performing Other Tasks Associated with Condition Handling

• If your application specifies a condition-handling routine by calling the run-
time library routine LIB$ESTABLISH, you may not have to change your
source code. Most compilers on Alpha systems, to preserve compatibility,
accept calls to the LIB$ESTABLISH routine. The compilers create a variable
on the stack to point at the ‘‘current’’ condition handler. LIB$ESTABLISH
sets this variable; LIB$REVERT clears it. The statically established handler
for these languages reads the value of this variable to determine which
routine to call. For information on specific languages, see Chapter 11.

The FORTRAN program in Example 8–2 uses the RTL routine LIB$ESTABLISH
to specify a condition-handling routine that tests for integer overflow by specifying
the condition code SS$_INTOVF. On VAX systems, you must compile the program
with the /CHECK=OVERFLOW qualifier to enable integer overflow detection.

To get this program to run on an Alpha system, you must change the condition
code from SS$_INTOVF to SS$_HPARITH. (You can determine the type of
overflow by examining the exception summary argument in the signal array.
For more information, see the compiler documentation.) As on VAX systems, you
must specify the /CHECK=OVERFLOW qualifier on the compile command line to
enable overflow detection. The call to the LIB$ESTABLISH routine does not have
to be removed because DEC Fortran accepts this routine as an intrinsic function.

Example 8–2 Sample Condition-Handling Program

C This program types a maximum value of integers
C Compile with /CHECK=OVERFLOW and the /EXTEND_SOURCE qualifiers

INTEGER*4 int4
EXTERNAL HANDLER
CALL LIB$ESTABLISH (HANDLER) 1

int4=2147483645
WRITE (6,*) ’ Beginning DO LOOP, adding 1 to ’, int4
DO I=1,10
int4=int4+1
WRITE (6,*) ’ INT*4 NUMBER IS ’, int4

END DO
WRITE (6,*) ’ The end ...’
END

C This is the condition-handling routine

INTEGER*4 FUNCTION HANDLER (SIGARGS, MECHARGS)
INTEGER*4 SIGARGS(*),MECHARGS(*)
INCLUDE ’($FORDEF)’
INCLUDE ’($SSDEF)’
INTEGER INDEX
INTEGER LIB$MATCH_COND

INDEX = LIB$MATCH_COND (SIGARGS(2), SS$_INTOVF) 2
IF (INDEX .EQ. 0) THEN

HANDLER = SS$_RESIGNAL
ELSE IF (INDEX .GT. 0) THEN

WRITE (6,*) ’Arithmetic exception detected...’
CALL LIB$STOP(SIGARGS(1))

END IF
END

Examining the Condition-Handling Code in Your Application 8–13

Examining the Condition-Handling Code in Your Application
8.5 Performing Other Tasks Associated with Condition Handling

The items in the following list correspond to the numbered items in Example 8–2:

1 The example calls LIB$ESTABLISH to specify the condition-handling routine.

2 On an Alpha system, you must change the condition code SS$_INTOVF to
SS$_HPARITH. The handler routine calls the LIB$STOP routine to terminate
execution of the program.

The following example shows how to compile, link, and run the program in
Example 8–2.

$ FORTRAN/EXTEND_SOURCE/CHECK=OVERFLOW HANDLER_EX.FOR
$ LINK HANDLER_EX
$ RUN HANDLER_EX
Beginning DO LOOP, adding 1 to 2147483645
INT*4 NUMBER IS 2147483646
INT*4 NUMBER IS 2147483647
Arithmetic exception detected...
%TRACE-F-TRACEBACK, symbolic stack dump follows
Image Name Module Name Routine Name Line Number rel PC abs PC
INT_OVR_HAND INT_OVR_HANDLER HANDLER 1637 00000238 00020238
DEC$FORRTL 0 000651E4 001991E4
----- above condition handler called with exception 00000504:
%SYSTEM-F-HPARITH, high performance arithmetic trap, Imask=00000001, Fmask=00000
000, summary=40, PC=000200E0, PS=0000001B
-SYSTEM-F-INTOVF, arithmetic trap, integer overflow at PC=000200E0, PS=0000001B
----- end of exception message

0 84FE9FFC 84FE9FFC
INT_OVR_HAND INT_OVR_HANDLER INT_OVR_HANDLER 15 000000E0 000200E0

0 84EFD918 84EFD918
0 7FF23EE0 7FF23EE0

8–14 Examining the Condition-Handling Code in Your Application

9
Translating Applications

This chapter describes resources used to translate a VAX application to run on an
Alpha system.

9.1 DECmigrate for OpenVMS Alpha
DECmigrate for OpenVMS Alpha is used to translate images for which the
source code is not available. The VAX Environment Software Translator
(VEST) component of DECmigrate translates the VAX binary image file into a
native Alpha image. The translated image runs under the Translated Image
Environment (TIE) on an Alpha computer. (TIE is a shareable image that is
included with the OpenVMS Alpha operating system.) Translation does not
involve running an OpenVMS VAX image under emulation or interpretation (with
certain limited exceptions). Instead, the new OpenVMS Alpha image contains
Alpha instructions that perform operations identical to those performed by the
instructions in the original OpenVMS VAX image.

A translated image generally runs as fast on an Alpha computer as the original
image runs on a VAX computer. However, a translated image does not benefit
from the optimizing compilers that take full advantage of the Alpha architecture.
Therefore, a translated image typically runs about 25 to 40 percent as fast as a
native OpenVMS Alpha image. The primary causes for this reduced performance
are unaligned data and the extensive use of complex VAX instructions.

DECmigrate translation support is limited to the language features, system
services, and run-time library entry points that existed on OpenVMS VAX Version
5.5-2.

A second function of DECmigrate is to analyze images to identify specific
incompatibilities for an Alpha computer. Depending on the type of incompatibility,
you can choose to specify a compiler qualifier that will compensate for the problem
or make changes to the code.

For more information on image translation and VEST, see DECmigrate for
OpenVMS AXP Systems Translating Images.

Translating Applications 9–1

Translating Applications
9.2 DECmigrate: Translated Image Support

9.2 DECmigrate: Translated Image Support
DECmigrate Version 1.1A runs on Alpha systems running OpenVMS Version
6.1 or later. The images it translates require this version or a later version to
execute. Translated images are generally forward compatible but not backward
compatible; that is, images translated with DECmigrate Version 1.1A can run
only on Alpha systems running OpenVMS Version 6.1 or later while images
translated with DECmigrate Version 1.0 can run on OpenVMS Alpha Version 1.0
and later. Table 9–1 correlates the versions of OpenVMS Alpha systems with the
different versions of DECmigrate that support them.

Table 9–1 Support for Translated Images on OpenVMS Alpha Versions

DECmigrate Version
Used to Translate
Images OpenVMS Alpha Support for Translated Images

Version 1.0 Version 1.5 Version 6.1 and later

Version 1.0 Yes Yes Yes

Version 1.1 No Yes Yes

Version 1.1A No No Yes

9.3 Translated Image Environment (TIE)
Image translation is one means of migrating all or part of a VAX application
to OpenVMS Alpha. The DECmigrate for OpenVMS AXP VAX Environment
Software Translator utility (VEST) creates a translated image by converting a
VAX executable or shareable image into a functionally equivalent Alpha image.
VEST is a component of the optional layered product DECmigrate for OpenVMS
AXP.

When a translated image runs on OpenVMS Alpha, the Translated Image
Environment (TIE) provides the VAX environment required for the image to
execute properly. The TIE consists of the shareable images TIE$SHARE and
TIE$EMULAT_TV, which perform VAX complex instructions. For information on
the role of image translation in a migration strategy, see the manual DECmigrate
for OpenVMS AXP Systems Translating Images.

The following subsections discuss these topics:

• Interoperability between native and translated images

• Running translated images

• TIE statistics and feedback

Interoperability Between Native and Translated Images
The TIE works together with other components of OpenVMS Alpha to enable
native and translated images to call one another. If you are developing
applications or run-time libraries that rely on interoperability, you need to
follow certain procedures when compiling, linking, or translating. See the first
restriction described in Section 9.3.1.4.

9–2 Translating Applications

Translating Applications
9.3 Translated Image Environment (TIE)

Running Translated Images
Use the DCL RUN command to run a translated image. For example:

$ RUN FOO_TV.EXE

Note that the translated image does not run correctly unless OpenVMS Alpha
includes the appropriate translated shareable images and run-time libraries.
When you translate an image, VEST requires the image information files (IIFs—
file type .IIF) corresponding to whichever images and libraries the input image
refers to. These .IIF files enable VEST to create a translated image that correctly
refers to the translated versions of the shareable images and libraries. An image
information file used at image translation must exactly correspond to the version
of the translated shareable image or run-time library available on OpenVMS
Alpha.

OpenVMS Alpha includes a set of translated run-time libraries and a matching
set of image information files, which are listed in Section 9.4. Check these lists
to determine if they include the libraries or shareable images referred to by
images you want to translate and run. If OpenVMS Alpha does not include the
required shared images or libraries, refer to DECmigrate for OpenVMS AXP
Systems Translating Images. This manual describes how to create and use image
information files.

When a translated library has been replaced by a native version of the library,
you need to define accordingly any logical names that point to it—that is, you
need to redefine image_TV to image.

TIE Statistics and Feedback
In addition to the TIE’s run-time support function, TIE statistics and feedback
can help to improve translated image performance:

• The TIE can display statistics about the run-time execution of translated
images. These statistics describe the image’s use of TIE resources and the
interactions between images.

• The TIE can record information about VAX entry points discovered while
interpreting VAX code. When you retranslate the image, VEST uses the
information to find and translate more VAX code.

DECmigrate for OpenVMS AXP Systems Translating Images describes these
features in detail and explains how to define the logical names that enable and
disable their use.

9.3.1 Problems and Restrictions
This section describes known problems and restrictions with the TIE.

9.3.1.1 Condition Handler Restriction
There is a permanent restriction on the type of condition handler that can be
established for both native and translated images. A native routine cannot
establish a translated condition handler, nor can a translated routine establish a
native condition handler. If a native or translated image violates this restriction,
the run-time results are unpredictable.

Translating Applications 9–3

Translating Applications
9.3 Translated Image Environment (TIE)

9.3.1.2 Exception Handler Restrictions
The following exception handler restrictions are permanent:

• Translated images with exception handlers that depend on receiving the
correct program status longword (PSL) might not function properly. When
exceptions are reported, the Alpha program status (PS) is reported in the
signal array instead because there is no VAX PSL.

• Translated images with exception handlers that depend on modifying the
PSL in the signal array do not function properly. The modified PSL is not
propagated back to the faulting code.

9.3.1.3 Floating-Point Restrictions
The following floating-point restrictions are permanent:

• In some cases, floating-point instructions operating on the same data generate
a trap on an Alpha system but not on a VAX system. Specifically, VAX
floating-point instructions on OpenVMS Alpha generate traps for the ‘‘dirty
zeros’’ that VAX hardware can handle correctly. ‘‘Dirty zeros’’ are floating-
point values that are alternate encodings for zero. To retain compatibility
with translated code that performs operations using dirty zeros, the TIE
includes a condition handler that corrects the dirty zeros and retries
the floating-point operation. However, the handler succeeds only if the
qualifier /PRESERVE=FLOAT_EXCEPTIONS was used when the image was
translated.

Images that were not translated with /PRESERVE=FLOAT_EXCEPTIONS
and that perform an operation on a dirty zero incur an HPARITH exception
with a summary status that has bit 1 set. If your translated application
incurs one of these exceptions, retranslate with /PRESERVE=FLOAT_
EXCEPTIONS. VAX dirty zeros commonly result from not initializing floating
data to 0. In this case, changes to source code may be necessary to port to
OpenVMS Alpha an application that uses dirty zeros.

• Alpha D53 floating point (D_floating point as a 53-bit fraction instead of a
56-bit fraction) is VAX D_floating converted to G_floating representation.
This conversion leads to the following problem. Consider the VAX instruction
sequence:

MOVD (SP),R2
MOVD R2,-(SP)

VEST translates these VAX instructions into Alpha code like the following:

LDD F2,0(R14) ! Pick up D float
CVTDG F2,F2 ! Convert to Canonical G Form with rounding
CVTGD F2,F17 ! Convert back to D Form for storing
STD F17,-8(R14) ! Store the result

At run time, the VEST-generated code uses rounding to obtain the most
accurate G_floating value when converting the D56 floating point to G
canonical form. In some cases, the conversion to G canonical form may round
up the D_floating value to create an exponent that cannot be represented in
D_floating. When this happens, the CVTGD operation incurs an HPARITH
trap with floating overflow as the summary reason.

If a translated image incurs this problem at run time, it needs to be
retranslated with the VEST qualifier /FLOAT=D56_FLOAT to execute
properly.

9–4 Translating Applications

Translating Applications
9.3 Translated Image Environment (TIE)

9.3.1.4 Interoperability Restrictions
Note the following interoperability restrictions:

• A native routine that either calls or is called by a translated image must be
compiled with the /TIE qualifier and be linked with the /NONATIVE_ONLY
qualifier. Checking for interoperability between native and translated images
occurs at run time. If the /TIE and /NONATIVE_ONLY qualifiers are not
used to compile and link the native routine, an error occurs at run time when
the native routine and a translated image attempt to interoperate. If such an
error occurs, recompile and relink the native routine appropriately.

• An access violation can occur at run time if a native routine that was not
compiled with the /TIE qualifier makes an indirect call to a translated
routine. The indirect call is made through a variable that contains the
translated routine’s address. When this happens, there is no autojacketing
code in place to assist the native-to-translated call. The native code attempts
to use the routine address as a native procedure descriptor. The code address
of a native procedure is at offset PDSC$L_ENTRY, whose value is 8, from the
base of the procedure descriptor. Because the translated routine address is
treated as a procedure descriptor, the value at offset 8 from that address is
used as the code to call. This usually results in an access violation.

If you are encountering this problem, use a debugger to check the following:

• Check that R27 points into a translated image.

• Check that bits <31:2> of 8(R27) equal bits <31:2> of the access violation
address. (All bits are not used because Alpha instructions are longword
aligned.)

• Check that R26 points into a native image.

• Check that -4(R26) is a JSR R26,(26) instruction.
If all these checks prove to be true, recompile the native routine with the /TIE
qualifier to enable autojacketing at run time.

9.3.1.5 VAX C: Translated Program Restrictions
The following translated VAX C program restrictions are permanent:

• If a program uses the VAX C RTL routine brk() to release dynamic memory
(that is, a break address lower than the current break address is requested),
the next attempt by TIE to use a complex instruction routine may result
in a fatal memory access violation. This may happen because the complex
instruction routines are in a separate image, TIE$EMULAT_TV.EXE, which
is dynamically activated by LIB$FIND_IMAGE_SYMBOL on the first use
of one of the routines. Depending on when this occurs and the address
passed to the brk() call that releases memory, the memory into which
TIE$EMULAT_TV.EXE is loaded may also be released.

To avoid this problem, never use brk() to release memory, or be sure to
execute a complex VAX instruction before getting the break address that is
later used to release memory. Using brk() to allocate memory is fine.

• A translated VAX C program that uses vfork() and any executive function
may hang at run time. If the child process of the VAX C program aborts
erroneously, it may hang waiting for a mailbox I/O to be completed. One
workaround is to prevent the child process from aborting.

Translating Applications 9–5

Translating Applications
9.4 Translated Image Support

9.4 Translated Image Support
Translation support is provided to remove impediments for users moving to Alpha
due to:

• Lack of full language support initially

• Unavailability of source code for recompilation

• Difficulty of recompiling code that depended heavily on certain features of the
VAX architecture

For languages whose VAX versions are undergoing active development, native
Alpha versions are now available. The TIE is being maintained to support those
language features that were available as of the release of OpenVMS VAX Version
5.5-2.

Similarly, translation is supported for images whose use of system services and
run-time library entry points is restricted to those that existed on OpenVMS VAX
Version 5.5-2.

In cases where more recent VAX layered products have been installed, it may be
necessary to take minor additional steps if application needs require rebuilding
an image suitable for translation. For instance, with DECwindows Motif Version
1.2 or Version 1.2–3 for OpenVMS VAX, images must be built with the OSF Motif
Version 1.1.3 library or the DECwindows XUI library rather than with the OSF
Motif Version 1.2.2 or Version 1.2.3 library in order to be suitable for translation.

Similarly, for those using recent versions of DEC Fortran for VAX, an additional
qualifier is required to compile Fortran programs that are suitable for translation.

For further information, see the release notes for particular VAX products.

As a safety measure for situations where future rebuilding and retranslation of
OpenVMS VAX images is likely, it may be preferable to save copies of the relevant
OpenVMS VAX Version 5.5-2 shareable images in a separate VAX directory and
link new versions of VAX applications against those images. Using that technique
the resulting images will be compatible with newer OpenVMS VAX shareable
images (picking up any OpenVMS enhancements of existing features), and will
also be properly built for translation to OpenVMS Alpha (by not requiring newer
versions of shareable images).

The following sections list the translated images, image information files, and
other related files that are provided with OpenVMS Alpha.

OpenVMS Alpha contains no translated message images. All message images
have been made native.

Translated Images in SYS$LIBRARY:

BASRTL2_D53_TV.EXE
BASRTL2_D56_TV.EXE
BASRTL_D56_TV.EXE
BASRTL_TV_SUPPORT.EXE
BLAS1RTL_D53_TV.EXE
BLAS1RTL_D56_TV.EXE
COBRTL_D56_TV.EXE
DBLRTL_D56_TV.EXE
EDTSHR_TV.EXE
FORRTL2_TV.EXE
FORRTL_D56_TV.EXE

9–6 Translating Applications

Translating Applications
9.4 Translated Image Support

LIBRTL2_D56_TV.EXE
LIBRTL_D56_TV.EXE
MTHRTL_D53_TV.EXE
MTHRTL_D56_TV.EXE
PASRTL_D56_TV.EXE
PLIRTL_D56_TV.EXE
RPGRTL_TV.EXE
SCNRTL_TV.EXE
TECOSHR_TV.EXE
TIE$EMULAT_TV.EXE
UVMTHRTL_D53_TV.EXE
UVMTHRTL_D56_TV.EXE
VAXCRTLG_D56_TV.EXE
VAXCRTL_D56_TV.EXE
VMSRTL_TV.EXE

Translated Images in SYS$SYSTEM:

DBLMSGMGR_TV.EXE
EDF_TV.EXE
EDT_TV.EXE
MONITOR_TV.EXE
TECO32_TV.EXE

Translated RTL Images in IMAGELIB:

BASRTL2_D53_TV.EXE
BASRTL_D56_TV.EXE
BLAS1RTL_D53_TV.EXE
COBRTL_D56_TV.EXE
DBLRTL_D56_TV.EXE
FORRTL2_TV.EXE
FORRTL_D56_TV.EXE
LIBRTL_D56_TV.EXE
PLIRTL_D56_TV.EXE
RPGRTL_TV.EXE
SCNRTL_TV.EXE

Note that most of the translated RTLs are provided in D56 format rather
than D53 format; some are provided in both formats. Where both formats are
provided, the default format is D53. See Section 9.5 for more information about
the translated run-time libraries.

Image Information Files in SYS$LIBRARY:

ACLEDTSHR.IIF
BASRTL2.IIF
BASRTL.IIF
BLAS1RTL.IIF
COBRTL.IIF
CONVSHR.IIF
CRFSHR.IIF
DBLRTL.IIF
DCXSHR.IIF
DISMNTSHR.IIF
DTKSHR.IIF
EDTSHR.IIF
ENCRYPSHR.IIF

Translating Applications 9–7

Translating Applications
9.4 Translated Image Support

EPC$SHR.IIF
FDLSHR.IIF
FORRTL.IIF
FORRTL2.IIF
INIT$SHR.IIF
LBRSHR.IIF
LIBRTL.IIF
LIBRTL2.IIF
MAILSHR.IIF
MOUNTSHR.IIF
MTHRTL.IIF
NCSSHR.IIF
P1_SPACE.IIF
PASRTL.IIF
PLIRTL.IIF
PPLRTL.IIF
PTD$SERVICES_SHR.IIF
RPGRTL.IIF
S0_SPACE.IIF
SCNRTL.IIF
SCRSHR.IIF
SECURESHR.IIF
SMBSRVSHR.IIF
SMGSHR.IIF
SORTSHR.IIF
SPISHR.IIF
TECOSHR.IIF
TPUSHR.IIF
UVMTHRTL.IIF
VAXCRTL.IIF
VAXCRTLG.IIF
VMSRTL.IIF

System Logical Names Definitions
The following system logical names are defined to facilitate the translated
environment:

ACLEDTSHR_TV = ACLEDTSHR
CDDSHR_TV = CDDSHR
CONVSHR_TV = CONVSHR
CRFSHR_TV = CRFSHR
DCXSHR_TV = DCXSHR
DISMNTSHR_TV = DISMNTSHR
DTKSHR_TV = DTKSHR
ENCRYPSHR_TV = ENCRYPSHR
EPC$SHR_TV = EPC_SHR
FDLSHR_TV = FDLSHR
INIT$SHR_TV = INIT$SHR
LBRSHR_TV = LBRSHR
MAILSHR_TV = MAILSHR
MOUNTSHR_TV = MOUNTSHR
NCSSHR_TV = NCSSHR
PPLRTL_TV = PPLRTL
PTD$SERVICES_SHR_TV = PTD$SERVICES_SHR
SCRSHR_TV = SCRSHR

9–8 Translating Applications

Translating Applications
9.4 Translated Image Support

SECURESHR_TV = SECURESHR_JACKET
SMBSRVSHR_TV = SMBSRVSHR
SMGSHR_TV = SMGSHR
SORTSHR_TV = SORTSHR
SPISHR_TV = SPISHR
TPUSHR_TV = TPUSHR

BASRTL_TV = BASRTL_D56_TV
BASRTL2_TV = BASRTL2_D53_TV
BLAS1RTL_TV = BLAS1RTL_D53_TV
COBRTL_TV = COBRTL_D56_TV
DBLRTL_TV = DBLRTL_D56_TV
FORRTL_TV = FORRTL_D56_TV
LIBRTL_TV = LIBRTL_D56_TV
LIBRTL2_TV = LIBRTL2_D56_TV
MTHRTL_TV = MTHRTL_D53_TV
PASRTL_TV = PASRTL_D56_TV
PLIRTL_TV = PLIRTL_D56_TV
VAXCRTL_TV = VAXCRTL_D56_TV
VAXCRTLG_TV = VAXCRTLG_D56_TV

DBLMSGMGR = DBLMSGMGR_TV
EDTSHR_TV = EDTSHR
TECO32 = TECO32_TV
TECOSHR = TECOSHR_TV
VMSRTL = VMSRTL_TV

DBLRTLMSG = DBL$MSG
PASMSG = PAS$MSG
PLIMSG = PLI$MSG
RPGMSG = RPG$MSG
SCNMSG = SCN$MSG
VAXCMSG = DECC$MSG

9.5 Translated Run-Time Libraries
As part of the OpenVMS Alpha kit, Digital provides a set of translated run-time
libraries.

Some of the routines in the VAX run-time libraries use the VAX D_floating data
type for double-precision arithmetic.

In the translated versions of these libraries, the Alpha D56 D_floating data
type is used by default (where the VAX run-time library used D_floating). This
provides the full precision of the 56-bit mantissa in VAX D_floating, yielding
consistency of results at a cost in execution-time performance.

For a handful of performance-critical math-related libraries, Digital also supplies
versions of the translated run-time libraries that use the Alpha D53 D_floating
data type for double-precision operations. For these libraries, the D53 forms
are the default. The D53 forms provide better performance by sacrificing the
low-order three bits of precision in the mantissa.

The following translated libraries are provided in D56 form only:

• BASRTL

Translating Applications 9–9

Translating Applications
9.5 Translated Run-Time Libraries

• COBRTL

• DBLRTL

• FORRTL

• LIBRTL

• LIBRTL2

• PASRTL

• PLIRTL

• VAXCRTL

• VAXCRTLG

The following translated libraries are provided in both D56 and D53 (the default)
form:

• BASRTL2

• BLAS1RTL

• MTHRTL

• UVMTHRTL

Accessing the D56 Form of the Run-Time Libraries
When you use the run-time libraries, the following happens by default:

• For BASRTL2, translated BASIC images that use MAT functions on double-
precision data invoke BASIC run-time library routines that use the D53 data
type.

• For BLAS1RTL, translated images that invoke BLAS$ functions with double-
precision floating-point arguments get routines that use the D53 data type.

• For MTHRTL, translated images that invoke MTH$ double-precision floating-
point functions get routines that use the D53 data type.

• For all others, the Alpha D56 floating-point data type is used by default.

Some users might need the full precision of D56 floating point. However, using
the D56 routines imposes a very significant performance penalty. To access
the D56 routines, redefine the run-time library’s logical name to the D56 form,
as shown in Table 9–2. The logical name can be defined on a per-process or
systemwide basis, as appropriate for your site.

Table 9–2 Run-Time Library Logical Names

Library Logical Name D56 Name

BASRTL2 BASRTL2_TV BASRTL2_D56_TV

BLAS1RTL BLAS1RTL_TV BLAS1RTL_D56_TV

MTHRTL MTHRTL_TV MTHRTL_D56_TV

9–10 Translating Applications

Translating Applications
9.5 Translated Run-Time Libraries

9.5.1 CRF$FREE_VM and CRF$GET_VM: Translated Callers
Translated callers to CRF$FREE_VM and CRF$GET_VM will not work properly.
The translated callers are expecting VAX JSB semantics, but instead, Alpha JSB
semantics are present in the native code (naturally).

To work around this problem, the translated callers need to use CALL instead of
JSB.

9.6 Translated VAX C Run-Time Library
The following sections contain release notes pertaining to the translated VAX C
run-time library.

9.6.1 Problems and Restrictions
This section describes known problems and restrictions with the OpenVMS Alpha
translated VAX C Run-Time Library (VAX C RTL).

9.6.1.1 Functional Restrictions
The translated VAX C RTL is a translated version of the OpenVMS VAX Version
5.4 VAX C RTL. All problems and restrictions present in that release of the VAX
C RTL exist unchanged in the translated VAX C RTL. The following items are
known restrictions in the functionality of the translated VAX C RTL:

• The fmod() function does not produce correct results for D_FLOAT.

• D_FLOAT programs that use the SIGFPE signal may not catch all floating-
point exceptions. Translating the program using /FLOAT=D56_FLOAT fixes
most SIGFPE problems.

• The sbrk() function returns an address that does not match the value
returned from SYS$EXPREG.

• D_FLOAT programs that use the HUGE_VAL constant or call the math
functions (which may return HUGE_VAL) may fail unless they are translated
with /FLOAT=D56_FLOAT.

• Under certain circumstances, some math functions (either D_FLOAT or G_
FLOAT) may generate a high-performance arithmetic trap exception instead
of setting errno to ERANGE or EDOM.

9.6.1.2 Interoperability Restrictions
The following restrictions apply when the translated VAX C RTL interoperates
with the native DEC C RTL:

• The longjmp function cannot be used to transfer control from:

A native routine to a translated routine

A translated routine to a native routine

• Memory allocated by malloc, calloc, and so forth must be freed in the same
context. That is, if a translated routine allocates memory, the free call
must occur in a translated routine. Allocating memory in a translated
routine and freeing it in a native routine results in corruption of the heap.
Likewise, allocating memory in a native routine and freeing that memory in a
translated routine also corrupts the heap.

• Signal handlers established by the signal (and related) functions in translated
routines are not invoked when the signal is raised. Only native signal
handlers can be used to catch UNIX style signals.

Translating Applications 9–11

Translating Applications
9.6 Translated VAX C Run-Time Library

• The signals SIGEMT, SIGTRAP, SIGIOT, and SIGFPE cannot be caught if
those signals are raised by a translated image.

• The exec function can be used only to invoke similar images. That is, an
exec function invoked in a native image cannot execute a translated image.
Likewise, an exec function invoked in a translated image cannot execute a
native image.

• An access violation occurs if vfork is executed in a native image to establish
the context for a later system call and the system call is then invoked in a
translated image.

• File pointers and file descriptors cannot be shared between native and
translated images. An access violation or file corruption is likely to occur
if a file is opened in a translated image and a native image attempts to read
or write using that file pointer. The same results occur if a file is opened in a
native image and a translated image attempts to read or write using that file
pointer.

Programs that perform any of these restricted actions may receive access
violations or other exceptions. No testing is performed to detect and prevent
restricted operations from being performed.

9.7 Translated VAX COBOL Programs
The OpenVMS Alpha operating system supports the execution of translated
VAX COBOL programs compiled with the VAX COBOL Version 5.0 compiler (or
earlier compilers).

9.7.1 Problems and Restrictions
Programs compiled with the VAX COBOL Version 5.1 compiler are not supported
by the OpenVMS Alpha operating system.

9–12 Translating Applications

10
Ensuring Interoperability Between Native and

Translated Images

This chapter describes how to create native Alpha images that can make calls to
and be called by translated VAX images.

10.1 Overview
DECmigrate for OpenVMS AXP Systems Translating Images describes how to use
the VAX Environment Software Translator (VEST) to convert a VAX executable
or shareable image into a functionally equivalent Alpha image. (DECmigrate for
OpenVMS Alpha is an optional layered product that supports the migration of a
VAX application to an Alpha system. VEST is a component of the DECmigrate
utility.)

Using VEST, you can translate all the components of an application, such as the
main executable image and all the shareable images that it calls. However, you
can also create an application that is a mix of translated and native components.
For example, you may want to create a native version of a shareable image that
is called by your application to take advantage of native performance. You may
also choose to use a mixture of native and translated components to allow you to
create a native version of your application in stages.

You can use translated VAX images as you would a native Alpha image. However,
to create native images that can interoperate with translated images requires
some additional considerations, described in the following sections.

10.1.1 Compiling Native Images That Can Interoperate with Translated Images
To create a native image that can call or be called by a translated image, you
must specify the /TIE qualifier when compiling the source files of the native Alpha
image. Any source module that contains a procedure that is made available to
external callers must be compiled with the /TIE qualifier. When you specify the
/TIE qualifier, the compilers create procedure signature blocks (PSBs) that are
needed by the Translated Image Environment (TIE) at execution time in order to
properly jacket calls between translated and native images. The TIE is part of
the operating system.

You must also specify the /TIE qualifier when compiling a source module
that contains a procedure that performs a callback (or calls out to a specified
procedure) that may be in a translated image. In this case, the /TIE qualifier
causes the compilers to generate a call to a special run-time library routine,
OTS$CALL_PROC, that ensures that the outbound call to a translated procedure
is handled properly.

Ensuring Interoperability Between Native and Translated Images 10–1

Ensuring Interoperability Between Native and Translated Images
10.1 Overview

In addition to the /TIE qualifier, you may need to specify other compiler
qualifiers to ensure correct interoperation between a translated image and
a native shareable image. For example, if the translated callers of a native
shareable image use the VAX D_floating format for double-precision floating-point
operations (the default for VAX languages), you must specify the /FLOAT=D_
FLOAT qualifier because the default format for double-precision data on Alpha
systems is not VAX D_floating. Consult compiler documentation to determine
the exact qualifier syntax to specify VAX D_floating format. Note that, because
the VAX D_floating data type is not supported by the Alpha architecture, its use
adversely affects performance.

Depending on application-specific semantics, you may also need to specify other
compiler qualifiers to force byte granularity, data alignment, and AST atomicity.

10.1.2 Linking Native Images That Can Interoperate with Translated Images
To create a native Alpha image that can call a translated VAX image, you must
explicitly link the native object modules with the /NONATIVE_ONLY qualifier.
(Note that /NATIVE_ONLY is the default used by the linker for this qualifier.)
This qualifier causes the linker to include in the image the PSB information
created by the compilers.

Because the /NONATIVE_ONLY qualifier affects only outgoing calls from native
images to translated images, you do not need to specify it when creating a native
Alpha image that will be called by a translated VAX image. The linker’s default
behavior (/NATIVE_ONLY qualifier) can prevent native images from calling
translated images but not from being called by translated images.

Note that the layout of the symbol vector in the native version of the shareable
image must match the layout of the symbol vector in the translated shareable
image it replaces. For more information about replacing translated shareable
images with native shareable images, see Section 10.3.

10.2 Creating a Native Image That Can Call a Translated Image
To create a native Alpha image that can make calls to a translated VAX shareable
image, perform the following steps:

1. Translate the VAX shareable image. See DECmigrate for OpenVMS AXP
Systems Translating Images for information about using VEST to translate
VAX images.

2. Create a native Alpha version of the main program. Compile the source
modules using a compiler that produces native Alpha code, specifying the
/TIE qualifier on the command line.

3. Link the native object module with the translated VAX shareable
image. Specify the translated image in a linker options file as you would any
other shareable image.

To illustrate interoperability, consider the programs in Example 10–1 and
Example 10–2. Example 10–1 calls the routine mysub that is defined in
Example 10–2.

10–2 Ensuring Interoperability Between Native and Translated Images

Ensuring Interoperability Between Native and Translated Images
10.2 Creating a Native Image That Can Call a Translated Image

Example 10–1 Source Code for Main Program (MYMAIN.C)

#include <stdio.h>

int mysub();

main()
{

int num1, num2, result;

num1 = 5;
num2 = 6;

result = mysub(num1, num2);
printf("Result is: %d\n", result);

}

Example 10–2 Source Code for Shareable Image (MYMATH.C)

int myadd(value_1, value_2)
int value_1;
int value_2;
{

int result;

result = value_1 + value_2;
return(result);

}

int mysub(value_1,value_2)
int value_1;
int value_2;
{
int result;

result = value_1 - value_2;
return(result);
}

int mydiv(value_1, value_2)
int value_1;
int value_2;

{
int result;

result = value_1 / value_2;
return(result);

}

int mymul(value_1, value_2)
int value_1;
int value_2;

{
int result;

result = value_1 * value_2;
return(result);

}

To create VAX images from these examples, compile the source modules using a
C compiler on a VAX system. To implement Example 10–2 as a shareable image,
link the module, specifying the /SHAREABLE qualifier on the LINK command
line and declaring the universal symbols in the shareable image by using the
UNIVERSAL= option or by creating a transfer vector file. (See the Bookreader
version of the OpenVMS Linker Utility Manual for information about how to

Ensuring Interoperability Between Native and Translated Images 10–3

Ensuring Interoperability Between Native and Translated Images
10.2 Creating a Native Image That Can Call a Translated Image

create a shareable image.) The following example shows a LINK command that
creates the shareable image MYMATH.EXE:

$ LINK/SHAREABLE MYMATH.OBJ,SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1000
UNIVERSAL=myadd
UNIVERSAL=mysub
UNIVERSAL=mydiv
UNIVERSAL=mymul

Ctrl/Z

You can then link the main program with the shareable image to create the
executable image MYMAIN.EXE, as in the following example:

$ LINK MYMAIN.OBJ,SYS$INPUT/OPT
MYMATH.EXE/SHAREABLE

Ctrl/Z

Note that you may need to specify the /BPAGE qualifier on the LINK command
line to force the linker to create image sections using a larger page size than the
default page size on VAX systems (512 bytes). Otherwise, when VEST translates
your VAX image, VEST may collect a number of these 512-byte image sections
on a single Alpha page. When VEST puts neighboring image sections with
conflicting protection attributes on the same Alpha page, it assigns the most
permissive protection to all the image sections and issues a warning. (See the
Bookreader version of the OpenVMS Linker Utility Manual for more information
about using the /BPAGE qualifier.)

After creating the VAX images, translate them using VEST. Note that you must
translate the shareable image first. (For more information about using the VEST
command, see DECmigrate for OpenVMS AXP Systems Translating Images.) The
following example creates the translated files named MYMATH_TV.EXE and
MYMAIN_TV.EXE (VEST appends the characters ‘‘_TV’’ to the end of the image’s
file name):

$ VEST MYMATH.EXE
$ VEST MYMAIN.EXE

To replace the translated main executable image MYMAIN_TV.EXE with a
native version, compile the source module in Example 10–1 using a compiler
that generates Alpha code, specifying the /TIE qualifier on the compile command
line. Then link the native object module MYMAIN.OBJ to create a native Alpha
image, specifying the translated shareable image in the linker options file as you
would any other shareable image, as in the following example:

$ LINK/NONATIVE_ONLY MYMAIN.OBJ,SYS$INPUT/OPT
MYMATH_TV.EXE/SHAREABLE

Ctrl/Z

You can run the native main image as you would any other Alpha image. Define
the name of the translated shareable image, MYMATH_TV, as a logical name
that points to the location of the translated shareable image (unless it is located
in the directory pointed to by the SYS$SHARE logical name) and execute the
RUN command, as in the following example:

$ DEFINE MYMATH_TV YOUR$DISK:[YOUR_DIR]MYMATH_TV.EXE
$ RUN MYMAIN

10–4 Ensuring Interoperability Between Native and Translated Images

Ensuring Interoperability Between Native and Translated Images
10.3 Creating a Native Image That Can Be Called by a Translated Image

10.3 Creating a Native Image That Can Be Called by a Translated
Image

To create a native Alpha shareable image that can be called by a translated VAX
image, perform the following steps:

1. Translate the VAX shareable image. Even though you are replacing
the VAX version of the shareable image with a native version, you must
still translate the shareable image to create a VEST interface information
file (IIF). VEST needs the IIF associated with the shareable image when
it translates an image that calls the shareable image. See DECmigrate for
OpenVMS AXP Systems Translating Images for information about IIF files
and about using VEST to translate VAX images. (Note that you may have to
repeat this step to control the layout of the symbol vector in the translated
shareable image. See Section 10.3.1 for more information.)

2. Translate the VAX executable image that calls the shareable image.

3. Create a native Alpha version of the shareable image. Compile the
source modules using a compiler that generates Alpha code, specifying the
/TIE qualifier on the command line.

4. Link the object module to create a native Alpha shareable image.
Use the SYMBOL_VECTOR= option to declare the universal symbols in the
shareable image. For compatibility, declare the universal symbols in the
SYMBOL_VECTOR= option in the same order as they were declared in the
VAX shareable image.

Note

When creating a native Alpha shareable image to replace a translated
VAX shareable image, always leave the first entry of a symbol vector
empty by specifying the SPARE keyword as the first entry in the
SYMBOL_VECTOR= option. VEST reserves the first symbol vector entry
in the translated VAX image for its own use.

The following example creates a native shareable image from the source
module in Example 10–2:

$ LINK/SHAREABLE MYMATH.OBJ,SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1000 1
SYMBOL_VECTOR=(SPARE,-

myadd=procedure,- 2
mysub=procedure,-
mydiv=procedure,-
mymul=procedure)

Ctrl/Z

1 Specifies the major and minor identification numbers of the shareable
image. The values of these identification numbers must match the values
specified in the VAX shareable image. (For more information about using
the GSMATCH= option, see the Bookreader version of the OpenVMS
Linker Utility Manual.)

2 Specifies the universal symbols in the shareable image.

Ensuring Interoperability Between Native and Translated Images 10–5

Ensuring Interoperability Between Native and Translated Images
10.3 Creating a Native Image That Can Be Called by a Translated Image

5. Make sure the layout of the symbol vector in the native Alpha image
matches the symbol vector in the translated VAX image. Section 10.3.1
describes how to determine the offsets of symbols in these symbol vectors and
how to control the layout of these symbol vectors to ensure they match.

You can run the translated main image, MYMAIN_TV.EXE, with either the
translated VAX shareable image, MYMATH_TV.EXE, or with the native Alpha
shareable image, MYMATH.EXE. By default, the translated executable image
calls the translated shareable image. (The translated executable image contains
a global image section descriptor [GISD] that points to the translated shareable
image. The image activator activates the shareable images to which the image
has been linked.)

To run the translated main image with the native shareable image, define the
name of the shareable image MYMATH_TV as a logical name that points to the
location of the native Alpha shareable image, MYMATH.EXE, as in the following
example:

$ DEFINE MYMATH_TV YOUR_DISK:[YOUR_DIR]MYMATH.EXE
$ RUN MYMAIN_TV

10.3.1 Controlling Symbol Vector Layout
To create a native Alpha shareable image that can replace a translated VAX
shareable image in an application, you must ensure that the universal symbols
in the shareable images appear at the same offsets in the symbol vectors in both
images. When a VAX shareable image is translated, VEST creates a symbol
vector for the image that includes the universal symbols declared in the original
VAX shareable image. (A translated image is actually an Alpha image, created
by VEST, and, like any other Alpha shareable image, it lists universal symbols
in a symbol vector.) To create a native shareable image that is compatible with a
translated shareable image, you must make sure that the same symbols appear
at the same offsets in the symbol vector in the native Alpha shareable image and
in the translated VAX shareable image it replaces.

To control how VEST lays out the symbol vector it creates in the translated VAX
image, create a symbol information file (SIF) and include it in the translation
operation. An SIF is a text file with which you can specify the layout of entries
in the symbol vector VEST creates for the translated image and to determine
which symbols should appear in the global symbol table (GST) of the translated
shareable image. If you do not specify the layout of the symbol vector, VEST may
change the layout in subsequent retranslations of the shareable image. Note that
VEST reserves the first symbol vector entry for its own use. For more information
about SIFs, see DECmigrate for OpenVMS AXP Systems Translating Images.

You control the layout of the symbol vector in a native shareable image by
specifying the SYMBOL_VECTOR= option. The linker lays out the entries in a
symbol vector in the order in which you specify the symbols in the SYMBOL_
VECTOR= option statement. Make sure you list the symbols in the SYMBOL_
VECTOR= option in the same order as they appear in the transfer vector used
to create the VAX shareable image. For more information about using the
SYMBOL_VECTOR= option, see the Bookreader version of the OpenVMS Linker
Utility Manual.

10–6 Ensuring Interoperability Between Native and Translated Images

Ensuring Interoperability Between Native and Translated Images
10.3 Creating a Native Image That Can Be Called by a Translated Image

To make sure the symbol vector in a translated shareable image matches the
symbol vector in a native shareable image, perform the following steps:

1. Translate the VAX shareable image, specifying the /SIF qualifier.
When you specify the /SIF qualifier, VEST generates an SIF that lists the
contents of the symbol vector. (For more information about creating and
interpreting an SIF, see DECmigrate for OpenVMS AXP Systems Translating
Images.) The following example is the SIF created by VEST for the shareable
image MYMATH.EXE. Note that the entries start at the second position in
the symbol vector (offset 10 hexadecimal):

! .SIF Generated by VEST (V1.0) on
! Image "MYMATH", "V1.0"
MYDIV 00000018 +S +G 00000030 00 4e
MYSUB 1 0000000c +S +G 00000020 2 00 4e
MYADD 00000008 +S +G 00000010 00 4e
MYMUL 00000010 +S +G 00000040 00 4e

1 The entry for the universal symbol MYSUB.

2 The offset of the entry for MYSUB in the translated image’s symbol
vector.

2. Determine the symbol vector offsets in the native shareable image.
Use the ANALYZE/IMAGE utility to determine the offsets of the symbols in
the symbol vector in the native shareable image. The following excerpt from
an analysis of the shareable image MYMATH.EXE shows the offset of the
symbol MYSUB:

.

.

.
4) Universal Symbol Specification (EGSD$C_SYMG)
data type: DSC$K_DTYPE_Z (0)
symbol flags:
(0) EGSY$V_WEAK 0
(1) EGSY$V_DEF 1
(2) EGSY$V_UNI 1
(3) EGSY$V_REL 1
(4) EGSY$V_COMM 0
(5) EGSY$V_VECEP 0
(6) EGSY$V_NORM 1
psect: 0
value: 16 (%X’00000020’)
symbol vector entry (procedure)
%X’00000000 00010000’
%X’00000000 00000050’
symbol: "MYSUB"
.
.
.

3. Edit the offsets in the SIF, if necessary. Use a text editor to change
the offsets listed in the SIF if they do not match the offsets in the native
shareable image. Remember that the first entry in the symbol vector is
reserved for use by the VEST utility.

Ensuring Interoperability Between Native and Translated Images 10–7

Ensuring Interoperability Between Native and Translated Images
10.3 Creating a Native Image That Can Be Called by a Translated Image

4. Retranslate the VAX shareable image, including the SIF in the
translation operation. In this translation operation, VEST creates the
symbol vector in the translated image using the offsets specified in the SIF.
VEST looks for the SIF in the current device and directory. (See DECmigrate
for OpenVMS AXP Systems Translating Images for more information about
using VEST.)

10.3.2 Creating Stub Images
In some cases, it is not possible to completely replace a VAX shareable image
with an Alpha shareable image. For example, there may be functions in the
VAX shareable image that are specific to the VAX architecture. In this situation,
it may be necessary to build both a translated image and a native image that
together provide the functionality of the original VAX shareable image. In other
cases, there may be a need to define a relationship between a translated VAX
shareable image and a new Alpha shareable image. In both situations, the
translated VAX image must be a jacket image.

When building a jacket image, create a stub version of the new Alpha image on a
VAX system. Then create a modified VAX shareable image that depends on it and
translate it, specifying the /JACKET=shrimg qualifier, where shrimg is the name
of the new Alpha shareable image. Note that a throwaway translation of the stub
image must be performed in advance so that there is an IIF that describes it. For
complete information about creating stub images, see DECmigrate for OpenVMS
AXP Systems Translating Images.

10–8 Ensuring Interoperability Between Native and Translated Images

11
OpenVMS Alpha Compilers

This chapter provides information about the features that are specific to the
native OpenVMS Alpha compilers. In addition, it lists the features of the
OpenVMS VAX compilers that are not supported by or that have changed
behavior in their OpenVMS Alpha counterparts.

The following compilers are covered in this appendix:

• DEC Ada (Section 11.1)

• DEC C (Section 11.2)

• DEC COBOL (Section 11.3)

• Digital Fortran (Section 11.4)

• DEC Pascal (Section 11.5)

Compiler differences can exist for two reasons: differences between earlier and
current versions of compilers running on OpenVMS VAX and differences between
the DEC versions running on the VAX and Alpha computers. The OpenVMS
Alpha compilers are intended to be compatible with their OpenVMS VAX
counterparts. They include several qualifiers that contribute to compatibility, as
described in the following sections.

The languages conform to language standards and include support for most
OpenVMS VAX language extensions. The compilers produce output files with the
same default file types as they do on OpenVMS VAX systems, such as .OBJ for
an object module.

Note, however, that some features supported by the compilers on OpenVMS VAX
systems may not be available on OpenVMS Alpha systems.

For more information about the compiler differences for each language, refer to
its documentation, especially the user’s guides and the release notes.

11.1 Compatibility of DEC Ada Between Alpha Systems and VAX
Systems

DEC Ada includes nearly all the standard and extended Ada language features
included in VAX Ada. These features are documented in the following manuals:

• DEC Ada Language Reference Manual

• Developing Ada Programs on OpenVMS Systems

• DEC Ada Run-Time Reference Manual for OpenVMS Systems

OpenVMS Alpha Compilers 11–1

OpenVMS Alpha Compilers
11.1 Compatibility of DEC Ada Between Alpha Systems and VAX Systems

However, owing to differences in the platform hardware, some features are not
supported or are implemented differently on VAX systems than on Alpha systems.
To aid in porting programs from one system to another, the following sections
highlight these differences.

Note

Not all of these features may be implemented on all systems for each
release. See the DEC Ada release notes for more information.

11.1.1 Differences in Data Representation and Alignment
In general, DEC Ada supports the same data types on all platforms. However,
keep in mind the following differences:

• H_floating data

Supported on VAX systems but not supported on Alpha systems.

• IEEE floating-point formats

Supported on Alpha systems but not supported on VAX systems.

• Natural alignment

On Alpha systems, DEC Ada aligns record and array components on natural
boundaries by default. On VAX systems, DEC Ada aligns record and array
components on byte boundaries. Note that you can specify the alignment with
the pragma COMPONENT_ALIGNMENT. The record representation clause
maximum alignment is 29 on both VAX and Alpha systems.

11.1.2 Tasking Differences
Task priorities and scheduling and task control block size are architecture
specific. See the release notes for specifics.

11.1.3 Differences in Language Pragmas
Note the following differences in language pragmas:

• pragma COMPONENT_ALIGNMENT

On Alpha systems, COMPONENT_SIZE is the default choice. On VAX
systems, STORAGE_UNIT is the default.

• pragma FLOAT_REPRESENTATION

On Alpha systems, this pragma supports two choices, IEEE_FLOAT and
VAX_FLOAT. On VAX systems, this pragma supports the VAX_FLOAT choice.

• pragma LONG_FLOAT

On Alpha systems, the LONG_FLOAT pragma is supported when the value of
the FLOAT_REPRESENTATION pragma is VAX_FLOAT.

• pragma SHARED

There are type restrictions that are different between the systems. See
the DEC Ada Run-Time Reference Manual for OpenVMS Systems for more
information.

• pragma MAIN_STORAGE

Not supported on Alpha systems.

11–2 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.1 Compatibility of DEC Ada Between Alpha Systems and VAX Systems

• pragma SHARE_GENERIC

Not supported on Alpha systems.

• pragma TIME_SLICE

There are some implementation differences between the support of this
pragma on VAX systems and on Alpha systems. See the DEC Ada Run-Time
Reference Manual for OpenVMS Systems for more information.

11.1.4 Differences in the SYSTEM Package
Note the following changes to the system package:

• SYSTEM.IEEE_SINGLE_FLOAT and
SYSTEM.IEEE_DOUBLE_FLOAT

Supported on Alpha systems but not on VAX systems.

• SYSTEM.H_FLOAT

Supported on VAX systems but not on Alpha systems.

• SYSTEM.MAX_DIGITS

The value is 33 on VAX systems and 15 on Alpha systems.

• SYSTEM.NAME

Specific numerals are supported for each system on which DEC Ada is
available.

• SYSTEM.SYSTEM_NAME

The name OpenVMS_Alpha is supported on Alpha systems.

• SYSTEM.TICK

The value is 10.0�3 (1 ms) on Alpha systems. The value on VAX systems is
10.0�2 (10 ms).

In addition, the following types and subprograms supported on VAX systems are
not supported on Alpha systems:

SYSTEM.READ_REGISTER
SYSTEM.WRITE_REGISTER
SYSTEM.MFPR
SYSTEM.MTPR
SYSTEM.CLEAR_INTERLOCKED
SYSTEM.SET_INTERLOCKED
SYSTEM.ALIGNED_WORD
SYSTEM.ADD_INTERLOCKED
SYSTEM.INSQ_STATUS
SYSTEM.REMQ_STATUS
SYSTEM.INSQHI
SYSTEM.REMQHI
SYSTEM.INSQTI
SYSTEM.REMQTI

OpenVMS Alpha Compilers 11–3

OpenVMS Alpha Compilers
11.1 Compatibility of DEC Ada Between Alpha Systems and VAX Systems

11.1.5 Differences Between Other Language Packages
Note the following differences in these other packages:

• package CALENDAR

Implementation differences between systems; see the DEC Ada Language
Reference Manual for more information.

• package MATH_LIB

Implementation differences between systems; see individual package
specifications.

• package SYSTEM_RUNTIME_TUNING

This package is supported on VAX systems and, with some restrictions, on
Alpha systems. See the DEC Ada Run-Time Reference Manual for OpenVMS
Systems or the release notes for more information.

11.1.6 Changes to Predefined Instantiations
The following two predefined instantiations supported on VAX systems are not
supported on Alpha systems:

• LONG_LONG_FLOAT_TEXT_IO

• LONG_LONG_FLOAT_MATH_LIB

11.2 Compatibility of DEC C for OpenVMS Alpha Systems with
VAX C

The DEC C compiler defines a core, ANSI-conforming C language that can be
used on all strategic Digital platforms, including the Alpha architecture. For
comprehensive information, see the DEC C documentation.

11.2.1 Language Modes
DEC C for OpenVMS Alpha systems conform to the ANSI C standard, with
optional support for VAX C and Common C (pcc) extensions. You invoke these
optional extensions, called modes, using the /STANDARD qualifier. Table 11–1
describes these modes and the command-qualifier syntax needed to invoke them.

11–4 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.2 Compatibility of DEC C for OpenVMS Alpha Systems with VAX C

Table 11–1 Modes of Operation of the DEC C for OpenVMS Alpha Systems

Mode Command Qualifier Description

Default /STANDARD=RELAXED_ANSI89 Follows ANSI C standard but also allows
additional Digital keywords and predefined
macros that do not begin with an underscore.

ANSI C /STANDARD=ANSI89 Accepts only strictly conforming ANSI C
language.

VAX C /STANDARD=VAXC Allows use of VAX C extensions to the ANSI C
standard, even where the extensions may be
incompatible with the ANSI C standard.

Common C (pcc) /STANDARD=COMMON Allows use of Common C extensions to the
ANSI C standard, even where the extensions
may be incompatible with the ANSI C standard.

Microsoft
compatibility

/STANDARD=MS Interprets source programs according to certain
language rules followed by the C compiler
provided with Microsoft Visual C++ compiler
product.

11.2.2 DEC C for OpenVMS Alpha Systems Data-Type Mappings
The DEC C for OpenVMS Alpha systems compiler supports most of the same
data-type mappings as its VAX counterpart. Table 11–2 lists the sizes of the C
arithmetic data types on the Alpha architecture.

Table 11–2 Arithmetic Data-Type Sizes in DEC C for OpenVMS Alpha Compiler

C Data Type
VAX C
Mapping

DEC C
Mapping

pointer 32 32 or 641

long 32 32

int 32 32

short 16 16

char 8 8

float 32 322

double 642 1282

long double 642 642

_ _int16 NA 16

_ _int32 NA 32

_ _int64 NA 64

1You select the size by using a pragma in your source file or by using a command-line qualifier. For
more information, see the DEC C User’s Guide for OpenVMS Systems.
2You select how this maps to an Alpha D, F, G, S, T, or X floating point by using a command-line
qualifier. See Section 11.2.2.1.

To aid portability, the DEC C for OpenVMS Alpha compiler provides a header
file that defines typedefs for the signed and unsigned variants of these data
types. For example, if you have a data type that is a 64-bit integer, use the int64
typedef.

OpenVMS Alpha Compilers 11–5

OpenVMS Alpha Compilers
11.2 Compatibility of DEC C for OpenVMS Alpha Systems with VAX C

11.2.2.1 Specifying Floating-Point Mapping
The mapping between the C floating-point data types and the Alpha floating-
point data types is controlled by command-line qualifiers. The Alpha architecture
supports the following floating-point types:

• F_floating (same as on OpenVMS VAX systems)

• D_floating (53-bit precision)

• G_floating (same as on OpenVMS VAX systems)

• S_floating (IEEE single precision—32 bits)

• T_floating (IEEE double precision—64 bits)

• X_floating (IEEE extended double precision—128 bits)

By using a command line qualifier, you control which of the Alpha floating-point
data types the standard C data types float and double map to. For example, if
you specify the /FLOAT=G_FLOAT qualifier, DEC C maps the float data type to
the Alpha F_floating data type and maps the double data type to the Alpha G_
floating data type. Table 11–3 describes the complete list of floating-point options.
Note that you can specify only one floating-point qualifier in a command line.

Table 11–3 DEC C Floating-Point Mappings

Compiler Option Float Double Long Double

/FLOAT=F_GLOAT F_floating format G_floating
format

/FLOAT=D_FLOAT F_floating format D-53 floating
point

/FLOAT=IEEE_FLOAT S_floating format T_floating
format

/L_DOUBLE_SIZE=128
(default)

— — X_floating format

11.2.3 Built-in Functions That Access Alpha Instructions
DEC C includes features, listed in Table 11–4, that are specific to Alpha systems.
The following sections describe these features.

Table 11–4 DEC C Compiler Features Specific to Alpha Systems

Feature Description

Access to some Alpha instructions Available as built-ins

Access to some VAX instruction equivalents Available through Alpha PALcode

Atomicity built-ins Ensures the atomicity of AND, OR,
and ADD operations

11.2.3.1 Accessing Alpha Instructions
DEC C supports certain Alpha instructions to provide functions that cannot
be expressed in the C language, especially for system-level programming; for
example:

• TRAPB—Drain the instruction pipeline

• MB—Memory barrier

11–6 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.2 Compatibility of DEC C for OpenVMS Alpha Systems with VAX C

11.2.3.2 Accessing Alpha Privileged Architecture Library (PALcode) Instructions
The Alpha architecture implements certain VAX instructions as privileged
architecture library (PALcode) instructions. DEC C allows access to the following
PALcode instructions:

• INSQUEx—Insert entry into longword or quadword queue

• INSQxI—Insert entry in queue, interlocked

• REMQUEx—Remove entry from longword or quadword queue

• REMQxI—Remove from queue, interlocked

11.2.3.3 Ensuring the Atomicity of Combined Operations
In the VAX architecture, certain combined operations, such as incrementing
a variable, are guaranteed to be atomic (that is, they complete without
interruption). To provide an equivalent function on Alpha systems, DEC C
provides built-ins that perform the operations with the guarantee of atomicity.
For example, several of these atomic built-ins are listed in Table 11–5. For a
complete description of these built-ins, see the DEC C language documentation.

Table 11–5 Atomicity Built-Ins

Atomicity Built-In Description

_ _ADD_ATOMIC_LONG(ptr, expr, retry_count)
_ _ADD_ATOMIC_QUAD(ptr, expr, retry_count)

Add the expression expr to the data segment
pointed to by ptr. The optional retry_count
parameter specifies the number of times the
operation should be attempted (the default is
forever).

_ _AND_ATOMIC_LONG(ptr, expr, retry_count)
_ _AND_ATOMIC_QUAD(ptr, expr, retry_count)

Fetch the data segment pointed to by ptr,
perform a logical AND operation with the
expression expr, and store the resulting
value. The retry_count parameter specifies
the number of times the operation should be
attempted (the default is forever).

_ _OR_ATOMIC_LONG(ptr, expr, retry_count)
_ _OR_ATOMIC_QUAD(ptr, expr, retry_count)

Fetch the data segment pointed to by ptr,
perform a logical OR operation with the
expression expr, and store the resulting
value. The retry_count parameter specifies
the number of times the operation should be
attempted (the default is forever).

These built-ins guarantee only that the operation completes without interruption.
If you perform an atomic operation on a variable that might be subject to
concurrent write access (for example, from an AST and mainline code or from
two concurrent processes), you must still protect it with the volatile attribute.

In addition, DEC C for OpenVMS Alpha systems supports the following
equivalents to the VAX interlocked instructions:

• TESTBITSSI

• TESTBITCCI

These built-ins use the retry_count parameter, as do the atomicity built-ins, to
avoid getting stuck in an endless loop.

OpenVMS Alpha Compilers 11–7

OpenVMS Alpha Compilers
11.2 Compatibility of DEC C for OpenVMS Alpha Systems with VAX C

11.2.4 Differences Between the VAX C and DEC C for OpenVMS Alpha
Systems Compilers

The following features, present in VAX C, have different default behavior in DEC
C for OpenVMS Alpha systems. Note, however, that for some of these features,
you can retain the VAX C behavior by using command-line qualifiers and pragma
instructions.

11.2.4.1 Controlling Data Alignment
Because accesses to data that is not aligned on natural boundaries cause severe
performance degradation on Alpha systems, DEC C for OpenVMS Alpha systems
aligns data on natural boundaries by default. To override this feature and retain
VAX (packed) alignment, specify the # pragma nomember_alignment preprocessor
directive in your source file or use the /NOMEMBER_ALIGNMENT command
line qualifier.

11.2.4.2 Accessing Argument Lists
Taking the address of an argument, such as &argv1, causes DEC C for OpenVMS
Alpha systems to generate prologue code for the function that moves all the
arguments onto the stack (called homing arguments), causing a performance
degradation. Also, argument list ‘‘walking’’ can be accomplished only by using the
functions in the <varargs.h> or <stdargs.h> include files.

11.2.4.3 Synchronizing Exceptions
Because the Alpha architecture does not provide for immediate reporting of
arithmetic exceptions, do not expect an assignment to a static variable (even with
the volatile attribute) to occur before a subsequent exception is signaled.

11.2.4.4 Dynamic Condition Handlers
Although DEC C and DEC C++ for OpenVMS Alpha systems treat
LIB$ESTABLISH as a built-in function, using LIB$ESTABLISH is not
recommended on OpenVMS VAX or OpenVMS Alpha systems. C and C++
programmers should call VAXC$ESTABLISH instead of LIB$ESTABLISH
(VAXC$ESTABLISH is a built-in function on DEC C and DEC C++ for OpenVMS
Alpha systems).

11.2.5 STARLET Data Structures and Definitions for C Programmers
OpenVMS Alpha Version 1.0 included a new file, SYS$STARLET_C.TLB,
that contained all the .H files that provide STARLET functionality
equivalent to STARLETSD.TLB. The file SYS$STARLET_C.TLB, together
with DECC$RTLDEF.TLB now shipping with the DEC C Compiler,
replaces VAXCDEF.TLB that previously shipped with the VAX C Compiler.
DECC$RTLDEF.TLB contains all the .H files that support the compiler and RTL,
such as STDIO.H.

The following differences may require source changes:

• RMS structures

Previously, the RMS structures FAB, NAM, RAB, XABALL, and so forth,
were defined in the appropriate .H files as ‘‘struct RAB {...’’, for example.
The .H files supplied in OpenVMS Alpha Version 1.0 defined them as ‘‘struct
rabdef {...’’. To compensate for this difference, lines of the form ‘‘#define RAB
rabdef’’ were added. However, there is one situation where a source change is
required because of this change. If you have a private structure that contains
a pointer to one of these structures and your private structure is defined

11–8 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.2 Compatibility of DEC C for OpenVMS Alpha Systems with VAX C

(but not used) before the RMS structure has been defined, you will receive
compile-time errors similar to the following:

%CC-E-PASNOTMEM, In this statement, "rab$b_rac" is not a member of "rab".

This error can be avoided by reordering your source file so that the RMS
structure is defined before the private structure. Typically, this involves
moving around ‘‘#include’’ statements.

• LIB (privileged interface) structures

Historically, three structures from LIB (NFBDEF.H, FATDEF.H, and
FCHDEF.H) have been made available as .H files. These files were
shipped as .H files in OpenVMS Alpha Version 1.0 and 1.5 (not in the
new SYS$STARLET_C.TLB). In OpenVMS Alpha 7.1, the file SYS$LIB_
C.TLB, containing all LIB structures and definitions, has been added. These
three .H files are now part of that .TLB and are no longer shipped separately.
Source changes may be required, as no attempt has been made to preserve
any existing anomalies in these files. The structures and definitions from LIB
are for privileged interfaces only and are therefore subject to change.

• Use of ‘‘variant_struct’’ and ‘‘variant_union’’
In the new .H files, ‘‘variant_struct’’ and ‘‘variant_union’’ are always used,
whereas previously some structures used ‘‘struct’’ and ‘‘union.’’ Therefore,
the intermediate structure names cannot be specified when referencing fields
within data structures.

For example, the following statement:

AlignFaultItem.PC[0] = DataPtr->afr$r_pc_data_overlay.afr$q_fault_pc[0];

becomes:

AlignFaultItem.PC[0] = DataPtr->afr$q_fault_pc[0];

• Member alignment

Each of the .H files in SYS$STARLET_C.TLB saves and restores the state of
‘‘#pragma member_alignment’’.

• Conventions
The .H files in SYS$STARLET_C.TLB adhere to some conventions that
were only partly followed in VAXCDEF.TLB. All constants (#defines) have
uppercase names. All identifiers (routines, structure members, and so forth)
have lowercase names. Where there is a difference from VAXCDEF.TLB, the
old symbol name is also included for compatibility, but users are encouraged
to follow the new conventions.

• Use of Librarian utility to access the .H files

During installation of OpenVMS Alpha, the contents of SYS$STARLET_
C.TLB are not extracted into the separate .H files. The DEC C Compiler
accesses these files from within SYS$STARLET_C.TLB, regardless of the
format of the #include statement. If you want to inspect an individual .H file,
you can use the Librarian utility, as in the following example:

$ LIBRARY /EXTRACT=AFRDEF /OUTPUT=AFRDEF.H SYS$LIBRARY:SYS$STARLET_C.TLB

• Additional .H files included in SYS$STARLET_C.TLB

In addition to the .H files derived from STARLET sources, SYS$STARLET_
C.TLB includes .H files that provide support for DECthreads, such as CMA.H.

OpenVMS Alpha Compilers 11–9

OpenVMS Alpha Compilers
11.2 Compatibility of DEC C for OpenVMS Alpha Systems with VAX C

11.2.6 VAX C Features Not Supported by /STANDARD=VAXC Mode
While most programming practices supported by VAX C are supported by DEC C
for OpenVMS Alpha systems in /STANDARD=VAXC mode, certain programming
practices that conflict with the ANSI standard are not supported. The following
list highlights some of these differences; see the DEC C compiler documentation
for more information.

• The inclusion of text after an #endif statement, as in the following example:

#ifdef a
.
.
.

#endif a

Delete the text or surround it with comment delimiters, as in the following:

#endif /* a */

• Modification of string constants, while always a questionable programming
practice, was accepted by VAX C. DEC C for OpenVMS Alpha systems places
all string constants in a read-only program section so that they cannot be
modified.

• Structure-initialization values must be enclosed within braces ({}):

array[SIZE] = NULL; /* accepted by VAX C */
array[SIZE] = {NULL}; /* required by DEC C */

• Redefinitions of symbols are now flagged with a warning-level diagnostic
message:

#define x a
#define x b /* generates a warning message in DEC C */

• Use of text libraries is no longer recommended. While supported by VAX C,
text libraries are not portable.

#include stdio

Instead, use the following syntax:

#include <stdio.h>

• You must have one, and only one, declaration of an external variable. This is
the definition of this variable. Other modules can use it by declaring it with
the extern semantics.

• If you are recompiling VAX C code, either an entire application or one or
more modules, you will want to pay particular attention to any external
symbols that it contains. Unlike the VAX C compiler which supports one
external symbol model, the DEC C compiler supports four models. The
default external symbol produced by the DEC C compiler is not the same as
the single VAX C external symbol.

Furthermore, when you link such code, due to changes in the linker, if you
did not specify the /SHARE qualifier when you recompiled the C code module,
you will need to specify a related linker qualifier.

11–10 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

11.3 VAX COBOL and DEC COBOL Compatibility and Migration
DEC COBOL is based on and is highly compatible with VAX COBOL, which
runs on the OpenVMS VAX system. However, there are differences, which are
summarized in the following sections. This information can help you develop
COBOL applications that are compatible with both products and can help you
migrate your VAX COBOL applications to DEC COBOL on the OpenVMS Alpha
operating system.

11.3.1 DEC COBOL Extensions and Features Differences
DEC COBOL contains the following language extensions and other features that
are not in VAX COBOL:

• A choice of alignment on the compile command line or as a source directive
for individual records; you can select Alpha data alignment to optimize
performance or VAX COBOL data alignment for compatibility with
VAX COBOL.

• A qualifier that selects IEEE or VAX floating-point data types for single- and
double-precision data items.

• Aqualifier to generate code that allows native OpenVMS Alpha images to call
translated VAX images and translated VAX images to call native OpenVMS
Alpha images.

• A qualifier to recognize additional COBOL reserved words defined by the
X/Open Portability Guide.

• A qualifier that changes all blanks to zeros in numeric display items.

• COMP-5 and COMP-X as synonyms for COMP.

• READ PRIOR and START LESS

• Support for porting programs between other COBOL compilers and DEC
COBOL (/RESERVED_WORDS=FOREIGN_EXTENSIONS)

• X/Open ASSIGN TO, LINE SEQUENTIAL, RETURN-CODE, SCREEN
SECTION, FILE-SHARING and RECORD-LOCKING

In addition, note that DEC COBOL includes the following:

• Support for the relevant subset of the functionality in the VAX COBOL
/STANDARD=V3 qualifier.

• Support for file status values that are compatible with VAX COBOL Version
5.1, which differ from those of VAX COBOL Version 5.0 and previous versions.

DEC COBOL does not contain the following VAX COBOL features:

• The DECset/LSE Program Design Facility, the /DESIGN qualifier, design
comments, or pseudocode placeholders.

• DEC COBOL does not support VFU-CHANNEL and thus provides no direct
support for VFU and VFP (Vertical Forms Unit utilities and Vertical Forms
Printing).

• COPY FROM DICTIONARY

OpenVMS Alpha Compilers 11–11

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

For additional information about DEC COBOL and VAX COBOL, refer to the
product release notes and documentation. You can obtain an online version of
the release notes for your installed compiler on the OpenVMS Alpha operating
system by entering the HELP COBOL RELEASE_NOTES command at the
system prompt.

11.3.2 Command Line Qualifiers
Sections 11.3.2.3 and 11.3.2.5 compare the DEC COBOL and VAX COBOL
command line qualifiers. For complete information about DEC COBOL command
line qualifiers on the OpenVMS Alpha operating system, invoke the online HELP
facility: Type HELP COBOL at the OpenVMS Alpha system prompt. For information
about VAX COBOL command line qualifiers, see the VAX COBOL User Manual.

11.3.2.1 /NATIONALITY={JAPAN | US}
When /NATIONALITY=JAPAN is specified, the yen sign (¥) is the default
currency sign and symbol, and Japanese Language Support features are enabled.
Also, in this case /NODIAGNOSTICS and /NOANALYSIS_DATA are specified
implicitly.

Oracle CDD/Repository is not supported by DEC COBOL on OpenVMS Alpha
when /NATIONALITY=JAPAN is used.

When /NATIONALITY=US is specified on the compile command line, the dollar
sign ($) is the default currency sign and symbol, and Japanese Language Support
features are disabled.

11.3.2.2 /STANDARD=MIA
If /STANDARD=MIA are present on the compile command line, the compiler will
issue informational diagnostics for those language elements that do not conform
to the MIA specifications:

• Digital syntax extension from Base Standards (ANSI-85, JIS-88)

• Two of four optional modules

• All obsolete language elements of required modules in Base Standards

• Language elements omitted from required modules in Base Standards due to
the different implementation of the vendors

• Digital-specific Japanese features out of MIA Extension Elements related to
Japanese

To receive the diagnostics, the /WARNINGS=ALL qualifier or
/WARNING=INFORMATION qualifier is required.

The default is NOMIA.

11.3.2.3 DEC COBOL-Specific Qualifiers
The following command line qualifiers are available only on DEC COBOL.

• /ALIGNMENT

• /CHECK=DECIMAL

• /CONVERT=LEADING_BLANKS

• /FLOAT=D_FLOAT

• /FLOAT=G_FLOAT

• /FLOAT=IEEE_FLOAT

11–12 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

• /OPTIMIZE[=LEVEL=n]

• /RESERVED_WORDS=FOREIGN_EXTENSIONS

• /RESERVED_WORDS=[NO]XOPEN

• /SEPARATE_COMPILATION1

• /TIE

• /VFC1

11.3.2.4 /ALIGNMENT=PADDING
The OpenVMS Calling Standard requires that data fields be aligned on specific
addresses (shown in that standard). The same standard specifies that the lengths
of all data records must be multiples of their alignments.

If /ALIGNMENT=PADDING is present on the compile command line, COBOL
group data-items will be aligned on their natural boundaries and those group
items will be padded out to multiples of their alignments. See the DEC COBOL
Reference Manual for detailed information about elementary data item alignment
with Alpha alignment and padding in effect.

11.3.2.5 VAX COBOL-Specific Qualifiers
Table 11–6 lists the command line qualifiers and qualifier-option combinations
that are specific to VAX COBOL. These are not available in DEC COBOL.

Table 11–6 VAX COBOL-Specific Qualifiers

Qualifier Comments

/DESIGN Controls whether the compiler processes the input
file as a detailed design.

/INSTRUCTION_SET[=option] Improves run-time performance on single-chip VAX
processors, using different portions of the VAX
instruction set.

/STANDARD=OPENVMS_AXP Produces informational messages on language
features that are not supported by the DEC
COBOL compiler. (See Section 11.3.2.7 and the
VAX COBOL Version 5.1 release notes.)

/STANDARD=PDP11 Produces informational messages on language
features that are not supported by the COBOL–81
compiler.

/WARNINGS=STANDARD Produces informational messages on language
features that are Digital extensions. The DEC
COBOL equivalent is the /STANDARD=SYNTAX
qualifier.

11.3.2.6 /STANDARD=V3
DEC COBOL does not support a number of features supported by the
VAX COBOL implementation of the /STANDARD=V3 qualifier:

• When subscripts are evaluated in STRING, UNSTRING, and INSPECT
(Format 3) statements and the REMAINDER phrase of the DIVIDE
statement

1 The action of DEC COBOL with this qualifier is designed to closely match the default
action with VAX COBOL.

OpenVMS Alpha Compilers 11–13

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

• When reference modification is evaluated in STRING, UNSTRING, and
INSPECT (Format 3) statements

• When the variable associated with the VARYING phrase is augmented in
PERFORM . . . VARYING . . . AFTER statements (Format 4)

• How PIC P digits are interpreted in some moves

• When the size of variable-length tables (OCCURS DEPENDING ON) is
determined in the MOVE statement

The /WARNINGS=ALL qualifier can help you determine the effects of
/STANDARD=V3; in particular, DEC COBOL generates the following
informational messages if /STANDARD=V3 has been specified:

• For items that may be affected by evaluation order in the INSPECT, STRING,
UNSTRING, and DIVIDE statements:

/STANDARD=V3 evaluation order not
supported for this construct

• For destinations where OCCURS DEPENDING ON requires different
behavior in the MOVE statement:

/STANDARD=V3 variable length item
rules not supported for this construct

For full information on the VAX COBOL implementation of the /STANDARD=V3
qualifier, see the appendix on qualifiers in the VAX COBOL User Manual.

11.3.2.7 /STANDARD=OPENVMS_AXP
VAX COBOL Version 5.1 (and higher) provides a new flagging system, via the
/STANDARD=OPENVMS_AXP qualifier option, to identify language features in
your existing VAX COBOL programs that are not available in DEC COBOL on
the OpenVMS Alpha system.

When you specify /STANDARD=OPENVMS_AXP, the VAX COBOL compiler
generates informational messages to alert you to language constructs that are
not available in DEC COBOL. (You must also specify /WARNINGS=ALL or
/WARNINGS=INFORMATIONAL to receive these messages.) You can use this
information to modify your program before using DEC COBOL.

Specify /STANDARD=NOOPENVMS_AXP, which is the default, to suppress these
informational messages.

11.3.3 DEC COBOL and VAX COBOL Behavior Differences
This section describes behavior differences between VAX COBOL and DEC
COBOL, and also certain behavior that is specific to DEC COBOL.

11.3.3.1 Program Structure Messages
In some cases, the DEC COBOL compiler generates more complete messages
about unreachable code or other logic errors than does the VAX COBOL compiler.

The following example illustrates a sample program and the messages issued by
the DEC COBOL compiler:

11–14 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

Source fi le:
IDENTIFICATION DIVISION.
PROGRAM-ID. T1.
ENVIRONMENT DIVISION.
PROCEDURE DIVISION.
P0.

GO TO P1.
P2.

DISPLAY "This is unreachable code".
P1.

STOP RUN.

On OpenVMS VAX systems:
$ COBOL /ANSI/WARNINGS=ALL T1.COB
$

The program compiles. The VAX COBOL compiler produces no messages.

On OpenVMS Alpha systems:
$ COBOL/ANSI/OPTIMIZE/WARNINGS=ALL T1.COB

P2.
.......^
%COBOL-I-UNREACH, code can never be executed at label P2
at line number 7 in file DISK$YOURDISK:[TESTDIR]T1.COB;1

DEC COBOL on either operating system is an optimizing compiler. One use
of optimization is to perform analysis for uncalled routines and unreachable
paragraphs. The compiler performs the unreachable code analysis for all levels
of optimization, including /NOOPTIMIZE. (Full optimization is the default, so
it is not necessary to specify the qualifier or flag on the command line as in the
examples.) VAX COBOL does not have an /OPTIMIZE qualifier.

11.3.3.2 Program Listing Differences
There are some differences that appear in program listings produced by the
VAX COBOL compiler and the DEC COBOL compiler on the OpenVMS Alpha
system.

11.3.3.2.1 Machine Code With DEC COBOL, the /NOOBJECT qualifier causes
the compiler to suppress code generation, so no machine code is produced either
for the listing or for the object module.

With VAX COBOL, /NOOBJECT suppresses just the creation of the .OBJ.
VAX COBOL still does all the work to generate the object code so it can be
placed in the listing.

If you want the machine code to be included in the program listing, do not use
/NOOBJECT.

11.3.3.2.2 Module Names With DEC COBOL, the name of the first program
is the module name throughout the compilation. With VAX COBOL, the module
name changes as the various programs are encountered.

11.3.3.2.3 COPY and REPLACE Statements The DEC COBOL compiler and
the VAX COBOL compiler produce output in slightly different formats when
listing annotations for the COPY statement in COBOL programs.

The following two compiler listing files illustrate the difference in the position of
the listing annotations, represented by the letter ‘‘L,’’ in a COBOL program using
DEC COBOL and VAX COBOL.

OpenVMS Alpha Compilers 11–15

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

DEC COBOL Listing File for COPY Statement:

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. DCOP1B.
3 *
4 * This program tests the copy library file.
5 * with a comment in the middle of it.
6 * It should not produce any diagnostics.
7 COPY
8 * this is the comment in the middle
9 LCOP1A.

L 10 ENVIRONMENT DIVISION.
L 11 INPUT-OUTPUT SECTION.
L 12 FILE-CONTROL.
L 13 SELECT FILE-1
L 14 ASSIGN TO "FILE1.TMP".

15 DATA DIVISION.
16 FILE SECTION.
17 FD FILE-1.
18 01 FILE1-REC PIC X.
19 WORKING-STORAGE SECTION.
20 PROCEDURE DIVISION.
21 PE. DISPLAY "***END***"
22 STOP RUN.

VAX COBOL Listing File for COPY Statement:

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. DCOP1B.
3 *
4 * This program tests the copy library file.
5 * with a comment in the middle of it.
6 * It should not produce any diagnostics.
7 COPY
8 * this is the comment in the middle
9 LCOP1A.
10L ENVIRONMENT DIVISION.
11L INPUT-OUTPUT SECTION.
12L FILE-CONTROL.
13L SELECT FILE-1
14L ASSIGN TO "FILE1.TMP".
15 DATA DIVISION.
16 FILE SECTION.
17 FD FILE-1.
18 01 FILE1-REC PIC X.
19 WORKING-STORAGE SECTION.
20 PROCEDURE DIVISION.
21 PE. DISPLAY "***END***"
22 STOP RUN.

11.3.3.2.4 Multiple COPY Statements The DEC COBOL and VAX COBOL
compilers also produce output in slightly different formats when listing a COBOL
program with multiple COPY statements on a single line.

The following two compiler listing files illustrate the difference in the position
of the listing annotations, represented by the letter ‘‘L,’’ for multiple COPY
statements on a single line in a COBOL program using DEC COBOL and
VAX COBOL.

11–16 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

DEC COBOL Listing File for Multiple COPY Statements:

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. DCOP1J.
3 *
4 * Tests copy with three copy statements on 1 line.
5 *
6 ENVIRONMENT DIVISION.
7 DATA DIVISION.
8 PROCEDURE DIVISION.
9 THE.
10 COPY LCOP1J. COPY LCOP1J. COPY LCOP1J.

L 11 DISPLAY "POIUYTREWQ".
L 12 DISPLAY "POIUYTREWQ".
L 13 DISPLAY "POIUYTREWQ".

14 STOP RUN.

VAX COBOL Listing File for Multiple COPY Statements:

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. DCOP1J.
3 *
4 * Tests copy with three copy statements on 1 line.
5 *
6 ENVIRONMENT DIVISION.
7 DATA DIVISION.
8 PROCEDURE DIVISION.
9 THE.
10 COPY LCOP1J.
11L DISPLAY "POIUYTREWQ".
12C COPY LCOP1J.
13L DISPLAY "POIUYTREWQ".
14C COPY LCOP1J.
15L DISPLAY "POIUYTREWQ".
16 STOP RUN.

11.3.3.2.5 COPY Insert Statement The compiler listing files for a DEC COBOL
program and a VAX COBOL program differ when a COPY statement inserts text
in the middle of a line.

In the following two compiler listing files, LCOP5D.LIB contains ‘‘O’’. The DEC
COBOL compiler keeps the same line and inserts the COPY file contents below
the source line. The VAX COBOL compiler splits the original source line into
parts.

DEC COBOL Listing File for COPY Statement:

13 P0. MOVE COPY LCOP5D. TO ALPHA.

L 14 "O"

VAX COBOL Listing File for COPY Statement:

13 P0. MOVE COPY LCOP5D.
14L "O"
15C TO ALPHA.

OpenVMS Alpha Compilers 11–17

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

11.3.3.2.6 REPLACE Statement The diagnostic messages for the COBOL source
statements REPLACE and DATE-COMPILED result in compiler listing files that
contain multiple instances of the source line.

For a REPLACE statement in a DEC COBOL program, if the DEC COBOL
compiler issues a message on the replacement text, the message corresponds to
the original text in the program, as shown in the following compiler listing file.

DEC COBOL Listing File for REPLACE Statement:

18 P0. REPLACE ==xyzpdqnothere==
19 BY ==nothere==.
20
21 copy "drep3hlib".

L 22 display xyzpdqnothere.
...................1

%COBOL-F-UNDEFSYM, (1) Undefined name

LR 22 display nothere.

In a VAX COBOL program, the compiler message corresponds to the replacement
text, as shown in the following compiler listing file.

VAX COBOL Listing File for REPLACE Statement:

18 P0. REPLACE ==xyzpdqnothere==
19 BY ==nothere==.
20
21 copy "drep3hlib".
22LR display nothere.

1
%COBOL-F-ERROR 349, (1) Undefined name

11.3.3.2.7 DATE COMPILED Statement The following two compiler listing files
demonstrate the difference between using the DATE-COMPILED statement with
DEC COBOL and VAX COBOL.

DEC COBOL Listing File for DATE-COMPILED Statement:

33 *
34 date-compiled

.............1
%COBOL-E-NODOT, (1) Missing period is assumed

34 date-compiled 16-Jul-1992.
35 security. none.

VAX COBOL Listing File for DATE-COMPILED Statement:

33 *
34 date-compiled 16-Jul-1992.

1
%COBOL-E-ERROR 65, (1) Missing period is assumed

35 security. none.

For the REPLACE and COPY REPLACING statements, the line numbers in
compiler listing files differ between DEC COBOL and VAX COBOL. DEC
COBOL arranges the line number for the replacement line to correspond to
its line number in the original source text, while subsequent line numbers differ.
VAX COBOL arranges the line numbers consecutively.

The following source program produces compiler listing files with different ending
line numbers, depending on whether you compile the program with DEC COBOL
or VAX COBOL.

11–18 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

Source File:

REPLACE ==A VERY LONG STATEMENT== by ==EXIT PROGRAM==.
A
VERY
LONG
STATEMENT.
DISPLAY "To REPLACE or not to REPLACE".

DEC COBOL Listing File for REPLACE Statement:

1 REPLACE ==A VERY LONG STATEMENT== by ==EXIT PROGRAM==.
2 EXIT PROGRAM.
6 DISPLAY "To REPLACE or not to REPLACE".

VAX COBOL Listing File for REPLACE Statement:

1 REPLACE ==A VERY LONG STATEMENT== by ==EXIT PROGRAM==.
2 EXIT PROGRAM.
3 DISPLAY "To REPLACE or not to REPLACE".

11.3.3.2.8 Compiler Listings and Separate Compilations The /SEPARATE_
COMPILATION qualifier produces distinct listings. For separately compiled
programs (SCP) compiled without /SEPARATE_COMPILATION, the listings are
as follows:

• PROGRAM_1 source listing

• PROGRAM_2 source listing

• PROGRAM_3 source listing

• PROGRAM_1 machine code listing

• PROGRAM_2 machine code listing

• PROGRAM_3 machine code listing

The /SEPARATE_COMPILATION result would be as follows:

• PROGRAM_1 source listing

• PROGRAM_1 machine code listing

• PROGRAM_2 source listing

• PROGRAM_2 machine code listing

• PROGRAM_3 source listing

• PROGRAM_3 machine code listing

Note that this is consistent with listings produced by VAX COBOL.

11.3.3.3 Output Formatting
VFU-CHANNEL
DEC COBOL does not support VFU-CHANNEL and thus provides no direct
support for VFU and VFP (Vertical Forms Unit utilities and Vertical Forms
Printing).

Control byte sequences
DEC COBOL and VAX COBOL may use different control byte sequences in VFC
files to accomplish similar output file formatting.

OpenVMS Alpha Compilers 11–19

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

Screen formatting
DEC COBOL and VAX COBOL may use different escape sequences for ACCEPT
and DISPLAY to accomplish similar screen formatting.

VFC fi les
VFC formatted REPORT WRITER or LINAGE files are normally viewed by using
the TYPE command or by printing them out. If you need to mail reports through
electronic mail or to bring them up in an editor, you can accomplish this by
compiling with /NOVFC on the compile command line.

All REPORT WRITER and LINAGE files that are opened in a single .COB source
file will have the same format (either VFC or NOVFC). VFC is the default. If the
/NOVFC qualifier is present, the NOVFC condition is set for each source file. For
example:

$ COBOL A/NOVFC,B/VFC,C/NOVFC,D

In this example, source files B and D will produce reports in VFC format.
(Behavior is different when the source file list items are separated by plus (+)
signs. See Format of the COBOL Command on OpenVMS Alpha.)

11.3.3.4 DEC COBOL and VAX COBOL Statement Differences
The following COBOL statements behave differently when used on DEC COBOL
and VAX COBOL:

• ACCEPT

• DISPLAY

• EXIT PROGRAM

• LINAGE

• MOVE

• SEARCH

11.3.3.4.1 ACCEPT and DISPLAY Statements When you use any extended
feature of ACCEPT or DISPLAY within your program, visible differences in
behavior between DEC COBOL and VAX COBOL exist in some instances. The
DEC COBOL behavior in these instances is as follows:

• When you mix ANSI ACCEPT statements and extended ACCEPT statements
in a program, the editing keys used by the extended ACCEPT statements
are also used by the ANSI ACCEPT statements. (See Key Functions for the
EDITING Phrase for a complete list of editing keys.)

• VAX COBOL does, and DEC COBOL does not support the VT52 terminal for
screen management.

• When your terminal is set to no-wrap mode and you display an item whose
characters extend past the edge of the screen, all characters past the
rightmost column are truncated. For example, if you specify a display of
‘‘1234’’ at column 79 on an 80-column screen, DEC COBOL will display 12.
By contrast, VAX COBOL overstrikes the character in the rightmost column.
Using the same example, VAX COBOL will display 14.

• If your application uses the Digital extensions to the ACCEPT or DISPLAY
statements, DEC COBOL positions the cursor in the upper left corner of the
screen prior to the execution of the first ACCEPT or DISPLAY statement.

11–20 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

This difference is clearly shown when the first ACCEPT or DISPLAY
statement does not contain the LINE and COLUMN clauses. In this case
DEC COBOL moves the cursor to the top of the screen to perform the
ACCEPT or DISPLAY, whereas VAX COBOL does not move the cursor.

11.3.3.4.2 EXIT PROGRAM Clause EXIT PROGRAM in a called program does
not reset PERFORM ranges. With VAX COBOL, when a program is re-entered
after exiting with an EXIT PROGRAM, then all PERFORM ranges from the
previous execution have been satisfied.

11.3.3.4.3 LINAGE Clause DEC COBOL and VAX COBOL exhibit different
behavior when handling large values for the LINAGE statement. If the line count
for the ADVANCING clause of the WRITE statement is larger than 127, DEC
COBOL advances one line. VAX COBOL results are undefined.

11.3.3.4.4 MOVE Statement Unsigned computational fields can hold larger
values than signed computational fields. In accordance with the ANSI COBOL
Standard, the values for unsigned items should always be treated as positive.
VAX COBOL, however, treats unsigned items as signed, while DEC COBOL
treats them as positive. Therefore, in some rare cases, a mixture of unsigned
and signed data items in MOVE or arithmetic statements can produce different
results between VAX COBOL and DEC COBOL.

Example 11–1 produces different results for VAX COBOL and DEC COBOL:

Example 11–1 Signed and Unsigned Differences

IDENTIFICATION DIVISION.
PROGRAM-ID. SHOW-DIFF.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 A2 PIC 99 COMP.
01 B1 PIC S9(5) COMP.
01 B2 PIC 9(5) COMP.
PROCEDURE DIVISION.
TEST-1.

MOVE 65535 TO A2.
MOVE A2 TO B1.
DISPLAY B1 WITH CONVERSION.
MOVE A2 TO B2.
DISPLAY B2 WITH CONVERSION.
STOP RUN.

VAX COBOL Results:
B1 = -1
B2 = -1

DEC COBOL Results:
B1 = 65535
B2 = 65535

OpenVMS Alpha Compilers 11–21

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

11.3.3.4.5 SEARCH Statement In DEC COBOL and in VAX COBOL Version
5.0 and higher, the END-SEARCH and NEXT SENTENCE phrases are mutually
incompatible in a SEARCH statement. If you use one, you must not use the
other. This rule, which complies with the ANSI COBOL Standard, does not apply
to VAX COBOL versions earlier than Version 5.0.

11.3.3.5 System Return Codes
Example 11–2 illustrates an illegal coding practice that exhibits different behavior
on DEC COBOL and VAX COBOL. The cause is an architectural difference in
the register sets between the VAX and Alpha architectures: on Alpha, there is a
separate set of registers for floating-point data types.

The bad coding practice exhibited in Example 11–2 can impact any supported
Alpha floating point data type.

In Example 11–2 the programmer incorrectly defined the return value for a
system service call to be F_floating when it should have been binary (COMP).
The programmer was depending on the following VAX behavior: in the VAX
architecture, all return values from routines are returned in register R0. The
VAX architecture has no separate integer and floating-point registers. The Alpha
architecture defines separate register sets for floating-point and binary data.
Routines that return floating-point values return them in register F0; routines
that return binary values return them in register R0.

The DEC COBOL compiler has no method for determining what data type an
external routine may return. You must specify the correct data type for the
GIVING-VALUE item in the CALL statement. On the Alpha architecture, the
generated code is testing F0 instead of R0 because of the different set of registers
used for floating-point data items.

In the sample program, the value in F0 is unpredictable in this code sequence. In
some cases, this coding practice may produce the expected behavior, but in most
cases it will not.

11.3.3.6 Diagnostic Messages
Several diagnostic messages have different meanings and results depending upon
the platform on which you are programming:

• DEC COBOL does not perform the same run-time error recovery behavior as
VAX COBOL upon receipt of the following diagnostic:

%COBOL-E-EXITDECL, EXIT PROGRAM statement invalid in
GLOBAL DECLARATIVE

• VAX COBOL always ignores an EXIT PROGRAM in a GLOBAL USE
procedure. DEC COBOL ignores the EXIT PROGRAM only if the GLOBAL
USE is invoked from other than the current program unit.

To produce behavior identical to VAX COBOL, correct the problem causing
the diagnostic.

• If one of the operands in a comparison is illegal, both VAX and DEC COBOL
emit an error message. VAX COBOL continues analyzing the statement
containing the conditional, but DEC COBOL skips to the next statement
(thus not finding any additional errors in the statement).

11–22 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

Example 11–2 Illegal Return Value Coding

IDENTIFICATION DIVISION.
PROGRAM-ID. BADCODING.
ENVIRONMENT DIVISION.

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.

01 FIELDS-NEEDED.
05 CYCLE-LOGICAL PIC X(14) VALUE ’A_LOGICAL_NAME’.

01 EDIT-PARM.
05 EDIT-YR PIC X(4).
05 EDIT-MO PIC XX.

01 CMR-RETURN-CODE COMP-1 VALUE 0.

LINKAGE SECTION.

01 PARM-REC.
05 CYCLE-PARM PIC X(6).
05 RETURN-CODE COMP-1 VALUE 0.

PROCEDURE DIVISION USING PARM-REC GIVING CMR-RETURN-CODE.

P0-CONTROL.

CALL ’LIB$SYS_TRNLOG’ USING BY DESCRIPTOR CYCLE-LOGICAL,
OMITTED,
BY DESCRIPTOR CYCLE-PARM
GIVING RETURN-CODE.

IF RETURN-CODE GREATER 0
THEN

MOVE RETURN-CODE TO CMR-RETURN-CODE
GO TO P0-EXIT.

MOVE CYCLE-PARM TO EDIT-PARM.

IF EDIT-YR NOT NUMERIC
THEN

MOVE 4 TO CMR-RETURN-CODE, RETURN-CODE.

IF EDIT-MO NOT NUMERIC
THEN

MOVE 4 TO CMR-RETURN-CODE, RETURN-CODE.

IF CMR-RETURN-CODE GREATER 0
OR

RETURN-CODE GREATER 0
THEN

DISPLAY "***************************"
DISPLAY "** BADCODING.COB **"
DISPLAY "** A_LOGICAL_NAME> ", CYCLE-PARM, " **"
DISPLAY "***************************".

P0-EXIT.

EXIT PROGRAM.

• If a source statement contains multiple divides and the divisor(s) are a literal
zero, a figurative zero, or a variable whose value is zero, DEC COBOL issues
a single divide-by-zero run-time diagnostic, while VAX COBOL issues the
same diagnostic for each divide-by-zero in the statement. For example, the

OpenVMS Alpha Compilers 11–23

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

following code produces three diagnostics with VAX COBOL and only one
diagnostic with DEC COBOL:

DIVIDE 0 INTO A, B, C.

In accordance with the ANSI COBOL Standard, both compilers allow
execution to continue with unpredictable results.

11.3.3.7 Storage for Double-Precision Data Items
The difference in storage format of D_floating items between the VAX and Alpha
architectures produces slightly different answers when validating execution
results. The magnitude of the difference depends upon how many D-float
computations and stores the compiler has performed before outputing the final
answer. This behavior difference may cause some difficulty if you attempt to
validate output generated by your program running on OpenVMS Alpha systems
against output generated by OpenVMS VAX systems when outputting COMP-2
data to a file.

For information about storage format for floating-point data types, see the Alpha
Architecture Handbook.

11.3.3.8 High-Order Truncation of Data Items
DEC COBOL is more sensitive than VAX COBOL to potential high-order
truncation of data items. This is illustrated in the following example, which
was compiled with /WARNINGS=ALL qualifier:

WORKING-STORAGE SECTION.
01 K4 PIC 9(9) COMP.

PROCEDURE DIVISION.
01-MAIN-SECTION SECTION.
01-MAIN.

DISPLAY K4 WITH CONVERSION.

In this situation DEC COBOL, unlike VAX COBOL, produces the following
message:

DISPLAY K4 WITH CONVERSION.
............^
Possible high-order truncation ...

RELATIVE file operations may also produce this diagnostic.

11.3.3.9 File Status Values
DEC COBOL and VAX COBOL return different file status values when you
open a file in EXTEND mode and then try to REWRITE it. For this undefined
operation, DEC COBOL returns File Status 49 (incompatible open mode), while
VAX COBOL returns File Status 43 (no previous READ).

11.3.3.10 Key of Reference
With OpenVMS Alpha, when an ISAM file is being accessed dynamically and the
key of reference is a secondary key, a WRITE, DELETE, or REWRITE changes
the key of reference from the secondary key to the primary key.

11.3.3.11 RMS Special Registers
There are some differences in the behavior of RMS Special Registers that will be
experienced depending on your platform.

11–24 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

Loading Differences
At run time DEC COBOL and VAX COBOL update the values for the RMS
special registers differently for some I/O operations. The DEC COBOL run-time
system checks for some I/O error situations before attempting the RMS operation.
In those situations, the DEC COBOL run-time system does not attempt an
RMS operation and the RMS special register retains its previous value. The
VAX COBOL run-time system performs all RMS operations without any prior
checking of the I/O operation. As a result, the run-time system always updates
the values for the RMS special registers for each I/O operation.

For example, in the case of a file that was not successfully opened, any
subsequent DEC COBOL record operation (READ, WRITE, START, DELETE,
REWRITE, or UNLOCK) fails without invoking RMS. Thus, the values placed in
the RMS special registers for the failed OPEN operation remain unchanged for
the subsequent failed record operations on the same file. The same subsequent
record operations on VAX COBOL always invoke RMS, which attempts the
undefined operations and returns new values to the RMS special registers.

There is one other instance when the RMS special registers can contain different
values for DEC COBOL and VAX COBOL applications. Upon the successful
completion of an RMS operation on a DEC COBOL file, the RMS special registers
always contain RMS completion codes. Upon the successful completion of an RMS
operation on a VAX COBOL file, the RMS special registers usually contain RMS
completion codes, but occasionally these registers may contain COBOL-specific
completion codes.

Difference from VAX COBOL
DEC COBOL does not allow the following compiler-generated variables to be
declared as user variables, as VAX COBOL does:

RMS_STS
RMS_STV
RMS_CURRENT_STS
RMS_CURRENT_STV

11.3.3.12 Calling Shareable Images
DEC COBOL and VAX COBOL exhibit different behavior when calling a
subprogram installed as a shareable image. With DEC COBOL, the program
name you specify in a CALL statement can be either a literal or a data-name.
(The same is true for the CANCEL statement.) With VAX COBOL, the program
name you specify in a CALL (or CANCEL) statement must be a literal. In
addition, VAX COBOL programs installed as shareable images cannot contain
external files. (See Developing DEC COBOL Programs and OpenVMS Linker
Utility Manual for more information about shareable images.)

11.3.3.13 Sharing Common Blocks
To prevent problems when you link a DEC COBOL program and want to share
a common block between processes, you should set the PSECT attribute to SHR
(the defaults are: SHR on OpenVMS Alpha systems, NOSHR on OpenVMS VAX
systems). Also, you should add a SYMBOL_VECTOR to the linker options file of
the shareable image, as follows:

SYMBOL_VECTOR = (psect-name = PSECT)

For more information, see the OpenVMS Linker Utility Manual.

OpenVMS Alpha Compilers 11–25

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

11.3.3.14 Arithmetic Operations
Several arithmetic operations differ in behavior between DEC COBOL and
VAX COBOL, depending upon your platform:

• Results of numeric and integer Intrinsic Functions may differ in the least
significant digits from VAX COBOL or may be formatted differently by a
DISPLAY statement.

• OpenVMS VAX and OpenVMS Alpha handle COMP-2 items differently. As
a result, DISPLAY of a USAGE COMP-2 data item low order digits may be
different from the low order digits of the data item from the DISPLAY with
VAX COBOL on OpenVMS VAX.

• DEC COBOL issues the ALL_LOST (all digits lost) warning diagnostic in
more cases than VAX COBOL.

• The ANSI COBOL Standard states that when overflow occurs in an
arithmetic statement without a SIZE ERROR phrase, the results are
unpredictable. VAX COBOL usually returns the expected low order digits
in such cases; DEC COBOL does not.

• The precision of intermediate results is different between VAX COBOL and
DEC COBOL. This is most noticeable in COMPUTE operations involving a
divide. If you need a specific precision for an intermediate result, you should
use a temporary variable with the desired precision. For example:

COMPUTE D = (A / B) / C.

. . . could be written as

COMPUTE TMP1 = A / B.
COMPUTE D = TMP1 / C.

The precision to be used for the calculation A=B would be established by your
declaration of TMP1.

• The results of numeric comparisons with VAX COBOL and DEC COBOL
are undefined with invalid decimal data. DEC COBOL includes the
/CHECK=DECIMAL and -check decimal features to do a more complete
analysis of invalid decimal data. These options can be particularly helpful
when you are migrating programs to DEC COBOL.

11.3.4 File Compatibility Across Languages and Platforms
Files created by different programming languages may require special processing
because of language and character set incompatibilities. The most common
incompatibilities are data types and data record formats. You should be aware of
the following:

• On OpenVMS Alpha, a file with fixed-length records can be described in a
COBOL program with an FD specifying a length shorter than the file record
length. On input, the extra data in each record is ignored on OpenVMS
Alpha.

• On OpenVMS Alpha, an existing ORGANIZATION INDEXED file cannot be
read with an FD specifying ORGANIZATION SEQUENTIAL.

11–26 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

Data Type Differences
Data types vary by programming language and by utilities. For example, DEC
Fortran does not support the packed-decimal data type and, therefore, cannot
easily use PACKED-DECIMAL data in COBOL files.

You can use the following techniques to overcome data type incompatibilities:

• Use the NATIVE character set, which uses ASCII representation, for all data
in files intended for use across languages.

• If your requirements include processing non-ASCII data, you can specify a
character set in: (1) the SPECIAL-NAMES paragraph of the Environment
Division, along with (2) the CODE-SET clause in the SELECT statement.
Except for NATIVE, you must specify all character sets in the SPECIAL-
NAMES paragraph.

• Use common numeric data types (numeric data types that remain constant
across the application).

In the following example, the input file is written in EBCDIC. This creates a file
that would be difficult to handle in most languages other than COBOL on the
OpenVMS Alpha operating system.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. ALPHABET FOREIGN-CODE IS EBCDIC.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "INPFIL"
CODE-SET IS FOREIGN-CODE.
.
.
.

11.3.5 Reserved Words
The following are X/OPEN reserved words in DEC COBOL but not in
VAX COBOL:

AUTO EXCLUSIVE REQUIRED

AUTOMATIC FOREGROUND-COLOR RETURN-CODE

BACKGROUND-COLOR FULL REVERSE-VIDEO

BLINK HIGHLIGHT SECURE

EOL LOWLIGHT UNDERLINE

EOS MANUAL

The command line qualifier /RESERVED_WORDS=NOXOPEN causes these
reserved words to be treated as though they were not reserved words.

11.3.6 Debugger Support Differences
DEC COBOL debugger support differs in several ways from VAX COBOL:

• DEC COBOL issues the following informational message when the /DEBUG
qualifier is used on the COBOL command line with the default optimization
in effect:

%COBOL-I-DEBUGOPT, /NOOPTIMIZE is recommended with /DEBUG

OpenVMS Alpha Compilers 11–27

OpenVMS Alpha Compilers
11.3 VAX COBOL and DEC COBOL Compatibility and Migration

You receive this message if you specify nothing about optimization when
you specify /DEBUG. (/OPTIMIZE is the default for the compiler.) Unlike
other informational messages, which are turned off by default, this
message is always allowed through by the DEC COBOL compiler, even if
/WARN=NOINFO is in effect. To turn the message off, use any form of
the qualifier /[NO]OPTIMIZE on the COBOL command line (for example,
/NOOPTIMIZE or /OPTIMIZE or /OPTIMIZE=LEVEL=x).

• VAX COBOL does not have the /OPTIMIZE qualifier.

• With DEC COBOL, unlike VAX COBOL, the debugger sometimes changes
underscores to hyphens and hyphens to underscores in variable names.

This difference from VAX COBOL can help you debug a program. Because
these messages are informational, the compiler produces an object file, which
you can link and execute. However, the messages may point out otherwise
undetected logic errors, as the structure of the program is probably not what
you intended.

11.3.7 DECset/LSE Support Differences
DEC COBOL does not support the DECset/LSE Program Design Facility, the
/DESIGN qualifier, design comments, or pseudocode placeholders.

11.3.8 DBMS Support
DEC COBOL support for Oracle DBMS has some differences depending on
whether you are developing programs with DEC COBOL or with VAX COBOL.

With DEC COBOL, when you use multistream Oracle DBMS DML, you must
access different schemas or streams from separate source files.

11.4 Compatibility of Digital Fortran on OpenVMS Alpha and
OpenVMS VAX Systems

This section discusses the compatibility between Digital Fortran for OpenVMS
Alpha systems and Digital Fortran 77 for OpenVMS VAX Systems (formerly
VAX FORTRAN) in the following areas:

• Language features (Section 11.4.1)

• Command line qualifiers (Section 11.4.2)

• Interoperability with translated shared images
(Section 11.4.3)

• Porting Digital Fortran 77 for OpenVMS VAX Systems data (Section 11.4.4)

11.4.1 Language Features
Digital Fortran for OpenVMS Alpha includes ANSI FORTRAN–77 and ISO/ANSI
Fortran 9x standard features, as well as the Digital Fortran 77 for OpenVMS
VAX Systems extensions to these Fortran standards, including:

• RECORD statement and STRUCTURE statement

• CDEC$ directives and the OPTIONS statement

• BYTE, INTEGER*1, INTEGER*2, INTEGER*4, LOGICAL*1, LOGICAL*2,
LOGICAL*4

• REAL*4, REAL*8, REAL*16, COMPLEX*8, COMPLEX*16

• IMPLICIT NONE statement

11–28 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.4 Compatibility of Digital Fortran on OpenVMS Alpha and OpenVMS VAX Systems

• INCLUDE statement

• NAMELIST I/O

• Names up to 31 characters including use of dollar sign ($) and underscore
(_)

• DO WHILE and END DO statements

• Use of the exclamation point (!) for end-of-line comments

• Built-in functions %DESCR, %LOC, %REF, and %VAL

• VOLATILE statement

• DICTIONARY statement (FORTRAN–77 compiler only)

• POINTER statement data type

• Recursion

• Unformatted data conversion between disk and memory

• Indexed files

• I/O statements such as PRINT, ACCEPT, TYPE, DELETE, UNLOCK

• OPEN and INQUIRE statement specifiers, including CARRIAGECONTROL,
CONVERT, ORGANIZATION, RECORDTYPE

• Other language elements identified in the appropriate Fortran language
reference manuals

For detailed information about extensions and language features, see the Fortran
langauge reference manual, which visually shows extensions of the FORTRAN–77
standard.

Note

The Digital Fortran for OpenVMS Alpha product supports most of
the FORTRAN–77 language extensions supported by DEC Fortran for
OpenVMS Alpha and the ISO/ANSI Fortran 90 standard. For information
on compatibility, see the DEC Fortran 90 User Manual for OpenVMS
Alpha Systems.

The remainder of this section summarizes language features specific to Digital
Fortran 77 for OpenVMS VAX Systems and Digital Fortran for OpenVMS Alpha,
language features that are shared but interpreted differently in each language,
Digital Fortran for OpenVMS Alpha restrictions that do not apply to Digital
Fortran 77 for OpenVMS VAX Systems, and data porting considerations.

11.4.1.1 Language Features Specific to Digital Fortran for OpenVMS Alpha
The following language features are available in Digital Fortran for OpenVMS
Alpha but are not supported in Digital Fortran 77 for OpenVMS VAX Systems
Version 6.4:

• Quotation marks (") as delimiters for character constants. This can be
disabled by specifying the /VMS qualifier.

• Naturally aligned or packed boundaries for fields of records and items in
COMMON blocks

• The INTEGER*1, INTEGER*8, and LOGICAL*8 data types

OpenVMS Alpha Compilers 11–29

OpenVMS Alpha Compilers
11.4 Compatibility of Digital Fortran on OpenVMS Alpha and OpenVMS VAX Systems

• Support for S_floating, T_floating, and X_floating IEEE data types as well as
support for non-native unformatted data file formats, including big-endian
numeric format. For a description of the native floating-point data types for
Alpha systems, see the Alpha Architecture Reference Manual.

• LIB$ESTABLISH and LIB$REVERT are provided as intrinsic functions for
compatibility with Digital Fortran 77 for OpenVMS VAX Systems condition
handling.

DEC Fortran converts declarations to LIB$ESTABLISH to DEC Fortran RTL
specific entry points.

• The alternate ‘‘Z’’ spelling for double-precision complex intrinsic functions.
(For example, the square root double-precision intrinsic function can be
spelled as CDSQRT or ZSQRT.)

• The following intrinsic functions:

IMAG
AND
OR
XOR
LSHIFT
RSHIFT

• Certain run-time errors are specific to Digital Fortran for OpenVMS Alpha.

• Case-sensitive names

• I/O unit numbers can be any nonnegative integer in Digital Fortran for
OpenVMS Alpha. In Digital Fortran 77 for OpenVMS VAX Systems, the
values for I/O unit numbers can range from 0 to 99.

Note

When you use the Digital Fortran 90 compiler, certain features associated
with the ANSI/ISO Fortran 90 standard are not available in Digital
Fortran 77.

For an explanation of Digital Fortran language features, see the Fortran language
reference manual.

11.4.1.2 Language Features Specific to Digital Fortran 77 for OpenVMS VAX Systems
The following language features are available in Digital Fortran 77 for OpenVMS
VAX Systems but are not supported in Digital Fortran for OpenVMS Alpha:

• Automatic decomposition features of FORTRAN/PARALLEL=(AUTOMATIC)

• Manual (directed) decomposition features of FORTRAN
/PARALLEL=(MANUAL) using the CPAR$ directives, such as CPAR$ DO_
PARALLEL

• The following I/O and error subroutines for PDP–11 compatibility:

ASSIGN
CLOSE
ERRSET

ERRTST
FDBSET
IRAD50

RAD50
R50ASC
USEREX

11–30 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.4 Compatibility of Digital Fortran on OpenVMS Alpha and OpenVMS VAX Systems

When porting existing programs, calls to ASSIGN, CLOSE, and FBDSET
should be replaced with the appropriate OPEN statement. (You might
consider converting DEFINE FILE statements at the same time, even
though Digital Fortran for OpenVMS Alpha does support the DEFINE FILE
statement.)

In place of ERRSET and ERRTST, OpenVMS condition handling might be
used. Note that Digital Fortran for OpenVMS Alpha supports the ERRSNS
subroutine.

• Radix–50 constants in the form nRxxx

For existing programs being ported, radix-50 constants and the IRAD50,
RAD50, and R50ASC routines should be replaced by data encoded in ASCII
using CHARACTER declared data.

Certain Digital Fortran 77 for OpenVMS VAX Systems features have restricted
use or are not available in Digital Fortran for OpenVMS Alpha:

• Numeric local variables are sometimes, but not always, initialized to a zero
value, depending on the level of optimization used. To guarantee that a value
will be initialized to zero under all circumstances, use an explicit assignment
or DATA statement.

• Character constants must be associated with character dummy arguments,
not numeric dummy arguments. (Digital Fortran 77 for OpenVMS VAX
Systems passed ’A’ by reference if the dummy argument was numeric.)
Consider using the /BY_REF_CALL qualifier for such arguments.

• Saved dummy arrays do not work:

SUBROUTINE F_INIT (A, N)
REAL A(N)
RETURN
ENTRY F_DO_IT (X, I)
A (I) = X ! No: A no longer visible
RETURN
END

• Hollerith actual arguments must be associated with numeric dummy (formal)
arguments, not character dummy arguments.

The following language features are available in Digital Fortran 77 for OpenVMS
VAX Systems but are not supported in Digital Fortran for OpenVMS Alpha
because of differences between the Alpha architecture and the VAX architecture:

• Certain FORSYSDEF symbol definition modules may be specific to the VAX
or Alpha architecture.

• Precise exception-handling control

The handling of certain exceptions differs between OpenVMS VAX and
OpenVMS Alpha systems. To request precise exception-handling control, use
the /SYNCHRONOUS_EXCEPTIONS qualifier.

• REAL*16 data uses the H_floating data format on VAX systems and
X_floating on Alpha systems.

• VAX support for D_floating

Because the Alpha instruction set does not support the D_floating REAL*8
format, D_floating data is converted to G_floating by software during
computations and then converted back to D_floating format. Thus, there
will be differences in D_floating arithmetic between VAX and Alpha systems.

OpenVMS Alpha Compilers 11–31

OpenVMS Alpha Compilers
11.4 Compatibility of Digital Fortran on OpenVMS Alpha and OpenVMS VAX Systems

For optimal performance on Alpha systems, consider using REAL*8 data
in VAX G_floating or IEEE T_floating format, perhaps using the /FLOAT
qualifier to specify the format. To create a Digital Fortran for OpenVMS
Alpha application program to convert D_floating data to G_floating or
T_floating format, use the file conversion methods described in the Fortran
language reference manual.

• Vectorization capabilities

Vectorization, including /VECTOR and its related qualifiers, and the CDEC$
INIT_DEP_FWD directive are not supported. The Alpha processor provides
pipelining and other features that resemble vectorization capabilities.

11.4.1.3 Interpretation Differences
The following language features are interpreted differently between Digital
Fortran 77 for OpenVMS VAX Systems and Digital Fortran for OpenVMS Alpha:

• Random number generator (RAN)

The RAN function generates a different pattern of numbers in Digital Fortran
for OpenVMS Alpha than in Digital Fortran 77 for OpenVMS VAX Systems
for the same random seed. (The RAN and RANDU functions are provided for
Digital Fortran 77 for OpenVMS VAX Systems compatibility.)

• Hollerith constants in formatted I/O statements

Digital Fortran 77 for OpenVMS VAX Systems and Digital Fortran for
OpenVMS Alpha behave differently if either of the following occurs:

– Two different I/O statements refer to the same CHARACTER
PARAMETER constant as their format specifier. For example:

CHARACTER*(*) FMT2
PARAMETER (FMT2=’(10Habcdefghij)’)
READ (5, FMT2)
WRITE (6, FMT2)

– Two different I/O statements use the identical character constant as their
format specifier. For example:

READ (5, ’(10Habcdefghij)’)
WRITE (6, ’(10Habcdefghij)’)

In Digital Fortran 77 for OpenVMS VAX Systems, the value obtained by the
READ statement is the output of the WRITE statement (FMT2 is ignored).
However, in Digital Fortran for OpenVMS Alpha, the output of the WRITE
statement is "abcdefghij." (The value read by the READ statement has no
effect on the value written by the WRITE statement.)

11.4.2 Command Line Qualifiers
While Digital Fortran for OpenVMS Alpha and Digital Fortran 77 for OpenVMS
VAX Systems share most qualifiers, some qualifiers are specific to each platform.
This section summarizes the differences between Digital Fortran for OpenVMS
Alpha and Digital Fortran 77 for OpenVMS VAX Systems command line
qualifiers.

For complete details about the Digital Fortran for OpenVMS Alpha compilation
command and options, see the DEC Fortran User Manual for OpenVMS AXP
Systems. For complete details about the Digital Fortran 77 for OpenVMS VAX
Systems compilation command and options, see the DEC Fortran User Manual
for OpenVMS VAX Systems.

11–32 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.4 Compatibility of Digital Fortran on OpenVMS Alpha and OpenVMS VAX Systems

To initiate compilation on either VAX or Alpha systems, use the FORTRAN
command. On Alpha systems, use the F90 command to initiate compilation using
the Digital Fortran 90 compiler.

11.4.2.1 Qualifiers Specific to Digital Fortran for OpenVMS Alpha
Table 11–7 lists Digital Fortran for OpenVMS Alpha compiler qualifiers that have
no equivalent Digital Fortran 77 for OpenVMS VAX Systems options and are not
supported in Digital Fortran 77 for OpenVMS VAX Systems Version 6.4.

Table 11–7 Digital Fortran for OpenVMS Alpha Qualifiers Not in Digital Fortran
77 for OpenVMS VAX Systems

Qualifier Description

/BY_REF_CALL Allows character constant actual arguments to be
associated with numeric dummy arguments (allowed
by DEC Fortran for OpenVMS VAX Systems).

/CHECK=FP_EXCEPTIONS Controls whether messages about IEEE floating-point
exceptional values are reported at run time.

/DOUBLE_SIZE Makes DOUBLE PRECISION declarations REAL*16
instead of REAL*8.

/FAST Sets several qualifiers that improve run-time
performance.

/FLOAT Controls the format used for floating-point data (REAL
or COMPLEX) in memory, including the selection of
either VAX F_floating or IEEE S_floating for KIND=4
data and VAX G_floating, VAX D_floating, or IEEE
T_floating for KIND=8 data. Digital Fortran 77
for OpenVMS VAX Systems provides the /[NO]G_
FLOATING qualifier.

/GRANULARITY Controls the granularity of data access for shared
data.

/IEEE_MODE Controls how floating-point exceptions are handled for
IEEE data.

/INTEGER_SIZE Controls the size of INTEGER and LOGICAL
declarations.

/NAMES Controls whether external names are converted to
uppercase, lowercase, or as is.

/OPTIMIZE The /OPTIMIZE qualifier supports the INLINE
keyword, the LOOPS keyword, the TUNE keyword,
the UNROLL keyword, and software pipelining.

/REAL_SIZE Controls the size of REAL and COMPLEX
declarations.

/ROUNDING_MODE Controls how floating-point calculations are rounded
for IEEE data.

(continued on next page)

OpenVMS Alpha Compilers 11–33

OpenVMS Alpha Compilers
11.4 Compatibility of Digital Fortran on OpenVMS Alpha and OpenVMS VAX Systems

Table 11–7 (Cont.) Digital Fortran for OpenVMS Alpha Qualifiers Not in Digital
Fortran 77 for OpenVMS VAX Systems

Qualifier Description

/SEPARATE_COMPILATION Controls whether the DEC Fortran compiler:

• Places individual compilation units as separate
modules in the object file like Digital Fortran
77 for OpenVMS VAX Systems (/SEPARATE_
COMPILATION)

• Groups compilation units as a single module in
the object file (/NOSEPARATE_COMPILATION,
the default), which allows more interprocedure
optimizations.

/SYNTAX_ONLY Requests that only syntax checking occurs and no
object file is created.

/WARNINGS Certain keywords are not available on Digital Fortran
77 for OpenVMS VAX Systems.

/VMS Requests that Digital Fortran use certain Digital
Fortran 77 for OpenVMS VAX Systems conventions.

11.4.2.2 Qualifiers Specific to Digital Fortran 77 for OpenVMS VAX Systems
This section summarizes Digital Fortran 77 for OpenVMS VAX Systems compiler
qualifiers that have no equivalent Digital Fortran for OpenVMS Alpha qualifiers.

Table 11–8 lists compilation qualifiers specific to Digital Fortran 77 for OpenVMS
VAX Systems Version 6.4.

Table 11–8 Digital Fortran 77 for OpenVMS VAX Systems Qualifiers Not in Digital Fortran for
OpenVMS Alpha

Digital Fortran for 77 OpenVMS
VAX Systems Qualifier Description

/BLAS=(INLINE,MAPPED) Specifies whether Digital Fortran 77 for OpenVMS VAX Systems
recognizes and inlines or maps the Basic Linear Algebra Subroutines
(BLAS). Available only in Digital Fortran 77 for OpenVMS VAX
Systems.

/CHECK=ASSERTIONS Enables or disables assertion checking. Available only in Digital
Fortran 77 for OpenVMS VAX Systems.

/DESIGN=[NO]COMMENTS
/DESIGN=[NO]PLACEHOLDERS

Analyzes program for design information.

/DIRECTIVES=DEPENDENCE Specifies whether specified compiler directives are used at
compilation. Available only in Digital Fortran 77 for OpenVMS
VAX Systems.

/PARALLEL=(MANUAL or
AUTOMATIC)

Supports parallel processing.

(continued on next page)

11–34 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.4 Compatibility of Digital Fortran on OpenVMS Alpha and OpenVMS VAX Systems

Table 11–8 (Cont.) Digital Fortran 77 for OpenVMS VAX Systems Qualifiers Not in Digital
Fortran for OpenVMS Alpha

Digital Fortran for 77 OpenVMS
VAX Systems Qualifier Description

/SHOW=(DATA_DEPENDEN-
CIES,DICTIONARY,LOOPS)

Control whether the listing file includes:

• Diagnostics about loops that are ineligible for dependence
analysis and data dependencies that inhibit vectorization or
autodecomposition (DATA_DEPENDENCIES)

• Source lines from included Common Data Dictionary records
(DICTIONARY)

• Reports about loop structures after compilation (LOOPS)

The keywords DATA_DEPENDENCIES and LOOPS are available
only in Digital Fortran 77 for OpenVMS VAX Systems.

/VECTOR Requests vector processing. Available only in Digital Fortran 77 for
OpenVMS VAX Systems.

/WARNINGS=INLINE Controls whether the compiler prints informational diagnostic
messages when it is unable to generate inline code for a reference
to an intrinsic routine. Available only in Digital Fortran 77 for
OpenVMS VAX Systems.

All CPAR$ directives and certain CDEC$ directives associated with directed
(manual) decomposition and their associated qualifiers or keywords are specific to
Digital Fortran 77 for OpenVMS VAX Systems, as described in the DEC Fortran
Language Reference Manual.

For details about the Digital Fortran 77 for OpenVMS VAX Systems compilation
commands and options, see the DEC Fortran User Manual for OpenVMS VAX
Systems.

11.4.3 Interoperability with Translated Shared Images
Using Digital Fortran for OpenVMS Alpha, you can create images that can
interoperate with translated images at image activation (run time).

To allow the use of translated shared images:

• On the FORTRAN or F90 command line, specify the /TIE qualifier.

• On the LINK command line, specify the /NONATIVE_ONLY qualifier.

The created executable image contains code that allows the resulting executable
image to interoperate with shared images, including allowing the Digital Fortran
77 for OpenVMS VAX Systems RTL (FORRTL) to work with the Digital Fortran
for OpenVMS Alpha RTL (DEC$FORTRTL). The native (Digital Fortran for
OpenVMS Alpha RTL) and translated (Digial Fortran 77 for OpenVMS VAX
Systems RTL) programs can perform I/O to the same unit number, as long as the
RTL that opens the file also closes it.

Programs should use the intrinsic names (without the prefix) rather than calling
routines by their complete (fac$xxxx) name. One allowable exception to using
fac$xxxx names is that translated image programs declare the FOR$RAB system
function as EXTERNAL. Native Alpha programs should use FOR$RAB as an
intrinsic function.

OpenVMS Alpha Compilers 11–35

OpenVMS Alpha Compilers
11.4 Compatibility of Digital Fortran on OpenVMS Alpha and OpenVMS VAX Systems

11.4.4 Porting Digital Fortran 77 for OpenVMS VAX Systems Data
Record types are identical for Digial Fortran 77 for OpenVMS VAX Systems
and Digital Fortran for OpenVMS Alpha. If needed, transport the data using
the EXCHANGE command with the /NETWORK and /TRANSFER=BLOCK
qualifiers. To convert the file to Stream_LF format during the copy
operation, use /TRANSFER=(BLOCK,RECORD_SEPARATOR=LF) instead of
/TRANSFER=BLOCK, or specify the /FDL qualifier to the EXCHANGE command
to change the record type or other file characteristics.

If you need to convert unformatted floating-point data, keep in mind that Digital
Fortran 77 for OpenVMS VAX programs (VAX hardware) store REAL*4 or
COMPLEX*8 data in F_floating format, REAL*8, REAL*16, or COMPLEX*16
data in either D_floating or G_floating format, and REAL*16 data in H_floating
format. Digital Fortran for OpenVMS Alpha programs (running on Alpha
hardware) store REAL*4, REAL*8, REAL*16, COMPLEX*8, and COMPLEX*16
data in one of the formats shown in Table 11–9.

Table 11–9 Floating-Point Data on VAX and Alpha Systems

Data Declaration VAX Formats Alpha Formats

REAL*4 and
COMPLEX*8

VAX F_floating format IEEE S_floating or VAX F_floating format

REAL*8 and
COMPLEX*16

VAX D_floating or G_
floating format

IEEE T_floating, VAX D_floating1, or VAX
G_floating format

REAL*16 VAX H_floating X_floating. Requires conversion, perhaps
using the /CONVERT qualifier or
associated OPTION statement, logical
name, or OPEN statement /CONVERT
keyword. You can also use the RTL
routine CVT$CONVERT_FLOAT.

1On Alpha systems, the use of VAX D_floating format involving many computations is not
recommended. Consider converting D_floating format to IEEE T_floating (or VAX G_floating) format
in a conversion program that uses the Digital Fortran for OpenVMS Alpha conversion routines.

11.5 Compatibility of DEC Pascal for OpenVMS Alpha Systems with
VAX Pascal

This section compares DEC Pascal to other Digital Pascal compilers and lists
the differences between DEC Pascal on VAX and Alpha systems. For a complete
description of these features, see the DEC Pascal Language Reference Manual.

11.5.1 New Features of DEC Pascal
Table 11–10 lists features not previously supplied in VAX Pascal.

Table 11–10 New Features of DEC Pascal

Feature Description

Support for OpenVMS
systems

Including all the data types available on the OpenVMS
platforms.

(continued on next page)

11–36 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.5 Compatibility of DEC Pascal for OpenVMS Alpha Systems with VAX Pascal

Table 11–10 (Cont.) New Features of DEC Pascal

Feature Description

Redefinable values for
predeclared constants

Values for MAXINT, MAXUNSIGNED, MAXREAL, MINREAL,
EPSREAL are defined by the platform and the compiler
switches for specifying the integer size and floating-point
format.

An optional quoted
parameter to the
COMMON, EXTERNAL,
GLOBAL, PSECT,
WEAK_EXTERNAL,
and WEAK_GLOBAL
attributes

Allows you to pass an unmodified identifier to the linker.

Double-quoted strings DEC Pascal now accepts the double-quote characters as string
and character delimiters.

Embedded string values Inside of double-quoted strings, DEC Pascal now supports
constant characters specified with a backslash as in the
C programming language, such as ‘‘"\n"’’ for the linefeed
character.

Additional data types
and values

DEC Pascal now supports these data types: ALFA,
CARDINAL, CARDINAL16, CARDINAL32, INTEGER16,
INTEGER32, INTEGER64, INTSET, POINTER, UNIV_PTR,
UNSIGNED16, UNSIGNED32, and UNSIGNED64.

Assignment of
UNSIGNED values
to INTEGER variables

DEC Pascal now allows UNSIGNED values to be assignment-
compatible with INTEGER variables and array indices.

Assignment of string
values into unpacked
arrays of characters

DEC Pascal now allows ARRAY of CHAR variables to be
treated as fixed-length character strings.

Additional statements DEC Pascal now supports these statements: BREAK,
CONTINUE, EXIT, NEXT, and RETURN.

Additional predeclared
routines

DEC Pascal now supports these functions and procedures:
ADDR, ARGC, ARGV, ASSERT, BITAND, BITNOT, BITOR,
BITXOR, HBOUND, LBOUND, FIRST, FIRSTOF, LAST,
LASTOF, IN_RANGE, LSHIFT, RSHIFT, LSHFT, RSHFT,
MESSAGE, NULL, RANDOM, SEED, REMOVE, SIZEOF,
SYSCLOCK, and WALLCLOCK.

Optional second
parameter to RESET,
REWRITE, and
EXTEND

DEC Pascal now accepts a second parameter that is a literal
string expression for the file name to be associated with the file
variable.

Compiler command
switches

DEC Pascal now includes switches that allow you to specify
the storage and alignment allocation for data types. You can
also specify the level of optimization with a switch. On Alpha
systems, an option controls the default meaning of the REAL
and DOUBLE data types. Arguments to the usage switch
enable messages relating to alignment, alignment compatibility
on different platforms, and features that are not available on a
specified platform.

OpenVMS Alpha Compilers 11–37

OpenVMS Alpha Compilers
11.5 Compatibility of DEC Pascal for OpenVMS Alpha Systems with VAX Pascal

11.5.2 Establishing Dynamic Condition Handlers
DEC Pascal provides the built-in routines, ESTABLISH and REVERT, to use in
place of LIB$ESTABLISH. If you declare and try to use LIB$ESTABLISH, you
will get a compile-time warning.

11.5.3 Modifying Default Alignment Rules for Record Fields
DEC Pascal allows you to override field alignment and position with the POS,
ALIGNED, and DATA attributes and the data compiler switch.

11.5.4 Recommended Use of Predeclared Identifiers
Although for backward compatibility DEC Pascal compiles programs that include
the predeclared identifiers listed in Table 11–11, Digital recommends that you use
the listed replacements.

Table 11–11 Recommended Use of Predeclared Identifiers

Identifier Recommended Usage

ADDR Use the ADDRESS function

ALFA Equivalent to TYPE ALFA = PACKED ARRAY [1..10]OF CHAR

BITAND Equivalent to the UAND statement

BITNOT Equivalent to the UNOT statement

BITOR Equivalent to the UOR statement

BITXOR Equivalent to the UXOR statement

EXIT Equivalent to the BREAK statement

FIRST,
FIRSTOF

Equivalent to the LOWER function

HBOUND Equivalent to the UPPER function

IN_RANGE Useful only when subrange checking is disabled. IN_RANGE(X) is
equivalent to (X�LOWER(X))AND(X�UPPER(X)).

INTSET Equivalent to TYPE INTSET = SET OF 0 .. 255;

LAST, LASTOF Equivalent to the UPPER function

LBOUND Equivalent to the LOWER function

LSHFT Equivalent to the LSHIFT function

MESSAGE Equivalent to WRITELN(ERR,expression)

NEXT Equivalent to the CONTINUE statement

NULL Equivalent to the empty statement

REMOVE Equivalent to the DELETE_FILE procedure

RSHFT Equivalent to the RSHIFT function

SIZEOF Equivalent to the SIZE function

STLIMIT Compiles but does not return an error

UNIV_PTR Equivalent to TYPE UNIV_PTR = POINTER;

11–38 OpenVMS Alpha Compilers

OpenVMS Alpha Compilers
11.5 Compatibility of DEC Pascal for OpenVMS Alpha Systems with VAX Pascal

11.5.5 Platform-Dependent Features
DEC Pascal can use an environment file only on the same platform (the
combination of operating system and hardware) on which it was compiled.

In addition, the following lists features of DEC Pascal supplied only on VAX
systems:

• QUADRUPLE data type

• H_floating-point data type

• VAX Pascal Version 1.0 dynamic arrays

• MFPR and MTPR predeclared routines

• [OVERLAID] attribute

• Table of contents in listing

• Optimize attribute on routines

The following lists features of DEC Pascal supplied only on Alpha systems:

• Abbreviations when reading enumerated data types

• Indexed file organization

• Relative file organization

11.5.6 Obsolete Features
This section describes features that are supported, but not recommended, by
Digital. They are provided only for compatibility with other Digital Pascal
compilers.

11.5.6.1 /OLD_VERSION Qualifier
The /OLD_VERSION qualifier directed the compiler to resolve differences
between VAX Pascal Version 1.0 and subsequent versions by using the
VAX Pascal Version 1.0 definition of the language. The qualifier is provided
so that existing programs continue to work.

11.5.6.2 /G_FLOATING Qualifier
The /G_FLOATING qualifier directs the compiler to use the G_floating
representation and instructions for values of type DOUBLE. The [[NO]G_
FLOATING] attribute can be specified on both OpenVMS VAX and OpenVMS
Alpha systems.

If the use of the /G_FLOATING qualifier conflicts with a double-precision
attribute specified in the source program or module, an error occurs. Routines
and compilation units between which double-precision quantities are passed
should not mix floating-point formats. Not all OpenVMS VAX processors support
the G_floating data types.

See also the description of the /FLOAT qualifier, which is the preferred method
for specifying the floating-point format to the compiler. The /FLOAT qualifier also
allows you to select the IEEE floating-point format, which is supported only on
Alpha systems.

OpenVMS Alpha Compilers 11–39

OpenVMS Alpha Compilers
11.5 Compatibility of DEC Pascal for OpenVMS Alpha Systems with VAX Pascal

11.5.6.3 OVERLAID Attribute
The OVERLAID attribute indicates how storage should be allocated for variables
declared within a compilation unit. If you specify OVERLAID on a compilation
unit, the variables declared at program or module level (unless they have the
STATIC or PSECT attribute) overlay the storage of static variables in all other
overlaid compilation units.

This attribute is intended for use only with programs that use the
decommitted separate compilation facility provided by VAX Pascal Version 1.0.

11–40 OpenVMS Alpha Compilers

A
Application Evaluation Checklist

This checklist is based on one used by Digital to evaluate applications for
OpenVMS Alpha.

Comments in brackets following a question are intended to help clarify the
purpose of that question.

Application Evaluation Checklist A–1

Application Evaluation Checklist

Application Evaluation Checklist

Development History and Plans

1. Does the application currently run on other operating
systems or hardware architectures?

YES NO

If yes, does the application currently run on a RISC
system?

YES NO

[If so, it will be easier to migrate to OpenVMS Alpha.]

2. What are your plans for the application after migration?
a. No further development YES NO
b. Maintenance releases only YES NO
c. Additional or changed functionality YES NO
d. Maintain separate VAX and Alpha sources YES NO
[If you answer YES to a, you may wish to consider
translating the application. A YES response to b or
c should give you reason to evaluate the benefits of
recompiling and relinking your application, although
translation is still possible. If you intend to maintain
separate VAX and Alpha sources, as indicated by a YES
to d, you may need to consider interoperability and
consistency issues, especially if the different versions of
the application can access the same database.]

External Dependencies

3. What is the system configuration (CPUs, memory, disks)
required to set up a development environment for the
application?
[This will help you plan for the resources needed for
migration.]

4. What is the system configuration (CPUs, memory, disks)
required to set up a typical user environment for the
application, including installation verification procedures,
regression tests, benchmarks, or workloads?
[This will help you determine whether your entire
environment is available on OpenVMS Alpha.]

5. Does the application rely on any special hardware? YES NO
[This will help you determine whether the hardware is
available on OpenVMS Alpha, and whether the application
includes hardware-specific code.]

6. a. What version of OpenVMS does your application
currently run on?
b. Does the application run on OpenVMS VAX Version 7.1? YES NO

A–2 Application Evaluation Checklist

Application Evaluation Checklist

c. Does the application use features that are not available
on OpenVMS Alpha?

YES NO

[The migration base for OpenVMS Alpha is OpenVMS
VAX Version 7.1. If you answer YES to c, your application
may use features that are not yet supported on OpenVMS
Alpha, or be linked against an OpenVMS RTL or other
shareable image that is incompatible with the current
version of OpenVMS Alpha.]

7. Does the application require layered products to run?
a. From Digital: (other than compiler RTLs) YES NO
b. From third parties: YES NO
[If you answer YES to a and are uncertain whether the
Digital layered products are yet available for OpenVMS
Alpha, check with a Digital support representative. If
you answer YES to b, check with your third-party product
supplier.]

Composition of the Application

8. How large is your application?
How many modules?
How many lines or kilobytes of code?
How much disk space is required?
[This will help you "size" the effort and the resources
required for migration.]

9. a. Do you have access to all source files that make up your
application?

YES NO

b. If you are considering using Digital Services, will it be
possible to give Digital access to these source files and build
procedures?

YES NO

[If you answer YES to a, translation may be your only
migration option for the files with missing sources. A YES
answer to b allows you to take advantage of a greater range
of Digital migration services.]

10. a. What languages is the application written in? (If
multiple languages are used, give the percentages of each.)
[If the compilers are not yet available, you must translate
or rewrite in a different language.]
b. If you use VAX MACRO, what are your specific reasons?
c. Could the function of the VAX MACRO code be
performed by a high-level-language compiler or a system
service (such as $GETJPI for retrieving process names)?

YES NO

Application Evaluation Checklist A–3

Application Evaluation Checklist

[Digital does not recommend the use of VAX MACRO
or the MACRO–64 Assembler for OpenVMS Alpha in
Alpha applications. You may be able to replace assembly-
language code in certain user-mode applications by a call
to an OpenVMS system service that did not exist when the
application was first written.]

11. a. Do you have regression tests for the application? YES NO
b. If yes, do they require DEC Test Manager? YES NO
[If you answer YES to a, you should consider migrating
those regression tests. The DEC Test Manager is not
available at the initial release of OpenVMS Alpha. Contact
a Digital support representative if your regression tests
depend on this product.]

Dependencies on the VAX Architecture

12. a. Does the application use the H_floating data types? YES NO
b. Does the application use the D_floating data types? YES NO
c. If the application uses D_floating, does it require 56 bits
of precision (16 decimal digits) or would 53 bits (15 decimal
digits) suffice?

56 bits 53 bits

[If you answer YES to a, you must either translate your
application to obtain H_floating compatibility, or convert
the data to G_floating, S_floating, or T_floating format.
If you answer YES to b, you must either translate the
application to obtain full 56-bit VAX precision D_floating
compatibility, accept the 53-bit precision D_floating format
provided by Alpha systems, or convert the data to G_
floating, S_floating, or T_floating format.]

13. a. Does the application use large amounts of data or data
structures?

YES NO

b. Is the data byte, word, or longword aligned? YES NO
[If you answer YES to a, but NO to b, you should consider
aligning your data naturally to achieve optimal Alpha
performance. You must align data naturally if the data is
in a global section shared among a number of processes, or
is shared between a main program and an AST.]

14. Does the application make assumptions about how
compilers align data (that is, does the application assume
that data structures are: packed, aligned naturally, aligned
on longwords, and so forth)?

YES NO

[If you answer YES, you should consider portability
and interoperability issues resulting from differences in
compiler behavior, both on the Alpha platform and between
the VAX and Alpha platforms. Be aware that compiler
defaults for data alignment vary, as do compiler switches
for forcing alignment. Typically, VAX systems default to a
packed style alignment, whereas Alpha compilers default to
natural alignment where possible.]

A–4 Application Evaluation Checklist

Application Evaluation Checklist

15. a. Does the application assume a 512-byte page size? YES NO
b. Does the application assume that a memory page is the
same size as a disk block?

YES NO

[If you answer YES to a, you should be prepared to adapt
the application to accommodate the Alpha page size, which
is much larger than 512 bytes and varies from system
to system. Avoid hardcoded references to the page size;
rather, use memory management system services and RTL
routines wherever possible. If you answer YES to b, you
should examine all calls to the $CRMPSC and $MGBLSC
system services that map disk sections to memory and
remove these assumptions.]

16. Does the application call OpenVMS system services? YES NO
Specifically, services that:
a. Create or map global sections (such as $CRMPSC,
$MGBLSC, $UPDSEC)

YES NO

b. Modify the working set (such as $LCKPAG, $LKWSET) YES NO
c. Manipulate virtual addresses (such as $CRETVA,
$DELTVA)

YES NO

[If you answer YES to any of these, you may need to
examine your code to determine that it specifies the
required input parameters correctly.]

17. a. Does the application use multiple, cooperating processes? YES NO
If so:
b. How many processes?
c. What interprocess communication method is used?

$CRMPSC Mailboxes SCS Other
DLM SHM, IPC SMG$ STR$

d. If you use global sections ($CRMPSC) to share data with
other processes, how is data access synchronized?
[This will help you determine whether you will need to use
explicit synchronization, and the level of effort required
to guarantee synchronization among the parts of your
application. Use of a high-level synchronization method
generally allows you to migrate an application most easily.]

18. Does the application currently run in a multiprocessor
(SMP) environment?

YES NO

[If you answer YES, it is likely that your application
already uses adequate interprocess synchronization
methods.]

Application Evaluation Checklist A–5

Application Evaluation Checklist

19. Does the application use AST (asynchronous system trap)
mechanisms?

YES NO

[If you answer YES, you should determine whether the AST
and main process share access to data in process space. If
so, you may need to explicitly synchronize such accesses.]

20. a. Does the application contain condition handlers? YES NO
b. Does the application rely on immediate reporting of
arithmetic exceptions?

YES NO

[The Alpha architecture does not provide immediate
reporting of arithmetic exceptions. If your handler
attempts to fix the condition and restart the instruction
sequence that led to the exception, you will need to alter
the handler.]

21. Does the application run in privileged mode or link against
SYS.STB?

YES NO

If so, why?
[If your application links against the OpenVMS executive
or runs in privileged mode, you must rewrite it for it to
work as a native Alpha image.]

22. Do you write your own device drivers? YES NO
[User-written device drivers are not supported in the initial
release of OpenVMS Alpha. Contact a Digital support
representative if you need this feature.]

23. Does the application use connect-to-interrupt mechanisms? YES NO
If yes, with what functionality?
[Connect-to-interrupt is not supported on OpenVMS Alpha
systems. Contact a Digital support representative if you
need this feature.]

24. Does the application create or modify machine instructions? YES NO
[Guaranteeing correct execution of instructions written to
the instruction stream requires great care on OpenVMS
Alpha.]

25. What parts of the application are most sensitive to
performance? I/O, floating point, memory, realtime (that is,
interrupt latency, and so on).
[This will help you determine how to prioritize work on the
various parts of your application and allow Digital to plan
performance enhancements that are most meaningful to
customers.]

A–6 Application Evaluation Checklist

Glossary

alignment

See natural alignment.

atomic instruction

An instruction that consists of one or more discrete operations that are handled
by the hardware as a single operation, without interruption.

atomic operation

An operation that cannot be interrupted by other system events, such as an AST
(asynchronous system trap) service routine; an atomic operation appears to other
processes to be a single operation. Once an atomic operation starts, it always
completes without interruption.

Read-modify-write operations are typically not atomic at an instruction level on a
RISC machine.

byte granularity

A property of memory systems in which adjacent bytes can be written
concurrently and independently by different processes or processors.

CISC

See complex instruction set computer.

compatibility

The ability of programs written for one type of computer system (such as
OpenVMS VAX) to execute on another type of system (such as OpenVMS Alpha).

complex instruction set computer (CISC)

A computer that has individual instructions that perform complex operations,
including complex operations performed directly on locations in memory.
Examples of such operations include instructions that do multibyte data moves or
substring searches. CISC computers are typically contrasted with RISC (reduced
instruction set computer) computers.

concurrency

Simultaneous operations by multiple agents on a shared object.

cross development

The process of creating software using tools running on one system, but targeted
for another type of system; for example, creating code for Alpha systems using
tools running on a VAX system.

Glossary–1

granularity

A characteristic of storage systems that defines the amount of data that can be
read or written with a single instruction, or read or written independently. VAX
systems have byte or multibyte granularities while disk systems typically have
512-byte or greater granularities.

image information fi le (IIF)

An ASCII file that contains information about the interface between VAX images.
VEST uses IIFs to resolve references to other images and to generate the
appropriate linkages.

image section

A group of program sections with the same attributes (such as read-only access,
read/write access, absolute, relocatable, and so on) that is the unit of virtual
memory allocation for an image.

interlocked instruction

An instruction that performs some action in a way that guarantees the complete
result as a single, uninterruptible operation in a multiprocessing environment.
Since other potentially conflicting operations can be blocked while the interlocked
instruction completes, interlocked instructions can have a negative performance
impact.

jacket routine

A procedure that converts procedure calls from one calling standard to another;
for example, calls between translated VAX images, which use the VAX calling
standard, and native Alpha images, which use the Alpha calling standard.

load/store architecture

A machine architecture in which data items are first loaded into a processor
register, then operated on, and finally stored back to memory. No operations on
memory other than load and store are provided by the instruction set.

longword

Four contiguous bytes (32 bits) starting on any addressable byte boundary. Bits
are numbered from right to left, 0 to 31. The address of the longword is the
address of the byte containing the low-order bit (bit 0). A longword is naturally
aligned if its address is evenly divisible by 4.

multiple instruction issue

Issuing more than one instruction during a single clock cycle.

natural alignment

Data storage in memory such that the address of the data is evenly divisible by
the size of the data in bytes. For example, a naturally aligned longword has an
address that is evenly divisible by 4, and a naturally aligned quadword has an
address that is evenly divisible by 8. A structure is naturally aligned when all its
members are naturally aligned.

page size

The number of bytes that a system’s hardware treats as a unit for address
mapping, sharing, protection, and movement to and from secondary storage.

Glossary–2

pagelet

A 512-byte unit of memory in an Alpha environment. On Alpha systems, certain
DCL and utility commands, system services, and system routines accept as input
or provide as output memory requirements and quotas in terms of pagelets.
Although this allows the external interfaces of these components to be compatible
with those of VAX systems, OpenVMS Alpha internally manages memory only in
even multiples of the CPU memory page size.

PALcode

See privileged architecture library.

privileged architecture library (PAL)

A library of callable routines for performing instructions unique to a particular
operating system. Special instructions call the routines, which must run without
interruption.

processor status (PS)

On Alpha systems, a privileged processor register consisting of a quadword of
information including the current access mode, the current interrupt priority
level (IPL), the stack alignment, and several reserved fields.

processor status longword (PSL)

On VAX systems, a privileged processor register consisting of a word of privileged
processor status and the processor status word itself. The privileged processor
status information includes the current interrupt priority level (IPL), the previous
access mode, the current access mode, the interrupt stack bit, the trace trap
pending bit, and the compatibility mode bit.

processor status word (PSW)

On VAX systems, the low-order word of the processor status longword. Processor
status information includes the condition codes (carry, overflow, 0, negative),
the arithmetic trap enable bits (integer overflow, decimal overflow, floating
underflow), and the trace enable bit.

program counter (PC)

That portion of the CPU that contains the virtual address of the next instruction
to be executed. Most current CPUs implement the program counter as a register.
This register is visible to the programmer through the instruction set.

quadword

Four contiguous words (64 bits) starting on any addressable byte boundary.
Bits are numbered from right to left, 0 to 63. The address of a quadword is the
address of the word containing the low-order bit (bit 0). A quadword is naturally
aligned if its address is evenly divisible by 8.

quadword granularity

A property of memory systems in which adjacent quadwords can be written
concurrently and independently by different processes or processors.

read-modify-write operation

A hardware operation that involves the reading, modifying, and writing of a piece
of data in main memory as a single, uninterruptible operation.

Glossary–3

read-write ordering

The order in which memory on one CPU becomes visible to an execution agent (a
different CPU or device within a tightly coupled system).

reduced instruction set computer (RISC)

A computer that has an instruction set reduced in complexity, but not necessarily
in the number of instructions. RISC architectures typically require more
instructions than CISC architectures to perform a given operation, because an
individual instruction performs less work than a CISC instruction.

RISC

See reduced instruction set computer.

synchronization

A method of controlling access to some shared resource so that predictable, well-
defined results are obtained when operating in a multiprocessing environment or
in a uniprocessing environment using shared data.

translated code

The native Alpha object code in a translated image. Translated code includes:

• Alpha code that reproduces the behavior of equivalent VAX code in the
original image

• Calls to the Translated Image Environment (TIE)

translated image

An Alpha executable or shareable image created by translation of the object code
of a VAX image. The translated image, which is functionally equivalent to the
VAX image from which it was translated, includes both translated code and the
original image. See VAX Environment Software Translator.

Translated Image Environment (TIE)

A native Alpha shareable image that supports the execution of translated
images. The TIE processes all interactions with the native Alpha system and
provides an environment similar to OpenVMS VAX for the translated image by
managing VAX state; by emulating VAX features such as exception processing,
AST delivery, and complex VAX instructions; and by interpreting untranslated
VAX instructions.

translation

The process of converting a VAX binary image to an Alpha image that runs with
the assistance of the TIE on an Alpha system. Translation is a static process that
converts as much VAX code as possible to native Alpha instructions. The TIE
interprets any untranslated VAX code at run time.

VEST

See VAX Environment Software Translator.

VAX Environment Software Translator (VEST)

A software migration tool that performs the translation of VAX executable
and shareable images into translated images that run on Alpha systems. See
translated image.

Glossary–4

word granularity

A property of memory systems in which adjacent words can be written
concurrently and independently by different processes or processors.

writable global section

A data structure (for example, FORTRAN global common) or shareable
image section potentially available to all processes in the system for use in
communicating between processes.

Glossary–5

Index

A
ACCEPT statement

differences, 11–20
ANSI, 11–20
extensions to ANSI, 11–20

Access modes
inner, 2–6

_ _ADD_ATOMIC_LONG built-in, 11–7
_ _ADD_ATOMIC_QUAD built-in, 11–7
$ADJWSL system service

page-size dependencies, 5–2
Alignment

See Data alignment
/ALIGNMENT=PADDING qualifier, 11–13
/ALIGNMENT qualifier

DEC COBOL support for, 11–11
Allocating memory

by expanding virtual address space
page-size dependencies, 5–6

freeing allocated memory
page-size dependencies, 5–9

page-size dependencies, 5–6
reallocating existing virtual addresses

page-size dependencies, 5–8
specifying address ranges, 5–8
specifying page counts, 5–6
using the $CRETVA system service, 5–9
using the $EXPREG system service, 5–7

Alpha architecture
compared to other RISC architectures, 1–5 to

1–7
compared to VAX, 1–4
general description, 1–4
register set differences, 11–22

(ex.), 11–22
Alpha instructions

accessing from DEC C, 11–6
Analyze/Image utility (ANALYZE/IMAGE), 3–6
Analyze/Object utility (ANALYZE/OBJECT), 3–6
Analyzing an application, 2–17 to 2–18
_ _AND_ATOMIC_LONG built-in, 11–7
_ _AND_ATOMIC_QUAD built-in, 11–7
AP

See Argument pointer (AP)

Application Migration Detailed Analysis Service,
1–9

Application Migration Service, 1–10
Applications

analyzing, 2–17 to 2–18
establishing baseline values for, 3–12
languages used, A–3
size, A–3

Architecture
dependencies, 2–7

ARCH_NAME keyword
determining host architecture, 4–5

ARCH_TYPE keyword
determining host architecture, 4–4

Argument lists
accessing from DEC C, 11–8

Argument pointer (AP), 2–14
Arithmetic exceptions, 2–14

on Alpha systems, 8–8
precise

VEST qualifiers, 2–23
Assembly language

no performance advantage on Alpha, 2–6
replaced by system services, 2–6

AST parameter list
reliance on architectural details of, 2–16

ASTs (asynchronous system traps), 1–6, A–6
sharing data, 2–10
synchronizing with, 2–11

AST service routines
dependence on parameter list, 2–16

Asynchronous system traps
See ASTs

Atomic instructions
effect on synchronization, 6–2

Atomicity
DEC C support, 11–7
definition, 2–10
language constructs to guarantee, 2–10
of byte and word write operations, 2–11, 2–21
of read-modify-write operations, 2–21
preserving in translated images, 6–10
provided by PALcode, 1–6
VEST qualifiers

instruction, 2–22
memory, 2–22

Index–1

B
Based images, 2–5
Baseline values for application

establishing, 3–12
BASIC

translated images, 9–10
Behavior differences

between DEC COBOL and VAX COBOL, 11–14
to 11–28

BLAS$ functions invoked by translated images,
9–10

BLAS1RTL translated library, 9–10
/BPAGE linker qualifier

linking VAX images to be translated, 2–23,
10–4

Buffer sizes
in mixed-architecture OpenVMS Cluster

systems, 2–12
Bugs

latent, 3–13
Build procedures, 2–2

changes required, 1–1
Byte granularity, 2–11, 2–21

effect on synchronization, 6–2
specifying, 2–12

C
C

header files for defining macros, 3–5
LIB$ESTABLISH, 8–1, 11–8

Call frames
interpreting contents of, 2–14

Calling standard
reliance on, 2–14

Calls
nonstandard

writing jacket routines for, 2–24
CALLx VAX instruction, 2–24
Choosing a migration method, 2–3, 2–21
CLUE (Crash Log Utility Extractor)

See Crash Log Utility Extractor
$CMEXEC system service, 2–6
$CMKRNL system service, 2–6
CMS (Code Management System), 2–2, 3–2
COBOL

fast performance, 2–9
packed decimal data, 2–9

COBOL programs support, 9–12
COBOL qualifiers, list of

/ALIGNMENT=[NO]PADDING, 11–13
/VFC, 11–20

Code Management System
See CMS

Code reviews, 2–17
Coding

based on architectural differences, 11–22
Command line qualifiers, 11–12 to 11–14

DEC COBOL only (tab.), 11–12
VAX COBOL only (tab.), 11–13

Command procedures, 1–1
Compatibility

file compatibility, 11–26
fixed-length records, 11–26
granularity specified by compiler, 2–12
mixing native and translated images, 1–9
OpenVMS VAX and OpenVMS Alpha, 1–1 to

1–3
ORGANIZATION INDEXED file, reading,

11–26
using translation for, 1–8, 2–22

Compile commands
changes required, 3–4

Compile procedures, 3–2
Compiler listing files

multiple instances of source line, 11–18
separate compilation, 11–19

Compilers
architectural differences, 3–5
availability on Alpha, 2–3, 3–4
availability on Alpha systems, 4–1
BLISS, 3–10
commands, 3–4
compatibility between compilers on VAX

systems and on Alpha systems, 11–1 to
11–40

data alignment defaults, 2–21
differences, 11–1
messages generated by, 2–17
native Alpha, 2–3, 3–4
optimizing, 3–4
options

exception reporting, 8–9
PALcode built-ins, 1–6
qualifiers, 1–1
qualifiers for VAX dependencies, 3–4
specifying granularity, 2–12
use of LIB$ESTABLISH routine, 8–1

Conditional compilation directives
DEC C incompatibility with VAX C, 11–10

Condition code
matching, 8–6

Condition handlers, A–6
establishing dynamic, 2–15, 8–1, 11–8, 11–30,

11–38
Condition handling

alignment fault reporting, 8–10
arithmetic exceptions, 8–8
condition codes, 8–6
enabling overflow detection, 8–12
hardware exception conditions, 8–7
mechanism array format, 8–3

Index–2

Condition handling (cont’d)
on Alpha systems, 8–1
run-time library support routines, 8–11
signal array format, 8–2
specifying condition handlers, 8–12
unwinding, 8–5
VAX hardware exceptions, 8–7
with translated images, 8–7
writing condition handlers, 8–2

Connect-to-interrupt mechanisms, A–6
Control byte sequences, 11–19
Converting

VAX COBOL programs, 11–11
using the /STANDARD=OPENVMS_AXP

qualifier option, 11–14
/CONVERT qualifier

LEADING_BLANKS option
DEC COBOL support for, 11–11

COPY REPLACING statement
differences

line numbers in compiler listing files,
11–18

COPY statement
differences, 11–15

DEC COBOL on OpenVMS Alpha (ex.),
11–15

inserting text midline, 11–17
DEC COBOL on OpenVMS Alpha (ex.),

11–17
inserting text midline (ex.), 11–17
multiple COPY statements, 11–16

DEC COBOL on OpenVMS Alpha (ex.),
11–16

multiple COPY statments (ex.), 11–17
VAX COBOL (ex.), 11–16

CPU keyword
determining the host architecture, 4–5

Crashes
analyzing, 3–11

Crash Log Utility Extractor (CLUE), 3–12
$CREPRC system service

page-size dependencies, 5–2
$CRETVA system service, A–5

code example, 5–9
page-size dependencies, 5–2
reallocating memory on an Alpha system, 5–8

$CRMPSC system service, 2–6, 2–12, 2–13, A–5
mapping a single page section

page-size dependencies, 5–12
mapping into a defined address range

code example, 5–14
page-size dependencies, 5–13

page-size dependencies, 5–2
used to map into expanded virtual address

space
code example, 5–11
page-size dependencies, 5–10

D
Data

See also Data alignment
ODS-1 format not supported in Alpha, 1–2
ODS-2 format unchanged, 1–2
porting between Digital Fortran for OpenVMS

Alpha and Digital Fortran 77 for OpenVMS
VAX Systems, 11–36

shared
access, 2–7
unintentional sharing, 6–8

Data alignment, 2–7 to 2–8, 2–11, 2–21, A–4
compiler defaults, 2–21
compiler options, 2–7, 2–8
DEC Ada support, 11–2
DEC C support, 11–8
DEC Pascal support, 11–38
exception reporting, 8–10
finding unaligned data, 2–7
global sections, 2–5
incompatibility with translated software, 2–8
performance, 2–7, 2–21
run-time faults, 2–18
static unaligned data, 2–18
unaligned stack operations, 2–18
VEST qualifiers, 2–22

Databases
same function on Alpha, 1–3

Data types, 2–8 to 2–10
Alpha implementations, 2–8
decimal, 2–9
differences between Digital Fortran for

OpenVMS Alpha and Digital Fortran 77 for
OpenVMS VAX Systems, 11–36

D_floating, 1–6, 2–9, 2–18, 2–21
full precision, 1–2, A–4

G_floating, 1–2, 2–9, 2–21
H_floating, 1–2, 1–6, 2–7, 2–9, 2–18, 2–21, A–4
IEEE formats, 2–10

little endian, 1–2
packed decimal, 2–18, 2–21
portability between VAX and Alpha systems,

7–1
supported by Alpha architecture, 7–1
supported by VAX architecture, 7–1

Data-type sizes
DEC C portability macros, 11–5
effect on protection of shared data, 6–9
supported by DEC C, 11–5

DATE-COMPILED statement
differences, 11–18

DEC COBOL on OpenVMS Alpha (ex.),
11–18

VAX COBOL (ex.), 11–18
listing multiple instances of source line, 11–18

Index–3

DCL (DIGITAL Command Language), 1–1
Debugger, 3–8 to 3–11

Delta/XDelta, 3–10
detecting unaligned data, 2–7
native Alpha, 3–6
OpenVMS, 3–9
System Code Debugger, 3–10

Debugging, 3–6, 3–8 to 3–11
on Alpha hardware only, 3–8
program structure in relation to, 11–28
restrictions on Alpha systems, 3–9
translated images, 3–10

DEC Ada
compatibility with VAX Ada, 11–1
language pragma support on Alpha systems,

11–2
system package support on Alpha systems,

11–3
DEC C

accessing Alpha instructions, 11–6
accessing VAX instructions, 11–7
ANSI conformance, 11–4
atomicity built-ins, 11–7
64-bit capabilities, 11–5
compatibility modes, 11–4
controlling data alignment, 11–8
data-type-size portability macros, 11–5
establishing dynamic condition handler, 11–8
features specific to Alpha systems, 11–6
specifying floating-point formats, 11–6
/STANDARD qualifier, 11–4
supported data-types, 11–5
support for pcc mode, 11–4
VAX C mode, 11–4

incompatibilities with VAX C, 11–10
DEC C for OpenVMS Alpha systems

See DEC C
DEC COBOL

command line flags
more information, 11–12

command line qualifiers
more information, 11–12
new, 11–12
new (tab.), 11–12

compatibility
ACCEPT statement, 11–20
arithmetic operations, 11–26
between DEC COBOL and VAX COBOL,

11–11
calling shareable images, 11–25
COPY statement, 11–15
DBMS support, 11–28
/DEBUG qualifier, 11–27
DECset/LSE, 11–28
diagnostic messages, 11–22
DISPLAY statement, 11–20
Divide-by-zero, 11–22

DEC COBOL
compatibility (cont’d)

EXIT PROGRAM Statement, 11–21
Extensions and features, 11–11
file status values, 11–24
Flags, 11–12
key of reference, 11–24
LINAGE statement, 11–21
machine code listing, 11–15
module names, 11–15
MOVE statement, 11–21
Multistream Oracle DBMS DML, 11–28
/NATIONALITY=JAPAN, 11–12
/NATIONALITY=US, 11–12
program structure, 11–14
qualifiers, 11–13
Qualifiers, 11–12
REPLACE statement, 11–18
RMS special registers, 11–25
SEARCH statement, 11–22
sharing common blocks, 11–25
SHR, 11–25
/STANDARD=V3, 11–13
statements, differences in, 11–20
storage of double-precision data, 11–24
system return codes, 11–22
truncation, 11–24
VFU CHANNEL, 11–19
/WARNINGS=ALL, 11–14

current product information
location of, 11–12

differences from VAX COBOL, 11–11
features

partial list of, 11–11
DECforms, 1–1
DEC Fortran for OpenVMS Alpha

compatibility with DEC Fortran for OpenVMS
VAX Systems
restrictions, 11–31

compatibility with Digital Fortran 77 for
OpenVMS VAX Systems
architectural differences, 11–31
command line, 11–32
interpretation differences, 11–32
porting data, 11–36

establishing dynamic condition handler, 11–30
interoperability considerations, 11–35
intrinsic names

prefixes, 11–35
LIB$ESTABLISH routine, 11–30
LIB$REVERT routine, 11–30
performing I/O from native and translated

images, 11–35
porting data, 11–36
qualifiers not available in Digital Fortran 77 for

OpenVMS VAX Systems, 11–33
qualifiers specific to Digital Fortran 77 for

OpenVMS VAX Systems, 11–34

Index–4

DEC Fortran for OpenVMS Alpha (cont’d)
support for floating-point data types, 11–36

DECmigrate
See also TIE and Translated image support
support for translated images, 9–2
VEST, 9–2

/PRESERVE qualifier, 6–10
DEC Pascal

compatibility with VAX Pascal, 11–39
differences with VAX Pascal, 11–36
establishing dynamic condition handler, 11–38
/G_FLOATING qualifier, 11–39
identifiers included for compatibility, 11–38
LIB$ESTABLISH routine, 8–1, 11–38
new features, 11–36
obsolete features, 11–39
/OLD_VERSION qualifier, 11–39
OVERLAID attribute, 11–40
specifying floating-point format, 11–39
support for data alignment, 11–38

DECset, 3–6
DECthreads

.H file support, 11–9
DECwindows, 1–1
Delta/XDelta Debugger (DELTA/XDELTA), 3–8

See also Debugger
OpenVMS Alpha, 3–10

$DELTVA system service, A–5
freeing allocated memory

page-size dependencies, 5–9
page-size dependencies, 5–3

Dependencies on other software
identifying, 2–1

$DEQ system service, 2–10, 2–13
Design comments

unsupported by DEC COBOL, 11–11
/DESIGN qualifier

unsupported by DEC COBOL, 11–11
Device configuration functions

in SYSMAN for Alpha, 1–2
Device drivers, 2–5

debugging, 3–10
Step 1 interface, 1–6
Step 2 interface, 1–6
user-written, 1–6, 2–6, A–6
written in C, 1–6

Diagnostic features
compilers, 2–17
VEST, 2–17

DIGITAL Command Language
See DCL

Digital Fortran for OpenVMS Alpha
compatibility with DEC Fortran for OpenVMS

VAX Systems, 11–28
compatibility with Digital Fortran 77 for

OpenVMS VAX Systems
language features, 11–28

Digital Fortran for OpenVMS Alpha (cont’d)
differences with Digital Fortran 77 for

OpenVMS VAX Systems, 11–28
LIB$ESTABLISH routine, 8–1
LIB$REVERT routine, 8–1

Digital Portable Mathematics Library
See DPML

Disk block size
relation to page size, 2–13

DISPLAY statement
differences, 11–20

DMA controller, 2–11
Double-precision data

storage differences, 11–24
DPML (Digital Portable Mathematics Library)

compatibility, 4–4
Dump files

See System dump files
Dynamic condition handler

establishing, 2–15
D_floating data type, 1–2, 1–6, 2–9, 2–18

E
Editors

unchanged for Alpha, 1–1
$ENQ system service, 2–10, 2–13
Evaluating code, 1–7

checklist, A–1
Exception handling

See Condition handling
Exception reporting, 2–14

compiler options, 8–9
immediacy of, A–6
precise, 2–22
reliance on architectural details of, 2–16

Executive images
slicing, 3–11

$EXPREG system service
allocating memory on Alpha systems, 5–6
code example, 5–7
page-size dependencies, 5–3

F
File

data type differences, 11–27
File status values

DEC COBOL support for, 11–11
differences, 11–24

File types
on Alpha systems, 4–2

Flag-passing protocols
for synchronization, 2–13

flags
with no VAX COBOL equivalent qualifiers,

11–12

Index–5

Floating-point data types
comparison of VAX and Alpha types, 2–8,

11–36
converting H_floating data, 11–36
CVT$CONVERT_FLOAT RTL routine, 11–36
differences between Digital Fortran 77 for

OpenVMS VAX Systems and Digital
Fortran for OpenVMS Alpha, 11–36

locating references, 2–18
supported by DEC Ada, 11–2
supported by DEC C, 11–6
supported by DEC Pascal, 11–39
VAX little-endian formats, 11–36

/FLOAT qualifier
DEC COBOL support for, 11–11
specifying floating-point format in DEC C, 11–6

Fortran
/CHECK qualifier, 2–17
qualifier needed for translated image support,

9–6
free routine

memory allocation, 5–1

G
Generating VAX instructions at run time, 2–5,

2–17, 2–23
$GETJPI system service

page-size dependencies, 5–4
$GETQUI system service

page-size dependencies, 5–4
$GETSYI system service, 2–13

determining host architecture, 4–4
obtaining the system page size, 5–20
page-size dependencies, 5–4

$GETUAI system service
page-size dependencies, 5–4

Global sections
alignment of, 2–5
creating, A–5
mapping, A–5
writable, 2–10

Global symbol tables
See GSTs

Granularity, 2–8, 2–11 to 2–13
of byte and word operations, 2–21, 2–23
VEST qualifiers

memory, 2–23
GSTs (Global symbol tables), 2–24
G_floating data type, 1–2, 2–9

H
Handling record operations

using RMS special registers, 11–25

Heap Analyzer, 3–8
.H files

from SYS$STARLET_C.TLB to support
DECthreads, 11–9

provided by SYS$STARLET_C.TLB, 11–9
HW_MODEL keyword

determining the host architecture, 4–5
H_floating data type, 1–2, 1–6, 2–7, 2–9, 2–18

I
I/O operations

differences with RMS special registers, 11–25
IEEE data types

little endian, 1–2
IEEE floating-point data types, 2–10

supported by DEC Ada, 11–2
supported by DEC C, 11–6

IIFs (image information files), 9–3
provided with Alpha software, 9–6, 9–7

Image information files
See IIFs

Images
creating, 4–2
translated

condition handling, 8–7
creating, 10–1
preserving atomicity in, 6–10
replacing with native Alpha image, 10–6
using in a link operation, 10–4

Imprecise exception reporting, 2–14
inadr argument

used with $CRETVA system service, 5–8
Include files

for C programs, 3–2
Initializing data structures

DEC C incompatibility with VAX C, 11–10
Inner access modes, 2–5, 2–6
INSQUEx instruction

accessing from DEC C, 11–7
Instructions

atomicity, 2–10 to 2–11
provided by PALcode, 1–6
VEST qualifiers, 2–22

memory barrier, 2–13
multiple instruction issue, 1–5
out-of-order completion, 1–6
parallel execution, 1–6

Instruction stream
inspecting, 2–5

Interlocked instructions
supported by DEC C, 11–7

Interoperability
between native and translated images, 9–2
compile-time considerations, 10–2
compiling native Alpha images, 10–1
confirming, 3–13

Index–6

Interoperability (cont’d)
controlling the layout of symbol vectors, 10–6
creating native images that can be called by

translated images, 10–5
creating native images that can call translated

images, 10–2
creating stub images, 10–8
linking native Alpha images, 10–2
of native Alpha and translated images, 1–9,

2–18, 2–23
of translated and native images, 10–1
using the /BPAGE qualifier, 10–4

Interrupt priority level
See IPL

IPL (interrupt priority level)
elevated, 2–5
retained on Alpha, 1–6

J
Jacket routines, 2–24, 3–7

created automatically, 2–24
creating stub images, 10–8
writing for nonstandard calls, 2–24

JSB VAX instruction, 2–24

L
Languages, programming

See programming languages
Language Sensitive Editor (LSE)

Program Design Facility (PDF)
unsupported by DEC COBOL, 11–11

$LCKPAG system service, A–5
page-size dependencies, 5–4

LIB$ESTABLISH routine, 2–15, 8–1, 11–8, 11–30,
11–38

support on Alpha systems, 8–12
LIB$FIND_IMAGE_SYMBOL routine, 9–5
LIB$FREE_VM_PAGE routine

page-size dependencies, 5–6
LIB$GET_VM_PAGE routine

page-size dependencies, 5–6
LIB$MATCH_COND routine, 8–6
LIB$REVERT routine, 2–15, 11–30
Librarian utility (LIBRARIAN)

native Alpha, 3–6
Library (LIB$) routines, 2–10

LIB$ESTABLISH, 2–15
LIB$REVERT, 2–15
not on Alpha, 1–2

LINAGE clause
differences, 11–21

handling large values, 11–21
using with WRITE statement, 11–21

Link commands
changes required, 3–4

Linker utility
/BPAGE option, 2–23
commands, 3–4
default page size, 3–4
features specific to OpenVMS Alpha, 4–2
native Alpha, 3–6
/NONATIVE_ONLY option, 2–24
options file changes, 1–1

Linking
creating native Alpha images, 4–2
creating native images that can call translated

images, 10–2
Link procedures, 3–2
Listing files

separate compilation, 11–19
Little-endian data types, 1–2
$LKWSET system service, A–5

page-size dependencies, 5–4, 5–21
Load locked instruction (LDxL), 6–3
Load/store operations, 1–5
Locking mechanisms

for accessing byte variables, 2–12
Locking pages

page-size dependencies, 5–21
Locking services

$DEQ, 2–10, 2–13
$ENQ, 2–10, 2–13

Logical names
for tools and files, 3–2
run-time libraries, 9–10
systemwide definitions, 9–8

Logic errors, 11–14
finding them in programs, 11–28

M
Machine code in listings, 11–15
Machine instructions

creating, A–6
MACRO–32 compiler, 3–5
MACRO–64 assembler, 3–6
MACRO code

replacing, A–3
malloc routine

memory allocation, 5–1
Managing code migration, 1–8
Mapping memory

See Memory mapping
Mapping sections

into expanded virtual address space
page-size dependencies, 5–10

mapping a single page
page-size dependencies, 5–12

mapping into a defined address range
page-size dependencies, 5–13

Index–7

MAT functions used by translated BASIC images,
9–10

Mathematic routines
compatibility, 4–4

MB instruction
accessing from DEC C, 11–6

Mechanism array
format, 8–3
reliance on architectural details of, 2–16
using the depth argument, 8–5

/MEMBER_ALIGNMENT qualifier
controlling data alignment in DEC C, 11–8

Memory allocation
by expanding virtual address space

page-size dependencies, 5–6
finding page-size dependencies in, 5–6
freeing allocated memory

page-size dependencies, 5–9
page-size dependencies, 5–1
reallocating existing virtual addresses

page-size dependencies, 5–8
specifying address ranges, 5–8
specifying page counts, 5–6
using the $CRETVA system service, 5–9
using the $EXPREG system service, 5–7

Memory barrier
See MB instruction

Memory barrier instructions, 2–13
Memory locking

page-size dependencies, 5–1, 5–21
Memory management functions

page-size dependencies, 5–1
summary, 5–2 to 5–5

Memory-management system services, 2–13
Memory mapping

into expanded virtual address space
page-size dependencies, 5–10

mapping a single page
page-size dependencies, 5–12

mapping into a defined address range
page-size dependencies, 5–13
required changes, 5–16

page-size dependencies, 5–1
using the $CRMPSC system service, 5–11

Memory protection
page-size dependencies, 5–1
page size granularity, 2–12

Message utility (MESSAGE)
native Alpha, 3–6

$MGBLSC system service, 2–13, A–5
page-size dependencies, 5–4

Migrating
ease of, 1–1
privileged code, 2–6
third-party products, 2–2
user-mode code, 1–1, 1–8

Migration Assessment Service, 1–9
Migration methods

and program architectural dependencies, 2–21
comparison of, 2–18
for user-mode code, 1–8
illustration of, 1–8
selecting, 2–3, 2–21

Migration planning
services, 1–9

Migration services
Application Migration, 1–10
Application Migration Detailed Analysis, 1–9
Migration Assessment, 1–9
System Migration, 1–10
System Migration Detailed Analysis, 1–10

Migration tools, 3–2
Mixing native Alpha and translated images

as a stage in migration, 1–9
possibility of, 1–9

MMS (Module Management System), 2–2, 3–2
Module Management System

See MMS
Module names, 11–15
MOVE statement

differences, 11–21
referencing signed data items, 11–21
referencing unsigned data items, 11–21

differences (ex.), 11–21
Moving

signed data items
size considerations, 11–21

unsigned data items
size considerations, 11–21

MTH$ routines
compatibility, 4–4

MTH$ RTL
double-precision floating-point functions invoked

by translated images, 9–10
translated, 9–10

Multiple instruction issue, 1–5
Multiprocessing, A–5

N
/NATIVE_ONLY qualifier, 10–4, 11–35

interoperability, 10–2
Natural alignment of data

See data alignment
Network interfaces

supported on Alpha, 1–3
Nonstandard calls

writing jacket routines for, 2–24

Index–8

O
OpenVMS Alpha operating system

compatibility goals of, 1–1
diagnostic features, 2–17

OpenVMS Mathematics Run-Time Library
compatibility, 4–4

Optimization
in relation to program structure, 11–15

Optimized code, 2–6
/OPTIMIZE qualifier

in programs, 11–15
Optimizing compilers, 3–4
Order information

migration services, 1–9
_ _OR_ATOMIC_LONG built-in, 11–7
_ _OR_ATOMIC_QUAD built-in, 11–7
OTS$CALL_PROC RTL routine

enabling callbacks to translated images, 10–1
Output files

displaying, 11–20
formatting, 11–19

Overflow detection
enabling, 8–12

P
Packed decimal data type, 2–9, 2–18
Pagelets

definition, 5–1
using with $EXPREG system service, 5–6

Page sizes, 1–5, 2–12 to 2–13, A–5
compatibility with OpenVMS VAX, 5–1
dependencies on VAX page size, 5–1
memory protection granularity, 2–23
permissive protection, 2–5, 2–21
supported by Alpha systems, 5–1
using $GETSYI to obtain the page size at run

time, 5–20
PALcode (privileged architecture library), 1–6
Parallel execution of instructions, 1–6
Parallel Processing Run-Time Library (PPL$)

routines, 2–13
PCA (Performance and Coverage Analyzer)

analyzing images, 2–18
detecting unaligned data, 2–7, 2–18
identifying critical images, 2–19

pcc
supported as DEC C compatibility mode, 11–4

PCs (Program counters), 2–5, 2–14
in signal array on Alpha systems, 8–3
modifying, 2–16

PDP–11 compatibility mode, 2–5
Performance

of translated images, 1–9, 9–1

Performance and Coverage Analyzer
See PCA

Performance monitors
non-Digital, 2–6

Permissive protection, 2–23
Planning a migration, 1–8, 2–1
Portability

See Compatibility
#PRAGMA NO_MEMBER_ALIGNMENT, 2–8
Precise exception reporting, 2–14, 2–22, 2–23
/PRESERVE=FLOAT_EXCEPTIONS

translation qualifier needed for TIE condition
handler, 9–4

Primary key
change to, on OpenVMS Alpha, 11–24

Privileged architecture library
See PALcode

Privileged code
finding with VEST, 2–18
migrating to OpenVMS Alpha, 2–6

Privileged mode operation, A–6
Privileged shareable images, 2–6
Privileged VAX instructions, 2–5
Procedure arguments

accessing, 2–15
Procedure signature blocks

See PSBs
Processor modes

unchanged on Alpha, 1–6
Processor status longword (PSL), 2–16
Processor status longwords

See PSLs
Process space

used by translated image, 2–5
Program conversion

using the /STANDARD=OPENVMS_AXP
qualifier option, 11–14

Program counters
See PCs

Program listing files
separate compilation, 11–19

Program listings
See compiler listing files

Programming languages
See also specific languages; Compilers
Ada, 3–4
BASIC, 3–4
C, 3–4

include files, 3–2
VOLATILE declaration, 2–10

C++, 3–4
COBOL, 3–4
FORTRAN, 3–4
LISP, 3–4
Pascal, 3–4

Index–9

Programming languages (cont’d)
PL/I, 3–4
VAX MACRO, 3–4

Program structure differences, 11–14
debugging a DEC COBOL program, 11–28
DEC COBOL (ex.), 11–14
using the /OPTIMIZE qualifier, 11–15
VAX COBOL, 11–15

Protection
permissive, 2–23

PSBs (procedure signature blocks)
generating, 10–1

Pseudocode placeholders
unsupported by DEC COBOL, 11–11

PSLs (Processor status longwords)
in signal array on Alpha systems, 8–3

$PURGWS system service
page-size dependencies, 5–5

Q
Quadword granularity, 2–11

R
Rdb/VMS

same function on Alpha, 1–3
Read/write operations

ordering of, 2–13 to 2–14, 2–22
Read/write ordering, 6–9

effect on synchronization, 6–3
Recompiling, 2–17

changes in compile commands, 3–4
comparison with translating, 2–18, 2–21
effect of architectural dependencies, 2–21 to

2–22
produces native Alpha image, 3–4
resolving errors, 3–4
restrictions, 2–3
to create native Alpha images, 1–8

Record Management Services
See RMS

Relinking, 3–6
changes in link commands, 3–4
to create native Alpha images, 1–8

REMQUEx instruction
accessing from DEC C, 11–7

REPLACE statement
differences, 11–18

DEC COBOL on OpenVMS Alpha, 11–18
DEC COBOL on OpenVMS Alpha (ex.),

11–18
line numbers

DEC COBOL on OpenVMS Alpha (ex.),
11–19

VAX COBOL (ex.), 11–19
line numbers in compiler listing files,

11–18

REPLACE statement
differences (cont’d)

VAX COBOL, 11–18
VAX COBOL (ex.), 11–18

listing multiple instances of source line, 11–18
Reserved words

compatibility with VAX COBOL, 11–27
/RESERVED_WORDS qualifier

DEC COBOL support for, 11–11
retadr argument

used with $CRETVA system service, 5–9
used with $CRMPSC system service, 5–11
used with $EXPREG system service, 5–7

Return addresses
modifying on stack, 2–14

Reviewing application code, 2–17
RISC architecture

characteristics of, 1–5 to 1–6
RMS (Record Management Services)

unchanged for Alpha, 1–2
RMS special registers

differences, 11–25
RMS_CURRENT_STS, 11–25
RMS_CURRENT_STV, 11–25
RMS_STS, 11–25

Rounding problem and workaround
in translated images, 9–4

Running translated images
defining logical names for translated libraries,

9–3
Run-time library routines

accessing the D56 form, 9–10
calling interface unchanged, 1–2
different operation on Alpha, 1–2
LIB$ESTABLISH, 2–15
LIB$REVERT, 2–15
page-size dependencies, 5–6

S
Screen formatting, 11–20
SDA (System Dump Analyzer utility)

See System Dump Analyzer utility
Selecting a migration method, 2–3, 2–21
Self-modifying code, 2–5
/SEPARATE_COMPILATION qualifier

and program listings, 11–19
$SETAST system service, 2–11
$SETPRT system service

page-size dependencies, 5–5
$SETUAI system service

page-size dependencies, 5–5
Shareable image

calling
differences, 11–25

Shareable images
identifying, 2–1
linker options file changes required, 1–1

Index–10

Shareable images (cont’d)
privileged, 2–6
replacing a translated image with a native

image, 10–6
translated, 2–24

Shared data, 2–10
atomicity of, 2–10
unintentional sharing, 6–8

SIFs (Symbol information files), 10–6, 10–7
Signal array

format, 8–2
reliance on architectural details of, 2–16

Sliced images, 3–11
$SNDJBC system service

page-size dependencies, 5–5
Software migration tools, 1–8
SS$_ALIGN exception, 8–7

signal array format, 8–10
SS$_HPARITH exception, 8–7

signal array format, 8–8
SS$_INVARG exception

mapping memory, 5–12
returned when mapping memory, 5–13

Stack
modifying return addresses on, 2–14

Stack switching, 2–5
/STANDARD=OPENVMS_AXP qualifier option,

11–14
default, 11–14

/STANDARD qualifier
DEC COBOL support for, 11–11

Storage differences
for double-precision data, 11–24

Storage issues
based on architectural differences, 11–24

Storage of double-precision data
Alpha architecture

more information, 11–24
Store conditional instruction (STxC), 6–3
Storing return values

Alpha architecture, 11–22
VAX architecture, 11–22

String constants
modifying, 11–10

Stub images
creating, 10–8

Support for migration, 1–9
Switching stacks, 2–5
Symbol information files

See SIFs
Symbols

redefining
DEC C incompatibility with VAX C, 11–10

Symbol vectors
controlling the layout of, 10–6
declaring universal symbols on Alpha systems,

4–2

SYMBOL_VECTOR= option
interoperability considerations, 10–6

Synchronization, 6–1 to 6–11
and VEST, 2–18
explicit, 2–10
instructions, 2–22
latent problems, 2–17
of interprocess communication, A–5
using flag-passing protocols, 2–13
using system services, 2–13

SYS$LIBRARY:LIB
compiling against, 2–6

SYS$STARLET_C.TLB
adherence to conventions, 11–9
functional equivalency to STARLETSD.TLB,

11–8
impact on use of ‘‘variant_struct’’ and ‘‘variant_

union’’, 11–9
potential impact on LIB structures, 11–9
potential impact on RMS structures, 11–8
providing .H files, 11–9

SYS$UNWIND routine, 8–5
SYS.STB

linking against, 2–6, A–6
SYSGEN (System Generation utility)

See System Generation utility
SYSMAN (System Management utility)

See System Management utility
System-Code Debugger, 3–8

See also Debugger
OpenVMS Alpha, 3–10

System Dump Analyzer utility (SDA)
OpenVMS Alpha, 3–11

System dump files
analyzing, 3–11

System Generation utility (SYSGEN)
device configuration functions, 1–2

System library
compiling against, 2–6

System Management utility (SYSMAN)
device configuration functions, 1–2

System Migration Detailed Analysis Service, 1–10
System Migration Service, 1–10
System return codes, differences, 11–22

with illegal coding, 11–22
System services

asynchronous, 2–11
calling interface unchanged, 1–2
$CMEXEC, 2–6
$CMKRNL, 2–6
$CRETVA, A–5
$CRMPSC, 2–6, 2–12, 2–13, A–5
$DELTVA, A–5
$DEQ, 2–10, 2–13
different operation on Alpha, 1–2
$ENQ, 2–10, 2–13
$GETSYI, 2–13

Index–11

System services (cont’d)
$LCKPAG, A–5
$LKWSET, A–5
memory management, 2–13
memory management functions

page-size dependencies, 5–2
$MGBLSC, 2–13, A–5
protection problems created, A–5
replacing VAX MACRO code, 2–6
$SETAST, 2–11
undocumented, 2–5
$UPDSEC, A–5
user-written, 2–6

System space
reference to addresses in, 2–5, 2–6

System symbol table (SYS.STB)
linking against, 2–6

Systemwide logical names, 9–8

T
TESTBITCCI instruction

accessing from DEC C, 11–7
TESTBITSSI instruction

accessing from DEC C, 11–7
Text libraries

portability, 11–10
Third-party products

migrating, 2–2
Threaded code, 2–5
Threads of execution

effect on synchronization, 6–1
TIE$EMULAT_TV.EXE image, 9–5
TIE$SHARE shareable image, 9–2
TIE (Translated Image Environment), 1–2, 3–2,

9–6
access violation workaround, 9–5
description, 3–7
interoperability between native and translated

images, 9–2
invoked automatically, 3–7
restrictions, 9–3
running translated images, 9–3
statistics and feedback, 9–3
system logical names, 9–8
using /TIE qualifier to enable autojacketing,

9–5
/TIE qualifier

compiler interoperability qualifier, 10–1
DEC COBOL support for, 11–11
DEC Fortran for OpenVMS Alpha support,

11–35
Translated VAX COBOL programs support, 9–12
Translated Image Environment

See TIE
Translated images

contents, 3–8
creating, 10–1

Translated images (cont’d)
debugging, 3–10
description, 1–8
enabling callbacks to, 10–1
library routine calls, 1–2
performance of, 1–9, 9–1
preserving atomicity in, 6–10
system service calls, 1–2
using in a link operation, 10–4

Translated image support, 9–2, 9–6
See also TIE
additional qualifier required for FORTRAN,

9–6
need for additional steps, 9–6

Translated VAX C Run-Time Library
functional restrictions, 9–11
interoperability restrictions, 9–11

Translating, 1–2, 3–6
See also VEST
as a stage in migration, 2–22
comparison with recompiling, 2–18, 2–21
effect of architectural dependencies, 2–21 to

2–22
for compatibility, 1–8, 2–22
performance of translated image, 1–9
programs in languages with no Alpha compiler,

3–4
restrictions, 2–3
tools for, 3–7
type of image produced, 3–8

Translation
BASIC images, 9–10
BLAS$, 9–10
callers to CRF$FREE_VM or CRF$GET_VM,

9–11
executable files, 9–6
images, 9–6
MTHRTL, 9–10
run-time libraries, 9–9

TRAPB instruction
accessing in DEC C, 11–6

U
$ULKPAG system service

page-size dependencies, 5–5
$ULWSET system service

page-size dependencies, 5–5
Unaligned data

cause of reduced performance, 1–9
in dynamic structures, 2–18
reduced performance, 9–1
supported under translation, 2–21

Unaligned variables, 2–18
Uninitialized variables, 2–18
Unreachable code, 11–14

Index–12

Unwinding in exception handlers, 8–5
$UPDSEC system service, A–5

page-size dependencies, 5–5
User-mode images

slicing, 3–11
User-written device drivers

on OpenVMS Alpha systems, 1–6
Using the /STANDARD=OPENVMS_AXP qualifier

option
with VAX COBOL programs, 11–14

V
Variables

shared
atomicity of, 2–10

unaligned, 2–18
uninitialized, 2–18

‘‘variant_struct’’
impact of SYS$STARLET_C.TLB, 11–9

‘‘variant_union’’
impact of SYS$STARLET_C.TLB, 11–9

VAX Ada
See DEC Ada

VAX architecture
dependencies, 2–7
general description, 1–4
register set differences, 11–22

VAX C
See DEC C

VAX calling standard
reliance on, 2–14

VAXCDEF.TLB
replaced by new files, 11–8

VAX COBOL
command line qualifiers

more information, 11–12
new, 11–13
new (tab.), 11–13

current product information
location of, 11–12

features unsupported by DEC COBOL, 11–11
VAX dependency checklist, 2–7
VAX Environment Software Translator

See VEST
VAX FORTRAN

See DEC Fortran for OpenVMS VAX Systems
VAX instructions

accessing from DEC C, 11–7
CALLx, 2–24
generating at run time, 2–5, 2–17, 2–23
interlocked instructions

supported by DEC C, 11–7
interpreting, 3–7
JSB, 2–24
modifying, 2–16
privileged instructions, 2–5

VAX instructions (cont’d)
reduced performance, 9–1
reliance on behavior of, 2–16

cause of reduced performance, 1–9
supported in PALcode, 1–6
vector instructions, 2–5

VAX MACRO
See also MACRO–32 compiler
as compiled language, 2–6
LIB$ESTABLISH routine, 8–1
only a migration aid, 2–6
recompiling on OpenVMS Alpha systems, 3–5
replaced by system services, 2–6

VAX MACRO-32 compiler, 2–14
only a migration aid, 2–6

VAX Pascal
See DEC Pascal

VAX SCAN compiler, 2–3
Vector instructions, 2–5
Version 2.3—What’s New

RMS special registers, 11–25
VEST (VAX Environment Software Translator),

1–8, 3–2, 9–2, 10–4
See also DECmigrate, TIE, and Translated

image support
analytical ability, 3–8
and page size, 2–23
as analysis tool, 2–18

restrictions, 2–18
capabilities, 3–7
creating stub images, 10–8
/FLOAT=D53_FLOAT qualifier, 2–21
/FLOAT=D56_FLOAT qualifier, 2–21
generating VAX instructions, 2–23
interoperability, 10–1
/OPTIMIZE=ALIGNMENT qualifier, 2–21,

2–22
/OPTIMIZE=NOALIGNMENT qualifier, 2–22
/PRESERVE=FLOAT_EXCEPTIONS qualifier,

2–22, 2–23
/PRESERVE=INSTRUCTION_ATOMICITY

qualifier, 2–21, 2–22
/PRESERVE=INTEGER_EXCEPTIONS

qualifier, 2–22, 2–23
/PRESERVE=MEMORY_ATOMICITY qualifier,

2–21, 2–23
/PRESERVE=READ_WRITE_ORDERING

qualifier, 2–22
/PRESERVE qualifier, 6–10, 8–10
resources required, 3–2
runs on VAX and Alpha systems, 3–2
using symbol information files (SIF), 10–6

VEST/DEPENDENCY analysis tool, 2–1, 3–2
/VFC qualifier, 11–20
VFU CHANNEL printing, 11–19
Virtual addresses

manipulating, A–5

Index–13

Volatile attribute
protecting shared data, 6–3, 6–9
supported by DEC C, 11–8

W
Working set

modifying, A–5
Writable global sections, 2–10
WRITE statement

with LINAGE statement, 11–21
Writing programs

compatibility and portability with VAX COBOL,
11–11

Index–14

