
OpenVMS VAX Device Support
Manual
Order Number: AA–PWC8A–TE

March 1994

This manual describes how to write a driver for a device connected to
a VAX processor. It discusses the required and optional components of
a driver and explains their functions. It details the requirements the
operating system imposes upon driver code and includes guidelines for
creating, loading, and debugging a driver that can run on OpenVMS
uniprocessing and multiprocessing systems.

Revision/Update Information: This manual supersedes the OpenVMS
VAX Device Support Manual, Version
6.0.

Software Version: OpenVMS VAX Version 6.1

Digital Equipment Corporation
Maynard, Massachusetts

March 1994

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1994. All rights reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: BI, Bookreader, CI, CMI, DEC,
DECnet, Digital, MASSBUS, MicroVAX, MSCP, NMI, OpenVMS, Q–bus, Q22–bus, SBI, TMSCP,
TURBOchannel, UNIBUS, VAX, VAXBI, VAXcluster, VAX DOCUMENT, VAX MACRO, VAXstation,
VMS, and the DIGITAL logo.

The following are third-party trademarks:

UNIX is a registered trademark licensed exclusively by X/Open Co. Ltd.

Internet is a registered trademark of Internet, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

ZK5502

This document is available on CD–ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Send Us Your Comments
We welcome your comments on this or any other OpenVMS manual. If you have suggestions for
improving a particular section or find any errors, please indicate the title, order number, chapter,
section, and page number (if available). We also welcome more general comments. Your input is
valuable in improving future releases of our documentation.

You can send comments to us in the following ways:

• Internet electronic mail: OPENVMSDOC@ZKO.MTS.DEC.COM

• Fax: 603-881-0120 Attn: OpenVMS Documentation, ZKO3-4/U08

• A completed Reader’s Comments form (postage paid, if mailed in the United States), or a
letter, via the postal service. Two Reader’s Comments forms are located at the back of each
printed OpenVMS manual. Please send letters and forms to:

Digital Equipment Corporation
Information Design and Consulting
OpenVMS Documentation
110 Spit Brook Road, ZKO3-4/U08
Nashua, NH 03062-2698
USA

You may also use an online questionnaire to give us feedback. Print or edit the online file
SYS$HELP:OPENVMSDOC_SURVEY.TXT. Send the completed online file by electronic mail to our
Internet address, or send the completed hardcopy survey by fax or through the postal service.

Thank you.

Contents

Preface . xxi

Part I OpenVMS VAX Device Driver Environment

1 Introduction to Device Drivers

1.1 Driver Functions . 1–2
1.2 Driver Components . 1–2
1.2.1 Driver Tables . 1–2
1.2.2 Driver Routines . 1–3
1.3 I/O Database . 1–4
1.3.1 Driver Tables . 1–4
1.3.2 Data Structures . 1–4
1.3.3 I/O Request Packets . 1–6
1.4 Synchronization of Driver Activity . 1–6
1.5 Driver Context . 1–7
1.5.1 Example of Driver Context-Switching . 1–8
1.6 Hardware Considerations . 1–9
1.6.1 Driver Dependency on VAX Processing Systems 1–10
1.6.1.1 Address Space . 1–10
1.6.1.2 VAX–11/780, VAX–11/785, and VAX 8600/8650 Systems 1–11
1.6.1.3 VAX–11/750 System . 1–12
1.6.1.4 VAX–11/730 System . 1–14
1.6.1.5 VAX 82x0/83x0, VAX 85x0/8700/88x0, and VAX 6000 Series

Systems . 1–14
1.6.1.6 VAX 9000 Series System . 1–17
1.6.1.7 VAX 7000 Series and VAX 10000 Series Systems 1–19
1.6.1.8 MicroVAX 3400/3600/3900 Series, MicroVAX/VAXstation II, and

VAX 4000 Series Systems . 1–21
1.6.1.9 MicroVAX/VAXstation 3100 and VAXstation 3520/3540

Systems . 1–22
1.7 Programmed-I/O and Direct-Memory-Access Transfers 1–24
1.7.1 Programmed I/O . 1–24
1.7.2 Direct-Memory-Access I/O . 1–24
1.8 Buffered and Direct I/O . 1–25
1.9 Example of an I/O Request . 1–26

v

2 Handling a $QIO Request

2.1 Driver Code for the LP11 Write Function . 2–1
2.2 A User Process I/O Request . 2–3
2.3 Device-Independent System I/O Preprocessing . 2–3
2.4 Device-Dependent I/O Preprocessing by the Driver 2–3
2.5 Queuing the I/O Request Packet to the Driver . 2–4
2.6 Activating the Printer . 2–5
2.7 Waiting for a Device Interrupt . 2–5
2.8 Handling Interrupts . 2–6
2.9 I/O Postprocessing by the Driver . 2–6
2.10 System I/O Postprocessing . 2–7

3 Synchronization of I/O Request Processing

3.1 Interrupt Priority Levels . 3–1
3.1.1 Interrupt Service Routines . 3–3
3.1.2 IPL Use During I/O Processing . 3–3
3.1.2.1 IPL 2 (IPL$_ASTDEL) . 3–3
3.1.2.2 IPL 4 (IPL$_IOPOST) . 3–4
3.1.2.3 IPL 8 to IPL 11 (Fork IPLs) . 3–5
3.1.2.4 IPL 20 to IPL 23 (Device IPLs) . 3–5
3.1.2.5 IPL 31 (IPL$_POWER) . 3–6
3.1.3 Additional IPLs . 3–6
3.1.3.1 IPL 3 (IPL$_RESCHED) . 3–6
3.1.3.2 IPL 6 (IPL$_QUEUEAST) . 3–6
3.1.3.3 IPL 7 (IPL$_TIMERFORK) . 3–7
3.1.3.4 IPL 8 (IPL$_SYNCH) . 3–7
3.1.3.5 IPL 11 (IPL$_MAILBOX) . 3–7
3.1.3.6 IPL 14 (XDELTA Entry IPL) . 3–8
3.1.3.7 IPL 22 or IPL 24 (Interval Clock IPLs) . 3–8
3.1.4 Modifying IPL in Driver Code . 3–8
3.1.4.1 Raising IPL . 3–9
3.1.4.2 Lowering IPL . 3–10
3.2 Spinlocks . 3–11
3.2.1 Fork Locks . 3–14
3.2.2 Device Locks . 3–15
3.3 Device Driver Synchronization . 3–15
3.3.1 Overview of the Synchronization of an I/O Operation 3–15
3.3.2 Synchronizing the Device Database . 3–19
3.3.3 Synchronizing at Driver Fork Level . 3–20
3.3.3.1 Forking and the System Fork Dispatcher 3–21
3.3.3.2 Restrictions on Fork Processes . 3–22
3.4 Resource Wait Queues . 3–23
3.4.1 Competing for a Controller’s Data Channel . 3–23

4 Overview of I/O Processing

4.1 Preprocessing an I/O Request . 4–4
4.1.1 Process I/O Channel Assignment . 4–5
4.1.2 Locating a Device Driver in the I/O Database 4–5
4.1.2.1 Channel Request Block . 4–5
4.1.2.2 Interrupt Dispatch Block . 4–7
4.1.2.3 Device Data Block . 4–8
4.1.3 Validating the I/O Function . 4–8

vi

4.1.4 Checking Process I/O Request Quotas . 4–8
4.1.5 Validating the I/O Status Block . 4–8
4.1.6 Allocating and Setting Up an I/O Request Packet 4–8
4.1.7 FDT Processing . 4–9
4.2 Handling Device Activity . 4–12
4.2.1 Creating a Driver Fork Process to Start I/O . 4–13
4.2.2 Activating a Device and Waiting for an Interrupt 4–14
4.2.3 Handling a Device Interrupt . 4–15
4.2.4 Switching from Interrupt to Fork Process Context 4–15
4.2.5 Activating a Fork Process from a Fork Queue 4–16
4.3 Completing an I/O Request . 4–16
4.3.1 I/O Postprocessing . 4–17

Part II Writing a Device Driver

5 Device Driver Coding Format

5.1 Coding Conventions . 5–1
5.2 Restrictions on the Use of Device-Register I/O Space 5–3
5.3 Implementing Conditional Code in a Driver . 5–4

6 Writing Device-Driver Tables

6.1 Driver Prologue Table . 6–1
6.2 Driver Dispatch Table . 6–3
6.3 Function Decision Table . 6–4
6.3.1 Defining Buffered-I/O Functions . 6–7
6.3.2 Defining Device-Specific Function Codes . 6–8

7 Writing FDT Routines

7.1 Context of FDT Routine Execution . 7–1
7.2 FDT Routines and Their Exit Paths . 7–2
7.2.1 FDT Exit Paths . 7–3
7.2.1.1 RSB . 7–3
7.2.1.2 JMP G^EXE$QIODRVPKT . 7–4
7.2.1.3 JMP G^EXE$FINISHIO or JMP G^EXE$FINISHIOC 7–4
7.2.1.4 JMP G^EXE$ABORTIO . 7–4
7.2.1.5 JSB G^EXE$ALTQUEPKT . 7–5
7.3 FDT Routines for System Direct I/O . 7–5
7.4 FDT Routines for System Buffered I/O . 7–5
7.4.1 Checking Accessibility of the User’s Buffer . 7–6
7.4.2 Allocating the System Buffer . 7–6
7.4.3 Buffered-I/O Postprocessing . 7–7
7.5 System-Provided FDT Routines . 7–8

8 Writing a Start-I/O Routine

8.1 Transferring Control to the Start-I/O Routine . 8–1
8.2 Context of a Driver Fork Process . 8–1
8.3 Functions of a Start-I/O Routine . 8–2
8.3.1 Obtaining Controller Access . 8–2
8.3.2 Obtaining and Converting the I/O Function Code and Its Modifiers . . 8–4
8.3.3 Preparing the Device Activation Bit Mask . 8–4

vii

8.3.4 Synchronizing Access to the Device Database 8–4
8.3.5 Checking for a Local Processor Power Failure 8–5
8.3.6 Activating the Device . 8–5
8.4 Waiting for an Interrupt or Timeout . 8–5
8.4.1 Expansion of WFIKPCH Macro . 8–6
8.4.2 IOC$WFIKPCH Routine . 8–6

9 Writing an Interrupt Service Routine

9.1 Interrupt Context . 9–3
9.2 Servicing a Solicited Interrupt . 9–3
9.3 Servicing an Unsolicited Interrupt . 9–4
9.3.1 Examples of Unsolicited Interrupts . 9–6

10 Completing an I/O Request and Handling Timeouts

10.1 I/O Postprocessing . 10–1
10.1.1 EXE$IOFORK . 10–1
10.1.2 Completing an I/O Request . 10–2
10.1.2.1 Releasing the Controller . 10–2
10.1.2.2 Saving Status, Count, and Device-Dependent Status 10–3
10.1.2.3 Returning Control to the Operating System 10–3
10.2 Timeout Handling Routines . 10–4
10.2.1 Retrying an I/O Operation . 10–5
10.2.2 Aborting an I/O Request . 10–6
10.2.3 Sending a Message to the Operator . 10–6

11 Other Driver Routines

11.1 Initialization Routines . 11–1
11.1.1 Controller Initialization Routine . 11–1
11.1.2 Unit Initialization Routine . 11–2
11.1.3 Initialization During Driver Loading . 11–3
11.1.4 Initialization During Recovery from a Power Failure 11–4
11.1.5 Forking from a Driver Initialization Routine . 11–5
11.2 Cancel-I/O Routine . 11–6
11.2.1 Context of a Cancel-I/O Routine . 11–7
11.2.2 Drivers That Need No Cancel-I/O Routine . 11–7
11.2.3 Device-Independent Cancel-I/O Routine . 11–7
11.2.4 Device-Dependent Cancel-I/O Routine . 11–8
11.3 Error-Logging Routines . 11–8
11.3.1 System-Supplied Error-Logging Routines . 11–9
11.3.2 Register-Dumping Routine . 11–9
11.3.3 Interpreting Error Log Entries . 11–10
11.4 Cloned UCB Routine . 11–10

Part III Loading and Debugging a Driver

viii

12 Loading a Device Driver

12.1 Preparing a Driver for Loading into the Operating System 12–1
12.2 Loading a Driver . 12–2
12.2.1 LOAD Command . 12–3
12.2.2 CONNECT Command . 12–3
12.2.3 RELOAD Command . 12–7
12.2.4 SHOW/ADAPTER Command . 12–8
12.2.5 SHOW/BI Command . 12–9
12.2.6 SHOW/BUS Command . 12–9
12.2.7 SHOW/XMI Command . 12–10
12.2.8 SHOW/CONFIGURATION Command . 12–11
12.2.9 SHOW/DEVICE Command . 12–11
12.3 Loading Uniprocessing and Multiprocessing Drivers 12–12
12.4 SYSGEN Autoconfiguration Facility . 12–13
12.4.1 SYSGEN Device Table . 12–13
12.4.2 Device Driver Control of Autoconfiguration . 12–19
12.4.3 Floating-Vector Address Calculation . 12–20
12.4.4 Floating-CSR Address Calculation . 12–20
12.4.5 Rules for Configuration . 12–20

13 Debugging a Device Driver

13.1 Bootstrapping the System with XDELTA . 13–1
13.2 Proceeding from the Initial Breakpoints . 13–5
13.3 Loading the Driver . 13–6
13.4 Inserting Breakpoints in Driver Source Code . 13–6
13.5 Calculating the Base of Driver Code . 13–7
13.6 Requesting an XDELTA Software Interrupt . 13–7
13.7 Examining the Vector-Jump Table . 13–9
13.8 Setting an XDELTA Base Register . 13–9
13.9 Examining the UCB, IRP, or PSL . 13–10
13.10 XDELTA Commands . 13–10
13.10.1 Values and Expressions . 13–12
13.10.2 Special Symbols . 13–12
13.10.2.1 Stored Base Registers . 13–13
13.10.2.2 Stored Command Strings . 13–13
13.10.2.3 Setting Base Registers . 13–13
13.10.3 Display Names and Locations of Loaded Executive Images 13–14
13.10.4 Set Display Mode . 13–14
13.10.5 Open, Examine, and Close Location . 13–15
13.10.5.1 Open and Display Value Command . 13–15
13.10.5.2 Display Instruction Command . 13–15
13.10.5.3 Close and Display Next Location Command 13–16
13.10.5.4 Display Range Command . 13–16
13.10.5.5 Indirect Command . 13–16
13.10.5.6 Display Previous Location Command . 13–16
13.10.6 Breakpoints . 13–17
13.10.6.1 Setting Breakpoints . 13–17
13.10.6.2 Clearing Breakpoints . 13–17
13.10.6.3 Displaying Breakpoint List . 13–17
13.10.6.4 Proceeding from Breakpoints . 13–18
13.10.6.5 Setting Complex Breakpoints . 13–18

ix

13.10.7 Step, Set Location, and Execute Instruction Commands 13–18
13.10.7.1 Loading PC and Continuing . 13–18
13.10.7.2 Execute Instruction and Step Command . 13–18
13.10.7.3 Step Instruction over Subroutine Command 13–18
13.10.8 Execute String Command . 13–19
13.10.8.1 Locating Nonpaged System Patch Space . 13–19
13.11 Guidelines for Debugging Device Drivers . 13–20
13.11.1 Opening Device Registers in XDELTA . 13–20
13.11.2 Adjusting the Device Timeout Value . 13–21
13.11.3 XDELTA and System Failures . 13–21
13.12 Common Driver Errors . 13–21
13.12.1 References to System Addresses . 13–21
13.12.2 Incorrect References to Device Registers . 13–21
13.12.3 Destroying Register Contents . 13–22
13.13 Pool Checking Mechanism . 13–22
13.14 Detecting Driver Problems in a Multiprocessing System 13–26

Part IV Bus Specifics and Advanced Topics

14 UNIBUS and Q22–bus Device Support

14.1 Functions of the UNIBUS Adapter and Q22–bus Interface 14–1
14.1.1 Reading and Writing Device Registers . 14–3
14.1.2 Map Registers . 14–3
14.1.3 UNIBUS Adapter Data Transfer Paths . 14–7
14.1.3.1 Direct Data Path . 14–9
14.1.3.2 Buffered Data Paths . 14–10
14.1.3.3 Byte-Offset Data Transfers . 14–12
14.1.3.4 Purging a Buffered Data Path . 14–12
14.1.3.5 Longword-Aligned, 32-Bit, Random-Access Mode 14–13
14.2 Writing Driver Code for UNIBUS/Q22–bus DMA Transfers 14–13
14.2.1 Selecting and Requesting a Data Path . 14–15
14.2.1.1 Requesting a Buffered Data Path . 14–15
14.2.1.2 Requesting a Permanent Buffered Data Path 14–16
14.2.1.3 Requesting the Direct Data Path . 14–16
14.2.1.4 Mixed Use of Direct and Buffered Data Paths 14–17
14.2.2 Requesting Map Registers . 14–17
14.2.2.1 Allocating Map Registers . 14–17
14.2.2.2 Permanently Allocating Map Registers . 14–18
14.2.3 Loading Map Registers . 14–19
14.2.4 Computing the Starting Address of a Transfer 14–20
14.2.5 Computing the Transfer Length . 14–21
14.2.6 Activating the Device . 14–21
14.2.7 Completing a DMA Transfer . 14–21
14.2.7.1 Purging the Data Path . 14–22
14.2.7.2 Releasing a Buffered Data Path . 14–22
14.2.7.3 Releasing Map Registers . 14–23
14.3 Interrupt Dispatching in a UNIBUS/Q22–bus System 14–24
14.3.1 Direct-Vector and Non-Direct-Vector Interrupt Dispatching 14–27
14.3.2 Adapter Dispatch Table . 14–28
14.3.3 Interrupt Transfer Vector and Interrupt Transfer Routine 14–28
14.3.4 Multilevel Device Interrupt Dispatching for Q22–bus Devices 14–31
14.3.4.1 Ensuring That the Q22–bus Is Properly Configured 14–32
14.3.4.2 Effects of Enabling Multilevel Device Interrupt Dispatching 14–33

x

15 MASSBUS Device Support

15.1 MASSBUS Adapter Registers . 15–1
15.1.1 Loading MASSBUS Adapter Registers . 15–3
15.1.2 MASSBUS Adapter Registers and Offsets . 15–4
15.1.3 Modifying MASSBUS Adapter Registers . 15–5
15.2 I/O Database for MASSBUS Devices . 15–6
15.3 MASSBUS Adapter Operations . 15–8
15.4 MASSBUS Adapter’s Interrupt Dispatching . 15–9
15.4.1 Checking for MASSBUS Adapter Ownership . 15–9
15.4.2 Dispatching a Device Interrupt . 15–10
15.5 Special Considerations for MASSBUS Device Drivers 15–10
15.5.1 Unit Initialization Routine . 15–10
15.5.2 The MASSBUS Adapter and the I/O Database 15–11
15.5.3 Start-I/O Routine . 15–11
15.5.3.1 Requesting Controller Data Channels . 15–12
15.5.3.2 Loading Map Registers . 15–12
15.5.3.3 Releasing Controller Data Channels . 15–13
15.5.4 DPTAB Macro . 15–13
15.6 Interrupt Service Routines for MASSBUS Devices 15–13
15.6.1 Transferring Control to the Interrupt Service Routine 15–13
15.6.2 Returning Control to MBA$INT . 15–14
15.6.3 Considerations for Interrupt Service Routines 15–14

16 Generic VAXBI Device Support

16.1 Overview of VAXBI Driver Support . 16–1
16.2 VAXBI Concepts . 16–1
16.2.1 VAXBI Address Space . 16–2
16.2.2 Backplane Interconnect Interface Chip (BIIC) 16–5
16.3 XBI+ Adapter . 16–5
16.3.1 XBI+ BI-to-XMI Address Translation . 16–6
16.3.2 VAXBI Device Register Access . 16–6
16.4 SCU/XMI Concepts . 16–6
16.5 VAX 7000 Series and VAX 10000 Series Systems . 16–7
16.5.1 Data Structures . 16–8
16.5.2 System Macros . 16–8
16.5.3 Processing . 16–9
16.6 Initialization Performed by the System . 16–10
16.6.1 Data Structures . 16–11
16.6.2 System Control Block . 16–12
16.7 Initialization Performed by the VAXBI Device Driver 16–13
16.7.1 Examining BIIC Self-Test Status . 16–15
16.7.2 Clearing BIIC Errors, Setting Interrupts, and Enabling Interrupts . . . 16–16
16.7.2.1 Clearing the Bus Error Register . 16–16
16.7.2.2 Loading the Interrupt Destination Register 16–16
16.7.2.3 Setting Interrupt Vectors . 16–16
16.7.2.4 Enabling Error Interrupts . 16–17
16.7.2.5 Enabling BIIC Options . 16–17
16.7.3 Mapping Window Space . 16–17
16.8 DMA Transfers . 16–19
16.8.1 Example: DMB32 Asynchronous/Synchronous Multiplexer 16–21
16.9 Unit Initialization Routine . 16–23
16.10 Register-Dumping Routine . 16–23
16.11 Loading a VAXBI Device Driver . 16–23

xi

16.12 BIIC Register Definitions . 16–23

17 SCSI Class Driver Support

17.1 VAX Systems with SCSI Bus Concepts . 17–2
17.2 SCSI Class/Port Architecture . 17–2
17.2.1 SCSI Port Interface . 17–5
17.2.2 SCSI-Specific Data Structures . 17–6
17.2.3 SCSI Class Driver Template . 17–8
17.3 Connecting to a SCSI Device . 17–9
17.4 Setting Up a SCSI Command . 17–9
17.4.1 Preparing a SCSI Command Descriptor Block 17–10
17.4.2 Setting Command Timeouts . 17–11
17.4.3 Disabling Command Retry . 17–11
17.5 Performing a SCSI Data Transfer . 17–12
17.5.1 Setting the Data Transfer Mode . 17–12
17.5.2 Enabling Disconnection and Reselection . 17–12
17.5.3 Determining the Maximum Data Transfer Size 17–13
17.5.4 Initializing the SCDRP to Reflect Class Driver Data Buffering

Mechanisms . 17–13
17.5.5 Making a Class Driver Data Buffer Accessible to the Port 17–14
17.5.6 Examining Port and SCSI Status . 17–15
17.5.6.1 Examining Port Status . 17–16
17.5.6.2 Examining the SCSI Status Byte . 17–16
17.5.6.3 Testing for Incomplete Transfers . 17–17
17.6 Other SCSI Class Driver Issues . 17–17
17.6.1 Preserving Local Context . 17–17
17.6.2 Error Logging . 17–18
17.7 Flow of a Read I/O Request Through the SCSI Class and Port Drivers . . . 17–20
17.8 Components of a SCSI Class Driver . 17–22
17.8.1 Data Definitions . 17–22
17.8.2 Driver Prologue Table . 17–23
17.8.3 Driver Dispatch Table . 17–23
17.8.4 Function Decision Table and FDT Routines . 17–23
17.8.5 Controller Initialization Routine . 17–23
17.8.6 Unit Initialization Routine . 17–23
17.8.7 Start-I/O Routine . 17–24
17.8.8 Cancel-I/O Routine . 17–25
17.8.9 Register-Dumping Routine . 17–26
17.9 Servicing Asynchronous Events from a SCSI Device 17–26
17.10 Tagged Command Queuing I/O for SCSI-2 Devices 17–27
17.10.1 SCSI-2 Driver Design Considerations . 17–28
17.10.2 Using the UCB$M_BSY Bit in a $QIO . 17–30
17.10.3 Mixing Queued and Non-Queued I/O Requests 17–30
17.10.4 SPI Interface for SCSI-2 Devices . 17–31
17.10.5 Connection Characteristics for SCSI-2 Devices 17–32
17.10.6 Recovering Queues from Errors . 17–32
17.10.7 I/O Flow Through the Queues . 17–33
17.11 Configuring a SCSI Third-Party Device . 17–34
17.11.1 Disabling the Autoconfiguration of a SCSI Device 17–34
17.12 Debugging a SCSI Class Driver . 17–35
17.12.1 Selecting a SCSI Bus Analyzer . 17–36

xii

17.12.2 Interpreting SCSI Error Log Entries . 17–36
17.12.2.1 SCSI Port Driver Error Log Entries . 17–36
17.12.2.2 SCSI Class Driver Error Log Entries . 17–41
17.13 Resolving SCSI Class Driver Problems Using Error Logs 17–42

18 Terminal Class and Port Drivers

18.1 Overview . 18–2
18.2 Data Structures . 18–2
18.2.1 Terminal UCB . 18–2
18.2.2 Port Driver Vector Table . 18–3
18.2.3 Class Driver Vector Table . 18–4
18.2.4 Vector Table Generation Macros . 18–5
18.2.4.1 $VECINI Macro . 18–5
18.2.4.2 $VEC Macro . 18–6
18.2.4.3 $VECEND Macro . 18–6
18.3 Structure of Port and Class Drivers . 18–6
18.3.1 Binding Class and Port Drivers . 18–6
18.4 Port Driver Routines . 18–9
18.4.1 Port Startup Routines . 18–10
18.4.1.1 Controller Initialization Routine . 18–10
18.4.1.2 Unit Initialization Routine . 18–11
18.4.2 Port Initiate Routines . 18–11
18.4.2.1 PORT_DISCONNECT . 18–11
18.4.2.2 PORT_DS_SET . 18–12
18.4.2.3 PORT_FDT . 18–12
18.4.2.4 PORT_FORKRET . 18–13
18.4.2.5 PORT_MAINT . 18–13
18.4.2.6 PORT_SET_LINE . 18–13
18.4.2.7 PORT_SET_MODEM . 18–13
18.4.2.8 PORT_STARTIO . 18–14
18.4.3 Port Service Routines . 18–14
18.4.3.1 PORT_ABORT . 18–14
18.4.3.2 PORT_CANCEL . 18–15
18.4.3.3 PORT_RESUME . 18–15
18.4.3.4 PORT_STOP . 18–15
18.4.3.5 PORT_XOFF . 18–15
18.4.3.6 PORT_XON . 18–16
18.4.3.7 Port Interrupt Service Routines . 18–16
18.5 Class Driver Routines . 18–17
18.5.1 CLASS_DDT . 18–17
18.5.2 CLASS_DISCONNECT . 18–17
18.5.3 CLASS_DS_TRANS . 18–17
18.5.4 CLASS_FORK . 18–18
18.5.5 CLASS_GETNXT . 18–18
18.5.6 CLASS_PUTNXT . 18–19
18.5.7 CLASS_SETUP_UCB . 18–19
18.5.8 CLASS_POWERFAIL . 18–20
18.5.9 CLASS_READERROR . 18–20

xiii

19 TURBOchannel Device Driver Support

19.1 Hardware Environment . 19–1
19.1.1 Address Maps . 19–2
19.2 DMA Transactions . 19–3
19.2.1 Mapped DMA . 19–3
19.2.2 Unmapped DMA . 19–4
19.3 Using TURBOchannel Mapped DMA Routines . 19–4
19.4 Coding a TURBOchannel Device Driver . 19–5
19.5 Assembling and Linking a TURBOchannel Driver 19–5
19.6 Loading a TURBOchannel Device Driver . 19–6

20 VMEbus Device Driver Support

20.1 Hardware Environment . 20–1
20.2 VMEbus Protocol Parameters . 20–3
20.3 Considering Byte Order Transfer Differences . 20–3
20.4 Handling Interrupts . 20–4
20.5 DMA Operations . 20–5
20.6 Programmed I/O Operations and I/O Mapping . 20–7
20.7 VAX 7000 Series and VAX 10000 Series Systems . 20–9
20.7.1 Data Structures . 20–9
20.7.2 System Macros . 20–10
20.7.3 Processing . 20–10
20.8 Coding a VMEbus Device Driver . 20–11
20.8.1 Porting UNIX Based Drivers . 20–11
20.9 Assembling and Linking a VMEbus Driver . 20–12
20.10 Loading a VME Device Driver . 20–13

21 Mapping to I/O Space and the Connect-to-Interrupt Facility

21.1 I/O Address Space . 21–1
21.2 PFN Mapping . 21–5
21.2.1 Notes on PFN Mapping . 21–6
21.3 Connecting to an Interrupt Vector . 21–7
21.3.1 Performing the Connect-to-Interrupt . 21–8
21.3.2 $QIO Connect-to-Interrupt Request to Driver 21–9
21.3.3 Connect-to-Interrupt Driver (CONINTERR.EXE) 21–12
21.3.4 Process-Specified Routines . 21–12
21.3.4.1 Unit Initialization Routine . 21–13
21.3.4.2 Start-I/O Routine . 21–14
21.3.4.3 Interrupt Service Routine . 21–15
21.3.4.4 Cancel-I/O Routine . 21–16
21.3.5 AST Procedure . 21–17
21.4 Real-Time Applications Examples . 21–17
21.4.1 Example 1: KW11–W Watchdog Timer . 21–18
21.4.2 Example 2: AD11–K, AM11–K A/D Converter with Multiplexer

Connected to the UNIBUS . 21–19
21.4.3 Example 3: KW11–P Real-Time Clock and AD11–K Converter

Connected to the UNIBUS . 21–21

xiv

Part V Driver Templates and Examples

A Driver Template

B SCSI Class Driver Template

C Sample Driver for the RL11, RL01, and RL02 Disk Drives

D Sample Driver for the DR11–W and DRV11–WA Interfaces

E Sample Driver for a TURBOchannel Device

F Sample Driver for a VMEbus DR11–W Interface

G Multiprocessing Requirements on Kernel-Mode Code

G.1 Uniprocessor and Multiprocessor Device Drivers . G–1
G.1.1 MULTIPROCESSING System Parameter . G–2
G.1.2 Device Driver Loading . G–3
G.1.3 System Synchronization Macros . G–4
G.2 Changes Required to Drivers Written Before VMS Version 5.0 G–4
G.2.1 Address of the Driver’s Interrupt Service Routine in the DPT G–5
G.2.2 Checking, Debiting, and Crediting a Process’s Byte Count Quota G–5
G.2.3 Referring to the Current PCB . G–6
G.2.4 Allocating System Page-Table Entries . G–6
G.2.5 Referring to a System Process Mailbox . G–7
G.2.6 Reassembling and Relinking the Driver . G–7
G.3 Adapting Device Drivers to Run on a Multiprocessing System G–8
G.3.1 Specifying the Fork Lock Index . G–8
G.3.2 Synchronizing Access to the Device Database with the Interrupt

Service Routine . G–8
G.3.2.1 Synchronizing at Device IPL . G–9
G.3.2.2 Raising IPL to IPL$_POWER . G–9
G.3.2.3 Synchronization Within the Interrupt Service Routine G–10
G.3.3 Controller and Unit Initialization Routines . G–11
G.3.3.1 Permanently Allocating Map Registers and Buffered Data

Paths . G–11
G.3.4 Timeout Handling Routine . G–11
G.3.5 General Methods for Synchronizing Kernel-Mode Code G–12
G.3.5.1 Using the Spinlock Synchronization Macros G–12
G.3.5.2 Interlocking Access to Data Cells and Queues G–13
G.3.6 Miscellaneous Conversion Tasks . G–14
G.3.6.1 Reading the System Time . G–14
G.3.6.2 Calling the Driver Fork Process from a TQE G–14
G.3.6.3 Invalidating Translation Buffer Entries . G–14
G.3.6.4 Unsupported Use of the IRP . G–15
G.3.6.5 Poor Man’s Lockdown . G–15

xv

G.3.7 Troubleshooting a Device Driver in a Multiprocessing System G–16
G.3.7.1 Multiprocessing Bugchecks . G–17
G.3.7.2 Analyzing a Multiprocessing System Failure G–17
G.3.7.2.1 Investigating the Status of Spinlocks . G–18
G.3.7.3 Using XDELTA on SMP Systems . G–19

Glossary

Index

Examples

9–1 Example of an Unsolicited Interrupt . 9–6
13–1 Loading a Driver . 13–6
17–1 SCSI Bus Phase Error Port Driver Error Log Entry 17–43
17–2 SCSI Bus Reset Port Driver Error Log Entry 17–44
17–3 SCSI Bus Reset Class Driver Error Log Entry 17–45
19–1 Using the SHOW/ADAPTER Command . 19–6
19–2 Using the SHOW/TURBOCHANNEL Command 19–6
19–3 Loading a Driver with the CONNECT Command 19–6
20–1 Using the SHOW/ADAPTER Command (VAX 6000 Series System) . . . 20–14
20–2 Using the SHOW/ADAPTER Command (VAX 7000 Series System) . . . 20–14
20–3 Using the SHOW/BUS Command (VAX 6000 Series System) 20–14
20–4 Using the SHOW/BUS Command (VAX 7000 Series System) 20–15
20–5 Loading a Driver with the CONNECT Command 20–15
21–1 Locating the Adapter Address Space of a UNIBUS Adapter on a

VAXBI Bus . 21–4

Figures

1–1 I/O Database . 1–5
1–2 Physical Address Space for VAXBI Based Processors 1–11
1–3 Virtual Address Space for VAXes . 1–12
1–4 SBI Based Systems . 1–13
1–5 VAXBI Based Systems . 1–15
1–6 SCU/XMI-Based Systems Architecture . 1–18
1–7 VAX 7000 Series and VAX 10000 Series System Architecture 1–20
1–8 Q22–bus Based Systems . 1–21
1–9 MicroVAX/VAXstation 3100 System Architecture 1–22
1–10 VAXstation 3520/3540 System Architecture . 1–23
1–11 Example of I/O Request Processing . 1–26
2–1 A Printer Write Function . 2–2
3–1 Synchronizing I/O Request Processing . 3–16
3–2 Synchronizing I/O Request Completion . 3–18
3–3 Processor-Specific Fork Queue Structure . 3–22
4–1 Sequence of Driver Execution . 4–2
4–2 Detailed Sequence of System I/O Processing . 4–4

xvi

4–3 Data Structures for Three Devices on One Controller 4–6
4–4 I/O Database for Two Controllers . 4–7
4–5 Layout of a Function Decision Table . 4–10
4–6 FDT Routines and I/O Preprocessing . 4–12
4–7 Creating a Fork Process After an Interrupt . 4–16
4–8 Reactivation of a Driver Fork Process . 4–17
5–1 Driver Organization . 5–2
7–1 $QIO Scan of a Function Decision Table . 7–3
7–2 Format of System Buffer for a Buffered-I/O Read Function 7–7
8–1 Inserting a UCB into the Channel Wait Queue 8–3
9–1 Flow of Interrupt Servicing . 9–2
13–1 Format of the POOLCHECK System Parameter 13–23
13–2 Poisoned Pool Packet . 13–25
14–1 UNIBUS and Q22–bus Map Registers . 14–5
14–2 Mapping a UNIBUS Address to a Physical Address 14–6
14–3 Mapping a Q22–bus Address to a Physical Address 14–7
14–4 UNIBUS Data Path Registers . 14–8
14–5 Direct-Vector Interrupt Dispatching . 14–25
14–6 Non-Direct-Vector Interrupt Dispatching . 14–26
14–7 VEC Structures Within a CRB . 14–29
14–8 Interrupt Transfer Vector Block (VEC) . 14–30
15–1 MASSBUS Configuration . 15–2
15–2 MASSBUS External-Register Longword . 15–2
15–3 Location of MASSBUS Registers in Physical Address Space 15–5
15–4 I/O Database for MASSBUS Disk Unit . 15–7
15–5 I/O Database for MASSBUS Disk and Tape Units 15–7
15–6 I/O Data Structures Used in Dispatching a MASSBUS Device

Interrupt . 15–8
16–1 VAXBI Address Space . 16–2
16–2 Description of VAXBI I/O Address Space . 16–3
16–3 Physical Addresses in VAXBI I/O Address Space 16–4
16–4 SCU/XMI Systems I/O Address Space . 16–7
16–5 VAXBI Pseudo CSR Address (PCA) . 16–8
16–6 VAXBI Device Vectors . 16–14
16–7 Backplane Interconnect Interface Chip (BIIC) Registers 16–24
17–1 SCSI Class/Port Interface . 17–3
17–2 SCSI Port Driver Configuration . 17–4
17–3 SCSI Class Driver Configuration . 17–5
17–4 SCSI Class/Port Data Structures . 17–8
17–5 Class/Port Tagged Command Queuing Model . 17–29
17–6 SCSI_NOAUTO System Parameter . 17–35
18–1 UCB Structure for Terminal Class/Port Drivers 18–3
18–2 Port Driver Vector Table . 18–4
18–3 Class Driver Vector Table . 18–5
18–4 Port Driver Structure . 18–7
18–5 Class Driver Structure . 18–8
18–6 Terminal Class/Port Driver Binding . 18–9

xvii

19–1 VAXstation with a TURBOchannel Subsystem 19–2
19–2 TURBOchannel Adapter Space for the VAXstation CPU 19–2
19–3 TURBOchannel DMA to a VAX Host . 19–3
19–4 TURBOchannel Map Register . 19–4
20–1 TURBOchannel-Based VAXstation with a VMEbus Subsystem 20–2
20–2 XMI/VME Bus-Based System . 20–3
20–3 Little-Endian Versus Big-Endian Byte Alignment 20–4
20–4 VMEbus DMA to and from VAX Host . 20–5
20–5 VMEbus DMA Map Registers . 20–6
20–6 VMEbus PIO Map Register . 20–8
20–7 VMEbus Pseudo CSR Address . 20–9
21–1 Format of a Physical Address . 21–4

Tables

3–1 System-Defined IPLs . 3–2
3–2 System Macros That Change a Processor IPL 3–8
3–3 Static Spinlocks . 3–12
4–1 IRP Data Fields . 4–9
6–1 I/O Function Codes . 6–5
7–1 Registers Loaded by the $QIO System Service 7–2
7–2 System-Provided FDT Routines . 7–8
11–1 Input for Cloned UCB Routine . 11–11
12–1 Conventional Nexus Assignments . 12–5
12–2 SYSGEN Device Table . 12–15
13–1 Boot Flags That Control the Loading of XDELTA 13–2
13–2 Recommended Methods for Bootstrapping with XDELTA 13–2
13–3 Requesting an XDELTA Software Interrupt . 13–8
13–4 XDELTA Command Summary . 13–10
13–5 POOLCHECK Parameter Flag Bit Definitions 13–23
13–6 POOLCHECK Bugcheck Longword Reasons . 13–24
13–7 Relevant Registers to a Corrupt Packet Bugcheck 13–25
13–8 Settings of MULTIPROCESSING System Parameter 13–27
13–9 Bugchecks Produced by Full-Checking Multiprocessing 13–27
14–1 Features of the UNIBUS Adapters/Q22–bus Interfaces of VAX

Systems . 14–2
14–2 VAX System UNIBUS/Q22–bus Interrupt Dispatching 14–27
15–1 Major Offsets Defined by $MBADEF . 15–4
16–1 Contents of the BIIC Registers . 16–25
17–1 SCSI Port Interface (SPI) Macros . 17–6
17–2 Data Structures . 17–7
17–3 Initialized SCDRP Fields for a Process Buffer 17–14
17–4 Initialized SCDRP Fields for a System Buffer 17–14
17–5 Initialized SCDRP Fields from SPI$MAP_BUFFER 17–15
17–6 Port Driver Return Status in R0 . 17–16
17–7 SCSI Status Byte Format . 17–16
17–8 Error Message Buffer Extension for SCSI Class Drivers 17–19

xviii

17–9 SPI Extension Macros Supporting Asynchronous Event
Notification . 17–26

17–10 SCSI-2 Port Interface (SPI) Macros . 17–31
17–11 Key to Port Driver Error Log Entries . 17–38
17–12 Key to Class Driver Error Log Entries . 17–41
18–1 Initialized UCB Fields from CLASS_UNIT_INIT Routine 18–6
18–2 Port Driver Routines . 18–10
18–3 Class Driver Routines . 18–17
20–1 TURBOchannel/VME DMA Map Register VMEbus Flag Selections . . . 20–6
20–2 TURBOchannel/VME PIO Map Register VMEbus Flag Selections 20–8
20–3 UNIX-to-OpenVMS Driver Correlations . 20–11
21–1 Symbols Defined by the $IOxxxDEF Macros . 21–2
21–2 UNIBUS and Q22–bus Adapter Address Space 21–4
21–3 Section Type Flag Bits . 21–6
E–1 TURBOchannel Test Board Driver Code Contents E–1
F–1 DR11–W VME Driver Code Contents . F–1
G–1 System Synchronization Images . G–2
G–2 Settings of MULTIPROCESSING System Parameter G–3
G–3 Converting IPL Synchronization to Spinlock Synchronization G–12

xix

Preface

The OpenVMS VAX Device Support Manual provides information you need to
write a device driver that runs under OpenVMS VAX Version 6.1 and to load the
driver into the operating system. Digital does not guarantee that drivers written
for earlier versions of the operating system will execute without modification
on this version of the operating system. Although the intent is to maintain the
existing interface, some unavoidable changes might occur as new features are
added.

The use of internal executive interfaces other than those described in this manual
is discouraged.

Intended Audience
This manual is intended for system programmers who are already familiar with
VAX processors and the OpenVMS operating system.

Document Structure
This manual contains five parts.

Part I describes the components and environment of a device driver and provides
explanations of system concepts critical to an understanding of a device driver’s
functions and role in the operating system. Part I contains four chapters.

• Chapter 1 describes the role of a device driver in the operating system,
introduces the components of a typical driver and the data structures it uses,
and provides an overview of system concepts critical to driver operation.
It concludes with an examination of the I/O subsystems of VAX processing
systems.

• Chapter 2 provides an example of a device driver: the system line printer
driver. It illustrates the functions of the various components of this driver
and describes the driver’s interaction with the operating system.

• Chapter 3 discusses system synchronization mechanisms: interrupt priority
levels; spin locks, fork locks, and device locks; fork processes and fork queues;
and resource-wait queues.

• Chapter 4 provides an overview of I/O processing and discusses the
interaction of device drivers with the operating system.

Part II describes how to code each part of a driver. Part II contains seven
chapters.

• Chapter 5 explains some general driver coding rules and conventions and
describes a device driver.

• Chapter 6 describes how to create driver tables, including the driver prologue
table, driver dispatch table, and function decision table (FDT).

xxi

• Chapter 7 explains how to write FDT routines, how to use system-supplied
FDT routines, and how to transfer control out of I/O request preprocessing.

• Chapter 8 discusses the components of a driver’s start-I/O routine.

• Chapter 9 discusses the functions performed by an interrupt service routine
(ISR).

• Chapter 10 describes how to perform device-dependent I/O completion and
how to write timeout handling routines.

• Chapter 11 describes unit and controller initialization routines, cancel-I/O
routines, error-logging routines, register dumping routines, and cloned unit
control block (UCB) routines.

Part III describes how to load and debug a device driver. Part III contains two
chapters.

• Chapter 12 examines the methods by which a device is logically connected to
the processor and by which a driver is loaded into the operating system.

• Chapter 13 describes the use of XDELTA as a device driver debugging tool.

Part IV contains discussions of bus-specific and processor-specific details that
affect the composition and operation of a device driver. The eight chapters
contained in Part IV also discuss advanced topics relating to the writing of
specific types of drivers.

• Chapter 14 discusses I/O bus features that govern the operation of direct-
memory-access (DMA) transfers and that affect the code of DMA device
drivers for UNIBUS and Q22–bus devices.

• Chapter 15 describes strategies for producing a MASSBUS device driver.

• Chapter 16 describes special coding considerations for generic VAXBI devices.

• Chapter 17 provides information on creating a third-party SCSI class driver
to support a non-Digital-supplied small computer system interface (SCSI)
device.

• Chapter 18 discusses the components of terminal class and port drivers.

• Chapter 19 provides information on creating a third-party TURBOchannel
device driver to support a non-Digital-supplied TURBOchannel device.

• Chapter 20 provides information on creating a third-party VME device driver
to support a non-Digital-supplied VMEbus device.

• Chapter 21 describes the connect-to-interrupt driver interface that is available
to real-time users.

Part V contains driver program templates and code examples of drivers for
devices connected to a SCSI bus, a VMEbus, a UNIBUS, and a Q22–bus. Part V
contains seven appendixes.

• Appendix A includes a template for a UNIBUS or Q22–bus device driver.

• Appendix B includes a template for a SCSI class driver.

• Appendix C includes a sample driver that operates an RL11 or RL01
/RL02-type disk on the UNIBUS or Q22–bus.

• Appendix D contains a sample driver for two connected DR11 or DRV11
controllers on the UNIBUS or Q22–bus.

xxii

• Appendix E contains a sample driver for a TURBOchannel device.

• Appendix F contains a sample driver for DR11–W controllers on the VMEbus.

• Appendix G describes the differences between drivers intended for a
uniprocessing environment and those intended for a multiprocessing
environment. It further describes those changes required for the upgrade
of non-Digital-supplied drivers written before VMS Version 5.0 and also
discusses the means by which a uniprocessing driver can be converted to a
multiprocessing driver.

The Glossary defines vocabulary that pertains to device drivers and their
environment.

Associated Documents
Before reading the OpenVMS VAX Device Support Manual, you should have an
understanding of the material discussed in the following documents:

• OpenVMS VAX Device Support Reference Manual, a companion document,
which describes the required reference material for driver programming

• OpenVMS Programming Concepts Manual that describes the general
programming concepts and requirements

• VAX Hardware Handbook

• I/O-related portions of the OpenVMS System Services Reference Manual

• The section on system naming conventions in the Guide to Creating OpenVMS
Modular Procedures

• OpenVMS I/O User’s Reference Manual

Other useful information can be found in your processor’s hardware
documentation, as well as that in the following documents:

• OpenVMS VAX System Dump Analyzer Utility Manual

• OpenVMS System Manager’s Manual

• OpenVMS System Management Utilities Reference Manual

• VAX/VMS Internals and Data Structures

• OpenVMS Delta/XDelta Debugger Manual

Before reading the SCSI information in Chapters 1 and 17, you should have an
understanding of the material discussed in the following documents:

• American National Standard for Information Systems—Small Computer
System Interface—2 (SCSI–2) specification (X3T9.2/86–109)

The SCSI–2 specification is a draft of a proposed standard. Until it is
approved, copies of this document can be purchased from Global Engineering
Documents, 1990 M Street NW, Suite 400, Washington, D.C., 20036, United
States; or by calling telephone number (800) 854-7179. Please refer to
document X3.131–199X.

• American National Standard for Information Systems—Small Computer
System Interface specification (X3.131–1986)

Copies of this document can be obtained from the American National
Standards Institute, Inc., 1430 Broadway, New York, New York, 10018. This
document is now known as the SCSI–1 standard.

xxiii

Digital publishes two additional documents to help third-party vendors prepare
SCSI peripherals and peripheral software for use with Digital’s workstations and
MicroVAX systems:

• The Small Computer System Interface: An Overview
(EK–SCSIS–OV–001) provides a general description of Digital’s SCSI
third-party support program.

• The Small Computer System Interface: A Developer’s Guide
(EK–SCSIS–SP–001) presents the details of Digital’s implementation of SCSI
within its operating systems.

Before reading the VME device support information in Chapter 20, you should
have an understanding of the material discussed in the following documents:

• DWMVA VME Adapter Technical Manual (EK-DWMVA-TM-001), which
describes the DWMVA adapter and Digital’s XMI to VMEbus implementation.
Information concerning specific driver requirements to implement the
hardware/software adapter options is also provided.

• An American National Standard—IEEE Standard for a Versatile Backplane
Bus: VMEbus (ANSI/IEEE Std 1014), ISBN 0-471-61601-X.

Conventions
In this manual, every use of OpenVMS VAX means the OpenVMS VAX operating
system.

This manual describes code transfer operations in three ways:

1. The phrase ‘‘issues a system service call’’ implies the use of a CALL
instruction.

2. The phrase ‘‘calls a routine’’ implies the use of a JSB or BSB instruction.

3. The phrase ‘‘transfers control to’’ implies the use of a BRB, BRW, or JMP
instruction.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

xxiv

! In text, an arrow (!) between abbreviated names or objects
functions as a pointer to illustrate a pointing chain between
structures in the database. In the following example, the UCB
points to the DDT data structure, which points to the FDT
address.

UCB ! DDT ! FDT address

() In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

{ } In command format descriptions, braces surround a required
choice of options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason (user action
that triggers a callback).

Boldface text is also used to show user input in Bookreader
versions of the manual.

italic text Italic text emphasizes important information and indicates
complete titles of manuals and variables. Variables include
information that varies in system messages (Internal error
number), in command lines (/PRODUCER=name), and in
command parameters in text (where device-name contains up
to five alphanumeric characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xxv

Part I
OpenVMS VAX Device Driver Environment

This part describes the components and environment of a device driver and
provides explanations of operating system concepts critical to an understanding
of a device driver’s functions and role in the operating system.

1
Introduction to Device Drivers

Under the operating system, a device driver is a set of routines and tables that
the system uses to process an I/O request for a particular device type.

The operating system’s approach to I/O is that the system should perform as
much of the processing of an I/O request as possible and that drivers should
restrict themselves to the device-specific aspects of I/O processing. To accomplish
this, the operating system provides drivers with the following services:

• A Queue I/O request ($QIO) system service that preprocesses an I/O request
by performing those functions and checks that are common to all devices; for
example, validating those arguments of the I/O request that are not device
specific

• Many operating system routines that drivers can call to perform I/O
preprocessing, allocate and deallocate resources, and synchronize driver
execution

• Macros that drivers can invoke to accomplish tasks that would otherwise
require many lines of code

• A system I/O postprocessing routine that performs device-independent I/O
postprocessing for all I/O requests

Thus, drivers can leave the device-independent I/O processing to the operating
system and can concentrate on servicing those aspects of an I/O operation that
vary from device type to device type. In addition, drivers can call system routines
to perform many functions that are common to several, but not all, devices.

A device driver does not run sequentially from beginning to end. Rather, the
operating system uses driver tables and other information maintained by itself
and the driver to determine which driver routines to activate and when they
should be activated. Because little sequential processing of driver code occurs,
the operating system must assume the responsibility for synchronizing the
execution of the various driver routines, as well as the execution of all drivers in
the system. A major purpose of this book is to describe the conventions that all
device drivers must follow to maintain this synchronization and cooperate with
the operating system in I/O request processing.

This section first defines the general functions and purposes of a device driver. It
then introduces concepts crucial to an understanding of how device drivers work
within the operating system and integral to the process of successfully writing
one. It concludes with a brief description of the flow of driver activity in servicing
an I/O request, using the system line printer driver as an example.

1–1

Introduction to Device Drivers
1.1 Driver Functions

1.1 Driver Functions
A system utility loads a device driver into system virtual address space and
creates its associated data structures. Once loaded, a device driver controls I/O
operations on a peripheral device by performing the following functions:

• Defining the peripheral device for the rest of the operating system

• Preparing a device unit and its controller (or both) for operation at system
startup and during recovery from a power failure

• Performing device-dependent I/O preprocessing

• Translating programmed requests for I/O operations into device-specific
commands

• Activating a device unit

• Responding to hardware interrupts generated by a device unit

• Responding to device timeout conditions

• Responding to requests to cancel I/O on a device unit

• Reporting device errors to an error-logging program

• Returning status from a device unit to the process that requested the I/O
operation

1.2 Driver Components
Normally, a device driver module can consist of the routines and tables discussed
in this section. With a few exceptions, which are noted throughout Chapter 6,
the order of the various routines and tables within the driver module is not
important.

1.2.1 Driver Tables
The following tables appear in every driver.

The driver prologue table (DPT) defines the identity and size of the driver
to the system utility that loads the driver into virtual memory and creates the
associated data structures. With the information provided in the DPT, the driver-
loading procedure can both load and reload drivers and perform the I/O database
initialization that is appropriate to either situation.

Section 6.1 describes the procedure for creating a DPT and further discusses its
functions. The DPT contents are shown and described in the OpenVMS VAX
Device Support Reference Manual.

The driver dispatch table (DDT) lists the addresses of the entry points of
standard routines within the driver, and records the size of the diagnostic
and error message buffers for drivers that perform error logging. You can find
additional information and instructions on how to specify a DDT in Section 6.2.
The structure and contents of the DDT are shown and described in the OpenVMS
VAX Device Support Reference Manual.

The function decision table (FDT) lists all valid function codes for the device,
and associates valid codes with the addresses of I/O preprocessing routines, called
FDT routines. The driver contains device-dependent FDT routines, and the
operating system itself provides routines (described in Section 7.5) that perform
request preprocessing common to many I/O functions.

1–2

Introduction to Device Drivers
1.2 Driver Components

When a user process calls the $QIO system service, the system service uses the
I/O function code specified in the request to traverse the FDT and select one or
more of these preprocessing routines for execution, as appropriate to the function.
To prepare for the actual I/O operation, FDT routines perform such tasks as
allocating buffers in system space, locking pages in memory, and validating the
device-dependent arguments (p1 to p6) of the $QIO request. Section 6.3 provides
further discussion of the FDT, and Chapter 7 details strategies and rules for
writing, specifying, and exiting from an FDT routine.

1.2.2 Driver Routines
In addition to any FDT routines it might contain, a device driver generally
contains both a start-I/O routine and an interrupt service routine (ISR).

The start-I/O routine performs such additional device-dependent tasks as
translating the I/O function code into a device-specific command, storing the
details of the user request in the device’s unit control block (UCB) in the I/O
database and, if necessary, obtaining access to controller and adapter resources.
Whenever the start-I/O routine must wait for these resources to become available,
the operating system suspends the routine, reactivating it when the resources
become free.

The start-I/O routine ultimately activates the device by suitably loading the
device’s registers. At this stage, the start-I/O routine invokes a system macro
that causes its execution to be suspended until the device completes the I/O
operation and posts an interrupt to the processor. The start-I/O routine remains
suspended until the driver’s interrupt service routine handles the interrupt.

When a device posts an interrupt, its driver’s interrupt service routine determines
whether the interrupt is expected or unexpected, and takes appropriate action.
If the interrupt is expected, the interrupt service routine reactivates the driver’s
start-I/O routine at the point of suspension. The general course of action of driver
mainline code at this time is to perform device-dependent I/O postprocessing
and to transfer control to the operating system for device-independent I/O
postprocessing.

Details on writing a start-I/O routine appear in Chapter 8. A description of a
driver interrupt service routine appears in Chapter 9.

You can also include any of the following routines in a device driver:

The unit initialization routine and controller initialization routine prepare
a device or controller for operation when the driver-loading procedure loads
the driver into memory and when the system recovers from a power failure. The
amount and type of initialization needed by devices and controllers vary according
to the device type and the I/O bus to which the device or controller is attached.
Section 11.1 provides additional information about device driver initialization
routines.

A timeout handling routine retries I/O operations and performs other error
handling when a device fails to complete a request in a reasonable period of time.
Once every second, the system timer checks all devices in the system for device
timeout. When it locates a device that has timed out, because it is off line or
some error has occurred, the system timer calls the driver’s timeout handling
routine.

1–3

Introduction to Device Drivers
1.2 Driver Components

Depending upon the reason for the timeout, the timeout handling routine may
call a system error-logging routine to allocate and fill an error message buffer
with information about the error. In turn, the error-logging routine can call a
register-dumping routine in the driver that also loads into the buffer the
contents of device registers at the time of the error.

Timeout handling routines are discussed in Section 10.2. Register-dumping
routines and driver error handling are discussed in Section 11.3.

The operating system calls a driver’s cancel-I/O routine when a user process
issues a Cancel I/O on Channel ($CANCEL) system service for the device. It may
also call the routine when the device’s reference count goes to zero, which occurs
when all users with assigned channels to the device have deassigned them. The
discussion of the cancel-I/O routine appears in Section 11.2.

1.3 I/O Database
Because a driver and the operating system cooperate to process an I/O request,
they must have a common and current source of information about the request.
This is the function of the I/O database. The I/O database consists of the
following three parts:

• Driver tables that allow the system to load drivers, to validate device
functions, and to call driver routines at their entry points

• Data structures that describe I/O bus adapters, device types, device units,
device controllers, and logical paths from processes to devices

• I/O request packets that define individual requests for I/O activity

Illustrations of I/O database structures and detailed descriptions of their fields
appear in the data structure chapter of the OpenVMS VAX Device Support
Reference Manual. Figure 1–1 illustrates some of the relationships among system
I/O routines, the I/O database, and a device driver.

1.3.1 Driver Tables
The three driver tables—driver prologue table, driver dispatch table, and function
decision table—are defined in every driver. Section 1.2 lists these tables and the
other components of a device driver, and Chapter 6 discusses their contents.

1.3.2 Data Structures
I/O database data structures describe peripheral hardware and are used by the
operating system to synchronize access to devices. The operating system creates
these data structures either at system startup or when a driver is loaded into the
system.

The system defines a unit control block (UCB) for each device unit attached to
the system. A UCB defines the characteristics and current state of an individual
device unit.

UCBs are the focal point of the I/O database. When a driver is suspended or
interrupted, the UCB keeps the context of the driver in a set of fields collectively

1–4

Introduction to Device Drivers
1.3 I/O Database

Figure 1–1 I/O Database

ZK−1766−GE

FDT Routine
Driver

Start I/O Routine
Driver

Routine
Interrupt Service

Driver

registers
Device

controller)
(synchronizes

CRB

device)
(describes

UCB

to device)
logical path
(describes

CCB

request)
I/O

(describes
Packet
Request

I/O

controller)
(describes

IDB

DDB

adapter)
(describes

ADP

process
requesting
describes

Block
Control
Process

Routine
Controller Initialization

Driver

(locates
DDT

(

) for device(
type) driver)

known as a fork block.1 In addition, the UCB contains the listhead for the
queue of pending I/O request packets (IRPs) for the unit.

A device data block (DDB) contains information common to all devices of the
same type that are connected to a particular controller. It records the generic
device name concatenated with the controller designator (for example, LPA,
DBB), and the name and location of the associated device driver. In addition,
the DDB contains a pointer to the first UCB for the device units attached to the
controller.

The operating system creates a channel request block (CRB) for each
controller. A CRB defines the current state of the controller and lists the devices
waiting for the controller’s data channel. It also contains the code that dispatches
a device interrupt to the interrupt service routine (ISR) for that unit’s driver.

1 Other structures, such as the CRB, also include a fork block. The discussion of fork
blocks and fork processes in Section 1.5 explains the role of fork blocks in driver
processing.

1–5

Introduction to Device Drivers
1.3 I/O Database

The system also creates for each controller an interrupt dispatch block (IDB).
An IDB lists the device units associated with a controller and points to the UCB
of the device unit that the controller is currently servicing. In addition, an IDB
points to device registers and the controller’s I/O adapter.

An adapter control block (ADP) defines the characteristics and current state
of an I/O adapter, such as the VAX UNIBUS and MASSBUS adapters, the
Q22–bus interface of MicroVAX systems, or a device attached to the VAXBI bus.
An ADP contains the queues and allocation bitmaps necessary to allocate the
adapter’s resources. The operating system provides routines that drivers can call
to interface with the appropriate adapter.

The channel control block (CCB) describes the logical path between a process
and the UCB of a specific device unit.2 Each process owns a number of CCBs.
When a process issues the Assign I/O Channel ($ASSIGN) system service, the
system writes a description of the assigned device to the CCB.

Unlike the data structures mentioned earlier, a CCB is not located in nonpaged
system space, but in the process’s control region (P1 space).

1.3.3 I/O Request Packets
The third part of the I/O database is a set of I/O request packets. When a process
requests I/O activity, the operating system constructs an I/O request packet
(IRP), that describes the I/O request in a standard form.

The IRP contains fields into which the system and driver I/O preprocessing
routines can write information: for instance, the device-dependent arguments
specified in the call to the $QIO system service. The packet also includes buffer
addresses, a pointer to the target device’s UCB, an I/O function code, and
pointers to the I/O database. After preprocessing, the IRP can be queued to a list
originating in the device’s UCB to await processing by the driver.

When the device unit is free and the IRP is next in line to be processed on the
unit, the system sends it to the device driver’s start-I/O routine. The start-I/O
routine uses the IRP as its source of detailed instructions about the operation to
be performed.

1.4 Synchronization of Driver Activity
Device drivers and other kernel-mode code must maintain synchronization with
other priority operating system activities. The term synchronization refers
to the means by which such code accesses shared data in a consistent, orderly,
and predictable fashion. Because there may be more than one processor active
in a VAX system, system-level code must synchronize its actions with other code
threads it may have preempted on the same (or local) processor, as well as with
those that are active (or to be activated) on other processors in the system. The
operating system uses hardware and software interrupt priority levels (IPLs) to
order system events on each local processor in a VAX system. The VAX hardware
defines 32 interrupt priority levels (IPLs). The higher numbered IPLs (16 to
31) are reserved for hardware interrupts, such as those posted by devices. The

2 Channel request blocks (CRBs) and channel control blocks (CCBs) are two separate data
structures. To help distinguish the two, it may be helpful to think of the channel request
block as the ‘‘controller request’’ block because it describes the hardware controller. In
contrast, the channel control block is used by a process and a device unit to manage the
logical channel (the channel argument to the $ASSIGN and $QIO system services) in
accomplishing I/O operations.

1–6

Introduction to Device Drivers
1.4 Synchronization of Driver Activity

operating system uses the lower numbered IPLs (0 to 15). Code that executes at
a higher IPL takes precedence over code that executes at a lower IPL.

A driver, in concert with the operating system, ensures that it maintains system
synchronization by performing certain activities and by accessing certain data
only at the appropriate IPL. In a multiprocessing system, the driver extends
the synchronization it achieves by executing locally at a given IPL by acquiring
ownership of the spinlock associated with the operation it is performing. (IPL,
spinlocks, and other forms of synchronization in a VAX system are discussed fully
in Chapter 3.)

1.5 Driver Context
As indicated in Section 1.2.2, a driver may have several routines to which
the operating system may pass control in certain situations. The context in
which any one routine receives control from the operating system may differ
substantially from that in which another receives control. It is essential that a
driver routine not attempt to exceed the limitations of the context in which it
executes.

In general, context is characterized by the following factors:

• The current IPL of the executing processor

• The IPL at which the thread of execution that resulted in the call to the
driver began

• The currently owned spinlocks of the executing processor

• The data structures available to the routine

• Data available to the routine in registers, in data structure fields, and on the
stack

• The condition of the registers, data structure fields, and stack when the
routine exits

• The ability or inability to access process space

A complete description of the context of each driver routine appears in the entry
points chapter of the OpenVMS VAX Device Support Reference Manual. The
following are some general observations:

• All device driver routines execute in kernel mode at an elevated IPL.

• Only driver FDT routines execute within process context and can access
process space (P0 and P1).

• The majority of driver routines execute in interrupt (or system context):
that is, in the sequence of execution that follows a processor’s grant of an
interrupt request at a given IPL. Such code can refer only to system (S0)
space. Moreover, it cannot incur exceptions, including page faults, without
causing a fatal bugcheck. Code executing in interrupt context is serviced on
the interrupt stack, and must synchronize its execution with other priority
code threads by using IPLs, spinlocks, and resource wait queues, all of which
are described in Chapter 3.

Most driver processing of an I/O request (before and after the device acknowledges
the servicing of the request by requesting an interrupt from the processor) occurs
at a fork IPL. This portion of driver code, which includes most of the start-I/O
routine, is commonly known as the driver’s fork process.

1–7

Introduction to Device Drivers
1.5 Driver Context

There are several instances in the processing of an I/O request when a driver
fork process must suspend execution to wait for a resource or a device interrupt.
To make the matter of saving and restoring fork process context as efficient as
possible, the operating system places a restriction on the context of a driver fork
process, in addition to those that apply to any process in interrupt context. Fork
context consists of the following:

• Two general purpose registers (R3 and R4)

• The program counter (PC)

• A fork block (usually the unit control block, the address of which is presumed
to be in R5 at the time of the suspension) that can contain additional fork
process context

The operating system places the fork block of a suspended fork process in either
a processor-specific fork queue or a resource wait queue where it waits to be
resumed. When it resumes the fork process, the operating system ensures that
the fork context is restored. Fork blocks, fork processes, and fork queues are
discussed fully in Section 3.3.3.

1.5.1 Example of Driver Context-Switching
Because a device driver consists of a number of routines that are activated by the
system, the operating system for the most part determines the context in which
the routines execute.

As an example, consider the following write request that occurs without error:

1. A user process executing in user mode calls the $QIO system service to write
data to a device.

2. The $QIO system service gains control in process context but in kernel mode.
It performs device-independent preprocessing of the I/O request.

3. The system service uses the driver’s function decision table (FDT) to call the
appropriate FDT routines to perform device-dependent preprocessing. These
FDT routines execute in full process context in kernel mode.

4. When preprocessing is complete, a system routine creates a fork process to
execute the driver’s start-I/O routine in kernel mode.

5. The start-I/O routine activates the device unit and suspends itself. At this
point, the operating system suspends the fork process executing the start-I/O
routine and saves sufficient context to reactivate the start-I/O routine at the
point of suspension.

6. When the device completes the data transfer, it requests an interrupt. The
interrupt causes the system to activate the driver’s interrupt service routine.

7. The interrupt service routine executes to handle the device interrupt. It then
causes the start-I/O routine to resume in interrupt context.

8. The start-I/O routine regains control in interrupt context but almost
immediately issues a request to the operating system to transform its
context to that of a fork process. This action dismisses the interrupt.

9. When reactivated in fork process context, the start-I/O routine performs
device-specific I/O completion and passes control to the system for additional
I/O postprocessing.

1–8

Introduction to Device Drivers
1.5 Driver Context

10. System I/O postprocessing runs in interrupt context at a lower IPL and issues
a special kernel-mode asynchronous system trap (AST) for the user process
requesting I/O.

11. When the special kernel-mode AST is delivered, the AST routine executes in
full process context in kernel mode to deliver data and status to the process.
If the original request specified a user-mode AST, the special kernel-mode
AST queues it.

12. When the user process gains control, the user’s AST routine executes in full
process context in user mode.

1.6 Hardware Considerations
The operating system runs on any of the following VAX systems. It can also
support non-Digital-supplied devices.

• VAX–11/780 and VAX–11/785

• VAX–11/730 and VAX–11/750

• VAX 8600/8650

• VAX 82x0/83x0

• VAX 85x0 and VAX 8700/88x0

• VAX 4000 series

• VAX 6000 series

• VAX 7000 series

• VAX 9000 series

• VAX 10000 series

• MicroVAX 3400/3600/3900 series

• MicroVAX/VAXstation II and VAXstation 4000 series

• MicroVAX/VAXstation 3100

• VAXstation 3520/3540

Although these system configurations employ the same operating system and
conform to the VAX architecture, there are some differences in design among
the machines that merit consideration in device driver coding, installation, and
debugging. For instance, VAX systems differ in the amount of available physical
address space and in the location of device registers. Some VAX systems are
available in multiprocessor configurations. Also, VAX systems support different
and various combinations of I/O buses to which a nonstandard device can be
connected.

If you follow the conventions described in this manual when writing your driver,
your driver should, with little modification, drive the same device attached to a
corresponding I/O bus of another VAX system. For specific system design and
device configuration information, refer to your system’s technical reference or
hardware manual or the VAX Hardware Handbook.

1–9

Introduction to Device Drivers
1.6 Hardware Considerations

1.6.1 Driver Dependency on VAX Processing Systems
This section outlines some of the general differences among the VAX processing
systems that have a bearing upon the development of driver code. The main
thrust of the discussion is to provide a brief summary of the layout of the I/O
subsystems of the VAX processing systems, to define a general terminology, and,
when necessary, to direct device driver writers to documentation particular to the
I/O configuration of their device.

1.6.1.1 Address Space
Physical memory, or physical address space, is the set of all physical addresses
that identify unique memory locations and I/O adapter registers. Physical
memory is divided into 512-byte pages. Each page has an identifying number
called a page frame number (PFN). A PFN is the portion of the physical address
that specifies the physical page (all but the lower 9 bits). Generally, physical
memory addresses and page numbers start at 0 and increase. The size of physical
address space varies with VAX processor type and bus. Generally, the lower half
of the physical address space is used for memory locations and the upper half of
the physical address space is used for I/O adapters.

For example (see Figure 1–2), VAX processors with a VAXBI bus perform 30-bit
physical addressing in a 1 GB address space or 32-bit addressing on certain
processors with extended addressing (XA) in a 4 GB address space.

Extended Addressing (XA) of the memory management subsystem is supported
on VAX 6000-600, VAX 7000-600, and VAX 10000 series systems. The following
two memory management components constitute XA:

• Extended physical addressing (XPA)

• Extended virtual addressing (XVA)

Extended physical addressing (XPA) increases the size of a physical address from
30 bits to 32 bits. This increases the capacity for physical memory from 512 MB
to 3.5 GB, as shown in Figure 1–2. The system reserves 512 MB for I/O and
adapter space.

Support for virtual memory enables a process to execute an image that only partly
resides in physical memory. Only the portion of virtual address space actually in
use occupies physical memory. This enables the execution of images larger than
the available physical memory. The set of all possible 32-bit addresses is called
virtual memory, or virtual address space, and is shown in Figure 1–3.

The lower half of the address space from 0 to 7FFF FFFF16 is called per-process
space. This space is further divided into two equal sections called P0 space and
P1 space. As a process is placed into execution, its per-process address space is
mapped; that is, its virtual addresses are associated with physical addresses. The
upper half of the virtual address space is called system space (8000 000016 to
FFFF FFFF16). The lower half of system space is called S0 space; the upper half
is called S1 space and is reserved to Digital.

Extended virtual addressing (XVA) on certain processors increases the size of
the virtual page number field in a system space address from 21 bits to 22
bits. Specifically, the region field (bits 31 and 30) is reduced to bit 31 and the
virtual page number field incorporates bit 30 expanding from 21 to 22 bits. When
bit 31 is a 1, the virtual address is a system virtual address. As a result (see
Figure 1–3), the S1 space of system virtual address space is appended to the S0

1–10

Introduction to Device Drivers
1.6 Hardware Considerations

Figure 1–2 Physical Address Space for VAXBI Based Processors

1 GB

0 0000 0000

VAX without
Extended Addressing
30−bit Address Space

512 MB
I/O

512 MB
Memory
Space

2000 0000

3FFF FFFF

0 0000 0000

VAX with
Extended Addressing
32−bit Address Space

Memory
Space

512 MB
I/O

E000 0000

FFFF FFFF

3.5 GB

4 GB

ZK−5065A−GE

space, thereby creating a single region of system space. This increases the system
virtual address space for these processors from 1 GB to 2 GB.

A page table is associated with each region of virtual address space. The
processor translates system space addresses with the system page table. Each
process has its own P0 and P1 page tables. In a page table, each page table
entry (PTE) associates one page of virtual address space with its physical
location, either in memory or on a mass storage medium.

A PTE contains all but the low 9 bits of the physical page’s address. This part of
a physical address is the page frame number (PFN). Normally, the PFN field of a
PTE is 21 bits <20:0>. On processors with extended addressing, the PFN field of
the PTE is extended to 23 bits <22:0>.

1.6.1.2 VAX–11/780, VAX–11/785, and VAX 8600/8650 Systems
The VAX–11/780, VAX–11/785, VAX 8600 and VAX 8650 systems, from the
viewpoint of I/O architecture, are SBI based systems. That is, the synchronous
backplane interconnect (SBI) is the bus by which I/O adapters communicate
with main memory and the central processor (see Figure 1–4). I/O adapters
supported by the SBI bus include the UNIBUS adapter (UBA), the MASSBUS
adapter (MBA), and the DR780 interface adapter. Correspondingly, peripheral
devices attach to either the UNIBUS, MASSBUS, or DR32 device interconnect
(DDI) of the DR780 adapter. Main memory shares the SBI with the I/O adapters
on the VAX–11/780 and VAX–11/785. The VAX 8600 and VAX 8650 employ a

1–11

Introduction to Device Drivers
1.6 Hardware Considerations

Figure 1–3 Virtual Address Space for VAXes

0000 0000

VAX without
Extended Addressing

Virtual Space

4000 0000

8000 0000

0000 0000

VAX with
Extended Addressing

Virtual Space

4000 0000

8000 0000

ZK−5066A−GE

C000 0000

FFFF FFFF

P0
Space

P1
Space

1 GB
System
Region
(S0)

Reserved
Region
(S1)

P0
Space

P1
Space

2 GB
System
Space

FFFF FFFF

separate bus to which main memory is attached and can each be configured with
up to two SBI buses for I/O adapters.

For these systems, nonstandard devices are commonly attached to the UNIBUS,
although some nonstandard devices connect to the MASSBUS and DDI. The
components of UNIBUS and MASSBUS drivers are nearly identical and the
strategies for producing driver code are similar; writers of either type of driver
will profit from reading the bulk of this manual. Writers of UNIBUS drivers
can find specific information about the UNIBUS adapter and system support
for UNIBUS drivers in Chapter 14. MASSBUS driver writers should refer to
Chapter 15 for similar information about the MASSBUS. Digital supplies a
device driver and an application library for DDI devices; the OpenVMS Wide Area
Network I/O User’s Reference Manual discusses the DR32 interface driver in
detail.

A final note on terminology regarding these systems is pertinent. For the
purposes of the discussion in this book, the term VAX–11/780 refers to the
family of VAX systems that includes the VAX–11/780 and VAX–11/785; the term
VAX 8600 refers to the VAX 8600 and VAX 8650.

1.6.1.3 VAX–11/750 System
The VAX–11/750 system resembles the VAX–11/780-type systems in that it
supports UNIBUS, MASSBUS, and DDI peripheral devices (see Figure 1–4).
The backplane, or CPU-to-memory interconnect (CMI), by which I/O adapters
communicate with the central processor and main memory, is integral to the
processor, as are the UNIBUS interface (UBI) and MASSBUS adapter (MBA).
The DR750 interface adapter connects the CMI to the DDI subsystem. Peripheral
devices connect to the UNIBUS, MASSBUS, and DDI. A separate memory

1–12

Introduction to Device Drivers
1.6 Hardware Considerations

Figure 1–4 SBI Based Systems

ZK−4838−GE

CPU

SBI

Memory

MBA UBA

MBA UBA

Device Device
Device Device

Device Device
Device Device

SBI0

SBI1

CPU

VAX−11/785
VAX−11/780

VAX 8650
VAX 8600

A−Bus
MASSBUS

UNIBUS

MASSBUS
UNIBUS

Memory
Controller

SBI
Adapter

SBI
Adapter

A
r
r
a
y

B
u
s

interconnect provides an interface between main memory and the rest of the
system.

For the VAX–11/750, nonstandard devices are commonly connected to the
UNIBUS, although some nonstandard devices attach to the MASSBUS. The
components of UNIBUS and MASSBUS drivers are identical, and the strategies
for developing driver code are similar. Writers of either type of driver will
profit from reading this manual. Writers of UNIBUS drivers can find specific
information about the UNIBUS adapter and system support for UNIBUS
drivers in Chapter 14. MASSBUS driver writers should refer to Chapter 15
for similar information about the MASSBUS. Digital supplies a device driver and

1–13

Introduction to Device Drivers
1.6 Hardware Considerations

an application library for DDI devices device; the OpenVMS Wide Area Network
I/O User’s Reference Manual discusses the DR32 interface driver in detail.

1.6.1.4 VAX–11/730 System
The VAX–11/730 system, like the VAX–11/750 system, incorporates an integral
UNIBUS adapter to control transactions between UNIBUS peripheral devices,
the processor, and the main memory interface. The VAX–11/730 does not,
however, support MASSBUS devices. Writers of UNIBUS drivers can find specific
information about the UNIBUS adapter and system support for UNIBUS drivers
in Chapter 14.

1.6.1.5 VAX 82x0/83x0, VAX 85x0/8700/88x0, and VAX 6000 Series Systems
The VAX 82x0/83x0, VAX 85x0/8700/88x0, and VAX 6000 series are VAXBI based
systems; that is, the VAXBI is the bus by which I/O adapters communicate with
main memory and the central processor (see Figure 1–5).

1–14

Introduction to Device Drivers
1.6 Hardware Considerations

Figure 1–5 VAXBI Based Systems

ZK−4839.1−GE

VAX 6000

VAX 8200

UNIBUS

CPU

Controller
Memory

Device

Device Device

VAXBI

CPU

Controller
Memory

DWMBA/A

DWMBA/B

DWMBA/A

DWMBA/B

DWMBA/A

DWMBA/B

DWMBA/A

DWMBA/B

Array Bus

Array Bus

XMI

VAXBI

Device

DWBUA

VAXBI

VAXBI

VAXBI

Device

MemoryCPU

(continued on next page)

1–15

Introduction to Device Drivers
1.6 Hardware Considerations

Figure 1–5 (Cont.) VAXBI Based Systems

CPU

CPU

CPU NMI

NBW NBW

Array Bus

PBIA

PBIB

PBIB

PBIA

PBIB

PBIB

PBIA

PBIB

PBIB

NMI

VAXBI

VAXBI

VAXBI

VAXBI

VAXBI

Controller
Memory

ZK−4839.2−GE

UNIBUS

Device Device

DWBUA Device

VAX 8830

Array Bus

NMI

CPU

NBIA

NBIB

NBIBVAX 8800

NBIA

NBIB

NBIBController
Memory

VAXBI

VAXBI

CPU

VAXBI

VAXBI

DeviceDevice

VAXBI

1–16

Introduction to Device Drivers
1.6 Hardware Considerations

In a VAX 82x0/83x0 configuration, main memory, the DWBUA, and other devices
are all connected directly to the VAXBI bus. By contrast, the VAX 85x0/8700
/88x0 and VAX 6000 series configurations employ separate memory interconnects
(known as the NMI, PBI, or XMI), as illustrated in Figure 1–5, to service main
memory. The VAX 85x0/8700/88x0 provides multiple VAXBI buses to which I/O
adapters and devices can be attached. The VAX 83x0, VAX 8800/8820/8830, and
VAX 6000 series are multiprocessor systems.

The VAXBI bus supports UNIBUS peripherals by means of the VAXBI-to-
UNIBUS adapter (DWBUA or DWMUA). Writers of UNIBUS drivers can find
specific information about the UNIBUS adapter and system support for UNIBUS
drivers in Chapter 14.

The VAXBI also supports non-Digital-supplied devices designed according to
specifications established by Digital and a license granted by Digital. Writers of
drivers for such devices, referred to as generic VAXBI devices in this manual,
can find specific information in Chapter 16.

For the purposes of the discussion in this book, the term UNIBUS adapter
includes the DWBUA and DWMUA, and the term backplane interconnect
represents the VAXBI bus.

1.6.1.6 VAX 9000 Series System
The VAX 9000 series system employs the SCU/XMI bus architecture illustrated
in Figure 1–6. It features a two-level I/O subsystem supporting up to four XMI
buses.

A system control unit (SCU) and an I/O control unit translate each address
and connect a VAX 9000 CPU or memory bus to a target XMI and device or bus
adapter. The primary I/O bus is the XMI. It is reserved to devices and adapters
supplied by Digital.

The SCU and I/O control unit connect to each XMI through an XJA adapter.
Each XMI-to-VAXBI adapter (DWMBA/A) provides connection to the second
level I/O subsystem. At the second level, device support is provided for non-
Digital-supplied devices connected to the VAXBI bus. Writers of drivers for such
devices, referred to as generic VAXBI devices in this manual, can find specific
information in Chapter 16.

1–17

Introduction to Device Drivers
1.6 Hardware Considerations

Figure 1–6 SCU/XMI-Based Systems Architecture

I/O Control Unit

ZK−1599A−GE

System Control Unit

3 2 1 0

X
M
I

Disk
TapesSI

KDM70

X
M
I

X
M
I

X
M
I

NI
DEMNA

CI
CIXCD

XJA XJA XJA XJA

VAX 9000

CPU MemoryCPUCPUCPU

Device Device

DWMBA/A

DWMBA/B

DWMBA/A

DWMBA/B

CI

Ethernet

Console

VAXBI

VAXBI

1–18

Introduction to Device Drivers
1.6 Hardware Considerations

1.6.1.7 VAX 7000 Series and VAX 10000 Series Systems
The VAX 7000 series and VAX 10000 series systems employ an I/O processor and
a distributed bus architecture illustrated in Figure 1–7. The bus architecture
features a two-level I/O subsystem supporting up to four hose ports to optional
bus interfaces.

The I/O processor (IOP) and the specific bus interface module translate each
address and connect a VAX 7000 CPU or memory (system bus) to a target bus and
device or subsequent bus adapter. The primary I/O bus is the XMI. It is reserved
to devices and adapters supplied by Digital.

Each XMI-to-VAXBI adapter (DWMBB/A) provides connection to the second
level I/O subsystem. At the second level, device support is provided for non-
Digital-supplied devices connected to the VAXBI+ bus. Writers of drivers for such
devices, referred to as generic VAXBI devices in this manual, can find specific
information in Chapter 16.

Each XMI-to-VMEbus adapter (DWMVA) provides connection to the open
VMEbus. Device support is provided for non-Digital-supplied devices connected to
the VMEbus. Writers of drivers for such devices in this manual can find specific
information in Chapter 20.

1–19

Introduction to Device Drivers
1.6 Hardware Considerations

Figure 1–7 VAX 7000 Series and VAX 10000 Series System Architecture

ZK−5064A−GE

0

Disk
TapesSI

KDM70

X
M
I

NI
DEMNA

DWMBB/A

DWMBB/B

VAXBI+

VAXBI+

VMEbus

Device Device

Device Device

DWMBB/A

DWMBB/B

DWMVA

DWMVA

1

X
M
I

XMI
Interface

H
o
s
e

B

H
o
s
e

A

I/O Processor
(IOP)

Ethernet

CPUCPUCPUCPU

Memory Memory Memory Memory

System Bus

VAX 7000
VAX 10000

XMI
Interface

1–20

Introduction to Device Drivers
1.6 Hardware Considerations

1.6.1.8 MicroVAX 3400/3600/3900 Series, MicroVAX/VAXstation II, and VAX 4000 Series
Systems

The MicroVAX 3400/3600/3900 series, the MicroVAX/VAXstation II, and the
VAX 4000 series are Q22–bus based systems. On these systems, the Q22–bus
is the bus by which peripheral devices communicate with main memory and
the processor.3 Q22–bus device drivers are similar enough to those that drive
UNIBUS devices that most of the discussion of UNIBUS drivers in this book can
equally pertain to the writing of Q22–bus device drivers (see Chapter 14 for a
discussion of the similarities and differences).

As you can see in Figure 1–8, in these systems main memory and I/O devices
reside on separate interconnects. MicroVAX systems implement a scatter-gather
map containing 8192 map registers that allows devices to perform multiple-block,
direct-memory-access (DMA) transfers.4

Figure 1–8 Q22–bus Based Systems

ZK−4840−GE

Memory Memory

Device

CPU

Controller
Memory

Device

Array BusQBI

Device

Q22 Bus

For the purposes of discussion in this manual, the term backplane
interconnect represents the Q22–bus in the MicroVAX systems. The term
Q22–bus interface represents those functions performed by these processors
that resemble those performed by the UNIBUS adapter of other VAX systems. In
most instances, you can assume that discussions of the UNIBUS adapter apply as
well to the Q22–bus interface.

3 DMA controllers attached to the Q22–bus must be capable of 22-bit addressing.
4 In these systems, the 4MB of Q22–bus memory is located from physical address

3000000016 to 303F000016. If you must install controllers that contain local memory on
the Q22–bus, it is best to install them in the last 3.75MB of Q22–bus memory (after
physical address 3004000016). The first 0.25MB (256KB) of Q22–bus memory contains
496 map registers, 127 of which must be free for use by the operating system in booting.
If you must place a controller containing memory in this address region, it cannot occupy
more than 369 pages. If the controller exceeds this space, the operating system will
probably boot but will not be able to take crash dumps.

1–21

Introduction to Device Drivers
1.6 Hardware Considerations

1.6.1.9 MicroVAX/VAXstation 3100 and VAXstation 3520/3540 Systems
The operating system offers a native mode implementation of the ANSI Small
Computer System Interface (SCSI) bus on its MicroVAX/VAXstation 3100 and
VAXstation 3520/3540 system configurations.

MicroVAX/VAXstation 3100 systems are uniprocessing systems, providing access
to one or two SCSI buses, each under the control of an NCR 5380 SCSI controller
chip that supports asynchronous data transfers. MicroVAX/VAXstation 3100
systems support the SCSI asynchronous event notification feature. Figure 1–9
shows a representative configuration of a MicroVAX/VAXstation 3100 system.

Figure 1–9 MicroVAX/VAXstation 3100 System Architecture

128Kb
DMA
Buffer

CPU

SCSI Port PKA0 NCR 5380
SCSI Port PKB0

(Optional)NCR 5380

Main Memory
(Up to 32Mb)

SCSI Bus B

ZK−1367A−GE

Other
SCSI

SCSI
Tape

(Target)

SCSI
Disk

(Target)

SCSI
Disk

(Target)

SCSI
Tape

(Target)

Other
SCSI

Logical
Unit

(Target)

Logical
Unit

(Target)

SCSI Bus A

The VAXstation 3520/3540 systems are multiprocessing systems, providing access
to a single SCSI bus by means of Digital’s SII SCSI controller chip. The SII chip
supports both asynchronous and synchronous data transfers. VAXstation 3520
/3540 systems do not support the SCSI asynchronous event notification feature.
Figure 1–10 shows a representative configuration of the VAXstation 3520/3540
system.

1–22

Introduction to Device Drivers
1.6 Hardware Considerations

Figure 1–10 VAXstation 3520/3540 System Architecture

ZK−1368A−GE

CPU

DEC SII

SCSI Bus

SCSI
Disk Device

(Target)

SCSI
Disk Device

(Target)

SCSI
Tape Device

(Target)

Logical
Unit

(Target)

Other
SCSI Device

128Kb
DMA
Buffer

Main Memory
(Up to 64Mb)

Although VAX SCSI implementation is currently based on the SCSI–1 standard,
the SCSI–1 standard is upwardly compatible with SCSI–2. SCSI–2 clarifies
many of the details specified in the SCSI–1 standard. Any non-Digital-supplied
device to be attached to the SCSI bus of a MicroVAX/VAXstation system must
implement all mandatory features of the SCSI–2 standard as described in the
specification. The device is permitted to implement any optional features, as
long as they are implemented according to the SCSI–2 standard. The device may
implement vendor-unique features, as long as they are implemented in areas
clearly designated as such by the standard.

The ANSI SCSI specification is, in places, very broad and flexible. In some cases,
it is possible for a SCSI device to conform to the specification but be unsupported
by the operating system. For instance, it is possible that a SCSI device may
implement a maximum timeout value that is incompatible with a value required
by the operating system. For additional information on SCSI device support, see
Chapter 17.

1–23

Introduction to Device Drivers
1.7 Programmed-I/O and Direct-Memory-Access Transfers

1.7 Programmed-I/O and Direct-Memory-Access Transfers
Devices are equipped with various registers that initiate, control, and monitor
the progress of data transfer, seek operation, or other requests for device activity.
When it completes a request, the device posts an interrupt to the processor. The
size of the transfer concluded by a device interrupt depends upon the capabilities
of the device.

1.7.1 Programmed I/O
Drivers for relatively slow devices, such as printers, card readers, terminals,
and some disk and tape drives, must transfer data to a device register a byte or
a word at a time. These drivers must themselves keep a record of the location
of the data buffer in memory, as well as a running count of the amount of data
that has been transferred to or from the device. Thus, these devices perform
programmed I/O (PIO) in that the transfer is largely conducted by the driver
program.

Examples of UNIBUS devices that do PIO transfers are the LP11 and the DZ11.
Corresponding Q22–bus devices that perform PIO transfers are the LPV11 and
the DZV11.

Chapter 2 outlines the action of the LP11 driver. The LP11 driver transfers
data from a system buffer to the line printer data buffer register a byte at a
time, while maintaining a count of the number of bytes left to transfer. When
the line printer data buffer is full, the line printer sets a ‘‘not ready’’ bit in its
status register. If the driver, while examining this register, sees this bit set, it
enables interrupts from the printer and then suspends itself in the expectation
that the printer will post an interrupt to the processor. While the driver remains
suspended, the printer prints the data from its buffer and interrupts the processor
when it is done. With the interrupt handled by the system interrupt dispatcher
and the driver interrupt service routine, driver execution resumes. The driver
repeats both its byte-by-byte transfer to the printer data buffer, as well as the
entire routine described previously, until it determines that all the data has been
transferred as requested.

Drivers performing PIO transfers are generally not concerned with the operation
of I/O adapters. However, drivers that perform direct-memory-access (DMA)
transfers must take into account I/O adapter functions, as discussed in
Section 1.7.2.

1.7.2 Direct-Memory-Access I/O
Devices that perform direct-memory-access (DMA) transfers do not require the
central processor so frequently. Once the driver activates the device, the device
can transfer a large amount of data without requesting an interrupt after each
of the smaller amounts. The responsibilities of a driver for a DMA device involve
supplying a device register with the starting address of the buffer containing the
data to be transferred, a byte offset into the buffer, and the size of the transfer.
By setting the appropriate bit or bits in the device control and status register
(CSR), the driver activates the device. The device then automatically transfers
the specified amount of data to or from the specified address. Examples of several
DMA drivers appear in Appendix C, Appendix D, Appendix E, and Appendix F.

For DMA transfers, UNIBUS, Q22–bus, VMEbus, and TURBOchannel drivers
must first map the transfer from main memory to I/O bus memory space. The
result of this mapping is a set of contiguous addresses in the bus address space
that the DMA device can access to successfully perform a DMA transfer. To

1–24

Introduction to Device Drivers
1.7 Programmed-I/O and Direct-Memory-Access Transfers

accomplish this, a driver must first obtain map registers, and possibly a buffered
data path. The driver calls system routines that interface with the I/O adapter
to allocate these resources on behalf of the driver. Chapter 14 discusses the
operation of the UNIBUS adapter and the Q22–bus interface, and provides
instructions on how to write a DMA driver for UNIBUS and Q22–bus devices.
Chapter 19 describes the DMA operation and requirements for TURBOchannel
devices. Chapter 20 describes the operation and requirements for VMEbus
devices.

Some controllers that can do DMA transfers on the Q22–bus have microcode that
allows the controller itself to do physical-to-virtual address mapping. This allows
such controllers to do scatter-gather mapping, eliminating the need for transfers
to be made to or from physically contiguous main memory.

The method by which a generic VAXBI device capable of DMA transfers
accomplishes such a transfer depends upon the characteristics of the device.
Several methods are discussed in Section 16.8.

1.8 Buffered and Direct I/O
A separate issue, but one related to the data transfer capabilities of a device,
results from the fact that the original buffer, as specified in the user $QIO
request, is in process space and is mapped by process page-table entries. Because
the driver cannot rely on process context existing at the time the device is ready
to service the I/O request, it must have some means of guaranteeing that it can
access both the data involved in the transfer and the page-table entries that map
the buffer.

The operating system provides the following two techniques that are employed by
device drivers:

• Direct I/O, the technique used most commonly by drivers of DMA devices,
locks the user buffer in memory as well as the page-table entries that map
it. The function decision table (FDT) of such a driver calls a system-supplied
FDT routine that prepares the user buffer for direct I/O.

• Buffered I/O is the strategy whereby the driver FDT dispatches to an FDT
routine in the driver that allocates a buffer from nonpaged pool. It is this
intermediate buffer that is involved in the transfer. The driver later refers
to the buffer using addresses in system space. Driver preprocessing routines
copy the data from the user buffer to the system buffer for a write request;
system I/O postprocessing (by means of a special kernel-mode AST) delivers
data from the system buffer to the user buffer for a read request. Drivers
most often use buffered I/O for PIO devices such as line printers and card
readers.

The trade-off between buffered I/O and direct I/O is the time required to move the
data into the user’s buffer as against the time required to lock the buffer pages in
memory. Sections 6.3.1 and 7.4 provide additional information.

1–25

Introduction to Device Drivers
1.9 Example of an I/O Request

1.9 Example of an I/O Request
Figure 1–11 illustrates how the operating system and the device driver process a
user request for a read I/O operation for a DMA device attached to a UNIBUS or
Q22–bus.

Figure 1–11 Example of I/O Request Processing

ZK−0909−GE

status.
collects
Driver

request.
validates
function

read
Driver

and status.
reads data
process

User

state.
driver
saves
system

Operating

driver state.
restores
handler
interrupt
Driver

interrupt.
and waits for

device
starts
Driver

request.
validates
routine
service

QIO

status.
data and
copies
system

Operating

interrupt.
generates

Device

driver.
calls

system
Operating

I/O.
requests
process

User

The processing of the sample I/O request illustrated in Figure 1–11 occurs in the
following steps:

1. A process requests an I/O operation.

A user process initiates an I/O request by issuing either a $QIO system
service call or an RMS call resulting in a call to the $QIO system service.

The user process specifies the target device, a read function code, and the
address of a buffer into which the data is to be read.

2. The operating system performs I/O preprocessing.

The $QIO system service validates the request and locates data structures in
the I/O database that describe the device and its driver. The system service
also allocates and initializes an I/O request packet to contain a description of
the I/O request. The system service then calls a reading routine in the driver.

3. The driver performs I/O preprocessing.

The driver FDT routine verifies that the user buffer resides in virtual memory
pages that can be modified by the requesting process, locks the buffer pages
in memory, and adds details of the I/O operation to the I/O request packet.
The read FDT routine then calls the operating system to send the I/O request
packet to the driver.

4. The system creates a driver’s fork process.

A system routine creates a fork process in which the device driver can
execute. The routine activates the driver’s fork process by transferring
control to the driver’s start-I/O routine.

5. The driver readies the I/O adapter.

For DMA transfers, the driver’s fork process calls system routines that enable
the I/O adapter hardware to map I/O bus addresses into physical addresses
for the transfer.

1–26

Introduction to Device Drivers
1.9 Example of an I/O Request

6. The driver activates the device.

The fork process activates the device by setting bits in device registers.

7. The driver waits for an interrupt.

A system routine saves the context of the driver’s fork process and
relinquishes the processor until an interrupt occurs.

8. The device requests an interrupt.

When the data transfer is complete, the device requests a hardware interrupt
that causes the system to dispatch to the driver’s interrupt service routine.

9. The driver services the interrupt.

The driver’s interrupt service routine handles the interrupt and reactivates
the driver, which reads device registers to obtain status information about the
transfer.

10. The operating system inserts the driver in a fork queue.

The driver requests that it again be suspended, to be reactivated later at a
lower software interrupt priority level (IPL).

11. The fork dispatcher reactivates the driver’s fork process.

When processor priority permits, the system fork dispatcher reactivates the
driver as a fork process.

12. The driver completes the I/O operation.

The driver’s fork process completes device-dependent processing of the I/O
request and returns the I/O status to the operating system.

13. The operating system completes the I/O operation.

The system I/O postprocessing routines copy the I/O status into process
address space, general registers, or both, and return control to the user
process.

Only four of these 13 steps describe the driver’s I/O preprocessing and fork
processing. The system I/O-support routines perform I/O processing common
to many I/O requests. Driver writing is further simplified by the use of system
routines that handle device-independent functions.

This example simplifies the processing of an I/O operation by ignoring such issues
as

• The association of a device with a process, which is to say, device assignment

• Simultaneous I/O requests for one device

• System synchronization issues, such as IPLs and spinlocks

• Driver competition for shared system and I/O adapter resources

• Driver competition for a multiunit controller

• Driver recovery from device errors or power failure

Subsequent chapters discuss each of these issues in relation to device drivers.

1–27

2
Handling a $QIO Request

This chapter outlines the series of activities performed by the operating system
and a simple device driver in order to process an I/O request. The LP11 line
printer driver (LPDRIVER) was selected for this discussion because it is a simple
driver but still illustrates many driver principles. The first-time reader of this
document might not understand all of the points made in this chapter; however,
the chapter should provide some insight into driver flow and I/O processing.

The LP11 printer is a programmed I/O (PIO) device (see Section 1.7.1). Although
the LP11 is usually spooled, for this discussion it is not.

A user process can request the following functions on this printer:

• Write data to the printer

• Read the printer’s device characteristics

• Alter the printer’s device characteristics

This chapter describes two aspects of printer I/O processing:

• The portions of the line printer driver that are used in servicing a write
request

• The operating system components with which the driver interacts to process
the write request

Figure 2–1 illustrates the flow of execution through the system executive routines
and printer driver code that satisfies an I/O request. Boxes above the solid
line indicate processing in user-process context. Boxes below the line indicate
processing in fork or interrupt context.

2.1 Driver Code for the LP11 Write Function
The system device driver for an LP11 printer implements a write function by
using the following parts of the driver:

• A function decision table (FDT) routine that reformats the user-supplied data

• A start-I/O routine that writes data to the printer buffer register until the
printer enters a busy state as it prints the contents of its internal print silo

• Code that modifies a device register to enable interrupts from the printer

• An interrupt service routine (ISR) that returns control to the driver’s fork
process after a hardware interrupt from the printer

• Code that returns I/O status to a system I/O completion routine

2–1

Handling a $QIO Request
2.1 Driver Code for the LP11 Write Function

Figure 2–1 A Printer Write Function

ZK−0911−GE

validation
QIO

subroutine
FDT

driver
IRP to
Deliver

device
writes to
Driver

processor
post

IRP to
Queue

processor
post
I/O

state
into busy

goes
Device

status
returns
Driver

driver
Suspend

handler
Interrupt

interrupt
dispatches

system
Operating

interrupt
generates
Device

AST
mode
Kernel

User Context

System Context

2–2

Handling a $QIO Request
2.2 A User Process I/O Request

2.2 A User Process I/O Request
A user process writes a line to the printer by calling the Queue I/O Request
($QIO) system service, specifying the write-virtual-block function code as follows:

$QIO_S chan = CHANNEL_NUMBER,-
func = #IO$_WRITEVBLK,-
efn = #6,-
iosb = STATUS_BLOCK,-
p1 = BUFFER_ADDRESS,-
p2 = #BUFFER_SIZE,-
p4 = #^X30 ;Carriage control character

Note that p1, p2, and p4 are device-dependent arguments.

2.3 Device-Independent System I/O Preprocessing
The $QIO system service first validates that the I/O request is correctly specified.
The I/O request must meet the following criteria:

• The location CHANNEL_NUMBER must contain a number that serves as a
valid index into the process’s channel list. This means that the process must
have previously assigned the printer to this process channel using the Assign
I/O Channel ($ASSIGN) system service. Once $QIO locates the assigned
channel control block (CCB), it can retrieve the address of the unit control
block (UCB) of the target device of the request. Ultimately, it obtains the
address of the driver’s function decision table (FDT), by way of a chain of
longword pointers within the I/O database:

CCB ! UCB ! DDT ! FDT address

• The driver FDT must list IO$_WRITEVBLK as a valid function for the device.

• The event flag number must be valid.

• The process’s remaining buffered I/O count (BIOCNT) must permit the $QIO
system service to perform a buffered-I/O request.

• The process must have write access to location STATUS_BLOCK, specified in
the request for use as an I/O status block (IOSB).

If all of these checks succeed, the $QIO system service creates an I/O request
packet (IRP) in nonpaged system address space. The service then writes all
known details about the I/O request into the IRP.

If the target device for the I/O request is not file structured, the $QIO system
service changes any virtual-function code to its equivalent logical-function code
when it builds the IRP. Thus, for a printer device, IO$_WRITEVBLK is translated
to IO$_WRITELBLK.

2.4 Device-Dependent I/O Preprocessing by the Driver
Once it has validated the I/O request, the $QIO system service scans the FDT
for an entry that associates the IO$_WRITELBLK function code with an FDT
routine. The system service calls the routine, which in the case of the printer
driver is a device-specific routine located in the printer device driver.

The FDT routine confirms that the requesting process has read access to the
buffer starting at BUFFER_ADDRESS. Then, the FDT routine buffers data from
the process address space into system address space in the following steps:

1. Calculates the length of the required system space buffer.

2–3

Handling a $QIO Request
2.4 Device-Dependent I/O Preprocessing by the Driver

2. If the job byte count quota for buffered I/O (JIB$L_BYTCNT) permits, the
routine allocates a buffer from system address space, stores the address of the
buffer in the IRP, and decreases the current job byte count quota.

3. Synchronizes access to the printer’s UCB by obtaining its mutex semaphore
(UCB$L_LP_MUTEX) for write access. It can thus reliably preprocess the
write request, depending upon information contained in the UCB.

By obtaining the line printer mutex semaphore, the driver FDT routine
effectively prevents processes active in a multiprocessing system from
initiating simultaneous functions on the printer. Also, in a uniprocessing
system, this action prevents contention between a process that has allocated
the printer (and has been preempted in the midst of a write function) and any
of its subprocesses that, when scheduled, may attempt to start a concurrent
function that alters device characteristics.

4. Reads the description of the printer’s current line and page position from the
device’s UCB.

5. Reformats the data from the process buffer into the system buffer, adding
carriage-control characters, as specified in argument p4 to the I/O request,
before and after the data.

Formatting includes such functions as the replacement of horizontal tabs with
multiple spaces and the replacement of lowercase characters with uppercase
characters, if necessary.

6. Rewrites updated line and page positions into the device’s UCB. This
information indicates what the current location on the page being printed will
be when the request completes.

7. Finally, the routine transfers control to a system routine that queues the IRP
to the device driver.

All of the I/O processing described to this point occurs in the context of the
user’s process. The user address space is mapped, and the processor’s IPL is
still low enough to permit process scheduling and paging. Subsequent queuing
of the transfer request to the driver and all resulting driver processing occur at
higher IPLs—and with ownership of the appropriate fork lock and device lock
in a multiprocessing environment—that synchronize the driver’s handling of the
device. (See Chapter 3 for a discussion of the concept of synchronization.)

2.5 Queuing the I/O Request Packet to the Driver
Before queuing the IRP to the printer driver, the system queuing routine raises
the IPL to the driver’s fork level and obtains the associated fork lock in a
multiprocessing environment. These actions synchronize access to those fields of
the UCB referenced by driver routines at fork IPL.

If the device is idle, which is to say that if the busy bit in the UCB status
longword (UCB$V_BSY in UCB$L_STS) of the UCB is clear, the operating system
can transfer control to the driver. The driver dispatch table (DDT) contains the
entry point to the driver’s start-I/O routine. To find the proper entry point, the
queuing routine chains through the I/O database to the DDT, as follows:

UCB ! DDT ! start-I/O routine address

2–4

Handling a $QIO Request
2.5 Queuing the I/O Request Packet to the Driver

If the device unit is busy with another transfer, the operating system inserts the
IRP in a queue of packets waiting for the unit. The UCB contains the head of the
queue. The packet’s position in the queue depends on the scheduling priority of
the process issuing the request.

2.6 Activating the Printer
The LP11 printer controller accepts data into an internal print silo until the silo
is full or the driver writes a carriage-control character to the printer’s data buffer
register. When either event occurs, the printer sets a busy bit in the device’s
control and status register (CSR). Then the device driver sets the interrupt-enable
bit in the device’s CSR and waits for the printer to interrupt. When the printer
requests a hardware interrupt, the driver can resume writing characters to the
printer’s data buffer register.

The driver routine delivers characters to the printer according to the following
sequence:

1. The driver clears the device lock and locates the LP11 device registers using
a chain of pointers starting at the device’s UCB.

UCB ! CRB ! IDB ! CSR address

The CSR address is always the address of the printer’s CSR, and all other
device registers are at fixed offsets from this address. In contrast to many
other devices, such as disks, the LP11 printer does not share a controller
with other devices; therefore, no arbitration for ownership of the controller is
required.

2. The driver examines the device’s CSR to see if the device is ready to accept
characters.

3. If the device is ready, the driver writes a byte of data to the printer’s data
buffer register. The printer controller moves the byte from the register to the
controller’s internal print silo.

4. The driver decreases the count of bytes to transfer and repeats step 2.

5. If the device is not ready (that is, its print silo is full), the driver raises IPL
to device IPL and obtains the corresponding device lock in a multiprocessing
system. These actions allow it to set the interrupt-enable bit in the device’s
CSR in synchronization with other routines in the driver that may access the
CSR.

After setting the interrupt-enable bit, the driver invokes a system wait-for-
interrupt macro to release the device lock and suspend driver processing until
the printer requests an interrupt or the device times out.

2.7 Waiting for a Device Interrupt
The system wait-for-interrupt routine suspends the driver by performing the
following functions:

• Saving driver context (R3, R4, and the address of the next instruction in the
driver) in the device’s UCB

• Calculating the time at which the device will time out

• Setting bits in the device’s UCB to indicate that the driver expects a device
interrupt within a specified time period

2–5

Handling a $QIO Request
2.7 Waiting for a Device Interrupt

• Releasing the device lock in a multiprocessing system, restoring IPL to fork
level, and returning control to the caller of the driver’s start-I/O routine

The driver remains in a suspended state until one of the following two events
occurs:

• The printer requests a hardware interrupt.

• The operating system reports a device timeout because the printer did not
request a hardware interrupt within a specified period of time.

Normally, the LP11 prints the contents of its data buffer and requests the
interrupt.

2.8 Handling Interrupts
When the LP11 printer requests a hardware interrupt, the interrupt dispatcher
passes the interrupt to the LP11 driver’s interrupt service routine (ISR).

The driver’s interrupt service routine restores control to the driver, as follows:

1. Restores the address of the UCB in R5

2. Obtains the appropriate device lock to ensure synchronization in a
multiprocessing environment

3. Confirms that the interrupt was expected by examining bits in the device’s
UCB

4. Restores the saved registers (R3 and R4) from the device’s UCB

5. Transfers control to the driver program counter (PC) address stored in the
device’s UCB

Rather than execute in interrupt context, the reactivated driver routine calls a
system routine to create a fork process. As a result of this action, the operating
system again suspends driver processing by performing the following steps:

1. Saving driver context (R3, R4, and the driver PC address) in the device’s UCB

2. Inserting the UCB address in the appropriate fork queue in the local
processor’s CPU database

The driver suspension allows the operating system to reschedule driver processing
at its fork IPL and permits higher priority code to execute and device interrupts
to be serviced while driver processing of the I/O request concludes. The system
fork dispatcher reactivates the driver when the IPL of the local processor drops to
fork level.

After creating the fork process, the system returns control to the driver’s
interrupt service routine, which restores the registers saved at the time of the
device interrupt, releases the device lock, and dismisses the interrupt.

2.9 I/O Postprocessing by the Driver
When the system fork dispatcher reactivates the driver’s fork process, the driver
obtains the number of characters left to transfer from the UCB. If there are still
characters to transfer, the driver and printer repeat the procedures outlined in
Sections 2.6 to 2.8, until the transfer is complete. When all characters have been
transferred, the driver code branches to the driver’s I/O-completion code.

2–6

Handling a $QIO Request
2.9 I/O Postprocessing by the Driver

The driver’s I/O-completion code stores a success status code and the number
of bytes transferred in R0, then transfers control to the operating system to
complete the I/O request.

2.10 System I/O Postprocessing
The operating system inserts the I/O request packet (IRP) into the systemwide
I/O postprocessing queue and requests an interrupt from the processor at IPL$_
IOPOST. If another IRP is queued to the UCB for the device unit, the operating
system dequeues that packet and calls the driver start-I/O routine to process it.
When IPL drops to IPL$_IOPOST, the processor grants the I/O postprocessing
interrupt request. The I/O postprocessing dispatcher dequeues the packet for the
printer I/O request and performs the following steps:

1. Increases the use count (PHD$L_BIOCNT) of the process’s buffered I/O
requests because the current operation is complete. The use count is
maintained for accounting purposes.

2. Decreases the process’s buffered I/O count (PCB$W_BIOCNT) to reflect a
completed buffered I/O operation. This operation restores buffered-I/O quota
to the process.

3. Deallocates the system buffer used for the reformatted user data.

4. Increases the job’s byte count quota.

5. Sets an event flag to indicate that the I/O operation is complete.

6. Queues a special kernel-mode asynchronous system trap (AST) routine that
will deallocate the IRP and stores I/O status in the user’s I/O status block
(IOSB).

The user process determines when the I/O operation is complete by the setting of
the event flag or the filling of the IOSB, or both, according to the method defined
in the I/O request. The Queue I/O Request and Wait ($QIOW) system service
completes synchronously and returns control and status to the user process only
after the I/O operation has been completed. The Synchronize ($SYNCH) system
service waits for the completion of an I/O request, initiated by the $QIO system
service, that completes asynchronously to user process activity.

2–7

3
Synchronization of I/O Request Processing

Because a device driver executes as kernel-mode code, it can preempt core system
tasks and access critical system data. As a result, it must adhere to a set of
rules that governs the priority of system activities and controls the flow of system
events. These synchronization rules ensure that both the operating system and
the device driver access memory in an orderly and consistent fashion.

This chapter contains the following discussions:

• Section 3.1 discusses the interrupt priority levels (IPLs), focusing on those
IPLs and interrupt service routines (ISRs) that participate in the processing
of an I/O request. It briefly examines the roles of the other IPLs in the
operating system. Whether you are writing a driver for a uniprocessor or
multiprocessor environment, you must adhere to the synchronization rules
discussed in this section.

• Section 3.2 discusses the various spinlock semaphores, including when and
how they ensure proper multiprocessing operation.

• Section 3.3 illustrates how system synchronization is maintained during the
processing of an I/O request on any VAX system. As part of this discussion,
this section describes the driver fork process and the activity of forking.
Finally, it examines the methods by which a driver synchronizes at fork level
and device interrupt level.

• Section 3.4 discusses the mechanism by which driver code stalls to wait for
an available adapter or controller resource on any VAX system.

3.1 Interrupt Priority Levels
The VAX architecture defines 32 levels of hardware priority, called interrupt
priority levels (IPLs). These IPLs govern the sequence of system events that
occur on each processor in a VAX system. The higher-numbered IPLs (16 to 31)
are reserved for hardware interrupts, and the lower-numbered IPLs (1 to 15) are
reserved for software interrupts. Most process-based software runs at IPL 0.

The hardware IPLs (16 to 31) are used for device interrupts (IPLs 20 to 23),
interprocessor interrupts in a multiprocessing system, interval timer interrupts,
urgent conditions like power failure, and such serious errors as a machine check.
Those IPLs that have a bearing on driver execution are discussed in Sections
3.1.2 and 3.1.3. For specific hardware IPL information, see your VAX system’s
hardware documentation or the VAX Hardware Handbook.

The software IPLs (1 to 15) are defined by the operating system, as illustrated in
Table 3–1.

3–1

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

Table 3–1 System-Defined IPLs

IPL Symbolic Name Use

0 — Execution of most process-based software

1 — Reserved

2 IPL$_ASTDEL Servicing of AST-delivery interrupts

3 IPL$_RESCHED Servicing of scheduler interrupts

4 IPL$_IOPOST Servicing of I/O-postprocessing interrupts

5 — Reserved

6 IPL$_QUEUEAST Fork level processing for queuing ASTs

7 IPL$_TIMERFORK Entry level for software timer interrupt
servicing

8 IPL$_SYNCH Synchronization of access-to-system databases
in a uniprocessor system1

11 IPL$_MAILBOX
IPL$_POOL

Fork level processing for access to mailboxes
Allocation of nonpaged pool

8–11 — Fork level processing for executing driver code

12 — Recalculation of quorum; cancellation of mount
verification (IPC)

13 — Reserved

14 — Entry level for XDelta debugger

15 — Reserved

1IPL$_TIMER, IPL$_SCHED, IPL$_JIB, IPL$_MMG, IPL$_FILSYS, and IPL$_IOLOCK8 are all
synonyms for IPL$_SYNCH (see Table 3–3).

Because a higher IPL takes precedence over a lower IPL, a routine executing
at one IPL can block interrupts on a processor at that IPL and all lower IPLs.
This scheme allows the operating system to assign the higher IPLs to system
activities that must be dispatched quickly and with little chance of interruption.
In a general sense, each processor services interrupts according to the following
priorities:

• Power failure

• Processor errors

• Device interrupts

• Device driver fork processing

• I/O postprocessing

• Process rescheduling

• AST delivery

As a result of blocking events on and ordering the activities of a single VAX
processor, system use of IPLs ensures that kernel-mode code accesses data in
memory in a cooperative and predictable manner. The mechanism by which
synchronized access to data is ensured is twofold. First, the operating system
associates a given IPL with the access of one or more data structures or
databases. Secondly, the operating system defines an ordered set of semaphores,
called spinlocks, that extend IPL synchronization throughout a multiprocessing
system. A processor must obtain one or more of these spinlocks before executing

3–2

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

any code thread that must make use of the resources the spinlock protects.
Spinlocks thus allow each processor in a multiprocessing system to share common
system data and block events systemwide.

For example, consider a code thread running at IPL 4 that intends to access
the memory management database. To do so, it raises IPL to IPL$_MMG. This
action gives it the exclusive right to access the database from the local processor,
effectively preventing access by other code threads on the same processor. After
raising IPL, this code thread requests the memory management (MMG) spinlock.
Ownership of the MMG spinlock gives the processor executing this thread the
exclusive right to access the database systemwide, and bars access from any other
code thread running on any other processor in the VAX system.

Although discussions in this book treat IPL and spinlock synchronization as
conceptually separate tasks for a device driver, system synchronization macros
make adjustment of IPL and disposition of spinlocks appear as a single operation.

A full description of spinlocks appears in Section 3.2.

3.1.1 Interrupt Service Routines
The operating system associates certain IPLs with the execution of certain tasks.
Moreover, when a processor in a VAX system grants an interrupt at a given IPL,
the grant actually triggers the execution of a specific piece of code, called an
interrupt service routine (ISR), that performs the task.

Device drivers themselves contain an interrupt service routine that handles
device interrupts at an appropriate device IPL (IPLs 20 to 23). In addition,
drivers rely heavily upon the system interrupt service routine known as the fork
dispatcher that runs at several IPLs, including driver fork IPLs 8 to 11. When
the local processor’s IPL drops to fork IPL, it is the fork dispatcher that restores
the context of the driver fork process and places it into execution. (See Sections
3.1.2.4 and 3.3.2 for discussions of the device IPLs and interrupt dispatching,
respectively. Sections 3.1.2.3 and 3.3.3 discuss the fork IPLs and driver fork
processes.)

3.1.2 IPL Use During I/O Processing
The activities essential to the processing of an I/O request occur only at certain
IPLs. The operating system performs some of these tasks in system routines and
interrupt service routines; drivers perform others. This section describes those
IPLs and interrupt service routines that are most involved in I/O processing.
Section 3.1.3 discusses the IPLs at which other system activities transpire that
may influence the coding of a driver. For additional information on the pattern of
synchronization throughout the servicing of an I/O request, see Section 3.3.

3.1.2.1 IPL 2 (IPL$_ASTDEL)
The asynchronous system trap (AST) delivery interrupt service routine
(SCH$ASTDEL) is associated with IPL$_ASTDEL.

When an AST is specified for delivery to a process, the AST queuing routine
(SCH$QAST) queues the AST to the specified process’s process control block
(PCB).1 The mode of the AST, the current mode of the processor, and the
mode contained in the processor’s ASTLVL register determine when the AST
is delivered. The VAX hardware, by means of the REI instruction, requests

1 Because the system AST queuing and delivery routines access the scheduler database,
they synchronize within a multiprocessing environment by obtaining the SCHED
spinlock before modifying system data.

3–3

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

a software interrupt on the local processor at IPL$_ASTDEL whenever the
processor’s mode becomes less privileged than that specified as its ASTLVL.2

The AST delivery interrupt service routine gains control when the processor’s IPL
drops below IPL$_ASTDEL, and delivers all deliverable ASTs to the currently
scheduled process. Any code executing at IPL$_ASTDEL or higher blocks the
execution of this interrupt service routine.

To block the delivery of ASTs—specifically the kernel-mode AST that causes
process deletion—I/O preprocessing, from the time that the $QIO system service
allocates an IRP through the execution of the last FDT routine, occurs at IPLs
no lower than IPL$_ASTDEL. The system allocation routine records the address
of the system memory allocated for the IRP in a process register; if an AST that
deletes the process were to occur, the allocated memory would be lost from the
pool.

In addition, some I/O postprocessing occurs in a special kernel-mode AST
servicing routine that also executes at IPL$_ASTDEL. The special kernel-mode
AST, running in the context of a process whose I/O has been completed, writes
status information into an I/O status block, copies buffered input into process
space, and deallocates system buffers. The completion of these tasks depends on
the availability of process context.

Page faults may be taken by code that executes at IPL$_ASTDEL. However, this
is not the case with code executing at higher IPLs. Thus, programs that are
sensitive to the contents of pageable data structures run at IPL$_ASTDEL to
take page faults. For example, the allocation of paged pool is one such program
code thread; paged pool, as a result, is protected by a mutex.

3.1.2.2 IPL 4 (IPL$_IOPOST)
The IPL$_IOPOST interrupt service routine (IOC$IOPOST) performs device-
independent postprocessing of an I/O request. As appropriate to the I/O request,
it adjusts process quota use and deallocates system memory. IOC$IOPOST also
queues a special kernel-mode AST to the process’s PCB that, once process context
is restored, writes status and data into the process’s address space.

After it has completed whatever device-dependent postprocessing is required,
a driver fork process requests I/O postprocessing by calling a system routine
(IOC$REQCOM) that inserts an IRP in the systemwide I/O postprocessing queue
and requests a software interrupt at IPL$_IOPOST. When IPL drops below IPL
4, the IPL$_IOPOST interrupt service routine dequeues an IRP from the I/O
postprocessing queue, performs all I/O-completion tasks that can occur without
reference to the device’s unit control block (UCB) and, thus, at an IPL lower than
fork IPL.

I/O postprocessing runs at an IPL higher than IPL$_RESCHED so that all
pending I/O-completion processing is finished before the scheduler looks for
a new process to schedule. The ability of a process to execute can depend
on the completion of the postprocessing of an I/O request. Additionally, I/O
postprocessing can queue ASTs to certain processes, thus changing their state
to computable and resulting in a priority boost. Because all I/O completions
are accomplished before rescheduling activities, the scheduler can select from a
potentially larger set of computable processes, using more up-to-date information
about these processes.

2 In the event that a processor queues an AST to a process currently executing on another
processor in a multiprocessing system, the local processor generates an interprocessor
interrupt to the other processor to change its ASTLVL.

3–4

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

3.1.2.3 IPL 8 to IPL 11 (Fork IPLs)
On each processor in a VAX system—for each of the IPLs from 8 to 11—there
exists a queue for fork blocks waiting to be processed. Each fork block contains
the context of a suspended fork process. The interrupt service routine that
executes at each of these IPLs (EXE$FORKDSPTH) is known as the fork
dispatcher. The fork dispatcher dequeues a fork block, obtains the appropriate
fork lock, restores the context of the fork process, and resumes its execution at
the PC location saved in the fork block (at FKB$L_FPC). (Refer to Section 3.3.3
for a discussion of fork blocks and fork processes.)

All driver routines, except most FDT routines, execute at fork IPL or higher.
Usually driver routines should not read or alter UCB fields without taking
steps to ensure synchronization. Because such UCB fields can be shared among
driver fork processes and system tasks executing on other processors in a
multiprocessing system, a processor must first secure the corresponding fork
lock to execute at that fork IPL. Furthermore, the drivers for all devices on a
single I/O adapter must use the same fork lock if they actively compete for shared
I/O adapter resources such as map registers and data paths. The system routine
that initiates an I/O request on an idle device unit, as well as the fork dispatcher,
transfers control to the driver with the appropriate synchronization.

A driver places a fork lock index in UCB$B_FLCK using the DPT_STORE macro.
(See Section 6.1.) The operating system determines the appropriate fork IPL from
the contents of the SPL$B_IPL field in the fork lock’s structure. (See Section 3.2
for a discussion of spinlocks.)

3.1.2.4 IPL 20 to IPL 23 (Device IPLs)
VAX peripheral devices request interrupts at IPLs 20 to 23 because device
interrupts usually need to preempt most user and system software functions.
When a device requests an interrupt at one of these IPLs and the processor is
executing at a lower IPL, the processor grants the interrupt, and then transfers
control to an interrupt service routine for the device located in its driver. If the
processor is executing at a higher or equal IPL, the interrupt remains pending.

The interrupt dispatcher routes interrupts from devices to the appropriate
device driver’s interrupt service routine. A driver specifies the address of its
interrupt service routine in the driver prologue table (DPT). The interrupt
dispatcher’s routing mechanism works differently depending upon the VAX
processor and I/O subsystem in use. (For additional information on device
interrupt dispatching, see the general discussion of interrupt dispatching in
Chapter 9. Information specific to a given I/O subsystem configuration appears in
Sections 14.3 (UNIBUS/Q22–bus), 15.4 (MASSBUS), and 16.6.1 (VAXBI bus).)

Data in a device’s registers and in various fields of the UCB that record
device status is synchronized on the local processor at device IPL, at which
its driver’s interrupt service routine executes. This value is stored by the driver
in the UCB$B_DIPL field of the UCB. It is the responsibility of the interrupt
service routine to secure the corresponding device lock. This action allows it
to synchronize with other code threads that access the same resources in a
multiprocessing system.

The driver’s start-I/O routine is one such code thread and must similarly
synchronize. In a uniprocessing environment, the routine raises IPL to device IPL
before writing data in device registers and database fields. In a multiprocessor
environment, the start-I/O routine must secure the appropriate device lock to
achieve systemwide synchronization of the device database. The act of acquiring
the device lock automatically sets IPL to device IPL.

3–5

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

Because code executing at IPLs 20 to 23 blocks most other hardware interrupts
and all software interrupts on the local processor, driver code lowers its IPL as
soon as possible. Interrupts from devices on a MicroVAX system, VAX 82x0/83x0,
VAX 85x0/8700/88x0, VAX 6000 series, or a VAX 9000 series system, in fact,
can block hardware interrupts from the processor’s interval clock if these device
interrupts occur at or above IPL 22. To prevent the loss of an interval clock
interrupt, these drivers, when executing at IPL 22 or above, should lower IPL
below 22 as soon as possible (within 9 milliseconds).

3.1.2.5 IPL 31 (IPL$_POWER)
The highest IPL, IPL$_POWER (IPL 31), locks out all other interrupts on the
local processor. Many system routines and drivers raise IPL to IPL$_POWER
to execute code sequences that cannot tolerate interruption. For example, much
of system initialization occurs at IPL$_POWER. In a multiprocessing system,
these routines often need to acquire additional synchronization, as described in
Section 3.2.

When a device driver needs to execute a series of instructions without
interruption, the driver raises IPL to IPL$_POWER. The driver should never
remain at IPL$_POWER for more than a few instructions. The most common
instance of a driver’s raising IPL to IPL$_POWER is to determine whether a
power failure has occurred on the local processor between the time that the driver
writes setup data into device registers and the time that the driver starts the
device by writing into the device’s control register.

3.1.3 Additional IPLs
In addition to the IPLs that are directly involved in the processing of an I/O
request, the operating system defines the IPLs described in this section.

3.1.3.1 IPL 3 (IPL$_RESCHED)
When an event occurs that requires that a process be rescheduled, a system
routine requests a software interrupt on the local processor at IPL$_RESCHED.
The scheduler interrupt service routine (SCH$RESCHED) gains control at this
IPL, but immediately obtains the SCHED spinlock (as a result, raising IPL to
IPL$_SYNCH). This action synchronizes the processor’s access to the scheduler’s
database with other system activities.

Drivers never explicitly reference IPL$_RESCHED. Most driver processing occurs
at higher IPLs. When a process raises IPL to or above IPL$_RESCHED, the
scheduler cannot reschedule the process. The process runs until an interrupt
occurs at a higher IPL or the process lowers IPL below IPL$_RESCHED.

3.1.3.2 IPL 6 (IPL$_QUEUEAST)
IPL$_QUEUEAST is a fork-level IPL used predominantly by drivers written
before Version 4.0 of the operating system. A driver fork process originating
at an IPL between 8 and 11 would use IPL$_QUEUEAST when it needed to
synchronize access to the scheduler’s database at IPL$_SYNCH—for instance,
to queue an AST. Prior to VAX/VMS Version 4.0, the only way that such a fork
process could maintain proper synchronization was to first call a system routine
that creates yet another fork process to be dispatched at IPL$_QUEUEAST. Once
the fork dispatcher dequeued the fork block and resumed execution of the driver,
the driver fork process could then raise IPL to IPL$_SYNCH and access the
system database.

3–6

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

Because versions of the operating system after VAX/VMS Version 4.0 implement
IPL$_SYNCH as a fork IPL, a driver fork process can fork directly to IPL$_
SYNCH. Since VMS Version 5.0, the fork dispatcher obtains the IPL 8 fork lock
(IOLOCK8), dequeues the driver fork block, restores driver context, and resumes
execution of the driver. To maintain synchronization in a multiprocessing
environment, the driver then must obtain the spinlock that corresponds to the
data structure it is accessing.

3.1.3.3 IPL 7 (IPL$_TIMERFORK)
The interval clock’s interrupt service routine (EXE$HWCLKINT), executing
at IPL 22 or IPL 24 depending upon the VAX system, posts interrupts at
IPL$_TIMERFORK. A processor requests such an interrupt when the current
process has exceeded its processor time quantum. The software timer interrupt
service routine (EXE$SWTIMINT) gets control when the IPL drops below IPL$_
TIMERFORK, services quantum end events by immediately raising IPL to IPL$_
SYNCH (obtaining the SCHED spinlock, if needed), and calls the appropriate
scheduler routine. For further TQE processing information, see Section 3.1.3.4.

3.1.3.4 IPL 8 (IPL$_SYNCH)
IPL$_SYNCH is the level at which the databases that record and control system
functions are synchronized. Individual spinlocks, such as the JIB, SCHED, MMG,
and TIMER spinlocks, provide synchronized access to individual databases in a
multiprocessing environment.3 When a system subroutine or a driver needs
to modify or read a dynamic portion of a system database, the routine always
executes at IPL$_SYNCH, holding an appropriate system spinlock, to ensure that
the database does not change because of some interrupt service routine or process
action.

When the first entry in the timer queue (EXE$GQ_1ST_TIME) is due, the
interval clock’s interrupt service routine (EXE$HWCLKINT), executing on the
primary processor in a multiprocessor system, places a software timer fork block
on the IPL 8 fork queue and requests an IPL 8 software interrupt. The software
timer fork routine contains special code that allows the primary processor to
service the expiration of a timer queue element (TQE). The routine runs at
IPL$_SYNCH, synchronizes access to the timer queue (except for the first TQE)
by obtaining the TIMER spinlock, and secures the interval clock database (the
system time at EXE$GQ_SYSTIME and the expiration time of the first TQE at
EXE$GQ_1ST_TIME) by obtaining the HWCLK spinlock. Thus synchronized, it
determines which TQEs have expired, dequeues them, and transfers control to
the appropriate timeout handlers. Device timeouts are dispatched in this manner.

3.1.3.5 IPL 11 (IPL$_MAILBOX)
IPL$_MAILBOX is the highest fork IPL. When a system or driver routine writes
into a mailbox, the executing processor must be at IPL$_MAILBOX holding the
MAILBOX spinlock. Because other readers or writers to the mailbox must
similarly pursue synchronization, these actions prevent other writers from
modifying incomplete data in the mailbox and readers from reading invalid
data.

3 IPL$_TIMER, IPL$_SCHED, IPL$_SCS, IPL$_JIB, IPL$_MMG, IPL$_FILSYS, and
IPL$_IOLOCK8 are all synonyms for IPL$_SYNCH (see Table 3–3).

3–7

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

3.1.3.6 IPL 14 (XDELTA Entry IPL)
For debugging purposes, you can halt a processor from the console terminal and
request a software interrupt to invoke the XDelta debugger. You accomplish this
by depositing 0E16 in the processor’s Software Interrupt Request Register (PR$_
SIRR). (The procedure for requesting a software interrupt to invoke XDELTA is
described in Table 13–3.)

After you issue the console’s CONTINUE command and return to program mode,
the processor grants an interrupt at IPL 14. The processor must be executing
below the requested IPL for the interrupt to take effect.

3.1.3.7 IPL 22 or IPL 24 (Interval Clock IPLs)
Every 10 milliseconds, the interval clock interrupts at IPL 22 or 24, depending
upon the VAX system. A system cell points to the IPL field (SPL$B_IPL) in the
HWCLK spinlock, identifying the IPL at which the processor’s interval clock
interrupts.

The interval clock’s interrupt service routine performs the functions described
in Sections 3.1.3.3 and 3.1.3.4. Note that the interval clock’s interrupt service
routine obtains the HWCLK spinlock to synchronize its operations on the system
time quadword (EXE$GQ_SYSTIME) and the quadword containing the due time
of the first timer queue element (EXE$GQ_1ST_TIME).

3.1.4 Modifying IPL in Driver Code
Kernel-mode code can modify the IPL of the local processor by either explicitly
setting the processor’s IPL to a specific value or by requesting a software
interrupt at a specific level. Driver code can change the IPL at which it executes
by invoking a system-supplied macro to request a change in IPL. Because the
DEVICELOCK, FORKLOCK, and LOCK macros (and their counterparts) raise (or
lower) IPL in a uniprocessing environment, and achieve full synchronization in
a multiprocessing system, Digital recommends their use instead of the SETIPL,
DSBINT, and ENBINT macros.

Table 3–2 lists the macros that set, store, or restore a processor’s IPL. See the
macro chapter of the OpenVMS VAX Device Support Reference Manual for a
further explanation of the functions of these macros and a full description of their
arguments.

Table 3–2 System Macros That Change a Processor IPL

Macro Function

Raising IPL

DEVICELOCK [lockaddr] [,lockipl]
[,savipl] [,condition] [,preserve=YES]

Raises IPL on the local processor to the device IPL associated
with the device lock’s lockaddr, obtains the device lock, and
saves the current IPL at savipl 1

DSBINT [ipl=31] [,dst=–(SP)]
[,environ=MULTIPROCESSOR]

Raises IPL on the local processor to the specified ipl, saving the
current IPL at dst 2

1When used in a uniprocessing environment, the DEVICELOCK, DEVICEUNLOCK, FORKLOCK, FORKUNLOCK,
LOCK, and UNLOCK macros generate only the code that manipulates IPL.
2Use of the SETIPL, ENBINT, and DSBINT macros is not sufficient to guarantee systemwide synchronization of events
and data in a multiprocessing system. The DEVICELOCK, FORKLOCK, and LOCK macros have been designed to
achieve appropriate synchronization in either a uniprocessing or multiprocessing environment.

(continued on next page)

3–8

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

Table 3–2 (Cont.) System Macros That Change a Processor IPL

Macro Function

Raising IPL

FORKLOCK [lock] [,lockipl] [,savipl]
[,preserve=YES] [,fipl=NO]

Raises IPL on the local processor to lockipl, obtains the fork
lock, and saves the current IPL at savipl 1

LOCK lockname [,lockipl] [,savipl]
[,condition] [,preserve=YES]

Raises IPL on the local processor to the lockipl, obtains the lock
indicated by lockname, and saves the current IPL at savipl 1

SETIPL [ipl=31]
[,environ=MULTIPROCESSOR]

Raises IPL on the local processor to the specified ipl 2

Lowering IPL

DEVICEUNLOCK [lockaddr] [,newipl]
[,condition] [,preserve=YES]

Releases or restores the device lock indicated by lockaddr,
lowering the local processor’s IPL to newipl, thus permitting
interrupts to occur at or beneath the current IPL1

ENBINT [src=(SP+)] Lowers the local processor’s IPL to src, thus permitting
interrupts to occur at or beneath the current IPL2

FORKUNLOCK [lock] [,newipl]
[,condition] [,preserve=YES]

Releases or restores the fork lock indicated by lock, lowering
the local processor’s IPL to newipl, thus permitting interrupts
to occur at or beneath the current IPL1

UNLOCK lockname [,newipl] [,condition]
[,preserve=YES]

Releases or restores the spinlock indicated by lockname and
lowers IPL to newipl, thus permitting interrupts to occur at or
beneath the current IPL1

Miscellaneous Functions

SAVIPL [dst=–(SP)] Saves the local processor’s IPL at the specified location

SOFTINT ipl Requests a software interrupt on the local processor at the
specified ipl

1When used in a uniprocessing environment, the DEVICELOCK, DEVICEUNLOCK, FORKLOCK, FORKUNLOCK,
LOCK, and UNLOCK macros generate only the code that manipulates IPL.
2Use of the SETIPL, ENBINT, and DSBINT macros is not sufficient to guarantee systemwide synchronization of events
and data in a multiprocessing system. The DEVICELOCK, FORKLOCK, and LOCK macros have been designed to
achieve appropriate synchronization in either a uniprocessing or multiprocessing environment.

3.1.4.1 Raising IPL
To block certain activities on a local processor in a VAX system, it is sometimes
useful to raise IPL explicitly. Driver code should not raise IPL for more than
a few instructions, for doing so prevents the local processor from servicing
interrupts at the current IPL and all lower IPLs.

In a uniprocessor environment, raising IPL provides sufficient systemwide
synchronization to both block events and also protects data customarily
accessed at a given IPL. Drivers typically raise a processor’s IPL to check for
a local processor power failure, to send a message to a mailbox, or to access
device registers. For instance, a driver running exclusively in a uniprocessor
environment can set IPL to its device IPL (UCB$B_DIPL) to access device
registers. While the driver executes at device IPL, no other code thread can
execute at the same device IPL and thereby read or write the same device
registers. (See Section 3.1.4.2 for a description of the rules for lowering IPL that
enforce the synchronization.) The operating system supplies the SETIPL and
DSBINT macros to effect the change in IPL.

3–9

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

In a multiprocessing environment, as in a uniprocessing environment, a
driver can block activities on the local processor by raising IPL. However, in
a multiprocessing environment, simply raising IPL is not sufficient to protect
shared data structures from other processors that may attempt to access them
concurrently. To achieve synchronization in a multiprocessing system, the
operating system associates a series of semaphores, called spinlocks, with
such shared databases. (See Section 3.2 for a further discussion of spinlocks.)

A processor that must access a shared structure must first secure a corresponding
spinlock. The acquisition of a spinlock often involves the raising of IPL to the IPL
associated with the spinlock and the database it protects. Spinlock acquisition
code can elevate IPL automatically if called from a code thread executing at an
IPL lower than the synchronization IPL of the lock. A processor that has properly
obtained a spinlock can thus proceed to access the associated database at the
appropriate IPL. If necessary, it is free to further raise IPL, but should not lower
IPL below the spinlock’s allocation IPL without first releasing the spinlock.

For example, a driver running in a multiprocessing system can set IPL to IPL$_
POWER to block the servicing of a power failure on the local processor. However,
while executing at IPL$_POWER (or at device IPL), the driver cannot safely
access device registers unless it has first secured the spinlock associated with
the device; that is, its device lock. Similarly, a driver’s fork process, although it
executes at a fork IPL with a corresponding fork lock held, may raise a processor’s
IPL by obtaining an additional spinlock. Sending a message to the OPCOM
(operator communication process) mailbox (obtaining the MAILBOX spinlock at
IPL 11) and accessing device registers (obtaining the appropriate device lock at
device IPL) are two such activities.

The LOCK, FORKLOCK, and DEVICELOCK macros ensure that the
synchronization needed for either the uniprocessor or multiprocessor environment
is obtained before the requested resource is accessed. When executed
in a uniprocessor environment, these macros only obtain the proper IPL
synchronization. When invoked in a multiprocessing environment, these
macros both raise IPL and obtain an appropriate spinlock, thus extending IPL
synchronization systemwide.

3.1.4.2 Lowering IPL
Driver code lowers its IPL to synchronize with code threads that access common
data or perform common activities at the lower IPL. In a multiprocessing
environment, lowering IPL is often associated with the release of a spinlock.
In addition, lowering IPL may be necessary in order to obtain a spinlock
synchronized at the lower IPL.

One of the most fundamental coding rules under the operating system is that
a code thread cannot explicitly lower IPL below the level at which its execution
has been initiated. In relation to driver processing, this means that a driver fork
process cannot explicitly set IPL to be less than its fork IPL, nor can a driver’s
interrupt service routine explicitly set IPL to be less than device IPL. This is
because a processor interrupted a lower IPL code thread in mid-execution to place
the current code thread into execution. It is important to the integrity of the data
structures protected at this lower IPL that the previous code thread be resumed
before other code accesses the same structures. A violation of the IPL rule would
undermine the system interrupt dispatching mechanism by not first returning
control to the interrupted code thread.

3–10

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

Driver code uses the following methods to lower IPL:

• Issuing a DEVICEUNLOCK, FORKUNLOCK, or UNLOCK macro (paired
with an earlier invocation of a DEVICELOCK, FORKLOCK, or LOCK macro)
or a ENBINT macro (paired with an earlier invocation of an DSBINT macro)
to restore IPL to a previously saved value.

• Invoking the IOFORK (or FORK) macro to preserve its context in a fork block,
to insert the block in a fork queue, and to request a software interrupt at the
driver’s fork IPL. See Section 3.3.3.1 for a complete discussion of forking.

• Issuing an REI instruction at the end of its interrupt service routine that
dismisses the interrupt.

Lowering IPL can cause many pending interrupts on the local processor between
the old and new IPLs to become deliverable.

3.2 Spinlocks
In a multiprocessing environment, as in a uniprocessing environment, you can
block activities on the local processor by raising IPL. Similarly, certain shared
databases must be accessed only at a given IPL. However, in a multiprocessing
environment, simply raising IPL on the local processor does not prevent other
processors in the system from reading or modifying a shared database. Unless
other steps are taken to notify the other processors that the database is ‘‘owned,’’
such contention could potentially result in corrupted data and system failures.

A spinlock is a semaphore associated with a set of system structures, fields,
or registers whose integrity is critical to the performance of a specific operating
system task. The scheduler and the memory management subsystem thus have
their own spinlocks, as does each fork processing level and each device controller.
Because a spinlock can be owned by only one processor in the system at a time,
other processors attempting to acquire the same spinlock are prevented from
reading from or writing into the database it protects. Refer to the data structures
contained in OpenVMS VAX Device Support Reference Manual for an illustration
of the spinlock (SPL) structure and a description of its contents.

There are two categories of spinlock:

• The structure of a static spinlock is permanently assembled into the system.
As a result, its existence and definition are fixed from one system to another.
Static spinlocks are accessed as indexes into a vector of longword addresses
called the spinlock vector and pointed to by SMP$AR_SPNLKVEC. The
system spinlocks and fork locks listed in Table 3–3 are static spinlocks.

• A dynamic spinlock is a spinlock that is created based on the I/O
configuration of a particular system. One such dynamic spinlock is the
device lock the System Generation utility (SYSGEN) creates when configuring
a particular device. This device lock synchronizes access to the device’s
registers and certain unit control block (UCB) fields. The operating system
creates a dynamic spinlock by allocating space from nonpaged pool, rather
than by assembling the lock into the system as it does in the creation of a
static spinlock. Section 3.2.2 describes device locks.

Table 3–3 lists, in order of increasing logical rank, the static spinlocks. For each
system spinlock or fork lock, the table records its index into the spinlock vector,
its synchronization IPL, and a brief description of its function.

3–11

Synchronization of I/O Request Processing
3.2 Spinlocks

Table 3–3 Static Spinlocks

Lock Name Lock Index Synchronization IPL Description

QUEUEAST SPL$C_QUEUEAST 6 (IPL$_QUEUEAST) Fork lock for executing a fork
process at IPL 6

FILSYS SPL$C_FILSYS 8 (IPL$_FILSYS)1 Lock on file system structures

IOLOCK82

SCS2
SPL$C_IOLOCK8
SPL$C_SCS

8 (IPL$_IOLOCK8
IPL$_SCS) 1

Fork lock for executing a fork
process at IPL 8

PR_LK8 SPL$C_PR_LK8 8 (IPL$_IOLOCK8)1 Primary CPU’s private lock for
IPL 8

TIMER SPL$C_TIMER 8 (IPL$_TIMER)1 Lock for adding and deleting
timer queue entries and
searching the timer queue3

JIB SPL$C_JIB 8 (IPL$_JIB)1 Lock for manipulating job
nonpaged pool quotas as
reflected by the fields JIB$L_
BYTCNT and JIB$L_BYTLM in
the job information block

MMG SPL$C_MMG 8 (IPL$_MMG)1 Lock on system memory
management, PFN database,
swapper, modified page writer,
and creation of per-CPU
database structures

SCHED SPL$C_SCHED 8 (IPL$_SCHED)1 Lock on process control blocks,
scheduler database, and
mutex acquisition and release
structures

IOLOCK9 SPL$C_IOLOCK9 9 (IPL$_IOLOCK9) Fork lock for executing a fork
process at IPL 9

PR_LK9 SPL$C_PR_LK9 9 (IPL$_IOLOCK9) Primary CPU’s private lock for
IPL 9

IOLOCK10 SPL$C_IOLOCK10 10 (IPL$_IOLOCK10) Fork lock for executing a fork
process at IPL 10

PR_LK10 SPL$C_PR_LK10 10 (IPL$_IOLOCK10) Primary CPU’s private lock for
IPL 10

IOLOCK11 SPL$C_IOLOCK11 11 (IPL$_IOLOCK11) Fork lock for executing a fork
process at IPL 11

PR_LK11 SPL$C_PR_LK11 11 (IPL$_IOLOCK11) Primary CPU’s private lock for
IPL 11

MAILBOX SPL$C_MAILBOX 11 (IPL$_MAILBOX) Lock for sending messages to
mailboxes

POOL SPL$C_POOL 11 (IPL$_POOL) Lock on nonpaged pool database

PERFMON SPL$C_PERFMON 15 (IPL$_PERFMON) Lock for I/O performance
monitoring

1IPL$_TIMER, IPL$_SCHED, IPL$_SCS, IPL$_JIB, IPL$_MMG, IPL$_FILSYS, and IPL$_IOLOCK8 are all synonyms
for IPL$_SYNCH.
2These names refer to the same spinlock.
3The HWCLK spinlock implicitly locks the timer queue element at the head of the timer queue by locking the quadword
representing its due time (EXE$GQ_1ST_TIME).

(continued on next page)

3–12

Synchronization of I/O Request Processing
3.2 Spinlocks

Table 3–3 (Cont.) Static Spinlocks

Lock Name Lock Index Synchronization IPL Description

INVALIDATE SPL$C_INVALIDATE IPL$_INVALIDATE4 Lock system space translation
buffer (TB) invalidation

VIRTCONS SPL$C_VIRTCONS IPL$_VIRTCONS5 Lock for ownership of the virtual
console

HWCLK SPL$C_HWCLK 22 or 24 Lock on interval clock database,
including the quadword
containing the due time of the
first timer queue element and
the quadword containing the
system time

MEGA SPL$C_MEGA 31 (IPL$_MEGA) Lock for serializing access to fork
and wait queue

MCHECK2

EMB2
SPL$C_MCHECK
SPL$_EMB

31 (IPL$_MCHECK
IPL$_EMB)

Lock for synchronizing certain
machine error handling and
for allocating and releasing
error-logging buffers

2These names refer to the same spinlock.
4The IPL associated with this spinlock is determined at system initialization and is one less than that of the system’s
interprocessor interrupt. On VAX 88x0 and VAX 83x0 systems, the value is 19. On VAX 6000 series, VAX 7000 series,
VAX 9000 series and VAX 10000 series systems, the value is 21.
5The IPL associated with this spinlock is determined at system initialization and is the level of the system’s
interprocessor interrupt. On VAX 6000 series, VAX 7000 series, VAX 9000 series, and VAX 10000 series systems, the
value is 22; on other VAX multiprocessing systems, the value is 20.

Drivers rarely need to obtain system spinlocks or fork locks explicitly; the
system routines that initiate driver processing and access resources protected
by a spinlock generally obtain and release these locks as required. However, a
driver must obtain the appropriate device locks whenever it must access data
synchronized at device IPL; for instance, in its interrupt service routine.

The operating system provides a set of macros, listed in Table 3–2 and described
in full in the macro chapter of the OpenVMS VAX Device Support Reference
Manual, that call the system’s spinlock acquisition and releasing routines.

Three factors control the successful acquisition of a spinlock: IPL, rank, and
ownership.

IPL
The processor must be executing at an IPL equal to or below the spinlock’s
synchronization IPL (SPL$B_IPL). In keeping with the rules discussed in
Section 3.1.4.2, a processor should not lower the IPL of its thread of execution
in the process of acquiring a spinlock. Thus, in acquiring a spinlock, a processor
may or may not raise its IPL, depending upon whether it is executing already
at the spinlock synchronization IPL. The operating system supplies spinlock
acquisition macros (DEVICELOCK, FORKLOCK, and LOCK) that, in calling
appropriate system routines, raise IPL automatically in the course of obtaining
the requested spinlock. Once it owns the spinlock, the processor can raise its
IPL above the IPL at which the spinlock was acquired, but it should not lower it
below that level.

3–13

Synchronization of I/O Request Processing
3.2 Spinlocks

Rank
A processor can own multiple spinlocks simultaneously, but must obtain these
spinlocks in increasing order of rank. (Table 3–3 lists the spinlocks in order of
rank.) In other words, a processor that owns one or more spinlocks should not
attempt to acquire a spinlock whose logical rank4 is less than a spinlock it already
holds. It does not need to acquire all spinlocks of intervening rank. This rule is
meant to avoid potential deadlocks in the acquisition of system spinlocks and fork
locks, and does not pertain to device locks. The processor may release spinlocks
in any order, as long as any attempt to reacquire those spinlocks acquires them
in ascending order.

Note that the concept of rank is independent of IPL. At any given synchronization
IPL, there may be many spinlocks, each of which is ranked according to its
position in Table 3–3.

Ownership
The spinlock must not be owned by any other processor. If the spinlock is
currently owned by another processor, a requesting processor spin waits for
the lock to become available. That is, it executes in a loop, waiting for the
processor that owns the spinlock to release it. If a spinlock is owned, its owner
field (SPL$L_OWN_CPU) contains an identifier that indicates which processor in
the multiprocessor system owns the spinlock.

It is legal for a processor to nest acquisitions of a given spinlock. In other
words, if a processor attempts to acquire a spinlock that it currently owns, the
acquisition will succeed. The operating system provides a mechanism whereby
such a processor can release a single acquisition or all acquisitions of a spinlock.

3.2.1 Fork Locks
In its simplest form, a fork lock is a static spinlock that synchronizes the right
of a fork process to execute at a specified IPL in a multiprocessing system. Fork
locks exist for each of the fork IPLs from IPL 8 to 11. A driver indicates the fork
lock under which it processes, and by implication its fork IPL, by specifying a fork
lock index in its driver prologue table (using the DPT_STORE macro as described
in Section 6.1).

Those code threads that must synchronize with another fork thread use the
same fork lock. For instance, the fork processes of drivers whose devices share
the resources of a common adapter must synchronize themselves by means of
a common fork lock. These code threads fork not necessarily to lower IPL, but
rather to wait for the availability of a common resource such as a controller data
channel or map registers (see Section 3.4). The system routines that acquire
and release these resources ensure that the fork lock is acquired and released as
necessary.

Drivers rarely need to obtain a fork lock explicitly. The operating system places
the driver fork process into execution (originally by EXE$INSIOQ and, by
implication, by IOC$REQCOM) at fork IPL holding the appropriate fork lock. In
addition, the fork dispatcher obtains the fork lock associated with the driver fork
process before it restores its context and resumes its execution. (Section 3.3.3
describes these concepts in greater detail.)

Note that, if a driver fork process is not placed into execution by one of these
means, it must itself expressly obtain the fork lock.

4 The physical rank of a spinlock is the inverse of its logical rank. See the description
of the SPL$B_RANK field in the OpenVMS VAX Device Support Reference Manual for
additional information.

3–14

Synchronization of I/O Request Processing
3.2 Spinlocks

As an example, consider a driver fork process activated by a timer wakeup
associated with a timer queue element (TQE) previously queued by the driver.
The software timer fork routine runs at IPL 8 (IPL$_SYNCH) and obtains certain
spinlocks prior to dequeuing the TQE and placing it into execution, but it does
not obtain the driver’s fork lock. Thus, even though the driver’s fork IPL may be
IPL$_SYNCH, the driver will not be properly synchronized at fork level unless it
first obtains the appropriate fork lock.

3.2.2 Device Locks
A device lock represents a lock on an individual adapter or controller. A processor
executing a code thread that accesses a device’s registers or certain fields in
its unit control block (UCB) that reflect its status does so while holding the
corresponding device lock.

UCBs are protected by a device lock common to all units on the same adapter
or common to the entire system, depending upon the type of device. A device
lock is dynamically created by the System Generation Utility (SYSGEN) when it
creates a channel request block (CRB). SYSGEN stores the address of the device
lock in the CRB (CRB$L_DLCK) and later copies it to the unit control block
(UCB$L_DLCK) as a UCB is created for each unit on the controller.

The acquisition of device locks is exempt from the spinlock rank rule. As long
as the processor does not violate IPL synchronization, it may successfully obtain
an unowned device lock while holding any system spinlock and, likewise, may
successfully obtain unowned system spinlocks while holding a device lock.
However, a processor can acquire only one device lock at a given IPL.

3.3 Device Driver Synchronization
This section describes how system and driver processing maintain
synchronization during the processing of a general I/O request. It later focuses on
the specific strategies drivers employ to synchronize at the device and fork levels.

3.3.1 Overview of the Synchronization of an I/O Operation
Figure 3–1 diagrams the general flow of the processing of a single I/O
request, as synchronization is achieved by raising and lowering IPL, and, in
a multiprocessing environment, by also obtaining and releasing the necessary
spinlocks.

3–15

Synchronization of I/O Request Processing
3.3 Device Driver Synchronization

Figure 3–1 Synchronizing I/O Request Processing

4

3 2

5 9

1

7

6

10

888

IPL 0

IPL$_ASTDEL

Fork IPL

Device IPL

IPL$_POWER

ZK−6534−GE

start device.
power failure,
Check for

interrupt.
wait for
device lock,
release
context,
Save driver

Obtain
device lock.

Start−I/O
Routine.

release fork lock.
read UCB:,
modify and
Obtain fork lock,

routine.
Start−I/O
call driver’s
Obtain fork lock,

Release
fork lock.

FDT
Routine

Service
System
$QIO

FDT
Routine

QIO.
issues
User

resumes.
process
User

Figure 3–1 illustrates the following events:

1 The user program, executing at IPL 0, issues a $QIO system service call.

2 The $QIO system service raises IPL to IPL$_ASTDEL to prepare the I/O
request according to the arguments included in the call.

3 The driver’s FDT routines execute, mainly at IPL$_ASTDEL.

Note that during IPL 0 processing and FDT routine activity at IPL$_
ASTDEL, the process requesting the I/O is susceptible to being rescheduled.
In a multiprocessing environment, such an event could cause I/O processing
to resume on a different processor from that on which it was started.

3–16

Synchronization of I/O Request Processing
3.3 Device Driver Synchronization

4 In certain rare circumstances, an FDT routine must read or modify the
device’s UCB. Because most fields in the UCB may be shared by fork
processes running systemwide it is important that, if the FDT routine must
use them, it issue the FORKLOCK macro to obtain the appropriate fork lock
and raise to fork IPL. (When finished, it relinquishes this synchronization by
issuing the FORKUNLOCK macro.)

5 The continuation of system preprocessing of the I/O request—or the
completion of a previous I/O request on the device unit—ensures that the
driver’s start-I/O routine is placed into execution at fork IPL and, in a
multiprocessing system, holding the corresponding fork lock. The start-I/O
routine accesses various UCB fields and contends for adapter resources
synchronized systemwide by the fork lock.

6 Once it has further prepared the I/O request and obtained the required
resources, it generally must access device registers. Device registers and
those UCB fields that record their status are synchronized at device IPL. A
processor in a multiprocessing system must hold the appropriate device lock
to access the device database.

7 While executing a critical code sequence, such as those instructions that
start a device, the start-I/O routine raises the IPL of the local processor to
IPL$_POWER to check for a processor power failure. In a multiprocessing
environment, the executing processor retains the device lock during this
sequence.

8 After it activates the device, the start-I/O routine calls a system routine that
saves the driver’s context in the UCB fork block, suspends driver processing,
releases the device lock, if held, and restores IPL to a previous level.

9 At this point, the operating system returns control to the code that initiated
the fork thread where, in a multiprocessing system, the fork lock is released.

1 0 After the operating system services interrupts at intervening IPLs, the user
process resumes.

Figure 3–2 illustrates the synchronization involved in the completion of an I/O
request from the point of the device interrupt to the delivery of ASTs to the
user program. There is little linear flow involved in the completion of an I/O
request. The servicing of interrupts, represented by jagged lines in the figure, the
requesting of software interrupts, and the REI instruction contribute to the flow
that completes an I/O request.

3–17

Synchronization of I/O Request Processing
3.3 Device Driver Synchronization

Figure 3–2 Synchronizing I/O Request Completion

9

88

IPL 0

IPL$_ASTDEL

Fork IPL

ILP$_IOPOST

ZK−6535−GE

device lock; REI.
device, releases
device lock; services
routine obtains
Interrupt service

SPINLOCK.
releases SCHED
mode AST to process;
queues special kernel
SCHED SPINLOCK;
IOPOST obtains

at IPL$_IOPOST.
requests interrupt
REQCOM macro;
into UCB; invokes
Driver writes status

fork process.
Resumes driver
obtains fork lock.
Fork dispatcher

REI.
I/O request;
Postprocess

Deliver user
AST to
process;
execution
resumes.

10

REI.
to process;
Deliver AST

9

86

Device IPL

1 3 2

4 5 7

REI.ID fork;
in fork block;
places context
Driver resumes,

Figure 3–2 illustrates the following events:

1 A device interrupt in the range of IPL 20 to IPL 23 triggers the execution of
the driver’s interrupt service routine. The interrupt service routine locates
the device unit’s UCB and, in a multiprocessing system, immediately obtains
the appropriate device lock. After it analyzes the interrupt and determines
that it is expected, it reactivates the driver, still at device IPL and holding
any acquired device lock.

3–18

Synchronization of I/O Request Processing
3.3 Device Driver Synchronization

2 The driver briefly examines and/or saves the contents of the device’s registers,
but, in order to permit other device interrupts to be serviced and to allow
other high priority system tasks to proceed, it lowers its own priority. The
driver accomplishes this by requesting the operating system to save some
driver context in the UCB fork block and place it into one of the processor-
specific fork queues at IPLs 8 to 11 serviced by the fork dispatcher. When it
does so, the operating system returns control to the driver’s interrupt service
routine.

3 The interrupt service routine releases any acquired device lock and issues an
REI instruction to dismiss the device interrupt.

4 When IPL drops below the driver’s fork IPL, the fork dispatcher restores the
context of the driver and resumes its execution. In a multiprocessing system,
the fork dispatcher obtains the necessary fork lock prior to placing the driver
into execution.

5 Still synchronized at fork level, the driver fork process analyzes the success
of the I/O operation and writes status into R0 and R1. The operating
system then inserts the I/O request packet (IRP) in the systemwide I/O
postprocessing queue, requests a software interrupt at IPL$_IOPOST, and
starts any I/O request that may be waiting for the device. Eventually, the
operating system returns to the fork dispatcher and, if no other fork processes
are queued for that IPL, issues an REI instruction to dismiss the software
interrupt.

6 When the processor’s IPL falls below IPL$_IOPOST, the I/O postprocessing
routine removes the IRP from the I/O postprocessing queue, adjusts process
quota usage, and deallocates system buffers for write functions.

7 When the routine finishes processing the IRP, it queues a special kernel-mode
AST to the process that issued the original $QIO request. To accomplish this,
it obtains the SCHED spinlock (raising to IPL$_SYNCH in the process) and
calls another system routine that queues the AST to the process’s PCB. It
then releases the SCHED spinlock.

8 The I/O postprocessing routine continues execution at IPL$_IOPOST until it
has serviced all entries in the postprocessing queue. It then issues an REI
instruction to dismiss this software interrupt.

9 The special kernel-mode AST routine executes at IPL$_ASTDEL. It completes
the transfer of the results and status of the I/O request to the user process.

1 0 The special kernel-mode AST routine can queue a user-mode AST routine to
the user process. When the user process has been rescheduled and its context
reloaded, the user-mode AST routine executes at IPL 0.

3.3.2 Synchronizing the Device Database
A device database ordinarily consists of the device or adapter registers, plus
some storage in the UCB (or in another data structure) that reflects the status of
the device. Routines that access data in the device database must do so at device
IPL (UCB$B_DIPL) in order to maintain synchronization. Generally, only three
driver routines contend for access to the device database:

• Interrupt service routine

• Start-I/O routine when loading or reading device registers

• Timeout handling routine

3–19

Synchronization of I/O Request Processing
3.3 Device Driver Synchronization

In a uniprocessing environment, the start-I/O routine raises its IPL to device
IPL using the DSBINT macro. The operating system calls the driver’s timeout
handling routine at device IPL. Because the interrupt dispatcher invokes it
at device IPL, the driver’s interrupt service routine does not need to acquire
additional synchronization.

In a multiprocessing environment, these routines must also hold the appropriate
device lock (UCB$L_DLCK). The device lock protecting the device database is
a dynamic spinlock, created by SYSGEN when the device is configured and its
channel request block (CRB) is created. The address of the device lock is first
stored in CRB$L_DLCK and is moved to UCB$L_DLCK as corresponding UCBs
are allocated for each unit on the controller. The operating system calls the
driver’s timeout handling routine at device IPL with the device lock held. The
start-I/O routine and the interrupt service routine must explicitly obtain such
synchronization by invoking the DEVICELOCK macro.

The start-I/O routine and timeout handling routine are additionally synchronized
at driver fork level. The operating system raises IPL to fork level and obtains the
corresponding fork lock before transferring control to them. This is not the case,
however, with a driver’s interrupt service routine. A device’s interrupt service
routine usually does not hold the fork lock. However, it may have preempted
a thread holding the fork lock, or a fork thread may be running in parallel on
another processor. Therefore, an interrupt service routine must not change any
fields in the UCB that are protected by the fork lock. To access these fields, an
interrupt service routine must fork, as described in Section 3.3.3.1.

3.3.3 Synchronizing at Driver Fork Level
A large part of driver code executes in the context of a fork process. As a fork
process, driver code that must access data in its fork database does so at a single,
specific fork IPL (from IPL 8 to IPL 11) and—in a multiprocessing environment—
holding a single, specific fork lock (see Section 3.2.1). The fork database consists
of those fields in the unit control block (UCB) not explicitly synchronized at device
level and such adapter or controller resources as map registers or data paths.

The system routine EXE$INSIOQ initially creates a driver fork process as it
attempts to deliver a preprocessed I/O request to the driver’s start-I/O routine. If
the device unit is busy (that is, a fork process is already active servicing a prior
request for that device), EXE$INSIOQ inserts the IRP into the UCB’s pending-
I/O queue. If the device unit is not busy, EXE$INSIOQ calls IOC$INITIATE to
transfer control to the driver’s start-I/O routine. The start-I/O routine begins to
execute at fork IPL holding the associated fork lock, if necessary.

When the driver fork process later calls IOC$REQCOM to complete processing
of a prior I/O request, IOC$REQCOM executes within the driver fork process,
dequeues the next IRP on the pending-I/O queue, and begins processing it.

Like other processes, fork processes can be interrupted or suspended. The local
processor interrupts a fork process when the processor receives a request for an
interrupt at a higher priority level. To minimize the number of interruptions, fork
processes sometimes execute at raised IPLs, and even raise their IPL to block all
other interrupts, if necessary.

The operating system stalls a driver’s fork process when the process requests
an unavailable resource such as a controller’s data path (see Section 3.4).
When suspended, a driver fork process, like other processes, preserves some
context information. As the operating system preserves some of the context of
a normal process in its hardware PCB, so it preserves a driver fork process’s

3–20

Synchronization of I/O Request Processing
3.3 Device Driver Synchronization

context—however abbreviated—in a fork block. Fork context consists of the
following:

• Two general purpose registers (R3 and R4)

• The program counter (PC)

• A fork block (usually the UCB), the address of which is in R5 at the time of
the suspension

Minimal context helps ensure that, when a driver fork process is ready to be
resumed, the resulting context-switching occurs swiftly.

3.3.3.1 Forking and the System Fork Dispatcher
Forking allows high IPL code to do the following:

• Continue executing a particular code thread at a lower IPL than the IPL at
which the code thread was initiated

• Synchronize with other code executing at the lower IPL

Usually, a driver forks after servicing a device interrupt at an IPL from 20 to
23. By forking, the driver lowers the IPL at which it continues to process the
device interrupt from device IPL to fork IPL (8 to 11). Forking not only allows
the driver to process efficiently that part of interrupt request processing that is
not time critical, but it allows the driver to synchronize its execution with other
fork process code threads initiating I/O. For example, forking helps the driver
synchronize its use of a device unit’s UCB with other code threads interested
in the structure. Moreover, the driver, by forking after completing the initial
servicing of a device interrupt, allows other device interrupts to occur at that
device IPL.

To fork, either the driver’s interrupt service routine or the start-I/O routine, when
resumed by the interrupt service routine, invokes the system macro IOFORK. The
IOFORK macro saves fork process context in the UCB fork block, places the fork
block in the local processor’s fork queue for the specific fork IPL, and requests a
software interrupt for that IPL. When that interrupt is ultimately serviced, driver
fork processing resumes at the lower level.

There are other specialized instances in which a device driver may fork. As
discussed in Section 11.1.5, the driver’s unit initialization routine or controller
initialization routine, while executing at IPL 31, may fork in order to permanently
allocate controller resources, system nonpaged dynamic memory, or system page-
table entries. To fork, these routines use the system macro FORK. The FORK
macro allows a driver to fork, utilizing the fork block, the address of which is
placed in R5. Because the channel request block (CRB) is available to these
routines and contains a fork block, they invoke the system macro FORK with the
address of the CRB in R5.

One interrupt service routine (EXE$FORKDSPTH) handles all fork-process
dispatching on each processor in a VAX system. When the processor grants
an interrupt at fork IPL, the fork dispatcher saves R0 to R5 on the stack and
processes the local fork queue that corresponds to the IPL of the interrupt. To
do so, it removes an entry from the fork queue, restores the fork process context
from the fork block, obtains ownership of the fork lock specified in the fork block
(in a multiprocessing system), and reactivates the suspended fork process.

3–21

Synchronization of I/O Request Processing
3.3 Device Driver Synchronization

When that fork process is completed, the dispatcher releases the fork lock and
examines the fork queue. If an entry exists on the queue, the fork dispatcher
removes it, restores the context of the fork process, secures the fork lock specified
in the fork block, and reactivates the fork process. This sequence is repeated until
the fork queue is empty. When the queue is empty, the fork dispatcher restores
R0 to R5 from the stack and dismisses the interrupt with an REI instruction.

Figure 3–3 illustrates the fork queue structure.

Figure 3–3 Processor-Specific Fork Queue Structure

CPU$Q_SWIQFL [0]

CPU$Q_SWIQFL [16]

CPU$Q_SWIQFL [24]

CPU$Q_SWIQFL [32]

CPU$Q_SWIQFL [40]

IPL 6

IPL 7

IPL 8

IPL 9

IPL 10

IPL 11

Block
Fork

List Head
Fork Queue

IPL 11

List Head
Fork Queue

IPL 10

List Head
Fork Queue

IPL 9

List Head
Fork Queue

IPL 8

List Head
Fork Queue

IPL 6

Block
Fork

Block
Fork

ZK−0584−GE

3.3.3.2 Restrictions on Fork Processes
A driver fork process executes under the following constraints:

• It should not attempt to refer to the address space of the process initiating
the I/O request.

• It can use only R0 to R5 freely; it must save other registers before use and
restore them after use. Use of registers other than R0 to R5 is strongly
discouraged.

• It must clean up the stack after use; the stack must be in its original state
when the fork process relinquishes control to any system routine.

• It must execute at IPLs between the driver’s fork IPL and IPL$_POWER.
It must not lower IPL below the driver’s fork IPL except by creating a fork
process to execute at a lower IPL.

• If executing in a multiprocessing environment, it cannot attempt to obtain
system spinlocks with lower ranks than that of its fork lock.

3–22

Synchronization of I/O Request Processing
3.3 Device Driver Synchronization

• When it returns control to the fork dispatcher, the fork process must be at
the same fork IPL and, if executing on a multiprocessing system, own the
appropriate fork lock.

3.4 Resource Wait Queues
The processing of an I/O request often requires shared system resources such as
memory and I/O adapter map registers. Drivers that depend on such resources
synchronize access to these resources and their respective resource wait queues
by executing at fork IPL and, in a multiprocessing environment, obtaining
ownership of the associated fork lock.

The $QIO system service and fork processes call system routines to allocate
and deallocate shared system resources. Because the resources are limited, I/O
processing might be delayed until any such needed resources are released. Thus,
synchronization of access to these resources can have a substantial impact on the
processing of I/O requests.

For example, the $QIO system service calls a system routine to allocate nonpaged
system space for an IRP. If there is insufficient nonpaged pool, the routine calls
another system routine to save the process context and change the process state
to resource-wait mode (also called miscellaneous wait, or MWAIT). As a result of
waiting, the process is a candidate to be swapped out of memory. When nonpaged
pool becomes available, the scheduler reschedules the process.

During fork process execution at elevated IPLs, driver context is very small. At
any point, the driver can obtain all details about an I/O request by referring
to the I/O database (see the data structures in OpenVMS VAX Device Support
Reference Manual). The driver needs only the address of the device’s UCB, which
is the key to the rest of the database. Therefore, system routines that control
driver resources, such as map registers, use fork blocks and resource-wait queues
to save minimal driver context. Each entry in a queue is a fork block (or UCB)
that contains R3, R4, and the continuation PC of the waiting fork process.

When the awaited resource becomes available, the routine controlling the
resource performs the following steps:

• Restores the UCB address to R5

• Restores the saved registers R3 and R4

• Grants the resource

• Transfers control to the saved driver return PC address

Because the system routine that controls a particular resource stalls any driver
that requests an unavailable resource, drivers are unaware of execution being
suspended and subsequently reactivated. Drivers must not leave anything on the
stack, or in general purpose registers, other than R3, R4, and R5, when calling a
routine that might suspend the driver’s execution.

3.4.1 Competing for a Controller’s Data Channel
A controller’s data channel is a system synchronization mechanism that
guarantees that only one unit of a multiunit controller uses the controller at
one time.

3–23

Synchronization of I/O Request Processing
3.4 Resource Wait Queues

Devices that share a controller, such as disk units, own the controller’s data
channel only when a system routine assigns the channel to the unit’s fork
process. The device driver’s start-I/O routine issues the REQPCHAN macro to
obtain the channel.

In contrast, a device unit on a single-unit controller always owns the controller’s
data channel. The device driver’s controller (or unit) initialization routine
affirms this fact by moving the address of the device’s UCB into IDB$L_OWNER.
Generally, the driver’s start-I/O routine does not request a single-unit controller.

In each case, the driver’s start-I/O routine must take steps to synchronize its
access to device registers with any access of these registers by the driver’s
interrupt service routine. The routine does so by issuing the DEVICELOCK
macro (as described in Section 3.1.4). The DEVICELOCK macro raises IPL to
device IPL and, in a multiprocessing system, obtains the device lock associated
with the controller.

An RK611 controller, for example, controls as many as eight RK06/RK07 devices.
The disk driver’s fork process must gain control of the controller’s data channel
before starting an I/O operation on the unit associated with the fork process.
The disk driver’s start-I/O routine uses the following sequence to start a seek
operation on an RK07 device:

1. The start-I/O routine requests the controller’s data channel by invoking a
system channel arbitration macro (REQPCHAN).

2. The system routine tests the CRB mask field to determine whether the
controller’s data channel is available.

3. If the channel is available, the system routine allocates the channel to the
fork process and returns the address of the device’s CSR to the fork process.

If the channel is busy, the system routine saves the driver fork context in the
UCB fork block and inserts the fork block address in the controller’s channel
wait queue.

4. When the fork process resumes execution, the process owns the controller
channel. The fork process can then obtain the device lock (raising IPL to
device IPL) and modify the device’s registers to activate the device.

5. The driver’s start-I/O routine then requests the operating system to suspend
driver processing in anticipation of an interrupt or timeout and to release the
channel.

6. The system channel-releasing routine assigns channel ownership to the next
fork process in the channel wait queue, loads the CSR address into a general
register, and reactivates the suspended fork process.

7. The reactivated fork process continues execution as though the channel had
been available in the first place.

The system channel-arbitration routines keep track of controller availability
using a flag field in the CRB. The fork process must always request and release
the controller’s data channel by invoking these routines.

3–24

4
Overview of I/O Processing

Under the operating system, I/O processing occurs in three major phases:

• I/O request preprocessing

• Device activation and subsequent handling of the device interrupt

• I/O postprocessing

When a user process issues an I/O request, the Queue I/O Request ($QIO) system
service gains control and coordinates preprocessing of the request. The last
driver FDT routine called by the $QIO system service calls a system routine
that creates a driver fork process to execute the driver’s start-I/O routine. This
routine activates the device.

When the transfer is completed, the device requests an interrupt that results in
execution of the driver’s interrupt service routine (ISR). This routine handles the
interrupt and requests resumption of the driver fork process to perform device-
dependent I/O postprocessing. The driver fork process finally transfers control
to the system to perform device-independent I/O postprocessing. Figure 4–1
illustrates the sequence of events.

The $QIO system service is dispatched by means of a corresponding system
service vector in process P1 space. This vector contains a CHMK instruction that
causes an exception that alters the process’s access mode to kernel and dispatches
to the service-specific procedure, EXE$QIO.

For the purposes of the discussion in this section, as well as the rest of the book,
Figure 4–2 portrays the flow of an I/O request from its system service entry point
to its servicing by executive routines and driver code. Discussion of other entry
points appears in Chapters 8, 9, and 10.

4–1

Overview of I/O Processing

Figure 4–1 Sequence of Driver Execution

preprocessing.
performs device−independent I/O
Queue I/O request system service

fork process.
queue I/O request and creates a driver
Last FDT routine calls system routine to

dependent preprocessing.
FDT routine(s) to perform device−
Queue I/O system service calls driver

User process issues $QIO.

executes the Start I/O Routine.
Once activated, the driver fork process

the device.
channel, map registers) and activates
resources (for example, controller
Start I/O Routine obtains necessary

Start I/O Routine.
process context and suspends the
interrupt macro that saves the fork
Start I/O Routine invokes a wait for

ZK−0918.1−GE

Kernel StackUser Process Context

Kernel StackFork Process Context

User Process Context User Stack

(continued on next page)

4–2

Overview of I/O Processing

Figure 4–1 (Cont.) Sequence of Driver Execution

interrupt service routine.
Interrupt Dispatcher activates

ZK−0918.2−GE

Interrupt invocation.
instruction following the Wait for
control to the driver at the
handles the interrupt and transfers
Driver’s interrupt service routine

rescheduled at fork IPL as a fork process.
The driver invokes IOFORK to be

dependent I/O completion.
driver code that performs device−
the driver executes the rest of the
Once rescheduled as a fork process,

device−independent I/O completion.
The driver then calls a system routine to perform

request.
process that originally issued the I/O
System queues a kernel mode AST to the

event flag.
queues a user mode AST and/or sets an
returns final status, and, if requested,
for a buffered I/O request,
to read data into the user’s buffer
routine runs in user process context
Once delivered, the kernel mode AST

Interrupt StackInterrupt Context

Interrupt StackFork Process Context

Interrupt StackInterrupt Context

requested by device
Hardware interrupt occurs when

User Mode AST

User Process Context

User StackUser Process Context

Kernel Stack

4–3

Overview of I/O Processing
4.1 Preprocessing an I/O Request

Figure 4–2 Detailed Sequence of System I/O Processing

User’s
Program

EXE$CMODKRNL::

JMP

SERVICE_EXIT:

REI

SYS$QIO::

CHMK
RET

QIO

System Service
Vector

Change Mode
Dispatcher

EXE$QIO:: FDT

FDT

FDT
JSB

JSB

RSB

(Call)

EXE$QIORETURN

EXE$QIODRVPKT RSB EXE$INSIOQ

JMP JSB

IOC$INITIATE

JMP JSB

JMP

Driver

IO Start:

WFIKPCH

IOFORK*

REQCOM

INTSERV:

REI

DRIVER

FORK DISPATCHER

EXE$FORKDSPTH::

REI

Fork Block
FR3
FR4*
FPC

UCB

IOC$REQCOM::

SOFTINT #IPL$_IOPOST
If More IRPs
Else

Interrupt
Software
Fork IPL

Interrupt
Device

RSB

JSB

RSB

RSB

JMP
To
IOC$INITIATE

JMP
Special Kernel
AST:
− Set event flag
− Write IOSB
− Copy data
− Update quotas

REI

Kernel AST
Queue Special

IOC$IOPOST::

IPL$_IOPOST
Software Interrupt

RET

Call

$QIO System
Service

RET

ZK−4844−GE

*Driver content saved in fork block of UCB.

JSB

4.1 Preprocessing an I/O Request
EXE$QIO performs device-independent preprocessing of an I/O request and calls
driver FDT routines to perform device-dependent preprocessing. To preprocess an
I/O request, EXE$QIO takes the following steps:

• Verifies that the requesting process has assigned a process I/O channel to the
target device

• Locates the device driver in the I/O database

• Validates the I/O function code

• Checks process I/O request quotas

• Validates the I/O status block (IOSB)

• Allocates and sets up the I/O request packet (IRP)

4–4

Overview of I/O Processing
4.1 Preprocessing an I/O Request

• Calls driver FDT routines to perform device-dependent preprocessing

4.1.1 Process I/O Channel Assignment
The first step in preprocessing an I/O request is to verify that the I/O request
specifies a valid process I/O channel. The process I/O channel is an entry in
a system-maintained process table that describes a path of reference from a
process to a peripheral device unit. Before a program requests I/O to a device,
the program identifies the target device unit by issuing an Assign-I/O-Channel
($ASSIGN) system service call. The $ASSIGN system service performs the
following functions:

• Locates an unused entry in the table of process I/O channels

• Creates a pointer to the device unit in the table entry for the channel

• Returns a channel-index number to the program

When the program issues an I/O request, EXE$QIO verifies that the channel
number specified is associated with a device and locates the unit control block
(UCB) associated with the specified channel using the field CCB$L_UCB.

Refer to the OpenVMS VAX Device Support Reference Manual data structures
for an illustration of the channel control block (CCB) and a description of its
contents.

4.1.2 Locating a Device Driver in the I/O Database
A unit control block (UCB) that describes a device unit exists for each device in
the system. The UCB indicates the current state of the device unit by recording
such information as the following:

• Whether the device is active (UCB$V_BSY in UCB$L_STS)

• What I/O request is being processed (UCB$L_IRP)

• Where transfer buffers are located (UCB$L_SVAPTE)

Because drivers run as fork processes and cannot use process address space to
store additional context, drivers use the UCB for temporary data storage during
I/O processing. (Section 6.1 describes how you can allocate additional UCB space
for storing data or device-dependent driver context.)

The UCB also holds the context of a driver fork process when system I/O routines
suspend the fork process to wait for an asynchronous event such as a device
interrupt.

Using information in the UCB, a driver can find other I/O data structures
associated with the device, including the channel request block (CRB), interrupt
dispatch block (IDB), and the device data block (DDB).

Refer to the OpenVMS VAX Device Support Reference Manual data structures for
an illustration of the UCB and description of its contents.

4.1.2.1 Channel Request Block
The channel request block (CRB) allows the operating system to manage the
controller data channel. Among its contents are the following:

• Code that transfers control to a driver’s interrupt service routine
(CRB$L_INTD)

• A pointer to the driver’s interrupt service routine
(CRB$L_INTD+VEC$L_ISR)

4–5

Overview of I/O Processing
4.1 Preprocessing an I/O Request

• Addresses of a driver’s unit and controller initialization routines (CRB$L_
INTD+VEC$L_UNITINIT, CRB$L_INTD+VEC$L_INITIAL)

• A pointer to the interrupt dispatch block (IDB), which further describes the
controller (CRB$L_INTD+VEC$L_IDB)

Controllers can be either multiunit or dedicated.

All UCBs describing device units attached to a single multiunit controller
contain a pointer to a single CRB (UCB$L_CRB). For these controllers, a system
routine uses fields in the CRB (CRBL_WQFL, CRBB_MASK) and IDB (IDB$L_
OWNER) to arbitrate pending driver requests for the controller. When the
system grants ownership of a multiunit controller data channel to a driver fork
process, the fork process can initiate an I/O operation on a device attached to that
controller. Figure 4–3 illustrates the data structures required to describe three
devices on a multiunit controller.

Figure 4–3 Data Structures for Three Devices on One Controller

ZK−0920−GE

UCB

IDB

CRB

UCBUCB

The operating system does not use the CRB to synchronize I/O operations
for a dedicated controller, as the controller manages only a single device.
Nevertheless, the CRB still is present and is used by drivers and operating
system routines.

Refer to the OpenVMS VAX Device Support Reference Manual data structures for
an illustration of the CRB and a description of its contents.

4–6

Overview of I/O Processing
4.1 Preprocessing an I/O Request

4.1.2.2 Interrupt Dispatch Block
The CRB contains a pointer to an interrupt dispatch block (IDB) (CRB$L_
INTD+VEC$L_IDB). In turn, the IDB (at IDB$L_UCBLST) points to all UCBs
that share the controller (see Figure 4–3).

The IDB contains the addresses of these three critical data structures:

• The UCB of the device unit, if any, that currently owns the controller data
channel (IDB$L_OWNER)

• The control and status register (IDB$L_CSR); it is the key to access to device
registers

• The adapter control block (IDB$L_ADP) that describes the adapter of the I/O
bus to which the controller is attached

Refer to the OpenVMS VAX Device Support Reference Manual data structures for
an illustration of the IDB and a desription of its contents.

Figure 4–4 illustrates the relationship between the data structures that describe
a group of equivalent devices on two separate controllers. In this figure, one
controller has a single device unit, and the other controller has two device units.
Devices on both controllers share the same driver code.

Figure 4–4 I/O Database for Two Controllers

IDB

CRB

UCB

IDB

CRB

UCB UCB

DDT

ZK−1765−GE

Driver
Device

4–7

Overview of I/O Processing
4.1 Preprocessing an I/O Request

4.1.2.3 Device Data Block
All UCBs describing device units attached to a single controller contain a pointer
(UCB$L_DDB) to a single device data block (DDB). The DDB contains two fields
that identify the device and its driver:

• The generic device/controller name (DDB$T_NAME)

• The name of the device’s driver as obtained from the driver prologue table
(DDB$T_DRVNAME)

Refer to the OpenVMS VAX Device Support Reference Manual data structures for
an illustration of the DDB and description of its contents.

4.1.3 Validating the I/O Function
Using the I/O database, EXE$QIO locates the address of the driver’s function
decision table by following a chain of pointers that begins in the UCB of the
target device:

UCB ! DDT ! FDT

EXE$QIO then uses data in the function decision table (FDT) to analyze the I/O
function. The procedure confirms that the function specified in the I/O request is
a valid function for the device.

4.1.4 Checking Process I/O Request Quotas
EXE$QIO determines whether the I/O request being readied will cause the
process to exceed its quota for outstanding direct or buffered I/O requests. If the
process’s requests remain under quota, the system service allows it to continue
I/O preprocessing. Where quota is exceeded, the procedure examines the process’s
resource wait flag (PCB$V_SSRWAIT in PCB$L_STS).

If the flag is clear, EXE$QIO aborts the I/O request. However, if the flag is
set, it places the process in a wait state until previously issued I/O requests
complete and the number of requests drops below quota. When this occurs,
process execution resumes, at which time EXE$QIO charges process quotas as
appropriate for the requested operation.

4.1.5 Validating the I/O Status Block
If the I/O request specifies a quadword I/O status block to receive final I/O status
information, EXE$QIO determines whether the process issuing the request has
write access to the status block locations specified. If the process has write
access, EXE$QIO fills the quadword with zeros. If the process does not have
write access, the procedure terminates the request with an error status.

4.1.6 Allocating and Setting Up an I/O Request Packet
If validation of the I/O request succeeds to this point, EXE$QIO allocates a block
of nonpaged pool to contain an I/O request packet (IRP).

Before EXE$QIO allocates an IRP, it raises the IPL of the processor to IPL$_
ASTDEL to block any other asynchronous activity in the process. The new IPL
prevents possible deletion of the process; process deletion would result in the
operating system’s losing track of the pool allocated for the IRP.

The EXE$QIO routine allocates an IRP for nonpaged pool. Specifically, EXE$QIO
resumes I/O preprocessing by writing a description of the I/O request into the
fields of the IRP, as shown in Table 4–1. Note that this data encompasses the
device-independent information associated with the request. It is up to the

4–8

Overview of I/O Processing
4.1 Preprocessing an I/O Request

device driver’s FDT routines or system common FDT routines to fill in the
device-dependent portions of the IRP, as described in Section 4.1.7 and Chapter 7.

Refer to the OpenVMS VAX Device Support Reference Manual data structures for
an illustration of the IRP and description of its contents.

Table 4–1 IRP Data Fields

Data Fields

Size in bytes of the IRP IRP$W_SIZE

Identification of the block as an IRP IRP$B_TYPE

Access mode of the process at the time of the request IRP$B_RMOD

Process ID of the requesting process IRP$L_PID

Address of an AST routine (if specified in the request)
and its parameter1

IRPL_AST, IRPL_ASTPRM

For file-structured devices, address of a window control
block (WCB) that describes the physical location of part
of the file

IRP$L_WIND

Address of the target device’s UCB IRP$L_UCB

I/O function code2 IRP$W_FUNC

Number of event flag to set when processing of the I/O
request is complete

IRP$B_EFN

Base software priority of the requesting process IRP$B_PRI

Address of an I/O status block (if specified in the
request)

IRP$L_IOSB

Process I/O channel index number IRP$W_CHAN

A flag indicating whether the I/O function is for buffered
or direct I/O

IRP$V_BUFIO in IRP$W_STS

A flag indicating whether the I/O request is an input
request

IRP$V_FUNC in IRP$W_STS

A flag indicating whether the I/O function is a physical-
I/O function

IRP$V_PHYSIO in IRP$W_
STS

Address of a diagnostic buffer (if specified in the
request)3 and a flag indicating that the buffer is present

IRP$L_DIAGBUF, IRP$V_
DIAGBUF in IRP$W_STS

Address of process’s access rights block IRP$L_ARB

I/O transaction sequence number IRP$L_SEQNUM

1If the request specifies an AST, EXE$QIO also verifies that the request would not cause the process
to exceed its AST quota. If it would, EXE$QIO aborts the request.
2For nonfile devices (DEV$V_FOD clear in UCB$L_DEVCHAR), EXE$QIO reduces read- and write-
virtual-block functions to their equivalent read- and write-logical-block functions before storing a
code.
3The size of the diagnostic buffer is specified in the driver dispatch table of the driver servicing the
device unit to which the request is made. See Section 6.2 for more information.

4.1.7 FDT Processing
The driver’s function decision table (FDT) controls the device-dependent
preprocessing of an I/O request. Figure 4–5 illustrates the layout of a function
decision table.

4–9

Overview of I/O Processing
4.1 Preprocessing an I/O Request

Figure 4–5 Layout of a Function Decision Table

64−Bit

Functions

Buffered I/O

Functions

Valid I/O

3 Longwords

3 Longwords

2 Longwords

2 Longwords

ZK−0921−GE

Mask

Routine Address

64−Bit

Mask

Routine Address

The I/O function code specified in an I/O request is a 16-bit value consisting of
two fields:

• A 6-bit I/O function code (bits 0 through 5) that permits you to define 64
unique I/O function codes for every device type. Table 6–1 lists the function
codes defined by the operating system. Section 6.3.2 describes how you can
define device-specific function codes.

• A 10-bit I/O function modifier (bits 6 through 15). In subsequent processing of
the I/O request, the driver’s start-I/O routine uses both I/O function code and
I/O function modifier, as stored in IRP$W_FUNC, to create a device-specific
function code to use in device activation.

The first two entries of a function decision table are two longwords (64 bits) each.
The first quadword entry is the legal function bit mask of all I/O function
codes that are valid for the device. The second quadword entry is the buffered
function bit mask of those valid I/O functions that are also buffered-I/O
functions.

EXE$QIO uses the value of the low-order 6 bits of the I/O function code to
determine which bit to check in each of these bit masks. For example, if the
function code has a value of 22, the procedure checks the twenty-third bit (bit
22) of each bit mask. Thus, EXE$QIO determines whether the I/O function code

4–10

Overview of I/O Processing
4.1 Preprocessing an I/O Request

is valid for the device and is able to charge against the appropriate quota of the
requesting process for a direct- or buffered-I/O operation.1

Subsequent entries in the function decision table are three longwords long,
and it is these entries that EXE$QIO uses to dispatch to the appropriate I/O
preprocessing routine (FDT routine) for the requested function. Again, the first
quadword is a 64-bit bit mask, and is checked by EXE$QIO in exactly the same
way as the legal function bit mask and the buffered function bit mask. These
action routine bit masks, however, contain the address of an FDT routine in
the subsequent longword, and it is to this FDT routine that EXE$QIO transfers
control when it discovers the bit corresponding to the I/O function set in the
quadword.

Some FDT routines are present in the operating system because they provide
common services for many devices. Section 7.5 describes these routines. Other
routines are included in the device driver because they perform device-dependent
services.

EXE$QIO uses the action routine bit mask entries in the function decision table
to call FDT routines in the driver or system, according to the following strategy:

1. If the bit corresponding to the function code is set in the action routine
bit mask, EXE$QIO calls the FDT routine whose address appears in the
following longword.

• If this I/O function requires additional preprocessing after this particular
FDT routine completes its activity, the FDT routine returns control to
EXE$QIO with an RSB instruction. When EXE$QIO regains control, it
advances to the next action routine bit mask and repeats step 1.

• If this FDT routine completes all necessary preprocessing for this
particular I/O function, then it transfers control to a system routine
that queues the IRP or completes the request.

2. If the bit corresponding to the function code is not set, EXE$QIO advances to
the next action routine bit mask in the table and repeats step 1.

Note

A single function decision table can specify that EXE$QIO call more
than one FDT routine to perform the many and varied steps in the
preprocessing of a single I/O function. However, it is the responsibility
of the FDT routine that ultimately completes the preprocessing to end
the scan (by EXE$QIO) of the function decision table. An FDT routine
accomplishes this by transferring control to either a system routine
that queues the I/O request for the driver’s start-I/O routine or one that
completes or aborts the request (see Figure 4–6). In other words, for
each valid I/O function code for a device, an FDT entry must contain the
address of a routine that ends I/O preprocessing.

The execution flow of FDT routines is illustrated in Figure 4–6. FDT routines
execute in the context of the process that requested the I/O operation. Thus, FDT
routines can access process virtual address space. Once all FDT preprocessing is
complete, however, the rest of the processing for the I/O request continues in the
limited context of a driver fork process or an interrupt service routine.

1 For physical- and logical-I/O operations, EXE$QIO also verifies that the process making
the I/O request has suitable privileges.

4–11

Overview of I/O Processing
4.1 Preprocessing an I/O Request

Figure 4–6 FDT Routines and I/O Preprocessing

No

No

Return to QIO.

ZK−0922−GE

code value.
function

QIO determines

subroutine.
Call

user.
return to

request and
Terminate

I/O.
buffered

Check for

entry.
next
to

Advance

abort I/O.
complete or
routine to

Call system

for driver.
queue packet

routine to
Call system

packet or terminates.
calls to queue
and returns or

I/O preprocessing
Subroutine performs

?
valid functions

bit set in mask of
corresponding

Is

?
entry

bit set in FDT
corresponding

Is

Yes

4.2 Handling Device Activity
When I/O preprocessing is complete, the last-called FDT routine generally
jumps (with a JMP instruction) to a routine called EXE$QIODRVPKT.2

2 The rules for exiting from FDT preprocessing, including descriptions of
EXE$QIODRVPKT and other FDT exit routines, appear in Section 7.2.

4–12

Overview of I/O Processing
4.2 Handling Device Activity

EXE$QIODRVPKT, in turn, transfers control (using a JSB instruction) to
EXE$INSIOQ, the system routine that queues IRPs and arbitrates device
activity. (See Figure 4–2 for a representation of the flow of I/O request processing
at this juncture.)

4.2.1 Creating a Driver Fork Process to Start I/O
EXE$INSIOQ creates only one driver fork process at a time for each device unit
on the system. As a result, only one I/O request packet (IRP) for each device unit
is serviced at one time. EXE$INSIOQ determines whether a driver fork process
exists for the target device, as follows:

• If the device is idle, no driver fork process exists for the device; in this case,
EXE$INSIOQ immediately calls IOC$INITIATE to create and transfer control
to a driver fork process to execute the driver’s start-I/O routine.

• If the device is busy, a driver fork process already exists for the device,
servicing some other I/O request. In this case, EXE$INSIOQ calls
EXE$INSERTIRP to insert the IRP into a queue of IRPs waiting for the
device unit. The routine queues the IRP according to the base priority of
the caller. Within each priority, IRPs are in first-in/first-out (FIFO) order.
The completion of the current I/O request triggers the servicing of the I/O
request that is first in the queue, according to the procedure described in
Section 10.1.2.3.

In the latter case, by the time the driver’s start-I/O routine gains control to
dequeue the IRP, the originating user’s process context is no longer available.
Because the context of the process initiating the I/O request is not guaranteed
to a driver’s start-I/O routine, the driver must execute in the reduced context
available to a fork process.

IOC$INITIATE always initiates the driver’s start-I/O routine with a context that
is appropriate for a fork process. The operating system establishes this context
by performing the following steps:

1. Raising IPL to driver fork IPL (and obtaining the associated fork lock in a
multiprocessing environment)

2. Loading the address of the IRP into R3

3. Loading the address of the device’s UCB into R5

4. Transferring control (with a JMP instruction) to the entry point of the device
driver’s start-I/O routine

The newly activated driver fork process executes under the constraints listed in
Section 3.3.3.2. It executes until one of the following events occurs:

4–13

Overview of I/O Processing
4.2 Handling Device Activity

• Device-dependent processing of the I/O request is complete.

• A shared resource needed by the driver is unavailable, as described in
Section 3.4.

• Device activity requires the fork process to wait for a device interrupt.

4.2.2 Activating a Device and Waiting for an Interrupt
Depending on the device type supported by the driver, the start-I/O routine
performs some or all of the following steps:

1. Analyzes the I/O function and branches to driver code that prepares the UCB
and the device for that I/O operation

2. Copies the contents of fields in the IRP into the UCB

3. Tests fields in the UCB to determine whether the device and volume mounted
on the device are valid

4. If the device is attached to a multiunit controller, obtains the controller data
channel

5. If the I/O operation is a direct memory access (DMA) transfer, obtains I/O
adapter resources such as map registers and a UNIBUS adapter buffered
data path

6. Raises IPL to device IPL, obtaining the associated device lock in a
multiprocessing environment, to synchronize its access to device registers

7. Loads all necessary device registers except for the device’s control and status
register (CSR)

8. Raises IPL to IPL$_POWER and confirms that a power failure that would
invalidate the device operation has not occurred on the local processor

9. Loads the device’s CSR to activate the device

10. Invokes a system routine (using either the WFIKPCH or WFIRLCH macro) to
suspend the driver fork process until a device interrupt or timeout occurs

This routine (IOC$WFIKPCH or IOC$WFIRLCH) expects to find, among the
items it inherits on the stack, the driver’s fork IPL, as placed there by the
start-I/O routine in step 7. As it suspends the driver, IOC$WFIKPCH or
IOC$WFIRLCH saves the driver’s context in the UCB’s fork block. This context
consists of the following information:

• The contents of R3 and R4 (UCBL_FR3, UCBL_FR4)

• The implicit contents of R5 as the address of the UCB

• A driver return address (UCB$L_FPC)

• The relative offset to a device timeout handler (calculated from UCB$L_FPC
and the value specified in the invocation of the WFIKPCH or WFIRLCH
macro)

• The time at which the device will time out (UCB$L_DUETIM)

By convention, R4 often contains the address of the CSR; it permits the driver
to examine device registers. When the driver fork process regains control after
interrupt processing, R5 contains the UCB address; it is the key to the rest of the
I/O database that is relevant to the current I/O operation.

4–14

Overview of I/O Processing
4.2 Handling Device Activity

Having removed the driver’s start-I/O routine’s return address from the stack
and stored it in UCBL_FPC, IOCWFIKPCH (or IOC$WFIRLCH) issues a
DEVICEUNLOCK macro that restores IPL to fork IPL from the stack. It then
exits with an RSB instruction. Thus, IOC$WFIKPCH (or IOC$WFIRLCH)
effectively passes control to the caller of its caller. In this case, the caller of
the driver start-I/O routine is EXE$INSIOQ. The flow back from EXE$INSIOQ
to a user process that asynchronously requested the I/O operation is shown in
Figure 4–2.

You can find additional information on the context of a start-I/O routine in
Chapter 8.

4.2.3 Handling a Device Interrupt
When the device requests an interrupt, the interrupt dispatcher transfers control
to the driver interrupt service routine. The driver’s interrupt service routine
runs at a high IPL so that the routine can service interrupts quickly. A driver
interrupt service routine usually performs the following processing:

1. Retrieves the address of the UCB that owns the controller from IDB$L_
OWNER

2. Issues the DEVICELOCK macro to obtain the device lock associated with
operations at device IPL in a multiprocessing environment

3. For multiunit device controllers, determines which device unit generated the
interrupt

4. Examines the UCB for the device to confirm that the driver fork process
expects the interrupt

5. Saves device registers

6. Reactivates the suspended driver fork process

If necessary, the reactivated driver fork process executes at the high IPL of the
interrupt service routine for a few instructions. Very soon, however, the driver
lowers its execution priority so that it does not block subsequent interrupts for
other devices in the system.

4.2.4 Switching from Interrupt to Fork Process Context
To lower its priority, the driver calls a system fork process queuing routine (by
means of the IOFORK macro) that performs the following actions:

1. Disables the timeout that was specified in the wait-for-interrupt routine

2. Saves R3 and R4 (UCBL_FR3, UCBL_FR4)

3. Saves the address of the instruction following the IOFORK request in the
UCB fork block (UCB$L_FPC)

4. Places the address of the UCB fork block from R5 in a processor-specific fork
queue for the driver’s fork level

5. Returns to the driver’s interrupt service routine

The interrupt service routine then cleans up the stack, issues the
DEVICEUNLOCK macro to release the device lock, restores registers, and
dismisses the interrupt. Figure 4–7 illustrates the flow of control in a driver that
creates a fork process after a device interrupt.

4–15

Overview of I/O Processing
4.2 Handling Device Activity

Figure 4–7 Creating a Fork Process After an Interrupt

ZK−0923−GE

Driver

IOFORK

Interrupt
Generates

Device

Routine
Service

Interrupt
Driver

REI

RSB

JSB

JSB

4.2.5 Activating a Fork Process from a Fork Queue
When no higher priority interrupts are pending, the local processor transfers
control to the fork dispatcher. When the processor grants an interrupt at a fork
IPL, the fork dispatcher processes the local fork queue that corresponds to the
IPL of the interrupt. To do so, the dispatcher performs these actions:

1. Removes a fork block from the fork queue

2. Restores fork context

3. Obtains the fork lock specified in the fork block

4. Transfers control back to the fork process

Thus, the driver code calls system code that coordinates suspension and
restoration of a driver fork process. This convention allows the operating system
to service hardware device interrupts in a timely manner and reactivate driver
fork processes as soon as no device requires attention.

When a given fork process completes execution, the fork dispatcher releases the
fork lock and removes the next entry, if any, from the local fork queue. This
fork dispatcher repeats the sequence described previously until the fork queue is
empty. After servicing the last entry in the queue, the fork dispatcher releases
the fork lock, restores R0 through R5 from the stack, and dismisses the interrupt
with an REI instruction.

Figure 4–8 illustrates the reactivation of a driver fork process.

4.3 Completing an I/O Request
Once reactivated, a driver fork process completes the I/O request as follows:

1. Releases shared driver resources, such as map registers, UNIBUS adapter
buffered data path, and controller ownership

2. Returns status to the system I/O completion routine

4–16

Overview of I/O Processing
4.3 Completing an I/O Request

Figure 4–8 Reactivation of a Driver Fork Process

ZK−0924−GE

Lower IPL to fork level.

occurs.
interrupt
Software

interrupt.
dismisses
dispatcher

Fork

calls driver.
dispatcher

Fork

request.
completes

Driver

interrupt.
generates

Device

interrupt.
services
Driver

forks.
Driver

interrupt.
dismisses

Driver

The I/O-completion routine performs the following steps to start postprocessing of
the I/O request and to start processing the next I/O request in the device’s queue:

1. Writes return status from the driver into the IRP

2. Inserts the finished IRP in the systemwide I/O postprocessing queue and
requests an interrupt from the processor at IPL$_IOPOST

3. Creates a new fork process for the next IRP in the device’s pending-I/O queue

4. Activates the new driver fork process

4.3.1 I/O Postprocessing
When the local processor’s IPL drops below the I/O postprocessing IPL, the
processor dispatches to the I/O postprocessing interrupt service routine. This
system routine completes device-independent processing of the I/O request.

Using the I/O request packet (IRP) as a source of information, the IPL$_IOPOST
dispatcher executes the following sequence for each IRP in the postprocessing
queue:

1. Removes the IRP from the queue

4–17

Overview of I/O Processing
4.3 Completing an I/O Request

2. If the I/O function was a direct I/O function, adjusts the issuing process’s
direct I/O quota and unlocks the pages involved in the I/O transfer

3. If the I/O function was a buffered I/O function, adjusts the issuing process’s
buffered I/O quota and, if the I/O was a write function, deallocates the system
buffers used in the transfer

4. Posts the local event flag associated with the I/O request

5. Queues a special kernel-mode AST routine to the process that issued the
$QIO system service call

The queuing of a special kernel-mode AST routine allows I/O postprocessing to
execute in the context of the user process but in a privileged access mode. Process
context is needed to return the results of the I/O operation to the process’s
address space. The special kernel-mode AST routine sets any common event flag
associated with the I/O request and writes the following data into the process’s
address space:

• Data read in a buffered I/O operation

• If specified in the I/O request, the contents of the diagnostic buffer

• If specified in the I/O request, the two longwords of I/O status

If the I/O request specifies an I/O completion AST routine, the special kernel-
mode AST routine queues the I/O completion AST for the process. When the
operating system delivers the I/O completion AST, the system AST delivery
routine deallocates the IRP. The first part of an IRP is the AST control block for
user-requested ASTs.

4–18

Part II
Writing a Device Driver

Device drivers consist of static tables, routines that perform I/O preprocessing,
and routines that handle the device and controller. The first chapter describes
the coding format and identifies templates to use when coding a new driver
program. The chapters of this part describe how to write the following sections of
a driver:

• Static tables

• Routines that use the device driver’s function decision table (FDT)

• Routines that start an I/O operation on the device and complete the I/O
operation

• Routines that handle interrupts

• Routines that initialize devices and controllers

• Routines that cancel an I/O operation

• Routines that log errors

Note that these ‘‘how to’’ chapters describe a common approach to the design
of various driver routines; they are examples. They do not present the only
approach that can be taken to writing a driver.

5
Device Driver Coding Format

This chapter describes the coding format of a basic driver program. It describes
basic program flow and code conventions to follow in the initial phase of device
driver programming.

A template driver is provided in Appendix A and a SCSI class driver template is
provided in Appendix B. The code in the template can serve as a starting point for
coding a new UNIBUS or Q22–bus device driver. The code in the SCSI template
can serve as the starting point for coding a new SCSI class driver. You can obtain
machine-readable copy of these templates from SYS$EXAMPLES:TDRIVER.MAR
and SYS$EXAMPLES:SKDRIVER.MAR, respectively.

Drivers do not necessarily need all of the routines indicated by the templates,
nor do driver routines and tables need to follow the exact order of the templates.
However, the operating system does place a few restrictions on the order and
content of driver routines and tables.

Figure 5–1 illustrates the organization of a device driver. The first item in a
device driver is the driver prologue table (DPT) and the second is usually the
driver dispatch table (DDT). The order of the remaining driver components varies
from driver to driver.

The last statement in every driver, except for the .END assembly directive, must
be a label marking the end of the driver. The address of this label is stored in the
driver prologue table. The driver-loading procedure uses this address to calculate
the size of the driver. Chapter 12 describes the driver-loading procedure.

Some drivers contain no device-dependent, FDT routines. Other drivers need
only minimal initialization procedures. However, every driver normally contains
static driver tables and a start-I/O routine or an interrupt service routine.

5.1 Coding Conventions
The driver-loading procedure loads a device driver into a block of nonpaged
system memory whose location is chosen by the operating system memory
allocation routines. Therefore, the driver must consist of position-independent
code only.

In addition, the system might call a device driver repeatedly to process I/O
requests and interrupts. The driver often does not complete one I/O operation
before the system transfers control to the driver to begin another on a different
unit. For this reason, the code must be reentrant.

The rules of position-independent and reentrant code are as follows:

• Instructions can branch only to relative addresses within the driver and to
global addresses listed in the system symbol table (SYS$SYSTEM:SYS.STB).

5–1

Device Driver Coding Format
5.1 Coding Conventions

Figure 5–1 Driver Organization

ZK−0925−GE

End Mark

Table
Prologue
Driver

Table
Dispatch
Driver

Table
Decision
Function

Routines
FDT

Routines
Device Handling

• Static tables can list only global addresses and relative addresses within the
driver.

• The driver cannot store temporary data in local driver tables for dynamic
driver context. All dynamic temporary storage must be contained within the
unit control block (UCB) corresponding to an I/O request or the current I/O
request block.

• The driver must refer to the I/O database by loading the address of a data
structure into a general register and using displacement addressing to the
fields of the data structure.

Device drivers must also restrict their use of general registers and the stack:

• FDT routines can use R0 through R2 and R9 through R11 as available
registers. The routines can use other registers by saving the registers before
use and restoring them before exiting from the FDT routine.

• All other driver routines can use R0 through R5 as available registers. The
routines can use other registers, if necessary, by saving and restoring them;
but using other registers in this way is discouraged.

5–2

Device Driver Coding Format
5.1 Coding Conventions

• All driver routines can use the stack for temporary storage only if the
routines restore the stack to its previous state before calling any system
routines, forking, or executing RSB instructions.

Because certain VAX processors and the operating system cooperate to support
the emulation of specific sets of VAX instructions, a device driver writer should
exercise some caution. Because the software emulation for floating-point
instructions may at some time be placed in pageable code, drivers should never
use floating-point instructions. The operating system only guarantees the
emulation for character string instructions to be nonpaged.

Finally, the use of VAX vector instructions is prohibited above IPL$_ASTDEL.

5.2 Restrictions on the Use of Device-Register I/O Space
The programmer of a device driver must observe the following restrictions on the
use of device registers:

• Drivers should always store the address of a device control register in a
general register and then gain access to the device register indirectly through
the general register. The following example defines symbolic word offsets
for each device register and gains access to them using displacement-mode
addressing from R4.

;
; Device register offsets
;

LP_CSR = 0 ;CSR offset
LP_DBR = 2 ;Buffer address offset

.

.

.
MOVL UCB$L_CRB(R5),R4 ;Get address of CRB
MOVL @CRB$L_INTD+VEC$L_IDB(R4),R4 ;Get the address of

; the device’s CSR
.
.
.

TSTW LP_CSR(R4) ;Is printer on line?

• Floating-point, field, queue, quadword, octaword, and vector operands are not
allowed in I/O address space, nor can an instruction obtain the position, size,
length, or base of an operand from I/O space. For example, a driver cannot
use a bit field instruction to test a bit in a device register.

• Drivers cannot use string-handling instructions when referring to I/O space.

• Drivers can use only those instructions that modify or write to a maximum of
one destination. The destination must be the last operand.

• Registers of devices connected to the backplane interconnect (for example,
UNIBUS adapter device registers and MASSBUS device registers) are
longwords. Registers of devices connected to the UNIBUS or Q22–bus are
words. Instructions that refer to MASSBUS adapter registers must use
longword context. All driver instructions that affect UNIBUS or Q22–bus
device registers must use word context (for example, BISW, MOVW, and
ADDW3) unless the register is byte addressable.

5–3

Device Driver Coding Format
5.2 Restrictions on the Use of Device-Register I/O Space

• An instruction that refers to I/O space must not generate an exception or be
interruptable. If the instruction is allowed to restart, it will reread the device
register, which can cause undesirable device side effects or data loss.

• On any given VAX processor, a device driver cannot anticipate the completion
of an instruction that writes to I/O space before subsequent instructions
execute. The processor can continue to execute without waiting for the data
to reach its intended destination.

Among the consequences of this behavior are the following:

If a driver initiates device actions that result in an interrupt from
the device, the amount of time before that interrupt actually occurs is
unpredictable.

If a driver disables interrupts from a device, the time before that device
can no longer generate an interrupt is unpredictable.

An I/O bus error will not be reported synchronously with the instruction
causing the error.

As a result, a driver’s interrupt service routine always should be prepared
to service unexpected or spurious interrupts. See Section 9.3 for additional
discussion of the servicing of unexpected interrupts.

• To access I/O space, use only the following instructions. These instructions
cannot be interrupted unless they use autoincrement-deferred addressing
mode or any of the displacement-deferred modes when specifying an operand.

ADAWI ADD(B,W,L)2 ADD(B,W,L)3

ADWC BIC(B,W,L)2 BIC(B,W,L)3

BICPSW BIS(B,W,L)2 BIS(B,W,L)3

BISPSL BISPSW BIT(B,W,L)

CASE(B,W,L) CHM(K,E,S,U) CLR(B,W,L)

CMP(B,W,L) CVT(BW,BL,WB,
WL,LB,LW)

DEC(B,W,L)

INC(B,W,L) MCOM(B,W,L) MFPR

MNEG(B,W,L) MOV(B,W,L) MOVA(B,W,L)

MOVAQ MOVPSL MOVZ(BW,BL,WL)

MTPR PROBE(R,W) PUSHA(B,W,L)

PUSHAQ PUSHL SBWC

SUB(B,W,L)2 SUB(B,W,L)3 TST(B,W,L)

XOR(B,W,L)2 XOR(B,W,L)3

5.3 Implementing Conditional Code in a Driver
When writing a DMA driver to function for equivalent devices on different I/O
bus implementations, you should use the ADPDISP macro in code paths that
need to differentiate between the systems.

The ADPDISP macro (defined in SYS$LIBRARY:LIB.MLB) provides a means by
which a device driver can be designed to drive a similar device in a variety of
VAX configurations. The ADPDISP macro allows the driver to determine at run
time the existence of a certain I/O bus or adapter characteristic, and transfer
control to code designed to execute given this hardware trait.

5–4

Device Driver Coding Format
5.3 Implementing Conditional Code in a Driver

A driver can use ADPDISP to transfer control to specific code given any of the
following characteristics:

• Adapter type

• Number of adapter address bits (18 or 22)

• Map registers supported

• Autopurging data paths supported

• Buffered data paths supported

• Direct-vector interrupt dispatching supported

• Odd-aligned transfers on buffered data path supported

• Odd-aligned transfers on direct data path supported

• Alternate set of map registers (496 to 8191) available

• Q22–bus device

Use ADPDISP when it is necessary to conditionally execute pieces of code (for
example, the allocation and loading of map registers for devices for which map
registers are available, or the allocation of a physically contiguous buffer for a
DMA transfer on a generic VAXBI device which requires such a buffer). The
operating system supplies a similar macro, CPUDISP, which causes a run-time
transfer of control to a specified destination depending on the CPU type of the
executing processor. For those processors not uniquely identified by CPU type,
CPUDISP also provides the means to dispatch on a particular CPU subtype.

Because a device driver cannot make assumptions about the I/O architecture of
any given VAX system, Digital recommends that most instances of the CPUDISP
macro be replaced by an appropriate usage of the ADPDISP macro.

Appendix C and Appendix D contain examples of drivers that use the ADPDISP
macro to provide conditional code in a driver. See also the description of the
ADPDISP macro in the macro chapter of the OpenVMS VAX Device Support
Reference Manual.

5–5

6
Writing Device-Driver Tables

Every device driver declares three static tables that describe the device and
driver:

• Driver prologue table—Describes the device type, driver name, and fields
in the I/O database to be initialized during driver loading and reloading.

• Driver dispatch table—Lists some of the driver’s entry points to which the
operating system transfers control. The channel request block (CRB) and
function decision table (FDT) list other entry points.

• Function decision table—Lists valid functions of the driver and entry
points to routines that perform I/O preprocessing for each function.

The operating system provides macros that drivers can invoke to create these
tables.

6.1 Driver Prologue Table
The driver prologue table (DPT) is the first part of every device driver. This table,
along with parameters to the SYSGEN command that request driver loading,
describes the driver to the driver-loading procedure. In turn, the driver-loading
procedure computes the size of the driver, loads it into nonpaged system memory,
and creates data structures for the new devices in the I/O database. The loading
procedure also links the new DPT into a list of all DPTs known to the system.
Chapter 12 describes how the driver-loading procedure decides which data
structures to build for a given device.

Device drivers can pass data-structure initialization information to the driver-
loading procedure through values stored in the DPT. In addition, the driver-
loading procedure initializes some fields within the device data structures using
information from its own tables.

The contents of the DPT data structure are shown and described in the OpenVMS
VAX Device Support Reference Manual data structures section. Drivers must
treat many of the fields initialized by the driver-loading procedure as read-only
fields. These fields are marked with an asterisk (*) in the OpenVMS VAX Device
Support Reference Manual DPT illustration.

To create a DPT, the driver invokes the DPTAB macro, as described in the macro
chapter of the OpenVMS VAX Device Support Reference Manual. The DPTAB
macro generates a driver prologue table (DPT) in a program section called
$$$105_PROLOGUE.

The DPTAB macro requires the following information:

• Address of the end of the driver in its end argument.

6–1

Writing Device-Driver Tables
6.1 Driver Prologue Table

• Code identifying the device by its adapter type in the adapter argument.
Accepted adapter types include UBA (for devices attached to either a UNIBUS
or Q22 bus), MBA (for MASSBUS devices), and GENBI (for generic VAXBI
devices).

• Name of the driver in the name argument. Note that Digital reserves to
customers driver names beginning with the letters J and Q.

• Size of the unit control block (UCB) in the ucbsize argument. (The template
in Appendix A and the macro descriptions in OpenVMS VAX Device Support
Reference Manual demonstrate how you can specify an extended UCB defined
by the operating system or create an extended UCB within a driver.)

The DPTAB also allows you to specify the following information, if applicable to
the device driver:

• Whether the driver needs a permanently allocated system page

• Whether the driver has been written to run in a symmetric multiprocessing
system

• Whether the driver can operate on a system with extended addressing

• Name of a driver unloading routine, if any, to be called subject to a SYSGEN
RELOAD command

• Maximum number of units supported by the driver (default is 8)

• Number of UCBs to be created when the driver is loaded by means of the
SYSGEN autoconfiguration facility and the address of a unit delivery routine
to be called by that facility

A driver follows the DPTAB macro invocation with several instances of the
DPT_STORE macro. The DPT_STORE macro provides the driver with a means
of communicating its initialization needs to the driver-loading procedure. When
invoked, the DPT_STORE macro places information in the DPT that the driver-
loading procedure uses to load specified values into specified fields. The DPT_
STORE macro accepts two lists of fields:

• Fields to be initialized only when the driver is first loaded

• Fields to be initialized when a driver is first loaded and reinitialized if the
driver is reloaded

The DPTAB macro stores the relative addresses of these two lists, called
initialization and reinitialization tables, in the DPT.

Drivers use the DPT_STORE macro with the INIT table marker label to begin a
list of DPT_STORE invocations that supply initialization data for the following
fields:

UCB$B_FLCK Index of the fork lock under which the driver performs
fork processing. The DPTAB macro, in invoking the
$SPLCODDEF macro, defines the symbols for these
indexes.

UCB$B_DIPL Device interrupt priority level (IPL).

Other commonly initialized fields are

UCB$L_DEVCHAR Device characteristics

UCB$B_DEVCLASS Device class

6–2

Writing Device-Driver Tables
6.1 Driver Prologue Table

UCB$B_DEVTYPE Device type

UCB$W_DEVBUFSIZ Default buffer size

UCB$Q_DEVDEPEND Device-dependent parameters

Drivers use the DPT_STORE macro with the REINIT table marker label to begin
a list of DPT_STORE invocations that supply initialization and reinitialization
data for certain fields. Every driver must specify the following field in such an
invocation:

DDB$L_DDT Driver dispatch table

Other commonly initialized fields are

CRB$L_INTD+VEC$L_ISR Interrupt service routine.

CRB$L_INTD2+VEC$L_ISR Interrupt service routine for second interrupt
vector.

CRB$L_INTD+VEC$L_INITIAL Controller initialization routine.

CRB$L_INTD+VEC$L_UNITINIT Unit initialization routine (for UNIBUS, Q22
bus, and generic VAXBI device drivers). Note
that MASSBUS drivers must specify the
address of the unit initialization routine in an
invocation of the DDTAB macro.

For an example of the use of the DPT and DPT_STORE macros, see the
description of the DPTAB macro in OpenVMS VAX Device Support Reference
Manual.

6.2 Driver Dispatch Table
The driver dispatch table (DDT) lists some of the entry points for driver routines
to be called by the operating system for I/O processing. Every driver must create
a DDT.

The routines listed in the DDT can reside in the driver module or in a system
module. The routines chapter in the OpenVMS VAX Device Support Reference
Manual describes the system device-independent routines that can be specified.

Device-dependent routines are normally located in the driver module. The DDT
contains relative addresses for routines located in the driver module and absolute
addresses for routines located in the operating system. At loading time, the
driver-loading procedure changes the relative addresses of driver routines to
absolute addresses.

The driver creates a DDT by invoking the macro DDTAB. The DDTAB macro
labels the DDT devnam$DDT, according to the value you supply in its devnam
argument. The driver-loading procedure writes the address of the DDT table,
as specified in a DPT_STORE macro, into the DDB. Refer to the OpenVMS VAX
Device Support Reference Manual for an illustration of the DDT and a description
of its contents.

The DDTAB macro also generates the program section ($$$115_DRIVER) in
which the DDT itself and all driver code reside.

The DDTAB macro has a single required argument, functb, for which the driver
must specify the address of its function decision table (FDT). Several optional
arguments allow the driver to specify the names of the following routines, if
applicable:

• Start-I/O routine

6–3

Writing Device-Driver Tables
6.2 Driver Dispatch Table

• Unsolicited interrupt service routine (for MASSBUS device drivers)

• Cancel-I/O routine

• Register-dumping routine

• Unit initialization routine

• Alternate start-I/O routine

• Cloned UCB routine

In addition, you specify the length of any diagnostic buffer or error message
buffer using the DDTAB macro.

See the description of the DDTAB macro in the OpenVMS VAX Device Support
Reference Manual for additional information.

6.3 Function Decision Table
The function decision table (FDT) lists codes for I/O functions that are valid
for the device; indicates whether the functions are buffered-I/O functions; and
specifies routines to perform preprocessing for particular functions. Every device
driver must create an FDT containing three or more entries:

• The list of valid I/O function codes

• The list of buffered I/O function codes

• One or more entries, each of which specifies all or a subset of I/O function
codes and the address of a routine that performs I/O preprocessing for those
function codes

If no buffered-I/O functions are defined for the device, the second entry contains
an empty list.

Taken together, the third through last entries in the FDT specify one or more
FDT routines for each valid I/O function code for the device. The FDT routines
must terminate the I/O preprocessing for each type of function by transferring
control out of the $QIO system service and into a routine that queues the I/O
request to a driver, inserts the I/O request in the postprocessing queue, or aborts
the I/O request.

Refer to Chapter 7 for information on writing FDT routines.

I/O data transfers can occur in any one of three device addressing modes:
physical, logical, or virtual. Any process with device access allowed by the volume
protection mask can perform logical I/O on a device that is mounted foreign;
physical I/O requires privileges. Virtual I/O does not require privileges. For more
information about the user’s process privileges on system service I/O operations,
see the OpenVMS Programming Concepts Manual.

Table 6–1 lists the physical, logical, and virtual I/O function codes defined by the
operating system. A complete list of function codes and values is contained in the
macro $IODEF in SYS$LIBRARY:STARLET.MLB.

6–4

Writing Device-Driver Tables
6.3 Function Decision Table

Table 6–1 I/O Function Codes

Function Description Equivalent Symbols

Physical I/O

IO$_NOP1 No operation —

IO$_UNLOAD Unload drive (required by all
disk drivers)

IO$_LOADMCODE

IO$_SEEK Seek cylinder IO$_SPACEFILE1 (space files), IO$_
STARTMPROC1 (start microprocessor)

IO$_RECAL1 Recalibrate drive IO$_DUPLEX1 (enter duplex mode), IO$_
STOP1 (stop)

IO$_DRVCLR1 Drive clear IO$_INITIALIZE (initialize), IO$_MIMIC1

(enter mimic mode)

IO$_RELEASE1 Release port IO$_SETCLOCKP1 (set clock—physical)

IO$_OFFSET1 Offset read heads IO$_ERASETAPE1 (erase tape), IO$_
STARTDATAP1 (start data transfer—
physical)

IO$_RETCENTER1 Return to center line IO$_QSTOP1 (queue stop request)

IO$_PACKACK Pack acknowledgment (required
by all disk drivers)

—

IO$_SEARCH Search for sector IO$_SPACERECORD1 (space records), IO$_
READRCT1 (read replacement and caching
table)

IO$_WRITECHECK Write check data —

IO$_WRITEPBLK Write physical block —

IO$_READPBLK Read physical block —

IO$_WRITEHEAD1 Write header and data IO$_RDSTATS1 (read statistics), IO$_
CRESHAD1 (create a shadow set)

IO$_READHEAD1 Read header and data IO$_ADDSHAD1 (add member to shadow
set)

IO$_WRITETRACKD1 Write track data IO$_COPYSHAD1 (perform shadow set copy
operations)

IO$_READTRACKD1 Read track data IO$_REMSHAD1 (remove member from
shadow set)

IO$_AVAILABLE Set device available (required by
all disk drivers)

—

IO$_SETPRFPATH1 Set preferred path —

IO$_DISPLAY1 Display MSCP/TMSCP volume
label

—

IO$_DSE Data security erase (and rewind) —

IO$_REREADN1 Reread next —

IO$_REREADP1 Reread previous —

IO$_WRITERET1 Write retry IO$_WRITECHECKH1 (write check header
and data)

IO$_READPRESET1 Read in preset IO$_STARTSPNDL1 (start spindle)

1Unsupported; subject to change without notice

(continued on next page)

6–5

Writing Device-Driver Tables
6.3 Function Decision Table

Table 6–1 (Cont.) I/O Function Codes

Function Description Equivalent Symbols

Physical I/O

IO$_SETCHAR Set device characteristics —

IO$_SENSECHAR Sense device characteristics —

IO$_WRITEMARK1 Write tape mark IO$_COPYMEM1 (copy memory)

IO$_WRTTMKR1 Write tape mark retry IO$_DIAGNOSE1 (diagnose), IO$_
SHADMV1 (perform mount verification
on shadow set)

IO$_FORMAT Format IO$_CLEAN1 (clean tape)

Logical I/O

IO$_WRITELBLK Write logical block —

IO$_READLBLK Read logical block —

IO$_REWINDOFF Rewind and set offline IO$_READRCTL1 (read RCT sector 0)

IO$_SETMODE Set mode —

IO$_REWIND Rewind tape —

IO$_SKIPFILE Skip files —

IO$_SKIPRECORD Skip records —

IO$_SENSEMODE Sense mode —

IO$_WRITEOF Write end of file —

IO$_TTY_PORT1 Terminal port FDT routine IO$_FREECAP1 (return free capacity)

IO$_FLUSH1 Flush controller cache —

IO$_READLCHUNK1 Read large logical block —

IO$_WRITELCHUNK1 Write large logical block —

Virtual I/O

IO$_WRITEVBLK Write virtual block —

IO$_READVBLK Read virtual block —

IO$_ACCESS Access file —

IO$_CREATE Create file —

IO$_DEACCESS Deaccess file —

IO$_DELETE Delete file —

IO$_MODIFY Modify file —

IO$_NETCONTROL1 X25 network control function —

IO$_READPROMPT Read terminal with prompt IO$_SETCLOCK (set clock)

IO$_ACPCONTROL Miscellaneous ACP control IO$_STARTDATA (start data)

IO$_MOUNT1 Mount volume —

1Unsupported; subject to change without notice

(continued on next page)

6–6

Writing Device-Driver Tables
6.3 Function Decision Table

Table 6–1 (Cont.) I/O Function Codes

Function Description Equivalent Symbols

Virtual I/O

IO$_TTYREADALL1 Terminal read passall —

IO$_TTYREADPALL1 Terminal read with prompt
passall

—

IO$_CONINTREAD Connect to interrupt read-only —

IO$_CONINTWRITE Connect to interrupt with write —

1Unsupported; subject to change without notice

The device driver creates an FDT by invoking the FUNCTAB macro. Each
invocation of the FUNCTAB macro creates a 2- or 3-longword entry in the FDT.
The first two invocations create 2-longword entries because they specify only
function codes; they do not specify an accompanying action routine.

All subsequent invocations of the FUNCTAB macro must specify both function
codes and the address of a routine that is to perform preprocessing for those
functions. These invocations create 3-longword entries.

The $QIO system service processes entries in the order in which they appear in
the FDT. When a function code is present in more than one 3-longword entry,
the system service sequentially calls every routine specified for the function code
until a routine stops the scan by aborting, completing, or queuing an I/O request.

See the description of the FUNCTAB macro, and the example of its use, in the
OpenVMS VAX Device Support Reference Manual for additional information on
creating an FDT.

6.3.1 Defining Buffered-I/O Functions
The second entry in an FDT is a buffered function bit mask that indicates
which legal functions the driver handles as buffered-I/O operations. When
selecting the functions that are to be buffered, you should take the following
information into consideration:

• Direct I/O is intended only for devices whose I/O operations always complete
quickly. For example, although terminal I/O appears fast, users can prevent
the I/O operation from completing by using Ctrl/S to halt the operation
indefinitely; therefore, terminal I/O operations are buffered I/O.

• Use of direct I/O requires that the process pages containing the buffer be
locked in memory. Locking pages in memory increases the overhead of
swapping the process that contains the pages.

• Use of buffered I/O requires that the data be moved from the system buffer to
the user buffer. Moving data requires additional time.

• Routines that manipulate data before delivering it to the user (for example,
an interrupt service routine for a terminal) cannot gain access to the data if
direct I/O is used. Therefore, transfers that require data manipulation must
be buffered I/O.

• The operating system handles the quotas differently for direct I/O and
buffered I/O, as described in the OpenVMS System Manager’s Manual.

6–7

Writing Device-Driver Tables
6.3 Function Decision Table

• Generally, direct-memory-access (DMA) devices use direct I/O, while
programmed I/O devices use buffered I/O.

6.3.2 Defining Device-Specific Function Codes
You can also define device-specific function codes by equating the name of a
device-specific function with the name of an existing function that is irrelevant to
the device. The selected codes should, however, have a type (logical, physical, or
virtual) that is appropriate for the function they represent. Also, user programs
that issue $QIO requests specifying a device-specific code must similarly redefine
the existing function. For example, the assembly code that follows defines three
device-specific physical I/O function codes.

IO$_STARTCLOCK=IO$_ERASETAPE ; Start interval clock
IO$_STOPCLOCK=IO$_OFFSET ; Stop interval clock
IO$_STARTDATA=IO$_SPACEFILE ; Start data acquisition

6–8

7
Writing FDT Routines

The $QIO system service uses the driver’s function decision table (FDT) to
determine which FDT routines to call to preprocess an I/O request. These FDT
routines validate process-specified arguments to the $QIO request. The operating
system supplies many device-independent FDT routines. Device drivers contain
device-dependent FDT routines.

A driver should call the system device-independent FDT routines, described in
Section 7.5, whenever possible. This practice encourages the use of well debugged
routines and minimizes driver size.

7.1 Context of FDT Routine Execution
The $QIO system service executes in the context of the process that issues the
I/O request, but in kernel mode and at IPL$_ASTDEL. The process is executing
in kernel mode because the dispatching of the $QIO system service executes a
CHMK instruction. Process context allows the $QIO system service and driver
FDT routines to access process address space. Because the $QIO system service
expects FDT routines to preserve this context, an FDT routine observes the
following conventions:

• It cannot call system services or OpenVMS RMS services.

• It does not lower IPL below IPL$_ASTDEL. If a routine raises IPL, it must
obtain any appropriate spinlock, and it must lower IPL to IPL$_ASTDEL
before exiting, releasing any acquired spinlock.

• It does not alter the stack without restoring its original state before exiting.

• If it issues a subroutine call, it must preserve the contents of R3 through
R8 across the call. It can, however, use R0 through R2 and R9 through R11
without saving their previous contents. If an FDT routine needs to use R3
through R8, it can use the PUSHR and POPR instructions to save registers
on the stack and later restore them.

• It exits either by an RSB instruction to return control to the system service,
or it issues a JMP instruction to one of the system routines described in
Section 7.2.1.

Before calling an FDT routine, the $QIO system service sets up the contents of
certain registers, as described in Table 7–1.

7–1

Writing FDT Routines
7.1 Context of FDT Routine Execution

Table 7–1 Registers Loaded by the $QIO System Service

Register Content

R0 Address of FDT routine being called

R3 Address of IRP for current I/O request

R4 Address of process control block (PCB) of current process

R5 Address of UCB of device assigned to user-specified process-I/O channel

R6 Address of CCB that describes user-specified process-I/O channel

R7 Bit number of user-specified I/O function code

R8 Address of current entry in FDT

AP Address of first function-dependent argument (p1) specified in I/O request

While FDT routines can perform extensive preprocessing, such as determining
whether user buffers are accessible and reformatting data into buffers in the
system address space, they should not access device registers because the
device might be active. Furthermore, FDT routines should exercise restraint
when modifying the UCB. Routines usually access the UCB while holding
the associated fork lock at driver fork IPL to synchronize modifications, and
FDT routines do not execute with such synchronization. Drivers containing
FDT routines that access device registers or carelessly modify the UCB risk
unpredictable operation or a system failure.

7.2 FDT Routines and Their Exit Paths
To transfer control to an FDT routine, the $QIO system service loads the address
of the FDT routine into a register and executes a JSB instruction, as follows:

JSB (R0)

Each FDT routine chooses an exit path based on the following factors:

• Whether another FDT routine needs to be called to perform additional
function-specific processing

• Whether an error is found in the I/O request

• Whether the operation is complete

• Whether the I/O operation requires and is ready for device activity

The FDT routines, as illustrated in Figure 7–1, must transfer control out of the
FDT processing loop and into a system routine that queues an IRP, completes
an I/O request, or aborts an I/O request. The $QIO system service does not stop
scanning the FDT. Therefore, you must ensure that for each valid function code
in a driver’s FDT, there is an FDT routine that does not return control to the
$QIO system service.

7–2

Writing FDT Routines
7.2 FDT Routines and Their Exit Paths

Figure 7–1 $QIO Scan of a Function Decision Table

No

Yes

ZK−0926−GE

FDT routine exits.

returns.
FDT routine

or abort I/O.
finish I/O,
Queue IRP,

routine.
FDT
Call

match?
code

Function

FDT entry.
next
Read

7.2.1 FDT Exit Paths
An FDT routine can exit using any of the following methods:

• RSB

• JMP G^EXE$QIODRVPKT

• JMP G^EXE$FINISHIO or JMP G^EXE$FINISHIOC

• JMP G^EXE$ABORTIO

• JSB G^EXE$ALTQUEPKT

These methods are described in the following sections, and you can find additional
details on the routines they involve in the routines chapter of the OpenVMS VAX
Device Support Reference Manual.

7.2.1.1 RSB
An FDT routine issues an RSB instruction to return to the $QIO system service.
The FDT routine returns to the system service because the routine knows that
the FDT contains a subsequent entry with the same function code bit set. As a
result, the system service searches for another FDT routine.

7–3

Writing FDT Routines
7.2 FDT Routines and Their Exit Paths

7.2.1.2 JMP G^EXE$QIODRVPKT
EXE$QIODRVPKT transfers control to a system routine (EXE$INSIOQ) that
either delivers an IRP immediately to a driver’s start-I/O routine or places the
IRP in a pending-I/O queue waiting for driver servicing. If no fatal errors are
found in the specification of an I/O request, and if device activity, synchronized
access to the device’s UCB, or synchronized access to device registers is required
to complete the I/O request, the FDT routine uses this exit method when
preprocessing is complete. Common examples of such a request are read and
write functions.

EXE$INSIOQ transfers control to the device driver’s start-I/O routine only if the
device unit is currently idle. If the device unit is busy, EXE$INSIOQ inserts the
IRP in a priority-ordered queue of IRPs waiting for the unit.

Once an FDT routine transfers control to EXE$QIODRVPKT, no driver code
that further processes the I/O request can refer to process virtual address space.
When a device driver’s start-I/O routine gains control, the process that queued
the I/O request might no longer be the mapped process. Therefore, the driver
must assume that all information regarding the I/O request is in the UCB or
the IRP and that all buffer addresses in the UCB are either system addresses or
page-frame numbers (PFNs) that can be interpreted in any process context.

For direct I/O operations, FDT routines also must have locked all user buffer
pages in physical memory because paging cannot occur at driver fork level or
higher interrupt priority levels (IPLs). The process virtual address space is not
guaranteed to be mapped again until the operating system delivers a special
kernel-mode AST to the requesting process as part of I/O postprocessing.

7.2.1.3 JMP G^EXE$FINISHIO or JMP G^EXE$FINISHIOC
EXE$FINISHIO and EXE$FINISHIOC transfer control to a system routine that
writes a quadword of final I/O status from R0 and R1 into the I/O status field of
the IRP (IRP$L_MEDIA and IRP$L_MEDIA+4). (Note that EXE$FINISHIOC
clears the second longword of the final I/O status.) The routine then inserts the
IRP in the I/O postprocessing queue. These routines return to the $QIO system
service the two longwords of status contained in the I/O status block (if any)
specified in the I/O request.

An FDT routine that discovers a device-dependent error should always return
status using EXE$FINISHIO or EXE$FINISHIOC. These routines gain control
without any change in process context. IPL is at IPL$_ASTDEL; the process
page-tables are mapped; and the process is executing in kernel mode.

7.2.1.4 JMP G^EXE$ABORTIO
EXE$ABORTIO transfers control to a system routine that aborts an I/O request.
An FDT routine that discovers a device-independent error should always use this
method of exiting. Inability to gain access to a data buffer or an error in the
specification of the I/O request are examples of device-independent errors.

EXE$ABORTIO gains control without any change in the process context. IPL
is at IPL$_ASTDEL; the process virtual space is mapped; and the process is
executing in kernel mode. EXE$ABORTIO stores a longword of status in R0 and
returns control to the system service.

7–4

Writing FDT Routines
7.2 FDT Routines and Their Exit Paths

7.2.1.5 JSB G^EXE$ALTQUEPKT
EXE$ALTQUEPKT transfers control to a system routine that calls an alternate
start-I/O routine in the driver (specified in the driver dispatch table at offset
DDT$L_ALTSTART) that synchronizes requests for activity on a device unit and
initiates the processing of I/O requests.

The FDT routine uses this exit method when it has successfully completed
all driver preprocessing and the request requires device activity. However,
in contrast to EXE$QIODRVPKT, EXE$ALTQUEPKT bypasses the device
unit’s pending-I/O queue and the device busy flag; thus, the driver is activated
regardless of whether the device unit is busy. A driver that can handle two or
more I/O requests simultaneously uses this exit method.

Be aware that programming a device driver to process simultaneous I/O requests
requires detailed knowledge of the internal design of the operating system. A
driver that uses EXE$ALTQUEPKT must not only maintain its internal queues
but must also synchronize those queues with the unit’s pending-I/O queue, which
the operating system maintains. In addition, if a driver processes more than one
IRP at the same time, it must use separate fork blocks. Such a driver completes
the processing of I/O requests by calling the routine COM$POST. This routine
places each IRP in the systemwide I/O postprocessing queue and returns control
to the driver. The driver can then fetch another IRP from an internal queue. For
more information about COM$POST, see the routines chapter of the OpenVMS
VAX Device Support Reference Manual.

Unlike the other FDT exit routines, EXE$ALTQUEPKT is called with a JSB
instruction rather than a JMP instruction. When the alternate start-I/O
routine finishes, it returns control to EXE$ALTQUEPKT by executing an RSB
instruction. The FDT routine performs any postprocessing and transfers control
to the routine EXE$QIORETURN. When EXE$QIORETURN gains control, it
performs the following steps:

1. Sets the success status code SS$_NORMAL in R0

2. Lowers the interrupt priority level to zero

3. Returns (with the RET instruction) to the system service dispatcher

7.3 FDT Routines for System Direct I/O
The operating system provides two standard FDT routines that are applicable for
direct I/O operations: EXE$READ and EXE$WRITE. When called by the driver,
these routines completely prepare a direct I/O read or write request. Thus, a
driver that uses these routines eliminates the need for its own device-specific
FDT routines.

EXE$READ and EXE$WRITE are described in Section 7.5.

7.4 FDT Routines for System Buffered I/O
Device drivers for buffered-I/O operations generally contain their own device-
specific FDT routines.

An FDT routine for a buffered-I/O data transfer operation should confirm either
read or write access to the user’s buffer and allocate a buffer in system space.
Sections 7.4.1 and 7.4.2 describe these tasks.

7–5

Writing FDT Routines
7.4 FDT Routines for System Buffered I/O

An FDT routine for a buffered-I/O operation that does not involve data transfer
should copy the function-dependent parameters of the $QIO request (p1 to p6) to
the IRP, perform any necessary preprocessing, and use one of the exit methods
listed in Section 7.2.1.

7.4.1 Checking Accessibility of the User’s Buffer
First, the FDT routine calls EXE$READCHK or EXE$WRITECHK to confirm
write or read access, respectively, to the user’s buffer. Both of these routines
write the transfer byte count into IRP$L_BCNT. EXE$READCHK also sets
IRP$V_FUNC in IRP$W_STS to indicate that the function is a read.

7.4.2 Allocating the System Buffer
Next, the FDT routine allocates a system buffer in the following manner:

1. It adds 12 bytes to the byte count passed in the p2 argument of the user’s
I/O request, thus accommodating the standard size of a system buffer header.
This is the total system buffer size.

2. It calls EXE$DEBIT_BYTCNT_ALO to ensure that the process job has
sufficient remaining byte count quota to allow its use of the requested buffer.
If the job has sufficient quota, EXE$DEBIT_BYTCNT_ALO allocates the
requested buffer from nonpaged pool, writes the buffer’s size and type into its
third longword, and subtracts the system buffer size from JIB$L_BYTCNT.

The operating system also supplies the following routines which perform the
same type of work as EXE$DEBIT_BYTCNT_ALO:

• EXE$DEBIT_BYTCNT_BYTLM_ALO

• EXE$DEBIT_BYTCNT(_NW)

• EXE$DEBIT_BYTCNT_BYTLM(_NW)

• EXE$ALLOCBUF

These routines are fully described in the OpenVMS VAX Device Support Reference
Manual.

Once the buffer is allocated, the FDT routine takes the following steps:

1. Loads the address of the system buffer into IRP$L_SVAPTE

2. Loads the total size of the system buffer into IRP$W_BOFF

3. Stores the starting address of the system buffer data area in the first
longword of the buffer header

4. Stores the user’s buffer address in the second longword of the header

5. Copies data from the user buffer to the system buffer if the I/O request is a
write operation

At this point, the buffers are ready for the transfer. Figure 7–2 illustrates the
format of the system buffer.

7–6

Writing FDT Routines
7.4 FDT Routines for System Buffered I/O

Figure 7–2 Format of System Buffer for a Buffered-I/O Read Function

Process Space

System Buffer

ZK−0927−GE

System Space

Header

Buffer
User

Area
Data
Buffer

Type Size

User Buffer Address

Address of Data Area

7.4.3 Buffered-I/O Postprocessing
When the transfer finishes, the driver returns control to the operating system for
completion of the I/O request. The driver writes the final request status in the
low-order word of R0. Use of the high-order word of R0 and the longword of R1 is
driver specific. Certain drivers use these fields to report a transfer byte count, for
example.

The driver must leave the buffer header intact; I/O postprocessing relies on the
header’s accuracy. When system I/O postprocessing gains control, it performs
three steps:

1. Calls EXE$CREDIT_BYTCNT to add the value in IRP$W_BOFF to JIB$L_
BYTCNT, thus updating the user’s byte count quota

2. If IRP$L_SVAPTE is nonzero, assumes a system buffer was allocated and
checks to see whether IRP$V_FUNC is set in IRP$W_STS

3. If IRP$V_FUNC is clear, deallocates the system buffer used for the write
operation; if IRP$V_FUNC is set, the special kernel-mode AST copies the
data to the user’s buffer and then deallocates the buffer in addition to
performing other kernel-mode AST functions

The special kernel-mode AST performs the following steps to complete a buffered
read operation:

1. Obtains the address of the system buffer from IRP$L_SVAPTE.

2. Obtains the number of bytes to write to the user’s buffer from IRP$L_BCNT.

7–7

Writing FDT Routines
7.4 FDT Routines for System Buffered I/O

3. Obtains the address of the user’s buffer from the second longword of the
system buffer header.

4. Checks for write accessibility on all pages of the user’s buffer.

5. Copies the data from the system buffer to the process buffer.

6. Deallocates the system buffer. Note that the system uses the size listed in the
buffer’s header to deallocate the buffer.

7.5 System-Provided FDT Routines
The system FDT routines perform I/O request validation that is common to
many devices. Whenever possible, drivers should take advantage of these
routines. Normally, if a system FDT routine is called, no additional FDT
processing is required. All of the system FDT routines listed in Table 7–2 exit by
transferring control to EXE$QIODRVPKT, EXE$FINISHIO, EXE$FINISHIOC,
or EXE$ABORTIO. Once a system FDT routine is called, no subsequent FDT
processing occurs.

For additional information about system FDT routines, see the pertinent routine
descriptions in the OpenVMS VAX Device Support Reference Manual.

Table 7–2 System-Provided FDT Routines

FDT Routine Function Exit Method

EXE$MODIFY Processes a logical-read/write or physical-
read/write function for a read and write
direct-I/O operation to a user-specified
buffer

Aborts the I/O request if an error
occurs, or dismisses the I/O
request if the user I/O buffers
cannot be locked in memory;
otherwise, transfers control to
EXE$QIODRVPKT

EXE$ONEPARM Processes a nontransfer I/O function code
that has one parameter associated with it

Transfers control to
EXE$QIODRVPKT

EXE$READ Processes a logical-read or physical-read
function for a direct-I/O operation

Aborts the I/O request if an error
occurs, or dismisses and resubmits
the I/O request if the user I/O
buffers cannot be locked in memory;
otherwise, transfers control to
EXE$QIODRVPKT

EXE$SENSEMODE Processes the sense-device-mode and
sense-device-characteristics functions by
reading fields of the UCB

Transfers control to
EXE$FINISHIO

EXE$SETCHAR1 Processes the set-device-mode and set-
device-characteristics functions

Transfers control to
EXE$FINISHIO

EXE$SETMODE1 Processes the set-device-mode and set-
device-characteristics functions by creating
a driver fork process

Aborts the I/O request if an error
occurs; otherwise, transfers control
to EXE$QIODRVPKT

1If setting device characteristics requires no device activity or requires no synchronization with fork processing, the
driver’s FDT entry can specify EXE$SETCHAR; otherwise, it must specify EXE$SETMODE.

(continued on next page)

7–8

Writing FDT Routines
7.5 System-Provided FDT Routines

Table 7–2 (Cont.) System-Provided FDT Routines

FDT Routine Function Exit Method

EXE$WRITE Processes a logical-write or physical-write
function for a direct-I/O operation

Aborts the I/O request if an error
occurs, or dismisses the I/O
request if the user I/O buffers
cannot be locked in memory;
otherwise, transfers control to
EXE$QIODRVPKT

EXE$ZEROPARM Processes a nontransfer I/O function code
that has no associated parameters

Transfers control to
EXE$QIODRVPKT

7–9

8
Writing a Start-I/O Routine

A driver start-I/O routine activates a device and then waits for a device interrupt
or timeout. This chapter describes the start-I/O routine. Chapter 10 describes
the reactivation of the driver routine that performs device-dependent I/O
postprocessing. With a few exceptions, the start-I/O routine discussed in the
following sections describes a direct-memory-access (DMA) transfer using a
single-unit controller.

8.1 Transferring Control to the Start-I/O Routine
The start-I/O routine of a device driver gains control from either of two system
routines: EXE$QIODRVPKT or IOC$REQCOM.

When FDT processing is complete for an I/O request, the FDT routine transfers
control to EXE$QIODRVPKT, which, in turn, calls EXE$INSIOQ. If the
designated device is idle, EXE$INSIOQ calls IOC$INITIATE to create a driver
fork process. (This procedure is detailed in Section 7.2.1.2.) The driver fork
process then gains control in the start-I/O routine of the appropriate driver. If the
device is busy, EXE$INSIOQ queues the packet to the device unit’s pending-I/O
queue.

After a device completes an I/O operation, the driver fork process exits by
transferring control to IOC$REQCOM. IOC$REQCOM inserts the I/O request
packet (IRP) for the finished transfer into the postprocessing queue. It then
dequeues the next IRP from the device unit’s pending-I/O queue and calls
IOC$INITIATE to initiate the processing of this I/O request in the driver’s fork
process at the entry point of the driver’s start-I/O routine.

8.2 Context of a Driver Fork Process
A start-I/O routine does not run in the context of a user process. Rather, it has
the following context:

System context Driver code can only refer to system virtual addresses.

Kernel mode Execution occurs in the most privileged access mode and can,
therefore, change IPL and obtain spinlocks.

High IPL The system routine that creates a driver fork process obtains
the driver’s fork lock, raising IPL to driver fork level before
activating the driver.

Kernel or
interrupt stack

Execution occurs on the kernel or interrupt stack. The driver
must not alter the state of the stack without restoring the
stack to its previous state before relinquishing control. The
stack used depends on whether the I/O startup is the result
of a new I/O request or because a previously requested I/O
operation has been completed. The choice of stacks must not
affect the operation of the start-I/O routine.

8–1

Writing a Start-I/O Routine
8.2 Context of a Driver Fork Process

In addition to the context described, the system packet-queuing routines set up
R3 and R5 for a driver start-I/O routine, as follows:

• R3 contains the address of the IRP.

• R5 contains the address of the unit control block (UCB) for the device.

The start-I/O routine must preserve all general registers except R0, R1, R2, and
R4.

Before the packet-queuing routines call the start-I/O routine, they copy the
following IRP fields into their corresponding slots in the device’s UCB:

• IRP$L_BCNT (low-order word)! UCB$W_BCNT

• IRP$W_BOFF ! UCB$W_BOFF

• IRP$L_SVAPTE ! UCB$L_SVAPTE

8.3 Functions of a Start-I/O Routine
The processing performed by a start-I/O routine is device specific. A start-I/O
routine normally contains elements that perform the following functions to
activate:

• Analyzing the I/O function

• Transferring the details of a request from the IRP into the UCB

• Obtaining and initializing the controller

• Modifying device registers to activate the device

A start-I/O routine of a DMA device driver performs additional tasks to prepare
the device for a DMA transfer prior to activating the device. These tasks include
the following:

• Obtaining I/O adapter resources such as map registers and a buffered data
path

• Computing the starting address of a data transfer

The following sections describe the general activities of a start-I/O routine for
a typical device. The details of DMA processing are specific to the particular
device. Section 14.2 describes the related UNIBUS and Q22–bus details of DMA
transfers. Section 15.5.3 relates those tasks that MASSBUS DMA device drivers
must perform. Section 16.8 discusses similar functions that drivers for generic
VAXBI devices may need to perform.

8.3.1 Obtaining Controller Access
If the device is one of several attached to a controller, the start-I/O routine
invokes the system macro REQPCHAN to assign the controller’s data channel
to the device unit. Controllers that control only one device do not require
arbitration for the controller’s data channel. REQPCHAN calls the system
routine IOC$REQPCHANL that acquires ownership of the controller data
channel.

The transfer being controlled by the start-I/O routine discussed here requires no
seek preceding the transfer. Disk I/O is an example of a transfer that requires a
seek first. To permit seeks to be overlapped with transfers, invoke REQPCHAN
with the argument pri=HIGH. Specifying pri=HIGH inserts a request for a
channel at the head of the channel wait queue.

8–2

Writing a Start-I/O Routine
8.3 Functions of a Start-I/O Routine

If the channel is not available, IOC$REQPCHANL suspends driver processing by
saving the driver’s context in the UCB fork block and inserting the fork block in
the channel wait queue. IOC$REQPCHANL then returns control to the caller of
the driver, that is, to EXE$INSIOQ, as illustrated in Figure 8–1. This procedure
is further discussed in Section 3.4.1.

Figure 8–1 Inserting a UCB into the Channel Wait Queue

Calls JSB

 JMP

RSB

RET
Driver

REQCHAN

INITIATEINSIOQQIODRVPKT

FDT

JMP

RSB

JSB
JSB

JMP

JSB

QIORETURN

QIO

ZK−0928−GE

Queue
Wait

Channel

Address
UCB

User
Program

The UCB fork block now represents the entire context of the suspended driver:

• Saved R3 containing the IRP address

• Implicitly saved R5 containing the UCB address

• A return address in the driver

Note that, because IOC$RELCHAN moves the address of the device’s control
and status register (CSR) into R4 before resuming a suspended driver,
IOC$REQPCHANL does not save R4 in the UCB fork block.

If the channel is available, IOC$REQPCHANL locates the interrupt dispatch
block (IDB) for the channel with a pointer in the UCB:

UCB ! CRB ! IDB

The IDB contains the address of the CSR for the channel (IDB$L_CSR).
IOC$REQPCHANL returns the CSR address in R4. The driver for a unit
attached to a dedicated controller must contain the code needed to load the CSR
address into R4.

8–3

Writing a Start-I/O Routine
8.3 Functions of a Start-I/O Routine

IOC$REQPCHANL also writes the address of the new channel-owner’s UCB
in the owner field of the IDB (IDB$L_OWNER). The driver’s interrupt service
routine later reads this IDB field to determine which device unit owns the
controller’s data channel. A driver for a single-unit controller must fill the
IDB$L_OWNER field in its controller or unit initialization routines.

The driver must maintain the stack in a known and consistent state for the
resource-wait-queue mechanism to work. When IOC$REQPCHANL gains control,
the top two items on the stack must be two return addresses:

• 00(SP)—Address of the next instruction to be executed in the driver fork
process. The transfer of control to IOC$REQPCHANL places this address on
the stack.

• 04(SP)—Address of the next instruction to be executed in the routine that
called the driver start-I/O routine.

8.3.2 Obtaining and Converting the I/O Function Code and Its Modifiers
The start-I/O routine extracts the I/O function code and function modifiers from
the field IRP$W_FUNC and translates them into device-specific function codes,
which it loads into the device’s CSR or other control registers. The start-I/O
routine creates and modifies a bit mask that is to be loaded into the CSR when
the driver starts the device. To accomplish this, the start-I/O routine converts the
function modifiers contained in IRP$W_FUNC into device-specific bit settings in
the general register.

At this point, a UNIBUS/Q22–bus DMA driver follows procedures to obtain I/O
bus resources and compute the size and starting address of a transfer. These
procedures are discussed in Section 14.2. MASSBUS DMA device drivers perform
the steps indicated in Section 15.5.3.

8.3.3 Preparing the Device Activation Bit Mask
For a typical device, the start-I/O routine prepares the device-activation bit mask
by setting the interrupt-enable bit and the go bit in the general purpose register
that also contains the high-order bits of the bus address and the device-function
bits. At this point, the general register contains a complete command for starting
the transfer, also known as the control mask.

When the start-I/O routine copies the contents of the register into the device’s
CSR, the device starts the transfer. Before activating the device, however, the
start-I/O routine should perform the steps described in Sections 8.3.4 and 8.3.5.

8.3.4 Synchronizing Access to the Device Database
The start-I/O routine invokes the system macro DEVICELOCK to synchronize
its access to device registers with the interrupt service routine. This macro
invocation is doubly important, for it establishes the context wherein the driver
can later issue the wait-for-interrupt macro (WFIKPCH or WFIRLCH). The wait-
for-interrupt macros expect the driver’s fork IPL to be on the stack, as placed
there by the DEVICELOCK macro. In addition, the wait-for-interrupt macros
issue the DEVICEUNLOCK macro to release ownership of the device lock and
restore the previous IPL.

8–4

Writing a Start-I/O Routine
8.3 Functions of a Start-I/O Routine

8.3.5 Checking for a Local Processor Power Failure
After synchronizing access to device registers, the start-I/O routine invokes the
system macro SETIPL to raise IPL to IPL$_POWER to block all interrupts on the
local processor.

The start-I/O routine then examines the power failure bit in the UCB’s status
longword (UCB$V_POWER in UCB$L_STS) to determine whether a local power
failure has occurred since the start-I/O routine gained control. If the bit is not
set, the transfer can proceed.

If the bit is set, a power failure might have occurred between the time that the
start-I/O routine wrote the first device register and the time that the start-I/O
routine is ready to activate the device. Such a power failure could modify the
already-written device registers and cause unpredictable device behavior if the
device were to be started.

If the bit UCB$V_POWER is set, the start-I/O routine branches to an error
handler in the driver. The driver error handler must perform the following
actions:

• Clear UCB$V_POWER

• Issue the DEVICEUNLOCK macro to release the device lock and restore IPL
to fork IPL

After performing these tasks, many drivers transfer control to the beginning of
the start-I/O routine, which restarts the processing of the I/O request.

8.3.6 Activating the Device
If no power failure has occurred, the start-I/O routine copies the contents of the
control mask into the device’s CSR. When the device notices the new contents of
the device register, it begins to transfer the requested data.

8.4 Waiting for an Interrupt or Timeout
Once the start-I/O routine activates the device, the driver fork process cannot
proceed until one of these events occurs:

• The device generates a hardware interrupt.

• The device does not generate a hardware interrupt within an expected time
limit, which is to say that a device timeout occurs.

Still executing at IPL$_POWER, the driver’s start-I/O routine asks the operating
system to suspend the driver fork process by invoking one of the following macros:

WFIKPCH Wait for an interrupt or timeout and keep the controller data channel

WFIRLCH Wait for an interrupt or timeout and release the controller data
channel

The WFIKPCH and WFIRLCH macros require the address of a timeout handling
routine in the excpt argument. Optionally, but almost always, the driver can also
indicate the number of seconds the system must wait before signaling a timeout
in the time argument. A full description of these macros appears in the macro
chapter of the OpenVMS VAX Device Support Reference Manual.

Both macros invoke routines that release ownership of the device lock, relinquish
synchronization, and return IPL to the previous level when exiting. These
routines expect to find the return IPL on the stack. This IPL is saved on the
stack by the DEVICELOCK macro as described in Section 8.3.4.

8–5

Writing a Start-I/O Routine
8.4 Waiting for an Interrupt or Timeout

Drivers generally keep the controller data channel while waiting for the interrupt
or timeout. Drivers of devices with dedicated controllers always keep the channel
because only one unit ever needs it. For devices that share a controller, some
operations, such as disk seeks, do not require the controller once the operation
has begun. In such cases, the driver can release the controller’s data channel
while waiting for an interrupt or timeout so that other units on the controller can
start their operations.

8.4.1 Expansion of WFIKPCH Macro
Because the WFIKPCH and WFIRLCH macros are similar, the description that
follows analyzes the expansion of WFIKPCH only.

If the driver specifies the time argument in the macro call, the macro pushes
the value of the argument into the stack. If the time argument is not specified,
the macro pushes the value 65,536 onto the stack. IOC$WFIKPCH uses the
time value to calculate the length of time the operating system waits before
transferring control to a device timeout handler.

WFIKPCH completes its expansion with two lines of code:

JSB G^IOC$WFIKPCH
.WORD EXCPT-.

The execution of the JSB instruction pushes the address following the JSB onto
the stack as the address to which the called routine would normally return with
an RSB instruction.

8.4.2 IOC$WFIKPCH Routine
The system routine IOC$WFIKPCH, invoked by the macro WFIKPCH, performs
the functions necessary for the driver fork process to wait for a device interrupt
or timeout. IOC$WFIKPCH first adds 2 to the address on the top of the stack so
that the top of the stack contains the address of the next instruction in the driver
after the macro invocation. This address is where the driver resumes execution
as a result of an interrupt service routine’s JSB instruction.

IOC$WFIKPCH then saves the contents of R3, R4, and the address to which
control must be returned to the driver, which it takes from the top of the stack.
It saves this information in the first part of the UCB in the UCB fork block.

Note that, after an interrupt, the interrupt service routine must restore R5 so
that it contains the address of the UCB. The interrupt service routine normally
obtains the address of the UCB from the field IDB$L_OWNER of the IDB.

The system routine that detects a device timeout calculates the address of the
driver’s timeout routine by subtracting 2 from the saved PC in the UCB’s fork
block and calling indirectly through the result. For example:

MOVL UCB$L_FPC(R5),R2 ; Get saved PC
CVTWL -(R2),-(SP) ; Get offset to timeout

; handler
ADDL (SP)+,R2 ; Add to relative driver

; address to obtain relative
; handler address

JSB (R2) ; Call timeout handler

IOC$WFIKPCH sets bits in the UCB (UCB$V_INT and UCB$V_TIM in UCB$L_
STS) to indicate that interrupts and timeouts are expected from the device.
IOC$WFIKPCH also writes the device timeout absolute time in the field UCB$L_
DUETIM. The absolute time is the number of seconds since the operating system

8–6

Writing a Start-I/O Routine
8.4 Waiting for an Interrupt or Timeout

was bootstrapped plus the number of seconds specified in the time argument to
the macro.

Finally, IOC$WFIKPCH reenables interrupts by releasing the device lock and
lowering IPL to fork level, the IPL at which the driver was executing previously.
IOC$WFIKPCH then returns control to the caller of the driver.

8–7

9
Writing an Interrupt Service Routine

When a device generates a hardware interrupt, it requests an interrupt at the
appropriate device interrupt priority level (IPL). Either the device or its adapter
requests a processor interrupt at that IPL. When the processor executes at an
IPL below that device IPL, interrupt dispatching begins.

The mechanism of interrupt dispatching has no direct bearing on the contents
of a driver’s interrupt service routine. Its implementation varies slightly
according to the VAX system and I/O subsystem in use. To obtain background
information on the dispatcher, refer to the overview provided in Section 14.3,
which also details the method of dispatching UNIBUS/Q22–bus device interrupts.
MASSBUS device driver writers should refer also to Section 15.4; generic VAXBI
device driver writers should read the discussion in Section 16.6.1.

For most device drivers, the driver prologue table (DPT) contains, in the
reinitialization section established by the DPT_STORE macro, the address of one
or more interrupt service routines. Each interrupt service routine corresponds
to an interrupt vector on the I/O bus. You specify the address of an I/O bus
vector using the System Generation utility (SYSGEN) command CONNECT, as
described in Section 12.2.2.

Most device interrupt service routines perform the following functions:

• Locate the device’s unit control block (UCB)

• Determine whether the interrupt was solicited

• Reject or process unsolicited interrupts

• Activate the suspended driver to process solicited interrupts

Figure 9–1 illustrates the general flow of interrupt handling. The remaining
sections of this chapter describe the handling of solicited and unsolicited
interrupts in further detail.

9–1

Writing an Interrupt Service Routine

Figure 9–1 Flow of Interrupt Servicing

No

ZK−0929−GE

Yes

Or

DEVICELOCK macro.
routine issues

Interrupt service

?
solicited
interrupt

Is

driver.
suspended
Reactivate

macro.
IOFORK
invokes
Driver

interrupt.
cause of

determines
service routine

Interrupt

as spurious
rejects interrupt
service routine

Interrupt

action.
appropriate

Takes

EXE$IOFORK.
calls

IOFORK

service routine.
to interrupt
and returns
fork block

queues driver
EXE$IOFORK

with REI.
interrupt
dismisses

service routine
Interrupt

restores R0 − R5.
device lock, and

from stack, releases
removes IDB pointer

service routine
Interrupt

stack.
on interrupt

using IDB pointer
device’s UCB
routine locates

Interrupt service

Interrupt

service routine.
interrupt

device unit’s
activates the
dispatcher
Interrupt

9–2

Writing an Interrupt Service Routine
9.1 Interrupt Context

9.1 Interrupt Context
When the interrupt dispatcher calls a driver’s interrupt service routine, execution
context is as follows:

• R0 through R5 are saved on the stack.

• Only system address space may be accessed.

• IPL is at hardware device interrupt level.

• The processor is running in kernel mode.

• The processor is running on the interrupt stack.

The stack contains the following information:

Stack Location Content

00(SP) Pointer to the address of the IDB

04(SP) through 24(SP) Saved R0 through R5

28(SP) PC at the time of the interrupt

32(SP) PSL at the time of the interrupt

In the course of its processing, an interrupt service routine must remove the IDB
pointer and the saved registers from the stack before dismissing the interrupt
with an REI instruction.

9.2 Servicing a Solicited Interrupt
When a driver’s fork process activates a device and expects to service a device
interrupt as a result, the fork process suspends its execution and waits for an
interrupt to occur. The suspended driver is represented only by the contents of
the fork block in the device’s UCB and the stack, which contain the following
information:

• A description of the I/O request and the state of the device

• The contents of R3 and R4

• The implicit contents of R5 (the address of the UCB fork block)

• The address at which to return control to the driver

• The implicit address of a timeout handling routine

When the interrupt service routine returns control to the main line of driver
processing, it has only restored the contents of R3, R4, R5, and the PC.

A driver’s interrupt service routine performs the following tasks to process the
interrupt and transfer control to the waiting driver:

1. Obtains the address of the device’s UCB from the IDB, as follows:

00(SP) ! CRB ! IDB ! IDB$L_OWNER ! UCB

The interrupt service routine restores the UCB address to R5.

2. Issues the DEVICELOCK macro to obtain synchronized access to device
registers.

9–3

Writing an Interrupt Service Routine
9.2 Servicing a Solicited Interrupt

3. Tests the interrupt-expected bit in the UCB status longword (UCB$V_INT in
UCB$L_STS). If the bit is set, the driver is waiting for an interrupt from this
device. After performing this test, the interrupt service routine must clear
UCB$V_INT to indicate that it has received the expected interrupt.

Note

Because device timeout processing mostly occurs at fork IPL (see
Section 10.2), a driver’s interrupt service routine, executing at device
IPL, could interrupt the processing of a timeout on the same device
unit. For this reason, the driver’s interrupt service routine should check
the interrupt-expected bit (UCB$V_INT) before handling the interrupt.
The operating system clears this bit before it calls the driver’s timeout
handler.

4. Obtains device-status or controller-status information from the device
registers, if necessary, and stores the status information in the UCB.

5. Places the contents of UCB$L_FR3 and UCB$L_FR4 in R3 and R4,
respectively.

6. Issues a JSB instruction to the waiting driver’s PC address, which is saved in
the UCB fork block at UCB$L_FPC.

The restored driver should execute as briefly as possible in interrupt context.
As soon as possible, the driver should invoke the IOFORK macro to request the
creation of a fork process at the driver’s fork IPL in order to complete the I/O
operation. Forking lowers the IPL of driver execution below device IPL, allowing
the processor to service additional device interrupts. IOFORK calls the routine
EXE$IOFORK. EXE$IOFORK inserts into the appropriate fork queue the UCB
fork block that describes the driver process. It then returns control to the driver’s
interrupt service routine. (See Section 10.1.1 for additional information on driver
forking.)

The interrupt service routine then performs the following steps:

1. Removes the IDB pointer from the stack

2. Issues the DEVICEUNLOCK macro to release ownership of the device lock

3. Restores R0 through R5

4. Dismisses the interrupt with an REI instruction

9.3 Servicing an Unsolicited Interrupt
A device requests an interrupt to indicate to a driver that the device has changed
status. If a driver’s fork process starts an I/O operation on a device, the driver
expects to receive an interrupt from the device when the I/O operation completes
or an error occurs.

Other changes in the device’s status occur when the device has not been activated
by a device driver. The device reports such a change by requesting an unsolicited
interrupt. For example, when a user types on a terminal, the terminal requests
an interrupt that is handled by the terminal driver. If the terminal is not
attached to a process, the terminal driver causes the login procedure to be
invoked for the user at the terminal.

9–4

Writing an Interrupt Service Routine
9.3 Servicing an Unsolicited Interrupt

As another example, an unsolicited interrupt occurs whenever a disk drive goes
off line, as could happen when an operator spins it down or pushes the offline
button. The disk driver services the interrupt by altering volume and unit status
bits in the disk device’s UCB.

Devices request unsolicited interrupts because some external event has changed
the status of the device. A device driver can handle these interrupts in two ways:

• Ignore the interrupt as spurious

• Examine the device registers and take action according to their indications of
changed status, and then poll for any other changes in device status

As mentioned in Section 9.2, an interrupt service routine first obtains the address
of the device’s UCB from the IDB. It then issues the DEVICELOCK macro to
obtain synchronized access to device registers.

The routine determines whether an interrupt is solicited or not by examining the
interrupt-expected bit in the UCB status longword (UCB$V_INT in UCB$L_STS).
All UNIBUS, Q22–bus, and generic VAXBI device drivers must use this method to
determine whether or not an interrupt is solicited; the address of the unsolicited
interrupt service routine, specified in the driver dispatch table, is used only by
MASSBUS drivers (see Sections 15.4 and 15.6).

If the interrupt is unsolicited, the driver can reject the interrupt with the
following code sequence:

1. Remove the IDB pointer from the stack

2. Restore R0 through R5

3. Dismiss the interrupt with an REI instruction

If the driver decides to handle the unsolicited interrupt, it must observe certain
precautions. Certain methods of servicing unsolicited interrupts—for instance
sending a message to the operator or the job controller’s mailbox—must be
accomplished at an IPL lower than device IPL. Although the interrupt service
routine can legitimately fork to accommodate unsolicited interrupts, it should
exercise extreme caution in doing so.

If UCB$V_BSY is set in UCB$L_STS, the UCB fork block is currently in use
by the driver’s start-I/O routine. An attempt by the interrupt service routine to
concurrently use the fork block can destroy the fork context already stored in that
UCB. Moreover, if UCB$V_BSY is not set, the interrupt service routine cannot
safely assume that the fork block is not in use, for it may be currently employed
to service a previous unsolicited interrupt.

To avoid confusion, code servicing an unsolicited interrupt must ensure that the
fork block it requires is not being used. Perhaps the safest method to guarantee
this is for the driver to define a separate fork block in a device-specific UCB
extension. The driver should also define a semaphore bit to control access to
this fork block and protect against multiple forking. Note that the driver should
access the semaphore bit using interlocked instructions (for example, BBSSI or
BBCCI).

If, upon servicing an unsolicited interrupt, the driver’s interrupt service routine
examines the semaphore and discovers that a fork is already in progress (that is,
the bit is set), it should not attempt to fork.

9–5

Writing an Interrupt Service Routine
9.3 Servicing an Unsolicited Interrupt

The system routine that creates the fork process (once these conditions are
satisfied) returns control to the interrupt service routine. The interrupt service
routine then releases the device lock, restores the saved registers, and issues an
REI instruction to dismiss the interrupt.

9.3.1 Examples of Unsolicited Interrupts
A card reader requests an unsolicited interrupt when a user puts the reader on
line. Once the card-reader driver’s interrupt service routine determines that
the interrupt is unsolicited, the routine analyzes the interrupt, as shown in
Example 9–1.

Because only one sequence of instructions can use the UCB as a fork block, the
interrupt service routine performs the following steps before it creates the fork
process:

• Ensures that no one is using the device, and that no one wants to use it, by
determining that the reference count (UCB$W_REFC) is zero.

• Ensures that it is not already using the UCB, to create a fork process in
order to lower IPL and to send a message to the job controller, by testing the
job-attached bit (UCB$V_JOB in UCB$W_DEVSTS).

Example 9–1 Example of an Unsolicited Interrupt

CR$INT::
MOVL @(SP)+,R3 ;Get address of IDB1
MOVQ IDB$L_CSR(R3),R4 ;Get controller CSR and owner UCB address2
DEVICELOCK LOCKADDR=UCB$L_DLCK(R5),PRESERVE=NO,-

CONDITION=NOSETIPL ;Obtain device lock3
BBCC #UCBV_INT,UCBL_STS(R5),10$;If clear,

; interrupt not expected4
.
.
.

; UNSOLICITED INTERRUPT
;
10$: MOVZWL CR_CSR(R4),R0 ;Get reader status

MOVZBW #CR_CSR_M_IE,CR_CSR(R4) ;Clear status, enable interrupts5
BITW #CR_CSR_M_ONLINE,R0 ;Reader transition to online?6
BEQL 20$;If equal no
TSTW UCB$W_REFC(R5) ;Device assigned or allocated?7
BNEQ 20$;If not equal yes
BBSS #UCBV_JOB,UCBW_DEVSTS(R5),-

20$;If set, message already sent8
BSBB 30$;Send message to job controller

20$: DEVICEUNLOCK LOCKADDR=UCB$L_DLCK(R5),PRESERVE=NO ;Release device lock
MOVQ (SP)+,R0 ;Restore registers
MOVQ (SP)+,R2
MOVQ (SP)+,R4
REI

30$: FORK ;Create fork process9
MOVZBL #MSG$_CRUNSOLIC,R4 ;Set message type1 0
MOVL G^SYS$AR_JOBCTLMB,R3 ;Set address of job controller mailbox
JSB G^EXE$SNDEVMSG ;Sent message to job controller
BLBS R0,40$;If LBS successful notification1 1
BICW #UCBM_JOB,UCBW_DEVSTS(R5) ;Clear message sent bit1 2

40$: RSB

9–6

Writing an Interrupt Service Routine
9.3 Servicing an Unsolicited Interrupt

The following are descriptions of the interrupt service lines of code in
Example 9–1:

1 The interrupt service routine obtains the address of the IDB from the top of
the stack.

2 By means of this action, this interrupt service obtains the address of the
control and status register (CSR) in R4 and restores the address of the UCB
in R5.1

3 Issues a DEVICELOCK macro to secure synchronized access to device
registers and UCB fields.

4 Checks for an unsolicited interrupt by testing the interrupt expected bit in
the UCB status longword.

5 Because the interrupt is unsolicited, the routine clears all CSR bits except for
the interrupt-expected bit.

6 Confirms that the reader was just placed on line by examining a saved copy
of the CSR.

7 Examines the reference count field of the device’s UCB (UCB$W_REFC) to
determine whether a process has allocated the device or assigned a channel to
it.

8 If the reference count is zero, the interrupt service routine tests the job-
attached bit in the device-dependent status field (UCB$V_JOB in UCB$W_
DEVSTS) to make sure it has not already sent the job controller a message
about the card reader being placed on line.

9 If the job-attached bit is not set, the routine sets the bit and creates a fork
process to send the message to the job controller, using the system routine
EXE$SNDEVMSG (described in the OpenVMS VAX Device Support Reference
Manual). It is necessary to lower IPL from device IPL by forking at this
point because EXE$SNDEVMSG expects its caller’s IPL to be no greater than
IPL$_MAILBOX.

When the interrupt service routine regains control, it releases the device lock,
restores R0 through R5 and dismisses the interrupt with an REI instruction.
(The interrupt service routine removed the IDB pointer from the stack earlier in
its execution in order to obtain CSR and UCB addresses.)

1 0 When the fork process created at step 8 eventually executes, it writes a
message to the job controller’s mailbox, indicating that the card reader is on
line.

1 1 If the fork process successfully sends the message, it leaves the job-attached
bit set to prevent the job controller from receiving any further messages about
the card reader’s state. (The driver’s cancel-I/O routine later clears the bit.)

1 2 If the send-message request fails, the fork process clears the job-attached
bit so that if the card reader makes a subsequent state change to on line,
the interrupt service routine can attempt again to send a message to the job
controller.

1 Because the card reader has a dedicated controller, the IDB$L_OWNER field always
points to the UCB for the single unit:

00(SP) ! CRB ! IDB ! IDB$L_OWNER ! UCB

9–7

Writing an Interrupt Service Routine
9.3 Servicing an Unsolicited Interrupt

Another example of unsolicited interrupt processing occurs in a device driver for
a multiunit controller. When a disk is placed off line, the disk drive hardware
requests an interrupt. The driver interrupt service routine must determine what
device unit requested the interrupt, obtain status information from the disk
device’s CSR, and then decide whether the interrupt was solicited.

Because it must access device UCB fields and device registers, the interrupt
service routine first obtains the appropriate device lock. If the interrupt is
unexpected, it calls code that services the unsolicited interrupt. This code checks
the status of the volume, as described in the following steps:

1. It sets a bit in the UCB to indicate that the unit is on line (UCB$V_ONLINE
in UCB$L_STS).

2. If the UCB’s volume-valid bit is set (UCB$V_VALID in UCB$L_STS), the
routine tests the volume valid status bit in a device register to determine
whether the volume status has changed. If the volume is no longer valid, the
routine clears the UCB volume valid bit.

3. The routine returns control to the driver’s interrupt service routine.

The driver’s interrupt service routine then polls the other device units on the
controller to determine whether any other units requested interrupts while the
first interrupt was being processed. When no unit requires interrupt servicing,
the routine removes the IDB pointer from the stack, releases the device lock,
restores registers R0 through R5, and dismisses the interrupt with an REI
instruction.

9–8

10
Completing an I/O Request and Handling

Timeouts

Once a driver has activated the device and invoked the wait-for-interrupt macro,
the driver remains suspended until the device requests an interrupt or times out.

If the device requests an interrupt, the driver’s interrupt service routine handles
the interrupt and then reactivates the driver at the instruction following the
wait-for-interrupt macro. The reactivated driver performs device-dependent I/O
postprocessing.

If the device does not request an interrupt within the designated time interval,
the system transfers control to the driver’s timeout handling routine. The
address of the timeout handling routine is specified as the excpt argument to the
wait-for-interrupt macro.

10.1 I/O Postprocessing
Once the driver interrupt service routine has processed an interrupt, it transfers
control to the driver by issuing a JSB instruction. At this point, the driver
is executing in interrupt context. If the driver were to continue executing in
interrupt context, it would lock out most other processing on the processor
including the handling of hardware interrupts.

To restore the driver to the context of a driver fork process, the driver invokes the
system macro IOFORK. Once the fork process has been created and dispatched
for execution, it executes the driver code that completes the processing of the I/O
request.

10.1.1 EXE$IOFORK
IOFORK generates a call to the routine EXE$IOFORK. EXE$IOFORK converts
the driver context from that of an interrupt service routine to that of a fork
process by performing the following steps:

1. It disables software timeouts by clearing the timeout enable bit in the UCB
status longword (UCB$V_TIM in UCB$L_STS).

2. It saves R3 and R4 of the current driver context in the UCB fork block
(UCB$L_FR3 and UCB$L_FR4).

3. It saves the current driver PC in the UCB fork block (UCB$L_FPC).
(The driver PC is the top longword on the stack, as a result of the JSB
to EXE$IOFORK.)

4. It obtains the fork lock index of the driver from the UCB (UCB$B_FLCK) and
uses it to determine in which fork queue it should place the fork block.

5. It inserts the address of the UCB fork block (R5) into the processor-specific
fork queue corresponding to the driver’s fork IPL.

10–1

Completing an I/O Request and Handling Timeouts
10.1 I/O Postprocessing

6. Finally, if the fork block is the first entry in the fork queue, EXE$IOFORK
requests a software interrupt from the local processor at the driver’s fork IPL.

The steps listed previously move the fork process context into the UCB’s fork
block. They save R3 through R5 and the driver’s PC address. The driver’s fork
process resumes processing when the system fork dispatcher dequeues the UCB
fork block from the fork queue, and reactivates the driver at the driver’s fork IPL.

10.1.2 Completing an I/O Request
When the operating system reactivates a driver’s fork process by dequeuing
the fork block, the driver resumes processing of the I/O operation holding the
appropriate fork lock at fork IPL. Generic VAXBI devices perform whatever
device-dependent operations are needed to prepare an I/O request for completion.
If the device has completed the I/O operation without errors, a UNIBUS or
Q22–bus driver for a direct-memory-access (DMA) device proceeds as follows:

1. Purges the data path

2. Releases the buffered data path (applies only to UNIBUS DMA device drivers)

3. Releases map registers

4. Releases the controller (applies only to drivers of devices on multiunit
controllers)

5. Checks device register images saved in the UCB to determine the status of
the I/O operation

6. Saves in the I/O request packet (IRP) the status code, transfer count, and
device-dependent status that is to be returned to the user process in an I/O
status block (IOSB)

7. Returns control to the operating system

The first three steps apply to UNIBUS or Q22–bus DMA transfers only and are
discussed in Section 14.2. The following sections describe the last steps.

10.1.2.1 Releasing the Controller
To release the controller channel, the driver code invokes the system macro
RELCHAN. RELCHAN calls the system routine IOC$RELCHAN. If another
driver is waiting for the controller channel, IOC$RELCHAN grants that driver’s
fork process the channel, restores its context from the UCB fork block, and
transfers control to the saved PC. When no more drivers are awaiting the
channel, IOC$RELCHAN returns control to the fork process that released the
channel.

Drivers for devices with dedicated controllers need not release the controller’s
data channel (as discussed in Sections 8.3.1 and 11.1). By means of code in the
unit initialization routine, these drivers set up the device’s UCB so that the device
owns the controller permanently.

Drivers must be executing at driver’s fork IPL when they invoke RELCHAN or
call IOC$RELCHAN.

10–2

Completing an I/O Request and Handling Timeouts
10.1 I/O Postprocessing

10.1.2.2 Saving Status, Count, and Device-Dependent Status
To save the status code, transfer count, and device-dependent status, the driver
performs the following steps:

1. Loads a success status code (SS$_NORMAL), or whatever is appropriate, into
bits 0 through 15 of R0.

2. Loads the number of bytes transferred into the high-order 16 bits of R0 (bits
16 through 31), if the I/O operation performed by the device is a transfer
function.

3. Loads device-dependent status information, if any, into R1.1

10.1.2.3 Returning Control to the Operating System
Finally, the driver fork process returns control to the system by invoking the
REQCOM macro to complete the I/O request. REQCOM issues a JMP instruction
to the system routine IOC$REQCOM. IOC$REQCOM locates the address of the
I/O request packet (IRP) corresponding to the I/O operation in the device’s UCB
(UCB$L_IRP). It then writes the two longwords of completion status contained in
R0 and R1 into the media field of the IRP (IRP$L_MEDIA and IRP$L_MEDIA+4).

IOC$REQCOM then inserts the IRP in the local processor’s I/O-postprocessing
queue and requests a software interrupt at IPL$_IOPOST from the local processor
so the postprocessing begins when IPL drops below IPL$_IOPOST.

If the error-logging bit is set in the device’s UCB (UCB$V_ERLOGIP in UCB$L_
STS), IOC$REQCOM obtains the address of the error message buffer from the
UCB (UCB$L_EMB). It then writes the following information into the error
buffer:

• Final device status (UCB$W_DEVSTS)

• Final error count (UCB$B_ERTCNT)

• Maximum error retry count for the driver

• Two longwords of completion status (R0 and R1)

To release the error message buffer, IOC$REQCOM calls ERL$RELEASEMB.
Section 11.3 describes error logging in more detail.

If any IRPs are waiting for driver processing, IOC$REQCOM dequeues an IRP
from the head of the queue of packets waiting for the device unit (UCB$L_
IOQFL), and transfers control to IOC$INITIATE. IOC$INITIATE initiates
execution of this I/O request in the driver’s fork process, by activating the driver’s
start-I/O routine, as described in Section 4.2.1.

Otherwise, IOC$REQCOM clears the unit-busy bit in the device’s UCB
status longword (UCB$V_BSY in UCB$L_STS) and transfers control to
IOC$RELCHAN to release the controller channel in case the driver failed to
do so. IOC$RELCHAN, in turn, returns control to the caller of the driver fork
process (if the fork process issued the REQCOM macro). This is generally the
system fork dispatcher. The fork dispatcher releases the fork lock, restores saved
registers, and dismisses the fork IPL software interrupt with an REI instruction.

The remaining steps in processing the I/O request are performed by system I/O
postprocessing. (See Section 4.3.1 for additional information.)

1 R0 and R1 are the status values that the operating system returns to the user process
in the I/O status block specified in the original $QIO system service.

10–3

Completing an I/O Request and Handling Timeouts
10.2 Timeout Handling Routines

10.2 Timeout Handling Routines
The operating system transfers control to the driver’s timeout handling routine if
a device unit does not request an interrupt within the time limit specified in the
invocation of the wait-for-interrupt macro. Among its other activities, the system
software timer fork routine running at IPL$_SYNCH, scans UCBs once every
second to determine whether a device has timed out.

When the software timer interrupt service routine locates a device that has timed
out, the routine calls the driver’s timeout handling routine by performing the
following steps:

1. It obtains both the fork lock and the device lock associated with the device
unit to synchronize access to its fork database and device database. It raises
IPL to device IPL as a result of obtaining the device lock.

2. It raises IPL on the local processor to IPL$_POWER to block local power
failure servicing.

3. It disables expected interrupts and timeouts on the device by clearing bits
in the status field of the device’s UCB (UCB$V_INT and UCB$V_TIM in
UCB$L_STS).

4. It sets the device-timeout bit in the UCB status field (UCB$V_TIMOUT in
UCB$L_STS).

5. It lowers IPL to hardware device interrupt IPL (UCB$B_DIPL).

6. It restores the saved R3 and R4 of the driver’s fork process from the UCB
fork block (UCB$L_FR3 and UCB$L_FR4).

7. It restores R5 (address of the UCB fork block).

8. It computes the address of the driver’s timeout handling routine from the
saved PC in the UCB fork block (UCB$L_FPC).

9. It transfers control to the driver’s timeout handling routine.

The driver’s timeout handling routine executes in the following context:

• R0 through R5 are saved on the stack.

• R5 contains the address of the UCB for the device that timed out.

• Only system address space may be accessed.

• The processor is running in kernel mode.

• The processor is running on the interrupt stack.

• The processor holds both fork lock and device lock.

• IPL is at hardware device interrupt level.

A timeout handling routine returns control to the software timer interrupt service
routine by issuing an RSB instruction. The driver’s fork process eventually
regains control, with R3 and R4 restored from UCB$L_FR3 and UCB$L_FR4.

Certain timeout handling routines may find it useful to fork to execute low
priority code or to accomplish certain tasks, such as the restarting of an I/O
request (see Section 10.2.1). If a driver uses this method, its interrupt service
routine should check the interrupt-expected bit (UCB$V_INT) before handling the
interrupt. The operating system clears this bit before it calls the driver’s timeout
handling routine. This allows the routine to determine whether device-timeout
processing is in progress at fork IPL.

10–4

Completing an I/O Request and Handling Timeouts
10.2 Timeout Handling Routines

During recovery from a power failure, the operating system forces a device
timeout by altering the timeout field (UCB$L_DUETIM) of a UCB if that device’s
UCB records that the unit is waiting for an interrupt or timeout (UCB$V_INT
and UCB$V_TIM set in UCB$L_STS). The timeout handling routine can perceive
that recovery from a power failure is occurring by examining the power bit
(UCB$V_POWER in UCB$L_STS) in the UCB.

A timeout handling routine usually performs one of three functions:

• It retries the I/O operation unless a retry count is exhausted.

• It aborts the I/O request, returning status (for instance, SS$_TIMEOUT) in
R0.

• It sends a message to an operator mailbox and waits for a subsequent
interrupt or timeout.

10.2.1 Retrying an I/O Operation
Some devices might retry an I/O operation after a timeout. For example, a disk
driver’s timeout handling routine might take the following steps after a transfer
timeout:

1. Invokes the FORK macro to lower IPL to fork level.

2. Releases any owned map registers, data path, and controller data channel.

3. Determines whether it is possible to retry the I/O operation.

4. Examines the error retry count (UCB$B_ERTCNT) to determine whether it is
possible to retry the I/O operation.

If the retry count is exhausted, the timeout handling routine sets the error
code, performs a normal abort I/O cleanup operation, and issues the REQCOM
macro to complete the I/O request.

If the retry count is not exhausted, the routine proceeds to the next step.

5. Examines the power bit (UCB$V_POWER in UCB$L_STS) to determine if
it must take special steps before retrying the operation. For instance, the
timeout handling routine should load the address of the IRP into R3 and
reload the following fields of the IRP into the corresponding UCB fields, if
they have been altered by partial processing of the I/O request:

IRP$L_BCNT
IRP$W_BOFF
IRP$L_SVAPTE

These actions set up an environment in which the transfer can be retried
from the beginning.

6. Calls ERL$DEVICTMO to log the device timeout if the driver supports error
logging (see Section 6.2).

7. Decreases the error retry count (UCB$B_ERTCNT).

8. Clears the UCB timeout bit (UCB$V_TIMOUT) in UCB$L_STS.

9. Branches to the start-I/O routine to retry the operation.

10–5

Completing an I/O Request and Handling Timeouts
10.2 Timeout Handling Routines

10.2.2 Aborting an I/O Request
A driver’s timeout handling routine aborts the I/O request when it exhausts its
retry count or when, having read device registers, the driver determines that
some fatal error condition has occurred such that there is no point in retrying
the request. Similarly, the routine aborts a request if the device’s cancel-I/O bit
(UCB$V_CANCEL in UCB$L_STS) is set, signifying that a cancel-I/O request
was made.

To abort an I/O request, a timeout handling routine performs the following
sequence of steps:

1. Clears the device control and status register (CSR), if appropriate to the
device and controller

2. Invokes the FORK macro to lower IPL to fork level

3. Releases any owned map registers, data path, and controller data channel

4. Loads the abort status code (SS$_ABORT) into the low word of R0

5. Clears bits 16 through 31 in R0 to indicate that no data was transferred

6. Issues the REQCOM macro to complete the request

10.2.3 Sending a Message to the Operator
The following sequence describes a timeout handling routine that sends a
message to the operator’s mailbox and then goes back into a wait-for-interrupt or
timeout state on the presumption that subsequent human intervention will make
the device operational:

1. The timeout handling routine invokes the FORK macro to lower IPL to driver
fork level.

2. It checks the cancel-I/O bit in the UCB status longword (UCB$V_CANCEL in
UCB$L_STS).

If UCB$V_CANCEL is set, the timeout handling routine can abort the
request. However, if UCB$V_CANCEL is clear, the timeout handling routine
performs the following actions:

a. Saves R3 and R4 on the stack.

b. Loads an operator communication process (OPCOM) message
code, such as MSG$_DEVOFFLIN, into R4. Note that the driver
must invoke the message definition macro $MSGDEF (located in
SYS$LIBRARY:STARLET.MLB) to use these message codes.

c. Loads the address of the operator’s mailbox (a pointer to which is located
at SYS$AR_OPRMBX) into R3.

d. Calls a system routine to place the message in the operator’s mailbox, as
follows:

JSB G^EXE$SNDEVMSG

e. Restores R3 and R4.

f. Invokes the DEVICELOCK macro to raise IPL to device IPL and obtain
the associated device lock.

10–6

Completing an I/O Request and Handling Timeouts
10.2 Timeout Handling Routines

g. Issues a SETIPL macro to raise IPL$_POWER and prevent power failure
interrupts on the local processor.

h. Invokes the WFIKPCH macro to wait for another interrupt or timeout.

When the OPCOM process reads the message in its mailbox, it sends the
requested message, in this case ‘‘device-offline,’’ to all operator terminals enabled
for that device class.

10–7

11
Other Driver Routines

Drivers normally contain initialization, cancel-I/O, error-logging, and register-
dumping routines. The driver prologue table (DPT) specifies the addresses of
the unit and controller initialization routines.1 The driver dispatch table (DDT)
contains the addresses of the cancel-I/O, error-logging, and register-dumping
routines. The type of device determines which of these routines are required in a
driver.

Drivers more rarely require a driver unloading routine, cloned UCB routine, or
unit delivery routine. The operating system, however, provides a method for
specifying these routines in the DPT or DDT. A brief discussion of the driver
unloading routine appears in Section 12.2.3. Section 11.4 describes the functions
of a cloned UCB routine. A description of the unit delivery routine appears in
Section 12.4.2.

11.1 Initialization Routines
Most device controllers and device units require initialization both when
the corresponding device driver is loaded and when the operating system is
recovering from a power failure. At these times, the duty of initialization
routines is to prepare controllers and device units for operation, according to their
characteristics.

The operating system always calls controller and unit initialization routines with
IPL raised to IPL$_POWER. The high IPL prevents any interrupts from reaching
the local processor while initialization is occurring; for this reason, initialization
routines should only contain code that is absolutely needed at initialization
time. Initialization routines should not explicitly lower IPL. The system calls
initialization routines with a JSB instruction; the routines return by executing an
RSB instruction.

11.1.1 Controller Initialization Routine
The duties of a controller initialization routine depend on the characteristics
of the device. For example, a controller initialization routine for a card reader
might enable interrupts from the device by setting the interrupt-enable bit in
the device’s control and status register (CSR). A disk’s controller initialization
routine, on the other hand, might enable interrupts and initialize all unit-status
registers. A controller initialization routine can typically perform any of the
following tasks:

• Determine if it is being called during power failure recovery by examining
the power bit (UCB$V_POWER in UCB$L_STS) in the UCB. A controller

1 A MASSBUS device driver must specify the address of its unit initialization routine
in the driver dispatch table (using the unitinit argument to the DDTAB macro as
discussed in Section 6.2). UNIBUS, Q22–bus, and generic VAXBI device drivers can
specify the address in either the DPT or DDT.

11–1

Other Driver Routines
11.1 Initialization Routines

initialization routine may want to perform or avoid specific tasks during
power failure recovery (see Section 11.1.4).

• Clear error-status bits in device registers.

• Initiate a device operation, such as clearing a drive or acknowledging a disk
pack.

• Enable controller interrupts.

• If the controller is dedicated to a single-unit device, such as a printer, fill in
IDB$L_OWNER and set the online bit (UCB$V_ONLINE in UCB$L_STS).

• Permanently allocate driver resources, such as

UNIBUS/Q22–bus map registers (see Section 14.2.2.2)

UNIBUS buffered data path (see Section 14.2.1.2)

• Allocate a buffer from nonpaged system dynamic memory.

Note that the permanent allocation of driver resources and the allocation of
nonpaged pool require that the controller initialization routine fork to the
driver’s fork IPL. This action warrants careful coordination of the activities of
the controller and unit initialization routines, both with each other and with
the System Generation utility (SYSGEN). See Section 11.1.5 for a discussion of
forking in an initialization routine.

The controller initialization routine for a generic VAXBI device driver must
initialize the device-specific aspects of the VAXBI device. Hardware initialization
might include such activities as writing values to the BIIC interface and device-
specific registers, examining the results of the BIIC self-test, mapping a node’s
window space, building data structures to control the device, and linking these
structures into chains of similar data structures. (Section 16.7 extensively
discusses the means by which a driver’s controller initialization routine performs
these tasks.)

At the time of a call to a controller initialization routine, the following registers
contain the listed values:

Register Value

R4 Address of CSR

R5 Address of IDB that describes the controller

R6 Address of DDB associated with the controller

R8 Address of CRB for the controller

A controller initialization routine must preserve the contents of all registers
except R0, R1, and R2.

11.1.2 Unit Initialization Routine
A unit initialization routine is useful for initializing device-dependent fields in
the UCB. For example, a unit initialization routine for a disk can also specify
disk-drive geometry (such as number of cylinders) in the UCB and wait for online
units to spin up to speed. Unit initialization routines must set the online bit in
the UCB (UCB$V_ONLINE) to declare the unit to be on line.

A unit initialization routine can perform the same types of tasks as a controller
initialization routine (see Section 11.1.1). Generally, the driver for a single-unit
controller does not need a unit initialization routine.

11–2

Other Driver Routines
11.1 Initialization Routines

At the time of a call to a unit initialization routine, the registers contain the
following values:

Register Value

R3 Address of primary CSR

R4 Address of secondary CSR; R4 is equal to R3 if there is no secondary CSR

R5 Address of the device’s UCB

A unit initialization routine must preserve the contents of all registers except R0,
R1, and R2.

11.1.3 Initialization During Driver Loading
Prior to calling the initialization routines within a driver, the operating system
takes steps to initialize the appropriate I/O database structures and establish
the appropriate links between these data structures and the driver. First, during
system initialization, the operating system creates an adapter control block (ADP)
for the device adapter. For generic VAXBI devices and MASSBUS devices, the
operating system creates an ADP, CRB, and IDB for the device at this time.
Secondly, during driver loading, the operating system performs some additional
initialization. Finally, the driver’s initialization routines are given an opportunity
to initialize the device in a device-specific manner.

The extent of the initialization that the operating system performs during driver
loading depends upon whether the I/O database is being created, and whether
the driver is being loaded for the first time or is replacing a driver that was
previously loaded.

The SYSGEN commands LOAD, AUTOCONFIGURE, and CONNECT add new
drivers to the system configuration. The RELOAD command unloads an existing
version of a driver and replaces it with a new one.

The LOAD command loads the driver into nonpaged system memory but does not
call any driver-specific routines nor execute any initialization requests specified
in DPT_STORE macro invocations nor create all of the I/O data structures
associated with the device.

The AUTOCONFIGURE and CONNECT commands create and initialize I/O
database structures associated with the device driver, call driver-specific
initialization routines, and perform requests specified in DPT_STORE macro
invocations. For each new device they add to the system, AUTOCONFIGURE
and CONNECT perform the following steps:

• Create a UCB for the device.

If this is the first occurrence of device and controller name, the commands
create a DDB, CRB, and an IDB. (Because the CRB and IDB for a generic
VAXBI device driver or MASSBUS device driver have already been created by
the system adapter initialization routine, a CONNECT or AUTOCONFIGURE
command for such a device never creates these structures.)

• Perform the initialization operations specified by the DPT_STORE macros
within the initialization and reinitialization portions of the DPT.

• Relocate all addresses in the DDT and FDT to system virtual addresses.

• Call the controller initialization routine specified in the CRB, if it has created
a CRB (or if CRB$V_UNINIT is set in CRB$B_MASK for a generic VAXBI
device).

11–3

Other Driver Routines
11.1 Initialization Routines

• Call the unit initialization routine (if any) specified in the DDT. If no routine
exists in the DDT, call the unit initialization routine (if any) specified in the
CRB.

The AUTOCONFIGURE and CONNECT command operations raise IPL to IPL$_
POWER before calling the driver’s initialization routines.

The RELOAD command replaces an existing driver with a new driver. The
command loads the new driver’s code into nonpaged system memory. Unlike the
other SYSGEN commands for driver loading, RELOAD assumes that the data
structures associated with the driver already exist, and thus updates the I/O
database to reflect the modified code and its different location in system virtual
address space. It performs the following functions:

• Calls the driver unloading routine in the old version of the driver, if one
exists (as indicated in the unload argument of the DPTAB macro) and if bit
DPT$V_NOUNLOAD in DPT$B_FLAGS is clear.

The driver unloading routine must return success status in R0 for SYSGEN
to proceed with the following steps.

• Deallocates the memory occupied by the old version of the driver.

• Loads the new version of the driver.

• Executes requests specified by DPT_STORE macro invocations in only the
reinitialization section of the DPT in the new driver.

• Relocates all addresses in the FDT and DDT to system virtual addresses.

• Calls the controller initialization routine.

Chapter 12 contains detailed descriptions of all SYSGEN commands related to
device drivers.

11.1.4 Initialization During Recovery from a Power Failure
During recovery from a power failure, the operating system locates every UCB
in the I/O database, by following the chain of pointers to all DDBs in the system
(starting at IOC$GL_DEVLIST and chained by DDB$L_LINK) and the chain of
pointers to all UCBs of the same device and controller type (starting at DDB$L_
UCB and chained by UCB$L_LINK). For each UCB it finds, the operating system
performs the following procedure:

1. It locates the CRB associated with the UCB (UCB$L_CRB) and determines
whether a controller initialization routine exists for the device’s controller by
examining CRB$L_INTD+VEC$L_INITIAL.

If an invocation of the DPT_STORE macro loaded the address of a controller
initialization routine into this field, the operating system calls that routine.

2. It determines whether a unit initialization routine exists for the particular
device unit by examining the unit initialization field of the DDT (DDT$L_
UNITINIT). If the field does not contain an address, the system checks the
CRB (CRB$L_INTD+VEC$L_UNITINIT).2

If either the CRB or the DDT contains a nonzero address for such a routine,
the system calls the routine to initialize the device unit. The system calls
only one routine; if the DDT contains an address, the address in the CRB is
ignored.

2 MASSBUS drivers store unit initialization routines addresses only in the DDT.

11–4

Other Driver Routines
11.1 Initialization Routines

When called during power failure recovery, driver initialization routines must
adhere to the following rules:

• These routines cannot acquire any spinlocks.

Controller and unit initialization routines are called at IPL 31 during power
failure recovery to reinitialize I/O devices before the processors are allowed
to proceed with execution at lower IPLs. Because processors may have been
holding spinlocks at the time of the power failure, they will not be able to
release them until after they resume execution. As a result, spinlocks are not
available to controller and unit initialization routines.

• These routines cannot perform any operation that requires the intervention of
other processors in a multiprocessing system.

A driver initialization routine can determine if it is being called during power
failure recovery by examining the power bit (UCB$V_POWER in UCB$L_STS) in
the UCB.

11.1.5 Forking from a Driver Initialization Routine
If a driver initialization routine must fork to perform a thread of code that must
synchronize with code or a structure synchronized at a lower IPL, it must take
special care to avoid breaking that synchronization.

First of all, because SYSGEN, under normal circumstances, immediately
calls a driver’s unit initialization routine at IPL$_POWER after its controller
initialization completes, the unit initialization routine must be prepared for the
instance of a controller initialization routine that forks. Such a unit initialization
routine would complete before the fork thread of the controller initialization
routine resumed.

A fork thread in a unit initialization routine (or a controller initialization routine
in a driver without a unit initialization routine) must otherwise take the following
precautions to avoid breaking synchronization:

• Use either the CRB fork block or a fork block defined in a device-specific
extension to the UCB.

The separate fork block prevents a conflict with the use of the normal UCB
fork block by the IOFORK routine. If you are using a separate UCB fork
block, you must not attempt to allocate the fork block from paged pool.

• Use a semaphore bit to protect against multiple forking.

Remember that the unit initialization routine may be called repeatedly if
multiple power failures require servicing. If the semaphore shows that a fork
is in progress, exit without attempting to fork. Access the semaphore bit by
using interlocked instructions (for example, BBSSI or BBCCI).

• Invoke EXE$FORK with R5 pointing to the alternate fork block and restore
the original value of R5 once the fork process is active.

• Restore all registers on exit.

Because EXE$FORK removes the caller’s address from the stack and returns
to the caller’s caller, the unit initialization routine must set up a dummy
caller’s caller routine to restore registers destroyed by EXE$FORK.

11–5

Other Driver Routines
11.2 Cancel-I/O Routine

11.2 Cancel-I/O Routine
System routines call a device driver’s cancel-I/O routine under the following
circumstances:

• When a process issues a Cancel-I/O-on-Channel system service ($CANCEL)

• When a process deallocates a device, causing the device reference count
(UCB$W_REFC) to become zero (that is, no process I/O channels are assigned
to the device)

• When a process deassigns a channel from a device, using the $DASSGN
system service3

• When the operating system performs cleanup operations as part of image
termination by canceling all pending I/O requests for the image and closing
all image-related files open on process I/O channels

The system routine EXE$CANCEL locates the UCB for the device associated with
a process I/O channel from a pointer in the CCB, as follows:

channel index number ! CCB ! UCB

EXE$CANCEL performs the following steps:

1. Obtains the fork lock associated with the driver, thus raising IPL to fork IPL.

2. Removes from the device’s pending-I/O queue all I/O request packets (IRPs)
associated with the process and that channel.

3. For a buffered-I/O read operation, clears the buffered-read function bit
(IRP$V_FUNC) in IRP$W_STS.

4. Sets the status code SS$_CANCEL in IRP$L_MEDIA.

5. Inserts the IRPs removed from the pending-I/O queue into the systemwide
I/O postprocessing queue.

6. Requests a software interrupt from the local processor at IPL$_IOPOST.

7. Calls the cancel-I/O routine specified in the DDT of the associated device
driver (argument cancel to the DDTAB macro). EXE$CANCEL locates the
routine using the following chain of pointers:

UCB ! DDT ! cancel-I/O routine

The cancel-I/O routine gives the driver an opportunity to prevent further
device-specific processing of the I/O request currently being processed on the
device.

3 Note that if the call to $DASSGN deassigns the last channel to the device, the device
driver’s cancel-I/O routine is called a second time. Channel deassignment and last
channel deassignment are both potentially significant events for certain devices.
The former means, in effect, that a user has finished with a device and the latter
means that all users are finished with a device. The reason code for both events is
CAN$C_DASSGN. However, a driver’s cancel-I/O routine can distinguish between the
two cases by examining UCB$W_REFC.

11–6

Other Driver Routines
11.2 Cancel-I/O Routine

11.2.1 Context of a Cancel-I/O Routine
When EXE$CANCEL calls the cancel-I/O routine, the local processor is at driver
fork IPL holding the associated fork lock. As a result, the cancel-I/O routine can
read and modify the device’s UCB. Registers at the time of the call contain the
following values:

Register Value

R2 Channel index number.

R3 Contents of UCB$L_IRP (address of current IRP, if any, for device).

R4 Address of process control block (PCB) of process for which the $CANCEL
system service is being performed.

R5 Address of device’s UCB.

R8 Reason for call to cancel the I/O request. Codes that signify the reasons
for cancellation are defined by the $CANDEF macro. Possible values for
R8 include:

CAN$C_CANCEL Called by $CANCEL system service

CAN$C_DASSGN Called by $DASSGN or $DALLOC system service

If a cancel-I/O routine uses registers other than R0 through R3, it must save the
registers and restore them before exiting.

Device drivers might want to base their cancel-I/O operation on whether the
cancel-I/O request is the result of a channel deassignment (CAN$C_DASSGN).
For example, the terminal driver cancels out-of-band AST requests only if the call
to its cancel-I/O routine results from a Deassign-I/O-Channel ($DASSGN) system
service call.

11.2.2 Drivers That Need No Cancel-I/O Routine
Some devices do not need any device-dependent processing performed for an
I/O request; you can omit the cancel argument from the DDTAB macro.
In this case, the DDTAB macro expansion loads the address of the system
routine IOC$RETURN into the appropriate position in the DDT. The routine
IOC$RETURN executes a single RSB instruction.

11.2.3 Device-Independent Cancel-I/O Routine
Drivers can specify the system routine IOC$CANCELIO as the value of the
cancel argument in the DDTAB macro invocation. IOC$CANCELIO cancels I/O
to a device in the following device-independent manner:

1. It confirms that the device is busy by examining the device-busy bit in the
UCB status longword (UCB$V_BSY in UCB$L_STS).

2. It locates the process-identification field in the IRP currently being processed
on the device by using the following chain of pointers:

UCB ! IRP ! process identification field

IOC$CANCELIO confirms that the field (IRP$L_PID) contains the same value
as the corresponding field in the PCB (PCB$L_PID).

3. It confirms that the specified channel-index number is the same as the value
stored in the IRP’s channel-index field (IRP$W_CHAN).

11–7

Other Driver Routines
11.2 Cancel-I/O Routine

4. It sets the cancel-I/O bit in the UCB status longword (UCB$V_CANCEL in
UCB$L_STS). Other driver routines, such as the timeout handling routine,
check the cancel-I/O bit to determine whether to retry the I/O operation or
abort it. (See Section 10.2.2 for additional information.)

11.2.4 Device-Dependent Cancel-I/O Routine
Drivers that include their own cancel-I/O routines must perform the first three
steps of IOC$CANCELIO listed in Section 11.2.3 to determine whether the I/O
request being processed originates from the process canceling I/O on a channel. If
the three checks succeed, the cancel-I/O routine can proceed in a device-specific
manner. For instance, a cancel-I/O routine may perform the following tasks:

• Clear UCB$V_INT and UCB$V_TIM in the UCB status longword (UCB$L_
STS)

• Release any owned map registers, data path, and controller data channel

• Load a status code (SS$_CANCEL, for instance) into the low word of R0

• Load other status information into the high word of R0 and the longword of
R1

• Issue the REQCOM macro to complete the request

11.3 Error-Logging Routines
A driver that supports error logging must satisfy the following prerequisites:

• It must invoke the data structure definition macro $EMBDEF (located in
SYS$LIBRARY:LIB.MLB).

• It must use the local disk extension or local tape extension of the UCB.
These extensions include error-log extension. (See the data structures in the
OpenVMS VAX Device Support Reference Manual for additional information.)

• It must provide a means whereby error logging can be enabled for the
device. For instance, it can use the DPT_STORE macro to set the device
characteristic DEV$V_ELG in UCB$L_DEVCHAR or it can support an
IO$_SETCHAR function that sets this bit.

• It must ensure that the size of the error log buffer, as specified in DDT$W_
ERRORBUF, is large enough to accommodate EMB$L_DV_REGSAV+4, plus
one longword for each register to be dumped. It must specify this value in the
erlgbf argument to the DDTAB macro.

• It should include a register-dumping routine, specifying its address in the
regdmp argument of the DDTAB macro.

• It must complete the servicing of the I/O request by invoking the REQCOM
macro. (Routines, like ERL$DEVICEATTN, that log errors that are not
associated with the current I/O request skip this step.) IOC$REQCOM takes
steps to complete the error logging initiated by a call to an error-logging
routine.

11–8

Other Driver Routines
11.3 Error-Logging Routines

11.3.1 System-Supplied Error-Logging Routines
The operating system provides the following routines that drivers can call to
allocate and fill an error message buffer after a device error or timeout occurs:

Routine Function

ERL$DEVICERR Logs an error associated with the I/O request in progress

ERL$DEVICTMO Logs a timeout associated with the I/O request in progress

ERL$DEVICEATTN Logs an error not associated with an I/O request

These routines are described in full in the OpenVMS VAX Device Support
Reference Manual, but they all perform similar functions, as follows:

• Increment UCB$W_ERRCNT to record a device error. If the error-log-in-
progress bit (UCB$V_ERLOGIP in UCB$L_STS) is set, the routine returns
control to its caller (ERL$DEVICERR and ERL$DEVICTMO only).

• Allocate from the current error log allocation buffer an error message buffer
of the length specified in the device’s DDT (in argument erlgbf to the DDTAB
macro).

• Initialize the buffer with the current system time, error log sequence number,
and error type code. These routines use the following error type codes:

Routine Error Code

ERL$DEVICERR Device error (EMB$C_DE)

ERL$DEVICTMO Device timeout (EMB$C_DT)

ERL$DEVICEATTN Device attention (EMB$C_DA)

• Place the address of the error message buffer in UCB$L_EMB.

• Set UCB$V_ERLOGIP in UCB$L_STS.

• Load into R0 the address of the location in the buffer in which the contents of
the device registers are to be stored.

• Call the driver’s register-dumping routine.

11.3.2 Register-Dumping Routine
A driver that supports error logging or diagnostics specifies the address of a
register-dumping routine in the regdmp argument to the DDTAB macro.

When an error-logging routine passes control to the driver’s register-dumping
routine, the following registers contain the listed values:

Register Value

R0 Address of buffer into which a register-dumping routine copies the contents
of device registers

R4 Address of device’s CSR (if the driver invoked the WFIKPCH macro to
wait for an interrupt or timeout)

R5 Address of UCB

The register-dumping routine preserves the contents of all registers except R0
through R2. If it uses the stack, the register-dumping routine must restore

11–9

Other Driver Routines
11.3 Error-Logging Routines

the stack before passing control to another routine, waiting for an interrupt, or
returning control to its caller.

A register-dumping routine uses the following procedure to fill the indicated
buffer:

1. Writes a longword value representing the number of device registers to be
written into the buffer.

2. Moves device register longword values into the buffer following the register
count longword.

The source of these register values depends upon the nature of the driver.
If the driver has established a UCB extension, its interrupt service routine
can copy to it the values of critical device registers. In this case, the register-
dumping routine may contain instructions similar to the following:

MOVL UCB$L_TD_STATUS(R5),(R0)+

Alternatively, the register-dumping routine can obtain device register values
directly from I/O address space, offsetting from the address of the CSR as
follows:

MOVZWL TD_STATUS(R4),(R0)+

Note that this latter method is not truly accurate in that, at the time a
register-dumping routine runs, all or some device registers may have been
modified during the servicing of device interrupts unrelated to the error.

When a driver fork process invokes the system routine IOC$DIAGBUFILL,
as described in the OpenVMS VAX Device Support Reference Manual, the
routine transfers control to the register-dumping routine with the address of the
diagnostic buffer in R0, the address of the device’s CSR in R4, and the address of
the UCB in R5.

11.3.3 Interpreting Error Log Entries
See the OpenVMS System Manager’s Manual and the OpenVMS System
Management Utilities Reference Manual for help with producing and reading
error log files.

11.4 Cloned UCB Routine
EXE$ASSIGN calls the driver’s cloned UCB routine when an Assign I/O Channel
system service request ($ASSIGN) specifies a template device (that is, bit
UCB$V_TEMPLATE in UCB$L_STS is set). EXE$ASSIGN does not assign the
channel to the template device itself. Rather, it creates a copy of the template
device’s UCB and object rights block (ORB), initializing and clearing certain fields
as appropriate.

A cloned UCB routine receives control at IPL$_ASTDEL in kernel mode with
process context available, holding the I/O database mutex (IOC$GL_MUTEX).

Only drivers for network devices or template devices, such as mailboxes, include
a cloned UCB routine. A driver specifies the address of a cloned UCB routine in
the cloneducb argument of the DDTAB macro.

The driver’s cloned UCB routine verifies the contents of fields in the UCB and
ORB and completes their initialization. (The ORB normally does not need to be
changed.) Table 11–1 lists the required input values and their locations when a
cloned UCB routine is called.

11–10

Other Driver Routines
11.4 Cloned UCB Routine

A cloned UCB routine must preserve the contents of R2 and R4. It issues an RSB
instruction to return control to EXE$ASSIGN. If the routine returns error status
in R0, EXE$ASSIGN undoes the process of UCB cloning and completes with the
failure status in R0.

Table 11–1 Input for Cloned UCB Routine

Location Contents

R0 SS$_NORMAL

R2 Address of cloned UCB

R3 Address of DDT

R4 Address of current PCB

R5 Address of template UCB

UCB$L_FQFL(R2) Address of UCB$L_FQFL(R2)

UCB$L_FQBL(R2) Address of UCB$L_FQBL(R2)

UCB$L_FPC(R2) 0

UCB$L_FR3(R2) 0

UCB$L_FR4(R2) 0

UCB$W_BUFQUO(R2) 0

UCB$L_ORB(R2) Address of cloned ORB

UCB$L_LINK(R2) Address of next UCB in DDB chain

UCB$L_IOQFL(R2) Address of UCB$L_IOQFL(R2)

UCB$L_IOQBL(R2) Address of UCB$L_IOQBL(R2)

UCB$W_UNIT(R2) Device unit number (minimum UCB$W_UNIT_
SEED(R5)+1)

UCB$W_CHARGE(R2) Mailbox byte quota charge (UCB$W_SIZE)

UCB$W_REFC(R2) 0

UCB$L_STS(R2) UCB$V_DELETEUCB set, UCB$V_ONLINE set

UCB$W_DEVSTS(R2) UCB$V_DELMBX set if DEV$V_MBX is set in
UCB$L_DEVCHAR(R2)

UCB$L_OPCNT(R2) 0

UCB$L_SVAPTE(R2) 0

UCB$W_BOFF(R2) 0

UCB$W_BCNT(R2) 0

11–11

Part III
Loading and Debugging a Driver

This part describes how to load and debug a device driver.

12
Loading a Device Driver

You can assemble, link, and load a non-Digital-supplied device driver any time
after the system is bootstrapped. If the driver contains an error and the error
does not crash or corrupt the operating system, you can correct the error and
reload a new version of the driver.

12.1 Preparing a Driver for Loading into the Operating System
To prepare a device driver for loading, perform the following steps:

1. Write the device driver in one or more source files. If the driver comprises
several source files, you must insert a .PSECT directive before any generated
code in all files except the file that contains the DPTAB and DDTAB macro
invocations. The following .PSECT must be used:

.PSECT $$$115_DRIVER

If a single source file contains the driver, you must not specify any .PSECT
directives. The declaration of the DPTAB and DDTAB macros correctly
establishes driver program sections ($$$105_PROLOGUE and $$$115_
DRIVER, respectively).

2. Assemble the source files with the system’s macro library
(SYS$LIBRARY:LIB.MLB). For example:

$ MACRO MYDRIVER.MAR+SYS$LIBRARY:LIB.MLB/LIBRARY

3. Link the object file with the system global symbol table, which is located in
SYS$SYSTEM and called SYS.STB. If the driver consists of several source
files, you must specify the file that contains the driver prologue table as the
first file in the list. The linker-options file must contain a BASE statement
specifying a zero base for the executable image. The following is an example
of the creation of the options file and the LINK command used to link a
driver:

$ CREATE MYDRIVER.OPT
BASE=0

Ctrl/Z

$ LINK /NOTRACE MYDRIVER1[,MYDRIVER2,...],-
_$ MYDRIVER.OPT/OPTIONS,-
_$ SYS$SYSTEM:SYS.STB/SELECTIVE_SEARCH

The resulting image must consist of a single image section. The linker will
report that the image has no transfer address.

To produce an image with a symbol table compatible with the System Dump
Analyzer (SDA), you must link again; this time, using the UNIVERSAL=*
option statement (to include all global symbols and to ensure proper state of
the REL bits in the object records). Relink as follows:

12–1

Loading a Device Driver
12.1 Preparing a Driver for Loading into the Operating System

$ LINK /NOEXECUTABLE/NOTRACEBACK/NOSYSSHR -
_$ /SYMBOLS=MYDRIVER.EXE,-
_$ /SHARE=DUMMY_FILE_NAME,-
_$ /NOMAP,MYDRIVER1.OBJ,MYDRIVER2.OBJ,-
_$ SYS.STB/SELECTIVE,-
_$ SYS$INPUT/OPTION
_$ BASE=0
_$ UNIVERSAL=*

For more information about the Linker, see OpenVMS Linker Utility Manual.

Once you have linked or relinked a driver, you should copy its image to the
SYS$LOADABLE_IMAGES or SYS$SYSTEM directory. The System Generation
utility (SYSGEN) commands LOAD and CONNECT first search for a driver in
the SYS$LOADABLE_IMAGES directory. If they do not find the driver, they then
search the SYS$SYSTEM directory.

12.2 Loading a Driver
Once the driver has been linked correctly, it is ready to be loaded. To load the
driver into system virtual memory, run the SYSGEN from the system manager’s
account or from an account having CMKRNL privilege, using the following
command:

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN responds with a prompt and waits for further input:

SYSGEN>

The OpenVMS System Management Utilities Reference Manual describes the full
set of SYSGEN commands. The sections that follow describe those commands
SYSGEN uses to load drivers:

SYSGEN Command Privilege Required

LOAD CMKRNL

CONNECT CMKRNL

RELOAD CMKRNL

SHOW/ADAPTER CMEXEC

SHOW/BI CMEXEC

SHOW/BUS CMEXEC

SHOW/CONFIGURATION CMEXEC

SHOW/DEVICE CMEXEC

SHOW/XMI CMEXEC

SYSGEN takes special steps to ensure that drivers that do not adhere to
multiprocessing synchronization standards do not coexist in a system with
drivers that are properly synchronized. The procedure that SYSGEN follows
to accomplish this is discussed in Section 12.3. In addition, SYSGEN provides
an automatic configuration service for most devices of the various bus-types, as
described in Section 12.4.

12–2

Loading a Device Driver
12.2 Loading a Driver

12.2.1 LOAD Command
To load a device driver, issue the LOAD command.

Note

If the controller has only a single unit attached to it, you can issue
the CONNECT command to perform the driver-loading tasks normally
performed by the LOAD command, as well as its task of creating the
device’s I/O database (see Section 12.2.2).

Format
LOAD filespec

Parameter
filespec
Name of a file containing an executable driver image. The driver-loading
procedure compares the file specification from the command line with the names
of the drivers in the current system configuration. If the procedure discovers
that a driver with the same name already exists in the configuration, it will not
load the new driver. If it does not find a configured driver with the same name,
it loads the new driver into contiguous locations in nonpaged pool, and links
the driver prologue table (DPT) into the system’s linked list of DPTs (headed by
IOC$GL_DPTLIST).

The LOAD command uses SYS$LOADABLE_IMAGES as the default device
/directory name, and .EXE as the default file type. If it cannot find the driver in
the SYS$LOADABLE_IMAGES directory, it searches for it in SYS$SYSTEM.

Example
SYSGEN> LOAD CRDRIVER

This command loads the driver found in SYS$LOADABLE_
IMAGES:CRDRIVER.EXE (the card-reader driver).

12.2.2 CONNECT Command
The CONNECT command creates data structures in the I/O database for a
specified device. The device-connecting procedure performs the following general
functions:

• If the CONNECT command specifies a new device unit on an existing
controller, it creates a unit control block (UCB) for the new unit and calls the
driver’s unit initialization routine.

• If the CONNECT command specifies a device unit on a new controller,
it creates a device data block (DDB), a channel request block (CRB), an
interrupt dispatch block (IDB), and a UCB and then calls both the controller
initialization and unit initialization routine in the driver. (Note that, because
system initialization creates the CRB and IDB for a generic VAXBI device, the
CONNECT command for such a device omits the creation and initialization of
these structures.)

The CONNECT command can also load into system memory a driver that has not
been previously loaded. (See the following discussion of the /DRIVERNAME
qualifier and the description of the LOAD command in Section 12.2.1 for
information on driver loading.)

12–3

Loading a Device Driver
12.2 Loading a Driver

Caution

The database-loading procedure does little error checking. If you specify a
vector that has already been defined, the procedure rejects the CONNECT
command. However, if the CONNECT command specifies an incorrect
CSR address, the I/O database is apt to become corrupted and will likely
cause a system failure.

Format
CONNECT device

Parameter
device
Name of the device to be connected. Specify the device name in the format ddcu
where

dd = Device code (up to 9 alphabetic characters)

c = Controller designation (alphabetic)

u = Unit number

For example, LPA0 specifies the line printer (LP) on controller A at unit number
0. When specifying the device name, do not follow it with a colon (:).

The device code and controller specification must be a unique and accurate device
name and controller combination. If data structures for the specified device
/controller already exist, the device-connecting procedure does not create any
data structures or perform any initialization operations. If the device/controller
name does not accurately name a device, the procedure creates spurious data
structures.

The device-connecting procedure examines the I/O database for data structures
that support the specified device. The procedure creates the following data
structures if they do not exist:

• DDB for the specified device/controller combination (ddcu).

• CRB and IDB for the specified controller. The device-connecting procedure
creates these data structures whenever it creates a DDB for a UNIBUS,
MASSBUS, or Q22–bus device.

• UCB for the device unit. The device-connecting procedure creates a UCB
whenever it creates a DDB, or when a UCB for the specified device does not
exist. If a UCB already exists, the procedure ceases its modifications to the
I/O database and continues its other tasks.

After it creates these data structures, the procedure initializes them as follows:

• Performs the initialization operations specified by the DPT_STORE macros in
the initialization and reinitialization portions of the DPT.

• Relocates all addresses in the DDT and FDT to absolute system virtual
addresses.

• Raises IPL to IPL$_POWER on the local processor so that initialization is not
interrupted.

• If it created a new CRB (or is connecting a generic VAXBI device), calls the
controller initialization routine, if one is specified by CRB$L_INTD+VEC$L_
INITIAL.

12–4

Loading a Device Driver
12.2 Loading a Driver

• Calls the unit initialization routine if one is specified by DDT$L_UNITINIT.
If the DDT$L_UNITINIT does not specify a unit initialization routine, the
device-connecting procedure calls the unit initialization routine (if any)
specified by CRB$L_INTD+VEC$L_UNITINIT.

Required Qualifiers
/[NO]ADAPTER=nexus
Nexus value of the UNIBUS adapter, MASSBUS adapter, or other controller
to which the device unit is attached. The nexus can be a number or a generic
name as listed by the /ADAPTER qualifier to the SYSGEN command SHOW. (See
Section 12.2.4 for a discussion of the SHOW/ADAPTER command.) For generic
VAXBI devices, this value is the VAXBI node number (see Section 12.2.5 for
discussion of the SHOW/BI command).

Table 12–1 lists typical nexus assignments for UNIBUS and MASSBUS adapters.
For XMI bus and nexus assignments, refer to Sections 12.2.6 and 12.2.7 for a
discussion of the SHOW/BUS and SHOW/XMI commands.

Table 12–1 Conventional Nexus Assignments

Adapter VAX–11/730 VAX–11/750

VAX–11/780
VAX–11/785
VAX 8600/8650

VAX 82x0/83x0
VAX 6000 series
VAX 85x0/8700/88x0

UNIBUS

0 3 8 3 0

1 — 9 4 16

2 — — 5 —

3 — — 6 —

MASSBUS

0 — 4 8 —

1 — 5 9 —

2 — 6 10 —

3 — — 11 —

All numeric values are interpreted as decimal unless they are preceded by a radix
descriptor (%O or %X). Issue the CONNECT command with the /NOADAPTER
qualifier to connect drivers associated with software devices. The mailbox driver
is an example of this type of driver.

/CSR=csr-addr
UNIBUS or Q22–bus address of the device’s control and status register (CSR). All
numeric values are interpreted as decimal unless they are preceded by a radix
descriptor (%O or %X). Table 12–2 provides additional information on vector and
CSR assignments for UNIBUS and Q22–bus devices.

/CSR_OFFSET=value
Offset from the CSR address of a multiple-device controller board to the CSR
address of the device. The /CSR_OFFSET qualifier is only required for a
multidevice board, such as the DMF32. All numeric values are interpreted as
decimal unless they are preceded by a radix descriptor (%O or %X). Table 12–2

12–5

Loading a Device Driver
12.2 Loading a Driver

provides additional information on vector and CSR assignments for UNIBUS and
Q22–bus devices.

/VECTOR=vector-addr
Q22–bus or UNIBUS address of the interrupt vector for the device. All numeric
values are interpreted as decimal unless they are preceded by a radix descriptor
(%O or %X). Table 12–2 provides additional information on vector and CSR
assignments for UNIBUS and Q22–bus devices.

/VECTOR_OFFSET=value
Offset from the interrupt vector of a multiple-device board to the interrupt vector
of the device being connected. The /VECTOR_OFFSET qualifier is only required
for a multidevice board, such as the DMF32. All numeric values are interpreted
as decimal unless they are preceded by a radix descriptor (%O or %X). Table 12–2
provides additional information on vector and CSR assignments for UNIBUS and
Q22–bus devices.

Optional Qualifiers
/NUMVEC=vector-cnt
Number of interrupt vectors for the device. If this qualifier is omitted, the default
number of vectors is 1. The number specified by the /VECTOR qualifier is the
address of the lowest vector. Vectors must be contiguous.

/DRIVERNAME=driver
Name of the driver for the device to be connected. If the driver for the specified
device has not yet been loaded, the CONNECT command will load its driver.
First, it will attempt to load the driver whose name is specified in this qualifier,
defaulting to a file type of .EXE in device/directory SYS$LOADABLE_IMAGES.
(If it cannot find the driver in SYS$LOADABLE_IMAGES, the CONNECT
command checks SYS$SYSTEM.)

If the /DRIVERNAME qualifier is omitted, CONNECT follows one of two
procedures to supply a default name. If the device to be connected is the first
unit on the controller, CONNECT concatenates the first two characters of the
device code with ‘‘DRIVER’’ (for example, LPDRIVER). Otherwise, CONNECT
obtains the driver name from the field DDB$T_DRVNAME.

Consult the SYSGEN device table in Table 12–2 for the driver names of the
devices supported by the operating system.

/ADPUNIT=unit-number
Unit number of a device on the MASSBUS adapter. The unit number for a disk
drive is the number of the plug on the drive. For magnetic tape drives, the unit
number corresponds to the tape controller’s number.

/MAXUNITS=max-unit-cnt
Maximum number of units attached to the controller. This number determines
the size of the UCB list appended to the IDB. If specified, this value overrides the
maximum number of units designated in the DPT. The maximum number of units
is stored in the field IDB$W_UNITS.

Example
SYSGEN> CONNECT LPA0 /ADAPTER=UB0/CSR=%O777514/VECTOR=%O200

This command loads the driver LPDRIVER, if it is not already loaded, and creates
the data structures (DDB, CRB, IDB, and UCB) needed to describe LPA0. It also
causes the driver’s controller and unit initialization routines to be executed.

12–6

Loading a Device Driver
12.2 Loading a Driver

12.2.3 RELOAD Command
The RELOAD command loads a driver and removes a previously loaded version
of that driver.

The RELOAD command provides all of the functions of LOAD, except that it
loads the driver regardless of whether it is already loaded. If any of the units
associated with the driver is busy, the driver cannot be reloaded; SYSGEN issues
an error message.

Caution

Use the RELOAD command only when all devices supported by the driver
are inactive. The checks for activity made by the RELOAD command
might not detect all device activity, and changing a driver while an I/O
request is being processed will cause a system failure.

Format
RELOAD filespec

Parameter
filespec
Name of a file containing an executable driver image. The driver-reloading
procedure compares the name DPT$T_NAME of the driver being loaded with the
names of the drivers in the current system configuration. If no such driver is
configured, the driver-reloading procedure loads the driver as described in the
discussion of the LOAD command in Section 12.2.1.

If the SYSGEN reloading procedure finds a driver with the specified name in the
configuration, it first determines that the current driver can be replaced in the
following steps:

• Confirms that the DPT$V_NOUNLOAD flag of the current driver is not set.

• Ensures that no devices that use the current driver are busy, as indicated by
the UCB$V_BSY bit set in UCB$L_STS.

• If these checks succeed, calls the current driver’s driver unloading routine, if
one has been specified in the unload argument of the DPTAB macro.

The driver unloading routine executes in process context at IPL$_POWER. It
cannot lower IPL or obtain spinlocks.

At the time of the call, register R10 contains the address of the DPT.

A driver unloading routine can take steps to ensure that no thread of code or
structure exists in the system that may reference the space occupied by the
version of the driver about to be unloaded, a timer-queue element (TQE), for
instance.

A driver unloading routine can use COM$DRVDEALMEM to return system
buffers allocated by the driver to nonpaged pool. The driver unloading routine
returns status in R0 to the driver-reloading procedure.

Upon receiving success status, the driver-reloading procedure replaces the current
driver with the new driver in the following manner:

1. Loads the new driver into contiguous locations in nonpaged pool.

12–7

Loading a Device Driver
12.2 Loading a Driver

2. Searches the I/O database for references to the driver. If any DDB refers to
the driver being reloaded, the driver-reloading procedure must reinitialize
data structure fields according to the reinitialization instructions in the new
DPT (see Section 6.1).

Fields that must be reinitialized when a driver is reloaded include those that
contain relative addresses within the driver:

a. Addresses of the interrupt service routines

b. Addresses of the unit and controller initialization routines

c. Address of the driver dispatch table

3. Calls the driver’s controller initialization routine. (It does not call the unit
initialization routine.)

4. Removes the newly replaced driver from the system’s linked list of DPTs
(headed by IOC$GL_DPTLIST) and deallocates the nonpaged system space
the old driver occupied.

5. Links the address of the new DPT to the system’s DPT list.

12.2.4 SHOW/ADAPTER Command
The SHOW/ADAPTER command displays nexus numbers and generic names of
UNIBUS adapters, VAXBI adapters, memory controllers, and interconnection
devices such as the DEBNI and CI. Use of the SHOW/ADAPTER command
requires CMEXEC privilege.

Format
SHOW/ADAPTER

Example
SYSGEN> SHOW/ADAPTER

CPU Type: VAX 6000-360

Nexus (decimal) Generic Name or Description
0001 1 XMI - 6000-200/300 processor
0002 2 XMI - 6000-200/300 processor
0003 3 XMI - 6000-200/300 processor
0004 4 XMI - 6000-200/300 processor
0005 5 XMI - 6000-200/300 processor
0006 6 XMI - 6000-200/300 processor
0007 7 XMI - memory module
0008 8 XMI - memory module
0009 9 XMI - memory module
000A 10 XMI - memory module
000B 11 XMI - memory module
000C 12 XMI - memory module

XMI - BI Adapter (DWMBA/A)
XMI - BI Adapter (DWMBA/A)

00D1 209 BI - XMI Adapter (DWMBA/B)
00D3 211 CIO
00D6 214 BI - NI Adapter (DEBNI)
00E1 225 BI - XMI Adapter (DWMBA/B)
00E4 228 BI - Disk Adapter (KDB50)
00E6 230 BI - TK50 Adapter (TBK50)

12–8

Loading a Device Driver
12.2 Loading a Driver

12.2.5 SHOW/BI Command
The SHOW/BI command displays device addresses that are currently mapped
in the I/O space for the VAXBI bus. It also displays node and nexus numbers
and generic names of UNIBUS adapters, VAXBI adapters, memory controllers,
and interconnection devices such as the DMB32 and CI. Use of the SHOW/BI
command requires CMEXEC privilege.

Format
SHOW/BI

Example 1
SYSGEN> SHOW/BI

CPU Type: VAX 8800 Cpu Connection: NMI

** Bus map for BI 00 on 28-AUG-1993 14:13:02.95 **
Address 20000000 (node 00) responds with value 0108 CI
Address 20004000 (node 02) responds with value 0106 BI - NMI Adapter (NBIB)
Address 2000E000 (node 07) responds with value 0109 BI Combo Board (DMB32)

** Bus map for BI 01 on 28-AUG-1993 14:13:03.00 **
Address 22000000 (node 00) responds with value 0102 UB
Address 22004000 (node 02) responds with value 0106 BI - NMI Adapter (NBIB)
Address 2200E000 (node 07) responds with value 410F BI - NI Adapter (DEBNA)

Example 2
SYSGEN> SHOW/BI

CPU Type: VAX 6000-450 Cpu Connection: XMI

** Bus map for BI 00 on 28-AUG-1993 14:14:54.03 **
Address 3A002000 (node 01) responds with value 2107 BI - XMI Adapter (DWMBA/B)

12.2.6 SHOW/BUS Command
The SHOW/BUS command displays the hierarchical bus structure of a system
and all attached devices. The display list includes node numbers, generic names
of processors, memory modules, adapters such as VAXBI adapters, memory
controllers, and interconnection devices such as the NI. Use of the SHOW/BUS
command requires CMEXEC privilege.

Format
SHOW/BUS

Example 1
SYSGEN> SHOW/BUS

Cpu Type: VAX 8800 Cpu Connection: NMI
Bus Node Generic Name Nexus(hex) Connection Address

BI 00 00 CI 0000
BI 00 02 BI - NMI Adapter (NBIB) 0002
BI 00 07 BI Combo Board (DMB32) 0007

BI 01 00 UB 0010
BI 01 02 BI - NMI Adapter (NBIB) 0012
BI 01 07 BI - NI Adapter (DEBNA) 0017

12–9

Loading a Device Driver
12.2 Loading a Driver

Example 2
SYSGEN> SHOW/BUS

Cpu Type: VAX 6000-450 Cpu Connection: XMI
Bus Node Generic Name Nexus(hex) Connection Address

XMI 00 01 XMI - 6000-400 processor 0001
XMI 00 02 XMI - 6000-400 processor 0002
XMI 00 03 XMI - 6000-400 processor 0003
XMI 00 04 XMI - 6000-400 processor 0004
XMI 00 05 XMI - 6000-400 processor 0005
XMI 00 06 XMI - memory module 0006
XMI 00 07 XMI - memory module 0007
XMI 00 08 XMI - memory module 0008
XMI 00 09 XMI - memory module 0009
XMI 00 0A XMI - memory module 000A
XMI 00 0B XMI - memory module 000B
XMI 00 0C XMI - NI adapter (DEMNA) 000C
XMI 00 0D XMI - BI Adapter (DWMBA/A) 000D Connects to BI 00 node 01

BI 00 01 BI - XMI Adapter (DWMBA/B) 00D1 Connects to XMI 00 node 0D

XMI 00 0E XMI - BI Adapter (DWMBA/A) 000E Connects to BI 01 node 01

BI 01 01 BI - XMI Adapter (DWMBA/B) 00E1 Connects to XMI 00 node 0E
BI 01 02 BI - Disk Adapter (KDB50) 00E2
BI 01 04 CI 00E4
BI 01 06 BI - TK50 Adapter (TBK50) 00E6

12.2.7 SHOW/XMI Command
The SHOW/XMI command displays device addresses that are currently mapped
in the I/O space for the XMI bus. It also displays node and nexus numbers and
generic names of processors, adapters, VAXBI adapters, memory controllers, and
interconnection devices such as the NI. Use of the SHOW/XMI command requires
CMEXEC privilege.

Format
SHOW/XMI

Example
SYSGEN> SHOW/XMI

** Bus map for XMI 00 on 28-AUG-1993 14:14:50.48 **
Address 21880000 (node 01) responds with value 8082 XMI - 6000-400 processor
Address 21900000 (node 02) responds with value 8082 XMI - 6000-400 processor
Address 21980000 (node 03) responds with value 8082 XMI - 6000-400 processor
Address 21A00000 (node 04) responds with value 8082 XMI - 6000-400 processor
Address 21A80000 (node 05) responds with value 8082 XMI - 6000-400 processor
Address 21B00000 (node 06) responds with value 4001 XMI - memory module
Address 21B80000 (node 07) responds with value 4001 XMI - memory module
Address 21C00000 (node 08) responds with value 4001 XMI - memory module
Address 21C80000 (node 09) responds with value 4001 XMI - memory module
Address 21D00000 (node 0A) responds with value 4001 XMI - memory module
Address 21D80000 (node 0B) responds with value 4001 XMI - memory module
Address 21E00000 (node 0C) responds with value 0C03 XMI - NI adapter (DEMNA)
Address 21E80000 (node 0D) responds with value 2001 XMI - BI Adapter (DWMBA/A)
Address 21F00000 (node 0E) responds with value 2001 XMI - BI Adapter (DWMBA/A)

12–10

Loading a Device Driver
12.2 Loading a Driver

12.2.8 SHOW/CONFIGURATION Command
The SHOW/CONFIGURATION command displays the device name, number
of units, nexus number and type, and shows the CSR and vector addresses of
devices connected to or autoconfigured in the system.

Format
SHOW/CONFIGURATION

Optional Qualifiers
/ADAPTER=nexus
Nexus value of the UNIBUS adapter, MASSBUS adapter, or other interconnect
to be displayed. The nexus value can be expressed as an integer or as one of the
generic names listed by the SHOW/ADAPTER command.

/COMMAND_FILE
Option by which you instruct SYSGEN to format all device data produced by
the SHOW/CONFIGURATION command into CONNECT/ADAPTER=nexus
commands and write them to a specified output file. By executing the commands
in this file, you can remove a device from floating address space without
completely reconnecting the CSR and vector addresses of the remaining devices.
See the OpenVMS System Manager’s Manual for more details.

/OUTPUT=filespec
Name of a file into which SHOW/CONFIGURATION is to write device
configuration information.

Example
SYSGEN> SHOW/CONFIGURATION/ADAPTER=UB1

System CSR and Vectors on 24-JUL-1993 14:58:26.08

Name: LPA Units: 1 Nexus:4 (UBA) CSR: 777514 Vector1: 200 Vector2: 000
Name: DYA Units: 2 Nexus:4 (UBA) CSR: 777170 Vector1: 264 Vector2: 000
Name: XMA Units: 1 Nexus:4 (UBA) CSR: 760070 Vector1: 300 Vector2: 304
Name: XMB Units: 1 Nexus:4 (UBA) CSR: 760100 Vector1: 310 Vector2: 314
Name: XMC Units: 1 Nexus:4 (UBA) CSR: 760110 Vector1: 320 Vector2: 324
Name: TTA Units: 8 Nexus:4 (UBA) CSR: 760130 Vector1: 330 Vector2: 334
Name: TTB Units: 8 Nexus:4 (UBA) CSR: 760140 Vector1: 340 Vector2: 344
Name: TTC Units: 8 Nexus:4 (UBA) CSR: 760150 Vector1: 350 Vector2: 354
Name: TTD Units: 8 Nexus:4 (UBA) CSR: 760160 Vector1: 360 Vector2: 364
Name: TTE Units: 8 Nexus:4 (UBA) CSR: 760170 Vector1: 370 Vector2: 374

12.2.9 SHOW/DEVICE Command
The SHOW/DEVICE command displays the following information:

• Name of the driver

• Starting virtual address of the driver (that is, the address of its DPT)

• Ending virtual address of the driver

• Generic device/controller name associated with the driver

• Addresses of the DDB, CRB, and IDB for the generic device/controller
supported by the driver

• Unit number and UCB address of each device unit associated with the driver

The SHOW/DEVICE command requires CMEXEC privilege.

12–11

Loading a Device Driver
12.2 Loading a Driver

Format
SHOW/DEVICE [=driver-name]

Parameter
driver-name
Name of the driver for which the information is to be displayed. If a driver name
is not specified, the command displays information about all drivers and devices
known to the system.

Example
SYSGEN> SHOW/DEVICE=TMDRIVER

__DRIVER___START____END___DEV___DDB______CRB______IDB_______UNIT___UCB

TMDRIVER 8009DF00 8009F020
MTA 800BA660 800BA6C0 800BA360

0 8009F020
1 8009F0C0

12.3 Loading Uniprocessing and Multiprocessing Drivers
In a multiprocessing environment, the presence of a device driver that does
not adhere to multiprocessing synchronization conventions might impair proper
system functions. The operating system takes steps to either prohibit the
enabling of multiprocessing in a VAX system that has such a driver present or
prevent the loading of such a driver if multiprocessing has already been enabled.

To accomplish this, the system driver-loading routine assumes that any driver
that can run in a multiprocessing environment uses the spinlock synchronization
macros and loads the appropriate I/O database fields. (See Section G.3 for
information on how to produce a driver that can execute in a multiprocessing
environment.) Use of the spinlock synchronization macros causes the operating
system to set the SMP-modified bit in the DPT (DPT$V_SMPMOD in DPT$L_
FLAGS).

If multiprocessing has not been enabled on the system, the driver-loading routine
checks the SMP-modified bit in the DPT and takes either of the following actions:

• If the SMP-modified bit is set, the driver-loading routine loads the driver
and calls its controller and unit initialization routines, as discussed in
Section 12.2.

• If the SMP-modified bit is not set, the driver-loading mechanism sets the
unmodified-driver bit (SMP$V_UNMOD_DRIVER) in SMP$GL_FLAGS, thus
prohibiting the subsequent enabling of multiprocessing on the system. It then
loads the driver and calls its controller and unit initialization routines. If
such a driver has been successfully loaded, you cannot subsequently enable
multiprocessing.

If multiprocessing is currently enabled on the system, the driver-loading
mechanism checks the SMP-modified bit in the DPT and takes either of the
following actions:

• If the SMP-modified bit is set, the driver-loading mechanism loads the driver
and calls its controller and unit initialization routines.

• If the SMP-modified bit is not set, the driver-loading mechanism does not load
the driver, returning the error status SS$_NONSMPDRV to its caller.

12–12

Loading a Device Driver
12.4 SYSGEN Autoconfiguration Facility

12.4 SYSGEN Autoconfiguration Facility
Traditionally, SYSGEN is invoked near the end of system initialization processing
during the execution of the system startup command procedure. This procedure
generally issues the SYSGEN command AUTOCONFIGURE ALL command,
the result of which is that SYSGEN scans various device tables to determine
devices that the operating system expects to be connected to each UNIBUS,
Q22–bus, MASSBUS, and VAXBI bus configured in the system. Ultimately,
as the autoconfigure facility discovers the data structures associated with the
devices recognized by the operating system, it loads the associated device drivers
and invokes their initialization routines.

To configure devices attached to the UNIBUS or Q22–bus, SYSGEN goes
through the steps described in subsequent sections of this chapter. Because
the autoconfigure facility cannot recognize non-Digital-supplied VAXBI devices,
the system startup procedure (or a later invocation of SYSGEN) must explicitly
request that SYSGEN connect the device.1 SYSGEN responds to such explicit
requests by utilizing the data structures created by the system adapter
initialization module for the unknown VAXBI device to load the associated
device driver and invoke its initialization routines.

SYSGEN automatically configures a UNIBUS or Q22–bus as follows:

• It initializes the base of floating space to 3008 and 7600108 for vectors and
CSRs, respectively.

• It tests fixed and floating CSR address space for all known Digital devices.

• When a device is found at a CSR, SYSGEN reserves floating CSR and vector
space for that device, if necessary.

• It searches for the name of the driver associated with the device by
checking the SYSGEN device table (shown in Table 12–2) and the directory
SYS$LOADABLE_IMAGES (or SYS$SYSTEM). If the driver has already
been loaded or exists as an image file in SYS$LOADABLE_IMAGES (or
SYS$SYSTEM), SYSGEN creates and initializes the I/O database for that
device and loads the driver’s image if necessary. If the device at the CSR is
supported by the operating system and SYSGEN cannot locate its associated
driver’s image, it generates an error message. If the device is unsupported
and has no corresponding driver’s image, SYSGEN ignores the condition.

12.4.1 SYSGEN Device Table
Digital-supplied devices are attached to the UNIBUS or Q22–bus according to the
following basic rules:

• A device of type A is always at a fixed and predefined CSR address; the device
always interrupts at a fixed and predefined vector address; only one example
of device A can be configured in each system.

• A device of type B is identical to type A except that 1 through n examples can
be configured in a single system. Examples 2 through n are also located at
fixed and predefined CSRs and vector addresses.

• Devices of type C (1 through n of them) are always at fixed and predefined
CSR addresses; however, the interrupt vector addresses vary according to
what other devices are present on the system.

1 Because the autoconfigure facility will never be called for a non-Digital-supplied device,
any unit delivery routine that a VAXBI device driver may include will never be called.

12–13

Loading a Device Driver
12.4 SYSGEN Autoconfiguration Facility

• Devices of type D (1 through n of them) are at CSR addresses and vector
addresses that vary according to what other devices are present on the
system.

CSR and vector addresses that vary are called floating addresses. The devices
must be located in floating CSR and vector space according to the order in which
the devices appear in the SYSGEN device table. This table, shown in Table 12–2,
lists all the type A and type B devices supported by the operating system.
It also lists the type C and type D devices that are recognized by SYSGEN’s
autoconfiguration procedure.

For UNIBUS and Q22–bus systems, the base of floating CSR space is 7600108.
CSR range 7641008 to 7677768 is reserved for Digital’s Customer Special Systems
(CSS) and for non-Digital-supplied devices. Reserved addresses 7660008 to
7667768 are recommended for customer third-party devices.

For UNIBUS and Q22–bus systems, the base of floating vector space is 3008. For
third-party devices, it is recommended that the vector assignment begin from the
top of floating vector space and work down toward its base.

Table 12–2 lists the characteristics of all devices recognized by SYSGEN. This
table indicates the following information for each device type:

• Device name

• Device controller name

• Interrupt vector

• Number of interrupt vectors per controller

• Vector alignment factor

• Address of the first device register for each controller recognized by SYSGEN.
(The first register is usually, but not always, the CSR.)

• Number of registers per controller

• Device driver name

• Indication of whether the driver is supported

Devices not listed in the SYSGEN device table include the following:

• Non-Digital-supplied devices with fixed CSR and vector addresses. These
devices have no effect on autoconfiguration. Customer-built devices should
be assigned CSR and vector addresses beyond the floating address space
reserved for Digital-supplied devices.

• Those Digital-supplied floating-vector devices that the AUTOCONFIGURE
command does not recognize. Use the CONNECT command to attach these
devices to the system.

12–14

Loading a Device Driver
12.4 SYSGEN Autoconfiguration Facility

Table 12–2 SYSGEN Device Table

Device
Name

Controller
Name Vector

Number
of
Vectors

Vector
Alignment CSR/Rank

Register
Alignment Driver Name Support

CR CR11 230 1 — 777160 — CRDRIVER Yes

DM RK611 210 1 — 777440 — DMDRIVER Yes

LP LP11 200
170
174
270
274

— — 777514
764004
764014
764024
764034

— LPDRIVER Yes

DL RL11 160 1 — 774400 — DLDRIVER Yes

MS TS11 224 1 — 772520 — TSDRIVER Yes

DY RX211 264 1 — 777170 — DYDRIVER Yes

DQ RB730 250 1 — 775606 — DQDRIVER Yes

PU UDA 154 1 — 772150 — PUDRIVER Yes

PT TU81 260 1 — 774500 — PUDRIVER Yes

XE UNA 120 1 — 774510 — XEDRIVER Yes

XQ QNA 120 1 — 774440 — XQDRIVER Yes

OM DC11 Float 2 8 774000
774010
774020
774030
.
.
.
32 units
maximum

— OMDRIVER No

DD TU58 Float 2 8 776500
776510
776520
776530
.
.
.
16 units
maximum

— DDDRIVER Yes

OB DN11 Float 1 4 775200
775210
775220
775230
.
.
.
16 units
maximum

— OBDRIVER No

YM DM11B Float 1 4 770500
770510
770520
770530
.
.
.
16 units
maximum

— YMDRIVER No

(continued on next page)

12–15

Loading a Device Driver
12.4 SYSGEN Autoconfiguration Facility

Table 12–2 (Cont.) SYSGEN Device Table

Device
Name

Controller
Name Vector

Number
of
Vectors

Vector
Alignment CSR/Rank

Register
Alignment Driver Name Support

OA DR11C Float 2 8 767600
767570
767560
767550
.
.
.
16 units
maximum

— OADRIVER No

PR PR611 Float 1 8 772600
772604
772610
772614
.
.
.
8 units
maximum

— PRDRIVER No

PP PP611 Float 1 8 772700
772704
772710
772714
.
.
.
8 units
maximum

— PPDRIVER No

OC DT11 Float 2 8 777420
777422
777424
777426
.
.
.
8 units
maximum

— OCDRIVER No

OD DX11 Float 2 8 776200
776240

— ODDRIVER No

YL DL11C Float 2 8 775610
775620
775630
775640
.
.
.
31 units
maximum

— YLDRIVER No

YJ DJ11 Float 2 8 Float 8 YJDRIVER No

YH DH11 Float 2 8 Float 16 YHDRIVER No

OE GT40 Float 4 8 772000
772010

— OEDRIVER No

LS LPS11 Float 6 8 770400 — LSDRIVER No

OR DQ11 Float 2 8 Float 8 ORDRIVER No

(continued on next page)

12–16

Loading a Device Driver
12.4 SYSGEN Autoconfiguration Facility

Table 12–2 (Cont.) SYSGEN Device Table

Device
Name

Controller
Name Vector

Number
of
Vectors

Vector
Alignment CSR/Rank

Register
Alignment Driver Name Support

OF KW11W Float 2 8 772400 — OFDRIVER No

XU DU11 Float 2 8 Float 8 XUDRIVER No

XV DV11 Float 3 8 775000
775040
775100
775140

— XVDRIVER No

OG LK11 Float 2 8 Float 8 OGDRIVER No

XM DMC11 Float 2 8 Float 8 XMDRIVER Yes

TTA DZ11 Float 2 8 Float 8 DZDRIVER Yes

XK KMC11 Float 2 8 Float 8 XKDRIVER No

OH LPP11 Float 2 8 Float 8 OHDRIVER No

OI VMV21 Float 2 8 Float 8 OIDRIVER No

OJ VMV31 Float 2 8 Float 16 OJDRIVER No

OK DWR70 Float 2 8 Float 8 OKDRIVER No

DL RL11 Float 1 4 Float 8 DLDRIVER Yes

MS TS11 Float 1 4 772524
772530
772534

— TSDRIVER Yes

LA LPA11 Float 2 8 770460 — LADRIVER Yes

LA LPA11 Float 2 8 Float 16 LADRIVER Yes

OL KW11C Float 2 8 Float 8 OLDRIVER No

DY RX211 Float 1 4 Float 8 DYDRIVER Yes

XA DR11W Float 1 4 Float 8 XADRIVER Yes

XB DR11B 124 — — 772410 — XBDRIVER No

XB DR11B Float 1 4 772430 — XBDRIVER No

XB DR11B Float 1 4 Float 8 XBDRIVER No

XD DMP11 Float 2 8 Float 8 XDDRIVER Yes

ON DPV11 Float 2 8 Float 8 ONDRIVER No

IS ISB11 Float 2 8 Float 8 ISDRIVER No

XD DMV11 Float 2 8 Float 16 XDDRIVER No

XE UNA Float 1 4 Float 8 XEDRIVER No

XQ QNA Float 1 4 774460 — XQDRIVER Yes

PU UDA Float 1 4 Float 4 PUDRIVER Yes

XS KMS11 Float 3 8 Float 16 XSDRIVER No

XP PCL11 Float 2 8 764200
764240
764300
764340

— XPDRIVER No

VB VS100 Float 1 4 Float 16 VBDRIVER No

PT TU81 Float 1 4 Float 4 PUDRIVER Yes

(continued on next page)

12–17

Loading a Device Driver
12.4 SYSGEN Autoconfiguration Facility

Table 12–2 (Cont.) SYSGEN Device Table

Device
Name

Controller
Name Vector

Number
of
Vectors

Vector
Alignment CSR/Rank

Register
Alignment Driver Name Support

OQ KMV11 Float 2 8 Float 16 OQDRIVER No

UK KCT32 Float 2 8 764400
764440
764500
764540

— UKDRIVER No

IX IEQ11 Float 2 8 764100 — IXDRIVER No

TX DHV11 Float 2 8 Float 16 YFDRIVER Yes

DT TC11 214 1 — 777340 — DTDRIVER No

VC VCB01 Float 2 1 777200 — VCDRIVER Yes

VC VCB01 Float 2 1 Float 64 VCDRIVER Yes

OT LNV11 Float 1 4 776200 — OTDRIVER No

LD LNV21 Float 1 4 Float 16 LDDRIVER No

ZQ QTA Float 1 4 772570 — ZQDRIVER No

ZQ QTA Float 1 4 Float 8 ZQDRIVER No

SJ DSV11 Float 1 4 Float 8 SJDRIVER No

OU ADV11C Float 2 8 Float 8 OUDRIVER No

OV AAV11 Float 0 8 770440 — OVDRIVER No

OV AAV11C Float 0 8 Float 8 OVDRIVER No

AX AXV11C 140 2 — 776400 — AXDRIVER No

AX AXV11C Float 2 8 Float 8 AXDRIVER No

KZ KWV11C Float 2 8 770420 — KZDRIVER No

KZ KWV11C Float 2 8 Float 4 KZDRIVER No

AZ ADV11D Float 2 8 776410 — AZDRIVER No

AZ ADV11D Float 2 8 Float 4 AZDRIVER No

AY AAV11D Float 2 8 776420 — AYDRIVER No

AY AAV11D Float 2 8 Float 4 AYDRIVER No

VA VCB02 Float 3 16 777400
777402
777404
777406
.
.
.
8 units
maximum

— VADRIVER Yes

DN DRV11J Float 16 4 764160
764140
764120

— DNDRIVER No

HX DRQ3B Float 2 8 Float 16 HXDRIVER No

VQ VSV24 Float 1 4 Float 8 VQDRIVER No

VV VSV21 Float 1 4 Float 8 VVDRIVER No

BQ IBQ01 Float 1 4 Float 8 BQDRIVER No

(continued on next page)

12–18

Loading a Device Driver
12.4 SYSGEN Autoconfiguration Facility

Table 12–2 (Cont.) SYSGEN Device Table

Device
Name

Controller
Name Vector

Number
of
Vectors

Vector
Alignment CSR/Rank

Register
Alignment Driver Name Support

UT MIRA Float 2 8 Float 8 UTDRIVER No

IX IEQ11 Float 2 8 Float 16 IXDRIVER No

AW ADQ32 Float 2 8 Float 32 AWDRIVER No

VX DTC04 Float 2 8 Float 2 VXDRIVER No

CQ DESNA Float 1 4 Float 32 CQDRIVER No

GQ IGQ11 Float 2 8 Float 4 GQDRIVER No

RS KMV1F Float 2 8 Float 32 RSDRIVER No

SD DIV32 Float 1 8 Float 4 SDDRIVER No

VN DTCN5 Float 2 8 Float 4 VNDRIVER No

VM DTCO5 Float 2 8 Float 4 VMDRIVER No

UJ KWV32 Float 2 8 Float 8 UJDRIVER No

PK QZA Float 1 4 Float 64 PKIDRIVER Yes

12.4.2 Device Driver Control of Autoconfiguration
The SYSGEN autoconfiguration facility provides two features that drivers can use
to control the automatic configuration of the devices they operate. These features
are invoked through the defunits and deliver arguments to the DPTAB macro.

The defunits argument to the DPTAB macro specifies a default number of
units to be configured on each controller. The DPTAB macro copies this value
to the DPT$W_DEFUNITS field in the DPT. The SYSGEN autoconfiguration
facility reads this field and creates UCBs numbered zero through the default unit
number minus one. The default value of defunits is 1.

The deliver argument to the DPTAB macro specifies the address of a driver-
specific unit delivery routine. An offset to this routine is stored in the DPT$W_
DELIVER field in the DPT. When the deliver argument is present, the SYSGEN
autoconfiguration facility calls the unit delivery routine once for each unit, the
number of which is specified in the defunits argument.

The unit delivery routine prevents the creation of UCBs for devices that do not
respond to a test for their presence.

If the unit delivery routine returns a true status in R0, the unit is configured.
If the status in R0 is false, the autoconfiguration facility does not configure the
device. If the deliver argument is not used, the unit delivery feature is disabled.

SYSGEN calls the unit delivery routine with a JSB instruction in the following
context:

• Interrupt priority level is at IPL$_POWER.

• R0 through R2 are available for use.

• R3 contains the address of the IDB, if one exists. If none exists, the value
contained in R3 is zero.

• R4 contains the address of the CSR for the controller.

• R5 contains the number of the unit that the routine must decide whether or
not to configure.

12–19

Loading a Device Driver
12.4 SYSGEN Autoconfiguration Facility

• R6 contains the base address of UNIBUS adapter I/O space.

• R7 contains the address of the configuration control block (ACF).

• R8 contains the address of the ADP.

The configuration control block (ACF) is described in the OpenVMS VAX Device
Support Reference Manual.

A driver may or may not specify a unit delivery routine. For instance, the DZ11’s
device driver specifies 8 as the default unit number, but provides no routine to
configure eight terminal units automatically for each DZ11’s CSR. The RK611
device driver specifies 8 as the default number of units and also specifies the
address of a unit delivery routine that is called once for each of the eight possible
devices on the controller.

12.4.3 Floating-Vector Address Calculation
To calculate the floating-vector address of a device, SYSGEN rounds the current
floating-vector base (CFVB) up to the next valid vector address boundary for the
next device in the table.

If a device is present, SYSGEN reserves floating-vector space for the device by
computing a new CFVB:

CFVB + (4 * number-of-vectors)! CFVB

12.4.4 Floating-CSR Address Calculation
To calculate the floating CSR address of a device, SYSGEN rounds the current
floating CSR base (CFCB) up to the next valid floating CSR address. Floating
CSR addresses must be on a word boundary.

SYSGEN tests the CSR address (CFCB) for the next device in the device table
by executing a TSTW instruction on the address and noting whether there is a
response at that address.

If the device is present, SYSGEN reserves floating CSR address space for the
device by computing a new CFCB:

CFCB + bytes-in-register-set ! CFCB

When all devices of a particular type have been located and their floating CSR
space reserved, SYSGEN reserves an extra block of CSR space to indicate a
change to a new device type:

CFCB + 2 ! CFCB

If the device is not present, SYSGEN reserves an extra block of CSR space to
indicate a change to a new device type by adding two to the rounded CFCB:

CFCB + 2 ! CFCB

12.4.5 Rules for Configuration
The formulas described in Sections 12.4.3 and 12.4.4 reduce to the following rules:

• Devices with fixed CSR addresses and fixed vector addresses must be attached
according to the SYSGEN device table settings.

• Devices with floating CSR or vector addresses must be attached in the order
in which they are listed in the SYSGEN device table.

• A 2-byte gap must be reserved between each device type located in floating
CSR address space.

12–20

Loading a Device Driver
12.4 SYSGEN Autoconfiguration Facility

• A 2-byte gap must be reserved in floating CSR address space for each device
type that has no controller in its configuration.

• An extra 2-byte gap must be reserved between the KW11C and the RX11 in
floating CSR address space.

When assigning floating-vector addresses and registers to devices not supplied
by Digital, be sure to leave a generous gap between these addresses and those of
devices in the table because future system maintenance updates might add new
devices to the SYSGEN device table.2

2 UNIBUS addresses 7660008 through 7677768 are available for non-Digital-supplied
devices.

12–21

13
Debugging a Device Driver

DELTA and XDELTA are debugging tools that can be used to monitor the
execution of user programs and the operating system. When you link DELTA
with a user image that runs in a nonprivileged process, DELTA is a user-mode
debugging tool. When run in a privileged process, however, DELTA acts as a
multimode debugger; it allows you to debug in user mode or to change to kernel
mode for debugging. However, DELTA does not support debugging at elevated
interrupt priority levels (IPLs).

XDELTA is syntactically identical to DELTA but also allows you to debug code
that executes at an elevated IPL. XDELTA is used for standalone debugging of
driver code and the executive.

This chapter primarily describes the use of XDELTA as a tool for debugging an
executing driver image.

The chapter includes discussions of two additional topics:

• Detection and analysis of driver errors in a multiprocessing system

• Detection of corruption in nonpaged pool and the ways in which the
corrupting code can be discovered

These topics supplement information presented in the OpenVMS VAX System
Dump Analyzer Utility Manual.

13.1 Bootstrapping the System with XDELTA
Under OpenVMS VAX, drivers are part of the operating system. You normally
bootstrap the system with two boot flags set to allow you to debug with XDELTA.
One flag causes the bootstrapping procedure to include XDELTA in the system.
The other boot flag indicates a stop at the breakpoint at the beginning of system
initialization. (The BREAKPOINTS system parameter, by default, enables a
breakpoint at the end of system initialization. See Section 13.2 for additional
information.) Table 13–1 describes the possible values of these flags. Following
a boot that includes XDELTA, executing a BPT instruction causes control to
transfer to a fault handler located in XDELTA.

13–1

Debugging a Device Driver
13.1 Bootstrapping the System with XDELTA

Table 13–1 Boot Flags That Control the Loading of XDELTA

Flag
Value (f) Meaning

0 Normal nonstop bootstrap (default)

1 Stop in SYSBOOT (equivalent to @DxyGEN on the VAX–11/780)

2 Include XDELTA with the system but do not take the initial breakpoint

6 Include XDELTA with the system and take the initial breakpoint

7 Include XDELTA with the system, stop in SYSBOOT and take the
initial breakpoint at system initialization (equivalent to @DxyXDT on
the VAX–11/780)

The procedures for bootstrapping the system with XDELTA differ depending
upon the system on which the operating system is running. Some VAX systems
that use a console block storage device supply a special boot command file
that automatically includes XDELTA in the system and causes the processor
to stop in SYSBOOT and take the initial breakpoint at system initialization.
When booting other systems, you must specify the appropriate flag value in the
BOOT command. Table 13–2 lists some recommended methods for booting with
XDELTA. See your system’s installation and operations guides for additional
information.

Table 13–2 Recommended Methods for Bootstrapping with XDELTA

Boot Commands Explanation

VAX 9000 Series Systems

B[/R5:f]
[/XMI:xmi_info]
[/BI:vaxbi_node_id]
devname

B is the console BOOT command. The flags (f) parameter is a 32-bit
hexadecimal integer loaded into R5 as input to VMB9AQ.EXE, the primary
bootstrap program. See the XDELTA boot flags in Table 13–1 for a list of its
possible values.

Specify xmi_info using the XMI number and XMI node number (both in
hexadecimal) of the node being accessed. The XMI bus number defaults to
zero. The hexadecimal number that you specify with this qualifier must be in
the format xy, where x is the XMI bus number and y is the XMI node number.

Specify devname in the format ddduuu and the VAXBI node ID of the device
in the /BI qualifier. (You can substitute a symbolic name for these qualifiers
as discussed in your system-specific operations guide.)

The console passes the specified unit number (uuu) to the procedure
dddBOO.CMD. If you do not specify devname, the console executes
DEFBOO.CMD.

The following example bootstraps a VAX 9000 system from the boot disk (unit
0) at node 3 of the VAXBI bus at node 11 (C16) of the XMI0 bus.1

>>> B/R5:7/XMI:C/BI:3 KDM0
SYSBOOT>
SYSBOOT> CONTINUE

1At the SYSBOOT prompt, enter other required SYSBOOT commands and conclude the boot operation with a
CONTINUE command. If you do not set or load system parameters with a USE command, the system uses
parameters stored in the system image. To prevent the system from automatically rebooting after a bugcheck, clear
the BUGREBOOT system parameter.

(continued on next page)

13–2

Debugging a Device Driver
13.1 Bootstrapping the System with XDELTA

Table 13–2 (Cont.) Recommended Methods for Bootstrapping with XDELTA

Boot Commands Explanation

VAX 6000 Series Systems

B /R5:f [bootspec] B is the console BOOT command. The flags (f) parameter is a 32-bit
hexadecimal integer loaded into R5 as input to VMB.EXE, the primary
bootstrap program. See the XDELTA boot flags in Table 13–1 for a list of
its possible values.

The bootspec may indicate a specific boot path using explicit /XMI and /BI
qualifiers, or it may be a symbolic name for qualifiers which you previously
specified for your VAX 6000 series configuration. Refer to your system-specific
operations guide for more information on booting and the boot specifications.

If you do not currently use R5 in any boot specification, use the values in the
XDELTA boot flag table for R5. For example, to boot from the boot disk at
VAXBI node 4 through the DWMBA adapter at XMI node E, load XDELTA,
stop in SYSBOOT, and take the initial breakpoint (R5=7) as follows:

>>> B/R5:7 /XMI:E /BI:4 DU1
SYSBOOT>

If you have previously specified a /R5 qualifier value for your VAX 6000 series
configuration, you must logically OR this value with one from the XDELTA
boot table. For example, if you have a boot alias SYS1 defined to boot from
system root SYS1, your boot specification might result as follows:

>>> SHOW BOOT
SYS1 /XMI:E/BI:4/R5:10000000

For the XDELTA boot, you must then OR the values from the XDELTA
boot flag table with your existing R5 specification. If you take the initial
breakpoint, in this example, specify the following:

>>> B SYS1 /R5:10000006

VAX 8600/8650 Systems

@DU0XDT Use DU0XDT.COM, if available on the console media, according to the method
described for the VAX–11/780. Otherwise, perform a normal bootstrap using
the available dduGEN.COM or dduBOO.COM according to the following
method:

Use the /NOSTART qualifier in the BOOT command to cause the processor to
pause and await console commands after it boots. After a variety of progress
messages are displayed, the console prompt reappears. First, determine a
value for the flag that controls XDELTA loading (see Table 13–1). Then,
examine the current value of R5; if it is nonzero (for instance, it is the system
root number), perform an inclusive-OR operation upon it and your selected
XDELTA flag value.1

>>> BOOT/NOSTART
>>> EXAMINE R5
>>> DEPOSIT R5 7
>>> CONTINUE
SYSBOOT>
SYSBOOT> CONTINUE

1At the SYSBOOT prompt, enter other required SYSBOOT commands and conclude the boot operation with a
CONTINUE command. If you do not set or load system parameters with a USE command, the system uses
parameters stored in the system image. To prevent the system from automatically rebooting after a bugcheck, clear
the BUGREBOOT system parameter.

(continued on next page)

13–3

Debugging a Device Driver
13.1 Bootstrapping the System with XDELTA

Table 13–2 (Cont.) Recommended Methods for Bootstrapping with XDELTA

Boot Commands Explanation

VAX 7000 Series and VAX 10000 Series Systems

B -FL f devname B is the console BOOT command. The flags (f) parameter is a 48-bit
hexadecimal integer passed as input to VMB.EXE, the primary bootstrap
program. See the XDELTA boot flags in Table 13–1 for a list of its possible
values.

Using the format ddcu for devname, specify the name of the device that
contains the volume to be bootstrapped. You must supply both controller (c)
and unit (u) identifiers; there are no defaults.

If you have previously specified a flags qualifier value for your VAX 7000 series
or VAX 10000 series configuration, you must logically OR this value with one
from the XDELTA boot table. For example, if you have specified a boot from
system root SYS1, your boot specification might be as follows:

>>> SHOW *BOOT*

boot_file
boot_osflags 0,1,0
boot_reset ON
bootdef_dev dual
booted_dev
booted_file

For the XDELTA boot, you must then OR the values from the XDELTA
boot flag table with your existing flags specification. If you take the initial
breakpoint, in this example, specify the following:

>>> B -FL 6

VAX–11/730 Systems

@DQAXDT
@DQ0XDT

Use either DQAXDT.CMD or DQ0XDT.CMD, depending upon the boot device.
The following example boots from DQA1, first depositing the value 1 in
R3. When the boot device is DQA0, you can omit this step and execute
DQ0XDT.COM.1

>>> D/G/L 3 1
>>> @DQAXDT
SYSBOOT>
SYSBOOT> CONTINUE

MicroVAX/VAXstation Systems and VAX–11/7502 Systems

1At the SYSBOOT prompt, enter other required SYSBOOT commands and conclude the boot operation with a
CONTINUE command. If you do not set or load system parameters with a USE command, the system uses
parameters stored in the system image. To prevent the system from automatically rebooting after a bugcheck, clear
the BUGREBOOT system parameter.
2The console TU58 of the VAX–11/750 system contains command files (DMAXDT.CMD and DBAXDT.CMD) analogous to
those supplied for the VAX–11/780. See your system’s installation and operations guides for additional information.

(continued on next page)

13–4

Debugging a Device Driver
13.1 Bootstrapping the System with XDELTA

Table 13–2 (Cont.) Recommended Methods for Bootstrapping with XDELTA

Boot Commands Explanation

MicroVAX/VAXstation Systems and VAX–11/7502 Systems

B[/f] devname B is the console BOOT command. The flags (f) parameter is a 32-bit
hexadecimal integer loaded into R5 as input to VMB.EXE, the primary
bootstrap program. See Table 13–1 for a list of its possible values.

Using the format ddcu, specify the name of the device that contains the
volume to be bootstrapped. You must supply both controller (c) and unit (u)
identifiers; there are no defaults. If you omit devname, the f parameter is
ignored.

The following example bootstraps a MicroVAX II system from DUA0:1

>>> B/7 DUA0
SYSBOOT>
SYSBOOT> CONTINUE

1At the SYSBOOT prompt, enter other required SYSBOOT commands and conclude the boot operation with a
CONTINUE command. If you do not set or load system parameters with a USE command, the system uses
parameters stored in the system image. To prevent the system from automatically rebooting after a bugcheck, clear
the BUGREBOOT system parameter.
2The console TU58 of the VAX–11/750 system contains command files (DMAXDT.CMD and DBAXDT.CMD) analogous to
those supplied for the VAX–11/780. See your system’s installation and operations guides for additional information.

13.2 Proceeding from the Initial Breakpoints
Before stopping at any breakpoints that may be defined in driver code, the VAX
processor can stop at either or both of two breakpoints in system initialization.

The breakpoint at the end of system initialization is enabled by the default
setting of the BREAKPOINTS system parameter. The breakpoint at the
beginning is enabled by the appropriate value of the boot flag as described in
Table 13–1.

After being bootstrapped, the system displays its welcoming message and halts in
XDELTA, as follows:

1 BRK AT nnnnnnnn
address/NOP

XDELTA is waiting for input. (XDELTA never issues explicit prompts.) Usually,
you proceed from this point with the following command:

;P Return

All of the XDELTA commands are described in Section 13.10 and in the OpenVMS
Delta/XDelta Debugger Manual.

If the operating system halts with a fatal bugcheck, the system prints the
bugcheck information on the console terminal. Then, because the BUGREBOOT
system parameter is clear, XDELTA prompts. Bugcheck information consists of
the following:

• Type of bugcheck

• Register values

• Dump of one or more stacks

13–5

Debugging a Device Driver
13.2 Proceeding from the Initial Breakpoints

PC and stack content indicate how an experimental driver crashed the system.
You can then examine the system state further by issuing XDELTA commands.

13.3 Loading the Driver
Once the system is running, you can log in to the system as the system manager
and load the experimental driver.

To load the driver, run SYSGEN and issue the appropriate LOAD and CONNECT
commands. Example 13–1 provides a sample dialogue.

The first SHOW command in Example 13–1 causes SYSGEN to display the
location of the device driver in system memory. You then define the device to the
operating system. The second SHOW command causes SYSGEN to display the
driver’s location and the addresses of the device’s DDB, CRB, IDB, and UCB.

Example 13–1 Loading a Driver

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> LOAD DMA0:[YOUR.DIRECTORY]YRDRIVER.EXE
SYSGEN> SHOW /DEVICE=YRDRIVER

__Driver_____Start____End____Dev___DDB______CRB______IDB_____Unit__UCB____
YRDRIVER 80060E50 80061070
SYSGEN> CONNECT YR /ADAP=3/VEC=%O274/CSR=%O776240
SYSGEN> SHOW /DEVICE=YRDRIVER

__Driver_____Start____End____Dev___DDB______CRB______IDB_____Unit__UCB____
YRDRIVER 80060E50 80061070

YRA 8005FDC0 80060B70 8005FE00
0 80060BB0

SYSGEN> EXIT

13.4 Inserting Breakpoints in Driver Source Code
The SYSGEN command CONNECT calls controller initialization and unit
initialization routines. To begin debugging the driver, you should ensure that the
kernel-mode debugging utility XDELTA gains control of the driver before these
routines execute. This is accomplished by placing one or more calls to the special
system routine INI$BRK within the source code of either the controller or unit
initialization routine. To call INI$BRK, use the following instruction:

JSB G^INI$BRK

The INI$BRK routine contains two instructions:

BPT
RSB

When the processor executes the BPT instruction, XDELTA gains control and
reports the address of the breakpoint:

1 BRK AT nnnnnnnn

You can use INI$BRK as a debugging tool and place calls to it within any part of
the driver source code.

13–6

Debugging a Device Driver
13.4 Inserting Breakpoints in Driver Source Code

To determine the last driver PC before the breakpoint, examine the kernel stack.
The stack register is register RE (hexadecimal format):

RE/address /address

Display RE to find the address of the top of the stack. Another display command
(/) reveals the contents of the top of the stack, which should be the return
address to the driver that called INI$BRK.

13.5 Calculating the Base of Driver Code
Before you debug the driver, you should calculate the base address of driver code,
as follows:

1. Run SYSGEN and issue the SHOW/DEVICE command. The resulting display
lists the location in nonpaged pool at which SYSGEN loaded the driver.

2. Consult the loadmap for the driver (obtained at driver link time). Driver code
resides in two program sections (PSECTs):

$$$105_PROLOGUE driver prologue table

$$$115_DRIVER driver code

The locations given in the driver code listing are offsets from $$$115_
DRIVER. Thus, you can calculate the base address of the driver by adding
the address at which the driver was loaded to the offset associated with the
PSECT $$$115_DRIVER shown in the map.

If you do not have the loadmap, consult the driver prologue table in the driver
listing. Look for the address of DPT_STORE_END, which generates a 2-byte
entry that terminates the DPT. To get the base address of driver code, add the
address of DPT_STORE_END + 2 to the address at which the driver was loaded.
You can set an XDELTA base register to the base of driver code; Section 13.8
describes this procedure.

13.6 Requesting an XDELTA Software Interrupt
Once the controller and unit initialization routines complete execution, you will
need to set breakpoints in order to debug the driver. You can set a breakpoint in
the driver source code by inserting calls to INI$BRK, as described in Section 13.4.

Note that, in a multiprocessing system, only one processor can be in XDELTA
at a time. If a processor encounters a breakpoint while another processor is in
XDELTA, it too must wait until the current processor exits from XDELTA. When
it does, this processor again executes the instruction that caused it to attempt
to enter XDELTA. If the processor previously in XDELTA did not delete the
breakpoint, this processor now enters XDELTA. If the processor previously in
XDELTA did remove the breakpoint, this processor does not enter XDELTA.

You can also invoke XDELTA to set breakpoints interactively by requesting an
XDELTA software interrupt.

The procedures described in Table 13–3 issue a software interrupt to a single
processor at IPL 14.

On the processor requesting the XDELTA interrupt, the interrupt service routine
at IPL 14 handles the interrupt by calling the routine INI$BRK, which in turn,
executes the first XDELTA breakpoint. XDELTA then issues this message:

13–7

Debugging a Device Driver
13.6 Requesting an XDELTA Software Interrupt

1 BRK AT nnnnnnnn
address/NOP

In a multiprocessing system, if another processor attempts to enter XDELTA at
this time, it must wait until the processor currently in XDELTA exits.

Table 13–3 Requesting an XDELTA Software Interrupt

System Boot Commands

VAX 9000
$ Ctrl/P

>>> HALT
>>> D/I 14 E
>>> C

VAX 7000
VAX 10000 $ Ctrl/P

>>> D SIRR E
>>> C

VAX 85x0/8700/88x01

VAX 6000 Series2

VAXstation 3520/35403
$ Ctrl/P

>>> HALT
>>> D/I 14 E
>>> C

VAX 8600/86502

$ Ctrl/P

>>> HALT
>>> D/I 14 E
>>> C

VAX 82x0/83x0
VAX–11/750
VAX–11/7302

$ Ctrl/P

>>> D/I 14 E
>>> C

VAX–11/780
VAX–11/785 $ Ctrl/P

>>> HALT
>>> DEPOSIT/I 14 E
>>> CONTINUE

MicroVAX Systems2 Press and release the Halt button on the CPU
control panel, or press the Break key (if enabled) on
the console terminal. Then issue these commands:

>>> D/I 14 E
>>> C

1Note that the console prompt for the VAX 8810/8820/8830 systems is PS-CIO-0> and not >>>.
2These VAX systems accept only 1-character console commands.
3Note that command C for VAXstation 3520/3540 systems will only continue the primary processor. To
continue all processors, use command C/ALL.

13–8

Debugging a Device Driver
13.7 Examining the Vector-Jump Table

13.7 Examining the Vector-Jump Table
To gain familiarity with the I/O database, you might want to look for the
address of the location in the channel request block (CRB) that contains a
JSB instruction to the driver’s interrupt service routine. You can do this at
a controller initialization breakpoint because one of the inputs is the IDB
address. The procedures for locating the driver interrupt service routine on
non-direct-vector and direct-vector adapters follow.

Non-Direct-Vector Procedure
R5/IDB-address Q+10/ADP-address
Q+10/vector-table-address
Q+vector-address-in-hex/address-of-JSB-instruction-in-CRB
Q!JSB-instruction

Direct-Vector Procedure
R5/IDB-address Q+10/ADP-address
Q+10/vector-table-address
Q+vector-address-in-hex+2/address-of-JSB-instruction-in-CRB
Q!JSB-instruction

Finding the address of the driver’s interrupt service routine at the expected
vector does not guarantee that an interrupt from the device will dispatch to the
driver’s interrupt service routine. If the device’s physical vector is set to some
other address, an interrupt from the device can dispatch to some other interrupt
service routine, or dispatch to an unassigned vector.

See the SYSGEN device table shown in Table 12–2 for a list of vectors. Consult
Digital customer service for help with any problem similar to the one described
above.

13.8 Setting an XDELTA Base Register
During a driver debugging session, you can use an XDELTA relocation register as
a base from which to examine driver code and set breakpoints within the driver.
Use one of the methods outlined in Section 13.5 to determine the base address of
driver code, then set a relocation register by issuing the following command:

driver-base-address,0;X Return

This command sets relocation register X0 to the base of driver code. Now you can
examine offsets into the code using X0 as a base:

X0 + offset/nnnnnnnn

or

X0 + offset!instruction

XDELTA also uses the base register to display address values in the base register
plus offset format. Suppose, for example, that your driver contains the following
code:

50 81 90 00D3 132 10$: MOVB (R1)+,R0
10 13 00D6 133 BEQL 20$

20 50 91 00D8 134 CMPB R0,#^A/ /
F6 19 00DB 135 BLSS 10$

7A 8F 50 91 00DD 136 CMPB R0,#^A/Z/
F0 14 00E1 137 BGTR 10$

82 50 90 00E3 138 MOVB R0,(R2)+
EB 11 00E6 139 BRB 10$

13–9

Debugging a Device Driver
13.8 Setting an XDELTA Base Register

If base register 0 contains the base address of your driver, the following XDELTA
dialogue is possible:

X0+D3,X0+E6! X0+D3/MOVB (R1)+,R0
X0+D6/BEQL X0+E8
X0+D8/CMPB R0,#20
X0+DB/BLSS X0+D3
X0+DD/CMPB R0,#7A
X0+E1/BGTR X0+D3
X0+E3/MOVB R0,(R2)+
X0+E6/BRB X0+D3

To set breakpoints in driver code, use the following command:

X0 + offset;B Return

To display a driver instruction and set a breakpoint, add the instruction’s offset
to the base register. For example:

X0+1C!instruction .;B Return

The last XDELTA command sets a breakpoint at the displayed location. See
Section 13.10 or the OpenVMS Delta/XDelta Debugger Manual for a detailed
discussion of XDELTA commands.

13.9 Examining the UCB, IRP, or PSL
In addition to using XDELTA to debug drivers, you can also examine the contents
of the UCB and the associated IRP.

It is also useful to examine the contents of the PSL at the time of a system
failure. The PSL, for example, indicates the IPL at the time. When the system
fails, it prints the PSL and other register contents on the console terminal.

While the system is running, the following command can be used to examine the
PSL in XDELTA:

RF+4/

The PSL location is stored in the longword following the PC.

13.10 XDELTA Commands
Table 13–4 summarizes XDELTA commands. The sections that follow this table
describe the commands.

Table 13–4 XDELTA Command Summary

Command Function

Set Display Mode

[B Set byte mode

[W Set word mode

[L Set longword mode

[I Set instruction mode

" Set ASCII mode

(continued on next page)

13–10

Debugging a Device Driver
13.10 XDELTA Commands

Table 13–4 (Cont.) XDELTA Command Summary

Command Function

Set and Proceed from Breakpoint

;P Proceed from breakpoint

;B Set/clear/display breakpoint

Open, Examine, and Close Location

/ Open location (display contents in current mode)

! Open location (display contents as instructions)

Return Close current location

Crtl/J Close current location; open next

Tab Open location specified by current value

Crtl/3 Display previous location

Deposit in Location

’string’ Deposit string at current location, autoincrementing the current
location symbol (.). Every carriage-return and line-feed character
typed will be stored. An apostrophe (’) terminates the string.

Step, Set Location, and Execute Code

S Execute one instruction, step into subroutine call

O Execute one instruction, step over subroutine call (on CALLx, JSB, or
BSBx instruction)

;G Go to location and proceed

;E Execute command string at location

Special Symbols

, Field separator

Q Last quantity displayed

= Display value of expression; set Q

Xn Base register n

;X Set base register

Rn Register n

Pn Processor register n

G Add ^X80000000 to subsequent or preceding value

H Add ^X7FFE0000 to subsequent or preceding value

. Current location

(continued on next page)

13–11

Debugging a Device Driver
13.10 XDELTA Commands

Table 13–4 (Cont.) XDELTA Command Summary

Command Function

Operators

+ Add

– Subtract

(space) Add

* Multiply

@ Shift

% Divide

Miscellaneous

;L List names and locations of loaded executive images

13.10.1 Values and Expressions
All numeric values are interpreted in hexadecimal radix. Expressions are strings
of alternating values and binary operators, where the first and last items in the
string are always values, as in the following example:

G4A32 + 24 - .

XDELTA evaluates expressions from left to right with no precedence, and ignores
trailing operators. To display the value of an expression, use the XDELTA Show
Value (=) command with the syntax that follows:

Syntax
expression=value-of-expression

Type an expression followed by an equal sign (=). The expression can be
composed of a series of values and operators from the set of operators listed
in the command summary. XDELTA shows the value of the expression according
to the current display data type. The last quantity (Q) is set to the value of the
computed expression.

13.10.2 Special Symbols
XDELTA defines the following special symbols:

Symbol Definition

. Current location; set by slash (/), exclamation point (!), and Tab
operations.

Q Last quantity displayed; you can also change this value by using the Show
Value (=) command described in Section 13.10.1.

X0–XF Base registers; used for remembering values. Set base registers by means
of the Set Base Register command (;X) described in Sections 13.8 and
13.10.2.3. XDELTA, by default, stores special values in base registers
X4 and X5 that help reference the process control block of the current
process (see Section 13.10.2.1). Also, XDELTA initializes XE and XF with
special commands that help reference page frame numbers, as described in
Section 13.10.2.2.

R0–RF General register names.

13–12

Debugging a Device Driver
13.10 XDELTA Commands

Symbol Definition

P0–Pnn Internal processor registers.

RF+4 Processor status longword (PSL).

G ^X80000000; prefix for system space addresses; for example, G2E is
equivalent to ^X8000002E.

H ^X7FFE0000; prefix for control region prefix; for example, H2E is
equivalent to ^X7FFE002E.

13.10.2.1 Stored Base Registers
XDELTA defines two base registers useful in system debugging: X4 and X5. Base
register X4 contains the address of the location that contains the address of the
PCB of the current process on the current processor. Base register X5 corresponds
to the global symbol SCH$GL_PCBVEC, which contains the starting address of
the list of PCB slots.

13.10.2.2 Stored Command Strings
XDELTA contains two predefined command strings whose addresses are contained
in base registers XE and XF. You can use these commands during general system
debugging as well as driver debugging; they perform the following functions:

XE Use the value of base register X0 as a page frame number (PFN) and display the
PFN database for that page

XF Set base register X0 to the value (PFN) in R0 and perform the same function as
XE

You must initialize the stored commands to set the relocation registers they use
(X6 to XD). Issue the following commands:

XE;E Return

XF;E Return

After executing these commands, you can use the commands stored in XE and XF
to obtain the following information about a PFN:

• Specified physical PFN

• PFN state

• PFN type

• PFN reference count

• PFN backward link/working set list index

• PFN forward link/share count

• Page table entry (PTE) pointer to PFN

• PFN backing store address

• Virtual block number in process swap image

13.10.2.3 Setting Base Registers
The syntax for setting a base register follows.

13–13

Debugging a Device Driver
13.10 XDELTA Commands

Syntax
address-expression,n;X Return

Type an address followed by a comma (,), a single digit between 0 and D
(hexadecimal), a semicolon (;), and the letter X. XDELTA assigns the specified
expression to the base register selected by n. XDELTA confirms that the base
register is set by displaying the value deposited in the base register.

Whenever XDELTA displays an address located close to an address stored in a
base register, XDELTA displays the base register identifier (Xn), followed by an
offset that gives the address’s location in relation to the address stored in the base
register. For example, if base register 2 (X2) contains 800D046A and the address
XDELTA needs to display is 800D052E, XDELTA displays X2+C4. XDELTA
computes relative addresses for opened or displayed locations and addresses that
are instruction operands.

XDELTA displays an address in base register plus offset format to a distance of
80016 from the base register. If the address falls outside this range, XDELTA
displays it as a hexadecimal value.

13.10.3 Display Names and Locations of Loaded Executive Images
The syntax for displaying names and locations of loaded executive images follows.

Syntax
;L

Use the ;L command to list the names and locations of the loaded modules of the
system executive. If you issue the ;L command before all the executive images
are loaded (for example, at an XDELTA initial breakpoint), only those images
that have been loaded will be displayed.

13.10.4 Set Display Mode
The syntax to set display mode follows.

Syntax

[B Byte width

[W Word width

[L Longword width

[I Instruction display (using longword width)

" ASCII display (using current width)

Type a left bracket ([) followed by one of the letters B, W, or L to change the
current display width to byte, word, or longword, respectively. The default value
is longword. The setting remains in effect until another display mode control
command is given. For example, the following command displays the least
significant byte contained at the specified address and deposits the new value to
that byte only:

address-expression [B/ old-value new-value

Type a left bracket ([) followed by the letter I to change the current display mode
to instruction format. This command is equivalent to the exclamation point (!)
command and, similarly, is canceled by typing a slash (/) or a quotation mark
("). Instruction mode sets display mode storage units to longword values. For an
example of an instruction display, see Section 13.8.

13–14

Debugging a Device Driver
13.10 XDELTA Commands

You can display contents of memory locations in ASCII characters by typing an
address expression followed by a quotation mark ("), for example:

address-expression" old-value-in-ASCII

Pressing Ctrl/J displays the next location in ASCII.

The display mode remains set to ASCII until the next slash (/) or exclamation
point (!) command. At this point, the display mode reverts to hexadecimal. The
width remains unchanged.

13.10.5 Open, Examine, and Close Location
XDELTA provides the commands described in the following sections to open,
examine, and close the specified memory locations.

13.10.5.1 Open and Display Value Command
The syntax for the Open and Display Value command follows.

Syntax
address-expression/old-value [new-value-expression]

Type an address expression followed by a slash (/) character. XDELTA displays
the contents of the location (old-value above), followed by a space. You can
change the value at the location by typing a new value and then pressing Return.
If you press the Return key without preceding it with a value, the old contents
remain unchanged.

The display and the value deposited default to longword hexadecimal values. The
length can be changed to byte or word with the set mode commands.

A slash preceded by a null address expression uses the displayed value (Q) as
the address value. This feature is convenient for following address linked chains,
as follows:

address-expression/old-value /old-value /old-value

13.10.5.2 Display Instruction Command
The syntax for the Display Instruction command follows.

Syntax
address-expression!decoded-instruction

Type an address expression followed by an exclamation point (!). XDELTA
displays the contents of memory as a VAX MACRO instruction starting with the
address you specify.

XDELTA does not make any distinction between reasonable and unreasonable
instructions or instruction streams; the decoding always begins at the specified
address. The display instruction command does not allow you to modify the
displayed location. The command sets a flag that causes subsequent close and
display next or indirect location commands to perform instruction decoding. You
can reset the flag with the open and display value command.

Whenever an address appears as an instruction operand, XDELTA sets the last
quantity displayed (Q) to that address. XDELTA changes Q only for operands
that use program counter (PC) or branch displacement addressing modes; Q is
not altered for literal and register addressing modes. This feature is useful for
following branches, as follows:

address-expression!BRW address-2 !instruction-at-address-2

13–15

Debugging a Device Driver
13.10 XDELTA Commands

13.10.5.3 Close and Display Next Location Command
The syntax for the Close and Display Next Location command follows.

Syntax
Ctrl/J

address/old-value

Press Ctrl/J. XDELTA closes the current open location, then opens and displays
the value in the next location, according to the current display mode.

If instruction display is the current mode, XDELTA does not deposit a value in
the open location. The next location is the first location after the instruction
currently displayed. If value display is the current mode, you can deposit a value
into the open location. In this case, the next location is the current location,
incremented by the current data width (byte, word, or longword).

13.10.5.4 Display Range Command
The syntax for the Display Range command follows.

Syntax
start-addr-expression,end-addr-expression/contents-of-start

or

start-addr-expression,end-addr-expression!contents-of-start

Type two address expressions separated by a comma and followed by a slash (/)
or exclamation point (!). XDELTA displays the range of addresses, using the
specified display mode (value or instruction). If you specify instruction display,
XDELTA decodes one or more instructions. Otherwise, XDELTA displays the
contents of each location in the current data type (byte, word, or longword).

13.10.5.5 Indirect Command
The syntax for the Indirect command follows.

Syntax
Tab

address/old-value

Press Tab. XDELTA uses the last quantity displayed (Q) as an address and
displays that address and its contents using the current display mode. This
command opens locations in the same way as the slash (/) and exclamation point
(!) commands, but prints the information on a new line and displays the address
value before showing the address’s contents.

13.10.5.6 Display Previous Location Command
The syntax for the Display Previous Location command follows.

Syntax
Ctrl/3

address/old-value

Press Ctrl/3. Unless the current display mode is instruction, XDELTA decreases
the location counter by the current data width, and displays the contents of
the resulting location using the current data width and type. This command is
ignored in instruction display mode.

13–16

Debugging a Device Driver
13.10 XDELTA Commands

13.10.6 Breakpoints
XDELTA uses the following commands to set and clear breakpoints, display a list
of set breakpoints, continue from a breakpoint, and set a complex breakpoint.

13.10.6.1 Setting Breakpoints
The syntax for setting breakpoints follows.

Syntax
address-expression;B Return

Type an address followed by a semicolon (;) and the letter B, then press Return.
XDELTA sets a breakpoint at the specified location and assigns it the first
available breakpoint number.

Alternate Syntax
address-expression,n;B Return

Type an address followed by a comma, a single digit between 2 and 8, a semicolon
(;), the letter B, and then press Return. XDELTA sets a breakpoint at the
specified location and assigns it the specified breakpoint number. Breakpoint 1 is
reserved for INI$BRK.

Before XDELTA executes the instruction as a breakpoint, it suspends normal
instruction processing, sets a flag that causes subsequent close and display next
or indirect location commands to perform instruction decoding, and displays the
following message:

n BRK at address
address/decoded-instruction

You can now enter XDELTA commands. You can reset the flag that controls
instruction display mode by issuing the open and display value command.

13.10.6.2 Clearing Breakpoints
The syntax for clearing breakpoints follows.

Syntax
0,n;B Return

Type zero (0) followed by a comma, a single digit between 2 and 8, a semicolon
(;), the letter B, and then press Return. XDELTA clears the specified breakpoint.
Never clear breakpoint 1.

13.10.6.3 Displaying Breakpoint List
The syntax for displaying the breakpoint list follows.

Syntax
;B Return

Type a semicolon (;) followed by the letter B. XDELTA shows the current
settings of all breakpoints. For each breakpoint, XDELTA displays the following
information:

• Breakpoint number

• Address at which the breakpoint is set

• Display address (for complex breakpoints; see Section 13.10.6.5)

• Command string address (for complex breakpoints)

13–17

Debugging a Device Driver
13.10 XDELTA Commands

13.10.6.4 Proceeding from Breakpoints
The syntax for proceeding from breakpoints follows.

Syntax
;P Return

Type a semicolon (;) followed by the letter P, and then press Return. XDELTA
continues executing at the current PC.

13.10.6.5 Setting Complex Breakpoints
The syntax for setting complex breakpoints follows.

Syntax
address-expression,n,display-addr-expression,command-string-address;B Return

Type an address expression followed by a comma, a single digit between 2 and
8, another address expression, and the address of a command string. The first
address is the breakpoint address; the digit equals the breakpoint number.
XDELTA shows the contents of the display address in the current display mode
when the breakpoint is reached. The command string address specified in the
last command parameter executes after automatic display.

13.10.7 Step, Set Location, and Execute Instruction Commands
The following XDELTA commands enable you to step through and execute driver
code.

13.10.7.1 Loading PC and Continuing
The syntax for loading the program counter (PC) and continuing follows.

Syntax
address-expression;G Return

Type an address, a semicolon, and G, then press Return. XDELTA loads the
address into PC and continues executing at the new PC.

13.10.7.2 Execute Instruction and Step Command
The syntax for the Execute Instruction and Step command follows.

Syntax
S

Type an S (uppercase S). XDELTA causes one instruction to be executed, then
displays the address of the next instruction and decodes that instruction.

This command also sets a flag that causes subsequent close and display next
or indirect location commands to perform instruction decoding. The open and
display value command resets the flag.

If the next instruction is BSBB, BSBW, JSB, CALLG, or CALLS, this command
steps into the subroutine and displays the first instruction within the routine.

13.10.7.3 Step Instruction over Subroutine Command
The syntax for the Step Instruction over Subroutine command follows.

13–18

Debugging a Device Driver
13.10 XDELTA Commands

Syntax
O

Type an O (uppercase O). XDELTA causes one instruction to be executed, then
displays the address of the next instruction and decodes that instruction.

This command also sets a flag that causes subsequent close and display next
or indirect location commands to perform instruction decoding. The open and
display value command resets the flag.

If the next instruction is BSBB, BSBW, JSB, CALLG, or CALLS, XDELTA
executes the entire subroutine and displays the instruction that immediately
follows the subroutine call; this command steps over subroutines.

13.10.8 Execute String Command
The syntax for the Execute String command follows.

Syntax
address-expression;E Return

Type an address expression followed by a semicolon, the letter E, and then press
Return. This command executes the ASCII commands found at the specified
address expression. If you terminate the ASCII commands with a semicolon
followed by the letter P, XDELTA will proceed with program execution. If you
terminate the string with null (1 byte of 0), XDELTA waits for a new command.

To create command strings, open the address of the start of the string and deposit
ASCII text as follows:

address/old-contents ’XDELTA-command’ Return

You can use any XDELTA command, including Return, Ctrl/J, and Tab.

To terminate the string with a null, follow the above command with

./old-contents 0 Return

You can preassemble command strings within your experimental driver. Locate
the addresses of these strings as you would any other address within your driver.

13.10.8.1 Locating Nonpaged System Patch Space
When debugging a non-Digital-supplied device driver with XDELTA, you may
need to construct a complex breakpoint or store an XDELTA command string in
nonpaged system patch space.

Each of the loadable images of the executive contains an area reserved as
nonpaged system patch space. In each loadable image, the symbol PAT$A_
NONPAGED contains a descriptor that identifies the location and size of the
unused nonpaged system patch space in that image. This descriptor has the
following form:

PAT$A_NONPAGED::

.LONG size-in-bytes

.LONG offset to patch-space-start-address

A suitably privileged process can access unused system patch space in any of the
loadable images of the system executive. To determine the size of patch space and
its starting address in any given loadable executive image, perform the following
steps:

1. Issue the following commands to display a list of all images of the system
executive that have been loaded into memory:

13–19

Debugging a Device Driver
13.10 XDELTA Commands

$ ANALYZE/SYSTEM
SDA> SHOW EXECUTIVE
SDA> EXIT

The XDELTA command ;L also displays a list of the loaded images.

2. Note the base address of the image whose patch space you want to use.

For example, you may have selected PROCESS_MANAGEMENT and
determined its base address to be 80127C0016.

3. Determine the image value of the nonpaged system patch space descriptor
(PAT$A_NONPAGED) in the selected image.

For example, to determine the image value of PAT$A_NONPAGED in
PROCESS_MANAGEMENT, issue the following commands from the DCL
prompt:

$ ANALYZE/IMAGE/OUT=TEMP.DAT SYS$LOADABLE_IMAGES:PROCESS_MANAGEMENT.EXE
$ SEARCH/WIND TEMP.DAT PAT$A_NONPAGED

Suppose these commands determine the image value of PAT$A_NONPAGED
in SYS$LOADABLE_IMAGES:PROCESS_MANAGEMENT.EXE to be 654416.

4. Use the Patch utility to locate PAT$A_NONPAGED in the image and examine
its contents.

The following commands locate and examine PAT$A_NONPAGED in
SYS$LOADABLE_IMAGES:PROCESS_MANAGEMENT.EXE:

$ PATCH/NOJOURNAL SYS$LOADABLE_IMAGES:PROCESS_MANAGEMENT.EXE
PATCH> EXAMINE 6544
00006544: 00000077
PATCH> EXAMINE
00006548: 00000F85
PATCH> EXIT

In this example, the Patch utility output shows that there are 7716 bytes
remaining in the nonpaged system patch space of PROCESS_MANAGEMENT
and that the available patch space starts at offset F8516 into the image.

5. Calculate the starting address of nonpaged system patch space in the selected
loadable executive image by adding the offset from the descriptor to the base
address of the image you determined in step 2.

For instance, the base address of nonpaged system patch space
in SYS$LOADABLE_IMAGES:PROCESS_MANAGEMENT.EXE is
80127C0016+F8516, or 80128B8516.

13.11 Guidelines for Debugging Device Drivers
The following sections discuss errors commonly made during debugging sessions
and describe additional debugging techniques.

13.11.1 Opening Device Registers in XDELTA
References to 16-bit device registers must be word instructions; references to
8-bit device registers must be byte instructions. These restrictions apply to the
XDELTA command EXAMINE; therefore, be sure to set the correct mode control
before examining device registers. For example, if the address of the device CSR
is in R4, issue the following command:

R4/csr_address[W/csr_contents

13–20

Debugging a Device Driver
13.11 Guidelines for Debugging Device Drivers

13.11.2 Adjusting the Device Timeout Value
When using XDELTA to single-step through driver code, it may be necessary to
adjust the device’s timeout value (as specified in the WFIKPCH or WFIRLCH
macro) so that it is large enough to keep the device from timing out. When the
driver debugging is complete, this value should be reset to a reasonable length of
time.

13.11.3 XDELTA and System Failures
Driver errors can cause the operating system to suspend activity in such a way
that you cannot invoke XDELTA. In this case, the only recourse is to induce a
system failure. Follow the procedure described in the OpenVMS VAX System
Dump Analyzer Utility Manual; the system will signal a fatal bugcheck.

To gain control in XDELTA following a fatal bugcheck, stop in SYSBOOT while
initializing the system and clear the BUGREBOOT system parameter. The
system will stop in XDELTA, thereby allowing you to examine the device UCB
and other driver data to determine the driver error.

Another, more thorough, way to determine the cause of a system failure is to
leave the BUGREBOOT system parameter set, allow the system to reboot, and
then invoke the System Dump Analyzer utility (SDA) to examine the condition
of the I/O data structures at the time of the fatal bugcheck. The OpenVMS VAX
System Dump Analyzer Utility Manual provides detailed information on fatal
bugcheck stack format and how SDA can help debug a device driver.

13.12 Common Driver Errors
This section describes errors commonly made in drivers.

13.12.1 References to System Addresses
References by drivers to system addresses within the executive must use general
addressing (G^) mode. For example, use

JSB G^INI$BRK

13.12.2 Incorrect References to Device Registers
A common driver error is to access a nonexistent device register or to access
the correct register with an instruction using incorrect length. On VAX systems
that use direct-vector interrupts, these references cause a fatal machine check
exception. On VAX systems using non-direct-vector interrupts, these references
cause a UNIBUS adapter error interrupt. The system logs the adapter error and
continues.

In many cases, the saved PC on the stack is the address of the instruction that
caused the error. In other cases (for example, when the offending instruction is
executed at IPL 31), the saved PC is not the address of this instruction but an
address some number of instructions later, when the system actually services the
interrupt.

13–21

Debugging a Device Driver
13.12 Common Driver Errors

13.12.3 Destroying Register Contents
Because the driver frequently calls system I/O routines, you must be careful to
anticipate the register usage of these routines. Most system common I/O support
routines use R0 to R3 freely. A frequent driver bug is to load a value into R3 and
expect to find it intact after a call to allocate or load adapter resources.

Other system I/O routines write into R4. In some cases, the use of R4 is obvious;
for example, IOC$REQSCHANL writes the device’s CRB address into R4. In
other cases, you might not anticipate the use of R4.

For example, EXE$IOFORK saves the calling code’s R4 in a fork block, and then
writes the device’s IPL into R4. Because the normal flow of events is that an
interrupt service routine restores a driver with a JSB instruction and the driver
then calls EXE$IOFORK, which returns to the interrupt service routine, the
instructions following the JSB in the interrupt service routine can only assume
R5 is still untouched. The coding sequence is as follows:

MOVQ UCB$L_FR3(R5),R3 ;Restore R3-R4.
JSB @UCB$L_FPC(R5) ;Restore the driver process

.

.

.
;Between these instructions, the interrupt service routine
;can make no assumptions about the contents of R0 to R4.

.

.

.
POPR #^M<R0,R1,R2,R3,R4,R5> ;Restore interrupt registers
REI ;Return from the interrupt

13.13 Pool Checking Mechanism
Certain system failures cannot easily be traced to a single instruction or to
a single piece of kernel-mode code. If a device driver, for example, accesses
memory that it has not properly allocated or continues to use memory that it
has deallocated, a system failure can occur long after the driver has completed
its activity. The system may fail when another operating system thread executes
and attempts to use the corrupted data.

Special pool checking code in the system memory allocation and deallocation
modules can help isolate problems of this sort reliably and quickly. In a
normal system, this code is disabled. For a system experiencing frequent and
inexplicable failures, you can enable pool checking by setting the POOLCHECK
system parameter.

When enabled, pool checking routines execute whenever pool is deallocated or
allocated.1

On any deallocation of pool using the pool allocation routines2, the routine fills
the deallocated packet with a ‘‘free’’ pattern specified in the POOLCHECK system
parameter. The first five longwords of the packet are not filled, but instead
contain the following information:

1 The pool allocation routines (EXE$ALLOCBUF, EXE$ALLOCIRP,
EXE$ALONONPAGED, COM$DEANONPAGED, EXE$DEANONPAGED, and so
on) are discussed in the OpenVMS VAX Device Support Reference Manual. These
routines are the only means recommended by Digital for allocating pool.

2 A small number of system facilities use other methods of obtaining pool. The pool
allocated by these facilities is, by consequence, exempt from the pool checking
mechanism.

13–22

Debugging a Device Driver
13.13 Pool Checking Mechanism

• Forward and backward links into the free list

• Size, type, and subtype fields

• Address of the code that deallocated the packet

• Checksum

On any allocation from pool, the routine verifies the checksum and ensures that
the packet still contains the ‘‘free’’ pattern. If the pattern is still intact, the
routine replaces the ‘‘free’’ pattern with an ‘‘allo’’ pattern, also specified in the
POOLCHECK system parameter. The two patterns allow allocated, uninitialized
pool to be distinguished from nonallocated pool. If the ‘‘free’’ pattern is not intact,
the pool checking routine induces a POOLCHECK bugcheck, assuming that some
code has modified the packet while it was on the free list.

Figure 13–1 illustrates the format of the POOLCHECK system parameter.

Figure 13–1 Format of the POOLCHECK System Parameter

31 23 15 0

ZK−6618−GE

7

allo free 0 flags

The flags byte indicates the actions that the pool checking code should take
whenever pool is allocated or deallocated. It also indicates the type of pool to be
subject to checking. Table 13–5 defines the POOLCHECK parameter flag bits.

Table 13–5 POOLCHECK Parameter Flag Bit Definitions

Flag Bit Bit Mask (hex) Action

0 1 At deallocation, fill variable pool packets with free
pattern.

1 2 At allocation, check packets for free pattern and, if the
pattern is intact, fill with allo pattern. If not, induce
POOLCHECK bugcheck.

7 80 At deallocation, fill P1/P0-space buffers with free pattern.
Note that the DCL lexical function F$SEARCH and the
NETACP process do not function properly whenever this
bit is set.

The free byte indicates the character to be inserted in a packet (except for its
header) when it is deallocated to free pool. Select a value that will facilitate
examining pool with SDA (and also could not be interpreted by the system as a
valid address): for instance, an ideal value would be ‘‘d’’ (6416), for ‘‘deallocated.’’

Note

If, during a single bootstrap, you enable pool checking with a certain
free byte value, disable it, and then later reenable it with the same free
byte value, the system may signal spurious POOLCHECK bugchecks.

13–23

Debugging a Device Driver
13.13 Pool Checking Mechanism

After pool checking has been reenabled in this manner, the pool checking
mechanism may encounter an allocation of pool, which only partially
contains the free pattern, because of a deallocation that occurred when
checking was disabled.

The allo byte indicates the character to be inserted in a packet (if bit 2 of
the flags byte is set) when it is allocated. Select a value that will facilitate
examining pool with SDA (and also could not be interpreted by the system as a
valid address): for instance, an ideal value would be ‘‘a’’ (6116), for ‘‘allocated.’’

It is possible that, when first enabled on a system, the pool checking mechanism
will discover specific violations of pool allocation and deallocation protocol. When
using SDA to investigate subsequent failures, you should first check the value of
the global longword EXE$GL_POOLCHECK to determine whether pool checking
has been enabled and, if so, which packets it has been enabled for and which
patterns it is using.

One of the results of the pool checking mechanism is the occurrence of a fatal
system bugcheck such as INVEXCEPTN, SSRVEXCEPT, or FATALEXCPTN
whenever kernel-mode code attempts to use an address in free pool. When
these exceptions signal an access violation and the free pattern appears as the
violating address in the exception’s signal array, the exception PC has been
caught in the process of using deallocated pool.

The pool checking mechanism explicitly generates a POOLCHECK bugcheck for
one of several reasons. A reason value longword is pushed onto the top of the
stack. Table 13–6 lists the possible longword values and reasons.

Table 13–6 POOLCHECK Bugcheck Longword Reasons

Longword Value Reason

0 Corrupt packet

1 Bad alignment

2 Bad alignment of lookaside list element

3 Paged block partially outside paged pool

4 Nonpaged block partially outside nonpaged pool

5 IPL too high

Corrupt Packet
From the top-of-stack, a reason value of 0 indicates a pool packet being allocated
might have been corrupted while on the free queue. There are several causes of
a corrupt packet bugcheck. You can obtain information about the crash from the
contents of general registers as well as from the pool packet itself.

At the time of the crash, Table 13–7 lists the relevant registers and the crash
information.

13–24

Debugging a Device Driver
13.13 Pool Checking Mechanism

Table 13–7 Relevant Registers to a Corrupt Packet Bugcheck

Register Contents

R0 Allocation (allo) pattern

R1 Deallocation (free) pattern

R2 Address of packet being allocated

R3 Number of longwords remaining in packet to be checked

R4 Address in packet where the pool checking code discovered
corrupted pattern

R5 Checksum, computed as the sum of the address of the packet,
the deallocation pattern, the third and fourth longwords of the
packet, and a longword within the system boot time quadword
(EXE$GQ_BOOTIME)

Because the address of the packet is in R2, you can attempt to format R2 to
see what type of structure the pool is being allocated for. The following SDA
commands accomplish this:

SDA> READ SYS$SYSTEM:SYSDEF.STB
SDA> FORMAT @R2

If this does not identify the structure, you can obtain some information from the
packet itself, as pictured in Figure 13–2.

Figure 13–2 Poisoned Pool Packet

Forward link 0

Backward link 4

SizeTypeSubtype 8

Address of deallocating routine* 12

Packet checksum 16

�Poison pattern (20 bytes) 20�

*Note that the deallocation routine is only valid when the packet is from a lookaside list.

To determine what code may have corrupted the packet, it may be helpful to
examine the contents of R4 (the address at which the pool checking routine found
a corrupted pattern). If this address contains an address, it is a fair assumption
that it was placed there by code that uses that address.

In addition, the routine that deallocated the packet may be a likely suspect.
Bugchecks can occur if you deallocate in pieces nonpaged pool that you originally
allocated as a unit. Frequently, pool is corrupted by a device driver that
deallocates pool and later attempts to use the pool that it has deallocated.

13–25

Debugging a Device Driver
13.13 Pool Checking Mechanism

Bad Alignment
A top-of-stack longword value of 1 indicates that the lookaside list element
being deallocated is not aligned on the boundary defined by constant EXE$C_
ALCGRNMSK. The memory address to be deallocated is stored in R0.

Bad Alignment Lookaside List Element
A top-of-stack longword value of 2 indicates that the lookaside list element being
deallocated is misaligned. Specifically, a valid lookaside packet address was not
supplied to the routine. At the time of the crash, the following registers contain
relevant information:

Register Contents

R0 Starting address of memory to be deallocated

R1 Size of list elements

R2 Starting address of lookaside list

Paged Block Partially Outside Paged Pool
A top-of-stack longword value of 3 indicates the paged block being allocated is
partially outside of paged pool. This bugcheck indicates that the memory starts
in paged pool, but ends outside of paged pool. At the time of the crash, the
following registers contain relevant information:

Register Contents

R0 Starting address of block

R1 Size of block

R2 Ending address of block

Nonpaged Block Partially Outside Nonpaged Pool
A top-of-stack longword value of 4 indicates the nonpaged block being allocated
is partially outside nonpaged pool. This bugcheck indicates that memory being
allocated starts in nonpaged pool, but ends outside of nonpaged pool. At the time
of the crash, the registers shown in the table above contain the same relevant
information.

IPL Too High
A top-of-stack longword value of 5 indicates the IPL was above IPL$_ASTDEL
when an attempt was made to allocate or deallocate P1 space.

13.14 Detecting Driver Problems in a Multiprocessing System
When testing a new driver that has been designed to run in a multiprocessing
environment, it is a good idea to ensure that the system in which the driver is
being tested is running the full-checking synchronization image. You can cause
the full-checking synchronization image to be loaded at boot time on either a
uniprocessing system or multiprocessing system by the appropriate setting of the
MULTIPROCESSING system parameter, as listed in Table 13–8.

13–26

Debugging a Device Driver
13.14 Detecting Driver Problems in a Multiprocessing System

Table 13–8 Settings of MULTIPROCESSING System Parameter

Value Result

0 Loads uniprocessing synchronization image for any hardware configuration.

1 Loads full-checking synchronization image and sets multiprocessing-enabled
bit (SMP$V_ENABLED in SMP$GL_FLAGS) if the hardware configuration
is capable of multiprocessing and two or more processors are available;
otherwise, loads uniprocessing synchronization image.

2 Loads full-checking synchronization image and sets multiprocessing-enabled
bit regardless of the hardware configuration.

3 Loads streamlined synchronization image and sets multiprocessing-enabled
bit if the hardware configuration is capable of multiprocessing and two or
more processors are available; otherwise, loads uniprocessing synchronization
image. This is the default value.

In a processing environment with the full-checking synchronization image
loaded, violation of spinlock synchronization by a device driver will produce the
bugchecks described in Table 13–9.

Table 13–9 Bugchecks Produced by Full-Checking Multiprocessing

Bugcheck Description

SPLIPLHIGH A processor has attempted to acquire a spinlock at an IPL higher
than the IPL associated with spinlock synchronization (SPL$B_IPL).
SMP$ACQUIRE (called by the LOCK and FORKLOCK macros with
condition=NOSETIPL not specified) signals this bugcheck.

A processor has attempted to acquire a device lock—not already owned
by the acquiring processor—at an IPL higher than the IPL associated
with device lock synchronization (SPL$B_IPL). SMP$ACQUIREL
(called by the DEVICELOCK macro with condition=NOSETIPL not
set) signals this bugcheck.

SPLIPLLOW A processor has attempted to conditionally or unconditionally release
a spinlock or device lock at an IPL lower than the IPL at which it
originally acquired it. SMP$RELEASE and SMP$RESTORE (called by
the UNLOCK and FORKUNLOCK macros) and SMP$RELEASEL or
SMP$RESTOREL (called by the DEVICEUNLOCK macro) signal this
bugcheck.

SPLACQERR A processor has attempted to acquire a spinlock while holding
a higher ranked spinlock. SMP$ACQUIRE, SMP$ACQUIREL,
and SMP$ACQNOIPL (called by the LOCK, FORKLOCK, and
DEVICELOCK macros) signal this bugcheck.

SPLRELERR An attempt has been made to completely release a spin lock not owned
by the releasing processor. SMP$RELEASE and SMP$RELEASEL
(called by the UNLOCK, FORKUNLOCK, and DEVICEUNLOCK
macros) signal this bugcheck.

SPLRSTERR An attempt has been made to conditionally release a spinlock
not owned by the releasing processor. SMP$RESTORE and
SMP$RESTOREL (called by the UNLOCK, FORKUNLOCK, and
DEVICEUNLOCK macros when condition=RESTORE is specified)
signal this bugcheck.

13–27

Debugging a Device Driver
13.14 Detecting Driver Problems in a Multiprocessing System

An examination of the crash dump resulting from any of these bugchecks can
help locate the cause of the system failure. Enter the System Dump Analyzer
utility (SDA) and perform the following steps:

1. Issue the following command:

SDA> READ/EXECUTIVE SYS$LOADABLE_IMAGES

This command generates the symbols that correspond to locations in the
loadable images that are part of the system executive. These symbols
facilitate the interpretation of addresses that appear in the stacks and other
SDA displays.

2. Issue the following command:

SDA> SHOW STACK

Trace through the current stack to determine what activities on the processor
led to the acquisition or release of the spinlock. Start at high stack addresses
and work toward low addresses, identifying everything on the stack, or as
much of it as required to decipher what is going on.

3. Issue the following command:

SDA> SHOW SPINLOCK/FULL/ADDR=@R0

This command produces a display of information about the spinlock the
executing code was trying to acquire or release, a list of PCs indicating the
addresses of the latest eight acquirers or releasers of the lock, plus the PC of
the last unconditional release of a set of multiply nested spinlock acquisitions.
Note the acquisition IPL and the rank of the spinlock.

4. To decipher SPLIPLLO and SPLIPLHI bugchecks, compare the IPL at which
the system was running at the time of the crash to that shown in the SHOW
SPINLOCK display as required for acquisition of the spinlock.

5. To decipher SPLACQERR, SPLRSTERR, and SPLRELERR bugchecks, issue
the following command:

SDA> SHOW SPINLOCK/OWNED

In the case of SPLACQERR bugchecks, compare the rank of the spinlock
being sought with that of the currently owned spinlocks.

In the case of SPLRSTERR and SPLRELERR bugchecks, determine whether
the releasing processing did not in fact own the spinlock it is attempting to
release.

Standard drivers seldom release spinlocks and fork locks. When they do, they
should be careful to use the condition=RESTORE argument to the UNLOCK
and FORKUNLOCK macros when it is likely that the driver code is executing at
the behest of other code interested in retaining the lock.

One error of which driver writers should be wary concerns the unconditional
release of a spinlock or fork lock for which there exist multiple, nested
acquisitions. When multiple acquisitions of a spinlock accumulate for a processor,
and one of the intermediate acquirers performs an explicit release of that lock, all
ownership of the lock by that processor is entirely and immediately relinquished.
If at least one of the original acquisition threads still expects the lock to be held
when that thread regains control, system synchronization is broken. Moreover,
when the original thread that acquired the lock itself attempts to release the lock,
the system crashes with an SPLRELERR because the processor no longer owns
the lock being released.

13–28

Debugging a Device Driver
13.14 Detecting Driver Problems in a Multiprocessing System

If few attempts have subsequently been made by the processor to obtain or
release spinlocks, you should be able to find the PC of the code that last
unconditionally released the spinlock in question in SHOW SPINLOCKS/FULL
/ADDRESS=@R0 display. Issue the SDA command EXAMINE/INST for each of
the PCs in the display, from the top to the bottom, to determine the recent history
of the lock.

13–29

Part IV
Bus Specifics and Advanced Topics

This part contains discussions of bus-specific and processor-specific details that
affect the composition and operation of a device driver.

14
UNIBUS and Q22–bus Device Support

This chapter provides information specific to the creation of drivers for devices
attached to the UNIBUS or Q22–bus. The operating system provides extensive
support for UNIBUS/Q22–bus drivers, including many system routines and
macros that drivers can use to accomplish a multiblock transfer to a direct-
memory-access (DMA) device by means of UNIBUS adapter/Q22–bus interface
resources. Section 14.1 explains the functions of the UNIBUS adapter and
Q22–bus interface, describing these resources in detail. Section 14.2 provides
a step-by-step account of how UNIBUS/Q22–bus device drivers can use the
facilities of the operating system to accomplish DMA transfers.

Although the general mechanism of device interrupt dispatching, as defined by
the VAX architecture and briefly described in Chapter 9, is the same for all VAX
processing systems and I/O subsystems, certain implementation details differ. In
that regard, Section 14.3 describes the means by which VAX hardware and the
operating system deliver a UNIBUS or Q22–bus device’s interrupt to its driver’s
interrupt service routine.

14.1 Functions of the UNIBUS Adapter and Q22–bus Interface
The UNIBUS adapter connects the UNIBUS, an asynchronous, bidirectional bus,
to the backplane interconnect. The adapter performs the following functions:

• Arbitrates interrupts from UNIBUS devices according to their priority

• Delivers interrupts from UNIBUS devices to the processor

• Allows drivers to gain access to UNIBUS device registers using system virtual
addresses

• Translates 18-bit UNIBUS addresses to physical addresses in main memory

• Provides a data-transfer path to randomly ordered physical addresses in main
memory

• Provides buffered data transfer paths to consecutively increasing UNIBUS
addresses, thus optimizing CPU to UNIBUS data transfers

• Permits byte-aligned buffers for UNIBUS devices requiring word-aligned
buffer addresses

The Q22–bus interface closely resembles the UNIBUS adapter. For MicroVAX
systems with an attached Q22–bus, special processor logic implements a Q22–bus
interface that similarly allows drivers access to device registers and manages
device interrupts. Additional logic in the MicroVAX processor establishes
a scatter-gather map that translates 22-bit Q22–bus addresses to physical
addresses. However, Q22–bus systems do not implement buffered data paths.
Table 14–1 compares the UNIBUS and Q22–bus I/O subsystems of the various
VAX and MicroVAX processing systems.

14–1

UNIBUS and Q22–bus Device Support
14.1 Functions of the UNIBUS Adapter and Q22–bus Interface

Table 14–1 Features of the UNIBUS Adapters/Q22–bus Interfaces of VAX Systems

System Adapter

Memory
References
(Physical
Address)

Direct
Data Path

Buffered Data
Paths

Map
Registers

Interrupt
Dispatcher

VAX–11/780
VAX–11/785
VAX 8600
VAX 8650

UBA 30-bit (via
SBI)

1,
no byte-
aligned
transfers

15,
8-byte buffer,
byte-aligned
transfers,
LWAE,1
prefetch

496 Nondirect-
vector

VAX–11/750 UBI 24-bit (via
CMI)

1,
byte-aligned
transfers

3,
4-byte buffer,2
byte-aligned
transfers,
LWAE,1
no prefetch

5123 Direct-vector

VAX–11/730 UBA 24-bit 1,
byte-aligned
transfers

None 5123 Direct-vector

VAX 82x0/83x0
VAX 85x0/8700
/88x0

DWBUA 30-bit (via
VAXBI)

1,
byte-aligned
transfers

5,
8-byte buffer,
byte-aligned
transfers,
LWAE,1
no prefetch

5123 Direct-vector

VAX 6000 series DWMUA 30-bit (via
VAXBI)

1,
byte-aligned
transfers

5,
8-byte buffer,
byte-aligned
transfers,
LWAE,1
no prefetch

5123 Direct-vector

MicroVAX 3400
/3600/3900 series
VAX 4000 series

— 29-bit 1,
no
restrictions
on data
alignment4

None 8192 Direct-vector

MicroVAX II — 24-bit 1,
no
restrictions
on data
alignment4

None 8192 Direct-vector

1LWAE (longword access enable) refers to the capability to reference random longword-aligned data in a bus transfer.
2Buffered data paths on the VAX–11/750 only buffer 4 bytes of data. Because the data paths do not perform a prefetch,
they can always reference longwords at random.
3The operating system makes available only 496 of these map registers.
4The MicroVAX Q22–bus implementation provides no byte-offset register; so, on Q22–bus devices that are only capable of
word-aligned transfers, only word-aligned transfers are possible.

The protocol a VAX system uses to enable communications between its I/O bus
and backplane permits its devices and device drivers to exchange data without
much awareness of the intervening hardware. First of all, both the UNIBUS
adapter and the Q22–bus interface provide access to device registers using an
address mapping scheme that is invisible to the driver. In addition, when the
configuration of the I/O interface has an impact on the control of a data transfer,
the driver can generally call one of the many system routines that handle the
details of the interface.

14–2

UNIBUS and Q22–bus Device Support
14.1 Functions of the UNIBUS Adapter and Q22–bus Interface

The functional differences between I/O adapters are irrelevant to devices that do
not perform DMA transfers. A driver that performs non-DMA (programmed I/O)
transfers for a device on the UNIBUS can, with no alteration, perform the same
services for an equivalent device on a Q22–bus.

On the other hand, the differences between the functions of the UNIBUS adapter
and the Q22–bus interface are significant to those drivers that manage DMA
device operations.

Section 14.2 describes the means by which device drivers set up DMA transfers,
according to any of these interfaces. If a DMA driver that drives similar devices
on various VAX systems must secure some measure of machine independence, it
can include some run-time conditional code that branches to appropriate routines
in the driver that accomplish the machine-dependent work. See the description of
the ADPDISP macro in the OpenVMS VAX Device Support Reference Manual and
the sample drivers that appear in Appendix C and Appendix D of this manual for
guidance.

This section discusses the functions of the UNIBUS adapter and the Q22–bus, as
follows:

• The discussion of reading and writing device registers in Section 14.1.1
applies to UNIBUS and Q22–bus drivers.

• The description of mapping I/O bus addresses in Section 14.1.2 pertains only
to UNIBUS and Q22–bus DMA device drivers.

• The description of buffering data transfers in Section 14.1.3 relates mainly to
UNIBUS drivers, although Section 14.1.3.1 contains information relevant to
Q22–bus drivers as well.

14.1.1 Reading and Writing Device Registers
Each I/O controller or device directly attached to a UNIBUS or Q22–bus has a
control and status register (CSR) and set of data registers. These registers are
assigned physical addresses in the 8KB allocated for this purpose from the 256KB
UNIBUS address space or in the Q22–bus I/O space. Device drivers obtain the
device’s status and activate the device by reading and writing to these registers.

Because the operating system maps this I/O space into virtual address space, a
device driver can treat the addresses of device registers as identical to all other
virtual addresses. The driver can read and write data to the device’s register
as though the device’s register were a location in memory. The driver must use
instructions within the restrictions described in Section 5.2.

Before a driver for a device that shares a controller can gain access to a device’s
registers, it must first obtain a controller channel, as described in Sections 3.4.1
and 8.3.1.

14.1.2 Map Registers
DMA devices read and write data from and to memory locations by using 18-bit
UNIBUS addresses or 22-bit Q22–bus addresses.

A driver that performs multiblock DMA transfers for a UNIBUS device or
Q22–bus device must set up any mapping or buffering mechanisms required
by the system’s I/O interface. For UNIBUS DMA drivers, this involves setting
up sufficient map registers and, perhaps, a buffered data path prior to the
transfer. Q22–bus DMA device drivers, likewise, must allocate and fill a set of
map registers.

14–3

UNIBUS and Q22–bus Device Support
14.1 Functions of the UNIBUS Adapter and Q22–bus Interface

For UNIBUS and Q22–bus devices, the UNIBUS adapter and the Q22–bus
interface translate the bus addresses into main memory addresses, thus allowing
the operating system, I/O drivers, and UNIBUS devices to access the same
physical address space. DMA devices connected to either a UNIBUS or a
Q22–bus can access a block of memory indirectly by means of the scatter-gather
map supplied by the UNIBUS adapter or MicroVAX processor, respectively. The
map registers provided allow the device to access scattered, physical memory
addresses as contiguous, physical addresses in I/O space.

When a device driver performs a DMA transfer, it allocates map registers and
a buffered data path (an option available to devices on the UNIBUS of some
VAX systems), and sets up the transfer by means of the device’s registers. The
device then accesses memory directly by means of the I/O bus, transferring all
the data requested. When the transfer is complete, the device notifies the driver
by requesting an interrupt.

Consider a buffer, for example, that consists of virtual pages 400, 401, 402,
and 403, which are physical pages 1003, 204, 1190, and 240, respectively. For
a UNIBUS or Q22–bus device to access this buffer, the driver requests four
map registers, then places the physical addresses of these pages in the map
registers. A field in each map register identifies the page-frame number (PFN)
corresponding to the UNIBUS space or Q22–bus space address that the map
register represents (see Figure 14–1).

Assume the driver has allocated four map registers, 127 through 130. The driver
loads them as follows:

Map Register Contents

127 1003

128 204

129 1190

130 240

Note that the system routine the driver calls to allocate map registers
automatically allocates an additional map register (register 131 in this case).
The map register loading routine clears this register in order to prevent a
runaway DMA transfer.

The device and the UNIBUS can transfer data into or out of these physical pages
without intervention by the driver. The device requests an interrupt only when
all the data in these four pages has been transferred.

Generally, a map register exists for each page of I/O space. Because the UNIBUS
address space consists of 256KB of memory, minus the 8KB reserved for device
control registers, 496 map registers are available for UNIBUS DMA transfers.
Q22–bus DMA devices can use up to 8192 of the map registers that correspond to
the 4MB of Q22–bus I/O space.

14–4

UNIBUS and Q22–bus Device Support
14.1 Functions of the UNIBUS Adapter and Q22–bus Interface

Figure 14–1 UNIBUS and Q22–bus Map Registers

Byte Offset

Longword Access Enable (LWAE)

Valid Bit

31

Reserved

26 25 24

Data
Path
Number

21 20

Page Frame Number

0

VAX−11/750, and VAX−11/730

31

MBZ

26 25 24 22 21 20

Reserved

15 14 0

Data Path Number (for VAX−11/750)

Byte Offset

VAX−11/780; unused on VAX−11/750 and VAX−11/730
Longword Access Enable (LWAE) for compatibility with

Valid Bit

VAX 8200/8250/8300/8350, VAX 8530/8550/8700/8800/8810/8820/8830, and VAX 6000 Series

26 25 24 21

Byte Offset

Data
Path
Number

0

2729 2331 30 20 0

Page Frame NumberReserved

Longword Access Enable (LWAE)

Valid Bit

VAX −11/780, VAX−11/785, and VAX 8600/8650

Page Frame Number

VAX 82x0/83x0, VAX 85x0/8700/88x0, and VAX 6000 Series

MicroVAX II

31 30

Valid Bit

Reserved

15 14

Page Frame Number

0

VAX 4000 Series

31 30

Valid Bit

Reserved

20 19

Page Frame Number

0

ZK−4842−GE

MicroVAX 3400/3600/3900 Series

Drivers call system routines to fill as many map registers with valid page-frame
numbers (PFNs) as needed for a DMA transfer. The DMA device puts an address
on the I/O bus. The UNIBUS adapter or Q22–bus interface receives the address
and translates it in a format shown in Figures 14–2 and 14–3 using the following
information:

14–5

UNIBUS and Q22–bus Device Support
14.1 Functions of the UNIBUS Adapter and Q22–bus Interface

Figure 14–2 Mapping a UNIBUS Address to a Physical Address

Physical Address

Page Frame Number
Offset

Longword

32−Bit Map Register

Page Frame Number

Map Register Number
Offset

Longword

18−Bit UNIBUS Address

UNIBUS
Adapter

Scatter−Gather
Map

ZK−0915−GE

• In UNIBUS addresses, the 9-bit UNIBUS page address field (bits 9 through
17 of the UNIBUS address) identifies the UNIBUS adapter map register.

In Q22–bus addresses, the 13-bit Q22–bus page address field (bits 9 through
22 of the Q22–bus address) identifies the map register.

• The page-frame-number (PFN) field in the map register specifies the high-
order bits of the physical address. (The PFN field is 15 bits long for the
MicroVAX II, VAX–11/750, and VAX–11/730; 20 bits long for the MicroVAX
3400/3600/3900 and VAX 4000 series systems, and 21 bits long for other VAX
systems.)

• From UNIBUS addresses, bits 2 through 8 map to bits 0 through 6 of the
physical address.1 The resulting physical address locates the longword that is
the target of the transfer.

• From Q22–bus addresses (Figure 14–3), bits 0 through 8 map to bits 0
through 8 of the physical address. The resulting physical address locates the
byte that is the target of the transfer.

1 The disposition of the lowest 2 bits of the UNIBUS address depends on the VAX system.
For instance, the VAX–11/780 uses them to construct a byte-selection mask and function
to be transmitted across UNIBUS lines that modify the I/O transaction.

14–6

UNIBUS and Q22–bus Device Support
14.1 Functions of the UNIBUS Adapter and Q22–bus Interface

Figure 14–3 Mapping a Q22–bus Address to a Physical Address

32−Bit Map Register

Page Frame Number

22−Bit Q22 Bus Address

Map Register Number Byte Offset

Map
Scatter−Gather

ZK−4841−GE

Page Frame Number Byte Offset

(MicroVAX 3400/3600/3900 Series;
29−Bit Physical Address
24−Bit Physical Address (MicroVAX II)

VAX 4000 Series)

Each UNIBUS adapter or Q22–bus map register also contains a bit called the
map-register valid bit. The UNIBUS adapter or Q22–bus interface tests this bit
every time the map register is used. If the bit is not set, the UNIBUS adapter or
Q22–bus interface aborts the transfer. This bit is clear whenever the register is
not mapped to a physical address.

14.1.3 UNIBUS Adapter Data Transfer Paths
The UNIBUS adapter sends data through one of several data paths for UNIBUS
devices performing DMA transfers. One data path, the direct data path (DDP),
allows UNIBUS transfers to randomly ordered physical addresses. The direct
data path maps each UNIBUS transfer to a backplane interconnect transfer.
Thus, a single word or byte of data is transferred for each backplane interconnect
operation.

The remaining data paths, the buffered data paths (BDPs), allow devices on
the UNIBUS to transfer more efficiently than through the direct data path. The
buffered data paths store UNIBUS data so that multiple UNIBUS transfers
result in a single backplane interconnect transfer.

14–7

UNIBUS and Q22–bus Device Support
14.1 Functions of the UNIBUS Adapter and Q22–bus Interface

When a UNIBUS device begins a DMA transfer by placing an address on
the UNIBUS, the UNIBUS adapter not only performs address mapping but
also provides the number of the data path to be used for the transfer (see
Figure 14–1). Each UNIBUS adapter map register contains a field that describes
the data path. Data path 0 is the direct data path; the other data paths are
the buffered data paths. The UNIBUS data path registers of the various VAX
systems are pictured in Figure 14–4.

Figure 14–4 UNIBUS Data Path Registers

VAX−11/780, VAX 8600, and VAX 8650

Spare

23

Unused

28293031 15 0

Data Path Function

Buffer Transfer Error

Buffer not empty/purge

Address/Status Register

31

Buffer Address

16 15

Flags

ZK−4843−GE

0

Data Path Control/Status Register
VAX 8200/8250/8300/8350, VAX 8530/8550/8700/8800/8810/8820/8830, and VAX 6000 Series

31 24 23

Select
Path
Data

21 20 1 0

Purge

Error Summary

Nonexistent Memory Error

Uncorrectable Error

28293031

VAX−11/750

MBZ

1 0

Purge

< 17:2 >
UNIBUS Address

The following sequence describes a UNIBUS-device DMA transfer.

1. The UNIBUS device puts an address on the UNIBUS.

2. The UNIBUS adapter locates the UNIBUS adapter map register that
corresponds to the UNIBUS address.

3. The UNIBUS adapter verifies that the map register has the map-register
valid bit set.

4. The UNIBUS adapter maps the UNIBUS address to a physical address.

5. The UNIBUS adapter extracts the number of the data path to be used for the
transfer from the map register.

14–8

UNIBUS and Q22–bus Device Support
14.1 Functions of the UNIBUS Adapter and Q22–bus Interface

6. The UNIBUS adapter translates the UNIBUS function to a backplane
interconnect function by reading the UNIBUS control lines.

7. Based on the UNIBUS function indicated by the UNIBUS control lines (DATI,
DATIP, DATO, or DATOB), the UNIBUS adapter starts appropriate UNIBUS
and backplane interconnect operations to transfer data between the UNIBUS
device and memory.

14.1.3.1 Direct Data Path
Since the direct data path performs a backplane interconnect transfer for every
I/O bus transfer, it can be used by more than one UNIBUS or Q22–bus device at
a time. The UNIBUS adapter or Q22–bus interface arbitrates among devices that
want to use the direct data path simultaneously. The device driver is unaffected
by this arbitration.

The direct data path (DDP) is less efficient than a buffered data path (BDP)
because each I/O bus transfer cycle corresponds to a backplane interconnect cycle.
One word or byte is transferred for each backplane interconnect cycle. On some
hardware configurations, the direct data path is unable to transfer a word of
data to an odd-numbered physical address. Therefore, an FDT routine for a DMA
device that uses the direct data path should check that the specified buffer is on
a word boundary.2

The Q22–bus systems only employ a direct data path. A UNIBUS device driver
may choose to use a direct data path rather than a buffered data path to perform
the following functions:

• Execute an interlock sequence to the backplane interconnect (DATIP-DATO
/DATOB)

• Transfer to randomly ordered addresses instead of consecutively increasing
addresses

• Mix read and write functions

The direct data path is the simplest data path to program. Since the direct data
path can be shared simultaneously by any number of I/O transfers, the device
driver does not need to call a system routine to allocate the data path. Instead,
the driver performs the following actions:

1. Uses the REQMPR macro to allocate a set of map registers (or the REQALT
macro to allocate a set of Q22–bus alternate map registers (registers 496 to
8191)).

2. Uses the LOADUBA macro (or LOADALT macro) to load the map registers
with physical address map data and, for UNIBUS devices, the number of the
direct data path (0). The system routines called in the expansion of these
macros (IOC$LOADUBAMAP and IOC$LOADALTMAP respectively) also set
the valid bit in every map register except the last, which remains invalid to
prevent a runaway transfer.

3. Loads the starting address of the transfer in a device register.

4. Loads the transfer byte or word count in a device register.

5. Sets bits in the device CSR to initiate the transfer.

2 The MicroVAX implementation of the Q22–bus provides no byte-offset register. As
a result, for Q22–bus devices that are only capable of word-aligned transfers, only
word-aligned transfers are possible.

14–9

UNIBUS and Q22–bus Device Support
14.1 Functions of the UNIBUS Adapter and Q22–bus Interface

14.1.3.2 Buffered Data Paths
When a buffered data path (BDP) is used, the UNIBUS adapter transfers data
much more efficiently between the UNIBUS and the backplane interconnect than
when a direct data path is used. It accomplishes this by decoupling the UNIBUS
transfer from the backplane interconnect transfer. The buffered data path allows
the UNIBUS adapter to read or write multiple words of data in a transfer, and
buffer the unrequested portions of the data in a UNIBUS adapter buffer. Thus,
several UNIBUS read functions can be accommodated with a single backplane
interconnect transfer.

Q22–bus systems do not employ buffered data paths. The writer of a UNIBUS
device driver may choose to use a buffered data path rather than a direct data
path to perform the following functions:

• Faster DMA block transfers to or from consecutively increasing UNIBUS
addresses

• Word-oriented block transfers that begin and end on an odd-numbered byte
of memory; note, however, that these transfers can be quite slow because the
UNIBUS adapter might need to perform multiple transfers to complete a
one-word transfer

• 32-bit data transfers from random longword-aligned physical addresses

A single buffered data path cannot be assigned to more than one active transfer
at a time. When a driver fork process is preparing to transfer data to or from a
UNIBUS device on a buffered data path, it performs a sequence of steps similar
to those performed by a driver that uses the direct data path, with the exception
that it uses a macro that calls a system routine that allocates a free buffered data
path. The following are among the actions of the driver fork process:

1. Uses the REQMPR macro to allocate a set of map registers.

2. Uses the REQDPR macro to allocate a free buffered data path.

3. Uses the LOADUBA macro to load the map registers with physical
address mapping data and the number of the allocated buffered data
path. The system routine called in the expansion of the LOADUBA macro
(IOC$LOADUBAMAP) also sets the valid bit in every map register except the
last, which remains invalid to prevent a runaway transfer.

4. Loads the starting address of the transfer in a device register.

5. Loads the transfer byte or word count in a device register.

6. Sets bits in the device CSR to initiate the transfer.

The UNIBUS adapter hardware of certain VAX systems normally restricts
buffered data paths to referring only to consecutively increasing UNIBUS
addresses. Through a special mode of operation, these UNIBUS adapters can
also refer to 32-bit data at randomly-ordered, longword-aligned locations in
physical memory. Other systems do not impose this restriction. In order for a
device driver to run on both types of systems, it must observe three rules:

• All transfers within a block must be of the same function type (DATI or DATO
/DATOB).

• Buffered data paths must always transfer data to consecutively increasing
addresses.

14–10

UNIBUS and Q22–bus Device Support
14.1 Functions of the UNIBUS Adapter and Q22–bus Interface

• To reference 32-bit data at random, longword-aligned locations in physical
memory, the longword-access-enable bit (LWAE) must be set.

A buffered data path stores data from the UNIBUS in a buffer until multiple
words of data have been transferred (except in longword-aligned, 32-bit, random-
access mode as discussed in Section 14.1.3.5). Then, the UNIBUS adapter
transfers the contents of the buffer to the appropriate physical address in a
single backplane interconnect operation. The procedure for a UNIBUS write
operation that transfers data from a device to memory is broken into individual
steps.

1. The UNIBUS device transfers one word of data to the buffered data path.

2. The UNIBUS adapter stores the word of data and completes the UNIBUS
cycle.

3. The UNIBUS adapter sets the buffer-not-empty flag in the buffered data path
to indicate that the buffer contains valid data.

4. The UNIBUS device repeats the first three steps until the buffer is full.

5. When the UNIBUS device addresses the last byte or word in the buffer, the
UNIBUS adapter recognizes a complete data-gathering cycle.

6. The UNIBUS adapter requests a write function on the backplane interconnect
to write the data from the buffered data path to memory.

7. When the backplane interconnect transfer is complete, the buffered data path
clears its flag to indicate that the buffer no longer contains valid data.

The procedure for a UNIBUS read operation that transfers data from main
memory to a device varies according to the type of UNIBUS adapter. Those
adapters that can perform a prefetch function complete UNIBUS reads from
memory more quickly than those that cannot. The prefetch feature accomplishes
this improved performance by automatically filling the data path buffer after the
buffer’s contents are transferred to the UNIBUS.

The following paragraphs discuss the UNIBUS read operation with and without
the prefetch function. Device drivers that adhere to the conventions outlined in
this manual will execute properly whether or not the device is associated with a
UNIBUS adapter that is capable of prefetches.

1. The UNIBUS device initiates a read operation from a buffered data path.

2. The UNIBUS adapter checks to see if its buffers contain valid data.

3. If the buffers do not contain valid data, the buffered data path initiates a
read function to fill the buffers with data from main memory. The transfer
completes before the UNIBUS adapter begins a UNIBUS transfer.

4. The UNIBUS adapter transfers the requested bytes to the UNIBUS. Bytes of
data that were not transferred to the UNIBUS remain in the buffer.

5. The UNIBUS adapter sets the buffer-not-empty flag in the buffered data path
to indicate that the buffer contains valid data.

6. When the UNIBUS device empties the buffers of the buffered data path with
a UNIBUS read function that accesses the last word of data, the buffered
data path clears the buffer-not-empty flag to indicate that the buffer no longer
contains valid data.

7. The buffered data path then initiates a read function to prefetch data from
memory.

14–11

UNIBUS and Q22–bus Device Support
14.1 Functions of the UNIBUS Adapter and Q22–bus Interface

8. When the prefetch is complete, the buffered data path sets the buffer-not-
empty flag to indicate that the buffers now contain valid data.

The prefetch might attempt to read data beyond the address mapped by the
final map register. To avoid referring to memory that does not exist, the system
routines that allocate and load map registers always allocate one extra map
register and clear the map-register-valid bit before initiating the transfer. When
the UNIBUS adapter notices that the map register for the prefetch is invalid, the
UNIBUS adapter aborts the prefetch without reporting an error.

A UNIBUS read function without prefetch includes the following steps:

1. The UNIBUS device initiates a read operation from a buffered data path.

2. The buffered data path checks to see if its buffers contain valid data.

3. If the buffers do not contain valid data, the buffered data path initiates a
read function to fill the buffers with data. The transfer completes before the
UNIBUS adapter begins a UNIBUS transfer.

4. The buffered data path transfers the requested bytes to the UNIBUS. Bytes
of data that were not transferred to the UNIBUS remain in the buffer.

14.1.3.3 Byte-Offset Data Transfers
The UNIBUS adapter has a byte-offset register; thus, words that are not word-
aligned can be transferred to and from any device on the UNIBUS regardless of
whether the device supports non-word-aligned transfers.

Some UNIBUS devices are restricted to transferring integral words of data in
word-aligned UNIBUS addresses. The buffered data paths allow these devices
to perform transfers to memory that begins and ends on an odd-byte address. A
byte-offset bit in the map registers indicates byte-aligned data to the hardware. If
the bit is set, the hardware increments physical addresses. A system subroutine
that loads map registers determines whether the data is word- or byte-aligned
and sets the byte-offset bit accordingly.

14.1.3.4 Purging a Buffered Data Path
Because prefetches can read more data from memory than the UNIBUS device
needs to read, driver fork processes must ask the UNIBUS adapter to purge the
buffered data path when a transfer is complete. In addition, a transfer from a
device to the backplane interconnect can complete with some data left in the
buffer. The driver must purge the data path to complete the transfer.

The purge guarantees that the data is not transferred to the next user of the
buffered data path. The driver fork process performs the purge by calling a
standard system routine that performs two functions:

• Tells the hardware to purge the buffered data path register owned by the
fork process. For a UNIBUS read function, the adapter simply clears the
buffer-not-empty flag. For a UNIBUS write function, the adapter transfers
any data left in the data path buffer to VAX memory, then clears the flag.

• Notifies the driver fork process of any error that occurs during the purge.

The data path must be purged before the driver releases map registers or the
buffered data path register.

14–12

UNIBUS and Q22–bus Device Support
14.1 Functions of the UNIBUS Adapter and Q22–bus Interface

14.1.3.5 Longword-Aligned, 32-Bit, Random-Access Mode
Another method of transferring data over a buffered data path is the use of
longword-aligned, 32-bit, random-access mode. This mode essentially prevents
the UNIBUS prefetch operation, thereby allowing a device that reads data from
or writes data to memory to reference longword-aligned locations in memory at
random, in longword multiples.

To transfer data in the longword-aligned, 32-bit, random-access mode, the driver
fork process sets the longword-access-enable bit (VEC$V_LWAE) in the channel
request block (CRB) prior to loading the map registers. The UNIBUS device can
then perform a read (DATI) or write (DATO) function.

For a UNIBUS read operation that transfers data from main memory to a device,
the function occurs as follows:

1. The driver fork process initiates a read function on the UNIBUS device.

2. The UNIBUS adapter clears the buffer-not-empty flag in the assigned
buffered data path.

3. The UNIBUS adapter requests a read-from-memory operation on the
backplane interconnect.

4. The UNIBUS adapter stores the longword of data in the buffered data path
and sets the buffer-not-empty flag.

5. The UNIBUS adapter completes two UNIBUS read operations to transfer two
words of data.

For a UNIBUS write operation that transfers data from a device to main memory,
the function occurs as follows:

1. The driver fork process initiates a write function on the UNIBUS device.

2. The UNIBUS adapter clears the buffer-not-empty flag in the assigned
buffered data path.

3. The UNIBUS adapter completes two write operations to transfer two words of
data from the UNIBUS device.

4. The UNIBUS adapter stores the longword of data in the data path’s buffer
and sets the buffer-not-empty flag.

5. The UNIBUS adapter initiates a backplane interconnect write operation.

6. When the backplane interconnect write operation is complete, the UNIBUS
adapter clears the buffer-not-empty flag.

To ensure that random-access mode works correctly regardless of the VAX system
involved, the writer of a device driver should ensure that a device assigned to a
buffered data path does not repeatedly address the same longword. On certain
systems, a UNIBUS device that polls a single longword, waiting for data, will
constantly be returned the same data.

14.2 Writing Driver Code for UNIBUS/Q22–bus DMA Transfers
A driver performing direct-memory-access (DMA) transfers over the UNIBUS or
Q22–bus must take I/O bus operation into consideration. The operating system
and the I/O database manage the map registers and data path resources of the
I/O adapter for device drivers.

14–13

UNIBUS and Q22–bus Device Support
14.2 Writing Driver Code for UNIBUS/Q22–bus DMA Transfers

The I/O database contains an adapter control block (ADP) that describes the I/O
adapter. This block contains allocation information for the map registers; for
UNIBUS adapters, the ADP also contains similar information for data paths.

The ADP also contains the virtual address of the adapter’s configuration register.
All the adapter’s other registers are located at fixed offsets from the configuration
register. The system adapter-handling routines modify the adapter’s map
registers and data-path register according to requests from the driver fork
process.

In general, a driver fork process does not directly access the ADP. Instead, a
driver calls system routines that perform adapter-related services, such as the
following:

• Allocating a buffered data path

• Allocating map registers or alternate map registers

• Loading map registers or alternate map registers

• Deallocating map registers or alternate map registers

• Purging a buffered data path

• Deallocating a buffered data path

The critical responsibility of device drivers that actively compete for such
shared I/O adapter resources as map registers and data paths is to ensure the
synchronized access of adapter resources. Drivers that share these resources
must execute at the same fork IPL. In a multiprocessing system, they must
additionally contend for the same fork lock. A given driver code thread that must
attempt to access its fork database can only do so if suitably synchronized.

The system creates a driver fork process by calling the start-I/O routine in a
device driver. The fork process takes some or all of the following steps to initiate
an I/O transfer to or from a device on a UNIBUS or Q22–bus.

Operation Applicable to

Requests buffered data path UNIBUS

Requests map registers UNIBUS or Q22–bus

Requests alternate map registers Q22–bus

Loads map registers UNIBUS or Q22–bus

Loads alternate map registers Q22–bus

Calculates starting bus address UNIBUS or Q22–bus

Activates device UNIBUS or Q22–bus

Waits for interrupt UNIBUS or Q22–bus

When a hardware interrupt indicates that the I/O transfer is complete, the
driver fork process checks the success or failure of the transfer. The driver then
concludes with the following steps:

Operation Applicable to

Purges data path UNIBUS or Q22–bus

Releases buffered data path UNIBUS

14–14

UNIBUS and Q22–bus Device Support
14.2 Writing Driver Code for UNIBUS/Q22–bus DMA Transfers

Operation Applicable to

Releases map registers UNIBUS or Q22–bus

Releases alternate map registers Q22–bus

Because of the different requirements of DMA transfers on different VAX and
MicroVAX systems, a driver must contain some run-time conditional code in order
to function for equivalent UNIBUS and Q22–bus devices. The DLDRIVER code
example in Appendix C is one driver that supports the RL11 on the UNIBUS and
the RLV11 on the Q22–bus.

Regarding the material presented in this section, UNIBUS driver writers should
read Sections 14.2.1 through 14.2.7.3. Q22–bus driver writers should read
Section 14.2.1.3 and Sections 14.2.2 through 14.2.7.3.

14.2.1 Selecting and Requesting a Data Path
DMA device drivers for certain VAX systems can elect to request the use of a
UNIBUS adapter buffered data path to accelerate data transfers (as described
in Section 14.1.3). Other VAX processing systems, such as MicroVAX systems
and the VAX–11/730, provide no buffered data paths for data transfers. The
descriptions of the direct data path in the following sections apply to drivers
written for devices in those systems.

14.2.1.1 Requesting a Buffered Data Path
Some VAX systems allow UNIBUS drivers to request temporary or permanent
allocation of a buffered data path (see Table 14–1). After the driver fork process
gains access to the controller (see Section 8.3.1), it requests a buffered data path
by invoking the system macro REQDPR. REQDPR calls a system routine named
IOC$REQDATAP that locates the ADP. To do this, IOC$REQDATAP uses a series
of pointers that begins in the current unit control block (UCB), as follows:

UCB ! CRB ! ADP

IOC$REQDATAP performs the following services:

1. Tests the path-lock bit (VEC$V_PATHLOCK) in the data-path-number field of
the channel request block (CRB$L_INTD+VEC$B_DATAPATH). If the device
has a permanent data path allocated to it, IOC$REQDATAP simply returns.

2. Determines which data paths are available by examining the data path
allocation information in the ADP (ADP$W_DPBITMAP).

3. Allocates the first free data path to the driver by inserting its number in
the data path field of the CRB (CRB$L_INTD+VEC$B_DATAPATH) and
indicating in the ADP that the data path is in use (by clearing the appropriate
bit in ADP$W_DPBITMAP).

4. Returns control to the driver fork process.

If no data path is available, IOC$REQDATAP saves driver context (R3, R4, and
PC) in the UCB fork block and inserts the address of the fork block, which is
also the address of the UCB and the contents of R5, in the ADP’s data-path wait
queue. The driver fork block remains in the queue until both of the following
conditions are met:

• A data path is available.

• The driver fork block is the next entry in the data-path wait queue.

14–15

UNIBUS and Q22–bus Device Support
14.2 Writing Driver Code for UNIBUS/Q22–bus DMA Transfers

When these conditions are met, the system routine IOC$RELDATAP allocates the
data path to the suspended driver and reactivates the driver fork process.

14.2.1.2 Requesting a Permanent Buffered Data Path
A device driver can permanently allocate a buffered data path (BDP) in its unit
initialization routine. Instead of using the REQDPR macro, however, the unit
initialization routine should perform the following steps:

1. Issue the FORK macro to drop IPL to fork IPL. The system fork dispatcher
causes the following steps to be performed at fork IPL under the ownership
of the required fork lock in a multiprocessing system. (The consequences
of forking in a unit initialization routine are discussed at length in
Section 11.1.5.)

2. Test the path-lock bit (VEC$V_PATHLOCK) in the data-path-number field of
the CRB (CRB$L_INTD+VEC$B_DATAPATH) to ensure that a data path is
not already allocated for this device.

3. Call the subroutine IOC$REQDATAPNW to allocate the data path as follows:

JSB G^IOC$REQDATAPNW

If IOC$REQDATAPNW successfully allocates the data path, it stores the
number of the data path it obtained in the CRB at CRB$L_INTD+VEC$B_
DATAPATH and returns with the low-order bit set in R0 (SS$_NORMAL). If
it cannot allocate a data path, IOC$REQDATAPNW does not create a fork
process to wait for one to become available. Instead, it returns to the unit
initialization routine with the low-order bit clear in R0.

4. If the data path has been successfully obtained, set the path-lock bit (VEC$V_
PATHLOCK) in the CRB at CRB$L_INTD+VEC$B_DATAPATH.

The driver-loading procedure calls the unit initialization routine for each unit
that the driver serves. A unit initialization routine that contains the code
described previously will permanently allocate one buffered data path for each
CRB associated with the driver, which is one path for each controller that the
driver serves.

Because some VAX systems have few buffered data paths (refer to Table 14–1),
device drivers running in these systems must limit their allocation of permanent
buffered data paths. For example, if the drivers loaded on a VAX–11/750
permanently allocated all three of the system’s buffered data paths, none would
remain for normal system operations. As a result, I/O transfers requiring a
buffered data path would wait forever.

14.2.1.3 Requesting the Direct Data Path
Because the UNIBUS adapter or Q22–bus interface arbitrates among devices that
need to use the direct data path and initializes the data path field in the CRB
(CRB$L_INTD+VEC$B_DATAPATH) to 0 (0 = direct data path), drivers are not
required to invoke the REQDPR macro to request the direct data path.

Some VAX systems, such as the VAX–11/780 or VAX 8600, do not permit byte-
offset transfers on the direct data path (see Table 14–1). Because the UNIBUS
itself is word oriented, such a system must ensure that the data buffer is aligned
on a word boundary for word-aligned devices.

14–16

UNIBUS and Q22–bus Device Support
14.2 Writing Driver Code for UNIBUS/Q22–bus DMA Transfers

14.2.1.4 Mixed Use of Direct and Buffered Data Paths
A UNIBUS device driver can use the buffered data path for certain operations,
then use the direct data path for other operations. To accomplish this task, the
driver should allocate a buffered data path for buffered I/O. When the operation
is completed, the driver should then purge and release the buffered data path.
The release automatically resets the data path number to zero, which signifies
a direct data path. When the driver has finished using the direct data path, it
should purge it (but not release it). (A purge of the direct data path is a NOP I/O
function and always yields success.)

14.2.2 Requesting Map Registers
The UNIBUS adapter and Q22–bus interface allow UNIBUS and Q22–bus
drivers, respectively, to allocate map registers as needed or to allocate them
permanently.

14.2.2.1 Allocating Map Registers
After the driver fork process gains access to the controller (see Section 8.3.1), it
can request a set of adapter map registers (registers 0 through 495) by invoking
the system macro REQMPR. This macro calls the routine IOC$REQMAPREG.
IOC$REQMAPREG calculates the number of map registers needed for a transfer,
allocating one map register for each full or partial page of the buffer (based on
the values of UCB$W_BCNT and UCB$W_BOFF). In addition, it reserves an
additional map register to be marked invalid to stop a potential runaway transfer
and inhibit prefetches from the page past that in which the end of the buffer
resides. Finally, IOC$REQMAPREG may allocate one more extra map register to
ensure that an even number of map registers is allocated.

The procedure for allocating map registers is similar to that used to allocate a
buffered data path. First, IOC$REQMAPREG locates the ADP from a series of
pointers that begins with the current UCB, as follows:

UCB ! CRB ! ADP

Then, the routine examines the map-register-allocation information to locate the
required number of contiguous map registers. If the registers are not currently
available, IOC$REQMAPREG saves the driver context (R3, R4, and PC) in the
UCB fork block and inserts the fork block’s address (same as UCB address and
the contents of R5) in the standard-map-register wait queue.

When the map registers are available, IOC$REQMAPREG allocates them and
adjusts the appropriate information about the allocation of map registers in the
ADP. IOC$REQMAPREG then writes the number of the first map register and
the number of map registers allocated into the CRB and returns control to the
driver fork process.

The operating system supplies a similar macro (REQALT) and routine
(IOC$REQALTMAP) that Q22–bus drivers use to allocate a set of alternate
map registers (registers 496 through 8191). REQALT and IOC$REQALTMAP
perform the allocation in the same manner as REQMPR and IOC$REQMAPREG.
Note that, although the operating system records the allocation of standard
and alternate map registers in separate areas of the ADP and CRB,
IOC$REQMAPREG and IOC$REQALTMAP use the same UCB fields to calculate
the number of map registers required for a transfer.

14–17

UNIBUS and Q22–bus Device Support
14.2 Writing Driver Code for UNIBUS/Q22–bus DMA Transfers

14.2.2.2 Permanently Allocating Map Registers
A device driver can allocate a permanent set of map registers with code in its
unit initialization routine. The number of map registers permanently allocated
must be sufficient for the largest possible transfer and must include an extra map
register to be marked invalid to prevent a runaway transfer.

A unit initialization routine performs the following steps to permanently allocate
a set of map registers:

1. Issue the FORK macro to drop IPL to fork IPL. The system fork dispatcher
causes the following steps to be performed at fork IPL under the ownership
of the required fork lock in a multiprocessing system. (The consequences
of forking in a unit initialization routine are discussed at length in
Section 11.1.5.)

2. Test the map-lock bit (VEC$V_MAPLOCK) in the CRB (CRB$L_
INTD+VEC$W_MAPREG) to ensure that map registers are not already
allocated for this device.

3. Load the number of map registers required into R3.

4. Call the system routine IOC$ALOUBAMAPN with a JSB instruction:

JSB G^IOC$ALOUBAMAPN

If IOC$ALOUBAMAPN successfully allocates the map registers, it stores
the number of map registers allocated and the number of the first of the
allocated map registers at CRB$L_INTD+VEC$B_NUMREG and CRB$L_
INTD+VEC$W_MAPREG, respectively. It then returns with the low-order bit
set in R0. Otherwise, it returns with the low-order bit of R0 clear.

5. If map registers have been successfully allocated, set the map-lock bit in the
CRB (VEC$V_MAPLOCK in CRB$L_INTD+VEC$W_MAPREG).

Q22–bus drivers perform the following steps to allocate a permanent set of
alternate map registers (registers 496 through 8191):

1. Issue the FORK macro to drop IPL to fork IPL. The system fork dispatcher
causes the following steps to be performed at fork IPL under the ownership
of the required fork lock in a multiprocessing system. (The consequences
of forking in a unit initialization routine are discussed at length in
Section 11.1.5.)

2. Test the alternate-map-lock bit (VEC$V_ALTLOCK) in the CRB (CRB$L_
INTD+VEC$W_MAPALT) to ensure that alternate map registers are not
already allocated for this device.

3. Load the number of alternate map registers required into R3.

4. Call the system routine IOC$ALOALTMAPN with a JSB instruction:

JSB G^IOC$ALOALTMAPN

If IOC$ALOALTMAPN successfully allocates the alternate map registers, it
stores the number of map registers allocated and the number of the first of
the allocated map registers in CRB$L_INTD+VEC$W_NUMALT and CRB$L_
INTD+VEC$W_MAPALT, respectively. It then returns with the low-order bit
set in R0. Otherwise, it returns with the low-order bit of R0 clear.

5. If alternate map registers have been successfully allocated, set the alternate-
map-lock bit in the CRB (VEC$V_ALTLOCK in CRB$L_INTD+VEC$W_
MAPALT).

14–18

UNIBUS and Q22–bus Device Support
14.2 Writing Driver Code for UNIBUS/Q22–bus DMA Transfers

The driver-loading procedure calls the unit initialization routine once for each
unit associated with the driver. If the unit initialization routine contains the code
described previously, it permanently allocates a set of map registers for each CRB
associated with the driver, which is a set of registers for each device controller
that the driver serves. Because the operating system records the allocation of
standard and alternate map registers in separate areas of the ADP and CRB, a
Q22–bus driver could permanently allocate a set of registers from both areas.

14.2.3 Loading Map Registers
Once a driver fork process has assigned a data path and allocated a set of map
registers, it can request the operating system to load the map registers with
physical page-frame numbers (PFNs) by invoking the system macro LOADUBA.3

LOADUBA calls the system routine IOC$LOADUBAMAP to load each allocated
map register with the following data items:

• A bit setting to indicate whether the map register is valid.

• A bit setting to indicate whether the transfer is to start on the odd or even
byte within a word; this bit is set if the low-order bit of UCB$W_BOFF is 1.

• The number of the data path to use for the transfer (UNIBUS drivers only).

• The page-frame number of a page in memory.

• A bit setting to indicate that the transfer operates in longword-aligned,
random-access mode on the buffered data path; this bit is set when VEC$V_
LWAE is set in VEC$B_DATAPATH (UNIBUS drivers only).

IOC$LOADUBAMAP loads the PFN of the first page of the transfer into the first
allocated map register, the PFN number of the second page of the transfer into
the second map register, and so forth. IOC$LOADUBAMAP sets the valid bit in
every allocated map register except the last. It clears the valid bit in the final
map register to prevent a prefetch from an invalid page.

To calculate the PFN used in the I/O transfer, IOC$LOADUBAMAP uses three
fields that the operating system has written into the UCB:

• UCB$W_BOFF—Byte offset in the first page of the transfer

• UCB$W_BCNT—Number of bytes to transfer

• UCB$L_SVAPTE—Virtual address of the page-table entry (PTE) that contains
the PFN of the first page of the transfer

IOC$LOADUBAMAP determines the data path’s number (for UNIBUS devices),
the number of the first map register, the address of the first map register, and the
number of allocated map registers from the CRB and the ADP, as follows:

UCB ! CRB ! number of the data path
UCB ! CRB ! number of first map register
UCB ! CRB ! ADP ! virtual address of first map register
UCB ! CRB ! number of map registers

When IOC$LOADUBAMAP has loaded all the map registers and marked the last
map register invalid, it returns control to the driver fork process.

3 Q22–bus DMA device driver writers also use the LOADUBA macro to load a set of
standard map registers (registers 0 through 495).

14–19

UNIBUS and Q22–bus Device Support
14.2 Writing Driver Code for UNIBUS/Q22–bus DMA Transfers

The operating system supplies a similar macro (LOADALT) and routine
(IOC$LOADALTMAP) that Q22–bus drivers use to load a set of previously
allocated alternate map registers (registers 496 through 8191). LOADALT and
IOC$LOADALTMAP load the alternate map registers in the same manner as
LOADUBA and IOC$LOADUBAMAP load standard map registers.

Drivers that handle UNIBUS byte-addressable devices call the routine
IOC$LOADUBAMAPA. This routine performs the same function as
IOC$LOADUBAMAP, with one exception. When IOC$LOADUBAMAPA loads
map registers, it clears the byte-offset bit even if the transfer begins on an
odd-byte address.

14.2.4 Computing the Starting Address of a Transfer
The driver fork process must calculate the starting address of a DMA transfer
and load this address into the appropriate device register. UNIBUS drivers and
other Q22–bus drivers that use a set of standard map registers take the following
steps to make the calculation:

1. Write the byte-offset-in-page field of the UCB (UCB$W_BOFF) into bits 0
through 8 of a general register.

2. Get the number of the starting map register for the transfer from CRB$L_
INTD+VEC$W_MAPREG. Write bits 0 through 6 of this 9-bit value into bits
9 through 15 of the general register.

3. Write bits 0 through 15 of the general register into the device’s buffer address
register.

4. Write bits 7 and 8 of the map register number, acquired in step 2, into the
extended memory bits of the appropriate device register (usually the control
and status register (CSR)).4

Q22–bus drivers that use a set of alternate map registers perform a similar
procedure, as follows:

1. Write the byte-offset-in-page field of the UCB (UCB$W_BOFF) into bits 0
through 8 of a general register.

2. Get the number of the starting alternate map register for the transfer from
CRB$L_INTD+VEC$W_MAPALT. Write bits 0 through 6 of this 13-bit value
into bits 9 through 15 of the general register.

3. Write bits 0 through 15 of the general register into the device’s buffer address
register.

4. Write bits 7 through 12 of the map register number, acquired in step 2, into
the extended memory bits of the appropriate device register (usually the
control and status register (CSR)).

4 One example of a device that does not treat the extended memory bits in this fashion
is the DRV11–WA, the driver code (XADRIVER) for which is listed in Appendix D. For
the DRV11–WA, code in XADRIVER stores bits 7 and 8 of the map register number in a
discrete device bus address extension register, then clears the extended address bits of
the device’s CSR. In contrast, XADRIVER handles the DR11–W according to the method
described previously.

14–20

UNIBUS and Q22–bus Device Support
14.2 Writing Driver Code for UNIBUS/Q22–bus DMA Transfers

14.2.5 Computing the Transfer Length
Generally, a device driver must indicate to the device the size of a DMA transfer
by writing to a device register. If a device expects the transfer size as a word
count, for instance, the start-I/O routine computes the length of the transfer in
words by dividing the byte count field of the UCB (UCB$W_BCNT) by 2. The
routine loads the computed value into the device’s word-count register. One of the
FDT routines that processes the I/O request must ensure that the byte count for
the transfer is even. An odd byte count results in the user’s not receiving the last
byte of data.

14.2.6 Activating the Device
Because a driver fork process can address device registers as though they were
any other virtual address, the loading of the device buffer address register and
CSR are simple procedures. The driver locates the CSR address of the device in
the interrupt dispatch block (IDB), as follows:

UCB ! CRB ! IDB ! CSR address

The CSR address is the virtual address of a device register. All other device
registers are located at constant offsets from the CSR address. If, for example,
the CSR is the first device register and the device’s word-count register is the
third device register, the device driver can describe the device register offsets and
load the word-count register with the following series of instructions:

DEV_CSR = 0
DEV_XREG = 2
DEV_WDCNT = 4
.
.
.
; Compute word count of transfer and store it in user-defined UCB field,
; UCB$W_WDCNT.
.
.
.

MOVL UCB$L_CRB(R5),R4 ;Address of CRB
MOVL @CRB$L_INTD+VEC$L_IDB(R4),R4 ;Address of CSR
MOVW UCB$W_WDCNT,DEV_WDCNT(R4) ;Move word count to device

;word count register

14.2.7 Completing a DMA Transfer
After a UNIBUS or Q22–bus driver fork process activates a DMA device, the
driver waits for a device interrupt by invoking a system macro that suspends
execution of the driver. When the device requests a hardware interrupt, the
interrupt dispatcher gains control.

The dispatcher saves R0 through R5 and transfers control to the driver’s interrupt
service routine. If the interrupt service routine can match the interrupt with a
suspended driver fork process, it reactivates the driver fork process at the point
where execution was suspended. Most driver fork processes almost immediately
invoke the system macro IOFORK.

IOFORK calls the system routine EXE$IOFORK. EXE$IOFORK saves the driver
context (R3, R4, and PC) in the UCB fork block and inserts the address of the
fork block (R5) in the processor-specific fork queue corresponding to the device’s
fork IPL. EXE$IOFORK then returns control to the driver’s interrupt service
routine, which dismisses the interrupt.

14–21

UNIBUS and Q22–bus Device Support
14.2 Writing Driver Code for UNIBUS/Q22–bus DMA Transfers

When the fork dispatcher reactivates the driver fork process, the driver performs
any necessary cleanup operations, such as purging the data path and deallocating
adapter resources used in the DMA transfer.

14.2.7.1 Purging the Data Path
Driver fork processes must purge the data path after the DMA transfer is
complete. This is true for devices with buffered data paths, direct data paths,
or no data path.

To purge the data path, the driver invokes the macro PURDPR, which in turn
calls the system routine IOC$PURGDATAP. This routine takes the following steps
to purge the data path:

1. Saves the contents of R4 on the stack.

2. Locates the CRB as follows:

R5 ! UCB ! CRB

3. Obtains the starting address of the UNIBUS adapter’s register space and
stores it in R2.

4. Extracts the number of the data path to be purged from the CRB and loads it
into R1.

5. Stores the address of the data path register in R4.

6. Instructs the UNIBUS adapter or Q22–bus interface to purge the data path.
The routine then modifies R0 through R2 to contain the following information:

R0 Success/failure status. If the purge completes without error, the routine sets
SS$_NORMAL in this register. If a data-path error does occur, R0 is clear and
the hardware is reset.

R1 Contents of the data-path register.

R2 Address of the first adapter map register.

The address of the CRB remains in R3. This address, along with the
information in R1 and R2, is used as input to the error-logging routine in
the event of a data-path error.

7. Restores the information stored on the stack to R4 and returns to the address
in the driver immediately after the invocation of the PURDPR macro.

8. Some machine implementations also check for memory errors that might have
occurred during the DMA operation, and, if an error is detected, log it.

If a data-path error occurs during a data-path purge, the driver should retry the
entire DMA transfer.

14.2.7.2 Releasing a Buffered Data Path
A driver fork process releases a buffered data path by invoking the system macro
RELDPR. RELDPR calls a system routine, IOC$RELDATAP, that determines
which data path was assigned to the driver fork process and releases the data
path to a waiting driver. The driver must be executing at fork IPL.

The data-path number is stored in the CRB. IOC$RELDATAP locates it as
follows:

UCB ! CRB ! number of the data path

14–22

UNIBUS and Q22–bus Device Support
14.2 Writing Driver Code for UNIBUS/Q22–bus DMA Transfers

If the data path is permanently assigned to a device, IOC$RELDATAP does not
release the data path. Otherwise, the data-path number in the CRB (CRB$L_
INTD+VEC$B_DATAPATH) is zeroed. The IOC$RELDATAP routine attempts to
dequeue a waiting driver fork process from the data-path wait queue. It finds the
queue as follows:

UCB ! CRB ! ADP ! data-path wait queue

If another driver is waiting for a buffered data path, IOC$RELDATAP grants that
driver fork process the data path, restores its context from its UCB fork block,
and transfers control to the saved driver PC. When IOC$RELDATAP can allocate
no more data paths, the routine returns to the driver that released the data path.
This diversion of driver processing is transparent to the driver fork process.

If the data-path wait queue is empty, IOC$RELDATAP marks the data path as
available in the ADP and returns control to the driver.

14.2.7.3 Releasing Map Registers
A driver fork process releases a set of map registers by invoking the system macro
RELMPR at fork IPL. RELMPR calls the system routine IOC$RELMAPREG,
which releases map registers in a manner similar to the way in which the
RELDPR macro releases data paths. The CRB records the number of map
registers assigned to the device. The number of the first map register and the
number of map registers are located as follows:

UCB ! CRB ! number of the first map register
UCB ! CRB ! number of allocated map registers

IOC$RELMAPREG releases the map registers by adjusting the map-register-
allocation information in the ADP.

Then, IOC$RELMAPREG attempts to dequeue a driver fork process from
the standard-map-register wait queue. If a suspended driver is found,
IOC$RELMAPREG takes the following steps:

1. Dequeues the fork block and restores driver context

2. Satisfies the map-register request, if possible

3. Reactivates the driver fork process at the instruction following the driver’s
request for map registers

4. Repeats steps 1 through 3

If the standard-map-register wait queue is empty or if IOC$RELMAPREG still
does not have enough contiguous map registers for any of the waiting fork
processes, it returns control to the fork process that released the map registers.

The operating system supplies a similar macro (RELALT) and routine
(IOC$RELALTMAP) that Q22–bus drivers use to release a set of alternate
map registers (registers 496 through 8191). RELALT and IOC$RELALTMAP
perform the release in the same manner as RELMPR and IOC$RELMAPREG.
Note that the operating system records the allocation of standard and alternate
map registers in separate areas of the ADP and CRB.

14–23

UNIBUS and Q22–bus Device Support
14.3 Interrupt Dispatching in a UNIBUS/Q22–bus System

14.3 Interrupt Dispatching in a UNIBUS/Q22–bus System
The interrupt dispatcher is a combination of hardware and software that
routes interrupts from a device on the UNIBUS or Q22–bus to the appropriate
device driver’s interrupt service routine. Although there are slight differences
in the implementation of the interrupt dispatcher in different VAX systems, it
performs the same tasks in any given VAX environment.

When a processor grants a device interrupt, the processor microcode first saves
the PC and PSL of the currently executing code on the interrupt stack. The
device responds to the grant by supplying a device interrupt vector in the
range of 0 to 7778 to the processor. The operating system uses the device
interrupt vector to locate the correct interrupt transfer vector for the device. The
interrupt transfer vector structure (VEC) contains a short routine which issues
a JSB instruction to the device driver’s interrupt service routine. Execution
continues at the location of the transfer vector.

This is a somewhat simplified view of the interrupt dispatcher’s activities.
Figure 14–5 and Figure 14–6 depict the flow of interrupt dispatching from the
time that a processor grants the interrupt to the processing of the interrupt
within a device driver’s interrupt service routine. The following subsections
provide a more complete description of the role of each component in the servicing
of device interrupts.

14–24

UNIBUS and Q22–bus Device Support
14.3 Interrupt Dispatching in a UNIBUS/Q22–bus System

Figure 14–5 Direct-Vector Interrupt Dispatching

VEC (in CRB)

Q22 Bus Multilevel
 Interrupt Code

ZK−6537−GE

SCB Page

PC and PSL

Interrupt
Device IDB

Device UCB

Fork Block

Device
Registers

PUSHR R0−R5
JSB driver_isr
IDB Pointer

set
system parameter
QBUS_MULT_INTR

granted.

Device Driver

Interrupt Service Routine

When driver issues RSB:

Restores R3 and R4
from UCB fork block.

Obtains device lock.

Uses IDB address on
stack to locate device
registers and UCB.

Issues REI to
dismiss interrupt.

_

Releases device lock._
Restores R0−R5._

stack.
on saved

Device
supplies
device
interrupt
vector.

Device
CSR

UCB
Address

R3

R4

PC

execution.
process continues
The interrupted

Transfers control to
PC in fork block
(via JSB)

14–25

UNIBUS and Q22–bus Device Support
14.3 Interrupt Dispatching in a UNIBUS/Q22–bus System

Figure 14–6 Non-Direct-Vector Interrupt Dispatching

SCB

VEC (in CRB)

Interrupt Service Routine

VECTAB

address +2.
JMP to vector

vector address.
into VECTAB to obtain
Uses vector as index

interrupt vector.
to obtain device
Reads BRRVR in UBA

PUSHR R0−R5

UBA Interrupt Service Routine

UBA ADP

Device CSR

Device IDB

UCB Address

Device UCB

Fork Block

ZK−6536−GE

(first page)

Device
Registers

Q22 Bus Multilevel
 Interrupt Code

PUSHR R0−R5
JSB driver_isr
IDB Pointer

adapter

vector.

Interrupt
granted.

stack.

PC and PSL
on saved

interrupt

UBA supplies

Device Driver

Obtains device lock.

Uses IDB address on
stack to locate device
registers and UCB.

Restores R3 and R4
from UCB fork block.

Transfers control to PC
in fork block (via JSB).

When driver issues RSB:

Releases device lock.

Restores R0−R5.

Issues REI to
dismiss interrupt.

−
−
−

continues execution.
The interrupted process

R3

R4

PC

14–26

UNIBUS and Q22–bus Device Support
14.3 Interrupt Dispatching in a UNIBUS/Q22–bus System

14.3.1 Direct-Vector and Non-Direct-Vector Interrupt Dispatching
The system control block (SCB) contains the vectors that the VAX architecture
uses to dispatch all interrupts and exceptions. The size of the SCB is system
dependent. Page 1, the only SCB page defined by the VAX architecture, contains
the addresses of software and hardware interrupt service routines and exception
service routines.

The SCB therefore has an initial, albeit system-dependent, role in servicing
device interrupts. A UNIBUS/Q22–bus system employs either of two methods to
dispatch a device interrupt (see Table 14–2).

Table 14–2 VAX System UNIBUS/Q22–bus Interrupt Dispatching

VAX System
Method of Interrupt
Dispatching

Location of
Adapter Dispatch Table

VAX–11/750, VAX–11/730, MicroVAX systems Direct SCB pages 2 and 3

VAX–11/780, VAX–11/785, VAX 8600, VAX 8650 Non-Direct ADP vector-jump table

VAX 82x0/83x0 Direct SCB page 21

VAX 85x0/8700/88x0 Direct SCB page 21

VAX 6000 series Direct SCB page 21

1Subsequent pages may be used if there is more than one DWBUA in the system.

• Direct-vector interrupt dispatching: If the system in question is a
MicroVAX system, or uses a direct-vector UNIBUS adapter (UBA), it
dispatches a device interrupt directly through page 2 (or subsequent pages,
for VAX systems with more than one such UNIBUS) of the SCB. It takes
the device interrupt vector and uses it as an index into the appropriate SCB
page, thus obtaining the address of the appropriate interrupt transfer vector
structure (VEC) for the device.

• Non-direct-vector interrupt dispatching: In a VAX system that employs
a non-direct-vector UNIBUS adapter, the adapter posts an interrupt that
is dispatched through a vector in page 1 of the SCB that points to a UBA
interrupt service routine. For each non-direct-vector UBA adapter, the system
adapter initialization procedure creates four such interrupt service routines,
each corresponding to a device BR (bus request) level, and places them in an
area of nonpaged pool specially allocated at the end of the adapter control
block (ADP).

The UNIBUS adapter’s interrupt service routine performs the following
actions:

1. Saves R0 through R5 on the interrupt stack.

2. Reads the UNIBUS adapter’s Bus Request Receive Vector register
(BRRVR) to determine the vector address of the device requesting the
interrupt.

3. Uses the vector address as an index into the adapter dispatch table to
locate the interrupt transfer vector for the device in the CRB. For each
non-direct-vector UBA, an adapter dispatch table (also known as the
vector-jump table) is located after the UBA interrupt service routines in
nonpaged pool.

14–27

UNIBUS and Q22–bus Device Support
14.3 Interrupt Dispatching in a UNIBUS/Q22–bus System

4. Transfers control by means of a JMP instruction to a location within the
interrupt transfer routine contained in the VEC structure.

From another point of view, direct-vector interrupt dispatching and non-direct-
vector interrupt dispatching are characterized by the following two factors:

• Location of the adapter dispatch table

• Contents of the interrupt transfer routine

The following sections further examine the differences in the dispatching
methods. Figures 14–5 and 14–6 present the flow of tasks performed within
the context of both direct-vector and non-direct-vector interrupt dispatching.

14.3.2 Adapter Dispatch Table
The adapter dispatch table contains 128 longword vectors, each of which
corresponds to a device interrupt vector. Each longword vector within the
adapter dispatch table contains either the address of an interrupt transfer
vector structure (VEC), located within the channel request block (CRB) of the
device’s controller or, if no device is using the vector, the address of the adapter’s
unexpected interrupt service routine. In either case, the address contained in the
adapter dispatch table is longword aligned.

The location of the adapter dispatch table, as signified by the contents of ADP$L_
VECTOR, is system dependent:

• MicroVAX systems and those VAX systems that employ direct vector UNIBUS
adapters situate the adapter dispatch table in the second and subsequent
pages of the system control block (SCB), as described previously.

• Those VAX systems that employ non-direct-vector interrupt dispatching
situate the adapter dispatch table in a region of nonpaged pool (known also
as the vector-jump table and commonly referred to as VECTAB).

14.3.3 Interrupt Transfer Vector and Interrupt Transfer Routine
The interrupt transfer vector data structure (VEC) is located within the
channel request block (CRB) corresponding to the interrupting device’s controller,
as shown in Figure 14–7.

The interrupt transfer vector structure (see Figure 14–8 and the CRB structure
in the OpenVMS VAX Device Support Reference Manual) starts with several lines
of executable code known as the interrupt transfer routine. It also stores several
pieces of data, including pointers to the unit and controller initialization routines
in the device driver, the address of the interrupt dispatch block (IDB), and the
address of the adapter control block (ADP). The interrupt transfer vector may
also include information reflecting the disposition of the adapter’s map registers.

There may be one or more interrupt transfer vectors within a single CRB, as
shown in Figure 14–7. The operating system creates the appropriate number of
interrupt transfer vector structures within a CRB according the value specified
in the /NUMVEC qualifier to the System Generation utility (SYSGEN) command
CONNECT. The default value is 1.

14–28

UNIBUS and Q22–bus Device Support
14.3 Interrupt Dispatching in a UNIBUS/Q22–bus System

Figure 14–7 VEC Structures Within a CRB

Preceding Portion of CRB

ZK−6538−GE

:CRB$L_INTD

:CRB$L_INTD2

(VEC$K_LENGTH BYTES)
Interrupt Transfer Vector Block

(VEC$K_LENGTH BYTES)
Interrupt Transfer Vector Block

may follow
transfer vectors

Additional

The operating system automatically initializes the interrupt dispatching
instructions and the data structure locations in each of the specified vectors.

The interrupt transfer routine is a piece of executable code at the beginning of
each interrupt transfer vector. It is the interrupt transfer routine that ultimately
transfers control to the device driver’s interrupt service routine and, to a certain
extent, establishes the context for its execution.

For those VAX systems employing non-direct-vector interrupt dispatching, the
interrupt transfer routine consists of only one instruction:

JSB @#^driver-isr-address

For those VAX systems employing direct-vector interrupt dispatching, the
interrupt transfer routine consists of the following two instructions:

PUSHR #^M<R0,R1,R2,R3,R4,R5>
JSB @#^driver-isr-address

Note

If the MicroVAX system has multilevel device interrupt dispatching
enabled, these two instructions are preceded by some instructions that
check the legality of the Q22–bus configuration and conditionally lower
IPL. See Section 14.3.4 for a description of this optional function of the
interrupt transfer routine.

The driver-loading procedure obtains the address of the interrupt service routine
for each interrupt transfer vector structure from the reinitialization portion of the
driver prologue table (DPT) (see Section 6.1). This section of the DPT contains
one or more DPT_STORE macros that identify the addresses of the interrupt
service routines. For example:

14–29

UNIBUS and Q22–bus Device Support
14.3 Interrupt Dispatching in a UNIBUS/Q22–bus System

Figure 14–8 Interrupt Transfer Vector Block (VEC)

:VEC$L_BUGCHECK

:VEC$L_RTINTD

:VEC$L_INTD
(CRB$L_INTD)

:VEC$L_ISR

ZK−6539−GE

Bugcheck Data BUG_CHECK

(Total of 12 bytes of code)

JSB @# PUSHR R0−R5

Address of ISR

Address of IDB

Remaining bytes in VEC block

s^#DIPL
4(SP),−
#PSL$S_IPL,−
#PSL$V_IPL,−CMPZV

SETIPL s^#DIPL
BGEQ VEC$L_BUGCHECK

DPT_STORE,CRB,CRB$L_INTD+VEC$L_ISR,D,isr_for_1st_vector
DPT_STORE,CRB,CRB$L_INTD2+VEC$L_ISR,D,isr_for_2nd_vector
DPT_STORE,CRB,CRB$L_INTD+<2*VEC$K_LENGTH>+VEC$L_ISR,D,isr_for_3rd_vector

The number of DPT_STORE macros that identify interrupt service routines
must equal the number of vectors given in the /NUMVEC qualifier to the
SYSGEN command CONNECT to avoid errors in device initialization or interrupt
handling.

Immediately following the interrupt transfer routine in the CRB is the address
of the interrupt dispatch block (IDB) associated with the CRB. When the JSB
instruction executes, a pointer to the address of the IDB is pushed onto the top of
the stack as though it were a return address. The driver interrupt service routine
can use this IDB address as a pointer into the I/O database. See Figures 14–5
and 14–6 for an illustration of the context available to a driver’s interrupt service
routine when it is called by the interrupt transfer routine.

14–30

UNIBUS and Q22–bus Device Support
14.3 Interrupt Dispatching in a UNIBUS/Q22–bus System

14.3.4 Multilevel Device Interrupt Dispatching for Q22–bus Devices
VAX peripheral devices request interrupts at IPLs 20 through 23. IPLs 20
through 23 generally correspond with the four bus request levels of the UNIBUS
(BR4 through BR7) and Q22–bus (BIRQ4 through BIRQ7).

The UNIBUS also has four bus grant lines (BG4 through BG7). Because of this,
interrupt dispatching for UNIBUS devices inherently occurs at four levels. When
a UNIBUS device requests an interrupt at BR4, for example, from a processor
executing at an IPL lower than IPL 20, the processor grants the interrupt to the
device at IPL 20 (BG4). If the processor is already executing at IPL 20 or above,
the device interrupt remains pending.

The MicroVAX Q22–bus implementation has but one bus grant line (BIAK). As a
result, the central processor must, by default, grant all Q22–bus device interrupts
at a single IPL (IPL 23), even though it arbitrates interrupt requests according
to the bus request line used. When a Q22–bus device requests an interrupt at
BIRQ4, for example, from a processor executing at an IPL lower than IPL 20,
the processor grants the interrupt, unconditionally raising IPL to IPL 23. If the
processor is already executing at IPL 20 or above, the interrupt remains pending.

There are certain consequences of this implementation of interrupt dispatching
on the configuration and behavior of Q22–bus devices:

1. Because MicroVAX systems dispatch Q22–bus interrupts at a single IPL, it
is essential that Q22–bus devices that request interrupts at a high BIRQ be
positioned on the bus closer to the CPU than devices that interrupt at a low
BIRQ. (To determine the BIRQ level of any given Q22–bus device, refer to its
hardware user’s guide.)

2. It is possible for a Q22–bus peripheral that requests interrupts at a low BIRQ
to block the granting of an interrupt to a peripheral that requests interrupts
at a higher BIRQ. For instance, the processor could grant an interrupt to a
BIRQ4 device, elevating its IPL to IPL 23 in the process. While executing
at IPL 23, the processor would not grant the interrupt request of a BIRQ7
device. In a real-time environment, where I/O operations to one peripheral
must always have priority over lesser forms of I/O, this behavior can cause
problems.

The operating system incorporates a means by which system programmers,
concerned about real-time performance issues, can avoid these problems and
implement multilevel interrupt dispatching for devices on a MicroVAX Q22–bus.

Because single-level interrupt dispatching is sufficient for most applications,
only system managers and system programmers involved in real-time system
environments should attempt to use the multilevel device interrupt dispatching
capability. Such users should possess a thorough understanding of the system
interrupt dispatching mechanism and the means by which the operating system
synchronizes access to structures in the I/O database.

If you must enforce real-time device priorities in your Q22–bus system, you can do
so by setting the QBUS_MULT_INTR system parameter. This static parameter
causes the operating system to set up the proper code and data structures to
enable multilevel device interrupt dispatching at system initialization.5

5 Other VAX systems ignore the QBUS_MULT_INTR system parameter.

14–31

UNIBUS and Q22–bus Device Support
14.3 Interrupt Dispatching in a UNIBUS/Q22–bus System

When you bootstrap a MicroVAX system with the QBUS_MULT_INTR system
parameter set, the operating system initializes data structures for each device
and implements multilevel device interrupts as follows:

• Locates the address of the device driver’s interrupt service routine in the
driver’s DPT and stores it in the appropriate VEC data structure.

• Adjusts the corresponding vectors in the second page of the SCB so that they
point to the multilevel device interrupt dispatching code in the interrupt
transfer vector (that is, replacing the address of CRB$L_INTD with CRB$L_
INTD+VEC$L_RTINTD).

• Sets up data and code at VEC$L_RTINTD in the first interrupt transfer
vector for the device. This code performs special checks for the legality of
the Q22–bus configuration and conditionally lowers IPL, when necessary, to
service the interrupts of low priority devices.

When multilevel device interrupt dispatching is enabled, interrupt dispatching
proceeds as in the default case. However, after the processor raises IPL to IPL 23
to grant the interrupt, the dispatching of the interrupt results in the lowering of
IPL to device IPL, if necessary, to service the interrupt. As a result, the processor,
executing at the lower IPL, will be free to grant interrupts from higher priority
devices.

Prior to activating this feature in a MicroVAX system, a user should perform the
following tasks:

1. Ensure that the Q22–bus is properly configured.

2. Adapt any existing non-Digital-supplied device driver so that it correctly
initializes any secondary vector (VEC) structures it uses and also refers to
fields in the channel request block (CRB) and VEC by the proper symbolic
offsets.

14.3.4.1 Ensuring That the Q22–bus Is Properly Configured
The MicroVAX Q22–bus architecture mandates that devices with the ability
to interrupt at a high BIRQ level (for instance, BIRQ7) must be positioned on
the bus closer to the CPU than devices that interrupt at lower BIRQ levels.
In a Q22–bus system, when the processor grants an interrupt to a device, the
processor passes the interrupt down the BIAK line to the first device on the
bus. If the device is not the one requesting an interrupt, it is responsible for
propagating the acknowledgment grant to the next device on the bus, and so on.
However, if a device coincidentally initiates an interrupt just before it would be
required to pass the grant further down the bus, it may instead ‘‘steal’’ the grant
for itself.

The problems of an illegally configured Q22–bus can be illustrated in the
following two examples.

Consider the case of a device that interrupts at BIRQ6 (IPL 22). Assume the
CPU is at IPL 21. The bus arbitrator will grant the device its interrupt and send
the grant down the Q22–bus. However, if at this precise moment a device that
is closer to the CPU on the grant path, and that interrupts at BIRQ5 (IPL 21),
initiates an interrupt, it may not propagate the grant as it should. Instead, it
may steal the grant and assume ownership of the interrupt. Thus, there exists
the possibility of an IPL 21 device successfully interrupting a processor executing
at IPL 21. The end result is an unpredictable break in synchronization that could
have a multitude of consequences.

14–32

UNIBUS and Q22–bus Device Support
14.3 Interrupt Dispatching in a UNIBUS/Q22–bus System

Consider also an instance where the second device interrupts at a lower IPL,
such as BIRQ4 (IPL 20). Although it essentially is executing below the IPL of
the CPU (IPL 21), this device, too, may steal the interrupt grant. The break in
synchronization in this instance will result in a reserved operand fault when
the driver’s interrupt service routine issues the REI instruction, as the VAX
architecture does not permit an REI from a lower IPL to a higher IPL.

If the MicroVAX system employs the multilevel device interrupt dispatching
option, the operating system introduces special code in the interrupt transfer
vector data structure that helps prevent violations of system synchronization
resulting from an illegally configured Q22–bus device (see Figure 14–8). This
code, located at offset VEC$L_RTINTD, checks the device IPL of the interrupting
peripheral against the IPL in the processor status longword (PSL) of the
interrupted thread of code. If the device IPL is not greater than the IPL in
the saved PSL, the operating system generates an ILLQBUSCFG bugcheck,
signifying that the Q22–bus device is illegally configured.

14.3.4.2 Effects of Enabling Multilevel Device Interrupt Dispatching
Before enabling multilevel device interrupts in a MicroVAX system, you should
first ensure that all existing device drivers have been adapted according to the
following guidelines:

• If the driver creates or accesses any secondary VEC data structures, it must
take steps to initialize properly the multilevel device interrupt dispatching
code (at offset VEC$L_RTINTD in the primary VEC structure) in these
secondary structures. Failure to properly initialize these structures in the
system can negate any performance increases expected as a result of enabling
multilevel device interrupt dispatching.

• The device IPLs of certain Q22–bus devices may differ from those of
corresponding UNIBUS devices. To ensure that the DPT specifies the correct
device IPL, refer to the device’s hardware user’s guide.

• Wherever the driver implicitly refers to the longword in the VEC structure
that contains the address of the interrupt service routine, it should explicitly
use the symbol VEC$L_ISR. For example, you should replace any instance of
CRB$L_INTD+4 with CRB$L_INTD+VEC$L_ISR.

• If the driver assumes that the contents of the device’s SCB vector (that is,
the vector in the adapter dispatch table) always points to CRB$L_INTD, it
must be appropriately modified to reflect the implementation of multilevel
device interrupt dispatching. The transfer vector can legally point to any
longword-aligned address between CRB$L_INTD+VEC$L_RTINTD and
CRB$L_INTD+VEC$L_INTD. Because MicroVAX systems utilize direct-vector
interrupt dispatching, the transfer vector will never point to VEC$L_INTD+2.

Although certain of the symbolic offsets defined in the data structure definition
macro $VECDEF have negative values, driver code can uniformly refer to the
contents of the VEC structure in the form CRB$L_INTD+VEC$x_symbol.

14–33

15
MASSBUS Device Support

The MASSBUS adapter (MBA) is the hardware interface between the
backplane interconnect and MASSBUS storage devices. The MASSBUS is the
communication path linking the MASSBUS adapter to the mass storage devices.

The MASSBUS adapter performs the following functions that allow
communication between devices and memory:

• Mapping of virtual addresses to physical addresses

• Buffering of data for transfers between main memory and the MASSBUS

• Transfer of interrupts from MASSBUS devices to the backplane interconnect

A MASSBUS adapter supports any combination of up to eight device controllers.
Typical MASSBUS controllers include the TM03 tape controller and the RP06,
RM03, and RM80 disk controllers. Only one controller can transfer data over the
MASSBUS at a time.

The TM03 tape controller supports up to eight tape drives. In contrast to tape
controllers, there is a one-to-one relationship between a disk controller and
its device; each controller supports only one disk drive. The operating system
interprets and maintains the I/O database differently, depending upon whether
the controller is single unit or multiunit.

Each MASSBUS controller connected to a MASSBUS adapter is assigned a unit
number in the range 0 to 7. The method of unit number assignment is controller
specific, but you can obtain the number from either unit plugs or switch packs.
In the case of a controller for several devices, the unit number is distinct from the
subunit numbers assigned to the individual drives connected to the controller.

Figure 15–1 illustrates a possible MASSBUS configuration.

15.1 MASSBUS Adapter Registers
The MASSBUS adapter has three sets of registers:

• The MASSBUS adapter’s registers

• External registers for each device (controller) on the MASSBUS

• 256 map registers

To allow competing devices to share these resources, access to and modification
of all MASSBUS adapter registers (internal, external, and map registers) are
governed by certain rules and conventions. In particular, access to registers
might, at times, require ownership of either the device controller or the
MASSBUS adapter itself, or both. Subsequent sections in this chapter discuss
the methods of obtaining such ownership of these shared resources.

15–1

MASSBUS Device Support
15.1 MASSBUS Adapter Registers

Figure 15–1 MASSBUS Configuration

ZK−0939−GE

(Unit 0)
A

3
Subunit

2
Subunit

1
Subunit

0
Subunit

(TM03)
Controller

Tape
Unit 1 Unit 2

Device
Non−Digital

B C
Device

DR

MASSBUS

Disk Disk

MASSBUS

Figure 15–2 MASSBUS External-Register Longword

31 16 15 0

MBA’s Status Register Bits External Register Contents

ZK−1796−GE

MASSBUS adapter external registers are device dependent and accessible
whether or not the driver owns the MASSBUS adapter. However, in the case
of multiunit MASSBUS adapter controllers, the driver might need to own the
controller before it can gain access to a register.

MASSBUS adapter external registers are each 16 bits wide, but they must be
accessed as longwords. When a driver reads an external register, the MASSBUS
adapter concatenates the high-order 16 bits of the MBA’s status register (one of
the MBA’s internal registers) with the contents of the specified external register.
Figure 15–2 illustrates the resulting longword. On a write to an external register,
the MASSBUS adapter uses the low-order 16 bits of the longword source operand
to update the external register.

MASSBUS adapter internal and map registers are 32 bits in length. They must
be accessed as longwords or the processor will signal a machine check exception.
The driver for a MASSBUS device must obtain exclusive ownership of the
MASSBUS adapter before modifying any of the MBA’s internal or map registers.

15–2

MASSBUS Device Support
15.1 MASSBUS Adapter Registers

Bits 21 through 30 of each of the MBA’s map registers are reserved; they cannot
be written. Use of the MBA’s map registers is analogous to use of the UNIBUS
adapter’s map registers with the following exceptions:

• Because the MASSBUS can handle only one transfer at a time, ownership of
the MASSBUS adapter implies ownership of all its map registers. Thus, the
driver need not independently request map registers.

• The MBA’s map registers do not contain a byte-offset field. The driver loads
the full MASSBUS adapter virtual address, including the byte alignment,
into the MASSBUS adapter virtual address register (MBA$L_VAR, one of
the MBA’s internal registers) at the start of a data transfer. Use of the
MBA$L_VAR register is described in Section 15.1.1.

• The MBA’s map registers do not contain a data path field; the MASSBUS
adapter has a single data path, and ownership of the adapter implies
ownership of the path. Thus, the driver need not allocate the data path
independently.

15.1.1 Loading MASSBUS Adapter Registers
To prepare for a data transfer over the MASSBUS, the driver that owns the
MASSBUS adapter uses the LOADMBA macro to load the MBA’s map registers
and associated internal registers. The LOADMBA macro invokes the subroutine
IOC$LOADMBAMAP, which performs the following steps:

• Determines the number of map registers needed to map the data area by
adding the contents of UCB$W_BCNT to UCB$W_BOFF, adjusting the sum
to the next even multiple of 512, and dividing the result by 512.

• Loads the specified number of map registers, beginning with map register 0,
with the contents of the page-table entries to which UCB$L_SVAPTE points.
This step maps the data area for the transfer into the low portion of the
MBA’s virtual address space. The routine also loads the next map register
beyond the number used to map the data area with zeros (an invalid map
entry). This procedure stops the transfer should a hardware failure occur.

• Loads the MBA$L_VAR register with the zero-extended contents of UCB$W_
BOFF. Because the first byte of the data area is located at offset UCB$W_
BOFF within the page of memory mapped by map register 0, the UCB$W_
BOFF contains the virtual address of the start of the data area in MASSBUS
adapter virtual address space.

• Loads the complement (negative) of UCB$W_BCNT into the MBA’s byte-count
register (MBA$L_BCR).

Note that if a driver is to perform a data transfer in the reverse direction (for
example, read reverse on a tape), it must modify the contents of the MBA$L_VAR,
as established by IOC$LOADMBAMAP, so that it points to the last byte of the
data area. This is done by adding one less than the contents of UCB$W_BCNT to
the contents of the MBA$L_VAR register.

During the progress of a data transfer over the MASSBUS, the MBA$L_VAR
register is continuously updated so that it points to the current position in the
data area. The VAX Hardware Handbook illustrates the mapping of the contents
of the MBA$L_VAR register into physical memory.

15–3

MASSBUS Device Support
15.1 MASSBUS Adapter Registers

15.1.2 MASSBUS Adapter Registers and Offsets
During system initialization, the operating system builds an adapter control block
(ADP), a channel request block (CRB), and an interrupt dispatch block (IDB)
for each MASSBUS adapter. The system also allocates 4KB of system virtual
address space for the adapter’s register I/O space. The base of this I/O register
virtual address space is placed in IDB$L_CSR. Thus, you can access MASSBUS
adapter registers using the base register virtual address plus some offset. The
$MBADEF macro defines the offsets for MASSBUS adapter registers. The major
symbols defined by this macro are shown in Table 15–1.

Table 15–1 Major Offsets Defined by $MBADEF

Symbol MBA Register Name Hex Offset

MBA$L_CSR Configuration register 0

MBA$L_CR Control register 4

MBA$L_SR Status register 8

MBA$L_VAR Virtual-address register C

MBA$L_BCR Byte-count register 10

MBA$L_DR Diagnostic register 14

MBA$L_SMR Selected map register 18

MBA$L_CAR Command-address register 1C

MBA$L_ERB External register base 400

MBA$L_AS Attention-summary register 414

MBA$L_MAP Base of map registers 800

The MASSBUS adapter’s internal registers occupy the low-order 1024 bytes of
address space even though there are only eight internal MBA registers. Beyond
the internal registers, there are eight blocks of 32 longwords (128 bytes) each,
one block for each of the eight device controllers that can be connected to a single
MASSBUS adapter. Each of these blocks provides space for the device registers
of each controller. Beyond the device-register space is the area reserved for the
MASSBUS adapter’s 256 map registers.

Figure 15–3 illustrates the relative positions of the MASSBUS adapter’s registers
and the values device drivers use to gain access to them. The base address of the
MASSBUS adapter’s address space, stored in IDB$L_CSR, is the address of the
first of the MASSBUS adapter’s internal registers.

IDB$L_CSR represents the internal register’s virtual location, while the MBA$L_
symbols represent register values as defined by $MBADEF. Note that the
MASSBUS adapter’s register space occupies only the first 3Kb out of the 8Kb
allotted to physical I/O address space. However, by convention, the operating
system allocates 4Kb of virtual addresses to each MASSBUS adapter.

To address a map register in the MASSBUS adapter, the driver constructs the
following address:

IDB$L_CSR + MBA$L_MAP + map-register-index

15–4

MASSBUS Device Support
15.1 MASSBUS Adapter Registers

Figure 15–3 Location of MASSBUS Registers in Physical Address Space

IDB$L_CSR+MBA$L_ERB=(X^80 *Q)
Unit 0 Device Registers

IDB$L_CSR+MBA$L_ERB=(X^80 *1)
Unit 1 Device Registers

1024 Unused Bytes

ZK−0940−GE

MASSBUS Internal Registers
IDB$L_CSR

Unit 2 Device Registers
IDB$L_CSR+MBA$L_ERB=(X^80 *2)

Unit 7 Device Registers
IDB$L_CSR+MBA$L_ERB=(X^80 *7)

Map Registers
IDB$L_CSR+MBA$L_MAP

4Kb

To address a device register, the driver constructs the following address:

IDB$L_CSR + MBA$L_ERB + (unit-number * 8016) + register-displacement

An individual driver should define offsets for the registers of its device. During
execution, the driver computes a register address by summing the MBA’s starting
virtual address (the contents of IDB$L_CSR), MBA$L_ERB, the unit number of
the device controller multiplied by 8016, and the offset of the specified register.

The attention-summary register (MBA$L_AS), as shown in Table 15–1, appears
to reside within the external-register space reserved for MASSBUS adapter
controller 0. Actually, the attention-summary register is a composite register.
Each of the MASSBUS adapter’s controllers contributes one bit of information to
the register. This composite register appears in each of the eight device register
spaces at offset 1016 from the base of the device registers for that device. Thus,
MBA$L_AS can be defined as any of the values 41016, 49016, 51016, 59016, and so
on. For convenience, it has been defined as 41016.

15.1.3 Modifying MASSBUS Adapter Registers
The driver for a MASSBUS device must obtain ownership of the MBA before
modifying any of the MBA’s internal registers or map registers. A driver
obtains ownership of the MBA by invoking either the REQPCHAN macro or
the REQSCHAN macro, depending on whether the device is connected to a
single-unit MASSBUS controller or a multiunit MASSBUS controller.

For dedicated controllers, invoke the REQPCHAN macro. Because the controller
is dedicated to its single device, there is never any contention for the controller.

15–5

MASSBUS Device Support
15.1 MASSBUS Adapter Registers

For multiunit devices, however, invoke the REQSCHAN macro to obtain MBA
ownership because several devices can share the controller, and so must contend
for its use. The controller for several devices relegates the MASSBUS adapter to
a secondary position. Thus, for multiunit controllers, invoke REQPCHAN to gain
ownership of the controller, and invoke REQSCHAN to obtain the MASSBUS
adapter.

15.2 I/O Database for MASSBUS Devices
During initialization, the system creates an ADP, a CRB, and an IDB for each
MASSBUS adapter included in the configuration. The driver-loading procedure
subsequently builds additional data structures for each device controller
connected to a MASSBUS adapter. The type of structure created depends upon
whether the device controller is a dedicated controller or the controller of several
devices.

The system builds a unit control block (UCB) for each single-unit controller.
Figure 15–4 illustrates the I/O database for a MASSBUS adapter with one
dedicated controller attached to it. Note that the ADP, CRB, and IDB all
correspond to the MASSBUS adapter and can logically be considered a single,
extended data block. The UCB corresponds to the device/controller pair. Because
of the one-to-one correspondence between a dedicated controller and its device,
the system does not need to distinguish between the two and thus does not
maintain separate data blocks for each piece of hardware.

A controller of several devices, however, requires separate data structures for
the controller and each of its subunits (devices). The driver-loading procedure
builds a CRB/IDB pair for the controller, as well as a UCB for each subunit.
Figure 15–5 shows the I/O database created for a MASSBUS adapter with one
disk unit and two tape units.

Figure 15–5 does not include several pointers used in interrupt dispatching. In
particular, the IDB associated with the MASSBUS adapter maintains an array of
up to eight longwords that point to the data structures associated with the eight
possible MASSBUS controllers attached to the MASSBUS.

For dedicated controllers, the IDB longword points to the device’s UCB; whereas,
for a controller for several devices, the longword (or longwords) points to a field
within the CRB associated with the controller. The low bit of this longword,
when set, indicates a multiunit vector. The software checks this bit to determine
whether the longword points to a single UCB or a multiunit CRB.

Also not pictured in Figure 15–5 is how multiunit IDBs also maintain an array of
longwords. Each longword points to the individual UCBs for the units attached to
the controller. Figure 15–6 illustrates in more detail the set of I/O data structures
for the MASSBUS adapter and its devices.

15–6

MASSBUS Device Support
15.2 I/O Database for MASSBUS Devices

Figure 15–4 I/O Database for MASSBUS Disk Unit

ZK−0941−GE

UCB

MBA

RP06

ADP

CRB

IDB

Database
Associated

Configuration
Hardware

Figure 15–5 I/O Database for MASSBUS Disk and Tape Units

ZK−0942−GE

Database
Associated

Configuration
Hardware

RP06

MBA

TM03

UCB

UCB

UCB

CRB

CRB

IDB

IDB

ADP

(MBA Unit 0)

(MBA Unit 1)

1
Unit

0
Unit

15–7

MASSBUS Device Support
15.2 I/O Database for MASSBUS Devices

Figure 15–6 I/O Data Structures Used in Dispatching a MASSBUS Device Interrupt

ZK−0943−GE

ADP

CRB

CRB for MBA

IDB

IDB for MBA

MBA CONFIG. REG

MBA Unit 0 (Disk)

MBA Unit 1 (Tape)

CRB

CRB for TM03

Link

INTD+1

ADP

IDB

IDB for TM03

ADP CSR

ADP

UCB 0

UCB 1

CRB

CRB

UCB 0Disk

UCB 0Tape

UCB 1Tape

15.3 MASSBUS Adapter Operations
The MASSBUS accepts two kinds of operations: data transfer operations
and nondata transfer operations. Data transfer operations require the use of
MASSBUS adapter shared resources, while nondata transfers do not.

Before a driver can activate a data transfer operation on the MASSBUS, the
driver must request and receive ownership of the MASSBUS adapter on behalf of
the device unit. However, drivers must not initiate nondata transfer operations
while they have control of the MASSBUS adapter. Section 15.4.1 explains this
statement further.

The MASSBUS adapter generates interrupts when data transfers terminate and
when attention conditions arise on devices. When an interrupt occurs on the
MASSBUS adapter, the MASSBUS adapter’s interrupt dispatcher determines
whether the interrupt is for a data transfer or an attention condition.

Data transfer interrupts occur when a data transfer either completes or is
aborted. When the interrupt occurs, the MBA’s status register (MBA$L_SR)
contains information about the condition that caused the interrupt.

Attention interrupts occur when nondata transfers on MASSBUS devices
terminate, or when the device undergoes an exceptional condition, such as coming
on line.

15–8

MASSBUS Device Support
15.3 MASSBUS Adapter Operations

The MASSBUS adapter’s attention-summary register controls attention-interrupt
handling. This register contains 8 bits of data, one for each of the eight possible
controllers that can be connected to the MASSBUS adapter. When a device
incurs an attention condition, the hardware sets the corresponding bit in the
attention-summary register and generates a MASSBUS adapter interrupt.

If the attention condition occurs while a data transfer operation for another
device is in progress, the hardware sets the bit in the attention-summary register
but suppresses the attention interrupt. The interrupt generated when the data
transfer is completed allows the MASSBUS adapter’s interrupt dispatcher to gain
control, handle the data transfer interrupt, check the attention-summary register
and then invoke the proper driver to handle the attention condition.

15.4 MASSBUS Adapter’s Interrupt Dispatching
When interrupts occur on the MASSBUS adapter, the MASSBUS adapter’s
interrupt dispatcher gains control. This routine first determines whether the
interrupt is the result of a data transfer or an attention condition. The routine
checks to see if the MASSBUS adapter is owned and, if so, by whom.

15.4.1 Checking for MASSBUS Adapter Ownership
There are two conditions by which the interrupt dispatcher can determine that
the interrupt is an attention interrupt:

• If the MASSBUS adapter is not owned

• If the MASSBUS adapter is owned, but the owner is not expecting an
interrupt (UCB$V_INT in UCB$L_STS is clear)

When the MASSBUS adapter is owned and the owner expects an interrupt, the
interrupt is assumed to be the result of a data transfer operation.

As mentioned earlier, a driver must not initiate nondata transfers on the
MASSBUS adapter while it owns the adapter. For example, consider a MASSBUS
adapter attached to two disk units, A and B. Disk A is performing an IO$_
SEEK (a nondata transfer operation that completes fairly quickly), while at the
same time, disk B is performing an IO$_RECAL operation (a nondata transfer
operation that takes about 0.5 seconds to complete).

The driver for disk A correctly initiates its operation without obtaining possession
of the MASSBUS adapter channel, but the disk B driver initiates its operation
while it owns the MASSBUS adapter. Both of these operations, upon completion,
set the bit in the attention-summary register that corresponds to their respective
drive units, and initiate an interrupt. We will assume that disk A’s IO$_SEEK is
completed first. The operation sets disk A’s bit in the attention-summary register
and generates the MASSBUS adapter’s interrupt.

The MASSBUS adapter’s interrupt dispatcher finds that the adapter is owned,
and that the owner is expecting an interrupt. Therefore, the interrupt dispatcher
incorrectly assumes that it is handling a data transfer interrupt, and, moreover,
that this interrupt is the one for which the owner of the MBA is waiting.

As a result, the MASSBUS adapter’s interrupt dispatcher returns control,
through the fork block in the MASSBUS adapter owner’s UCB, to the driver for
disk B, even though disk B’s operation has not completed. The disk B driver will
now incorrectly assume that the device has completed its operation, which can
cause serious problems.

15–9

MASSBUS Device Support
15.4 MASSBUS Adapter’s Interrupt Dispatching

15.4.2 Dispatching a Device Interrupt
Once the MASSBUS adapter’s interrupt dispatcher determines the type of
interrupt, it dispatches the interrupt to the driver. The interrupt dispatcher
handles attention interrupts and data transfer interrupts in the same way,
with one exception: on an attention interrupt, the interrupt dispatcher clears
the MASSBUS adapter’s status register (MBA$L_SR) before dispatching the
interrupt to the driver. The status register contains information used only in data
transfer interrupt dispatching.

How the interrupt dispatcher dispatches the interrupt to the driver differs
depending on the type of controller.

The MASSBUS adapter’s interrupt dispatcher handles a solicited interrupt on a
dedicated controller by transferring control to the driver through the fork block
in the UCB. On unsolicited interrupts on dedicated controllers, the interrupt
dispatcher calls the driver’s unsolicited interrupt service routine.

On dedicated controllers, the MASSBUS adapter’s interrupt dispatcher always
clears the attention bit in the attention-summary register before it calls back the
driver after an interrupt.

Dispatching interrupts to the driver of a device that shares its controller with
several other devices differs in two ways from dispatching interrupts to the driver
of a device with a dedicated controller.

First, the interrupt dispatcher never clears the attention bit. This task is left to
the driver because some controllers that control more than one device use this bit
to synchronize their activities, and guarantee the integrity of device registers only
while the bit is set. If the interrupt dispatcher clears the bit before returning
control to the driver, the driver can no longer rely on the contents of the device’s
registers.

Second, a controller that controls several devices needs another interrupt
dispatcher to handle simultaneous requests from its several subunits. This
second-level interrupt dispatcher resides in the driver. After an interrupt, the
MASSBUS adapter’s interrupt dispatcher indirectly calls this second driver’s
interrupt dispatcher using code in the controller’s CRB. The driver-loading
procedure installs this code when it establishes the I/O database.

15.5 Special Considerations for MASSBUS Device Drivers
MASSBUS adapter considerations affect a driver’s device unit initialization
routine, start-I/O routines and, for multiunit controllers only, the driver’s
use of the DPTAB macro. MBA considerations also affect interrupt handling,
as described in Section 15.4.2. The next sections in this chapter discuss
programming details for writing a MASSBUS device driver.

15.5.1 Unit Initialization Routine
All drivers for MASSBUS adapter devices initialize two fields in the UCB (as
well as initializing device-specific fields): UCB$B_SLAVE and UCB$B_SLAVE+1.
The first of these fields should contain the controller’s MASSBUS adapter unit
number, which marks the controller’s position on the MASSBUS adapter. The
second of these contains the offset, in longwords, from the start of the MASSBUS
adapter’s external registers to this controller’s device registers. The value of this
longword offset is always 32 times the unit number of the controller.

15–10

MASSBUS Device Support
15.5 Special Considerations for MASSBUS Device Drivers

Initialization of a device attached to a dedicated controller is simple because
the device unit number and the controller position number on the MASSBUS
adapter are always equal. To initialize the field UCB$B_SLAVE, copy to it the
contents of UCB$W_UNIT. To initialize UCB$B_SLAVE+1, multiply the contents
of UCB$W_UNIT by 32. The driver’s fork process or interrupt service routine
later uses this information to compute a pointer to this device’s registers. By
convention, R4 points to the MASSBUS adapter configuration register, and R5
points to the UCB of this device.

Thus, the following two instructions cause R3 to point to the device registers
during normal system operation:

MOVZBL UCB$B_SLAVE+1(R5),R3
MOVAL MBA$L_ERB(R4)[R3],R3

For devices connected to a controller that controls several devices, determination
of the controller’s MBA position is more complex. When the unit initialization
routine is invoked, the following values are in the following registers:

R3 Address of controller’s device registers

R4 Address of the MBA’s configuration register

R5 Address of device’s UCB

The driver computes the MBA position of the controller by using R3 and R4 to
determine the number of bytes from the start of the MBA’s external registers to
the start of the device’s device registers. The difference, when divided by 128, is
the controller’s MBA position number.

15.5.2 The MASSBUS Adapter and the I/O Database
The UCB of a device connected to a single-unit controller, at offset UCB$L_CRB,
contains the address of the MASSBUS adapter’s CRB. This CRB in turn contains,
at offset CRB$L_INTD+VEC$L_IDB, the address of the MASSBUS IDB. This
IDB points to the base address of the MASSBUS adapter registers at offset
IDB$L_CSR.

A controller that controls several devices maintains a more complicated I/O
database. The device UCB, at offset UCB$L_CRB, points to the controller’s
CRB, and this structure points to the CRB for the MASSBUS adapter at offset
CRB$L_LINK. Also, the controller’s CRB points to its own IDB at offset CRB$L_
INTD+VEC$L_IDB. This IDB points to the controller’s device registers at offset
IDB$L_CSR.

Thus, the UCB for a device always points to that device’s primary CRB, whether
it is the MASSBUS adapter’s CRB or the controller’s CRB. The primary CRB
points to the secondary CRB, if one exists for the device.

Figure 15–6 shows these relationships among I/O data structures.

15.5.3 Start-I/O Routine
Depending on the function being executed, the start-I/O routine for a MASSBUS
device performs all or some of the following tasks:

• Requests, if necessary, controller data channel(s) as described in
Section 15.5.3.1

• Clears errors on the MASSBUS adapter by placing the value –1 into the
MBA’s status register; this is a write-ones-to-clear register (MASSBUS device
registers and the MBA’s registers are all longwords)

15–11

MASSBUS Device Support
15.5 Special Considerations for MASSBUS Device Drivers

• Invokes the LOADMBA macro to load the MBA’s map registers as described
in Section 15.5.3.2

• Loads device registers to start the function

• Waits for a device interrupt or timeout

• Releases, if necessary, controller data channel(s) as described in
Section 15.5.3.3

• Finishes the request like other drivers

15.5.3.1 Requesting Controller Data Channels
Device drivers for MASSBUS devices must request and receive ownership of
the MASSBUS adapter channel before loading the MBA’s internal registers or
map registers. In addition, drivers for devices connected to multiunit controllers
must obtain ownership of the controller channel before modifying the contents
of controller registers that can be shared among the units connected to the
controller.

Drivers for dedicated controllers must request ownership of the MASSBUS
adapter channel by invoking the macro REQPCHAN.

Device drivers for controllers that control several devices invoke the REQPCHAN
macro when the operation requires ownership of only the primary channel (the
controller’s channel). However, if the operation requires ownership of both
primary and secondary channels (a data transfer operation), the driver must first
obtain the controller channel and then request the MASSBUS adapter channel by
invoking the REQSCHAN macro.

Again, the driver needs ownership of both channels only when performing a data
transfer, and must release the channels before initiating a nondata transfer.
Thus, a driver must obtain ownership of the MASSBUS adapter channel some
time before initiating a data transfer and must either not own the channel or
release such ownership before it invokes the WFIKPCH macro, or issue the
WFIRLCH macro, following the start of a nondata transfer operation.

15.5.3.2 Loading Map Registers
MASSBUS device drivers invoke the LOADMBA macro before they initiate a
data transfer, to load the MBA’s map registers, the MBA’s virtual-address register
(MBA$L_VAR), and the MBA’s byte-count register (MBA$L_BCR). Drivers cannot
modify these registers during a transfer. The LOADMBA macro expects the
following register contents:

• The address of the MBA’s configuration register (MBA$L_CSR) in R4

• The address of the device UCB in R5

LOADMBA preserves the contents of R3 but modifies R0 through R2. The macro
performs the following steps:

1. Uses the contents of UCB$W_BCNT and UCB$W_BOFF to determine the
number of pages that contain pieces of the I/O buffer.

2. Beginning with the page-table entry (PTE) to which UCB$L_SVAPTE points
and continuing for the number of page-table entries determined in step 1,
copies the page-frame numbers (PFNs) from the page-table entries to the
corresponding map registers, starting at map register 0.

15–12

MASSBUS Device Support
15.5 Special Considerations for MASSBUS Device Drivers

3. Ensures that the valid bit is clear in the map register that immediately
follows the last map register loaded with a PFN. This prevents a hardware
fault or prefetch from modifying memory.

4. Moves the negative value of the transfer byte count (UCB$W_BCNT) into the
MBA’s byte-count register (MBA$L_BCR).

5. Moves the byte offset in the first page of the transfer (UCB$W_BOFF) into
the MBA’s virtual-address register (MBA$L_VAR).

6. Returns to the start-I/O routine that invoked it.

If the I/O operation about to be initiated by the driver is a reverse operation (a
read-reverse on tape), the driver must modify the contents of the MBA’s virtual-
address register set up by LOADMBA. Because reverse operations access the I/O
buffer from its highest address through its lowest address, the value to be loaded
into the MBA’s virtual-address register must be the virtual address, in MBA’s
virtual memory, of the last byte of the buffer. This number is equal to one less
than the sum of the contents of UCB$W_BOFF and UCB$W_BCNT.

15.5.3.3 Releasing Controller Data Channels
The driver releases the controller data channels by invoking the RELCHAN
macro. RELCHAN releases all controller channels (both primary and secondary)
currently owned by the device. To release only the secondary channel and retain
ownership of the primary channel, a driver can invoke the RELSCHAN macro.

15.5.4 DPTAB Macro
The device driver for a MASSBUS device that shares its controller with other
devices must set the DPT$V_SUBCNTRL bit in the flags argument of the DPTAB
macro. Setting this bit causes the driver-loading procedure to create a second
CRB and an IDB for the controller.

15.6 Interrupt Service Routines for MASSBUS Devices
The MASSBUS interrupt dispatcher (MBA$INT) gains control when it receives
an interrupt from the MASSBUS adapter. Because data transfers in progress
suppress attention interrupts on the MASSBUS adapter, and because several
devices can request attention simultaneously, several device drivers might need
to be informed of the interrupt.

MBA$INT determines which drivers should be invoked as a result of the interrupt
and then passes control to these drivers. For data transfer interrupts, MBA$INT
preserves the value contained in the MBA’s status register at the time of the
interrupt so that the driver can have access to this value.

For I/O operations that involve no data transfer, MBA$INT clears this register
before invoking the driver. MBA$INT only preserves the contents of registers
R2 through R5. Drivers that use other registers must save the contents of those
registers, and must restore them before exiting from the interrupt service routine.

15.6.1 Transferring Control to the Interrupt Service Routine
The method by which MBA$INT invokes a driver depends upon whether the
driver serves a device connected to a dedicated controller or a device that shares
its controller with several other devices. Furthermore, if the device is connected
to a dedicated controller, the method of transfer from MBA$INT to the driver
depends upon whether or not the interrupt is expected.

15–13

MASSBUS Device Support
15.6 Interrupt Service Routines for MASSBUS Devices

For a device on a dedicated controller whose driver is expecting an interrupt,
MBA$INT restores the driver context saved in the UCB fork block and transfers
control (using a JSB instruction) to the instruction that follows the wait-for-
interrupt instruction.

For a device on a dedicated controller whose driver is not expecting interrupts,
MBA$INT obtains the address of the driver’s unsolicited interrupt service routine
from the driver dispatch table (DDT) and calls the routine.

For a device that shares its controller with several other devices, MBA$INT
transfers control to the driver’s interrupt service routine by simulating a direct
transfer, through an interrupt vector, to the controller’s CRB. The CRB contains
code that transfers control to the interrupt service routine.

MBA$INT first pushes the processor status longword (PSL) onto the stack.
The routine then calls (with a JSB instruction that leaves an address within
MBA$INT on the stack) the code within the CRB. This code contains the following
sequence of instructions, where XX$INT is the address of the interrupt service
routine and XX$IDB is the address of the controller’s IDB:

PUSHR #^M<R2,R3,R4,R5>
JSB XX$INT
.LONG XX$IDB

The execution of the previous instruction sequence, plus the instructions executed
by MBA$INT (the pushing of the PSL onto the stack and the JSB), places a
simulated interrupt frame onto the stack, including a saved PSL, a saved PC,
saved registers, and a pointer to an address in the IDB.

15.6.2 Returning Control to MBA$INT
The way in which a driver returns control to MBA$INT depends on the way in
which MBA$INT invoked it. Drivers for dedicated controller devices return to
MBA$INT through an RSB instruction, although the RSB can execute as a result
of the driver’s invoking the IOFORK macro.

Drivers of devices that share a controller return control to MBA$INT by removing
the indirect pointer to the IDB from the top of the stack, restoring registers R2
through R5, and executing an REI instruction. This sequence, executed within
the driver’s interrupt service routine, eliminates the simulated interrupt frame
from the stack before returning to MBA$INT.

15.6.3 Considerations for Interrupt Service Routines
Drivers for dedicated controller devices attached to the MASSBUS do not have
interrupt service routines. Instead, MBA$INT handles all the functions that a
driver interrupt service routine normally provides.

Drivers of devices that share a controller on the MASSBUS must have their own
interrupt service routines. In general, these routines perform the same functions
as the interrupt service routines for UNIBUS and Q22–bus devices (discussed in
Chapter 9). However, the two types of drivers diverge in two areas.

One difference between UNIBUS/Q22–bus and MASSBUS drivers concerns the
number of registers saved by the interrupt service routine. When the interrupt
dispatcher transfers control to a MASSBUS driver interrupt service routine,
registers R2 through R5 are pushed onto the stack. UNIBUS/Q22–bus drivers
save R0 through R5.

15–14

MASSBUS Device Support
15.6 Interrupt Service Routines for MASSBUS Devices

After handling an interrupt, both MASSBUS and UNIBUS/Q22–bus driver
interrupt service routines execute an REI instruction. For UNIBUS/Q22–bus
devices, the REI dismisses a real interrupt, whereas the MASSBUS driver’s REI
returns control to MBA$INT.

15–15

16
Generic VAXBI Device Support

This chapter provides information needed to write and load a device driver for
a non-Digital-supplied device attached to the VAXBI bus. The operating system
provides special support for such devices in the system initialization routines
for the VAX 82x0/83x0, VAX 85x0/8700/88x0, VAX 6000 series, VAX 7000 series,
VAX 9000 series, and VAX 10000 series systems. Because of the many and varied
implementations of VAXBI devices, however, system support must of necessity
be very general. Some devices may more fully utilize the VAXBI interface than
others; a device may incorporate its interface initialization logic in microcode,
whereas another may defer initialization to code in its driver.

The VAXBI Options Handbook includes a description and guidelines for possible
VAXBI device implementations. Refer to that manual for further discussion of all
VAXBI topics discussed in brief in Section 16.2 and elsewhere in this chapter.

16.1 Overview of VAXBI Driver Support
A VAXBI device driver refers to the same data structures and contains the
same routines as a traditional driver. A VAXBI device driver deviates from the
traditional driver almost exclusively in code that initializes the VAXBI interface
or supports direct-memory-access (DMA) transfers for devices that address
memory across the VAXBI bus. Section 16.7 discusses tasks that drivers of
various VAXBI devices may perform in their initialization routines to supplement
system initialization and that initialization performed by device microcode.
Section 16.8 contains a general discussion of how some VAXBI devices and their
drivers manage DMA transactions.

Section 16.6 describes those data structures the system adapter initialization
routine creates and prepares for a generic VAXBI device, while Section 16.11
discusses the method by which its driver can be loaded into the operating system.
The final section of this chapter provides reference material and includes a
description of the backplane interconnect interface chip (BIIC) registers.

16.2 VAXBI Concepts
The VAXBI bus serves as an I/O bus for the VAX 82x0/83x0, VAX 85x0/8700
/88x0, VAX 6000 series, VAX 7000 series, VAX 9000 series, and VAX 10000
series systems (see Figure 1–5). The VAXBI is also the system bus for the VAX
82x0/83x0 systems. The VAX 82x0/83x0 systems have a single VAXBI; the VAX
85x0/8700/88x0, VAX 6000 series, VAX 7000 series, VAX 9000 series, and VAX
10000 series systems can have multiple VAXBI buses.

Each location on a VAXBI bus is called a node. A single VAXBI bus can
service 16 nodes. In the case of the VAX 82x0/83x0 systems, these nodes can be
processors, memory, and adapters; the VAX 85x0/8700/88x0, VAX 6000 series,
VAX 7000 series, and VAX 10000 series systems permit only adapters to be

16–1

Generic VAXBI Device Support
16.2 VAXBI Concepts

attached to the VAXBI bus.1 A node receives its node ID, a number from 0 to 15,
from a plug on the VAXBI backplane slot into which the node module is inserted.

An adapter is a node that connects other buses, communication lines, and
peripheral devices to the VAXBI bus. This chapter uses the term device to refer
to a device or combination of devices serviced by a single adapter or controller.

16.2.1 VAXBI Address Space
Each VAXBI bus supports 30-bit addressing capability. This gigabyte of address
space is split equally between memory and I/O address space, with I/O space
occupying the top 512 MB. See Figure 16–1.

Figure 16–1 VAXBI Address Space

2000 0000

3FFF FFFF

ZK−5541−GE

Hex Address
0000 0000

512 MB
Memory Space

512 MB
I/O Space

0

1GB

On systems running without the extended addressing feature, I/O space begins at
2000000016. All memory locations on a VAXBI bus are addressed using physical
addresses in VAXBI memory space (from 0000000016 through 1FFFFFFF16). A
VAXBI device that accesses memory directly (or indirectly through a memory-
interconnect-to-VAXBI adapter), or its driver, must perform virtual-to-physical
translation before transmitting a memory address on the bus. (See Section 16.8
for additional information.)

On systems running with the extended addressing feature, I/O space begins at
E000000016. In addition to any virtual-to-physical address translation, the device
driver must use map registers in the XBI+ XMI-to-BI adapter to map the VAXBI
memory space to the expanded system physical address space. (See Section 16.3.)

VAXBI I/O address space is partitioned as illustrated in Figure 16–2. Figure 16–3
shows the structure of a VAXBI I/O-space address.

1 For VAX 85x0/8700/88x0, VAX 6000 series, VAX 7000 series, VAX 9000 series, and
VAX 10000 series systems, the memory-interconnect-to-VAXBI adapter (NBI, PBI, or
DWMBA) or, more specifically, the NBIB, PBIB, or DWMBA/B resides at a node on a
VAXBI bus, monitoring and controlling transactions to the memory interconnect (NMI,
NMIs, or XMI) where the processors and memory reside.

16–2

Generic VAXBI Device Support
16.2 VAXBI Concepts

Figure 16–2 Description of VAXBI I/O Address Space

Hex Offset

0000 0000

0000 1FFF

0001 E000

0043 FFFF

007C 0000

007F FFFF

1FFF FFFF

ZK−5542−GE

Reserved

(8Kb)
Node 15 Node Space

(3.75Mb)
Node Private Space

(256Kb)
Window Space

Node 0

0002 0000

0004 0000

0001 FFFF

0003 FFFF

0040 0000
003F FFFF

 (480Mb)
(For multiple VAXBI systems)

Reserved

(128Kb)
Multicast Space

(8Kb)
Node 0 Node Space

Node 15
Window Space

(256Kb)

As shown in Figures 16–2 and 16–3, VAXBI architecture grants each of the 16
nodes on a VAXBI bus two discrete sections in I/O address space.

Node space and window space functions are as follows:

16–3

Generic VAXBI Device Support
16.2 VAXBI Concepts

Figure 16–3 Physical Addresses in VAXBI I/O Address Space

29

1

28 25

Specifies which VAXBI bus

I/O Space

24 23

0 0 If not zero bits <24: 23>, indicate reserved space

22

1 Window Space

21 18

Specifies which node’s window space

17 0

Window Space Address

Node Space Address

012

Node ID

1316

Node Space

17

0 0 0 0

21 20 19 18

If not zero bits <21:18>, indicate node private space

0 Non−Window Space

22

17

16 0

Multicast Space Address

Multicast Space

ZK−5543−GE

16–4

Generic VAXBI Device Support
16.2 VAXBI Concepts

Node space An 8KB block of addresses consisting of 256 bytes of BIIC CSR
space, followed by user interface CSR space. A device can access
the control and status registers (CSRs) of its backplane interconnect
interface chip by using BIIC CSR space addresses. Device-specific
registers reside in user interface CSR space.

Because the system adapter initialization routine virtually maps
node space for each VAXBI node on each VAXBI bus, a device driver
can access both BIIC registers and device registers using virtual
addresses. (See Sections 16.7 and 16.8 for a discussion of driver
access to registers.)

Window space A 256KB block used by a VAXBI adapter to map an I/O transfer to
a target bus. Because the operating system does not automatically
map window space to virtual addresses, a driver that manipulates
addresses in window space must itself allocate and fill sufficient
system page-table entries for the range of its window space
addresses. (See Section 16.7.)

Note that node private space contains locations used for the storage of bootstrap
firmware and software. VAXBI nodes are not permitted to issue or respond to
VAXBI transactions targeting locations in node private space.

16.2.2 Backplane Interconnect Interface Chip (BIIC)
The backplane interconnect interface chip (BIIC) serves as the primary
interface between the VAXBI bus and the user interface logic of a node. The BIIC
supplies the logic necessary for a node to initiate and respond to transactions on
the VAXBI bus, arbitrate bus ownership, send and receive interrupt requests, and
monitor bus errors.

A node can enable, control, and monitor such activities by accessing the set of
BIIC registers located in the first 256 bytes of its node space. Because the system
adapter initialization routine virtually maps node space addresses, drivers for
VAXBI devices can use virtual addresses to access BIIC registers. In addition,
given the virtual address of the base of a device’s node space, a driver can use the
symbolic offsets, masks, and bit fields defined by the system macro $BIICDEF (in
SYS$LIBRARY:LIB.MLB). Table 16–1 in Section 16.12 describes these symbols.

16.3 XBI+ Adapter
When the system is configured for extended (32-bit) addressing, the XBI
(DWMBA/A) adapter is replaced with the XBI+ (DWMBB/A) adapter. The XBI+
occupies one slot in the XMI backplane and connects to the VAXBI-side adapter
(DWMBA/B) by way of a set of ribbon cables.

The XBI+ supports a compatibility mode in which it functions identically to the
XBI. This is the default mode when power is first turned on to the adapter. It
also has a page mode that enables address translation from VAXBI physical
addresses to XMI 32-bit physical addresses via map registers contained in the
XMI node space.

The XBI+ contains 65536 page map registers that allow mapping a total of 32MB
of VAXBI physical address space into XMI physical address space. During system
initialization, if the system is configured to include extended addressing, the XBI+
is set into page mode and the page map register allocation control structures are
initialized.

A set of system routines, supplied as part of the operating system base image,
are available to allocate, deallocate, and load the XBI+ map registers. (See the
OpenVMS VAX Device Support Reference Manual.)

16–5

Generic VAXBI Device Support
16.3 XBI+ Adapter

16.3.1 XBI+ BI-to-XMI Address Translation
When a 30-bit address is transmitted on the VAXBI bus and relayed to the XBI+,
bits 29:9 are used by the XBI+ as an index into its page map register file. Each
entry in the register file contains the PFN to which the address is to be mapped.
Bits 30:0 of the map register are inserted into bits 39:9 of the translated address,
and bits 8:0 of the BI address are inserted into bits 8:0 of the translated address.
The translated address is then expressed onto the XMI bus.

16.3.2 VAXBI Device Register Access
Note that the driver does not need to use the XBI+ map registers to access the
VAXBI device registers when the system is running with the extended addressing
feature. However, device drivers that directly map node or window space must do
so using 23-bit PFNs. (See Section 16.7.3.)

16.4 SCU/XMI Concepts
As shown in Figure 1–6, the XMI bus of an SCU/XMI system, such as a
VAX 9000, serves as the primary I/O bus. Each XMI bus supports 30-bit
addressing and provides 1 gigabyte of physical address space. Like the VAXBI
address space, the total VAX 9000 address space is divided into equal areas of
memory and I/O address space, as shown in Figure 16–1.

All memory locations on a VAX 9000 XMI bus are addressed using physical
addresses in XMI memory space (from 0000 000016 through 1FFF FFFF16).

VAX 9000 XMI I/O address space (physical addresses 2000 000016 through 3FFF
FFFF16) is partitioned as illustrated in Figure 16–4.

The assignment of I/O addresses, shown in Figure 16–4, for any VAX 9000 system
supports two levels of bus structure: the XMI and the VAXBI. A VAX 9000
system uses the XMI as an I/O bus and may have up to 4 XMIs, depending on
the model. Each XMI can have up to 14 nodes or devices numbered 1 through E
hexadecimal. The XJA adapter occupies node 8, and node 7 is used for a clock
module, leaving nodes 1 through 6 and 9 through E for other adapters.

The four XMI-bus node spaces (XMI0 to XMI3) are assigned the first region of
XMI I/O address space. By means of address translation performed by the system
control unit (SCU) and the I/O control unit, CPUs address individual XMI device
CSRs using XMI node space.

Fourteen XBI window space regions follow XMI node space, one for each DWMBA
adapter that might be present on any of the XMI buses. A DWMBA is an I/O
adapter that connects a VAXBI bus to an XMI bus. Each DWMBA (14 maximum)
is physically mapped into its own XBI window space (XBIx) in the I/O block. The
VAXBI window spaces are named XBI0 to XBID16, and span the XBI window
space region. XBI window space allows CPUs to address the individual VAXBI
device CSRs.

In XMI I/O space, a given XBI’s window space is determined by the XBI’s XMI
node number. There is a limit of 8 XBIs on a given XMI bus and a limit of 14
XBIs across all XMI buses. In the assignment of XBI window spaces, the XBI
with the lowest node number on XMI0 is assigned to XBI0 window space. The
XBI with the second lowest node number in XMI0 is assigned to XBI1 window
space, and so on through all XBIs on XMI0; then to XMI1, XMI2, and until XMI3
is exhausted or the fourteenth XBI is found.

16–6

Generic VAXBI Device Support
16.4 SCU/XMI Concepts

Figure 16–4 SCU/XMI Systems I/O Address Space

Hex Address

2000 0000
XMI0 Node Space

XMI1 Node Space

XMI3 Node Space

XMI2 Node Space

XBI0 Window Space

XBI1 Window Space

XBI2 Window Space

XBI3 Window Space

XBI4 Window Space

XBI5 Window Space

XBI6 Window Space

XBI7 Window Space

XBI8 Window Space

XBI9 Window Space

XBIA Window Space

XBIB Window Space

XBIC Window Space

XBID Window Space

XJA0 Private Space

XJA1 Private Space

XJA2 Private Space

XJA3 Private Space

SCU Register Space

2080 0000

2100 0000

2180 0000

2200 0000

2400 0000

2600 0000

2800 0000

2A00 0000

2C00 0000

2E00 0000

3000 0000

3200 0000

3400 0000

3600 0000

3800 0000

3A00 0000

3C00 0000

3E00 0000

3E08 0000

3E10 0000

3E18 0000

3E20 0000

3FFF FFFF

ZK−1938A−GE

An XJA of the SCU/XMI bus architecture is an adapter that connects the SCU
ports to the XMI bus. The XJAs have a private space region in the I/O block
that allows CPUs to address the XJA CSRs. Since there are up to four XMIs,
there can be four XJAs. In the XJA private space region, XJAs are mapped XJA0
through XJA3.

16.5 VAX 7000 Series and VAX 10000 Series Systems
The VAX 7000 series and VAX 10000 series systems use a distributed bus
architecture that features a two-level I/O subsystem supporting up to four
optional interfaces to ‘‘remote’’ VAXBI buses.

Devices connected to a remote bus cannot be directly addressed via the physical
address space of the system. Thus, traditional methods of accessing I/O device
control and status registers (CSRs) are not available for these devices. Instead, a
mechanism known as a hardware I/O mailbox is used.

16–7

Generic VAXBI Device Support
16.5 VAX 7000 Series and VAX 10000 Series Systems

16.5.1 Data Structures
A hardware I/O mailbox is a hardware-defined data structure in system memory.
The operating system supports the hardware I/O mailbox mechanism through
a a software structure known as a control register access mailbox (CRAM). The
CRAM contains information describing the type of remote bus transaction (CSR
read or CSR write), the bus address of a particular device’s CSR, and various
flags.

To access a CSR of a device attached to a remote bus, the address of the CRAM
is passed to the system bus I/O processor (IOP) which, in turn, forwards it to the
remote bus adapter. The command specified in the CRAM is handed to the bus
and any resulting data or status information is returned to the CRAM.

For more information about the CRAM data structure, refer to the OpenVMS
VAX Device Support Reference Manual.

Many system data structures and arrays contain a system virtual address that
maps to a physical I/O address. Because this mapping is not defined for the
I/O address space of remote devices on VAX 7000 series and VAX 10000 series
systems, remote device registers are addressed using pseudo CSR addresses
(PCAs).

The PCA is a 32-bit value that identifies a specific register for a specific device on
a remote I/O bus. Figure 16–5 shows the structure of a PCA for the VAXBI.

Figure 16–5 VAXBI Pseudo CSR Address (PCA)

ZK−5235A−GE

Reserved (must be zero)

Hose number (0:3)
XMI node number (0:F)

BI node number (0:F)
Register offset

(0:7FFFF)

BI flag (must be set)

31 30 28 26 23 22 19 18 0

The base PCA maps to the device register at offset zero; the device’s other
registers are mapped by adding the register offset to the base PCA. During
initialization, the base PCA of a device replaces the system virtual address
normally contained in system data structures.

16.5.2 System Macros
Two system macros support remote bus CSR access: READ_CSR and WRITE_
CSR. These macros expand to include code that supports both the traditional CSR
access method, as well as hardware mailbox I/O required on the VAX 7000 series
and VAX 10000 series systems. A bit in UCB$L_DEVCHAR2, set by the driver
loading procedure, indicates if the device uses mailbox I/O.

16–8

Generic VAXBI Device Support
16.5 VAX 7000 Series and VAX 10000 Series Systems

In most cases, a single invocation of the READ_CSR or WRITE_CSR macro
directly replaces a VAX MOVx type of instruction. More complex instructions
(such as BICx, BISx, DECx, INCx, and so on) require an invocation of the READ_
CSR macro to local memory, modification of the data, and then an invocation of
the WRITE_CSR macro back to the device CSR. The test class of instructions
(such as BBxx and BITx) require an invocation of the READ_CSR macro into local
memory and then testing the data locally.

READ_CSR and WRITE_CSR have identical arguments:

READ_CSR source, dest[, length][, error][, environ]
WRITE_CSR source, dest[, length][, error][, environ]

For READ_CSR, source is the address in I/O space of the register to be read and
dest is the location in memory where the data will be returned. For WRITE_
CSR, source is that local address of the data to be written and dest is the
address in I/O space of the register to be written. Note that the I/O space address
is a pseudo CSR address for remote devices on a VAX 7000 series or VAX 10000
series system; on all others is is a traditional system virtual address.

The optional length argument specifies the type of CSR access. Valid values
are BYTE, WORD, and LONG. Longword access is the default if length is not
specified.

The optional argument error specifies how an access failure is to be handled.
The optional argument environ specifies how the system is to determine the
access method to use.

For both macros, the address of the device’s unit control block (UCB) must be in
general register R5 when the macro is invoked.

For more information on using these macros, refer to the OpenVMS VAX Device
Support Reference Manual.

16.5.3 Processing
On systems that support the traditional method of CSR access, the READ_CSR
and WRITE_CSR macros expand to a set of standard MOVx instructions. On VAX
7000 series and VAX 10000 series systems, the macros expand to code system
routine EXE$CRAM_CMD calls to handle processing. This routine performs four
basic functions:

1. Allocates a CRAM structure by calling IOC$ALLOCATE_CRAM. If no CRAMs
are currently available, more memory is allocated and configured as CRAMs.

2. Fills in the CRAM with information from the macro invocation and the
device’s UCB.

3. Passes the CRAM to the IOP by calling IOC$CRAM_IO. This routine queues
the operation and waits for it to finish. If the operation is a read, data is
returned to the location specified in the macro invocation.

4. Deallocates the CRAM by calling IOC$DEALLOCATE_CRAM.

For more information about these system routines, refer to the OpenVMS VAX
Device Support Reference Manual.

16–9

Generic VAXBI Device Support
16.6 Initialization Performed by the System

16.6 Initialization Performed by the System
During the phase of system initialization known as adapter initialization, the
operating system performs a set of system-specific tasks to identify and configure
each device it discovers at each of the 16 nodes on each VAXBI bus in the system
configuration.

The adapter initialization module configures Digital-supplied and non-Digital-
supplied devices alike, performing the following activities as part of its
initialization cycle:

1. Tests for the presence of a device at the node by issuing a MOVL instruction,
the target of which is a system virtual address temporarily mapped to the
first longword of its node space. If this instruction is successful, it returns
the contents of the BIIC Device Type Register of the addressed node to the
processor.2

2. Records the contents of the low 16 bits of the BIIC Device Type Register, plus
an I/O bus identifier in the slot in the CONFREGL array that corresponds
to the VAXBI bus and node at which it found the device,3 and compares this
value against a table of recognized device types.

3. If it recognizes the device, maps the number of pages specified in the table
for the device type, and places the system virtual address of the base of the
mapped node space in the slot in the SBICONF array that corresponds to the
VAXBI bus and node at which it found the device.4

If it does not recognize the device, maps the entire 8KB of the node’s node
space into system virtual address space by allocating 16 system page-table
entries (SPTEs) and associating them with the 16 page-frame numbers
(PFNs) of the physical addresses assigned to this node’s node space on this
VAXBI bus. The adapter initialization module then saves the base system
virtual address of the resulting 8KB range in the longword slot corresponding
to this node in the SBICONF array.

4. Performs such additional tasks as allocating and filling in data structures
in a device-specific manner. For a non-Digital-supplied device attached to
a VAXBI bus, the operating system creates generic versions of the channel
request block, interrupt dispatch block, and adapter control block—and
fills in the appropriate vectors in the system control block—as discussed in
Section 16.6.1.

For devices it does recognize, the operating system additionally calls a
system-supplied subroutine, the address of which it obtains from the
device-type table, that performs further device-specific initialization.

2 If no device exists at a given VAXBI node address, the CPU becomes aware of this in
a system-specific way. For example, the VAX 82x0/83x0 systems experience a machine
check, whereas the VAX 85x0/8700/88x0, VAX 6000 series, and VAX 9000 series systems
determine that the node is vacant by reading an NXM (nonexistent memory) error
from the BIIC Bus Error Register of the NBIB, PBIB, or DWMBA on the VAXBI being
examined.

3 The CONFREGL array is a set of longwords in system pool pointed to by EXE$GL_
CONFREGL. The CONFREGL array contains an entry for each possible VAXBI node.
For VAX 82x0/83x0 systems, with one VAXBI, this array has 16 entries. For VAX
85x0/8700/88x0, VAX 6000 series, and VAX 9000 series systems, this array has 16
entries for each VAXBI bus on the system.

4 The SBICONF array is a set of longwords, similar in structure to the CONFREGL array
and pointed to by MMG$GL_SBICONF, that lists the system virtual addresses of the
base of the node space for each node on a VAXBI bus.

16–10

Generic VAXBI Device Support
16.6 Initialization Performed by the System

For devices it does not recognize, the operating system must defer device-
specific initialization to the device driver’s initialization routine.

16.6.1 Data Structures
The adapter initialization module creates and prepares a channel request block,
interrupt dispatch block, and an adapter control block in the manner described in
this section. For each data structure it creates, the operating system fills in the
first three longwords with the standard system header information (that is, the
structure type, size, and links).

Channel Request Block
For the newly created channel request block (CRB), the operating system
performs the following tasks:

• Sets up the resource wait queue header (CRB$L_WQFL and CRB$L_WQBL)

• Sets the bit CRB$V_UNINIT in CRB$B_MASK to indicate to the System
Generation utility that, although the CRB exists, its controller initialization
routine has not yet been called

• Initializes four interrupt dispatchers (CRBL_INTD, CRBL_INTD2, and so
on) so that they have the effect of pushing general registers R0 through R5
onto the stack, and issuing a JSB instruction

The adapter initialization module always creates the four vectors, in contrast
to the methods by which UNIBUS/Q22–bus drivers control the number of
vectors created (see Section 14.3.3). The destination of the JSB instruction at
initialization is a standard null interrupt handler which merely dismisses the
interrupt. Later, when the specific device driver is loaded for the device (see
Section 16.11), the driver’s interrupt service routine address replaces this null
interrupt handler in the dispatchers. As necessary, the driver specifies the
addresses of its interrupt service routines as follows:

DPT_STORE,CRB,CRB$L_INTD,D,isr_for_1st_vector
DPT_STORE,CRB,CRB$L_INTD2+VEC$L_ISR,D,isr_for_2nd_vector
DPT_STORE,CRB,CRB$L_INTD+(2*VEC$K_LENGTH)+VEC$L_ISR,D,isr_for_3rd_vector
DPT_STORE,CRB,CRB$L_INTD+(3*VEC$K_LENGTH)+VEC$L_ISR,D,isr_for_4th_vector

Interrupt Dispatch Block
The operating system initializes the interrupt dispatch block (IDB) in the
following manner:

• Sets the number of device units controlled by this interrupt dispatch block
(IDB$W_UNITS) to 1. The list of unit control block (UCB) addresses in this
IDB, as a result, is one longword in size. The driver-loading procedure writes
a UCB address into this longword whenever it creates a new UCB associated
with the controller. Because there is only one slot in this array, drivers for
non-Digital-supplied multiunit controllers must use a different mechanism to
locate the UCB of interest at the time of an interrupt.

• Copies the virtual address of the base of this device’s node space to IDB$L_
CSR from the corresponding slot in the SBICONF array.

16–11

Generic VAXBI Device Support
16.6 Initialization Performed by the System

Adapter Control Block
The operating system creates a truncated adapter control block (ADP) for a non-
Digital-supplied VAXBI device (48 bytes as opposed to the traditional 600 bytes).
The ADP it creates contains no fields reserved for the allocation and accounting
of data paths or map registers. The operating system prepares this generic ADP
in the following manner:

• Copies the virtual address of the base of this device’s node space to ADP$L_
CSR from IDB$L_CSR.

• Places the VAXBI node ID of this device in ADP$W_TR.

• Stores the value AT$_GENBI (signifying the generic VAXBI ADP type) in
ADP$W_ADPTYPE.

• Calculates the address of the first of the four interrupt vectors for this node in
the system control block (SCB), and places it in ADP$L_AVECTOR. A driver
can determine the addresses of the other three SCB vectors by adding 64,
128, or 192, respectively, to the address of this first SCB vector.

• Saves the offset of this first SCB vector from the start of its SCB page in
ADP$W_BI_VECTOR. (Refer to Section 16.6.2 for a description of the SCB.)

• Places in ADP$L_BI_IDR a longword mask with a single bit set, as
appropriate to the VAX system, that specifies which VAXBI node should
become the destination of interrupts from this node. In VAX 82x0/83x0
systems, the VAXBI node of the primary processor becomes the destination
for interrupts. In VAX 85x0/8700/88x0, VAX 6000 series, and VAX 9000
series systems, it is the VAXBI node of the NBIB, PBIB, or DWMBA/B on
the particular VAXBI bus on which this device resides that becomes the
destination for such interrupts.

• Stores in ADP$L_MBASCB—and in each of the device’s four SCB vectors—
the address of the interrupt dispatcher. The actual stored value is CRB$L_
INTD+1, CRB$L_INTD2, and so on, the set low bit of the address indicating
that the interrupt stack be used to service the interrupt. Certain power
failure recovery operations use the contents of ADP$L_MBASCB to refresh
the SCB vectors.

• Saves in ADP$L_MBASPTE the contents of the first of the 16 SPTEs that
map the device’s node space. Certain recovery operations use the contents
of ADP$L_MBASPTE to restore correct SPTE values and remap node space
following a power failure.

• Places in ADP$L_BIMASTER the address of the ADP of the memory-
interconnect-to-VAXBI-adapter (NBI, PBI, or DWMBA). Note that there is
no memory-interconnect-to-VAXBI adapter for VAX 82x0/83x0 configurations.

16.6.2 System Control Block
The system control block (SCB) consists of one or more pages of vectors. For all
VAX processing systems, the first half page contains vectors used in exception
dispatching. The operating system uses the remainder of the first page, as well
as subsequent pages, in a system-specific way.

For VAX 82x0/83x0 systems, the operating system assigns the vectors from 10016
to 1FC16 to VAXBI devices in the order of their node IDs.

16–12

Generic VAXBI Device Support
16.6 Initialization Performed by the System

The VAX 85x0/8700/88x0 system architectures relegate vectors 10016 to 1FC16 to
NMI nexus vectors in page 0. Page 1 is reserved for the first ‘‘offsettable’’ device
that exists in the system. (An ‘‘offsettable’’ device is an adapter such as the
VAXBI-to-UNIBUS adapter (DWBUA or DWMUA) that passes interrupts from
devices on another bus to the VAXBI and, from there, to the memory interconnect
(NMI or XMI) and the processor.) If there is more than one ‘‘offsettable’’ device,
an additional SCB page is needed for each.

Ultimately, the vectors for other devices attached to each of the six possible
VAXBI buses of the system are contained in the six corresponding SCB pages
from page 26 to page 31. In a 4-VAXBI system, for instance, vectors for devices
connected to VAXBI 0 and VAXBI 1 on NBI/PBI/DWMBA 0 are assigned to pages
28 and 29 of the SCB, respectively; vectors for devices connected to VAXBI 0 and
VAXBI 1 on NBI/PBI/DWMBA 1 are likewise assigned to pages 30 and 31. In a
6-VAXBI system, the vectors are assigned in a similar fashion, starting at page
26.

For VAX 6000 series systems, the vectors for XMI devices are assigned from 10016
to 1FC16 in the first SCB page (page 0). Then vectors for devices connected to
VAXBI 0 start on page 1 and run from 30016 to 3FC16, then devices for VAXBI
1 are assigned vectors (50016 to 5FC16) in page 2, and so on for the remaining
VAXBIs and respective pages.

For VAX 9000 series systems, the vectors for devices connected to XMI0 bus are
assigned from 10016 to 1FC16 in SCB page 0. Then vectors for devices connected
to XMI1 bus start on page 1 and run from 30016 to 3FC16, and so on for devices
on buses up through XMI3 bus. Then, vectors for devices connected to VAXBI 0
start on page 4 with vectors B0016 to BFC16, and so on for the remaining VAXBI
buses and respective pages.

Generally, a VAX processor obtains a device vector from the BIIC registers
of the node that has requested the interrupt (see Figure 16–6). Information
supplied in the device vector allows the processor to index to the corresponding
interrupt-dispatching vector in the appropriate page of the SCB. For VAX 82x0
/83x0 systems, such information includes the interrupt level of the device and
its VAXBI node ID. A similar vector for VAX 85x0/8700/88x0, VAX 6000 series
and VAX 9000 series devices further specifies the appropriate NBI/PBI/DWMBA
vector offset and the number of the VAXBI bus.

The specific SCB interrupt-dispatching vector, thus found, transfers control to
the interrupt-dispatching code in the device’s CRB. Upon an interrupt from this
device, the SCB vector directs flow into the interrupt dispatcher in the CRB,
which saves the register contents and dispatches to the interrupt service routine
established by the device driver.

16.7 Initialization Performed by the VAXBI Device Driver
All generic VAXBI device drivers must specify GENBI as the adapter type in the
adapter argument to the DPTAB macro.

The device driver’s initialization routines are expected to initialize the device-
specific aspects of the VAXBI device. For non-Digital-supplied devices, the
initialization routines perform the sort of tasks that the adapter initialization
module performs for the Digital-supplied devices it discovers on a VAXBI bus. For
single-unit devices, a separate unit initialization routine may not be necessary.

16–13

Generic VAXBI Device Support
16.7 Initialization Performed by the VAXBI Device Driver

Figure 16–6 VAXBI Device Vectors

For VAX 8200/8250/8300/8350

Select

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VAXBI Node ID10

For VAX 8530/8550/8700/8800/8810/8820/8830,
VAX 6000 Series, and VAX 9000 Series Devices

1

"Select" indicates one
of four interrupt vectors.

ZK−5545−GE

 9 8 7 6 5 4 3 2 1 0

Register
Offset
Vector
NBI/PBI/XBI

Select VAXBI Node ID

The System Generation utility (SYSGEN) calls the controller initialization
routine at IPL 31 (see Section 11.1), passing it the following values in the listed
general registers:

• R4 pointing to the system virtual address (SVA) of the device’s node space

• R5 pointing to the IDB

• R6 pointing to the DDB

• R8 pointing to the CRB

After the controller initialization routine has completed, SYSGEN calls the
driver’s unit initialization routine at IPL 31, and passes it the following values in
the listed general registers:

• R3 pointing to the SVA of the device’s node space

• R5 pointing to the UCB

Hardware initialization might include such activities as writing values to BIIC
and device-specific registers, examining the results of the BIIC self-test, mapping
a node’s window space, building data structures to control the device, and linking
these structures into chains of similar data structures.

This section provides some ideas and guidelines for code that may be necessary
in an initialization routine. There is no requirement that driver code perform
all of the functions discussed here. The needs of various devices differ, and some
devices make more demands on driver software than others.

Code examples in the section assume that R4 initially contains the virtual
address of the base of the device’s node space and R8 contains the virtual address
of the device’s CRB.

16–14

Generic VAXBI Device Support
16.7 Initialization Performed by the VAXBI Device Driver

16.7.1 Examining BIIC Self-Test Status
According to the hardware specification for all devices attached to a VAXBI bus,
a VAXBI node undergoes a self-test on power failure recovery and at system boot
time. The BIIC indicates the successful completion of the self-test by setting
BIIC$V_STS and by clearing BIIC$V_BROKE in BIIC$L_BICSR.

A driver unit initialization routine should test these bits before performing any
transaction on the VAXBI bus. If BIIC$V_STS is clear, then self-test is still under
way. If BIIC$V_BROKE is set, then the driver action is implementation-specific.
In any event, a driver should not set UCB$V_ONLINE in UCB$L_STS if the node
is not usable.

The maximum duration of the BIIC self-test is 10 seconds. If a VAXBI node
implements the maximum self-test time, then the driver unit initialization
routine may have to spin wait for the setting of BIIC$V_STS (for instance, by
embedding the testing instructions in an invocation of the TIMEDWAIT macro).
Driver unit initialization routines should perform this spin wait only when
UCB$V_POWER in UCB$L_STS is set. Otherwise, the driver is being loaded by
SYSGEN, and a long spin wait at high IPL will have adverse effects on the rest
of the system.

Normally, only diagnostics initiate a self-test by setting the SST bit in the BIIC. A
VAXBI driver that sets this bit must take special precautions to avoid a machine
check and to avoid undetected corruption of VAXBI memory. These precautions
include the following steps:

1. Use the $PRTCTINI macro to begin a machine check protection block,
supplying the location of the end of the block in the label argument and the
mask value #<MCHK$M_NEXM!MCHK$M_LOG> in the mask argument.
(Note that you must include an invocation of the $MCHKDEF macro in the
driver to use these symbols.) Code within the block executes at IPL 31.

Invoke the BI_NODE_RESET macro as follows:

BI_NODE_RESET CSR=R4

The BI_NODE_RESET macro uses the recommended instruction sequence to
disable arbitration on the VAXBI node to be reset, and sets the node reset and
self-test status bits in BIIC$L_BICSR. The use of any instruction sequence
other than that defined by the BI_NODE_RESET macro to perform these
actions may cause an undefined condition on the VAXBI bus.

Use the $PRTCTEND macro to end the machine check protection block. You
must specify in the label argument the same value you specified in the label
argument to the $PRTCTINI macro.

The following example shows the proper code sequence:

$PRTCTINI - ; Init protect
B^2$,#<MCHK$M_NEXM!MCHK$M_LOG>

BI_NODE_RESET CSR=R4 ; Reset node and start self-test
$PRTC ; End protection

2. Do not access the BIIC registers for at least 1 millisecond. You may not even
check the state of the STS bit during this interval.

3. Do not access any other address on the VAXBI node until the self-test has
completed.

16–15

Generic VAXBI Device Support
16.7 Initialization Performed by the VAXBI Device Driver

16.7.2 Clearing BIIC Errors, Setting Interrupts, and Enabling Interrupts
There is a set of tasks that a VAXBI driver should perform during initialization
that ensures that interrupts are properly enabled and delivered to an appropriate
VAXBI target node. These tasks include the following:

• Clearing any outstanding set bits in the Bus Error Register.

• Setting the target node for interrupts in the Interrupt Destination Register.

• Setting the device interrupt vector in the Error Interrupt Control Register.

• Setting the device interrupt vector in the User Interface Interrupt Control
Register.

• Enabling hard and soft error interrupts as required by the device. Typically
hard errors are enabled and soft errors are disabled.

• Enabling interrupts upon certain types of transactions to user interface CSR
space.

It is important that the interrupt vectors and destination be set up before BIIC
hard error and soft error interrupts are enabled. An error occurring while error
interrupts are enabled but the vector is not initialized could lead to an invalid
condition.

16.7.2.1 Clearing the Bus Error Register
The following example clears all set bits in the Bus Error Register (BIIC$L_BER)
to prevent spurious or pending error interrupts at initialization.

MOVL BIIC$L_BER(R4),- ;Clear all set write-1-to-clear
BIIC$L_BER(R4) ;bits in BIIC$L_BER

16.7.2.2 Loading the Interrupt Destination Register
The Interrupt Destination Register (BIIC$L_IDR) specifies which VAXBI node
should become the destination of interrupts from this node. In VAX 82x0
/83x0 systems, the VAXBI node of the primary CPU becomes the destination
for interrupts. In VAX 85x0/8700/88x0, VAX 6000 series, and VAX 9000 series
systems, the VAXBI node of the NBIB, PBIB, or DWMBA/B on the particular
VAXBI on which this device resides becomes the destination for such interrupts.

The system initialization procedure described in Section 16.6 creates a 32-bit
mask with the appropriate bit set and stores it in ADP$L_BI_IDR. If a driver
must set the Interrupt Destination Register, it can simply move this value to the
BIIC register:

MOVL CRB$L_INTD+VEC$L_ADP(R8),R0 ;Get ADP address
MOVL ADP$L_BI_IDR(R0),- ;Write to IDR

BIIC$L_IDR(R4)

16.7.2.3 Setting Interrupt Vectors
A VAXBI node uses the Error Interrupt Control Register (BIIC$L_EICR) to
determine the SCB vector through which to interrupt when a BIIC at this node
detects a bus error. The User Interface Interrupt Control Register (BIIC$L_
UICR) similarly controls the operation of interrupts initiated by the device at this
node. A driver can also use the Error Interrupt Control Register to support a
device that generates secondary interrupt vectors.

16–16

Generic VAXBI Device Support
16.7 Initialization Performed by the VAXBI Device Driver

Because the system initialization procedure described in Section 16.6 saves the
offset of the node’s first SCB vector from the start of its SCB page in ADP$W_BI_
VECTOR, a driver can initialize both of these registers by using code similar to
that in the following example:

MOVL CRB$L_INTD+VEC$L_ADP(R8),R0 ;Get ADP address
MOVZWL ADP$W_BI_VECTOR(R0),R2 ;Get device vector
MOVL BIIC$L_UICR(R4),BIIC$L_UICR(R4) ;Clear user vector
MOVL R2,BIIC$L_UICR(R4) ;Set user vector
BISL #1@<BIIC$V_LEVEL+BIIC$S_LEVEL-1>,R2

;OR in interrupt level
;BR7 in this case

MOVL BIIC$L_EICR(R4),BIIC$L_EICR(R4) ;Clear error vector
MOVL R2,BIIC$L_EICR(R4) ;Set error vector

Note that the driver clears both vectors before it actually sets them. Clearing
BIIC$L_UICR and BIIC$L_EICR causes any pending interrupt to be cleared.
Also note that the interrupt level must be set in BIIC$L_EICR, in this case BR7.
If the level is not set, an interrupt will never be generated.

16.7.2.4 Enabling Error Interrupts
Finally, to enable interrupts that report errors detected by the node’s BIIC, the
controller initialization routine can set the soft error interrupt-enable or hard
error interrupt-enable bits in the VAXBI Control and Status Register. The BIIC
sets bits in the Bus Error Register (BIIC$L_BER) to reflect the type of bus error
reported by the interrupt.

BISL #<BIIC$M_SEIE!BIIC$M_HEIE>,- ;Soft error interrupt enable
BIIC$L_BICSR(R4) ;Hard error interrupt enable

16.7.2.5 Enabling BIIC Options
Device registers are in the area of node space called user interface CSR space,
and are located following the 256 bytes reserved for the BIIC-required registers.
Use of user interface CSR space is implementation-dependent.

For the processor to be alerted to various transactions directed at user interface
CSR space, the controller initialization routine of devices that support such
transactions should set appropriate bits in the BCI Control and Status Register
(BIIC$L_BCICR). See Table 16–1 for definitions of these bits.

The following example enables a node to alert the node specified as the interrupt
destination (in BIIC$L_IDR) when a retry timeout, STOP command, or read or
write transaction is directed at its user interface CSR space.

BISL #<BIIC$M_STOPEN!- ;Stop enable
BIIC$M_RTOEVEN!- ;Retry timeout enable
BIIC$M_UCSREN>,- ;User CSR enable
BIIC$L_BCICR(R4)

16.7.3 Mapping Window Space
Each VAXBI, starting at offset 40000016 in its I/O address space, provides 16
address blocks of 256K bytes apiece, called window space. VAXBI nodes can
use window space if it is necessary to map VAXBI transactions to memory space
on a target bus, although only such nodes as the DWBUA or DWMUA adapter
currently use this feature.

Whereas the system initialization routine maps each VAXBI node’s node space
to virtual addresses, it does not automatically map each node’s window space. If
a device needs to use its window space, it is up to the driver’s unit initialization
routine to map this space.

16–17

Generic VAXBI Device Support
16.7 Initialization Performed by the VAXBI Device Driver

First of all, the driver must determine the starting physical address of
the node’s window space. Figure 16–3 illustrates how VAXBI addresses
are constructed. Drivers can use the following system-supplied macros (in
SYS$LIBRARY:LIB.MLB) to access pertinent VAXBI addresses and values:

$IO8SSDEF (for VAX 82x0/83x0 systems)
$IO8NNDEF (for VAX 8530/8550/8700/8800 systems)
$IO8NNDEF and $IO8PSDEF (for VAX 8810/8820/8830 systems)
$IO9CCDEF (for VAX 6000-2xx/6000-3xx series systems)
$IO9RRDEF (for VAX 6000-4xx series system)
$IO9AQDEF (for VAX 9000 series system)

A driver calculates the starting address of a node’s window space by first
determining the offset to the start of the VAXBI node’s window space from the
beginning of its VAXBI I/O space. To do so, it performs the following tasks:

1. Extracts the VAXBI node ID from bits <3:0> of ADP$W_TR.

2. Multiplies the VAXBI node ID with the size of window space. The driver
obtains this value from the following symbols:

Symbol System

IO8SS$AL_NDSPER VAX 82x0/83x0

IO8NN$AL_NDSPER VAX 85x0/8700/88x0

IO9CC$C_BIWSIZ VAX 6000-2xx/6000-3xx series

IO9RR$C_BIWSIZ VAX 6000-4xx series

IO9AQ$C_BIWSIZ VAX 9000 series

3. Adds the address of the window space of VAXBI node 0 to this value. The
driver obtains this value from the following symbols:

Symbol System

IO8SS$AL_NODESP VAX 82x0/83x0

IO8NN$AL_NODESP VAX 85x0/8700/88x0

IO9CC$C_BIWINDOW VAX 6000-2xx/6000-3xx series

IO9RR$C_BIWINDOW VAX 6000-4xx series

IO9AQ$C_BIWINDOW VAX 9000 series

The driver for a device on a VAX system configured with more than one VAXBI
bus (for instance, the VAX 85x0/8700/88x0, VAX 6000 series, or VAX 9000 series
systems) must proceed to calculate the start of the I/O address space of the
VAXBI bus to which the device is attached. It adds the result of the following
steps to the value it has obtained in the prior steps:

1. Determine the offset to the I/O address space of the VAXBI bus to which the
node is attached.

For VAX 6000 series systems, a driver first must obtain the XMI node ID of
the DWMBA to which the VAXBI is connected. It determines the address of
the DWMBA’s ADP at offset ADP$L_BIMASTER of the node’s ADP. It then
finds the XMI node of the DWMBA at offset ADP$W_XBIA_TR of the ADP.

For VAX 85x0/8700/88x0 configurations, a driver obtains the VAXBI bus
number from bits <7:4> from offset ADP$W_TR of the node’s ADP.

16–18

Generic VAXBI Device Support
16.7 Initialization Performed by the VAXBI Device Driver

For VAX 9000 systems, a driver obtains the relative VAXBI number from
ADP$B_REL_BI.

2. Multiply this value by 200000016, the amount of physical address space
allocated for each VAXBI bus.

3. Add to this value the base of I/O address space. The driver obtains this value
from the following symbols:

Symbol System

IO8SS$AL_IOBASE VAX 82x0/83x0

IO8NN$AL_IOBASE VAX 85x0/8700/88x0

IO9CC$AL_IOBASE VAX 6000-2xx/6000-3xx series

IO9RR$AL_IOBASE VAX 6000-4xx series

IO9AQ$AL_XBI0_WINDSP_30 VAX 9000 series

After performing these calculations, the driver must associate each page of
window space to be used with a system page-table entry (SPTE) that maps the
page-frame number (PFN) of the physical page in window space to a system
virtual address. The operating system includes the routine LDR$ALLOC_PT,
described in the OpenVMS VAX Device Support Reference Manual, that allocates
system page-table entries (SPTEs) for a specified number of pages.

Because LDR$ALLOC_PT executes at IPL$_SYNCH (holding the MMG spinlock
in a multiprocessing system), the controller initialization routine must fork from
IPL$_POWER to fork IPL (using the CRB fork block) prior to calling it. See
Section 11.1.5 for a discussion of forking in a driver initialization routine.

Finally, once the SPTEs have been allocated, the driver moves the PFNs of the
window space pages into the SPTEs, sets their valid bits, and initializes them in
a device-specific manner.

If the driver is to operate under the extended addressing feature, 23-bit PFNs
must be used. To accomplish this, bit 21 is extended into bits 22 and 23 of the
PFN.

16.8 DMA Transfers
The method by which a device accomplishes direct-memory-access (DMA)
transfers depends upon the characteristics of the device. As part of a VAXBI
read or write transaction, such a device must place on the VAXBI bus a physical
address, the target of which is a memory node or a node (such as an NBIB
adapter) that transmits the request to memory across another bus.

For the DMA device to successfully access the memory pages of a buffer involved
in an I/O transfer, it must be given sufficient information as to the size and
location of these buffer pages, the type of transaction that is requested, an offset
into the first page of the buffer, and the length of the transaction. In addition, if
the size of the transaction causes it to exceed the boundaries of a page, the device
must have some means of accessing the remaining pages—even if they are, as is
most likely, scattered throughout physical memory.

As a result, devices make use of several types of structures, the purpose of which
is to help generate a succession of contiguous physical addresses on the VAXBI
bus, that map to the various pages of the buffer involved in the transfer. Some
possible strategies of this sort include the following:

16–19

Generic VAXBI Device Support
16.8 DMA Transfers

• A physically contiguous buffer in memory

• System page tables in system memory

• Process page tables locked in system memory

• Map registers in the device’s VAXBI I/O address space

A separate but related issue results from the fact that the original buffer, as
specified in the user $QIO request, is in process space and is mapped by process
page-table entries. Because the driver cannot rely on process context existing at
the time the device is ready to service the I/O request, it must have some means
of guaranteeing that it can access both the data involved in the transfer and the
page-table entries that map the buffer.

The operating system supplies two separate techniques, applied by traditional
drivers and described in Section 6.3.1.

• Direct I/O, the technique used most commonly by DMA drivers, locks the
user buffer in memory as well as the page-table entries that map it. Such a
driver calls a system-supplied FDT routine that prepares the user buffer for
direct I/O.

• Buffered I/O is the strategy whereby the driver FDT routine allocates a
buffer from nonpaged pool. It is this intermediate buffer that is involved in
the DMA transfer. The FDT routine copies the data from the user buffer to
the system buffer for a write request; I/O postprocessing routines deliver data
from the system buffer to the user buffer for a read request.

That DMA drivers may make use of either system direct I/O or buffered I/O is
one way by which these drivers can supply specific information needed by the
device to accomplish a DMA transfer. Those driver FDT routines that call a
system direct-I/O FDT routine provide the following information in the device’s
unit control block (UCB):

UCB$L_SVAPTE Virtual address of the system page-table entry (SPTE) for
the first page used in the transfer

UCB$W_BOFF Byte offset in the first page of the transfer buffer

UCB$W_BCNT Size in bytes of the transfer

FDT routines for buffered I/O call EXE$ALLOCBUF, EXE$DEBIT_BYTCNT_
ALO, or EXE$DEBIT_BYTCNT_BYTLM_ALO to obtain a nonpaged pool buffer
(debiting a job’s byte count quota in the last two routines) and initialize the same
UCB fields with the following information:

UCB$L_SVAPTE Virtual address of system buffer used in the I/O transfer

UCB$W_BOFF Number of bytes to be charged to process for transfer

UCB$W_BCNT Size in bytes of the transfer

If a driver’s fork process must manipulate the data in any way at fork level
(that is, outside of the driver’s FDT routines), then it needs a virtual address it
can use to access the data. Such a requirement could cause the driver writer to
consider structuring the driver so that it uses buffered I/O. For short transfers,
this need also could be accommodated by the driver’s loading an SPTE with the
correct PFN and computing the associated system virtual address as shown in
the following example.

16–20

Generic VAXBI Device Support
16.8 DMA Transfers

MOVL IRP$L_SVAPTE(R3),R2 ;Get address of system buffer
SUBW3 #12,8(R2),UCB$W_BCNT(R5) ;Calculate system buffer

; length
BICW3 #C^<VA$M_BYTE>,(R2),UCB$W_BOFF ;Put offset in buffer
EXTZV #VA$V_VPN,#VA$S_VPN(R2),R2 ;Get system virtual page

; number
MOVL G^MMG$GL_SPTBASE,R1 ;Get address of system page

; table
MOVAL (R1)[R2],UCB$L_SVAPTE(R5) ;Get system virtual address

; of page

The drivers for the disks that have ECC correction applied by the host do this
when there is an ECC error detected. The controller can tell the driver that the
error in the data in memory can be corrected by applying some pattern to a part
of the data, but the fork process has to perform the correction, not the controller.

16.8.1 Example: DMB32 Asynchronous/Synchronous Multiplexer
The DMB32 asynchronous/synchronous multiplexer can use any of four different
modes of address translation for DMA accesses. Under each of these modes, the
DMB32 requires that its driver supply an address by which it can either directly
or indirectly obtain the pages of the buffer that is involved in the transfer. The
four different translation modes require such addresses in one of the following
forms:

1. System virtual address (SVA) of a buffer

2. SVA of a page-table entry (PTE)

3. Physical address of a page table

4. Address of a physically contiguous buffer

System Virtual Address of a Buffer and a Page-Table Entry
The DMB32 can itself perform the first two types of address translation because
it can read entries in the system page table (see the VAX/VMS Internals and
Data Structures manual for a description of page-table entries). The controller
initialization routine of a DMB32 device driver supplies the physical address and
length of the system page table, plus the virtual address and length of the system
global page table. It also sets a page-table-valid bit in a device maintenance
register.

As a result, a driver for a DMB32 device could use either direct I/O or buffered
I/O, and accordingly load a device register with the system virtual address of the
page-table entry that maps the buffer or the system virtual address of the buffer
itself. After the driver has loaded other device registers with a buffer offset value
and a transfer size—and set the ‘‘start’’ bit in a DMB32 line-control register—the
DMB32 performs the transfer without any additional mapping or other driver
intervention.

Physical Address of a Page Table
In this mode, the DMB32 can be given the physical address of a page table that
maps the I/O transfer. The DMB32 architecture mandates that each page-table
entry be 4 bytes long and that the page table be aligned on a longword boundary.
Also, each page is 512 bytes long. However, the page table can be anywhere in
memory, possibly at a range of VAXBI I/O-space addresses belonging to the node
to which the DMB32 adapter is attached. To perform a DMA transfer under this
addressing mode, the DMB32 adapter requires the offset of the first byte of the
buffer that is in the page described by the page-table entry. Each page-table entry
contains bits <29:9> of the physical address of the page that is to be accessed.

16–21

Generic VAXBI Device Support
16.8 DMA Transfers

In this case, the driver must extract the PFNs of the pages involved in the
transfer and insert them into the page table of the device. The following is
an example of a routine that translates a system virtual address to a physical
address. It returns the physical address at the top of the stack.

VIRT_TO_PHYAD:
PUSHL (SP) ;Create slot at top of stack

;for return value
PUSHR #^M<R0,R1,R2,R3> ;Save registers
BICL3 #-512,R1,R0 ;R0 = byte offset of address
EXTZV #VA$V_VPN,- ;Extract VPN

#VA$S_VPN,R1,R2 ; and put it in R2
MOVL G^MMG$GL_SPTBASE,R3 ;R3 => system page table
MOVL (R3)[R2],R3 ;R3 => PTE
EXTZV #PTE$V_PFN,- ;Get page frame number of

#PTE$S_PFN,R3,R3 ; buffer page into R3
ASHL #VA$V_VPN,R3,R3 ;Shift into place for

; physical address
BISL3 R0,R3,20(SP) ;Put result into stack slot
POPR #^M<R0,R1,R2,R3> ;Restore registers
RSB ;Return to caller

Physical Address of a Buffer
If the device can neither read system page tables nor has its own scatter-gather
map—and must perform a DMA transfer that spans physical pages—it must
rely upon the actual contiguity of the physical pages involved in the transfer.
Because there is no guarantee that this is the state of the user’s buffer, the driver
must allocate an intermediate buffer consisting of contiguous physical pages.
The driver never deallocates this buffer unless the driver is being unloaded by
means of the SYSGEN command RELOAD. (The driver unloading routine can
call COM$DRVDEALMEM to do so.) The best time to allocate such a buffer is
during the device’s initialization, when memory is most likely to be contiguous.

The system routine EXE$ALOPHYCNTG, described in the OpenVMS VAX Device
Support Reference Manual, allocates such a buffer. The size of the buffer that
should be allocated depends on the device’s characteristics and the size of the
transfers requested on the device. A buffer of four pages is likely to be large
enough for most disk transfers, for example; but if you have enough memory
on your system, you might want to make your buffer the size of a disk track in
order to reduce disk latency. In any event, large transfers to the device can be
segmented into transfers the size of your intermediate buffer.

The start-I/O routine of such a driver copies the data from the user’s buffer
into the intermediate, physically contiguous buffer by means of the routine
IOC$MOVFRUSER.

The driver then sets up the device for the DMA transfer:

1. Determines the physical address of the buffer from the system virtual address
returned by EXE$ALOPHYCNTG

2. Moves the address to the device address register

3. Activates the device

4. If the transfer size exceeds the size of the buffer, returns to step 1

When a user requests a transfer from such a device, the driver moves the data
from the device to the intermediate, physically contiguous buffer by means of
a DMA transfer, then calls IOC$MOVTOUSER to copy the data into the user’s
buffer.

16–22

Generic VAXBI Device Support
16.9 Unit Initialization Routine

16.9 Unit Initialization Routine
A generic VAXBI device driver may include a unit initialization routine, in
addition to its controller initialization routine, if it services a multiunit device.

SYSGEN attempts to create a UCB and call the unit initialization routine for the
number of units specified in the maxunits argument to the DPTAB macro.

When called in the process of driver loading, the unit initialization routine of a
generic VAXBI device driver must therefore determine if the unit it is currently
servicing actually exists. Prior to returning control to SYSGEN, the routine must
place in R0 a success status (low bit set) if the unit exists or a failure status (low
bit clear) if it does not. If SYSGEN receives failure status, it deallocates the UCB
for the unit and proceeds to configure the next unit in a similar manner.

16.10 Register-Dumping Routine
In the event of a device error or a VAXBI bus error, a driver’s register-dumping
routine should contain code that makes certain interesting registers available
for error logging. Apart from any device registers that should be saved, the
following BIIC registers may contain information important in determining the
cause of the error: the Device Register (BIIC$L_DTREG), the VAXBI Control
and Status Register (BIIC$L_BICSR), the Bus Error Register (BIIC$L_BER), the
Error Interrupt Control Register (BIIC$L_EICR), and the Interrupt Destination
Register (BIIC$L_IDR).

The following is an example of part of a register-dumping routine that saves the
contents of these BIIC registers in an error buffer.

MOVL BIIC$L_DTREG(R4),(R0)+ ;Device Type Register
MOVL BIIC$L_BICSR(R4),(R0)+ ;BIIC CSR Register
MOVL BIIC$L_BER(R4),(R0)+ ;Bus Error Register
MOVL BIIC$L_EICR(R4),(R0)+ ;Error Interrupt Control Register
MOVL BIIC$L_IDR(R4),(R0)+ ;Interrupt Destination Register

16.11 Loading a VAXBI Device Driver
The System Generation utility (SYSGEN) loads the device driver into system
virtual memory, creates additional data structures for the device unit, connects
the device’s interrupt vectors, and calls the device driver’s controller initialization
routine and unit initialization routine.

Chapter 12 discusses the loading of a device driver and the SYSGEN commands
commonly used during driver loading.

16.12 BIIC Register Definitions
Each VAXBI node is required to implement a minimum set of registers contained
in specific locations within the node’s node space. The operating system
automatically maps each node’s node space at boot time and provides the
macro $BIICDEF (in SYS$LIBRARY:LIB.MLB) to define offsets to the BIIC
registers and their significant bit fields.

The contents of the BIIC registers are illustrated in Figure 16–7 and described in
Table 16–1. See the VAXBI Options Handbook for a discussion of the BIIC and
the rules for configuring its registers.

16–23

Generic VAXBI Device Support
16.12 BIIC Register Definitions

Figure 16–7 Backplane Interconnect Interface Chip (BIIC) Registers

BIIC$L_DTREG 0

BIIC$L_BICSR 4

BIIC$L_BER 8

BIIC$L_EICR 12

BIIC$L_IDR 16

BIIC$L_IPIMR 20

BIIC$L_IPIDR 24

BIIC$L_IPISR 28

BIIC$L_SAR 32

BIIC$L_EAR 36

BIIC$L_BCICR 40

BIIC$L_WSR 44

BIIC$L_IPISTPF 48

Unused 52

Unused 56

Unused 60

BIIC$L_UICR 64

�Unused (172 bytes) 68�

BIIC$L_GPR0 240

BIIC$L_GPR1 244

BIIC$L_GPR2 248

BIIC$L_GPR3 252

16–24

Generic VAXBI Device Support
16.12 BIIC Register Definitions

Table 16–1 Contents of the BIIC Registers

Field Name Contents

BIIC$L_DTREG Device Register that contains the following two words:

BIIC$W_DEVTYPE Device type. This field is written by device hardware
and self-test microcode. It contains two bit fields:

BIIC$V_MEMNODE (bits <14:8>), when clear,
indicates a memory node.

BIIC$V_NONDEC (bit 15), when clear, indicates a
Digital-supplied device; it should be 1 otherwise.

BIIC$W_REVCODE Revision code.

BIIC$L_BICSR VAXBI Control and Status Register.

The following fields are defined within BIIC$L_BICSR:

BIIC$V_NODE_ID1 Node ID. This field is automatically loaded during the
powerup sequence. Reserved to Digital.

BIIC$V_ARBCNTL Arbitration mode used by the node. Currently, all
arbitration modes except dual round-robin arbitration
are reserved to Digital. Correspondingly, these two
bits should be clear. When these two bits are set,
arbitration is disabled, thus preventing a node from
starting a VAXBI transaction.

BIIC$V_SEIE Soft error interrupt enable. When set, this bit allows
the node to generate an interrupt when the soft error
summary bit (BIIC$V_SES) in this register is set.

BIIC$V_HEIE Hard error interrupt enable. When set, this bit allows
the node to generate an interrupt when the hard error
summary bit (BIIC$V_HES) in this register is set.

BIIC$V_UWP Unlock write pending. When set, this bit signals
that the master port interface at this node has
successfully completed an IRCI (Interlock Read with
Cache Intent) transaction. The node clears this bit
when it successfully completes a corresponding UWMCI
(Unlock Write Mask with Cache Intent) instruction.

<9> Reserved to Digital. Must be zero.

BIIC$V_SST Node reset. This bit is normally used by diagnostics to
initiate the BIIC internal self-test. Prior to initiating
a BIIC self-test, a node should disable arbitration by
setting both bits in BIIC$V_ARBCNTL. When BIIC$V_
SST is set, the self-test status bit (BIIC$V_STS) in this
register must also be set.

Reads to BIIC$V_SST return a zero.

BIIC$V_STS Self-test status. When set, this bit indicates that
the BIIC has passed its self-test. The controller
initialization routine of a VAXBI device driver should
inspect this bit and the BIIC$V_BROKE bit before
proceeding with any VAXBI transactions. During the
self-test sequence, BIIC$V_STS will automatically be
reset by the BIIC to allow the proper recording of the
new self-test results at the end of self-test.

1Read-only field.

(continued on next page)

16–25

Generic VAXBI Device Support
16.12 BIIC Register Definitions

Table 16–1 (Cont.) Contents of the BIIC Registers

Field Name Contents

BIIC$V_BROKE2 Broke bit. When cleared by the device’s self-test, this
bit indicates that the device has passed its self-test.
The controller initialization routine of a VAXBI device
driver should inspect this bit and the BIIC$V_STS bit
before proceeding with any VAXBI transactions.

BIIC$V_INIT2 Initialization bit.

BIIC$V_SES1 Soft error summary. When set, this bit indicates that
one or more of the soft error bits in the Bus Error
Register (BIIC$L_BER) is set.

BIIC$V_HES1 Hard error summary. When set, indicates that one or
more of the hard error bits in the Bus Error Register
(BIIC$L_BER) is set.

BIIC$V_BIICTYPE1 BIIC type. These bits <23:16> always contain
00000001.

BIIC$V_BIICREVN1 BIIC revision number.

BIIC$L_BER Bus Error Register.

The following bits are defined within BIIC$L_BER. Bits <30:16> are hard error bits
and bits <2:0> are soft error bits.

BIIC$V_NPE2 Null bus parity error.

BIIC$V_CRD2 Corrected read data.

BIIC$V_IPE2 ID parity error.

BIIC$V_UPEN1 User parity enabled.

<14:4>1 Reserved to Digital. Must be zero.

BIIC$V_ICE2 Illegal confirmation error.

BIIC$V_NEX2 Nonexistent address.

BIIC$V_BTO2 Bus timeout.

BIIC$V_STO2 Stall timeout.

BIIC$V_RTO2 Retry timeout.

BIIC$V_RDS2 Read data substitute.

BIIC$V_SPE2 Slave parity error.

BIIC$V_CPE2 Command parity error.

BIIC$V_IVE2 IDENT vector error.

BIIC$V_TDF2 Transmitter during fault.

BIIC$V_ISE2 Interlock sequence error.

BIIC$V_MPE2 Master parity error.

BIIC$V_CTE2 Control transmit error.

BIIC$V_MTCE2 Master transmit check error.

BIIC$V_NMR2 NO ACK to multiresponder command received.

<31> Reserved to Digital. Must be zero.

1Read-only field.
2Write-one-to-clear bit. Write-type transactions cannot set this bit.

(continued on next page)

16–26

Generic VAXBI Device Support
16.12 BIIC Register Definitions

Table 16–1 (Cont.) Contents of the BIIC Registers

Field Name Contents

BIIC$L_EICR Error Interrupt Control Register. This register supplies information the node uses to
request and monitor the status of both BIIC-detected and forced-error interrupts: that
is, those interrupts signaled by either the setting of a bit in the Bus Error Register
(BIIC$L_BER) or the setting of the force bit (BIIC$V_EIFORCE) in this register,
respectively. The node can initiate BIIC-detected error-interrupt requests only if the
appropriate error-interrupt enables (BIIC$V_SEIE and/or BIIC$V_HEIE) are set in
the VAXBI Control and Status Register (BIIC$L_BICSR).

The following fields are defined within BIIC$L_EICR:

<1:0>1 Reserved to Digital. Must be zero.

BIIC$V_EIVECTOR 12-bit vector used in error interrupt sequences.

<15:14>1 Reserved to Digital. Must be zero.

BIIC$V_LEVEL These 4 bits (<19:16>) correspond to the four interrupt
levels (INT<7:4>) of the VAXBI bus. A set bit
causes the corresponding level to be used when
INTR commands under control of this register are
transmitted.

BIIC$V_EIFORCE Force bit. When set, this bit posts an error interrupt
request in the same way as a bit set in the Bus Error
Register (BIIC$L_BER), except that the request is not
qualified by the bits BIIC$V_HEIE and BIIC$V_SEIE
in BIIC$L_BICSR.

BIIC$V_EISENT2 INTR sent.

<22> Reserved to Digital. Must be zero.

BIIC$V_EIINTC2 INTR complete. When set, this bit indicates that the
vector for an error interrupt has been successfully
transmitted or an INTR command sent under the
control of this register has been successfully aborted.

BIIC$V_EIINTAB2 INTR abort. When set, this bit indicates that an INTR
command under the control of this register has been
aborted (that is, a NO ACK or illegal confirmation code
has been received). This bit is a status bit set by the
BIIC and can be reset only by the user interface.

<31:25>1 Reserved to Digital. Must be zero.

BIIC$L_IDR Interrupt Destination Register. The low-order word of this register indicates which
nodes are to be selected by INTR commands.

BIIC$L_IPIMR Interprocessor Interrupt Mask Register. The high-order word of this register indicates
which nodes are permitted to send interprocessor interrupts to this node.

BIIC$L_IPIDR Force-bit IPINTR/STOP Destination Register. The low-order word of this register
indicates which nodes are to be targeted by force-bit IPINTR or STOP commands sent
by this node.

BIIC$L_IPISR2 IPINTR Source Register. The BIIC stores in the high-order word of this register the
decoded ID of a node that sends an IPINTR command to this node.

1Read-only field.
2Write-one-to-clear bit. Write-type transactions cannot set this bit.

(continued on next page)

16–27

Generic VAXBI Device Support
16.12 BIIC Register Definitions

Table 16–1 (Cont.) Contents of the BIIC Registers

Field Name Contents

BIIC$L_SAR Starting Address Register. The Starting Address Register and Ending Address
Register define storage blocks in either memory or I/O space. They must not be
configured to include node space or multicast space.

The low-order 18 bits of this register must be zero. This means that memories are
multiples of 256K bytes. Software should set up the Starting Address Register before
the Ending Address Register.

BIIC$L_EAR Ending Address Register.

The low-order 18 bits of this register must be zero. This means that memories are
multiples of 256K bytes. Software should set up the Starting Address Register before
the Ending Address Register. See the description of the Starting Address Register
(BIIC$L_SAR) for further details.

BIIC$L_BCICR BCI Control Register.

The following fields are defined within BIIC$L_BCICR:

<2:0>1 Reserved to Digital. Must be zero.

BIIC$V_RTOEVEN RTO EV enable.

BIIC$V_PNXTEN Pipeline NXT enable.

BIIC$V_IPINTREN IPINTR enable.

BIIC$V_INTREN INTR enable.

BIIC$V_BICSREN BIIC CSR Space enable.

BIIC$V_UCSREN User Interface CSR Space enable.

BIIC$V_WINVALEN WRITE Invalidate enable.

BIIC$V_INVALEN INVAL enable.

BIIC$V_IDENTEN IDENT enable.

BIIC$V_RESEN RESERVED enable.

BIIC$V_STOPEN STOP enable.

BIIC$V_BDCSTEN BDCST enable.

BIIC$V_MSEN Multicast Space enable.

BIIC$V_IPINTRF IPINTR/STOP force.

BIIC$V_BURSTEN Burst enable.

<31:18>1 Reserved to Digital. Must be zero.

BIIC$L_WSR Write Status Register.

The following fields are defined within BIIC$L_WSR:

<27:0>1 Reserved to Digital. Must be zero.

BIIC$V_GPR02 Indicates that a VAXBI transaction has written to
General Purpose Register 0 (BIIC$L_GPR0).

BIIC$V_GPR12 Indicates that a VAXBI transaction has written to
General Purpose Register 1 (BIIC$L_GPR1).

BIIC$V_GPR22 Indicates that a VAXBI transaction has written to
General Purpose Register 2 (BIIC$L_GPR2).

BIIC$V_GPR32 Indicates that a VAXBI transaction has written to
General Purpose Register 3 (BIIC$L_GPR3).

1Read-only field.
2Write-one-to-clear bit. Write-type transactions cannot set this bit.

(continued on next page)

16–28

Generic VAXBI Device Support
16.12 BIIC Register Definitions

Table 16–1 (Cont.) Contents of the BIIC Registers

Field Name Contents

BIIC$L_IPISTPF Force-Bit IPINTR/STOP Command Register.

The following fields are defined within BIIC$L_IPISTPF:

<10:0>1 Reserved to Digital. Must be zero.

BIIC$V_MIDEN Master ID Enable.

BIIC$V_CMD These 4 bits indicate the command code for either an
IPINTR or STOP transaction that is initiated by setting
the IPINTR/STOP force bit (BIIC$V_INTRF in BIIC$L_
BCICR).

<31:16>1 Reserved to Digital. Must be zero.

BIIC$L_UICR User Interface Interrupt Control Register. This register controls the operation of
interrupts initiated by the device.

The following fields are defined within BIIC$L_UICR.

<1:0>1 Reserved to Digital. Must be zero.

BIIC$V_UIVECTOR These 12 bits contain the vector used during user
interface interrupt sequences (unless the external
vector bit (BIIC$V_EXVECTOR in BIIC$L_UICR) is
set). The vector is transmitted when this node wins an
IDENT arbitration that matches the conditions given in
BIIC$L_UICR.

<14> Reserved to Digital. Must be zero.

BIIC$V_EXVECTOR When set, the BIIC solicits the interrupt vector from
the node rather than transmitting the vector contained
in BIIC$L_UICR.

BIIC$V_UIFORCE These 4 bits correspond to the 4 interrupt levels
(INT<7:4>). When a bit is set, the BIIC generates
an interrupt at the indicated level.

BIIC$V_UISENT2 These 4 bits correspond to the 4 interrupt levels
(INT<7:4>). A set bit indicates that an INTR command
for the corresponding level has been successfully
transmitted.

BIIC$V_UIINTC2 These 4 bits correspond to the 4 interrupt levels
(INT<7:4>). A set bit indicates that the vector for
an interrupt at the corresponding level has been
successfully transmitted or that an INTR command
sent under the control of this register has been
successfully aborted.

BIIC$V_UIINTAB2 These 4 bits correspond to the 4 interrupt levels
(INT<7:4>). A set bit indicates that an INTR command
at the corresponding level, sent under the control of
this register, has been aborted (that is, a NO ACK or
illegal confirmation code has been received).

BIIC$L_GPR0 General Purpose Register 0.

BIIC$L_GPR1 General Purpose Register 1.

BIIC$L_GPR2 General Purpose Register 2.

BIIC$L_GPR3 General Purpose Register 3.

1Read-only field.
2Write-one-to-clear bit. Write-type transactions cannot set this bit.

16–29

17
SCSI Class Driver Support

The Small Computer System Interface (SCSI) provides a standard bus by which
small computers and intelligent peripheral devices can be interconnected. The
operating system offers a native mode implementation of the ANSI SCSI bus
on various processors, such as the MicroVAX/VAXstation 3100 and VAXstation
3520/3540 systems. Any non-Digital-supplied device to be attached to the SCSI
bus of a MicroVAX/VAXstation system must implement all mandatory features of
the SCSI–2 standard as described in the specification.

The operating system defines a mechanism by which a system programmer
can write a class driver that, in conjunction with a standard SCSI port driver,
exchanges data, commands, and status with a third-party device on the SCSI
bus. Given the particular requirements of the device, or the expectations of
application programs accessing the device, the programmer may choose to create
a SCSI class driver rather than employ a generic SCSI class driver discussed in
the OpenVMS I/O User’s Reference Manual.

By writing a device-specific SCSI class driver, a programmer can define a unique,
simple, robust $QIO interface to a SCSI device. The generic SCSI class driver,
by contrast, provides a more complex $QIO interface, requiring the application
program to have some knowledge of the data transfer mode and capabilities of
the target device and to construct in memory the SCSI commands to be passed
to the SCSI port. A third-party SCSI class driver conceals these details from the
application program. Additionally, it can provide device-specific error recovery,
full error logging, and notification of asynchronous events from the device.

Note

A non-Digital-supplied SCSI disk device residing on the local node and
controlled by a SCSI third-party class driver cannot be served to other
nodes of the local area VAXcluster.

This chapter introduces the SCSI class/port interface and discusses the
mechanisms the operating system provides to facilitate the creation of a SCSI
class driver. It describes the capabilities and components of such a driver and
suggests some coding strategies. It also includes sections on driver naming
conventions, driver loading, and driver debugging techniques. It concludes with
descriptions of class driver error-logging protocol and the asynchronous event
notification facility. Support for SCSI-2 devices and the tagged command queuing
architecture is described in Section 17.10.

17–1

SCSI Class Driver Support
17.1 VAX Systems with SCSI Bus Concepts

17.1 VAX Systems with SCSI Bus Concepts
Implementation of the SCSI bus architecture for the MicroVAX/VAXstation 3100
is shown in Figure 1–9 and for the VAXstation 3520/3540 in Figure 1–10. Each
SCSI bus in the system is identified by a SCSI port ID (A or B). The SCSI port
ID uniquely identifies a SCSI port: that is, the SCSI controller channel that
controls communications to and from a specific SCSI bus on the system.

Each SCSI bus supports seven devices and a processor, at SCSI IDs 0 to 7.
As defined by the ANSI SCSI specification, a SCSI ID refers to a line on the
SCSI data bus (DB) on which the device uniquely asserts itself. The operating
system uses the term SCSI device ID to represent this value. Typically, a
MicroVAX/VAXstation 3100 system processor is assigned device ID 6 and asserts
itself at DB(6); a VAXstation 3520/3540 system processor is assigned device ID 7
and asserts itself at DB(7).

According to the ANSI SCSI specification, a logical unit is a physical or virtual
device accessible by means of a SCSI device. For instance, if a peripheral
controller resides on the SCSI bus, it, in turn, can control up to eight devices.
A logical unit number (LUN), an integer from 0 to 7, uniquely identifies the
device with respect to the controller’s SCSI device ID.

Transactions on the SCSI bus are between an initiator and a target. The
initiator, usually the host processor, requests that another SCSI device, the
target, perform a certain operation. In situations in which the host processor
requires notification of some unexpected event on the SCSI bus, the ANSI
specification defines the asynchronous event notification (AEN) protocol.
AEN allows a SCSI device that is usually a target to inform the processor that
an event has occurred asynchronously with respect to the processor’s current
stream of execution. (Certain MicroVAX/VAXstation implementations make the
AEN protocol available to non-Digital-supplied SCSI class drivers, as described in
Section 17.9.)

As Figures 1–9 and 1–10 illustrate, the MicroVAX/VAXstation 3100 and
VAXstation 3520/3540 port hardware cannot directly access data in main
memory. In order to access command, status, and data buffers involved in an
operation on the SCSI bus, the MicroVAX/VAXstation port hardware must refer
to its own direct-memory-access (DMA) buffer. Whenever the port hardware
requires access to buffered information, the standard port driver dynamically
allocates a segment of the port DMA buffer and maps to it the pages of the
buffer in main memory in a system-dependent manner.

17.2 SCSI Class/Port Architecture
The operating system uses a class/port driver architecture to communicate with
devices on the SCSI bus. The class/port design allows the responsibilities for
communication between the operating system and the device to be cleanly divided
between two separate driver images (see Figure 17–1).

17–2

SCSI Class Driver Support
17.2 SCSI Class/Port Architecture

Figure 17–1 SCSI Class/Port Interface

$QIO

SCSI Port Interface

Port Hardware

Port
Driver

Class
Driver

ZK−1366A−GE

Device−Level Operations
 Handles SCSI commands
 Handles SCSI status

 Handles data movement
 Handles SCSI messages
 Handles SCSI phases and timing

Bus−Level Operations

The SCSI port driver transmits and receives SCSI commands and data. It
knows the details of transmitting data from the local processor’s SCSI port
hardware across the SCSI bus. Although it understands SCSI bus phases,
protocol, and timing, the SCSI port driver has no knowledge of the SCSI
commands the device supports, the status messages it returns, or the format of
the packets in which this information is delivered. Strictly speaking, the port
driver is a communications path. When directed by a SCSI class driver, the port
driver forwards commands and data from the class driver onto the SCSI bus to
the device. On a single MicroVAX/VAXstation system, a single SCSI port driver
handles bus-level communications for all SCSI class drivers that may exist on the
system (see Figure 17–2).

17–3

SCSI Class Driver Support
17.2 SCSI Class/Port Architecture

Figure 17–2 SCSI Port Driver Configuration

$QIO $QIO $QIO $QIO

DKDRIVER MKDRIVER LKDRIVER GKDRIVER

PKNDRIVER

NCR 5380 DEC SII

PKSDRIVER

Other
SCSI

(Target)

SCSI
Tape

(Target)

ZK−1379A−GE

SCSI
Disk

(Target)

SCSI
Disk

(Target)

SCSI
Tape

(Target)

Other
SCSI

(Target)

The SCSI class driver acts as an interface between the user and the SCSI
port, translating I/O functions as specified in a user’s $QIO request to a SCSI
command directed to a device on the SCSI bus. Although the class driver
knows about SCSI command descriptor buffers, status codes, and data, it has no
knowledge of underlying bus protocols or hardware, command transmission, bus
phases, timing, or messages (except in asynchronous event notification mode, as
described in Section 17.9). A single SCSI class driver can run with the SCSI port
driver of any MicroVAX/VAXstation system, controlling the same set of devices on
each system (see Figure 17–3).

17–4

SCSI Class Driver Support
17.2 SCSI Class/Port Architecture

Figure 17–3 SCSI Class Driver Configuration

Disk Class Driver Tape Class Driver

SCSI Port
Driver

ZK−1378A−GE

VAX 3100
SCSI Port

Driver

VAX 3520
SCSI Port

Driver

Disk Class Driver Disk Class Driver

The design of the SCSI driver class/port interface allows a programmer to write
a class driver that is independent of any concern about the underlying hardware.
The operating system supplies software tools that facilitate the development of
SCSI class drivers, including the following:

• A standard interface that all SCSI class drivers use to request work from and
transfer control to the port driver. This interface is known as the SCSI port
interface (SPI).

• SCSI-specific data structures that class and port drivers use to exchange
information and monitor the state of the device connection or SCSI port.

• A template SCSI class driver that can serve as the basis for a third-party
SCSI class driver.

17.2.1 SCSI Port Interface
The SCSI port interface (SPI) consists of a group of routines within the SCSI port
driver that create and manage the connection between a SCSI class driver and
a device unit. Across this connection, SPI routines exchange control information
and data between the class driver and the port.

When a connection must be established, a SCSI command transmitted, or data
transferred, a SCSI class driver calls the appropriate routine within the port
driver by invoking one of a series of macros, defined in SYS$LIBRARY:LIB.MLB.
Each macro corresponds to a vector in the SCSI port descriptor table (SPDT) that
supplies the address of the port routine that performs the applicable function.
Table 17–1 lists the standard SPI macros and their functions.

17–5

SCSI Class Driver Support
17.2 SCSI Class/Port Architecture

Table 17–1 SCSI Port Interface (SPI) Macros

Macro Description

SPI$ABORT_COMMAND Aborts the execution of an outstanding SCSI command
over a specified connection

SPI$ALLOCATE_COMMAND_BUFFER Allocates a buffer in which a class driver passes a SCSI
command descriptor to the port driver

SPI$CONNECT Creates a connection from a class driver to a SCSI device
unit

SPI$DEALLOCATE_COMMAND_BUFFER Deallocates a SCSI command buffer

SPI$DISCONNECT Breaks the connection between a class driver and a SCSI
device unit

SPI$GET_CONNECTION_CHAR Obtains the characteristics of a specified connection and
places them in the buffer specified by the class driver

SPI$MAP_BUFFER Makes the process buffer involved in a data transfer
available to the port driver

SPI$RESET Resets the port hardware and SCSI bus

SPI$SEND_COMMAND Delivers a SCSI command descriptor buffer to a SCSI
device, returning status and data, if applicable

SPI$SET_CONNECTION_CHAR Sets up the characteristics of a specified connection

SPI$UNMAP_BUFFER Releases the SCSI port’s DMA buffer space and the
system page-table entries that double-mapped a user
buffer involved in a transfer

A SCSI class driver invokes SPI macros at fork IPL, holding the fork lock.
Because the port driver routines called by SPI macros may fork or stall, a class
driver must preserve local context and local return addresses across an SPI macro
invocation. It must also ensure that the address of its caller is at the top of the
stack at the time the macro is invoked. (These issues are more fully discussed in
Section 17.6.1.)

Detailed descriptions of the functions provided by the SPI macros appear where
pertinent in the discussions of SCSI class driver operations that follow in this
chapter. The macro chapter of the OpenVMS VAX Device Support Reference
Manual provides a condensed description of the calling interface, functions,
inputs, and returned values of each macro.

An extension to the SPI interface includes several additional macros that enable
the host to receive an asynchronous event notification from a target on the SCSI
bus. Section 17.9 describes the asynchronous event notification (AEN) feature in
greater detail, and introduces each of the macros in the SPI interface extension.

17.2.2 SCSI-Specific Data Structures
The SCSI class/port interface must maintain status and control information
relevant to each participating connection and port. Moreover, SCSI class drivers
and port drivers require a means of sharing information about each I/O request
that involves the port. The following data structures accommodate these needs:

• SCSI connection descriptor table (SCDT)

• SCSI port descriptor table (SPDT)

• SCSI class driver request packet (SCDRP)

• Device and port unit control blocks (UCBs)

17–6

SCSI Class Driver Support
17.2 SCSI Class/Port Architecture

The SCSI connection descriptor table (SCDT) contains information specific
to a connection established between a SCSI class driver and the port, such as
phase records, timeout values, and error counters. The SCSI port driver creates
an SCDT each time a SCSI class driver, by invoking the SPI$CONNECT macro,
connects to a device on the SCSI bus. The class driver stores the address of the
SCDT in the SCSI device’s UCB.

The port driver has exclusive access to the SCDT; it is not accessed by the class
driver. (The SCDT structure is shown and described in the data structure chapter
of the OpenVMS VAX Device Support Reference Manual.)

The SCSI port descriptor table (SPDT) contains information specific to a SCSI
port, such as the port driver connection database. The SPDT also includes a
set of vectors, corresponding to the SPI macros invoked by SCSI class drivers,
that point to service routines within the port driver. The SCSI port driver’s unit
initialization routine creates an SPDT for each SCSI port defined for a specific
MicroVAX/VAXstation system and initializes each SPI vector.

The port driver reads and writes fields in the SPDT. The class driver does not
write SPDT fields, but reads the SPDT indirectly when it invokes an SPI macro.
(The SPDT structure is shown and described in the OpenVMS VAX Device
Support Reference Manual.)

A SCSI class driver creates a SCSI class driver request packet (SCDRP)
to deliver to the port driver information specific to an I/O request, such as the
address of the SCSI command descriptor buffer. The class driver also places in
the SCDRP some of the data it originally received in the I/O request packet (IRP),
such as the $QIO system service parameters, the I/O function, and the length
and location of any user-specified buffer involved in a transfer. The port driver
returns the actual data transfer byte count and status information to the class
driver in the SCDRP.

Both class and port drivers read and write fields in the SCDRP; the port driver
may modify fields written by the class driver. (The SCDRP structure is shown
and described in the OpenVMS VAX Device Support Reference Manual.)

Two unit control blocks (UCBs) are involved in any interaction between the
class driver and the port. The SCSI class driver maintains information in the
SCSI device UCB, such as the device type, class, and characteristics; maximum
transfer size; the address of the current SCDRP; and the addresses of the
associated SPDT and SCDT. The SCSI port driver maintains similar information
in the SCSI port UCB.

Table 17–2 summarizes the class/port ownership of and access to these structures;
their interrelationships are pictured in Figure 17–4.

Table 17–2 Data Structures

Structure Allocation Owner Port Access Class Access

SCDRP One per I/O
transfer request

Class driver Read/write Read/write

SCDT One per SCSI
connection

Port driver Read/write None

SPDT One per SCSI port Port driver Read/write Read

(continued on next page)

17–7

SCSI Class Driver Support
17.2 SCSI Class/Port Architecture

Table 17–2 (Cont.) Data Structures

Structure Allocation Owner Port Access Class Access

SCSI device UCB One per SCSI
device unit

Class driver None Read/write

SCSI port UCB One per SCSI
controller port

Port driver Read/write None

Figure 17–4 SCSI Class/Port Data Structures

ZK−1375A−GE

Class

Port

Vectors to
SPI Routines

Device
UCB

SCDRP
SPDT

SCDT
Port
UCB

17.2.3 SCSI Class Driver Template
The operating system supplies a model for a third-party class driver in the SCSI
class driver template, located in SYS$EXAMPLES:SKDRIVER.MAR and listed in
Appendix B.

SKDRIVER is a simplified, self-documenting driver that supports the I/O
functions IO$_AVAILABLE, IO$_DIAGNOSE, and IO$_READLBLK on a
generalized device. SKDRIVER performs most operations required of a typical
SCSI class driver to process a typical I/O request, including the appropriate SPI
interface macro calls to establish a connection to the port, allocate port resources,
and accomplish a transfer to the SCSI device. SKDRIVER also allocates pool
for two SCDRPs. It uses one to send a SCSI command to the device, and it uses
the other to issue a SCSI REQUEST SENSE command in the event the SCSI
device returns failure status on the original command. (See Section 17.5.6.2 for
information on the interpretation of port and SCSI status return values.)

In addition, SKDRIVER defines local macros that simplify common operations,
including the following:

• Preserving register contents and return addresses within the class driver
across calls to executive and port routines that may destroy this context
(INIT_UCB_STACK, SUBPOP, SUBPUSH, SUBRETURN).

17–8

SCSI Class Driver Support
17.2 SCSI Class/Port Architecture

• Assembling the information relevant to a supported SCSI command such that
a driver routine can easily construct the SCSI command descriptor buffer
and initialize the SCDRP fields describing transfer buffer characteristics
and timeout values (SCSI_CMD). SKDRIVER uses this macro to define the
SCSI commands TEST UNIT READY, INQUIRY, REQUEST SENSE, and
MODE SELECT. (It ‘‘invents’’ a fifth command, QIO INQUIRY, to provide
a device-independent read operation servicing an IO$_READLBLK I/O
function.)

SKDRIVER extends the device UCB to accommodate its context-saving macros,
the allocation of SCDRPs, and per-request timeout values (see Section 17.4.2),
SCSI-specific device characteristics, and the addresses of the SCDT and the
current SCDRP.

Code in the SCSI class driver template can serve as a good starting point for
the development of a third-party SCSI class driver. Subsequent sections of this
chapter refer to the SCSI class driver template, as appropriate, to explain certain
class driver concepts or possible implementation strategies.

17.3 Connecting to a SCSI Device
As defined by the SCSI class/port interface, a connection is a logical link
between a SCSI class driver and a SCSI device unit. In MicroVAX/VAXstation
systems, a SCSI device is identified by its device mnemonic (for instance, SK), its
SCSI port ID (A or B), its SCSI device ID (an integer from 0 to 7), and its logical
unit number (an integer from 0 to 7).

Before a SCSI class driver can issue commands to a target device on the SCSI
bus and transfer data across the bus, it must establish a logical connection to
that device. The SPI$CONNECT macro connects a SCSI class driver with a
target device, thereby establishing a linkage between the SCSI class driver and
the SCSI port driver. Once the SCSI connection exists, the class and port drivers
can intercommunicate.

A SCSI class driver’s unit initialization routine invokes the SPI$CONNECT
macro at fork level, specifying the SCSI port ID (in numeric form), the SCSI
device ID, and the SCSI logical unit number (LUN) of the device to which it
needs to connect. (More detailed information about the use and functions of the
SPI$CONNECT macro appears in Section 17.8.6 and the OpenVMS VAX Device
Support Reference Manual.)

Normally a connection lasts throughout the run-time life of a system; a SCSI
class driver should never need to break a connection.

17.4 Setting Up a SCSI Command
This section describes the procedures a SCSI class driver follows to set up a
SCSI command for transmission to the SCSI port driver. Although it discusses
the aspects of the setup of a data transfer over the SCSI bus that relate to the
preparation of a SCSI command, you should refer to Section 17.5 for a more
complete discussion of SCSI data transfers.

17–9

SCSI Class Driver Support
17.4 Setting Up a SCSI Command

17.4.1 Preparing a SCSI Command Descriptor Block
In preparation for sending a SCSI command to a device on the SCSI bus, a SCSI
class driver must first determine which SCSI commands it supports. For each
supported SCSI command, the driver programmer must perform the following
tasks:

• Determine the correct size and format for the command

• Define the appropriate contents for all command bytes

• Allocate a SCSI port command buffer to make the command descriptor block
and status buffer available to the port

• Create a SCSI command descriptor block in the SCSI port command buffer

• Create a 1-byte SCSI status buffer in the SCSI port command buffer

• Establish pointers in the SCDRP to the command descriptor block and the
status buffer

• If the command involves a data transfer, store the parameters of the transfer
in the SCDRP

The SCSI class driver template (SKDRIVER) performs these operations by means
of the locally defined SCSI_CMD macro and the SETUP_CMD subroutine. Each
invocation of the SCSI_CMD macro establishes a data area within the driver to
contain information about a specific SCSI command, including its length and the
contents of its command bytes, plus the size, direction, and timeout values for
any associated data transfer. The SCSI class driver template uses the SCSI_CMD
macro to define the parameters of five, 6-byte SCSI commands, although the
macro can describe commands of any length.

The SETUP_CMD subroutine of the class driver template SK_STARTIO routine
repackages command data into a SCSI command descriptor block. Because both
the command descriptor block and the SCSI status buffer must be accessed by
both the class and port drivers, it is useful to account for the status buffer in
the request to allocate the SCSI port command buffer. Thus, the SETUP_CMD
subroutine adds two longwords of overhead—one for the SCSI status byte and
one for the SCSI command size—to the SCSI command size. It then invokes
SPI$ALLOCATE_COMMAND_BUFFER, causing the port driver to allocate a port
command buffer and return its address and size.

The class driver initializes the status longword to –1 and stores its address in
SCDRP$L_STS_PTR. It places the size (in bytes) of the SCSI command in the
next longword, and then constructs a SCSI command descriptor block in the
buffer, copying the command to the buffer byte by byte. It places the address of
the size longword in SCDRP$L_CMD_PTR.

Prior to invoking SPI$SEND_COMMAND to transmit the command descriptor
block to the port driver, the class driver may perform several optional tasks to set
up a data transfer operation, such as the following:

• Initializing the phase change (DMA) timeout or disconnect timeout fields
in the SCDRP (SCDRP$L_DMA_TIMEOUT and SCDRP$L_DISCON_
TIMEOUT), thus providing command-specific timeout values (see
Section 17.4.2 for information on how to set up timeout values)

• For a data transfer involving a user buffer, initializing fields in the SCDRP
to reflect the parameters of the buffer, and acquiring a port mapping of that
buffer

17–10

SCSI Class Driver Support
17.4 Setting Up a SCSI Command

• For a data transfer requiring a system buffer, allocating the buffer from
nonpaged pool, initializing fields in the SCDRP to reflect the parameters of
the buffer, and acquiring a port mapping of that buffer

When the command has completed and the SCSI port command buffer is no
longer required, the class driver checks the command status, as described in
Section 17.5.6, and invokes the SPI$DEALLOCATE_COMMAND_BUFFER macro
to deallocate the buffer.

17.4.2 Setting Command Timeouts
The SCSI port driver implements several timeout mechanisms, some governed by
the ANSI SCSI specification and others required by the operating system. The
timeouts required by the operating system include the following:

Timeout Description

Phase change timeout Maximum number of seconds for a target to change the SCSI
bus phase or complete a data transfer. (This value is also
known as the DMA timeout.)

Upon sending the last command byte, the port driver waits
for the phase change timeout (in seconds) for the target to
change the bus phase lines and assert REQ (indicating a new
phase). Or, if the target enters the DATA IN or DATA OUT
phase, the transfer must be completed within this interval.

Disconnect timeout Maximum number of seconds, from the time the initiator
receives the DISCONNECT message, for a target to reselect
the initiator so that it can proceed with the disconnected I/O
transfer.

The SCSI class driver is responsible for maintaining both of these timeout values.
It has the following three options:

• Accepting a connection’s default value. The default value for both timeouts is
4 seconds.

• Altering the connection’s default value. To modify the default values, the
class driver specifies nonzero values in the phase change timeout and
disconnect timeout longwords of the connection characteristics buffer and
invokes the SPI$SET_CONNECTION_CHAR macro.

• Establishing timeouts for individual commands that override the connection’s
default value. If, prior to invoking the SPI$SEND_COMMAND macro, the
class driver supplies a nonzero value in either SCDRP$L_DMA_TIMEOUT
or SCDRP$L_DISCON_TIMEOUT, the port driver uses that value, instead of
the default, for the course of that data transfer.

17.4.3 Disabling Command Retry
The SCSI port driver implements a command retry mechanism, which is enabled
on a given connection by default.

When the command retry mechanism is enabled, the port driver retries up to
three times any I/O operation that fails during the COMMAND, Message, Data,
or STATUS phases. For instance, if the port driver detects a parity error during
the Data phase, it aborts the I/O operation, logs an error, and retries the I/O
operation. It repeats this sequence twice more, if necessary. If the I/O operation
completes successfully during a retry attempt, the port driver returns success
status to the class driver. However, if all retry attempts fail, the port driver
returns failure status to the class driver.

17–11

SCSI Class Driver Support
17.4 Setting Up a SCSI Command

When command retry is enabled on a connection, a SCSI class driver can control
the number of retries the port attempts by supplying nonzero values in the
command retry count, busy retry count, arbitration retry count, and
select retry count longwords of the connection characteristics buffer, and
invoking the SPI$SET_CONNECTION_CHAR macro.

A SCSI class driver may need to disable the command retry mechanism under
certain circumstances. For instance, repeated execution of a command on a
sequential device may produce different results than are intended by a single
command request. A tape drive could perform a partial write and then repeat the
write without resetting the tape position.

A SCSI class driver can disable this mechanism by setting bit 1 of the
connection flags longword of the connection characteristics buffer, and invoking
the SPI$SET_CONNECTION_CHAR macro.

17.5 Performing a SCSI Data Transfer
This section describes the procedures a SCSI class driver follows to set up and
accomplish a data transfer over the SCSI bus.

17.5.1 Setting the Data Transfer Mode
The SCSI bus defines two data transfer modes, asynchronous and synchronous.
In asynchronous mode, for each REQ from a target there is an ACK from the
host prior to the next REQ from the target. Synchronous mode allows higher
data transfer rates by allowing a pipelined data transfer mechanism where, for
short bursts (defined by the REQ-ACK offset), the target can pipeline data to an
initiator without waiting for the initiator to respond.

A class driver can determine the transfer modes supported by a device from the
port capabilities longword returned from its invocation of the SPI$CONNECT
macro. Whether or not a port or a target device supports synchronous data
transfers, it is harmless for a class driver to set up the connection to use such
transfers. If synchronous mode is not supported, the port driver automatically
uses asynchronous mode.

To use synchronous mode in a transfer, the programmer of a SCSI class driver
must ensure that both the SCSI port and the SCSI device involved in the transfer
support synchronous mode. The SCSI port of the MicroVAX 3520/3540 systems
supports both synchronous and asynchronous transfers, whereas that of the
MicroVAX/VAXstation 3100 supports only asynchronous transfers.

To set up a connection to use synchronous data transfer mode, the SCSI
class driver specifies a nonzero value in the synchronous longword of the
connection characteristics buffer, and invokes the SPI$SET_CONNECTION_
CHAR macro. The driver can also control the protocol of synchronous data
transfers by supplying nonzero values for the transfer period and REQ-ACK
offset longwords of the connection characteristics buffer and invoking the macro.

17.5.2 Enabling Disconnection and Reselection
The ANSI SCSI specification defines a disconnection facility that allows a target
device to yield ownership of the SCSI bus while seeking or performing other time-
consuming operations. When a target disconnects from the SCSI bus, it sends
a sequence of messages to the initiator that cause it to save the state of the I/O
transfer in progress. Once this is done, the target releases the SCSI bus. When
the target is ready to complete the operation, it reselects the initiator and sends

17–12

SCSI Class Driver Support
17.5 Performing a SCSI Data Transfer

to it another sequence of messages. This sequence uniquely identifies the target
and allows the initiator to restore the context of the suspended I/O operation.

Whether disconnection should be enabled or disabled on a given connection
depends on the nature and capabilities of the device involved in the transfer, as
well as on the configuration of the system. In configurations where there is a
slow device present on the SCSI bus, enabling disconnection on connections that
transfer data to the device can increase bus throughput. By contrast, systems
where most of the I/O is directed toward a single device for long intervals can
benefit from disabling disconnection. By disabling disconnection when there is no
contention on the SCSI bus, port drivers can increase throughput and decrease
the processor overhead for each I/O transfer.

By default, the SCSI class/port interface disables the disconnect facility on a
connection. To enable disconnection, the SCSI class driver sets bit 0 of the
connection flags longword of the connection characteristics buffer, and invokes
the SPI$SET_CONNECTION_CHAR macro.

17.5.3 Determining the Maximum Data Transfer Size
There are two factors governing the maximum data transfer size that any given
SCSI device can accommodate.

First, there is the maximum size supported by the device; this can be determined
from an inspection of the device’s functional specification. The SCSI class driver
writes the maximum device byte count to the device’s UCB (UCB$L_MAXBCNT),
usually by invoking the DPT_STORE macro when initializing the driver prologue
table (DPT).

Secondly, there is the maximum value supported by the SCSI port. The port
driver returns this value to the class driver in response to the class driver’s
invocation of the SPI$CONNECT macro.

The class driver may need to adjust the value in UCB$L_MAXBCNT to reflect
the smaller of the device-specific and port-specific values.

The class driver compares the value supplied in IRP$L_BCNT with UCB$L_
MAXBCNT to determine whether to accept, reject, or segment an I/O data
transfer request.

17.5.4 Initializing the SCDRP to Reflect Class Driver Data Buffering
Mechanisms

A standard data transfer, using direct I/O, involves the buffer specified in the
$QIO system service call as the source or destination of the data involved in the
transfer. Typically this buffer is in process space (P0 space) and mapped by the
process’s P0 page table. To access this buffer at elevated IPL, a driver calls a
system-supplied FDT routine (such as EXE$READ or EXE$MODIFY) that locks
the buffer into memory and returns the system virtual address of the first P0
page-table entry that maps the buffer. The servicing of the QIO_INQUIRY SCSI
command by the SCSI class driver template follows this approach. (Note that the
QIO_INQUIRY command is the means by which the template driver illustrates
the transfer of data from a SCSI device to a process buffer. Ordinarily, for a
specific SCSI device, a class driver would use a SCSI READ command.)

Other transfer operations may require that the class driver itself operate upon
the contents of the data buffer, or maintain its own data buffer. For these
operations, the class driver must allocate a system buffer from nonpaged pool.

17–13

SCSI Class Driver Support
17.5 Performing a SCSI Data Transfer

The servicing of the INQUIRY SCSI command by the SCSI class driver template
follows this approach.

Depending upon the local buffering mechanism it uses to service an I/O request, a
SCSI class driver must initialize the SCDRP with the parameters of the transfer.
When a process buffer is involved in the transfer, the class driver initializes the
SCDRP fields listed in Table 17–3.

Table 17–3 Initialized SCDRP Fields for a Process Buffer

Field Contents

SCDRP$L_ABCNT 0

SCDRP$W_FUNC IRP$W_FUNC

SCDRP$W_STS IRP$W_STS

SCDRP$L_MEDIA IRP$L_MEDIA

SCDRP$L_SVAPTE IRP$L_SVAPTE

SCDRP$W_BOFF IRP$W_BOFF

SCDRP$L_BCNT IRP$L_BCNT

SCDRP$L_PAD_COUNT 0

SCDRP$L_SCSI_FLAGS SCDRP$V_S0BUF bit cleared

When a system buffer is involved in the transfer, the class driver initializes the
SCDRP fields listed in Table 17–4.

Table 17–4 Initialized SCDRP Fields for a System Buffer

Field Contents

SCDRP$L_SVA_USER System virtual address (SVA) of system buffer

SCDRP$L_SVAPTE System virtual address (SVA) of the system page-table
entry (PTE) mapping the first page of the system buffer

SCDRP$L_BCNT Length of the transfer

SCDRP$L_PAD_COUNT 0

SCDRP$W_BOFF Byte offset within page

SCDRP$W_STS IRP$V_FUNC set for a read operation; clear for a write
operation

SCDRP$L_SCSI_FLAGS SCDRP$V_S0BUF bit set

17.5.5 Making a Class Driver Data Buffer Accessible to the Port
Regardless of the local buffering mechanism it requires to fulfill the I/O transfer,
a SCSI class driver must make the buffer available to the SCSI port hardware. A
SCSI class driver accomplishes this by invoking the SPI$MAP_BUFFER macro.

The SPI$MAP_BUFFER macro causes the SCSI port driver to reserve sufficient
pages of the port’s DMA buffer to accomplish the transfer, plus sufficient mapping
resources, if required, to map the class driver’s data buffer to system virtual
addresses. Certain ports require this mapping so that the port driver can access
a process space buffer when setting up or completing a transfer for the SCSI port.
When the class driver initiates a write operation, the SCSI port driver uses its
mapping resources to copy the data from the class driver’s user or system data
buffer to this intermediate DMA buffer, from which the SCSI port can access it.

17–14

SCSI Class Driver Support
17.5 Performing a SCSI Data Transfer

When the class driver initiates a read operation, the SCSI device transfers the
data to the DMA buffer, from which the port driver copies it to the class driver’s
data buffer.

Other ports do not require this mapping and can access the class driver’s data
buffer using system page-table entries.

By convention, a SCSI class driver sets the SCDRP$V_BUFFER_MAPPED bit in
SCDRP$L_SCSI_FLAGS when it invokes SPI$MAP_BUFFER to map a buffer; if
the buffer involved in the transfer is a system buffer, it also sets the SCDRP$V_
S0BUF bit. The SCDRP$V_S0BUF flag prevents the SPI$MAP_BUFFER port
routine from double-mapping a system buffer.

The SPI$MAP_BUFFER port routine initializes the SCDRP fields listed in
Table 17–5.

Table 17–5 Initialized SCDRP Fields from SPI$MAP_BUFFER

Field Contents

SCDRP$L_SVA_USER System virtual address (SVA) of the system buffer.
When the class driver’s local buffer is a system buffer,
the contents of this field are unchanged by SPI$MAP_
BUFFER.

SCDRP$L_SPTE_SVAPTE System virtual address (SVA) of the system page-table
entry (PTE) mapping the first page of the system buffer.
When the class driver’s local buffer is a system buffer,
the contents of this field and SCDRP$L_SVAPTE are
identical.

SCDRP$W_NUMREG Number of pages of the port’s DMA buffer allocated for
this transfer.

SCDRP$W_MAPREG Starting page number of the first DMA buffer page
allocated for this transfer.

Once the SCSI command has been prepared, the SCSI class driver issues the
command to the SCSI device by invoking the SPI$SEND_COMMAND macro.

When the data transfer has completed (or its failure has been serviced) and the
port DMA buffer and mapping resources are no longer required, the class driver
invokes the SPI$UNMAP_BUFFER macro to deallocate these resources.

17.5.6 Examining Port and SCSI Status
Whether a SCSI command completes or fails, the port driver returns to the class
driver the following status values:

• Port status in R0

• SCSI command status in the low byte of the status buffer pointed to by
SCDRP$L_STS_PTR

• Actual number of bytes transferred in SCDRP$L_TRANS_CNT

The class driver should examine these returned values to determine the success
or failure of a SCSI command. If a SCSI command fails, the class driver can
pursue its recovery or retry the command, depending upon the type and severity
of the error and the nature of the device.

17–15

SCSI Class Driver Support
17.5 Performing a SCSI Data Transfer

17.5.6.1 Examining Port Status
The port status is the primary indicator of the failure of a SCSI command; that
is, if the port failed during command preparation or transmission, it is unlikely
that the SCSI command status byte contains meaningful information.

Table 17–6 lists the possible status values in R0 resulting from the port driver
return.

Table 17–6 Port Driver Return Status in R0

Status Meaning

SS$_NORMAL Normal successful completion

SS$_TIMEOUT Failed during selection or arbitration

SS$_CTRLERR Controller error or port hardware failure

SS$_BADPARAM Bad parameter specified by the class driver

SS$_LINKABORT Connection no longer exists

SS$_DEVACTIVE Command outstanding on this connection

If R0 contains anything but success status, the class driver may want to examine
it for specific status values and attempt error recovery, retry the operation, or
return a special error status to the original $QIO call. At the very least, the
class driver should log a device error, according to the method described in
Section 17.6.2.

17.5.6.2 Examining the SCSI Status Byte
If the port driver returns SS$_NORMAL status in R0, the class driver should
proceed to check the SCSI command status in the low byte of the longword buffer
pointed to by SCDRP$L_STS_PTR.

The format of a SCSI status byte is illustrated in Table 17–7. Interpretation
of the bits in this status byte is device specific. The SCSI template driver
(SKDRIVER) first clears reserved bits 0, 6, and 7. It compares the resulting value
with the CHECK CONDITION status value to determine if CHECK CONDITION
status has been returned.

Table 17–7 SCSI Status Byte Format

Bits of Status Byte1 Status Represented

7 6 5 4 3 2 1 0

R R 0 0 0 0 0 R GOOD

R R 0 0 0 0 1 R CHECK CONDITION

R R 0 0 0 1 0 R CONDITION MET/GOOD

R R 0 0 1 0 0 R BUSY

R R 0 1 0 0 0 R INTERMEDIATE/GOOD

R R 0 1 0 1 0 R INTERMEDIATE/CONDITION MET/GOOD

R R 0 1 1 0 0 R RESERVATION CONFLICT

R R 1 0 1 0 0 R QUEUE FULL (not implemented)

1All other codes reserved.

17–16

SCSI Class Driver Support
17.5 Performing a SCSI Data Transfer

When CHECK CONDITION status is returned, SKDRIVER initiates a REQUEST
SENSE SCSI command to determine the specific nature of the SCSI error. To do
so, it must save the address of the SCDRP associated with the original command
(in an extension to the device UCB), and allocate a new one for use with the
REQUEST SENSE command. It prepares and issues the command according to
the procedures described in Section 17.4. When the port driver returns status
from the REQUEST SENSE command, SKDRIVER examines its status. If
the port returns failure status or if the SCSI status byte has any error bit
set, SKDRIVER completes the I/O request, deallocating both SCDRPs and its
command and data buffers; and returns error status to the $QIO system service.

If the port returns success status from the REQUEST SENSE command,
SKDRIVER examines the request sense key in its local system buffer (at
SCDRP$L_SVA_USER). The actions of any class driver in response to any specific
request sense key are device specific. SKDRIVER merely translates the value
into a system success or failure status code and returns this code in R0. For
sense keys indicating fatal errors, SKDRIVER logs a device error.

17.5.6.3 Testing for Incomplete Transfers
If both the port status value and the SCSI command status byte indicate
successful completion, the class driver performs one last test to determine the
success of any data transfer associated with the SCSI command.

The port driver returns the actual number of bytes transferred during command
processing in SCDRP$L_TRANS_CNT. The class driver should compare the value
in this field with the requested transfer size in SCDRP$L_BCNT. If they are not
equal, the class driver may return successfully or investigate a possible error.

17.6 Other SCSI Class Driver Issues
The writer of a third-party SCSI class driver must deal with several issues that
are not specifically related to the tasks of setting up a SCSI command or data
transfer, but rather relate to the definition of the class/port interface. Among
these issues are the following:

• Preserving the local context of the driver across calls to the port driver

• Logging errors detected by the class driver

Subsequent sections discuss each of these issues in detail.

17.6.1 Preserving Local Context
SCSI port drivers contain routines that execute in response to a class driver’s
invocation of an SPI macro. A class driver should take into account the fact
that any SPI macro invocation may cause the port driver routine to fork or stall
while waiting for a port resource, and return to its caller’s caller. These actions
eradicate the local context of the class driver at the time it invoked the macro.

Therefore, a SCSI class driver routine must take special steps to ensure the
following:

• The address of its caller is on the top of the stack.

• All significant local context currently in registers is preserved.

• Any local return address currently on the stack is preserved.

17–17

SCSI Class Driver Support
17.6 Other SCSI Class Driver Issues

The SCSI class driver template (SKDRIVER) resolves these needs by allocating
a 10-longword stack within its extension to the SCSI device UCB. The symbol
UCB$L_STACK_PTR functions as a stack pointer. The class driver template
defines macros that initialize the UCB stack (INIT_UCB_STACK), push and
pop registers (or data) from the UCB stack (SUBPUSH and SUBPOP), push
the return address from the top of the interrupt stack onto the UCB stack
(SUBSAVE), and pop the return address from the UCB stack onto the interrupt
stack and RSB (SUBRETURN).

Caution Overflowing Local Stack

The class driver must be careful not to overflow its local stack. Unless
it takes precautions, it could overwrite data integral to a transfer in
progress and cause unpredictable results.

Prior to calling any routine that may destroy its context, the class driver template
issues a SUBSAVE to preserve its return address (before any additional data
is pushed on the interrupt stack), and invokes the SUBPUSH macro for each
register that must be preserved across the call. When execution in the class
driver resumes, the driver issues the SUBPOP macro to restore the saved
registers and the SUBRETURN macro to return to its caller.

17.6.2 Error Logging
A SCSI class driver establishes error logging and uses the system error-logging
routines (ERL$DEVICERR, ERL$DEVICTMO, and ERL$DEVICEATTN) as
described in the OpenVMS VAX Device Support Reference Manual.

The SCSI class/port interface defines SCSI port-driver and SCSI class driver
extensions to the error message buffer, which are interpreted and formatted by
the Error Log utility (see Section 17.12.2). A SCSI class driver and the associated
port driver log errors independently, each supplying SCSI-specific information as
defined in its extension to the error message buffer.

The class driver extension to the error message buffer includes the information
listed in Table 17–8.

17–18

SCSI Class Driver Support
17.6 Other SCSI Class Driver Issues

Table 17–8 Error Message Buffer Extension for SCSI Class Drivers

Field
Length
(in bytes) Contents

Longword count 4 Number of longwords that follow in the error message buffer (not
including this one).

Revision 1 Revision level of the error message buffer. The class driver must set
this field to 1.

Hardware revision 4 Hardware revision information, returned by the SCSI INQUIRY
command in ASCII format.

Error type 1 Type of error detected by the class driver. A SCSI class driver defines
device-specific error types according to the nature of the device it
services. The following error types are used by the system disk
and tape class drivers and, as such, have defined values that are
interpreted by the Error Log utility:

Error Name Description

01 CON_ERR Attempt to connect to the port
driver failed.

02 MAP_ERR Attempt to map a user buffer
failed.

03 SND_ERR Attempt to send a SCSI command
failed.

04 INV_INQ Invalid inquiry data was received.

Error Name Description

05 EXT_SNS_DAT Extended sense data was returned
from the SCSI device.

06 INV_MOD_SNS Invalid mode sense data returned
from the SCSI device.

07 REASSIGN_BLK Reassign block.

08 DIAG_DATA Invalid diagnostic data returned to
the SCSI tape class driver.

SCSI ID 1 SCSI ID of the device to which the current command was sent. The
SCSI ID is an integer between 0 and 7.

SCSI LUN 1 SCSI logical unit number (LUN) of the device to which the current
command was sent. The SCSI LUN is an integer between 0 and 7.

SCSI SUBLUN 1 Not used. This field always contains 0.

Port status 4 Longword status returned in R0 from the port driver. A value of –1 in
this field indicates that there is no valid data in this field.

SCSI CMD n Current SCSI command bytes. The SCSI command bytes are preceded
by a byte containing the length of the command.

SCSI STS 1 Current SCSI status byte. A status byte of –1 in this field indicates
that the status byte does not yet contain valid information.

Additional data n Additional data, preceded by a byte count of the data. A class driver
defines what additional data would be meaningful in an error log entry
based on the type of device it services. Additional data is displayed by
the Error Log utility as untranslated longwords.

Prior to calling ERL$DEVICERR to log an error associated with device activity, or
ERL$DEVICEATTN (or ERL$DEVICTMO) to log an error on an inactive device,
the class driver should perform the following tasks:

• Ensure that the DDT$W_ERRORBUF field contains a sufficient byte count
to accommodate both the standard error message buffer and the SCSI class

17–19

SCSI Class Driver Support
17.6 Other SCSI Class Driver Issues

driver extension. The class driver can either supply this value in the erlgbf
argument to the DDTAB macro or specifically initialize DDT$W_ERRORBUF.

• Initialize the device type (UCB$B_DEVTYPE) and device class (UCB$B_
DEVCLASS) fields to DT$_GENERIC_SCSI and DC$_MISC. A driver
normally initializes these fields by invoking the DPT_STORE macro. If
the driver must use other device type or class values, or allows them to be
changed by a user program, it may need to save and restore the real values of
these fields temporarily across calls to the error-logging routines.

ERL$DEVICERR, ERL$DEVICTMO, and ERL$DEVICEATTN all result
ultimately in a call to the class driver’s register-dumping routine. The register-
dumping routine must supply all available information about the SCSI device
error in the class driver’s SCSI-specific extension to the error message buffer.

The SCSI class driver template (SKDRIVER) defines the fields of this extension
and contains a macro (LOG_ERROR) and a routine (ERROR_LOG) that are a
useful basis for the implementation of error-logging in a third-party SCSI class
driver.

17.7 Flow of a Read I/O Request Through the SCSI Class and Port
Drivers

This section describes a hypothetical read-I/O request to a SCSI device as it is
serviced by a SCSI class driver and the port driver. The discussion assumes that
the read operation is successful.

When it is loaded, the class driver performs a one-time initialization sequence as
follows:

1. Its unit initialization routine invokes the SPI$CONNECT macro. In response,
the port driver forms a logical connection between the SCSI device’s UCB
and the target on the SCSI bus. The port driver creates an SCDT in which it
inserts information describing the connection.

2. Its unit initialization routine optionally invokes the SPI$SET_
CONNECTION_CHAR macro to set the appropriate data transfer mode
or timeout values, or to enable disconnection of the connection. In response,
the port driver modifies the connection-specific characteristics it maintains in
the SCDT.

When the class driver receives a read-I/O request, it performs the following
operations:

1. Its read FDT routine verifies and interprets the parameters of the $QIO
system service call.

2. It calls a system FDT routine that locks the specified process buffer in
memory.

3. When the request becomes current, the start-I/O routine dispatches to code
that services the specified function.

4. Its start-I/O routine allocates and initializes an SCDRP and copies to it
the fields from the I/O request packet (IRP) required by the port driver to
complete the read operation.

5. Its start-I/O routine invokes the SPI$ALLOCATE_COMMAND_BUFFER
macro. In response, the port driver allocates a buffer suitable for a SCSI
command descriptor buffer and a SCSI status byte.

17–20

SCSI Class Driver Support
17.7 Flow of a Read I/O Request Through the SCSI Class and Port Drivers

6. Its start-I/O routine invokes the SPI$MAP_BUFFER macro. In response,
the port driver allocates the resources required to make the process buffer
available to the port driver.

7. Its start-I/O routine builds a SCSI command in the command descriptor
buffer, initializes the status byte, and invokes the SPI$SEND_COMMAND
macro to send the command to the port driver.

When the port driver receives the command, it sets up the connection
characteristics (data transfer mode, timeout value, and disconnect mode)
recorded in the SCDT, sends the command buffer to the device, and responds
to changes in SCSI bus phases. The port driver performs the following specific
actions:

1. It requests and obtains ownership of the port, stalling if necessary until the
port is available.

2. It arbitrates for ownership of the SCSI bus.

3. It selects a target device on the SCSI bus and sends it an IDENTIFY
message.

4. It waits for the bus COMMAND phase.

5. It sends the SCSI command descriptor buffer, byte by byte, to the target
device.

6. It waits for a SCSI bus phase change. If the next phase is not DATA IN, the
port driver proceeds with the next step. Otherwise, it accepts data from the
target device as follows:

a. It sets up and starts a DMA transfer to the port’s DMA buffer.

b. It saves its context in the port UCB and waits for the target device to
interrupt, signifying the completion of the read request. If the target
device does not interrupt, the port driver sets up error status and returns
to the class driver.

7. It checks the SCSI bus phase. If the phase is unchanged, the port driver sets
up the next transfer. If the phase is STATUS, the port driver reads the status
and copies the status to the return status buffer.

8. It waits for the MESSAGE IN phase. When the phase changes to MESSAGE
IN, the port driver reads the message. If the message is COMMAND
COMPLETE, the port driver returns SS$_NORMAL in R0. Otherwise, it
returns the appropriate port status to the class driver.

9. It releases the port.

10. It transfers the data from the port’s DMA buffer to the process buffer.

11. It returns to the class driver.

When it regains control from the port driver, the class driver performs the
following tasks to complete the read operation:

1. It checks the port status in R0.

2. It checks the SCSI status in the SCSI status byte.

3. It checks that the actual transfer length agrees with the requested transfer
length.

17–21

SCSI Class Driver Support
17.7 Flow of a Read I/O Request Through the SCSI Class and Port Drivers

4. It invokes the SPI$DEALLOCATE_COMMAND_BUFFER macro to deallocate
the command buffer.

5. It invokes the SPI$UNMAP_BUFFER macro to release the port resources
mapping the user buffer.

6. It initiates device-independent postprocessing of the request by invoking the
REQCOM macro.

17.8 Components of a SCSI Class Driver
A SCSI class driver contains nearly all of the components of a traditional driver.
These include the following:

• Data, macro, and constant definitions

• Driver prologue table (DPT)

• Driver dispatch table (DDT)

• Function decision table and FDT routines

• Controller initialization routine

• Unit initialization routine

• Start-I/O routine

• Cancel-I/O routine

• Error-logging routine

• Register-dumping routine

A SCSI class driver contains no interrupt service routine. Moreover, it has no
access to device control and status registers (CSRs). It relies on the port driver to
initiate operations on the device and to service device interrupts.

This section describes the special operations that must be performed by the
components of a SCSI class driver. The standard and typical operations
performed by driver routines and tables are discussed in Part II.

17.8.1 Data Definitions
A SCSI class driver must invoke the $SCDRPDEF data structure definition
macros, located in SYS$LIBRARY:LIB.MLB. $SCDRPDEF defines the fields of
the SCSI class driver request packet.

A SCSI class driver typically does not reference fields in the SCSI connection
descriptor table and, thus, does not need to invoke the $SCDTDEF macro.
Although fields in the SCSI port descriptor table are used by the SPI macros as
vectors to routines in the port driver, a SCSI class driver need not explicitly define
SPDT fields. It indirectly obtains the SPDT definitions through its invocation of
the SPI$CONNECT macro; it is the macro that invokes $SPDTDEF.

A SCSI class driver may define an extension to the device UCB for an internal
stack or for managing the allocation of SCDRPs, depending upon the needs of the
implementation. The SCSI template driver (SKDRIVER), listed in Appendix B,
illustrates uses of these additional UCB fields. SKDRIVER also defines symbols
representing SCSI-specific data buffer offsets and status values.

17–22

SCSI Class Driver Support
17.8 Components of a SCSI Class Driver

17.8.2 Driver Prologue Table
A SCSI class driver must supply the NULL keyword as the adapter argument
to the DPTAB macro. It also must specify that the DPT$V_NO_IDB_DISPATCH
flag is set in the flags argument. The DPT$V_NO_IDB_DISPATCH flag indicates
that the IDB$L_UCBLIST field is not used to store the addresses of UCBs for
this device.

If the class driver implements error logging, it should use the DPT_STORE
macro to initialize UCB$B_DEVTYPE to DT$_GENERIC_SCSI and UCB$B_
DEVCLASS to DC$_MISC. If the class driver must use other device type or class
values, or allows them to be changed by a user program, it may need to save and
restore the real values of these fields temporarily across calls to the error-logging
routines.

A SCSI class driver should not initialize CRB$L_INTD+VEC$L_ISR or the other
interrupt vectors in the CRB. A SCSI device interrupts through a vector serviced
by the port driver; any interrupt service routine specified by the SCSI class driver
is not used.

17.8.3 Driver Dispatch Table
There are no special requirements for a SCSI class driver’s driver dispatch table
(DDT).

17.8.4 Function Decision Table and FDT Routines
There are no special requirements for a SCSI class driver’s function decision table
(FDT).

A class driver invokes FDT routines to preprocess I/O functions in a device-
specific manner. Most SCSI class drivers use the standard system-supplied FDT
routines (such as EXE$READ, EXE$WRITE, and EXE$SETMODE). However,
some class drivers may need to include a special FDT routine. The SCSI class
driver template illustrates this approach.

17.8.5 Controller Initialization Routine
There are no special requirements for a SCSI class driver’s controller
initialization routine.

17.8.6 Unit Initialization Routine
A SCSI class driver’s unit initialization routine must perform several special
actions, as follows:

• It checks the power failure bit (UCB$V_POWER) in UCB$W_STS to
determine whether it is being called in the course of power failure recovery. If
this bit is set, the unit initialization routine returns immediately.

• It forks twice, issuing the FORK macro twice in succession. The first fork
ensures, during system initialization or autoconfiguration, that the SCSI port
driver’s initialization routines begin execution before the class driver performs
its initialization. The second fork guarantees that a port driver initialization
fork thread has created its SPDTs and initialized the SCSI ports.

Note that the unit initialization routine must be executing at fork IPL when
it invokes the SPI$CONNECT macro.

• It prepares for an SPI$CONNECT request by obtaining the SCSI port ID, the
SCSI device ID, and the SCSI logical unit number (LUN).

17–23

SCSI Class Driver Support
17.8 Components of a SCSI Class Driver

SCSI device unit numbers have the form d0u, where d is the device ID
and u is the LUN. The unit initialization routine obtains the SCSI device
unit number from UCB$W_UNIT and divides it by 100 (using the EDIV
instruction). The quotient (in R1) is the device ID and the remainder (in R2)
is the LUN. Both should be values between 0 and 7.

SCSI port IDs are represented by the alphabetic characters A and B. The unit
initialization routine obtains this letter from the third byte in DDB$T_NAME
(for instance, A, from SKA500) and converts it to the numeral 0 or 1.

Once it has obtained the SCSI port ID, the SCSI device ID, and the SCSI
LUN, the unit initialization routine sets up the registers for the call to
SPI$CONNECT as follows:

ID Destination

SCSI port ID Low-order word of R1

SCSI device ID High-order word of R1

SCSI LUN High-order word of R2

• It invokes the SPI$CONNECT macro. The port driver, as a result, attempts
to create a connection between the class driver and the port.

If the class driver expects notification of asynchronous events from the
target device, it supplies the address of a local selection callback routine in
the callback argument of the SPI$CONNECT macro. (For a discussion of
asynchronous event notification (AEN) mode, see Section 17.9.)

If the port driver returns failure status, the unit initialization routine sets
the device off line.

If the port driver successfully creates the connection, the unit
initialization routine initializes UCB$L_MAXBCNT, UCB$L_SCDT,
and UCB$L_PDT with the values returned by the port driver, sets the
device unit on line (by setting UCB$V_ONLINE in UCB$W_STS), and
returns success status to its caller.

The template SCSI class driver (SKDRIVER) unit initialization routine performs
such optional actions as setting up an internal stack in the UCB for context-
saving purposes, and allocating nonpaged pool for a set of SCDRPs to be queued
to the UCB for use by the driver’s start-I/O routine. See the Appendix B for a
listing of the SCSI class driver template.

The unit initialization routine may also invoke the SPI$GET_CONNECTION_
CHAR and SPI$SET_CONNECTION_CHAR macros to examine (and possibly
alter) the current data transfer mode, timeout, command retry, and disconnect
characteristics of the SCSI connection. (See Section 17.5 for additional
information.)

17.8.7 Start-I/O Routine
A SCSI class driver’s start-I/O routine must perform the following steps to
prepare a SCSI command for delivery to the port driver:

• Allocate an SCDRP from nonpaged pool. (The template SCSI class driver
allocates SCDRPs in its unit initialization routine; its start-I/O routine simply
removes a preallocated SCDRP from a queue in the device UCB.)

• Insert the address of the IRP in SCDRP$L_IRP.

17–24

SCSI Class Driver Support
17.8 Components of a SCSI Class Driver

• Dispatch to a function-specific command preparation routine.

The command preparation routine performs the procedures described in
Section 17.4 and Section 17.5. Its actions typically involve the following:

• Invoking SPI$ALLOCATE_COMMAND_BUFFER to allocate a port command
buffer in which it assembles the SCSI command and reserves a longword for
the SCSI status byte to be returned from command execution.

• Initializing fields in the SCDRP from the corresponding fields in the IRP. For
read-I/O functions, the class driver must ensure that IRP$V_FUNC is set in
SCDRP$W_STS.

• Invoking SPI$MAP_BUFFER to make data in the process buffer available to
the port, and setting the SCDRP$V_BUFFER_MAPPED bit in SCDRP$L_
SCSI_FLAGS to indicate that the buffer has been mapped to the port. (If
it maps a system buffer, it must set both the SCDRP$V_S0BUF and the
SCDRP$V_BUFFER_MAPPED bits.)

• Invoking SPI$SEND_COMMAND to deliver the SCSI command to the port
driver.

• When the command completes, examining the port status, SCSI status, and
transfer count to determine the success or failure of the I/O operation. (See
Section 17.5.6 for a detailed description of the means by which a SCSI class
driver typically responds to status information.)

If the operation fails, the class driver may take steps to obtain additional
status information from the target device, pursue error recovery and retry the
operation, enter a device-specific message in the error log buffer, return error
status to the $QIO system service, or perform some combination of these
actions.

• Invoking SPI$UNMAP_BUFFER to release port mapping resources.

• Invoking SPI$DEALLOCATE_COMMAND_BUFFER to deallocate the port
command buffer.

• Deallocating the SCDRP.

• Initiating device-independent postprocessing by invoking the REQCOM
macro.

17.8.8 Cancel-I/O Routine
If a SCSI class driver receives a cancel request for an I/O operation in progress
on a SCSI device, its cancel-I/O routine may invoke the SPI$ABORT_COMMAND
macro to terminate the I/O operation.

Note

VAXstation 3520/3540 systems do not implement the abort-SCSI-
command function.

17–25

SCSI Class Driver Support
17.8 Components of a SCSI Class Driver

17.8.9 Register-Dumping Routine
A SCSI class driver’s register-dumping routine executes in the course of
a driver error-logging operation. The class driver calls ERL$DEVICERR,
ERL$DEVICTMO, or ERL$DEVICEATTN, and the system error-logging routine
calls the driver’s register-dumping routine.

The register-dumping routine loads the error message buffer with all available
information about a SCSI device error in the buffer extension reserved for SCSI
class driver information (see Table 17–8). Detailed information on SCSI class
driver error logging appears in Section 17.6.2.

17.9 Servicing Asynchronous Events from a SCSI Device
Devices can perform one of two roles on the SCSI bus; either the target role or the
initiator role. Typically, the host processor serves as the initiator and peripheral
devices serve as targets. However, some devices require that the host processor
respond to an unsolicited event, such as when the device is selected or deselected.
When such an event occurs, the target device must be capable of selecting the
host and acting in the initiator mode.

Certain MicroVAX/VAXstation systems implement the SCSI asynchronous event
notification (AEN) feature, allowing SCSI devices to act as initiators on given
connections. When AEN is enabled and the host is selected by a target, the host

• Responds to selection

• Parses SCSI command packets

• Drives the SCSI bus phase as required by targets

The SCSI class/port interface supports asynchronous event notification by
the SPI$CONNECT macro and an extension to the SCSI port interface (SPI).
Table 17–9 lists the SPI macros provided in the SPI extension.

Table 17–9 SPI Extension Macros Supporting Asynchronous Event Notification

Macro Function

SPI$FINISH_COMMAND1 Completes an I/O operation executing under the AEN
feature

SPI$RECEIVE_BYTES Receives command, message, and data bytes from a
device acting as an initiator

SPI$RELEASE_BUS1 Releases the SCSI bus

SPI$SEND_BYTES Sends command, message, and data bytes to a device
acting as an initiator

SPI$SENSE_PHASE Reads the current SCSI bus phase

SPI$SET_PHASE Sets the SCSI bus phase

1A SCSI class driver must invoke either the SPI$FINISH_COMMAND macro or the SPI$RELEASE_
BUS macro (but not both) to complete an AEN operation.

To utilize asynchronous event notification, a SCSI class driver’s unit initialization
routine must provide the address of a selection callback routine in the call to
the SPI$CONNECT macro. The port driver invokes the callback routine at
this address in response to selection by another device. The port driver passes
the selection callback routine the address of the SPDT in R4 and any optional

17–26

SCSI Class Driver Support
17.9 Servicing Asynchronous Events from a SCSI Device

selection context in R5. When invoked, the callback routine is executing at IPL 8,
holding the fork lock.

If the SCSI class driver does not provide a callback address, no selections are
allowed on the connection that is established. If a selection does occur on a
connection that is not set up to accommodate selections, the port driver releases
the SCSI bus.

The flow of an AEN operation is as follows:

1. The class driver connects to the port driver and provides the callback address.

2. The port driver receives a selection on an existing connection. If selections
are allowed, the port driver calls the class driver at its callback address,
holding the fork lock at IPL 8. R4 contains the address of the SCDT and R5
contains the address of the SCDRP.

3. The class driver invokes SPI$SET_PHASE to set the SCSI bus to COMMAND
phase.

Because the target has selected the host, the host now becomes the target.
In SCSI, the target drives the phase of the SCSI bus after selection. Thus,
the class driver drives the SCSI bus to the COMMAND phase to receive the
command bytes from the initiator.

4. The class driver invokes SPI$RECEIVE_BYTES.

Because command packets are variable in size, the class driver requests the
first byte of the command to determine how many additional command bytes
are to be expected.

5. The class driver again invokes SPI$RECEIVE_BYTES.

Once the class driver has determined exactly how many command bytes are
expected, it requests all remaining command bytes with this one call.

6. The class driver invokes SPI$SET_PHASE to set the SCSI bus phase to
DATA IN.

After the class driver has received all the command bytes and parsed the
command to identify it, the class driver sets the bus to the appropriate phase.
For instance, if the command is READ BUFFER, the class driver must set
the bus phase to DATA IN.

7. The class driver invokes SPI$SEND_BYTES to return exactly the number of
data bytes requested by the initiator.

8. The class driver invokes SPI$FINISH_COMMAND.

9. The class driver returns from its callback routine.

Once the data transfer has completed, the I/O operation is done from the
class driver’s perspective. The class driver completes the I/O operation by
returning status and the COMMAND COMPLETE message to the device.

17.10 Tagged Command Queuing I/O for SCSI-2 Devices
OpenVMS supports the tagged command queuing architecture of the SCSI-2
standard and provides an extended OpenVMS SCSI port interface (SPI$) for
SCSI-2 devices interfaced to an NCR 53C94 controller. Tagged command queuing
allows the class driver to pass multiple queued I/O requests directly to the port
driver without waiting for any one I/O to complete. The port driver then sends

17–27

SCSI Class Driver Support
17.10 Tagged Command Queuing I/O for SCSI-2 Devices

each I/O request directly to the target device, where the device queues the request
on its internal command device queue. (See Figure 17–5.)

The port-queue architecture increases I/O delivery to an internal SCSI-2 device
queue allowing the device to optimize its operation. A device can improve
performance by optimizing the operation of a set of I/O requests received against
the known hardware capabilities (dynamic positioning and latency schedules,
and spindle configuration). Also, any new pending I/O in the device queue begins
immediately upon completion of the current I/O without waiting for the I/O status
to be returned to the class driver.

17.10.1 SCSI-2 Driver Design Considerations
The SCSI class driver allocates and builds a SCSI class driver request packet
(SCDRP) for each I/O request, passing the address to the port driver. The
SCDRP contains the addresses of the unit control block (UCB), SCSI connection
descriptor table (SCDT), I/O request packet (IRP), and critical IRP data. Once
the port driver queues the I/O, the class driver thread is suspended. The port
driver executes the I/O completion sequence. Figure 17–5 illustrates the queues
and data structures in the tagged command queuing class/port architecture.

As shown in Figure 17–5, the class driver utilizes the existing UCB busy queue
(UCB$L_IOQFL) for some stalling situations. The port driver manages I/O
requests using two queues:

• Incoming port queue

• In-device port queue

The incoming port queue holds I/O requests received from the class driver. I/O
requests from the incoming queue are then sent to the device via the SCSI bus
and are also moved to the in-device port queue to track pending I/O in the
device. In addition, SCSI-2 devices have their own device queue. Note that when
the device reports a queue full status, some incoming requests will be stalled in
the incoming port queue.

17–28

SCSI Class Driver Support
17.10 Tagged Command Queuing I/O for SCSI-2 Devices

Figure 17–5 Class/Port Tagged Command Queuing Model

$QIO

UCB

UCB$L_IOQFL

IRP UCB Busy Queue

STARTIO

Class Driver Responsibility

Port Driver Responsibility

QueueSPDT

SCDT
SCDRP

ZK−6513A−GE

In−Device
Port Queue

Incoming
Port Queue

SCSI−2
Device

STARTIO

With tagged command queuing, the port driver handles events such as a full
device queue. The port driver must requeue the overflow of requests in the
incoming port queue until the device is ready to receive more commands. When
the device becomes ready, the port driver sends the next command in the
incoming queue to the device.

17–29

SCSI Class Driver Support
17.10 Tagged Command Queuing I/O for SCSI-2 Devices

To support the $CANCEL system service, your class driver must have a cancel
I/O entry point and be able to account for all outstanding I/O. Outstanding I/O
can be located in the following:

• Port driver queues and the device queue

• Resource wait queue

• UCB$L_IOQFL busy queue

The port driver must ensure that all threads in a resource wait state are returned
in an error condition (but not necessarily in the order received).

Since SCSI-1 level devices may not handle the ABORT message properly, your
existing SCSI-1 type port drivers may not issue the ABORT message. However,
most SCSI-2 devices conform to the SCSI-2 specification. Therefore, port drivers
should implement the ABORT mechanism to SCSI-2 devices.

17.10.2 Using the UCB$M_BSY Bit in a $QIO
When a $QIO system service posts a new I/O, the $QIO sets the UCB$M_BSY
(busy) bit. The class driver STARTIO routine clears this bit for I/O requests that
it queues to the port driver. If a $QIO posts another I/O before the queued I/O
completes, the $QIO again sets the busy bit and the class driver subsequently
clears it again. Clearing the busy bit in STARTIO bypasses the system wait
cycle for I/O completion. This sequence can continue until a condition occurs that
causes the class driver to leave the busy bit set (for example, error recovery in
progress or mount verification). In such cases, a $QIO will queue the new I/O to
the UCB busy queue (pointer is UCB$L_IOQFL) as in the standard OpenVMS
driver sequence.

As I/O completes, the port driver resumes the appropriate class driver thread to
complete the I/O to the user process. At I/O post processing time, the class driver
checks for I/O on the UCB busy queue using UCB$L_IOQFL. (See Figure 17–5.)
If this list is not empty, the class driver initiates the next I/O on the list to the
STARTIO routine. The STARTIO routine may then post the I/O to the port
driver. If STARTIO clears the busy bit, the class driver continues to process the
UCB busy queue until the list is empty or it encounters a request that does not
clear the busy bit.

17.10.3 Mixing Queued and Non-Queued I/O Requests
Specifically, the port driver must support the SCSI-2 mechanism and protocol
queuing requests to the device when required. Additionally, the class driver must
also detect if a device is a SCSI-1 or a SCSI-2 command queuing device and post
I/O requests to the port driver as appropriate.

Because the infinite I/O queue is in the SCSI-2 port layer, the class driver sends
all I/O requests to the port driver, whether the I/Os can be queued in the device
or not. A SCSI port interface (SPI) routine (SPI$QUEUE_COMMAND) for
queuing an I/O request to the port driver allows the class driver to specify to the
port driver the queuing characteristics (SCDRP$W_QUEUE_CHAR) of the I/O
request. The following are the queuing characteristics:

• Ordered queuing

• Unordered queuing

• Head of port queue

• Non-queued I/O

17–30

SCSI Class Driver Support
17.10 Tagged Command Queuing I/O for SCSI-2 Devices

• Error recovery

Ordered queuing makes an I/O request a queue barrier. All requests sent
before the barrier request are completed first. Next, the barrier request is
completed. Then, all requests received after the barrier request command are
completed.

Unordered queuing allows the device to reorder execution of the requests
in any way desired (as defined in the ANSI SCSI-2 specification). Unordered
requests are not necessarily completed in the order in which they are posted by
the class driver.

Head of port queue requests are placed in the incoming port queue in normal
order of occurrence, however; when the I/O is received by the device, the device
queues the request before requests currently on the device queue. The port
translates the queue characteristics into the appropriate SCSI-2 tag messages to
convey the class driver’s intentions on queue management.

Non-queued I/O requests are treated as defined in the SCSI-1 specification.
These requests represent a special barrier on the incoming port queue in that the
port waits for all commands currently on the port queue and those in the device
queue to complete before sending the non-queued I/O to the device. The port then
waits for the non-queued request to complete in the device before sending any
other I/O to the device. New I/O requests received from the class driver, while a
non-queued request is outstanding in the device, are queued to the incoming port
queue.

Error recovery requests are used in error recovery. These are special requests
that the class driver may issue while the incoming port queue is frozen. The port
must allow these requests to pass to the device, bypassing all port driver queuing
mechanisms. See Section 17.10.6 for more information about recovering queues
from errors.

17.10.4 SPI Interface for SCSI-2 Devices
The SCSI-2 port interface (SPI) consists of a group of routines within the port
driver that queue requests and manage the queue connection between a SCSI-2
port driver and a SCSI-2 device.

When a connection must be established, a SCSI-2 command transmitted, or
any data transferred, a SCSI-2 class driver calls the appropriate routine
within the port driver by invoking one of series of macros, defined in
SYS$LIBRARY:LIB.MLB. Each macro corresponds to a vector in the SCSI
port decriptor table (SPDT) that supplies the address of the port routine that
performs the applicable function. Table 17–10 lists the SCSI-2 SPI macros and
their functions:

Table 17–10 SCSI-2 Port Interface (SPI) Macros

Macro Function

SPI$QUEUE_COMMAND Initiates a new I/O to the port driver for queued SCSI-2
command tagged requests (analogous to the SPI$SEND_
COMMAND)

(continued on next page)

17–31

SCSI Class Driver Support
17.10 Tagged Command Queuing I/O for SCSI-2 Devices

Table 17–10 (Cont.) SCSI-2 Port Interface (SPI) Macros

Macro Function

SPI$RELEASE_QUEUE Clears the frozen state of the port queues allowing queue
processing to resume and new I/O to be processed

17.10.5 Connection Characteristics for SCSI-2 Devices
The port driver recognizes queuing support in a particular device using the SPI
connection characteristic set up by the class driver. If a class driver attempts
to issue a queued command to a device not recognized as supporting command
queuing, the port converts the queued request to a non-queued request. So that
queuing for a particular device can easily be enabled or disabled by changing the
connection characteristic; this request must not be treated as an error condition.

Connection characteristics are established by the SPI$GET_CONNECTION_
CHAR and SPI$SET_CONNECTION_CHAR macro calls as described in the
OpenVMS VAX Device Support Reference Manual. To support the tagged
command queuing mechanism, characteristics are implemented in longword
#12 at the end of the get and set connection characteristic data block (buffer) of
the these macro routines.

The SCSI-2 connection characteristics (bits 0–1) are as follows:

SCDT$V_SCSI_2 SCSI-2 conformant device (bit 0)

SCDT$V_CMDQ Command queuing supported by device (bit 1)

The SCDT$V_SCSI_2 characteristic bit is set when the class driver detects
that a device is a SCSI-2 device type. A SCSI-2 device conveys its type to the
class driver in the standard INQUIRY data. The SCSI_2 bit is not required
for command queuing, but is provided as an implementation convenience. Port
drivers can use the SCSI_2 bit or may rely on the occurrence of SCSI-2 behavior
or features to sense and perform any SCSI-2 type operations. For example, not
all SCSI-1 or CCS level devices properly handle the ABORT message as most
SCSI-2 devices do.

The SCDT$V_CMDQ characteristic bit is set when the class driver detects
that a device supports command queuing. This information is conveyed by the
device using the CMDQ bit in the INQUIRY data. A class driver may also reset
this characteristic at any time to disable queuing by the port driver. The port
driver treats any queued request to a device that does not have the CMDQ
characteristic as a non-queued request. (See Section 17.10.3.) If the port driver
does not support command queuing (SPDT$M_CMDQ bit in the port capability
mask), the class driver must not set the CMDQ characteristic.

17.10.6 Recovering Queues from Errors
The class driver must issue the appropriate MODE_SENSE/SELECT commands
to clear the QErr bit in the SCSI Mode Parameter Page 0A16. The QErr bit
specifies whether the device will flush its internal command queue or resume it
after a contingent allegiance condition is cleared. Clearing the QErr bit stalls
the commands in the device queue until the contingent allegiance is cleared.
Issuing MODE_SENSE/SELECT commands is a class driver function and is,
therefore, not performed by the port as a result of SPI$SET_CONNECTION_
CHAR.

17–32

SCSI Class Driver Support
17.10 Tagged Command Queuing I/O for SCSI-2 Devices

Caution Unpredictable Results

The consequences of setting QErr to 1 are unpredictable and may yield
undesirable results.

When a command terminates in the device with a CHECK_CONDITION SCSI
state, the device enters a contingent allegiance condition (defined by SCSI-
2 specification). At this point, both the device queue and the incoming port
queue are frozen. The port driver sets the SCDT$V_QUEUE_FROZEN bit.
For information about the SCDT data structure, see the OpenVMS VAX Device
Support Reference Manual.

The class driver issues a REQUEST_SENSE command with the ERROR_
RECOVERY queue characteristic specified. Here, ERROR_RECOVERY signals
the port driver that this command should be allowed to pass to the device while
the incoming port queue is still frozen. The port issues the ERROR_RECOVERY
request as an untagged command. Any new I/O requests issued to the port while
the queue is frozen, which does not have the ERROR_RECOVERY characteristic,
are returned with failure status.

Note that the REQUEST_SENSE command will unfreeze the device queue and
allow the queue to continue processing commands. The incoming port queue,
however, remains frozen until the class driver explicitly releases the queue.

Once the class driver issues a REQUEST_SENSE command, it must call
SPI$RELEASE_QUEUE to inform the port driver that it can continue to process
the incoming port queue. Once the REQUEST_SENSE command is sent, the
device continues to process commands and may complete commands to the port
before the class driver calls SPI$RELEASE_QUEUE. This is not an error as
SPI$RELEASE_QUEUE is provided to prevent the port from issuing a new
command to the device before the class driver sends the REQUEST_SENSE
command, thereby inadvertently clearing the contingent allegiance condition.

For I/O returned while the queue is frozen, a failure status of SS$_SUSPENDED
is returned.

17.10.7 I/O Flow Through the Queues
This section summarizes the I/O flow through the queues of a SCSI-2 class/port
driver shown in Figure 17–5. The sequence of I/O flow follows:

1. A $QIO starts an I/O with a SCSI-2 class/port driver. The $QIO checks the
busy bit (UCB$M_BSY). If this bit is set, the I/O is queued to the UCB busy
queue and the $QIO returns. If the busy bit is clear, $QIO posts the I/O to
the STARTIO routine which sends the I/O to the port driver. The port driver
inserts this I/O on the incoming port queue.

2. The port driver then removes this I/O from the incoming port queue and
queues it to the in-device queue as it sends the I/O to the device.

3. Later, the I/O completes in the device and is removed from the in-device
queue and returned to the class driver.

4. The class driver, at this point, may be processing other I/O such as removing
an I/O previously queued in the UCB busy queue by posting it to the
STARTIO and port driver. The originally completed I/O continues through
post processing and is returned to the $QIO to be completed to the user
process.

17–33

SCSI Class Driver Support
17.10 Tagged Command Queuing I/O for SCSI-2 Devices

If an error occurs, I/O flow proceeds as follows:

1. I/O on the in-device queue resumes once the REQUEST_SENSE command is
sent.

2. I/O on the incoming port queue suspends until the class driver issues the
SPI$RELEASE_QUEUE call.

3. Any new I/O received before SPI$RELEASE_QUEUE is called is returned
with a failure status.

17.11 Configuring a SCSI Third-Party Device
The System Generation utility (SYSGEN) loads a third-party SCSI class driver
into system virtual memory, creates additional data structures for the device
unit, and calls the driver’s controller initialization routine and unit initialization
routine. SYSGEN automatically loads and autoconfigures the SCSI port driver
at system initialization. As part of autoconfiguration, SYSGEN polls each device
on each SCSI bus. If the device identifies itself as a direct-access device, a
direct-access CD–ROM device, or a flexible disk device, SYSGEN automatically
loads the system disk class driver (DKDRIVER); if the device identifies itself as
a sequential-access device, SYSGEN automatically loads the system tape class
driver (MKDRIVER). If the autoconfiguration facility does not recognize the type
of the SCSI device, it loads no driver.

Consequently, third-party SCSI devices must be configured and their drivers
loaded by an explicit SYSGEN command CONNECT, as follows:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT mmpd0u /NOADAPTER

In this command, mm represents the device mnemonic (for instance, SK; p
represents the SCSI port ID (for instance, the controller ID A or B); d represents
the SCSI device ID (a digit from 0 to 7); 0 signifies the digit zero; and u represents
the SCSI logical unit number (LUN) (a digit from 0 to 7).

17.11.1 Disabling the Autoconfiguration of a SCSI Device
Note that, in special cases, you may need to prevent SYSGEN’s autoconfiguration
facility from loading the system disk or tape class driver for a device with a
specific port ID and device ID. This would be the case if a third-party device
should identify itself as either a random-access or sequential-access device and
were to be supported by the generic SCSI class driver.

To disable the loading of a system disk or tape driver for any given device ID,
the operating system temporarily defines the special SYSGEN parameter SCSI_
NOAUTO.

The SCSI_NOAUTO system parameter, as shown in Figure 17–6, stores a bit
mask of 32 bits in which the low-order byte corresponds to the first SCSI bus
(PKA0), the second byte corresponds to the second SCSI bus (PKB0), and so on.
For each SCSI bus, setting the low-order bit inhibits automatic configuration
of the device with SCSI device ID 0; setting the second low-order bit inhibits
automatic configuration of the device with SCSI device ID 1, and so forth. For
instance, the value 0000200016 would prevent the device with SCSI ID 5 on the
bus identified by SCSI port ID B from being configured. By default, all of the bits
in the mask are cleared, allowing all devices to be configured.

17–34

SCSI Class Driver Support
17.11 Configuring a SCSI Third-Party Device

Figure 17–6 SCSI_NOAUTO System Parameter

7 0

D

 SCSI Device ID

ZK−1371A−GE

SCSI Port IDC B A

777 000

Note

The VMSD2 system parameter is now a special parameter reserved to
Digital.

17.12 Debugging a SCSI Class Driver
Device drivers execute in kernel mode at elevated interrupt priority levels.
Problems in device driver code often manifest themselves in system failures and
system hangs. Chapter 13 describes some general methods for debugging device
drivers that can also be used to debug a third-party SCSI class driver. While
using the XDelta debugger utility (XDELTA) to investigate problems in a class
driver, however, you should set breakpoints such that you can easily step over
SCSI port driver code.

As discussed in Section 17.6.2, Digital strongly recommends that a third-party
SCSI class driver respond to port and SCSI status return values, and that it
incorporate an error-logging routine that records events significant to the device.
Class driver error log entries, as well as system port driver error log entries, can
provide clues that are helpful in resolving problems (see Section 17.12.2) that
may occur during the development of a third-party SCSI class driver.

Among the problems that commonly occur in early versions of SCSI class drivers
are the following:

• The class driver has failed to deallocate a port resource, such as a command
buffer or port map registers. You should ensure that the class driver invokes
the SPI$DEALLOCATE_COMMAND_BUFFER and the SPI$UNMAP_
BUFFER macros before completing a data transfer (that is, before invoking
the REQCOM macro).

• The class driver has sent a SCSI command to a device, but the device does
not support the command. Typically, the device times out or the port driver
logs an entry for a bad phase transition event.

• The class driver has sent a misformatted SCSI command packet to a device.
This problem also results in a device timeout or phase error.

Hardware problems on a SCSI bus can cause a SCSI command to fail, regardless
of whether the device to which the command was directed is at fault. When
testing and debugging a class driver for a new device on a SCSI bus, you should
ensure that bus traffic from busy or faulty devices elsewhere on a SCSI bus does
not interfere with the device’s operation. Isolate the device by placing it on a
SCSI bus reserved for it and the processor alone or, if that is not possible, by
placing it on the SCSI bus on which the system disk does not reside.

17–35

SCSI Class Driver Support
17.12 Debugging a SCSI Class Driver

17.12.1 Selecting a SCSI Bus Analyzer
Finally, in debugging a SCSI class driver, you may find a SCSI bus analyzer to be
a valuable aid.

A SCSI bus analyzer is a passive device that monitors all traffic on the SCSI bus
to which it is connected, and displays in a useful format the data it has collected.
Some analyzers can be used in an active mode to generate packets on the bus;
however, this is generally more useful to developers of SCSI target devices than
to writers of class drivers.

A SCSI bus analyzer is commonly used to verify that the commands the class
driver generates (or should generate) are actually being transmitted across
the SCSI bus. The most useful analyzers can interpret the SCSI phase lines
and display the phase along with the data sent during that phase. This helps
the writer of a class driver pinpoint the location of a possible coding problem.
Another common use of an analyzer is to capture infrequent errors such as bus
hangs or a target dropping off the bus.

Some features to look for in an analyzer are as follows:

• Ability to interpret the bus phase lines and display the data according to the
phase

• A ‘‘timing mode’’ that displays bus signals in the form of a timing diagram

• Ability to trigger the analyzer on a specific event, such as a specific data
pattern in a specific phase or a bus reset

• Ability to dump the contents of the display to a printer

17.12.2 Interpreting SCSI Error Log Entries
As dictated by the SCSI class/port driver architecture, a SCSI port driver
logs port-specific events in a defined form. Port driver error log entries can
provide clues that are helpful in resolving problems that may occur during the
development of a third-party SCSI class driver.

The SCSI class/port driver architecture also specifies a form for class driver error
log entries. Because of the value of the error log in debugging, Digital highly
recommends that a third-party SCSI class driver incorporate an error-logging
routine that records events significant to the device. (See Section 17.6.2 for
a discussion of the procedures by which class drivers interpret status, format
events, and register error log entries.)

You can use the Error Log utility, as described in the OpenVMS System
Management Utilities Reference Manual, to list and format SCSI port and
class driver error log entries.

17.12.2.1 SCSI Port Driver Error Log Entries
The SCSI port driver is responsible for all low-level activity associated with
sending commands to a target SCSI device. The standard format of an error log
entry generated by a port driver has two parts: a port-common section and a
port-specific section. All system port drivers provide the same type of information
in the port-common section of the entry. The information a port driver supplies in
the port-specific section depends upon the SCSI port hardware that is in use.

Table 17–11 describes the contents of a formatted port driver error log entry. A
reference number in the table column ‘‘Field’’ associates each table item with an
entry in the representative error logs presented in Examples 17–1 and 17–2.

17–36

SCSI Class Driver Support
17.12 Debugging a SCSI Class Driver

When inspecting a SCSI port driver error log entry, first examine the error type
and error subtype. These fields indicate the nature of the event that occurred.
Also check the SCSI ID field to determine the device for which the event has been
reported. Although the SCSI ID may not always identify the device responsible
for the event, it may help you interpret the significance of the information in this
and other error log entries.

Next, examine the SCSI CMD field to determine which SCSI command was
current at the time of the logged event. The phase queue entry lists those
SCSI bus phases that have been successfully completed during execution of this
command. You can derive the current phase of the SCSI bus by referring to
the description of the phase signals defined for the command in the ANSI SCSI
specification. In addition, the port-specific section of the error log entry of certain
system port drivers lists the currently asserted bus lines.

Finally, the sets of counters that appear in a port driver error log entry can help
you discern patterns of activity on the SCSI bus. For instance, a large number
of parity errors are a symptom of a bus termination problem or other hardware
problem.

17–37

SCSI Class Driver Support
17.12 Debugging a SCSI Class Driver

Table 17–11 Key to Port Driver Error Log Entries

Field1 Description

General Event Information

Error type 1
Error subtype 2

Error type and subtype. The following types and subtypes are defined.

Error2 Definition Description

01 BUS_HUNG SCSI bus was continuously busy during
an arbitration attempt.

02 ARB_FAIL Arbitration of SCSI bus failed due to
activity of higher priority devices.

03 SEL_FAIL Selection failed.

04 TIMEOUT Timeout occurred.

05 PARITY_ERROR Parity error detected.

06 PHASE_ERROR SCSI bus phase error. A phase error
results from a missing SCSI bus phase, a
phase that is entered more than once, or
a bad phase sequence.

Subtype2 Description

01 Missing phase error

02 Bad phase transition

03 Timeout waiting for phase
interrupt

04 Unexpected phase change
during DATA IN; error during
REQ-ACK

05 Unexpected phase change
during DATA OUT; error
during REQ-ACK

06 Phase change timeout during
DATA IN

07 Phase change timeout during
DATA OUT

08 Timeout waiting for phase
change

09 Phase change timeout during
COMMAND OUT

10 Bus freed during command
phase

1Callout numbers refer to Examples 17–1 and 17–2.
2Error type and subtype values are rendered in hexadecimal format.

(continued on next page)

17–38

SCSI Class Driver Support
17.12 Debugging a SCSI Class Driver

Table 17–11 (Cont.) Key to Port Driver Error Log Entries

Field1 Description

General Event Information

07 BUS_RESET Bus reset detected.

Subtype2 Description

01 Reset occurred while no I/O
operation was active

08 UNEXPECTED_
INTERRUPT

Unexpected interrupt received.

09 BUS_RESET_
ISSUED

Bus reset initiated.

10 RESEL_ERR Error following a device disconnect.

Subtype2 Description

01 Bad parity during reselect

02 No target ID during reselect

03 Multiple target IDs during
reconnect

04 No connection to this target

05 Failed while no reselect was
pending

08 SEL failed to clear during
reselect

09 REQ failed to set during
reselect

10 Bad RESEL message

11 CTL_ERR Error detected by controller.

12 BUS_ERR Controller detected a SCSI bus protocol
error.

13 ILLEGAL_MSG Illegal message received.

14–19 Reserved.

SCSI ID 3 SCSI ID of the device to which the current command is being sent. Valid
SCSI IDs range from 0 to 7. A value of FF16 in this entry indicates that
the SCSI ID is unknown or not relevant (as in the case of a spurious bus
reset).

SCSI CMD 4 Current SCSI command.

SCSI MSG 5 Current SCSI message.

SCSI STATUS 6 Current SCSI status. A status value of FF16 indicates that the SCSI bus
has not yet returned status.

Port Error Counters3

1Callout numbers refer to Examples 17–1 and 17–2.
2Error type and subtype values are rendered in hexadecimal format.
3The port error counters record errors that cannot be attributed to a specific device on the SCSI bus.

(continued on next page)

17–39

SCSI Class Driver Support
17.12 Debugging a SCSI Class Driver

Table 17–11 (Cont.) Key to Port Driver Error Log Entries

Field1 Description

Port Error Counters3

Bus busy count 7 Number of times the port driver has attempted to arbitrate for the SCSI
bus and has found the bus hung for an extended period of time. A value in
this field indicates either that the bus is extremely busy or a device on the
bus is hung.

Unsolicited reset count 8 Number of times the port driver has received a reset interrupt that is not
due to its own pulling of the bus reset line. This could be due to noise on
the reset line or to a device (or another initiator) pulling the bus reset line.

Unsolicited interrupt
count 9

Number of times the port driver has received an unsolicited interrupt.

Connection Error Counters4

Arbitration fail count 1 0 Number of times the port driver has attempted to arbitrate for the SCSI
bus and has failed. Arbitration is attempted only when a bus free condition
is detected. Thus, this counter reflects the number of times a low priority
device loses arbitration to a higher priority device.

Selection fail count 1 1 Number of times the port driver has attempted to select a target device
and has failed. This could happen just after a target device has been reset,
if it has been powered off or disconnected from the bus, or if it is hung in
such a way that it is not also hanging the bus.

Parity error count 1 2 Number of times the port driver has detected a parity error while sending
a command to a target SCSI device.

Phase error count 1 3 Number of times the port driver has detected a phase error while sending
a command to a target SCSI device.

Bus reset count 1 4 Number of times the port driver has reset the bus because it was unable to
send a command to a target SCSI device. The port driver resets the bus for
a number of reasons: for instance when it detects a bus hang or a phase
error.

Bus error count 1 5 Number of times the SCSI controller has detected an error on the SCSI
bus. This field is not used by SCSI controllers on MicroVAX/VAXstation
3100 systems.

Controller error count 1 6 Number of times the SCSI controller has reported an internal error.
This field is not used by SCSI controllers on MicroVAX/VAXstation 3100
systems.

Retry Counters

Arbitration retry count 1 7 Number of arbitration retries attempted. A value of –1 indicates that the
counter contains no valid data.

Selection retry counter 1 8 Number of selection retries attempted. A value of –1 indicates that the
counter contains no valid data.

Bus busy retry counter 1 9 Number of bus busy retries attempted. A value of –1 indicates that the
counter contains no valid data.

1Callout numbers refer to Examples 17–1 and 17–2.
3The port error counters record errors that cannot be attributed to a specific device on the SCSI bus.
4The connection error counters record errors that can be attributed to a specific device on the SCSI bus. The SCSI ID
field specifies the devices to which the command was being sent when the error occurred.

(continued on next page)

17–40

SCSI Class Driver Support
17.12 Debugging a SCSI Class Driver

Table 17–11 (Cont.) Key to Port Driver Error Log Entries

Field1 Description

Phase Queue

Element phase queue 2 0 Lists the SCSI phases that have been entered and completed during the
execution of the current command. The digit preceding the list indicates
the number of phases that have been completed.

Port dependent data 2 1 Contents of port controller registers. This section of the error log entry
contains information specific to the SCSI port controller employed by the
system.

1Callout numbers refer to Examples 17–1 and 17–2.

17.12.2.2 SCSI Class Driver Error Log Entries
A SCSI class driver logs device-specific events in the manner described in
Section 17.6.2. Although all class drivers use a common extension to the standard
error message buffer when logging errors, the types of events detected and
reported by class drivers are specific to the devices they control.

Table 17–12 describes the contents of a formatted class driver error log entry.
Each item in the ‘‘Field’’ column of this table is associated with a field in the error
log contained in Example 17–3.

Table 17–12 Key to Class Driver Error Log Entries

Field1 Description

Hardware revision 2 2 Hardware revision information, returned by the SCSI INQUIRY command.

Error type 2 3 Type of error detected by the class driver. A SCSI class driver defines device-
specific error types according to the nature of the device it services. The
following error values are interpreted by the Error Log utility:

Error2 Name Description

01 CON_ERR Attempt to connect to the port driver
failed

02 MAP_ERR Attempt to map a user buffer failed

03 SND_ERR Attempt to send a SCSI command failed

04 INV_INQ Invalid inquiry data was received

05 EXT_SNS_DAT Extended sense data was returned from
the SCSI device

06 INV_MOD_SNS Invalid mode sense data returned from
the SCSI device

07 REASSIGN_BLK Reassign block

08 DIAG_DATA Invalid diagnostic data returned to the
SCSI tape class driver

SCSI ID 2 4 SCSI ID of the device to which the current command was sent. The SCSI ID
is an integer between 0 and 7.

1Callout numbers refer to Example 17–3.
2Error type values are rendered in hexadecimal format.

(continued on next page)

17–41

SCSI Class Driver Support
17.12 Debugging a SCSI Class Driver

Table 17–12 (Cont.) Key to Class Driver Error Log Entries

Field1 Description

SCSI LUN 2 5 SCSI logical unit number of the device to which the current command was
sent. The SCSI LUN is an integer between 0 and 7.

SCSI SUBLUN 2 6 Not used. This field always contains 0.

Port status 2 7 Current port status. A value of –1 indicates that there is no valid data in
this field.

SCSI CMD 2 8 Current SCSI command.

SCSI STS 2 9 Current SCSI status. A value of –1 indicates that there is no valid data in
this field.

Additional data 3 0 Additional data, preceded by a byte count of the data. A class driver defines
what additional data would be meaningful in an error log entry based on
the type of device it services. Additional data is displayed by the Error Log
utility as untranslated longwords.

Note that the Error Log utility can interpret extended sense data values
when the extended sense data received error type is reported in the log
and the driver’s error-logging routine places the sense data in this field
of its error message buffer. Thus, the error log entry that appears in
Example 17–3 interprets the logged sense data as a unit attention message
signifying a power on or reset condition.

1Callout numbers refer to Example 17–3.

17.13 Resolving SCSI Class Driver Problems Using Error Logs
Taken as a unit, Examples 17–1 through 17–3 illustrate a standard event
sequence that may occur during a SCSI bus transaction. This sequence involves
the following actions:

1. The port detects an abnormal event, such as a timeout. (Example 17–1)

2. The port driver resets the SCSI bus. (Example 17–2)

3. A class driver receives extended sense data from the device informing it of the
reset event. (Example 17–3)

These events typically occur for one of the following reasons:

• The class driver has sent a SCSI command to a device that the device does
not understand or does not support.

• The class driver has sent a misformatted SCSI command packet to a device.

• The class driver has failed to deallocate a port resource, such as a command
buffer or port map registers.

• A hardware failure has occurred on the SCSI bus.

Callout numbers shown in Example 17–1 refer to Table 17–11.

17–42

SCSI Class Driver Support
17.13 Resolving SCSI Class Driver Problems Using Error Logs

Example 17–1 SCSI Bus Phase Error Port Driver Error Log Entry

V A X / V M S SYSTEM ERROR REPORT COMPILED 13-SEP-1993 15:05
PAGE 1.

******************************* ENTRY 208. *******************************
ERROR SEQUENCE 43028. LOGGED ON: SID 0A000005
DATE/TIME 13-SEP-1993 15:03:35.08 SYS_TYPE 04010102
SCS NODE: VAX/VMS X5.2-1C

DEVICE ATTENTION KA420 CPU REV# 6.

SCSI PORT SUB-SYSTEM, UNIT _PKA0:

ERROR TYPE 06
SCSI BUS PHASE ERROR1
SUB-ERROR TYPE = 02(X)2

SCSI ID 02
SCSI ID = 2.3

SCSI CMD CA810208
0019

READ4
SCSI MSG 00

COMMAND COMPLETE5
SCSI STATUS FF

NO STATUS RECEIVED6
PORT ERROR CNT 00000000

00000000
00000000

BUS BUSY CNT = 0.7
UNSOL RESET CNT = 0.8
UNSOL INTRPT CNT = 0.9

CONN ERROR CNT 00000000
00000000
00000000
00000001
00000000
00000000
00000000

ARB FAIL CNT = 0.1 0
SEL FAIL CNT = 0.1 1
PARITY ERR CNT = 0.1 2
PHASE ERR CNT = 1.1 3
BUS RESET CNT = 0.1 4
BUS ERROR CNT = 0.1 5
CONTROLLER ERROR CNT = 0.1 6

SCSI RETRY CNT 00000000
0000

ARB RETRY CNT = 0.1 7
SEL RETRY CNT = 0.1 8
BUSY RETRY CNT = 0.1 9

PHASE QUEUE 0908
2. ELEMENT PHASE QUEUE2 0
_ARBITRATION
_SELECTION

PORT DEPENDENT DATA2 1

CNTLR INI CMD 02
ATN ASSERTED

CNTLR MODE 20
PARITY CHECK ENABLED

(continued on next page)

17–43

SCSI Class Driver Support
17.13 Resolving SCSI Class Driver Problems Using Error Logs

Example 17–1 (Cont.) SCSI Bus Phase Error Port Driver Error Log Entry

CNTLR TAR CMD 00
CNTLR CURR STS 78

C/D ASSERTED
MSG ASSERTED
REQ ASSERTED
BUSY ASSERTED

CNTLR STATUS 02
ATN ASSERTED

DMA CNT 00000000
DMA ADDRESS 00004200
DMA DIR 01

Callout numbers refer to Table 17–11.

Example 17–2 SCSI Bus Reset Port Driver Error Log Entry

READ OPERATION
******************************* ENTRY 209. *******************************
ERROR SEQUENCE 43029. LOGGED ON: SID 0A000005
DATE/TIME 13-SEP-1993 15:03:35.08 SYS_TYPE 04010102
SCS NODE: VAX/VMS X5.2-1C

DEVICE ATTENTION KA420 CPU REV# 6.

SCSI PORT SUB-SYSTEM, UNIT _PKA0:

ERROR TYPE 09
BUS RESET INITIATED1
SUB-ERROR TYPE = 00(X)2

SCSI ID 02
SCSI ID = 2.3

SCSI CMD CA810208
0019

READ4
SCSI MSG 00

COMMAND COMPLETE5
SCSI STATUS FF

NO STATUS RECEIVED6
PORT ERROR CNT 00000000

00000000
00000001

BUS BUSY CNT = 0.7
UNSOL RESET CNT = 0.8
UNSOL INTRPT CNT = 1.9

CONN ERROR CNT 00000000
00000000
00000000
00000001
00000001
00000000
00000000

ARB FAIL CNT = 0.1 0
SEL FAIL CNT = 0.1 1
PARITY ERR CNT = 0.1 2
PHASE ERR CNT = 1.1 3
BUS RESET CNT = 1.1 4
BUS ERROR CNT = 0.1 5
CONTROLLER ERROR CNT = 0.1 6

SCSI RETRY CNT 00000000
0000

ARB RETRY CNT = 0.1 7
SEL RETRY CNT = 0.1 8
BUSY RETRY CNT = 0.1 9

(continued on next page)

17–44

SCSI Class Driver Support
17.13 Resolving SCSI Class Driver Problems Using Error Logs

Example 17–2 (Cont.) SCSI Bus Reset Port Driver Error Log Entry

PHASE QUEUE 0908
2. ELEMENT PHASE QUEUE2 0
_ARBITRATION
_SELECTION

PORT DEPENDENT DATA2 1

CNTLR INI CMD 00
CNTLR MODE 00
CNTLR TAR CMD 00
CNTLR CURR STS 00
CNTLR STATUS 08

PHASE MATCH
DMA CNT 00000000
DMA ADDRESS 00004200
DMA DIR 01

READ OPERATION

Callout numbers refer to Table 17–12.

Example 17–3 SCSI Bus Reset Class Driver Error Log Entry

******************************* ENTRY 210. *******************************
ERROR SEQUENCE 43030. LOGGED ON: SID 0A000005
DATE/TIME 13-SEP-1993 15:03:35.49 SYS_TYPE 04010102
SCS NODE: VAX/VMS X5.2-1C

DEVICE ERROR KA420 CPU REV# 6.

RZ23 SUB-SYSTEM, UNIT _DKA200:

HW REVISION 38313630
HW REVISION = 06182 2

ERROR TYPE 05
EXTENDED SENSE DATA RECEIVED2 3

SCSI ID 02
SCSI ID = 2.2 4

SCSI LUN 00
SCSI LUN = 0.2 5

SCSI SUBLUN 00
SCSI SUBLUN = 0.2 6

PORT STATUS 00000001
%SYSTEM-S-NORMAL, NORMAL SUCCESSFUL
COMPLETION2 7

SCSI CMD CA810208
0019

READ2 8
SCSI STATUS 02

CHECK CONDITION2 9

EXTENDED SENSE DATA3 0

EXTENDED SENSE 00060070
0C000000
00000000
00000029

0000
UNIT ATTENTION
POWER ON OR RESET OCCURRED

(continued on next page)

17–45

SCSI Class Driver Support
17.13 Resolving SCSI Class Driver Problems Using Error Logs

Example 17–3 (Cont.) SCSI Bus Reset Class Driver Error Log Entry

UCB$B_ERTCNT 00
0. RETRIES REMAINING

UCB$B_ERTMAX 00
0. RETRIES ALLOWABLE

ORB$L_OWNER 00010001
OWNER UIC [001,001]

UCB$L_CHAR 1C4D4008
DIRECTORY STRUCTURED
FILE ORIENTED
SHARABLE
AVAILABLE
MOUNTED
ERROR LOGGING
CAPABLE OF INPUT
CAPABLE OF OUTPUT
RANDOM ACCESS

UCB$W_STS 0010
ONLINE

UCB$L_OPCNT 0000104E
4174. QIO’S THIS UNIT

UCB$W_ERRCNT 0001
1. ERRORS THIS UNIT

IRP$W_BCNT 3200
TRANSFER SIZE 12800. BYTE(S)

IRP$W_BOFF 0000
TRANSFER PAGE ALIGNED

IRP$L_PID 0001000D
REQUESTOR "PID"

IRP$Q_IOSB 00000000
00000000 IOSB, 0. BYTE(S) TRANSFERRED

******************************* ENTRY 211. *******************************
ERROR SEQUENCE 43031. LOGGED ON: SID 0A000005
DATE/TIME 13-SEP-1993 15:04:51.53 SYS_TYPE 04010102
SCS NODE: VAX/VMS X5.2-1C

TIME STAMP KA420 CPU REV# 6.

17–46

18
Terminal Class and Port Drivers

This chapter describes details of the implementation of the system terminal
driver. The system terminal driver consists of two pieces: the terminal port
driver and the terminal class driver. These two pieces of code, when bound
together within the unit control block (UCB), form a single device-dependent
driver that implements the system terminal services.

TTDRIVER.EXE, the system terminal class driver, handles the device-
independent functions and tasks. For example, it contains code that enables
command line editing on many different types of terminals. The port drivers
manage those functions and tasks that depend on the device’s hardware
configuration. For example, the port driver for a particular type of terminal
controller performs the actual transmission and reception of characters to and
from that terminal controller. The port driver reserves all manipulation and
interpretation of those characters to the class driver. Because class driver code
supports the functions common to terminal devices, a terminal port driver can
contain only that code needed to control a specific interface.

There are several reasons why a new port driver may be required:

• To support a new terminal controller

• To implement a terminal server such as LAT11

• To provide a pseudoterminal

Both class drivers and port drivers adhere to the same rules as other device
drivers. They consist of the same routines and tables as standard drivers, and
reference the same data structures. However, because a class driver and its port
drivers must intercommunicate, they must employ a few additional structures
and routines not required for standard device drivers.

The structure of the system terminal driver illustrates one specific approach
to the class/port concept. The interface described in this chapter relates only
to TTDRIVER.EXE and its ports. Programmers of terminal port drivers must
adhere to the programming rules presented in this chapter.

Note that there are no supported methods for implementing the class/port design
in a non-Digital-supplied device driver. Moreover, the System Generation utility
(SYSGEN) provides no support for alternate class drivers and can only connect
port drivers to TTDRIVER.EXE.

The remainder of this chapter describes how the system terminal class and port
drivers are structured and how they interact. A full description of the functions
of the system terminal driver appears in the OpenVMS I/O User’s Reference
Manual.

18–1

Terminal Class and Port Drivers
18.1 Overview

18.1 Overview
The terminal class driver is the device-independent part of the system terminal
driver. It contains the driver’s function decision table (FDT) routines, start-I/O
routine, fork process routines, code that implements the features of the system
terminal services, and the class driver service routines.

The terminal port driver is the device-dependent piece of the system terminal
driver. It contains the driver prologue table (DPT); data structure initialization;
device, unit, and controller initialization routines; port service routines; interrupt
service routine; and any additional device-dependent code. Among the port
drivers included in the operating system are DZDRIVER for the DZ–32 and
DZ–11, YCDRIVER for the DMF–32 and DMZ–32, YFDRIVER for the DHU–11
and DHV–11, YIDRIVER for the DMB32, and YEDRIVER for the MicroVAX
2000/3100 and VAXstation 3100 built-in serial lines. (See the OpenVMS I/O
User’s Reference Manual for a complete list of supported terminal controllers.)

18.2 Data Structures
There are three major data structures that define the communication between
the port and the class drivers. These data structures are the UCB, the port
driver vector table and the class driver vector table. To reference these
structures, a driver must include an invocation of the $TTYDEFS macro
(from SYS$LIBRARY:LIB.MLB). The $TTYDEFS macro defines symbolic offsets
for the following structures:

• Unit control block (UCB)

• Terminal UCB extension

• Channel request block (CRB)

• Interrupt dispatch block (IDB)

• Port and class driver vector tables

• Read buffer

• Input stack

• Item list descriptor

• Type-ahead buffer

18.2.1 Terminal UCB
A terminal UCB, as depicted in Figure 18–1, contains four sections: the system
section (base UCB), the class driver required section, the port driver required
section, and the port extension region.

The system section of the terminal driver UCB contains the pieces of the UCB
that are present in all of the UCBs on the system.

The class driver required section of the UCB contains fields that are needed
by the class driver. These fields have names of the form UCB$x_TT_fieldname,
where x denotes the field size and fieldname is the name of the field.

18–2

Terminal Class and Port Drivers
18.2 Data Structures

Figure 18–1 UCB Structure for Terminal Class/Port Drivers

ZK−6540−GE

System
Region

Terminal Class
Driver Required

Region

Terminal Port
Driver Required

Region

Port Driver
Extension Region

The port driver required section of the UCB contains fields that both the class
and port driver must access. These fields have names of the form UCB$x_TP_
fieldname, where x denotes the field size and fieldname is the name of the field.
Although a port driver may not actually use all these fields, their presence is
required.

The terminal port extension region is defined by the terminal port driver. It can
be any length and contain any context that the port driver needs to perform its
duties.

The structures and contents of the UCB and terminal extensions are described in
the OpenVMS VAX Device Support Reference Manual.

18.2.2 Port Driver Vector Table
The port driver vector table, as depicted in Figure 18–2, is the data structure
that allows the terminal class driver to find the port service routines. The vector
table contains the address, relative to the beginning of the port driver, of each
port service routine. The port driver’s controller initialization routine invokes
the CLASS_CTRL_INIT macro, as described in Section 18.4.1.1, to relocate this
vector table.

The port driver vector table is contained within the port driver itself, usually
after the port driver’s DPT. The port driver must build its vector table using the
$VECINI, $VEC, and $VECEND macros, as described in Section 18.2.4. A field in
the UCB, UCB$L_TT_PORT, contains the address of the port driver vector table.

Port and class drivers refer to fields within the port driver vector table using the
symbolic offsets represented in Figure 18–2. To use these offsets, they include an
invocation of the macro $TTYDEFS (in SYS$LIBRARY:LIB.MLB).

18–3

Terminal Class and Port Drivers
18.2 Data Structures

Figure 18–2 Port Driver Vector Table

PORT_STARTIO 0

PORT_DISCONNECT 4

PORT_SET_LINE 8

PORT_DS_SET 12

PORT_XON 16

PORT_XOFF 20

PORT_STOP 24

Reserved 28

PORT_ABORT 32

PORT_RESUME 36

PORT_SET_MODEM 40

Reserved 44

PORT_MAINT 48

PORT_FORKRET 52

PORT_FDT 56

Reserved 60

Reserved 64

Reserved 68

PORT_CANCEL 72

18.2.3 Class Driver Vector Table
The class driver vector table, as depicted in Figure 18–3, contains the address,
relative to the beginning of the class driver, of each class service routine. The
list is terminated by a longword containing zeros that indicates to the relocation
routine where the list ends.

At driver load time, the relative offsets are relocated to actual virtual addresses.
The port driver’s controller initialization routine invokes the CLASS_CTRL_INIT
macro, as described in Section 18.4.1.1, to relocate this vector table. The system
terminal class driver is loaded by SYSINIT at boot time to allow the console
terminal port driver to run.

18–4

Terminal Class and Port Drivers
18.2 Data Structures

Figure 18–3 Class Driver Vector Table

CLASS_GETNXT 0

CLASS_PUTNXT 4

CLASS_SETUP_UCB 8

CLASS_DS_TRAN 12

CLASS_DDT 16

CLASS_READERROR 20

CLASS_DISCONNECT 24

CLASS_FORK 28

CLASS_POWERFAIL 32

CLASS_TABLES 36

The class driver vector table is contained within the class driver itself, usually
after the class driver’s DPT. The class driver builds its vector table using the
$VECINI, $VEC, and $VECEND macros, as described in Section 18.2.4. A field
in the UCB, UCB$L_TT_CLASS, contains the address of the class driver vector
table.

18.2.4 Vector Table Generation Macros
Port drivers use three system-supplied macros to build the port driver vector
table: $VECINI, $VEC, and $VECEND. Class drivers build the class driver
vector table using the same macros. To obtain the definitions for these macros,
a driver must invoke the $TTYMACS macro (in SYS$LIBRARY:LIB.MLB). This
section briefly discusses the functions of each of these macros. An example of
their use appears in Figure 18–4, and a full discussion of their syntax appears in
the macro chapter of the OpenVMS VAX Device Support Reference Manual.

18.2.4.1 $VECINI Macro
The $VECINI macro creates a vector table and initializes each entry with the
address of the driver’s null entry point. Subsequent calls to the $VEC macro fill
in selected table entries with the addresses of real entry points.

The driver must specify the drivername and null_routine arguments to the
$VECINI macro. The drivername argument generally contains a 2-letter prefix
to the driver name, such as DZ or YE. Note that Digital reserves to customers
driver names beginning with the letters J and Q. The null_routine argument
contains the address of a routine within the driver (for example DZ$NULL)
that contains an RSB. When the class driver attempts to call the port driver
at an entry point corresponding to an unsupported function, the port driver’s
null routine simply returns control to the class driver. The class driver can then
proceed to service the error.

18–5

Terminal Class and Port Drivers
18.2 Data Structures

18.2.4.2 $VEC Macro
The $VEC macro validates and generates a vector table entry.

Each invocation of the $VEC macro specifies the entry argument and the
routine argument. However, a driver need not supply the address of a routine for
each entry in the table. The $VEC macro will construct a valid table regardless
of how many entries are supplied. The $VEC macro accepts the entry names
(minus the PORT_ or CLASS_ prefix) for port and class drivers. Note that a
driver accesses the table using the symbolic offsets indicated in Figures 18–2
and 18–3. The $VECINI macro defines the prefix applied to the entries, which is
PORT_ for the port vector table and CLASS_ for the class vector table.

18.2.4.3 $VECEND Macro
The $VECEND macro generates the longword of zeros that terminates the vector
table and positions the location counter at label drivername$VECEND. It has
no required arguments.

18.3 Structure of Port and Class Drivers
Class and port drivers share a similar organization, as seen in Figures 18–4 and
18–5.

The vector table of each follows the driver prologue table (DPT). The driver
specifies the address of the vector table in the vector argument to the DPTAB
macro, which places its offset from the beginning of the DPT in DPT$W_
VECTOR.

Following the vector table, and linked to the vectors by invocations of the $VEC
macro, is a set of service routines. The balance of the driver includes standard
driver routines and tables and driver-specific routines.

18.3.1 Binding Class and Port Drivers
The terminal class and port drivers are bound together to form a single, complete
driver in the manner represented in Figure 18–6.

The port driver’s unit initialization routine performs the binding process by
calling the CLASS_UNIT_INIT macro. The CLASS_UNIT_INIT macro fills in the
UCB fields as listed in Table 18–1.

Table 18–1 Initialized UCB Fields from CLASS_UNIT_INIT Routine

Field Contents

UCB$L_TT_CLASS Terminal class driver’s vector table address

UCB$L_TT_PORT Terminal port driver vector table address

UCB$L_TT_GETNXT Address of the class driver’s get-next-character routine
(CLASS_GETNXT)

UCB$L_TT_PUTNXT Address of the class driver’s put-next-character routine
(CLASS_PUTNXT)

UCB$L_DDT Address of the terminal class driver’s driver dispatch
table

18–6

Terminal Class and Port Drivers
18.3 Structure of Port and Class Drivers

Figure 18–4 Port Driver Structure

DPT

Port Vector Table

$VECINI ZZ,ZZ$NUL
$VEC STARTIO,ZZ$STARTIO
$VEC RESUME,ZZ$RESUME
$VEC ABORT,ZZ$ABORT
$VECEND

Port−Specific Routines

ZZ$STARTIO:
ZZ$RESUME:
ZZ$ABORT:

Port Service Routines

ZK−6541−GE

Note that, because the get-next-character and put-next-character routines are
the most heavily used class driver routines, their addresses are stored in the
UCB. It is therefore possible for code to issue the instruction JSB @address(R5)
to call either routine (presuming that R5 contains the address of the UCB). To
call other routines, the driver must first move the address of the vector table to a
general register and issue an instruction of the form JSB @offset(Rn). Although
a saving of one instruction does not seem significant, it can save one instruction
per character when a driver is receiving data.

When the port driver’s unit initialization routine completes the binding, the
terminal class and port drivers have become one complete driver, and the device
units are ready for I/O.

18–7

Terminal Class and Port Drivers
18.3 Structure of Port and Class Drivers

Figure 18–5 Class Driver Structure

.LONG TTY$GETNEXTCHAR_TT$DPT

.LONG TTY$PUTNEXTCHAR_TT$DPT

Class Vector Table

.LONG 0

.

.

.

DDT

DPT

DPT$W_VECTOR:

CLASS_VECTOR:

TTY$GL_DPT::

Class Service Routines

TTY$PUTNEXTCHAR:
TTY$GETNEXTCHAR:

Class−Specific Routines

ZK−6542−GE

18–8

Terminal Class and Port Drivers
18.3 Structure of Port and Class Drivers

Figure 18–6 Terminal Class/Port Driver Binding

Port Vector Table

Port Service Routines

Class Driver

TTY$GETNEXTCHAR:
TTY$PUTNEXTCHAR:

Class Service Routine

.LONG 0

.LONG TTY$PUTNEXTCHAR_TT$DPT

.LONG TTY$GETNEXTCHAR_TT$DPT

Class Vector Table

CLASS_VECTOR:

DDT

DPT$W_VECTOR

DPT

TTY$GL_DPT::

ZZ$STARTIO:
ZZ$RESUME:
ZZ$ABORT:

$VECEND
$VEC ABORT,ZZ$ABORT
$VEC RESUME,ZZ$RESUME
$VEC STARTIO,ZZ$STARTIO
$VECINI ZZ,ZZ$NUL

PORT_VECTOR:

Terminal Port
Driver Required

UCB$L_TT_CLASS
UCB$L_TT_PUTNXT
UCB$I_TT_GETNXT

Terminal Class
Driver Required

UCB$L_TT_PORT

System Section

UCB

Port Driver

ZK−6543−GE

Port Driver
Extension Region

18.4 Port Driver Routines
When the terminal class driver has completed a segment of device-independent
processing of an I/O request, it calls a port routine to complete the device-
dependent processing. The port driver contains three types of routines: port
startup routines, port initiate routines, and port service routines.

Table 18–2 lists the port driver routines that are part of the class/port interface.
This section describes the functions and context of each listed routine.

18–9

Terminal Class and Port Drivers
18.4 Port Driver Routines

Table 18–2 Port Driver Routines

Routine Function

Port Startup Routines

Controller initialization routine Resets the controller and relocates the port and class
driver vector tables

Unit initialization routine Sets up each device unit controlled by the driver

Port Initiate Routines

PORT_DISCONNECT Notifies the port driver of the last deassign for the
UCB

PORT_DS_SET Outputs modem signals to a specified unit

PORT_FDT Performs FDT processing for device-specific function
modifiers

PORT_FORKRET Return address in the port driver to which CLASS_
FORK transfers control when servicing the port
driver’s request for a fork process

PORT_MAINT Services $QIO requests for IO$_SETMODE function
with the IO$M_MAINT modifier

PORT_SET_LINE Changes terminal line parameters

PORT_SET_MODEM Informs the port that a line has been enabled for
modem signal input transitions

PORT_STARTIO Starts output on an inactive line

Port Service Routines

PORT_ABORT Aborts any currently active output

PORT_CANCEL Cancels internally queued operations in response to a
$CANCEL request

PORT_RESUME Resumes any previously stopped output

PORT_STOP Halts the output data stream

PORT_XOFF Takes steps to halt an input data stream that is
approaching its limit

PORT_XON Resumes the acceptance of input data

18.4.1 Port Startup Routines
Port startup routines include the port driver’s controller and unit initialization
routines. Note that, although these routines are not included in the port vector
table, they must make calls to several class routines. They additionally fill
the role of the equivalent initialization routines in a standard device driver, as
discussed in Section 11.1.

18.4.1.1 Controller Initialization Routine
The controller initialization routine is responsible for resetting the controller and
relocating the port and class driver’s vector tables. To perform the last-mentioned
task, the routine should invoke the CLASS_CTRL_INIT macro, supplying the
symbolic name of the driver prologue table (for instance, DZ$DPT) in the
dpt argument and the address of the port driver’s vector table in the vector
argument. To use the CLASS_CTRL_INIT macro, the driver must include an
invocation of the $TTYMACS definition macro (from SYS$LIBRARY:LIB.MLB).

18–10

Terminal Class and Port Drivers
18.4 Port Driver Routines

18.4.1.2 Unit Initialization Routine
The unit initialization routine is responsible for setting up each individual device
unit. The activities of a standard unit initialization routine include loading
certain locations in the UCB with controller-specific data, preparing the hardware
for input and output, and taking any action necessary to service a power failure.

The unit initialization routine of a terminal port driver must additionally perform
the following tasks:

1. Invoke the CLASS_UNIT_INIT macro to generate the common code that
must be executed by all terminal port driver unit initialization routines. This
code includes the logic that binds the class and port drivers in the manner
discussed in Section 18.3.1. Before it invokes the CLASS_UNIT_INIT macro,
the unit initialization routine must place the address of the port driver vector
table in R0.

To use the CLASS_UNIT_INIT macro, the driver must include an invocation
of the $TTYMACS definition macro (from SYS$LIBRARY:LIB.MLB).

2. Call the class service routine, CLASS_SETUP_UCB, to allow the class driver
to reset fields in the UCB.

3. Call the class service routine, CLASS_SET_LINE, to allow the class driver to
reset the speed, parity, and the device-dependent bits, if necessary.

4. If the line can run modem protocol, call the class service routine, CLASS_DS_
TRANS, with the transition type MODEM$C_INIT in R1. Note that, to use
modem symbols, the port driver must invoke the $TTYMDMDEF macro (from
SYS$LIBRARY:LIB.MLB).

5. When a power failure occurs (UCB$V_POWER set in UCB$W_STS), call the
class service routine, CLASS_POWERFAIL.

6. Perform other hardware-specific functions.

18.4.2 Port Initiate Routines
The terminal class driver calls port initiate routines when it must initiate device
activity and the port driver is not active. Port initiate routines can issue callbacks
to the class driver.

A call to a port initiate routine uses the following instruction format:

MOVL UCB$L_TT_PORT(R5),R0 ;get pointer to port vector table
JSB @PORT_DISCONNECT(R0) ;call port disconnect routine

Note that a port initiate routine must preserve the contents of all registers.

18.4.2.1 PORT_DISCONNECT
A call to the PORT_DISCONNECT routine indicates that there are no longer
channels associated with the device, thus notifying the port driver of the last
deassignment for the device’s UCB. If the delete bit (UCB$V_DELMBX) is set in
UCB$W_DEVSTS, the operating system will delete the UCB.

Note

As long as the device name is known to the system, broadcasts and assign
channel requests may occur on this device. (Broadcasts, however, will not
occur if the DEV$V_NET bit is set in UCB$L_DEVCHAR.)

18–11

Terminal Class and Port Drivers
18.4 Port Driver Routines

Input to the PORT_DISCONNECT routine is as follows:

R0 Flags. If bit 0 is set, the user requested that the UCB not be deleted
(NOHANGUP).

R5 Address of UCB.

18.4.2.2 PORT_DS_SET
The PORT_DS_SET routine sends modem signals to the specified
unit. Masks representing modem signals are defined in $TTDEF (in
SYS$LIBRARY:STARLET.MLB). They include the following:

TT$M_DS_CARRIER Data channel received line signal detector

TT$M_DS_CTS Clear to send

TT$M_DS_DSR Data set ready

TT$M_DS_DTR Data terminal ready

TT$M_DS_RING Calling indicator

TT$M_DS_RTS Request to send

TT$M_DS_SECREC Secondary receive

TT$M_DS_SECTX Secondary transmit

See the OpenVMS I/O User’s Reference Manual for an explanation of modem
protocol.

Input to the PORT_DS_SET routine is as follows:

R2 Low byte indicates signals to be activated; high byte indicates signals to be
deactivated.

R5 Address of UCB.

18.4.2.3 PORT_FDT
The terminal class driver calls the PORT_FDT routine when servicing a $QIO
request for an IO$_TTY_PORT function. The PORT_FDT routine performs
whatever tasks the class driver’s FDT routine would normally do to service
the request. These tasks include checking the function-dependent parameters
(p1 through p6), verifying access to buffers, and terminating with a call to
EXE$QIORETURN, EXE$ABORTIO, or EXE$FINISHIO.

The PORT_FDT routine thus allows a port driver to implement support for
device-specific function modifiers without requiring an extension to the class/port
interface.

If there is no PORT_FDT routine, control will pass to the port driver’s null
routine, which returns control to the class driver. The system terminal class
driver, TTDRIVER.EXE, thereupon issues an illegal I/O function error.

Input to the PORT_FDT routine is as follows:

R3 Address of IRP

R4 Address of current PCB

R5 Address of UCB

R6 Address of CCB

R7 Bit number of the I/O function code

00(AP) Address of the first function-dependent QIO parameter (p1)

The routine destroys the contents of R2.

18–12

Terminal Class and Port Drivers
18.4 Port Driver Routines

Note that a port driver must set TTY$V_PC_PORTFDT in UCB$W_TT_PRTCTL
if it contains a PORT_FDT routine.

18.4.2.4 PORT_FORKRET
The terminal class driver’s service routine, CLASS_FORK, returns control to the
port driver’s PORT_FORKRET entry point after servicing the port driver’s
request to create a fork process. (See the description of CLASS_FORK in
Section 18.5.4.) The only context returned from the servicing of the fork request
is the address of the UCB in R5.

The terminal class driver issues a a JMP instruction (rather than a JSB
instruction) to the PORT_FORKRET routine.

18.4.2.5 PORT_MAINT
The class driver calls the PORT_MAINT routine whenever a $QIO request is
issued for an IO$_SETMODE function with the IO$M_MAINT modifier. The
OpenVMS I/O User’s Reference Manual lists all possible maintenance functions;
each port driver must decide which of these functions it must support.

Input to the PORT_MAINT routine is as follows:

R5 Address of UCB

UCB$B_TT_MAINT Parameters to the IO$M_MAINT function

18.4.2.6 PORT_SET_LINE
The PORT_SET_LINE routine changes terminal line parameters. The terminal
class driver calls the PORT_SET_LINE routine whenever any terminal
characteristic in UCB$L_DEVDEPEND or UCB$L_DEVDEPND2 is changed.
It also calls this routine when speed, parity, and the enabling or disabling of
DMA and automatic flow control are affected.

The PORT_SET_LINE routine is the only port routine that is allowed to write the
fields UCB$L_DEVDEPEND and UCB$L_DEVDEPND2.

Input to the PORT_SET_LINE routine is as follows:

R5 Address of UCB.

UCB$B_TT_MAINT Parameters to the IO$M_MAINT function.

UCB$B_TT_PARITY Parity, stop bits, and frame size.

UCB$W_TT_SPEED Low byte indicates transmit speed; high byte indicates
receive speed or is zero.

UCB$W_TT_PRTCTL DMA enable flag (TTY$V_PC_DMAENA) and auto XOFF
enable flag (TTY$V_PC_XOFENA).

UCB$L_DEVDEPEND First longword for device-dependent status.

UCB$L_DEVDEPND2 Second longword for device-dependent status.

The PORT_SET_LINE routine can safely destroy the contents of R4.

18.4.2.7 PORT_SET_MODEM
A call to the PORT_SET_MODEM routine informs the port that the line has
been enabled for modem signal input transitions. A port implementing modem
functions must ensure that the hardware is ready to detect changes in input
modem signals. When hardware does not provide this capability (as, for instance,
the DZ11 terminal controller does not), the system terminal class/port interface
implements the equivalent capability by using timer-based polling.

At the time of the call, R5 contains the address of the UCB.

18–13

Terminal Class and Port Drivers
18.4 Port Driver Routines

18.4.2.8 PORT_STARTIO
The terminal class driver calls the PORT_STARTIO routine to start output on a
line that is currently inactive. The PORT_STARTIO routine is always called with
either a character or a burst of data and it is never called unless the line is idle
(UCB$V_INT is clear in UCB$W_STS).

The UCB$V_INT bit functions as an interlock, signifying that the port output
logic is busy. The class driver always sets UCB$V_INT when it calls PORT_
STARTIO. If the port requests that timers be set up (TTY$V_PC_NOTIME clear
in UCB$W_TT_PRTCTL), then the class driver calculates and creates an output
timer for the burst or character and sets UCB$V_TIM in UCB$L_STS.

Input to the PORT_STARTIO routine is as follows:

R0 Address of the port driver’s vector table (UCB$L_TT_PORT)

R2 Address of the terminal state quadword (UCB$L_TT_
STATE1)

R3 Character to be output (if UCB$B_TT_OUTYPE is 1)

R5 Address of UCB

UCB$B_TT_OUTYPE Zero, if there is no character to be output; 1, if there is one
character to be output; and a negative value if there is a
burst to be output

UCB$L_TT_OUTADR Address of burst to output (if UCB$B_TT_OUTYPE is
negative)

UCB$W_TT_OUTLEN Length of burst (if UCB$B_TT_OUTYPE is negative)

18.4.3 Port Service Routines
The terminal class driver can call port service routines at any time.

Note

Because they must consist of reentrant code, port service routines cannot
issue callbacks to the class driver.

A call to a port service routine uses the following instruction format:

MOVL UCB$L_TT_PORT(R5),R0 ;get pointer to port vector table
JSB @PORT_ABORT(R0) ;call port abort routine

Note that a port service routine must preserve the contents of all registers.

18.4.3.1 PORT_ABORT
The terminal class driver calls the PORT_ABORT routine to abort any currently
active output activity: for instance, the last burst of output sent to the port. The
PORT_ABORT routine invalidates the contents of the address stored in UCB$L_
TT_OUTADR.

At the time of the call, R5 contains the address of the UCB.

18–14

Terminal Class and Port Drivers
18.4 Port Driver Routines

18.4.3.2 PORT_CANCEL
The terminal class driver calls the PORT_CANCEL routine in servicing a
$CANCEL, $DASSGN, or $DALLOC request. The PORT_CANCEL routine
cancels any internally queued operations for the port. Most commonly, a call is
issued to this routine when a request to establish an outgoing connection has
been stalled because the port is busy.

Input to the PORT_CANCEL routine is as follows:

R2 Address of the terminal state quadword (UCB$L_STATE1)

R3 Address of IRP

R4 Address of current PCB

R5 Address of UCB

R6 Channel index number

R8 Reason for cancellation, one of the following:

CAN$C_CANCEL Called by $CANCEL system service

CAN$C_DASSGN Called by $DASSGN or $DALLOC system service

R9 Address of logical UCB (UCB$L_TT_LOGUCB)

18.4.3.3 PORT_RESUME
The terminal class driver calls the PORT_RESUME routine to resume any
previously stopped output. The port must be prepared for this routine to be called
at any time (whether output is currently active or has previously been stopped).
The PORT_RESUME routine should always ensure that the port hardware is
enabled for output.

At the time of the call, R5 contains the address of the UCB.

18.4.3.4 PORT_STOP
The PORT_STOP routine halts the output data stream. The terminal class driver
normally calls this routine in response to input flow control. When called, the
PORT_STOP routine should stop the data stream as soon as possible.

At the time of the call, R5 contains the address of the UCB.

18.4.3.5 PORT_XOFF
The terminal class driver calls the PORT_XOFF routine when it is approaching
or has reached its input limit. The PORT_XOFF routine takes steps to stop the
input data stream. For character-oriented controllers, it commands the port to
insert the flow control character in the output data stream as soon as possible.

Input to the PORT_XOFF routine is as follows:

R3 Flow control character to be inserted in the input data stream

R5 Address of UCB

UCB$L_STS UCB$V_INT may or may not be set

If the port hardware requires it, the PORT_XOFF routine sets UCB$V_INT in
UCB$L_STS.

18–15

Terminal Class and Port Drivers
18.4 Port Driver Routines

18.4.3.6 PORT_XON
The terminal class driver calls the PORT_XON routine when it has cleared its
input path and is ready to accept data. For character-oriented controllers, the
PORT_XON routine commands the port to insert the flow control character in the
input data stream.

Input to the PORT_XON routine is as follows:

R3 Flow control character to be inserted in the input data
stream

R5 Address of UCB

UCB$L_STS UCB$V_INT may or may not be set

If the port hardware requires it, the PORT_XON routine sets UCB$V_INT in
UCB$L_STS.

18.4.3.7 Port Interrupt Service Routines
A terminal port driver must contain code to service receiver interrupts and
transmitter interrupts. The exact form of a device interrupt associated with the
port driver is device dependent. For multiple-line interfaces, the port driver must
also determine which line is requesting the interrupt and move its UCB address
into R5.

To service receiver interrupts, the port driver obtains a character from the port,
together with hardware error flags that signal a parity, overrun, or frame error in
the transaction. It proceeds as follows:

• If an error has been detected, the port driver passes the character and error
flags to the CLASS_READERROR service routine for processing (for instance,
autobaud detection).

• If no error has been detected, the port driver passes the character to the
CLASS_PUTNXT service routine.

If either of these service routines returns characters that must be echoed and the
line is currently inactive, the port driver must start output. Before dismissing
the interrupt, the port driver for a controller with multiple lines should check all
lines for pending transactions and empty the silo.

To service transmitter interrupts, the port driver first records any reported errors.
It then proceeds as follows:

• If TTY$V_TP_ABORT is set in UCB$B_TP_STAT, the port driver calls the
PORT_ABORT service routine to terminate the transaction.

• If TTY$V_TP_ABORT is not set, the port driver sets up the next output
sequence according to the following priority:

Transaction Use

Preempt Normally used to send an XON or XOFF character

Hold Normally used for single-character output

Burst Used for multiple-character (DMA) output

Note that this action can result in an XON or XOFF character appearing in
the middle of an escape sequence.

18–16

Terminal Class and Port Drivers
18.5 Class Driver Routines

18.5 Class Driver Routines
Table 18–3 lists the class driver routines that are part of the class/port interface.
This section describes the functions and context of each listed routine.

A call to a class service routine uses the following instruction format:

MOVL UCB$L_TT_CLASS(R5),R0 ;get pointer to class vector table
JSB @CLASS_DISCONNECT(R0) ;call class disconnect routine

Table 18–3 Class Driver Routines

Routine Function

CLASS_DDT Pointer to the driver dispatch table

CLASS_DISCONNECT Disconnects a process from a terminal on a nonmodem line

CLASS_DS_TRANS Manages data set transitions

CLASS_FORK Services a port driver’s request to create a fork process

CLASS_GETNXT Delivers to the port driver the next character or burst to be
output

CLASS_PUTNXT Obtains input characters from the port driver

CLASS_SETUP_UCB Initializes the UCB

CLASS_POWERFAIL Services a power failure

CLASS_READERROR Services a parity, data overrun, or framing error on a
terminal line

18.5.1 CLASS_DDT
This entry in the class driver vector table points to the driver dispatch table
(DDT). The CLASS_UNIT_INIT macro uses the CLASS_DDT entry point when
moving the address of the DDT into the UCB.

18.5.2 CLASS_DISCONNECT
A port driver calls the CLASS_DISCONNECT routine to indicate to the terminal
class driver that the terminal is no longer connected to the system. This is the
preferred way of disconnecting a process from a terminal on a nonmodem line.

At the time of the call, R5 must contain the address of the UCB. The CLASS_
DISCONNECT routine destroys the contents of R4.

18.5.3 CLASS_DS_TRANS
This CLASS_DS_TRANS routine manages data set state transitions. The port
driver’s unit initialization routine must call this routine with the transition type
MODEM$C_INIT in R1 if the unit is capable of having data set transitions. (Note
that, to use modem symbols, the port driver must invoke the $TTYMDMDEF data
structure definition macro (from SYS$LIBRARY:LIB.MLB).

Input to the CLASS_DS_TRANS routine is as follows:

18–17

Terminal Class and Port Drivers
18.5 Class Driver Routines

R1 Transition type, one of the following:

MODEM$C_INIT Initialize modem control

MODEM$C_INIT_NORESET Start modem protocol, but do not
initialize signals

MODEM$C_SHUTDWN Shut down the line and disconnect
the process

MODEM$C_SHUTDWN_NOHANGUP Stop modem protocol but do not stop
the signals

MODEM$C_DATASET Data set signal changes

R2 New receive modem mask (if MODEM$C_DATASET is specified in R1)

R5 Address of UCB

The CLASS_DS_TRANS routine destroys the contents of R0 through R4.

18.5.4 CLASS_FORK
A port driver calls the CLASS_FORK routine to create a driver fork process that
uses the UCB fork block. The port driver must never initiate a fork directly—it
must always call this routine.

The CLASS_FORK routine sets up the fork block in the UCB and performs the
other tasks necessary to store context in the fork block, insert it in a processor-
specific fork queue, and suspend driver processing. When the fork has taken
place, the class driver calls the port driver at its PORT_FORKRET entry point.

At the time of the call, R5 must contain the address of the UCB. The CLASS_
FORK routine destroys the contents of R4.

18.5.5 CLASS_GETNXT
The port driver calls the CLASS_GETNXT routine whenever it has completed
the current character or burst to obtain the next characters to be output on the
unit. If CLASS_GETNXT returns data to the port driver, a timer is set up (unless
explicitly disabled) and the interrupt expected bit is set.

At the time of the call, R5 must contain the address of the UCB. Output from the
CLASS_GETNXT routine includes the following:

R1 Destroyed

R2 Number of characters (if R3 contains an address)

R3 Character to be output (if UCB$B_TT_OUTYPE is
positive); address of characters to be output (if UCB$B_
TT_OUTYPE is negative); or no character (if UCB$B_TT_
OUTYPE is zero)

R4 Destroyed

R5 Address of UCB

R6 through R11 Destroyed

UCB$B_TT_OUTYPE Zero, if there is no character to be output; 1, if there is
one character to be output; and a negative value if there
is a burst to be output

UCB$L_TT_OUTADR Address of burst to output (if UCB$B_TT_OUTYPE is
negative)

UCB$W_TT_OUTLEN Length of burst (if UCB$B_TT_OUTYPE is negative)

18–18

Terminal Class and Port Drivers
18.5 Class Driver Routines

18.5.6 CLASS_PUTNXT
The port driver calls the CLASS_PUTNXT routine to pass input characters to the
terminal class driver. The CLASS_PUTNXT routine filters characters received
from nonpassall units for immediate control sequences. If a slave mode unit
(that is, generating no unsolicited input) does not have a read outstanding, the
CLASS_PUTNXT routine ignores the input characters, after performing the
control-character filtering.

If the input characters are to be echoed to the terminal, CLASS_PUTNXT calls
CLASS_GETNXT to notify the port driver.

The CLASS_PUTNXT routine may or may not return output data to the port
driver, depending upon the setting of the interrupt-expected bit (UCB$V_INT) in
UCB$L_STS. If this bit is set, CLASS_PUTNXT does not return data. If it does
return data, the terminal port driver should assume that more data may follow,
and call CLASS_GETNXT after outputting the returned data.

Input to the CLASS_PUTNXT routine is as follows:

R3 Input character

R5 Address of UCB

Output from the CLASS_PUTNXT routine is as follows:

R1 Destroyed

R2 Number of characters (if R3 contains an address)

R3 Character to be output (if UCB$B_TT_OUTYPE is
positive); address of characters to be output (if UCB$B_
TT_OUTYPE is negative); or no character (if UCB$B_TT_
OUTYPE is zero)

R4 Destroyed

R5 Address of UCB

R6 through R11 Destroyed

UCB$B_TT_OUTYPE Zero, if there is no character to be output; 1, if there is
one character to be output; and a negative value if there
is a burst to be output

UCB$L_TT_OUTADR Address of burst to output (if UCB$B_TT_OUTYPE is
negative)

UCB$W_TT_OUTLEN Length of burst (if UCB$B_TT_OUTYPE is negative)

18.5.7 CLASS_SETUP_UCB
A port driver’s unit initialization routine calls CLASS_SETUP_UCB when it is
invoked at system startup and power failure.

The CLASS_SETUP_UCB routine initializes the unit’s fork block; write queue
(UCB$L_TT_WFLINK); break, passall, and DMA device characteristics; and read
timed out dispatch field (UCB$L_TT_RTIMOU).

In addition, it initializes several UCB fields as follows:

UCB$L_TT_LOGUCB Address of UCB

UCB$L_DEVCHAR DEV$V_AVL set

UCB$L_DEVCHAR2 DEV$V_RED cleared

UCB$W_TT_CURSOR 1

18–19

Terminal Class and Port Drivers
18.5 Class Driver Routines

UCB$W_TT_HOLD Cleared

UCB$W_TT_SPEED UCB$W_TT_DESPEE

UCB$B_TT_PARITY UCB$B_TT_DEPARI

UCB$B_DEVTYPE UCB$B_TT_DETYPE

At the time of the call, R5 must contain the address of the UCB.

18.5.8 CLASS_POWERFAIL
A port driver’s unit initialization routine calls the CLASS_POWERFAIL routine
when it detects a power failure.

At the time of the call, R5 must contain the address of the UCB.

Output from the CLASS_POWERFAIL routine includes the following:

UCB$W_STS UCB$V_INT cleared; UCB$V_TIM set

UCB$L_DUETIM Cleared

18.5.9 CLASS_READERROR
A port driver calls CLASS_READERROR when it detects a parity, data overrun,
or framing error on the terminal line. CLASS_READERROR completes the read
operation with error status if a read is active, or simply returns if no read is
active.

Input to the CLASS_READERROR routine is as follows:

R3 Character and flags. The following flags are defined:

Bit 12 Parity error on the given character

Bit 13 Framing error on the given character

Bit 14 Data overrun

R5 Address of UCB.

Output from the CLASS_READERROR routine is as follows:

R0 through R3 Destroyed

UCB$B_TT_OUTYPE Zero, if there is no character to be output; 1, if there is
one character to be output; and a negative value if there
is a burst to be output

18–20

19
TURBOchannel Device Driver Support

The TURBOchannel architecture is part of Digital’s workstation open bus
strategy that provides a high-performance I/O interconnect. TURBOchannel,
supported by certain workstations, is defined as a synchronous, asymmetrical
I/O channel for connecting optional devices. the operating system supports
programming for such I/O connections by permitting the writing of non-
Digital supplied TURBOchannel device drivers. The support includes special
TURBOchannel device driver I/O operating system routines.

The operating system supports two types of I/O operations for TURBOchannel
device data transfers:

• Direct memory access (DMA)

• Programmed I/O (PIO)

TURBOchannel-specific system routines map TURBOchannel address space for
DMA and support the setup and delivery of device interrupts.

The architecture of the TURBOchannel interface is similar to that of other
I/O subsystems, such as the UNIBUS and Q22–bus, described in Chapter 14
and in the OpenVMS VAX Device Support Reference Manual. In general, a
TURBOchannel device driver is structured like a UNIBUS or Q22–bus driver.

This chapter describes the features of the DMA interface, recommends coding
strategies, and includes information on TURBOchannel driver naming and
loading. Descriptions of system routines for the TURBOchannel interface are
provided in the OpenVMS VAX Device Support Reference Manual. If you are
writing a TURBOchannel device driver, refer to that manual and to Part II of
this manual for basic driver design.

19.1 Hardware Environment
The TURBOchannel device support option is offered on the VAXstation
4000-60/90 system. The TURBOchannel adapter (DWCTX) that provides
the hardware connection between the VAXstation processor pin-bus and the
TURBOchannel device (see Figure 19–1) resides in the option module slot. Only
one TURBOchannel slot is supported. The base address of the option module
slot is 3000 000016. The adapter features a scatter-gather map for certain DMA
transfers and contains a 32-bit control and status register (CSR) located at
address 3680 000016.

Two kinds of transactions are permitted on the TURBOchannel: a programmed
I/O transaction and a DMA transaction. A programmed I/O transaction in the
address range of 3000 000016 to 33FF FFFF16 of VAX I/O space translates to a
TURBOchannel device transaction (see Figure 19–2). For more information on
DMA transactions, see Section 19.2.

19–1

TURBOchannel Device Driver Support
19.1 Hardware Environment

Figure 19–1 VAXstation with a TURBOchannel Subsystem

ZK−4624A

TURBO−
channel
Adapter

Memory

CPU

VAXstation

34−Bit Address

32−Bit Data

DWCTX

Option

TURBO−
channel
DeviceTURBOchannel

Figure 19–2 TURBOchannel Adapter Space for the VAXstation CPU

64 MB

37FF FFFF

3400 0000 128 MB

Adapter Area

CSR

TURBOchannel

Device Area

TURBOchannel
I/O SpaceVAX

Space

512 MB
I/O

1GB

0

ZK−4627A−GE

3000 0000

2000 0000

3680 0000

3000 0000
37FF FFFF

19.1.1 Address Maps
TURBOchannel I/O space occupies 128 MB of workstation I/O space starting
at 3000 000016, as shown in Figure 19–2. The first 64 MB of the I/O space is
allocated to the TURBOchannel device while the second 64 MB is reserved for
adapter resources.

19–2

TURBOchannel Device Driver Support
19.2 DMA Transactions

19.2 DMA Transactions
Direct memory access (DMA) I/O operations for TURBOchannel devices
are similar to the Q22–bus DMA operations described in Chapter 14. The
TURBOchannel adapter sends 32-bit data through the direct-DMA path between
the VAX host and the TURBOchannel device. The scatter-gather map, a program-
selectable feature of this direct data path (DDP), permits TURBOchannel
transfers to access randomly ordered physical addresses. Thus, two types of DMA
transactions are possible:

• Mapped DMA

• Unmapped DMA

Figure 19–3 TURBOchannel DMA to a VAX Host

Map

ZK−4630A−GE

128 MB

Registers

0

16 GB

Reserved

DMA Space

TURBOchannel
Adapter

TURBOchannel

P0 Space
VAX User

Device

DMA Space

104 MB

TURBOchannel
Address Space

DMA Space

4 MB

19.2.1 Mapped DMA
When the TURBOchannel adapter’s scatter-gather map is enabled (by setting
bit 9 of the CSR), the adapter provides 4 MB of address space in which a
TURBOchannel device can perform DMA transfers of contiguous pages of data
that are mapped to discontiguous pages in VAX space (as shown in Figure 19–3).
Each page in the 4 MB space may be individually mapped to any page in the
workstation’s physical memory.

19–3

TURBOchannel Device Driver Support
19.2 DMA Transactions

19.2.2 Unmapped DMA
When the TURBOchannel adapter’s scatter-gather map is disabled, a
TURBOchannel device can perform DMA transfers with direct physical access to
the workstation memory space. In this mode, the workstation’s memory appears
in the lower 104 MB of the TURBOchannel address space.

19.3 Using TURBOchannel Mapped DMA Routines
Three operating system routines are provided for TURBOchannel mapped DMA
operations:

• IOC$ALOTCMAP_DMA or IOC$ALOTCMAP_DMAN

• IOC$LOADTCMAP_DMA or IOC$LOADTCMAP_DMAN

• IOC$RELTCMAP_DMA or IOC$RELTCMAP_DMAN

A driver that supports a TURBOchannel device’s mapped DMA transfers to
and from VAX memory must first allocate a set of map registers using either
the IOC$ALOTCMAP_DMA or the IOC$ALOTCMAP_DMAN routine. It must
then call either the IOC$LOADTCMAP_DMA or the IOC$LOADTCMAP_DMAN
routine to insert a page frame number (PFN) in each allocated map register. One
page (512 bytes) of TURBOchannel device space is mapped into the VAX address
space with each map register. (See Figure 19–4.)

Once the space is mapped, TURBOchannel devices are free to access this VAX
memory with DMA read and write cycles. When the DMA transaction completes,
the driver must call either the IOC$RELTCMAP_DMA or the IOC$RELTCMAP_
DMAN routine to free the registers.

The DMA map routines are supplied in a separate object library to which the
driver is linked. When the driver is linked to include these routines (as described
in Section 19.5), the routines will reside in PSECT $$$112_TC_SUPPORT of the
resulting image.

Note that the DMA map routines ending in _DMAN are provided for DMA
operations with more than one map register. They are passed information by way
of the general purpose registers instead of data structures. For more information
on the DMA map routines, see the OpenVMS VAX Device Support Reference
Manual.

Figure 19–4 TURBOchannel Map Register

Page Frame Number (PFN)
TURBOchannel
Address Bits

PFN Valid Bit

31 29 26 9 8 2 0

00

ZK−4628A−GE

19–4

TURBOchannel Device Driver Support
19.4 Coding a TURBOchannel Device Driver

19.4 Coding a TURBOchannel Device Driver
Write the device driver in one or more source files using the coding requirements
discussed in Part II of this manual.

The following coding recommendations for driver tables are specific to
TURBOchannel device drivers:

• Set the device IPL to 20 in the unit control block (UCB):

DPT_STORE UCB, UCB$B_DIPL, B, 20

• Store the address of the interrupt service routine in the VEC structure of the
channel request block (CRB):

DPT_STORE CRB, CRB$L_INTD+VEC$L_ISR, D, xx_ISR

• Define the adapter type equal to TC in the driver prologue table (DPT). In the
DPTAB macro invocation set adapter=TC.

See Chapter 6 for more information on these data structures.

Also note that TURBOchannel unit and controller initialization routines are
called by the autoconfiguration code and the System Generation utility (SYSGEN)
command CONNECT with the physical address of the TURBOchannel slot (3000
000016) in R4.

19.5 Assembling and Linking a TURBOchannel Driver
Assemble the source files with the system’s macro library
(SYS$LIBRARY:LIB.MLB). For example, issue the following command:

$ MACRO QTDRIVER.MAR+SYS$LIBRARY:LIB.MLB/LIBRARY

Link the driver object file with the system global symbol table and the
TURBOchannel routines object library. The global symbol table is located in
SYS$SYSTEM and is called SYS.STB, and the TURBOchannel routines are
located in SYS$LIBRARY:TC$LIBRARY.OLB. If the driver consists of several
source files, you must specify the file that contains the driver prologue table as
the first file in the list. The linker options file must contain a BASE statement
specifying a zero base for the executable image.

The following is an example of how to link a TURBOchannel device driver with
the TURBOchannel support routines:

$ CREATE QTDRIVER.OPT
BASE=0

Ctrl/Z

$ LINK /NOSYSSHR/NOTRACEBACK/NODEBUG/CONTIGUOUS QTDRIVER.OBJ,-
_$ SYS$LIBRARY:TC$LIBRARY/LIBRARY/SELECT,-
_$ QTDRIVER.OPT/OPTIONS,-
_$ SYS$SYSTEM:SYS.STB/SELECTIVE_SEARCH

The resulting image must consist of a single image section. The linker will report
that the image has no transfer address; ignore this report. Note that if you do not
use the TURBOchannel DMA routines, you do not need to include TC$LIBRARY
in the command line.

Once you have linked or relinked a driver, copy its image file to the
SYS$LOADABLE_IMAGES directory. By default, the SYSGEN commands
LOAD and CONNECT search for a driver in the SYS$LOADABLE_IMAGES
directory.

19–5

TURBOchannel Device Driver Support
19.6 Loading a TURBOchannel Device Driver

19.6 Loading a TURBOchannel Device Driver
You can load a TURBOchannel device driver during the bootstrap program (for
example, in SYSTARTUP.COM) or any time after the system is booted.

To load the driver into system virtual memory, run SYSGEN from the system
manager’s account or from an account with the CMKRNL privilege. SYSGEN
loads a TURBOchannel device driver and creates the device’s I/O data structures.
For more information on loading a driver with SYSGEN, refer to Chapter 12.

Invoke SYSGEN by entering the following command:

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN responds with the following prompt and waits for further input:

SYSGEN>

Use the CONNECT command (of SYSGEN) to load the driver and create the
device’s I/O database. You must specify the device name and the nexus number of
both the TURBOchannel adapter and the TURBOchannel device.

To obtain the adapter nexus number for the TURBOchannel adapter, issue the
SHOW/ADAPTER command, as shown in Example 19–1.

Example 19–1 Using the SHOW/ADAPTER Command

SYSGEN> SHOW/ADAPTER

CPU Type: VAXstation 4000-60

Nexus (decimal) Generic Name or Description
0000 0 KA46
0001 1 TURBOchannel adapter

As shown in Example 19–2, the SHOW/TURBOCHANNEL command can be used
to show the nexus number of your device on the TURBOchannel.

Example 19–2 Using the SHOW/TURBOCHANNEL Command

SYSGEN> SHOW/TURBOCHANNEL
TURBOCHANNEL: Device Name Nexus Number TC Slot

QMAT-AA 00000000 00000001

The use of the CONNECT command to load a driver is shown in Example 19–3.

Example 19–3 Loading a Driver with the CONNECT Command

SYSGEN> CONNECT QTA0/ADAPTER=1/TC_NEXUS=0/DRIVER=QTDRIVER

This command loads the driver QTDRIVER (if it is not already loaded) and
creates the data structures (DDB, CRB, IDB, and UCB) needed to describe QTA0.
It also calls the driver’s controller and unit initialization routines for execution.

In this example, QTA0 is the SYSGEN device designator and number; QT is your
TURBOchannel driver mnemonic; A0 is device #0. Note that Digital reserves
driver names beginning with the letters J and Q for its customers. This ensures
there are no conflicts with any other driver names on your system. Because
SYSGEN examines the name area of your device module ROM to find names of
active devices on a bus, prefix your device name in ROM with the letters J or
Q. To determine a driver name, SYSGEN extracts the first and last letter in the

19–6

TURBOchannel Device Driver Support
19.6 Loading a TURBOchannel Device Driver

name area of your ROM. For this Example 19–3, SYSGEN extracts QT from the
device name QMAT-AA found in this device ROM.

Note that Example 19–3 specifies a driver that has its device at nexus 0 (TC_
NEXUS=0) on the TURBOchannel and the TURBOchannel adapter at nexus 1
(adapter=1) on the CPU bus.

19–7

20
VMEbus Device Driver Support

The VMEbus is a standard bus by which small computers and intelligent
peripheral devices can be connected. The term VME stands for Versa Module
Eurocard. This nonproprietary bus conforms to the American National IEEE
Standard 1014 (ANSI/IEEE Std 1014).

The operating system supports VMEbus device connections for certain VAX
processors and workstations. Two types of I/O operations for VMEbus device data
transfers are supported:

• Direct memory access (DMA)

• Programmed I/O (PIO)

The operating system provides system routines and macros to support the writing
of non-Digital-supplied VMEbus device drivers. Certain system routines map
VME address-space for both DMA and PIO and support the setup and delivery of
device interrupts. Other routines perform byte-swapping for hardware that does
not support the default system byte ordering. The VMEbus interface is similar to
the UNIBUS and Q22–bus interface described in Chapter 14.

This chapter describes the features of the DMA and PIO interfaces. The chapter
suggests coding strategies and includes sections on VME driver naming and
loading. Detailed descriptions of system macros and routines supporting the
VME interface are provided in the OpenVMS VAX Device Support Reference
Manual.

This chapter often refers to driver software or an I/O subsystem that is described
in the technical manual supplied with your adapter. If you are writing a VME
device driver, refer to both the adapter tehnical manual and this manual for
basic driver design. You may also need to refer to the ANSI/IEEE Std 1014
specification.

20.1 Hardware Environment
The VMEbus device support option is offered on the VAXstation 4000-60/90, the
VAX 6000 series, the VAX 7000 series, and the VAX 10000 series systems. The
VAXstation 4000-60/90 is a TURBOchannel-based I/O system that includes a pair
of TURBOchannel-to-VMEbus adapters (DWTVX/A and /B). See Figure 20–1.
These adapters also provide the option of hardware-assisted byte swap for PIO
transfers. For more TURBOchannel information, see Chapter 19.

The VAX 6000 series, VAX 7000 series, and VAX 10000 series system have XMI-
based I/O systems. The VME option incorporates an XMI-to-VMEbus adapter
(DWMVA) and a VME controller module. See Figure 20–2.

20–1

VMEbus Device Driver Support
20.1 Hardware Environment

The DWMVA and the DWTVX adapters both support 32 bits of address and data
and conform to ANSI/IEEE Std 1014.

Figure 20–1 TURBOchannel-Based VAXstation with a VMEbus Subsystem

ZK−5073A−GE

TURBO−
channel
Adapter

Memory

CPU

VAXstation

34−Bit Address

32−Bit Data

DWCTX

VMEbus

DeviceDevice

VMEbus
Bus Adapter

DWTVX/A

DWTVX/B

TURBOchannel

20–2

VMEbus Device Driver Support
20.1 Hardware Environment

Figure 20–2 XMI/VME Bus-Based System

DWMVA

DWMVA
VMEbus

DeviceDevice

ZK−3728A−GE

XMI−VME
Bus Adapter

XMI Bus

20.2 VMEbus Protocol Parameters
The VMEbus has selectable protocol parameters which determine how the bus
operates. Though a DWMVA bus adapter can support a range of selectable
functions, the following fixed set of system initialization parameters has been
chosen:

• VMEbus Arbitration—The VMEbus can operate under four different types
of bus arbitration schemes: single, prioritized, round robin, or prioritized
round robin. The operating system currently initializes to the round-robin
VMEbus arbitration mode.

• VMEbus Request Level—Various VMEbus request levels can be set for bus
arbitration. The operating system initializes the VMEbus request level to
BR3 for the DWMVA adapter.

• VMEbus Timeout—Various VMEbus access timeouts can be set. The
operating system initializes the VMEbus transaction timeout parameter to be
3.28 milliseconds for all drivers on a VAX 6000 and 128 microseconds for all
drivers on a VAXstation 4000.

The driver can modify these parameters by supplying the DMA map routines
with a flags parameter. See Section 20.5, the OpenVMS VAX Device Support
Reference Manual, and the adapter technical manual.

20.3 Considering Byte Order Transfer Differences
When writing a VME device driver, you must consider the different byte order
(most significant byte first/last or right/left) of a given word or longword between
buses of various devices of different manufacturers. These byte-order patterns
fall into two groups defined as ‘‘big-endian’’ and ‘‘little-endian.’’ As shown in

20–3

VMEbus Device Driver Support
20.3 Considering Byte Order Transfer Differences

Figure 20–3, byte 3 of a little-endian longword corresponds to byte 0 of a big-
endian longword, and byte 2 corresponds to byte 1. For a word transfer, byte 1 of
a little-endian word corresponds to byte 0 of a big-endian word.

When a driver, using a little-endian bus, performs write transfers to a big-
endian VME device, it must swap the bytes to account for the difference in
byte alignment. Two system macros (SWAPWORD and SWAPLONG) can be
used to swap little-endian data to big-endian data. These macros are defined in
SYS$LIBRARY:VMESUPPORT.MLB and are described in the OpenVMS VAX
Device Support Reference Manual.

These macros are required for the XMI-to-VMEbus adapters. The
TURBOchannel-to-VME adpaters provide a hardware-assisted byte swap,
but if you are porting a driver from an XMI system to a TURBOchannel system,
the macro calls will remain valid.

For specific DMA and PIO byte alignment requirements, refer to both the device
and adapter technical manuals.

Figure 20–3 Little-Endian Versus Big-Endian Byte Alignment

Little−Endian
Byte Alignment

Big−Endian
Byte Alignment

0 1 2 3

0 1

3 2 1 0

1 0

Longword

Word

Longword

Word

ZK−3729A−GE

20.4 Handling Interrupts
VAX peripheral devices request interrupts at interrupt priority levels (IPLs) 20
to 23 because device interrupts need to preempt most user and system software
functions. For XMI-based I/O systems, the power-up default sets four VME
interrupt request levels to four XMI priority levels with read-acknowledge signal
mode enabled. On TURBOchannel-based I/O systems, the VME subsystem
interrupts at one priority level (IPL 20). The driver uses the DPT_STORE macro
to store the address of its interrupt service routine (ISR) in VEC$L_ISR. (See
Chapter 6.) Each interrupt service routine corresponds to an interrupt vector
on an I/O bus. For further information on interrupt service routines, refer to
Section 14.3.3.

The XMI-based I/O systems use direct-vector interrupt dispatching and the
TURBOchannel-based I/O systems use non-direct-vector interrupt dispatching
(see Section 14.3). Vector addresses are established by the SYSGEN CONNECT
command (see Section 20.10).

20–4

VMEbus Device Driver Support
20.5 DMA Operations

20.5 DMA Operations
Direct memory access (DMA) I/O operations for VMEbus devices are similar
to the Q22–bus DMA operations described in the Chapter 14. As shown in
Figure 20–4, the VMEbus adapter sends data through the direct-DMA path
between the VAX host and the VME device. The direct data path (DDP) allows
VME transfers to access randomly-ordered physical addresses.

The VME address space varies according to the specific VME device and is
identified as A16, A24, or A32 space. A32 is the largest address space; it
allows up to 4 gigabytes of space using 32-bit addresses. A24 space uses 24-bit
addresses, and A16 space uses 16-bit addresses. Note that DMA operations are
not permitted with A16 devices.

Figure 20–4 VMEbus DMA to and from VAX Host

VME Address Space

4GB

VME Device

A32 I/O Space

A32 DMA Space

A24 I/O Space

A24 DMA Space

A16 Space

ZK−3752A−GE

0

VMEbus
Adapter

VAX User
P0 Space

Mapping
Registers

Map

A DMA transaction initiated by a VME device to locations in VAX memory can
consist of 1-, 2-, 3-, or 4-byte single-access transfer cycles or 1-, 2-, or 4-byte read
and write cycles in block mode. Up to 256 bytes (per block) of VME data can be
transferred to the adapter toward VAX memory. Note that in order to provide
atomicity of single-byte read-modify-write DMA transfers to VAX memory across
the 32-bit VMEbus, each byte must align to a longword boundary.

There are three operating system routines provided for VME DMA operations:

• IOC$ALOVMEMAP_DMA or IOC$ALOVMEMAP_DMAN

• IOC$LOADVMEMAP_DMA or IOC$LOADVMEMAP_DMAN

• IOC$RELVMEMAP_DMA or IOC$RELVMEMAP_DMAN

20–5

VMEbus Device Driver Support
20.5 DMA Operations

A driver that performs DMA transfers to and from VAX memory must
allocate a set of map registers using either the IOC$ALOVMEMAP_DMA
or the IOC$ALOVMEMAP_DMAN routine. It must then call either the
IOC$LOADVMEMAP_DMA or the IOC$LOADVMEMAP_DMAN routine to insert
a page frame number (PFN) in each allocated map register. (See Figure 20–5.)
Note that one page (512 bytes) of VME space is mapped into the VAX address
space with each map register.

For TURBOchannel-to-VMEbus drivers, certain flags can be set by the map
register loading routines (IOC$LOADVMEMAP_DMA or IOC$LOADVMEMAP_
DMAN) to program the map registers to perform byte swapping of words or
longwords on incoming and outgoing data. For XMI-to-VMEbus drivers, read-
modify-write (RMW) access can be enabled on a per page basis. See Table 20–1
and the OpenVMS VAX Device Support Reference Manual.

Figure 20–5 VMEbus DMA Map Registers

31

31 09

29 0

1 23456 1

40−Bit XMI/VME DMA Map Register (PMR)

Page Frame NumberV 0

PMR Entry

Super/User Mode

Addr
Type

V

Byte Swap

TC/VME DMA Map Register (PMR)

ZK−5182A−GE

Table 20–1 TURBOchannel/VME DMA Map Register VMEbus Flag Selections

Field Mask Values Description

Read Modifiy Write <7> MVIB$M_RMW RMW is disabled by default

Supervisor/User Mode
<6:5>

VME$M_SUPUSER Supervisor and user mode
(default)

Address Type <4:3> VME$M_A24_32 A24 and 32 space (default)

Byte Swap Mode <2:1> Default is no byte swap

VME$M_SWAPB Swap bytes

VME$M_SWAPW Swap words

VME$M_SWAPL Swap longwords

Once the space is mapped, VME devices are free to access this VAX memory
with DMA read and write cycles. When the DMA completes, the driver must call
either the IOC$RELVMEMAP_DMA or the IOC$RELVMEMAP_DMAN routine to
free the registers.

20–6

VMEbus Device Driver Support
20.5 DMA Operations

Note that the DMA map routines ending in _DMAN are provided for DMA
operations with more than one map register. They are passed information by way
of the general purpose registers instead of data structures. For more information
on the DMA map routines, see OpenVMS VAX Device Support Reference Manual.

20.6 Programmed I/O Operations and I/O Mapping
A program can access the VME I/O subsystem by mapping to VAX I/O address
space using a set of programmed I/O (PIO) map registers provided by the VME
adapter. When allocated to the program and properly loaded with VME page
frame numbers, these map registers are assigned permanent VAX I/O space
locations. Thus, when a data transfer is performed to one of those I/O space
location, it accesses the mapped VMEbus address.

Three operating system routines are provided for programmed I/O VMEbus
support:

• IOC$ALOVMEMAP_PIO

• IOC$LOADVMEMAP_PIO

• IOC$RELVMEMAP_PIO

These routines are similiar to those supplied for DMA transfers, permitting the
driver to allocate, load, and release the map registers. For detailed information
on these routines, see the OpenVMS VAX Device Support Reference Manual.

As shown in Figure 20–4, VME memory space or address ranges can vary
depending on the device. Thus, there are three modes of PIO access to a VME
device’s address space from a program:

• Short supervisor mode

• Standard supervisor mode

• Extended supervisor mode

The short supervisor mode permits access to 64KB of VME address space using
16-bit addresses (A16 space). Standard supervisor mode permits access to 16MB
of VME address space using 24-bit addresses (A24 space). Extended supervisor
mode permits access to VME address space beyond 16MB using 32-bit addresses
(A32 space). Refer to the specific device manual for memory requirements.

For the XMI-based I/O systems, one PIO map register is allocated to the system
when the system is booted, mapping the lower 64KB of VME A16 space into
system space with word access mode enabled.. TURBOchannel-based I/O systems
must use 16 PIO map registers to map VME A16 space. Figure 20–6 shows the
format of the PIO map registers and Table 20–2 lists the programmable options
available using the VMEbus flags. The driver selects these options when the PIO
map registers are loaded by routine IOC$LOADVMEMAP_PIO (see the OpenVMS
VAX Device Support Reference Manual for details). Refer to the adapter technical
manual for the physical starting address of the I/O adapter space.

20–7

VMEbus Device Driver Support
20.6 Programmed I/O Operations and I/O Mapping

Figure 20–6 VMEbus PIO Map Register

31 020 19 18 17 16 15

VME Address Offset Not Used

XMI/VME PIO Map Register (VAOR)

Data Length

Address Length (type)

31 0

V

12 11 10 9 8 4 3 2 1

VME Address

TC/VME PIO Map Register (PMR)

Function Code Byte Swap

Addr
Size

Data
Type

ZK−5183A−GE

Table 20–2 TURBOchannel/VME PIO Map Register VMEbus Flag Selections

Field Selectable Mask Values Description

Function Code <11:10> Default is user data area

VME$M_UPROG User program area

VME$M_SDAT Supervisor data area

VME$M_SPROG Supervisor program area

Address Size <9:8> VME$M_A32 A32 address space

VME$M_A24 A24 address space

VME$M_A16 A16 address space

Data Type <4:3> VME$M_BYTEDTYP Byte transfer

VME$M_WORDDTYP Word transfer

VME$M_LONGDTYP Longword transfer

Byte Swap Mode <2:1> Default is no byte swap

VME$M_SWAPB Swap bytes

VME$M_SWAPW Swap words

VME$M_SWAPL Swap longwords

The CSR offset value (specified with the SYSGEN CONNECT command when
loading the driver) is limited to a word so the maximum range is from 0 to 64KB.
If the CSR for a device is located in the lower 64KB and requires word access, the
proper register address will be passed to the driver by established Q22–bus driver
methods, such as IDB$L_CSR and R4 of the unit and controller initialization
routines. (Note that for the VAX 7000 series and VAX 10000 series systems, this
address is a pseudo CSR address (see Section 20.7.1). For all other systems, it
is a system virtual address.) All other CSR accesses outside this range must be
handled by the driver as a special event.

20–8

VMEbus Device Driver Support
20.7 VAX 7000 Series and VAX 10000 Series Systems

20.7 VAX 7000 Series and VAX 10000 Series Systems
The VAX 7000 series and VAX 10000 series systems use a distributed bus
architecture that features a two-level I/O subsystem supporting up to four
optional interfaces to ‘‘remote’’ VME buses.

Devices connected to a remote bus cannot be directly addressed via the physical
address space of the system. Thus, traditional methods of accessing I/O device
control and status registers are not available for these devices. Instead, a
mechanism known as a hardware I/O mailbox is used.

20.7.1 Data Structures
A hardware I/O mailbox is a hardware-defined data structure in system memory.
The operating system supports the hardware I/O mailbox mechanism through
a a software structure known as a control register access mailbox (CRAM). The
CRAM contains information describing the type of remote bus transaction (CSR
read or CSR write), the bus address of a particular device’s CSR, and various
flags.

To access a CSR of a device attached to a remote bus, the address of the CRAM
is passed to the system bus I/O Processor (IOP) which, in turn, forwards it to the
remote bus adapter. The command specified in the CRAM is handed to the bus
and any resulting data or status information is returned to the CRAM.

For more information about the CRAM data structure, refer to the OpenVMS
VAX Device Support Reference Manual.

Many system data structures and arrays contain a system virtual address that
maps to a physical I/O address. Because this mapping is not defined for the
I/O address space of remote devices on VAX 7000 series and VAX 10000 series
systems, remote device registers are addressed using pseudo CSR addresses
(PCAs).

The PCA is a 32-bit value that identifies a specific register for a specific device on
a remote I/O bus. Figure 20–7 shows the structure of a PCA for the VMEbus.

Figure 20–7 VMEbus Pseudo CSR Address

ZK−5455A−GE

Reserved (must be zero)

Hose number (0:3)
XMI node number (0:F)

Reserved (must be zero) Register offset
(0:FFFFF)

VME flag (must be set)

31 29 28 26 23 22 01920

The base PCA maps to the device register at offset zero; the device’s other
registers are mapped by adding the register offset to the base PCA. A
programmed I/O (PIO) register is accessed by specifiying an additional argument
in conjunction with the PCA (see Section 20.7.2.)

During initialization, the base PCA of a device replaces the system virtual
address normally contained in system data structures.

20–9

VMEbus Device Driver Support
20.7 VAX 7000 Series and VAX 10000 Series Systems

20.7.2 System Macros
Two system macros support remote bus CSR access: READ_CSR and WRITE_
CSR. These macros expand to include code that supports both the traditional CSR
access method, as well as hardware mailbox I/O required on the VAX 7000 series
and VAX 10000 series systems. A bit in UCB$L_DEVCHAR2, set by the driver
loading procedure, indicates if the device uses mailbox I/O.

In most cases, a single invocation of the READ_CSR or WRITE_CSR macro
directly replaces a VAX MOVx type of instruction. More complex instructions
(such as BICx, BISx, DECx, INCx, and so on) require an invocation of the READ_
CSR macro to local memory, modification of the data, and then an invocation of
the WRITE_CSR macro back to the device CSR. The test class of instructions
(such as BBxx and BITx) require an invocation of the READ_CSR macro into local
memory and then testing the data locally.

READ_CSR and WRITE_CSR have identical arguments.

READ_CSR source, dest[, length][, error][, environ], vme=x
WRITE_CSR source, dest[, length][, error][, environ], vme=x

For READ_CSR, source is the address in I/O space of the register to be read and
dest is the location in memory where the data will be returned. For WRITE_
CSR, source is that local address of the data to be written and dest is the
address in I/O space of the register to be written. Note that the I/O space address
is a pseudo CSR address for remote devices on a VAX 7000 series or VAX 10000
series system; on all others is is a traditional system virtual address.

The optional length argument specifies the type of CSR access. Valid values
are BYTE, WORD, and LONG. Longword access is the default if length is not
specified.

The optional argument error specifies how an access failure is to be handled.
The optional argument environ specifies how the system is to determine the
access method to use.

The vme argument specifies the PIO register. Note that this argument is
required; there is no default.

For both macros, the address of the device’s unit control block (UCB) must be in
general register R5 when the macro is invoked.

For more information on using these macros, refer to the OpenVMS VAX Device
Support Reference Manual.

20.7.3 Processing
On systems that support the traditional method of CSR access, the READ_CSR
and WRITE_CSR macros expand to a set of standard MOVx instructions. On
VAX 7000 series and VAX 10000 series systems, they expand to code that calls
system routine EXE$CRAM_CMD to handle processing. This routine performs
four basic functions.

1. Allocates a CRAM structure by calling IOC$ALLOCATE_CRAM. If no CRAMs
are currently available, more memory is allocated and configured as CRAMs.

2. Fills in the CRAM with information from the macro invocation and the
device’s UCB.

20–10

VMEbus Device Driver Support
20.7 VAX 7000 Series and VAX 10000 Series Systems

3. Passes the CRAM to the IOP by calling IOC$CRAM_IO. This routine queues
the operation and waits for it to finish. If the operation is a read, data is
returned to the location specified in the macro invocation.

4. Deallocates the CRAM by calling IOC$DEALLOCATE_CRAM.

For more information about these system routines, refer to the OpenVMS VAX
Device Support Reference Manual.

20.8 Coding a VMEbus Device Driver
Write the device driver in one or more source files following the requirements
described in Part II. Appendix F provides a code example of a DR11 VME type
driver with a DMA interface. In addition to the DR11 driver, other VME driver
samples are provided in SYS$EXAMPLES.

The VME support routines described in the OpenVMS VAX Device Support
Reference Manual are supplied in a separate object library to which the driver
is linked. When the driver is linked to include the VME support routines (as
described in Section 20.9), the routines will reside in PSECT $$$112_VME_
SUPPORT of the resulting image. For information on other PSECTs, see
Chapter 6 and Chapter 12.

20.8.1 Porting UNIX Based Drivers
To port UNIX based drivers to OpenVMS VAX, data structure and system
routine names must be translated to the corresponding OpenVMS VAX names.
Table 20–3 provides a list of UNIX to OpenVMS name correlations. Note that in
some cases, these correlations are not exact.

Table 20–3 UNIX-to-OpenVMS Driver Correlations

UNIX Name UNIX Description OpenVMS Name OpenVMS Description

u User current process structure PCB Process Control Block

iobuf Device table (block device control
block xxxxtab.xxxx)

UCB Unit Control Block

buf Block I/O descriptor IRP I/O Request Packet

xx_device Device Data Structure (CSRs and
data registers)

UCB extension Specific device fields

clist Character driver temporary storage
(line accumulator)

SILO buffer Service in logical order buffer for
the channel

cblocks 24 byte packets Data input packets in serial
channel

dev_init Device initialization table in conf.c DPT Device prologue table

bdevsw Device switch tables in conf.c for
block driver

DDT Driver dispatch table

cdevsw Device switch tables in conf.c for
character driver

DDT Driver dispatch table

dev_addr Device address table in conf.c for
interrupt handler vectors

CRB-VEC Channel request block- interrupt
transfer vector block

uba_driver ADP Adapter control block

(continued on next page)

20–11

VMEbus Device Driver Support
20.8 Coding a VMEbus Device Driver

Table 20–3 (Cont.) UNIX-to-OpenVMS Driver Correlations

UNIX Name UNIX Description OpenVMS Name OpenVMS Description

uba_ctrl ADP ADP Extension

vbadata ADP ADP Extension, bus specific

swap_lw_
bytes

Byte swap kernel routine IOC$VME_
BYTE_SWAP_
LONG

Swaps bytes of longword

swap_word_
bytes

Byte swap kernel routine IOC$VME_
BYTE_SWAP_
WORD

Swaps bytes of a word

probe Finds and checks status of device in
system

Controller
Initialization

Prepares controller for operation
and clears device status registers

attach Establishes communication with
device

Unit
Initialization

Prepares a device for operation

read Reads data from a device IO$_READBLK Performs an I/O read from a
device

write Writes data to a device IO$_
WRITEBLK

Performs an I/O write to a device

physio Perform I/O to/from user space
kernel-support routine

$QIO Queue-I/O request system
service

start Entry point start routine STARTIO Start-I/O routine

open Entry point open routine $ASSIGN System service routine

close Entry point close routine $DASSGN System service routine

intr Entry point interrupt routine INTERRUPT Interrupt service routine

strategy Entry point strategy routine FDT Function decision table QIO
handling routine

config System Configuration utility SYSGEN System Generation utility

SYSNAME System configuration file SYSGEN device table, ACF and
DDB

20.9 Assembling and Linking a VMEbus Driver
Assemble the source files with the system’s macro library
(SYS$LIBRARY:LIB.MLB) and include VMESUPPORT. For example:

$ MACRO QVDRIVER.MAR+SYS$LIBRARY:LIB.MLB/LIBRARY -
_$ +SYS$LIBRARY:VMESUPPORT/LIBRARY

Link the driver object file with the system global symbol table and
the VME routines object library. The global symbol table is located in
SYS$SYSTEM and called SYS.STB and the VME routines are located in
SYS$SHARE:VME$LIBRARY.OLB. If the driver consists of several source files,
you must specify the file that contains the driver prologue table as the first file in
the list. The linker-options file must contain a BASE statement specifying a zero
base for the executable image.

The following is an example of how to link a VME device driver with the VME
support routines:

20–12

VMEbus Device Driver Support
20.9 Assembling and Linking a VMEbus Driver

$ CREATE QVDRIVER.OPT
BASE=0

Ctrl/Z

$ LINK /NOSYSSHR/NOTRACEBACK/NODEBUG/CONTIGUOUS QVDRIVER.OBJ,-
_$ SYS$SHARE:VME$LIBRARY/LIBRARY/INCLUDE=-
_$ (VME_ROUTINES, VMEDMA_XMI, VMEPIO_XMI, VMEDMA_TC, VMEPIO_TC)/-
_$ QVDRIVER.OPT/OPTIONS,-
_$ SYS$SYSTEM:SYS.STB/SELECTIVE_SEARCH

The resulting image must consist of a single image section. The linker will report
that the image has no transfer address; this report should be ignored. Note that
if you do not use the VME DMA or PIO routines, you do not need to include
VME$LIBRARY or VME_ROUTINES in the command line.

Once you have linked or relinked a driver, copy its image file to the
SYS$LOADABLE_IMAGES directory. By default, the SYSGEN commands
LOAD and CONNECT search for a driver in the SYS$LOADABLE_IMAGES
directory.

20.10 Loading a VME Device Driver
You can load a VME device driver during the bootstrap program (for example, in
SYSTARTUP.COM) or any time after the system is booted. Note that you cannot
autoconfigure VME devices.

To load the driver into system virtual memory, run the System Generation utility
(SYSGEN) from the system manager’s account or from an account with the
CMKRNL privilege. SYSGEN loads a VME device driver and creates the device’s
I/O data structures. For more detail on loading a driver with SYSGEN, refer to
Chapter 12.

Invoke SYSGEN by entering the following command:

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN responds with the following prompt and waits for further input:

SYSGEN>

Use the CONNECT command (of SYSGEN) to load the driver and create the
device’s I/O database. You must specify the device name, the nexus number or
decimal number of the VMEbus adapter, the VME address space CSR offset, and
the interrupt vector offset.

The CSR offset is a full word. The offset allows a CSR to fall anywhere in the
first 64KB of VME address space. The interrupt vector is a byte offset with
offsets up to 256 bytes. These vector offsets must be longword aligned.

You can obtain the adapter nexus or decimal number for the VME adapter
by issuing the SHOW/ADAPTER command, as shown in Example 20–1.
and Example 20–2. For a VAXstation 4000 TURBOchannel example, see
Section 19.6.

As shown in Example 20–3 and Example 20–4, the SHOW/BUS command can
also be used to list nexus numbers.

20–13

VMEbus Device Driver Support
20.10 Loading a VME Device Driver

Example 20–1 Using the SHOW/ADAPTER Command (VAX 6000 Series
System)

SYSGEN> SHOW/ADAPTER

CPU Type: VAX 6000-530

Nexus (decimal) Generic Name or Description
0010 16 XMI - 6000-500 processor
0020 32 XMI - 6000-500 processor
0040 64 XMI - memory module
0070 112 XMI - memory module
00A0 160 XMI - Disk/Tape Adapter (KDM70)
00C0 192 XMI - VME adapter
00D0 208 XMI - NI Adapter (DEMNA)

Example 20–2 Using the SHOW/ADAPTER Command (VAX 7000 Series
System)

SYSGEN> SHOW/ADAPTER

CPU Type: VAX 7000-620

Nexus (decimal) Generic Name or Description
0080 128 XMI - Laser adapter
00E0 224 XMI - DSSI Adapter KFMSA
0180 384 XMI - Laser adapter
01B0 432 XMI - VME adapter
01C0 448 XMI - Disk/Tape Adapter (KDM70)
01E0 480 XMI - NI adapter (DEMNA)

Example 20–3 Using the SHOW/BUS Command (VAX 6000 Series System)

SYSGEN> SHOW/BUS

Cpu Type: VAX 6000-530 Cpu Connection: XMI
Bus Node Generic Name Nexus(hex) Connection Address

XMI 00 01 XMI - 6000-500 processor 0010
XMI 00 02 XMI - 6000-500 processor 0020
XMI 00 04 XMI - memory module 0040
XMI 00 07 XMI - memory module 0070
XMI 00 0A XMI - Disk/Tape Adapter KDM70 00A0
XMI 00 0C XMI - VME adapter 00C0
XMI 00 0D XMI - NI adapter (DEMNA) 00D0

20–14

VMEbus Device Driver Support
20.10 Loading a VME Device Driver

Example 20–4 Using the SHOW/BUS Command (VAX 7000 Series System)

SYSGEN> SHOW/BUS

Cpu Type: VAX 7000-620 Cpu Connection: LSB
Bus Node Generic Name Nexus(hex) Connection Address

XMI 00 08 XMI - Laser adapter 0080
XMI 00 0E XMI - DSSI Adapter KFMSA 00E0
XMI 01 08 XMI - Laser adapter 0180
XMI 01 0B XMI - VME adapter 01B0
XMI 01 0C XMI - Disk/Tape Adapter KDM70 01C0
XMI 01 0E XMI - NI adapter (DEMNA) 01E0

Examples of a CONNECT command to load a driver are shown in Example 20–5.

Example 20–5 Loading a Driver with the CONNECT Command

SYSGEN> CONNECT QVA0/ADAPTER=192/CSR=%X9000/DRIVER=QVDRIVER/VECTOR=%XB0

This command loads the driver QVDRIVER (if it is not already loaded) and
creates the data structures (DDB, CRB, IDB, and UCB) needed to describe QVA0.
It also calls the driver’s controller and unit initialization routines for execution.
In this example, QVA0 is the SYSGEN device designator and number (QV is
your VME mnemonic, A0 is device #0). Note that Digital reserves driver names
begining with the letters J and Q for its customers. This ensures there are no
conflicts with any other driver names on your system. Since SYSGEN examines
the name area of your device module ROM to find names of active devices on a
bus, you should prefix your device name in ROM, with the letters J or Q.

Note that Example 20–5 specifies a driver which has its CSRs beginning at
address 900016 of VME A16 word-access space. The example also shows an
interrupt vector of B016. Upon a VME interrupt on systems with a DWMVA
adapter, VME devices generate a status byte that can contain a vector value
between 0016 and FC16. On systems with a DWTVX adapter, interrupt vector
values can be from 1016 to FC16.

20–15

21
Mapping to I/O Space and the

Connect-to-Interrupt Facility

Programs written in VAX MACRO can interface with the I/O subsystem by
using OpenVMS RMS, by using the Queue I/O Request ($QIO) system service,
or by mapping to I/O address space and connecting to a device interrupt vector.
Programs written in a high-level language can interface with the I/O subsystem
using the same methods as a VAX MACRO program, or they can issue the I/O
statements specific to that language. In the latter case, the program interfaces
with the I/O subsystem by means of the OpenVMS Run-Time Library.

A user program can interface with the I/O subsystem at one of several levels,
depending on its requirements. At each level, the user program makes trade-offs
between ease of use and execution speed. As a general rule, the closer to the
system executive that a user program interfaces, the less overhead is involved in
the I/O operation. The connect-to-interrupt capability offers the least overhead.

A process with suitable privileges can connect to a device interrupt vector
or map the system’s I/O address space into process virtual address space or
both. Connecting to a device interrupt vector allows your process to respond to
interrupts from the device with minimal overhead. Mapping system I/O address
space allows your process to access device registers from the main program or
from an AST procedure.

A process normally uses these features for devices that do not have system
drivers. These devices must not be direct memory access (DMA) devices, and they
must be attached to the UNIBUS or Q22–bus. Examples of such devices are the
AXV11–C and the KW11–P.

21.1 I/O Address Space
In a VAX system, I/O address space is assigned physical address locations of
2000000016 and higher (F2000016 and higher for VAX–11/730 and VAX–11/780
systems). I/O address space contains device registers that a driver or user process
can read and write to control a device. Each device controller has an associated
control and status register (CSR) in I/O address space. Device registers for each
device are located at an offset from the device’s CSR.

Macros of the format $IOxxxDEF (where xxx represents a specific VAX system),
contained in SYS$LIBRARY:LIB.MLB, define symbols describing the layout of I/O
address space. Table 21–1 describes these macros and the symbols they define for
each VAX system.

21–1

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.1 I/O Address Space

Table 21–1 Symbols Defined by the $IOxxxDEF Macros

Symbols Meaning Value (Hex)

For VAX 6000-2xx/6000-3xx Series defined by macro $IO9CCDEF

IO9CC$AL_IOBASE
IO9CC$C_BIWINDOW
IO9CC$C_BIWSIZ
IO9CC$C_PERXBI

Start of I/O address space
Offset to node 0 window space
Size of window space
Size of adapter address space

20000000
400000
40000
2000000

For VAX 6000-4xx Series defined by macro $IO9RRDEF

IO9RR$AL_IOBASE
IO9RR$C_BIWINDOW
IO9RR$C_BIWSIZ
IO9RR$C_PERXBI

Start of I/O address space
Offset to node 0 window space
Size of window space
Size of adapter address space

20000000
400000
40000
2000000

For VAX 85x0/8700/88x0 defined by macro $IO8NNDEF

IO8NN$AL_NBIB_0
IO8NN$AL_NBIB_1
IO8NN$AL_NBIB_2
IO8NN$AL_NBIB_3
IO8NN$AL_NBIB_4
IO8NN$AL_NBIB_5
IO8NN$AL_NODESP
IO8NN$AL_NDSPER

Start of I/O address space for VAXBI 0
Start of I/O address space for VAXBI 1
Start of I/O address space for VAXBI 2
Start of I/O address space for VAXBI 3
Start of I/O address space for VAXBI 4
Start of I/O address space for VAXBI 5
Offset to node 0 window space
Size of window space

20000000
22000000
24000000
26000000
28000000
2A000000
400000
40000

For VAX 82x0/83x0 defined by macro $IO8SSDEF

IO8SS$AL_NODESP
IO8SS$AL_NDSPER

Address of node 0 window space
Size of window space

20400000
40000

For VAX 8600/8650 defined by macro $IO790DEF

IO790$AL_IOA0
IO790$AL_IOA1
IO790$AL_UB0SP

Start of I/O address space for SBI0
Start of I/O address space for SBI1
Offset to start of adapter address space
for first UNIBUS

20000000
22000000
100000

For VAX–11/780 and VAX–11/785 defined by macro $IO780DEF

IO780$AL_IOBASE
IO780$AL_UB0SP

Start of I/O address space
Start of adapter address space for first UNIBUS

20000000
20100000

For VAX–11/750 defined by macro $IO750DEF1

IO750$AL_IOBASE
IO750$AL_UBBASE
IO750$AL_MBBASE
IO750$AL_UB0SP

Start of I/O address space
Start of UBA0 adapter register space
Start of MBA0 adapter register space
Start of adapter address space for first UNIBUS

F20000
F30000
F28000
FC0000

For VAX–11/730 defined by macro $IO730DEF

1The VAX–11/750 system has fixed MASSBUS adapters (UBBASE, MBBASE) in contrast to the VAX–11/780 system,
which has floating MASSBUS adapters, and the VAX–11/730, which does not have MASSBUS adapters.

(continued on next page)

21–2

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.1 I/O Address Space

Table 21–1 (Cont.) Symbols Defined by the $IOxxxDEF Macros

Symbols Meaning Value (Hex)

For VAX–11/730 defined by macro $IO730DEF

IO730$AL_IOBASE
IO730$AL_UB0SP

Start of I/O address space
Start of adapter address space for UNIBUS

F20000
FC0000

MicroVAX 3400 Series defined by $IO640DEF macro

IO640$AL_QB0SP Start of adapter address space for Q22–bus 20000000

MicroVAX 3600/3900 Series defined by $IO650DEF macro

IO650$AL_QB0SP Start of adapter address space for Q22–bus 20000000

VAX 4000 Series defined by $IO670DEF/$IO1303DEF macro

IO670$AL_QB0SP/IO1303$AL_QB0SP Start of adapter address space for Q22–bus 20000000

MicroVAX II defined by $IOUV2DEF macro

IOUV2$AL_QB0SP Start of adapter address space for Q22–bus 20000000

The number of registers and their locations varies from device to device. The
PDP–11 Peripherals Handbook provides the necessary information for Digital-
supplied devices. The VAX Hardware Handbook contains information about the
layout of I/O address space.

From the symbols defined by the macros described in Table 21–1, you can derive
the starting physical addresses of UNIBUS or Q22–bus adapter address space
for the various VAX systems. Table 21–2 lists the starting physical addresses
for UNIBUS adapters on the VAX 8600/8650, VAX–11/780, VAX–11/785, VAX–11
/750, and VAX–11/730 systems, as well as the starting physical addresses for
MicroVAX/Q22–bus interface address space.

Note

To access UNIBUS device CSRs you must add 3E00016 to the addresses
listed in Table 21–2. This operation is not necessary when you use the
values supplied for MicroVAX/Q22–bus systems.

For VAX 85x0/8700/88x0, VAX 82x0/83x0, and VAX 6000 series systems,
Example 21–1 illustrates the calculations that are necessary to determine
the location of the adapter address space for a given UNIBUS adapter (DWBUA
or DWMBA) on a VAXBI bus. For additional information on the layout of VAXBI
I/O address space, see the discussion and illustrations in Section 16.2.

21–3

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.1 I/O Address Space

Table 21–2 UNIBUS and Q22–bus Adapter Address Space

UNIBUS
Adapter
Number VAX–11/730 VAX–11/750

VAX–11/780
VAX–11/785 MicroVAX Systems

VAX 8600
SBI0/SBI1
VAX 8650
SBI0/SBI1

0 00FC0000 00FC0000 20100000 20000000 20100000
/22100000

1 — 00F80000 20140000 — 20140000
/22140000

2 — — 20180000 — 20180000
/22180000

3 — — 201C0000 — 201C0000
/221C0000

Example 21–1 Locating the Adapter Address Space of a UNIBUS Adapter on a VAXBI Bus

For VAX 85x0/8700/88x0:

IO8NN$AL_NBIB_n ;Start of I/O address space for given
;VAXBI bus

+ IO8NN$AL_NODESP ;Offset to window space
+ IO8NN$AL_NDSPER * VAXBI-node-ID-of-DWBUA ;Offset to given VAXBI node window space
+ UNIBUS-address-of-device-CSR ;Offset to device CSR

For VAX 82x0/83x0:

IO8SS$AL_NODESP ;Start of window space
+ IO8SS$AL_NDSPER * VAXBI-node-ID-of-DWBUA ;Offset to given VAXBI node window space
+ UNIBUS-address-of-device-CSR ;Offset to device CSR

For VAX 6000 series:

IO9CC$AL_IOBASE ;Start of I/O address space
+ IO9CC$_BIWINDOW ;Offset to node 0 window space
+ XMI-node-ID-of-XBI * IO9CC$C_PERXBI ;Offset to given VAXBI bus
+ IO9CC$C_BIWSIZ * VAXBI-node-ID-of-DWMBA ;Offset to given VAXBI node window space
+ UNIBUS-address-of-device-CSR ;Offset to device CSR

For most VAX processors, the page frame number (PFN) of a physical
page in memory is contained in bits 9 through 29 of its physical address (see
Figure 21–1). Bit 29 of the address is clear to indicate a physical memory address
and set to indicate an address in I/O address space. Bits 0 through 8 specify the
byte address within the page.

Figure 21–1 Format of a Physical Address

31 9 8 0

Page Frame Number Byte

ZK−4845−GE

30 29

21–4

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.2 PFN Mapping

21.2 PFN Mapping
For a process to gain access from an outer access mode to I/O address space or
to any page of physical memory, it must map that page into its virtual address
space. When a process maps a page by specifying its page frame number, it
completely bypasses system memory management and creates its own window to
the page. As a result, the protection functions that the operating system normally
performs are not performed for PFN mapping:

• No checks are performed to ensure that no other processes are mapped to the
page and modifying it.

• No reference count is maintained. A process can delete a global section
mapped by page frame numbers when other processes are still using it; this
is not the case for other types of global sections.

Modifying pages mapped by page frame numbers can have unpredictable results
and can adversely affect system operation, especially if the operating system is
also using these pages or accessing devices whose registers are in the same pages.
Because PFN-mapped pages are not inherently protected from such modification,
a process must have the PFNMAP privilege to use this capability.

When used for PFN mapping, the Create and Map Section ($CRMPSC) system
service designates the specified page(s) as a global or private section and maps
the section into the requesting process’s virtual address space. The pages can
be located anywhere in the VAX system’s local memory, in MA780 memory (if a
multiport memory unit is connected to the system), or in I/O address space.

The format and conventions for PFN mapping (that is, mapping a physical page
frame section) are similar to those for mapping a disk file section. The $CRMPSC
system service has the following general formats:

VAX MACRO Format
$CRMPSC [inadr] [,retadr] [,acmode] [,flags] [,gsdnam] [,ident] [,relpag] [,chan] -

[,pagcnt] [,vbn] [,prot] [,pfc]

High-Level Language Format
SYS$CRMPSC ([inadr] [,retadr] [,acmode] [,flags] [,gsdnam] [,ident] [,relpag] [,chan] -

[,pagcnt] [,vbn] [,prot] [,pfc])

The relpag, chan, and pfc arguments are not applicable to mapping by
page frame number. The inadr, retadr, acmode, gsdnam, ident, and prot
arguments have the same functions regardless of whether you specify page frame
number mapping. The OpenVMS System Services Reference Manual further
describes these arguments.

The following arguments can have values specific to PFN mapping.

Arguments
[flags]
Mask defining the section type and characteristics. This mask is the logical OR
of the flag bits you want to set. The $SECDEF macro defines symbolic names for
the flag bits in the mask. The SEC$M_PFNMAP flag bit must be set to indicate
mapping by page frame number. The SEC$M_PFNMAP flag setting identifies
the memory for the section as starting at the page frame number specified in the
vbn argument and extending for the number of pages specified in the pagcnt
argument.

21–5

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.2 PFN Mapping

If appropriate, Table 21–3 lists the flags that can be set.

Table 21–3 Section Type Flag Bits

Flag Description

SEC$M_GBL Pages form a global section. The default is private section.

SEC$M_EXPREG Pages are mapped into the first available space. By default,
pages are mapped into the range specified by the inadr
argument.

SEC$M_WRT Pages form a read/write section. By default, pages form a
read-only section.

SEC$M_PERM Pages are permanent. By default, pages are temporary.

SEC$M_SYSGBL Pages form a system global section. By default, pages form a
group global section.

You must not set either the SEC$M_CRF (copy-on-reference) or the SEC$M_
DZRO (demand-zero) bit when mapping by page frame number.

[pagcnt]
Number of pages in the section; the value of this argument must not be zero.

[vbn]
Page frame number of the first page to be mapped (as opposed to this argument’s
normal usage identifying the starting virtual block number (vbn) within a disk
file). When you are mapping more than one page with a single $CRMPSC system
service request, the pages are physically contiguous starting with the specified
page.

21.2.1 Notes on PFN Mapping
The following considerations apply to PFN mapping.

1. An error in mapping UNIBUS or Q22–bus adapter address space or a
reference to a nonexistent bus address causes a UNIBUS adapter error. This
will cause a system failure on most VAX processors where a machine check
occurs. On processors that do not crash, an entry is made in the system error
log file and the user program continues executing (probably with erroneous
results). The process is not notified of the UNIBUS adapter error.

2. On systems where a UNIBUS power failure can occur without causing
a system failure, a user process receives a machine check exception, if it
is using process space mapping when accessing UNIBUS or Q22–bus I/O
address space during the failure. To survive this exception, the process
must have a condition handler to deal with machine check exceptions. The
OpenVMS System Services Reference Manual discusses condition handlers in
detail.

3. During recovery from a power failure, the processor spends a considerable
amount of time (perhaps 10 to 60 milliseconds) at IPL 31. This action blocks
user processes from executing during the recovery.

4. When a process requests deletion of a PFN-mapped page, the operating
system will wait until there is no direct I/O outstanding for the process before
deleting the page. This is because no reference count is maintained for PFN-
mapped pages. (For example, the operating system cannot determine whether
outstanding direct I/O is for the PFN-mapped page or not.) Applications using

21–6

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.2 PFN Mapping

devices that have direct I/O perpetually outstanding, such as the DR32, must
not delete PFN-mapped pages because this will cause the process to hang in
the MWAIT state.

Once you have mapped to I/O address space, you can read data from a device data
buffer register, because the device registers are now addressable as part of your
process’s virtual memory. The UNIBUS adapter performs the actual mapping
of VAX virtual addresses to the 18-bit UNIBUS addresses that correspond to
device registers. Likewise, the MicroVAX systems perform the mapping of virtual
addresses to 22-bit Q22–bus addresses that correspond to device registers.

See Section 5.2 for a list of restrictions that apply to instruction references to
device register address space.

21.3 Connecting to an Interrupt Vector
You can use the $QIO system service with an appropriate function code to
connect to a device interrupt vector and to specify a user-supplied interrupt
service routine that the operating system executes when the designated device
interrupts. Connecting to a device interrupt vector allows you to do the following:

• Respond to an interrupt within a short time

• Preempt other system processing to handle a real-time event, for example, a
clock interrupt

• Buffer data from a device in real time and return the data to the process at a
later time

• Set an event flag or queue an AST to your process after receiving the
interrupt

An interrupt service routine specified in your process allows it to perform some
of the functions normally performed by a device driver. The connect-to-interrupt
facility, with its system-supplied driver (CONINTERR), thus allows you to avoid
writing a full device driver and loading it into the operating system.

If you must access device registers from user mode (that is, from the main
program or a user-mode AST procedure), you must use the Create and Map
Section ($CRMPSC) system service to map I/O address space, specifying page
frame number (PFN) mapping. The service creates a global or private section
that maps the specified I/O pages into your process’s virtual address space with
suitable protection. The process can then gain access to I/O address space using
perprocess virtual addresses (see Section 21.1 for additional discussion).

You do not need to map I/O address space to access device registers from any of
the following routines specified in the $QIO call connecting to an interrupt vector:

• Unit initialization routine

• Start-I/O routine

• Interrupt service routine

• Cancel-I/O routine

These routines execute in system context and thus can access UNIBUS or
Q22–bus I/O address space, which is mapped as part of system address space.

21–7

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.3 Connecting to an Interrupt Vector

21.3.1 Performing the Connect-to-Interrupt
Connecting to a device interrupt vector allows your program to receive notification
of an interrupt from a designated device by any combination of the following
means:

• By execution of a user-supplied interrupt service routine

• By the setting of an event flag

• By execution of an AST procedure that gains control in process context

In addition, you can specify a cancel-I/O routine that is executed when the process
disconnects from the interrupt vector or is deleted.

Before your program can run, the system manager must have performed the
following actions at system generation time:

• Specify the REALTIME_SPTS system parameter, reserving system page table
entries for use by real-time processes. These system page-table entries are
used to map process-specified buffers in system address space (see the p1
argument description in Section 21.3.2). The REALTIME_SPTS parameter
value must be greater than or equal to the number of pages in buffers
specified by processes connected to interrupt vectors.

• Configure the real-time device by issuing a CONNECT command to the
System Generation utility. This command names the device; its vector,
register, and adapter addresses; and a skeletal driver (CONINTERR) for the
device. (See the description of the CONNECT command in Section 12.2.2 and
in the OpenVMS System Management Utilities Reference Manual.)

At run time the process calls the $ASSIGN system service to associate a channel
with the device. To connect to the device interrupt vector, the process issues a
$QIO call specifying the IO$_CONINTREAD or IO$_CONINTWRITE function
code and as many of the following items as are appropriate:

• An interrupt service routine to be executed when the device generates an
interrupt.

• A unit initialization routine.

• A start-I/O routine.

• A cancel-I/O routine.

• A buffer containing the code to be executed in system context, data (that is,
the previously-listed routines), or both.

• An AST procedure to execute, an event flag to be set after the interrupt
service routine (if any) completes, or both. (If an AST procedure is specified,
an AST parameter may also be specified.)

A nonprivileged process (that is, lacking the CMKRNL privilege) can also connect
to an interrupt vector, but it can only specify an AST procedure to be executed
or an event flag to be set (or both) when an interrupt is generated. The process
can also map the page in UNIBUS or Q22–bus I/O address space containing the
device registers (see Section 21.2).

21–8

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.3 Connecting to an Interrupt Vector

21.3.2 $QIO Connect-to-Interrupt Request to Driver
The format of the $QIO system service to connect to an interrupt vector follows.
This explanation is limited to connecting to an interrupt vector. For a detailed
description of the $QIO system service, see the OpenVMS System Services
Reference Manual.

VAX MACRO Format
$QIO [efn] ,[chan] ,func [,iosb] [,astadr] [,astprm] - [,p1] [,p2] [,p3] [,p4] [,p5] [,p6]

High-Level Language Format
SYS$QIO ([efn] ,[chan] ,func [,iosb] [,astadr] [,astprm] [,p1] [,p2] [,p3] [,p4] [,p5] [,p6])

Arguments

[efn]
[chan]
[iosb]
[astadr]
[astprm]

These arguments apply to the $QIO system service completion, not to device
interrupt actions. For an explanation of these arguments, see the description of
the $QIO system service in the OpenVMS System Services Reference Manual.

func
Function code of IO$_CONINTREAD or IO$_CONINTWRITE. The IO$_
CONINTWRITE function code allows locations in the buffer pointed to by the
p1 argument to be modified; the IO$_CONINTREAD function code makes the
buffer contents read-only.

[p1]
Address of a descriptor for the buffer containing code and/or data. The first
longword records the number of bytes in the buffer; the second longword records
the address of the buffer. The buffer size must not exceed 65,535 bytes.

[p2]
Address of an entry point list. The list consists of four longwords that contain
offsets into the buffer (specified in the p1 argument) of the entry points of
process-specified routines. These longwords and their contents1 are as follows:

Symbol Meaning

CIN$L_INIDEV Offset to unit initialization routine

CIN$L_START Offset to start-I/O routine

CIN$L_ISR Offset to interrupt service routine

CIN$L_CANCEL Offset to cancel-I/O routine

[p3]
Longword containing flags and an optional event flag number specification.

1 The listed symbols are defined by the $CINDEF macro located in the library
SYS$LIBRARY:LIB.MLB.

21–9

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.3 Connecting to an Interrupt Vector

The low-order word contains the inclusive-OR of flags describing options to the
connect-to-interrupt facility. The flags and their meanings are as follows:

Flag Meaning

CIN$M_EFN Set event flag on interrupt.

CIN$M_USECAL Use CALL interface to process-specified routines (default is JSB
interface).

CIN$M_REPEAT Leave process connected to the interrupt vector until the
connection is canceled.

CIN$M_INIDEV Process-specified unit initialization routine is in the buffer
specified in the p1 argument.

CIN$M_START Process-specified start-I/O routine is in buffer.

CIN$M_ISR Process-specified interrupt service routine is in buffer.

CIN$M_CANCEL Process-specified cancel-I/O routine is in buffer.

The high-order word specifies the number of the event flag to be set when an
interrupt occurs. This number is expressed as an offset to CIN$V_EFNUM.

For example, to specify that your interrupt service routine is in the buffer and to
set event flag 4, code p3 as follows:

P3 = <CIN$M_ISR!CIN$M_EFN!4@CIN$V_EFNUM>

See note 3 in the following description for additional information on these flags.

[p4]
Address of the entry mask of an AST procedure to be called as the result of an
interrupt (see Section 21.3.5).

[p5]
AST parameter to be passed to the AST procedure (used as the AST parameter
only if the process-supplied interrupt service routine does not overwrite the
value).

[p6]
Number of AST control blocks to preallocate in anticipation of fast, recurrent
interrupts from the device.

Condition Values Returned

SS$_NORMAL System service successfully completed.

SS$_ACCVIO The caller does not have the appropriate access to the buffer
specified in the p1 argument or to the entry point list specified
in the p2 argument.

SS$_BADPARAM The size of the buffer specified in the p1 argument exceeds
65,535 bytes, or the number of preallocated AST control blocks
specified in the P6 argument exceeds 65,535.

SS$_DISCONNECT A connection is already outstanding for the device, or a
condition described as follows in note 2b has occurred.

SS$_EXQUOTA The process has exceeded its direct I/O limit quota or its AST
limit quota.

SS$_ILLEFC An illegal event flag number was specified.

21–10

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.3 Connecting to an Interrupt Vector

SS$_INSFMEM Insufficient system dynamic memory is available to complete
the system service.

SS$_INSFSPTS Insufficient system page-table entries are available to double
map the process buffer. (The value of the REALTIME_SPTS
SYSGEN parameter must be increased.)

SS$_NOPRIV The process does not have the CMKRNL privilege. This
privilege is only required if the user specifies a buffer to be
used by the process and the process-specified kernel-mode
routines.

SS$_UNASEFC The process is not associated with the cluster containing the
specified event flag.

Privilege Restrictions
The connect-to-interrupt $QIO call does not require privileges if no shared buffer
is specified. If the request specifies a buffer descriptor argument (that is, p1), the
process must have the CMKRNL privilege.

Resources Required/Returned
A connect-to-interrupt request updates the process quota values as follows:

• Subtracts the number of preallocated AST control blocks in the p6 argument
from the number of outstanding ASTs remaining for the process (ASTCNT)

• Subtracts 1 (for the $QIO) from the direct I/O count (DIOCNT)

Notes

1. After the $QIO call is issued, the operation is not completed until the process
or the connect-to-interrupt driver cancels I/O on the channel.

2. The connect-to-interrupt driver can cancel I/O on the channel for a number of
reasons, including the following:

a. The driver cannot set the specified event flag, perhaps because the process
disassociated from the common event flag cluster after requesting that a
flag in that cluster be set.

b. The driver cannot reallocate AST control blocks quickly enough. This
condition can occur because not enough AST control blocks (p6 argument)
were specified, not enough pool space is available for the requested AST
control blocks, or the process ASTCNT quota is exhausted.

c. The driver cannot queue the AST to the process.

3. If no event flag setting was requested in the p3 argument and if no AST
procedure was specified in the p4 argument, p6 is ignored and no AST control
blocks are preallocated. If you requested that an event flag be set or specified
an AST procedure, but did not preallocate any AST control blocks (that is,
p6 is zero), one AST control block is preallocated automatically, because the
system needs one control block to set any event flag or to deliver any ASTs.

If you request an event flag and/or an AST procedure and if you preallocate
any AST control blocks, the CIN$M_REPEAT bit is set automatically in the
longword specified in the p3 argument. Thus, as long as you preallocate
any AST control blocks, your process will automatically remain connected
to the interrupt vector to receive repeated interrupts until the process is
disconnected from the interrupt vector.

If the CIN$M_REPEAT flag is not set, the process is disconnected from the
interrupt vector after the first successful interrupt, and a status code of SS$_
NORMAL is returned.

21–11

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.3 Connecting to an Interrupt Vector

21.3.3 Connect-to-Interrupt Driver (CONINTERR.EXE)
The system connect-to-interrupt driver (CONINTERR) provides a driver interface
to the system on behalf of the process. CONINTERR connects the process to the
device by executing the following steps:

1. Validates the arguments to the $QIO system service call, such as the
accessibility of the buffer specified in argument p1 to the process, and
the number of the event flag optionally specified in the efn argument.

2. Locks the physical pages of the buffer into physical memory, and maps the
pages using system page-table entries allocated by the REALTIME_SPTS
SYSGEN parameter.

3. Constructs argument lists and calling interfaces to the process-specified
routines by storing values in the device’s unit control block (UCB).

4. Allocates the specified number of AST control blocks to the process, and
inserts each block in a queue in the device’s UCB.

5. Transfers control to the operating system to queue the connect-to-interrupt
I/O packet to the CONINTERR start-I/O routine.

When the CONINTERR start-I/O routine gains control, it passes control, by
means of a user-specified JSB or CALLS instruction interface, to the process-
specified start-I/O routine. This routine usually initializes the device and may
also start device activity.

When the device generates an interrupt, the CONINTERR interrupt service
routine gains control. This routine transfers control to the process-supplied
interrupt service routine.

21.3.4 Process-Specified Routines
Any routines that the process specifies in the connect-to-interrupt call, with the
exception of the AST procedure, are double-mapped, once in process address space
and once in system address space. Each routine executes in kernel mode at an
appropriate IPL, as listed in the following table.

Routine IPL

Unit initialization routine (after power
recovery)

IPL$_POWER (IPL 31)

Start-I/O routine IPL$_QUEUEAST (IPL 6)

Interrupt service routine Device IPL

Cancel-I/O routine IPL$_QUEUEAST (IPL 6)

The process must have CMKRNL privilege. Each routine must

• Be position independent

• Follow the rules for accessing I/O address space as described in Section 5.2

• Access only data within the buffer or nonpageable locations in system address
space

• Perform any necessary synchronization of access to data in the shared buffer

• Save any registers it uses (unless otherwise noted in the remaining sections
of this chapter)

• Exit properly

21–12

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.3 Connecting to an Interrupt Vector

• Not incur exceptions

• Not perform lengthy processing

• Not dispatch to code outside the buffer specified in the p1 argument to the
$QIO system service call

Only VAX MACRO or VAX BLISS-32 should be used to code process-specified
routines in system address space or any references to I/O address space. There is
no assurance that the code generated by compilers for other languages will satisfy
all the constraints described in this section.

The following constraints apply to process-specified routines in system address
space (that is, in the buffer specified in the p1 argument to the $QIO call that
establishes the connection to the interrupt vector):

• The compiler must generate position-independent code for the routines.

• The generated code and data must be contiguous in virtual address space.

• No calls can be made to any procedure outside the buffer. (This restriction
includes calls to routines in the OpenVMS Run-Time Library.)

• For any references to I/O address space, the generated code must follow the
rules for accessing I/O address space discussed in Section 5.2.

You can find additional help for writing a start-I/O routine, interrupt service
routine, unit initialization routine, or cancel-I/O routine in Sections 8, 9, 11.1,
and 11.2, respectively. Additionally, you may find useful the several program
examples of connecting to an interrupt vector with which this chapter concludes.

21.3.4.1 Unit Initialization Routine
During recovery from a power failure, the operating system calls the
CONINTERR unit initialization routine. This routine marks the device as on
line in the UCB$L_STS field, stores the UCB address in the IDB$L_OWNER
field, and then transfers control to the process-specified unit initialization routine.
The process-specified routine executes in system context at IPL$_POWER (IPL
31). If the process specified a JSB interface, the process unit initialization routine
gains control with the following register settings:

R0 Address of UCB

R4 Address of CSR

R5 Address of IDB

R6 Address of DDB

R8 Address of CRB

If the process specified a CALL interface, the process unit initialization routine
gains control with an argument list pointed to by AP:

00(AP) Argument count of 5

04(AP) Address of CSR

08(AP) Address of IDB

12(AP) Address of DDB

16(AP) Address of CRB

20(AP) Address of UCB

21–13

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.3 Connecting to an Interrupt Vector

The process-specified unit initialization routine may initialize device registers. It
must follow these conventions:

• Not lower IPL nor obtain any spinlocks

• Save and restore all registers it uses, other than R0 through R3

• Restore the stack to its original state before exiting

• Exit with an RSB instruction (for a JSB interface) or a RET instruction (for a
CALL interface)

For more on writing a unit initialization routine, see Section 11.1.

21.3.4.2 Start-I/O Routine
The process-specified start-I/O routine executes in process context in system
space at IPL$_QUEUEAST (IPL 6), holding the QUEUEAST fork lock in a
multiprocessing environment. It is entered from the CONINTERR start-I/O
routine.

If the process specified a JSB interface, the process start-I/O routine gains control
with the following register settings:

R2 Address of counted argument list

R3 Address of IRP

R5 Address of UCB

If the process specified a CALL interface, the process start-I/O routine gains
control with an argument list pointed to by AP:

00(AP) Argument count of 4

04(AP) System-mapped address of process buffer

08(AP) Address of IRP

12(AP) System-mapped address of the device’s CSR

16(AP) Address of UCB

The process-specified start-I/O routine may set up device registers. It must follow
these conventions:

• Maintain an IPL equal to or higher than IPL$_QUEUEAST (IPL 6), and exit
at IPL 6. (If it raises IPL, the routine should first save the current IPL on the
stack for later use in restoring IPL.) In a multiprocessing system, the process-
specified start-I/O routine must suitably synchronize any access of device
registers with the process-specified interrupt service routine. To do so, each
routine must obtain the appropriate device lock, using the system-supplied
macro DEVICELOCK. Before exiting, each routine releases ownership of the
device lock using the DEVICEUNLOCK macro. (See the discussion of these
macros in the OpenVMS VAX Device Support Reference Manual.)

• Save and restore all registers it uses, other than R0 through R4.

• Restore the stack to its original state before exiting.

• Exit with an RSB instruction (for a JSB interface) or a RET instruction (for a
CALL interface).

For additional information on writing a start-I/O routine, see Chapter 8.

21–14

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.3 Connecting to an Interrupt Vector

21.3.4.3 Interrupt Service Routine
A process-specified interrupt service routine is entered when an interrupt from
the device occurs. This routine executes in system context at device IPL.

If the process specified a JSB interface, the process interrupt service routine
gains control with the following register settings:

R2 Address of counted argument list

R4 Address of IDB

R5 Address of UCB

If the process specified a CALL interface, the process interrupt service routine
gains control with an argument list pointed to by AP:

00(AP) Argument count of 5

04(AP) System-mapped address of process buffer

08(AP) Address of AST parameter

12(AP) System-mapped address of the device’s CSR

16(AP) Address of IDB

20(AP) Address of UCB

The process-specified interrupt service routine usually performs one or more of
the following steps:

1. Copies the contents of device registers into the shared buffer or the AST
parameter

2. Writes to a device register to clear the interrupt condition, if such an
operation is required for the device

3. Restarts the device, or returns an offset, a byte count, or actual data as an
AST parameter

4. Returns an interrupt status to the system connect-to-interrupt driver
(CONINTERR)

The process-specified interrupt service routine, like those supplied by the
operating system, has the following characteristics:

• It is mapped in system address space.

• It executes on the interrupt stack.

• It executes at the IPL of the device that requested the interrupt.

The routine must follow these conventions:

• Maintain an IPL equal to or higher than device IPL. (If it raises IPL, the
routine should first save the current IPL on the stack for later use in restoring
IPL.) In a multiprocessing system, if the process-specified start-I/O routine
or cancel-I/O routine accesses device registers or UCB fields also accessed
by the process-specified interrupt service routine, the routines must suitably
synchronize. To do so, each routine must obtain the appropriate device lock,
using the system-supplied macro DEVICELOCK. Before exiting, each routine
releases ownership of the device lock using the DEVICEUNLOCK macro.
(See the discussion of these macros in the OpenVMS VAX Device Support
Reference Manual.)

• Save and restore all registers it uses, other than R0 through R4.

• Restore the stack to its original state before exiting.

21–15

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.3 Connecting to an Interrupt Vector

• Set or clear the low bit of R0, as a status value, before exiting. The status
values are as follows:

Bit 0 of R0 Meaning

Clear Dismiss the interrupt. The process is not notified of the
interrupt.

Set Set the event flag if CIN$M_EFN bit is set in the p3 argument to
the $QIO system service call, and queue the AST if p4 specifies
an AST procedure.

• Return to the CONINTERR interrupt service routine with a RET instruction
(for a CALL interface) or RSB instruction (for a JSB interface).

Depending on the interrupt status returned in R0, the CONINTERR interrupt
service routine queues a fork process to run at a lower IPL (IPL$_QUEUEAST).
Then the interrupt service routine exits from the interrupt with an REI
instruction. When the CONINTERR fork process gains control, it queues an
AST or posts an event flag to the process (or both).

For additional information on writing an interrupt service routine, see Chapter 9.

21.3.4.4 Cancel-I/O Routine
When the user process issues a cancel-I/O request for a device connected to the
process, the CONINTERR cancel-I/O routine first checks to determine whether
the process can indeed cancel I/O for this device. If it can, the CONINTERR
cancel-I/O routine transfers control to the process-specified cancel-I/O routine.
This routine executes in system context at IPL 8 (fork IPL).

If the process specified a JSB interface, the process cancel-I/O routine gains
control with the following register settings:

R2 Negated value of channel index number

R3 Address of current IRP

R4 Address of PCB for process canceling the I/O

R5 Address of UCB

If the process specified a CALL interface, the process cancel-I/O routine gains
control with an argument list pointed to by AP:

00(AP) Argument list count of 4

04(AP) Negated value of channel index number

08(AP) Address of current IRP

12(AP) Address of PCB for process canceling the I/O

16(AP) Address of UCB

The process-specified cancel-I/O routine may clear device registers and set the
UCB$V_CANCEL bit in UCB$L_STS. It must follow these conventions:

• Maintain an IPL equal to or higher than IPL$_QUEUEAST (IPL 6), and
exit at IPL 6. (If it raises IPL, the routine should first save the current IPL
on the stack for later use in restoring IPL.) In a multiprocessing system,
if the process-specified cancel-I/O routine accesses device registers or UCB
fields also accessed by the process-specified interrupt service routine, the
routines must suitably synchronize. To do so, each routine must obtain the
appropriate device lock, using the system-supplied macro DEVICELOCK.

21–16

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.3 Connecting to an Interrupt Vector

Before exiting, each routine releases ownership of the device lock using
the DEVICEUNLOCK macro. (See the discussion of these macros in the
OpenVMS VAX Device Support Reference Manual.)

• Save and restore all registers it uses, other than R0 through R3.

• Place a completion status in R0 and R1. The operating system places the
values in these registers in the I/O status block associated with the connect-
to-interrupt $QIO call.

• Restore the stack to its original state before exiting.

• Exit with an RSB instruction (for a JSB interface) or a RET instruction (for a
CALL interface).

For additional information on writing a cancel-I/O routine, see Section 11.2.

21.3.5 AST Procedure
The AST procedure that you specify in the call to the $QIO system service for
the connect-to-interrupt operation gains control in process context. This routine
usually performs one or more of the following steps:

1. Reads or writes device registers if the process mapped I/O address space.

2. Interprets data. Use caution, however, because any processing done by the
AST procedure can be interrupted by a device interrupt, which might store
more data or modify the buffer’s contents.

3. Calls the Cancel I/O on Channel ($CANCEL) system service to disconnect the
process from the interrupt. Once the process is completely disconnected, the
CONINTERR driver clears all interrupts for the driver.

21.4 Real-Time Applications Examples
To understand how the connect-to-interrupt facility is useful for programming
real-time devices, consider devices used in three types of real-time applications:

1. Asynchronous event reporting without data—devices that generate an
interrupt as the result of an external event not initiated by a programmed
request.

2. Program-driven data collection—devices that generate an interrupt as the
result of a programmed request, and make the result of the request available
as data in a device register at the time of the interrupt.

3. Asynchronous event reporting with data—one device triggers another device
by generating an interrupt that causes a programmed request to be sent to
the other device, which in turn generates an interrupt.

Examples of these three types of real-time applications and models of programs
to handle the devices follow.

Note

The configurations described in the examples in this section are not
officially supported; Digital does not provide device driver, UETP, or
diagnostic support for certain devices mentioned. (In fact, Digital
has officially retired the –K series models (AD11–K and AM11–K A/D
Converter). The examples are provided merely as possible models for

21–17

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.4 Real-Time Applications Examples

users who wish to design real-time applications using unsupported devices
or configurations.

The files in the SYS$EXAMPLES directory whose names begin with ‘‘LABIO’’
illustrate an application using the connect-to-interrupt technique. Included is a
program example illustrating data definitions and coding used to connect to a
device interrupt vector.

21.4.1 Example 1: KW11–W Watchdog Timer
This type of device reports asynchronous external events: it generates an
interrupt as a result of an external event not initiated by a programmed request.
The only data of interest to be passed to the user process is the occurrence of the
external event. Such devices include contact and/or solid state interrupts, and
clocks or counters. The program may need to activate clock and counter devices
by means of a programmed request, but any subsequent interrupts are the result
of external events only.

In this example, a dual-processor system uses two KW11–W watchdog timers
connected back-to-back to monitor CPU failures. Each processor must arm
its timer at regular intervals to prevent the timer from operating a relay that
outputs an alarm signal. The alarm output of each timer is connected to the
receive input of the other watchdog. If processor A fails and its watchdog times
out, the alarm output generates an interrupt on processor B by way of the second
watchdog timer.

The watchdog control program on each processor simply addresses the timer at
regular intervals. If the interval passes without the timer being addressed, the
timer operates an output relay that generates an interrupt to the second CPU.
For this example, assume that the interval is 5 seconds. (Section 21.4.3 contains
an example that addresses the problem of a much smaller time interval.)

The watchdog control program on processor A executes as follows:

1. Assigns a channel to the device

2. Calls the $CRMPSC system service to map to the I/O page in order to address
the device registers

3. Issues a connect-to-interrupt $QIO request to connect the program to the
watchdog timer for processor B; specifies the addresses of an interrupt service
routine and an AST procedure

4. Writes a value to a device register to start the timer

5. Calls the $SETIMR system service to request that an event flag be set after a
specified interval (for example, 4 seconds)

6. Calls the $WAITFR system service to wait for the event flag

7. When the event flag is set, writes a value to a device register to reset the
timer

8. Loops to step 5

The same control program runs on processor B except that it connects to the
watchdog timer for processor A. If either processor fails, the watchdog timer
generates an interrupt on the other processor.

21–18

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.4 Real-Time Applications Examples

The standby processor that receives the interrupt gains control in the system
connect-to-interrupt driver (CONINTERR), which calls a process-supplied
interrupt service routine (defined in step 3) that handles the interrupt as follows:

1. Sets the KW11–W switch relay register to clear the timer interrupt condition

2. Sets a status flag that will cause an AST to be delivered to the control
program that connected to the interrupt

3. Returns to CONINTERR

CONINTERR completes the interrupt handling as follows:

1. Schedules a fork process at a lower IPL (IPL$_QUEUEAST). This fork
process, when it gains control, will queue an AST to the user program.

2. Executes an REI instruction to return from the interrupt.

The timer control program on the standby processor regains control in an AST
procedure which responds to the other processor’s failure by switching over and
assuming control of the other processor’s tasks (or whatever is appropriate).

21.4.2 Example 2: AD11–K, AM11–K A/D Converter with Multiplexer Connected
to the UNIBUS

This type of device provides program-driven data collection: it generates an
interrupt as the result of a programmed request to the device, and makes the
result of the request available as data in a device register. Typical devices include
A/D converters and Digital I/O registers.

The data collection operation is usually repetitive for such applications.
Therefore, the interrupt service routine must be capable of buffering data
from the device in order to ensure that no data is lost because of the high-speed
data transfer rate. A typical buffer size for this sampling technique might be 32
16-bit words.

In this example, a user program controls an AD11–K/AM11–K combination that
accepts analog data from thermocouples. The AD11–K converts analog data to
Digital data and returns the data in a device register. Every 10 seconds, the
program samples 16 to 32 out of 64 channels at gain settings that may vary
based on the thermocouple type and previous samplings.

To collect data efficiently, the program buffers data in a process-specified interrupt
service routine, and requests delivery of an AST to the user process when all the
requested channels have been sampled. To perform variable sampling, the
program passes parameters to the interrupt service routine.

The program establishes a protocol to communicate between the program and the
interrupt service routine. The protocol defines a data area shared by the main
program, the interrupt service routine, and the AST procedure. The data area
contains parameters from the program and data from the AD11–K. The data area
is a 98-word array used as follows:

1. Elements 1 and 2 of the data area contain an index to the next buffer location
to be filled, and a count indicating the number of samplings still to be taken.
The main program initializes these values before starting the device. The
interrupt service routine reads and modifies these values in the process of
copying data and determining when to stop sampling.

21–19

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.4 Real-Time Applications Examples

2. Elements 3 to 66 of the data area are reserved for interrupt service routine
parameters. Each pair of elements contains the number of a channel and a
gain value. The main program loads these parameters before starting the
device.

3. Elements 67 to 98 of the data area receive the data that the interrupt service
routine reads from the AD11–K data buffer register. The AST routine later
reads data from this part of the buffer.

The program sets up for the sampling as follows:

1. Assigns a channel to the device

2. Calls the $CRMPSC system service to map to the I/O page in order to address
the device registers

3. Initializes the data area by writing a 67 (the index to the next buffer location
to be filled) into element 1, and the number of samples to take into element 2
of the data area; clears elements 3 through 98 of the data area

4. Writes channel numbers and gain values into the parameter section of the
data area

5. Issues a connect-to-interrupt $QIO call to connect the process to the A/D
converter; specifies the addresses of the area to be double-mapped, an offset
to the interrupt service routine, and an AST procedure

6. Sets the start and interrupt-enable bits in the AD11–K status register to start
the A/D converter

7. Calls the $HIBER system service to place the process in a wait state

As soon as the AD11–K has converted the first sample, the device generates an
interrupt. CONINTERR.EXE calls the process-specified interrupt service routine.
This process-specified routine executes as follows:

1. Computes the next location to be written in the buffer by reading the first
element in the data area

2. Reads 12 bits of data from the A/D buffer register into the next location in the
buffer

3. Updates the buffer offset and count elements at the beginning of the data
area

4. If all requested samples have been collected, writes the address of the data
area into the AST parameter, sets a status flag that will cause an AST to be
delivered to the control program, and returns to the CONINTERR routine

5. Otherwise, sets the start bit in a device register to restart the device and
returns to the CONINTERR routine with a status flag requesting no AST
delivery or event flag setting

Based on the interrupt status from the process-specified interrupt service routine,
the CONINTERR routine completes the interrupt processing by queuing a fork
process that will queue an AST to the user process. When the process gains
control in the AST procedure, it processes the samples in the following steps:

1. Clears the interrupt-enable bit in the device status register

2. Examines the data collected in order to adjust channel selection and/or gain
values for the next sampling

3. Copies the data to a file

21–20

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.4 Real-Time Applications Examples

4. Reinitializes the data area

5. Calls the $SCHDWK system service to wake the process after a short interval
(for example, 10 seconds)

6. Returns

When the time interval elapses, the process regains control. The program can
then restart the sampling process by again setting the start and interrupt-enable
bits in the AD11–K status register.

21.4.3 Example 3: KW11–P Real-Time Clock and AD11–K Converter
Connected to the UNIBUS

This type of device reports asynchronous external events by collecting data:
one device triggers another device by generating an interrupt that causes a
programmed request to be sent to the other device, which in turn generates an
interrupt. A typical example is a clock-driven A/D operation for precise time
sampling as required in signal processing. This processing technique is often
used in laboratories. The amount of data collected in such a timed sampling
might typically be 200 to 1000 16-bit words.

In this example, the main program sets up the real-time clock to generate
interrupts periodically. At regular intervals, the clock interrupt triggers a
programmed request for an A/D conversion operation. The AD11–K collects a
sample, and interrupts the CPU with a ‘‘done’’ interrupt and 12 bits of data. The
AD11–K interrupt service routine buffers the data and, if the buffer is full, causes
an AST to be delivered to the process. The process, gaining control in an AST
procedure, copies the buffered data to another buffer or to disk.

Programming these device functions is slightly more complicated than the
previous example. The main program must specify a large buffer to be used in
ring fashion to guarantee that data is not lost between clock-driven samplings.
In addition, the program must connect to two device interrupts—one for the clock
and one for the A/D converter.

The protocol used by the main program, the interrupt service routine, and the
AST procedure is similar to the previous example. The data area is larger: 4K
words of buffer area follow the parameter area. The A/D converter interrupt
service routine and the AST procedure treat the 4K-word buffer as four buffer
sections of 1K words per section. The first element in each 1K buffer section is a
flag indicating whether the section is in use. The AST resets the flag value after
copying the contents of the buffer. The interrupt service routine uses a buffer
section only if the section’s flag value indicates that the buffer has been emptied.

The main program starts the sampling with the following steps:

1. Assigns channels to the clock and to the A/D converter.

2. Calls the $CRMPSC system service to map to the I/O page in order to address
the device registers.

3. Initializes the data buffer by writing a 67 (the index to the next buffer
location to be filled) into element 1, and the number of samples to take into
element 2 of the data area; clears elements 3 through 4096 of the data area;
flags each page of the buffer as available.

4. Writes channel numbers and gain values into the parameter segments of the
data area.

21–21

Mapping to I/O Space and the Connect-to-Interrupt Facility
21.4 Real-Time Applications Examples

5. Issues a connect-to-interrupt $QIO call to connect the process to the clock,
and specifies the address of an interrupt service routine.

6. Issues a connect-to-interrupt $QIO call to connect the process to the A/D
converter; and specifies the addresses of the area to be double mapped, an
offset to the interrupt service routine and an AST procedure.

7. Sets the sampling interval by writing a 16-bit value into the KW11–P count
set buffer register.

8. Starts the clock by setting the run, mode, rate selection, and interrupt-enable
bits in the KW11–P control and status register. Setting the mode bit causes
repeated interrupts generated at a rate specified in the time interval.

9. Calls the $HIBER system service to place the process in a wait state.

The clock interrupts when zero (underflow) occurs during a countdown from
the preset interval count. The system CONINTERR routine calls the process-
specified clock interrupt service routine. This process-specified routine starts the
A/D conversion as follows:

1. Starts the A/D converter by setting the start and interrupt-enable bits in the
AD11–K status register

2. Sets interrupt status that prevents AST delivery or event flag setting as a
result of this interrupt

3. Returns to CONINTERR

Starting the A/D converter results in an interrupt from the AD11–K, and control
passes, by way of CONINTERR, to the AD11–K interrupt service routine. This
routine executes as follows:

1. If this sample is the first sample for a new buffer (indicated by a flag in the
data area), the routine moves to the next buffer section (branching to error
handling if the buffer is still full), and sets up the first two elements of the
data area to indicate the buffer section to be written next. Then it sets the
flag at the start of the new buffer section and sets a flag in the data area to
indicate that sampling is occurring.

2. The routine computes the next location to be written in the buffer by reading
the first location in the data area.

3. The routine reads 12 bits of data from the A/D buffer register into the next
location in the buffer.

4. The routine updates the buffer offset and count values in the data area.

5. If this sample fills the data sector, the routine writes the offset of the filled
sector from the start of the 4K-word buffer into the AST parameter, sets a
status flag that will cause an AST to be delivered to the control program, and
sets a flag indicating that a new data section is to be started.

6. The routine returns to CONINTERR.

The AST procedure copies and fills the next buffer section with zeros to indicate
that the section is again available to the interrupt service routine. When the next
clock interrupt occurs, the data can be written to the next buffer section, even if
the AST routine has not yet emptied the previous buffer section.

21–22

Part V
Driver Templates and Examples

This part contains driver program templates and code examples of drivers for
devices connected to various types of buses.

A
Driver Template

This appendix lists the contents of the driver template. The code in this
template can serve as the starting point for a new UNIBUS or Q22–bus
device driver. You can obtain a machine-readable copy of this driver from
SYS$EXAMPLES:TDRIVER.MAR.

.TITLE TDRIVER - VAX/VMS TEMPLATE DRIVER

.IDENT ’X-3’

;
;**
;* *
;* COPYRIGHT (c) 1978, 1980, 1982, 1984 BY *
;* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. *
;* ALL RIGHTS RESERVED. *
;* *
;* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
;* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
;* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
;* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
;* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
;* TRANSFERRED. *
;* *
;* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
;* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT *
;* CORPORATION. *
;* *
;* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
;* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *
;* *
;* *
;**
;

A–1

Driver Template

;++
;
; FACILITY:
;
; VAX/VMS Template Driver
;
; ABSTRACT:
;
; This module contains the outline of a driver:
;
; Models of driver tables
; Controller and unit initialization routines
; An FDT routine
; The start I/O routine
; The interrupt service routine
; The cancel I/O routine
; The device register dump routine
;
; AUTHOR:
;
; S. Programmer 11-Nov-1979
;
; REVISION HISTORY:
;
; X-3 JHP003 J. Programmer 5-Oct-1988
; Changed all user symbols to use underscores instead of
; dollar signs to avoid conflict with any symbols defined
; by Digital. Added return status to unit initialization
; routine.
;
; X-2 JHP002 J. Programmer 21-Aug-1987
; Add SMP support.
;
; V02 JHP001 J. Programmer 2-Aug-1979 11:27
; Remove BLBC instruction from CANCEL routine.
;
; V02-001 ROW0067 R. Programmer 11-Feb-1981 13:10
; Add description of reason argument to CANCEL routine.
; Correct references to channel index number.
;
;--

.SBTTL External and local symbol definitions

;
; External symbols
;

$CANDEF ; Cancel reason codes
$CRBDEF ; Channel request block
$DCDEF ; Device classes and types
$DDBDEF ; Device data block
$DEVDEF ; Device characteristics
$DYNDEF ; Dynamic data structure definitions
$IDBDEF ; Interrupt data block
$IODEF ; I/O function codes
$IPLDEF ; Hardware IPL definitions
$IRPDEF ; I/O request packet
$SSDEF ; System status codes
$UCBDEF ; Unit control block
$VECDEF ; Interrupt vector block

;
; Local symbols
;

A–2

Driver Template

;
; Argument list (AP) offsets for device-dependent QIO parameters
;

P1 = 0 ; First QIO parameter
P2 = 4 ; Second QIO parameter
P3 = 8 ; Third QIO parameter
P4 = 12 ; Fourth QIO parameter
P5 = 16 ; Fifth QIO parameter
P6 = 20 ; Sixth QIO parameter

;
; Other constants
;

TD_DEF_BUFSIZ = 1024 ; Default buffer size
TD_TIMEOUT_SEC = 10 ; 10-second device timeout
TD_NUM_REGS = 4 ; Device has 4 registers

;
; Definitions that follow the standard UCB fields
;

$DEFINI UCB ; Start of UCB definitions

.=UCB$K_LENGTH ; Position at end of UCB

$DEF UCB_W_TD_WORD ; A sample word
.BLKW 1

$DEF UCB_W_TD_STATUS ; Device’s CSR
.BLKW 1

$DEF UCB_W_TD_WRDCNT ; Device’s word count register
.BLKW 1

$DEF UCB_W_TD_BUFADR ; Device’s buffer address
.BLKW 1 ; register

$DEF UCB_W_TD_DATBUF ; Device’s data buffer register
.BLKW 1

$DEF UCB_K_TD_UCBLEN ; Length of extended UCB

;
; Bit positions for device-dependent status field in UCB
;

_VIELD UCB,0,<- ; Device status
<BIT_ZERO,,M>,- ; First bit
<BIT_ONE,,M>,- ; Second bit
>

$DEFEND UCB ; End of UCB definitions

;
; Device register offsets from CSR address
;

$DEFINI TD ; Start of status definitions

$DEF TD_STATUS ; Control/status
.BLKW 1

;
; Bit positions for device control/status register
;

A–3

Driver Template

_VIELD TD_STS,0,<- ; Control/status register
<GO,,M>,- ; Start device
<BIT1,,M>,- ; Bit 1
<BIT2,,M>,- ; Bit 2
<BIT3,,M>,- ; Bit 3
<XBA,2,M>,- ; Extended address bits
<INTEN,,M>,- ; Enable interrupts
<READY,,M>,- ; Device ready for command
<BIT8,,M>,- ; Bit 8
<BIT9,,M>,- ; Bit 9
<BIT10,,M>,- ; Bit 10
<BIT11,,M>,- ; Bit 11
<,1>,- ; Disregarded bit
<ATTN,,M>,- ; Attention bit
<NEX,,M>,- ; Nonexistent memory flag
<ERROR,,M>,- ; Error or external interrupt

>

$DEF TD_WRDCNT ; Word count
.BLKW 1

$DEF TD_BUFADR ; Buffer address
.BLKW 1

$DEF TD_DATBUF ; Data buffer
.BLKW 1

$DEFEND TD ; End of device register
; definitions.

.SBTTL Standard tables

;
; Driver prologue table
;

DPTAB - ; DPT-creation macro
END=TD_END,- ; End of driver label
ADAPTER=UBA,- ; Adapter type
UCBSIZE=<UCB_K_TD_UCBLEN>,- ; Length of UCB
NAME=TDDRIVER ; Driver name

DPT_STORE INIT ; Start of load
; initialization table

DPT_STORE UCB,UCBB_FLCK,B,SPLC_IOLOCK8 ; Device FORK LOCK
DPT_STORE UCB,UCB$B_DIPL,B,22 ; Device interrupt IPL
DPT_STORE UCB,UCB$L_DEVCHAR,L,<- ; Device characteristics

DEV$M_IDV!- ; input device
DEV$M_ODV> ; output device

DPT_STORE UCB,UCB$B_DEVCLASS,B,DC$_SCOM ; Sample device class
DPT_STORE UCB,UCB$W_DEVBUFSIZ,W,- ; Default buffer size

TD_DEF_BUFSIZ

DPT_STORE REINIT ; Start of reload
; initialization table

DPT_STORE DDB,DDBL_DDT,D,TDDDT ; Address of DDT
DPT_STORE CRB,CRB$L_INTD+VEC$L_ISR,D,- ; Address of interrupt

TD_INTERRUPT ; service routine
DPT_STORE CRB,- ; Address of controller

CRB$L_INTD+VEC$L_INITIAL,- ; initialization routine
D,TD_CONTROL_INIT

DPT_STORE CRB,- ; Address of device
CRB$L_INTD+VEC$L_UNITINIT,- ; unit initialization
D,TD_UNIT_INIT ; routine

DPT_STORE END ; End of initialization
; tables

;
; Driver dispatch table
;

A–4

Driver Template

DDTAB - ; DDT-creation macro
DEVNAM=TD,- ; Name of device
START=TD_START,- ; Start I/O routine
FUNCTB=TD_FUNCTABLE,- ; FDT address
CANCEL=TD_CANCEL,- ; Cancel I/O routine
REGDMP=TD_REG_DUMP ; Register dump routine

;
; Function decision table
;

TD_FUNCTABLE: ; FDT for driver
FUNCTAB ,- ; Valid I/O functions

<READVBLK,- ; Read virtual
READLBLK,- ; Read logical
READPBLK,- ; Read physical
WRITEVBLK,- ; Write virtual
WRITELBLK,- ; Write logical
WRITEPBLK,- ; Write physical
SETMODE,- ; Set device mode
SETCHAR> ; Set device characteristics

FUNCTAB , ; No buffered functions
FUNCTAB +EXE$READ,- ; FDT read routine for

<READVBLK,- ; read virtual,
READLBLK,- ; read logical,
READPBLK> ; and read physical block

FUNCTAB +EXE$WRITE,- ; FDT write routine for
<WRITEVBLK,- ; write virtual,
WRITELBLK,- ; write logical,
WRITEPBLK> ; and write physical block

FUNCTAB +EXE$SETMODE,- ; FDT set mode routine
<SETCHAR,- ; set characteristics, and
SETMODE> ; set mode

.SBTTL TD_CONTROL_INIT, Controller initialization routine

;++
; TD_CONTROL_INIT, Readies controller for I/O operations
;
; Functional description:
;
; The operating system calls this routine in 3 places:
;
; at system startup
; during driver loading and reloading
; during recovery from a power failure
;
; Inputs:
;
; R4 - address of the CSR (controller status register)
; R5 - address of the IDB (interrupt data block)
; R6 - address of the DDB (device data block)
; R8 - address of the CRB (channel request block)
;
; Outputs:
;
; The routine must preserve all registers except R0-R3.
;
;--

TD_CONTROL_INIT: ; Initialize controller
RSB ; Return

.SBTTL TD_UNIT_INIT, Unit initialization routine

A–5

Driver Template

;++
; TD_UNIT_INIT, Readies unit for I/O operations
;
; Functional description:
;
; The operating system calls this routine after calling the
; controller initialization routine:
;
; at system startup
; during driver loading
; during recovery from a power failure
;
; Inputs:
;
; R4 - address of the CSR (controller status register)
; R5 - address of the UCB (unit control block)
;
; Outputs:
;
; The routine must preserve all registers except R0-R3.
;
;--

TD_UNIT_INIT: ; Initialize unit
BISW #UCB$M_ONLINE, -

UCB$W_STS(R5) ; Set unit online
MOVL # SS$_NORMAL, R0 ; VAXBI devices need to return success

; if unit is properly configured.
RSB ; Return

.SBTTL TD_FDT_ROUTINE, Sample FDT routine

;++
; TD_FDT_ROUTINE, Sample FDT routine
;
; Functional description:
;
; T.B.S.
;
; Inputs:
;
; R0-R2 - scratch registers
; R3 - address of the IRP (I/O request packet)
; R4 - address of the PCB (process control block)
; R5 - address of the UCB (unit control block)
; R6 - address of the CCB (channel control block)
; R7 - bit number of the I/O function code
; R8 - address of the FDT table entry for this routine
; R9-R11 - scratch registers
; AP - address of the 1st function dependent QIO parameter
;
; Outputs:
;
; The routine must preserve all registers except R0-R2, and
; R9-R11.
;
;--

TD_FDT_ROUTINE: ; Sample FDT routine
RSB ; Return

.SBTTL TD_START, Start I/O routine

A–6

Driver Template

;++
; TD_START - Start a transmit, receive, or set mode operation
;
; Functional description:
;
; T.B.S.
;
; Inputs:
;
; R3 - address of the IRP (I/O request packet)
; R5 - address of the UCB (unit control block)
;
; Outputs:
;
; R0 - 1st longword of I/O status: contains status code and
; number of bytes transferred
; R1 - 2nd longword of I/O status: device-dependent
;
; The routine must preserve all registers except R0-R2 and R4.
;
;--

TD_START: ; Process an I/O packet
DEVICELOCK LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access.

SAVIPL=-(SP) ; Save current IPL

WFIKPCH TD_TIMEOUT,#TD_TIMEOUT_SEC
;
; After a transfer completes successfully, return the number of bytes
; transferred and a success status code.
;

IOFORK
INSV UCB$W_BCNT(R5),#16,- ; Load number of bytes trans-

#16,R0 ; ferred into high word of R0.
MOVW #SS$_NORMAL,R0 ; Load a success code into R0.

;
; Call I/O postprocessing.
;

COMPLETE_IO: ; Driver processing is finished.
REQCOM ; Complete I/O.

;
; Device timeout handling. Return an error status code.
;

TD_TIMEOUT: ; Timeout handling
DEVICEUNLOCK LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access

NEWIPL=#8,- ; Lower IPL
PRESERVE=NO ; Don’t preserve R0

MOVZWL #SS$_TIMEOUT,R0 ; Return error status.
BSBB COMPLETE_IO ; Call I/O postprocessing.
DEVICELOCK LOCKADDR=UCB$L_DLCK(R5),- ; Acquire device lock for exit

PRESERVE=NO
RSB

.SBTTL TD_INTERRUPT, Interrupt service routine

A–7

Driver Template

;++
; TD_INTERRUPT, Analyzes interrupts, processes solicited interrupts
;
; Functional description:
;
; The sample code assumes either
;
; that the driver is for a single-unit controller, and
; that the unit initialization code has stored the
; address of the UCB in the IDB; or
;
; that the driver’s start I/O routine acquired the
; controller’s channel with a REQPCHANL macro call, and
; then invoked the WFIKPCH macro to keep the channel
; while waiting for an interrupt.
;
; Inputs:
;
; 0(SP) - pointer to the address of the IDB (interrupt data
; block)
; 4(SP) - saved R0
; 8(SP) - saved R1
; 12(SP) - saved R2
; 16(SP) - saved R3
; 20(SP) - saved R4
; 24(SP) - saved R5
; 28(SP) - saved PC
; 32(SP) - saved PSL (processor status longword)
;
; The IDB contains the CSR address and the UCB address.
;
; Outputs:
;
; The routine must preserve all registers except R0-R5.
;
;--

TD_INTERRUPT: ; Service device interrupt
MOVL @(SP)+,R4 ; Get address of IDB and

; remove pointer from stack.
ASSUME IDB$L_CSR EQ 0
ASSUME IDB$L_OWNER EQ 4
MOVQ IDB$L_CSR(R4),R4 ; Get address of device’s CSR

; Get address of device
; owner’s UCB.

DEVICELOCK LOCKADDR=UCB$L_DLCK(R5), - ; Lock device access
PRESERVE=NO,- ; Don’t preserve R0
CONDITION=NOSETIPL ; Don’t bother setting IPL

BBCC #UCB$V_INT,- ; If device does not expect
UCB$W_STS(R5),- ; interrupt, dismiss it.
UNSOL_INTERRUPT

;
; This is a solicited interrupt. Save
; the contents of the device registers in the UCB.
;

MOVW TD_STATUS(R4),- ; Otherwise, save all device
UCB_W_TD_STATUS(R5) ; registers. First the CSR.

MOVW TD_WRDCNT(R4),- ; Save the word count register.
UCB_W_TD_WRDCNT(R5)

MOVW TD_BUFADR(R4),- ; Save the buffer address
UCB_W_TD_BUFADR(R5) ; register.

MOVW TD_DATBUF(R4),- ; Save the data buffer register.
UCB_W_TD_DATBUF(R5)

A–8

Driver Template

;
; Restore control to the main driver.
;

RESTORE_DRIVER: ; Jump to main driver code.
MOVL UCB$L_FR3(R5),R3 ; Restore driver’s R3 (use a

; MOVQ to restore R3-R4).
JSB @UCB$L_FPC(R5) ; Call driver at interrupt

; wait address.

;
; Dismiss the interrupt.
;

UNSOL_INTERRUPT: ; Dismiss unsolicited interrupt.
DEVICEUNLOCK LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access.

PRESERVE=NO ; Don’t bother preserving R0.
POPR #^M<R0,R1,R2,R3,R4,R5> ; Restore R0-R5
REI ; Return from interrupt.

.SBTTL TD_CANCEL, Cancel I/O routine

;++
; TD_CANCEL, Cancels an I/O operation in progress
;
; Functional description:
;
; This routine calls IOC$CANCELIO to set the cancel bit in the
; UCB status longword if:
;
; the device is busy,
; the IRP’s process ID matches the cancel process ID,
; the IRP channel matches the cancel channel.
;
; If IOC$CANCELIO sets the cancel bit, then this driver routine
; does device-dependent cancel I/O fixups.
;
; Inputs:
;
; R2 - channel index number
; R3 - address of the current IRP (I/O request packet)
; R4 - address of the PCB (process control block) for the
; process canceling I/O
; R5 - address of the UCB (unit control block)
; R8 - cancel reason code, one of:
; CAN$C_CANCEL if called through $CANCEL system service
; CAN$C_DASSGN if called through $DASSGN or
; $DALLOC system services
; These reason codes are defined by the $CANDEF macro.
;
; Outputs:
;
; The routine must preserve all registers except R0-R3.
;
; The routine may set the UCB$M_CANCEL bit in UCB$W_STS.
;
;--

TD_CANCEL: ; Cancel an I/O operation
JSB G^IOC$CANCELIO ; Set cancel bit if appropriate.
BBC #UCB$V_CANCEL,- ; If the cancel bit is not set,

UCB$W_STS(R5),10$; just return.

;
; Device-dependent cancel operations go next.
;

A–9

Driver Template

;
; Finally, the return.
;

10$:
RSB ; Return

.SBTTL TD_REG_DUMP, Device register dump routine

;++
; TD_REG_DUMP, Dumps the contents of device registers to a buffer
;
; Functional description:
;
; Writes the number of device registers, and their current
; contents into a diagnostic or error buffer.
;
; Inputs:
;
; R0 - address of the output buffer
; R4 - address of the CSR (controller status register)
; R5 - address of the UCB (unit control block)
;
; Outputs:
;
; The routine must preserve all registers except R1-R3.
;
; The output buffer contains the current contents of the device
; registers. R0 contains the address of the next empty longword in
; the output buffer.
;
;--

TD_REG_DUMP: ; Dump device registers
MOVZBL #TD_NUM_REGS,(R0)+ ; Store device register count.
MOVZWL UCB_W_TD_STATUS(R5),- ; Store device status register.

(R0)+
MOVZWL UCB_W_TD_WRDCNT(R5),- ; Store word count register.

(R0)+
MOVZWL UCB_W_TD_BUFADR(R5),- ; Store buffer address register.

(R0)+
MOVZWL UCB_W_TD_DATBUF(R5),- ; Store data buffer register.

(R0)+
RSB ; Return

.SBTTL TD_END, End of driver

;++
; Label that marks the end of the driver
;--

TD_END: ; Last location in driver
.END

A–10

B
SCSI Class Driver Template

This appendix lists the contents of the SCSI class driver template. The code
in this template can serve as the starting point for a new third-party SCSI
class driver. You can obtain a machine-readable copy of this driver from
SYS$EXAMPLES:SKDRIVER.MAR.

.TITLE SKDRIVER - VAX/VMS Sample SCSI Class Driver

.IDENT ’X-3’
; .LIST MEB

;**
;* *
;* COPYRIGHT (c) 1989 BY *
;* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. *
;* ALL RIGHTS RESERVED. *
;* *
;* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
;* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
;* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
;* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
;* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
;* TRANSFERRED. *
;* *
;* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
;* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT *
;* CORPORATION. *
;* *
;* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
;* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *
;* *
;* *
;**
;

B–1

SCSI Class Driver Template

;++
;
; FACILITY:
;
; VAX/VMS Sample SCSI Class Driver
;
; ABSTRACT:
;
; This module contains a sample SCSI class driver. This template
; supports two modes of operation: either the SCSI command
; packets are formatted in the application program (passthru mode) or
; the SCSI command packets are formatted within the driver. In the
; latter case, command processing and error recovery are implemented
; within a third-party SCSI class driver derived from this driver.
;
; Passthru mode is the method of access used by the generic SCSI
; class driver (GKDRIVER). GKDRIVER provides access to a SCSI device
; from an application program. The QIO interface of the GKDRIVER
; is fixed. However, third-party SCSI class drivers can define a
; unique QIO interface. Third-party class drivers can have device
; specific error recovery, log device errors and implement asynchro-
; nous event notification (AEN). Third-party class drivers have
; direct access to the SCSI Port Interface (SPI) routines, while
; using the passthru function provides access to SCSI without writing
; a driver.
;
; The code to perform the IO$_DIAGNOSE function is included in this
; driver for informational purposes only. Typical third-party SCSI
; class drivers do not require this function. If the IO$_DIAGNOSE
; function is required, you should use the VMS-supported SCSI
; generic class driver (GKDRIVER).
;
; SKDRIVER supports three I/O functions:
;
; IO$_AVAILABLE - Inquiry and Test Unit Ready sequence,
; IO$_DIAGNOSE - Passthru function
; IO$_READLBLK - Return Inquiry data to user
;
;

.SBTTL +

.SBTTL + SYMBOL DEFINITIONS

.SBTTL +

.SBTTL External symbol definitions
;+
; External symbols
;-

$CRBDEF ; Channel request block
$DDBDEF ; Device data block
$DEVDEF ; Device characteristics
$EMBDEF ; Error log message buffer
$DYNDEF ; Data structure types
$FKBDEF ; Define fork block symbols
$IODEF ; I/O function codes
$IPLDEF ; Hardware IPL definitions
$IRPDEF ; I/O request packet
$PCBDEF ; Process control block
$PRVDEF ; Privilege mask
$SCDRPDEF ; SCSI SCDRP symbols
$SSDEF ; System status codes
$UCBDEF ; Unit control block
$VECDEF ; Interrupt vector block

B–2

SCSI Class Driver Template

.SBTTL Miscellaneous local symbols
;+
; Local symbols
;-

;+
; Argument list (AP) offsets for device-dependent QIO parameters
;-
P1 = 0 ; First QIO parameter
P2 = 4 ; Second QIO parameter
P3 = 8 ; Third QIO parameter
P4 = 12 ; Fourth QIO parameter
P5 = 16 ; Fifth QIO parameter
P6 = 20 ; Sixth QIO parameter

SCDRPS_PER_UNIT = 2 ; Number of SCDRPs to allocate per
; unit

UCB_STACK_SIZE = 10 ; Size of internal stack in UCB
MAX_BCNT = ^XFFFF ; Maximum byte count
.IIF NDF DT$_GENERIC_SCSI, DT$_GENERIC_SCSI = 5 ; GENERIC SCSI DEVICE
ASSEMBLE_PASSTHRU = 0 ; If 0 don’t assemble DIAG code, if

; 1 do.
SCSI$M_STS = ^XC1 ; Used to extract vendor unique STS

; bits.
DIAG_BUF_LEN = 60 ; Length in bytes of DIAGNOSE input

; buffer.
MAX_CMD_LEN = 248 ; Maximum size in bytes of a SCSI

; CMD.
INQ_DATA_LEN = 36 ; Exact number of INQUIRY bytes

; required.
NUM_ARGS = 10 ; Number of SET/GET CONNECTION CHAR

; arguments.

.SBTTL SCSI Peripheral Device Types

;+
; Define SCSI Peripheral Device Types
;-

SCSI_C_DA = 0 ; Direct Access
SCSI_C_SA = 1 ; Sequential Access
SCSI_C_PT = 2 ; Printer
SCSI_C_PR = 3 ; Processor
SCSI_C_WR = 4 ; Write-once Read-multiple
SCSI_C_RO = 5 ; Read-only direct access

.SBTTL Sense key codes

B–3

SCSI Class Driver Template

;+
; Define SCSI sense key codes.
;-

SCSI_C_NO_SENSE = 0 ; No sense data
SCSI_C_RECOVERED_ERROR = 1 ; Recovered error (treated as

; success)
SCSI_C_NOT_READY = 2 ; Device not ready
SCSI_C_MEDIUM_ERROR = 3 ; Medium (parity) error
SCSI_C_HARDWARE_ERROR = 4 ; Hardware error
SCSI_C_ILLEGAL_REQUEST = 5 ; Illegal request
SCSI_C_UNIT_ATTENTION = 6 ; Unit attention (media change,

; reset)
SCSI_C_DATA_PROTECT = 7 ; Data protection (write lock error)
SCSI_C_BLANK_CHECK = 8 ; Blank check (advance past end of

; data)
SCSI_C_VENDOR_UNIQUE = 9 ; Vendor unique key
SCSI_C_COPY_ABORTED = 10 ; Copy operation aborted
SCSI_C_ABORTED_COMMAND = 11 ; Command aborted
SCSI_C_EQUAL = 12 ; Compare operation, data match
SCSI_C_VOLUME_OVERFLOW = 13 ; Write beyond physical end of tape
SCSI_C_MISCOMPARE = 14 ; Compare operation, data mismatch

;++
; Define offsets in various SCSI command packets.
;--

;+
; REQUEST SENSE data offsets.
;-

SCSI_XS_B_ERR_CODE = 0 ; Extended sense error code
SCSI_XS_B_KEY = 2 ; Extended sense KEY field
SCSI_XS_V_KEY = 0 ; Extended sense KEY bit number
SCSI_XS_S_KEY = 4 ; Extended sense KEY length
SCSI_XS_B_ADDNL_INFO = 3 ; Extended sense additional code
SCSI_XS_B_ADDNL_CODE = 12 ; Extended sense additional code
SCSI_XS_B_ADDNL_CODE30 = 8 ; " " (TZ30)
SCSI_XS_B_ADDNL_CODE50 = 8 ; " " (TZK50)
SCSI_XS_M_EOF = ^X80 ; Extended sense end of file
SCSI_XS_M_EOM = ^X40 ; Extended sense end of medium
SCSI_XS_M_ILI = ^X20 ; Extended sense illegal length

; indicator
SCSI_XS_V_ADDNL_VALID = 7 ; Extended sense additional data

; valid

;+
; INQUIRY data offsets.
;-

SCSI_INQ_B_DEVTYPE = 0 ; Inquiry device type
SCSI_INQ_B_DEVQUAL = 1 ; Inquiry device qualifier field
SCSI_INQ_V_DEVQUAL = 0 ; Inquiry device qualifier starting

; bit
SCSI_INQ_S_DEVQUAL = 7 ; Inquiry device qualifier length
SCSI_INQ_V_REMOVABLE = 7 ; Inquiry removable bit

SCSI_SKIP_B_CNT = 2 ; Skip record count

;+
; MODE SELECT/SENSE data offsets.
;-

SCSI_MSNS_B_WP = 2 ; Mode sense write protect field
SCSI_MSNS_V_WP = 7 ; Mode sense write protect bit

B–4

SCSI Class Driver Template

SCSI_MSEL_W_RSVD0 = 0 ; Mode select reserved
SCSI_MSEL_B_SPEED = 2 ; Mode select speed field
SCSI_MSEL_B_MODE = 2 ; Mode select buffered mode
SCSI_MSEL_B_DSCLEN = 3 ; Mode select record descriptor

; length
SCSI_MSEL_C_DSCLEN = 8 ; Mode select record descriptor

; length
SCSI_MSEL_B_DENS = 4 ; Mode select density
SCSI_MSEL_B_BLOCKS = 5 ; Mode select number of blocks
SCSI_MSEL_B_RSVD1 = 8 ; Mode select reserved
SCSI_MSEL_B_BLKLEN = 9 ; Mode select block length
SCSI_MSEL_B_VULEN = 12 ; Mode select vendor unique length
SCSI_MSEL_B_VU = 13 ; Mode select vendor unique field
SCSI_MSEL_M_BUF = ^X10 ; Mode select buffered mode
SCSI_MSEL_M_NOF = 7 ; Number of fillers for generic

; device
SCSI_MSEL_M_NOF50 = 7 ; Number of fillers for TZK50
SCSI_MSEL_M_NOF30 = ^X0F ; Number of fillers for TZ30
SCSI_MSEL_M_RESEL = ^X40 ; Reselection timeout flag

;+
; SPI interface, Get/set connect characteristics symbols.
;-

SET_CON_L_LEN = 0 ; Length field
SET_CON_L_CON_FLAGS = 4 ; Flags field
SET_CON_M_DISC = 1 ; Enable disconnect flag
SET_CON_M_NORETRY = 2 ; Disable command retry flag
SET_CON_L_SYN_FLAG = 8 ; Synchronous flag field
SET_CON_M_SYN = 1 ; Synchronous flag

.SBTTL Template class driver extensions to the UCB
;+
; Template class driver extensions to the UCB.
;-

$DEFINI UCB ; Start of UCB definitions

.=UCB$K_LCL_DISK_LENGTH ; Position at end of UCB

$DEF UCB_L_STACK_PTR .BLKL 1 ; Internal stack pointer
$DEF UCB_L_STACK .BLKL UCB_STACK_SIZE ; Internal stack
$DEF UCB_L_SCDRP .BLKL 1 ; Address of active SCDRP
$DEF UCB_L_SCDT .BLKL 1 ; SCDT address
$DEF UCB_L_SK_FLAGS .BLKL 1 ; Class driver flags

_VIELD UCB,0,<- ;
<DISCONNECT,,M>,- ; Device supports disconnect
<DISABL_ERRLOG,,M>,- ; Disable error logging
<SYNCHRONOUS,,M>> ; Device supports synchro-

; nous operation
$DEF UCB_W_PHASE_TMO .BLKW 1 ; Phase change timeout
$DEF UCB_W_DISC_TMO .BLKW 1 ; Disconnect timeout
$DEF UCB_L_SCDRPQ_FL .BLKL 1 ; Queue of free SCDRPs used to
$DEF UCB_L_SCDRPQ_BL .BLKL 1 ; send SCSI commands

$DEF UCB_L_SAVER6 .BLKL 1 ; Safe place for R6.
$DEF UCB_L_SAVER7 .BLKL 1 ; Safe place for R7.
$DEF UCB_L_SCDRP_SAV1 .BLKL 1 ; Safe place for SCDRP address.
$DEF UCB_B_LUN .BLKB 1 ; Save device LUN

$DEF UCB_K_SK_UCBLEN ; Length of extended UCB

$DEFEND UCB ; End of UCB definitions

B–5

SCSI Class Driver Template

.SBTTL Error log packet formats
;+
; The following are the definitions for class driver error log packets.
; The VMS error log formatter formats third-party SCSI class driver
; error log packets. The ERF utility formats a standard error
; log packet for third-party class drivers. The standard packet is defined
; below. If a user would like to dump additional data to the error log,
; simply increase the size of the error log packet defined. The additional
; data will be dumped as untranslated longwords in the error log.
;-

$DEFINI ERROR_PACKETS

. = EMB$L_DV_REGSAV ; Start of area to dump error info

$DEF ERR_LW_CNT .BLKL 1 ; Count of number of longwords that
; follow

$DEF ERR_REVISION .BLKB 1 ; Revision level
$DEF ERR_HW_REV .BLKL 1 ; Hardware revision
$DEF ERR_TYPE .BLKB 1 ; Error type
$DEF ERR_SCSI_ID .BLKB 1 ; SCSI ID
$DEF ERR_SCSI_LUN .BLKB 1 ; SCSI logical unit
$DEF ERR_SCSI_SUBLUN .BLKB 1 ; SCSI sublogical unit
$DEF ERR_PORT_STATUS .BLKL 1 ; Port status code
$DEF ERR_CMD_LEN .BLKB 1 ; SCSI command length field
$DEF ERR_CMD_BYTES .BLKB 12 ; Maximum possible command bytes
$DEF ERR_SCSI_STS .BLKB 1 ; SCSI status byte
$DEF ERR_TXT_LEN .BLKB 1 ; Error message text size
$DEF ERR_TXT_BYTES .BLKB 60 ; Maximum possible text bytes

.=.+4 ; Reserve one longword after end of
; defined packet.

$DEF ERR_K_COMMAND_LENGTH ; Length of packet containing SCSI
; command

$DEFEND ERROR_PACKETS

.SBTTL SCSI Class driver error log types.
;+
; SCSI class driver error log types. Each error that is logged by the
; class driver should have a unique error type.
;-
CLS_DRV_ERROR_01 = 1 ; Class driver specific error type.
CLS_DRV_ERROR_02 = 2 ; Class driver specific error type.
CLS_DRV_ERROR_03 = 3 ; Class driver specific error type.
CLS_DRV_ERROR_04 = 4 ; Class driver specific error type.
CLS_DRV_ERROR_05 = 5 ; Class driver specific error type.
CLS_DRV_ERROR_06 = 6 ; Class driver specific error type.

B–6

SCSI Class Driver Template

.SBTTL +

.SBTTL + MACRO DEFINITIONS

.SBTTL +

.SBTTL SCSI_CMD - Define a SCSI command packet
;+
; SCSI_CMD
;
; This macro defines the contents of a SCSI command packet. Each SCSI com-
; mand can have associated with it a DMA buffer used during the
; DATAIN/DATAOUT bus phases. A DMA length of zero indicates there is no
; DATA(IN/OUT) phase associated with this command (except in the case of a
; read/write SCSI command, which is handled specially.)
; Class drivers can specify on a command by command basis the DMA Timeout
; and Disconnect Timeout values. The disconnect timeout is the maximum
; number of seconds that an I/O can be disconnected from the bus. A timeout
; of -1 allows an infinite timeout. The DMA timeout is the maximum timeout
; for a DMA transfer to complete or a phase change on the SCSI bus to occur;
; this timeout is also in units of seconds.
; The SETUP_CMD routine uses this information in preparing to send a SCSI
; command. The macro generates a label and the SCSI command information as
; follows:
;
; +-----------------------+
; | SCSI cmd length | 1 byte
; +-----------------------+
; | SCSI cmd bytes | n bytes
; +-----------------------+
; | DMA buffer length | 2 bytes
; +-----------------------+
; | DMA direction | 1 byte
; +-----------------------+
; | DMA Timeout | 1 longword
; +-----------------------+
; | Disconnect Timeout | 1 longword
; +-----------------------+
;
;
; DMA direction is defined as: 0=write, 1=read.
;-

.MACRO SCSI_CMD, NAME, CMD_BYTES, DMA_LEN=0, DMA_DIR=READ,-
DMA_TMO=0, DISCON_TMO=0

’NAME’_CMD:
$$$BYTE_COUNT=0
.IRP CMD_BYTE, <CMD_BYTES>
$$$BYTE_COUNT = $$$BYTE_COUNT + 1
.IIF EQ $$$BYTE_COUNT-1, SCSI_C_’NAME’ = CMD_BYTE ; Define opcode
.ENDR
.BYTE $$$BYTE_COUNT
.IRP CMD_BYTE, <CMD_BYTES>
.BYTE CMD_BYTE
.ENDR
.WORD DMA_LEN
$$$DIRECTION = 0
.IIF IDN DMA_DIR, READ, $$$DIRECTION = 1
.BYTE $$$DIRECTION
.LONG DMA_TMO
.LONG DISCON_TMO
.ENDM SCSI_CMD

B–7

SCSI Class Driver Template

.SBTTL LOG_ERROR - Log a SCSI class driver error
;+
; LOG_ERROR
;
; This macro logs a SCSI class driver error. The error type and VMS status
; code are placed in R7 and R8 respectively, and the LOG_ERROR routine is
; called.
;-

.MACRO LOG_ERROR,TYPE,VMS_STATUS,UCB=R3,MESSAGE=’’,?LABEL_1

.SHOW EXPANSIONS
PUSHR #^M<R5,R7,R8,R11> ; Save registers
.IF DIF UCB,R5
MOVL UCB,R5 ; Get UCB address
.ENDC
MOVL #’TYPE’,R7 ; Get error code
MOVL VMS_STATUS,R8 ; And VMS status code
.IF LESS_THAN 60-%LENGTH(MESSAGE) ; Maximum size message is 60
.ERROR ; Message text is greater than 60 characters
.ENDC
.SAVE_PSECT LOCAL_BLOCK
.PSECT $$$111_TEXT
LABEL_1:
.ASCIC /’MESSAGE’/
.RESTORE_PSECT
MOVAL LABEL_1,R11
BSBW LOG_ERROR ; Write an error log entry
POPR #^M<R5,R7,R8,R11> ; Restore registers
.NOSHOW EXPANSIONS

.ENDM LOG_ERROR

.SBTTL WORD_BRANCHES - Define word displacement branches

;+
; WORD_BRANCHES
;
; This macro defines for each Bxxx (conditional branch) instruction an
; equivalent macro named BxxxW with a word displacement. The macro takes
; as an argument a list of tuples, each tuple containing 3 items: 1) a
; conditional branch opcode; 2) the opcode with the opposite polarity;
; and 3) the number of arguments required by the opcode.
;-

.MACRO WORD_BRANCHES LIST

.MACRO WORD_BRANCHES2, OPCODE1, OPCODE2, ARGCNT

.IF EQ ARGCNT-0

.MACRO OPCODE1, DST, ?L
OPCODE2 L
BRW DST

L: .ENDM OPCODE1
.ENDC

.IF EQ ARGCNT-1

.MACRO OPCODE1, FIELD, DST, ?L
OPCODE2 FIELD,L
BRW DST

L: .ENDM OPCODE1
.ENDC

.IF EQ ARGCNT-2

.MACRO OPCODE1, BIT, FIELD, DST, ?L
OPCODE2 BIT,FIELD,L
BRW DST

L: .ENDM OPCODE1
.ENDC

B–8

SCSI Class Driver Template

.ENDM WORD_BRANCHES2

.MACRO WORD_BRANCHES1, OPCODE1, OPCODE2, ARGCNT

WORD_BRANCHES2 ’OPCODE1’W, OPCODE2, ARGCNT
WORD_BRANCHES2 ’OPCODE2’W, OPCODE1, ARGCNT

.ENDM WORD_BRANCHES1

.IRP ENTRY, <LIST>
WORD_BRANCHES1 ENTRY
.ENDR

.ENDM WORD_BRANCHES

WORD_BRANCHES <-
<BBC, BBS, 2>,-
<BBCC, BBSC, 2>,-
<BBCS, BBSS, 2>,-
<BCC, BCS, 0>,-
<BEQL, BNEQ, 0>,-
<BEQLU, BNEQU, 0>,-
<BGEQ, BLSS, 0>,-
<BGEQU, BLSSU, 0>,-
<BGTR, BLEQ, 0>,-
<BGTRU, BLEQU, 0>,-
<BLBC, BLBS, 1>,-
<BVC, BVS, 0>>

.SBTTL INIT_UCB_STACK - Initialize the internal UCB stack

.SBTTL SUBPUSH - Push an item on the UCB stack

.SBTTL SUBPOP - Pop an item from the UCB stack

.SBTTL SUBSAVE - Save a return address on the UCB stack

.SBTTL SUBRETURN - Return to the address saved on UCB stack
;+
; INIT_UCB_STACK
; SUBPUSH
; SUBPOP
; SUBSAVE
; SUBRETURN
;
; These macros manipulate the UCB internal stack, which is used to save
; routine return address and temporary variables.
;-

.MACRO INIT_UCB_STACK,UCB=R5,?L1

MOVAL UCB_L_STACK-4(UCB),-
UCB_L_STACK_PTR(UCB)

.ENDM INIT_UCB_STACK

.MACRO SUBPUSH,ARG,UCB=R3,?L1,?L2

ADDL #4,UCB_L_STACK_PTR(UCB)
MOVL ARG,@UCB_L_STACK_PTR(UCB)

.ENDM SUBPUSH

.MACRO SUBPOP,ARG,UCB=R3,?L1,?L2

MOVL @UCB_L_STACK_PTR(UCB),ARG
SUBL #4,UCB_L_STACK_PTR(UCB)

.ENDM SUBPOP

.MACRO SUBSAVE,UCB=R3,?L1,?L2

SUBPUSH (SP)+,UCB

.ENDM SUBSAVE

.MACRO SUBRETURN,UCB=R3,?L1,?L2

B–9

SCSI Class Driver Template

SUBPOP -(SP),UCB
RSB

.ENDM SUBRETURN

.SBTTL SK_WAIT - Stall a thread for a specific number of seconds
;+
; SK_WAIT
;
; This macro uses the device timeout mechanism to stall a thread for a
; specified number of seconds. The UCB address and stall time are required
; as inputs.
;-

.MACRO SK_WAIT,SECONDS,UCB=R5,SCRATCH=R0,?L

.IF DIF UCB,R5
MOVL R5,SCRATCH
MOVL UCB,R5
MOVL SCRATCH,UCB
.ENDC
DSBINT ENVIRON=UNIPROCESSOR
PUSHL SECONDS
BSBW SK_WAIT
.WORD L-.

L: IOFORK
BICW #UCB$M_TIMOUT,-

UCB$W_STS(R5)
.IF DIF UCB,R5
MOVL UCB,SCRATCH
MOVL R5,UCB
MOVL SCRATCH,R5
.ENDC

.ENDM SK_WAIT

.SBTTL +

.SBTTL + DRIVER TABLES

.SBTTL +

.SBTTL Driver prologue table
;+
; Driver prologue table
;
; This table provides various information about the driver, such as its name
; and length, and causes initialization of various fields in the I/O
; database when the driver is loaded.
;-

.IIF NDF DPT$M_NO_IDB_DISPATCH, DPT$M_NO_IDB_DISPATCH = ^X1000

B–10

SCSI Class Driver Template

DPTAB - ; DPT-creation macro
END=SK_END,- ; End of driver label
ADAPTER=NULL,- ; Adapter type
UCBSIZE=<UCB_K_SK_UCBLEN>,- ; Length of UCB
NAME=SKDRIVER,- ; Driver name
FLAGS=<DPT$M_SMPMOD!- ; Driver runs in SMP

; environment
DPT$M_NO_IDB_DISPATCH> ; Don’t fill in IDB$L_UCBLST

DPT_STORE INIT ; Start of load
; initialization table

DPT_STORE UCB,UCB$L_MAXBCNT,L,MAX_BCNT ; Maximum byte count
DPT_STORE UCB,UCBB_FLCK,B,SPLC_IOLOCK8 ; Device FORK LOCK
DPT_STORE UCB,UCB$B_DIPL,B,22 ; Device interrupt IPL
DPT_STORE UCB,UCB$L_DEVCHAR,L,<- ; Device characterstics

DEV$M_AVL!- ; Available
DEV$M_IDV!- ; Input device
DEV$M_ODV!- ; Output device
DEV$M_SHR!- ; Shareable Device
DEV$M_ELG!- ; Error logging enabled
DEV$M_RND> ; Random Access Device

DPT_STORE UCB,UCB$L_DEVCHAR2,L,<- ; Device characterstics
DEV$M_NNM> ; Prefix name with "node$"

DPT_STORE UCB,UCB$B_DEVTYPE,B,DT$_GENERIC_SCSI ; Generic SCSI device
DPT_STORE UCB,UCB$B_DEVCLASS,B,DC$_MISC ; Sample device class
DPT_STORE UCB,UCB$W_DEVSTS,W,- ; Set no logical to physical

UCB$M_NOCNVRT ; block number conversion
DPT_STORE REINIT ; Start of reload

; initialization table
DPT_STORE DDB,DDBL_DDT,D,SKDDT ; Address of DDT
DPT_STORE CRB,- ; Address of controller

CRB$L_INTD+VEC$L_INITIAL,- ; initialization routine
D,SK_CTRL_INIT

DPT_STORE CRB,- ; Address of device
CRB$L_INTD+VEC$L_UNITINIT,- ; unit initialization
D,SK_UNIT_INIT ; routine

DPT_STORE CRB,CRBB_FLCK,B,IPL_IOLOCK8 ; Initialize fork lock field

DPT_STORE END ; End of initialization
; tables

.SBTTL Driver dispatch table
;+
; Driver dispatch table
;
; This table defines the entry points into the driver.
;-

DDTAB - ; DDT-creation macro
DEVNAM=SK,- ; Name of device
START=SK_STARTIO,- ; Start I/O routine
FUNCTB=SK_FUNCTABLE,- ; FDT address
REGDMP=SK_REG_DUMP ; Register dump routine

.SBTTL Function decision table
;+
; Function decision table
;
; This table lists the $QIO function codes implemented by the driver and
; the preprocessing routines used by each function.
;-

SK_FUNCTABLE: ; FDT for driver
FUNCTAB,- ; Valid I/O functions

<AVAILABLE,- ; Inquiry and Test Unit Ready
READLBLK,- ; Perform a "read" function
READVBLK,- ; Perform a "read" function
DIAGNOSE> ; Special pass-through function

B–11

SCSI Class Driver Template

FUNCTAB,<> ; Buffered I/O functions

FUNCTAB SK_READ,<READLBLK,READVBLK> ; Issue SCSI
; INQUIRY command

FUNCTAB +EXE$ZEROPARM,<AVAILABLE> ; Issue SCSI INQUIRY
; command

FUNCTAB SK_DIAGNOSE,<DIAGNOSE> ; Special pass-
; through function

.SBTTL SCSI Command Packet Definition Table

SK_CMD_DEFS::
SCSI_CMD -

NAME = TEST_UNIT_READY,-
CMD_BYTES = <0, 0, 0, 0, 0, 0>

SCSI_CMD NAME = INQUIRY,-
CMD_BYTES = <18 , 0, 0, 0, 36, 0>,-
DMA_LEN = 36,-
DMA_DIR = READ,-
DMA_TMO = 0,- ; Use default
DISCON_TMO = 0 ; Use default

SCSI_CMD NAME = REQUEST_SENSE,-
CMD_BYTES = <3, 0, 0, 0, 18, 0>,-
DMA_LEN = 18,-
DMA_DIR = READ,-
DMA_TMO = 0,- ; Use default
DISCON_TMO = 0 ; Use default

SCSI_CMD NAME = MODE_SELECT,-
CMD_BYTES = <21, 0, 0, 0, 4, 0>,-
DMA_LEN = 4,-
DMA_DIR = WRITE,-
DMA_TMO = 0,- ; Use default
DISCON_TMO = 0 ; Use default

SCSI_CMD NAME = QIO_INQUIRY,- ; Normally this would be
CMD_BYTES = <18 , 0, 0, 0, 0, 0>,- ; a read/write

; command
DMA_LEN = -1,- ; If data goes to user
DMA_DIR = READ,- ; buffer, then use -1 here.
DMA_TMO = 0,- ; Use default
DISCON_TMO = 0 ; Use default

SK_CMD_DEFS_END =.

B–12

SCSI Class Driver Template

.SBTTL +

.SBTTL + DRIVER ENTRY POINTS

.SBTTL +

.SBTTL SK_CTRL_INIT - Controller initialization routine
;++
; SK_CTRL_INIT
;
; This routine is called to perform controller-specific initialization
; and is called by the operating system in three places:
;
; - at system startup
; - during driver loading and reloading
; - during recovery from a power failure
;
; Currently this routine is a NOP.
;
; INPUTS:
;
; R4 - address of the CSR (controller status register)
; R5 - address of the IDB (interrupt data block)
; R6 - address of the DDB (device data block)
; R8 - address of the CRB (channel request block)
;
; OUTPUTS:
;
; All registers preserved
;--

SK_CTRL_INIT:

MOVZWL #SS$_NORMAL,R0 ; Set success status
RSB ; Return to caller

.SBTTL SK_UNIT_INIT - Unit initialization routine
;++
; SK_UNIT_INIT
;
; This routine allocates a set of SCDRPs and places them on a queue in the
; UCB, forms a connection to the port driver by calling SPI$CONNECT, and
; sets the unit online.
;
; INPUTS:
;
; R5 - UCB address
;
; OUTPUTS:
;
; R0-R3 - Destroyed
; All other registers preserved
;--

SK_UNIT_INIT: ; Initialize unit

BBC #UCB$V_POWER,- ; Branch if we’re not here due to a
UCB$W_STS(R5),2$; powerfail

RSB ; Otherwise, exit immediately

;+
; Fork twice for now to allow the port driver’s unit init routine to execute
; before ours.
;-
2$: FORK ; Fork to drop IPL to SYNCH

FORK ; 2nd Fork synchronizes with port driver.
INIT_UCB_STACK ; Initialize the internal stack in the UCB

B–13

SCSI Class Driver Template

MOVAL UCB_L_SCDRPQ_FL(R5),R0 ; Initialize the SCDRP queue header
MOVL R0,(R0) ; in the UCB
MOVL R0,4(R0) ;
MOVL #SCDRPS_PER_UNIT,R4 ; Number of SCDRPs allocated per unit

10$: MOVL #<SCDRP$C_LENGTH>,R1 ; Length of SCDRP
MOVL R5,R3 ; Copy UCB address
BSBW ALLOC_POOL ; Go allocate an SCDRP
MOVW R1,SCDRP$W_SCDRPSIZE(R2); Save length of SCDRP
INSQUE SCDRP$L_FQFL(R2),- ; Place SCDRP in UCB queue

UCB_L_SCDRPQ_FL(R5) ;
SOBGTR R4,10$; Repeat for all SCDRPs

;+
; All SCSI device unit numbers should be of the form "n0m" where n is the
; SCSI ID between 0 and 7 and m is the LUN between 0 and 7. Extract the ID
; from the LUN by dividing the unit number by 100. The quotient is then
; used as the ID while the remainder is the LUN. Note that the unit number
; contains three digits because early versions of SCSI provided for sub-
; logical unit numbers. This feature has since been removed and the second
; digit in the unit number is not used.
;-

MOVZWL #SS$_BADPARAM,R0 ; Assume bad LUN or SUBLUN specified
MOVZWL UCB$W_UNIT(R5),R1 ; Get device unit number
CLRL R2 ; Prepare for extended divide
EDIV #100,R1,R1,R2 ; Extract SCSI bus ID from LUN
CMPL R1,#7 ; Valid SCSI ID (0 <= n

; <= 7)?
BGTRUW 20$; Branch if not
CMPL R2,#7 ; Valid LUN (0 <= n

; <= 7)?
BGTRUW 20$; Branch if not
MULB3 #<1@5>,R2,UCB_B_LUN(R5) ; Save LUN (shifted left

; 5 bits for use later in SETUP_CMD)
ASHL #16,R1,R1 ; Place SCSI ID in high-order word

; of R1
ASHL #16,R2,R2 ; Place LUN in high-order word of R2
MOVL UCB$L_DDB(R5),R0 ; Get DDB address
SUBB3 #^A’A’,- ; Translate controller letter to

DDB$T_NAME+3(R0),R1 ; SCSI bus ID
SPI$CONNECT ; Connect to the port driver
BLBC R0,20$; Branch if connect attempt failed
CMPL R1,UCB$L_MAXBCNT(R5) ; For MAXBCNT, use minimum supported
BGEQ 15$; value of port and class drivers
MOVL R1,UCB$L_MAXBCNT(R5) ; Save maximum byte count in UCB

15$: MOVL R2,UCB_L_SCDT(R5) ; Save SCDT address
MOVL R4,UCB$L_PDT(R5) ; Save PDT address

BISW #UCB$M_ONLINE,- ; Set unit online
UCB$W_STS(R5) ;

20$: RSB ; Return to caller

.SBTTL +

.SBTTL + QIO FDT INTERFACE ROUTINES

.SBTTL +

B–14

SCSI Class Driver Template

.SBTTL SK_READ - FDT preprocessing for sending SCSI Inquiry command
;++
; SK_READ
;
; This routine performs FDT preprocessing including:
;
; - Validating access to, and locking, the read/write buffer
;
; INPUTS:
;
; R0 - Address of FDT routine
; R3 - IRP address
; R4 - PCB address
; R5 - UCB address
; R6 - CCB address
; R7 - Bit number of user-specified I/O function code
; R8 - Address of current entry in FDT
; AP - Address of first function-dependent argument (P1)
;
; OUTPUTS:
;
;--
SK_READ:

;+
; Use system routines to execute I/O preprocessing.
;-

TSTL P2(AP) ; There must be bytes to receive.
BEQL BADPARAM ; Bad input parameters.
JMP G^EXE$MODIFY ; Lock down pages, set up IRP,

; JUMP to EXE$QIODRVPKT, etc...

BADPARAM:
MOVZWL #SS$_BADPARAM,R0 ; Set bad parameter status
JMP G^EXE$ABORTIO ; Abort the I/O with status in R0

.SBTTL SK_DIAGNOSE - FDT preprocessing for special pass-through
function

;++
; SK_DIAGNOSE
;
; This routine performs FDT preprocessing including:
;
; - Validating access to the descriptor buffer
; - Validating access to, and locking, the read/write buffer
; - Copying the SCSI command to a buffer in nonpaged pool
;
; INPUTS:
;
; R0 - Address of FDT routine
; R3 - IRP address
; R4 - PCB address
; R5 - UCB address
; R6 - CCB address
; R7 - Bit number of user-specified I/O function code
; R8 - Address of current entry in FDT
; AP - Address of first function-dependent argument (P1)
;
; OUTPUTS:
;
;--

B–15

SCSI Class Driver Template

DSC_OPCODE = 0
DSC_FLAGS = 4
DSC_CMDADR = 8
DSC_CMDLEN = 12
DSC_DATADR = 16
DSC_DATLEN = 20
DSC_PADCNT = 24
DSC_PHSTMO = 28
DSC_DSCTMO = 32

SK_DIAGNOSE:
.IF NOT_EQUAL ASSEMBLE_PASSTHRU ; Flag to control assembly of

; IO$_DIAGNOSE
IFPRIV DIAGNOSE,10$; Branch if process has DIAGNOSE priv
MOVZWL #SS$_NOPRIV,R0 ; Set no privilege status
BRW 50$; Branch to abort the I/O

;+
; First, check that we have read access to the user’s descriptor.
;-
10$: MOVQ (AP),R0 ; Get user descriptor address, length

MOVL R0,R9 ; Save a copy of descriptor address
CMPL R1,#DIAG_BUF_LEN ; Valid descriptor length
BLSSW 40$; Branch if not
JSB G^EXE$WRITECHK ; Check for read access to the

; descriptor buffer (don’t return if
; no access)

CMPL DSC_OPCODE(R9),#1 ; Valid opcode?
BNEQW 40$; Branch if not

CMPL DSC_DATLEN(R9),- ; Reasonable read/write data buffer
UCB$L_MAXBCNT(R5) ; length?

BGTRUW 40$; Branch if not
CMPL DSC_PADCNT(R9),#511 ; Reasonable pad count?
BGTRU 40$; Branch if not

MOVQ DSC_CMDADR(R9),R0 ; Get SCSI command buffer address,
; length

CMPL R1,#MAX_CMD_LEN ; Valid command length?
BGTRU 40$; Branch if not
JSB G^EXE$WRITECHK ; Check for read access to the command

; buffer (don’t return if no access)
ADDL #8,R1 ; Reserve space for command buffer

; overhead
JSB G^EXE$ALONONPAGED ; Allocate a buffer in which to copy

; the SCSI command
BLBC R0,50$; Branch on error
MOVL R1,(R2)+ ; Save length of buffer
MOVL R2,IRP$L_MEDIA(R3) ; Save the command buffer address
MOVL DSC_CMDLEN(R9),R0 ; Get length of the SCSI command
MOVL R0,(R2)+ ; Save it in the command buffer
PUSHR #^M<R2,R3,R4,R5> ; Save registers
MOVC3 R0,@DSC_CMDADR(R9),(R2) ; Copy the SCSI command from user’s

; buffer to the buffer in pool
POPR #^M<R2,R3,R4,R5> ; Restore registers
CLRL IRP$L_BCNT(R3) ; Assume no user read/write data
MOVL DSC_DATADR(R9),R0 ; Get address of user data buffer
BEQL 30$; Branch if no user read/write data
MOVL DSC_DATLEN(R9),R1 ; Get length of user data buffer
BEQL 30$; Branch if no user read/write data
MOVAL G^EXE$READLOCKR,R2 ; Assume user is performing a read
BLBS DSC_FLAGS(R9),20$; Branch if this is a read operation
MOVAL G^EXE$WRITE LOCKR,R2 ; Other check for read access

20$: JSB (R2) ; Check access to and lock down buffer
BLBC R0,60$; Branch on error

30$: MOVAL IRP$C_CDRP(R3),R0 ; Get address of SCDRP within IRP
MOVL DSC_FLAGS(R9),(R0)+ ; Save flags field in IRP/SCDRP

B–16

SCSI Class Driver Template

MOVAL DSC_PADCNT(R9),R1 ; Get address of pad count field
.REPT 3
MOVL (R1)+,(R0)+ ; Save pad count, timeout values
.ENDR
JMP G^EXE$QIODRVPKT ; Queue the packet to the driver

40$: MOVZWL #SS$_BADPARAM,R0 ; Set bad parameter status
50$: JMP G^EXE$ABORTIO ; Abort the I/O with status in R0

;+
; We arrive here if the last FDT operation - checking access to and locking
; down the user’s read/write buffer - fails. EXE$READLOCKR or EXE$WRITE LOCKR
; returns to us through a coroutine call to allow us to give up any resources
; which we have allocated during FDT processing. Deallocate the buffer
; containing a copy of the SCSI command, then return from the coroutine call.
; R0 and R1 must be preserved.
;-
60$: PUSHQ R0 ; Save registers

MOVL IRP$L_MEDIA(R3),R0 ; Get address of nonpaged pool buffer
; containing SCSI command

MOVL -(R0),R1 ; Get length of buffer
JSB G^EXE$DEANONPGDSIZ ; Deallocate the packet
POPQ R0 ; Restore registers
RSB ; Return from coroutine call
.ENDC ; IF ASSEMBLE_PASTHRU

.IF EQUAL ASSEMBLE_PASSTHRU ; IF IO$_DIAGNOSE not assembled, do
; this..

MOVZBL #SS$_ILLIOFUNC,R0 ; Specify the error type
JMP G^EXE$ABORTIO ; Abort the I/O with status in R0
.ENDC

.SBTTL +

.SBTTL + STARTIO SCSI COMMAND EXECUTION ROUTINES

.SBTTL +

.SBTTL SK_STARTIO - Driver STARTIO entry point
;++
; SK_STARTIO
;
; This routine is the STARTIO entry point into the driver. Its main function
; is to dispatch to the function-code-specific routine that starts a specific
; I/O function.
;
; INPUTS:
;
; R3 - IRP address
; R5 - UCB address
;
; OUTPUTS:
;
; R0 - 1st longword of I/O status: contains status code and
; number of bytes transferred
; R1 - 2nd longword of I/O status: low-order word contains
; high-order word of number of bytes transferred
; R4 - Destroyed
; All other registers preserved
;--

SK_STARTIO:
.ENABLE LSB ; SK_STARTIO

INIT_UCB_STACK ; Initialize the internal stack in the UCB

B–17

SCSI Class Driver Template

MOVL UCB$L_PDT(R5),R4 ; Get PDT address
MOVL R3,R2 ; Copy IRP address
MOVL R5,R3 ; Copy UCB address
BSBW ALLOC_SCDRP ; Allocate an SCDRP
MOVL R2,SCDRP$L_IRP(R5) ; Save IRP address in SCDRP

EXTZV #IRP$V_FCODE,- ; Extract I/O function code
#IRP$S_FCODE,- ;
IRP$W_FUNC(R2),R1 ;

ASSUME IRP$S_FCODE LE 7 ; Allow byte mode dispatch
DISPATCH R1,TYPE=B,<- ; Dispatch according to function

<IO$_DIAGNOSE, IO_DIAGNOSE>,-
<IO$_READPBLK, IO_READ>,-
<IO$_AVAILABLE, IO_INQUIRY>>

;+
; Bogus I/O function code will fall through. Set illegal function code
; status and complete the I/O.
;-
IO_BOGUS:

MOVZBL #SS$_ILLIOFUNC,R0 ; Specify the error type
; BRB COMPLETE_IO ; Fall through to exit path for

; if other error then uncomment.

COMPLETE_IO:
BSBW DEALLOC_SCDRP ; Deallocate the SCDRP
MOVL R3,R5 ; Copy UCB address
REQCOM ; Complete the I/O
.DISABLE LSB ; SK_STARTIO

.SBTTL IO_INQUIRY - Send SCSI INQUIRY command.
;++
; IO_INQUIRY
;
; This routine is intended as an example of how to write a STARTIO
; routine for a SCSI class driver.
;
; This routine sends an inquiry command to the target. If
; errors occur during the execution of this operation no retries
; occur. However, this class driver issues a REQUEST SENSE to
; determine the nature of the event. If the event is fatal, the
; error is logged and the I/O fails. If the event is
; benign, then the I/O completes with a REQCOM.
;
; IO_INQUIRY calls the port driver to allocate command buffer areas,
; maps the system or user buffer such that the port driver has access
; to these areas, and then calls the port driver’s SEND_CMD entry point
; to send the SCSI command to a target.
; When the port driver returns from this call, the INQUIRY data has been
; moved, the command status is in the status-in buffer and the SCSI
; bus is free. The class driver checks the transfer count, releases
; its resources and completes the I/O with a call to REQCOM.
;
; INPUTS:
;
; R3 - UCB address
; R4 - PDT address
; R5 - SCDRP address
;
; OUPUTS:
;
; R0 - Status
;
; SS$_NORMAL - I/O completed successfully.
; SS$_ILLSEQOP - I/O failed, bad sense key.
; SS$_IVSTSFLG - Invalid SCSI status returned.
; SS$_OPINCMPL - I/O failed, insufficient data returned.

B–18

SCSI Class Driver Template

;
;--

IO_INQUIRY:
.ENABLE LSB ; IO_INQUIRY
MOVAL INQUIRY_CMD,R2 ; Address of INQUIRY command
BSBW SETUP_CMD ; Perform setup for SCSI command
BLBC R0,35$;
BSBW SEND_COMMAND ; Send the SCSI command

;+
; Determine by sending the INQUIRY command, what target is at this ID.
;
; After a call to the port driver, when the port status (R0) and SCSI
; command status have been checked, the class driver must verify that
; the number of bytes that were to be received or sent have been delivered
; by the port driver. SCDRP$L_TRANS_CNT contains the actual number of bytes
; of data transferred by the port driver.
;-

BLBC R0,35$; Branch on error
CMPL SCDRP$L_TRANS_CNT(R5),- ; Sufficient inquiry data returned?

#INQ_DATA_LEN ;
BLSSUW 34$; Branch if not
MOVL SCDRP$L_SVA_USER(R5),R1 ; Get address of inquiry data
CMPB #SCSI_C_DA,- ; Is this a SCSI disk device?

SCSI_INQ_B_DEVTYPE(R1) ; Check INQUIRY data
;*** BNEQ SOMEWHERE ; If it’s not the target you want.
30$: BSBW CLEANUP_CMD ; Clean up from the SCSI command
;+
; Now that the class driver knows what target is out there, determine if
; the target is ready by sending a TEST UNIT READY command.
;-

MOVAL TEST_UNIT_READY_CMD,R2 ; Test Unit Ready command
BSBW SETUP_CMD ; Perform setup for SCSI command
BLBC R0,35$; Branch on error
BSBW SEND_COMMAND ; Send the SCSI command
BLBC R0,35$; Branch on error
BSBW CLEANUP_CMD ; Clean up from the SCSI command
CLRL R1 ; Clean up R1
BRW COMPLETE_IO ; Complete the user’s I/O.

;+
; Any error the class driver encounters is logged.
; R0 contains the VMS status.
;-
34$: MOVZWL #SS$_OPINCOMPL,R0
35$: LOG_ERROR - ; Log an invalid inquiry data error

TYPE=CLS_DRV_ERROR_01,- ;
VMS_STATUS=R0,- ; I/O operation failed
UCB=R3,- ;
MESSAGE=<ERROR DURING INQUIRY_TEST UNIT RDY
SEQUENCE>

BSBW CLEANUP_CMD ; Clean up from the SCSI command
CLRL R1 ; Clean up R1
BRW COMPLETE_IO ; Complete the user’s I/O.
.DISABLE LSB ; IO_INQUIRY

B–19

SCSI Class Driver Template

.SBTTL IO_READ - Send SCSI INQUIRY command and return data.
;++
; IO_READ
;
; This routine is intended as an example of how to write a STARTIO
; routine that reads data from a target device and returns the data
; to a user buffer. Normally, some form of read command would be used
; to retrieve data from a target; however the format of read commands
; varies depending on the SCSI device class. Therefore, this
; example uses the INQUIRY command to get data from the target; the
; INQUIRY command is one of the few commands that is common among
; all device types.
;
; Third-party class drivers traditionally do NOT return the INQUIRY
; data to the application. Rather, the class driver uses this
; information to establish the characteristics of the SCSI target
; and the class driver’s connection to this target.
;
; IO_READ calls the port driver to allocate command buffer areas,
; maps user read buffer such that the port driver has access to these
; areas and then calls the port driver’s SEND_CMD entry point
; to send the SCSI command to a target. When the port driver returns from
; this call, the INQUIRY data has been moved to the user’s buffer,
; the command status is in the status-in buffer and the SCSI bus is free.
; The class driver checks the transfer count, releases its resources and
; complete the I/O with a call to REQCOM.
;
; INPUTS:
;
; R3 - UCB address
; R4 - PDT address
; R5 - SCDRP address
;
; OUPUTS:
;
; R0 - Status
;
; SS$_NORMAL - I/O completed successfully.
; SS$_ILLSEQOP - I/O failed, bad sense key.
; SS$_IVSTSFLG - Invalid SCSI status returned.
; SS$_OPINCMPL - I/O failed, insufficient data returned
;
;--

IO_READ:
.ENABLE LSB ; IO_READ

B–20

SCSI Class Driver Template

;+
; WARNING: If the user provides the wrong byte count the SCSI bus may hang.
; SCSI port drivers can recover from this error; however, the recovery
; mechanism may be severe and this I/O request will fail.
;-

MOVL #SCDRP$M_BUFFER_MAPPED,- ; Set buffer mapped flag to prevent
SCDRP$L_SCSI_FLAGS(R5) ; allocation of S0 buffer for data

MOVAL QIO_INQUIRY_CMD,R2 ; Address of INQUIRY command for
; user data

BSBW SETUP_CMD ; Perform setup for SCSI command
BLBC R0,300$; Setup failed
SPI$MAP_BUFFER ; Map the user buffer
BSBW SEND_COMMAND ; Send the SCSI command

;+
; The port driver has been called to send the command and now returns
; with the data moved to the user’s buffer, the port status in R0, and SCSI
; status in the STATUSIN buffer. The class driver checks the port driver
; and SCSI command status and then verifies that the number of bytes that
; were received equals the BCNT. SCDRP$L_TRANS_CNT contains the actual
; number of bytes of data transferred by the port driver.
;-

BLBC R0,35$; Branch on error
CMPL SCDRP$L_TRANS_CNT(R5),- ; Sufficient inquiry data returned?

SCDRP$L_BCNT(R5)
BNEQUW 34$; Branch if not

30$: MOVL SCDRP$L_TRANS_CNT(R5),R1; Return transaction count in IOSB
BSBW CLEANUP_CMD ; Clean up from the SCSI command
BRW COMPLETE_IO ; Complete the user’s I/O

;+
; Errors the class driver encounters are logged.
; R0 contains the VMS status.
;-
34$: MOVZWL #SS$_OPINCOMPL,R0
35$: LOG_ERROR - ; Log an invalid inquiry data error

TYPE=CLS_DRV_ERROR_04,- ;
VMS_STATUS=R0,- ; I/O operation failed
UCB=R3,- ;
MESSAGE=<ERROR DURING READ QIO FUNCTION>

BSBW CLEANUP_CMD ; Clean up from the SCSI command
CLRL R1 ; Clean up R1
BRW COMPLETE_IO ; Complete the user’s I/O

;+
; The template driver does not support segmented I/O. This exercise
; is left to the user.
;-
300$: BICL #SCDRP$M_BUFFER_MAPPED,-; No buffer mapped, so don’t unmap.

SCDRP$L_SCSI_FLAGS(R5) ;
LOG_ERROR - ; Log an invalid inquiry data error

TYPE=CLS_DRV_ERROR_05,- ;
VMS_STATUS=R0,- ; I/O operation failed.
UCB=R3,- ;
MESSAGE=<ERROR I_O OPERATION NOT PROPERLY SEGMENTED>

CLRL R1 ; Clean up R1
BRW COMPLETE_IO ; Complete the user’s I/O
.DISABLE LSB ; IO_READ

B–21

SCSI Class Driver Template

.SBTTL IO_DIAGNOSE - Special pass-through function
;++
; IO_DIAGNOSE
;
; STARTIO routine for the passthru function of the template SCSI
; class driver. This routine assumes that the user has provided
; a buffer that contains the SCSI command packet and that the
; FDT routines in the driver have made the appropriate checks
; during I/O preprocessing to allow access to the user data areas
; during STARTIO.
;
; IO_DIAGNOSE makes calls into the port driver to allocate command
; buffer areas, maps the user buffer such that the port driver
; can access user areas, and then calls the port driver’s SEND_CMD
; entry point to send the SCSI command to a target. When the port
; driver returns from this call, the user’s data has been moved,
; the command status is in the status-in buffer and the SCSI bus
; is free. The class driver releases its resources and
; completes the I/O with a call to REQCOM.
;
; INPUTS:
;
; R2 - IRP address
; R3 - UCB address
; R4 - PDT address
; R5 - SCDRP address
;
; OUTPUTS:
;
; R0 - Status
; R1,R2 - Destroyed
; All other registers preserved
;--

IO_DIAGNOSE:
.ENABLE LSB ; IO_DIAGNOSE
.IF NOT_EQUAL ASSEMBLE_PASSTHRU ; IF assemble IO$_DIAGNOSE if

; ASSM_PASS
MOVL IRP$L_MEDIA(R2),- ; Copy command buffer from IRP to

SCDRP$L_MEDIA(R5) ; SCDRP
MOVL IRP$L_SVAPTE(R2),- ; and SVAPTE,

SCDRP$L_SVAPTE(R5) ;
MOVL IRP$L_BCNT(R2),- ; BCNT,

SCDRP$L_BCNT(R5) ;
MOVW IRP$W_BOFF(R2),- ; and BOFF

SCDRP$W_BOFF(R5) ;
MOVW IRP$W_STS(R2),- ; and STS

SCDRP$W_STS(R5) ;
MOVAL IRP$C_CDRP(R2),R0 ; Get address of SCDRP portion of IRP
EXTZV #1,#1,(R0),R1 ; Get disconnect flag
INSV R1,#UCB_V_DISCONNECT,- ; Fill in disconnect flag in UCB

#1,UCB_L_SK_FLAGS(R3) ;
EXTZV #2,#1,(R0),R1 ; Get synchronous flag
INSV R1,#UCB_V_SYNCHRONOUS,- ; Fill in synchronous flag in UCB

#1,UCB_L_SK_FLAGS(R3) ;
ADDL #4,R0 ; Advance to pad count field
MOVL (R0)+,- ; Fill in the pad count in the SCDRP

SCDRP$L_PAD_BCNT(R5) ;
MOVL (R0)+,- ; Fill in the phase change (DMA)

; timeout
SCDRP$L_DMA_TIMEOUT(R5) ; in the SCDRP

MOVL (R0)+,- ; Fill in the disconnect timeout in
SCDRP$L_DISCON_TIMEOUT(R5) ; the SCDRP

BSBW SET_CONN_CHAR ; Set up the connect characteristics

B–22

SCSI Class Driver Template

MOVL SCDRP$L_MEDIA(R5),R1 ; Get address of SCSI command in pool
MOVL (R1)+,R1 ; Get length of SCSI command
ADDL #8,R1 ; Account for overhead
SPI$ALLOCATE_COMMAND_BUFFER ; Allocate a command buffer
MOVL R2,SCDRP$L_CMD_BUF(R5) ; Save address of command buffer
CLRL (R2)+ ; Reserve a longword for status
MOVB #^XFF,-1(R2) ; Initialize status field
MOVAL -1(R2),- ; Address to save status byte

SCDRP$L_STS_PTR(R5) ;
MOVL R2,SCDRP$L_CMD_PTR(R5) ; Address of SCSI command in cmd

; buffer
MOVL SCDRP$L_MEDIA(R5),R0 ; Get SCSI command in pool again
MOVL (R0),(R2)+ ; Copy SCSI command length
PUSHR #^M<R0,R2,R3,R4,R5> ; Save registers
MOVC3 (R0),4(R0),(R2) ; Copy SCSI command to command buffer
POPR #^M<R0,R2,R3,R4,R5> ; Restore registers
MOVL -(R0),R1 ; Get length of command buffer in pool
JSB G^EXE$DEANONPGDSIZ ; Deallocate the buffer
TSTL SCDRP$L_BCNT(R5) ; Any user data buffer?
BEQL 10$; Branch if not
SPI$MAP_BUFFER ; Map the user’s data buffer

10$: SPI$SEND_COMMAND ; Send the SCSI command
PUSHL R0 ; Save returned port status
TSTL SCDRP$L_BCNT(R5) ; User buffer mapped?
BEQL 20$; Branch if not
SPI$UNMAP_BUFFER ; Unmap the user’s data buffer

20$: MOVL SCDRP$L_CMD_BUF(R5),R0 ; Get the command buffer address
PUSHL (R0) ; Save the SCSI status byte
SPI$DEALLOCATE_COMMAND_BUFFER ; Deallocate the command buffer
POPL R1 ; Restore the SCSI status byte
POPL R0 ; Restore the port status
INSV SCDRP$L_TRANS_CNT(R5),- ; Copy the transfer count to the

#16,#16,R0 ; high-order word of R0
.ENDC ; If ASS_DIAG FALSE don’t assemble
BRW COMPLETE_IO ; Complete the QIO
.DISABLE LSB ; IO_DIAGNOSE

.SBTTL +

.SBTTL + UTILITY ROUTINES

.SBTTL +

.SBTTL SEND_COMMAND - Send a SCSI command
;++
; SEND_COMMAND
;
; This routines sends a command to the SCSI device. It returns any failing
; port status to the caller. If the port status is success, it checks the
; SCSI status byte. If a check condition status is returned, a request
; sense command is sent to the target and the sense key is translated into
; a VMS status code, which is returned as status.
;
; INPUTS:
;
; R3 - UCB address
; R4 - PDT address
; R5 - SCDRP address
;
; OUTPUTS:
;
; R0 - Status
; SS$_IVSTSFLG - Invalid SCSI status returned.
; SS$_ILLSEQOP - I/O operation failed.
; R1,R2 - Destroyed
; All other registers preserved
;--

B–23

SCSI Class Driver Template

SEND_COMMAND:

.ENABLE LSB ; SEND_COMMAND
SUBSAVE ; Save return address
SPI$SEND_COMMAND ; Send the SCSI command
BLBC R0,10$; If port failed, return
MOVZBL @SCDRP$L_STS_PTR(R5),R1 ; Get SCSI status byte
BICB #SCSI$M_STS,R1 ; Clear reserved, vendor-unique bits
BNEQ 20$; Branch if bad status

10$: SUBRETURN ; Return to caller

;+
; A bad SCSI status code was returned. If the code is a check condition,
; then send a request sense command to the device. Otherwise, the status
; code is something unexpected. Log an error and return SS$_MEDOFL status.
;-
20$: CMPB R1,#2 ; Check condition status?

BNEQ 90$; Branch if not
;+
; A check condition status code was returned. Save the original SCDRP
; address, allocate a second one and send a request sense command. If the
; request sense succeeds, translate the sense key to a VMS status code and
; return that as the status code for the original command.
;-
45$: MOVL R5,UCB_L_SCDRP_SAV1(R3) ; Save original SCDRP address

BSBW ALLOC_SCDRP ; Allocate an additional SCDRP
BSBW REQUEST_SENSE ; Send a request sense command
BLBC R0,50$; Branch on error

; a VMS status code in R0
;+
; Look at the results of the request sense to determine the exact nature
; of the event.
;-

MOVL SCDRP$L_SVA_USER(R5),R1 ; Get address of REQUEST SENSE DATA.
BICB3 #^XF0,SCSI_XS_B_ERR_CODE(R1),- ; First check ERROR CODE.

R0 ; In this case zero is good, but this
BNEQ 50$; is really device specific.
BICB3 #^XF0,SCSI_XS_B_KEY(R1),- ; Mask off SENSE KEY.

R0
;+
; Depending on the value of the sense key, dispatch to the appropriate
; error recovery.
;-

DISPATCH R0,TYPE=B,<- ; Dispatch accord-
; ing to SENSE KEY.

<SCSI_C_NO_SENSE,SK_OK>,- ; No sense data
<SCSI_C_RECOVERED_ERROR,SK_OK>,- ; Recovered error
<SCSI_C_NOT_READY,SK_BAD>,- ; Device not ready
<SCSI_C_MEDIUM_ERROR,SK_BAD>,- ; Medium (parity)

; error
<SCSI_C_HARDWARE_ERROR,SK_BAD>,- ; Hardware error
<SCSI_C_ILLEGAL_REQUEST,SK_BAD>,- ; Illegal request
<SCSI_C_UNIT_ATTENTION,SK_BAD>,- ; Unit attention

; (reset...)
<SCSI_C_DATA_PROTECT,SK_BAD>,- ; Data protection

; (write lock)
<SCSI_C_BLANK_CHECK,SK_BAD>,- ; Blank check
<SCSI_C_VENDOR_UNIQUE,SK_BAD>,- ; Vendor unique key
<SCSI_C_COPY_ABORTED,SK_BAD>,- ; Copy operation

; aborted
<SCSI_C_ABORTED_COMMAND,SK_BAD>,- ; Command aborted
<SCSI_C_EQUAL,SK_BAD>,- ; Data match
<SCSI_C_VOLUME_OVERFLOW,SK_BAD>,- ; Write past

; physical end
<SCSI_C_MISCOMPARE,SK_BAD>> ; Data mismatch

B–24

SCSI Class Driver Template

;+
; Either the sense key was bad or the key was invalid. In either case
; indicate that the command failed. Some class drivers will want
; to translate each bad sense key to a unique class driver SS$_XXXXX
; status code. Here we will always return SS$_ILLSEQOP.
;-
SK_BAD:

MOVL #SS$_ILLSEQOP,R0 ; I/O operation failed
BRB 50$; cleanup and return error

;+
; If the sense key indicated that the operation completed successfully,
; then return success.
;-
SK_OK:

MOVL #SS$_NORMAL,R0 ; I/O operation succeeded
; BRB 50$; Clean up and return error

50$: BSBW CLEANUP_CMD ; Clean up the request sense command
BSBW DEALLOC_SCDRP ; Deallocate the request sense SCDRP
MOVL UCB_L_SCDRP_SAV1(R3),R5 ; Restore original SCDRP address
MOVL R5,UCB_L_SCDRP(R3) ; Copy it to the UCB
BRW 10$; Return to caller

;+
; If the status returned for the last command was anything other than
; check condition, log an error and return a status of SS$_IVSTSFLG to
; indicate that command failed and that there is no request sense data.
;-
90$: MOVL #SS$_IVSTSFLG,R0 ; Return a generic status code

LOG_ERROR - ; Log a send command error
TYPE=CLS_DRV_ERROR_02,- ; Generic user class driver error
VMS_STATUS=R0,- ;
UCB=R3,- ;
MESSAGE=<ERROR BAD SCSI COMMAND STATUS>

BRW 10$
.DISABLE LSB ; SEND_COMMAND

.SBTTL REQUEST_SENSE - Send a request sense command
;++
; REQUEST_SENSE
;
; This routine is called by SEND_COMMAND when a command fails with check
; condition status. A request sense command is sent to the target.
;
; INPUTS:
;
; R3 - UCB address
; R4 - PDT address
; R5 - SCDRP address
;
; OUTPUTS:
;
; R0 - Status
; SS$_IVSTSFLG - Bad SCSI status returned during
; REQUEST SENSE.
; R1,R2 - Destroyed
; All other registers preserved
;--

B–25

SCSI Class Driver Template

REQUEST_SENSE:
.ENABLE LSB ; REQUEST_SENSE
SUBSAVE ; Save return address
MOVAL REQUEST_SENSE_CMD,R2 ; Address of REQUEST_SENSE command
BSBW SETUP_CMD ; Perform setup for SCSI command
BLBC R0,10$; Branch on error
SPI$SEND_COMMAND ; Send the SCSI command
BLBC R0,10$; Return on error
MOVZBL @SCDRP$L_STS_PTR(R5),R1 ; Get SCSI status byte
BICB #SCSI$M_STS,R1 ; Clear reserved, vendor unique bits
BNEQ 20$; Branch if bad status

10$: SUBRETURN ; Return to caller

20$: MOVZWL #SS$_IVSTSFLG,R0 ; Return bad SCSI status to caller.
BRB 10$
.DISABLE LSB ; REQUEST_SENSE
.SBTTL SET_CONN_CHAR - Modify connection characteristics

;++
; SET_CONN_CHAR
;
; This routine is called to initialize the connection characteristics,
; which specify such things as whether the device supports disconnect
; and synchronous operation, and the bus busy, arbitration, selection,
; and command retry counters.
;
; This routine first does a SPI$GET_CONNECTION_CHAR to get the current
; values of the connection characteristics, modifies the values of interest,
; then does a SPI$SET_CONNECTION_CHAR to set up the new values. This allows
; the class driver to change a subset of the characteristics and leave the
; rest unmodified.
;
; INPUTS:
;
; R3 - UCB address
; R4 - SPDT address
; R5 - SCDRP address
;
; OUTPUTS:
;
; R0-R2 - Destroyed
; All other registers preserved
;--

SET_CONN_CHAR:
.ENABLE LSB ; SET_CONN_CHAR

B–26

SCSI Class Driver Template

SUBSAVE ; Save return address
MOVL #<<NUM_ARGS+1>*4>,R1 ; Size of

; get/set connection char buffer
BSBW ALLOC_POOL ; Allocate the buffer
SUBPUSH R2 ; Save address of buffer
MOVL #NUM_ARGS,(R2) ; Set argument count in buffer
SPI$GET_CONNECTION_CHAR ; Get current connection

; characteristics
BLBC R0,10$; Branch on error

;+
; Some devices won’t select if selected with attention.
;
; NOTE: It is strongly suggested that targets and devices
; support the disconnect/reselection sequence. All
; Digital-supplied devices support this feature to
; ensure consistent bus performance.
;
; EXTZV #UCB_V_DISCONNECT,#1,- ; Fill in disconnect flag
; UCB_L_SK_FLAGS(R3),4(R2);
;-

EXTZV #UCB_V_SYNCHRONOUS,#1,- ; Fill in synchronous flag
UCB_L_SK_FLAGS(R3),8(R2) ;

SPI$SET_CONNECTION_CHAR ; Set the connection characteristics
10$: PUSHL R0 ; Save return status

SUBPOP R0 ; Get address of characteristics
; buffer

BSBW DEALLOC_POOL ; Deallocate the buffer
POPL R0 ; Restore return status
BLBS R0,20$; Branch if success status
MOVL #SS$_CTRLERR,R0 ; Otherwise, return a reasonable

; status
20$: SUBRETURN ; Return to caller

.DISABLE LSB ; SET_CONN_CHAR

.SBTTL SK_WAIT - Stall for the specified number of seconds
;++
; SK_WAIT
;
; This routine is used by the SK_WAIT macro to stall a thread for a
; specified number of seconds. It sets the timeout bit in the UCB and
; relies on the device timeout mechanism to resume the stalled thread.
;
; INPUTS:
;
; IPL - 31
; R5 - UCB address
; (SP) - Return address
; 4(SP) - Wait time in seconds
; 8(SP) - Saved IPL
; 12(SP) - Address of caller’s caller
;
; OUPUTS:
;
; Stack - Return address, wait time, IPL removed
; Control returns to caller’s caller
; All registers preserved
;
; NOTE: The use of the SK_WAIT macro destroys R0-R3
;--

SK_WAIT:

B–27

SCSI Class Driver Template

MOVQ R3,UCB$L_FR3(R5) ; Save R3 and R4 in fork block
ADDL3 #2,(SP)+,UCB$L_FPC(R5) ; Save return address in fork block
BISW #UCBM_TIM,UCBW_STS(R5); Set timer expected bit
ADDL3 (SP)+,G^EXE$GL_ABSTIM,- ; Set up timeout time in UCB

UCB$L_DUETIM(R5) ;
BICW #UCB$M_TIMOUT,- ; Clear timer expired bit

UCB$W_STS(R5) ;
ENBINT ; Reenable interrupts
RSB ; Return to caller’s caller

.SBTTL ALLOC_SCDRP - Allocate an SCDRP
;++
; ALLOC_SCDRP
;
; This routine allocates an SCDRP by attempting to remove one from the
; queue in the UCB. If the queue is empty (which should never happen),
; then bugcheck. The entire SCDRP is zeroed and various fields are
; initialized.
;
; INPUTS:
;
; R3 - UCB address
;
; UCB_L_SCDRPQ_FL - Queue of SCDRPs
;
; OUTPUTS:
;
; R5 - SCDRP address
; All other registers preserved
;
; SCDRP$L_UCB - UCB address
; SCDRP$L_IRP - IRP address
; SCDRP$L_CDT - SCDT address
; SCDRP$L_SCSI_FLAGS - Initialized
; SCDRP$L_CL_SSK_PTR - Initialized
;--

ALLOC_SCDRP:
.ENABLE LSB ; ALLOC_SCDRP
REMQUE @UCB_L_SCDRPQ_FL(R3),R5 ; Remove an SCDRP from the queue
PUSHR #^M<R0,R1,R2,R3,R4,R5> ; Save registers
MOVC5 #0,.,#0,- ; Initialize the SCDRP

#SCDRP$C_LENGTH-12,- ;
12(R5) ;

POPR #^M<R0,R1,R2,R3,R4,R5> ; Restore registers
MOVL R5,UCB_L_SCDRP(R3) ; Save SCDRP address in UCB
MOVL R3,SCDRP$L_UCB(R5) ; Save UCB address in SCDRP
MOVB UCB$B_FLCK(R3),- ; Copy the fork lock field from the

SCDRP$B_FLCK(R5) ; UCB to the SCDRP
MOVL UCB_L_SCDT(R3),- ; Save SCDT address in SCDRP

SCDRP$L_CDT(R5) ;
MOVAL SCDRP$L_SCSI_STK-4(R5),-; Initialize the SCDRP stack pointer

SCDRP$L_SCSI_STK_PTR(R5);
RSB

.DISABLE LSB ; ALLOC_SCDRP

B–28

SCSI Class Driver Template

.SBTTL DEALLOC_SCDRP - Deallocate an SCDRP
;++
; DEALLOC_SCDRP
;
; This routine deallocates an SCDRP by returning it to the queue in the
; UCB. A sanity check is made to ensure that any map registers for this
; command have been deallocated.
;
; INPUTS:
;
; R3 - UCB address
; R5 - SCDRP address
;
; OUTPUTS:
;
; R3 - UCB address
; R5 - UCB address (for _R5 entry point)
; All other registers preserved
;
; UCB_L_SCDRP - Cleared to indicate no active SCDRP
;--

DEALLOC_SCDRP:

.ENABLE LSB ; DEALLOC_SCDRP
INSQUE SCDRP$L_FQFL(R5),- ; Insert SCDRP in UCB queue

UCB_L_SCDRPQ_FL(R3) ;
CLRL UCB_L_SCDRP(R3) ; No active SCDRP for this UCB
RSB

.DISABLE LSB ; DEALLOC_SCDRP

.SBTTL ALLOC_POOL - Allocate a block of nonpaged pool
;++
; ALLOC_POOL
;
; This routine allocates a block of nonpaged pool no smaller than the
; size of a fork block (allowing COM$DRVDEALMEM to fork on this block
; during deallocation.) An extra quadword at the top of the block is
; reserved to save the size field, relieving the caller of this respons-
; ibility. The caller is presented with the address just beyond the
; reserved quadword. Although a word would be sufficient for this field,
; a quadword is used for alignment purposes (some blocks are used as IRPs,
; which are placed on self-relative queues and require quadword alignment.)
;
; If an allocation failure occurs, the thread is stalled and wakes up once
; a second to retry the allocation.
;
; INPUTS:
;
; R1 - Size of block to allocate
; R3 - UCB address
;
; OUTPUTS:
;
; R0 - Destroyed
; R1 - Size of block allocated
; R2 - Address of allocated block
; -8(R2) - Length of allocated block (used by DEALLOC_POOL)
; All other registers preserved
;--

ALLOC_POOL:

B–29

SCSI Class Driver Template

.ENABLE LSB ; ALLOC_POOL
ADDL #8,R1 ; Reserve a quadword to save size
CMPL R1,#FKB$C_LENGTH ; Requested size smaller than fork

; block?
BGEQ 10$; Branch if not
MOVL #FKB$C_LENGTH,R1 ; Use fork block size as minimum

10$: PUSHL R1 ; Save allocation length
PUSHL R3 ; Save UCB address
JSB G^EXE$ALONONPAGED ; Allocate a block
POPL R3 ; Restore register
BLBC R0,20$; Branch if error
ADDL #4,SP ; Remove allocation length from stack
PUSHR #^M<R0,R1,R2,R3,R4,R5> ; Save registers
MOVC5 #0,.,#0,R1,(R2) ; Initialize the packet
POPR #^M<R0,R1,R2,R3,R4,R5> ; Restore registers
MOVL R1,(R2)+ ; Save size of block
ADDL #4,R2 ; Skip a longword
RSB ; Return to caller

;+
; A pool allocation failure occurred. Come back once a second and retry the
; operation until successful.
;-
20$: SUBPUSH (SP)+ ; Save allocation length (PUSHL R1 above)

SUBSAVE ; Save return address
SK_WAIT #1,UCB=R3 ; Wait a second
SUBPOP -(SP) ; Restore return address
SUBPOP R1 ; Restore allocation length
BRW 10$; Try again
.DISABLE LSB ; ALLOC_POOL

.SBTTL DEALLOC_POOL - Deallocate a block of nonpaged pool
;++
; DEALLOC_POOL
;
; This routine deallocates a block of nonpaged pool. The size of the block
; is stored in the reserved quadword at a negative offset from the
; beginning of the block.
;
; INPUTS:
;
; R0 - Address of block to deallocate
; -8(R0) - Length of block to deallocate
;
; OUTPUTS:
;
; R0 - Destroyed
; All other registers preserved
;--

DEALLOC_POOL:

.ENABLE LSB ; DEALLOC_POOL
PUSHQ R1 ; Save R1,R2
SUBL #4,R0 ; Skip a longword
MOVL -(R0),IRP$W_SIZE(R0) ; Copy size field
CLRB IRP$B_TYPE(R0) ; Clear type field (prevents block

; from being interpreted as shared
; memory during deallocation)

JSB G^EXE$DEANONPAGED ; Deallocate the block
POPQ R1 ; Restore R1,R2
RSB
.DISABLE LSB ; DEALLOC_POOL

B–30

SCSI Class Driver Template

.SBTTL SETUP_CMD - Common setup for all SCSI commands
;++
; SETUP_CMD
;
; This routine performs common setup prior to the sending of a SCSI command.
; Setup includes allocating a command buffer, filling in the pointers in the
; SCDRP to the command and status fields, copying the SCSI command to the
; command buffer, allocating an S0 "user" buffer if the command requires
; transferring data to or from the class driver, filling in the SCDRP fields
; used to map this buffer, and mapping the buffer.
;
; Since this routine calls SPI$ALLOCATE_COMMAND_BUFFER, which can suspend
; the thread, the return PC must be saved in the SCDRP.
;
; INPUTS:
;
; R2 - Pointer to entry in SCSI_CMD table
; R4 - PDT address
; R5 - SCDRP address
;
; OUTPUTS:
;
; R0 - Status
; R1,R2 - Destroyed
;
; SCDRP$L_CMD_BUF - Address of SCSI command buffer
; SCDRP$L_CMD_PTR - Address of SCSI command
; SCDRP$L_STS_PTR - Address to save SCSI status byte
; SCDRP$L_SVA_USER- Address of S0 "user" buffer
; SCDRP$L_BCNT - Length of S0 "user" buffer
; SCDRP$W_BOFF - Byte offset of S0 "user" buffer
; SCDRP$L_SVAPTE - SVAPTE of S0 "user" buffer
; IRP$V_FUNC - SET/CLEAR to indicate READ/WRITE from S0 "user" buffer
; SCDRP$L_DMA_TIMEOUT - Time in seconds for a DMA timeout.
; SCDRP$L_DISCON_TIMEOUT - Time in seconds for a disconnect to time out
;
;--

.ENABLE LSB ; SETUP_CMD
SETUP_CMD:

SCSI_CMD_BUF_OVHD = 4 + 4 ; 4 bytes to save status byte +
; 4 bytes for SCSI command length

SUBSAVE ; Save return address
MOVZBL (R2),R1 ; Get size SCSI command
ADDL #SCSI_CMD_BUF_OVHD,R1 ; Add in command buffer overhead
SUBPUSH R2 ; Save R2
SPI$ALLOCATE_COMMAND_BUFFER ; Allocate a command buffer
MOVL R2,R1 ; Copy command buffer address
SUBPOP R2 ; Restore R2
MOVB #^XFF,(R1) ; Initialize status field
MOVAL (R1)+,- ; Address to put SCSI status byte

SCDRP$L_STS_PTR(R5) ;
MOVL R1,SCDRP$L_CMD_PTR(R5) ; Save address of SCSI command
MOVZBL (R2)+,R0 ; Get SCSI command length
MOVL R0,(R1)+ ; Save length in command buffer
ASHL #-1,R0,R0 ; Change byte count to word count

10$: MOVW (R2)+,(R1)+ ; Copy a byte of SCSI command
SOBGTR R0,10$; Repeat for entire SCSI command

B–31

SCSI Class Driver Template

;+
; There is a dependency here that the format of the SCSI_COMMAND record
; does not change.
; Copy the per command timeout values from the SCSI_CMD block to the
; SCSI Class Driver Request Packet.
;
; R2 points at the direction field in the SCSI_CMD block.
;-

MOVL 3(R2),- ; Time in seconds for a DMA timeout.
SCDRP$L_DMA_TIMEOUT(R5)

MOVL 7(R2),- ; Disconnect timeout in seconds.
SCDRP$L_DISCON_TIMEOUT(R5)

;+
; Determine if a buffer has already been mapped. If no buffer has been
; mapped, then allocate a system buffer and map it to receive the data
; from the target device.
;-

BBC #SCDRP$V_BUFFER_MAPPED,-; If buffer is mapped then do
SCDRP$L_SCSI_FLAGS(R5),-; special setup for this command
20$

;+
; During the STARTIO operation in the class driver, the user’s QIO
; parameters must be copied from the IRP to SCDRP (SCSI Class Driver
; Request Packet). The user data is then mapped, the SCSI CMD packet is
; allocated, and the command is sent to a target, over the connection
; established during UNIT INIT.
;-

MOVL UCB$L_IRP(R3),R2 ; Get current I/O’s IRP address
CLRL SCDRP$L_ABCNT(R5) ; Initialize accumulated byte count
MOVW IRP$W_FUNC(R2),- ; Copy function code and modifiers,

SCDRP$W_FUNC(R5) ; MEDIA, SVAPTE, and BOFF fields,
MOVW IRP$W_STS(R2),- ; and STS

SCDRP$W_STS(R5) ;
MOVL IRP$L_MEDIA(R2),- ; from the IRP to the SCDRP

SCDRP$L_MEDIA(R5) ;
MOVL IRP$L_SVAPTE(R2),- ;

SCDRP$L_SVAPTE(R5) ;
MOVW IRP$W_BOFF(R2),- ;

SCDRP$W_BOFF(R5) ;
MOVL IRP$L_BCNT(R2),- ; Copy user’s BCNT from IRP to SCDRP

SCDRP$L_BCNT(R5) ;
CMPL SCDRP$L_BCNT(R5),- ; Transfer length greater than maximum

UCB$L_MAXBCNT(R3) ; supported?
BGTR 300$; GTR, therefore I/O must be segmented
CLRL SCDRP$L_PAD_BCNT(R5) ; No padding of last page required
ADDL3 #<4+4>,- ; Address of transfer length field in

SCDRP$L_CMD_PTR(R5),R1 ; SCSI command
MOVB SCDRP$L_BCNT(R5),(R1) ; Copy user-supplied byte count to

; command.
BRW 50$; Setup finished.

B–32

SCSI Class Driver Template

20$: CVTWL (R2),R1 ; Get length of send data buffer
BLSS 50$; Branch if negative, no system buffer

; involved, leave SCDRP$L_BCNT unchanged
BEQL 30$; Branch if zero length, zero SCDRP$L_BCNT
SUBPUSH R2 ; Save R2
BSBW ALLOC_POOL ; Allocate a buffer to receive response
MOVL R2,R1 ; Copy buffer address
SUBPOP R2 ; Restore R2
MOVL R1,SCDRP$L_SVA_USER(R5) ; Save address of allocated buffer
MOVZWL (R2)+,SCDRP$L_BCNT(R5) ; Save length of transfer
CLRL SCDRP$L_PAD_BCNT(R5) ; No padding required
BICW3 #^C<^X1FF>,R1,- ; And byte offset within page

SCDRP$W_BOFF(R5) ;
INSV (R2),#IRP$V_FUNC,#1,- ; Set/clear FUNC bit to indicate READ/

SCDRP$W_STS(R5) ; WRITE function
PUSHL R3 ; Save R3
MOVL SCDRP$L_SVA_USER(R5),R2 ; Get user buffer address
JSB G^MMG$SVAPTECHK ; Get SVAPTE of allocated system buffer
MOVL R3,SCDRP$L_SVAPTE(R5) ; Save SVAPTE in SCDRP
POPL R3 ; Restore R3
BISB #SCDRP$M_S0BUF!- ; This buffer is an S0 "user" buffer

SCDRP$M_BUFFER_MAPPED,- ; and it has been mapped
SCDRP$L_SCSI_FLAGS(R5) ;

SPI$MAP_BUFFER ; Map the "user" buffer for read access

50$: MOVZWL #SS$_NORMAL,R0 ; Set success status
52$: SUBRETURN

30$: CLRL SCDRP$L_BCNT(R5) ; No data being transferred
BRB 50$; Use common exit

300$: MOVZWL #SS$_IVBUFLEN,R0 ; Bad byte count
BRB 52$
.DISABLE LSB ; SETUP_CMD

.SBTTL CLEANUP_CMD - Common cleanup for all SCSI commands
;++
; CLEANUP_CMD
;
; This routine performs common cleanup after the sending of a SCSI command,
; including unmapping the user buffer and deallocating the command buffer.
;
; INPUTS:
;
; R4 - PDT address
; R5 - SCDRP address
;
; OUTPUTS:
;
; R2 - Destroyed
; All other registers preserved
;--

CLEANUP_CMD:

B–33

SCSI Class Driver Template

.ENABLE LSB ; CLEANUP_CMD
PUSHR #^M<R0,R1,R3> ; Save registers
BBCC #SCDRP$V_BUFFER_MAPPED,-; Branch if no buffer has been mapped

SCDRP$L_SCSI_FLAGS(R5),-;
10$

SPI$UNMAP_BUFFER ; Unmap the mapped buffer
10$: BBCC #SCDRP$V_S0BUF,- ; Branch if this is not an S0 "user"

SCDRP$L_SCSI_FLAGS(R5),-; buffer
20$;

MOVL SCDRP$L_SVA_USER(R5),R0 ; Get address of S0 user buffer
CLRL SCDRP$L_SVA_USER(R5) ; Buffer no longer owned
BSBW DEALLOC_POOL ; Deallocate the buffer

20$: MOVL SCDRP$L_CMD_BUF(R5),R0 ; Get address of command buffer
SPI$DEALLOCATE_COMMAND_BUFFER ; Deallocate the command buffer

30$: POPR #^M<R0,R1,R3> ; Restore registers
RSB
.DISABLE LSB ; CLEANUP_CMD

.SBTTL LOG_ERROR - Write an entry to the error log file
;++
; LOG_ERROR
;
; This routine writes an entry to the error log file. If the device is
; offline, no error is logged. This prevents the error log file from being
; filled up while the class driver does its periodic polling of devices
; that have been set offline. The assumption is that the initial error that
; caused the device to be placed offline has been logged and that
; subsequent error log entries would be redundant.
;
; INPUTS:
;
; R5 - UCB address
; R7 - Error type
; R8 - VMS status code
;
; OUTPUTS:
;
; All registers preserved
;--

LOG_ERROR:
.ENABLE LSB ; LOG_ERROR
PUSHR #^M<R0,R2,R9,R10> ; Save registers
MOVB UCB$B_DEVTYPE(R5),R9 ; Save SCSI device type

10$: MOVB UCB$B_DEVCLASS(R5),R10 ; Save DEVCLASS field
MOVL UCB$L_DDT(R5),R0 ; Get DDT address
MOVW #ERR_K_COMMAND_LENGTH,- ; Length of packet containing SCSI

; command
DDT$W_ERRORBUF(R0) ; in the DDT

JSB G^ERL$DEVICERR ; Log a device error
BBCC #UCB$V_ERLOGIP,- ; Clear error log in progress

UCB$W_STS(R5),30$;
MOVL UCB$L_EMB(R5),R2 ; Get address of error message buffer
BEQL 30$; Branch if none available
JSB G^ERL$RELEASEMB ; Release the error log buffer

30$: POPR #^M<R0,R2,R9,R10> ; Restore registers
40$: RSB ; Return to caller

.DISABLE LSB ; LOG_ERROR

.SBTTL SK_REG_DUMP - Device register dump routine

B–34

SCSI Class Driver Template

;++
; SK_REG_DUMP
;
; This routine dumps device-specific information into an error log packet.
; The format of this information is as follows:
;
; +-----------------------+
; | Longword count | 4 bytes
; +-----------------------+
; | Revision | 1 byte
; +-----------------------+
; | HW revision | 4 bytes
; +-----------------------+
; | Error Type | 1 byte
; +-----------------------+
; | SCSI ID | 1 byte
; +-----------------------+
; | SCSI LUN | 1 byte
; +-----------------------+
; | SCSI SUBLUN | 1 byte
; +-----------------------+
; | Port status | 4 bytes
; +-----------------------+
; | SCSI CMD LENGTH | 1 byte
; +-----------------------+
; | SCSI CMD BYTES | Up to 12 bytes
; +-----------------------+
; | SCSI STS | 1 byte
; +-----------------------+
; | Error Text Count | 1 byte
; +-----------------------+
; | Error Text | Up to 60 bytes
; +-----------------------+
;
; Inputs:
;
; R0 - Output buffer address
; R5 - UCB address
;
; Outputs:
;
; R1-R3 - Destroyed
; All other registers preserved
;--

B–35

SCSI Class Driver Template

SK_REG_DUMP:
.ENABLE LSB ; SK_REG_DUMP
MOVL #<<ERR_K_COMMAND_LENGTH/4>+1>,-

(R0)+ ; Length of error log packet in words
MOVB #0,(R0)+ ; Save revision level
CLRL (R0)+ ; Save hardware revision level
MOVB R7,(R0)+ ; Save error type
MOVZWL UCB$W_UNIT(R5),R1 ; Get unit number
CLRL R2 ; Prepare for extended divide
EDIV #100,R1,R1,R2 ; Extract SCSI bus ID from unit number
MOVB R1,(R0)+ ; Save SCSI bus ID
MOVL R2,R1 ; Copy LUN, SUBLUN
CLRL R2 ; Prepare for extended divide
EDIV #10,R1,R1,R2 ; Extract LUN and SUBLUN
MOVB R1,(R0)+ ; Save LUN field
MOVB R2,(R0)+ ; Save SUBLUN field
MOVL R8,(R0)+ ; Save port status code
MOVL UCB_L_SCDRP(R5),R1 ; Get active SCDRP address
BEQL 50$; Branch if none active
MOVL SCDRP$L_CMD_PTR(R1),R2 ; Get address of SCSI command
BEQL 50$; Branch if none active
MOVL (R2)+,R3 ; Get number of SCSI command bytes
MOVB R3,(R0)+ ; Save command length

10$: MOVB (R2)+,(R0)+ ; Save a command byte
SOBGTR R3,10$; Continue for entire SCSI command
MOVL SCDRP$L_STS_PTR(R1),R2 ; Get address of status byte
MOVB (R2),(R0)+ ; Save SCSI status byte
MOVB (R11)+,R3 ; Get count of number of text bytes.
BEQL 50$; If no text finished
MOVB R3,(R0)+ ; Save text length

20$: MOVB (R11)+,(R0)+ ; Save a text byte in error packet
SOBGTR R3,20$; Continue for entire text string

; command
50$: RSB ; Return

.DISABLE LSB ; SK_REG_DUMP
SK_PATCH:

.BLKB 200 ; Patch space

SK_END: ; Last location in driver
.END

B–36

C
Sample Driver for the RL11, RL01, and RL02

Disk Drives

This example driver, DLDRIVER, drives a disk device on both the UNIBUS and
the Q22–bus.

.TITLE DLDRIVER - VAX/VMS RL11/RL01,RL02 DISK DRIVER

.IDENT ’X-7’
;
;**
;* *
;* COPYRIGHT (c) 1978, 1980, 1982, 1984 BY *
;* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. *
;* ALL RIGHTS RESERVED. *
;* *
;* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
;* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
;* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
;* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
;* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
;* TRANSFERRED. *
;* *
;* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
;* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT *
;* CORPORATION. *
;* *
;* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
;* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *
;* *
;* *
;**
;
;
; FACILITY:
;
; VAX/VMS RL11/RL01,RL02 DISK DRIVER
;
;**
.PAGE
; ABSTRACT:
;
; THIS MODULE CONTAINS THE TABLES AND ROUTINES NECESSARY TO
; PERFORM ALL DEVICE-DEPENDENT PROCESSING OF AN I/O REQUEST
; FOR RL11/RL01,RL02 DISK TYPES ON A VAX/VMS SYSTEM.
;
; THE DISKS HAVE THE FOLLOWING PHYSICAL GEOMETRY:
;
; TRACKS/ SECTORS/ BYTES/ MAXIMUM
; # CYL CYLINDER TRACK SECTOR BLOCKS
;
; RL01 256 2 40 256 10240
; RL02 512 2 40 256 20480
;
; SINCE THE SECTOR SIZE IS ONLY 1/2 BLOCK, LOGICAL TO PHYSICAL

C–1

Sample Driver for the RL11, RL01, and RL02 Disk Drives

; CONVERSION OF THE DISK ADDRESS IS DONE IN THE DRIVER STARTIO
; ROUTINE RATHER THAN IN THE IOC$CVTLOGPHY FDT ROUTINE.
;
; OVERLAPPED SEEKS ARE NOT ATTEMPTED BECAUSE THE DEVICE DOES
; NOT INTERRUPT AT THE COMPLETION OF A SEEK.
;
; ALSO, THE DEVICE DOES NOT PERFORM AN IMPLICIT SEEK WHEN PERFORMING
; A READ OR WRITE FUNCTION,SO SEEK FUNCTIONS ARE ISSUED BY THIS
; DRIVER WHERE NECESSARY PRIOR TO ISSUING A READ OR WRITE FUNCTION.
; THE READ OR WRITE FUNCTION IS THEN ISSUED AS SOON AS THE RL11
; CONTROLLER BECOMES READY (WHILE THE SEEK IS IN PROGRESS), AND A
; WAIT FOR INTERRUPT (UPON COMPLETION OF THE READ OR WRITE) IS
; ISSUED. IF A SEEK FUNCTION IS REQUESTED SEPARATELY FROM A READ OR
; WRITE, A DUMMY READ HEADER FUNCTION IS ISSUED FOLLOWING THE SEEK
; FUNCTION AND A WAIT FOR INTERRUPT (UPON COMPLETION OF THE READ
; HEADER) IS ISSUED.
;
; THE IO$X_INHSEEK FUNCTION MODIFIER IS TREATED AS A NO-OP BY
; THIS DRIVER, SINCE AN EXPLICIT SEEK IS NECESSARY FOR THE RL02
; TO TRANSFER DATA PROPERLY.
;
; THE RL’S DO NOT READ OR WRITE BEYOND THE END OF TRACK (THEY DO NOT
; AUTOMATICALLY SEEK THE NEXT TRACK), SO ALL READ AND WRITE FUNCTIONS
; ARE BROKEN UP BY THIS DRIVER INTO PARTIAL TRANSFERS TO THE END OF
; TRACK, FOLLOWED BY A SEEK TO THE NEXT TRACK, THEN ANOTHER READ OR
; WRITE FUNCTION UNTIL THE TOTAL DATA TRANSFER IS COMPLETE.
;
;--

.PAGE

.SBTTL EXTERNAL AND LOCAL DEFINITIONS

;
; EXTERNAL SYMBOLS
;

$ADPDEF ;DEFINE ADAPTER CONTROL BLOCK
$CRBDEF ;DEFINE CHANNEL REQUEST BLOCK
$DCDEF ;DEFINE DEVICE CLASS
$DDBDEF ;DEFINE DEVICE DATA BLOCK
$DEVDEF ;DEFINE DEVICE CHARACTERISTICS
$DPTDEF ;DEFINE DRIVER PROLOGUE TABLE
$DYNDEF ;DEFINE DYNAMIC DATA STRUCTURE TYPES
$EMBDEF ;DEFINE ERROR MESSAGE BUFFER
$IDBDEF ;DEFINE INTERRUPT DATA BLOCK
$IODEF ;DEFINE I/O FUNCTION CODES
$IRPDEF ;DEFINE I/O REQUEST PACKET
$PRDEF ;DEFINE PROCESSOR REGISTERS
$PTEDEF ;DEFINE SYSTEM PTES
$SSDEF ;DEFINE SYSTEM STATUS CODES
$UCBDEF ;DEFINE UNIT CONTROL BLOCK
$VADEF ;DEFINE VIRTUAL ADDRESS BITS
$VECDEF ;DEFINE INTERRUPT VECTOR BLOCK

;
; LOCAL MACROS
;

; EXFUNCL
; BRANCH TO SUBROUTINE WHICH REQUESTS CHANNEL (IF NOT ALREADY OWNED),
; EXECUTES FCODE (OR R3) FUNCTION, AND BRANCHES TO BDST ON ERROR

C–2

Sample Driver for the RL11, RL01, and RL02 Disk Drives

.MACRO EXFUNCL BDST,FCODE
.IF NB FCODE ;IS FCODE NONBLANK?
MOVZBL #CD’FCODE,R3 ;IF NB - SPECIFY FCODE FUNCTION
.ENDC ;IF B - SPECIFY FNTN IN EXISTING R3
BSBW FEXL ;EXECUTE FUNCTION
.BYTE BDST-.-1 ;WHERE TO GO IF ERROR

.ENDM

; GENF
; GENERATE FUNCTION TABLE ENTRY AND CASE TABLE INDEX SYMBOL

.MACRO GENF FCODE
CD’FCODE=.-FTAB/2
.WORD FCODE!RL_CS_M_IE ;FCODE WITH INT ENABLE BIT

.ENDM

; CKPWR
; DISABLE INTERRUPTS, CHECK IF POWER HAS FAILED,
; AND PUT DEVICE UNIT NUMBER IN R2<9:8>
;

.MACRO CKPWR SAVE_R0=YES,?L1
CLRL R2 ;CLEAR R2 FOR UNIT NUMBER
INSV UCB$W_UNIT(R5),- ;PUT UNIT # IN R2<9:8>

#8,#2,R2 ;...
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),- ; LOCK DEVICE ACCESS
LOCKIPL=UCB$B_DIPL(R5),- ; RAISE IPL
SAVIPL=-(SP),- ;SAVE CURRENT IPL
PRESERVE=’SAVE_R0

SETIPL #31,- ;DISABLE ALL INTERRUPTS
ENVIRON=UNIPROCESSOR

BBC #UCB$V_POWER,- ;IF CLR - NO POWER FAILURE
UCB$W_STS(R5),L1 ;...

; POWERFAILURE!
DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5),- ; UNLOCK DEVICE ACCESS
NEWIPL=(SP)+,- ;RESTORE IPL
PRESERVE=’SAVE_R0

BRW RETREG ;EXIT
L1: ;RETURN FOR NO POWER FAILURE

.ENDM

;
; LOCAL SYMBOLS
;

RL_NUM_REGS =4 ;NUMBER OF DEVICE REGISTERS
RL_SLM =5 ;STATE=SEEK LINEAR MODE (READY TO GO)
UCB$B_DL_DCHEK =UCB$W_OFFSET+1 ;REDEFINE FOR DATA CHECK USE

;
; UCB OFFSETS WHICH FOLLOW THE STANDARD UCB FIELDS
;

$DEFINI UCB ;START OF UCB DEFINITIONS

C–3

Sample Driver for the RL11, RL01, and RL02 Disk Drives

.=UCB$K_LCL_DISK_LENGTH ;BEGIN DEFINITIONS AT END OF UCB
$DEF UCB$W_DL_PBCR .BLKW 1 ;PARTIAL BYTE COUNT
$DEF UCB$W_DL_CS .BLKW 1 ;CONTROL STATUS REGISTER
$DEF UCB$W_DL_BA .BLKW 1 ;BUS ADDRESS REGISTER
$DEF UCB$W_DL_DA .BLKW 1 ;DISK ADDRESS REGISTER
$DEF UCB$W_DL_MP .BLKW 1 ;MULTIPURPOSE REGISTER
$DEF UCB$W_DL_DPN .BLKW 1 ;DATA PATH NUMBER
$DEF UCB$L_DL_SVAPTE ;SAVED SVAPTE OF THE USER’S BUFFER
$DEF UCB$L_DL_DPR .BLKL 1 ;DATAPATH REGISTER
$DEF UCB$L_DL_BUFADR ;USER BUFFER ADDRESS
$DEF UCB$L_DL_FMPR .BLKL 1 ;FINAL MAP REGISTER
$DEF UCB$A_DL_MOVRTN ;BUFFER MOVE ROUTINE ADDRESS
$DEF UCB$L_DL_PMPR .BLKL 1 ;PREVIOUS MAP REGISTER
$DEF UCB$B_DL_DPPE .BLKB 1 ;DATAPATH PURGE ERROR
$DEF UCB$W_DL_DB .BLKW 3 ;DATA BUFFER REGISTER
$DEF UCB$B_DL_XBA .BLKB 1 ;BUS ADDRESS EXTENSION BITS
$DEF UCB$W_DL_SBA .BLKW 1 ;SAVED BUFFER ADDRESS
$DEF UCB$A_DL_BUF_VA .BLKL 1 ;PHYSICAL BUFFER VIRTUAL ADDRESS
$DEF UCB$A_DL_BUF_PA .BLKL 1 ;PHYSICAL BUFFER PHYSICAL ADDRESS
$DEF UCB$W_DL_FLAGS .BLKW 1 ;FLAGS

$VIELD UCB,0,<- ;START THE FLAG DEFINITIONS
<DL_22BIT,,M>,- ;22 BIT ADDRESSING
<DL_MAPPING,,M>,- ;ADAPTER MAPPING
> ;END OF FLAG DEFINITIONS

$DEF UCB$K_DL_LEN .BLKW 1 ;LENGTH OF UCB
$EQU UCB$K_DL_BUFSZ 20 ;BUFFER SIZE = 40 SECTORS *

;256 BYTES/SECTOR / 512 BYTES/PAGE
$DEFEND UCB ;END OF UCB DEFINITIONS

;
; RL11/RL01 REGISTER OFFSETS FROM CSR ADDRESS
;

$DEFINI RL ; START OF REGISTER DEFINITIONS

$DEF RL_CS .BLKW 1 ;CONTROL STATUS REGISTER (CSR)
_VIELD RL_CS,0,<- ;START OF CSR BIT DEFINITIONS

<DRDY,,M>,- ; DRIVE READY
<FCODE,3>,- ; FUNCTION CODE
<XBA,2>,- ; BUS ADDRESS EXTENSION BITS
<IE,,M>,- ; INTERRUPT ENABLE
<CRDY,,M>,- ; CONTROLLER READY
<DS,2>,- ; DRIVE SELECT
<OPI,,M>,- ; OPERATION INCOMPLETE
<CRC,,M>,- ; DATA CRC OR HEADER CRC
<DLT,,M>,- ; DATA LATE OR HEADER NOT FOUND
<NXM,,M>,- ; NONEXISTENT MEMORY
<DE,,M>,- ; DRIVE ERROR
<CE,,M>- ; COMPOSITE ERROR

> ;END CSR BIT DEFINITIONS

$DEF RL_BA .BLKW 1 ;BUS ADDRESS REGISTER (BAR)

$DEF RL_DA .BLKW 1 ;DISK ADDRESS REGISTER (DAR)
_VIELD RL_DA,0,<- ;START OF DAR BIT DEFINITIONS

<MRK,,M>,- ; MARK (ALWAYS 1)
<STS,,M>,- ; GET STATUS
<,1>,- ; RESERVED BIT
<RST,,M>,- ; RESET
<,12>,- ; RESERVED BITS

> ;END OF DAR BIT DEFINITIONS

C–4

Sample Driver for the RL11, RL01, and RL02 Disk Drives

$DEF RL_MP .BLKW 1 ;MULTIPURPOSE REGISTER (MPR)
_VIELD RL_MP,0,<- ;START OF MPR BIT DEFINITIONS

<STA,3>,- ; DRIVE STATE
<BH,,M>,- ; BRUSH HOME
<HO,,M>,- ; HEADS OUT
<CO,,M>,- ; COVER OPEN
<HS,,M>,- ; HEAD SELECT
<TYP,,M>,- ; DRIVE TYPE
<DSE,,M>,- ; DRIVE SELECT ERROR
<VC,,M>,- ; VOLUME CHECK
<WGE,,M>,- ; WRITE GATE ERROR
<SPE,,M>,- ; SPIN ERROR
<SKTO,,M>,- ; SEEK TIME OUT
<WL,,M>,- ; WRITE LOCK
<CHE,,M>,- ; CURRENT HEAD ERROR
<WDE,,M>- ; WRITE DATA ERROR

> ;END MPR BIT DEFINITIONS

$DEF RL_BAE .BLKW 1 ; BUS ADDRESS EXTENSION REGISTER(BAE)

$DEFEND RL ;END RL11/RL01 REGISTER DEFINITIONS

;
; HARDWARE FUNCTION CODES
;
F_NOP=0*2 ;NO OPERATION
F_UNLOAD=F_NOP ;NO OPERATION
F_SEEK=3*2 ;SEEK CYLINDER
F_RECAL=F_NOP ;NO OPERATION
F_DRVCLR=2*2 ;DRIVE CLEAR (GET STATUS)
F_RELEASE=F_NOP ;NO OPERATION
F_OFFSET=F_NOP ;NO OPERATION
F_RETCENTER=F_NOP ;NO OPERATION
F_PACKACK=2*2 ;PACK ACKNOWLEDGE (SET VOLUME VALID)
F_SEARCH=F_NOP ;NO OPERATION
F_WRITECHECK=1*2 ;WRITE CHECK
F_WRITEDATA=5*2 ;WRITE DATA
F_WRITEHEAD=F_NOP ;NO OPERATION
F_READDATA=6*2 ;READ DATA
F_READHEAD=4*2 ;READ HEADER
F_AVAILABLE=F_NOP ;NO OPERATION
F_GETSTATUS=2*2 ;GET STATUS (DRIVER INTERNAL USE)

.PAGE

.SBTTL STANDARD TABLES

;
; DRIVER PROLOGUE TABLE
;
; THE DPT DESCRIBES DRIVER PARAMETERS AND I/O DATABASE FIELDS
; THAT ARE TO BE INITIALIZED DURING DRIVER LOADING AND RELOADING
;

DPTAB - ;DPT CREATION MACRO
END=DL_END,- ;END OF DRIVER LABEL
ADAPTER=UBA,- ;ADAPTER TYPE = UNIBUS
FLAGS=DPT$M_SVP,- ;SYSTEM PAGE-TABLE ENTRY REQUIRED
UCBSIZE=UCB$K_DL_LEN,- ;LENGTH OF UCB
NAME=DLDRIVER ;DRIVER NAME

C–5

Sample Driver for the RL11, RL01, and RL02 Disk Drives

DPT_STORE INIT ;START CONTROL BLOCK INIT VALUES
DPT_STORE DDB,DDB$L_ACPD,L,<^A\F11\> ;DEFAULT ACP NAME
DPT_STORE DDB,DDBL_ACPD+3,B,DDBK_CART ;ACP CLASS
DPT_STORE UCB,UCBB_FLCK,B,SPLC_IOLOCK8 ;FORK LOCK INDEX
DPT_STORE UCB,UCB$L_DEVCHAR,L,- ;DEVICE CHARACTERISTICS

<DEV$M_FOD- ; FILES ORIENTED
!DEV$M_DIR- ; DIRECTORY STRUCTURED
!DEV$M_AVL- ; AVAILABLE
!DEV$M_ELG- ; ERROR LOGGING
!DEV$M_SHR- ; SHAREABLE
!DEV$M_IDV- ; INPUT DEVICE
!DEV$M_ODV- ; OUTPUT DEVICE
!DEV$M_RND> ; RANDOM ACCESS

DPT_STORE UCB,UCB$L_DEVCHAR2,L,-; DEVICE CHARACTERISTICS
<DEV$M_NNM> ; PREFIX NAME WITH "node$"

DPT_STORE UCB,UCB$B_DEVCLASS,B,DC$_DISK ;DEVICE CLASS
DPT_STORE UCB,UCB$W_DEVBUFSIZ,W,512 ;DEFAULT BUFFER SIZE
DPT_STORE UCB,UCB$B_SECTORS,B,40 ;NUMBER OF SECTORS PER TRACK
DPT_STORE UCB,UCB$B_TRACKS,B,2 ;NUMBER OF TRACKS PER CYLINDER
DPT_STORE UCB,UCB$B_DIPL,B,21 ;DEVICE IPL
DPT_STORE UCB,UCB$B_ERTMAX,B,8 ;MAX ERROR RETRY COUNT
DPT_STORE UCB,UCB$W_DEVSTS,W,- ;INHIBIT LOG TO PHYS CONVERSION IN FDT

<UCB$M_NOCNVRT> ;...

DPT_STORE REINIT ;START CONTROL BLOCK RE-INIT VALUES
DPT_STORE CRB,CRB$L_INTD+4,D,DL_INT ;INTERRUPT SERVICE ROUTINE ADDRESS
DPT_STORE CRB,CRB$L_INTD+VEC$L_INITIAL,- ;CONTROLLER INIT ADDRESS

D,DL_RL11_INIT ;...
DPT_STORE CRB,CRB$L_INTD+VEC$L_UNITINIT,- ;UNIT INIT ADDRESS

D,DL_RL0X_INIT ;...
DPT_STORE DDB,DDBL_DDT,D,DLDDT ;DDT ADDRESS

DPT_STORE END ;END OF INITIALIZATION TABLE

;
; DRIVER DISPATCH TABLE
;
; THE DDT LISTS ENTRY POINTS FOR DRIVER SUBROUTINES WHICH ARE
; CALLED BY THE OPERATING SYSTEM.
;

DDTAB - ;DDT CREATION MACRO
DEVNAM=DL,- ;NAME OF DEVICE
START=DL_STARTIO,- ;START I/O ROUTINE
UNSOLIC=DL_UNSOLNT,- ;UNSOLICITED INTERRUPT
FUNCTB=DL_FUNCTABLE,- ;FUNCTION DECISION TABLE
CANCEL=0,- ;CANCEL=NO-OP FOR FILES DEVICE
REGDMP=DL_REGDUMP,- ;REGISTER DUMP ROUTINE
DIAGBF=<<RL_NUM_REGS+5+5+3+1>*4>,- ;BYTES IN DIAG BUFFER
ERLGBF=<<<RL_NUM_REGS+5+1>*4>+EMB$L_DV_REGSAV> ;BYTES IN

;ERROR LOG BUFFER

; DIAGNOSTIC BUFFER SIZE = <<4 RL02 REGISTER LONGWORDS + 5 UCB FIELD LONGWORDS
; + 5 IOC$DIAGBUFILL LONGWORDS + 3 BUFFER ALLOCATION
; LONGWORDS + 1 LONGWORD FOR # REGISTERS IN DL_REGDUMP>
; * 4 BYTES/LONGWORD>
;
; ERROR LOG BUFFER SIZE = <<<4 RL02 REGISTER LONGWORDS + 5 UCB FIELD LONGWORDS
; + 1 LONGWORD FOR # REGISTERS IN DL_REGDUMP>
; * 4 BYTES/LONGWORD> + BYTES NEEDED FOR ERROR LOGGER
; TO SAVE SOFTWARE REGISTERS>

C–6

Sample Driver for the RL11, RL01, and RL02 Disk Drives

;
; HARDWARE FUNCTION CODE TABLE
;
; THIS TABLE MERGES THE FUNCTION CODE BITS WITH THE
; INTERRUPT ENABLE BIT AND GENERATES THE CASE TABLE
; INDEX SYMBOL.

FTAB: GENF F_NOP ;NO-OP
GENF F_UNLOAD ;UNLOAD VOLUME (NOP)
GENF F_SEEK ;SEEK
GENF F_RECAL ;RECALIBRATE (NOP)
GENF F_DRVCLR ;DRIVE CLEAR (RESET & GET STATUS)
GENF F_RELEASE ;RELEASE PORT (NOP)
GENF F_OFFSET ;OFFSET HEADS (NOP)
GENF F_RETCENTER ;RETURN HEADS TO CENTERLINE (NOP)
GENF F_PACKACK ;PACK ACKNOWLEDGE (RESET & GET STATUS)
GENF F_SEARCH ;SEARCH (NOP)
GENF F_WRITECHECK ;WRITE CHECK
GENF F_WRITEDATA ;WRITE DATA
GENF F_READDATA ;READ DATA
GENF F_WRITEHEAD ;WRITE HEADERS (NOP)
GENF F_READHEAD ;READ HEADERS
GENF F_NOP ;place holder
GENF F_NOP ;place holder
GENF F_AVAILABLE ;AVAILABLE

.PAGE
;
; FUNCTION DECISION TABLE
;
; THE FDT LISTS VALID FUNCTION CODES, SPECIFIES WHICH
; CODES ARE BUFFERED, AND DESIGNATES SUBROUTINES TO
; PERFORM PREPROCESSING FOR PARTICULAR FUNCTIONS.
;

DL_FUNCTABLE:
FUNCTAB ,- ;LIST LEGAL FUNCTIONS

<NOP,- ; NO-OP
UNLOAD,- ; UNLOAD
SEEK,- ; SEEK
DRVCLR,- ; DRIVE CLEAR
PACKACK,- ; PACK ACKNOWLEDGE
SENSECHAR,- ; SENSE CHARACTERISTICS
SETCHAR,- ; SET CHARACTERISTICS
SENSEMODE,- ; SENSE MODE
SETMODE,- ; SET MODE
WRITECHECK,- ; WRITE CHECK
READHEAD,- ; READ HEADER
READLBLK,- ; READ LOGICAL BLOCK
WRITELBLK,- ; WRITE LOGICAL BLOCK
READPBLK,- ; READ PHYSICAL BLOCK
WRITEPBLK,- ; WRITE PHYSICAL BLOCK
READVBLK,- ; READ VIRTUAL BLOCK
WRITEVBLK,- ; WRITE VIRTUAL BLOCK
AVAILABLE,- ; AVAILABLE
ACCESS,- ; ACCESS FILE / FIND DIRECTORY ENTRY
ACPCONTROL,- ; ACP CONTROL FUNCTION
CREATE,- ; CREATE FILE AND/OR DIRECTORY ENTRY
DEACCESS,- ; DEACCESS FILE
DELETE,- ; DELETE FILE AND/OR DIRECTORY ENTRY
MODIFY,- ; MODIFY FILE ATTRIBUTES
MOUNT- ; MOUNT VOLUME
>

FUNCTAB ,- ;BUFFERED FUNCTIONS
<NOP,- ; NO-OP
UNLOAD,- ; UNLOAD
SEEK,- ; SEEK

C–7

Sample Driver for the RL11, RL01, and RL02 Disk Drives

DRVCLR,- ; DRIVE CLEAR
PACKACK,- ; PACK ACKNOWLEDGE
SENSECHAR,- ; SENSE CHARACTERISTICS
SETCHAR,- ; SET CHARACTERISTICS
SENSEMODE,- ; SENSE MODE
SETMODE,- ; SET MODE
AVAILABLE,- ; AVAILABLE
ACCESS,- ; ACCESS FILE / FIND DIRECTORY ENTRY
ACPCONTROL,- ; ACP CONTROL FUNCTION
CREATE,- ; CREATE FILE AND/OR DIRECTORY ENTRY
DEACCESS,- ; DEACCESS FILE
DELETE,- ; DELETE FILE AND/OR DIRECTORY ENTRY
MODIFY,- ; MODIFY FILE ATTRIBUTES
MOUNT- ; MOUNT VOLUME
>

FUNCTAB DL_ALIGN,- ;TEST ALIGNMENT FUNCTIONS
<READHEAD,- ; READ HEADER
READLBLK,- ; READ LOGICAL BLOCK
READPBLK,- ; READ PHYSICAL BLOCK
READVBLK,- ; READ VIRTUAL BLOCK
WRITECHECK,- ; WRITE CHECK
WRITELBLK,- ; WRITE LOGICAL BLOCK
WRITEPBLK,- ; WRITE PHYSICAL BLOCK
WRITEVBLK- ; WRITE VIRTUAL BLOCK
>

FUNCTAB +ACP$READBLK,- ;READ FUNCTIONS
<READHEAD,- ; READ HEADER
READLBLK,- ; READ LOGICAL BLOCK
READPBLK,- ; READ PHYSICAL BLOCK
READVBLK- ; READ VIRTUAL BLOCK
>

FUNCTAB +ACP$WRITEBLK,- ;WRITE FUNCTIONS
<WRITECHECK,- ; WRITE CHECK
WRITELBLK,- ; WRITE LOGICAL BLOCK
WRITEPBLK,- ; WRITE PHYSICAL BLOCK
WRITEVBLK- ; WRITE VIRTUAL BLOCK
>

FUNCTAB +ACP$ACCESS,- ;ACCESS FUNCTIONS
<ACCESS,- ; ACCESS FILE / FIND DIRECTORY ENTRY
CREATE- ; CREATE FILE AND/OR DIRECTORY ENTRY
>

FUNCTAB +ACP$DEACCESS,- ;DEACCESS FUNCTION
<DEACCESS- ; DEACCESS FILE
>

FUNCTAB +ACP$MODIFY,- ;MODIFY FUNCTIONS
<ACPCONTROL,- ; ACP CONTROL FUNCTION
DELETE,- ; DELETE FILE AND/OR DIRECTORY ENTRY
MODIFY- ; MODIFY FILE ATTRIBUTES
>

FUNCTAB +ACP$MOUNT,- ;MOUNT FUNCTION
<MOUNT- ; MOUNT VOLUME
>

FUNCTAB +EXE$LCLDSKVALID,- ;LOCAL DISK VALID FUNCTIONS
<UNLOAD,- ;UNLOAD VOLUME
AVAILABLE,- ;UNIT AVAILABLE
PACKACK- ;PACK ACKNOWLEDGE
>

FUNCTAB +EXE$ZEROPARM,- ;ZERO PARAMETER FUNCTIONS
<NOP,- ; NO-OP
UNLOAD,- ; UNLOAD
DRVCLR,- ; DRIVE CLEAR
PACKACK,- ; PACK ACKNOWLEDGE
AVAILABLE,- ; AVAILABLE
>

FUNCTAB +EXE$ONEPARM,- ;ONE PARAMETER FUNCTION

C–8

Sample Driver for the RL11, RL01, and RL02 Disk Drives

<SEEK- ; SEEK
>

FUNCTAB +EXE$SENSEMODE,- ;SENSE FUNCTIONS
<SENSECHAR,- ; SENSE CHARACTERISTICS
SENSEMODE- ; SENSE MODE
>

FUNCTAB +EXE$SETCHAR,- ;SET FUNCTIONS
<SETCHAR,- ; SET CHARACTERISTICS
SETMODE- ; SET MODE
>

.PAGE

.SBTTL CONTROLLER INITIALIZATION ROUTINE
;++
;
; FUNCTIONAL DESCRIPTION:
;
; THIS ROUTINE IS A NO-OP FOR THE RL11 BUT MUST BE INCLUDED
; SINCE IT IS CALLED WHEN THE RL02 IS BOOTED AS A SYSTEM DEVICE.
;
; THE OPERATING SYSTEM CALLS THIS ROUTINE:
; - AT SYSTEM STARTUP
; - DURING DRIVER LOADING
; - DURING RECOVERY FROM POWER FAILURE
;
; INPUTS:
;
; R4 - CSR ADDRESS (DEVICE CONTROL STATUS REGISTER)
; R5 - IDB ADDRESS (INTERRUPT DATA BLOCK)
; R6 - DDB ADDRESS (DEVICE DATA BLOCK)
; R8 - CRB ADDRESS (CHANNEL REQUEST BLOCK)
; ALL INTERRUPTS ARE LOCKED OUT
;
; OUTPUTS:
;
; ALL REGISTERS EXCEPT R0-R3 ARE PRESERVED.
; CONTROL IS RETURNED TO THE CALLER.
;
;--

DL_RL11_INIT: ;CONTROLLER INITIALIZATION
;
; FOR MICROVAX I, ALLOCATE A PHYSICALLY CONTIGUOUS BUFFER
; AREA FOR PERFORMING I/O.
;
ADPDISP SELECT=ADAP_MAPPING,- ; Allocate a physically contiguous

ADDRLIST=<<YES,20$>>,- ; buffer for those adapters that
CRBADDR=R8,- ; don’t support mapping.
SCRATCH=R0

10$: MOVZWL #UCB$K_DL_BUFSZ,R1 ;LOAD SIZE OF BUFFER
JSB G^EXE$ALOPHYCNTG ;ALLOCATE PHYSICALLY CONTIGUOUS MEMORY
BLBC R0,20$;EXIT ON ERROR
MOVL R2,CRB$L_AUXSTRUC(R8) ;GET BUFFER VIRTUAL ADDRESS
RSB ;RETURN TO CALLER

20$: CLRL CRB$L_AUXSTRUC(R8) ;INDICATE MEMORY ALLOCATION FAILURE
RSB ;RETURN TO CALLER
.PAGE
.SBTTL UNIT INITIALIZATION ROUTINE

C–9

Sample Driver for the RL11, RL01, and RL02 Disk Drives

;++
;
; DL_RL0X_INIT - UNIT INITIALIZATION ROUTINE
;
; FUNCTIONAL DESCRIPTION:
;
; THIS ROUTINE READIES THE RL01/RL02 UNITS FOR I/O OPERATIONS.
;
; THE OPERATING SYSTEM CALLS THIS ROUTINE:
; - AT SYSTEM STARTUP
; - DURING DRIVER LOADING
; - DURING RECOVERY FROM POWER FAILURE
;
; INPUTS:
;
; R4 - CSR ADDRESS (CONTROLLER STATUS REGISTER)
; R5 - UCB ADDRESS (UNIT CONTROL BLOCK)
;
; OUTPUTS:
;
; THE DRIVE UNIT IS RESET, UCB FIELDS ARE INITIALIZED, AND THE
; ROUTINE WAITS FOR ONLINE UNITS TO SPIN UP. ALL REGISTERS
; EXCEPT R0-R3 ARE PRESERVED.
;
;--

DL_RL0X_INIT: ;RL01/RL02 UNIT INITIALIZATION
MOVW #1@UCB$V_DL_MAPPING,- ; DEFAULT TO ADAPTER MAPPING

UCB$W_DL_FLAGS(R5) ; AND 18 BIT ADDRESSING
ADPDISP SELECT=ADAP_MAPPING,-

ADDRLIST=<<YES,2$>>,-
UCBADDR=R5,-
SCRATCH=R0

CLRW UCB$W_DL_FLAGS(R5) ; Clear adapter mapping bit
2$: ADPDISP SELECT=ADDR_BITS,-

ADDRLIST=<<18,3$>>,-
ADPADDR=R0

BISW #1@UCB$V_DL_22BIT,- ; FOR MICROVAX II 22-BIT
UCB$W_DL_FLAGS(R5) ; ADDRESSING AS WELL AS ADAPTER MAPPING

3$:
10$: MOVZWL UCB$W_STS(R5),R3 ;SAVE CURRENT UNIT STATUS

BICW #UCB$M_ONLINE!UCB$M_VALID,- ;ASSUME OFFLINE/INVALID
UCB$W_STS(R5) ;...

;
; WAIT FOR CONTROLLER (6 SECONDS MAX) IF CHANNEL IS BUSY WITH ANOTHER UNIT
;

MOVL UCB$L_CRB(R5),R0 ;GET CRB ADDRESS
BBC #CRBV_BSY,CRBB_MASK(R0),20$;IF CLEAR - CHANNEL NOT BUSY
TIMEDWAIT TIME=#600*1000,- ;6 SECOND WAIT LOOP

INS1=<TSTB RL_CS(R4)>,- ;IS CONTROLLER READY
INS2=<BLSS 15$>,- ;IF LSS - YES
DONELBL=15$;LABEL TO EXIT WAIT LOOP

BLBC R0,25$;TIME EXPIRED - EXIT
;
; GET CURRENT DRIVE STATUS AND RESET DRIVE
;

20$: MOVW #RL_DA_M_RST!- ;PUT RESET AND GET STATUS IN DAR
RL_DA_M_STS!RL_DA_M_MRK,RL_DA(R4) ;...

CLRL R1 ;CLEAR R1 FOR UNIT NUMBER
INSV UCB$W_UNIT(R5),#8,#8,R1 ;GET UNIT NUMBER
BISW3 R1,#F_GETSTATUS,RL_CS(R4) ;EXECUTE GET STATUS FUNCTION
BSBW DL_WAIT ;WAIT FOR CONTROLLER
TSTB RL_CS(R4) ;WAS CONTROLLER READY?
BGEQ 25$;IF GEQ - NO

C–10

Sample Driver for the RL11, RL01, and RL02 Disk Drives

;
; CLASSIFY DRIVE TYPE
;

MOVL #^X2324C001,-
UCB$L_MEDIA_ID(R5) ;SET MEDIA IDENT "DL RL01"

BITW #RL_MP_M_TYP,RL_MP(R4) ;IS DRIVE TYPE = RL02?
BNEQ 30$;IF NEQ - YES
MOVB S^#DT$_RL01,-

UCB$B_DEVTYPE(R5) ;SET RL01 DEVICE TYPE
MOVW #256,UCB$W_CYLINDERS(R5);SET NUMBER OF RL01 CYLINDERS
MOVZWL #10240,UCB$L_MAXBLOCK(R5) ;SET MAX RL01 BLOCK NUMBER
BRB 40$

25$: BRB 70$;BRANCH TO COMMON EXIT

30$: MOVB S^#DT$_RL02,-
UCB$B_DEVTYPE(R5) ;SET RL02 DEVICE TYPE

MOVW #512,UCB$W_CYLINDERS(R5);SET NUMBER OF RL02 CYLINDERS
MOVZWL #20480,UCB$L_MAXBLOCK(R5) ;SET MAX RL02 BLOCK NUMBER
INCL UCB$L_MEDIA_ID(R5) ;SET MEDIA IDENT "DL RL02"

40$: BBC #UCB$V_VALID,R3,60$; Branch around wait for drive to spin
; up if the drive did NOT have a VALID
; volume on it before POWER failure.

;
; INITIALIZE UCB FIELDS AND WAIT FOR ONLINE UNITS TO SPIN UP
;

45$: BITW #RL_CS_M_DRDY,RL_CS(R4) ; Is drive ready?
BNEQ 50$;IF NEQ - YES
JSB G^EXE$PWRTIMCHK ;IS MAX TIME EXCEEDED?
BLBS R0,45$;IF LBS - NO, STILL MORE TIME NEEDED
BRB 60$;POWER UP TIME EXCEEDED

50$:
BISW #UCBM_VALID,UCBW_STS(R5) ;SET UCB STATUS VOLUME VALID

60$: BBS #UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?
UCB$W_DL_FLAGS(R5),65$;IF BS YES

MOVL UCB$L_CRB(R5),R1 ;GET CRB ADDRESS
MOVL CRB$L_AUXSTRUC(R1),R2 ;MEMORY ALLOC FAILURE DURING CTL INIT?
BEQL 70$;IF EQL YES, LEAVE OFFLINE
MOVL R2,UCB$A_DL_BUF_VA(R5) ;SAVE BUFFER’S VIRTUAL ADDRESS
EXTZV #VA$V_VPN,#VA$S_VPN,R2,R1;GET VIRTUAL PAGE NUMBER OF BUFFER
MOVL G^MMG$GL_SPTBASE,R0 ;GET BASE ADDRESS OF SPTS
MOVL (R0)[R1],R0 ;GET THE PTE CONTENTS
BICL3 #^C<VA$M_BYTE>,R2,R1 ;GET BUFFER OFFSET (BA00-BA08)
ASSUME PTE$S_PFN GE 13
INSV R0,#9,#13,R1 ;COPY BA09-BA21
MOVL R1,UCB$A_DL_BUF_PA(R5) ;SAVE PHYSICAL ADDRESS OF BUFFER

65$: BISW #UCB$M_ONLINE,UCB$W_STS(R5) ;SET UCB STATUS VOLUME VALID
70$: RSB

.PAGE

.SBTTL DRIVER SPECIFIC SUBROUTINES
;
; DL_WAIT - WAIT FOR CONTROLLER READY
;
; INPUTS:
; R4 - DEVICE CSR ADDRESS
;
; FUNCTIONAL DESCRIPTION:
;
; THIS ROUTINE IS CALLED FROM THE DRIVER UNIT INITIALIZATION ROUTINE
; TO WAIT UNTIL THE RL11 CONTROLLER IS READY. TO PREVENT HANGING UP
; AT HIGH IPL, A MAXIMUM OF 30 USEC ELAPSES BEFORE CONTROL IS
; RETURNED TO THE CALLER.
;

C–11

Sample Driver for the RL11, RL01, and RL02 Disk Drives

DL_WAIT: ;WAIT FOR CONTROLLER READY
MOVQ R0,-(SP) ;SAVE R0, R1
TIMEWAIT #3,#RL_CS_M_CRDY,RL_CS(R4),W
MOVQ (SP)+,R0 ;RESTORE R0, R1
RSB ;RETURN TO UNIT INIT OR STARTIO
.PAGE
.SBTTL FDT ROUTINE - TEST TRANSFER BYTE COUNT ALIGNMENT

;++
;
; DL_ALIGN - FDT ROUTINE TO TEST XFER BYTE COUNT
;
; FUNCTIONAL DESCRIPTION:
;
; THIS ROUTINE IS CALLED FROM THE FUNCTION DECISION TABLE DISPATCHER
; TO CHECK THE BYTE COUNT PARAMETER SPECIFIED BY THE USER PROCESS
; FOR AN EVEN NUMBER OF BYTES (WORD BOUNDARY).
;
; INPUTS:
;
; R3 - IRP ADDRESS (I/O REQUEST PACKET)
; R4 - PCB ADDRESS (PROCESS CONTROL BLOCK)
; R5 - UCB ADDRESS (UNIT CONTROL BLOCK)
; R6 - CCB ADDRESS (CHANNEL CONTROL BLOCK)
; R7 - BIT NUMBER OF THE I/O FUNCTION CODE
; R8 - ADDRESS OF FDT TABLE ENTRY FOR THIS ROUTINE
; 4(AP) - ADDRESS OF FIRST FUNCTION DEPENDENT QIO PARAMETER
;
; OUTPUTS:
;
; IF THE QIO BYTE COUNT PARAMETER IS ODD, THE I/O OPERATION IS
; TERMINATED WITH AN ERROR. IF IT IS EVEN, CONTROL IS RETURNED
; TO THE FDT DISPATCHER.
;
;--

DL_ALIGN: ;CHECK BYTE COUNT AT P1(AP)
BLBS 4(AP),10$;IF LBS - ODD BYTE COUNT
RSB ;EVEN - RETURN TO CALLER

10$: MOVZWL #SS$_IVBUFLEN,R0 ;SET BUFFER ALIGNMENT STATUS
JMP G^EXE$ABORTIO ;ABORT I/O
.PAGE
.SBTTL START I/O ROUTINE

C–12

Sample Driver for the RL11, RL01, and RL02 Disk Drives

;++
;
; DL_STARTIO - START I/O ROUTINE
;
; FUNCTIONAL DESCRIPTION:
;
; THIS FORK PROCESS IS ENTERED FROM THE EXECUTIVE AFTER AN I/O REQUEST
; PACKET HAS BEEN DEQUEUED, AND PERFORMS THE FOLLOWING:
;
; - ACTIVATES THE DISK AFTER SETTING UCB FIELDS, OBTAINING
; UBA AND CONTROLLER RESOURCES, AND SETTING RL11 REGISTERS
;
; - WAITS FOR AN INTERRUPT
;
; - REGAINS CONTROL AFTER THE ISR SERVICES THE INTERRUPT, AND
; - REACTIVATES THE DISK IF THE ORIGINAL FUNCTION
; IS NOT YET COMPLETE, OR
; - COMPLETES THE I/O REQUEST BY RELEASING RESOURCES,
; SETTING STATUS CODES, AND RETURNING TO THE EXECUTIVE.
;
; INPUTS:
;
; R3 - IRP ADDRESS (I/O REQUEST PACKET)
; R5 - UCB ADDRESS (UNIT CONTROL BLOCK)
; IRP$L_MEDIA - PARAMETER LONGWORD (LOGICAL BLOCK NUMBER)
;
; OUTPUTS:
;
; R0 - FIRST I/O STATUS LONGWORD: STATUS CODE & BYTES XFERED
; R1 - SECOND I/O STATUS LONGWORD: 0 FOR DISKS
;
; THE I/O FUNCTION IS EXECUTED.
;
; ALL REGISTERS EXCEPT R0-R4 ARE PRESERVED.
;
;--

DL_STARTIO: ;START I/O OPERATION

;
; COMPUTE PHYSICAL MEDIA ADDRESS
;
; LBN = LBN * (SECTORS/BLOCK)
; LBN/(SECTORS/TRACK) = D + SECTOR
; D/(TRACKS/CYLINDER) = CYLINDER + TRACK
;

;
; PREPROCESS UCB FIELDS
;

C–13

Sample Driver for the RL11, RL01, and RL02 Disk Drives

PREPROCESS: ;
MOVL IRP$L_MEDIA(R3),- ; Copy given MEDIA address (logical)

UCB$L_MEDIA(R5) ; to the UCB.
BBS #IRP$V_PHYSIO,- ;IF SET - PHYSICAL I/O

IRP$W_STS(R3),10$
MULL3 #2,UCB$L_MEDIA(R5),R0 ;SCALE LBN IN R0
MOVZBL UCB$B_SECTORS(R5),R2 ;GET NUMBER OF SECTORS PER TRACK
CLRL R1 ;CLEAR HIGH PART OF DIVIDEND
EDIV R2,R0,R0,UCB$L_MEDIA(R5);CALCULATE SECTOR NUMBER AND STORE
MOVZBL UCB$B_TRACKS(R5),R2 ;GET NUMBER OF TRACKS PER CYLINDER
EDIV R2,R0,R0,R1 ;CALCULATE TRACK AND CYLINDER
MOVB R1,UCB$L_MEDIA+1(R5) ;STORE TRACK NUMBER
MOVW R0,UCB$L_MEDIA+2(R5) ;STORE CYLINDER NUMBER

10$:
MOVB UCB$B_ERTMAX(R5),- ;INITIALIZE ERROR RETRY COUNT

UCB$B_ERTCNT(R5) ;...
MNEGW UCB$W_BCNT(R5),UCB$W_BCR(R5) ;INIT NEG BYTES LEFT TO XFER
CLRW UCB$W_DL_DPN(R5) ;CLEAR DATA PATH NO. FOR USE AS-

;UBA RESOURCE ALLOCATION FLAG
CLRB UCB$B_DL_DPPE(R5) ;CLEAR DATAPATH PURGE ERROR REGISTER
MOVW IRP$W_FUNC(R3),UCB$W_FUNC(R5) ;SAVE FUNCTION CODE
EXTZV #IRP$V_FCODE,- ;EXTRACT I/O FUNCTION CODE

#IRPS_FCODE,IRPW_FUNC(R3),R1 ;...
MOVB R1,UCB$B_FEX(R5) ;STORE FUNCTION DISPATCH INDEX
CMPB #IO$_SEEK,R1 ;SEEK FUNCTION?
BNEQ 20$;IF NEQ - NO
MOVW IRP$L_MEDIA(R3),- ;STORE CYLINDER ADDRESS

UCB$W_DC(R5) ;...
20$:

BICW #UCB$M_DIAGBUF,-
UCB$W_DEVSTS(R5) ;CLR DIAGNOSTIC BUFFER PRESENT

BBC #IRP$V_DIAGBUF,- ;IF CLR - NO DIAG BUFFER
IRP$W_STS(R3),FDISPATCH ;...

BISW #UCB$M_DIAGBUF,UCB$W_DEVSTS(R5) ;SET DIAG BUFFER PRESENT

;
; CENTRAL FUNCTION DISPATCH
;

FDISPATCH: ;FUNCTION DISPATCH
MOVL UCB$L_IRP(R5),R3 ;GET IRP ADDRESS
BBS #IRP$V_PHYSIO,- ;IF SET - PHYSICAL I/O FUNCTION

IRP$W_STS(R3),10$;...
BBS #UCB$V_VALID,- ;IF SET - VOLUME SOFTWARE VALID

UCB$W_STS(R5),10$;...
MOVZWL #SS$_VOLINV,R0 ;SET VOLUME INVALID STATUS
BRW RESETXFR ;RESET BYTE COUNT AND EXIT

10$: CLRB UCB$B_DL_DCHEK(R5) ;CLEAR DATA CHECK IN PROGRESS
MOVZBL UCB$B_FEX(R5),R3 ;GET FUNCTION DISPATCH INDEX
CASE R3,<- ;DISPATCH TO FUNCTION HANDLING ROUTINE

UNLOAD,- ; UNLOAD
SEEK,- ; SEEK
NOP,- ; RECALIBRATE (unsupported)
DRVCLR,- ; DRVCLR
NOP,- ; RELEASE PORT (unsupported)
NOP,- ; OFFSET HEADS (unsupported)
NOP,- ; RETURN TO CENTER (unsupported)
PACKACK,- ; PACK ACKNOWLEDGE
NOP,- ; SEARCH (unsupported)
WRITECHECK,- ; WRITE CHECK
WRITEDATA,- ; WRITE DATA
READDATA,- ; READ DATA
NOP,- ; WRITE HEADER (unsupported)
READHEAD,- ; READ HEADER
NOP,- ; place holder
NOP,- ; place holder

C–14

Sample Driver for the RL11, RL01, and RL02 Disk Drives

AVAILABLE- ; AVAILABLE
>,LIMIT=#CDF_UNLOAD ;

NOP: ;NO-OP
SEEK: ;SEEK
DRVCLR: ;DRIVE CLEAR (GET STATUS & RESET)
DO_FUNCTION:

EXFUNCL RETRYERR ;EXECUTE FUNCTION - RETRY IF FAILURE
BRB NORMAL ;SUCCESSFUL - EXIT WITH NORMAL STATUS

PACKACK: ;PACK ACKNOWLEDGE (GET STATUS & RESET)
BISW #UCB$M_VALID, - ;Set software volume valid bit.

UCB$W_STS(R5)
BRB DO_FUNCTION ;Then go do hardware function.

UNLOAD: ;UNLOAD
AVAILABLE: ;AVAILABLE

BICW #UCB$M_VALID, - ;Clear software volume valid bit.
UCB$W_STS(R5) ;and go complete operation without

BRB NORMAL ;any hardware interaction.

WRITECHECK: ;WRITE CHECK
READHEAD: ;READ HEADER

BICW #IO$M_DATACHECK,- ;CLEAR DATA CHECK REQUEST-
UCB$W_FUNC(R5) ;TO PREVENT EXTRA WRITE CHECK

WRITEDATA: ;WRITE DATA
READDATA: ;READ DATA

EXFUNCL RETRYERR,F_SEEK ;EXECUTE EXPLICIT SEEK - RETRY IF FAIL

MOVZBL UCB$B_FEX(R5),R3 ;GET FUNCTION DISPATCH INDEX
EXFUNCL RETRYERR ;EXECUTE TRANSFER FUNCTION

;
; OPERATON COMPLETION
;

NORMAL: ;SUCCESSFUL OPERATION COMPLETE
MOVZWL #SS$_NORMAL,R0 ;SET NORMAL COMPLETION STATUS
BRW FUNCXT ;FUNCTION EXIT

RETRYERR: ;RETRIABLE ERROR
DECB UCB$B_ERTCNT(R5) ;ANY RETRIES LEFT?
BEQL FATALERR ;IF EQL - NO
BRW FDISPATCH ;RETRY FUNCTION

FATALERR: ;UNRECOVERABLE ERROR
MOVZWL #SS$_VOLINV,R0 ;ASSUME VOLUME INVALID STATUS
BBS #RL_MP_V_VC,- ;IF SET - VOLUME INVALID

UCB$W_DL_MP(R5),FUNCXT ;...

MOVZWL #SS$_WRITLCK,R0 ;ASSUME WRITE LOCK ERROR STATUS
BBC #RL_MP_V_WL,- ;IF CLR - VOLUME NOT WRITE LOCKED

UCB$W_DL_MP(R5),5$;...
BBS #RL_MP_V_WGE,- ;IF SET - WRITE GATE ERROR

UCB$W_DL_MP(R5),FUNCXT ;IF WL & WGE SET - WRITE LOCK ERROR

5$: MOVZWL #SS$_DATACHECK,R0 ;ASSUME DATA CHECK ERROR STATUS
TSTB UCB$B_DL_DCHEK(R5) ;WRITE CHECK IN PROGRESS?
BEQL 10$;IF EQL - NO
BBS #RL_CS_V_OPI,- ;IF SET - NOT WRITE CHECK ERROR

UCB$W_DL_CS(R5),10$;...
BBS #RL_CS_V_CRC,- ;IF SET - WRITE CHECK ERROR

UCB$W_DL_CS(R5),FUNCXT ;...

10$: MOVZWL #SS$_PARITY,R0 ;ASSUME PARITY ERROR STATUS
BBS #RL_CS_V_CRC,- ;IF SET - CRC ERROR

UCB$W_DL_CS(R5),FUNCXT ;OR DATAPATH PURGE ERROR

C–15

Sample Driver for the RL11, RL01, and RL02 Disk Drives

20$: MOVZWL #SS$_DRVERR,R0 ;ASSUME DRIVE ERROR STATUS
BBS #RL_CS_V_DE,- ;IF SET - DRIVE ERROR

UCB$W_DL_CS(R5),FUNCXT ;...

MOVZWL #SS$_CTRLERR,R0 ;ASSUME CONTROLLER ERROR STATUS

FUNCXT: ;FUNCTION EXIT
PUSHL R0 ;SAVE FINAL REQUEST STATUS
JSB G^IOC$DIAGBUFILL ;FILL DIAGNOSTIC BUFFER IF PRESENT
CMPB #CDF_WRITECHECK,UCB$B_FEX(R5) ;DRIVE RELATED FUNCTION?
BGTRU 10$;IF GTRU - YES
CMPB #CDF_AVAILABLE,UCB$B_FEX(R5) ;DRIVE RELATED FUNCTION?
BEQL 10$;IF EQL - YES
MOVL UCB$L_IRP(R5),R3 ;RETRIEVE ADDRESS OF IRP
ADDW3 UCB$W_BCR(R5),- ;CALCULATE BYTES TRANSFERRED

IRP$W_BCNT(R3),2(SP) ;...
TSTW UCB$W_DL_DPN(R5) ;ARE UBA RESOURCES ALLOCATED?
BEQL 20$;IF EQL - NO
BBC #UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?

UCB$W_DL_FLAGS(R5),10$;IF BC NO
RELDPR ;RELEASE DATA PATH
RELMPR ;RELEASE MAP REGISTERS
BRB 20$;JOIN COMMON CODE

10$: MOVL UCB$L_DL_SVAPTE(R5),- ;RESTORE ORIGINAL SVAPTE
UCB$L_SVAPTE(R5) ;

20$: RELCHAN ;RELEASE CHANNEL IF OWNED

CLRL R1 ;CLEAR SECOND STATUS LONGWORD
POPL R0 ;RETRIEVE FINAL REQUEST STATUS
REQCOM ;COMPLETE REQUEST
.PAGE

;
; FEXL - RL11 HARDWARE FUNCTION EXECUTION
;
; THIS ROUTINE IS CALLED VIA A BSB WITH A BYTE IMMEDIATELY FOLLOWING THAT
; SPECIFIES THE ADDRESS OF AN ERROR ROUTINE. ALL DATA IS ASSUMED TO HAVE BEEN
; SET UP IN THE UCB BEFORE THE CALL. THE APPROPRIATE PARAMETERS ARE LOADED
; INTO DEVICE REGISTERS AND THE FUNCTION IS INITIATED. THE RETURN ADDRESS
; IS STORED IN THE UCB AND A WAIT FOR INTERRUPT IS EXECUTED. WHEN THE
; INTERRUPT OCCURS, CONTROL IS RETURNED TO THE CALLER.
;
; INPUTS:
;
; R3 = FUNCTION TABLE DISPATCH INDEX
; R5 = DEVICE UNIT UCB ADDRESS
;
; 00(SP) = RETURN ADDRESS OF CALLER
; 04(SP) = RETURN ADDRESS OF CALLER’S CALLER
;
; IMMEDIATELY FOLLOWING INLINE AT THE CALL SITE IS A BYTE WHICH CONTAINS
; A BRANCH DESTINATION TO AN ERROR RETRY ROUTINE.
;
; OUTPUTS:
;
; THERE ARE FOUR EXITS FROM THIS ROUTINE:
;
; 1. SPECIAL CONDITION - THIS EXIT IS TAKEN IF A POWER FAILURE OCCURS
; OR THE OPERATION TIMES OUT. IT IS A JUMP TO THE APPROPRIATE
; ERROR ROUTINE.
;
; 2. FATAL ERROR - THIS EXIT IS TAKEN IF A FATAL CONTROLLER OR DRIVE
; ERROR OCCURS OR IF ANY ERROR OCCURS AND ERROR RETRY IS EITHER
; INHIBITED OR EXHAUSTED. IT IS A JUMP TO THE FATAL ERROR EXIT
; ROUTINE.
;
; 3. RETRIABLE ERROR - THIS EXIT IS TAKEN IF A RETRIABLE CONTROLLER
; OR DRIVE ERROR OCCURS AND ERROR RETRY IS NEITHER INHIBITED

C–16

Sample Driver for the RL11, RL01, and RL02 Disk Drives

; NOR EXHAUSTED. IT CONSISTS OF TAKING THE ERROR BRANCH EXIT
; SPECIFIED AT THE CALL SITE.
;
; 4. SUCCESSFUL OPERATION - THIS EXIT IS TAKEN IF NO ERRORS OCCUR
; DURING THE OPERATION. IT CONSISTS OF A RETURN INLINE.
;
; IN ALL CASES IF AN ERROR OCCURS, AN ATTEMPT IS MADE TO LOG THE ERROR.
;
; IN ALL CASES FINAL DEVICE REGISTERS ARE RETURNED VIA THE UCB.
;
; UCB$W_BCR(R5) = NEGATIVE BYTES REMAINING TO TRANSFER

.PAGE
FEXL: ;FUNCTION EXECUTOR

POPL UCB$L_DPC(R5) ;SAVE DRIVER PC VALUE
MOVB R3,UCB$B_CEX(R5) ;SAVE CASE INDEX
MOVL UCB$L_CRB(R5),R0 ;GET ADDRESS OF PRIMARY CRB
MOVL CRB$L_INTD+VEC$L_IDB(R0),R1 ;GET ADDRESS OF IDB
CMPL R5,IDB$L_OWNER(R1) ;DOES THIS PROCESS OWN CHANNEL?
BNEQ 10$;IF NEQ - NO
MOVL IDB$L_CSR(R1),R4 ;SET ASSIGNED CHANNEL CSR ADDRESS
BRB 20$;

10$: REQPCHAN ;REQUEST CHANNEL (RETURNS R4 = CSR ADR)

20$: CASE R3,<- ;DISPATCH TO PROPER FUNCTION ROUTINE
IMMED,- ;NO OPERATION
IMMED,- ;UNLOAD VOLUME (NOP)
POSIT,- ;SEEK CYLINDER
IMMED,- ;RECALIBRATE (NOP)
DRCLR,- ;DRIVE CLEAR (GET STATUS & RESET)
IMMED,- ;RELEASE DRIVE (NOP)
IMMED,- ;OFFSET HEADS (NOP)
IMMED,- ;RETURN TO CENTERLINE (NOP)
DRCLR,- ;PACK ACKNOWLEDGE
IMMED,- ;SEARCH (NOP)
> ;

BRW XFER ;TRANSFER FUNCTION
.PAGE

;
; IMMEDIATE FUNCTION EXECUTION
;
; FUNCTIONS INCLUDE:
;
; NO OPERATION,
; DRIVE CLEAR, AND
; PACK ACKNOWLEDGE
;
; INPUTS:
; R3 - CASE INDEX
; R4 - CSR ADDRESS
; R5 - UCB ADDRESS
;
; FUNCTIONAL DESRIPTION:
;
; INTERRUPTS ARE LOCKED OUT, THE APPROPRIATE FUNCTION IS INITIATED WITH
; INTERRUPT ENABLE, AND A WAIT FOR INTERRUPT AND KEEP CHANNEL IS EXECUTED.
;

DRCLR: ;DRIVE CLEAR
BISW #RL_DA_M_STS!- ;SET GETSTATUS,RESET,AND MARK IN DAR

RL_DA_M_RST!RL_DA_M_MRK,RL_DA(R4) ;...

C–17

Sample Driver for the RL11, RL01, and RL02 Disk Drives

IMMED: ;IMMEDIATE FUNCTION EXECUTION
CKPWR SAVE_R0=NO ;DISABLE INTERRUPTS, CHECK POWER,-

;AND PUT UNIT NUMBER IN R2<9:8>
BISW3 R2,FTAB[R3],RL_CS(R4) ;MERGE UNIT WITH FNTN AND EXECUTE
WFIKPCH RETREG,#2 ;WAIT FOR INTERRUPT
IOFORK ;RETURN FROM ISR-

;CREATE FORK PROCESS (&JSB BACK TO ISR)
BRW RETREG ;
.PAGE

;
; POSITIONING FUNCTION EXECUTION
;
; FUNCTIONS INCLUDE:
;
; SEEK CYLINDER
;
; INPUTS:
; R3 - CASE INDEX
; R4 - DEVICE CSR ADDRESS
; R5 - UCB ADDRESS
;
; FUNCTIONAL DESRIPTION:
;
; THE CYLINDER DIFFERENCE WORD IS CALCULATED AND LOADED INTO THE DISK
; ADDRESS REGISTER, INTERRUPTS ARE LOCKED OUT, AND THE SEEK FUNCTION
; IS INITIATED WITHOUT INTERRUPT ENABLE. THE CONTROLLER IS THEN POLLED
; FOR READY, AND DEVICE INTERRUPTS ARE ENABLED.
;
; SINCE THE RL01/RL02 DO NOT ISSUE AN INTERRUPT UPON COMPLETION OF A
; SEEK, OVERLAPPED SEEKS ARE NOT ATTEMPTED, AND ONE OF THE FOLLOWING IS
; PERFORMED.
;
; IF ONLY A SEEK FUNCTION IS BEING REQUESTED, A DUMMY READ HEADER
; FUNCTION IS ISSUED AND A WAITFOR INTERRUPT IS INITIATED.
; THE READ HEADER IS USED TO SIGNAL THE END OF THE SEEK, SINCE IT
; WILL ISSUE AN INTERRUPT SHORTLY (315 USEC AVG) AFTER THE SEEK IS
; COMPLETE. IT WILL ALSO SENSE FOR A TIMEOUT DURING THE SEEK.
;
; IF THE SEEK IS ASSOCIATED WITH A DATA TRANSFER REQUEST (RL01/RL02
; TRANSFER FUNCTIONS REQUIRE EXPLICIT SEEKS), THE PROGRAM KEEPS THE
; CHANNEL AND RETURNS TO FDISPATCH TO ISSUE THE TRANSFER REQUEST
; WHILE THE SEEK IS STILL IN PROGRESS. WHEN THE SEEK COMPLETES, THE
; RL11 CONTROLLER WILL BEGIN THE TRANSFER.
;

C–18

Sample Driver for the RL11, RL01, and RL02 Disk Drives

POSIT: ;POSITIONING FUNCTION
;
; OBTAIN CURRENT DISK ADDRESS
;
; IF THERE HAS NOT BEEN A PREVIOUS TRANSFER DURING THIS REQUEST,
; A READ HEADER IS EXECUTED TO DETERMINE THE CURRENT DISK ADDRESS.
;

TSTW UCB$W_DL_DPN(R5) ;WAS THERE A PREVIOUS TRANSFER?
BEQL 10$;IF EQL - NO, READ HEADER
BICW3 #^O77,UCB$W_DL_DA(R5),R1 ;PUT CURRENT CYL & SURFACE IN R1
BRW 60$;CALCULATE DIFFERENCE WORD

5$: BRW 50$;CONTINUE
10$: MOVZBL #8,R3 ;SET READ HEADER RETRY COUNT IN R3
20$: CKPWR SAVE_R0=NO ;DISABLE INTERRUPTS, CHECK POWER,-

;AND PUT UNIT NUMBER IN R2<9:8>
BISW3 R2,#F_READHEAD!RL_CS_M_IE,- ;EXECUTE READ HEADER

RL_CS(R4) ;...
WFIKPCH 40$,#2 ;WAIT FOR INTERRUPT OR TIMEOUT
IOFORK ;CREATE FORK PROCESS
BBC #RL_CS_V_CE,UCB$W_DL_CS(R5),5$;BR ON NO ERRORS
DECB R3 ;DECREMENT READ HEADER RETRY COUNT
BNEQ 20$;IF NEQ - RETRY READ HEADER

;IF EQL - READ HEADER RETRY EXHAUSTED -
;TRY PREVIOUS TRACK

MOVZBW #^X80!RL_DA_M_MRK,- ;LOAD REVERSE SEEK DIFFERENCE WORD
RL_DA(R4) ;...

CKPWR SAVE_R0=NO ;DISABLE INTERRUPTS, CHECK POWER,-
;AND PUT UNIT NUMBER IN R2<9:8>

BISW3 R2,#F_SEEK!RL_CS_M_IE,- ;EXECUTE REVERSE SEEK
RL_CS(R4) ;...

WFIKPCH 40$,#2 ;WAIT FOR SEEK TO BEGIN (INTERRUPT)
IOFORK ;CREATE FORK PROCESS
CKPWR SAVE_R0=NO ;DISABLE INTERRUPTS, CHECK POWER,-

;AND PUT UNIT NUMBER IN R2<9:8>
BISW3 R2,#F_READHEAD!RL_CS_M_IE,- ;TRY READ HEADER ON NEW TRACK

RL_CS(R4) ;...
WFIKPCH 40$,#2 ;WAITFOR INTERRUPT OR TIMEOUT
IOFORK ;CREATE FORK PROCESS
BBC #RL_CS_V_CE,UCB$W_DL_CS(R5),50$;BR IF NO HEADER ERROR

40$: ;CANNOT READ CURRENT DISK ADDRESS
; CLRB UCB$B_ERTCNT(R5) ;CLEAR RETRY COUNT

BRW RETREG ;
50$: ;FOUND CURRENT DISK ADDRESS

BICW3 #^O77,UCB$W_DL_MP(R5),R1 ;PUT CURRENT CYL & SURFACE IN R1

;
; CALCULATE CYLINDER DIFFERENCE WORD
;

60$: CLRL R0 ;CLEAR R0 FOR DESIRED ADDRESS
INSV UCB$W_DA+1(R5),#6,#1,R0 ;INSERT DESIRED SURFACE IN R0<6>
INSV UCB$W_DC(R5),#7,#9,R0 ;INSERT DESIRED CYLINDER IN R0<15:7>
CMPW R0,R1 ;IS A SEEK NEEDED?
BEQL 80$;IF EQL - NO
BICB #^O177,R1 ;REMOVE SURFACE BIT
BICB #^O177,R0 ;REMOVE SURFACE BIT
SUBW R0,R1 ;SUBTRACT DESIRED FROM ACTUAL
BEQL 70$;IF EQL - ONLY CHANGE SURFACE
BCC 70$;IF CC - ACTUAL>=DESIRED
MNEGW R1,R1 ;ACTUAL<DESIRED, MAKE POSITIVE DIFF
BISW #4,R1 ;SET SIGN FOR MOVE TO CENTER OF DISK

70$: INSV UCB$W_DA+1(R5),#4,#1,R1 ;INSERT SURFACE BIT
BISW3 #RL_DA_M_MRK,R1,RL_DA(R4) ;SET MARKER AND LOAD DIFFERENCE WORD

;
; EXECUTE SEEK
;

C–19

Sample Driver for the RL11, RL01, and RL02 Disk Drives

CKPWR SAVE_R0=NO ;DISABLE INTERRUPTS, CHECK POWER,-
;AND PUT UNIT NUMBER IN R2<9:8>

BISW3 R2,#F_SEEK!RL_CS_M_IE,- ;EXECUTE SEEK FUNCTION
RL_CS(R4) ;...

WFIKPCH 40$,#2 ;WAIT FOR SEEK TO BEGIN (INTERRUPT)
IOFORK ;CREATE FORK PROCESS

80$: CMPB #IO$_SEEK,UCB$B_FEX(R5) ;IS SEEK ASSOCIATED WITH A TRANSFER?
BEQL 90$;IF EQL - NO, SEEK ONLY

;
; RETURN FOR SEEK ASSOCIATED WITH A TRANSFER REQUEST
;

INCL UCB$L_DPC(R5) ;ADJUST TO CORRECT RETURN ADDRESS
JMP @UCB$L_DPC(R5) ;RETURN TO DRIVER FOR TRANSFER

;
; RETURN FOR SEEK ONLY REQUEST
;

90$: CKPWR SAVE_R0=NO ;DISABLE INTERRUPTS, CHECK POWER,-
;AND PUT UNIT NUMBER IN R2<9:8>

BISW3 R2,#F_READHEAD!RL_CS_M_IE,- ;EXECUTE DUMMY READ HEADER
RL_CS(R4) ;...

WFIKPCH RETREG,#2 ;WAIT FOR SEEK TO COMPLETE (INTERRUPT)
IOFORK ;CREATE FORK PROCESS
BRW RETREG ;
.PAGE

;
; TRANSFER FUNCTION EXECUTION
;
; FUNCTIONS INCLUDE:
;
; WRITE CHECK
; WRITE DATA
; READ DATA, AND
; READ HEADER
;
; INPUTS:
; R3 - CASE INDEX
; R4 - DEVICE CSR ADDRESS
; R5 - UCB ADDRESS
;
; FUNCTIONAL DESCRIPTION:
;
; A UNIBUS DATAPATH IS REQUESTED FOLLOWED BY THE APPROPRIATE NUMBER OF MAP
; REGISTERS REQUIRED FOR THE TRANSFER. THE TRANSFER PARAMETERS ARE LOADED
; INTO THE DEVICE REGISTERS, INTERRUPTS ARE LOCKED OUT, THE FUNCTION IS
; INITIATED, AND A WAITFOR INTERRUPT AND KEEP CHANNEL IS EXECUTED.
;
; UPON RETURN FROM THE INTERRUPT SERVICE ROUTINE, IF THE TRANSFER IS
; COMPLETE, THE APPROPRIATE EXIT IS TAKEN. IF THE FUNCTION IS NOT COMPLETE
; TRANSFER PARAMETERS ARE UPDATED AND A RETURN TO FDISPATCH IS EXECUTED TO
; REISSUE SEEK AND TRANSFER FUNCTIONS WHILE KEEPING CHANNEL AND UBA
; RESOURCES. IF A DATA CHECK HAS BEEN REQUESTED, IT IS PERFORMED
; BEFORE RETURNING TO FDISPATCH.
;

C–20

Sample Driver for the RL11, RL01, and RL02 Disk Drives

XFER: ;TRANSFER FUNCTION EXECUTION
BBS #UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?

UCB$W_DL_FLAGS(R5),2$;BRANCH IF ADAPTER MAPPING.
MOVW UCB$A_DL_BUF_PA(R5),UCB$W_DL_SBA(R5);GET 1ST WORD OF BUFFER ADDR
MOVZWL UCB$A_DL_BUF_PA+2(R5),R0;GET BITS 16:21 OF BUFFER ADDRESS
MOVW R0,RL_BAE(R4) ;SET MEMORY EXTENSION BITS IN BAE
ASHL #4,R0,R0 ;PUT MEMORY EXTENSION BITS IN <5:4>
MOVB R0,UCB$B_DL_XBA(R5) ;OF CSR

;
; FIRST TRANSFER OF THIS I/O REQUEST - ALLOCATE RESOURCES
;

TSTW UCB$W_DL_DPN(R5) ;RESOURCES ALREADY ALLOCATED?
BNEQ 5$;IF NEQ - YES
CLRL UCB$A_DL_MOVRTN(R5) ;ASSUME READ
CMPB #CDF_WRITEDATA,R3 ;WRITE DATA?
BNEQ 1$;IF NEQ NO
MOVAB G^IOC$MOVFRUSER,- ;SET MOVE ROUTINE ADDRESS FOR

UCB$A_DL_MOVRTN(R5) ;1ST PARTIAL WRITE
1$: MOVL UCB$L_SVAPTE(R5),UCB$L_DL_SVAPTE(R5);SAVE SVAPTE FOR BUFFER COPY

MNEGW #1,UCB$W_DL_DPN(R5) ;SET FIRST XFER FLAG
BRB 5$;JOIN COMMON CODE

;
; FIRST TRANSFER OF THIS I/O REQUEST - ALLOCATE RESOURCES
;
2$: TSTW UCB$W_DL_DPN(R5) ;UBA RESOURCES ALREADY ALLOCATED?

BNEQ 5$;IF NEQ - YES
REQDPR ;REQUEST DATAPATH
REQMPR ;REQUEST MAP REGISTERS
LOADUBA ;LOAD UNIBUS MAP REGISTERS
MOVL UCB$L_CRB(R5),R1 ;GET CRB ADDRESS
EXTZV #VEC$V_DATAPATH,#VEC$S_DATAPATH,- ;EXTRACT DATAPATH NUMBER -

CRB$L_INTD+VEC$B_DATAPATH(R1),R0 ;FOR UBA RESOURCE FLAG
MOVW R0,UCB$W_DL_DPN(R5) ;INDICATE UBA RESOURCES ALLOCATED

MOVZWL UCB$W_BOFF(R5),R0 ;GET BYTE OFFSET IN PAGE
INSV CRB$L_INTD+VEC$W_MAPREG(R1),- ;INSERT HIGH 7 BITS OF ADDRESS

#9,#7,R0 ;...
MOVW R0,UCB$W_DL_SBA(R5) ;SET BUFFER ADDRESS
EXTZV #7,#2,CRB$L_INTD+VEC$W_MAPREG(R1),R0 ;GET MEMORY EXTENSION BITS
MULB3 #16,R0,UCB$B_DL_XBA(R5) ;POSITION MEMORY EXTENSION BITS TO <5:4>

;
; COMMON TRANSFER POINT
;

;
; FOR A READ OPERATION WHEN NO ADAPTER MAPPING IS PRESENT EMPTY THE
; INTERNAL PHYSICALLY CONTIGUOUS BUFFER FROM THE PREVIOUS READ TO THE
; USER’S BUFFER.
;
5$: BSBW DL_MOVE_TO_BUFFER ;COPY TO USER BUFFER
;
; PUT BUFFER ADDRESS, WORD COUNT, AND DISK ADDRESS IN DEVICE REGISTERS
;

C–21

Sample Driver for the RL11, RL01, and RL02 Disk Drives

MOVW UCB$W_DL_SBA(R5),RL_BA(R4) ;SET BUFFER ADDRESS
MNEGW UCB$W_BCR(R5),- ;GET BYTES LEFT TO TRANSFER AND -

UCB$W_DL_PBCR(R5) ;ASSUME ONLY ONE TRANSFER NEEDED
MOVZBL UCB$B_SECTORS(R5),R2 ;GET SECTORS/SURFACE
MOVZBL UCB$W_DA(R5),R1 ;GET DESIRED SECTOR
SUBW R1,R2 ;CALCULATE SECTORS LEFT ON SURFACE
MULW #256,R2 ;CONVERT TO BYTES LEFT ON SURFACE
CMPW UCB$W_DL_PBCR(R5),R2 ;ARE ADDITIONAL TRANSFERS REQUIRED?
BLEQU 10$;IF LEQU - NO
MOVW R2,UCB$W_DL_PBCR(R5) ;SET BYTE COUNT FOR THIS TRANSFER

;
; FOR A WRITE OPERATION WHEN NO ADAPTER MAPPING IS PRESENT
; FILL INTERNAL PHYSICALLY CONTIGUOUS BUFFER FROM THE USER’S BUFFER.
;
10$: BSBW DL_MOVE_FROM_BUFFER ;COPY FROM USER BUFFER

MOVZBL UCB$B_DL_XBA(R5),R0 ;SET MEMORY EXTENSION BITS
BISW FTAB[R3],R0 ;MERGE XBA BITS WITH FUNCTION
DIVW3 #2,UCB$W_DL_PBCR(R5),R2 ;CALCULATE TRANSFER WORD COUNT
MNEGW R2,RL_MP(R4) ;SET TRANSFER WORD COUNT

MOVZBL UCB$W_DA(R5),R1 ;PUT DESIRED SECTOR IN R1<5:0>
INSV UCB$W_DA+1(R5),#6,#1,R1 ;INSERT DESIRED SURFACE IN R1<6>
INSV UCB$W_DC(R5),#7,#9,R1 ;INSERT DESIRED CYLINDER IN R1<15:7>
MOVW R1,RL_DA(R4) ;SET DESIRED DISK ADDRESS

;
; EXECUTE THE TRANSFER FUNCTION
;

CKPWR ;DISABLE INTERRUPTS, CHECK POWER,-
;AND PUT UNIT NUMBER IN R2<9:8>

BISW3 R2,R0,RL_CS(R4) ;EXECUTE FUNCTION
WFIKPCH RETREG,#6 ;WAITFOR INTERRUPT AND KEEP CHANNEL

;RETURN HERE FROM ISR SAVING REGISTERS
IOFORK ;CREATE FORK PROCESS (RETURN TO ISR)

;RETURN HERE FROM ISR REI ROUTINE

;
; PURGE DATAPATH
;

CLRB UCB$B_DL_DPPE(R5) ;CLEAR DATAPATH PURGE ERROR
JSB G^IOC$PURGDATAP ;PURGE DATAPATH
BLBS R0,20$;IF SET - NO PURGE ERRORS
INCB UCB$B_DL_DPPE(R5) ;SET DATAPATH PURGE ERROR

;
; SAVE UBA REGISTERS FOR UPDATE AND REGDUMP ROUTINES
;

C–22

Sample Driver for the RL11, RL01, and RL02 Disk Drives

20$: BBC #UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?
UCB$W_DL_FLAGS(R5),30$;IF BC NO

MOVL R1,UCB$L_DL_DPR(R5) ;SAVE DATAPATH REGISTER
EXTZV #9,#7,UCB$W_DL_BA(R5),R0 ;EXTRACT LOW BITS OF FINAL MAP REG NO.
EXTZV #4,#2,UCB$W_DL_CS(R5),R1 ;EXTRACT HI BITS OF FINAL MAP REG NO.
INSV R1,#7,#2,R0 ;INSERT HIGH BITS OF FINAL MAP REGISTER
CMPW #495,R0 ;LEGAL MAP REGISTER NUMBER?
BGEQ 25$;IF GEQ - YES
MOVZWL #495,R0 ;RESTRICT MAP REGISTER NUMBER

25$: MOVL (R2)[R0],UCB$L_DL_FMPR(R5) ;SAVE FINAL MAP REGISTER NUMBER
CLRL UCB$L_DL_PMPR(R5) ;CLEAR PREVIOUS MAP REGISTER CONTENTS
DECL R0 ;CALCULATE PREVIOUS MAP REGISTER NUMBER
CMPV #VEC$V_MAPREG,#VEC$S_MAPREG,- ;ANY PREVIOUS MAP REGISTER?

CRB$L_INTD+VEC$W_MAPREG(R3),R0 ;...
BGTR 30$;IF GTR - NO
MOVL (R2)[R0],UCB$L_DL_PMPR(R5) ;SAVE PREVIOUS MAP REGISTER

30$: BBC #RL_CS_V_CE,UCB$W_DL_CS(R5),40$;IF CLR - NO RL ERRORS
BRW RETREG ;DEVICE ERROR

40$: BLBC UCB$B_DL_DPPE(R5),45$;IF CLR - NO PURGE ERROR
BRW RETREG ;PURGE ERROR

;
; RETURN HEADER INFORMATION FOR READ HEADER FUNCTION
;

45$: CMPB #CDF_READHEAD,UCB$B_CEX(R5) ;READ HEADER FUNCTION?
BNEQ DATACHECK ;IF NEQ - NO
PUSHL UCB$W_BCR(R5) ;SAVE NEG BYTES REMAINING
PUSHL UCB$L_SVAPTE(R5) ;SAVE ADDRESS OF PTE
MOVAB UCB$W_DL_DB(R5),R1 ;SET ADDRESS OF INTERNAL BUFFER
MOVL #6,R2 ;SET NUMBER OF BYTES TO MOVE
CMPW R2,UCB$W_BCNT(R5) ;ROOM FOR FULL HEADER?
BLSSU 50$;IF LSSU - YES
MOVZWL UCB$W_BCNT(R5),R2 ;SET LENGTH OF PARTIAL HEADER

50$: SUBW3 UCB$W_BCNT(R5),R2,UCB$W_BCR(R5) ;CALCULATE TRANSFER BYTE COUNT
JSB G^IOC$MOVTOUSER ;MOVE HEADER TO USER BUFFER
POPL UCB$L_SVAPTE(R5) ;RESTORE ADDRESS OF PTE
POPL UCB$W_BCR(R5) ;RESTORE NEG BYTES REMAINING

;
; PERFORM DATA CHECK, IF REQUESTED
;

DATACHECK: ;DATACHECK AFTER PARTIAL TRANSFER
BBC #IO$V_DATACHECK,- ;IF CLR - DATA CHECK NOT REQUESTED

UCB$W_FUNC(R5),UPDATE ;...
BBSC #0,UCB$B_DL_DCHEK(R5),- ;IF SET - DATA CHECK ALREADY PERFORMED

UPDATE ;...
INCB UCB$B_DL_DCHEK(R5) ;SET DATA CHECK IN PROGRESS
MOVZBL #IO$_WRITECHECK,R3 ;SET CASE INDEX TO WRITE CHECK
BRW XFER ;BRANCH TO PERFORM WRITE CHECK

;
; UPDATE BUFFER ADDRESS, CURRENT DISK ADDRESS, AND BYTES REMAINING
; FOR NEXT TRANSFER
;

UPDATE: ;UPDATE TRANSFER PARAMETERS
BBC #UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?

UCB$W_DL_FLAGS(R5),10$;IF BC NO
BICB3 #^XCF,UCB$W_DL_CS(R5),- ;SAVE MEMORY EXTENSION BITS

UCB$B_DL_XBA(R5) ;...
MOVW UCB$W_DL_BA(R5),- ;UPDATE SAVED BUFFER ADDRESS

UCB$W_DL_SBA(R5) ;...

C–23

Sample Driver for the RL11, RL01, and RL02 Disk Drives

10$: CLRB UCB$W_DA(R5) ;UPDATE DESIRED SECTOR TO ZERO
ADDL3 #^O100,UCB$W_DL_DA(R5),R1 ;INCREMENT CYLINDER & SURFACE
EXTZV #6,#1,R1,R2 ;EXTRACT DESIRED DISK SURFACE
MOVB R2,UCB$W_DA+1(R5) ;UPDATE DESIRED DISK SURFACE
EXTZV #7,#9,R1,R2 ;EXTRACT DESIRED DISK CYLINDER
MOVW R2,UCB$W_DC(R5) ;UPDATE DESIRED DISK CYLINDER
ADDW UCB$W_DL_PBCR(R5),- ;UPDATE NEG BYTES REMAINING TO XFER

UCB$W_BCR(R5) ;...
BEQL RETREG ;IF EQL - TRANSFER COMPLETE
BRW FDISPATCH ;MORE BYTES REMAINING - CONTINUE

;
; GET STATUS AND RESET ERRORS
;

RETREG: ;GET STATUS AND RESET ERRORS
;
; FOR A READ OPERATION WHEN NO ADAPTER MAPPING IS PRESENT
; EMPTY INTERNAL BUFFER INTO USER’S BUFFER FOR LAST READ
;

BSBW DL_MOVE_TO_BUFFER ;MOVE LAST READ INTO USER’S BUFFER

BITW #UCB$M_TIMOUT!UCB$M_POWER,- ; TIMEOUT OR POWERFAIL?
UCB$L_STS(R5) ;

BEQL 0$;BR IF NO
IOFORK ;ELSE, FORK

0$: MOVW #RL_DA_M_STS!- ;PUT GET STATUS IN DAR
RL_DA_M_MRK,RL_DA(R4) ;...

CLRL R2 ;CLEAR R2 FOR UNIT NUMBER
INSV UCB$W_UNIT(R5),#8,#8,R2 ;GET UNIT NUMBER
BISW3 R2,#F_GETSTATUS,RL_CS(R4) ;EXECUTE GET STATUS
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),- ;LOCK DEVICE ACCESS
LOCKIPL=UCB$B_DIPL(R5),- ;RAISE IPL
SAVIPL=-(SP),- ;SAVE CURRENT IPL
PRESERVE=NO ;DON’T PRESERVE R0

BSBW DL_WAIT ;WAIT FOR CONTROLLER
MOVW RL_MP(R4),UCB$W_DL_MP(R5) ;RETRIEVE ERROR REGISTER
MOVW #RL_DA_M_RST!- ;PUT GET STATUS & RESET IN DAR

RL_DA_M_STS!RL_DA_M_MRK,RL_DA(R4) ;...
BISW3 R2,#F_GETSTATUS,RL_CS(R4) ;EXECUTE RESET
BSBW DL_WAIT ;WAIT FOR CONTROLLER
DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5),- ;UNLOCK DEVICE ACCESS
NEWIPL=(SP)+,- ;RESTORE IPL
PRESERVE=NO ;DON’T PRESERVE R0

;
; DETERMINE EXIT - SPECIAL CONDITION, FATAL ERROR, RETRIABLE ERROR, OR SUCCESS
;

CMPZV #0,#5,UCB$W_DL_MP(R5),- ;HEADS, BRUSHES, STATE OK?
#RL_MP_M_BH!RL_MP_M_HO!RL_SLM ;...

BEQL 1$;IF EQL - YES, ONLINE
BICW #UCBM_TIMOUT,UCBW_STS(R5) ;CLEAR DEVICE TIME OUT
MOVZWL #SS$_MEDOFL,R0 ;SET MEDIUM OFFLINE STATUS
BRW FUNCXT ;RETURN

1$: BITW #UCB$M_POWER!- ;POWER FAIL OR DEVICE TIMEOUT?
UCBM_TIMOUT,UCBW_STS(R5) ;...

BNEQ SPECOND ;IF NEQ - YES, SPECIAL CONDITION

C–24

Sample Driver for the RL11, RL01, and RL02 Disk Drives

BBS #RL_MP_V_VC,UCB$W_DL_MP(R5),20$;IF SET - VOLUME INVALID
BBS #RL_CS_V_CE,UCB$W_DL_CS(R5),2$;IF SET - RL ERROR
BLBC UCB$B_DL_DPPE(R5),10$;IF CLR - NO PURGE ERROR

2$: JSB G^ERL$DEVICERR ;ALLOCATE AND FILL ERROR MESSAGE BUFFER
BBS #IO$V_INHRETRY,UCB$W_FUNC(R5),20$;IF SET - RETRY INHIBITED
BBS #RL_CS_V_NXM,UCB$W_DL_CS(R5),20$;IF SET - NONEXISTENT MEMORY
BBC #RL_CS_V_DE,UCB$W_DL_CS(R5),5$;IF CLR - NO DRIVE ERRORS
BBC #RL_MP_V_WL,UCB$W_DL_MP(R5),4$;IF CLR - NOT WRITE LOCKED
BBS #RL_MP_V_WGE,UCB$W_DL_MP(R5),20$;IF WL & WGE SET - WL ERROR

4$: BITW #RL_MP_M_WDE!- ;WRITE DATA ERROR, OR
RL_MP_M_CHE!- ;CURRENT HEAD ERROR, OR
RL_MP_M_WGE!- ;WRITE GATE ERROR, OR
RL_MP_M_DSE,UCB$W_DL_MP(R5) ;DRIVE SELECT ERROR?

BNEQ 20$;IF NEQ - YES

;
; RETRIABLE ERROR EXIT
;

5$: CVTBL @UCB$L_DPC(R5),-(SP) ;GET BRANCH DISPLACEMENT
ADDL (SP)+,UCB$L_DPC(R5) ;CALCULATE RETURN ADDRESS - 1

;
; SUCCESSFUL OPERATION EXIT
;

10$: INCL UCB$L_DPC(R5) ;ADJUST TO CORRECT RETURN ADDRESS
JMP @UCB$L_DPC(R5) ;RETURN TO DRIVER

;
; FATAL ERROR EXIT
;

20$: BRW FATALERR ;FATAL ERROR EXIT

;
; SPECIAL CONDITION EXIT (POWER FAILURE OR DEVICE TIMEOUT)
;

SPECOND:
BBS #UCBV_POWER,UCBW_STS(R5),PWRFAIL ;IF SET - POWER FAILURE

;IF CLR - DEVICE TIMEOUT
JSB G^ERL$DEVICTMO ;LOG DEVICE TIMEOUT
BICW #UCBM_TIMOUT,UCBW_STS(R5) ;CLEAR TIMEOUT STATUS
MOVZWL #SS$_TIMEOUT,R0 ;SET DEVICE TIMEOUT STATUS
DECB UCB$B_ERTCNT(R5) ;ANY ERROR RETRIES REMAINING?
BEQL RESETXFR ;IF EQL - NO
BRW FDISPATCH ;RETURN

RESETXFR: ;RESET TRANSFER BYTE COUNT
MOVL UCB$L_IRP(R5),R3 ;GET ADDRESS OF I/O PACKET
MNEGW IRP$W_BCNT(R3),UCB$W_BCR(R5) ;RESET BYTE COUNT
BRW FUNCXT ;EXIT

C–25

Sample Driver for the RL11, RL01, and RL02 Disk Drives

PWRFAIL: ;POWER FAILURE
BICW #UCBM_POWER,UCBW_STS(R5) ;CLEAR POWER FAILURE BIT
TSTW UCB$W_DL_DPN(R5) ;ARE UCB RESOURCES ALLOCATED?
BEQL 50$;IF EQL - NO
BBC #UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?

UCB$W_DL_FLAGS(R5),50$;IF BC NO
RELDPR ;RELEASE DATA PATH
RELMPR ;RELEASE MAP REGISTERS

50$: RELCHAN ;RELEASE CHANNEL IF OWNED
MOVL UCB$L_IRP(R5),R3 ;GET ADDRESS OF I/O PACKET
MOVQ IRP$L_SVAPTE(R3),- ;RESTORE TRANSFER PARAMETERS

UCB$L_SVAPTE(R5) ;...
BRW PREPROCESS ;RETURN TO PREPROCESS UCB FIELDS
.PAGE
.SBTTL INTERRUPT SERVICE ROUTINE

;++
; DL$INT - RL11 INTERRUPT SERVICE ROUTINE
;
; FUNCTIONAL DESCRIPTION:
;
; THIS ROUTINE IS ENTERED VIA A JSB INSTRUCTION WHEN AN INTERRUPT
; OCCURS ON AN RL11 DISK CONTROLLER. IF THE INTERRUPT IS NOT EXPECTED,
; THE UNSOLICITED INTERRUPT ROUTINE DISMISSES THE INTERRUPT. IF
; THE INTERRUPT IS EXPECTED, DEVICE REGISTERS ARE SAVED AND THE
; DRIVER IS CALLED AT ITS INTERRUPT RETURN ADDRESS. THE DRIVER FORKS,
; CAUSING A RETURN TO THIS ROUTINE, WHICH RESTORES GENERAL REGISTERS
; AND DISMISSES THE INTERRUPT.
;
; INPUTS:
;
; 00(SP) - POINTER TO ADDRESS OF THE IDB
; 04(SP) - SAVED R0
; 08(SP) - SAVED R1
; 12(SP) - SAVED R2
; 16(SP) - SAVED R3
; 20(SP) - SAVED R4
; 24(SP) - SAVED R5
; 28(SP) - PC AT THE TIME OF THE INTERRUPT
; 32(SP) - PSL AT THE TIME OF THE INTERRUPT
;
; OUTPUTS:
;
; DEVICE REGISTERS ARE SAVED, IPL IS LOWERED TO FORK LEVEL, THE
; INTERRUPT IS DISMISSED, ALL REGISTERS EXCEPT R0-R5 ARE PRESERVED.
;
;--

DL_INT:: ;INTERRUPT SERVICE ROUTINE
MOVL @(SP)+,R3 ;REMOVE ADDRESS OF IDB FROM STACK
ASSUME IDB$L_CSR EQ 0
ASSUME IDB$L_OWNER EQ 4
MOVQ (R3),R4 ;GET ADDRESS OF CSR AND UCB
TSTL R5 ;IS R5 A ZERO
BEQL DL_UNSOLNT ;IF EQL NO OWNER
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),- ;LOCK DEVICE ACCESS
CONDITION=NOSETIPL,- ;DON’T CHANGE IPL
PRESERVE=NO ;DON’T PRESERVE R0

BBCC #UCB$V_INT,- ;IF CLR - INTERRUPT NOT EXPECTED
UCB$W_STS(R5),40$;...

CMPB #CDF_READHEAD,UCB$B_CEX(R5) ;READ HEADER FUNCTION?
BNEQ 10$;IF NEQ - NO
MOVW RL_MP(R4),UCB$W_DL_DB(R5) ;SAVE SECTOR HEADER INFORMATION
MOVW RL_MP(R4),UCB$W_DL_DB+2(R5) ;...
MOVW RL_MP(R4),UCB$W_DL_DB+4(R5) ;...

C–26

Sample Driver for the RL11, RL01, and RL02 Disk Drives

10$: MOVAB RL_CS(R4),R2 ;GET ADDRESS OF CONTROL STATUS REGISTER
MOVAB UCB$W_DL_CS(R5),R3 ;GET ADDRESS OF REGISTER SAVE AREA
MOVW (R2)+,(R3)+ ;SAVE CONTROL STATUS REGISTER
MOVW (R2)+,(R3)+ ;SAVE BUFFER ADDRESS REGISTER
MOVW (R2)+,(R3)+ ;SAVE DISK ADDRESS REGISTER
MOVW (R2)+,(R3)+ ;SAVE MULTIPURPOSE REGISTER

20$: MOVQ UCB$L_FR3(R5),R3 ;RESTORE DRIVER CONTEXT
JSB @UCB$L_FPC(R5) ;CALL DRIVER AT INTERRUPT RETURN ADDRESS

40$: DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),- ;UNLOCK DEVICE ACCESS
PRESERVE=NO ;DON’T PRESERVE R0

DL_UNSOLNT: ;UNSOLICITED INTERRUPT
POPR #^M<R0,R1,R2,R3,R4,R5> ;RESTORE R0-R5
REI ;RETURN FROM INTERRUPT
.PAGE

.SBTTL REGISTER DUMP ROUTINE
;++
;
; DL_REGDUMP - REGISTER DUMP ROUTINE
;
; FUNCTIONAL DESCRIPTION:
;
; THIS ROUTINE IS CALLED TO SAVE THE DEVICE REGISTERS AND UBA RESOURCE
; REGISTERS IN A SPECIFIED BUFFER. IT IS CALLED FROM THE DEVICE ERROR
; LOGGING ROUTINE AND FROM THE DIAGNOSTIC BUFFER FILL ROUTINE.
;
; INPUTS:
;
; R0 - ADDRESS OF REGISTER SAVE BUFFER
; R4 - ADDRESS OF DEVICE CONTROL STATUS REGISTER (CSR)
; R5 - ADDRESS OF UNIT CONTROL BLOCK (UCB)
;
; OUTPUTS:
;
; THE DEVICE AND UBA REGISTERS ARE SAVED IN THE SPECIFIED BUFFER.
; R0 CONTAINS THE ADDRESS OF THE NEXT EMPTY LONGWORD IN THE BUFFER.
; ALL REGISTERS EXCEPT R1 AND R2 ARE PRESERVED.
;
;--

DL_REGDUMP: ;REGISTER DUMP ROUTINE
MOVL #<RL_NUM_REGS+5>,(R0)+ ;INSERT NUMBER OF REGISTERS
MOVAL UCB$W_DL_CS(R5),R1 ;GET ADDRESS OF SAVED DEVICE REGISTERS
MOVZBL #RL_NUM_REGS,R2 ;GET NUMBER OF DEVICE REGISTERS TO MOVE

10$: MOVZWL (R1)+,(R0)+ ;DUMP REGISTER IN BUFFER
SOBGTR R2,10$;IF GTR - STILL MORE TO MOVE
MOVZWL (R1)+,(R0)+ ;DUMP DATAPATH NUMBER
MOVL (R1)+,(R0)+ ;DUMP DATAPATH REGISTER
MOVL (R1)+,(R0)+ ;DUMP FINAL MAP REGISTER
MOVL (R1)+,(R0)+ ;DUMP PREVIOUS MAP REGISTER
MOVZBL (R1)+,(R0)+ ;DUMP DATAPATH PURGE ERROR REGISTER
RSB ;RETURN

C–27

Sample Driver for the RL11, RL01, and RL02 Disk Drives

.PAGE

.SBTTL MOVE TO USER BUFFER ROUTINE
;++
;
; DL_MOVE_TO_BUFFER - MOVE TO USER BUFFER
;
; FUNCTIONAL DESCRIPTION:
;
; THIS ROUTINE MOVES DATA BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND
; THE USER’S BUFFER.
;
; INPUTS:
;
; R5 - UCB ADDRESS
;
; OUTPUTS:
;
; DATA MOVE BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND THE USER’S
; BUFFER.
; REGISTER’S R0,R1, AND R2 ARE DESTROYED
;
;--

DL_MOVE_TO_BUFFER: ;BUFFER MOVE ROUTINE
BBS #UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?

UCB$W_DL_FLAGS(R5),10$;IF BS YES NOTHING TO MOVE
CMPB #CDF_READDATA,UCB$B_CEX(R5);READ DATA OPERATION?
BNEQ 10$;IF NEQ NOT A READ
BBS #0,UCB$B_DL_DCHEK(R5),- ;DATA CHECK IN PROGRESS?

10$;IF BS YES NOTHING TO MOVE
TSTL UCB$A_DL_MOVRTN(R5) ;ANYTHING TO MOVE?
BEQL 20$;IF EQL NO
MOVL UCB$L_DL_BUFADR(R5),R0 ;GET USER BUFFER POINTER
MOVL UCB$A_DL_BUF_VA(R5),R1 ;GET PHYSICALLY CONTIGUOUS BUFFER

;ADDRESS
MOVZWL UCB$W_DL_PBCR(R5),R2 ;GET NUMBER OF BYTES TO TRANSFER
JSB @UCB$A_DL_MOVRTN(R5) ;CALL MOVE ROUTINE
MOVL R0,UCB$L_DL_BUFADR(R5) ;SAVE INTERNAL BUFFER POINTER
MOVAB G^IOC$MOVTOUSER2,- ;SET NEXT MOVE ROUTINE TO BE USED

UCB$A_DL_MOVRTN(R5) ;
10$: RSB ;RETURN

20$: MOVAB G^IOC$MOVTOUSER,- ;SET NEXT MOVE ROUTINE TO BE USED
UCB$A_DL_MOVRTN(R5) ;

RSB ;RETURN

C–28

Sample Driver for the RL11, RL01, and RL02 Disk Drives

.PAGE

.SBTTL MOVE FROM USER BUFFER ROUTINE
;++
;
; DL_MOVE_FROM_BUFFER - MOVE FROM USER BUFFER
;
; FUNCTIONAL DESCRIPTION:
;
; THIS ROUTINE MOVES DATA BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND
; THE USER’S BUFFER.
;
; INPUTS:
;
; R5 - UCB ADDRESS
;
; OUTPUTS:
;
; DATA MOVE BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND THE USER’S
; BUFFER.
; REGISTER’S R0,R1, AND R2 ARE DESTROYED
;
;--

DL_MOVE_FROM_BUFFER: ;BUFFER MOVE ROUTINE
BBS #UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?

UCB$W_DL_FLAGS(R5),10$;IF BS YES NOTHING TO MOVE
CMPB #CDF_WRITEDATA,UCB$B_CEX(R5);WRITE DATA OPERATION?
BNEQ 10$;IF NEQ NOT A WRITE
BBS #0,UCB$B_DL_DCHEK(R5),- ;DATA CHECK IN PROGRESS?

10$;IF BS YES NOTHING TO MOVE
MOVL UCB$L_DL_BUFADR(R5),R0 ;GET USER BUFFER POINTER
MOVL UCB$A_DL_BUF_VA(R5),R1 ;GET PHYSICALLY CONTIGUOUS BUFFER

;ADDRESS
MOVZWL UCB$W_DL_PBCR(R5),R2 ;GET NUMBER OF BYTES TO TRANSFER
JSB @UCB$A_DL_MOVRTN(R5) ;CALL MOVE ROUTINE
MOVL R0,UCB$L_DL_BUFADR(R5) ;SAVE INTERNAL BUFFER POINTER
MOVAB G^IOC$MOVFRUSER2,- ;SET NEXT MOVE ROUTINE TO BE USED

UCB$A_DL_MOVRTN(R5) ;
10$: RSB ;RETURN

DL_END: ;ADDRESS OF LAST LOCATION IN DRIVER
.END

C–29

D
Sample Driver for the DR11–W and DRV11–WA

Interfaces

The following driver, XADRIVER, controls the DR11–W, a 16-bit parallel DMA
interface on UNIBUS systems. The driver also controls the DRV11–WA, a 16-bit
parallel DMA interface on the Q22–bus. Operational details of these devices, as
well as the capabilities controlled by the driver, can be found in the OpenVMS
I/O User’s Reference Manual.

You can find an online copy of the driver code (XADRIVER.MAR) in
SYS$EXAMPLES.

.TITLE XADRIVER - VAX/VMS DR11-W AND DRV11-WA DRIVER

.IDENT ’X-18’

;
;**
;* *
;* COPYRIGHT (c) 1978, 1980, 1982, 1984, 1985, 1986 BY *
;* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. *
;* ALL RIGHTS RESERVED. *
;* *
;* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
;* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
;* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
;* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
;* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
;* TRANSFERRED. *
;* *
;* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
;* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT *
;* CORPORATION. *
;* *
;* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
;* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *
;* *
;* *
;**
;
;++
;
; FACILITY:
;
; VAX/VMS Executive, I/O Drivers
;
; ABSTRACT:
;
; This module contains the driver for the DR11-W (Unibus) and
; DRV11-WA (Q-bus). Since the driver was originally written for
; the DR11-W, many inline comments refer to the "DR11-W" and "Unibus"
; but apply equally well to the DRV11-WA and the Q-bus.
;
; For DR11-W users:
; This driver works for all hardware revision levels of

D–1

Sample Driver for the DR11–W and DRV11–WA Interfaces

; the DR11-W.
;
; For DRV11-WA users:
; This driver works for all hardware revision levels of
; the DRV11-WA, up through and including CS Rev C.
;
; BECAUSE ETCH REVISION E OF THE DRV11-WA
; PROVIDES SEVERAL CUSTOMER MODIFIABLE SETTINGS,
; IT IS VERY IMPORTANT THAT THE USERS OF THIS
; BOARD PROPERLY CONFIGURE IT TO BE BACKWARDS
; COMPATIBLE WITH EARLIER REVISIONS OF THE
; DRV11-WA. SPECIFICALLY, ON ETCH REVISION E
; BOARDS, JUMPERS W2, W3, AND W6 MUST BE INSTALLED.
;
; ========
;
; ENVIRONMENT:
;
; Kernel Mode, Non-paged
;
;--

.SBTTL External and local symbol definitions

; External symbols

$ACBDEF ; AST control block
$ADPDEF ; Adapter control block
$CRBDEF ; Channel request block
$DCDEF ; Device types
$DDBDEF ; Device data block
$DEVDEF ; Device characteristics
$DPTDEF ; Driver prologue table
$DYNDEF ; Dynamic data structure types
$EMBDEF ; EMB offsets
$IDBDEF ; Interrupt data block
$IODEF ; I/O function codes
$IPLDEF ; Hardware IPL definitions
$IRPDEF ; I/O request packet
$PRDEF ; Internal processor registers
$PRIDEF ; Scheduler priority increments
$SSDEF ; System status codes
$UCBDEF ; Unit control block
$VECDEF ; Interrupt vector block
$XADEF ; Define device specific

; characteristics

; Local symbols

; Argument list (AP) offsets for device-dependent QIO parameters

P1 = 0 ; First QIO parameter
P2 = 4 ; Second QIO parameter
P3 = 8 ; Third QIO parameter
P4 = 12 ; Fourth QIO parameter
P5 = 16 ; Fifth QIO parameter
P6 = 20 ; Sixth QIO parameter

; Other constants

XA_DEF_TIMEOUT = 10 ; 10 second default device timeout
XA_DEF_BUFSIZ = 65535 ; Default buffer size
XA_RESET_DELAY = <<2+9>/10> ; Delay N microseconds after RESET

;(rounded up to 10 microsec intervals)

; DR11-W definitions that follow the standard UCB fields
; *** N O T E *** ORDER OF THESE UCB FIELDS IS ASSUMED

D–2

Sample Driver for the DR11–W and DRV11–WA Interfaces

$DEFINI UCB
.=UCB$L_DPC+4

$DEF UCB$L_XA_ATTN ; Attention AST listhead
.BLKL 1

$DEF UCB$W_XA_CSRTMP ; Temporary storage of CSR image
.BLKW 1

$DEF UCB$W_XA_BARTMP ; Temporary storage of BAR image
.BLKW 1

$DEF UCB$W_XA_CSR ; Saved CSR on interrupt
.BLKW 1

$DEF UCB$W_XA_EIR ; Saved EIR on interrupt
.BLKW 1

$DEF UCB$W_XA_IDR ; Saved IDR on interrupt
.BLKW 1

$DEF UCB$W_XA_BAR ; Saved BAR register on interrupt
.BLKW 1

$DEF UCB$W_XA_WCR ; Saved WCR register on interrupt
.BLKW 1

$DEF UCB$W_XA_ERROR ; Saved device status flag
.BLKW 1

$DEF UCB$L_XA_DPR ; Data Path Register contents
.BLKL 1

$DEF UCB$L_XA_FMPR ; Final Map Register contents
.BLKL 1

$DEF UCB$L_XA_PMPR ; Previous Map Register contents
.BLKL 1

$DEF UCB$W_XA_DPRN ; Saved Datapath Register Number
.BLKW 1 ; And Datapath Parity error flag

$DEF UCB$W_XA_BAETMP ; Temporary storage of BAE (DRV11-WA
.BLKW 1 ; only)

$DEF UCB$W_XA_BAE ; Saved BAE register (DRV11-WA only)
.BLKW 1

; Bit positions for device-dependent status field in UCB

$VIELD UCB,0,<- ; UCB device specific bit definitions
<ATTNAST,,M>,- ; ATTN AST requested
<UNEXPT,,M>,- ; Unexpected interrupt received
<IGNORE_UNEXPT,,M>,- ; Ignore initial interrupt on DRV11-WA
>

UCB$K_SIZE=.
$DEFEND UCB

; Device register offsets from CSR address

$DEFINI XA ; Start of DR11-W definitions
$DEF XA_WCR ; Word count

.BLKW 1
$DEF XA_BAR ; Buffer address
$DEF XA_BAE ; Buffer address extension (DRV11-WA)

.BLKW 1
$DEF XA_CSR ; Control/status

; Bit positions for device control/status register

$EQULST XA$K_,,0,1,<- ; Define CSR FNCT bit values
<FNCT1,2>-
<FNCT2,4>-
<FNCT3,8>-
<STATUSA,2048>- ; Define CSR STATUS bit values
<STATUSB,1024>-
<STATUSC,512>-

>

D–3

Sample Driver for the DR11–W and DRV11–WA Interfaces

$VIELD XA_CSR,0,<- ; Control/status register
<GO,,M>,- ; Start device
<FNCT,3,M>,- ; CSR FNCT bits
<XBA,2,M>,- ; Extended address bits
<IE,,M>,- ; Enable interrupts
<RDY,,M>,- ; Device ready for command
<CYCLE,,M>,- ; Starts slave transmit
<STATUS,3,M>,- ; CSR STATUS bits
<MAINT,,M>,- ; Maintenance bit
<ATTN,,M>,- ; Status from other processor
<NEX,,M>,- ; Nonexistent memory flag
<ERROR,,M>,- ; Error or external interrupt

>

$VIELD XA_BAE,0,<- ; Extended bus address register
<MSB_ADDR,6,M>,- ; Qbus physical address <22:16>
<,9,>,-
<CS_REV_C,,M>,- ; true if DRV11-WA CS Rev C

>

$DEF XA_EIR ; Error information register

; Bit positions for error information register

$VIELD XA_EIR,0,<- ; Error information register
<REGFLG,,M>,- ;Flags whether EIR or CSR is accessed
<SPARE,7,M>,- ; Unused - spare
<BURST,,M>,- ; Burst mode transfer occurred
<DLT,,M>,- ; Timeout for successive burst xfer
<PAR,,M>,- ; Parity error during DATI/P
<ACLO,,M>,- ; Power fail on this processor
<MULTI,,M>,- ; Multi-cycle request error
<ATTN,,M>,- ; ATTN - same as in CSR
<NEX,,M>,- ; NEX - same as in CSR
<ERROR,,M>,- ; ERROR - same as in CSR

>
.BLKW 1

$DEF XA_IDR ; Input Data Buffer register
$DEF XA_ODR ; Output Data Buffer register

.BLKW 1

$DEFEND XA ; End of DR11-W definitions

.SBTTL Device Driver Tables

; Driver prologue table

D–4

Sample Driver for the DR11–W and DRV11–WA Interfaces

DPTAB - ; DPT-creation macro
END=XA_END,- ; End of driver label
ADAPTER=UBA,- ; Adapter type
FLAGS=DPT$M_SVP,- ; Allocate system page table
UCBSIZE=UCB$K_SIZE,- ; UCB size
NAME=XADRIVER ; Driver name

DPT_STORE INIT ; Start of load
; initialization table

DPT_STORE UCB,UCBB_FLCK,B,SPLC_IOLOCK8 ; Device fork IPL
DPT_STORE UCB,UCB$B_DIPL,B,22 ; Device interrupt IPL
DPT_STORE UCB,UCB$L_DEVCHAR,L,<- ; Device characteristics

DEV$M_AVL!- ; Available
DEV$M_RTM!- ; Real Time device
DEV$M_ELG!- ; Error Logging enabled
DEV$M_IDV!- ; input device
DEV$M_ODV> ; output device

DPT_STORE UCB,UCB$B_DEVCLASS,B,DC$_REALTIME ; Device class
DPT_STORE UCB,UCB$B_DEVTYPE,B,DT$_DR11W ; Device Type
DPT_STORE UCB,UCB$W_DEVBUFSIZ,W,- ; Default buffer size

XA_DEF_BUFSIZ
DPT_STORE REINIT ; Start of reload

; initialization table
DPT_STORE DDB,DDBL_DDT,D,XADDT ; Address of DDT
DPT_STORE CRB,CRB$L_INTD+4,D,- ; Address of interrupt

XA_INTERRUPT ; service routine
DPT_STORE CRB,CRB$L_INTD+VEC$L_INITIAL,-; Address of controller

D,XA_CONTROL_INIT ; initialization routine
DPT_STORE END ; End of initialization

; tables

; Driver dispatch table

DDTAB - ; DDT-creation macro
DEVNAM=XA,- ; Name of device
START=XA_START,- ; Start I/O routine
FUNCTB=XA_FUNCTABLE,- ; FDT address
CANCEL=XA_CANCEL,- ; Cancel I/O routine
REGDMP=XA_REGDUMP,- ; Register dump routine
DIAGBF=<<15*4>+<<3+5+1>*4>>,- ; Diagnostic buffer size
ERLGBF=<<15*4>+<1*4>+<EMB$L_DV_REGSAV>> ;Error log buffer size

;
; Function dispatch table
;
XA_FUNCTABLE: ; FDT for driver

FUNCTAB ,- ; Valid I/O functions
<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK,-
SETMODE,SETCHAR,SENSEMODE,SENSECHAR>

FUNCTAB , ; No buffered functions
FUNCTAB XA_READ_WRITE,- ; Device-specific FDT

<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK>
FUNCTAB +EXE$READ,<READPBLK,READLBLK,READVBLK>
FUNCTAB +EXE$WRITE,<WRITEPBLK,WRITELBLK,WRITEVBLK>
FUNCTAB XA_SETMODE,<SETMODE,SETCHAR>
FUNCTAB +EXE$SENSEMODE,<SENSEMODE,SENSECHAR>

.SBTTL XA_CONTROL_INIT, Controller initialization

D–5

Sample Driver for the DR11–W and DRV11–WA Interfaces

;++
; XA_CONTROL_INIT, Called when driver is loaded, system is booted, or
; power failure recovery.
;
; Functional Description:
;
; 1) Allocates the direct data path permanently
; 2) Assigns the controller data channel permanently
; 3) Clears the Control and Status Register
; 4) If power recovery, requests device timeout
;
; Inputs:
;
; R4 = address of CSR
; R5 = address of IDB
; R6 = address of DDB
; R8 = address of CRB
;
; Outputs:
;
; VEC$V_PATHLOCK bit set in CRB$L_INTD+VEC$B_DATAPATH
; UCB address placed into IDB$L_OWNER
;
;
;--

XA_CONTROL_INIT:

MOVL IDB$L_UCBLST(R5),R0 ; Address of UCB
MOVL R0,IDB$L_OWNER(R5) ; Make permanent controller owner
BISW #UCBM_ONLINE,UCBW_STS(R0)

; Set device status "on-line"
ADPDISP SELECT=ADAP_MAPPING,- ; Check for adapter mapping

ADDRLIST=<<YES,1$>>,-
CRBADDR=R8,-
SCRATCH=R1

BUG_CHECK UNSUPRTCPU,FATAL ; DRV11-WA not supported on non-
; mapping adapter

1$: ADPDISP SELECT=QBUS,- ; Check for QBUS machine
ADDRLIST=<<NO,9$>>,-
ADPADDR=R1

BLBC g^SGN$GB_QBUS_MULT_INTR,2$; protect against ILLQBUSCFG
MOVB #^x14,UCB$B_DIPL(R5) ; This is correct DIPL for DRV11-WA

2$: MOVB #DT$_XA_DRV11WA,- ; This is a Q-bus, therefore it is
UCB$B_DEVTYPE(R0) ; a DRV11-WA rather than a DR11-W.

;+
;
; DRV11-WAs at CS revision B and earlier incorrectly generated an interrupt
; whenever the Interrupt Enable control bit (IE) underwent a low to high
; transition. This phenomenon does not occur in boards at CS revision C.
;
; To account for this unsoliciated interrupt, IGNORE_UNEXPT is set at
; initialization for all DRV11-WAs at CS revisions prior to C. When this
; bit is set, the next unexpected interrupt (as determined by the INT bit
; in UCB status word, which is set whenever an I/O request is outstanding)
; is discarded. The IGNORE_UNEXPT flag is necessary because driver
; initialization occurs at a different IPL than the interrupt handling
; routine.
;
;-

BICW #UCB$M_IGNORE_UNEXPT,- ; start out assuming this is a
UCB$W_DEVSTS(R0) ; CS Rev C DRV11-WA

TSTW XA_BAR(R4) ; BAR and BAE share the same physical
MOVW XA_BAE(R4),R1 ; address- they must be read in order

D–6

Sample Driver for the DR11–W and DRV11–WA Interfaces

BBS #XA_BAE$V_CS_REV_C,R1,9$; branch around if CS Rev C

; BAE<15> is always set if the DRV11-WA is at CS Rev C or later.

BISW #UCB$M_IGNORE_UNEXPT,- ; set flag so all interrupts are
UCB$W_DEVSTS(R0) ; discarded until further notice

; If powerfail has occurred and device was active, force device timeout.
; The user can set his own timeout interval for each request. Time-
; out is forced so a very long timeout period will be short circuited.

9$: BBS #UCB$V_POWER,UCB$W_STS(R0),10$
; Branch if powerfail

BISB #VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(R8)
; Permanently allocate direct datapath

10$: PUSHL R5 ; Save R5
MOVL R0,R5 ; Copy UCB address to R5
BSBW XA_DEV_HWRESET
POPL R5 ; Restore R5
RSB ; Done

.SBTTL XA_READ_WRITE, FDT for device data transfers

;++
; XA_READ_WRITE, FDT for READLBLK,READVBLK,READPBLK,WRITELBLK,WRITEVBLK,
; WRITEPBLK
;
; Functional description:
;
; 1) Rejects QUEUE I/O’s with odd transfer count
; 2) Rejects QUEUE I/O’s for BLOCK MODE request to UBA Direct Data
; PATH on odd byte boundary
; 3) Stores request timeout count specified in P3 into IRP
; 4) Stores FNCT bits specified in P4 into IRP
; 5) Stores word to write into ODR from P5 into IRP
; 6) Checks block mode transfers for memory modify access
;
; Inputs:
;
; R3 = Address of IRP
; R4 = Address of PCB
; R5 = Address of UCB
; R6 = Address of CCB
; R8 = Address of FDT routine
; AP = Address of P1
; P1 = Buffer Address
; P2 = Buffer size in bytes
; P3 = Request timeout period (conditional on IO$M_TIMED)
; P4 = Value for CSR FNCT bits (conditional on IO$M_SETFNCT)
; P5 = Value for ODR (conditional on IO$M_SETFNCT)
; P6 = Address of Diagnostic Buffer
;
; Outputs:
;
; R0 = Error status if odd transfer count
; IRP$L_MEDIA = Timeout count for this request
; IRP$L_SEGVBN = FNCT bits for DR11-W CSR and ODR image
;
;--

XA_READ_WRITE:

; The IO$M_INHERLOG ("inhibit error logging") function modifier was not
; intended to be used by this driver. However, since the definition for
; the IO$M_RESET modifier used to be the same as that for IO$M_INHERLOG,
; the error logging routine incorrectly used the IO$M_RESET bit to
; determine whether it should log errors. To solve this problem, the
; definition for IO$M_RESET was changed. For the sake of old programs, we
; manually move the RESET bit to its new location.

D–7

Sample Driver for the DR11–W and DRV11–WA Interfaces

BBCC #IO$V_INHERLOG,IRP$W_FUNC(R3),1$
; Branch if old reset bit not set

BISW #IOM_RESET,IRPW_FUNC(R3)
; Set new reset bit

1$: BLBC P2(AP),10$; Branch if transfer count even
2$: MOVZWL #SS$_BADPARAM,R0 ; Set error status code
5$: JMP G^EXE$ABORTIO ; Abort request
10$: MOVZWL IRP$W_FUNC(R3),R1 ; Fetch I/O Function code

MOVL P3(AP),IRP$L_MEDIA(R3) ; Set request specific timeout count
BBS #IO$V_TIMED,R1,15$; Branch if timeout specified
MOVL #XA_DEF_TIMEOUT,IRP$L_MEDIA(R3)

; Else set default timeout value
15$: BBC #IO$V_DIAGNOSTIC,R1,20$; Branch if not maintenance reqeust

EXTZV #IO$V_FCODE,#IO$S_FCODE,R1,R1 ; AND out all function modifiers
CMPB #IO$_READPBLK,R1 ; If maintenance function, must be

; physical I/O read or write
BEQL 20$
CMPB #IO$_WRITEPBLK,R1
BEQL 20$
MOVZWL #SS$_NOPRIV,R0 ; No privilege for operation
BRB 5$; Abort request

20$: EXTZV #0,#3,P4(AP),R0 ; Get value for FNCT bits
ASHL #XA_CSR$V_FNCT,R0,IRP$L_SEGVBN(R3) ; Shift into position

; for CSR
MOVW P5(AP),IRP$L_SEGVBN+2(R3) ; Store ODR value for later

; If this is a block mode transfer, check buffer for modify access
; whether or not the function is read or write. The DR11-W does
; not decide whether to read or write, the user’s device does.
; For word mode requests, return to read check or write check.
;
; If this is a BLOCK MODE request and the UBA Direct Data Path is
; in use, check the data buffer address for word alignment. If buffer
; is not word aligned, reject the request.

BBS #IOV_WORD,IRPW_FUNC(R3),30$
; Branch if word mode transfer

BBS #XA$V_DATAPATH,UCB$L_DEVDEPEND(R5),25$
; Branch if Buffered Data Path in use

BLBS P1(AP),2$; DDP, branch on bad alignment
25$: JMP G^EXE$MODIFY ; Check buffer for modify access
30$: RSB ; Return

.SBTTL XA_SETMODE, Set Mode, Set characteristics FDT

D–8

Sample Driver for the DR11–W and DRV11–WA Interfaces

;++
; XA_SETMODE, FDT routine to process SET MODE and SET CHARACTERISTICS
;
; Functional description:
;
; If IO$M_ATTNAST modifier is set, queue attention AST for device
; If IO$M_DATAPATH modifier is set, queue packet.
; Else, finish I/O.
;
; Inputs:
;
; R3 = I/O packet address
; R4 = PCB address
; R5 = UCB address
; R6 = CCB address
; R7 = Function code
; AP = QIO Parameter list address
;
; Outputs:
;
; If IO$M_ATTNAST is specified, queue AST on UCB attention AST list.
; If IO$M_DATAPATH is specified, queue packet to driver.
; Else, use exec routine to update device characteristics
;
;--

XA_SETMODE:
MOVZWL IRP$W_FUNC(R3),R0 ; Get entire function code
BBC #IO$V_ATTNAST,R0,20$; Branch if not an attention AST

; Attention AST request

PUSHR #^M<R4,R7>
MOVAB UCB$L_XA_ATTN(R5),R7 ; Address of attention AST control

; block list
JSB G^COM$SETATTNAST ; Set up attention AST
POPR #^M<R4,R7>
BLBC R0,50$; Branch if error
BISW #UCB$M_ATTNAST,UCB$W_DEVSTS(R5)

; Flag ATTN AST expected.
BBC #UCBV_UNEXPT,UCBW_DEVSTS(R5),10$

; Deliver AST if unsolicited interrupt
BSBW DEL_ATTNAST

10$: MOVZBL #SS$_NORMAL,R0 ; Set status
JMP G^EXE$FINISHIOC ; That’s all for now (clears R1)

; If modifier IO$M_DATAPATH is set,
; queue packet. The data path is changed at driver level to preserve
; order with other requests.

20$: BBS S^#IO$V_DATAPATH,R0,30$; If BDP modifier set, queue packet

JMP G^EXE$SETCHAR ; Set device characteristics

; This is a request to change data path useage, queue packet

30$: CMPL #IO$_SETCHAR,R7 ; Set characteristics?
BNEQ 45$; No, must have the privilege
JMP G^EXE$SETMODE ; Queue packet to start I/O

; Error, abort IO

45$: MOVZWL #SS$_NOPRIV,R0 ; No priv for operation
50$: CLRL R1

JMP G^EXE$ABORTIO ; Abort IO on error

D–9

Sample Driver for the DR11–W and DRV11–WA Interfaces

.SBTTL XA_START, Start I/O routines
;++
; XA_START - Start a data transfer, set characteristics, enable ATTN AST.
;
; Functional Description:
;
; This routine has two major functions:
;
; 1) Start an I/O transfer. This transfer can be in either word
; or block mode. The FNCTN bits in the DR11-W CSR are set. If
; the transfer count is zero, the STATUS bits in the DR11-W CSR
; are read and the request completed.
; 2) Set Characteristics. If the function is change data path, the
; new data path flag is set in the UCB.
;
; Inputs:
;
; R3 = Address of the I/O request packet
; R5 = Address of the UCB
;
; Outputs:
;
; R0 = final status and number of bytes transferred
; R1 = value of CSR STATUS bits and value of input data buffer register
; Device errors are logged
; Diagnostic buffer is filled
;
;--

.ENABL LSB

XA_START:

; Retrieve the address of the device CSR

ASSUME IDB$L_CSR EQ 0
MOVL UCB$L_CRB(R5),R4 ; Address of CRB
MOVL @CRB$L_INTD+VEC$L_IDB(R4),R4

; Address of CSR

; Fetch the I/O function code

MOVZWL IRP$W_FUNC(R3),R1 ; Get entire function code
MOVW R1,UCB$W_FUNC(R5) ; Save FUNC in UCB for Error Logging
EXTZV #IO$V_FCODE,#IO$S_FCODE,R1,R2 ; Extract function field

; Dispatch on function code. If this is SET CHARACTERISTICS, we will
; select a data path for future use.
; If this is a transfer function, it will either be processed in word
; or block mode.

CMPB #IO$_SETCHAR,R2 ; Set characteristics?
BNEQ 3$

D–10

Sample Driver for the DR11–W and DRV11–WA Interfaces

;++
; SET CHARACTERISTICS - Process Set Characteristics QIO function
;
; INPUTS:
;
; XA_DATAPATH bit in Device Characteristics specifies which data path
; to use. If bit is a one, use buffered data path. If zero, use
; direct datapath.
;
; OUTPUTS:
;
; CRB is flagged as to which datapath to use.
; DEVDEPEND bits in device characteristics is updated
; XA_DATAPATH = 1 -> buffered data path in use
; XA_DATAPATH = 0 -> direct data path in use
;--

MOVL UCB$L_CRB(R5),R0 ; Get CRB address
MOVQ IRP$L_MEDIA(R3),UCB$B_DEVCLASS(R5) ;Set device characteristics
BISB #VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(R0)

; Assume direct datapath
BBC #XA$V_DATAPATH,UCB$L_DEVDEPEND(R5),2$; Were we right?
BICB #VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(R0) ;Set buffered

;datapath
2$:

CLRL R1 ; Return Success
MOVZWL #SS$_NORMAL,R0
REQCOM

; If subfunction modifier for device reset is set, do one here

3$: BBC S^#IO$V_RESET,R1,4$; Branch if not device reset
BSBW XA_DEV_RESET ; Reset DR11-W

; This must be a data transfer function - i.e. READ OR WRITE
; Check to see if this is a zero length transfer.
; If so, only set CSR FNCT bits and return STATUS from CSR

4$: TSTW UCB$W_BCNT(R5) ; Is transfer count zero?
BNEQ 10$; No, continue with data transfer
BBC S^#IO$V_SETFNCT,R1,6$; Set CSR FNCT specified?
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; Don’t preserve R0

MOVW IRP$L_SEGVBN+2(R3),XA_ODR(R4)
; Store word in ODR

MOVZWL XA_CSR(R4),R0
BICW #<XA_CSR$M_FNCT!XA_CSR$M_ERROR>,R0
BISW IRP$L_SEGVBN(R3),R0
BISW #XA_CSR$M_ATTN,R0 ; Force ATTN on to prevent lost

; interrupt
MOVW R0,XA_CSR(R4)
BBC #XAV_LINK,UCBL_DEVDEPEND(R5),5$; Link mode?
BICW3 #XA$K_FNCT2,R0,XA_CSR(R4) ; Make FNCT bit 2 a pulse

5$:
DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access
NEWIPL=(SP)+,- ; Enable interrupts
PRESERVE=NO

6$:
BSBW XA_REGISTER ; Fetch DR11-W registers
BLBS R0,7$; If error, then log it
JSB G^ERL$DEVICERR ; Log a device error

7$: JSB G^IOC$DIAGBUFILL ; Fill diagnostic buffer if specified
MOVL UCB$W_XA_CSR(R5),R1 ; Return CSR and EIR in R1
MOVZWL UCB$W_XA_ERROR(R5),R0 ; Return status in R0

D–11

Sample Driver for the DR11–W and DRV11–WA Interfaces

BISB #XA_CSR$M_IE,XA_CSR(R4) ; Enable device interrupts
REQCOM ; Request done

; Build CSR image in R0 for later use in starting transfers

10$:
MOVZWL UCB$W_BCNT(R5),R0 ; Fetch byte count
DIVL3 #2,R0,UCB$L_XA_DPR(R5) ; Make byte count into word count
;
; Set up UCB$W_CSRTMP used for loading CSR later
;
MOVZWL XA_CSR(R4),R0
BICW #^C<XA_CSR$M_FNCT>,R0
BISW #XA_CSR$M_IE!XA_CSR$M_ATTN,R0 ; Set Interrupt Enable and ATTN
BBC S^#IO$V_SETFNCT,R1,20$; Set FNCT bits in CSR?
BICW #<XA_CSR$M_FNCT>,R0 ; Yes, Clear previous FNCT bits
BISB IRP$L_SEGVBN(R3),R0 ; OR in new value

20$: BBC S^#IO$V_DIAGNOSTIC,R1,23$; Check for maintenance function
BISW #XA_CSR$M_MAINT,R0 ; Set maintenance bit in CSR image

; Is this a word mode or block mode request?

23$: MOVW R0,UCB$W_XA_CSRTMP(R5) ; Save CSR image in UCB
BBC S^#IO$V_WORD,R1,BLOCK_MODE ; Check if word or block mode
BRW WORD_MODE ; Branch to handle word mode

;++
; BLOCK MODE -- Process a Block Mode (DMA) transfer request
;
; FUNCTIONAL DESCRIPTION:
;
; This routine takes the buffer address, buffer size, function code,
; and function modifier fields from the IRP. It calculates the UNIBUS
; address, allocates the UBA map registers, loads the DR11-W device
; registers and starts the request.
;--
; Set up UBA
; Start transfer

BLOCK_MODE:

; If IO$M_CYCLE subfunction is specified, set CYCLE bit in CSR image

BBC #IO$V_CYCLE,R1,25$; Set CYCLE bit in CSR?
BISW #XA_CSRM_CYCLE,UCBW_XA_CSRTMP(R5) ; If yes, OR into CSR image

; Allocate UBA data path and map registers

25$:
REQDPR ; Request UBA data path
REQMPR ; Request UBA map registers
LOADUBA ; Load UBA map reqisters

; Calculate the UNIBUS transfer address for the DR11-W from the UBA
; map register address and byte offset.

D–12

Sample Driver for the DR11–W and DRV11–WA Interfaces

MOVZWL UCB$W_BOFF(R5),R1 ; Byte offset in first page of xfer
MOVL UCB$L_CRB(R5),R2 ; Address of CRB
INSV CRB$L_INTD+VEC$W_MAPREG(R2),#9,#9,R1

; Insert page number
EXTZV #16,#2,R1,R2 ; Extract bits 17:16 of bus address
CMPB #DT$_DR11W,- ; If this is a DR11-W,

UCB$B_DEVTYPE(R5)
BEQL 100$; then branch.
MOVW R2,UCB$W_XA_BAETMP(R5) ; Save value of BAE prior to transfer
CLRL R2 ; Clear XBA bits

100$: ASHL #XA_CSR$V_XBA,R2,R2 ; Shift extended memory bits for CSR
BISW #XA_CSR$M_GO,R2 ; Set "GO" bit into CSR image
BISW R2,UCB$W_XA_CSRTMP(R5) ; Set into CSR image we are building
BICW3 #<XA_CSR$M_GO!XA_CSR$M_CYCLE>,UCB$W_XA_CSRTMP(R5),R0

; CSR image less "GO" and "CYCLE"
BICW3 #XAK_FNCT2,UCBW_XA_CSRTMP(R5),R2 ; CSR image less FNCT bit 2
MOVW R1,UCB$W_XA_BARTMP(R5) ; Save BAR for error logging

; At this juncture:
; R0 = CSR image less "GO" and "CYCLE"
; R1 = low 16 bits of transfer bus address
; R2 = CSR image less FNCT bit 2
; UCB$L_XA_DPR(R5) = transfer count in words
; UCB$W_XA_CSRTMP(R5) = CSR image to start transfer with

; Set DR11-W registers and start transfer
; Note that read-modify-write cycles are NOT performed to the DR11-W CSR.
; The CSR is always written directly into. This prevents inadvertently
; setting the EIR select flag (writing bit 15) if error happens to become
; true.

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=YES ; Preserve R0

SETIPL #31,- ; Raise to IPL$_POWER
ENVIRON=UNIPROCESSOR

MNEGW UCB$L_XA_DPR(R5),XA_WCR(R4)
; Load negative of transfer count

MOVW R1,XA_BAR(R4) ; Load low 16 bits of bus address
CMPB #DT$_DR11W,- ; If this is a DR11-W,

UCB$B_DEVTYPE(R5)
BEQL 200$; then branch.
MOVW UCB$W_XA_BAETMP(R5),- ; Load high bits of bus address

XA_BAE(R4)
200$: MOVW R0,XA_CSR(R4) ;Load CSR image less "GO" and "CYCLE"

BBC #XAV_LINK,UCBL_DEVDEPEND(R5),26$;Link mode?
MOVW R2,XA_CSR(R4) ;Yes, load CSR image less "FNCT" bit 2
BRB 126$;Only if link mode in dev characteristics

26$:
MOVW UCB$W_XA_CSRTMP(R5),XA_CSR(R4) ; Move all bits to CSR

; Wait for transfer complete interrupt, powerfail, or device timeout

126$:
WFIKPCH XA_TIME_OUT,IRP$L_MEDIA(R3) ; Wait for interrupt

; Device has interrupted, FORK

IOFORK ; FORK to lower IPL

; Handle request completion, release UBA resources, check for errors

D–13

Sample Driver for the DR11–W and DRV11–WA Interfaces

MOVZWL #SS$_NORMAL,-(SP) ; Assume success, store code on stack
CLRW UCB$W_XA_DPRN(R5) ; Clear DPR number and DPR error flag
PURDPR ; Purge UBA buffered data path
BLBS R0,27$; Branch if no datapath error
MOVZWL #SS$_PARITY,(SP) ; Flag parity error on device
INCB UCB$W_XA_DPRN+1(R5) ; Flag PDR error for log

27$: MOVL R1,UCB$L_XA_DPR(R5) ; Save data path register in UCB
EXTZV #VEC$V_DATAPATH,- ; Get Datapath register no.

#VEC$S_DATAPATH,- ; For Error Log
CRB$L_INTD+VEC$B_DATAPATH(R3),R0

MOVB R0,UCB$W_XA_DPRN(R5) ; Save for later in UCB
EXTZV #9,#7,UCB$W_XA_BAR(R5),R0 ; Low bits, final map register no.
CMPB #DT$_DR11W,- ; If this is a DR11-W,

UCB$B_DEVTYPE(R5)
BEQL 300$; then branch.
MOVZWL UCB$W_XA_BAE(R5),R1 ; Fetch high bits of map register no.
BRB 310$

300$: EXTZV #4,#2,UCB$W_XA_CSR(R5),R1 ; Hi bits of map register no.
310$: INSV R1,#7,#2,R0 ; Entire map register number

CMPW R0,#496 ; Is map register number in range?
BGTR 28$; No, forget it - compound error
MOVL (R2)[R0],UCB$L_XA_FMPR(R5) ; Save map register contents
CLRL UCB$L_XA_PMPR(R5) ; Assume no previous map register
DECL R0 ; Was there a previous map register?
CMPV #VEC$V_MAPREG,#VEC$S_MAPREG,-

CRB$L_INTD+VEC$W_MAPREG(R3),R0
BGTR 28$; No if gtr
MOVL (R2)[R0],UCB$L_XA_PMPR(R5) ; Save previous map register

; contents
28$: RELMPR ; Release UBA resources

RELDPR

; Check for errors and return status

TSTW UCB$W_XA_WCR(R5) ; All words transferred?
BEQL 30$; Yes
MOVZWL #SS$_OPINCOMPL,(SP) ; No, flag operation not complete

30$: BBC #XA_CSR$V_ERROR,UCB$W_XA_CSR(R5),35$; Branch on CSR error bit
MOVZWL UCB$W_XA_ERROR(R5),(SP) ; Flag for controller/drive error

; status
BSBW XA_DEV_RESET ; Reset DR11-W

35$: BLBS (SP),40$; Any errors after all this?

CMPW (SP),#SS$_OPINCOMPL ; Log the error, unless this is
BNEQ 37$; a DRV11-WA running in link mode
CMPB #DT$_DR11W,- ; and the operation is incomplete,

UCB$B_DEVTYPE(R5) ; in which case it is an expected
BEQL 37$; error and not worth logging.
BBS #XA$V_LINK,- ; ...

UCB$L_DEVDEPEND(R5),40$; ...
37$: JSB G^ERL$DEVICERR ; Log the error.

40$: BSBW DEL_ATTNAST ; Deliver outstanding ATTN ASTs
JSB G^IOC$DIAGBUFILL ; Fill diagnostic buffer
MOVL (SP)+,R0 ; Get final device status
MULW3 #2,UCB$W_XA_WCR(R5),R1 ; Calculate final transfer count
ADDW UCB$W_BCNT(R5),R1
INSV R1,#16,#16,R0 ; Insert into high byte of IOSB
MOVL UCB$W_XA_CSR(R5),R1 ; Return CSR and EIR in IOSB
BISB #XA_CSR$M_IE,XA_CSR(R4) ; Enable interrupts
REQCOM ; Finish request in exec

D–14

Sample Driver for the DR11–W and DRV11–WA Interfaces

.DSABL LSB
;++
; WORD MODE -- Process word mode (interrupt per word) transfer
;
; FUNCTIONAL DESCRIPTION:
;
; Data is transferred one word at a time with an interrupt for each word.
; The request is handled separately for a write (from memory to DR11-W
; and a read (from DR11-W to memory).
; For a write, data is fetched from memory, loaded into the ODR of the
; DR11-W and the system waits for an interrupt. For a read, the system
; waits for a DR11-W interrupt and the IDR is transferred into memory.
; If the unsolicited interrupt flag is set, the first word is transferred
; directly into memory withou waiting for an interrupt.
;--

.ENABL LSB
WORD_MODE:

; Dispatch to separate loops on READ or WRITE

CMPB #IO$_READPBLK,R2 ; Check for read function
BNEQ 10$; Br if not, must be write function
BRW 30$; Else, read

;++
; WORD MODE WRITE -- Write (output) in word mode
;
; FUNCTIONAL DESCRIPTION:
;
; Transfer the requested number of words from user memory to
; the DR11-W ODR one word at a time, wait for interrupt for each
; word.
;--

10$:
BSBW MOVFRUSER ; Get two bytes from user buffer
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; Don’t preserve R0

; Flag interrupt expected
SETIPL #31,- ; Raise IPL to power

ENVIRON=UNIPROCESSOR
MOVW R1,XA_ODR(R4) ; Move data to DR11-W
MOVW UCB$W_XA_CSRTMP(R5),XA_CSR(R4) ; Set DR11-W CSR
BBC #XAV_LINK,UCBL_DEVDEPEND(R5),15$; Link mode?
BICW3 #XAK_FNCT2,UCBW_XA_CSRTMP(R5),XA_CSR(R4) ;Clear interrupt

; FNCT bit 2
; Only if link mode specified

15$:

; Wait for interrupt, powerfail, or device timeout

WFIKPCH XA_TIME_OUTW,IRP$L_MEDIA(R3)

; Check for errors, decrement transfer count, and loop until complete

D–15

Sample Driver for the DR11–W and DRV11–WA Interfaces

IOFORK ; Fork to lower IPL
CMPB #DT$_DR11W,- ; Branch if this is a DR11-W

UCB$B_DEVTYPE(R5)
BEQL 17$
BBC #XA_CSR$V_ERROR,- ; DRV11-WA - check ERROR bit in CSR.

UCB$W_XA_CSR(R5),20$; Branch on success.
BRW 40$; Branch on error.

17$: BITW #XA_EIR$M_NEX!-
XA_EIR$M_MULTI!-
XA_EIR$M_ACLO!-
XA_EIR$M_PAR!-
XA_EIRM_DLT,UCBW_XA_EIR(R5) ; Any errors?

BEQL 20$; No, continue
BRW 40$; Yes, abort transfer.

20$: DECW UCB$L_XA_DPR(R5) ; All words transferred?
BNEQ 10$; No, loop until finished.

; Transfer is done, clear iterrupt expected flag and FORK
; All words read or written in WORD MODE. Finish I/O.

RETURN_STATUS:

JSB G^IOC$DIAGBUFILL ; Fill diagnostic buffer if present
BSBW DEL_ATTNAST ; Deliver outstanding ATTN ASTs
MOVZWL #SS$_NORMAL,R0 ; Complete success status

22$: MULW3 #2,UCB$L_XA_DPR(R5),R1 ; Calculate actual bytes transferred
SUBW3 R1,UCB$W_BCNT(R5),R1 ; From requested number of bytes
INSV R1,#16,#16,R0 ; And place in high word of R0
MOVL UCB$W_XA_CSR(R5),R1 ; Return CSR and EIR status
BISB #XA_CSR$M_IE,XA_CSR(R4) ; Enable device interrupts
REQCOM ; Finish request in exec

;++
; WORD MODE READ -- Read (input) in word mode
;
; FUNCTIONAL DESCRIPTION:
;
; Transfer the requested number of words from the DR11-W IDR into
; user memory one word at a time, wait for interrupt for each word.
; If the unexpected (unsolicited) interrupt bit is set, transfer the
; first (last received) word to memory without waiting for an
; interrupt.
;--

30$:
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; Don’t preserve R0

; If an unexpected (unsolicited) interrupt has occurred, assume it
; is for this READ request and return value to user buffer without
; waiting for an interrupt.

BBCC #UCB$V_UNEXPT,-
UCB$W_DEVSTS(R5),32$; Branch if no unexpected interrupt

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access
NEWIPL=(SP)+,- ; Enable interrupts
PRESERVE=NO

BRB 37$; continue

32$:
SETIPL #IPL$_POWER,-

ENVIRON=UNIPROCESSOR

35$:

; Wait for interrupt, powerfail, or device timeout

D–16

Sample Driver for the DR11–W and DRV11–WA Interfaces

WFIKPCH XA_TIME_OUTW,IRP$L_MEDIA(R3)

; Check for errors, decrement transfer count and loop until done

IOFORK ; Fork to lower IPL
37$:

CMPB #DT$_DR11W,- ; Branch if this is a DR11-W
UCB$B_DEVTYPE(R5)

BEQL 1037$
BBC #XA_CSR$V_ERROR,- ; DRV11-WA - check ERROR bit in CSR.

UCB$W_XA_CSR(R5),1038$; Branch on success.
BRW 40$; Branch on error.

1037$: BITW #XA_EIR$M_NEX!-
XA_EIR$M_MULTI!-
XA_EIR$M_ACLO!-
XA_EIR$M_PAR!-
XA_EIRM_DLT,UCBW_XA_EIR(R5) ; Any errors?

BNEQ 40$; Yes, abort transfer.
1038$: BSBW MOVTOUSER ; Store two bytes into user buffer

; Send interrupt back to sender. Acknowledge we got last word.

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; Don’t preserve R0

MOVW UCB$W_XA_CSRTMP(R5),XA_CSR(R4)
BBC #XAV_LINK,UCBL_DEVDEPEND(R5),38$; Link mode?
BICW3 #XAK_FNCT2,UCBW_XA_CSRTMP(R5),XA_CSR(R4) ;Yes, clear

; FNCT 2
38$:

DECW UCB$L_XA_DPR(R5) ; Decrement transfer count
BNEQ 35$; Loop until all words transferred
DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access
NEWIPL=(SP)+,- ; Enable interrupts
PRESERVE=NO

BRW RETURN_STATUS ; Finish request in common code

; Error detected in word mode transfer

40$:
BSBW DEL_ATTNAST ; Deliver ATTN ASTs
BSBW XA_DEV_RESET ; Error, reset DR11-W
JSB G^IOC$DIAGBUFILL ; Fill diagnostic buffer if present
JSB G^ERL$DEVICERR ; Log device error
MOVZWL UCB$W_XA_ERROR(R5),R0 ; Set controller/drive status in R0
BRW 22$

D–17

Sample Driver for the DR11–W and DRV11–WA Interfaces

.DSABL LSB
;
; MOVFRUSER - Routine to fetch two bytes from user buffer.
;
; INPUTS:
;
; R5 = UCB address
;
; OUTPUTS:
;
; R1 = Two bytes of data from user’s buffer
; Buffer descriptor in UCB is updated.
;

.ENABL LSB
MOVFRUSER:

MOVAL -(SP),R1 ; Address of temporary stack loc
MOVZBL #2,R2 ; Fetch two bytes
JSB G^IOC$MOVFRUSER ; Call exec routine to do the deed
MOVL (SP)+,R1 ; Retrieve the bytes
BRB 20$; Update UCB buffer pointers

;
; MOVTOUSER - Routine to store two bytes into user’s buffer.
;
; INPUTS:
;
; R5 = UCB address
; UCB$W_XA_IDR(R5) = Location where two bytes are saved
;
; OUTPUTS:
;
; Two bytes are stored in user buffer and buffer descriptor in
; UCB is updated.
;
MOVTOUSER:

MOVAB UCB$W_XA_IDR(R5),R1 ; Address of internal buffer
MOVZBL #2,R2
JSB G^IOC$MOVTOUSER ; Call exec

20$: ; Update buffer pointers in UCB
ADDW #2,UCB$W_BOFF(R5) ; Add two to buffer descriptor
BICW #^C<^X01FF>,UCB$W_BOFF(R5) ; Modulo the page size
BNEQ 30$; If NEQ, no page boundary crossed
ADDL #4,UCB$L_SVAPTE(R5) ; Point to next page

30$:
RSB

;
.DSABL LSB

.PAGE

.SBTTL DR11-W DEVICE TIMEOUT
;++
; DR11-W device TIMEOUT
; If a DMA transfer was in progress, release UBA resources.
; For DMA or WORD mode, deliver attention ASTs, log a device timeout error,
; and do a hard reset on the controller.
;
; Clear DR11-W CSR
; Return error status
;
; Power failure will appear as a device timeout
;--

.ENABL LSB
XA_TIME_OUT: ; Timeout for DMA transfer

BSBW XA_DEV_HWRESET ; reset h/w &
; blow away any outstanding DMA

D–18

Sample Driver for the DR11–W and DRV11–WA Interfaces

IOFORK ; Fork to complete request
PURDPR ; Purge buffered data path in UBA
RELMPR ; Release UBA map registers
RELDPR ; Release UBA data path
BRB 10$; continue

XA_TIME_OUTW: ; Timeout for WORD mode transfer

IOFORK ; Fork to complete operations
10$: MOVL UCB$L_CRB(R5),R4 ; Fetch address of CSR

MOVL @CRB$L_INTD+VEC$L_IDB(R4),R4
BSBW XA_REGISTER ; Read DR11-W registers
JSB G^IOC$DIAGBUFILL ; Fill diagnostic buffer
JSB G^ERL$DEVICTMO ; Log device time out
BSBW DEL_ATTNAST ; And deliver the ASTs
BSBW XA_DEV_RESET ; Reset controller
MOVZWL #SS$_TIMEOUT,R0 ; Assume error status
BBC #UCB$V_CANCEL,-

UCB$W_STS(R5),20$; Branch if not cancel
MOVZWL #SS$_CANCEL,R0 ; Set status

20$: CLRL R1
BICW #UCB$M_ATTNAST!UCB$M_UNEXPT,UCB$W_DEVSTS(R5)

; Clear unwanted flags.
BICW #<UCB$M_TIM!UCB$M_INT!UCB$M_TIMOUT!UCB$M_CANCEL!UCB$M_POWER>,-

UCB$W_STS(R5) ; Clear unit status flags
REQCOM ; Complete I/O in exec
.DSABL LSB
.PAGE

.SBTTL XA_INTERRUPT, Interrupt service routine for DR11-W
;++
; XA_INTERRUPT, Handles interrupts generated by DR11-W
;
; Functional description:
;
; This routine is entered whenever an interrupt is generated
; by the DR11-W. It checks that an interrupt was expected.
; If not, it sets the unexpected (unsolicited) interrupt flag.
; All device registers are read and stored into the UCB.
; If an interrupt was expected, it calls the driver back at its Wait
; For Interrupt point.
; Deliver attention ASTs if unexpected interrupt.
;
; Inputs:
;
; 00(SP) = Pointer to address of the device IDB
; 04(SP) = saved R0
; 08(SP) = saved R1
; 12(SP) = saved R2
; 16(SP) = saved R3
; 20(SP) = saved R4
; 24(SP) = saved R5
; 28(SP) = saved PSL
; 32(SP) = saved PC
;
; Outputs:
;
; The driver is called at its Wait For Interrupt point if an
; interrupt was expected.
; The current value of the DR11-W CSRs are stored in the UCB.
;
;--
XA_INTERRUPT: ; Interrupt service for DR11-W

MOVL @(SP)+,R4 ; Address of IDB and pop SP
MOVQ (R4),R4 ; CSR and UCB address from IDB

D–19

Sample Driver for the DR11–W and DRV11–WA Interfaces

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
CONDITION=NOSETIPL,- ; already at DIPL
PRESERVE=NO ; Don’t preserve R0

; Read the DR11-W device registers (WCR, BAR, CSR, EIR, IDR) and store
; into UCB.

BSBW XA_REGISTER ; Read device registers

; Check to see if device transfer request active or not
; If so, call driver back at Wait for Interrupt point and
; Clear unexpected interrupt flag.

20$: BBCC #UCB$V_INT,UCB$W_STS(R5),25$
; If clear, no interrupt expected

; Interrupt expected, clear unexpected interrupt flag and call driver
; back.

BICW #UCBM_UNEXPT,UCBW_DEVSTS(R5)
; Clear unexpected interrupt flag

MOVL UCB$L_FR3(R5),R3 ; Restore driver’s R3
JSB @UCB$L_FPC(R5) ; Call driver back
BRB 30$

; Deliver attention ASTs if no interrupt expected and set unexpected
; interrupt flag.

25$: BBSC #UCB$V_IGNORE_UNEXPT,- ; Ignore spurious interrupt -
UCB$W_DEVSTS(R5),24$; (DRV11-WA only.)

BISW #UCBM_UNEXPT,UCBW_DEVSTS(R5) ;Set unexpected interrupt flag
BSBW DEL_ATTNAST ; Deliver attention ASTs
BISB #XA_CSR$M_IE,XA_CSR(R4) ; Enable device interrupts
BRB 30$

; Restore registers and return from interrupt

24$: NOP ; allow a breakpoint here (spurious interrupt)

30$: DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access
PRESERVE=NO

POPR #^M<R0,R1,R2,R3,R4,R5> ; Restore registers
REI ; Return from interrupt
.PAGE

D–20

Sample Driver for the DR11–W and DRV11–WA Interfaces

.SBTTL XA_REGISTER - Handle DR11-W CSR transfers
;++
; XA_REGISTER - Routine to handle DR11-W register transfers
;
; INPUTS:
;
; R4 - DR11-W CSR address
; R5 - UCB address of unit
;
; OUTPUTS:
;
; CSR, EIR, WCR, BAR, BAE, IDR, and status are read and stored into UCB.
; The DR11-W is placed in its initial state with interrupts enabled.
; R0 - .true. if no hard error
; .false. if hard error (cannot clear ATTN)
;
; If the CSR ERROR bit is set and the associated condition can be cleared,
; then the error is transient and recoverable. The status returned is
; SS$_DRVERR. If the CSR ERROR bit is set and cannot be cleared by
; clearing the CSR, then this is a hard error and cannot be recovered.
; The returned status is SS$_CTRLERR.
;
; R0,R1 - destroyed, all other registers preserved.
;--

XA_REGISTER:

MOVZWL #SS$_NORMAL,R0 ; Assume success
MOVZWL XA_CSR(R4),R1 ; Read CSR
MOVW R1,UCB$W_XA_CSR(R5) ; Save CSR in UCB
BBC #XA_CSR$V_ERROR,R1,55$; Branch if no error
MOVZWL #SS$_DRVERR,R0 ; Assume "drive" error

55$: BICW #^C<XA_CSR$M_FNCT>,R1 ; Clear all uninteresting bits
; for later

CMPB #DT$_XA_DRV11WA,- ; If this is a DRV11-WA,
UCB$B_DEVTYPE(R5) ;

BEQL 57$; then branch.

;
; The guide to programming DRx11’s stresses over and over again that clearing
; the ATTN bit (by writing a 0 to it) can lead to a lost interrupt (i.e., a
; pending interrupt request can be flushed). We will handle this case by
; always setting the ATTN bit in the CSR/EIR- which is benign.
;

BISB #<XA_CSR$M_ERROR!XA_CSR$M_ATTN/256>,XA_CSR+1(R4) ;Set EIR flag
MOVW XA_EIR(R4),UCB$W_XA_EIR(R5) ; Save EIR in UCB
BRB 59$

57$: BISW #XA_CSR$M_IE,R1 ; On the DRV11-WA, if the IE bit
; makes a 0->1 transition while
; READY=1, a spurious interrupt
; in generated. Therefore, we
; leave IE high at all times.

;
; The guide to programming DRx11’s stresses over and over again that
; clearing the ATTN bit (by writing a 0 to it) can lead to a lost
; interrupt (i.e., a pending interrupt request can be flushed). We will
; handle this case by always setting the ATTN bit in the CSR/EIR- which
; is benign.
;
59$: BISW3 #XA_CSR$M_ATTN,R1,XA_CSR(R4) ; Clear EIR flag and errors

MOVW XA_CSR(R4),R1 ; Read CSR back
60$: MOVW XA_IDR(R4),UCB$W_XA_IDR(R5) ; Save IDR in UCB

MOVW XA_BAR(R4),UCB$W_XA_BAR(R5)
CMPB #DT$_DR11W,- ; If this is a DR11-W,

UCB$B_DEVTYPE(R5) ;
BEQL 70$; then branch.

D–21

Sample Driver for the DR11–W and DRV11–WA Interfaces

MOVW XA_BAE(R4),UCB$W_XA_BAE(R5) ; Save BAE in UCB
70$: MOVW XA_WCR(R4),UCB$W_XA_WCR(R5)

MOVW R0,UCB$W_XA_ERROR(R5) ; Save status in UCB
RSB

.SBTTL XA_CANCEL, Cancel I/O routine
;++
; XA_CANCEL, Cancels an I/O operation in progress
;
; Functional description:
;
; Flushes Attention AST queue for the user.
; If transfer in progress, do a device reset to DR11-W and finish the
; request.
; Clear interrupt expected flag.
;
; Inputs:
;
; R2 = negated value of channel index
; R3 = address of current IRP
; R4 = address of the PCB requesting the cancel
; R5 = address of the device’s UCB
;
; Outputs:
;
;--

XA_CANCEL: ; Cancel I/O

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; Don’t preserve R0

BBCC #UCB$V_ATTNAST,-
UCB$W_DEVSTS(R5),20$; attention AST enabled?

; Finish all attention ASTs for this process.

PUSHR #^M<R2,R6,R7>
MOVL R2,R6 ; Set up channel number
MOVAB UCB$L_XA_ATTN(R5),R7 ; Address of listhead
JSB G^COM$FLUSHATTNS ; Flush attention ASTs for process
POPR #^M<R2,R6,R7>

; Check to see if a data transfer request is in progress
; for this process on this channel

20$: BBC #UCB$V_INT,- ; Branch if I/O not in progress
UCB$W_STS(R5),30$

JSB G^IOC$CANCELIO ; Check if transfer going
BBC #UCB$V_CANCEL,-

UCB$W_STS(R5),30$; Branch if not for this guy
;
; Force timeout
;

CLRL UCB$L_DUETIM(R5) ; Clear timer
BISW #UCBM_TIM,UCBW_STS(R5) ; set timed
BICW #UCB$M_TIMOUT,-

UCB$W_STS(R5) ; Clear timed out
30$:

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access
NEWIPL=(SP)+,- ; Enable interrupts
PRESERVE=NO

RSB ; Return

D–22

Sample Driver for the DR11–W and DRV11–WA Interfaces

.PAGE

.SBTTL DEL_ATTNAST, Deliver attention ASTs
;++
; DEL_ATTNAST, Deliver all outstanding attention ASTs
;
; Functional description:
;
; This routine is used by the DR11-W driver to deliver all of the
; outstanding attention ASTs. It is copied from COM$DELATTNAST in
; the exec. In addition, it places the saved value of the DR11-W CSR
; and Input Data Buffer Register in the AST parameter.
;
; Inputs:
;
; R5 = UCB of DR11-W unit
;
; Outputs:
;
; R0,R1,R2 Destroyed
; R3,R4,R5 Preserved
;--
DEL_ATTNAST:

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; Don’t preserve R0

BBCC #UCB$V_ATTNAST,UCB$W_DEVSTS(R5),30$
; Any attention ASTs expected?

PUSHR #^M<R3,R4,R5> ; Save R3,R4,R5
10$: MOVL 8(SP),R1 ; Get address of UCB

MOVAB UCB$L_XA_ATTN(R1),R2 ; Address of attention AST listhead
MOVL (R2),R5 ; Address of next entry on list
BEQL 20$; No next entry, end of loop
BICW #UCBM_UNEXPT,UCBW_DEVSTS(R1) ;Clear unexpected interrupt

; flag
MOVL (R5),(R2) ; Close list
MOVW UCB$W_XA_IDR(R1),ACB$L_KAST+6(R5)

; Store IDR in AST parameter
MOVW UCB$W_XA_CSR(R1),ACB$L_KAST+4(R5)

; Store CSR in AST parameter
PUSHAB B^10$; Set return address for FORK
FORK ; FORK for this AST

; AST fork procedure

MOVQ ACB$L_KAST(R5),ACB$L_AST(R5)
; Rearrange entries

MOVB ACB$L_KAST+8(R5),ACB$B_RMOD(R5)
MOVL ACB$L_KAST+12(R5),ACB$L_PID(R5)
CLRL ACB$L_KAST(R5)
MOVZBL #PRI$_IOCOM,R2 ; Set up priority increment
JMP G^SCH$QAST ; Queue the AST

20$: POPR #^M<R3,R4,R5> ; Restore registers
30$: DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access
NEWIPL=(SP)+,- ; Enable interrupts
PRESERVE=NO,- ;
CONDITION=RESTORE ;

RSB ; Return

D–23

Sample Driver for the DR11–W and DRV11–WA Interfaces

.PAGE

.SBTTL XA_REGDUMP - DR11-W register dump routine
;++
; XA_REGDUMP - DR11-W Register dump routine.
;
; This routine is called to save the controller registers in a specified
; buffer. It is called from the device error logging routine and from the
; diagnostic buffer fill routine.
;
; Inputs:
;
; R0 - Address of register save buffer
; R4 - Address of Control and Status Register
; R5 - Address of UCB
;
; Outputs:
;
; The controller registers are saved in the specified buffer.
;
; CSRTMP - The last command written to the DR11-W CSR by
; by the driver.
; BARTMP - The last value written into the DR11-W BAR by
; the driver during a block mode transfer.
; CSR - The CSR image at the last interrupt
; EIR - The EIR image at the last interrupt
; IDR - The IDR image at the last interrupt
; BAR - The BAR image at the last interrupt
; WCR - Word count register
; ERROR - The system status at request completion
; PDRN - UBA Datapath Register number
; DPR - The contents of the UBA Data Path register
; FMPR - The contents of the last UBA Map register
; PMRP - The contents of the previous UBA Map register
; DPRF - Flag for purge datapath error
; 0 = no purger datapath error
; 1 = parity error when datapath was purged
; BAETMP - The last value written to the BAE by the
; driver during a block mode transfer (DRV11-WA only)
; BAE - The BAE image at the last interrupt (DRV11-WA only)
;
; Note that the values stored are from the last completed transfer
; operation. If a zero transfer count is specified, then the
; values are from the last operation with a non-zero transfer count.
;--

XA_REGDUMP:

MOVZBL #15,(R0)+ ; 15 registers are stored.
MOVAB UCB$W_XA_CSRTMP(R5),R1 ;Get address of saved register images
MOVZBL #8,R2 ; Return 8 registers here

10$: MOVZWL (R1)+,(R0)+
SOBGTR R2,10$; Move them all
MOVZBL UCB$W_XA_DPRN(R5),(R0)+ ; Save Datapath Register number
MOVZBL #3,R2 ; And 3 more here

20$: MOVL (R1)+,(R0)+ ; Move UBA register contents
SOBGTR R2,20$
MOVZBL UCB$W_XA_DPRN+1(R5),(R0)+ ; Save Datapath Parity Error Flag
MOVZWL UCB$W_XA_BAETMP(R5),(R0)+ ; Save BAE stored prior to xfer
MOVZWL UCB$W_XA_BAE(R5),(R0)+ ; Save BAE store following xfer
RSB

D–24

Sample Driver for the DR11–W and DRV11–WA Interfaces

.PAGE

.SBTTL XA_DEV_RESET - Device reset DR11-W
;++
; XA_DEV_RESET - DR11-W Device reset routine
;
; This routine raises IPL to device IPL, performs a device reset to
; the required controller, and reenables device interrupts.
;
; Must be called at or below device IPL to prevent a confict in
; acquiring the device spinlock.
;
; Inputs:
;
; R4 - Address of Control and Status Register
; R5 - Address of UCB
;
; Outputs:
;
; Controller is reset, controller interrupts are enabled
;
;--

XA_DEV_RESET:

PUSHR #^M<R0,R1,R2> ; Save some registers
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; Don’t preserve R0

BSBB XA_DEV_HWRESET

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access
NEWIPL=(SP)+,- ; Enable interrupts
PRESERVE=NO

POPR #^M<R0,R1,R2> ; Restore registers

RSB

XA_DEV_HWRESET:

CMPB #DT$_DR11W,- ; If this is a DR11-W,
UCB$B_DEVTYPE(R5) ;

BEQL 20$; then branch.
MOVW #XA_CSR$M_IE,XA_CSR(R4) ; Clear all writable bits but IE.
BITB #XA_CSR$M_RDY,XA_CSR(R4); If not ready then no transfer

; in progress,
BNEQ 40$; so no need to reset device

MNEGW #1,XA_WCR(R4) ;Tell it only 1 byte left to transfer
BISB #<XA_CSR$M_CYCLE!XA_CSR$M_ATTN>/256,-

XA_CSR+1(R4) ; and complete the transfer.
CLRW XA_CSR(R4) ; Clear any errors
BRB 30$

20$: MOVB #<XA_CSR$M_MAINT/256>,XA_CSR+1(R4)
CLRB XA_CSR+1(R4)

; *** Must delay here depending on reset interval

30$: TIMEDWAIT TIME=#XA_RESET_DELAY ; No. of 10 micro-sec intervals
; to wait

MOVB #XA_CSR$M_IE,XA_CSR(R4) ; Reenable device interrupts
40$: RSB

XA_END: ; End of driver label
.END

D–25

E
Sample Driver for a TURBOchannel Device

The following sample driver, CBDRIVER, provides a TURBOchannel driver
template to begin coding your specific driver program. Examples of programmed
I/O, interrupt processing, and DMA reads and writes are provided. Table E–1
outlines the driver code by listing the sections and routines in order of their
occurrence. The callouts in the driver code example refer to entries in Table E–1.

Table E–1 TURBOchannel Test Board Driver Code Contents

Driver Code Points Function

1 External symbols Defined

2 Local symbols Defined

3 Argument list (AP) Defined for device-dependent QIO parameters

4 Constants Defined

5 Device specific UCB fields Defined

6 Device register offsets from CSR Defined

7 Bit positions of CSR Defined

8 Driver prologue table (DPT) Initialized with DPT_STORE

9 Driver dispatch table (DDT) Initialized with DDTAB

1 0 Function decision table (FDT) Loaded with FUNCTAB

1 1 CB_CONTROL_INIT routine For controller initialization

1 2 CB_FDT_PIO FDT routine For programmed I/O servicing WRITEPBLK

1 3 CB_FDT_DMA FDT routine For data transfers servicing READLBLK and
WRITELBLK

1 4 CB_FDT_INTR FDT routine For interrupts servicing INTERRUPT

1 5 CB_START routine Starting an I/O transfer

1 6 CB_TIME_OUT routine Handling a device timeout

1 7 CB_INTERRUPT routine Handling interrupts generated by the device

1 8 CB_CANCEL routine Canceling an I/O operation

E–1

Sample Driver for a TURBOchannel Device

.TITLE CBDRIVER - VAX/VMS TURBOchannel Channel Board DRIVER

.IDENT ’X-01’

;
;**
;* *
;* COPYRIGHT (c) 1992 BY *
;* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. *
;* ALL RIGHTS RESERVED. *
;* *
;* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
;* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
;* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
;* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
;* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
;* TRANSFERRED. *
;* *
;* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
;* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT *
;* CORPORATION. *
;* *
;* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
;* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *
;* *
;* *
;**
;
;++
;
; FACILITY:
;
; VAX/VMS Executive, I/O Drivers
;
; ABSTRACT:
;
; Example TURBOchannel Device Driver.
;
; The TURBOchannel test board is a minimal implementation of
; all TURBOchannel hardware functions: Programmed I/O, I/O
; interrupt, DMA read, DMA write and I/O read/write conflict
; testing.
; The software view of the board consists of an EPROM address space,
; a 32-bit ADDRESS register with bits scrambled for direct use as a TC
; DMA address, a 32-bit DATA register used for programmed I/O and as the
; holding register for DMA, a 16-bit LED/CSR and a 1-bit TEST register.
; All registers MUST be accessed as 32-bit longwords, even when they are
; not implemented as 32 bits. The CSR contains bits to enable option
; DMA read testing, conflict signal testing, I/O interrupt testing and
; option DMA write testing. It also contains a bit to indicate that
; one or more of the tests are enabled, 4 byte mask flag bits and a
; DMA done bit.
;
; This example VAX/VMS driver provides a simple interface to the
; TURBOchannel test board. (a) Programmed I/O access to test board.
; (b) DMA to/from test board. (c) I/O interrupt from test board.
;
; ENVIRONMENT:
;
; Kernel Mode, Non-paged
;
;
;
;--

1
.SBTTL External and local symbol definitions

E–2

Sample Driver for a TURBOchannel Device

; External symbols

$ACBDEF ; AST control block
$ADPDEF ; Adapter control block
$CRBDEF ; Channel request block
$DCDEF ; Device types
$DDBDEF ; Device data block
$DEVDEF ; Device characteristics
$DPTDEF ; Driver prolog table
$DYNDEF ; Dynamic data structure types
$EMBDEF ; EMB offsets
$IDBDEF ; Interrupt data block
$IODEF ; I/O function codes
$IPLDEF ; Hardware IPL definitions
$IRPDEF ; I/O request packet
$PRDEF ; Intervnal processor registers
$PRIDEF ; Scheduler priority increments
$SSDEF ; System status codes
$UCBDEF ; Unit control block
$VECDEF ; Interrupt vector block
$IO46DEF ; Define pvmariah I/O space.
$IRPDEF ; I/O request packet
$VADEF ; VA
$PTEDEF ; PTE
$PTADEF ; TCA

2
; Local symbols
; (your local symbols here)
;

3
; Argument list (AP) offsets for device-dependent QIO parameters

P1 = 0 ; First QIO parameter
P2 = 4 ; Second QIO parameter
P3 = 8 ; Third QIO parameter
P4 = 12 ; Fourth QIO parameter
P5 = 16 ; Fifth QIO parameter
P6 = 20 ; Sixth QIO parameter

4
; Constants

CB_DMA_DEF_TIMEOUT = 10 ; 10 second DMA default timeout

5
; CB Board definitions that follow the standard UCB fields

E–3

Sample Driver for a TURBOchannel Device

$DEFINI UCB
.=UCB$L_DPC+4

$DEF UCB$L_MAPREG_DESC ; The Mapping Register Descriptor.
$DEF UCB$W_START_MAPREG ; The Starting Map Register.

.BLKW 1
$DEF UCB$W_NUMBER_MAPREG ; The number of Map Registers.

.BLKW 1
$DEF UCB$W_CB_UNEXPECTED ; Counter for # of unexpected interrupts.

.BLKW 1
$DEF UCB$L_CB_CSRTMP ; Temporary storage of Control Reg image

.BLKL 1
$DEF UCB$L_CB_ADDRTMP ; Temporary storage of Address Reg

.BLKL 1
$DEF UCB$L_CB_DATATMP ; Temporary storage of Data Reg

.BLKL 1
$DEF UCB$L_CB_TESTTMP ; Temporary storage of Test Reg

.BLKL 1
$DEF UCB$L_CB_VA ; Storage for Device VA.

.BLKL 1
$DEF UCB$L_CB_CSR ; Saved STATUS Reg on interrupt

.BLKL 1
$DEF UCB$L_CB_ADDR ; Saved Address Reg on interrupt

.BLKL 1
$DEF UCB$L_CB_DATA ; Saved Data Reg on interrupt

.BLKL 1
$DEF UCB$L_CB_TEST ; Saved Test Reg on interrupt

.BLKL 1
$DEF UCB$L_CB_BCNT ; Saved Byte Count

.BLKL 1

UCB$K_SIZE=.
$DEFEND UCB

6
; Device register offsets from CSR address

$DEFINI CB ; Start of Channel Board definitions
$DEF CB_ADDRESS ; Address Register

.BLKL 1 ;
$DEF CB_DATA ; Data Register

.BLKL 1 ;
$DEF CB_LED_CSR ; LED/CSR Register

.BLKL 1 ;
$DEF CB_TEST ; TEST Register

.BLKL 1 ;

7
; Bit positions for device LED/control/status register

$VIELD CB_CSR,0,<- ; Control register
<MASK,4,M>,- ; byte-mask
<DMADONE,,M>,- ; 1 if DMA complete
<ENTEST,,M>,- ; 1 if int/conflict/DMA tests enabled
<INT,,M>,- ; 0 if interrupt asserted
<TDONE,,M>,- ; 1 if the enabled test is done
<ENINT,,M>,- ; 0 if interrupt enable
<ENCONF,,M>,- ; 0 if conflict enable
<DMAR,,M>,- ; 0 if DMA Read enable
<DMAW,,M>,- ; 0 if DMA Write enable
<UNUSED,16,M>,- ; Unused bits

>

$DEFEND CB ; End of CB definition

8
.SBTTL Device Driver Tables

E–4

Sample Driver for a TURBOchannel Device

; Driver prologue table

DPTAB - ; DPT-creation macro
END=CB_END,- ; End of driver label
ADAPTER=TC,- ; Adapter type
FLAGS=DPT$M_SVP,- ; Allocate system page table
UCBSIZE=UCB$K_SIZE,- ; UCB size
NAME=CBDRIVER ; Driver name

DPT_STORE INIT ; Start of load
; initialization table

DPT_STORE UCB,UCBB_FLCK,B,SPLC_IOLOCK8 ; Device fork IPL
DPT_STORE UCB,UCB$B_DIPL,B,20 ; Device interrupt IPL
DPT_STORE UCB,UCB$L_DEVCHAR,L,<- ; Device characteristics

DEV$M_AVL!- ; Available
DEV$M_RTM> ; Real Time device

DPT_STORE UCB,UCB$B_DEVCLASS,B,DC$_REALTIME ; Device class
DPT_STORE UCB,UCB$B_DEVTYPE,B,DT$_XVIB ; Device Type
DPT_STORE REINIT ; Start of reload

; initialization table
DPT_STORE DDB,DDBL_DDT,D,CBDDT ; Address of DDT
DPT_STORE CRB,CRB$L_INTD+4,D,- ; Address of interrupt

CB_INTERRUPT ; service routine
DPT_STORE CRB,CRB$L_INTD+VEC$L_INITIAL,-; Address of controller

D,CB_CONTROL_INIT ; initialization routine
DPT_STORE END ; End of initialization

; tables
9

; Driver dispatch table

DDTAB - ; DDT-creation macro
DEVNAM=CB,- ; Name of device
START=CB_START,- ; Start I/O routine
FUNCTB=CB_FUNCTABLE,- ; FDT address
CANCEL=CB_CANCEL ; Cancel I/O routine

1 0
;
; Function dispatch table
;
CB_FUNCTABLE: ; FDT for driver

FUNCTAB ,- ; Valid I/O functions
<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK>

FUNCTAB , ; No buffered functions
FUNCTAB CB_FDT_PIO,<WRITEPBLK> ; PIO FDT
FUNCTAB CB_FDT_DMA,<READLBLK,WRITELBLK> ; DMA FDT
FUNCTAB CB_FDT_INTR,<READPBLK> ; INTR FDT

1 1
.SBTTL CB_CONTROL_INIT, Controller initialization

E–5

Sample Driver for a TURBOchannel Device

;++
; CB_CONTROL_INIT, Called when driver is loaded, system is booted
;
; Functional Description:
;
; 1) Allocates the direct data path permanently
; 2) Assigns the controller data channel permanently
; 3) Clears the Control and Status Register
; 4) Map a page of device physical address space
; to virtual address space
;
; Inputs:
;
; R4 = base address of TC slot
; R5 = address of IDB
; R6 = address of DDB
; R8 = address of CRB
;
; Outputs:
;
; None
;--

CB_CONTROL_INIT:

MOVL #1, R2 ; 1 page
ADDL #^X20000, R4 ; Base Physical Address for

; Device CSRs
;
; Map phyical address space to virtual address space
;

JSB G^LDR$ALLOC_PT ; Request the pages
; R1 = Virtual Address of
; 1st SPTE

SUBL3 G^MMG$GL_SPTBASE,R1,R3 ; Byte offset of first SPTE
ASHL #7,R3,R3 ; Get a system VA
BISL #<1@31>,R3 ; R3 = Virtual Address represented

; by 1st SPTE

ASHL #-9, R4, R4 ; Get PFN

MOVL R3, R0 ; Place VA in R0

; Set up each page

10$: INVALIDATE_TB R0,- ; Clear TB of temporary mapping
INST1=<BISL3 #<PTE$M_VALID!PTE$C_KW>,R4,(R1)+> ; Map a page

INCL R4 ; Next PFN.
ADDL2 #512,R0 ; Advance to next page
SOBGTR R2,10$; Map another page

MOVL IDB$L_UCBLST(R5),R0 ; Address of UCB
MOVL R3, UCB$L_CB_VA(R0) ; Device VA address
MOVL R0,IDB$L_OWNER(R5) ; Make permanent controller owner
BISW #UCBM_ONLINE,UCBW_STS(R0)

; Set device status "on-line"

CLRW UCB$W_CB_UNEXPECTED(R0) ; Init Unexpected Interrupt counter

; Enable device interrupts
MOVL #^XFF00, UCB$L_CB_CSRTMP(R0)

; Initialize device CSR
RSB ; Done

E–6

Sample Driver for a TURBOchannel Device

1 2
;++
; CB_FDT_PIO FDT for WRITEPBLK
;
; Functional description:
;
; Inputs:
;
;
; R3 = Address of IRP
; R4 = Address of PCB
; R5 = Address of UCB
; R6 = Address of CCB
; R8 = Address of FDT routine
; AP = Address of P1
; P1 = TC address
;
; Outputs:
;
; Queued to start IO routine
;--

CB_FDT_PIO:
MOVL P1(AP),IRP$L_IOST1(R3) ; Get the TC address.
JMP G^EXE$QIODRVPKT

1 3
;++
; CB_FDT_DMA FDT for READLBLK,WRITELBLK
;
; Functional description:
;
; 1) Rejects QUEUE I/O’s with transfer count greater than 4
;
; Inputs:
;
; R3 = Address of IRP
; R4 = Address of PCB
; R5 = Address of UCB
; R6 = Address of CCB
; R8 = Address of FDT routine
; AP = Address of P1
; P1 = Buffer Address
; P2 = Buffer size in bytes
; P3 = DMA Time Out Time in seconds
;
; Outputs:
;
; R0 = Error status if odd transfer count
;
;--

CB_FDT_DMA:
BLBS P1(AP),2$; The Buffer address must not be on

; a byte boundary.
BBS #1,P1(AP),2$; or a word boundary

CMPL P2(AP),#4 ; Branch if transfer less than 4
BLEQU 20$

2$: MOVZWL #SS$_BADPARAM,R0 ; Set error status code
5$: JMP G^EXE$ABORTIO ; Abort request

20$: TSTL P2(AP) ; Error if no transfer count.
BEQL 2$

E–7

Sample Driver for a TURBOchannel Device

MOVL P3(AP),IRP$L_MEDIA(R3) ; Save the Time Out time.
BNEQ 30$; Branch if there is a time out time
MOVL #CB_DMA_DEF_TIMEOUT,- ; Set Time Out time to the default

IRP$L_MEDIA(R3)

30$:
MOVL P1(AP),R0 ; Get the buffer address
MOVL P2(AP),R1 ; Get the byte count
JSB G^EXE$MODIFYLOCKR ; Check buffer for access and lock down
BLBC R0,5$
JMP G^EXE$QIODRVPKT

1 4
;++
; CB_FDT_INTR FDT for INTERRUPT
;
; Functional description:
;
; Inputs:
;
;
; R3 = Address of IRP
; R4 = Address of PCB
; R5 = Address of UCB
; R6 = Address of CCB
; R8 = Address of FDT routine
; AP = Address of P1
;
; Outputs:
;
; Queued to start IO routine
;--

CB_FDT_INTR:
JMP G^EXE$QIODRVPKT

1 5
.SBTTL CB_START, Start I/O routines

;++
; CB_START - Start PIO or DMA or INTERRUPT
;
; Functional Description:
;
; Inputs:
;
; R3 = Address of the I/O request packet (IRP)
; R5 = Address of the UCB
;
; Outputs:
;
;
;--

.ENABL LSB

CB_START:
;+
; Do final set up and dispatch to the routine which performs the function.
;-

EXTZV #IRP$V_FCODE,#IRP$S_FCODE,- ; Extract I/O function code...
IRP$W_FUNC(R3),R1 ; ...without function modifiers

CMPL #IO$_WRITEPBLK,R1 ; Check for PIO function
BEQL 40$; Branch if yes

E–8

Sample Driver for a TURBOchannel Device

CMPL #IO$_WRITELBLK,R1 ; Check for DMA Read function
BEQL 10$; Branch if yes
CMPL #IO$_READLBLK,R1 ; Check for DMA Write function
BEQL 20$; Branch if yes
CMPL #IO$_READPBLK,R1 ; Check for Interrupt function
BEQL 30$; Branch if yes

; Illegal function code
MOVZBL #SS$_ILLIOFUNC,R0 ; Specify the error type
REQCOM

10$: BICL #CB_CSR$M_DMAR, UCB$L_CB_CSRTMP(R5)
BRW 50$; DMA read

20$: BICL #CB_CSR$M_DMAW, UCB$L_CB_CSRTMP(R5)
BRW 50$; DMA write

30$: BRW 100$; Interrupt

40$: ; PIO
MOVL IRP$L_IOST1(R3), R1 ; Get the TC address

ASHL #-9,R1,R1 ; Determine PFN of this node.
BICL #^C<PTE$M_PFN>,R1 ; Mask only PFN
MOVZBL #SS$_NORMAL,R0 ; Set succus status

REQCOM ; Return to user
; Finish request in exec

50$: ; DMA
MOVL UCB$L_CRB(R5),R4 ; Address of CRB
MOVL @CRB$L_INTD+VEC$L_IDB(R4),R4 ; Get the CSR address.

MOVAL UCB$L_MAPREG_DESC(R5),R1 ; Set R1 to address of mapreg desc.
MOVL UCB$L_CRB(R5),R2 ; Get CRB address.
MOVL CRB$L_INTD+VEC$L_ADP(R2),R2 ; Get address of ADP

MOVL ADP$L_CSR(R2), R0 ; TCA CSR address
BISL #PTA$M_ENBMAP, (R0) ; Enable mapping
PUSHL R3 ; Save R3.
MOVL IRP$L_BCNT(R3),R0 ; Get the byte count.
MOVL R0,UCB$L_CB_BCNT(R5) ; Store byte count in UCB
MOVZWL IRP$W_BOFF(R3),R3
MOVAB ^X3FF(R0)[R3],R3 ; Calculate highest relative byte

; and round
ASHL #-9,R3,R3 ; Calculate number of map registers

; required

BSBW IOC$ALOTCMAP_DMAN ; Allocate a set of VME map regs.
POPL R3 ; Restore R3
BLBS R0,60$

MOVZWL #SS$_INSFMAPREG,R0 ; Set to error and end QIO.
CLRL R1
JMP 110$

60$:
MOVAL UCB$L_MAPREG_DESC(R5),R1 ; Set the Mapreg desc address
PUSHR #^M<R3,R4,R5> ; Save R3-R5.
MOVL IRP$L_BCNT(R3),R4 ; Set R4 to the byte count.
MOVZWL IRP$W_BOFF(R3),R5 ; Set R5 to the byte offset into

; 1st page.
MOVL IRP$L_SVAPTE(R3),R3 ; Set R3 to the SVAPTE of first page
BSBW IOC$LOADTCMAP_DMAN ; Load the VME mapping registers
POPR #^M<R3,R4,R5> ; Restore R3-R5.

E–9

Sample Driver for a TURBOchannel Device

;
; Set up CSR’s
;

MOVZWL IRP$W_BOFF(R3),R1 ; Byte offset in first page of xfer
INSV UCB$W_START_MAPREG(R5),#9,#13,R1

; Insert the Starting Map Register
; number

ASHL #-2, R1, R1 ;
CLRL R0 ; reset R0
INSV R1,#5,#27,R0 ; Set up address for TC bus bit<31:5>

; bit<4:0> <-- DMA addr<33:28>
MOVL R0, UCB$L_CB_ADDRTMP(R5) ; Save TC Address

MOVL UCB$L_CB_VA(R5), R2 ; Get the device VA address

MOVL UCB$L_CB_ADDRTMP(R5), CB_ADDRESS(R2)
; Load address

MOVL UCB$L_CB_CSRTMP(R5), CB_LED_CSR(R2)
; Set up DMA

MOVL #0, CB_TEST(R2) ; Set GO bit

MOVL #100, R0 ;
70$: BBS #CB_CSR$V_DMADONE, CB_LED_CSR(R2),80$

; Is DMA complete
SOBGTR R0, 70$

MOVZWL #SS$_TIMEOUT, R0 ; Flag timeout error

BRW 90$

; Handle request completion, release TC resources, check for errors

80$:
MOVL CB_LED_CSR(R2), UCB$L_CB_CSR(R5)

; Store CSR data

MOVL CB_TEST(R2), R0 ; Clear DMA

MOVL #^XFF00, UCB$L_CB_CSRTMP(R5)
; Clear CSR

BRW 93$

90$: MOVL CB_LED_CSR(R2), UCB$L_CB_CSR(R5)
; Store CSR data

93$: MOVAL UCB$L_MAPREG_DESC(R5),R1 ; Get address of mapreg desc.
MOVL UCB$L_CRB(R5),R2 ; Get CRB address.
MOVL CRB$L_INTD+VEC$L_ADP(R2),R2 ; Get address of ADP
BSBW IOC$RELTCMAP_DMAN ; Release the mapping registers

BBC #CB_CSR$V_DMADONE, UCB$L_CB_CSR(R5),95$
MOVZWL #SS$_NORMAL, R0 ; Set Success

95$: MOVL UCB$L_CB_CSR(R5), R1 ; Return CSR status in IOSB
REQCOM ; Finish request in exec

100$: BICL #CB_CSR$M_ENINT, UCB$L_CB_CSRTMP(R5)

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; DON’T Preserve R0

MOVL UCB$L_CB_VA(R5), R2 ; Get the device VA address
MOVL UCB$L_CB_CSRTMP(R5), CB_LED_CSR(R2)

; Set up Interrupt
MOVL #0, CB_TEST(R2) ; Set GO bit

MOVL UCB$L_CB_ADDRTMP(R5), CB_ADDRESS(R2)
; Load address reg to initiate
; interrupt

E–10

Sample Driver for a TURBOchannel Device

WFIKPCH CB_TIME_OUT,IRP$L_MEDIA(R3)
; Wait for interrupt

; Device has interrupted, FORK

IOFORK ; FORK to lower IPL

MOVZWL #SS$_NORMAL, R0 ; Success status in IOSB
MOVL UCB$L_CB_CSR(R5), R1 ; Return CSR status in IOSB
MOVL #^XFF00, UCB$L_CB_CSRTMP(R5)

; Initialize device csr
110$: REQCOM ; Finish request in exec

1 6
.SBTTL CB_TIME_OUT, CB device Timeout Routine

;++
; CB_TIME_OUT - CB device Timeout Routine
;
; Functional Description:
;
; Inputs:
;
;
; Outputs:
;
;
;--

.ENABL LSB
CB_TIME_OUT:

IOFORK ; Fork to complete request

MOVAL UCB$L_MAPREG_DESC(R5), R1
; Get address of mapreg desc.

MOVL UCB$L_CRB(R5), R2 ; Get CRB address
MOVL CRB$L_INTD+VEC$L_ADP(R2), R2

; Get address of ADP
BSBW IOC$RELTCMAP_DMAN ; Release the mapping registers

MOVZWL #SS$_TIMEOUT, R0 ; Flag timeout error

REQCOM ; Complete I/O in exec

E–11

Sample Driver for a TURBOchannel Device

1 7
.SBTTL CB_INTERRUPT, Interrupt service routine.

;++
; CB_TIME_OUT - CB device interrupt service routine
;
; Functional Description:
;
; Inputs:
;
; 00(SP) = Pointer to address of the device IDB
; 04(SP) = saved R0
; 08(SP) = saved R1
; 12(SP) = saved R2
; 16(SP) = saved R3
; 20(SP) = saved R4
; 24(SP) = saved R5
; 28(SP) = saved PC
; 32(SP) = saved PSL
;
; Outputs:
;
; The driver is called at its Wait For Interrupt point if an
; interrupt was expected.
; The current value of the CB CSR’s are stored in the UCB.
;
;--
CB_INTERRUPT:

MOVL @(SP)+,R4 ; Address of IDB and pop SP
MOVQ (R4),R4 ; CSR and UCB address from IDB

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
CONDITION=NOSETIPL,- ; already at DIPL
PRESERVE=NO ; Don’t preserve R0

; Check to see if device transfer request active or not
; If so, call driver back at Wait for Interrupt point and
; Clear unexpected interrupt flag.

BBCC #UCBV_INT,UCBW_STS(R5),24$
; If clear, no interrupt expected

; Read the CB device registers and store into UCB.

MOVL CB_LED_CSR(R2), UCB$L_CB_CSR(R5)
; Store CSR data

MOVL CB_TEST(R2), R0 ; Clear interrupt
MOVL #^XFF00, CB_LED_CSR(R2)

; Clear CSR to clear interrupt

MOVQ UCB$L_FR3(R5),R3 ; Restore drivers R3
JSB @UCB$L_FPC(R5) ; Call driver back
BRB 25$

24$: ; Read device registers
INCW UCB$W_CB_UNEXPECTED(R5) ; Increment Unexpected Interrupt count

25$: DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access
PRESERVE=NO

POPR #^M<R0,R1,R2,R3,R4,R5> ; Restore registers
REI ; Return from interrupt

E–12

Sample Driver for a TURBOchannel Device

1 8
.SBTTL CB_CANCEL, Cancel I/O routine

;++
; CB_CANCEL, Cancels an I/O operation in progress
;
; Functional description:
;
; Flushes AST queue for the user.
; Clear interrupt expected flag.
;
; Inputs:
;
; R2 = negated value of channel index
; R3 = address of current IRP
; R4 = address of the PCB requesting the cancel
; R5 = address of the device’s UCB
;
; Outputs:
;
;--
CB_CANCEL: ; Cancel I/O

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; Don’t preserve R0

; Check to see if a data transfer request is in progress
; for this process on this channel

20$: BBC #UCB$V_INT,- ; br if I/O not in progress
UCB$W_STS(R5),30$

JSB G^IOC$CANCELIO ; Check if transfer going
BBC #UCB$V_CANCEL,-

UCB$W_STS(R5),30$; Branch if not for this guy
;
; Force timeout
;

CLRL UCB$L_DUETIM(R5) ; clear timer
BISW #UCBM_TIM,UCBW_STS(R5) ; set timed
BICW #UCB$M_TIMOUT,-

UCB$W_STS(R5) ; Clear timed out
30$:

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access
NEWIPL=(SP)+,- ; Enable interrupts
PRESERVE=NO

RSB ; Return

CB_END: ; End of driver label
.END

E–13

F
Sample Driver for a VMEbus DR11–W Interface

The following sample driver controls the Ikon DR11–W Emulator featuring a
DMA interface for a VMEbus device. Table F–1 outlines the driver code by listing
the sections and routines in order of their occurrence. The callouts in the driver
code example refer to entries in Table F–1. You can obtain a machine-readable
copy of this driver from SYS$EXAMPLES:QKDRIVER.MAR.

Table F–1 DR11–W VME Driver Code Contents

Driver Code Points Function

1 External symbols Defined

2 Local symbols Defined

3 Argument list (AP) Defined for device-dependent QIO parameters

4 Constants Defined

5 Device specific UCB fields Defined

6 Device register offsets from CSR Defined

7 Bit positions of CSR Defined

8 Driver prologue table (DPT) Initialized with DPT_STORE

9 Driver dispatch table (DDT) Initialized with DDTAB

1 0 Function decision table (FDT) Loaded with FUNCTAB

1 1 QK_CONTROL_INIT routine For controller initialization

1 2 Byte swap macro (SWAPWORD) Called

1 3 QK_READ_WRITE FDT routine For data transfers servicing READLBLK,
READVBLK, READPBLK, WRITELBLK,
WRITEVBLK, and WRITEPBLK

1 4 QK_START routine Starting an I/O transfer

1 5 QK_TIME_OUT routine Handling a DR11–W device time-out

1 6 QK_INTERRUPT routine Handling interrupts generated by the DR11–W

1 7 QK_REGISTER routine Handling DR11–W CSR transfers

1 8 QK_CANCEL routine Canceling an I/O operation

1 9 QK_DEV_RESET routine Performing a device reset

F–1

Sample Driver for a VMEbus DR11–W Interface

.TITLE QKDRIVER - VAX/VMS VMEbus QKon DR11-W Emulator DRIVER

.IDENT ’X-01’

;
;**
;* *
;* COPYRIGHT (c) 1990 BY *
;* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. *
;* ALL RIGHTS RESERVED. *
;* *
;* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
;* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
;* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
;* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
;* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
;* TRANSFERRED. *
;* *
;* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
;* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT *
;* CORPORATION. *
;* *
;* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
;* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *
;* *
;* *
;**
;
;++
;
; FACILITY:
;
; VAX/VMS Executive, I/O Drivers
;
; ABSTRACT:
;
; This module contains the driver for the VMEbus Ikon DR11-W Emulator
; (XMI).
;
;
; ENVIRONMENT:
;
; Kernel Mode, Non-paged
;
; AUTHOR:
;
;
;--

.SBTTL External and local symbol definitions

1
; External symbols

F–2

Sample Driver for a VMEbus DR11–W Interface

$ACBDEF ; AST control block
$ADPDEF ; Adapter control block
$CRBDEF ; Channel request block
$DCDEF ; Device types
$DDBDEF ; Device data block
$DEVDEF ; Device characteristics
$DPTDEF ; Driver prolog table
$DYNDEF ; Dynamic data structure types
$EMBDEF ; EMB offsets
$IDBDEF ; Interrupt data block
$IODEF ; I/O function codes
$IPLDEF ; Hardware IPL definitions
$IRPDEF ; I/O request packet
$PRDEF ; Internal processor registers
$PRIDEF ; Scheduler priority increments
$SSDEF ; System status codes
$UCBDEF ; Unit control block
$VECDEF ; Interrupt vector block
$XADEF ; Define device specific characteristics
$XVIBDEF ; VME definitions

2
; Local symbols

; (Your local symbols here)

; Argument list (AP) offsets for device-dependent QIO parameters
3

P1 = 0 ; First QIO parameter
P2 = 4 ; Second QIO parameter
P3 = 8 ; Third QIO parameter
P4 = 12 ; Fourth QIO parameter
P5 = 16 ; Fifth QIO parameter
P6 = 20 ; Sixth QIO parameter

4
; Other constants

QK_DMA_DEF_TIMEOUT = 10 ; 10 second DMA default timeout
QK_READ_SYNCH_TIMEOUT = 10 ; 10 second Time out to synchronize

; with a READ request.
QK_DEF_BUFSIZ = 65535 ; Default buffer size
QK_RESET_DELAY = <<2+9>/10> ; Delay N microseconds after RESET

; (rounded up to 10 microsec intervals)
QK_ADDR_MOD_10089 = ^XD00 ; Select 32 bit addressing on the VME.

; Which is 0D. This value is in the
; high byte of the Register.

QK_ADDR_MOD_10099 = ^X8B00 ; Block Mode.

5
; DR11-W definitions that follow the standard UCB fields

F–3

Sample Driver for a VMEbus DR11–W Interface

$DEFINI UCB
.=UCB$L_DPC+4

$DEF UCB$L_MAPREG_DESC ; The Mapping Register Descriptor.
$DEF UCB$W_START_MAPREG ; The Starting Map Register.

.BLKW 1
$DEF UCB$W_NUMBER_MAPREG ; The number of Map Registers.

.BLKW 1
$DEF UCB$W_QK_UNEXPECTED ; Counter for # of unexpected interrupts

.BLKW 1
$DEF UCB$W_QK_CSRTMP ; Temporary storage of Control Reg image

.BLKW 1
$DEF UCB$W_QK_BARTMPLOW ; Temporary storage of BAR Reg LOW image

.BLKW 1
$DEF UCB$W_QK_BARTMPHIGH ; Temporary storage of BAR Reg HIGH image

.BLKW 1
$DEF UCB$W_QK_WCRTMPLOW ; Temporary storage of WCR Reg LOW image

.BLKW 1
$DEF UCB$W_QK_WCRTMPHIGH ; Temporory storage of WCR Reg HIGH image

.BLKW 1
$DEF UCB$W_QK_PULSE ; Storage for the Pulse command register

.BLKW 1
$DEF UCB$W_QK_VECTOR ; Storage for the Vector and Address

.BLKW 1 ; Modifier Register.
$DEF UCB$W_QK_CSR ; Saved STATUS Reg on interrupt

.BLKW 1
$DEF UCB$W_QK_BARLOW ; Saved BAR register LOW on interrupt

.BLKW 1
$DEF UCB$W_QK_BARHIGH ; Saved BAR register HIGH on interrupt

.BLKW 1
$DEF UCB$W_QK_WCRLOW ; Saved WCR register LOW on interrupt

.BLKW 1
$DEF UCB$W_QK_WCRHIGH ; Saved WCR register HIGH on interrupt

.BLKW 1

$DEF UCB$W_QK_ERROR ; Saved Error return.
.BLKW 1

; Bit positions for device-dependent status field in UCB

$VIELD UCB,0,<- ; UCB device specific bit definitions
<READ_READY,,M>,- ; The READ partner QIO is ready
<WAITING_FOR_READ,,M>,- ;Waiting-for-READ-partner interrupt
>

UCB$K_SIZE=.
$DEFEND UCB

6
; Device register offsets from CSR address

$DEFINI QK ; Start of Ikon DR11-W definitions
$DEF QK_CONTROL ; Control Register
$DEF QK_STATUS ; Status Register

.BLKW 1

$DEF QK_DATA_OUT ; Data Out Register
$DEF QK_DATA_IN ; Data In Register

.BLKW 1

$DEF QK_MODIFIER_VECTOR ;Address Modifier and Vector Register
.BLKW 1

$DEF QK_PULSE_COMMAND ; Pulse Command Register
.BLKW 1
.BLKW 5 ; Empty space in register area

$DEF QK_BAR_LOW_WRITE ; DMA address Low 16 bits. WRITE
.BLKW 1

F–4

Sample Driver for a VMEbus DR11–W Interface

$DEF QK_WCR_LOW ; DMA Word Count Low 16 bits register
.BLKW 1

$DEF QK_BAR_LOW_READ ; DMA address Low 16 bits. READ
.BLKW 1
.BLKW 1 ; Empty space in register area.

$DEF QK_BAR_HIGH_WRITE ; DMA address High 16 bits. Write
.BLKW 1

$DEF QK_WCR_HIGH ; DMA Word Count High 16 bits register
.BLKW 1

$DEF QK_BAR_HIGH_READ ; DMA address High 16 bits. READ
.BLKW 1

7
; Bit positions for device control/status register

$EQULST QK$K_,,0,1,<- ; Define CSR FNCT bit values
<FNCT1,2>-
<FNCT2,4>-
<FNCT3,8>-
<STATUSA,2048>- ; Define CSR STATUS bit values
<STATUSB,1024>-
<STATUSC,512>-

>

$VIELD QK_CONTROL,0,<- ; Control register
<GO,,M>,- ; Start device
<FNCT,3,M>,- ; CSR FNCT bits
<SDIR,,M>,- ; Software direction
<UNUSED1,,M>,- ; Unused bit
<IE,,M>,- ; Enable interrupts
<TERM,,M>,- ; Terminate active DMA
<CYCLE,,M>,- ; Starts slave transmit
<UNUSED2,3,M>,- ; UNUSED bits
<MCLR,,M>,- ; Master Clear.
<RPER,,M>,- ; Reset Parity Error Flag
<RATN,,M>,- ;Reset Attention flag and its interrupt
<RDMA,,M>,- ; Reset DMA Done flag and its interrupt

>

$VIELD QK_STATUS,0,<- ; Status register
<DFLG,,M>,- ; Device Flag
<FNCT,3,M>,- ; FNCT bits
<SDIR,1,M>,- ; State of SDIR latch
<BERR,1,M>,- ; Bus error flag
<IE,,M>,- ; Enable interrupts
<READY,,M>,- ; DMA Ready.
<UNUSED1,,M>,- ; UNUSED bit
<STATUS,3,M>,- ; Status bits
<PERR,,M>,- ; Parity error flag
<ATTN,,M>,- ; State of Attention H input
<ATTF,,M>,- ; Attention interrupt
<DMAF,,M>,- ; DMA Done interrupt

>

$DEFEND QK ; End of DR11-W definition

8
.SBTTL Device Driver Tables

; Driver prologue table

F–5

Sample Driver for a VMEbus DR11–W Interface

DPTAB - ; DPT-creation macro
END=QK_END,- ; End of driver label
ADAPTER=VME,- ; Adapter type
FLAGS=DPT$M_SVP,- ;Allocate system page table
UCBSIZE=UCB$K_SIZE,- ; UCB size
NAME=QKDRIVER ; Driver name

DPT_STORE INIT ; Start of load
; initialization table

DPT_STORE UCB,UCBB_FLCK,B,SPLC_IOLOCK8 ; Device fork IPL
DPT_STORE UCB,UCB$B_DIPL,B,22 ; Device interrupt IPL
DPT_STORE UCB,UCB$L_DEVCHAR,L,<- ; Device characteristics

DEV$M_AVL!- ; Available
DEV$M_RTM!- ; Real Time device
DEV$M_ELG!- ; Error Logging enabled
DEV$M_IDV!- ; input device
DEV$M_ODV> ; output device

DPT_STORE UCB,UCB$B_DEVCLASS,B,DC$_REALTIME ; Device class
DPT_STORE UCB,UCB$B_DEVTYPE,B,DT$_XVIB ; Device Type
DPT_STORE UCB,UCB$W_DEVBUFSIZ,W,- ; Default buffer size

QK_DEF_BUFSIZ
DPT_STORE REINIT ; Start of reload

; initialization table
DPT_STORE DDB,DDBL_DDT,D,QKDDT ; Address of DDT
DPT_STORE CRB,CRB$L_INTD+4,D,- ; Address of interrupt

QK_INTERRUPT ; service routine
DPT_STORE CRB,CRB$L_INTD+VEC$L_INITIAL,-; Address of controller

D,QK_CONTROL_INIT ; initialization routine
DPT_STORE END ; End of initialization

; tables
9

; Driver dispatch table

DDTAB - ; DDT-creation macro
DEVNAM=QK,- ; Name of device
START=QK_START,- ; Start I/O routine
FUNCTB=QK_FUNCTABLE,- ; FDT address
CANCEL=QK_CANCEL ; Cancel I/O routine

1 0
;
; Function dispatch table
;
QK_FUNCTABLE: ; FDT for driver

FUNCTAB ,- ; Valid I/O functions
<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK>

FUNCTAB , ; No buffered functions
FUNCTAB QK_READ_WRITE,- ; Device-specific FDT

<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK>
FUNCTAB +EXE$QIODRVPKT,-

<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK>

1 1
.SBTTL QK_CONTROL_INIT, Controller initialization

F–6

Sample Driver for a VMEbus DR11–W Interface

;++
; QK_CONTROL_INIT, Called when driver is loaded, system is booted, or
; power failure recovery.
;
; Functional Description:
;
; 1) Allocates the direct data path permanently
; 2) Assigns the controller data channel permanently
; 3) Clears the Control and Status Register
; 4) If power recovery, requests device time-out
;
; Inputs:
;
; R4 = address of CSR
; R5 = address of IDB
; R6 = address of DDB
; R8 = address of CRB
;
; Outputs:
;
;
;--

QK_CONTROL_INIT:

JSB G^INI$BRK

MOVL IDB$L_UCBLST(R5),R0 ; Address of UCB
MOVL R0,IDB$L_OWNER(R5) ; Make permanent controller owner
BISW #UCBM_ONLINE,UCBW_STS(R0)

; Set device status "on-line"

CLRW UCB$W_QK_UNEXPECTED(R0) ; Init Unexpected Interrupt counter

10$: PUSHR #^M<R3,R5> ; Save R5
MOVZBL IDB$B_VECTOR(R5),R1 ; Get the vector address.
ROTL #2,R1,R1 ; Normalize the vector
MOVZWL QK_STATUS(R4),R2 ; Read the CSR.

1 2
SWAPWORD R2 ; Swap the bytes.
MOVL #QK_ADDR_MOD_10089,R3 ;Set R3 to the Address Modifier value
BBC #QK_STATUS$V_DFLG,R2,50$;Branch if this is the 10089 revision
MOVL #QK_ADDR_MOD_10099,R3 ;Set R2 to the Address Modifier value

50$: ADDL2 R3,R1 ; Add in the Address Modifier
MOVW R1,UCB$W_QK_VECTOR(R0) ; Save Vector and Address Mod value
SWAPWORD R1 ; Swap the bytes.
MOVW R1,QK_MODIFIER_VECTOR(R4) ; Set the vector ID.

MOVL R0,R5 ; Copy UCB address to R5
BSBW QK_DEV_HWRESET
POPR #^M<R3,R5> ; Restore R5
RSB ; Done

1 3
.SBTTL QK_READ_WRITE, FDT for device data transfers

F–7

Sample Driver for a VMEbus DR11–W Interface

;++
; QK_READ_WRITE, FDT for READLBLK,READVBLK,READPBLK,WRITELBLK,WRITEVBLK,
; WRITEPBLK
;
; Functional description:
;
; 1) Rejects QUEUE I/O’s with odd transfer count
;
; Inputs:
;
; R3 = Address of IRP
; R4 = Address of PCB
; R5 = Address of UCB
; R6 = Address of CCB
; R8 = Address of FDT routine
; AP = Address of P1
; P1 = Buffer Address
; P2 = Buffer size in bytes
; P3 = DMA Time Out Time in seconds
; P4 = VMEbus control flags.
;
; Outputs:
;
; R0 = Error status if odd transfer count
;
;--

QK_READ_WRITE:

BLBS P1(AP),2$; The Buffer address must not be
; on a byte boundary.

BLBC P2(AP),20$; Branch if transfer count even
2$: MOVZWL #SS$_BADPARAM,R0 ; Set error status code
5$: JMP G^EXE$ABORTIO ; Abort request

20$: TSTL P2(AP) ; Error if no transfer count
BEQL 2$

MOVL P3(AP),IRP$L_MEDIA(R3) ; Save the Time Out time.
BNEQ 30$;Branch if there is a time out time
MOVL #QK_DMA_DEF_TIMEOUT,- ; Set Time Out time to the default

IRP$L_MEDIA(R3)

30$: MOVL P4(AP),IRP$L_MEDIA+4(R3); Save the VMEbus control flags

MOVL P1(AP),R0 ; Get the buffer address
MOVL P2(AP),R1 ; Get the byte count
JSB G^EXE$MODIFYLOCKR ; Check buffer for access and

; lock down
BLBC R0,5$

RSB ; the buffer.

F–8

Sample Driver for a VMEbus DR11–W Interface

1 4
.SBTTL QK_START, Start I/O routines

;++
; QK_START - Start a data transfer, set characteristics, enable ATTN AST
;
; Functional Description:
;
; This routine has two major functions:
;
; 1) Start an I/O transfer. This transfer can be in either word
; or block mode. The FNCTN bits in the DR11-W CSR are set. If
; the transfer count is zero, the STATUS bits in the DR11-W CSR
; are read and the request completed.
;
; Inputs:
;
; R3 = Address of the I/O request packet
; R5 = Address of the UCB
;
; Outputs:
;
; R0 = final status and number of bytes transferred
; R1 = value of CSR STATUS bits and value of input databuffer register
; Device errors are logged
; Diagnostic buffer is filled
;
;--

.ENABL LSB

QK_START:

ASSUME IDB$L_CSR EQ 0
MOVL UCB$L_CRB(R5),R4 ; Address of CRB
MOVL @CRB$L_INTD+VEC$L_IDB(R4),R4 ; Get the CSR address

MOVAL UCB$L_MAPREG_DESC(R5),R1 ; Set R1 to the address of mapreg
; descriptor

MOVL UCB$L_CRB(R5),R2 ; Get CRB address
MOVL CRB$L_INTD+VEC$L_ADP(R2),R2 ; Get address of ADP

PUSHL R3 ; Save R3.
MOVL IRP$L_BCNT(R3),R0 ; Get the byte count.
MOVZWL IRP$W_BOFF(R3),R3
MOVAB ^X3FF(R0)[R3],R3 ; Calculate highest relative byte

; and round
ASHL #-9,R3,R3 ; Calculate number of map

; registers required
BSBW IOC$ALOVMEMAP_DMAN ; Allocate a set of VME map regs
POPL R3 ; Restore R3
BLBS R0,50$

MOVZWL #SS$_INSFMAPREG,R0 ; Set to error and end QIO.
CLRL R1
JMP QIO_DONE

50$: MOVL IRP$L_MEDIA+4(R3),R0 ; Get the VMEbus control flags
MOVAL UCB$L_MAPREG_DESC(R5),R1; Set the Mapreg desc address
PUSHR #^M<R3,R4,R5> ; Save R3-R5.
MOVL IRP$L_BCNT(R3),R4 ; Set R4 to the byte count
MOVZWL IRP$W_BOFF(R3),R5 ; Set R5 to the byte offset into

; 1st page
MOVL IRP$L_SVAPTE(R3),R3 ; Set R3 to the SVAPTE of first page
BSBW IOC$LOADVMEMAP_DMAN ; Load the VME mapping registers
POPR #^M<R3,R4,R5> ; Restore R3-R5

F–9

Sample Driver for a VMEbus DR11–W Interface

;
; Build the BAR registers.
;

MOVZWL IRP$W_BOFF(R3),R1 ; Byte offset in first page of xfer
INSV UCB$W_START_MAPREG(R5),#9,#16,R1

; Insert the Starting Map Register
; number, R1 contains the BAR value

ASHL #-1,R1,R1 ; The DR11-W wants the data shifted
; one place to the right.

MOVW R1,UCB$W_QK_BARTMPLOW(R5) ; Save the BAR Low Register value

ASHL #-16,R1,R2 ; Set R1 to BAR High value.
MOVW R2,UCB$W_QK_BARTMPHIGH(R5) ;Save the BAR High Register value

;
; Store the Word Count register contents.
;

MOVL IRP$L_BCNT(R3),R0 ; Fetch byte count
ASHL #-1,R0,R1 ; Make byte count into word count
DECL R1 ; The Ikon DR11-2 wants # of words

; Minus 1 for the Word Count
ASHL #-16,R1,R0 ; R1 Word has WC Low value

; R0 Word has WC High value
MOVW R1,UCB$W_QK_WCRTMPLOW(R5) ; Set the WC Low Register value
MOVW R0,UCB$W_QK_WCRTMPHIGH(R5) ;Set the WC High Register value

; Initialize the CSR contents for a Read. Enable interrupts and set the Go
; Bit. Set the 1st function bit to set direction
; Use the Pulse command Function 2 to interrupt the Transmitter partner.
;

MOVW #<QK_CONTROL$M_IE!QK_CONTROL$M_GO!QK$K_FNCT1>,-
UCB$W_QK_CSRTMP(R5)

MOVW #QKK_FNCT2,UCBW_QK_PULSE(R5)

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; DON’T Preserve R0

; Branch if a Read request.
;

CMPW #IO$_READPBLK,IRP$W_FUNC(R3)
BEQL 1000$

; Write Request. Make sure that the Read Partner is ready.
;

CLRW UCB$W_QK_PULSE(R5)

BBS #UCBV_READ_READY,UCBW_DEVSTS(R5),500$

BISW #UCB$M_WAITING_FOR_READ,-
UCB$W_DEVSTS(R5) ; Set the flag that we are waiting

; for the READ partner to be ready

WFIKPCH QK_TIME_OUT,#QK_READ_SYNCH_TIMEOUT ;Wait for Read ATTN
; interrupt indicating the READ
; partner is Ready.

IOFORK

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; DON’T Preserve R0

MOVL UCB$L_IRP(R5),R3 ; Get the IRP.

F–10

Sample Driver for a VMEbus DR11–W Interface

500$: BICW #<UCB$M_READ_READY!UCB$M_WAITING_FOR_READ>,-
UCB$W_DEVSTS(R5) ; Clear the READ Ready Flag and

: Waiting for Read flag

; Initialize the CSR contents for a WRITE. Enable interrupts, set the Go
; and Cycle Bits.
;

MOVW #<QK_CONTROL$M_IE!QK_CONTROL$M_GO!QK_CONTROL$M_CYCLE>,-
UCB$W_QK_CSRTMP(R5)

1000$:

SETIPL #31,- ; Raise to IPL POWER
ENVIRON=UNIPROCESSOR

MOVW UCB$W_QK_WCRTMPLOW(R5),R0 ; Get the WC low register
SWAPWORD R0 ; Swap the bytes
MOVW R0,QK_WCR_LOW(R4) ; Set the WC Low Reg.

MOVW UCB$W_QK_WCRTMPHIGH(R5),R0 ; Get the WC High register
SWAPWORD R0 ; Swap the bytes
MOVW R0,QK_WCR_HIGH(R4) ; Set the WC High Reg.

MOVW UCB$W_QK_BARTMPLOW(R5),R0 ;Set Buffer Address Registers
SWAPWORD R0
MOVW R0,QK_BAR_LOW_WRITE(R4)
MOVW UCB$W_QK_BARTMPHIGH(R5),R0
SWAPWORD R0
MOVW R0,QK_BAR_HIGH_WRITE(R4)

CMPW #IO$_READPBLK,IRP$W_FUNC(R3)
BNEQ 1010$
MOVW UCB$W_QK_PULSE(R5),R0 ; Set the pulse command to set
SWAPWORD R0 ; ATTN for Reads
MOVW R0,QK_PULSE_COMMAND(R4)

1010$: MOVW UCB$W_QK_CSRTMP(R5),R0 ; Move all bits to CSR
SWAPWORD R0
MOVW R0,QK_CONTROL(R4)

; Wait for transfer complete interrupt, powerfail, or device time-out

WFIKPCH QK_TIME_OUT,IRP$L_MEDIA(R3) ; Wait for interrupt

; Device has interrupted, FORK

IOFORK ; FORK to lower IPL

; Handle request completion, release VME resources, check for errors

MOVZWL #SS$_NORMAL,-(SP) ; Assume success, store code on stack
MOVAL UCB$L_MAPREG_DESC(R5),R1; Get address of mapreg desc.
MOVL UCB$L_CRB(R5),R2 ; Get CRB address.
MOVL CRB$L_INTD+VEC$L_ADP(R2),R2 ; Get address of ADP
BSBW IOC$RELVMEMAP_DMAN ; Release the mapping registers

; Check for errors and return status

CMPW UCB$W_QK_WCRHIGH(R5),#^XFFFF ; All words transferred?
BNEQ 1080$; NO
CMPW UCB$W_QK_WCRLOW(R5),#^XFFFF ; All words transferred?
BEQL 1100$; Yes

1080$: MOVZWL #SS$_OPINCOMPL,(SP) ; No, flag operation not complete
BICW #<UCB$M_READ_READY!-

UCB$M_WAITING_FOR_READ>,-
UCB$W_DEVSTS(R5) ; Clear the read ready flags.

F–11

Sample Driver for a VMEbus DR11–W Interface

1100$: BBC #QK_STATUS$V_PERR,UCB$W_QK_CSR(R5),1110$; Branch on CSR
; error bit

1105$: MOVZWL UCB$W_QK_ERROR(R5),(SP) ; Flag for controller/drive error
; status

BSBW QK_DEV_RESET ; Reset DR11-W
BRB 1200$

1110$: BBS #QK_STATUS$V_BERR,UCB$W_QK_CSR(R5),1105$

1200$: MOVL (SP)+,R0 ; Get final device status
MOVZWL UCB$W_QK_WCRLOW(R5),R1 ; Return Word Count
ASHL #16,R1,R1
MOVW UCB$W_QK_CSR(R5),R1 ; Return CSR in IOSB

QIO_DONE:
REQCOM ; Finish request in exec

>
.PAGE

1 5
.SBTTL DR11-W DEVICE TIME-OUT

;++
; DR11-W device TIME-OUT
; If a DMA transfer was in progress, release UBA resources.
; For DMA or WORD mode, deliver ATTN AST’s, log a device timeout error,
; and do a hard reset on the controller.
;
; Clear DR11-W CSR
; Return error status
;
; Power failure will appear as a device time-out
;--

.ENABL LSB
QK_TIME_OUT: ; Time-out for DMA transfer

IOFORK ; Fork to complete request
MOVAL UCB$L_MAPREG_DESC(R5),R1; Get address of mapreg desc.
MOVL UCB$L_CRB(R5),R2 ; Get CRB address.
MOVL CRB$L_INTD+VEC$L_ADP(R2),R2 ; Get address of ADP
BSBW IOC$RELVMEMAP_DMAN ; Release the mapping registers

BSBW QK_REGISTER ; Read DR11-W registers
BSBW QK_DEV_RESET ; Reset controller
MOVZWL #SS$_TIMEOUT,R0 ; Assume error status
CLRL R1
BBC #UCB$V_CANCEL,-

UCB$W_STS(R5),20$; Branch if not cancel
MOVZWL #SS$_CANCEL,R0 ; Set status

20$: BBC #UCB$V_WAITING_FOR_READ,-
UCB$W_DEVSTS(R5),25$; Branch if waiting for Read

INCL R1 ; Set R1 to a 1 to indicate Waiting
; for Read
; Clear unwanted flags

25$: INSV R1,#16,#16,R0 ; Insert the Time out type
MOVZWL UCB$W_QK_WCRLOW(R5),R1 ;
ASHL #16,R1,R1
MOVW UCB$W_QK_CSR(R5),R1 ;Store the CSR and word count low

BICW #<UCB$M_READ_READY!-
UCB$M_WAITING_FOR_READ>,-
UCB$W_DEVSTS(R5) ; Clear the read ready flags.

BICW #<UCB$M_TIM!UCB$M_INT!UCB$M_TIMOUT!-
UCB$M_CANCEL!UCB$M_POWER>,UCB$W_STS(R5) ; Clear unit

; status flags
REQCOM ; Complete I/O in exec
.DSABL LSB
.PAGE

F–12

Sample Driver for a VMEbus DR11–W Interface

1 6
.SBTTL QK_INTERRUPT, Interrupt service routine for DR11-W

;++
; QK_INTERRUPT, Handles interrupts generated by DR11-W
;
; Functional description:
;
; This routine is entered whenever an interrupt is generated
; by the DR11-W. It checks that an interrupt was expected.
; If not, it sets the unexpected (unsolicited) interrupt flag.
; All device registers are read and stored into the UCB.
; If an interrupt was expected, it calls the driver back at its Wait
; For Interrupt point.
; Deliver ATTN AST’s if unexpected interrupt.
;
; Inputs:
;
; 00(SP) = Pointer to address of the device IDB
; 04(SP) = saved R0
; 08(SP) = saved R1
; 12(SP) = saved R2
; 16(SP) = saved R3
; 20(SP) = saved R4
; 24(SP) = saved R5
; 28(SP) = saved PSL
; 32(SP) = saved PC
;
; Outputs:
;
; The driver is called at its Wait For Interrupt point if an
; interrupt was expected.
; The current value of the DR11-W CSR’s are stored in the UCB.
;
;--
QK_INTERRUPT: ; Interrupt service for DR11-W

MOVL @(SP)+,R4 ; Address of IDB and pop SP
MOVQ (R4),R4 ; CSR and UCB address from IDB

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
CONDITION=NOSETIPL,- ; already at DIPL
PRESERVE=NO ; Don’t preserve R0

; Check to see if device transfer request active or not
; If so, call driver back at Wait for Interrupt point and
; Clear unexpected interrupt flag.

BBCC #UCBV_INT,UCBW_STS(R5),24$
; If clear, no interrupt expected

; Read the DR11-W device registers (WCR, BAR, CSR) and store into UCB.

BSBW QK_REGISTER ; Read device registers

MOVL UCB$L_FR3(R5),R3 ; Restore drivers R3
JSB @UCB$L_FPC(R5) ; Call driver back
BRB 25$

24$: BSBW QK_REGISTER ; Read device registers
INCW UCB$W_QK_UNEXPECTED(R5) ; Increment Unexpected Interrupt

; count

25$: DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access
PRESERVE=NO

POPR #^M<R0,R1,R2,R3,R4,R5> ; Restore registers
REI ; Return from interrupt

F–13

Sample Driver for a VMEbus DR11–W Interface

.PAGE
1 7

.SBTTL QK_REGISTER - Handle DR11-W CSR transfers
;++
; QK_REGISTER - Routine to handle DR11-W register transfers
;
; INPUTS:
;
; R4 - DR11-W CSR address
; R5 - UCB address of unit
;
; OUTPUTS:
;
; CSR, WCR, BAR, and status are read and stored into UCB.
; The DR11-W is placed in its initial state with interrupts enabled.
; R0 - .true. if no hard error
; .false. if hard error (cannot clear ATTN)
;
; If the CSR ERROR bit is set and the associated condition can be cleared,
; then the error is transient and recoverable. The status returned is
; SS$_DRVERR. If the CSR ERROR bit is set and cannot be cleared by
; clearing the CSR, then this is a hard error and cannot be recovered.
; The returned status is SS$_CTRLERR.
;
; R0,R1 - destroyed, all other registers preserved.
;--

QK_REGISTER:

MOVZWL QK_STATUS(R4),R1 ; Read STATUS.
SWAPWORD R1
MOVW R1,UCB$W_QK_CSR(R5) ; Save STATUS reg in UCB

MOVW #<QK_CONTROL$M_RPER!QK_CONTROL$M_RATN!QK_CONTROL$M_RDMA>,R0
SWAPWORD R0
MOVW R0,QK_CONTROL(R4) ; Clear all reset conditions in CSR

BBC #QK_STATUS$V_ATTF,R1,50$; Branch if not ATTN interrupt
BISW #UCB$M_READ_READY,- ; Indicate that the Read is Ready

UCB$W_DEVSTS(R5)

50$: MOVZWL #SS$_NORMAL,R0 ; Assume success
BBC #QK_STATUS$V_PERR,R1,55$; Branch if no PARITY error
MOVZWL #SS$_DRVERR,R0 ; Assume "drive" error
BRB 60$

55$: BBC #QK_STATUS$V_BERR,R1,60$; Branch if no VMEbus error.
MOVZWL #SS$_CTRLERR,R0 ; Assume "Controller" error.

60$: MOVZWL QK_BAR_LOW_READ(R4),R1 ;Save the BAR LOW register in UCB
SWAPWORD R1
MOVW R1,UCB$W_QK_BARLOW(R5)

MOVZWL QK_BAR_HIGH_READ(R4),R1 ;Save the BAR HIGH register in UCB
SWAPWORD R1
MOVW R1,UCB$W_QK_BARHIGH(R5)

MOVZWL QK_WCR_LOW(R4),R1 ; Save the WCR LOW register in UCB
SWAPWORD R1
MOVW R1,UCB$W_QK_WCRLOW(R5)

MOVZWL QK_WCR_HIGH(R4),R1 ; Save the WCR HIGH register in UCB
SWAPWORD R1
MOVW R1,UCB$W_QK_WCRHIGH(R5)

MOVW #QK_CONTROL$M_IE,R1 ; Enable interrupts.
SWAPWORD R1
MOVW R1,QK_CONTROL(R4)

F–14

Sample Driver for a VMEbus DR11–W Interface

100$: MOVW R0,UCB$W_QK_ERROR(R5) ; Save error in UCB.
RSB

1 8
.SBTTL QK_CANCEL, Cancel I/O routine

;++
; QK_CANCEL, Cancels an I/O operation in progress
;
; Functional description:
;
; Flushes Attention AST queue for the user.
; If transfer in progress, do a device reset to DR11-W and finish
; the request.
; Clear interrupt expected flag.
;
; Inputs:
;
; R2 = negated value of channel index
; R3 = address of current IRP
; R4 = address of the PCB requesting the cancel
; R5 = address of the device’s UCB
;
; Outputs:
;
;--

QK_CANCEL: ; Cancel I/O

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; Don’t preserve R0

; Check to see if a data transfer request is in progress
; for this process on this channel

20$: BBC #UCB$V_INT,- ; br if I/O not in progress
UCB$W_STS(R5),30$

JSB G^IOC$CANCELIO ; Check if transfer going
BBC #UCB$V_CANCEL,-

UCB$W_STS(R5),30$; Branch if not for this guy
;
; Force timeout
;

CLRL UCB$L_DUETIM(R5) ; clear timer
BISW #UCBM_TIM,UCBW_STS(R5) ; set timed
BICW #UCB$M_TIMOUT,-

UCB$W_STS(R5) ; Clear timed out
30$:

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access
NEWIPL=(SP)+,- ; Enable interrupts
PRESERVE=NO

RSB ; Return

F–15

Sample Driver for a VMEbus DR11–W Interface

.PAGE
1 9

.SBTTL QK_DEV_RESET - Device reset DR11-W
;++
; QK_DEV_RESET - DR11-W Device reset routine
;
; This routine raises IPL to device IPL, performs a device reset to
; the required controler, and re-enables device interrupts.
;
; Must be called at or below device IPL to prevent a confict in
; aquiring the device_spinlock.
;
; Inputs:
;
; R4 - Address of Control and Status Register
; R5 - Address of UCB
;
; Outputs:
;
; Controller is reset, controller interrupts are enabled
;
;--

QK_DEV_RESET:

PUSHR #^M<R0,R1,R2> ; Save some registers
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; Don’t preserve R0

BSBB QK_DEV_HWRESET

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access
NEWIPL=(SP)+,- ; Enable interrupts
PRESERVE=NO

POPR #^M<R0,R1,R2> ; Restore registers

RSB

QK_DEV_HWRESET:

MOVW #QK_CONTROL$M_MCLR,R0 ;Issue a Master Clear to the device
SWAPWORD R0
MOVW R0,QK_CONTROL(R4)

; *** Must delay here depending on reset interval

TIMEDWAIT TIME=#QK_RESET_DELAY ; Number of 10 micro-sec intervals
; to wait

MOVW #QK_CONTROL$M_IE,R0 ; Enable device interrupts
SWAPWORD R0
MOVW R0,QK_CONTROL(R4)
RSB

QK_END: ; End of driver label
.END

F–16

G
Multiprocessing Requirements on Kernel-Mode

Code

Several features introduced in recent releases of the operating system have some
impact on the execution of non-Digital-supplied kernel-mode code, most notably
device drivers written prior to VMS Version 5.0. This chapter describes those
changes Digital requires or recommends in an existing non-Digital-supplied
device driver. It also provides a brief explanation of key concepts that are integral
to an understanding of the operation of privileged code in recent versions of the
operating system.

G.1 Uniprocessor and Multiprocessor Device Drivers
One of the most significant components of the operating system introduced in
VMS Version 5.0 is its support of a symmetric multiprocessing environment
for certain VAX systems, including the VAX 8300/8350, VAX 8800/8820/8830,
VAX 6000, and VAX 9000 series. The multiprocessing environment provided by
earlier versions of the operating system was asymmetric in nature. Because
only the primary processor could execute kernel-mode code, kernel-mode code,
including device drivers, effectively ran in a uniprocessing environment and did
not need to undertake any special actions due to the multiprocessing nature of
the system.

However, in the new symmetric multiprocessing environment supported
beginning with VMS Version 5.0, all processors in the system can execute
kernel-mode code. Consequently, privileged code must take steps to ensure that
its execution and use of memory are synchronized with kernel-mode code that
may be executing concurrently on another processor. Such code must maintain
two dimensions of synchronization: raising to the appropriate IPL for a certain
transaction, while securing the proper spinlock for the object of that transaction.

For privileged code executing within a uniprocessing environment, the operating
system now transparently forgoes the second of these requirements. That is,
on a VAX uniprocessor, or in a multiprocessor system wherein multiprocessing
is not enabled, privileged code may securely execute by adhering to the IPL
synchronization method alone.

To support both uniprocessor and multiprocessor environments in the most
efficient and secure way possible, the operating system now incorporates special
logic in the System Generation utility (SYSGEN), the device driver loading
mechanism, and several synchronization macros. This code enables the operating
system to discern the environment in which it is executing and, most importantly,
to take steps to prohibit a privileged code thread from executing without proper
synchronization in a multiprocessing environment.

G–1

Multiprocessing Requirements on Kernel-Mode Code
G.1 Uniprocessor and Multiprocessor Device Drivers

As discussed in Section G.3, non-Digital-supplied device drivers written prior
to VMS Version 5.0 must be altered to execute correctly in a symmetric
multiprocessing environment. The modifications discussed in Section G.3
are not required for a device driver that will be loaded and executed only on a
uniprocessor system. However, the same macros, routines, and field names used
in a multiprocessing environment are accepted by the operating system in a
uniprocessing environment. Furthermore, the spinlock synchronization macros
and routines are specially designed to execute a streamlined code that obtains
IPL synchronization alone in such an environment. Digital recommends that any
driver that may execute in a multiprocessing environment be updated accordingly.

The remainder of this section identifies the activities of the MULTIPROCESSING
system parameter, system driver loading mechanisms, and the system
synchronization macros in creating a multiprocessing or uniprocessing
environment and enforcing the appropriate synchronization.

G.1.1 MULTIPROCESSING System Parameter
Every system is initially booted as a single processor, regardless of its hardware
configuration. The setting of the MULTIPROCESSING system parameter
for the first processor in the system to boot (called the primary processor
in a multiprocessing environment) determines which synchronization image
the secondary bootstrap program (SYSBOOT) loads into memory as part of
the operating system. Table G–1 describes the contents of the three possible
synchronization images.

Table G–1 System Synchronization Images

Image Results

Uniprocessing Synchronization is accomplished by elevating IPL. Spinlock
acquisition routines only achieve IPL synchronization.

Full-checking Synchronization is accomplished by both elevating IPL and
obtaining an appropriate spinlock. Spinlock acquisition
routines perform both of these tasks. Spinlock acquisition
routines also perform spin lock rank checking and verify the
spinlock synchronization IPL, issuing appropriate bugchecks
if they discover violations of synchronization rules. Spinlock
acquisition routines maintain various debugging aids and
performance analysis aids (such as the longwords in the
spinlock data structure containing the PCs of the most
recent acquisitions and releases of the spin lock and the
set of counters in the per-CPU database structure (CPU)).
(See Section G.3.7 for additional description of full-checking
synchronization.)

Streamlined Synchronization is accomplished by both elevating IPL and
obtaining an appropriate spinlock. Spinlock acquisition
routines do not perform checking and do not record the PCs of
the spinlock acquisitions and releases.

Table G–2 lists the possible settings of the MULTIPROCESSING system
parameter.

G–2

Multiprocessing Requirements on Kernel-Mode Code
G.1 Uniprocessor and Multiprocessor Device Drivers

Table G–2 Settings of MULTIPROCESSING System Parameter

Value Result

0 Loads uniprocessing synchronization image for any hardware configuration

1 Loads full-checking synchronization image and sets multiprocessing-enabled
bit (SMP$V_ENABLED in SMP$GL_FLAGS) if the hardware configuration is
capable of multiprocessing and two or more processors are available; otherwise,
loads uniprocessing synchronization image.

2 Loads full-checking synchronization image and sets multiprocessing-enabled bit
regardless of the hardware configuration.

3 Loads streamlined synchronization image and sets multiprocessing-enabled bit
if the hardware configuration is capable of multiprocessing and two or more
processors are available; otherwise, loads uniprocessing synchronization image.
This is the default value.

G.1.2 Device Driver Loading
In a multiprocessing environment, the presence of a device driver that does
not adhere to multiprocessing synchronization conventions introduced at
VMS Version 5.0 can be fatal to proper system functions. Now, the operating
system takes steps to either prohibit the enabling of multiprocessing in a VAX
system that has such a driver present or prevent the loading of such a driver if
multiprocessing has already been enabled.

To accomplish this, the system driver-loading routine assumes that any driver
that can run in a multiprocessing environment uses the spinlock synchronization
macros and loads the appropriate I/O database fields. (See Section G.3 for
information on how to produce a driver that can execute in a multiprocessing
environment.) Use of the spinlock synchronization macros causes the operating
system to set the SMP-modified bit in the DPT (DPT$V_SMPMOD in DPT$L_
FLAGS).

If multiprocessing has not been enabled on the system, the driver loading
mechanism checks the SMP-modified bit in the DPT and takes either of the
following actions:

• If the SMP-modified bit is set, the driver loading mechanism loads the
driver and calls its controller and unit initialization routines, as discussed in
Chapter 12.

• If the SMP-modified bit is not set, the driver loading mechanism sets the
unmodified-driver bit (SMP$V_UNMOD_DRIVER) in SMP$GL_FLAGS, thus
prohibiting the subsequent enabling of multiprocessing on the system. It then
loads the driver and calls its controller and unit initialization routines, as
described in Chapter 12. If such a driver has been successfully loaded, you
cannot subsequently enable multiprocessing.

G–3

Multiprocessing Requirements on Kernel-Mode Code
G.1 Uniprocessor and Multiprocessor Device Drivers

If multiprocessing is currently enabled on the system, the driver loading
mechanism checks the SMP-modified bit in the DPT and takes either of the
following actions:

• If the SMP-modified bit is set, the driver loading mechanism loads the
driver and calls its controller and unit initialization routines, as discussed in
Chapter 12.

• If the SMP-modified bit is not set, the driver loading mechanism does not load
the driver, returning the error status SS$_NONSMPDRV to its caller.

G.1.3 System Synchronization Macros
To support the spinlock synchronization required in multiprocessor systems,
VMS Version 5.0 added the DEVICELOCK/DEVICEUNLOCK, FORKLOCK
/FORKUNLOCK, and LOCK/UNLOCK macros to the existing SETIPL and
DSBINT/ENBINT macros. As discussed in Section G.3, the SETIPL and DSBINT
/ENBINT macros must not be used to synchronize systemwide activities in a
multiprocessing environment. However, the DEVICELOCK/DEVICEUNLOCK,
FORKLOCK/FORKUNLOCK, and LOCK/UNLOCK macros are designed to
operate appropriately in either a multiprocessing or uniprocessing environment.
According to the value of the multiprocessing-enabled bit (SMP$V_ENABLED)
in SMP$GL_FLAGS, the run-time code produced by these macros behaves as
follows:

• If multiprocessing has not been enabled in the system, these macros only
raise or lower IPL to the IPL required to synchronize access to the specified
system resource.

• If multiprocessing has been enabled in the system, these macros call the
appropriate spinlock synchronization routine, which acquires or releases the
spinlock corresponding to the system resource, raising or lowering IPL as
required.

The setting of the MULTIPROCESSING system parameter controls the
disposition of the multiprocessing-enabled bit, as discussed in Section G.1.1.
The macro chapter in the OpenVMS VAX Device Support Reference Manual
describes the system synchronization macros in full.

G.2 Changes Required to Drivers Written Before VMS Version 5.0
Most changes introduced at VMS Version 5.0 are transparent to non-Digital-
supplied drivers written prior to that release and can be accommodated in the
driver image by simply reassembling and relinking the driver. However, there
are several required—and some recommended—changes that the writers and
maintainers of these drivers should make before attempting these tasks. This
section describes these modifications.

In addition, if a non-Digital-supplied driver is to be loaded and run in a
symmetric multiprocessing system, it is critical that it be adapted according to
the guidelines discussed in Section G.3. Failure to adapt such drivers to use
multiprocessing synchronization mechanisms may result in either a failure to
load the driver or the inability to enable multiprocessing on the system.

G–4

Multiprocessing Requirements on Kernel-Mode Code
G.2 Changes Required to Drivers Written Before VMS Version 5.0

G.2.1 Address of the Driver’s Interrupt Service Routine in the DPT
In order to provide an optional method of servicing MicroVAX Q22–bus device
interrupts at the IPLs at which they are requested, the operating system now
defines several new symbolic offsets in the interrupt dispatch vector (VEC)
portion of the channel request block (CRB).

One of these symbolic offsets is significant to all device drivers. Prior to VMS
Version 5.0, device drivers initialized the location in the vector containing the
address of the driver’s interrupt service routine by referring explicitly to its
location (CRB$L_INTD+4). Digital now recommends that all device drivers refer
to this location using the symbolic offset CRB$L_INTD+VEC$L_ISR, as follows:

Old: DPT_STORE CRB,CRBL_INTD+4,D,LPINT_SERV_RTN

New: DPT_STORE CRB,CRB$L_INTD+VEC$L_ISR,D,LP$INT_SERV_RTN

To use the new symbols, you must include the $CRBDEF and $VECDEF structure
definition macros in the driver. All structure definition macros can be found in
SYS$LIBRARY:LIB.MLB.

G.2.2 Checking, Debiting, and Crediting a Process’s Byte Count Quota
Now the routines EXE$BUFFRQUOTA and EXE$BUFQUOPRC are replaced
with a set of eight new routines that manipulate a job’s byte count quota and
byte limit, optionally allocating a nonpaged pool buffer of the requested size. To
ensure proper synchronization, programs should use these routines and avoid
any direct manipulation of the nonpaged pool quota fields JIB$L_BYTCNT and
JIB$L_BYTLM).

Among the new routines are the following:

Routine Function

EXE$CREDIT_BYTCNT Returns credit to a job’s byte count quota

EXE$CREDIT_BYTCNT_BYTLM Returns credit to a job’s byte count quota and
byte count limit

EXE$DEBIT_BYTCNT Determines whether a job’s buffered byte count
quota usage permits the process to be granted
additional buffered I/O and, if so, adjusts the
job’s byte count quota

EXE$DEBIT_BYTCNT_NW Same function as EXE$DEBIT_BYTCNT, but
never places a process in a resource wait state
pending the return of sufficient quota

EXE$DEBIT_BYTCNT_BYTLM Determines whether a job’s buffered byte count
quota usage permits the process to be granted
additional buffered I/O and, if so, adjusts the
job’s byte count quota and byte count limit

EXE$DEBIT_BYTCNT_BYTLM_NW Same function as EXE$DEBIT_BYTCNT_
BYTLM, but never places a process in a
resource wait state pending sufficient quota

EXE$DEBIT_BYTCNT_ALO Same function as EXE$DEBIT_BYTCNT, but,
if quota checks succeed, allocates the requested
amount of pool

EXE$DEBIT_BYTCNT_BYTLM_ALO Same function as EXE$DEBIT_BYTCNT_
BYTLM, but, if quota checks succeed, allocates
the requested amount of pool

G–5

Multiprocessing Requirements on Kernel-Mode Code
G.2 Changes Required to Drivers Written Before VMS Version 5.0

Many drivers written prior to VMS Version 5.0 contain code sequences similar to
the following:

JSB G^EXE$BUFFRQUOTA ;Would buffer allocation
;exceed byte count quota?

BLBC R0,ERROR ;Branch if yes
JSB G^EXE$ALLOCBUF ;If not, allocate buffer
BLBC R0,ERROR ;Branch if error
MOVL PCB$L_JIB(R4),R5 ;Obtain job information

;block
SUBL2 R1,JIB$L_BYTCNT(R5) ;Decrement job’s byte count

;quota
.
.
.

The new routines allow you to simplify such code sequences. For instance,
a single routine, EXE$DEBIT_BYTCNT_ALO, checks and debits quotas and
allocates pool. When there is not enough quota available to service the request,
the routine restores the deducted amount and returns the error SS$_EXQUOTA
IN R0.

The preceding code example can be rewritten as follows:

JSB G^EXE$DEBIT_BYTCNT_ALO ;Check for quota violation,
;allocate buffer, decrement
;JIB byte count quota

BLBC R0,ERROR ;Branch if error
.
.
.

G.2.3 Referring to the Current PCB
The symbol SCH$GL_CURPCB is obsolete and should be replaced as follows:

• If the process’s P1 space is available, use the P1 space location CTL$GL_PCB.

• If the process’s P1 space is not available, use the FIND_CPU_DATA macro, as
follows:

FIND_CPU_DATA R0
MOVL CPU$L_CURPCB(R0),R1

The FIND_CPU_DATA macro obtains the virtual address of the per-CPU
database for the processor on which it executes. Code that issues the FIND_
CPU_DATA macro must adhere to the following rules:

It must be executing in kernel mode above IPL 2 when it invokes the
FIND_CPU_DATA macro.

It must take care to prevent rescheduling after issuing the macro as long
as the information returned by FIND_CPU_DATA is in use. It typically
does this by remaining at an IPL greater than 2.

G.2.4 Allocating System Page-Table Entries
The system routine LDR$ALLOC_PT replaces IOC$ALLOSPT (since Version
5.0) as the appropriate method for non-Digital-supplied VAXBI device drivers to
map a portion of a device’s node space to system virtual address space. See the
routines chapter in the OpenVMS VAX Device Support Reference Manual for a
full description of LDR$ALLOC_PT.

G–6

Multiprocessing Requirements on Kernel-Mode Code
G.2 Changes Required to Drivers Written Before VMS Version 5.0

G.2.5 Referring to a System Process Mailbox
An existing driver that refers to either the job controller’s mailbox or OPCOM’s
mailbox must be altered to use the new symbolic names that point to these
mailboxes. Usually, it is the driver’s interrupt service routine or timeout handling
routine that loads the address of the mailbox UCB into R3 and calls the system
routine EXE$SNDEVMSG, as follows.

MOVL G^SYS$AR_JOBCTLMB,R3 ;Set address of job controller
;mailbox

JSB G^EXE$SNDEVMSG ;Sent message to job con-
;troller

The new symbolic names actually refer to global pointers to the mailbox UCB
structures. They include the following:

Since VMS V5.0 Prior to VMS V5.0 Name

SYS$AR_JOBCTLMB SYS$GL_JOBCTLMB Job controller’s mailbox

SYS$AR_OPRMBX SYS$GL_OPRMBX OPCOM’s mailbox

G.2.6 Reassembling and Relinking the Driver
Because of changes in the definitions of data structures, the behavior of system
macros, the location of global symbols, and the contents of system images, it is
necessary to reassemble and relink non-Digital-supplied drivers regardless of
whether their contents have been modified.

To do so, reassemble your driver against SYS$LIBRARY:LIB.MLB. For example:

$ MACRO MYDRIVER.MAR+SYS$LIBRARY:LIB.MLB/LIBRARY

Relink your driver against the system global symbol table. If the driver consists
of several source files, you must specify the file that contains the driver prologue
table as the first file in the list. The linker options file must contain the statement
BASE=0. For example:

$ CREATE MYDRIVER.OPT
BASE=0

Ctrl/Z

$ LINK/NOTRACE MYDRIVER1[,MYDRIVER2,...],-
MYDRIVER.OPT/OPTIONS,-
SYS$SYSTEM:SYS.STB/SELECTIVE_SEARCH

The linker will report that the image has no transfer address. You may ignore
this message.

Once you have linked or relinked a driver, you should copy its image to the
SYS$LOADABLE_IMAGES or SYS$SYSTEM directory. The SYSGEN LOAD and
CONNECT commands first search for a driver in the SYS$LOADABLE_IMAGES
directory. If they do not find the driver, they then search the SYS$SYSTEM
directory.

G–7

Multiprocessing Requirements on Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a Multiprocessing System

G.3 Adapting Device Drivers to Run on a Multiprocessing System
The operating system now contains several new routines that enforce
synchronization in a symmetric multiprocessing (SMP) environment. Drivers do
not generally call these routines explicitly, but rather invoke system-supplied
macros that synchronize as appropriate to the processing environment. There are
only a few instances in which existing non-Digital-supplied drivers must change
to conform to the new synchronization mechanisms. This section outlines those
instances; Chapter 3 describes synchronization rules in greater detail.

G.3.1 Specifying the Fork Lock Index
To adapt a driver to execute properly in a multiprocessor environment, you must
replace all instances of UCB$B_FIPL (or FKB$B_FIPL) with UCB$B_FLCK (or
FKB$B_FLCK). In addition, you must replace the invocation of the DPT_STORE
macro that defined the driver’s fork IPL with one that defines the driver’s fork
lock index, as follows:

Old: DPT_STORE UCB,UCB$B_FIPL,B,8

New: DPT_STORE UCB,UCBB_FLCK,B,SPLC_IOLOCK8

To use the new symbol, include the $UCBDEF structure definition macro in the
driver. Fork lock (and other spinlock) indexes, such as SPL$C_IOLOCK8, are
defined by the $SPLCODDEF definition macro as invoked by DPTAB. Replace
fork IPLs with the corresponding fork lock index according to the following list:

IPL Fork Lock Index

8 SPL$C_IOLOCK8

9 SPL$C_IOLOCK9

10 SPL$C_IOLOCK10

11 SPL$C_IOLOCK11

All structure definition macros can be found in SYS$LIBRARY:LIB.MLB.

Drivers rarely need to obtain a fork lock explicitly. The operating system places
the driver fork process into execution (originally by EXE$INSIOQ and, by
implication, by IOC$REQCOM) at fork IPL holding the appropriate fork lock. In
addition, the fork dispatcher obtains the fork lock associated with the driver fork
process before it restores its context and resumes its execution.

Note that, if a driver fork process is not placed into execution according to
one of these means, it must obtain the fork lock itself. (See the discussion in
Section G.3.6.2.)

G.3.2 Synchronizing Access to the Device Database with the Interrupt Service
Routine

The device database consists of device and adapter registers, plus driver-specific
UCB fields that record the status of a device. As these locations are primarily
accessed by the driver’s interrupt service routine, the driver fork process must
take special care to synchronize with the interrupt service routine whenever it
accesses them.

G–8

Multiprocessing Requirements on Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a Multiprocessing System

G.3.2.1 Synchronizing at Device IPL
Prior to VMS Version 5.0, the operating system used the DSBINT macro to
synchronize with the interrupt service routine at device IPL (UCB$B_DIPL), as
follows:

DSBINT UCB$B_DIPL(R5) ;Raise IPL to device IPL
;Save current IPL on stack

;Access device data
.
.
.
ENBINT ;Restore saved IPL

To run correctly, this code should be modified so that it obtains the appropriate
device lock, as follows:

DEVICELOCK - ;Secure device lock
LOCKADDR=UCB$L_DLCK(R5),- ;(also raises IPL to device

; IPL)
SAVIPL=-(SP) ;Save current IPL on stack

;Access device data
.
.
.
DEVICEUNLOCK - ;Release device lock

LOCKADDR=UCB$L_DLCK(R5),-
NEWIPL=(SP)+ ;Restore old IPL from stack

G.3.2.2 Raising IPL to IPL$_POWER
If the device driver start-I/O routine (or fork process) raises IPL to IPL 31
(IPL$_POWER) to check for the occurrence of a power failure and to access
device registers, it must ensure that it has explicitly synchronized with the
device’s database at device IPL. This means that the routine must first obtain the
appropriate device lock, using the DEVICELOCK macro.

Because versions of the operating system prior to VMS Version 5.0 allowed
only one processor, even in a VAX multiprocessor system, to execute kernel-
mode code, the following code in a driver’s start-I/O routine provided adequate
synchronization:

DSBINT ;Raise IPL to 31
;Save current IPL on stack

BBC #UCB$V_POWER,-
UCB$W_STS(R5),30$;If clear, no power failure

;Service power failure
.
.
.
;Branch

30$: ;Start device
.
.
.
WFIKPCH

To run correctly, the preceding code should be replaced with the following:

G–9

Multiprocessing Requirements on Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a Multiprocessing System

DEVICELOCK - ;Secure device lock
LOCKADDR=UCB$L_DLCK(R5),- ;(also raises IPL to

; device IPL)
SAVIPL=-(SP) ;Save current IPL on stack

SETIPL #IPL$_POWER,- ;Raise IPL to 31
ENVIRON=UNIPROCESSOR ;Avoid assembly-time warning

BBC #UCB$V_POWER, -
UCB$W_STS(R5),30$;If clear, no power failure

;Service power failure
.
.
.
DEVICEUNLOCK - ;Release device lock

LOCKADDR=UCB$L_DLCK(R5),-
NEWIPL=(SP)+ ;Restore old IPL from stack

.

.

.
;Branch

30$: ;Start device
.
.
.
WFIKPCH ;Wait for interrupt

Here, the DEVICELOCK macro achieves synchronized systemwide access to the
device registers. The SETIPL macro then synchronizes the local processor against
its own power failure interrupt event. The code does not need to synchronize
systemwide against power failure events, because its interest is truly limited to
the local processor.

Note that the WFIKPCH macro releases the last acquisition of the device lock
by the executing processor, restoring the old IPL prior to returning control to the
caller’s caller.

Refer to Chapters 3 and 8 for additional information on the synchronization rules
imposed on a driver’s start-I/O routine.

G.3.2.3 Synchronization Within the Interrupt Service Routine
As soon as it obtains the device unit’s UCB in R5, the driver’s interrupt service
routine must issue the DEVICELOCK macro to synchronize with other code
threads (such as the start-I/O routine and the timeout handling routine) that may
access the device database at device IPL holding the device lock. Because the
interrupt service routine is automatically called at device IPL, the DEVICELOCK
macro invocation should specify condition=NOSETIPL. To save time, the macro
should also specify preserve=NO so that code to preserve R0 is not executed.

For example:

DEVICELOCK - ;Obtain device lock
LOCKADDR=UCB$L_DLCK(R5),-
CONDITION=NOSETIPL,- ;Do not bother to set IPL
PRESERVE=NO ;Do not save R0

Similarly, the interrupt service routine should release the device lock when it no
longer needs to access the device database. Generally, this is immediately after
the routine regains control from the driver fork process and before it restores the
saved registers and issues an REI instruction, as follows:

G–10

Multiprocessing Requirements on Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a Multiprocessing System

DEVICEUNLOCK - ;Release device lock
LOCKADDR=UCB$L_DLCK(R5),-
PRESERVE=NO ;Do not save R0

POPR #^M<R0,R1,R2,R3,R4,R5> ;Restore registers
REI ;Exit from interrupt

Refer to Chapters 3 and 9 for additional information on the synchronization rules
imposed on a driver’s interrupt service routine.

G.3.3 Controller and Unit Initialization Routines
As discussed in Section 11.1, a device driver’s controller and unit initialization
routines are called during driver loading and reloading and during system
recovery from a power failure.

In a symmetrical multiprocessing environment, any logic in a driver’s controller
initialization routine or unit initialization routine that takes special action to
service a power failure must adhere to the following rules:

• It cannot acquire any spinlocks. Controller and unit initialization routines
are called at IPL 31 during power failure recovery to reinitialize I/O devices
before the processors are allowed to proceed with execution at lower IPLs.
Because processors may have been holding spinlocks at the time of the
power failure, they will not be able to release them until after they resume
execution. As a result, spinlocks are not available to controller and unit
initialization routines.

• It cannot perform any operation that requires the intervention of other
processors in the system.

G.3.3.1 Permanently Allocating Map Registers and Buffered Data Paths
Because the map registers and buffered data paths of a UNIBUS adapter are
shared by the devices residing on the bus, they are synchronized at a single fork
IPL and, in a multiprocessing system, by a single fork lock.

Prior to VMS Version 5.0, a unit initialization routine that permanently allocated
map registers or a buffered data path could do so at IPL$_POWER (its calling
IPL). Now, however, the map register and data path allocation routines require
that the appropriate fork lock be held at the time of their calling. As a result, a
unit initialization routine that permanently allocates these resources must fork
before calling the allocation routine. The system fork dispatcher ensures that,
when execution of the routine resumes, it is executing at fork IPL holding the
fork lock.

The consequences of forking in a unit initialization routine are discussed at
length in Section 11.1.5. Refer to Sections 14.2.2.2 and 14.2.1.2 for additional
information on permanently allocating map registers and buffered data paths,
respectively.

G.3.4 Timeout Handling Routine
In a multiprocessing environment, the software timeout interrupt service
routine calls a driver’s timeout handling routine at device IPL, holding both
the appropriate fork lock and device lock.

Previous editions of this manual have suggested that a timeout handling routine
can explicitly lower its IPL from device IPL to fork IPL using a SETIPL
instruction. This action assumed that the thread of code that resulted in the

G–11

Multiprocessing Requirements on Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a Multiprocessing System

call to the routine originated in a software interrupt granted at IPL 7 1 (IPL$_
TIMERFORK).

In a multiprocessing system, such a forced lowering of IPL would break
synchronization. In addition, similar assumptions about the origin of the calling
code thread cannot be guaranteed. Instead, those timeout handling routines that
must lower IPL should issue the IOFORK macro to fork.

See Section 10.2 for additional information on the timeout handling routine.

G.3.5 General Methods for Synchronizing Kernel-Mode Code
In addition to the changes in the driver routines explicitly discussed in Sections
G.3.2 and G.3.3, there may be other alterations required in device drivers and
other kernel-mode code before they can execute successfully in a symmetric
multiprocessing environment. This section provides some general discussion
of these changes. You can find additional information on multiprocessing
synchronization in Chapter 3.

G.3.5.1 Using the Spinlock Synchronization Macros
You must adapt most kernel-mode code that raises or lowers IPL so that it obtains
appropriate synchronization in a multiprocessing environment. Determine these
locations by searching for instances of the system macros SETIPL, ENBINT,
and DSBINT or for an instruction such as MTPR x, PR$_IPL (where x is an
IPL value). Do not change those instances of the SETIPL and DSBINT macros
intended to achieve synchronization only on the local processor. After careful
inspection proves that the macro in question is intended to achieve local processor
synchronization only, add the argument environ=UNIPROCESSOR to their
invocations.

You should replace most instances of these macros with a LOCK, UNLOCK,
FORKLOCK, FORKUNLOCK, DEVICELOCK, or DEVICEUNLOCK macro, as
shown in Table G–3. You can substitute the appropriate usage of any of these
macros wherever Table G–3 lists the LOCK and UNLOCK macros. The formats
of the spinlock synchronization macros are fully described in OpenVMS VAX
Device Support Reference Manual. Table 3–3 lists the system spinlocks.

Table G–3 Converting IPL Synchronization to Spinlock Synchronization

Existing Macro Function New Macro Function

SETIPL ipl
(where ipl is > 2)

Raise IPL LOCK lockname,
lockipl

Raise IPL, acquire spinlock

SETIPL ipl
(where ipl is > 2)

Lower IPL from an IPL
greater than 2

UNLOCK lockname,
lockipl

Release spinlock, lower IPL

SETIPL ipl
(where ipl is < 3)

Lower IPL from an IPL
less than 3

SETIPL ipl Lower IPL

DSBINT ipl Save current IPL and
raise to specified IPL

LOCK lockname,
lockipl, savipl

Save current IPL, raise
IPL, acquire spinlock

ENBINT Lower IPL and restore
saved IPL

UNLOCK lockname,
lockipl

Release spinlock, lower IPL

1 For OpenVMS VAX Version 6.0, the fork routine runs at IPL 8. See Section 3.1.3.4 for
detail.

G–12

Multiprocessing Requirements on Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a Multiprocessing System

G.3.5.2 Interlocking Access to Data Cells and Queues
The operating system now assigns spinlock protection to system resources as
described in Table 3–3. The system time and timer queue are managed under the
TIMER and HWCLK spinlocks, as detailed in Section 3.1.3.

In a multiprocessing environment, any thread of code that manipulates bit
fields at different IPLs without spinlock protection must do so with interlocked
instructions (for example, BBCCI and BBSSI).1 Instances of the INSQUE
and REMQUE instructions may need to be changed to use the INSQTI and
REMQHI instructions, respectively, if they are issued to manipulate a queue at
multiple IPLs. Certain cells, such as PCB$W_ASTCNT, must be incremented and
decremented using an ADAWI instruction. INCx and DECx instructions are not
interlocked in a multiprocessing system.

Spinlocks explicitly protect various system queues and lists. For example, the
AST queue in the process control block (PCB$L_ASTQFL) is synchronized by the
SCHED spinlock and the variable region of nonpaged pool is protected by the
POOL spinlock.

A fork lock implicitly protects the following adapter resource wait queues (at
the specified listheads) at fork IPL, as long as the drivers for all devices on the
adapter that require the resources use the same fork lock.

Listhead

Since VMS V5.0
Prior to VMS
V5.0 Name

UCB$L_IOQFL Same Pending-I/O queue

ADP$L_DPQFL Same UNIBUS buffered data path wait queue

ADP$L_MRQFL Same UNIBUS/Q22–bus map register wait queue

ADP$L_MR2QFL Same Q22–bus alternate map register wait queue

Because a single spinlock cannot control access to list items that must be
accessed by code threads executing at different IPLs, the operating system
now provides either a processor-specific queue or a self-relative queue for such
items. The following queues (at the specified listheads) are now, processor-
specific queues whose forward and backward links are contained in the per-CPU
database (described in the OpenVMS VAX Device Support Reference Manual data
structures).

Listhead

Since VMS V5.0 Prior to VMS V5.0 Name

CPU$Q_SWIQFL SWI$GL_FQFL Software interrupt queue listhead

IOC$GQ_POSTIQ IOC$GL_PSFL I/O postprocessing queue

The following queues are now self-relative queues whose forward and backward
links are contained in the data area of the system loadable image SYSTEM_
PRIMITIVES.EXE.2 All system macros and routines that access these queues

1 It is illegal to intermix interlocked and noninterlocked instructions that refer to the
same bit: for instance BBCC and BBCCI. Should any noninterlocked instruction refer to
the same bit, the bit is not interlocked.

2 System cell EXE$AR_SYSTEM_PRIMITIVES contains the address of this image; the
macro $NPOOL_DATADEF in SYS$SYSTEM:LIB.MLB defines offsets into its data area.

G–13

Multiprocessing Requirements on Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a Multiprocessing System

have been converted to access them with the INSQTI and REMQHI interlocked
instructions.

G.3.6 Miscellaneous Conversion Tasks
This section describes those activities performed by some kernel-mode code
threads that should be examined in the course of converting them to run in a
multiprocessing environment.

G.3.6.1 Reading the System Time
As discussed in Section 3.1.3, because EXE$GQ_SYSTIME can only be changed
or compared with multiple instructions, any code thread in a multiprocessing
system that must obtain a consistent copy of the quadword must first acquire
proper synchronization.

The operating system now supplies the READ_SYSTIME macro to simplify this
procedure. It has the following format, where dst is the quadword destination
where the macro returns the system time:

READ_SYSTIME dst

Use of the READ_SYSTIME macro is subject to the following restrictions:

• IPL must be less than 23.

• The processor must be executing in kernel mode.

• When using the macro within pageable program sections executing at IPL 2
and below, you must ensure that the pages involved are locked in memory.

G.3.6.2 Calling the Driver Fork Process from a TQE
Whenever the operating system places a driver fork process into execution, it
ensures that it is synchronized with other processes at that fork level. In other
words, if it is generated by the conclusion of I/O preprocessing (EXE$INSIOQ),
the completion of a previous I/O request on a device unit (IOC$REQCOM), or the
operation of the fork dispatcher, the driver fork process is placed into execution at
the correct fork IPL, holding the corresponding fork lock.

As an example, consider a driver fork process activated by a timer wakeup
associated with a timer queue element (TQE) previously queued by the driver.
The software timer interrupt service routine does raise IPL to IPL 8 (IPL$_
SYNCH) and obtain certain spinlocks prior to dequeuing the TQE and placing it
into execution, but it does not obtain the driver’s fork lock. Thus, even though
the driver’s fork IPL may be IPL$_SYNCH, the driver will not be properly
synchronized at fork level unless it first obtains the appropriate fork lock.

G.3.6.3 Invalidating Translation Buffer Entries
Prior to VMS Version 5.0, privileged code that changed a valid page-table entry
(PTE) could flush the stale PTE from the processor’s translation buffer by using
the INVALID macro or writing directly to the Translation Buffer Invalidate
Single (TBIS) processor register. Similarly, it could invalidate the entire
translation buffer by using the INVALID macro or writing to the Translation
Buffer Invalidate All (TBIA) processor register.

In a symmetric multiprocessing environment, processors must not use previously
buffered PTE contents while another processor is changing that PTE. Once the
PTE has been changed, other processors must flush the stale translation buffer
entry for the PTE. To accomplish this, the INVALID macro has been replaced
with the INVALIDATE_TB macro.

G–14

Multiprocessing Requirements on Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a Multiprocessing System

The INVALIDATE_TB macro flushes a single PTE or all PTEs from the processor
translation buffers in either a VAX uniprocessor or multiprocessor system. In
updating privileged code written prior to VMS Version 5.0, you must replace
any instances of an INVALID macro or of an MTPR instruction to PR$_TBIS or
PR$_TBIA with a suitable invocation of the INVALIDATE_TB macro.

The OpenVMS VAX Device Support Reference Manual contains a description of
the INVALIDATE_TB macro.

G.3.6.4 Unsupported Use of the IRP
The multiprocessing code employs a portion of the IRP (the 24 bytes following
IRP$L_KEYDESC), previously used only as a fork block by the system disk and
tape class drivers, to effect the transfer of an I/O request from a processor with
no access to the device to another processor that does have access.

A driver that uses this portion of the IRP to store data can lose this data when
the system I/O initiation routine (IOC$INITIATE) attempts to transfer the
request to the driver’s start-I/O routine. System I/O initiation occurs when an
FDT routine calls EXE$QIODRVPKT or when the driver issues the REQCOM
macro to complete the current I/O request.

G.3.6.5 Poor Man’s Lockdown
Certain privileged code, written prior to VMS Version 5.0, utilizes a technique,
commonly known as ‘‘poor man’s lockdown,’’ whereby one or two pages of code are
locked into a process or system working set as a side effect of elevating IPL. Such
code has one of the following forms:

ASSUME 10$-. LE 511 ; Check for contiguity of pages
SETIPL 10$
.
.
.
;Code to be locked into memory
.
.
.
RSB

10$: .LONG IPL$xxxx

The effect of this coding technique is that, because the system must determine
the value of the argument to the SETIPL macro from location 10$, it must fault
into memory the page in which 10$ resides. As a result, before the code actually
elevates IPL, the pages in which the SETIPL macro and 10$ reside will become
memory-resident. In this way, the code can avoid a page fault while executing
the code between the SETIPL and 10$ at elevated IPL. The ASSUME macro
guarantees that the pages to be faulted are contiguous.

This technique has several limitations:

• It cannot lock more than two virtually contiguous pages.

• Beginning with VMS Version 5.0, it is only useful in locking process pages,
not system pages. In a multiprocessing system, a page in the system working
set could be faulted in by one processor, only to be removed from the system
working set by another processor.

To lock system pages, you must use the LOCK_SYSTEM_PAGES and
UNLOCK_SYSTEM_PAGES macros as described in the OpenVMS VAX
Device Support Reference Manual. (Note that you cannot use these macros to
lock per-process pages in memory.)

G–15

Multiprocessing Requirements on Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a Multiprocessing System

• Prior to VMS Version 5.0, IPLs were the means by which system tasks were
prioritized and access to system data was synchronized. Code executing at an
elevated IPL would effectively block other code in the system from executing
at or below that IPL. Now with symmetric multiprocessing, merely raising
IPL does not synchronize systemwide activity nor enforce orderly access to
data.

Sometimes it may only be necessary to block tasks or synchronize activity
on the local processor. In these instances, raising IPL provides sufficient
synchronization and ‘‘poor man’s lockdown’’ behaves as it did before VMS
Version 5.0. For instance, use of ‘‘poor man’s lockdown’’ to lock a code
segment executing at IPL$_RESCHED effectively prevents process deletion
and rescheduling while the code executes at a nonpageable IPL. However,
if a locked code segment must access system data structures at an elevated
IPL—for instance, at IPL$_SYNCH—it must obtain the spinlock associated
with the database by using one of the spinlock synchronization macros
(LOCK, FORKLOCK, or DEVICELOCK). After accessing the data, it must
release the acquired spinlock by invoking UNLOCK, FORKUNLOCK, or
DEVICEUNLOCK.

G.3.7 Troubleshooting a Device Driver in a Multiprocessing System
If the full-checking synchronization image has been loaded into memory, the
spinlock acquisition and releasing routines perform certain activities that aid in
the debugging and tuning of a multiprocessing system. These activities include
the following:

• Enforcement of the spinlock ranking and IPL requirements. The means
by which the multiprocessing synchronization routines accomplish this are
discussed in Section G.3.7.1.

• Recording, for each spinlock, the last eight PCs that acquired or released
the spinlock. These PCs are located at offset SPL$L_OWN_PC_VEC in
the spinlock data structure (SPL). You can use the SDA command SHOW
SPINLOCKS/FULL to display the contents of the PC list.

• Tallying, for each spinlock, the number of successful acquisitions and the
number of failed acquisitions in SPL$Q_ACQ_COUNT and SPL$L_BUSY_
WAITS, respectively.

Section G.1.1 explains the settings of the MULTIPROCESSING system parameter
that produce the full-checking synchronization environment.

The full-checking synchronization environment contains a mechanism
for producing bugcheck messages that describe the detection of serious
synchronization problems in the system. In most instances, these problems
are caused by a non-Digital-supplied device driver that does not adhere to
multiprocessing synchronization rules.

This section describes the bugchecks that are possible in a full-checking
synchronization environment and the SDA commands that aid in the
investigation of a multiprocessing system failure. It concludes with a brief
description of changes to the XDELTA debugger since VMS Version 5.0.

G–16

Multiprocessing Requirements on Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a Multiprocessing System

G.3.7.1 Multiprocessing Bugchecks
In order to obtain a spinlock or fork lock, a processor must be executing at an
IPL no higher than the lock’s synchronization IPL (SPL$B_IPL). Additionally,
the processor cannot obtain a spinlock or fork lock if the lock’s rank (SPL$B_
RANK) is lower than that of any locks the processor currently holds. To release a
spinlock, a processor must be executing at or above the IPL at which it originally
acquired the lock. However, a processor can release spinlocks in any order
of rank. (See Table 3–3 for additional information on spinlock IPL and rank
requirements.)

In a full-checking synchronization environment, violation of spinlock
synchronization will produce the following bugchecks:

• SPLIPLHIGH–A processor has attempted to acquire a spin lock at an
IPL higher than the IPL associated with spinlock synchronization (SPL$B_
IPL). SMP$ACQUIRE (called by the LOCK and FORKLOCK macros with
condition=NOSETIPL not specified) signals this bugcheck.

A processor has attempted to acquire a device lock—not already owned by
the acquiring processor—at an IPL higher than the IPL associated with
device lock synchronization (SPL$B_IPL). SMP$ACQUIREL (called by the
DEVICELOCK macro with condition=NOSETIPL not set) signals this
bugcheck.

• SPLIPLLOW–A processor has attempted to unconditionally or conditionally
release a spinlock or device lock at an IPL lower than the IPL at which
it originally acquired it. SMP$RELEASE and SMP$RESTORE (called
by the UNLOCK and FORKUNLOCK macros) and SMP$RELEASEL or
SMP$RESTOREL (called by the DEVICEUNLOCK macro) signal this
bugcheck.

• SPLACQERR–A processor has attempted to acquire a spin lock while
holding a higher ranked spinlock. SMP$ACQUIRE, SMP$ACQUIREL, and
SMP$ACQNOIPL (called by the LOCK, FORKLOCK, and DEVICELOCK
macros) signal this bugcheck.

• SPLRELERR–An attempt has been made to completely release a spinlock
not owned by the releasing processor. SMP$RELEASE and SMP$RELEASEL
(called by the UNLOCK, FORKUNLOCK, and DEVICEUNLOCK macros)
signal this bugcheck.

• SPLRSTERR–An attempt has been made to conditionally release a spinlock
not owned by the releasing processor. SMP$RESTORE and SMP$RESTOREL
(called by the UNLOCK, FORKUNLOCK, and DEVICEUNLOCK macros
when condition=RESTORE is specified) signal this bugcheck.

G.3.7.2 Analyzing a Multiprocessing System Failure
When invoked to analyze either a crash dump or a running system, the OpenVMS
VAX System Dump Analyzer (SDA) establishes a default context for itself from
which it interprets certain commands.

When the subject of analysis is a uniprocessing system, SDA’s context is solely
process context. That is, SDA can interpret its process-specific commands in
the context of either the process current on the uniprocessor or some other process
in some other scheduling state. When initially invoked to analyze a crash dump,
SDA’s process context defaults to the process that was current at the time of the
crash. When invoked to analyze a running system, process context is initially
that of the current process: that is, the one executing SDA. Change SDA’s process
context by entering commands in any of the following forms:

G–17

Multiprocessing Requirements on Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a Multiprocessing System

SET PROCESS/INDEX=nn
SET PROCESS name
SHOW PROCESS/INDEX=nn

When invoked to analyze a crash dump from a multiprocessing system with
more than one active CPU, SDA maintains a second dimension of context—its
CPU context—that allows it to display certain processor-specific information,
such as the reason for the bugcheck exception, the currently executing process,
the current IPL, the contents of processor-specific registers, the interrupt stack
pointer (ISP), and the spinlocks owned by the processor. When invoked to analyze
a multiprocessor’s crash dump, the SDA CPU context defaults to that of the
processor that induced the system failure.

Note

When you use SDA to analyze a running system, CPU context is not
accessible to SDA. As a result, the SET CPU and SHOW CPU commands
are not permitted.

Change the SDA CPU context by using any of the following commands:

SET CPU cpu-id
SHOW CPU cpu-id
SHOW CRASH

Changing CPU context involves an implicit change in process context in one of
the following ways:

• If there is a current process on the CPU made current, SDA process context
is changed to that of the CPU’s current process.

• If there is no current process on the CPU made current, SDA process context
is undefined and no process-specific information is available until SDA process
context is set to that of a specific process.

Changing process context can involve a switch of CPU context as well. For
instance, if you enter a SET PROCESS command for a process that is current on
another CPU, SDA will automatically change its CPU context to that of the CPU
on which the process is current. The following commands can have this effect if
the name or index number (nn) refers to a current process:

SET PROCESS name
SET PROCESS/INDEX=nn
SHOW PROCESS name
SHOW PROCESS/INDEX=nn

G.3.7.2.1 Investigating the Status of Spinlocks SDA now includes the
command SHOW SPINLOCKS. The SHOW SPINLOCKS command displays
various levels of information about system spinlocks, fork locks, and device locks
that help investigations of system failures caused by synchronization violations.

For each spinlock, fork lock, or device lock in the system, SHOW SPINLOCKS
provides the following information:

• Name of the spinlock (or device name for the device lock)

• Address of the spinlock (SPL) structure

• The owner CPU’s CPU ID

G–18

Multiprocessing Requirements on Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a Multiprocessing System

• IPL at which allocation of the lock is synchronized on a local processor

• Number of nested acquisitions of the spinlock by the processor (depth of
ownership)

• Rank of the spinlock

• Number of processors waiting to obtain the spinlock

• Spinlock index

SHOW SPINLOCKS/BRIEF produces a condensed display of this same
information.

If the VAX system under analysis had been executing with full-checking
synchronization enabled (that is, with the MULTIPROCESSING system
parameter set to 1 or 2), SHOW SPINLOCKS/FULL adds to the spinlock display
the last eight PCs at which the lock was acquired or released.

G.3.7.3 Using XDELTA on SMP Systems
Only one processor in a multiprocessing environment can be in XDELTA at a
time. If one processor attempts to enter XDELTA while another processor is
using XDELTA, it waits until the other processor has exited XDELTA. If the
processor using XDELTA sets a breakpoint, other SMP processors are aware
of the breakpoint. Therefore, when the code with the XDELTA breakpoint is
executed on another processor, that processor will stop at the specified breakpoint
and wait to enter XDELTA.

XDELTA uses its own system control block (SCB) to direct all interrupt handling
to an error handling routine in XDELTA. Therefore, an error encountered by
XDELTA will not affect any of the other processors which share the standard
system SCB.

G–19

Glossary

The following is a glossary of terms used in the OpenVMS VAX Device Support
Manual.

ACF

See configuration control block.

ACP

See ancillary control process.

active set

In a symmetric multiprocessing system, those processors that have been
bootstrapped into the system, have undergone initialization, and are capable
of scheduling and executing processes. Together, the primary processor and all
secondary processors make up a system’s active set. Compare with available set.

adapter control block (ADP)

A structure in the I/O database that describes an I/O adapter (or VAXBI device)
and its resources.

ADP

See adapter control block.

AEN

See asynchronous event notification.

affinity

In a symmetric multiprocessing system, a close association of a device or a
process with a specific processor or set of processors in the system. See device
affinity and process affinity.

allocate a device

To reserve a particular device unit for exclusive use. A user process can allocate
a device only when that device is not allocated by any other process.

ancillary control process (ACP)

A process that acts as an interface between user software and an I/O driver. An
ACP provides functions supplemental to those performed by the driver, such as
file and directory management.

Examples of ACPs are the magnetic tape ACP (MTAACP) and the network ACP
(NETACP).

Glossary–1

ASMP

See asymmetric multiprocessing.

assign a channel

To establish the necessary software linkage between a user process and a device
unit before a user process can communicate with that device. A user process
requests the system to assign a channel and the system returns a channel
number.

AST

See asynchronous system trap.

ASTLVL

See asynchronous system trap level.

asymmetric multiprocessing (ASMP)

A multiprocessing configuration in which the processors are not equal in
their ability to execute operating system code. In general, a single processor
is designated as the primary, or master, processor; other processors are the
slaves. The slave processors are limited to performing certain tasks, whereas
the master processor can perform all system tasks. Contrast with symmetric
multiprocessing.

asynchronous event notification (AEN)

SCSI protocol allowing a SCSI device that is usually a target to inform the
processor (usually the initiator) that an event has occurred asynchronously with
respect to the processor’s current stream of execution.

asynchronous system trap (AST)

A software-simulated interrupt that passes control to a user-defined routine.
ASTs enable a user process to be notified of the occurrence of a specific event
asynchronously with respect to the execution of the user process.

If a user process has defined an AST routine for an event, the system interrupts
the process and executes the AST routine when that event occurs. When the AST
routine exits, the system resumes execution of the process at the point where it
was interrupted.

asynchronous system trap level (ASTLVL)

A value kept in an internal processor register that is the highest access mode
for which an AST is pending. The AST does not occur until the current access
mode drops in privilege (rises in numeric value) to a value greater than or equal
to ASTLVL. Thus, an AST for an access mode will not be delivered while the
processor is executing in a more privileged access mode.

attached processor

See secondary processor.

available set

In a symmetric multiprocessing system, those processors that have passed the
system’s power-on hardware diagnostics and may or may not be actively involved
in the system. The available set includes the active set. Compare with active set.

Glossary–2

backplane interconnect

An internal processor bus that allows I/O device controllers to communicate
with main memory and the central processor. These I/O controllers may reside
on the same bus as memory and the central processor (for instance, in a VAX
82x0/83x0 system), or they may be on a separate bus entirely (for instance, in a
VAX 8600/8650 system). In the latter case, an I/O adapter enables and controls
the communications between the I/O bus and the processor and memory.

The backplane interconnect is called the synchronous backplane interconnect
(SBI) in the VAX–11/780 and VAX 8600/8650 systems, the CPU-to-memory
interconnect (CMI) in the VAX–11/750 system, the VAXBI in the VAX 82x0/83x0
systems, and the memory interconnect (NMI or XMI) in VAX 85x0/8700/88x0
and VAX 6000 series systems. The MicroVAX processors use the Q22–bus as a
backplane.

base register

A general register that contains the base address (the address of the first entry)
of a list, table, array, or other data structure.

buffered data path

A UNIBUS adapter data path that transfers several bytes of data in a single
backplane-interconnect transfer.

buffered I/O

An I/O operation, such as terminal or mailbox I/O, in which an intermediate
buffer from the system’s buffer pool is used instead of a buffer in process space.
See also direct I/O.

bugcheck

The operating system’s diagnostic that detects and reports internal
inconsistencies. If the system can continue running, it declares a nonfatal
bugcheck and reports it in an error log entry. A serious error results in a fatal
bugcheck. As a result of a fatal bugcheck, the system shuts itself down in an
orderly fashion.

busy wait

See spin wait.

CALL instructions

The processor instructions CALLG (Call Procedure with General Argument List)
and CALLS (Call Procedure with Stack Argument List).

capability

In a symmetric multiprocessing environment, an attribute of a single processor
or set of processors. The capabilities required by a given process determine the
set of processors on which it can be scheduled. For instance, the system routine
that maintains the system time can execute only on the processor that has the
timekeeper capability.

CCB

See channel control block.

Glossary–3

channel

A logical path connecting a user process to a physical device unit. A user process
requests the operating system to assign a channel to a device so the process can
communicate with that device. See also controller data channel.

channel control block (CCB)

A structure in the I/O database maintained by the Assign-I/O-Channel system
service to describe the device unit to which a channel is assigned.

channel request block (CRB)

A structure in the I/O database that describes the activity on a particular
controller. The CRB for a controller contains pointers to the queue of drivers
waiting to access a device through the controller.

class driver

See SCSI class driver.

command descriptor block

Structure created by a SCSI class driver (or an application using the generic
SCSI class driver) in order to initiate a request of a device on the SCSI bus.

configuration control block (ACF)

A structure in the I/O database used by the autoconfiguration facility of the
System Generation Utility to describe the device it is adding to the system. The
information stored in the ACF might be useful to a device driver’s unit delivery
routine.

configuration register

A control and status register for an I/O adapter (for example, a UNIBUS
adapter). It resides in the adapter’s I/O space.

connection

Logical link between a SCSI class driver and a device on the SCSI bus, involving
the binding of the class driver to the SCSI port driver. The connection allows the
driver to issue commands to the SCSI device.

The class driver invokes the SPI$CONNECT macro to perform this linkage. A
connection lasts throughout the run-time life of a system; a SCSI class driver
should never need to break a connection.

connect-to-interrupt

A function by which a process connects to a device interrupt vector. To perform a
connect-to-interrupt, the process must map to the physical pages in the I/O space
that contain the vector.

console

The manual control unit integrated into the central processor. The console
includes a serial-line interface connected to a hardcopy terminal. This enables
the operator to start and stop the system, monitor system operation, and run
diagnostic programs.

console terminal

The terminal connected to the central processor’s console.

Glossary–4

context

The environment of an activity. See also process context, hardware context, and
software context.

control and status register (CSR)

A control and status register for a device or controller. It resides in the
processor’s I/O space.

controller data channel

A logical path to which the driver of a device that shares a controller must gain
access before the driver can use the controller to activate a device.

control register access mailbox (CRAM)

A hardware- and software-defined data structure containing information
describing a remote bus transaction.

CRAM

See control register access mailbox.

CRB

See channel request block.

CSR

See control and status register.

database

A collection of related data structures; all the occurrences of data described by a
database management system.

data structure

Any table, list, array, queue, or tree whose format and access conventions are
well defined for reference by one or more images.

DDB

See device data block.

DDT

See driver dispatch table.

device affinity

In a symmetric multiprocessing system, a close association of a device with a
specific processor or set of processors in the system. There are three dimensions
to device affinity in a system. First, physical connectivity describes those devices
that are directly accessible only to the primary processor or to all processors.
Secondly, affinity is a software mechanism that defines those processors that can
initiate an I/O operation on the device. Finally, interruptibility describes the set
of processors that can receive interrupts from a device.

device data block (DDB)

A structure in the I/O database that identifies the generic device/controller name
and driver name for a set of devices that share the same controller.

Glossary–5

device driver

The set of instructions and tables that handles physical I/O operations to a
device.

device ID

See SCSI device ID.

device interrupt

An interrupt received on interrupt priority levels 20 through 23. Device
interrupts can be requested only by devices, controllers, and memories.

device lock

In a symmetric multiprocessing system, a dynamic spinlock the ownership of
which synchronizes device-specific code that executes at device IPL. A device lock
is associated with each adapter or controller in the system. See spinlock.

device register

A location in controller logic used to request device functions (such as I/O
transfers) and/or report status.

device unit

One device and its controlling logic (for example, a disk drive or terminal). Some
controllers can have several device units connected to a single controller (for
example, mass-storage controllers).

diagnostic program

A program that tests hardware, firmware, peripherals logic, or memory, and that
reports any faults it detects.

direct data path

A UNIBUS adapter data path that transfers several bytes of data in a single
backplane-interconnect transfer.

direct I/O

An I/O operation in which the operating system locks the pages containing the
associated buffer in physical memory for the duration of the I/O operation. The
I/O transfer takes place directly from the process’s buffer. Contrast with the
system buffered I/O.

direct-memory-access (DMA) transfer

The type of I/O transfer by which a device controller accesses memory directly
and, as a result, can transfer a large amount of data without requesting
a processor interrupt after each of the smaller amounts. Contrast with
programmed-I/O (PIO) transfer.

DPT

See driver prologue table.

drive

The electromechanical unit of a mass storage device on which a recording
medium (disk cartridge, disk pack, or magnetic tape reel) is mounted.

Glossary–6

driver dispatch table (DDT)

A table in a driver that lists the addresses of the entry points of standard driver
routines and the sizes of diagnostic and error message buffers for the device.

driver prologue table (DPT)

A table in a driver that describes the driver and the type of device it controls to
the system procedure that loads drivers into the system.

dynamic load balancing

A method of work distribution in which the operating system ensures that
the system work load is evenly distributed among the processors. Dynamic
load balancing in a symmetric multiprocessing system is a direct effect of
the implementation of the scheduler. In a multiprocessing system, processors
independently and continually look for processes to execute from a common pool
of such processes.

ECC

Error-Correction Code.

error logger

A system process that empties the error-logging buffers and writes the error
messages into the error file. Errors logged by the system include memory errors,
device errors and timeouts, and interrupts with invalid vector addresses.

exception

An event detected by the hardware or software (other than an interrupt or jump,
branch, case, or call instruction) that changes the normal flow of instruction
execution.

An exception is always caused by the execution of an instruction or set of
instructions (whereas an interrupt is caused by an activity in the system that is
independent of the current instruction).

There are three types of hardware exceptions: traps, faults, and aborts.
Examples are attempts to execute a privileged or reserved instruction, trace
traps, page faults, compatibility-mode faults, execution of breakpoint instructions,
and arithmetic traps.

executive

The software that provides the basic control and monitoring functions of the
operating system.

extended addressing

A feature on some VAX systems using physical addresses of 32-bits, extending the
capacity of physical memory to 3.5 GB.

extended QIO processor

The facility that supplements the QIO driver’s functions when the driver
performs virtual I/O operations on file-structured devices (Files–11 On-Disk
Structure Level 2). The XQP executes as a kernel-mode thread in the process of
its caller.

FDT

See function decision table.

Glossary–7

FDT routines

Driver routines called by the $QIO system service to perform device-dependent
preprocessing of an I/O request.

fork block

That portion of a data structure, such as the unit control block, which contains
a driver’s context while the driver is waiting for an event or a resource. A
driver awaiting the processor resource has its UCB fork block linked into a
processor-specific fork queue.

fork dispatcher

A system interrupt service routine that is activated by a software interrupt
on the local processor at a fork IPL. Once activated, it obtains the fork lock
associated with the fork IPL and dispatches driver fork processes from a fork
queue until no processes remain in the queue for that IPL.

fork lock

In a symmetric multiprocessing system, a static spinlock the ownership of which
synchronizes the right of a driver’s fork process to execute at its associated fork
IPL. See spinlock.

fork process

A process with a minimal context that executes instructions under a set of
constraints: it executes at raised interrupt priority levels; it uses R0 through
R5 only (other registers must be saved and restored); it executes in the system’s
virtual address space; it can refer to and modify static storage that is never
modified by procedures that execute at a higher IPL. The operating system
uses software interrupts, spinlocks, fork processes, and resource wait queues to
synchronize executive operations.

fork queue

A processor-specific queue of fork blocks that are awaiting activation at a
particular IPL by the system fork dispatcher.

function code

See I/O function code.

function decision table (FDT)

A table in the driver that lists all valid function codes for the device and lists the
addresses of preprocessing routines associated with each valid function of the
device.

function modifier

See I/O function modifier.

generic device name

A device name that identifies the type of device but not a particular unit; a device
name in which the specific controller and/or unit number is omitted (for example,
MB).

Glossary–8

hardware context

The values contained in the following registers while a process is executing:

• The PC

• The PSL

• The 14 general registers (R0 through R13)

• The four processor registers (P0BR, P0LR, P1BR, and P1LR) that describe
the process’s virtual address space

• The SP for the access mode in which the processor is executing

• The contents to be loaded in the SP for every access mode other than the
current access mode

When a process is executing, its hardware context is continually being updated
by the processor. When a process is not executing, its hardware context is stored
in its hardware PCB.

hardware process control block (hardware PCB)

A data structure known to the processor that contains the hardware context
when a process is not executing. A process’s hardware PCB resides in its process
header (PHD).

IDB

See interrupt dispatch block.

Initiator

A SCSI device (usually the host processor) that requests another SCSI device (the
target) to perform an operation.

interrupt

An event other than an exception or a branch, jump, case, or call instruction
that changes the normal flow of instruction execution. Interrupts are generally
external to the process executing when the interrupt occurs. See also device
interrupt, connect-to-interrupt, and urgent interrupt.

interrupt dispatch block (IDB)

A structure in the I/O database that describes the characteristics of a particular
controller and points to devices attached to that controller.

interrupt priority level (IPL)

The level at which a software or hardware interrupt is generated. There are
32 interrupt priority levels: IPL 0 is lowest, 31 is highest. The levels arbitrate
contention for processor service. For example, a device cannot interrupt a
processor if the processor is currently executing at an IPL greater than the IPL of
the device’s interrupt request.

interrupt service routine (ISR)

A routine executed when a device interrupt occurs.

Glossary–9

interrupt stack (IS)

The processor-specific stack used when the processor is executing instructions
in interrupt context. In the operating system, all hardware interrupts (and all
software interrupts above IPL 3) are serviced on a processor-specific interrupt
stack and not one of the process stacks.

interrupt stack pointer (ISP)

The pointer to the top of the interrupt stack.

interrupt vector

See vector.

I/O database

A collection of data structures that describe I/O requests, controllers, device units,
volumes, and device drivers in a system. Examples are the driver dispatch table,
driver prologue table, device data table, unit control block, channel request block,
I/O request packet, and interrupt dispatch block.

I/O driver

See device driver.

I/O function

An I/O operation interpreted by the operating system and typically resulting in
one or more physical I/O operations.

I/O function code

A 6-bit value specified in a $QIO system service call that describes the particular
I/O operation to be performed (such as, read, write, rewind).

I/O function modifier

A 10-bit value specified in a $QIO system service call that modifies an I/O
function code (for example: read terminal input, no echo).

I/O lockdown

The state of a page such that it cannot be paged or swapped out of memory.

I/O processor (IOP)

A hardware connector that translates the pseudo CSR address (PCA) of a device
connected to a remote bus and, with the specific bus interface module, connects a
VAX 7000 or VAX 10000 CPU or system bus to that remote bus.

IOP

See I/O processor

I/O request packet (IRP)

A structure in the I/O database that describes an individual I/O request. The
$QIO system service creates an IRP for each I/O request. The operating system
and the driver of the target device use information in the IRP to process the
request.

Glossary–10

I/O rundown

An operating system function in which the system cleans up any I/O in progress
when an image exits.

I/O space

The regions of physical address space that contain the configuration registers
and device control and status register and data registers. These regions are
physically noncontiguous.

I/O status block (IOSB)

A data structure associated with the $QIO system service. This service optionally
returns a status code, number of bytes transferred, and device/function-dependent
information in an I/O status block. The information is not returned from the
system service call, but filled in by the operating system when the I/O request
completes.

IPL

See interrupt priority level.

IRP

See I/O request packet.

ISP

See interrupt stack pointer.

ISR

See interrupt service routine.

limit

The size or number of items requiring system resources (such as mailboxes,
locked pages, I/O requests, or open files) that a job is allowed to have at any
one time during execution, as specified by the system manager in the user
authorization file. See quota.

load balancing

A function of the operating system by which work is distributed equally among
all processors in a system. For more information, see static load balancing and
dynamic load balancing.

locking a page in memory

Making a page ineligible for either paging or swapping. A page stays locked in
physical memory until the operating system specifically unlocks it.

logical-I/O function

A set of I/O operations (for example, read-logical-block and write-logical-block)
that allow restricted direct access to device-level I/O operations using logical
block numbers.

logical unit number (LUN)

Unique value, from 0 to 7, that identifies a physical or virtual device accessible
by means of a SCSI device with respect to that device’s SCSI device ID.

Glossary–11

loosely coupled system

A multiprocessing system configuration consisting of separate operating systems
that communicate through some message transfer mechanism. Contrast with
tightly coupled system.

LUN

See logical unit number.

machine check

An exception that is reported when the processor or an external adapter detects
an internal error. If the machine check is recoverable, the machine check handler
logs the condition in an error log entry. If an unrecoverable machine check occurs
while the processor is in supervisor or user mode, the machine check handler
reports the exception to that mode. However, if an unrecoverable machine check
occurs in kernel or executive mode, a fatal bugcheck results. See also exception
and bugcheck.

mailbox

A software data structure that is treated as a record-oriented device for
interprocess communication (for example, the error logger and OPCOM read from
systemwide mailboxes). Communication using a mailbox is similar to other forms
of device-independent I/O. Senders write to a mailbox; the receiver reads from
that mailbox.

Also, a hardware- and software-defined data structure used to access the control
and status register of a device attached to a remote bus. Also known as a control
register access mailbox (CRAM).

map register

See scatter-gather map.

MASSBUS adapter (MBA)

An interface device between the backplane interconnect and the MASSBUS.

memory interconnect

The name of the internal processor bus for the VAX–11/750 (CMI), VAX 85x0/8700
/88x0 (NMI), VAX 6000 series (XMI), and VAX 9000 series (SCU).

multiprocessing system

A system containing two or more general purpose processors. These processors
are connected through hardware so that they can work on the same application
concurrently. See asymmetric multiprocessing and symmetric multiprocessing.

multiprogramming

A mode of operation in which hardware resources are shared among multiple,
independent software processes.

nexus

A physical connection to the synchronous backplane interconnect (SBI). For
example, when connected to the SBI, the central processor, memory subsystem,
and I/O controllers are known as nexuses. See also synchronous backplane
interconnect.

Glossary–12

node

A VAXBI interface—such as a central processor, controller, or memory
subsystem—that occupies one of 16 logical locations on a VAXBI bus. See also
VAXBI.

offset

A displacement from the beginning of a data structure to the beginning of a field
within that data structure. Offsets for items within a data structure usually have
an associated symbol. The name of the symbol is used to refer to the field; its
value is the offset.

page-frame number (PFN)

The high-order 21 bits of the physical address of a page in physical memory.

page-table entry (PTE)

The data structure that identifies the physical location and status of a page of
virtual address space. When a virtual page is in memory, the PTE contains the
page-frame number needed to map the virtual page to a physical page. When it
is not in memory, the page-table entry contains the information needed to locate
the page on secondary storage (disk).

parallel processing

A method of computing that occurs when a section of an application is divided
into multiple tasks, and those multiple tasks are executed simultaneously on
multiple processors.

PCA

See pseudo CSR address.

PCB

See process control block.

PFN

See page-frame number.

physical address

The address used by hardware to identify a location in physical memory or on
directly-addressable secondary storage devices such as disks. A physical-memory
address consists of a page-frame number and the number of a byte within the
page. A physical-disk-block address consists of a cylinder or track and a sector
number.

physical address space

The set of all possible physical addresses that can be used to refer to locations in
memory (memory space) or device registers (I/O space).

physical-I/O functions

A set of I/O functions that allows access to all device-level I/O operations except
maintenance-mode operations.

PID

See process identification.

Glossary–13

port

See SCSI port.

port driver

See SCSI port driver.

port ID

See SCSI port ID.

primary processor

The processor in a symmetric multiprocessing system that is either logically or
physically attached to the console device. Only the primary processor performs
the initialization activities that define the system environment and prepare
memory for the entire system. In addition, the primary processor serves as the
system timekeeper.

process

The basic entity, scheduled by the system software, that provides the context
in which an image executes. A process consists of an address space, hardware
context, and software context.

process affinity

In a symmetric multiprocessing system, a close association of a process with
a specific processor or set of processors in the system. Process affinity can be
indicated as either a requirement that a process run only on the processor with
a specific CPU ID or on a processor or set of processors that have a needed
capability. See capability.

process context

The hardware and software contexts of a process.

process control block (PCB)

A data structure used to contain process context. The hardware PCB contains
the hardware context. The software PCB contains the software context, which
includes a pointer to the hardware PCB.

process identification (PID)

A 32-bit value that uniquely identifies a process. Each process has a PID and a
name.

process I/O channel

See channel.

process page tables

The page tables used to describe process virtual memory.

Glossary–14

process priority

The priority assigned to a process for scheduling purposes. The operating system
recognizes 32 levels of process priority, where 0 is lowest and 31 is highest.
Levels 16 through 31 are used for real-time processes. The system does not
modify the priority of a real-time process (although the system manager or the
process itself might). Levels 0 through 15 are used for normal processes. The
system can temporarily increase the priority of a normal process based on the
activity of the process.

Contrast with interrupt priority level.

program section (psect)

A portion of a program with a given protection and set of storage-management
attributes. Program sections that have the same attributes are gathered together
by the linker to form an image section.

programmed-I/O (PIO) transfer

The type of I/O transfer, largely conducted by the driver program, that requires
processor intervention after each byte or word is transferred. Drivers for
relatively slow devices, such as printers, card readers, terminals, and some disk
and tape drives use PIO data transfers. Contrast with direct-memory-access
(DMA) transfer.

pseudo CSR address (PCA)

A 32-bit value identifying a specific control and status register of a device
connected to a remote bus.

PTE

See page-table entry.

Q22–bus

The hardware interconnect by which MicroVAX peripheral devices communicate
with main memory and the processor.

QIO

Queue I/O Request system service. The system service that services $QIO and
$QIOW requests. The Queue I/O Request system service prepares an I/O request
for processing by the driver and performs device-independent preprocessing of
the request. This system service also calls driver FDT routines. See also FDT
routines.

quota

The total amount of a system resource, such as CPU time, that a job is allowed
to use in an accounting period, as specified by the system manager in the
user-authorization file. See limit.

return status code

See status code.

SBI

See synchronous backplane interconnect.

Glossary–15

scatter-gather map

A technique by which a set of physically discontiguous pages are made to seem
contiguous to an I/O controller performing a direct-memory-access transfer. It is
I/O adapter hardware that generally provides this means of mapping physical
pages to I/O adapter address space.

SCDRP

See SCSI class driver request packet.

SCDT

See SCSI connection descriptor table.

SCSI

Refers to the American National Standard for Information Systems Small
Computer System Interface–1 (X3.131–1986) or the ANSI Small Computer
System Interface–2 (X3.131–1989). This standard defines mechanical, electrical,
and functional requirements for attaching small computers to each other and to
intelligent peripheral devices.

SCSI class driver

Component of the SCSI class/port architecture that acts as an interface between
the user and the SCSI port, translating I/O functions as specified in a user’s
$QIO request to a SCSI command targeted to a device on the SCSI bus. Although
the class driver knows about SCSI command descriptor buffers, status codes, and
data, it has no knowledge of underlying bus protocols or hardware, command
transmission, bus phases, timing, or messages. A single class driver can run on
any given MicroVAX/VAXstation system, in conjunction with the SCSI port driver
that supports that system.

SCSI class driver request packet (SCDRP)

A system data structure that contains information specific to an I/O request
that a SCSI class driver must deliver to the port driver, such as the address of
the SCSI command descriptor buffer. The class driver allocates the SCDRP, and
places in it data it originally received in the I/O request packet (IRP), such as the
$QIO system service parameters, I/O function, and the length and location of any
user-specified buffer involved in a transfer.

SCSI connection descriptor table (SCDT)

A system data structure that contains information describing a connection
established between a SCSI class driver and the port, such as phase records,
timeout values, and error counters. The SCSI port driver creates an SCDT each
time a SCSI class driver, by invoking the SPI$CONNECT macro, connects to a
device on the SCSI bus. The class driver stores the address of the SCDT in the
SCSI device’s UCB.

SCSI device ID

Unique value, from 0 to 7, representing a device on a specific SCSI bus. A SCSI
device ID corresponds to the line on the SCSI data bus on which a given device
asserts itself and thus is an analog for the term SCSI ID.

Typically, a MicroVAX/VAXstation 3100 system processor is assigned device ID 6
and asserts itself at DB(6); a VAXstation 3520/3540 system processor is assigned
device ID 7, and asserts itself at DB(7).

Glossary–16

SCSI ID

See SCSI device ID.

SCSI port

The SCSI controller channel that controls communications to and from a specific
SCSI bus in the system.

SCSI port descriptor table (SPDT)

A system data structure that contains information specific to a SCSI port,
such as the port driver connection database. The SPDT also includes a set of
vectors, corresponding to the SPI macros invoked by SCSI class drivers, that
point to service routines within the port driver. The SCSI port driver’s unit
initialization routine creates an SPDT for each SCSI port defined for a specific
MicroVAX/VAXstation system and initializes each SPI vector.

SCSI port driver

Component of the SCSI class/port architecture that transmits and receives SCSI
commands and data. It knows the details of transmitting data from the local
processor’s SCSI port hardware across the SCSI bus. Although it understands
SCSI bus phases, protocol, and timing, the SCSI port driver has no knowledge of
which SCSI commands a given device supports, what status messages it returns,
or the format of the packets in which this information is delivered. Strictly
speaking, the port driver is a communications path. When directed by a SCSI
class driver, the port driver forwards commands and data from the class driver
onto the SCSI bus to the device. On any given MicroVAX/VAXstation system,
a single SCSI port driver handles bus-level communications for all SCSI class
drivers that may exist on the system.

SCSI port ID

A unique representation of a SCSI port (see SCSI port) identifying the SCSI
bus it controls. Current legal port IDs are A and B, corresponding to a system
controller ID.

secondary processor

The processor or processors in a symmetric multiprocessing system that do not
have the initialization and timekeeper responsibilities of the primary processor.

shared memory

A generic term referring to any memory that can be accessed by two or more
concurrent processes. In a symmetric multiprocessing system, a single copy of
the operating system resides in memory. Each processor in the system can access
this memory, as can any process executing on any processor.

Small Computer System Interface

See SCSI.

small process

A system process that has no control region in its virtual address space and has
an abbreviated context. Examples are the swapper and the null process. A small
process is scheduled in the same manner as user processes, but must remain
resident until it completes execution; it cannot be swapped.

Glossary–17

SMP

See symmetric multiprocessing.

software context

The context maintained by the operating system to describe a process. See also
software process control block (PCB).

software process control block (software PCB)

The data structure used to contain a process’s software context. The operating
system defines a software PCB for every process when the process is created.

The software PCB includes the following kinds of information about the process:
current state; storage address, if the process is swapped out of memory; unique
identification of the process; and address of the process header (which contains
the hardware PCB). The software PCB resides in the system region of virtual
address space. It is not swapped with a process.

SPDT

See SCSI port descriptor table.

spinlock

In a symmetric multiprocessing system, a semaphore associated with a set
of system structures, fields, or registers whose integrity is critical to the
performance of a specific operating system task. There are two types of spin lock.
Static spinlocks are assembled permanently into the system; the same static
spinlocks exist in the same memory locations in all multiprocessing systems. A
fork lock is a form of static spinlock. Dynamic spinlocks are created as required
by the I/O configuration of a system; as a result, the set of dynamic spinlocks
differs from processor to processor. A device lock is a form of dynamic spinlock.
See fork lock and device lock.

spin wait

In a symmetric multiprocessing system, an execution loop performed by a
processor attempting to acquire a spinlock already owned by another processor in
the system. This activity is also known as a busy wait.

start-I/O routine

The routine in a device driver that is responsible for obtaining needed resources
and for activating the device unit. An example of a needed resource is the
controller’s data channel.

static load balancing

A method of work distribution in which every process in an application is
preassigned to a processor during process creation.

status code

A longword value that indicates the success or failure of a specific function. For
example, system services always return a status code in R0 upon completion.

SVA

See system virtual address.

Glossary–18

symmetric multiprocessing (SMP)

A multiprocessing system configuration in which all processors have equal access
to operating system code residing in shared memory and can perform all, or
almost all, system tasks.

synchronous backplane interconnect (SBI)

The part of the VAX–11/780, VAX–11/785, and VAX 8600/8650 hardware that
interconnects the processor, memory controllers, MASSBUS adapters, and the
UNIBUS adapter.

system control unit (SCU)

Functions as a memory interconnect and internal processor bus for the VAX 9000
series systems. Also connects to the I/O control unit and XJA adapters
translating I/O addresses between the primary I/O buses (XMIs) and memory or
processors in the system.

system page table (SPT)

The data structure that maps the system virtual addresses, including the
addresses used to refer to the process page tables. The SPT contains one PTE
for each page of system virtual memory. The physical base address of the SPT is
contained in a processor register called the System Base Register (SBR).

system virtual address (SVA)

A virtual address identifying a location mapped to an address in system space.

target

A SCSI device that performs an operation requested by an initiator.

tightly coupled system

A multiprocessing system configuration consisting of multiple processors sharing
a single copy of the operating system. These processors are connected so that
they can communicate and share data. Contrast with loosely coupled system.

timeout

The expiration of the time limit in which a device is to complete an I/O transfer.
The driver’s wait-for-interrupt request specifies the timeout limit.

timer

A system process that maintains the time of day and the date. It is also alert
for device timeouts and performs time-dependent scheduling upon request. The
timer’s interrupt service routine creates the timer process.

TURBOchannel

A synchronous, asymmetrical I/O channel connecting optional devices to certain
Digital workstations.

UCB

See unit control block.

Glossary–19

UNIBUS adapter

An interface device between the backplane interconnect and the UNIBUS. In
a VAX–11/780, VAX–11/785, or VAX 8600/8650 system this device is called the
UBA. In a VAX–11/750 system, it is called the UBI. In a VAX 82x0/83x0 or VAX
85x0/8700/88x0 system, it is called a DWBUA. In a VAX 6000 series system, it is
called a DWMUA.

unit control block (UCB)

A structure in the I/O database that describes the characteristics of a device unit
and current activity on it. The unit control block also holds the fork block for its
unit’s device driver; the fork block is part of the UCB and is a critical part of a
driver fork process. The UCB also provides a static storage area for the driver.

unit initialization routine

The routine that readies controllers and device units for operation. Controllers
and device units require initialization after a power failure and during execution
of the driver-loading procedure.

urgent interrupt

An interrupt received on interrupt priority levels 24 through 31. These can be
generated only by the processor for the interval clock, serious errors, and power
failures.

VAXBI

The part of the VAX 82x0/83x0 hardware that connects I/O adapters with memory
controllers and the processor. In a VAX 85x0/8700/88x0 system, the part of
the hardware that connects I/O adapters with the bus that interfaces with the
processor and memory.

vector

A one-dimensional array.

An interrupt or exception vector is a storage location known to the system that
contains the starting address of a routine to be executed when a given interrupt
or exception occurs. The system defines separate vectors for each interrupting
adapter and for classes of exceptions. Each system vector is a longword.

For the purpose of handling exceptions, users can declare up to two software-
exception vectors (primary and secondary) for each of the four processor-access
modes. Each vector contains the address of a condition handler, and is a
longword.

virtual-I/O functions

A set of I/O functions that must be interpreted by an ancillary control process.

wait-for-interrupt request

A request made by a driver’s start-I/O routine after it activates a device. The
request causes the driver’s fork process to be suspended until the device requests
an interrupt or the device times out.

XBI+ adapter

An XMI-to-VAXBI adapter containing map registers used to translate 32-bit
extended physical addresses onto the 30-bit VAXBI bus.

Glossary–20

XDELTA

A software tool for debugging the operating system and device drivers.

XQP

See extended QIO processor.

Glossary–21

Index

A
Aborting an I/O request

See I/O request
ACB (AST control block), 4–18
Access rights block

See ARB
Action routine

See FDT routine
Action routine bit mask, 4–11
Adapter

See I/O adapter
Adapter control block

See ADP
Adapter dispatch table, 14–24, 14–28

examining, 13–9
Address

on VAXBI, 12–9
on XMI, 12–10

Address space
physical, 1–10
virtual, 1–10

ADP$L_AVECTOR, 16–12
ADP$L_BIMASTER, 16–12, 16–18
ADP$L_BI_IDR, 16–12, 16–16
ADP$L_CSR, 16–12
ADP$L_DPQFL, G–13
ADP$L_MBASCB, 16–12
ADP$L_MBASPTE, 16–12
ADP$L_MR2QFL, G–13
ADP$L_MRQFL, G–13
ADP$L_VECTOR, 14–28
ADP$W_ADPTYPE, 16–12
ADP$W_BI_VECTOR, 16–12, 16–17
ADP$W_DPBITMAP, 14–15
ADP$W_TR, 16–12, 16–18
ADP$W_XBIA_TR, 16–18
ADP (adapter control block), 1–6, 14–14

address, 4–7, 14–15, 14–17, 14–28
data path allocation information, 14–15
data path wait queue, 14–15
for generic VAXBI device, 16–12
for MBA, 15–4, 15–6
for VAXBI adapter, 16–12

ADPDISP macro, 5–4 to 5–5
AEN

See Asynchronous event notification
Alignment of data transfer, 14–2
Alternate map registers, 14–2, 14–4, 14–20

See also Map registers
allocating, 14–17
allocating permanent, 11–2, 14–18
loading, 14–20
releasing, 14–23

Alternate map register wait queue, G–13
Alternate start-I/O routine, 7–5

address, 6–4
ARB (access rights block), 4–9
Assembling device drivers, 12–1
AST (asynchronous system trap)

delivering, 3–3
out of band, 11–7
process-requested, 4–18
queuing, 3–3
special kernel-mode, 3–4, 4–18, 7–7 to 7–8

AST control block
See ACB

ASTLVL (AST level) processor register, 3–3
AST procedure (for connect to interrupt facility),

21–17
AST service routine (for connect to interrupt

facility), 21–8, 21–10, 21–11
Asynchronous event notification, 17–2, 17–26 to

17–27
example, 17–27

Asynchronous SCSI data transfer mode
enabling, 17–12

Attention condition, 15–8 to 15–9
See also MBA, MBA$L_AS, MASSBUS

Attention summary register
See MBA$L_AS

Autoconfiguration
driver control of, 12–19 to 12–20
of SCSI device, 17–34

Index–1

B
Backplane interconnect, 1–12, 1–21, 14–2

See also VAXBI, CMI, SBI, Q22–bus
Backplane interconnect interface chip

See BIIC
BI

See VAXBI bus
Big-endian

VMEbus, 20–3
BIIC$L_BCICR, 16–17, 16–28
BIIC$L_BER, 16–10, 16–16, 16–17, 16–26
BIIC$L_BICSR, 16–15, 16–25 to 16–26
BIIC$L_DTREG, 16–10, 16–25
BIIC$L_EAR, 16–28
BIIC$L_EICR, 16–13, 16–16, 16–26 to 16–27
BIIC$L_GPR0, 16–29
BIIC$L_GPR1, 16–29
BIIC$L_GPR2, 16–29
BIIC$L_GPR3, 16–29
BIIC$L_IDR, 16–16, 16–27
BIIC$L_IPIDR, 16–27
BIIC$L_IPIMR, 16–27
BIIC$L_IPISR, 16–27
BIIC$L_IPISTPF, 16–28
BIIC$L_SAR, 16–27
BIIC$L_UICR, 16–13, 16–16, 16–29
BIIC$L_WSR, 16–28
BIIC$V_BROKE, 16–15
BIIC$V_SST, 16–15
BIIC$V_STS, 16–15
BIIC (backplane interconnect interface chip), 16–5

clearing error register, 16–16
CSR space, 16–5
enabling error interrupts, 16–17, 16–26
enabling options, 16–17
initializing, 11–2
self-test, 16–15 to 16–27
setting interrupt vectors, 16–16

$BIICDEF macro, 16–5, 16–23
BIIC registers

accessing, 16–5
symbolic names, 16–23 to 16–29

BIOCNT (buffered I/O count), 2–3
BIOLM (buffered I/O limit) quota

adjusting, 4–17
charging, 4–8, 4–11
checking, 4–8

BIRQ level, 14–31, 14–32
BI_NODE_RESET macro, 16–15
Booting with XDELTA, 13–1 to 13–6
BPT (Breakpoint) instruction, 13–6
Breakpoint

clearing, 13–17
complex, 13–18
displaying XDELTA breakpoint list, 13–17

Breakpoint (cont’d)
proceeding from, 13–5, 13–18
setting in driver code, 13–6 to 13–7, 13–10,

13–17
BREAKPOINTS parameter, 13–1, 13–5
BR level, 14–31
Buffer

allocating, 1–25, 2–3, 7–6, G–5
data area, 7–6
deallocating, 2–7, 4–18, 7–7
format, 7–6
header area, 7–6, 7–7
locking, 1–25, 6–7
size, 7–6
storing address of, 7–6
testing accessibility of, 7–6

Buffer address register, 14–20
Buffered data path, 14–7

See also Data path
allocating permanent, 11–2, 14–16, G–11
flow of read operation using, 14–11 to 14–12
flow of write operation using, 14–11
functions, 14–10
purging, 14–12, 14–17, 14–22
releasing, 10–2, 14–17, 14–22 to 14–23
requesting, 14–10, 14–15 to 14–16
rules for using, 14–10, 14–13
speed, 14–13

Buffered data path wait queue
See Data path wait queue

Buffered function bit mask, 4–10, 6–7
Buffered I/O, 1–25, 2–3, 4–10, 11–6, 16–20

FDT routines for, 7–5 to 7–8
functions, 6–4
postprocessing, 7–7 to 7–8
reasons for using, 1–25, 6–7

Buffered read function bit
See IRP$V_FUNC

Bugcheck, 13–21
examining information regarding, 13–5
SPLACQERR, 13–27, 13–28, G–17
SPLIPLHIGH, 13–27, G–17
SPLIPLLOW, 13–27, G–17
SPLRELERR, 13–27, 13–28, G–17
SPLRSTERR, 13–27, 13–28, G–17

BUGREBOOT parameter, 13–2, 13–6, 13–21
Bus

device assignments, 12–9
Bus grant, 14–31, 14–32
Bus request

See BR level, BIRQ level
Busy bit

See UCB$V_BSY
BYTCNT (byte count) quota, 3–12

checking, G–5
crediting, G–5
debiting, G–5

Index–2

Byte count register
See MBA$L_BCR

Byte offset register, 14–12
Byte order pattern, 20–3
BYTLM (byte limit) quota, 3–12

checking, G–5
crediting, G–5
debiting, G–5

C
CAN$C_CANCEL, 11–7
CAN$C_DASSGN, 11–7
Cancel I/O bit

See UCB$V_CANCEL
Cancel-I/O routine, 1–4, 9–7, 11–6 to 11–8

address, 6–4, 11–1
context, 11–7
device dependent, 11–8
device independent, 11–7 to 11–8
for connect to interrupt facility, 21–8, 21–9,

21–16 to 21–17
of CONINTERR.EXE, 21–11, 21–16
of SCSI third-party class driver, 17–25
when unneeded, 11–7

$CANDEF macro, 11–7
Card reader

device driver, 9–6 to 9–7
CCB$L_UCB, 4–5
CCB (channel control block), 1–6, 4–5
Channel, 1–6

See also Process I/O channel
Channel control block

See CCB
Channel index number, 4–5, 11–7
Channel request block

See CRB
Channel wait queue

See Device controller data channel wait queue
CHMK (Change Mode to Kernel) instruction, 4–1
$CINDEF macro, 21–9
Class driver, 17–4

See Terminal class driver
SCSI template, 17–8

Class driver vector table, 18–4 to 18–5
address, 18–6

CLASS_CTRL_INIT macro, 18–10
CLASS_DDT vector table entry, 18–17
CLASS_DISCONNECT service routine, 18–17
CLASS_DS_TRANS service routine, 18–11, 18–17
CLASS_FORK service routine, 18–13, 18–18
CLASS_GETNXT service routine, 18–18, 18–19

address, 18–6
CLASS_POWERFAIL service routine, 18–11,

18–20

CLASS_PUTNXT service routine, 18–16, 18–19
address, 18–6

CLASS_READERROR service routine, 18–16,
18–20

CLASS_SETUP_UCB service routine, 18–11,
18–19

CLASS_SET_LINE service routine, 18–11
CLASS_UNIT_INIT macro, 18–6, 18–11, 18–17
Clock

See Interval clock
Cloned UCB routine, 11–10 to 11–11

address, 6–4
exit method, 11–10
input, 11–11
register usage, 11–10

CMI (CPU-to-memory interconnect), 1–12
Coding conventions

See Device driver
COM$DRVDEALMEM, 16–22
COM$POST, 7–5
Command

See SCSI command
Command address register

See MBA$L_CAR
Command queuing

device support, 17–27
Configuration register

See CSR, MBA$L_CSR
CONFREGL array, 16–10
CONINTERR.EXE, 21–7, 21–12

cancel-I/O routine of, 21–11
connecting to, 21–8

CONNECT command
See System Generation Utility

Connection, 17–5, 17–9
requesting, 17–23

Connection characteristics
SCSI-2 devices, 17–32

Connect to interrupt driver
See CONINTERR.EXE

Connect to interrupt facility
cancel-I/O routine, 21–16 to 21–17
condition values returned, 21–10
CONNECT command, 21–8
example of A/D converter using, 21–17, 21–19

to 21–21
example of time sampling using, 21–17, 21–21

to 21–22
example of watchdog timer using, 21–17, 21–18

to 21–19
interrupt service routine, 21–15 to 21–16
mapping I/O address space, 21–7
privileges required, 21–11
programming language requirements, 21–13
start-I/O routine, 21–14
SYSGEN requirements, 21–8

Index–3

Connect to interrupt facility (cont’d)
unit initialization routine, 21–13 to 21–14
user-specified routines, 21–8, 21–12 to 21–17

Contingent allegiance
SCSI devices, 17–32

Control and status register
See CSR

Control block
See Data structure

Controller
See Device controller

Controller initialization routine, 1–3, 11–1 to
11–5, 12–4, 12–8

address, 4–5, 6–3, 11–1, 14–28
allocating controller data channel in, 8–4
context, 11–1
for generic VAXBI device, 16–14 to 16–19
forking in, 3–21, 11–5
for terminal port driver, 18–10
functions, 11–1
input, 11–2
synchronization requirements, G–11

Control mask
See Device activation bit mask

Control register
See CSR, MBA$L_CR

Control register access mailbox
See CRAM

Corruption
detecting, 13–22 to 13–26

CPU$Q_SWIQFL, G–13
CPU (per-CPU database)

locating, G–6
CPUDISP macro, 5–5
CPUs

list of, 1–9
CRAM, 16–8, 20–9
CRB$B_MASK, 4–6, 16–11
CRB$L_DLCK, 3–20
CRB$L_INTD, 4–5
CRB$L_INTD+VEC$L_INITIAL, 11–4
CRB$L_INTD+VEC$L_UNITINIT, 11–4
CRB$L_LINK, 15–11
CRB$L_WQBL, 16–11
CRB$L_WQFL, 4–6, 16–11
CRB$V_UNINIT, 16–11
CRB (channel request block), 1–5, 4–5 to 4–6

alternate map register allocation information,
14–18

creation, 12–4
data path allocation information, 14–15 to

14–16
for generic VAXBI device, 16–11
fork block, 3–21, 12–7
for MBA, 15–4, 15–6, 15–11, 15–13
initializing, 6–3

CRB (channel request block) (cont’d)
map register allocation information, 14–17 to

14–18
primary, 15–11
reinitializing, 6–3
secondary, 15–11
synchronizing access to, 3–15

CSR (control and status register), 14–3, 14–20
See also Device registers
address, 4–7, 8–3, 14–21
displaying address, 12–11
fixed space, 12–14
floating space, 12–14
loading, 8–5
locating device registers from, 14–21
of LP11 printer, 2–5
specifying address, 12–5
specifying offset for multiunit controller, 12–6

CTL$GL_PCB, G–6

D
Data path, 1–24, 14–7 to 14–13, 14–15 to 14–17

See also Buffered data path, Direct data path
buffered, 14–2
mixed use of direct and buffered, 14–17
purging, 10–2, 14–12, 14–17, 14–22
speed, 14–9, 14–10, 14–13

Data path register, 14–8, 14–14
Data path wait queue, 14–23, G–13
Data storage, 5–1

device specific, 4–5, 11–2
Data structure

See also I/O database
initializing, 6–1

Data transfer
See also DMA transfer, PIO transfer
alignment, 14–2
buffering mechanisms, 17–13
byte aligned, 14–2, 14–20
byte offset, 14–12, 14–16
incomplete, 17–17
in reverse direction, 15–3, 15–13
longword-aligned 32-bit random-access, 14–10
mapping local buffer for, 17–25
mapping local buffer for SCSI port, 17–14 to

17–15
maximum size of, 17–13, 17–17
mixing read and write functions in, 14–9
overlapping with seek operation, 8–2
performing, 17–12 to 17–17
size, 14–21
speed, 14–9, 14–10, 14–13
starting address, 14–20
to randomly ordered addresses, 14–9
unmapping local buffer, 17–15, 17–25
word aligned, 14–2

Index–4

Data transfer mode
as controlled by a third-party SCSI class driver,

17–12
asynchronous, 17–12
synchronous, 17–12

DDB$L_LINK, 11–4
DDB$L_UCB, 11–4
DDB$T_DRVNAME, 4–8
DDB$T_NAME, 4–8
DDB (device data block), 1–5, 4–8, 11–4

creation, 12–4
initializing, 6–3
reinitializing, 6–3

DDT$L_ALTSTART, 7–5
DDT$L_UNITINIT, 11–4
DDT$W_ERRORBUF, 11–8, 17–19
DDT (driver dispatch table), 1–2, 11–1, 11–9

address, 6–3
creating, 6–3 to 6–4, 11–3
of terminal class driver, 18–17
relocating addresses specified in, 11–4

DDTAB macro, 11–8, 12–1
Debugging

device driver, 13–1 to 13–29
DELTA

See Delta/XDelta utility
Delta/XDelta utility (DELTA/XDELTA), 13–1 to

13–21
base register, 13–13

predefined, 13–12
X4, 13–13
X5, 13–13
XE, 13–13
XF, 13–13

changing contents of location using, 13–15
closing location using, 13–16
commands

executing string, 13–19
indirect, 13–16
predefined in XE and XF, 13–13
summary, 13–10 to 13–12

depositing command string in system patch
space for use by, 13–19

displaying contents of address range using,
13–16

displaying contents of location using, 13–15
expressions, 13–12
formats

address display, 13–15
instruction display, 13–15

guidelines, 13–20 to 13–21
prefixes

G, 13–13
H, 13–13

setting PC with, 13–18
stepping through code with, 13–18
symbols

period (.), 13–12

Delta/XDelta utility (DELTA/XDELTA)
symbols (cont’d)

Q, 13–12, 13–15, 13–16
using in multiprocessing environment, 13–7,

13–8, G–19
values, 13–12

DEV$V_AVL, 18–19
DEV$V_ELG, 11–8
DEV$V_NET, 18–11
DEV$V_RED, 18–19
Device

See also Device unit
byte-addressable, 14–20
Digital-supplied, 12–14
file structured, 2–3, 4–9
name, 6–2
offsettable, 16–13
on VAXBI bus, 16–2
SCSI, 16–29
word-aligned, 14–16

Device activation bit mask, 8–4
Device characteristics, 7–8

specifying, 6–2
Device class

specifying, 6–2
Device controller, 1–5

See also MBA, Controller initialization routine
initializing, 11–1
intelligent, 1–25
multiunit, 3–24, 4–6, 4–15, 8–2, 8–5, 9–8
number of units created for, 12–6
single unit, 4–6, 10–2, 11–2, 12–3
single-unit, 3–24
synchronizing access to, 3–15

Device controller channel wait queue, 3–24
Device controller data channel, 4–5 to 4–6, 15–12,

15–13
obtaining ownership of, 3–23, 4–6, 8–2 to 8–4
owner, 4–7
releasing, 3–24, 8–5, 10–2
requesting, 8–2
unavailability, 8–2

Device controller data channel wait queue, 8–3
Device database, 3–5, 3–15, G–8

synchronizing access to, 3–19 to 3–20
Device data block

See DDB
Device driver, 1–1

assembling with SYS$LIBRARY:LIB.MLB,
12–1, G–7

asynchronous nature, 1–1, 1–8 to 1–9, 5–1
calculating base address, 13–7
coding conventions, 5–1 to 5–3, 12–1, 13–21,

13–22
components, 1–2 to 1–4, 5–1
context, 1–7 to 1–9
converting uniprocessing to multiprocessing,

G–8 to G–19

Index–5

Device driver (cont’d)
debugging, 13–1 to 13–21
displaying address of, 12–11
entry points, 1–2, 6–3 to 6–4
example, C–1 to C–29, D–1 to D–25
flow, 1–8 to 1–9, 1–26 to 1–27
for Q22–bus device, 14–1 to 14–33
for generic VAXBI device, 16–1 to 16–29
for MASSBUS device, 15–1 to 15–15
for UNIBUS device, 14–1 to 14–33
functions, 1–2
hardware considerations, 1–9 to 1–23
linking with SYS$SYSTEM:SYS.STB, 12–1,

13–7, G–7
loading, 6–1, 11–3 to 11–4, 12–1 to 12–21,

13–6, 15–6
machine independence, 1–9, 5–4 to 5–5, 14–15
maximum number of supported units, 6–2
multiprocessor, 12–12, G–1, G–3
name, 4–8, 12–3, 12–6, 12–7, 12–11
program sections, 6–3, 12–1, 13–7
reloading, 12–7 to 12–8
size, 5–1
storing data from, 5–1
suspending, 2–6, 8–5 to 8–7, 14–21
synchronization flow, 3–15 to 3–19
synchronization methods used by, 1–6, 3–1 to

3–24
template for, A–1 to A–10
TURBOchannel coding conventions, 19–5
uniprocessor, 12–12, G–1, G–3
updating old code, G–1
VME coding conventions, 20–11

Device interrupt, 1–5, 3–5, 4–15, 9–1 to 9–8,
14–24 to 14–32

See also Interrupt service routine
destination for VAXBI node, 16–12
direct-vector, 14–2, 14–24, 14–27, 14–29
disabling, 5–4, 10–4
enabling, 2–5, 11–2
expected, 8–6, 9–3 to 9–4
multilevel Q22–bus, 14–29, 14–31 to 14–33
non-direct-vector, 14–2, 14–26, 14–27, 14–29
on MASSBUS, 15–8
servicing, 2–6
unsolicited, 9–4 to 9–8
waiting for, 2–5 to 2–6, 4–15, 8–5 to 8–7,

14–21
Device interrupt vector, 14–24, 16–12 to 16–13

connecting to, 21–7 to 21–22
for generic VAXBI device, 16–16
multiple, 14–28, 16–11
specifying address, 12–6
specifying multiple, 12–6

Device IPL, 3–5, 9–1
specifying, 6–2

Device lock, 3–5, 3–11, 3–15, 8–4
See also Spinlock
address, 3–20
obtaining, 3–8
ownership, 3–15
rank, 3–15
releasing, 3–9

DEVICELOCK macro, 3–8, G–4, G–9, G–10
used by interrupt service routine, 9–3

Device mode, 7–8
Device registers, 1–6, 1–24 to 1–25, 14–21

accessing, 2–5, 4–7, 13–20 to 13–21, 14–3,
14–21, 16–5, 21–1

clearing error status, 11–2
modification by power failure, 8–5
modifying, 5–3
of LP11 printer, 2–5
rules for referencing, 5–3 to 5–4, 14–3
saving the value of, 11–10
synchronizing access to, 3–5, 3–15, 8–4

Device support
for SCSI-1 and SCSI-2, 17–30

Device timeout
See Timeout

Device timeout bit
See UCB$V_TIMOUT

Device type
specifying, 6–3

Device unit, 1–4
See also UCB, Unit initialization routine
activating, 2–5, 8–4 to 8–5, 14–21
autoconfiguring, 12–20 to 12–21
CSR address, 12–11
description, 4–5
initializing, 11–1
marking on line, 11–2
name, 4–8
reference count, 11–6
status, 4–5
vector address, 12–11

DEVICEUNLOCK macro, 3–9, G–4, G–10, G–11
Diagnostic buffer, 4–18

specifying, 4–9, 6–4
Diagnostic register

See MBA$L_DR
DIOLM (direct I/O limit) quota

adjusting, 4–17
charging, 4–8, 4–11
checking, 4–8

Direct data path, 14–7, 14–9
See also Data path
functions, 14–9
purging, 14–17, 14–22
requesting, 14–16
speed, 14–9

Index–6

Direct I/O, 1–25, 7–4, 16–20
FDT routines for, 7–5, 7–8
reasons for using, 1–25, 6–7

Direct memory access
TURBOchannel devices, 19–3
TURBOchannel mapping, 19–4
TURBOchannel map register, 19–4
VMEbus devices, 20–5
VMEbus mapping, 20–6
VMEbus map register, 20–6

Direct memory access transfer
See DMA transfer

Direct-vector interrupt, 13–9, 14–2, 14–24, 14–27,
14–29

Disconnect feature
enabling, 17–12 to 17–13

Disk class driver
disabling the loading of, 17–34

Disk driver, 7–8, 8–2, 8–5, 9–5
pack acknowledgment in, 11–2
recording disk geometry in, 11–2
removing a disk volume in, 9–8
waiting for disk unit spinup in, 11–2

DLDRIVER.MAR, C–1 to C–29
DMA

See also Direct memory access
DMA interface

for VMEbus device, F–1
DMA routines

for TURBOchannel devices, 19–4
for VMEbus devices, 20–5

DMA transfer, 1–24 to 1–25, 5–5
See also Map registers, Data path
byte-aligned, 14–10
detecting memory error during, 14–22
flow, 1–26 to 1–27, 14–8
longword-aligned 32-bit random-access, 14–11,

14–13
on Q22–bus, 14–13 to 14–15, 14–17 to 14–23
on UNIBUS, 14–13 to 14–23
on VAXBI bus, 16–19 to 16–22
postprocessing, 14–14, 14–21 to 14–23
start-I/O routine, 8–1 to 8–7
using direct data path in, 14–9
using direct I/O in, 6–8
using I/O adapter resources in, 14–3 to 14–13

DMB32 asynchronous/synchronous multiplexer,
16–21

Documentation comments, sending to Digital, iii
DPT$V_NOUNLOAD, 12–7
DPT$V_NO_IDB_DISPATCH, 17–23
DPT$V_SMPMOD, 12–12, G–3
DPT$V_SUBCNTRL, 15–13
DPT$W_DEFUNITS, 12–19
DPT (driver prologue table), 1–2, 3–5, 11–1, 13–7

creating, 6–1 to 6–3
initialization table, 6–2, 12–4

DPT (driver prologue table) (cont’d)
linked into system DPT list, 12–3, 12–7, 12–8
of third-party SCSI class driver, 17–23
reinitialization table, 6–3, 12–4, 12–8

DPTAB macro, 6–1, 11–1, 12–1, 16–13
controlling autoconfiguration with, 12–19 to

12–20
used by MASSBUS drivers, 15–13

DPT_STORE macro, 3–5, 6–2 to 6–3, 11–8
DR11–W driver, D–1 to D–25
Driver

See Device driver
name, 6–2, 18–5

Driver design
for SCSI-2, 17–28

Driver dispatch table
See DDT

Driver prologue table
See DPT

Driver unloading routine, 6–3, 11–4, 12–7, 16–22
address, 6–2

DRV11–WA driver, D–1 to D–25
DSBINT macro, 3–8, 8–5, G–4, G–9

replacing with spinlock synchronization macro,
G–12

DWBUA (VAXBI-to-UNIBUS adapter), 1–17,
16–13, 21–4

See also UNIBUS adapter
DWMBA (XMI-to-VAXBI adapter)

See Memory interconnect to VAXBI adapter
DWMBB/A

See XBI+ adapter
DWMUA (VAXBI-to-UNIBUS adapter), 1–17,

16–13
See also UNIBUS adapter

DWMVA adapter, 20–1
parameter selection, 20–3

Dynamic spinlock, 3–11

E
EMB$C_DA, 11–9
EMB$C_DE, 11–9
EMB$C_DT, 11–9
EMB$L_DV_REGSAV, 11–8
$EMBDEF macro, 11–8
EMB spinlock, 3–13
Emulated instructions

in device driver, 5–3
ENBINT macro, 3–8, 3–9, G–4

replacing with spinlock synchronization macro,
G–12

ERL$DEVICEATTN, 11–9
ERL$DEVICERR, 11–9
ERL$DEVICTMO, 10–5, 11–9

Index–7

ERL$RELEASEMB, 10–3
Error

See also Error logging
associated with I/O request, 11–9
not associated with I/O request, 11–9
servicing within driver, 1–3, 8–5

Error log allocation buffer, 11–9
Error log entry

examining the contents of, 17–36 to 17–46
Error-logging

driver prerequisites, 11–8
final error count, 10–3

Error-logging enable bit
See UCB$V_ERLOGIP

Error-logging routine, 1–4, 11–8 to 11–9
See also Register-dumping routine
address, 11–1
in SCSI third-party class driver, 17–18 to

17–20
Error message buffer, 3–13, 10–3

allocating, 11–9
initializing, 11–9
of third-party SCSI device driver, 17–18 to

17–19
releasing, 10–3
specifying size, 6–4, 11–8, 11–9

Error recovery
SCSI devices, 17–31

Error status
clearing, 11–2

Event flag
posting, 4–18
setting, 2–7

Exception
generating, 5–4

EXE$ABORTIO, 7–4, 18–12
EXE$ALLOCBUF, 7–6, 16–20
EXE$ALOPHYCNTG, 16–22
EXE$ALTQUEPKT, 7–5
EXE$ASSIGN, 11–10
EXE$BUFFRQUOTA

replaced in VMS Version 5.0, G–5
EXE$BUFQUOPRC

replaced in VMS Version 5.0, G–5
EXE$CANCEL, 11–6 to 11–7
EXE$CRAM_CMD, 16–9, 20–10
EXE$CREDIT_BYTCNT, 7–7, G–5
EXE$CREDIT_BYTCNT_BYTLM, G–5
EXE$DEBIT_BYTCNT, G–5
EXE$DEBIT_BYTCNT_ALO, 7–6, 16–20, G–5
EXE$DEBIT_BYTCNT_BYTLM, 7–6, G–5
EXE$DEBIT_BYTCNT_BYTLM_ALO, 7–6,

16–20, G–5
EXE$DEBIT_BYTCNT_BYTLM_NW, G–5
EXE$DEBIT_BYTCNT_NW, G–5

EXE$FINISHIO, 7–4, 7–8, 18–12
EXE$FINISHIOC, 7–4
EXE$FORK, 11–5
EXE$FORKDSPTH, 3–5, 3–21
EXE$GL_CONFREGL, 16–10
EXE$GQ_1ST_TIME, 3–7, 3–8, 3–12, 3–13
EXE$GQ_SYSTIME, 3–7, 3–8, 3–13

reading, G–14
EXE$HWCLKINT, 3–7
EXE$INSERTIRP, 4–13
EXE$INSIOQ, 3–20, 4–12, 7–4, 8–1

returning control to, 4–15
EXE$IOFORK, 9–4, 14–21
EXE$IOFORK routine, 10–1
EXE$MODIFY, 7–8
EXE$ONEPARM, 7–8
EXE$QIO, 4–1 to 4–11
EXE$QIODRVPKT, 4–12, 7–4, 7–8, 7–9, 8–1
EXE$QIORETURN, 18–12
EXE$READ, 7–8
EXE$READCHK, 7–6
EXE$SENSEMODE, 7–8
EXE$SETCHAR, 7–8
EXE$SETMODE, 7–8
EXE$SNDEVMSG, 9–7, 10–6, G–7
EXE$SWTIMINT, 3–7
EXE$WRITE, 7–8
EXE$WRITECHK, 7–6
EXE$ZEROPARM, 7–9
Expected interrupt

See Device interrupt
Extended addressing (XA), 1–10, 6–2, 16–2, 16–5,

16–19
Extended physical addressing, 1–10
Extended virtual addressing, 1–10

requirements, 1–10
External register base

See MBA$L_ERB

F
F$SEARCH lexical function, 13–23
FDT (function decision table), 1–2, 4–9

address, 4–8, 6–3
as used by EXE$QIO, 4–8
creating, 6–4 to 6–8, 11–3
dispatching to FDT routines from, 4–11
relocating addresses specified in, 11–4
specifying buffered functions in, 4–10
specifying legal functions in, 4–10

FDT routine, 1–2, 1–25, 2–3 to 2–4
allocating system buffer in, 7–6
calling sequence, 7–2
context, 4–11, 7–1
creating, 7–1 to 7–5
dispatched to from EXE$QIO, 4–11
ensuring an even byte count in, 14–21

Index–8

FDT routine (cont’d)
exit method, 7–2 to 7–4
for buffered I/O, 7–5 to 7–8
for direct I/O, 7–5, 7–8
register usage, 5–2, 7–1
system-provided, 7–8 to 7–9

Feedback on documentation, sending to Digital, iii
File system

synchronizing access to, 3–12
FILSYS spinlock, 3–12
FIND_CPU_DATA macro, G–6
Floating address, 12–14
Floating CSR space

assigning to device, 12–20
current base, 12–20

Floating-point instructions
in device driver, 5–3

Floating vector space
assigning to device, 12–20
current base, 12–20

Fork block, 1–4, 1–8, 3–21, 3–24, 4–14 to 4–15,
8–6, 10–1

dequeuing, 3–5
in CRB, 12–7
in extended UCB, 11–5

Fork context, 1–8, 3–20 to 3–21, 4–14
Fork database, 3–5

synchronizing access to, 3–20 to 3–23
Fork dispatcher, 2–6, 3–3, 3–5, 3–7, 3–21

functions, 4–16
Forking, 3–14, 3–21, G–8

avoiding multiple, 11–5
from controller initialization routine, 11–5
from interrupt service routine, 9–5
from unit initialization routine, 11–5
in terminal port driver, 18–13, 18–18

Fork IPL, 2–4, 3–2, 3–5, 3–14, 3–20, 4–16
Fork lock, 2–4, 3–5, 3–7, 3–11, 3–14 to 3–15,

3–20, 11–6, 14–14
See also Spinlock
obtained by fork dispatcher, 3–5
obtaining, 3–8
ownership, 13–28
rank, 3–12
releasing, 3–9

Fork lock index, 3–12
list, G–8
placing in UCB$B_FLCK, 6–2, G–8

FORKLOCK macro, 3–8, G–4
FORK macro, 3–11, 3–21, 14–16, 14–18

See also IOFORK macro
Fork process, 1–7, 3–20 to 3–23, 8–1

context, 4–13 to 4–15, 8–1 to 8–2
creation by driver, 2–6, 4–15, 10–1
creation by IOC$INITIATE, 4–13 to 4–14, 8–1,

10–3
reactivating, 4–16
rules, 3–22

Fork process (cont’d)
suspending, 4–15, 8–5 to 8–7

Fork queue, 3–22, 4–15, 4–16, G–13
FORKUNLOCK macro, 3–9, G–4
Full-checking synchronization image, 13–27, G–16

loading, G–2
Full duplex device driver, 7–5
FUNCTAB macro, 6–7
Function decision table

See FDT

G
General purpose registers

rules for using in driver code, 5–2
Generic VAXBI device, 11–2, 16–1 to 16–29

See also VAXBI node
initialized by driver, 16–13 to 16–19
initialized by system, 16–10 to 16–13
interrupt destination, 16–12

Global symbol table, 12–1

H
Hardware clock

See Interval clock
Head of port queue

SCSI-2 devices, 17–31
Hose, 1–19
HWCLK spinlock, 3–7, 3–8, 3–13, G–13, G–14

I
I/O adapter, 1–6, 1–9 to 1–21, 1–24

See also UNIBUS adapter, MBA, and Q22–bus
displaying nexus value, 12–8, 12–11
on VAXBI bus, 16–1
type, 16–12

I/O adapter registers
See Map registers, Data path register, Vector

register, Byte count register, MBA
I/O address space, 21–1 to 21–7

access to during bus power failure, 21–6
error in mapping, 21–6
mapping to process address space, 21–4, 21–5

to 21–7
of SCU/XMI bus, 16–6
of VAXBI bus, 16–2
rules for referencing, 21–6

I/O channel
See Process I/O channel

I/O completion
See I/O postprocessing

I/O database, 1–4 to 1–6
creation, 6–1, 6–3, 11–3, 12–3 to 12–6, 12–13,

15–6
examining with XDELTA, 13–10

Index–9

I/O database (cont’d)
for MASSBUS configuration, 15–6, 15–11
for two-controller configuration, 4–7
initializing, 11–3, 12–13
locating, 12–11
referencing fields in, 5–2
reinitializing, 11–4

I/O flow
using SCSI queues, 17–33

I/O function
analyzing, 8–2
indicating a buffered, 4–10, 6–4
indicating as legal to a device, 4–10, 6–4
preprocessing, 4–11

I/O function code, 4–10
converting to device-specific function code, 8–4
defining device-specific, 6–8
system-defined, 6–4 to 6–7

I/O function modifier, 4–10
I/O postprocessing, 3–4, 10–1 to 10–3

device-dependent, 2–6 to 2–7, 4–16 to 4–17,
7–7, 10–2 to 10–3

device-independent, 2–7, 4–17 to 4–18, 7–7
for buffered I/O, 7–7 to 7–8, 14–22 to 14–23
for DMA transfer, 14–14, 14–21 to 14–23
synchronization flow, 3–4

I/O postprocessing queue, 10–3, 11–6, G–13
I/O preprocessing

See also SYS$QIO and FDT routine
completing, 4–12, 6–4
device-dependent, 2–3 to 2–4, 4–9 to 4–11, 7–1

to 7–9
device-independent, 2–3, 4–4 to 4–9
IPL requirements, 3–4

I/O processor (IOP), 1–19, 16–8, 20–9
I/O request

aborting, 7–4, 10–6
as serviced by SCSI class and port drivers,

17–20 to 17–22
canceling, 11–6 to 11–8
example, 2–1 to 2–7
restarting after power failure, 8–5
retrying, 10–5
returning completion status of to process, 2–7,

4–18, 7–4, 10–2, 10–3
synchronizing simultaneous processing of

multiple, 7–5
validating device-dependent arguments, 2–3
validating device-independent arguments, 2–3,

4–8
with no parameters, 7–9
with one parameter, 7–8

I/O request packet
See IRP

I/O space
of Q22–bus, 14–3
of MASSBUS, 15–4

I/O space (cont’d)
of UNIBUS, 14–3
rules for referencing, 5–3, 5–4
writing to, 5–4

IDB$L_ADP, 4–7
IDB$L_CSR, 4–7, 15–4, 15–11, 16–12
IDB$L_OWNER, 3–24, 4–6, 4–7, 8–4, 8–6, 9–3,

11–2
IDB$W_UNITS, 12–6, 16–11
IDB (interrupt dispatch block), 1–6, 4–7, 14–21

address, 4–6, 8–3, 14–28, 14–30
creation, 12–4
for generic VAXBI device, 16–11
for MBA, 15–4, 15–6, 15–11, 15–13

Image termination, 11–6
Incoming port queue

SCSI devices, 17–28
In-device port queue

SCSI devices, 17–28
INI$BRK, 13–6
Initialization routine

See Unit initialization routine, Controller
initialization routine

Initialization table, 6–2
Initiator, 17–2

enabling selection of, 17–26 to 17–27
Interlocked instructions

using in multiprocessing environment, G–13 to
G–14

Interprocessor interrupt, 3–4, 3–12
Interrupt, 3–2

See also Device interrupt
dismissing, 10–1
interprocessor, 3–4, 3–12
requesting an XDELTA, 13–7 to 13–8
requesting a software, 3–9
with VME devices, 20–4

Interrupt context, 1–7, 9–3
Interrupt dispatch block

See IDB
Interrupt dispatcher, 3–5, 14–21, 16–11, 16–13

for Q22–bus, 14–24 to 14–32
for MASSBUS, 15–6 to 15–10, 15–13 to 15–14
for UNIBUS, 14–24 to 14–32

Interrupt enable bit, 8–4
Interrupt expected bit

See UCB$V_INT
Interrupt priority level

See IPL
Interrupt service routine, 1–3, 3–3, 3–13, 9–1 to

9–8, 14–21
address, 6–3, 14–29, G–5
context, 9–3
entry point, 4–15
example, 9–6 to 9–8
for connect to interrupt facility, 21–9, 21–15 to

21–16

Index–10

Interrupt service routine (cont’d)
for LP11 printer, 2–6
for MASSBUS device, 15–10, 15–14 to 15–15
for solicited interrupt, 9–3 to 9–4
for terminal port driver, 18–16
for unsolicited interrupt, 9–4 to 9–8
functions, 4–15, 9–1
of CONINTERR.EXE, 21–12
of UNIBUS adapter, 14–27
preemption of device timeout handling, 10–4
register usage, 8–6
synchronization requirements, 3–5, 3–19, 9–3,

G–10 to G–11
Interrupt stack, 8–1
Interrupt transfer routine, 14–29
Interrupt transfer vector

See VEC
Interrupt vector, 12–11

See Device interrupt vector
number, 12–6

Interval clock, 3–6, 3–7, 3–13
interrupt service routine, 3–7, 3–8
role in device timeouts, 1–3

INVALIDATE spinlock, 3–12
INVALIDATE_TB macro, G–14
INVALID macro

replaced by INVALIDATE_TB macro, G–14
IO$_AVAILABLE function, 7–8
IO$_CONINTREAD function, 21–8, 21–9
IO$_CONINTWRITE function, 21–8, 21–9
IO$_PACKACK function, 7–8
IO$_SETCHAR function, 11–8
IO$_SETMODE function, 18–13
IO$_TTY_PORT function, 18–12
IO$_UNLOAD function, 7–8
$IO650DEF macro, 21–1
$IO730DEF macro, 21–1
$IO750DEF macro, 21–1
$IO780DEF macro, 21–1
$IO790DEF macro, 21–1
$IO8NNDEF macro, 16–18, 21–1
$IO8PSDEF macro, 16–18
$IO8SSDEF macro, 16–18, 21–1
$IO9AQDEF macro, 16–18
$IO9CCDEF macro, 16–18, 21–1
IOC$ALLOCATE_CRAM, 16–9, 20–10
IOC$ALLOSPT

replaced by LDR$ALLOC_PT, G–6
IOC$ALOALTMAPN, 14–18
IOC$ALOUBAMAPN, 14–18
IOC$CANCELIO, 11–7 to 11–8
IOC$CRAM_IO, 16–9, 20–11
IOC$DEALLOCATE_CRAM, 16–9, 20–11
IOC$GL_DEVLIST, 11–4
IOC$GL_DPTLIST, 12–3, 12–8

IOC$GL_MUTEX, 11–10
IOC$GL_PSFL

replaced by IOC$GQ_POSTIQ, G–13
IOC$INITIATE, 3–20, 4–13 to 4–14, 8–1, 10–3
IOC$IOPOST, 3–4
IOC$LOADALTMAP, 14–20
IOC$LOADMBAMAP, 15–3
IOC$LOADUBAMAP, 14–19
IOC$LOADUBAMAPA, 14–20
IOC$MOVFRUSER, 16–22
IOC$MOVTOUSER, 16–22
IOC$PURGDATAP, 14–22
IOC$RELALTMAP, 14–23
IOC$RELCHAN, 10–2
IOC$RELDATAP, 14–22 to 14–23
IOC$RELMAPREG, 14–23
IOC$REQALTMAP, 14–17
IOC$REQCOM, 3–4, 3–20, 8–1, 10–3

error-logging activities, 11–8
IOC$REQDATAP, 14–15 to 14–16
IOC$REQDATAPNW, 14–16
IOC$REQMAPREG, 14–17
IOC$REQPCHANL, 8–2 to 8–4
IOC$RETURN, 11–7
IOC$WFIKPCH, 4–14, 4–15, 8–6 to 8–7
IOC$WFIRLCH, 4–14, 4–15
$IODEF macro, 6–4
IOFORK macro, 3–11, 3–21, 4–15, 9–4, 10–1,

14–21
IOLOCK10 fork lock, 3–12
IOLOCK11 fork lock, 3–12
IOLOCK8 fork lock, 3–7, 3–12
IOLOCK9 fork lock, 3–12
IOP

See I/O processor
IOSB (I/O status block), 7–4, 10–2, 10–3

validating access to, 4–8
$IOUV1DEF macro, 21–1
$IOUV2DEF macro, 21–1
IPL$_ASTDEL, 3–2, 3–3, 3–16, 4–8
IPL$_FILSYS, 3–12
IPL$_IOLOCK8, 3–12
IPL$_IOPOST, 2–7, 3–2, 3–4, 4–17, 10–3, 11–6
IPL$_JIB, 3–12
IPL$_MAILBOX, 3–2, 3–7, 3–12, 9–7, 10–6
IPL$_MMG, 3–12
IPL$_POOL, 3–2
IPL$_POWER, 3–6, 8–5, 11–4, 12–4
IPL$_QUEUEAST, 3–2, 3–6, 3–12, 21–14, 21–16
IPL$_RESCHED, 3–2, 3–4, 3–6
IPL$_SCHED, 3–12
IPL$_SYNCH, 3–2, 3–6, 3–7
IPL$_TIMER, 3–12
IPL$_TIMERFORK, 3–2, 3–7, 10–4
IPL (interrupt priority level), 1–6, 3–1 to 3–11

hardware, 3–1
lowering, 3–8 to 3–11, 3–21, 8–7
raising, 3–8 to 3–11, 3–13

Index–11

IPL (interrupt priority level) (cont’d)
relation to spinlock, 3–13
saving, 3–9
software, 3–2

IRP$L_BCNT, 8–2
writing, 7–6

IRP$L_MEDIA, 7–4, 10–3, 11–6
IRP$L_PID, 11–7
IRP$L_SVAPTE, 8–2

for buffered I/O, 7–6, 7–7
IRP$V_FUNC, 7–6, 7–7, 11–6
IRP$W_BOFF, 7–6, 7–7, 8–2
IRP$W_CHAN, 11–7
IRP$W_FUNC, 8–4
IRP$W_STS

for read function, 7–6, 7–7
for write function, 7–7

IRP (I/O request packet), 1–6
allocating, 4–8
copying to UCB, 8–2
creation, 2–3, 4–8
deallocation, 2–7
device-independent portion of, 4–9
insertion in pending-I/O queue, 2–4, 4–13, 7–4,

8–1
insertion in postprocessing queue, 2–7
removal from pending I/O queue, 10–3
removal from pending-I/O queue, 2–7, 4–13
storing data in, 5–2, G–15

J
JIB$L_BYTCNT, 3–12, 7–6, 7–7, G–5
JIB$L_BYTLM, 3–12, G–5
JIB (job information block), 3–12
JIB spinlock, 3–12
Job attached bit

See UCB$V_JOB
Job controller

sending a message to, 9–7
Job information block

See JIB
Job quota, G–5

byte count, 2–3, 3–12
byte limit, 3–12

K
Kernel-mode requirements, G–1
Kernel stack, 8–1

L
LDR$ALLOC_PT, 16–19, G–6
Legal function bit mask, 4–10
Lexical function

F$SEARCH, 13–23

Linker utility
device driver images, 12–1

Linking device drivers, 12–1
Little-endian

VMEbus, 20–3
LOADALT macro, 14–9, 14–20
Loading device drivers, 12–1
LOADMBA macro, 15–3, 15–11, 15–12 to 15–13
LOADUBA macro, 14–9, 14–10, 14–19
Local disk UCB extension

required for error logging, 11–8
Local processor, 1–6
Local tape UCB extension

required for error logging, 11–8
LOCK macro, 3–8, 3–9, G–4
Logical I/O function

translation from virtual function to, 2–3
Longword-aligned random-access mode, 14–2,

14–10, 14–13
LUN (logical unit number), 17–2

M
Machine check, 3–13, 13–21, 21–6

condition handler, 21–6
Machine check protection block, 16–15
Macros

VMEbus devices, 20–4
Mailbox

of job controller, 9–7, G–7
of OPCOM process, 10–6, G–7
synchronizing access to, 3–7, 3–12

Mailbox driver, 12–5
Mailbox I/O

to remote VAXBI nodes, 16–7 to 16–9
to remote VMEbus nodes, 20–9 to 20–11

MAILBOX spinlock, 3–12
Maintenance function, 18–13
Mapped TURBOchannel DMA, 19–3
Map register base register

See MBA$L_MAP
Map registers, 1–24, 14–2, 14–3 to 14–7, 14–14,

14–17 to 14–20
allocating for TC DMA, 19–4
allocating for VME DMA, 20–5
allocating permanent, 11–2, 14–18 to 14–19,

G–11
calculating the number needed, 14–17
format, 14–6 to 14–7, 14–19
for VME PIO, 20–7
invalidating, 14–7, 14–12, 14–19
loading, 14–19 to 14–20
loading for TC DMA, 19–4
loading for VME DMA, 20–5
of Q22–bus, 14–4
of MBA, 15–2
of UBA, 14–4

Index–12

Map registers (cont’d)
operation, 14–5 to 14–7
releasing, 10–2, 14–23
requesting, 14–17 to 14–19

Map register valid bit, 14–19
Map register wait queue, 14–17, 14–23, G–13
MASSBUS

configuration, 15–1, 15–4
I/O address space, 21–1
I/O database, 15–4, 15–6
servicing multiunit controller on, 15–2, 15–5,

15–6, 15–11, 15–12, 15–13
servicing single-unit controller on, 15–5 to

15–6, 15–10, 15–11, 15–13
MASSBUS adapter

See MBA
MASSBUS driver

DPT for, 15–13
interrupt service routine, 15–14
start-I/O routine, 15–11
unit initialization routine, 15–10
unsolicited interrupt service routine, 15–14

MBA$INT, 15–13 to 15–14
MBA$L_AS, 15–4, 15–5, 15–8 to 15–9, 15–10
MBA$L_BCR, 15–3, 15–4, 15–12
MBA$L_CAR, 15–4
MBA$L_CR, 15–4
MBA$L_CSR, 15–4, 15–12
MBA$L_DR, 15–4
MBA$L_ERB, 15–4, 15–5, 15–11
MBA$L_MAP, 15–4
MBA$L_SMR, 15–4
MBA$L_SR, 15–4, 15–10, 15–11
MBA$L_VAR, 15–3, 15–4, 15–12, 15–13
MBA (MASSBUS adapter), 1–11, 1–12

address space, 15–4 to 15–5
data path, 15–3
functions, 15–1, 15–8 to 15–9
nexus value of, 12–5
obtaining ownership, 15–2, 15–5 to 15–9,

15–12
registers, 15–1 to 15–6

device, 15–5, 15–10 to 15–11
external, 15–2
internal, 15–2
map, 15–2 to 15–6

subunit number, 15–1
unit number, 12–6, 15–1, 15–10 to 15–11

$MBADEF macro, 15–4 to 15–5
MCHECK spinlock, 3–13
$MCHKDEF macro, 16–15
MEGA spinlock, 3–13
Memory

detecting corruption in, 13–22 to 13–26
detecting parity errors in, 14–22

Memory interconnect to VAXBI adapter, 16–1,
16–10, 16–12

ADP address, 16–12
Memory management

addressing, 1–10
Memory management resources

synchronizing access to, 3–12
MicroVAX/VAXstation 3100 systems

support for SCSI devices, 1–22
MicroVAX II

adapter logic, 14–1
MMG$GL_SBICONF, 16–10
MMG spinlock, 3–12
Modem signals

input transitions of, 18–13
sending to device, 18–12

Modify function
FDT routine for, 7–8

MSG$_CRUNSOLIC, 9–7
MSG$_DEVOFFLIN, 10–6
Multilevel device interrupt dispatching, 14–29,

14–31 to 14–33
Multiprocessing device driver

analyzing crash dumps, G–17 to G–19
incompatibility with uniprocessing driver,

12–12, G–3
using XDELTA, 13–7, 13–8, G–19
writing, G–8

Multiprocessing environment
contrasted with uniprocessing environment,

3–10, G–1
debugging a driver designed for, 13–27 to

13–29
MULTIPROCESSING parameter, 13–26, 13–27,

G–2 to G–3, G–4
Mutex

I/O database, 11–10

N
NBI

See Memory interconnect to VAXBI adapter
NCR 5380 controller, 1–22
Nexus, 12–5, 12–8, 12–9, 12–10, 12–11
Node, 12–5, 12–8, 12–9, 12–10, 12–11

See VAXBI node
Node ID, 16–12
Node private space, 16–5
Node space, 16–3

accessing BIIC registers within, 16–5
address, 16–12
mapped by system, 16–10

Non-Digital-supplied SCSI class driver
See Third-party SCSI class driver

Index–13

Non-direct-vector interrupt, 13–9, 14–2, 14–26,
14–27, 14–29

Nonpaged pool
allocating in initialization routine, 11–2
synchronizing access to, 3–12
variable region, G–13

Non-queued I/O
SCSI devices, 17–31

NPR (Nonprocessor request)
See DMA transfer

O
Online bit

See UCB$V_ONLINE
Online condition

on MASSBUS, 15–8
OPCOM process

sending a message to, 10–6
Ordered queuing

SCSI-2 devices, 17–31

P
Page fault

taken within driver code, 3–4
Page table, 1–11

physical address of, 16–21
Page table entry

modifying, G–14
Page-table entry

format, 16–21
Page table entry (PTE), 1–11
PAT$A_NONPAGED, 13–19
PAT$A_NONPGD

replaced by PAT$A_NONPAGED, 13–19
Patch space, 13–19
PBI

See Memory interconnect to VAXBI adapter
PCA

See Pseudo CSR address
PCB$L_ASTQFL, G–13
PCB$L_JIB, 7–6
PCB$L_PID, 11–7
PCB$V_SSRWAIT, 4–8
PCB$W_ASTCNT

modifying with ADAWI instruction, G–13
PCB$W_BIOCNT, 2–7
PCB (process control block), 3–3, 3–4, 13–12

referring to current, G–6
synchronizing access to, 3–12

Pending I/O queue, 11–6, G–13
Pending-I/O queue, 3–20, 4–13, 8–1

bypassing, 7–5
synchronizing with driver internal queue, 7–5

PERFMON spinlock, 3–12
Per-Process page

locking in memory, G–15
PFN database

examining with XDELTA, 13–13
PFN mapping, 21–5 to 21–7

deleting a page designated for, 21–6
modifying a page designated for, 21–5

PHD$L_BIOCNT, 2–7
Physical address

format, 21–4
Physical address space, 1–10
PIO

See also Programmed I/O
PIO transfer, 1–24

example, 2–1 to 2–7
using buffered I/O in, 6–8
using I/O adapter resources in, 14–3

Pool checking mechanism, 13–22 to 13–26
POOLCHECK parameter, 13–22
POOL spinlock, 3–12
Poor man’s lockdown, G–15 to G–16
Port, 17–2

DMA buffer, 17–2, 17–14, 17–25
examining status of, 17–16

Port capabilities longword, 17–12
Port command buffer

allocating, 17–10, 17–25
deallocating, 17–11, 17–25

Port driver, 17–3
See Terminal port driver

Port driver vector table, 18–3 to 18–4
address, 18–6
creating, 18–5 to 18–6

Porting
VME device drivers, 20–11

Port-queue architecture, 17–28
Port queues

I/O flow, 17–33
PORT_ABORT service routine, 18–14
PORT_CANCEL service routine, 18–15
PORT_DISCONNECT initiate routine, 18–11
PORT_DS_SET initiate routine, 18–12
PORT_FDT initiate routine, 18–12
PORT_FORKRET initiate routine, 18–13, 18–18
PORT_MAINT initiate routine, 18–13
PORT_RESUME service routine, 18–15
PORT_SET_LINE initiate routine, 18–13
PORT_SET_MODEM initiate routine, 18–13
PORT_STARTIO initiate routine, 18–14
PORT_STOP service routine, 18–15
PORT_XOFF service routine, 18–15
PORT_XON service routine, 18–16
Position independent code, 5–1
Postprocessing

See I/O postprocessing

Index–14

Power bit
See UCB$V_POWER

Power failure
blocking, 3–6
determining the occurrence of, 8–5
on I/O bus, 21–6
servicing in an initialization routine, 11–1,

11–5
servicing in port driver unit initialization

routine, 18–11, 18–20
Power failure recovery procedure

device timeout forced by, 10–5
initialization performed by, 11–4

PR$_ASTLVL processor register, 3–3
PR$_SIRR processor register, 3–8
PR$_TBIA processor register, G–14
PR$_TBIS processor register, G–14
Prefetch function of UNIBUS adapter, 14–2,

14–11, 14–12
Preprocessing

See I/O preprocessing
Preprocessing routine

See FDT routine
Primary processor, G–2
Printer driver

description, 2–1 to 2–7
Process

quantum end event, 3–7
returning control from driver to, 4–15

Process context, 1–7, 2–4, 4–13, 7–1
returning to, 4–18

Process I/O channel, 11–6
assigning, 4–5
assigning to template device, 11–10
deassigning, 11–6, 11–7, 18–11
validating, 2–3, 4–5

Process quota
adjusting, 4–17
buffered I/O, 2–3, 2–7, 4–8
byte count, 7–7
charging, 4–8, 4–11
direct I/O, 4–8

Programmed I/O
See PIO transfer
VMEbus device, 20–7

Programming
TURBOchannel device driver, 19–1
VMEbus device driver, 20–1

$PRTCTEND macro, 16–15
$PRTCTINI macro, 16–15
Pseudo CSR address (PCA)

for VAXBI, 16–8
for VMEbus, 20–9

PSL (processor status longword)
examining with XDELTA, 13–10

PTE
See also Page table, 1–11

PURDPR macro, 14–22
detecting memory errors using, 14–22

Q
Q22–bus, 1–21

accomplishing a DMA transfer on, 14–13 to
14–15, 14–17 to 14–23

address size, 14–6
device interrupt dispatching, 14–31 to 14–33
example of driver designed for, C–1 to C–29,

D–1 to D–25
I/O address space, 21–1, 21–3, 21–6
I/O space, 14–3
power failure, 21–6
rules for configuring, 1–21, 14–32 to 14–33
scatter-gather map, 14–3 to 14–7

Q22–bus interface
functions, 14–1 to 14–13
obtaining resources of, 14–14

QBUS_MULT_INTR parameter, 14–31
QErr bit

queue recovery, 17–32
Quantum end event, 3–7
QUEUEAST spinlock, 3–12
Queue I/O requests

using busy bit, 17–30
Queue operations

in multiprocessing environment, G–13 to G–14
Queues

UCB busy, 17–30
Queuing I/O

SCSI support, 17–27

R
Rank

of spinlock, 3–14
Read function

FDT routine for, 7–8
READ_CSR macro, 16–8 to 16–9, 20–10
READ_SYSTIME macro, G–14
REALTIME_SPTS parameter, 21–8
Reentrant code, 5–1
Register-dumping routine, 1–4, 11–8, 11–9 to

11–10
address, 6–4
for generic VAXBI device, 16–23
of SCSI third-party class driver, 17–20, 17–26

Registers
See BIIC registers, Device registers, General

purpose registers, Map registers
REI instruction

role in AST delivery, 3–3

Index–15

Reinitialization table, 6–2, 12–8
RELALT macro, 14–23
RELCHAN macro, 10–2, 15–13
RELDPR macro, 14–22
RELMPR macro, 14–23
REQALT macro, 14–9, 14–17
REQCOM macro, 10–3, 17–25

required for error logging, 11–8
REQDPR macro, 14–10, 14–15
REQMPR macro, 14–9, 14–10, 14–17
REQPCHAN macro, 3–24, 8–2 to 8–4, 15–5,

15–12
REQSCHAN macro, 15–5, 15–12
Request sense key, 17–17
Resource wait

SCSI-2 support, 17–30
Resource wait flag

See PCB$V_SSRWAIT
Resource wait mode, 4–8
Resource wait queue, 3–23 to 3–24, G–13
Retry count, 10–6
RL01 driver, C–1 to C–29
RL02 driver, C–1 to C–29
RL11 driver, C–1 to C–29
RSB instruction, 7–3

S
SAVIPL macro, 3–9
SBI (synchronous backplane interconnect), 1–11

UNIBUS interlock sequence to, 14–9
SBICONF array, 16–10
Scatter-gather map, 14–3

See also Map registers
disabled, 19–4
enabled, 19–3

SCB (system control block), 16–12, 16–13
SCDRP$L_ABCNT, 17–14
SCDRP$L_BCNT, 17–14, 17–17
SCDRP$L_CMD_PTR, 17–10
SCDRP$L_DISCON_TIMEOUT, 17–10, 17–11
SCDRP$L_DMA_TIMEOUT, 17–10, 17–11
SCDRP$L_IRP, 17–24
SCDRP$L_MEDIA, 17–14
SCDRP$L_PAD_COUNT, 17–14
SCDRP$L_SCSI_FLAGS, 17–14, 17–15, 17–25
SCDRP$L_SPTE_SVAPTE, 17–15
SCDRP$L_STS_PTR, 17–10, 17–16
SCDRP$L_SVAPTE, 17–14
SCDRP$L_SVA_USER, 17–14, 17–15
SCDRP$L_TRANS_CNT, 17–17
SCDRP$V_BUFFER_MAPPED, 17–15, 17–25
SCDRP$V_S0BUF, 17–15, 17–25
SCDRP$W_BOFF, 17–14
SCDRP$W_FUNC, 17–14

SCDRP$W_MAPREG, 17–15
SCDRP$W_NUMREG, 17–15
SCDRP$W_STS, 17–14
SCDRP (SCSI class driver request packet), 17–7

allocating, 17–24
deallocating, 17–25
defining fields of, 17–22
initializing, 17–14, 17–25

$SCDRPDEF macro, 17–22
SCDT$V_CMDQ characteristic bit

SCSI, 17–32
SCDT$V_SCSI_2 characteristic bit, 17–32
SCDT (SCSI connection descriptor table), 17–7
SCH$GL_CURPCB

replaced in VMS Version 5.0, G–6
SCH$GL_PCBVEC, 13–13
SCH$QAST, 3–3
SCH$RESCHED, 3–6
SCHED spinlock, 3–3, 3–7, 3–12
Scheduler

blocking activity of, 3–4
synchronization of, 3–6

SCSI
hardware considerations, 1–22

SCSI (Small Computer System Interface)
definition, 17–1

SCSI-1 and SCSI-2 device support, 17–30
SCSI-2 device support, 17–27 to 17–34
SCSI-2 drivers

design, 17–28
SCSI-2 INQUIRY data, 17–32
SCSI-2 port interface (SPI), 17–31
SCSI bus

VAX systems concepts, 17–2
SCSI bus analyzer, 17–36
SCSI class driver

See Class driver, Disk class driver, Generic
SCSI class driver, Tape class driver,
Template class driver, Third-party SCSI
class driver

SCSI class/port architecture, 17–2 to 17–5
summary of I/O request servicing, 17–20 to

17–22
SCSI command

controlling the number of retries, 17–12
disabling retry, 17–11
examining status of, 17–15 to 17–17, 17–25
preparing to issue, 17–9 to 17–12
sending to SCSI device, 17–10
setting disconnect timeout for, 17–10, 17–11
setting DMA timeout for, 17–10, 17–11
setting phase change timeout for, 17–10, 17–11
size of, 17–10
terminating, 17–25

SCSI command byte
buffering, 17–10, 17–25

Index–16

SCSI command descriptor block
creating, 17–10
initializing pointer to, 17–10

SCSI controller
NCR 5380, 1–22
SII, 1–22

SCSI device
connecting to, 17–9

SCSI device ID, 17–2
SCSI device UCB, 17–7

extending, 17–22
SCSI errors, 17–32

recovery sequence, 17–33
SCSI ID, 17–2
SCSI port driver

See Port driver
SCSI port ID, 17–2
SCSI port interface

See SPI
SCSI port UCB, 17–7
SCSI queues

I/O flow, 17–33
recovering, 17–32

SCSI status byte
examining, 17–16 to 17–17
initializing, 17–10
servicing CHECK CONDITION status, 17–16

SCSI_NOAUTO system parameter, 17–34
SCU/XMI bus

I/O address space, 16–6
SCU/XMI bus architecture, 1–17
SDA

See System Dump Analyzer
SDA current process, G–18
$SECDEF macro, 21–5
Secondary bootstrap program (SYSBOOT), 13–21
Secondary controller data channel, 15–12, 15–13
Seek operation, 8–5

overlapping with data transfer, 8–2
Selected map register

See MBA$L_SMR
Self-test status, 16–25
Sense device characteristics function, 7–8
Sense device mode function, 7–8
Set device characteristics function, 7–8
Set device mode function, 7–8
SETIPL macro, 3–8, 3–9, G–4

replacing with spinlock synchronization macro,
G–12

SET PROCESS command, G–18
SHOW SPINLOCKS command, G–16
SII controller, 1–22
SIRR (software interrupt request register), 3–8
Small Computer System Interface

See SCSI

SMP$ACQNOIPL, 13–27, G–17
SMP$ACQUIRE, 13–27, G–17
SMP$ACQUIREL, 13–27, G–17
SMP$AR_SPNLKVEC, 3–11
SMP$GL_FLAGS, 12–12, G–3
SMP$RELEASE, 13–27, G–17
SMP$RELEASEL, 13–27, G–17
SMP$RESTORE, 13–27, G–17
SMP$RESTOREL, 13–27, G–17
SMP$V_UNMOD_DRIVER, 12–12, G–3
SOFTINT macro, 3–9
Software timer interrupt service routine, 3–7,

10–4
Solicited interrupt

See Device interrupt
SPDT (SCSI port descriptor table), 17–7

creation of, 17–23
SPI

See SCSI-2 port interface
SPI$ABORT_COMMAND macro, 17–6, 17–25
SPI$ALLOCATE_COMMAND_BUFFER macro,

17–6, 17–10, 17–25
SPI$CONNECT macro, 17–6, 17–9, 17–23, 17–26
SPI$DEALLOCATE_COMMAND_BUFFER macro,

17–6, 17–11, 17–25
SPI$DISCONNECT macro, 17–6
SPI$FINISH_COMMAND macro, 17–26
SPI$GET_CONNECTION_CHAR macro, 17–6
SPI$GET_CONNECTION_CHAR routine

with SCSI-2 devices, 17–32
SPI$MAP_BUFFER macro, 17–6, 17–14 to 17–15,

17–25
SPI$QUEUE_COMMAND macro, 17–31
SPI$RECEIVE_BYTES macro, 17–26
SPI$RELEASE_BUS macro, 17–26
SPI$RELEASE_QUEUE macro, 17–31
SPI$RESET macro, 17–6
SPI$SEND_BYTES macro, 17–26
SPI$SEND_COMMAND macro, 17–6, 17–10,

17–15, 17–25
SPI$SENSE_PHASE macro, 17–26
SPI$SET_CONNECTION_CHAR macro, 17–6,

17–11, 17–12, 17–13, 17–24
SPI$SET_CONNECTION_CHAR routine

with SCSI-2 devices, 17–32
SPI$SET_PHASE macro, 17–26
SPI$UNMAP_BUFFER macro, 17–6, 17–15
SPI (SCSI port interface), 17–5 to 17–6

calling protocol for, 17–6
extensions to, 17–26 to 17–27

Spinlock, 1–7, 3–2, 3–11 to 3–15
See also Device lock, Fork lock, SPL, Spinlock

index, Spin wait
acquisition IPL, 3–10, 3–13, G–16, G–18
acquisition PC list, G–16
address, G–18
dynamic, 3–11

Index–17

Spinlock (cont’d)
multiple acquisition of, 3–14, G–18
name, G–18
obtaining, 3–9
ownership, 3–14, 13–28, G–18
rank, 3–11 to 3–13, 3–14, 3–15, G–16, G–18
releasing, 3–9
static, 3–11
status, G–18
system, 3–11

Spinlock index, 3–11 to 3–13, G–18
Spinlock IPL vector

See SMP$AR_SPNLKVEC
Spinlock synchronization macros, G–4, G–12

See also DEVICELOCK, DEVICEUNLOCK,
FORKLOCK, FORKUNLOCK, LOCK, and
UNLOCK

Spin wait, 3–14
SPL$B_IPL, 3–8, G–17
SPL$B_RANK, G–17
SPL$L_BUSY_WAITS, G–16
SPL$L_OWN_PC_VEC, G–16
SPL$Q_ACQ_COUNT, G–16
SPLACQERR bugcheck, 13–27, 13–28, G–17
$SPLCODDEF macro, G–8
SPLIPLHIGH bugcheck, 13–27, G–17
SPLIPLLOW bugcheck, 13–27, G–17
SPLRELERR bugcheck, 13–27, 13–28, G–17
SPLRSTERR bugcheck, 13–27, 13–28, G–17
SS$_ABORT, 10–6
SS$_CANCEL, 11–6
SS$_EXQUOTA, G–6
SS$_NONSMPDRV, G–4
Stack

device driver use of, 8–1
using for temporary storage, 5–3

Start-I/O routine, 1–3
address, 2–4, 6–3
context, 4–13 to 4–14, 8–1 to 8–2
for connect to interrupt facility, 21–9, 21–14
for MASSBUS device, 15–11 to 15–12
functions, 4–14 to 4–15
of CONINTERR.EXE, 21–12
of third-party SCSI class driver, 17–24 to

17–25
reactivating, 4–16
register usage, 8–1
suspending, 4–15
synchronization requirements, 3–5, 3–19, 8–4,

G–8 to G–10
transferring control to, 4–12 to 4–14, 8–1, 10–3
writing, 8–1 to 8–7

STARTIO routine
UCB busy bit, 17–30

Static spinlock, 3–11

Status
See SCSI command, Port, SCSI status byte

Status register
See CSR, MBA$L_SR

Streamlined synchronization image, 13–27
loading, G–2

SWI$GL_FQFL
replaced by CPU$Q_SWIQFL, G–13

Synchronization image
full-checking, 13–27, G–2, G–16
streamlined, 13–27, G–2
uniprocessing, 13–27, G–2

Synchronization techniques, 1–6, 3–1 to 3–24
See also IPL, Spinlock, Fork queue, and

Resource wait queue
Synchronous backplane interconnect

See SBI
Synchronous SCSI data transfer mode

enabling, 17–12
setting REQ-ACK offset, 17–12
setting transfer period, 17–12

SYS$AR_JOBCTLMB, 9–7, G–7
SYS$AR_OPRMBX, 10–6, G–7
SYS$ASSIGN, 1–6, 2–3, 4–5, 21–8
SYS$CANCEL, 1–4, 11–6, 11–7, 18–15, 21–17
SYS$CRMPSC, 21–5 to 21–6, 21–7
SYS$DALLOC, 11–7, 18–15
SYS$DASSGN, 11–6, 11–7, 18–15
SYS$GL_JOBCTLMB

replaced by SYS$AR_JOBCTLMB, G–7
SYS$GL_OPRMBX

replaced by SYS$AR_OPRMBX, G–7
SYS$LOADABLE_IMAGES directory, G–7
SYS$QIO, 1–1, 2–3 to 2–4, 4–1 to 4–14

for connect to interrupt facility, 21–8, 21–9 to
21–11

SYS$QIOW, 2–7
SYS$SYNCH, 2–7
SYSGEN

See System Generation utility
System configuration, 12–11
System context, 1–7
System control block

See SCB
System control unit (SCU), 1–17
System Dump Analyzer (SDA), 13–21

current process, G–17
SET CPU command, G–18
SHOW CPU command, G–18
SHOW CRASH command, G–18
SHOW SPINLOCKS command, G–18
using to debug device driver, 13–28

System failure
inducing with XDELTA, 13–21

Index–18

System Generation utility (SYSGEN), 12–2 to
12–21

AUTOCONFIGURE command, 11–3 to 11–4,
12–13 to 12–21

configuring SCSI devices, 17–34
CONNECT command, 11–3 to 11–4, 12–3 to

12–6, G–3
/ADAPTER qualifier, 12–5
/ADPUNIT qualifier, 12–6
/CSR qualifier, 12–5
/CSR_OFFSET qualifier, 12–6
/DRIVERNAME qualifier, 12–6
/MAXUNITS qualifier, 12–6
/NOADAPTER qualifier, 12–5
/NUMVEC qualifier, 12–6, 14–28, 14–30
/VECTOR qualifier, 12–6
/VECTOR_OFFSET qualifier, 12–6

device table, 12–14, 12–21
LOAD command, 11–3, 12–3, G–3
loading a VAXBI device driver using, 16–23
RELOAD command, 11–4, 12–7 to 12–8
SHOW/ADAPTER command, 12–8
SHOW/BI command, 12–9
SHOW/BUS command, 12–9
SHOW/CONFIGURATION command, 12–11
SHOW/DEVICE command, 12–11 to 12–12
SHOW/XMI command, 12–10

System page
locking in memory, G–15

System page-table entry
allocating, 16–19, G–6
allocating permanent, 6–2

System service dispatcher
role in servicing I/O request, 4–1

System space
virtual addresses, 1–10

System spinlock, 3–11
System time, 3–7, 3–13, G–13

reading, G–14

T
Tagged command queuing

device support, 17–27
I/O requests, 17–27

Tape class driver
disabling the loading of, 17–34

Target, 17–2
enabling selection from, 17–26 to 17–27

Target mode
See Asynchronous event notification

Template class driver, 17–8
listing of, B–1 to B–36

Template device, 11–10
Template for a device driver, A–1 to A–10

Terminal class driver, 18–1 to 18–20
binding to port driver, 18–6 to 18–9
service routines, 18–17 to 18–20
structure, 18–6

Terminal port driver, 18–1 to 18–20
aborting output activity in, 18–14
binding to class driver, 18–6 to 18–9
canceling I/O request in, 18–15
detecting an error on terminal line in, 18–20
disconnecting a process from a terminal in,

18–17
forking in, 18–13, 18–18
implementing modem functions in, 18–13
initiate routines, 18–11 to 18–14
managing data set state transitions in, 18–17
obtaining characters for output in, 18–18
passing input characters to class driver from,

18–19
resuming stopped output in, 18–15
service routines, 18–14 to 18–16
starting output on an inactive line in, 18–14
startup routines, 18–10 to 18–11
stopping output in, 18–15
structure, 18–6
using input flow control character in, 18–15,

18–16
Terminal UCB extension, 18–2 to 18–3

initializing, 18–19
Third-party SCSI class driver

cancel-I/O routine of, 17–25
components, 17–22 to 17–26
data definitions, 17–22
debugging, 17–35 to 17–46
driver prologue table, 17–23
error logging, 17–18 to 17–20
loading, 17–34
maintaining local context of, 17–17 to 17–18
receiving notification of asynchronous events on

target, 17–26 to 17–27
register-dumping routine of, 17–20, 17–26
start-I/O routine of, 17–24 to 17–25
unit initialization routine of, 17–23 to 17–24
writing, 17–1 to 17–46

Timeout
caused by power failure recovery procedure,

10–5
disabling, 4–15, 10–1
for SCSI device, 17–10, 17–11
logging, 10–5, 11–9

Timeout enable bit
See UCB$V_TIM

Timeout handling routine, 1–3, 3–7, 9–4, 10–4 to
10–7, 11–7

aborting an I/O request in, 10–6
address, 8–6, 10–1
context, 10–4
functions, 10–5
retrying an I/O operation in, 10–5

Index–19

Timeout handling routine (cont’d)
synchronization requirements, 3–19, G–11 to

G–12
Timeout interval

specifying, 10–4
Timer

See Software timer, Interval clock
Timer queue, 3–13, G–13
TIMER spinlock, 3–7, 3–12, G–13
TQE (timer queue element)

calling a driver from, G–14
expiration time, 3–7

Translation buffer
invalidating, G–14

TTDRIVER.EXE, 18–1
TTY$V_PC_NOTIME, 18–14
TTY$V_PC_PORTFDT, 18–13
TTY$V_TP_ABORT, 18–16
$TTYDEFS macro, 18–2
$TTYMACS macro, 18–10, 18–11
$TTYMDMDEF macro, 18–17
$TTYMODEMDEF macro, 18–11
TURBOchannel

programming, 19–1
TURBOchannel adapter, 19–1
TURBOchannel device driver

assembling, 19–5
coding, 19–5
direct memory access, 19–3
linking, 19–5
loading, 19–6
programming, 19–1

TURBOchannel device support, 19–1
TURBOchannel hardware environment, 19–1

U
UBA (UNIBUS adapter), 1–11

See also UNIBUS adapter
UBI (UNIBUS interface), 1–12

See also UNIBUS adapter
UCB$B_DEVCLASS, 6–2, 17–20, 17–23
UCB$B_DEVTYPE, 6–3, 17–20, 17–23
UCB$B_DIPL, 3–5, 6–2, 10–4
UCB$B_ERTCNT, 10–3
UCB$B_FLCK, 3–5, 6–2, 10–1

initializing, G–8
UCB$B_SLAVE, 15–10 to 15–11
UCB$B_SLAVE+1, 15–10 to 15–11
UCB$B_TP_STAT, 18–16
UCB$B_TT_DEPARI, 18–20
UCB$B_TT_DETYPE, 18–20
UCB$B_TT_MAINT, 18–13
UCB$B_TT_OUTYPE, 18–14, 18–18, 18–19,

18–20

UCB$B_TT_PARITY, 18–13, 18–20
UCB$L_CRB, 11–4, 15–11
UCB$L_DDB, 4–8
UCB$L_DDT, 18–6
UCB$L_DEVCHAR, 6–2, 11–8
UCB$L_DLCK, 3–20
UCB$L_DUETIM, 4–14, 8–6, 10–5
UCB$L_EMB, 10–3
UCB$L_FPC, 4–14, 4–15, 9–4, 10–1, 10–4
UCB$L_FR3, 4–14, 4–15, 9–4, 10–1, 10–4
UCB$L_FR4, 4–14, 4–15, 9–4, 10–1, 10–4
UCB$L_IOQFL, 10–3, G–13
UCB$L_IRP, 4–5, 10–3
UCB$L_LINK, 11–4
UCB$L_MAXBCNT, 17–13, 17–24
UCB$L_PDT, 17–24
UCB$L_SCDT, 17–24
UCB$L_STS, 2–4, 8–5, 8–6
UCB$L_SVAPTE, 4–5, 8–2, 14–19, 15–3, 15–12,

16–20
UCB$L_TT_CLASS, 18–6
UCB$L_TT_GETNXT, 18–6
UCB$L_TT_LOGUCB, 18–19
UCB$L_TT_OUTADR, 18–14, 18–18, 18–19
UCB$L_TT_PORT, 18–6
UCB$L_TT_PUTNXT, 18–6
UCB$L_TT_RTIMOU, 18–19
UCB$L_TT_WFLINK, 18–19
UCB$M_BSY bit

in SCSI class driver, 17–30
UCB$Q_DEVDEPEND, 6–3
UCB$V_BSY, 2–4, 4–5, 7–5, 10–3, 11–7
UCB$V_CANCEL, 10–6, 11–7
UCB$V_DELMBX, 18–11
UCB$V_ERLOGIP, 10–3, 11–9
UCB$V_INT, 8–6, 9–3, 9–7, 10–4, 15–9, 18–14
UCB$V_JOB, 9–6, 9–7
UCB$V_ONLINE, 9–8, 11–2, 16–15
UCB$V_POWER, 8–5, 10–5, 11–1, 17–23, 18–11
UCB$V_TIM, 8–6, 10–1, 10–4
UCB$V_TIMOUT, 10–4
UCB$V_VALID, 9–8
UCB$W_BCNT, 8–2, 14–17, 14–19, 15–3, 15–12,

16–20
UCB$W_BOFF, 8–2, 14–17, 14–19, 14–20, 15–3,

15–12, 16–20
UCB$W_DEVBUFSIZ, 6–3
UCB$W_DEVSTS, 10–3
UCB$W_ERRCNT, 11–9
UCB$W_REFC, 9–6, 9–7, 11–6
UCB$W_STS, 17–23
UCB$W_TT_CURSOR, 18–19
UCB$W_TT_DESPEE, 18–20
UCB$W_TT_HOLD, 18–19
UCB$W_TT_OUTLEN, 18–14, 18–18, 18–19
UCB$W_TT_PRTCTL, 18–13, 18–14

Index–20

UCB$W_TT_SPEED, 18–13, 18–20
UCB$W_UNIT, 15–11
UCB (unit control block), 1–4, 3–4, 4–5

See also SCSI device UCB, SCSI port UCB
address, 8–6, 11–4
as fork block, 8–6
creation, 11–3, 12–4, 12–19, 15–6
error log extension, 11–8
initializing, 11–2
local disk extension, 11–8
local tape extension, 11–8
number to be created, 6–2
storing data in, 4–5, 5–2
synchronizing access to, 2–4, 3–5, 3–15
terminal extension, 18–2 to 18–3

UCB busy queue, 17–30
UNIBUS

accomplishing a DMA transfer on, 14–13 to
14–23

address size, 14–6
example of driver designed for, C–1 to C–29,

D–1 to D–25
example of read operation, 14–11 to 14–12,

14–13
example of write operation, 14–11, 14–13
I/O address space, 21–1, 21–3, 21–6
I/O space, 14–3
power failure, 21–6

UNIBUS adapter, 1–12, 1–14
error interrupt from, 13–21, 21–6
functions, 14–1 to 14–13
interrupt service routine, 14–27
nexus value of, 12–5
obtaining resources of, 14–14
prefetch function, 14–11, 14–12
registers, 14–14
scatter-gather map, 14–3 to 14–7
synchronizing access to, 14–3

Uniprocessing device driver
converting to multiprocessing device driver,

G–8 to G–19
incompatibility with multiprocessing device

driver, 12–12, G–3
Uniprocessing environment

contrasted with multiprocessing environment,
3–10, G–1

Uniprocessing synchronization image, 13–27
loading, G–2

Unit control block
See UCB

Unit control block (UCB)
See SCSI device UCB, SCSI port UCB

Unit delivery routine
address, 6–2, 12–19
context, 12–19
functions, 12–19
output, 12–19

Unit initialization routine, 1–3, 11–1 to 11–5,
12–4

address, 4–5, 6–3, 6–4, 11–1, 14–28
allocating controller data channel in, 8–4, 10–2
allocating permanent buffered data path in,

14–16
allocating permanent map registers in, 14–18

to 14–19
context, 11–1, 11–3
for connect to interrupt facility, 21–9, 21–13 to

21–14
for generic VAXBI device, 16–14, 16–23
forking in, 3–21, 11–5
for MASSBUS device, 11–4, 15–10 to 15–11
for terminal port driver, 18–6, 18–11
functions, 11–2
input, 11–3
of CONINTERR.EXE, 21–13
of third-party SCSI class driver, 17–23 to

17–24
synchronization requirements, G–11

UNLOCK macro, 3–9, G–4
Unmapped TURBOchannel DMA, 19–4
Unordered queuing

SCSI-2 devices, 17–31
Unsolicited interrupt

See Device interrupt
Unsolicited interrupt service routine, 9–5, 15–14

address, 6–4
User interface CSR space

enabling interrupts from, 16–17

V
VAX 10000

bus architecture, 1–19
hardware, 1–19

VAX 7000
bus architecture, 1–19
hardware, 1–19

VAX 9000
bus architecture, 1–17
hardware, 1–17
I/O address space, 16–6

VAXBI
displaying bus assignments, 12–9
displaying mapped addresses, 12–9

VAXBI bus, 1–14
address, 16–2 to 16–5
arbitration mode of, 16–25
errors, 16–26
I/O address space, 16–2, 16–18, 21–1
master of, 16–12
memory space, 16–2

VAXBI node
See also Generic VAXBI device, Node ID
definition, 16–1

Index–21

VAXBI node (cont’d)
determining self-test status of, 16–15
enabling BIIC options on, 16–17
enabling error interrupts from, 16–17
mapping window space of, 16–17 to 16–19
setting interrupt destination of, 16–16
setting interrupt vector for, 16–16

VAXBI-to-UNIBUS adapter
See DWBUA or DWMUA

VAX MACRO instructions
as used in device driver, 5–1 to 5–4

VAXstation 3520/3540 system
support for SCSI devices, 1–22

VEC$B_DATAPATH, 14–15, 14–16, 14–19, 14–23
VEC$B_NUMREG, 14–18
VEC$L_IDB, 4–5, 15–11
VEC$L_INITIAL, 4–5, 12–4
VEC$L_ISR, 4–5, G–5
VEC$L_RTINTD, 14–32, 14–33
VEC$L_UNITINIT, 4–5, 12–5
VEC$V_LWAE, 14–13, 14–19
VEC$V_MAPLOCK, 14–18
VEC$V_PATHLOCK, 14–15, 14–16
VEC$W_MAPALT, 14–18, 14–20
VEC$W_MAPREG, 14–18, 14–20
VEC$W_NUMALT, 14–18
VEC (interrupt transfer vector), 14–27, 14–28 to

14–30
initializing, 14–29

$VECEND macro, 18–6
$VECINI macro, 18–5
$VEC macro, 18–6
VECTAB

See Adapter dispatch table
Vector

fixed space, 12–14
floating space, 12–14

Vector jump table
See Adapter dispatch table

VIRTCONS spinlock, 3–12
Virtual address register

See MBA$L_VAR
Virtual address space, 1–10
Virtual I/O function

translation to logical function from, 2–3
VMEbus

arbitration, 20–3
hardware environment, 20–1
interrupts, 20–4
parameter selection, 20–3
programming, 20–1
protocol, 20–3
request level, 20–3
timeout, 20–3

VMEbus device support, 20–1

VME code example
DMA interface, F–1

VME device driver
assembling, 20–12
coding, 20–11
coding concepts, 20–11
direct memory access, 20–5
interrupt handling, 20–4
linking, 20–12
loading, 20–13
macros, 20–4
porting, 20–11
programmed I/O, 20–7
programming, 20–1

VME device driver sample
for a DR11–W Emulator, F–1

Volume valid bit
See UCB$V_VALID

W
Wait for interrupt macro

See WFIKPCH macro, WFIRLCH macro
WCB (window control block), 4–9
WFIKPCH macro, 4–15, 8–4, 8–5, 10–7, 15–12,

G–10
WFIRLCH macro, 4–15, 8–4, 8–5
Window control block

See WCB
Window space, 16–5

mapping, 16–17 to 16–19
starting address, 16–18

Word count register, 14–21
Write function

FDT routine for, 7–8
WRITE_CSR macro, 16–8 to 16–9, 20–10

X
XA

See Extended addressing
XADRIVER.MAR, D–1 to D–25
XBI+ adapter

map registers, 16–2, 16–5 to 16–6
XDELTA

See Delta/XDelta utility
XDELTA entry IPL, 3–8
XMI

displaying mapped addresses, 12–10
XMI bus

memory space, 16–6
XPA

See Extended physical addressing
XVA

See Extended virtual addressing

Index–22

