
OpenVMS Wide Area Network
I/O User’sReferenceManual
Order Number: AA–PWC7A–TE

May 1993

This document contains the information necessary to interface directly
with the communications I/O device drivers supplied as part of the
OpenVMS VAX operating system. Several examples of programming
techniques are included. This document does not contain information
about I/O operations using OpenVMS Record Management Services.

Revision/Update Information: This is a new manual.

Software Version: OpenVMS VAX Version 6.0

Digital Equipment Corporation
Maynard, Massachusetts

May 1993

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993.

All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Bookreader, DECnet,
Digital, MASSBUS, MicroVAX, OpenVMS, PDP–11, Q–bus, UNIBUS, VAX, VAX DOCUMENT,
VAX FORTRAN, VAX MACRO, VMS, and the DIGITAL logo.

All other trademarks and registered trademarks are the property of their respective holders.

ZK6108

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . ix

1 DMC11/DMR11 Interface Driver

1.1 Supported DMC11 Synchronous Line Interfaces . 1–1
1.1.1 Digital Data Communications Message Protocol (DDCMP) 1–1
1.2 Driver Features and Capabilities . 1–2
1.2.1 Mailbox Usage . 1–2
1.2.2 Quotas . 1–3
1.2.3 Power Failure . 1–3
1.3 Device Information . 1–3
1.4 DMC11 Function Codes . 1–5
1.4.1 Read . 1–5
1.4.2 Write . 1–6
1.4.3 Set Mode . 1–6
1.4.3.1 Set Mode and Set Characteristics . 1–6
1.4.3.2 Enable Attention AST . 1–7
1.4.3.3 Set Mode and Shut Down Unit . 1–8
1.4.3.4 Set Mode and Start Unit . 1–8
1.5 I/O Status Block . 1–9
1.6 Programming Example . 1–9

2 DMP11 and DMF32 Interface Drivers

2.1 Supported Devices . 2–1
2.2 Driver Features and Capabilities . 2–1
2.2.1 Character-Oriented Protocols and HDLC Bit Stuff Mode 2–3
2.2.2 Quotas . 2–3
2.2.3 Power Failure . 2–3
2.3 Device Information . 2–3
2.4 DMP11 and DMF32 Function Codes . 2–6
2.4.1 Read . 2–7
2.4.2 Write . 2–8
2.4.3 Set Mode and Set Characteristics . 2–8
2.4.3.1 Set Controller Mode . 2–9
2.4.3.2 Additional Features of the DMF32 Driver 2–12
2.4.3.3 Framing Routine Interface for Character-Oriented Protocols 2–13
2.4.3.4 Using the DMF32 Driver Transmitter Interface in

Character-Oriented Mode . 2–13
2.4.3.5 IO$_CLEAN Function . 2–14
2.4.3.6 Set Tributary Mode . 2–14
2.4.3.7 Shutdown Controller . 2–16
2.4.3.8 Shutdown Tributary . 2–17
2.4.3.9 Enable Attention AST . 2–17

iii

2.4.4 Sense Mode . 2–17
2.4.4.1 Read Internal Counters . 2–18
2.4.5 Diagnostic Support . 2–21
2.4.5.1 Set Line Unit Modem Status . 2–22
2.4.5.2 Read Line Unit Modem Status . 2–22
2.4.5.3 Read Device Status Slot . 2–23
2.5 I/O Status Block . 2–23
2.6 Programming Example . 2–23

3 DR11–W and DRV11–WA Interface Driver

3.1 Supported Devices . 3–1
3.1.1 Device Differences . 3–3
3.1.2 DRV11–WA Installation . 3–3
3.1.2.1 Type of Addressing . 3–3
3.1.2.2 Device Address and Interrupt Vector Address Selection 3–3
3.1.3 DR11–W and DRV11–WA Transfer Modes . 3–3
3.1.4 DR11–W and DRV11–WA Control and Status Register Functions 3–5
3.1.5 Data Registers . 3–5
3.1.6 Error Reporting . 3–6
3.1.7 Link Mode of Operation . 3–6
3.2 Device Information . 3–8
3.3 DR11–W and DRV11–WA Function Codes . 3–9
3.3.1 Read . 3–11
3.3.2 Write . 3–12
3.3.3 Set Mode and Set Characteristics . 3–12
3.3.3.1 Set Mode Function Modifiers . 3–13
3.4 I/O Status Block . 3–14
3.5 Programming Example . 3–15

4 DR32 Interface Driver

4.1 Supported Device . 4–1
4.1.1 DR32 Device Interconnect . 4–2
4.2 DR32 Features and Capabilities . 4–2
4.2.1 Command and Data Chaining . 4–2
4.2.2 Far-End DR Device-Initiated Transfers . 4–2
4.2.3 Power Failure . 4–3
4.2.4 Interrupts . 4–3
4.3 Device Information . 4–3
4.4 Programming Interface . 4–4
4.4.1 DR32—Application Program Interface . 4–4
4.4.2 Queue Processing . 4–5
4.4.2.1 Initiating Command Sequences . 4–6
4.4.2.2 Device-Initiated Command Sequences . 4–6
4.4.3 Command Packets . 4–7
4.4.3.1 Length of Device Message Field . 4–8
4.4.3.2 Length of Log Area Field . 4–9
4.4.3.3 Device Control Code Field . 4–9
4.4.3.4 Control Select Field . 4–12
4.4.3.5 Suppress Length Error Field . 4–13
4.4.3.6 Interrupt Control Field . 4–13
4.4.3.7 Byte Count Field . 4–14
4.4.3.8 Virtual Address of Buffer Field . 4–14

iv

4.4.3.9 Residual Memory Byte Count Field . 4–14
4.4.3.10 Residual DDI Byte Count Field . 4–14
4.4.3.11 DR32 Status Longword (DSL) . 4–15
4.4.3.12 Device Message Field . 4–16
4.4.3.13 Log Area Field . 4–17
4.4.4 DR32 Microcode Loader . 4–17
4.4.5 DR32 Function Codes . 4–18
4.4.5.1 Load Microcode . 4–18
4.4.5.2 Start Data Transfer . 4–18
4.4.6 High-Level Language Interface . 4–21
4.4.6.1 XF$SETUP . 4–22
4.4.6.2 XF$STARTDEV . 4–23
4.4.6.3 XF$FREESET . 4–24
4.4.6.4 XF$PKTBLD . 4–25
4.4.6.5 XF$GETPKT . 4–28
4.4.6.6 XF$CLEANUP . 4–29
4.4.7 User Program DR32 Synchronization . 4–30
4.4.7.1 Event Flags . 4–30
4.4.7.2 AST Routines . 4–30
4.4.7.3 Action Routines . 4–30
4.5 I/O Status Block . 4–31
4.6 Programming Hints . 4–33
4.6.1 Command Packet Prefetch . 4–33
4.6.2 Action Routines . 4–34
4.6.3 Error Checking . 4–34
4.6.4 Queue Retry Macro . 4–35
4.6.5 Diagnostic Functions . 4–35
4.6.6 NOP Command Packet . 4–35
4.6.7 Interrupt Control Field . 4–35
4.7 Programming Examples . 4–36
4.7.1 DR32 High-Level Language Program . 4–36
4.7.2 DR32 Queue I/O Functions Program . 4–42

5 Asynchronous DDCMP Interface Driver

5.1 Supported Devices . 5–1
5.2 Driver Features and Capabilities . 5–1
5.2.1 Quotas . 5–1
5.2.2 Power Failure . 5–1
5.3 Device Information . 5–1
5.4 Asynchronous DDCMP Function Codes . 5–4
5.4.1 Read . 5–4
5.4.2 Write . 5–5
5.4.3 Set Mode and Set Characteristics . 5–5
5.4.3.1 Set Controller Mode . 5–6
5.4.3.2 Set Tributary Mode . 5–7
5.4.3.3 Shutdown Controller . 5–8
5.4.3.4 Shutdown Tributary . 5–8
5.4.3.5 Enable Attention AST . 5–9
5.4.4 Sense Mode . 5–9
5.4.4.1 Read Internal Counters . 5–9
5.5 I/O Status Block . 5–13

v

A I/O Function Codes

A.1 DMC11/DMR11 Interface Driver . A–1
A.2 DMP11 and DMF32 Interface Drivers . A–2
A.3 DR11–W/DRV11–WA Interface Driver . A–3
A.4 DR32 Interface Driver . A–3
A.5 Asynchronous DDCMP DUP11 Interface Driver . A–4

Index

Examples

1–1 DMC11/DMR11 Program Example . 1–9
2–1 DMP11/DMF32 Program Example . 2–24
3–1 DR11–W/DRV11–WA Program Example (XAMESSAGE.MAR) 3–17
4–1 DR32 High-Level Language Program Example 4–36
4–2 DR32 Queue I/O Functions Program Example 4–42

Figures

1–1 Mailbox Message Format . 1–3
1–2 DVI$_DEVDEPEND Returns . 1–4
1–3 P1 Characteristics Block . 1–7
1–4 IOSB Contents for DMC11 Functions . 1–9
2–1 Typical DMP11/DMF32 Multipoint Configuration 2–2
2–2 DVI$_DEVDEPEND Returns . 2–4
2–3 P1 Characteristics Buffer (Set Controller) . 2–9
2–4 P2 Extended Characteristics Buffer (Set Controller) 2–10
2–5 P1 Characteristics Buffer (Set Tributary) . 2–14
2–6 P2 Extended Characteristics Buffer (Sense Mode) 2–19
2–7 IOSB Contents for DMP11 and DMF32 Functions 2–23
3–1 Typical DR11–W/DRV11–WA Device Configurations 3–2
3–2 P1 Characteristics Buffer . 3–12
3–3 IOSB Contents for DR11 and DRV11 Functions 3–14
4–1 Basic DR32 Configuration . 4–1
4–2 Command Block (Queue Headers) . 4–5
4–3 DR32 Command Packet Queue Flow . 4–7
4–4 DR32 Command Packet . 4–8
4–5 Detail of the Device Message Field in the Command Packet 4–9
4–6 Data Transfer Command Table . 4–19
4–7 Action Routine Synchronization . 4–31
4–8 IOSB Contents for the DR32 Functions . 4–32
5–1 DVI$_DEVDEPEND Returns . 5–2
5–2 P2 Characteristics Buffer (Set Controller) . 5–6
5–3 P2 Extended Characteristics Buffer (Sense Mode) 5–11
5–4 IOSB Contents for the DDCMP Functions . 5–13

vi

Tables

1–1 Supported DMC11 Options . 1–1
1–2 DMC11/DMR11 Device Characteristics . 1–4
1–3 DMC11/DMR11 Unit Characteristics . 1–4
1–4 DMC11/DMR11 Unit and Line Status . 1–5
1–5 DMC11/DMR11 Error Summary Bits . 1–5
2–1 DMP11 and DMF32 Device Characteristics . 2–3
2–2 DMP11 and DMF32 Unit Characteristics . 2–4
2–3 DMP11 and DMF32 Unit and Line Status . 2–4
2–4 Error Summary Bits . 2–5
2–5 DMP11 and DMF32 Errors . 2–5
2–6 DMP11 and DMF32 I/O Functions . 2–6
2–7 DMP11 and DMF32 Characteristics . 2–10
2–8 P2 Extended Characteristics Values . 2–11
2–9 P2 Extended Characteristics Values (DMF32 Driver) 2–12
2–10 P2 Extended Characteristics Values . 2–15
2–11 DDCMP Controller Counter Parameter IDs . 2–20
2–12 LAPB Controller Counter Parameter IDs . 2–20
2–13 Tributary Counter Parameter IDs . 2–20
3–1 Control and Status Register FNCT and STATUS Bits (Link Mode) . . . 3–7
3–2 DR11–W and DRV11–WA Device-Independent Characteristics 3–8
3–3 DR11–W and DRV11–WA Device-Dependent Characteristics 3–8
3–4 DR11–W Function Codes . 3–9
3–5 EIR and CSR Bit Assignments . 3–14
3–6 XAMESSAGE Program Flow . 3–16
4–1 DR32 Device Characteristics . 4–3
4–2 Device Control Code Descriptions . 4–10
4–3 DR32 Status Longword (DSL) Status Bits . 4–15
4–4 Operating System Procedures for the DR32 . 4–21
4–5 Device-Dependent IOSB Returns for I/O Functions 4–32
5–1 Device Characteristics . 5–2
5–2 Asynchronous DDCMP Unit and Line Status 5–3
5–3 Error Summary Bits . 5–3
5–4 Asynchronous DDCMP Errors . 5–3
5–5 Asynchronous DDCMP I/O Functions . 5–4
5–6 P2 Characteristics Values (Set Controller) . 5–7
5–7 P2 Characteristics Values (Set Tributary) . 5–8
5–8 Controller Counter Parameter IDs . 5–10
5–9 Tributary Counter Parameter IDs . 5–12

vii

Preface

Intended Audience
This manual is intended for system programmers who want to save time and
space by using I/O devices directly. If you do not require such detailed knowledge
of the I/O drivers, use the device-independent services described in the OpenVMS
Record Management Services Reference Manual. Readers are expected to have
some experience with VAX MACRO or another high-level assembly language.

Document Structure
This manual is organized into five chapters and one appendix, as follows:

• Chapters 1 through 5 describe the use of communications device drivers
supported by the OpenVMS operating system.

Chapter 1 discusses the DMC11/DMR11 interface driver.

Chapter 2 discusses the DMP11 and DMF32 interface drivers.

Chapter 3 discusses the DR11–W and DRV11–WA interface drivers.

Chapter 4 discusses the DR32 interface driver.

Chapter 5 discusses the asynchronous DDCMP interface driver.

• Appendix A summarizes the function codes, arguments, and function
modifiers used by these drivers.

Associated Documents
For additional information, refer to the following documents:

• OpenVMS I/O User’s Reference Manual

• OpenVMS VAX Card Reader, Line Printer, and LPA11–K I/O User’s Reference
Manual

• OpenVMS System Services Reference Manual

• VAX FORTRAN User’s Guide

• OpenVMS Programming Concepts Manual

• OpenVMS Record Management Services Reference Manual

• DECnet for OpenVMS Networking Manual

• VAX–11 2780/3780 Protocol Emulator User’s Guide

• OpenVMS system messages documentation

• OpenVMS VAX Device Support Manual

ix

Conventions
In this manual, every use of OpenVMS VAX means the OpenVMS VAX operating
system.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1, then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . In examples, a horizontal ellipsis indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses.

[] In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets are
not optional, however, in the syntax of a directory name in
an OpenVMS file specification, or in the syntax of a substring
specification in an assignment statement.)

{ } In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

italic text Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, /PRODUCER=name), and command parameters
in text.

x

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

numbers All numbers in the text are assumed to be decimal, unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xi

1
DMC11/DMR11 Interface Driver

This chapter describes the use of the DMC11 synchronous communications line
interface driver in the OpenVMS VAX environment. (The DMR11 synchronous
communications line interface uses the same driver in DMC compatibility
mode; references to the DMC11 driver also imply the use of the DMR11 driver
operating in DMC11 compatibility mode.) The DMC11 provides a direct-memory-
access (DMA) interface between two computer systems using the Digital Data
Communications Message Protocol (see Section 1.1.1). The DMC11 supports
DMA data transfers of up to 16K bytes at rates of up to 1 million baud for local
operation over coaxial cable and 56,000 baud for remote operation using modems.
Both full- and half-duplex modes are supported.

The DMC11 is a message-oriented communications line interface used primarily
to link two separate but cooperating computer systems.

1.1 Supported DMC11 Synchronous Line Interfaces
Table 1–1 lists the DMC11 options supported by the OpenVMS VAX operating
system.

Table 1–1 Supported DMC11 Options

Type Use

DMC11-AR with DMC11-FA
DMC11-AR with DMC11-DA

Remote DMC11 and EIA or V35/DDS line unit

DMC11-AL with DMC11-MD
DMC11-AL with DMC11-MA

Local DMC11 and 1M bps or 56 bps

1.1.1 Digital Data Communications Message Protocol (DDCMP)
To ensure reliable data transmission, the Digital Data Communications Message
Protocol (DDCMP) has been implemented, using a high-speed microprocessor.
For remote operations, a DMC11 can communicate with a different type of
synchronous interface (or even a different type of computer), provided the remote
system has implemented DDCMP.

DDCMP detects errors on the communication line connecting the systems using
a 16-bit cyclic redundancy check (CRC). Errors are corrected, when necessary,
by automatic message retransmission. Sequence numbers in message headers
ensure that messages are delivered in the proper order with no omissions or
duplications.

The DDCMP specification (Order No. AA–K175A–TC) provides more detailed
information about DDCMP.

1–1

DMC11/DMR11 Interface Driver
1.2 Driver Features and Capabilities

1.2 Driver Features and Capabilities
DMC11 driver capabilities include the following:

• A nonprivileged QIO interface to the DMC11 (allows use of the DMC11 as a
raw-data channel)

• Unit attention conditions transmitted through attention ASTs and mailbox
messages

• Both full- and half-duplex operation

• Interface design common to all communications devices supported by the
OpenVMS VAX operating system

• Error logging of all DMC11 microprocessor and line unit errors

• Online diagnostics

• Separate transmit and receive quotas

• Assignment of several read buffers to the device

The following sections describe mailbox usage and I/O quotas.

1.2.1 Mailbox Usage
The device owner process can associate a mailbox with a DMC11 by using the
Assign I/O Channel ($ASSIGN) system service. (See the OpenVMS System
Services Reference Manual.) The mailbox is used to receive messages that signal
attention conditions about the unit. As illustrated in Figure 1–1, these messages
have the following content and format:

• Message type. This can be any one of the following:

MSG$_XM_DATAVL—Data is available.

MSG$_XM_SHUTDN—The unit has been shut down.

MSG$_XM_ATTN—A disconnect, timeout, or data check occurred.

The $MSGDEF macro is used to define message types.

• Physical unit number of the DMC11.

• Size (count) of the ASCII device name string.

• Device name string.

1–2

DMC11/DMR11 Interface Driver
1.2 Driver Features and Capabilities

Figure 1–1 Mailbox Message Format

31 16 15 8 7 0

Unit Type

Count

Device Name

ZK−0699−GE

1.2.2 Quotas
Transmit operations are considered direct I/O operations and are limited by the
process’s direct I/O quota.

The quotas for the receive buffer free list (see Section 1.4.3.4) are the process’s
buffered I/O count and buffered I/O byte limit. After startup, the transient byte
count and the buffered I/O byte limit are adjusted.

1.2.3 Power Failure
When a system power failure occurs, no DMC11 recovery is possible. The device
is in a fatal error state and is shut down.

1.3 Device Information
You can obtain information about DMC11/DMR11 device characteristics by
using the Get Device/Volume Information ($GETDVI) system service. (See the
OpenVMS System Services Reference Manual.)

$GETDVI returns DMC11/DMR11 device characteristics when you specify the
item code DVI$_DEVCHAR. Table 1–2 lists these characteristics, which are
defined by the $DEVDEF macro.

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and class names,
which are defined by the $DCDEF macro. The device type for the DMC11 is
DT$_DMC11; the device type for the DMR11 is DT$_ DMR11 (only after the
device has been started once). The device class for the DMC11 is DC$_SCOM.

DVI$_DEVBUFSIZ returns the maximum message size. The maximum message
size is the maximum send or receive message size for the unit. Messages greater
than 512 bytes on modem-controlled lines are more prone to transmission errors
and therefore may require more retransmissions.

1–3

DMC11/DMR11 Interface Driver
1.3 Device Information

Table 1–2 DMC11/DMR11 Device Characteristics

Characteristic 1 Meaning

Dynamic Bit (Conditionally Set)

DEV$M_NET Network device

Static Bits (Always Set)

DEV$M_ODV Output device

DEV$M_IDV Input device

1Defined by the $DEVDEF macro

DVI$_DEVDEPEND returns the DMC11/DMR11 unit characteristics bits, the
unit and line status bits, and the error summary bits in a longword field, as
shown in Figure 1–2.

Figure 1–2 DVI$_DEVDEPEND Returns

ZK−5930−GE

31

Not Used

24

Summary
Error

23 16 15

Status
Unit and Line

8 7

Characteristics
Unit

0

The unit characteristics bits govern the DDCMP operating mode. They are
defined by the $XMDEF macro and can be read or set. Table 1–3 lists the unit
characteristics values and their meanings.

Table 1–3 DMC11/DMR11 Unit Characteristics

Characteristic Meaning 1

XM$M_CHR_MOP DDCMP maintenance mode.

XM$M_CHR_SLAVE DDCMP half-duplex slave station mode.

XM$M_CHR_HDPLX DDCMP half-duplex mode.

XM$M_CHR_LOOPB DDCMP loopback mode.

XM$M_CHR_MBX The status of the mailbox associated with the unit. If
this bit is set, the mailbox is enabled to receive messages
signaling unsolicited data. (This bit can also be changed
as a subfunction of read or write functions.)

1Section 1.1.1 describes DDCMP.

The status bits show the status of the unit and the line. The values are defined
by the $XMDEF macro. They can be read, set, or cleared as indicated. Table 1–4
lists the status values and their meanings.

1–4

DMC11/DMR11 Interface Driver
1.3 Device Information

Table 1–4 DMC11/DMR11 Unit and Line Status

Status Meaning

XM$M_STS_ACTIVE Protocol is active. This bit is set when IO$_
SETMODE!IO$_STARTUP is complete and is cleared
when the unit is shut down (read only).

XM$M_STS_TIMO Timeout. If set, indicates that the receiving computer is
unresponsive (read or clear).

XM$M_STS_ORUN Data overrun. If set, indicates that a message was
received but lost because there is no receive buffer (read
or clear).

XM$M_STS_DCHK Data check. If set, indicates that a retransmission
threshold has been exceeded (read or clear).

XM$M_STS_DISC Disconnect. If set, indicates that the data set ready (DSR)
modem line went from on to off (read or clear).

The error summary bits are set only when the driver must shut down the DMC11
interface because a fatal error occurred. These are read-only bits that are cleared
by any of the IO$_SETMODE functions (see Section 1.4.3). The XM$M_STS_
ACTIVE status bit is clear if any error summary bit is set. Table 1–5 lists the
error summary bit values and their meanings.

Table 1–5 DMC11/DMR11 Error Summary Bits

Error Summary Bit Meaning

XM$M_ERR_MAINT DDCMP maintenance message was received.

XM$M_ERR_START DDCMP START message was received.

XM$M_ERR_LOST Data was lost when a message was received that was
longer than the specified maximum message size.

XM$M_ERR_FATAL An unexpected hardware or software error occurred.

1.4 DMC11 Function Codes
The basic DMC11 function codes are read, write, and set mode. All three
functions take function modifiers.

1.4.1 Read
The operating system provides the following read function codes:

• IO$_READLBLK—Read logical block

• IO$_READPBLK—Read physical block

• IO$_READVBLK—Read virtual block

Received messages are multibuffered in system dynamic memory and then copied
to the user’s address space when the read operation is performed.

The read functions take the following two device/function-dependent arguments:

• P1—The starting virtual address of the buffer that is to receive data

• P2—The size of the receive buffer in bytes

1–5

DMC11/DMR11 Interface Driver
1.4 DMC11 Function Codes

The read functions can take the following function modifiers:

• IO$M_DSABLMBX—Disables use of the associated mailbox for unsolicited
data notification

• IO$M_NOW—Completes the read operation immediately if no message is
available

1.4.2 Write
The operating system provides the following write function codes:

• IO$_WRITELBLK—Write logical block

• IO$_WRITEPBLK—Write physical block

• IO$_WRITEVBLK—Write virtual block

Transmitted messages are sent directly from the requesting process’s buffer.

The write functions take the following device- or function-dependent arguments:

• P1—The starting virtual address of the buffer containing the data to be
transmitted

• P2—The size of the buffer in bytes

The message size specified by P2 cannot be larger than the maximum send
message size for the unit (see Section 1.3). If a message larger than the maximum
size is sent, a status of SS$_DATAOVERUN is returned in the I/O status block.

The write functions can take the following function modifier:

• IO$M_ENABLMBX—Enable use of the associated mailbox

1.4.3 Set Mode
Set mode operations are used to perform protocol, operational, and program and
driver interface operations with the DMC11. The operating system defines the
following types of set mode functions:

• Set mode

• Set characteristics

• Enable attention AST

• Set mode and shut down unit

• Set mode and start unit

1.4.3.1 Set Mode and Set Characteristics
The set mode and set characteristics functions set device characteristics such as
maximum message size. The operating system provides the following function
codes:

• IO$_SETMODE—Set mode (no I/O privilege required)

• IO$_SETCHAR—Set characteristics (requires physical I/O privilege)

These two functions take the following device- or function-dependent argument:

• P1—The virtual address of the quadword characteristics buffer block if the
characteristics are to be set. If this argument is zero, only the unit status
and characteristics are returned in the I/O status block (see Section 1.5).
Figure 1–3 shows the P1 characteristics block.

1–6

DMC11/DMR11 Interface Driver
1.4 DMC11 Function Codes

Figure 1–3 P1 Characteristics Block

ZK−0701−GE

Maximum Message Size

TPI Error Summary

Type Class

Status Characteristics

31 24 23 16 15 8 7 0

In the buffer designated by P1 the device class is DC$_SCOM. Section 1.3
describes the device types. The maximum message size describes the maximum
send or receive message size.

The second longword contains device- or function-dependent characteristics: unit
characteristics, status, error summary bits, and transmit pipeline count (TPI).
Any of the characteristics values and some of the status values can be set or
cleared (see Tables 1–3, 1–4, and 1–5).

If the unit is active (XM$M_STS_ACTIVE is set), the action of a set mode or set
characteristics function with a characteristics buffer is to clear the status bits
or the error summary bits. If the unit is not active, the status bits or the error
summary bits can be cleared, and the maximum message size, type, device class,
unit characteristics, and transmit pipeline count can be changed.

1.4.3.2 Enable Attention AST
The enable attention AST function enables an AST to be queued when an
attention condition occurs on the unit. An AST is queued when the driver sets
or clears either an error summary bit or any of the unit status bits, or when a
message is available and there is no waiting read request. The enable attention
AST function is legal at any time, regardless of the condition of the unit status
bits.

The operating system provides the following function codes:

• IO$_SETMODE!IO$M_ATTNAST—Enable attention AST

• IO$_SETCHAR!IO$M_ATTNAST—Enable attention AST

Enable attention AST enables an AST to be queued one time only. After the AST
occurs, it must be explicitly reenabled by the function before the AST can occur
again. The function code is also used to disable the AST. The function is subject
to AST quotas.

The enable attention AST functions take the following device- or function-
dependent arguments:

• P1—Address of AST service routine or 0 for disable

• P2—Ignored

• P3—Access mode to deliver AST

The AST service routine is called with an argument list. The first argument is
the current value of the device- or function-dependent characteristics longword
shown in Figure 1–3. The access mode specified by P3 is maximized with the
requester’s access mode. (See the OpenVMS System Services Reference Manual
for an explanation of this concept.)

1–7

DMC11/DMR11 Interface Driver
1.4 DMC11 Function Codes

1.4.3.3 Set Mode and Shut Down Unit
The set mode and shut down unit function stops the operation on an active unit
(XM$M_STS_ACTIVE must be set) and then resets the unit characteristics.

The operating system provides the following function codes:

• IO$_SETMODE!IO$M_SHUTDOWN—Shut down unit

• IO$_SETCHAR!IO$M_SHUTDOWN—Shut down unit

These functions take the following device- or function-dependent argument:

• P1—The virtual address of the quadword characteristics block (Figure 1–3) if
modes are to be set after shutdown. P1 is 0 if modes are not to be set after
shutdown.

Both functions stop the DMC11 microprocessor and release all outstanding
message blocks; any messages that have not been read are lost. The
characteristics are reset after shutdown. Except for the sending of attention
ASTs and mailbox messages, these functions act the same as the driver does
when shutdown occurs because of a fatal error.

1.4.3.4 Set Mode and Start Unit
The set mode and start unit function sets the characteristics and starts the
protocol on the associated unit. The operating system provides the following
function codes:

• IO$_SETMODE!IO$M_STARTUP—Start unit

• IO$_SETCHAR!IO$M_STARTUP—Start unit

These functions take the following device- or function-dependent arguments:

• P1—The virtual address of the quadword characteristics block (Figure 1–3) if
the characteristics are to be set. Characteristics are set before the device is
started.

• P2—Ignored.

• P3—The number of preallocated receive-message blocks to ensure the
availability of buffers to receive messages.

The total quota taken from the process’s buffered I/O byte count quota is the
DMC11 work space plus the number of receive-message buffers specified by
P3 times the maximum message size. For example, if six 200-byte buffers are
required, the total quota taken is 1456 bytes:

256 (DMC11 work space)
+ 1200 (number of buffers X buffer size)

1456 (total quota taken)

This quota is returned to the process when shutdown occurs.

Receive-message blocks are used by the driver to receive messages that arrive
independent of read-request timing. When a message arrives, it is matched with
any outstanding read requests. If there are no outstanding read requests, the
message is queued, and an attention AST or mailbox message is generated. (IO$_
SETMODE!IO$M_ATTNAST or IO$_SETCHAR!IO$M_ATTNAST must be set to
enable an attention AST; IO$M_ENABLMBX must be used to enable a mailbox
message.)

1–8

DMC11/DMR11 Interface Driver
1.4 DMC11 Function Codes

When read, the receive-message block is returned to the receive-message free list
defined by P3. If the free list is empty, no receive messages are possible. In this
case, a data-lost condition can be generated if a message arrives. This nonfatal
condition is reported by device-dependent data and an attention AST.

1.5 I/O Status Block
The I/O status block (IOSB) usage for all DMC11 functions is shown in
Figure 1–4. Appendix A lists the status returns for these functions. (The
OpenVMS system messages documentation provides explanations and suggested
user actions for these returns.)

Figure 1–4 IOSB Contents for DMC11 Functions

ZK−0702−GE

Device−Dependent Characteristics

StatusTransfer Size

+4

+2 IOSB

In Figure 1–4, the transfer size at IOSB+2 is the actual number of bytes
transferred. Table 1–3 lists the device-dependent characteristics returned
at IOSB+4. These characteristics can also be obtained by using the Get
Device/Volume Information ($GETDVI) system service (see Section 1.3).

1.6 Programming Example
The following sample program (Example 1–1) shows the typical use of QIO
functions, such as transmitting and receiving data and checking for errors, in
DMC11/DMR11 driver operations.

Example 1–1 DMC11/DMR11 Program Example

.TITLE EXAMPLE - DMC11/DMR11 Device Driver Sample Program

.IDENT ’X00’

$IODEF ; Define I/O functions and modes
$XMDEF ; Define driver status flags

;
; Macro definitions
;

.macro type string,?L ;
store <string> ;
movl #$$.tmpx,cmdorab+rab$l_rbf ;
movw #$$.tmpx1,cmdorab+rab$w_rsz ;
$put rab=cmdorab ;
blbs r0,L ;
$exit_s ;

L: ;
.endm type ;

(continued on next page)

1–9

DMC11/DMR11 Interface Driver
1.6 Programming Example

Example 1–1 (Cont.) DMC11/DMR11 Program Example

;
.macro store string,pre
.save
.psect $$$DEV
$$.tmpx=.
pre
.ascii %string%
$$.tmpx1=.-$$.tmpx
.restore
.endm store

CMDOFAB: $FAB fac=put,fnm=sys$output:,- ; Output FAB
mrs=132,rat=cr,rfm=var

CMDORAB: $RAB ubf=cmdbuf,usz=cmdbsz,- ; Output RAB
fab=cmdofab

CMDBUF:: .BLKB 256 ; Command buffer
CMDBSZ= .-CMDBUF ; Buffer size
FAOBUFDSC: .LONG CMDBSZ,CMDBUF ; FAO buffer

; descriptor
FAOLEN: .BLKL 1 ; FAO output buffer

; length
P2BUF:: .BLKL 50 ; P2 buffer
P2BUFSZ= .-P2BUF ; P2 buffer size
P2BUFDSC: .LONG P2BUFSZ,P2BUF ; P2 buffer descriptor
P1BUF:: .BLKQ 1 ; P1 buffer
P1BUFSZ= .-P1BUF ; P1 buffer size
CHNL:: .BLKL 1 ; Channel number
IOSB:: .BLKQ 1 ; I/O status block
DEVDSC: .ASCID ’DEV’ ; Device to assign
QIOREQDSC: .LONG QIOREQSZ,QIOREQ ; QIO request status
QIOREQ: .ASCII ’QIO completion status = !XL’

.ASCII ’IOSB1 = !XL, IOSB2 = !XL’
QIOREQSZ= .-QIOREQ ; Size of QIO status

; report
XMTBUFLEN=512 ; Size of transmit

; buffer
XMTBUF: .REPEAT XMTBUFLEN

.BYTE ^X93 ; Transmit data

.ENDR
RCVBUF: .BLKB XMTBUFLEN

;
; This is the start of the program section.
;
START:: .WORD 0

$OPEN FAB=CMDOFAB ; Open output
BLBC R0,EXIT ;
$CONNECT RAB=CMDORAB ; Connect to output
BLBC R0,EXIT ;
BRB CONT ; Continue

EXIT: $EXIT_S ; Exit program

(continued on next page)

1–10

DMC11/DMR11 Interface Driver
1.6 Programming Example

Example 1–1 (Cont.) DMC11/DMR11 Program Example

CONT: TYPE <DMC11/DMR11 Test Program>
TYPE <>
$ASSIGN_S DEVNAM=DEVDSC,CHAN=CHNL ; Assign unit
BLBC R0,EXIT ; Exit on error

;
; Initialize and start controller
;

MOVZBL #XM$M_CHR_LOOPB,P1BUF+4 ; Set P1 flags -
; Loopback

MOVW #XMTBUFLEN,P1BUF+2 ; Set P1 buffer size
CLRL P2BUFDSC ; Set zero length P2

; buffer
BSBW INIT ; Issue QIO

;
; Loopback data
;

MOVZWL #100,R9 ; Loop device 100
; times

10$: BSBW XMIT ; Issue transmit
BSBW RECV ; Issue receive
MOVAB XMTBUF,R1 ; Get address of xmit

; data
MOVAB RCVBUF,R2 ; Get address of

; received data
MOVZWL #XMTBUFLEN,R3 ; Get number of bytes

; to verify
20$: CMPB (R1)+,(R2)+ ; Check data

BNEQ 30$;
SOBGTR R3,20$;
SOBGTR R9,10$;
BRW EXIT ; Exit

30$: TYPE <*** Loopback buffer comparison error ***>
BRW EXIT ; Exit

;
; Initialize controller QIO
;
INIT: TYPE <*** Initialize controller QIO ***> ;

$QIOW_S chan=chnl,func=#io$_setchar!io$m_startup,-
p1=p1buf,p2=#p2bufdsc,iosb=iosb,p3=#5 ;

BRW QIO_STATUS ;

(continued on next page)

1–11

DMC11/DMR11 Interface Driver
1.6 Programming Example

Example 1–1 (Cont.) DMC11/DMR11 Program Example

;
; Xmit data QIO
;
XMIT: TYPE <*** Transmit buffer QIO ***> ;

$QIO_S chan=chnl,func=#io$writevblk,p1=xmtbuf,-
p2=#xmtbuflen,iosb=iosb

BRW QIO_XMTST ;
;
; Receive data QIO
;
RECV: TYPE <*** Receive buffer QIO ***> ;

$QIOW_S chan=chnl,efn=#2,func=#io$_readvblk,-
p1=rcvbuf,p2=#xmtbuflen,iosb=iosb

.BRB qio_status

.ENABL LSB
QIO_STATUS: ; Check status of QIO

BLBC IOSB,10$; Br if error on QIO
QIO_XMTST: ; Check status of XMIT

BLBC R0,10$; Br if error on
; request

RSB ; Else, return to
; caller

10$: MOVZWL IOSB,R1 ; Get I/O status block
PUSHL R1 ; Push I/O status block
PUSHL R0 ; Push system service

; status
PUSHAQ FAOBUFDSC ; Push address of FAO

; buffer descriptor
PUSHAW FAOLEN ; Push address of

; output length
PUSHAQ QIOREQDSC ; Push address of

; input string
CALLS #5,@#SYS$FAO ; Get error message
MOVAB CMDBUF,CMDORAB+RAB$L_RBF ; Get output buffer

; address
MOVW FAOLEN,CMDORAB+RAB$W_RSZ ; Get output buffer

; length
$PUT CMDORAB ; Print error text
BRW EXIT ; Exit
.DSABL LSB

.END START

1–12

2
DMP11 and DMF32 Interface Drivers

This chapter describes the use of the DMP11 multipoint communications line
interface and DMF32 synchronous line interface drivers in an OpenVMS VAX
environment.

2.1 Supported Devices
The DMP11 multipoint communications line interface is a direct-memory-access
(DMA) device that uses the Digital Data Communications Message Protocol
(DDCMP) to provide direct communication between a VAX processor and
DDCMP-compatible devices, such as other DMP11s and some terminals (for
example, the VT62). Up to 32 devices can be connected to the DMP11 through a
single, multidrop, DDCMP-compatible line.

The logical connection between the DMP11 and a connected device is called a
tributary. In multipoint configurations, the DMP11 functions as a multipoint
control station, and the devices on the DDCMP line are located at tributary
addresses. A controller operating in tributary mode on this line is called a
tributary station.

In point-to-point configurations, one DMP11 is connected to one other controller.
Controllers in this mode are called point-to-point stations.

The DMF32 synchronous line interface is a DMA communications device that
uses a software implementation of DDCMP to provide an interface between a VAX
processor and other DDCMP-compatible devices, such as a DMP11 or DMC11.
The DMF32 supports both full- and half-duplex modes as well as tributary mode
on a multidrop DDCMP-compatible line.

In a multipoint configuration, the DMF32 operates in tributary mode and is
located at a tributary address on the DDCMP line.

In point-to-point configurations, one DMF32 is connected to one other controller.
Controllers in this mode are called point-to-point stations.

Figure 2–1 shows a typical DMP11/DMF32 multipoint configuration.

2.2 Driver Features and Capabilities
The DMP11 and DMF32 drivers provide the following capabilities:

• Multipoint operating mode in which the DMP11 functions as a control station
connected to 1 to 32 devices and tributary stations (not for the DMF32 driver)

• Multipoint operating mode in which the DMP11 or DMF32 functions as a
tributary station

2–1

DMP11 and DMF32 Interface Drivers
2.2 Driver Features and Capabilities

Figure 2–1 Typical DMP11/DMF32 Multipoint Configuration

Processor
PDP−11

Processor
VAX−11

Adapter
UNIBUS

ZK−0703−GE

UNIBUS UNIBUS

DMP11 Terminal

DDCMP Line

DMF32
or

DMP11
Terminal

DMP11

UNIBUS

Adapter
UNIBUS

Processor
VAX−11

• Point-to-point operating mode in which the DMP11 or DMF32 is connected to
one other controller also operating in point-to-point mode

• DMC11-compatible operating mode in which the DMP11 is connected to either
a DMC11, a DMR11, another synchronous line interface using DDCMP, or
another DMP11 running in DMC11-compatible mode (not for the DMF32
driver)

• Support for using the DMF32 in high-level data link control (HDLC) bit stuff
mode

• Support for using a general character-oriented protocol over the DMF32

• A nonprivileged QIO interface to the DMP11 and DMF32 for using these
devices as raw-data channels

• Tributary attention conditions transmitted through attention ASTs

• Full- and half-duplex operation

• Interface design common to all communications devices supported by the
OpenVMS VAX operating system

• Separate transmit and receive queues

• Assignment of multiple read and write buffers to the device

2–2

DMP11 and DMF32 Interface Drivers
2.2 Driver Features and Capabilities

2.2.1 Character-Oriented Protocols and HDLC Bit Stuff Mode
DMF32 synchronous line unit supports character-oriented protocols and the high-
level data link control (HDLC) bit stuff mode. The DMF32 driver can transmit
and receive a framed message and also provide some modem control. General
protocol handling for the character-oriented protocols is supported at the DMF32
driver level. However, the DMF32 driver provides an interface to the higher level
protocol so that receive messages are framed by the rules of the protocol. For
HDLC mode, you can transmit and receive frame messages in full-duplex mode
only.

Sections 2.4.3.2 through 2.4.3.5 describe these features of the DMF32 driver in
greater detail.

2.2.2 Quotas
Transmit operations are direct (DMP11) or buffered (DMF32) I/O operations and
are limited by the process’s direct or buffered I/O quota.

The quotas for the receive buffer free list (see Section 2.4.3.1) are the process’s
buffered I/O quota and buffered I/O byte count quota.

2.2.3 Power Failure
If a system power failure occurs, no DMP11 or DMF32 recovery is possible. The
driver is in a fatal error state and shuts down.

2.3 Device Information
You can obtain information about DMP11 or DMF32 characteristics by using
the Get Device/Volume Information ($GETDVI) system service. (See the
OpenVMS System Services Reference Manual.) $GETDVI returns device
characteristics when you specify the item code DVI$_DEVCHAR. Table 2–1 lists
these characteristics, which are defined by the $DEVDEF macro.

Table 2–1 DMP11 and DMF32 Device Characteristics

Characteristic 1 Meaning

Static Bits (Always Set)

DEV$M_NET Network device. Set for terminal port if it is a network
device.

DEV$M_AVL Available device. Set when unit control block (UCB) is
initialized.

DEV$M_ODV Output device.

DEV$M_IDV Input device.

DEV$M_SHR2 Shareable device.

1Defined by the $DEVDEF macro
2Only for DMP11

DVI$_DEVCLASS returns the device class, which is DC$_SCOM. DVI$_
DEFTYPE returns the device type, which is DT$_DMP11 for the DMP11 and
DT$_DMF32 for the DMF32. The $DCDEF macro defines the device class and
device type names.

2–3

DMP11 and DMF32 Interface Drivers
2.3 Device Information

DVI$_DEVBUFSIZ returns the maximum message size. The maximum message
size is the maximum send or receive message size for the unit. Messages greater
than 512 bytes on modem-controlled lines are more prone to transmission errors.

DVI$_DEVDEPEND returns the unit characteristics bits, the unit and line status
bits, the error summary bits, and the specific errors in a longword field, as shown
in Figure 2–2.

Figure 2–2 DVI$_DEVDEPEND Returns

ZK−5931−GE

31

Error

24

Summary
Error

23 16 15

Status
Unit and Line

8 7

Characteristics
Unit

0

Unit characteristics bits govern the DDCMP operating mode. They are defined by
the $XMDEF macro and can be set by a set mode function (see Section 2.4.3.1) or
can be read by a sense mode function (see Section 2.4.4). Table 2–2 lists the unit
characteristics values and their meanings.

Table 2–2 DMP11 and DMF32 Unit Characteristics

Characteristic Meaning

XM$M_CHR_MOP Specifies DDCMP maintenance mode

XM$M_CHR_LOOPB Specifies loopback mode

XM$M_CHR_HDPLX Specifies half-duplex operation

XM$M_CHR_CTRL1 Specifies control station

XM$M_CHR_TRIB Specifies tributary station

XM$M_CHR_DMC1 Specifies DMC11-compatible mode

1Only for DMP11

The status bits show the status of the unit and the line. These bits can be set or
cleared only when the controller and tributary are not active.

Table 2–3 lists the status values and their meanings. The values are defined by
the $XMDEF macro.

Table 2–3 DMP11 and DMF32 Unit and Line Status

Status Meaning

XM$M_STS_ACTIVE DDCMP protocol is active.

XM$M_STS_DISC Modem line went from on to off. This bit will be
returned in the field IRP$L_IOST2 if the driver has
had a timeout while waiting for the CTS signal to be
present on the device.

(continued on next page)

2–4

DMP11 and DMF32 Interface Drivers
2.3 Device Information

Table 2–3 (Cont.) DMP11 and DMF32 Unit and Line Status

Status Meaning

XM$M_STS_RUNNING1 Tributary is responding.

XM$M_STS_BUFFAIL Receive buffer allocation failed.

1Only for DMP11

The error summary bits are set when an error occurs. If the error is fatal, the
DMP11 or DMF32 is shut down. Table 2–4 lists the error summary bit values
and their meanings.

Table 2–4 Error Summary Bits

Error Summary Bit 1 Meaning

XM$M_ERR_MAINT DDCMP maintenance message received

XM$M_ERR_START DDCMP start message received

XM$M_ERR_FATAL Hardware or software error occurred on controller

XM$M_ERR_TRIB Hardware or software error occurred on tributary

XM$M_ERR_LOST Data lost when a received message was longer than the
specified maximum message size

XM$M_ERR_THRESH Receive, transmit, or select threshold errors

1Read-only

Table 2–5 lists the errors that can be specified. These errors are mapped to the
indicated codes.

Table 2–5 DMP11 and DMF32 Errors

Value1

(octal) Meaning Code Set

2 Receive threshold error XM$M_ERR_THRESH

4 Transmit threshold error XM$M_ERR_THRESH

6 Select threshold error XM$M_ERR_THRESH

10 Start received in run state XM$M_ERR_START

12 Maintenance received in run state XM$M_ERR_MAINT

14 Maintenance received in halt state (none)

16 Start received in maintenance state XM$M_ERR_START

22 Dead tributary XM$M_STS_RUNNING2

(cleared)

24 Running tributary XM$M_STS_RUNNING2

(set)

26 Babbling tributary XM$M_ERR_TRIB

1Not provided on the DMF32
2Not supported for the DMF32

(continued on next page)

2–5

DMP11 and DMF32 Interface Drivers
2.3 Device Information

Table 2–5 (Cont.) DMP11 and DMF32 Errors

Value1

(octal) Meaning Code Set

30 Streaming tributary XM$M_ERR_TRIB

32 Ring detection (none)

100–276 Internal procedure (software) errors XM$M_ERR_TRIB

300 Buffer too small XM$M_ERR_LOST

302 Nonexistent memory XM$M_ERR_FATAL

304 Modem disconnected XM$M_STS_DISC and

XM$M_ERR_FATAL

306 Queue overrun XM$M_ERR_FATAL2

310 Carrier lost on modem XM$M_ERR_FATAL

1Not provided on the DMF32
2Not supported for the DMF32

2.4 DMP11 and DMF32 Function Codes
The DMP11 and DMF32 drivers can perform logical, virtual, and physical I/O
operations. The basic functions are read, write, set mode, set characteristics, and
sense mode. Table 2–6 lists these functions and their function codes. The sections
that follow describe these functions in greater detail.

Table 2–6 DMP11 and DMF32 I/O Functions

Function Code Arguments Type 1 Modifiers Function

IO$_READLBLK P1,P2 L IO$M_NOW Read logical block.

IO$_READVBLK P1,P2 V IO$M_NOW Read virtual block.

IO$_READPBLK P1,P2,[P6] P IO$M_NOW Read physical block.

IO$_WRITELBLK P1,P2 L Write logical block.

IO$_WRITEVBLK P1,P2 V Write virtual block.

IO$_WRITEPBLK P1,P2,[P6] P Write physical block.

IO$_CLEAN L Complete outstanding
requests (character-oriented
protocols), and abort
outstanding transmits (bit
stuff mode).

IO$_SETMODE P1,[P2],P3 L IO$M_CTRL
IO$M_SHUTDOWN
IO$M_STARTUP
IO$M_ATTNAST
IO$M_SET_MODEM2

Set DMP11 and DMF32
characteristics and
controller state for
subsequent operations.

1V = virtual, L = logical, P = physical (there is no functional difference in these operations)
2Only for DMP11

(continued on next page)

2–6

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Table 2–6 (Cont.) DMP11 and DMF32 I/O Functions

Function Code Arguments Type 1 Modifiers Function

IO$_SETCHAR P1,[P2],P3,[P6] P IO$M_CTRL
IO$M_SHUTDOWN
IO$M_STARTUP
IO$M_ATTNAST
IO$M_SET_MODEM2

Set DMP11 and DMF32
characteristics and
controller state for
subsequent operations.

IO$_SENSEMODE P1,P2 L IO$M_CTRL
IO$M_RD_MEM2

IO$M_RD_MODEM
IO$M_RD_COUNTS
IO$M_CLR_COUNTS

Sense controller or tributary
characteristics and return
them in specified buffers.

1V = virtual, L = logical, P = physical (there is no functional difference in these operations)
2Only for DMP11

Although the DMP11 and DMF32 drivers do not differentiate among logical,
virtual, and physical I/O functions (all are treated identically), you must have the
required privilege to issue a request.

2.4.1 Read
Read functions provide for the direct transfer of data into the user process’s
virtual memory address space. The operating system provides the following
function codes:

• IO$_READLBLK—Read logical block

• IO$_READVBLK—Read virtual block

• IO$_READPBLK—Read physical block

Received messages are multibuffered in system dynamic memory and then copied
to the user’s buffer.

The read functions take the following device- or function-dependent arguments:

• P1—The starting virtual address of the buffer that is to receive data.

• P2—The size of the receive buffer in bytes.

• P6—The address of a diagnostic buffer; only for physical I/O functions
(optional). See Section 2.4.5.

The message size specified by P2 cannot be larger than the maximum receive-
message size for the unit (see Section 2.3). If a message larger than the maximum
size is received, a status of SS$_DATAOVERUN is returned in the I/O status
block.

The read functions can take the following function modifier:

• IO$M_NOW—Complete the read operation immediately with a received
message. (If no message is currently available, return a status of SS$_
ENDOFFILE in the I/O status block.)

2–7

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2.4.2 Write
Write functions provide for the direct transfer of data from the user process’s
virtual memory address space. The operating system provides the following
function codes:

• IO$_WRITELBLK—Write logical block

• IO$_WRITEVBLK—Write virtual block

• IO$_WRITEPBLK—Write physical block

Transmitted DMP11 messages are sent directly from the requesting process’s
buffer. DMF32 messages are copied into a system buffer before they are
transmitted.

The write functions take the following device- or function-dependent arguments:

• P1—The starting virtual address of the buffer containing the data to be
transmitted.

• P2—The size of the buffer in bytes.

• P6—The address of a diagnostic buffer; only for physical I/O functions
(optional). See Section 2.4.5.

The message size specified by P2 cannot be larger than the maximum send-
message size for the unit (see Section 2.3).

The write functions take no function modifiers.

2.4.3 Set Mode and Set Characteristics
Set mode operations are used to perform protocol, operational, and program/driver
interface operations with the DMP11 or DMF32 drivers. The operating system
defines the following types of set mode functions:

• Set mode

• Set characteristics

• Set controller mode

• Set tributary mode

• Enable attention AST

• Shutdown controller

• Shutdown tributary

Used without function modifiers, set mode and set characteristics functions can
modify an existing tributary. Used with certain function modifiers, they can
perform DMP11 or DMF32 operations such as starting a tributary and requesting
an attention AST. The operating system provides the following function codes:

• IO$_SETMODE—Set mode (no I/O privilege required)

• IO$_SETCHAR—Set characteristics (requires physical I/O privilege)

The other five types of set mode functions, which use the two function codes with
certain function modifiers, are described in the sections that follow.

To use the IO$_SETMODE and IO$_SETCHAR functions, you must assign the
appropriate unit control block (UCB) with the Assign I/O Channel ($ASSIGN)
system service.

2–8

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2.4.3.1 Set Controller Mode
The set controller mode function sets the DMP11 or DMF32 controller state and
activates the controller. The following combinations of function code and modifier
are provided:

• IO$_SETMODE!IO$M_CTRL—Set controller characteristics

• IO$_SETCHAR!IO$M_CTRL—Set controller characteristics

• IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP—Set controller characteristics
and start the controller

• IO$_SETCHAR!IO$M_CTRL!IO$M_STARTUP—Set controller characteristics
and start the controller

If the function modifier IO$M_STARTUP is specified, the controller is started
and the modem is enabled. If IO$M_STARTUP is not specified, the specified
characteristics are simply modified.

These codes take the following device- or function-dependent arguments:

• P1—The virtual address of a quadword characteristics buffer.

• P2—The address of a descriptor for an extended characteristics buffer
(optional).

• P3—The number of preallocated receive-message blocks to allocate (referred
to as the size of the common receive pool). See the NMA$C_PCLI_BFN
parameter ID described in Table 2–8.

Figure 2–3 shows the format of the P1 characteristics buffer. The maximum
message size in the first longword specifies the maximum allowable transmit and
receive-message length.

Figure 2–3 P1 Characteristics Buffer (Set Controller)

ZK−0705−GE

Maximum Message Size

Characteristics

Not Used

+2 0

Not Used

Table 2–7 lists the DMP11 and DMF32 characteristics that can be set in the
second longword. The $XMDEF macro defines these values.

2–9

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Table 2–7 DMP11 and DMF32 Characteristics

Characteristic Meaning

XM$M_CHR_LOOPB Sets loopback mode

XM$M_CHR_HDPLX Sets half-duplex operation

XM$M_CHR_CTRL1 Specifies control station

XM$M_CHR_TRIB Specifies tributary station

XM$M_CHR_DMC1 Specifies DMC11-compatible mode

1Only for DMP11

The P2 buffer consists of a series of six-byte entries. The first word contains
the parameter identifier (ID), and the longword that follows it contains one of
the values that can be associated with the parameter ID. Figure 2–4 shows the
format for this buffer.

Figure 2–4 P2 Extended Characteristics Buffer (Set Controller)

ZK−0706−GE

Parameter ID

Longword Value

etc.

Parameter ID

Longword Value

If both P1 and P2 characteristics are specified, the P2 characteristics supersede
the P1 characteristics. For example, if P1 specifies XM$M_CHR_CTRL and P2
specifies NMA$C_PCLI_PRO with a value of NMA$C_LINPR_TRIB (that is, a
tributary), the device is started as a tributary.

Table 2–8 lists the parameter IDs and values that can be specified in the P2
buffer. The $NMADEF macro defines these values.

Section 2.4.3.2 lists the parameter IDs allowed for the character-oriented and
HDLC bit stuff modes of operation.

2–10

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Table 2–8 P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCLI_PRO Protocol mode. The following values can be specified:

Value Meaning

NMA$C_LINPR_POI DDCMP point-to-point
(default)

NMA$C_LINPR_CON1 DDCMP control station

NMA$C_LINPR_TRI DDCMP tributary

NMA$C_LINPR_DMC1 DDCMP DMC mode

NMA$C_LINPR_LAPB2 HDLC bit stuff mode

NMA$C_LINPR_BSY2 General character-oriented
protocol mode

NMA$C_PCLI_DUP Duplex mode. The following values can be specified:

Value Meaning

NMA$C_DPX_FUL Full-duplex (default)

NMA$C_DPX_HAL Half-duplex

NMA$C_PCLI_CON Controller mode. The following values can be specified:

Value Meaning

NMA$C_LINCN_NOR Normal (default)

NMA$C_LINCN_LOO Loopback

NMA$C_PCLI_BFN Number of receive buffers to preallocate. Must be provided
here or as P3 argument.

NMA$C_PCLI_BUS Maximum allowable transmit and receive message length
(default = 512 bytes).

NMA$C_PCLI_NMS Number of sync characters to precede message.

NMA$C_PCLI_SLT1;3 Number of milliseconds (msec) in the period of incrementing
tributary priorities and the transmit delay (min = 50;
default = 50).

NMA$C_PCLI_DDT1;3 Number of msec in the period of polling dead tributaries
(default = 10000).

NMA$C_PCLI_DLT1;3 Number of msec between polls (default = 0).

NMA$C_PCLI_SRT1;3 Timer value used by control station and half-duplex point-
to-point to establish that a tributary is streaming (default =
6000).

1Only for DMP11.
2Only for DMF32.
3A global polling parameter. All timer values must be specified in milliseconds.

2–11

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2.4.3.2 Additional Features of the DMF32 Driver
The character-oriented protocols and the HDLC bit stuff mode do not have
the concept of line and circuit. Therefore, only $QIO requests that include the
function modifier IO$M_CTRL are allowed. The operating system does not
acknowledge characteristics set in the P1 buffer for character-oriented and HDLC
bit stuff modes of operation. You must have CMKRNL privilege to run the
DMF32 in character-oriented mode. Only the parameters listed in Table 2–9 are
relevant to the character-oriented and HDLC bit stuff modes of operation.

Table 2–9 P2 Extended Characteristics Values (DMF32 Driver)

Parameter ID Meaning

NMA$C_PCLI_PRO Must be set to NMA$C_LINPR_BSY to specify character-
oriented mode of operation or to NMA$C_LINPR_LAPB to
specify HDLC bit stuff mode.

NMA$C_PCLI_DUP Requests full- or half-duplex mode of operation. (HDLC bit
stuff mode supports full-duplex mode only.) If half-duplex
mode is specified, the DMF32 driver sets the request to send
(RTS) signal, waits for the clear to send (CTS) signal at the
beginning of the transmit, and then drops RTS at the end of
the transmit. The full-duplex mode value is NMA$C_DPX_
FUL; the half-duplex mode value is NMA$C_DPX_HAL.

NMA$C_PCLI_BFN The number of buffers the device can allocate for use as
receive buffers. This value must be greater than 1. Default
is 4.

NMA$C_PCLI_BUS The size of the buffers to be allocated.

NMA$C_PCLI_CON The state the controller is set to. If NMA$C_LINCN_NOR is
specified, the device operates normally. If NMA$C_LINCN_
LOO is specified, the device operates in internal loopback
mode. Default is normal operation.

NMA$C_PCLI_SYC1 The sync character used by device. Defaults to 32
hexadecimal.

NMA$C_PCLI_NMS1 The number of sync characters to precede a transmit.
Defaults to 8.

NMA$C_PCLI_BPC1 The number of bits per character (5, 6, 7, or 8). Defaults to 8.

NMA$C_PCLI_FRA1 The address of the protocol framing routine (in nonpaged
pool). This parameter must be specified.

NMA$C_PCLI_STI11

NMA$C_PCLI_STI21
These two parameters contain the initial value for the
quadword of framing routine state information.

NMA$C_PCLI_MCL1 Determines whether modem signals should be turned
off when a DEASSIGN operation is performed. The
DMF32 driver always clears the modem signals on the last
DEASSIGN. However, on all other DEASSIGN operations,
the modem signals are cleared only if the value of NMA$C_
PCLI_MCL is 0. If the value NMA$C_STATE_ON is
specified, the data terminal ready (DTR) signal is dropped
when DEASSIGN is performed. If the value NMA$C_
STATE_OFF is specified, DTR is not dropped until the last
DEASSIGN.

NMA$C_PCLI_TMO1 Specifies the timeout (in seconds) when waiting for CTS
during transmit operations.

1Character-oriented mode only

2–12

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2.4.3.3 Framing Routine Interface for Character-Oriented Protocols
In general, the character-oriented protocols each have their own rule for framing
receive messages. To provide support for each protocol’s special framing rules, the
DMF32 driver has been extended to provide support for calling a special framing
routine from the DMF32 driver’s processing of receive messages. This routine
is defined by the higher level software using the DMF32 driver and is loaded by
that same software into nonpaged pool. The address of this routine is passed to
the driver when the device is started up. The purpose of the framing routine is to
tell the driver how to frame each byte of the received data message and to tell the
driver that the received message is complete and ready to be posted.

The address of the framing routine is kept in the DMF32 driver’s internal
buffer. The internal buffer also contains a quadword that is used by the framing
routine for holding state information while it is framing the receive message. The
framing routine is called by the driver at FORK IPL through a JSB instruction.
The input and the output to the framing routine is described in the following
tables.

Input Contents

R0 Address of quadword of state information.

R1 bits 0–7 Character to examine. The high-order bit is set if this is the first
character of a new frame.

Output Contents

R0 Status information for the DMF32 driver. The following bits are defined:

Value Meaning

XG$V_BUFFER_CHAR If clear, buffer the character in the
next position. If set, use bit XG$V_
BUFFER_IN_PREV_POS.

XG$V_BUFFER_IN_PREV_POS If clear, ignore the character. If set,
buffer the character in the previous
position; do not update the buffer
pointer.

XG$V_COMPLETE_READ If clear, ignore. If set, return
the framed buffer to user (buffer
character if required).

After the DMF32 driver has completed a framed receive-data message, the driver
resets the quadword of state information to the value passed when the device
is started up. This means that the driver resets error information along with
success information.

2.4.3.4 Using the DMF32 Driver Transmitter Interface in Character-Oriented Mode
For write requests made through the QIO interface, the P4 parameter contains
the address of a quadword buffer to be used to update the field in the DMF32
driver’s internal buffer, which contains the state information for the framing
routine. If this parameter is 0, the state information is not updated.

If the DMF32 driver has had a timeout error while waiting for the CTS signal
to be present on the device, the bit XM$M_STS_DISC is returned in the field
IRP$L_IOST2.

2–13

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2.4.3.5 IO$_CLEAN Function
The clean function either completes or aborts outstanding device requests. The
operating system provides the following function code:

• IO$_CLEAN

For character-oriented protocols, a clean function request results in the
completion of all outstanding I/O requests pending on the device. For HDLC
bit stuff mode, a clean function request results in the aborting of all outstanding
transmit operations on the device. In both cases the status return is SS$_ABORT.
Note that the modem registers are not cleared.

The clean function is not supported in the DDCMP mode of operation.

2.4.3.6 Set Tributary Mode
The set tributary mode function either starts a tributary or modifies an existing
one. The driver creates a circuit data block for a particular unit of the DMP11
device with the specified tributary address. The set tributary function must be
performed before any communication can occur with the attached unit.

Because the DMF32 driver deals with only one tributary, the set tributary
function starts both the tributary and the protocol. The data block describing the
tributary has already been created.

The operating system provides the following combinations of function code and
modifier:

• IO$_SETMODE—Modify tributary characteristics

• IO$_SETCHAR—Modify tributary characteristics

• IO$_SETMODE!IO$M_STARTUP—Start tributary

• IO$_SETCHAR!IO$M_STARTUP—Start tributary

These codes take the following device- or function-dependent arguments:

• P1—The virtual address of a quadword characteristics buffer (optional)

• P2—The address of a descriptor for an extended characteristics buffer
(optional)

Figure 2–5 shows the format of the P1 characteristics buffer. The following
characteristic can be set in the second longword:

• XM$V_CHR_MOP—Set tributary to DDCMP maintenance mode

Figure 2–5 P1 Characteristics Buffer (Set Tributary)

ZK−0707−GE

Characteristics

Not Used

+2 0

Not Used
+4

2–14

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

The P2 buffer consists of a series of six-byte entries. The first longword contains
the parameter identifier (ID), and the next longword contains one of the values
that can be associated with the parameter ID. Figure 2–4 shows the format for
this buffer.

Table 2–10 lists the parameter IDs and values that can be specified in the P2
buffer.

Table 2–10 P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCCI_TRI Tributary address. Because the maximum physical address
that the DMP11 or DMF32 can recognize is 255, only
the first byte is actually used. For the DMP11, this
parameter must be set before the tributary is started,
unless the controller was set to run in point-to-point or
DMC-compatible mode. For the DMF32, the tributary
address always defaults to 1. Accepted values are 1 to 255.

NMA$C_PCCI_MRB1 Maximum number of buffers allocated from common pool
for receive messages; 255 indicates unlimited number
(default is unlimited). Accepted values are 1 to 255.

NMA$C_PCCI_MST1 Maintenance state. The following values can be specified:

Value Meaning

NMA$C_STATE_ON On

NMA$C_STATE_OFF Off (default)

NMA$C_PCCI_POL1;2 Latch polling state. The following values can be specified:

Value Meaning

NMA$C_CIRPST_AUT Automatic (default)

NMA$C_CIRPST_ACT Active

NMA$C_CIRPST_INA Inactive

NMA$C_CIRPST_DIE Dying

NMA$C_CIRPST_DED Dead

NMA$C_PCCI_TRT1;2 Transmit delay timer (default = 0).

NMA$C_PCCI_ACB1;2 Initial poll priority for active state of tributary (default =
255).

NMA$C_PCCI_ACI1;2 Rate of priority incrementing for active state of tributary
(default = 0).

NMA$C_PCCI_IAB1;2 Initial poll priority for inactive state of tributary (default =
0).

NMA$C_PCCI_IAI1;2 Rate of priority incrementing for inactive state of tributary
(default = 64).

NMA$C_PCCI_DYB1;2 Initial poll priority for dying state of tributary (default = 0).

1Only for the DMP11.
2A tributary-specific polling parameter. All timer values must be specified in milliseconds.

(continued on next page)

2–15

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Table 2–10 (Cont.) P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCCI_DYI1;2 Rate of priority incrementing for dying state of tributary
(default = 16).

NMA$C_PCCI_IAT1;2 Number of no data message responses before changing state
to inactive (default = 8).

NMA$C_PCCI_DYT1;2 Number of no responses before changing state to dying
(default = 2).

NMA$C_PCCI_DTH1;2 Number of no responses before changing state to dead
(default = 16).

NMA$C_PCCI_MTR2 Maximum number of abutting data messages that will be
transmitted before deselecting the tributary (default = 4).

NMA$C_PCCI_BBT1;2 Timer value for tributary to indicate maximum amount of
time for a selected tributary to transmit. If this value is
exceeded, the tributary is babbling (default = 6000).

NMA$C_PCCI_RTT2 Retransmit timer for full-duplex point-to-point mode and
selection timer for multipoint control and half-duplex
point-to-point mode (default = 3000).

1Only for the DMP11.
2A tributary-specific polling parameter. All timer values must be specified in milliseconds.

If both P1 and P2 characteristics are specified, the P2 characteristics supersede
the P1 characteristics. For example, if P1 specifies XM$M_CHR_MOP and P2
specifies NMA$C_PCCI_MST with a value of NMA$C_STATE_OFF, the tributary
is in the normal DDCMP or data mode.

On receipt of the QIO request, the DMP11 driver verifies that a tributary address
has been specified and determines whether this address is currently in use. If
the address is in use, the tributary is not restarted. However, modifications to
the tributary state or polling parameters are performed. If the tributary does not
already exist, a new tributary is started.

On receipt of the QIO request to a DMF32, the driver modifies the tributary
parameters and starts the protocol. The tributary state and the protocol state are
equal. The driver does not verify that a tributary address has been provided. If
an address has not been provided, it defaults to 1.

2.4.3.7 Shutdown Controller
The shutdown controller function shuts down the controller and disables the
modem line. On completion of a shutdown controller request, all tributaries have
been halted (including those tributaries not explicitly halted), all tributary buffers
returned, and the controller reinitialized. For the DMF32, this function halts the
tributary, the protocol, and the line. The controller cannot be used again until
another IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP or IO$_SETCHAR!IO$M_
CTRL!IO$M_STARTUP request has been issued (see Section 2.4.3.1).

The operating system provides the following combinations of function code and
modifier:

• IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN—Shutdown controller

• IO$_SETCHAR!IO$M_CTRL!IO$M_SHUTDOWN—Shutdown controller

The shutdown controller function takes no device- or function-dependent
arguments.

2–16

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2.4.3.8 Shutdown Tributary
The shutdown tributary function halts, but does not delete, the specified tributary.
On completion of a shutdown tributary request, the tributary is halted, all
buffers are returned, and all pending I/O requests and received messages
are aborted. Although the tributary cannot be used again until another IO$_
SETMODE!IO$M_STARTUP or IO$_SETCHAR!IO$M_STARTUP request has
been issued (see Section 2.4.3.6), all previously defined tributary parameters
remain set (applicable only to the DMP11). For the DMF32, this function halts
the tributary and the protocol. The attached device cannot be used until the
tributary is restarted.

The operating system provides the following combinations of function code and
modifier:

• IO$_SETMODE!IO$M_SHUTDOWN—Shutdown tributary

• IO$_SETCHAR!IO$M_SHUTDOWN—Shutdown tributary

The shutdown tributary function takes no device- or function-dependent
arguments.

2.4.3.9 Enable Attention AST
The enable attention AST function requests that an attention AST be delivered to
the requesting process when a status change occurs on the specified tributary. An
AST is queued when the driver sets or clears either an error summary bit or any
of the unit status bits (see Tables 2–3 and 2–4), or when a message is available
and there is no waiting read request. The enable attention AST function is legal
at any time, regardless of the condition of the unit status bits.

The operating system provides the following combinations of function code and
modifier:

• IO$_SETMODE!IO$M_ATTNAST—Enable attention AST

• IO$_SETCHAR!IO$M_ATTNAST—Enable attention AST

These codes take the following device- or function-dependent arguments:

• P1—The address of an AST service routine or 0 for disable

• P2—Ignored

• P3—Access mode to deliver AST

The enable attention AST function enables an attention AST to be delivered
to the requesting process once only. After the AST occurs, it must be explicitly
reenabled by the function before the AST can occur again. The function is also
subject to AST quotas.

The AST service routine is called with an argument list. The first argument is
the current value of the second longword of the I/O status block (see Section 2.5).
The access mode specified by P3 is maximized with the requester’s access mode.

2.4.4 Sense Mode
The sense mode function returns the controller or tributary characteristics in the
specified buffers.

The operating system provides the following function codes:

• IO$_SENSEMODE!IO$M_CTRL—Read controller characteristics

• IO$_SENSEMODE—Read tributary characteristics

2–17

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

These codes take the following device- or function-dependent arguments:

• P1—The address of a two-longword buffer into which the device
characteristics are stored (optional). Figure 2–3 shows the characteristics
buffer for controllers; Figure 2–5 shows the characteristics buffer for
tributaries.

• P2—The address of a descriptor for a buffer into which the extended
characteristics buffer is stored (optional). Figure 2–4 shows the format of
the extended characteristics buffer.

All characteristics that fit into the buffer specified by P2 are returned. However,
if all the characteristics cannot be stored in the buffer, the I/O status block
returns the status SS$_BUFFEROVF. The second word of the I/O status block
returns the size (in bytes) of the extended characteristics buffer returned by P2
(see Section 2.5).

2.4.4.1 Read Internal Counters
The read internal counters (IO$M_RD_COUNTS) subfunction reads the DDCMP
internal counters. The operating system provides the following combinations of
function codes and modifiers:

• IO$_SENSEMODE!IO$M_RD_COUNTS—Read tributary counters (DDCMP
only)

• IO$_SENSEMODE!IO$M_CLR_COUNTS—Clears tributary counters
(DDCMP only)

• IO$_SENSEMODE!IO$M_RD_COUNTS!IO$M_CLR_COUNTS—Read and
then clear tributary counters (DDCMP only)

• IO$_SENSEMODE!IO$M_CTRL!IO$M_RD_COUNTS—Read controller
counters (DDCMP and LAPB only)

• IO$_SENSEMODE!IO$M_CTRL!IO$M_CLR_COUNTS—Clear controller
counters (DDCMP and LAPB only)

• IO$_SENSEMODE!IO$M_CTRL!IO$M_RD_COUNTS!IO$M_CLR_
COUNTS—Read and then clear controller counters (DDCMP and LAPB
only)

These codes take the following device- or function dependent arguments:

• P1—Ignored.

• P2—The address of a buffer descriptor into which the counters will be
returned (Figure 2–6 shows the format of the buffer). Table 2–11 lists the
parameter IDs that can be returned for DDCMP controllers, Table 2–12 lists
parameter IDs that can be returned for LAPB controllers, and Table 2–13
lists the parameter IDs that can be returned for tributaries.

All counters that fit into the buffer specified by P2 are returned. However, if all
the counters cannot be stored in the buffer, the I/O status block returns the status
SS$_BUFFEROVF. The second word of the I/O status block returns the size, in
bytes, of the extended characteristics buffer returned (see Section 2.5).

2–18

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Figure 2–6 P2 Extended Characteristics Buffer (Sense Mode)

Value

Longword of

Parameter ID

0

01 0 0

15 13 12 11

Longword Counter

Word Counter

15 13 12 11 0

Parameter ID0011

Word of Value

Byte Counter

15 13 12 11

0101

8 7

Parameter ID

0

08 711121315

Bitmap Counter

0 1 0 1 Parameter ID

Byte of Value Bitmap

ZK−5780−GE

2–19

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Table 2–11 DDCMP Controller Counter Parameter IDs

Parameter ID Meaning

NMA$C_CTLIN_LPE Number of local station errors bitmap counter.

Value Meaning

1 Receive overrun SNAK set.

2 Receive overrun SNAK not set.

4 Transmitter underrun.

8 Message format error.

NMA$C_CTLIN_RPE Number of remote station errors bitmap counter.

Value Meaning

1 NAKs received due to receiver overrun.

2 NAKs received due to message format
error.

4 SNAK set message format error.

8 Streaming tributary.

Table 2–12 LAPB Controller Counter Parameter IDs

Parameter ID Meaning

NMA$C_CTCIR_DEI Data errors inbound.

Table 2–13 Tributary Counter Parameter IDs

Parameter ID Meaning

NMA$C_CTCIR_BRC Number of bytes received by this station.

NMA$C_CTCIR_BSN Number of bytes transmitted by this station.

NMA$C_CTCIR_DBR Number of messages received by this station.

NMA$C_CTCIR_DBS Number of messages transmitted by this station.

NMA$C_CTCIR_SIE Number of selection intervals elapsed.

NMA$C_CTCIR_RBE Remote buffer error bitmap counters.

Value Meaning

1 Remote buffer unavailable.

2 Remote buffer too small.

(continued on next page)

2–20

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Table 2–13 (Cont.) Tributary Counter Parameter IDs

Parameter ID Meaning

NMA$C_CTCIR_LBE Local buffer error bitmap counters.

Value Meaning

1 Local buffer unavailable.

2 Local buffer too small.

NMA$C_CTCIR_SLT Selection timeout bitmap counters.

Value Meaning

1 No attempt to respond was made.

2 Attempt was made, but timeout still
occurs.

NMA$C_CTCIR_RRT Number of SACK settings when REP received.

NMA$C_CTCIR_LRT Number of SREP settings.

NMA$C_CTCIR_DEI Data error inbound bitmap counters.

Value Meaning

1 NAK transmitted header CRC error.

2 NAK transmitted data CRC error.

4 NAK transmitted REP response.

NMA$C_CTCIR_DEO Data error outbound bitmap counters.

Value Meaning

1 NAK received header CRC error.

2 NAK received data CRC error.

4 NAK received REP response.

2.4.5 Diagnostic Support
The DMP11 and DMF32 drivers provide special capabilities for diagnostic
support. The sections that follow describe these capabilities.

If a diagnostic buffer (P6) is specified with a physical I/O request, the eight
one-byte device registers are dumped into it on completion of the request. (The
DMF32 returns five one-word device registers.) The DMP11 Technical Manual
and the DMF32 Technical Manual specify the contents of these registers. The P6
buffer does not return error counters.

2–21

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2.4.5.1 Set Line Unit Modem Status
The set line unit modem status function sets the DMP11’s line unit modem
register. It is not supported for the DMF32. The operating system provides the
following combinations of function code and modifier:

• IO$_SETMODE!IO$M_SET_MODEM—Set line unit modem status

• IO$_SETCHAR!IO$M_SET_MODEM—Set line unit modem status

These codes take the following device- or function-dependent argument:

• P1—The address of a longword buffer that contains new modem status. One
or more of the symbolic offsets listed in the following table can be set in the
buffer.

Offset Meaning

XM$V_MDM_STNDBY Select standby used with EIA modems

XM$V_MDM_MAINT2 Maintenance mode 2 for remote loopback

XM$V_MDM_MAINT1 Maintenance mode 1 for local loopback

XM$V_MDM_FREQ Select frequency

XM$V_MDM_RDY Data terminal ready to receive or transmit data

XM$V_MDM_POLL Select polling modem mode

2.4.5.2 Read Line Unit Modem Status
The read line unit modem status function reads the DMP11’s line unit modem
register. The operating system provides the following combinations of function
code and modifier:

• IO$_SENSEMODE!IO$M_RD_MODEM—Read line unit modem status

• IO$_SENSEMODE!IO$M_CTRL!IO$M_RD_MODEM—Read line unit modem
status (DMF32)

These codes take the following device- or function-dependent argument:

• P1—The address of a longword buffer into which the line unit’s modem status
is stored. One or more of the bits listed in the following table can be set in
the buffer.

Bit Meaning

XM$V_MDM_CARRDET1 Receiver is active (Carrier Detect)

XM$V_MDM_MSTNDBY STANDBY indication from modem

XM$V_MDM_CTS1 Data can be transmitted (CTS)

XM$V_MDM_DSR1 Modem is in service (DSR)

XM$V_MDM_HDX Line unit is set to half-duplex mode

XM$V_MDM_RTS1 Request to send data from USART (RTS)

XM$V_MDM_DTR1 Line unit is available and on line (DTR)

XM$V_MDM_RING1 Modem has just been dialed up (RING)

XM$V_MDM_MODTEST Modem is in TEST MODE

1Only for the DMF32

2–22

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Bit Meaning

XM$V_MDM_SIGQUAL SIGNAL QUALITY from modem interface

XM$V_MDM_SIGRATE SIGNAL RATE from modem interface

2.4.5.3 Read Device Status Slot
The read device status slot function reads a particular one-word memory location
in a global or specified tributary status slot in the DMP11 controller. It is
not supported for the DMF32. The operating system provides the following
combinations of function code and modifier:

• IO$_SENSEMODE!IO$M_RD_MEM!IO$M_CTRL—Read global status slot

• IO$_SENSEMODE!IO$M_RD_MEM—Read tributary status slot

These codes take the following device- or function-dependent arguments:

• P1—The address of a longword buffer where the status slot information is
stored

• P2—The tributary status slot address (0–31)

2.5 I/O Status Block
The I/O status block (IOSB) for all DMP11 and DMF32 functions is shown in
Figure 2–7. Appendix A lists the completion status returns for these functions.
(The OpenVMS system messages documentation provides explanations and
suggested user actions for these returns.)

Figure 2–7 IOSB Contents for DMP11 and DMF32 Functions

ZK−0708−GE

Transfer Size

Error Number * Error Summary Status Characteristics

+2 0

+4

Completion Status

* Only for DMP11

The first longword of the IOSB returns, in addition to the completion status,
either the size (in bytes) of the data transfer or the size (in bytes) of the extended
characteristics buffer returned by a sense mode function. The second longword
returns the unit characteristics listed in Table 2–2; the line status bits listed in
Table 2–3; the error summary bits listed in Table 2–4; and, for the DMP11, the
total number of errors accrued.

2.6 Programming Example
The following sample program (Example 2–1) shows the typical use of QIO
functions in DMP11 and DMF32 driver operations such as starting the controller
and tributary and transmitting and receiving data.

To run this sample program on the first DMP11 in the system, enter the initial
DCL command, ASSIGN XDA0: DEV.

2–23

DMP11 and DMF32 Interface Drivers
2.6 Programming Example

Example 2–1 DMP11/DMF32 Program Example

$ ASSIGN XDA0: DEV
.TITLE EXAMPLE - DMP11/DMF32 Device Driver Sample Program
.IDENT ’X00’
$IODEF ; Define I/O functions and modes
$NMADEF ; Define Network Management symbols
$XMDEF ; Define driver status flags

;
; Macro definitions
;

.macro type string,?l ;
store <string> ;
movl #$$.tmpx,cmdorab+rab$l_rbf ;
movw #$$.tmpx1,cmdorab+rab$w_rsz ;
$put rab=cmdorab ;
blbs r0,1 ;
$exit_s ;

l: ;
.endm type ;

.macro store string,pre

.save

.psect $$$dev
$$.tmpx=.
pre
.ascii %string%
$$.tmpx1=.-$$.tmpx
.restore
.endm store

CMDOFAB: $FAB fac=put,fnm=sys$output:,- ; Output FAB
mrs=132,rat=cr,rfm=var

CMDORAB: $RAB ubf=cmdbuf,usz=cmdbsz,- ; Output RAB
fab=cmdofab

CMDBUF:: .BLKB 256 ; Command buffer
CMDBSZ= .-CMDBUF ; Buffer size
FAOBUFDSC: .LONG CMDBSZ,CMDBUF ; FAO buffer

; descriptor
FAOLEN: .BLKL 1 ; FAO output buffer

; length
P2BUF:: .BLKL 50 ; P2 buffer
P2BUFSZ= .-P2BUF ; P2 buffer size
P2BUFDSC: .LONG P2BUFSZ,P2BUF ; P2 buffer descriptor
P1BUF:: .BLKQ 1 ; P1 buffer

P1BUFSZ= .-P1BUF ; P1 buffer size
CHNL:: .BLKL 1 ; Channel number
IOSB:: .BLKL 1 ; I/O status block
DEVDSC: .ASCID ’DEV’ ; Device to assign
QIOREQDSC: .LONG QIOREQSZ,QIOREQ ; QIO request status
QIOREQ: .ASCII ’QIO completion status = !XL’

.ASCII ’IOSB1 = !XL, IOSB2 = !XL’
QIOREQSZ= .-QIOREQ ; Size of QIO status

; report
XMTBUFLEN=512 ; Size of transmit

; buffer
XMTBUF: .REPEAT XMTBUFLEN

.BYTE ^X93 ; Transmit data

.ENDR
RCVBUF: .BLKB XMTBUFLEN

(continued on next page)

2–24

DMP11 and DMF32 Interface Drivers
2.6 Programming Example

Example 2–1 (Cont.) DMP11/DMF32 Program Example

;
; This is the start of the program section
;
START:: .WORD 0

$OPEN FAB=CMDOFAB ; Open output
BLBC R0,EXIT ;
$CONNECT RAB=CMDORAB ; Connect to output
BLBC R0,EXIT ;
BRB CONT ; Continue

EXIT: $EXIT_S ; Exit program

CONT: TYPE <DMP11/DMF32 Test Program>
TYPE <>
$ASSIGN_S DEVNAM=DEVDSC,CHAN=CHNL ; Assign unit
BLBC R0,EXIT ; Exit on error

;
; Initialize and start controller
;

MOVZWL #XM$M_CHR_LOOPB!XM$M_CHR_DMC,P1BUF+4 ; Set P1 flags,
; loopback and DMC
; compatible

MOVW #XMTBUFLEN,P1BUF+2 ; Set P1 buffer size
CLRL P2BUFDSC ; Set zero length P2

; buffer
BSBW INIT ; Issue QIO

;
; Establish and start tributary
;

CLRQ P1BUF ; Reset P1 buffer
MOVAB P2BUF,R7 ; Get address of P2

; buffer
MOVW #NMA$C_PCCI_TRI,(R7)+ ; Set parameter code
MOVZBL #1,(R7)+ ; Store trib address

MOVZBL #6,P2BUFDSC ; Store length of P2
; buffer

BSBW ESTAB ; Issue QIO
;
; Loopback data
;

MOVZWL #100,R9 ; Loop device 100
; times

10$: BSBW XMIT ; Issue transmit
BSBW RECV ; Issue receive
MOVAB XMTBUF,R1 ; Get address of

; transmit data
MOVAB RCVBUF,R2 ; Get address of

; received data
MOVZWL #XMTBUFLEN,R3 ; Get number of bytes

; to verify
20$: CMPB (R1)+,(R2)+ ; Check data

BNEQ 30$;
SOBGTR R3,20$;
SOBGTR R9,10$;
BRW EXIT ; Exit

(continued on next page)

2–25

DMP11 and DMF32 Interface Drivers
2.6 Programming Example

Example 2–1 (Cont.) DMP11/DMF32 Program Example

30$ TYPE <*** Loopback buffer comparison error ***>
BRW EXIT ; Exit

;
; Initialize controller QIO
;
INIT: TYPE <*** Initialize controller QIO ***>

$QIO_S chan=chnl,func=#io$_setchar!io$m_ctrl!io$m_startup,-
p1=p1buf,p2=#p2bufdsc,iosb=iosb,p3=#5

BRW QIO_STATUS ;

;
; Start tributary QIO
;
ESTAB: TYPE <*** Startup tributary QIO ***>

$QIO_S chan=chnl,func=#io$_setchar!io$m_startup,-
p1=p1buf,p2=#p2bufdsc,iosb=iosb

BRW QIO_STATUS
;
; Transmit data QIO
;
XMIT: TYPE <*** Transmit buffer QIO ***>

$QIO_S chan=chnl,func=#io$_writevblk,p1=xmtbuf,-
p2=#xmtbuflen,iosb=iosb

BRW QIO_XMTST
;
; Receive data QIO
;
RECV: TYPE <*** Receive buffer QIO ***>

$QIO_S chan=chnl,efn=#2,func=#io$_readvblk,p1=rcvbuf,-
p2=#xmtbuflen,iosb=iosb

.BRB qio_status

.ENABL LSB
QIO_STATUS: ; Check status of QIO

BLBC IOSB,10$; Br if error on QIO
QIO_XMTST: ; Check status of XMIT

BLBC R0,10$; Br if error on
RSB ; request, else return

; to caller

10$ MOVZWL IOSB,R1 ; Get I/O status block
PUSHL R1 ; Push I/O status block
PUSHL R0 ; Push system service

; status
PUSHAQ FAOBUFDSC ; Push address of FAO

; buffer descriptor
PUSHAW FAOLEN ; Push address of

; output length
PUSHAQ QIOREQDSC ; Push address of

; input string
CALLS #5,@#SYS$FAO ; Get error message
MOVAB CMDBUF,CMDORAB+RAB$L_RBF ; Get output buffer

; address
MOVW FAOLEN,CMDORAB+RAB$W_RSZ ; Get output buffer

; length
$PUT CMDORAB ; Print error test
BRW EXIT ; Exit
.DSABL LSB

.END START

2–26

3
DR11–W and DRV11–WA Interface Driver

This chapter describes the use of the DR11–W interface driver (XADRIVER) in an
OpenVMS VAX environment. The DRV11–WA uses the same driver; thus, unless
otherwise stated, references to the DR11–W also apply to the DRV11–WA.

3.1 Supported Devices
The DR11–W is a general-purpose, 16-bit, parallel, direct-memory-access (DMA)
data interface. It is capable of being used either as an interface between memory
and a user device or as an interprocessor link (not DECnet) between two systems.

Because user devices of different or unknown capability can be connected
to the interface that the XADRIVER presents, XADRIVER might be either
insufficient or significantly inefficient for the application. For this reason, Digital
provides limited support for the DR11–W and DRV11–WA when connected to
foreign devices and provides the source code for XADRIVER in the OpenVMS
VAX operating system distribution kit as a template for adding additional
functionality.

Note that the driver is not supported if modifications are made to the source
program. Digital strongly recommends that any modifications to device drivers be
attempted only by those who are extremely familiar with the internal operation
of the operating system. For additional information, refer to the DR11–W Direct
Memory Interface Module User’s Guide, the DRV11–WA General Purpose DMA
Interface User’s Guide, and the OpenVMS VAX Device Support Manual.

The DRV11–WA is similar to the DR11–W. However, it operates as an interface
device that uses the 22-bit Q–bus rather than the UNIBUS. Unless otherwise
indicated, the DRV11–WA driver performs the same QIO functions as the DR11–
W driver; descriptions of DR11–W features also apply to the DRV11–WA. The
DRV11–WA driver is supported for the MicroVAX II, but not the MicroVAX I.

Note

Etch Revision Level E boards must be configured to be compatible with
earlier versions of the DRV11–WA by installing jumpers W2, W3, and W6.
These restrictions do not apply to the DR11–W.

You can link a DR11–W to another DR11–W, a DRV11–WA to another
DRV11–WA, or a DR11–W to a DRV11–WA. The operating system does not
support interprocessor links. You must write the code for any interprocessor
communications operations.

3–1

DR11–W and DRV11–WA Interface Driver
3.1 Supported Devices

Figure 3–1 shows two typical applications of the DR11–W and DRV11–WA.

Figure 3–1 Typical DR11–W/DRV11–WA Device Configurations

ZK−0709−GE

VAX−11

MicroVAX II

Memory

(UBA)
Adapter
UNIBUS

DR−11W Device
User

Memory

Q−Bus DRV−11−WA

a. Data Interface

b. Processor Link

System
Other Computer

DR−11W

The driver (XADRIVER) allows general access to the features provided by the
DR11–W and DRV11–WA devices. Function codes and modifiers are provided
to control, and to transfer data between, the user device and the OpenVMS
operating system.

3–2

DR11–W and DRV11–WA Interface Driver
3.1 Supported Devices

3.1.1 Device Differences
The following differences between the DR11–W and the DRV11–WA affect
the user at the QIO interface level; the referenced sections contain additional
information about these differences:

• Unsolicited interrupts—The DRV11–WA driver does not acknowledge
unsolicited interrupts (see Section 3.3).

• IO$M_WORD function modifier—The DRV11–WA driver does not perform
word mode transfers (see Section 3.3).

• CSR error bit—The DRV11–WA driver detects some, but not all, hardware
errors detected by the DR11–W driver (see Section 3.1.6).

• Error information register (EIR)—The DRV11–WA does not have an EIR (see
Section 3.1.6).

• IO$M_RESET function modifier—The DRV11–WA cannot be reset in the same
way as the DR11–W (see Section 3.3).

• IO$M_DATAPATH function modifier—The IO$M_DATAPATH function
modifier is ignored for the DRV11–WA driver (see Section 3.3.3.1).

3.1.2 DRV11–WA Installation
In addition to the two installation considerations described in this section, follow
the instructions in the hardware documentation when installing the DRV11–WA.

3.1.2.1 Type of Addressing
Bit 10 of the vector address selection switch is not used as part of the vector; it
selects 18- or 22-bit addressing. Set the device to 22-bit addressing.

3.1.2.2 Device Address and Interrupt Vector Address Selection
Because the DRV11–WA is designed to be compatible with the DR11–B, the
hardware documentation instructs you to set the device address and the interrupt
vector address to those reserved for the DR11–B. However, the DRV11–WA is
treated as much as possible like a DR11–W. Set the device address and interrupt
vector address to those reserved for the DR11–W. (Set the device address to rank
19 and the interrupt vector address to rank 40, both in floating address space.)

Use the OpenVMS System Generation utility (SYSGEN) CONFIGURE command
to calculate exact addresses. If you want to set up the device at the DR11–B
address as described in the hardware documentation, configure the device using
the following commands:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT GKpd0u /NOADAPTER
SYSGEN> LOAD SYS$SYSTEM:XADRIVER
SYSGEN> CONNECT XAA0 /ADAP=UB0/CSR=%O772410/VECTOR=%O124
SYSGEN> EXIT

3.1.3 DR11–W and DRV11–WA Transfer Modes
The DR11–W transfers data in block mode and in word mode. (Word-mode
transfers are not supported with the DRV11–WA.) In block mode, all transfers
are provided by the DMA facility. Each QIO request moves a single buffer of data
between the user device and physical memory. One interrupt is generated on
completion of the transfer. The transfer rate and transfer direction are controlled
by the user device.

3–3

DR11–W and DRV11–WA Interface Driver
3.1 Supported Devices

In block mode, the two types of UNIBUS or Q–bus transfers are single cycle
and burst. During single-cycle transfers the bus is arbitrated for each word (two
bytes) of information exchanged. Both the DR11–W and the DRV11–WA have a
single cycle mode supported by the operating system.

Burst transfers result in the exchange of multiple words without arbitration
of the bus. Two classes of burst mode transfers are possible, depending on the
position of a switch on the module. On the DR11–W, the operating system only
permits the use of dual cycle mode (class 1) in which two words are transferred
for each arbitration of the UNIBUS. On the DRV11–WA, the operating system
only permits the use of the 4-cycle mode in which four words are transferred for
each arbitration of the Q–bus. Use burst mode transfers with caution. They can
provide greater performance, but can prevent use of the bus by other devices
for what might be unacceptable periods. Both the DR11–W and the DRV11–WA
also have an N-cycle burst mode that cannot be used on OpenVMS VAX systems.
On DRV11–WA boards prior to CS Revision Level B and Etch Revision Level
D, N-cycle is the only form of burst mode available, and there is no burst mode
selection switch on the module.

In word mode, a single QIO request transfers a buffer of data, with an interrupt
requested for each word. Word mode is usually used to exchange control
information between the application program and the user device. Once the
proper control information has been accepted, a block-mode transfer can be
started to exchange data.

In both block- and word-mode transfers, the transfer size is indicated by the byte
count value specified in the P2 argument. The DR11–W and DRV11–WA transfer
information between main memory and the user device in one-word (two-byte)
units; transfers are counted on a word-by-word basis. However, the operating
system counts information one byte at a time. Consequently, if the desired
DR11–W or DRV11–WA transfer is 100 words, the P2 argument must specify 200
(bytes) for the transfer count value. If an odd number of bytes is specified for the
transfer count, the driver rejects the QIO request.

Transfers to and from memory typically occur from sequentially increasing
addresses. The user device can inhibit the increment to the next address.

During block-mode transfers, the user device controls the transfer direction
through signals exchanged with the driver. Neither the operating system nor the
application program has any control over the transfer direction. Consequently,
a read or write request to the driver by the application program should be
by convention, according to the intended action. An effect of this, regardless
of whether a read or write QIO function is specified, is that the application
program’s data buffer is always checked for modify access (rather than read or
write access) during block-mode transfers. In word mode, the transfer direction is
controlled explicitly by the device driver.

Note

The meaning of the terms read and write can be misunderstood when
discussing data transfers. This manual uses these terms for the
application procedure running under the OpenVMS VAX operating
system. A read operation involves the transfer of information from the
user device to VAX memory. A write operation involves the transfer of
information from VAX memory to the user device. Receive and input are

3–4

DR11–W and DRV11–WA Interface Driver
3.1 Supported Devices

synonymous with read operations; transmit and output are synonymous
with write operations.

3.1.4 DR11–W and DRV11–WA Control and Status Register Functions
For each buffer of data transferred, the DR11–W or DRV11–WA driver allows
for the exchange of an additional six bits of information: the function (FNCT)
and status (STATUS) bits, which are included in the control and status register
(CSR). These bits are accessible to an application process through the device
driver QIO interface. The FNCT bits are labeled FNCT 1, FNCT 2, and FNCT 3.
The STATUS bits are labeled STATUS A, STATUS B, and STATUS C.

The user device interfaced to the DR11–W or DRV11–WA interprets the value
of the three FNCT bits. The QIO request that initiates the transfer specifies
the IO$M_SETFNCT modifier to indicate a change in the value for the FNCT
bits. The P4 argument of the request specifies this value. P4 bits 0 through 2
correspond to FNCT bits 1 through 3, respectively. Bits 3 through 31 are not
used. If required, the FNCT bits must be set for each request. The FNCT bits set
in the CSR are passed directly to the user device.

The DR11–W and DRV11–WA STATUS bits are available in bits 9 through 11 of
the CSR, which correspond to STATUS bits C, B, A, respectively. On completion
of all transfers, the STATUS bits are returned from the user device through
the DR11–W or DRV11–WA to the IOSB. Neither the operating system nor the
DR11–W/ DRV11–WA modifies these bits in any way. Thus, both FNCT and
STATUS fields are defined solely by the user device. Except when used as an
interprocessor link, the DR11–W or DRV11–WA takes no special action based on
the state of these fields, and the FNCT bits remain set until explicitly changed
with the IO$M_ SETFNCT function modifier.

The DR11–W and DRV11–WA CSR STATUS bits should not be confused with the
status values returned in the I/O status block.

The function modifier IO$M_CYCLE sets the CSR CYCLE bit for the transfer
specified by the QIO request. In block mode, the CYCLE bit initiates the transfer
of the first word of data. In word mode, IO$M_CYCLE has no effect.

Section 3.1.7 describes the special meaning given to the FNCT and STATUS bits
by the DR11–W or DRV11–WA hardware and device driver when used as an
interprocessor link.

3.1.5 Data Registers
Two registers are used to transfer information to and from the user device. The
input data register (IDR) contains the last data value transferred into the DR11–
W or DRV11–WA from the user device. The output data register (ODR) contains
the last value transferred from the DR11–W or DRV11–WA to the user device.
During block mode operations, these registers are controlled automatically and
require no explicit action on the part of the application program. During word-
mode write operations, the DR11–W driver loads the ODR with each successive
data word; each word is then available to the user device. During word-mode read
operations, the driver reads the IDR and stores the value in memory. Interrupts
from the DR11–W synchronize reading and writing the IDR and ODR when in
word mode.

3–5

DR11–W and DRV11–WA Interface Driver
3.1 Supported Devices

3.1.6 Error Reporting
The error information register (EIR) is used for reporting certain error conditions
to the application program at the completion of each request. As the result of a
user device action, the device sets the ATTN bit in the CSR. The CSR ERROR bit
is also set at this time. If ERROR is set during a block-mode transfer, the transfer
is aborted. Table 3–5 in Section 3.4 lists the EIR and CSR bit assignments for
the I/O status block.

The DRV11–WA detects some, but not all, types of errors detected by the DR11–W.
Specifically, the error bit in the CSR (bit 15) for the DRV11–WA signals attention
interrupts, nonexistent memory errors, and power failures at the remote device,
but does not signal multicycle request errors or parity errors. The DRV11–WA
does not have an EIR. The driver always returns zeros in place of the EIR in the
fourth word of the IOSB when an I/O operation is completed.

3.1.7 Link Mode of Operation
The XADRIVER driver can control two DR11–Ws, two DRV11–WAs, or a DR11–
W and a DRV11–WA connected as interprocessor links between two computer
systems.

Note

The DRV11–WA to DRV11–WA link mode of operation is not possible
with earlier board versions. Digital does not support the DRV11–WA to
DRV11–WA link mode of operation.

Control switches on the DR11–W and DRV11–WA modules are set to place the
hardware in the link mode configuration. You must set these switches and use
either the set mode or the set characteristics function to instruct the driver to
function in link mode.

In link operations, two cooperating processes exchange data through the devices,
which function as a memory-to-memory interface. This feature requires that the
two processes agree on, and establish a basis for describing, the direction of the
data transfer, the message sizes, and arbitrating use of the link.

In link operations, the FNCT and STATUS bits are given special meaning by the
DR11–W or DRV11–WA hardware and the device driver. Proper operation of the
DR11–W or DRV11–WA as an interprocessor link depends on the correct use of
these bits. The driver does not enforce correct use of the FNCT and STATUS bits.
When issuing a QIO request to the DR11–W or DRV11–WA in link mode with
IO$M_SETFNCT specified, the correct values and sequence of FNCT bits must
be provided by the application image. Table 3–1 lists the FNCT and STATUS
bits and what actions occur when the DR11–W or DRV11–WA is in link mode.
Table 3–5 lists the CSR bit assignments.

3–6

DR11–W and DRV11–WA Interface Driver
3.1 Supported Devices

Table 3–1 Control and Status Register FNCT and STATUS Bits (Link Mode)

Bit Function

FNCT 1 Indicates whether the DR11–W or DRV11–WA at this end of the link is
to transmit or receive data. If FNCT 1 is 0, the DR11–W or DRV11–WA
transmits data from memory to the associated DR11–W or DRV11–WA
at the other end of the link. If FNCT 1 is 1, the DR11–W or DRV11–WA
receives data from the associated DR11–W or DRV11–WA and stores it
in memory. (Note that two DRV11–WAs cannot be linked together.) For
proper operation, one system must set FNCT 1 to 1 (for receive) and
the associated system must set FNCT 1 to 0 (for transmit).

FNCT 2 Interrupts the remote processor. For proper operation, the driver must
be set to operate as a link. When a set mode or set characteristics
function is used to instruct the driver to perform a link operation, the
driver does not leave FNCT 2 set. Instead, the driver sets and then
immediately clears the bit to provide a pulse, rather than a level, to the
associated system.

FNCT 3 Indicates whether the nonprocessor request (NPR) transfers that follow
occur as single-cycle or burst-mode transfers. If FNCT 3 is 0, burst
transfers are performed. If FNCT 3 is 1, single-cycle transfers are
performed. Note that burst-mode transfers can occupy the UNIBUS or
Q–bus for long periods, to the exclusion of other devices on the same
bus.

STATUS A Returns the value of FNCT 3 set in the associated computer system.
When an interrupt is returned from the associated computer denoting
the need to exchange a message, STATUS A indicates whether
the request that follows is to be set up for single-cycle or for burst
operation.

STATUS B Returns the value of FNCT 2 set in the associated system. Because
the DR11–W driver, when configured as a link, never leaves FNCT
2 set, STATUS B is never read as a 1. When STATUS B is set,
ATTENTION and, in turn ERROR, are set in the DR11–W or DRV11–
WA. When the driver handles the resulting interrupt, it attempts to
clear ATTENTION. If ATTENTION cannot be cleared, it indicates that
the condition causing it was a level, held true by the associated system.
Since ATTENTION can be set by conditions other than FNCT 2, for
example, the error ACLO in the associated system, treating FNCT 2 as
a pulse allows the receiving DR11–W to differentiate between an error
and a normal processor interrupt request.

STATUS C Returns the value of the FNCT 1 bit sent by the associated computer.
STATUS C indicates whether the DMA transfer that follows is a
transmit or a receive operation.

If a DR11–W in link configuration sets one or more of the three CSR FNCT bits,
the other DR11–W will perform one or more of the following actions:

• Request an interrupt

• Specify the intended transfer direction for a block-mode transfer that follows

• Declare whether the transfer is to take place in burst or single-cycle operation

In each case, the value written into the FNCT bits of the first DR11–W is
available and is read from the STATUS bits of the other DR11–W.

Because either process can initiate the data transfer, arbitration for the use of
the link is automatic. If both processes want to write or both want to read, a
timeout occurs. A timeout also occurs if either process neglects to specify the
agreed-upon transfer direction or message size. Each process should specify a
different timeout period or a different time before re-requesting the link after a

3–7

DR11–W and DRV11–WA Interface Driver
3.1 Supported Devices

timeout. These actions, which preclude a lockup of the link, are not enforced by
the driver.

If an attention interrupt is generated, it indicates that either the DR11–W or
DRV11–WA associated with the other system is initiating a transfer or that the
other DR11–W or DRV11–WA is going off line because of a power failure. The
DR11–W driver’s ability to clear ATTENTION (see the description of STATUS B
in Table 3–1) allows a data transfer to be distinguished from a hardware error.
If an error occurs and ATTENTION can be cleared, SS$_DRVERR is returned as
the status. If ATTENTION cannot be cleared, SS$_CTRLERR is returned.

3.2 Device Information
You obtain information about DR11–W or DRV11–WA characteristics by using the
Get Device/Volume Information ($GETDVI) system service. (See the OpenVMS
System Services Reference Manual.)

$GETDVI returns DR11–W- or DRV11–WA-specific characteristics when you
specify the item codes DVI$_DEVCHAR and DVI$_DEVDEPEND. Tables 3–2
and 3–3 list these characteristics. The $DEVDEF macro defines the device-
independent characteristics; the $XADEF macro defines the device-dependent
characteristics.

Table 3–2 DR11–W and DRV11–WA Device-Independent Characteristics

Characteristic 1 Meaning

Dynamic Bits (Conditionally Set)

DEV$M_AVL Device is on line and available.

DEV$M_ELG Error logging is enabled for this device.

Static Bits (Always Set)

DEV$M_IDV Input device.

DEV$M_ODV Output device.

DEV$M_RTM Real-time device.

1Defined by the $DEVDEF macro

Table 3–3 DR11–W and DRV11–WA Device-Dependent Characteristics

Value1 Meaning

XA$M_DATAPATH Describes which UNIBUS adapter data path is in use. 0 =
direct data path; 1 = buffered data path. The initial state of
this bit is 0. (Not applicable to the DRV11–WA.)

XA$M_LINK Describes whether the DR11–W or DRV11–WA is used as a
link or as a user device interface. 0 = user device interface; 1 =
link. The initial state of this bit is 0.

1Defined by the $XADEF macro

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and device class
names, which are defined by the $DCDEF macro. The device type for the DR11–
W is DT$_DR11W; the device type for the DRV11–WA is DT$_XA_DRV11WA.

3–8

DR11–W and DRV11–WA Interface Driver
3.2 Device Information

The device class for both the DR11–W and DRV11–WA is DC$_REALTIME.
DVI$_DEVBUFSIZ returns the default buffer size, which is 65,535.

3.3 DR11–W and DRV11–WA Function Codes
The XADRIVER can perform logical, virtual, and physical I/O operations. The
basic I/O functions are read, write, set mode, and set characteristics. Table 3–4
lists these functions and their function codes. The following sections describe
these functions in greater detail.

Table 3–4 DR11–W Function Codes

Function Code Arguments Type 1
Function
Modifiers Function

IO$_READLBLK P1,P2,P3,P4,P5 L IO$M_SETFNCT
IO$M_WORD2

IO$M_TIMED
IO$M_CYCLE
IO$M_RESET

Read logical block.

IO$_READVBLK P1,P2,P3,P4,P5 V IO$M_SETFNCT
IO$M_WORD2

IO$M_TIMED
IO$M_CYCLE
IO$M_RESET

Read virtual block.

IO$_READPBLK P1,P2,P3,P4,P5 P IO$M_SETFNCT
IO$M_WORD2

IO$M_TIMED
IO$M_CYCLE
IO$M_RESET

Read physical block.

IO$_WRITELBLK P1,P2,P3,P4,P5 L IO$M_SETFNCT
IO$M_WORD2

IO$M_TIMED
IO$M_CYCLE
IO$M_RESET

Write logical block.

IO$_WRITEVBLK P1,P2,P3,P4,P5 V IO$M_SETFNCT
IO$M_WORD2

IO$M_TIMED
IO$M_CYCLE
IO$M_RESET

Write virtual block.

IO$_WRITEPBLK P1,P2,P3,P4,P5 P IO$M_SETFNCT
IO$M_WORD2

IO$M_TIMED
IO$M_CYCLE
IO$M_RESET

Write physical block.

IO$_SETMODE P1,P3 L IO$M_ATTNAST Set DR11–W or DRV11–WA
characteristics for subsequent
operations.

IO$_SETCHAR P1,P3 P IO$M_ATTNAST
IO$M_DATAPATH

Set DR11–W or DRV11–WA
characteristics for subsequent
operations.

1V = virtual, L = logical, P = physical (there is no functional difference in these operations)
2Not applicable to the DRV11–WA

Although the XADRIVER does not differentiate among logical, virtual, and
physical I/O functions (all are treated identically), you must have the required
privilege to issue a request.

3–9

DR11–W and DRV11–WA Interface Driver
3.3 DR11–W and DRV11–WA Function Codes

The read and write functions take the following device- or function-dependent
arguments:

• P1—The starting virtual address of the buffer that is to receive data for a
read operation or the virtual address of the buffer that is to send data to the
DR11–W for a write operation. Modify access to the buffer, rather than read
or write access, is checked for all block-mode read and write requests.

• P2—The size of the data buffer in bytes (the transfer count). Because the
DR11–W performs word transfers, the transfer count must be an even value.
The maximum transfer size is 65,534 bytes. If a larger number is specified,
the high-order bits of this field are ignored.

• P3—The timeout period for this request (in seconds). The value specified
must be equal to or greater than 2. IO$M_TIMED must be specified. The
default timeout value for each request is 10 seconds.

• P4—The value of the DR11–W command and status register (CSR) function
(FNCT) bits to be set. If IO$M_SETFNCT is specified, the low-order three
bits of P4 (2:0) are written to the CSR FNCT bits 3:1 (respectively) at the
time of the transfer.

• P5—The value (low two bytes) to be loaded into the DR11–W output data
register (ODR). IO$M_SETFNCT must be specified and the transfer count
(P2) must be 0.

If a direct data path (DDP) is used (see Section 3.3.3.1), the address specified
by the P1 argument must be word-aligned. However, if a buffered data path
(BDP) is used, byte alignment is allowed. All transfers through the BDP, which is
available only on the UNIBUS, must occur from sequential, increasing addresses.
If the user device interfaced to the DR11–W cannot conform to this requirement,
the DDP must be used.

The transfer count specified by the P2 argument must be an even number of
bytes. If an odd number is specified, an error (SS$_BADPARAM) is returned in
the I/O status block (IOSB). If the transfer count is 0, the driver will transfer no
data. However, if IO$M_SETFNCT is specified and P2 is 0, the driver will set the
FNCT bits in the DR11–W CSR, load the low two bytes specified in P5 into the
DR11–W ODR, and return the current CSR status bit values in the IOSB.

The read and write functions can take the following function modifiers:

• IO$M_SETFNCT—Sets the FNCT bits in the DR11–W CSR before the data
transfer is initiated. The low-order three bits of the P4 argument specify the
FNCT bits. The user device that interfaces with the DR11–W or DRV11–WA
receives the FNCT bits directly, and their value is interpreted entirely by the
device.

Additionally, if the transfer count (P2) is 0, load the value specified in P5 into
the device ODR.

If a link operation is specified in the device-dependent characteristics (XA$M_
LINK = 1), FNCT 2 will not be left set (that is, it will be set and immediately
cleared) in the device CSR.

• IO$M_WORD—Performs the data transfer in word mode rather than in DMA
block mode (not applicable to the DRV11–WA). In word mode an interrupt
occurs for each word transferred. This allows the exchange of a small amount
of data to establish the parameters for a block-mode data transfer that
follows.

3–10

DR11–W and DRV11–WA Interface Driver
3.3 DR11–W and DRV11–WA Function Codes

If IO$M_WORD is included in a write request, the first word in a user’s buffer
is loaded into the DR11–W ODR. The driver then waits for an interrupt before
proceeding to load the next word or complete the request. If IO$M_WORD is
included in a read request, the driver waits for an interrupt and then reads a
word from the DR11–W IDR and stores it in the user’s buffer.

Interrupts are initiated when either the user device or, when in link
operation, the associated DR11–W sets ATTENTION.

If the DR11–W or DRV11–WA receives an unsolicited interrupt, no read or
write request is posted. If the next request is for a word-mode read, the
driver returns the word read from the DR11–W IDR and stores it in the
first word of the user’s buffer. In this case the driver does not wait for an
interrupt.

The DRV11–WA does not respond to unsolicited interrupts from a remote
device; the DRV11–WA only acknowledges interrupts when a DMA transfer
is outstanding. Consequently, word-mode transfers are not possible on a
DRV11–WA because the device does not acknowledge the interrupt that
occurs when the I/O operation is completed; the QIO waits indefinitely or
times out. (In some cases, you can work around this problem by causing the
remote device to generate an interrupt, which makes the local DRV11–WA
complete the I/O operation with an SS$_OPINCOMPL status.)

• IO$M_TIMED—Uses the timeout value in the P3 argument rather than the
default timeout value of 10 seconds.

• IO$M_CYCLE—Sets the cycle bit in the DR11–W or DRV11–WA CSR for this
request. In block mode, this initiates the first NPR cycle. For user devices,
the application of the cycle bit is dependent on the specific device. In word
mode, IO$M_CYCLE is ignored. In link operations, only the transmitting
DR11–W or DRV11–WA must set CYCLE and then only after the companion
DR11–W has its receive request initiated.

• IO$M_RESET—Performs a device reset to the DR11–W before any I/O
operation is initiated. This function does not affect any other device on the
system.

The DRV11–WA can be reset only by initializing the Q–bus and all other
devices attached to the Q–bus. Therefore, when the IO$M_RESET function
modifier is used to reset the DRV11–WA, the XADRIVER simulates a reset
by setting the word count register (WCR) to indicate one word left to be
transferred and setting the CYCLE bit to complete the transfer. If the driver
is not performing a transfer at the time of a reset, the reset is a no-op.

On completion of each read or write request, including those requests with a
zero transfer count, the current value of the DR11–W or DRV11–WA CSR and
DR11–W EIR is returned in the I/O status block.

3.3.1 Read
Read functions provide for the direct transfer of data from the user device that
interfaces with the DR11–W or DRV11–WA into the user process’s virtual memory
address space. The operating system provides the following function codes:

• IO$_READLBLK—Read logical block

• IO$_READVBLK—Read virtual block

• IO$_READPBLK—Read physical block

3–11

DR11–W and DRV11–WA Interface Driver
3.3 DR11–W and DRV11–WA Function Codes

Five function-dependent arguments and five function modifiers are used with
these codes. These arguments and modifiers are described at the beginning of
Section 3.3.

3.3.2 Write
Write functions provide for the direct transfer of data to the user device that
interfaces with the DR11–W or DRV11–WA from the user process’s virtual
memory address space. The operating system provides the following function
codes:

• IO$_WRITELBLK—Write logical block

• IO$_WRITEVBLK—Write virtual block

• IO$_WRITEPBLK—Write physical block

Five function-dependent arguments and five function modifiers are used with
these codes. These arguments and modifiers are described at the beginning of
Section 3.3.

3.3.3 Set Mode and Set Characteristics
Set mode operations affect the operation and characteristics of the associated
DR11–W or DRV11–WA. The operating system defines two types of set mode
functions: set mode and set characteristics. These functions allow the user
process to set or change the device characteristics. The following function codes
are provided:

• IO$_SETMODE—Set mode (no I/O privilege required)

• IO$_SETCHAR—Set characteristics (requires physical I/O privilege)

These functions take the following device- or function-dependent arguments:

• P1—The virtual address of a quadword characteristics buffer. If the function
modifier IO$M_ATTNAST is specified, P1 is the address of the AST service
routine. In this case, if P1 is 0, all attention ASTs are disabled.

• P3—The access mode to deliver the AST (maximized with the requester’s
access mode). If IO$M_ATTNAST is not specified, P3 is ignored.

Figure 3–2 shows the quadword P1 characteristics buffer for IO$_SETMODE and
IO$_SETCHAR.

Figure 3–2 P1 Characteristics Buffer

ZK−0712−GE

Not Used Type Class

Device Characteristics

31 016 15 8 7

Table 3–3 lists the device characteristics for the set mode and set characteristics
functions. The device class value must be DC$_REALTIME. The device type
value must be DT$_DR11W or DT$_XA_DRV11WA. These values are defined by
the $DCDEF macro.

3–12

DR11–W and DRV11–WA Interface Driver
3.3 DR11–W and DRV11–WA Function Codes

3.3.3.1 Set Mode Function Modifiers
The IO$_SETMODE and IO$_SETCHAR function codes can take the following
function modifier:

• IO$M_ATTNAST—Enable attention AST

This function modifier allows the user process to queue an attention AST for
delivery when an asynchronous or unsolicited condition is detected by the DR11–
W or DRV11–WA driver. Unlike ASTs for other QIO functions, use of this function
modifier does not increment the I/O count for the requesting process or lock pages
in memory for I/O buffers. Each AST is charged against the user’s AST limit.

Attention ASTs are delivered when any of the following occur:

• Any block- or word-mode data transfer request is completed.

• An unsolicited interrupt from the DR11–W occurs. (The DRV11–WA does not
respond to unsolicited interrupts.)

• An attention AST is queued and a previous unsolicited interrupt has not been
acknowledged.

• A device timeout occurs.

The Cancel I/O on Channel ($CANCEL) system service is used to flush attention
ASTs for a specific channel.

The enable attention AST function modifier enables an attention AST to be
delivered to the requesting process once only. After the AST occurs, it must be
explicitly reenabled by the function modifier before the AST can occur again. This
function modifier does not update the device characteristics.

When the AST is delivered, the AST parameter contains the contents of the
DR11–W or DRV11–WA CSR in the low two bytes and the value read from the
DR11–W or DRV11–WA IDR in the high two bytes.

In addition to IO$M_ATTNAST, the IO$_SETCHAR function code can take the
following function modifier:

• IO$M_DATAPATH—Use the data path specified by XA$M_DATAPATH in the
P1 characteristics buffer

The IO$M_DATAPATH function modifier allows the user to specify either the
direct data path (DDP) or a buffered data path (BDP) for block-mode transfers
through the UNIBUS adapter.

The device-specific characteristic XA$M_DATAPATH is used to switch between
use of the DDP and the BDP. If XA$M_DATAPATH is set, the BDP is used; if
clear, the DDP is used. Regardless of the value of XA$M_DATAPATH, the choice
of data path has no effect unless the function modifier IO$M_DATAPATH is also
specified, which requires physical I/O privilege.

Note

Use caution when specifying data transfers through the BDP. The user
device has access to several hardware functions: C0 and C1 inhibit word
count increment and inhibit bus address increment. If these signals are
used out of context of the expected UNIBUS adapter constraints for BDPs,
the result is unpredictable.

3–13

DR11–W and DRV11–WA Interface Driver
3.3 DR11–W and DRV11–WA Function Codes

Unlike the UNIBUS, the Q–bus does not provide a choice between a direct data
path and a buffered data path; the IO$M_DATAPATH function modifier is ignored
for the DRV11–WA.

3.4 I/O Status Block
The I/O status block (IOSB) for DR11–W or DRV11–WA read and write functions
is shown in Figure 3–3. On completion of each read or write request, the I/O
status block is filled with system and DR11–W or DRV11–WA status information.

Figure 3–3 IOSB Contents for DR11 and DRV11 Functions

ZK−0713−GE

DR11−W EIR

StatusByte Count

+2 IOSB

DR11−W CSR

The first longword of the I/O status block contains I/O status returns and the byte
count. Appendix A lists the status returns for read and write functions. (The
OpenVMS system messages documentation provides explanations and suggested
user actions for these returns.) The byte count is the actual number of bytes
transferred by the request. If the request ends in an error, the byte count might
differ from the requested number of bytes. If a power failure, timeout, or the
Cancel I/O on Channel ($CANCEL) system service stops the request, the value in
the byte count field is not valid.

The third and fourth words of the I/O status block contain the values of the
DR11–W CSR and EIR on completion of the request. (The DRV11–WA has a CSR
but not an EIR; the driver always returns zeros in the fourth word of the IOSB
when an I/O operation is completed.) Table 3–5 lists the bit assignments for these
two words. The DR11–W User’s Manual provides additional information about
the EIR and CSR.

Table 3–5 EIR and CSR Bit Assignments

Word Bit Function

EIR 0 Register flag

1–7 (not applicable)

8 N-cycle burst

9 Burst timeout (sets ERROR)

10 PARITY (sets ERROR)

11 ACLO (sets ERROR)

12 Multicycle request (sets ERROR)

13 ATTENTION (sets ERROR)

(continued on next page)

3–14

DR11–W and DRV11–WA Interface Driver
3.4 I/O Status Block

Table 3–5 (Cont.) EIR and CSR Bit Assignments

Word Bit Function

14 Nonexistent memory (sets ERROR)

15 ERROR (generates interrupt when set)

CSR 0 GO

1 FNCT 1

2 FNCT 2

3 FNCT 3

4 Extended bus address 16

5 Extended bus address 17

6 Interrupt enable

7 READY

8 CYCLE

9 STATUS C

10 STATUS B

11 STATUS A

12 Maintenance mode

13 ATTENTION (sets ERROR)

14 Nonexistent memory (sets ERROR)

15 ERROR (generates interrupt when set)

3.5 Programming Example
A sample program residing in the SYS$EXAMPLES directory demonstrates how
to perform transfers across a DR11–W to DRV11–WA or a DR11–W to DR11–W
interprocessor link. The sample program includes the following modules:

• XALINK.MAR—Places the device in link mode

• XAMESSAGE.MAR—Performs the actual transfer of data

• XATEST.FOR—Solicits parameters for the transfer from the user and calls
the XALINK.MAR and XAMESSAGE.MAR modules

• XATEST.COM—Compiles and links the sample program

Example 3–1, which consists of the module XAMESSAGE.MAR, shows how an
actual memory-to-memory link might be implemented using the XADRIVER. All
actions are invoked through the $QIO interface by a nonprivileged image.

Note

XAMESSAGE.MAR is a demonstration program, not an application. The
program may not work in all circumstances. See the template warning at
the beginning of Example 3–1.

3–15

DR11–W and DRV11–WA Interface Driver
3.5 Programming Example

XAMESSAGE.MAR includes the following features:

• Either system can function as the transmitter or the receiver. For any given
exchange, one system must be the transmitter and one must be the receiver.

• Either the transmitter or the receiver can call XAMESSAGE first, which is
made possible by the driver’s ability to keep track of unsolicited attention
interrupts. XAMESSAGE uses this feature for the following reasons:

To synchronize the DMA exchange

To ensure that the receiver issues the block-mode read request first

To ensure that the transmitter sets the CYCLE bit to initiate the first
NPR transfer

• If either the transmitter or receiver specifies unequal transfer sizes or
does not match the transfer direction, either a timeout occurs or one of the
procedures returns an error. The caller must resolve these discrepancies.

Table 3–6 lists the main flow of the program. Note that paths for transmit and
receive and for DR11–W and DRV11–WA are combined in the same module
(XAMESSAGE).

The three parts of Table 3–6 describe the operation of XAMESSAGE in three
different device configurations:

• A DRV11–WA transmitting a message to a DR11–W

• A DR11–W transmitting a message to a DRV11–WA

• A DR11–W transmitting a message to another DR11–W

The two right-hand columns describe the action taken by each device involved
in the transfer. The leftmost column contains the name of the routine in
XAMESSAGE that performs the respective action: MAIN refers to the main
routine for XAMESSAGE, AST_GO refers to the AST routine by that name,
AST_COM refers to the AST routine called AST_COMPLETION, and ASYNC
means that the action occurs asynchronously and is not controlled directly by any
code in XAMESSAGE.

Table 3–6 XAMESSAGE Program Flow

DRV11–WA (Transmitter) to DR11–W (Receiver)

XAMESSAGE DRV11–WA (Transmitter) DR11–W (Receiver)

MAIN Issue block-mode read request. Enable attention AST.

AST_GO Execute attention AST as a result of
interrupt from transmitter.

AST_GO Issue block-mode read request.

AST_GO Complete block-mode read request
prematurely as a result of the interrupt
at the beginning of the receiver’s read
request.

AST_GO Issue block-mode write request.

ASYNC Perform DMA transfer. Perform DMA transfer.

(continued on next page)

3–16

DR11–W and DRV11–WA Interface Driver
3.5 Programming Example

Table 3–6 (Cont.) XAMESSAGE Program Flow

DRV11–WA (Transmitter) to DR11–W (Receiver)

XAMESSAGE DRV11–WA (Transmitter) DR11–W (Receiver)

AST_COM Execute completion AST and check for
errors.

Execute completion AST and check for
errors.

DR11–W (Transmitter) to DRV11–WA (Receiver)

XAMESSAGE DRV11–WA (Receiver) DR11–W (Transmitter)

MAIN Issue block-mode read. Enable attention AST.

AST_GO Execute attention AST as a result of
interrupt from receiver.

AST_GO Issue block-mode write request.

ASYNC Perform DMA transfer. Perform DMA transfer.

AST_COM Execute completion AST and check for
errors.

Execute completion AST and check for
errors.

DR11–W (Transmitter) to DR11–W (Receiver)

XAMESSAGE DR11–W (Receiver) DR11–W (Transmitter)

MAIN Enable attention AST. Enable attention AST.

MAIN Momentarily set the FNCT 2 bit via
a 0-length transfer to interrupt the
receiver.

AST_GO Execute attention AST as a result of
interrupt from transmitter.

AST_GO Issue block-mode read request.

AST_GO Execute attention AST as a result of
interrupt from receiver.

AST_GO Issue block-mode write request.

ASYNC Perform DMA transfer. Perform DMA transfer.

AST_COM Execute completion AST and check for
errors.

Execute completion AST and check for
errors.

Example 3–1 DR11–W/DRV11–WA Program Example (XAMESSAGE.MAR)

.TITLE XAMESSAGE

.IDENT ’V04-001’

(continued on next page)

3–17

DR11–W and DRV11–WA Interface Driver
3.5 Programming Example

Example 3–1 (Cont.) DR11–W/DRV11–WA Program Example
(XAMESSAGE.MAR)

;**
;* DIGITAL ASSUMES NO RESPONSIBILITY TO SUPPORT THE SOFTWARE DESCRIBED *
;* IN THIS MODULE, NOR TO ANSWER INQUIRIES ABOUT IT. *
;* *
;* THIS SOFTWARE MODULE IS PART OF A TEMPLATE WHICH MAY REQUIRE CUSTOMER *
;* MODIFICATIONS TO WORK IN ALL CIRCUMSTANCES. *
;**
;++
; ABSTRACT:
;
; This module allows you to connect a DR11-W to a DRV11-WA; or
; a DR11-W to another DR11-W in an interprocessor link and to
; perform data transfers from one processor to the other.
;--

.SBTTL LOCAL DEFINITIONS AND STORAGE
;++
; XAMESSAGE ROUTINE
;
; CALLING SEQUENCE:
;
; CALL (BUFFER_ADDRESS,BUFFER_SIZE,TRANSFER_DIRECTION,CHANNEL,-
; EVENT_FLAG,TIME_OUT,STATUS_ADDRESS,LOCAL_DEVICE,REMOTE_DEVICE)
;
; BUFFER_ADDRESS = ADDRESS OF DATA BUFFER TO TRANSFER
; BUFFER_SIZE = SIZE IN BYTES OF DATA BUFFER TO TRANSFER.
; NOTE THAT RECEIVER AND TRANSMITTER MUST AGREE ON THE
; SIZE OF THE TRANSFER.
; TRANSFER_DIRECTION = DIRECTION FOR DATA TO GO
; 0 = TRANSMIT
; 1 = RECEIVE
; CHANNEL = CHANNEL ASSIGNED TO DEVICE (DR11-W OR DRV11-WA)
; EVENT_FLAG = EVENT FLAG TO SET WHEN TRANSFER COMPLETE
; TIME_OUT = I/O TIME-OUT VALUE IN SECONDS
; STATUS_ADDRESS = ADDRESS OF 20 BYTE ARRAY TO RECEIVE
; FINAL STATUS - ONLY FILLED IN IF USER’S PARAMETERS ARE
; ALL VALID.
; IOSB - 8 BYTES
; I/O STATUS BLOCK FROM QUEUE I/O REQUEST
; ERROR - 4 BYTES - NOT USED - FOR COMPATIBILITY
; WITH OLD VERSIONS OF THIS MODULE.
; STATE - 4 BYTES
; THIS FIELD TRACKS WHICH QIO WAS THE LATEST
; ONE TO BE PERFORMED.
; 01 - LAST QIO WAS ONE IN THE MAIN ROUTINE.
; 02 - LAST QIO WAS ONE IN AST_GO.
; SSRV_STS - 4 BYTES
; VALUE OF R0 RETURNED FROM THE LAST SYSTEM
; SERVICE EXECUTED.
; LOCAL_DEVICE = TYPE OF DEVICE AT LOCAL END OF LINK.
; DR11_W = 1
; DRV11_WA = 2
; REMOTE_DEVICE = TYPE OF DEVICE AT REMOTE END OF LINK.
; DR11_W = 1
; DRV11_WA = 2
;--

(continued on next page)

3–18

DR11–W and DRV11–WA Interface Driver
3.5 Programming Example

Example 3–1 (Cont.) DR11–W/DRV11–WA Program Example
(XAMESSAGE.MAR)

$SSDEF
; PARAMETER OFFSETS.
BUFFER_P = 4
BUF_SIZE_P = 8
DIRECTION_P = 12
CHAN_P = 16
EFN_P = 20
TIME_P = 24
STS_ADDR_P = 28
LCL_DEVICE_P = 32
REM_DEVICE_P = 36

.PSECT XADATA,LONG

; SAVED PARAMETER VALUES.
BUFFER: .LONG 0 ; SAVED BUFFER ADDRESS
BUF_SIZE: .LONG 0 ; SAVED BUFFER SIZE
DIRECTION: .LONG 0 ; DIRECTION OF TRANSFER
CHAN: .LONG 0 ; SAVED CHANNEL ASSIGNED TO DR11-W
EFN: .LONG 0 ; SAVED EVENT FLAG NUMBER
TIME: .LONG 0 ; SAVED TIME-OUT VALUE
STS_ADDR: .LONG 0 ;ADDRESS OF CALLERS STATUS VARIABLE

; DEFINE DEVICE TYPES AT BOTH ENDS OF INTERPROCESSOR LINK.

DR11_W = 1
DRV11_WA = 2
LCL_DEVICE: .BLKL 1 ; TYPE OF DEVICE ON THIS SYSTEM.
REM_DEVICE: .BLKL 1 ; TYPE OF DEVICE AT OTHER

; END OF LINK.
AST: .BLKL 1

; NOTE - ORDER IS ASSUMED FOR NEXT FOUR VARIABLES
IOSB: .QUAD 0 ; QIO IOSB
ERROR: .LONG 0 ; ERROR VALUE PARAMETER
STATE: .LONG 0 ; STATE VARIABLE
SSRV_STS: .LONG 0 ; SYSTEM SERVICE STATUS

.PAGE

.SBTTL VALIDATE AND SAVE CALLER’S PARAMETERS

.PSECT XACODE,NOWRT

.ENTRY XAMESSAGE,^M<R2,R3,R4,R5>

(continued on next page)

3–19

DR11–W and DRV11–WA Interface Driver
3.5 Programming Example

Example 3–1 (Cont.) DR11–W/DRV11–WA Program Example
(XAMESSAGE.MAR)

; VALIDATE AND SAVE CALLER’S PARAMETERS
CLRQ W^IOSB ; CLEAR IOSB
CLRL W^ERROR ; CLEAR ERROR FIELD
CLRL W^SSRV_STS ; CLEAR SYS SERVICE RETURN STATUS
CMPW (AP),#9 ; MUST HAVE 9 PARAMETERS
BEQL 10$; BR IF OKAY
BRW BADPARAM ; BR TO SIGNAL ERROR

10$: MOVL BUFFER_P(AP),W^BUFFER ; GET BUFFER ADDRESS
MOVL @BUF_SIZE_P(AP),W^BUF_SIZE ; GET BUFFER SIZE
BNEQ 20$; BR IF OKAY
BRW BADPARAM ;TRANSFER SIZE IS NONZERO- ILLEGAL

20$: MOVZBL @DIRECTION_P(AP),W^DIRECTION ; GET TRANSFER DIRECTION FLAG
CMPL W^DIRECTION,#2 ; THE ONLY LEGAL VALUES ARE 0,1
BLEQU 25$; BR IF OKAY
BRW BADPARAM ; ELSE BR TO SIGNAL ERROR

25$: MOVL @CHAN_P(AP),W^CHAN ; FETCH CHANNEL
MOVL @EFN_P(AP),W^EFN ; AND EVENT FLAG
BEQL BADPARAM ; MUST SPECIFY EVENT FLAG
MOVL @TIME_P(AP),W^TIME ; FETCH TIME-OUT VALUE
BNEQ 30$; IF NONZERO, USE IT.
MOVZBL #5,W^TIME ;ELSE USE SOME "REASONABLE" VALUE

30$: MOVL STS_ADDR_P(AP),W^STS_ADDR ; GET ADDRESS OF STATUS ARRAY
BEQL BADPARAM ; IF NOT SPECIFIED, ERROR
CLRL @W^STS_ADDR ; INITIALIZE STATUS VALUE
MOVZBL @LCL_DEVICE_P(AP),W^LCL_DEVICE ; GET LOCAL DEVICE TYPE
CMPL #DRV11_WA,W^LCL_DEVICE ; IS LOCAL DEVICE A DRV11-WA?
BEQLU 35$; BRANCH IF SO.
CMPL #DR11_W,W^LCL_DEVICE ; IS LOCAL DEVICE A DR11-W?
BNEQU BADPARAM ; ERROR IF IT’S NOT EITHER.

35$: MOVZBL @REM_DEVICE_P(AP),W^REM_DEVICE ; GET REMOTE DEVICE TYPE
CMPL #DRV11_WA,W^REM_DEVICE ; IS REMOTE DEVICE A DRV11-WA?
BEQLU 50$; BRANCH IF SO.
CMPL #DR11_W,W^REM_DEVICE ; IS REMOTE DEVICE A DR11-W?
BNEQU BADPARAM ; ERROR IF IT’S NOT EITHER.

50$: $CLREF_S EFN=EFN ; MAKE SURE EFN IS CLEAR
BLBS R0,100$; BR IF NO SYS SERVICE ERROR
RET

100$: CMPL #DRV11_WA,W^LCL_DEVICE ; DISPATCH BASED ON LOCAL
; DEVICE TYPE

BEQL DRV11_WA_START ; LOCAL DEVICE IS DRV11-WA
BRW DR11_W_START ; LOCAL DEVICE IS DR11-W

BADPARAM:
MOVZWL #SS$_BADPARAM,R0 ; ELSE RETURN ERROR.
RET

.PAGE

.SBTTL START MESSAGE PROCESSOR

(continued on next page)

3–20

DR11–W and DRV11–WA Interface Driver
3.5 Programming Example

Example 3–1 (Cont.) DR11–W/DRV11–WA Program Example
(XAMESSAGE.MAR)

DRV11_WA_START: ; THE LOCAL DEVICE IS A DRV11-WA
BLBC W^DIRECTION,10$; BRANCH IF IT’S A TRANSMIT

; OPERATION
MOVAL W^AST_COMPLETION,W^AST ; AST_COMPLETION IS THE AST FOR

; RECEIVE
BRB 20$

10$: MOVAL W^AST_GO,W^AST ; AST_GO IS THE AST FOR TRANSMIT
; OPERATION

20$: MOVL #01,W^STATE ; STATE = 1 => LAST QIO WAS IN
; MAIN ROUTINE.

$QIO_S CHAN=W^CHAN,- ; BLOCK-MODE READ - EVEN IF IT’S
FUNC=#<IO$_READLBLK!IO$M_TIMED!IO$M_SETFNCT>,- ; TRANSMIT
IOSB=W^IOSB,-
ASTADR=@W^AST,-
P1=@W^BUFFER,- ; ADDRESS OF CALLER’S DATA BUFFER
P2=W^BUF_SIZE,- ; LENGTH OF DATA BUFFER
P3=W^TIME,- ; TIMEOUT VALUE
P4=#7 ; INTERRUPT+READ

BRW MAIN_EXIT ; EXIT MAIN ROUTINE.
DR11_W_START: ; LOCAL DEVICE IS DR11-W

MOVL #01,W^STATE ; STATE = 1 => LAST QIO WAS IN
; MAIN ROUTINE.

$QIO_S CHAN=W^CHAN,- ; QIO TO ENABLE AST’S
FUNC=#<IO$_SETMODE!IO$M_ATTNAST>,-
IOSB=W^IOSB,-
P1=W^AST_GO

BLBC R0,MAIN_EXIT ; BRANCH ON ERROR - ALL DONE.
BLBS W^DIRECTION,MAIN_EXIT ; BRANCH IF THIS IS A RECEIVE

; OPERATION
CMPL #DR11_W,W^REM_DEVICE ; IS REMOTE DEVICE A DR11-W?
BNEQU MAIN_EXIT ; BRANCH IF NOT.
$QIO_S CHAN=W^CHAN,- ; PERFORM 0-LENGTH QIO. THIS

FUNC=#<IO$_WRITELBLK!IO$M_SETFNCT>,- ; SERVES TO SET THE
IOSB=W^IOSB,- ; FNCT BITS (CONTAINED IN P4),
P1=@W^BUFFER,- ; IN THE CSR, INTERRUPTING THE

; REMOTE DR11-W.
P2=#0,-
P4=#2

MAIN_EXIT:
MOVL R0,W^SSRV_STS ; SAVE QIO STATUS RETURN
MOVC3 #20,W^IOSB,@W^STS_ADDR ; RETURN STATUS TO THE USER
BLBS W^SSRV_STS,10$; IF SUCCESS, DON’T SET EVFLAG YET
$SETEF_S EFN=W^EFN ; IF ERROR, SET EVENT FLAG

; -- ALL DONE.
10$: MOVL W^SSRV_STS,R0 ; RESTORE R0 STATUS RETURN.

RET

.PAGE

.SBTTL AST_GO - AST THAT INITIATES THE QIO TO PERFORM ACTUAL TRANSFER

;
; This AST is called to perform the $QIO which begins the actual transfer
; of user data. (Hence the name AST_GO.)
;

BLBS W^DIRECTION,AST_RECEIVE ; BRANCH IF RECEIVE OPERATION

(continued on next page)

3–21

DR11–W and DRV11–WA Interface Driver
3.5 Programming Example

Example 3–1 (Cont.) DR11–W/DRV11–WA Program Example
(XAMESSAGE.MAR)

;
; On a DR11-W, this AST is delivered as a result of an interrupt from the
; remote device, so no status checking is necessary. On a DRV11-WA, this
; AST is delivered as a result of an intentionally premature I/O completion,
; so we expect the status return to be SS$_OPINCOMPL.
;
AST_XMIT:

CMPL #DRV11_WA,W^LCL_DEVICE ; IS LOCAL DEVICE A DRV11-WA?
BNEQ 20$; BRANCH IF NOT.
CMPW W^IOSB,#SS$_OPINCOMPL ; STATUS SHOULD BE SS$_OPINCOMPL.
BEQL 20$; BR IF EXPECTED STATUS
BRW IO_DONE ; ELSE ERROR

20$: MOVL #02,W^STATE ; STATE = 2 => LAST QIO WAS IN
; AST_GO.

$QIO_S CHAN=W^CHAN,- ; BLOCK-MODE WRITE
FUNC=#<IO$_WRITELBLK!IO$M_TIMED!IO$M_SETFNCT!IO$M_CYCLE>,-
IOSB=W^IOSB,-
ASTADR=W^AST_COMPLETION,-
P1=@W^BUFFER,- ; ADDRESS OF CALLER’S DATA BUFFER
P2=W^BUF_SIZE,- ; LENGTH OF BUFFER
P3=W^TIME,- ; TIMEOUT VALUE
P4=#4 ; FNCT BITS FOR CSR

BLBS R0,40$; RETURN IF QIO STARTED OK
BRW IO_DONE ; ALL DONE IF ERROR OCCURRED.

40$: RET ; DISMISS THIS AST, AND
; WAIT FOR AST_COMPLETION

;
; AST_RECEIVE is only used by the DR11-W, since the DRV11-WA initiates
; the actual data transfer from the main routine when it is the receiver.
;
AST_RECEIVE:

MOVL #02,W^STATE ; STATE = 2 => LAST QIO WAS IN
; AST_GO.

$QIO_S CHAN=W^CHAN,- ; BLOCK-MODE READ
FUNC=#<IO$_READLBLK!IO$M_TIMED!IO$M_SETFNCT>,-
IOSB=W^IOSB,-
ASTADR=W^AST_COMPLETION,- ; ADDRESS OF AST FOR I/O COMPLETION
P1=@W^BUFFER,- ; ADDRESS OF CALLER’S DATA BUFFER
P2=W^BUF_SIZE,- ; LENGTH OF DATA BUFFER
P3=W^TIME,- ; TIMEOUT VALUE
P4=#7 ; INTERRUPT+READ

BLBS R0,10$; RETURN IF QIO STARTED OK
BRW IO_DONE ; ON ERROR, WE’RE ALL DONE.

10$: RET

(continued on next page)

3–22

DR11–W and DRV11–WA Interface Driver
3.5 Programming Example

Example 3–1 (Cont.) DR11–W/DRV11–WA Program Example
(XAMESSAGE.MAR)

.PAGE

.SBTTL AST_COMPLETION - COMPLETION ROUTINE FOR I/O TRANSFER.

.ENTRY AST_COMPLETION,^M<R2,R3,R4,R5>
;
; This AST is called when the actual transfer of data is complete. Note that
; the status value in the IOSB must be checked by the caller when we’re done.
; IO_DONE is also called when an error occurs and the handshaking sequence
; must be terminated.
;
IO_DONE:

MOVC3 #20,W^IOSB,@W^STS_ADDR ; RETURN STATUS TO THE USER
$SETEF_S EFN=W^EFN ; SET THE CALLER’S EVENT FLAG
MOVZBL #SS$_NORMAL,R0 ; SIGNAL SUCCESSFUL AST COMPLETION.
RET
.END

3–23

4
DR32 Interface Driver

This chapter describes the use of the DR32 interface driver in an Open VMS VAX
environment.

4.1 Supported Device
The DR32 is an interface adapter that connects the internal memory bus of a VAX
processor to a user-accessible bus called the DR32 device interconnect (DDI). Two
DR32s can be connected to form a VAX processor-to-processor link (not DECnet).
Figure 4–1 shows the relationship of the DR32 to an OpenVMS VAX system and
the DR32 device interconnect (DDI).

Figure 4–1 Basic DR32 Configuration

ZK−0714−GE

Memory

MBAMASSBUS

UNIBUS

DR−Device

Processor
VAX−11

UBA
or

UBI

CMI
SBI or

(DDI)
DR32 DR−Device

(Far End)Interconnect
DR−32 Device

As a general-purpose data port, the DR32 is capable of moving continuous
streams of data to or from memory at high speed. Data from a user device to disk
storage must go through an intermediate buffer in physical memory.

4–1

DR32 Interface Driver
4.1 Supported Device

4.1.1 DR32 Device Interconnect
The DR32 device interconnect (DDI) is a bidirectional path for the transfer of
data and control signals. Control signals sent over the DDI are asynchronous and
interlocked; data transfers are synchronized with clock signals. Any connection
to the DDI is called a DR device. The DDI provides a point-to-point connection
between two DR devices, one of which must be a VAX processor. The DR device
connected to the external end of the DDI is called the far-end DR device.

4.2 DR32 Features and Capabilities
The DR32 driver provides the following features and capabilities:

• 32-bit parallel data transfers

• High bandwidth (6 megabytes/second on the DDI with a VAX–11/780 or 3.12
megabytes/second on a VAX–11/750)

• Word or byte alignment of data

• Half-duplex operation

• Hardware-supported (I/O driver-independent) memory mapping

• Separate control and data interconnects

• Command and data chaining

• Direct software link between the DR32 and the user process

• Synchronization of the user program with DR32 data transfers

• Transfers initiated by an external device

The following sections describe command and data chaining, data transfers,
power failure, and interrupts.

4.2.1 Command and Data Chaining
Command chaining is the execution of commands without software intervention
for each command. Commands are chained in the sense that they follow each
other on a queue. After a QIO function starts the DR32, any number of DR32
commands can be executed during that QIO operation. This process continues
until either the transfer is halted (a command packet is fetched that specifies a
halt command) or an error occurs. (Section 4.4.3 describes command packets.)

Command packets can specify data chaining. In data chaining, a number of
physical memory buffers appear as one large buffer to the far-end DR device.
Data chaining is completely transparent to this device; transfers are seen as a
continuous stream of data. Chained buffers can be of arbitrary byte alignment
and length. The length of a transfer appears to the far-end DR device as the total
of all the byte counts in the chain, and because chains in the DR32 can be of
unlimited length, the device interprets the byte count as potentially infinite.

4.2.2 Far-End DR Device-Initiated Transfers
For the far-end DR device, the DR32 provides the capability of initiating data
transfers to memory (initiating random-access mode). This mode is used when
two DR32s are connected to form a processor-to-processor link. Random access
consists of data transfers to or from memory without notification of the VAX
processor. Random access can be discontinued either by specifying a command
packet with random access disabled or by an abort operation from either the
controlling process or the far-end DR device.

4–2

DR32 Interface Driver
4.2 DR32 Features and Capabilities

4.2.3 Power Failure
If power fails on the DR32 interface but not on the system, the DR32 driver
aborts the active data transfer and returns the status code SS$_POWERFAIL in
the I/O status block. If a system power failure occurs, the DR32 driver completes
the active data transfer when power is recovered and returns the status code
SS$_POWERFAIL.

4.2.4 Interrupts
The DR32 interface can interrupt the DR32 driver for any of the following
reasons:

• An abort has occurred. The QIO operation is completed.

• A power failure has occurred.

• The power has been turned on.

• An unsolicited control message has been sent to the DR32. If this command
packet’s interrupt control field is properly set up, a packet AST interrupt
occurs. The interrupt occurs after the command packet obtained from the free
queue (FREEQ) is placed on the termination queue (TERMQ).

• The DR32 enters the halt state. The QIO operation is completed.

• A command packet that specifies an unconditional interrupt has been placed
onto TERMQ. The result is a packet AST.

• A command packet with the interrupt when TERMQ empty bit set was
placed on an empty TERMQ. The result is a packet AST.

4.3 Device Information
You can obtain information about DR32 characteristics by using the Get
Device/Volume Information ($GETDVI) system service. (See the OpenVMS
System Services Reference Manual.)

$GETDVI returns DR32 characteristics when you specify the item code DVI$_
DEVCHAR. Table 4–1 lists these characteristics, which are defined by the
$DEVDEF macro.

Table 4–1 DR32 Device Characteristics

Characteristic 1 Meaning

Dynamic Bit (Conditionally Set)

DEV$M_AVL Device is available.

Static Bits (Always Set)

DEV$M_IDV Input device.

DEV$M_ODV Output device.

1Defined by the $DEVDEF macro

(continued on next page)

4–3

DR32 Interface Driver
4.3 Device Information

Table 4–1 (Cont.) DR32 Device Characteristics

Characteristic 1 Meaning

Static Bits (Always Set)

DEV$M_RTM Real-time device.

1Defined by the $DEVDEF macro

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and class names,
which are defined by the $DCDEF macro. The device type is DT$_DR780 for
the DR780 and DT$_DR750 for the DR750. The device class for the DR32 is
DC$_REALTIME. DVI$_DEVDEPEND returns a longword field in which the
low-order byte contains the last data rate value loaded into the DR32 data rate
register.

4.4 Programming Interface
The DR32 interface is supported by a device driver, a high-level language
procedure library of support routines, and a program for microcode loading.

After issuing an IO$_STARTDATA request to the DR32 driver, application
programs communicate directly with the DR32 interface by inserting command
packets onto queues. This direct link between the application program and the
DR32 interface provides faster communication by avoiding the necessity of going
through the I/O driver.

Two interfaces are provided for accessing the DR32: a QIO interface and a
support routine interface. The QIO interface requires that the application
program build command packets and insert them onto the DR32 queues. The
support routine interface, on the other hand, provides procedures for these
functions and, in addition, performs housekeeping functions such as maintaining
command memory.

The support routine interface was designed to be called from high-level languages,
such as FORTRAN, where the data manipulation required by the QIO interface
might be awkward. Note, however, that the user of the support routines interface
must be as knowledgeable about the DR32 and the meaning of the fields in the
command packets as the user of the QIO interface.

4.4.1 DR32—Application Program Interface
Application programs interface with the DR32 through two memory areas. These
areas are called the command block and the buffer block. The addresses and
sizes of the blocks are determined by the application program and are passed to
the DR32 driver as arguments to the IO$_STARTDATA function, which starts the
DR32 (see Section 4.4.5.2).

Both blocks are locked into memory while the DR32 is active. The buffer block
defines the area of memory that is accessible to the DR32 for the transfer of
data between the far-end DR device and the DR32. The command block contains
the headers for the three queues that provide the communication path between
the DR32 and the application program, and space in which to build command
packets.

4–4

DR32 Interface Driver
4.4 Programming Interface

The interface between the DR32 and the application program contains three
queues: the input queue (INPTQ), the termination queue (TERMQ), and the free
queue (FREEQ). Information is transferred between the DR32 and the far-end
DR device through command packets. The three queue structures control the
flow of command packets to and from the DR32. The application program builds
a command packet and inserts it onto INPTQ. The DR32 removes the packet,
executes the specified command, enters some status information, and then inserts
the packet onto TERMQ. Unsolicited input from the far-end DR device is placed
in packets removed from FREEQ and inserted onto TERMQ.

The INPTQ, TERMQ, and FREEQ headers are located in the first six longwords
of the command block. Because the queues are self-relative—meaning they
use the VAX self-relative queue instructions (INSQHI, INSQTI, REMQHI, and
REMQTI)—the headers must be quadword-aligned. The application program
must initialize all queue headers. Figure 4–2 shows the position of the queue
headers in the command block. Section 4.4.2 describes queue processing in
greater detail.

Figure 4–2 Command Block (Queue Headers)

ZK−0716−GE

Input Queue Forward Link (INPTQ Head)

Input Queue Backward Link (INPTQ Tail)

Termination Queue Forward Link (TERMQ Head)

Termination Queue Backward Link (TERMQ Tail)

Free Queue Forward Link (FREEQ Head)

Free Queue Backward Link (FREEQ Tail)

Command Packet Space

0

4

8

12

16

20

4.4.2 Queue Processing
Three queue structures control the flow of command packets to and from the
DR32:

• Input queue (INPTQ)

• Termination queue (TERMQ)

• Free queue (FREEQ)

4–5

DR32 Interface Driver
4.4 Programming Interface

The DR32 removes command packets from the heads of FREEQ and INPTQ
and inserts command packets onto the tail of TERMQ. For command sequences
initiated by the application program, the DR32 removes command packets from
the head of INPTQ, processes them, and returns them to the tail of TERMQ.
Queue processing is performed by the DR32 with the equivalent of the INSQTI
and REMQHI instructions. To remove a packet from INPTQ, the DR32 executes
the equivalent of REMQHI HDR, CMDPTR where CMDPTR is a DR32 register
used as a pointer to the current command packet and HDR specifies the INPTQ
header. To insert a packet onto TERMQ, the DR32 executes the equivalent of
INSQTI CMDPTR, HDR. The user process performs similar operations with the
queues, inserting packets onto the head or tail of INPTQ and normally removing
packets from the head of TERMQ.

If any of the queues are currently being accessed by the DR32, the program’s
interlocked queue instructions will fail for either of the following reasons:

• The DR32 is currently removing a packet from INPTQ or FREEQ, or inserting
a packet onto TERMQ, and the operation will be completed shortly.

• The DR32 detects an error condition, such as an unaligned queue, that
prevents it from completing the queue operation. In this case, the transfer is
aborted and the I/O status block contains the error that caused the abort.

To distinguish between these two conditions, the application program must
include a queue retry mechanism that retries the queue operation a reasonable
number of times (for example, 25) before determining that an error condition
exists. An example of a queue retry mechanism is shown in the DR32 queue I/O
functions program example (in Section 4.7.2).

If the DR32 discerns that any of the queues are interlocked, it retries the
operation until it completes or the DR32 is aborted.

4.4.2.1 Initiating Command Sequences
If a command packet is inserted onto an empty INPTQ, the application program
must notify the DR32 of this event. This is done by setting bit 0, the GO bit, in
a DR32 register. The IO$_STARTDATA function returns the GO bit’s address to
the application program. After notification by the GO bit that there are command
packets on its INPTQ, the DR32 continues to process the packets until INPTQ is
empty.

The GO bit can be safely set at any time. While processing command packets, the
DR32 ignores the GO bit. If the GO bit is set when the DR32 is idle, the DR32
will attempt to remove a command packet from INPTQ. If INPTQ is empty at
this time, the DR32 clears the GO bit and returns to the idle state.

4.4.2.2 Device-Initiated Command Sequences
If the DR device that interfaces the far end of the DDI is capable of transmitting
unsolicited control messages, messages of this type can be transmitted to the
local DR32. These messages are not synchronized to the application program
command flow. Therefore, the DR32 uses a third queue, FREEQ, to handle
unsolicited messages. Normally, the application program inserts a number of
empty command packets onto FREEQ to allow the external device to transmit
control messages.

If a control message is received from the far-end DR device, the DR32 removes an
empty command packet from the head of FREEQ, fills the device message field of
this packet with the control message and, when the transmission is completed,
inserts the packet onto the tail of TERMQ. (The device message field in this

4–6

DR32 Interface Driver
4.4 Programming Interface

command packet must be large enough for the entire message or a length error
will occur.) The application program then removes the packet from TERMQ. If
the command packet is from FREEQ, the XF$M_PKT_FREQPK bit in the DR32
status longword is set.

4.4.3 Command Packets
To provide for direct communication between the controlling process and the
DR32, the DR32 fetches commands from user-constructed command packets
located in physical memory. Command packets contain commands for the DR32,
such as the direction of transfer, and messages to be sent to the far-end DR
device. The DR32 is simply the conveyer of these messages; it does not examine
or add to their content. The controlling process builds command packets and
manipulates the three queues, using the four VAX self-relative queue instructions.
Figure 4–3 shows the DR32 queue flow. Figure 4–4 shows the contents of a DR32
command packet.

Figure 4–3 DR32 Command Packet Queue Flow

REMQHI HDR, CMDPTR

DR32

DDI

INSQTI CMDPTR,HDRUnsolicited Control Messages

ZK−0717−GE

(FREEQ)
Queue
Free

(INPTQ)
Queue
Input

Process
Controlling

(TERMQ)
Queue

Termination

Tail

HeadTail

Head

Tail

Head

4–7

DR32 Interface Driver
4.4 Programming Interface

Figure 4–4 DR32 Command Packet

ZK−0718−GE

Self−Relative Forward Link

Self−Relative Backward Link

Byte Count

Virtual Address of Buffer

Residual Memory Byte Count

Residual DDI Byte Count

DR32 Status Longword

0

4

8

16

20

000* 0000 Device Control Code** Length of Log Area Length of Device MessageControl
Interrupt

err
len Control

Select

12

DR−Device Message

Log Area

24

28

32

** Bits 23:16 = Command Control Byte
* Bits 31:24 = Packet Control Byte

31 30 29 28 27 26 24 23 20 19 16 15 8 7 0

The following sections provide more information about the command packet fields.

4.4.3.1 Length of Device Message Field
The length of device message field describes the length of the DR device message
in bytes. The message length must be less than 256 bytes. Note, however, that
the length of device message field itself must always be an integral number of
quadwords long. As shown in Figure 4–5, if the application program requires a
five-byte device message, it must write a 5 in the length of device message field
but allocate eight bytes for the device message field itself. In this case, the last
three bytes of the field are ignored by the DR32 when transmitting a message or
written as zeros when receiving a message.

4–8

DR32 Interface Driver
4.4 Programming Interface

Figure 4–5 Detail of the Device Message Field in the Command Packet

DR32 Status Longword (DSL)

ZK−0719−GE

3

(Ignored or All 0s)

1 0

4

2

Log Area

:XF$B_PKT_DEVMSG

The symbolic offset for the length of device message field is XF$B_PKT_MSGLEN.

4.4.3.2 Length of Log Area Field
The length of log area field describes the length of the log area in bytes. The
length specified must be less than 256 bytes. Note, however, that the length of
log area field itself must be an integral number of quadwords long. For example,
if the application program requires a five-byte log area field, it must write a 5
in the length of log area field but allocate eight bytes for the log area field itself.
In this case, the last three bytes of the field are written as zeros when receiving
a log message (log messages are always received). The symbolic offset for the
length of log area field is XF$B_PKT_LOGLEN.

4.4.3.3 Device Control Code Field
The device control field describes the function performed by the DR32. The field
occupies the lower half of the command control byte (bits 16 through 23). The
operating system defines the following values:

Symbol Value Function

XF$K_PKT_RD 0 Read device

XF$K_PKT_RDCHN 1 Read device chained

XF$K_PKT_WRT 2 Write device

XF$K_PKT_WRTCHN 3 Write device chained

XF$K_PKT_WRTCM 4 Write device control message

5 None; reserved to Digital

XF$K_PKT_SETTST 6 Set self-test

XF$K_PKT_CLRTST 7 Clear self-test

XF$K_PKT_NOP 8 No operation

XF$K_PKT_DIAGRI 9 Diagnostic read internal

XF$K_PKT_DIAGWI 10 Diagnostic write internal

XF$K_PKT_DIAGRD 11 Diagnostic read DDI

XF$K_PKT_DIAGWC 12 Diagnostic write control message

4–9

DR32 Interface Driver
4.4 Programming Interface

Symbol Value Function

XF$K_PKT_SETRND 13 Set random enable

XF$K_PKT_CLRRND 14 Clear random enable

XF$K_PKT_HALT 15 Set halt

Table 4–2 describes the functions performed by the different device control codes.

Table 4–2 Device Control Code Descriptions

Function Meaning

Read device Specifies a data transfer from the far-end DR device to the
DR32. The control select field (see Section 4.4.3.4) describes
the information to be transferred prior to the initiation of
the data transfer.

Read device chained Specifies a data transfer from the far-end DR device to
the DR32. The DR32 chains data to the buffer specified in
the next command packet in INPTQ. A command packet
that specifies the read device chained function must be
followed by a command packet that specifies either the read
device chained function or the read device function. All
other device control codes cause an abort. If a read device
chained function is specified, the chain continues. However,
if a read device function is specified, that command packet
is the last packet in the chain.

Write device and
write device chained

Specify data transfers from the DR32 to the far-end DR
device. Otherwise, they are similar to read device and read
device chained functions.

Write device control
message

Specifies the transfer of a control message to the far-end DR
device. This message is contained in the device message
field of this command packet. The write device control
message function directs the controlling DR32 to ignore
the byte count and virtual address fields in this command
packet.

Set self-test Directs the DR32 to set an internal self-test flag and to set
a disable signal on the DDI. This signal informs the far-end
DR device that the DR32 is in self-test mode. While in
self-test mode, the DR32 can no longer communicate with
the far-end DR device.

Clear self-test Directs the DR32 to clear the internal self-test flag set by
the set self-test function and to return to the normal mode
of operation.

No operation This function explicitly does nothing.

(continued on next page)

4–10

DR32 Interface Driver
4.4 Programming Interface

Table 4–2 (Cont.) Device Control Code Descriptions

Function Meaning

Diagnostic read internal Directs the DR32 to fill the memory buffer, which is
described by the virtual address and byte count specified in
the current command packet, with the data that is stored in
the DR32 data silo. The buffer is filled in a cyclical manner.
For example, on the DR780 every 128-byte section of the
buffer receives the silo data. The amount of data stored in
the buffer equals the DDI byte count minus the SBI byte
count. The DDI byte count is equal to the original byte
count.

No data transmission takes place on the DDI for this
function.

On the DR780, the diagnostic read internal function
destroys the first four bytes in the silo before storing the
data in the buffer.

Diagnostic write internal Together with the diagnostic read internal function, used
to test the DR32 read and write capability. The diagnostic
write internal function directs the DR32 to store data,
which is contained in the memory buffer described by the
current command packet, in the DR32 data silo, a FIFO-
type buffer. No data transmission takes place on the DDI
for this function. The diagnostic write internal function
terminates when either of the following conditions occurs:

• The memory buffer is empty (the SBI byte count is 0).

• An abort has occurred.

When the function terminates, the amount of data in the
silo equals the DDI byte count minus the SBI memory byte
count. (Sections 4.4.3.9 and 4.4.3.10 describe these values.)

Diagnostic read DDI Tests transmissions over the data portion of the DDI. The
DR32 must be in the self-test mode or an abort occurs. On
the DR780, the diagnostic read DDI function transmits
the contents of DR32 data silo locations 0 to 127 over
the DDI and returns the data to the same locations. If
data transmission is normal (without errors), the residual
memory count is equal to the original byte count, the
residual DDI count is 0, and the contents of the silo remain
unchanged.

Diagnostic write control
message

Tests transmissions over the control portion of the DDI.
The DR32 must be in self-test mode or an abort occurs. The
diagnostic write control message function directs the DR32
to remove the command packet on FREEQ and check the
length of message field. Then the first byte of the message
in the command packet on INPTQ is transmitted and read
back on the control portion of the DDI. This byte is then
written into the message space of the packet from FREEQ.
The updated packet from FREEQ is inserted onto TERMQ
and is followed by the packet from INPTQ.

(continued on next page)

4–11

DR32 Interface Driver
4.4 Programming Interface

Table 4–2 (Cont.) Device Control Code Descriptions

Function Meaning

Set random enable and
clear random enable

Directs the DR32 to accept read and write commands sent
by the far-end DR device. Range-checking is performed
to verify that all addresses specified by the far-end DR
device for access are within the buffer block. Far-end DR
device-initiated transfers to or from the VAX memory are
conducted without notification of the VAX processor or the
application program.

The clear random enable function directs the DR32 to reject
far-end DR device-initiated transfers.

Random-access mode must be enabled when the DR32 is
used in a processor-to-processor link.

Set halt Places the DR32 in a halt state. The set halt function
always generates a packet interrupt regardless of the value
in the interrupt control field (see Section 4.4.3.6). If an AST
routine was requested on completion of the QIO function
(see Sections 4.4.5.2 and 4.4.6.2), the routine is called after
the command packet containing the set halt function has
been processed by the DR32.

The following symbolic offsets are defined for the device control code field:

Symbol Meaning

XF$B_PKT_CMDCTL Byte offset from the beginning of the command packet

XF$V_PKT_FUNC Bit offset from XF$B_PKT_CMDCTL

XF$S_PKT_FUNC Size of the device control code bit field

4.4.3.4 Control Select Field
This field describes the part of the command packet that will be transmitted
to the far-end DR device. The control select field is examined only for the read
device, read device chained, write device, and write device chained functions; for
all others, it is ignored. The operating system defines the following values:

Symbol Value Function

XF$K_PKT_NOTRAN 0 No transmission. Nothing is transmitted over the control
portion of the DDI. However, if the command packet specifies
a data transfer, data can be transmitted over the data
portion of the DDI. The primary use of this code is during
data chaining.

XF$K_PKT_CB 1 Command control byte (bits 23:16) only. This code directs
the DR32 to transmit the contents of the command control
byte, which includes the device control code field, to the
far-end DR device. This code is used primarily at the start
of data chain or nondata chain commands.

XF$K_PKT_CBDM 2 Command control byte and device message. This code directs
the DR32 to transmit the command control byte and then
the device message. It is used primarily when an interface
requires more than one byte of command.

4–12

DR32 Interface Driver
4.4 Programming Interface

Symbol Value Function

XF$K_PKT_CBDMBC 3 Command control byte, device message, and byte count. This
code directs the DR32 to transmit the command control byte,
the byte count, and the device message (in that order). It is
used primarily during processor-to-processor link operations.
In this case the device message must be exactly four bytes
in length and contain the virtual address of the buffer in the
far-end processor’s memory.

The following symbolic offsets are defined for the control select field:

Symbol Meaning

XF$B_PKT_PKTCTL Byte offset from the beginning of the command packet

XF$V_PKT_CISEL Bit offset from XF$B_PKT_PKTCTL

XF$S_PKT_CISEL Size of control select bit field

4.4.3.5 Suppress Length Error Field
The suppress length error field function prevents the DR32 from aborting if the
data transfer on the DDI is terminated by the far-end DR device before the DDI
byte counter has reached zero.

The following symbolic offsets are defined for the suppress length error field:

Symbol Meaning

XF$B_PKT_PKTCTL Byte offset from the beginning of the command packet

XF$V_PKT_SLNERR Bit offset from XF$B_PKT_PKTCTL

XF$S_PKT_SLNERR Size of the suppress length error bit field

4.4.3.6 Interrupt Control Field
The interrupt control field determines the conditions under which an interrupt is
generated, on a packet-by-packet basis, when the DR32 places this command
packet onto TERMQ. Depending on the conditions specified in the IO$_
STARTDATA call, the interrupt can set an event flag or call an AST routine.

Symbol Value Function

XF$K_PKT_UNCOND 0 Interrupt unconditionally

XF$K_PKT_TMQMT 1 Interrupt only if TERMQ was previously empty

XF$K_PKT_NOINT 2, 3 No interrupt

If the set halt function is active, the interrupt control field is ignored. The set
halt function unconditionally causes a packet interrupt. The following symbolic
offsets are defined for the interrupt control field:

Symbol Meaning

XF$B_PKT_PKTCTL Byte offset from the beginning of the command packet

XF$V_PKT_INTCTL Bit offset from XF$B_PKT_PKTCTL

XF$S_PKT_INTCTL Size of the interrupt control bit field

4–13

DR32 Interface Driver
4.4 Programming Interface

4.4.3.7 Byte Count Field
The byte count field specifies the size in bytes of the data buffer for this data
transfer. Together with the virtual address of buffer field, this field describes the
buffer in the buffer block that the DR32 will read from or write to.

The following symbolic offset is defined for the byte count field:

Symbol Meaning

XF$B_PKT_BFRSIZ Byte offset from the beginning of the command packet

4.4.3.8 Virtual Address of Buffer Field
The virtual address of buffer field specifies the virtual address of the data buffer
for this data transfer. Together with the byte count field, this field describes the
buffer in the buffer block that the DR32 will read from or write to.

The following symbolic offset is defined for the virtual address of buffer field:

Symbol Meaning

XF$B_PKT_BFRADR Byte offset from the beginning of the command packet

4.4.3.9 Residual Memory Byte Count Field
After completion of a read device, read device chained, write device, write device
chained, diagnostic read internal, diagnostic write internal, or diagnostic read
DDI function specified in this command packet, the DR32 places the packet onto
TERMQ for return to the controlling process. At that time, the residual memory
byte count field will contain a byte count. The difference between the count
specified in the byte count field and the count in this field is the number of bytes
transferred to or from physical memory, depending on the direction of transfer.

The following symbolic offset is defined for the residual memory byte count field:

Symbol Meaning

XF$L_PKT_RMBCNT Byte offset from the beginning of the command packet

(See also the descriptions of the diagnostic read internal and diagnostic write
internal functions in Table 4–2.)

4.4.3.10 Residual DDI Byte Count Field
After completion of a read device, read device chained, write device, write device
chained, diagnostic read internal, diagnostic write internal, or diagnostic read
DDI function specified in this command packet, the DR32 places the packet onto
TERMQ for return to the controlling process. At this time, the residual DDI byte
count field contains a byte count. The difference between the count specified in
the byte count field and the count in this field is the number of bytes transferred
to or from the far-end DR device over the DDI, depending on the direction of
transfer.

The following symbolic offset is defined for the residual DDI byte count field:

4–14

DR32 Interface Driver
4.4 Programming Interface

Symbol Meaning

XF$L_PKT_RDBCNT Byte offset from the beginning of the command packet

(See also the descriptions of the diagnostic read internal and diagnostic write
internal functions in Table 4–2.)

4.4.3.11 DR32 Status Longword (DSL)
The DR32 stores the final status for a command packet in the DR32 status
longword before inserting the packet onto TERMQ. The longword contains two
distinct status fields:

31 24 23 16 15 0

0 DDI Status 16 Bits of Status

ZK−0720−GE

Table 4–3 lists the names for the status bits returned in the DR32 status
longword.

Table 4–3 DR32 Status Longword (DSL) Status Bits

Name Meaning

16 Status Bits

XF$V_PKT_SUCCESS
XF$M_PKT_SUCCESS

If set, the command was performed successfully. If not
set, one of the following bits must be set:

XF$M_PKT_INVPTE
XF$M_PKT_RNGERR
XF$M_PKT_UNGERR
XF$M_PKT_INVPKT
XF$M_PKT_FREQMT
XF$M_PKT_DDIDIS
XF$M_PKT_INVDDI
XF$M_PKT_LENERR
XF$M_PKT_DRVABT
XF$M_PKT_PARERR
XF$M_PKT_DDIERR

XF$V_PKT_CMDSTD
XF$M_PKT_CMDSTD

If set, the command specified in this packet was started.

XF$V_PKT_INVPTE
XF$M_PKT_INVPTE

If set, the DR32 accessed an invalid page table entry.

XF$V_PKT_FREQPK
XF$M_PKT_FREQPK

If set, this command packet was removed from FREEQ.

XF$V_PKT_DDIDIS
XF$M_PKT_DDIDIS

If set, the far-end DR device is disabled.

XF$V_PKT_SLFTST
XF$M_PKT_SLFTST

If set, the DR32 is in self-test mode.

XF$V_PKT_RNGERR
XF$M_PKT_RNGERR

If set, a range error occurred; that is, a user-provided
address was outside the command block or buffer block.

(continued on next page)

4–15

DR32 Interface Driver
4.4 Programming Interface

Table 4–3 (Cont.) DR32 Status Longword (DSL) Status Bits

Name Meaning

16 Status Bits

XF$V_PKT_UNQERR
XF$M_PKT_UNQERR

If set, a queue element was not aligned on a quadword
boundary.

XF$V_PKT_INVPKT
XF$M_PKT_INVPKT

If set, this packet was not a valid DR32 command packet.

XF$V_PKT_FREQMT
XF$M_PKT_FREQMT

If set, a message was received from the far-end DR device
and FREEQ was empty.

XF$V_PKT_RNDENB
XF$M_PKT_RNDENB

If set, random-access mode is enabled.

XF$V_PKT_INVDDI
XF$M_PKT_INVDDI

If set, a protocol error occurred on the DDI.

XF$V_PKT_LENERR
XF$M_PKT_LENERR

If set, the far-end DR device terminated the data transfer
before the required number of bytes was sent; or a
message was received from the far-end DR device, and
the device message field in the command packet at the
head of FREEQ was not large enough to hold it.

XF$V_PKT_DRVABT
XF$M_PKT_DRVABT

The I/O driver aborted the transfer. Usually the result
of a Cancel I/O on Channel ($CANCEL) system service
request.

XF$V_PKT_PARERR
XF$M_PKT_PARERR

A parity error occurred on the data or control portion of
the DDI.

DDI Status

XF$V_PKT_DDISTS
XF$S_PKT_DDISTS

DDI status. This field is the one-byte DDI register 0 of
the far-end DR device. The following three bits are offsets
to this field.

XF$V_PKT_NEXREG
XF$M_PKT_NEXREG

An attempt was made to access a nonexistent register in
the far-end DR device.

XF$V_PKT_LOG
XF$M_PKT_LOG

The far-end DR device registers are stored in the log area.

XF$V_PKT_DDIERR
XF$M_PKT_DDIERR

An error occurred on the far-end DR device.

4.4.3.12 Device Message Field
The device message field contains control information to be sent to the far-end
DR device. It is used when more than one byte of command is required. The
number of bytes in the device message is specified in the length of device message
field (see Section 4.4.3.1). (The number of bytes allocated for the length of device
message field must be rounded up to an integral number of quadwords.)

If the far-end DR device is a DR32 connected to another processor, a device
message can be sent only if the function specified in the device control code field
of this command packet is a read device, read device chained, write device, write
device chained, or write device control message.

In the case of a write device control message, the data in the device message field
is treated as unsolicited input and is written into the device message field of a
command packet taken from the far-end DR32’s FREEQ.

4–16

DR32 Interface Driver
4.4 Programming Interface

In the case of a read or write (either chained or unchained) function, the only
message allowed is the address of the buffer in the far-end processor that either
contains or will receive the data to be transferred. This device message must
be exactly four bytes in length. In this case the device message is not stored in
the command packet from the far-end DR32’s FREEQ, but is used by the far-end
DR32 to perform the data transfer.

The device message field is also used in command packets placed on FREEQ to
convey unsolicited control messages from the far-end DR device.

The symbolic offset for the device message field is XF$B_PKT_DEVMSG.

4.4.3.13 Log Area Field
The log area field receives the return status and other information from the
far-end DR device’s DDI registers. Logging must be initiated by the far-end DR
device. The presence of a log area does not automatically cause logging to occur.

If the DR32 is connected in a processor-to-processor configuration, the log area
field is not used.

4.4.4 DR32 Microcode Loader
The DR32 microcode loader program XFLOADER must be executed prior to using
the DR32. Running XFLOADER requires CMKRNL and LOG_IO privileges.
Typically, a command to run XFLOADER is placed in the site-specific system
startup file. XFLOADER locates the file containing the DR32 microcode in the
following manner:

1. XFLOADER attempts to open a file using the logical name XFc$WCS, where
c is the DR32 controller designator. For example, to load microcode on device
XFA0, XFLOADER attempts to open a file with the logical name XFA$WCS.

2. If the opening procedure described in step 1 fails, XFLOADER
attempts to open the file SYS$SYSTEM:XF780.ULD for a DR780, or
SYS$SYSTEM:XF750.ULD for a DR750. This file specification describes
the default location and file name for the DR32 microcode.

By default, XFLOADER attempts to load microcode into all DR32s on a system.
To limit microcode loading to a subset of DR32s, define the logical name
XF$DEVNAM using the device names of the DR32s as the equivalence names.
XFLOADER searches for the translation using the LNM$FILE_DEV search list.
For example, the following command tells XFLOADER to load microcode only in
the first and third DR32s on the system:

$ DEFINE/SYSTEM XF$DEVNAM XFA0,XFC0

After loading microcode into all specified DR32s, XFLOADER either exits or
hibernates, according to the following:

• If XFLOADER was run with an ordinary RUN command (that is, RUN
XFLOADER), it exits after loading microcode.

• If XFLOADER was run as a separate process, as with the following command,
it hibernates after loading microcode:

RUN/UIC=[1,1]/PROCESS=XFLOADER SYS$SYSTEM:XFLOADER

In this case, XFLOADER automatically reloads microcode into the DR32s
after a power recovery.

XFLOADER performs a load microcode QIO to the DR32 driver.

4–17

DR32 Interface Driver
4.4 Programming Interface

4.4.5 DR32 Function Codes
The DR32 I/O functions are load microcode and start data transfer. Normally,
the controlling process stops data transfers with a set halt command packet.
However, the Cancel I/O on Channel ($CANCEL) system service can be used to
abort data transfers and complete the I/O operation.

4.4.5.1 Load Microcode
The load microcode function resets the DR32 and loads an image of DR32
microcode. It also sets the DR32 data rate to the last specified value. Physical
I/O privilege is required. The operating system defines the following function
code:

• IO$_LOADMCODE—Load microcode

The load microcode function takes the following device- or function-dependent
arguments:

• P1—The starting virtual address of the microcode image that is to be loaded
into the DR32

• P2—The number of bytes to be loaded (maximum of 5120 for the DR780)

If any data transfer requests are active when a load microcode request is issued,
the load request is rejected and SS$_DEVACTIVE is returned in the I/O status
block.

The microcode is verified by addressing each microword and checking for a parity
error. (The microcode is not compared to the buffer image.) If there are no parity
errors, the microcode was loaded successfully and the driver sets the microcode
valid bit in one of the DR32 registers. If there is a parity error, SS$_PARITY is
returned in the I/O status block. (The valid bit is cleared by the reset operation.)

In addition to SS$_PARITY, three other status codes can be returned in the I/O
status block: SS$_NORMAL, SS$_DEVACTIVE, and SS$_POWERFAIL.

4.4.5.2 Start Data Transfer
The start data transfer function specifies a command table that holds the
parameters required to start the DR32. In addition to several other parameters,
the command table contains the size and address of the command and buffer
blocks and the address of a command packet AST routine. No user privilege is
required. The operating system defines the following function code:

• IO$_STARTDATA—Start data transfer

The start data transfer function takes the following function modifier:

• IO$M_SETEVF—Set event flag

If IO$M_SETEVF is included with the function code, the specified event flag is
set when a command packet interrupt occurs and when the start data transfer
QIO is completed. If IO$M_SETEVF is not specified, the event flag is set only
when the QIO is completed.

IO$M_SETEVF should not be used with the $QIOW macro because $QIOW will
return after the event flag is set the first time.

The start data transfer function takes the following device- or function-dependent
arguments:

• P1—The starting virtual address of the data transfer command table in the
user’s process

4–18

DR32 Interface Driver
4.4 Programming Interface

• P2—The length in bytes (always 32) of the data transfer command table (the
symbolic name is XF$K_CMT_LENGTH)

The format of the data transfer command table is shown in Figure 4–6 (offsets
are shown in parentheses).

Figure 4–6 Data Transfer Command Table

ZK−0721−GE

Command Block Size (XF$L_CMT_CBLKSZ)

Command Block Address (XF$L_CMT_CBLKAD)

Buffer Block Address (XF$L_CMT_BBLKAD)

Command Packet AST Routine Address (XF$L_CMT_PASTAD)

Command Packet AST Parameter (XF$L_CMT_PASTPM)

0

4

8

16

20

12

24

28

Buffer Block Size (XF$L_CMT_BBLKSIZ)

Flags
(XF$B_CMT_FLAGS) (XF$B_CMT_RATE)

Data Rate

(XF$L_CMT_GBITAD)
Address of the Location to Store the GO Bit Address

Because the command block contains the queue headers for INPTQ, TERMQ, and
FREEQ, its address in the second longword must be quadword-aligned.

The command packet AST routine specified in the fifth longword is called
whenever the DR32 signals a command packet interrupt. A command packet
AST should be distinguished from a QIO AST (astadrs argument). A command
packet interrupt occurs whenever the DR32 completes a function and returns
a packet that specifies an interrupt (see Section 4.4.3.6) by inserting it onto
TERMQ. The astadrs argument address is called when the QIO is completed.
If either the command packet AST address or the astadrs address is zero, the
respective AST is not delivered. If the command packet specifies the set halt
function, a command packet interrupt occurs regardless of the state of the packet
interrupt bits.

The seventh longword contains the data rate byte and a flags byte. The data rate
byte controls the DR32 clock rate. The data rate value is considered to be an
unsigned integer.

For the DR780, the relationship between the value of the data rate byte and the
actual data rate is given by the following formula:

Data rate (in megabytes=sec) =
40

256� (value of data rate byte)

For example, a data rate value of 236 corresponds to an actual data rate of 2.0
megabytes/second.

4–19

DR32 Interface Driver
4.4 Programming Interface

For the DR750, use the following formula:

Data rate (in megabytes=sec) =
12:50

256� (value of data rate byte)

For example, a data rate value of 236 corresponds to an actual data rate of 0.625
megabytes/second.

The maximum data rate byte values are 250 megabytes/second for the DR780 and
252 megabytes/second for the DR750.

The parameter XFMAXRATE set during system generation limits the maximum
data rate that can be set. This parameter limits the maximum data rate because
very high data rates on certain configurations can cause a processor timeout. If
you attempt to set the data rate higher than the rate allowed by XFMAXRATE,
the error status SS$_BADPARAM is returned in the I/O status block.

The operating system defines the following flag bit values:

XF$V_CMT_SETRTE If set, XF$B_CMT_RATE specifies the data rate. If clear,
the data rate established by a previous $IO_STARTDATA
function is used. The IO$_LOADMCODE function sets the
data rate to the last value used. If the data rate has not
been previously set, a value of 0 is used.

XF$V_CMT_DIPEAB If set, parity errors on the data portion of the DDI do not
cause device aborts. If clear, a parity error results in a
device abort.

The eighth longword contains the address of a location to store the address of
the GO bit. This bit must be set whenever the application program inserts a
command packet onto an empty INPTQ. The GO bit register is mapped in system
memory space and the address is returned to the user.

The IO$_STARTDATA function locks the command and buffer blocks into memory
and starts the DR32. Whenever the DR32 interrupts with a command packet
interrupt, the driver queues a packet AST (if an AST address is specified) and, if
IO$M_SETEVF is specified, sets the event flag. The QIO remains active until one
of the following events occurs:

• A set halt command packet is processed by the DR32.

• The data transfer aborts.

• A Cancel I/O on Channel ($CANCEL) system service is issued on this channel.

If an abort occurs, the second longword of the I/O status block contains additional
bits that identify the cause of the abort (see Section 4.5).

The start data transfer function can return the following error codes in the I/O
status block:

SS$_ABORT SS$_BUFNOTALIGN SS$_CANCEL

SS$_CTRLERR SS$_DEVREQERR SS$_EXQUOTA

SS$_INSFMEM SS$_IVBUFLEN SS$_MCNOTVALID

SS$_NORMAL SS$_PARITY SS$_POWERFAIL

4–20

DR32 Interface Driver
4.4 Programming Interface

4.4.6 High-Level Language Interface
The OpenVMS VAX operating system supports a set of program-callable
procedures that provide access to the DR32. The formats of these calls are
given here for VAX FORTRAN users; VAX MACRO users must set up a standard
OpenVMS argument block and issue the standard procedure CALL. (Optionally,
VAX MACRO users can access the DR32 directly by issuing an IO$_STARTDATA
function, building command packets, and inserting them onto INPTQ.) Users of
other high-level languages can also specify the proper subroutine or procedure
invocation.

Six high-level language procedures are provided by the OpenVMS VAX operating
system for the DR32. They are contained in the default system library,
STARLET.OLB. Table 4–4 lists these procedures. Procedure arguments are
either input or output arguments, that is, arguments supplied by the user or
arguments that will contain information stored by the procedure. Except for
those that are indicated as output arguments, all arguments in the following
call descriptions are input arguments. By default, all procedure arguments are
integer variables unless otherwise indicated.

The OpenVMS high-level language support routines for the DR32 do the
following:

• Issue I/O requests

• Allocate and manage the command memory

• Build command packets, insert them onto INPTQ, and set the GO bit

• Remove command packets from TERMQ and return the information they
contain to the controlling process

• Use action routines for program–DR32 synchronization

Table 4–4 Operating System Procedures for the DR32

Subroutine Function

XF$SETUP Defines command and buffer areas and initializes queues

XF$STARTDEV Issues an I/O request that starts the DR32

XF$FREESET Releases command packets onto FREEQ

XF$PKTBLD Builds command packets and releases them onto INPTQ

XF$GETPKT Removes a command packet from TERMQ

XF$CLEANUP Deassigns the device channel and deallocates the command area

The operating system also provides a FORTRAN parameter file,
SYS$LIBRARY:XFDEF.FOR, that can be included in FORTRAN programs.
This file defines many of (but not all) the symbolic names with the XF$ prefix
described in this chapter. For example, SYS$LIBRARY:XFDEF.FOR contains
symbolic definitions for function codes (that is, device control codes), interrupt
control codes, command control codes, and masks for error bits set in the I/O
status block and the DR32 status longword. To include these definitions in a
FORTRAN program, insert the following statement in the source code:

INCLUDE ’SYS$LIBRARY:XFDEF.FOR’

4–21

DR32 Interface Driver
4.4 Programming Interface

4.4.6.1 XF$SETUP
The XF$SETUP subroutine defines memory space for the command and buffer
areas and initializes INPTQ, TERMQ, and FREEQ. The call to XF$SETUP must
be made prior to any calls to other DR32 support routines.

The format of the XF$SETUP call is as follows:

CALL XF$SETUP(contxt,barray,bufsiz,numbuf,[idevmsg],[idevsiz],-
[ilogmsg],[ilogsiz],[cmdsiz],[status])

Argument descriptions are as follows:

contxt A 30-longword user-supplied array that is maintained by the support
routines and is used to contain context and status information concerning
the current data transfer (see Section 4.4.6.5). The contxt array
provides a common storage area that all support routines share. For
increased performance, contxt should be longword-aligned.

barray Specifies the starting virtual address of an array of buffers that, in
the case of an output operation, contain information for transfer
by the DR32, or in the case of an input operation, will contain
information transferred by the DR32. For example, if barray is declared
INTEGER*2 BARRAY (I,J), I is the size of each data buffer in words and
J is the number of buffers. The lower bound on both indexes is assumed
to be 1. All buffers in the array must be contiguous to each other and of
fixed size.

bufsiz Specifies the size in bytes of each buffer in the array. All buffers are the
same size. If the barray argument is declared as stated in the preceding
paragraph, bufsiz = I*2. The bufsiz argument length is one longword.

numbuf Specifies the number of buffers in the array. If the barray argument
is declared as in the preceding paragraph, numbuf = J. The area of
memory described by the barray, bufsiz, and numbuf arguments is
used as the buffer block for DR32 data transfers. The numbuf argument
length is one longword.

idevmsg Specifies an array, declared by the application program, that is used to
store an unsolicited input device message from the far-end DR device.
The DR32 stores unsolicited input in the device message field of a
command packet from FREEQ and places that packet onto TERMQ.
When XF$GETPKT removes such a packet from TERMQ, it copies the
device message field into the idevmsg array. The calling program is
then notified that information has been stored in the idevmsg array.
The idevmsg argument is optional; the argument must be given if any
unsolicited input is anticipated.

idevsiz Specifies the size in bytes of the idevmsg array. The maximum size
of a device message is 256 bytes. The idevsiz argument is optional; if
idevmsg is specified, idevsiz must be specified. The idevsiz argument
length is one word.

ilogmsg Specifies an array, declared by the application program, that is used
to store log information from the far-end DR device contained in the
log area field of the command packet. Log information is hardware-
dependent data that is returned by the far-end DR device. The
XF$SETUP routine stores the address and size of the ilogmsg array;
the log information is stored in the ilogmsg array by the XF$GETPKT
routine. The ilogmsg argument is optional; the argument must be given
if any log information is anticipated.

ilogsiz Specifies the size in bytes of the ilogmsg array. The maximum size of
a log message is 256 bytes. The ilogsiz argument is optional. However,
if ilogmsg is specified, ilogsiz must be specified. The ilogsiz argument
length is one word.

4–22

DR32 Interface Driver
4.4 Programming Interface

cmdsiz Specifies the amount of memory space to be allocated from which
command packets are to be built. Consider the following factors when
deciding how much memory to allocate for this purpose:

• The number of command packets that the application program will
be using.

• The device message and log area fields in command packets are
rounded up to quadword boundaries.

• The size of the command packet itself is rounded up to an eight-byte
boundary.

• cmdsiz will be rounded up to a page boundary.

The cmdsiz argument is optional; argument length is one longword. If
defaulted, the allocated space is equal to the following, which is rounded
up to a full page:

(numbuf)*(32+idevsiz+ilogsiz)*(3)

Memory space for command packets is obtained by calling LIB$GET_VM.

status This output argument receives the operating system success or failure
code of the XF$SETUP call:

SS$_NORMAL Normal successful completion

SS$_BADPARAM Invalid input argument

Error returns can be found in LIB$GET_VM.

The status argument is optional; argument length is one longword.

4.4.6.2 XF$STARTDEV
The XF$STARTDEV subroutine issues the I/O request that starts the DR32 data
transfer.

The format of the XF$STARTDEV call is as follows:

CALL XF$STARTDEV(contxt,devnam,[pktast],[astparm],[efn],[modes],[datart],[status])

Argument descriptions are as follows:

contxt Specifies the array that contains context and status information (see
Section 4.4.6.1).

devnam Specifies the device name (logical name or actual device name) of the
DR32. All letters in the resultant string must be capitalized and the
device name must terminate with a colon, for example, XFA0:. The
devnam data type is character string.

pktast Specifies the address of an AST routine that is called each time a
command packet that specifies an interrupt in its interrupt control
field is returned by the DR32, that is, placed onto TERMQ (see
Section 4.4.7.2). This AST routine is also called on completion of the
I/O request. Normally, the AST routine would call XF$GETPKT to
remove command packets from TERMQ until TERMQ is empty. The
pktast argument is optional.

astparm Specifies a longword parameter that is included in the call to the pktast-
specified AST routine. The format used to call the AST routine is:

CALL pktast(astparm)

The astparm argument is optional; argument length is one longword. If
astparm is not specified, pktast is called with no parameter.

4–23

DR32 Interface Driver
4.4 Programming Interface

efn If the event flag must be determined by the application program, efn
specifies the number of the event flag that is set when a packet interrupt
is delivered. Otherwise, it is not necessary to include this argument
in an XF$STARTDEV call. If defaulted, efn is 21. The efn argument
length is one word.

The event flag (either the default or the event flag specified by this
argument) is set for every packet interrupt and also when the QIO
completes.

modes Specifies the mode of operation. The operating system defines the
following value:

2 = parity errors on the data portion of the DDI that do not cause the
device to abort.

If defaulted, modes is 0 (a parity error causes the device to abort).

datart Specifies the data rate. The data rate controls the speed at which the
transfer takes place. The data rate is considered to be an unsigned
integer in the range 0 to 255. The relationship between the specified
data rate value and the actual data rate for the DR780 and the DR750 is
shown in Section 4.4.5.2.

If datart is defaulted, the previously set data rate is used. The datart
argument length is one byte.

status This output argument receives the operating system success or failure
code of the XF$STARTDEV call:

SS$_NORMAL Normal successful completion

SS$_BADPARAM Required parameter defaulted

Error returns can be obtained by issuing the Create I/O on Channel
($CREATE) and Queue I/O Request ($QIO) system services.

The status argument is optional; argument length is one longword.

4.4.6.3 XF$FREESET
The XF$FREESET subroutine releases command packets onto FREEQ. These
packets are then available to the DR780 to store any unsolicited input from the
far-end DR device. If unsolicited input from the far-end DR device is expected,
the XF$FREESET call should be made before the XF$STARTDEV call is issued.

idevsiz, the argument that specifies the size of the idevmsg array in the call
to XF$SETUP, defines the size of the device message field in command packets
inserted onto FREEQ. This occurs because unsolicited device messages are copied
from the device message field of the command packet to the idevmsg array.

Note that the XF$FREESET subroutine may occasionally disable ASTs for a very
short period.

The format of the XF$FREESET call is as follows:

CALL XF$FREESET(contxt,[numpkt],[intctrl],[action],[actparm],[status])

Argument descriptions are as follows:

contxt Specifies the array that contains context and status information (see
Section 4.4.6.1).

numpkt Specifies the number of command packets to be released onto FREEQ.
The numpkt argument is optional; argument length is one word. If
defaulted, numpkt is 1.

4–24

DR32 Interface Driver
4.4 Programming Interface

intctrl Specifies the conditions under which an AST is delivered (and the event
flag set) when the DR32 places this command packet (or packets) on
TERMQ (see Section 4.4.6.2). The operating system defines the following
values:

0 = unconditional AST delivery and event flag set
1 = AST delivery and event flag set only if TERMQ is empty
2 = no AST interrupt or event flag set

The intctrl argument is optional; argument length is one word. If
defaulted, intctrl is 0.

action Specifies the address of a routine that is called when any command
packet built by this call to XF$FREESET is removed from TERMQ by
XF$GETPKT (see Section 4.4.7.3). The action argument is optional.

actparm A longword parameter that is passed to the action routine when the
action routine is called (see Section 4.4.7.3). The actparm argument is
optional.

status This output argument receives the operating system success or failure
code of the XF$FREESET call:

SS$_NORMAL Normal successful completion

SS$_BADQUEUEHDR FREEQ interlock timeout

SS$_INSFMEM Insufficient memory to build command
packets

SHR$_NOCMDMEM Command memory not allocated (usually
because the data transfer has stopped and
XF$CLEANUP has been called or because
XF$SETUP has not been called)

4.4.6.4 XF$PKTBLD
The XF$PKTBLD subroutine builds command packets and releases them onto
INPTQ.

Note that the XF$PKTBLD subroutine may occasionally disable ASTs for a very
short period.

The format of the XF$PKTBLD call is as follows:

CALL XF$PKTBLD(contxt,func,[index],[size],[devmsg],[devsiz],[logsiz],-
[modes],[action],[actparm],[status])

Argument descriptions are as follows:

contxt Specifies the array that contains context and status information (see
Section 4.4.6.1).

func Specifies the device control code. Device control codes describe the
function the DR32 is to perform. The func argument length is one word.
Table 4–2 describes the functions in greater detail. The operating system
defines the following values:

4–25

DR32 Interface Driver
4.4 Programming Interface

Symbol Value Function

XF$K_PKT_RD 0 Read device

XF$K_PKT_RDCHN 1 Read device chained

XF$K_PKT_WRT 2 Write device

XF$K_PKT_WRTCHN 3 Write device chained

XF$K_PKT_WRTCM 4 Write device control message

5 None; reserved to Digital

XF$K_PKT_SETTST 6 Set self-test

XF$K_PKT_CLRTST 7 Clear self-test

XF$K_PKT_NOP 8 No operation

XF$K_PKT_DIAGRI 9 Diagnostic read internal

XF$K_PKT_DIAGWI 10 Diagnostic write internal

XF$K_PKT_DIAGRD 11 Diagnostic read DDI

XF$K_PKT_DIAGWC 12 Diagnostic write control
message

XF$K_PKT_SETRND 13 Set random enable

XF$K_PKT_CLRRND 14 Clear random enable

XF$K_PKT_HALT 15 Set halt

index Specifies the index of a data buffer specified by the barray argument
(see Section 4.4.6.1). The specific index value given means that elements
barray (1,index) through barray (size,index) will be transferred (one
buffer full of data). The index argument is optional and is used only
when the function specifies a data transfer (a read device, read device
chained, write device, or write device chained function). The index
argument length is one word.

size Specifies a byte count to be transferred. This argument is optional and
is used only when the function specifies a data transfer. If defaulted,
the number of bytes to be transferred is assumed to be the size of the
buffer (specified by the bufsiz argument in the call to XF$SETUP). If
the size argument is given, the specified number of bytes of data barray
(1,index) through barray (size,index) will be transferred. If size is
defaulted and the function specifies a data transfer, barray (1,index)
through barray (bufsiz,index) will be transferred. The size argument
length is one longword.

devmsg Specifies a variable that contains the device message to be sent to the
far-end DR device. Provides additional control of the far-end DR device
(see Section 4.4.3.12). The devmsg argument is optional.

devsiz Specifies the size in bytes of the devmsg variable. If the modes
argument specifies that a device message is to be sent over the control
portion of the DDI, devsiz specifies the number of bytes of devmsg that
will be sent to the far-end DR device.

logsiz Specifies the size of the log message expected from the far-end DR
device. The logsiz argument is optional; argument length is one word.
If defaulted, logsiz is 0.

4–26

DR32 Interface Driver
4.4 Programming Interface

modes Provides additional control of the transaction. The operating system
defines the following values:

Value Meaning

+8 Only the function code is sent over the control portion of
the DDI to the far-end DR device. Only for read device,
read device chained, write device, and write device chained
functions.

+16 The function code and the device message are sent over
the control portion of the DDI to the far-end DR device.
Only for read device, read device chained, write device,
and write device chained functions.

+24 The function code, the device message, and the buffer size
are sent over the control portion of the DDI to the far-end
DR device. Only for read device, read device chained,
write device, and write device chained functions.

If none of the preceding three values is selected, nothing
is transmitted over the control portion of the DDI to the
far-end DR device.

+32 Length errors are suppressed. If not selected, a length
error results in an abort.

+64 An AST should be delivered (and an event flag set) when
this command packet is inserted onto TERMQ, provided
TERMQ is empty.

+128 No AST is delivered or event flag set for this command
packet.

If both +64 and +128 are selected, +128 takes precedence.

If neither of the preceding two values is selected, ASTs
are delivered and the event flag is set unconditionally
(whenever this command packet is placed onto TERMQ).

+256 Insert this command packet at the head of INPTQ. If not
selected, insert the packet at the tail of INPTQ.

The modes argument default value is 0.

action Specifies the address of a routine that is called when XF$GETPKT
removes this command packet from TERMQ. This occurs after the DR32
has completed the command specified in the packet (see Section 4.4.7.3).
The action argument length is one longword.

actparm A longword parameter that is passed to the action routine when the
action routine is called (see Section 4.4.7.3). The actparm argument is
optional.

status This output argument receives the operating system success or failure
code of the XF$PKTBLD call:

SS$_NORMAL Normal successful completion

SS$_BADPARAM Input parameter error

SS$_BADQUEUEHDR INPTQ interlock timeout

SS$_INSFMEM Insufficient memory to build command
packets

SHR$_NOCMDMEM Command memory not allocated (usually
because the data transfer has stopped and
XF$CLEANUP has been called or because
XF$SETUP has not been called)

4–27

DR32 Interface Driver
4.4 Programming Interface

4.4.6.5 XF$GETPKT
The XF$GETPKT subroutine removes a command packet from TERMQ.

Note that the XF$GETPKT subroutine may occasionally disable ASTs for a very
short period.

The format of the XF$GETPKT call is as follows:

CALL XF$GETPKT(contxt,[waitflg],[func],[index],[devflag],[logflag],[status])

Argument descriptions are as follows:

contxt Specifies the array that contains the context and status information (see
Section 4.4.6.1). On return from XF$GETPKT, the first eight longwords
of the contxt array are filled with the status of the data transfer:

ZK−0722−GE

Byte Count

Virtual Address of Buffer

Residual Memory Byte Count

4

8

16

20

12

24

28

Control Information

:CONTXT

I/O Status Block

Residual DDI Byte Count

DR32 Status Longword (DSL)

The first two longwords are the I/O status block. The next six longwords
are copied directly from bytes 8 through 31 of the command packet.

This context and status information is returned by the DR32 as status
in each command packet. With the exception of the I/O status block, the
information is copied by XF$GETPKT into the contxt array whenever
XF$GETPKT removes a command packet from TERMQ.

The I/O status block is stored only after the data transfer has halted and
it contains the final status of the transfer. Section 4.5 describes the I/O
status block.

(See Section 4.4.2 for a description of the remaining fields.)

waitflg Specifies the consequences of an attempt by XF$GETPKT to remove
a command packet from an empty TERMQ. If waitflg is 0 (default),
XF$GETPKT waits for the event flag to be set and then removes a
packet from TERMQ. If waitflg is 1, XF$GETPKT returns immediately
with a failure status. Normally, waitflg is set to 1 (.TRUE.) for AST
synchronization and set to 0 (.FALSE.) for event flag synchronization
(see Section 4.4.7). The waitflg argument is optional.

4–28

DR32 Interface Driver
4.4 Programming Interface

func This output argument receives the device control code specified in this
command packet (see Section 4.4.6.4). The func argument is optional;
argument length is one word.

index If the current command packet specified a data transfer, this output
argument receives the buffer index specified when this command packet
was built by XF$PKTBLD (see Section 4.4.6.4). The index argument is
optional; argument length is one word.

devflag If set to .TRUE. (255), this output argument indicates that a device
message was stored in the idevmsg array, which is described in the
XF$SETUP call (see Section 4.4.6.1). The devflag argument is optional;
argument length is one byte.

logflag If set to .TRUE. (255), this output argument indicates that a log message
was stored in the ilogmsg array, which is described in the XF$SETUP
call (see Section 4.4.6.1). The logflag argument is optional; argument
length is one byte.

status This output argument receives the status of the XF$GETPKT call:

SS$_NORMAL Normal successful completion

SS$_BADQUEUEHDR TERMQ interlock timeout

SHR$_QEMPTY TERMQ empty but transfer still in progress;
only returned if waitflg is .TRUE.

SHR$_HALTED TERMQ empty, transfer complete, and
I/O status block contains final status;
XF$CLEANUP called automatically
(subsequent calls to XF$GETPKT return
SHR$_NOCMDMEM)

SHR$_NOCMDMEM Command memory not allocated; usually
indicates either:
1 XF$SETUP not called
2 XF$CLEANUP called

4.4.6.6 XF$CLEANUP
The XF$CLEANUP subroutine deassigns the channel and deallocates the
command area allocated by XF$SETUP. If XF$GETPKT detects a TERMQ empty
condition and the transfer has halted, it will automatically call XF$CLEANUP.
However, if the transfer either terminates in an SS$_CTRLERR or SS$_
BADQUEUEHDR error, or is intentionally terminated, XF$GETPKT might
not detect these conditions and XF$CLEANUP should be called explicitly.

The format of the XF$CLEANUP call is as follows:

CALL XF$CLEANUP(contxt,[status])

Argument descriptions are as follows:

contxt Specifies the array that contains context and status information (see
Section 4.4.6.1).

status This output argument receives the status of the XF$CLEANUP call:

SS$_NORMAL Normal successful completion

SHR$_NOCMDMEM The command memory not allocated; there
are error returns from LIB$FREE_VM and
$DASSIGN

4–29

DR32 Interface Driver
4.4 Programming Interface

4.4.7 User Program DR32 Synchronization
Synchronization of high-level language application programs with the DR32 can
be achieved in the following ways:

• Event flags

• AST routines

• Action routines

4.4.7.1 Event Flags
Event flags are synchronized by calling the XF$GETPKT routine (see
Section 4.4.6.5) with the waitflg argument set to 0 (default). The pktast
argument in the XF$STARTDEV routine (see Section 4.4.6.2) is normally set
to its default value. If the XF$GETPKT routine is called and the termination
queue is empty, the routine waits until the DR32 places a command packet on the
queue and sets the event flag. The packet is then removed from the queue and
returned to the caller.

4.4.7.2 AST Routines
If a call to the XF$STARTDEV routine includes the pktast argument, the
specified AST routine is called each time an AST is delivered. AST delivery
can be controlled on a packet-by-packet basis by using the intctrl argument in
the XF$FREESET routine and by specifying appropriate values in the modes
argument of the XF$PKTBLD routine (see Sections 4.4.6.3 and 4.4.6.4). For a
particular command packet, ASTs can be delivered as follows:

• Unconditionally when the packet is placed onto TERMQ

• Only if TERMQ is empty when the packet is placed on it

• Not at all (that is, there is no AST when the packet is placed on TERMQ)

There is no guarantee that an AST will be delivered for every command packet,
even when the astctrl argument indicates unconditional AST delivery. In
particular, if packet interrupts are closely spaced, several packets can be placed
onto TERMQ even though only one AST is delivered. Therefore, the AST routine
should continue to call the XF$GETPKT routine until all command packets are
removed from TERMQ.

4.4.7.3 Action Routines
The action argument specified in the XF$FREESET and XF$PKTBLD
routines (see Sections 4.4.6.3 and 4.4.6.4) can be used for a more automated
synchronization of the program with the DR32. Routines specified by action
arguments can be used for both event flag and AST routine synchronization.

The address of the action routine is included in the command packet. This routine
is automatically called by the XF$GETPKT routine when it removes that packet
from TERMQ. This allows you to define, at the time the command packet is built,
how it will be handled once it is removed from TERMQ. In addition to specifying
different action routines for different types of command packets, you can also
specify an action routine parameter (actparm) to further identify the command
packet or the action to be taken when the command is completed. Figure 4–7
shows the use of action-specified routines for program synchronization.

4–30

DR32 Interface Driver
4.4 Programming Interface

Figure 4–7 Action Routine Synchronization

XF$GETPKT
Call

Program
Application

Program
Application

XF$GETPKT

Action

Action Routines with Event Flag Synchronization

AST Routine

Action Routines with AST Routine Synchronization

XF$GETPKT

Action

ZK−0723−GE

Call Action
From TERMQ

Remove Packet

Procedure
Specific
Packet−

XF$GETPKT
Call

Procedure
Specific
Packet−

Call Action
From TERMQ
Remove Packet

An important difference between AST routine and action routine use is the
number of times the respective routines are specified. Command packet AST
routines are specified only once, in an XF$STARTDEV call; a single AST routine
is implied. Action routines, however, are specified in each command packet. This
allows a different action routine to be designed for each type of command packet.

Routines specified by the action argument are supplied by the user. The format of
the calling interface is as follows:

CALL action-routine (contxt,actparm,devflag,logflag,func,index,status)

With the exception of actparm, all arguments are the same as those described
for the XF$GETPKT routine. In effect, the action routine receives the same
information XF$GETPKT optionally returns to its calling program, along with
the actparm argument that was specified when the packet was built. If these
variables are to be passed as input to the action routine, they must be supplied
as output variables in the call to the XF$GETPKT routine.

4.5 I/O Status Block
The I/O status block for the load microcode and start data transfer QIO functions
is shown in Figure 4–8. The I/O status block used in the first two longwords of
the contxt array for high-level language calls also has the same format.

4–31

DR32 Interface Driver
4.5 I/O Status Block

Figure 4–8 IOSB Contents for the DR32 Functions

ZK−0724−GE

0

16 Status Bits

Status

0

DDI Status
Bits

Status
5

0

31 27 26 24 23 16 15

The operating system status values are returned in the first longword.
Appendix A lists these values. (The OpenVMS system messages documentation
provides explanations and user actions for these returns.) If SS$_CTRLERR,
SS$_DEVREQERR, or SS$_PARITY is returned in the status word, the second
longword contains additional returns (device-dependent data). Table 4–5 lists
these returns.

The I/O status block for an I/O function is returned after the function completes.
Status is not stored on the completion of every command packet because any
number of packets can pass between the application program and the DR32 when
a single QIO executes.

Table 4–5 Device-Dependent IOSB Returns for I/O Functions

Symbolic Name Meaning

16 Status Bits

XF$V_PKT_SUCCESS The command was performed successfully.

XF$V_IOS_CMDSTD The command specified in the command packet started.

XF$V_IOS_INVPTE An invalid page table entry.

XF$V_IOS_FREQPK This command packet came from FREEQ.

XF$V_IOS_DDIDIS The far-end DR device is disabled.

XF$V_IOS_SLFTST The DR32 is in self-test mode.

XF$V_IOS_RNGERR The user-provided address is outside the command block
range or the buffer block range.

XF$V_IOS_UNQERR A queue element was not aligned on a quadword boundary.

XF$V_IOS_INVPKT A packet was not a valid DR32 command packet.

XF$V_IOS_FREQMT A message was received from the far-end DR device and
FREEQ was empty.

XF$V_IOS_RNDENB Random-access mode is enabled.

XF$V_IOS_INVDDI A protocol error occurred on the DDI.

XF$V_IOS_LENERR The far-end DR device terminated the data transfer before
the required number of bytes was sent, or a message was
received from the far-end DR device and the device message
field in the command packet at the head of FREEQ was not
large enough to hold it.

XF$V_IOS_DRVABT The I/O driver aborted the DR32 function.

(continued on next page)

4–32

DR32 Interface Driver
4.5 I/O Status Block

Table 4–5 (Cont.) Device-Dependent IOSB Returns for I/O Functions

Symbolic Name Meaning

16 Status Bits

XF$V_PKT_PARERR A parity error occurred on the data or control portion of the
DDI.

DDI Status

XF$V_IOS_DDISTS The one-byte status register 0 for the far-end DR device.
XFV_IOS_NEXREG, XFV_IOS_LOG, and XF$V_IOS_
DDIERR are returns from this register.

XF$V_IOS_NEXREG An attempt was made to access a nonexistent register on the
far-end DR device.

XF$V_IOS_LOG The far-end DR device registers are stored in the log area.

XF$V_IOS_DDIERR An error occurred on the far-end DR device.

5 Status Bits

XF$V_IOS_BUSERR An error on the processor’s internal CPU memory bus
occurred.

XF$V_IOS_RDSERR A noncorrectable memory error occurred (read data
substitute).

XF$V_IOS_WCSPE Writable control store (WCS) parity error.

XF$V_IOS_CIPE Control interconnect parity error. A parity error occurred on
the control portion of the DDI.

XF$V_IOS_DIPE Data interconnect parity error. A parity error occurred on the
data portion of the DDI.

4.6 Programming Hints
This section contains information about important programming considerations
relevant to users of the DR32 driver.

4.6.1 Command Packet Prefetch
The DR32 has the capability of prefetching command packets from INPTQ. While
executing the command specified in one packet, the DR32 can prefetch the next
packet, decode it, and be ready to execute the specified command at the first
opportunity. When the command is executed depends on which command is
specified. For example, if two read device or write device command packets are
on INPTQ, the DR32 fetches the first packet, decodes the command, verifies that
the transfer is legal, and starts the data transfer. While the transfer is taking
place, the DR32 prefetches the next read device or write device command packet,
decodes it, and verifies the transfer legality. The second transfer begins as soon
as the first transfer is completed.

If the two command packets on INPTQ are read device (or write device) and write
device control message, in that order, the DR32 prefetches the second packet and
immediately executes the command, because control messages can be overlapped
with data transfers. The DR32 then prefetches the next command packet. In
an extreme case, the DR32 can send several control messages over the control
portion of the DDI while a single data transfer takes place on the data portion of
the DDI.

4–33

DR32 Interface Driver
4.6 Programming Hints

The prefetch capability and the overlapping of control and data transfers can
cause unexpected results when programming the DR32. For instance, if the
application program calls for a data transfer to the far-end DR device followed
by notification of the far-end DR device that data is present, the program cannot
simply insert a write device command packet and then a write control message
command packet onto INPTQ—the control message might arrive before the data
transfer completes.

A better way to synchronize the data transfer with notification of data arrival is
to request an interrupt in the interrupt control field of the data transfer command
packet. Then, when the data transfer command packet is removed from TERMQ,
the application program can insert a write control message command packet onto
INPTQ to notify the far-end DR device that the data transfer has completed.

Another consequence of command packet prefetching occurs, for example, when
two write device command packets are inserted onto INPTQ. While the first data
transfer takes place, the second command packet is prefetched and decoded. If
an unusual event occurs and the application program must send an immediate
control message to the far-end DR device, the application program might insert a
write device control message packet onto INPTQ. However, this packet is not sent
immediately because the second write device command packet has already been
prefetched; the control message is sent after the second data transfer starts.

If the application program must send a control message with minimum delay, use
one of the following techniques:

• Insert only one data transfer function onto INPTQ at a time. If this is done, a
second transfer function will not be prefetched and a control message can be
sent at any time.

• Use smaller buffers or a faster data rate to reduce the time necessary to
complete a given command packet.

• Issue a Cancel I/O on Channel ($CANCEL) system service call followed by
another IO$_STARTDATA function.

4.6.2 Action Routines
Action routines provide a useful DR32 programming technique. They can be
used in application programs written in either assembly language or a high-
level language. When a command packet is built, the address of a routine to be
executed when the packet is removed from TERMQ is appended to the end of
the packet. Then, rather than having to determine what action to perform for a
particular packet when it is removed from TERMQ, the specified action routine is
called.

4.6.3 Error Checking
Bits 0 through 23 in the second longword of the I/O status block correspond to
the same bits in the DR32 status longword (DSL). Although the I/O status block
is written only after the QIO function completes, the DSL is stored in every
command packet. However, because there is no command packet in which to
store a DSL for certain error conditions, such as FREEQ empty, some errors
are reported only in the I/O status block. To check for an error under these
conditions, examine the DSL in each packet for success or failure only. Then, if a
failure occurs, the specific error can be determined from the I/O status block. The
I/O status block should also be checked to verify that the QIO has not completed
prior to a wait for the insertion of additional command packets onto TERMQ. In

4–34

DR32 Interface Driver
4.6 Programming Hints

this way, the application program can detect asynchronous errors for which there
is no command packet available.

4.6.4 Queue Retry Macro
When an interlocked queue instruction is included in the application program,
the code should perform a retry if the queue is locked. However, the code should
not execute an indefinite number of retries. Consequently, all retry loops should
contain a maximum retry count. The macro programming example provided in
Section 4.7 contains a useful queue retry macro.

4.6.5 Diagnostic Functions
The diagnostic functions listed in Table 4–2 can be used to test the DR32 without
the presence of a far-end DR device. For the DR780, perform the following test
sequence:

1. Insert a set self-test command packet onto INPTQ.

2. Insert a diagnostic write internal command packet that specifies a 128-byte
buffer onto INPTQ. This packet copies 128 bytes from memory into the DR780
internal data silo.

3. Insert a diagnostic read DDI command packet onto INPTQ. This packet
transmits the 128 bytes of data from the silo over the DDI and returns it to
the silo.

4. Insert a diagnostic read internal command packet that specifies another
128-byte buffer in memory onto INPTQ. This packet copies 128 bytes of data
from the silo into memory.

5. Compare the two memory buffers for equality. Note that on the DR780, the
diagnostic read internal function destroys the first four bytes in the silo before
storing the data in memory. Therefore, compare only the last 124 bytes of the
two buffers.

6. Insert a clear self-test command packet onto INPTQ.

4.6.6 NOP Command Packet
It is often useful to insert a NOP command packet onto INPTQ to test the state
of the DDI disable bit (XF$M_PKT_DDIDIS in the DSL). By checking this bit
before initiating a data transfer, an application program can determine whether
the far-end DR device is ready to accept data.

4.6.7 Interrupt Control Field
As described in Section 4.4.3.6, the interrupt control field determines the
conditions under which an interrupt is generated: unconditionally, if TERMQ was
empty, or never. The following are general applications of this field:

• If a program performs five data transfers and requires notification of
completion only after all five have completed, the first four command packets
should specify no interrupt and the fifth command packet should specify an
unconditional interrupt.

• If a program performs a continuous series of data transfers, each command
packet can specify an interrupt only if TERMQ was empty. Then, every
time an event flag or AST notifies the program that a command packet
was inserted onto TERMQ, the program removes and processes packets on
TERMQ until it is empty.

4–35

DR32 Interface Driver
4.6 Programming Hints

• Command packets that specify no interrupt should never be mixed with
command packets that specify an interrupt if TERMQ was empty.

4.7 Programming Examples
The programming examples in the following two sections use DR32 high-level
language procedures and DR32 Queue I/O functions.

4.7.1 DR32 High-Level Language Program
The following sample program (Example 4–1) is an example of how the DR32
high-level language procedures perform a data transfer from a far-end DR device.
The program reads a specified number of data buffers from an undefined far-
end DR device, which is assumed to be a data source, into the VAX memory.
The number of buffers is controlled by the NUMBUF parameter. The program
contains examples of the read data chained function code and DR32 application
program synchronization using AST routines and action routines.

Example 4–1 DR32 High-Level Language Program Example

C
C DR32 HIGH-LEVEL LANGUAGE PROGRAM
C

INCLUDE ’XFDEF.FOR’ ;DEFINE XF CONSTANTS
PARAMETER BUFSIZ = 1024 !SIZE OF EACH BUFFER
PARAMETER NUMBUF = 8 !NUMBER OF BUFFERS IN

!RING
PARAMETER ILOGSIZ = 4 !SIZE OF INPUT LOG

!ARRAY
PARAMETER EFN = 0 !EVENT FLAG SYNCHRON-

!IZING MAIN LEVEL WITH
!AST ROUTINE

INTEGER*2 BUFARRAY(BUFSIZ,NUMBUF) !THE RING OF BUFFERS
INTEGER*2 INDEX !REFERS TO BUFFER

!IN BUFARRAY
INTEGER*2 COUNT !COUNTS NUMBER OF

!BUFFERS FILLED
INTEGER*2 DATART !DR32 CLOCK RATE

INTEGER*4 CONTXT(30) !CONTEXT ARRAY USED BY SUPPORT
INTEGER*4 ILOGMSG(ILOGSIZ)!LOG MESSAGES FROM DEVICE

!STORED HERE
INTEGER*4 STATUS !RETURNS FROM SUBROUTINES
INTEGER*4 DEVMSG !far-end DR device CODE

EXTERNAL ASTRTN !AST ROUTINE
EXTERNAL AST$PROCBUF !ACTION ROUTINE TO HANDLE

!COMPLETION OF READ DATA
!COMMAND PACKET

EXTERNAL AST$HALT !ACTION ROUTINE TO HANDLE
!COMPLETION OF A HALT
!COMMAND PACKET

COMMON /MAIN_AST/ CONTXT, INDEX
COMMON /MAIN_ACTION/ BUFARRAY, ILOGMSG, COUNT
EXTERNAL SS$_NORMAL !SUCCESS STATUS RETURN

(continued on next page)

4–36

DR32 Interface Driver
4.7 Programming Examples

Example 4–1 (Cont.) DR32 High-Level Language Program Example

C
C THE CALL TO THE SETUP ROUTINE
C

CALL XF$SETUP (CONTXT,BUFARRAY,BUFSIZ*2,NUMBUF,,,ILOGMSG,
1 ILOGSIZ*4,,STATUS)
IF (STATUS .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP(%VAL(STATUS))

C
C PRELOAD THE INPUT QUEUE BEFORE STARTING THE DR32 IN ORDER TO AVOID
C A DELAY IN THE DATA TRANSFER
C
C

C
C BUILD COMMAND PACKETS
C

C BUILD THE COMMAND PACKET THAT WILL INSTRUCT THE far-end DR device
C TO START SAMPLING. ARBITRARILY ASSUME THAT THE far-end DR device
C WILL RECOGNIZE THIS DEVICE MESSAGE. INSERT THIS PACKET ON THE
C INPUT QUEUE (INPTQ).
C

DEVMSG = 25 !SIGNAL far-end DR device
!"GO"

CALL XF$PKTBLD (
1 CONTXT, !THE CONTEXT ARRAY
1 XF$K_PKT_WRTCM, !WRITE CONTROL MESSAGE

!FUNCTION
1 ,, !NO INDEX OR SIZE
1 DEVMSG, !SIGNAL "GO"

1 4, !SIZE OF DEVMSG IN BYTES
1 ILOGSIZ*4 !SPACE FOR INPUT LOG

!MESSAGE
1 XF$K_PKT_UNCOND !MODES: UNCONDITIONAL

! INTERRUPT
1 + XF$K_PKT_CBDM ! : SEND FUNC AND DEVMSG
1 + XF$K_PKT_INSTL ! : INSERT PACKET AT INPTQ

! TAIL
1 ’’ !NO ACTION ROUTINE OR ACTPARM
1 STATUS)
IF (STATUS .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP(%VAL(STATUS))

C
C IN A LOOP, BUILD THE COMMAND PACKETS THAT WILL PERFORM THE CHAINED
C READ TO INITIALLY FILL THE BUFFERS
C

(continued on next page)

4–37

DR32 Interface Driver
4.7 Programming Examples

Example 4–1 (Cont.) DR32 High-Level Language Program Example

DO 10 INDEX = 1, NUMBUF !FOR ALL BUFFERS DO
CALL XF$PKTBLD(

1 CONTXT, !THE CONTEXT ARRAY
1 XF$K_PKT_RDCHN, !READ DATA CHAINED
1 INDEX, !IDENTIFIES BUFFER
1 ,,, !NO SIZE, DEVMSG, OR DEVSIZ
1 ILOGSIZ*4, !SPACE FOR INPUT LOG MESSAGE
1 XF$K_PKT_UNCOND !MODES: UNCONDITIONAL

! INTERRUPT
1 + XF$K_PKT_CB ! : SEND FUNCTION CODE
1 + XF$K_PKT_INSTL, ! : INSERT PACKET AT INPTQ

! TAIL
1 AST$PROCBUF, !ACTION ROUTINE
1 , !NO ACTPARM
1 STATUS)
IF (STATUS .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP(%VAL(STATUS))

10 CONTINUE

C
C THE INPUT QUEUE IS LOADED
C

C
C START THE DR32
C

DATART = 0 !DATA TRANSFER RATE
COUNT = 0 !NUMBER OF BUFFERS THAT HAVE

!BEEN FILLED
CALL SYS$CLREF (%VAL(EFN)) !CLEAR EVENT FLAG BEFORE START

CALL XF$STARTDEV (CONTXT,’XFA0:’,ASTRTN,,,,DATART,STATUS)
IF (STATUS .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP(%VAL(STATUS))

C
C FROM THIS POINT, ROUTINES AT THE AST LEVEL ASSUME CONTROL. WAIT
C FOR THEM TO SIGNAL COMPLETION OF THE SAMPLING SWEEP.
C

CALL SYS$WAITFR (%VAL(EFN))

STOP
END

C
C AST ROUTINES
C

SUBROUTINE ASTRTN (ASTPARM)

INCLUDE ’XFDEF.FOR/NOLIST’
INTEGER*2 ASTPARM !UNUSED PARAMETER

INTEGER*4 CONTXT(30) !CONTEXT ARRAY
INTEGER*4 STATUS !FOR CALL TO XF$GETPKT

LOGICAL*1 WAITFLG !INPUT TO XF$GETPKT
LOGICAL*1 LOGFLAG !INPUT TO XF$GETPKT

COMMON /MAIN_AST/ CONTXT, INDEX

(continued on next page)

4–38

DR32 Interface Driver
4.7 Programming Examples

Example 4–1 (Cont.) DR32 High-Level Language Program Example

EXTERNAL SS$_NORMAL
C
C CALL XF$GETPKT IN A LOOP UNTIL TERMQ IS EMPTY. XF$GETPKT WILL CALL
C THE APPROPRIATE ACTION ROUTINE FOR EACH COMMAND PACKET.
C

WAITFLG = .TRUE. !DO NOT WAIT FOR EVENT FLAG
LOGFLAG = .TRUE. !REQUEST NOTIFICATION IF LOG

!MESSAGE IS IN PACKET

10 CALL XF$GETPKT (CONTXT,WAITFLG,,INDEX,,LOGFLAG,STATUS)
IF (STATUS .EQ. %LOC(SS$_NORMAL)) !PACKET FROM TERMQ
1 GOTO 10
IF (STATUS .EQ. SHR$_QEMPTY) !TERMQ EMPTY - TRANSFER
1 GOTO 20 !STILL IN PROGRESS
IF (STATUS .EQ. SHR$_HALTED .OR. STATUS .EQ. SHR$_NOCMDMEM)
1 GOTO 20 !TRANSFER COMPLETE. NO MORE

!COMMAND PACKETS. ASTS MAY
!STILL BE DELIVERED

CALL LIB$STOP (%VAL(STATUS)) !ERROR IN XF$GETPKT

20 RETURN
END

C
C ACTION ROUTINE
C

SUBROUTINE AST$PROCBUF (CONTXT,ACTPARM,DEVFLAG,LOGFLAG,
1 FUNC,INDEX,STATUS)

C
C THIS IS THE ACTION ROUTINE CALLED BY XF$GETPKT WHEN IT REMOVES A
C COMMAND PACKET FROM TERMQ. THIS PACKET HAS JUST COMPLETED A READ
C DATA OPERATION FROM THE BUFFER SPECIFIED BY INDEX. THE BUFFER IS
C PROCESSED, AND IF MORE DATA IS REQUIRED, THAT IS, BUFCOUNT .LE.
C MAXCOUNT), ANOTHER PACKET IS BUILT. THE BUFFER IN THIS PACKET IS
C THEN REFILLED AND THE PACKET IS INSERTED ONTO INPTQ.
C IF BUFCOUNT .GT. MAXCOUNT, THE SAMPLING SWEEP IS FINISHED AND A
C HALT PACKET IS INSERTED ONTO INPTQ.
C

INCLUDE ’XFDEF.FOR/NOLIST’
PARAMETER MAXCOUNT = 10 !NUMBER OF BUFFERS IN SWEEP
PARAMETER ILOGSIZ = 4 !SIZE OF INPUT LOG MESSAGE ARRAY
PARAMETER BUFSIZ = 1024 !SIZE OF EACH BUFFER (IN WORDS)
PARAMETER NUMBUF = 8 !NUMBER OF BUFFERS

INTEGER*2 INDEX !REFERS TO A BUFFER IN BUFARRAY
INTEGER*2 FUNC !FUNCTION CODE FROM PACKET
INTEGER*2 BUFCOUNT !COUNTS NUMBER OF BUFFERS FILLED
INTEGER*2 BUFARRAY(BUFSIZ,NUMBUF) !THE ARRAY OF BUFFERS
INTEGER*4 ACTPARM !ACTION PARAMETER (NOT USED)
INTEGER*4 STATUS !STATUS OF XF$GETPKT (NOT USED)
INTEGER*4 STAT !STATUS OF CALL TO XF$PKTBLD
INTEGER*4 CONTXT(30) !CONTEXT ARRAY USED BY SUPPORT
INTEGER*4 ILOGMSG(ILOGSIZ)!STORES LOG MESSAGES FROM DEVICE
LOGICAL*1 DEVFLAG !NOT USED IN THIS EXAMPLE
LOGICAL*1 LOGFLAG !SIGNALS LOG MESSAGE PRESENT

COMMON /MAIN_ACTION/ BUFARRAY,ILOGMSG,BUFCOUNT

(continued on next page)

4–39

DR32 Interface Driver
4.7 Programming Examples

Example 4–1 (Cont.) DR32 High-Level Language Program Example

EXTERNAL SS$_NORMAL
EXTERNAL AST$HALT

C
C PROCESS THE BUFFER
C

DO 10 I = 1, BUFSIZ

C
C AT THIS POINT INSERT THE CODE TO PROCESS ELEMENT (I,INDEX) OF
C BUFARRAY
C

10 CONTINUE

C
C AT THIS POINT INSERT THE CODE TO LOOK AT THE LOG MESSAGE
C

C
C IS THIS THE LAST BUFFER IN THE SWEEP?
C
BUFCOUNT = BUFCOUNT + 1

IF (BUFCOUNT .LT. MAXCOUNT) THEN !BUILD A PACKET TO
!REFILL THE BUFFER

CALL FAKE$PKTBLD (!NEED INTERVENING ROUTINE
1 CONTXT, !THE CONTEXT ARRAY
1 XF$K_PKT_RDCHN, !READ DATA CHAINED
1 INDEX, !BUFFER INDEX
1 ,,, !NO SIZE, DEVMSG, OR DEVSIZ
1 ILOGSIZ*4, !SPACE FOR LOG MESSAGE
1 XF$K_PKT_UNCOND !MODES: UNCONDITIONAL

! INTERRUPT
1 + XF$K_PKT_CB ! : SEND CONTROL BYTE
1 + XF$K_PKT_INSTL, ! : INSERT AT TAIL
1 ,, !ACTION GIVEN IN FAKE$PKTBLD
1 STAT)
IF (STAT .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL(STAT))
ELSE IF (BUFCOUNT .EQ. MAXCOUNT) THEN !END OF CHAIN

CALL FAKE$PKTBLD (!NEED INTERVENING ROUTINE
1 CONTXT, !THE CONTEXT ARRAY
1 XF$K_PKT_RD, !READ DATA FUNCTION
1 INDEX, !BUFFER INDEX
1 ,,, !NO SIZE, DEVMSG, OR DEVSIZ
1 ILOGSIZ*4, !SPACE FOR LOG MESSAGE
1 XF$K_PKT_UNCOND !MODES: UNCONDITIONAL

! INTERRUPT
1 + XF$K_PKT_CB ! : SEND CONTROL BYTE
1 + XF$K_PKT_INSTL, ! : INSET AT TAIL
1 ,, !ACTION GIVEN IN FAKE$PKTBLD
1 STAT)
IF (STAT .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL(STAT))
ELSE !BUILD A HALT PACKET

CALL XF$PKTBLD (
1 CONTXT, !THE CONTEXT ARRAY
1 XF$K_PKT_HALT, !ALL DONE
1 ,,,, !DEFAULT VALUES
1 ILOGSIZ*1, !SPACE FOR INPUT LOG MESSAGE

(continued on next page)

4–40

DR32 Interface Driver
4.7 Programming Examples

Example 4–1 (Cont.) DR32 High-Level Language Program Example
1 AST$HALT, !ACTION ROUTINE
1 , !NO ACTPARM
1 STAT)
IF (STAT .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL(STAT))

END IF

RETURN
END

C
C PASS ADDRESS OF ACTION ROUTINE TO COMMAND PACKET
C

SUBROUTINE FAKE$PKTBLD(A,B,C,D,E,F,G,H,I,J,K)

C
C AST$PROCBUF CALLS THIS SUBROUTINE IN ORDER TO PASS THE ADDRESS OF
C AST$PROCBUF TO XF$PKTBLD. (AST$PROCBUF CANNOT REFER TO ITSELF
C WITHIN THE SCOPE OF AST$PROCBUF)
C

EXTERNAL AST$PROCBUF

CALL XF$PKTBLD (A,B,C,D,E,F,G,H,AST$PROCBUF,J,K)

RETURN
END

C
C HALT ACTION ROUTINE
C

SUBROUTINE AST$HALT (CONTXT,ACTPARM,DEVFLAG,LOGFLAG,
FUNC,INDEX,STATUS)

C
C THIS IS THE ACTION ROUTINE CALLED BY XF$GETPKT WHEN IT REMOVES A
C HALT PACKET FROM TERMQ. THIS ROUTINE PRINTS STATUS INFORMATION,
C CALLS XF$CLEANUP TO PERFORM FINAL HOUSEKEEPING FUNCTIONS, AND SETS
C THE EVENT FLAG THAT SIGNALS THE TRANSFER IS COMPLETE.
C

PARAMETER EFN = 0

INTEGER*2 FUNC !NOT USED
INTEGER*2 INDEX !NOT USED

INTEGER*4 ACTPARM !NOT USED
INTEGER*4 STATUS !NOT USED
INTEGER*4 STAT !RETURN FROM XF$CLEANUP
INTEGER*4 CONTXT(30) !CONTEXT ARRAY USED BY SUPPORT

LOGICAL*1 DEVFLAG !NOT USED
LOGICAL*1 LOGFLAG !SIGNALS LOG MESSAGE

EXTERNAL SS$_NORMAL !SUCCESS STATUS RETURN
C
C PRINT FINAL STATUS
C

PRINT *, ’FINAL STATUS IN I/O STATUS BLOCK’
PRINT *, CONTXT(1), CONTXT(2)

(continued on next page)

4–41

DR32 Interface Driver
4.7 Programming Examples

Example 4–1 (Cont.) DR32 High-Level Language Program Example

C
C CLEAN UP
C

CALL XF$CLEANUP (CONTXT,STAT)
IF (STAT .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL(STAT))

CALL SYS$SETEF (%VAL(EFN))

RETURN
END

4.7.2 DR32 Queue I/O Functions Program
The following sample program (Example 4–2) uses Queue I/O functions to send a
device message to the far-end DR device and then waits for a message returned
in a command packet on FREEQ. The returned message is copied into another
command packet, and that packet writes a data buffer to the far-end DR device.

Example 4–2 DR32 Queue I/O Functions Program Example

; **
;
; DR32 QUEUE I/O FUNCTIONS PROGRAM
;
; **

.TITLE DR32 PROGRAMMING EXAMPLE

.IDENT /01/

;
; DEFINE SYMBOLS
;

$XFDEF
;
;
; QRETRY - THIS MACRO EXECUTES AN INTERLOCKED QUEUE INSTRUCTION AND
; RETRIES THE INSTRUCTION UP TO 25 TIMES IF THE QUEUE IS
; LOCKED.
;

(continued on next page)

4–42

DR32 Interface Driver
4.7 Programming Examples

Example 4–2 (Cont.) DR32 Queue I/O Functions Program Example

; INPUTS:
;
; OPCODE = OPCODE NAME: INSQHI,INSQTI,REMQHI,REMQTI
; OPERAND1 = FIRST OPERAND FOR OPCODE
; OPERAND2 = SECOND OPERAND FOR OPCODE
; SUCCESS = LABEL TO BRANCH TO IF OPERATION SUCCEEDS
; ERROR = LABEL TO BRANCH TO IF OPERATION FAILS
;
; OUTPUTS:
;
; R0 = DESTROYED
;
; C-BIT = CLEAR IF OPERATION SUCCEEDED
; SET IF OPERATION FAILED - QUEUE LOCKED
; (MUST BE CHECKED BEFORE V-BIT OR Z-BIT)
;
; REMQTI OR REMQHI:
;
; V-BIT = CLEAR IF AN ENTRY REMOVED FROM QUEUE; SET
; IF NO ENTRY REMOVED FROM QUEUE.
;
; INSQTI OR INSQHI:
;
; Z-BIT = CLEAR IF ENTRY IS NOT FIRST IN QUEUE; SET
; IF ENTRY IS FIRST IN QUEUE.
;

.MACRO QRETRY OPCODE,OPERAND1,OPERAND2,SUCCESS,ERROR,?LOOP,
?OK

CLRL R0

LOOP:
OPCODE OPERAND1,OPERAND2
.IF NB SUCCESS
BCC SUCCESS
.IFF
BCC OK
.ENDC
AOBLSS #25,R0,LOOP
.IF NB ERROR
BRW ERROR
.ENDC

OK:
.ENDM QRETRY

;
; ALLOCATE STORAGE FOR DATA STRUCTURES
;

.PSECT DATA,QUAD
CMDBLK: ; COMMAND BLOCK

(continued on next page)

4–43

DR32 Interface Driver
4.7 Programming Examples

Example 4–2 (Cont.) DR32 Queue I/O Functions Program Example

INPTQ: .BLKQ 1 ; INPUT QUEUE
TERMQ: .BLKQ 1 ; TERMINATION QUEUE
FREEQ: .BLKQ 1 ; FREE QUEUE
MSGPKT: ; THIS PACKET SENDS A 12-BYTE

; DEVICE MESSAGE
.BLKQ 1 ; QUEUE LINKS
.BYTE 12 ; LENGTH OF DEVICE MESSAGE
.BYTE 0 ; LENGTH OF LOG AREA
.BYTE XF$K_PKT_WRTCM ; COMMAND = WRITE CONTROL

; MESSAGE
.BYTE XF$K_PKT_NOINT@- ; PACKET CONTROL = NO

; INTERRUPT
XF$V_PKT_INTCTL

.BLKL 1 ; BYTE COUNT

.BLKL 1 ; BUFFER ADDRESS

.BLKL 2 ; RESIDUAL MEMORY AND DDI BYTE
; COUNTS

.BLKL 1 ; DR32 STATUS LONGWORD

.LONG 11111,22222,33333 ; DEVICE MESSAGE

.LONG 0 ; EXTEND DEVICE MESSAGE TO
; QUADWORD LENGTH

.ALIGN QUAD

WRTPKT: ; THIS PACKET DOES A WRITE
; DEVICE

.BLKQ 1 ; QUEUE LINKS

.BYTE 4 ; LENGTH OF DEVICE MESSAGE

.BYTE 0 ; LENGTH OF LOG AREA

.BYTE XF$K_PKT_WRT ; COMMAND = WRITE

.BYTE <XF$K_PKT_CBDMBC@- ; PACKET CONTROL = SEND
; COMMAND BYTE,

XF$V_PKT_CISEL>!- ; DEVICE MESSAGE, AND BYTE
; COUNT

<XF$K_PKT_NOINT@- ; AND NO INTERRUPT
XF$V_PKT_INTCTL>

.LONG 1000 ; BYTE COUNT

.LONG WRTBFR ; BUFFER ADDRESS

.BLKL 2 ; RESIDUAL MEMORY AND DDI BYTE
; COUNTS

.BLKL 1 ; DR32 STATUS LONGWORD

WDVMSG: .BLKQ 1 ; SPACE FOR DEVICE MESSAGE

.ALIGN QUAD
HLTPKT: ; THIS PACKET HALTS THE DR32

.BLKQ 1 ; QUEUE LINKS

.BYTE 0,0,XF$K_PKT_HALT,0 ; COMMAND = HALT
,BLKL 5 ; UNUSED FIELDS IN THIS PACKET

.ALIGN QUAD
FREPKT: ; PACKET FOR FREE QUEUE

.BLKQ 1 ; QUEUE LINKS

.BYTE 4,0,0,0 ; LENGTH OF DEVICE MESSAGE
; FIELD

.BLKL 4 ; UNUSED FIELDS IN THIS PACKET

.BLKL 1 ; DR32 STATUS LONGWORD

.BLKQ 1 ; SPACE FOR DEVICE MESSAGE
CMDBLKSIZ=.-CMDBLK

BFRBLK: ; BUFFER BLOCK

WRTBFR: .BLKB 1000

(continued on next page)

4–44

DR32 Interface Driver
4.7 Programming Examples

Example 4–2 (Cont.) DR32 Queue I/O Functions Program Example

BFRBLKSIZ=.-BFRBLK

CMDTBL: .LONG CMDBLKSIZ ; COMMAND BLOCK SIZE
.LONG CMDBLK ; COMMAND BLOCK ADDRESS
.LONG BFRBLKSIZ ; BUFFER BLOCK SIZE
.LONG BFRBLK ; BUFFER BLOCK ADDRESS
.LONG PKTAST ; PACKET AST ADDRESS
.LONG 0 ; PACKET AST PARAMETER
.BYTE 236,XF$M_CMT_SETRTE,0,0 ; DATA RATE (2.0 MBYTES/SEC)
.LONG GOBITADR ; ADDRESS TO STORE THE GO

; BIT ADDRESS
GOBITADR:

.BLKL 1

XFIOSB: .BLKL 2 ; I/O STATUS BLOCK

XFNAMEDSC:
.LONG XFNAMESIZ ; NAME DESCRIPTOR
.LONG XFNAME

XFCHAN: .BLKW 1 ; CHANNEL NUMBER

XFNAME: .ASCII /XFA0/
XFNAMESIZE=.-XFNAME

; **
;
; PROGRAM STARTING POINT
;
; **

.PSECT CODE,NOWRT

.ENTRY DREXAMPLE,M<R2,R3>

$ASSIGN_S DEVNAM = XFNAMEDSC,- ; ASSIGN A CHANNEL TO DR32
CHAN = XFCHAN

BLBS R0,10$; SUCCESSFUL ASSIGN
BRW ERROR

10$: MOVAB CMDBLK,R2
CLRQ (R2)+ ; INITIALIZE INPTQ
CLRQ (R2)+ ; INITIALIZE TERMQ
CLRQ (R2) ; INITIALIZE FREEQ

;
; INSERT COMMAND PACKET ONTO FREEQ FOR RETURN MESSAGE
;

QRETRY ERROR=BADQUEUE,-
INSQTI FREPKT,FREEQ

;
; START DEVICE
;

$QIO_S FUNC = #IO$_STARTDATA,-
CHAN = XFCHAN,-
IOSB = XFIOSB,-
EFN = #1,-
P1 = CMDTBL,-
P2 = #XF$K_CMT_LENGTH

BLBC R0,ERROR
;
; SEND MESSAGE TO far-end DR device
;

(continued on next page)

4–45

DR32 Interface Driver
4.7 Programming Examples

Example 4–2 (Cont.) DR32 Queue I/O Functions Program Example

QRETRY ERROR=BADQUEUE,-
INSQTI MSGPKT,INPTQ
MOVL #1,@GOBITADR ; SET GO BIT
$WAITFR_S #1 ; WAIT UNTIL QIO COMPLETES

;
; CHECK FOR SUCCESSFUL COMPLETION
;

MOVZWL XFIOSB,R0
BEQL BADQUEUE ; I/O NOT DONE YET - BAD QUEUE

; ERROR IN AST ROUTINE
BLBC R0,ERROR ; ERROR
RET ; SUCCESSFUL COMPLETION

BADQUEUE:
MOVZWL #SS$_BADQUEUEHDR,R0

;
; AN ERROR HAS OCCURRED. NORMALLY, YOU MIGHT PERFORM MORE
; EXTENSIVE ERROR CHECKING AT THIS POINT. IN PARTICULAR, IF THE ERROR
; IS SS$_CTRLERR, SS$_DEVREQERR, OR SS$_PARITY, THE SECOND LONGWORD
; OF THE I/O STATUS BLOCK CAN PROVIDE ADDITIONAL INFORMATION. IN THIS
; EXAMPLE, THE PROGRAM EXITS WITH THE ERROR STATUS IN R0.
;
;
; COMMAND PACKET AST ROUTINE
;

PKTAST: .WORD 0
NXTPKT: QRETRY ERROR=70$,- ; GET NEXT PACKET FROM QUEUE

REMQHI TERMQ,R1
BVC 10$; PACKET OBTAINED FROM QUEUE
RET ; QUEUE IS EMPTY

10$: BLBC XF$L_PKT_DSL(R1),50$; RETURN IF PACKET ERROR
BBC #XF$V_PKT_FREQPK,- ; RETURN IF PACKET NOT FROM

XF$L_PKT_DSL(R1),50$; FREEQ

;
; COMMAND PACKET OBTAINED FROM FREEQ. COPY DEVICE MESSAGE AND QUEUE
; WRITE PACKET.
;

MOVL XF$B_PKT_DEVMSG(R1),WDVMSG
QRETRY ERROR=70$,-
INSQTI WRTPKT,INPTQ
QRETRY ERROR=70$,-
INSQTI HLTPKT,INPTQ
MOVL #1,@GOBITADR ; SET GO BIT

50$: RET

;
; BAD QUEUE ERROR IN AST ROUTINE - WAKE UP MAIN LEVEL. QIO MAY
; OR MAY NOT HAVE COMPLETED.
;

70$: $SETEF_S #1 ; WAKE UP MAIN LEVEL
RET

.END DREXAMPLE

4–46

5
Asynchronous DDCMP Interface Driver

This chapter describes the use of the asynchronous DDCMP interface driver in an
OpenVMS VAX environment.

5.1 Supported Devices
Asynchronous DDCMP is supported for DECnet for OpenVMS using software
DDCMP over terminal ports. This enables all Digital supported terminal devices
to provide a DDCMP interface between two VAX processors using terminal ports.
Asynchronous DDCMP supports full-duplex, point-to-point lines.

5.2 Driver Features and Capabilities
The asynchronous DDCMP driver provides the following capabilities:

• Point-to-point operating mode in which the asynchronous DDCMP port is
connected to one other controller also operating in point-to-point mode

• A nonprivileged QIO interface to the asynchronous DDCMP for using this
device as a raw-data channel

• Full-duplex operation

• Interface design common to all communications devices supported by the
OpenVMS VAX operating system

• Separate transmit and receive queues

• Assignment of multiple read and write buffers to the device

5.2.1 Quotas
Transmit operations are buffered and I/O operations and are limited by the
process’s buffered I/O quota.

The quotas for the receive buffer free list are the process’s buffered I/O quota and
buffered I/O byte count quota.

5.2.2 Power Failure
If a system power failure occurs, no asynchronous DDCMP recovery is possible.
The driver is in a fatal error state and shuts down.

5.3 Device Information
You can obtain information about asynchronous DDCMP characteristics by
using the Get Device/Volume Information ($GETDVI) system service. (See the
OpenVMS System Services Reference Manual.)

5–1

Asynchronous DDCMP Interface Driver
5.3 Device Information

$GETDVI returns device characteristics when you specify the item code DVI$_
DEVCHAR. Table 5–1 lists these characteristics, which are defined by the
$DEVDEF macro.

Table 5–1 Device Characteristics

Characteristic 1 Meaning

Static Bits (Always Set)

DEV$M_NET Network device. Set for terminal port if it is a network device.

DEV$M_AVL Available device. Set when unit control block (UCB) is
initialized.

DEV$M_ODV Output device.

DEV$M_IDV Input device.

1Defined by the $DEVDEF macro

DVI$_DEVCLASS returns the device class, which is DC$_SCOM. DVI$_
DEFTYPE returns the device type, which is the terminal ports device type. The
$DCDEF macro defines the device class and device type names.

DVI$_DEVBUFSIZ returns the maximum message size. The maximum message
size is the maximum send or receive message size for the unit. Messages greater
than 512 bytes on modem-controlled lines are more prone to transmission errors.

DVI$_DEVDEPEND returns the unit characteristics bits, the unit and line status
bits, the error summary bits, and the specific errors in a longword field as shown
in Figure 5–1.

Figure 5–1 DVI$_DEVDEPEND Returns

ZK−5931−GE

31

Error

24

Summary
Error

23 16 15

Status
Unit and Line

8 7

Characteristics
Unit

0

Unit characteristics bits govern the DDCMP operating mode. They are defined by
the $XMDEF macro and can be set by a set mode function (see Section 5.4.3.1) or
can be read by a sense mode function (see Section 5.4.4).

The status bits show the status of the unit and the line. These bits can be set or
cleared only when the controller and tributary are not active.

Table 5–2 lists the status values and their meanings. The values are defined by
the $XMDEF macro.

5–2

Asynchronous DDCMP Interface Driver
5.3 Device Information

Table 5–2 Asynchronous DDCMP Unit and Line Status

Status Meaning

XM$M_STS_ACTIVE DDCMP protocol is active.

XM$M_STS_DISC Modem line went from on to off. This bit will be
returned in the field IRP$L_IOST2 if the driver has
had a timeout while waiting for the CTS signal to be
present on the device.

XM$M_STS_BUFFAIL Receive buffer allocation failed.

The error summary bits are set when an error occurs. They are read-only bits. If
the error is fatal, the asynchronous DDCMP for that port is shut down. Table 5–3
lists the error summary bit values and their meanings.

Table 5–3 Error Summary Bits

Error Summary Bit Meaning

XM$M_ERR_MAINT DDCMP maintenance message received

XM$M_ERR_START DDCMP start message received

XM$M_ERR_FATAL Hardware or software error occurred on controller

XM$M_ERR_TRIB Hardware or software error occurred on tributary

XM$M_ERR_LOST Data lost when a received message was longer than the
specified maximum message size

XM$M_ERR_THRESH Receive, transmit, or select threshold errors

Table 5–4 lists the errors that can be specified. These errors are mapped to the
indicated codes.

Table 5–4 Asynchronous DDCMP Errors

Value
(octal) Meaning Code Set

2 Receive threshold error XM$M_ERR_THRESH

4 Transmit threshold error XM$M_ERR_THRESH

6 Select threshold error XM$M_ERR_THRESH

10 Start received in run state XM$M_ERR_START

12 Maintenance received in run state XM$M_ERR_MAINT

14 Maintenance received in halt state (none)

16 Start received in maintenance state XM$M_ERR_START

100–276 Internal procedure (software) errors XM$M_ERR_TRIB

300 Buffer too small XM$M_ERR_LOST

302 Nonexistent memory XM$M_ERR_FATAL

304 Modem disconnected XM$M_STS_DISC

5–3

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

5.4 Asynchronous DDCMP Function Codes
The asynchronous DDCMP driver can perform logical, virtual, and physical I/O
operations. The basic functions are read, write, set mode, set characteristics, and
sense mode. Table 5–5 lists these functions and their function codes. The sections
that follow describe these functions in greater detail.

Table 5–5 Asynchronous DDCMP I/O Functions

Function Code Arguments Type 1 Modifiers Function

IO$_READLBLK P1,P2 L IO$M_NOW Read logical block.

IO$_READVBLK P1,P2 V IO$M_NOW Read virtual block.

IO$_READPBLK P1,P2 P IO$M_NOW Read physical block.

IO$_WRITELBLK P1,P2 L Write logical block.

IO$_WRITEVBLK P1,P2 V Write virtual block.

IO$_WRITEPBLK P1,P2 P Write physical block.

IO$_SETMODE P1,[P2],P3 L IO$M_CTRL
IO$M_SHUTDOWN
IO$M_STARTUP
IO$M_ATTNAST

Set asynchronous DDCMP
characteristics and controller
state for subsequent
operations.

IO$_SETCHAR P1,[P2],P3 P IO$M_CTRL
IO$M_SHUTDOWN
IO$M_STARTUP
IO$M_ATTNAST

Set asynchronous DDCMP
characteristics and controller
state for subsequent
operations.

IO$_SENSEMODE P1,P2 L IO$M_CTRL
IO$M_CLR_COUNTS
IO$M_RD_COUNTS

Sense controller or tributary
characteristics and return
them in specified buffers.

1V = virtual, L = logical, P = physical (there is no functional difference in these operations)

Although the asynchronous DDCMP driver does not differentiate among logical,
virtual, and physical I/O functions (all are treated identically), you must have
the required privilege to issue a request. (Logical I/O functions require no I/O
privilege.)

5.4.1 Read
Read functions provide for the direct transfer of data into the user process’s
virtual memory address space. The operating system provides the following
function codes:

• IO$_READLBLK—Read logical block

• IO$_READVBLK—Read virtual block

• IO$_READPBLK—Read physical block

Received messages are multibuffered in system dynamic memory and then copied
to the user’s buffer.

The read functions take the following device- or function-dependent arguments:

• P1—The starting virtual address of the buffer that is to receive data

• P2—The size of the receive buffer in bytes

5–4

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

The message size specified by P2 cannot be larger than the maximum receive-
message size for the unit (see Section 5.3). If a message larger than the maximum
size is received, a status of SS$_DATAOVERUN is returned in the I/O status
block.

The read functions can take the following function modifier:

• IO$M_NOW—Complete the read operation immediately with a received
message. (If no message is currently available, return a status of SS$_
ENDOFFILE in the I/O status block.)

5.4.2 Write
Write functions provide for the direct transfer of data from the user process’s
virtual memory address space. The operating system provides the following
function codes:

• IO$_WRITELBLK—Write logical block

• IO$_WRITEVBLK—Write virtual block

• IO$_WRITEPBLK—Write physical block

Asynchronous DDCMP messages are copied into a system buffer before they are
transmitted.

The write functions take the following device- or function-dependent arguments:

• P1—The starting virtual address of the buffer containing the data to be
transmitted

• P2—The size of the buffer in bytes

The message size specified by P2 cannot be larger than the maximum send-
message size for the unit (see Section 5.3).

The write functions take no function modifiers.

5.4.3 Set Mode and Set Characteristics
Set mode operations are used to perform protocol, operational, and program and
driver interface operations with the asynchronous DDCMP driver. The operating
system defines the following types of set mode functions:

• Set mode

• Set characteristics

• Set controller mode

• Set tributary mode

• Enable attention AST

• Shutdown controller

• Shutdown tributary

Used without function modifiers, set mode and set characteristics functions
can modify an existing tributary. Used with certain function modifiers, they
can perform asynchronous DDCMP operations such as starting a tributary
and requesting an attention AST. The operating system provides the following
function codes:

• IO$_SETMODE—Set mode (no I/O privilege required)

5–5

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

• IO$_SETCHAR—Set characteristics (requires physical I/O privilege)

The other five types of set mode functions, which use the two function codes with
certain function modifiers, are described in the sections that follow.

To use the IO$_SETMODE and IO$_SETCHAR functions, assign the appropriate
unit control block (UCB) with the Assign I/O Channel ($ASSIGN) system service.

5.4.3.1 Set Controller Mode
The set controller mode function sets the asynchronous DDCMP controller
state and activates the controller. The first occurrence of an IO$_SETMODE
function creates a buffer for the driver to use. (Part of the buffer created by IO$_
SETMODE!IO$M_CTRL!IO$M_STARTUP is allocated for the protocol operation
to use.) The following combinations of function code and modifier are provided:

• IO$_SETMODE!IO$M_CTRL—Set controller characteristics

• IO$_SETCHAR!IO$M_CTRL—Set controller characteristics

• IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP—Set controller characteristics
and start the controller

• IO$_SETCHAR!IO$M_CTRL!IO$M_STARTUP—Set controller characteristics
and start the controller

If the function modifier IO$M_STARTUP is specified, the controller is started
and the modem is enabled. If IO$M_STARTUP is not specified, the specified
characteristics are simply modified.

These codes take the following device- or function-dependent argument:

• P2—The address of a descriptor for a characteristics buffer (optional)

The P2 buffer consists of a series of six-byte entries. The first word contains the
parameter identifier (ID), and the longword that follows contains one of the values
that can be associated with the parameter ID. Figure 5–2 shows the format for
this buffer.

Figure 5–2 P2 Characteristics Buffer (Set Controller)

ZK−0706−GE

Parameter ID

Longword Value

etc.

Parameter ID

Longword Value

5–6

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

Table 5–6 lists the parameter IDs and values that can be specified in the P2
buffer. The $NMADEF macro defines these values.

Table 5–6 P2 Characteristics Values (Set Controller)

Parameter ID Meaning

NMA$C_PCLI_PRO Protocol mode. Only the following value can be specified:

Value Meaning

NMA$C_LINPR_POI DDCMP point-to-point (default)

NMA$C_PCLI_DUP Duplex mode. Only the following value can be specified:

Value Meaning

NMA$C_DPX_FUL Full-duplex (default)

NMA$C_PCLI_CON Controller mode. Only the following value can be specified:

Value Meaning

NMA$C_LINCN_NOR Normal (default)

NMA$C_PCLI_BFN Number of receive buffers to preallocate.

NMA$C_PCLI_BUS Maximum allowable transmit and receive message length
(default = 512 bytes).

5.4.3.2 Set Tributary Mode
The set tributary mode function either starts a tributary or modifies an existing
one. This function must be performed before any communication can occur with
the attached unit.

Because the asynchronous DDCMP driver deals with only one tributary, the set
tributary function starts both the tributary and the protocol. The data block that
describes the tributary has already been created.

The operating system provides the following combinations of function code and
modifier:

• IO$_SETMODE—Modify tributary characteristics

• IO$_SETCHAR—Modify tributary characteristics

• IO$_SETMODE!IO$M_STARTUP—Start tributary

• IO$_SETCHAR!IO$M_STARTUP—Start tributary

These codes take the following device- or function-dependent argument:

• P2—The address of a descriptor for a characteristics buffer (optional)

The P2 buffer consists of a series of six-byte entries. The first longword contains
the parameter identifier (ID), and the longword that follows contains one of
the values that can be associated with the parameter ID. Figure 5–2 shows the
format for this buffer.

5–7

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

Table 5–7 lists the parameter IDs and values that can be specified in the P2
buffer.

Table 5–7 P2 Characteristics Values (Set Tributary)

Parameter ID Meaning

NMA$C_PCCI_TRT1 Transmit delay timer (default = 0).

NMA$C_PCCI_RTT1 Retransmit timer for full-duplex point-to-point mode and
selection timer for multipoint control and half-duplex
point-to-point mode (default = 3000).

1A global polling parameter. All timer values must be specified in milliseconds.

On receipt of the QIO request for asynchronous DDCMP, the driver modifies the
tributary parameters and starts the protocol. The tributary state and the protocol
state are equal. The driver does not verify that a tributary address has been
provided. If an address has not been provided, it defaults to 1.

5.4.3.3 Shutdown Controller
The shutdown controller function shuts down the controller and disables the
modem line. On completion of a shutdown controller request, all tributaries have
been halted (including those tributaries not explicitly halted), all tributary buffers
returned, and the controller reinitialized. This function halts the tributary, the
protocol, and the line. The controller cannot be used again until another IO$_
SETMODE!IO$M_CTRL!IO$M_STARTUP or IO$_SETCHAR!IO$M_CTRL!IO$M_
STARTUP request has been issued (see Section 5.4.3.1).

The operating system provides the following combinations of function code and
modifier:

• IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN—Shutdown controller

• IO$_SETCHAR!IO$M_CTRL!IO$M_SHUTDOWN—Shutdown controller

The shutdown controller function takes no device- or function-dependent
arguments.

5.4.3.4 Shutdown Tributary
The shutdown tributary function halts, but does not delete, the specified tributary.
On completion of a shutdown tributary request, the tributary and the protocol
are halted, all buffers are returned, and all pending I/O requests and received
messages are aborted. Neither the tributary nor the attached device can be used
again until another IO$_SETMODE!IO$M_STARTUP or IO$_SETCHAR!IO$M_
STARTUP request has been issued (see Section 5.4.3.2).

The operating system provides the following combinations of function code and
modifier:

• IO$_SETMODE!IO$M_SHUTDOWN—Shutdown tributary

• IO$_SETCHAR!IO$M_SHUTDOWN—Shutdown tributary

The shutdown tributary function takes no device- or function-dependent
arguments.

5–8

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

5.4.3.5 Enable Attention AST
The enable attention AST function requests that an attention AST be delivered to
the requesting process when a status change occurs on the specified tributary. An
AST is queued when the driver sets or clears either an error summary bit or any
of the unit status bits (see Tables 5–2 and 5–3), or when a message is available
and there is no waiting read request. The enable attention AST function is legal
at any time, regardless of the condition of the unit status bits.

The operating system provides the following combinations of function code and
modifier:

• IO$_SETMODE!IO$M_ATTNAST—Enable attention AST

• IO$_SETCHAR!IO$M_ATTNAST—Enable attention AST

These codes take the following device- or function-dependent arguments:

• P1—The address of an AST service routine or 0 for disable

• P2—Ignored

• P3—Access mode to deliver AST

The enable attention AST function enables an attention AST to be delivered
to the requesting process once only. After the AST occurs, it must be explicitly
reenabled by the function before the AST can occur again. The function is also
subject to AST quotas.

The AST service routine is called with an argument list. The first argument is
the current value of the second longword of the I/O status block (see Section 5.5).
The access mode specified by P3 is maximized with the requester’s access mode.

5.4.4 Sense Mode
The sense mode function returns the controller or tributary characteristics in the
specified buffers.

The operating system provides the following function codes:

• IO$_SENSEMODE!IO$M_CTRL—Read controller characteristics

• IO$_SENSEMODE—Read tributary characteristics

These codes take the following device- or function-dependent argument:

• P2—The address of a descriptor for a buffer into which the characteristics
buffer is stored (optional). (Figure 5–2 shows the format of the characteristics
buffer.)

All characteristics that fit into the buffer specified by P2 are returned. However,
if all the characteristics cannot be stored in the buffer, the I/O status block
returns the status SS$_BUFFEROVF. The second word of the I/O status block
returns the size (in bytes) of the characteristics buffer returned by P2 (see
Section 5.5).

5.4.4.1 Read Internal Counters
The read internal counters (IO$M_RD_COUNTS) subfunction reads the DDCMP
internal counters. The operating system provides the following combinations of
function codes and modifiers:

• IO$_SENSEMODE!IO$M_RD_COUNTS—Read tributary counters

• IO$_SENSEMODE!IO$M_CLR_COUNTS—Clear tributary counters

5–9

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

• IO$_SENSEMODE!IO$M_RD_COUNTS!IO$M_CLR_COUNTS—Read and
then clear tributary counters

• IO$_SENSEMODE!IO$M_CTRL!IO$M_RD_COUNTS—Read controller
counters

• IO$_SENSEMODE!IO$M_CTRL!IO$M_CLR_COUNTS—Clear controller
counters

• IO$_SENSEMODE!IO$M_CTRL!IO$M_RD_COUNTS!IO$M_CLR_
COUNTS—Read and then clear controller counters

These codes take the following device- or function dependent arguments:

• P1—Ignored

• P2—The address of a buffer descriptor into which the counters will be
returned

Figure 5–3 shows the format of the buffer. All counters that fit into the buffer
specified by P2 are returned. However, if all the counters cannot be stored
in the buffer, the I/O status block returns the status SS$_BUFFEROVF. The
second word of the I/O status block returns the size, in bytes, of the extended
characteristics buffer returned (see Section 5.5).

Table 5–8 lists the parameter IDs that can be returned for asynchronous DDCMP.

Table 5–8 Controller Counter Parameter IDs

Parameter ID Meaning

NMA$C_CTLIN_LPE Number of local station errors bitmap counter.

Value Meaning

1 Receive overrun SNAK set.

2 Receive overrun SNAK not set.

4 Transmitter underrun.

8 Message format error.

NMA$C_CTLIN_RPE Number of remote station errors bitmap counter.

Value Meaning

1 NAKs received due to receiver overrun.

2 NAKs received due to message format
error.

4 SNAK set message format error.

8 Streaming tributary.

Table 5–9 lists the parameter IDs that can be returned for tributaries.

5–10

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

Figure 5–3 P2 Extended Characteristics Buffer (Sense Mode)

Value

Longword of

Parameter ID

0

01 0 0

15 13 12 11

Longword Counter

Word Counter

15 13 12 11 0

Parameter ID0011

Word of Value

Byte Counter

15 13 12 11

0101

8 7

Parameter ID

0

08 711121315

Bitmap Counter

0 1 0 1 Parameter ID

Byte of Value Bitmap

ZK−5780−GE

5–11

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

Table 5–9 Tributary Counter Parameter IDs

Parameter ID Meaning

NMA$C_CTCIR_BRC Number of bytes received by this station.

NMA$C_CTCIR_BSN Number of bytes transmitted by this station.

NMA$C_CTCIR_DBR Number of messages received by this station.

NMA$C_CTCIR_DBS Number of messages transmitted by this station.

NMA$C_CTCIR_SIE Number of selection intervals elapsed.

NMA$C_CTCIR_RBE Remote buffer error bitmap counters.

Value Meaning

1 Remote buffer unavailable.

2 Remote buffer too small.

NMA$C_CTCIR_LBE Local buffer error bitmap counters.

Value Meaning

1 Local buffer unavailable.

2 Local buffer too small.

NMA$C_CTCIR_SLT Selection timeout bitmap counters.

Value Meaning

1 No attempt to respond was made.

2 Attempt was made but timeout still occurs.

NMA$C_CTCIR_RRT Number of SACK settings when REP received.

NMA$C_CTCIR_LRT Number of SREP settings.

NMA$C_CTCIR_DEI Data error inbound bitmap counters.

Value Meaning

1 NAK transmitted header CRC error.

2 NAK transmitted data CRC error.

4 NAK transmitted REP response.

NMA$C_CTCIR_DEO Data error outbound bitmap counters.

Value Meaning

1 NAK received header CRC error.

2 NAK received data CRC error.

4 NAK received REP response.

5–12

Asynchronous DDCMP Interface Driver
5.5 I/O Status Block

5.5 I/O Status Block
The I/O status block (IOSB) for all asynchronous DDCMP functions is shown in
Figure 5–4. Appendix A lists the completion status returns for these functions.
(The OpenVMS system messages documentation provides explanations and
suggested user actions for these returns.)

Figure 5–4 IOSB Contents for the DDCMP Functions

ZK−0708−GE

Transfer Size

Error Number * Error Summary Status Characteristics

+2 0

+4

Completion Status

* Only for DMP11

In addition to the completion status, the first longword of the IOSB returns either
the size (in bytes) of the data transfer or the size (in bytes) of the characteristics
buffer returned by a sense mode function. The second longword returns the line
status bits listed in Table 5–2 and the error summary bits listed in Table 5–3.

5–13

A
I/O Function Codes

This appendix lists the function codes and function modifiers defined by
the $IODEF macro within the OpenVMS VAX environment. The associated
arguments for these functions are also provided.

A.1 DMC11/DMR11 Interface Driver

Functions Arguments Modifiers

IO$_READLBLK
IO$_READVBLK
IO$_READPBLK

P1 - buffer address
P2 - message size

IO$M_DSABLMBX
IO$M_NOW

IO$_WRITELBLK
IO$_WRITEVBLK
IO$_WRITEPBLK

P1 - buffer address
P2 - message size

IO$M_ENABLMBX1

IO$_SETMODE
IO$_SETCHAR

P1 - characteristics
buffer address

IO$_SETMODE!IO$M_ATTNAST
IO$_SETMODE!IO$M_ATTNAST

P1 - AST service routine
address
P2 - (ignored)
P3 - AST access mode

IO$_SETMODE!IO$M_SHUTDOWN
IO$_SETCHAR!IO$M_SHUTDOWN

P1 - characteristics block
address

IO$_SETMODE!IO$M_STARTUP
IO$_SETCHAR!IO$M_STARTUP

P1 - characteristics block
address
P2 - (ignored)
P3 - receive message
blocks

1Only for IO$_WRITELBLK and IO$_WRITEPBLK

QIO Status Returns

SS$_ABORT SS$_BADPARAM

SS$_DATAOVERUN SS$_DEVACTIVE

SS$_DEVOFFLINE SS$_ENDOFFILE

SS$_NORMAL

A–1

I/O Function Codes
A.2 DMP11 and DMF32 Interface Drivers

A.2 DMP11 and DMF32 Interface Drivers

Functions Arguments

IO$_READLBLK[!IO$M_NOW]
IO$_READVBLK[!IO$M_NOW]
IO$_READPBLK[!IO$M_NOW]
IO$_WRITELBLK
IO$_WRITEVBLK
IO$_WRITEPBLK

P1- buffer address
P2 - buffer size
P6 - diagnostic buffer address
(optional)

IO$_SETMODE
IO$_SETCHAR
IO$_SETMODE!IO$M_CTRL
IO$_SETCHAR!IO$M_CTRL
IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP
IO$_SETCHAR!IO$M_CTRL!IO$M_STARTUP
IO$_SETMODE!IO$M_STARTUP
IO$_SETCHAR!IO$M_STARTUP
IO$_SETMODE!IO$M_SHUTDOWN
IO$_SETCHAR!IO$M_SHUTDOWN
IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN
IO$_SETCHAR!IO$M_CTRL!IO$M_SHUTDOWN

P1 - characteristics buffer
address (optional)
P2 - extended characteristics
buffer descriptor address
(optional)
P3 - receive message blocks
(optional)
P6 - diagnostic buffer address
(optional)

IO$_SETMODE!IO$M_ATTNAST
IO$_SETCHAR!IO$M_ATTNAST

P1 - AST service routine address
P2 - (ignored)
P3 - access mode to deliver AST

IO$_SETMODE!IO$M_SET_MODEM1

IO$_SETCHAR!IO$M_SET_MODEM1

IO$_SENSEMODE!IO$M_RD_MODEM
IO$_SENSEMODE!IO$M_CTRL

!IO$M_RD_MODEM1

P1 - modem status buffer address

IO$_SENSEMODE
IO$_SENSEMODE!IO$M_CTRL

P1 - characteristics buffer
address (optional)
P2 - extended characteristics
buffer descriptor address
(optional)

IO$_SENSEMODE!IO$M_RD_COUNTS2

IO$_SENSEMODE!IO$M_CLR_COUNTS2

IO$_SENSEMODE!IO$M_RD_COUNTS
!IO$M_CLR_COUNTS2

IO$_SENSEMODE!IO$M_CTRL
!IO$M_RD_COUNTS3

IO$_SENSEMODE!IO$M_CTRL
!IO$M_CLR_COUNTS3

IO$_SENSEMODE!IO$M_CTRL
!IO$M_RD_COUNTS
!IO$M_CLR_COUNTS3

P1 - (ignored)
P2 - counter buffer descriptor
address

IO$_SENSEMODE!IO$M_RD_MEM1

IO$_SENSEMODE!IO$M_RD_MEM
!IO$M_CTRL1

P1 - status slot buffer address
P2 - tributary status slot address

IO$_CLEAN (none)

1Only for DMP11
2Only for DDCMP
3Only for DDCMP and LAPB

A–2

I/O Function Codes
A.2 DMP11 and DMF32 Interface Drivers

QIO Status Returns

SS$_ABORT SS$_BADPARAM

SS$_BUFFEROVF SS$_CANCEL

SS$_DEVACTIVE SS$_DEVICEFULL

SS$_DEVINACT SS$_DEVOFFLINE

SS$_ENDOFFILE SS$_NORMAL

A.3 DR11–W/DRV11–WA Interface Driver

Functions Arguments Modifiers

IO$_READLBLK
IO$_READVBLK
IO$_READPBLK
IO$_WRITELBLK
IO$_WRITEVBLK
IO$_WRITEPBLK

P1 - buffer address
P2 - buffer size
P3 - timeout period
P4 - CSR value
P5 - ODR value

IO$M_SETFNCT
IO$M_WORD1

IO$M_TIMED
IO$M_CYCLE
IO$M_RESET

IO$_SETMODE
IO$_SETCHAR

P1 - characteristics buffer address
P3 - access mode

IO$M_ATTNAST
IO$M_DATAPATH2

1Not applicable to DRV11–WA
2Only for IO$_SETCHAR

QIO Status Returns

SS$_BADPARAM SS$_CANCEL

SS$_CTRLERR SS$_DEVACTIVE

SS$_DRVERR SS$_EXQUOTA

SS$_NOPRIV SS$_NORMAL

SS$_OPINCOMPL SS$_PARITY

SS$_TIMEOUT

A.4 DR32 Interface Driver

Functions Arguments Modifiers

IO$_LOADMCODE P1 - starting address of microcode to
be loaded
P2 - load byte count

IO$_STARTDATA P1 - starting address of data
transfer command table
P2 - length of the data transfer
command table

IO$M_SETEVF

A–3

I/O Function Codes
A.4 DR32 Interface Driver

High-Level
Language Function

XF$SETUP Defines command and buffer areas; initializes queues

XF$STARTDEV Issues a request that starts the DR32

XF$FREESET Releases command packets onto FREEQ

XF$PKTBLD Builds command packets; releases them onto INPTQ

XF$GETPKT Removes a command packet from TERMQ

XF$CLEANUP Deassigns the device channel and deallocates the command area

QIO Status Returns

SS$_ABORT SS$_BADPARAM

SS$_BADQUEUEHDR SS$_BUFNOTALIGN

SS$_CANCEL SS$_CTRLERR

SS$_DEVACTIVE SS$_DEVREQERR

SS$_EXQUOTA SS$_INSFMEM

SS$_IVBUFLEN SS$_MCNOTVALID

SS$_NORMAL SS$_PARITY

SS$_POWERFAIL

A.5 Asynchronous DDCMP DUP11 Interface Driver

Functions Arguments

IO$_READLBLK[!IO$M_NOW]
IO$_READVBLK[!IO$M_NOW]
IO$_READPBLK[!IO$M_NOW]
IO$_WRITELBLK
IO$_WRITEVBLK
IO$_WRITEPBLK

P1 - buffer address
P2 - buffer size

IO$_SETMODE
IO$_SETCHAR
IO$_SETMODE!IO$M_STARTUP
IO$_SETCHAR!IO$M_STARTUP
IO$_SETMODE!IO$M_CTRL
IO$_SETCHAR!IO$M_CTRL
IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP
IO$_SETCHAR!IO$M_CTRL!IO$M_STARTUP
IO$_SETMODE!IO$M_SHUTDOWN
IO$_SETCHAR!IO$M_SHUTDOWN
IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN
IO$_SETCHAR!IO$M_CTRL!IO$M_SHUTDOWN

P2 - buffer descriptor address
(optional)

A–4

I/O Function Codes
A.5 Asynchronous DDCMP DUP11 Interface Driver

Functions Arguments

IO$_SETMODE!IO$M_ATTNAST
IO$_SETCHAR!IO$M_ATTNAST

P1 - AST service routine address
P2 - (ignored)
P3 - access mode to deliver AST

IO$_SENSEMODE
IO$_SENSEMODE!IO$M_CTRL
IO$_SENSEMODE!IO$M_RD_COUNTS
IO$_SENSEMODE!IO$M_CLR_COUNTS
IO$_SENSEMODE!IO$M_RD_COUNTS

!IO$M_CLR_COUNTS
IO$_SENSEMODE!IO$M_CTRL

!IO$M_RD_COUNTS
IO$_SENSEMODE!IO$M_CTRL

!IO$M_CLR_COUNTS

P1 - (ignored)
P2 - buffer descriptor address

QIO Status Returns

SS$_ABORT SS$_BADPARAM

SS$_BUFFEROVF SS$_CANCEL

SS$_DEVACTIVE SS$_DEVICEFULL

SS$_DEVINACT SS$_DEVOFFLINE

SS$_ENDOFFILE SS$_NORMAL

A–5

Index

A
Argument lists, A–1 to A–5
Asynchronous DDCMP driver, 5–1

AST service routine address, 5–9
attention AST, 5–9
characteristics, 5–6 to 5–7

controller, 5–6, 5–9
device, 5–1
extended, 5–7 to 5–8
modifying, 5–6
tributary, 5–9

controller
mode, 5–7
starting, 5–6

controller counter parameter IDs, 5–10
device characteristics, 5–1
driver

capabilities, 5–1
duplex modes, 5–7
enable attention AST, 5–9
enable modem, 5–6
errors, 5–3
error summary bits, 5–3
extended characteristics, 5–7 to 5–8
full-duplex mode, 5–1
function codes, 5–4, A–4
function modifiers, 5–4, 5–6, 5–7 to 5–9
I/O functions, 5–4, 5–5, 5–9
I/O status block, 5–13
message size, 5–2, 5–4, 5–5
modem

disabling line, 5–8
modifying characteristics, 5–6
parameter ID, 5–6
point-to-point

configuration, 5–1
privilege, 5–4
protocol, 5–6

starting, 5–7
stopping, 5–8

quotas, 5–1
read function, 5–4
read internal counters, 5–9
sense mode function, 5–9
set controller mode, 5–6

characteristics, 5–6 to 5–7

Asynchronous DDCMP driver
set controller mode (cont’d)

message size, 5–7
P2 buffer, 5–6
parameter ID, 5–6

set mode function, 5–5
set tributary mode, 5–7

extended characteristics, 5–7 to 5–8
P2 buffer, 5–7

shutdown controller mode, 5–8
shutdown tributary mode, 5–8
starting

controller, 5–6
protocol, 5–7
tributary, 5–7

status returns, A–5
stopping

controller, 5–8
modem line, 5–8
protocol, 5–8
tributary, 5–8

supported device, 5–1
SYS$GETDVI routine, 5–1
tributary

starting, 5–7
stopping, 5–8

tributary counter parameter IDs, 5–10
unit and line status, 5–2
write function, 5–5

Attention AST
asynchronous DDCMP driver, 5–9
DMC11/DMR11 driver, 1–7
DMP11/DMF32 driver, 2–17
DR11–W/DRV11–WA driver, 3–13

C
Characteristics

See Device characteristics
Command chaining, 4–2
Command packets, 4–4
Control and status register

See CSR
CSR (control and status register), 3–5

bit assignment, 3–14

Index–1

D
Data chaining, 4–2
Data registers, 3–5
Data transfer mode, 3–3
Data transfers

meaning of terms read and write, 3–4
DDCMP (Digital Data Communications Message

Protocol), 1–1, 2–1
DDI (DR32 device interconnect), 4–1

status returns, 4–33
Device characteristics

asynchronous DDCMP driver, 5–1
DMC11/DMR11 driver, 1–3
DMP11/DMF32 driver, 2–3
DR11–W/DRV11–WA driver, 3–8
DR32 driver, 4–3

DMC11/DMR11 driver
attention AST, 1–8

enabling, 1–7
data

message size, 1–3, 1–6, 1–8
DDCMP (Digital Data Communications

Message Protocol), 1–1
device characteristics, 1–3, 1–8
driver, 1–1

capabilities, 1–2
error summary bits, 1–5
function codes, 1–5, A–1
function modifiers, 1–5, 1–6, 1–7, 1–8
I/O functions, 1–5 to 1–6
I/O status block, 1–9
mailbox

disabling, 1–5
enabling, 1–6
message, 1–8

format, 1–2
type, 1–2

usage, 1–2
programming example, 1–9
quota, 1–3, 1–8
read function, 1–5
receive-message blocks, 1–8
set characteristics function, 1–6
set mode and shut down unit, 1–8
set mode and start unit, 1–8
set mode function, 1–6
start unit, 1–8
status returns, A–1
supported DMC11 options, 1–1
SYS$GETDVI routine, 1–3
unit and line status, 1–4
unit characteristics, 1–4
write function, 1–6

DMP11/DMF32 driver
AST service routine address, 2–17
attention AST, 2–17

DMP11/DMF32 driver (cont’d)
characteristics

controller, 2–9, 2–17
device, 2–3
extended, 2–10 to 2–11, 2–15 to 2–16
modifying, 2–9
tributary, 2–14, 2–17

character-oriented protocol, 2–3, 2–13
controller

mode, 2–11
starting, 2–9

DDCMP (Digital Data Communications
Message Protocol), 2–1

DDCMP controller counter parameter IDs,
2–18

device characteristics, 2–3
diagnostic support, 2–21

read device status slot, 2–23
read line unit modem status, 2–22
set line unit modem status, 2–22

DMC11-compatible operating mode, 2–1
DMF32 driver, 2–1

control, 2–12
transmitter interface, 2–13

DMP11 driver, 2–1
driver capabilities, 2–1
duplex modes, 2–1, 2–11, 2–12
enable attention AST, 2–17
enable modem, 2–9
errors, 2–5
error summary bits, 2–5
extended characteristics, 2–10 to 2–11, 2–15 to

2–16
framing routine interface, 2–13
function codes, 2–6, A–2
function modifiers, 2–7 to 2–9, 2–14, 2–16 to

2–17, 2–22 to 2–23
HDLC bit stuff mode, 2–3, 2–12, 2–14
I/O functions, 2–7 to 2–8, 2–14, 2–17
I/O status block, 2–23
LAPB controller counter parameter IDs, 2–20
message size, 2–3, 2–7, 2–8, 2–9
modem

disabling line, 2–16
status, 2–22

modifying characteristics, 2–9
multipoint

configuration, 2–1
control station, 2–1

parameter ID, 2–10, 2–12
point-to-point

configuration, 2–1
station, 2–1

polling, 2–15
polling time, 2–11
privilege, 2–7
programming example, 2–23
protocol, 2–1, 2–3, 2–10, 2–12, 2–13

Index–2

DMP11/DMF32 driver
protocol (cont’d)

starting, 2–14
stopping, 2–17

quotas, 2–3
read device status slot, 2–23
read function, 2–7
read internal counters, 2–18
read line unit modem status, 2–22
sense mode function, 2–17
set controller mode, 2–9

characteristics, 2–9
extended characteristics, 2–10 to 2–11
message size, 2–9, 2–11, 2–12
P1 buffer, 2–9
P2 buffer, 2–10
parameter ID, 2–10
receive message blocks, 2–9

set line unit modem status, 2–21, 2–22
set mode function, 2–8
set tributary mode, 2–14

characteristics, 2–14
extended characteristics, 2–15 to 2–16
P1 buffer, 2–14
P2 buffer, 2–15
parameter ID, 2–14

shutdown controller mode, 2–16
shutdown tributary mode, 2–17
starting

controller, 2–9
protocol, 2–14
tributary, 2–14

status, DMF32 driver, 2–13
status returns, A–2
stopping

controller, 2–16
modem line, 2–16
protocol, 2–16, 2–17
tributary, 2–16, 2–17

supported devices, 2–1
sync characters, 2–11, 2–12
SYS$GETDVI routine, 2–3
timeout, 2–12
tributary, 2–1

address, 2–1, 2–16
mode, 2–1
starting, 2–14
station, 2–1
stopping, 2–16, 2–17

tributary counter parameter IDs, 2–20, 2–21
unit and line status, 2–4
unit characteristics, 2–4
write function, 2–8

DR11–W/DRV11–WA driver
attention AST, 3–13
BDP (buffered data path), 3–10, 3–13
block mode, 3–3, 3–10, 3–13
CSR (control and status register)

DR11–W/DRV11–WA driver
CSR (control and status register) (cont’d)

ATTN bit, 3–6, 3–10
bit assignment, 3–14
CYCLE bit, 3–5, 3–10
ERROR bit, 3–6
FNCT and STATUS bits, 3–5, 3–6, 3–10,

3–13
function, 3–5

data registers, 3–5
data transfer mode, 3–3
data transfers

read and write, 3–4
through BDP, 3–13

DDP (direct data path), 3–10, 3–13
device characteristics, 3–8
driver, 3–1
EIR (error information register), 3–6

bit assignment, 3–14
enable attention AST, 3–13
error reporting, 3–6
function codes, 3–9, A–3
function modifiers, 3–6, 3–10 to 3–11, 3–12 to

3–13
hardware errors, 3–7, 3–8
I/O functions, 3–11, 3–12
I/O status block, 3–14

byte count, 3–14
IDR (input data register), 3–5, 3–10, 3–13
interrupts, 3–3, 3–5, 3–6, 3–8, 3–10, 3–13
link mode, 3–6, 3–7, 3–10
NPR transfers, 3–6
ODR (output data register), 3–5, 3–10
programming example, 3–15
read function, 3–11
set characteristics function, 3–12
set mode function, 3–12
SS$_BADPARAM, 3–10
status returns, A–3
SYS$CANCEL routine, 3–13, 3–14
SYS$GETDVI routine, 3–8
transfer mode, 3–3
word mode, 3–4, 3–10
write function, 3–12

DR32 driver
action routines, 4–21, 4–25, 4–27, 4–30, 4–34
AST routine, 4–13, 4–18, 4–19, 4–23, 4–30
buffer block, 4–4, 4–12, 4–14, 4–19, 4–20, 4–22,

4–32
byte count field, 4–14
command block, 4–4, 4–5, 4–19, 4–20, 4–32
command chaining, 4–2, 4–12, 4–26
command control, 4–12
command packets, 4–2, 4–4 to 4–7, 4–23 to

4–25, 4–28, 4–30 to 4–36
command sequences

device-initiated, 4–6
intiating, 4–6

Index–3

DR32 driver (cont’d)
control (command) messages, 4–3, 4–6, 4–10,

4–11, 4–16, 4–26, 4–33, 4–34
control select field, 4–12
data chaining, 4–2, 4–12, 4–26
data rate, 4–4, 4–18, 4–19, 4–24
data transfer command table, 4–18, 4–19
data transfers, 4–2, 4–4, 4–10, 4–12 to 4–14,

4–18, 4–22, 4–23, 4–26, 4–34
DDI (DR32 device interconnect), 4–1
device

characteristics, 4–3
control code, 4–9, 4–25
message, 4–6, 4–8, 4–10, 4–12, 4–16, 4–22,

4–24, 4–26, 4–29
diagnostic tests, 4–9 to 4–11, 4–26, 4–35
DR device definition, 4–2
DSL (DR32 status longword), 4–8, 4–15, 4–21,

4–34
error checking, 4–34
event flags, 4–13, 4–18, 4–20, 4–24, 4–25,

4–27, 4–28, 4–30, 4–35
far-end DR device, 4–2, 4–4, 4–6, 4–7, 4–10,

4–12, 4–16, 4–24
FREEQ (free queue), 4–4, 4–5, 4–11, 4–16,

4–22, 4–24, 4–32
function codes, A–3
function modifier, 4–18
GO bit, 4–6, 4–20
high-level language interface, 4–4, 4–21

support routines, 4–21
synchronization, 4–30

I/O function codes, 4–18
I/O status block, 4–20, 4–28, 4–31, 4–34
INPTQ (input queue), 4–4, 4–5, 4–10, 4–11,

4–20, 4–22, 4–25, 4–27, 4–33
INSQTI instruction, 4–5
interrupt

See also DR32, action routines
See also DR32, event flags
AST, 4–3, 4–25, 4–27, 4–28, 4–30, 4–35
command packet, 4–12, 4–18, 4–19, 4–20,

4–23, 4–25, 4–30, 4–34
reasons, 4–3

interrupt control argument (XF$FREESET),
4–25

interrupt control field, 4–13, 4–23, 4–35
length of device message field, 4–8
length of log area field, 4–9
load microcode function (IO$_LOADMCODE),

4–18
log area field, 4–17
log message, 4–26, 4–29
microcode loader (XFLOADER), 4–17
NOP command packet, 4–35
prefetch command packets, 4–33
programming

examples, 4–36

DR32 driver
programming (cont’d)

hints, 4–33
interface, 4–4

queue
headers, 4–5, 4–19
processing, 4–5
retry, 4–6, 4–35, 4–42

random access, 4–2, 4–12
REMQHI instruction, 4–5
residual DDI byte count field, 4–14
residual memory byte count field, 4–14
start data transfer function (IO$_STARTDATA),

4–4, 4–6, 4–18
status returns, 4–28, A–4

DDI status, 4–33
device-dependent, 4–32

suppress length error field, 4–13
symbolic definitions, 4–21
SYS$GETDVI routine, 4–3
TERMQ (termination queue), 4–3, 4–4, 4–5,

4–11, 4–13 to 4–14, 4–19, 4–22, 4–27, 4–28,
4–30, 4–35

VAX FORTRAN programming, 4–21
VAX MACRO programming, 4–21
virtual address of buffer field, 4–14
XF$CLEANUP, 4–29
XF$FREESET, 4–24
XF$GETPKT, 4–28
XF$PKTBLD, 4–25
XF$SETUP, 4–22
XF$STARTDEV, 4–23

Drivers
asynchronous DDCMP, 5–1
DMC11/DMR11, 1–1
DMP11/DMF32, 2–1
DR11–W/DRV11–WA, 3–1
DR32, 4–1

DRV11–WA driver
See DR11–W/DRV11–WA driver

E
EIR (error information register), 3–6

bit assignment, 3–14
Enable attention AST function

asynchronous DDCMP driver, 5–9
DMC11/DMR11 driver, 1–7
DMP11/DMF32 driver, 2–17
DR11–W/DRV11–WA driver, 3–13

F
Function codes, A–1 to A–5

IO$_LOADMCODE, 4–18
IO$_READLBLK, 1–5, 2–7, 3–11, 5–4
IO$_READPBLK, 1–5, 2–7, 3–11, 5–4
IO$_READVBLK, 1–5, 2–7, 3–11, 5–4

Index–4

Function codes (cont’d)
IO$_SENSEMODE, 2–17, 5–9
IO$_SETCHAR, 1–6, 2–8, 3–12, 5–5
IO$_SETMODE, 1–6, 2–8, 3–12, 5–5
IO$_STARTDATA, 4–4, 4–6, 4–18
IO$_WRITELBLK, 1–6, 2–8, 3–12, 5–5
IO$_WRITEPBLK, 1–6, 2–8, 3–12, 5–5
IO$_WRITEVBLK, 1–6, 2–8, 3–12, 5–5

Function modifiers, A–1 to A–5
for DR11–W/DRV11-WA driver, 4–18
for asynchronous DDCMP driver, 5–4
for DMC11/DMR11 driver, 1–5
for DMP11/DMF32 driver, 2–7
for DR11–W/DRV11–WA driver, 3–10
IO$M_ATTNAST, 1–7, 2–17, 3–13, 5–9
IO$M_CLR_COUNTS, 2–18, 5–9
IO$M_CTRL, 2–9, 2–16 to 2–18, 2–23, 5–6, 5–8

to 5–9
IO$M_CYCLE, 3–5, 3–10
IO$M_DATAPATH, 3–13
IO$M_DSABLMBX, 1–5
IO$M_ENABLMBX, 1–6
IO$M_NOW, 1–5, 2–7, 5–4
IO$M_RD_COUNTS, 2–18, 5–9
IO$M_RD_MEM, 2–23
IO$M_RD_MODEM, 2–22
IO$M_RESET, 3–11
IO$M_SETEVF, 4–18, 4–20
IO$M_SETFNCT, 3–5, 3–10
IO$M_SET_MODEM, 2–22
IO$M_SHUTDOWN, 1–8, 2–16, 5–8
IO$M_STARTUP, 1–8, 2–9, 2–14, 5–6, 5–7
IO$M_TIMED, 3–10
IO$M_WORD, 3–10

I
I/O functions

See also Function codes
See also Function modifiers
arguments, A–1 to A–5
codes, A–1 to A–5
for asynchronous DDCMP driver, 5–4
for DMC11/DMR11 driver, 1–5
for DMP11/DMF32 driver, 2–6
for DR11–W/DRV11–WA driver, 3–9
for DR32 driver, 4–18
modifiers, A–1 to A–5

I/O status block (IOSB)
asynchronous DDCMP driver, 5–13
DMC11/DMR11 driver, 1–9
DMP11/DMF32 driver, 2–23
DR11–WDRV11–WA driver, 3–14
DR32 driver, 4–31

IDR (input data register), 3–5
IOSB

See I/O status block

M
Mailbox message format, 1–2

O
ODR (output data register), 3–5

P
Protocols

DMC11/DMR11 driver, 1–1, 1–8
DMP11/DMF32 driver, 2–1

Q
Quotas

buffered I/O, 1–3, 2–3, 5–1
buffered I/O byte count, 1–3, 1–8, 2–3, 5–1
direct I/O, 1–3, 2–3

S
SHR$_HALTED return, 4–29
SHR$_NOCMDMEM return, 4–25, 4–27, 4–29
SHR$_QEMPTY return, 4–29
SS$_ABORT return, 2–14, 4–20, A–1, A–2, A–4,

A–5
SS$_BADPARAM return, 3–10, 4–20, 4–23, 4–24,

4–27, A–1, A–2, A–3, A–4, A–5
SS$_BADQUEUEHDR return, 4–25, 4–27, 4–29,

A–4
SS$_BUFFEROVF return, 2–18, 5–9, 5–10, A–2,

A–5
SS$_BUFNOTALIGN return, 4–20, A–4
SS$_CANCEL return, 4–20, A–2, A–3, A–4, A–5
SS$_CTRLERR return, 3–8, 4–20, 4–29, 4–32,

A–3, A–4
SS$_DATAOVERUN return, 1–6, 2–7, 5–4, A–1
SS$_DEVACTIVE return, 4–18, A–1, A–2, A–3,

A–4, A–5
SS$_DEVICEFULL return, A–2, A–5
SS$_DEVINACT return, A–2, A–5
SS$_DEVOFFLINE return, A–1, A–2, A–5
SS$_DEVREQERR return, 4–20, 4–32, A–4
SS$_DRVERR return, 3–8, A–3
SS$_ENDOFFILE return, 2–7, 5–5, A–1
SS$_ENDOFFLINE return, A–2, A–5
SS$_EXQUOTA return, 4–20, A–3, A–4
SS$_INSFMEM return, 4–20, 4–25, 4–27, A–4
SS$_IVBUFLEN return, 4–20, A–4
SS$_MCNOTVALID return, 4–20, A–4
SS$_NOPRIV return, A–3
SS$_NORMAL return, 4–20, A–1, A–2, A–3, A–4,

A–5

Index–5

SS$_OPINCOMPL return, 3–11, A–3
SS$_PARITY return, 4–18, 4–20, 4–32, A–3, A–4
SS$_POWERFAIL return, 4–3, 4–18, 4–20, A–4
SS$_TIMEOUT return, A–3
SYS$ASSIGN routine, 2–8, 5–6
SYS$GETDVI routine

asynchronous DDCMP driver, 5–1

DMC11/DMR11 device, 1–3
DMP11/DMF11 device, 2–3
DR11–W/DRV11–WA device, 3–8
DR32 device, 4–3

X
XFMAXRATE parameter, 4–20

Index–6

