
OpenVMS Software Overview

December 1995

This manual summarizes the software capabilities of the OpenVMS
operating system, and describes the computing environments in which
the system operates.

Revision/Update Information: This manual supersedes the OpenVMS
Software Overview, OpenVMS AXP
Version 6.1, OpenVMS VAX Version 6.1

Software Version: OpenVMS Alpha Version 7.0
OpenVMS VAX Version 7.0

Digital Equipment Corporation
Maynard, Massachusetts

December 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1995. All rights reserved.

The following are trademarks of Digital Equipment Corporation: ACCESSWORKS, ACMS,
ALL–IN–1, AlphaServer, AlphaStation, AXP, Bookreader, Business Recovery Server, CDA, CI,
DATATRIEVE, DEC, DEC Ada, DEC BASIC, DEC C, DEC C++, DEC/EDI, DEC Fortran, DEC
Notes, DEC OPS5, DEC Pascal, DEC Reliable Transaction Router, DEC RTR, DECADMIRE,
DECamds, DECdns, DECdtm, DECevent, DECforms, DEChub, DEClinks, DECmessageQ,
DECmigrate, DECnet, DECNIS, DEComni, DECplan, DECquery, DECram, DECserver, DECset,
DECtalk, DECterm, DECthreads, DECtp, DECwindows, Digital, Digital GKS, Digital Open3D,
Digital PHIGS, Digital VTX, DNA, EDT, eXcursion, GIGAswitch, HSC, InfoServer, LAT, LinkWorks,
MAILbus, MailWorks, MicroVAX, MSCP, ObjectBroker, OpenVMS, PATHWORKS, POLYCENTER,
PrintServer, Reliable Transaction Router, rtVAX, StorageWorks, TMSCP, TURBOchannel, ULTRIX,
VAX, VAX APL, VAX BASIC, VAX C, VAX DIBOL, VAX DOCUMENT, VAX MACRO, VAXcluster,
VAXELN, VAXsimPLUS, VAXstation, VMS, VMScluster, VT, WPS, WPS–PLUS, XUI, and the
DIGITAL logo.

The following are third-party trademarks: AIX, DB2, IBM, OS/2, and PROFS are registered
trademarks and IMS is a trademark of International Business Machines Corporation. AppleShare,
AppleTalk, LocalTalk, and Macintosh are registered trademarks of Apple Computer, Inc. BASIC is
a registered trademark of the Trustees of Dartmouth College, D.B.A. Dartmouth College. BSD is
a trademark of the University of California, Berkeley, CA. Display PostScript and PostScript are
registered trademarks of Adobe Systems Incorporated. HP and HP–UX are registered trademarks
of Hewlett-Packard Company. IEEE and POSIX are registered trademarks of the Institute of
Electrical and Electronics Engineers. IPX is a registered trademark of Ideographics, Inc. MCI
Mail is a registered trademark of MCI Communications Corporation. Microsoft, MS, MS–DOS,
MS–Windows, and Windows 95 are registered trademarks, and Windows and Windows NT are
trademarks of Microsoft Corporation. MIT is a registered trademark and X Window System is a
trademark of the Massachusetts Institute of Technology. Mosaic is a trademark of the University
of Illinois. Motif, OSF, OSF/1, and OSF/Motif are registered trademarks of the Open Software
Foundation, Inc. MUMPS is a registered trademark of Massachusetts General Hospital. NetBIOS
is a trademark of Microcomputer Systems, Inc. NetWare and Novell are registered trademarks
of Novell, Inc. NFS and Sun are registered trademarks, and SPARCstation and SunOS are
trademarks of Sun Microsystems, Inc. Oracle is a registered trademark, and Oracle CODASYL
DBMS and Oracle Rdb are trademarks of Oracle Corporation. OSI is a registered trademark of
CA Management, Inc. SCO is a trademark of Santa Cruz Operations, Inc. Sybase is a registered
trademark of Sybase, Inc. Telnet is a registered trademark of American Telnet, Inc. TYMNET is
a registered trademark of British Telecom. UNIX is a registered trademark in the United States
and other countries licensed exclusively by X/Open Co., Ltd. X/Open is a trademark of X/Open Co.
Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

ZK5974

This document is available on CD–ROM.

Contents

Preface . ix

Part I OpenVMS Computing

1 Introduction to OpenVMS Systems

1.1 What Is the OpenVMS Operating System? . 1–1
1.2 OpenVMS Styles of Computing . 1–3
1.2.1 Processing Modes and User Interfaces . 1–3
1.2.2 Processing Styles . 1–4
1.3 Basic OpenVMS Configurations . 1–5
1.3.1 Input/Output Connections . 1–5
1.3.2 Standalone System Configurations . 1–7
1.3.3 VMScluster Configurations . 1–7
1.3.4 Networked Systems . 1–8
1.4 OpenVMS Systems on Multiple Platforms . 1–13
1.4.1 System Compatibility and Program Portability Across Platforms 1–14
1.4.2 Processors on Which OpenVMS Systems Run 1–14
1.5 OpenVMS Growth Potential . 1–15

2 OpenVMS Computing Capabilities

2.1 Open System Capabilities . 2–1
2.1.1 What Is an Open System? . 2–1
2.1.2 Support of Open Standards and Specifications on OpenVMS

Systems . 2–2
2.1.3 Application Portability . 2–3
2.1.3.1 POSIX for OpenVMS Application Portability 2–3
2.1.3.2 Other Application Portability Features . 2–4
2.1.3.3 OSF/Motif Applications . 2–4
2.1.4 User Portability . 2–4
2.1.4.1 OSF/Motif User Interface . 2–5
2.1.4.2 POSIX User Interface . 2–5
2.1.5 Multivendor Interoperability . 2–5
2.1.5.1 Open Networking Capability . 2–5
2.1.5.2 Middleware Support for Open Systems . 2–6
2.1.5.3 DCE Services Support for Interoperable Applications 2–6
2.2 Distributed Computing Capabilities . 2–6
2.2.1 Client/Server Style of Computing . 2–6
2.2.2 OpenVMS Client/Server Capabilities . 2–7
2.2.2.1 OpenVMS Servers with OpenVMS Clients 2–7
2.2.2.2 OpenVMS Servers with PC Clients . 2–7
2.2.3 Middleware in Distributed Environments . 2–9
2.2.4 Distributed Software That Is Compliant with OSF Standards 2–9

iii

2.2.5 Distributed Networking Capabilities . 2–10
2.2.6 Distributed Features of DECwindows Motif . 2–10
2.3 High-Integrity Production System Capabilities . 2–11
2.3.1 Dependable OpenVMS Computing Systems . 2–11
2.3.2 Availability Tools . 2–12
2.3.3 Data Integrity Tools . 2–12
2.3.4 Transaction-Processing Capabilities . 2–13
2.3.5 Manageability and Security for Data Centers 2–13
2.4 System and Network Management Capabilities . 2–14
2.4.1 Managing OpenVMS Systems . 2–15
2.4.2 Managing Networks . 2–15
2.4.3 Managing Integrated Enterprises . 2–16

Part II OpenVMS Systems Software

3 Description of OpenVMS System Software

3.1 OpenVMS Operating System Components . 3–1
3.1.1 OpenVMS Kernel . 3–1
3.1.1.1 Memory Management Subsystem . 3–2
3.1.1.2 Process and Time Management Subsystem 3–3
3.1.1.3 I/O Subsystem . 3–3
3.1.1.4 Supporting System Services and Facilities 3–4
3.1.2 OpenVMS Core Services . 3–4
3.1.3 OpenVMS Utility Programs . 3–5
3.1.4 OpenVMS VAX Vector-Processing Capability . 3–6
3.1.5 OpenVMS Symmetric Multiprocessing . 3–6
3.1.6 Digital Distributed Transaction Management Services 3–6
3.2 OpenVMS System Management Software . 3–7
3.2.1 OpenVMS Installation and Configuration . 3–8
3.2.2 Management Software for the General OpenVMS Environment 3–9
3.2.2.1 Controlling System Access . 3–10
3.2.2.2 Managing Devices and Storage Media . 3–11
3.2.2.3 Backing Up the System . 3–11
3.2.2.4 Monitoring, Maintaining, and Tuning the System 3–12
3.2.2.5 Managing Batch and Print Queues . 3–13
3.2.3 Management Software for Specific Environments 3–14
3.2.4 OpenVMS Management Station . 3–15
3.3 OpenVMS System Security . 3–16
3.3.1 OpenVMS Security Environment and Standards 3–17
3.3.2 OpenVMS Security Management Software . 3–17
3.4 Optional OpenVMS System Integrated Software . 3–20
3.4.1 VMScluster Software . 3–20
3.4.2 Volume-Shadowing Software . 3–22
3.4.3 RMS Journaling Software . 3–23

4 Development on OpenVMS Systems

4.1 Common Programming Environment . 4–1
4.1.1 Programming to Standards . 4–2
4.1.1.1 Common Environment for Writing Code . 4–2
4.1.1.2 Common Language Environment . 4–2
4.1.2 Developing Portable Programs . 4–3
4.2 OpenVMS Programming Software . 4–3

iv

4.2.1 Creating Program Source Files . 4–4
4.2.2 Creating Object Files . 4–5
4.2.3 Creating Runnable Programs . 4–7
4.2.4 Testing and Debugging Programs . 4–7
4.2.5 Using Other Program Development Utilities . 4–8
4.2.6 Managing Software Development Tasks . 4–9
4.3 Using Callable System Routines . 4–9
4.3.1 Using DECthreads Run-Time Library Routines 4–9
4.3.2 Using OpenVMS Run-Time Library Routines 4–10
4.3.3 Using OpenVMS System Services . 4–11
4.3.4 Using OpenVMS Utility Routines . 4–13
4.4 POSIX Programming on an OpenVMS System . 4–13
4.4.1 POSIX Applications Using OpenVMS Capabilities 4–14
4.4.2 POSIX for OpenVMS Programming Interface 4–15
4.4.3 POSIX Commands and Utilities . 4–15
4.4.4 POSIX Real-Time Functions . 4–16
4.4.5 POSIX XPG Support . 4–17
4.5 Programming User Interfaces . 4–17
4.6 Developing Real-Time Applications . 4–18
4.7 Digital Software Development Tools . 4–18
4.8 Managing Data . 4–19
4.8.1 RMS Files and Records . 4–19
4.8.2 RMS Utilities . 4–19

5 User Interfaces to the OpenVMS System

5.1 OpenVMS Operating System Access . 5–1
5.2 OpenVMS User Environment . 5–2
5.2.1 DCL Command Language Functions . 5–3
5.2.1.1 DCL Command Procedures . 5–4
5.2.1.2 OpenVMS Help System . 5–4
5.2.2 OpenVMS DECwindows Motif Interface . 5–4
5.3 POSIX Environment on an OpenVMS System . 5–7
5.4 Forms-Based User Environments . 5–8
5.4.1 DECforms Interface . 5–8
5.4.2 ALL–IN–1 Office Systems Environment . 5–8
5.5 Information Handling on the OpenVMS System . 5–9
5.5.1 OpenVMS Files and Directories . 5–9
5.5.2 POSIX Files and Directories . 5–10
5.5.3 OpenVMS File Manipulation . 5–10
5.5.4 Text File Editing and Processing . 5–12
5.5.5 Electronic Mail . 5–13
5.5.6 Electronic Conferencing and Text Retrieval Facilities 5–13

Part III Open Distributed Computing Environments

v

6 OpenVMS Systems in Distributed Environments

6.1 OpenVMS Functions Applicable to Distributed Environments 6–1
6.2 OpenVMS Systems in Distributed Heterogeneous Network

Environments . 6–2
6.2.1 DECnet/OSI Networking Software . 6–3
6.2.1.1 DECnet/OSI Features and Software . 6–4
6.2.1.2 DECnet Network Management Tasks . 6–5
6.2.2 OpenVMS Connections to TCP/IP Networks . 6–7
6.2.3 Network Security . 6–8
6.2.4 Other Supported Networking Protocols and Products 6–9
6.3 Multivendor Integration Using Middleware . 6–9
6.3.1 Using Middleware with Applications . 6–10
6.3.2 Middleware Support for Industry Standards . 6–11
6.3.3 Middleware Service Categories . 6–11
6.3.4 Distributed Computing Environment Software 6–13
6.3.5 Application Development in Multivendor Environments 6–15
6.3.6 Managing Enterprisewide Multivendor Environments 6–17
6.4 OpenVMS Software in Multivendor Client/Server Environments 6–17
6.4.1 VMScluster Servers and OpenVMS Clients . 6–18
6.4.2 OpenVMS Servers in PATHWORKS Environments 6–18
6.4.3 PATHWORKS Server and Client Software . 6–19
6.4.4 PATHWORKS Network Connectivity . 6–20
6.4.5 OpenVMS Services for PATHWORKS Clients 6–22
6.4.5.1 Mail Services for PC Users . 6–23
6.4.5.2 VMScluster Access for PC Clients . 6–23
6.4.5.3 OpenVMS Management Services for PC Clients 6–23
6.4.6 Other OpenVMS Services for PC Users . 6–24

7 OpenVMS Systems in Commercial Environments

7.1 OpenVMS Production Systems . 7–1
7.1.1 OpenVMS Distributed Production Servers . 7–2
7.1.2 Providing Dependability in Production System Environments 7–2
7.1.2.1 Maintaining High Availability in Production System

Environments . 7–2
7.1.2.2 Ensuring Data Integrity in Production Systems Environments . . . 7–4
7.1.3 Managing and Monitoring Production System Environments 7–4
7.1.3.1 Storage Management Products . 7–7
7.1.3.2 DECram for OpenVMS Device Driver . 7–8
7.1.3.3 Performance Management Tools . 7–8
7.1.3.4 Optional VMScluster System Management Software 7–9
7.1.3.5 Business Recovery Server . 7–10
7.2 Transaction Processing in Multivendor Environments 7–10
7.2.1 Distributed Transaction-Processing Systems . 7–11
7.2.2 Distributed Transaction-Processing Monitors . 7–12
7.2.3 Transaction-Processing Support by DECdtm Services on OpenVMS

Systems . 7–13
7.2.4 Other Distributed Transaction-Processing Products 7–14
7.3 Database Processing in Multivendor Environments 7–15
7.3.1 Database Tools Used in a Distributed Environment 7–15
7.3.2 Database Interoperability Software . 7–15

vi

A OpenVMS Support for Standards

Index

Figures

1–1 Software Running on an OpenVMS System . 1–2
1–2 Mixed-Interconnect VMScluster Configuration 1–9
1–3 Multivendor Network Topology . 1–12
2–1 OpenVMS Services to PC Clients . 2–8
3–1 OpenVMS Operating System Components . 3–2
3–2 Sample OpenVMS Management Station Screen 3–16
4–1 Developing POSIX Applications . 4–14
5–1 DECwindows Motif User Interface . 5–6
6–1 Integration of DECnet, OSI, and TCP/IP Network Architectures 6–4
7–1 Two-Phase Commit Protocol for a Distributed Transaction 7–14

Tables

1–1 Examples of Buses, Interconnects, and LAN Adapters Supported by
OpenVMS Systems . 1–6

1–2 Networking Software Products That Run on OpenVMS Systems 1–10
2–1 POSIX Standards Supported by POSIX for OpenVMS 2–3
3–1 Examples of OpenVMS System Utility Programs 3–5
3–2 Examples of OpenVMS Configuration Utilities and Commands 3–9
3–3 Examples of OpenVMS System Management Utilities 3–10
3–4 Examples of OpenVMS Queue Management Commands 3–13
3–5 OpenVMS Security Features . 3–18
3–6 VMScluster Software Components . 3–21
4–1 OpenVMS Programming Software . 4–4
4–2 Compilers, Interpreters, and Assemblers . 4–5
4–3 Other OpenVMS Program Development Utilities 4–8
4–4 Groups of OpenVMS Run-Time Library Routines 4–10
4–5 Groups of OpenVMS System Services . 4–11
4–6 OpenVMS Utility Routines . 4–13
4–7 Complex Utilities Supported by POSIX for OpenVMS 4–16
5–1 Types of Tasks Performed by Commonly Used DCL Commands 5–3
5–2 Commonly Used DECwindows Motif Applications 5–6
5–3 File Operations Performed Using OpenVMS Utilities and DCL

Commands . 5–10
6–1 Examples of DECnet/OSI Applications for General-User

Operations . 6–7
6–2 Components of Digital TCP/IP Services for OpenVMS 6–7
6–3 Middleware Services and Frameworks and Their Digital

Implementations . 6–12
6–4 Digital DCE Product Family Functionality . 6–14
6–5 Network Transports Supported by PATHWORKS Software 6–21

vii

7–1 Software Used to Manage Complex Production Systems 7–5
A–1 OpenVMS Support for Industry and International Standards and

Specifications . A–2

viii

Preface

The OpenVMS Software Overview presents an overall picture of OpenVMS
software capabilities and computing environments. It describes how the
OpenVMS operating system and related optional software function in diverse
environments, including open environments in which OpenVMS operating
systems are linked to other systems supplied by multiple vendors. The OpenVMS
software features described in this overview indicate the variety of ways in which
the software can be used, such as in distributed client/server configurations and
dependable production systems.

The descriptions of open system software included in the manual conform to the
industry-standard definition of an open system that Digital has adopted: an open
system supports standard interfaces, services, and formats that allow application
programs and data to be moved easily across systems from different vendors.

This manual describes the multiplatform capabilities of the OpenVMS operating
system and related (layered) software. It covers the OpenVMS VAX operating
system, which runs on the complete family of VAX processors, and the OpenVMS
Alpha system, which runs on Alpha processors ranging from personal computers
to very large servers. Discussions of VMScluster environments in this manual
generally apply both to VAXcluster systems, which include only VAX nodes, and
to VMScluster systems, which include at least one Alpha node.

Intended Audience
This document is intended for anyone who is interested in OpenVMS systems,
including managers, analysts, developers, programmers, and general users of
OpenVMS systems. Readers of this manual need not have any special knowledge
of OpenVMS software products.

Document Structure
The OpenVMS Software Overview is divided into three parts, comprising seven
chapters and one appendix. Each part of the manual presents one aspect of the
overall picture of OpenVMS software capabilities.

Part I presents an introduction to the OpenVMS system, its software, and
computing capabilities. It provides a brief summary of system capabilities but
does not include details of software design.

• Chapter 1 is a general introduction to OpenVMS systems, software,
computing styles, and configurations, including multiplatform use. The
chapter also discusses OpenVMS growth potential.

• Chapter 2 describes OpenVMS computing capabilities, including open,
distributed, and high-integrity capabilities and manageability.

ix

Part II provides a technical overview of the software available on an OpenVMS
system that stands alone or is a member of a VMScluster configuration.

• Chapter 3 describes the components in the base OpenVMS operating system.

• Chapter 4 discusses the OpenVMS software used for developing applications.

• Chapter 5 summarizes the user interfaces to the system.

Part III describes the use of OpenVMS systems in environments in which they
are connected to systems supplied by Digital or by other vendors.

• Chapter 6 describes how OpenVMS systems fit in open, distributed computing
environments that can include software from multiple vendors.

• Chapter 7 describes how OpenVMS systems support high-integrity,
distributed, commercial-strength production system environments.

Appendix A lists the standards supported by OpenVMS software.

Related Documents
This manual is an overview that can be read independently of other OpenVMS
documentation. It refers to specific OpenVMS manuals related to certain topics.
For a complete listing of OpenVMS manuals, see the Overview of OpenVMS
Documentation, which lists all documentation for the OpenVMS VAX operating
system and the OpenVMS Alpha operating system.

The OpenVMS Software Overview also discusses software capabilities of optional
(layered) software products that run on the OpenVMS VAX and OpenVMS Alpha
operating systems. For documentation that describes POSIX for OpenVMS, refer
to the POSIX for OpenVMS documentation set. For information about specific
PATHWORKS products, see the appropriate PATHWORKS documentation set.
For information about other software that runs on OpenVMS operating systems,
refer to the appropriate product documentation.

For additional information on OpenVMS products and services, access the Digital
OpenVMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

Reader’s Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@zko.mts.dec.com

Fax 603 881-0120, Attention: OpenVMS Documentation, ZK03-4/U08

Mail OpenVMS Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

x

How To Order Additional Documentation
Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

DTN: 264−4446

approved distributor

Fax: 603−884−3960

800−267−6215

U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063−1260

809−781−0505

Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.

DECdirect

Puerto Rico

800−DIGITAL

3 Digital Plaza, 1st Street, Suite 200

800−344−4825

International

P.O. Box 11038
Metro Office Park

Location

Internal Orders

San Juan, Puerto Rico 00910−2138

603−884−4446

Write

Fax: 613−592−1946

Fax

Canada

Call

Fax: 809−749−8300

Local Digital subsidiary or

U.S.A.

ZK−7654A−GE

Fax: 800−234−2298

Conventions
The name of the OpenVMS AXP operating system has been changed to OpenVMS
Alpha. Any references to OpenVMS AXP or AXP are synonymous with OpenVMS
Alpha or Alpha.

In this manual, every use of OpenVMS Alpha means the OpenVMS Alpha
operating system, every use of OpenVMS VAX means the OpenVMS VAX
operating system, and every use of OpenVMS means both the OpenVMS Alpha
operating system and the OpenVMS VAX operating system.

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for OpenVMS software.

The following conventions are also used in this manual:

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

numbers All numbers in text are assumed to be decimal unless
otherwise noted.

xi

Part I
OpenVMS Computing

This part of the manual presents an overall picture of the OpenVMS system.

Chapter 1 introduces the software that runs on the system and the styles of
computing that the system supports. It describes basic OpenVMS configurations
and the computing platforms and types of processors on which the OpenVMS
system runs. The chapter also discusses the growth potential of OpenVMS
systems.

Chapter 2 summarizes major kinds of OpenVMS computing capabilities:

• Open system capabilities

• Distributed system capabilities

• Production system capabilities

• System and network management capabilities

1
Introduction to OpenVMS Systems

The OpenVMS operating system is a highly flexible, general-purpose, multiuser
system that supports the full range of computing capabilities, providing the
high integrity and dependability of commercial-strength systems along with the
benefits of open, distributed client/server systems.

OpenVMS operating systems can be integrated with systems from different
vendors in open systems computing environments. Digital has ‘‘opened’’ the
traditional VMS system to support software that conforms to international
standards for an open environment. These industry-accepted, open standards
specify interfaces and services that permit applications and users to move
between systems and allow applications on different systems to operate together.

The OpenVMS operating system configuration includes OpenVMS integrated
software, services and routines, applications, and networks. The system supports
all styles of computing, from timesharing to real-time processing to transaction
processing. OpenVMS systems configured with optional software support
distributed computing capabilities and can function as servers in multivendor
client/server configurations.

The OpenVMS operating system is designed to provide software compatibility
across all the processors on which it runs:

• OpenVMS VAX software runs on the complete family of VAX processors,
which support traditional 32-bit processing.

• OpenVMS Alpha software runs on a full series of very high-speed RISC
processors that support 64-bit as well as 32-bit processing.

Both VAX and Alpha processors encompass a wide range of computing power:
from desktop and deskside workstations, through distributed office systems and
data center servers, to extremely high performance enterprisewide servers.

This chapter introduces the OpenVMS operating system, gives a general overview
of the system software, and describes the various styles of computing that
OpenVMS software supports. It summarizes the basic ways in which OpenVMS
software can be configured and connected to other software, and discusses the
hardware platforms and processors on which OpenVMS software runs. The
chapter also describes the growth potential of OpenVMS systems.

1.1 What Is the OpenVMS Operating System?
The OpenVMS operating system is a group of software programs (or images)
that control computing operations. The base operating system is made up of core
components and an array of services, routines, utilities, and related software.
The OpenVMS operating system serves as the foundation from which all optional
software products and applications operate. The services and utilities in the base
OpenVMS operating system support functions such as system management, data
management, and program development. Other integrated software that adds

1–1

Introduction to OpenVMS Systems
1.1 What Is the OpenVMS Operating System?

value to the system provides functions such as clustering and volume shadowing.
(For a description of OpenVMS operating system software, see Chapter 3.)

Optional software products, including application programs developed by
OpenVMS programmers and other programmers, run on the core operating
system (as shown in Figure 1–1). The OpenVMS system supports a powerful,
integrated development environment with a wide selection of software
development tools supplied by Digital and other vendors. Application programs
written in multiple languages provide computational, data-processing, and
transaction-processing capabilities. Thousands of applications have been
developed for OpenVMS systems by Digital and independent software vendors.

Figure 1–1 Software Running on an OpenVMS System

ZK−5460A−GE

Application Programs

OpenVMS Operating System Software

User

Middleware Services

Networking Software

Network

Networking software permits OpenVMS systems to communicate with other
Digital systems and with systems supplied by other vendors in worldwide
networks, including the global Internet. Special-purpose networking software
enables OpenVMS systems to function as powerful servers to personal computer
clients in distributed client/server environments.

Optional software that supports multivendor integration can be layered
between the operating system and applications. This optional software is
called middleware (see Figure 1–1). Middleware run-time services provide
standard application programming interfaces (APIs) to accomplish the interaction
between applications and their users, data, systems, and other applications.
Digital middleware products, based on international standards, can also run
on other standards-compliant systems. These products provide support for
applications in distributed, multivendor environments. (For a discussion of how
middleware provides open system capability, see Section 2.1.5.2.)

1–2

Introduction to OpenVMS Systems
1.1 What Is the OpenVMS Operating System?

OpenVMS VAX and OpenVMS Alpha software exhibits compatibility from version
to version:

• User-mode programs and applications created under earlier versions of
OpenVMS VAX or OpenVMS Alpha run under subsequent versions with no
change.

• Command procedures written under one version of OpenVMS continue to run
under newer versions of the software.

OpenVMS software developed on VAX platforms can migrate easily to Alpha
platforms (see Section 1.4.1):

• Most OpenVMS VAX images run under translation on OpenVMS Alpha
systems.

• Most user-mode OpenVMS VAX sources can be recompiled, relinked, and run
on an OpenVMS Alpha system without modification. Code that explicitly
relies on the VAX architecture requires modification.

1.2 OpenVMS Styles of Computing
The OpenVMS operating system offers flexible, reliable support for all styles
of computing. OpenVMS provides concurrent support for traditional modes of
processing (batch, interactive, real-time) and multiple user interfaces (keyboard,
windowing, and forms-based). In addition, OpenVMS can be easily tuned
to support applications involving different computing styles: for example,
timesharing, multiprocessing, and distributed client/server computing.

This section describes the varied styles of computing available to OpenVMS users.
Chapter 2 summarizes computing capabilities supported by OpenVMS, including
open, distributed, and commercially oriented capabilities. Chapter 6 and
Chapter 7 describe the software that runs on OpenVMS systems in distributed
multivendor environments.

1.2.1 Processing Modes and User Interfaces
In the traditional interactive mode of communication with the OpenVMS
operating system, the user enters a command, and the system executes it
and responds. In the batch mode, commands to be executed by the operating
system are placed in a file and submitted to the operating system for execution.

Real-time processes do not have to compete with interactive or batch jobs
for scheduling priority within the OpenVMS operating system. A real-time
process responds to events in related processes as they occur, rather than when
the computer is ready to respond to them. Scheduling services allow system
managers to provide their own scheduling algorithms.

Standard user interfaces to the OpenVMS operating system include the keyboard
interface and the windowing interface. Users with traditional character-cell
terminals can interact with the keyboard interface to the system. Users with
workstation terminals can access an optional graphical windowing interface, the
DECwindows Motif interface. The user can employ point-and-click techniques
to interact with menus and dialog boxes on multiple windows on the screen.
DECwindows users can also invoke a window that emulates an OpenVMS
terminal and can interact with the keyboard interface. Another possible user
interface is a transaction interface, in which the user responds to a menu-
driven forms interface customized for a particular application, such as an office
application. Chapter 5 describes the various OpenVMS user interfaces.

1–3

Introduction to OpenVMS Systems
1.2 OpenVMS Styles of Computing

Additionally, end users on personal computers can access shareable information
and resources on OpenVMS systems through special PATHWORKS software (as
described in Section 2.2.2.2).

1.2.2 Processing Styles
An OpenVMS system can be a single-user system or can provide timesharing
functions for multiple users. In a timesharing configuration, many people can
use the same computer at once. The computer interleaves time intervals for
different user programs, performing a small portion of one user’s program and
then shifting to the next user. OpenVMS timesharing software is described in
Section 3.1.1.

An OpenVMS system can be a uniprocessing or multiprocessing system. A
uniprocessing system comprises a single central processing unit (CPU) executing
one copy of the OpenVMS operating system code and running one file system
independent of other CPUs. In OpenVMS multiprocessing implementations, two
or more processors are coupled together. Multiprocessing configurations include
the following:

• The OpenVMS symmetric multiprocessing system (SMP) is a tightly coupled
system in which all processors run the same copy of the operating system
in memory. All processors can execute code from a single shared memory
address space, dividing and sharing the workload. The processors are
adjacent to each other, boot and shut down together, run a single file system,
and appear as a single system from the system management and user points
of view. OpenVMS SMP is described in Section 3.1.5.

• A VMScluster system consists of a group of connected CPUs,1 each
containing one or more processors. CPUs that are members of a VMScluster
system can share processing, mass storage, and other resources under a
single management and security domain. Within this highly integrated
environment, members retain their independence because they use local,
memory-resident copies of the OpenVMS operating system. VMScluster
members can boot and shut down independently while benefiting from
common resources. The VMScluster is perceived by outside systems in
the network as being a single system entity. VMScluster configurations
are described in Section 1.3.3 and VMScluster software components in
Section 3.4.1.

• A network is an example of a loosely coupled configuration. In a network,
OpenVMS systems, VMScluster systems, and other systems can be linked
together, but the systems (nodes) can be separate, can be managed
independently, and can run separate file systems. Networked systems
are described in Section 1.3.4.

OpenVMS supports centralized and distributed processing capabilities across
the full range of processors. Centralized processing involves having a single
system control the use of computing resources and the execution of applications.
OpenVMS provides the capability of controlling processors and their associated
resources in a distributed manner as well as a centralized manner.

1 VMSclusters include Alpha CPUs and, optionally, VAX CPUs. Descriptions of
VMSclusters also apply to VAXclusters composed of VAX CPUs.

1–4

Introduction to OpenVMS Systems
1.2 OpenVMS Styles of Computing

Distributed processing is the style of computing that permits portions of an
application to be run on different systems, yet appear to the user as one
integrated environment. The distributed application program can be divided
into independent subsystems or modules that execute on different systems. The
data and code for each module are separate, but the modules communicate with
each other to share data or access to files or databases.

An example of one style of distributed computing is client/server computing: a
client portion of an application on one system requests services from the server,
which is usually on a different system.

For a description of OpenVMS distributed processing capabilities, see Section 2.2.
Distributed computing environments are covered in Chapter 6.

1.3 Basic OpenVMS Configurations
OpenVMS systems are highly flexible and support a great variety of
interconnections and configurations, including the standalone OpenVMS
configuration, VMScluster configurations, and network configurations involving
OpenVMS systems. OpenVMS interconnections and configurations are described
in the following sections.

1.3.1 Input/Output Connections
OpenVMS input/output (I/O) software supports connections to peripherals,
communications devices, and networks. The I/O subsystem, which is part of the
OpenVMS operating system kernel, processes I/O requests to external devices (as
described in Section 3.1.1).

OpenVMS I/O provides access to storage buses and interconnects and system-
dependent open buses. (Open buses are those for which any vendor can obtain
specifications and build adapters.) Examples of equipment that can be attached
to buses and interconnects supported by OpenVMS systems include conventional
disk and tape devices, compact disc devices, other terminal and workstation
connectors, and communications adapters. Other devices supplied by users can
also be attached to OpenVMS buses and interconnects.

OpenVMS I/O provides for connection to other systems, devices, and local area
networks (LANs) by means of LAN adapters. The I/O subsystem also supports
connection to protocols that permit communication with other systems over
DECnet and TCP/IP networks (as described in Section 1.3.4).

Table 1–1 lists examples of some of the buses, interconnect devices, and LAN
adapters supported by OpenVMS I/O subsystems.

1–5

Introduction to OpenVMS Systems
1.3 Basic OpenVMS Configurations

Table 1–1 Examples of Buses, Interconnects, and LAN Adapters Supported by
OpenVMS Systems

Device Description

Storage Buses and Interconnects

CI computer interconnect bus Very high-speed, dual-path bus that joins computers
and intelligent I/O subsystems.

Digital Storage System
Interconnect (DSSI) bus

High-speed storage bus that permits multiple
computers to communicate directly with storage
devices.

Small Computer System
Interface (SCSI)

Interface that permits devices complying with the
ANSI SCSI standard to be connected to a host
processor or computer. The SCSI interconnect can
be used as a storage interconnect for multiple Alpha
systems in a VMScluster system.

Open Buses and Interconnects

OpenVMS SCSI implementation Open interconnect that supports SCSI-compliant
devices supplied by other vendors and user-written
device drivers.

PCI Personal computer interface, an open industry-
standard interface used by the PC industry and by
64-bit Alpha processors.

TURBOchannel I/O interconnect Open bus for desktop applications, used on desktop
workstation systems; provides the high performance
required to support advanced computing systems
involving complicated I/O options (for graphics,
imaging, high-speed networking and data collection,
and large database storage). TURBOchannel is a
Digital open standard; the specifications are available
to other vendor designers.

VME bus High-performance open I/O bus that supports device
drivers written by other vendors and can act as a
system interconnect from multiprocessing systems.

LAN Adapters

Ethernet (IEEE 802.3) adapter Communications device that provides a reliable,
low-cost, coaxial cable connection.

Fiber Distributed Data Interface
(FDDI) adapter

Communications device that provides a connection to a
high-performance fiber-optic interconnect.

Token ring (IEEE 802.5) LAN
adapter

Communications device that provides a connection to a
baseband token ring LAN.

For communication with personal computers and Macintosh systems in a
PATHWORKS environment (described in Section 2.2.2.2), OpenVMS servers
can connect to Ethernet or token ring LANs. For communication with devices
such as terminals, modems, and printers offered by terminal servers on a LAN,
OpenVMS systems support connection to the LAT local area transport software.
OpenVMS also supports connection to the local area disk (LAD) protocol for
access to compact disc media (CD–ROMs) that reside on Digital InfoServer
systems. In addition, the I/O software permits direct and remote connection of
monitors, terminals, and windowing workstations.

1–6

Introduction to OpenVMS Systems
1.3 Basic OpenVMS Configurations

1.3.2 Standalone System Configurations
A standalone OpenVMS system operates independently, not linked to other
systems. The basic hardware configuration comprises the following:

• The CPU: The hardware that handles all computing operations, calculations,
routing of input and output, and execution of programs. A standalone system
can be a uniprocessor system supporting one processor or a multiprocessor
system supporting two or more processors.

• The memory modules: A series of physical locations that store data and
instructions in binary form.

• I/O: Device drivers (a combination of hardware and software), peripheral
devices, and buses and interconnects.

The OpenVMS software running on the standalone hardware platform can handle
timesharing activities for multiple users as well as execute multiple individual
programs for single users. OpenVMS standalone capabilities are described in
Part II of this manual. Section 6.1 compares capabilities supported by OpenVMS
in standalone and distributed environments.

1.3.3 VMScluster Configurations
The ability to survive failure of any single component makes the VMScluster
system suitable for developing high-availability applications such as transaction-
processing applications. VMSclusters also make effective servers for clients on
personal computers and other desktop systems (see Section 2.2.2.2).

A VMScluster system is a highly integrated OpenVMS computing environment. A
VMScluster system includes a connected group of Alpha computers or, optionally,
a combination of Alpha and VAX computers that share resources under a single
OpenVMS management domain. A VMScluster system that includes at least
one VAX system is called a dual-architecture VMScluster configuration.2 The
traditional VAXcluster system includes only VAX systems. Descriptions of
VMScluster environments also apply to VAXcluster systems, unless indicated
otherwise.

In VMScluster environments, shared resources include image and data files,
batch queues, print queues, disk and tape storage, and system management.
To users and applications, the VMScluster system functions as a single system,
except that applications and data continue to be available to users on remaining
members (nodes) of the VMScluster system even if a member shuts down.
Within the VMScluster configuration, each member can boot or shut down
independently. If one member shuts down, the user can log in to another member
of the cluster and continue working. Because disk and tape storage is shared
across the VMScluster, the user can continue to access the original data and
applications. Individual members of the VMScluster system can be serviced
without interruption to applications running on the VMScluster.

VMScluster systems can make disk and tape resources available to cluster nodes.
Through disk and tape server software on the VMScluster, cluster-accessible
disks and tapes can be accessed simultaneously by multiple active nodes in
the VMScluster. Cluster-accessible disks permit high-performance, clusterwide
read/write file sharing. Because computers can share a single version of a file,
updates to a file need be made only once. Clusterwide queues permit sharing of

2 Refer to the appropriate VMScluster Software Product Description for the version
numbers of OpenVMS VAX and OpenVMS Alpha systems supported.

1–7

Introduction to OpenVMS Systems
1.3 Basic OpenVMS Configurations

batch processing and printer resources. Batch and print queues can be processed
on any node that has access to the disk.

The VMScluster system is a combination of hardware and software. VMScluster
hardware includes a variety of buses and other connection devices as well
as controllers for resource sharing. Hardware resources can be expanded
incrementally or gradually, as necessary. VMScluster software includes drivers,
controllers, and traffic managers (as described in Section 3.4.1). VMScluster
processors, controllers, disks, and tapes can be added or removed without
requiring that the VMScluster be shut down.

VMScluster configurations are highly flexible and support the full range of Alpha
and VAX processors with the OpenVMS operating system. In a VMScluster
system, two or more CPUs are connected by means of communications
media, called interconnects, which the VMScluster software uses for System
Communications Architecture (SCA) I/O traffic. The VMScluster members
use interconnects (as described in Table 1–1) to communicate with each other.
In a VMScluster, Alpha and VAX nodes can use any combination of the CI,
DSSI, Ethernet, and FDDI interconnects; Alpha nodes can also use the SCSI
interconnect.

A VMScluster system that uses more than one type of interconnect for
VMScluster communication is referred to as a mixed-interconnect VMScluster
system. An example of a mixed-interconnect VMScluster configuration is given in
Figure 1–2.

A VMScluster configuration that includes a CI interconnect can optionally
be configured with HSC hierarchical storage controller units that let nodes
connected to the CI share disks. Each member of a multihost DSSI VMScluster
can share all disks attached to the DSSI bus.

Ethernet and FDDI are industry-standard general-purpose communication
interconnects that may be used to implement a LAN. A VMScluster system that
uses a LAN interconnect is called a local area VMScluster.

In a multisite VMScluster system, member nodes are located at geographically
separate sites. Multisite VMSclusters are configured using wide-area ATM
(asynchronous transfer mode) technology or DS3 technology (also called T3), in
conjunction with FDDI LAN technology and appropriate bridging. The ATM and
DS3 communications services, available from common telephone service carriers
and other sources, provide long-distance, point-to-point communications.

The VMScluster software for OpenVMS Alpha provides for configurations of
single- or multiple-host SCSI buses that support SCSI storage devices, controllers,
and support components.

1.3.4 Networked Systems
Networking software and hardware products permit OpenVMS operating systems
to communicate with other systems. The network consists of computer systems
connected by physical means, such as cables or microwave links. Optional
networking software running on the OpenVMS system supports networking
protocols (sets of rules and operating procedures) that permit communication
between Digital and other vendor systems in worldwide networks.

1–8

Introduction to OpenVMS Systems
1.3 Basic OpenVMS Configurations

Figure 1–2 Mixed-Interconnect VMScluster Configuration

DSSI

AlphaServer Systems

Tri−Host DSSI

DSSI Ethernet

DSSI

Dual−Host DSSI

FDDI

Ethernet

Ethernet

AlphaStation Workstations
CI CI

CI CI

HSC HSCKey:

FDDI
Concentrator
Hierarchical
Storage Controller

ZK−6454A−GE

Alpha
Mainframe
Class Systems

HSC

Bridge

VAX Departmental Systems

Ethernet

ControllerController

DECnet and TCP/IP networking products that run on OpenVMS VAX and
Alpha systems are listed in Table 1–2. In addition, DECnet, TCP/IP, and
AppleTalk network transports permit OpenVMS servers to communicate with
personal computer and Macintosh clients in PATHWORKS environments. Use
of networking products in multivendor distributed computing environments is
summarized in Chapter 6.

1–9

Introduction to OpenVMS Systems
1.3 Basic OpenVMS Configurations

Table 1–2 Networking Software Products That Run on OpenVMS Systems

Digital Networking Product Functions

DECnet Software

DECnet/OSI for OpenVMS Supports OSI protocols, permitting
communication with any vendor’s system
that supports standards for Open Systems
Interconnection (OSI)

Supports DNA protocols, permitting
communication with any system running
DECnet/OSI or DECnet Phase IV software on
the DECnet network

Supports running DECnet and OSI
applications over TCP/IP transports† to
communicate with systems based on UNIX

DECnet for OpenVMS Supports DECnet Phase IV DNA protocols,
permitting communication with any system
running DECnet Phase IV software on the
DECnet network

TCP/IP Software

Digital TCP/IP Services for OpenVMS Supports the TCP/IP protocol, permitting
communication with systems based on UNIX
and other systems on the Internet

NFS software‡ Supports the NFS network file system
protocol: the NFS server software permits
UNIX clients to access OpenVMS files and
files compatible with UNIX on OpenVMS
systems, and the NFS client software permits
OpenVMS users to access remote NFS files

†Requires a separate TCP/IP product on the same system
‡Components of Digital TCP/IP Services for OpenVMS

DECnet is the traditional Digital networking product, supported on most Digital
systems, including the OpenVMS operating system and operating systems
based on UNIX (such as Digital UNIX). DECnet software provides peer-to-peer
networking. DECnet software on the OpenVMS system has proven its reliability
over the years in extensive networking configurations, including the very large
Digital network.

DECnet for OpenVMS VAX (previously known as DECnet–VAX Phase IV), uses
DNA protocols (that conform to the Digital Network Architecture) to communicate
with other DECnet systems. The Phase IV product that runs on OpenVMS Alpha
is called DECnet for OpenVMS Alpha.

DECnet/OSI (the latest phase of DECnet) conforms to international standards for
the Open Systems Interconnection (OSI) model (as described in Section 2.1.5.1)
and supplies open, multiprotocol, multivendor networking capabilities.
DECnet/OSI for OpenVMS software, which can run on VAX and Alpha platforms,
integrates OSI and DECnet Phase IV capabilities, includes the ability to use
TCP/IP transports, and supports additional networking capabilities. Routing is
provided by multiprotocol routers.

1–10

Introduction to OpenVMS Systems
1.3 Basic OpenVMS Configurations

DECnet/OSI is compatible with Phase IV, the previous phase of DECnet. This
compatibility between phases preserves the investment in networking capabilities
made by DECnet users on OpenVMS systems.

The Digital TCP/IP Services for OpenVMS product (which is the latest version
of the VMS/ULTRIX Connection product) supports resource sharing between
OpenVMS systems, UNIX systems, and other systems that support the TCP/IP
protocol suite and NFS (see Section 6.2.2). TCP/IP, the de facto standard
for networking UNIX systems, is used by the Internet, an openly accessible,
worldwide research and commercial network. OpenVMS systems running TCP/IP
software supplied by Digital or other vendors can access the Internet.

DECnet/OSI can support a multivendor, multiprotocol network environment when
configured with the Digital TCP/IP Services for OpenVMS product or another
TCP/IP product running on the same OpenVMS system. DECnet applications can
be run over DNA, OSI, or TCP/IP transports. OSI applications can be run over
OSI or TCP/IP transports.

Digital networking systems can be connected to local area networks (LANs)
or wide area networks (WANs). A LAN is a network of systems in a specific
geographical area, while a WAN permits long-distance communications. The two
kinds of networks can be integrated into a single network.

High-speed LAN communications occur over Ethernet/IEEE 802.3 or FDDI
interconnections. Ethernet networks are flexible, reliable, and inexpensive. The
FDDI fiber optic interconnect provides 10 times the transmission rate of the
Ethernet and can seamlessly interoperate with an Ethernet on a LAN extended
by means of a LAN bridge. A third LAN technology supported by OpenVMS is
the IEEE 802.5 standard token-passing ring. The token ring LAN is a baseband
ring network compatible with IBM 802.5/token ring networks. Ethernet and
token ring LAN technologies are supported in PATHWORKS configurations.

DECnet/OSI supports connections to X.25 packet-switching data networks (for
example, TYMNET) that conform to international recommendations. DECnet
also supports gateway software for connection to other networking products (for
example, IBM SNA interconnect products).

OpenVMS systems can also act as servers to personal computer clients (such
as DOS, Windows, OS/2, and Macintosh clients) over network connections,
using appropriate PATHWORKS software on each client and server. OpenVMS
servers support Ethernet or token ring LAN connections, TCP/IP connections,
and AppleTalk connections. The PATHWORKS environment is introduced in
Section 2.2.2.2 and described in detail in Section 6.4.2.

Figure 1–3 shows a multivendor open network that includes DECnet/OSI,
DECnet Phase IV, and TCP/IP systems as well as systems provided by other
vendors. Routing is provided by multiprotocol wide area networking routers,
including the DEC WANrouter, the DECNIS network integration service router,
and other vendor multiprotocol routers.

1–11

Introduction to OpenVMS Systems
1.3 Basic OpenVMS Configurations

Figure 1–3 Multivendor Network Topology

ZK−5492A−GE

OSI and IP
Routing

LOS ANGELES

TCP/IP
Host

OSI
End System

Other
Vendor
Router

DECnet/OSI
for OpenVMS

BOSTON

X.25 Packet
Switching
Network

OSI
End System

TCP/IP
Host DECNIS

PATHWORKS

PATHWORKS

TOKYO

WAN
Router

DECnet/OSI
for OpenVMS

DECnet/OSI
for Digital UNIX

OSI
End System

TCP/IP
Host

WAN
Router

for DOS

TCP/IP Services
for OpenVMS

DECnet/OSI
for OpenVMS

PATHWORKS
for OS/2

DECnet

Other Vendor
Mainframe

SNA
GW

PATHWORKS

DECnet

for OpenVMSfor DOS

for OpenVMS

LONDON

PATHWORKS

DECnet/OSI
for OpenVMS

Internet

1–12

Introduction to OpenVMS Systems
1.4 OpenVMS Systems on Multiple Platforms

1.4 OpenVMS Systems on Multiple Platforms
The OpenVMS operating system is available on two hardware platforms:

• A complex instruction set computer (CISC) architecture based on the VAX
architecture

• A reduced instruction set computer (RISC) architecture based on the Alpha
architecture

The OpenVMS VAX operating system runs on the CISC platform, and the
OpenVMS Alpha operating system runs on the RISC platform. The OpenVMS
Alpha operating system is a port of the OpenVMS VAX operating system, not a
redesign of the operating system.

A computing architecture provides a set of rules that determine how the computer
actually works; for example, the architecture defines how the data is addressed
and the instructions are handled.

The VAX architecture is a flexible CISC architecture that provides for 32-bit
processing. The instruction set consists of a large number of instructions of
variable length, some of which are complex. The 32-bit VAX architecture provides
sufficient address space for current and future applications. The capabilities of
OpenVMS on VAX processors will continue to be expanded.

The VAX architecture is used across the entire VAX family of systems. The use
of a single, unifying, integrated VAX architecture with the OpenVMS software
permits an application to be developed on a VAX workstation, prototyped on
a small VAX system, and put into production on a large VAX processor. The
advantage of the VAX system approach is that it enables individual solutions to
be tailored and fitted easily into a larger, enterprisewide solution.

The Alpha architecture is a high-performance RISC architecture that can provide
64-bit processing on a single chip. The use of the RISC architecture in Alpha
processors offers increased CPU performance. The instruction set consists of
uniformly sized simple instructions that can be executed rapidly. The 64-bit
capability is especially useful for applications that require high performance and
very large addressing capacity.

The hardware designs of VAX and Alpha processors are inherently reliable and
are particularly suitable for high-availability applications (such as dependable
applications for mission-critical business operations and server applications for a
wide variety of distributed client/server environments).

A move to the Alpha design from a VAX processor can take place whenever
applications require the performance or capacity. Alpha processor support for the
64-bit addressing capability provides sufficient primary data storage for the most
data-intensive applications and for applications that perform very large numbers
of high-speed I/O operations. For example, Alpha processors are appropriate
for graphics- or numeric-intensive software applications that involve imaging,
multimedia, visualization, simulation, and modeling.

1–13

Introduction to OpenVMS Systems
1.4 OpenVMS Systems on Multiple Platforms

1.4.1 System Compatibility and Program Portability Across Platforms
The OpenVMS Alpha operating system is compatible with OpenVMS VAX
systems in terms of user, system manager, and programmer environments. For
general users and system managers, OpenVMS Alpha has the same interfaces
as OpenVMS VAX. Virtually all OpenVMS VAX system management utilities,
command formats, and tasks are identical in the OpenVMS Alpha environment.
Additionally, OpenVMS VAX and OpenVMS Alpha systems can coexist in the
same networking environment and in the same VMScluster system.

For programmers, the OpenVMS Alpha software development environment
involves the same programming interfaces and development tools as with
OpenVMS VAX. Most OpenVMS VAX application programs, especially those
written in higher level languages, can be recompiled and relinked and then run
on OpenVMS Alpha. Alternatively, if recompilation is not practical or possible,
the DECmigrate for OpenVMS AXP layered product can be used to translate
user-mode OpenVMS VAX images to run on OpenVMS Alpha systems (see
Section 4.2.2).

Software compatibility on the two platforms and considerations involved in
developing portable programs that can run on both OpenVMS VAX and OpenVMS
Alpha systems are discussed in Migrating an Application from OpenVMS VAX to
OpenVMS Alpha.

For current information about available OpenVMS VAX and OpenVMS Alpha
capabilities, refer to the applicable Release Notes and New Features manuals for
your system.

1.4.2 Processors on Which OpenVMS Systems Run
OpenVMS runs on the full range of VAX and Alpha processors:3

• VAX processor-based systems supported include desktop and deskside
workstations and workgroup, departmental, and data center servers.

• Alpha processor-based systems supported include desktop and deskside
workstations, personal computing systems, and workgroup, departmental,
and data center servers.

OpenVMS can run on VAX processors that range in scale from VAXstations and
MicroVAX systems, step by step, through the largest of the VAX based systems,
such as the VAX 7000 models. At any time a user may migrate from the VAX
based systems to the Alpha family, which offers higher performance systems in
configurations similar to the VAX family.

Alpha processors range from low-end client workstations through extremely
fast servers to powerful, high-capacity enterprise servers. The AlphaStation
systems and AlphaServer systems provide 64-bit processing capability on high-
performance PCI buses (which are standard in the PC industry). Multiple
operating systems, including Digital UNIX and Windows NT systems as well as
OpenVMS systems, can run on Alpha workstations and servers.

OpenVMS also promotes growth by supporting both symmetric multiprocessing
(SMP) and VMScluster systems. SMP provides for an easy way to increase
system performance without disrupting business operations. SMP support is
available when it is included in the hardware design. VMSclusters ensure

3 For a current list of processors supported by an OpenVMS system, refer to the applicable
OpenVMS Software Product Description.

1–14

Introduction to OpenVMS Systems
1.4 OpenVMS Systems on Multiple Platforms

increased system availability for mission-critical applications. Clustering support
is provided across the full range of both VAX and Alpha families.

OpenVMS, combined with the industry-benchmark VAX processor and high-
performance Alpha processor, provides continuity of systems from the desktop
to the data center. These systems provide environments for industry-standard
personal software, engineering-design work, and business solutions ranging from
supporting the one-person office to the very largest corporations.

1.5 OpenVMS Growth Potential
OpenVMS managers and users can expand and alter their computing capabilities
without risk of obsolescence or system-related constraints. In addition to being
scalable for the full range of processors from desktops to mainframes, the
OpenVMS operating system offers the flexibility to move the software from
VAX platforms to Alpha platforms as processing requirements grow or change.
Moreover, OpenVMS distributed multivendor system capabilities give managers
the opportunity to integrate systems and devices from multiple vendors into the
OpenVMS computing environment and to integrate OpenVMS software into other
vendors’ environments.

OpenVMS protects computing resources against obsolescence and incompatibility
and ensures investments in applications and data across systems. The system
also supports new technologies and standards as they are developed without
sacrificing any existing capabilities. Over the years, new capabilities such as
VAXcluster systems, multiprocessing, and disaster tolerance have been integrated
into the OpenVMS environment. All the while, programs compiled and linked on
the earliest VAX processors run, without change, on the newest VAX processor,
using the latest version of the OpenVMS operating system; these same programs
can also migrate easily to run on Alpha processors.

OpenVMS VAX and OpenVMS Alpha systems are functionally equivalent. The
OpenVMS Alpha environment supports the same full software capability that
is available with OpenVMS VAX systems. The compatibility of the OpenVMS
operating system on all processors protects the investment in application
development and training. It is possible to add capacity without having to revise
applications or retrain people.

OpenVMS offers multiple growth options. OpenVMS customers can upgrade or
replace existing software, group systems into VMSclusters or add to existing
VMScluster configurations, or link systems through networking connections.

Upgrades of processor hardware do not involve a long, complicated system
generation process. The OpenVMS operating system boots on the processor or
workstation, automatically configuring itself to the CPU, memory, and devices
present. Installation of the OpenVMS Alpha software and layered products is
simplified through the use of the POLYCENTER Software Installation utility.
(The traditional OpenVMS installation procedure is used to install OpenVMS
VAX systems.) The user can upgrade to new software releases or add layered
software with minimal disruption.

OpenVMS is highly flexible and can accommodate to change readily. As the
configuration of the OpenVMS system is modified through the addition or
subtraction of systems or changes in vendors’ devices, the OpenVMS system
will continue to work in a reliable, predictable manner. VMScluster design
permits the addition of multiple processors, storage controllers, disks, and
tapes without requiring that the VMScluster system be shut down. OpenVMS
distributed computing capabilities permit systems and resources to be added

1–15

Introduction to OpenVMS Systems
1.5 OpenVMS Growth Potential

without disruption of the network. In addition, with OpenVMS support for open
interfaces, managers can determine what open systems and other capabilities
are required to meet their needs. OpenVMS standards-based open networking
capabilities permit free interconnection of systems from different vendors. Using
Digital middleware, applications can move easily across different systems in a
network and have the systems all work together as if they came from one vendor.

1–16

2
OpenVMS Computing Capabilities

The OpenVMS operating system provides an array of capabilities that support
the full range of computing environments. A computing environment is made up
of resources that are compatible with each other and all work together toward a
common goal. In general, OpenVMS environments can supply the following kinds
of capabilities (which can exist in any combination):

• Open system capabilities

• Distributed processing capabilities

• Production system capabilities

• System and network management capabilities

OpenVMS software capabilities include both the standardized features of open
systems computing and the commercial-strength functionality of traditional
OpenVMS systems. System and network management software provides for
control of heterogeneous, integrated environments.

This chapter describes the capabilities supported in OpenVMS computing
environments and summarizes the software resources available in each kind of
environment.

2.1 Open System Capabilities
OpenVMS offers the benefits of an open system environment, which permits both
applications and users to move between systems. In addition, applications on
different open systems can operate together.

The OpenVMS operating system makes available a set of services in an open
domain, while still offering its traditional high-integrity computing services.
Incorporation of open computing capabilities enhances the traditional feature-rich
OpenVMS environment.

2.1.1 What Is an Open System?
The Institute of Electrical and Electronics Engineers (IEEE) Computer Society
has developed a definition of an open system that Digital has adopted. This
definition is based on standard interfaces rather than on standardization of
products. The IEEE definition of an open system is as follows:

A system that implements sufficient open specifications for interfaces,
services, and supporting formats to enable properly engineered applications
software:

• To be ported across a wide range of systems with minimal changes

• To interoperate with other applications on local and remote systems, and

• To interact with users in a style which facilitates user portability.

2–1

OpenVMS Computing Capabilities
2.1 Open System Capabilities

The IEEE definition uses the term ‘‘open specification’’: ‘‘A public specification
that is maintained by an open, public consensus process to accommodate new
technology over time and that is consistent with standards.’’

Open specifications do not rely on any particular technology or product; they
allow users to determine what open systems and other capabilities are required
to meet their needs.

Software in the OpenVMS open systems environment enables the development
and use of portable applications and consistent user interfaces and also permits
systems to operate together. The keys to openness of OpenVMS systems are
standard programming interfaces, standardized user interfaces, and standard
protocols.

2.1.2 Support of Open Standards and Specifications on OpenVMS Systems
Digital is active in standards bodies that specify or adopt critical standards for an
open environment. As part of this effort, Digital has extended VMS to conform
to the majority of open, international standards for portability, interoperability,
and a consistent user interface. Some of the open standards and specifications
supported by OpenVMS are:

• IEEE standards for POSIX, which is the portable operating system interface

• X/Open standards according to the X/Open Portability Guide Issue 3 (XPG3)
BASE specification and Issue 4 (XPG4) BASE profile specifications

• Standards developed by the Open Software Foundation (OSF) for:

Application Environment Specification (AES)

Distributed Computing Environment (DCE)

• The International Organization for Standardization (ISO) standards for the
Open Systems Interconnection (OSI) model

• American National Standards Institute (ANSI) accredited standards for
languages 1

• Internet Engineering Task Force (IETF) Request for Comments (RFCs)

Additionally, Digital participates in the workshops of the National Institute of
Standards and Technology (NIST, formerly NBS) of the U.S. Government and
supports NIST’s work in defining an environment, based on formal standards, in
which to develop and support portable applications. Digital is also certified by
NIST as an accredited U.S. Government OSI Profile (GOSIP) Test Facility.

POSIX for OpenVMS has passed the NIST-developed POSIX Conformance Test
Suite (PCTS) and has been granted a certificate of validation for conformance to
Federal Information Processing Standards Publication (FIPS) 151-1 and 151-2 by
NIST.

The OpenVMS operating system has received X/Open BASE-level branding for
the X/Open Portability Guide Issue 3 (XPG3) environment. OpenVMS Alpha
has also received XPG4 BASE profile branding for the X/Open Portability Guide
Issue 4 (XPG4), which extends the internationalization features of the guide. The
X/Open Portability Guide is specified by the X/Open consortium, a consortium of
major vendors that is establishing a Common Applications Environment based on
formal standards and other widely accepted specifications.

1 Note that some ANSI standards are technically identical to ISO standards, such as the
ISO/ANSI C standard.

2–2

OpenVMS Computing Capabilities
2.1 Open System Capabilities

For a summary of standards and specifications that OpenVMS supports, refer to
Appendix A.

2.1.3 Application Portability
Application portability is the capability to easily move an application from one
system to another. Standard programming interfaces permit application and data
portability. Portable applications written strictly to a suite of open specifications
provide the following benefits:

• Applications can be written once and run on other open platforms that
support the standards used in the applications.

• Users can access the wide range of applications available on open platforms.

• Applications can be supplied by different vendors.

Applications that are developed on the OpenVMS VAX or OpenVMS Alpha system
and conform to open standards can be easily ported to other systems that conform
to the same standard interfaces. Applications written in ISO and ANSI languages
are portable to other systems. In addition, the OSF/Motif graphical user interface
supports application portability.

2.1.3.1 POSIX for OpenVMS Application Portability
POSIX standards enable users and conforming applications to move between
systems supporting the POSIX standards. OpenVMS VAX and Alpha systems
support POSIX and X/Open standards and draft standards, thereby allowing
portable applications to benefit from the proven features of OpenVMS.

IEEE POSIX standards are a set of implementation-independent system interface
standards. IEEE POSIX standards have the ‘‘look and feel’’ of UNIX interfaces.
Table 2–1 lists the standards supported by POSIX for OpenVMS.

Table 2–1 POSIX Standards Supported by POSIX for OpenVMS

POSIX Standard or Draft
Standard Description

1003.1 (standard) Specifies standard operating system interface and
environment, in terms of callable functions, data
structures, and header files, using the C language

1003.1a (draft standard) Specifies the system interface extension

1003.1b† (standard) Specifies extensions for developing real-time
applications and extends the services provided in
1003.1

1003.2 (standard) Specifies utilities and commands built into the
shell; also specifies a number of callable functions
(relating to regular expression handling); includes user
portability extensions (previously specified in POSIX
1003.2a)

†Renumbered from 1003.4

The availability of POSIX 1003.1b (previously 1003.4) and 1003.2 distinguishes
POSIX for OpenVMS from many other proprietary operating systems, which often
limit their standards offering to 1003.1.

POSIX for OpenVMS supports X/Open standards specified in the XPG3 BASE
specification and XPG4 BASE profile specifications.

2–3

OpenVMS Computing Capabilities
2.1 Open System Capabilities

OpenVMS has received the XPG3 BASE brand, which confirms that the
OpenVMS system provides the open systems functionality specified by XPG3.
XPG3 BASE-level branding applies to the operating system and covers:

• System interfaces (includes POSIX 1003.1 plus extensions)

• Commands and utilities: A shell environment (includes POSIX 1003.2 with
extensions)

• Internationalization features

OpenVMS has also received the XPG4 BASE profile brand, which covers
internationalized system calls and libraries, plus wide character functions,
commands, utilities, and the C language as defined by XPG4.

An application that strictly conforms to POSIX and X/Open standards can be
developed on an OpenVMS system with POSIX for OpenVMS and then ported
without modification to any other platform that supports the same POSIX and
X/Open standards or draft standards. Similarly, an application that strictly
conforms to POSIX standards that is developed on a platform other than
OpenVMS can be ported to and run on an OpenVMS system on which POSIX
for OpenVMS is installed. (POSIX for OpenVMS programming is described in
Section 4.4 and POSIX for OpenVMS user interfaces in Section 5.3.)

POSIX applications and users on OpenVMS can access and benefit transparently
from the feature-rich OpenVMS environment in addition to the standard
interfaces. Some of the key benefits directly available for POSIX users on
OpenVMS are OpenVMS security features, volume shadowing, clustering, and
many features of the software development environment. The availability and
use of POSIX for OpenVMS does not affect other regular OpenVMS users.

2.1.3.2 Other Application Portability Features
Applications written in ISO/ANSI languages are easily portable to other platforms
that support them. OpenVMS VAX and OpenVMS Alpha provide support for such
languages as Ada, C, COBOL, and Fortran.

2.1.3.3 OSF/Motif Applications
OSF/Motif, a component of the OSF Application Environment Specification (AES),
is an industry standard for an open graphical user interface and its associated
application programming interface (API). The OpenVMS graphical user interface
is DECwindows Motif. Any Motif application can run on DECwindows Motif.

2.1.4 User Portability
User portability relates to the ease with which users can move between
applications, experiencing a consistent user interface on different systems.
Standard services and interfaces incorporated in open applications enhance user
portability. In addition, user portability tools that are based on standards permit
development of consistent user interfaces. Standards-based tools allow end users,
developers, and managers to move easily from tool to tool, eliminating the need
for retraining.

Standards-based user interface software available in the OpenVMS open systems
environment includes OSF/Motif and the POSIX for OpenVMS shell and utilities.

2–4

OpenVMS Computing Capabilities
2.1 Open System Capabilities

2.1.4.1 OSF/Motif User Interface
The OSF/Motif interface implemented by DECwindows Motif provides users with
a consistent screen appearance and behavior for applications that conform to the
X Window System. (For a description of the DECwindows Motif graphical user
interface, see Section 5.2.2.)

2.1.4.2 POSIX User Interface
The POSIX interface in the OpenVMS operating system allows users to develop
and run applications that can also be run on any other platform that supports
POSIX and X/Open standards and draft standards. POSIX 1003.2 defines the
shell and utilities services that comprise a user interface environment similar
to the Korn shell in the UNIX environment. Included in the interactive shell
are commands similar to UNIX commands. OpenVMS users running POSIX for
OpenVMS can experience the look and feel of UNIX. (For a description of the
POSIX for OpenVMS user interface, see Section 5.3.)

2.1.5 Multivendor Interoperability
Interoperability is the ease with which systems from multiple vendors can
work together, sharing data and integrating applications. Interoperability
and integration of systems from different vendors involves connecting the
systems. All systems and their resources are widely available in an open
environment. In addition, an open system interoperates with any installed
computing environment.

Multivendor interoperability provides the following benefits:

• Permits easy interconnection of different multivendor systems throughout the
enterprise to communicate and share data and applications

• Provides the flexibility to change and expand the computing environment to
meet changing needs

• Allows unimpeded access to systems and use of data

In an OpenVMS environment, applications can interoperate with different
applications running on other systems that support the same standards.
OpenVMS supports the capabilities supplied by networking software and
protocols, middleware for integrating applications on different vendor systems,
and DCE services for a distributed computing environment.

2.1.5.1 Open Networking Capability
OpenVMS networking software that provides open, multiprotocol, multivendor
networking capability includes the DECnet/OSI for OpenVMS VAX and
DECnet/OSI for OpenVMS Alpha products, based on ISO standards for the Open
Systems Interconnection (OSI) model. The OSI model allows free interconnection
of systems from different vendors in an open systems network. Participation
in the network is open to any vendors that conform to the appropriate ISO
standards. DECnet/OSI for OpenVMS allows users to choose between OSI
protocols, DNA protocols, and TCP/IP protocols.

Digital TCP/IP Services for OpenVMS, an optional software product, supports
connection to UNIX systems. The NFS server software on OpenVMS allows
UNIX clients to access both the OpenVMS file system and files compatible with
UNIX on the OpenVMS system. OpenVMS systems running TCP/IP products can
serve as gateways to the Internet.

2–5

OpenVMS Computing Capabilities
2.1 Open System Capabilities

These networking products are summarized in Section 1.3.4. Distributed
networking capabilities are discussed in Section 2.2.5, and the distributed
heterogeneous networking environment is covered in Section 6.2.

2.1.5.2 Middleware Support for Open Systems
Middleware products are based on open international standards and
specifications, including the AES and DCE standards developed by OSF.
Middleware (software layered between the operating system and applications)
provides application programming interfaces (APIs) to accomplish the dialogue
between applications and their users, data, systems, and other applications.

Middleware is the Digital implementation of an open systems profile that provides
presentation, communication, control, information, computation, and management
services. Middleware provides for interoperability between applications in an
open systems environment (see Section 2.2.3). Middleware products can be used
to integrate applications across a distributed, multivendor environment (see
Section 6.3).

2.1.5.3 DCE Services Support for Interoperable Applications
Multivendor interoperability capabilities are also provided by OSF DCE
services being implemented by Digital. The OSF DCE consists of a set of
basic mechanisms that allow application developers to design interoperable
applications. (The DCE software environment is described in Section 2.2.4, and
Digital DCE product functionality is covered in Section 6.3.4.)

2.2 Distributed Computing Capabilities
In a distributed computing environment, an application is distributed over two
or more systems or processors, each of which has its own autonomous operating
environment. A distributed application is composed of separate modules, running
on different systems, that communicate with each other by passing data between
modules or by sharing access to files or databases. A distributed application
must be able to coordinate its activities over a dispersed operating environment.
(Distributed and centralized styles of computing are contrasted in Section 1.2.2.)

The distributed computing environment can consist of software located in a single
box or single room or can comprise a worldwide network of computers. The
systems in the distributed configuration can be uniprocessor, multiprocessor, or
VMScluster systems; systems from different vendors can be included in the same
configuration.

2.2.1 Client/Server Style of Computing
One style of distributed computing that permits resource sharing between
different systems is client/server computing. In the client/server environment,
portions of an application are distributed across the network between servers and
clients:

• A server is any system that provides a service or resource to other systems.

• The client is the system requesting the service.

This style of computing allows each portion of a distributed application to run
in its own optimal environment. The whole application does not have to run
on one centralized system (such as a mainframe system), but enterprisewide
cohesiveness can still be maintained. For example, individuals or local offices,
using their own computers and running software appropriate to their needs, can
be linked to large computers or VMScluster systems in a network. A distributed

2–6

OpenVMS Computing Capabilities
2.2 Distributed Computing Capabilities

computing system can function as though it were a single system that connects all
parts of an enterprise. The client can have transparent access to the integrated
resources of the enterprise.

Any system can be a client or a server, and some systems may include both
client software for certain applications and server software for other applications.
Servers can be connected to many clients, and a client can be connected to
more than one server at a time. (Client and server relationships may change
frequently: at times it may not be possible to tell which is the client and which
is the server.) In some cases, the application is stored on the server and run
on the client, using the resources of the client. The user, who does not need to
know what system is serving the application, can function in a familiar, local
environment.

2.2.2 OpenVMS Client/Server Capabilities
OpenVMS systems support a wide variety of client/server configurations. Clients
requiring resources can be personal computers, workstations, point-of-sale
devices, OpenVMS systems, or systems from other vendors that are running
the appropriate client software. Users on client systems can use character-cell
terminals or windowing desktops.

Servers fulfilling clients’ requests can be located on OpenVMS systems or other
operating systems running appropriate server software. OpenVMS servers, for
example, can provide file access, printing, application services, communication
services, and computing power as application engines to clients on desktop
devices or in laboratories or factories. Client/server configurations permit the
commercial-strength capabilities of OpenVMS host systems to be integrated with
the personal-computing capabilities of desktop systems.

Middleware, which runs on OpenVMS and other systems from multiple vendors,
can be used to tie together clients and servers. Middleware integrates various
client and server systems through application, communication, data interchange,
and multivendor support (see Section 6.3). Complex information-sharing
environments involving PC clients and operating system servers are supported by
PATHWORKS software (see Section 2.2.2.2).

The following sections provide examples of different kinds of client/server
relationships involving OpenVMS systems. Software in OpenVMS distributed
production server environments is summarized in Section 2.3 and described
in detail in Section 7.1. Software in client/server environments is described in
Section 6.4.

2.2.2.1 OpenVMS Servers with OpenVMS Clients
OpenVMS nodes in a VMScluster are clients of distributed services provided by
the VMScluster system (as described in Section 3.4.1). A VMScluster system can
act as a disk, tape, file, print, and batch server to cluster members. Client/server
relationships on VMSclusters are described in Section 6.4.1.

2.2.2.2 OpenVMS Servers with PC Clients
The OpenVMS operating system running on a VAX or Alpha platform can act as
an application, file, and print server for large groups of personal computer clients
through DECnet or TCP/IP networking connections. Servers and clients can be
connected using PATHWORKS products: PATHWORKS server software on the
OpenVMS or VMScluster system and PATHWORKS client software supported
on a variety of personal computers (including MS–DOS, Windows, Windows
95, Windows NT, OS/2, and Macintosh operating systems). Figure 2–1 shows a

2–7

OpenVMS Computing Capabilities
2.2 Distributed Computing Capabilities

sample configuration in which an OpenVMS server running PATHWORKS and
other layered products provides services to PC clients.

Figure 2–1 OpenVMS Services to PC Clients

Windows Client

ZK−5462A−GE

OpenVMS

Mail Services

Database
Services

Application and
Windowing Services Print

Services

System Management
and Network

Services

Security
Services

File and Disk
Services

OS/2 Client

Macintosh Client

DOS Client

PATHWORKS
PC Server

Ethernet

PATHWORKS is the personal computing system architecture that integrates
personal, departmental, and enterprisewide computing environments so that
PC users can directly access shareable information and resources throughout
the enterprise. PC and terminal users can share applications, data, and system
resources such as printers, CD readers, and network gateways without losing the
benefits of industry-standard personal computing.

The OpenVMS server can use PATHWORKS for OpenVMS, in conjunction with
networking software, to provide file, print and electronic mail services, system
management and network services, security services, and windowing services to
PC clients. An OpenVMS server running additional layered products can supply
database services and transaction-processing services to PC clients.

2–8

OpenVMS Computing Capabilities
2.2 Distributed Computing Capabilities

The use of OpenVMS servers in PATHWORKS environments is described in detail
in Section 6.4.2.

2.2.3 Middleware in Distributed Environments
Middleware, based on open standards, provides services for distributed
applications. The same services that run on OpenVMS can run on any distributed
system that uses middleware products. Digital middleware products provide the
basic computing foundation to enable applications to be more interoperable
and distributable across different computer systems: for example, OpenVMS
systems, Digital operating systems based on UNIX (such as Digital UNIX), and
other vendor systems (such as UNIX, MS–DOS, OS/2, Macintosh, Sun, and IBM
systems).

Using middleware, applications can easily move across different systems in a
network and have the systems all work together as if they came from one vendor.
With applications that employ middleware, users can more easily access and
share information, no matter where they are located or what kind of system they
are using.

2.2.4 Distributed Software That Is Compliant with OSF Standards
With the Distributed Computing Environment (DCE), the OSF has established a
standard set of software services and interfaces that facilitate the creation, use,
and maintenance of client/server applications. The Digital DCE product family
provides a certified set of the distributed computing functionality specified for the
OSF DCE, as well as tools for application developers.

Digital DCE serves as the basis for an open computing environment where
networks of multivendor systems appear as a single system to the user. DCE
makes underlying networks and operating systems transparent to application
developers. Therefore, application developers can easily build portable,
interoperable applications, and users can locate and share information safely
and easily across the whole enterprise.

The optional Digital DCE for OpenVMS product family (described in Section 6.3.4)
includes DCE Run-Time Services for OpenVMS and the DCE Application
Development Kit for OpenVMS, which includes:

• DCE Remote Procedure Call (RPC)

• DCE Threads Service

• Documentation and sample applications for developing RPC applications.

Both the run-time services and the development kit are available on OpenVMS
VAX and Alpha platforms.

Digital also supports the following DCE products:

• DCE Cell Directory Server (CDS), which is a location-independent name
directory service

• DCE Security Server, which provides authentication and authorization
services for DCE users

• Resource Broker, which permits allocation of resources to servers based on
availability and efficiency

2–9

OpenVMS Computing Capabilities
2.2 Distributed Computing Capabilities

2.2.5 Distributed Networking Capabilities
OpenVMS networking support for distributed processing is provided by DECnet
software and by the Digital TCP/IP Services for OpenVMS product (see
Section 1.3.4). The use of networking software in multivendor distributed
environments is discussed in Section 6.2.

The DECnet family of communication products (software and hardware) allows
the OpenVMS operating system to participate in the DECnet network. DECnet
for OpenVMS, the Phase IV product, supports the DNA protocols that permit
communication with other systems supporting compatible versions of the DNA
protocols. DECnet/OSI for OpenVMS, the Phase V product, supports OSI
protocols that permit communication with other vendors’ systems that support
OSI, as well as DNA protocols, and provides links to permit DECnet or OSI
applications to run over TCP/IP connections. Users of DECnet/OSI for OpenVMS
can choose between OSI, DNA, and TCP/IP networking protocols, which can
run simultaneously. Nodes running DECnet/OSI for OpenVMS and DECnet for
OpenVMS can be configured to coexist on the same network.

DECnet/OSI networking supports time and name services for distributed
processing over the network:

• The DECdts time service is a method for coordinating and setting system time
over the network. DECdts supplies time-synchronization features essential to
networks that are running distributed applications.

• The DECdns name service provides for networkwide naming of objects.
DECdns supplies distributed applications with a consistent, networkwide set
of names called a namespace. This namespace makes it possible for users
and applications to refer to resources on the network (such as files, disks, and
nodes) by using a single name, without having to know where the resource is
located. The DECdns software uses a client/server model.

DECnet/OSI for OpenVMS supports the distributed file service (DECdfs) that
provides users and applications with transparent, high-performance file access
while using fewer CPU resources than standard DECnet file access. DECdfs
systems can act as clients, servers, or both clients and servers.

Digital TCP/IP Services for OpenVMS, an optional product, provides for TCP/IP
connections and supplies NFS server capabilities. These services permit
OpenVMS VAX and OpenVMS Alpha to become full participants in TCP/IP
networks. The Digital TCP/IP Services for OpenVMS include a set of industry-
standard communication protocols (TCP, IP, FTP, Telnet, and other protocols),
Digital Remote Procedure Call (DECrpc) for OpenVMS, and NFS server software.
NFS software permits UNIX clients to access OpenVMS files and files compatible
with UNIX stored on the OpenVMS system. (For additional information about
the TCP/IP services supported, see Section 6.2.2.)

2.2.6 Distributed Features of DECwindows Motif
DECwindows Motif, based on industry-standard OSF/Motif, permits users to
access application programs running on other machines in the network as if
the applications were running locally. With the DECwindows software, multiple
device-independent applications can run simultaneously in various separate
workstation windows. Applications function as clients and the DECwindows
program that responds to the applications is the DECwindows server. (The
DECwindows Motif user interface is described in Section 5.2.2.)

2–10

OpenVMS Computing Capabilities
2.3 High-Integrity Production System Capabilities

2.3 High-Integrity Production System Capabilities
OpenVMS offers commercial-strength computing capabilities to meet the needs of
production systems. A production system is a computing system or configuration
critical to the operation of an organization. OpenVMS supplies the computing
power and dependability features needed to keep a mission-critical production
system available as required while ensuring the integrity of the data. OpenVMS
systems and related optional software support predictable, stable computing
environments.

The high-integrity, availability, manageability, and security features of OpenVMS
VAX have been proven in applications tested and enhanced over the years. These
features are now implemented on OpenVMS Alpha systems. OpenVMS VAX
applications can migrate easily to OpenVMS Alpha platforms. Applications
developed on OpenVMS VAX and Alpha systems, including applications developed
by other vendors, cover the full range of activity from technical research to
commercial data centers.

The following sections discuss OpenVMS production system capabilities,
summarize the characteristics of a dependable OpenVMS system, and describe
OpenVMS software availability tools and data integrity tools. They also
summarize transaction-processing capabilities and manageability and security
features for production systems. Additionally, OpenVMS supports database
software supplied by other vendors to provide full production system capabilities.
For a discussion of the growth potential of OpenVMS systems, see Section 1.5.

Software used in the OpenVMS distributed production server environment is
described in Section 7.1.

2.3.1 Dependable OpenVMS Computing Systems
A dependable computing system is one that can be relied on to provide services
to its users when the services are needed. A dependable system also provides
sufficient performance so that users and applications can conduct their work
efficiently.

The following types of OpenVMS systems meet different levels of dependability
requirements for production systems:

• Conventional computing systems (for example, a standalone system or
systems connected by a LAN)

• Highly available computing systems (for example, a VMScluster system
using shadowed disks and transaction processing software): For business
functions requiring computing services that are uninterrupted for essential
time periods, with minimal down time

• Disaster-tolerant computing systems (for example, the Business Recovery
Server consisting of linked data centers located at a safe distance from each
other): For business operations that must remain uninterrupted and must be
immune to any type of foreseeable disaster

The components in a dependable system have the following characteristics:

• Reliability: The ability to maintain a functioning condition, through the use
of fault-prevention strategies

• Recoverability: The ability to return to a functioning condition from a
nonfunctioning or incorrectly functioning condition, through the use of failure-
recovery strategies

2–11

OpenVMS Computing Capabilities
2.3 High-Integrity Production System Capabilities

• Fault tolerance: The ability to exhibit an apparently functioning condition,
through the use of error detection and correction strategies

2.3.2 Availability Tools
OpenVMS availability tools include VMScluster systems, volume-shadowing
software, and tools such as an availability management software product:

• VMScluster systems are loosely coupled multiprocessor configurations that
allow designers to configure redundant hardware that can survive equipment
failures. The OpenVMS operating system, which runs on each processor
node in a VMScluster system, provides a high level of transparent data
sharing and independent failure characteristics. The processors interact to
form a cooperating distributed operating system. All disks and their stored
files are accessible from any processor as if those files were connected to a
single processor. (See Section 1.3.3 for summary information on VMScluster
configurations and Section 3.4.1 for a description of the VMScluster software.)

• Volume shadowing is a technique that provides data availability to
computer systems by protecting against data loss from media deterioration,
communication path failures, and controller or device failures. The process
of volume shadowing entails maintaining multiple copies of the same
data on two or more physical volumes. Up to three physical devices are
bound together by the volume-shadowing software into a shadow set or
virtual unit. Volume-shadowing software replicates data across the physical
devices. Applications access the virtual unit as if it were a single standard,
physical disk. If one volume of the shadow set fails, requests for data are
automatically directed to another volume, allowing operations to continue
without interruption.

Phase II Volume Shadowing, offered for both OpenVMS VAX and OpenVMS
Alpha systems, is a fully distributed, clusterwide data availability product
intended to service Digital and SCSI storage architectures. All essential
shadowing functions are performed within the OpenVMS operating system
(see Section 3.4.2).

• DECamds (the Digital availability manager for distributed systems) monitors,
investigates, diagnoses, and corrects OpenVMS system resource utilization.
DECamds permits the system manager to identify and resolve areas of
resource denial on every system on the network. The DECamds console runs
on an OpenVMS VAX or OpenVMS Alpha system, and related drivers run
on each VAX and Alpha system on the network. (DECamds is described in
Section 7.1.2.1.)

2.3.3 Data Integrity Tools
Data integrity tools available on OpenVMS VAX and Alpha systems include RMS
Journaling software and DECdtm software:

• RMS Journaling software helps protect the data integrity of Record
Management Services (RMS) files on OpenVMS systems by recording file
updates in a separate journal file. The journal file is used to restore the file
to its original state if a failure should occur. Recovery-unit journaling ensures
RMS operations on a file are either all completed or not done at all, to protect
transaction integrity. (See Section 3.4.3 for a description of RMS Journaling
software.)

2–12

OpenVMS Computing Capabilities
2.3 High-Integrity Production System Capabilities

• The DECdtm distributed transaction manager is a set of services to facilitate
transaction processing. These services enable the application designer
to implement atomic transactions, using an optimized two-phase commit
protocol. DECdtm provides the enabling technology and features for
distributed transaction processing, ensuring both transaction and database
integrity across multiple resource managers (see Section 3.1.6).

2.3.4 Transaction-Processing Capabilities
OpenVMS VAX and OpenVMS Alpha support optional software products that
provide essential production system capabilities, as follows:

• Transaction-processing monitor: ACMS, the Application Control and
Management System, is the highly reliable transaction-processing monitor
that works with Digital and other vendor commercial software to provide
development and run-time environments for transaction-processing
applications. ACMS provides dependability features, including application
failover, to keep applications running reliably. ACMS is suitable for very
large online transaction-processing (OLTP) applications for mission-critical
business use. ACMS is described in Section 7.2.2.

• The Digital forms management package, DECforms, integrates with ACMS to
provide forms-processing capabilities in transaction-processing environments.
DECforms combines the traditional capabilities of previous Digital forms
systems and adds new features (see Section 5.4.1).

In addition, the DEC Reliable Transaction Router (RTR) is a distributed, fault-
tolerant software message routing system that supports the implementation of
reliable and distributed transaction-processing systems. DEC RTR is a high-
availability application used in several very large production systems around
the world (for example, in stock/option markets). DEC RTR is described in
Section 7.2.4.

A transaction may span multiple nodes of a cluster or network. Support provided
by DECdtm services allows multiple resource managers, such as OpenVMS
RMS software and other vendor database products, to be combined in a single
transaction. Applications can define distributed transactions that may include
calls to any of the data management products. The distributed transaction will
either commit or abort as a single transaction.

The OpenVMS system facilitates database sharing among applications that
perform transaction processing and those that do not and sharing with decision-
support systems and remote nodes requesting data.

2.3.5 Manageability and Security for Data Centers
OpenVMS provides a wide range of tools and utilities to help users manage
complex computer environments, such as a large data center. Basic OpenVMS
system management capabilities are integrated in the OpenVMS operating
system and are augmented by optional products, such as the POLYCENTER
Console Manager, which serves as a control center for managing all connected
members of the cluster. Overall OpenVMS system and network management
capabilities are described in Section 2.4, and optional management products
running on an OpenVMS production server are summarized in Section 7.1.3.4.

The software facilities and tools for managing complex systems include the
following:

• The optional Business Recovery Server is designed to permit management
of disaster-tolerant configurations. The Business Recovery Server is

2–13

OpenVMS Computing Capabilities
2.3 High-Integrity Production System Capabilities

an integrated software package that permits VAX and Alpha CPUs in
multiple data centers to be combined into a single functional, security, and
management domain. The server integrates clustering, volume shadowing,
and related management and interconnect technologies into a manageable
VMScluster system, consisting of data centers at widely separated locations
connected by FDDI, or by FDDI and ATM or T3 communications services.
The Business Recovery Server can be managed from any location, even if a
total data center failure occurs.

The Business Recovery Server is discussed further in Section 7.1.3.5.

• Storage management software developed by Digital provides software tools
for managing mass storage and the data objects (files) stored on it in a
distributed environment of heterogeneous computing systems. Examples
of optional storage management products that run on OpenVMS VAX and
OpenVMS Alpha are:

StorageWorks RAID Software for OpenVMS: Manages groups of disk
drivers as arrays in a VMScluster

POLYCENTER File Optimizer for OpenVMS: Provides for file
defragmentation

Storage Library System (SLS): Automates VMScluster backup operations

POLYCENTER Hierarchical Storage Management (HSM) for OpenVMS:
Performs file-shelving operations

Disk Striping Driver: Combines multiple disks into a single striped
virtual disk (called a stripe set)

These storage management tools are described in Section 7.1.3.1.

• OpenVMS also supports sophisticated tools for monitoring and tuning
performance. The capabilities of existing performance management and
capability-planning products have been incorporated into an integrated
product set called POLYCENTER Performance Solution (as described in
Section 7.1.3.3).

• The DECram for OpenVMS device driver, which creates a pseudodisk in main
memory, can be used to improve I/O performance.

• The integrated security controls designed into the OpenVMS operating system
(described in Section 3.3), combined with the capabilities offered by optional
products that run on OpenVMS, guard data integrity and availability. In a
local area network environment, optional encryption and decryption services
provide protection for data being passed between systems.

2.4 System and Network Management Capabilities
OpenVMS reduces the complexity of managing individual systems, clusters of
systems, and entire multivendor computing environments through the use of
its own built-in management capabilities and optional software that runs on
OpenVMS.

2–14

OpenVMS Computing Capabilities
2.4 System and Network Management Capabilities

2.4.1 Managing OpenVMS Systems
OpenVMS provides, as an integral part of the operating system, system
management capabilities that minimize the requirement for staffing of the
system management function. Basic OpenVMS management capabilities
include performance monitoring, tuning, security, storage management,
and queue management (see Section 3.2). OpenVMS also supports a large
number of applications and services provided by Digital and independent
software developers for managing computer operations, including multivendor
configurations.

OpenVMS system management tasks are ordinarily performed by a system
manager. On a standalone workstation, the OpenVMS user usually serves as the
manager of the OpenVMS system. In large installations, more than one system
manager may be involved and some tasks may be performed by a computer
operator.

OpenVMS systems to be managed range from standalone workstations to large
VMScluster systems composed of high-end Alpha and VAX computers. Managing
a VMScluster system is similar to managing a single system. In general, the tools
used and the security and performance considerations are the same.

The OpenVMS Management Station is a powerful, easy-to-use, Windows based
management tool that runs on a PC and performs account management across
multiple systems. For a description of the OpenVMS Management Station, see
Section 3.2.4.

Some integrated management utilities are applicable to all OpenVMS systems
and clusters. Examples are the Backup, Monitor, and Mount utilities. The
System Management utility (SYSMAN) is used to perform cluster management
tasks, such as setting up a clusterwide environment and executing commands
on a cluster. For a description of OpenVMS system management software, see
Section 3.2.

Optional software applications supply system management functions for complex
VMScluster environments. Examples are the POLYCENTER Scheduler and the
POLYCENTER Console System. The optional Business Recovery Server manages
large disaster-tolerant configurations.

OpenVMS can manage other systems remotely over the network. The
POLYCENTER Software Distribution Manager, formerly known as the Remote
System Manager, which runs on OpenVMS, is an optional networking product
that permits a system manager to manage a number of OpenVMS systems and
UNIX based systems connected to a DECnet network.

Using an OpenVMS management server can simplify management of remote
systems and software. In a complex networking environment, a management
server can provide effective control of distributed resources.

2.4.2 Managing Networks
Digital integrates network management operations into the network itself to
keep applications and enterprises running despite changes in the network. The
network automatically collects and stores data about itself, reports on network
events, and takes action based on this information. Users can access this
information and make online adjustments from anywhere in the network using
network management software that exists on each node in the network.

2–15

OpenVMS Computing Capabilities
2.4 System and Network Management Capabilities

DECnet/OSI provides modular, distributed network management capabilities,
permitting remote management of all network functions. The command line
interface to DECnet/OSI network management is the Network Command
Language (NCL), which is used to manage all DECnet/OSI nodes and their
entities.

DECnet Phase IV nodes use Network Control Program (NCP) commands to
interface with network management. DECnet Phase IV network management
functions include configuring, monitoring, and testing DECnet and performing
host services to remote nodes (such as downline loading and upline dumping).

DECnet/OSI and DECnet Phase IV are compatible. DECnet/OSI nodes can
invoke NCP to manage existing Phase IV nodes on the same network.

For additional information about DECnet network management in an open,
distributed environment, see Section 6.2.

2.4.3 Managing Integrated Enterprises
OpenVMS supports the management of complex, distributed, multivendor
computing environments. Digital POLYCENTER management products provide
for integrated management of networks, systems, applications, and databases
from many sources. POLYCENTER applications are designed to interoperate with
applications and frameworks that comply with OSF standards. POLYCENTER
products provide an open, extensible management platform for integrating
network and system management applications.

The use of Digital software to manage enterprisewide multivendor environments
is described in Section 6.3.6.

2–16

Part II
OpenVMS Systems Software

This part of the manual provides a summary overview of the software capabilities
of the OpenVMS system and related optional software products, as used in an
OpenVMS standalone or VMScluster configuration.

Chapter 3 describes the base OpenVMS operating system components and
optional software integrated in the operating system. Chapter 4 summarizes
programming software integrated in the system that supports application
program development. Chapter 5 describes user interfaces and general user
software provided with the OpenVMS system.

As described in this part of the manual, standalone OpenVMS systems and
OpenVMS systems in a VMScluster configuration can supply full capabilities for
interactive, timesharing, and real-time processing. For a description of the use
of OpenVMS and VMScluster software in distributed, multivendor computing
environments, see Part III.

3
Description of OpenVMS System Software

The OpenVMS operating system is the group of software programs that control
computing operations and coordinate and manage the resources of the processing
system. The OpenVMS Alpha operating system software runs on an Alpha
processor, and the OpenVMS VAX system software runs on a VAX processor. The
operating system software is loaded into memory when the system is initialized
(booted) and remains there until the system is shut down. It performs both
automatically and manually and supplies the operating environment for the user.

This chapter describes the software components of the base OpenVMS operating
system, including system management and security software. It also describes
optional software integrated into the OpenVMS system, including VMSclusters,
volume shadowing, and RMS Journaling software.

3.1 OpenVMS Operating System Components
The OpenVMS operating system is made up of thousands of program modules
that are grouped into layers (as shown in Figure 3–1):

• OpenVMS operating system kernel, supported by system services

• OpenVMS core services

• OpenVMS utility programs

The following sections describe these layers in detail.

In Figure 3–1, the privileges required for each layer are indicated by the
corresponding access mode. Access modes range from the innermost (the kernel)
with the most privilege, to the outermost (the user) with less privilege. The
executive includes the parts of the operating system that are loaded into and
executed from system space.

In the OpenVMS system, each program (known as an image) executes in the
context of a process, as scheduled by the OpenVMS system software. A process
consists of a process address space and hardware and software context. Suitable
process privileges are assigned when a process is created.

3.1.1 OpenVMS Kernel
The OpenVMS kernel includes the programs, data structures, and related system
services essential to the operating system. The programs in the kernel perform
and coordinate processor operations and provide a multiuser, multitasking
operating environment. The kernel programs are composed of three subsystems:

• Memory management

• Process and time management

3–1

Description of OpenVMS System Software
3.1 OpenVMS Operating System Components

Figure 3–1 OpenVMS Operating System Components

OpenVMS Utilities:

OpenVMS
System Services

DIGITAL Command Language

OpenVMS

OpenVMS Run−Time Library

Operating System

Record Management Services

Kernel:

POSIX for OpenVMS (optional)

Memory management
Process and time
management
Input/output

Program development utilities
System management utilities

ZK−5484A−GE

OpenVMS Core Services:

Executive

Supervisor

User

• Input/output (I/O)

Systemwide, protected data structures that support the kernel software include
pager data structures, the I/O database, and scheduling queues.

3.1.1.1 Memory Management Subsystem
The memory management subsystem controls the allocation of memory resources
and implements the OpenVMS system’s virtual memory operation. Virtual
memory management permits the development and use of programs larger than
physical memory and allows any number of jobs to share memory.

To optimize the use of physical memory, the memory management subsystem
causes large segments of code and data to be moved in and out of physical
memory as they are needed. This process is carried out by the swapper
mechanism. The basic set of memory locations used in memory mapping is
called the page. (The value of the page is CPU specific.) The paging mechanism
brings pages of an executing process into physical memory when referenced.
When a process is executing, all of its pages are said to reside in virtual memory.

Both OpenVMS VAX and OpenVMS Alpha systems support 32-bit virtual
addressing. OpenVMS Alpha also supports 64-bit virtual addressing, which
makes the 64-bit virtual address space defined by the Alpha architecture
available to both the OpenVMS Alpha operating system and its users. The
64-bit addressing capability allows per-process virtual addressing for accessing
dynamically mapped data beyond 32-bit limits, and provides support for very
large capacity physical memory.

3–2

Description of OpenVMS System Software
3.1 OpenVMS Operating System Components

The 64-bit space may be allocated or accessed using new system services or
language features. Many tools and languages supported by OpenVMS Alpha
(including the Debugger, run-time library routines, and DEC C) are enhanced
to support 64-bit virtual addressing. Input and output operations are performed
directly to and from the 64-bit addressable space by means of RMS services, the
$QIO system service, and most of the device drivers supplied with OpenVMS
Alpha systems.

Nonprivileged programs may optionally be modified to exploit 64-bit support.

For information about 64-bit virtual addressing, see the OpenVMS Alpha Guide
to 64-Bit Addressing.

3.1.1.2 Process and Time Management Subsystem
Process and time management functions include scheduling jobs for processing
and performing process control. OpenVMS schedules processor time and memory
residency on a priority basis. All processor operations are assigned a priority and
executed based on that priority. When multiple requests are waiting at the same
time, the scheduler starts and stops jobs on the basis of their priority. When
an event (such as an I/O interrupt) occurs, the system processes the event and
passes control to the highest priority process ready to execute.

On an OpenVMS Alpha system, process scheduling capabilities can be extended
through the use of kernel threads, which allow a process to run concurrently
on multiple CPUs in a multiprocessor system. A thread is the sequential flow
of execution within a process’s address space. A single process contains an
address space in which a single thread or multiple threads execute concurrently.
Programs typically have a single flow of execution and therefore a single thread.
A multithreaded program has multiple points of execution at any one time. A
multithreaded process can execute code flows independently in more than one
CPU at a time. The threaded application can make better use of multiple CPUs
in a symmetric multiprocessing (SMP) system.

The interface to kernel threads is through DECthreads run-time routines (see
Section 4.3.1), which are used to schedule individual user mode application
threads. A callback mechanism between the OpenVMS scheduler and the thread
scheduler of DECthreads permits reduction of inherent scheduling latencies and
a resulting increase in application speed.

3.1.1.3 I/O Subsystem
The OpenVMS I/O subsystem consists of OpenVMS device drivers and their
associated data structures, as well as related system services. The I/O subsystem
is responsible for processing I/O requests received from other layers of the
OpenVMS operating system or from application programs. Device drivers initiate,
manage, and respond to device interrupts to transfer data to and from the device.
Each type of I/O device requires its own driver. Digital supplies drivers for all
devices supported by the OpenVMS operating system and provides $QIO service
routines to access the special device-dependent features available in many of
these devices.

Users can also write their own device drivers. OpenVMS VAX supports device
drivers written in MACRO for devices not supplied by OpenVMS VAX. OpenVMS
Alpha supports user-written device drivers written in higher level languages,
including C and BLISS, as well as in MACRO-32. For information on writing
device drivers in the C programming language, refer to OpenVMS Alpha Device
Support: Developer’s Guide. For reference material applicable to device drivers
written in C and MACRO-32, see OpenVMS Alpha Device Support: Reference.

3–3

Description of OpenVMS System Software
3.1 OpenVMS Operating System Components

The OpenVMS Alpha System-Code Debugger can be used to debug system code
and device drivers written in C, BLISS, or MACRO.

3.1.1.4 Supporting System Services and Facilities
The OpenVMS system services support and complement the kernel subsystems.
The system services control system resources available to user applications,
provide communication and synchronization among processes, and coordinate I/O
operations. User-written application programs can call system services directly
(see Section 4.3.3).

OpenVMS provides the following interprocess communication facilities for
applications that consist of multiple cooperating processes:

• Shared memory sections that permit multiple processes to have concurrent
access to shared address space

• Common event flags that provide simple synchronization

• Mailbox virtual devices that allow processes to communicate with queued
messages

• The lock manager, which provides a facility for synchronizing access to
resources by allowing locking and unlocking of resources by name (see
Section 3.4.1)

POSIX for OpenVMS supports real-time functions for interprocess communication
between multiple processes in the area of event notification, message queues, and
shared memory (see Section 4.4). POSIX applications developed in the POSIX for
OpenVMS environment can call on OpenVMS services directly. However, use of
system services that are specific to the OpenVMS operating system will affect the
portability of the POSIX application.

3.1.2 OpenVMS Core Services
OpenVMS core services support basic user and application interaction with the
processing system. The core services include the following:

• DIGITAL Command Language (DCL): Command-line interface to the
OpenVMS operating system

• OpenVMS Run-Time Library: A library of run-time routines for performing a
variety of commonly required functions

• OpenVMS Record Management Services (RMS): A device-independent method
of handling I/O

• Optionally installable POSIX for OpenVMS: Portable operating system
interfaces that conform to IEEE standards and enable users to write
applications that can be moved from one system conforming to POSIX
and X/Open standards to another and used on both of them

DCL is a traditional user interface to OpenVMS that supports batch or interactive
operations. DCL provides commands for requesting system actions from
manipulating files to running applications (see Section 5.2.1).

The OpenVMS Run-Time Library provides commonly required application
functions and other general-purpose functions. These routines can be called by
programs written in all the programming languages supported by OpenVMS. All
routines in the run-time library follow the OpenVMS calling standard and most
are contained within a shareable image. (OpenVMS Run-Time Library routines
are described in Section 4.3.2.)

3–4

Description of OpenVMS System Software
3.1 OpenVMS Operating System Components

The OpenVMS RMS facility provides a set of general routines for file and record
operations on OpenVMS systems. RMS is a high-level interface to the file system
and OpenVMS I/O subsystem. It is used by most optional (layered) products
for file and record operations and is the default I/O service for all programming
languages that run on OpenVMS Alpha and OpenVMS VAX systems. RMS
routines can be used by application programs for creating files, opening and
closing files, and reading, writing, and deleting records in files. (RMS is described
in Section 4.8.)

POSIX for OpenVMS (described in Section 2.1.3.1) is optional software that, when
installed, is tightly integrated into the OpenVMS environment and can take
advantage of OpenVMS features. However, if a POSIX for OpenVMS application
uses features available in the OpenVMS environment that do not conform
to POSIX and X/Open standards, the portability of the POSIX application is
affected. (For example, using the POSIX dcl utility, which allows access to
OpenVMS services within the POSIX session, affects the application’s portability.)
OpenVMS technologies, such as clustering and volume shadowing, are available
transparently to POSIX applications. (POSIX for OpenVMS programming is
described in Section 4.4, the user interface in Section 5.3, and POSIX files in
Section 5.5.2.)

3.1.3 OpenVMS Utility Programs
The OpenVMS utility programs include system management and user utilities
and program development facilities. See Table 3–1 for examples of OpenVMS
utility programs.

Table 3–1 Examples of OpenVMS System Utility Programs

Type of Utility Examples of OpenVMS Utility Programs

System management utilities AUTHORIZE, AUTOGEN, BACKUP, MONITOR,
MOUNT, SYSMAN

User utilities MAIL, SORT/MERGE, Help

Text-processing utilities Extensible Versatile Editor (EVE), EDT editor

Program development utilities Linker, debugger, LIBRARIAN, FDL

OpenVMS provides system managers and users with many powerful utilities
to control the day-by-day operations of their systems. OpenVMS system
management utilities are described in Section 3.2. OpenVMS users can access
utilities that assist them in performing daily operations and communicating
with other users. User utilities provided with the OpenVMS operating system,
including editors and text processors, are discussed in Chapter 5. OpenVMS
programming utilities include text processors for creating source programs and
program development utilities for processing the programs. These programming
utilities are described in Chapter 4.

Other optional software that runs in OpenVMS environments is described in
Chapter 6 and Chapter 7.

3–5

Description of OpenVMS System Software
3.1 OpenVMS Operating System Components

3.1.4 OpenVMS VAX Vector-Processing Capability
The OpenVMS VAX operating system provides fully shared, multiprogramming
support for VAX vector-processing systems. A vector is a group of related scalar
values or elements (such as an array of numbers). Several midrange and high-end
VAX processors have adopted an optional design for integrated vector processing
using vector registers and vector instructions. A vector processor can routinely
process a vector four or five times faster than a traditional processor. Vectors are
useful for CPU-intensive applications involving repeated operations on groups of
simple elements (for example, in weather forecasting, molecular modeling, and
financial modeling).

OpenVMS VAX support for vector processing includes these features:

• Fast-vector math routines for high performance

• A standard OpenVMS VAX facility to permit writing and debugging of
applications that use vectors on an OpenVMS VAX system that emulates the
vector-processing environment

• Vector-processing operations supported by system management and the
OpenVMS Accounting and Error Log utilities

Alpha processors do not offer the vector-processing option because their basic
design provides for high-speed calculations.

3.1.5 OpenVMS Symmetric Multiprocessing
OpenVMS supports symmetric multiprocessing (SMP), which permits multiple
processors to perform operations simultaneously, dividing and sharing the work
load. SMP multiprocessors are tightly coupled and appear to the system and
the user as a single system (see Section 1.2.2). OpenVMS SMP is available on
selected VAX and Alpha processing systems.

Multiple processors execute code from a single shared memory address space,
and users and processes share a single copy of OpenVMS. SMP also provides
simultaneous shared access to common data in global sections available to all
processors. SMP dynamically balances the execution of all processes across all
processors, based on process priority.

DCL and system services interfaces provide access to the scheduling mechanisms
that control processor affinity (the CPU on which the process is to run) and
processor capabilities (resources required of the CPU).

The primary advantage of SMP is increased throughput. SMP can be optimized
in two ways:

• Multiple processes can be executed simultaneously on different processors,
maximizing overall system performance.

• Single-stream application programs can be partitioned into multistream jobs,
minimizing the processing time for a particular program.

3.1.6 Digital Distributed Transaction Management Services
An individual transaction is a series of operations on a file or a set of files.
In a distributed transaction, data can be distributed among different systems,
increasing the difficulty of maintaining the integrity of the transaction-processing
data.

3–6

Description of OpenVMS System Software
3.1 OpenVMS Operating System Components

The OpenVMS operating system supplies DECdtm services to support distributed
transactions. DECdtm services provide for complete and consistent execution of
distributed applications.

DECdtm services comprise a transaction manager, interfaces to system
services, communication services, and logging and recovery services. The
transaction manager supports application-supplied services to start, end, or
abort transactions, and sends instructions to resource managers on how to
complete the transaction.

DECdtm integrated services for distributed transaction management ensure both
transaction and database integrity across multiple resource managers such as
other vendor database systems, and across networks around the world. To ensure
consistency of data, DECdtm services cause updates to all databases to occur
as a single ‘‘all or nothing’’ unit of work, regardless of where the data resides
physically.

DECdtm employs a two-phase commit protocol that enables application
developers to build dependable distributed applications. The two-phase commit
protocol is a handshaking procedure in which all participants in a distributed
transaction first agree to commit and then, on a signal from coordinating software
on the node that initiated the transaction, actually do commit. The commitment
protocol guarantees that all parts of a transaction complete or the transaction has
no effect on any involved resource manager (see Section 7.2.3).

DECdtm system services are used by an array of products that run on OpenVMS
Alpha and OpenVMS VAX systems, including transaction-processing monitors,
database products, and RMS Journaling. Transaction-processing products are
described in Chapter 7.

3.2 OpenVMS System Management Software
The system management environment for OpenVMS Alpha and OpenVMS VAX
systems is generally the same: most system management utilities, command
formats, and tasks are identical on the two platforms. This section indicates any
system-specific software.

OpenVMS system management tasks ordinarily include the following:

• Installing, upgrading, and updating software

• Starting up and shutting down the system

• Customizing the system

• Managing user access to the system and controlling system resources

• Managing and monitoring system security

• Managing peripheral devices and storage media, including public disks

• Managing system files and directories

• Backing up and restoring files

• Monitoring the system

• Tracking and reporting resource usage

• Maintaining acceptable system performance and tuning the system

• Managing batch and print queues

3–7

Description of OpenVMS System Software
3.2 OpenVMS System Management Software

System managers may also be called upon to perform some of these tasks:

• Setting up and maintaining a network

• Setting up a VMScluster environment

• Managing special system configurations or processing environments

3.2.1 OpenVMS Installation and Configuration
The POLYCENTER Software Installation utility is used to install OpenVMS
Alpha operating system software and can be used to install optional (layered)
products on OpenVMS Alpha and OpenVMS VAX operating systems. The
POLYCENTER Software Installation utility implements a new technology that
simplifies the distribution and management of software. The utility provides
DCL and DECwindows Motif interfaces that system managers can use to quickly
configure, install, and upgrade the OpenVMS Alpha operating system and
optional products. It also allows system managers to track the status of software
on their systems. Starting with OpenVMS Alpha Version 6.2, it is possible to
install or upgrade a target system disk from a running OpenVMS operating
system.

For information about using the POLYCENTER Software Installation utility to
install or upgrade the OpenVMS Alpha operating system, see the most recent
OpenVMS Alpha Upgrade and Installation Manual. For more information about
the utility, see the POLYCENTER Software Installation Utility User’s Guide.

Any optional software that is not compatible with the POLYCENTER Software
Installation utility can be installed on OpenVMS VAX or OpenVMS Alpha using
the VMSINSTAL utility.

The installation software for the OpenVMS VAX operating system is an
interactive VMSINSTAL command procedure that guides the system manager
through each step of installing, updating, and upgrading software to a higher
version number. During the OpenVMS installation procedure, VMSINSTAL sets
up initial system parameters and installed images using AUTOGEN software and
automatically brings up the system.

For information about installing OpenVMS VAX systems using VMSINSTAL,
refer to the most recent OpenVMS VAX Upgrade and Installation Manual.
VMSINSTAL is described in the OpenVMS Developer’s Guide to VMSINSTAL.

Starting up a newly installed OpenVMS system involves booting the system,
using either a nonstop or conversational boot. Nonstop booting is faster
and easier because Digital sets typical system parameters for the hardware
configuration. Conversational booting permits the system manager to change
System Generation (SYSGEN) utility parameters during the boot procedure. On
a standalone OpenVMS VAX system, to reduce startup time, a system snapshot
can be taken and used for booting the system.

OpenVMS will boot on the VAX or Alpha processor, automatically configuring
itself to the CPU, memory, and devices present. After a new configuration is
booted, the system manager can use the AUTOGEN command procedure with its
feedback mechanism to optimize system parameter settings.

When the system starts up, the system manager can log in and set up the
environment. Each time the system starts up, it executes a series of startup
command procedures, some of which the system manager can edit to customize
the user environment. The startup command procedure invokes the appropriate
utility to poll all connected I/O buses for devices and then configures itself to

3–8

Description of OpenVMS System Software
3.2 OpenVMS System Management Software

allow access to those devices. The utility invoked to configure I/O on OpenVMS
Alpha is the System Management utility; on OpenVMS VAX, it is the System
Generation utility.

Table 3–2 gives examples of some OpenVMS utilities and DCL commands that
pertain to system configuration tasks.

Table 3–2 Examples of OpenVMS Configuration Utilities and Commands

System Management Task Utility or DCL Command

Automatically set system parameters by detecting
devices installed in a configuration

AUTOGEN command procedure

Create an on-media file system INITIALIZE command

Make a volume known to the system MOUNT command

Manipulate device characteristics SET DEVICE command

Start or stop CPUs in an SMP kernel SET CPU command

Manipulate magnetic tape characteristics SET MAGTAPE command

Manipulate printer characteristics SET PRINTER command

Manipulate terminal characteristics SET TERMINAL command

Examine and modify system parameters on active
systems

System Generation utility

Configure the OpenVMS VAX I/O subsystem,
loading and connecting device drivers to the
system

System Generation utility

Configure the OpenVMS Alpha I/O subsystem,
loading and connecting device drivers to the
system

System Management utility

Define the system management environment
across nodes in a VMScluster; enable device and
processor control commands to take effect across
a cluster

System Management utility

Manage disk space quotas SYSMAN DISKQUOTA command

Perform installation and upgrade of OpenVMS
Alpha software and optional software

POLYCENTER Software Installation
utility

Automate the installation of software and
software updates to OpenVMS VAX and optional
software

VMSINSTAL command procedure

3.2.2 Management Software for the General OpenVMS Environment
In addition to configuring the OpenVMS system environment, the OpenVMS
system manager performs a variety of tasks to manage the environment.
Examples of OpenVMS utilities used to perform general system management
tasks are given in Table 3–3.

3–9

Description of OpenVMS System Software
3.2 OpenVMS System Management Software

Table 3–3 Examples of OpenVMS System Management Utilities

System Management Task Utility

Report on system use and account for use of system
resources

Accounting utility

Control access to the system and its resources; use
commands to set up user accounts (SYSUAF.DAT)

Authorize utility

Perform backup of full volume or incremental files on
mounted disks to tape or another disk and restore them

Backup utility

Selectively report the contents of the one or more event
log files

DECevent utility†

Selectively report the contents of the error log file
containing system error messages

Error Log utility

Set up an OpenVMS system to be a service node on a LAT
configuration

Local Area Transport Control
Program (LATCP)

Manage multiple software licenses License Management Facility
(LMF)

Monitor system activity Monitor utility

Make the contents of a tape or disk available to the
system

Mount utility

†Alpha specific

3.2.2.1 Controlling System Access
The system manager is responsible for managing user access to the system.

The Authorize utility permits the system manager to establish the individual
controls that customize user accounts. When a user logs in to OpenVMS, the
system uses the information in the user authorization file (UAF) to validate the
login attempt, establish the account environment, and create a process with the
specified attributes. The system manager can use the Authorize utility to add to
or modify user records in the UAF and other security-related system databases.
Section 3.3 describes security management in the OpenVMS system environment.

Some of the information in the UAF account record is as follows:

• User name and password for the account (the password is encrypted)

• User identification code (UIC), which identifies the user as a member of a
group that can share data

• The disk device and directory containing files owned by the account

• Limits and quotas on reusable system resources

• System privileges that define processing activities the account’s process can
engage in

• Any limitation on allowed login times

• Qualifiers such as ‘‘captive’’ or ‘‘restricted’’ that limit access to the system

The OpenVMS Management Station is a new management tool that permits
the OpenVMS system manager to manage user accounts on multiple OpenVMS
systems (as in a VMScluster). The OpenVMS Management Station is installed on
a Windows based PC (see the description in Section 3.2.4).

3–10

Description of OpenVMS System Software
3.2 OpenVMS System Management Software

3.2.2.2 Managing Devices and Storage Media
Management of the OpenVMS environment includes managing peripheral devices
and storage media. Peripheral devices include storage devices (such as disks,
compact discs, and tapes) and I/O devices (such as terminals, terminal servers,
printers, modems, and card readers). System managers or operators can use
DCL commands to add devices, set device software characteristics, display device
information, and set protection for the devices.

Storage management is increasingly important as the amount of data to be stored
grows. Very large configurations supporting thousands of users generate a huge
volume of data. The Digital approach to storage management is based on the
foundation of OpenVMS computing, and includes optional network-based storage
management products.

OpenVMS provides the tools to allocate, initialize, and mount storage devices,
create disk volume sets, and set protection on volumes. The system manager
can create logical names for files and directories and can plan and create public
directories. The DCL command ANALYZE/DISK_STRUCTURE can be used to
check and repair disk structure. Defragmentation of disks can be performed
using the OpenVMS Backup utility or the optional POLYCENTER File Optimizer
for OpenVMS. (Optional storage management products developed by Digital are
described in Section 7.1.3.1.)

3.2.2.3 Backing Up the System
One of the system manager’s responsibilities is to prevent the loss or destruction
of data due to equipment failure or accidental deletion or corruption of files.
The system manager or operator can use the OpenVMS Backup utility to make
backup copies of volumes on magnetic tape, magnetic disk, or certain optical
disks. The Backup utility provides full volume and incremental file backup for
file-structured, mounted volumes and volume sets. Individual files, selected
directory structures, or all files on a volume set can be backed up and restored.
The Backup utility can also be used to restore a save set (a special file created
by the Backup utility) or list the contents of a save set. The system manager or
operator can use a screen-oriented interface to the Backup utility as well as a
command-line interface.

A system manager who has access to the OpenVMS Alpha or OpenVMS VAX
distribution compact disc can back up and restore the system using the menu-
driven procedure included on the OpenVMS distribution compact disc. On
OpenVMS Alpha systems, the system manager can also upgrade or install
the operating system using this menu. For more information about using the
new menu-driven procedure for backup operations, see the OpenVMS System
Manager’s Manual. For more information about installing and upgrading the
OpenVMS operating system, see the most recent version of the upgrade and
installation manual.

A system manager who does not have access to the OpenVMS Alpha or OpenVMS
VAX operating system distribution compact disc can use standalone BACKUP
to back up and restore the system disk. For more information about standalone
BACKUP, see the OpenVMS System Manager’s Manual.

The system manager can also assign a protection mask to files, devices, and other
objects to prevent unauthorized access (see Section 3.3.2).

3–11

Description of OpenVMS System Software
3.2 OpenVMS System Management Software

3.2.2.4 Monitoring, Maintaining, and Tuning the System
The system manager is responsible for ensuring that the system performs
consistently at an acceptable level. OpenVMS provides software tools that help
the manager to monitor the condition of the system and to maintain and tune the
system.

Monitoring the system involves obtaining information about the system, its users,
and the processes running on the system. Examples of software used to monitor
the system include the following:

• DCL SHOW commands display information about system, device, and
process conditions (providing options such as CLUSTER, DEVICES, ERROR,
MEMORY, STATUS, SYSTEM). DCL command procedures can be developed
to automate monitoring of system information.

• The Monitor utility is used to monitor different classes of systemwide
performance data and to display it or save it in a file for later use. Examples
of data that can be monitored at specified intervals include process activity,
I/O activity, memory management activity, and two-phase commit transaction
activity (as supported by DECdtm services).

• The Accounting utility is used to monitor resource usage. The utility
processes system accounting files to produce reports and summaries that
indicate the ways the system is used, how it performs, and, in some cases,
how particular users use the system.

• Log files that report on system activity include the following:

Operator log file: The operator can access this file directly.

Error Log file: The system manager or operator can use the
ANALYZE/ERROR_LOG command to analyze and view data in this
file.

Security audit log file: The manager can use the Audit Analysis utility to
analyze this file.

Maintaining acceptable system performance involves using the Monitor utility to
develop a database of performance information, and using the Accounting utility
to generate performance reports. With this information, the system manager can
manage the work load on the system. For example, the manager can distribute
work to off hours (using batch queues) and limit the number of concurrent
interactive users (using DCL commands or Authorize utility commands).

The AUTOGEN command procedure, run at system installation, sets a number of
system parameters by detecting devices installed in a configuration. AUTOGEN
can also be run on a regular basis using a command procedure. The AUTOGEN
feedback option generates a report of recommended parameter settings for system
tuning. The System Management utility can also be used to set dynamic system
parameter values.

OpenVMS can adjust itself dynamically during operation. Built-in adjustment
capabilities optimize the OpenVMS system to meet the needs of particular
environments (such as timesharing, transaction processing, batch processing,
or real-time processing) and different types of application work load (such as
business or engineering).

3–12

Description of OpenVMS System Software
3.2 OpenVMS System Management Software

OpenVMS provides a dynamic activity-based cache for frequently accessed blocks
of a file, improving I/O performance. The cache automatically sizes itself based on
available memory. The virtual I/O cache works on all OpenVMS configurations,
from single-node systems to mixed-architecture VMSclusters.

In addition to performance capabilities provided by OpenVMS operating
system software, the system manager can optionally employ other performance
management software, particularly useful in large, complex environments such
as production system environments. Optional performance management software
suited for use in the OpenVMS production server environment is described in
Section 7.1.3.3.

3.2.2.5 Managing Batch and Print Queues
OpenVMS facilities to perform batch and print operations involve the creation of
queues and the setup of spooled devices to allow processing of batch, timesharing,
and real-time jobs. The OpenVMS operating system provides generic queues that
hold batch or print jobs until appropriate execution queues become available.
An execution queue is the queue through which the job is actually processed
or executed. In a VMScluster, the queue management workload can be divided
across multiple queue managers on different nodes.

The system manager can use DCL commands to regulate the number of queues
and the number of batch jobs in the queue that can execute concurrently. The
manager can set queue attributes, start and stop queues and the jobs in queues,
and perform other queue maintenance operations, as shown by the examples in
Table 3–4.

Table 3–4 Examples of OpenVMS Queue Management Commands

System Management Task DCL Command

Delete a print or batch queue and all the jobs in the
queue

DELETE/QUEUE command

Create or initialize queues and assign names and
attributes to the queues

INITIALIZE/QUEUE
command

Start or restart the specified queue after it has been
initialized

START/QUEUE command

Pause the specified queue and suspend all the jobs
currently executing on the queue

STOP/QUEUE command

Stop all queues on a node STOP/QUEUE/ON_NODE
command

Change the attributes of the queue SET QUEUE command

Display information about queues and the jobs currently
in queues

SHOW QUEUE command

Display information about a user’s batch and print jobs or
about specific job entries

SHOW ENTRY command

Queue one or more batch jobs to a batch queue SUBMIT command

Queue one or more files for printing to an output queue PRINT command

3–13

Description of OpenVMS System Software
3.2 OpenVMS System Management Software

3.2.3 Management Software for Specific Environments
A system manager can configure the OpenVMS Alpha or OpenVMS VAX
system as a node in a network and can establish a VMScluster or VAXcluster
system configuration. In addition, a manager can set up and manage special
configurations and special processing environments. The optional POSIX for
OpenVMS product is installed and managed separately.

To prepare the OpenVMS system for the network environment, the system
manager chooses the networking software to be used, selects a node name and
network address, and makes the necessary hardware connections to the network.

The manager performs network installation and configuration procedures using
the appropriate networking software tools, and starts the network software
running on the system. The system manager can use the following commands to
manage different network services (such as DECnet): SET NETWORK, SHOW
NETWORK, START NETWORK, and STOP NETWORK.

To keep the network software running, the system manager uses network tools to
perform basic problem solving for the local node. Overall network management
is summarized in Section 2.4.2 and network management tasks and tools
are described in Section 6.2.1. Refer to the appropriate networking product
documentation for specific information on installing, configuring, and managing
networking software.

To establish a VMScluster system, the system manager prepares the cluster
operating environment, sets up cluster disks and tapes and cluster queues,
and builds the cluster. The interactive CLUSTER_CONFIG command
procedure permits the manager to directly configure the cluster. The command
procedure can add or remove a computer from the cluster, change a computer’s
characteristics, or create a duplicate system disk.

Managing the VMScluster system is similar to managing an individual OpenVMS
system. The same tools and DCL commands are used to perform management
tasks, with the exception that the System Management utility (SYSMAN) is used
to perform clusterwide management. SYSMAN provides the ability to centralize
the management of a VMScluster system by defining and then managing the
entire cluster from a single node. However, a VAX CPU and an Alpha CPU cannot
boot from a common system disk. In a VMScluster that includes both Alpha and
VAX nodes, VAX and Alpha CPUs must boot from their own boot servers. The
system manager defines a system management environment in which operations
performed from the local Alpha or VAX system can be executed on all other
systems in the defined environment. SYSMAN accepts the following sets of
commands as well as most DCL commands: CONFIGURATION, STARTUP,
PARAMETERS, and DISKQUOTA. In addition, the dynamic Show Cluster utility
displays the status of VMScluster or VAXcluster hardware components and
communication links. See Section 3.3.1 for a description of managing security in
a VMScluster environment.

Other possible management responsibilities for the OpenVMS system manager
may include:

• Managing special system configurations (such as terminal and InfoServer
connections). The LAT Control Program (LATCP) utility is used to configure
and control the LAT protocol on OpenVMS host systems; LAT supports
communication with terminal servers. The LAD Control Program (LADCP)
configures and controls the LAD protocol for OpenVMS host systems. The
LAD protocol permits a user to access InfoServer discs (CD–ROMs) and

3–14

Description of OpenVMS System Software
3.2 OpenVMS System Management Software

other disks and tapes as though they were locally connected to the OpenVMS
system; therefore, several OpenVMS nodes can share the same disk media.

• Managing special processing environments (such as transaction processing,
symmetric multiprocessing, or vector processing environments). For example,
the system manager can use the Log Manager Control Program (LMCP)
utility to create and manage log files that are used by transaction managers
(see Section 7.2.3) and can use the Monitor utility to monitor the status of
transactions executing on the system.

• Installing and managing the POSIX for OpenVMS environment. For detailed
information about installing and managing POSIX on an OpenVMS system,
refer to the POSIX for OpenVMS Installation and System Management Guide.

3.2.4 OpenVMS Management Station
The OpenVMS Management Station software enables management of one or more
OpenVMS systems from a Microsoft Windows based PC. The software presents a
hierarchical view and provides the ability to manage multiple OpenVMS systems
from a single point of control. Users can view, organize, and manage objects in a
way that is meaningful to them.

The first version of the Management Station software provides for OpenVMS user
account management. The software is designed to be able to support additional
system management functions in subsequent versions.

OpenVMS Management Station provides an easy-to-use interface to the process
of managing OpenVMS accounts, eliminating the need to use multiple OpenVMS
utilities (for example, DCL, the Authorize utility, and DISKQUOTA). When
creating an account on multiple systems, OpenVMS Management Station
can add a UAF entry, grant rights identifiers, create an OpenVMS directory,
set a disk quota, and carry out other steps, for each instance of an account.
Figure 3–2 shows a sample OpenVMS Management Station screen. The
OpenVMS Management Station performs the following account management
operations:

• Creates, modifies, and deletes user accounts

• Renames user accounts

• Displays user account attributes

3–15

Description of OpenVMS System Software
3.2 OpenVMS System Management Software

Figure 3–2 Sample OpenVMS Management Station Screen

The OpenVMS Management Station client is installed on a PC, and the server
component is installed on each OpenVMS system to be managed. The client
on the PC supports DECnet Phase IV and TCP/IP connections to the servers.
The servers on OpenVMS systems also support the use of DECnet/OSI Phase V
between servers that use Phase IV alias names.

Extensive Microsoft Windows help files describe the software features and
functions and include step-by-step instructions and numerous examples. For
summary information about using the software, see the OpenVMS Management
Station Overview and Release Notes.

3.3 OpenVMS System Security
Safeguarding the information processed and stored on the OpenVMS system can
be an important consideration, especially as many system environments become
more open and distributed. OpenVMS provides an extensive range of built-in
features that can be used to secure the OpenVMS computing environment,
ensuring that information is available only to those who need it and that
unauthorized access is prevented.

The following sections describe the security environment and security standards
supported by OpenVMS Alpha and OpenVMS VAX. They identify the primary
security features and security management software and tools.

3–16

Description of OpenVMS System Software
3.3 OpenVMS System Security

3.3.1 OpenVMS Security Environment and Standards
Security concerns apply to whole environments, such as offices, because
information processing no longer necessarily occurs only in limited, centralized
datacenters. OpenVMS security features are designed to protect systems and
information in any configuration or environment and apply to VMScluster
systems as well as single standalone OpenVMS VAX or Alpha systems.

The C2 level of security is defined in the Department of Defense System Trusted
Computer System Evaluation Criteria (TCSEC), published by the National
Computer Security Center (NCSC). The C2 criteria are the security capabilities
required by government and defense contractors and also by many commercial
customers.

OpenVMS VAX Version 6.0, which was evaluated by NCSC as meeting C2
criteria, has been upgraded to OpenVMS VAX Version 6.1 using RAMP. (RAMP is
the NCSC Ratings Maintenance Process.) The security requirements for a class
C2 system are built into the OpenVMS operating system and include extensive
auditing capabilities and discretionary access controls.

Additionally, SEVMS VAX Version 6.0, which was evaluated by NCSC as meeting
B1 criteria, has been upgraded to SEVMS VAX Version 6.1 using RAMP. Class B1
functionality includes mandatory access controls, labeled object protection, and
additional auditing.

OpenVMS AXP Version 6.1 and SEVMS AXP Version 6.1 are participating in the
RAMP for C2 and B1 ratings, respectively.

In terms of security, the system is the computing and communication environment
over which the manager has some control. The system protects everything
inside the system. The subset of OpenVMS that is secure is called the Trusted
Computing Base. It includes the executive and file system, other components that
do not execute in user mode, system programs, and related system management
utilities. The security domain controls access mediation, resource allocation,
authorization, and the auditing subsystem.

OpenVMS networking connections are not part of the security domain. The
DECnet software used to link the systems in a network provides separate
built-in security controls. Optional encryption services protect messages
transmitted between systems over the local area network (LAN) (as described in
Section 6.2.3).

3.3.2 OpenVMS Security Management Software
The OpenVMS operating system provides built-in security features that can
be implemented in a flexible manner. File protection can be extended to
protect all, none, or some of the files. Passwords can be general, screened,
locked, or eliminated. The auditing subsystem can be used to warn a system
manager, operator, or security administrator of attempted system intrusions or
unauthorized access to system files or other objects.

Selective use of security features permits establishment of a high degree of
security for sensitive data, while minimizing or eliminating control procedures
for less essential data. Table 3–5 summarizes some significant security features
provided by OpenVMS VAX and OpenVMS Alpha.

3–17

Description of OpenVMS System Software
3.3 OpenVMS System Security

Table 3–5 OpenVMS Security Features

OpenVMS Security Feature Values or Description

Login classes Local, remote, dialup, network, batch, process

Access modes Interactive and noninteractive

Password authentication and
management

Security controls involving password length,
password generation, system passwords,
password dictionaries, password histories

User accounts as defined in the UAF Regular, captive, and restricted accounts

Intrusion detection and evasion Mechanisms for detecting intrusion attempts
and features for automatic evasion of
intrusions

Categories of file protection System, owner, group, world

Rights for each category of file protection Access rights: read, write, execute, delete,
control

Privileges Granted to users according to their need to
access system functions

Protection based on user identification
code (UIC)

Determined by owner UIC and a protection
code; controls access to objects (for example,
files, directories, volumes, queues)

Access control list (ACL) protection Matches specific access to specific users or
groups of users for each object

Proxy access definition Permits a user from a remote node to log in to
a local node as if the user owned an account
on the local node

Auditing and logging Comprehensive auditing subsystem

Secure terminal path Capability designed to thwart ‘‘password
grabbers’’

High-water marking Technique for discouraging disk scavenging

The OpenVMS system provides mechanisms for controlling user access, securing
data and resources, and creating an audit trail.

The OpenVMS system manager can use OpenVMS security tools to define levels
of protection for and control access to memory, files, devices, and other OpenVMS
security objects. The manager can establish a security database that includes the
following controls:

• For security subjects (user processes, jobs, and applications that need to
access security objects), the manager sets up the system authorization file
(SYSUAF.DAT), the user rights database file (RIGHTSLIST.DAT), and the
network proxy database file (NET$PROXY.DAT)1

• For security objects, the manager specifies protection codes, the UIC assigned
to the owner of the object, and the access control list (ACL) that defines
the access granted to specific users. (Examples of security objects are files,
devices, volumes, queues, global sections, logical name tables, common event
flag clusters, resource domains, and capabilities.)

• The manager establishes an audit trail, a listing of enabled security-related
events, that can be used to monitor system activity.

1 For backward compatibility, the DECnet Phase IV NETPROXY.DAT file is also supported.

3–18

Description of OpenVMS System Software
3.3 OpenVMS System Security

Within the security domain, authentication is the procedure for verifying a
person’s identity, through passwords. Mechanisms for identification on an
OpenVMS system include login to a user account and proxy login. The OpenVMS
system manager uses the Authorize utility to establish user accounts and controls
passwords in the SYSUAF (see Section 3.2.2).

The Authorize utility permits the system manager to set up or modify an
account that matches the individual user’s needs. An interactive user who
performs general work on the system needs an individual account and a file
directory. Other users may require only a limited-access account to a restricted
system environment, for example, to perform routine tasks (such as shop-
floor operations), run batch operations during unsupervised periods, or run an
application program containing private information. Turnkey or captive accounts
limit the activities of the user and deny the user access to the DCL command
level. Restricted accounts have features similar to those of a captive account but
permit access to the DCL command level after login command procedures are
executed (for example, to permit a user to access electronic mail).

A system manager can use either a DCL command-line interface or a Windows
based OpenVMS Management Station (described in Section 3.2.4) to manage user
accounts on multiple OpenVMS systems (as in a VMScluster).

OpenVMS supports discretionary access controls that permit individually named
users to be either included or excluded for accessing a certain file or achieving
particular forms of access.

In addition, the system manager can set up a certain application as a protected
subsystem. In the protected subsystem, data files and resources are controlled by
the subsystem and data can be accessed only by running the subsystem. When
it is run, the subsystem causes the process running the application to be granted
additional identifiers. The system manager grants the identifiers to the people
who will serve as managers of the subsystems.

The Security Server process, created during system startup, creates and manages
the system’s intrusion database and maintains the network proxy database
file. The intrusion database is used by the system to keep track of failed login
attempts. The information is scanned during process login to determine if the
system should use restrictive measures to prevent access to the system by a
suspected intruder. The network proxy database file is used during network
connection processing to determine if a specific remote user may access a local
account without using a password. The network proxy database file is managed
by the Authorize utility.

Security auditing facilitates tracking of sensitive system objects. Auditing enables
the manager to monitor system activities and prevent unauthorized access. The
OpenVMS auditing mechanism allows users and security managers to record
security-related events on an audit log file and possibly send them to an operator
terminal designated as a security alarm console. The system manager can set
security alarms for events like login failures, authorization changes, and file
access. The manager or security administrator can use the SET AUDIT command
to select events to be audited. The administrator uses the Audit Analysis utility
to extract audit trail information from the audit log file.

3–19

Description of OpenVMS System Software
3.4 Optional OpenVMS System Integrated Software

3.4 Optional OpenVMS System Integrated Software
The following optional software capabilities are integrated into the OpenVMS
Alpha and OpenVMS VAX operating systems:

• VMScluster system software

• Volume-shadowing software

• RMS Journaling software

The following sections summarize the functions supplied by these OpenVMS
integrated software products.

3.4.1 VMScluster Software
The VMScluster system provides a highly integrated OpenVMS computing
environment distributed over multiple CPUs, including Alpha CPUs and,
optionally, VAX CPUs. The VAXcluster system is an integrated environment
distributed over multiple VAX CPUs. Similar software is used in VMScluster
and VAXcluster configurations.2 The individual CPUs that are members of a
VMScluster system can be connected by supported interconnects (as described in
Section 1.3.3).

OpenVMS system managers can tailor the VMScluster operating environment to
create a common environment (with the same resources available on all members)
or a multiple environment (with different resources shared by specific groups of
members of the VMScluster or, possibly, one member providing special-purpose
functions).

In any VMScluster system, users can share computing, disk storage, and batch
and print job processing resources. The ability to share resources facilitates
work-load balancing because work can be distributed across the cluster.
Resources can be added or removed without disrupting normal cluster operation.

Members of a VMScluster system can share processing resources, data storage,
and queues under a single OpenVMS security and management domain.
Applications run on one or more CPUs in the cluster, accessing shared resources
in a coordinated manner. Most cluster resources can be shared, but user
processes and memory are CPU specific, and each member can boot or fail
independently. Each CPU in a VMScluster boots from its own boot server. In a
mixed-architecture VMScluster, the boot server for a CPU must be of the same
architecture as the CPU.

The software components used to implement VMScluster communication and
resource-sharing functions always run on each member of the cluster. If
one member fails, the VMScluster system continues operating because the
components still run on the remaining members. These software components are
summarized in Table 3–6.

2 For convenience, this section refers to VMScluster configurations. Any exceptions that
apply to a specific cluster configuration are noted.

3–20

Description of OpenVMS System Software
3.4 Optional OpenVMS System Integrated Software

Table 3–6 VMScluster Software Components

VMScluster Component Function

System Communications
Services (SCS) software

Implements intercomputer communication, according
to the Digital System Communications Architecture

Connection manager Dynamically defines the VMScluster system and
coordinates participation of members in the cluster;
uses SCS to provide an acknowledged message
delivery service for higher OpenVMS software layers;
maintains cluster integrity when computers join or
leave the cluster

VMScluster distributed file
system

Allows all computers to share mass storage, whether
the storage device is connnected to an HSC subsystem
or to a computer; used to provide the same access to
disks and files across the cluster that is provided on a
standalone OpenVMS computer

Queue manager Makes batch and print queues available across the
cluster

Distributed lock manager Used for synchronization functions by cluster facilities
and cluster applications developers; implements
system services to provide clusterwide synchronization
of access to resources by allowing the locking and
unlocking of resource names; provides a queueing
mechanism so that processes can be put into a wait
state until a particular resource is available; supports
clusterwide deadlock detection

MSCP and TMSCP servers Implement the disk mass storage control protocol and
tape mass storage control protocol for communicating
with disk and tape controllers, respectively; make
locally connected disks and tapes available across the
cluster

VMScluster systems can boot satellites using either DECnet or the LANCP (LAN
control program) facility. With OpenVMS Version 6.2 and later versions, DECnet
software (either DECnet Phase IV or DECnet/OSI) is required only when the
applications perform node-to-node communication using DECnet mailboxes or
when the MONITOR/CLUSTER utility is used.

DECnet supports the VMScluster alias node identifier (a node name or address):
a special node identifier common to some or all nodes in the cluster. The alias
node identifier permits users outside the cluster to address the cluster as though
it were a single node.

The LANCP utility can be used to boot VMScluster satellite nodes in
configurations that are not using DECnet. LANCP and LANACP (LAN Ancilliary
Control Process) images provide a general-purpose MOP booting service for
satellite nodes.

System managers control how jobs share batch processing and printer resources
by setting up and maintaining clusterwide generic queues. A generic queue holds
a job that will execute on an execution queue on a specific node when the node is
available to process jobs. The strategy for setting up and managing the generic
queues determines how well work loads are matched to available resources. The
clusterwide queue manager process accesses the clusterwide queue database for
all processes in a cluster. Job controllers, user processes, and print symbionts
all communicate directly with the centralized queue manager through a shared
interprocess communication link.

3–21

Description of OpenVMS System Software
3.4 Optional OpenVMS System Integrated Software

VMScluster systems can make disk and tape storage resources accessible to all
VMScluster members. A cluster-accessible storage device can be used directly by
multiple members of the cluster. OpenVMS MSCP and TMSCP server software
can make disks and tapes accessible to members. The TMSCP server can make
locally connected SCSI tapes available across a VMScluster.

Cluster-accessible disks offer the following advantages:

• More efficient use of mass storage, because more than one member can use
the same disk.

• Access by users to their default work disks when logging in to any member on
which the disks are accessible.

• Clusterwide file sharing. Because members can share common versions of
files, updates to a file are made only once to a single copy of the file.

• Implementation of clusterwide queues. Batch and print jobs can be processed
on any member that has access to the necessary disks.

Some VMScluster systems include HSC hierarchical storage controller
subsystems, which are self-contained, intelligent mass storage subsystems
that enable VMScluster members to share DSA disks and DSA tapes. HSC
disk configurations provide flexibility, expansion potential, and maintenance and
backup capability.

The OpenVMS distributed lock manager and the distributed file system enable
the development of distributed applications that work from the same data, which
is itself distributed across the VMScluster.

Disk data can be replicated between VMScluster systems for better read
performance and higher availability using volume shadowing, as described in
the following section.

3.4.2 Volume-Shadowing Software
Volume-shadowing software for OpenVMS enhances data availability by
duplicating all data written to disk onto compatible disk volumes, called shadow
sets. A shadow set consists of one, two, or three disk volumes of the same model,
referred to as shadow-set members. The volume-shadowing software can read
data from any member of the shadow set.

Because volume shadowing simultaneously records data on more than one disk,
the duplication of data ensures that data is consistently available. If one disk
becomes unreadable because of normal media deterioration, communication
path failure, or controller or device failures, processing continues with another
disk in the shadow set. The process of shadowing is invisible to end users and
applications. Disks can be added or removed without affecting the user or the
application.

Volume shadowing is controller independent and supports shadowing of
VMScluster devices. (Phase I volume shadowing, supported only on OpenVMS
VAX systems, performs shadowing of disk devices connected to an HSC.)
Phase II volume shadowing, which runs on OpenVMS Alpha and OpenVMS
VAX systems, supports many more disk controllers and devices in a wider
range of configurations. Host-based volume shadowing also supports the use
of StorageWorks RAID Array Subsystems. Using volume shadowing in a
VMScluster system with multiple controllers ensures a high degree of data
availability (see Section 7.1.2.1).

3–22

Description of OpenVMS System Software
3.4 Optional OpenVMS System Integrated Software

Shadow sets are created with the Mount utility or the $MOUNT system service
(which are used to make a disk volume available for processing). A disk is added
to the shadow-set by means of the MOUNT command or the $MOUNT system
service. Volume-shadowing routines ensure that, within a reasonable time,
the newly added shadow set member is made identical to the other member or
members of the set. A disk is removed from the shadow set by operator command
or automatically, if the disk becomes inoperative.

3.4.3 RMS Journaling Software
RMS Journaling, which runs on OpenVMS VAX and OpenVMS Alpha systems,
is an optional software tool that maintains the data integrity of RMS files if
any of a number of failures occur. It helps to protect RMS data from becoming
lost or inconsistent. RMS Journaling supports distributed transactions through
the use of DECdtm (see Section 3.1.6) and provides support for programs that
use multiple concurrent transactions. A transaction is a series of RMS record
operations made on one or more files. RMS journaling helps prevent data from
becoming inconsistent due to the incomplete execution of a transaction.

RMS Journaling provides three forms of journaling:

• After-image journaling provides the means to redo a series of modifications
to a data file, enabling the recovery of lost or corrupted files. After-image
recovery restores the contents of the file from the point of its latest backup
copy.

• Before-image journaling provides the means to undo a series of modifications
to a data file, in the event that a file is updated with erroneous data. It also
permits automatic rollback to the last consistent state in the event of an error
or a failure.

• Recovery-unit journaling maintains transaction integrity by preventing
partial completion of transactions.

3–23

4
Development on OpenVMS Systems

An essential feature of the OpenVMS operating system is its support of a rich
environment for developing software application programs. The programming
software integrated in the OpenVMS system provides the tools required to
effectively develop new software applications. The developer also has the
option of using additional powerful tools to enhance the productivity of software
development in the OpenVMS environment.

This chapter summarizes the primary program development features available on
all OpenVMS VAX and OpenVMS Alpha systems and indicates any programming
features specific to a particular operating system.

The chapter introduces the common programming environment and presents brief
functional descriptions of the OpenVMS programming tools, as well as POSIX
for OpenVMS programming capabilities. Using optional software development
tools running on OpenVMS systems in the context of distributed multivendor
environments is covered in Section 6.3.5.

4.1 Common Programming Environment
The OpenVMS system supports a flexible programming environment that offers a
wide range of tools and resources to support efficient program development. The
common programming environment permits the development of mixed-language
application programs and portable programs, as well as application programs
with distributed functions that run in client/server environments.

In the common programming environment, programmers can use OpenVMS
resources to perform such tasks as:

• Creating, controlling, and deleting processes

• Communicating with other components

• Sharing resources

• Implementing input/output procedures

• Using security features

• Managing memory

• Managing files

• Synchronizing events

• Providing for condition handling

• Calling utility routines

4–1

Development on OpenVMS Systems
4.1 Common Programming Environment

The components of an OpenVMS application are the main program, shared
libraries, functional routines, and a user interface. Software tools that support
development of applications in the OpenVMS programming environment include:

• Language compilers, interpreters, and assemblers

• Linkers and debuggers

• Text processors and other program development utilities

• Callable system routines such as run-time routines, system services, and
other utility routines

• Record Management Services (RMS) routines and utilities

Optional software development tools that run on the OpenVMS system
enhance programmer productivity, saving programming time and promoting the
development of error-free code. OpenVMS supports optional integrated software
products that enhance program development capabilities in an organization.
These software development products can make use of middleware services,
which facilitate the development of applications for multivendor networks.
Optional software development products are discussed in Section 4.7, and use
of these optional tools in a distributed multivendor environment is covered in
Section 6.3.5.

4.1.1 Programming to Standards
Coding of programs for the OpenVMS environment and for other environments
involves conforming to software development standards. OpenVMS standards
that define modular programming techniques and procedure calling and condition
handling practices pertain to applications specific to OpenVMS. IEEE and
international standards apply to applications developed on OpenVMS that are
designed to run on other systems as well as OpenVMS. Refer to Appendix A for a
list of standards supported by OpenVMS.

4.1.1.1 Common Environment for Writing Code
OpenVMS software programmers can write code in a common environment,
following standard OpenVMS modular programming practices. This standard
approach establishes the minimum criteria necessary to ensure the correct
interface at the procedure level between software written by different
programmers. If all programmers coding OpenVMS applications follow this
standard approach, modular procedures added to a procedure library will not
conflict with other procedures in the library. Standard modular programming
practices apply to OpenVMS programs that have a public entry point. For
details of this standard approach, see the Guide to Creating OpenVMS Modular
Procedures.

4.1.1.2 Common Language Environment
The OpenVMS system supports a common language environment, which permits
using a mixture of languages in programming. A program written in any of the
programming languages supported by OpenVMS can contain calls to procedures
written in other supported languages. Mixed-language programming is possible
because all supported languages adhere to the OpenVMS calling standard. This
standard describes the techniques used by all supported languages for invoking
routines and passing data between them. It also defines the mechanisms that
ensure consistency in error and exception handling routines, regardless of the
mix of programming languages in use. Information about the calling standard
appears in the OpenVMS Calling Standard, and a description of how to use the

4–2

Development on OpenVMS Systems
4.1 Common Programming Environment

calling interface is given in OpenVMS Programming Interfaces: Calling a System
Routine.

4.1.2 Developing Portable Programs
A software program that is portable can be ported from one computer system
to another. OpenVMS programmers can design and develop programs to run
on different platforms and execution environments. The primary concerns in
designing portable applications include:

• Using modularization and abstraction to organize software

• Avoiding platform-specific features

POSIX for OpenVMS software that conforms to IEEE POSIX standards (see
Section 2.1.3.1) allows OpenVMS users to develop applications that can be ported
to other systems that support POSIX. The source code of an application that
conforms to POSIX standards can be ported to another POSIX conforming system
and compiled and linked on that system to produce an executable image. The
programming interface for POSIX for OpenVMS is described in Section 4.4 and
the user interface in Section 5.3.

OpenVMS users can convert application programs that run on OpenVMS VAX
systems to run on OpenVMS Alpha systems by recompiling and relinking or by
translating. A single application can include both native images (those that were
recompiled and relinked) and translated images.

• The most effective way to convert a program from OpenVMS VAX to
OpenVMS Alpha is to recompile the source code using a native OpenVMS
Alpha compiler and then to relink the object files and shareable images using
the OpenVMS Linker. This method produces a native OpenVMS Alpha image
that can take full advantage of the speed of the Alpha system.

• The alternative method involves translating user-mode OpenVMS VAX
images to run on OpenVMS Alpha systems. The translated image provides
a high degree of OpenVMS VAX compatibility but does not provide the same
high performance as a recompiled image. Translation is used primarily when
recompilation is not practical or possible.

Software tools for converting programs from VAX platforms to Alpha platforms
are described in Section 4.2.2.

For a detailed discussion of ensuring the portability of an application developed
on an OpenVMS VAX system to run on an OpenVMS Alpha system, see Migrating
an Application from OpenVMS VAX to OpenVMS Alpha. This manual highlights
OpenVMS Alpha features that contribute to portability, indicates differences
in the programming environments, and provides guidelines for developing new
programs intended to run on both OpenVMS VAX and OpenVMS Alpha systems.

4.2 OpenVMS Programming Software
This section describes the integrated programming tools available on the
OpenVMS operating system to help implement software development.

The phases of a typical software development life cycle can include proposal
of the concept; formulation of requirements and specifications for the software
product; design, implementation, and testing of the software; and integration and
maintenance of the product. Implementing the software product involves building
and modifying source code modules and compiling, linking, and executing the
resulting images. Testing involves refining code to optimize performance.

4–3

Development on OpenVMS Systems
4.2 OpenVMS Programming Software

As part of the software development life cycle, OpenVMS operating system
components and optional software products that run on OpenVMS are used
to develop applications. Some of the major OpenVMS programming software
components, such as editors and utilities, are listed in Table 4–1. Programming
language software supported by OpenVMS is described in Section 4.2.2. Optional
program development software tools that run on OpenVMS are described in
Section 4.7.

Table 4–1 OpenVMS Programming Software

Type of
Software OpenVMS Software Components

Text
processors

DEC Text Processing Utility/Extensible Versatile Editor (DECTPU/EVE)
EDT Editor
Text Editor and Corrector (TECO)
vi, ed, and ex editors (POSIX)
DEC Language-Sensitive Editor/Source Code Analyzer (LSE/SCA)

Major
programming
utilities

Linker
OpenVMS Debugger
Delta/XDelta Debugger
OpenVMS Alpha System-Code Debugger‡

Other program
development
utilities

Command Definition utility
Librarian utility
Message utility
Patch utility†
SUMSLP utility
National Character Set utility
System Dump Analyzer1

POSIX for OpenVMS utilities

Callable
system
routines

Run-time library routines
System services
Utility routines
Record Management Services (RMS) routines and utilities

1Different versions run on the VAX and Alpha platforms.
†VAX specific.
‡Alpha specific.

The commands used to invoke some of the programming utilities (for example,
linker, debugger, LIBRARIAN) vary slightly for VAX and Alpha platforms.

4.2.1 Creating Program Source Files
OpenVMS text-processing utilities can be used to create and modify program
source files. The DEC Text Processing Utility (DECTPU) is a high-performance
text processor that can be used to create text-editing interfaces such as EVE.
DECTPU includes a high-level procedure language with its own compiler and
interpreter, as well as the customizable EVE editing interface. DECTPU features
multiple buffers, windows, and subprocesses, and provides for text processing in
batch mode. The EDT editor is an interactive text editor that provides editing in
keypad and line modes. EDT supports multiple buffers, startup command files,
and journaling. In general, the EVE editing interface offers more capability than
EDT for complex editing tasks. (Use of the EDT and EVE editors for editing text
files is described in Section 5.5.4.)

4–4

Development on OpenVMS Systems
4.2 OpenVMS Programming Software

TECO is a traditional character-oriented text-editing program that runs under
both OpenVMS VAX and OpenVMS Alpha. It can be used to edit program sources
and other ASCII text.

The vi editor is a display-oriented interactive text editor used in the POSIX for
OpenVMS environment. POSIX also supports the ed and ex editors.

Other optional tools for creating source files on OpenVMS systems are available
separately or as part of the Digital software development environment (see
Section 6.3.5). The DEC Language-Sensitive Editor/Source Code Analyzer
(LSE/SCA) provides a multilanguage, multivendor editor for program
development and maintenance and also supplies cross-referencing features
and the capability to analyze source code.

4.2.2 Creating Object Files
OpenVMS supports a variety of optional language compilers, interpreters,
and assemblers that translate source code to object code (in the form of object
modules). These language implementations adhere to industry standards,
including ISO, ANSI, X/Open, and POSIX standards as well as U.S. Federal
Information Processing Standards (FIPS) and Military Standards (MIL-STD), as
applicable.

Table 4–2 lists language compilers, interpreters, and assemblers supported in
the OpenVMS VAX and OpenVMS Alpha environments. Names that begin with
DEC refer to software available on Alpha and VAX platforms unless otherwise
indicated.

Table 4–2 Compilers, Interpreters, and Assemblers

Language Characteristics

DEC Ada Complete production-quality implementation of Ada
language; fully conforms to ANSI and MIL-STD
standards; has Ada validation

VAX APL Interpreter with built-in editor, debugger, file system,
communication facility

VAX BASIC Used as either an interpreter or a compiler; fully
supported by the OpenVMS debugger; fully reentrant
code

DEC BASIC for OpenVMS Alpha An optimizing compiler; highly compatible with
VAX BASIC; no environment/interpreter support

DEC BLISS-32 Provides advanced set of language features supporting
development of modular software according to
structured programming concepts

DEC BLISS-64 Supports development of modular software for 64-bit
programs

VAX C Full implementation of C programming language with
added features for performance enhancement in the
OpenVMS environment

DEC C for OpenVMS Alpha Compliant with ISO/ANSI-standard Programming
Language C; supports 64-bit virtual addressing

(continued on next page)

4–5

Development on OpenVMS Systems
4.2 OpenVMS Programming Software

Table 4–2 (Cont.) Compilers, Interpreters, and Assemblers

Language Characteristics

DEC C++ C++ compiler with class libraries, a new C Run-Time
Library, and debug support; facilitates object-oriented
program design

DEC COBOL Compliant with ANSI-standard COBOL; includes
as enhancements screen-handling, file-sharing, and
report-writing facilities

VAX DIBOL Designed for interactive data processing; includes
a compiler, debugger, and utility programs for
data handling, data storing, and interprogram
communication

DEC Fortran for OpenVMS VAX Supports ANSI-standard FORTRAN–77 with many
industry-leading extensions; conforms to FIPS
standards; has a high optimization compiler and takes
full advantage of features of OpenVMS environment

DEC Fortran for OpenVMS
Alpha

Supports ANSI-standard FORTRAN–77, nearly all
DEC Fortran for OpenVMS VAX extensions, and other
language features, including recursion

DEC Fortran 90 Supports ANSI-standard FORTRAN-90 for high-
performance capabilities using parallel and clustered
resources

VAX MACRO Assembly language for programming the VAX
computer under the OpenVMS operating system; uses
all OpenVMS resources; supports large instruction set
enabling complex programming statements

MACRO-32 Compiler Available on OpenVMS Alpha systems to port existing
VAX MACRO code to an Alpha system

MACRO-64 Assembler Available on OpenVMS Alpha systems; a RISC
assembly language that provides precise control of
instructions and data

DEC OPS5 Highly efficient language for implementing expert
systems; used to apply artificial intelligence technology
to production systems

DEC Pascal Supports ANSI-standard Pascal features and
added features using character instruction sets and
OpenVMS virtual memory

VAX PL/I Includes a compile-time preprocessor that allows
language extension and conditional compilation

DEC PL/I for OpenVMS Alpha Used for complex programs; supports many data types
including floating-point

OpenVMS also serves as the host operating system for Ada cross-compilers, cross-
assemblers, and cross-development tools that conform to MIL-STD standards.

DECmigrate for OpenVMS AXP is a Digital layered product that translates
OpenVMS VAX images into OpenVMS Alpha images. It also can be used to
analyze code to determine how easy or difficult it would be to migrate it. The
VAX Environment Software Translator (VEST) component of DECmigrate
produces the translated images that can be executed on OpenVMS Alpha. The
DECmigrate for OpenVMS AXP Systems Translating Images manual describes
how to use VEST.

4–6

Development on OpenVMS Systems
4.2 OpenVMS Programming Software

The following migration manuals are available with the Alpha Migration Kit:

• Migrating an Environment from OpenVMS VAX to OpenVMS Alpha

• Migrating an Application from OpenVMS VAX to OpenVMS Alpha

• Migrating to an OpenVMS AXP System: Porting VAX MACRO Code

4.2.3 Creating Runnable Programs
After a program source file is coded, it must be compiled or assembled into object
modules by a language processor and then linked. The OpenVMS Linker binds
the object modules into an image that can be executed on the OpenVMS operating
system.

The linker processes object modules and shareable image files, as well as symbol
table files, library files, and options files (used to manage the linking operation
and simplify the use of complex, repetitious linker operations). The most common
output of the linker is an executable image of the program. The linker can also
produce a shareable image, a system image, an image map, or a symbol table
file to be used by other programs being linked. Certain linking tasks, such as
creating shareable images, are performed differently on OpenVMS VAX and
OpenVMS Alpha systems.

The Librarian utility provides for efficient storage in central, easily accessible
files of object modules, image files, macros, help text, or other record-oriented
information.

4.2.4 Testing and Debugging Programs
The debugger allows users to trace program execution and to display and modify
register contents using the same symbols as are in the source code.

The following debugger utilities available on both the OpenVMS VAX and
OpenVMS Alpha operating systems contain some system-specific features related
to the platform architecture:

• The OpenVMS Debugger (debugger), which debugs user-mode code

• The Delta/XDelta Debugger (DELTA/XDELTA), which debugs code in other
modes as well as user mode

The OpenVMS symbolic debugger is more useful than DELTA/XDELTA for most
programs: the symbolic debugger employs user-defined symbols referring to
program locations, accepts commands entered using different interfaces (keypad,
command line, or file of commands), displays source code lines on the screen, has
more descriptive error messages, and provides help information.

The debugger command language specified in the OpenVMS Debugger Manual
provides more than 100 commands to control a debugging session, including these
tasks:

• Control program execution on a line-by-line basis or at a user-specified
breakpoint

• Display breakpoints, tracepoints, watchpoints, active routine calls, stack
contents, variables, symbols, source code, and source directory search list

• Define symbols

• Create key definitions

• Change values in variables

4–7

Development on OpenVMS Systems
4.2 OpenVMS Programming Software

• Evaluate a language or address expression

• Create or excute debugger command procedures

The OpenVMS symbolic debugger provides enhanced support for programs that
have multiple threads of execution within an OpenVMS process, including any
program that uses DECthreads for developing real-time applications.

The debugger has been modified to support debugging of programs that contain
64-bit data addresses.

An additional debugger utility is available only on an OpenVMS Alpha system:
the OpenVMS Alpha System-Code Debugger, which can be used to debug non-
pageable system code and device drivers. The system-code debugger is a symbolic
debugger that lets the user employ the familiar OpenVMS Debugger interface to
observe and manipulate system code interactively as it executes. The system-code
debugger can display the source code where the software is executing and allows
the user to advance by source line.

Users can perform the following tasks using the system-code debugger:

• Control the system software’s execution, stopping at points of interest,
resuming execution, intercepting fatal exceptions, and so on

• Trace the execution path of the system software

• Monitor exception conditions

• Examine and modify the value of variables

• In some cases, test the effect of modifications without having to edit the
source code, recompile, and relink

The OpenVMS Alpha System-Code Debugger can be used to debug code written
in the following languages: C, BLISS, and MACRO languages. Information about
using the system-code debugger and how it differs from the OpenVMS Debugger
is given in OpenVMS Alpha Device Support: Developer’s Guide.

4.2.5 Using Other Program Development Utilities
Other OpenVMS utility programs used for program development are listed in
Table 4–3. RMS utilities, which permit file analysis and tuning, are covered in
Section 4.8.2.

Table 4–3 Other OpenVMS Program Development Utilities

Utility Function

Command Definition utility Enables an application developer to create commands
with a syntax similar to DIGITAL Command Language
(DCL) commands

Message utility Permits user to create application messages to
supplement the OpenVMS system messages

Patch utility† Permits users to make temporary changes (in the form
of patches) to an image file; the new version can then
be run without recompiling and relinking

†VAX specific.

(continued on next page)

4–8

Development on OpenVMS Systems
4.2 OpenVMS Programming Software

Table 4–3 (Cont.) Other OpenVMS Program Development Utilities

Utility Function

SUMSLP utility A batch-oriented editor used to make several updates
to a single source file; one update program can be
applied to all versions of a file

National character set utility Permits users to define non-ASCII string collating
sequences and to define conversion functions; allows
an RMS indexed file to be collated using user-specified
collating sequences

System Dump Analyzer utility‡ Used to determine the cause of system failures; reads
the crash dump file and formats and displays it; also
used to diagnose root causes that lead to an error

‡Different versions run on the VAX and Alpha platforms.

4.2.6 Managing Software Development Tasks
Optional products that run on OpenVMS systems can be used to manage the
complexity of software development tasks:

• DEC Code Management System (CMS) provides an efficient method of storing
project files (such as documents, object files, and other records) and tracking
all changes to these files.

• DEC Module Management System (MMS) automates building of software
applications.

These products are also available as part of the software development
environment (see Section 6.3.5).

The optional POSIX for OpenVMS product supports the make utility, which is
used to build an application in the POSIX for OpenVMS environment. This
utility is analogous to MMS in the OpenVMS environment.

4.3 Using Callable System Routines
OpenVMS provides extensive libraries of prewritten and debugged routines that
can be accessed by programs. Libraries specific to OpenVMS VAX and OpenVMS
Alpha systems supply commonly needed routines optimized for the OpenVMS
environment; these libraries include run-time library routines, system services,
utility routines, and RMS services. These libraries are described in this section.

OpenVMS also supports programming for an open environment with libraries
of industry-standard routines. Examples are libraries of optional routines for
software products like DECwindows Motif, CDA, and Digital PHIGS and Digital
GKS graphics products.

4.3.1 Using DECthreads Run-Time Library Routines
The DECthreads routine library provides a set of portable services that support
concurrent programming by creating and controlling multiple threads of execution
within the address space provided by a single process on an OpenVMS system.
DECthreads services are based on the IEEE POSIX standard 1003.1c and are
compliant with OSF Distributed Computing Environment (DCE) standards (see
Section 2.2.4). On OpenVMS Alpha systems, DECthreads are layered over kernel
threads (which are described in Section 3.1.1.2).

4–9

Development on OpenVMS Systems
4.3 Using Callable System Routines

DECthreads run-time library services provide an application programming
interface usable from all OpenVMS languages and an open C-only POSIX
interface that adheres to the POSIX threads standard.

On OpenVMS Alpha systems, DECthreads provides support to accept 64-bit
parameters.

The highly portable DECthreads interface contains routines grouped in the
following functional categories:

• General threads

• Object attributes

• Mutex

• Condition variable

• Thread context

• Thread cancellation

• Thread priority and scheduling

• Debugging

For more information about threads, see the Guide to DECthreads.

4.3.2 Using OpenVMS Run-Time Library Routines
The OpenVMS Run-Time Library (RTL) is a set of language-independent
procedures for programs to be run specifically in the OpenVMS environment.
RTL routines establish a common run-time environment for application
programs written in any language supported in the OpenVMS common language
environment. RTL procedures adhere to the OpenVMS calling standard and
can be called from any program or program module in a language supported by
OpenVMS (see Section 4.2.2).

The run-time library provides general-purpose functions for application programs.
Table 4–4 summarizes the groups of RTL routines.

Table 4–4 Groups of OpenVMS Run-Time Library Routines

Routine Description

DTK$ routines Routines that control the Digital DECtalk system

LIB$ routines Library routines that perform generally needed system
functions such as resource allocation and common I/O
procedures; provide support for 64-bit virtual addressing on
OpenVMS Alpha systems

MTH$ routines† Math routines that perform arithmetic, algebraic, and
trigonometric functions

DPML$ routines‡ Digital Portable Mathematics Library for OpenVMS Alpha; a
set of highly accurate mathematical functions

OTS$ routines Language-independent routines that perform tasks such as
data conversion

†VAX specific
‡Alpha specific

(continued on next page)

4–10

Development on OpenVMS Systems
4.3 Using Callable System Routines

Table 4–4 (Cont.) Groups of OpenVMS Run-Time Library Routines

Routine Description

PPL$ routines Parallel processing routines

SMG$ routines Screen management routines used in design of complex images
on a video screen

STR$ routines String manipulation routines

In addition, language-specific RTL routines support procedures in Ada, BASIC, C,
COBOL, Fortran, Pascal, and PL/I as well as in POSIX C. DEC C RTL routines
support 64-bit programming on OpenVMS Alpha systems.

The Digital Extended Math Library (DXML) for OpenVMS is a set of libraries
of mathematical subroutines that are optimized for Digital platforms. DXML
includes four libraries covering the areas of basic linear algebra, linear system
and eigenproblem solvers, sparse linear system solvers, and signal processing.
DXML offers development and run-time options and is suitable for high-
performance applications such as seismic analysis, signal and image processing,
and antenna design.

4.3.3 Using OpenVMS System Services
OpenVMS system services are procedures that control resources available
to processes, provide for communication among processes, and perform basic
operating system functions such as I/O coordination. Application programs can
call OpenVMS system services to perform the same operations that the system
services provide for the OpenVMS operating system (for example, creating a
process or subprocess).

At run time, an application program calls a system service and passes control of
the process to it. After execution of the system service, the service returns control
to the program and also returns a condition value. The program analyzes the
condition value, determines the success or failure of the system service call, and
alters program execution flow as required.

OpenVMS system services are divided into functional groups, as shown in
Table 4–5. System services can be used to protect and fine-tune the security
of the OpenVMS environment, handle event flags and system interrupts,
designate condition handlers, and provide logical name services and timer
services to the application. Other system services control and provide information
about processes, manage virtual memory use, and synchronize access to shared
resources.

Table 4–5 Groups of OpenVMS System Services

Service Group Function

Security Mechanisms to enhance and control system security

Event flag Clear, set, and read event flags; place process in wait
state until flags are set

AST Control handling of software interrupts called
asynchronous system traps (ASTs)

(continued on next page)

4–11

Development on OpenVMS Systems
4.3 Using Callable System Routines

Table 4–5 (Cont.) Groups of OpenVMS System Services

Service Group Function

Logical names Provide a generalized logical name service

Input/output Perform input and output operations directly at the
device driver level, bypassing RMS

Process control Create, delete, and control the execution of processes
(on a clusterwide basis); permit a process on one node
to request creation of a detached process on another
node

Process information Provides information about processes

Timer and time conversion Permits scheduling of program events at specific times
or time intervals; supplies binary time values

Condition handling Designates condition-handling procedures that gain
control when an exception/condition occurs

Memory management Permits control of an application program’s virtual
address space

Change mode Changes the access mode of a process

Lock management Permits cooperating processes to synchronize their
access to shared resources

DECdtm services Provides for complete and consistent execution of
distributed transactions and for data integrity

Cluster event notification† Requests notification when a VMScluster configuration
event occurs

†Alpha specific

OpenVMS I/O system services perform logical, physical, and virtual I/O and
network operations, and queue messages to system processes. The $QIO system
service provides a direct interface to the operating system’s I/O routines. These
services are available from within most programming languages supported by
OpenVMS and can be used to perform low-level I/O operations efficiently with a
minimal amount of system overhead for time-critical applications. (OpenVMS I/O
subsystem software is described in Section 3.1.1.3.)

On OpenVMS Alpha systems, new system services provide access to 64-bit
virtual address space for process private use. Additionally, new system services
are available to provide high CPU performance and improved symmetric
multiprocessing (SMP) scaling of I/O operations. These services exhibit high-
performance gains over the $QIO service.

DECdtm services ensure consistent execution of applications on the OpenVMS
operating system. In transaction processing applications, many users may be
simultaneously making inquiries and updating a database. The distributed
transaction processing environment typically involves communication between
networked systems at different locations. DECdtm services coordinate distributed
transactions by using the two-phase commit protocol and implementing special
logging and communication techniques. DECdtm services ensure that all parts of
a transaction are completed or the transaction is aborted. (The two-phase commit
protocol supported by DECdtm is summarized in Section 3.1.6 and described in
Section 7.2.3.)

4–12

Development on OpenVMS Systems
4.3 Using Callable System Routines

4.3.4 Using OpenVMS Utility Routines
OpenVMS programs can access some OpenVMS utilities through callable
interfaces. Utility routines enable programs to invoke the utility, execute
utility-specific functions, and exit the utility, returning to the program. Table 4–6
lists the OpenVMS utility routines.

Table 4–6 OpenVMS Utility Routines

Routine Utility/Facility

ACL$ Access control list editor (ACL editor)

CLI$ Command Definition utility (CDU)

CONV$ Convert and Convert/Reclaim utilities (CONVERT and
CONVERT/RECLAIM)

DCX$ Data Compression/Expansion facility (DCX)

EDT$ EDT editor

FDL$ File Definition Language utility (FDL)

LBR$ Librarian utility (LIBRARIAN)

LGI$ LOGINOUT routines

MAIL$ Mail utility (MAIL)

NCS$ National Character Set utility (NCS)

PSM$ Print Symbiont Modification facility (PSM)

SMB$ Symbiont/Job-Controller Interface facility (SMB)

SOR$ Sort/Merge utility (SORT/MERGE)

TPU$ DEC Text Processing Utility (DECTPU)

An optional, portable library of user-callable routines can be used to perform
high-performance sorting on OpenVMS Alpha systems. The high-performance
sort supports a subset1 of the functionality present on the OpenVMS Sort/Merge
utility, using the callable interface to the SOR$ routine. The high-performance
sort/merge provides better performance for most sort and merge operations.

4.4 POSIX Programming on an OpenVMS System
The POSIX for OpenVMS product offers customers the capability to develop and
run open, portable applications on OpenVMS VAX and OpenVMS Alpha systems.
Applications written to POSIX and X/Open standards and draft standards (see
Section 2.1.3.1) are portable across a wide range of systems that support those
same standards, including systems that do or do not support UNIX. Application
developers can develop and deploy their applications on any system that conforms
to POSIX standards, including OpenVMS VAX and OpenVMS Alpha (see
Figure 4–1). POSIX application portability is discussed in Section 2.1.3.1.

1 Available with OpenVMS Alpha Version 7.0; full functionality is planned for a future
version of OpenVMS Alpha.

4–13

Development on OpenVMS Systems
4.4 POSIX Programming on an OpenVMS System

Figure 4–1 Developing POSIX Applications

Developer

Conforming
POSIX Application

OpenVMS
System

OpenVMS
Application Application

Run−Time
Libraries

OpenVMS
System
Services

POSIX
for OpenVMS

System
Services

ZK−5482A−GE

Systems Based
on UNIX

(Digital, SUN,
HP, IBM)

POSIX
for OpenVMS

System

POSIX
for OpenVMS

4.4.1 POSIX Applications Using OpenVMS Capabilities
Applications conforming to POSIX standards can coexist and interoperate with
traditional OpenVMS applications on the same system. POSIX applications,
when run in the OpenVMS environment, are able to take advantage of OpenVMS
capabilities such as VMSclusters and volume shadowing, as well as file and
data protection, security, and SMP. POSIX applications can also optionally call
OpenVMS services and libraries, such as file journaling. In addition, POSIX
applications can use other standards-based tools such as Motif and TCP/IP
Services.

Users can log in to POSIX for OpenVMS either directly or indirectly during an
OpenVMS session. OpenVMS and POSIX for OpenVMS services are mutually
accessible (see Section 5.3). POSIX for OpenVMS program developers who work
at the DCL level can use the OpenVMS program development environment tools,
including the C compiler, the OpenVMS Linker, the OpenVMS Debugger, and
their choice of editor, as well as optional application-building tools that run on
OpenVMS. Developers who work at the POSIX for OpenVMS shell level can use
the environment defined in POSIX standard 1003.2 for linking and compiling
programs, building applications, and archiving library entries. They can also

4–14

Development on OpenVMS Systems
4.4 POSIX Programming on an OpenVMS System

use the vi utility and other software development utilities defined in the POSIX
1003.2 standard.

4.4.2 POSIX for OpenVMS Programming Interface
POSIX for OpenVMS application programs are written using the C language
and functions defined by the POSIX, ISO C, and X/Open standards and draft
standards.

POSIX for OpenVMS implements the POSIX 1003.1 standard, which incorporates
the functionality described in the ISO C standard as well as additional system
services not covered by ISO C. Specifically, POSIX 1003.1 covers the following:

• Process primitives

• Process environment

• Files and directories

• Input and output primitives

• Device- and class-specific functions

• Language-specific services for C programming

• System databases

• Data interface format

The additional system services allow users to perform operations such as process
creation and execution, file system access, and I/O device management.

POSIX for OpenVMS also implements draft standard 1003.1a, the system
interface extension (as listed in Table 2–1).

4.4.3 POSIX Commands and Utilities
POSIX for OpenVMS supports the POSIX 1003.2 standard, which includes an
interactive interface (described in Section 5.3) and a callable interface to POSIX
shell and utility services. The interactive interface to POSIX for OpenVMS is
a set of commands and utilities similar to UNIX commands and utilities with
many of the same functions and features of the Korn shell. These commands and
utilities include those that provide functions similar to DCL (see Section 5.5.3)
in addition to functions not available in the DCL environment. (The use of DCL
commands is mentioned in Section 4.5 and described in Section 5.2.1.)

POSIX for OpenVMS supports a number of utilities and features based on UNIX
that are unavailable in the basic DCL environment, including:

• Pipes, which allow the output of one command to become the input to the
subsequent command. (In DCL, this process often requires the use of a
temporary output file.)

• Complex utilities as listed in Table 4–7.

• Revision Control System: A series of utilities similar in function to CMS on
OpenVMS.

• Utilities that facilitate the building of existing UNIX applications that
conform to POSIX on an POSIX for OpenVMS system and provide the
interface between the UNIX program development environment and the
tools available in the OpenVMS environment (C compiler, OpenVMS Linker,
OpenVMS Debugger):

The ar utility: Used to create and maintain libraries.

4–15

Development on OpenVMS Systems
4.4 POSIX Programming on an OpenVMS System

The ln utility: Used to create links between files and directories, allowing
multiple routes of access.

The make utility: Used to build an application (similar to MMS in the
OpenVMS environment).

• The vi text editor, which is a display-oriented editor familiar to UNIX users,
and ed and ex editors.

Table 4–7 Complex Utilities Supported by POSIX for OpenVMS

Utility Description

sed, grep Batch-stream editors useful for editing extremely large files
or making a change to a group of files according to a script of
editing commands.

awk A batch-stream editor that executes specified actions based on
test patterns, using its own syntax (similar in many respects
to C syntax); used interactively or in batch mode.

bc, dc† Arbitrary precision arithmetic calculation facilities that use a
C-like syntax; used interactively or in batch mode.

lex A lexical analyzer generator that reads a description of lexical
syntax from input files and generates C language code that
performs lexical analysis; this C code can be used by the yacc
utility.

mail, mailx Utilities that support mail services.

yacc (yet another
compiler compiler)

A tool for writing compilers and command interpreters that
parse input according to specific grammar rules, creating
tables that are used with C code to constitute a parser that
will recognize the grammar.

c89 The POSIX interface to the compiler and linker (analogous to
the cc command in UNIX).

†dc is used by UNIX like systems but does not conform to POSIX standards or draft standards.

A set of callable interfaces can be used to execute shell commands, compile and
execute regular expressions, and perform pattern matching. Shell programming
uses shell scripts to execute complex sequences of shell commands.

4.4.4 POSIX Real-Time Functions
POSIX for OpenVMS implements the POSIX 1003.1b (previously 1003.4)
standard, which defines a set of real-time functions. For applications that
have real-time computing requirements, these extensions provide support for
such functions as enhanced interprocess communication, scheduling and memory
management control, and asynchronous I/O operations. The following categories
of real-time functions are supported:

• Semaphores, synchronization mechanisms to control access to systemwide
resources

• Interprocess communication between multiple processes, support in the areas
of event notification, message queues, and shared memory

• Asynchronous event notification, a way of passing data within an application

• Clocks and timers that let the application set the systemwide clock

4–16

Development on OpenVMS Systems
4.4 POSIX Programming on an OpenVMS System

4.4.5 POSIX XPG Support
POSIX for OpenVMS supports the BASE specifications described in XPG3 (the
X/Open Portability Guide Issue 3), implementing the minimum set of components
required to create the XPG3 Common Applications Environment. This set
of components consists of the internationalized system calls and libraries,
commands and utilities, and the C language.

XPG3 defines the run-time behavior of the library routines and how this behavior
is affected by the internationalization environment but does not specify the tools
to create and maintain the environment itself. POSIX standard 1003.2 defines
the following tools for the internationalization environment:

• localdef: Used to define the internationalization environment

• locale: Used to query any internationalization environment currently
available on the system

XPG3 internationalization features supported by POSIX for OpenVMS allow
users to develop applications that can be deployed (without recompiling) in
multiple cultures or countries in such a way that users can experience their own
language and cultural context. The application developer can use these features
to ensure that messages from the application are generated in the local language
context.

POSIX for OpenVMS VAX and OpenVMS Alpha also supplies the XPG3
curses library, which provides a series of callable functions for cursor control
optimization.

In addition, POSIX for OpenVMS has received XPG4 BASE profile branding for
the following software components:

• System calls and headers

• Wide character functions (which support multibyte characters for Asian
languages)

• Command and utilities required for XPG4 BASE profile branding

• The C language, as defined by XPG4

For additional information about POSIX for OpenVMS programming interfaces,
refer to the POSIX for OpenVMS documentation set.

4.5 Programming User Interfaces
User interfaces to the OpenVMS VAX and OpenVMS Alpha operating systems
include the DCL interface (see Section 5.2.1) and the optional DECwindows Motif
graphical user interface (see Section 5.2). Another user interface is through
electronic forms (see Section 5.4.1).

DCL commands can be used to invoke program development software (compilers,
editors, linkers) and to run and control execution of programs. DCL command
procedures can be used to perform repetitious operations in software development.

The Command Definition utility (CDU) enables application developers to create
DCL-level commands with a syntax similar to OpenVMS DCL commands. Using
CDU, the developer can create applications with user interfaces similar to those
of operating system applications. The Message utility permits an application
developer to create application messages to supplement the system messages
supplied by the OpenVMS operating system.

4–17

Development on OpenVMS Systems
4.5 Programming User Interfaces

The DECwindows Motif software provides a consistent user interface for
developing software applications and includes an extensive set of programming
libraries and tools. DECwindows Motif supports both the OSF/Motif standards-
based graphical user interface and the X user interface (XUI) in a single run-time
and development environment. DECwindows Motif for OpenVMS Alpha requires
a DECwindows X11 display server (device driver and fonts) that supports the
portable compiled format (PCF), permitting use of vendor-independent fonts.

An applications programmer can use the following DECwindows Motif software
to construct a graphical user interface:

• A user interface toolkit composed of graphical user interface objects (widgets
and gadgets); widgets provide advanced programming capabilities that permit
users to create graphic applications; gadgets, similar to widgets, require less
memory to create labels, buttons, and separators

• A user interface language to describe visual aspects of objects (menus, labels,
forms) and to specify changes resulting from user interaction

• The OSF/Motif Window Manager, which allows users to customize the
interface

The DECwindows Motif programming libraries provided include:

• Standard X Window System libraries such as Xlib and the intrinsics

• Libraries needed to support the current base of XUI applications

• OSF/Motif toolkit support for developing applications using the Motif user
interface style

• Digital libraries that give users capabilities beyond the standards

Also included in the DECwindows Motif environment are DEClinks services
for creating, managing, and traversing informational links between different
application-specific data. DEClinks services, with the DEClinks Manager
application, help organize information into a hyperinformation environment (see
Section 5.2.2). DEClinks Developer’s Tools provide a development environment
for creating, modifying, and maintaining hyperapplications.

4.6 Developing Real-Time Applications
The VAXELN Toolkit is a set of tools that can be used on VAX systems running
OpenVMS to develop efficient real-time applications (for example, real-time
applications for process control, simulation, or high-speed data acquisition).
VAXELN real-time applications are run on rtVAX computers. The VAXELN
real-time operating environment optimizes dedicated real-time systems for
predictability and fast response time. VAXELN transparently supports open
standards such as IEEE 1003.1 and IEEE 1003.1b (previously 1003.4). VAXELN
operates in TCP/IP and DECnet local and wide area networks.

4.7 Digital Software Development Tools
Digital supplies optional software development tools for the OpenVMS
environment, such as DECset. DECset is a set of tools that support software
coding, testing, and maintenance of applications and data. These tools can
be used individually or as part of the optional Digital software development
environment.

Use of software development tools on the OpenVMS system in multivendor
distributed environments is described in Section 6.3.5.

4–18

Development on OpenVMS Systems
4.8 Managing Data

4.8 Managing Data
The basic OpenVMS tool for transparent, intuitive management of data is the
Record Management Services (RMS) subsystem. RMS is a collection of routines
that give programmers a device-independent method for storing, retrieving, and
modifying data for their application. RMS also provides extensive protection and
reliability features to ensure data integrity.

RMS is a higher level interface to the file system and OpenVMS I/O subsystem.
It is used by all products that run on OpenVMS VAX and OpenVMS Alpha for file
and record operations. A subset of RMS services permit network file operations
that are generally transparent to the user.

On OpenVMS Alpha systems, RMS supports I/O operations to and from 64-bit
addressable space.

4.8.1 RMS Files and Records
RMS supports a variety of file organizations, record formats, and record-access
modes. RMS supports sequential, relative, and indexed disk file organizations,
and fixed- and variable-length records. It supports a number of record-access
modes: sequential, by key value, by relative record number, or by record file
address. RMS is designed primarily for mass storage devices (disks and tapes),
but also supports unit-record devices such as terminals or printers.

RMS routines assist user programs in processing and managing files and their
contents. RMS routines perform these services for application programs:

• Creating new files, accessing existing files, extending disk space for files,
closing files, and obtaining file characteristics

• Getting, locating, inserting, updating, and deleting records in files

RMS promotes safe and efficient file sharing by providing multiple access modes,
automatic record locking when applicable, and optional buffer sharing by multiple
processes.

RMS files are also used in the POSIX for OpenVMS environment. Files created
by POSIX applications on OpenVMS are binary stream RMS files. POSIX
developers can handle files in alternative ways. In the OpenVMS environment,
the POSIX developer can create files using OpenVMS naming techniques and
then use DCL to access all files generated by OpenVMS or POSIX. In the POSIX
for OpenVMS environment, to obtain full POSIX file compliance, a container
file system is required as part of the POSIX file name space. A container file
system is an RMS directory with an extra file to map between POSIX file names
and RMS file names. The container file system is useful in implementing a file
intended to be used on multiple networked platforms, including NFS file systems.

For a description of POSIX files and directories on OpenVMS systems, see
Section 5.5.2.

4.8.2 RMS Utilities
RMS file utilities allow users to analyze the internal structure of an RMS file and
to determine the most appropriate set of parameters to tune an RMS file. RMS
utilities can also be used to create, efficiently load, and reclaim space in an RMS
file.

4–19

Development on OpenVMS Systems
4.8 Managing Data

RMS file maintenance utilities include the following:

• Analyze/RMS_File utility

• File Definition Language utilities (Create/FDL and Edit/FDL)

• Convert and Convert/Reclaim utilities

The Analyze/RMS_File utility permits the programmer to analyze the internal
structure of an OpenVMS RMS file and generate a report on its structure and
use, as well as interactively explore the file’s structure. The utility can generate
an FDL file from an RMS file for use with the Edit/FDL utility to optimize the
data file.

File Definition Language (FDL) is a special-purpose language for specifying file
characteristics; it is useful with higher level languages or for ensuring that files
are properly tuned. FDL makes use of RMS control blocks: the file access block
(FAB), the record access block (RAB), and the extended attribute block (XAB).

The Edit/FDL utility creates a new FDL file according to user specifications. The
Create/FDL utility uses the specifications of an existing FDL file to create a new
empty data file.

The Convert utility can be used to copy records from one file to another, while
changing the record format and file organization, and to append records to an
existing file. The Convert/Reclaim utility reclaims empty bucket space in an
indexed file to allow new records to be written to it.

4–20

5
User Interfaces to the OpenVMS System

The OpenVMS system offers users consistent, easy-to-use interfaces: a natural
language command interface and an optional standards-based graphical user
interface, as well as specialized forms-based interfaces. People throughout an
organization or activity can use these consistent interfaces to access authorized
information and resources anywhere in the OpenVMS software environment.

Users can access the OpenVMS operating system from a wide variety of devices,
ranging from desktop devices to terminals connected to large computer complexes.
Depending on the configuration, OpenVMS users can share in the full capabilities
of OpenVMS VAX and OpenVMS Alpha systems and VMScluster systems and
can access resources on other computers throughout a worldwide multivendor
network.

OpenVMS support for open standards permits development of user-portable
applications. A user-portable application provides the user with a consistent
interface when the application is run on any system (including systems from
other vendors) that conforms to the same open standards. The user experiences
the same environment from system to system, without the requirement for
retraining. OpenVMS support for open, portable software capabilities is discussed
in Section 2.1.4.

This chapter describes user access to OpenVMS systems, the different user
interfaces, and the various software environments users can access. The chapter
also covers OpenVMS support for such general user activities as file handling and
electronic mail.

5.1 OpenVMS Operating System Access
Access to the OpenVMS VAX system or the OpenVMS Alpha system is controlled
by means of user accounts. To log in and gain access to the OpenVMS system,
the user supplies the user name and password specified in the appropriate
user account. Information about each user account is maintained in the user
authorization file (UAF), which can be modified by the OpenVMS system manager
(see Section 3.2.2).

The system manager can determine the user’s needs and set up an account that
controls the user’s access to system resources. In establishing an account for an
individual user, the system manager assigns a unique user name, password, and
user identification code (UIC) for the account, and specifies the system privileges
and resource quotas associated with the account. Examples of protection
mechanisms the system manager can use to control access to system objects (such
as files) include the following:

• UIC that identifies the user as a member of a group that can share specific
data

5–1

User Interfaces to the OpenVMS System
5.1 OpenVMS Operating System Access

• Access control list (ACL) that permits specific users to be included or excluded
from accessing a file or achieving certain kinds of access (for example, read or
write access)

For additional information about user accounts and other protection mechanisms
employed to control user access to the system, see Section 3.3.2.

Some users can access a turnkey or captive account without supplying a user
name or password. For example, turnkey accounts can be established for special
environments such as a factory floor, in which users perform routine tasks and
do not need to submit commands to the operating system. Special limited-access
accounts are described in Section 3.3.2.

If a user is logged in to an OpenVMS system connected to a network and has
access to an account on another node (which need not be an OpenVMS node) in
the network, the user can log in to that account from the local node and use the
facilities of that remote node while remaining physically connected to the local
node. For example, an OpenVMS user can enter the SET HOST command to
access a remote node and then log in to the remote node.

Optionally, the user can enter different user environments when logging in to
the OpenVMS system. The particular environment is established by the user
account and by the way in which the user accesses the system. Possible user
environments include:

• The OpenVMS environment (if neither the user nor the system manager
specifies an alternative login environment)

• The POSIX for OpenVMS environment (if either the user or the system
manager explicitly specifies it)

• A customized forms-based environment, such as the ALL–IN–1 integrated
office environment (if either the user or the system manager specifies it)

The POSIX for OpenVMS environment supported by the OpenVMS system is
similar to a UNIX environment (see Section 2.1.3.1). POSIX is designed to enable
users and applications that comply with POSIX standards to move between
systems. The POSIX user environment on an OpenVMS system is described in
Section 5.3.

Optional user interfaces based on forms are described in Section 5.4.

5.2 OpenVMS User Environment
When a user logs in to the OpenVMS operating system, the system creates an
environment from which the user can enter commands and run programs. The
environment is called a process. The characteristics of the process are specified
in the user authorization file (UAF) set up for the user. Within the process, the
system executes programs (called images or executable images) one at a time. An
image is a file that contains machine-readable instructions and data. The system
and the user can both supply image files.

Users can access OpenVMS through the DIGITAL Command Language (DCL)
interface supplied with the system (described in Section 5.2.1) or the optional
DECwindows Motif graphical windowing interface (described in Section 5.2.2).

When a user logs in to the OpenVMS system, two DCL command procedures
are automatically executed: a system login command procedure that the system
manager sets up and a personal login command procedure that either the system
manager or the user can set up. Editing the personal login command procedure

5–2

User Interfaces to the OpenVMS System
5.2 OpenVMS User Environment

permits the user to customize the OpenVMS computing environment. (DCL
command procedures are described in Section 5.2.1.1.)

5.2.1 DCL Command Language Functions
DCL provides the user with a consistent user interface. The command language
is a set of English-like instructions that tell the OpenVMS system to perform
specific operations. The DCL command takes the form of a command name
followed by parameters and qualifiers, as appropriate. OpenVMS users can use
DCL to conduct a dialogue with the system or to initiate system utilities or user
programs.

Users on character-cell terminals can enter DCL commands interactively.
OpenVMS users on workstations can enter DCL commands using the DECterm
window in the DECwindows Motif interface. OpenVMS users can also include
DCL commands in command procedures, invoking the command procedures
interactively or submitting them in batch queues for deferred execution.
DECwindows users can use the point and click technique to execute DCL
commands, using the FileView window.

The range of tasks that can be performed using DCL commands is extensive. For
example, DCL commands permit the user to:

• Get information about the system

• Modify the work environment

• Work with files

• Work with devices (such as disks and magnetic tape)

• Develop and execute programs

• Provide security and ensure that resources are used efficiently

Table 5–1 lists the types of computing tasks and examples of the DCL commands
used to perform the tasks. Most DCL commands are supported on OpenVMS
VAX and OpenVMS Alpha systems; some DCL qualifiers and options are system
specific. DCL commands are described in alphabetic order in the OpenVMS DCL
Dictionary.

Table 5–1 Types of Tasks Performed by Commonly Used DCL Commands

Types of Tasks Examples of DCL Commands

General session control and
environmental control

HELP, SHOW, SET, ASSIGN, DEFINE, DEASSIGN,
PHONE, MAIL, LOGOUT, REQUEST

Volume and device resource control MOUNT, INITIALIZE, DISMOUNT, ALLOCATE,
DEALLOCATE

Program development and execution
control

LIBRARY, LINK, RUN, DEBUG, SPAWN, STOP,
SUBMIT, SYNCHRONIZE, WAIT, CANCEL

File manipulation control DIRECTORY, CREATE, EDIT, DELETE, PURGE,
RENAME, COPY, APPEND, DIFFERENCES, SORT,
OPEN, CLOSE, READ, WRITE, PRINT, TYPE, DUMP,
ANALYZE

Users can also use special DCL commands for other purposes, such as
customizing the OpenVMS user environment to make it more productive.
Certain DCL commands define short, meaningful logical names for commonly
used files, directories, and devices. The system also creates a set of systemwide
logical names when the user logs in. Other commands create symbols that

5–3

User Interfaces to the OpenVMS System
5.2 OpenVMS User Environment

represent DCL commands, logical values, or numeric or character values that can
be combined into expressions to manipulate the values the symbols represent.
Lexical functions permit the user to obtain information from the system about
system processes, queues, and user functions. Lexical functions are essentially
calls to OpenVMS system services.

For detailed information about using DCL, see the OpenVMS User’s Manual.

5.2.1.1 DCL Command Procedures
Command-level programming permits the user to create DCL command
procedures using a text editor or the DCL command CREATE. A command
procedure comprises DCL commands to be executed, data lines that are used
by those commands, and optional comment lines. Command procedures can be
started interactively or by another command procedure. Command procedures
can also be run as batch jobs in a batch queue. Using batch mode permits
submission of work for execution at a specified time (for example, during off
hours). An advantage of batch mode is the ability to restart the procedure if there
is a system failure: DCL provides a /RESTART option that causes the system to
restart a job if the system crashes before it is completed.

DCL command procedures provide a full programming language for operator
and user interfaces. Command procedures and lexical functions can be used to
automate routine system management tasks.

Within command procedures executed at the local node, the user can use DCL
commands to open and close local and remote files, and read and write records
to those files. The user can also submit DCL command procedures residing on
remote nodes for execution as batch jobs on those nodes.

5.2.1.2 OpenVMS Help System
DCL and OpenVMS utilities have a consistent integrated help subsystem to
provide operational information on all aspects of system operations. The DCL
HELP command permits the user to obtain information about using the system,
available DCL commands, and system utilities. The online help system includes
summary operational information on all aspects of OpenVMS system operation.

In addition, the Help Message utility (MSGHLP) allows users to access instant
online descriptions of system messages at a character-cell terminal or a DECterm
window in a DECwindows Motif interface. Operating through the DCL interface,
this utility can provide information about messages supplied by OpenVMS, by
optional products running on OpenVMS, and by the customer, if desired. For
information about the Help Message utility, refer to OpenVMS System Messages:
Companion Guide for Help Message Users.

5.2.2 OpenVMS DECwindows Motif Interface
OpenVMS users on VAX or Alpha workstations can access the optional product
DECwindows Motif, an open graphical windowing interface enhanced by a set of
integrated desktop applications. The DECwindows Motif graphical user interface
complies with the Motif specification developed by the Open Software Foundation
(OSF) (see Section 2.1.3.3). OSF/Motif specifies both a graphical user interface
and an application programming interface. DECwindows Motif is based on the
Massachusetts Institute of Technology specification for the X Window System, the
de facto standard for distributed windowing systems.

5–4

User Interfaces to the OpenVMS System
5.2 OpenVMS User Environment

DECwindows Motif supports an interactive, network-based client/server
environment. DECwindows applications can run on a client node and display
output on an OpenVMS server node. In other words, an application running on a
remote machine can display on the user’s OpenVMS desktop device, and the user
can interact with the application as though it were running locally. Clients and
servers communicate with each other by sharing local memory or over DECnet or
TCP/IP network connections.

The DECwindows Motif end-user environment involves point-and-click techniques
for interacting with the OpenVMS operating system. The user can divide
the workstation screen into multiple windows, each representing a different
application. DECwindows applications automate many basic tasks (for example,
Mail automates sending and receiving interoffice mail).

A workstation mouse or other pointing device permits the user to point to and
select text and objects on the screen. Users interact with DECwindows by
finding an object on the screen that represents a task, selecting that object, and
completing that task. Typical interface objects include:

• Menus, containing items that let the user tell DECwindows what the user
wants to do or wants to work with (for example, the Help menu from an
application)

• Icons, representing currently running applications that need to remain
available but are too large for the screen

• Buttons that affect the positioning of windows on the screen (for example, the
minimize button that lets the user shrink a window to an icon and store it as
an icon on the screen)

• Dialog boxes that permit the user to supply additional information to the
system

Figure 5–1 shows the main DECwindows Motif components. These components
include:

• Session Manager: Appears at the start of every DECwindows session
and permits the user to control the DECwindows session, customize the
DECwindows environment, and run applications.

• FileView: Gives the user a graphical access to DECwindows applications and
provides commands for working with files and directories.

• Workspace: The screen on the workstation and the background of the
DECwindows environment. All windows and objects appear on the
Workspace.

5–5

User Interfaces to the OpenVMS System
5.2 OpenVMS User Environment

Figure 5–1 DECwindows Motif User Interface

ZK−3492A−GE

Workspace

Session Manager

FileView

Table 5–2 briefly describes DECwindows Motif applications.

Table 5–2 Commonly Used DECwindows Motif Applications

Application Function

Bookreader Displays an online documentation reader on the workstation screen

Calculator Performs mathematical operations

Calendar Keeps track of scheduled appointments and assists in planning the
user’s time

Cardfiler Organizes information with index cards and card files

CDA Viewer Displays the contents of many different types of files on the
workstation screen (for example, PostScript files)

Clock Displays the time of day (in both analog and digital format) and the
date on the workstation screen with alarm features

DECsound Records, saves, stores, and plays back audio images

DECterm Creates a window that emulates a VT300-series terminal

DEClinks
Manager

Controls the hyperinformation environment

Mail Lets the user exchange messages with other computer users

Paint Creates a simple picture, an illustration, or a map

Print Screen Takes a snapshot of the entire screen or a portion of it and prints the
file containing the snapshot or saves it

Puzzle Displays a video version of a number puzzle that contains squares to
arrange in ascending order

DECsound is an easy-to-use application that lets the user record and play back
audio images on a subset of workstation models. DECsound includes sample
sounds and provides support for mailing audio messages across the network. It

5–6

User Interfaces to the OpenVMS System
5.2 OpenVMS User Environment

also enables audio messages to be included in compound documents that can be
played by the CDA Viewer.

The DECterm terminal emulator provides a traditional character-cell interface,
which permits users to enter DCL commmands or use any other command-line
interface.

DEClinks, built on an open, object-oriented data model, is a set of services
for creating, managing, and traversing informational links between different
multimedia data, such as electronic mail, online manuals, pictures, design
notes, and slide presentations. DEClinks can link video, audio, image-
processing, and electronic publishing data. This linked environment is called
the hyperinformation environment. Hyperapplications permit application end
users to link information objects through a Link menu interface. DEClinks
services, with the DEClinks Manager application, help organize information by
allowing users to focus on the information rather than on where the information
comes from and where it is stored.

DECwindows Motif provides a common look and feel across various software
environments and tools. The application programmer can construct the user
interface using OSF/Motif software tools. The DECwindows tools package for
Motif is described in Section 4.5.

5.3 POSIX Environment on an OpenVMS System
A user logging in to an OpenVMS VAX or OpenVMS Alpha system that
includes POSIX for OpenVMS can invoke the POSIX environment, a multiuser
timesharing environment supported on character-cell terminals. The environment
complies with POSIX standard 1003.2, which supports terminal users in
a consistent manner across all conforming systems. Users in the POSIX
environment need to be familiar with the style of interaction with UNIX systems.
Typical users would be program developers, engineers, or general-purpose
timesharing users interested in portable applications that are similar to UNIX
applications.

The POSIX environment differs from the OpenVMS environment. Commands
are limited to those that the POSIX environment understands. Some POSIX
commands have the same name as DCL commands, but the functions are
different. The command-line interface includes UNIX features such as scripts
and complex utilities (see Section 4.4.3).

For detailed information about the POSIX for OpenVMS user environment, refer
to the POSIX for OpenVMS documentation set.

When logging in to a POSIX for OpenVMS system, the user can log in directly
to the DCL environment or to the POSIX for OpenVMS shell environment. The
POSIX for OpenVMS shell is a command language interpreter (CLI) equivalent
to the OpenVMS DCL interpreter. The user can instruct the shell, either
interactively or within a POSIX for OpenVMS command file (called a shell script),
to perform tasks such as calling utilities.

Logging in directly to the POSIX shell environment requires the addition of the
qualifier /CLI=POSIX$CLI to the user name. Alternatively, the user can log in to
the OpenVMS DCL environment and invoke the POSIX for OpenVMS shell.

On an OpenVMS system that includes POSIX for OpenVMS, the user can move
back and forth between the OpenVMS and POSIX for OpenVMS environments.

5–7

User Interfaces to the OpenVMS System
5.4 Forms-Based User Environments

5.4 Forms-Based User Environments
A user logged in to an OpenVMS system may interact with application software
by responding to electronic forms. An electronic form is a collection of fields and
background text displayed on any type of display device. Forms are used with a
variety of applications to enhance the gathering and display of information.

The following sections describe the Digital DECforms software product and the
forms-based integrated office environment, ALL–IN–1.

5.4.1 DECforms Interface
Some applications that OpenVMS users can access provide user-friendly forms
interfaces. The OpenVMS forms software product, DECforms, allows a single
application to support multiple types of users with interfaces tailored to their
needs, including interfaces in multilingual environments. DECforms supports
the full range of OpenVMS terminals and compatible terminal emulators on
workstations and personal computers.

DECforms is the OpenVMS implementation of the proposed ANSI ISO standard
for a Forms Interface Management System (FIMS), which standardizes the
interface between an application and the forms it uses. DECforms offers a
subset of the full FIMS functionality, with extensions tailored for the OpenVMS
environment. DECforms embodies the fundamental principles underlying the
FIMS model:

• Separation of form and function

• Efficient distribution of forms processing

• Ease of use

• Flexibility of user interface control

• Programming language independence

DECforms combines the capabilities of previous Digital forms systems (VAX FMS
and VAX TDMS) and adds new features. When DECforms is integrated with
the ACMS product, it serves as the user interface into database products (such
as Oracle Rdb and Oracle CODASYL DBMS) that run on OpenVMS VAX and
OpenVMS Alpha systems. The integration of DECforms with ACMS provides
powerful forms-processing capabilities in transaction-processing environments
(see Section 7.2.2). A single DECforms run-time process can control multiple
terminals simultaneously. Using optional software, DECforms can be distributed
to remote CPUs, bringing forms processing as close to the end user as possible.
DECforms services are also included in middleware integrated products.

5.4.2 ALL–IN–1 Office Systems Environment
OpenVMS supports an optional, specialized user environment: the forms-
based, menu-driven, integrated ALL–IN–1 system. ALL–IN–1 links office
applications together and includes a facility for integrating other business-
oriented applications. ALL–IN–1, which is easy to use, controls user activities.

When a user who has an ALL–IN–1 user account logs in to an OpenVMS
system, the user can then log in to the ALL–IN–1 system. OpenVMS users on
workstations can access the ALL–IN–1 system through a dynamic graphical user
interface provided by the ALL–IN–1 Services for DECwindows.

5–8

User Interfaces to the OpenVMS System
5.4 Forms-Based User Environments

ALL–IN–1 communicates with users through forms displayed on the terminal
screen. The first form displayed is the Main menu, followed by additional options,
each representing a subsystem or specific group of office tasks.

ALL–IN–1 allows users to transport or receive information from other systems
through the electronic messaging facility linked to the network. User documents
are stored in folders in the user’s file cabinet where they are accessed by the office
applications. Users can create and process documents using either the EDT or
WPS editor or the WPS–PLUS full-function word processor.

ALL–IN–1 is a customizable software product. Using a client/server model
to provide the core services that all office workers need, ALL–IN–1 adds
advanced capabilities for workgroup computing, enterprise communications,
and information management.

5.5 Information Handling on the OpenVMS System
End users on the OpenVMS operating system normally work with information
stored in files. OpenVMS supports files that can be used in either the OpenVMS
environment or the POSIX environment. In addition, POSIX for OpenVMS files
can be ported to other systems that conform to POSIX standards.

In the OpenVMS environment, users can enter DCL commands to access and
manipulate files and to sort and merge records in files. Software tools are
available to create, edit, and process text files. The DECwindows Motif interface
also supports file handling through the FileView program, which is a graphical
interface to OpenVMS file management (see Section 5.2.2).

5.5.1 OpenVMS Files and Directories
An OpenVMS file can consist of text the user enters and manipulates or machine-
readable data that the machine understands. Creating a memo is creating a file;
sending an electronic mail message is sending a file. Running a program involves
loading an image file into the system and executing the instructions contained in
that file.

OpenVMS files are listed in directories. Each directory is a special file that
contains the names and locations of files. Every OpenVMS user account has an
associated disk directory containing user files. This default or login directory
can include many levels of subdirectories, arranged in a hierarchical directory
structure.

The full file specification for an OpenVMS file describes the access path the
OpenVMS system uses to locate and identify a file. The specification identifies
the location at which the file resides: the network node name, device name
of the directory disk volume, directory name, and file name, type, and version
number of the file. The file type identifies the structure or type of data in the
file. (If the node name and directory name are not specified, the defaults are
the user’s current node and directory name.) Wildcard characters can be used
to manipulate large numbers of files without naming them individually (for
example, the asterisk can be used to indicate all values of certain fields, or parts
of fields, in a file specification).

5–9

User Interfaces to the OpenVMS System
5.5 Information Handling on the OpenVMS System

5.5.2 POSIX Files and Directories
Users in the POSIX for OpenVMS environment can choose between using
OpenVMS files or POSIX files (similar to UNIX files) for their applications. Users
of POSIX for OpenVMS can consider the file system as containing two parts:

• The OpenVMS file system in the context of the POSIX for OpenVMS
environment. OpenVMS files can be used in the POSIX environment for
interoperability with other components of the OpenVMS operating system,
but must be referred to by POSIX pathnames.

• The container file system (see Section 4.8.1). The POSIX for OpenVMS
container file system permits a file name on an OpenVMS system to be
translated to a file that fully supports the POSIX standards and is portable to
other systems that conform to POSIX standards.

POSIX provides the translate utility, which enables translation between
OpenVMS and POSIX of pathnames and file names.

POSIX files follow rules similar to the UNIX environment. POSIX files are
referred to by pathnames that indicate the directory path to the file, including the
file name itself (no device name is specified). Subdirectories are preceded by the
slash character.

The OpenVMS file system and the POSIX container file system differ in file
specifications, file structures, file protection, use of special files, links between
files, and symbolic links.

Software development involving POSIX files is discussed in Section 4.8.1. For
additional information about using files in the POSIX for OpenVMS environment,
refer to the POSIX for OpenVMS Guide to Programming.

5.5.3 OpenVMS File Manipulation
In the OpenVMS environment, users can perform file operations by specifying
DCL commands. Some of the commands invoke OpenVMS utilities that
perform the file operation. File operations performed using DCL commands
are summarized in Table 5–3.

Table 5–3 File Operations Performed Using OpenVMS Utilities and DCL
Commands

Utility or DCL Command File Operation

BACKUP utility Saves and restores user data

CONVERT utility Maintains optimal ISAM file performance, copies
records to files of different organization, reformats
indexed files

COPY command Moves files around

CREATE command Creates files or directories

DELETE/ERASE command Erases a file and removes it from a directory

DIRECTORY command Displays the contents of a current directory

DUMP command Displays actual file contents to facilitate application
debugging

(continued on next page)

5–10

User Interfaces to the OpenVMS System
5.5 Information Handling on the OpenVMS System

Table 5–3 (Cont.) File Operations Performed Using OpenVMS Utilities and DCL
Commands

Utility or DCL Command File Operation

EDIT command Permits creation of a new file or viewing and changing
of the contents of a text file

PRINT command Sends a specified file to a printer for printing

PURGE command Facilitates disk space reclamation by deleting old
versions of a file

RECOVER command Applies RMS journals to recover RMS files

RENAME command Changes the name of a specified file

SET FILE command Manipulates file characteristics

SORT/MERGE utility Sorts records in a file and combines previously sorted
files into an output file

TYPE command Displays the contents of a specified file

Users do not normally manipulate the records that comprise a data file, except
to sort or merge records in a file. The OpenVMS Sort/Merge utility is used to
manage the records. The Sort utility sorts records from as many as 10 input
files into an output file, based on a sequence of user-selected keys in the input
files. The user can define key fields on which to organize the files in alphabetic or
numeric order, in ascending (low to high) or descending order. The Merge utility
combines up to 10 previously sorted files according to a user-selected key and
generates an ordered output file.

On OpenVMS Alpha systems, a high-performance sort takes advantage of
the Alpha architecture to provide better performance for most sort and merge
operations. The high-performance sort uses the same command line interface
as the Sort/Merge utility. The high-performance sort can sort records from as
many as 12 input files. Many existing sort and merge operations can use the
high-performance sort without modification.

OpenVMS users can perform DECnet network file operations as a natural
extension of the I/O operations performed on their systems. Most DCL commands
permit the user to access files on remote systems in the same way as on the local
system. Only a node name need be added to the file specification for network
operations. Certain commands that invoke processing on a specific system
require the /REMOTE qualifier (for example, PRINT/REMOTE and SUBMIT
/REMOTE).

The DCL command EXCHANGE/NETWORK allows the transfer of files to
or from heterogeneous operating systems that do not support OpenVMS file
organizations, over DECnet communications links. For example, users can
transfer files between MS–DOS or UNIX systems and OpenVMS systems, with
the option of modifying file and record attributes.

Some DCL commands have qualifiers that make frequently used TCP/IP functions
easier to access in a more integrated manner. These commands include:

• COPY/FTP and COPY/RCP

• DIRECTORY/FTP

• SET HOST/RLOGIN, SET HOST/TELNET, and SET HOST/TN3270

5–11

User Interfaces to the OpenVMS System
5.5 Information Handling on the OpenVMS System

For these commands to work, a separate TCP/IP product that supports these
commands (for example, Digital TCP/IP Services for OpenVMS) must be installed
on the OpenVMS system.

In the POSIX for OpenVMS environment, POSIX interactive users use POSIX
1003.2 commands and utilities to manipulate files. Some POSIX commands
perform the same function as DCL commands, but have different names.
(For example, the POSIX command ls is equivalent to the DCL command
DIRECTORY, and cd is equivalent to the DCL command SET DEFAULT.)
Conversely, some POSIX commands have the same name as DCL commands, but
the functions are different. (For example, the DCL command TYPE displays a
file on the terminal. In a POSIX for OpenVMS environment, the command type
displays the structure or type and pathname of a command, and either the more
or cat utility displays a file on the terminal.)

5.5.4 Text File Editing and Processing
OpenVMS provides several editors for use in editing text files. Text editing is
the process of creating and maintaining character-oriented files. Editors can
also be used to create and modify source files for programming languages or text
formatters (such as VAX DOCUMENT). Two of the most commonly used editors
are EVE and EDT:

• The Extensible Versatile Editor (EVE) allows the user to insert, change,
and delete text quickly. EVE is written in the DEC Text Processing Utility
(DECTPU) language, described in Section 4.2.1. EVE is a full-screen editor
that allows users to scroll through text on a terminal screen. EVE provides
an EDT-style keypad.

• EDT permits the user to enter and manipulate text and programs and
perform line and character editing. EDT is an easy-to-learn editor, with a
help system and a journaling capability to protect against loss of edits. EDT
provides screen editing using the keypad on VT-series terminals.

Another text editor that runs on OpenVMS is the Text Editor and Corrector
(TECO), which is used to edit ASCII files.

POSIX for OpenVMS supports the vi utility, a display-oriented interactive text
editor that includes the line editor, ex. It also supports the ed utility, a line-
oriented text editor. Both utilities are defined in POSIX 1003.2 and in the XPG3
and XPG4 BASE specifications.

Text formatters are used to prepare documents, processing source files into
formatted text and creating tables of contents and indexes. Text processors
available to OpenVMS users include:

• The DIGITAL Standard Runoff (DSR) facility, a basic text formatter supplied
with the OpenVMS system

• VAX DOCUMENT, a text formatter that provides the tools for automated
book publishing and the capability to produce online documentation for the
Bookreader application

Optional products provide for text processing and multimedia document
preparation and control on OpenVMS systems; these services are also available
with middleware products (see Section 6.3.1).

5–12

User Interfaces to the OpenVMS System
5.5 Information Handling on the OpenVMS System

5.5.5 Electronic Mail
OpenVMS users can communicate with users on their own system and on other
systems electronically. The OpenVMS system’s communication capabilities are
designed to operate over a network as easily as on a single system.

The standard electronic mail facility for OpenVMS users is the OpenVMS Mail
utility, which permits a user to send messages to, and receive messages from, any
other user on the same system or to users on other systems on the same network.
Once a user is logged in to the OpenVMS system, Mail displays a message
on the terminal screen with a notification of any incoming mail. A user can
invoke the Mail utility and, at the MAIL> prompt, send or read mail, or perform
other operations such as forwarding or replying to mail, deleting messages, or
extracting messages to create text files. A user can also organize a mail file by
filing mail in folders and displaying the messages contained in each folder. For
more information about using the OpenVMS Mail utility, refer to the OpenVMS
User’s Manual.

The Mail utility provides support for TCP/IP by incorporating features that are
standard on the Internet. Mail has been enhanced to provide support for:

• Parsing of an RFC 822 (username@node) format address with the following
limits on the RFC 822 format: the address must be on one line (with no
CR character), and an address that contains any space characters must be
enclosed in quotation marks.

• Signature files that can be appended to mail messages automatically (for
example, your name, address, and telephone number)

• Standard screen functions (scrolling) for reading messages and reviewing
directory listings

Additionally, the DECwindows Motif desktop environment supports the use of the
DECwindows Mail application (as described in Section 5.2.2).

OpenVMS users in the ALL–IN–1 environment can send mail electronically
across a heterogeneous network using messaging services based on middleware.
MailWorks for OpenVMS provides access to the full range of Digital multivendor
connectivity services by means of the MAILbus facility. The MAILbus family of
products links multivendor electronic mail systems and messaging applications
into an enterprisewide electronic messaging system.

5.5.6 Electronic Conferencing and Text Retrieval Facilities
Other optional communications software permits the OpenVMS user to access
the DEC Notes electronic conferencing facility and the Digital VTX text
retrieval facility. DEC Notes supports group conferencing, organizing online
discussions into topic-and-reply formats that both encourage and keep a record
of team communication. DEC Notes can be accessed from a broad variety
of desktop devices. VTX enables users on various desktop devices to access
online information (such as documents intended for a wide audience), across the
network, using client/server computing. Users find the information they need by
responding to a series of menus.

5–13

Part III
Open Distributed Computing Environments

This part of the manual describes computing environments in which OpenVMS
software can participate.

Chapter 6 describes integrating OpenVMS systems with other systems
in distributed heterogeneous networks and using middleware to support
multivendor integration. The chapter explains how OpenVMS systems and
VMScluster systems are used in client/server configurations.

Chapter 7 presents high-integrity features of OpenVMS systems in distributed
production system environments. It covers optional commercial-strength software
that runs on OpenVMS, providing dependable transaction-processing capabilities
in open environments.

6
OpenVMS Systems in Distributed

Environments

OpenVMS software can be used in an OpenVMS standalone or VMScluster
system configuration or as part of a complex distributed environment involving
software from multiple vendors.

This chapter describes integrated environments in which OpenVMS operating
systems running optional (layered) software are connected to other systems
provided by Digital and other vendors. The chapter summarizes software
functions available in environments specific to OpenVMS and additional functions
useful in open, distributed environments. It describes software1 running on
OpenVMS that is relevant to distributed multivendor environments, such
as networking products and middleware products that support multivendor
application integration. The chapter also describes the participation of OpenVMS
software in distributed client/server relationships, including the use of OpenVMS
servers to provide services to clients on PCs and other desktop systems.

6.1 OpenVMS Functions Applicable to Distributed Environments
The OpenVMS system provides full computing capabilities to OpenVMS users in
standalone, VMScluster, and networked configurations (that involve connections
to other OpenVMS systems and to other systems provided by Digital and other
vendors).

A standalone OpenVMS system or a VMScluster system that is not connected to
other systems can support all basic software functions, including:

• OpenVMS base operating system functions (with built-in features such as
help, Mail, and DECdtm along with integrated software such as VMSclusters,
volume shadowing, and RMS Journaling)

• POSIX capability installed in the OpenVMS base operating system

• The full set of OpenVMS utilities

• Management of the OpenVMS system or VMScluster system

• Full OpenVMS security features

• Program development capabilities

• The ability to run most OpenVMS layered products and applications

These computing capabilities, available to OpenVMS users on every standalone
OpenVMS or VMScluster system, are covered in Part II of this manual.

1 Unless otherwise indicated, optional products mentioned in this manual run on
OpenVMS Alpha systems as well as OpenVMS VAX systems. For further information
about the availability of specific products, see your Digital sales representative.

6–1

OpenVMS Systems in Distributed Environments
6.1 OpenVMS Functions Applicable to Distributed Environments

OpenVMS systems connected in a distributed multivendor network perform
the same functions as a standalone system while using the resources of the
network. This type of environment can involve connection of different systems
and integration of software from multiple vendors. Functions related to using
OpenVMS software in open distributed environments include:

• Use of open standards-based software interfaces

• Use of portable software (such as portable applications that conform to POSIX
standards)

• Use of networking connections

• Use of distributed applications

• Use of middleware for multivendor interoperability

• Integrated management of open systems and multivendor enterprises

• Sharing of resources with other systems

• Participation in multivendor client/server configurations

These software features permit OpenVMS systems to function cooperatively in a
network with other kinds of computers: Digital and other vendor systems, from
PCs to supercomputers.

Open interfaces, portable software features, and distributed computing
capabilities provided by the OpenVMS system are summarized in Chapter 2.
The following sections describe the open, distributed software environments that
OpenVMS systems support.

6.2 OpenVMS Systems in Distributed Heterogeneous Network
Environments

Digital networking supports comprehensive distributed computing environments
that permit OpenVMS and other Digital systems to be connected to systems
supplied by other vendors. The networking software allows connected systems
to share resources and function as an integrated system, providing basically the
same environment for users everywhere in the network.

OpenVMS supports the following networking services that can be integrated into
a single multiprotocol network: the DECnet/OSI family of software and TCP/IP
networking products (networking products are introduced in Section 1.3.4).
DECnet/OSI software (described in detail in Section 6.2.1) permits connection to
virtually all Digital systems and, in its most recent phase, to all systems that
support the international standards for Open Systems Interconnection (OSI).

DECnet/OSI also supports links to TCP/IP transports through TCP/IP networking
products, such as Digital TCP/IP Services for OpenVMS, running on the same
system. The TCP/IP products permit connection to other systems running TCP/IP
and to the Internet (see Section 6.2.2). DECnet/OSI also allows connections to
other networking environments such as public packet-switching networks, PC
LANs, and the IBM SNA network. Supporting these networking services are
products suitable for multivendor environments, such as multiprotocol wide area
network (WAN) routers (see Section 6.2.4).

DECnet, OSI, and TCP/IP networks can be integrated to operate as a single
network, in such a way that the protocols used are transparent to applications
and users (see Figure 1–3).

6–2

OpenVMS Systems in Distributed Environments
6.2 OpenVMS Systems in Distributed Heterogeneous Network Environments

6.2.1 DECnet/OSI Networking Software
The OpenVMS operating system participates in the DECnet/OSI network through
its networking interface: DECnet/OSI software. In addition, optional products
that run on the OpenVMS system provide networking functions that augment the
DECnet/OSI capability.

The two phases of DECnet available on OpenVMS VAX and OpenVMS Alpha
systems are Phase IV and Phase V. DECnet for OpenVMS software, based
on Phase IV DNA network architecture standards, supports the protocols for
DECnet communications. DECnet for OpenVMS VAX software (previously
known as DECnet–VAX Phase IV software) and DECnet for OpenVMS Alpha
support similar features and are interoperable on a DECnet network. Phase
IV implementations of DECnet can communicate with any other software that
supports DECnet Phase IV protocols.

DECnet/OSI, which implements the latest phase of DNA (Phase V), provides the
traditional DECnet features as well as conformance to international standards
and recommendations approved by the following organizations:

• International Organization for Standardization (ISO)

• International Telegraph and Telephone Consultative Committee (CCITT)

• Institute for Electrical and Electronics Engineers (IEEE)

• Internet Engineering Task Force (IETF)

DECnet/OSI supports the ISO standards defining the Open Systems
Interconnection (OSI) model; these standards allow computer systems from
different vendors to be interconnected. DECnet/OSI features a full OSI
implementation with GOSIP certification. DECnet/OSI also supports the IETF
Request for Comments (RFC 1006 and RFC 1006 Plus) that specify how OSI and
DECnet transports should work over TCP transports.

As shown in Figure 6–1, DECnet/OSI integrates DECnet and OSI and supports
links to TCP/IP protocols. The figure shows the DECnet/OSI layered architectural
model that defines an environment for open networking. This model spans
integration from the physical link to the application layer. The integration is
provided in the lower layers where a variety of protocols can be shared by the
upper layer applications. In the upper layers, separate protocol towers are
maintained to provide specific services to network applications.

DECnet/OSI for OpenVMS supports the networking protocols that permit
connection to other systems that use DECnet and to other vendor systems that
support OSI. Existing DECnet Phase IV systems, applications, and network
components can continue to function in a DECnet/OSI environment. DECnet/OSI
end systems can communicate with, and remotely manage, DECnet Phase IV
nodes in the same network. DECnet/OSI end systems can transmit and receive
messages, but cannot route messages through the network. Multiprotocol routers
perform message routing functions in DECnet/OSI networks (see Section 6.2.4).

6–3

OpenVMS Systems in Distributed Environments
6.2 OpenVMS Systems in Distributed Heterogeneous Network Environments

Figure 6–1 Integration of DECnet, OSI, and TCP/IP Network Architectures

Integrated Transport

Integrated Network

RFC 1006

RFC 1006+ TCP

IP

Data Link Layer

Physical Network

ZK−8148A−GE

DNA
Upper
Layers

OSI
Upper
Layers

DECnet
Applications

OSI
Applications

TCP
Applications

6.2.1.1 DECnet/OSI Features and Software
As implemented on the VAX and Alpha platforms, DECnet/OSI for OpenVMS
provides significant features that expand DECnet networking capability:

• Incorporates OSI capabilities to support open, multivendor networks.

• Permits DECnet and OSI applications to run over TCP/IP protocols.

• Provides support for very large networks. A network based on DECnet/OSI
is, in effect, not limited in size. DECnet/OSI introduces increased addressing
capabilities for large networks.

• Supports the following options for storing node names:

Expanded Local Naming Services, a local option that permits up to
100,000 node names to be stored in a DECnet/OSI end system.

DECdns, a networkwide distributed name service that automates node
name management, mapping node names to addresses. DECdns allows
users to use network resources without knowing the network address of
the resources. (Use of a networkwide namespace requires at least one
DECdns server.)

DNS/BIND, the Domain Name System for TCP/IP, which provides for
storage of IP (Internet Protocol) addresses and for use of node synonyms.

• Uses DECdts time service to provide a precise, fault-tolerant clock
synchronization for systems in a local and wide area network.

• Uses a network management architecture that defines manageable units as
entities. Network management is modular and distributed, permitting remote
management of all network functions.

DECnet/OSI for OpenVMS includes the following software that conforms to ISO
standards:

• OSI Transport Service software, which permits OSI applications to run on
OpenVMS hosts

6–4

OpenVMS Systems in Distributed Environments
6.2 OpenVMS Systems in Distributed Heterogeneous Network Environments

• OSI Applications Kernel (OSAK) software, which implements the upper three
layers of the OSI Reference Model

• File Transfer, Access, and Management Service (FTAM), which provides the
ability to access and transfer files in an open systems environment

• DECnet/OSI for OpenVMS Virtual Terminal (VT) software, which permits
remote logins and access to remote applications on any system that runs an
ISO-compliant VT implementation

• OSI application programming interfaces (APIs) to allow for development of
OSI applications

Other optional software products related to DECnet/OSI that can run on
OpenVMS include:

• Message Router and Message Router X.400 Gateway, which provides the
ability to exchange mail in an open systems environment, and MAILbus 400
software, which supports X.400 messaging services

• DEComni, which provides an API for connection and management of
manufacturing/utility control devices and systems, and DEComni MMS,
which implements the ISO Manufacturing Message Specification (MMS)

• DEC/EDI, which enables users to electronically exchange structured business
documents conforming to EDI (Electronic Data Interchange) standards using
communications options including OSI

DECnet/OSI software, running on VAX and Alpha nodes, provides wide area
network support, permitting connection to packet-switching data networks
(PSDNs) that conform to the CCITT X.25 recommendations (such as TYMNET).
For additional information, refer to the DECnet/OSI documentation and Software
Product Descriptions.

OpenVMS users can use DECnet/OSI and PATHWORKS software to connect to
PC LANs.

DECnet/OSI users can also access IBM SNA networks by means of Digital IBM
Interconnect products, a family of networking products that include DECnet/SNA
gateways and 3270 terminal emulators.

6.2.1.2 DECnet Network Management Tasks
General techniques for managing the network are summarized in Section 2.4.2.
This section describes the tasks involved in managing DECnet Phase IV and
DECnet/OSI nodes in a network. Phase IV and Phase V support different
command languages to perform network management tasks.

Phase IV network management involves planning, building, tuning, and
controlling DECnet networks through the use of NCP, the Phase IV command
language. NCP functions include displaying statistical and error information,
controlling network components, and testing network operation. NCP can be
used to create and manage networks, including local and remote node operations,
circuits, lines, and objects.

DECnet/OSI network management is based on the director-entity model described
in Section 6.3.6. The entity-based network management architecture allows
local and remote management of entities throughout the network. The command
language for DECnet/OSI is the Network Control Language (NCL), which can be
accessed either through a traditional command line interface or a graphical user
interface (GUI). NCL accesses management directives defined for DECnet/OSI
entities using the Common Management Information Protocol (CMIP), based on

6–5

OpenVMS Systems in Distributed Environments
6.2 OpenVMS Systems in Distributed Heterogeneous Network Environments

ISO standards for encoding network management operations. NCL can perform
basic management of all entities for a distributed system from a single location
anywhere in the DECnet/OSI network. DECnet/OSI users can also use the
DECnet Phase IV command line interface, NCP, to manage Phase IV nodes in the
network. The NCP Emulator tool is used to install and use layered products that
issue NCP commands.

Network management tasks for DECnet/OSI include the following:

• Management tasks:

Managing nodes in the local namespace and in the distributed namespace;
managing the namespace

Setting up routing between DECnet Phase IV and DECnet/OSI areas

Downline loading, upline dumping, and controlling remote or unattended
systems, using NCL and the Maintenance Operations Protocol (MOP)

Setting up network security, communications links, and the VMScluster
alias, using NCL

• Monitoring tasks:

Reporting network events during network operation, using NCL and the
Event Dispatcher

Collecting information about the local network configuration

Displaying network status and characteristics, using NCL

• Problem-solving tasks:

Testing network software and hardware, using NCL and Loopback tests

Testing network connections using DECnet Test Sender/DECnet Test
Receiver (DTS/DTR)

Collecting and displaying information about specific protocol exchanges
between systems in the network, using the Common Trace Facility (CTF)

DECnet/OSI network management support tools include a DECnet/OSI register
tool used for naming and a DECnet/OSI migration tool to assist users in
performing network management tasks and learning NCL.

OpenVMS users can perform the same general-user functions over the network
that they can carry out for the local system, including remote file operations (see
Section 5.5.3). They can enter DCL commands to perform operations over the
network and develop command procedures and application programs to run over
the network. In addition, they can send mail to remote nodes and use facilities
like the Notes conferences to share data. Examples of DECnet/OSI applications
software used for general-user operations on the OpenVMS system are listed in
Table 6–1.

6–6

OpenVMS Systems in Distributed Environments
6.2 OpenVMS Systems in Distributed Heterogeneous Network Environments

Table 6–1 Examples of DECnet/OSI Applications for General-User Operations

DECnet Application Function

File Access Listener Allows heterogeneous file transfer over the network
using the Data Access Protocol (DAP)

DECdfs Provides OpenVMS users with high-speed, transparent
access to files stored on remote disks as if they were
on local disks

FTAM Provides the ability to access and transfer files in an
open systems environment

Network Virtual Terminal Supports the ability to set host to another system,
using the Communications Terminal Protocol (CTERM)

MAIL-11 Provides mail service over the DECnet network

DEC Notes Allows computer conferencing

6.2.2 OpenVMS Connections to TCP/IP Networks
The Digital TCP/IP Services for OpenVMS product (formerly called the
VMS/ULTRIX Connection product) promotes interoperability and resource
sharing between OpenVMS VAX and OpenVMS Alpha systems and other systems
running TCP/IP. This product makes OpenVMS a full participant in a TCP/IP
network. It supports networking, file sharing, remote terminal access, electronic
mail, and application development between OpenVMS systems and UNIX
systems. Major components of the Digital TCP/IP Services for OpenVMS are
listed in Table 6–2.

Table 6–2 Components of Digital TCP/IP Services for OpenVMS

Component Description

Set of ARPANET1

communication system protocols
Supports industry-standard networking on OpenVMS
through protocols based on the 4.3 Berkeley Software
Distribution:

TCP (Transmission Control Protocol)
IP (Internet Protocol)
FTP (File Transfer Protocol)
Telnet Protocol
UDP (User Datagram Protocol)
Other protocols (ARP, ICMP, RIP)

Remote Procedure Call Allows application developers to partition applications
along subroutine interfaces and have those subroutines
execute on remote hosts

NFS client software Allows OpenVMS users to mount NFS files on other
hosts as if they were local OpenVMS files

NFS server software Permits UNIX clients to access OpenVMS files
and files compatible with UNIX that are stored on
OpenVMS

Anonymous FTP Allows remote users without an account on a specific
node to copy files to and from that node

1The network on which TCP/IP was first implemented.

(continued on next page)

6–7

OpenVMS Systems in Distributed Environments
6.2 OpenVMS Systems in Distributed Heterogeneous Network Environments

Table 6–2 (Cont.) Components of Digital TCP/IP Services for OpenVMS

Component Description

System management and
DECwindows interfaces

Permits the OpenVMS system manager to manage
Internet communications and the NFS server without
detailed knowledge of UNIX networking

Users can connect OpenVMS and Digital UNIX systems with UNIX systems from
other vendors, using industry-standard protocols for communication. Users can
also write network applications that access the Internet protocols using standard
OpenVMS services, including a QIO programming interface to access the lower
level protocols.

In combination with DECnet/OSI, TCP/IP products from Digital and other
vendors support running DECnet and OSI applications over TCP/IP transport
connections.

OpenVMS systems running TCP/IP layered products can communicate over the
global Internet. For example, in an open, multiprotocol network, OpenVMS
systems on LANs can use a corporate gateway that runs TCP/IP or a wide area
multiprotocol router to connect to the Internet.

Network File System (NFS) for OpenVMS provides NFS client and server
software on OpenVMS systems. NFS is a protocol that gives network clients
access to remote file services. The NFS client software allows OpenVMS users to
access remote NFS files. The NFS server software enhances data sharing among
UNIX clients by providing a central data storage facility for OpenVMS and UNIX
files. A UNIX client can access OpenVMS files or files compatible with UNIX that
are stored on the OpenVMS server (which can be either an OpenVMS system or a
VMScluster system).

6.2.3 Network Security
OpenVMS VAX and OpenVMS Alpha security features protect DECnet/OSI
nodes, user accounts, and data through password protection and file protection
mechanisms. In general, the system manager can control access to a system
through the use of proxy accounts and default accounts. The system manager can
use the AUTHORIZE command to create proxy accounts, which specify remote
users or groups of users who can access data on the local system with the same
privileges as users logged in to the local system.

For DECnet for OpenVMS (Phase IV), the establishment of logical links with
remote nodes can be controlled through specification in the network database of
the allowed logical link connections.

To help protect the security of messages transmitted over a local area network,
the Ethernet Enhanced Security System can selectively encrypt information
across a network, without affecting other network nodes not requiring encryption.
This system includes the Digital Ethernet Secure Network Controller (DESNC)
and the Key Distribution Center (KDC) system attached to the LAN. The KDC
system provides tools to permit a system security manager to implement and
manage a security-enhanced LAN. The DESNC and KDC system implements
a default access control policy that allows all nodes on a LAN network to
communicate with each other after successful authentication.

6–8

OpenVMS Systems in Distributed Environments
6.2 OpenVMS Systems in Distributed Heterogeneous Network Environments

6.2.4 Other Supported Networking Protocols and Products
On local area networks, OpenVMS supports the following protocols:

• The LAT protocol, a highly efficient local area transport service that allows
for connections to Digital and nonhost systems. The LAT protocol is used
to communicate with other nodes and with devices (terminals, modems, or
printers) offered by terminal servers on a local area network.

• The local area disk (LAD) protocol, used to access compact disc media that
reside on a Digital InfoServer system.

• The local area systems transport (LAST) protocol, used for virtual disk access.

OpenVMS systems can use the LAD/LAST protocol to access a library of
OpenVMS software and online documentation stored on CD–ROMs on the
InfoServer. The CD–ROM (compact disc read-only memory) is an optical data
storage technology formatted according to the ISO 9660 standard. The InfoServer
is a dedicated hardware and software device that supports locally attached CD–
ROMs and provides shared read-only access to CD–ROM discs. The InfoServer
also provides support for Initial System Loading (ISL) via the LAN, permitting
the OpenVMS operating system to be loaded from a compact disc.

OpenVMS hosts and other hosts can be connected to terminals over the LAN by
means of terminal servers (the DECserver series). For example, a multiprotocol
terminal server offers high-speed connections for terminals, printers, PCs,
and other devices to any network service that supports LAT or TCP/IP. This
DECserver can be used in OpenVMS, Digital UNIX, and DOS environments or
in a network that combines these operating systems. This terminal server can
be directly managed in multivendor network environments as a standalone unit
or in a DEChub configuration. The server provides multivendor connectivity and
wide area routable terminal service.

Multiprotocol wide area networking routers support routing in multivendor
networks. The DEC WANrouter and the DECNIS network integration server
are multiprotocol routers that provide a single routing service for DECnet/OSI
nodes, DECnet Phase IV nodes, TCP/IP nodes, and OSI end systems. Some of
these routers also implement X.25 routing circuits. The WANrouter and DECNIS
use the Integrated IS-IS (Intermediate System-to-Intermediate System) routing
protocol that conforms to the OSI model.

Digital also provides an open, intelligent crossbar switch, the GIGAswitch
device. The GIGAswitch is a datalink-independent device that supports
multiple, dynamic, simultaneous FDDI connections for Alpha, VAX, and other
vendors’ processors. The GIGAswitch facilitates the move to a high-bandwidth
switched network that meets the demands for such applications as imaging and
multimedia.

6.3 Multivendor Integration Using Middleware
Middleware products support multivendor computing capabilities in a distributed
networking environment. Middleware products run on OpenVMS and other
Digital systems and on systems from multiple vendors. Middleware products,
built using industry standards, promote multivendor interoperability (as
discussed in Section 2.1.5.2) and provide services for distributed applications (as
described in Section 2.2.3).

6–9

OpenVMS Systems in Distributed Environments
6.3 Multivendor Integration Using Middleware

Middleware products and tools help applications from different vendors work
together. Middleware facilitates communication between applications so that
different units of an enterprise or business can share information quickly and
easily, even though the units may be distributed in different locations and may
use different computer systems. The services supplied by middleware help make
it possible for a distributed multivendor environment to appear to the user as an
integrated environment.

Middleware services are available for OpenVMS systems, other Digital systems,
and many other systems from multiple vendors. Digital offers middleware
services and frameworks on a number of platforms, including the following:

• OpenVMS VAX systems

• OpenVMS Alpha systems

• Digital UNIX Alpha systems

• ULTRIX RISC systems

• MS–DOS systems

• Microsoft Windows systems

• Windows NT systems

• Macintosh systems

In addition, middleware services are available from Digital on other platforms,
including:

• SunOS systems

• OS/2 systems

• HP–UX systems

• AIX for the RS/6000 systems

• SCO UNIX systems

• ULTRIX MIPS systems

Refer to The Middleware Source Book for a full description of middleware.

6.3.1 Using Middleware with Applications
Application developers can use middleware services to create applications that
provide transparent access to resources throughout a heterogeneous network.

To facilitate integration among different systems, middleware uses a client/server
model of computing combined with standards-based application programming
interfaces (APIs) and networking protocols. For example, an application (a client)
requests information from another application (a server). The request is made
through the API. The API communicates with the underlying middleware service,
which executes the client’s request. The process occurs transparently even
though the client and server are on different systems on the network. The APIs
and network protocols, which pass data and control between client and server,
implement industry and international standards, making the applications less
dependent on any specific platform.

6–10

OpenVMS Systems in Distributed Environments
6.3 Multivendor Integration Using Middleware

6.3.2 Middleware Support for Industry Standards
Middleware services and their interfaces are based on open, industry standards
whenever possible, including standards created by the International Organization
for Standardization (ISO), the American National Standards Institute (ANSI),
and the Institute of Electrical and Electronics Engineers (IEEE). IEEE standards
include the POSIX 1003.n standards. The use of open standards enables
middleware services to span the range of platforms and networks commonly
found in enterprisewide information systems.

The middleware architecture is influenced by a number of specifications, including
the Open Software Foundation (OSF) Application Environment Specification
(AES) and the X/Open Common Application Environment (CAE) specification.

Other consortia and groups influencing one or more of the middleware services
include the Internet Engineering Task Force (IETF), the Object Management
Group (OMG), and the MIT X Consortium.

6.3.3 Middleware Service Categories
Middleware consists of a large number of services, grouped into the following six
categories:

• Presentation services
These services let an application interact with users. Some services operate
across a variety of interface devices, while others support only a particular
class of interface device.

• Communication services
These services let an application communicate with other applications, both
local and remote. They include services for electronic mail and various
communication protocols.

• Control services
These services permit an application to control program execution in both
local and distributed system environments. They include services to invoke
functions provided by application programs, making for a highly extensible
system.

• Information services
These services enable the application to define, store, access, and manipulate
data. They provide a shared repository of information for tools and
applications and for individuals and organizations in an enterprise. These
services support multiple access mechanisms for distributed information.

• Computation services
These services let an application perform complex operations on data. These
services support international character handling and provide a networkwide
concept of time for application programs, which lets applications manipulate
time values and synchronize activities consistently.

• Management services
These services enable system managers to manage an application easily and
consistently from remote nodes. Middleware supports the same scheme to
manage applications as it uses for all of the middleware system components.
This enables system managers to manage any component from anywhere in
the network in a consistent fashion.

6–11

OpenVMS Systems in Distributed Environments
6.3 Multivendor Integration Using Middleware

Table 6–3 summarizes the middleware services and frameworks and their
Digital product implementations. Digital products listed also run individually on
OpenVMS operating systems unless otherwise indicated.

Table 6–3 Middleware Services and Frameworks and Their Digital
Implementations

Middleware Services or Frameworks Digital Implementations

Presentation Services

Forms service DECforms

Graphics service (GKS) Digital GKS

Graphics service (PHIGS) Digital PHIGS

Motif service DECwindows Motif

Printing services BSD Print System
DQS
PATHWORKS printing support
PrintServer

Terminal services DECwindows, PATHWORKS, Telnet, and
other terminal emulators

X Window System service DECwindows Motif

Communication Services

Messaging services MAILbus 400 MTA
MailWorks for OpenVMS Server

Message queuing service DECmessageQ

Remote procedure call service DCE RPC

Control Services

Continuous computing services Reliable Transaction Router

Object broker services ObjectBroker (formerly called DEC ACA
Services)

Multithreading service DECthreads

Transaction management service DECdtm

(continued on next page)

6–12

OpenVMS Systems in Distributed Environments
6.3 Multivendor Integration Using Middleware

Table 6–3 (Cont.) Middleware Services and Frameworks and Their Digital
Implementations

Middleware Services or Frameworks Digital Implementations

Information Services

Compound document service CDA Run-Time Services

Data access services DEC DB Integrator
DEC DB Integrator Gateway

Directory services DNS (Domain Name System), DNS/BIND
DCE CDS (Cell Directory Service)
DECdns
X.500 directory service

File-sharing services NFS network file system
DECdfs
PATHWORKS disk/file sharing service

File Transfer, Access, and Management
Service

DECnet/OSI FTAM

Computation Services

Distributed time service DECdts
DCE DTS

Internationalization services XPG3, XPG4 internationalization services

Management Services

Management Agent service Common Agent (runs on Digital UNIX)

Security service DCE Security

Personal Computing Integration Service

PATHWORKS services PATHWORKS products

Frameworks

Electronic Data Interchange framework DEC/EDI
FileBridge for DEC/EDI
HostBridge for DEC/EDI

Management director framework POLYCENTER Director Framework

Transaction-processing monitor framework
Desktop for ACMS

Workgroup framework LinkWorks

6.3.4 Distributed Computing Environment Software
The OSF Distributed Computing Environment (DCE), described in Section 2.2.4,
is a standard set of software services and interfaces that support the creation,
use, and maintenance of distributed client/server applications. Digital has
implemented a family of DCE products that include a certified set of DCE
functions along with software for developing distributed applications.

6–13

OpenVMS Systems in Distributed Environments
6.3 Multivendor Integration Using Middleware

Digital DCE supplies system managers with a set of tools to consistently manage
the entire distributed computing environment while also ensuring the integrity
of the enterprise. The Digital DCE product family provides users with maximum
flexibility for configuring the environment, which is known as a DCE cell.

Table 6–4 describes the functions supplied by the Digital DCE product family.
The DCE for OpenVMS product family includes the following run-time services
and application development software, which run on the OpenVMS VAX and
OpenVMS Alpha operating systems:

• DCE Run-Time Services for OpenVMS, required for all systems participating
in the DCE cells. The run-time services kit includes DCE client functions and
DCE administration tools.

• DCE Application Development Kit for OpenVMS, required for those
developing distributed applications but optional for other users. The kit
provides users with an Interface Definition Language (IDL) for writing
remote procedure calls.

The DCE product family supports two DCE servers. These servers are
implemented for DCE on OpenVMS systems:

• DCE Cell Directory Server (CDS), a central repository containing information
about the location of resources in the DCE cell. The CDS server allows access
to resources by a single name, regardless of physical location. One CDS
server is required for each DCE cell.

• DCE Security Server, which protects resources from unwanted access by
providing authentication and authorization services and provides for secure
communications within and between DCE cells. One Security Server is
required for each DCE cell.

The DCE for OpenVMS family also supports the Resource Broker. The Resource
Broker is a graphical tool that helps eliminate bottlenecks by letting an
administrator examine server usage around the network and allocate servers
for tasks based upon their availability and efficiency.

Table 6–4 Digital DCE Product Family Functionality

DCE Function Description

DCE Remote Procedure Call (RPC) Creates and runs client/server applications

DCE Distributed Time Service (DTS) Provides synchronizaton of time in a
distributed network environment

DCE Threads Service Provides user context multiprocessing
functionality

DCE Cell Directory Service Provides location-independent naming for
resources

DCE Security Service Provides secure communications and access
by means of authorization and authentication
services

IDL Compiler and associated
development components (such as
UUIDGEN)

Supports IDL, an ANSI C-based language for
writing remote procedure calls

(continued on next page)

6–14

OpenVMS Systems in Distributed Environments
6.3 Multivendor Integration Using Middleware

Table 6–4 (Cont.) Digital DCE Product Family Functionality

DCE Function Description

DCE Resource Broker Supplies the location of servers on which
services can run

The Digital DCE product family is an implementation of OSF DCE standards,
adapted and enhanced for OpenVMS as follows:

• Simplified installation and configuration

• IDL support for both C and Fortran languages

• IDL development templates

• A conversion utility for DCE RPC programs

• The PC NSI Proxy Agent, which enables interoperability with Microsoft’s PC
RPC

The DCE for OpenVMS product family supports the following networking
transports: TCP/IP, UDP, and DECnet Phase IV transports.

6.3.5 Application Development in Multivendor Environments
Digital’s software development environment provides a set of software
development solutions, based on standards, that enable software development,
reengineering, deployment, and management on a variety of computing platforms.
The software development environment is designed to bring the open systems
benefits of flexibility, investment enhancement, and multivendor interoperability
and portability to software development.

The software development environment permits developers to build applications
in the OpenVMS, Digital UNIX, or PC environment for deployment across a
network of systems from different vendors.

A variety of tools, developed by Digital and by other vendors, can be used to
support the entire software development life cycle. Tools from multiple sources
are integrated into a single development environment through a framework of the
following levels of integration:

• Presentation integration: DECwindows Motif provides a common look and
feel across tools. It allows programmers to interact with different tools in the
same way.

• Control integration: ObjectBroker (formerly called DEC ACA Services)
manages the flow from one activity to another, providing dynamic, functional
integration. ObjectBroker integrates functions from one tool to the next,
permitting users to move from one activity to another in a natural manner.

ObjectBroker is Digital’s Object Request Broker, complying with the Common
Object Request Broker Architecture (CORBA) specification, the standard
for central communication and integration of software objects developed
by the Object Management Group (OMG). Object-oriented programming
permits objects (modular pieces of software) to be joined together to create
programs. ObjectBroker allows developers to use an object-oriented paradigm
to integrate independently developed applications across heterogeneous
environments. ObjectBroker facilitates the transition to client/server
computing and reduces the cost of developing new client/server applications.

6–15

OpenVMS Systems in Distributed Environments
6.3 Multivendor Integration Using Middleware

The software development environment provides several DECset software tools
that support software coding, testing, and maintenance of applications and data
on OpenVMS VAX and OpenVMS Alpha systems and Digital UNIX systems. The
DECset tools include:

• DEC Language-Sensitive Editor/Source Code Analyzer (LSE/SCA), used to
develop and debug source code modules for applications. The LSE/SCA editor
has knowledge of the syntax of Digital programming languages and can
provide context-sensitive help. LSE/SCA also allows interactive inquiries
about the structure of the program.

• DEC Code Management System (CMS), which tracks everything that
happens to project files during development, including revisions of source
code, documentation, data files, test files, system build descriptions, and
requirements documents.

• DEC Test Manager, which simplifies the testing process by automating the
organization and execution of tests.

• DEC Module Management System (MMS), which automatically rebuilds the
system after programmers make changes to application code.

• DEC Performance and Coverage Analyzer (PCA), which collects and analyzes
performance and test information; used to identify possible performance
problems in an application.

Other development tools used in the software development environment include:

• DECADMIRE, which provides a means of generating applications that
are based on ACMS or DECforms and database products supplied by
other vendors. DECADMIRE supports rapid development of client/server
applications and makes complex transaction-processing applications easy to
develop.

• Forté, an integrated set of tools for developing, deploying, and managing
client/server distributed applications. The product generates distributed
applications, including native client and server program components.
Applications developed with Forté can run on multiple platforms and can
provide access to databases such as Oracle and Sybase databases.

• DECplan, which is an integrated time and project management tool designed
to help users plan, track, schedule, and report on projects and meetings.
DECplan is a client/server tool based on DECwindows, useful in large,
heterogeneous networks.

Digital’s software development environment supports key programming languages
and compilers, as described in Section 4.2.2.

In addition, the Digital software development environment supports industry-
standard tools for developing three-dimensional (3D) graphics applications. The
following tools run on both OpenVMS VAX and OpenVMS Alpha systems:

• Digital GKS graphics interface services that implement the ANSI and ISO
standards for GKS–3D (the Graphical Kernel System for Three Dimensions).
Digital GKS lets developers create device-independent two- and three-
dimensional image-manipulation applications.

6–16

OpenVMS Systems in Distributed Environments
6.3 Multivendor Integration Using Middleware

• Digital PHIGS graphics interface services that implement the ANSI/ISO
standard for PHIGS (the Programmer’s Hierarchical Interactive Graphics
System). Digital PHIGS lets developers create device-independent three-
dimensional model-manipulation applications.

An additional three-dimensional software product, Digital Open3D for OpenVMS
Alpha, supports the PXG family of graphic accelerators on Digital’s Alpha
workstations. This software includes programming libraries for developing new
applications. Digital Open3D with DECwindows Motif provides an environment
for developing applications that include two- and three-dimensional graphics.

6.3.6 Managing Enterprisewide Multivendor Environments
The comprehensive approach to network management used by Digital
networks also extends to other vendors, networks, systems, and technologies.
Digital products provide for effective management of evolving, heterogeneous,
multiprotocol, multivendor enterprises.

Network management for an enterprise is based on models for integrated
management systems and self-managing network and system components and
lays out the director/entity framework for implementing automated management
functions. The two major components are the manageable units called entities
and the directors that manage the entities.

The POLYCENTER solution for enterprise management, mentioned in
Section 2.4.3, is built on middleware services. The basic POLYCENTER option
includes software packages that provide base-level management capabilities in
scheduling, fault and problem management, security, and storage management.
Advanced network management applications perform higher level tasks such as
integrating network information, loading it into databases, and presenting it to
managers in graphic form.

The POLYCENTER framework is an extendable platform on which other
POLYCENTER products, third-party products, or user-development management
modules can be added. This multiplatform software system can be extended to
manage practically any entity across a distributed environment.

Other POLYCENTER products are described in Chapter 7.

6.4 OpenVMS Software in Multivendor Client/Server Environments
Client/server configurations provide a means of making a distributed, multivendor
environment more effective. The client/server style of distributed computing (as
described in Section 2.2.1) is highly flexible and adapable to a wide variety
of software and hardware configurations. Servers make it possible to share
resources, use data and applications on different vendors’ systems, and provide
the power of large systems to small client computers. Client systems can be
integrated into enterprisewide networking systems, obtaining access to the
resources of an enterprise while still retaining their own individual computing
environments.

The following sections describe how OpenVMS client/server software is used in
VMSclusters and how an OpenVMS system functions as a server to PCs in a
PATHWORKS multivendor environment.

6–17

OpenVMS Systems in Distributed Environments
6.4 OpenVMS Software in Multivendor Client/Server Environments

6.4.1 VMScluster Servers and OpenVMS Clients
In any VMScluster system, users can share computing, disk and tape storage,
and batch and print job processing resources. Any node in the cluster can
use clusterwide batch and print queues. VMScluster technology also allows
cooperating OpenVMS systems to share file and print resources over a LAN. This
capability provides a mechanism for offering print and computing services to the
network.

In a VMScluster configuration, the mass storage control protocol server and the
tape mass storage control protocol server make locally connected disks and tapes
available across the cluster. A VMScluster system can serve files to the LAN for
use by cluster members.

Another client/server relationship on a VMScluster involves DECwindows Motif
display services. These display services offer a consistent interface for sharing
display resources across a VMScluster system. Users can display the output
of programs running on any system in the cluster or any other system in the
network.

VMScluster systems can also act as servers to clients on other vendors’ systems
in PATHWORKS configurations (as described in Section 6.4.2).

6.4.2 OpenVMS Servers in PATHWORKS Environments
PATHWORKS software permits the creation of an integrated desktop
environment in which PC users can share information and resources on a
LAN and access applications, data, and resources on OpenVMS servers and other
servers across local and wide area networks.

The PATHWORKS family of network operating system software includes
server software and client software: PATHWORKS server software running
on OpenVMS VAX, OpenVMS Alpha, and UNIX based operating systems, and
PATHWORKS client software running on personal computers and Macintosh
systems.

To function as a server to PC clients, the OpenVMS VAX and OpenVMS Alpha
systems use PATHWORKS for OpenVMS software in conjunction with the
appropriate networking software products (for example, DECnet/OSI software
and TCP/IP products such as Digital TCP/IP Services for OpenVMS).

Clients located on LANs use various networking transport protocols to
communicate with servers. PATHWORKS network operating system (NOS)
technologies provide basic network services.

PATHWORKS offers a choice of servers, clients, LAN technologies, network
transports, and network operating systems, as follows:

• Servers include OpenVMS operating systems (running on all of the VAX and
Alpha processors) and ULTRIX, Digital UNIX, and SCO UNIX operating
systems.

• Clients include DOS, Windows, Windows 95, Windows NT, OS/2, and
Macintosh systems.

• LAN physical media types include Ethernet, FDDI, and token ring.

• Network transports include DECnet, TCP/IP, IPX, NetBEUI, and AppleTalk,
as well as access to X.25 network connections.

6–18

OpenVMS Systems in Distributed Environments
6.4 OpenVMS Software in Multivendor Client/Server Environments

• Network operating system technologies include basic network services for
LAN Manager, NetWare, and AppleShare.

PATHWORKS client/server software is described in Section 6.4.3. Networking
connections between PATHWORKS clients and servers are covered in
Section 6.4.4. Services provided by OpenVMS servers to PC clients are discussed
in Section 6.4.5.

6.4.3 PATHWORKS Server and Client Software
OpenVMS servers running PATHWORKS for OpenVMS software can act as file,
print, and mail servers to PC clients.

PATHWORKS for OpenVMS servers include:

• PATHWORKS V5 for OpenVMS (LAN Manager): PATHWORKS can use
OpenVMS technology called clustering. Clustering allows multiple systems
to behave as a single server and offers greater resiliency, more efficient load
balancing, and easier system management of the server.

OpenVMS servers support Microsoft LAN Manager V2.2 NOS file and print
services to DOS, Windows, Windows 95, Windows for Workgroups, Windows
NT, or OS/2 clients using DECnet, TCP/IP, and NetBEUI connections.

• PATHWORKS for OpenVMS (NetWare): OpenVMS servers can be configured
to provide services in NetWare networks. One server can be connected to up
to eight NetWare networks. NetWare networks support the IPX protocol.

• PATHWORKS for OpenVMS (Macintosh): OpenVMS servers can act as
file, print, and mail servers to Macintosh clients. Client and server
share information and resources using AppleTalk and DECnet or TCP/IP
connections.

• PATHWORKS for Windows NT: Microsoft RAS software has been enhanced to
allow remote clients to connect to DECnet file servers.

• PATHWORKS for Digital UNIX (LAN Manager): Digital UNIX servers can
act as file, print, and mail servers to PC clients over DECnet or TCP/IP
connections.

• PATHWORKS for Digital UNIX (NetWare): Digital UNIX servers can be
configured to provide NetWare services. Clients can connect with NetBEUI.

• PACER for Digital UNIX: Digital UNIX servers can act as file, print, and
mail servers to Macintosh clients. Client and server share information and
resources using AppleTalk and DECnet or TCP/IP connections.

PATHWORKS client software allows PCs and Macintosh systems to connect
to Digital’s PATHWORKS servers and industry standard NOS servers—such
as those from Novell (NetWare) or Microsoft (Windows NT)—for file and print
services.

In addition, PATHWORKS client software provides the following:

• For Windows and DOS:

Support for Windows 95

Attribute-based searches for printers—for example, by color or location, or
both

A simple method for organizing and sharing information residing in
diverse locations for ad hoc workgroups

6–19

OpenVMS Systems in Distributed Environments
6.4 OpenVMS Software in Multivendor Client/Server Environments

"Protected mode" DECnet and its utilities, saving conventional memory

TCP/IP and its utilities

Middleware applications such as DECmessageQ and ObjectBroker

Mosaic, an Internet browser

PATHWORKS Mail, a front end to OpenVMS Mail

VT320 terminal emulator

ManageWORKS and management applications

And more

• For Windows NT:

DECnet and its utilities

MAIL-11 Client

• For the Macintosh:

DECnet and its utilities

TCP/IP utilities (FTP and others)

Terminal emulators

X display server

Remote management for PATHWORKS for OpenVMS (Macintosh) server

• For OS/2:

SETHOST, a terminal emulator

DECnet, LAT, and utilities

• For Windows 95—as part of PATHWORKS for DOS and Windows:

Mosaic, an Internet browser

"Protected mode" DECnet, LAT, and utilities, saving conventional memory

VT320 terminal emulator

PATHWORKS configurations are flexible and can be changed easily. In most
cases, PATHWORKS client software is originally stored on the server and is
downline loaded over the network to the PC. PC clients can be connected to
multiple servers simultaneously.

Configuration changes, such as the addition of new PATHWORKS clients and
servers, do not cause disruption to the PC user environment.

6.4.4 PATHWORKS Network Connectivity
PATHWORKS provides PC users with a family of network integration products
that supply multivendor LAN connectivity, permitting users on one LAN to
communicate with users on another LAN. PC users can also connect from LANs
to the rest of an enterprise through WAN network connections.

In PATHWORKS configurations, PC clients on LAN physical media use
networking transport protocol software to communicate with OpenVMS and
other servers. Network operating systems (NOSs) provide basic networking
services required for PATHWORKS connections.

6–20

OpenVMS Systems in Distributed Environments
6.4 OpenVMS Software in Multivendor Client/Server Environments

Each server and client node that runs PATHWORKS software uses a network
transport. PATHWORKS supports a broad range of network transports, as listed
in Table 6–5, as well as the use of more than one transport at the same time.

Table 6–5 Network Transports Supported by PATHWORKS Software

Transport Description

DECnet Used to provide file and printer services to clients that run
DECnet and connect to an OpenVMS server. DECnet supports
connections to X.25 networks.

TCP/IP Used to provide file and printer services to PATHWORKS
clients that run TCP/IP and connect to an OpenVMS server
as well as to many industry standard clients. TCP/IP also
supports connections to Internet networks.

AppleTalk for OpenVMS Implements AppleTalk protocols in the OpenVMS environment;
used by Macintosh clients for file and print sharing.

IPX The Novell NetWare Internetwork Packet eXchange protocol;
IPX protocols can be encapsulated in DECnet packets for
transmission across wide area DECnet connections.

NetBEUI The transport layer of the network basic I/O system (NetBIOS)
protocol that lets PC users connect to a PATHWORKS server
as well as to an industry standard server such as the IBS
LANserver.

LAT The Digital local area transport used for terminal
communications and print services for PC clients.

Other PATHWORKS for OpenVMS (Macintosh) connections include the AppleTalk
to DECnet Gateway (OpenVMS software), which lets a Macintosh application
connect to a DECnet service on any server.

The following types of physical interconnect technology can be used in the LANs
to which the PCs are connected:

• Ethernet or FDDI, which provides connection between DOS, PC clients, and
OpenVMS servers

• Token ring, which provides network connection between PC clients and
OpenVMS servers equipped with TRNcontroller adapters

• LocalTalk, which provides connection of Macintosh clients to OpenVMS
servers through gateways

Network operating system technologies include the file and print services for LAN
Manager, NetWare, and AppleShare. Connectivity for LAN-based PCs and the
OpenVMS and Digital UNIX servers are based on adaptations of LAN Manager
from Microsoft. PATHWORKS client support for NetWare allows PCs to function
simultaneously as PATHWORKS clients and NetWare workstations. The NOS for
Macintosh systems is AppleShare (supplied by Apple Computer, Inc.); AppleShare
requires that the AppleTalk network transport protocol be used as the file and
print transport.

6–21

OpenVMS Systems in Distributed Environments
6.4 OpenVMS Software in Multivendor Client/Server Environments

6.4.5 OpenVMS Services for PATHWORKS Clients
Individual OpenVMS systems and VMScluster systems can provide services to
PCs. An OpenVMS system running the appropriate PATHWORKS software can
act as a server for personal computers or as a server for Macintosh systems. More
than one PATHWORKS server product can exist on an OpenVMS system at the
same time.

In a PATHWORKS client/server configuration, OpenVMS servers can be required
to handle multiple requests coming from many systems at different times, and
must handle requests quickly to ensure good response time at the personal
computer. In turn, the desktop systems must be served with the proper security
and system management protection. Servers may offer data of a sensitive nature
(for example, an OpenVMS server may provide financial spreadsheet data to an
MS–DOS PC).

The following characteristics of the OpenVMS system make it an effective server
for desktop PCs:

• OpenVMS is a multiuser system and resource server.

• OpenVMS features VMSclusters, which ensure system reliability and
scalability

• OpenVMS is a multiprogramming, multiprocessing system with preemptive
priority scheduling and is capable of responding rapidly to many requests
from different clients.

• OpenVMS is enhanced with security and system management tools and
techniques based on years of supporting timesharing users.

• OpenVMS resource serving over the network is a natural evolution from
resource serving to multiple users logged in to the system in a timesharing
environment.

• OpenVMS software and layered products provide extensive support for
managing a broad range of systems and complicated networks.

Using PATHWORKS to link PC clients with OpenVMS servers over a LAN
permits the PC users to share files, applications, printers, and electronic mail.
PC users can also take advantage of wide area networking capabilities, system
management, and security features provided by the OpenVMS server, as well as
administrative and security controls provided by LAN Manager.

Specifically, OpenVMS servers running PATHWORKS software can provide
the following services to PC and Macintosh clients running the appropriate
PATHWORKS software:

• File and print services

• Electronic mail services

• VMScluster access

• Management, security, and resource control

Other services provided to PC clients by OpenVMS servers are described in
Section 6.4.6.

6–22

OpenVMS Systems in Distributed Environments
6.4 OpenVMS Software in Multivendor Client/Server Environments

With the appropriate PATHWORKS software, PC and Macintosh clients can
access and store files on OpenVMS and VMScluster systems anywhere in the
local or wide area network. The remote file service appears to the PC client as a
transparent extension of the PC’s local disk. The PC files are automatically stored
on an OpenVMS server in OpenVMS file format and can be shared transparently
with users on DOS, Windows, Windows 95, Windows NT, OS/2, and Macintosh
systems. Applications stored on OpenVMS servers can be run on the client, using
the resources of the client. OpenVMS servers provide large system file capacity,
data integrity, and security to PC files.

OpenVMS servers provide print services to PC clients using standard OpenVMS
print queues. PC users can print files on a local printer connected to the PC or
a remote printer connected to the OpenVMS server on a PATHWORKS network.
PATHWORKS for OpenVMS (Macintosh) provides DECshare print services to
Macintosh clients.

6.4.5.1 Mail Services for PC Users
PATHWORKS mail services provide full OpenVMS mail-handling capabilities to
PC users. Using MAIL, the PC user can communicate with other PC users on
the LAN and with PC and non-PC users throughout the enterprise. OpenVMS
mail services support distribution lists, real-time mail notification, and other mail
functions.

PC users can also access MailWorks for OpenVMS (formerly known as ALL–IN–1
MAIL) on OpenVMS servers. MailWorks for OpenVMS conforms to the ISO
/CCITT X.400 user agent standard and permits the user to exchange mail with
users of any public or private mail system that complies with the X.400 standard
for message exchange throughout the world.

Users of basic Mail and MailWorks for OpenVMS can exchange messages with
X.400 messaging systems such as MCI Mail, facsimile systems, and proprietary
mail systems such as IBM PROFS, as well as with Digital UNIX systems.

6.4.5.2 VMScluster Access for PC Clients
The PATHWORKS V5 for OpenVMS server provides for operations in VMScluster
and VAXcluster environments. The PATHWORKS server includes support for
the PATHWORKS cluster alias name service; this transport-independent service
allows multiple cluster members to appear as a single server to the connecting
clients. The PATHWORKS cluster alias name is further enhanced with a load-
balancing feature that connects clients to the least loaded cluster member in a
VMScluster at connection time.

6.4.5.3 OpenVMS Management Services for PC Clients
Additional services are available to PC users through PATHWORKS software:

• Security for PC data: The OpenVMS server provides password protection,
access control, standard file protection, and security. Use of passwords
permits control of access to network file and print resources. Passwords
can be associated with file directories or printers being offered for use by
OpenVMS servers. Security at the level provided by OpenVMS systems can
be applied to PC files, including access control lists that define users’ rights to
access resources or services. Service and file access controls can be specified
across a VMScluster system, as well as on individual OpenVMS servers.

6–23

OpenVMS Systems in Distributed Environments
6.4 OpenVMS Software in Multivendor Client/Server Environments

PATHWORKS V5 for OpenVMS supports a security model that accommodates
LAN Manager security as well as OpenVMS host security. LAN Manager
servers support two security levels: user-level controls access based on a
user’s account and password, and share-level controls access based on the
password associated with a resource.

• Backup of PC hard disks: The OpenVMS server provides for unattended
backup of PC hard disks through the use of timed batch files. During backup,
PC file-access utilities prohibit unauthorized access.

• Management: The NetWare command line software in PATHWORKS V5 for
OpenVMS provides PC users with command line services for managing and
controlling the PATHWORKS network, including control of client connection
to the server.

PATHWORKS V5 LAN Manager provides domain services to control user
access to the network and manage large diverse networks. Domain services
also support the use of a single login request to gain access to many servers
on a LAN.

ManageWORKS is a Windows PC-based solution which can manage Digital,
IBM, Microsoft, and Novell network operating systems and network hardware
devices on LANs.

• Administrator’s utilities: These utilities permit the system administrator to
register clients, specify clients for remote booting, record network and server
events, broadcast messages to PC users, and adjust server parameters to
achieve efficient and reliable performance.

LAN Manager servers can be managed using a Windows based network
management application included with the PATHWORKS for DOS and
Windows client.

• Remote boot services for DOS PCs: The remote boot capability permits DOS
PCs to activate their operating system, startup files, and PC networking
software from the OpenVMS server on which the software is stored. Remote
booting allows control of PC resources shared by networked PCs and
facilitates system administration of multiple PCs.

6.4.6 Other OpenVMS Services for PC Users
OpenVMS servers running additional optional software can act as database and
transaction-processing servers to personal computer clients.

PC users can use data access services to gain transparent access to remote
databases on OpenVMS servers. Database services based on SQL requests
allow PC users to retrieve corporate data and use the input in PC applications.
Examples of large databases on OpenVMS systems that PCs can access are the
RMS database and other vendor relational databases (such as Oracle Rdb).

The Digital ACCESSWORKS products can be used to provide preconfigured
client/server solutions based on the commercial strength of OpenVMS systems.
DEC ACCESSWORKS supports a range of client devices, including OpenVMS,
UNIX, MS–DOS, Windows, SPARCstation, OS/2, and Macintosh devices. It offers
users concurrent, transparent access to a variety of multivendor data sources,
such as OpenVMS RMS, Oracle Rdb, and IBM DB2, VSAM, and IMS databases.
The various ACCESSWORKS solutions provide core software tools, middleware,
and server software, including PATHWORKS for OpenVMS network operating
system software and DECnet and TCP/IP software.

6–24

OpenVMS Systems in Distributed Environments
6.4 OpenVMS Software in Multivendor Client/Server Environments

PC users can act as full participating clients in transaction-processing
applications through the DECtp Desktop for ACMS product. The ACMS
transaction-processing monitor running on OpenVMS is used to define, run,
and control transaction-processing applications. Desktop ACMS software enables
PC, Macintosh, and OpenVMS clients to interact with ACMS applications on the
OpenVMS server that accesses the database. The clients establish networking
connections to system servers using PATHWORKS software and DECnet, TCP/IP,
or NetWare transports.

Desktop ACMS software links back-end application functionality to front-end
forms management attributes such as displays, terminal characteristics, graphics,
and color. ACMS applications can interact with many types of desktop computers
and desktop user interface packages for Macintosh, MS–DOS, and Windows
systems. Heterogeneous support enables installations to mix PC, Macintosh, and
OpenVMS computers as front-end systems to the same ACMS application.

6–25

7
OpenVMS Systems in Commercial

Environments

OpenVMS systems incorporate commercial-strength software capabilities that
make them highly suitable for use in critical production system computing
environments and in other configurations that require dependable, high-integrity
software.

This chapter covers the capabilities of OpenVMS systems as distributed
production servers in open environments. It also describes layered software
supplied by Digital and other vendors that can run on OpenVMS systems and
VMSclusters in distributed multivendor production environments.

7.1 OpenVMS Production Systems
OpenVMS systems provide high-integrity, commercial-strength capabilities that
meet the needs of production systems. A production system is a computing
system configuration essential or critical to the operation of an organization.
Production systems can exist in a variety of computing environments, ranging
from a single system, cluster, or client/server configuration to complex factory or
commercial configurations involving desktop devices and mainframes.

A production system need not be limited to one system or cluster. A distributed
production system can involve a collection of databases and processors, linked by
high-speed, high-throughput networks, with enabling software that makes the
configuration a single virtual database and processor to the end user, operator,
and system manager.

OpenVMS systems incorporate powerful, dependable production system
capabilities (as summarized in Section 2.3). In addition, OpenVMS systems
support reliable distributed processing in integrated multivendor computing
environments (as described in Chapter 6). OpenVMS systems can be used
with optional software that runs on OpenVMS to meet the following needs of
distributed production systems:

• The production system must remain up and running with little or no
interruption.

• The system must be able to produce data, gathering information from the real
world and processing the data.

• The system needs to present data easily on demand.

• The system must be able to handle heavy work loads.

• The configuration must not be limited in size.

• The system must be able to process a variety of applications.

• The system should not be limited to any particular field of activity.

7–1

OpenVMS Systems in Commercial Environments
7.1 OpenVMS Production Systems

• The system should be able to support transaction processing in open
environments.

• The production system can be part of a global information system.

• Production systems can be at the core of task-driven solutions to overall large
computing problems in organizations or departments.

• Production system environments can involve the use of PCs as terminals over
PATHWORKS connections to OpenVMS servers (see Section 6.4.2).

7.1.1 OpenVMS Distributed Production Servers
OpenVMS VAX and OpenVMS Alpha systems provide the features needed
for production systems of any size or configuration. OpenVMS configurations
supply computing power, manageability, and security in predictable, stable
environments. OpenVMS software ensures high application availability and data
integrity. OpenVMS systems are dependable, exhibiting reliability, recoverability,
and fault tolerance. These commercial-strength attributes of OpenVMS are
summarized in Section 2.3.

OpenVMS systems are extremely well suited to function as production system
servers in multivendor configurations involving distributed processing of
applications. OpenVMS client/server capabilities in distributed environments
are described in Section 6.4.

OpenVMS production servers support distributed production systems that involve
high-integrity, fault-tolerant, and transaction-processing software. OpenVMS
servers can be individual OpenVMS systems or VMScluster systems that
can coexist in a heterogeneous network with servers from other vendors (for
example, IBM servers). Client software can reside on OpenVMS systems and on
any other vendor’s system that can run distributed applications. Middleware
client/server software services can facilitate integration of multivendor
client/server configurations into a single distributed computing environment
(see Section 6.3).

7.1.2 Providing Dependability in Production System Environments
OpenVMS meets the requirement of production systems for dependable software
that ensures availability and data integrity. Dependability attributes of
OpenVMS systems are discussed in Section 2.3.1. This section highlights the
functions of particular OpenVMS integrated and optional software products that
promote availability and data integrity in production systems.

Software for managing and monitoring production system environments is
described in Section 7.1.3. Transaction-processing software that runs on
OpenVMS systems is covered in Section 7.2 and Section 7.3.

7.1.2.1 Maintaining High Availability in Production System Environments
Software that guarantees high availability of OpenVMS systems in production
system environments includes VMSclusters, Volume Shadowing, and DECamds,
the Digital availability manager for distributed systems.

OpenVMS VMScluster systems form an ideal base for developing and running
high-availability applications, such as transaction processing applications and
server applications. VMScluster configurations provide for data sharing and
independent failure characteristics (see Section 2.3.2).

7–2

OpenVMS Systems in Commercial Environments
7.1 OpenVMS Production Systems

Some of the major features of VMScluster systems that promote availability are
the following:

• Ability to survive failure of any component

• Ability to be serviced without interruption to applications

• Functions as a single system but individual systems can leave the cluster
while the cluster continues to operate

• Transparent sharing of resources and data

• Centralized data can be made available to large numbers of users

• Balanced work load across print and batch queues

• Can grow with an organization

• Flexible configurations, including large disaster-tolerant configurations (see
Section 7.1.3.5)

• Support for the full range of OpenVMS systems on VAX and Alpha processors

OpenVMS Volume Shadowing is a system integrated software product that
provides for high data availability for disk storage devices (see Section 2.3.2).
Volume shadowing involves maintaining the same data on multiple disks, called
a shadow set. Volume shadowing provides these availability features:

• Prevents data loss resulting from media deterioration, communication path
failure, or through controller or device failure

• Provides continued access to data despite failures in the disk media, disk
drive, disk controller, or OpenVMS host serving a shadow set member

• Prevents storage subsystem component failures from disrupting system or
application operations

• Continues operation without interruption if one volume fails, automatically
directing requests for data to an alternate volume

• Supports host-based shadowing, including shadowing of widely separated
VMScluster systems connected by LANs

• Usable on any Digital Storage Architecture (DSA) disk and Digital SCSI disks
on any VAX or Alpha processor or VMScluster system

Another tool used by OpenVMS system managers to improve availability is
DECamds, a real-time monitoring, diagnostic, and correction tool. It collects
and analyzes data from multiple nodes simultaneously, directing output to a
centralized DECwindows display. DECamds detects resource availability and
suggests corrective actions.

To improve system availability, DECamds provides the following features:

• Alerts users to resource availability problems, suggests paths of investigation,
and recommends actions to improve availability

• Allows real-time intervention, even when remote nodes are hung

• Centralizes management of remote nodes over the LAN

• Provides an intuitive DECwindows graphical user interface that is easy to
learn and use

• Provides the ability to modify cluster quorum

7–3

OpenVMS Systems in Commercial Environments
7.1 OpenVMS Production Systems

DECamds runs on a VAX or Alpha console, gathering data from remote VAX and
Alpha nodes on which DECamds drivers reside. The application displays two
windows: the event log window oriented toward corrective action, and the system
overview window that offers user-directed data collection and display options.

7.1.2.2 Ensuring Data Integrity in Production Systems Environments
OpenVMS products that promote integrity on OpenVMS systems include RMS
Journaling software and DECdtm services.

RMS Journaling software protects the data integrity of RMS files. RMS
Journaling supports three types of journaling, each providing protection against a
particular type of problem:

• After-image journaling that permits changes made to a data file to be redone:
Designed to recover a file that was lost or corrupted through accidental
deletion or device failure.

• Before-image journaling that returns a data file to the previous state, undoing
changes made to the file: Useful if bad or erroneous data is entered into a file
during an update session.

• Recovery-unit journaling that ensures a series of RMS operations called for
by an application program are done in their entirety or not at all: Protects
against inconsistent data due to the partial completion of transactions.

Recovery-unit journaling provides for transaction integrity. A transaction is a
series of RMS record operations on one or more files and is viewed as an atomic
operation, that is, all operations must be completed or none are (see Section 7.2).

The set of DECdtm services on the OpenVMS operating system (summarized in
Section 3.1.6) provides basic operating system support for distributed transactions
(as described in Section 7.2.3). DECdtm ensures transaction and database
integrity during transaction processing through the use of the two-phase commit
protocol, which ensures that all database resources commit to completing a
transaction or none commit.

7.1.3 Managing and Monitoring Production System Environments
Production system work can be located in centralized data facilities or can be
dispersed throughout a distributed environment. A distributed production system
environment can involve a number of diverse systems used by a large number
of people performing varied tasks. Managing complex computing environments
often involves the use of multiple products and services.

OpenVMS supports a wide variety of optional software tools and utilities to
assist users in managing complex distributed production system environments.
OpenVMS capabilities for managing and providing security for large data
centers and dispersed environments are summarized in Section 2.3.5. Additional
capabilities are provided by software from independent software vendors.

Table 7–1 lists Digital-supplied software running on the OpenVMS system that
can be used in managing complex production systems such as large data centers.
The table covers optional software products and also the following software
supplied with the OpenVMS operating system: Accounting utility, AUTOGEN,
DECevent utility, Error Log utility, generic queues, Monitor utility, and OPCOM
message routing.

7–4

OpenVMS Systems in Commercial Environments
7.1 OpenVMS Production Systems

The following sections provide additional information about some of the tools
running on OpenVMS that are used to manage and monitor distributed
production system environments.

Table 7–1 Software Used to Manage Complex Production Systems

Software Products Function

Accounting

OpenVMS Accounting Facilitates user control

POLYCENTER Accounting
Chargeback1

Provides basic user accounting and chargeback reports

Application Management

ACMS and DECtp Desktop for
ACMS

Provide recoverable applications using a transaction-processing monitor

DECADMIRE Provides for generation of ACMS applications or DECforms and other
vendor database applications, including client/server applications

Application Debugging

DEC Performance and Coverage
Analyzer (PCA)

Tunes and checks applications

Archiving

Storage Library System (SLS) Protects user data on other media

File Shelving

POLYCENTER HSM for
OpenVMS

Provides a file-shelving facility that can move the data portion of an
inactive file to nearline or offline media transparently

Capacity Planning

POLYCENTER Capacity
Planner1

Provides a capacity-planning function to help the system manager
analyze how changes in the configuration affect users’ performance

Event Messages

OPCOM message routing Provides event notification

Error Log utility Selectively reports the contents of an error log file containing events
written by the OpenVMS system

DECevent Event Management
utility‡

Selectively reports the contents of one or more event log files

POLYCENTER Console Manager Consolidates system consoles and analyzes console messages for events

POLYCENTER System
Watchdog

Provides for automated monitoring, detection, and reporting of
hardware and software events, including events defined by a user
application

1Requires POLYCENTER Performance Data Collector
‡Alpha specific

(continued on next page)

7–5

OpenVMS Systems in Commercial Environments
7.1 OpenVMS Production Systems

Table 7–1 (Cont.) Software Used to Manage Complex Production Systems

Software Products Function

Job Scheduling

POLYCENTER Scheduler Schedules batch and print jobs

Generic queues Uses VMScluster queues to feed queues on specific members across the
cluster

Data Access

DEC DB Integrator Gateways A family of gateway products running on OpenVMS that allow users
direct access to data in a wide variety of databases located anywhere on
the network.

RMS Journaling for OpenVMS Provides support for data recovery and transaction processing

Disk Striping

Disk Striping Driver for
OpenVMS

Spreads I/O load over multiple disk drives

Mirrored Disks

OpenVMS Volume Shadowing
(Phase II)

Helps system survive disk failure

Disk Array Management

StorageWorks RAID Software for
OpenVMS

Manages groups of disk drives as arrays

Disk Defragmentation

POLYCENTER File Optimizer Defragments disks by using the OpenVMS movefile subfunction

Forms Management

DECforms Separates form input from application management

Performance Management

AUTOGEN command procedure Optimizes system parameter settings based on usage

POLYCENTER Performance
Advisor1

Identifies performance bottlenecks and recommends ways to fix
problems

DECamds Collects and analyzes data from multiple nodes, detects resource
availability, and suggests corrective action.

DECram (in-memory disk/device) Alleviates I/O bottlenecks

Monitor utility Provides basic performance data

1Requires POLYCENTER Performance Data Collector

(continued on next page)

7–6

OpenVMS Systems in Commercial Environments
7.1 OpenVMS Production Systems

Table 7–1 (Cont.) Software Used to Manage Complex Production Systems

Software Products Function

Software Installation

POLYCENTER Software
Installation utility

Supports a new technology that simplifies the distribution and
management of software

LMF (License Management
Facility) utility

Manages software licences

Remote System Management

POLYCENTER Software
Distribution Manager

Provides easy-to-use remote management of OpenVMS or Digital UNIX
systems

System Configuration

Remote Bridge Management
System (RBMS)

Maintains a database of the setup of a system’s complement of network
servers and facilitates automatic loading of the servers upon system
initialization

Terminal Server Manager (TSM) Maintains a database of the setup of a system’s complement of terminal
servers and facilitates automatic loading of the servers upon system
initialization

VAXsimPLUS † Monitors device status and alerts the system manager of impending
failure

†VAX specific

7.1.3.1 Storage Management Products
Optional products developed by Digital are used to manage mass storage devices
and the data files stored on them in distributed production system environments.
This section discusses examples of mass storage products that run on OpenVMS.

StorageWorks RAID Software for OpenVMS uses RAID (Redundant Array of
Independent Disks) technology to manage groups of disk drives as arrays. RAID
technology was developed as a means for lowering the cost of storage subsystems
while maintaining high availability and improved performance over single disk
drives. A RAID set is a collection of disks that uses various algorithms for
availability and performance, depending on the level of RAID. There are six RAID
levels; the highest performance level is 0. StorageWorks RAID Software supports
RAID level 0 for enhanced I/O performance and RAID level 5 arrays for enhanced
data availability on VAX and Alpha platforms. Both single-host and VMScluster
systems are supported.

Reducing file fragmentation on OpenVMS systems is possible with the
POLYCENTER File Optimizer for OpenVMS. This product provides the ability to
reduce file fragmentation, schedule defragmentation jobs, optimize file placement
on the disk, and select or exclude files. If a user accesses a file that is being
defragmented, the file is released and defragmentation continues on another
file. The defragmentation engine reads the disk’s file structure and dynamically
determines which files should be placed at which locations on the disk. Hot files
(those files on the disk that are accessed most frequently, determined using the
POLYCENTER Performance Solution tool) can be moved to the center of the
disk. Files are moved to different locations on the disk through invocation of the
OpenVMS atomic movefile system service.

7–7

OpenVMS Systems in Commercial Environments
7.1 OpenVMS Production Systems

The Storage Library System (SLS) automatically schedules backup operations
for VMScluster systems, allowing the storage administrator to define which files
should be backed up using what schedule. SLS submits the required backup jobs
on schedule and tracks their progress. SLS automatically manages the usage,
allocation, and tracking of magnetic tapes and write-once-read-many (WORM)
optical disks.

POLYCENTER HSM for OpenVMS, a hierarchical storage management product,
is a file-shelving facility that lowers the average cost of storing data that is rarely
used. The shelving facility functions as an extension to the OpenVMS file system,
allowing the user to move the data portion of an inactive file to nearline or offline
media transparently. While the file is in the shelved state, the file remains visible
in directories, and file attributes can be viewed and modified. When the file data
is read or written, the data is automatically and transparently restored to the
disk. File shelving permits users and applications to keep a large amount of data
readily and easily accessible, without keeping it all on line and without having
to enter explicit commands to move data between online and nearline or offline
storage.

The Disk Striping Driver for OpenVMS combines multiple disks into one virtual
disk or stripe set. Each stripe set, composed of multiple disk drives, appears
to applications and utilities as a single pseudodevice capable of responding to
I/O operations defined for ordinary disk drives. Through the use of parallel
I/O technology, the Disk Striping Driver can spread a file over several disk
drives and read or write it over several channels simultaneously. Use of a stripe
set increases I/O performance over the use of a single disk drive or a set of
unstriped disks. This product solves I/O performance problems and is useful in
load balancing on OpenVMS systems.

Disk striping is RAID level 0, the highest performance RAID. Volume shadowing
is RAID 1. Striping plus shadowing offers the highest performance and the
highest availability of any RAID implementations.

7.1.3.2 DECram for OpenVMS Device Driver
DECram for OpenVMS is an integrated disk device driver that enables OpenVMS
system managers to create pseudodisks in the VAX or Alpha system main memory
to improve I/O performance. The OpenVMS operating system can use standard
OpenVMS disk I/O operations to access data on a DECram disk, but at a much
greater access rate than for standard hardware disks. The DECram disk, resident
in main memory, is accessed through the OpenVMS file system in the same way
that physical disks are accessed; no changes are required to applications or
system software. DECram disks may be used to store frequently needed read-
only data (such as commonly used image files) or to hold temporary or scratch
files for applications. The DECram disk information is volatile; it is not saved
when the system shuts down or crashes.

7.1.3.3 Performance Management Tools
The following optional tools that run on OpenVMS VAX and OpenVMS Alpha
systems help manage performance:

• POLYCENTER Performance Solution products provide capabilities for
performance measurement and capacity management. These products
increase productivity by automating data collection, utilizing artificial
intelligence (AI) techniques for performance-tuning recommendations, and
enabling interactive modeling for capacity planning. Extensive graphing and
reporting facilities supply essential details of system activity. The information
provided by these products helps to optimize the use of current resources as

7–8

OpenVMS Systems in Commercial Environments
7.1 OpenVMS Production Systems

well as to plan more accurately for growth. POLYCENTER Performance
Solution enables data center managers to use a proactive approach to
planning.

POLYCENTER Performance Solution is an integrated set of OpenVMS
layered products, as follows:

The POLYCENTER Performance Data Collector gathers and manages
OpenVMS system data; it must be installed on each system.

The POLYCENTER Performance Advisor provides performance analysis,
graphing, and reporting capabilities; it analyzes data collected using
expert system techniques and generates a statistical overview of actual
system performance.

The POLYCENTER Capacity Planner determines system performance for
various work loads and configurations, using data collected to perform
capacity planning exercises.

The POLYCENTER Accounting Chargeback software allocates charges for
resource usage and generates reports that can be used as an itemized bill
or a general resource utilization report.

See Section 7.1.2.1 for a description of DECamds, which provides real-time
observations of system resources.

7.1.3.4 Optional VMScluster System Management Software
OpenVMS supports optional software products that provide management
capabilities and services for complex distributed environments. These tools
can run on VMScluster systems.

OpenVMS can manage other systems remotely over the network. The
POLYCENTER Software Distribution Manager (previously known as the Remote
System Manager), which runs on OpenVMS VAX and OpenVMS Alpha, is an
optional network product that permits a system manager to manage a number
of OpenVMS systems and UNIX based systems connected to a DECnet network.
The system manager operates from a management server to install software
remotely and schedule or initiate backups for the remote client’s system. The
product permits the manager to manage more systems and offloads system
management tasks from users on individual systems. The POLYCENTER
Software Distribution Manager supports client systems ranging from single
workstations to VMScluster members to PC LAN servers.

POLYCENTER Scheduler for OpenVMS automatically schedules, executes,
and monitors tasks such as backup, file maintenance, and production jobs.
It also supports complicated, repetitive batch applications such as payroll,
manufacturing resource planning, and financial consolidations.

The POLYCENTER System Watchdog Agent (WDA) and Consolidator (WDC) are
optional products that provide automated detection, notification, and correction of
system faults and problems. The System Watchdog monitors network, systems,
subsystems, processes, and user-defined external events, detecting and reporting
changes in resources before serious problems occur, in order to optimize system
availability for users. The POLYCENTER System Watchdog (which replaces
the Data Center Monitor [DCM] product) is part of the integrated set of system
management tools provided by the POLYCENTER Solution (see Section 6.3.6).

7–9

OpenVMS Systems in Commercial Environments
7.1 OpenVMS Production Systems

The POLYCENTER Console Manager consolidates the console management of
distributed heterogeneous equipment. One host can manage multiple computing
resources over standard lines. The POLYCENTER Console Manager notifies
personnel of critical systems events and/or activates corrective action routines.

VAXsimPLUS is a knowledge-based predictive maintenance tool that continually
monitors all system devices to detect problems before they result in down time.
VAXsimPLUS predicts impending failures and provides dynamic disk substitution
and restoration across DECnet, VMScluster, and other systems.

7.1.3.5 Business Recovery Server
The optional Business Recovery Server (discussed in Section 2.3.5) provides
very high levels of system availability and data protection. The server enables
management of widely distributed VMSclusters that are connected in disaster-
tolerant configurations. Integrated software permits CPUs in multiple data
centers to be combined into a single manageable VMScluster system. The menu-
driven installation procedure automatically installs various Business Recovery
Server components and the correct versions of required layered products. In
addition, menu-driven configuration software simplifies such activities as adding
a node or configuring network devices.

The Business Recovery Server consists of data centers that are located a safe
distance apart. Each data center is controlled by an Operator Management
Station (OMS), which makes it possible to monitor and manage these physically
separate data centers across great distances. Sites at a distance of up to 25 miles
apart can be connected using the high-speed FDDI fiber-optic interconnect; sites
at a distance of up to 500 miles apart can be connected using the FDDI along
with ATM and T3 long-distance communication services.

The OMS node is unique to the Business Recovery Server and plays a central role
in cluster management and disaster recovery. The OMS software in a Business
Recovery Server cluster provides even greater disaster tolerance than the highly
reliable and dependable VMSclusters that do not use Business Recovery Servers.
Configured with the recommended hardware, the OMS software:

• Monitors system traffic for any irregularities and copes with a wide range of
possible malfunctions

• Enables management of both locations from either OMS, with the option to
change control from one site to another on demand

• Automatically transfers control to the redundant OMS at the secondary
site if disaster strikes the primary site (the site with system and network
management control)

Multivendor Customer Services offers consultation packages that assist customers
in configuring highly available, disaster-tolerant Business Recovery Server
clusters.

7.2 Transaction Processing in Multivendor Environments
Transaction-processing applications are typically described as critical or ‘‘bet
your business’’ applications, which consequently require the highest degree of
availability, security, and integrity. These applications are usually high-volume,
online applications that process transactions in real time and reflect the most
current state of the business.

7–10

OpenVMS Systems in Commercial Environments
7.2 Transaction Processing in Multivendor Environments

Transaction processing (TP) is the implementation of computer transactions,
which supply the mechanism for accomplishing a business transaction. A
computer transaction is a series of record operations made on one or more files.
Several computer transactions are often required to implement a single business
transaction (such as making a travel reservation or making an electronic funds
transfer from one bank account to another).

The transaction application consists of one or more application programs that
receive the input data and initiate the required transaction. Digital transaction-
processing software provides the underlying integrity for the application,
monitoring the transaction through completion or, in the event of failure,
canceling every step.

7.2.1 Distributed Transaction-Processing Systems
Traditionally, transaction-processing applications have been developed to run
on a single computer such as a large mainframe system. The trend is toward
distributed client/server transaction-processing systems, in which an application
runs on a set of systems linked in a network.

Transaction-processing solutions provided by Digital permit transactions to be
executed at multiple sites and combined with data stored over widely distributed
nodes or to be centralized on a single computer. Distributing transaction-
processing applications across multiple systems provides the following benefits:

• Local data can be kept close to users.

• Processing can be offloaded from more expensive mainframe systems.

• Higher overall throughput can be achieved.

• Communication costs can be cut.

• Scalable solutions can be configured to meet changing needs.

Transaction-processing software that runs on the OpenVMS system involves
TP system functions that are separated into discrete components with specified
interfaces between them. Individual components can be changed without affecting
the others and can be redistributed without impacting the applications. Users
can choose to mix and match components from various vendors as long as the
components comply with the standard interfaces.

High-level software systems that run on OpenVMS systems2 provide capabilities
needed for the core applications of commercial customers:

• DECtp is a transaction-processing system that provides control and
management of TP applications involving multiple users accessing a common
database. The DECtp system is based on the ACMS transaction-processing
monitor (see Section 7.2.2), DECforms (see Section 5.4.1), and relational
database management system software supplied by other vendors, along with
other software development tools. For multivendor desktop systems, the
DECtp Desktop for ACMS product (described in Section 6.4.6) is available.

• DEC Reliable Transaction Router (RTR) is a distributed software message
routing system that supports TP applications (see Section 7.2.4). DEC RTR
permits data to be partitioned over multiple nodes and disks; the location of
the data is transparent to the application.

2 Refer to the applicable Software Product Description for information about support for
each product.

7–11

OpenVMS Systems in Commercial Environments
7.2 Transaction Processing in Multivendor Environments

7.2.2 Distributed Transaction-Processing Monitors
A transaction-processing monitor is a collection of components bundled together
in a tightly integrated package to facilitate application development and provide
high performance and dependability in the production environment.

ACMS is an application control and management system for developing,
controlling, and maintaining transaction-processing applications. It consists of
front-end clients that collect multiple transactions for the back-end servers that
execute the database I/O. ACMS provides operating system interfaces, standard
menu-driven functions, terminal and file I/O services, and other commonly
needed services for building transaction-processing applications, using most
OpenVMS higher level languages. It is designed for high-productivity application
development.

ACMS is a highly reliable TP system that includes dependability features to keep
applications up and running at optimal efficiency, recoverability, and durability.
Some of the major dependability features are:

• Queue management

• Load balancing and scheduling

• Application scheduling

• Deferred transaction scheduling

• Transaction routing

• Security

• Menu subsystems

• Message recovery

• Debugging support

• Interfaces to nonstandard or other-vendor devices

ACMS is fully integrated with DECdtm services, DECforms, and database
software supplied by other vendors. This group of products is part of the
Digital software development environment for providing development, run-
time, and management features for transaction-processing applications. The
high-availability features inherent in these software products combine to provide
smooth transitions when problems or failures occur. Combining ACMS with other
vendor relational database management software improves the system’s ability to
resist most failures.

Features of ACMS that provide for fault management or recovery from failures
that can occur during run time include:

• Automatic front-end terminal failover

• Use of queues to capture user requests

• Balancing of process pools

• ACMS application failover

ACMS works with DECdtm services provided by the OpenVMS operating
system to ensure transaction commits, aborts, and recoveries when failures
occur. DECdtm services maintain database integrity through a two-phase
commit transaction protocol (described in Section 7.2.3) to coordinate the flow of
transaction requests and make sure that all of the operations of a transaction are

7–12

OpenVMS Systems in Commercial Environments
7.2 Transaction Processing in Multivendor Environments

performed, or that none of them are performed. If all operations are performed,
the transaction is committed, and the database is in a consistent state.

The Digital forms management package, DECforms (described in Section 5.4.1),
integrates with ACMS to provide forms-processing capabilities in transaction-
processing environments. Data management is provided by OpenVMS RMS and
database products supplied by other vendors.

7.2.3 Transaction-Processing Support by DECdtm Services on OpenVMS
Systems

DECdtm services available on every OpenVMS VAX and OpenVMS Alpha
operating system ensure transaction and database integrity when used with
multiple transaction-processing monitors and database products in local and
remote locations in distributed processing environments. Applications developed
to handle distributed transactions can include calls to Digital data management
products.

DECdtm services comprise several components, including a transaction manager,
interfaces to system services, logging and recovery services, and communication
services.

The DECdtm transaction manager (TM) supports services, issued from the
transaction-processing applications, to start, end, or abort transactions. The TM
coordinates the action of a distributed transaction by sending instructions to
resource managers (such as RMS Journaling and other vendor database products)
about how to complete the transaction. Each OpenVMS system ordinarily
includes one DECdtm object, containing the TM for transactions initiated from
that node.

The DECdtm log manager provides a mechanism for storing a permanent record
of the execution of distributed transactions. If there is a failure, a resource or
transaction manager can read the log file to determine the state of the transaction
at the time of the failure.

DECdtm implements a two-phase commit protocol to guarantee atomic
transaction processing (see Figure 7–1). The two-phase commit protocol is a
handshaking procedure in which all participants in a distributed transaction first
agree to commit and then, on a signal from a coordinator, actually do commit. All
resources commit, or none of the resources commit; no operation is ever partially
applied to a database. The commitment protocol permits the development of
distributed TP applications that can survive the failure of individual CPUs and
mass storage subsystems.

DECdtm provides the following data integrity features:

• Ensures consistent execution of distributed transactions on the OpenVMS
operating system.

• Ensures database integrity by guaranteeing that transactions spanning
multiple RMS files and databases in local and remote locations finish as a
single unit or not at all.

• Use of the two-phase commit protocol permits a large relational database to
be divided into several smaller databases and allows applications to access
several different databases, without compromising the integrity or consistency
of the data.

7–13

OpenVMS Systems in Commercial Environments
7.2 Transaction Processing in Multivendor Environments

Figure 7–1 Two-Phase Commit Protocol for a Distributed Transaction

Commit

Roll back

Can all
participants

complete the
transaction?

ZK−1772A−GE

Initiates two−phase commit protocol

Application Program

Yes

No

Starts distributed transaction
...

• Supported by transaction-processing monitors (ACMS), RMS Journaling, and
multiple database products supplied by other vendors.

7.2.4 Other Distributed Transaction-Processing Products
In addition to the DECtp system, the transaction-processing capability includes
the DEC Reliable Transaction Router (RTR) and, optionally, DSM, both of which
are available on OpenVMS VAX and OpenVMS Alpha.

DEC RTR is a distributed, fault-tolerant message-routing system that supports
several types of distributed applications, including TP. DEC RTR is designed
to guarantee the delivery of a transaction message from a client to a server
across a network for execution on distributed VAX or OpenVMS Alpha systems
anywhere in the world. Reliability is provided by software fault tolerance through
redundant paths and redundant systems, if necessary. DEC RTR is suitable for
customers with multiple geographic locations, large systems, the need to integrate
distributed applications, and the requirement for the highest levels of reliability,
availability, fault tolerance, and high-performance throughput. DEC RTR is used
for production systems in large, distributed environments (for example, trading or
money-dealing systems and telecommunications systems). The global application
integration and software fault-tolerant protection of DEC RTR ensures that
server applications anywhere in the network are alway available to clients.

The optional DSM system, Digital’s standard MUMPS software, can run on
systems to build and support large, complex, distributed systems for many
industries such as health care, banking, government, transportation, shipping,
and manufacturing. DSM is a high-performance system, consisting of an
interactive, interpretive programming language, database manager, and forms
manager, that can be used to build, test, install, and maintain an application.
DSM is an open, callable system supporting interoperability with other layered
systems.

7–14

OpenVMS Systems in Commercial Environments
7.3 Database Processing in Multivendor Environments

7.3 Database Processing in Multivendor Environments
OpenVMS systems and optional products support the strategy of making
information on any system in the organization transparently available to any
authorized user or application, regardless of which computers are used. The
OpenVMS environment includes tools and software useful in developing and
managing an open information network across an entire enterprise.

Information systems for general office computing, commercial applications,
online transaction-processing, or end-user applications are based on the database
management system. OpenVMS VAX and OpenVMS Alpha systems provide
support for database management systems supplied by Digital (RMS) and other
vendors (for example, Oracle Rdb and Oracle CODASYL DBMS). (RMS, which
is integrated in the OpenVMS operating system, is described in Section 4.8.)
A number of database tools support these database management systems in
distributed environments.

Digital supports a family of data access and integration products that permit
users to access data stored in multiple databases with multiple formats as though
the data were in a single logical database (see Section 7.3.2).

7.3.1 Database Tools Used in a Distributed Environment
Database tools that support database management include:

• DECquery for MS–DOS and DECquery for Windows: Permits PC users to
develop data queries without knowledge of SQL

• DATATRIEVE: A structured, nonprocedural language that provides selective
data retrieval, sorting, formatting, updating, and report generation for Rdb,
DBMS, and RMS formats

• Compound document services: Support the creation, display, processing,
and interchange of different data types (including text, graphics, images,
voice, tables, and multimedia) on different computing platforms. CDA
services provide a consistent way for developers to build applications that
can create, store, view, and share revisable compound documents among
applications on multiple computing systems. (The CDA Viewer available with
the DECwindows Motif user interface is described in Section 5.2.2.)

Database software from other vendors (such as Oracle and Sybase) are also
used with OpenVMS servers in applications such as transaction-processing
applications.

7.3.2 Database Interoperability Software
Digital provides integrated products that permit data sharing in heterogeneous
environments. Users can have a single, consistent interface to directly access
major data sources in an organization. Many types of applications from multiple
vendors on various platforms can exchange data and other functions across a
network.

The Digital family of access and integration products provides a complete set
of software to promote data access and interoperability. These products are
especially suited for production-level, enterprisewide solutions where flexibility,
performance, data integrity, and the handling of large amounts of data are
required.

7–15

OpenVMS Systems in Commercial Environments
7.3 Database Processing in Multivendor Environments

DEC DB Integrator provides users with the capability to transparently access
data stored in multiple homogeneous or heterogeneous databases from SQL-based
tools and applications that reside on multiple platforms (including MS–DOS,
Windows, Macintosh, Sun, and UNIX systems as well as OpenVMS VAX and
OpenVMS Alpha systems). DB Integrator enhances interoperability products
from Digital and other vendors by providing additional transparency when
accessing data stored in multiple databases, in different locations, and with
multiple formats. To the user, the data appears as if it were stored in one logical
database.

DB Integrator works in conjunction with DEC DB Integrator Gateway to provide
integration across different combinations of databases as well as relational and
non-relational data sources.

Digital’s database gateways allow users direct, transparent access to data located
in a very wide variety of databases. Using the DEC DB Integrator Gateways,
users with a desktop tool or application can retrieve or update data from a data
source located anywhere on the network. DB gateway products permit access to
OpenVMS RMS, DEC DSM, Oracle, DB2, Sybase, and EDA/SQL3 databases and
to proprietary data sources through custom drivers.

DEC Data Distributor manages the automated distribution of data among
multiple nodes, using schedulable data transfers. The source database can be a
relational database or one of the DB Integrator Gateway databases. The target
can be a relational database or a DB gateway database. Data can be extracted
from very large production databases and can be automatically combined from
multiple databases into one.

DB Integrator is the data integration component of Digital’s client/server software
configurations. DB Integrator is incorporated with networking, hardware, and
software tools and services to provide a preconfigured data integration solution
running on an OpenVMS server. This solution, called the DEC ACCESSWORKS
product family (described in Section 6.4.6), allows application programs running
on various desktop computers to access information in multiple database systems
over PATHWORKS network connections. Users can access data transparently
from a variety of database management systems, including EDA-supported
databases.

3 More than 50 databases accessible through the Information Builders, Inc. (IBI)
Enterprise Data Access/Structured Query Language (EDA/SQL) application programming
interface.

7–16

A
OpenVMS Support for Standards

The OpenVMS operating system and related optional products support industry
and international standards and specifications. This appendix provides summary
information about OpenVMS conformance and compliance with standards and
specifications adopted by recognized standards bodies, including the following:

• American National Standards Institute (ANSI)

Forms Interface Management System (FIMS) [proposed ANSI/ISO
standard]

• Institute of Electrical and Electronics Engineers (IEEE)

Portable Operating Systems Environment Interface (POSIX)

• International Organization for Standardization (ISO)

• International Telegraph and Telephone Consultative Committee (CCITT)
[recommendations]

• Internet Engineering Task Force (IETF)

• National Institute of Standards and Technology (NIST)

U.S. Federal Information Processing Standards (FIPS)

• Object Management Group (OMG)

• Open Software Foundation (OSF):

OSF Application Environment Services (AES)

OSF Distributed Computing Environment (DCE)

• U.S. National Computer Security Center (NCSC)

Department of Defense System Trusted Computer System Evaluation
Criteria (TCSEC)

• X/Open Portability Guide Issue 3 (XPG3) and Issue 4 (XPG4)

• X Window System (Version 11)

A summary of the types of standards, draft standards, and specifications
supported in major areas of OpenVMS capability appears in Table A–1.

A–1

OpenVMS Support for Standards

Table A–1 OpenVMS Support for Industry and International Standards and
Specifications

Technical Area Type of Standard or Specification

Operating system information interchange ANSI, FIPS, ISO

Operating system interfaces IEEE POSIX 1003.1, 1003.1a (draft),
1003.1b

XPG3 BASE

XPG4 BASE profile

User interfaces X Window System

OSF/Motif

POSIX 1003.2

XPG3 BASE

XPG4 BASE profile

Small systems interface ANSI SCSI-2

Local area networks (Ethernet and FDDI) IEEE 802/ISO 8802 (CSMA/CD)

Security TCSEC from NCSC (OpenVMS VAX
is evaluated at C2)

Management OSF DCE

ISO (CMIP)

ISO 9660

Data interchange ISO

ANSI X.12 (EDI)

ISO SGML

Languages ANSI/MIL-STD/ISO Ada

ANSI/ISO BASIC

ANSI/ISO C

C++

ANSI/ISO COBOL

ANSI/ISO FORTRAN, FIPS

ANSI/ISO Pascal

Networking and communication ISO standards (OSI model)

X.400 CCITT/ISO

X.500 CCITT/ISO

X.25 CCITT

ISO FTAM

TCP/IP

NFS

IETF RFC 822

IETF RFC 1006, 1006 Plus

PostScript

Display PostScript

(continued on next page)

A–2

OpenVMS Support for Standards

Table A–1 (Cont.) OpenVMS Support for Industry and International Standards
and Specifications

Technical Area Type of Standard or Specification

Distributed applications OSF DCE

OMG

Graphics interfaces ISO GKS

ISO GKS 3–D

ISO PHIGS

Forms interfaces ANSI/ISO FIMS (proposed)

A–3

Index

A
Access

database, 6–24, 7–15
OpenVMS systems, 5–1

Access control lists
See ACLs

Access modes, 3–1
ACCESSWORKS, 6–24
Accounting utility (ACCOUNTING), 3–12
ACLs (access control lists), 3–18

protection mechanism, 5–1
ACMS, 7–5

dependability, 2–13, 7–12
failure resistance, 7–12
fault management, 7–12
software, 7–12
use with DECtp Desktop for ACMS, 6–25

Ada, 4–5
Addressing

32-bit, 3–2
64-bit, 3–2
virtual, 3–2

AI (artificial intelligence), 4–6
performance-tuning techniques, 7–8

Alias node identifier, 3–21
ALL–IN–1

accessing the environment, 5–2
user environments, 5–8

Alpha architecture, 1–13
Alpha platforms, 1–3
Alpha processors, 1–1, 1–14
American National Standards Institute

See ANSI
ANALYZE/AUDIT

See Audit Analysis utility
ANALYZE/ERROR_LOG command, 3–12
Anonymous FTP, 6–7
ANSI (American National Standards Institute),

2–2, 6–11, A–1
APL, 4–5
AppleShare, 6–21
AppleTalk, 1–9, 6–18

protocols, 6–21

Applications
components, 4–2
DECwindows Motif, 5–6
developing, 4–1
distributed, 2–6
graphical user interface, 4–18
object-oriented, 6–15
OpenVMS, 1–2
portable, 2–3, 4–3, 5–1
POSIX, 2–4, 3–4, 4–3
real-time, 4–18
three-dimensional graphics support, 6–16
transaction-processing, 2–13

Architectures
Alpha, 1–13
CISC, 1–13
RISC, 1–13
VAX, 1–13

Artificial intelligence
See AI

Assemblers, 4–5
ASTs (asynchronous system traps), 4–11
Asynchronous system traps

See ASTs
ATM communications services, 1–8
Audit Analysis utility (ANALYZE/AUDIT), 3–19
Auditing subsystem, using for security, 3–17
Audit trails, security, 3–18
Authorize utility (AUTHORIZE), 3–10, 3–19
AUTOGEN command procedure, 3–8, 3–12
Availability, 7–2

software tools, 2–12
Availability manager

See DECamds

B
Backups

of PC disks, 6–24
on Alpha systems, 3–11
on VAX systems, 3–11
using SLS, 7–8
using standalone BACKUP, 3–11

Backup utility (BACKUP), 3–11

Index–1

BASIC
DEC BASIC for OpenVMS Alpha, 4–5
VAX BASIC, 4–5

Batch mode, 1–3
Batch operations, 3–13
BLISS-32, 4–5
BLISS-64, 4–5
Bookreader, 5–6
Booting, 3–8

remote services, 6–24
Buses

open, 1–5
storage, 1–5

Business Recovery Server, 2–11, 2–13, 7–10
Buttons, DECwindows Motif, 5–5

C
C

DEC C for OpenVMS Alpha, 4–5
VAX C, 4–5

C++, 4–5
Callable system routines, 4–9
Calling standard, 4–2
Captive accounts, 5–2
CCITT (International Telegraph and Telephone

Consultative Committee), A–1
recommendations, 6–3

CDA compound document architecture, 7–15
CDA Viewer, 5–6, 5–7
CD–ROMs (compact discs read-only memory),

1–6, 6–9
CDS (Cell Directory Server), 2–9, 6–14
CDU

See Command Definition Utility
Cell Directory Server

See CDS
Central processing units

See CPUs
CI computer interconnect, 1–6
CISC

architecture, 1–13
Clients, 2–6, 6–17

PATHWORKS, 6–18
to OpenVMS distributed servers, 7–2

Client/server computing, 1–5, 2–6
in multivendor environments, 6–17
in production systems environments, 7–2
middleware support for, 6–10

Cluster-accessible disks, 3–22
Cluster-accessible tapes, 3–22
CMS, 4–9, 6–16
COBOL

DEC COBOL, 4–6
Code Management System

See CMS

Command Definition utility (CDU), 4–8, 4–17
Command procedures, 5–4
Common Object Request Broker Architecture

See CORBA
Communication service

middleware, 6–11
Communications services

ATM, 1–8
DS3, 1–8
T3, 1–8

Compact discs
See CD–ROMs

Compilers, 4–5
IDL, 6–14

Compound document architecture
See CDA

Computation services
middleware, 6–11

Computer interconnect
See CI

Computing styles, 1–3
Configurations

hardware, 1–7
standalone, 1–7
VAXcluster, 1–7
VMScluster, 1–7

Connection manager, VMScluster, 3–21
Container file systems, POSIX, 4–19, 5–10
Control services

middleware, 6–11
CORBA (Common Object Request Broker

Architecture), 6–15
Core services, OpenVMS, 3–1, 3–4
CPUs (central processing units), 1–4, 1–7

D
Databases

access, 6–24, 7–15
distributed tools, 7–15
interoperability, 7–15
management systems, 7–15

Data centers
Business Recovery Server, 2–13, 7–10
managing, 2–13, 7–4

Data Distributor, 7–16
Data integrity

DECdtm, 7–13
production systems, 7–4
software tools, 2–12, 7–4

Data management, 4–19
DATATRIEVE, 7–15
DB Integrator, 7–16
DB Integrator Gateway, 7–6

Index–2

DCE (Distributed Computing Environment)
product family, 2–9
services and interfaces, 2–9
software, 6–13
standards, 2–2, A–1
support for network transports, 6–15

DCE Application Development Kit for OpenVMS,
2–9, 6–14

DCE CDS
See CDS

DCE cells, 6–14
DCE DTS

See DTS
DCE Remote Procedure Call

See RPC
DCE Run-Time Services for OpenVMS, 2–9, 6–14
DCE Security Server, 2–9, 6–14
DCE Threads Service, 2–9, 6–14
DCL (DIGITAL Command Language), 3–4, 5–2

command procedures, 5–2, 5–4
file commands, 5–10
file-handling commands, 5–9
HELP command, 5–4
setting logical names, 5–3
SHOW command, 3–12
task commands, 5–3

Debuggers, 4–7
DEC ACCESSWORKS

See ACCESSWORKS
DEC Ada

See Ada
DECADMIRE, 6–16, 7–5
DECamds, 2–12, 7–3, 7–6
DEC BASIC

See BASIC
DEC BLISS-32

See BLISS-32
DEC BLISS-64

See BLISS-64
DEC C

See C
DEC C++

See C++
DEC COBOL

See COBOL
DEC Code Management System

See CMS
DEC Data Distributor

See Data Distributor
DEC DB Integrator

See DB Integrator
DEC DB Integrator Gateway

See DB Integrator Gateway
DECdfs, 2–10, 6–7

DECdns, 2–10, 6–4
DECdtm services

data integrity, 7–4
log manager, 7–13
software components, 3–7
support for transaction processing, 2–12, 4–12,

7–13
transaction manager (TM), 7–13

DECdts, 2–10, 6–4
DEC/EDI, 6–5
DECevent Event Management utility, 7–5
DECforms, 2–13, 7–6

user interfaces, 5–8
using in transaction processing applications,

7–13
DEC Fortran

See Fortran
DEC Language-Sensitive Editor/Source Code

Analyzer
See LSE/SCA

DEClinks, 4–18, 5–7
DEC MailWorks

See MailWorks for OpenVMS
DECmigrate for OpenVMS AXP, 1–14, 4–6
DEC Module Management System

See MMS
DECnet

compatibility, 2–10, 2–16, 6–3
networking products, 1–9
networks, 6–2
network transport, 6–21
security, 6–8
user applications, 6–6

DECnet/OSI
software, 6–3

DECnet/OSI for OpenVMS, 1–9
features, 6–4
layers, 6–3
NCL command language, 6–5
network management, 2–16, 6–4, 6–5
open networking, 2–10
OSI model, 2–5
standards supported, 6–3

DECnet for OpenVMS, 1–9, 2–10
NCP command language, 6–5
network management, 2–16
network management tasks, 6–5
Phase IV, 6–3
Phase IV protocols, 1–9

DECNIS network integration server, 1–11, 6–9
DEC Notes

See Notes
DEComni, 6–5
DEComni MMS, 6–5
DEC OPS5

See OPS5

Index–3

DEC Pascal
See Pascal

DEC PL/I
See PL/I

DECplan, 6–16
DECquery

for MS–DOS, 7–15
for Windows, 7–15

DECram, 2–14, 7–6
device drivers, 7–8

DEC Reliable Transaction Router
See RTR

DECrpc, 2–10
DECservers, 6–9
DECset, 4–18, 6–16
DECsound, 5–6
DECterm, 5–6, 5–7
DEC text-processing utility

See DECTPU
DECthreads, 3–3, 4–9
DECtp, 7–11
DECtp Desktop for ACMS, 6–25, 7–5, 7–11
DECTPU, 4–4

EVE, 5–12
DEC WANrouter

See WANrouter
DECwindows Motif

applications, 5–6
buttons, 5–5
client/server software, 2–10, 6–18
components, 5–5
DECterm window, 5–3
dialog boxes, 5–5
distributed features, 2–10
FileView, 5–5, 5–9
graphical user interface, 1–3, 5–2, 5–4
Help menu, 5–5
icons, 5–5
menus, 5–5
portable user interfaces, 2–4
programming libraries and tools, 4–18
Session Manager, 5–5
user environments, 5–5
Workspace, 5–5

Delta/XDelta Debugger (DELTA/XDELTA), 4–7
Dependability, 7–2

OpenVMS systems, 2–11
DESNC (Digital Ethernet Secure Network

Controller), 6–8
Device drivers, 1–7

OpenVMS, 3–3
user-written, 3–3

Dialog boxes, DECwindows Motif, 5–5
DIBOL

VAX DIBOL, 4–6

DIGITAL Command Language
See DCL

Digital Extended Math Library for OpenVMS,
4–11

Digital GKS
See GKS

Digital Network Architecture
See DNA

Digital Open3D for OpenVMS Alpha
See Open3D

Digital PHIGS
See PHIGS

Digital standard MUMPS
See DSM

DIGITAL Standard Runoff
See DSR

Digital Storage Architecture
See DSA

Digital storage system interconnect
See DSSI

Digital TCP/IP Services for OpenVMS
See TCP/IP

Digital VTX
See VTX

Directories
OpenVMS, 5–9
user, 5–9

Disaster-tolerant systems, 2–11, 7–10
Disks

cluster-accessible, 3–22
defragmenting, 7–6

Disk servers, VMScluster, 3–21, 6–18
Disk striping, 2–14, 7–8
Disk Striping Driver for OpenVMS, 2–14, 7–6,

7–8
Distributed computing, 2–6
Distributed Computing Environment

See DCE
Distributed environments, 2–6, 6–2

heterogeneous networks, 6–2
Distributed file system, VMScluster, 3–21
Distributed lock manager, VMScluster, 3–21
Distributed processing, 1–5, 2–1

transactions, 7–11
Distributed production systems, 7–1
Distributed Time Service

See DTS
Distributed transactions, 2–13, 3–7, 7–13
DNA protocols, 1–9, 6–3
DNS/BIND, 6–4
DOCUMENT, 5–12
DS3 communications services, 1–8
DSA (Digital Storage Architecture)

disks, 3–22
tapes, 3–22

Index–4

DSM, 7–14
DSR (DIGITAL Standard Runoff), 5–12
DSSI, 1–6
DTS (Distributed Time Service), 6–14
Dual-architecture VMScluster systems, 1–7

E
Editors, 4–4

ed (POSIX), 5–12
EDT, 4–4, 5–12
EVE, 4–4, 5–12
TECO, 4–5
text file, 5–12
vi (POSIX), 4–5, 5–12

Electronic conferencing
See Notes

Encryption, 2–14, 3–17, 6–8
Environments

ALL–IN–1, 5–2, 5–8
client/server, 2–6, 6–17
common code, 4–2
common language, 4–2
common programming, 4–1
computing, 2–1
DECwindows Motif user, 5–5
distributed, 2–6, 6–1, 6–2
hyperinformation, 4–18, 5–7
multivendor, 2–5, 6–2
open system, 2–1
OpenVMS, 5–2, 6–1
PATHWORKS, 6–18
POSIX, 5–2, 5–7
production systems, 2–1, 7–1
security, 3–17
software development, 6–15
standalone, 6–1
VMScluster, 1–7

Error Log utility (ERROR LOG), 7–5
Ethernet

communications interconnects, 1–8
LAN adapter, 1–6
LAN technology, 6–18
networks, 1–11

EVE (Extensible Versatile Editor), 4–4, 5–12
Event, 3–3
Event flags, 3–4, 4–11
EXCHANGE/NETWORK command, 5–11
Execution queues, 3–13
Extensible Versatile Editor

See EVE

F
Fault tolerance, 2–11
FDDI (Fiber Distributed Data Interface), 1–6

communications interconnects, 1–8, 1–11
Federal Information Processing Standards

See FIPS
Fiber Distributed Data Interface

See FDDI
File Optimizer, 2–14

defragmenting disks, 7–6
reducing file fragmentation, 7–7

Files
container systems, 5–10
DCL commands for, 5–9, 5–10
defragmenting, 7–7
log, 3–12
OpenVMS, 5–9
optimizing, 7–6
POSIX, 5–9, 5–10
POSIX commands for, 5–12
POSIX utilities for, 5–12
protecting, 3–17
RMS, 4–19
sharing, 1–7
specifying OpenVMS, 5–9
specifying POSIX, 5–10
text editor, 5–12
transferring, 5–11, 6–5
utilities for, 5–10

File shelving, 2–14, 7–8
File Transfer, Access, and Management Service

See FTAM
FileView

DECwindows Motif, 5–5
graphical interface, 5–9

FIMS (Forms Interface Management System),
5–8, A–1

FIPS (Federal Information Processing Standards),
2–2, A–1

Forms
electronic, 5–8
standards, 5–8, A–3

Forms Interface Management System
See FIMS

Forté, 6–16
Fortran

DEC Fortran 90, 4–6
DEC Fortran for OpenVMS Alpha, 4–6
DEC Fortran for OpenVMS VAX, 4–6

FTAM (File Transfer, Access, and Management
Service), 6–5

Index–5

G
Generic queues, 3–13, 7–6
GIGAswitch device, 6–9
GKS, 6–16
Graphical interfaces

creating, 4–18
Graphics

applications support for, 6–16
standards, A–3

H
Hardware configurations

standalone, 1–7
VMScluster, 1–8

Help menu, DECwindows Motif, 5–5
Help Message utility (MSGHLP), 5–4
Help system, 5–4
High-performance sort, 4–13, 5–11
HSC hierarchical storage controller, 1–8, 3–22
Hyperapplications, 5–7
Hyperinformation environment, 4–18, 5–7

I
I/O performance

using DECram, 7–8
virtual I/O cache, 3–13

I/O subsystem, 3–1, 3–3
connections, 1–5

I/O system services, 4–12
IBM SNA interconnect products, 1–11, 6–5
Icons, DECwindows Motif, 5–5
IDL (Interface Definition Language), 6–14

compiler, 6–14
IEEE (Institute of Electrical and Electronics

Engineers), 6–11, A–1
definition of open system, 2–1
POSIX standards, 2–2
standards, 6–3

IETF (Internet Engineering Task Force), 6–11,
A–1

Request for Calls, 5–13
Request for Comments, 2–2, 6–3

Images, 3–1, 5–2
Information handling on OpenVMS systems, 5–9
Information management, 7–15
Information services

middleware, 6–11
InfoServer, 1–6, 3–14, 6–9
Installation

OpenVMS Alpha systems, 3–8
OpenVMS VAX systems, 3–8

Institute of Electrical and Electronics Engineers
See IEEE

Integration
data, 7–16
multivendor, 6–9

Interactive mode, 1–3
Interface Definition Language

See IDL
Internationalization features, POSIX, 4–17
International Organization for Standardization

See ISO
International Telegraph and Telephone

Consultative Committee
See CCITT

Internet, 1–11, 6–7
mail features, 5–13

Internet Engineering Task Force
See IETF

Interoperability
database, 7–15
multivendor, 2–5

Interpreters, 4–5
Interprocess communication, 3–4
IPX protocols, 6–21
ISO (International Organization for

Standardization), 6–11, A–1
standards, 2–2, 6–3

J
Job scheduling, 3–3

K
KDC (Key Distribution Center), 6–8
Kernel, OpenVMS, 3–1

threads, 3–3
Key Distribution Center

See KDC

L
LAD (local area disk), 1–6

protocols, 6–9
LAD Control Program (LADCP) utility, 3–14
LAN Ancilliary Control Process (LANACP), 3–21
LAN Control Program (LANCP) utility, 3–21
Languages

ANSI/ISO, 2–4, A–2
compilers, 4–5

LAN Manager, 6–18
LANs (local area networks), 1–11

Ethernet, 1–11, 6–18
Ethernet adapter, 1–6
extended, 1–11
FDDI, 1–11
FDDI adapter, 1–6
token ring, 1–11, 6–18
token ring LAN adapter, 1–6

Index–6

LAST (local area systems transport) protocols,
6–9

LAT Control Program (LATCP) utility, 3–10, 3–14
LAT software, 1–6, 3–14
Lexical functions, 5–4
Librarian utility (LIBRARIAN), 4–7
License Management Facility

See LMF
Linker utility (linker), 4–7
LMF (License Management Facility), 3–10, 7–7
Local area disk

See LAD
Local area network

See LAN
Local area transport

See LAT
Local area VMScluster environments, 1–8
Lock manager, 3–4
Log files, 3–12
Logging in

to operating system, 5–1
to remote system, 5–2

Logical names, 5–3
Log Manager Control Program (LMCP) utility,

3–15
LSE/SCA, 4–5, 6–16

M
MACRO

MACRO-32 Compiler, 4–6
MACRO-64 Assembler, 4–6
VAX MACRO, 4–6

MACRO-32 Compiler
See MACRO

MACRO-64 Assembler
See MACRO

Mail, electronic, 5–13
MAILbus, 6–5
Mail utility, 5–13
Mail utility (MAIL), 6–23
MailWorks, 5–13
MailWorks for OpenVMS, 6–23
Management

complex distributed environments, 7–9
data, 4–19
device, 3–11
large data centers, 7–4
large systems, 2–13
network, 2–15, 3–14, 6–6
OpenVMS Management Station, 3–15
OpenVMS servers for PCs, 6–23
PATHWORKS network, 6–24
performance, 7–8
production systems, 7–4
remote systems, 7–9
setting up a network node, 3–14

Management (cont’d)
storage, 3–11, 7–7
system, 2–1, 2–15, 3–14
VAXclusters, 2–15
VMSclusters, 3–14, 3–20

Management services
middleware, 6–11

ManageWORKS, 6–24
Mathematical functions, 4–10
Memory management subsystem, 3–1
Memory modules, 1–7
Menus, DECwindows Motif, 5–5
Merge utility (MERGE), 5–11
Message Router, 6–5
Message utility (MESSAGE), 4–8, 4–17
Middleware services

categories of services and related products,
6–11

client/server software, 2–7, 6–10
for distributed applications, 2–9
multivendor integration, 1–2, 6–9
product implementations, 6–12
software products, 1–2, 2–6, 6–9
support for standards, 2–6, 6–11
use on other vendor systems, 2–9

MMS, 4–9, 6–16
Module Management System

See MMS
Monitor utility (MONITOR), 3–12
Mount utility (MOUNT), 3–23
Mouse, 5–5
MSCP server software, 3–21
Multimedia documents

linking data, 5–7
preparation and control, 5–12

Multiprocessing, 1–4
symmetric, 1–4, 3–6

Multivendor environments, 6–2
Multivendor integration, 1–2
Multivendor interoperability, 2–5

N
National character set (NCS) utility, 4–9
National Institute of Standards and Technology

See NIST
NET$PROXY.DAT (network proxy database file),

3–18, 3–19
NetBEUI, 6–18
NETPROXY.DAT (network user authorization file),

3–18
NetWare, 6–18, 6–19

protocols, 6–21
Network File System (NFS) for OpenVMS, 6–7
Network operating system

See NOS

Index–7

Networks, 1–4, 1–8
DECnet, 6–2
distributed processing capability, 2–10
heterogeneous, 6–2
integrated, 6–2
managing, 2–1, 6–6, 6–17
open, 2–5
OSI, 6–2
PATHWORKS connectivity, 6–20
PATHWORKS transports, 6–18
proxy database file, 3–18
remote file operations, 5–11
routing, 1–11
security, 3–17, 6–8
software, 1–2
standards, A–2
TCP/IP, 6–2, 6–7
user applications, 6–6

Network user authorization file
See NETPROXY.DAT

NFS network file system, 1–10
protocols, 1–10
server software, 2–5
support for file access, 2–10

NIST (National Institute of Standards and
Technology), 2–2, A–1

NOS (network operating system), PATHWORKS
services, 6–18

Notes, 5–13

O
ObjectBroker, 6–15
Object files, 4–5
Object Management Group

See OMG
Objects

object-oriented data model, 5–7
object-oriented programming, 4–5, 6–15

OLTP (online transaction-processing) applications,
2–13

OMG (Object Management Group), 6–11, 6–15,
A–1

Online transaction processing
See OLTP applications

OPCOM message routing, 7–5
Open3D, 6–17
Open buses and interconnects, 1–6
Open Software Foundation

See OSF
Open specifications, 2–2
Open systems, 2–1
Open Systems Interconnection

See OSI

OpenVMS Alpha operating systems, 1–13
migrating to, 1–3

OpenVMS Alpha System-Code Debugger, 3–4, 4–8
OpenVMS Debugger (debugger), 4–7
OpenVMS Management Station, 3–15
OpenVMS systems

availability, 7–2
commercial-strength software, 7–1
compatibility, 1–3
compliance with open standards, 1–1
components, 3–1
configurations, 1–1, 1–5
debugger, 4–7
dependability, 2–11, 7–2
description, 1–1, 3–1
device drivers, 3–3
disk servers, 6–23
distributed production servers, 7–2
file servers, 6–23
growth potential, 1–15
I/O connections, 1–5
in distributed environments, 6–2
in multivendor environments, 6–2, 7–2
in open environments, 6–2
installation and configuration, 3–8
login access, 5–1
maintaining, 3–12
monitoring, 3–12
open systems capability, 2–1
portable applications, 4–3
POSIX interfaces, 3–4
print servers, 6–23
production systems, 2–11, 7–1
protection against obsolescence, 1–15
scalability, 1–15
security, 3–17
servers, 1–2, 2–7, 6–22
software, 1–1
standalone, 1–7
support for standards, 2–2, A–1
system management, 2–15, 3–7
system services, 3–4, 4–11
tuning, 3–12
user environments, 5–2
user interfaces, 5–1
utility programs, 3–5

OPS5, 4–6
OSF, 2–2, A–1
OSF/Motif standards, 2–4, 5–4
OSF AES, 2–2, 6–11, A–1
OSF Distributed Computing Environment

See DCE
OSI

layers, 6–3
OSI (Open Systems Interconnection), 1–9

model, 2–2, 2–5, 6–3

Index–8

OSI Applications Kernel (OSAK), 6–4

P
Pages, 3–2
Pascal, 4–6
Passwords, 3–17

user, 5–1
Patch utility (PATCH), 4–8
PATHWORKS

backup, 6–24
client/server environment, 2–7
clients, 6–18
environments, 6–18
Macintosh clients, 2–7
network connectivity, 1–6
networking connections to Macintosh clients,

6–20
networking connections to PC clients, 6–20
network management, 6–24
network transports, 1–9, 6–18, 6–21
OpenVMS management servers, 6–23
OpenVMS servers, 1–11, 2–7, 6–22
PC clients, 1–11, 2–7, 6–18
products, 6–19
servers, 6–18

PATHWORKS V5 for OpenVMS (LAN Manager),
6–19

PCA, 6–16, 7–5
PCI (personal computer interface), 1–6
Performance

improving I/O with DECram, 7–8
maintaining system, 3–12
management tools, 7–8
monitoring and tuning, 2–14, 3–12
virtual I/O cache, 3–13

PHIGS, 6–16
PL/I

DEC PL/I for OpenVMS Alpha, 4–6
VAX PL/I, 4–6

Platforms
Alpha, 1–3
VAX, 1–3

POLYCENTER Accounting Chargeback, 7–5
POLYCENTER Capacity Planner, 7–5, 7–9
POLYCENTER Console Manager, 2–13, 7–5, 7–10
POLYCENTER File Optimizer for OpenVMS

See File Optimizer
POLYCENTER Hierarchical Storage Management

(HSM) for OpenVMS
file shelving, 2–14

POLYCENTER HSM for OpenVMS, 7–5
file shelving, 7–8

POLYCENTER management products, 2–16, 6–17
POLYCENTER Performance Advisor, 7–6, 7–9

POLYCENTER Performance Data Collector, 7–9
POLYCENTER Performance Solution, 2–14, 7–8
POLYCENTER Scheduler, 2–15, 7–6, 7–9
POLYCENTER Software Distribution Manager,

2–15, 7–7
POLYCENTER Software Installation utility, 3–8,

7–7
POLYCENTER System Watchdog, 7–5, 7–9
Portability

application, 2–3
developing programs, 4–3
POSIX applications, 2–4, 4–3, 4–13
user, 2–4, 5–1

Portable applications, 3–4
on VAX and Alpha platforms, 1–14, 4–3

POSIX
accessing the environment, 5–2
application development utilities, 4–15
callable interfaces, 4–16
commands, 5–7
complex utilities, 4–15
container file systems, 5–10
ed utility, 5–12
file commands and utilities, 5–12
files, 5–10
file specifications, 5–10
in DCL environment, 4–14
installation and management, 3–14
interactive interface, 4–15
internationalization tools, 4–17
OpenVMS environment, 2–4, 3–5, 5–2
pipes, 4–15
portable applications, 2–4, 3–4, 4–3
programming, 4–13, 4–15
real-time functions, 4–16
real-time interprocess communication, 3–4
shell, 2–5, 4–14, 5–7
standards, 2–3, 5–2, A–1
support of XPG3 BASE specifications, 4–17
support of XPG4 BASE profile specifications,

4–17
system services, 4–15
using ISO C language, 4–15
using OpenVMS capabilities, 4–14
using RMS files, 4–19
utilities, 2–5
vi editor, 5–12

Presentation services
middleware, 6–11

Print operations, 3–13
Process and time management subsystem, 3–1
Processes, 3–1, 5–2

interprocess communication, 3–4
POSIX interprocess communication, 3–4

Processing
centralized, 1–4
distributed, 1–4, 2–1
modes, 1–3

Index–9

Processing (cont’d)
priorities, 3–3
real-time, 1–3
transaction, 2–13
vector, 3–6

Processors
Alpha, 1–1, 1–14
VAX, 1–1, 1–14

Production systems
dependability, 7–2
description, 7–1
managing and monitoring, 7–4
needs, 7–1
OpenVMS capabilities, 2–1, 2–11
OpenVMS management tools, 7–4

Program development, 4–1
Programming

common environments, 4–1
modular techniques, 4–2
software development tools, 4–3
to standards, 4–2

Protected subsystems, 3–19
Protocols

DNA, 1–9, 1–10, 2–10
IPX, 6–21
LAD, 3–14, 6–9
LAST, 6–9
LAT, 3–14, 6–9
NetWare, 6–21
networking, 1–8
NFS, 1–10
OSI, 1–9, 1–10, 2–10
TCP/IP, 1–10, 2–10, 6–7
two-phase commit, 3–7, 7–13

Proxy accounts, 6–8
Proxy Agent, PC NSI, 6–15

Q
Queue commands, 3–13
Queue manager, 3–21
Queues

controlling, 3–21
execution, 3–13
generic, 3–13
management commands, 3–13

R
RAID (Redundant Array of Independent Disks),

7–7
RBMS (Remote Bridge Management System), 7–7
Real-time processing, 1–3
Record Management Services

See RMS
Records, RMS, 4–19

Recoverability, 2–11
Reliability, 2–11
Reliable Transaction Router

See RTR
Remote Bridge Management System

See RBMS
Remote services, booting, 6–24
Resource Broker, 2–9, 6–14
RIGHTSLIST.DAT (user rights database file),

3–18
RISC

architecture, 1–13
RMS, 3–4, 4–2, 4–19

files and records, 4–19
routines, 4–19
utilities, 4–19

RMS Journaling, 3–23, 7–6
data integrity, 2–12, 7–4

Routines
callable system, 4–9
high-performance sort, 4–13
industry-standard, 4–9
RTL, 4–10

RPC, 2–9, 6–14
RTLs (run-time libraries), 3–4

routines, 4–10
RTR (Reliable Transaction Router), 2–13, 7–11,

7–14
Run-time libraries

See RTLs

S
Scheduling jobs, 3–3
SCS (System Communications Services), 3–21
SCSI (Small Computer System Interface), 1–6,

A–2
Security

auditing subsystem, 3–17
authentication, 3–19
B1 class, 3–17
C2 class, 3–17, A–2
file protection, 3–17
intrusion database, 3–19
LAN encryption, 6–8
network, 6–8
OpenVMS services for PC clients, 6–23
OpenVMS system, 3–16, 3–17
password, 3–17
protection mask, 3–11
software, 2–14
user access, 5–1

Servers, 2–6, 6–17
disk, 6–23
file, 6–23
mail, 6–23
OpenVMS, 1–2

Index–10

Servers (cont’d)
OpenVMS distributed production, 7–2
other vendor, 7–2
PATHWORKS, 6–18
print, 6–23
terminal, 6–9
transaction processing, 6–25
VMScluster, 6–18

Session Manager, DECwindows Motif, 5–5
SET HOST command, 5–2
SEVMS (Security Enhancement Service software),

3–17
Shadow sets, 2–12, 3–22
SLS (Storage Library System), 2–14, 7–5, 7–8
Small Computer System Interface

See SCSI
SMP (symmetric multiprocessing), 1–4, 3–6
Software development life cycle, 4–3
Software development tools, 4–2, 6–15
Sort/Merge utility

high-performance routines, 4–13
Sort/Merge utility (SORT/MERGE), 5–11
Standalone backup, backing up the system disk,

3–11
Standalone configurations, 1–7

computing capabilities, 6–1
Standards

ANSI, 2–2
ISO, 2–2, 6–3
middleware support for, 6–11
open, 1–1, 2–2
OpenVMS support for, A–1
OSF AES, 2–2
OSF DCE, 2–2
POSIX, 2–2, 2–3
X/Open, 2–2

Storage management, 3–11
software, 2–14
tools, 3–11, 7–7

StorageWorks RAID Array Subsystems, 3–22
StorageWorks RAID Software for OpenVMS,

2–14, 7–6, 7–7
Swapper, 3–2
Symmetric multiprocessing

See SMP
System access

controlling, 3–10
System Communications Architecture, 1–8
System Communications Services

See SCS
System configuration utilities and commands, 3–9
System Dump Analyzer (SDA) utility, 4–9
System Generation utility (SYSGEN), 3–8
System management, 2–1, 3–14

capabilities, 2–15
tasks, 3–9
utilities, 3–9

System Management utility (SYSMAN), 3–14
System routines, callable, 4–2
System services, OpenVMS, 3–4, 4–11
System tuning, 3–12
System user authorization file

See SYSUAF.DAT
SYSUAF.DAT (system user authorization file),

3–18

T
T3 technology

See DS3 communications services
Tapes, cluster-accessible, 3–22
Tape servers, VMScluster, 3–21, 6–18
TCP/IP, 1–11

layers, 6–3
network connections, 2–10
networking products, 1–9
networks, 6–7
network transport, 6–21
protocols, 1–10, 2–10, 6–7
services for OpenVMS, 1–10, 6–2, 6–7
transports, 1–10
UNIX connections, 2–5

Terminal servers
DECservers, 6–9
multiprotocol, 6–9

Test Manager, 6–16
Text Editor and Corrector

See Editors, TECO
Text Editors

See Editors
Text formatters, 5–12
Text processors, 4–4
Text retrieval facility

See VTX
Threads

DECthreads services, 4–9
kernel, 3–3

Three-dimensional graphics applications, 6–16
Timesharing, 1–4
TMSCP server software, 3–21
Token ring LAN, 1–11, 6–18

adapters, 1–6, 6–21
Transaction interfaces, responding to forms, 1–3
Transaction processing, 7–11

ACMS, 7–12
applications, 2–13, 7–10
client/server systems, 7–11
distributed environments, 4–12, 7–11
distributed management, 3–7
monitor, 2–13, 7–12
servers to desktop clients, 6–25
software, 2–13
two-phase commit protocol, 7–13
using DECdtm, 7–13

Index–11

Transactions
characteristics, 7–11
distributed, 2–13, 3–7

TSM (Terminal Server Manager), 7–7
Tuning, system, 3–12
TURBOchannel I/O interconnect, 1–6
Turnkey user accounts, 5–2
Two-phase commit protocol, 3–7, 7–13

U
U.S. Government OSI Profile (GOSIP) Test

Facility, 2–2
UAFs (user authorization files)

account records, 3–10
process characteristics, 5–2
use during login, 3–10
user accounts, 5–1

UICs (user identification codes), 3–18
protection mechanisms, 5–1

Uniprocessing, 1–4
User accounts, 5–1
User authorization files

See UAFs
User identification codes

See UICs
User interfaces, 1–3

accessing different environments, 5–2
graphical, 5–2, 5–4
portable, 2–4
programming tools, 4–17
responding to forms, 5–8
standards, A–2
system access, 5–1

User portability, 2–4
User rights database file

See RIGHTSLIST.DAT
Utilities

OpenVMS, 3–1, 3–5
POSIX, 4–15

Utility routines
OpenVMS, 4–13

V
VAX

architecture, 1–13
VAX APL

See APL
VAX BASIC

See BASIC
VAX C

See C
VAXcluster environments

availability, 2–11
Business Recovery Server, 7–10
client/server, 2–7

VAXcluster environments (cont’d)
configurations, 1–4, 1–7
disaster-tolerant, 1–8, 2–11

VAX DIBOL
See DIBOL

VAX DOCUMENT
See DOCUMENT

VAXELN toolkit, 4–18
VAX Environment Software Translator

See VEST
VAX MACRO

See MACRO
VAX PL/I

See PL/I
VAX platforms, 1–3
VAX processors, 1–1, 1–14
VAXsimPLUS, 7–7, 7–10
Vector processing, 3–6
Vectors, 3–6
VEST (VAX Environment Software Translator),

4–6
vi editor, 4–5, 5–12
Virtual addressing, 3–2
Virtual I/O cache, 3–13
VME bus, 1–6
VMScluster environments

alias node identifier, 3–21
availability, 7–2
batch queues, 1–8
CI, 1–8
cluster-accessible disks, 1–7
cluster-accessible tapes, 1–7
computing capabilities, 6–1
configurations, 1–4, 1–7
connection manager, 3–21
data servers, 6–18
disk servers, 3–21, 6–18
distributed file system, 3–21
distributed lock manager, 3–21
DSSI, 1–8
dual-architecture configurations, 1–7
execution queues, 3–21
generic queues, 3–21
hardware, 1–8
HSC, 1–8
interconnects, 1–8
management tools, 7–9
managing, 2–15, 3–14, 3–20
mixed-interconnect, 1–8
multisite, 1–8
PATHWORKS support for, 6–23
print queues, 1–8
queue manager, 3–21
resource access, 3–21
resource locking, 3–21
SCSI interconnect, 1–6
servers, 6–18
shared disk resources, 3–22

Index–12

VMScluster environments (cont’d)
shared processing and printer resources, 3–21
software, 1–8, 3–20
software components, 3–20
System Communications Services (SCS), 3–21
tape servers, 3–21, 6–18

VMSINSTAL command procedure, 3–8
Volume shadowing, 3–22, 7–6

data availability, 2–12, 7–3
VTX, 5–13

W
WANrouter, 6–9
WANs (wide area networks), 1–11
Wide area networks

See WANs
Wildcard characters, 5–9

Windowing, 1–3, 5–5
graphical interfaces, 5–4

Workspace, DECwindows Motif, 5–5

X
X.25 software

CCITT recommendations, 6–5, A–2
packet-switching networks, 1–11, 6–5

X.400 messaging services, 6–5
X/Open consortium, 2–2, 6–11
X/Open Portability Guide Issue 3

See XPG3
X/Open Portability Guide Issue 4

See XPG4
X/Open standards, 2–2, 6–11, A–1
XPG3 (X/Open Portability Guide Issue 3), 2–2,

A–1
BASE specification, 2–2, 2–3
Common Applications Environment, 4–17

XPG4 (X/Open Portability Guide Issue 4), 2–2,
A–1

BASE profile specifications, 2–2, 2–3
X Window System, 5–4, A–1

Index–13

