
OpenVMS National Character
SetUtilityManual
Order Number: AA–PS6FA–TE

May 1993

This manual describes how to use the National Character Set Utility.

Revision/Update Information: This manual supersedes the VMS
National Character Set Utility Manual,
Version 5.2

Software Version: OpenVMS AXP Version 1.5
OpenVMS VAX Version 6.0

Digital Equipment Corporation
Maynard, Massachusetts

May 1993

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993.

All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: AXP, DECwindows, Digital,
OpenVMS, VAX, VAX DOCUMENT, VMS, and the DIGITAL logo.

The following is a third-party trademark:

PostScript is a registered trademark of Adobe Systems Incorporated.

ZK4438

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . v

Part I Introduction to the National Character Set (NCS) Utility

NCS Description . NCS–3
1 How to Build an NCS Definition File . NCS–4
1.1 Naming NCS Definition Files . NCS–4
1.2 Structuring a Definition File . NCS–4
1.3 Notation Guidelines . NCS–6
1.4 Built-In Collating Sequences and Conversion Functions NCS–7
1.5 Definition Expressions . NCS–8
1.5.1 Collating Sequence Expressions . NCS–8
1.5.1.1 Definition Name . NCS–8
1.5.1.2 Sequential Series of Expressions . NCS–8
1.5.1.3 Expression with Appended Collating Sequences NCS–9
1.5.1.4 Modified Collating Sequence . NCS–9
1.5.1.5 Reversed Collating Sequence . NCS–9
1.5.1.6 Reordered Collating Sequence . NCS–10
1.5.2 Collating Strings with Pad Characters . NCS–10
1.5.3 Conversion Function Expressions . NCS–10
1.5.3.1 Definition Name . NCS–10
1.5.3.2 Sequential Series of Conversions . NCS–11
1.5.3.3 Modified Conversion Function . NCS–11
1.5.3.4 Inverted Conversion Function . NCS–11
1.5.3.5 Reordered Conversion Function . NCS–12
1.6 Keyword Clauses . NCS–12
1.6.1 Collating Sequence Keyword Clauses . NCS–12
1.6.1.1 CS Keyword Clause . NCS–12
1.6.1.2 SEQUENCE Keyword Clause . NCS–13
1.6.1.3 IDENT Keyword Clause . NCS–14
1.6.1.4 MODIFICATIONS Keyword Clause . NCS–14
1.6.2 Conversion Function Keyword Clauses . NCS–14
1.6.2.1 CF Keyword Clause . NCS–15
1.6.2.2 IDENT Keyword Clause . NCS–15
1.6.2.3 MODIFICATIONS Keyword Clause . NCS–15
1.6.3 MODIFICATIONS Keyword Clause Syntax NCS–15

iii

Part II NCS Command and Command Qualifiers

NCS Usage Summary . NCS–21

NCS Command Qualifiers . NCS–22
/BEFORE . NCS–23
/COMPRESS . NCS–24
/CREATE . NCS–25
/DATA . NCS–26
/DELETE . NCS–27
/EXTRACT . NCS–28
/FORMAT . NCS–29
/FULL . NCS–30
/HISTORY . NCS–31
/INSERT . NCS–32
/LIBRARY . NCS–33
/LIST . NCS–34
/LOG . NCS–35
/MACRO . NCS–36
/ONLY . NCS–38
/OUTPUT . NCS–39
/REPLACE . NCS–40
/SINCE . NCS–41

A National Character Set Definitions

Index

Examples

NCS–1 Typical Definition File . NCS–5

Tables

NCS–1 NCS Language Notation . NCS–6
NCS–2 Formats for Collating Sequence MODIFICATIONS Keyword

Clauses . NCS–16
NCS–3 NCS Command Qualifier Relationships . NCS–22

iv

Preface

Intended Audience
This manual is intended primarily for system programmers and application
programmers.

Document Structure
This document consists of the following three sections:

• Description—This section is in Part I. It provides a description of the National
Character Set (NCS) Utility and detailed instructions on how to build NCS
definition files.

• Usage Summary—This section is in Part II. It outlines the following NCS
information:

– Invoking the utility
– Exiting from the utility
– Directing output
– Restrictions or privileges required

• Qualifiers—This section is in Part II. It describes the NCS qualifiers,
including format, parameters, and examples.

Associated Documents
For related information about the NCS Utility, see the following documents:

• OpenVMS DCL Dictionary

• OpenVMS Programming Concepts Manual

• OpenVMS User’s Manual

• OpenVMS Command Definition, Librarian, and Message Utilities Manual

Conventions
In this manual, every use of VMS means both the OpenVMS AXP and the
OpenVMS VAX operating system.

The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1, then press and release
another key or a pointing device button.

v

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses.

[] In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets
are not optional, however, in the syntax of a directory name
in a VMS file specification, or in the syntax of a substring
specification in an assignment statement.)

{ } In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in online versions
of the manual.

italic text Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, /PRODUCER=name), and command parameters
in text.

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

numbers All numbers in text are assumed to be decimal, unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

vi

Part I
Introduction to the National Character Set

(NCS) Utility

This part of the document introduces you to the National Character Set (NCS)
Utility and provides details about building NCS definition files.

NCS Description
In processing strings, two common functions are collating and conversion.
Collating sequences provide a means of comparing strings for sorting purposes;
conversion functions provide a means for deriving an altered form of an input
string based on a conversion algorithm.

The National Character Set (NCS) Utility provides a common facility for defining
collating sequences and conversion functions, registering them as definition
modules in an NCS library, and providing a means for making them locally
accessible to application programmers and system programmers. See Appendix A
for a listing of the definition modules that are included in the default NCS
library.

Typically, NCS collating sequences are selective subsets of the Multinational
Character Set. NCS collating sequences find widespread use in international
applications. For example, a Spanish collating sequence would resolve sorting
weights for characters you might encounter when processing strings from the
Spanish language.

NCS permits you to build collating sequences unique to your particular
programming situation. For example, if you want the character C to collate
between the characters G and H, you can retrieve the particular collating
sequence from a central library, make the appropriate modifications, and then
store the modified collating sequence in a local library that is readily accessible to
your application program.

You can implement NCS from an application program using the program
interface that includes 10 callable NCS routines. The callable routines permit
you to access collating sequences and conversion functions stored as definition
modules in an NCS library. You can also use the NCS routines to save the
definitions in a local library for subsequent use by comparison and conversion
routines called from the application program. For instructions on using the NCS
routines, see the OpenVMS Utility Routines Manual.

This manual provides information about how to use NCS interactively, using the
DIGITAL Command Language (DCL) interface for doing the following library
operations:

• Creating NCS libraries

• Inserting definition modules in NCS libraries

• Replacing definition modules in NCS libraries

• Extracting definitions from NCS library modules

• Deleting definition modules from NCS libraries

• Other tasks associated with library operations, including listing the library
contents, directing the output of the library, and logging library activities

By default, DCL attempts to replace definition modules in the default NCS
library with definitions from a specified source file. That is, if you specify no
qualifiers, DCL assumes you want to replace definition modules in the default
NCS library. If you specify no definition source file, DCL prompts you for one, as
shown in the following example:

NCS–3

NCS Description

$ NCS
_File:

Any other library activity requires you to use one or more command qualifiers.
You may designate any NCS library as the object of a command by assigning it
the logical name NCS$LIBRARY.

The rest of Part I provides instructions for building NCS definition files.

1 How to Build an NCS Definition File
The following subsections describe the language syntax you must use when
building NCS collating sequence definitions and NCS conversion function
definitions. You can use any standard text editor to build definition files.

All definition files have the following characteristics:

• Include one or more definitions.

• Have no restriction on including a mix of collating sequence definitions and
conversion function definitions in a single definition file.

• Use the file type NCS.

• Have comments delimited by an exclamation point (!).

• Do not permit line continuation for comments.

1.1 Naming NCS Definition Files
Each definition file should begin with a name that describes its contents. For
example, if you want to convert strings of multinational characters to lowercase,
use a name like MULTI_TO_LOWER. You can name NCS definition files using up
to 31 characters including the letters A through Z and a through z, the numbers
0 through 9, the dollar sign ($), and the underscore character (_). Note that
spaces are not allowed and that you may use either uppercase or lowercase letters
when formulating definition names.

1.2 Structuring a Definition File
Each definition file consists of the following elements, in this order:

1. Definition name

2. Equal sign (=)

3. Definition expression

4. Terminating semicolon (;)

A definition file has the following format:

definition_name = definition_expression;
definition_name = definition_expression;
.
.
.
definition_name = definition_expression

Example NCS–1 includes excerpts from a definition file that provides several
EDT conversion functions.

NCS–4

NCS Description

Example NCS–1 Typical Definition File

! Define the EDT fallback conversion function, and UNEDT, its inverse.
! Note that applying EDT and then UNEDT to a file may not result in the
! original file, if, for example, the original file contains the string "^A".
!
EDT_VT2xx = CF(

CF = _IDENTITY,
MODIFICATIONS=(
%X00 = "^@",
%X01 = "^A",
%X02 = "^B",

.

.

.
%XF0 = "<XF0>",
%XFE = "<XFE>",
%XFF = "<XFF>"));

UNEDT_VT2xx = INVERSE(EDT_VT2xx);
!
!Start of definition EDT (a modified version of EDT_VT2xx)
!
EDT = CF(

CF = EDT_VT2xx,
MODIFICATIONS=(

%XA0 = "<XA0>",
%XA1 = "<!!>",
%XA2 = "<C/>",

.

.

.
%XFB = "<u^>",
%XFC = "<u"">",
%XFD = "<y"">"));

!
!Definition UNEDT (the complement of EDT)
!
UNEDT = INVERSE(EDT);
!
!The next 2 definitions - EDT1 and UNEDT1 - are structured such that ...
! UNEDT1(EDT1(string))
!... always gives the original string.
!
EDT1 = CF(CF=EDT,MODI=(

"^" = "^=",
"<" = "<="));

!
!The complement of EDT1
!
UNEDT1 = INVERSE(EDT1);

Section 1.3 describes the notation used in NCS definitions. The expressions and
keyword clauses that comprise NCS definitions are described in Sections 1.5 and
1.6.

NCS–5

NCS Description

1.3 Notation Guidelines
Table NCS–1 lists the language notation to be used in NCS definition files.

Table NCS–1 NCS Language Notation

Notation Meaning

! Starts a comment

() Establishes entity grouping for ordering operations.

= In a collating sequence clause, reads literally left term collates
as right term; in a conversion function clause, reads literally
left term converts to right term

> In a collating sequence clause, reads literally left term collates
just greater than right term

< In a collating sequence clause, reads literally left term collates
just less than right term

+ Within a clause, indicates string concatenation; in an
expression, indicates an appended collating sequence

* Indicates a series of expressions comprising one definition

– Indicates a range of string data

"" Encloses literal string data

% Indicates the start of a string numeric value

D Indicates a decimal numeric value

H Indicates a hexadecimal numeric value

O Indicates an octal numeric value

, Delimits expressions and clauses

; Terminates an NCS definition

You can construct a definition in free form using indentation and one item per
line to improve readability. For example, the following definition is functionally
acceptable, but is difficult to read:

FRENCH_NRC_TO_MULTI =
CF (CF=_IDENTITY,MODIFICATIONS=
("#"="£","@"="à","["="°",
"\"="ç","]"="§","{"="é",
"|"="ù","}"="è","^a"="â",
"^e"="ê","^o"="ô","^u"="û",
"~a"="ä","~e"="ë","~o"="ö")

ZK−6571−GE

Using indentation and one item per line makes the same definition much easier
to read as shown in the next illustration:

NCS–6

NCS Description

FRENCH_NRC_TO_MULTI = CF(
 CF = _IDENTITY,
 MODIFICATIONS=(

"~o" = " ö"))
"~e" = " ë",
"~a" = " ä",
"̂ u" = " û",
"̂ o" = " ô",
"̂ e" = " ê",
"̂ a" = " â",
"}" = " è",
"|" = " ù",
"{" = " é",
"]" = " §",
"\" = " ç",
"[" = " °",
"@" = " à",
"#" = "£",

ZK−6572−GE

When you format a file for readability, do not omit the required punctuation.

Strings can be represented literally and numerically. If you use literal strings (as
in the preceding example), you must enclose them in double quotation marks (").

If you choose to represent strings numerically, you can use either decimal,
hexadecimal, or octal numbers. You must precede numeric values by a percent
sign (%) and the appropriate radix symbol (D for decimal, X for hexadecimal, O
for octal). Note that you can use only digits that represent a single character,
and that the radix notation must be less than decimal 256, regardless of the
numbering system you use.

For example, the following statement from the previous example may be coded
using a literal string or a numeric string:

"~e" = " ë", ! literal string

"~e" = "%XEB", ! " ë" represented as hexadecimal number

Numeric strings are particularly appropriate when processing characters from
either the ASCII subset or the EBCDIC subset.

1.4 Built-In Collating Sequences and Conversion Functions
NCS includes two built-in definitions: the _NATIVE collating sequence and
the _IDENTITY conversion function. You use the built-in definitions as a basis
for creating other collating sequences and conversion functions. The built-in
definitions are distinguished by the leading underscore in their names. Note that
the built-in collating sequence and the built-in conversion function are not stored
in the NCS library and cannot be modified.

The _NATIVE collating sequence collates strings by ascending numeric value. For
collating purposes, the null character (NUL) has the lowest value of all characters
in the set.

NCS–7

NCS Description

Following is an example of how you might use the _NATIVE collating sequence to
specify a collating sequence:

MY_CS = _NATIVE * (MULTI_TO_NODIACRITICALS * MULTI_TO_LOWER)

The _IDENTITY conversion function reproduces each input string character as an
output string character, except for characters that are explicitly being modified.
Following is an example of using the _IDENTITY conversion function:

MY_CF = CF(CF = _IDENTITY,
MODIFICATIONS=("ME" = "YOU"

"NOW" = "THEN"
"BLUE" = "RED")

Using this conversion function, the input string Tell me now the sky is blue is
converted to the output string Tell you then the sky is red.

1.5 Definition Expressions
You can define collating sequences and conversion functions using various types of
expressions. Section 1.5.1 describes the types of expressions used in formulating
collating sequences. Section 1.5.3 describes the types of expressions used to
define conversion functions.

Note that vertical ellipses are used in some examples to indicate omitted code.

1.5.1 Collating Sequence Expressions
You can define collating sequences using any combination of the following types of
expression:

• The name of an existing collating sequence

• A sequential series of collating sequences

• An expression that includes appended collating sequences

• A modified collating sequence

• A reversed collating sequence

• A reordered collating sequence

1.5.1.1 Definition Name You can create a new collating sequence by equating it
to the name of an existing collating sequence, using the following format:

new_collating_sequence = name_of_existing_collating_sequence,

Following is an example of this type of expression:

MY_COLLATING_SEQUENCE = MULTINATIONAL_1,

1.5.1.2 Sequential Series of Expressions You can create a new collating
sequence from a sequential series of expressions, including one or more conversion
functions and an existing collating sequence, in the following format:

new_collating_sequence = collating_sequence * conversion_function_1 * conversion_function_2,

NCS processes the conversion functions first, going from right to left, and then
applies the collating sequence. All processes are completed within a single pass.
Following is an example of using a sequential series of expressions to create a
collating sequence:

MY_COLLATING_SEQUENCE = CS(CS = _NATIVE * MULTI_TO_NODIACRITICALS * MULTI_TO_UPPER),

The conversion functions convert uppercase letters to lowercase letters and strip
the diacritical marks. The result is then combined with the _NATIVE collating

NCS–8

NCS Description

sequence to derive a collating sequence that behaves as though the input strings
have been converted and then compared by their numeric value.

1.5.1.3 Expression with Appended Collating Sequences You can create a
collating sequence using an existing collating sequence and up to two appended
collating sequences, in the following format:

new_collating_sequence = collating_sequence_1 + collating_sequence_2 + collating_sequence_3,

NCS processes the leftmost collating sequence in the first pass, and proceeds to
process each of the remaining collating sequences going from left to right, using
an individual pass for each.

You can include conversion functions with each of the collating sequences using
the asterisk (*) operator, in the following format:

new_collating_sequence = collating_sequence_1 * conversion_a * conversion_b + ... + ...,

Although there is no limitation on the number of conversion functions you can
use with each collating sequence, you should try to minimize the complexity of
the expression by limiting the number of conversion functions. In a complex
expression having several collating sequences with associated conversion
functions, NCS applies conversion functions only to the related collating sequence.
When NCS detects a distinction between the two strings being compared, the
comparison function terminates.

Following is an example of creating a collating sequence using an existing
collating sequence with an appended collating sequence:

MY_COLLATING_SEQUENCE = CS(CS = MULTINATIONAL_1 + MULTINATIONAL_2 * UPCASE * NODIACRITICALS),

1.5.1.4 Modified Collating Sequence You can create a collating sequence from
a modified collating sequence using keyword clauses, in the following format:

new_collating_sequence = CS(keyword_clause,keyword_clause, ...),

The expression begins with a definition identifier (CS) followed by several
keyword clauses enclosed in parentheses and separated by commas. The first
keyword clause identifies the collating sequence that serves as a basis for the
new collating sequence, and the second keyword clause lists the appropriate
modifications.

Following is an example of an expression that uses keyword clauses to create
a new collating sequence by modifying an existing collating sequence. Each
uppercase character gets the same collating weight as the associated lowercase
character.

MY_COLLATING_SEQUENCE =
CF(CF = _IDENTITY, ! Base collating sequence

MODIFICATIONS=(
%X41-%X5A = %X61-%X7A, ! Modifications
%XC0-%XCF = %XE0-%XEF, ! to the base
%XD1-%XDD = %XF1-%XFD)); ! collating sequence

1.5.1.5 Reversed Collating Sequence You can create a new collating sequence
by specifying the reverse order of an existing collating sequence, using the
following format:

new_collating_sequence = REVERSE(existing_collating_sequence)

Using this form of expression, you might create a collating sequence where the
letter C would collate greater than B, and the letter B would collate greater than
A.

NCS–9

NCS Description

Here is an example of using a reverse order collating sequence expression:

MY_COLLATING_SEQUENCE = REVERSE(_NATIVE),

Using this expression, you could give collating weight precedence to lowercase
characters over uppercase characters.

1.5.1.6 Reordered Collating Sequence You can create a new collating sequence
by reordering an existing expression through the use of parentheses.

In the following example, NCS applies the conversion_function and compares the
input strings using collating_sequence_b as a comparison basis in the first pass. If
the strings do not compare, NCS compares the strings using collating_sequence_a
as a basis during a second pass.

old_collating_sequence = collating_sequence_a + collating_sequence_b * conversion_function,

If you want to do the comparisons in a single pass using the sum of the collating
sequences, reorder the operation using parentheses, as shown in the following
example:

new_collating_sequence = (collating_sequence_a + collating_sequence_b) * conversion_function,

1.5.2 Collating Strings with Pad Characters
In some instances, you may need to collate strings padded with one or more
pad characters. Typically, a string may be padded with the ASCII SPACE
character, but the pad character can be defined as any character. In order to
avoid ambiguity when collating padded character strings, specify the collating
value of the pad character in your collating sequence definition. For example, if
you want to specify the collating weight of a pad character in a collating sequence,
you might use the following statement:

NATIVE_SPACEPAD = CS(CS=_NATIVE, MOD = ("" = %X20));

This states that the shorter string should be treated as if it were padded with
spaces for collating purposes. For example, the string ABC<SP><SP> would have
the same collating weight as the string ABC.

1.5.3 Conversion Function Expressions
You can define conversion functions using any combination of the following types
of expression:

• The name of an existing conversion function

• A sequential series of conversions

• A modified conversion function

• An inverted conversion function

• A reordered conversion function

1.5.3.1 Definition Name You can create a new conversion function from an
existing conversion function by equating the new function to the name of the
existing function, using the following format:

new_conversion_function = name_of_existing_conversion_function;

Following is an example of this type of expression:

MY_CONVERSION = MULTI_TO_LOWER;

NCS–10

NCS Description

1.5.3.2 Sequential Series of Conversions You can create a new conversion
function by expressing it as the result of a sequential series of conversions, using
the following format:

new_conversion_function = conversion_1 * conversion_2 * conversion_3;

NCS applies a sequential series of conversions in a single pass beginning with
the rightmost conversion and continuing right to left. In the preceding format,
conversion_3 is applied before conversion_2, and conversion_2 before conversion_1.

Following is an example of a conversion function derived through a sequential
series of conversions:

MY_CONVERSION = MCS_NODIACRITICALS * MCS_LOWER;

1.5.3.3 Modified Conversion Function You can create a conversion function
from another conversion function appropriately modified through the use of
keyword clauses, in the following format:

new_conversion_function = CF(keyword_clause,keyword_clause, ...)

The expression begins with a definition identifier (CF) followed by several
keyword clauses enclosed in parentheses and separated by commas. The first
keyword clause identifies the conversion function that serves as the basis for
the new conversion function. The second keyword clause lists the appropriate
modifications.

Following is an example of an expression that uses keyword clauses to create a
new conversion function:

EDT1 = CF(CF=EDT,MODIFICATIONS=(
"^" = "^=",
"<" = "<="));

In this example, the new conversion function (EDT1) is a modified representation
of an existing conversion function (EDT).

1.5.3.4 Inverted Conversion Function You can create a new conversion function
by logically inverting an existing conversion function, using the following format:

new_conversion_function = INVERSE(CF_expression)

Typically, you use inversion when you want to restore a converted string to its
original form. For example, assume you have the following conversion function:

EDT1 = CF(
CF = _IDENTITY, MODI = (

.

.

.
%X01 = "^A",
%X02 = "^B",
%X03 = "^C",
%X04 = "^D",
%X05 = "^E",
%X06 = "^F",
%X07 = "^G",

.

.

.
"" = %X00));

Now assume you want to convert the output string back to the original input
string. To do this, you can use the following conversion function:

NCS–11

NCS Description

UNEDT1 = INVERSE(EDT1)

1.5.3.5 Reordered Conversion Function You can effectively reorder conversion
functions using parentheses. For example, the following format results in a two-
pass comparison where collating_sequence_a is used as the basis for comparing
the input strings during the first pass:

my_cs = collating_sequence_a + collating_sequence_b * conversion_c * conversion_d,

If the strings do not compare, conversion_d and conversion_c are applied to the
input strings and then the strings are compared on the second pass based on
collating_sequence_b.

If you want a one-pass comparison that converts input strings and then compares
them using the composite effects of collating_sequence_a and collating_sequence_
b, add parentheses, as follows:

my_cs = (collating_sequence_a + collating_sequence_b) * conversion_c * conversion_d,

1.6 Keyword Clauses
Keyword clauses are the basic elements of a collating sequence definition. They
are used to establish the basis for each collating sequence, to explicitly define
modifications where applicable, and to optionally assign a version number to the
collating sequence.

As described previously, a definition expression can take the form of a definition
identifier (CS or CF) followed by a set of one or more keyword clauses enclosed in
parentheses and separated by commas, as follows:

new_expression = CS(keyword_clause,keyword_clause, ...)

All keyword clauses begin with a keyword followed by the equal sign and a value:

keyword = value

The value varies with the keyword, as shown in the next two sections.

Note that you can abbreviate any keyword as long as the abbreviated form is not
ambiguous.

1.6.1 Collating Sequence Keyword Clauses
There are four types of keyword clauses you can use to build a collating sequence
expression:

• CS

• SEQUENCE

• IDENT

• MODIFICATIONS

Each of these is described in the following subsections.

1.6.1.1 CS Keyword Clause The CS keyword clause equates the keyword CS
to a collating sequence expression that can take any one of the forms described
in Section 1.5. The CS keyword clause typically establishes the collating basis
for a collating sequence unless you use the SEQUENCE keyword clause. The CS
keyword clause uses the following format:

CS = CS_expression

The following example illustrates the use of the CS keyword clause:

NCS–12

NCS Description

MULTINATIONAL_2 = CS(! Define temporary for second pass.
IDENT = "V1.0",
CS = _NATIVE * MULTI_TO_UPPER,
MODIFICATIONS=(

%XC6 > "Z", ! AE diphthong
%XD8 > %XC6, ! O with slash

.

.

.
%XE0-%XEF = %XC0-%XCF,
%XF1-%XFD = %XD1-%XDD));

1.6.1.2 SEQUENCE Keyword Clause The SEQUENCE keyword clause
establishes the collating basis for a collating sequence when the CS keyword
clause is not appropriate. Typically, you use this keyword clause when you do not
have an existing collating sequence that is appropriate for your application and
thus must fabricate one.

The following example illustrates the use of the SEQUENCE keyword clause in
fabricating the Dutch collating sequence:

 DUTCH = CS(
 SEQUENCE = (%X00−"N", "Ñ", "O"−"Z", "Æ", "Ø", "Å", "["−"‘", "{"−"¿", %XD0,
 %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "À"−"Ä" = "A", "Ç" = "C", "È"−"Ë" = "E",
 "Í"−"Ï" = "I", "Ò"−"Ö" = "O", "Ù"−"Ü" = "U", "Y" = "Y", "à"−"ä" = "A",
 "å"−"æ" = "Å"−"Æ", "ç" = "C", "è"−"ë" = "E", "ì"−"ï" = "I", "ñ" = "Ñ",
 "ò"−"ö" = "O", "ø" = "Ø", "ù"−"ü" = "U", "ÿ" = "Y", "

 + CS(SEQUENCE = (%X00−"A", "Ä"−"À", "B"−"C", "Ç", "D"−"E", "Ë"−"È",

 "S"−"U", "Ü"−"Ù", "V"−"Y", "Y", "Z", "Æ", "Ø", "Å", "["−"‘", "{"−"¿",
 %XD0, %XDE, %XF0, %XFE−%XFF),

 MODIFICATIONS=("a"−"z" = "A"−"Z", "à"−"ï" = "À"−"Ï", "ñ"−"ÿ" = "Ñ"−"Y"))
 + REVERSE(_NATIVE);

ZK−6573−GE

C "F"−"I", "Ï"−"Ì", "J"−"N", "Ñ", " E", "O", "Ö"−"Ò", "P"−"R", "ß",

CE" = "OE",
 "ß" = "SS", "c e" = "C E", "" < %X00))

··

··

··

In this example, the first SEQUENCE keyword clause establishes the collating
sequence for the entire character set from %X00 through %XFF during the first
pass. The associated MODIFICATIONS keyword clause effectively masks the
lowercase characters and diacritical characters by equating each lowercase
alphabetical character to its related uppercase alphabetical character, and
by equating each diacritical character to its related nondiacritical, uppercase
character.

During the second pass, the second SEQUENCE keyword clause establishes
the collating sequence for the diacritical characters. The associated
MODIFICATIONS keyword clause masks all lowercase characters, both
diacritical and nondiacritical, by equating them to their related uppercase
character.

NCS–13

NCS Description

1.6.1.3 IDENT Keyword Clause The IDENT keyword clause is a special-
purpose keyword clause that permits you to assign a version number to the
collating sequence. The following example illustrates using the IDENT keyword
to assign Version 1.0 to the Spanish collating sequence:

SPANISH = CS(
IDENT = "V1.0",
CS = MULTINATIONAL,

.

.

.
));

1.6.1.4 MODIFICATIONS Keyword Clause The MODIFICATIONS keyword
clause is typically used with the built-in collating sequence _NATIVE to derive a
modified version of the collating sequence.

In the following example, the new collating sequence (MULTINATIONAL_1)
applies two conversion functions (MULTI_TO_NODIACRITICALS and MULTI_
TO_UPPER) to the input strings. Then the collating sequence uses a modified
version of the built-in collating sequence, _NATIVE, as the basis for comparing
the strings.

The first group of modifications assigns collating weights to the listed special
characters. For example, the uppercase N tilde character Ñ is assigned the
same collating weight as the alphabetic character (N). The second group of
modifications gives each lowercase character the same collating weight as the
associated uppercase character.

MULTINATIONAL_1 = CS(
CS = _NATIVE * (MULTI_TO_NODIACRITICALS * MULTI_TO_UPPER),
MODIFICATIONS=(

!
! Special characters
!
%XC6 > "Z", ! AE diphthong
%XD8 > %XC6, ! O with slash
%XC5 > %XD8, ! A with ring
%XD1 > "N", ! N tilde
%XDF = "SS", ! S sharp
%XD7 = "OE", ! OE ligature
!
! Define lowercase to collate the same as uppercase
!
%XE0-%XEF = %XC0-%XCF,
%XF1-%XFD = %XD1-%XDD));

1.6.2 Conversion Function Keyword Clauses
There are three types of keyword clauses you can use to build a conversion
function:

• CF

• IDENT

• MODIFICATIONS

Each of these is described in the following subsections.

NCS–14

NCS Description

1.6.2.1 CF Keyword Clause The CF keyword clause equates the keyword CF to
a conversion function expression, which can take any one of the forms described
in Section 1.5. The general form for the CF keyword clause follows:

CF = CF_expression

The following example illustrates the use of the CF keyword clause:

MULTI_TO_NODIACRITICALS = CF(
IDENT = "V1.0",
CF = _IDENTITY,

MODIFICATIONS=(
%XC0-%XC5 = "A", ! Various forms of "A" assigned same weight

.

.

.
%XF9-%XFC = "u", ! Various forms of "u" assigned same weight
%XFD = "y")); ! Y umlaut assigned weight of "y"

See Section 1.4 for details on the use of the _IDENTITY built-in definition.

1.6.2.2 IDENT Keyword Clause The IDENT keyword clause is a special-purpose
keyword clause that permits you to assign a version number to the conversion
function. The following example illustrates the use of the IDENT keyword clause
to assign Version 1.0 to a conversion function:

MULTI_TO_LOWER = CF(
IDENT = "V1.0",
CF = _IDENTITY,
MODIFICATIONS=(

%X41-%X5A = %X61-%X7A, ! Characters A-Z
.
.
.

%XD1-%XDD = %XF1-%XFD)); ! Various characters

1.6.2.3 MODIFICATIONS Keyword Clause The MODIFICATIONS keyword
clause is used in conjunction with another conversion function, typically the built-
in conversion function _IDENTITY, to derive a modified version of the conversion
function. The MODIFICATIONS keyword clause causes NCS to modify the
specified conversion function, making changes in the specified order.

The following example illustrates the use of the MODIFICATIONS keyword
clause in a conversion function:

MULTI_TO_UPPER = CF(
IDENT = "V1.0",
CF = INVERSE(MULTI_TO_LOWER),
MODIFICATIONS=(%XDF = "SS", %XD7 = "OE");)

In this example, the MODIFICATIONS keyword clause masks the lowercase
sharp s (ß) by equating it to the character pair SS and the uppercase OE ligature
× by equating it to the character pair OE.

1.6.3 MODIFICATIONS Keyword Clause Syntax
This section expands on the syntax requirements for developing
MODIFICATIONS keyword clauses in an NCS expression.

The conversion function MODIFICATIONS keyword clause uses the following
format:

left_string = right_string

NCS–15

NCS Description

NCS treats this as left string converts to right string. The following example
illustrates the use of a MODIFICATIONS keyword clause in a conversion
function:

.

.

.
CF = _IDENTITY,
MODIFICATIONS=(

%X41-%X5A = %X61-%X7A,
.
.
.

In this example, NCS treats the MODIFICATIONS keyword clause as uppercase
characters convert to lowercase characters, where the source string is a range
of hexadecimal numbers representing uppercase alphabetic characters and the
destination string is a range of hexadecimal numbers representing lowercase
alphabetic characters.

Note that the equal sign (=) is always the sign of operation for conversion
function MODIFICATIONS keyword clauses.

The various formats for the collating sequence MODIFICATIONS keyword clause
are listed in Table NCS–2.

Table NCS–2 Formats for Collating Sequence MODIFICATIONS Keyword
Clauses

Format Interpretation

string = string left string collates as right string

range = string left range collates as right string

range = range left range collates as right range

string > string left string collates just greater than right string

range > string left range collates just greater than right string

range > range left range collates just greater than right range

string < string left string collates just less than right string

range < string left range collates just less than right string

range < range left range collates just less than right range

You can specify a range of values in a keyword clause, using the following format:

string1 - string2

The following example shows how to assign the left string the same collating
value as the right string:

.

.

.
CS = _NATIVE * (MULTI_TO_NODIACRITICALS * MULTI_TO_UPPER),
MODIFICATIONS=(

%XDF = "SS",
.
.
.

NCS–16

NCS Description

The MODIFICATIONS keyword clause in this example states that the
hexadecimal value for S sharp (%XDF) has the same collating value as SS.

The next example shows various source strings being assigned collating values
that are relatively greater than, less than, and equal to the destination strings:

.

.

.
MODIFICATIONS=(

%XDF > "S", ! S sharp
%XD7 < "O", ! OE ligature
%XF7 = %XD7)); ! oe ligature

.

.

.

Here the hexadecimal value for S sharp collates just greater than the letter S,
the hexadecimal value for the uppercase × ligature collates just less than the
letter O, and the hexadecimal value for the lowercase ÷ ligature collates equal to
uppercase ×.

You can also assign a range of strings the same collating value as a single string.
For example, if you want to assign all of the lowercase alphabetical characters the
same collating weight as a null character that typically has the lowest collating
value in a set, you would state it as follows:

.

.

.
CS = _NATIVE

MODIFICATIONS=(
%X61-%X7A = %X00,

.

.

.

In building a definition file, you can compose a definition that is not compatible
with NCS because the function is not well defined or because of some restriction
NCS may impose on the function. In analyzing a definition, use the NCS
/EXTRACT command to retrieve the function (see Part II). The NCS/EXTRACT
command restructures the definition in its most basic form. The resulting
definition may not be as efficient as the original definition but it is generally
more logically structured and easier to read.

NCS–17

Part II
NCS Command and Command Qualifiers

This part of the document describes the NCS command and its qualifiers.

NCS Usage Summary

The NCS command invokes the National Character Set (NCS) Utility, which
performs NCS library functions specified by NCS qualifiers. By default, NCS
tries to replace the definition modules in the default NCS library with the
definitions in the specified input file. All other NCS library functions require
explicit command qualifiers.

PARAMETER

NCS [input-filespec]

Parameter
[input-filespec,...]
Where applicable, specifies the name of one or more input files containing
definitions that NCS is to use to perform the action specified by the command
qualifier. By default, NCS attempts to replace modules in the default NCS library
with definitions in the input file.

You must specify an input file when you want to either replace or insert a module
in the specified NCS library. Specifying an input file is optional when you want
to create a new library.

If you specify several input files, you must separate them with commas (,). The
default file type for input files is NCS.

usage summary
Invoke the NCS Utility by entering the DCL command NCS. The NCS Utility
exits when the specified command operations are completed. If you use the /LIST
qualifier, you can direct output to a specified file. If you do not specify a file, the
output is directed to SYS$OUTPUT.

NCS–21

NCS Usage Summary

NCS Command Qualifiers
You may use one qualifier, no qualifiers, or several qualifiers with the NCS
command, depending on the library functions you want to perform. Most of the
qualifiers are compatible with one another and some require that you enter a
related qualifier to do a specific task.

Table NCS–3 lists qualifiers that require a related qualifier and qualifiers that
are incompatible.

Table NCS–3 NCS Command Qualifier Relationships

Qualifier Related Qualifiers Incompatible Qualifiers

/BEFORE2 /LIST

/COMPRESS /OUTPUT, /LIBRARY /CREATE, /EXTRACT

/CREATE1 /LIBRARY /COMPRESS, /EXTRACT

/DATA /COMPRESS, CREATE /EXTRACT, /INSERT, /REPLACE

/DELETE /LIBRARY /CREATE, /EXTRACT

/EXTRACT /LIBRARY, /MACRO, /OUTPUT /COMPRESS, /CREATE, /DELETE

/FORMAT3 /MACRO

/FULL2 /LIST

/HISTORY2 /LIST

/INSERT /LIBRARY /EXTRACT

/LIBRARY COMPRESS, /CREATE,
/DELETE, /EXTRACT, /INSERT,
/LIST, /REPLACE

/LIST /BEFORE, /FULL, /HISTORY,
/LIBRARY, /ONLY, /SINCE,

/EXTRACT

/LOG /CREATE, /DELETE,
/EXTRACT, /INSERT,
/REPLACE

/ONLY2 /LIST

/OUTPUT /EXTRACT /DELETE

/REPLACE /LIBRARY /EXTRACT

/SINCE2 /LIST

1The /CREATE, /INSERT, and /REPLACE qualifiers are compatible but /CREATE takes precedence. The related
qualifiers for /CREATE are applicable only if you enter one or more input files.
2This qualifier is meaningful only when used with the /LIST qualifier.
3This qualifier is meaningful only when used with the /MACRO qualifier.

NCS–22

NCS Qualifiers
/BEFORE

/BEFORE

Lists only the modules inserted in the library before the specified time.

Format

/BEFORE[= time]

Qualifier Value

time
The time (and date, where applicable) that NCS uses as the reference cutoff point
for accumulating the appropriate list of modules.

Description

When you use the /LIST qualifier, NCS lists all the definitions in the NCS library
by default. However, you can use the /BEFORE qualifier with the /LIST qualifier
to list only definitions created before a specified time (and date, where applicable).
You may specify an absolute time or a combination of absolute time and delta
time. For details on specifying times, see the OpenVMS DCL Dictionary.

If you use the /BEFORE qualifier without specifying the time, the output list
includes all definitions in the library created before today.

Examples

1. $ NCS/LIST/BEFORE=31-DEC-1988:13:30

This command lists all definition modules inserted in the default NCS library
before 1:30 p.m. on December 31, 1988.

2. $ NCS/LIST/BEFORE=31-DEC-1988:09:00/LIBRARY=USERDISK:[DOE]LIB.NLB

This command lists all definition modules inserted in user DOE’s local NCS
library, LIB.NLB, before 9:00 a.m. on December 31, 1988.

NCS–23

NCS Qualifiers
/COMPRESS

/COMPRESS

Recovers disk space previously occupied by deleted definition modules.

Format

/COMPRESS[=(option[,...])]

Qualifier Value

option
A set of options that permits you to change the size or format of the specified
library, overriding the values assigned to the library when it was created. See the
listing under DESCRIPTION.

Description

The /COMPRESS qualifier effectively recovers disk space previously occupied by
modules deleted from an NCS library by creating a more efficiently organized
output library file. If you do not explicitly specify a destination library, NCS
creates a new compressed version of the default NCS library. When you compress
an NCS library, you can override various NCS default values for the size and
format of the library, using the following options:

BLOCKS:n Specifies the number of 512-byte blocks to be allocated for
the library. By default, NCS allocates 100 blocks for a new
library.

HISTORY:n Specifies the maximum number of library update history
records that the library may maintain. By default, NCS sets
the number at 20.

KEYSIZE:n Changes the maximum length of definition module names.
MODULES:n Specifies the maximum number of modules in the NCS

library.

Examples

1. $ NCS/COMPRESS=(BLOCKS:200)/LIBRARY=USERDISK:[DOE]LIB.NLB

This command compresses user DOE’s local NCS library and simultaneously
allocates two hundred 512-byte blocks for it.

2. $ NCS/COMPRESS=(KEYSIZE:35,MODULES:40)/LIBRARY=USERDISK:[DOE]LIB.NLB

This command compresses user DOE’s local NCS library and specifies a
maximum key size of 35 bytes together with a maximum of 40 definition
modules.

NCS–24

NCS Qualifiers
/CREATE

/CREATE

Creates an NCS library.

Format

/CREATE[=(option[,...])]

Qualifier Value

option
A set of options that permits you to override the system defaults for the size and
format of the newly created NCS library. See the listing under DESCRIPTION.

Description

Use the /CREATE qualifier to create an NCS library. Note that you must use
the /LIBRARY qualifier and explicitly specify the device and directory when you
create a new NCS library (See examples). If you do not specify a device and
directory in the command line, NCS creates the library in SYS$LIBRARY by
default. If you do not use the /LIBRARY qualifier to specify a new library, NCS
creates a new version of the default NCS library.

To populate the new library from an existing definition file, enter as the command
parameter the specification for the input file containing the definitions.

When you create an NCS library, you can override various NCS default values for
the size and format of the library, using the following options:

BLOCKS:n Specifies the number of 512-byte blocks to be allocated for
the library. By default, NCS allocates 100 blocks for a new
library.

HISTORY:n Specifies the maximum number of library update history
records that the library may maintain. By default, NCS sets
the number to 20.

KEYSIZE:n Changes the maximum length of definition module names.
MODULES:n Specifies the maximum number of modules in the NCS

library.

Examples

1. $ NCS/CREATE=(BLOCKS:200,KEYSIZE:24)/LIBRARY=DISK1:[DOE]LIB.NLB

This command creates a file named LIB.NLB in the directory DOE, while
simultaneously allocating the file 200 blocks and setting the maximum
module name length at 24 characters.

2. $ NCS/CREATE=MODULES:40/LIBRARY=USERDISK:[DOE]ABC.NLB MY.NCS

This command creates an NCS library in directory DOE named ABC.NLB.
The command limits the library to 40 modules and populates it with
definitions from input file MY.NCS.

NCS–25

NCS Qualifiers
/DATA

/DATA

Improves disk space efficiency.

Format

/DATA=
n

REDUCE
EXPAND

o

Qualifier Values

REDUCE
Stores definitions in a data-reduced format.

EXPAND
Stores definitions in a data-expanded format.

Description

The /DATA qualifier gives you the option of specifying how you want definitions
stored in the NCS library, in data-reduced format or data-expanded format. Note
that you must specify a value, either REDUCE or EXPAND, with this qualifier;
there is no default value. Note, too, that NCS does an implicit compression
(recovers unused space from previously deleted files) on the specified library,
whether you are converting the library to data-reduced form or to data-expanded
form.

If the specified NCS library is in standard (nonreduced) form, use the REDUCE
option to create a new reduced version of the library. If you do not use the
/LIBRARY qualifier to specify a library, NCS creates a new reduced version of
the default NCS library. Note that access to libraries in data-reduced format is
generally slower than libraries in data-expanded format.

If the specified NCS library is in reduced form, use the EXPAND option to create
a new expanded (standard) version of the library. If you do not use the /LIBRARY
qualifier to specify a library, NCS creates a new expanded version of the default
NCS library. Note that access to libraries in data-expanded (standard) format is
generally faster than libraries in data-reduced format.

Examples

1. $ NCS/DATA=REDUCE

This command maximizes the space efficiency of the default NCS library.

2. $ NCS/DATA=EXPAND SYS$LIBRARY:NCS$LIBRARY

This command reduces the access time to and space efficiency of the default
NCS library.

NCS–26

NCS Qualifiers
/DELETE

/DELETE

Deletes one or more definition modules from the NCS library.

Format

/DELETE=module[,...]

Qualifier Value

module
The name of the module to be deleted.

Description

The /DELETE qualifier deletes the specified definition module or modules from
an NCS library. If you specify several modules, separate the definition names
with commas (,) and enclose the list in parentheses. You may use the standard
VMS wildcard characters to specify the modules to be deleted.

If you use this qualifier with the /LIST qualifier, NCS deletes the module before it
lists the contents of the library. Therefore, the deleted definitions do not appear
in the output listing.

Examples

1. $ NCS/DELETE=CH*

This command deletes all NCS library modules that begin with the letters
CH.

2. $ NCS/DELETE=(LOWER_TO_UPPER,CHANGECASE)/LIST

This command deletes the definition CHANGECASE from the default NCS
library and then lists the remaining definitions.

NCS–27

NCS Qualifiers
/EXTRACT

/EXTRACT

Extracts definitions from an NCS library.

Format

/EXTRACT=module[,...]
�

/OUTPUT= filespec
/MACRO= filespec

�

Qualifier Value

module
The name of the module to be extracted.

Description

The /EXTRACT qualifier is used to retrieve one or more definition modules from
an NCS library. Note that you must use either the /OUTPUT qualifier or the
/MACRO qualifier with the /EXTRACT qualifier to specify a destination file for
the extracted definition.

Use the /EXTRACT qualifier with the /MACRO qualifier to extract one or more
definitions that you want to include in a MACRO-32 program file. When you use
the /MACRO qualifier with the /EXTRACT qualifier, the default output file type
is MAR.

Use the /EXTRACT qualifier with the /OUTPUT qualifier to extract one or more
definitions that you want to include in an NCS definition file. When you use the
/OUTPUT qualifier with the /EXTRACT qualifier, the default output file type is
NCS.

If you want to extract several modules, separate the module names with commas
(,) and enclose the list in parentheses.

You may use any of the standard VMS wildcard characters to specify the modules
to be extracted.

Examples

1. $ NCS/EXTRACT=CHANGECASE/MACRO=MY

This command extracts the definition CHANGECASE from the default NCS
library and converts it to MACRO format before storing it in the file MY.MAR.

2. $ NCS/EXTRACT=(CHANGECASE,UPPER_TO_LOWER)/OUTPUT=MY

This command extracts two definitions from the default NCS library and
stores them in the definition file MY.NCS.

NCS–28

NCS Qualifiers
/FORMAT

/FORMAT

Specifies the MACRO format appropriate to your program.

Format

/FORMAT=
n

NCS
256

o

Qualifier Values

NCS
MACRO-32 format for NCS routines.

256
MACRO-32 format for the Run-Time Library routine LIB$MOVTC.

Description

Use the /FORMAT qualifier with the /MACRO qualifier to specify the appropriate
MACRO-32 file format. You may select one of two format options, either NCS (the
default) or 256. If you select the NCS format, NCS formats the collating sequence
and string conversion tables, or both, for use by the NCS routines. If you select
the 256 format, NCS formats the collating sequence and string conversion tables,
or both, as 256-byte tables that can be used by the Run-Time Library routine
LIB$MOVTC. For more information, see the OpenVMS RTL Library (LIB$)
Manual.

Examples

1. $ NCS/EXTRACT=UP_DOWN/MACRO=MY/FORMAT=256

This command extracts the definition UP_DOWN from the default NCS
library and converts it to the 256-byte table format before including it in the
file MY.MAR.

2. $ NCS/EXTRACT=(ABCDE,XYZ)/MACRO=MY

This command extracts two definitions from the default NCS library and
converts them, by default, to NCS format before including them in the file
MY.MAR.

NCS–29

NCS Qualifiers
/FULL

/FULL

Provides a complete listing of an NCS library.

Format

/FULL

Parameters

None.

Description

Use the /FULL qualifier with the /LIST qualifier to obtain an NCS library listing
that includes the date and time each module was inserted into the library. The
output has the following format:

module inserted dd-mmm-yyyy hh:mm:ss

Example

$ NCS/LIST/FULL

This command lists the modules in the default NCS library, together with the
date and time that each module was inserted into the library.

NCS–30

NCS Qualifiers
/HISTORY

/HISTORY

Provides the update history record headers for the NCS library.

Format

/HISTORY

Parameters

None.

Description

You use the /HISTORY qualifier with the /LIST qualifier to obtain a list of the
update history record headers for the specified NCS library, in the following
format:

username operation n modules on dd-mmm-yyyy hh:mm:ss

The operation may be a replacement, insertion, or deletion of definition modules.
If you specify the /FULL qualifier with the /HISTORY and /LIST qualifiers,
NCS lists the history record headers for each update, together with a list of the
definition modules affected by each update.

Examples

1. $ NCS/LIST/HISTORY

If you had previously deleted two definition modules from the NCS library,
this command would produce a listing that includes the following line:

JONES deleted 2 modules on 31-DEC-1988 16:26:36

2. $ NCS/LIST/HISTORY/FULL

Making the same assumptions as in the previous example, this command
would produce a listing that includes the names of the deleted modules:

JONES deleted 2 modules on 31-DEC-1988 16:26:36
CHANGECASE
UPCASE

NCS–31

NCS Qualifiers
/INSERT

/INSERT

Adds one or more definition modules to an NCS library.

Format

/INSERT filename

Parameters

None.

Description

Use the /INSERT qualifier to add one or more definition modules to an NCS
library from an input file. If the input file contains more than one definition, NCS
creates a separate entry in the library for each.

Before NCS inserts a definition into an existing NCS library, it verifies that the
library does not already contain a definition module having the same name. If
NCS finds a definition module with the same name, it does not add the new
definition module to the library, but it does provide an appropriate error message.

Examples

1. $ NCS/INSERT MY_DEFS

This command directs NCS to insert each of the definitions from input file
MY_DEFS.NCS into the NCS library.

2. $ NCS/INSERT/LIST/HISTORY/FULL MY_DEFS

This command directs NCS to insert the definitions from input file MY_
DEFS.NCS into the NCS library; then NCS lists the history of each definition
module in the library, including those inserted by this command.

NCS–32

NCS Qualifiers
/LIBRARY

/LIBRARY

Specifies an alternate NCS library. The default NCS library is
SYS$LIBRARY:NCS$LIBRARY.

Format

/LIBRARY= filespec

Qualifier Value

filespec
The alternate NCS library file specification.

Description

The /LIBRARY qualifier allows you to specify an NCS library other than the
default NCS library (SYS$LIBRARY:NCS$LIBRARY). Note if you do not include
a device and directory when you specify the alternate library, NCS defaults to
SYS$LIBRARY. The default file type is NLB.

Examples

1. $ NCS/INSERT/LIBRARY=USERDISK:[DOE]MY_LIB MY_DEFS

This command directs NCS to insert definitions from the file MY_DEFS.NCS
into the NCS library MY_LIB.NLB.

2. $ NCS/DELETE=UPCASE/LIBRARY=GEN_NCS

This command directs NCS to delete the module UPCASE from the library
file SYS$LIBRARY:GEN_NCS.NLB.

NCS–33

NCS Qualifiers
/LIST

/LIST

Lists the contents of an NCS library.

Format

/LIST[= filespec]

/NOLIST

Qualifier Value

filespec
The destination file specification for the list output.

Description

The /LIST qualifier allows you to obtain a listing of an NCS library. The optional
file specification parameter allows you to store the listing in a file. The default
file type is LIS. If you omit the file specification, NCS directs the listing to
SYS$OUTPUT.

You are not permitted to use wildcard characters when specifying the destination
file.

Note that when you use the /LIST qualifier in conjunction with qualifiers (such
as the /DELETE qualifier) that modify the contents of the NCS library, NCS
creates the listing after the modifications are made. For example, if you delete
the definition module UPCASE and simultaneously request a listing, the listing
does not include the UPCASE module.

Listings can provide various types of information, depending on the qualifiers you
use with /LIST. Each listing, however, contains at least the following information
about the library:

Directory of NCS library library-filespec on dd-mmm-yyyy hh:mm:ss
Creation date: dd-mmm-yyyy hh:mm:ss Creator: VAX librarian Vnn-nn
Revision date: dd-mmm-yyyy hh:mm:ss Library format: n.n
Number of modules: nnn Max. key length: nnn
Other entries: nnn Preallocated index blocks: nnn
Recoverable deleted blocks: nnn Total index blocks used: nnn
Max. update history records: nnn Update history records: nnn

Examples

1. $ NCS/LIST

This command outputs a listing of the definitions in the default NCS library
to the SYS$OUTPUT device.

2. $ NCS/LIST=DEFLIST/FULL

This command outputs a listing of the definitions in the default NCS library
to a file named DEFLIST.LIS. The listing includes the date each definition
was inserted in the NCS library.

NCS–34

NCS Qualifiers
/LOG

/LOG

Determines whether or not NCS verifies library operations.

Format

/LOG

/NOLOG

Parameters

None.

Description

Use the /LOG or /NOLOG qualifier to specify whether or not you want NCS to
confirm the result of a specified operation (such as a replacement, insertion, or
deletion). By default, NCS does not confirm operations.

Example

$ NCS/DELETE=(TJL,RRR)/LOG

This command directs NCS to delete the definitions TJL and RRR in the default
NCS library. After deleting the definitions, NCS issues the following messages:

%NCS-S-DELETED, module TJL deleted
%NCS-S-DELETED, module RRR deleted

NCS–35

NCS Qualifiers
/MACRO

/MACRO

Specifies that the extracted definition table is coded in MACRO-32.

Format

/MACRO= filespec

Qualifier Value

filespec
The file specification for the destination MACRO file.

Description

Use the /MACRO qualifier with the /EXTRACT qualifier if you want to retrieve
a definition module from the NCS library, convert the definition to VAX MACRO
format, and then output the VAX MACRO-formatted definition to the specified
destination file. Note that each collating sequence and conversion function bears
a global label that you can use to pass the address of the definition to an NCS
routine.

You must include the destination file specification with the /MACRO qualifier.
You cannot use wildcard characters to specify the destination file. The default
value for MACRO-32 files generated by the /MACRO qualifier is MAR.

Note that you can further define a specific MACRO-32 format with the /FORMAT
qualifier, as shown in the second example.

Examples

1. $ NCS/EXTRACT=DOWNCASE/MACRO=MY_MACRO

This command directs NCS to extract the definition DOWNCASE from the
default NCS library, convert the definition to VAX MACRO format, and then
output it to file MY_MACRO.MAR. The following example shows an NCS
definition module converted to VAX MACRO:

.PSECT NCS$RO_DATA NOVEC,NOWRT,RD,NOEXE,SHR,LCL,REL,CON,PIC,LONG DOWNCASE::

.LONG ^X00000158,^X00000000,^X00000000,^X00000000

.LONG ^X00000000,^X776F6408,^X7361636E,^X00000065

.LONG ^X00000000,^X00000000,^X00000000,^X00000000

.LONG ^X00000000,^X00000000,^X00000000,^X00000000

.LONG ^X00000005,^X00000158,^X00000000,^X00000000

.LONG ^X00000000

.LONG ^X00000000

.LONG ^X03020100,^X07060504,^X0B0A0908,^X0F0E0D0C

.LONG ^X13121110,^X17161514,^X1B1A1918,^X1F1E1D1C
.
.
.

.LONG ^X23222120,^X27262524,^X2B2A2928,^X2F2E2D2C

.LONG ^X33323130,^X37363534,^X3B3A3938,^X3F3E3D3C

.LONG ^X63626140,^X67666564,^X6B6A6968,^X6F6E6D6C

.LONG ^X73727170,^X77767574,^X5B7A7978,^X5F5E5D5C

.LONG ^X63626160,^X67666564,^X6B6A6968,^X6F6E6D6C

.LONG ^X73727170,^X77767574,^X7B7A7978,^X7F7E7D7C

.LONG ^XF3F2F1F0,^XF7F6F5F4,^XFBFAF9F8,^XFFFEFDFC

.END

NCS–36

NCS Qualifiers
/MACRO

2. $ NCS/EXTRACT=DOWNCASE/MACRO=MY_MACRO/FORMAT=256

This command directs NCS to extract the DOWNCASE definition from
the default NCS library, as in the first example. However, this command
explicitly specifies that NCS convert the definition to the MACRO-32 format
for use with the Run-Time Library routine LIB$MOVTC instead of the default
NCS format. The following example illustrates the converted definition:

.PSECT NCS$RO_DATA NOVEC,NOWRT,RD,NOEXE,SHR,LCL,REL,CON,PIC,LONG DOWNCASE::

.LONG ^X03020100,^X07060504,^X0B0A0908,^X0F0E0D0C

.LONG ^X13121110,^X17161514,^X1B1A1918,^X1F1E1D1C

.LONG ^X23222120,^X27262524,^X2B2A2928,^X2F2E2D2C

.LONG ^X33323130,^X37363534,^X3B3A3938,^X3F3E3D3C

.LONG ^X63626140,^X67666564,^X6B6A6968,^X6F6E6D6C

.LONG ^X73727170,^X77767574,^X5B7A7978,^X5F5E5D5C

.LONG ^X63626160,^X67666564,^X6B6A6968,^X6F6E6D6C

.LONG ^X73727170,^X77767574,^X7B7A7978,^X7F7E7D7C

.LONG ^X83828180,^X87868584,^X8B8A8988,^X8F8E8D8C

.LONG ^X93929190,^X97969594,^X9B9A9998,^X9F9E9D9C

.LONG ^XA3A2A1A0,^XA7A6A5A4,^XABAAA9A8,^XAFAEADAC

.LONG ^XB3B2B1B0,^XB7B6B5B4,^XBBBAB9B8,^XBFBEBDBC

.LONG ^XE3E2E1E0,^XE7E6E5E4,^XEBEAE9E8,^XEFEEEDEC

.LONG ^XF3F2F1D0,^XF7F6F5F4,^XFBFAF9F8,^XDFDEFDFC

.LONG ^XE3E2E1E0,^XE7E6E5E4,^XEBEAE9E8,^XEFEEEDEC

.LONG ^XF3F2F1F0,^XF7F6F5F4,^XFBFAF9F8,^XFFFEFDFC

.END

NCS–37

NCS Qualifiers
/ONLY

/ONLY

Limits the modules being listed.

Format

/ONLY=module[,...]

Qualifier Value

module
The module or modules to be listed.

Description

Use the /ONLY qualifier with the /LIST qualifier to specify which definition
modules in the NCS library you want listed. If you specify more than one
definition module, separate the module names with commas (,) and enclose the
list in parentheses.

You may use wildcard characters to specify the definition module(s).

Example

$ NCS/LIST/ONLY=(M*,P*)

This command directs NCS to list only the definition modules that have names
beginning with the letter M or the letter P.

NCS–38

NCS Qualifiers
/OUTPUT

/OUTPUT

Specifies the output definition file.

Format

/OUTPUT= filespec

Qualifier Value

filespec
The file specification for the destination file.

Description

You use the /OUTPUT qualifier with the /EXTRACT and /COMPRESS qualifiers
to specify a destination file.

Use the /OUTPUT qualifier with the /EXTRACT qualifier to specify a file to store
the definitions extracted from an NCS library. The default file type is NCS. Note
that the new definition file is not the same as the definition file used to originally
create the definition. NCS does not store the original definition file, only the
resultant definition.

Use the /OUTPUT qualifier with the /COMPRESS qualifier to specify a
destination library file for the compressed library. If you do not use the /OUTPUT
qualifier with the /COMPRESS qualifier, NCS puts the compressed library in a
new version of the default NCS library. The default file type is NLB.

Examples

1. $ NCS/EXTRACT=(UPCASE,DOWNCASE)/OUTPUT=USER:[DOE]NEW_DEFS.NCS

This command directs NCS to extract two definitions (UPCASE and
DOWNCASE) from the default NCS library and to store them in a file
named NEW_DEF.NCS.

2. $ NCS/COMPRESS/OUTPUT=USER:[DOE.NCS]NEW_LIB

This command directs NCS to compress the default NCS library and to
store the compressed version in an alternate NCS library specified as
USER:[DOE.NCS]NEW_LIB.NLB.

NCS–39

NCS Qualifiers
/REPLACE

/REPLACE

Replaces one or more definition modules in the default NCS library with modules
from the specified input file.

Format

/REPLACE

Parameters

None.

Description

Use the /REPLACE qualifier when you want to replace one or more library
modules with definitions from the specified input file. If a replacement module
in the input file does not have a corresponding module in the NCS library,
NCS inserts, rather than replaces, the new module in the library. If you do not
explicitly specify a qualifier for the NCS command, the default is the /REPLACE
qualifier.

Example

$ NCS MY_DEFS

This command directs NCS to replace each definition in the default NCS library
with a corresponding definition from the input file, MY_DEFS.NCS.

NCS–40

NCS Qualifiers
/SINCE

/SINCE

Limits a library output listing to definitions inserted after the specified date and
time. The most recent definitions are listed first, and are in alphabetical order.

Format

/SINCE[= time]

Qualifier Value

time
The time (and date, where applicable) that NCS uses as the reference point to
begin accumulating the appropriate list of modules.

Description

Use the /SINCE qualifier with the /LIST qualifier to list only modules inserted
into the library after the specified time (and date, where applicable). You can
specify an absolute time or a combination of absolute and delta times. For details
on specifying times, see the OpenVMS DCL Dictionary.

If you omit the /SINCE qualifier, NCS lists all the modules in the library unless
you use a different limiting qualifier (/BEFORE or /ONLY). If you specify the
/SINCE qualifier without a time or date, NCS lists only the modules inserted
today.

Examples

1. $ NCS/LIST/SINCE=31-DEC-1988:10:00

This command directs NCS to list only modules inserted in the default NCS
library after 10 a.m. on December 31, 1988.

2. $ NCS/LIST/SINCE

This command directs NCS to list only modules inserted in the default NCS
library today.

NCS–41

A
National Character Set Definitions

This appendix lists the contents of the default NCS library (NCS$LIBRARY). The
library includes 13 collating sequences and 24 conversion functions.

Danish = CS(
 SEQUENCE = (%X00−"N", "Ñ", "O"−"Z", "Ä", "Ö", "Å", "["−"‘ ", "{"−"¿", %XD0,
 %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "À"−"Ã" = "A", "Æ" = "Ä", "Ç" = "C",
 "È"−"Ë" = "E", "Ì "−"Ï " = "I", "Ò"−"Õ" = "O", "Ø" = "Ö", "Ù"−"Û" = "U",
 "Ü"−"Y" = "Y", "à"−"ã" = "A", "ä"−"å" = "Ä"−"Å", "æ" = "Ä", "ç" = "C",

 "ø" = "Ö", "ù"−"û" = "U", "ü"−"ÿ" = "Y", "
 "
 + CS(SEQUENCE = (%X00−"A", "Ä"−"À", "B"−"C", "Ç", "D"−"E", "Ë"−"È",
 "F"−"I", "Ï "−"Ì ", "J"−"N", "Ñ", "C
 "S"−"U", "Ü"−"Ù", "V"−"Y", "Y", "Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿",
 %XD0, %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "à"−"ï " = "À"−"Ï ", "ñ"−"ÿ" = "Ñ"−"Y"))
 + REVERSE(_NATIVE);

ZK−6574−GE

CE" = "OE", "ß" = "SS",
ce" = "CE", "" < %X00))

··

 "è"−"ë" = "E", "ì "−"ï " = "I", "ñ" = "Ñ", "ò"−"õ" = "O", "ö" = "Ö",

 ", "O", "Ö"−"Ò", "P"−"R", "ß",E
··

··

Danish_NRC_to_Multi = CF(
 CF = _IDENTITY, MODE = (
 "@" = "Ä",
 "[" = "Æ",
 "\" = "Ø",
 "]" = "Å",
 "^" = "Ü",
 "‘ " = "ä",
 "{" = "æ",
 "|" = "ø",
 "}" = "å",
 "~" = "ü",
 "" = %X00));

ZK−6575−GE

A–1

National Character Set Definitions

Dutch = CS(

 %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "À"−"Ä" = "A", "Ç" = "C", "È"−"Ë" = "E",

 "å"−"æ" = "Å"−"Æ", "ç" = "C", "è"−"ë" = "E", "ì "−"ï " = "I", "ñ" = "Ñ",

 "ß" = "SS", "c
 + CS(SEQUENCE = (%X00−"A", "Ä"−"À", "B"−"C", "Ç", "D"−"E", "Ë"−"È",

 %XD0, %XDE, %XF0, %XFE−%XFF),

 + REVERSE(_NATIVE);

ZK−6576−GE

e" = "CE", "" < %X00))

 SEQUENCE = (%X00−"N", "Ñ", "O"−"Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿", %XD0,

 "Ì "−"Ï " = "I", "Ò"−"Ö" = "O", "Ù"−"Ü" = "U", "Y" = "Y", "à"−"ä" = "A",

 "ò"−"ö" = "O", "ø" = "Ø", "ù"−"ü" = "U", "ÿ" = "Y", "CE" = "OE",

 "F"−"I", "Ï "−"Ì ", "J"−"N", "Ñ", "C E", "O", "Ö"−"Ò", "P"−"R", "ß",
·· "S"−"U", "Ü"−"Ù", "V"−"Y", "Y", "Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿",

 MODIFICATIONS=("a"−"z" = "A"−"Z", "à"−"ï " = "À"−"Ï ", "ñ"−"ÿ" = "Ñ"−"Y"))··

··

A–2

National Character Set Definitions

EDT_VT2xx = CF(
 CF = _IDENTITY, MODI = (
%X00 − "^@",
%X01 = "^A",
%X02 = "^B",
%X03 = "^C",
%X04 = "^D",
%X05 = "^E",
%X06 = "^F",
%X07 = "^G",
%X08 = "^H",
%X0A = "<LF>",
%X0B = "<VT>",
%X0C = "<FF>",
%X0D = "<CR>",
%X0E = "^N",
%X0F = "^O",
%X10 = "^P",
%X11 = "^Q",
%X12 = "^R",
%X13 = "^S",
%X14 = "^T",
%X15 = "^U",
%X16 = "^V",
%X17 = "^W",
%X18 = "^X",
%X19 = "^Y",
%X1A = "^Z",
%X1B = "<ESC>",
%X1C = "^\",
%X1D = "^]",
%X1E = "^^",
%X1F = "^_",
%X7F = "",
%X80 = "<X80>",
%X81 = "<X81>",
%X82 = "<X82>",
%X83 = "<X83>",
%X84 = "<IND>",
%X85 = "<NEL>",
%X86 = "<SSA>",
%X87 = "<ESA>",
%X88 = "<HTS>",
%X89 = "<HTJ>",
%X8A = "<VTS>",
%X8B = "<PLD>",
%X8C = "<PLU>",
%X8D = "<RI>",
%X8E = "<SS2>",
%X8F = "<SS3>",
%X90 = "<DCS>",
%X91 = "<PU1>",
%X92 = "<PU2>",
%X93 = "<STS>",
%X94 = "<CH>",
%X95 = "<MW>",
%X96 = "<SPA>",
%X97 = "<EPA>",
%X98 = "<X98>",
%X99 = "<X99>",
%X9A = "<X9A>",
%X9B = "<CSI>",
%X9C = "<ST>",
%X9D = "<OSC>",
%X9E = "<PM>",
%X9F = "<APC>",
%XA0 = "<XA0>",
%XA4 = "<XA4>",
%XA6 = "<XA6>",
%XAC = "<XAC>",
%XAD = "<XAD>",
%XAE = "<XAE>",
%XAF = "<XAF>",
%XB4 = "<XB4>",
%XB8 = "<XB8>",
%XBE = "<XBE>",
%XD0 = "<XD0>",
%XDE = "<XDE>",
%XF0 = "<XF0>",
%XFE = "<XFE>",
%XFF = "<XFF>",
"" = %X00));

ZK−6577−GE

A–3

National Character Set Definitions

English = CS(
 SEQUENCE = (%X00−"N", "Ñ", "O"−"Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿", %XD0,
 %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "À"−"Ä" = "A", "Ç" = "C", "È"−"Ë" = "E",
 "Ì "−"Ï " = "I", "Ò"−"Ö" = "O", "Ù"−"Ü" = "U", "Y" = "Y", "à"−"ä" = "A",
 "å"−"æ" = "Å"−"Æ", "ç" = "C", "è"−"ë" = "E", "ì "−"ï " = "I", "ñ" = "Ñ",
 "ò"−"ö" = "O", "ø" = "Ø", "ù"−"ü" = "U", "ÿ" = "Y", "C
 "ß" = "SS", "c
 + CS(SEQUENCE = (%X00−"A", "Ä"−"À", "B"−"C", "Ç", "D"−"E", "Ë"−"È",
 "F"−"I", "Ï "−"Ì ", "J"−"N", "Ñ", "C
 "S"−"U", "Ü"−"Ù", "V"−"Y", "Y", "Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿",
 %XD0, %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "à"−"ï " = "À"−"Ï ", "ñ"−" " = "Ñ"−"Y"))
 + REVERSE(_NATIVE);

ZK−6579−GE

e" = "CE", "" < %X00)
E" = "OE",

··

··

 ", "O", "Ö"−"Ò", "P"−"R", "ß",E
··

y
..

Finnish = CS(
 SEQUENCE = (%X00−"N", "Ñ", "O"−"Z", "Æ"−"Ä", "Ö", "["−"‘ ", "{"−"¿", %XD0,

 MODIFICATIONS=("a"−"z" = "A"−"Z", "À"−"Ã" = "A", "Ç" = "C", "È"−"Ë" = "E",
 "Ì "−"Ï " = "I", "Ò"−"Õ" = "O", "Ø" = "Ö", "Ù"−"Û" = "U", "Ü"−"Y" = "Y",
 "à"−"ã" = "A", "ä"−"æ" = "Ä"−"Æ", "ç" = "C", "è"−"ë" = "E",
 "ì "−"ï " = "I", "ñ" = "Ñ", "ò"−"õ" = "O", "ö" = "Ö", "ø" = "Ö",

 + CS(SEQUENCE = (%X00−"A", "À"−"Ä", "B"−"C", "Ç", "D"−"E", "È"−"Ë",

 %XD0, %XDE, %XF0, %XFE−%XFF),

 + REVERSE(_NATIVE);

ZK−6580−GE

 MODIFICATIONS=("a"−"z" = "A"−"Z", "à"−"ï " = "À"−"Ï ", "ñ"−"ý" = "Ñ"−"Y"))··

·· "S"−"U", "Ù"−"Ü", "V"−"Y", "Y", "Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿",
 "F"−"I", "Ì "−"Ï ", "J"−"N", "Ñ", "C E", "O", "Ò"−"Ö", "P"−"R", "ß",

··

%XDE, %XF0, %XFE−%XFF),

"ù"−"û" = "U", "ü"−"ÿ" = "Y", "CE" = "OE", "ß" = "SS", "ce" = "CE",
 "" < %X00))

Finnish_NRC_to_Multi = CF(
 CF = _IDENTITY, MODI = (
 "[" = "Ä",
 "\" = "Ö",
 "]" = "Å",
 "^" = "Ü",
 "‘ " = "é",
 "{" = "ä",
 "|" = "ö",
 "}" = "å",
 "~" = "ü",
 "" = %X00));

ZK−6581−GE

A–4

National Character Set Definitions

FrCan_NRC_to_Multi = CF(
 CF = _IDENTITY, MODI = (
 "@" = "à",
 "[" = "â",
 "\" = "ç",
 "]" = "ê",
 "^" = "î ",
 "‘ " = "ô",
 "{" = "é",
 "|" = "ù",
 "}" = "è",
 "~" = "û",
 "" = %X00));

ZK−6582−GE

French = CS(
 SEQUENCE = (%X00−"N", "Ñ", "O"−"Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿", %XD0,
 %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "À"−"Ä" = "A", "Ç" = "C", "È"−"Ë" = "E",
 "Ì "−"Ï " = "I", "Ò"−"Ö" = "O", "Ù"−"Ü" = "U", "Y" = "Y", "à"−"ä" = "A",
 "å"−"æ" = "Å"−"Æ", "ç" = "C", "è"−"ë" = "E", "ì "−"ï " = "I", "ñ" = "Ñ",
 "ò"−"ö" = "O", "ø" = "Ø", "ù"−"ü" = "U", "ÿ" = "Y", "C

 + CS(SEQUENCE = (%X00−"A", "Ä"−"À", "B"−"C", "Ç", "D"−"E", "Ë"−"È",
 "F"−"I", "Ï "−"Ì ", "J"−"N", "Ñ", "C
 "S"−"U", "Ü"−"Ù", "V"−"Y", "Y", "Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿",
 %XD0, %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "à"−"ï " = "À"−"Ï ", "ñ"−" " = "Ñ"−"Ý"))
 + REVERSE(_NATIVE);

ZK−6583−GE

E" = "OE",
 "ß" = "SS", "ce" = "CE", "" < %X00))

··

 E", "O", "Ö""−"Ò", "P"−"R", "ß",
··

y
..

French_NRC_to_Multi = CF(
 CF = _IDENTITY, MODI = (
 "#" = "£",
 "@" = "à",
 "[" = "°",
 "\" = "ç",
 "]" = "§",
 "{" = "é",
 "|" = "ù",
 "}" = "è",
 "^a" = "â",
 "^e" = "ê",
 "^i" = "î ",
 "^o" = "ô",
 "^u" = "û",
 "~a" = "ä",
 "~e" = "ë",
 "~i" = "ï ",
 "~o" = "ö",
 "~u" = "ü",
 "" = %X00));

ZK−6584−GE

A–5

National Character Set Definitions

German = CS(
 SEQUENCE = (%X00−"N", "Ñ", "O"−"Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿", %XD0,
 %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "À"−"Ä" = "A", "Ç" = "C", "È"−"Ë" = "E",
 "Ì "−"Ï " = "I", "Ò"−"Ö" = "O", "Ù"−"Ü" = "U", "Y" = "Y", "à"−"ä" = "A",
 "å"−"æ" = "Å"−"Æ", "ç" = "C", "è"−"ë" = "E", "ì "−"ï " = "I", "ñ" = "Ñ",

 + CS(SEQUENCE = (%X00−"A", "Ä"−"À", "B"−"C", "Ç", "D"−"E", "Ë"−"È",
 "F"−"I", "Ï "−"Ì ", "J"−"N", "Ñ", "C
 "S"−"U", "Ü"−"Ù", "V"−"Y", " ", "Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿",
 %XD0, %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "à"−"ï " = "À"−"Ï ", "ñ"−" " = "Ñ"−"Y"))
 + REVERSE(_NATIVE);

ZK−6585−GE

 "ß" = "SS", "ce" = "CE", "" < %X00))
 "ò"−"ö" = "O", "ø" = "Ø", "ù"−"ü" = "U", "ÿ" = "Y", "CE" = "OE",

 E", "O", "Ö"−"Ò", "P"−"R", "ß",

··

··

Y
..

y
..

German_NRC_to_Multi = CF(
 CF = _IDENTITY, MODI = (
 "@" = "§",
 "[" = "Ä",
 "\" = "Ö",
 "]" = "Ü",
 "{" = "ä",
 "|" = "ö",
 "}" = "ü",
 "~" = "ß",
 "" = %X00));

ZK−6586−GE

Italian = CS(
 SEQUENCE = (%X00−"N", "Ñ", "O"−"Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿", %XD0,
 %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "À"−"Ä" = "A", "Ç" = "C", "È"−"Ë" = "E",
 "Ì "−"Ï " = "I", "Ò"−"Ö" = "O", "Ù"−"Ü" = "U", "Y" = "Y", "à"−"ä" = "A",
 "å"−"æ" = "Å"−"Æ", "ç" = "C", "è"−"ë" = "E", "ì "−"ï " = "I", "ñ" = "Ñ",

 + CS(SEQUENCE = (%X00−"A", "Ä"−"À", "B"−"C", "Ç", "D"−"E", "Ë"−"È",
 "F"−"I", "Ï "−"Ì ", "J"−"N", "Ñ", "C
 "S"−"U", "Ü"−"Ù", "V"−"Y", "Y", "Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿",
 %XD0, %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "à"−"ï " = "À"−"Ï ", "ñ"−" " = "Ñ"−"Y"))
 + REVERSE(_NATIVE);

ZK−6587−GE

 "ß" = "SS", "ce" = "CE", "" < %X00))
 "ò"−"ö" = "O", "ø" = "Ø", "ù"−"ü" = "U", "ÿ" = "Y", "CE" = "OE",

··

 E", "O", "Ö"−"Ò", "P"−"R", "ß",
··

··y
..

A–6

National Character Set Definitions

Italian_NRC_to_Multi = CF(
 CF = _IDENTITY, MODI = (
 "#" = "£",
 "@" = "§",
 "[" = "°",
 "\" = "ç",
 "]" = "é",
 "‘ " = "ù",
 "{" = "à",
 "|" = "ò",
 "}" = "è",
 "~" = "ì ",
 "" = %X00));

ZK−6588−GE

Multinational = CS(
 SEQUENCE = (%X00−"N", "Ñ", "O"−"Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿", %XD0,
 %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "À"−"Ä" = "A", "Ç" = "C", "È"−"Ë" = "E",
 "Ì "−"Ï " = "I", "Ò"−"Ö" = "O", "Ù"−"Ü" = "U", "Y" = "Y", "à"−"ä" = "A",
 "å"−"æ" = "Å"−"Æ", "ç" = "C", "è"−"ë" = "E", "ì "−"ï " = "I", "ñ" = "Ñ",

 + CS(SEQUENCE = (%X00−"A", "Ä"−"À", "B"−"C", "Ç", "D"−"E", "Ë"−"È",
 "F"−"I", "Ï "−"Ì ", "J"−"N", "Ñ", "C
 "S"−"U", "Ü"−"Ù", "V"−"Y", "Y", "Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿",
 %XD0, %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "à"−"ï " = "À"−"Ï ", "ñ"−" " = "Ñ"−"Ý"))
 + REVERSE(_NATIVE);

ZK−6589−GE

E" = "OE",C "ò"−"ö" = "O", "ø" = "Ø", "ù"−"ü" = "U", "ÿ" = "Y", "
 "ß" = "SS", "ce" = "CE", "" < %X00))

··

 E", "O", "Ö"−"Ò", "P"−"R", "ß",
··

y
..

Multinational_1 = CS(
 SEQUENCE = (%X00−"N", "Ñ", "O"−"Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿", %XD0,
 %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "À"−"Ä" = "A", "Ç" = "C", "È"−"Ë" = "E",
 "Ì "−"Ï " = "I", "Ò"−"Ö" = "O", "Ù"−"Ü" = "U", "Y" = "Y", "à"−"ä" = "A",
 "å"−"æ" = "Å"−"Æ", "ç" = "C", "è"−"ë" = "E", "ì "−"ï " = "I", "ñ" = "Ñ",

ZK−6590−GE

 "ß" = "SS", "ce" = "CE", "" < %X00));
E" = "OE", "ò"−"ö" = "O", "ø" = "Ø", "ù"−"ü" = "U", "ÿ" = "Y", "C

··

Multinational_2 = CS (
 SEQUENCE = (%X00−"A", "Ä"−"À", "B"−"C", "Ç", "D"−"E", "Ë"−"È", "F"−"I",
 "Ï "−"Ì ", "J"−"N", "Ñ", "C
 "Ü"−"Ù", "V"−"Y", "Y", "Z", " ", "Ø", "Å", "["−"‘ ", "{"−"¿", %XD0,
 %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "à"−"ï " = " "−"Ï ", "ñ"−"ÿ" = "Ñ"−"Y",
 "" = %X00));

ZK−6591−GE

E", "O", "Ö"−"Ò", "P"−"R", "ß", "S"−"U",
··

··

AE

‘A

A–7

National Character Set Definitions

 "Ä" = "@",
 "Å" = "]",
 "Æ" = "[",
 "Ø" = "\",
 "Ü" = "^",
 "ä" = "‘ ",
 "å" = "}",
 "æ" = "{",
 "ø" = "|",
 "ü" = "~",
 "" = %X00));

ZK−6592−GE

Multi_to_Danish_NRC = CF(
 CF = _IDENTITY, MODI = (

 "Ä" = "[",
 "Å" = "]",
 "Ö" = "\",
 "Ü" = "^",
 "ä" = "{",
 "å" = "}",
 "é" = "‘ ",
 "ö" = "|",
 "ü" = "~",
 "" = %X00));

ZK−6593−GE

Multi_to_Finnish_NRC = CF(
 CF = _IDENTITY, MODI = (

Multi_to_FrCan_NRC = CR(
 CF = _IDENTITY, MODI = (
 "à" = "@",
 "â" = "[",
 "ç" = "\",
 "è" = "}",
 "é" = "{",
 "ê" = "]",
 "î " = "^",
 "ô" = "‘ ",
 "ù" = "|",
 "û" = "~",
 "" = %X00));

ZK−6594−GE

A–8

National Character Set Definitions

Multi_to_French_NRC = CF(
 CF = _IDENTITY, MODI = (
 "£" = "#",
 "§" = "]",
 "°" = "[",
 "à" = "@",
 "ç" = "\",
 "é" = "}",
 "è" = "{",
 "ù" = "|",
 "â" = "^a",
 "ä" = "~a",
 "ê" = "^e",
 "ë" = "~e",
 "î " = "^i",
 "ï " = "~i",
 "ô" = "^o",
 "ö" = "~o",
 "û" = "^u",
 "ü" = "~u",
 "" = %X00));

ZK−6595−GE

Multi_to_German_NRC = CF(
 CF = _IDENTITY, MODI = (
 "§" = "@",
 "Ä" = "[",
 "Ö" = "\",
 "Ü" = "]",
 "ß" = "~",
 "ä" = "{",
 "ö" = "|",
 "ü" = "}",
 "" = %X00));

ZK−6596−GE

Multi_to_Italian_NRC = CF(
 CF = _IDENTITY, MODI = (
 "£" = "#",
 "§" = "@",
 "°" = "[",
 "à" = "{",
 "ç" = "\",
 "è" = "}",
 "é" = "]",
 "ì " = "~",
 "ò" = "|",
 "ù" = "‘ ",
 "" = %X00));

ZK−6597−GE

A–9

National Character Set Definitions

Multi_to_Lower = CF(
 CF = _IDENTITY, MODI = (
 "A"−"Z" = "a"−"z",
 "À"−"Ï " = "à"−"ï ",
 "Ñ"−"Y" = "ñ"−"ÿ",
 "" = %X00));

ZK−6598−GE

··

Multi_to_NoDiacriticals = CF(
 CF = _IDENTITY, MODI = (
 "À"−"Å" = "A",
 "Ç" = "C",
 "È"−"Ë" = "E",
 "Ì "−"Ï " = "I",
 "Ñ"−"Ò" = "N"−"O",
 "Ó"−"Ö" = "O",
 "Ø" = "O",
 "Ù"−"Ü" = "U",
 "Y" = "Y",
 "à"−"å" = "a",
 "ç" = "c",
 "è"−"ë" = "e",
 "ì "−"ï " = "i",
 "ñ"−"ò" = "n"−"o",
 "ó"−"ö" = "o",
 "ù"−"ü" = "u",
 "ÿ" = "y",
 "Æ" = "AE",
 E − "OE",

 "ß" = "ss",
 "æ" = "ae",
 e" = "oe",

 "" = %X00));

ZK−6599−GE

"C

"c

··

 "Ä" = "@",
 "Å" = "]",
 "Æ" = "[",
 "Ø" = "\",
 "Ü" = "^",
 "ä" = "‘ ",
 "å" = "}",
 "æ" = "{",
 "ø" = "|",
 "ü" = "~",
 "" = %X00));

ZK−6600−GE

Multi_to_Norwegian_NRC = CF(
 CF = _IDENTITY, MODI = (

A–10

National Character Set Definitions

 "Ä" = "[",
 "Å" = "]",
 "É" = "@",
 "Ö" = "\",
 "Ü" = "^",
 "ä" = "{",
 "å" = "}",
 "é" = "‘ ",
 "ö" = "|",
 "ü" = "~",
 "" = %X00));

ZK−6601−GE

Multi_to_Swedish_NRC = CF(
 CF = _IDENTITY, MODI = (

 "é" = "[",
 "ê" = "]",
 "î " = "^",
 "ô" = "‘ ",
 "ö" = "|",
 "ù" = "#",
 "û"−"ü" = "}"−"~",
 "" = %X00));

ZK−6602−GE

Multi_to_Swiss_NRC = CF(
 CF = _IDENTITY, MODI = (
 "à" = "@",
 "ä" = "{",
 "ç" = "\",

"è" = "_",

Multi_to_Uk_NRC = CF(
 CF = _IDENTITY, MODI = (
 "£" = "#",
 "" = %X00));

ZK−6603−GE

Multi_to_Upper = CF(
 CF = _IDENTITY, MODI = (
 "a"−"z" = "A"−"Z",
 "à"−"ï " = "À"−"Ï ",
 "ñ"−"ÿ" = "Ñ"−"Y",
 E" = "OE",
 "ß" = "SS",
 "" = %X00));

ZK−6604−GE

"C

··

A–11

National Character Set Definitions

Norwegian = CS(
 SEQUENCE = (%X00−"N", "Ñ", "O"−"Z", "Æ", "Ö", "Å", "["−"‘ ", "{"−"¿", %XD0,
 %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "À"−"Ã" = "A", "Ç" = "C", "È"−"Ë" = "E",
 "Ì "−"Ï " = "I", "Ò"−"Õ" = "O", "Ø" = "Ö", "Ù"−"Û" = "U", "Ü"−"Y" = "Y",
 "à"−"ã" = "A", "å"−"æ" = "Å"−"Æ", "ç" = "C", "è"−"ë" = "E",
 "ì "−"ï " = "I", "ñ" = "Ñ", "ò"−"õ" = "O", "ö" = "Ö", "ø" = "Ö",
 "ù"−"û" = "U", "ü"−"ÿ" = "Y", "Ä" = "AE" = "C
 "ä" = "Ä", "c
 + CS(SEQUENCE = (%X00−"A", "Ä"−"À", "B"−"C", "Ç", "D"−"E", "Ë"−"È",
 "F"−"I", "Ï "−"Ì ", "J"−"N", "Ñ", "C
 "S"−"U", "Ü"−"Ù", "V"−"Y", "Y", "Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿",
 %XD0, %XDE, %XF0, %XFE−%XFF),

 + REVERSE(_NATIVE);

ZK−6605−GE

E" = "OE", "ß" = "SS",
e" = "CE", "" < %X00))

··

E", "O", "Ö"−"Ò", "P"−"R", "ß",
··

 MODIFICATIONS=("a"−"z" = "A"−"Z", "à"−"ï " = "À"−"Ï ", "ñ"−"ÿ" = "Ñ"−"Y"))··

Norwegian_NRC_to_Multi = CF(
 CF = _IDENTITY, MODI = (
 "@" = "Ä",
 "[" = "Æ",
 "\" = "Ø",
 "]" = "Å",
 "^" = "Ü",
 "‘ " = "ä",
 "{" = "æ",
 "|" = "ø",
 "}" = "å",
 "~" = "ü",
 "" = %X00));

 ZK−6606−GE

Portuguese = CS(
 SEQUENCE = (%X00−"N", "Ñ", "O"−"Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿", %XD0,
 %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "À"−"Ä" = "A", "Ç" = "C", "È"−"Ë" = "E",
 "Ì "−"Ï " = "I", "Ò"−"Ö" = "O", "Ù"−"Ü" = "U", "Y" = "Y", "à"−"ä" = "A",
 "å"−"æ" = "Å"−"Æ", "ç" = "C", "è"−"ë" = "E", "ì "−"ï " = "I", "ñ" = "Ñ",
 "ò"−"ö" = "O", "ø" = "Ø", "ù"−"ü" = "U", "ÿ" = "Y", "C
 "ß" = "SS", "c
 + CS(SEQUENCE = (%X00−"A", "Ä"−"À", "B"−"C", "Ç", "D"−"E", "Ë"−"È",
 "F"−"I", "Ï "−"Ì ", "J"−"N", "Ñ", "C
 "S"−"U", "Ü"−"Ù", "V"−"Y", "Y", "Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿",
 %XD0, %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"z" = "A"−"Z", "à"−"ï " = "À"−"Ï ", "ñ"−"ÿ" = "Ñ"−"Y"))
 + REVERSE(_NATIVE);

ZK−6607−GE

e" = "CE", "" < %X00))
E" = "OE",

··

E", "O", "Ö"−"Ò", "P"−"R", "ß",
··

··

A–12

National Character Set Definitions

Spanish = CS(
 SEQUENCE = (%X00−"B", "Ç", "CH", "D"−"L", "LL", "M"−"N", "Ñ", "O"−"Z", "Æ",
 "Ø", "Å", "["−"‘ ", "{"−"¿", %XD0, %XDE, %XF0, %XFE−%XFF),
 MODIFICATIONS=("a"−"b" = "A"−"B", "d"−"k" = "D"−"K", "m"−"z" = "M"−"Z",
 "À"−"Ä" = "A", "È"−"Ë" = "E", "Ì "−"Ï " = "I", "Ò"−"Ö" = "O",
 "Ù"−"Ü" = "U", "Y" = "Y", "à"−"ä" = "A", "å"−"ç" = "Å"−"Ç",
 "è"−"ë" = "E", "ì "−"ï " = "I", "ñ" = "Ñ", "ò"−"ö" = "O", "ø" = "Ø",
 "ù"−"ü" = "U", "ÿ" = "Y", "C" = "Ç", "Ch" = "CH", "L1" = "LL",
 "c" = "Ç", "cH" = "CH", "ch" = "CH", "1" = "L", "1L" = "LL",
 "11" = "LL", "C
 + CS(SEQUENCE = (%X00−"A", "Ä"−"À", "B"−"C", "Ç", "D"−"E", "Ë"−"È",

 "S"−"U", "Ü"−"Ù", "V"−"Y", "Y", "Z", "Æ", "Ø", "Å", "["−"‘ ", "{"−"¿",
 %XD0, %XDE, %XF0, %XFE−%XFF),

 + REVERSE(_NATIVE);

 ZK−6608−GE

E" = "OE", "ß" = "SS", "ce" = "CE", "" < %X00))

 MODIFICATIONS=("a"−"z" = "A"−"Z", "à"−"ï " = "À"−"Ï ", "ñ"−"ÿ" = "Ñ"−"Y"))

 "F"−"I", "Ï "−"Ì ", "J"−"N", "Ñ", "CE", "O", "Ö"−"Ò", "P"−"R", "ß",
··

··

··

Swedish_NRC_to_Multi = CF(
 CF = _IDENTITY, MODI = (
 "@" = "É",
 "[" = "Ä",
 "\" = "Ö",
 "]" = "Å",
 "^" = "Ü",
 "‘ " = "é",
 "{" = "ä",
 "|" = "ö",
 "}" = "å",
 "~" = "ü",
 "" = %X00));

ZK−6609−GE

Swiss_NRC_to_Multi = CF(
 CF = _IDENTITY, MODI = (
 "#" = "ù",
 "@" = "à",
 "[" = "é",
 "\" = "ç",
 "]" = "ê",
 "^" = "î ",
 "_" = "è",
 "‘ " = "ô",
 "{" = "ä",
 "|" = "ö",
 "}"−"~" = "ü"−"û",
 "" = %X00));

ZK−6610−GE

Uk_NRC_to_Multi = CF(
 CF = _IDENTITY, MODI = (
 "#" = "£",
 "" = %X00));

ZK−6611−GE

A–13

Index

A
Alternate NCS library, specifying

See /LIBRARY qualifier
ASCII SPACE character

using as pad character, NCS–10

B
/BEFORE qualifier, NCS–23
Built-in definition

function of, NCS–7
_IDENTITY conversion function, NCS–8
_NATIVE collating sequence, NCS–7

C
CF keyword

description, NCS–15
Collating sequence

creating
limitation, NCS–9
using appended collating sequence, NCS–9
using modified collating sequence, NCS–9
using name of existing collating sequence,

NCS–8
using reordered collating sequence,

NCS–10
using reversed collating sequence, NCS–9
using series of expressions, NCS–8

expression forms listed, NCS–8
MODIFICATIONS keyword clause formats

listed, NCS–16
/COMPRESS qualifier, NCS–24
Conversion function

creating
using inverted conversion function,

NCS–11
using modified conversion function,

NCS–11
using name of existing conversion function,

NCS–10
using reordered conversion function,

NCS–12
using series of conversion functions,

NCS–11
expression forms listed, NCS–10

Conversion function (cont’d)
MODIFICATIONS keyword clause format,

NCS–15
processing order for multiple conversion

functions, NCS–11
using to create collating sequence, NCS–9

/CREATE qualifier, NCS–24
CS keyword

description, NCS–12

D
Data format in NCS library

specifying with /DATA qualifier, NCS–26
/DATA qualifier, NCS–26
Data-expanded format

using /DATA qualifier, NCS–26
Data-reduced format

using /DATA qualifier, NCS–26
Default file type

for NCS definition files specified by /OUTPUT
qualifier, NCS–39

for NCS input files, NCS–21
for NCS library, NCS–33
for NCS library listing output file, NCS–34
for NCS library specified by /COMPRESS

qualifier, NCS–39
for output files created by /MACRO qualifier,

NCS–28
for output files created by /OUTPUT qualifier,

NCS–28
Default insertion

in lieu of module replacement, NCS–40
Default values

overriding with /COMPRESS qualifier,
NCS–24

Definition
built-in, NCS–7

Definition file
characteristics, NCS–4
example, NCS–4
format, NCS–4
generated by /OUTPUT qualifier, NCS–39
how to build, NCS–4
language notation, NCS–6
naming, NCS–4
structure, NCS–4

Index–1

Definition file output from NCS library
See /OUTPUT qualifier

Definition module
deleting from NCS library

See /DELETE qualifier
extracting from NCS library

See /EXTRACT qualifier
inserting in NCS library

See /INSERT qualifier
specifying name length, NCS–24

Definition module, replacing
See /REPLACE qualifier

/DELETE qualifier
for deleting definition modules from NCS

library, NCS–27
Delimiters

for specifying multiple definition modules,
NCS–27, NCS–28, NCS–32, NCS–38

for specifying multiple input files, NCS–21
Destination file specification

requirement, NCS–36
Disk space efficiency

See /DATA qualifier
Disk space, recovering

See /COMPRESS qualifier

E
EXPAND keyword

for /DATA qualifier, NCS–26
/EXTRACT qualifier

for extracting definition modules from NCS
library, NCS–28

F
File type

default for input files, NCS–21
/FORMAT qualifier, NCS–29
/FULL qualifier, NCS–30

used with the /LIST and /HISTORY qualifiers,
NCS–31

G
Global label

use with NCS routines, NCS–36

H
/HISTORY qualifier

used to limit listing output, NCS–31

I
IDENT keyword

using to identify conversion function, NCS–13,
NCS–15

Input files
default file type for, NCS–21
specifying for NCS command, NCS–21

/INSERT qualifier, NCS–32

K
256 keyword

for /FORMAT qualifier, NCS–29
Keyword clause

types used in collating sequence expression,
NCS–12

types used in conversion function expressions,
NCS–14

Keywords
for /FORMAT qualifier, NCS–29

L
/LIBRARY qualifier, NCS–33
/LIST qualifier

default output destination, NCS–34
for obtaining listing of NCS library, NCS–34
information provided by, NCS–34
specifying output file, NCS–34
used with /BEFORE qualifier, NCS–23
used with /FULL qualifier, NCS–30
used with /HISTORY qualifier, NCS–31
used with /ONLY qualifier, NCS–38
used with other qualifiers, NCS–34
used with /SINCE qualifier, NCS–41

Listing, obtaining
See /LIST qualifier

/LOG qualifier
for verifying NCS library operations, NCS–35

M
/MACRO qualifier, NCS–36
MACRO-32 file format, from NCS library

See /FORMAT qualifier
MACRO-32 output, from NCS library

See /MACRO qualifier
Maximum number of history records

NCS library, specifying, NCS–24, NCS–25
MODIFICATIONS keyword

using in collating sequence expression, NCS–14
using in conversion function expression,

NCS–15

Index–2

MODIFICATIONS keyword clause, NCS–16
Modules

replacing in the default NCS library, NCS–21
Multinational Character Set, NCS–3
Multiple definition modules

specifying with /DELETE qualifier, NCS–27,
NCS–32

specifying with /EXTRACT qualifier, NCS–28
specifying with /ONLY qualifier, NCS–38

Multiple input files
specifying, NCS–21

N
National Character Set Utility

See NCS Utility
NCS command

specifying input files for, NCS–21
NCS keyword

for /FORMAT qualifier, NCS–29
NCS library

creating, NCS–25
See also /CREATE qualifier

deleting definition modules from, NCS–27
extracting definition modules from, NCS–28
generating MACRO-32 output from, NCS–36
generating NCS definition files from, NCS–39
inserting definition modules, NCS–32
obtaining listing of, NCS–34
replacing definition modules, NCS–40
specifying an alternate, NCS–33
specifying history records, NCS–24, NCS–25
specifying MACRO-32 output format, NCS–29
specifying maximum length of definition module

names, NCS–24, NCS–25
specifying maximum number of modules,

NCS–24, NCS–25
specifying size, NCS–24, NCS–25
verifying operations, NCS–35
with data-expanded format, NCS–26
with data-reduced format, NCS–26

NCS Utility, NCS–3
DCL interface

default function, NCS–3
library functions, NCS–3

directing output, NCS–21
exiting, NCS–21

functions, NCS–3
implementation, NCS–3

Number of modules
in NCS library, specifying, NCS–24, NCS–25

O
/ONLY qualifier, NCS–38
/OUTPUT qualifier, NCS–39

P
Pad character

in collating sequence, NCS–10

R
REDUCE keyword

for /DATA qualifier, NCS–26
/REPLACE qualifier, NCS–40
Required values

for /DATA qualifier, NCS–26

S
SEQUENCE keyword

description, NCS–13
/SINCE qualifier, NCS–41
Size

NCS library, specifying, NCS–24, NCS–25
String

how denoted, NCS–7
limit on numeric representation, NCS–7
ranges used in collating sequence, NCS–17

V
Verification of NCS library operations

See /LOG qualifier

W
Wildcard characters

use of, NCS–27, NCS–28, NCS–38
use restriction, NCS–34, NCS–36

Index–3

