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Preface

The OpenVMS Calling Standard defines the requirements, mechanisms, and
conventions used in the OpenVMS interface that supports procedure-to-procedure
calls for both Alpha and VAX environments. The standard defines the run-time
data structures, constants, algorithms, conventions, methods, and functional
interfaces that enable a native user-mode procedure to operate correctly in a
multilanguage environment on Alpha and VAX systems. Properties of the run-
time environment that must apply at various points during program execution
are also defined.

The 32-bit user mode of the OpenVMS Alpha standard provides a high degree of
compatibility with current programs written for the OpenVMS VAX environment.

The 64-bit user mode of the OpenVMS Alpha standard is a compatible superset of
the OpenVMS Alpha 32-bit environment.

The interfaces, methods, and conventions specified in this manual are primarily
intended for use by implementers of compilers, debuggers, and other run-time
tools, run-time libraries, and base operating systems. These specifications may or
may not be appropriate for use by higher level system software and applications.

This standard is under engineering change order (ECO) control. This manual
includes all ECOs through ECO #48. ECOs are approved by Compaq’s Calling
Standard committee.

Intended Audience
This manual primarily defines requirements for compiler and debugger writers,
but the information can apply to procedure calling for all programmers in various
levels of programming.

Document Structure
This manual contains six chapters. Some chapters are restricted to either an
Alpha or a VAX environment.

Chapter 1 provides an overview of the standard, defines goals, and defines terms
used in the text.

Chapter 2 describes the primary conventions in calling a procedure in an
OpenVMS VAX environment. It defines the VAX register usage and argument-
passing list as well as vector and scalar processor synchronization.

Chapter 3 describes the fundamental concepts and conventions in calling a
procedure in an OpenVMS Alpha environment. The chapter identifies the Alpha
register usage and addressing, and focuses on aspects of the calling standard that
pertain to procedure-to-procedure flow of control.

Chapter 4 defines the argument-passing data types used in calling a procedure
for both OpenVMS Alpha and OpenVMS VAX environments.

ix



Chapter 5 defines the argument descriptors used in calling a procedure for both
OpenVMS Alpha and OpenVMS VAX environments.

Chapter 6 describes the OpenVMS condition- and exception-handling
requirements for both OpenVMS Alpha and OpenVMS VAX environments.

Related Documents
The following manuals contain related information:

• VAX Architecture Reference Manual

• Alpha Architecture Reference Manual

• OpenVMS Programming Interfaces: Calling a System Routine

• Guide to POSIX Threads Library

• VAX/VMS Internals and Data Structures

• OpenVMS AXP Internals and Data Structures

For additional information about Compaq OpenVMS products and services, access
the Compaq website at the following location:

http://www.openvms.compaq.com

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following World Wide Web address to order additional documentation:

http://www.openvms.compaq.com

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.
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Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

( ) In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[ ] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.
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Introduction

This standard defines properties such as the run-time data structures, constants,
algorithms, conventions, methods, and functional interfaces that enable a
native user-mode procedure to operate correctly in a multilanguage and
multithreaded environment on OpenVMS Alpha and OpenVMS VAX systems.
These properties include the contents of key registers, format and contents of
certain data structures, and actions that procedures must perform under certain
circumstances.

This standard also defines properties of the run-time environment that must
apply at various points during program execution. These properties vary in scope
and applicability. Some properties apply at all points throughout the execution
of standard-conforming user-mode code and must, therefore, be held constant at
all times. Examples of such properties include those defined for the stack pointer
and various properties of the call-chain navigation mechanism. Other properties
apply only at certain points, such as call conventions that apply only at the point
of transfer of control to another procedure.

Furthermore, some properties are optional depending on circumstances. For
example, compilers are not obligated to follow the argument list conventions
when a procedure and all of its callers are in the same module, have been
analyzed by an interprocedural analyzer, or have private interfaces (such as
language-support routines).

Note

In many cases, significant performance gains can be realized by selective
use of nonstandard calls when the safety of such calls is known. Compiler
or tools writers are encouraged to make full use of such optimizations.

The OpenVMS Alpha portion of this calling standard is intended to provide a
calling standard that contains a high degree of compatibility with the OpenVMS
VAX environment. Conventions that differ are, for the most part, those that are
dictated by differences between the Alpha and VAX hardware architectures.

The procedure call mechanism depends on agreement between the calling and
called procedures to interpret the argument list. The argument list does not fully
describe itself. This standard requires language extensions to permit a calling
program to generate some of the argument-passing mechanisms expected by
called procedures.

This standard specifies the following attributes of the interfaces between modules:

• Calling sequence—instructions at the call site, entry point, and returns

• Argument list—structure of the list describing the arguments to the called
procedure
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• Function value return—form and conventions for the return of the function
value as a value or as a condition value to indicate success or failure

• Register usage—which registers are preserved and who is responsible for
preserving them

• Stack usage—rules governing the use of the stack

• Argument data types—data types of arguments that can be passed

• Argument descriptor formats—how descriptors are passed for the more
complex arguments

• Condition handling—how exception conditions are signaled and how they are
handled in a modular fashion

• Stack unwinding—how the current thread of execution is aborted efficiently

1.1 Applicability
This standard defines the rules and conventions that govern the native user-
mode run-time environment on Alpha and VAX processors. It is applicable to
all products of Compaq Computer Corporation that execute in native user mode.

Uses of this standard include:

• All externally callable interfaces in Compaq supported, standard system
software

• All intermodule calls to major software components

• All external procedure calls generated by OpenVMS language processors
without interprocedural analysis or permanent private conventions (such as
those used for language-support run-time library [RTL] routines)

1.2 Architectural Level
This standard defines an implementation-level run-time software
architecture for OpenVMS operating systems.

The interfaces, methods, and conventions specified in this document are primarily
intended for use by implementers of compilers, debuggers, and other run-time
tools, run-time libraries, and base operating systems. These specifications may or
may not be appropriate for use by higher-level system software and applications.

Compilers and run-time libraries may provide additional support of these
capabilities via interfaces that are more suited for compiler and application use.
This specification neither prohibits nor requires such additional interfaces.

1.3 Goals
Generally, this calling standard promotes the highest degree of performance,
portability, efficiency, and consistency in the interface between called procedures
of a common OpenVMS environment. Specifically, the calling standard:

• Applies to all intermodule callable interfaces in the native software system.
Specifically, the standard considers the requirements of important compiled
languages including Ada, BASIC, Bliss, C, C++, COBOL, FORTRAN, Pascal,
LISP, PL/I, and calls to the operating system and library procedures. The
needs of other languages that the OpenVMS operating system may support in
the future must be met by the standard or by compatible revisions to it.
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• Excludes capabilities for lower-level components (such as assembler routines)
that cannot be invoked from the high-level languages.

• Allows the calling program and called procedure to be written in different
languages. The standard reduces the need for using language extensions in
mixed-language programs.

• Contributes to the writing of error-free, modular, and maintainable software,
and promotes effective sharing and reuse of software modules.

• Provides the programmer with control over fixing, reporting, and flow of
control when various types of exception conditions occur.

• Provides subsystem and application writers with the ability to override
system messages toward a more suitable application-oriented interface.

• Adds no space or time overhead to procedure calls and returns that do not
establish exception handlers, and minimizes time overhead for establishing
handlers at the cost of increased time overhead when exceptions occur.

The OpenVMS Alpha portion of this standard:

• Supports a 32-bit user-mode environment that provides a high degree of
compatibility with the OpenVMS VAX environment.

• Supports a 64-bit user-mode environment that is a compatible superset of the
OpenVMS Alpha 32-bit environment.

• Simplifies coexistence with VAX procedures that execute under the translated
image environment.

• Simplifies the compilation of VAX assembler source to native Alpha object
code.

• Supports a multilanguage, multithreaded execution environment, including
efficient, effective support for the implementation of the multithread
architecture (Compaq POSIX Threads Library1).

• Provides an efficient mechanism for calling lightweight procedures that do
not need or cannot expend the overhead of setting up a stack call frame.

• Provides for the use of a common calling sequence to invoke lightweight
procedures that maintain only a register call frame and heavyweight
procedures that maintain a stack call frame. This calling sequence allows a
compiler to determine whether to use a stack frame based on the complexity
of the procedure being compiled. A recompilation of a called routine that
causes a change in stack frame usage does not require a recompilation of its
callers.

• Provides condition handling, traceback, and debugging for lightweight
procedures that do not have a stack frame.

• Makes efficient use of the Alpha architecture, including effectively using a
larger number of registers than is contained in a conventional VAX processor.

• Minimizes the cost of procedure calls.

1 The Compaq POSIX Threads Library was formerly known as DECthreads
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The OpenVMS procedure calling mechanisms of this standard do not provide:

• Checking of argument data types, data structures, and parameter access. The
VAX and Alpha protection and memory management systems do not depend
on correct interactions between user-level calling and called procedures. Such
extended checking might be desirable in some circumstances, but system
integrity does not depend on it.

• Information for an interpretive OpenVMS Debugger. The definition of the
debugger includes a debug symbol table (DST) that contains the required
descriptive information.

1.4 Definitions
The following terms are used in this standard:

• Address: On VAX systems, a 32-bit value used to denote a position in
memory. On Alpha systems, a 64-bit value used to denote a position in
memory. However, many Alpha applications and user-mode facilities operate
in such a manner that addresses are restricted only to values that are
representable in 32 bits. This allows Alpha addresses often to be stored and
manipulated as 32-bit longword values. In such cases, the 32-bit address
value is always implicitly or explicitly sign-extended to form a 64-bit address
for use by the Alpha hardware.

• Argument list: A vector of entries (longwords on VAX processors, quadwords
on Alpha processors) that represents a procedure parameter list and possibly
a function value.

• Asynchronous software interrupt: An asynchronous interruption of
normal code flow caused by some software event. This interruption shares
many of the properties of hardware exceptions, including forcing some
out-of-line code to execute.

• Bound procedure: A type of procedure that requires knowledge (at run
time) of a dynamically determined larger enclosing scope to function correctly.

• Call frame: The body of information that a procedure must save to allow
it to properly return to its caller. A call frame may exist on the stack or in
registers. A call frame may optionally contain additional information required
by the called procedure.

• Condition handler: A procedure designed to handle conditions (exceptions)
when they occur during the execution of a thread.

• Condition value: A 32-bit value (sign extended to a 64-bit value on Alpha
processors) used to uniquely identify an exception condition. A condition
value can be returned to a calling program as a function value or it can be
signaled using the OpenVMS signaling mechanism.

• Descriptor: A mechanism for passing parameters where the address of
a descriptor is an entry in the argument list. The descriptor contains the
address of the parameter, data type, size, and additional information needed
to describe fully the data passed.

• Exception condition (or condition): An exceptional condition in the
current hardware or software state that should be noted or fixed. Its
existence causes an interrupt in program flow and forces execution of out-of-
line code. Such an event might be caused by an exceptional hardware state,
such as arithmetic overflows, memory access control violations, and so on, or
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by actions performed by software, such as subscript range checking, assertion
checking, or asynchronous notification of one thread by another.

During the time the normal control flow is interrupted by an exception, that
condition is termed active.

• Function: A procedure that returns a single value in accordance with the
standard conventions for value returning. Additional values are returned by
means of the argument list.

• Hardware exception: A category of exceptions that reflect an exceptional
condition in the current hardware state that should be noted or fixed by the
software. Hardware exceptions can occur synchronously or asynchronously
with respect to the normal program flow.

• Immediate value: A mechanism for passing input parameters where the
actual value is provided in the argument list entry by the calling program.

• Language-support procedure: A procedure called implicitly to implement
high-level language constructs. Such procedures are not intended to be
explicitly called from user programs.

• Library procedure: A procedure explicitly called using the equivalent of a
call statement or function reference. Such procedures are usually language
independent.

• Natural alignment: An attribute of certain data types that refers to the
placement of the data so that the lowest addressed byte of the data has an
address that is a multiple of the size of the data in bytes. Natural alignment
of an aggregate data type generally refers to an alignment in which all
members of the aggregate are naturally aligned.

This standard defines five natural alignments:

Byte—Any byte address

Word—Any byte address that is a multiple of 2

Longword—Any byte address that is a multiple of 4

Quadword—Any byte address that is a multiple of 8

Octaword—Any byte address that is a multiple of 16

• Procedure: A closed sequence of instructions that is entered from and
returns control to the calling program.

• Procedure value: An address value that represents a procedure. In the
VAX environment, a procedure value is the address of the entry mask that is
interpreted by the CALLx instruction invoking the procedure. In an Alpha
environment, a procedure value is the address of the procedure descriptor for
the procedure.

• Process: An address space and at least one thread of execution. Selected
security and quota checks are done on a per-process basis.

This standard anticipates the possibility of the execution of multiple threads
within a process. An operating system that provides only a single thread of
execution per process is considered a special case of a multithreaded system
where the maximum number of threads per process is one.

• Reference: A mechanism for passing parameters where the address of the
parameter is provided in the argument list by the calling program.

Introduction 1–5



Introduction
1.4 Definitions

• Signal: A POSIX defined concept used to cause out-of-line execution of code.
(This term should not be confused with the OpenVMS usage of the word that
more closely equates to exception as used in this document.)

• Standard call: Any transfer of control to a procedure by any means that
presents the called procedure with the environment defined by this document
and does not place additional restrictions, not defined by this document, on
the called procedure.

• Standard-conforming procedure: A procedure that adheres to all the
relevant rules set forth in this document.

• Thread of execution (or thread): An entity scheduled for execution on a
processor. In language terms, a thread is a computational entity used by a
program unit. Such a program unit might be a task, procedure, loop, or some
other unit of computation.

All threads executing within the same process share the same address space
and other process contexts, but they have a unique per-thread hardware
context that includes program counter, processor status, stack pointer, and
other machine registers.

This standard applies only to threads that execute within the context of a
user-mode process and are scheduled on one or more processors according to
software priority. All subsequent uses of the term thread in this standard
refer only to such user-mode process threads.

• Thread-safe code: Code that is compiled in such a way to ensure it will
execute properly when run in a threaded environment. Thread-safe code
usually adds extra instructions to do certain run-time checks and requires
that thread local storage be accessed in a particular fashion.

• Undefined: Referring to operations or behavior for which there is
no directing algorithm used across all implementations that support
this standard. Such operations may be well defined for a particular
implementation, but they still remain undefined with reference to this
standard. The actions of undefined operations may not be required by
standard-conforming procedures.

• Unpredictable: Referring to the results of an operation that cannot be
guaranteed across all implementations of this standard. These results may be
well defined for a particular implementation, but they remain unpredictable
with reference to this standard. All results that are not specified in this
standard, but are caused by operations defined in this standard, are
considered unpredictable. A standard-conforming procedure cannot depend on
unpredictable results.
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OpenVMS VAX Conventions

This chapter describes the primary conventions in calling a procedure in an
OpenVMS VAX environment.

2.1 Register Usage
In the VAX architecture, there are fifteen 32-bit-wide, general-purpose hardware
registers for use with scalar and vector program operations. This section defines
the rules of scalar and vector register usage.

2.1.1 Scalar Register Usage
This standard defines several general-purpose VAX registers and their scalar use,
as listed in Table 2–1.

Table 2–1 VAX Register Usage

Register Use

PC Program counter.

SP Stack pointer.

FP Current stack frame pointer. This register must always point at the current
frame. No modification is permitted within a procedure body.

AP Argument pointer. When a call occurs, AP must point to a valid argument
list. A procedure without parameters points to an argument list consisting
of a single longword containing the value 0.

R1 Environment value. When a procedure that needs an environment value
is called, the calling program must set R1 to the environment value. See
bound procedure value in Section 4.3.

R0, R1 Function value return registers. These registers are not to be preserved
by any called procedure. They are available as temporary registers to any
called procedure.

Registers R2 through R11 are to be preserved across procedure calls. The called
procedure can use these registers, provided it saves and restores them using the
procedure entry mask mechanism. The entry mask mechanism must be used so
that any stack unwinding done by the condition-handling mechanism restores all
registers correctly. In addition, PC, SP, FP, and AP are always preserved by the
CALLS or CALLG instruction and restored by the RET instruction. However, a
called procedure can use AP as a temporary register.

If JSB routines are used, they must not save or modify any preserved registers
(R2 through R11) not already saved by the entry mask mechanism of the calling
program.
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2.1.2 Vector Register Usage
This calling standard does not specify conventions for preserved vector registers,
vector argument registers, or vector function value return registers. All such
conventions are by agreement between the calling and called procedures. In
the absence of such an agreement, all vector registers, including V0 through
V15, VLR, VCR, and VMR are scratch registers. Among cooperating procedures,
a procedure that preserves or otherwise manipulates the vector registers by
agreement with its callers must provide an exception handler to restore them
during an unwind.

2.2 Stack Usage
Figure 2–1 shows the contents of the stack frame created for the called procedure
by the CALLG or CALLS instruction.

Figure 2–1 Stack Frame Generated by CALLG or CALLS Instruction

31 0

Condition handler (none=0)
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FP always points to the call frame (the condition-handler longword) of the calling
procedure. Other uses of FP within a procedure are prohibited. Unless the
procedure has a condition handler, the condition-handler longword contains all
zeros. See Chapter 6 for more information on condition handlers.

The contents of the stack located at addresses higher than the mask/PSW
longword belong to the calling program; they should not be read or written by
the called procedure, except as specified in the argument list. The contents of
the stack located at addresses lower than SP belong to interrupt and exception
routines; they are modified continually and unpredictably.
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The called procedure allocates local storage by subtracting the required number
of bytes from the SP provided on entry. This local storage is freed automatically
by the return instruction (RET).

Bit <28> of the mask/PSW longword is reserved to Compaq for future extensions
to the stack frame.

2.3 Calling Sequence
At the option of the calling procedure, the called procedure is invoked using the
CALLG or CALLS instruction, as follows:

CALLG arglst, proc
CALLS argcnt, proc

CALLS pushes the argument count argcnt onto the stack as a longword and sets
the argument pointer, AP, to the top of the stack. The complete sequence using
CALLS follows:

push argn
.
.
.
push arg1
CALLS #n, proc

If the called procedure returns control to the calling procedure, control must
return to the instruction immediately following the CALLG or CALLS instruction.
Skip returns and GOTO returns are allowed only during stack unwind operations.

The called procedure returns control to the calling procedure by executing the
RET instruction.

2.4 Argument List
The argument list is the primary means of passing information to and receiving
results from a procedure.
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2.4.1 Format
Figure 2–2 shows the argument list format.

Figure 2–2 Argument List Format
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The first longword is always present and contains the argument count as an
unsigned integer in the low byte. The 24 high-order bits are reserved to Compaq
and must be zero. To access the argument count, the called procedure must
ignore the reserved bits and access the count as an unsigned byte (for example,
MOVZBL, TSTB, or CMPB).

The remaining longwords can be one of the following:

• An uninterpreted 32-bit value (by immediate value mechanism). If the called
procedure expects fewer than 32 bits, it accesses the low-order bits and
ignores the high-order bits.

• An address (by reference mechanism). It is typically a pointer to a scalar data
item, array, structure, record, or a procedure.

• An address of a descriptor (by descriptor mechanism). See Chapter 5 for
descriptor formats.

The standard permits programs to call by immediate value, by reference, by
descriptor, or by combinations of these mechanisms. Interpretation of each
argument list entry depends on agreement between the calling and called
procedures. High-level languages use the reference or descriptor mechanisms for
passing input parameters. OpenVMS system services and VAX BLISS, VAX C,
Compaq C, Compaq C++, or VAX MACRO programs use all three mechanisms.

A procedure with no arguments is called with a list consisting of a 0 argument
count longword, as follows:

CALLS #0, proc

A missing or null argument—for example, CALL SUB(A,,B)—is represented
by an argument list entry consisting of a longword 0. Some procedures allow
trailing null arguments to be omitted and others require all arguments. See each
procedure’s specification for details.

The argument list must be treated as read-only data by the called procedure and
might be allocated in read-only memory at the option of the calling program.
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2.4.2 Argument Lists and High-Level Languages
Functional notations for procedure calls in high-level languages are mapped into
VAX argument lists according to the following rules:

• Arguments are mapped from left to right to increasing argument list offsets.
The leftmost (first) argument has an address of arglst+4, the next has an
address of arglst+8, and so on. The only exception to this is when arglst+4
specifies where a function value is to be returned, in which case the first
argument has an address of arglst+8, the second argument has an address of
arglst+12, and so on. See Section 2.5 for more information.

• Each argument position corresponds to a single VAX argument list entry.
For the C and C++ languages, a floating-point argument or a record struct
that is larger than 32 bits may be passed by value using more than one VAX
argument list entry. In this case, the argument count in the argument list
reflects the actual number of argument list entries rather than the number of
C or C++ language arguments.

2.4.2.1 Order of Argument Evaluation
Because most high-level languages do not specify the order of evaluation of
arguments (with respect to side effects), those language processors can evaluate
arguments in any convenient order.

In constructing an argument list on the stack, a language processor can evaluate
arguments from right to left and push their values on the stack. If call-by-
reference semantics are used, argument expressions can be evaluated from left
to right, with pointers to the expression values or descriptors being pushed from
right to left.

Note

The choice of argument evaluation order and code generation strategy is
constrained only by the definition of the particular language. Do not write
programs that depend on the order of evaluation of arguments.

2.4.2.2 Language Extensions for Argument Transmission
This calling standard permits arguments to be passed by immediate value,
by reference, or by descriptor. By default, all language processors except VAX
BLISS, VAX C, and VAX MACRO pass arguments by reference or by descriptor.

Language extensions are needed to reconcile the different argument-passing
mechanisms. In addition to the default passing mechanism used, each language
processor is required to give you explicit control, in the calling program, of the
argument-passing mechanism for the data types supported by the language.

Table 2–2 lists various argument data-type groups. In the table, the value Yes
means the language processor is responsible for providing the user with explicit
control of that argument-passing mechanism group.

OpenVMS VAX Conventions 2–5



OpenVMS VAX Conventions
2.4 Argument List

Table 2–2 Argument-Passing Mechanisms with User Explicit Control

Data Type Group Section Value Reference Descriptor

Atomic <= 32 bits 4.1 Yes Yes Yes

Atomic > 32 bits 4.1 No Yes Yes

String 4.2 No Yes Yes

Miscellaneous 4.3 No1 No No

Array 5 No Yes Yes

1For languages that support the bound procedure value data type, a language extension is required
to pass it by immediate value in order to be able to interface with OpenVMS system services and other
software. See Section 4.3.

For example, Compaq Fortran provides the following intrinsic compile-time
functions:

%VAL(arg) By immediate value mechanism. Corresponding argument list entry
is the value of the argument arg as defined in the language.

%REF(arg) By reference mechanism. Corresponding argument list entry contains
the address of the value of the argument arg as defined in the
language.

%DESCR(arg) By descriptor mechanism. Corresponding argument list entry
contains the address of a descriptor of the argument arg as defined
in Chapter 5 and in the language.

Use these intrinsic functions in the syntax of a procedure call to control
generation of the argument list. For example:

CALL SUB1(%VAL(123), %REF(X), %DESCR(A))

For more information, see the Compaq Fortran language documentation.

In other languages, you can achieve the same effect by making appropriate
attributes of the declaration of SUB1 in the calling program. Thus, you might
write the following after making the external declaration for SUB1:

CALL SUB1 (123, X, A)

2.5 Function Value Returns
A function value is returned in register R0 if its data type can be represented in
32 bits, or in registers R0 and R1 if its data type can be represented in 64 bits,
provided the data type is not a string data type (see Section 4.2).

If the data type requires fewer than 32 bits, then R1 and the high-order bits of R0
are undefined. If the data type requires 32 or more bits but fewer than 64 bits,
then the high-order bits of R1 are undefined. Two separate 32-bit entities cannot
be returned in R0 and R1 because high-level languages cannot process them.

In all other cases (the function value needs more than 64 bits, the data type is
a string, the size of the value can vary from call to call, and so on), the actual
argument list and the formal argument list are shifted one entry. The new
first entry is reserved for the function value. In this case, one of the following
mechanisms is used to return the function value:

• If the maximum length of the function value is known (for example, octaword
integer, H_floating, or fixed-length string), the calling program can allocate

2–6 OpenVMS VAX Conventions



OpenVMS VAX Conventions
2.5 Function Value Returns

the required storage and pass the address of the storage or a descriptor for
the storage as the first argument.

• If the maximum length of a string function value is not known to the calling
program, the calling program can allocate a dynamic string descriptor. The
called procedure then allocates storage for the function value and updates the
contents of the dynamic string descriptor using OpenVMS Run-Time Library
procedures. For information about dynamic strings, see Section 5.3.

• If the maximum length of a fixed-length string (see Section 5.2) or a varying
string (see Section 5.8) function value is not known to the calling program,
the calling program can indicate that it expects the string to be returned on
top of the stack. For more information about the function value return, see
Section 2.5.1.

Some procedures, such as operating system calls and many library procedures,
return a success or failure value as a longword function value in R0. Bit <0> of
the value is set (Boolean true) for a success and clear (Boolean false) for a failure.
The particular success or failure status is encoded in the remaining 31 bits, as
described in Section 6.1.

2.5.1 Returning a Function Value on Top of the Stack
If the maximum length of the function value is not known, the calling program
can optionally allocate certain descriptors with the POINTER field set to 0,
indicating that no space has been allocated for the value. If the called procedure
finds POINTER 0, it fills in the POINTER, LENGTH, and other extent fields to
describe the actual size and placement of the function value. This function value
is copied to the top of the stack as control returns to the calling program.

This is an exception to the usual practice because the calling program regains
control at the instruction following the CALLG or CALLS sequence with the
contents of SP restored to a value different from the one it had at the beginning
of its CALLG or CALLS calling sequence.

This technique applies only to the first argument in the argument list. Also, the
called procedure cannot assume that the calling program expects the function
value to be returned on the stack. Instead, the called procedure must check the
CLASS field. If the descriptor is one that can be used to return a value on the
stack, the called procedure checks the POINTER field. If POINTER is not 0,
the called procedure returns the value using the semantics of the descriptor. If
POINTER is 0, the called procedure fills in the POINTER and LENGTH fields
and returns the value to the top of the stack.

Also, when POINTER is 0, the contents of R0 and R1 are unspecified by the
called procedure. Once the called procedure fills in the POINTER field and other
extent fields, the calling program may pass the descriptor as an argument to
other procedures.
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2.5.1.1 Returning a Fixed-Length or Varying String Function Value
If a called procedure can return its function value on the stack as a fixed-length
(see Section 5.2) or varying string (see Section 5.8), the called procedure must
also take the following actions (determined by the CLASS and POINTER fields of
the first descriptor in the argument list):

CLASS POINTER Called Procedure’s Action

S=1 Not 0 Copy the function value to the fixed-length area specified by the
descriptor and space fill (hex 20 if ASCII) or truncate on the
right. The entire area is always written according to Section 5.2.

S=1 0 Return the function value on top of the stack after filling in
POINTER with the first address of the string and LENGTH with
the length of the string to complete the descriptor according to
Section 5.2.

VS=11 Not 0 Copy the function value to the varying area specified by
the descriptor and fill in CURLEN and BODY according to
Section 5.8.

VS=11 0 Return the function value on top of the stack after filling in
POINTER with the address of CURLEN and MAXSTRLEN
with the length of the string in bytes (same value as contents of
CURLEN) according to Section 5.8.

Other – Error. A condition is signaled.

In both the fixed-length and varying string cases, the string is unaligned.
Specifically, the function value is allocated on top of the stack with no unused
bytes between the stack pointer value contained at the beginning of the CALLS
or CALLG sequence and the last byte of the string.

2.6 Vector and Scalar Processor Synchronization
There are two kinds of synchronization between a scalar and vector processor
pair: memory synchronization and exception synchronization.

Memory synchronization with the caller of a procedure that uses the vector
processor is required because scalar machine writes (to main memory) might
still be pending at the time of entry to the called procedure. The various forms
of write-cache strategies allowed by the VAX architecture combined with the
possibly independent scalar and vector memory access paths imply that a scalar
store followed by a CALLx followed by a vector load is not safe without an
intervening MSYNC.

Within a procedure that uses the vector processor, proper memory and exception
synchronization might require use of an MSYNC instruction, a SYNC instruction,
or both, prior to calling or upon being called by another procedure. Further, for
calls to other procedures, the requirements can vary from call to call, depending
on details of actual vector usage.

An MSYNC instruction (without a SYNC) at procedure entry, at procedure
exit, and prior to a call provides proper synchronization in most cases. A
SYNC instruction without an MSYNC prior to a CALLx (or RET) is sometimes
appropriate. The remaining two cases, where both or neither MSYNC and SYNC
are needed, are rare.

Refer to the VAX vector architecture section in the VAX MACRO and Instruction
Set Reference Manual for the specific rules on what exceptions are ensured to be
reported by MSYNC and other MFVP instructions.
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2.6.1 Memory Synchronization
Every procedure is responsible for synchronization of memory operations with
the calling procedure and with procedures it calls. If a procedure executes vector
loads or stores, one of the following must occur:

• An MSYNC instruction (a form of the MFVP instruction) must be executed
before the first vector load and store to synchronize with memory operations
issued by the caller. While an MSYNC instruction might typically occur in
the entry code sequence of a procedure, exact placement might also depend on
a variety of optimization considerations.

• An MSYNC instruction must be executed after the last vector load or store
to synchronize with memory operations issued after return. While an
MSYNC instruction might typically occur in the return code sequence of a
procedure, exact placement might also depend on a variety of optimization
considerations.

• An MSYNC instruction must be executed between each vector load and store
and each standard call to other procedures to synchronize with memory
operations issued by those procedures.

Any procedure that executes vector loads or stores is responsible for synchronizing
with potentially conflicting memory operations in any other procedure. However,
execution of an MSYNC instruction to ensure scalar and vector memory
synchronization can be omitted when it can be determined for the current
procedure that all possibly incomplete vector load and stores operate only on
memory not accessed by other procedures.

2.6.2 Exception Synchronization
Every procedure must ensure that no exception can be raised after the current
frame is changed (as a result of a CALLx or RET). If a procedure executes any
vector instruction that might raise an exception, then a SYNC instruction (a form
of the MFVP instruction) must be executed prior to any subsequent CALLx or
RET.

However, if the only exceptions that can occur are certain to be reported by an
MSYNC instruction that is otherwise needed for memory synchronization, then
the SYNC is redundant and can be omitted as an optimization.

Moreover, if the only exceptions that can occur are certain to be reported by one
or more MFVP instructions that read the vector control registers, then the SYNC
is redundant and can be omitted as an optimization.
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3
OpenVMS Alpha Conventions

This chapter describes the fundamental concepts and conventions for calling
a procedure in an Alpha environment. The following sections identify register
usage and addressing, and focus on aspects of the calling standard that pertain to
procedure-to-procedure flow control.

3.1 Register Usage
The 64-bit-wide, general-purpose Alpha hardware registers divide into two
groups:

• Integer

• Floating point

The first 32 general-purpose registers support integer processing and the second
32 support floating-point operations.

3.1.1 Integer Registers
This standard defines the usage of the Alpha general-purpose integer registers as
listed in Table 3–1.

Table 3–1 Alpha Integer Registers

Register Usage

R0 Function value register. In a standard call that returns a nonfloating-point
function result in a register, the result must be returned in this register.
In a standard call, this register may be modified by the called procedure
without being saved and restored. This register is not to be preserved by
any called procedure.

R1 Conventional scratch register. In a standard call, this register may be
modified by the called procedure without being saved and restored. This
register is not to be preserved by any called procedure.

R2–15 Conventional saved registers. If a standard-conforming procedure modifies
one of these registers, it must save and restore it.

R16–21 Argument registers. In a standard call, up to six nonfloating-point items of
the argument list are passed in these registers. In a standard call, these
registers may be modified by the called procedure without being saved and
restored.

R22–24 Conventional scratch registers. In a standard call, these registers may be
modified by the called procedure without being saved and restored.

(continued on next page)
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Table 3–1 (Cont.) Alpha Integer Registers

Register Usage

R25 Argument information (AI) register. In a standard call, this register
describes the argument list. (See Section 3.7.1 for a detailed description.)
In a standard call, this register may be modified by the called procedure
without being saved and restored.

R26 Return address (RA) register. In a standard call, the return address must
be passed in this register. In a standard call, this register may be modified
by the called procedure without being saved and restored.

R27 Procedure value (PV) register. In a standard call, the procedure value of
the procedure being called is passed in this register. In a standard call, this
register may be modified by the called procedure without being saved and
restored.

R28 Volatile scratch register. The contents of this register are always
unpredictable after any external transfer of control either to or from a
procedure. This applies to both standard and nonstandard calls. This
register may be used by the operating system for external call fixup,
autoloading, and exit sequences.

R29 Frame pointer (FP). The contents of this register define, among other things,
which procedure is considered current. Details of usage and alignment are
defined in Section 3.6.

R30 Stack pointer (SP). This register contains a pointer to the top of the current
operating stack. Aspects of its usage and alignment are defined by the
hardware architecture. Various software aspects of its usage and alignment
are defined in Section 3.7.1.

R31 ReadAsZero/Sink (RZ). Hardware defines binary 0 as a source operand and
sink (no effect) as a result operand.

3.1.2 Floating-Point Registers
This standard defines the usage of the Alpha general-purpose floating-point
registers as listed in Table 3–2.

Table 3–2 Alpha Floating-Point Registers

Register Usage

F0 Floating-point function value register. In a standard call that returns a
floating-point result in a register, this register is used to return the real part
of the result. In a standard call, this register may be modified by the called
procedure without being saved and restored.

F1 Floating-point function value register. In a standard call that returns a
complex floating-point result in registers, this register is used to return
the imaginary part of the result. In a standard call, this register may be
modified by the called procedure without being saved and restored.

F2–9 Conventional saved registers. If a standard-conforming procedure modifies
one of these registers, it must save and restore it.

F10–15 Conventional scratch registers. In a standard call, these registers may be
modified by the called procedure without being saved and restored.

F16–21 Argument registers. In a standard call, up to six floating-point arguments
may be passed by value in these registers. In a standard call, these registers
may be modified by the called procedure without being saved and restored.

(continued on next page)

3–2 OpenVMS Alpha Conventions



OpenVMS Alpha Conventions
3.1 Register Usage

Table 3–2 (Cont.) Alpha Floating-Point Registers

Register Usage

F22–30 Conventional scratch registers. In a standard call, these registers may be
modified by the called procedure without being saved and restored.

F31 ReadAsZero/Sink. Hardware defines binary 0 as a source operand and sink
(no effect) as a result operand.

3.2 Address Representation
An address is a 64-bit value used to denote a position in memory. However,
for compatibility with OpenVMS VAX, many Alpha applications and user-mode
facilities operate in such a manner that addresses are restricted only to values
that are representable in 32 bits. This allows Alpha addresses often to be stored
and manipulated as 32-bit longword values. In such cases, the 32-bit address
value is always implicitly or explicitly sign extended to form a 64-bit address for
use by the Alpha hardware.

3.3 Procedure Representation
One distinguishing characteristic of any calling standard is how procedures
are represented. The term used to denote the value that uniquely identifies a
procedure is a procedure value. If the value identifies a bound procedure, it is
called a bound procedure value.

In the Alpha portion of this calling standard, all procedure values are defined to
be the address of the data structure (a procedure descriptor) that describes that
procedure. So, any procedure can be invoked by calling the address stored at
offset 8 from the address represented by the procedure value.

Note that a simple (unbound) procedure value is defined as the address of
that procedure’s descriptor (see Section 3.4). This provides slightly different
conventions than would be used if the address of the procedure’s code were used
as it is in many calling standards.

A bound procedure value is defined as the address of a bound procedure descriptor
that provides the necessary information for the bound procedure to be called (see
Section 3.7.4).

3.4 Procedure Types
This standard defines the following basic types of procedures:

• Stack frame procedure—Maintains its caller’s context on the stack

• Register frame procedure—Maintains its caller’s context in registers

• Null frame procedure—Does not establish a context and, therefore,
executes in the context of its caller

A compiler can choose which type of procedure to generate based on the
requirements of the procedure in question. A calling procedure does not need to
know what type of procedure it is calling.

Every procedure must have an associated structure that describes which type
of procedure it is and other procedure characteristics. This structure, called a
procedure descriptor, is a quadword-aligned data structure that provides basic
information about a procedure. This data structure is used to interpret the call

OpenVMS Alpha Conventions 3–3



OpenVMS Alpha Conventions
3.4 Procedure Types

chain at any point in a thread’s execution. It is typically built at compile time
and usually is not accessed at run time except to support exception processing or
other rarely executed code.

Read access to procedure descriptors is done through a procedure interface
described in Section 3.6.2. This allows for future compatible extensions to these
structures.

The purpose of defining a procedure descriptor for a procedure and making that
procedure descriptor accessible to the run-time system is twofold:

• To make invocations of that procedure visible to and interpretable by facilities
such as the debugger, exception-handling system, and the unwinder.

• To ensure that the context of the caller saved by the called procedure
can be restored if an unwind occurs. (For a description of unwinding, see
Section 6.7.)

3.4.1 Stack Frame Procedures
The stack frame of a procedure consists of a fixed part (the size of which is known
at compile time) and an optional variable part. Certain optimizations can be
done if the optional variable part is not present. Compilers must also recognize
unusual situations, such as the following, that can effectively cause a variable
part of the stack to exist:

• A called routine may use the stack as a means to return certain types of
function values (see Section 3.8.7 for more information).

• A called routine that allocates stack space may take an exception in
its routine prologue before it becomes current. This situation must be
considered since the stack expansion happens in the context of the caller (see
Section 3.7.5 for more information).

For this reason, a fixed-stack usage version of this procedure type cannot
make standard calls.

The variable-stack usage version of this type of procedure is referred to as full
function and can make standard calls to other procedures.
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3.4.2 Procedure Descriptor for Procedures with a Stack Frame
A stack frame procedure descriptor (PDSC) built by a compiler provides
information about a procedure with a stack frame. The minimum size of the
descriptor is 32 bytes defined by constant PDSC$K_MIN_STACK_SIZE. An
optional PDSC extension in 8-byte increments supports exception-handling
requirements.

The fields defined in the stack frame descriptor are illustrated in Figure 3–1 and
described in Table 3–3.

Figure 3–1 Stack Frame Procedure Descriptor (PDSC)
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Table 3–3 Contents of Stack Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_FLAGS The PDSC descriptor flag bits <15:0> are defined as follows:

PDSC$V_KIND A 4-bit field <3:0> that identifies the type of procedure
descriptor. For a procedure with a stack frame, this
field must specify a value 9 (defined by constant
PDSC$K_KIND_FP_STACK).

PDSC$V_
HANDLER_VALID

If set to 1, this descriptor has an extension for
the stack handler (PDSC$Q_STACK_HANDLER)
information.

PDSC$V_
HANDLER_
REINVOKABLE

If set to 1, the handler can be reinvoked, allowing an
occurrence of another exception while the handler is
already active. If this bit is set to 0, the exception
handler cannot be reinvoked. Note that this bit must
be 0 when PDSC$V_HANDLER_VALID is 0.

PDSC$V_
HANDLER_DATA_
VALID

If set to 1, the HANDLER_VALID bit must be 1,
the PDSC extension STACK_HANDLER_DATA field
contains valid data for the exception handler, and
the address of PDSC$Q_STACK_HANDLER_DATA
will be passed to the exception handler as defined in
Section 6.2.

PDSC$V_BASE_
REG_IS_FP

If this bit is set to 0, the SP is the base register to
which PDSC$L_SIZE is added during an unwind. A
fixed amount of storage is allocated in the procedure
entry sequence, and SP is modified by this procedure
only in the entry and exit code sequence. In this case,
FP typically contains the address of the procedure
descriptor for the procedure. A procedure for which
this bit is 0 cannot make standard calls.

If this bit is set to 1, FP is the base address and the
procedure has a minimum amount of stack storage
specified by PDSC$L_SIZE. A variable amount of
stack storage can be allocated by modifying SP in the
entry and exit code of this procedure.

PDSC$V_REI_
RETURN

If set to 1, the procedure expects the stack at entry
to be set, so an REI instruction correctly returns
from the procedure. Also, if set, the contents of the
RSA$Q_SAVED_RETURN field in the register save
area are unpredictable and the return address is
found on the stack (see Figure 3–4).

Bit 9 Must be 0 (reserved).

PDSC$V_BASE_
FRAME

For compiled code, this bit must be set to 0. If set to
1, this bit indicates the logical base frame of a stack
that precedes all frames corresponding to user code.
The interpretation and use of this frame and whether
there are any predecessor frames is system software
defined (and subject to change).

(continued on next page)
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Table 3–3 (Cont.) Contents of Stack Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$V_TARGET_
INVO

If set to 1, the exception handler for this procedure is
invoked when this procedure is the target invocation
of an unwind. Note that a procedure is the target
invocation of an unwind if it is the procedure in
which execution resumes following completion of the
unwind. For more information, see Chapter 6.

If set to 0, the exception handler for this procedure is
not invoked. Note that when PDSC$V_HANDLER_
VALID is 0, this bit must be 0.

PDSC$V_NATIVE For compiled code, this bit must be set to 1.

PDSC$V_NO_
JACKET

For compiled code, this bit must be set to 1.

PDSC$V_TIE_
FRAME

For compiled code, this bit must be 0. Reserved for
use by system software.

Bit 15 Must be 0 (reserved).

PDSC$W_RSA_OFFSET Signed offset in bytes between the stack frame base (SP or FP as indicated by
PDSC$V_BASE_REG_IS_FP) and the register save area. This field must be a
multiple of 8, so that PDSC$W_RSA_OFFSET added to the contents of SP or
FP (PDSC$V_BASE_REG_IS_FP) yields a quadword-aligned address.

PDSC$V_FUNC_
RETURN

A 4-bit field <11:8> that describes which registers are used for the function
value return (if there is one) and what format is used for those registers.

Table 3–7 lists and describes the possible encoded values of PDSC$V_FUNC_
RETURN.

PDSC$V_EXCEPTION_
MODE

A 3-bit field <14:12> that encodes the caller’s desired exception-reporting
behavior when calling certain mathematically oriented library routines. The
possible values for this field are defined as follows:

Value Name Meaning

0 PDSC$K_
EXCEPTION_MODE_
SIGNAL

Raise exceptions for all error conditions
except for underflows producing a 0 result.
This is the default mode.

1 PDSC$K_
EXCEPTION_MODE_
SIGNAL_ALL

Raise exceptions for all error conditions
(including underflow).

2 PDSC$K_
EXCEPTION_MODE_
SIGNAL_SILENT

Raise no exceptions. Create only finite
values (no infinities, denormals, or NaNs).
In this mode, either the function result or
the C language errno variable must be
examined for any error indication.

3 PDSC$K_
EXCEPTION_MODE_
FULL_IEEE

Raise no exceptions except as controlled
by separate IEEE exception enable bits.
Create infinities, denormals, or NaN
values according to the IEEE floating-point
standard.

4 PDSC$K_
EXCEPTION_MODE_
CALLER

Perform the exception-mode behavior
specified by this procedure’s caller.

(continued on next page)
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Table 3–3 (Cont.) Contents of Stack Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_SIGNATURE_
OFFSET

A 16-bit signed byte offset from the start of the procedure descriptor. This
offset designates the start of the procedure signature block (if any). A 0
in this field indicates that no signature information is present. Note that
in a bound procedure descriptor (as described in Section 3.7.4), signature
information might be present in the related procedure descriptor. A 1 in
this field indicates a standard default signature. An offset value of 1 is not
otherwise a valid offset because both procedure descriptors and signature
blocks must be quadword aligned.

PDSC$Q_ENTRY Absolute address of the first instruction of the entry code sequence for the
procedure.

PDSC$L_SIZE Unsigned size, in bytes, of the fixed portion of the stack frame for this
procedure. The size must be a multiple of 16 bytes to maintain the minimum
stack alignment required by the Alpha hardware architecture and stack
alignment during a call (defined in Section 3.7.1). PDSC$L_SIZE cannot be 0
for a stack-frame type procedure, since the stack frame must include space for
the register save area.

The value of SP at entry to this procedure can be calculated by adding
PDSC$L_SIZE to the value SP or FP, as indicated by PDSC$V_BASE_REG_
IS_FP.

PDSC$W_ENTRY_
LENGTH

Unsigned offset, in bytes, from the entry point to the first instruction in the
procedure code segment following the procedure prologue (that is, following
the instruction that updates FP to establish this procedure as the current
procedure).

PDSC$L_IREG_MASK Bit vector (0–31) specifying the integer registers that are saved in the register
save area on entry to the procedure. The least significant bit corresponds to
register R0. Never set bits 31, 30, 28, 1, and 0 of this mask, since R31 is the
integer read-as-zero register, R30 is the stack pointer, R28 is always assumed
to be destroyed during a procedure call or return, and R1 and R0 are never
preserved registers. In this calling standard, bit 29 (corresponding to the FP)
must always be set.

PDSC$L_FREG_MASK Bit vector (0–31) specifying the floating-point registers saved in the register
save area on entry to the procedure. The least significant bit corresponds
to register F0. Never set bit 31 of this mask, since it corresponds to the
floating-point read-as-zero register.

PDSC$Q_STACK_
HANDLER

Absolute address to the procedure descriptor for a run-time static exception-
handling procedure. This part of the procedure descriptor is optional. It
must be supplied if either PDSC$V_HANDLER_VALID is 1 or PDSC$V_
HANDLER_DATA_VALID is 1 (which requires that PDSC$V_HANDLER_
VALID be 1).

If PDSC$V_HANDLER_VALID is 0, then the contents or existence of
PDSC$Q_STACK_HANDLER is unpredictable.

PDSC$Q_STACK_
HANDLER_DATA

Data (quadword) for the exception handler. This is an optional quadword and
needs to be supplied only if PDSC$V_HANDLER_DATA_VALID is 1.

If PDSC$V_HANDLER_DATA_VALID is 0, then the contents or existence of
PDSC$Q_STACK_HANDLER_DATA is unpredictable.
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3.4.3 Stack Frame Format
The stack of a stack frame procedure consists of a fixed part (the size of which is
known at compile time) and an optional variable part. There are two basic types
of stack frames:

• Fixed size

• Variable size

Even though the exact contents of a stack frame are determined by the compiler,
all stack frames have common characteristics.

Various combinations of PDSC$V_BASE_REG_IS_FP and PDSC$L_SIZE can be
used as follows:

• When PDSC$V_BASE_REG_IS_FP is 0 and PDSC$L_SIZE is 0, then the
procedure utilizes no stack storage and SP contains the value of SP at entry
to the procedure. (Such a procedure must be a register frame procedure.)

• When PDSC$V_BASE_REG_IS_FP is 0 and PDSC$L_SIZE is a nonzero
value, then the procedure has a fixed amount of stack storage specified by
PDSC$L_SIZE, all of which is allocated in the procedure entry sequence, and
SP is modified by this procedure only in the entry and exit code sequences.
(Such a procedure may not make standard calls.)

• When PDSC$V_BASE_REG_IS_FP is 1 and PDSC$L_SIZE is a nonzero
value, then the procedure has a fixed amount of stack storage specified by
PDSC$L_SIZE, and may have a variable amount of stack storage allocated by
modifying SP in the body of the procedure. (Such a procedure must be a stack
frame procedure.)

• The combination when PDSC$V_BASE_REG_IS_FP is 1 and PDSC$L_SIZE
is 0 is illegal because it violates the rules for R29 (FP) usage that requires
R29 to be saved (on the stack) and restored.

3.4.3.1 Fixed-Size Stack Frame
Figure 3–2 illustrates the format of the stack frame for a procedure with a
fixed amount of stack that uses the SP register as the stack base pointer (when
PDSC$V_BASE_REG_IS_FP is 0). In this case, R29 (FP) typically contains the
address of the procedure descriptor for the current procedure (see Section 3.6.1).

Some parts of the stack frame are optional and occur only as required by the
particular procedure. As shown in the figure, the field names within brackets are
optional fields. Use of the arguments passed in memory field appending the
end of the descriptor is described in Sections 3.4.3.3 and 3.8.2.

For information describing the fixed temporary locations and register save area,
see Sections 3.4.3.3 and 3.4.3.4.
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Figure 3–2 Fixed-Size Stack Frame Format
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(from SP)

3.4.3.2 Variable-Size Stack Frame
Figure 3–3 illustrates the format of the stack frame for procedures with a varying
amount of stack when PDSC$V_BASE_REG_IS_FP is 1. In this case, R29 (FP)
contains the address that points to the base of the stack frame on the stack. This
frame-base quadword location contains the address of the current procedure’s
descriptor.
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Figure 3–3 Variable-Size Stack Frame Format
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Some parts of the stack frame are optional and occur only as required by the
particular procedure. In Figure 3–3, field names within brackets are optional
fields. Use of the arguments passed in memory field appending the end of the
descriptor is described in Sections 3.4.3.3 and 3.8.2.

For more information describing the fixed temporary locations and register
save area, see Sections 3.4.3.3 and 3.4.3.4.

A compiler can use the stack temporary area pointed to by the SP base register
for fixed local variables, such as constant-sized data items and program state,
as well as for dynamically sized local variables. The stack temporary area may
also be used for dynamically sized items with a limited lifetime, for example, a
dynamically sized function result or string concatenation that cannot be stored
directly in a target variable. When a procedure uses this area, the compiler
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must keep track of its base and reset SP to the base to reclaim storage used by
temporaries.

3.4.3.3 Fixed Temporary Locations for All Stack Frames
The fixed temporary locations are optional sections of any stack frame that
contain language-specific locations required by the procedure context of some
high-level languages. This may include, for example, register spill area, language-
specific exception-handling context (such as language-dynamic exception-handling
information), fixed temporaries, and so on.

The argument home area (if allocated by the compiler) can be found with the
PDSC$L_SIZE offset in the last fixed temporary locations at the end of the stack
frame. It is adjacent to the arguments passed in memory area to expedite
the use of arguments passed (without copying). The argument home area is a
region of memory used by the called procedure for the purpose of assembling in
contiguous memory the arguments passed in registers, adjacent to the arguments
passed in memory, so all arguments can be addressed as a contiguous array. This
area can also be used to store arguments passed in registers if an address for
such an argument must be generated. Generally, 6 � 8 bytes of stack storage is
allocated for this purpose by the called procedure.

If a procedure needs to reference its arguments as a longword array or construct
a structure that looks like an in-memory longword argument list, then it might
allocate enough longwords in this area to hold all of the argument list and,
optionally, an argument count. In that case, argument items passed in memory
must be copied to this longword array.

The high-address end of the stack frame is defined by the value stored in
PDSC$L_SIZE plus the contents of SP or FP, as indicated by PDSC$V_BASE_
REG_IS_FP. The high-address end is used to determine the value of SP for the
predecessor procedure in the calling chain.

3.4.3.4 Register Save Area for All Stack Frames
The register save area is a set of consecutive quadwords in which registers
saved and restored by the current procedure are stored (see Figure 3–4). The
register save area begins at the location pointed to by the offset PDSC$W_RSA_
OFFSET from the frame base register (SP or FP as indicated by PDSC$V_BASE_
REG_IS_FP), which must yield a quadword-aligned address. The set of registers
saved in this area contain the return address followed by the registers specified in
the procedure descriptor by PDSC$L_IREG_MASK and PDSC$L_FREG_MASK.

All registers saved in the register save area (other than the saved return address)
must have the corresponding bit set in the appropriate procedure descriptor
register save mask even if the register is not a member of the set of registers
required to be saved across a standard call. Failure to do so will prevent the
correct calculation of offsets within the save area.

Figure 3–4 illustrates the fields in the register save area (field names within
brackets are optional fields). Quadword RSA$Q_SAVED_RETURN is the first
field in the save area and it contains the contents of the return address register.
The optional fields vary in size (8-byte increments) to preserve, as required,
the contents of the integer and floating-point hardware registers used in the
procedure.
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Figure 3–4 Register Save Area (RSA) Layout
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The algorithm for packing saved registers in the quadword-aligned register save
area is:

1. The return address is saved at the lowest address of the register save area
(offset 0).

2. All saved integer registers (as indicated by the corresponding bit in PDSC$L_
IREG_MASK being set to 1) are stored, in register-number order, in
consecutive quadwords, beginning at offset 8 of the register save area.

3. All saved floating-point registers (as indicated by the corresponding bit in
PDSC$L_FREG_MASK being set to 1) are stored, in register-number order, in
consecutive quadwords, following the saved integer registers.

Note

Floating-point registers saved in the register save area are stored as
a 64-bit exact image of the register (for example, no reordering of bits
is done on the way to or from memory). Compilers must use an STT
instruction to store the register regardless of floating-point type.

The preserved register set must always include R29 (FP), since it will always be
used.

If the return address register is not to be preserved (as is the case for a
standard call), then it must be stored at offset 0 in the register save area and
the corresponding bit in the register save mask must not be set.

However, if a nonstandard call is made that requires the return address register
to be saved and restored, then it must be stored in both the location at offset 0 in
the register save area and at the appropriate location within the variable part of
the save area. In addition, the appropriate bit of PDSC$L_IREG_MASK must be
set to 1.

The example register save area shown in Figure 3–5 illustrates the register
packing when registers R10, R11, R15, FP, F2, and F3 are being saved for a
procedure called with a standard call.
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Figure 3–5 Register Save Area (RSA) Example
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3.4.4 Register Frame Procedure
A register frame procedure does not maintain a call frame on the stack and
must, therefore, save its caller’s context in registers. This type of procedure is
sometimes referred to as a lightweight procedure, referring to the expedient
way of saving the call context.

Such a procedure cannot save and restore nonscratch registers. Because a
procedure without a stack frame must use scratch registers to maintain the
caller’s context, such a procedure cannot make a standard call to any other
procedure.

A procedure with a register frame can have an exception handler and can handle
exceptions in the normal way. Such a procedure can also allocate local stack
storage in the normal way, although it might not necessarily do so.
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Note

Lightweight procedures have more freedom than might be apparent. By
using appropriate agreements with callers of the lightweight procedure,
with procedures that the lightweight procedure calls, and by the use of
unwind handlers, a lightweight procedure can modify nonscratch registers
and can call other procedures.

Such agreements may be by convention (as in the case of language-
support routines in the RTL) or by interprocedural analysis. However,
calls employing such agreements are not standard calls and might not be
fully supported by a debugger; for example, the debugger might not be
able to find the contents of the preserved registers.

Since such agreements must be permanent (for upwards compatibility of
object code), lightweight procedures should, in general, follow the normal
restrictions.

3.4.5 Procedure Descriptor for Procedures with a Register Frame
A register frame procedure descriptor built by a compiler provides
information about a procedure with a register frame. The minimum size of
the descriptor is 24 bytes (defined by PDSC$K_MIN_REGISTER_SIZE). An
optional PDSC extension in 8-byte increments supports exception-handling
requirements.

The fields defined in the register frame procedure descriptor are illustrated in
Figure 3–6 and described in Table 3–4.
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Figure 3–6 Register Frame Procedure Descriptor (PDSC)
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Table 3–4 Contents of Register Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_FLAGS The PDSC descriptor flag bits <15:0> are defined as follows:

PDSC$V_KIND A 4-bit field <3:0> that identifies the type of procedure
descriptor. For a procedure with a register frame, this
field must specify a value 10 (defined by constant
PDSC$K_KIND_FP_REGISTER).

PDSC$V_
HANDLER_VALID

If set to 1, this descriptor has an extension for
the stack handler (PDSC$Q_REG_HANDLER)
information.

PDSC$V_
HANDLER_
REINVOKABLE

If set to 1, the handler can be reinvoked, allowing
an occurrence of another exception while the handler
is already active. If this bit is set to 0, the exception
handler cannot be reinvoked. This bit must be 0 when
PDSC$V_HANDLER_VALID is 0.

PDSC$V_
HANDLER_DATA_
VALID

If set to 1, the HANDLER_VALID bit must be 1 and
the PDSC extension STACK_HANDLER_DATA field
contains valid data for the exception handler, and
the address of PDSC$Q_STACK_HANDLER_DATA
will be passed to the exception handler as defined in
Section 6.2.

PDSC$V_BASE_
REG_IS_FP

If this bit is set to 0, the SP is the base register to
which PDSC$L_SIZE is added during an unwind. A
fixed amount of storage is allocated in the procedure
entry sequence, and SP is modified by this procedure
only in the entry and exit code sequence. In this case,
FP typically contains the address of the procedure
descriptor for the procedure. Note that a procedure
that sets this bit to 0 cannot make standard calls.

If this bit is set to 1, FP is the base address and
the procedure has a fixed amount of stack storage
specified by PDSC$L_SIZE. A variable amount of
stack storage can be allocated by modifying SP in the
entry and exit code of this procedure.

PDSC$V_REI_
RETURN

If set to 1, the procedure expects the stack at entry
to be set, so an REI instruction correctly returns
from the procedure. Also, if set, the contents of the
PDSC$B_SAVE_RA field are unpredictable and the
return address is found on the stack.

Bit 9 Must be 0 (reserved).

PDSC$V_BASE_
FRAME

For compiled code, this bit must be 0. If set to 1, this
bit indicates the logical base frame of a stack that
precedes all frames corresponding to user code. The
interpretation and use of this frame and whether
there are any predecessor frames is system software
defined (and subject to change).

(continued on next page)
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Table 3–4 (Cont.) Contents of Register Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$V_TARGET_
INVO

If set to 1, the exception handler for this procedure is
invoked when this procedure is the target invocation
of an unwind. Note that a procedure is the target
invocation of an unwind if it is the procedure in
which execution resumes following completion of the
unwind. For more information, see Chapter 6.

If set to 0, the exception handler for this procedure is
not invoked. Note that when PDSC$V_HANDLER_
VALID is 0, this bit must be 0.

PDSC$V_NATIVE For compiled code, this bit must be set to 1.

PDSC$V_NO_
JACKET

For compiled code, this bit must be set to 1.

PDSC$V_TIE_
FRAME

For compiled code, this bit must be 0. Reserved for
use by system software.

Bit 15 Must be 0 (reserved).

PDSC$B_SAVE_FP Specifies the number of the register that contains the saved value of the frame
pointer (FP) register.

In a standard procedure, this field must specify a scratch register so as not to
violate the rules for procedure entry code as specified in Section 3.7.5.

PDSC$B_SAVE_RA Specifies the number of the register that contains the return address. If this
procedure uses standard call conventions and does not modify R26, then this
field can specify R26.

In a standard procedure, this field must specify a scratch register so as not to
violate the rules for procedure entry code as specified in Section 3.7.5.

PDSC$V_FUNC_
RETURN

A 4-bit field <11:8> that describes which registers are used for the function
value return (if there is one) and what format is used for those registers.

Table 3–7 lists and describes the possible encoded values of PDSC$V_FUNC_
RETURN.

(continued on next page)
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Table 3–4 (Cont.) Contents of Register Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$V_EXCEPTION_
MODE

A 3-bit field <14:12> that encodes the caller’s desired exception-reporting
behavior when calling certain mathematically oriented library routines. The
possible values for this field are defined as follows:

Value Name Meaning

0 PDSC$K_
EXCEPTION_MODE_
SIGNAL

Raise exceptions for all error conditions
except for underflows producing a 0 result.
This is the default mode.

1 PDSC$K_
EXCEPTION_MODE_
SIGNAL_ALL

Raise exceptions for all error conditions
(including underflows).

2 PDSC$K_
EXCEPTION_MODE_
SIGNAL_SILENT

Raise no exceptions. Create only finite
values (no infinities, denormals, or NaNs).
In this mode, either the function result or
the C language errno variable must be
examined for any error indication.

3 PDSC$K_
EXCEPTION_MODE_
FULL_IEEE

Raise no exceptions except as controlled
by separate IEEE exception enable bits.
Create infinities, denormals, or NaN
values according to the IEEE floating-point
standard.

4 PDSC$K_
EXCEPTION_MODE_
CALLER

Perform the exception-mode behavior
specified by this procedure’s caller.

PDSC$W_SIGNATURE_
OFFSET

A 16-bit signed byte offset from the start of the procedure descriptor. This
offset designates the start of the procedure signature block (if any). A 0 in
this field indicates no signature information is present. Note that in a bound
procedure descriptor (as described in Section 3.7.4), signature information
might be present in the related procedure descriptor. A 1 in this field
indicates a standard default signature. An offset value of 1 is not otherwise a
valid offset because both procedure descriptors and signature blocks must be
quadword aligned.

PDSC$Q_ENTRY Absolute address of the first instruction of the entry code sequence for the
procedure.

PDSC$L_SIZE Unsigned size in bytes of the fixed portion of the stack frame for this
procedure. The size must be a multiple of 16 bytes to maintain the minimum
stack alignment required by the Alpha hardware architecture and stack
alignment during a call (defined in Section 3.7.1).

PDSC$W_ENTRY_
LENGTH

Unsigned offset in bytes from the entry point to the first instruction in the
procedure code segment following the procedure prologue (that is, following
the instruction that updates FP to establish this procedure as the current
procedure).

PDSC$Q_REG_
HANDLER

Absolute address to the procedure descriptor for a run-time static exception-
handling procedure. This part of the procedure descriptor is optional. It
must be supplied if either PDSC$V_HANDLER_VALID is 1 or PDSC$V_
HANDLER_DATA_VALID is 1 (which requires that PDSC$V_HANDLER_
VALID be 1).

If PDSC$V_HANDLER_VALID is 0, then the contents or existence of
PDSC$Q_REG_HANDLER is unpredictable.

(continued on next page)
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Table 3–4 (Cont.) Contents of Register Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$Q_REG_
HANDLER_DATA

Data (quadword) for the exception handler. This is an optional quadword and
needs to be supplied only if PDSC$V_HANDLER_DATA_VALID is 1.

If PDSC$V_HANDLER_DATA_VALID is 0, then the contents or existence of
PDSC$Q_REG_HANDLER_DATA is unpredictable.

3.4.6 Null Frame Procedures
A procedure may conform to this standard even if it does not establish its own
context if, in all circumstances, invocations of that procedure do not need to be
visible or debuggable. This is termed executing in the context of the caller
and is similar in concept to a conventional VAX JSB procedure. For the purposes
of stack tracing or unwinding, such a procedure is never considered to be current.

For example, if a procedure does not establish an exception handler or does not
save and restore registers, and does not extend the stack, then that procedure
might not need to establish a context. Likewise, if that procedure does extend the
stack, it still might not need to establish a context if the immediate caller either
cannot be the target of an unwind or is prepared to reset the stack if it is the
target of an unwind.

The circumstances under which procedures can run in the context of the caller
are complex and are not fully specified by this standard.

As with the other procedure types previously described, the choice of whether to
establish a context belongs to the called procedure. By defining a null procedure
descriptor format, the same invocation code sequence can be used by the caller for
all procedure types.

3.4.7 Procedure Descriptor for Null Frame Procedures
The null frame procedure descriptor built by a compiler provides information
about a procedure with no frame. The size of the descriptor is 16 bytes (defined
by PDSC$K_NULL_SIZE).

The fields defined in the null frame descriptor are illustrated in Figure 3–7 and
described in Table 3–5.
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Figure 3–7 Null Frame Procedure Descriptor (PDSC) Format
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Table 3–5 Contents of Null Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_FLAGS The PDSC descriptor flag bits <15:0> are defined as follows:

PDSC$V_KIND A 4-bit field <3:0> that identifies the type of procedure
descriptor. For a null frame procedure, this field must
specify a value 8 (defined by constant PDSC$K_
KIND_NULL).

Bits 4–7 Must be 0.

PDSC$V_REI_
RETURN

Bit 8. If set to 1, the procedure expects the stack at
entry to be set, so an REI instruction correctly returns
from the procedure. Also, if set, the contents of the
PDSC$B_SAVE_RA field are unpredictable and the
return address is found on the stack.

Bit 9 Must be 0 (reserved).

PDSC$V_BASE_
FRAME

For compiled code, this bit must be 0. If set to
1, indicates the logical base frame of a stack that
precedes all frames corresponding to user code. The
interpretation and use of this frame and whether
there are any predecessor frames is system software
defined (and subject to change).

Bit 11 Must be 0 (reserved).

PDSC$V_NATIVE For compiled code, this bit must be set to 1.

PDSC$V_NO_
JACKET

For compiled code, this bit must be set to 1.

PDSC$V_TIE_
FRAME

For compiled code, this bit must be 0. Reserved for
use by system software.

Bit 15 Must be 0 (reserved).

PDSC$V_FUNC_
RETURN

A 4-bit field <11:8> that describes which registers are used for the function
value return (if there is one) and what format is used for those registers.

Table 3–7 lists and describes the possible encoded values of PDSC$V_FUNC_
RETURN.

(continued on next page)
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Table 3–5 (Cont.) Contents of Null Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_SIGNATURE_
OFFSET

A 16-bit signed byte offset from the start of the procedure descriptor. This
offset designates the start of the procedure signature block (if any). A 0
in this field indicates that no signature information is present. Note that
in a bound procedure descriptor (as described in Section 3.7.4), signature
information might be present in the related procedure descriptor. A 1 in
this field indicates a standard default signature. An offset value of 1 is not
otherwise a valid offset because both procedure descriptors and signature
blocks must be quadword aligned.

PDSC$Q_ENTRY The absolute address of the first instruction of the entry code sequence for the
procedure.

3.5 Procedure Signatures
As a way to enhance certain aspects of program interoperation between images
built from native Alpha code and images translated from VAX code, native Alpha
compilers can optionally generate information that describes the parameters of a
procedure. This auxiliary information is called procedure signature information,
or sometimes just signature information.

Signature information is used when a call from a native procedure passes
control to a translated procedure and vice versa. Translated VAX code on Alpha
processors uses a VAX argument list and function return conventions as described
in Sections 2.4 and 2.5. Here, the signature information is used to control how
passed and returned arguments according to Alpha conventions are manipulated
and placed for use by translated VAX code and vice versa.

If a procedure is compiled with signature information, PDSC$W_SIGNATURE_
OFFSET contains a byte offset from the procedure descriptor to the start of a
procedure signature control block. The maximum size of the procedure
signature control block is 72 bytes (defined by constant PSIG$K_MAX_SIZE).
The fields defined in the procedure signature information block are illustrated in
Figure 3–8 and described in Table 3–6.

Figure 3–8 Procedure Signature Information Block (PSIG)

ZK−4713A−GE

PSIG

SUMMARY
<31:28>

REG_ARG_INFO
<27:4>

*FRET
<3:0>

quadword aligned 

ARG_COUNT
<7:0>

MEMORY_ARG_INFO
(for argument counts 7 to 255)

:0 (from PDSC$W
_SIGNATURE

       
_OFFSET)

:8

:4

PSIG$K_MAX_SIZE = 72 
* FRET = PSIG$V_FUNC_RETURN
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Table 3–6 Contents of the Procedure Signature Information Block (PSIG)

Field Name Contents

PSIG$V_FUNC_RETURN A 4-bit field <3:0> that describes which registers are used for the function
value return (if there is one) and what format is used for those registers.

Table 3–7 lists and describes the possible encoded values of PSIG$V_FUNC_
RETURN.

PSIG$V_REG_ARG_INFO A 24-bit field <27:4> that is divided into six groups of 4 bits that correspond to
the six arguments that can be passed in registers. These groups describe how
each of the first six arguments are to be passed in registers of the first group
(bits <7:4>) describing the first argument.

Each register argument signature group is encoded as follows:

Value Name Meaning 1;2

0 RASE$K_RA_NOARG Argument is not present

1 RASE$K_RA_Q 64-bit argument passed in an integer
register

2 RASE$K_RA_I32 32-bit argument sign extended to 64 bits
passed in an integer register

3 RASE$K_RA_U32 32-bit unsigned argument zero extended
to 64 bits passed in an integer register

4 RASE$K_RA_FF F_floating argument passed in a floating-
point register

5 RASE$K_RA_FD D_floating argument passed in a floating-
point register

6 RASE$K_RA_FG G_floating argument passed in a floating-
point register

7 RASE$K_RA_FS S_floating argument passed in a floating-
point register

8 RASE$K_RA_FT T_floating argument passed in a floating-
point register

9–15 Reserved for future use

1For more specific impact on the converted field value, see Section 3.5.1.
2The X_floating and X_floating complex data types do not appear in this table because these types are not passed using
the by value mechanism (see Section 3.8.5.1).

(continued on next page)
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Table 3–6 (Cont.) Contents of the Procedure Signature Information Block (PSIG)

Field Name Contents

PSIG$V_SUMMARY A 4-bit field <31:28> that contains coded argument signature information as
follows:

Bit Name Meaning

0, 1 PSIG$M_SU_ASM Summary of arguments 7 through PSIG$B_
ARG_COUNT:
00 = All arguments are 64-bit or not used
01 = All arguments are 32-bit sign extended
or not used
10 = Reserved
11 = Other (not 00 or 01)

2 PSIG$M_SU_VLIST VAX formatted argument list expected

3 Must be 0 (reserved)

PSIG$M_SU_ASM values of 00 and 01 (binary) allow a quick test for the
occurrence of either an all 32-bit or an all 64-bit argument list. The values
for the PSIG$V_MEMORY_ARG_INFO field must be valid even when these
occurrences apply.

PSIG$B_ARG_COUNT Unsigned byte (bits 0–7) that specifies the number of 64-bit argument items
described in the argument signature information. This count includes the first
six arguments.

PSIG$V_MEMORY_ARG_
INFO

Array of 2-bit values that describe each of arguments 7 through PSIG$B_
ARG_COUNT. PSIG$S_MEMORY_ARG_INFO data is only defined for the
arguments described by PSIG$B_ARG_COUNT. These memory argument
signature bits are defined as follows:

Value Name Meaning 1

0 MASE$K_MA_Q 64-bit argument

1 Reserved

2 MASE$K_MA_I32 32-bit sign-extended argument

3 Reserved

1For more specific impact on the converted field value, see Section 3.5.1.

Table 3–7 Function Return Signature Encodings

Value Name Meaning 1;2

0 PSIG$K_FR_I64 64-bit result in R0
or No function result provided
or First parameter mechanism used

1 PSIG$K_FR_D64 64-bit result with low 32 bits sign extended in R0 and high 32 bits
sign extended in R1

2 PSIG$K_FR_I32 32-bit sign extended to 64-bit result in R0

1For more specific impact on the converted field value, see Section 3.5.1.
2The X_floating and X_floating complex data types do not appear in this table because these types are not passed using
the by value mechanism (see Section 3.8.5.1).

(continued on next page)
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Table 3–7 (Cont.) Function Return Signature Encodings

Value Name Meaning 1;2

3 PSIG$K_FR_U32 32-bit unsigned result (zero extended) in R0

4 PSIG$K_FR_FF F_floating result in F0

5 PSIG$K_FR_FD D_floating result in F0

6 PSIG$K_FR_FG G_floating result in F0

7 PSIG$K_FR_FS S_floating result in F0

8 PSIG$K_FR_FT T_floating result in F0

9, 10 Reserved for future use

11 PSIG$K_FR_FFC F_floating complex result in F0 and F1

12 PSIG$K_FR_FDC D_floating complex result in F0 and F1

13 PSIG$K_FR_FGC G_floating complex result in F0 and F1

14 PSIG$K_FR_FSC S_floating complex result in F0 and F1

15 PSIG$K_FR_FTC T_floating complex result in F0 and F1

1For more specific impact on the converted field value, see Section 3.5.1.
2The X_floating and X_floating complex data types do not appear in this table because these types are not passed using
the by value mechanism (see Section 3.8.5.1).

3.5.1 Call Parameter PSIG Conversions
Where a VAX image is translated to an Alpha image, the VAX registers R0–15
are represented using the lower half of the corresponding Alpha registers R0–15
at call interface boundaries. No ‘‘type conversion’’ is performed in making
parameters from either native or translated code available to each other.
However, it is important to understand the effects of the PSIG field values
when interfacing between native and translated environments.

Note that an address under OpenVMS Alpha is described using RASE$K_RA_I32
or MASE$K_MA_I32 as appropriate.

3.5.1.1 Native-to-Translated Code PSIG Conversions
The specific impact of the native-to-translated call conversions of the PSIG$V_
REG_ARG_INFO and the PSIG$V_FUNC_RETURN field values are listed in
Table 3–8.
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Table 3–8 Native-to-Translated Conversion of the PSIG Field Values

Name Impact

PSIG$V_REG_ARG_INFO Field Conversions

RASE$K_RA_Q The low-order 32 bits of the integer register contents are used
to fill the first of two longword entries in the VAX formatted
argument list, while the high-order 32 bits are used to fill the
second longword entry. This counts as two arguments in the VAX
formatted argument list.

RASE$K_RA_I32
RASE$K_RA_U32

The low-order 32 bits of the integer register contents are used to fill
one longword entry in the VAX formatted argument list passed to
the translated procedure. The high-order 32 bits are ignored. This
counts as one argument in the VAX formatted argument list.

RASE$K_RA_FF The single-precision contents of a floating-point register are used to
fill one longword entry in the VAX formatted argument list passed
to the translated procedure. This counts as one argument in the
VAX formatted argument list. The Alpha store instruction STF is
used to place the register contents into memory.

RASE$K_RA_FD
RASE$K_RA_FG

The double-precision contents of a floating-point register are used to
fill two longword entries in the VAX formatted argument list passed
to the translated procedure. This counts as two arguments in the
VAX formatted argument list. The Alpha store instruction STG is
used to place the register contents into memory.

RASE$K_RA_FS
RASE$K_RA_FT

Undefined.

PSIG$V_MEMORY_ARG_INFO Field Conversions

MASE$K_MA_Q
MASE$K_MA_I32

These convert like the RASE$K_RA_Q and RASE$K_RA_I32 field
conversions, except that the Alpha argument list entry is stored in
memory (rather in than a register).

PSIG$V_FUNC_RETURN Field Conversions

PSIG$K_FR_I64 The translated code is returning a 64-bit result split between R0
and R1. The low-order 32 bits of R1 are shifted left and combined
with the low-order 32 bits of R0 to form the 64-bit result that is
returned to the native caller.

PSIG$K_FR_D64 The translated code is returning a 64-bit result split between R0
and R1. Both R0 and R1 are sign extended from 32 to 64 bits and
returned to the native caller in place.

PSIG$K_FR_I32
PSIG$K_FR_U32

The translated code is returning a 32-bit result in R0. R0 is sign
extended from 32 to 64 bits and returned to the native caller in
place.

PSIG$K_FR_FF The single-precision contents of the result in R0 is loaded into Alpha
register F0.

PSIG$K_FR_FD
PSIG$K_FR_FG

The double-precision contents in registers R0 and R1 are combined
and loaded into Alpha register F0.

PSIG$K_FR_FS
PSIG$K_FR_FT

Undefined.

(continued on next page)
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Table 3–8 (Cont.) Native-to-Translated Conversion of the PSIG Field Values

Name Impact

PSIG$V_FUNC_RETURN Field Conversions

PSIG$K_FR_FFC The single-precision complex contents in registers R0 and R1 are
loaded into Alpha registers F0 and F1.

PSIG$K_FR_FDC
PSIG$K_FR_FGC

The translated code is returning a double-precision complex result
using the hidden first parameter method (by reference). The storage
for the result is allocated prior to the call and the address is passed
as the extra parameter. Upon return, the result is copied from
the temporary storage into the Alpha floating-point registers and
returned to the native caller.

PSIG$K_FR_FSC
PSIG$K_FR_FTC

Undefined.

In all 64-bit cases, the longword at the lower memory address forms the earlier
argument in the VAX formatted argument list. Also, for single-precision floating-
point types, the unused 32 bits of an Alpha 64-bit argument list entry are
undefined.

3.5.1.2 Translated-to-Native Code PSIG Conversions
The specific impact of the translated-to-native call conversions of the PSIG$V_
REG_ARG_INFO and the PSIG$V_FUNC_RETURN field values are listed in
Table 3–9.

Table 3–9 Translated-to-Native Conversion of the PSIG Field Values

Name Impact

PSIG$V_REG_ARG_INFO Field Conversions

RASE$K_RA_Q The contents of two successive longwords from the VAX formatted
argument list are combined to form a single quadword value that is
placed in an integer register. This counts as one argument in the
Alpha argument list.

RASE$K_RA_I32
RASE$K_RA_U32

The contents of one longword entry from the VAX formatted
argument list is sign extended and placed in the integer register.
This counts as one argument in the Alpha argument list.

RASE$K_RA_FF A single longword entry from the VAX formatted argument list is
used to form a floating-point value in a floating-point register. This
counts as one argument in the Alpha argument list. The Alpha load
instruction LDF is used to place the argument in the floating-point
register.

RASE$K_RA_FD
RASE$K_RA_FG

Two longword entries from the VAX formatted argument list are
combined to form a single floating-point value in a floating-point
register. This counts as one argument in the Alpha argument list.
The Alpha load instruction LDG is used to place the argument in
the floating-point register.

RASE$K_RA_FS
RASE$K_RA_FT

Undefined.

(continued on next page)
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Table 3–9 (Cont.) Translated-to-Native Conversion of the PSIG Field Values

Name Impact

PSIG$V_MEMORY_ARG_INFO Field Conversions

MASE$K_MA_Q
MASE$K_MA_I32

These convert like RASE$K_RA_Q and RASE$K_RA_I32 field
conversions, except that the Alpha argument list entry is stored in
memory (rather than a register).1

PSIG$V_FUNC_RETURN Field Conversions

PSIG$K_FR_I64 The native code is returning a 64-bit result in R0. The high 32 bits
of R0 are moved to the low half of R1 and sign extended, and then
R0 is sign extended from 32 to 64 bits. The 64-bit result is then
returned to the translated caller in R0 and R1.

PSIG$K_FR_D64 The native code is returning a 64-bit result split between R0 and
R1. Both R0 and R1 are sign extended from 32 to 64 bits and
returned to the translated caller in place.

PSIG$K_FR_I32
PSIG$K_FR_U32

The native code is returning a 32-bit result in R0. R0 is sign
extended from 32 to 64 bits and the result is then returned in place
to the translated caller.

PSIG$K_FR_FF The single-precision result in Alpha register F0 is stored in the
low-order half of register R0.1

PSIG$K_FR_FD
PSIG$K_FR_FG

The double-precision result in Alpha register F0 is stored in the
low-order halves of registers R0 and R1.

PSIG$K_FR_FS
PSIG$K_FR_FT

Undefined.

PSIG$K_FR_FFC The single-precision complex result in Alpha registers F0 and F1 is
stored in the low-order halves of registers R0 and R1.1

PSIG$K_FR_FDC
PSIG$K_FR_FGC

The native code is returning a double-precision complex result in the
Alpha floating-point registers. The result is copied into the storage
given by the hidden first parameter passed by the translated caller.

PSIG$K_FR_FSC
PSIG$K_FR_FTC

Undefined.

1Note that for single-precision floating-point types, the unused 32 bits of an Alpha 64-bit argument
list entry are undefined.

3.5.2 Default Procedure Signature
In certain cases, a standard default procedure signature representing a common
combination of characteristics is encoded in a special manner. (For example, see
the descriptions of PDSC$W_SIGNATURE_OFFSET in Sections 3.4.1 and 3.7.4.)

In the OpenVMS Alpha environment, procedure signatures are used only to effect
interoperation between native OpenVMS Alpha and translated VAX VMS or
OpenVMS VAX images. Default procedure signature characteristics are defined
for each of the two possible call situations.

For an OpenVMS Alpha procedure that is callable from a translated VAX
procedure, a default procedure signature implies the following characteristics
about the expected parameters and result of a call to that procedure:

• The number of parameters passed is contained in the AI (R25) register (taken
from the count in the VAX argument list).

• All parameters (if any) are 32-bit sign extended (RASE$K_RA_I32 for register
arguments, MASE$K_MA_I32 for memory arguments).
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• The function result (if any) is 32-bit sign extended (PSIG$K_FR_I32).

For a bound procedure used as a jacket to effect a call into a translated image, a
default procedure signature implies the following characteristics about the actual
parameters and the expected result from a call to that translated procedure:

• The number of parameters passed is contained in the AI (R25) register.

• The register parameters (if any) are described in the AI register.

• The memory parameters (if any) are 32-bit sign extended (MASE$K_MA_I32).

• The function result (if any) is 32-bit sign extended (PSIG$K_FR_I32).

3.6 Procedure Call Chain
Except for the first invocation in a thread, there is always an invocation that
was previously considered to be the current procedure invocation. The current
procedure invocation, together with the previous current procedure invocations,
together with all successive previously current procedure invocations, all the way
back to the first invocation in the thread, make up a logical list of procedure
contexts referred to as the call chain. The current procedure invocation is
always considered to be the first procedure invocation in this logical list and the
first procedure invocation executed in the thread is always the last procedure
invocation in the list. The register values of all nonscratch registers at the time of
the currently active call in a procedure invocation can be determined by walking
the call chain and retrieving the procedure invocation context for that invocation.
A procedure is called an active procedure (active invocation) while it exists on
the call chain.

The call chain and its supporting data are used by code that implements various
aspects of the calling standard such as call returns and procedure unwinding.

3.6.1 Current Procedure
In this calling standard, R29 is the frame pointer (FP) register that defines the
current procedure.

Therefore, the current procedure must always maintain in FP one of the following
pointer values:

• Pointer to the procedure descriptor for that procedure.

• Pointer to a naturally aligned quadword containing the address of the
procedure descriptor for that procedure. For purposes of finding a procedure’s
procedure descriptor, no assumptions must be made about the quadword
location. As long as all other requirements of this standard are met, a
compiler is free to use FP as a base register for any arbitrary storage,
including a stack frame, provided that while the procedure is current,
the quadword pointed to by the value in FP contains the address of that
procedure’s descriptor.

At any point in time, the FP value can be interpreted to find the procedure
descriptor for the current procedure by examining the value at 0(FP) as follows:

• If 0(FP)<2:0> = 0, then FP points to a quadword that contains a pointer to
the procedure descriptor for the current procedure.

• If 0(FP)<2:0> 6= 0, then FP points to the procedure descriptor for the current
procedure.
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By examining the first quadword of the procedure descriptor, the procedure type
can be determined from the PDSC$V_KIND field.

The following code is an example of how the current procedure descriptor and
procedure type can be found:

LDQ R0,0(FP) ;Fetch quadword at FP
AND R0,#7,R28 ;Mask alignment bits
BNEQ R28,20$ ;Is procedure descriptor pointer
LDQ R0,0(R0) ;Was pointer to procedure descriptor

10$: AND R0,#7,R28 ;Do sanity check
BNEQ R28,20$ ;All is well

;Error - Invalid FP

20$: AND R0,#15,R0 ;Get kind bits

;Procedure KIND is now in R0

IF PDSC$V_KIND is equal to PDSC$K_KIND_FP_STACK, the current procedure
has a stack frame.

If PDSC$V_KIND is equal to PDSC$K_KIND_FP_REGISTER, the current
procedure is a register frame procedure.

Either type of procedure can use either type of mechanism to point to the
procedure descriptor. Compilers may choose the appropriate mechanism to use
based on the needs of the procedure involved.

3.6.2 Procedure Call Tracing
Mechanisms for each of the following functions are needed to support procedure
call tracing:

• To provide the context of a procedure invocation

• To walk (navigate) the procedure call chain

• To refer to a given procedure invocation

This section describes the data structure mechanisms. The routines that support
these functions are described in Section 3.6.3.

3.6.2.1 Referring to a Procedure Invocation from a Data Structure
When referring to a specific procedure invocation at run time, a procedure
invocation handle, shown in Figure 3–9, can be used. Defined by constant
LIBICB$K_INVO_HANDLE_SIZE, the structure is a single-field longword called
HANDLE. HANDLE describes the invocation handle of the procedure.

Figure 3–9 Procedure Invocation Handle Format

ZK−4656A−GE

HANDLE

INVO_HANDLE_SIZE = 4

longword aligned

:0

To encode a procedure invocation handle, follow these steps:

1. If PDSC$V_BASE_REG_IS_FP is set to 1 in the corresponding procedure
descriptor, then set INVO_HANDLE to the contents of the FP register in that
invocation.
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If PDSC$V_BASE_REG_IS_FP is set to 0, set INVO_HANDLE to the contents
of the SP register in that invocation. (That is, start with the base register
value for the frame.)

2. Shift the INVO_HANDLE contents left one bit. Because this value is initially
known to be octaword aligned (see Section 3.7.1), the result is a value whose
5 low-order bits are 0.

3. If PDSC$V_KIND = PDSC$K_KIND_FP_STACK, perform a logical OR on
the contents of INVO_HANDLE with the value 1F16, and then set INVO_
HANDLE to the value that results.

If PDSC$V_KIND = PDSC$K_KIND_FP_REGISTER, perform a logical OR on
the contents of INVO_HANDLE with the contents of PDSC$B_SAVE_RA, and
then set INVO_HANDLE to the value that results.

Note that a procedure invocation handle is not defined for a null frame procedure.

Note

So you can distinguish an invocation of a register frame procedure that
calls another register frame procedure (where the called procedure uses no
stack space and therefore has the same base register value as the caller),
the register number that saved the return address is included in the
invocation handle of a register frame procedure. Similarly, the number
3110 in the invocation handle of a stack frame procedure is included to
distinguish an invocation of a stack frame procedure that calls a register
frame procedure where the called procedure uses no stack space.

3.6.2.2 Invocation Context Block
The context of a specific procedure invocation is provided through the use of
a data structure called an invocation context block. The minimum size of
the block is 528 bytes and is system defined using the constant LIBICB$K_
INVO_CONTEXT_BLK_SIZE. The size of the last field (LIBICB$Q_SYSTEM_
DEFINED[n]) defined by the host system determines the total size of the block.

The fields defined in the invocation context block are illustrated in Figure 3–10
and described in Table 3–10.
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Figure 3–10 Invocation Context Block Format
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INVO_CONTEXT_BLK quadword aligned
:0

:4

:8

:16

:24

:32

BLOCK_VERSION FRAME_FLAGS

CONTEXT_LENGTH

PROGRAM_COUNTER

PROCESSOR_STATUS

PROCEDURE_DESCRIPTOR

:64

:72

:280

IREG [  0  ]

:40
IREG [  1  ]

IREG [  30  ]

FREG [  0  ]

FREG [  1  ]

:512
SYSTEM_DEFINED

LIBICB$K_INVO_CONTEXT_BLK_SIZE is defined by the system.

:504
FREG [  30  ]
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Table 3–10 Contents of the Invocation Context Block

Field Name Contents

LIBICB$L_CONTEXT_LENGTH Unsigned count of the total length in bytes of the context block; this
represents the sum of the lengths of the standard-defined portion
and the system-defined section.

LIBICB$R_FRAME_FLAGS The procedure frame flag bits <24:0> are defined as follows:

LIBICB$V_
EXCEPTION_
FRAME

Bit 0. If set to 1, the invocation context
corresponds to an exception frame.

LIBICB$V_AST_
FRAME

Bit 1. If set to 1, the invocation context
corresponds to an asynchronous trap.

LIBICB$V_
BOTTOM_OF_
STACK

Bit 2. If set to 1, the invocation context
corresponds to a frame that has no
predecessor.

LIBICB$V_BASE_
FRAME

Bit 3. If set to 1, the BASE_FRAME bit
is set in the FLAGS field of the associated
procedure descriptor.

LIBICB$B_BLOCK_VERSION A byte that defines the version of the context block. Since this block
is currently the first version, the value is set to 1.

LIBICB$PH_PROCEDURE_
DESCRIPTOR

Address of the procedure descriptor for this context.

LIBICB$Q_PROGRAM_COUNTER Quadword that contains the current value of the procedure’s
program counter. For interrupted procedures, this is the same
as the continuation program counter; for active procedures, this is
the return address back into that procedure.

LIBICB$Q_PROCESSOR_STATUS Contains the current value of the processor status.

LIBICB$Q_IREG[n] Quadword that contains the current value of the integer register in
the procedure (where n is the number of the register).

LIBICB$Q_FREG[n] Quadword that contains the current value of the floating-point
register in the procedure (where n is the number of the register).

LIBICB$Q_SYSTEM_DEFINED[n] A variable-sized area with locations defined in quadword
increments by the host environment that contains procedure context
information. These locations are not defined by this standard.

3.6.2.3 Getting a Procedure Invocation Context with a Routine
A thread can obtain its own context or the current context of any procedure
invocation in the current call chain (given an invocation handle) by calling the
run-time library functions defined in Section 3.6.3.

3.6.2.4 Walking the Call Chain
During the course of program execution, it is sometimes necessary to walk the
call chain. Frame-based exception handling is one case where this is done. Call
chain navigation is possible only in the reverse direction (in a latest-to-earliest or
top-to-bottom procedure).

To walk the call chain, perform the following steps:

1. Build an invocation context block when given a program state (which contains
a register set).

For the current routine, an initial invocation context block can be obtained by
calling the LIB$GET_CURR_INVO_CONTEXT routine (see Section 3.6.3.2).
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2. Repeatedly call the LIB$GET_PREV_INVO_CONTEXT routine (see
Section 3.6.3.3) until the end of the chain has been reached (as signified
by 0 being returned).

Compilers are allowed to optimize high-level language procedure calls in such
a way that they do not appear in the invocation chain. For example, inline
procedures never appear in the invocation chain.

Make no assumptions about the relative positions of any memory used for
procedure frame information. There is no guarantee that successive stack frames
will always appear at higher addresses.

3.6.3 Invocation Context Access Routines
A thread can manipulate the invocation context of any procedure in the thread’s
virtual address space by calling the following run-time library functions.

3.6.3.1 LIB$GET_INVO_CONTEXT
A thread can obtain the invocation context of any active procedure by using the
following function format:

LIB$GET_INVO_CONTEXT(invo_handle, invo_context)

Argument OpenVMS Usage Type Access Mechanism

invo_handle invo_handle longword (unsigned) read by value

invo_context invo_context_blk structure write by reference

Arguments:

invo_handle
Handle for the desired invocation.

invo_context
Address of an invocation context block into which the procedure context of the frame
specified by invo_handle will be written.

Function Value Returned:

status
Status value. A value of 1 indicates success; a value of 0 indicates failure.

Note

If the invocation handle that was passed does not represent any procedure
context in the active call chain, the value of the new contents of the
context block is unpredictable.

3.6.3.2 LIB$GET_CURR_INVO_CONTEXT
A thread can obtain the invocation context of a current procedure by using the
following function format:

LIB$GET_CURR_INVO_CONTEXT(invo_context)
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Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure write by reference

Argument:

invo_context
Address of an invocation context block into which the procedure context of the caller
will be written.

Function Value Returned:

None. To facilitate use in the implementation of the C language unwind setjmp or
longjump function (only), the routine sets R0 to 0.

3.6.3.3 LIB$GET_PREV_INVO_CONTEXT
A thread can obtain the invocation context of the procedure context preceding any
other procedure context by using the following function format:

LIB$GET_PREV_INVO_CONTEXT(invo_context)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure modify by reference

Argument:

invo_context
Address of an invocation context block. The given context block is updated to
represent the context of the previous (calling) frame.

For the purposes of this function, the minimum fields of an invocation block that
must be defined are those IREG and FREG fields corresponding to registers used by
a context whether the registers are preserved or not. Note that the invocation context
blocks written by the routines specified in these sections define all possible fields in a
context block. Such context blocks satisfy this minimum requirement.

Function Value Returned:

status
Status value. A value of 1 indicates success. When the initial context represents the
bottom of the call chain, a value of 0 is returned. If the current operation completed
without error, but a stack corruption was detected at the next level down, a value of 3
is returned.

3.6.3.4 LIB$GET_INVO_HANDLE
A thread can obtain an invocation handle corresponding to any invocation context
block by using the following function format:

LIB$GET_INVO_HANDLE(invo_context)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure read by reference

Argument:

invo_context
Address of an invocation context block. Here, only the frame pointer and stack pointer
fields of an invocation context block must be defined.
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Function Value Returned:

invo_handle
Invocation handle of the invocation context that was passed. If the returned value is
LIB$K_INVO_HANDLE_NULL, the invocation context that was passed was invalid.

3.6.3.5 LIB$GET_PREV_INVO_HANDLE
A thread can obtain an invocation handle of the procedure context preceding that
of a specified procedure context by using the following function format:

LIB$GET_PREV_INVO_HANDLE(invo_handle)

Argument OpenVMS Usage Type Access Mechanism

invo_handle invo_handle longword (unsigned) read by value

Argument:

invo_handle
An invocation handle that represents a target invocation context.

Function Value Returned:

invo_handle
An invocation handle for the invocation context that is previous to that which was
specified as the target.

3.6.3.6 LIB$PUT_INVO_REGISTERS
A given procedure invocation context’s fields can be updated with new register
contents by calling a system library function in following format:

LIB$PUT_INVO_REGISTERS(invo_handle, invo_context, invo_mask)

Argument OpenVMS Usage Type Access Mechanism

invo_handle invo_handle longword (unsigned) read by value

invo_context invo_context_blk structure read by reference

invo_mask mask_quadword quadword (unsigned) read by reference

Arguments:

invo_handle
Handle for the invocation to be updated.

invo_context
Address of an invocation context block that contains new register contents.

Each register that is set in the invo_mask parameter, except SP, is updated using
the value found in the corresponding IREG or FREG field. The program counter and
processor status can also be updated in this way. (The SP register cannot be updated
using this routine.) No other fields of the invocation context block are used.

invo_mask
Address of a 64-bit bit vector, where each bit corresponds to a register field in the
passed invo_context. Bits 0 through 30 correspond to IREG[0] through IREG[30], bit
31 corresponds to PROGRAM_COUNTER, bits 32 through 62 correspond to FREG[0]
through FREG[30], and bit 63 corresponds to PROCESSOR_STATUS. (If bit 30, which
corresponds to SP, is set, then no changes are made.)
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Function Value Returned:

status
Status value. A value of 1 indicates success. When the initial context represents the
bottom of the call chain or when bit 30 of the invo_mask argument is set, a value of
0 is returned (and nothing is changed).

Caution

While this routine can be used to update the frame pointer (FP), great
care must be taken to assure that a valid stack frame and execution
environment result; otherwise, execution may become unpredictable.

3.7 Transfer of Control
This standard states that a standard call may be accomplished in any way that
presents the called routine with the required environment (see Section 1.4).
However, typically, most standard-conforming external calls are implemented
with a common sequence of instructions and conventions. Since a common set of
call conventions is so pervasive, these conventions are included for reference as
part of this standard.

One important feature of the calling standard is that the same instruction
sequence can be used to call each of the different types of procedure. Specifically,
the caller does not have to know which type of procedure is being called.

3.7.1 Call Conventions
The call conventions describe the rules and methods used to communicate certain
information between the caller and the called procedure during invocation and
return. For a standard call, these conventions include the following:

• Procedure value

The calling procedure must pass to the called procedure its procedure value.
This value can be a statically or dynamically bound procedure value. This
is accomplished by loading R27 with the procedure value before control is
transferred to the called procedure.

• Return address

The calling procedure must pass to the called procedure the address to which
control must be returned during a normal return from the called procedure.
In most cases, the return address is the address of the instruction following
the one that transferred control to the called procedure. For a standard call,
this address is passed in the return address register (R26).

• Argument list

The argument list is an ordered set of zero or more argument items that
together constitute a logically contiguous structure known as an argument
item sequence. This logically contiguous sequence is typically mapped to
registers and memory in a way that produces a physically discontiguous
argument list. In a standard call, the first six items are passed in registers
R16–21 or registers F16–21. (See Section 3.8.2 for details of argument-to-
register correspondence.) The remaining items are collected in a memory
argument list that is a naturally aligned array of quadwords. In a standard
call, this list (if present) must be passed at 0(SP).
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• Argument information

The calling procedure must pass to the called procedure information about
the argument list. This information is passed in the argument information
(AI) register (R25). Defined by AI$K_AI_SIZE, the structure is a quadword as
shown in Figure 3–11 with the fields described in Table 3–11.

Figure 3–11 Argument Information Register (R25) Format
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Table 3–11 Contents of the Argument Information Register (R25)

Field Name Contents

AI$B_ARG_COUNT Unsigned byte <7:0> that specifies the number of 64-bit argument items in the
argument list (known as the ‘‘argument count’’).

AI$V_ARG_REG_INFO An 18-bit vector field <25:8> divided into six groups of 3 bits that correspond to
the six arguments passed in registers. These groups describe how each of the
first six arguments are passed in registers with the first group <10:8> describing
the first argument. The encoding for each group for the argument register usage
follows:

Value Name Meaning

0 AI$K_AR_I64 64-bit or 32-bit sign-extended to 64-bit argument
passed in an integer register
or Argument is not present

1 AI$K_AR_FF F_floating argument passed in a floating register

2 AI$K_AR_FD D_floating argument passed in a floating register

3 AI$K_AR_FG G_floating argument passed in a floating register

4 AI$K_AR_FS S_floating argument passed in a floating register

5 AI$K_AR_FT T_floating argument passed in a floating register

6, 7 Reserved

Bits 26–63 Reserved and must be 0.

• Function result

If a standard-conforming procedure is a function and the function result is
returned in a register, then the result is returned in R0, F0, or F0 and F1.
Otherwise, the function result is returned via the first argument item or
dynamically as defined in Section 3.8.7.
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• Stack usage

At any time, the stack pointer (SP) must denote an address that has the
minimum alignment required by the Alpha hardware. In addition, whenever
control is transferred to another procedure, the stack must be octaword
aligned. (A side effect of this is that the in-memory portion of the argument
list will start on an octaword boundary.) During a procedure invocation, the
SP (R30) can never be set to a value higher than the value of SP at entry to
that procedure invocation.

The contents of the stack located above the portion of the argument list that is
passed in memory (if any) belongs to the calling procedure and is, therefore,
not to be read or written by the called procedure, except as specified by
indirect arguments or language-controlled up-level references.

Since SP is used by the hardware in raising exceptions and asynchronous
interrupts, the contents of the next 2048 bytes below the current SP value
are continually and unpredictably modified. Software that conforms to this
standard must not depend on the contents of the 2048 stack locations below
0(SP).

Note

One implication of the stack alignment requirement is that low-level
interrupt and exception-fielding software must be prepared to handle and
correct the alignment before calling handler routines, in case the stack
pointer is not octaword aligned at the time of an interrupt or exception.

3.7.2 Linkage Section
Because the Alpha hardware architecture has the property of instructions
that cannot contain full virtual addresses, it is sometimes referred to as a
base register architecture. In a base register architecture, normal memory
references within a limited range from a given address are expressed by using
displacements relative to the contents of a register containing that address (base
register). Base registers for external program segments, either data or code, are
usually loaded indirectly through a program segment of address constants.

The fundamental program section containing address constants that a procedure
uses to access other static storage, external procedures, and variables is termed a
linkage section. Any register used to access the contents of the linkage section
is termed a linkage pointer.

A procedure’s linkage section includes the procedure descriptor for the procedure,
addresses of all external variables and procedures referenced by the procedure,
and other constants a compiler may choose to reference using a linkage pointer.

When a standard procedure is called, the caller must provide the procedure value
for that procedure in R27. Static procedure values are defined to be the address
of the procedure’s descriptor. Since the procedure descriptor is part of the linkage
section, calling this type of procedure value provides a pointer into the linkage
section for that procedure in R27. This linkage pointer can then be used by the
called procedure as a base register to address locations in its linkage section. For
this reason, most compilers generate references to items in the linkage section as
offsets from a pointer to the procedure’s descriptor.
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Compilers usually arrange (as part of the environment setup) to have the
environment setup code (for bound procedures) load R27 with the address of
the procedure’s descriptor so it can be used as a linkage pointer as previously
described. For an example, see Section 3.7.4.

Although not required, linkages to external procedures are typically represented
in the calling procedure’s linkage section as a linkage pair. As shown in
Figure 3–12 and described in Table 3–12, a linkage pair (LKP) block with two
fields should be octaword aligned and defined by LKP$K_SIZE as 16 bytes.

Figure 3–12 Linkage Pair Block Format
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Table 3–12 Contents of the Linkage Pair Block

Field Name Contents

LKP$Q_ENTRY Absolute address of the first instruction of the called
procedure’s entry code sequence.

LKP$Q_PROC_VALUE Contains the procedure value of the procedure to be called.
Normally, this field is the absolute address of a procedure
descriptor for the procedure to be called, but in certain cases, it
could be a bound procedure value (such as for procedures that
are called through certain types of transfer vectors).

In general, an object module contains a procedure descriptor for each entry
point in the module. The descriptors are allocated in a linkage section. For each
external procedure Q that is referenced in a module, the module’s linkage section
also contains a linkage pair denoting Q (which is a pointer to Q’s procedure
descriptor and entry code address).

The following code example calls an external procedure Q as represented by
a linkage pair. In this example, R4 is the register that currently contains the
address of the current procedure’s descriptor.

LDQ R26,Q_DESC-MY_DESC(R4) ;Q’s entry address into R26
LDQ R27,Q_DESC-MY_DESC+8(R4) ;Q’s procedure value into R27
MOVQ #AI_LITERAL,R25 ;Load Argument Information register
JSR R26,(R26) ;Call to Q. Return address in R26
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Because Q’s procedure descriptor (statically defined procedure value) is in Q’s
linkage section, Q can use the value in R27 as a base address for accessing data
in its linkage section. Q accesses external procedures and data in other program
sections through pointers in its linkage section. Therefore, R27 serves as the root
pointer through which all data can be referenced.

3.7.3 Calling Computed Addresses
Most calls are made to a fixed address whose value is determined by the time
the program starts execution. However, certain cases are possible that cause the
exact address to be unknown until the code is finally executed. In this case, the
procedure value representing the procedure to be called is computed in a register.

The following code example illustrates a call to a computed procedure value
(simple or bound) that is contained in R4:

LDQ R26,8(R4) ;Entry address to scratch register
MOV R4,R27 ;Procedure value to R27
MOVQ #AI_LITERAL,R25 ;Load Argument Information register
JSR R26,(R26) ;Call entry address.

If interoperation with translated images must be considered, the procedure value
(in this example, in R4) might be the address of a VAX entry point rather than the
address of an Alpha procedure descriptor. A VAX entry point can be dynamically
distinguished from an Alpha procedure descriptor by examining bits 12 and 13 of
a VAX entry call mask, which are required to be 0 by the VAX architecture. For
an Alpha procedure, bit 12 corresponds to the PDSC$V_NATIVE flag, which is
required to be set in all Alpha procedure descriptors. Bit 13 corresponds to the
PDSC$V_NO_JACKET flag, which is currently required to be set but reserved for
enhancements to this standard in all Alpha procedure descriptors.

If the procedure value is determined to correspond to an Alpha procedure, then
the call can be completed as discussed. If the procedure value is determined to
correspond to a VAX procedure, then the call must be completed using system
facilities that will effect the transition into and out of the code of the translated
image. Example 3–1 illustrates a code sequence for examining the procedure
value.

Example 3–1 Code for Examining the Procedure Value

LDL R28,0(R4) ;Load the flags field of the target PDSC
MOVQ #AI_LITERAL,R25 ;Load Argument Information register
SRL R28,#PDSC$V_NO_JACKET,R26 ;Position jacket flag
BLBC R26,CALL_JACKET ;If clear then jacket needed
LDQ R26,8(R4) ;Entry address to scratch register
MOV R4,R27 ;Procedure value to R27
JSR R26,(R26) ;Call entry address.

back_in_line:
... ;Rest of procedure code goes here

TRANSLATED: ;Generated out of line, R2 contains a
LDQ R26,N_TO_T_LKP(R2) ;Entry address to scratch register
LDQ R27,N_TO_T_LKP+8(R2) ;Load procedure value
MOV R4,R23 ;Address of routine to call to R23
JSR R26,(R26) ;Call jacket routine
BR back_in_line ;Return to normal code path

(continued on next page)
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Example 3–1 (Cont.) Code for Examining the Procedure Value

CALL_JACKET: ;
SRL R28,#PDSC$V_NATIVE,R28;Jacketing for translated or native?
LDA R24,PSIG_OUT(R2) ;Pass address of our argument

; signature information in R24
BLBC R28,TRANSLATED ;If clear, then translated jacketing
(Native Jacketing Reserved for Future Use)
BR back_in_line ;Return to normal code path

In Example 3–1, jacketing functionality is provided by the SYS$NATIVE_
TO_TRANSLATED routine. This system procedure is called with the actual
arguments for the target procedure in their normal locations (as though the
target procedure were an Alpha procedure) and with two additional, nonstandard
arguments in registers R23 and R24. R23 contains the procedure value for the
target VAX procedure, and R24 contains the address of a procedure signature
block for this call as described in Section 3.5.

3.7.4 Bound Procedure Descriptors
Bound procedure descriptors provide a mechanism to interpose special
processing between a call and the called routine without modifying either. The
descriptor may contain (or reference) data used as part of that processing.
Between native and translated images, the OpenVMS Alpha operating system
uses linker and image-activator created bound procedure descriptors to mediate
the handling of parameter and result passing (see Section 3.5). Language
processors on OpenVMS Alpha systems use bound procedure descriptors to
implement bound procedure values (see Section 3.7.4.1). Other uses are possible.

The minimum size of the descriptor is 24 bytes (defined by PDSC$K_MIN_
BOUND_SIZE). An optional PDSC extension in 8-byte increments provides the
specific environment values as defined by the implementation.

The fields defined in the bound procedure descriptor are illustrated in Figure 3–13
and described in Table 3–13.
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Figure 3–13 Bound Procedure Descriptor (PDSC)
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Table 3–13 Contents of the Bound Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_FLAGS Vector of flag bits <15:0> that must be a copy of the flag bits (except for KIND
bits) contained in the quadword pointed to by PDSC$Q_PROC_VALUE.

PDSC$V_KIND A 4-bit field <3:0> that identifies the type of procedure
descriptor. For a procedure with bound values, this field
must specify a value of 0.

PDSC$V_FUNC_
RETURN

A 4-bit field <11:8> that describes which registers are used for the function
value return (if there is one) and what format is used for those registers.

PDSC$V_FUNC_RETURN in a bound procedure descriptor must be the same
as the PDSC$V_FUNC_RETURN of the procedure descriptor for the procedure
for which the environment is established.

Table 3–7 lists and describes the possible encoding values of PDSC$V_FUNC_
RETURN.

Bits 12–15 Reserved and must be 0.

(continued on next page)
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Table 3–13 (Cont.) Contents of the Bound Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_SIGNATURE_
OFFSET

A 16-bit signed byte offset from the start of the procedure descriptor. This
offset designates the start of the procedure signature block (if any). In a bound
procedure, a 0 in this field indicates the actual signature block must be sought
in the procedure descriptor indicated by the PDSC$Q_PROC_VALUE field. A 1
in this field indicates a standard default signature. (An offset value of 1 is not
a valid offset because both procedure descriptors and signature blocks must be
quadword aligned. See Section 3.5 for details of the procedure signature block.)

Note that a nonzero signature offset in a bound procedure value normally occurs
only in the case of bound procedures used as part of the implementation of
calls from native OpenVMS Alpha code to translated OpenVMS VAX images.
In any case, if a nonzero offset is present, it takes precedence over signature
information that might occur in any related procedure descriptor.

PDSC$Q_ENTRY Address of the transfer code sequence.

PDSC$Q_PROC_VALUE Value of the procedure to be called by the transfer code. The value can be either
the address of a procedure descriptor for the procedure or possibly another
bound procedure value.

PDSC$Q_
ENVIRONMENT

An environment value to pass to the procedure. The choice of environment value
is system implementation specific. For more information, see Section 3.7.4.1.

3.7.4.1 Bound Procedure Value
There are two distinct classes of procedures:

• Simple procedure

• Bound procedure

A simple procedure is a procedure that does not need direct access to the stack
of its execution environment. A bound procedure is a procedure that does need
direct access to the stack of its execution environment, typically to reference
an up-level variable or to perform a nonlocal GOTO operation. Both a simple
procedure and a bound procedure have an associated procedure descriptor, as
described in previous sections.

When a bound procedure is called, the caller must pass some kind of pointer to
the called code that allows it to reference its up-level environment. Typically,
this pointer is the frame pointer for that environment, but many variations are
possible. When the caller is executing its program within that outer environment,
it can usually make such a call directly to the code for the nested procedure
without recourse to any additional procedure descriptors. However, when
a procedure value for the nested procedure must be passed outside of that
environment to a call site that has no knowledge of the target procedure, a
bound procedure descriptor is created so that the nested procedure can be called
just like a simple procedure.

Bound procedure values, as defined by this standard, are designed for
multilanguage use and utilize the properties of procedure descriptors to
allow callers of procedures to use common code to call both bound and simple
procedures.

The procedure value for a bound procedure is a pointer to a bound procedure
descriptor that, like all other procedure descriptors, contains the address to which
the calling procedure must transfer control at offset 8 (see Figure 3–13). This
transfer code is responsible for setting up the dynamic environment needed
by the target nested procedure and then completing the transfer of control to
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the code for that procedure. The transfer code receives in R27 a pointer to
its corresponding bound procedure descriptor and thus can fetch any required
environment information from that descriptor. A bound procedure descriptor also
contains a procedure value for the target procedure that is used to complete the
transfer of control.

When the transfer code sequence addressed by PDSC$Q_ENTRY of a bound
procedure descriptor is called (by a call sequence such as the one given in
Section 3.7.3), the procedure value will be in R27, and the transfer code must
finish setting up the environment for the target procedure. The preferred location
for this transfer code is directly preceding the code for the target procedure. This
saves a memory fetch and a branching instruction and optimizes instruction
caches and paging.

The following is an example of such a transfer code sequence. It is an example of
a target procedure Q that expects the environment value to be passed in R1 and
a linkage pointer in R27.

Q_TRANSFER:

LDQ R1,24(R27) ;Environment value to R1
LDQ R27,16(R27) ;Procedure descriptor address to R27

Q_ENTRY:: ;Normal procedure entry code starts here

After the transfer code has been executed and control is transferred to Q’s entry
address, R27 contains the address of Q’s procedure descriptor, R26 (unmodified
by transfer code) contains the return address, and R1 contains the environment
value.

When a bound procedure value such as this is needed, the bound procedure
descriptor is usually allocated on the parent procedure’s stack.

3.7.5 Entry and Exit Code Sequences
To ensure that the stack can be interpreted at any point during thread execution,
all procedures must adhere to certain conventions for entry and exit as defined in
this section.

3.7.5.1 Entry Code Sequence
Since the value of FP defines the current procedure, all properties of the
environment specified by a procedure’s descriptor must be valid before the FP
is modified to make that procedure current. In addition, none of the properties
specified in the calling procedure’s descriptor may be invalidated before the called
procedure becomes current. So, until the FP has been modified to make the
procedure current, all entry code must adhere to the following rules:

• All registers specified by this standard as saved across a standard call must
contain their original (at entry) contents.

• No standard calls may be made.

Note

If an exception is raised or if an exception occurs in the entry code of a
procedure, that procedure’s exception handler (if any) will not be invoked
since the procedure is not current yet. Therefore, if a procedure has
an exception handler, compilers may not move code into the procedure
prologue that might cause an exception that would be handled by that
handler.
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When a procedure is called, the code at the entry address must synchronize
(as needed) any pending exceptions caused by instructions issued by the caller,
must save the caller’s context, and must make the called procedure current by
modifying the value of FP as described in the following steps:

1. If PDSC$L_SIZE is not 0, set register SP = SP � PDSC$L_SIZE.

2. If PDSC$V_BASE_REG_IS_FP is 1, store the address of the procedure
descriptor at 0(SP).

If PDSC$V_KIND = PDSC$K_KIND_FP_REGISTER, copy the return address
to the register specified by PDSC$B_SAVE_RA, if it is not already there, and
copy the FP register to the register specified by PDSC$B_SAVE_FP.

If PDSC$V_KIND = PDSC$K_KIND_FP_STACK, copy the return address
to the quadword at the RSA$Q_SAVED_RETURN offset in the register save
area denoted by PDSC$W_RSA_OFFSET, and store the registers specified by
PDSC$L_IREG_MASK and PDSC$L_FREG_MASK in the register save area
denoted by PDSC$W_RSA_OFFSET. (This step includes saving the value in
FP.)

Execute TRAPB if required (see Section 6.5.3.2 for details).

3. If PDSC$V_BASE_REG_IS_FP is 0, load register FP with the address of the
procedure descriptor or the address of a quadword that contains the address
of the procedure descriptor.

If PDSC$V_BASE_REG_IS_FP is 1, copy register SP to register FP.

The ENTRY_LENGTH value in the procedure descriptor provides information
that is redundant with the setting of a new frame pointer register value. That
is, the value could be derived by starting at the entry address and scanning the
instruction stream to find the one that updates FP. The ENTRY_LENGTH value
included in the procedure descriptor supports the debugger or PCA facility so that
such a scan is not required.

Entry Code Example for a Stack Frame Procedure
Example 3–2 is an entry code example for a stack frame. The example assumes
that:

• This is a stack frame procedure

• Registers R2–4 and F2–3 are saved and restored

• PDSC$W_RSA_OFFSET = 16

• The procedure has a static exception handler that does not reraise arithmetic
traps

• The procedure uses a variable amount of stack

If the code sequence in Example 3–2 is interrupted by an asynchronous software
interrupt, SP will have a different value than it did at entry, but the calling
procedure will still be current.

After an interrupt, it would not be possible to determine the original value of SP
by the register frame conventions. If actions by an exception handler result in
a nonlocal GOTO call to a location in the immediate caller, then it will not be
possible to restore SP to the correct value in that caller. Therefore, any procedure
that contains a label that can be the target of a nonlocal GOTO by immediately
called procedures must be prepared to reset or otherwise manage the SP at that
label.
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Example 3–2 Entry Code for a Stack Frame Procedure

LDA SP,-SIZE(SP) ;Allocate space for new stack frame
STQ R27,(SP) ;Set up address of procedure descriptor
STQ R26,16(SP) ;Save return address
STQ R2,24(SP) ;Save first integer register
STQ R3,32(SP) ;Save next integer register
STQ R4,40(SP) ;Save next integer register
STQ FP,48(SP) ;Save caller’s frame pointer
STT F2,56(SP) ;Save first floating-point register
STT F3,64(SP) ;Save last floating-point register
TRAPB ;Force any pending hardware exceptions to

; be raised
MOV SP,FP ;Called procedure is now the current procedure

Entry Code Example for a Register Frame
Example 3–3 assumes that the called procedure has no static exception handler
and utilizes no stack storage, PDSC$B_SAVE_RA specifies R26, PDSC$B_SAVE_
FP specifies R22, and PDSC$V_BASE_REG_IS_FP is 0:

Example 3–3 Entry Code for a Register Frame Procedure

MOV FP,R22 ;Save caller’s FP.
MOV R27,FP ;Set FP to address of called procedure’s

; descriptor. Called procedure is now the
; current procedure.

3.7.5.2 Exit Code Sequence
When a procedure returns, the exit code must restore the caller’s context,
synchronize any pending exceptions, and make the caller current by modifying
the value of FP. The exit code sequence must perform the following steps:

1. If PDSC$V_BASE_REG_IS_FP is 1, then copy FP to SP.

If PDSC$V_KIND = PDSC$K_KIND_FP_STACK, and this procedure saves or
restores any registers other than FP and SP, reload those registers from the
register save area as specified by PDSC$W_RSA_OFFSET.

If PDSC$V_KIND = PDSC$K_KIND_FP_STACK, load a scratch register with
the return address from the register save area as specified by PDSC$W_RSA_
OFFSET. (If PDSC$V_KIND = PDSC$K_KIND_FP_REGISTER, the return
address is already in scratch register PDSC$B_SAVE_RA.)

Execute TRAPB if required (see Section 6.5.3.2 for details).

2. If PDSC$V_KIND = PDSC$K_KIND_FP_REGISTER, copy the register
specified by PDSC$B_SAVE_FP to register FP.

3. If PDSC$V_KIND = PDSC$K_KIND_FP_STACK, reload FP from the saved
FP in the register save area.

4. If a function value is not being returned using the stack (PDSC$V_STACK_
RETURN_VALUE is 0), then restore SP to the value it had at procedure entry
by adding the value that was stored in PDSC$L_SIZE to SP. (In some cases,
the returning procedure will leave SP pointing to a lower stack address than
it had on entry to the procedure, as specified in Section 3.8.7.)
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5. Jump to the return address (which is in a scratch register).

The called routine does not adjust the stack to remove any arguments passed in
memory. This responsibility falls to the calling routine that may choose to defer
their removal because of optimizations or other considerations.

Exit Code Example for a Stack Frame
Example 3–4 shows the return code sequence for the stack frame.

Example 3–4 Exit Code Sequence for a Stack Frame

MOV FP,SP ;Chop the stack back
LDQ R28,16(FP) ;Get return address
LDQ R2,24(FP) ;Restore first integer register
LDQ R3,32(FP) ;Restore next integer register
LDQ R4,40(FP) ;Restore next integer register
LDT F2,56(FP) ;Restore first floating-point register
LDT F3,64(FP) ;Restore last floating-point register
TRAPB ;Force any pending hardware exceptions to

; be raised
LDQ FP,48(FP) ;Restore caller’s frame pointer
LDA SP,SIZE(SP) ;Restore SP (SIZE is compiled into PDSC$L_SIZE)
RET R31,(R28) ;Return to caller’s code

Interruption of the code sequence in Example 3–4 by an asynchronous software
interrupt can result in the calling procedure being the current procedure, but
with SP not yet restored to its value in that procedure. The discussion of that
situation in entry code sequences applies here as well.

Exit Code Example for a Register Frame
Example 3–5 contains the return code sequence for the register frame.

Example 3–5 Exit Code Sequence for a Register Frame

MOV R22,FP ;Restore caller’s FP value
; Caller is once again the current procedure.

RET R31,(R26) ;Return to caller’s code

3.8 Data Passing
This section defines the OpenVMS Alpha calling standard conventions of passing
data between procedures in a call chain. An argument item represents one unit
of data being passed between procedures.

3.8.1 Argument-Passing Mechanisms
This OpenVMS Alpha calling standard defines three classes of argument items
according to the mechanism used to pass the argument:

• Immediate value

• Reference

• Descriptor
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Argument items are not self-defining; interpretation of each argument item
depends on agreement between the calling and called procedures.

This standard does not dictate which passing mechanism must be used by a
given language compiler. Language semantics and interoperability considerations
might require different mechanisms in different situations.

Immediate value
An immediate value argument item contains the value of the data item. The
argument item, or the value contained in it, is directly associated with the
parameter.

Reference
A reference argument item contains the address of a data item such as a
scalar, string, array, record, or procedure. This data item is associated with the
parameter.

Descriptor
A descriptor argument item contains the address of a descriptor, which contains
structural information about the argument’s type (such as array bounds) and the
address of a data item. This data item is associated with the parameter.

3.8.2 Argument List Structure
The argument list in an OpenVMS Alpha call is an ordered set of zero or more
argument items, which together comprise a logically contiguous structure known
as the argument item sequence. An argument item is specified using up to 64
bits.

A 64-bit argument item can be used to pass arguments by immediate value,
by reference, and by descriptor. Any combination of these mechanisms in an
argument list is permitted.

Although the argument items form a logically contiguous sequence, they are
in practice mapped to integer and floating-point registers and to memory in a
method that can produce a physically discontiguous argument list. Registers
R16–21 and F16–21 are used to pass the first six items of the argument item
sequence. Additional argument items must be passed in a memory argument list
that must be located at 0(SP) at the time of the call.

Table 3–14 specifies the standard locations in which argument items can be
passed.

Table 3–14 Argument Item Locations

Item Integer Register
Floating-Point
Register Stack

1 R16 F16

2 R17 F17

3 R18 F18

4 R19 F19

5 R20 F20

6 R21 F21

7–n 0(SP) – (n � 7) � 8(SP)
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The following list summarizes the general requirements that determine the
location of any specific argument:

• All argument items are passed in the integer registers or on the stack, except
for argument items that are floating-point data passed by immediate value.

• Floating-point data passed by immediate value is passed in the floating-point
registers or on the stack.

• Only one location (across an item row in Table 3–14) can be used by any given
argument item in a list. For example, if argument item 3 is an integer passed
by value, and argument item 4 is a single-precision floating-point number
passed by value, then argument item 3 is assigned to R18 and argument item
4 is assigned to F19.

• A single- or double-precision complex value is treated as two arguments for
the purpose of argument-item sequence rules. In particular, the real part of a
complex value might be passed as the sixth argument item in register F21, in
which case the imaginary part is then passed as the seventh argument item
in memory.

An extended precision complex value is passed by reference using a single
integer or stack argument item. (An extended precision complex value is not
passed by immediate value because the component extended precision floating
values are not passed by value. See also Section 3.8.5.1, Sending Mechanism.)

The argument list that includes both the in-memory portion and the portion
passed in registers can be read from and written to by the called procedure.
Therefore, the calling procedure must not make any assumptions about the
validity of any part of the argument list after the completion of a call.

3.8.3 Argument Lists and High-Level Languages
High-level language functional notations for procedure call arguments are
mapped into argument item sequences according to the following requirements:

• Arguments are mapped from left to right to increasing offsets in the argument
item sequence. R16 or F16 is allocated to the first argument, and the last
quadword of the memory argument list (if any) is allocated to the last
argument.

• Each source language argument corresponds to one or more contiguous Alpha
calling standard argument items.

• Each argument item consists of 64 bits.

• A null or omitted argument—for example, CALL SUB(A,,B)—is represented
by an argument item containing the value 0.

Arguments passed by immediate value cannot be omitted unless a default
value is supplied by the language. (This is to enable called procedures
to distinguish an omitted immediate argument from an immediate value
argument with the value 0.)

Trailing null or omitted arguments—for example, CALL SUB(A,,)—are passed
by the same rules as for embedded null or omitted arguments.
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3.8.4 Unused Bits in Passed Data
Whenever data is passed by value between two procedures in registers (for the
first six input arguments and return values), or in memory (for arguments after
the first six), the bits not used by the data are sign extended or zero extended as
appropriate.

Table 3–15 lists and defines the various data-type requirements for size and their
extensions to set or clear unused bits.

Table 3–15 Data Types and the Unused Bits in Passed Data

Data Type
Type
Designator

Data Size
(bytes)

Register
Extension
Type

Memory
Extension
Type

Byte logical BU 1 Zero64 Zero64

Word logical WU 2 Zero64 Zero64

Longword logical LU 4 Sign64 Sign64

Quadword logical QU 8 Data64 Data64

Byte integer B 1 Sign64 Sign64

Word integer W 2 Sign64 Sign64

Longword integer L 4 Sign64 Sign64

Quadword integer Q 8 Data64 Data64

F_floating F 4 Hard Data32

D_floating D 8 Hard Data64

G_floating G 8 Hard Data64

F_floating complex FC 2 � 4 2�Hard 2�Data32

D_floating complex DC 2 � 8 2�Hard 2�Data64

G_floating complex GC 2 � 8 2�Hard 2�Data64

S_floating FS 4 Hard Data32

T_floating FT 8 Hard Data64

X_floating FX 16 N/A N/A

S_floating complex FSC 2 � 4 2�Hard 2�Data32

T_floating complex FTC 2 � 8 2�Hard 2�Data64

X_floating complex FXC 2 � 16 N/A N/A

Small structures of 8 bytes or less N/A �8 Nostd Nostd

Small arrays of 8 bytes or less N/A �8 Nostd Nostd

32-bit address N/A 4 Sign64 Sign64

64-bit address N/A 8 Data64 Data64

The following are the defined meanings for the extension type symbols used in
Table 3–15:
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Sign Extension
Type Defined Function

Sign64 Sign-extended to 64 bits.

Zero64 Zero-extended to 64 bits.

Data32 Data is 32 bits. The state of bits <63:32> is unpredictable.

2�Data32 Two single-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as Data32).

Data64 Data is 64 bits.

2�Data64 Two double-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as Data64).

Hard Passed in the layout defined by the hardware SRM.

2�Hard Two floating-point parts of the complex value are stored in a pair of
registers as independent floating-point values (each handled as Hard).

Nostd State of all high-order bits not occupied by the data is unpredictable
across a call or return.

Because of the varied rules for sign extension of data when passed as arguments,
both calling and called routines must agree on the data type of each argument.
No implicit data-type conversions can be assumed between the calling procedure
and the called procedure.

3.8.5 Sending Data
This section defines the OpenVMS Alpha calling standard requirements for
mechanisms to send data and the order of argument evaluation.

3.8.5.1 Sending Mechanism
As previously defined, the argument-passing mechanisms allowed are immediate
value, reference, and descriptor. Requirements for using these mechanisms
follow:

• By immediate value. An argument may be passed by immediate value only
if the argument is one of the following:

One of the noncomplex scalar data types with a size known (at compile
time) to be � 64 bits

Either single or double precision complex

A record with a known size (at compile time)

A set, implemented as a bit vector, with a size known (at compile time) to
be � 64 bits

No form of string or array data type may be passed by immediate value in a
standard call.

Unused high-order bits must be zero or sign extended, as appropriate
depending on the date type, to fill all bits of each argument list item (as
specified in Table 3–15).

A single- or double- precision complex value is passed as two single or double
precision floating-point values, respectively. Note that the argument count
reflects that two argument positions are used rather than just one actual
argument.

A record value, which may be larger than 64 bits, is passed by immediate
value as follows:
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Allocate as many fully occupied argument item positions to the argument
value as are needed to represent the argument.

The value of the unoccupied bits is undefined in a final, partially occupied
argument item position, if any.

If an argument position is passed in one of the registers, it can only be
passed in an integer register (never in a floating-point register).

Other argument values that are larger than 64 bits can be passed by
immediate value using nonstandard conventions, typically using a method
similar to those for passing records. Thus, for example, a 26-byte string can
be passed by value in four integer registers.

• By reference. Nonparametric arguments (arguments for which associated
information such as string size and array bounds are not required) can be
passed by reference in a standard call. This includes extended precision
floating and extended precision complex values.

• By descriptor. Parametric arguments (arguments for which associated
information such as string size and array bounds must be passed to the
caller) are passed by a single descriptor in a standard call.

Note that extended floating values are not passed using the immediate value
mechanism; rather, they are passed using the by reference mechanism. (However,
when by value semantics is required, it may be necessary to make a copy of the
actual parameter and pass a reference to that copy in order to avoid improper
alias effects.)

Also note that when a record is passed by immediate value, the component
types are not material to how the argument is aligned; the record will always be
quadword aligned.

3.8.5.2 Order of Argument Evaluation
Since most high-level languages do not specify the order of evaluation (with
respect to side effects) of arguments, those language processors can evaluate
arguments in any convenient order. The choice of argument evaluation order and
code generation strategy is constrained only by the definition of the particular
language. Programs should not depend on the order of evaluation of arguments.

3.8.6 Receiving Data
When it cannot be determined at compile time whether a given in-register
argument item is passed in a floating-point register or an integer register, the
argument information register can be interpreted at run time to establish where
the argument was passed. (See Section 3.7.1 for details.)

3.8.7 Returning Data
A standard function must return its function value by one of the following
mechanisms:

• Immediate value

• Reference

• Descriptor

These mechanisms are the only standard means available for returning function
values, and they support the important language-independent data types.
Functions that return values by any mechanism other than those specified here
are nonstandard, language-specific functions.
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3.8.7.1 Function Value Return by Immediate Value
This standard defines the following two types of function returns by immediate
value:

• Nonfloating function value return

• Floating function value return

Nonfloating Function Value Return by Immediate Value
A function value is returned by immediate value in register R0 only if the type of
function value is one of the following:

• Nonfloating-point scalar data type with size known to be � 64 bits

• Record with size known to be � 64 bits

• Set, implemented as a bit vector, with size known to be � 64 bits

No form of string or array can be returned by immediate value, and two separate
32-bit entities cannot be combined and returned in R0.

A function value of less than 64 bits returned in R0 must be zero extended or sign
extended as appropriate, depending on the data type (see Table 3–15), to a full
quadword.

Floating Function Value Return by Immediate Value
A function value is returned by immediate value in register F0 only if it is a
noncomplex single- or double-precision floating-point value (F, D, G, S, or T).

A function value is returned by immediate value in registers F0 and F1 only if it
is a complex single or double-precision floating-point value (complex F, D, G, S, or
T).

Note that extended floating point and extended complex values are returned by
reference as described next.

3.8.7.2 Function Value Return by Reference
A function value is returned by reference only if the function value satisfies both
of the following criteria:

• Its size is known to both the calling procedure and the called procedure, but
the value cannot be returned by immediate value. (Because the function
value requires more than 64 bits, the data type is a string or an array type.)

• It can be returned in a contiguous region of storage.

The actual-argument list and the formal-argument list are shifted to the right
by one argument item. The new, first argument item is reserved for the function
value. This hidden first argument is included in the count and register usage
information that is passed in the argument information register (see Section 3.7.1
for details).

The calling procedure must provide the required contiguous storage and pass the
address of the storage as the first argument. This address must specify storage
naturally aligned according to the data type of the function value.

The called function must write the function value to the storage described by the
first argument.
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3.8.7.3 Function Value Return by Descriptor
A function value is returned by descriptor only if the function value satisfies all of
the following criteria:

• It cannot be returned by immediate value. (Because the function value
requires more than 64 bits, the data type is a string or an array type, and so
on.)

• Its size is not known to either the calling procedure or the called procedure.

• It can be returned in a contiguous region of storage.

Noncontiguous function values are language specific and cannot be returned as a
standard-conforming return value.

Records, noncontiguous arrays, and arrays with more than one dimension cannot
be returned by descriptor in a standard call.

Both 32-bit and 64-bit descriptor forms can be used for function values returned
by descriptor. See Chapter 5 for details of the descriptor forms.

The use of descriptors for function value return divides into three major cases
with return values involving:

• Dynamic text—Heap-managed strings of arbitrary and dynamically
changeable length

• Return objects created by the calling routine—Function values that are to be
returned in an object allocated by and having attributes (bounds, lengths, and
so on) specified by the calling routine

• Return objects created by the called routine—Function values that are
returned in an object allocated by and having attributes (bounds, lengths,
and so on) specified by the called routine

For correct results to be obtained from this type of function return, the calling
and called routines must agree by prior arrangement which of these three major
cases applies, and whether 64-bit descriptor forms may be used.

The following paragraphs describe the specialized requirements for each major
case:

Dynamic Text
For dynamic text return by descriptor, the calling routine passes a valid
(completely initialized) dynamic string descriptor (DSC$B_CLASS = DSC$K_
CLASS_D). The called routine must assign a value to the variable represented by
this descriptor using the same rules that apply to a dynamic text descriptor used
as an ordinary parameter.

Return Object Created by Calling Routine
For a return object created by the calling routine, the calling routine passes a
descriptor in which all fields are completely loaded.

The called routine must supply a return value that satisfies that description. In
particular, the called routine must truncate or pad the returned value to satisfy
the requirements of the descriptor according to the semantics of the language in
which the called routine is written.

The calling and called routines must agree by prior arrangement on the DSC$B_
CLASS and DSC$B_DTYPE of descriptor to be used.
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Return Object Created by Called Routine
For a return object created by the called routine, the calling and called routines
must agree by prior arrangement on the DSC$B_CLASS and DSC$B_DTYPE of
descriptor to be used. The calling routine passes a descriptor in which:

• DSC$A_POINTER field is set to 0.

• DSC$B_CLASS field is loaded.

• DSC$B_DTYPE field is loaded.

• DSC$B_DIMCT field is loaded and the DSC$B_AFLAGS field is set to 0 if the
descriptor is an array descriptor.

• All other fields are unpredictable.

If the passed descriptor is an array descriptor, it must contain space for bounds
information to be returned even though the DSC$B_AFLAGS field is set to 0.

The called routine must return the function value using stack return conventions
and load the DSC$A_POINTER field to point to the returned data. Other
descriptor information, such as origin, bounds (if supplied), and DSC$B_AFLAGS
fields must be filled in appropriately to correspond to the returned data.

An important implication of a call that uses this kind of value return is that
the stack pointer normally is not restored to its value prior to the call as part
of the return from the called procedure. The returned value typically (but not
necessarily) is left by the called routine somewhere on the stack. For that reason,
this mechanism is sometimes known as the stack return mechanism.

However, this type of return does not imply that the actual storage used by the
called routine to hold the returned value must be at the address pointed to by
the stack pointer; it need not even be on the stack. It could be in some read-only,
static memory. (This latter case might arise when the returned value is constant
or is obtained from some constant structure.) For this reason, the calling routine
must not assume that the data described by the return descriptor is writable.

3.9 Static Data
This section describes the standard static data requirements that define the
Alpha alignment of data structures, record formats, and record layout. These
conventions help to ensure proper data compatibility with all OpenVMS Alpha
and VAX languages.

3.9.1 Alignment
In the Alpha environment, memory references to data that is not naturally
aligned can result in alignment faults, which can severely degrade the
performance of all procedures that reference the unaligned data.

To avoid such performance degradation, all data values on Alpha systems should
be naturally aligned. Table 3–16 contains information on data alignment.
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Table 3–16 Data Alignment Addresses

Data Type Alignment Starting Position

8-bit character string Byte boundary

16-bit integer Address that is a multiple of 2 (word alignment)

32-bit integer Address that is a multiple of 4 (longword alignment)

64-bit integer Address that is a multiple of 8 (quadword alignment)

F_floating
F_floating complex

Address that is a multiple of 4 (longword)

D_floating
D_floating complex

Address that is a multiple of 8 (quadword)

G_floating
G_floating complex

Address that is a multiple of 8 (quadword)

S_floating
S_floating complex

Address that is a multiple of 4 (longword alignment)

T_floating
T_floating complex

Address that is a multiple of 8 (quadword)

X_floating
X_floating complex

Address that is a multiple of 16 (octaword)

For aggregates such as strings, arrays, and records, the data type to be considered
for purposes of alignment is not the aggregate itself, but rather the elements of
which the aggregate is composed. The alignment requirement of an aggregate
is that all elements of the aggregate be naturally aligned. For example, varying
8-bit character strings must start at addresses that are a multiple of at least 2
(word alignment) because of the 16-bit count at the beginning of the string; 32-bit
integer arrays start at a longword boundary, irrespective of the extent of the
array.

The rules for passing a record in an argument that is passed by immediate
value (see Section 3.8.5.1) always provide quadword alignment of the record
value independent of the normal alignment requirement of the record. If deemed
appropriate by an implementation, normal alignment can be established within
the called procedure by making a copy of the record argument at a suitably
aligned location.

3.9.2 Record Layout Conventions
The OpenVMS Alpha calling standard rules for record layout are designed
to provide good run-time performance on all implementations of the Alpha
architecture and to provide the required level of compatibility with conventional
VAX operating environments.

Therefore, this standard defines two record layout conventions:

• Those optimized for optimal access characteristics (referred to as aligned
record layouts)

• Those compatible with conventions that are traditionally used by VAX
languages (referred to as VAX compatible record layouts)
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Note

Although compiler implementers must make appropriate business
decisions, Compaq strongly recommends that all Alpha high-level
language compilers should support both record layouts.

Only these two record layouts may be used across standard interfaces or
between languages. Languages can support other language-specific record
layout conventions, but such layouts are nonstandard.

The aligned record layout conventions should be used unless interchange is
required with conventional VAX applications that use the VAX VMS or OpenVMS
VAX compatible record layouts.

3.9.2.1 Aligned Record Layout
The aligned record layout conventions ensure that:

• All components of a record or subrecord are naturally aligned.

• Layout and alignment of record elements and subrecords are independent of
any record or subrecord in which they are embedded.

• Layout and alignment of a subrecord is the same as if it were a top-level
record.

• Declaration in high-level languages of standard records for interlanguage use
is straightforward and obvious, and meets the requirements for source-level
compatibility between Alpha and VAX languages.

The aligned record layout is defined by the following conventions:

• The components of a record must be laid out in memory corresponding to the
lexical order of their appearance in the high-level language declaration of the
record.

• The first bit of a record or subrecord must be directly addressable (byte
aligned).

• Records and subrecords must be aligned according to the largest natural
alignment requirements of the contained elements and subrecords.

• Bit fields (packed subranges of integers) are characterized by an underlying
integer type that is a byte, word, longword, or quadword in size together with
an allocation size in bits. A bit field is allocated at the next available bit
boundary, provided that the resulting allocation does not cross an alignment
boundary of the underlying type. Otherwise, the field is allocated at the
next byte boundary that is aligned as required for the underlying type. (In
the later case, the space skipped over is left permanently not allocated.) In
addition, if necessary, the alignment of the record as a whole is increased to
that of the underlying integer type.

• Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit
arrays must start at the next available bit in the record. No fill is ever
supplied preceding an unaligned bit string, unaligned bit array, or unaligned
bit array element.

• All other components of a record must start at the next available naturally
aligned address for the data type.
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• The length of a record must be a multiple of its alignment. (This includes the
case when a record is a component of another record.)

• Strings and arrays must be aligned according to the natural alignment
requirements of the data type of which the string or array is composed.

• The length of an array element is a multiple of its alignment, even if this
leaves unused space at its end. The length of the whole array is the sum of
the lengths of its elements.

3.9.2.2 OpenVMS VAX Compatible Record Layout
The OpenVMS VAX compatible record layout is defined by the following
conventions:

• The components of a record must be laid out in memory corresponding to the
lexical order of their appearance in the high-level language declaration of the
record.

• Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit
arrays must start at the next available bit in the record. No fill is ever
supplied preceding an unaligned bit string, unaligned bit array, or unaligned
bit array element.

• All other components of a record must start at the next available byte in
the record. Any unused bits following the last-used bit in the last-used byte
of each component must be filled out to the next byte boundary so that any
following data starts on a byte boundary.

• Subrecords must be aligned according to the largest alignment of the
contained elements and subrecords. A subrecord always starts at the
next available byte unless it consists entirely of unaligned bit data and
it immediately follows an unaligned bit string, unaligned bit array, or a
subrecord consisting entirely of unaligned bit data.

• Records must be aligned on byte boundaries.

3.10 Multithreaded Execution Environments
This section defines the conventions to support the execution of multiple threads
in a multilanguage Alpha environment. Specifically defined is how compiled code
must perform stack limit checking. While this standard is compatible with a
multithreaded execution environment, the detailed mechanisms, data structures,
and procedures that support this capability are not specified in this manual.

For a multithread environment, the following characteristics are assumed:

• There can be one or more threads executing within a single process.

• The state of a thread is represented in a thread environment block (TEB).

• The TEB of a thread contains information that determines a stack limit
below which the stack pointer must not be decremented by the executing code
(except for code that implements the multithread mechanism itself).

• Exception handling is fully reentrant and multithreaded.

• The correct way to terminate a thread is by returning from the initial
procedure in which the thread begins execution, or by a call to SYS$GOTO_
UNWIND, specifying a null target environment or some other procedure that
includes this effect. Note that correct thread termination involves unwind
processing for all of the active frames of the thread.
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3.10.1 Stack Limit Checking
A program that is otherwise correct can fail because of stack overflow. Stack
overflow occurs when extension of the stack (by decrementing the stack pointer,
SP) allocates addresses not currently reserved for the current thread’s stack.

Detection of a stack overflow situation is necessary because a thread, attempting
to write into stack storage, could modify data allocated in that memory for some
other purpose. This would most likely produce unpredictable and undesirable
results or irreproducible application failures.

The requirements for procedures that can execute in a multithread environment
include checking for stack overflow. This section defines the conventions for stack
limit checking in a multithreaded program environment.

In the following sections, the term new stack region refers to the region of the
stack from the old value of SP � 1 to the new value of the SP.

3.10.1.1 Stack Guard Region
In a multithread environment, the memory beyond the limit of each thread’s
stack is protected by contiguous guard pages, which form the stack’s guard
region.

3.10.1.2 Stack Reserve Region
In some cases, it is desirable to maintain a stack reserve region, which is a
minimum-sized region that is immediately above a thread’s guard region. A
reserve region may be desirable to ensure that exceptions or asynchronous system
traps (ASTs) have stack space to execute on a thread’s stack, or to ensure that
the exception dispatcher and any exception handler that it might call have stack
space to execute after detection of an invalid attempt to extend the stack.

This standard does not require a reserve region.

3.10.1.3 Methods for Stack Limit Checking
Since accessible memory may be available at addresses lower than those occupied
by the guard region, compilers must generate code that never extends the stack
past the guard pages into accessible memory that is not allocated to the thread’s
stack.

A general strategy is to access each page of memory down to and possibly
including the page corresponding to the intended new value for the SP. If the
stack is to be extended by an amount larger than the size of a memory page, then
a series of accesses is required that works from higher to lower addressed pages.
If any access results in a memory access violation, then the code has made an
invalid attempt to extend the stack of the current thread.

Note

An access can be performed by using either a load or a store operation;
however, be sure to use an instruction that is guaranteed to make an
access to memory. For example, do not use an LDQ R31,* instruction,
because the Alpha architecture does not allow any memory access, even a
read access, whose result is discarded because of the R31 destination.

This standard defines two methods for stack limit checking: implicit and explicit.
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Implicit Stack Limit Checking
The following are two mutually exclusive strategies for implicit stack limit
checking:

• If the lowest addressed byte of the new stack region is guaranteed to be
accessed prior to any further stack extension, then the stack can be extended
by an increment that is equal in size to the guard region (without any further
accesses).

• If some byte (not necessarily the lowest) of the new stack region is guaranteed
to be accessed prior to any further stack extension, then the stack can be
extended by an increment that is equal in size to one-half the guard region
(without any further accesses).

The stack frame format (see Section 3.4.3) and entry code rules (see Section 3.7.5)
generally do not ensure access to the lowest address of a new stack region without
introducing an extra access solely for that purpose. Consequently, this standard
uses the second strategy. While the amount of implicit stack extension that can
be achieved is smaller, the check is achieved at no additional cost.

This standard requires that the minimum guard region size is 8192 bytes, the size
of the smallest memory protection granularity allowed by the Alpha architecture.

Therefore, if the stack is being extended by an amount less than or equal to 4096
and a reserve region is not required, then explicit stack limit checking is not
required.

However, because asynchronous interrupts and calls to other procedures may also
cause stack extension without explicit stack limit checking, stack extension with
implicit limit checking must adhere to a strict set of conventions as follows:

1. Explicit stack limit checking must be performed unless the amount by which
the SP is decremented is known to be less than or equal to 4096 and a reserve
region is not required.

2. Some byte in the new stack region must be accessed before the SP can be
decremented for a subsequent stack extension.

This access can be performed either before or after the SP is decremented for
this stack extension, but it must be done before the SP can be decremented
again.

3. No standard procedure call can be made before some byte in the new stack
region is accessed.

4. The system exception dispatcher ensures that the lowest addressed byte in
the new stack region is accessed if any kind of asynchronous interrupt occurs
after the SP is decremented, but before the access in the new stack region
occurs.

These conventions ensure that the stack pointer is not decremented so that
it points to accessible storage beyond the stack limit without this error being
detected (either by the guard region being accessed by the thread or by an explicit
stack limit check failure).

As a matter of practice, the system can provide multiple guard pages in the
guard region. When a stack overflow is detected as a result of access to the guard
region, one or more guard pages can be unprotected for use by the exception-
handling facility, and one or more guard pages can remain protected to provide
implicit stack limit checking during exception processing. However, the size of
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the guard region and the number of guard pages is system defined and is not
defined by this standard.

Explicit Stack Limit Checking
If the stack is being extended by an amount of unknown size or by a known size
greater than the maximum implicit check size (4096), then a code sequence that
follows the rules for implicit stack limit checking can be executed in a loop to
access the new stack region incrementally in segments lesser than or equal to
the minimum page size (8192 bytes). At least one access must occur in each such
segment. The first access must occur between SP and SP � 4096 because, in the
absence of more specific information, the previous guaranteed access relative to
the current stack pointer may be as much as 4096 bytes greater than the current
stack pointer address. The last access must be within 4096 bytes of the intended
new value of the stack pointer. These accesses must occur in order, starting
with the highest addressed segment and working toward the lowest addressed
segment.

Note

A simple algorithm that is consistent with this requirement (but achieves
up to twice the minimum number of accesses) is to perform a sequence
of accesses in a loop starting with the previous value of SP, decrementing
by the minimum no-check extension size (4096) to, but not including, the
first value that is less than the new value for the stack pointer.

The stack must not be extended incrementally in procedure prologues. A
procedure prologue that needs to extend the stack by an amount of unknown
size or known size greater than the minimum implicit check size must test new
stack segments as just described in a loop that does not modify SP, and then
update the stack with one instruction that copies the new stack pointer value into
the SP.

Note

An explicit stack limit check can be performed either by inline code that
is part of a prologue or by a run-time support routine that is tailored to
be called from a procedure prologue.

Stack Reserve Region Checking
The size of the reserve region must be included in the increment size used for
stack limit checks, after which it is not included in the amount by which the
stack is actually extended. (Depending on the size of the reserve region, this
may partially or even completely eliminate the ability to use implicit stack limit
checking.)

3.10.1.4 Stack Overflow Handling
If a stack overflow is detected, one of the following results:

• Exception SS$_ACCVIO may be raised.

• The system may transparently extend the thread’s stack, reset the TEB stack
limit value appropriately, and continue execution of the thread.
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Note that if a transparent stack extension is performed, a stack overflow that
occurs in a called procedure might cause the stack to be extended. Therefore, the
TEB stack limit value must be considered volatile and potentially modified by
external procedure calls and by handling of exceptions.
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This chapter defines the argument-passing data types that are used to call a
procedure for both VAX and Alpha environments. All features defined here apply
to both OpenVMS VAX and OpenVMS Alpha systems unless otherwise noted.

Each data type implemented for a high-level language uses one of the following
classes of VAX data types for procedure parameters and elements of file records:

• Atomic

• String

• Miscellaneous

When existing data types fail to satisfy the semantics of a language, new data
types, including certain language-specific ones, are added to this standard. These
data types can generally be passed by immediate value (if 32 bits or less), by
reference, or by descriptor.

Each data type code presented in this chapter indicates a unique data format.
Use these encodings whenever you need to identify data types to achieve greater
commonality across user software.

The encoding given in Sections 4.1 and 4.2 can help you to identify data types,
such as in a descriptor. However, in addition to their use in descriptors, these
data type codes are also useful for identifying VAX and Alpha data types in areas
outside the scope of the calling standard. Therefore, each data-type code indicates
a unique data format independent of its use in descriptors.

Some data types are composed of a recordlike structure consisting of two or more
elementary data types. For example, the F_floating complex (FC) data type is
made up of two F_floating data types, and the varying character string (VT) data
type is made up of a word (unsigned, WU) data type followed by a character
string (T) data type.

Unless stated otherwise, all data types in this standard represent signed
quantities. The unsigned quantities do not allocate space for the sign; all bit or
character positions are used for significant data.

4.1 Atomic Data Types
Table 4–1 shows how atomic data types are defined and encoded for VAX and
Alpha environments.
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Table 4–1 Atomic Data Types

Symbol Code Name/Description

DSC$K_DTYPE_Z 0 Unspecified

The calling program has specified no data type. The
default argument for the called procedure should be
the correct type.

DSC$K_DTYPE_BU 2 Byte (unsigned)

8-bit unsigned quantity.

DSC$K_DTYPE_WU 3 Word (unsigned)

16-bit unsigned quantity.

DSC$K_DTYPE_LU 4 Longword (unsigned)

32-bit unsigned quantity.

DSC$K_DTYPE_QU 5 Quadword (unsigned)

64-bit unsigned quantity.

DSC$K_DTYPE_OU 25 Octaword (unsigned)

128-bit unsigned quantity.

DSC$K_DTYPE_B 6 Byte integer (signed)

8-bit signed two’s complement integer.

DSC$K_DTYPE_W 7 Word integer (signed)

16-bit signed two’s complement integer.

DSC$K_DTYPE_L 8 Longword integer (signed)

32-bit signed two’s complement integer.

DSC$K_DTYPE_Q 9 Quadword integer (signed)

64-bit signed two’s complement integer.

DSC$K_DTYPE_O 26 Octaword integer (signed)

128-bit signed two’s complement integer.

DSC$K_DTYPE_F 10 F_floating

32-bit F_floating quantity representing a single-
precision number.

DSC$K_DTYPE_D1 11 D_floating

64-bit D_floating quantity representing a double-
precision number.

DSC$K_DTYPE_G 27 G_floating

64-bit G_floating quantity representing a double-
precision number.

†DSC$K_DTYPE_H2 28 H_floating

128-bit H_floating quantity representing a quadruple-
precision number.

1While the calling standard supports the manipulation of D_floating and D_floating complex data,
compiled code support will invoke conversion from D_floating to G_floating as needed for Alpha
arithmetic operations, and conversion of G_floating intermediate results back to D_floating when
needed for stores to memory or parameter passing. This allows D_floating data to be used in Alpha
arithmetic operations without required source changes but with results limited to G_floating precision.
2H_floating data is not supported for general use on OpenVMS Alpha systems. However,
conversion routines are supplied to allow users to convert existing H_floating data to other storage
representations.
†VAX specific.

(continued on next page)
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Table 4–1 (Cont.) Atomic Data Types

Symbol Code Name/Description

DSC$K_DTYPE_FC 12 F_floating complex

Ordered pair of F_floating quantities representing
a single-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

DSC$K_DTYPE_DC 13 D_floating complex

Ordered pair of D_floating quantities representing
a double-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

DSC$K_DTYPE_GC 29 G_floating complex

Ordered pair of G_floating quantities representing
a double-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

†DSC$K_DTYPE_HC2 30 H_floating complex

Ordered pair of H_floating quantities representing
a quadruple-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

‡DSC$K_DTYPE_FS 52 S_floating

32-bit IEEE S_floating quantity representing a
single-precision number.

‡DSC$K_DTYPE_FT 53 T_floating

64-bit IEEE T_floating quantity representing a
double-precision number.

‡DSC$K_DTYPE_FSC 54 S_floating complex

Ordered pair of S_floating quantities representing
a single-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

‡DSC$K_DTYPE_FTC 55 T_floating complex

Ordered pair of T_floating quantities representing
a single-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

‡DSC$K_DTYPE_FX 57 X_floating

128-bit IEEE X_floating quantity representing an
extended-precision number.

‡DSC$K_DTYPE_FXC 58 X_floating complex

Ordered pair of X_floating quantities representing an
extended-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

2H_floating data is not supported for general use on OpenVMS Alpha systems. However,
conversion routines are supplied to allow users to convert existing H_floating data to other storage
representations.
†VAX specific.
‡Alpha specific.
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4.2 String Data Types
String data types are ordinarily described by a string descriptor. Table 4–2
shows how the string data types are defined and encoded for OpenVMS VAX and
OpenVMS Alpha environments.

Table 4–2 String Data Types

Symbol Code Name/Description

DSC$K_DTYPE_T 14 Character string

A single 8-bit character (atomic data type) or a
sequence of 0 to 216

� 1 8-bit characters (string data
type).

DSC$K_DTYPE_VT 37 Varying character string

A 16-bit unsigned count of the current number of
8-bit characters in the following string, followed
by a string of 0 to 216

� 1 8-bit characters (see
Section 4.5 for details). When this data type is used
with descriptors, it can only be used with the varying
string and varying string array descriptors, because
the length field is interpreted differently from the
other 8-bit string data types. (See Sections 4.5, 5.8,
and 5.9 for further discussion.)

DSC$K_DTYPE_NU 15 Numeric string, unsigned

DSC$K_DTYPE_NL 16 Numeric string, left separate sign

DSC$K_DTYPE_NLO 17 Numeric string, left overpunched sign

DSC$K_DTYPE_NR 18 Numeric string, right separate sign

DSC$K_DTYPE_NRO 19 Numeric string, right overpunched sign

DSC$K_DTYPE_NZ 20 Numeric string, zoned sign

DSC$K_DTYPE_P 21 Packed-decimal string

DSC$K_DTYPE_V 1 Aligned bit string

A string of 0 to 216
� 1 contiguous bits. The first bit

is bit <0> of the first byte, and the last bit is any bit
in the last byte. Remaining bits in the last byte must
be 0 on read and are cleared on write. Unlike the
unaligned bit string (VU) data type, when the aligned
bit string (V) data type is used in array descriptors,
the ARSIZE field is in units of bytes, not bits, because
allocation is a multiple of 8 bits.

DSC$K_DTYPE_VU 34 Unaligned bit string

The data is 0 to 216
� 1 contiguous bits located

arbitrarily with respect to byte boundaries. See also
aligned bit string (V) data type. Because additional
information is required to specify the bit position of
the first bit, this data type can be used only with
the unaligned bit string and unaligned bit array
descriptors (see Sections 5.10 and 5.11).

4.3 Miscellaneous Data Types
Table 4–3 shows how miscellaneous data types are defined and encoded for the
OpenVMS VAX and OpenVMS Alpha environments.

4–4 OpenVMS Argument Data Types



OpenVMS Argument Data Types
4.3 Miscellaneous Data Types

Table 4–3 Miscellaneous Data Types

Symbol Code Name/Description

†DSC$K_DTYPE_ZI 22 Sequence of instructions

†DSC$K_DTYPE_ZEM 23 Procedure entry mask

DSC$K_DTYPE_DSC 24 Descriptor

This data type allows a descriptor to be a data type;
thus, levels of descriptors are allowed.

†DSC$K_DTYPE_BPV 32 Bound procedure value (for VAX environment only)

A two-longword entity in which the first longword
contains the address of a procedure entry mask and
the second longword is the environment value. The
environment value is determined in a language-
specific manner when the original bound procedure
value is generated. When the bound procedure is
called, the calling program loads the second longword
into R1. When the environment value is not needed,
this data type can be passed using the immediate
value mechanism. In this case, the argument list
entry contains the address of the procedure entry
mask and the second longword is omitted.

DSC$K_DTYPE_BLV 33 Bound label value

A two-longword entity in which the first longword
contains the address of an instruction and the second
longword is the language-specific environment value.
The environment value is determined in a language-
specific manner when the original bound label value
is generated.

DSC$K_DTYPE_ADT 35 Absolute date and time

A 64-bit unsigned, scaled, binary integer representing
a date and time in 100-nanosecond units offset
from the OpenVMS operating system base date and
time, which is 00:00 o’clock, November 17, 1858 (the
Smithsonian base date and time for astronomical
calendars). The value 0 indicates that the date and
time have not been specified, so a default value or
distinctive print format can be used.

Note that the ADT data type is the same as the
OpenVMS date format for positive values only.

†VAX specific.

4.4 Reserved Data-Type Codes
All codes from 0 through 191 not otherwise defined in this standard are reserved
to Compaq. Codes 192 through 255 are reserved to Compaq’s Computer Special
Systems Group and for customers for their own use.

Table 4–4 lists the data types and codes that are obsolete or reserved to
Compaq.
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Table 4–4 Reserved Data Types

Symbol Code Purpose

DSC$K_DTYPE_CIT 31 Reserved to COBOL (intermediate temporary)

DSC$K_DTYPE_CIT2 64 Reserved to COBOL (intermediate temporary
alternative 2)

DSC$K_DTYPE_TF 40 Reserved to DEBUG (Boolean true/false)

DSC$K_DTYPE_SV 41 Reserved to DEBUG (signed bit-field, aligned)

DSC$K_DTYPE_SVU 42 Reserved to DEBUG (signed bit-field, unaligned)

DSC$K_DTYPE_FIXED 43 Reserved to DEBUG (fixed binary—fixed point in Ada
and fixed binary in PL/I)

DSC$K_DTYPE_TASK 44 Reserved to DEBUG (task type in Ada)

DSC$K_DTYPE_AC 45 Reserved to DEBUG (ASCIC text)

DSC$K_DTYPE_AZ 46 Reserved to DEBUG (ASCIZ text)

DSC$K_DTYPE_M68_S 47 Reserved to DEBUG (Motorola 68881 single precision,
32-bit)1

DSC$K_DTYPE_M68_D 48 Reserved to DEBUG (Motorola 68881 double
precision, 64-bit)1

DSC$K_DTYPE_M68_X 49 Reserved to DEBUG (Motorola 68881 extended
precision, 96-bit)2

DSC$K_DTYPE_1750_S 50 Reserved to DEBUG (1750 single precision, 32-bit)

DSC$K_DTYPE_1750_X 51 Reserved to DEBUG (1750 extended precision, 48-bit)

DSC$K_DTYPE_WC 56 Reserved to DEBUG (setlocale dependent C string)

No symbol defined 36 Obsolete

DSC$K_DTYPE_T2 38 Obsolete

DSC$K_DTYPE_VT2 39 Obsolete

1Differs from Alpha IEEE floating because of byte ordering.
2Differs from Alpha IEEE floating because of byte ordering and size.

4.4.1 Facility-Specific Data-Type Codes
Data-type codes 160 through 191 are reserved to Compaq for facility-specific
purposes. These codes must not be passed between facilities because different
facilities can use the same code for different purposes. These codes might be
used by compiler-generated code to pass parameters to the language-specific
run-time support procedures associated with that language or with the OpenVMS
Debugger.

As shown in Table 4–4, data-type codes 31 and 64 are reserved for the COBOL
facility. Codes 40 through 51 and 56 are reserved for the OpenVMS Debugger
facility.
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4.5 Varying Character String Data Type (DSC$K_DTYPE_VT)
The varying character string data type (DSC$K_DTYPE_VT) consists of the
following two fixed-length areas allocated contiguously with no padding in
between (see Figure 4–1):

CURLEN An unsigned word specifying the current length in bytes of the immediately
following string.

BODY A fixed-length area containing the string that can vary from 0 to a maximum
length defined for each instance of string. The range of this maximum
length is 0 to 216

� 1.

Figure 4–1 Varying Character String Data Type (DSC$K_DTYPE_VT)—General
Format

ZK−7975A−GE

CURLEN (=n)

BODY

: 0

: 2

: 2 + (n−1)

When passed by reference or by descriptor, the address of the varying character
string (VT) data type is always the address of the CURLEN field, not the BODY
field.

When a called procedure modifies a varying character string data type passed
by reference or by descriptor, it writes the new length, n, into CURLEN and can
modify all bytes of BODY, even those beyond the new length.

For example, consider a varying string with a maximum length of seven
characters. To represent the string ABC, CURLEN will have a value of 3 and the
last four bytes will be undefined, as shown in Figure 4–2.
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Figure 4–2 Varying Character String Data Type (DSC$K_DTYPE_VT) Format
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This chapter describes the argument descriptors used in calling a procedure for
both VAX and Alpha environments.

A uniform descriptor mechanism is defined for use by all VAX and Alpha
procedures that conform to the OpenVMS calling standard. Descriptors are
self-describing and the mechanism is extensible. When existing descriptors fail to
satisfy the semantics of a language, new descriptors are added to this standard.

Unless stated otherwise, the calling program fills in all fields in descriptors. This
is true whether the descriptor is generated by default or by a language extension.
The fields are filled in even if a called procedure written in the same language
ignores the contents of some of the fields. Therefore, a descriptor conforms to this
calling standard if all fields are filled in by the calling program, even if the called
program does not need the field.

Note

Unless stated otherwise, all fields in descriptors represented as unsigned
quantities are read-only from the point of view of the called procedure,
and can be allocated in read-only memory at the option of the calling
program.

If a language processor implements a language-specific data type that is not
added to this standard (see Chapter 4), the processor is not required to use a
standard descriptor to pass an array of such a data type. However, if a language
processor passes an array of such a data type using a standard descriptor, the
language processor fills in the DSC$B_DTYPE field with the value 0, indicating
that the data-type field is unspecified, rather than using a more general data-type
code.

For example, an array of PL/I POINTER data types has the DTYPE field filled in
with the value 0 (unspecified data type), rather than with the value 4 (longword
[unsigned] data type). The remaining fields are filled in as specified by this
standard; for example, DSC$W_LENGTH is filled in with the size in bytes.
Because the language-specific data type might be added to the standard in the
future, generic application procedures that examine the DTYPE field should be
prepared for 0 and for additional data types.

Table 5–1 identifies the classes of argument descriptors for use in the standard
VAX and Alpha environments. Each class has two synonymous names—one
for 32-bit environments (DSC$) and one for 64-bit environments (DSC64$).
Descriptions and formats of each of these descriptors follow.
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Table 5–1 Argument Descriptor Classes for OpenVMS Alpha and OpenVMS VAX

Descriptor Code Class

DSC$K_CLASS_S
DSC64$K_CLASS_S

1 Fixed-length scalar/string

DSC$K_CLASS_D
DSC64$K_CLASS_D

2 Dynamic string

DSC$K_CLASS_A
DSC64$K_CLASS_A

4 Contiguous array

DSC$K_CLASS_P1

DSC64$K_CLASS_P1
5 Procedure argument descriptor

DSC$K_CLASS_SD
DSC64$K_CLASS_SD

9 Decimal (scalar) string

DSC$K_CLASS_NCA
DSC64$K_CLASS_NCA

10 Noncontiguous array

DSC$K_CLASS_VS
DSC64$K_CLASS_VS

11 Varying string

DSC$K_CLASS_VSA
DSC64$K_CLASS_VSA

12 Varying string array

DSC$K_CLASS_UBS
DSC64$K_CLASS_UBS

13 Unaligned bit string

DSC$K_CLASS_UBA
DSC64$K_CLASS_UBA

14 Unaligned bit array

DSC$K_CLASS_SB
DSC64$K_CLASS_SB

15 String with bounds

DSC$K_CLASS_UBSB
DSC64$K_CLASS_UBSB

16 Unaligned bit string with bounds

1The pointer field usage for this descriptor differs from VAX usage (see Section 5.5).

5.1 Descriptor Prototype
Figure 5–1 shows the descriptor prototype format. There are two forms: one for
use with 32-bit addresses and one for use with 64-bit addresses. The two forms
are compatible in that the forms can be distinguished dynamically at run time
and, except for the size and consequential placement of fields, 32-bit and 64-bit
descriptors are identical in content and interpretation.

The 32-bit descriptors are used on both OpenVMS VAX and OpenVMS Alpha
systems. When used on OpenVMS Alpha systems, 32-bit descriptors provide
full compatibility with their use on OpenVMS VAX. The 64-bit descriptors are
used only on OpenVMS Alpha systems—they have no counterparts and are not
recognized on OpenVMS VAX systems.
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Figure 5–1 Descriptor Prototype Format
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MBMO  (=−1)

MBO  (=1)DTYPECLASS

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER
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The 32-bit descriptors on OpenVMS Alpha systems have no required alignment
for compatibility with OpenVMS VAX systems; however, longword alignment
generally promotes performance. The 64-bit descriptors on OpenVMS Alpha
systems must be quadword aligned.

Table 5–2 describes the fields of the descriptor. In this table and the similar
tables for descriptors in later sections, note that most fields have two symbols
and one description. The symbol that begins with the prefix DSC$ is used with
32-bit descriptors, while the symbol that begins with the prefix DSC64$ is used
with 64-bit descriptors.

In this chapter, it is generally the practice to use only the main part of a
field name, without either of the prefixes used in actual code. For example,
the length field is referred to using LENGTH rather than mentioning both
DSC$W_LENGTH and DSC64$Q_LENGTH. The DSC$ and DSC64$ prefixes are
used only when referring to a particular form of descriptor.

The CLASS and DTYPE fields occupy the same offsets in both 32-bit and 64-bit
descriptors. Thus, the symbols DSC$B_CLASS and DSC64$B_CLASS have the
same definition, as do DSC$B_DTYPE and DSC64$B_DTYPE. Furthermore,
these fields are permitted to contain the same values with the same meanings in
both 32-bit and 64-bit forms.
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The DSC$W_LENGTH and DSC$A_POINTER fields in the 32-bit descriptors
correspond in placement to the DSC64$W_MBO (must be 1) and DSC64$L_
MBMO (must be -1) fields in the 64-bit descriptors. The values of these fields are
used to distinguish whether a given descriptor has the 32-bit or 64-bit form as
described later in this section.

When the CLASS field is 0, no more information can be assumed than is shown
in Table 5–2.

Table 5–2 Contents of the Prototype Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Defines the data item length specific to the descriptor class.

DSC64$W_MBO In a 64-bit descriptor, this field must contain the value 1. This
field overlays the DSC$W_LENGTH field of a 32-bit descriptor
and the value 1 is necessary to correctly distinguish between the
two forms (see below).

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Sections 4.1 and
4.2.

DSC$B_CLASS
DSC64$B_CLASS

A descriptor class code that identifies the format and
interpretation of the other fields of the descriptor as specified
in the following sections. This interpretation is intended to be
independent of the DTYPE field, except for the data types that
are made up of units less than a byte (packed-decimal string
[P], aligned bit string [V], and unaligned bit string [VU]). The
CLASS code can be used at run time by a called procedure to
determine which descriptor is being passed.

DSC$A_POINTER
DSC64$PQ_POINTER

The address of the first byte of the data element described.

DSC64$L_MBMO In a 64-bit descriptor, this field must contain the value -1 (all 1
bits). Note that this field overlays the DSC$A_POINTER field
of a 32-bit descriptor and the value -1 is necessary to correctly
distinguish between the two forms (see below).

As previously mentioned, the MBO field (a word at offset 0) and the MBMO
field (a longword at offset 4) are used to distinguish between a 32-bit and 64-bit
descriptor. A called routine that is designed to handle both kinds of descriptors
must do both of the following:

• Confirm that the MBO field contains 1

• Confirm that the MBMO field contains -1

before concluding that it has a 64-bit form descriptor.

Note

It may seem sufficient to test just the MBMO field. However, that allows
a 32-bit descriptor with a length of 0 and an undefined pointer to be
inadvertently treated as a 64-bit descriptor.

If the MBMO field contains -1, then 0 and 1 are the only values of the
MBO field that have defined interpretations.
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5.2 Fixed-Length Descriptor (CLASS_S)
A single descriptor class is used for scalar data and fixed-length strings. Any
OpenVMS data type, except data type 34 (unaligned bit string), can be used
with this descriptor. Figure 5–2 shows the format of a fixed-length descriptor.
Table 5–3 describes the fields of the descriptor.

Figure 5–2 Fixed-Length Descriptor Format
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Table 5–3 Contents of the CLASS_S Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of the data item in bytes, unless the DTYPE field
contains the value 1 (aligned bit string) or 21 (packed-decimal
string). Length of the data item is in bits for bit string. Length
of the data item is the number of 4-bit digits (not including the
sign) for a packed-decimal string.

DSC64$W_MBO Must be 1. See Section 5.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Sections 4.1 and
4.2.

(continued on next page)
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Table 5–3 (Cont.) Contents of the CLASS_S Descriptor

Symbol Description

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 1 for
CLASS_S.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of first byte of data storage.

DSC64$L_MBMO Must be -1. See Section 5.1.

If the data type is 14 (character string) and the string must be extended in
a string comparison or is being copied to a fixed-length string containing a
greater length, the space character (hexadecimal 20 if ASCII) is used as the fill
character.

5.3 Dynamic String Descriptor (CLASS_D)
A class D descriptor is used for dynamically allocated strings. When a string
is written, either the length field, pointer field, or both can be changed. The
OpenVMS Run-Time Library provides procedures for changing fields. As an input
parameter, this format is interchangeable with class 1 (CLASS_S). Figure 5–3
shows the format of a dynamic string descriptor. Table 5–4 describes the fields of
the descriptor.

Figure 5–3 Dynamic String Descriptor Format

ZK−4665A−GE

POINTER

LENGTHDTYPECLASS  (=2)

32−Bit Form (DSC)

:0

:4

(continued on next page)
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Figure 5–3 (Cont.) Dynamic String Descriptor Format

ZK−7658A−GE

MBMO  (=−1)

MBO  (=1)DTYPECLASS  (=2)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER

:8

:16

Table 5–4 Contents of the CLASS_D Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of the data item in bytes, unless the DTYPE field
contains the value 1 (aligned bit string) or 21 (packed-decimal
string). Length of the data item is in bits for the bit string.
Length of the data item is the number of 4-bit digits (not
including the sign) for a packed-decimal string.

DSC64$W_MBO Must be 1. See Section 5.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Sections 4.1 and
4.2.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 2 for
CLASS_D.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of first byte of data storage.

DSC64$L_MBMO Must be -1. See Section 5.1.

5.4 Array Descriptor (CLASS_A)
The array descriptor shown in Figure 5–4 is used to describe contiguous arrays
of atomic data types or contiguous arrays of fixed-length strings. An array
descriptor consists of three contiguous blocks. The first block contains the
descriptor prototype information and is part of every array descriptor. The second
and third blocks are optional. If the third block is present, so is the second.
Table 5–5 describes the fields of the descriptor.
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Figure 5–4 Array Descriptor Format

ZK−4666A−GE

POINTER

LENGTHDTYPECLASS  (=4)

32−Bit Form (DSC)

:0

:4

DIMCT AFLAGS DIGITS SCALE

A0

M1

M (n−1)

Mn

L1

U1

Ln

Un

ARSIZE :12

:16

:20

:8

Block 3
(Bounds)

Block 2
(Multipliers)

Block 1
(Prototype)

:20+4n

:24+4n

(continued on next page)
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Figure 5–4 (Cont.) Array Descriptor Format

ZK−7659A−GE

MBMO  (=−1)

MBO  (=1)DTYPECLASS  (=4)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER

:8

:16

DIMCT AFLAGS DIGITS SCALE

MBZ

ARSIZE

A0

M1

M (n−1)

Mn

L1

U1

Ln

Un

:24

:28

:32

:40

:48

:48+8n

:56+8n

Block 1
(Prototype)

Block 2
(Multipliers)

Block 3
(Bounds)

(Alpha Specific)
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Table 5–5 Contents of the CLASS_A Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of an array element in bytes, unless the DTYPE field
contains the value 1 (aligned bit string) or 21 (packed-decimal
string). Length of an array element is in bits for the bit string.
Length of an array element is the number of 4-bit digits (not
including the sign) for a packed-decimal string.

DSC64$W_MBO Must be 1. See Section 5.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Sections 4.1 and
4.2.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 4 for
CLASS_A.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of the first actual byte of data storage.

DSC64$L_MBMO Must be -1. See Section 5.1.

DSC$B_SCALE
DSC64$B_SCALE

Signed power-of-two or power-of-ten multiplier, as specified by
FL_BINSCALE, to convert the internal form to external form.
(See Section 5.6.)

DSC$B_DIGITS
DSC64$B_DIGITS

If nonzero, the unsigned number of decimal digits in the internal
representation. If 0, the number of digits can be computed
based on LENGTH. This field should be 0 unless the TYPE field
specifies a string data type that could contain numeric values.

(continued on next page)
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Table 5–5 (Cont.) Contents of the CLASS_A Descriptor

Symbol Description

DSC$B_AFLAGS
DSC64$B_AFLAGS

Array flag bits <23:16>:

Bits <18:16> Reserved and must be 0.

DSC$V_FL_BINSCALE
DSC64$V_FL_BINSCALE

If set, the scale factor specified by
SCALE is a signed power-of-two
multiplier to convert the internal
form to external form. If not
set, SCALE specifies a signed
power-of-ten multiplier. (See
Section 5.6.)

DSC$V_FL_REDIM
DSC64$V_FL_REDIM

If set, the array can be
redimensioned; that is, A0, Mi,
Li, and Ui can be changed. The
redimensioned array cannot
exceed the size allocated to the
array ARSIZE.

DSC$V_FL_COLUMN
DSC64$V_FL_COLUMN

If set, the elements of the
array are stored by columns
(FORTRAN). That is, the leftmost
subscript (first dimension)
is varied most rapidly, and
the rightmost subscript (nth
dimension) is varied least rapidly.
If not set, the elements are stored
by rows (most other languages).
That is, the rightmost subscript
is varied most rapidly and the
leftmost subscript is varied least
rapidly.

DSC$V_FL_COEFF
DSC64$V_FL_COEFF

If set, the multiplicative
coefficients in block 2 are present.
Must be set if FL_BOUNDS is
set.

DSC$V_FL_BOUNDS
DSC64$V_FL_BOUNDS

If set, the bounds information in
block 3 is present and requires
that FL_COEFF be set.

DSC$B_DIMCT
DSC64$B_DIMCT

Number of dimensions, n.

DSC$L_ARSIZE
DSC64$Q_ARSIZE

Total size of array (in bytes, unless the TYPE field contains the
value 21; see the description for LENGTH). A redimensioned
array can use less than the total size allocated.

For data type 1 (aligned bit string), LENGTH is in bits while
ARSIZE is in bytes because the unit of length is bits, while the
unit of allocation is aligned bytes.

DSC$A_A0
DSC64$PQ_A0

Address of element A(0,0, . . . ,0). This need not be within the
actual array. It is the same as POINTER for zero-origin arrays.

DSC$L_Mi
DSC64$Q_Mi

Addressing coefficients ( Mi = Ui � Li + 1 ).

(continued on next page)
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Table 5–5 (Cont.) Contents of the CLASS_A Descriptor

Symbol Description

DSC$L_Li
DSC64$Q_Li

Lower bound (signed) of ith dimension.

DSC$L_Ui
DSC64$Q_Ui

Upper bound (signed) of ith dimension.

The following formulas specify the effective address, E, of an array element.

Caution

Modification of the following formulas is required if DTYPE contains a
1 or 21, because LENGTH is given in bits or 4-bit digits rather than in
bytes.

The effective address, E, for element A(I):

E = A0 + I*LENGTH
= POINTER + [I - L1]*LENGTH

The effective address, E, for element A(I1,I2) with FL_COLUMN clear:

E = A0 + [I1*M2 + I2]*LENGTH
= POINTER + [[I1 - L1]*M2 + I2 - L2]*LENGTH

The effective address, E, for element A(I1,I2) with FL_COLUMN set:

E = A0 + [I2*M1 + I1]*LENGTH
= POINTER + [[I2 - L2]*M1 + I1 - L1]*LENGTH

The effective address, E, for element A(I1, . . . ,In) with FL_COLUMN clear:

E = A0 + [[[[...[I1]*M2 + ...]*Mn-2 + In-2]*Mn-1
+ In-1]*Mn + In]*LENGTH
= POINTER + [[[[...[I1 - L1]*M2
+ ...]*Mn-2 + In-2 - Ln-2]*Mn-1
+ In-1 - Ln-1]*Mn + In - Ln]*LENGTH

The effective address, E, for element A(I1, . . . ,In) with FL_COLUMN set:

E = A0 + [[[[...[In]*Mn-1 + ...]*M3 + I3]*M2 + I2]*M1 + I1]*LENGTH
= POINTER + [[[[...[In - Ln]*Mn-1 + ...]*M3 + I3
- L3]*M2 + I2 - L2]*M1 + I1 - L1]*LENGTH

5.5 Procedure Argument Descriptor (CLASS_P)
A descriptor for a procedure argument identifies a procedure and its result data
type, if any.

On VAX processors, the descriptor for a procedure argument specifies its entry
address and function value data type. On Alpha processors, the procedure
argument descriptor is a pointer to the procedure descriptor, which is described
in Section 3.4. Figure 5–5 shows the format of a procedure argument descriptor.
Table 5–6 describes the fields of the descriptor.
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Figure 5–5 Procedure Argument Descriptor Format

ZK−4675A−GE

POINTER

LENGTHDTYPECLASS  (=5)

32−Bit Form (DSC)

:0

:4

ZK−7660A−GE

MBMO  (=−1)

MBO  (=1)DTYPECLASS (=5)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER

:8

:16

Table 5–6 Contents of the CLASS_P Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length associated with the function value, or 0 if no function
value is returned.

DSC64$W_MBO Must be 1. See Section 5.1.

DSC$B_DTYPE
DSC64$B_DTYPE

Function value data-type code. Data-type codes are listed in
Sections 4.1 and 4.2.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 5 for
CLASS_P.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of entry mask to the procedure for VAX environments.

Address of the procedure descriptor of the procedure for Alpha
environments.

DSC64$L_MBMO Must be -1. See Section 5.1.

Procedures return a function value as described in Section 2.5 for VAX or
Section 3.8.7 for Alpha.
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5.6 Decimal String Descriptor (CLASS_SD)
Figure 5–6 shows the format of a decimal string descriptor. Decimal size and
scaling information for both scalar data and simple strings is given in this
descriptor form. Table 5–7 describes the fields of the descriptor.

Figure 5–6 Decimal String Descriptor Format

ZK−4668A−GE

POINTER

LENGTHDTYPECLASS  (=9)

32−Bit Form (DSC)

:0

:4

:8Reserved SFLAGS DIGITS SCALE

(continued on next page)
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Figure 5–6 (Cont.) Decimal String Descriptor Format

ZK−7661A−GE

MBMO  (=−1)

MBO  (=1)DTYPECLASS (=9)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER

:8

:16

Reserved SFLAGS DIGITS SCALE

MBZ

:24

:28

Table 5–7 Contents of the CLASS_SD Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of the data item in bytes, unless the DTYPE field
contains the value 1 (aligned bit string) or 21 (packed-decimal
string). Length of the data item is in bits for the bit string.
Length of the data item is the number of 4-bit digits (not
including the sign) for packed-decimal string.

DSC64$W_MBO Must be 1. See Section 5.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Sections 4.1 and
4.2.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 9 for
CLASS_SD.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of the first byte of data storage.

DSC64$L_MBMO Must be -1. See Section 5.1.

DSC$B_SCALE
DSC64$B_SCALE

Signed power-of-two or power-of-ten multiplier, as specified by
FL_BINSCALE, to convert the internal form to external form.
(See examples in Table 5–8.)

(continued on next page)
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Table 5–7 (Cont.) Contents of the CLASS_SD Descriptor

Symbol Description

DSC$B_DIGITS
DSC64$B_DIGITS

If nonzero, the unsigned number of decimal digits in the internal
representation. If 0, the number of digits can be computed
based on LENGTH. This field should be 0 unless the TYPE field
specifies a string data type that could contain numeric values.

DSC$B_SFLAGS
DSC64$B_SFLAGS

Scalar flag bits <23:16>:

Bits <18:16> Reserved and must be 0.

DSC$V_FL_BINSCALE
DSC64$V_FL_BINSCALE

If set, the scale factor specified by
SCALE is a signed power-of-two
multiplier to convert the internal
form to external form. If not set,
SCALE specifies a signed power-
of-ten multiplier. (See examples
in Table 5–8.)

Bit <23:20> Reserved and must be 0.

Examples of SCALE and FL_BINSCALE interpretation are presented in
Table 5–8.

Table 5–8 Internal-to-External BINSCALE Conversion Examples

Internal Value SCALE FL_BINSCALE External Value

123 +1 0 1230

123 +1 1 246

200 –2 0 2

200 –2 1 50

5.7 Noncontiguous Array Descriptor (CLASS_NCA)
The noncontiguous array descriptor describes an array in which the storage of the
array elements can be allocated with a fixed, nonzero number of bytes separating
logically adjacent elements. Two elements are said to be logically adjacent if their
subscripts differ by 1 in the most rapidly varying dimension only. The difference
between the addresses of two adjacent elements is termed the stride. You can
align elements by row or column, because the accessing algorithm in the called
procedure handles both alignments.

This array descriptor is to be used where the calling program, at its option, can
pass a slice of an array that contains noncontiguous allocations. This standard
indicates no preference between the noncontiguous array descriptor (NCA) and
the contiguous array descriptor ( A ), as described in Section 5.4, for language
processors that always allocate contiguous arrays. Figure 5–7 shows the format
of a noncontiguous array descriptor, which consists of three contiguous blocks.
Table 5–9 describes the fields of the descriptor.
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Figure 5–7 Noncontiguous Array Descriptor Format

ZK−4667A−GE

POINTER

LENGTHDTYPECLASS  (=10)

32−Bit Form (DSC)

:0

:4

:8DIMCT AFLAGS DIGITS SCALE

ARSIZE

A0

S1

S (n−1)

Sn

L1

U1

Ln

Un

Block 1
(Prototype)

:12

:16

:20

:20+4n

:24+4n

Block 3
(Bounds)

Block 2
(Strides)

(continued on next page)
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Figure 5–7 (Cont.) Noncontiguous Array Descriptor Format

ZK−7662A−GE

MBMO  (=−1)

MBO  (=1)DTYPECLASS  (=10)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER

:8

:16

DIMCT AFLAGS DIGITS SCALE

MBZ

ARSIZE

A0

S1

S (n−1)

Sn

L1

U1

Ln

Un

:24

:28

:32

:40

:48

:48+8n

:56+8n

Block 1
(Prototype)

Block 2

Block 3
(Bounds)

(Strides)

(Alpha Specific)
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Table 5–9 Contents of the CLASS_NCA Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of an array element in bytes, unless the DTYPE field
contains the value 1 (aligned bit string) or 21 (packed-decimal
string). Length of an array element is in bits for the bit string.
Length of an array element is the number of 4-bit digits (not
including the sign) for a packed-decimal string.

DSC64$W_MBO Must be 1. See Section 5.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Sections 4.1 and
4.2.

DSC$B_CLASS Defines the descriptor class code that must be equal to 10 for
CLASS_NCA.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of first actual byte of data storage.

DSC64$L_MBMO Must be -1. See Section 5.1.

DSC$B_SCALE
DSC64$B_SCALE

Signed power-of-two or power-of-ten multiplier, as specified by
FL_BINSCALE, to convert the internal form to external form.
(See Section 5.6.)

DSC$B_DIGITS
DSC64$B_DIGITS

If nonzero, the unsigned number of decimal digits in the internal
representation. If 0, the number of digits can be computed
based on LENGTH. This field should be 0 unless the TYPE field
specifies a string data type that could contain numeric values.

(continued on next page)
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Table 5–9 (Cont.) Contents of the CLASS_NCA Descriptor

Symbol Description

DSC$B_AFLAGS
DSC64$B_AFLAGS

Array flag bits <23:16>:

Bits <18:16> Reserved to Compaq. Must be 0.

DSC$V_FL_BINSCALE
DSC64$V_FL_BINSCALE

If set, the scale factor specified by
SCALE is a signed power-of-two
multiplier to convert the internal
form to external form. If not
set, SCALE specifies a signed
power-of-ten multiplier. (See
Section 5.6.)

DSC$V_FL_REDIM
DSC64$V_FL_REDIM

Must be 0.

DSC$V_FL_UNALLOC
DSC64$V_FL_UNALLOC

If set, the storage for the array
described by this descriptor has
not been allocated; the POINTER
field must contain 0. If not set,
storage for the array described
by this descriptor has been
allocated; the POINTER field
may or may not be 0, depending
on the bounds of the array. (If
the POINTER field contains a
nonzero value, then this flag
must not be set.)

DSC$V_FL_NODEALLOC If set, the storage for the array
described by this descriptor
must not be deallocated. (The
POINTER and other fields of
this descriptor may be cleared or
otherwise set to eliminate access
to the described storage, but the
storage itself belongs to some
other descriptor which must be
used to deallocate that storage.)

Bit <23:23> Reserved to Compaq. Must be 0.

DSC$B_DIMCT
DSC64$B_DIMCT

Number of dimensions, n.

DSC$L_ARSIZE
DSC64$Q_ARSIZE

If the elements are contiguous, ARSIZE is the total size of the
array (in bytes, unless the DTYPE field contains the value
21; see the description of LENGTH). If the elements are not
allocated contiguously or if the program unit allocating the
descriptor is uncertain whether the array is actually contiguous,
the value placed in ARSIZE might be meaningless.

For data type 1 (aligned bit string), LENGTH is in bits while
ARSIZE is in bytes because the unit of length is in bits while the
unit of allocation is in bytes.

(continued on next page)
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Table 5–9 (Cont.) Contents of the CLASS_NCA Descriptor

Symbol Description

DSC$A_A0
DSC64$PQ_A0

Address of element A(0,0, . . . ,0). This need not be within the
actual array. It is the same as POINTER for zero-origin arrays.

A0 = POINTER � ( S1*L1 + S2*L2 + . . . + Sn*Ln)

DSC$L_Si
DSC64$Q_Si

Stride of the ith dimension. The difference between the
addresses of successive elements of the ith dimension.

DSC$L_Li
DSC64$Q_Li

Lower bound (signed) of the ith dimension.

DSC$L_Ui
DSC64$Q_Ui

Upper bound (signed) of the ith dimension.

The following formulas specify the effective address, E, of an array element.

Caution

Modification of the following formulas is required if DTYPE equals 1 or
21 because LENGTH is given in bits or 4-bit digits rather than bytes.

The effective address, E, of A(I):

E = A0 + S1*I
= POINTER + S1*[I - L1]

The effective address, E, of A(I1,I2):

E = A0 + S1*I1 + S2*I2
= POINTER + S1*[I1 - L1] + S2*[I2 - L2]

The effective address, E, of A(I1, . . . ,In):

E = A0 + S1*I1 + . . . + Sn*In
= POINTER + S1*[I1 - L1] + . . . + Sn*[In - Ln]

5.8 Varying String Descriptor (CLASS_VS)
A class VS descriptor is used for varying string data types (see Section 4.5).

As an input parameter, this format is not interchangeable with class 1 (CLASS_S)
or with class 2 (CLASS_D). When a called procedure modifies a varying string
passed by reference or by descriptor, it writes the new length, n, into CURLEN
and can modify all bytes of BODY. Figure 5–8 shows the format of a varying
string descriptor. Table 5–10 describes the fields of the descriptor.
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Figure 5–8 Varying String Descriptor Format

ZK−4669A−GE

POINTER

MAXSTRLENDTYPECLASS (=11)

32−Bit Form (DSC)

:0

:4

ZK−7663A−GE

MBMO  (=−1)

MBO  (=1)DTYPECLASS (=11)

64−Bit Form (DSC64)

:0

:4

quadword aligned

MAXSTRLEN

POINTER

:8

:16

Table 5–10 Contents of the CLASS_VS Descriptor

Symbol Description

DSC$W_MAXSTRLEN
DSC64$Q_MAXSTRLEN

Maximum length of the BODY field of the varying string in
bytes in the range 0 to 216

� 1.

DSC64$W_MBO Must be 1. See Section 5.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data type code that has the value 37, which specifies the
varying character string data type (see Sections 4.2 and 4.5).
The use of other data types is reserved to Compaq.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 11 for
CLASS_VS.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of the first field (CURLEN) of the varying string.

DSC64$L_MBMO Must be -1. See Section 5.1.

Figure 5–9 illustrates the use of a 32-bit varying string descriptor to present a
variable that is capable of holding a string value of up to five characters in length
and that is currently holding the string value ABCD. As shown in the figure,
MAXSTRLEN contains five, CURLEN contains four, string is currently ABCD,
and the remaining byte is currently undefined.
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Figure 5–9 Varying String Descriptor with Character String Data Type

ZK−1897−GE

11 37 5

adr

15 0

4

A
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D

\  \  \

7 0

:descriptor

:adr

5.9 Varying String Array Descriptor (CLASS_VSA)
A variant of the noncontiguous array descriptor is used to specify an array of
varying strings where each varying string has the same maximum length. Each
array element is of the varying string data type (see Section 4.5).

When a called procedure modifies a varying string in an array of varying strings
passed to it by reference or by descriptor, it writes the new length, n, into
CURLEN and can modify all bytes of BODY. The format of this descriptor is the
same as the noncontiguous array descriptor except for the first two longwords.
Figure 5–10 shows the format of a varying string array descriptor. Table 5–11
describes the fields of the descriptor.
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Figure 5–10 Varying String Array Descriptor Format

ZK−4670A−GE

POINTER

MAXSTRLENDTYPECLASS  (=12)

32−Bit Form (DSC)

:0

:4

DIMCT AFLAGS DIGITS SCALE

A0

S1

S (n−1)

Sn

L1

U1

Ln

Un

ARSIZE :12

:16

:20

:8

Block 3
(Bounds)

Block 2
(Multipliers)

Block 1
(Prototype)

:20+4n

:24+4n

(continued on next page)
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Figure 5–10 (Cont.) Varying String Array Descriptor Format
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Table 5–11 Contents of the CLASS_VSA Descriptor

Symbol Description

DSC$W_MAXSTRLEN
DSC64$Q_MAXSTRLEN

Maximum length of the BODY field of an array element in
bytes in the range 0 to 216

� 1.

DSC64$W_MBO Must be 1. See Section 5.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that has the value 37, which specifies the
varying character string data type (see Sections 4.2 and 4.5).
The use of other data types is reserved to Compaq.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 12 for
CLASS_VSA.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of the first actual byte of data storage.

DSC64$L_MBMO Must be -1. See Section 5.1.

The remaining fields in the descriptor are identical to those in the noncontiguous
array descriptor (NCA). The effective address computation of an array element
produces the address of CURLEN of the desired element.

5.10 Unaligned Bit String Descriptor (CLASS_UBS)
A descriptor is used to pass an unaligned bit string (DSC$K_DTYPE_VU) that
starts and ends on an arbitrary bit boundary. The descriptor provides two
components: a base address and a signed relative bit position. Figure 5–11 shows
the format of an unaligned bit string descriptor. Table 5–12 describes the fields of
the descriptor.

Figure 5–11 Unaligned Bit String Descriptor Format
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(continued on next page)
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Figure 5–11 (Cont.) Unaligned Bit String Descriptor Format
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Table 5–12 Contents of the CLASS_UBS Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of data item in bits.

DSC64$W_MBO Must be 1. See Section 5.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that has the value 34, which specifies the
unaligned bit string data type (see Sections 4.1 and 4.2). The
use of other data types is reserved to Compaq.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 13 for
CLASS_UBS.

DSC$A_BASE
DSC64$PQ_BASE

Base of the address relative to which the signed relative bit
position, POS, is used to locate the bit string. The base address
need not be the first actual byte of data storage.

DSC64$L_MBMO Must be -1. See Section 5.1.

DSC$L_POS
DSC64$Q_POS

Relative bit position with respect to BASE of the first bit of
unaligned bit string.

5.11 Unaligned Bit Array Descriptor (CLASS_UBA)
A variant of the noncontiguous array descriptor is used to specify an array of
unaligned bit strings. Each array element is an unaligned bit string data type
(DSC$K_DTYPE_VU) that starts and ends on an arbitrary bit boundary. The
length of each element is the same and is 0 to 216

� 1 bits. You can access
elements of the array directly by using the VAX variable bit field instructions.
Therefore, the descriptor provides two components: a byte address, BASE, and
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a means to compute the signed bit offset, EB, with respect to BASE of an array
element.

The unaligned bit array descriptor consists of four contiguous blocks that are
always present. The first block contains the descriptor prototype information.
Figure 5–12 shows the format of an unaligned bit array descriptor. Table 5–13
describes the fields of the descriptor.

Figure 5–12 Unaligned Bit Array Descriptor Format
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Figure 5–12 (Cont.) Unaligned Bit Array Descriptor Format
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Table 5–13 Contents of the CLASS_UBA Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of an array element in bits.

DSC64$W_MBO Must be 1. See Section 5.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that must have the value 34, which specifies
the unaligned bit string data type (see Sections 4.1 and 4.2). The
use of other data types is reserved to Compaq.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 14 for
CLASS_UBA.

DSC$A_BASE
DSC64$PQ_BASE

Base address relative to the effective bit offset, EB, that is used
to locate elements of the array. The base address need not be
the first actual byte of data storage.

DSC64$L_MBMO Must be -1. See Section 5.1.

DSC$B_SCALE
DSC64$B_SCALE

Reserved to Compaq. Must be 0.

DSC$B_DIGITS
DSC64$B_DIGITS

If nonzero, the unsigned number of decimal digits in the internal
representation. If 0, the number of digits can be computed
based on LENGTH. This field should be 0 unless the TYPE field
specifies a string data type that could contain numeric values.

DSC$B_AFLAGS
DSC64$B_AFLAGS

Array flag bits <23:16>:

Bits <18:16> Reserved to Compaq. Must be 0.

DSC$V_FL_BINSCALE
DSC64$V_FL_BINSCALE

Must be 0.

DSC$V_FL_REDIM
DSC64$V_FL_REDIM

Must be 0.

Bits <23:21> Reserved to Compaq. Must be 0.

DSC$B_DIMCT
DSC64$B_DIMCT

Number of dimensions, n.

DSC$L_ARSIZE
DSC64$Q_ARSIZE

If the elements are contiguous, ARSIZE is the total size of the
array in bits. If the elements are not allocated contiguously or if
the program unit allocating the descriptor is uncertain whether
the array is actually contiguous, the value placed in ARSIZE
might be meaningless.

DSC$L_V0
DSC64$Q_V0

Signed bit offset of element A(0, . . . ,0) with respect to BASE.
V0 = POS � [S1*L1 + . . . + Sn*Ln].

DSC$L_Si
DSC64$Q_Si

Stride of the ith dimension. The difference between the bit (not
byte) addresses of successive elements of the ith dimension.

DSC$L_Li
DSC64$Q_Li

Lower bound (signed) of the ith dimension.

DSC$L_Ui
DSC64$Q_Ui

Upper bound (signed) of the ith dimension.

DSC$L_POS
DSC64$Q_POS

Relative bit position with respect to BASE of the first actual bit
of the array, that is, element A(L1, . . . ,Ln).
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The following formulas specify the signed effective bit offset, EB, of an array
element:

The signed effective bit offset, EB, of A(I1):

EB = V0 + S1*I1
= POS + S1*[I1 - L1]

The signed effective bit offset, EB, of A(I1,I2):

EB = V0 + S1*I1 + S2*I2
= POS + S1*[I1 - L1] + S2*[I2 - L2]

The signed effective bit offset, EB, of A(I1, . . . , In):

EB = V0 + S1*I1 + ... + Sn*In
= POS + S1*[I1 - L1] + ... + Sn*[In - Ln]

Note that EB is computed ignoring integer overflow.

On VAX systems, EB is used as the position operand, and the content of BASE is
used as the base address operand in the VAX variable-length bit field instructions.
Therefore, BASE must specify a byte within 228 bytes of all bytes of storage in
the bit array.

For example, consider a single-origin, one-dimensional, five-element array
consisting of 3-bit elements allocated adjacently (therefore, S1 = 3). Assume
BASE is byte 1000 and the first actual element, A(1), starts at bit <4> of byte
1001.

ZK−1901−GE

7 6 5 4 3 2 1 0

2 1 1 1 0

4 4 4 3 3 3 2 2

555

:1000

:1001

:1002

:1003

The following dependent field values occur in the descriptor:

POS = 12
V0 = 12 - 3*1 = 9

5.12 String with Bounds Descriptor (CLASS_SB)
A variant of the fixed-length string descriptor is used to specify strings where
the string is viewed as a one-dimensional array with user-specified bounds.
Figure 5–13 shows the format of a string with bounds descriptor. Table 5–14
describes the fields of the descriptor.
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Figure 5–13 String with Bounds Descriptor Format
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Table 5–14 Contents of the CLASS_SB Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of the string in bytes.

DSC64$W_MBO Must be 1. See Section 5.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that must have the value 14, which specifies
the character string data type (see Sections 4.1 and 4.2). The
use of other data types is reserved to Compaq.

(continued on next page)
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Table 5–14 (Cont.) Contents of the CLASS_SB Descriptor

Symbol Description

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 15 for
CLASS_SB.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of the first byte of data storage.

DSC64$L_MBMO Must be -1. See Section 5.1.

DSC$L_SB_L1
DSC64$Q_SB_L1

Lower bound (signed) of the first (and only) dimension.

DSC$L_SB_U1
DSC64$Q_SB_U1

Upper bound (signed) of the first (and only) dimension.

The following formula specifies the effective address, E, of a string element A(I):

E = POINTER + [I - SB_L1]

If the string must be extended in a string comparison or assignment, the space
character (hexadecimal 20 if ASCII) is used as the fill character.

5.13 Unaligned Bit String with Bounds Descriptor (CLASS_UBSB)
A variant of the unaligned bit string descriptor is used to specify bit strings
where the string is viewed as a one-dimensional bit array with user-specified
bounds. Figure 5–14 shows the format of an unaligned bit string with bounds
descriptor. Table 5–15 describes the fields of the descriptor.

Figure 5–14 Unaligned Bit String with Bounds Descriptor Format
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(continued on next page)
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Figure 5–14 (Cont.) Unaligned Bit String with Bounds Descriptor Format
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Table 5–15 Contents of the CLASS_UBSB Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of the data item in bits.

DSC64$W_MBO Must be 1. See Section 5.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that must have the value 34, which specifies
the unaligned bit string data type (see Sections 4.1 and 4.2).
The use of other data types is reserved to Compaq.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 16 for
CLASS_UBSB.

DSC$A_BASE
DSC64$PQ_BASE

Base address relative to the signed relative bit position, POS,
used to locate the bit string. The base address need not be the
first actual byte of data storage.

DSC64$L_MBMO Must be -1. See Section 5.1.

DSC$L_POS
DSC64$Q_POS

Signed longword that defines the relative bit position of the
first bit of the unaligned bit string to the BASE address.

(continued on next page)
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Table 5–15 (Cont.) Contents of the CLASS_UBSB Descriptor

Symbol Description

DSC$L_UBSB_L1
DSC64$Q_UBSB_L1

Lower bound (signed) of the first (and only) dimension.

DSC$L_UBSB_U1
DSC64$Q_UBSB_U1

Upper bound (signed) of the first (and only) dimension.

The following formula specifies the effective bit offset, EB, of a bit element A(I):

EB = POS + [I - UBSB_L1]

5.14 Reserved Descriptor Class Codes
All descriptor class codes from 0 through 191 not otherwise defined in this
standard are reserved to Compaq. Classes 192 through 255 are reserved to
Compaq’s Computer Special Systems Group and customers.

Table 5–16 lists some specific descriptor classes and codes that are obsolete or
reserved to Compaq.

Table 5–16 Specific OpenVMS VAX Descriptors Reserved to Compaq

Descriptor Code Class

DSC$K_CLASS_V 3 Obsolete (variable buffer)

DSC$K_CLASS_PI 6 Obsolete (procedure incarnation)

DSC$K_CLASS_J 7 Reserved to DEBUG (label)

DSC$K_CLASS_JI 8 Obsolete (label incarnation)

DSC$K_CLASS_CT 17 Reserved to ACMS (compressed text)

DSC$K_CLASS_BFA 191 Reserved to BASIC (file array)

5.14.1 Facility-Specific Descriptor Class Codes
Descriptor class codes 160 through 191 are reserved to Compaq for facility-specific
purposes. These codes must not be passed between facilities, because different
facilities might use the same code for different purposes. These codes can be used
by compiler-generated code to pass parameters to the language-specific, run-time
support procedures associated with that language or to the OpenVMS Debugger.
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An OpenVMS condition is a hardware-generated synchronous exception or a
software event that is to be processed in a manner similar to a VAX or an Alpha
hardware exception.

Floating-point overflow exception, memory access violation exception, and
reserved operation exception are examples of hardware-generated conditions. An
output conversion error, an end of file, and the filling of an output buffer are
examples of software events that might be treated as conditions.

Depending on the condition and on the program, you can exercise any of four
types of action when a condition occurs:

• Ignore the condition.

For example, if an underflow occurs in a floating-point operation, continuing
from the point of the exception with a zero result might be sufficient.

• Take some special action and continue from the point at which the condition
occurred.

For example, if the end of a buffer is reached while a series of data items are
being written, the special action is to start a new buffer.

• End the operation and branch from the sequential flow of control.

For example, if the end of an input file is reached, the branch exits from a
loop that is processing the input data.

• Treat the condition as an unrecoverable error.

For example, when the floating divide-by-zero exception condition occurs, the
program exits after writing (optionally) an appropriate error message.

When an unusual event or error occurs in a called procedure, the procedure
can return a condition value to the caller indicating what has happened (see
Section 6.1). The caller tests the condition value and takes the appropriate
action.

When an exception is generated by the hardware, a branch out of the program’s
flow of control occurs automatically. In this case, and for certain software-
generated events, it is more convenient to handle the condition as soon as it is
detected rather than to program explicit tests.

6.1 Condition Values
Condition values are used in the OpenVMS operating system to provide the
following functions:

• Indicate the success or failure of a called procedure as a function value

• Describe an exception condition when an exception is signaled

• Identify system messages
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• Report program success or failure to the command language level

A condition value is a longword that includes fields to describe the software
component that generates the value, the reason the value was generated, and
severity status of the condition value. Figure 6–1 shows the format of a condition
value. Table 6–1 describes the fields of a condition value.

Figure 6–1 Format of a Condition Value
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Table 6–1 Contents of the Condition Value

Symbol Description

Severity Indicates success or failure. The severity code bit <0> is set
for success (logical true) and is clear for failure (logical false);
bits <1> and <2> distinguish degrees of success or failure. Bits
<2:0>, when taken as an unsigned integer, are interpreted as
shown in the following table:

Symbol Value Description

STS$K_WARNING 0 Warning

STS$K_SUCCESS 1 Success

STS$K_ERROR 2 Error

STS$K_INFO 3 Information

STS$K_SEVERE 4 Severe error

5 Reserved to Compaq

6 Reserved to Compaq

7 Reserved to Compaq

Section 6.1.1 more fully describes severity codes.

Condition identification Identifies the condition uniquely on a systemwide basis.

Message number Describes the status, which can be a hardware exception that
occurred or a software-defined value. Message numbers with
bit <15> set are specific to a single facility. Message numbers
with bit <15> clear are systemwide status codes.

(continued on next page)
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Table 6–1 (Cont.) Contents of the Condition Value

Symbol Description

Facility number Identifies the software component generating the condition
value. Bit <27> is set for customer facilities and is clear for
Compaq facilities.

Control Controls the printing of the message associated with the
condition value. Bit <28> inhibits the message associated
with the condition value from being printed by the SYS$EXIT
system service. This bit is set by the system default handler
after it has output an error message using the SYS$PUTMSG
system service. It should also be set in the condition value
returned by a procedure as a function value, if the procedure
has also signaled the condition (so the condition has been
printed or suppressed). Bits <31:29> must be 0; they are
reserved to Compaq for future use.

Table 6–2 lists the possible software symbols that are defined
for the various fields of the condition-value longword.

Table 6–2 Value Symbols for the Condition Value Longword

Symbol Value Meaning Field

STS$V_COND_ID 3 Position of 27:3 Condition identification

STS$S_COND_ID 25 Size of 27:3 Condition identification

STS$M_COND_ID Mask Mask for 27:3 Condition identification

STS$V_INHIB_MSG 1@28 Position for 28 Inhibit message on image exit

STS$S_INHIB_MSG 1 Size for 28 Inhibit message on image exit

STS$M_INHIB_MSG Mask Mask for 28 Inhibit message on image exit

STS$V_FAC_NO 16 Position of 27:16 Facility number

STS$S_FAC_NO 12 Size of 27:16 Facility number

STS$M_FAC_NO Mask Mask for 27:16 Facility number

STS$V_CUST_DEF 27 Position for 27 Customer facility

STS$S_CUST_DEF 1 Size for 27 Customer facility

STS$M_CUST_DEF 1@27 Mask for 27 Customer facility

STS$V_MSG_NO 3 Position of 15:3 Message number

STS$S_MSG_NO 13 Size of 15:3 Message number

STS$M_MSG_NO Mask Mask for 15:3 Message number

STS$V_FAC_SP 15 Position of 15 Facility-specific

STS$S_FAC_SP 1 Size for 15 Facility-specific

STS$M_FAC_SP 1@15 Mask for 15 Facility-specific

STS$V_CODE 3 Position of 14:3 Message code

STS$S_CODE 12 Size of 14:3 Message code

STS$M_CODE Mask Mask for 14:3 Message code

STS$V_SEVERITY 0 Position of 2:0 Severity

STS$S_SEVERITY 3 Size of 2:0 Severity

(continued on next page)
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Table 6–2 (Cont.) Value Symbols for the Condition Value Longword

Symbol Value Meaning Field

STS$M_SEVERITY 7 Mask for 2:0 Severity

STS$V_SUCCESS 0 Position of 0 Success

STS$S_SUCCESS 1 Size of 0 Success

STS$M_SUCCESS 1 Mask for 0 Success

6.1.1 Interpretation of Severity Codes
A standard procedure must consider all possible severity codes (0–4) of a condition
value. Table 6–3 lists the interpretation of severity codes 0 through 4.

Table 6–3 Interpretation of Severity Codes

Severity
Code Meaning

0 Indicates a warning. This code is used whenever a procedure produces output,
but the output produced might not be what the user expected (for example, a
compiler modification of a source program).

1 Indicates that the procedure generating the condition value completed
successfully, as expected.

2 Indicates that an error has occurred but the procedure did produce output.
Execution can continue, but the results produced by the component generating
the condition value are not all correct.

3 Indicates that the procedure generating the condition value completed
successfully but has some parenthetical information to be included in a
message if the condition is signaled.

4 Indicates that a severe error occurred and the component generating the
condition value was unable to produce output.

When designing a procedure, you should base the choice of severity code for its
condition values on the following default interpretations:

• The calling program typically performs a low-bit test, so it treats warnings,
errors, and severe errors as failures, and treats success and information as
successes.

• If the condition value is signaled (see Section 6.4.3), the default handler treats
severe errors as reason to terminate and treats all the others as the basis for
continuation.

• When the program image exits, the command interpreter by default treats
errors and severe errors as the basis for stopping the job, and treats warnings,
information, and successes as the basis for continuation.

The following table summarizes the action default decisions of the severity
conditions:

Severity Routine Signal
Default at
Program Exit

Success Normal Continue Continue
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Severity Routine Signal
Default at
Program Exit

Information Normal Continue Continue

Warning Failure Continue Continue

Error Failure Continue Stop job

Severe error Failure Exit Stop job

The default for signaled messages is to output a message with the SYS$OUTPUT
system service. In addition, for severities other than success (STS$K_SUCCESS),
a copy of the message is made on SYS$ERROR. At program exit, success and
information completion values do not generate messages; however, warning, error,
and severe error condition values do generate messages to SYS$OUTPUT and
SYS$ERROR unless bit <28> (STS$V_INHIB_MSG) is set.

Unless there is a good basis for another choice, a procedure should use success or
severe error as its severity code for each condition value.

6.1.2 Use of Condition Values
OpenVMS software components return condition values when they complete
execution. When a severity code in the range of 0 through 4 is generated, the
status code describes the nature of the problem. This value can be tested to
change the flow of control of a procedure, can be used to generate a message, or
both.

User procedures can also generate condition values to be examined by other
procedures and by the command interpreter. User-generated condition values
should have bits <27> and <15> set so they do not conflict with values generated
by Compaq.

6.2 Condition Handlers
To handle hardware- or software-detected exceptions, the OpenVMS Condition
Handling Facility (CHF) allows you to specify a condition handler procedure to be
called when an exception condition occurs.

An active procedure can establish a condition handler to be associated with it.
When an event occurs that is to be treated using the Condition Handling Facility,
the procedure detecting the event signals the event by calling the facility and
passing a condition value that describes the condition. This condition value has
the format and interpretation described in Section 6.1. All hardware exceptions
are signaled.

When a condition is signaled, the Condition Handling Facility looks for a
condition handler associated with the current procedure’s stack frame. If a
handler is found, it is entered. If a handler is not associated with the current
procedure, the immediately preceding stack frame is examined. Again, if a
handler is found, it is entered. If a handler is not found, the search of previous
stack frames continues until the default condition handler established by the
system is reached or until the stack runs out.

The default condition handler prints messages, indicated by the signal argument
list, by calling the put message (SYS$PUTMSG) system service, followed by an
optional symbolic stack traceback. Success conditions with STS$K_SUCCESS
result in messages to SYS$OUTPUT only. All other conditions, including
informational messages (STS$K_INFO), produce messages on SYS$OUTPUT and
SYS$ERROR.
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For example, if a procedure needs to keep track of the occurrence of the floating-
point underflow exception, it can establish a condition handler to examine the
condition value passed when the handler is invoked. Then, when the floating-
point underflow exception occurs, the condition handler is entered and logs
the condition. The handler returns to the instruction immediately following
the instruction that was executing when the condition was reported by the
hardware. On a VAX processor, this instruction is the one immediately following
the instruction that caused the underflow; on an Alpha processor, this instruction
might occur later.

If floating-point operations occur in many procedures of a program, the condition
handler can be associated with the program’s main procedure. When the
condition is signaled, successive stack frames are searched until the stack frame
for the main procedure is found, at which time the handler is entered. If a user
program has not associated a condition handler with any of the procedures that
are active at the time of the signal, successive stack frames are searched until the
frame for the system program invoking the user program is reached. A default
condition handler that prints an error message is then entered.

6.3 Condition Handler Options
Each procedure activation potentially has a single condition handler associated
with it. This condition handler is entered whenever any condition is signaled
within that procedure. (It can also be entered as a result of signals within active
procedures called by the procedure.) Each signal includes a condition value
(see Section 6.1) that describes the condition that caused the signal. When the
condition handler is entered, examine the condition value to determine the cause
of the signal. After the handler either processes the condition or ignores it, it can
take one of the following actions:

• Return to the instruction immediately following the signal. Note that such a
return is not always possible.

• Resignal the same or a modified condition value. A new search for a condition
handler begins with the immediately preceding stack frame.

• Signal a different condition.

• Unwind the stack.

• On Alpha systems, perform a nonlocal GOTO operation (see Section 6.4) that
transfers control from one procedure invocation and continues execution in a
prior one.

6.4 Operations Involving Condition Handlers
The OpenVMS Condition Handling Facility (CHF) provides functions to perform
the following operations:

• Establish a condition handler.

A condition handler is associated with a procedure in various ways, depending
on the language in which the procedure is written. Some languages provide
specific syntax for defining a handler and its possible actions; others allow
dynamic specification of a routine to act as a handler.

• On VAX systems, revert to the caller’s handling.

If a condition handler has been established on a VAX processor, you can
remove it.
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• Enable or disable certain arithmetic exceptions.

The software can enable or disable the following hardware exceptions:
floating-point underflow, integer overflow, and decimal overflow. No signal
occurs when the exception is disabled.

On VAX systems, exceptions are enabled or disabled dynamically at every
procedure entry or by directly manipulating the processor status longword.

On Alpha systems, exceptions are enabled or disabled statically during
compilation; this is reflected in the code that is compiled.

• Signal a condition.

Signaling a condition initiates the search for an established condition handler.

• Unwind the stack.

Upon exiting from a condition handler, it is possible to remove one or more
frames that occur before the signal from the stack. During the unwinding
operation, the stack is scanned; if a condition handler is associated with a
frame, the handler is entered before the frame is removed. Unwinding the
stack allows a procedure to perform application-specific cleanup operations
before exiting.

• On Alpha systems, perform a nonlocal GOTO unwind.

A GOTO unwind operation is a transfer of control that leaves one procedure
invocation and continues execution in a prior (currently active) procedure.
This unified GOTO operation gives unterminated procedure invocations the
opportunity to clean up in an orderly way.

6.4.1 Establishing a Condition Handler
On VAX systems, the association of a handler with a procedure invocation is
dynamic and can be changed or reverted to the caller’s handler during execution,
but this is not supported for languages that implicitly provide their own handlers.

Each procedure activation can have an associated condition handler, using
the first longword in its stack frame. Initially, the first longword (longword 0)
contains the value 0, indicating no handler. You establish a handler by moving
the address of the handler’s procedure entry point mask to the establisher’s stack
frame.

On VAX systems, the following code establishes a condition handler:

MOVAB handler_entry_point,0(FP)

On Alpha systems, the association of a handler with a procedure is static and
must be specified at the time a procedure is compiled (or assembled). However,
some languages that lack their own exception-handling syntax can support
emulation of dynamically specified handlers by means of built-in routines.

Each procedure, other than a null frame procedure, can have a condition handler
potentially associated with it, which is identified by the HANDLER_VALID,
STACK_HANDLER, or REG_HANDLER fields of the associated procedure
descriptor. You establish a handler by including the procedure value of the
handler procedure in that field. (See Sections 3.4.1 and 3.4.4.)

In addition, the OpenVMS operating system on VAX and Alpha processors
provides three statically allocated exception vectors for each access mode of a
process. These vectors are available to declare condition handlers that take
precedence over any handlers declared at the procedure level. For example,
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the vectors are used to allow a debugger to monitor all exceptions and for the
system to establish a last-chance handler. Because these handlers do not obey
the procedure nesting rules, do not use them with modular code. Instead, use
frame-based handlers.

6.4.2 Reverting to the Caller’s Handling
On VAX systems, reverting to the caller’s handling deletes the condition handler
associated with the current procedure activation. You do this by clearing the
handler address in the stack frame.

On VAX systems, the code to revert to the caller’s handling is as follows:

CLRL 0(FP)

On Alpha systems, there is no means to revert to a caller’s handler (unless a
language provides emulation of dynamically specified handlers).

6.4.3 Signaling a Condition
The signal operation is the method for indicating the occurrence of an exception
condition. To initiate a signal and allow execution to continue after handling
the condition, a program calls the LIB$SIGNAL procedure. To initiate a signal
but not allow execution to continue at the point of initiation, a program calls the
LIB$STOP procedure. The format of the LIB$SIGNAL and LIB$STOP calls are
defined as follows:

LIB$SIGNAL(condition-value, argn...)

LIB$STOP(condition-value, argn...)

Argument OpenVMS Usage Type Access Mechanism

condition-value condition longword read by value

argn integer quadword read by value

Arguments:

condition-value
An OpenVMS condition value.

argn
Zero or more integer arguments that become the additional arguments of a signal
argument vector (see Section 6.5.1.1)

Function Value Returned:

None.

In both cases, the condition-value argument indicates the condition that
is signaled. However, LIB$STOP sets the severity of the condition-value
argument to be a severe error. The remaining arguments describe the details of
the exception. These are the same arguments used to issue a system message.

Unlike most calls, LIB$SIGNAL and LIB$STOP preserve all registers. Therefore,
a debugger can insert a call to LIB$SIGNAL to display the entire state of the
process at the time of the exception. Use of LIB$ routines also allows signals
to be coded in an assembler language without changing the register usage.
This feature of preserving all registers is useful for debugging checks and for
gathering statistics. Hardware and system service exceptions behave like calls to
LIB$SIGNAL.
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6.4.4 Signaling a Condition Using GENTRAP (Alpha Only)
On Alpha systems, a GENTRAP PALcode instruction provides an efficient means
for software to raise hardwarelike exceptions. This mechanism is used in low
levels of the operating system or in the bootstrap sequence when only a limited
execution environment is available. In a constrained environment, GENTRAP
can be handled directly using the SCB vector by which the trap is reported. In
a more complete environment, the GENTRAP parameter is transformed into a
corresponding exception code and is reported as a normal hardware exception.
Because of this, low-level software can use this mechanism to report exceptions
that are independent of the execution environment. Compiled code can also use
the GENTRAP instruction to raise common generic exceptions more simply than
by executing a complete LIB$SIGNAL procedure call.

The PALcode operation is defined as follows:

GENTRAP ( expt_code )

The expt_code argument defines the code for the exception to be raised.

If the expt_code value is one of the small negative values shown in Table 6–4,
then that value is mapped to a corresponding OpenVMS exception code as shown.
If the value is negative but not one of the values shown in Table 6–4, then SS$_
GENTRAP is raised with the unmapped value included in the exception record as
the first and only qualifier value. Otherwise, a positive value is used directly to
raise an exception using that value as the condition value. Note that there is no
means to associate any parameters with an exception raised using GENTRAP. For
more information on GENTRAP, see the Alpha Architecture Reference Manual.

Table 6–4 Exception Codes and Symbols for the Alpha GENTRAP Argument

Exception
Code Symbol Meaning

–1 SS$_INTOVF Integer overflow

–2 SS$_INTDIV Integer divide by zero

–3 SS$_FLTOVF Floating overflow

–4 SS$_FLTDIV Floating divide by zero

–5 SS$_FLTUND Floating underflow

–6 SS$_FLTINV Floating invalid operand

–7 SS$_FLTINE Floating inexact result

–8 SS$_DECOVF Decimal overflow

–9 SS$_DECDIV Decimal divide by zero

–10 SS$_DECINV Decimal invalid operand

–11 SS$_ROPRAND Reserved operand

–12 SS$_ASSERTERR Assertion error

–13 SS$_NULPTRERR Null pointer error

–14 SS$_STKOVF Stack overflow

–15 SS$_STRLENERR String length error

–16 SS$_SUBSTRERR Substring error

(continued on next page)
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Table 6–4 (Cont.) Exception Codes and Symbols for the Alpha GENTRAP
Argument

Exception
Code Symbol Meaning

–17 SS$_RANGEERR Range error

–18 SS$_SUBRNG Subscript range error

–19 SS$_SUBRNG1 Subscript 1 range error

–20 SS$_SUBRNG2 Subscript 2 range error

–21 SS$_SUBRNG3 Subscript 3 range error

–22 SS$_SUBRNG4 Subscript 4 range error

–23 SS$_SUBRNG5 Subscript 5 range error

–24 SS$_SUBRNG6 Subscript 6 range error

–25 SS$_SUBRNG7 Subscript 7 range error

6.4.5 Condition Handler Search
The signal procedure examines the two exception vectors first, then examines
a system-defined maximum number of previous stack frames, and, if necessary,
examines the last-chance exception vector. The current and previous stack frames
are found by using the frame pointer and chaining back through the stack frames
using the saved context in each frame. The exception vectors have three address
locations per access mode.

As part of image startup, the system declares a default last-chance handler. This
handler is used as a last resort when the normal handlers are not performing
correctly. The debugger can replace the default system last-chance handler with
its own.

On Alpha systems, note that the default catchall handler in user mode can be a
list of handlers and is not in conflict with this standard.

On both VAX and Alpha systems, in some frame before the call to the main
program, the system establishes a default catchall condition handler that issues
system messages. In a subsequent frame before the call to the main program, the
system usually establishes a traceback handler. These system-supplied condition
handlers use the condition-value argument to get the message and then use
the remainder of the argument list to format and output the message through the
SYS$PUTMSG system service.

If the severity field of the condition-value argument (bits <2:0>) does not
indicate a severe error (that is, a value of 4), these default condition handlers
return with SS$_CONTINUE. If the severity is a severe error, these default
handlers exit the program image with the condition value as the final image
status.

The stack search ends when the old frame address is 0 or is not accessible, or
when a system-defined maximum number of frames have been examined. If a
condition handler is not found, or if all handlers return with a SS$_RESIGNAL
or SS$_RESIGNAL64, then the vectored last-chance handler is called.

If a handler returns SS$_CONTINUE or SS$_CONTINUE64, and LIB$STOP
was not called, control returns to the signaler. Otherwise, LIB$STOP issues a
message indicating that an attempt was made to continue from a noncontinuable
exception and exits with the condition value as the final image status.
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Figure 6–2 lists all combinations of interaction between condition handler actions,
default condition handlers, types of signals, and calls to signal or stop. In this
figure, ‘‘Cannot Continue’’ indicates an error that results in the following message:

IMPROPERLY HANDLED CONDITION, ATTEMPT TO CONTINUE FROM STOP.

Figure 6–2 Interaction Between Handlers and Default Handlers
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6.5 Properties of Condition Handlers
This section describes the properties of condition handlers for both VAX and
Alpha environments.

6.5.1 Condition Handler Parameters and Invocation
If a condition handler is found on a software-detected exception, the handler is
called as follows:

handler(signal_args, mechanism_args)

Argument OpenVMS Usage Type Access Mechanism

signal_args signal vector structure modify by reference

mechanism_args mechanism structure modify by reference

Arguments:

signal_args
A 32-bit signal argument vector (see Section 6.5.1.1)

mechanism_args
A mechanism argument vector (see Section 6.5.1.2)
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Function Value Returned:

One of the following status codes: SS$_CONTINUE, SS$_RESIGNAL, SS$_
CONTINUE64, SS$_RESIGNAL64. This value is used by the Condition Handling
Facility to determine how to proceed next in processing the condition. (See
Section 6.6.)

6.5.1.1 Signal Argument Vector
There are two forms of signal argument vector (or signal vector for short): one
for use with 32-bit addresses and one for use with 64-bit addresses. The two
forms are compatible in that the forms can be distinguished dynamically at run
time and, except for the size and offset of fields, are identical in content and
interpretation.

The 32-bit signal argument vectors are used on both OpenVMS VAX and
OpenVMS Alpha systems. When used on OpenVMS Alpha, 32-bit signal
argument vectors provide full compatibility with their use on OpenVMS VAX.
The 64-bit signal argument vectors are used only on OpenVMS Alpha—they have
no counterpart and are not recognized on OpenVMS VAX systems.

When a condition handler is called by the Condition Handling Facility (CHF) on
Alpha, both forms of signal argument vector are available. The first argument
is always a reference to a 32-bit form of signal argument vector. A handler
that chooses to operate using the 64-bit form must obtain the address of the
corresponding 64-bit signal argument vector from the CHF$PH_MCH_SIG64_
ADDR field of the mechanism argument vector (see Section 6.5.1.2).

Both forms of signal vector include a length field, a condition value, zero
or more parameters that further qualify the condition value, and finally a
processor program counter (PC) and program status (PS). For hardware-detected
exceptions, the condition value indicates which exception was taken. The PC
value gives the address of the instruction that caused the exception or the
address of the next instruction, depending on whether the exception was a
fault or a trap. For software-detected conditions, the condition value and any
associated parameters are copies of the parameters to the call of LIB$SIGNAL or
LIB$STOP that initiated exception handling, while the PC is the return address
to the caller of that routine.

Note that bits <2:0> of a condition value indicate severity and not what condition
is being signaled. Therefore, a handler should examine only the condition
identification, that is, condition value bits <27:3>, to determine the cause of
the exception. The setting of severity bits <2:0> may vary from time to time even
for the same condition. In fact, some handlers might only change the severity of
a condition in the signal vector and resignal.

Generally, a handler may validly modify any field of a signal argument vector
except for the CHF$L_SIG_ARGS length field or, in the case of a 64-bit signal
vector, the CHF64$L_SIGNAL64 field. In particular, a modified signal vector is
passed to a subsequent handler if the current handler completes by resignaling.
(If the length is modified, the modification is ignored; CHF restores the original
length.) It is invalid for a handler to modify both forms of signal argument
vector—the effect of doing so is undefined.

The remainder of this section is organized as follows. First, the 32-bit form of
signal argument vector is described. Second, the 64-bit form of signal argument
is described. Finally, the relationship between the two forms is discussed.

6–12 OpenVMS Conditions



OpenVMS Conditions
6.5 Properties of Condition Handlers

Figure 6–3 shows the format of the 32-bit form of signal argument vector. The
CHF$L_SIG_ARGS longword contains the argument vector count, which is
the number of remaining longwords in the vector. The CHF$L_SIG_NAME
longword contains the condition value. Next are 0 or more longwords that contain
additional parameters appropriate to the condition. The remaining two longwords
contain the PC and PS values.

Figure 6–3 Signal Argument Vector — 32-Bit Format
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Vector count (n)
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Additional arguments (or none)

PC

PS

:CHF$IS_SIG_ARGS

:CHF$L_SIG_NAME
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n

On VAX systems, the value used for the PS is the contents of the VAX processor
status longword (PSL).

On Alpha systems, the value used for the PS is the low half of the Alpha processor
status register. Furthermore, CHF$IS_SIG_ARGS and CHF$IS_SIG_NAME are
aliases for CHF$L_SIG_ARGS and CHF$L_SIG_NAME, respectively.

Figure 6–4 shows the format of the 64-bit form of signal argument vector. The
address of this form of signal argument is available only from the CHF$PH_
MCH_SIG64_ADDR field of the mechanism argument vector (see Section 6.5.1.2).
The CHF64$L_SIG_ARGS field is a longword that contains the number of
remaining quadwords in the vector (following the CHF64$L_SIGNAL64 field).
The CHF64$L_SIGNAL64 longword contains a special code named SS$_
SIGNAL64 whose value is key to distinguishing between a 32-bit and 64-
bit form of signal argument vector. The CHF64$Q_SIG_NAME quadword
contains a sign-extended condition value. Next are zero or more quadwords
that contain additional parameters appropriate to the condition. The remaining
two quadwords contain the Alpha PC and PS values.
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Figure 6–4 Signal Argument Vector — 64-Bit Format
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When a handler is called, the 32-bit and 64-bit signal argument vectors are
closely related as follows:

• The value of the length field in the 64-bit form (the number of quadwords
following the CHF64$L_SIGNAL64 field) is equal to the value of the length
field in the 32-bit form (the number of longwords following the CHF$L_SIG_
ARGS field).

• The condition value, any related arguments, and the PC and PS values in the
32-bit form are the same as the values in the 64-bit form truncated to 32 bits.

Note that given a 64-bit signal vector, it is possible to create the corresponding
32-bit signal vector by fetching the low-order longword of each quadword of the
64-bit vector and packing the results together contiguously into a 32-bit vector;
other than using the length, no interpretation of the contents is required.

Given the address of a signal argument vector that might be either the 32-bit or
64-bit form, either of the following equivalent tests may be used to distinguish
which one is present:

• Assuming a 32-bit form, compare the contents of the CHF$L_SIG_NAME field
(equivalently CHF64$L_SIGNAL64) with the value SS$_SIGNAL64. If equal,
then the 64-bit form is present; otherwise, the 32-bit form is present.

• Assuming a 64-bit form, compare the contents of the CHF64$L_SIGNAL64
field with the value SS$_SIGNAL64. If equal, then the 64-bit form is present;
otherwise, the 32-bit form is present.

6.5.1.2 Mechanism Argument Vector
The mechanism argument vector for the argument mechanism_args contains
information about the machine state when an exception occurs or when a
condition is signaled. Therefore, the mechanism argument vector is highly
specific to the underlying machine architecture.
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On VAX systems, the mechanism format for the argument vectors is shown in
Figure 6–5. The first longword contains the argument vector count, which is the
number of remaining longwords in the vector. The frame longword contains the
contents of the FP in the establisher’s context. If the restrictions described in
Section 6.5.3.1 are met, the frame can be used as a base from which to access the
local storage of the establisher.

The depth longword is a positive count of the number of procedure-activation
stack frames between the frame in which the exception occurred and the frame
depth that established the handler being called. (For more information about
depth, see Section 6.5.1.3.)

The CHF$L_MCH_SAVR0 and CHF$L_MCH_SAVR1 longwords save the state of
the R0 and R1 registers, respectively, at the time of the call to LIB$SIGNAL or
LIB$STOP. If not modified by a handler during CHF processing, these values will
become the values of those registers after completion of CHF processing (either by
continuation or by unwinding). These two fields may be modified by a handler to
establish different values to be used at CHF completion. Note that the contents
of other registers are not available in the mechanism vector and can only be
accessed by analysis of the stack. (See Section 6.7.1.)

CHF$L_MCH_SAVR0 and CHF$L_MCH_SAVR1 are the only fields of a VAX
mechanism vector that can be validly modified by a handler. The effect of any
other modification is undefined.

Figure 6–5 VAX Mechanism Vector Format
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If the VAX vector hardware or emulator option is in use, then for hardware-
detected exceptions, the vector state is implicitly saved before any condition
handler is entered and restored after the condition handler returns. (Save
and restore is not required for exceptions initiated by calls to LIB$SIGNAL
or LIB$STOP, because there can be no useful vector state at the time of such calls
in accordance with the rules for vector register usage in Section 2.1.2.) Thus, a
condition handler can make use of the system vector facilities in the same manner
as mainline code.

The VAX saved vector state is not directly available to a condition handler.
A condition handler that needs to manipulate the vector state to carry out
agreements with its callers can call the SYS$RESTORE_VP_STATE service.
This service restores the saved state to the vector registers (whether hardware
or emulated) and cancels any subsequent restore. The vector state can then be
manipulated directly in the normal manner by means of vector instructions. (This
service is normally of interest only during processing for an unwind condition.)
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On Alpha systems, the 64-bit-wide mechanism array is the argument mechanism
in the handler call. The array shown in Figure 6–6 is defined by constant
CHF$S_CHFDEF2 at a size of 360 bytes (45 quadwords). Table 6–5 lists and
describes the fields.

The CHF$IH_MCH_SAVRnn and CHF$FH_MCH_SAVFnn quadwords save the
state of the nonpreserved general and floating registers, respectively, at the time
of the call to LIB$SIGNAL or LIB$STOP. If not modified by a handler during
CHF processing, these values will become the values of those registers after
completion of CHF processing (either by continuation or by unwinding). These
fields may be modified by a handler to establish different values to be used at
CHF completion.

The CHF$IH_MCH_SAVRnn and CHF$FH_MCH_SAVFnn fields are the only
fields of an Alpha mechanism vector that can be validly modified by a handler.
The effect of any other modification is undefined. (See also Section 6.7.2.) Note
that the contents of the normally preserved registers are not available in the
mechanism vector and can only be accessed by analysis of the stack. (See
Section 6.7.1.)

6–16 OpenVMS Conditions



OpenVMS Conditions
6.5 Properties of Condition Handlers

Figure 6–6 Alpha Mechanism Vector Format
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Table 6–5 Contents of the Alpha Argument Mechanism Array (MECH)

Field Name Contents

CHF$IS_MCH_ARGS Count of quadwords in this array starting from the next quadword,
CHF$IS_MCH_FRAME (not counting the first quadword that contains
this longword). This value is always 44.

CHF$IS_MCH_FLAGS Flag bits <31:0> for related argument-mechanism information defined as
follows:

CHF$V_FPREGS_VALID Bit 0. When set, the process has already
performed a floating-point operation and
the floating-point registers stored in this
structure are valid.

If this bit is clear, the process has not yet
performed any floating-point operations and
the values in the floating-point register slots
in this structure are unpredictable.

CHF$PH_MCH_FRAME Contains the frame pointer in the procedure context of the establisher.

CHF$IS_MCH_DEPTH Positive count of the number of procedure activation stack frames between
the frame in which the exception occurred and the frame depth that
established the handler being called (see Section 6.5.1.3).

CHF$IS_MCH_RESVD1 Reserved to Compaq.

CHF$PH_MCH_DADDR Address of the handler data quadword if the exception handler data field
is present (as indicated by PDSC$V_HANDLER_DATA_VALID); otherwise,
contains 0.

CHF$PH_MCH_ESF_ADDR Address of the exception stack frame (see the Alpha Architecture Reference
Manual).

CHF$PH_MCH_SIG_ADDR Address of the 32-bit form of signal array. This array is a 32-bit wide
(longword) array. This is the same array that is passed to a handler as the
signal argument vector.

CHF$PH_MCH_SIG64_
ADDR

Address of the 64-bit form of signal array. This array is a 64-bit wide
(quadword) array.

CHF$IH_MCH_SAVRnn Contain copies of the saved integer registers at the time of the exception.
The following registers are saved: R0, R1, and R16 through R28. Registers
R2 through R15 are implicitly saved in the call chain.

CHF$FH_MCH_SAVFnn Contain copies of the saved floating-point registers at the time of the
exception, or are unpredictable as described at field CHF$IS_MCH_
FLAGS. If the floating-point register fields are valid, the following registers
are saved: F0, F1, and F10 through F30. Registers F2 through F9 are
implicitly saved in the call chain.

6.5.1.3 Mechanism Depth for Alpha and VAX Handler Arguments
For Alpha and VAX argument mechanisms, the depth field has the value 0 for
an exception that is handled by the procedure activation invoking the exception.
The exception procedure contains the instruction that either causes the hardware
exception or calls LIB$SIGNAL. The depth field of the argument mechanism has
positive values for procedure activations calling the one having the exception, for
example, 1 for the immediate caller.
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If a system service gives an exception, the immediate caller of the service is
notified at depth = 1. The depth field has a value of �2 when the condition
handler is established by the primary exception vector, a value of �1 when it is
established by the secondary vector, and a value of �3 when it is established by
the last-chance vector.

The Alpha mechanism depth may not be the same as the depth for the same
circumstances on a VAX system if any of the following are present:

• Condition dispatcher in the call chain

• Jacket frames, if there are any translated routines in the call chain

• Multiple active signals

• Compiler use of no frame procedures or inline code expansion of calls

6.5.2 System Default Condition Handlers
If one of the default condition handlers established by the system is entered, the
handler calls the SYS$PUTMSG system service to interpret the signal argument
list and to output the indicated information or error message. See the description
of SYS$PUTMSG in the OpenVMS System Services Reference Manual for the
format of the signal argument list.

6.5.3 Coordinating the Handler and Establisher
This section describes the requirements for use of memory, exception
synchronization, and continuation of the handler.

6.5.3.1 Use of Memory
Exceptions can be raised and unwind operations (which cause exception handlers
to be called) can occur when the current value of one or more variables is in
registers rather than in memory. Because of this, a handler, and any descendant
procedure called directly or indirectly by a handler, must not access any variables
except those explicitly passed to the procedure as arguments or those that exist
in the normal scope of the procedure.

This rule can be violated for specific memory locations only by agreement between
the handler and all procedures that might access those memory locations. A
handler that makes such agreements does not conform to this standard.

6.5.3.2 Exception Synchronization (Alpha Only)
The Alpha hardware architecture allows instructions to complete in a different
order than that in which they were issued, and for exceptions caused by an
instruction to be raised after subsequently issued instructions have been
completed.

Because of this, the state of the machine when a hardware exception occurs
cannot be assumed with the same precision as it can be assumed on conventional
VAX machines unless such precision has been guaranteed by bounding the
exception range with the appropriate insertion of TRAPB instructions.

The rules for bounding the exception range follow:

• If a procedure has an exception handler that does not simply reraise all
arithmetic traps caused by code that is not contained directly within that
procedure, the procedure must issue a TRAPB instruction before it establishes
itself as the current procedure.
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• If a procedure has an exception handler that does not simply reraise all
arithmetic traps caused either by code that is not contained directly within
that procedure or by any procedure that might have been called while that
procedure was current, the procedure must issue a TRAPB instruction in the
procedure epilogue while it is still the current procedure.

• If a procedure has an exception handler that is sensitive to the invocation
depth, the procedure must issue a TRAPB instruction immediately before and
after any call. Furthermore, the handler must be able to recognize exception
PC values that represent either epilogue code in called procedures or TRAPB
instructions immediately after a call, and adjust the depth appropriately (see
Section 3.7.5).

These rules ensure that exceptions are detected in the intended context of the
exception handler.

These rules do not ensure that all exceptions are detected while the procedure
within which the exception-causing instruction was issued is current. For
example, if a procedure without an exception handler is called by a procedure
that has an exception handler not sensitive to invocation depth, an exception
detected while that called procedure is current may have been caused by an
instruction issued while the caller was the current procedure. This means the
frame, designated by the exception-handling information, is the frame that was
current when the exception was detected, not necessarily the frame that was
current when the exception-causing instruction was issued.

6.5.3.3 Continuation from Exceptions (Alpha Only)
The Alpha architecture guarantees neither that instructions are completed in
the same order in which they were fetched from memory nor that instruction
execution is strictly sequential. Continuation is possible after some exceptions,
but certain restrictions apply.

By definition, software-raised general exceptions are synchronous with the
instruction stream and can have a well-defined continuation point. Therefore,
a handler can request continuation from a software-raised exception. However,
since compiler-generated code typically relies on error-free execution of previously
executed code, continuing from a software-raised exception might produce
unpredictable results and unreliable behavior unless the handler has explicitly
fixed the cause of the exception so that it is transparent to subsequent code.

Hardware faults on Alpha processors follow the same rules as the strict
interpretation of the conventional VAX rules. Loosely paraphrased, these rules
state that if the offending exception is fixed, reexecution of the instruction (as
determined from the supplied PC) will yield correct results. This does not imply
that instructions following the faulting instruction have not been executed.
Therefore, hardware faults can be viewed as similar to software-raised exceptions
and can have well-defined continuation points.

Arithmetic traps cannot be restarted because all the information required for
a restart is not available. The most straightforward and reliable way in which
software can guarantee the ability to continue from this type of exception is
by placing appropriate TRAPB instructions in the code stream. Although this
technique does allow continuation, it must be used with extreme caution because
of the negative effect on application performance.
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6.6 Returning from a Condition Handler
Condition handlers are invoked by the OpenVMS Condition Handling Facility
(CHF). Therefore, the return from the condition handler is to the CHF.

To continue from the instruction following the signal, the handler must return
with a function value of either SS$_CONTINUE or SS$_CONTINUE64 (both
of which have bit <0> set). If, however, the condition is signaled with a call to
LIB$STOP, the image exits. To resignal the condition, the condition handler
returns with a function value of either SS$_RESIGNAL or SS$_RESIGNAL64
(both of which have the bit <0> clear).

The difference between SS$_CONTINUE and SS$_CONTINUE64, and similarly
between SS$_RESIGNAL and SS$_RESIGNAL64, is of significance only if the
handler has made an alteration to the signal vector that is intended to be taken
into account by the CHF. When SS$_CONTINUE or SS$_RESIGNAL is returned,
then any modification to the 32-bit signal vector is propagated (in sign-extended
form) to the corresponding position in the 64-bit vector. When SS$_CONTINUE64
or SS$_RESIGNAL64 is returned, any modification in the 64-bit signal vector is
propagated (in truncated form) to the corresponding position in the 32-bit vector.
If no modification has been made, then the two forms of continuation or resignal
are equivalent.

The algorithm for detecting change is as follows:

• For SS$_CONTINUE64 and SS$_RESIGNAL64, the 32-bit signal vector is
simply derived again from the 64-bit signal vector. In particular, no hidden
copy of the 64-bit signal vector is kept. It is not necessary to determine if
there was a change or not—if there was, it is properly reflected in the 32-bit
vector.

• For SS$_CONTINUE and SS$_RESIGNAL, let SIGVEC32[I] and
SIGVEC64[I] be corresponding entries in the two vectors, for I from 1 to
length. (Recall that the length[s] cannot be changed.) For each entry, do the
following:

if SIGVEC32[I] /= SIGVEC64[I]<0,32>
then

SIGVEC64[I] = sign-extend(SIGVEC32[I])

That is, if the 32-bit entry is still the same as the low-order 32 bits of the
64-bit entry, then it did not change and thus the 64-bit entry is not changed.
Otherwise, update the 64-bit entry with the sign-extended contents of the
32-bit entry.

To alter the severity of the signal, the handler modifies the low-order three bits
of the condition value longword in the signal_args vector and resignals. If
the condition handler wants to alter the defined control bits of the signal, the
handler modifies bits <31:28> of the condition value and resignals. To unwind,
the handler calls SYS$UNWIND and then returns. In this case, the handler
function value is ignored.
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6.7 Request to Unwind from a Signal
To unwind, the handler or any procedure that it calls can make a call to
SYS$UNWIND. The format is as follows:

SYS$UNWIND(depadr, new_PC)

Argument OpenVMS Usage Type Access Mechanism

depadr integer longword read by reference

new_PC address longword read by reference

Arguments:

depadr
Optional number of presignal frames (depth) to be removed.

new_PC
Optional address of the location to receive control after the unwind operation is
completed.

Function Value Returned:

Success or failure status (see text that follows).

The depadr argument specifies the address of the longword that contains the
number of presignal frames (depth) to be removed. The deepest procedure
invocation whose frame is not removed is called the target invocation of the
unwind. If that number is less than or equal to 0, nothing is to be unwound. The
default (address = 0) is to return to the caller of the procedure that established
the handler that issued the $UNWIND service. To unwind to the establisher,
specify the depth from the call to the handler, which can be found in the CHF$IS_
MCH_DEPTH field of the Mechanism Array. When the handler is at depth 0,
it can achieve the equivalent of an unwind operation to an arbitrary place in
its establisher by altering the PC in its signal_args vector and returning with
SS$_CONTINUE, or SS$_CONTINUE64 if the 64-bit signal vector is altered,
instead of performing an unwind.

The new_PC argument specifies the location to receive control when the
unwinding operation is complete. The default is to continue at the instruction
following the call to the last procedure activation that is removed from the stack.

The function value success either is a standard success code (SS$_NORMAL) or
it indicates failure with one of the following return status condition values:

• No signal active (SS$_NOSIGNAL)

• Already unwinding (SS$_UNWINDING)

• Insufficient frames for depth (SS$_INSFRAME)

If SYS$UNWIND is invoked by a handler that has already invoked
SYS$UNWIND, then the effect of the second invocation is undefined.

The unwinding operation occurs when the handler returns to the CHF. Unwinding
is done by scanning back through the stack and calling each handler associated
with a frame. The handler is called with the exception SS$_UNWIND to perform
any application-specific cleanup. If the depth specified includes unwinding the
establisher’s frame, the current handler is recalled with this unwind exception.
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When the target invocation is reached on Alpha systems, unwind completion
depends on the PDSC$V_TARGET_INVO flag of the associated procedure
descriptor. If that flag is set to 1, then the handler for that procedure invocation
is called; otherwise, no handler is called. Control then resumes in the target
invocation.

The call to the handler takes the same form as described in Section 6.5.1 with the
following values:

• signal_args: for a handler for a procedure other than the target invocation
of the unwind—an argument count (CHF$L_SIG_ARGS) of 1 and a condition
value (CHF$L_SIG_NAME) of SS$_UNWIND.

For a handler on Alpha systems for a procedure that is the target invocation
of the unwind—an argument count (CHF$L_SIG_ARGS) of 2 and two
condition values consisting of SS$_UNWIND followed by SS$_TARGET_
UNWIND.

• mechanism_args: same as for the original call except for a depth of 0 (that
is, unwinding self) and any other changes made by prior handlers.

After each handler is called, the stack is logically cut back to the previous frame.

On Alpha systems, the stack is not actually cut back until after the last handler
is called.

The exception vectors are not checked because they are not being removed. Any
function value from the handler is ignored.

To specify the value of the top-level function being unwound, the handler should
modify the appropriate saved register locations in the mechanism_args vector.
They are restored from the mechanism_args vector at the end of the unwind.

Depending on the arguments to SYS$UNWIND, the unwinding operation is
terminated as follows:

SYS$UNWIND(0,0) Unwind to the establisher’s caller.

SYS$UNWIND(depth,0) Unwind to the establisher at the point of the call
that resulted in the exception.

SYS$UNWIND(depth,location) Unwind to the specified procedure activation and
transfer to a specified location.

The only recommended values for depth are the default (address of 0), which
unwinds to the caller of the establisher, and the value of depth taken from the
mechanism vector, which unwinds to the establisher. Other values depend on
implementation details that can change at any time.

You can call SYS$UNWIND whether the condition was a software exception
signaled by calling LIB$SIGNAL or LIB$STOP or was a hardware exception.
Calling SYS$UNWIND is the only way to continue execution after a call to
LIB$STOP.

6.7.1 Signaler’s Registers
Because the handler is called and can in turn call routines, the actual register
values in use at the time of the signal or exception can be scattered on the stack.

On VAX systems, to find registers R2 through FP, a scan of stack frames must
be performed starting with the current frame and ending with the call to the
handler. During the scan, the last frame found to save a register contains that
register’s contents at the time of the exception. If no frame saved the register,
the register is still active in the current procedure. The frame of the call to the
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handler can be identified by the return address of SYS$CALL_HANDL+4. In this
case, the registers are in the following states:

R0, R1 In mechanism_args

R2–11 Last frame saving it

AP Old AP of SYS$CALL_HANDL+4 frame

FP Old FP of SYS$CALL_HANDL+4 frame

SP Equal to end of signal_args vector+4

PC, PSL At end of signal_args vector

On Alpha systems, to find the contents of the registers, use the invocation context
routines described in Section 3.6.3.

6.7.2 Unwind Completion
On VAX systems, the values that exist in R0 and R1 when the unwind completes
are the values passed implicitly to the unwinder in the mechanism array (see
Section 6.5.1.2). If desired, these values can be modified by an exception handler
before the unwind is initiated.

On Alpha systems, the values that exist in R0, R1, F0, and F1 when the unwind
completes are the values passed implicitly to the unwinder in the mechanism
array (see Section 6.5.1.2). If desired, these values can be modified by an
exception handler before the unwind is initiated. Note that, unlike VAX systems,
an Alpha system does not use R1 for returning any type of return values.

6.8 GOTO Unwind Operations (Alpha Only)
A GOTO unwind is a transfer of control that leaves one procedure invocation
and continues execution in a prior, currently active procedure invocation.
Modular and reliable support of the nonlocal GOTO requires procedure
invocations that are terminated to have an opportunity to clean up in an
orderly way (just like a procedure that is terminated as a result of an unwind
from a condition handler).

Performing a GOTO unwind operation in a thread causes a transfer of control
from the location at which the GOTO unwind operation is initiated to a target
location in a target invocation. This transfer of control also results in the
termination of all procedure invocations, including the invocation in which the
unwind request was initiated, up to the target procedure invocation. Thread
execution then continues at the target location.

Before control is transferred to the unwind target location, the unwind support
code invokes all frame-based handlers that were established by procedure
invocations being terminated. These handlers are invoked with an indication of
an unwind in progress. This gives each procedure invocation being terminated
the chance to perform cleanup processing before its context is lost.

When the target invocation is reached, unwind completion depends on the
PDSC$V_TARGET_INVO flag of the associated procedure descriptor. If that flag
is set to 1, then the handler for that procedure invocation is called; otherwise, no
handler is called.

After all the relevant frame-based handlers have been called and the appropriate
frames have been removed from existence, the target invocation’s saved context is
restored and execution is resumed at the specified location.
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A GOTO unwind procedure can be initiated while an exception is active (from
within a condition handler) or while no exception is active. If the GOTO unwind
transfers control out of an exception handler (resulting in the termination of
current handler invocation), it also terminates handling of the corresponding
condition (like SYS$UNWIND).

A GOTO unwind operation in which a target invocation is not specified is called
an exit unwind. An exit unwind is just like a GOTO unwind except that
every procedure invocation in the currently executing thread is terminated. An
exit unwind is the only standard way to terminate execution of the currently
executing thread (other than a normal return from the topmost procedure of the
thread).

A thread can initiate a GOTO unwind or an exit unwind operation by calling a
system service routine. This routine is defined as follows:

SYS$GOTO_UNWIND(target_invo, target_pc, new_R0, new_R1)

Argument OpenVMS Usage Type Access Mechanism

target_invo invo_handle longword (unsigned) read by reference

target_pc address longword (unsigned) read by reference

new_R0 quadword_unsigned quadword (unsigned) read by reference

new_R1 quadword_unsigned quadword (unsigned) read by reference

Arguments:

target_invo
Address of a location that contains a handle for the target invocation.

If omitted or the address of the handle is 0, then an exit unwind is initiated.

target_pc
Address of a location that contains the address at which execution should continue in
the target invocation.

If omitted or if the address is 0, then execution resumes at the location specified by
the return address for the call frame of the target procedure invocation.

If the target_invo argument is omitted or is 0, then this argument is ignored. In this
case, a system-defined target PC is assumed.

new_R0
Address of a location that contains the value to place in the saved R0 location of the
mechanism argument vector. The contents of this location are then loaded into R0 at
the time that execution continues in the target invocation.

If this argument is omitted, then the contents of the processor R0 register at the time
of the call to SYS$GOTO_UNWIND are used.

new_R1
Address of a location that contains the value to place in the saved R1 location of the
mechanism argument vector. The contents of this location are then loaded into R1 at
the time that execution continues in the target invocation.

If this argument is omitted, then the contents of R1 at the time of the call to
SYS$GOTO_UNWIND are used.

Condition Value Returned:

SS$_ACCVIO
An invalid address was given.
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When a GOTO unwind is initiated, control usually never returns to the point
at which the unwind was initiated. Control returns with an error status only
if a GOTO unwind cannot be started. If SYS$GOTO_UNWIND is invoked by
a handler that has already invoked SYS$UNWIND, then the effect of calling
SYS$GOTO_UNWIND is undefined.

6.8.1 Handler Invocation During a GOTO Unwind
When an unwind operation takes place, all frame-based exception handlers are
invoked that were established by any procedure invocation being terminated. In
addition, the handler for the target procedure invocation is called if the PDSC$V_
TARGET_INVO flag is set in the corresponding procedure descriptor (see Sections
3.4.2 and 3.4.5.) These handlers are invoked in the reverse order from which they
were established.

Since primary, last-chance handlers, and the system catchall handler are not
associated with a normal procedure invocation, these handlers are never invoked
during an unwind (but they are invoked if an exception is raised during the
unwind operation).

For a GOTO or exit unwind procedure, each handler that is invoked is called with
two arguments as follows:

handler (signal_args, mechanism_args)

Argument OpenVMS Usage Type Access Mechanism

signal_args signal vector structure modify by reference

mechanism_args mechanism vector structure modify by reference

Arguments:

signal_args
Argument count of 2, followed by a condition value of SS$_UNWIND, followed by:

• SS$_EXIT_UNWIND when no target invocation is specified

• SS$_GOTO_UNWIND when a target invocation is specified but not for that target
invocation

• SS$_TARGET_GOTO_UNWIND when a target invocation is specified and the
handler for that target invocation is called

mechanism_args
Mechanism argument corresponding to the frame being unwound, as defined in
Section 6.5.1.2.

For information about signal argument and mechanism argument vectors, see
Sections 6.5.1.1 and 6.5.1.2.

6.8.2 Unwind Completion
When an unwind completes, the following conditions are true:

• The target procedure invocation is the most current invocation in the
procedure invocation chain.

• The environment of the target invocation is restored to the state when that
invocation was last current, except for the contents of all scratch registers.

• R0 and R1 contain the respective values, if any, which were passed by the
routine that invoked the unwind.
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• Execution continues at the target location.

6.9 Multiple Active Signals
A signal is said to be active until the signaler gets control again or is unwound.
A signal can occur while a condition handler or a procedure it has called is
executing in response to a previous signal. For example, procedures A, B, and C
establish condition handlers Ah, Bh, and Ch. If A calls B and B calls C, which
signals S, and Ch resignals, then Bh gets control.

If Bh calls procedure X, and X calls procedure Y, and Y signals T, the stack is as
follows:

Which was programmed:

A

B

C

Bh

<Signal S>

X

Y

<Signal T>

 

<Signal T>
Y
X
Bh

<Signal S>
C
B
A

ZK−1884−GE

The handlers are searched for in the following order: Yh, Xh, Bhh, Ah. Bh is
not called again because it is not appropriate to assume that a routine is able to
be its own handler. However, Bh can establish itself or another procedure as its
handler (Bhh).

On VAX systems, Ch is not checked or called because it is a structural descendant
of B.

On Alpha systems, the search does check handlers Ch and Bh between calling
Bhh and Ah. These handlers will be reinvoked only if enabled by the HANDLER_
REINVOCABLE flag of the establisher’s procedure descriptor (see Sections 3.4.1
and 3.4.4).

For both Alpha and VAX systems, the following algorithm is used on the second
and subsequent signals that occur before the handler for the original signal
returns to the Condition Handling Facility. The primary and secondary exception
vectors are checked. However, the search backward in the process stack is then
modified. On a VAX processor, the stack frames traversed in the first search
are skipped, in effect, during the second search, while on an Alpha processor,
the stack frames are skipped unless they explicitly enable handler reinvocation.
Therefore, the stack frame preceding the first condition handler, up to and
including the frame of the procedure that has established the handler, is skipped.
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In the VAX environment, frames that are skipped are not counted in the depth.
In the Alpha environment, all frames are counted in the depth.

For example, the stack frames traversed in the first and second searches are
skipped in a third search. Note that if a condition handler signals, it is not
automatically invoked recursively. However, if a handler itself establishes a
handler, the second handler is invoked. Therefore, a recursive condition handler
should start by establishing itself. Any procedures invoked by the handler are
treated in the normal way; that is, exception signaling follows the stack up to the
condition handler.

If an unwind operation is requested while multiple signals are active, all the
intermediate handlers are called for the operation. For example, in the preceding
diagram, if Ah specifies unwinding to A, the following handlers are called for the
unwind: Yh, Xh, Bhh, Ch, and Bh.

For proper hierarchical operation, an exception that occurs during execution
of a condition handler established in an exception vector should be handled by
that handler rather than propagating up the activation stack. To prevent such
propagation, the vectored condition handler should establish a handler in its
stack frame to handle all exceptions.

6.10 Multiple Active Unwind Operations
During an unwind operation (resulting from either SYS$GOTO_ UNWIND
or SYS$UNWIND), another unwind operation can be initiated (using either
SYS$GOTO_UNWIND or SYS$UNWIND). This can occur, for example, if a
handler that is invoked for the original unwind initiates another unwind, or if an
exception is raised in the context of such a handler and a handler invoked for that
exception initiates another unwind operation. However, SYS$UNWIND cannot be
called from a handler that is invoked as part of an unwind (see Section 6.7), but
it can be called from a handler for a nested exception.

An unwind that is initiated while a previous unwind is active is either a nested
unwind or an overlapping unwind.

A nested unwind is an unwind that is initiated while a previous unwind is
active and whose target invocation in the procedure invocation chain is not a
predecessor of the most current active unwind handler. A nested unwind does
not terminate any procedure invocation that would have been terminated by the
previously active unwind.

When a nested unwind is initiated, no special rules apply. The nested unwind
operation proceeds as a normal unwind operation, and when execution resumes
at the target location of the nested unwind, the nested unwind is complete and
the previous unwind is once again the most current unwind operation.

An overlapping unwind is an unwind that is initiated while a previous unwind
is active and whose target invocation in the procedure invocation chain is a
predecessor of the most current active unwind handler. An overlapping unwind
terminates one or more procedure invocations that would have been terminated
by the previously active unwind.

An overlapping unwind is detected when the most current active unwind handler
is terminated. This detection of an overlapping unwind is termed an unwind
collision.
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When a GOTO unwind collides with a GOTO unwind, the later unwind
supersedes the earlier unwind, which is abandoned. The later unwind then
continues from the point of the collision.

The result of any other collision is undefined.
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Default procedure signature, 3–28
Definition of terms, 1–4
Descriptors

See also DSCs and PDSCs
Alpha argument item, 3–48
arrays, 5–7
BASIC file array, 5–35
class codes, 5–35
compression text, 5–35
decimal strings, 5–14
definition, 1–4
dynamic strings, 5–6
facility-specific class codes, 5–35
fixed length, 5–5
formats

DSC$A_POINTER, 5–4
DSC$B_CLASS, 5–4
DSC$B_DTYPE, 5–4
DSC$K_CLASS_A, 5–7
DSC$K_CLASS_BFA, 5–35
DSC$K_CLASS_CT, 5–35
DSC$K_CLASS_D, 5–6
DSC$K_CLASS_J, 5–35
DSC$K_CLASS_JI, 5–35
DSC$K_CLASS_NCA, 5–16
DSC$K_CLASS_P, 5–12
DSC$K_CLASS_PI, 5–35
DSC$K_CLASS_S, 5–5
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Descriptors
formats (cont’d)

DSC$K_CLASS_SB, 5–31
DSC$K_CLASS_SD, 5–14
DSC$K_CLASS_UBA, 5–27
DSC$K_CLASS_UBS, 5–26
DSC$K_CLASS_UBSB, 5–33
DSC$K_CLASS_V, 5–35
DSC$K_CLASS_VS, 5–21
DSC$K_CLASS_VSA, 5–23
DSC$W_LENGTH, 5–4
DSC64$B_CLASS, 5–4
DSC64$B_DTYPE, 5–4
DSC64$L_MBMO, 5–4, 5–6, 5–7, 5–10,

5–13, 5–15, 5–19, 5–22, 5–26
DSC64$PQ_POINTER, 5–4
DSC64$Q_LENGTH, 5–4
DSC64$W_MBO, 5–4, 5–5, 5–7, 5–10,

5–13, 5–15, 5–19, 5–22, 5–26
prototype, 5–2

label, 5–35
noncontiguous arrays, 5–16
obsolete class codes, 5–35
procedure argument, 5–12
reserved class codes, 5–35
strings with bounds, 5–31
unaligned bit arrays, 5–27
unaligned bit strings, 5–26
unaligned bit strings with bounds, 5–33
variable buffer, 5–35
varying string arrays, 5–23
varying strings, 5–21

DSCs (descriptors)
argument descriptors, 5–1 to 5–35
procedure descriptors, 5–12

Dynamic string descriptor, 5–6

E
Entry code sequences, 3–45

example for register frame procedures, 3–47
example for stack frame procedures, 3–46

Environment value, 3–45
Exception conditions, 6–1

definition, 1–4
handler, 6–5
indicating, 6–8
signaling, 6–8

Exceptions
continuation from, 6–20
synchronization, 6–19

Exit code sequences, 3–47
example for register frame procedures, 3–48
example for stack frame procedures, 3–48

F
Facility-specific data type codes, 4–6
Facility-specific descriptor class codes, 5–35
Fixed length

returned to stack, 2–8
Fixed-length descriptor, 5–5
Fixed-size stack frames, 3–9
Fixed temporary locations, 3–12
Floating-point register usage, 3–2
Flow control, 3–3
Full function, 3–4
Function

definition, 1–5
Function result, 3–38
Function value returns, 2–6

by descriptor, 3–55
by immediate value, 3–54
by reference, 3–54
dynamic text, 3–55
in registers, 2–6
object created by called routine, 3–55
object created by calling routine, 3–55
registers, 2–1
to stack, 2–7, 2–8

G
GENTRAP instruction, 6–9
GOTO unwinds, 6–24

nonlocal, 6–24
Guard pages, 3–60
Guard regions, 3–60

H
Handler invocations

during unwind, 6–26
Hardware exceptions, 6–1

definition, 1–5
High-level languages

argument evaluation, 2–5
argument transmission, 2–5
mapped into argument lists, 2–5

I
ICBs (invocation context blocks), 3–31
Immediate value

Alpha argument item, 3–48
definition, 1–5
large, 3–52

Inline code, 3–62
Integer register usage, 3–1
Invocation context

access routines, 3–34
functions, 3–34
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Invocation context (cont’d)
obtaining handle, 3–35
updating, 3–36

Invocation context blocks
See ICBs

Invocation handles, 3–30
creating, 3–33
encoding, 3–30
format for procedure, 3–30

L
Label descriptors, 5–35
Language extensions, 2–5
Language-support procedure, 1–5
Large immediate value

Alpha, 3–52
LIB$GET_CURR_INVO_CONTEXT routine, 3–34
LIB$GET_INVO_CONTEXT routine, 3–34
LIB$GET_INVO_HANDLE routine, 3–35
LIB$GET_PREV_INVO_CONTEXT routine, 3–35
LIB$GET_PREV_INVO_HANDLE routine, 3–36
LIB$PUT_INVO_REGISTERS routine, 3–36
LIB$SIGNAL routine

signaling, 6–8, 6–12
LIB$STOP routine

using, 6–8, 6–10, 6–12
Library procedures, 1–5
Lightweight procedures

Alpha requirements, 3–14
Linkage pair blocks

See LKPs
Linkage pointers, 3–39
Linkage sections, 3–39
LKPs (linkage pair blocks), 3–40

M
Miscellaneous data types, 4–4
Multiple active signals, 6–27
Multithreaded execution environments, 3–59

N
Natural alignment

definition, 1–5
Nested unwind, 6–28
New stack region, 3–60
Noncontiguous array descriptors, 5–16
Null frame procedures, 3–20

O
Obsolete descriptor class codes, 5–35
Overlapping unwind, 6–28

P
Passing mechanisms

descriptor
definition, 1–4

immediate value
definition, 1–5

language extensions, 2–5
reference

definition, 1–5
PDSCs (procedure descriptors), 3–3

for bound procedures, 3–42
for null frame procedures, 3–20
for register frame procedures, 3–15
for stack frame procedures, 3–5

Procedure calls
chain, 3–29
tracing, 3–30

Procedure descriptors
See PDSCs for Alpha or DSCs for VAX and

Alpha
Procedure invocation, 3–29

handle, 3–30
Procedures, 3–3

definition, 1–5
language support, 1–5
library, 1–5
without frames, 3–20

Procedure signature information blocks
See PSIGs

Procedure signatures, 3–22
default, 3–28

Procedure types, 3–3
Procedure values, 1–5, 3–37

bound, 3–3, 3–44
definition, 3–3
examining, 3–41

Process
definition, 1–5

PSIGs (procedure signature information blocks),
3–22

field conversions, 3–25

R
Receiving data

Alpha, 3–53
Record layout

Alpha, 3–57
VAX compatible, 3–59

Reference
definition, 1–5

Reference argument item
for Alpha, 3–48
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Register frame procedures, 3–14
descriptors, 3–15

Registers
Alpha usage, 3–1
floating point usage, 3–2
for returns, 2–1
integer usage, 3–1
scalar, 2–1
VAX usage, 2–1
vector, 2–2

Register save area
See RSA

Request to unwind, 6–22
Reserved data type codes, 4–5
Reserved descriptor class codes, 5–35
Reserve region, 3–60
Returning data

Alpha, 3–53
Returning from condition handlers, 6–21
Returning function value

fixed length to stack, 2–8
to stack, 2–7
varying string to stack, 2–8

Returns
address, 3–37
condition value, 6–1
function value, 2–6

Revert to caller’s handling, 6–8
RSA (register save area)

layout, 3–12, 3–13
stack frames, 3–12

S
Scalars

processor synchronization, 2–8
register usage, 2–1

Sending data, 3–52
Alpha mechanisms, 3–52
argument order evaluation, 3–53

Severity codes, 6–2
handling, 6–4
interpreting, 6–4
meanings, 6–4
symbols, 6–4

Signal
definition, 1–6

Signal argument vectors, 6–12
Signaler’s register, 6–23
Signaling conditions, 6–8

with GENTRAP, 6–9
with LIB$SIGNAL, 6–9

Signature information, 3–22
Simple procedure, 3–44
Stack frames

fixed size, 3–9
format, 3–9

Stack frames (cont’d)
procedure descriptors, 3–5
procedures, 3–4
register save area, 3–12
variable size, 3–10

Stack guard region
multithreads, 3–60

Stack limit checking
explicit, 3–62
implicit, 3–61
methods, 3–60
multithreads, 3–60

Stack overflow
handling, 3–62
multithreads, 3–60

Stack region, 3–60
Stack reserve region

checking, 3–62
multithreads, 3–60

Stack return
mechanism, 3–56
values to top, 2–7

Stack temporary area, 3–11
Stack usage, 3–39, 6–6

for Alpha systems, 3–9
for VAX, 2–2

Standard calls
definition, 1–6

Standard-conforming procedures
definition, 1–6

Static data, 3–56
Static data alignment, 3–56
String data types, 4–4
String with bounds descriptors, 5–31
Synchronization

exception, 2–8
memory, 2–8

SYS$CALL_HANDL+4 routine
using, 6–23

SYS$GOTO_UNWIND routine, 6–25
unwinding, 6–27

SYS$UNWIND routine
unwinding, 6–22, 6–27

T
TEBs (thread environment blocks), 3–59
Thread environment blocks

See TEBs
Thread-safe code

definition, 1–6
Threads of execution

definition, 1–6
Transfer code

address, 3–44
sequence, 3–44
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TRAPB instruction, 6–19

U
Unaligned bit array descriptors, 5–27
Unaligned bit string descriptors, 5–26
Unaligned bit string with bounds descriptors,

5–33
Unused bits in passed data, 3–51
Unwinds

completion, 6–24, 6–26
exit, 6–25
GOTO, 6–24
handler invocation, 6–26
nested, 6–28
operations, 6–22

multiple active, 6–28
overlapping, 6–28

V
Variable buffer descriptors, 5–35
Variable-size stack frames, 3–10
Varying character string data types, 4–7
Varying string

returned to stack, 2–8
Varying string array descriptors, 5–23
Varying string descriptors, 5–21
VAX language extension, 2–5
VAX scalar

See Scalars
VAX vector

See Vector processors; Vector registers
Vector processors

exception handling, 6–15
synchronization, 2–8

Vector registers
usage, 2–2
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