
OpenVMS VAX Card Reader,
Line Printer, and LPA11–K I/O
User’sReferenceManual
Order Number: AA–PVXGA–TE

May 1993

This document contains the information necessary to interface directly
with three device drivers (card reader driver, laboratory peripheral
accelerator driver, and line printer driver) that are supplied as part of
the OpenVMS VAX operating system. Several examples of programming
techniques are included.

Revision/Update Information: This is a new manual.

Software Version: OpenVMS VAX Version 6.0

Digital Equipment Corporation
Maynard, Massachusetts

May 1993

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993.

All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DEC, DECprinter, DECwindows,
Digital, LN01, LN03, LP27, OpenVMS, RSX–11M, UNIBUS, VAX, VAX DOCUMENT,
VAX FORTRAN, VAX MACRO, VAXBI, VMS, and the DIGITAL logo.

ZK6269

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . vii

1 Card Reader Driver

1.1 Supported Card Reader Device . 1–1
1.2 Driver Features . 1–1
1.2.1 Special Card Punch Combinations . 1–1
1.2.1.1 End-of-File Condition . 1–2
1.2.1.2 Set Translation Mode . 1–2
1.2.2 Submitting Batch Jobs Through the Card Reader 1–2
1.2.3 Passing Data to Commands and Images . 1–3
1.2.4 Error Recovery . 1–3
1.3 Card Reader Driver Device Information . 1–4
1.4 Card Reader Function Codes . 1–5
1.4.1 Read . 1–6
1.4.2 Sense Mode . 1–7
1.4.3 Set Mode . 1–7
1.4.3.1 Set Mode . 1–7
1.4.3.2 Set Characteristic . 1–10
1.5 I/O Status Block . 1–11

2 Laboratory Peripheral Accelerator Driver

2.1 Supported Device . 2–1
2.1.1 LPA11-K Modes of Operation . 2–1
2.1.2 Errors . 2–2
2.2 Supporting Software . 2–3
2.3 LPA11-K Device Information . 2–4
2.4 LPA11-K Function Codes . 2–7
2.4.1 Load Microcode . 2–7
2.4.2 Start Microprocessor . 2–7
2.4.3 Initialize LPA11-K . 2–8
2.4.4 Set Clock . 2–8
2.4.5 Start Data Transfer Request . 2–9
2.4.6 LPA11-K Data Transfer Stop Command . 2–12
2.5 High-Level Language Interface . 2–12
2.5.1 High-Level Language Support Routines . 2–13
2.5.1.1 Buffer Queue Control . 2–13
2.5.1.2 Subroutine Argument Usage . 2–15
2.5.2 LPA$ADSWP — Initiate Synchronous A/D Sampling Sweep 2–16
2.5.3 LPA$DASWP — Initiate Synchronous D/A Sweep 2–17
2.5.4 LPA$DISWP — Initiate Synchronous Digital Input Sweep 2–18
2.5.5 LPA$DOSWP — Initiate Synchronous Digital Output Sweep 2–19
2.5.6 LPA$LAMSKS — Set LPA11-K Masks and NUM Buffer 2–19

iii

2.5.7 LPA$SETADC — Set Channel Information for Sweeps 2–20
2.5.8 LPA$SETIBF — Set IBUF Array for Sweeps . 2–20
2.5.9 LPA$STPSWP — Stop In-Progress Sweep . 2–21
2.5.10 LPA$CLOCKA — Clock A Control . 2–22
2.5.11 LPA$CLOCKB — Clock B Control . 2–22
2.5.12 LPA$XRATE — Compute Clock Rate and Preset Value 2–23
2.5.13 LPA$IBFSTS — Return Buffer Status . 2–24
2.5.14 LPA$IGTBUF — Return Buffer Number . 2–24
2.5.15 LPA$INXTBF — Set Next Buffer to Use . 2–25
2.5.16 LPA$IWTBUF — Return Next Buffer or Wait 2–25
2.5.17 LPA$RLSBUF — Release Data Buffer . 2–26
2.5.18 LPA$RMVBUF — Remove Buffer from Device Queue 2–27
2.5.19 LPA$CVADF — Convert A/D Input to Floating-Point 2–27
2.5.20 LPA$FLT16 — Convert Unsigned 16-Bit Integer to Floating-Point . . . 2–27
2.5.21 LPA$LOADMC — Load Microcode and Initialize LPA11-K 2–27
2.6 I/O Status Block . 2–28
2.7 Loading LPA11-K Microcode . 2–29
2.7.1 Microcode Loader Process . 2–29
2.7.2 Operator Process . 2–29
2.8 RSX–11M/M–PLUS and OpenVMS VAX Differences 2–30
2.8.1 General . 2–30
2.8.2 Alignment and Length . 2–30
2.8.3 Status Returns . 2–31
2.8.4 Sweep Routines . 2–31
2.9 LPA11-K Programming Examples . 2–31
2.9.1 LPA11-K High-Level Language Program (Program A) 2–31
2.9.2 LPA11-K High-Level Language Program (Program B) 2–33
2.9.3 LPA11-K QIO Functions Program (Program C) 2–38

3 Line Printer Driver

3.1 Supported Line Printer Devices . 3–1
3.1.1 LP11 Line Printer Controller . 3–1
3.1.2 DMF32 and DMB32 Line Printer Controllers 3–1
3.1.3 LP27 Line Printer . 3–1
3.1.4 LA11 DECprinter I . 3–2
3.1.5 LN01 Laser Page Printer . 3–2
3.1.6 LN03 Laser Page Printer . 3–2
3.2 Driver Features . 3–2
3.2.1 Output Character Formatting . 3–2
3.2.2 Error Recovery . 3–3
3.3 Line Printer Driver Device Information . 3–3
3.4 Line Printer Function Codes . 3–4
3.4.1 Write . 3–5
3.4.1.1 Write Function Carriage Control . 3–5
3.4.2 Sense Printer Mode . 3–8
3.4.3 Set Mode . 3–8
3.5 I/O Status Block . 3–9
3.6 Line Printer Driver Programming Example . 3–10

iv

A I/O Function Codes

A.1 Card Reader Driver . A–1
A.2 Laboratory Peripheral Accelerator Driver . A–1
A.3 Line Printer Driver . A–3

Index

Examples

2–1 LPA11-K High-Level Language Program (Program A) 2–32
2–2 LPA11-K High-Level Language Program (Program B) 2–34
2–3 LPA11-K QIO Functions Program (Program C) 2–38
3–1 Line Printer Program Example . 3–10

Figures

1–1 A Card Reader Batch Job . 1–3
1–2 Binary and Packed Column Storage . 1–7
1–3 Set Mode Characteristics Buffer . 1–8
1–4 Set Characteristic Buffer . 1–10
1–5 IOSB Contents . 1–11
2–1 Relationship of Supporting Software to LPA11-K 2–4
2–2 Data Transfer Command Table . 2–11
2–3 Buffer Queue Control . 2–14
2–4 I/O Functions IOSB Content . 2–28
3–1 P4 Carriage Control Specifier . 3–5
3–2 Write Function Carriage Control (Prefix and Postfix Coding) 3–8
3–3 Set Mode Buffer . 3–9
3–4 Set Characteristics Buffer . 3–9
3–5 IOSB Contents — Write Function . 3–10
3–6 IOSB Contents — Set Mode Function . 3–10

Tables

1–1 Card Reader Device-Independent Characteristics 1–5
1–2 Device-Dependent Characteristics for Card Readers 1–5
1–3 Card Reader I/O Functions . 1–5
1–4 Set Mode and Set Characteristic Card Reader Characteristics 1–8
1–5 Card Reader Codes . 1–8
2–1 Minimum and Maximum Configurations per LPA11-K 2–1
2–2 LPA11-K Device-Independent Characteristics 2–5
2–3 LPA11-K Device-Dependent Characteristics . 2–5
2–4 Procedures for the LPA11-K . 2–13
2–5 Subroutine Argument Usage . 2–15
2–6 LPA$IGTBUF Call — IBUFNO and IOSB Contents 2–25
2–7 LPA$IWTBUF Call — IBUFNO and IOSB Contents 2–26
2–8 Program A Variables . 2–31

v

2–9 Program B Variables . 2–33
3–1 Printer Device-Independent Characteristics . 3–3
3–2 Device-Dependent Characteristics for Line Printers 3–4
3–3 Write Function Carriage Control (FORTRAN: byte 0 not equal to

0) . 3–6
3–4 Write Function Carriage Control (P4 byte 0 equal to 0) 3–6

vi

Preface

Intended Audience
This manual is intended for system programmers who want to take advantage of
the time and space savings that result from direct use of I/O drivers. If you do
not require such detailed knowledge of I/O drivers, use the device-independent
services described in the OpenVMS Record Management Services Reference
Manual.

Document Structure
This manual is organized into three chapters and one appendix, as follows:

• Chapter 1 discusses the card reader driver.

• Chapter 2 discusses the LPA11-K driver.

• Chapter 3 discusses the line printer drivers.

• Appendix A summarizes the QIO function codes, arguments, and function
modifiers that these drivers use.

Associated Documents
The following documents provide additional information:

• OpenVMS I/O User’s Reference Manual

• OpenVMS System Services Reference Manual

• OpenVMS Programming Environment Manual

• OpenVMS Record Management Services Reference Manual

• VMS Device Support Manual

• LPA11-K Laboratory Peripheral Accelerator User’s Guide

• OpenVMS system messages documentation

Conventions
In this manual, every use of OpenVMS VAX means the OpenVMS VAX operating
system.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

vii

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1, then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses.

[] In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets
are not optional, however, in the syntax of a directory name
in a VMS file specification, or in the syntax of a substring
specification in an assignment statement.)

{ } In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in online versions
of the manual.

italic text Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, /PRODUCER=name), and command parameters
in text.

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

numbers All numbers in text are assumed to be decimal, unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

viii

1
Card Reader Driver

This chapter describes the use of the card reader driver that supports the CR11
card reader.

1.1 Supported Card Reader Device
The CR11 card reader reads standard 80-column punched data cards.

1.2 Driver Features
The card reader driver provides the following features:

• Support for multiple controllers of the same type; for example, more than one
CR11 can be used on the system

• Binary, packed Hollerith, and translated 026 or 029 read modes

• Unsolicited interrupt support for automatic card reader input spooling

• Special card punch combinations to indicate an end-of-file condition and to set
the translation mode

• Error recovery

The following sections describe the read modes, special card punch combinations,
and error recovery in greater detail.

The operating system provides the following card reader device- or function-
dependent modifier bits for read data operations:

• IO$M_PACKED—Read packed Hollerith code

• IO$M_BINARY—Read binary code

If IO$M_PACKED is set, the data is packed and stored in sequential bytes of the
input buffer. If IO$M_BINARY is set, the data is read and stored in sequential
words of the input buffer. IO$M_BINARY takes precedence over IO$M_PACKED.

The read mode can also be set by a special card punch combination that sets
the translation mode (see Section 1.2.1.2), or by the set mode function (see
Section 1.4.3).

1.2.1 Special Card Punch Combinations
The card reader driver recognizes three special card punch combinations in
column 1 of a card. One combination signals an end-of-file condition. The other
two combinations set the current translation mode.

1–1

Card Reader Driver
1.2 Driver Features

1.2.1.1 End-of-File Condition
A card with the 12-11-0-1-6-7-8-9 holes punched in column 1 signals an end-of-file
condition. If the read mode is binary, the first eight columns must contain that
punch combination.

1.2.1.2 Set Translation Mode
If the read mode is nonbinary, nonpacked Hollerith (the IO$M_BINARY and
IO$M_PACKED function modifiers are not set), the current translation mode
can be set to the 026 or 029 punch code. (Table 1–5 lists the 026 and 029 punch
codes.) A card with the 12-2-4-8 holes punched in column 1 sets the translation
mode to the 026 code. A card with the 12-0-2-4-6-8 holes punched in column 1
sets the translation mode to the 029 code. The translation mode can be changed
as often as required.

If a translation mode card contains punched information in columns 2 through
80, it is ignored.

The system can read cards that were punched on an 026 punch or an 029 punch.
By default, the translation mode is 029; that is, the system reads cards from an
029 punch. However, you can change the translation mode by using the following:

• The SET CARD_READER command

• Translation mode cards

Use the SET CARD_READER command, with the /026 or /029 qualifier, to set the
card reader to accept cards from either an 026 or an 029 card punch.

Logical, virtual, and physical read functions result in only one card being read. If
a translation mode card is read, the read function is not completed, and another
card is read immediately.

1.2.2 Submitting Batch Jobs Through the Card Reader
When you submit a batch job through a system card reader, precede the card deck
containing the command procedure with cards containing JOB and PASSWORD
commands. These cards specify your user name and password and, when
executed, effect a login for you. The last card in the deck must contain the End
of Job (EOJ) command. The EOJ card is equivalent to logging out. You can also
use an overpunch card instead of an EOJ card to signal the end of a job. To do
this, use an EOF card (12-11-0-1-6-7-8-9) overpunch or use the EOJ command.
Figure 1–1 illustrates a card reader batch job.

1–2

Card Reader Driver
1.2 Driver Features

Figure 1–1 A Card Reader Batch Job

$ PASSWORD HENRY

ZK−0812−GE

...Command Input Stream...

$ EOJ

$ JOB HIGGINS

When the system reads a job from the card reader, it validates the user name and
password specified on the JOB and PASSWORD cards. Then, it copies the entire
card deck into a temporary disk file named INPBATCH.COM in your default disk
and directory, and it queues the job for batch execution. Thereafter, processing is
the same as for jobs submitted interactively with the SUBMIT command. When
the batch job is completed, the operating system deletes the INPBATCH.COM
file.

You can prevent other users from seeing your password by suppressing printing
when you keypunch the PASSWORD card.

1.2.3 Passing Data to Commands and Images
To pass data to commands and images in batch jobs that you submit through a
card reader, you can do the following:

• Include the data in the command procedure by placing the data on the lines
after the command or image that uses the data. Use the DECK and EOD
commands if the data lines begin with dollar signs.

• Temporarily redefine SYS$INPUT as a file by using the DEFINE/USER_
MODE command.

1.2.4 Error Recovery
The card reader driver performs the following error recovery operations:

• If the card reader is off-line for 30 seconds, a ‘‘device not ready’’ message is
sent to the system operator.

• If a recoverable card reader failure is detected, a ‘‘device not ready’’ message
is sent every 30 seconds to the system operator.

• The current operation is retried every two seconds to test for a changed
situation, such as the removal of an error condition.

• The current I/O operation can be canceled at the next timeout without
the card reader being on line. When the card reader comes on line, device
operation resumes automatically.

1–3

Card Reader Driver
1.2 Driver Features

When a recoverable card reader failure is detected and an error message is
displayed on the system operator console, examine the card reader indicator
lights to determine the reason for the failure. Any errors that occur must be
fixed manually. The recovery is transparent to the user program issuing the I/O
request.

The four categories of card reader failures and their respective recovery
procedures are as follows:

• Pick check—The next card cannot be delivered from the input hopper to the
read mechanism. To recover from this error, remove the next card to be read
from the input hopper and smooth the leading edge (the edge that enters the
read mechanism first). Replace the card in the input hopper and press the
RESET button. The card reader operation resumes automatically. If a pick
check error occurs again on the same card, remove the card from the input
hopper and repunch it. Place the duplicate card in the input hopper and press
the RESET button. If the problem persists, either an adjustment is required,
or nonstandard cards are in the input hopper.

• Stack check—The card just read did not stack properly in the output hopper.
To recover from this error, remove the last card read from the output hopper
and examine it. If it is excessively worn or mutilated, repunch it. Place either
card in the read station of the input hopper and press the RESET button.
The card reader operation resumes automatically. If the stack check error
recurs immediately, an adjustment is required.

• Hopper check—Either the input hopper is empty or the output hopper is full.
To recover from this error, examine the input hopper and, if empty, either
load the next deck of input cards or an end-of-file card. If the input hopper is
not empty, remove the cards that have accumulated in the output hopper and
press the RESET button. The card reader operation resumes automatically.

• Read check—The last card was read incorrectly. To recover from this
error, remove the last card from the output hopper and examine it. If it
is excessively worn, mutilated, or contains punches before column 0 or
after column 80, repunch the card. Place either card in the read station of
the input hopper and press the RESET button. The card reader operation
resumes automatically. If the read check error recurs immediately, an
adjustment is necessary.

1.3 Card Reader Driver Device Information
You can obtain information on card reader characteristics by using the Get
Device/Volume Information ($GETDVI) system service. See the OpenVMS System
Services Reference Manual.

$GETDVI returns card reader characteristics when you specify the item
codes DVI$_DEVCHAR and DVI$_DEVDEPEND. Tables 1–1 and 1–2 list
these characteristics. The $DEVDEF macro defines the device-independent
characteristics; the $CRDEF macro defines the device-dependent characteristics.

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and device
class names, which are defined by the $DCDEF macro. The device class for
card readers is DC$_CARD. The device type for the CR11 is DT$_CR11. DVI$_
DEVBUFSIZ returns the buffer size. The default buffer size to be used for all
card reader devices is 80 bytes.

1–4

Card Reader Driver
1.3 Card Reader Driver Device Information

Table 1–1 Card Reader Device-Independent Characteristics

Characteristic 1 Meaning

Dynamic Bit (Conditionally Set)

DEV$M_AVL Device is on line and available

Static Bits (Always Set)

DEV$M_IDV Device is capable of input

DEV$M_REC Device is record-oriented

1Defined by the $DEVDEF macro.

Table 1–2 Device-Dependent Characteristics for Card Readers

Value1 Meaning

CR$V_TMODE
CR$S_TMODE

Specifies the translation mode for nonbinary, nonpacked Hollerith
data transfers.2 Possible values are:

CR$K_T026 Translate according to 026 punch code

CR$K_T029 Translate according to 029 punch code

1Defined by the $CRDEF macro.
2Section 1.2.1.2 describes the set translation mode punch code.

1.4 Card Reader Function Codes
The card reader driver can perform logical, virtual, and physical I/O functions.
Table 1–3 lists these functions and their function codes. These functions are
described in more detail in the sections that follow.

Table 1–3 Card Reader I/O Functions

Function Code and
Arguments Type 1 Function Modifiers Function

IO$_READLBLK P1,P2 L IO$M_BINARY
IO$M_PACKED

Read logical block.

IO$_READVBLK P1,P2 V IO$M_BINARY
IO$M_PACKED

Read virtual block.

IO$_READPBLK P1,P2 P IO$M_BINARY
IO$M_PACKED

Read physical block.

IO$_SENSEMODE L Sense the card reader
characteristics and
return them in the I/O
status block.

IO$_SETMODE P1 L Set card reader
characteristics for
subsequent operations.

1V = virtual; L = logical; P = physical

(continued on next page)

1–5

Card Reader Driver
1.4 Card Reader Function Codes

Table 1–3 (Cont.) Card Reader I/O Functions

Function Code and
Arguments Type 1 Function Modifiers Function

IO$_SETCHAR P1 P Set card reader
characteristics for
subsequent operations.

1V = virtual; L = logical; P = physical

1.4.1 Read
Read is a function that reads data from the next card in the card reader input
hopper into the designated memory buffer in the specified format. Only one card
is read each time a read function is specified.

The operating system provides the following read function codes:

• IO$_READVBLK—Read virtual block

• IO$_READLBLK—Read logical block

• IO$_READPBLK—Read physical block

The following function-dependent arguments are used with these codes:

• P1—The starting virtual address of the buffer that is to receive the data

• P2—The number of bytes that are to be read in the specified format

The read binary function modifier (IO$M_BINARY) and the read packed Hollerith
function modifier (IO$M_PACKED) can be used with all read functions. If IO$M_
BINARY is specified, successive columns of data are stored in sequential word
locations of the input buffer. If IO$M_PACKED is specified, successive columns
of data are packed and stored in sequential byte locations of the input buffer. If
neither of these function modifiers is specified, successive columns of data are
translated in the current mode (026 or 029) and are stored in sequential bytes
of the input buffer. Figure 1–2 shows how data is stored by IO$M_BINARY and
IO$M_PACKED.

Regardless of the byte count specified by the P2 argument, a maximum of 160
bytes of data for binary read operations and 80 bytes of data for nonbinary read
operations (IO$M_PACKED, or 026 or 029 modes) are transferred to the input
buffer. If P2 specifies less than the maximum quantity for the respective mode,
only the number of bytes specified are transferred; any remaining buffer locations
are not filled with data.

1–6

Card Reader Driver
1.4 Card Reader Function Codes

Figure 1–2 Binary and Packed Column Storage

Binary Column (IO$M_BINARY):

15 12 11 0

* 1 2 3 4 5 6 7 8 9

*Bits 12−15 are 0.
Packed Column (IO$M_PACKED):

7 3 2 0

*n = 0 if no punches in rows 1−7.
= 1 if a punch in row 1.
= 2 if a punch in row 2.

= 7 if a punch in row 7.

ZK−0646−GE

12 11 0

n*8912 11 0

1.4.2 Sense Mode
Sense mode is a function that senses the current device-dependent card reader
characteristics and returns them in the second longword of the I/O status block
(see Table 1–2). No device- or function-dependent arguments are used with IO$_
SENSEMODE.

1.4.3 Set Mode
Set mode operations affect the operation and characteristics of the associated
card reader device. The operating system defines the following types of set mode
functions:

• Set mode

• Set characteristic

1.4.3.1 Set Mode
The set mode function affects the characteristics of the associated card reader.
Set mode is a logical I/O function and requires the access privilege necessary to
perform logical I/O. The following function code is provided.

• IO$_SETMODE

This function takes the following device- or function-dependent argument:

• P1—The address of a characteristics buffer

1–7

Card Reader Driver
1.4 Card Reader Function Codes

Figure 1–3 shows the quadword set mode characteristics buffer.

Figure 1–3 Set Mode Characteristics Buffer

31 16 15 0

ZK−0647−GE

Card Reader Characteristics

Buffer Size Not Used

Table 1–4 lists the card reader characteristics and their meanings. The $CRDEF
macro defines the characteristics values. Table 1–5 lists the 026 and 029 card
reader codes.

Table 1–4 Set Mode and Set Characteristic Card Reader Characteristics

Value1 Meaning

CR$V_TMODE
CR$S_TMODE

Specifies the translation mode for nonbinary, nonpacked Hollerith
data transfers. Possible values are:

CR$K_T026 Translate according to 026 punch code

CR$K_T029 Translate according to 029 punch code

1If neither the 026 nor 029 mode is specified, the default mode can be set by the SET CARD_READER
command.

Table 1–5 Card Reader Codes

Character ASCII 8 DEC029 DEC026

{ 173 12 0 12 0

} 175 11 0 11 0

SPACE 40 NONE NONE

! 41 11 8 2 12 8 7

" 42 8 7 0 8 5

_ 43 8 3 0 8 6

$ 44 11 8 3 11 8 3

% 45 0 8 4 0 8 7

& 46 12 11 8 7

’ 47 8 5 8 6

(50 12 8 5 0 8 4

) 51 11 8 5 12 8 4

* 52 11 8 4 11 8 4

+ 53 12 8 6 12

(continued on next page)

1–8

Card Reader Driver
1.4 Card Reader Function Codes

Table 1–5 (Cont.) Card Reader Codes

Character ASCII 8 DEC029 DEC026

, 54 0 8 3 0 8 3

- 55 11 11

. 56 12 8 3 12 8 3

/ 57 0 1 0 1

0 60 0 0

1 61 1 1

2 62 2 2

3 63 3 3

4 64 4 4

5 65 5 5

6 66 6 6

7 67 7 7

8 70 8 8

9 71 9 9

: 72 8 2 11 8 2

; 73 11 8 6 0 8 2

< 74 12 8 4 12 8 6

= 75 8 6 8 3

> 76 0 8 6 11 8 6

? 77 0 8 7 12 8 2

@ 100 8 4 8 4

A 101 12 1 12 1

B 102 12 2 12 2

C 103 12 3 12 3

D 104 12 4 12 4

E 105 12 5 12 5

F 106 12 6 12 6

G 107 12 7 12 7

H 110 12 8 12 8

I 111 12 9 12 9

J 112 11 1 11 1

K 113 11 2 11 2

L 114 11 3 11 3

M 115 11 4 11 4

N 116 11 5 11 5

O 117 11 6 11 6

P 120 11 7 11 7

Q 121 11 8 11 8

(continued on next page)

1–9

Card Reader Driver
1.4 Card Reader Function Codes

Table 1–5 (Cont.) Card Reader Codes

Character ASCII 8 DEC029 DEC026

R 122 11 9 11 9

S 123 0 2 0 2

T 124 0 3 0 3

U 125 0 4 0 4

V 126 0 5 0 5

W 127 0 6 0 6

X 130 0 7 0 7

Y 131 0 8 0 8

Z 132 0 9 0 9

[133 12 8 2 11 8 5

\ 134 11 8 7 8 7

] 135 0 8 2 12 8 5

" or ^ 136 12 8 7 8 5

 or _ 137 0 8 5 8 2

Application programs that change specific card reader characteristics should first
use the IO$_SENSEMODE function to read the current characteristics, modify
them, and then use the set mode function to write back the results. Failure to
follow this sequence results in clearing any previously set characteristic.

1.4.3.2 Set Characteristic
The set characteristic function also affects the characteristics of the associated
card reader device. Set characteristic is a physical I/O function, and requires
the access privilege necessary to perform physical I/O functions. The following
function code is provided:

• IO$_SETCHAR

This function takes the following device- or function-dependent argument:

• P1—The address of a characteristics buffer

Figure 1–4 shows the set characteristic characteristics buffer.

Figure 1–4 Set Characteristic Buffer

31 16 15 0

ZK−0648−GE

Card Reader Characteristics

Buffer Size Type Class

8 7

The device type value is DT$_CR11. The device class value is DC$_CARD.
Table 1–4 lists the card reader characteristics for the Set Characteristic function.

1–10

Card Reader Driver
1.5 I/O Status Block

1.5 I/O Status Block
The I/O status block (IOSB) format for QIO functions on the card reader is
shown in Figure 1–5. Appendix A lists the status returns for these functions.
(The OpenVMS system messages documentation provides explanations and
suggested user actions for these returns.) Table 1–2 lists the device-dependent
data returned in the second longword. The IO$_SENSEMODE function can be
used to obtain this data.

Figure 1–5 IOSB Contents

31 16 15 0

ZK−0649−GE

Device−Dependent Data

Byte Count Status

1–11

2
Laboratory Peripheral Accelerator Driver

This chapter describes the laboratory peripheral accelerator (LPA11-K) driver and
the high-level language procedure library that interfaces with it. The procedure
library is implemented with callable assembly language routines that translate
arguments into the format required by the LPA11-K driver and that handle
buffer chaining operations. Routines for loading the microcode and initializing
the device are also described.

Refer to the LPA11-K Laboratory Peripheral Accelerator User’s Guide for
additional information.

2.1 Supported Device
The LPA11-K is a peripheral device that controls analog-to-digital (A/D) and
digital-to-analog (D/A) converters, digital I/O registers, and real-time clocks. It is
connected to the VAX processor through the UNIBUS adapter.

The LPA11-K is a fast, flexible microprocessor subsystem designed for
applications requiring high-speed, concurrent data acquisition and data reduction.
The LPA11-K allows aggregate analog input and output rates of up to 150,000
samples per second. The maximum aggregate digital input and output rate is
15,000 samples per second.

Table 2–1 lists the useful minimum and maximum LPA11-K configurations
supported by the operating system.

Table 2–1 Minimum and Maximum Configurations per LPA11-K

Minimum Maximum

1 DD11-Cx or Dx backplane 2 DD11-Cx or Dx backplanes

1 KW11-K real-time clock 1 KW11-K real-time clock

1 of the following: 2 AD11-K A/D converters

AD11-K A/D converter 2 AM11-K multiplexers for AD11-K converters

AA11-K A/D converter 1 AA11-K D/A converter

DR11-K digital I/O register 5 DR11-K digital I/O registers

2.1.1 LPA11-K Modes of Operation
The LPA11-K operates in two modes: dedicated and multirequest.

In dedicated mode, only one user (one request), can be active at a time, and
only analog I/O data transfers are supported. Up to two A/D converters can
be controlled simultaneously. One D/A converter can be controlled at a time.
Sampling is initiated either by an overflow of the real-time clock or by an
externally supplied signal. Dedicated mode provides sampling rates of up to
150,000 samples per second.

2–1

Laboratory Peripheral Accelerator Driver
2.1 Supported Device

In multirequest mode, sampling from all of the devices listed in Table 2–1 is
supported. The LPA11-K operates like a multicontroller device; up to eight
requests (from one through eight users) can be active simultaneously. The
sampling rate for each user is a multiple of the common real-time clock rate.
Independent rates can be maintained for each user. Both the sampling rate and
the device type are specified as part of each data transfer request. Multirequest
mode provides a maximum aggregate sampling rate of 15,000 samples per second.

2.1.2 Errors
The LPA11-K returns the following classes of errors:

1. Errors associated with the issuance of a new LPA11-K command (SS$_
DEVCMDERR)

2. Errors associated with an active data transfer request (SS$_DEVREQERR)

3. Fatal hardware errors that affect all LPA11-K activity (SS$_CTRLERR)

The LPA11-K Laboratory Peripheral Accelerator User’s Guide lists these three
classes of errors and the specific error codes for each class. The LPA11-K aborts
all active requests if any of the following conditions occur:

• Power failure

• Device timeout

• Fatal error

Power failure is reported to any active users when power is recovered.

The LADRIVER times out all $QIOs after two seconds if they have not completed.
The driver does not provide any parameters that allow the user to change the
length of the timeout.

The timeout period applied to all $QIOs can be changed with the following
PATCH commands executed from a privileged account:

$ PATCH SYS$SYSTEM:LADRIVER.EXE/OUTPUT=SYS$SYSTEM:LADRIVER.EXE
PATCH>SET ECO 25
PATCH>REPLACE/INSTRUCTION LA$TIMEOUT_VALUE
OLD>’PUSHL I^#00000002’
OLD>EXIT
NEW>’PUSHL I^#0000003C’
NEW>EXIT
PATCH>UPDATE
PATCH>EXIT

Substitute the desired timeout value for the ‘‘0000003C’’ in the example above.
When you reboot, the system loads the new copy of the driver containing the new
timeout value.

Device timeouts are monitored only when a new command is issued. For data
transfers, the time between buffer full interrupts is not defined. Thus, no timeout
errors are reported on a buffer-to-buffer basis.

If a required resource is not available to a process, an error message is returned
immediately. The driver does not place the process in the resource wait mode.

2–2

Laboratory Peripheral Accelerator Driver
2.2 Supporting Software

2.2 Supporting Software
The LPA11-K is supported by a device driver, a high-level language procedure
library of support routines, and routines for loading the microcode and initializing
the device. The system software and support routines provide a control path for
synchronizing the use of buffers, specifying requests, and starting and stopping
requests; the actual data algorithms for the laboratory data acquisition I/O
devices are accomplished by the LPA11-K.

The LPA11-K driver and the associated I/O interface have the following features:

• They permit multiple LPA11-K subsystems on a single UNIBUS adapter.

• They operate as an integral part of the operating system.

• They can be loaded on a running system without relinking the executive.

• They handle I/O requests, function dispatching, UNIBUS adapter map
allocation, interrupts, and error reporting for multiple LPA11-K subsystems.

• The LPA11-K functions as a multibuffered device. Up to eight buffer
areas can be defined per request. Up to eight requests can be handled
simultaneously. Buffer areas can be reused after the data they contain is
processed.

• Because the LPA11-K chains buffer areas automatically, a start data transfer
request can transfer an infinite and noninterrupted amount of data.

• Multiple ASTs are dynamically queued by the driver to indicate when a buffer
has been filled (the data is available for processing) or emptied (the buffer is
available for new data).

The high-level language support routines have the following features:

• They translate arguments provided in the high-level language calls into the
format required for the Queue I/O interface.

• They provide a buffer chaining capability for a multibuffering environment by
maintaining queues of used, in use, and available buffers.

• They adhere to all conventions for calling sequences, use of shareable
resources, and reentrancy.

• They can be part of a resident global library, or they can be linked into a
process image as needed.

The routines for loading microcode and initializing devices have the following
features:

• They execute, as separate processes, images that issue I/O requests. These
I/O requests initiate microcode image loading, start the LPA11-K subsystem,
and automatically configure the peripheral devices on the LPA11-K internal
I/O bus.

• They can be executed at the request of the user or an operator.

• They can be executed at the request of other processes.

• They can be executed automatically when the system is initialized and on
power recovery.

2–3

Laboratory Peripheral Accelerator Driver
2.2 Supporting Software

Figure 2–1 shows the relationship of the supporting software to the LPA11-K.

Figure 2–1 Relationship of Supporting Software to LPA11-K

Data

ZK−0658−GE

QIO Requests

VMS Operating System

Routines
Initialization
and Device

Routines
Chaining
Buffer

Routines
Support
Language

High−Level

Program

High−Level
Application

Areas

Data
Buffer

Interface
QIO

µCode Loading

Driver LPA11−K
LPA11−K

2.3 LPA11-K Device Information
You can obtain information on all peripheral data acquisition devices on the
LPA11-K internal I/O bus by using the Get Volume Information ($GETDVI)
system service. (See the OpenVMS System Services Reference Manual.)

$GETDVI returns device characteristics when you specify the item codes
DVI$_DEVCHAR and DVI$_DEVDEPEND. Tables 2–2 and 2–3 list these
characteristics. The $DEVDEF macro defines the device-independent
characteristics; the $LADEF macro defines the device-dependent characteristics.
Device-dependent characteristics are set by the set clock, initialize, and load
microcode I/O functions to any one of, or a combination of, the values listed in
Table 2–3.

2–4

Laboratory Peripheral Accelerator Driver
2.3 LPA11-K Device Information

DVI$_DEVCLASS and DVI$_DEVTYPE return the device class and device
type names, which are defined by the $DCDEF macro. The device class for the
LPA11-K is DC$_REALTIME; the device type is DT$_LPA11. DVI$_DEVBUFSIZ
is not applicable to the LPA11-K.

Table 2–2 LPA11-K Device-Independent Characteristics

Characteristic 1 Meaning

Dynamic Bit (Conditionally Set)

DEV$M_AVL Device is online and available.

Static Bits (Always Set)

DEV$M_IDV Device is capable of input.

DEV$M_ODV Device is capable of output.

DEV$M_RTM Device is real-time.

DEV$M_SHR Device is shareable.

1Defined by the $DEVDEF macro.

Table 2–3 LPA11-K Device-Dependent Characteristics

Field 1 Meaning

LA$M_MCVALID
LA$V_MCVALID

The load microcode I/O function (IO$_LOADMCODE) was
performed successfully. LA$M_MCVALID is set by IO$_
LOADMCODE. Each microword is verified by reading it back
and comparing it with the specified value. LA$M_MCVALID is
cleared if there is no match.

LA$V_MCTYPE
LA$S_MCTYPE

The microcode type, set by the load microcode I/O function (IO$_
LOADMCODE), is one of the following values:

Value Meaning

LA$K_MRMCODE Microcode type is in multirequest
mode.

LA$K_ADMCODE Microcode type is in dedicated A/D
mode.

LA$K_DAMCODE Microcode type is in dedicated D/A
mode.

1Defined by the $LADEF macro.

(continued on next page)

2–5

Laboratory Peripheral Accelerator Driver
2.3 LPA11-K Device Information

Table 2–3 (Cont.) LPA11-K Device-Dependent Characteristics

Field 1 Meaning

LA$V_CONFIG
LA$S_CONFIG

The bit positions, set by the initialize I/O function (IO$_
INITIALIZE), for the peripheral data acquisition devices on
the LPA11-K internal I/O bus are one or more of the following:

Value Meaning

LA$V_CLOCKA
LA$M_CLOCKA

Clock A

LA$V_CLOCKB
LA$M_CLOCKB

Clock B

LA$V_AD1
LA$M_AD1

A/D device 1

LA$V_AD2
LA$M_AD2

A/D device 2

LA$V_DA
LA$M_DA

D/A device 1

LA$V_DIO1
LA$M_DIO1

Digital I/O buffer 1

LA$V_DIO2
LA$M_DIO2

Digital I/O buffer 2

LA$V_DIO3
LA$M_DIO3

Digital I/O buffer 3

LA$V_DIO4
LA$M_DIO4

Digital I/O buffer 4

LA$V_DIO5
LA$M_DIO5

Digital I/O buffer 5

LA$V_RATE
LA$S_RATE

The Clock A rate, which is set by the set clock function (IO$_
SETCLOCK), is one of the following values:

Value Meaning

0 Stopped

1 1 MHz

2 100 kHz

3 10 kHz

4 1 kHz

5 100 Hz

6 Schmidt trigger

7 Line frequency

LA$V_PRESET
LA$S_PRESET

The Clock A preset value set by the set clock function
(IO$_SETCLOCK). (The value is in two’s complement form in
the range 0 through 65,535.) The clock rate divided by the clock
preset value yields the clock overflow rate.

1Defined by the $LADEF macro.

2–6

Laboratory Peripheral Accelerator Driver
2.4 LPA11-K Function Codes

2.4 LPA11-K Function Codes
The LPA11-K I/O functions are as follows:

• Load the microcode into the LPA11-K.

• Start the LPA11-K microprocessor.

• Initialize the LPA11-K subsystem.

• Set the LPA11-K real-time clock rate.

• Start a data transfer request.

The first three functions are normally performed by the loader process, not by the
user’s data transfer program. See Section 2.5.21 for a description of the loader
process interface.

The Cancel I/O on Channel ($CANCEL) system service is used to abort data
transfers.

2.4.1 Load Microcode
This I/O function resets the LPA11-K and loads an image of LPA11-K microcode.
Physical I/O privilege is required. The following function code is provided:

• IO$_LOADMCODE—Load microcode

The load microcode function takes the following device- or function-dependent
arguments:

• P1—The starting virtual address of the microcode image that is to be loaded
into the LPA11-K

• P2—The number of bytes (usually 2048) that are to be loaded

• P3—The starting microprogram address (usually 0) in the LPA11-K that is to
receive the microcode

If any data transfer requests are active at the time a load microcode request is
issued, the load request is rejected and SS$_DEVACTIVE is returned in the I/O
status block.

Each microword is verified by comparing it with the specified value in memory.
If all words match (the microcode was loaded successfully), the driver sets the
microcode valid bit (LA$V_MCVALID) in the device-dependent characteristics
longword (see Table 2–3). If there is no match, SS$_DATACHECK is returned
in the I/O status block and LA$V_MCVALID is cleared to indicate that the
microcode was not properly loaded. If the microcode was loaded successfully, the
driver stores one of the microcode type values (LAK_MRCODE, LAK_ADCODE,
or LA$K_DAMCODE) in the characteristics longword.

After a load microcode function is completed, the second word of the I/O status
block contains the number of bytes loaded.

2.4.2 Start Microprocessor
This I/O function resets the LPA11-K and starts (or restarts) the LPA11-K
microprocessor. Physical I/O privilege is required. The following function code is
provided:

• IO$_STARTMPROC—Start microprocessor

This function code takes no device- or function-dependent arguments.

2–7

Laboratory Peripheral Accelerator Driver
2.4 LPA11-K Function Codes

The start microprocessor function can return five error codes in the I/O status
block (see Section 2.6):

SS$_CTRLERR SS$_DEVACTIVE SS$_MCNOTVALID

SS$_POWERFAIL SS$_TIMEOUT

The LPA11-K Laboratory Peripheral Accelerator User’s Guide provides additional
information on error codes.

2.4.3 Initialize LPA11-K
This I/O function issues a subsystem initialize command to the LPA11-K. This
command specifies LPA11-K laboratory I/O device addresses and other table
information for the subsystem. It is issued only once after restarting the
subsystem and before any other LPA11-K command is given. Physical I/O
privilege is required. The VMS operating system defines the following function
code:

• IO$_INITIALIZE—Initialize LPA11-K

The initialize LPA11-K function takes the following device- or function-dependent
arguments:

• P1—The starting, word-aligned, virtual address of the initialize command
table in the user process. This table is read once by the LPA11-K during the
execution of the initialize command. See the LPA11-K Laboratory Peripheral
Accelerator User’s Guide for additional information.

• P2—Length of the initialize command buffer (always 278 bytes).

If the initialize function is completed successfully, the appropriate device
configuration values are set in the device-dependent characteristics longword
(see Table 2–3).

The initialize function can return the following 10 error codes in the I/O status
block:

SS$_BUFNOTALIGN SS$_CANCEL SS$_CTRLERR

SS$_DEVCMDERR SS$_INCLENGTH SS$_INSFMAPREG

SS$_IVMODE SS$_MCNOTVALID SS$_POWERFAIL

SS$_TIMEOUT

If a device specified in the initialize command table is not in the LPA11-K
configuration, an error condition (SS$_DEVCMDERR) occurs and the address of
the first device not found is returned in the LPA11-K maintenance status register
(see Section 2.6). A program can use this characteristic to poll the LPA11-K and
determine the current device configuration.

2.4.4 Set Clock
This virtual function issues a clock control command to the LPA11-K. The clock
control command specifies information necessary to start, stop, or change the
sample rate at which the real-time clock runs on the LPA11-K subsystem.

Note

If the LPA11-K has more than one user, caution should be exercised when
the clock rate is changed. In multirequest mode, a change in the clock
rate affects all users.

2–8

Laboratory Peripheral Accelerator Driver
2.4 LPA11-K Function Codes

The following function code is provided:

• IO$_SETCLOCK—Set clock

The set clock function takes the following device- or function-dependent
arguments:

• P2—Mode of operation. The operating system defines the following clock start
mode word (hexadecimal) values:

Value Meaning

1 KW11-K Clock A

11 KW11-K Clock B

• P3—Clock control and status. The operating system defines the following
clock status word (hexadecimal) values:

Value Meaning

0 Stop clock

143 1 MHz clock rate

145 100 kHz clock rate

147 10 kHz clock rate

149 1 kHz clock rate

14B 100 Hz clock rate

14D Clock rate is Schmidt trigger 1

14F Clock rate is line frequency

• P4—The two’s complement of the real-time clock preset value. The range is
16 bits for the KW11-K Clock A and 8 bits for the KW11-K Clock B.

The LPA11-K Laboratory Peripheral Accelerator User’s Guide describes the clock
start mode word and the clock status word in greater detail.

If the set clock function is completed successfully for Clock A, the clock rate and
preset values are stored in the device-dependent characteristics longword (see
Table 2–3).

The set clock function can return six error codes in the I/O status block (see
Section 2.6):

SS$_CANCEL SS$_CTRLERR SS$_DEVCMDERR

SS$_MCNOTVALID SS$_POWERFAIL SS$_TIMEOUT

The LPA11-K Laboratory Peripheral Accelerator User’s Guide provides additional
information on error codes.

2.4.5 Start Data Transfer Request
This virtual I/O function issues a data transfer start command that specifies the
buffer addresses, sample mode, and sample parameters used by the LPA11-K.
This information is passed to the data transfer command table. The following
function code is provided:

• IO$_STARTDATA—Start data transfer request

2–9

Laboratory Peripheral Accelerator Driver
2.4 LPA11-K Function Codes

The start data transfer request function takes the following function modifier:

• IO$M_SETEVF—Set event flag

The start data transfer request function takes the following device- or function-
dependent arguments:

• P1—The starting virtual address of the data transfer command table in the
user’s process.

• P2—The length in bytes (always 40) of the data transfer command table.

• P3—The AST address of the normal buffer completion AST routine (optional).

• P4—The AST address of the buffer overrun completion AST routine (optional).
This argument is used only when the buffer overrun bit (LA$M_BFROVRN)
is set, that is, when a buffer overrun condition is classified as a nonfatal error.

A buffer overrun condition differs from a data overrun condition. The LPA11-K
fetches data from, or stores data in, memory. If data cannot be fetched quickly
enough (for example, when there is too much UNIBUS activity) a data underrun
condition occurs. If data cannot be stored quickly enough, a data overrun
condition occurs. After each buffer is filled or emptied, the LPA11-K obtains the
index number of the next buffer to process from the user status word (USW). (See
the LPA11-K Laboratory Peripheral Accelerator User’s Guide.) A buffer overrun
condition occurs if the LPA11-K fills or empties buffers faster than the application
program can supply new buffers. For example, buffer overrun can occur when
the sampling rate is too high, the buffers are too small, or the system load is too
heavy.

The LPA11-K driver accesses the 10-longword data transfer command table
(shown in Figure 2–2) when the data transfer start command is processed. After
the command is accepted and data transfers begin, the driver does not access the
table.

In the first longword of the data transfer command table, the first 2 bytes contain
the LPA11-K start data transfer request mode word. (The LPA11-K Laboratory
Peripheral Accelerator User’s Guide describes the functions of this word.)

The third byte contains the number (0–7) of the highest buffer available and the
buffer overrun flag bit (bit 23; values: LA$M_BFROVRN and LA$V_BFROVRN).
If this bit is set, a buffer overrun condition is a nonfatal error.

The second longword contains the user status word address (see the LPA11-K
Laboratory Peripheral Accelerator User’s Guide). This virtual address points to a
2-byte area in the user-process space and must be word aligned.

The third longword contains the size (in bytes) of the overall buffer area. The
virtual address in the fourth longword is the beginning address of this area. This
address must be longword aligned. The overall buffer area contains a specified
number of buffers (the number of the highest available buffer specified in the
first longword plus one). Individual buffers are subject to length restrictions:
in multirequest mode the length must be in multiples of 2 bytes; in dedicated
mode the length must be in multiples of 4 bytes. All data buffers are virtually
contiguous for each data transfer request.

2–10

Laboratory Peripheral Accelerator Driver
2.4 LPA11-K Function Codes

Figure 2–2 Data Transfer Command Table

31 16 15 08 7

Mode

User Status Word Address

Overall Data Buffer Length

Overall Data Buffer Address

Random Channel List Length

Delay

Dwell Number of Channels

Digital Trigger Mask

Event Mark Mask

ZK−0660−GE

Overrun Bit
Buffer and Buffer
Highest Available

Increment
Channel

Number
Channel
Start

Channel
Mark
Event

Channel
Trigger
Digital

Random Channel List Address

24 23

The fifth and sixth longwords contain the random channel list (RCL) length
and address, respectively. The RCL address must be word aligned. The last
word in the RCL must have bit 15 set. (See the LPA11-K Laboratory Peripheral
Accelerator User’s Guide for additional information on the RCL.)

The seventh through tenth longwords contain LPA11-K-specific sample
parameters. The driver passes these parameters directly to the LPA11-K.
(See the LPA11-K Laboratory Peripheral Accelerator User’s Guide for a detailed
description of their functions.)

The start data transfer request function can return the following 15 error codes
in the I/O status block (see Section 2.6):

2–11

Laboratory Peripheral Accelerator Driver
2.4 LPA11-K Function Codes

SS$_ABORT SS$_BUFNOTALIGN SS$_CANCEL

SS$_CTRLERR SS$_DEVCMDERR SS$_DEVREQERR

SS$_EXQUOTA SS$_INCLENGTH SS$_INSFBUFDP

SS$_INSFMAPREG SS$_INSFMEM SS$_MCNOTVALID

SS$_PARITY SS$_POWERFAIL SS$_TIMEOUT

Data buffers are chained and reused as the LPA11-K and the user process dispose
of the data. As each buffer is filled or emptied, the LPA11-K driver notifies the
application process either by setting the event flag specified by the QIO request
efn argument or by queuing an AST. Since buffer use is a continuing process, the
event flag is set or the AST is queued a number of times. The user process must
clear the event flag (or receive the AST), process the data, and specify the next
buffer for the LPA11-K to use.

If the set event flag function modifier (IO$M_SETEVF) is specified, the event flag
is set repeatedly: when the data transfer request is started, after each buffer
completion, and when the request completes. If IO$M_SETEVF is not specified,
the event flag is set only when the request completes.

ASTs are preferred over event flags for synchronizing a program with the LPA11-
K, because AST delivery is a queued process, while the setting of event flags is
not. If only event flags are used, buffer status may be lost.

Three AST addresses can be specified. For normal data buffer transactions the
AST address specified in the P3 argument is used. If the buffer overrun bit in
the data transfer command table is set and an overrun condition occurs, the AST
address specified in the P4 argument is used. The AST address specified in the
astadr argument of the QIO request is used when the entire data transfer request
is completed. The astprm argument specified in the QIO request is passed to all
three AST routines.

If insufficient dynamic memory is available to allocate an AST block, an error
(SS$_INSFMEM) is returned. If the user does not have sufficient AST quota
remaining to allocate an AST block, an error (SS$_EXQUOTA) is returned. In
either case, the request is stopped. Normally, there are never more than three
outstanding ASTs per LPA11-K request.

2.4.6 LPA11-K Data Transfer Stop Command
The Cancel I/O on Channel ($CANCEL) system service is used to abort data
transfers for a particular process. When the LPA11-K driver receives a $CANCEL
request, a data transfer stop command is issued to the LPA11-K.

To stop a data transfer, set bit 14 of the user status word. If this bit is set,
the transfer stops at the end of the next buffer transaction (see the LPA11-K
Laboratory Peripheral Accelerator User’s Guide).

2.5 High-Level Language Interface
The operating system supports several program-callable procedures that provide
access to the LPA11-K. The formats of these calls are documented in this manual
for FORTRAN users. MACRO users must set up a standard argument block
and issue the standard CALL procedure. (MACRO users can also access the
LPA11-K directly through the use of the device-specific QIO functions described
in Section 2.4.) Users of other high-level languages must specify the proper
subroutine or procedure invocation.

2–12

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

2.5.1 High-Level Language Support Routines
There are 20 high-level language procedures for the LPA11-K. These procedures
are divided into four classes. Table 2–4 lists the classes and the VAX procedures
for the LPA11-K.

Table 2–4 Procedures for the LPA11-K

Class Subroutine Function

Sweep Control LPA$ADSWP Start A/D converter sweep

LPA$DASWP Start D/A converter sweep

LPA$DISWP Start digital input sweep

LPA$DOSWP Start digital output sweep

LPA$LAMSKS Specify LPA11-K controller and digital mask
words

LPA$SETADC Specify channel select parameters

LPA$SETIBF Specify buffer parameters

LPA$STPSWP Stop sweep

Clock control LPA$CLOCKA Set Clock A rate

LPA$CLOCKB Set Clock B rate

LPA$XRATE Compute clock rate and preset value

Data Buffer LPA$IBFSTS Return buffer status

Control LPA$IGTBUF Return next available buffer

LPA$INXTBF Alter buffer order

LPA$IWTBUF Return next buffer or wait

LPA$RLSBUF Release buffer to LPA11-K

LPA$RMVBUF Remove buffer from device queue

Miscellaneous LPA$CVADF Convert A/D input to floating point

LPA$FLT16 Convert unsigned integer to floating point

LPA$LOADMC Load microcode and initialize LPA11-K

2.5.1.1 Buffer Queue Control
This section is provided for informational purposes only.

Buffer queue control for data transfers by LPA11-K subroutines involves the use
of the following queues:

• Device queue (DVQ)

• User queue (USQ)

• In-use queue (IUQ)

Each data transfer request can specify from one through eight data buffer areas.
The user specifies these buffers by address. During execution of the request, the
LPA11-K assigns an index from 0 through 7 when a buffer is referenced.

The DVQ contains the indexes of all the buffers that the user has released
(buffers made available to be filled or emptied by the LPA11-K). For output
functions (D/A and digital output), these buffers contain data to be output by the
LPA11-K. For input functions (A/D and digital input), these buffers are empty
and waiting to be filled by the LPA11-K.

2–13

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

The USQ contains the indexes of all buffers that are waiting to be returned to the
user. The LPA$IWTBUF and LPA$IGTBUF calls are used to return the index of
the next buffer in the USQ. For output functions (D/A and digital output), these
buffers are empty and waiting to be filled by the application program. For input
functions (A/D and digital input), these buffers contain data to be processed by
the application program.

The IUQ contains the indexes of all buffers that are currently being processed by
the LPA11-K. Normally, the IUQ contains the indexes of the following buffers:

• The buffer currently being filled or emptied by the LPA11-K

• The next buffer to be filled or emptied by the LPA11-K (this is the buffer
specified by the next buffer index field in the user status word).

Because the LPA11-K driver requires that at least one buffer be ready when the
input or output sweep is started, the user must call the LPA$RLSBUF subroutine
before the sweep is initiated.

Figure 2–3 shows the flow between the buffer queues.

Figure 2–3 Buffer Queue Control

ZK−0661−GE

AST Handler
Buffer Overrun

AST Handler
Normal Buffer

Program)
(From Application
LPA$RLSBUF

Program)
(To Application
LPA$IGTBUF
LPA$IWTBUF

Tail

Queue
Device

Head

Tail

Queue
In−Use

Head

Tail

Queue
User

Head

Buffer 0

AST Handler
Normal Buffer

2–14

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

2.5.1.2 Subroutine Argument Usage
Table 2–5 describes the general use of the subroutine arguments. The subroutine
descriptions in the following sections contain additional information on argument
usage. The (IBUF), (BUF), and (ICHN) (random channel list address) arguments
must be aligned on specific boundaries.

Table 2–5 Subroutine Argument Usage

Argument Meaning

IBUF A 50-longword array initialized by the LPA$SETIBF subroutine. IBUF is the impure
area used by the buffer management subroutines. A unique IBUF array is required for
each simultaneously active request. IBUF must be longword aligned.

The first quadword in the IBUF array is an I/O status block (IOSB) for high-level
language subroutines. The LPA$IGTBUF and LPA$IWTBUF subroutines fill this
quadword with the current and completion status (see Section 2.6).

LBUF Specifies the size of each data buffer in words (must be even for dedicated mode sweeps).
All buffers are the same size. The minimum value for LBUF is 6 for multirequest
mode data transfers and 258 for dedicated mode data transfers. The aggregate size
of the assigned buffers must be less than 32,768 words. Thus, the maximum size of
each buffer (in words) is limited to 32,768 divided by the number of buffers. The LBUF
argument length is one word.

NBUF Specifies the number of times the buffers are to be filled during the life of the
request. If 0 (default) is specified, sampling is indefinite and must be stopped with
the LPA$STPSWP subroutine. The NBUF argument length is one longword.

MODE Specifies sampling options. MODE bit values are listed in the appropriate subroutine
descriptions. The default is 0. MODE values can be added to specify several options. No
options are mutually exclusive, although not all bits can be applicable at the same time.
The MODE argument length is one word.

IRATE Specifies the clock rate as follows:

Value Meaning

–1 Direct-coupled Schmidt trigger 1 (Clock A only)

0 Clock B overflow or no rate

1 1 MHz

2 100 kHz

3 10 kHz

4 1 kHz

5 100 Hz

6 Schmidt trigger

7 Line frequency

The IRATE argument length is one longword.

IPRSET Specifies the hardware clock preset value. This value is the two’s complement of the
desired number of clock ticks between clock interrupts. (The maximum value is 0, the
two’s complement of 65,536.) IPRSET can be computed by the LPA$XRATE subroutine.
The IPRSET argument length is one word.

(continued on next page)

2–15

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

Table 2–5 (Cont.) Subroutine Argument Usage

Argument Meaning

DWELL Specifies the number of hardware clock overflows between sample sequences in
multirequest mode. For example, if DWELL is 20 and NCHN is 3, then after 20 clock
overflows one channel is sampled on each of the next three successive overflows; no
sampling occurs for the next 20 clock overflows. This allows different users to use
different sample rates with the same hardware clock overflow rate. In dedicated mode,
the hardware clock overflow rate controls sampling and DWELL is not accessed. Default
for DWELL is 1. The DWELL argument length is one word.

IEFN Specifies the event flag number or completion routine address. The selected event flag is
set at the end of each buffer transaction. If IEFN is 0 (default), event flag 22 is used.

IEFN can also specify the address of a completion routine. This routine is called by
the buffer management routine when a buffer is available and when the request is
terminated, either successfully or with an error. The standard calling and return
sequences are used. The completion routine is called from an AST routine and is
therefore at AST level.

If IEFN specifies the address of a completion routine, the program must call the
LPA$IGTBUF subroutine to obtain the next buffer. If IEFN specifies an event flag,
the program must call the LPA$IWTBUF subroutine to obtain the next buffer and must
use the %VAL operator:

,%VAL(3), (Event flag 3)

,BFRFULL, (Address of completion
routine)

The IEFN argument length is one longword.

If multiple sweeps are initiated, they must use different event flags. The software does
not enforce this policy.

Event flag 23 is reserved for use by the LPA$CLOCKA and LPA$CLOCKB subroutines.
If either of these subroutines is included in the user program, event flag 23 cannot be
used. Also, if IEFN is defaulted, event flag 22 cannot be used in the user program.

LDELAY Specifies the delay, in IRATE units, from the start event until the first sample is taken.
The maximum value is 65,535; default is 1. The LDELAY argument length is one word.
The LPA11-K supports the LDELAY argument in multirequest mode only.

ICHN Specifies the number of the first I/O channel to be sampled. Default is channel 0. The
ICHN argument length is one byte. The channel number is not the same as the channel
assigned to the device by the $ASSIGN system service. The LPA11-K uses the channel
number to specify the multiplexer address of an A/D, D/A, or digital I/O device on the
LPA11-K internal I/O bus.

NCHN Specifies the number of I/O device channels to sample in a sample sequence. Default
is 1. If the NCHN argument is 1, the single channel bit is set in the mode word of the
start request descriptor array (RDA) when the sweep is started. The RDA contains the
information needed by the LPA11-K for each command (see the LPA11-K Laboratory
Peripheral Accelerator User’s Guide). The NCHN argument length is one word.

IND Receives the success or failure code of the call. The IND argument length is one
longword.

2.5.2 LPA$ADSWP — Initiate Synchronous A/D Sampling Sweep
The LPA$ADSWP subroutine initiates A/D sampling through an AD11-K.

The format of the LPA$ADSWP subroutine call is as follows:

CALL LPA$ADSWP (IBUF,LBUF,[NBUF],[MODE],[DWELL],[IEFN],-
[LDELAY],[ICHN],[NCHN],[IND])

2–16

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

Arguments are as described in Section 2.5.1.2, with the following additions:

MODE Specifies sampling options. The operating system defines the following
sampling option values:

Value Meaning

32 Parallel A/D conversion sample algorithm is used if dual A/D
converters are specified (value = 8192). Absence of this bit implies
the serial A/D conversion sample algorithm.

64 Multirequest mode request. Absence of this bit implies a dedicated
mode request.

512 External trigger (Schmidt trigger 1). Dedicated mode only.
This value is used when a user-supplied external sweep trigger
is desired. The external trigger is supplied by the KW11-K
(Schmidt trigger 1 output) to the AD11-K (external start input).
If MODE=512, the user process must specify a Clock A rate of –1
for proper A/D sampling. This is nonclock-driven sampling (see
Section 2.5.10). (The LPA11-K Laboratory Peripheral Accelerator
User’s Guide provides additional information on the use of external
triggers.)

1024 Time stamped sampling with Clock B. The double word consists of
one data word followed by the value of the LPA11-K internal 16-bit
counter at the time of the sample (see the LPA11-K Laboratory
Peripheral Accelerator User’s Guide). Multirequest mode only.

2048 Event marking. Multirequest mode only. (The LPA11-K Laboratory
Peripheral Accelerator User’s Guide describes event marking.)

4096 Start method. If selected, the digital input start method is used.
If not selected, the immediate start method is used. Multirequest
mode only.

8192 Dual A/D converters are to be used. Dedicated mode only.

16384 Buffer overrun is a nonfatal error. The LPA11-K will automatically
default to fill buffer 0 if a buffer overrun condition occurs.

If MODE is defaulted, A/D sampling starts immediately with absolute channel
addressing in dedicated mode. The LPA11-K does not support delays in
dedicated mode.

IND Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: LPA$SETIBF subroutine
was not previously called; LPA$RLSBUF subroutine was not previously called;
size of data buffers disagrees with the size computed by the LPA$SETIBF
subroutine call.

1 = successful sweep started

nnn = status code

2.5.3 LPA$DASWP — Initiate Synchronous D/A Sweep
The LPA$DASWP subroutine initiates D/A output to an AA11-K.

The format for the LPA$DASWP subroutine call is as follows:

CALL LPA$DASWP (IBUF,LBUF,[NBUF],[MODE],[DWELL],[IEFN],-
[LDELAY],[ICHN],[NCHN],[IND])

2–17

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

Arguments are as described in Section 2.5.1.2, with the following additions:

MODE Specifies the sampling options. The operating system defines the following
start criteria values:

Value Meaning

0 Immediate start. This is the default value for MODE.

64 Multirequest mode. If not selected, this request is for dedicated
mode.

4096 Start method. If selected, the digital input start method is used.
If not selected, the immediate start method is used. Multirequest
mode only.

16384 Buffer overrun is a nonfatal error. The LPA11-K will automatically
default to empty buffer 0 if a buffer overrun condition occurs.

IND Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: LPA$SETIBF subroutine
was not previously called; LPA$RLSBUF subroutine was not previously called;
size of data buffers disagrees with the size computed by the LPA$SETIBF
subroutine call.

1 = successful sweep started

nnn = status code

2.5.4 LPA$DISWP — Initiate Synchronous Digital Input Sweep
The LPA$DISWP subroutine initiates digital input through a DR11-K. It is
applicable in multirequest mode only.

The format of the LPA$DISWP subroutine call is as follows:

CALL LPA$DISWP (IBUF,LBUF,[NBUF],[MODE],[DWELL],[IEFN],-
[LDELAY],[ICHN],[NCHN],[IND])

Arguments are as described in Section 2.5.1.2, with the following additions:

MODE Specifies sampling options. The operating system defines the following
sampling option values:

Value Meaning

0 Immediate start. This is the default value for MODE.

512 External trigger for DR11-K. (The LPA11-K Laboratory Peripheral
Accelerator User’s Guide describes the use of external triggers.)

1024 Time stamped sampling with Clock B. The double word
consists of one data word followed by the value of the internal
LPA11-K 16-bit counter at the time of the sample (see the LPA11-K
Laboratory Peripheral Accelerator User’s Guide).

2048 Event marking. (The LPA11-K Laboratory Peripheral Accelerator
User’s Guide describes event marking.)

4096 Start method. If selected, the start method is digital input. If not
selected, the start method is immediate. Multirequest mode only.

16384 Buffer overrun is a nonfatal error. The LPA11-K will automatically
default to fill buffer 0 if a buffer overrun condition occurs.

2–18

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

IND Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: LPA$SETIBF subroutine
was not previously called; LPA$RLSBUF subroutine was not previously called;
size of data buffers disagrees with the size computed by the LPA$SETIBF
subroutine call.

1 = successful sweep started

nnn = status code

2.5.5 LPA$DOSWP — Initiate Synchronous Digital Output Sweep
The LPA$DOSWP subroutine initiates digital output through a DR11-K. It is
applicable in multirequest mode only.

The format of the LPA$DOSWP subroutine call is as follows:

CALL LPA$DOSWP (IBUF,LBUF,[NBUF],[MODE],[DWELL],[IEFN],-
[LDELAY],[ICHN],[NCHN],[IND])

Arguments are as described in Section 2.5.1.2, plus the following:

MODE Specifies sampling options. The operating system defines the following values:

Value Meaning

0 Immediate start. This is the default value for MODE.

512 External trigger for DR11-K. (The LPA11-K Laboratory Peripheral
Accelerator User’s Guide describes the use of external triggers.)

4096 Start method. If selected, digital input start. If not selected,
immediate start.

16384 Buffer overrun is a nonfatal error. The LPA11-K will automatically
default to empty buffer 0 if a buffer overrun condition occurs.

IND Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: LPA$SETIBF subroutine
was not previously called; LPA$RLSBUF subroutine was not previously called;
size of data buffers disagrees with the size computed by the LPA$SETIBF
subroutine call.

1 = Successful sweep started

nnn = Status code

2.5.6 LPA$LAMSKS — Set LPA11-K Masks and NUM Buffer
The LPA$LAMSKS subroutine initializes a user buffer that contains a number
to append to the logical name LPA11$, a digital start word mask, an event mark
mask, and channel numbers for the two masks.

The LPA$LAMSKS subroutine must be called in the following cases:

• If users intend to use digital input starting or event marking

• If users do not want to use the default of LAA0 assigned to LPA11$0

• If multiple LPA11-Ks are used

The format of the LPA$LAMSKS subroutine call is as follows:

CALL LPA$LAMSKS (LAMSKB,[NUM],[IUNIT],[IDSC],[IEMC],[IDSW],[IEMW],[IND])

2–19

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

Argument descriptions are as follows:

LAMSKB Specifies a four-word array.

NUM Specifies the number appended to LPA11$. The sweep is started on the
LPA11-K assigned to LPA11$num.

IUNIT Not used. This argument is present for compatibility only.

IDSC Specifies the digital START word channel. Range is 0 through 4. The
IDSC argument length is one byte.

IEMC Specifies the event MARK word channel. Range is 0 through 4. The
IEMC argument length is one byte.

IDSW Specifies the digital START word mask. The IDSW argument length is
one word.

IEMW Specifies the event MARK word mask. The IEMW argument length is
one word.

IND Always equal to 1 (success). This argument is present for compatibility
only.

2.5.7 LPA$SETADC — Set Channel Information for Sweeps
The LPA$SETADC subroutine establishes channel start and increment
information for the sweep control subroutines (see Table 2–4). It must be
called to initialize IBUF before the LPA$SETADC subroutine is called.

The LPA$SETADC subroutine can be called in either of the following formats:

CALL LPA$SETADC (IBUF,[IFLAG],[ICHN],[NCHN],[INC],[IND])

or

IND=LPA$SETADC (IBUF,[IFLAG],[ICHN],[NCHN],[INC])

Argument descriptions are as follows:

IND Returns the success or failure status as follows:

0 = LPA$SETIBF was not called prior to the LPA$SETADC call

1 = LPA$SETADC call successful

IBUF The IBUF array specified in the LPA$SETIBF call.

IFLAG Reserved. This argument is present for compatibility only.

ICHN Specifies the first channel number. Range is 0 through 255; default is
0. The ICHN argument length is one longword.

If INC = 0, ICHN is the address of a random channel list. This address
must be word aligned.

NCHN Specifies the number of samples taken per sample sequence. Default is
1.

INC Specifies the channel increment. Default is 1. If INC is 0, ICHN is
the address of a random channel list. The INC argument length is one
longword.

2.5.8 LPA$SETIBF — Set IBUF Array for Sweeps
The LPA$SETIBF subroutine initializes the IBUF array for use with the following
subroutines:

LPA$ADSWP LPA$DASWP LPA$DISWP

LPA$DOSWP LPA$IBFSTS LPA$IGTBUF

LPA$INXTBF LPA$IWTBUF LPA$RLSBUF

2–20

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

LPA$RMVBUF LPA$SETADC LPA$STPSWP

The format of the LPA$SETIBF subroutine call is as follows:

CALL LPA$SETIBF (IBUF,[IND],[LAMSKB],BUF0,[BUF1,...,BUF7])

Arguments are as described in Section 2.5.1.2, with the following additions:

IBUF Specifies a 50-longword array that is initialized by this subroutine.
IBUF must be longword-aligned. (See Table 2–5 for additional
information on IBUF.)

IND Returns the success or failure status as follows:

0 = Error in call. Possible causes are the following: incorrect number
of arguments; IBUF array not longword-aligned; buffer addresses not
equidistant.

1 = IBUF initialized successfully.

LAMSKB Specifies the name of a four-word array. This array allows the use of
multiple LPA11-Ks within the same program because the argument
used to start the sweep is specified by the LPA$LAMSKS subroutine
call. (See Section 2.5.6 for a description of the LPA$LAMSKS
subroutine.)

BUF0, . . . Specify the names of the buffers. A maximum of eight buffers can be
specified. At least two buffers must be specified to provide continuous
sampling. The LPA11-K driver requires that all buffers be contiguous.
To ensure this, the LPA$SETIBF subroutine verifies that all buffer
addresses are equidistant. Buffers must be longword-aligned.

2.5.9 LPA$STPSWP — Stop In-Progress Sweep
The LPA$STPSWP subroutine allows you to stop a sweep that is in progress.

The format of the LPA$STPSWP subroutine call is as follows:

CALL LPA$STPSWP (IBUF,[IWHEN],[IND])

Arguments are as described in Section 2.5.1.2, with the following additions:

IBUF The IBUF array specified in the LPA$ADSWP, LPA$DASWP,
LPA$DISWP, or LPA$DOSWP subroutine call that initiated the sweep.

IWHEN Specifies when to stop the sweep. The operating system defines the
following values:

0 = Abort sweep immediately. Uses the $CANCEL system service. This
is the default sweep stop.

1 = Stop sweep when the current buffer transaction is completed. (This
is the preferred way to stop requests.)

IND Receives a success or failure code in the following standard format:

1 = Success

nnn = Error code issued by the $CANCEL system service

Note that when the LPA$STPSWP subroutine is returned, the sweep cannot
be stopped. If it is necessary to wait until the sweep has stopped, you can
call the LPA$IWTBUF subroutine in a loop until it returns IBUFNO = –1 (see
Section 2.5.16).

2–21

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

2.5.10 LPA$CLOCKA — Clock A Control
The LPA$CLOCKA subroutine sets the clock rate for Clock A.

The format of the LPA$CLOCKA subroutine call is as follows:

CALL LPA$CLOCKA (IRATE,IPRSET,[IND],[NUM])

Arguments are as described in Section 2.5.1.2, with the following additions:

IRATE Specifies the clock rate. One of the following values must be specified:

Value Meaning

–1 Direct-coupled Schmidt trigger 1. Used only for A/D sweeps
in dedicated mode, that is, MODE = 512 (see Section 2.5.2).

0 Clock B overflow or no rate

1 1 MHz

2 100 kHz

3 10 kHz

4 1 kHz

5 100 Hz

6 Schmidt trigger 1

7 Line frequency

IPRSET Specifies the clock preset value. Maximum of 16 bits. The LPA$XRATE
subroutine can be used to calculate this value. The clock rate divided
by the clock preset value yields the clock overflow rate.

IND Receives a success or failure code as follows:

1 = Clock A set successfully

nnn = Error code indicating an I/O error

NUM Specifies the number to be appended to the logical name LPA11$.
The default value is 0. This subroutine sets Clock A on the LPA11-K
assigned to LPA11$num.

2.5.11 LPA$CLOCKB — Clock B Control
The LPA$CLOCKB subroutine provides the user with control of the KW11-K
Clock B.

The format of the LPA$CLOCKB subroutine call is as follows:

CALL LPA$CLOCKB ([IRATE],IPRSET,MODE,[IND],[NUM])

Arguments are as described in Section 2.5.1.2, with the following additions:

2–22

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

IRATE Specifies the clock rate. One of the following must be specified:

Value Meaning

0 Stops Clock B

1 1 MHz

2 100 kHz

3 10 kHz

4 1 kHz

5 100 Hz

6 Schmidt trigger 3

7 Line frequency

If IRATE is 0 (default), the clock is stopped and the IPRSET and
MODE arguments are ignored.

IPRSET Specifies the preset value by which the clock rate is divided to yield the
overflow rate. Maximum of eight bits. Overflow events can be used to
drive Clock A. The LPA$XRATE subroutine can be used to calculate
the IPRSET value.

MODE Specifies options. The operating system defines the following:

1 = Clock B operates in noninterrupt mode.

2 = The feed B to A bit in the Clock B status register will be set (see
the LPA11-K Laboratory Peripheral Accelerator User’s Guide).

IND Receives a success or failure code as follows:

1 = Clock B set successfully

nnn = Error code indicating an I/O error

NUM Specifies the number to be appended to the logical name LPA11$.
The default value is 0. This subroutine sets Clock B on the LPA11-K
assigned to LPA11$num.

2.5.12 LPA$XRATE — Compute Clock Rate and Preset Value
The LPA$XRATE subroutine computes the clock rate and preset value for the
LPA$CLOCKA and LPA$CLOCKB subroutines using the specified intersample
interval (AINTRVL).

The LPA$XRATE subroutine can be called in either of the following formats:

CALL LPA$XRATE (AINTRVL,IRATE,IPRSET,IFLAG)

ACTUAL=LPA$XRATE(AINTRVL,IRATE,IPRSET,IFLAG)

Arguments are as described in Section 2.5.1.2, with the following additions:

AINTRVL Specifies the intersample time selected by the user. The time is
expressed in decimal seconds. Data type is floating point.

IRATE Receives the computed clock rate as a value from 1 through 5.

IPRSET Receives the computed clock preset value.

IFLAG If the computation is for Clock A, IFLAG is 0; if for Clock B, IFLAG is
not 0 (the maximum preset value is 255). The IFLAG argument length
is one byte.

2–23

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

ACTUAL Receives the actual intersample time if called as a function. Data
type is floating point. If there are truncation and round-off errors,
the resulting intersample time can be different from the specified
intersample time. Note that when the LPA$XRATE subroutine is
called from VAX FORTRAN IV-PLUS programs as a function, it must
be explicitly declared a real function. Otherwise, the LPA$XRATE
subroutine defaults to an integer function.

If AINTRVL is either too large or too small to be achieved, both IRATE and
ACTUAL are returned to 0.

2.5.13 LPA$IBFSTS — Return Buffer Status
The LPA$IBFSTS subroutine returns information on the buffers used in a sweep.

The format of the LPA$IBFSTS subroutine call is as follows:

CALL LPA$IBFSTS (IBUF,ISTAT)

Argument descriptions are as follows:

IBUF The IBUF array specified in the call that initiated the sweep.

ISTAT Specifies a longword array with as many elements as there are buffers
involved in the sweep (maximum of eight). LPA$IBFSTS fills each
array element with the status of the corresponding buffer:

+2 = Buffer in device queue. LPA$RLSBUF has been called for this
buffer.

+1 = Buffer in user queue. The LPA11-K has filled (data input) or
emptied (data output) this buffer.

0 = Buffer is not in any queue.

–1 = Buffer is in the in-use queue; that is, it is either being filled or
emptied, or it is the next to be filled or emptied by the LPA11-K.

2.5.14 LPA$IGTBUF — Return Buffer Number
The LPA$IGTBUF subroutine returns the number of the next buffer to be
processed by the application program, the buffer at the head of the user queue
(see Figure 2–3). It should be called by a completion routine at AST level to
determine the next buffer to process. If an event flag was specified in the start
sweep call, the LPA$IWTBUF, not the LPA$IGTBUF subroutine, should be called.

The LPA$IGTBUF subroutine can be called in one of these formats:

CALL LPA$IGTBUF (IBUF,IBUFNO)

IBUFNO=LPA$IGTBUF(IBUF)

Arguments are as described in Section 2.5.1.2, plus the following:

IBUF The IBUF array specified in the call that initiated the sweep.

IBUFNO Returns the number of the next buffer to be filled or emptied by the
application program.

Table 2–6 lists the possible combinations of IBUFNO and IOSB contents on the
return from a call to the LPA$IGTBUF subroutine. The first four words of the
IBUF array contain the I/O status block (IOSB). If IBUFNO is –1, the IOSB must
be checked to determine the reason.

2–24

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

Table 2–6 LPA$IGTBUF Call — IBUFNO and IOSB Contents

IBUFNO IOSB(1) IOSB(2) IOSB(3),(4) Meaning

n 0 (byte
count)

0 Normal buffer complete.

–1 0 0 0 No buffers in queue. Request
still active.

–1 1 0 0 No buffers in queue. Sweep
terminated normally.

–1 Error
code

0 LPA11-K ready-out and
maintenance registers (only
if SS$DEVREQERR, SS$_
CTRLERR, or SS$DEVCMDERR
is returned)

No buffers in queue. Sweep
terminated due to error
condition. Section 2.6
describes the error codes;
the LPA11-K Laboratory
Peripheral Accelerator User’s
Guide lists the LPA11-K error
codes.

2.5.15 LPA$INXTBF — Set Next Buffer to Use
The LPA$INXTBF subroutine alters the normal buffer selection algorithm so that
you can specify the next buffer to be filled or emptied. The specified buffer is
reinserted at the head of the device queue.

The LPA$INXTBF subroutine can be called in one of these formats:

CALL LPA$INXTBF (IBUF,IBUFNO,IND) IND=LPA$INXTBF(IBUF,IBUFNO)

Arguments are as described in Section 2.5.1.2, plus the following:

IBUF The IBUF array specified in the call that initiated the sweep.

IBUFNO Specifies the number of the next buffer to be filled or emptied. The
buffer must already be in the device queue.

IND Returns the result of the call as follows:

0 = Specified buffer not in the device queue

1 = Next buffer successfully set

2.5.16 LPA$IWTBUF — Return Next Buffer or Wait
The LPA$IWTBUF subroutine returns the next buffer to be processed by the
application program, the buffer at the head of the user queue. If the user
queue is empty, the LPA$IWTBUF subroutine waits until a buffer is available.
If a completion routine was specified in the call that initiated the sweep,
LPA$IGTBUF, not LPA$IWTBUF, should be called.

The LPA$IWTBUF subroutine can be called in either of the following formats:

CALL LPA$IWTBUF (IBUF,[IEFN],IBUFNO) IBUFNO=LPA$IWTBUF(IBUF,[IEFN])

Arguments are as described in Section 2.5.1.2, with the following additions:

IBUF The IBUF array specified in the call that initiated the sweep.

IEFN Not used. This argument provides compatibility with the operating
system. (The event flag is the one specified in the start sweep call.)

IBUFNO Returns the number of the next buffer to be filled or emptied by the
application program.

2–25

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

Table 2–7 lists the possible combinations of IBUFNO and I/O status block
contents on the return from a call to the LPA$IWTBUF subroutine. The first four
words of the IBUF array contain the I/O status block. If IBUFNO is –1, the I/O
status block must be checked to determine the reason.

Table 2–7 LPA$IWTBUF Call — IBUFNO and IOSB Contents

IBUFNO IOSB(1) IOSB(2) IOSB(3),(4) Meaning

n 0 (byte
count)

0 Normal buffer complete.

–1 1 0 0 No buffers in queue. Sweep
terminated normally.

–1 Error
code

0 LPA11-K ready-out and
maintenance registers
(only if SS$_DEVREQERR
SS$_CTRLERR, or SS$_
DEVCMDERR is returned)

No buffers in queue. Sweep
terminated due to error
condition. Section 2.6
describes the error codes;
the LPA11-K Laboratory
Peripheral Accelerator User’s
Guide lists the LPA11-K error
codes.

2.5.17 LPA$RLSBUF — Release Data Buffer
The LPA$RLSBUF subroutine declares one or more buffers available to be filled
or emptied by the LPA11-K. It inserts the buffer at the tail of the device queue
(see Figure 2–3).

The format of the LPA$RLSBUF subroutine call is as follows:

CALL LPA$RLSBUF (IBUF,[IND],INDEX0,INDEX1,...,INDEXN)

Arguments are as described in Section 2.5.1.2, with the following additions:

IBUF The IBUF array specified in the call that initiated the sweep.

IND Returns the success or failure status as follows:

0 = Buffer number was illegal, the number of arguments specified
was incomplete, or a double buffer overrun occurred. A double
buffer overrun can occur only if buffer overrun was specified
as a nonfatal error, a buffer overrun occurs, and buffer 0 was
not released (probably on the user queue after a previous buffer
overrun).

1 = Buffer(s) released successfully.

INDEX0, . . . Specify the indexes (0-7) of the buffers to be released. A maximum
of eight indexes can be specified.

The LPA$RLSBUF subroutine must be called to release a buffer (or buffers) to the
device queue before the sweep is initiated. (See Section 2.5.1.1 for a discussion
of buffer management.) Note that the LPA$RLSBUF subroutine does not verify
whether the specified buffers are already in a queue. If a buffer is released when
it is already in a queue, the queue pointers are invalidated and unpredictable
results can occur.

If buffer overrun is specified as a nonfatal error, buffer 0 should not be
released before the sweep is initiated. However, if either the LPA$IGTBUF
or LPA$IWTBUF subroutine returns buffer 0, it should be released. In this case,
buffer 0 is set aside (not placed on a queue) until the buffer overrun occurs.
If a buffer overrun occurs and buffer 0 was not released, the LPA$RLSBUF
subroutine returns an error the next time buffer 0 is released.

2–26

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

2.5.18 LPA$RMVBUF — Remove Buffer from Device Queue
The LPA$RMVBUF subroutine removes a buffer from the device queue.

The format of the LPA$RMVBUF subroutine call is as follows:

CALL LPA$RMVBUF (IBUF,IBUFNO,[IND])

Arguments are as described in Section 2.5.1.2, with the following additions:

IBUF The IBUF array specified in the call that initiated the sweep.

IBUFNO Specifies the number of the buffer to remove from the device queue.

IND Returns the success or failure status as follows:

0 = Buffer not found in the device queue

1 = Buffer successfully removed from the device queue

2.5.19 LPA$CVADF — Convert A/D Input to Floating-Point
The LPA$CVADF subroutine converts A/D input values to floating-point numbers.
It is supported to provide compatibility with the OpenVMS VAX operating system.

The LPA$CVADF subroutine can be called in either of the following formats:

CALL LPA$CVADF (IVAL,VAL) VAL=LPA$CVADF(IVAL)

Argument descriptions are as follows:

IVAL Contains the value (bits 11:0) read from the A/D input.
Bits 15:12 are 0.

VAL Receives the floating-point value.

2.5.20 LPA$FLT16 — Convert Unsigned 16-Bit Integer to Floating-Point
The LPA$FLP16 subroutine converts unsigned 16-bit integers to floating point. It
is supported to provide compatibility with the OpenVMS VAX operating system.

The LPA$FLT16 subroutine can be called in either of the following formats:

CALL LPA$FLT16 (IVAL,VAL) VAL=LPA$FLT16(IVAL)

Argument descriptions are as follows:

IVAL An unsigned 16-bit integer.

VAL Receives the converted value.

2.5.21 LPA$LOADMC — Load Microcode and Initialize LPA11-K
The LPA$LOADMC subroutine provides a program interface to the LPA11-K
microcode loader. It sends a load request through a mailbox to the loader process
to load microcode and to initialize an LPA11-K. (Section 2.7.1 describes the
microcode loader process.)

The format of the LPA$LOADMC subroutine call is as follows:

CALL LPA$LOADMC ([ITYPE][,NUM][,IND][,IERROR])

Argument descriptions are as follows:

2–27

Laboratory Peripheral Accelerator Driver
2.5 High-Level Language Interface

ITYPE The type of microcode to be loaded. The operating system defines the
following values:

Value Meaning

1 Multirequest mode; default value

2 Dedicated A/D mode

3 Dedicated D/A mode

NUM The number to be appended to the logical name LPA11$. The default
value is 0.

IND Receives the completion status as follows:

1 = Microcode loaded successfully

nnn = Error code

IERROR Provides additional error information. Receives the second longword
of the I/O status block if SS$_CTRLERR, SS$_DEVCMDERR, or SS$_
DEVREQERR is returned in IND. Otherwise, the contents of IERROR
are undefined.

2.6 I/O Status Block
The I/O status block (IOSB) format for the load microcode, start microprocessor,
initialize LPA11-K, set clock, and start data transfer request QIO functions is
shown in Figure 2–4.

Figure 2–4 I/O Functions IOSB Content

ZK−0662−GE

Byte Count

31 16 15 0

LPA11−K Ready−Out

Status

Maintenance Status
LPA11−K

Status values and the byte count are returned in the first longword. Status
values are defined by the $SSDEF macro. The byte count is the number of
bytes transferred by a IO$_LOADMCODE request. If SS$_CTRLERR, SS$_
DEVCMDERR, or SS$_DEVREQERR is returned in the status word, the second
longword contains the LPA11-K ready-out register and LPA11-K maintenance
status register values present at the completion of the request. The high byte of
the ready-out register contains the specific LPA11-K error code (see the LPA11-K
Laboratory Peripheral Accelerator User’s Guide). Appendix A of this manual
lists the status returns for LPA11-K I/O functions. (The OpenVMS system
messages documentation provides explanations and suggested user actions for
these returns.)

If high-level language library procedures are used, the status returns listed in
Appendix A can be returned from the resultant QIO functions. Since buffers are
filled by these procedures asynchronously, two I/O status blocks are provided
in the IBUF array: one for the high-level language procedures and one for the

2–28

Laboratory Peripheral Accelerator Driver
2.6 I/O Status Block

LPA11-K driver. The first four words of the IBUF array contain the I/O status
block for the high-level language procedures.

2.7 Loading LPA11-K Microcode
The microcode loading and device initialization routines automatically load
microcode during system initialization (if specified in the system manager’s
startup file) and power recovery. These routines also allow a nonprivileged user
to load microcode and to restart the system.

The LPA11-K loader and initialization routines consist of the following parts:

• A microcode loader process that loads any of the three microcode versions,
initializes the LPA11-K, and sets the clock rate. Loading is initiated by either
a mailbox request or a power recovery AST. This process requires permanent
mailbox (PRMMBX) and physical I/O privileges.

• An operator process that accepts operator commands or indirect file
commands to load microcode and to initialize an LPA11-K. This process
uses a mailbox to send a load request to the loader process; temporary
mailbox (TMPMBX) privilege is required.

• An LPA11-K procedure library routine that provides a program interface to
the LPA11-K microcode loader. The procedure sends a load request through a
mailbox to the loader process to load microcode and to initialize an LPA11-K.
Section 2.5.21 describes that routine in greater detail.

2.7.1 Microcode Loader Process
The microcode loader process loads microcode, initializes a specific LPA11-K, and
sets the clock at the default rate (10 kHz interrupt rate). A bit set in a controller
bit map indicates that the specified controller was loaded. The process specifies a
power recovery AST, creates a mailbox whose name (LPA$LOADER) is entered in
the system logical name table, and then hibernates.

The correct device configuration is determined automatically. When LPA11-K
initialization is performed, every possible device (see Table 2–1) is specified as
present on the LPA11-K. If the LPA11-K returns a ‘‘device not found’’ error, the
LPA11-K is reinitialized with that device omitted.

On receipt of a power recovery AST, the loader process examines the controller
bit map to determine which LPA11-Ks have been loaded. For each LPA11-K, the
loader process performs the following functions:

• Obtains device characteristics

• Reloads the microcode previously loaded

• Reinitializes the LPA11-K

• Sets Clock A to the previous rate and preset value

2.7.2 Operator Process
The operator process loads microcode and initializes an LPA11-K through either
terminal or indirect file commands. To run the operator process, type RUN
SYS$SYSTEM:LALOAD. The command input syntax is as follows:

devname/type

2–29

Laboratory Peripheral Accelerator Driver
2.7 Loading LPA11-K Microcode

In the preceding example, devname is the device name of the LPA11-K to be
loaded. A logical name can be specified. However, only one level of logical name
translation is performed. If devname is omitted, LAA0 is the default name. If
/type appears, it specifies one of the following types of microcode to load:

• /MULTI_REQUEST—Multirequest mode

• /ANALOG_DIGITAL—Dedicated A/D mode

• /DIGITAL_ANALOG—Dedicated D/A mode

If /type type is omitted, /MULTI_REQUEST is the default.

After receiving the command, the operator process formats a message and sends
it to the loader process. Completion status is returned through a return mailbox.

2.8 RSX–11M/M–PLUS and OpenVMS VAX Differences
This section lists those areas of the OpenVMS VAX high-level language support
routines that differ from the RSX–11M LPA11-K routines. The RSX–11M
/M–PLUS I/O Drivers Reference Manual provides a detailed description of
the RSX–11M LPA11-K support routines. Differences between the OpenVMS
VAX and RSX–11M/M–PLUS routines can be determined by comparing the
descriptions in the RSX–11M/M–PLUS I/O Drivers Reference Manual with the
descriptions for the routines in the preceding sections of this chapter.

2.8.1 General
The following are general features of OpenVMS VAX high-level support routines:

• The LUN argument is not used. The NUM argument specifies the number to
be appended to the logical name LPA11$.

• All routine names have the prefix LPA$.

• In the LPA$SETIBF routine, buffer addresses are checked for contiguity.

• In the LPA$LAMSKS routine, the IUNIT argument is not used.

• In the LPA$IWTBUF routine, the IEFN argument is not used. The event flag
specified in the sweep routine is used.

• The combinations of IBUFNO and I/O status block (IOSB) values returned by
the LPA$IWTBUF and LPA$IGTBUF subroutines are different.

2.8.2 Alignment and Length
The following are features of alignment and length in OpenVMS VAX high-level
support routines:

• Buffers must be contiguous.

• Buffers must be longword-aligned.

• The random channel list (RCL) must be word-aligned.

• The IBUF array length is 50 longwords and must be longword-aligned.

2–30

Laboratory Peripheral Accelerator Driver
2.8 RSX–11M/M–PLUS and OpenVMS VAX Differences

2.8.3 Status Returns
The following are features of status returns in OpenVMS VAX high-level support
routines:

• The I/O status block (IOSB) length is eight bytes; numeric values of errors
differ.

• Several routines return the following:

1 = Success

0 = Failure detected in support routine

nnn = Status code; failure detected in system service

2.8.4 Sweep Routines
The following are features of sweep routines in OpenVMS VAX high-level support
routines:

• If an event flag is specified, it must be within a %VAL() construction.

• A tenth argument, IND, is added to return the success or failure status.

2.9 LPA11-K Programming Examples
The following programming examples use LPA11-K high-level language
procedures and LPA11-K Queue I/O functions.

The VMS Device Support Manual volume contains information that is applicable
to LPA11-K programming.

2.9.1 LPA11-K High-Level Language Program (Program A)
This sample program (Example 2–1) is an example of how the LPA11-K high-level
language procedures perform an A/D sweep using three buffers. The program
uses default arguments whenever possible to illustrate the simplest possible calls.
The program assumes that dedicated mode microcode has previously been loaded
into the LPA11-K. Table 2–8 lists the variables used in this program.

Table 2–8 Program A Variables

Variable Description

BUFFER The data buffer array. BUFFER is a common area to guarantee
longword alignment.

IBUF The LPA11-K high-level language procedures use the IBUF array for
local storage.

BUFNUM BUFNUM contains the buffer number returned by LPA$IWTBUF. In
this example, the possible values are 0, 1, and 2.

ISTAT ISTAT contains the status return from the high-level language calls.

2–31

Laboratory Peripheral Accelerator Driver
2.9 LPA11-K Programming Examples

Example 2–1 LPA11-K High-Level Language Program (Program A)

C ***
C
C PROGRAM A
C
C ***

INTEGER*2 BUFFER(1000,0:2),IOSB(4)
INTEGER*4 IBUF(50),ISTAT,BUFNUM

COMMON/AREA1/BUFFER

EQUIVALENCE (IOSB(1),IBUF(1))

C
C Set clock rate to 1 khz, clock preset to -10.
C

CALL LPA$CLOCKA(4,-10,ISTAT)
IF (.NOT. ISTAT) GO TO 950

C
C Initialize IBUF array for sweep.
C

CALL LPA$SETIBF(IBUF,ISTAT,,BUFFER(1,0),BUFFER(1,1),BUFFER(1,2))
IF (.NOT. ISTAT) GO TO 950

C
C Release all the buffers. Note use of buffer numbers rather than
C buffer names.
C

CALL LPA$RLSBUF(IBUF,ISTAT,0,1,2)
IF (.NOT. ISTAT) GO TO 950

C
C Start A/D sweep
C

CALL LPA$ADSWP(IBUF,1000,50,,,,,,,ISTAT)
IF (.NOT. ISTAT) GO TO 950

C
C Get next buffer filled with data. If BUFNUM is negative, there
C are no more buffers and the sweep is stopped.
C
100 BUFNUM = LPA$IWTBUF(IBUF)

IF (BUFNUM .LT. 0) GO TO 800
C
C Process data in buffer (1,BUFNUM) to buffer (1000,BUFNUM).

.

.

.
(Application-dependent code is inserted at this point.)

.

.

.
C Release buffer is filled again.
C
200 CALL LPA$RLSBUF(IBUF,ISTAT,BUFNUM)

IF (.NOT. ISTAT) GO TO 950
GO TO 100

C
C There are no more buffers to process. Check to ensure that the
C sweep ended successfully. IOSB(1) contains either 1 or a
C VMS status code.
C
800 IF (.NOT. IOSB(1)) CALL LIB$STOP(%VAL(IOSB(1)))

PRINT *,’SUCCESSFUL COMPLETION’

(continued on next page)

2–32

Laboratory Peripheral Accelerator Driver
2.9 LPA11-K Programming Examples

Example 2–1 (Cont.) LPA11-K High-Level Language Program (Program A)
GO TO 2000

C
C Error return from subroutine. ISTAT contains either 0 or a
C VMS error code.
C

950 IF (ISTAT .NE. 0) CALL LIB$STOP(%VAL(ISTAT))
PRINT *,’ERROR IN LPA11-K SUBROUTINE CALL’

2000 STOP
END

C **

2.9.2 LPA11-K High-Level Language Program (Program B)
This program (Example 2–2) is a more complex example of LPA11-K operations
performed by the LPA11-K high-level language procedures. The following
operations are demonstrated:

• Program-requested loading of LPA11-K microcode

• Setting the clock at a specified rate

• Use of nondefault arguments whenever possible

• An A/D sweep that uses an event flag

• A D/A sweep that uses a completion routine

• Buffer overrun set (buffer overrun is a nonfatal error)

• Random channel list (RCL) addressing

• Sequential channel addressing

Table 2–9 lists the variables used in this program.

Table 2–9 Program B Variables

Variable Description

AD An array of buffers for an A/D sweep (8 buffers of 500 words each)

DA An array of buffers for a D/A sweep (2 buffers of 2000 words each)

IBUFAD The IBUF array for an A/D sweep

IBUFDA The IBUF array for a D/A sweep

RCL The array that contains the random channel list (RCL)

ADIOSB The array that contains the I/O status block for the A/D sweep.
Equivalenced to the beginning of IBUFAD

DAIOSB The array that contains the I/O status block for the D/A sweep.
Equivalenced to the beginning of IBUFDA

ISTAT Contains the status return from the high-level language calls

2–33

Laboratory Peripheral Accelerator Driver
2.9 LPA11-K Programming Examples

Example 2–2 LPA11-K High-Level Language Program (Program B)

C ***
C
C Program B
C
C ***

EXTERNAL FILLBF
REAL*4 LPA$XRATE

INTEGER*2 AD(500,0:7),DA(2000,0:1),RCL(5),MODE,IPRSET
INTEGER*2 ADIOSB(4),DAIOSB(4)

INTEGER*4 IBUFAD(50),IBUFDA(50),LAMSKB(2)
INTEGER*4 ISTAT,IERROR,IRATE,BUFNUM

REAL*4 PERIOD

COMMON /SWEEP/AD,DA,IBUFAD,IBUFDA

EQUIVALENCE (IBUFAD(1),ADIOSB(1)),(IBUFDA(1),DAIOSB(1))

PARAMETER MULTI=1, HBIT=’8000’X, LSTCHN=HBIT+7
C
C Set up random channel list. Note that the last word must have bit
C 15 set.
C

DATA RCL/2,6,3,4,LSTCHN/

C ***
C
C Load multirequest mode microcode and set the clock overflow rate
C to 5 khz.
C
C ***
C
C Load microcode on LPA11-K assigned to LPA11$3.
C

CALL LPA$LOADMC(MULTI,3,ISTAT,IERROR)
IF (.NOT. ISTAT) GO TO 5000

C
C Compute clock rate and preset. Set clock ’A’ on LPA11-K
C assigned to LPA11$3.
C

PERIOD = LPA$XRATE(.0002,IRATE,IPRSET,0)
IF (PERIOD .EQ. 0.0) GO TO 5500

CALL LPA$CLOCKA(IRATE,IPRSET,ISTAT,3)
IF (.NOT. ISTAT) GO TO 5000

C ***
C
C Set up for A/D sweep
C
C ***
C
C Initialize IBUF array. Note the use of the LAMSKB argument because
C the LPA11-K assigned to LPA11$3 is used.
C

CALL LPA$SETIBF(IBUFAD,ISTAT,LAMSKB,AD(1,0),AD(1,1),AD(1,2),
1 AD(1,3),AD(1,4),AD(1,5),AD(1,6),AD(1,7))
IF (.NOT. ISTAT) GO TO 5000

(continued on next page)

2–34

Laboratory Peripheral Accelerator Driver
2.9 LPA11-K Programming Examples

Example 2–2 (Cont.) LPA11-K High-Level Language Program (Program B)

CALL LPA$LAMSKS(LAMSKB,3)
C
C Set up random channel list sampling (20 samples in a sample
C sequence).
C

CALL LPA$SETADC(IBUFAD,,RCL,20,0,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

C
C Release buffers for A/D sweep. Note that buffer 0 is not
C released because buffer overrun will be specified as nonfatal.
C

CALL LPA$RLSBUF(IBUFAD,ISTAT,1,2,3,4,5,6,7)
IF (.NOT. ISTAT) GO TO 5000

C ***
C
C Set up for D/A sweep
C
C ***
C
C Note that the same LAMSKB array can be used because the LAMSKB
C contents apply to both A/D and D/A sweeps.
C

CALL LPA$SETIBF(IBUFDA,ISTAT,LAMSKB,DA(1,0),DA(1,1))
IF (.NOT. ISTAT) GO TO 5000

C
C Set up sampling parameters as follows: initial channel = 1.
C Number of channels sampled each sample sequence = 2, channel
C increment = 2, that is, sample channels 1 and 3 each sample
C sequence.
C

CALL LPA$SETADC(IBUFDA,,1,2,2,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

C
C Fill buffers with data for output to D/A.
C

.

.

.
(Application-dependent code is inserted here to fill buffers
DA(1,0) through DA(2000,0) and DA(1,1) through DA(2000,1) with data).

.

.

.
C
C Release buffers for D/A sweep.
C

CALL LPA$RLSBUF (IBUFDA,ISTAT,0,1)
IF (.NOT. ISTAT) GO TO 5000

(continued on next page)

2–35

Laboratory Peripheral Accelerator Driver
2.9 LPA11-K Programming Examples

Example 2–2 (Cont.) LPA11-K High-Level Language Program (Program B)

C ***
C
C Start both sweeps
C
C ***
C
C Start A/D sweep. Mode bits specify buffer overrun is nonfatal and
C multirequest mode. Sweep arguments specify 500 samples/buffer,
C Indefinite sampling, dwell = 10 clock overflows, synchronize using
C event flag 15, and a delay of 50 clock overflows.
C

MODE = 16384 + 64
CALL LPA$ADSWP(IBUFAD,500,0,MODE,10,%VAL(15),50,,,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

C
C Start D/A sweep. Mode specifies multirequest mode. Other
C arguments specify 2000 samples/buffer, fill 15 buffers, dwell = 25
C clock overflows, synchronize by calling the completion routine
C ’FILLBF’, and delay = 10 clock overflows. (See the FILLBF listing
C after the program B listing.)
C

MODE = 64
CALL LPA$DASWP(IBUFDA,2000,15,MODE,25,FILLBF,10,,,ISTAT)
(.NOT. ISTAT) GO TO 5000

C ***
C
C Wait for an A/D buffer and then process the data it contains. D/A
C buffers are filled asynchronously by the completion routine FILLBF.
C
C ***
C
C Wait for a buffer to be filled by A/D. If BUFNUM is less than
C zero, the sweep has stopped (either successfully or with an error).
C
100 BUFNUM = LPA$IWTBUF(IBUFAD)

IF (BUFNUM .LT. 0) GO TO 1000
C
C There is A/D data in AD(1,BUFNUM) through AD(500,BUFNUM)
C

.

.

.
(Process the A/D data with the application-dependent code inserted
here.)

.

.

.

(continued on next page)

2–36

Laboratory Peripheral Accelerator Driver
2.9 LPA11-K Programming Examples

Example 2–2 (Cont.) LPA11-K High-Level Language Program (Program B)

C
C Assume sweep should be stopped when the last sample in buffer
C equals 0. Note that the sweep actually stops when the buffer
C currently being filled is full. Also note that LPA$IWTBUF
C continues to be called until there are no more buffers to process.
C

IF (AD(500,BUFNUM) .NE. 0) GO TO 200
CALL LPA$STPSWP(IBUFAD,1,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

C
C After the data is processed, the buffer is released to be
C filled again. Then the next buffer is obtained from A/D.
C
200 CALL LPA$RLSBUF(IBUFAD,ISTAT,BUFNUM)

IF (.NOT. ISTAT) GO TO 5000
GO TO 100

C
C Enter here when A/D sweep has ended. Check for error or
C successful end. (Note: Assume that the D/A sweep has already
C ended - see completion routine FILLBF.)
C
1000 IF(ADIOSB(1)) GO TO 6000

CALL LIB$STOP(%VAL(ADIOSB(1)))

C
C Enter here if there was an error returned from one of the
C LPA11-K high-level language calls. ISTAT contains either 0
C or a VMS status code.
C
5000 IF (ISTAT .NE. 0) CALL LIB$STOP (%VAL(ISTAT))
5500 PRINT *,’ERROR IN LPA11-K SUBROUTINE CALL’

GO TO 7000

6000 PRINT *,’SUCCESSFUL COMPLETION’
7000 STOP

END
C ***
C
C Subroutine FILLBF
C
C ***
C
C The FILLBF subroutine is called whenever the D/A has emptied a
C buffer, and that buffer is available to be refilled. This
C subroutine gets the buffer, fills it, and releases it back to the
C LPA11-K. Note that the D/A sweep is stopped automatically after
C 15 buffers have been filled. Also note that FILLBF is called by
C an AST handler. It is therefore called asynchronously from the
C main program at AST level. Care should be exercised when accessing
C variables that are common to both levels.
C

INTEGER*2 AD(500,0:7),DA(2000,0:1),DAIOSB(4)
INTEGER*4 IBUFAD(50),IBUFDA(50),BUFNUM,ISTAT
EQUIVALENCE (IBUFDA(1),DAIOSB(1))
COMMON /SWEEP/AD,DA,IBUFAD,IBUFDA

(continued on next page)

2–37

Laboratory Peripheral Accelerator Driver
2.9 LPA11-K Programming Examples

Example 2–2 (Cont.) LPA11-K High-Level Language Program (Program B)

C
C Get buffer number of next buffer to fill.
C

BUFNUM = LPA$IGTBUF(IBUFDA)
IF (BUFNUM .LT. 0) GO TO 3000

C
C Fill buffer with data for output to D/A.

.

.

.
(Application-dependent code is inserted here to fill buffer
DA(1,BUFNUM) through DA(2000,BUFNUM) with data.)

.

.

.
C
C Release buffer
C

CALL LPA$RLSBUF(IBUFDA,ISTAT,BUFNUM)
GO TO 4000

C
C Check for successful end of sweep.
C
3000 IF(DAIOSB(1)) GO TO 4000

C
C Error in sweep
C

CALL LIB$STOP(%VAL(DAIOSB(1)))

4000 RETURN
END

C ***

2.9.3 LPA11-K QIO Functions Program (Program C)
This sample program (Example 2–3) uses QIO functions to start an A/D data
transfer from an LPA11-K. (The program assumes multirequest mode microcode
has been loaded.) Sequential channel addressing is used. The data transfer is
stopped after 100 buffers have been filled; no action is taken with the data as the
buffers are filled. Note that this program starts the data transfer and then waits
until the QIO operation completes.

Example 2–3 LPA11-K QIO Functions Program (Program C)

; ***
;
; Program C
;
; ***

.TITLE LPA11-K EXAMPLE PROGRAM

.IDENT /V01/

.PSECT LADATA,LONG

(continued on next page)

2–38

Laboratory Peripheral Accelerator Driver
2.9 LPA11-K Programming Examples

Example 2–3 (Cont.) LPA11-K QIO Functions Program (Program C)

IOSB: .BLKQ 1 ; I/O status block
COUNT: .LONG 0 ; Count of buffers filled

CBUFF: ; Command buffer for start
; Data QIO

.WORD ^X20A ; Mode = Sequential channel
; Addressing, A/D,
; multirequest mode

.WORD 3 ; Valid buffer mask
; (4 buffers)

.LONG USW ; User Status Word address

.LONG 4000 ; Aggregate buffer length

.LONG DATA_BUFFER0 ; Address of data buffers

.LONG 0 ; No random channel list
; length

.LONG 0 ; No random channel list
; address

.WORD 10 ; Delay

.BYTE 0 ; Start channel

.BYTE 1 ; Channel increment

.WORD 16 ; Number of samples in
; sample sequence

.WORD 1 ; Dwell

.BYTE 0 ; Start word number

.BYTE 0 ; Event mark word

.WORD 0 ; Start word mask

.WORD 0 ; Event mark mask

.WORD 0 ; Fills out command buffer

USW: .WORD 0 ; User Status Word

.ALIGN LONG ; Buffers must be
; longword aligned

DATA_BUFFER0: .BLKW 500 ; Data buffers
DATA_BUFFER1: .BLKW 500
DATA_BUFFER2: .BLKW 500
DATA_BUFFER3: .BLKW 500
DEVNAME: .ASCID /LAA0/

CHANNEL: .BLKW 1 ; Contains channel number

.PSECT LACODE,NOWRT

START: .ENTRY START,^m<>
$ASSIGN_S DEVNAM=DEVNAME,CHAN=CHANNEL ; Assign channel
BLBS R0,5$; No error
BRW ERROR ; Error

5$: ; Set clock overflow rate
; to 2 khz. (1 mhz rate
; divided by 500 preset)

$QIOW_S ,CHAN=CHANNEL,FUNC=#IO$_SETCLOCK,-
IOSB=IOSB,,,,P2=#1,P3=#^X143,P4#-500

BLBC R0,ERROR ; Error
MOVZWL IOSB,R0 ; Pick up I/O status
BLBC R0,ERROR ; Error

; Start data transfer
CLRW USW ; Clear USW (start with

; buffer 0)
MOVL #100,COUNT ; Fill 100 buffers
$QIOW_S ,CHANNEL,#IO$_STARTDATA,-

IOSB=IOSB,,,P1=CBUFF,P2=#40,P3=#BFRAST
BLBC R0,ERROR ; Error

(continued on next page)

2–39

Laboratory Peripheral Accelerator Driver
2.9 LPA11-K Programming Examples

Example 2–3 (Cont.) LPA11-K QIO Functions Program (Program C)

; Note that the QIO waits until it finishes. Normally, the data is
; processed here as the buffers are filled. Check for error when
; the QIO completes.

MOVZWL IOSB,R0 ; Pick up I/O status
BLBC R0,ERROR ; Error
RET ; All done - exit

ERROR: ; Enter here if error
; status in R0

PUSHL R0 ; Push onto stack
CALLS #1,G^LIB$STOP ; Signal error

BFRAST: BFRAST,m^<> ; Buffer AST routine
; BFRAST is called whenever
; a buffer is filled

.WORD 0
INCB USW+1 ; Add 1 to buffer number
CMPZV #0,#3,USW+1,#3 ; Handle wraparound

BLEQ 10$
CLRB USW+1 ; Use buffer 0

10$: DECL COUNT ; Decrement buffer count
BGTR 20$
BISB #^X40,USW+1 ; Enough buffers filled -

; Set stop bit
20$: BICB #^X80,USW+1 ; Clear done bit

RET

.END START

; ***

2–40

3
Line Printer Driver

This chapter describes the use of the line printer drivers LPDRIVER and
LCDRIVER.

3.1 Supported Line Printer Devices
The following sections describe the line printer controllers and line printers
supported by the operating system.

3.1.1 LP11 Line Printer Controller
The LP11 line printer controller provides an interface between the UNIBUS
adapter and the line printer. The LP11 performs the following functions:

• Synchronizes single-character data transfers from the UNIBUS to the printer

• Informs the system about printer status

• Enables the printer to gain control of the UNIBUS to report interrupts

3.1.2 DMF32 and DMB32 Line Printer Controllers
The DMF32 and DMB32 line printer controllers provide a direct memory access
(DMA) interface between the UNIBUS adapter (for the DMF32), or the VAXBI
adapter (for the DMB32), and the line printer. The DMF32/DMB32 optionally
perform the following functions:

• Tab expansion

• Carriage control

• Line wrapping and truncation

• Case conversion

• Passall mode

• Printall mode

3.1.3 LP27 Line Printer
The LP27 line printer is a high-speed, 132-column line printer, available with
either a 64- or 96-character ASCII print set. The LP27-U is a fully buffered model
that operates at a standard speed of up to 1200 lines per minute. Forms with up
to six parts can be used for multiple copies. A version of the LP27 is available for
operation of the printer up to 24.5 meters (1000 feet) from the host.

3–1

Line Printer Driver
3.1 Supported Line Printer Devices

3.1.4 LA11 DECprinter I
The LA11 DECprinter I is a medium-speed printer that operates at a standard
speed of 180 characters per second. It provides a forms length switch to set the
top of form to any of 11 common lengths, a paper-out switch and alarm, and a
variable forms width. The LA11 uses a 96-character ASCII set; the column width
is 132 characters.

3.1.5 LN01 Laser Page Printer
The LN01 laser page printer is a nonimpact printer that employs laser technology
to produce high-quality print. Using electrophotographic imaging and xerographic
printing, the LN01 prints one page at a time at a rate of 12 pages per minute.
The print resolution of 300 x 300 dots per square inch produces characters of
even density and alignment. The LN01 uses two 188-character, fixed-space fonts;
the column width is 132 characters.

3.1.6 LN03 Laser Page Printer
The LN03 laser page printer is a table-top, nonimpact page printer that uses
laser imaging and xerographic printing techniques. The LN03 has a printing
speed of eight pages per minute with a print resolution of 300 x 300 dots per
square inch. Four built-in fonts are available. Several column widths, including
80 or 132 characters, are also available.

3.2 Driver Features
The line printer drivers provide output character formatting and error recovery.
These features are described in the following sections.

3.2.1 Output Character Formatting
In write virtual and write logical block operations, user-supplied characters are
output as follows (write physical block data is not formatted, but output directly):

• Rubouts are discarded.

• Tabs move the horizontal print position to the next MODULO (8) position
unless the LP$M_TAB characteristic is clear.

• All lowercase alphabetic characters are converted to uppercase before
printing (unless the characteristic specifying lowercase characters is set;
see Section 3.4.3 and Table 3–2).

• On printers where the line-feed, form-feed, vertical-tab, and carriage-return
characters empty the printer buffer, returns are held back and output only
if the next character is not a form feed, line feed, or vertical tab. Carriage
returns are always output on units that have the LP$M_CR characteristic set
(see Section 3.4.3 and Table 3–2).

• The horizontal print position is incremented on the output of all characters,
including the space character. Characters are discarded if the horizontal
print position is equal to or greater than the carriage width, unless the
LP$M_WRAP characteristic is set or the LP$M_TRUNCATE characteristic is
clear (see Section 3.3).

• On printers without a mechanical form feed (the form-feed function
characteristic is not set; see Section 3.4.3 and Table 3–2), a form feed is
converted to multiple line feeds. The number of line feeds is based on the
current line count and the page length.

3–2

Line Printer Driver
3.2 Driver Features

• Print lines are counted and returned to the caller in the second longword of
the I/O status block.

3.2.2 Error Recovery
The VMS line printer drivers perform the following error recovery operations:

• If the printer is off line for 30 seconds, a ‘‘device not ready’’ message is sent to
the system operator process.

• If the printer runs out of paper or has a fault condition, a ‘‘device not ready’’
message is sent to the system operator after 30 seconds. Successive messages,
if they occur, are sent 1, 2, 4, 8, . . . minutes after the initial message.

• The current operation is retried every two seconds to test for a changed
situation, such as the printer coming on line.

• The current I/O operation can be canceled at the next timeout without the
printer being on line.

• When the printer comes on line, device operation resumes automatically.

3.3 Line Printer Driver Device Information
You can obtain information on printer characteristics by using the Get Device
/Volume Information ($GETDVI) system service. (See the OpenVMS System
Services Reference Manual.)

$GETDVI returns line printer characteristics when you specify the item
codes DVI$_DEVCHAR and DVI$_DEVDEPEND. Tables 3–1 and 3–2 list
these characteristics. The $DEVDEF macro defines the device-independent
characteristics; the $LPDEF macro defines the device-dependent characteristics.
DVI$_DEVDEPEND returns a longword field that contains the device-dependent
characteristics in the three low-order bytes and the page length in the high-order
byte. Maximum page length is 255.

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and class names,
which are defined by the $DCDEF macro. The device type is a value that
corresponds to the printer, for example, LP$_LP27 or LP$_LA11. The device class
for printers is DC$_LP. DVI$_DEVBUFSIZ returns the page width, which is a
value in the range of 0 through 255 on a DMF32 controller and 0 through 65535
on an LP11 or a DMB32 controller.

Table 3–1 Printer Device-Independent Characteristics

Characteristic 1 Meaning

Dynamic Bits (Conditionally Set)

DEV$M_SPL Device is spooled.

DEV$M_AVL Printer is on line and available.

Static Bits (Always Set)

DEV$M_REC Device is record-oriented.

1Defined by the $DEVDEF macro.

(continued on next page)

3–3

Line Printer Driver
3.3 Line Printer Driver Device Information

Table 3–1 (Cont.) Printer Device-Independent Characteristics

Characteristic 1 Meaning

Static Bits (Always Set)

DEV$M_CCL Carriage control is enabled.

DEV$M_ODV Device is capable of output.

1Defined by the $DEVDEF macro.

Table 3–2 Device-Dependent Characteristics for Line Printers

Value1 Meaning

LP$M_CR Printer requires carriage return (see Section 3.2.1).

LP$M_FALLBACK Printer translates multinational characters to a 7-bit
equivalent representation if possible. Otherwise, an underscore
character (_) replaces the character. LPM$M_FALLBACK has
no effect on physical block operations. See the OpenVMS I/O
User’s Reference Manual for a list of multinational characters.

LP$M_LOWER Printer can print lowercase characters. If this value is not
set, all lowercase characters are converted to uppercase when
output. (LP$M_LOWER has no effect on write physical block
operations.)

LP$M_MECHFORM Printer has mechanical form feed. This characteristic is
used when variable form length is required, such as in
check printing. Driver sends ASCII form feed (decimal 12).
Otherwise, multiple line feeds are generated. The page length
determines the number of line feeds.

LP$M_PASSALL All output data is in binary (no data interpretation occurs).
Data termination occurs when the buffer is full (default buffer
size is 132 bytes). Character formatting is disabled.

LP$M_PRINTALL All printing and nonprinting characters are transferred to the
printer, while character formatting remains enabled.

LP$M_TAB Printer enables tab expansion.

LP$M_TRUNCATE Printer truncates records that are larger than the carriage
width.

LP$M_WRAP Printer wraps records that are larger than the carriage width.
If a string of text is longer than the width specified in the
second longword, the string is continued on the next line.

1Defined by the $LPDEF macro.

3.4 Line Printer Function Codes
The basic line printer I/O functions are write, sense mode, and set mode. None of
the function codes take function modifiers.

3–4

Line Printer Driver
3.4 Line Printer Function Codes

3.4.1 Write
The line printer write functions print the contents of the user buffer on the
designated printer.

The write functions and their QIO function codes are:

• IO$_WRITEVBLK—Write virtual block

• IO$_WRITELBLK—Write logical block

• IO$_WRITEPBLK—Write physical block (the data is not formatted, but
output directly, as in PASSALL mode on terminals)

The write function codes can take the following device- or function-dependent
arguments:

• P1—The starting virtual address of the buffer that is to be written

• P2—The number of bytes that are to be written

• P4—Carriage control specifier except for write physical block operations
(write function carriage control is described in Section 3.4.1.1).

P3, P5, and P6 are not meaningful for line printer write operations.

In write virtual block and write logical block operations, the buffer specified by
P1 and P2 is formatted for the selected line printer and includes the carriage
control information specified by P4. The default buffer size is 132 bytes.

If the printer is not set spooled, write virtual block and write logical block
operations perform the same function. If the printer is set spooled, a write logical
block function queues the I/O to the printer, and a write virtual block function
queues the I/O to the intermediate device, usually a disk.

All lowercase characters are converted to uppercase if the characteristics of the
selected printer do not include LP$M_LOWER. (This does not apply to write
physical block operations.)

Multiple line feeds are generated for form feeds only if the printer does not have
a mechanical form feed (LP$M_MECHFORM) characteristic. The number of line
feeds generated depends on the current page position and the page length.

Section 3.2.1 describes character formatting in greater detail.

3.4.1.1 Write Function Carriage Control
The P4 argument is a longword that specifies carriage control. Carriage control
determines the next printing position on the line printer. (P4 is ignored in a write
physical block operation.) Figure 3–1 shows the P4 longword format.

Figure 3–1 P4 Carriage Control Specifier

POSTFIX PREFIX (Not Used) FORTRANP4:

3 2 1 0

ZK−0664−GE

Only bytes 0, 2, and 3 in the longword are used. Byte 1 is ignored. If the low-
order byte (byte 0) is not 0, the contents of the longword are interpreted as a
FORTRAN carriage control specifier. Table 3–3 lists the possible byte 0 values (in
hexadecimal) and their meanings.

3–5

Line Printer Driver
3.4 Line Printer Function Codes

Table 3–3 Write Function Carriage Control (FORTRAN: byte 0 not equal to 0)

Byte 0 Value
(hexadecimal)

ASCII
Character Meaning

20 (space) Single-space carriage control (sequence:
carriage-return/line-feed combination1, print
buffer contents, return)

30 0 Double-space carriage control (sequence:
carriage-return/line-feed combination, carriage-
return/line-feed combination, print buffer
contents, return)

31 1 Page eject carriage control (sequence: form feed,
print buffer contents, return)

2B + Overprint carriage control; allows double
printing for emphasis or for special effects
(sequence: print buffer contents, return)

24 $ Prompt carriage control (sequence: carriage-
return/line-feed combination, print buffer
contents)

All other
values

Same as ASCII space character: single-space
carriage control

1A carriage-return/line-feed combination is a carriage return followed by a line feed.

If the low-order byte (byte 0) is 0, bytes 2 and 3 of the P4 longword are
interpreted as the prefix and postfix carriage control specifiers. The prefix (byte
2) specifies the carriage control before the buffer contents are printed. The postfix
(byte 3) specifies the carriage control after the buffer contents are printed. The
sequence is as follows:

1. Prefix carriage control

2. Print

3. Postfix carriage control

The prefix and postfix bytes, although interpreted separately, use the same
encoding scheme. Table 3–4 shows this encoding scheme in hexadecimal format.

Table 3–4 Write Function Carriage Control (P4 byte 0 equal to 0)

Prefix/Postfix Bytes (Hexadecimal)

Bit 7 Bits 0–6 Meaning

0 0 No carriage control is specified, that is,
NULL.

0 1–7F Bits 0 through 6 are a count of carriage-
return/line-feed combinations.

(continued on next page)

3–6

Line Printer Driver
3.4 Line Printer Function Codes

Table 3–4 (Cont.) Write Function Carriage Control (P4 byte 0 equal to 0)

Bit 7 Bit 6 Bit 5 Bits 0–4 Meaning

1 0 0 1–1F Output the single ASCII control
character specified by the configuration
of bits 0 through 4 (7-bit character set).

1 1 0 1–1F Output the single ASCII control
character specified by the configuration
of bits 0 through 4, which are translated
as ASCII characters 128 through 159
(8-bit character set; see the OpenVMS
I/O User’s Reference Manual).

Figure 3–2 shows the prefix and postfix hexadecimal coding that produces the
carriage control functions listed in Table 3–3. Prefix and postfix coding provides
an alternative way to achieve these controls.

In the first example, the prefix/postfix hexadecimal coding for a single-space
carriage control (carriage-return/line-feed combination, print buffer contents,
carriage-return) is obtained by placing the value (1) in the second (prefix) byte
and the sum of the bit 7 value (80) and the return value (D) in the third (postfix)
byte:

80 (bit 7 = 1)
+ D (return)

8D (postfix = return)

3–7

Line Printer Driver
3.4 Line Printer Function Codes

Figure 3–2 Write Function Carriage Control (Prefix and Postfix Coding)

(Space)

P4: 8D 1 −

2

0

8C

18

Example: Skip 24 lines before printing.

ZK−0665−GE

Postfix = CR
Print
Prefix = NL

Sequence:

Postfix = CR
Print
Prefix = NL, NL

Sequence:

Postfix = CR
Print
Prefix = FF

Sequence:

Postfix = CR
Print
Prefix = NULL

Sequence:

Postfix = NULL
Print
Prefix = NL

Sequence:

Postfix = CR
Print
Prefix = 24NL

Sequence:

8D

8D

8D

8D

P4:

P4:

P4:

P4:

P4:

"0"

"1"

"+"

"$"

1

0

−

−

−

−

−

0

0

0

0

0

0

3.4.2 Sense Printer Mode
The sense printer mode function senses the current device-dependent printer
characteristics and returns them in the second longword of the I/O status block.
No device- or function-dependent arguments are used with IO$_SENSEMODE.

3.4.3 Set Mode
Set mode operations affect the operation and characteristics of the associated
line printer. The operating system provides two types of set mode functions:
set mode and set characteristics. Set mode requires logical I/O privilege. Set
characteristics requires physical I/O privilege. The following function codes are
provided:

• IO$_SETMODE

• IO$_SETCHAR

These functions take the following device- or function-dependent argument (other
arguments are not valid):

P1—The address of a characteristics buffer

3–8

Line Printer Driver
3.4 Line Printer Function Codes

Figure 3–3 shows the quadword P1 characteristics buffer for IO$_SETMODE.

Figure 3–3 Set Mode Buffer

Page Width Not Used

Page Length Printer Characteristics

31 24 23 16 15 0

ZK−0666−GE

Figure 3–4 shows the same buffer for IO$_SETCHAR.

Figure 3–4 Set Characteristics Buffer

Page Width

Page Length Printer Characteristics

31 24 23 16 15 0

ZK−0667−GE

Type Class

8 7

In the buffer, the device class is DC$_LP. The printer type is a value that
corresponds to the printer: DT$_LP27 or DT$_LA11. The type can be changed by
the IO$_SETCHAR function. The page width is a value in the range of 0 through
255 on a DMF32 controller and 0 through 65535 on an LP11 or DMB32 controller.

The printer characteristics part of the buffer can contain any of the values listed
in Table 3–2.

Application programs that change specific line printer characteristics should
perform the following steps:

1. Use the IO$_SENSEMODE function to read the current characteristics.

2. Modify the characteristics.

3. Use the set mode function to write back the results.

Failure to follow this sequence will result in clearing any previously set
characteristic.

3.5 I/O Status Block
The I/O status blocks (IOSB) for the write and set mode I/O functions are shown
in Figures 3–5 and 3–6. Appendix A lists the status returns for these functions.
(The OpenVMS system messages documentation provides explanations and
suggested user actions for these returns.)

3–9

Line Printer Driver
3.5 I/O Status Block

Figure 3–5 IOSB Contents — Write Function

Byte Count Status

Number of Lines the Paper Moved*

31 16 15 0

ZK−0668−GE

* 0 if IO$_WRITEPBLK

Figure 3–6 IOSB Contents — Set Mode Function

Status

31 16 15 0

ZK−0669−GE

0

0

3.6 Line Printer Driver Programming Example
The following sample program (Example 3–1) is an example of I/O to the line
printer that shows how to use the different carriage control formats. This
program prints out the contents of the output buffer (OUT_BUFFER) 10 times
using 10 different carriage control formats. The formats are held in location
OUTPUT_FORMAT.

Example 3–1 Line Printer Program Example

; **
;

.TITLE LINE PRINTER PROGRAMMING EXAMPLE

.IDENT /01/

;
; Define necessary symbols.
;

$IODEF ;Define I/O function codes

;
; Allocate storage for the necessary data structures.
;
; Allocate output buffer and fill with required output text.
;

OUT_BUFFER:
.ASCII "VAX_PRINTER_EXAMPLE"

OUT_BUFFER_SIZE=.-OUT_BUFFER ;Define size of output string

(continued on next page)

3–10

Line Printer Driver
3.6 Line Printer Driver Programming Example

Example 3–1 (Cont.) Line Printer Program Example

;
; Allocate device name string and descriptor.
;

DEVICE_DESCR: ;
.LONG 20-10 ;Length of name string
.LONG 10$;Address of name string

10$: .ASCII /LINE_PRINTER/ ;Name string of output device
20$: ;Reference label to calculate
; ;length

;
; Allocate space to store assigned channel number.
;

DEVICE_CHANNEL: ;
.BLKW 1 ;Channel number

;
; Now set up the carriage control formats.
;

OUTPUT_FORMAT: ;
.BYTE 0,0,0,0 ;No carriage control
.BYTE 32,0,0,0 ;Blank=LF+...TEXT...+CR
.BYTE 48,0,0,0 ;Zero=LF+LF+...TEXT...+CR
.BYTE 49,0,0,0 ;One=FF+...TEXT...+CR
.BYTE 43,0,0,0 ;Plus=Overprint...+CR
.BYTE 36,0,0,0 ;Dollar=LF+TEXT(Prompt)

;
; Now set up the prefix-postfix carriage control formats.
;

.BYTE 0,0,1,141 ;LF+...TEXT...+CR

.BYTE 0,0,24,141 ;24LF+...TEXT...+CR

.BYTE 0,0,2,141 ;LF+LF+...TEXT...+CR

.BYTE 0,0,140,141 ;FF+...TEXT...+CR
;
; **
;
; Start Program
;
; **

;
; The program assigns a channel to the output device, sets up a loop
; count for the number of times it wishes to print, and performs ten
; QIO and wait ($QIOW) system service requests. The channel is then
; deassigned.
;

.ENTRY PRINTER_EXAMPLE,^M<R2,R3> ;Program starting address
;
; First, assign a channel to the output device.
;

$ASSIGN_S DEVNAM=DEVICE_DESCR,- ;Assign a channel to printer
CHAN=DEVICE_CHANNEL ;

BLBC R0,50$;If low bit = 0, assign failure
MOVL #11,R3 ;Set up loop count
MOVAL OUTPUT_FORMAT,R2 ;Set up o/p format address

;in R2

(continued on next page)

3–11

Line Printer Driver
3.6 Line Printer Driver Programming Example

Example 3–1 (Cont.) Line Printer Program Example

;
; Start the printing loop.
;

30$: $QIOW_S CHAN=DEVICE_CHANNEL,- ;Print on device channel
FUNC=#IO$_WRITEVBLK,- ;I/O function is write virtual
P1=OUT_BUFFER,- ;Address of output buffer
P2=#OUT_BUFFER_SIZE,- ;Size of buffer to print
P4=(R2)+ ;Format control in R2

;will autoincrement
BLBC R0,40$;If low bit = 0, I/O failure
SOBGTR R3,30$;Branch if not finished

40$: $DASSGN_S CHAN=DEVICE_CHANNEL ;Deassign channel
50$: RET ;Return

.END PRINTER_EXAMPLE

3–12

A
I/O Function Codes

This appendix lists the function codes and function modifiers defined in the
$IODEF macro. The arguments for these functions are also listed.

A.1 Card Reader Driver
Functions Arguments Modifiers

IO$_READLBLK
IO$_READVBLK
IO$_READPBLK

P1 - buffer address
P2 - byte count

IO$M_BINARY
IO$M_PACKED

IO$_SETMODE
IO$_SETCHAR

P1 - characteristics
buffer address

None

IO$_SENSEMODE None None

QIO Status Returns

SS$_ABORT SS$_DATAOVERUN SS$_ENDOFFILE SS$_NORMAL

A.2 Laboratory Peripheral Accelerator Driver
Functions Arguments Modifiers

IO$_LOADMCODE P1 - starting address of
microcode to be loaded

P2 - load byte count
P3 - starting microprogram

address to receive
microcode

None

IO$_STARTMPROC None None

IO$_INITIALIZE P1 - address of initialize
command table

P2 - initialize command
buffer length

None

IO$_SETCLOCK P2 - mode of operation
P3 - clock control and

status
P4 - real-time clock preset

value (two’s complement)

None

A–1

I/O Function Codes
A.2 Laboratory Peripheral Accelerator Driver

Functions Arguments Modifiers

IO$_STARTDATA P1 - data transfer command
table address

P2 - data transfer command
table length

P3 - normal completion AST
address

P4 - overrun completion AST
address

IO$_SETEVF

High-Level Language

Subroutines Functions

LPA$ADSWP Start A/D converter sweep.

LPA$DASWP Start D/A converter sweep.

LPA$DISWP Start digital input sweep.

LPA$DOSWP Start digital output sweep.

LPA$LAMSKS Specify LPA11-K controller and digital mask words.

LPA$SETADC Specify channel select parameters.

LPA$SETIBF Specify buffer parameters.

LPA$STPSWP Stop sweep.

LPA$CLOCKA Set Clock A rate.

LPA$CLOCKB Set Clock B rate.

LPA$XRATE Compute clock rate and preset value.

LPA$IBFSTS Return buffer status.

LPA$IGTBUF Return next available buffer.

A–2

I/O Function Codes
A.2 Laboratory Peripheral Accelerator Driver

High-Level Language

Subroutines Functions

LPA$INXTBF Alter buffer order.

LPA$IWTBUF Return next buffer or wait.

LPA$RLSBUF Release buffer to LPA11-K.

LPA$RMVBUF Remove buffer from device queue.

LPA$CVADF Convert A/D input to floating point.

LPA$FLT16 Convert unsigned integer to floating point.

LPA$LOADMC Load microcode and initialize LPA11-K.

QIO Status Returns

SS$_ABORT SS$_BADPARAM SS$_BUFNOTALIGN

SS$_CANCEL SS$_CTRLERR SS$_DATACHECK

SS$_DEVACTIVE SS$_DEVCMDERR SS$_DEVREQERR

SS$_EXQUOTA SS$_INSFBUFDP SS$_INSFMAPREQ

SS$_INSFMEM SS$_IVBUFLEN SS$_IVMODE

SS$_MCNOTVALID SS$_PARITY SS$_POWERFAIL

SS$_TIMEOUT

A.3 Line Printer Driver

Functions Arguments Modifiers

IO$_WRITEVBLK
IO$_WRITELBLK
IO$_WRITEPBLK

P1 - buffer address
P2 - buffer size
P3 - (ignored)
P4 - carriage control

specifier1

None

IO$_SENSEMODE None None

IO$_SETMODE
IO$_SETCHAR

P1 - characteristics
buffer address

None

1Only for IO$_WRITEVBLK and IO$_WRITELBLK

QIO Status Returns

SS$_ABORT SS$_ACCVIO SS$_CANCEL SS$_NORMAL

A–3

Index

A
Arguments

list, A–1 to A–3
LPA11-K subroutine, 2–15

ASCII (8-bit) codes, 1–8
AST

see Asynchronous system trap
Asynchronous system trap (AST)

quota, 2–12

B
Batch job command procedure

using a card reader, 1–2
Buffer overruns

with LPA11-K, 2–10

C
Card readers

card punch combinations, 1–1
026 card reader code, 1–2, 1–8
029 card reader code, 1–2, 1–8
code, 1–8
device characteristics, 1–4
end-of-file status, 1–2
error recovery, 1–3
failure categories, 1–4
features, 1–1
for batch job command procedures, 1–2
function codes, 1–5, A–1
function modifiers

IO$M_BINARY, 1–1, 1–6
IO$M_PACKED, 1–1, 1–6

I/O functions
IO$_READLBLK, 1–6
IO$_READPBLK, 1–6
IO$_READVBLK, 1–6
IO$_SENSEMODE, 1–7
IO$_SETCHAR, 1–10
IO$_SETMODE, 1–7

I/O status block, 1–11
read function, 1–6
read modes, 1–1
sense mode function, 1–7
set mode function, 1–7

Card readers (cont’d)
set translation mode, 1–2
status returns, A–1
supported device, 1–1
SYS$GETDVI returns, 1–4

Carriage control
line printer, 3–5

Characters
formatting on line printer, 3–2

Clock rates
with LPA11-K, 2–8

D
Data buffers

LPA11-K, 2–12
Data transfer command tables

LPA11-K, 2–10
Data transfer start commands

LPA11-K, 2–10
Data transfer stop commands

LPA11-K, 2–12
Data underruns/overruns

with LPA11-K, 2–10
DEC026 card reader code, 1–2
DEC026 card reader codes, 1–8
DEC029 card reader code, 1–2
DEC029 card reader codes, 1–8
Device characteristics

card reader, 1–4
line printer, 3–3
LPA11-K device, 2–4

Drivers
card reader, 1–1
line printer, 3–1
LPA11-K device, 2–1

E
End-of-file (EOF)

status
card reader, 1–2

EOF
See End-of-file

EOJ commands
in card reader batch job, 1–2

Index–1

Error recovery
line printer, 3–3

F
Form feed

line printer, 3–4
mechanical, 3–4

Function codes
IO$_INITIALIZE, 2–8
IO$_LOADMCODE, 2–7
IO$_READLBLK, 1–6
IO$_READPBLK, 1–6
IO$_READVBLK, 1–6
IO$_SENSEMODE, 1–7, 3–8
IO$_SETCHAR, 1–10, 3–8
IO$_SETCLOCK, 2–8
IO$_SETMODE, 1–7, 3–8
IO$_STARTDATA, 2–9
IO$_WRITELBLK, 3–5
IO$_WRITEPBLK, 3–5
IO$_WRITEVBLK, 3–5
list of, A–1 to A–3

Function modifiers
IO$M_BINARY, 1–6
IO$M_PACKED, 1–6
IO$M_SETEVF, 2–10
list of, A–1 to A–3

I
I/O functions

card reader, 1–5
codes, A–1
line printer, 3–4
list of, A–1 to A–3
LPA11-K device, 2–7

I/O status blocks
card reader, 1–11
line printer, 3–9
LPA11-K device, 2–28

Initialize command tables
LPA11-K device, 2–8

J
JOB commands

in card reader batch job, 1–2

L
Laboratory Peripheral Accelerator

See LPA11-K devices
Line printers

carriage control, 3–5, 3–7
character case, 3–4
character formatting, 3–2
device characteristics, 3–3

Line printers (cont’d)
driver, 3–1
error recovery, 3–3
form feed, 3–4
function codes, 3–4, A–3
I/O functions

IO$_SENSEMODE, 3–8
IO$_SETCHAR, 3–8
IO$_SETMODE, 3–8
IO$_WRITELBLK, 3–5
IO$_WRITEPBLK, 3–5
IO$_WRITEVBLK, 3–5

I/O status block, 3–9
printall mode, 3–4
programming example, 3–10
sense mode function, 3–8
set characteristics, 3–8
set mode function, 3–8
status returns, A–3
supported devices, 3–1
SYS$GETDVI returns, 3–3
write function, 3–5

carriage control, 3–5
LPA11-K devices

AST
address, 2–10, 2–12
quota, 2–12
synchronization, 2–12

buffer management, 2–13
buffer overrun, 2–10, 2–12, 2–26
buffer queue control, 2–13
clock rate, 2–8
data buffer, 2–12
data sampling, 2–1
data transfer command table, 2–10
data transfer start command, 2–10
data transfer stop command, 2–12
data underrun/overrun, 2–10
device characteristics, 2–4 to 2–6
device configuration, 2–1, 2–8, 2–29
device initialization, 2–3, 2–7 to 2–8, 2–27,

2–29
driver, 2–1
errors, 2–2
features, 2–3
function codes, 2–7, A–1
function modifier

IO$M_SETEVF, 2–10, 2–12
high-level language support routines, 2–13
I/O functions

IO$_INITIALIZE, 2–8
IO$_LOADMCODE, 2–7
IO$_SETCLOCK, 2–8
IO$_STARTDATA, 2–9
IO$_STARTMPROC, 2–7

I/O status block, 2–28
initialize command table, 2–8
initialize function, 2–8

Index–2

LPA11-K devices (cont’d)
load microcode function, 2–7
maintenance status register, 2–8, 2–28
microcode loading, 2–3, 2–7, 2–27, 2–29
modes of operation, 2–1
operator process, 2–29
programming examples, 2–31, 2–33, 2–38
RSX–11M/M–PLUS and OpenVMS VAX

differences, 2–30
set clock function, 2–8
start data transfer request function, 2–9
start microprocessor function, 2–7
status returns, 2–8, 2–9, 2–11, 2–28, A–3
stop command, 2–12
subroutines

argument usage, 2–15 to 2–16
list, 2–13

supported device, 2–1
supporting software, 2–3
SYS$CANCEL routine, 2–12
SYS$GETDVI returns, 2–4
timeout errors, 2–2

M
Mode cards

026 punch mode, 1–2
029 punch mode, 1–2

P
PASSALL mode, 3–4
PASSWORD commands

in card reader batch job, 1–2
Printers

See Line printers

Q
Quotas

AST, 2–12

R
RSX–11M/M–PLUS

differences from OpenVMS VAX, 2–30

S
SET CARD_READER command, 1–2
Set characteristics

card reader, 1–7
line printer, 3–8

Set mode operations
card reader, 1–7
line printer, 3–8

Set translation modes, 1–2
SS$_ABORT return, A–1, A–3
SS$_BADPARAM return, A–3
SS$_BUFNOTALIGN return, A–3
SS$_CANCEL return, A–3
SS$_CTRLERR return, A–3
SS$_DATACHECK return, A–3
SS$_DATAOVERUN return, A–1
SS$_DEVACTIVE return, A–3
SS$_DEVCMDERR return, A–3
SS$_DEVREQERR return, A–3
SS$_ENDOFFILE return, A–1
SS$_EXQUOTA return, A–3
SS$_INSFBUFDP return, A–3
SS$_INSFMAPREQ return, A–3
SS$_INSFMEM return, A–3
SS$_IVBUFLEN return, A–3
SS$_IVMODE return, A–3
SS$_MCNOTVALID return, A–3
SS$_NORMAL return, A–1
SS$_PARITY return, A–3
SS$_POWERFAIL return, A–3
SS$_TIMEOUT return, A–3
SYS$CANCEL routine, 2–12
SYS$GETDVI routine

card reader, 1–4
line printer, 3–3
LPA11-K device, 2–4

T
Translation mode cards

026 punch mode, 1–2
029 punch mode, 1–2

Index–3

