
OpenVMS Connectivity
DeveloperGuide
Contains COM for OpenVMS, OpenVMS Registry, and OpenVMS
Events information

July 2000

This document contains information about COM for OpenVMS, the
OpenVMS Registry, and OpenVMS Events logging. It also includes
information about OpenVMS and Windows NT authentication and
interoperation.

Revision/Update Information: This is an updated manual.

Software Version: COM Version 1.1-B for OpenVMS
OpenVMS Alpha Version 7.2-1
Microsoft Windows NT 4.0 SP3 or
higher

Compaq Computer Corporation
Houston, Texas

July 2000

© 2000 Compaq Computer Corporation

COMPAQ, VAX, VMS, the Compaq logo, and the DIGITAL logo Registered in U.S. Patent and
Trademark Office. OpenVMS is a trademark of Compaq Information Technologies Group, L.P.

ActiveX, Microsoft, MS, MS-DOS, Visual Studio, Win32, Windows, and Windows NT are registered
trademarks, and NT, Windows 95, and Windows 98 are trademarks of Microsoft Corporation.

Motif, OSF/1, and UNIX are trademarks of The Open Group.

Wind/U is a registered trademark of Bristol Technology, Inc.

Sample COM code that appears in this document is from Dale Rogerson’s book, Inside COM
(Microsoft Press, 1997), and is used with the publisher’s permission.

All other product names mentioned herein may be the trademarks or registered trademarks of their
respective companies.

This product includes software licensed from Microsoft Corporation.
Copyright © Microsoft Corporation, 1991-1998. All rights reserved.

This product includes software licensed from Bristol Technology, Inc.
Copyright © Bristol Technology, Inc, 1990-1998. All rights reserved.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is subject to change without notice.

The Compaq OpenVMS documentation set is available on CD-ROM.

ZK6539

28-JUL-2000 09:40:57.03

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xiii

1 COM for OpenVMS Release Notes

1.1 COM for OpenVMS Versions . 1–1
1.2 Upgrading from a Previous Version of COM to COM Version 1.1-B for

OpenVMS . 1–2
1.2.1 You Must Repopulate the OpenVMS Registry for COM Version 1.1-B

for OpenVMS . 1–2
1.2.2 Previously Registered Applications That Use Logical Names for the

Local Server Path . 1–3
1.2.3 Changes to the Examples . 1–3
1.3 Problems Fixed in the Current Release . 1–4
1.3.1 Memory Leak in COM for OpenVMS Servers 1–4
1.3.2 DCOM$RPCSS Process Resource Exhaustion 1–4
1.3.3 Passing an Interface Pointer through IDispatch 1–4
1.4 Known Problems (with Fixes) in the Current Release 1–4
1.4.1 Trusted-Domain Authentication Feature Requires ECO 1–4
1.4.1.1 NET3004 Messages Broadcast to Administrator on Windows NT

Server System . 1–5
1.4.1.2 Password Synchronization Errors (NET5716, NET5722,

NET5723) . 1–5
1.4.1.3 Hostmap Problem . 1–5
1.4.2 DCERPC-E-UNKNOWNREJECT Failure (EE128302) 1–5
1.4.3 DCERPC-E-WHOAREYOUFAILED Failure (EE1282FA) 1–5
1.4.4 NTARPC-E-PROTOCOL_ERROR Failure (800706C0) 1–5
1.4.5 Cached IID Value Not Equal to Registry Value Failure 1–5
1.4.6 IGNORE_EXTAUTH Support . 1–5
1.5 Known Problems (without Fixes) in the Current Release 1–6
1.5.1 Kernel Threads and Upcalls Not Supported . 1–6
1.6 Limitations and Restrictions . 1–6
1.6.1 DCOM$RPCSS Stalls on Restart . 1–6
1.6.2 MIDL Limitations and Restrictions . 1–6
1.6.2.1 MIDL -w Switch . 1–6
1.6.2.2 MIDL Compiler Treats wchar_t Literals as char 1–6
1.6.2.3 SAFEARRAY Limitation . 1–7
1.6.3 DCOM$CNFG Limitations and Restrictions . 1–7
1.6.3.1 DCOM$CNFG Utility and Disabling Applications: Possible

Unintended Side Effects . 1–7

iii

1.6.4 Other Limitations and Restrictions . 1–8
1.6.4.1 Windows 2000 Limitations . 1–8
1.6.4.2 COM Version 1.0 for OpenVMS and COM Version 1.1-B for

OpenVMS Not Supported in the Same Cluster 1–8
1.6.4.3 Remote Activation of an In-Process Server 1–8
1.6.4.4 Threading Model Supported by COM for OpenVMS 1–8
1.6.4.5 SP4 with Enhanced NTLM Enabled is Not Supported 1–8
1.6.4.6 Specifying Activation Security in CoCreateInstanceEx 1–9
1.6.4.7 RPC Communication Failures Caused by Advanced Server 1–9
1.6.4.8 Specific Error Messages . 1–9
1.6.4.8.1 RPC Cannot Support Failure (800706E4) 1–9

2 OpenVMS Registry Release Notes

2.1 Release Notes . 2–1
2.1.1 No Key Change Notifications When a Key’s Attributes are

Modified . 2–1
2.1.2 Database Searches Limited . 2–1
2.1.3 Key Access Policy . 2–1
2.1.4 OpenVMS Registry Maximum Data Size Restrictions 2–1
2.1.5 REG$_EXQUOTA Errors . 2–2
2.1.6 OpenVMS Registry Maximum Database Size Restrictions 2–2

Part I COM for OpenVMS

3 Overview of COM for OpenVMS

3.1 What is COM? . 3–1
3.1.1 Suggested Reading . 3–1
3.2 Overview of COM for OpenVMS . 3–2
3.2.1 How COM for OpenVMS Uses the OpenVMS Registry 3–4
3.3 Using COM for OpenVMS . 3–4
3.3.1 Developing New Applications . 3–5
3.3.2 Encapsulating Existing Applications . 3–5

4 Installing the COM for OpenVMS Kit

4.1 Contents of the COM Version 1.1-B for OpenVMS Kit 4–1
4.2 Prerequisites . 4–1
4.2.1 DECwindows Motif Required to Run COM for OpenVMS 4–2
4.3 Supported COM for OpenVMS Installations . 4–2
4.4 Installing COM for OpenVMS on an OpenVMS Standalone System 4–3
4.5 Upgrading COM for OpenVMS on an OpenVMS Standalone System 4–4
4.6 Installing COM for OpenVMS on an OpenVMS Cluster 4–6
4.7 Upgrading COM for OpenVMS in an OpenVMS Cluster 4–8
4.8 Understanding the COM for OpenVMS Environment 4–10
4.8.1 COM for OpenVMS Service Control Manager (SCM) 4–11
4.8.2 OpenVMS Registry Server . 4–11
4.8.3 Advanced Server for OpenVMS Server . 4–11
4.8.4 ACME Server . 4–12
4.8.5 RPC Endpoint Mapper . 4–12
4.8.6 RPC and SSPI/NTLM Layers . 4–13
4.8.7 OpenVMS Events . 4–13
4.9 Installing COM for OpenVMS . 4–13

iv

4.10 COM for OpenVMS Postinstallation Procedures . 4–14
4.11 Starting COM for OpenVMS (COM for OpenVMS Service Control

Manager) . 4–15
4.11.1 Starting COM for OpenVMS Automatically after a Reboot 4–15
4.12 Shutting Down COM for OpenVMS (COM for OpenVMS Service Control

Manager) . 4–16
4.12.1 Suppressing the DCOM$SHUTDOWN Confirmation Request 4–17

5 COM for OpenVMS Security

5.1 System Configuration . 5–1
5.1.1 LOGINOUT.EXE Use of External Authentication 5–2
5.1.2 DCE Integrated Login Restriction . 5–2
5.2 Cross-Domain Configuration . 5–3
5.3 Acquiring Windows NT Credentials . 5–3
5.4 Application Security . 5–4
5.4.1 Launch Security . 5–4
5.4.2 Activation Security . 5–4
5.4.3 Server Process Identity . 5–4
5.4.4 Domain Issues . 5–5
5.4.5 Disabling Authentication . 5–5
5.4.6 Access Denied Problems (80070005) . 5–6
5.5 Server Run-Time Environment . 5–6

6 COM for OpenVMS Utilities for Application Development and
Deployment

6.1 DCOM$SETUP Utility . 6–1
6.2 Running DCOM$SETUP . 6–2
6.2.1 Creating and Configuring DCOM$RPCSS Accounts 6–4
6.2.2 Starting and Stopping the COM Server (DCOM$RPCSS Process) 6–6
6.2.3 Registering an Application . 6–6
6.3 Running DCOM$CNFG . 6–8
6.3.1 The DCOM$CNFG Application List Submenu 6–9
6.3.2 Registry Value Permissions Submenus . 6–13
6.3.3 Registry Key Permissions Submenus . 6–15
6.3.4 Application Identity Submenu . 6–18
6.3.5 The DCOM$CNFG System-wide Default Properties Submenu 6–20
6.3.6 System-wide Default Security Submenu . 6–21
6.4 Registering In-Process Servers: DCOM$REGSVR32 Utility 6–22

7 Developing a COM for OpenVMS Application

7.1 Step 1: Generate Unique Identifiers . 7–1
7.2 Step 2: Build an Application Using the MIDL Compiler 7–2
7.2.1 Running the MIDL Compiler . 7–2
7.2.2 Running the MIDL Compiler with DCOM$RUNSHRLIB 7–3
7.2.3 Required MIDL Switches . 7–4
7.2.4 Required Include Directories . 7–4
7.2.5 Required Header File . 7–4
7.3 Step 3: Compile the COM Application . 7–4
7.3.1 Required Macro Definitions . 7–4
7.3.2 Required Include Directories . 7–5
7.3.3 Required Header File: VMS_DCOM.H . 7–5

v

7.3.4 Required C++ Qualifiers . 7–5
7.3.5 Required C Qualifiers . 7–5
7.4 Step 4: Link the COM Application . 7–5
7.4.1 Linking the Client and the Out-of-Process Component 7–6
7.4.2 Linking the In-Process Component Shareable Image 7–6
7.4.2.1 Creating a Symbol Vector . 7–6
7.4.3 Linking the Proxy/Stub Shareable Image . 7–7
7.4.3.1 Creating a Symbol Vector . 7–7
7.5 Required OpenVMS Registry Entries . 7–8
7.5.1 HKEY_CLASSES_ROOT\CLSID . 7–8
7.5.1.1 Component CLSIDs . 7–8
7.5.1.2 Proxy/Stub CLSIDs . 7–9
7.5.2 HKEY_CLASSES_ROOT\Interface . 7–9
7.6 Converting OpenVMS and Windows Error Codes to Text 7–10

NTA$VMSGetMessage . 7–11

8 Authentication

8.1 What is Authentication? . 8–1
8.2 Acquiring Windows NT Credentials Using NTA$LOGON 8–1
8.2.1 NTA$LOGON Optional Qualifiers . 8–3
8.2.2 Examples of Using NTA$LOGON to Acquire Windows NT

Credentials . 8–4
8.3 The Authentication and Credential Management (ACM) Authority 8–5
8.3.1 Windows NT Authentication on OpenVMS . 8–5
8.3.2 Managing the ACME_SERVER Process (ACME Server

Commands) . 8–6
8.3.3 Configuring the MSV1_0 ACME Agent . 8–6

9 Active Template Library

9.1 COM for OpenVMS and ATL . 9–1
9.2 Developing a COM for OpenVMS Application Using ATL 9–1
9.2.1 Step 1: Create the ATL Component in Microsoft Visual Studio 9–2
9.2.2 Step 2: Modify Generated Files for ATL Applications on OpenVMS . . . 9–3
9.2.2.1 Remove _ATL_MIN_CRT . 9–3
9.2.2.2 Include ATLMAIN.CXX . 9–3
9.2.2.3 Modify Registration Procedure . 9–3
9.2.3 Step 3: Build an Application Using the MIDL Compiler 9–4
9.2.4 Step 4: Compile the ATL COM Application . 9–4
9.2.4.1 Required Header File: ATLBASE.H . 9–4
9.2.4.2 Required Macro Definitions . 9–4
9.2.4.3 Required Include Directories . 9–4
9.2.4.4 Required C++ Qualifiers . 9–5
9.2.5 Step 5: Link the ATL COM Application . 9–5
9.2.5.1 Linking the Client and the Out-of-Process Component 9–6
9.2.5.2 Linking the In-Process Component Shareable Image 9–6
9.2.5.3 Creating a Symbol Vector . 9–6
9.3 ATL Samples . 9–6
9.3.1 Out-of-Process COM Sample (TESTATL_OUTPROC) 9–6
9.3.1.1 Creating the Application on Windows NT 9–7
9.3.1.2 Building, Registering, and Running the Application on

OpenVMS . 9–7

vi

9.3.2 In-Process COM Sample (TESTATL_INPROC) 9–7
9.3.2.1 Creating the Application on Windows NT 9–7
9.3.2.2 Building, Registering, and Running the Application on

OpenVMS . 9–7
9.4 Suggested Reading . 9–8

Part II OpenVMS Registry

10 Overview of OpenVMS Registry

10.1 What is the Registry? . 10–1
10.1.1 Suggested Reading . 10–1
10.2 OpenVMS Registry Concepts and Definitions . 10–1
10.2.1 Keys, Subkeys, and Values . 10–2
10.2.1.1 Key and Value Volatility . 10–2
10.2.1.2 Key Write-through and Write-behind . 10–3
10.2.1.3 Linking a Key to Other Keys and Values . 10–3
10.2.1.4 Rules for Creating OpenVMS Registry Keys and Value Names . . . 10–3
10.2.2 Class . 10–4
10.2.3 Hive . 10–4
10.3 OpenVMS Registry Structure . 10–4
10.4 Reading and Writing to the OpenVMS Registry . 10–6
10.4.1 $REGISTRY System Services . 10–6
10.4.2 REG$CP Server Management Utility . 10–6
10.5 OpenVMS Registry Security . 10–6
10.5.1 OpenVMS Security Model . 10–7
10.5.1.1 Granting OpenVMS Registry Access Rights Using the

AUTHORIZE Utility . 10–8
10.5.2 Windows NT Security Model . 10–9
10.6 Controlling the OpenVMS Registry Server Operations 10–9
10.6.1 Defining Maximum Reply Age/Age Checker Interval Settings 10–9
10.6.2 Defining the Database Log Cleaner Interval/Initial Log File Size

Settings . 10–9
10.6.3 Defining Default File Quota/File Quota Interval Settings 10–10
10.6.4 Defining the Scan Interval Setting . 10–10
10.6.5 Defining the Log Registry Value Error Setting 10–10
10.6.6 Defining the Operator Communications Interval Setting 10–11
10.6.7 Defining the Process Time Limit Setting . 10–11
10.6.8 Defining the Reply Log Cleaner Interval Setting 10–11
10.6.9 Defining Snapshot Interval/Snapshot Location/Snapshot Versions

Settings . 10–11
10.6.10 Defining the Write Retry Interval Setting . 10–12

11 OpenVMS Registry System Management

11.1 Installing the OpenVMS Registry . 11–1
11.2 Configuring the OpenVMS Registry: the REG$CONFIG Configuration

Utility . 11–1
11.2.1 Configuring OpenVMS Registry Values . 11–3
11.3 Starting the OpenVMS Registry . 11–5
11.3.1 Starting the OpenVMS Registry Manually . 11–6
11.4 Shutting Down the OpenVMS Registry . 11–6

vii

11.5 OpenVMS Registry Server Commands . 11–6
SHOW SERVER REGISTRY_SERVER . 11–7
SET SERVER REGISTRY_SERVER . 11–8

11.6 OpenVMS Registry Failover in a Cluster . 11–9
11.6.1 Changing the Priority of OpenVMS Registry Server Processes 11–9
11.7 Connecting to the OpenVMS Registry from a Windows NT System 11–9
11.8 OpenVMS Registry Quotas . 11–10
11.9 OpenVMS Registry Security . 11–10
11.10 Backing Up and Restoring the OpenVMS Registry Database 11–11
11.11 Using the OpenVMS Registry in an OpenVMS Alpha Mixed-Version

Cluster . 11–11
11.12 Internationalization and Unicode Support . 11–11

12 OpenVMS Registry Server Management

12.1 Managing the OpenVMS Registry Server from the Command Line 12–1
12.2 Backing Up and Restoring the OpenVMS Registry Database 12–3
12.2.1 Creating a Snapshot of the OpenVMS Registry Database 12–3
12.2.2 Restoring a Snapshot of the OpenVMS Registry Database 12–3
12.3 OpenVMS Registry Server Management Utility Syntax 12–4

CREATE DATABASE . 12–5
CREATE KEY . 12–6
CREATE SNAPSHOT . 12–8
CREATE VALUE . 12–9
DELETE KEY . 12–11
DELETE VALUE . 12–12
EXPORT . 12–13
IMPORT . 12–14
LIST KEY . 12–16
LIST VALUE . 12–18
MODIFY KEY . 12–20
MODIFY VALUE . 12–22
MODIFY TREE . 12–24
SEARCH KEY . 12–25
SEARCH VALUE . 12–26
SHOW . 12–27
START MONITORING . 12–28
STOP . 12–29
ZERO COUNTERS . 12–30

13 OpenVMS Registry System Services

$REGISTRY and $REGISTRYW . OR–2

viii

Part III OpenVMS Events

14 OpenVMS Events

14.1 What are Events? . 14–1
14.1.1 Suggested Reading . 14–1
14.2 Overview of OpenVMS Events . 14–2
14.2.1 Viewing OpenVMS Events Using Windows NT Event Viewer 14–2
14.2.2 Viewing OpenVMS Events Using Advanced Server for OpenVMS

Event Viewer . 14–2
14.2.3 Event Logging on OpenVMS Only . 14–2

NTA$EVENTW . 14–4
14.3 Writing Your Own Events . 14–9
14.4 Troubleshooting OpenVMS Events . 14–9

Part IV Appendixes

A MIDL Compiler Options

A.1 Mode . A–1
A.2 Input . A–1
A.3 Output File Generation . A–1
A.4 Output File Names . A–1
A.5 C Compiler and Preprocessor Options . A–2
A.6 Environment . A–2
A.7 Error and Warning Messages . A–3
A.8 Optimization . A–3
A.9 Miscellaneous . A–3

B Troubleshooting

B.1 RPC Troubleshooting . B–1
B.2 Troubleshooting the ACME server . B–3
B.3 Troubleshooting the DCOM$RPCSS Process . B–4
B.4 Troubleshooting the Advanced Server for OpenVMS B–5
B.5 Troubleshooting COM for OpenVMS Application Failures B–5
B.5.1 Access Denied Failures . B–5

C Cookbook Examples: Building a Sample Application on OpenVMS

C.1 COM Example (Sample1) . C–1
C.1.1 OpenVMS Instructions . C–1
C.1.1.1 Building the Application on OpenVMS . C–1
C.1.1.2 Registering the Application on OpenVMS C–2
C.1.1.3 Running the Application on OpenVMS as an Out-of-Process

Server . C–2
C.1.1.4 Running the Application on OpenVMS and Specifying a Remote

Server . C–2
C.1.1.5 Running the Application on OpenVMS as an In-Process Server . . C–3
C.1.2 Windows NT Instructions . C–3
C.1.2.1 Building the Application on Windows NT C–3
C.1.2.2 Registering the Application on Windows NT C–4
C.1.2.3 Running the Application on Windows NT C–4
C.2 Automation Example (Dispatch_Sample1) . C–4

ix

C.2.1 OpenVMS Instructions . C–4
C.2.1.1 Building the Application on OpenVMS . C–4
C.2.1.2 Registering the Application on OpenVMS C–5
C.2.1.3 Running the Application on OpenVMS as an Out-of-process

Server . C–5
C.2.1.4 Running the Application on OpenVMS and Specifying a Remote

Server . C–5
C.2.1.5 Running the Application on OpenVMS as an In-Process Server . . C–6
C.2.2 Windows NT Instructions . C–6
C.2.2.1 Building the Application on Windows NT C–6
C.2.2.2 Registering the Application on Windows NT C–7
C.2.2.3 Running the Application on Windows NT C–7
C.3 Cross-Domain Security Example (CLIENTAUTH) C–7
C.3.1 OpenVMS Instructions . C–7
C.3.1.1 Registering the Application on OpenVMS C–8
C.3.1.2 Running the Application on OpenVMS as an Out-of-Process

Server . C–8
C.3.1.3 Running the Application on OpenVMS and Specifying a Remote

Server . C–8
C.3.1.4 Running the Application on OpenVMS as an In-Process Server . . C–9
C.3.2 Windows NT Instructions . C–9
C.3.2.1 Building the Application on Windows NT C–9
C.3.2.2 Registering the Application on Windows NT C–9
C.3.2.3 Running the Application on Windows NT C–10

D Upgrading to COM Version 1.1-B for OpenVMS from COM Version
1.0 for OpenVMS

D.1 Upgrading from Earlier Versions of COM for OpenVMS D–1
D.1.1 Rebuild Existing COM for OpenVMS Applications D–1
D.1.2 Configuring the Windows NT Systems . D–1
D.1.3 Configuring the OpenVMS System . D–2
D.2 Previously Configured Applications on Windows NT D–3
D.2.1 You Must Repopulate the OpenVMS Registry for COM Version 1.1-B

for OpenVMS . D–4
D.2.2 Changing Application Security Settings in the OpenVMS Registry . . . D–4
D.2.2.1 COM Application Registry Keys . D–5

E Running COM Version 1.1-B for OpenVMS in an Unauthenticated
Mode

E.1 Installing COM V1.1-B for OpenVMS to Run in Unauthenticated Mode
. E–1

E.2 Configuring COM V1.1-B for OpenVMS to Run in Unauthenticated
Mode . E–2

E.2.1 Define the DCOM$UNAUTHENTICATED Logical Systemwide E–2
E.2.2 Populate the OpenVMS Registry . E–2
E.2.3 Create the DCOM$GUEST Account . E–2
E.2.4 Create the DCOM$RPCSS Account . E–2
E.3 Configuring Windows NT to Interoperate with Unauthenticated COM . . . E–2
E.3.1 Setting the Windows NT Systemwide Authentication Level E–3
E.3.2 Setting Windows NT Application Security Properties E–3
E.3.3 Setting the Windows NT Application Security Identity E–3
E.4 Expected Failures from CLIENTAUTH Sample Program E–3

x

E.5 Converting from Unauthenticated Mode to Authenticated Mode E–3

F Lists of Differences, APIs, and Interfaces

F.1 Differences between COM for OpenVMS and Microsoft COM F–1
F.1.1 Service Control Manager (SCM) . F–1
F.1.2 Server Application Stack Size . F–1
F.1.3 Use of the ‘‘char’’ Datatype . F–1
F.1.4 MIDL Compiler Version . F–2
F.1.4.1 The OpenVMS MIDL Compiler . F–2
F.1.5 Using DCOM$CNFG to Change Application Configuration

Permission . F–2
F.2 APIs . F–3
F.3 Interfaces . F–6

G List of Files Installed by COM for OpenVMS

G.1 Files Installed by COM for OpenVMS . G–1

H Discount Coupons for COM Books

I Glossary

J Acronyms

Index

Examples

4–1 Sample COM for OpenVMS Installation . 4–14
5–1 Sample: Setting Up HostMapDomains . 5–3
6–1 Sample ‘‘Simple’’ Application Registration on OpenVMS 6–7
6–2 Contents of SSERVER.REG_NT . 6–7
6–3 Contents of SSERVER.REG_VMS . 6–8
6–4 Registering a Component Using the DCOM$REGSVR32 Utility 6–23
6–5 Unregistering a Component Using the DCOM$REGSVR32 Utility . . . 6–24
8–1 Sample NTA$LOGON Session . 8–2
8–2 Acquiring Windows NT Credentials for the First Time 8–4
8–3 Replacing Windows NT Credentials . 8–4
8–4 Saving a Password to a File . 8–4
10–1 Using AUTHORIZE to Grant Rights to a User 10–8
11–1 Setting Priority Values . 11–9
11–2 Changing Priority Values . 11–9
14–1 Sample OpenVMS Event Log . 14–3

xi

Figures

3–1 OpenVMS Infrastructure and COM for OpenVMS 3–2
4–1 Processes/Layers Relationships . 4–10
6–1 DCOM$SETUP OpenVMS COM Tools Menu . 6–2
6–2 DCOM$CNFG Main Menu . 6–9
6–3 Applications List Submenu . 6–9
6–4 Application Properties Submenu . 6–10
6–5 Application Location Submenu . 6–11
6–6 Application Security Submenu . 6–12
6–7 Registry Value Permissions Submenu . 6–13
6–8 Edit Registry Value Permissions Submenu . 6–14
6–9 Add Registry Value Permissions Submenu . 6–14
6–10 Registry Key Permissions Submenu . 6–15
6–11 Edit Registry Key Permissions Submenu . 6–16
6–12 Special Access Registry Key Permissions Submenu 6–17
6–13 Add Registry Key Permissions Submenu . 6–18
6–14 Application Identity Submenu . 6–19
6–15 System-wide Default Properties Submenu . 6–20
6–16 Default Authentication Level Submenu . 6–20
6–17 Default Impersonation Level Submenu . 6–21
6–18 System-wide Default Security Submenu . 6–21
10–1 Key, Subkey, and Value Relationships . 10–2
13–1 Item-list-3 Structure . OR–3
13–2 Item-list-64b Structure . OR–3

Tables

1–1 Summary of Security Differences . 1–2
4–1 Process Name to Server Name Mapping . 4–11
6–1 DCOM$REGSVR32 Command Line Options . 6–23
8–1 NTA$LOGON Utility Command Line Parameters 8–2
8–2 MSV1_0 ACME Agent Logical Names . 8–6
9–1 ATL Implementation Differences . 9–1
9–2 Files Generated by ATL COM AppWizard for mycomapp 9–2
12–1 OpenVMS Registry Server Management Utility Commands 12–1
13–1 Item Descriptor Fields . OR–3
13–2 Descriptor Fields . OR–5
13–3 Valid Function Codes . OR–9
13–4 Item Code Summary . OR–19
14–1 Troubleshooting OpenVMS Events Failures . 14–10
B–1 RPC Errors . B–1

xii

Preface

Intended Audience
This document is designed primarily for developers who want to use OpenVMS
infrastructure to develop applications that move easily between the OpenVMS
and Windows NT environments. These developers include the following:

• COM for OpenVMS developers: those who are encapsulating existing
OpenVMS applications or data, as well as those who are creating new COM
applications for OpenVMS systems.

• OpenVMS Registry developers: those who want to use the OpenVMS Registry
to store information about their OpenVMS systems alone, or who want to
use the OpenVMS Registry as a shared repository for both OpenVMS and
Windows NT registry information.

This document is not intended as an introduction to COM or the registry. It
assumes that readers are already familiar with object-oriented (OO) concepts
and COM development techniques, as well as how the registry works on a
Windows NT system. The document does provide pointers to online information
about COM and the registry and recommends other books about COM, OO
development, and the registry.

Document Structure
This document contains all the information you need to develop COM for
OpenVMS applications and use the OpenVMS Registry. The document is divided
into the following sections:

• Release notes

COM for OpenVMS, OpenVMS Registry, and OpenVMS Events release notes.

• Part I

COM for OpenVMS information, including installing, configuring, and
running COM for OpenVMS; how to develop a COM for OpenVMS
application. This part also includes information about authenticating
users and applications between OpenVMS and Windows NT systems, and
information about the Active Template Library (ATL) and how to develop ATL
applications on COM for OpenVMS.

• Part II

OpenVMS Registry information, including OpenVMS Registry overview and
concepts, OpenVMS Registry server startup and system management,
OpenVMS Registry system services, and OpenVMS Registry server
management.

• Part III

OpenVMS Events information.

xiii

• Part IV

Reference information, including MIDL compiler information, COM for
OpenVMS cookbook examples, COM APIs supported by COM for OpenVMS,
how to upgrade from previous versions of COM for OpenVMS, how to run in
unauthenticated mode, lists of installed files, coupons for related COM books,
a glossary, and a list of acronyms.

• Index

Win32 API Calls Shown in Example Code
Win32® API calls shown in example code throughout this document and included
on the COM for OpenVMS kit are provided for documentation purposes only.

COM for OpenVMS includes only those Win32 APIs that the COM for OpenVMS
software requires. These COM APIs are listed in Appendix F, Lists of Differences,
APIs, and Interfaces.

Win32 API calls that are not listed in Appendix F but that appear in examples
in this document and in code samples on the COM for OpenVMS kit are provided
by software vendors other than Compaq. If you want to use any Win32 APIs
on OpenVMS other than those listed in Appendix F, you must purchase those
interfaces from an independent software vendor such as Bristol Technologies
(www.bristol.com).

Related Documents
For additional information on the Open Systems Software Group (OSSG)
products and services, access the Compaq OpenVMS World-Wide Web site with
the following address:

www.compaq.com/openvms

Reader’s Comments
Compaq welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@compaq.com

Fax 603 884-0120, Attention: OSSG Documentation, ZKO3-4/U08

Mail OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following World-Wide Web address find out how to order additional
documentation:

www.compaq.com/openvms

To reach the OpenVMS documentation website, click the Documentation link.

If you need help deciding which documentation best meets your needs, call
800-ATCOMPAQ.

xiv

Conventions
In this manual, any reference to OpenVMS is synonymous with Compaq
OpenVMS.

VMScluster systems are now referred to as OpenVMS Cluster systems. Unless
otherwise specified, references to OpenVMS Clusters or clusters in this document
are synonymous with VMSclusters.

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for OpenVMS software.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose the options in parentheses if you choose more
than one.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

[|] In command format descriptions, vertical bars separating
items inside brackets indicate that you choose one, none, or
more than one of the options.

{ } In command format descriptions, braces indicate required
elements; you must choose one of the options listed.

text style This text style represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

In the HTML version of this document, this convention appears
as italic text.

xv

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type

Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xvi

1
COM for OpenVMS Release Notes

The release notes in this chapter apply to COM Version 1.1-B for OpenVMS.

1.1 COM for OpenVMS Versions
This section describes the versions of COM for OpenVMS.

• COM Version 1.0 for OpenVMS

This was the first release of COM for OpenVMS that shipped with
OpenVMS Version 7.2. COM Version 1.0 for OpenVMS is an unauthenticated
implementation that does not utilize NTLM security. This release requires
OpenVMS Version 7.2 or later. For a list of security differences between an
unauthenticated implementation and an authenticated implementation, see
Table 1–1.

• COM Version 1.1 for OpenVMS

This was the second release of COM for OpenVMS that shipped with
OpenVMS Version 7.2-1. COM Version 1.1 for OpenVMS is an authenticated
implementation that utilizes the NTLM security features that are part of
OpenVMS Version 7.2-1. This release requires OpenVMS Version 7.2-1
or later. For a list of security differences between an unauthenticated
implementation and an authenticated implementation, see Table 1–1.

• COM Version 1.1-A for OpenVMS

This was the third release of COM for OpenVMS. It is a maintenance release
that fixed a number of problems in COM Version 1.1 for OpenVMS.

• COM Version 1.1-B for OpenVMS (this release)

This is the fourth release of COM for OpenVMS. COM Version 1.1-B for
OpenVMS provides an option that allows you to choose between running
COM applications in the default authenticated mode (using NTLM security
features), and running COM applications in an unauthenticated mode. See
Appendix E for more information.

COM Version 1.1-B for OpenVMS also provides the Active Template Library
(ATL) Version 3.0 for simpler development of COM applications on OpenVMS.
See Chapter 9 for more information.

As of COM Version 1.1-B for OpenVMS, the DCOM-MIDL license is no longer
required.

For a list of problems fixed since the last release, see Section 1.3.

COM for OpenVMS Release Notes 1–1

COM for OpenVMS Release Notes
1.1 COM for OpenVMS Versions

Table 1–1 Summary of Security Differences

Area
Unauthenticated COM (V1.0,
V1.1-B) Authenticated COM (V1.1, V1.1-A, V1.1-B)

Client requests Authenticated on Windows NT;
not authenticated on requests to
OpenVMS.

Authenticated on Windows NT and
OpenVMS.

Security Servers can run with the client’s
identity on Windows NT and
with a prespecified OpenVMS
identity on OpenVMS.

Servers can run with the client’s identity on
Windows NT and on OpenVMS.

Security Per-method security is allowed
on Windows NT, but only
processwide security is allowed
on OpenVMS.

Per-method security is allowed on Windows
NT and on OpenVMS.

Outbound COM requests Authenticated on Windows NT
only.

Authenticated on Windows NT and
OpenVMS.

Registry access On Windows NT: controlled by
NT credentials.

On OpenVMS: relies on
OpenVMS security controls such
as privileges or rights identifiers.

On Windows NT: controlled by NT
credentials.

On OpenVMS: controlled either by Windows
NT credentials or by OpenVMS security
controls.

Event logging Windows NT only. Windows NT and OpenVMS.

1.2 Upgrading from a Previous Version of COM to COM Version
1.1-B for OpenVMS

If you are upgrading from an earlier version of COM for OpenVMS to Version
1.1-B, follow the upgrade instructions in Section 4.3. In addition:

• If you are upgrading from COM Version 1.0, follow the upgrade instructions
in Appendix D.

• If you are upgrading from COM Version 1.0 or COM Version 1.1, perform the
tasks described in Section 1.2.1 and Section 1.2.2.

• If you are upgrading from COM Version 1.1-A, you do not need to perform any
additional tasks.

1.2.1 You Must Repopulate the OpenVMS Registry for COM Version 1.1-B for
OpenVMS

Note

If you are upgrading from COM Version 1.1-A for OpenVMS, you do not
need to repopulate the OpenVMS Registry.

For COM Version 1.1-B for OpenVMS, you must repopulate the OpenVMS
Registry to include security settings. Use the DCOM$SETUP command to display the
OpenVMS COM Tools menu, and choose option 3.

1–2 COM for OpenVMS Release Notes

COM for OpenVMS Release Notes
1.2 Upgrading from a Previous Version of COM to COM Version 1.1-B for OpenVMS

When you populate the OpenVMS Registry for COM Version 1.1-B for OpenVMS,
the system prompts you to confirm the repopulation. You must answer YES each
time. For example:

[Starting to Populate the COM for OpenVMS Registry]

Populating the Registry for OpenVMS may take up to 15 minutes
depending on your system.

Enter Y[ES] to continue: YES

The COM for OpenVMS Registry has already been loaded. This
action will overwrite the current COM for OpenVMS values
and data.

Enter Y[ES] to continue: YES

Note

Repopulating the OpenVMS registry does not affect the registration of
existing COM applications.

1.2.2 Previously Registered Applications That Use Logical Names for the
Local Server Path

If you previously registered any COM application using a logical name for the
local server path, you must modify (reregister) the application using the actual
name for the local server path.

For example, if you used the REGISTER_SIMPLE.COM command procedure to
register the ‘‘Simple’’ application under COM Version 1.0 for OpenVMS, you must
reregister the ‘‘Simple’’ application using the new REGISTER_SIMPLE.COM command
procedure.

Compaq updated the registration command files as of COM Version 1.1-A for
OpenVMS.

The system stores the COM application local server path in the OpenVMS
Registry as a value data as follows:

"HKEY_CLASSES_ROOT\CLSID\{GUID}\LOCALSERVER32"

Use the following REG$CP command to modify the local server path:

$ MCR REG$CP CREATE VALUE HKEY_CLASSES_ROOT\CLSID\{GUID}\Localserver32 -
_$

/TYPE=SZ/DATA=device:[directory]image-name.EXE

A GUID is the COM application CLSID. For more information on Localserver32
and CLSID, see Section 7.5.

1.2.3 Changes to the Examples
In COM Version 1.1-A for OpenVMS, the names of the server images in the
Dispatch_Sample1 example changed. If you previously built and registered this
application and you want to build the new version, you must reregister the server
after it has been built.

COM for OpenVMS Release Notes 1–3

COM for OpenVMS Release Notes
1.3 Problems Fixed in the Current Release

1.3 Problems Fixed in the Current Release
The following notes describe previously documented problems that have been
fixed in COM Version 1.1-B for OpenVMS.

1.3.1 Memory Leak in COM for OpenVMS Servers
In previous versions of COM for OpenVMS, the MIDL compiler generated server
proxy code that caused memory to be allocated and not released for certain types
of method calls. This resulted in memory leaks in server applications. Testing by
Compaq has shown that this problem occurs if the parameter list for any method
call includes user defined structures as input parameters, and either FLOAT or
DOUBLE datatypes. If you think your COM for OpenVMS server may have this
problem, recompile your .IDL file using the new MIDL compiler, recompile the
generated files, and relink your application.

If you discovered this problem, you may have compensated for it by deallocating
the structures directly, even though COM programming rules state that you
do not have to deallocate input parameters. If so, you should remove your
workaround and rebuild the application as directed in the preceding paragraph.

1.3.2 DCOM$RPCSS Process Resource Exhaustion
The COM for OpenVMS run-time environment requires that the DCOM$RPCSS
process is always running.

In previous versions of COM for OpenVMS, Compaq discovered that after
DCOM$RPCSS creates and deletes a large number of COM for OpenVMS application
servers, DCOM$RPCSS can run out of resources. If this happens, DCOM$RPCSS
automatically attempts to restart itself.

This limitation has been corrected.

1.3.3 Passing an Interface Pointer through IDispatch
In previous versions of COM for OpenVMS, passing an interface pointer as a
parameter through the IDispatch interface produced an access violation error.
This problem has been corrected.

1.4 Known Problems (with Fixes) in the Current Release
The following notes describe the known problems associated with COM Version
1.1-B for OpenVMS. These problems can be corrected by obtaining ECOs or
updates from the Compaq Support Centers.

1.4.1 Trusted-Domain Authentication Feature Requires ECO
Compaq has discovered a number of problems associated with COM applications
running between systems in different domains with trusts established between
the domains. Some of these problems can be corrected by installing the Advanced
Server for OpenVMS V7.2-A-ECO1 kit. Please contact your Compaq Support
Center and ask for this kit. Other problems that may still occur are listed in the
following sections. If you experience these problems, please contact your Compaq
Support Center for additional information.

1–4 COM for OpenVMS Release Notes

COM for OpenVMS Release Notes
1.4 Known Problems (with Fixes) in the Current Release

1.4.1.1 NET3004 Messages Broadcast to Administrator on Windows NT Server System
When COM applications are run between systems in trusted domains, one or
both of the systems may report NET3004 errors and broadcast these errors to
Windows NT systems logged into the Administrator account. The Administrator
will see a popup message box containing the NET3004 error. You can eliminate
these broadcasts by stopping the Alerter Service on the Domain Controller that is
generating the messages.

1.4.1.2 Password Synchronization Errors (NET5716, NET5722, NET5723)
Under certain conditions, a Windows NT workstation can lose the ability to
authenticate with an Advanced Server domain controller. If this happens you
will need to remove the workstation from the domain, then re-add it back to the
domain.

1.4.1.3 Hostmap Problem
Under certain conditions, the hostmap entries in a trusted domain can become
invalid. See Section 5.4.6 for a way to resolve this problem.

1.4.2 DCERPC-E-UNKNOWNREJECT Failure (EE128302)
OpenVMS COM clients sometimes report this error when communicating with
NT COM components. This is due to a problem in the RPC Runtime. A fix
for this problem is available from the Compaq Support Centers. Contact your
Support Center and ask for the update to DCE$LIB_SHR.EXE.

1.4.3 DCERPC-E-WHOAREYOUFAILED Failure (EE1282FA)
OpenVMS COM clients sometimes report this error when communicating with
NT COM components. This is due to a problem in the RPC Runtime. A fix
for this problem is available from the Compaq Support Centers. Contact your
Support Center and ask for the update to DCE$LIB_SHR.EXE.

1.4.4 NTARPC-E-PROTOCOL_ERROR Failure (800706C0)
OpenVMS COM clients sometimes report this error when communicating with
NT COM components. This is due to a problem in the RPC Runtime. A fix
for this problem is available from the Compaq Support Centers. Contact your
Support Center and ask for the update to DCE$LIB_SHR.EXE.

1.4.5 Cached IID Value Not Equal to Registry Value Failure
Compaq’s testing has shown that OpenVMS processes that run more than 2000
iterations of a COM for OpenVMS application may receive this error. The error is
caused by a bug in the Registry client that returns a failure status after a process
has made over 16,000 OpenKey requests. A fix for this problem is available
from the Compaq Support Centers. Contact your Support Center and ask for the
update to SYS$NTA.EXE.

1.4.6 IGNORE_EXTAUTH Support
Support for the IGNORE_EXTAUTH flag in the SECURITY_POLICY
SYSGEN parameter is now available in a patch kit from the Compaq Support
Centers. Contact your Support Center and ask for the update to VMS$VMS_
ACMESHR.EXE.

COM for OpenVMS Release Notes 1–5

COM for OpenVMS Release Notes
1.5 Known Problems (without Fixes) in the Current Release

1.5 Known Problems (without Fixes) in the Current Release
The following notes describe the known problems associated with COM Version
1.1-B for OpenVMS. These problems currently do not have fixes.

1.5.1 Kernel Threads and Upcalls Not Supported
COM for OpenVMS applications cannot be built with kernel threads or upcalls
enabled. This support will be available in a future release.

1.6 Limitations and Restrictions
The following sections contain general release note information.

1.6.1 DCOM$RPCSS Stalls on Restart
If a system running DCOM$RPCSS in a cluster crashes and restarts, the DCOM$RPCSS
process may hang during startup. In this condition, the process name remains
DCOM$STARTUP-** and the SYS$STARTUP:DCOM$RPCSS.OUT file contains the
following error message:

%PPL-W-SYSERROR, system service error
-SYSTEM-W-VALNOTVALID, value block is not valid

To recover from this condition, stop COM for OpenVMS on each node in the
cluster using the following command:

$ @SYS$STARTUP:DCOM$SHUTDOWN

Then restart COM for OpenVMS on each node in the cluster using the following
command:

$ @SYS$STARTUP:DCOM$STARTUP

1.6.2 MIDL Limitations and Restrictions
The following release notes pertain to MIDL.

1.6.2.1 MIDL -w Switch
The MIDL compiler allows you to specify either -w or -warn to throttle the level of
warnings generated by the compiler. The MIDL compiler for OpenVMS supports
only the -w switch.

1.6.2.2 MIDL Compiler Treats wchar_t Literals as char
When using DEC C Version 5.7 or earlier, COM for OpenVMS incorrectly handles
wide character literal strings in IDL files. These strings are mishandled as ‘‘char’’
types. (If you are using DEC C Version 6.0 or above, you can disregard this
release note.)

For example, suppose an IDL file contains the following string literal:

const wchar_t * PROGRAM_ID = L"Sample.Component";

The MIDL compiler on Windows NT would produce the following macro definition:

#define PROGRAM_ID (L"Sample.Component")

However, the MIDL compiler for COM for OpenVMS produces the following by
default:

#define PROGRAM_ID ("Sample.Component")

The following workarounds are available:

1. Avoid using the DEC C preprocessor if possible.

1–6 COM for OpenVMS Release Notes

COM for OpenVMS Release Notes
1.6 Limitations and Restrictions

To run the MIDL compiler without the preprocessor, include the -nocpp or
-no_cpp switch on the command line. For example:

$ midl -Oicf -nocpp -idcom$library: server.idl

Caution

Do not use this workaround if the IDL source file or any IDL source file
imported by the main IDL source file contains any conditional assembly
switches (for example, #ifdef" . . . "#endif").

2. Define all character string constants as ‘‘char’’ type instead of ‘‘wchar_t’’ type.

Using this workaround causes the MIDL compiler on Windows NT and on
OpenVMS to create character string constants that are not wide characters.
If the software requires a wide character string literal, the software can
convert the ANSI string to a wide character string before the value is used.

3. Replace the wide character string constants with macro definitions inside the
IDL source file.

For example, instead of defining the string literal as:

const wchar_t * PROGRAM_ID = L"Sample.Component";

Use a #define inside an IDL cpp_quote() directive as follows:

cpp_quote("#define PROGRAM_ID L\"Sample.Component\"")

Even when you use the DEC C preprocessor, the output header file produced
by the MIDL compiler for Windows NT and OpenVMS will be as follows:

#define PROGRAM_ID L"Sample.Component"

1.6.2.3 SAFEARRAY Limitation
Because the COM for OpenVMS MIDL compiler is based on Microsoft’s MIDL
compiler V3.00.44, COM for OpenVMS supports the use of SAFEARRAYs only
inside a LIBRARY block in an .IDL file. Microsoft’s MIDL compiler V3.00.44 has
the same limitation.

1.6.3 DCOM$CNFG Limitations and Restrictions
The following release note pertains to DCOM$CNFG when run in a cluster.

1.6.3.1 DCOM$CNFG Utility and Disabling Applications: Possible Unintended Side Effects
The COM for OpenVMS DCOM$CNFG utility includes several options that allow a
developer to modify application properties (for example, changing the location of
the computer on which an application can run). If you select one of these options,
you are modifying an OpenVMS Registry entry.

Because the OpenVMS Registry supports a single database in a cluster, modifying
one of these options affects all nodes in the cluster that are running COM for
OpenVMS.

For example, if you use the System-wide Default Properties submenu option 1
to disable COM for OpenVMS, you effectively disable COM for OpenVMS on the
entire cluster. In the same way, if you use the Application Location submenu
option 1 to prevent an application from running on this computer, you effectively
prevent the application from running on any computer in the cluster.

COM for OpenVMS Release Notes 1–7

COM for OpenVMS Release Notes
1.6 Limitations and Restrictions

1.6.4 Other Limitations and Restrictions
The following release notes pertain to COM for OpenVMS.

1.6.4.1 Windows 2000 Limitations
Windows 2000 is not supported in COM Version 1.1-B for OpenVMS.

Preliminary results from Compaq’s ongoing testing of interoperability between
COM for OpenVMS and Windows 2000 indicate that a Windows 2000 client
can successfully communicate with a COM for OpenVMS server application.
However, authentication problems occur between a COM for OpenVMS client and
a Windows 2000 server. Full support for Windows 2000 will be available in a
future release.

1.6.4.2 COM Version 1.0 for OpenVMS and COM Version 1.1-B for OpenVMS Not Supported in
the Same Cluster

When you install and configure COM Version 1.1-B for OpenVMS on any node
in a cluster, you make clusterwide modifications to the OpenVMS Registry that
prevent COM Version 1.0 for OpenVMS from running on any other node in the
same cluster.

1.6.4.3 Remote Activation of an In-Process Server
If a server component is registered only as an in-process server, the component
cannot be activated remotely on OpenVMS. If the system tries to activate an in-
process server remotely, the remote client receives a ‘‘REGDB_E_CLASSNOTREG
(80040154)’’ error. To activate a server component remotely, the component must
be registered as an out-of-process server so the DCOM$RPCSS process can start the
component on the client’s behalf.

1.6.4.4 Threading Model Supported by COM for OpenVMS
COM Version 1.1-B for OpenVMS supports only the multithreaded apartment
(MTA, also known as free threads) model for application servers. The MTA model
allows a component to have more than one thread. However, you must ensure
that your code is thread safe.

The threading model initialization call is as follows:

CoInitializeEx(
NULL,
COINIT_MULTITHREADED
)

Because CoInitialize() implies the single-threaded apartment (STA) model, you
cannot use it in place of CoInitializeEx() in a server application.

1.6.4.5 SP4 with Enhanced NTLM Enabled is Not Supported
COM Version 1.1-B for OpenVMS supports Windows NT SP4 with the following
limitation: COM Version 1.1-B for OpenVMS does not support SP4 with enhanced
NTLM enabled.

If you want to use COM Version 1.1-B for OpenVMS with SP4, you must be sure
that enhanced NTLM is disabled.

Although SP4 and COM for OpenVMS appear to interoperate with SP4 enhanced
NTLM disabled, SP4 has not been fully tested with COM for OpenVMS and is not
officially supported.

Compaq’s ongoing SP4 testing has identified the following limitation with SP4
and enhanced NTLM disabled: authentication requests fail if you use passwords
that are longer than 12 characters.

1–8 COM for OpenVMS Release Notes

COM for OpenVMS Release Notes
1.6 Limitations and Restrictions

1.6.4.6 Specifying Activation Security in CoCreateInstanceEx
The pServerInfo parameter of the CoCreateInstanceEx API allows you to specify
a username and password that will be used for authentication on the remote
server system. The username and password are part of the COAUTHIDENTITY
structure inside the COAUTHINFO structure, which is inside the COSERVERINFO
structure that is passed as the pServerInfo parameter to CoCreateInstanceEx.

The current NTLM security implementation on OpenVMS does not support this
feature for COM client applications on OpenVMS. This feature is supported for
COM clients on Windows NT communicating with COM servers on OpenVMS.

1.6.4.7 RPC Communication Failures Caused by Advanced Server
In a cross domain environment, under some load situations, COM applications
may report errors that are a side effect of the Advanced Server for OpenVMS
having lost a connection between domain controllers. The Advanced Server for
OpenVMS reports this error as follows:

NET5719: No domain controller for the domain ’xxxxx’ is available.

A series of these events over a limited time interval may lead to COM
applications reporting RPC communications failures (%x8007071c). In this
situation, a stop and start of DCOM$RPCSS may be required to clear the error.

See Section 5.4.6 for more information. If the NET5719 events persist, contact
your Compaq Support Center.

1.6.4.8 Specific Error Messages
The following sections list and describe specific COM for OpenVMS error
messages.

1.6.4.8.1 RPC Cannot Support Failure (800706E4) If you attempt to use
the single-threaded apartment (STA) model, some COM APIs may display the
following return status code:

(800706E4)

This model is not supported in COM Version 1.1-B for OpenVMS. For more
information, see Section 1.6.4.4.

COM for OpenVMS Release Notes 1–9

2
OpenVMS Registry Release Notes

2.1 Release Notes
The information in the following sections applies to this release.

2.1.1 No Key Change Notifications When a Key’s Attributes are Modified
When you specify the REG$M_CHANGEATTRIBUTES value for the REG$_NOTIFYFILTER
item code, the system should notify you of any changes to that OpenVMS Registry
key. However, when you modify the attributes of a OpenVMS Registry key, the
system fails to notify the processes that have requested notifications.

To correct this problem, specify a different value for the REG$_NOTIFYFILTER item
code: use either REG$M_CHANGENAME or REG$M_CHANGELASTSET.

2.1.2 Database Searches Limited
The REG$CP server management utility SEARCH command and calls to
the $REGISTRY system service using the REG$FC_SEARCH_TREE_DATA,
REG$FC_SEARCH_TREE_KEY, or REG$FC_SEARCH_TREE_VALUE function codes may
result in more data being returned to the client than the communications buffers
on the client node can handle. These functions are limited to paths that are no
more that 16 levels deep and return data of no more than 4 KB.

To avoid this problem, limit the search depth by specifying an exact path—that
is, avoid searching the entire database when the database is large.

This restriction will be lifted in a future release.

2.1.3 Key Access Policy
When a user requests access to an OpenVMS Registry key or value, the OpenVMS
Registry validates the specified key path by checking the first key and the last
key of the key path.

2.1.4 OpenVMS Registry Maximum Data Size Restrictions
The maximum size of any single block of data that can be sent to the OpenVMS
Registry server for storage in the OpenVMS Registry database is limited to no
more than 7880 bytes. If you exceed this limit, the system displays the following
error:

REG-F_NORESPONSE, registry server failed to respond within allotted time period

This limit is imposed by the communication protocol between the OpenVMS
Registry server and the OpenVMS Registry client which limits the transfer to 8
K bytes.

This restriction will be lifted in a future release.

OpenVMS Registry Release Notes 2–1

OpenVMS Registry Release Notes
2.1 Release Notes

2.1.5 REG$_EXQUOTA Errors
If you set the OpenVMS Registry File Quota to be less than the current size of
the OpenVMS Registry database, the system displays the following error for all
OpenVMS Registry operations:

REG-E-EXQUOTA, registry file quota or page file quota exceeded

Note

You will not see this error message on a single delete operation that
brings the size of the OpenVMS Registry database file within quota
limits.

As a workaround, you can raise the File Quota temporarily above the current size
of the OpenVMS Registry database file, then perform delete operations to bring
the OpenVMS Registry database file size within the desired File Quota limit.
(For information about changing these quotas, see Section 10.6.3.)

To determine the approximate number of bytes applied
towards the two OpenVMS Registry File Quotas, multiply the
size of the SYS$REGISTRY:REGISTRY$LOCAL_MACHINE.REG and
SYS$REGISTRY:REGISTRY$USERS.REG files by 512. The result of this calculation
gives you the approximate number of bytes applied towards quota for each file.
For information about how to set OpenVMS Registry file quotas, see Section 2.1.6.

This restriction will be lifted in a future release.

2.1.6 OpenVMS Registry Maximum Database Size Restrictions
The maximum amount of data that can be stored in the OpenVMS Registry
database is limited to approximately 1.7 MB. If you exceed this limit, the system
displays the following error:

REG-F-DBACCESS, cannot access registry database object

This is a fatal error and prevents further access to the OpenVMS Registry
database.

To prevent the REG-F-DBACCESS error, Compaq recommends that you establish
quotas to limit the database size so that the OpenVMS Registry can never reach
1.7 MB.

You can establish quotas using either of the following procedures:

• Modify the Default File Quota value.

Use the following command to set the Default File Quota value:

$ mcr reg$cp modify value/name="Default File Quota"/type=dword -
_$ /data=%D1700000 "hkey_local_machine\system\registry\File Quotas"

• Create or modify the File Quota value on individual OpenVMS Registry
database files.

Use the following command to set individual File Quota values:

Note

If you have previously set File Quota values, use the MODIFY command
in place of the CREATE command in the following examples.

2–2 OpenVMS Registry Release Notes

OpenVMS Registry Release Notes
2.1 Release Notes

$ mcr reg$cp create value/name=REGISTRY$LOCAL_MACHINE/type=dword -
_$ /data=%D1700000 "hkey_local_machine\system\registry\File Quotas"

$ mcr reg$cp create value/name=REGISTRY$USERS/type=dword -
_$ /data=%D1700000 "hkey_local_machine\system\registry\File Quotas"

You must specify a value for the /DATA qualifier that is between 32,000 and
2,000,000 (0x7D00 and 0x1E8480 hexadecimal).

If you set a value below 32,000, the system will ignore the value and instead use
the Default File Quota value of 10,000,000. This Default File Quota value is
too high.

If you set a value above 2,000,000, the system generates a REG-F-DBACCESS error
when the OpenVMS Registry database size exceeds that value.

A fix for this problem is available from the Compaq Support Centers. Contact
your Support Center and ask for the update to REGISTRY$SERVER.EXE.

OpenVMS Registry Release Notes 2–3

Part I
COM for OpenVMS

The following chapters provide an overview of COM for OpenVMS, provide
instructions for installing and configuring COM for OpenVMS and related
software, and describe and explain how to create COM applications using COM
for OpenVMS.

3
Overview of COM for OpenVMS

3.1 What is COM?
Component Object Model (COM) is a technology from Microsoft that lets
developers create distributed network objects. First introduced by Microsoft in its
Windows 3.x product, COM was initially called Object Linking and Embedding
(OLE). COM provides a widely available, powerful mechanism for customers
to adopt and adapt to a new style multivendor distributed computing, while
minimizing new software investment.

Digital Equipment Corporation (now Compaq Computer Corporation) and
Microsoft jointly developed the COM specification. First released as NetOLE
(Network OLE) and then renamed DCOM (Distributed COM), the COM
specification now includes network functionality. That is, COM now supports
distributed network objects.

COM is an object-based programming model designed to promote software
interoperability. COM allows two or more applications (or components) to
cooperate with one another easily, even if the objects are written by different
vendors at different times and in different programming languages, or if they are
running on different machines with different operating systems. To support its
interoperability features, COM defines and implements mechanisms that allow
applications to connect to each other as software objects.

COM implementations are available on Windows NT, Windows 95™, Windows 98,
OpenVMS, and Compaq Tru64™ UNIX®, as well as other UNIX platforms.

3.1.1 Suggested Reading
The following resources can provide you with more information on COM and
related topics:

• Third-party books on COM:

— Inside COM/Microsoft’s Component Object Model, Dale Rogerson,
Microsoft Press, Redmond, WA, 1997. ISBN: 1-57231-349-8.

The examples in this document are taken from Dale Rogerson’s book and
are used with the publisher’s permission.

— Essential COM, Don Box, Addison Wesley Longman, Reading, MA, 1998.
ISBN: 0-201-63446-5.

(See Appendix H for a special offer on this book.)

— Effective COM, Don Box, Keith Brown, Tim Ewald, and Chris Sells,
Addison Wesley Longman, Reading, MA, 1998. ISBN: 0-201-37968-6.

(See Appendix H for a special offer on this book.)

— DCOM Explained, Rosemary Rock-Evans, Digital Press, Woburn, MA,
1998. ISBN: 1-55558-216-8.

Overview of COM for OpenVMS 3–1

Overview of COM for OpenVMS
3.1 What is COM?

Provides a good introduction to DCOM and COM, and discusses COM
implementations on various platforms.

(See Appendix H for a special offer on this book.)

— Understanding ActiveX and OLE, David Chappell, Microsoft Press,
Redmond, WA, 1996. ISBN: 1-57231-216-5.

• Websites:

— The Component Object Model Specification, available from the Microsoft
COM website:

www.microsoft.com/com

3.2 Overview of COM for OpenVMS
COM for OpenVMS is Compaq’s implementation of Microsoft’s Windows NT 4.0
Service Pack 3 (SP3) Component Object Model (COM) software on the OpenVMS
Alpha operating system.

In support of COM for OpenVMS, Compaq ported Windows NT infrastructure to
OpenVMS, including a registry, event logger, NTLM security, and Win32 APIs.
COM for OpenVMS is layered on The Open Group’s Distributed Computing
Environment (DCE) RPC. COM for OpenVMS supports communication among
objects on different computers on a local area network (LAN), a wide area
network (WAN), or the Internet. COM for OpenVMS is important to the Affinity
for OpenVMS program because it delivers a key piece of connectivity with
Windows NT.

Figure 3–1 shows the OpenVMS infrastructure.

Figure 3–1 OpenVMS Infrastructure and COM for OpenVMS

Windows NT OpenVMS Cluster

OpenVMS identity

Security

EventsAdvanced Server
for OpenVMS

NT

OpenVMS

Domain

COM COM

VM-0126A-AI

OpenVMS
Registry

Windows NT
identity

Win32 APIs

RPC RPC

SSPI

1

2

3

4 5

6 7

8

SSPI

ACME

3–2 Overview of COM for OpenVMS

Overview of COM for OpenVMS
3.2 Overview of COM for OpenVMS

In Figure 3–1 the key pieces of the OpenVMS infrastructure are as follows:

Windows NT system

The smaller box on the left side of Figure 3–1 represents the Windows NT
system.
OpenVMS Cluster/OpenVMS identity

The large box on the right side of Figure 3–1 represents the OpenVMS
system. Within and around this box you can see several other boxes labeled
with numbers. The following list describes these numbered items:

! OpenVMS security

This is the standard OpenVMS security (login, authentication, ACLs, and so
on) available with all OpenVMS systems.

" Advanced Server for OpenVMS

The Advanced Server for OpenVMS provides authentication of Windows NT
users to OpenVMS and provides a connection to the OpenVMS Registry and
events viewer for Windows NT users.

Windows NT identity/Win32 APIs

The OpenVMS Security, MSV1_0 ACME agent, Advanced Server for
OpenVMS, OpenVMS Registry, event logger, and Win32 APIs (COM APIs)
all contribute to the creation of a Windows NT identity within the OpenVMS
system.

$ OpenVMS Registry

The OpenVMS Registry, like the registry on Windows NT systems, allows
you to store system, software, and hardware configuration information
on OpenVMS. COM for OpenVMS uses the OpenVMS Registry to store
information about COM applications. For detailed information about the
OpenVMS Registry, see Part II of this document.

% Event logger

Like the event logger on Windows NT systems, the event logger on OpenVMS
records informational, warning, and error messages about COM events. For
detailed information about the OpenVMS Events, see Chapter 14.

& Windows NT COM stack

On the Windows NT system, COM requests and responses pass through the
COM, RPC, SSPI (security), and Domain layers.

’ OpenVMS COM stack

The OpenVMS system mirrors the Windows NT COM stack, with some
additions. On the OpenVMS system, COM requests and responses pass
through the COM, RPC, SSPI (security), MSV1_0 ACME agent, and Advanced
Server for OpenVMS layers. The MSV1_0 ACME agent (shown as ACME
in Figure 3–1) is an extension to the Authentication and Credential and
Management (ACM) authority. Authentication is explained in detail in
Chapter 8.

(Connection through RPC layer

The COM connection between the Windows NT system and OpenVMS is
always through the RPC layer.

Overview of COM for OpenVMS 3–3

Overview of COM for OpenVMS
3.2 Overview of COM for OpenVMS

For developers, the COM for OpenVMS developer’s kit provides a Microsoft
Interface Definition Language (MIDL) compiler and C-style header files for
application development. For more information about the OpenVMS MIDL
compiler, see Section F.1.4.1.

OpenVMS now includes a function to get Windows NT credentials. For more
information about getting Windows NT credentials through NTA$LOGON, see
Section 5.1 and Chapter 8.

COM for OpenVMS also provides a free run-time environment on OpenVMS
Alpha for the deployment of COM for OpenVMS client and server applications.

You can find a complete description of Microsoft’s COM, including protocol
specifications and programming documentation, at the Microsoft COM website at
the following location:

www.microsoft.com/com

The COM for OpenVMS implementation is a subset of the full Microsoft COM
implementation. For a complete list of the COM for OpenVMS APIs, supported
interfaces, and implementation differences, see Appendix F.

While general interest in COM continues to grow, COM remains a sophisticated
technology. It is not aimed at the naive user, but rather at skilled programmers,
such as independent software vendors (ISVs) and large management information
system (MIS) shops.

3.2.1 How COM for OpenVMS Uses the OpenVMS Registry
COM for OpenVMS requires the OpenVMS Registry. Like its registry database
counterpart on Windows NT systems, the OpenVMS Registry stores information
about COM applications—specifically those COM applications running on
OpenVMS. These COM for OpenVMS applications use the OpenVMS Registry
to store CLSIDs (class IDs), startup information, security settings, and so on
in the OpenVMS Registry database. COM for OpenVMS uses the Win32 APIs
implemented on OpenVMS to read and write this information to the OpenVMS
Registry.

COM for OpenVMS requires access to the OpenVMS Registry database. If COM
for OpenVMS cannot access the OpenVMS Registry, COM for OpenVMS will not
start. For more information about the OpenVMS Registry, see Chapter 10.

3.3 Using COM for OpenVMS
You can use COM for OpenVMS to do the following:

• Develop new COM for OpenVMS COM applications

• Encapsulate existing applications for use with COM for OpenVMS

The following sections discuss new application development and encapsulation in
more detail.

An example of a COM application to encapsulate an existing OpenVMS
application is included with this release. The example can be found in
DCOM$EXAMPLES:[WRAPPER]. A README file describes the example
and how to build it.

3–4 Overview of COM for OpenVMS

Overview of COM for OpenVMS
3.3 Using COM for OpenVMS

3.3.1 Developing New Applications
Your organization might use COM for OpenVMS to develop new applications
under the following circumstances:

• You want to share data between an OpenVMS server and Windows NT clients
in a two-tier client/server computing model.

• You want to share data and to place business logic in the middle tier of a
three-tier computing environment.

For example, you might have a Windows NT system as the client so you can
take advantage of its graphical user interface. You could write business logic
as a collection of COM objects on a middle-tier server; while the third-tier
large-capacity, high-availability OpenVMS server provides database access.

• You want to share data between one or more OpenVMS systems or between
OpenVMS and other non-Windows systems using COM.

The advantages of using COM for OpenVMS include:

• COM for OpenVMS provides a good programming model for programmers
with C++ and object-oriented programming skills.

• COM for OpenVMS provides multivendor interoperability. COM is a standard
with implementations available on a number of platforms today, and ports for
additional platforms are in development.

• The COM for OpenVMS run-time provides automated data marshaling and
unmarshaling.

• COM provides OLE Automation services to support communications with
Microsoft Visual Basic® applications. Visual Basic is a very popular
programming environment for client/server computing.

• COM provides version support for components so you can upgrade
applications over time without breaking existing environments.

See Chapter 7 and Appendix C for examples of developing COM for OpenVMS
applications.

3.3.2 Encapsulating Existing Applications
If you have monolithic applications written in procedural languages (such
as Fortran and COBOL) with character-cell interfaces, you can put a COM
‘‘wrapper’’ or jacket around these applications to allow them either to run on new
platforms or to remain on OpenVMS and run in a client/server environment.

The risk associated with completely reengineering some older applications is
high. Many applications are large, complex, poorly documented, and not well
understood by their current maintainers. Encapsulating a legacy application can
be less risky than reengineering and can be the first step in a rewrite. Over time,
pieces of the legacy application can be rewritten, while the older version of the
application remains stable and available. Encapsulation also allows developers to
reuse code, saving time and resources.

Disadvantages to encapsulation include more complex maintenance efforts and
the inability to make changes to the underlying code. If the legacy application
was unstable or hard to maintain, the encapsulated application will not be any
better, and might be made worse because of the wrapper.

Overview of COM for OpenVMS 3–5

Overview of COM for OpenVMS
3.3 Using COM for OpenVMS

There are several layers of a traditional procedural application that you can
encapsulate: the user interface (UI), the database, and the data manipulation
routines.

— User interface

If you choose to encapsulate the user interface, the UI could be supported on
some other platform (for example, from a graphical user interface [GUI] on a
Windows NT system).

Encapsulating and moving the UI to the user’s desktop can mean that the
rest of the application remains on OpenVMS. Batch processing programs
are well suited to user interface encapsulation. Applications that do screen
management (for example, SMG or FMS) could have their older character-cell
interface encapsulated using COM for OpenVMS, providing users access
through newer Windows NT style dialog boxes.

— Database

If you choose to encapsulate a database using COM for OpenVMS, the
database could be accessed from parts of a distributed application running
on other platforms. The advantage of this approach is that the programmer
can keep the database on OpenVMS (a stable, 24x365 system), while the user
interface and data access routines are on remote (and perhaps less reliable)
systems.

— Database manipulation routines

If you choose to encapsulate the database manipulation routines, the routines
could be accessed from any other COM component in a heterogeneous
computing environment.

Encapsulating an OpenVMS application using COM for OpenVMS means
that you write a COM for OpenVMS server that talks to the application being
encapsulated. The COM for OpenVMS server passes arguments to the application
in the order and format that the application expects. The COM for OpenVMS
server then intercepts the output from the application and directs it to the display
device, user interface, or other routines.

3–6 Overview of COM for OpenVMS

4
Installing the COM for OpenVMS Kit

This chapter provides a list of the contents of the COM for OpenVMS kit, a list of
prerequisite software, and preinstallation requirements. It also describes how to
install COM for OpenVMS and includes postinstallation instructions.

4.1 Contents of the COM Version 1.1-B for OpenVMS Kit
COM Version 1.1-B for OpenVMS contains the following:

• Software

— COM for OpenVMS Run-Time libraries

— COM for OpenVMS MIDL compiler and header files

— COM for OpenVMS configuration utilities

— Active Template Library Version 3.0

— Sample applications

• Documentation

— OpenVMS Connectivity Developer Guide (in PostScript, HTML, and PDF
formats)

4.2 Prerequisites
The following software is required:

• For OpenVMS systems

— OpenVMS Version 7.2-1 or higher

— For COM for OpenVMS application development:
DEC C Version 5.6 or higher and DEC C++ Version 5.6 or higher
To build ATL applications on OpenVMS:
Compaq C++ Version 6.2-016 or higher

— DIGITAL TCP/IP Services for OpenVMS Version 5.0 or equivalent

— DECwindows Motif® (see Section 4.2.1)

— Advanced Server for OpenVMS Version 7.2A or higher

(Advanced Server for OpenVMS is not required if you are running COM
for OpenVMS in unauthenticated mode.)

— Before installing COM for OpenVMS check that you have the required
free global pages, global sections, and disk blocks. The following table
lists the requirements.

Installing the COM for OpenVMS Kit 4–1

Installing the COM for OpenVMS Kit
4.2 Prerequisites

Software Global pages Global sections Disk blocks

COM for OpenVMS 11,000 27 57000

RPC Runtime 3,300 14 N/A

For Advanced Server requirements: See the Advanced Server for
OpenVMS Server Installation and Configuration Guide.
For TCP/IP requirements: See the DIGITAL TCP/IP Services for
OpenVMS: Installation and Configuration document.

• For Windows® NT™ systems

— Windows NT 4.0 with Service Pack 3 or higher installed

— Microsoft® Visual C++ or Visual Basic (for Windows NT client
development and information about MIDL compiler). See the Microsoft
website for compiler version requirements.

— TCP/IP enabled (needed for OpenVMS connectivity)

4.2.1 DECwindows Motif Required to Run COM for OpenVMS
You must install DECwindows Motif for OpenVMS on any system running COM
for OpenVMS. If you already have DECwindows Motif installed on your system,
you do not need to do anything else. If you do not have DECwindows Motif
installed on your system, you can find the installation kit for DECwindows Motif
on the OpenVMS Version 7.2-1 CD-ROM in the [KITS.DWMOTIF125_KIT] directory.

Note

If you are installing DECwindows Motif to meet the COM for OpenVMS
requirements only, you do not need the DW-MOTIF license.

4.3 Supported COM for OpenVMS Installations
The following sections describe COM Version 1.1-B for OpenVMS installation and
upgrade options.

Note

If you want to run COM Version 1.1-B for OpenVMS in unauthenticated
mode, see Section E.1.

If you want to do this Read this section

Install COM for OpenVMS on an OpenVMS
standalone system for the first time.

See Section 4.4.

Install COM for OpenVMS on an OpenVMS
Cluster system for the first time.

See Section 4.6.

Upgrade from earlier versions of COM for
OpenVMS on an OpenVMS standalone system.

See Section 4.5.

Upgrade from earlier versions of COM for
OpenVMS on an OpenVMS Cluster system.

See Section 4.7.

4–2 Installing the COM for OpenVMS Kit

Installing the COM for OpenVMS Kit
4.4 Installing COM for OpenVMS on an OpenVMS Standalone System

4.4 Installing COM for OpenVMS on an OpenVMS Standalone
System

Use the following procedure:

1. Install OpenVMS Version 7.2-1. For this procedure, see the OpenVMS Alpha
Version 7.x Upgrade and Installation Manual.

2. Install TCP/IP. For this procedure, see the DIGITAL TCP/IP Services for
OpenVMS: Installation and Configuration manual or your TCP/IP supplier’s
documentation.

3. Boot the installed system from the system disk.

4. Install COM Version 1.1-B for OpenVMS. For this procedure, see Section 4.9.

5. Install Advanced Server for OpenVMS. For this procedure, see the Advanced
Server for OpenVMS/Server Installation and Configuration Guide.

6. Configure TCP/IP (set up for startup and reboot); start TCP/IP. You must
configure the PWIP driver for Advanced Server for OpenVMS to use TCP/IP.
For information about configuring TCP/IP, see the DIGITAL TCP/IP Services
for OpenVMS: Installation and Configuration manual or your TCP/IP
supplier’s documentation.

7. Configure the OpenVMS Registry as follows:

• Run REG$CONFIG.COM to configure the OpenVMS Registry. See
Section 11.2.

• Edit the SYLOGICALS.COM file to define the SYS$REGISTRY logical as follows:

$ DEFINE/SYSTEM SYS$REGISTRY directory-specification

8. Start OpenVMS Registry by running the REG$STARTUP.COM file.

9. If you want to run DCE, start DCE now.

Note

You do not need DCE to run COM for OpenVMS, but if your environment
uses DCE, Compaq recommends that you start DCE now.

For this procedure, see the DIGITAL DCE Installation and Configuration
Guide.

For more information about OpenVMS external authentication, see
Section 5.1.

10. Configure Advanced Server for OpenVMS. You need to reboot to finish
Advanced Server for OpenVMS configuration. You must reboot 0 to n
times, depending on your system configuration. For this procedure, see the
Advanced Server for OpenVMS/Server Installation and Configuration Guide.

11. Start Advanced Server for OpenVMS (set up for startup on reboot). For this
procedure, see the Advanced Server for OpenVMS/Server Installation and
Configuration Guide.

12. Start the ACME server. Use the following command:

$ @SYS$STARTUP:NTA$STARTUP_NT_ACME

Installing the COM for OpenVMS Kit 4–3

Installing the COM for OpenVMS Kit
4.4 Installing COM for OpenVMS on an OpenVMS Standalone System

13. Start RPC. Use the following command:

$ @SYS$STARTUP:DCE$RPC_STARTUP.COM

14. Configure COM for OpenVMS. For this procedure, see Section 4.10 and
Section 6.2.

• Populate the OpenVMS Registry. For this procedure, see Section 6.2. Use
option 3 to populate the OpenVMS Registry database.

• Create any OpenVMS and Advanced Server for OpenVMS accounts
needed by the COM for OpenVMS Service Control Manager. For more
information, see Section 6.2. Use option 8 to create the accounts.

15. Edit the SYLOGICALS.COM file and add the following line:

$ DEFINE DCOM$TO_BE_STARTED TRUE

16. Start COM for OpenVMS. For this procedure, see Section 4.11.

4.5 Upgrading COM for OpenVMS on an OpenVMS Standalone
System

Note

Before you start, Compaq recommends that you disable any Advanced
Server for OpenVMS, OpenVMS Registry, and layered products automatic
startups so these products do not start until you have upgraded COM for
OpenVMS and its associated components.

Use the following procedure:

• Edit the SYLOGICALS.COM file to stop the following products from
starting:

— OpenVMS Registry (remove the line DEFINE REG$TO_BE_STARTED
TRUE or DEFINE/SYSTEM REG$TO_BE_STARTED TRUE)

— COM for OpenVMS (comment the line DEFINE
DCOM$TO_BE_STARTED TRUE)

• Edit the SYS$STARTUP:SYSTARTUP_VMS.COM file to stop the following
products from starting:

— Advanced Server for OpenVMS (comment the line
@SYS$STARTUP:PWRK$STARTUP.COM).

If COM for OpenVMS is currently running, shut down COM for OpenVMS
first, Advanced Server for OpenVMS (if running), and then the OpenVMS
Registry.

Use the following procedure:

1. Upgrade to OpenVMS Version 7.2-1. For this procedure, see the OpenVMS
Alpha Version 7.x Upgrade and Installation Manual.

2. If you need to upgrade TCP/IP, upgrade TCP/IP now. For this procedure, see
the DIGITAL TCP/IP Services for OpenVMS: Installation and Configuration
manual or your TCP/IP supplier’s documentation.

3. Boot the upgraded system from the system disk.

4. Upgrade COM for OpenVMS. For this procedure, see Section 4.9.

4–4 Installing the COM for OpenVMS Kit

Installing the COM for OpenVMS Kit
4.5 Upgrading COM for OpenVMS on an OpenVMS Standalone System

5. Install or upgrade Advanced Server for OpenVMS. You must reboot 0 to n
times, depending on your system configuration. For this procedure, see the
Advanced Server for OpenVMS/Server Installation and Configuration Guide.

6. Start TCP/IP unless you have enabled TCP/IP to start on a reboot. For this
procedure, see the DIGITAL TCP/IP Services for OpenVMS: Installation and
Configuration manual or your TCP/IP supplier’s documentation.

7. Start the OpenVMS Registry unless you have enabled the OpenVMS Registry
to start on a reboot. For this procedure, see Section 11.2.

8. If you want to run DCE, start DCE now.

Note

You do not need DCE to run COM for OpenVMS, but if your environment
uses DCE, Compaq recommends that you start DCE now.

For this procedure, see the DIGITAL DCE Installation and Configuration
Guide.

For more information about OpenVMS external authentication, see
Section 5.1.

9. Configure Advanced Server for OpenVMS. You must reboot to finish Advanced
Server for OpenVMS configuration. You need to reboot 0 to n times,
depending on your system configuration. For this procedure, see the
Advanced Server for OpenVMS/Server Installation and Configuration Guide.

10. Start Advanced Server for OpenVMS (set up for startup on reboot). For this
procedure, see the Advanced Server for OpenVMS/Server Installation and
Configuration Guide.

11. Start the ACME server. Use the following command:

$ @SYS$STARTUP:NTA$STARTUP_NT_ACME

12. Start RPC. Use the following command:

$ @SYS$STARTUP:DCE$RPC_STARTUP.COM

13. See Appendix D for detailed information about upgrading from COM Version
1.0 for OpenVMS to COM Version 1.1-B for OpenVMS.

14. Configure COM for OpenVMS. For this procedure, see Section 4.10 and
Section 6.2.

• Populate the OpenVMS Registry. For this procedure, see Section 6.2. Use
option 3 to populate the OpenVMS Registry database.

• Create any OpenVMS and Advanced Server for OpenVMS accounts
needed by the COM for OpenVMS Service Control Manager. For more
information, see Section 6.2. Use option 8 to create the accounts.

15. Edit the SYLOGICALS.COM file and add the following line:

$ DEFINE DCOM$TO_BE_STARTED TRUE

16. Start COM for OpenVMS. For this procedure, see Section 4.11.

Installing the COM for OpenVMS Kit 4–5

Installing the COM for OpenVMS Kit
4.6 Installing COM for OpenVMS on an OpenVMS Cluster

4.6 Installing COM for OpenVMS on an OpenVMS Cluster
Note

This cluster installation procedure assumes you are installing COM for
OpenVMS on a single system disk.

Use the following procedure:

1. Install OpenVMS Version 7.2-1 on all system disks as required. For this
procedure, see the OpenVMS Alpha Version 7.x Upgrade and Installation
Manual.

2. Install TCP/IP. For this procedure, see the DIGITAL TCP/IP Services for
OpenVMS: Installation and Configuration manual or your TCP/IP supplier’s
documentation.

3. Boot the installed system from the system disk.

4. Install COM Version 1.1-B for OpenVMS. For this procedure, see Section 4.9.

5. Install Advanced Server for OpenVMS on this node in the cluster. For this
procedure, see the Advanced Server for OpenVMS/Server Installation and
Configuration Guide.

Note

You must install Advanced Server for OpenVMS on at least one Alpha
node in the cluster. On the other nodes, you can either install Advanced
Server for OpenVMS or select External Authentication images (only).

6. Configure TCP/IP (set up for startup on reboot on each node) and start
TCP/IP. You must configure the PWIP driver for Advanced Server for
OpenVMS to use TCP/IP. For information about configuring TCP/IP, see the
DIGITAL TCP/IP Services for OpenVMS: Installation and Configuration
manual or your TCP/IP supplier’s documentation.

7. Configure the OpenVMS Registry:

• Run REG$CONFIG.COM to configure the OpenVMS Registry. You need
to configure the OpenVMS Registry only once for the cluster. See
Section 11.2.

• Set the SYS$REGISTRY logical to DEFINE/SYSTEM on every Alpha node in
the cluster that will run the OpenVMS Registry server.

• Edit the SYLOGICALS.COM file on every node in the cluster as follows:

— If the cluster uses a single, cluster-common SYLOGICALS.COM file that
is called by each node’s SYLOGICALS.COM file, you do not need to make
any changes.

— On those nodes where you do not want the OpenVMS Registry server
to run, add the following line to the SYLOGICALS.COM file:

$ DEFINE/SYSTEM REG$TO_BE_STARTED FALSE

Advanced Server for OpenVMS requires that the OpenVMS Registry be
running on a node in the cluster.

4–6 Installing the COM for OpenVMS Kit

Installing the COM for OpenVMS Kit
4.6 Installing COM for OpenVMS on an OpenVMS Cluster

8. Configure DCE.

Note

You do not need DCE to run COM for OpenVMS, but if your environment
uses DCE, Compaq recommends that you start DCE now.

For this procedure, see the DIGITAL DCE Installation and Configuration
Guide.

9. If you want to run DCE, start DCE now. You must configure DCE on each
node on which you want to run DCE.

For more information about OpenVMS external authentication, see
Section 5.1.

10. Configure and start Advanced Server for OpenVMS. For this procedure, see
the Advanced Server for OpenVMS/Server Installation and Configuration
Guide.

If this node is running Advanced Server for OpenVMS, set up Advanced
Server for OpenVMS for startup on reboot (edit the SYS$STARTUP file
as necessary). You must reboot 0 to n times as needed, depending on your
system configuration.

If this node is not running Advanced Server for OpenVMS, edit the
SYLOGICALS.COM file and define the PWRK$ACME_SERVER logical. For this
procedure, see the Advanced Server for OpenVMS/Server Installation and
Configuration Guide. For more information about the PWRK$ACME_SERVER
logical, see Table 8–2.

11. Start the ACME server. Use the following command:

$ @SYS$STARTUP:NTA$STARTUP_NT_ACME

12. Start RPC. Use the following command:

$ @SYS$STARTUP:DCE$RPC_STARTUP.COM

13. Configure COM for OpenVMS. For this procedure, see Section 4.10 and
Section 6.2.

• Populate the OpenVMS Registry. For this procedure, see Section 6.2.
Use option 3 to populate the OpenVMS Registry database. You need to
populate the OpenVMS Registry only once in a cluster.

• Create any OpenVMS and Advanced Server for OpenVMS accounts
needed by the COM for OpenVMS Service Control Manager. For more
information, see Section 6.2. Use option 8 to create the accounts. You
need to create these accounts only once in a cluster.

14. Edit the SYLOGICALS.COM file and add the following line:

$ DEFINE DCOM$TO_BE_STARTED TRUE

15. Start COM for OpenVMS. For this procedure, see Section 4.11.

Installing the COM for OpenVMS Kit 4–7

Installing the COM for OpenVMS Kit
4.7 Upgrading COM for OpenVMS in an OpenVMS Cluster

4.7 Upgrading COM for OpenVMS in an OpenVMS Cluster
Note

This cluster upgrade procedure assumes you are installing COM for
OpenVMS on a single system disk.

Note

Before you start, Compaq recommends that you disable any Advanced
Server for OpenVMS and layered products automatic startups so these
products do not start until you have upgraded COM for OpenVMS and its
associated components.

Use the following procedure:

• Edit the SYLOGICALS.COM file to stop the following products from
starting:

— OpenVMS Registry (comment the line DEFINE/SYSTEM
REG$TO_BE_STARTED TRUE)

— COM for OpenVMS (comment the line DEFINE
DCOM$TO_BE_STARTED TRUE)

• Edit the SYS$STARTUP:SYSTARTUP_VMS.COM file to stop the following
products from starting:

— Advanced Server for OpenVMS (comment the line
@SYS$STARTUP:PWRK$STARTUP.COM)

If COM for OpenVMS is currently running, shut down COM for OpenVMS
first, Advanced Server for OpenVMS (if running), and then the OpenVMS
Registry on all nodes in the cluster.

Use the following procedure:

1. Upgrade to OpenVMS Version 7.2-1 on all required system disks. For this
procedure, see the OpenVMS Alpha Version 7.x Upgrade and Installation
Manual.

2. Upgrade TCP/IP. For this procedure, see the DIGITAL TCP/IP Services for
OpenVMS: Installation and Configuration manual or your TCP/IP supplier’s
documentation.

3. Boot the upgraded system from the system disk.

4. Upgrade to COM Version 1.1-B for OpenVMS. For this procedure, see
Section 4.9.

5. Upgrade Advanced Server for OpenVMS on this node in the cluster. For this
procedure, see the Advanced Server for OpenVMS/Server Installation and
Configuration Guide.

Note

You must install Advanced Server for OpenVMS on at least one Alpha
node in the cluster. On the other nodes, you can either install Advanced

4–8 Installing the COM for OpenVMS Kit

Installing the COM for OpenVMS Kit
4.7 Upgrading COM for OpenVMS in an OpenVMS Cluster

Server for OpenVMS or select External Authentication images (only).

6. Configure TCP/IP (set up for startup on reboot on each node). You must
configure the PWIP driver for Advanced Server for OpenVMS to use TCP/IP.
For information about configuring TCP/IP, see the DIGITAL TCP/IP Services
for OpenVMS: Installation and Configuration manual or your TCP/IP
supplier’s documentation.

7. Configure the OpenVMS Registry as follows:

• Run REG$CONFIG.COM to configure the OpenVMS Registry. See
Section 11.2. You need to configure the OpenVMS Registry only once
for the cluster.

• Edit the SYLOGICALS.COM file on every node that will run the OpenVMS
Registry server to define the SYS$REGISTRY logical. For example:

$ DEFINE/SYSTEM SYS$REGISTRY cluster-visible-directory-specification

Edit the SYLOGICALS.COM file on every node in the cluster as follows:

— If the cluster uses a single, cluster-common SYLOGICALS.COM file that
is called by each node’s SYLOGICALS.COM file, you do not need to make
any changes.

— On those nodes where you do not want the OpenVMS Registry server
to run, add the following line to the SYLOGICALS.COM file:

$ DEFINE/SYSTEM REG$TO_BE_STARTED FALSE

8. Configure and start Advanced Server for OpenVMS. For this procedure, see
the Advanced Server for OpenVMS/Server Installation and Configuration
Guide.

If this node is running Advanced Server for OpenVMS, set up Advanced
Server for OpenVMS for startup on reboot (edit the SYS$STARTUP file
as necessary). You must reboot 0 to n times as needed, depending on your
system configuration.

If this node is not running Advanced Server for OpenVMS, edit the
SYLOGICALS.COM file and define the PWRK$ACME_SERVER logical. For this
procedure, see the Advanced Server for OpenVMS/Server Installation and
Configuration Guide. For more information about the PWRK$ACME_SERVER
logical, see Table 8–2.

9. Start the ACME server. Use the following command:

$ @SYS$STARTUP:NTA$STARTUP_NT_ACME

10. Start RPC. Use the following command:

$ @SYS$STARTUP:DCE$RPC_STARTUP.COM

11. See Appendix D for detailed information about upgrading from COM Version
1.0 for OpenVMS to COM Version 1.1-B for OpenVMS.

12. Configure COM for OpenVMS. For this procedure, see Section 4.10 and
Section 6.2.

• Populate the OpenVMS Registry. For this procedure, see Section 6.2.
Use option 3 to populate the OpenVMS Registry database. You need to
populate the OpenVMS Registry only once in a cluster.

Installing the COM for OpenVMS Kit 4–9

Installing the COM for OpenVMS Kit
4.7 Upgrading COM for OpenVMS in an OpenVMS Cluster

• Create any OpenVMS and Advanced Server for OpenVMS accounts
needed by the COM for OpenVMS Service Control Manager. For more
information, see Section 6.2. Use option 8 to create the accounts. You
need to create these accounts only once in a cluster.

13. Edit the SYLOGICALS.COM file and add the following line:

$ DEFINE DCOM$TO_BE_STARTED TRUE

14. Start COM for OpenVMS on a particular node. For this procedure, see
Section 4.11.

4.8 Understanding the COM for OpenVMS Environment
COM for OpenVMS relies on a number of interrelated servers (processes) and
operating system images. In most cases, the servers start automatically when
you restart the system. (Automatic startup requires that you have installed
and configured each component and have made appropriate changes to the
SYLOGICALS.COM file.) For more information about starting and configuring the
servers, see Section 4.3.

Figure 4–1 shows the relationships and dependencies of the processes and
operating system layers.

Figure 4–1 Processes/Layers Relationships

Images

Processes

VM-0331A-AI

Advanced Server
for OpenVMS

ACME server

COM Service Control Manager
(SCM)

OpenVMS Registry server

RPC endpoint mapper

RPC Events

SSPI/NTLM

4–10 Installing the COM for OpenVMS Kit

Installing the COM for OpenVMS Kit
4.8 Understanding the COM for OpenVMS Environment

Table 4–1 lists the process names and maps each name to its corresponding
server.

Table 4–1 Process Name to Server Name Mapping

Process name Server name For more information

DCOM$RPCSS COM for OpenVMS Service
Control Manager (SCM)

Section 4.8.1

REGISTRY_
SERVER

OpenVMS Registry server Section 4.8.2

PWRKxxx Advanced Server for OpenVMS
server (multiple processes)

Section 4.8.3

ACME_SERVER ACME server Section 4.8.4

DCE$RPCD RPC endpoint mapper Section 4.8.5

The following sections list and describe the servers and the layers.

4.8.1 COM for OpenVMS Service Control Manager (SCM)
The COM for OpenVMS Service Control Manager enables COM for OpenVMS.

Process name: DCOM$RPCSS

Requires: OpenVMS Registry, OpenVMS (RPC and SSPI/NTLM layers)

Required by: COM applications

Configured by: DCOM$SETUP. See Section 6.2.

Started by: DCOM$SETUP, option 4. See Section 6.2.

Shutdown procedure: DCOM$SETUP, option 5. See Section 6.2.

4.8.2 OpenVMS Registry Server
The OpenVMS Registry server manages the OpenVMS Registry database.

Process name: REGISTRY_SERVER

Requires: None.

Required by: COM for OpenVMS, Advanced Server for OpenVMS

Configured by: REG$CONFIG. See Section 11.2.

Started by: REG$STARTUP. See Section 11.3.1.

Shutdown procedure: SET SERVER REGISTRY_SERVER/EXIT. For more
information, see Section 11.4.

4.8.3 Advanced Server for OpenVMS Server
The Advanced Server for OpenVMS server provides Windows NT and OpenVMS
connectivity.

Process names:

NETBIOS
PWRK$ADMIN_0
PWRK$KNBDAEMON
PWRK$LICENSE_R
PWRK$LMBROWSER
PWRK$LMDMN

Installing the COM for OpenVMS Kit 4–11

Installing the COM for OpenVMS Kit
4.8 Understanding the COM for OpenVMS Environment

PWRK$LMMCP
PWRK$LMSRV
PWRK$MASTER
PWRK$MONITOR
PWRK$NBDAEMON

The ACME server requires the PWRK$LMSRV process specifically.

Requires: OpenVMS Registry

Required by: ACME server

Configured by: PWRK$CONFIG

Started by: PWRK$STARTUP

Shutdown procedure: PWRK$SHUTDOWN

For more information, see the DIGITAL PATHWORKS for OpenVMS (Advanced
Server) Server Migration Guide.

4.8.4 ACME Server
The ACME server controls the granting of credentials.

Process name: ACME_SERVER

Requires: Advanced Server for OpenVMS

Required by: OpenVMS (RPC and SSPI/NTLM layers) and OpenVMS Events

Started:

• Automatically when the SYLOGICALS.COM file contains the following line:
NTA$NT_ACME_TO_BE_STARTED YES

• You can also start the ACME server manually by entering the following
command:

$ @SYS$STARTUP:NTA$STARTUP_NT_ACME

Shutdown procedure:

$ SET SERVER ACME {/EXIT | /ABORT}

For more information, see Section 8.3.2.

4.8.5 RPC Endpoint Mapper
The RPC endpoint mapper controls authentication and security.

Process name: DCE$RPCD

Requires: RPC image

Required by: COM for OpenVMS Service Control Manager, RPC image

Started by: OpenVMS

Shutdown procedure: Use the following command procedure:

$ @SYS$STARTUP:DCE$RPC_SHUTDOWN.COM

For more information, see the DIGITAL DCE for OpenVMS VAX and OpenVMS
Alpha manual.

4–12 Installing the COM for OpenVMS Kit

Installing the COM for OpenVMS Kit
4.8 Understanding the COM for OpenVMS Environment

4.8.6 RPC and SSPI/NTLM Layers
The RPC and SSPI/NTLM layers provides remote procedure call and Windows
NT-style authentication on OpenVMS.

Process name: n/a (part of OpenVMS operating system)

Requires: OpenVMS, ACME server

Required by: COM for OpenVMS

Started by: OpenVMS

Shutdown procedure: n/a

4.8.7 OpenVMS Events
The Events layer provides Windows NT-style event logging on OpenVMS.

Process name: n/a (part of OpenVMS operating system)

Requires: ACME server

Required by: COM for OpenVMS

Started by: OpenVMS

Shutdown procedure: n/a

For more information, see Chapter 14.

4.9 Installing COM for OpenVMS
The COM for OpenVMS installation kit contains a single POLYCENTER Software
Installation file. The name of the kit is DEC-AXPVMS-DCOM-V0101-B-1.PCSI. You
must install the COM for OpenVMS files on an OpenVMS Alpha Version 7.2-1
system. Please check the prerequisites before installing the kit. See Section 4.2.

To install COM for OpenVMS, invoke the POLYCENTER Software Installation
utility using the following command:

$ PRODUCT INSTALL /SOURCE=device:[user] DCOM

For device:[user], specify the device name and directory location of the kit,
respectively.

MIDL compiler license no longer required

The COM for OpenVMS MIDL compiler no longer requires the DCOM-
MIDL license.

Example 4–1 shows a sample installation.

Installing the COM for OpenVMS Kit 4–13

Installing the COM for OpenVMS Kit
4.9 Installing COM for OpenVMS

Example 4–1 Sample COM for OpenVMS Installation

$ product install dcom/source=disk:[directory]

The following product has been selected:
CPQ AXPVMS DCOM V1.1-B Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product
and for any products that may be installed to satisfy software dependency
requirements.

CPQ AXPVMS DCOM V1.1-B

Copyright Compaq Computer Corporation 2000. All rights reserved.

Do you want the defaults for all options? [YES]

The following software is required to run COM for OpenVMS

- OpenVMS Alpha V7.2-1 or later
- Includes DCE RPC and OpenVMS Registry

- TCP/IP Services for OpenVMS V5.0 or later (or equivalent product)
- Advanced Server for OpenVMS V7.2A or later

Do you want to continue? [YES]

Do you want to review the options? [NO]

Execution phase starting ...

The following product will be installed to destination:
CPQ AXPVMS DCOM V1.1-B

DISK$AXP_72PLUS:[VMS$COMMON.]

Portion done:
0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%

The following product has been installed:
CPQ AXPVMS DCOM V1.1-B Layered Product

$

4.10 COM for OpenVMS Postinstallation Procedures
After you install the COM for OpenVMS kit, do the following:

1. Verify that the OpenVMS Registry is running. (See Chapter 11.)

2. Verify that the Advanced Server for OpenVMS is running. (See Section 4.8.3
for the Advanced Server for OpenVMS process names.)

3. Verify that the ACME server is running. (See Section 4.8.4 for the name of
this process.)

4. Verify that the RPC daemon is running. (See Section 4.8.5 for the name of
the process.)

5. Populate the OpenVMS Registry with the required COM for OpenVMS keys
and values using the DCOM$SETUP utility, option 3. (See Section 6.2.) You must
do this only once on an OpenVMS cluster.

6. Configure the DCOM$RPCSS account using the DCOM$SETUP utility, option 8.
(See Section 6.2.1.) You must do this only once on an OpenVMS cluster.

7. Start COM for OpenVMS using the DCOM$SETUP utility, option 4. (See
Section 6.2.) You must do this on every node in an OpenVMS cluster.

4–14 Installing the COM for OpenVMS Kit

Installing the COM for OpenVMS Kit
4.10 COM for OpenVMS Postinstallation Procedures

8. If you want COM for OpenVMS to start automatically when the system
reboots, modify the DEFINE DCOM$TO_BE_STARTED line in the SYLOGICALS.COM
file. (See Section 4.11.1.) You must do this on every node in an OpenVMS
cluster.

9. Configure COM for OpenVMS security. See Chapter 5.

4.11 Starting COM for OpenVMS (COM for OpenVMS Service
Control Manager)

Use the following command to start COM for OpenVMS:

$ @SYS$STARTUP:DCOM$STARTUP

Alternately, you can run DCOM$SETUP and choose option 4. (See Section 6.2.)

The COM for OpenVMS Service Control Manager can be in one of the following
states: initializing/running or not started. Depending on the COM for OpenVMS
Service Control Manager state, you will see one of the following messages:

• If the COM for OpenVMS Service Control Manager is running on this node,
the system reports that the process is already active:

DCOM Service Control Manager daemon (DCOM$RPCSS) is active [pid=xxxxxxxx]

If the COM for OpenVMS Service Control Manager is initializing on this
node, the system reports that the process is already active:

DCOM Service Control Manager daemon (DCOM$STARTUP-**) is active [pid=xxxxxxxx]

• If the COM for OpenVMS Service Control Manager is not started on this
node, the system starts COM for OpenVMS as follows:

The OpenVMS Registry server is already started on this node.

*** DCOM system startup procedure ***

Starting DCOM Service Control Manager daemon ("DCOM$STARTUP-**") . . .
After initialization, the daemon will use process name "DCOM$RPCSS" . . .

%RUN-S-PROC_ID, identification of created process is xxxxxxxx

*** DCOM startup successful ***

*** DCOM Startup Procedure Complete ***

4.11.1 Starting COM for OpenVMS Automatically after a Reboot
Compaq recommends that you modify the SYS$MANAGER:SYLOGICALS.COM
command file to control COM for OpenVMS startup.

OpenVMS includes a revised SYLOGICALS.TEMPLATE file that includes new
startup commands for COM for OpenVMS and related components. Review
the ‘‘Coordinated Startup’’ section of this template file and add the appropriate
information to your existing startup files.

To have COM for OpenVMS start automatically when the system boots, copy the
following line to your SYLOGICALS.COM file, uncomment the line, and make sure it
is set to TRUE:

$ DEFINE DCOM$TO_BE_STARTED TRUE

If you do not set COM for OpenVMS to start automatically when the system
boots, you can start COM for OpenVMS using the DCOM$SETUP OpenVMS
COM Tools menu, option 4 (see Section 6.2).

Installing the COM for OpenVMS Kit 4–15

Installing the COM for OpenVMS Kit
4.12 Shutting Down COM for OpenVMS (COM for OpenVMS Service Control Manager)

4.12 Shutting Down COM for OpenVMS (COM for OpenVMS Service
Control Manager)

Use the following command to shut down COM for OpenVMS:

$ @SYS$STARTUP:DCOM$SHUTDOWN

Alternately, you can run DCOM$SETUP and choose option 5. (See Section 6.2.)

The COM for OpenVMS Service Control Manager can be in one of the following
states: stopped, running, or initializing. Depending on the COM for OpenVMS
Service Control Manager state, you will see one of the following messages:

• If the COM for OpenVMS Service Control Manager is stopped on this node,
the system reports that there is nothing to shut down:

*** DCOM system shutdown procedure ***

There is no active DCOM$RPCSS daemon on this system.

*** DCOM Shutdown Procedure Complete ***

• If the COM for OpenVMS Service Control Manager is running on this node,
the system shuts down the process as follows:

*** DCOM system shutdown procedure ***

*************************** Warning ********************************
*** Stopping the DCOM Service Control Manager daemon (DCOM$RPCSS)
*** Active DCOM applications will no longer be operational.

Do you want to proceed with this operation (YES/NO/?) [N]?

Enter Y to continue with the shutdown procedure.

Note

For information about suppressing this confirmation step, see
Section 4.12.1.

The system displays the following messages:

Terminating DCOM Service Control Manager daemon (DCOM$RPCSS) . . .

*** DCOM shutdown successful ***

*** DCOM Shutdown Procedure Complete ***

• If the COM for OpenVMS Service Control Manager is initializing on this
node, the system shuts down the process as follows:

*** DCOM system shutdown procedure ***

*************************** Warning ********************************
*** Stopping the DCOM Service Control Manager daemon (DCOM$RPCSS)
*** Active DCOM applications will no longer be operational.

Do you want to proceed with this operation (YES/NO/?) [N]?

Enter Y to continue with the shutdown procedure. The system displays the
following messages:

Terminating DCOM Service Control Manager daemon (DCOM$STARTUP-**) . . .

*** DCOM shutdown successful ***

*** DCOM Shutdown Procedure Complete ***

4–16 Installing the COM for OpenVMS Kit

Installing the COM for OpenVMS Kit
4.12 Shutting Down COM for OpenVMS (COM for OpenVMS Service Control Manager)

4.12.1 Suppressing the DCOM$SHUTDOWN Confirmation Request
You can suppress the DCOM$SHUTDOWN command confirmation request by
specifying the NOCONFIRM parameter. Use the following command:

$ @SYS$STARTUP:DCOM$SHUTDOWN NOCONFIRM

The system displays the following shutdown messages without prompting you to
confirm the shutdown:

*** DCOM system shutdown procedure ***

Terminating DCOM Service Control Manager daemon (DCOM$RPCSS) . . .

*** DCOM shutdown successful ***

*** DCOM Shutdown Procedure Complete ***

Installing the COM for OpenVMS Kit 4–17

5
COM for OpenVMS Security

COM Version 1.1-A for OpenVMS and COM Version 1.1-B for OpenVMS support
NTLM (NT LAN Manager) authentication for controlling access to COM objects.

Processes that execute client and server applications must obtain Windows NT
credentials in order to be authenticated. Processes created automatically by
DCOM$RPCSS to execute server applications obtain Windows NT credentials based
on the Registry settings for the server being launched. Interactive processes
that are used to execute client and server applications must obtain Windows NT
credentials by running the NTA$LOGON utility (see Section 8.2).

This chapter applies to COM for OpenVMS in authenticated mode. See
Appendix E for information about running COM for OpenVMS in an
unauthenticated environment.

This chapter discusses the following topics:

• How to configure an OpenVMS system for NTLM authentication

• How to acquire Windows NT credentials

• The way security affects COM applications

• The way your domain configuration affects COM applications

• The Application Server run-time environment

5.1 System Configuration
NTLM authentication on OpenVMS is implemented in three major components of
the operating system (see Section 4.8).

• ACME server — controls the granting of credentials

• RPC and SSPI — provide remote procedure calls and Windows NT-style
authentication

• Advanced Server for OpenVMS — maintains Windows NT accounts and
provides mapping of Windows NT accounts to OpenVMS accounts

The ACME server, RPC, and SSPI are installed as part of the OpenVMS
operating system and require no special configuration. Advanced Server for
OpenVMS must be installed as a layered product and must be configured to
support NTLM authentication for COM applications (see Section 4.4).

After installing Advanced Server for OpenVMS, you must create network
accounts that will be used to execute COM applications. You must also map the
network accounts to OpenVMS accounts.

COM for OpenVMS Security 5–1

COM for OpenVMS Security
5.1 System Configuration

The Advanced Server ADMINISTER utility is used to create network accounts.
For example, to create the network account NTUSER1, use the following
command:

$ ADMINISTER ADD USER NTUSER1 /PASSWORD="pppppp" /FLAG=NOPWDEXPIRED

The password is case sensitive, so it is enclosed in quotation marks in order to
maintain case. A password without quotation marks is converted to uppercase.
By default, network accounts are created with the password pre-expired, thus
forcing the user to change the password at the first login. The NOPWDEXPIRED
flag overrides this default.

A hostmap entry defines the association between a Windows NT user account
and a local OpenVMS user account. When OpenVMS authenticates a Windows
NT user, OpenVMS uses the hostmap entry to map the OpenVMS user account
to the Windows NT user account and build the local OpenVMS user profile and
the Windows NT user profile. If no hostmap entry exists, OpenVMS uses the
Windows NT user account name as the local OpenVMS user account name.

Use the Advanced Server for OpenVMS ADMINISTER utility to define hostmap
information. For example, to map the network account NTUSER1 to the
OpenVMS account VMSUSER1, use the following command:

$ ADMINISTER ADD HOSTMAP NTUSER1 VMSUSER1

If the OpenVMS account does not already exist, you must create the account
using the OpenVMS Authorize utility (AUTHORIZE). The OpenVMS account
must have the EXTAUTH flag set, or the IGNORE_EXTAUTH flag (bit 11,
%X0800) must be set in the SECURITY_POLICY SYSGEN parameter (see
Section 5.1). This policy allows the OpenVMS system manager to control which
OpenVMS user accounts can be used with Windows NT authentication. For
example, to set the EXTAUTH flag for an OpenVMS account VMSUSER1, use the
following command. For example:

$ MCR AUTHORIZE MODIFY VMSUSER1 /FLAG=EXTAUTH

5.1.1 LOGINOUT.EXE Use of External Authentication
The EXTAUTH flag also directs LOGINOUT.EXE to use external authentication
to authenticate an OpenVMS user during the login process (that is, local,
dialup, remote, interactive, and network logins). When you set the EXTAUTH
flag, LOGINOUT.EXE uses external authentication, not the password in the
SYSUAF.DAT record, to verify the OpenVMS user name and password.

LOGINOUT external authentication always requires that you set the EXTAUTH
flag in the SYSUAF account record. Unlike NTA$LOGON and authenticated RPC,
you cannot override this requirement using the IGNORE_EXTAUTH flag.

5.1.2 DCE Integrated Login Restriction
A site cannot use both external authentication and the older LGI-callout feature
on the same system. If you have an LGI-callout image installed, external
authentication is disabled for login purposes. Because DCE integrated login
uses the LGI-callout mechanism, OpenVMS does not allow logins using Windows
NT-based external authentication if DCE integrated login is enabled.

5–2 COM for OpenVMS Security

COM for OpenVMS Security
5.2 Cross-Domain Configuration

5.2 Cross-Domain Configuration
You can run a COM application on a system in one domain and have the
application authenticated by a system in a second domain.

To configure authentication across Windows NT domains, you must do the
following:

1. Set up trust relationships between domains.

For more information, see the Advanced Server for OpenVMS Server
Administrator’s Guide.

2. Set up the HostMapDomains parameter on Advanced Server for OpenVMS
domains (see Example 5–1).

For more information, see the Advanced Server for OpenVMS Server
Administrator’s Guide.

3. Set up account hostmap entries between the Windows NT user account and a
local OpenVMS user account.

Example 5–1 shows how you can set up the HostMapDomains parameter. In
this example, there are two domains: DOMAIN_1 and DOMAIN_2. Domain DOMAIN_2
is running Advanced Server for OpenVMS; domain DOMAIN_1 is a Windows NT
domain. The commands in Example 5–1 introduce DOMAIN_2 to DOMAIN_1.

Example 5–1 Sample: Setting Up HostMapDomains

SYSJANE$ show sym regutl
REGUTL == "SYSSYSTEM:PWRK$REGUTL.EXE"

SYSJANE$ regutl
REGUTL> SET PARAM /CREATE VMSSERVER HOSTMAPDOMAINS DOMAIN_1
REGUTL> SHOW VALUE * HOSTMAPDOMAINS
Key: SYSTEM\CurrentControlSet\Services\AdvancedServer\UserServiceParameters
Value: HostmapDomains
Type: String
Current Data: DOMAIN_1

5.3 Acquiring Windows NT Credentials
After the network account and the OpenVMS account have been set up as
described in Section 5.1, you can log in to the OpenVMS account using the usual
OpenVMS login procedures. You can then acquire Windows NT credentials using
the NTA$LOGON utility. For example:

$ MCR NTA$LOGON NTUSER1 "pppppp"

In this format, pppppp is the password you specified when you created the
network account. The password is enclosed in quotation marks to preserve case.
A password without quotation marks is converted to lowercase. If the user name
or password is not specified on the command line, the program prompts the user
for the required input (see Section 8.2).

To acquire Windows NT credentials for a network account using NTA$LOGON,
you must be logged in to the OpenVMS account that is mapped to the network
account. Alternatively, if you are logged in to a different OpenVMS account, you
must have the IMPERSONATE privilege and use the /OVERRIDE_MAPPING
switch. For example:

$ MCR NTA$LOGON /OVERRIDE_MAPPING NTUSER2 "pppppp"

COM for OpenVMS Security 5–3

COM for OpenVMS Security
5.3 Acquiring Windows NT Credentials

To determine whether a process has Windows NT credentials, use the NTA$LOGON
utility with the /LIST switch. For example:

$ MCR NTA$LOGON /LIST

5.4 Application Security
The COM security model allows the creation of secure distributed applications.
COM security can be enabled by using settings in the OpenVMS Registry and by
using COM security APIs and interfaces. There are two primary areas of security
that can be applied to COM applications: launch security and activation security.

Launch security and activation security have system default settings; application-
specific settings override these defaults. The settings are stored in the Registry
and are maintained by using the DCOMCNFG utility on Windows NT and by
using the DCOMCNFG option of DCOM$SETUP.COM on OpenVMS. The COM API
CoInitializeSecurityEx can be used from within an application to enhance or
override the Registry settings.

5.4.1 Launch Security
Launch security determines which network accounts can be used to create, or
‘‘launch’’ server processes. The launch security settings are referenced when
a COM request is received on a system that will result in the launching of a
server process to satisfy the request. These settings can explicitly or implicitly
allow or disallow a user request to launch a server. The DCOM$RPCSS process
authenticates the incoming request to determine the identity of the client. If
DCOM$RPCSS determines that it needs to launch a server process to satisfy the
request, DCOM$RPCSS allows or disallows the launching of the server based on the
identity of the client and the launch security settings.

5.4.2 Activation Security
Activation security determines which network accounts can be used to execute
method calls in server applications. The activation security settings are
referenced when a COM request is received on a system for a method call in
an existing server process. The server process authenticates the incoming request
to determine the identity of the client. The server process allows or disallows the
execution of the method call based on the identity of the client and the activation
security settings.

5.4.3 Server Process Identity
A server process created by DCOM$RPCSS on OpenVMS is a detached process that
has an OpenVMS identity and follows all the OpenVMS security rules for a
detached process. In addition, it has a network identity that is used to enforce
the COM security model (see Section 5.5).

COM servers create separate server threads to execute each client request. These
server threads have their own OpenVMS identity and network identity, based on
the identity of the client. When a server thread is executing a request on behalf
of a client, it is the thread’s identities, not the process’ identities, that are used to
enforce security.

5–4 COM for OpenVMS Security

COM for OpenVMS Security
5.4 Application Security

5.4.4 Domain Issues
Two systems running COM client and server applications can exist in one of three
possible domain configurations:

• Systems are in the same domain

• Systems are in separate domains with trusts established between the two
domains

• Systems are in separate domains without trusts, or systems are not in a
domain

The ability for servers and DCOM$RPCSS to authenticate client requests are
affected by the domain configurations. When both systems are in the same
domain or when the systems are in separate but trusted domains there is no
problem authenticating. The trusted domain configuration is a bit more complex
and requires that the trusts and mappings be configured correctly but once
configured, there is no trouble authenticating (see Section 5.2).

Systems in separate, nontrusted domains or systems not in any domain cannot
be authenticated using the normal mechanisms. To run authenticated COM
applications between such systems, you must pass authentication information
(user name and password) from the client to the server. COM provides this
capability in the CoCreateInstanceEx API. The pServerInfo parameter of the
CoCreateInstanceEx API allows you to specify a user name and password
to be used for authentication on the remote server system. The user name
and password are part of the COAUTHIDENTITY structure, within the
COAUTHINFO structure within the COSERVERINFO structure, that is passed
as the pServerInfo parameter to CoCreateInstanceEx.

Section C.3 shows how you can authenticate a remote client that is neither in the
server’s domain nor in a domain that has a trust with the server’s domain.

The current NTLM security implementation on OpenVMS does not support this
feature for COM client applications on OpenVMS. This feature is supported for
COM clients on Windows NT that communicate with COM servers on OpenVMS.
To run COM client applications on OpenVMS where the server is not in the
same domain or in a trusted domain, you must disable authentication for the
application, as described in Section 5.4.5.

5.4.5 Disabling Authentication
Under certain conditions, you may want to disable authentication between a
client and server applications. This feature disables many of the security features
of COM and of the operating system and should not be used in an environment
where security is required. There are two ways to disable authentication for
COM applications:

• Use DCOMCNFG to change the default authentication level to None on both
systems.

• Add a call to CoInitializeSecurity in both the client and server applications
and set the dwAuthnLevel parameter to RPC_C_AUTHN_LEVEL_NONE.

The server must be configured to run with a specific NTLM account identity.
Since the client will not be authenticated, there is no way for the server to run
with a client’s identity. To configure a server to run with a specific NTLM identity,
use DCOMCNFG and change the application properties to select the NTLM account.

COM for OpenVMS Security 5–5

COM for OpenVMS Security
5.4 Application Security

5.4.6 Access Denied Problems (80070005)
The most common security error a COM application will encounter is access
denied (error status value 80070005). The following is a list of the most common
causes of this error:

• Client process on OpenVMS does not have Windows NT credentials. Run
NTA$LOGON to acquire Windows NT credentials.

• Application-specific launch or access permissions do not allow access. Check
the application settings using DCOMCNFG (see Section 6.3.1).

• System default launch or access permissions do not allow access. Check the
system defaults using DCOMCNFG (see Section 6.3.6).

• CoInitializeSecurityEx API call is incorrect. Verify that the client and server
security calls are valid.

• Server process or thread does not have permission to perform a particular
operation. Verify that the OpenVMS identity being used to execute a client
request has the necessary privileges to perform the operation.

• Server process does not have access to the server images. Verify that the
OpenVMS identity used to launch a server process has read and execute
permissions for the server image and any dynamically loaded images (.EXE
files).

• Advanced Server hostmap entry problems. In order for NTLM authentication
to work correctly, network accounts must be mapped to OpenVMS accounts
(see Section 5.1). To verify the mapping of network accounts to OpenVMS
accounts, use the ADMINISTER command:

$ ADMINISTER SHOW HOSTMAP

In a multiple-domain environment with trusts established between domains,
cross-domain mappings must be created (see Section 5.2). Under certain
conditions, the Advanced Server is unable to verify a user account associated
with a hostmap entry. Any attempt to display the hostmap entry of a user
name that can not be verified will result in the user name being displayed
using its eight-digit hexadecimal internal representation (for example,
"DOMAINNAME\000003fd"). If this happens, verify that the Advanced
Server is running on each machine. You should also verify the trusts between
domains using the following ADMINISTER command:

$ ADMINISTER SHOW TRUST

If the trusts are valid and the hostmap entries are still displayed with the
numeric format, you should shut down and restart the Advanced Server.

5.5 Server Run-Time Environment
When DCOM$RPCSS launches a server in response to a client request for a COM
object, DCOM$RPCSS creates a detached process and executes either the server
image or server command file in the context of the detached process. The image
or command file that is executed is determined by the value of the Registry key
HKEY_CLASSES_ROOT\CLSID\{iid}\LocalServer32, where iid is the unique
identifier of the COM object.

The run-time environment of the detached process is as follows:

• Default directory

5–6 COM for OpenVMS Security

COM for OpenVMS Security
5.5 Server Run-Time Environment

The default directory of the detached process is the same as the default
directory of DCOM$RPCSS. This is determined by the default directory of the
process that executed the DCOM$STARTUP command file. If DCOM$STARTUP is
executed by the system startup procedure, then the default directory will be
SYS$SYSTEM.

• Windows NT identity

Depends on the application identity setting. This setting is made using
DCOMCNFG.

If the application identity is set to ‘‘launching user’’ (the default), then the
Windows NT identity of the detached process is the same as the Windows NT
identity of the client.

If the application identity is set to a specific NTLM account then the Windows
NT identity of the detached process is that of the NTLM account.

• OpenVMS user name

The OpenVMS user name of the detached process is the user name that is
mapped to the Windows NT identity of the detached process. The mapping
of OpenVMS user name to Windows NT identity is established using the
Advanced Server ADMINISTER utility (see Section 5.1).

• OpenVMS privileges

Depends on the application identity setting. This setting is made using
DCOMCNFG.

If the application identity is set to ‘‘launching user’’ (the default), then the
privileges depend on the location of the client. If the client is running on
the same system as the server, then the privileges of the detached process
will match the privileges of the client. If the client is running on a different
system from the server, then the privileges of the detached process will be the
default privileges of the OpenVMS user name account.

If the application identity is set to a specific NTLM account then the
privileges of the detached process will be the default privileges of the
OpenVMS user name account.

• Process logicals

SYS$INPUT and SYS$OUTPUT are defined to the disk device where the server
image or command file is located. For example, if the server image is
DKA0:[TEST]CMPNT.EXE, then SYS$INPUT and SYS$OUTPUT are defined to DKA0:.
SYS$SCRATCH is not defined.

If these environment settings are not sufficient for the successful execution
of your server, then you should explicitly define the environment
settings you need. One way to easily set up an environment for your
server is to create a command file to run your server, and register the
command file, instead of the executable image, as the file to be executed
when the server is launched. You can define the environment in the
command file prior to executing the server image. For example, if you
build SAMPLE1 in the directory DKA0:[SAMPLE1] and register it using
the BUILD_SAMPLE1 command file, then the server image will be
named DKA0:[SAMPLE1]CMPNT.EXE. The Registry key HKEY_CLASSES_
ROOT\CLSID\{0C092C21-882C-A6BB-0080C7B2D682}\LocalServer32 will
have a value of DKAO:[SAMPLE1]CMPNT.EXE. You can change the value of
that key to DKA0:[SAMPLE1]RUN_CMPNT.COM and create the command file, as
follows:

COM for OpenVMS Security 5–7

COM for OpenVMS Security
5.5 Server Run-Time Environment

$! RUN_CMPNT.COM
$! Command file to run SAMPLE1
$ set default DKA0:[SAMPLE1]
$ define sys$output DKA0:[SAMPLE1]SAMPLE1.LOG
$! Other definitions as needed
$ RUN CMPNT.EXE
$ exit

When DCOM$RPCSS receives a request for SAMPLE1 and launches a server, the
server executes this command file in the detached process.

5–8 COM for OpenVMS Security

6
COM for OpenVMS Utilities for Application

Development and Deployment

This chapter describes how to configure your OpenVMS system (and, optionally,
your Windows NT system) to develop and deploy COM applications. It describes
the following COM for OpenVMS utilities:

• The DCOM$SETUP utility, which helps a system manager configure the COM for
OpenVMS system environment.

• The DCOM$CNFG utility, which helps an application developer configure and
examine COM applications.

• The DCOM$REGSVR32 utility, which allows an application developer to
register and unregister in-process server applications.

This chapter also includes information about configuring OpenVMS and Windows
NT systems to interoperate.

Before you begin

Before you configure COM for OpenVMS on your OpenVMS system, you
must install and configure required components and install COM for
OpenVMS. See Chapter 4 for information about these steps.

6.1 DCOM$SETUP Utility
DCOM$SETUP is a collection of tools to help a system manager configure the COM
for OpenVMS system environment.

DCOM$SETUP Conventions and Requirements

• For Yes/No questions, you can enter any one of the following:

— YES or NO

— Y or N

— Return (to accept the default value)

• Some DCOM$SETUP options require system manager privileges and OpenVMS
Registry access.

COM for OpenVMS Utilities for Application Development and Deployment 6–1

COM for OpenVMS Utilities for Application Development and Deployment
6.2 Running DCOM$SETUP

6.2 Running DCOM$SETUP
To run DCOM$SETUP, enter @SYS$STARTUP:DCOM$SETUP at the OpenVMS system
prompt.

The system displays the OpenVMS COM Tools menu.

Figure 6–1 DCOM$SETUP OpenVMS COM Tools Menu

OpenVMS COM Tools

1) DCOMCNFG, COM Configuration Properties
2) GUIDGEN, Globally Unique Identifier Generator
3) Populate the Registry database for COM
4) Start the COM server
5) Stop the COM server
6) Register a COM application
7) Create the DCOM$GUEST account and directory
8) Configure the DCOM$RPCSS accounts

H) Help
E) Exit

Please enter your choice:

To choose an option, enter the option number. The options are as follows:

• 1) DCOMCNFG, COM Configuration Properties

Use to query information and manipulate properties of COM for OpenVMS
applications. For more information, see Section 6.3.

• 2) GUIDGEN, Globally Unique Identifier Generator

Generate CLSIDs (class IDs) (or GUIDs [globally unique identifiers]) in
various formats (for example, the OpenVMS Registry or Windows NT
Registry format). The CLSID tags each application with a unique identifier.

This version of DCOM$SETUP generates GUIDs in OpenVMS Registry and
Windows NT Registry formats only. For a discussion of other formats, see
Section 7.1.

• 3) Populate the Registry database for COM

Set up the OpenVMS Registry database. COM for OpenVMS requires that
specific keys and values be added to the OpenVMS Registry database. You
must have both write access to the OpenVMS Registry and Windows NT
Administrator privileges.

• 4) Start the COM server

Start the COM for OpenVMS Server Control Manager server (DCOM$RPCSS).
DCOM$SETUP calls the SYS$STARTUP:DCOM$STARTUP procedure to start the
server. For more information, see Section 6.2.2.

• 5) Stop the COM server

Shut down the COM for OpenVMS Service Control Manager server
(DCOM$RPCSS). DCOM$SETUP calls the SYS$STARTUP:DCOM$SHUTDOWN procedure to
stop the server. For more information, see Section 6.2.2.

• 6) Register a COM application

6–2 COM for OpenVMS Utilities for Application Development and Deployment

COM for OpenVMS Utilities for Application Development and Deployment
6.2 Running DCOM$SETUP

Register a COM for OpenVMS server application. You can register the
following types of servers:

— In-process server

When you register an in-process server, the system prompts you for the
server’s location.

— Local server or out-of-process server

When you register a local server or out-of-process server, the system
prompts you for the following information:

+ Full path information (location of the server)

This is a required value. Use the following syntax:
device::[directory]file-name.ext

+ Application title

This is an optional value. If you do not supply a title, the system uses
a default title.

+ CLSID (GUID)

This is a required value. If the server does not have a CLSID, the
system generates one automatically. For more information about
CLSIDs and LocalServer32, see Section 7.5.1.

After you complete the registration process, the system generates the
following files:

1. A Windows NT Registry file (server-name.REG_NT) that you can use
to register the application on a Windows NT system.

2. An OpenVMS command procedure (server-name.REG_VMS) that you
can use to register the server on an OpenVMS system.

When you use these files on other systems, you must modify the path
statement to point to the server’s current location. For more information,
see Section 6.2.3.

• 7) Create the DCOM$GUEST account and directory

You must create the DCOM$GUEST account before you can use COM for
OpenVMS without NTLM authentication.

• 8) Configure the DCOM$RPCSS accounts

Configure and create the DCOM$RPCSS Advanced Server for OpenVMS
user and SYSUAF accounts. The COM for OpenVMS Service Control
Manager (DCOM$RPCSS) requires these accounts for authentication. For more
information, see Section 6.2.1.

• H) Help

Display help about each menu option.

• E) Exit

Exit the menu.

COM for OpenVMS Utilities for Application Development and Deployment 6–3

COM for OpenVMS Utilities for Application Development and Deployment
6.2 Running DCOM$SETUP

6.2.1 Creating and Configuring DCOM$RPCSS Accounts
To display these functions, choose option 8 from the OpenVMS COM Tools menu.
The system displays the following:

Configure the COM for OpenVMS Service Control Manager (DCOM$RPCSS) accounts

1) Create the DCOM$RPCSS account in both the SYSUAF database and the
Advanced Server for OpenVMS SAM database. The password you specify
for the new DCOM$RPCSS user is stored in a protected file.

2) Update the DCOM$RPCSS user password in the COM for OpenVMS Service
Control Manager password file.

E) Exit

Please enter your choice:

Enter one of the following:

• 1) Create the DCOM$RPCSS account . . .

This option creates the DCOM$RPCSS account in both the SYSUAF database
and the Advanced Server for OpenVMS SAM database.

The password you specify for the DCOM$RPCSS user is stored in a protected
file that the COM for OpenVMS Service Control Manager uses to log into the
NTLM network and obtain a Windows NT identity.

Note

The system creates this account in the Advanced Server for OpenVMS
database with a password that will not expire. To change this behavior
(that is, modify the account so that the password expires according to the
Advanced Server for OpenVMS User Policy), use the following procedure:

1. Run the Advanced Server for OpenVMS ADMIN utility.

2. Log into the Administrator account.

3. Issue the following ADMIN command:

ADMIN> MODIFY USER DCOM$RPCSS/FLAG=NODISPWDEXP

To determine the maximum password age in the Advanced Server for
OpenVMS User Policy, enter the following ADMIN command:

ADMIN> SHOW ACCOUNT POLICY

If you change the Advanced Server for OpenVMS password of the
DCOM$RPCSS account, you must update the password in the COM for
OpenVMS Service Control Manager password file. (See option 2 [Update
the DCOM$RPCSS user password].)

Use the following procedure:

1. Enter 1.

The system displays the following:

6–4 COM for OpenVMS Utilities for Application Development and Deployment

COM for OpenVMS Utilities for Application Development and Deployment
6.2 Running DCOM$SETUP

To create a new account, you must be logged on to an existing
Advanced Server for OpenVMS account that is capable of adding
new users.

Enter Y[ES] to log on to this account:

You must belong to the PATHWORKS administrator group to create this
account.

2. Enter Y.

The system prompts you to log on. The password is not displayed as you
enter it.

Enter username: JOSEPHM
Password:
Confirm password:

The system prompts you to enter a new password, and then asks you to
confirm the password. The password is not displayed as you enter it.

Enter the new DCOM$RPCSS password.

Enter password:
Confirm password:

The system uses this password for both the SYSUAF account
(DCOM$RPCSS) and the PATHWORKS user account (DCOM$RPCSS).
The system stores this password in the COM for OpenVMS Service
Control Manager password file.

The system displays the following account creation information:

%PWRK-S-USERADD, user "DCOM$RPCSS" added to domain "DCOM1_DOMAIN"

Username: DCOM$RPCSS Owner: COM
Account: UIC: [37776,1] ([DCOM$RPCSS])
CLI: DCL Tables: DCLTABLES
Default: SYS$SYSDEVICE:[DCOM$RPCSS]
LGICMD:
Flags: ExtAuth
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
No access restrictions
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: (none) Pwdchange: (pre-expired)
Last Login: (none) (interactive), (none) (non-interactive)
Maxjobs: 0 Fillm: 100 Bytlm: 64000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 150 JTquota: 4096
Prclm: 8 DIOlm: 150 WSdef: 1024
Prio: 4 ASTlm: 250 WSquo: 4000
Queprio: 4 TQElm: 10 WSextent: 8000
CPU: (none) Enqlm: 2000 Pgflquo: 130000
Authorized Privileges:
NETMBX TMPMBX

Default Privileges:
NETMBX TMPMBX

%PWRK-S-HOSTMAPADD, user "DCOM$RPCSS" mapped to host user "DCOM$RPCSS"

Press RETURN to continue:

• 2) Update the DCOM$RPCSS user password . . .

If you change the DCOM$RPCSS user password in the Advanced Server for
OpenVMS SAM database, you must also update the password in the COM for
OpenVMS Service Control Manager password file.

COM for OpenVMS Utilities for Application Development and Deployment 6–5

COM for OpenVMS Utilities for Application Development and Deployment
6.2 Running DCOM$SETUP

Use the following procedure:

1. Enter 2.

The system displays the following:

Enter the new DCOM$RPCSS password.

Enter password:
Confirm password:

2. Enter the new password and confirm the password.

• E) Exit

Exit the menu.

6.2.2 Starting and Stopping the COM Server (DCOM$RPCSS Process)
COM for OpenVMS requires that the COM server process (DCOM$RPCSS) always
be running. The DCOM$RPCSS process on OpenVMS provides the same functions
for the COM run-time environment that the RPCSS process provides on Microsoft
Windows NT, including the following:

• Build and maintain the list of server objects running on the system.

• Build and maintain a cache of known applications as defined in the registry.
This cache improves COM performance.

• Start a server as a detached process whenever a client requests a connection
to a server object that is not currently running.

• Communicate with the RPCSS process on remote Windows NT systems or the
DCOM$RPCSS process on OpenVMS systems to locate or start remote server
objects.

To start DCOM$RPCSS, either use DCOM$SETUP option 4 (‘‘Start’’) (see
Section 6.2) or call the COM for OpenVMS startup procedure directly from
SYS$STARTUP:DCOM$STARTUP. See Section 4.11 for information on starting COM for
OpenVMS.

To stop DCOM$RPCSS on your system, either use the DCOM$SETUP option 5 (‘‘Stop’’)
(see Section 6.2) or call the COM for OpenVMS shutdown procedure directly from
SYS$STARTUP:DCOM$SHUTDOWN. See Section 4.12 for information on shutting down
COM for OpenVMS.

6.2.3 Registering an Application
The following example shows how to register the COM for OpenVMS ‘‘Simple’’
application included on the COM for OpenVMS kit. You can use the resulting
Windows NT file to register the server on a Windows NT system as long as the
application is available on your Windows NT system.

To build the ‘‘Simple’’ application on a Windows NT system, see and execute the
instructions in the README-SIMPLE.TXT file in DCOM$EXAMPLES:[SIMPLE].

Note

You must build and compile the application before you can
register it. For complete details, see the step-by-step example in
DCOM$EXAMPLES:[SIMPLE] included in the COM for OpenVMS kit.

6–6 COM for OpenVMS Utilities for Application Development and Deployment

COM for OpenVMS Utilities for Application Development and Deployment
6.2 Running DCOM$SETUP

Use the following procedure:

1. From the DCOM$SETUP menu, enter 6 or REGISTER.

2. Answer the questions as follows:

Note

The ‘‘Simple’’ application already has a CLSID.

Example 6–1 Sample ‘‘Simple’’ Application Registration on OpenVMS

Enter server type (1. In-Proc 2. Out-Proc): 2 Return

Enter Local Path (device:[directory]filename.ext): DKA0:[SMITH]SSERVER.EXE Return

Enter Application Name (<RETURN> to assign default): COM Simple Server Return

Does the server have a CLSid {GUID} (Yes/No) [N]: Y Return

Enter the CLSid (i.e. {xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}:
{5e9ddec7-5767-11cf-beab-00aa006c3606} Return

Verify Application Information:

Application Name: COM SIMPLE SERVER
Local Path: DKA0:[SMITH]SSERVER.EXE
Application ID: {5E9DDEC7-5767-11CF-BEAB-00AA006C3606}

Is the information correct (Yes/No) [Y]: Return

Register application (Yes/No)? [Y]: Return

SETUP-I-NEWFILES, The following files have been created:

DKA0:[SMITH]SSERVER.REG_NT
DKA0:[SMITH]SSERVER.REG_VMS

SETUP-I-SRVIN, Server has been registered
Press RETURN to continue: Return

To register the ‘‘Simple’’ application on a Windows NT system, use the following
procedure:

1. Copy all the files in the DCOM$EXAMPLES:[SIMPLE] directory to your Windows
NT system.

2. Rename SSERVER.REG_NT to SSERVER.REG.

3. Edit the file to point to the local server path.

For example, replace DEVICE:\SSERVER with C:\SSERVER.

4. Run the Install.bat program to add the necessary keys to the Windows NT
registry.

Example 6–2 shows the contents of SSERVER.REG_NT.

Example 6–2 Contents of SSERVER.REG_NT

REGEDIT
HKEY_CLASSES_ROOT\CLSID\{5E9DDEC7-5767-11CF-BEAB-00AA006C3606}\ = DCOM server application SSERVER
HKEY_CLASSES_ROOT\CLSID\{5E9DDEC7-5767-11CF-BEAB-00AA006C3606}\LaunchPermission = Y
HKEY_CLASSES_ROOT\CLSID\{5E9DDEC7-5767-11CF-BEAB-00AA006C3606}\LocalServer32 = DEVICE:\SSERVER

To reregister the ‘‘Simple’’ application on an OpenVMS system, enter the following
command at the system prompt:

$ @SSERVER.REG_VMS

COM for OpenVMS Utilities for Application Development and Deployment 6–7

COM for OpenVMS Utilities for Application Development and Deployment
6.2 Running DCOM$SETUP

Example 6–3 shows the contents of the SSERVER.REG_VMS command procedure:

Example 6–3 Contents of SSERVER.REG_VMS

$ Set noon
$ regcp := $regcp
$ crekey := $regcp create key
$ creval := $regcp create value
$ modval := $regcp modify value
$ lisval := $regcp list value
$ crekey HKEY_CLASSES_ROOT\CLSID\{5E9DDEC7-5767-11CF-BEAB-00AA006C3606}
$ creval HKEY_CLASSES_ROOT\CLSID\{5E9DDEC7-5767-11CF-BEAB-00AA006C3606} -

/data="DCOM server application SSERVER" /type=sz
$ creval HKEY_CLASSES_ROOT\CLSID\{5E9DDEC7-5767-11CF-BEAB-00AA006C3606}/name="AppID" -

/data="{5E9DDEC7-5767-11CF-BEAB-00AA006C3606}" /type=sz
$ crekey HKEY_CLASSES_ROOT\CLSID\{5E9DDEC7-5767-11CF-BEAB-00AA006C3606}\LaunchPermission
$ creval HKEY_CLASSES_ROOT\CLSID\{5E9DDEC7-5767-11CF-BEAB-00AA006C3606}\LaunchPermission -

/data="Y" /type=sz
$ crekey HKEY_CLASSES_ROOT\CLSID\{5E9DDEC7-5767-11CF-BEAB-00AA006C3606}\LocalServer32
$ creval HKEY_CLASSES_ROOT\CLSID\{5E9DDEC7-5767-11CF-BEAB-00AA006C3606}\LocalServer32 -

/data="DKA0::[SMITH]SSERVER.EXE" /type=sz
$

6.3 Running DCOM$CNFG
DCOM$CNFG is a utility to help COM developers configure and manage COM
for OpenVMS applications on OpenVMS. Use the DCOM$CNFG utility to query
information and manipulate properties of COM for OpenVMS applications.

To use the DCOM$CNFG utility, choose option 1 from the DCOM$SETUP menu.

Note

Before running the DCOM$CNFG utility, you must:

• Have OpenVMS Registry Read access to read application properties,
and Write access to modify application properties.

• Ensure that the ACME server is running on the current system.
The ACME server must be running to view and change application
security properties. For more information, see Table 4–1.

• Acquire Windows NT security credentials before you can change an
application identity. For more information, see Section 8.2.

The system displays the DCOM$CNFG Main menu.

6–8 COM for OpenVMS Utilities for Application Development and Deployment

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

Figure 6–2 DCOM$CNFG Main Menu

DCOM$CNFG Main

1 - Applications List
2 - System-wide Default Properties
3 - System-wide Default Security

(E to Exit)
(H for Help)

Enter <CTRL-Z> or ’E’ to return to the previous menu at any time

Please enter your choice:

The options are as follows:

• 1 - Applications List

Lists all applications registered on this machine. For more information about
this option, see Section 6.3.1.

• 2 - System-wide Default Properties

Allows you to set systemwide machine properties. For more information
about this option, see Section 6.3.5.

• 3 - System-wide Default Security

Allows you to set systemwide security parameters. For more information
about this option, see Section 6.3.6.

6.3.1 The DCOM$CNFG Application List Submenu
To display this submenu, from the DCOM$CNFG Main menu, choose option 1.

The system displays the Applications List submenu.

Figure 6–3 Applications List Submenu

Applications List

Index Name
1 Inside COM, Chapter 11 Example
2 application 2
3 application 3
. ...
. ...
. ...

(E to Exit to previous menu)
(H for Help)

Please enter Index number to select an Application:

Enter a number to select an application. You can then view or configure its
properties.

This option displays the Application Properties submenu.

Note

The system stores the Application Properties (Location, Security, and
Identity) (see Figure 6–4) in a special key in the OpenVMS Registry that

COM for OpenVMS Utilities for Application Development and Deployment 6–9

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

is associated with each application. You cannot change the Application
Properties until you create this special key using the DCOM$CNFG
utility. The DCOM$CNFG utility creates this special key when the utility
discovers a newly registered application. In this case, the DCOM$CNFG
user must have acquired Windows NT security credentials for an account
that is a member of the Administrator group. Otherwise, the key will
not be created. For more information about acquiring Windows NT
credentials, see Section 8.2).

Use the following procedure to manage the Application Properties:

1. Register the application.

2. Do either of the following:

• Acquire Windows NT security credentials for an account that is a
member of the Administrator group and then run DCOM$CNFG.

• Have a system administrator with the appropriate credentials run
DCOM$CNFG.

3. Run DCOM$CNFG from your own account to manage the properties.

Figure 6–4 Application Properties Submenu

--
Application Properties

General Properties of this DCOM Application

Application name: Inside COM, Chapter 11 Example
Application id: {0C092C2C-882C-11CF-A6BB-0080C7B2D682}
Application type: local server
Local path: DISK1:[SMITH.DISPATCH_SAMPLE1]CMPNT.EXE
Type Library: {D3011EE1-B997-11CF-A6BB-0080C7B2D682}
version: 1.0 DISK1:[SMITH.DISPATCH_SAMPLE1]Server.tlb

1 - Location Machine to run application
2 - Security Security permissions for application
3 - Identity User account to use to run application

(E to Exit to previous menu)
(H for Help)

Please enter Application Property you wish to change:
--

If the system cannot find the type library file or if the type library is unaccessible,
the system displays an error message next to the type library file name.

The options are as follows:

• 1 - Location: Machine to run application

This option allows you to set or change the machine on which the COM
application will run.

The system displays the Application Location submenu.

6–10 COM for OpenVMS Utilities for Application Development and Deployment

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

Figure 6–5 Application Location Submenu

Application Location

The following settings allow DCOM to locate the correct computer
for this application. If more than one machine is selected then
DCOM uses the first available one. Client applications may override
these selections.

Application name: Inside COM, Chapter 11 Example

1 - Run application on this computer (Yes/No)
Current value: Yes

2 - Run application on another computer
Current value: Currently Disabled

(E to Exit to previous menu)
(H for Help)

Please enter your choice:

The options are as follows:

— 1 - Run application on this computer

Indicates whether the application will be run on the local computer.
Select the option to change the current value.

— 2 - Run application on another computer

Indicates that the application will be run on the specified computer.
Select the option and enter one of the following:

+ A valid system name to change the current value.

+ A hyphen (-) to disable the value. This sets the field to ‘‘Currently
Disabled.’’

• 2 - Security: Security permissions for application

This option allows you to set the following security properties:

— Access permission: allow or deny access to users or groups to access this
application.

— Launch permission: allow or deny access to users or groups to run this
application.

— Configuration permission: identify users or groups who have read, write,
or special access to the OpenVMS Registry area that contains information
about the application.

• 3 - Identity: User account to use to run application

This option allows you to run the application server using the security context
of the specified user account.

The system displays the Application Identity submenu. See Section 6.3.4.

The system uses the systemwide default security values unless you specify a
different setting.

COM for OpenVMS Utilities for Application Development and Deployment 6–11

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

The system displays the Application Security submenu.

Figure 6–6 Application Security Submenu

Application Security

Application name: Inside COM, Chapter 11 Example
Current Access permissions: Custom
Current Launch permissions: Custom
Current Configuration permissions: Default

1 - Use Default Access permission
2 - Edit Custom Access permission
3 - Use Default Launch permission
4 - Edit Custom Launch permission
5 - Use Default Configuration permission
6 - Edit Custom Configuration permission

(E to Exit to previous menu)
(H for Help)

Please enter your choice:

The options are as follows:

• 1 - Use Default Access permission

Sets the system to the default access permission values.

• 2 - Edit Custom Access permission

Displays the Registry Value Permissions submenu. This submenu allows you
to view, add, modify, and delete access permission values for this application.
For this set of submenus, see Section 6.3.2.

The ACL Editor starts with the systemwide default values unless you
previously set other values.

• 3 - Use Default Launch permission

Use the systemwide default launch permission values.

• 4 - Edit Custom Launch permission

Displays the Registry Value Permissions submenu. This submenu allows you
to view, add, modify, and delete launch permission values for this application.
For this set of submenus, see Section 6.3.2.

The ACL Editor starts with the systemwide default values unless you
previously set other values.

• 5 - Use Default Configuration permission

Use the systemwide configuration permission values.

• 6 - Edit Custom Configuration permission

The system displays the Registry Key Permissions submenu. This submenu
allows you to view, add, modify, delete, and configure special access security
permissions for this application. For this set of submenus, see Section 6.3.3.

6–12 COM for OpenVMS Utilities for Application Development and Deployment

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

6.3.2 Registry Value Permissions Submenus
To display this submenu:

1. From the DCOM$CNFG menu, choose option 1.

2. From the Applications List submenu, choose any application.

3. From the Application Properties submenu, choose option 2.

4. From the Application Security submenu, choose option 2 or 4.

Figure 6–7 Registry Value Permissions Submenu

Registry Value Permissions

Application name: Inside COM, Chapter 11 Example
Registry Value: LaunchPermission
Owner: Administrator

Index Name Type of Access
1 OPENVMS_DCOM\USER1 Deny
2 BUILTIN\Administrators Allow
3 Everyone Allow
4 NT AUTHORITY\SYSTEM Allow
5 OPENVMS_DCOM\USER2 Allow

(Index Number to Delete or Modify Access)
(A to Add to list)

(E to Exit to previous menu)
(H for Help)

Please enter your choice:

The options are as follows:

• Index Number...

To change or delete an access type, enter the corresponding index number.
The system displays Edit Registry Value Permissions submenu. See
Figure 6–8.

• A to Add to List

This option displays the Add Registry Value Permissions submenu. This
submenu allows you to add a new entry to the OpenVMS Registry value’s
Access Control List. See Figure 6–9.

COM for OpenVMS Utilities for Application Development and Deployment 6–13

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

Figure 6–8 Edit Registry Value Permissions Submenu

Edit Registry Value Permissions

Application name: Inside COM, Chapter 11 Example
Registry Value: AccessPermission
Owner: Administrator

Name: OPENVMS_DCOM\USER1
Type of Access: Deny

1 - Delete entry from list
2 - Change Access

(E to Exit to previous menu)
(H for Help)

Please enter your choice:

The options are as follows:

• 1 - Delete entry from list

Delete the entry from the Access Control List. If you delete all entries, you
will deny access and launch permissions to everyone for the selected value.

• 2 - Change Access

Toggle the access type from Allow to Deny or Deny to Allow.

Figure 6–9 Add Registry Value Permissions Submenu

Add Registry Value Permissions

Application name: Inside COM, Chapter 11 Example
Registry Value: LaunchPermission
Owner: ROLLO

1 - Add Specific User or Group
2 - Add Everyone
3 - Add NT AUTHORITY\System
4 - Add BUILTIN\Administrators

(E to Exit to previous menu)
(H for Help)

Please enter your choice:

The options are as follows:

— 1 - Add Specific User or Group

Prompts for a user/group name and type of access. Specify the user name
as domain\username or username if the account exists on the current
domain.

— 2 - Add Everyone

Allow or Deny Everyone Access/Launch permission to the application.

— 3 - Add NT AUTHORITY\System

Allow or Deny System Access/Launch permission to the application.

— 4 - Add BUILTIN\Administrators

6–14 COM for OpenVMS Utilities for Application Development and Deployment

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

Allow or Deny Administrator Access/Launch permission to the
application.

When a user is part of two or more groups, Deny access takes precedence
over Allow access.

6.3.3 Registry Key Permissions Submenus
To display this submenu:

1. From the DCOM$CNFG menu, choose option 1.

2. From the Applications List submenu, choose any application.

3. From the Application Properties submenu, choose option 2.

4. From the Application Security submenu, choose option 6.

Figure 6–10 Registry Key Permissions Submenu

Registry Key Permissions

Application name: Inside COM, Chapter 11 Example
Registry Key: Inside COM, Chapter 11 Example
Owner: Administrator

Index Name Type of Access

1 BUILTIN\Administrators Full Control
2 NT AUTHORITY\SYSTEM Full Control
3 CREATOR OWNER Full Control
4 Everyone Special Access
5 OPENVMS_DCOM\USER1 Read

(Index Number to Delete or Modify Access)
(A to Add to list)

(E to Exit to previous menu)
(H for Help)

Please enter your choice:

The options are as follows:

• Index Number...

To change or delete an access type, enter the corresponding index number.
The system displays Edit Registry Key Permissions submenu. See
Figure 6–11.

• A to Add to List

This option displays the Add Registry Key Permissions submenu. This
submenu allows you to add a new entry to the OpenVMS Registry key’s
Access Control List. See Figure 6–13.

COM for OpenVMS Utilities for Application Development and Deployment 6–15

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

Figure 6–11 Edit Registry Key Permissions Submenu

Edit Registry Key Permissions

Application name: Inside COM, Chapter 11 Example
Registry Key: Inside COM, Chapter 11 Example
Owner: Administrator

Name: BUILTIN\Administrators
Type of Access: Full Control

1 - Delete entry from list
2 - Allow Full Control
3 - Allow Read Access
4 - Set/View Special Access

(E to Exit to previous menu)
(H for Help)

Please enter your choice:

The options are as follows:

• 1 - Delete entry from list

Delete the entry from the security permissions list. If you delete all entries,
noone can access the key and only the owner can change the permissions.

• 2 - Allow Full Control

Allow the user to access, to edit, and to take ownership of the key.

• 3 - Allow Read Access

Allow the user to read the key but not to save any changes to it.

• 4 - Set/View Special Access

Displays the Special Access Registry Key Permissions submenu. This
submenu allows you to set customized permissions for the selected user or
groups. See Figure 6–12.

6–16 COM for OpenVMS Utilities for Application Development and Deployment

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

Figure 6–12 Special Access Registry Key Permissions Submenu

Special Access Registry Key Permissions

Application name: Inside COM, Chapter 11 Example
Registry Key: Inside COM, Chapter 11 Example

Name: Everyone

Type of Access Current Value

0 - Query Value Yes
1 - Set Value Yes
2 - Create Subkey Yes
3 - Enumerate Subkeys Yes
4 - Notify Yes
5 - Create Link No
6 - Delete Yes
7 - Write DACL No
8 - Write Owner No
9 - Read Control Yes

(E to Exit to previous menu)
(H for Help)

Please enter your choice:

The options are as follows:

• 0 - Query Value

Allow the user to read a value from the key.

• 1 - Set Value

Allow the user to set one or more values for the key.

• 2 - Create Subkey

Allow the user to create subkeys on the key.

• 3 - Enumerate Subkeys

Allow the user to identify the subkeys of the key.

• 4 - Notify

Allow the user to audit notification events from the key.

• 5 - Create Link

Allow the user to create a symbolic link in the key.

• 6 - Delete

Allow the user to delete the key.

• 7 - Write DACL

Allow the user access to the key to write a discretionary ACL to the key.

• 8 - Write Owner

Allow the user access to the key to take ownership of the key.

• 9 - Read Control

COM for OpenVMS Utilities for Application Development and Deployment 6–17

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

Allow the user access to the security information on the key.

Figure 6–13 Add Registry Key Permissions Submenu

Add Registry Key Permissions

Application name: Inside COM, Chapter 11 Example
Registry Key: Inside COM, Chapter 11 Example
Owner: Administrator

1 - Add Specific User or Group
2 - Add Everyone
3 - Add NT AUTHORITY\System
4 - Add BUILTIN\Administrators

(E to Exit to previous menu)
(H for Help)

Please enter your choice:

The options are as follows:

• 1 - Add Specific User or Group

Prompts for a user/group name and type of access. Specify the user name as
domain\username or username if the account exists on the current domain.

• 2 - Add Everyone

Allow Everyone Full Control or Read Access to the application.

• 3 - Add NT AUTHORITY\System

Allow System Full Control or Read Access to the application.

• 4 - Add BUILTIN\Administrators

Allow Administrator Full Control or Read Access to the application.

6.3.4 Application Identity Submenu
To display this submenu:

1. From the DCOM$CNFG menu, choose option 1.

2. From the Applications List submenu, choose any application.

3. From the Application Properties submenu, choose option 3.

The system displays the Application Identity submenu.

6–18 COM for OpenVMS Utilities for Application Development and Deployment

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

Figure 6–14 Application Identity Submenu

Application Identity

Which user account do you want to use to run this application?

Application name: Inside COM, Chapter 11 Example
Current Identity: NTLM Account OPENVMS_DCOM\USER2

1 - Launching User
2 - NTLM Account
3 - OpenVMS Username
4 - OpenVMS DCOM Guest Account

(E to Exit to previous menu)
(H for Help)

Please enter account you wish to use:

The options are as follows:

• 1 - Launching User

Specifies that the application will run using the security context of the user
who started the application. This is the default if NTLM security is available.

• 2 - NTLM Account

Specifies that the application will run using the security context of the
specified NTLM account. If you specify a valid User/Group name, the system
prompts you for a password. The system checks that the password matches
the password you used to log on (through NTA$LOGON). If the passwords do not
match, you can either continue and write this new password to the OpenVMS
Registry or reenter a password that matches your logon password.

Note

If you enter a new password, the system does not synchronize the new
password with any other password. You must synchronize the passwords
manually.

You must have the IMPERSONATE privilege for the password to be
validated.

You must have system write access (SYSPRV or REG$UPDATE) to the
OpenVMS Registry to write the password to the database.

• 3 - OpenVMS Username

Specifies that the application will run using the security context of the
specified OpenVMS account. This option is active only when you are using
unauthenticated COM for OpenVMS.

• 4 - OpenVMS DCOM Guest Account

Specifies that the application will run using the security context of the
OpenVMS DCOM Guest account. This option is active only when you are
using unauthenticated COM for OpenVMS. If you are using unauthenticated
COM for OpenVMS, this option is the default.

COM for OpenVMS Utilities for Application Development and Deployment 6–19

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

6.3.5 The DCOM$CNFG System-wide Default Properties Submenu
To display this submenu, from the DCOM$CNFG Main menu, choose option 2.

The system displays the System-wide Default Properties submenu.

Figure 6–15 System-wide Default Properties Submenu

System-wide Default Properties

1 - Enable Distributed COM on this computer (Yes/No)
Current value: Yes

2 - Default Authentication Level
3 - Default Impersonation Level

(E to Exit to previous menu)
(H for Help)

Please enter your choice:

The options are as follows:

• 1 - Enable Distributed COM on this computer (Yes/No)

Enables or disables COM on this computer.

• 2 - Default Authentication Level

Sets packet-level security on communications between applications. This
systemwide default applies to all applications installed on this computer.

Figure 6–16 Default Authentication Level Submenu

--
Default Authentication Level

The Authentication Level specifies security at the packet level.

Current value: Connect

1 - Default
2 - None
3 - Connect
4 - Call
5 - Packet
6 - Packet Integrity

(E to Exit to previous menu)
(H for Help)

Please enter your choice:
--

Enter a number to select the desired Authentication level. When installed,
the system default for the Default Authentication Level is Connect.

• 3 - Default Impersonation Level

Specifies whether applications can determine who is calling them, and
whether the application can perform operations using the client’s identity.

6–20 COM for OpenVMS Utilities for Application Development and Deployment

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

Figure 6–17 Default Impersonation Level Submenu

--
Default Impersonation Level

The Impersonation Level specifies whether applications can determine
who is calling them, and whether the application can perform
operations using the client’s identity.

Current value: Identify

1 - Anonymous
2 - Identify
3 - Impersonate

(E to Exit to previous menu)
(H for Help)

Please enter your choice:
--

Enter a number to select the desired Impersonation level. When installed,
the system default for the Default Impersonation Level is Identify.

6.3.6 System-wide Default Security Submenu
To display this submenu, from the DCOM$CNFG Main Menu, choose option 3.

The system displays the System-wide Default Security submenu.

Figure 6–18 System-wide Default Security Submenu

--
System-wide Default Security

1 - Access Permissions Default
2 - Launch Permissions Default
3 - Configuration Permissions Default

(E to Exit to previous menu)
(H for Help)

Please enter your choice:
--

The options are as follows:

• 1 - Access Permissions Default:

Displays the Registry Value Permissions submenu. This submenu allow you
to view, add, modify, and delete Access permission values for the systemwide
default for all applications.

• 2 - Launch Permissions Default:

Displays the Registry Value Permissions submenu. This submenu allows you
to view, add, modify, and delete Launch Permission Values for the systemwide
default for all applications. You must restart the COM for OpenVMS Service
Control Manager for the new setting to take effect.

• 3 - Configuration Permissions Default:

Displays the security permission values for the HKEY_CLASSES_ROOT
Registry key.

COM for OpenVMS Utilities for Application Development and Deployment 6–21

COM for OpenVMS Utilities for Application Development and Deployment
6.3 Running DCOM$CNFG

When you first install the system, by default only Administrator and System
accounts have application launch and access permissions. Compaq recommends
that you do not change these default settings. Typically you modify an individual
application’s launch and access security to grant or deny permissions to Everyone,
various Groups, or even specific users. Compaq recommends this technique over
adjusting the machinewide default security settings that affect all applications.

6.4 Registering In-Process Servers: DCOM$REGSVR32 Utility
All COM components (implemented as either an out-of-process server or as an
in-process server) must be registered in the OpenVMS Registry before you can
use them.

Out-of-process servers, which are implemented as executable programs (.EXE
files), usually contain code to register and unregister the components contained
within them. The advantage an out-of-process server has over an in-process
server is that you can run the executable and automatically create the necessary
registry keys.

In-process servers, which are usually implemented as dynamic link libraries (.DLL
files) on Windows NT or as shareable images on OpenVMS, also contain code to
register and unregister the components within them automatically. However,
these in-process servers cannot be run the same way as an executable image
because they do not contain a main entry point. As a result, you must manually
register the components contained within a .DLL, or create a command procedure
to perform the registration.

Microsoft provides the REGSVR32 utility that you can use to register the
components contained within a DLL. REGSVR32 takes as a command line
argument the following:

• DLL name

• Switches to register or unregister the components

When registering a DLL’s components, REGSVR32 searches the specified DLL for
the DllRegisterServer symbol and, if found, calls it. When unregistering a DLL,
REGSVR32 calls DllUnregisterServer. This means that all in-process components
that you want to register automatically must include these two entry points in
their export files.

To facilitate the registration of components contained within shareable images
on OpenVMS systems, Compaq created the DCOM$REGSVR32 utility. The
DCOM$REGSVR32 utility does the same things that the Microsoft REGSVR32
utility does. Any shareable images that contain components to be registered must
also include the DllRegisterServer and DllUnregisterServer universal symbols
in their symbol vectors. Both the DCOM$REGSVR32 and the REGSVR32 utilities
use the same command line syntax.

During the COM for OpenVMS installation, the system places the
DCOM$REGSVR32.EXE file in the SYS$SYSTEM directory.

Before you use the DCOM$REGSVR32 utility, you must define a symbol that
allows the utility to accept foreign command lines. For example:

$ regsvr32 :== $DCOM$REGSVR32

Alternatively, you can activate the DCOM$REGSVR32 utility as follows:

$ MCR DCOM$REGSVR32

6–22 COM for OpenVMS Utilities for Application Development and Deployment

COM for OpenVMS Utilities for Application Development and Deployment
6.4 Registering In-Process Servers: DCOM$REGSVR32 Utility

You can use either method to activate the utility, and register or unregister
components contained in shareable images.

To display help for DCOM$REGSVR32, enter the following:

$ regsvr32 -?

Table 6–1 summarizes the DCOM$REGSVR32 command line options.

Table 6–1 DCOM$REGSVR32 Command Line Options

Switch Use

-?, /? Display help file (this table).

shareable-image-
name

Register the specified shareable image name.

-u or /u image-name Unregister the specified shareable image name.

Note

The DCOM$REGSVR32 utility requires that the shareable image name
contain a full directory specification.

Example 6–4 demonstrates how to register an in-process component (contained
within a shareable image) using the DCOM$REGSVR32 utility.

Example 6–4 Registering a Component Using the DCOM$REGSVR32 Utility

$ regsvr32 USER$DISK:[SEYMOUR.DISPATCH_SAMPLE1]CMPNT$SHR.EXE
Class factory: Create self.
DllRegisterServer: Registering Server DLL
Creating key CLSID\{0C092C2C-882C-11CF-A6BB-0080C7B2D682}
Creating key CLSID\{0C092C2C-882C-11CF-A6BB-0080C7B2D682}\InProcServer32
Creating key CLSID\{0C092C2C-882C-11CF-A6BB-0080C7B2D682}\ProgID
Creating key CLSID\{0C092C2C-882C-11CF-A6BB-0080C7B2D682}\VersionIndependentProgID
Creating key CLSID\{0C092C2C-882C-11CF-A6BB-0080C7B2D682}\TypeLib
Creating key InsideCOM.Chap11
Creating key InsideCOM.Chap11\CLSID
Creating key InsideCOM.Chap11\CurVer

Creating key InsideCOM.Chap11.1
Creating key InsideCOM.Chap11.1\CLSID
Class factory: Destroy self.

Example 6–5 demonstrates how to unregister an in-process component (contained
within a shareable image) using the DCOM$REGSVR32 utility.

COM for OpenVMS Utilities for Application Development and Deployment 6–23

COM for OpenVMS Utilities for Application Development and Deployment
6.4 Registering In-Process Servers: DCOM$REGSVR32 Utility

Example 6–5 Unregistering a Component Using the DCOM$REGSVR32 Utility

$ regsvr32 /u USER$DISK:[SEYMOUR.DISPATCH_SAMPLE1]CMPNT$SHR.EXE

Class factory: Create self.
DllUnregisterServer: Unregistering Server DLL
Deleting key InProcServer32
Deleting key ProgID
Deleting key VersionIndependentProgID
Deleting key TypeLib
Deleting key LocalServer32
Deleting key CLSID\{0C092C2C-882C-11CF-A6BB-0080C7B2D682}
Deleting key CLSID
Deleting key CurVer
Deleting key InsideCOM.Chap11
Deleting key CLSID
Deleting key InsideCOM.Chap11.1
Class factory: Destroy self.

6–24 COM for OpenVMS Utilities for Application Development and Deployment

7
Developing a COM for OpenVMS Application

This chapter explains how to develop COM applications for OpenVMS.

Note

You can find the sample COM applications shown in this chapter in the
following directories on the COM for OpenVMS kit:

DCOM$EXAMPLES:[SAMPLE1]
DCOM$EXAMPLES:[SIMPLE]
DCOM$EXAMPLES:[DISPATCH_SAMPLE1]

SAMPLE1 and DISPATCH_SAMPLE1 are taken from Dale Rogerson’s book,
Inside COM, published by Microsoft Press. This book is a good reference
for developing COM applications.

The following sections describe how to create a COM for OpenVMS application.

Note

Building COM for OpenVMS applications places demands on the virtual
memory requirements of a process. You should have a minimum page
file quota of 100,000 pagelets before building a COM for OpenVMS
application. This is a DEC C++ compiler requirement.

7.1 Step 1: Generate Unique Identifiers
Use the DCOM$GUIDGEN utility to generate 16-byte globally unique identifiers
(GUIDs). The utility supports both OpenVMS and UNIX styles. For example:

• OpenVMS style

Enter the following commands:

$ SET COMMAND DCOM$LIBRARY:DCOM$GUIDGEN.CLD
$ DCOM$GUIDGEN [/FORMAT=value] [/COUNT=value] [/OUTPUT=value]

• UNIX style

Enter the following command:

$ mcr dcom$guidgen [-cdghirs?] [-on]

Developing a COM for OpenVMS Application 7–1

Developing a COM for OpenVMS Application
7.1 Step 1: Generate Unique Identifiers

The following table summarizes the GUID format options.

OpenVMS qualifier
(value)

UNIX
switch Use

IDL -i Output GUID in an IDL interface template.

STRUCT -s Output GUID as an initialized C struct.

IMPLEMENT_
OLECREATE

-c Output GUID in IMPLEMENT_OLECREATE(...)
format.

DEFINE_GUID -d Output GUID in DEFINE_GUID(...) format.

GUID_STRUCT -g Output GUID as an initialized static const GUID
struct.

REGISTRY_GUID -r Output GUID in registry format.

Note

The last four options in the preceding table are the same as the four
options in the Windows NT Guidgen utility.

The following table lists additional options supported by the DCOM$GUIDGEN utility.

OpenVMS qualifier UNIX switch Use

/OUTPUT=filename -o filename Redirect output to a specified file.

/COUNT=number -n number Number of GUIDs to generate.

not available -h, -? Display command option summary.

You can specify more than one format for the same GUID.

7.2 Step 2: Build an Application Using the MIDL Compiler
The following sections describe how to use the MIDL compiler to build an
application.

7.2.1 Running the MIDL Compiler
The MIDL compiler consists of the following separate images:

• SYS$SYSTEM:DCOM$MIDL.EXE

The executable image that takes its arguments (parameters) from the DCL
command line.

• SYS$SHARE:DCOM$MIDL_SHR.EXE

A shareable image library that does the actual work for DCOM$MIDL.EXE.

To run MIDL, you must first define a DCL symbol. For example:

$ midl :== $dcom$midl
$ midl -?
$ midl -Oicf -idcom$library: example.idl

The midl -? command displays a list of valid command line arguments. For a
list of these arguments, see Appendix A.

7–2 Developing a COM for OpenVMS Application

Developing a COM for OpenVMS Application
7.2 Step 2: Build an Application Using the MIDL Compiler

7.2.2 Running the MIDL Compiler with DCOM$RUNSHRLIB
The DCOM$MIDL.EXE utility gets its arguments from the DCL foreign command
line buffer. DCL foreign commands can have a maximum of 255 characters.

Because of the number of arguments that DCOM$MIDL.EXE can accept, you might
exceed this maximum number of characters if you specify a complex MIDL
command (for example, a command that contains mixed-case arguments that
require quotation marks).

As a workaround, you can use the SYS$SYSTEM:DCOM$RUNSHRLIB.EXE utility. Use
the following procedure:

1. Define the DCL command DCOM$RUNSHRLIB.

A process that needs to use DCOM$RUNSHRLIB.EXE must first use the
OpenVMS DCL Command Definition utility to define the DCL command
DCOM$RUNSHRLIB. For example:

$ SET COMMAND DCOM$LIBRARY:DCOM$RUNSHRLIB.CLD

DCOM$LIBRARY:DCOM$RUNSHRLIB.CLD defines the DCOM$RUNSHRLIB DCL
command. The following table shows the command’s parameters.

Argument Value Required/Optional

P1 Name of the shareable image library. This can be a
logical name, the name of an image in SYS$SHARE:, or a
full file specification.

Required

P2 Name of the routine to be called as a C or C++ main()
routine with an argc/argv vector.

Required

P3 List of qualifiers in quotation marks. Optional

2. Define the DCL symbol midl to use DCOM$RUNSHRLIB.EXE to parse the
command line and call the DCOM$MIDL_MAIN function in the DCOM$MIDL_SHR
shareable image library. For example:

$ midl :== DCOM$RUNSHRLIB DCOM$MIDL_SHR DCOM$MIDL_MAIN

The new DCL command MIDL accepts multiple command line arguments
inside a single quoted string. If the command becomes too long, you can
specify multiple quoted strings, using a comma to separate the strings.

For example, here is a complex MIDL command that fails:

$ midl :== $dcom$midl
$ midl -Zp8 -Oicf -Os -oldnames -char unsigned -

-error allocation -error bounds_check -error stub_data -
-ms_ext -c_ext -out [.OBJ] -
-I[INC] -I[PROJECT_WIDE_INC] -I[COMMON_INC] -IDCOM$LIBRARY: -
-DRMS_DB "-DOpenVMS_Definitions" "-DPermanentProcess" -
-header [.obj]example.h -client none -server none example.idl

%DCL-W-TKNOVF, command element is too long - shorten

You can successfully specify this command using DCOM$RUNSHRLIB as follows:

Developing a COM for OpenVMS Application 7–3

Developing a COM for OpenVMS Application
7.2 Step 2: Build an Application Using the MIDL Compiler

$ set command dcom$library:dcom$runshrlib.cld
$ midl :== DCOM$RUNSHRLIB DCOM$MIDL_SHR DCOM$MIDL_MAIN
$ midl "-Zp8 -Oicf -Os -oldnames -char unsigned",-

"-error allocation -error bounds_check -error stub_data",-
"-ms_ext -c_ext -out [.OBJ]",-
"-I[INC] -I[PROJECT_WIDE_INC] -I[COMMON_INC] -IDCOM$LIBRARY:",-
"-DRMS_DB -DOpenVMS_Definitions -DPermanentProcess",-
"-header [.obj]example.h -client none -server none example.idl"

7.2.3 Required MIDL Switches
When running MIDL on OpenVMS, you must specify the -Oicf MIDL command
line switch.

7.2.4 Required Include Directories
MIDL components typically import UNKNWN.IDL, which contains the component
definitions for IUnknown and IClassFactory. UNKNWN.IDL and other COM-related
IDL and header files are located in DCOM$LIBRARY. To build your component’s IDL
file, use the following switch:

-IDCOM$LIBRARY:

7.2.5 Required Header File
The VMS_DCOM.H header file contains macro definitions that enable your COM
for OpenVMS application to compile properly with Bristol’s Wind/U® Win32
environment. You must include this header file in every source file and header file
you create that relies on COM APIs or Win32 APIs. Because the files generated
by MIDL rely on parts of the Win32 environment, Compaq has modified the
MIDL compiler for OpenVMS to include VMS_DCOM.H in all output files.

7.3 Step 3: Compile the COM Application
The following sections describe how to compile COM for OpenVMS applications.

Note

A COM application developer will need access to the OpenVMS registry to
register and control access to a given application. For more information
about OpenVMS Registry privileges, see Section 10.5.1 and Section 6.3.

7.3.1 Required Macro Definitions
The VMS_DCOM.H file defines several macros used by the Wind/U Win32
environment. An include statement that specifies this header file should be
the first noncommented line in any source file (code or header files) that you
write. However, this is not always guaranteed to be true for files generated by
MIDL. Be sure to always include the following /DEFINE qualifier on all of your C
and CXX commands:

/DEFINE=(UNICODE=1,_WINDU_SOURCE=0X041000,_WIN32_DCOM)

The UNICODE macro ensures that the wide character variants of Win32 APIs and
data structures are enabled when you compile your code. (This macro is also
defined in VMS_DCOM.H.) Omitting this macro can lead to compilation failures
when building with the Wind/U Win32 environment.

The other two macro definitions are recognized by the Wind/U header files and
are required to ensure the proper definition of structures and COM APIs.

7–4 Developing a COM for OpenVMS Application

Developing a COM for OpenVMS Application
7.3 Step 3: Compile the COM Application

7.3.2 Required Include Directories
COM for OpenVMS applications typically require header files that come from
DCOM$LIBRARY.

Include the following qualifier on your C and CXX command lines:

/INCLUDE=DCOM$LIBRARY

If you already have an /INCLUDE qualifier on your command line, modify the
command to include DCOM$LIBRARY.

7.3.3 Required Header File: VMS_DCOM.H
The VMS_DCOM.H header file defines several macros used by the Wind/U header
files.

Include this header file as the first noncommented line in your source files (both
header files and implementation files).

7.3.4 Required C++ Qualifiers
You must specify the following C++ qualifiers when you build COM for OpenVMS
applications:

• /EXCEPTIONS=CLEANUP

Specify the /EXCEPTIONS=CLEANUP qualifier on C++ commands to enable C++
exceptions.

• /STANDARD=CFRONT

The C++ compiler supports many different compilation standards. Compaq
recommends that you use /STANDARD=CFRONT.

/STANDARD=CFRONT informs the compiler that it should follow the language
conventions defined in the AT&T® cfront implementation. This switch works
well with the Wind/U header files because those header files are used by
several UNIX platforms in addition to the OpenVMS platform.

7.3.5 Required C Qualifiers
There are no qualifiers unique to DEC C that you must specify when you build
COM for OpenVMS applications.

7.4 Step 4: Link the COM Application
To build a COM for OpenVMS application, you must build both client and
component images. Because you can implement a component as either an
in-process component or an out-of-process component, you must build either
a shareable image or an executable image, or both. If you are creating a new
interface, you must also build a proxy/stub shareable image, unless you are
using the IDispatch interface. In that case, the Automation Marshaler will be
used instead of the proxy/stub shareable image. The proxy/stub shareable image
provides an interface-specific object that packages parameters for that interface
in preparation for a remote method call. A proxy runs in the sender’s address
space and communicates with a corresponding stub in the receiver’s address
space.

The following sections describe the steps you must follow to link the client,
component, and proxy/stub images.

Developing a COM for OpenVMS Application 7–5

Developing a COM for OpenVMS Application
7.4 Step 4: Link the COM Application

7.4.1 Linking the Client and the Out-of-Process Component
Although you do not need to specify any qualifiers to link the client or the
component executable images, you must link both images with the following:

• The Wind/U shareable images (to satisfy Win32 dependencies)

• The DCOM OLE32 shareable image (to satisfy references to COM APIs)

The specific link-time dependencies are as follows:

• DCOM$WIN32:WINDU.OPT

• DCOM$LIBRARY:DCOM.OPT

If you have one or more C++ modules, use the C++ linker (CXXLINK) instead
of the standard OpenVMS linker so you can specify the location of your C++
repository (/CXX_REPOSITORY qualifier). For example:

$ CXXLINK/your-specific-linker-qualifiers list-of-object-modules, -
_$ DCOM$WIN32:WINDU.OPT/OPTIONS, DCOM$LIBRARY:DCOM.OPT/OPTIONS -
_$ application.OPT/OPTIONS /REPOSITORY=[.CXX_REPOSITORY]

Other ways of including the options file are as follows:

• Include the list of object modules in an options file instead of on the command
line.

• Use DCOM$LIBRARY:DCOM.OPT.

7.4.2 Linking the In-Process Component Shareable Image
The component in-process shareable image dependency list differs slightly from
that of the client and component executables. The specific link-time dependencies
are as follows:

• DCOM$WIN32:WINDU.OPT

• DCOM$LIBRARY:DCOM.OPT

7.4.2.1 Creating a Symbol Vector
Linking the in-process component shareable image requires that you create
a symbol vector for the entry points that COM for OpenVMS expects to call
within the shareable image. The Win32 run-time environment enforces a naming
standard on the DllMain entry point, which must contain the following:

• _Windu_ prefix

• Actual entry point name

• A suffix that includes the image name or a portion of the image name,
depending on the format of the image name.

If the image name ends in $SHR (for example, CMPNT$SHR), the suffix is the
image name up to and including the dollar sign ($).

If the image name ends in anything other than $SHR (for example,
CMPNT_SHARE), the suffix is the full image name.

For example, a component shareable image with the name CMPNT$SHR would
define the symbol vector using the following options file:

7–6 Developing a COM for OpenVMS Application

Developing a COM for OpenVMS Application
7.4 Step 4: Link the COM Application

!
! The list of symbols exported by CMPNT$SHR.EXE.
!
SYMBOL_VECTOR=(-

_WindU_DllMain_CMPNT$/DllMain = PROCEDURE,-
DllGetClassObject = PROCEDURE,-
DllCanUnloadNow = PROCEDURE,-
DllRegisterServer = PROCEDURE,-
DllUnregisterServer = PROCEDURE)

A component shareable image with the name CMPNT_SHARE would define the
symbol vector using the following options file:

!
! The list of symbols exported by CMPNT_SHARE.EXE.
!
SYMBOL_VECTOR=(-

_WindU_DllMain_CMPNT_SHARE/DllMain = PROCEDURE,-
DllGetClassObject = PROCEDURE,-
DllCanUnloadNow = PROCEDURE,-
DllRegisterServer = PROCEDURE,-
DllUnregisterServer = PROCEDURE)

7.4.3 Linking the Proxy/Stub Shareable Image
The proxy/stub shareable image dependency list differs slightly from that of the
client and component executables. The specific link-time dependencies are as
follows:

• DCOM$WIN32:WINDU.OPT

• SYS$LIBRARY:DCOM$RPCRT4_SHR.EXE

7.4.3.1 Creating a Symbol Vector
Linking the proxy/stub shareable image is more involved because you must create
a symbol vector for the entry points that COM for OpenVMS expects to call
within the shareable image. The Win32 run-time environment enforces a naming
standard on the DllMain entry point, which must contain the following:

• _Windu_ prefix

• Actual entry point name

• A suffix that includes the image name or a portion of the image name,
depending on the format of the image name.

If the image name ends in $SHR (for example, PROXY$SHR), the suffix is the
image name up to and including the dollar sign ($).

If the image name ends in anything other than $SHR (for example,
PROXY_SHARE), the suffix is the full image name.

For example, a proxy/stub shareable image with the name PROXY$SHR would
define the symbol vector using the following options file:

Developing a COM for OpenVMS Application 7–7

Developing a COM for OpenVMS Application
7.4 Step 4: Link the COM Application

!
! RPC Shareable Image
!
SYS$LIBRARY:DCOM$RPCRT4_SHR.EXE/SHARE

!
!
! The list of symbols exported by PROXY$SHR.EXE.
!
SYMBOL_VECTOR=(-

_Windu_DllMain_PROXY$/DllMain = PROCEDURE,-
DllGetClassObject = PROCEDURE,-
DllCanUnloadNow = PROCEDURE,-
GetProxyDllInfo = PROCEDURE,-
DllRegisterServer = PROCEDURE,-
DllUnregisterServer = PROCEDURE)

A proxy/stub shareable image with the name PROXY_SHARE would define the
symbol vector using the following options file:

!
! RPC Shareable Image
!
SYS$LIBRARY:DCOM$RPCRT4_SHR.EXE/SHARE

!
!
! The list of symbols exported by PROXY_SHARE.EXE.
!
SYMBOL_VECTOR=(-

_Windu_DllMain_PROXY_SHARE/DllMain = PROCEDURE,-
DllGetClassObject = PROCEDURE,-
DllCanUnloadNow = PROCEDURE,-
GetProxyDllInfo = PROCEDURE,-
DllRegisterServer = PROCEDURE,-
DllUnregisterServer = PROCEDURE)

7.5 Required OpenVMS Registry Entries
The following sections list and describe the required OpenVMS Registry entries.

7.5.1 HKEY_CLASSES_ROOT\CLSID
The CLSID subkey contains all CLSIDs for the components supported on your
system. You must register your components’ CLSIDs here. Each registered
CLSID should contain the following:

• An unnamed value whose type is a zero-terminated string with a data value
describing the component.

• A named value, AppID, whose type is a zero-terminated string with a data
value that is the CLSID of the component.

7.5.1.1 Component CLSIDs
A class identifier (CLSID) is a globally unique identifier (GUID) associated
with an OLE class object. COM for OpenVMS server applications typically
register their CLSIDs in the OpenVMS Registry so clients can locate and load the
executable code associated with the OLE class object.

Register the CLSID for the component under the subkey
HKEY_CLASSES_ROOT\CLSID.

A component CLSID registration should contain the following subkeys:

• LocalServer32

7–8 Developing a COM for OpenVMS Application

Developing a COM for OpenVMS Application
7.5 Required OpenVMS Registry Entries

This key’s value should contain a zero-terminated string with a data value
that is the location of the out-of-process server executable.

• ProgID

This key’s value should contain a zero-terminated string with a data value
that is the programmatic ID of the CLSID. These are typically of the format
program.component.version.

• VersionIndependentProgID

This key’s value should contain a zero-terminated string with a data value
that is the programmatic ID (less the version number) of the CLSID. These
are typically of the format program.component.

• InProcServer32

This key’s value should contain a zero-terminated string with a data value
that is the location of the in-process server’s shareable image.

• Type Libraries

Type libraries are important for implementing the IDispatch interface.
A type library registers itself when it calls the OLE Automation
RegisterTypeLib run-time routine. You must also add a Typelib subkey
under your component’s CLSID. The Typelib subkey contains your type
library’s GUID. For example, the following key should contain your LIBID:

HKEY_CLASSES_ROOT\CLSID\{GUID}\TYPELIB {value=LIBID}

7.5.1.2 Proxy/Stub CLSIDs
The proxy/stub shareable image provides an interface-specific object for packaging
parameters for that interface. Because the proxy/stub shareable image contains
an object, it needs a CLSID and it needs to be included in the OpenVMS Registry.
You must register a CLSID for the proxy in the OpenVMS Registry the same way
as the CLSID for the component.

The CLSID for the proxy should be registered under the subkey
HKEY_CLASSES_ROOT\CLSID.

A proxy/stub CLSID registration should contain the following subkey:

• InProcServer32

The InProcServer32 value should contain a zero-terminated string with
a data value that is the location of the proxy/stub shareable image. The
proxy/stub CLSID and its subkey enable COM to locate the proxy/stub
shareable image.

7.5.2 HKEY_CLASSES_ROOT\Interface
The Interface subkey contains all interfaces registered with the system. You
must register the component’s interface IDs (IIDs) in this subkey.

Each interface registered contains at least one of the following subkeys:

• NumMethods

The NumMethods value should contain a zero-terminated string with a data
value that is the number of methods contained in the interface.

• ProxyStubClsid32

Developing a COM for OpenVMS Application 7–9

Developing a COM for OpenVMS Application
7.5 Required OpenVMS Registry Entries

The ProxyStubClsid32 value should contain a zero-terminated string with a
data value that is the CLSID of the proxy/stub shareable image. This CLSID
should be the same as that described in Section 7.5.1.2.

7.6 Converting OpenVMS and Windows Error Codes to Text
As you develop and test COM components, you will find that the OpenVMS
and Windows NT systems return seemingly indecipherable error codes. To
help you make these codes more understandable, Compaq has included the
NTA$VMSGetMessage routine to translate error codes into displayable text.

To implement this routine, you must include the NTA_MESSAGE.H file in the
DCOM$LIBRARY: directory and link with the DCOM$LIBRARY:NTA_GETMSG.OBJ
object module.

The following section describes the NTA$VMSGetMessage routine.

7–10 Developing a COM for OpenVMS Application

Developing a COM for OpenVMS Application
NTA$VMSGetMessage

NTA$VMSGetMessage

The NTA$VMSGetMessage routine translates error codes into displayable text.
The input error code must be one of the following:

• An OpenVMS error code

• A Windows HRESULT

• A Windows Win32 error code

• A Windows NT status code set as ‘‘user defined’’

Format

Return=NTA$VMSGetMessage (status, text, flag, [count])

Arguments

status
OpenVMS usage: error_code
type: longword (unsigned)
access: read only
mechanism: by value

This status field must be one of the following:

Input Error Code Example

OpenVMS error code 0x074AA6BA
Windows HRESULT 0x80070031
Windows Win32 error code 0x00000031
Windows NT status code with
the user-defined bit set

0xE74AA6BA

If the security API returns a Windows NT status code, the format of the status
field is an OpenVMS status code OR’d with the Windows NT status control bits
set. For example:

Input Error Code Result

OpenVMS error code 0x074AA6BA
Windows NT status code 0xE74AA6BA

text
OpenVMS usage: error_text
type: character string
access: write
mechanism: by reference

This argument is a NULL terminated string that contains the returned text from
the SYS$GETMSG system service. The maximum size returned (as defined by
the SYS$GETMSG system service) is 256 bytes. To avoid overwriting memory,
the caller must provide a buffer address of at least 257 bytes.

Developing a COM for OpenVMS Application 7–11

Developing a COM for OpenVMS Application
NTA$VMSGetMessage

flag
OpenVMS usage: flag
type: longword (unsigned)
access: read only
mechanism: by value

Controls the translation of the error code. The following values are defined in
NTA_MESSAGE.H:

NTAWIN$_UNKNOWN Unknown error code
NTAWIN$_VMS OpenVMS error code
NTAWIN$_NT Windows HRESULT error code
NTAWIN$_WINDOWS Windows Win32 error code
NTAWIN$_USER Windows NT status code

If you provide the value NTAWIN$_UNKNOWN, the routine makes its best
estimate as to the correct text. The routine parses the text as follows:

1. Check for a Windows HRESULT (high-order nibble = 0x8). If this check fails,
go to the next step.

2. Check for a Windows NT user defined status code (high-order nibble = 0xE).
If this check fails, go to the next step.

3. Assume this is an OpenVMS error code.

The system cannot tell the difference between an OpenVMS error code and a
Windows Win32 error code.

count
OpenVMS usage: FAO count
type: longword (unsigned)
access: write
mechanism: by reference

This argument is the optionally returned FAO argument count in the returned
message. Currently all NTAWIN messages use ASCII substitution arguments
(!AS) only. The caller must convert all numeric data to ASCII before performing
the substitution with SYS$FAO.

Description

This routine uses the OpenVMS SYS$GETMSG system service. The
messages are stored in the SYS$MESSAGE:NTAWINMSG.EXE and
SYS$MESSAGE:NTARPCMSG.EXE images.

To call this routine, you must include the NTA_MESSAGE.H file in the
DCOM$LIBRARY: directory and link with the SYS$LIBRARY:DCOM$WIN32_
SHR shareable image.

Condition Values Returned

Any status from the SYS$GETMSG system service.
For more information about the SYS$GETMSG system service, see the OpenVMS System
Services Reference Manual.

7–12 Developing a COM for OpenVMS Application

8
Authentication

8.1 What is Authentication?
Authentication is the act of verifying a user’s identity by the computer system
before permitting access to the system. After successfully authenticating a user,
the system binds the user’s authorization information to the user’s process in the
form of credentials. The system uses these credentials to determine whether to
grant or deny access to system resources.

OpenVMS provides both native (SYSUAF-based) and Windows NT-compatible
authentication and authorization capabilities as follows:

• Native: The system performs authentication using password information
stored in the SYSUAF.DAT file. Authorization information consists of UIC,
privileges, and rights identifiers.

• Windows NT: The system performs authentication using password
information stored in a SAM database managed by domain controllers.
Authorization information consists of primary SID, group SIDs, session key,
and privileges obtained from the user’s account information in the SAM
database.

After OpenVMS successfully authenticates a user (either native or Windows NT),
OpenVMS attaches the user’s native credentials to the process using a structure
known as a persona. If the system used Windows NT for authentication,
OpenVMS also attaches the user’s Windows NT credentials to the process (as an
extension to the persona).

8.2 Acquiring Windows NT Credentials Using NTA$LOGON
NTA$LOGON is a utility that allows you to acquire NTLM credentials. All
processes that need Windows NT security to access the OpenVMS Registry or
COM for OpenVMS facilities require NTLM credentials.

You must provide NTA$LOGON with a user account name, a password, and (if
required) a domain name. NTA$LOGON uses the Authentication and Credential
Management (ACM) Authority to contact the domain controller and acquire a
Windows NT access token. NTA$LOGON merges the Windows NT information
with the user’s OpenVMS credentials.

For a detailed review of NTA$LOGON dependencies and a description of how
NTA$LOGON interacts with other parts of the OpenVMS infrastructure, see
Section 5.1 and Section 4.8 (especially the ACME server and Advanced Server for
OpenVMS server).

To use the NTA$LOGON utility, you can enter any of the following:

• Enter the following command to run the NTA$LOGON utility:

$ RUN SYS$SYSTEM:NTA$LOGON

Authentication 8–1

Authentication
8.2 Acquiring Windows NT Credentials Using NTA$LOGON

The system prompts you for a user account name and password.

• Define a DCL symbol to use NTA$LOGON to parse the command line. For
example:

$ NTLOGON :== NTALOGON
$ NTLOGON

You can specify parameters on the command line. Table 8–1 shows the
command line parameters. If you do not specify any parameters, the system
prompts you for the required information.

• Use the MCR command to use NTA$LOGON to parse the command line. For
example:

$ MCR NTA$LOGON

You can specify parameters on the command line. Table 8–1 shows the
command line parameters. If you do not specify any parameters, the system
prompts you for the required information.

Table 8–1 shows the NTA$LOGON utility command line parameters.

Table 8–1 NTA$LOGON Utility Command Line Parameters

Argument Value Required/Optional

P1 User account name. If an account name
is needed but was not specified on the
command line, NTA$LOGON prompts for
input.

Optional

P2 Password. If a password is needed but
was not supplied on the command line,
NTA$LOGON prompts for input (echoing
suppressed).

Optional

Example 8–1 shows a typical NTA$LOGON session to acquire credentials.

Example 8–1 Sample NTA$LOGON Session

$ NTLOGON :== NTALOGON
$ NTLOGON joesmith
Password:

Note

Windows NT domain names and user account names are not case
sensitive. NTA$LOGON converts all domain names and user account
names to uppercase. If you specify a password on the command line, DCL
converts all characters to uppercase, unless you enclose the password in
quotation marks ("").

8–2 Authentication

Authentication
8.2 Acquiring Windows NT Credentials Using NTA$LOGON

8.2.1 NTA$LOGON Optional Qualifiers
NTA$LOGON accepts the following optional qualifiers:

• /DELETE

Deletes the current Windows NT credentials.

If you specify the /DELETE qualifier with the /WRITE_FILE qualifier, the
system deletes the password record for the specified domain name and user
account name from the file.

• /DOMAIN=name

Specifies a domain name. This qualifier converts the name to uppercase. If
you do not specify this qualifier, the system uses the default domain name.

• /LIST

Lists the domain name and the user account name assigned to the current
process.

If you use the /LIST qualifier with the /READ_FILE or /WRITE_FILE
qualifier, the system lists the contents of the file.

• /LOG

Displays a message when an operation completes.

• /OVERRIDE_MAPPING

Acquires Windows NT credentials for the specified Windows NT user account
name even if the OpenVMS user name of the process does not match the
OpenVMS user name associated with that Windows NT user account name in
the domain controller.

This qualifier requires the IMPERSONATE privilege.

• /READ_FILE [=file]

This qualifier causes the system to search the binary input file created
by the /WRITE_FILE qualifier for the specified domain name and user
account name, instead of reading the password from the user input
device. The /READ_FILE qualifier supports only binary files created by
the NTA$LOGON/WRITE_FILE command.

If the system finds a matching record, NTA$LOGON attempts to use that
password to acquire Windows NT credentials.

If you do not provide a file specification, the system uses the following default
file specification:

DCE$COMMON:[000000]NTA$LOGON.DAT

• /TYPE={BATCH | DIALUP | LOCAL | NETWORK | REMOTE}

Specifies the rules under which access is to be granted or denied. If you do
not specify this qualifier, the default is the type of the current process. This
qualifier is usually used for detached processes (detached processes do not
have a default type).

This qualifier requires IMPERSONATE privilege.

• /WRITE_FILE [=file]

This qualifier causes the system to write the specified domain name, user
account name, and password into an output file to be used later (see the
/READ_FILE qualifier), instead of using the user-supplied password.

Authentication 8–3

Authentication
8.2 Acquiring Windows NT Credentials Using NTA$LOGON

If you do not provide a file specification, the system uses the following default
location and file name:

DCE$COMMON:[000000]NTA$LOGON.DAT

Caution

The /READ_FILE and /WRITE_FILE qualifiers are intended to be used
only by servers that have no other way to acquire Windows NT credentials
to access the OpenVMS Registry or COM for OpenVMS facilities. Compaq
does not recommend general use of the /READ_FILE and /WRITE_FILE
qualifiers.

Once you have written a password into a disk file, Compaq recommends
you take strong precautions to protect the password file from
unauthorized access.

8.2.2 Examples of Using NTA$LOGON to Acquire Windows NT Credentials
Example 8–2 shows how a user acquires NT credentials for the first time.

Example 8–2 Acquiring Windows NT Credentials for the First Time

$ NTLOGON :== NTALOGON
$ NTLOGON/LIST
ERROR: NtOpenProcessToken() failure: -1073741700 0xc000007c
%SYSTEM-E-NOSUCHEXT, no such extension found

$ NTLOGON/LOG JOESMITH
[Persona #1 NT extension: Account= "JOESMITH" Domain= "NT_DOMAIN"]
Password:

Example 8–3 shows how the user replaces the Windows NT credentials.

Example 8–3 Replacing Windows NT Credentials

$ NTLOGON/DELETE
$ NTLOGON/OVERRIDE_MAPPING/DOMAIN=OTHER_DOMAIN
Username: janebrown
Password:

Example 8–4 shows how a user saves a password in a disk file. The system
requests that the user enter the password twice with echoing suppressed.

Example 8–4 Saving a Password to a File

$ NTLOGON :== NTALOGON
$ NTLOGON/WRITE_FILE=DEV:[DIR]NTA$LOGON.DAT COM_SERVER
Password:
Confirm:
$ NTLOGON/READ_FILE=DEV:[DIR]NTA$LOGON.DAT/LIST
File DEV:[DIR]NTA$LOGON.DAT contains the following records:
02-MAR-1999 16:57:23.20 COM_SERVER

8–4 Authentication

Authentication
8.2 Acquiring Windows NT Credentials Using NTA$LOGON

After you have created this file, you can add the following to a DCL command
procedure:

$ NTLOGON :== NTALOGON
$ NTLOGON/READ_FILE=DEV:[DIR]NTA$LOGON.DAT COM_SERVER

8.3 The Authentication and Credential Management (ACM)
Authority

The Authentication and Credential Management authority authenticates users
and determines the user security profile for OpenVMS and Windows NT. The
ACME_SERVER process provides these ACM services. The ACME_SERVER
process uses plug-in modules called ACME agents. ACME agents perform the
actual work of responding to authentication requests, query requests, and event
requests.

The OpenVMS ACME agent (VMS$VMS_ACMESHR.EXE) provides OpenVMS
native services. The MSV1_0 ACME agent (PWRK$MSV1_0_ACMESHR.EXE,
an Advanced Server for OpenVMS product component) provides Windows NT
connectivity services.

The MSV1_0 ACME agent forwards Windows NT connectivity service requests
from NTA$LOGON and SSPI/NTLM to an Advanced Server for OpenVMS process
running on one or more systems in the cluster. The PWRK$ACME_SERVER
logical name can contain a comma-delimited list of cluster node names to which
the MSV1_0 ACME can forward requests. Running the Advanced Server for
OpenVMS process on more than one cluster node and including the node names
in the PWRK$ACME_SERVER logical name allows the MSV1_0 ACME agent
to fail over a request automatically if a connection is interrupted. If the logical
name is undefined, the system defaults to the local machine name.

The ACME_SERVER process must be present on any system running RPC or
COM for OpenVMS. However, the Advanced Server for OpenVMS process needs
to be present on only one node in the cluster.

8.3.1 Windows NT Authentication on OpenVMS
Because the ACME_SERVER returns to its callers a complete OpenVMS persona
with the requested attached Windows NT persona extension, the VMS ACME
agent enforces the following rules:

• Every Windows NT user must be mapped to a local OpenVMS user name.

The MSV1_0 ACME provides this mapping through the Advanced Server for
OpenVMS HOSTMAP database.

• The mapped OpenVMS user name must be a valid (and not disabled) account
in the SYSUAF.DAT. The account’s access restrictions must allow access
during the specified days and times. COM for OpenVMS and RPC typically
require NETWORK access during authentication.

• The mapped OpenVMS user name must be an account with the EXTAUTH
flag set. EXTAUTH allows the system manager fine control over which
OpenVMS accounts can be used for mapping. You can use the IGNORE_
EXTAUTH bit (bit number 11 [decimal]) in the SECURITY_POLICY system
parameter to override this per-account feature. If you set the IGNORE_
EXTAUTH bit to 1, OpenVMS allows you to map to any account, regardless of
the account’s EXTAUTH setting. Note that the IGNOTE_EXTAUTH is used
only for the ACME_SERVER and is ignored by Loginout.

Authentication 8–5

Authentication
8.3 The Authentication and Credential Management (ACM) Authority

8.3.2 Managing the ACME_SERVER Process (ACME Server Commands)
To start the ACME_SERVER process and configure the MSV1_0 ACME agent at
system startup, add the following entry to SYLOGICALS.COM:

$ DEFINE NTA$NT_ACME_TO_BE_STARTED YES

You can also start the ACME_SERVER process manually using the following
startup command file:

$ @SYS$STARTUP:NTA$STARTUP_NT_ACME

To shut down ACME_SERVER, enter the following command:

$ SET SERVER ACME/EXIT

If an abnormal condition in an ACME agent prevents a normal server shutdown,
use the /ABORT qualifier in the place of the /EXIT qualifier to force the ACME_
SERVER to terminate.

To turn on ACME_SERVER logging, enter the following command:

$ SET SERVER ACME/LOG

This command creates a ACME$SERVER.LOG file in the SYS$MANAGER
directory. You might find this file useful when you are trying to diagnose
potential problems.

To display the ACME_SERVER configuration information, enter the following
command:

$ SHOW SERVER ACME[/FULL]

8.3.3 Configuring the MSV1_0 ACME Agent
Table 8–2 lists and describes systemwide logical names you can use to control
certain features of the MSV1_0 ACME agent.

Table 8–2 MSV1_0 ACME Agent Logical Names

Logical name Description

PWRK$ACME_SERVER Comma-delimited list of cluster SCS node names that are running
Advanced Server for OpenVMS processes that can service Windows NT
connectivity requests. If you do not define the node names, the MSV1_0
ACME agent tries to connect to the Advanced Server for OpenVMS
process on the local system.

PWRK$ACME_RETRY_COUNT The maximum number of retry attempts the MSV1_0 ACME agent
performs when connecting to an Advanced Server for OpenVMS process.
The default value is 10.

PWRK$ACME_RETRY_
INTERVAL

The number of tenths of seconds between retry attempts. The default is
2.5 seconds.

8–6 Authentication

9
Active Template Library

9.1 COM for OpenVMS and ATL
ATL (Active Template Library) is a set of template-based C++ classes from
Microsoft that simplify the development of COM components. ATL provides
support for key COM features, such as stock implementations of IUnknown,
IClassFactory, IDispatch, dual interfaces, and connection points. It also
provides support for more advanced COM features, such as enumerator classes
and tear-off interfaces.

The ATL COM AppWizard and ATL Object Wizard in Microsoft Visual Studio
can be used to quickly create code for simple COM objects that can be copied to
OpenVMS systems and built with very few modifications.

The COM for OpenVMS ATL is based on Microsoft ATL Version 3.0. You must
be running COM Version 1.1-B for OpenVMS or higher. ATL on OpenVMS Alpha
Version 7.2-1 requires Compaq C++ Version 6.2-016 or higher.

COM for OpenVMS provides ATL as source code in header files that you include
in your application.

Table 9–1 shows the differences between the ATL implementation on Windows
NT and OpenVMS.

Table 9–1 ATL Implementation Differences

Implementation Windows NT OpenVMS

Interface GUI Character cell

Server models Single threaded or
multithreaded

Multithreaded only

ATL available as DLL Yes (not required) No

Application registration Automatic using
UpdateRegistryFromResource
function in ATLBASE.H

Automatic using UpdateRegistryFromFile
function in ATLBASE.H

ATL component types In-process as DLL
Out-of-process as EXE

In-process as shareable image
Out-of-process as an executable image

9.2 Developing a COM for OpenVMS Application Using ATL
The following sections describe how to create a COM for OpenVMS application
using ATL.

Active Template Library 9–1

Active Template Library
9.2 Developing a COM for OpenVMS Application Using ATL

9.2.1 Step 1: Create the ATL Component in Microsoft Visual Studio
Generate the code using the Microsoft Visual Studio ATL COM AppWizard. For
information about using the ATL COM AppWizard, see the Microsoft Developer
Network (MSDN) documentation.

Copy the generated files to OpenVMS. For example, copy the files using File
Transfer Protocol (FTP) in ASCII mode. Table 9–2 lists and describes the files
that the ATL COM AppWizard would generate for a project named mycomapp.

Table 9–2 Files Generated by ATL COM AppWizard for mycomapp

File name Description Platform
In-Process or
Out-of-Process

mycomapp.cpp Contains the implementation
of DllMain, DllCanUnloadNow,
DllGetClassObject, DllRegisterServer
and DllUnregisterServer. Also contains
the object map, which is a list of the
ATL objects in your mycomapp. This
is initially blank, because you have not
created an object yet.

Windows
NT/OpenVMS

Both

mycomapp.def The standard Windows module definition
file for the DLL.
Note: MYCOMAPP.DEF becomes
MYCOMPAP$SHR.OPT on OpenVMS.

Windows NT In-process

mycomapp.dsw The mycomapp workspace. Windows NT Both

mycomapp.dsp The file that contains the mycomapp
settings.

Windows NT Both

mycomapp.idl The interface definition language file,
which describes the interfaces specific to
your objects.

Windows
NT/OpenVMS

Both

mycomapp.rc The resource file, which initially contains
the version information and a string
containing the mycomapp name.

Windows NT Both

Resource.h The header file for the resource file. Windows
NT/OpenVMS

Both

mycomappps.mk The make file that can be used to build
a proxy/stub DLL. You do not need this
file.

Windows NT Proxy/stub

mycomapps.def The module definition file for the
proxy/stub DLL.
Note: MYCOMAPPPS.DEF becomes
MYCOMAPPPS$SHR.OPT on OpenVMS.

Windows NT Proxy/stub

StdAfx.cpp The file that will include the ATL
implementation files.

Windows
NT/OpenVMS

Both

StdAfx.h The file that will include the ATL header
files. To make the mycomapp DLL
useful, you need to add a control, using
the ATL Object Wizard.

Windows
NT/OpenVMS

Both

mycomapp.rgs A registrar script for your COM server. Windows
NT/OpenVMS

Both

(continued on next page)

9–2 Active Template Library

Active Template Library
9.2 Developing a COM for OpenVMS Application Using ATL

Table 9–2 (Cont.) Files Generated by ATL COM AppWizard for mycomapp

File name Description Platform
In-Process or
Out-of-Process

myinterface.rgs A registrar script for your COM server. Windows
NT/OpenVMS

Both

myinterface.cpp The interfaces specific to your object. Windows
NT/OpenVMS

Both

myinterface.h The header file for the interfaces. Windows
NT/OpenVMS

Both

9.2.2 Step 2: Modify Generated Files for ATL Applications on OpenVMS
Make the following changes to the generated files before you build ATL
applications on OpenVMS.

9.2.2.1 Remove _ATL_MIN_CRT
When the ATL COM AppWizard generates mycomapp, it also defines the macro
_ATL_MIN_CRT as part of the GUI support. Because OpenVMS does not have a
graphical interface, you must remove (or not define) _ATL_MIN_CRT when you
build on OpenVMS.

9.2.2.2 Include ATLMAIN.CXX
On OpenVMS, you must include ATLMAIN.CXX for out-of-process components.
ATLMAIN.CXX defines the wWinMain() function.

9.2.2.3 Modify Registration Procedure
OpenVMS does not support registering the application using the
UpdateRegistryFromResource function. You must use the OpenVMS
UpdateRegistryFromFile function in the ATLBASE.H header file. You must make
the necessary changes to your application. The following table shows the changes
you must make.

File to search Search for Replace with

Interface header file DECLARE_REGISTRY_RESOURCEID DECLARE_REGISTRY_FILE

Project source file _Module.UpdateRegistryFromResource _Module.UpdateRegistryFromFile

The following example shows sample coding changes.

#ifdef __vms
DECLARE_REGISTRY_FILE(_T("MYINTERFACE.RGS"))
#else
DECLARE_REGISTRY_RESOURCEID(IDR_MYINTERFACE)
#endif

#ifdef __vms
_Module.UpdateRegistryFromFile(_T_"MYCOMAPP.RGS"), TRUE);
#else
_Module.UpdateRegistryFromResource(IDR_MYCOMPAPP, TRUE);
#endif

Active Template Library 9–3

Active Template Library
9.2 Developing a COM for OpenVMS Application Using ATL

9.2.3 Step 3: Build an Application Using the MIDL Compiler
This process is the same as shown in Section 7.2.

For example (in-process):

$ MIDL :== $DCOM$MIDL.EXE
$ MIDL -nologo -Oicf mycompapp.idl -
-IDCOM$LIBRARY -
-iid mycompapp_i.c -
-proxy mycompapp_p.c -
-dlldata dlldata.c -
-tlb mycompapp$shr.tlb

For example (out-of-process):

$ MIDL :== $DCOM$MIDL.EXE
$ MIDL -nologo -Oicf mycompapp.idl -
-IDCOM$LIBRARY -
-iid mycompapp_i.c -
-proxy mycompapp_p.c -
-dlldata dlldata.c -
-tlb mycompapp.tlb

Compaq recommends that the name of your type library match the name of your
executable or shareable image.

9.2.4 Step 4: Compile the ATL COM Application
The following sections describe how to compile COM for OpenVMS applications.

9.2.4.1 Required Header File: ATLBASE.H
The VMS_ATL.H header file defines several macros used by the Wind/U header
files. VMS_ATL.H is already included in the ATLBASE.H header file. When creating
ATL source code, you must include ATLBASE.H as the first noncommented line in
your source (both header and implementation) files.

9.2.4.2 Required Macro Definitions
Include the following /DEFINE qualifier on all of your C and CXX commands:

/DEFINE=(UNICODE=1,_WINDU_SOURCE=0X041000,_WIN32_DCOM,_ATL_STATIC_REGISTRY)

The UNICODE macro ensures that wide-character variants of Win32 APIs and
data structures are enabled when you compile. (The UNICODE macro is also
defined in VMS_DCOM.H.) If you omit the UNICODE macro, your compile fails
when you build using the Wind/U Win32 environment.

The other two macro definitions are recognized by the Wind/U header files and
are required to ensure the proper definition of structures and COM APIs.

The _ATL_STATIC_REGISTRY macro enables you to statically link with the ATL
registry component (Registrar) for optimized Registry access. You can add the
macro either by including the /DEFINE qualifier on the command line or by
adding the stdafx.h header file to your code.

9.2.4.3 Required Include Directories
COM for OpenVMS applications typically require header files that come
from DCOM$LIBRARY. The ATL header files and source files are also located in
DCOM$LIBRARY.

Include the following qualifier on your C and CXX command lines:

/INCLUDE=DCOM$LIBRARY

9–4 Active Template Library

Active Template Library
9.2 Developing a COM for OpenVMS Application Using ATL

If you already have an /INCLUDE qualifier on your command line, modify the
command to include DCOM$LIBRARY.

9.2.4.4 Required C++ Qualifiers
You must specify the following C++ qualifiers when you build COM for OpenVMS
applications:

• /EXCEPTIONS=CLEANUP

Specify the /EXCEPTIONS=CLEANUP qualifier on C++ commands to enable C++
exceptions.

• /STANDARD=MS

The C++ compiler supports many different compilation standards. You must
use /STANDARD=MS for COM applications created by ATL.

/STANDARD=MS informs the compiler that it should follow the language
constructs supported by the Visual C++ compiler. This switch works well
with the code generated by ATL.

• /TEMPLATE_DEFINE=(NOALL,NOPRAGMA)

This switch controls the instantiation of C++ templates. You must specify the
following options:

— [NO]ALL

Instantiate all function template entities declared or referenced in
the compilation unit, including typedefs. For each fully instantiated
template class, all its member functions and static data members
are instantiated even if they were not used. Nonmember template
functions are instantiated even if the only reference was a declaration.
Instantiations are created with external linkage. Overrides /REPOSITORY
at compile time. The compiler places instantiations in the user’s object
file. The template definition must be present before the point of each
instantiation in the source file.

The default is /TEMPLATE_DEFINE=NOALL.

— [NO]PRAGMA

Determines whether the C++ compiler ignores #PRAGMA DEFINE_TEMPLATE
directives encountered during the compilation. This option lets you
quickly switch to automatic instantiation without having to remove all
the pragma directives from your program’s code base.

The default is /TEMPLATE_DEFINE=PRAGMA, which enables #PRAGMA
DEFINE_TEMPLATE.

9.2.5 Step 5: Link the ATL COM Application
To build a COM for OpenVMS application, you must build both client and
component images. Because you can implement a component as either an in-
process component or an out-of-process component, you must build either a
shareable image or an executable image, or both.

The following sections describe the steps you must follow to link the client,
component, and proxy/stub images.

Active Template Library 9–5

Active Template Library
9.2 Developing a COM for OpenVMS Application Using ATL

9.2.5.1 Linking the Client and the Out-of-Process Component
Although you do not need to specify any qualifiers to link the client or the
component executable images, you must link both images. The specific link-time
dependency is as follows:

• DCOM$LIBRARY:DCOM.OPT

If you have one or more C++ modules, use the C++ linker (CXXLINK) instead
of the standard OpenVMS linker so you can specify the location of your C++
repository (/CXX_REPOSITORY qualifier). For example:

$ CXXLINK/your-specific-linker-qualifiers list-of-object-modules, -
_$ DCOM$LIBRARY:DCOM.OPT/OPTIONS, application.OPT/OPTIONS -
_$ /REPOSITORY=[.CXX_REPOSITORY]

You can also include the list of object modules in an options file instead of on the
command line.

9.2.5.2 Linking the In-Process Component Shareable Image
The in-process component shareable image dependency list differs slightly from
that of the client and component executables. The specific link-time dependencies
are as follows:

• [directory-name]MYCOMPAPP$SHR.OPT

• DCOM$LIBRARY:DCOM.OPT

9.2.5.3 Creating a Symbol Vector
Use the procedure described in Section 7.4.2.1 to create a symbol vector for the
in-process component shareable image.

Use the procedure described in Section 7.4.3 to create a symbol vector for the
proxy/stub shareable image.

9.3 ATL Samples
TESTATL is an out-of-process sample, and MATH101 is an in-process sample.

You can find the sample ATL applications shown in this chapter in the following
directories on the COM for OpenVMS kit:

DCOM$EXAMPLES:[TESTATL_OUTPROC]
DCOM$EXAMPLES:[TESTATL_INPROC]

Note

If you are running authenticated COM, before you build the application
on OpenVMS, you must run NTA$LOGON and acquire Windows NT
credentials. For more information, see Section 8.2.

9.3.1 Out-of-Process COM Sample (TESTATL_OUTPROC)
This sample implements a COM client and server in which the component
provides one interface: ISum.

Given sources initially generated by the Microsoft Visual Studio ATL AppWizard
and a few applied changes, the sample demonstrates the build, registration, and
execution of the ATL application on OpenVMS.

9–6 Active Template Library

Active Template Library
9.3 ATL Samples

The following sections describe how to create the application using the Microsoft
ATL AppWizard on Windows NT and how to build the application on an
OpenVMS system.

9.3.1.1 Creating the Application on Windows NT
Use the following guidelines when generating a skeleton project and simple
objects using the Microsoft Visual Studio ATL AppWizard.

• Generate the skeleton project

– Select the ATL COM AppWizard and name your skeleton project.

– Choose Executable (EXE) as the server type.

• Add objects

– Start the ATL Object Wizard.

– From the Objects category, select Simple Object.

– From the Attribute tab, choose the Both threading model.

9.3.1.2 Building, Registering, and Running the Application on OpenVMS
A README file describes how to build, register, and run this COM for OpenVMS
sample. The file is located in:

DCOM$EXAMPLES:[TESTATL_OUTPROC]README-TESTATL_OUTPROC.TXT

9.3.2 In-Process COM Sample (TESTATL_INPROC)
This sample implements a COM client and server in which the component
provides three interfaces: ISum, IDiv, and IMul.

Given sources initially generated by the Microsoft Visual Studio ATL AppWizard,
the sample demonstrates the build, registration, and execution of the shareable
application on an OpenVMS system.

The following sections describe how to build the application.

9.3.2.1 Creating the Application on Windows NT
Use the following guidelines when generating a skeleton project and simple
objects using the Microsoft Visual Studio ATL AppWizard.

• Generate the skeleton project

– Select the ATL COM AppWizard and name your skeleton project.

– Choose Dynamic Link Library (DLL) as the server type.

• Add objects

– Start the ATL Object Wizard.

– From the Objects category, select Simple Object.

– From the Attribute tab, choose the Both threading model.

9.3.2.2 Building, Registering, and Running the Application on OpenVMS
A README file describes how to build, register, and run this COM for OpenVMS
sample. The file is located in:

DCOM$EXAMPLES:[TESTATL_INPROC]README-TESTATL_INPROC.TXT

Active Template Library 9–7

Active Template Library
9.4 Suggested Reading

9.4 Suggested Reading
The following resources can provide you with more information about ATL:

• Third-party books about ATL:

— Beginning ATL COM Programming, Grimes and Stockton, Templeman
and Reilly, Wrox Press, Olton, Birmingham, UK, 1998. ISBN: 1-861000-
11-1.

— Professional ATL COM Programming, Dr Richard Grimes, Wrox Press,
Olton, Birmingham, UK, 1998. ISBN: 1-861001-4-01.

• Websites:

— The Component Object Model Specification, available from the Microsoft
COM website:

www.microsoft.com/com

9–8 Active Template Library

Part II
OpenVMS Registry

The following chapters describe the OpenVMS Registry database, its structure,
and the $REGISTRY and $REGISTRYW system services that interface with the
OpenVMS Registry.

10
Overview of OpenVMS Registry

10.1 What is the Registry?
The Windows NT Registry is a single, systemwide, hierarchical database of
configuration information about hardware and software (both the operating
system and applications). The Windows NT Registry replaced Windows 3.x
.ini files, providing a single place for storing application and configuration
information.

To allow OpenVMS and Windows NT to interoperate, Compaq has provided a
registry on OpenVMS. Like the Windows NT Registry, the OpenVMS Registry is
made up of two components: the OpenVMS Registry database and the OpenVMS
Registry server. The OpenVMS Registry database is a systemwide or clusterwide
hierarchical database of configuration information. This information is stored in a
database structure of keys and associated values. The OpenVMS Registry server
controls all OpenVMS Registry operations, such as creating and backing up the
OpenVMS Registry database, and creating, displaying, modifying, or deleting
keys and values.

The OpenVMS Registry includes interfaces (COM APIs and system services) to
allow applications to control the OpenVMS Registry server and to read and write
to the OpenVMS Registry database. The OpenVMS Registry also includes server
management utilities to allow system managers to display and update OpenVMS
Registry information from the OpenVMS DCL command line.

The OpenVMS Registry is compatible with the Windows NT Registry. Windows
NT client applications such as RegEdt32 can connect to and edit the OpenVMS
Registry.

10.1.1 Suggested Reading
The following resources can provide you with more information about Windows
NT Registry and related topics:

• Third-party books about the Windows NT Registry:

— Windows NT Server 4.0 Unleashed, Jason Garms, SAMS Publishing,
Indianapolis, IN, 1998. ISBN: 0-672-30933-5.

10.2 OpenVMS Registry Concepts and Definitions
The OpenVMS Registry, like the Windows NT Registry, is a hierarchical database
with several branches.

The following sections list and explain OpenVMS Registry database elements and
operation.

Overview of OpenVMS Registry 10–1

Overview of OpenVMS Registry
10.2 OpenVMS Registry Concepts and Definitions

10.2.1 Keys, Subkeys, and Values
A key is one of the basic building blocks of the OpenVMS Registry database. A
key contains information specific to the computer, system, or user; it is a header
field in the OpenVMS Registry database. Keys can be arranged in a hierarchy (or
tree).

There are two main (or root) keys in the OpenVMS Registry:

• HKEY_USERS contains information about each user.

• HKEY_LOCAL_MACHINE contains hardware, software, security, and general
system configuration information.

The key HKEY_CLASSES_ROOT points to the CLASSES subkey in
HKEY_LOCAL_MACHINE. These root keys are discussed in more detail in Section 10.3.

A subkey is a key that is a child to another key. A key can have zero or more
subkeys. Subkeys allow you to group related keys together below another key in
a hierarchy or tree.

A value entry (or value) is a named element of data; it is a record field in the
registry database. A key has zero or more associated values. A value has a value
name, a value type, a collection of flags, and associated data (defined by the
value’s type). OpenVMS Registry supports the following value types:

• Null-terminated string

• Null-terminated array of null terminated strings

• Null-terminated string containing environment variables (logical names or
symbols)

• 32-bit data item

• 64-bit data item

• Raw binary

Figure 10–1 summarizes the relationship between keys, subkeys, and values.

Figure 10–1 Key, Subkey, and Value Relationships

Key1=Value1
Key2

|
+-Subkey1=Value1
|
+-Subkey2=Value1,Value2
:
.

10.2.1.1 Key and Value Volatility
You can define OpenVMS Registry keys and values as either nonvolatile or
volatile. Nonvolatile keys are saved to OpenVMS Registry files. Volatile keys
are cached to a temporary file.

On Windows NT systems, volatile keys and values are removed when the system
restarts.

10–2 Overview of OpenVMS Registry

Overview of OpenVMS Registry
10.2 OpenVMS Registry Concepts and Definitions

On OpenVMS, volatile keys and values are automatically removed when all
nodes in a cluster are rebooted. OpenVMS extends the lifetime of volatile keys to
survive server failover but not a cluster reboot. (In a standalone system, volatile
keys and values are lost when the system reboots.)

10.2.1.2 Key Write-through and Write-behind
When you create a key, you can specify when the OpenVMS Registry should write
that key’s changed information. The write options are as follows:

• Write-through: Write the changes to disk immediately.

• Write-behind: Cache the changes and write them later.

The Cache Action attribute allows you to specify a key’s write characteristics. If
you do not specify the cache action attribute when you create the key, the key
inherits this attribute from its parent.

When you use the SYS$REGISTRY interface, you can use the the REG$M_NOW
function code modifier for a request in progress to force an immediate write
(write-through), regardless of the cache action attribute value.

10.2.1.3 Linking a Key to Other Keys and Values
OpenVMS Registry keys can link to other OpenVMS Registry keys, providing
multiple paths to the same piece of data. In the same way, OpenVMS Registry
values can link to other OpenVMS Registry values. These key and value links, or
symbolic links, are similar to file links. Symbolic links are name references.

For example, you can link Key A to Key B. When you query Key A and its value,
the system returns Key B’s value.

You can also chain symbolic links. That is, Key A can point to Key B and Key B
can point to Key C; as a result, Key A also points to Key C. You can specify a link
through the $REGISTRY system service or through the OpenVMS Registry server
management command-line interface.

10.2.1.4 Rules for Creating OpenVMS Registry Keys and Value Names
The following rules apply to key and value names:

• A key can have subkeys and values.

• A key name can be composed of any Unicode (4 bytes) character except the
backslash (\) character and the null character. You must specify at least one
character.

• A value name can be composed of any Unicode (4 bytes) character.

• A key string can be either a name (for example, disk) or a path (for example,
Hardware\cosmos\disk).

• A value string can be a name only.

• When you define a key, if you specify a path but the system does not find one
or more of the path subkeys, the system creates these subkeys automatically.
The created keys inherit the attributes of their parent.

• The key and value names are case preserved in the OpenVMS Registry
database. Name comparisons are case insensitive unless you specify the
REG$M_CASESENSITIVE function code modifier with calls to the $REGISTRY
system service.

Overview of OpenVMS Registry 10–3

Overview of OpenVMS Registry
10.2 OpenVMS Registry Concepts and Definitions

• For pure binary data, the maximum size of a value is 1 MB (for Windows NT
compatibility).

10.2.2 Class
The Class attribute allows you to store additional descriptive information with
each key. For example, specifying Class text string could allow you store
permitted data types with a specified key.

10.2.3 Hive
A hive is a collection of related keys, subkeys, and values stored in the OpenVMS
Registry.

On Windows NT systems, a hive is stored in a single file in the
%SystemRoot%\system32\config directory, along with an associated LOG file.
Windows NT allows users to save hives to specified files on disk so that these files
can be loaded at a later time.

On OpenVMS systems, the entire OpenVMS Registry database consists of two
hives: REGISTRY$LOCAL_MACHINE.REG and REGISTRY$USERS.REG. OpenVMS does
not support loading and unloading hives.

10.3 OpenVMS Registry Structure
To allow Windows NT applications to interface with the OpenVMS Registry
database, the OpenVMS Registry database includes a subset of the Windows NT
Registry predefined keys and subkeys.

The OpenVMS Registry includes the following predefined standard keys:

• HKEY_CLASSES_ROOT

On Windows NT systems, this key is reserved for the definition of classes of
documents and the properties associated with these classes.

On OpenVMS systems, this key by default does not have any subkey or value.

This entry point maps to the HKEY_LOCAL_MACHINE\SOFTWARE\Classes subkey.

• HKEY_USERS

On Windows NT systems, the entries under this entry point define the default
user configuration for users on the local system and the user configuration for
the current user.

On OpenVMS systems, this key by default does not have any subkey or value.

• HKEY_LOCAL_MACHINE

The entries under this entry point are reserved for system configuration
information.

On Windows NT systems, this area contains information about the bus type,
system memory, and installed hardware and software.

On OpenVMS systems, this key has the following predefined subkeys:

— Hardware

On Windows NT systems, the system constructs the volatile subkeys of
this key from the information gathered at boot time.

On OpenVMS systems, this key does not have any subkey or value by
default.

— Security

10–4 Overview of OpenVMS Registry

Overview of OpenVMS Registry
10.3 OpenVMS Registry Structure

On Windows NT systems, these keys contain all the security information
for the local computer. The system owns the information in these keys
and protects them accordingly.

On OpenVMS systems, this key by default does not have any subkey or
value.

— Software

On Windows NT systems, this key contains information about
the software on the local system that is independent of per-user
configurations.

On OpenVMS systems, this key has the following predefined subkeys:

* Classes

* Compaq Computer Corporation

* Microsoft

— System

On Windows NT systems, this key contains information about devices and
services.

On OpenVMS systems, this key has the following predefined subkeys:

* CurrentControlSet

On Windows NT systems, this key contains information about Control,
Enum, and Hardware Profiles and Services.

On OpenVMS systems, this key is reserved for use by Advanced
Server for OpenVMS.

* Registry

This subkey does not exist on Windows NT systems. On OpenVMS
systems, this key contains the OpenVMS Registry server configuration
parameters in the form of subkeys and values. The predefined
subkeys are as follows:

+ File Quotas

This subkey is empty when you create the OpenVMS Registry
database. A system manager can assign quota for each OpenVMS
Registry database file by creating a value whose name is the name
of the OpenVMS Registry file. If no value exists for a file, the
OpenVMS Registry server uses the default value for the Default
File Quota setting.

For example, a system manager could use REG$CP to assign a 1 MB
quota to the OpenVMS Registry REGISTRY$LOCAL_MACHINE.REG file
by issuing the following command:

$ MCR REG$CP
REG> CREATE VALUE/NAME=REGISTRY$LOCAL_MACHINE/TYPE=DWORD/ -
_REG> DATA=%D1000000 "hkey_local_machine\system\registry\File Quotas"

+ File Monitor

This subkey is not used.

+ Priority

Overview of OpenVMS Registry 10–5

Overview of OpenVMS Registry
10.3 OpenVMS Registry Structure

This subkey is empty at OpenVMS Registry database creation. A
system manager can change the priority of the OpenVMS Registry
server on a specified node by creating a value whose name is the
node name of the system in the cluster on which the OpenVMS
Registry server resides.

For example, a system manager could use the REG$CP server
management utility to assign a priority of 100 to node COSMOS by
issuing the following command:

$ MCR REG$CP
REG> CREATE VALUE/NAME=COSMOS/TYPE=DWORD/DATA=%D100 -
_REG> "hkey_local_machine\system\registry\Priority"

10.4 Reading and Writing to the OpenVMS Registry
You can read and write to the OpenVMS Registry in the following ways:

• Using COM for OpenVMS, through the COM APIs available on OpenVMS.
This allows application programmers to enter, modify, and delete OpenVMS
Registry keys and values.

• Through the $REGISTRY and $REGISTRYW system services and the
OpenVMS Registry server management utility commands. This allows
application programmers to enter, modify, and delete OpenVMS Registry keys
and values. For more information, see Section 10.4.1.

• From Windows NT, through the Windows NT Registry APIs, or using
RegEdt32 (the Windows NT Registry Editor). This allows Windows NT users
to view and edit OpenVMS Registry keys and values.

10.4.1 $REGISTRY System Services
The OpenVMS Registry includes two OpenVMS system services that provide
an interface to the OpenVMS Registry server. The OpenVMS Registry system
services allow you to query, update, and create keys, subkeys, and values in the
OpenVMS Registry database.

For more information about the $REGISTRY and $REGISTRYW system services,
see Chapter 13.

10.4.2 REG$CP Server Management Utility
The REG$CP server management utility allows you to display and update
OpenVMS Registry information from the OpenVMS DCL prompt. The utility
also allows you to back up and restore the entire OpenVMS Registry database to
or from a file, as long as you have the required system privileges.

For more information about the REG$CP server management utility, see
Chapter 12.

10.5 OpenVMS Registry Security
The OpenVMS Registry implements both the OpenVMS and Windows NT
security models.

To access to the OpenVMS Registry database, the calling process must have the
proper OpenVMS Registry rights identifier for the operation you want to perform
(for example, REG$LOOKUP for read operations, REG$UPDATE for write operations, or
REG$PERFORMANCE for statistics operations) or the calling process must have the
SYSPRV privilege.

10–6 Overview of OpenVMS Registry

Overview of OpenVMS Registry
10.5 OpenVMS Registry Security

The following sections describe the two models.

10.5.1 OpenVMS Security Model
When a user requests access to the OpenVMS Registry, the OpenVMS system
checks the user’s Windows NT credentials and allows access as follows:

1. Does the user have Windows NT credentials?

• If the user has Windows NT credentials because the user has connected to
OpenVMS from a Windows NT system, OpenVMS allows the user access
to the OpenVMS Registry based on the user’s supplied credentials.

• If the user has Windows NT credentials because the user is a COM
Version 1.1-B for OpenVMS client, OpenVMS allows the user access to the
OpenVMS Registry based on the user’s supplied credentials.

• If the user has Windows NT credentials because the user has logged on to
OpenVMS through single signon, OpenVMS allows the user access to the
OpenVMS Registry based on the user’s supplied credentials.

If the user is not allowed access to the OpenVMS Registry based on the
user’s supplied credentials, skip to Step 2.

• If the user does not have Windows NT credentials, continue to the next
step.

2. Does the user have the OpenVMS SYSPRV privilege?

• If the user has the SYSPRV privilege, OpenVMS allows the user full
access to the OpenVMS Registry.

• If the user does not have the SYSPRV privilege, continue to the next
step.

3. Does the user have the REG$UPDATE, REG$LOOKUP, or REG$PERFORMANCE rights
identifier?

• If the user has the REG$UPDATE, REG$LOOKUP, or REG$PERFORMANCE rights
identifier, OpenVMS allows the user access to the OpenVMS Registry
using the supplied rights identifier. The user can access the OpenVMS
Registry database as follows:

— REG$UPDATE: Allows full access to the OpenVMS Registry except for
maintenance requests.

— REG$LOOKUP: Allows read-only access to the OpenVMS Registry.

— REG$PERFORMANCE: Allows access to performance data collected by the
OpenVMS Registry server.

• If the user does not have the REG$UPDATE, REG$LOOKUP, or
REG$PERFORMANCE rights identifier, continue to the next step.

4. If the user has no Windows NT credentials, OpenVMS grants the OpenVMS
user Windows NT Everyone group access. In this case, the OpenVMS user’s
access to OpenVMS Registry keys depends on what permissions the key
owner defined for Everyone when the key owner created the key or subkey.
Based on these permissions, the OpenVMS user will be able to do one of the
following:

— Read the key and its subkeys.

— Not see the key and its subkeys.

Overview of OpenVMS Registry 10–7

Overview of OpenVMS Registry
10.5 OpenVMS Registry Security

10.5.1.1 Granting OpenVMS Registry Access Rights Using the AUTHORIZE Utility
You can use the OpenVMS Authorize utility (AUTHORIZE) to add the SYSPRV
privilege and REG$UPDATE, REG$LOOKUP, and REG$PERFORMANCE identifiers to user
processes.

Caution

Granting OpenVMS Registry rights overrides Windows NT security access
checks.

Because rights identifiers are specific to an application, you cannot use the
AUTHORIZE command to create the rights identifiers. Use the REG$CP server
management utility to create these rights on your system. Running the REG$CP
server management utility creates these rights by default. You must run REG$CP
from a privileged account. For more information about running REG$CP, see
Chapter 12.

The following example shows how to use the SET RIGHTS_LIST command to
allow all users to view keys and data in the OpenVMS Registry database. This
command adds the REG$LOOKUP identifier to the system rights list.

$ SET RIGHTS_LIST/ENABLE/SYSTEM REG$LOOKUP

Example 10–1 shows how to use AUTHORIZE to grant and remove OpenVMS
Registry rights to a specific user.

Example 10–1 Using AUTHORIZE to Grant Rights to a User

$ SET DEF SYS$SYSTEM
$ RUN AUTHORIZE

UAF> GRANT/IDENTIFIER REG$LOOKUP SMITH !
UAF> GRANT/IDENTIFIER/ATTRIBUTES=DYNAMIC REG$UPDATE SMITH "
UAF> REVOKE/IDENTIFIER REG$UPDATE SMITH #
UAF> GRANT/IDENTIFIER REG$PERFORMANCE SYSTEM $

! This AUTHORIZE command grants the REG$LOOKUP identifier to user Smith,
allowing Smith to view keys and data in the OpenVMS Registry database.

" This AUTHORIZE command grants the REG$UPDATE identifier to user Smith,
allowing Smith to modify keys and data in the OpenVMS Registry database.
The dynamic attribute allows Smith to remove or restore the REG$UPDATE
identifier from the process rights list by using the SET RIGHT/ENABLE or the
SET RIGHT/DISABLE command.

This AUTHORIZE command removes the REG$UPDATE identifier from user
Smith.

$ This AUTHORIZE command grants the REG$PERFORMANCE identifier to the
system manager account, allowing the system manager to enable and disable
the monitoring of OpenVMS Registry performance data.

10–8 Overview of OpenVMS Registry

Overview of OpenVMS Registry
10.5 OpenVMS Registry Security

10.5.2 Windows NT Security Model
Windows NT users can access the OpenVMS Registry only through the Advanced
Server for OpenVMS. OpenVMS grants Windows NT users access to the
OpenVMS Registry based on the user’s Windows NT credentials.

10.6 Controlling the OpenVMS Registry Server Operations
OpenVMS Registry server operations include control of file quotas, server priority,
error recovery actions, frequency of database backup, and OpenVMS Registry
server tuning.

The following sections describe OpenVMS Registry server operations, and provide
minimum, maximum, and default values for each setting. For information about
how to change these settings, see Chapter 12.

10.6.1 Defining Maximum Reply Age/Age Checker Interval Settings
The OpenVMS Registry server handles duplicate requests by tracking work in
progress and returning a REG$_DUPLREQUEST error. The OpenVMS Registry server
also holds completed requests in case a duplicate request is received for work that
is already completed. In this case, the OpenVMS Registry server reconstructs the
reply. After a specified time, the requests are discarded. The Maximum Reply
Age setting determines how long these requests are retained. The Age Checker
Interval setting determines how often the OpenVMS Registry server checks for
requests that exceed this age.

By default, the server checks for old completed requests every five seconds. By
default, the server discards completed requests that are older than five seconds.

Setting Name Default value Minimum value Maximum value

Maximum Reply Age 5 1 60

Age Checker Interval 5 1 60

10.6.2 Defining the Database Log Cleaner Interval/Initial Log File Size Settings
The OpenVMS Registry uses a a two-phase commit process to write modifications
to the OpenVMS Registry database. The OpenVMS Registry first writes the
modifications to a log file and then applies the log file to the OpenVMS Registry
database. The Database Log Cleaner Interval setting determines how often
the OpenVMS Registry applies the log file to the OpenVMS Registry database.
After the OpenVMS Registry applies the log file, the OpenVMS Registry creates a
new log file based on the size you specify in the Initial Log File Size setting.

The Database Log Cleaner Interval setting should be short enough so that
writes to the database do not require that the log file be extended. Also, the
log file size should be small to keep the amount of time spent applying the log
relatively short, because this operation blocks writes to the database.

By default, the log file is applied every five seconds. By default, the OpenVMS
Registry log file is created using a size of 32 blocks (16 KB).

Setting Name Default value Minimum value Maximum value

Database Log Cleaner Interval 5 1 30

Initial Log File Size 32 16 256

Overview of OpenVMS Registry 10–9

Overview of OpenVMS Registry
10.6 Controlling the OpenVMS Registry Server Operations

10.6.3 Defining Default File Quota/File Quota Interval Settings
The OpenVMS Registry server limits the size of OpenVMS Registry database
files by applying file quotas. You can assign file quotas to the individual files that
make up the OpenVMS Registry database. If you do not assign a file quota, the
OpenVMS Registry uses the Default File Quota setting.

The OpenVMS Registry server periodically recalculates the size of the OpenVMS
Registry database files to see whether quota is exceeded. The File Quota
Interval setting determines how often the OpenVMS Registry performs this
calculation.

By default, the Default File Quota setting is 10 MB. By default, the server
recalculates the file quota every 30 seconds.

Setting Name Default value Minimum value Maximum value

Default File Quota 0x10000000 0x7d00 0x3fffffff

File Quota Interval 30 10 60

10.6.4 Defining the Scan Interval Setting
In an OpenVMS Cluster, you can run OpenVMS Registry servers on more than
one node; however, only one OpenVMS Registry server is active at a time. A
OpenVMS Registry server’s priority relative to the other OpenVMS Registry
servers in the cluster determines which OpenVMS Registry server is active. If
the cluster configuration changes, the system manager can adjust the priority of
one or more OpenVMS Registry servers. After the system manager changes the
priority, the OpenVMS Registry servers in the cluster determine which server
now has the highest priority and automatically change their states as necessary.
The Scan Interval setting determines how often a OpenVMS Registry server
checks for changes in its priority.

By default, a server checks for changes in priority every 120 seconds.

Setting Name Default value Minimum value Maximum value

Scan Interval 120 60 300

10.6.5 Defining the Log Registry Value Error Setting
The OpenVMS Registry server logs an error if one of the OpenVMS Registry
server parameter values is out of the acceptable range. If the OpenVMS Registry
detects an out-of-range error, the OpenVMS Registry server uses the default
value for that parameter. The Log Registry Value Error setting is a Boolean
value that determines whether the error should be logged.

By default, the OpenVMS Registry server does not log out-of-range errors.

Setting Name Default value Minimum value Maximum value

Log Registry Value Error 0 0 1

10–10 Overview of OpenVMS Registry

Overview of OpenVMS Registry
10.6 Controlling the OpenVMS Registry Server Operations

10.6.6 Defining the Operator Communications Interval Setting
If an I/O error occurs, the OpenVMS Registry server can display a message to
the operator console using OPCOM. The Operator Communications Interval
setting determines how long the OpenVMS Registry server waits after the I/O
error to determine if the error is going to persist. If the error does persist,
OpenVMS Registry writes a message to the operator console.

By default, the OpenVMS Registry server writes a message to the operator
console if the error persists longer than 60 seconds.

Setting Name Default value Minimum value Maximum value

Age Checker Interval 5 1 60

Operator Communication
Interval

60 30 120

10.6.7 Defining the Process Time Limit Setting
The OpenVMS Registry server writes a message to the server log file if it takes
too long to process a request. The Process Time Limit setting determines when
a request has taken too long.

By default, 180 seconds are allowed per request before the OpenVMS Registry
logs a message.

Setting Name Default value Minimum value Maximum value

Process Time Limit 180 60 600

10.6.8 Defining the Reply Log Cleaner Interval Setting
The OpenVMS Registry server maintains a log of recent replies that it uses
to reconstruct work in progress in the case of failover. After a specified time,
the server discards these replies. The Reply Log Cleaner Interval setting
determines how often the OpenVMS Registry discards these replies.

By default, the OpenVMS Registry server discards replies every five seconds.

Setting Name Default value Minimum value Maximum value

Reply Log Cleaner Interval 10 5 60

10.6.9 Defining Snapshot Interval/Snapshot Location/Snapshot Versions
Settings

The OpenVMS Registry server maintains backup copies of the OpenVMS
Registry database. The Snapshot Interval setting determines how often
the OpenVMS Registry server creates a backup copy. The Snapshot Location
setting determines where the OpenVMS Registry stores the copy. The Snapshot
Versions setting determines how many previous copies the OpenVMS Registry
keeps.

By default, the OpenVMS Registry database is copied to backup once per day.
By default, the OpenVMS Registry database is copied to the location determined
by the definition of the SYS$REGISTRY logical name. By default, the OpenVMS
Registry keeps five previous versions of the OpenVMS Registry database.

Overview of OpenVMS Registry 10–11

Overview of OpenVMS Registry
10.6 Controlling the OpenVMS Registry Server Operations

Setting Name Default value Minimum value Maximum value

Snapshot Interval 86400 3600 604800

Snapshot Location SYS$REGISTRY — —

Snapshot Versions 5 1 10

10.6.10 Defining the Write Retry Interval Setting
In the OpenVMS Registry finds an error when writing to the OpenVMS Registry
database, the OpenVMS Registry server retries the write at an interval specified
by the Write Retry Interval setting.

By default, the OpenVMS Registry server attempts to retry failed writes to the
OpenVMS Registry database every five seconds.

Setting Name Default value Minimum value Maximum value

Writer Retry Interval 5 1 30

10–12 Overview of OpenVMS Registry

11
OpenVMS Registry System Management

11.1 Installing the OpenVMS Registry
The OpenVMS Registry server is installed as part of the OpenVMS Version 7.2-1
system installation.

Before you can use the OpenVMS Registry, you must configure the OpenVMS
Registry server and populate the OpenVMS Registry database. For more
information about configuring the OpenVMS Registry server, see Section 11.2.
For more information about populating the OpenVMS Registry database, see
Section 6.2.

The first time you start the OpenVMS Registry server using the startup process
described in Section 11.3, the OpenVMS system creates the OpenVMS Registry
database.

You can access the OpenVMS Registry in several ways. Depending on how you
want to access the OpenVMS Registry, you must install the following products:

• If you want to access the OpenVMS Registry using the COM APIs, you must
install COM for OpenVMS. For more information, see Chapter 4.

• If you want to access the OpenVMS Registry using the Windows NT
application RegEdt32, you must first install, configure, and start Advanced
Server for OpenVMS. For more information, see the Advanced Server for
OpenVMS documentation.

You can also access the OpenVMS Registry using the OpenVMS Registry server
management utility or the OpenVMS Registry system services, which are
installed as part of the OpenVMS Registry in OpenVMS Version 7.2-1.

11.2 Configuring the OpenVMS Registry: the REG$CONFIG
Configuration Utility

The OpenVMS Registry Configuration utility (REG$CONFIG) provides
information about the OpenVMS Registry server status and the OpenVMS
Registry database location, and allows you to change OpenVMS Registry logical
names and paths.

Enter the following command to start the OpenVMS Registry Configuration
utility:

$ @SYS$MANAGER:REG$CONFIG

OpenVMS Registry System Management 11–1

OpenVMS Registry System Management
11.2 Configuring the OpenVMS Registry: the REG$CONFIG Configuration Utility

The system displays the following menu:

OpenVMS Registry Configuration Utility
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1 - Configure OpenVMS Registry logical names and directory paths

2 - Display OpenVMS Registry logical names and directory paths

3 - Check the state of the OpenVMS Registry server

4 - Start the OpenVMS Registry server on this node

H - Help about this utility

[E] - Exit

Please enter your choice :
---------------------------------------------------------

To select an option, enter the option number. The options are as follows:

• 1 - Configure OpenVMS Registry logical names and directory paths

Allows you to configure the OpenVMS Registry server startup value and
specify the location of the OpenVMS Registry database.

For this procedure, see Section 11.2.1.

• 2 - Display OpenVMS Registry logical names and directory paths

Displays the current values of the OpenVMS Registry server logical (startup
value) for this node and the OpenVMS Registry database location.

• 3 - Check the state of the OpenVMS Registry server

Displays the current state of the OpenVMS Registry server. The system
displays one of the following:

The OpenVMS Registry server is started in the cluster.
The OpenVMS Registry server is started on this node.
The OpenVMS Registry server is not started.

• 4 - Start the OpenVMS Registry server on this node

Starts the OpenVMS Registry server on the current node. The system
displays the following message:

The OpenVMS Registry server has successfully started.

• H - Help about this utility

Displays online help for OpenVMS Registry Configuration utility options.

• [E] - Exit

Exits the OpenVMS Registry Configuration utility.

Tip: Enter Q (Quit) at any time

You can enter Q at any prompt to return to the OpenVMS Registry
Configuration utility menu.

If you quit while you are configuring logical names, the system updates
only those values for which you have received a confirmation message.

11–2 OpenVMS Registry System Management



OpenVMS Registry System Management
11.2 Configuring the OpenVMS Registry: the REG$CONFIG Configuration Utility

11.2.1 Configuring OpenVMS Registry Values
The system displays the following questions:

1. The system prompts you to enter standalone or cluster information. The
system displays the following message:

Is this system now a node in a cluster or will this system
become part of a cluster? (Y/N/Q):

2. The system displays the current information about the REG$TO_BE_STARTED
logical, then prompts you to change the value.

- REG$TO_BE_STARTED -

[current value of REG$TO_BE_STARTED]

NOTE: Setting this logical to TRUE starts the OpenVMS Registry
server automatically when the system boots. Setting this logical
to FALSE prevents the OpenVMS Registry server from starting
when the system boots and prevents other products from starting
the OpenVMS Registry server. If the OpenVMS Registry Server is not
started at boot time, but other products that require an OpenVMS
Registry server are able to start the OpenVMS Registry server, you
do not need to assign a value to this logical.

Do you want to change this value? (Y/N/Q) [Y]:

If you choose Y, the system prompts you for the new value.

Enter the new value (TRUE/FALSE/NOVAL/Q):

Enter one of the following:

Action Value

Start the OpenVMS Registry server on reboot. Allow other
products to start the server.

TRUE

Do not start the OpenVMS Registry server on reboot. Do not
allow other products to start the server.

FALSE

Do not start the OpenVMS Registry server on reboot. Allow other
products to start the server. (Deassigns the logical name.)

NOVAL

Quit this procedure and return to the OpenVMS Registry
Configuration utility menu.

Q

In which logical name table do you want the logical defined?
(SYSTEM/SYSCLUSTER/CLUSTER/Q) :

Enter one of the following:

Action Value

Add the REG$TO_BE_STARTED logical to the LNM$SYSTEM
logical name table. This table contains names that are shared by
all processes in the system.

SYSTEM

Add the REG$TO_BE_STARTED logical to the LNM$SYSCLUSTER
logical name table. This table contains names that are shared by
all processes in an OpenVMS Cluster.

SYSCLUSTER

Add the REG$TO_BE_STARTED logical to the LNM$CLUSTER
logical name table. This table is the parent table for all
clusterwide logical name tables.

CLUSTER

Quit this procedure and return to the OpenVMS Registry
Configuration utility menu.

Q

OpenVMS Registry System Management 11–3



OpenVMS Registry System Management
11.2 Configuring the OpenVMS Registry: the REG$CONFIG Configuration Utility

After you enter the new or updated value, the system confirms the change
and displays the line you must add to your SYLOGICALS.COM file.

The logical REG$TO_BE_STARTED has been temporarily defined.
Before you reboot the system you must edit your SYLOGICALS.COM
to include the line:

DEFINE/TABLE=table-name REG$TO_BE_STARTED value

Press [Enter] to continue.

3. The system displays the current information about the SYS$REGISTRY logical,
then prompts you to change the value.

- SYS$REGISTRY logical -

current value of SYS$REGISTRY

Note: When the OpenVMS Registry server is started, the system
creates an OpenVMS Registry database at this location.
If an OpenVMS Registry database already exists on your system,
you must redefine the SYS$REGISTRY logical to point to the
existing OpenVMS Registry database location.

Do you wish to change this value? (Y/N/Q) [Y]:

If you choose Y, the system prompts you for the new value.

Enter the new value for SYS$REGISTRY ("yourvalue"/NOVAL/Q):

Enter one of the following:

Action Value

Define a new or changed location for the OpenVMS Registry
database.

A valid directory
specification,
such as
DKA0:[SYS$REGISTRY].

Deassign the logical name. NOVAL

Quit this procedure and return to the OpenVMS Registry
Configuration utility menu.

Q

4. The system displays your updated value and prompts you to confirm the
value.

You have entered: value
Is this correct? (Y/N/Q) [Y]:

5. The system prompts you to enter a logical table name in which to store the
new or updated logical.

In which logical name table do you want the logical defined?
(SYSTEM/SYSCLUSTER/CLUSTER/Q):

Enter one of the following:

11–4 OpenVMS Registry System Management



OpenVMS Registry System Management
11.2 Configuring the OpenVMS Registry: the REG$CONFIG Configuration Utility

Action Value

Add the SYS$REGISTRY logical to the LNM$SYSTEM logical
name table. This table contains names that are shared by all
processes in the system.

SYSTEM

Add the SYS$REGISTRY logical to the LNM$SYSCLUSTER logical
name table. This table contains names that are shared by all
processes in an OpenVMS Cluster.

SYSCLUSTER

Add the SYS$REGISTRY logical to the LNM$CLUSTER logical
name table. This table is the parent table for all clusterwide
logical name tables.

CLUSTER

Quit this procedure and return to the OpenVMS Registry
Configuration utility menu.

Q

After you enter the new or updated value, the system confirms the change
and displays the line you must add to your SYLOGICALS.COM file.

The logical SYS$REGISTRY has been temporarily defined.
Before you reboot the system you must edit your SYLOGICALS.COM file
to include the line:

DEFINE/TABLE=table-name SYS$REGISTRY dir-spec

Press [Enter] to continue.

6. The system displays information about the location of the OpenVMS Registry
database.

- SYS$REGISTRY directory -

[directory status]

If the directory does not exist, the system prompts you to create the directory.

!!Caution!! When the OpenVMS Registry server starts, the system
creates an OpenVMS Registry database at this location. If you
already have an OpenVMS Registry database on your system, you must
redefine the SYS$REGISTRY logical to point to that location.

Do you wish to create the directory? (Y/N/Q) [Y]:

If you enter Y the system confirms the directory creation.

The SYS$REGISTRY directory has now been created.

Press [Enter] to return to the menu.

11.3 Starting the OpenVMS Registry
You can control how the OpenVMS Registry will start as follows:

• Start the OpenVMS Registry automatically when the system reboots.

• Have products that require the OpenVMS Registry to be running start the
OpenVMS Registry.

• Start the OpenVMS Registry manually.

• Prevent the OpenVMS Registry from starting.

Use the OpenVMS Registry Configuration utility described in Section 11.2 to
control how the OpenVMS Registry starts.

OpenVMS Registry System Management 11–5



OpenVMS Registry System Management
11.3 Starting the OpenVMS Registry

11.3.1 Starting the OpenVMS Registry Manually
Under some conditions, you might want to start the OpenVMS Registry server
manually.

Compaq recommends that you use the SYS$STARTUP:REG$STARTUP.COM command
procedure. The following command procedure ensures that the server process
quotas are set to the required minimum values:

$ @SYS$STARTUP:REG$STARTUP.COM

Alternately, you can use the following command to start the OpenVMS Registry
manually:

$ SET SERVER REGISTRY_SERVER/START

11.4 Shutting Down the OpenVMS Registry
The OpenVMS Registry server is shut down automatically as part of a system
shutdown.

If you want to shut down the OpenVMS Registry manually, use the following
command:

$ SET SERVER REGISTRY_SERVER/EXIT

11.5 OpenVMS Registry Server Commands
The OpenVMS Registry server commands allow you to display (SHOW) and
change (SET) the state of the OpenVMS Registry server. The following sections
list and describe the OpenVMS Registry server commands.

11–6 OpenVMS Registry System Management



OpenVMS Registry System Management
SHOW SERVER REGISTRY_SERVER

SHOW SERVER REGISTRY_SERVER

Show the current status of the OpenVMS Registry on a specified node.

This command requires the SYSPRV privilege.

Format

SHOW SERVER REGISTRY_SERVER

[/MASTER | /CLUSTER | /NODE=(node,...)]

[/PAGE]

Qualifiers

/MASTER
Displays the node and process ID (PID) of the current OpenVMS Registry master
server in the cluster. This command does not communicate with the OpenVMS
Registry servers in the cluster. Requires SYSLCK privilege as well as the
SYSPRV privilege.

/CLUSTER
Returns the show output from each OpenVMS Registry server in the cluster,
listing the OpenVMS Registry master server information first.

/NODE=(node,...)]
Returns OpenVMS Registry server information about the servers on the specified
nodes, listed in the order in which you enter the node names. The node names
you specify must be in the current cluster.

/PAGE
Displays the returned show output in a scrollable page display.

OpenVMS Registry System Management 11–7



OpenVMS Registry System Management
SET SERVER REGISTRY_SERVER

SET SERVER REGISTRY_SERVER

Change the state of the OpenVMS Registry.

This command requires the SYSPRV privilege.

Format

SET SERVER REGISTRY_SERVER

[/MASTER | /CLUSTER | /NODE=(node,...)]

[/START | /RESTART | /EXIT | /ABORT ]

[/[NO]LOG ]

Qualifiers

/MASTER
Issues the specified command to the OpenVMS Registry master server only.
Requires the SYSLCK privilege as well as the SYSPRV privilege.

/CLUSTER
Issues the SET command to each OpenVMS Registry server in the cluster, setting
the OpenVMS Registry master server last.

/NODE=(node,...)
Issues the SET command to the OpenVMS Registry servers on the specified
nodes, in the order in which you enter the node names. The node names must be
in the current cluster.

/START[=(node,...)]
Starts the OpenVMS Registry server on the specified node or nodes in the cluster.

/EXIT[=(node,...)]
Stops the OpenVMS Registry server on the specified node or nodes in the cluster.

/ABORT[=( node,...)]
Aborts the OpenVMS Registry server on the specified node or nodes in the cluster.

/[NO]LOG
Creates a new OpenVMS Registry log file in SYS$REGISTRY. NOLOG is the
default.

11–8 OpenVMS Registry System Management



OpenVMS Registry System Management
11.6 OpenVMS Registry Failover in a Cluster

11.6 OpenVMS Registry Failover in a Cluster
To increase the availability and reliability of the OpenVMS Registry, you can run
multiple OpenVMS Registry servers in a cluster, up to one per node. No matter
how many OpenVMS Registry servers you run, you have only one OpenVMS
Registry database.

When you run more than one OpenVMS Registry server in a cluster, only one
OpenVMS Registry server process is active and writing to the OpenVMS Registry
database. The other OpenVMS Registry server processes are standing by.

By default, the first OpenVMS Registry server process that is active in the cluster
remains active until either the process no longer exists or the priority among
OpenVMS Registry server processes changes.

11.6.1 Changing the Priority of OpenVMS Registry Server Processes
You can change the priority of OpenVMS Registry server processes by creating
and modifying the priority value of each node in the cluster that will run the
OpenVMS Registry server process: the higher the value, the higher the priority.

Example 11–1 shows priority values being assigned so that NODENAME1 will be the
active OpenVMS Registry server process in the cluster.

Example 11–1 Setting Priority Values

$ mcr reg$cp
REG> CREATE VALUE HKEY_LOCAL_MACHINE\SYSTEM\REGISTRY\PRIORITY -
_REG> /NAME=NODENAME1/DATA=15/TYPE=DWORD
REG> CREATE VALUE HKEY_LOCAL_MACHINE\SYSTEM\REGISTRY\PRIORITY -
_REG> /NAME=NODENAME2/DATA=10/TYPE=DWORD
REG> CREATE VALUE HKEY_LOCAL_MACHINE\SYSTEM\REGISTRY\PRIORITY -
_REG> /NAME=NODENAME3/DATA=5/TYPE=DWORD

In Example 11–1, if NODENAME1 shuts down, control of the OpenVMS Registry
database passes to the server process on NODENAME2.

Example 11–2 shows the system manager increasing the priority value of
NODENAME3 to 20.

Example 11–2 Changing Priority Values

$ mcr reg$cp
REG> MODIFY VALUE HKEY_LOCAL_MACHINE\SYSTEM\REGISTRY\PRIORITY -
_REG> /NAME=NODENAME3/DATA=20/TYPE=DWORD

In Example 11–2, the OpenVMS Registry server process on NODENAME1 goes into
standby mode and the OpenVMS Registry server process on NODENAME3 becomes
active.

11.7 Connecting to the OpenVMS Registry from a Windows NT
System

To connect to the OpenVMS Registry from a Windows NT system, you must do
the following:

• On the OpenVMS system:

— Install the Advanced Server for OpenVMS.

OpenVMS Registry System Management 11–9



OpenVMS Registry System Management
11.7 Connecting to the OpenVMS Registry from a Windows NT System

— Configure the Advanced Server for OpenVMS.

• On the Windows NT system:

— Install and configure any required hardware.

— Install and configure the Windows NT Server or Workstation software.

When you access the OpenVMS Registry database from a Windows system, you
will have all the privileges granted on your Windows NT system. For example,
if you are logged on to the Windows NT system as an Administrator, you will be
able to read and write to all keys and values in the OpenVMS Registry. Access to
OpenVMS Registry keys is based on your Windows NT user profile (username and
Group membership). Connect to the OpenVMS Registry through Advanced Server
for OpenVMS; use the Windows Regedt32 application to view and change keys,
values, and security settings.

Caution

Be careful when you modify OpenVMS Registry database keys and
values. If you damage the OpenVMS Registry database, you can affect all
applications and users on the entire OpenVMS system or cluster.

11.8 OpenVMS Registry Quotas
A quota mechanism limits the size of the OpenVMS Registry database. The
system assigns a quota to the root key datafile for every OpenVMS Registry file.
By default, these root keys are the USERS key (REGISTRY$USERS.REG) and the
LOCAL_MACHINE key (REGISTRY$LOCAL_MACHINE.REG).

The quota limits the size of the information contained within the file but does not
include the size of information stored in other files, even if the files are part of
the subtree.

The default quota and file-specific quotas are stored in the OpenVMS Registry
under the HKEY_LOCAL_MACHINE\SYSTEM\Registry key. For more information
about these keys, see Section 10.3.

11.9 OpenVMS Registry Security
A user can access (read and modify) the OpenVMS Registry directly in the
following ways:

• From a Windows NT system (through a connection through Advanced Server
for OpenVMS)

• Using the OpenVMS Registry system services ($REGISTRY[W])

• Using the OpenVMS Registry server management utility (REG$CP)

For a discussion of what system privileges and right identifiers each user needs,
see Section 10.5.1. For a description of how to grant the necessary system
privileges and right identifiers, see Section 10.5.1.1.

You can change a key’s security attributes only from a Windows NT system—you
cannot change a key’s security attributes from an OpenVMS system. OpenVMS
does not create or manage Windows NT security attributes.

11–10 OpenVMS Registry System Management



OpenVMS Registry System Management
11.10 Backing Up and Restoring the OpenVMS Registry Database

11.10 Backing Up and Restoring the OpenVMS Registry Database
The OpenVMS Registry includes a server management utility that allows you to
back up and restore the entire OpenVMS Registry database to or from a file from
the OpenVMS DCL prompt as long as you have the required system privileges.

For more information about backing up and restoring the OpenVMS Registry
database, see Section 12.2 and the REG$CP server management utility CREATE
SNAPSHOT command and the EXPORT command.

11.11 Using the OpenVMS Registry in an OpenVMS Alpha
Mixed-Version Cluster

The OpenVMS Registry Server can run in an OpenVMS Alpha mixed-version
cluster. That is, the OpenVMS Registry can run in a cluster that includes
OpenVMS versions other than OpenVMS Version 7.2-1; but the OpenVMS
Registry server must be running on the node that is running OpenVMS Version
7.2-1.

11.12 Internationalization and Unicode Support
To integrate with Windows NT, the OpenVMS Registry is Unicode compliant.
For more information about Unicode, see the OpenVMS Guide to Extended File
Specifications.

OpenVMS Registry System Management 11–11





12
OpenVMS Registry Server Management

12.1 Managing the OpenVMS Registry Server from the Command
Line

The OpenVMS Registry includes a server management utility that allows you
to update and display OpenVMS Registry information from the OpenVMS DCL
prompt.

The utility also allows you to back up and restore the entire OpenVMS Registry
database to or from a file, as long as you have the required system privileges.
For more information about backing up and restoring the OpenVMS Registry
database, see Section 12.2 and the CREATE SNAPSHOT, EXPORT, and IMPORT
commands in the command reference section of this chapter.

To start the OpenVMS Registry server management utility, enter one of the
following commands:

$ RUN SYS$SYSTEM:REG$CP

or

$ MCR REG$CP

Note

Before you can access the OpenVMS Registry database, the OpenVMS
Registry server must be running either in the cluster or on the standalone
system.

Table 12–1 lists and describes OpenVMS Registry server management utility
commands.

Table 12–1 OpenVMS Registry Server Management Utility Commands

Command Identifier Action

CREATE
DATABASE

SYSPRV Creates a new OpenVMS Registry database
file.

CREATE KEY REG$UPDATE Creates one or more keys in the OpenVMS
Registry database.

CREATE
SNAPSHOT

SYSPRV Makes an immediate backup of the
OpenVMS Registry database files.

CREATE
VALUE

REG$UPDATE Specifies the data component for a key.

(continued on next page)

OpenVMS Registry Server Management 12–1



OpenVMS Registry Server Management
12.1 Managing the OpenVMS Registry Server from the Command Line

Table 12–1 (Cont.) OpenVMS Registry Server Management Utility Commands

Command Identifier Action

DELETE KEY REG$UPDATE Removes one or more keys from the
OpenVMS Registry database.

DELETE
VALUE

REG$UPDATE Removes one or more values from a
specified key.

EXPORT REG$LOOKUP Exports the OpenVMS Registry to a text
format.

IMPORT REG$UPDATE Imports a text-formatted version of a
registry database to the OpenVMS Registry
format.

LIST KEY REG$LOOKUP Displays all subkey information for a
specified key.

LIST VALUE REG$LOOKUP Displays all values of a specified key.

MODIFY KEY REG$UPDATE Modifies the information of a specified key.

MODIFY
VALUE

REG$UPDATE Modifies the information of a specified
value.

MODIFY TREE REG$UPDATE Modifies the information of a specified key
and its subkeys.

SEARCH KEY REG$LOOKUP Displays the path name of all keys that
match a specified key.

SEARCH
VALUE

REG$LOOKUP Displays the path name of all keys that
match a specified value name.

SHOW
COUNTERS

REG$PERFORMANCE Displays counter information.

SHOW FILE REG$PERFORMANCE Displays OpenVMS Registry database file
statistics.

SHOW
INTERNAL

REG$PERFORMANCE Displays internal values (used by shared
libraries).

START
MONITOR

REG$PERFORMANCE Enables monitoring functions.

STOP
MONITOR

REG$PERFORMANCE Disables monitoring functions.

ZERO
COUNTERS

REG$PERFORMANCE Resets monitoring counters.

Note

A user who has the SYSPRV privilege can can execute all the commands
listed in Table 12–1. You must specify an OpenVMS Registry identifier
only if the user does not have SYSPRV privilege.

If you grant a user the REG$UPDATE identifier, in addition to the commands
listed in Table 12–1, the user can also execute the following commands:

LIST KEY
LIST VALUE
SEARCH KEY
SEARCH VALUE

12–2 OpenVMS Registry Server Management



OpenVMS Registry Server Management
12.2 Backing Up and Restoring the OpenVMS Registry Database

12.2 Backing Up and Restoring the OpenVMS Registry Database
The REG$CP server management utility includes two commands that allow you to
back up and restore an OpenVMS Registry database.

• The EXPORT command allows you to back up the OpenVMS Registry keys
and values on demand in OpenVMS or Windows NT format.

You can use this command to export part or all of an OpenVMS Registry
database. The corresponding IMPORT command allows you to restore or
import OpenVMS Registry or Windows NT Registry keys and values.

For more information, see the EXPORT and IMPORT commands in the
command reference section of this chapter.

• The CREATE SNAPSHOT command allows you to back up the OpenVMS
Registry database files automatically on a specified schedule.

By default, the REGISTRY_SERVER process creates a snapshot of the OpenVMS
Registry database every 24 hours. You can change this interval by modifying
the Snapshot Interval setting in the OpenVMS Registry server operations.
(For more information about these operations, see Section 10.6.)

The following example shows how to modify the interval between automatic
snapshots of the OpenVMS Registry database from the default of once every
24 hours to once every hour.

$ MCR REG$CP
REG> MODIFY VALUE HKEY_LOCAL_MACHINE\SYSTEM\REGISTRY -
_REG> /NAME="Snapshot Interval"/DATA=3600/TYPE=DWORD

For more information, see the CREATE SNAPSHOT command in this chapter.

12.2.1 Creating a Snapshot of the OpenVMS Registry Database
Use the following procedure to create a snapshot of the OpenVMS Registry
database:

1. Verify that the REGISTRY_SERVER process is running in the cluster.

2. From an account with the SYSPRV privilege, enter the following commands:

$ MCR REG$CP
REG> CREATE SNAPSHOT

The resulting snapshot consists of the following two files, located in the
specified directory:

REGISTRY$LOCAL_MACHINE.RSS
REGISTRY$USERS.RSS

12.2.2 Restoring a Snapshot of the OpenVMS Registry Database
Use the following procedure to restore a snapshot of the OpenVMS Registry
database:

1. Shut down the REGISTRY_SERVER process on all nodes in the cluster. (For
information about shutting down the OpenVMS Registry, see Section 11.4.)

2. Verify that the OpenVMS Registry snapshot files are in the SYS$REGISTRY
directory.

If the OpenVMS Registry snapshot files are not in the SYS$REGISTRY directory,
copy the OpenVMS Registry snapshot files to the SYS$REGISTRY directory.

OpenVMS Registry Server Management 12–3



OpenVMS Registry Server Management
12.2 Backing Up and Restoring the OpenVMS Registry Database

3. Rename the OpenVMS Registry snapshot files as follows:

$ RENAME REGISTRY$LOCAL_MACHINE.RSS REGISTRY$LOCAL_MACHINE.REG
$ RENAME REGISTRY$USERS.RSS REGISTRY$USERS.REG

4. Restart the REGISTRY_SERVER process. (For information about starting the
OpenVMS Registry manually, see Section 11.3.1.)

Caution

Any information that the system has written to the OpenVMS Registry
database between the time of the last snapshot and this restore process
will be lost.

12.3 OpenVMS Registry Server Management Utility Syntax
The following command section describes each OpenVMS Registry command in
alphabetical order.

Note

In all the commands in this section, the key-name parameter is a string
that specifies the full path of the key, beginning from one of following
entry points:

HKEY_LOCAL_MACHINE
HKEY_USERS
HKEY_CLASSES_ROOT

You can also specify the strings REG$_HKEY_LOCAL_MACHINE,
REG$_HKEY_USERS, and REG$_HKEY_CLASSES_ROOT.

For all server management commands, links are not followed. (For more
information about links, see Section 10.2.1.3.)

To make key and values names case sensitive, enclose the keys and values
in quotation marks (for example: "value").

12–4 OpenVMS Registry Server Management



OpenVMS Registry Server Management
CREATE DATABASE

CREATE DATABASE

Creates the basic OpenVMS Registry database files in the location specified by
the SYS$REGISTRY logical. The command creates an empty database and loads the
predefined keys.

If you enter this command and the database files already exist, the utility does
not overwrite the existing files. The system displays a warning that the files
already exist. If you want to create a new OpenVMS Registry database, you must
first delete all previous versions of the database files. If you delete the OpenVMS
Registry database files, you will lose all keys, subkeys, and values stored in the
OpenVMS Registry.

This command requires the SYSPRV privilege.

The following table lists and describes the OpenVMS Registry database files.

File Description

REGISTRY$ROOT.DAT Root of the database
REGISTRY$USERS.REG HKEY_USERS tree
REGISTRY$LOCAL_MACHINE.REG HKEY_LOCAL_MACHINE tree
REGISTRY$MASTER.RLG The master commit log file
REGISTRY$REPLY.RLG Log file that tracks modification requests to the

OpenVMS Registry database

Format

CREATE DATABASE

Parameters

None

Qualifiers

None

Examples
REG> CREATE DATABASE

Regenerates the basic OpenVMS Registry database files if the database files
are lost or deleted.

OpenVMS Registry Server Management 12–5



OpenVMS Registry Server Management
CREATE KEY

CREATE KEY

Creates one or more keys in the OpenVMS Registry database.

This command requires the SYSPRV privilege or the REG$UPDATE rights identifier.

Format

CREATE KEY key-name [,...]

Parameters

key-name[,...]
Specifies the name of the key to create. You can create multiple keys by
separating the keys with commas

Qualifiers

/WRITEBEHIND
/NOWRITEBEHIND (default)
Specifies that the key information must be written to disk immediately.
/NOWRITEBEHIND specifies a write-through operation.

/VOLATILE= level
/NONVOLATILE (default)
Specifies whether or not the new key is volatile. If you are running the OpenVMS
Registry on a standalone OpenVMS system, volatile keys are lost when the
system reboots. If you are running the OpenVMS Registry in an OpenVMS
cluster, volatile keys are lost when all notes in the cluster are rebooted.

The values for level are as follows:

• NONE (same as /NONVOLATILE)

• CLUSTER

/CACHE_ACTION=value
Specifies the cache attribute for the new key. The value can be WRITEBEHIND
(default) or WRITETHRU (write to disk immediately).

/CLASS_NAME= string
Specifies the class name of the key.

/SECPOLICY=policy
Defines the security policy for the key. Currently the only valid policy is NT_40.

/LINK=(TYPE=value, NAME=key-name)
Defines the key as a link to another key. The link value must be one of the
following:

• SYMBOLICLINK

• NONE

To remove a link, enter the following:

/LINK=(TYPE=NONE,NAME="")

12–6 OpenVMS Registry Server Management



OpenVMS Registry Server Management
CREATE KEY

Examples
REG> CREATE KEY/CACHE_ACTION=WRITEBEHIND HKEY_USERS\GUEST, HKEY_USERS\SYSTEM

Creates the GUEST and SYSTEM keys under the HKEY_USERS entry point. The
keys are created with the write-behind attribute.

OpenVMS Registry Server Management 12–7



OpenVMS Registry Server Management
CREATE SNAPSHOT

CREATE SNAPSHOT

Creates a snapshot of the OpenVMS Registry database. That is, the system
writes all cached OpenVMS Registry keys or values and makes a copy of the
OpenVMS Registry database files.

This command requires the SYSPRV privilege.

Format

CREATE SNAPSHOT

Parameters

None

Qualifiers

/DESTINATION=file-spec
Controls where the system will write the snapshot files. By default, the system
creates the snapshot in the location specified by the SYS$REGISTRY logical.

If you specify the /DESTINATION qualifier but do not provide a valid directory,
the system creates the snapshot files in the directory in which you started the
OpenVMS Registry server.

/VERSIONS=number
Specifies how many previous versions of the snapshot files to keep.

Examples
REG> CREATE SNAPSHOT/DESTINATION=SYS$REGISTRY/VERSION=3

Creates a snapshot of the OpenVMS Registry database in the SYS$REGISTRY
directory. If more than three versions of the OpenVMS Registry database
snapshot files exist, the system deletes the oldest version (the same as
purge/keep=3 command).

12–8 OpenVMS Registry Server Management



OpenVMS Registry Server Management
CREATE VALUE

CREATE VALUE

Specifies the data component for the specified key. If the value does not exist, the
command creates the value.

This command requires the SYSPRV privilege or the REG$UPDATE rights identifier.

Format

CREATE VALUE key-name

Parameters

key-name
Specifies the name of the key for which you will set the value.

Qualifiers

/FLAGS=flag
Specifies the data flags value. This is an application-dependent 64-bit flag
specified as a decimal number or as a hexadecimal number preceded by 0x or %X.

/WRITEBEHIND
/NOWRITEBEHIND (default)
Specifies that the value must be written to disk immediately.
/NOWRITEBEHIND specifies a write-through operation.

/DATA=value
The value can be one of the following:

• String (for example, /DATA=COSMOS)

• An array of strings separated by a comma and enclosed in parentheses (for
example, /DATA=(COSMOS,Noidea)

• A longword in octal (%O), decimal, or hexadecimal (%X) format (for example,
/DATA=%X1A0FCB or /DATA=1234)

/NAME=string
Specifies the name of the new value.

/TYPE_CODE=type
Specifies the type of the new value. The type value must be one of the following:

• SZ: a null-terminated Unicode string

• EXPAND_SZ: a string of Unicode characters

• MULTI_SZ: a concatenated array of SZ strings

• DWORD: a 32-bit number

/LINK=(TYPE=value, NAME=key-name)
Defines the key as a link to another key. The link value must be one of the
following:

• SYMBOLICLINK

• NONE

OpenVMS Registry Server Management 12–9



OpenVMS Registry Server Management
CREATE VALUE

To remove a link, enter the following:

/LINK=(TYPE=NONE,NAME="")

Examples
REG> CREATE VALUE/DATA=COSMOS/TYPE=SZ/NAME=COMPUTERNAME HKEY_LOCAL_MACHINE\NODE

Creates the COMPUTERNAME value for the key HKEY_LOCAL_MACHINE\NODE and
sets its type to SZ and its data value to COSMOS.

12–10 OpenVMS Registry Server Management



OpenVMS Registry Server Management
DELETE KEY

DELETE KEY

Removes a specified key from the OpenVMS Registry database. The system does
not delete a key if the key has subkeys.

Caution

Deleting a key results in symbolic links not being followed. This is
because the system deletes the key you specified, even if it has symbolic
links.

Note

The OpenVMS Registry database predefined keys are reserved keys and
cannot be deleted. These keys include HKEY_USER, HKEY_LOCAL_MACHINE,
and HKEY_CLASSES_ROOT. For a complete list, see Section 10.3.

This command requires the SYSPRV privilege or the REG$UPDATE rights identifier.

Format

DELETE KEY key-path key-name

Parameters

key-path
Specifies the key path.

key-name
Specifies the name of the key to delete.

Qualifiers

/WRITEBEHIND
/NOWRITEBEHIND (default)
Specifies that the key information must be written to disk immediately.
/NOWRITEBEHIND specifies a write-through operation.

Examples
REG> DELETE KEY HKEY_USERS\NODE GUEST

Deletes the GUEST key from the OpenVMS Registry database.

OpenVMS Registry Server Management 12–11



OpenVMS Registry Server Management
DELETE VALUE

DELETE VALUE

Removes a value from a specified key.

Caution

Deleting a value results in symbolic links not being followed. This is
because the system deletes the value you specified, even if it has symbolic
links.

This command requires the SYSPRV privilege or the REG$UPDATE rights identifier.

Format

DELETE VALUE key-name value-name

Parameters

key-name
Specifies the key name whose value should be removed.

value-name
Specifies the value to remove.

Qualifiers

/WRITEBEHIND
/NOWRITEBEHIND (default)
Specifies that the information must be written to disk immediately.
/NOWRITEBEHIND specifies a write-through operation.

Examples
REG> DELETE VALUE HKEY_USERS\GUEST PASSWORD

Deletes the PASSWORD value from the GUEST key.

12–12 OpenVMS Registry Server Management



OpenVMS Registry Server Management
EXPORT

EXPORT

Allows a user to export the OpenVMS Registry database content to a text format.
You can export the entire database or specific keys and subkeys.

You can specify the exported file as a Windows NT compatible format or in an
OpenVMS format. The IMPORT command support both Windows NT 4.0 Regedit
format and the OpenVMS Registry format.

This command requires the REG$LOOKUP rights identifier. If you do not have
the REG$LOOKUP rights identifier, you must have the SYSPRV privilege to
export keys that require the REG$LOOKUP rights identifier.

Format

EXPORT [DATABASE | KEY [key-name [/[NO]SUBKEYS]]] [/LOG] [/OUTPUT=file-name]
[/FORMAT=[NT | OPENVMS]]

Parameters

DATABASE
Exports the full OpenVMS Registry database.

KEY [key-name [/[NO]SUBKEYS]]
Exports a specific OpenVMS Registry key and, optionally, its subkeys.
NOSUBKEYS is the default.

Qualifiers

/LOG
Displays the export progress to the screen.

/OUTPUT=file-name
Specifies a name for the exported file. The default output file name is
REGISTRY.TXT.

/FORMAT=[NT | OPENVMS]
Specifies the format in which the system writes the database. OPENVMS is the
default.

Examples
REG> EXPORT DATABASE/LOG/OUTPUT=TUES_VERSION.TXT/FORMAT=NT

The EXPORT command in this example logs the progress of the export to the
screen as the system exports the entire OpenVMS Registry database to the
TUES_VERSION.TXT file in Windows NT 4.0 Regedit format.

OpenVMS Registry Server Management 12–13



OpenVMS Registry Server Management
IMPORT

IMPORT

Allows a user to import a text-formatted file (created by the EXPORT command)
into an OpenVMS Registry database.

Also allows a user to import into an OpenVMS Registry database the Windows
NT data exported by Windows NT 4.0 Regedit (from the Registry menu choose
the Export Registry File... option).

Conversion of Windows NT binary values

You can import Windows NT binary values (such as configuration data)
into the OpenVMS Registry database, even though OpenVMS does
not support the binary values. The system displays a message when
importing and converting unsupported binary values.

This command requires the REG$UPDATE rights identifier. If you do not have
the REG$UPDATE rights identifier, you must have the SYSPRV privilege to
import keys that require the REG$LOOKUP or REG$UPDATE rights identifier.

The following table summarizes how rights identifiers and privileges affect your
ability to import and export keys.

If you have: You can export from Windows NT:
You can import to the OpenVMS
Registry:

No privileges.
No rights identifiers

All keys created by Advanced
Server for OpenVMS except
HKEY_LOCAL_MACHINE\SECURITY

Nothing

REG$LOOKUP All keys created by Advanced Server
for OpenVMS

Nothing

REG$UPDATE All keys created by Advanced Server
for OpenVMS

All keys created by Advanced
Server for OpenVMS

SYSPRV All keys created by Advanced Server
for OpenVMS

All keys created by Advanced
Server for OpenVMS

Format

IMPORT [/LOG] [/INPUT=file-name]

Parameters

None

Qualifiers

/LOG
Displays the import progress to the screen.

/INPUT=file-name
Specifies a name of the file to import. The default input file name is
REGISTRY.TXT.

12–14 OpenVMS Registry Server Management



OpenVMS Registry Server Management
IMPORT

Examples
REG> IMPORT/LOG/INPUT=TUES_VERSION.TXT

The IMPORT command in this example logs the progress of the import to the
screen as the system imports the TUES_VERSION.TXT file.

OpenVMS Registry Server Management 12–15



OpenVMS Registry Server Management
LIST KEY

LIST KEY

Displays the attributes for the specified key.

Note

Symbolic links are not followed.

This command requires the SYSPRV privilege or the REG$LOOKUP rights identifier.

Format

LIST KEY key-name

Parameters

key-name
Specifies the name of the key to list.

Qualifiers

/FULL
Displays all available information—that is, information displayed by the /LAST_
WRITE, /CACHE_ACTION, /INFORMATION, /LINK_PATH, and /CLASS_NAME
qualifiers.

/CACHE_ACTION=value
Specifies the cache attribute for the subkey. The value can be WRITEBEHIND
(default) or WRITETHRU (write to disk immediately).

/CLASS_NAME
Displays the class name of the subkey.

/INFORMATION
Displays the information (subkey number, value number, subkey name max, and
so on) about the specified key.

/LAST_WRITE
Displays the time when the subkey was last updated.

/LINK_PATH
Displays the key path to which the subkey is linked.

/OUTPUT=file-spec
Controls where the output of the command is sent. If you do not specify a file
name, the system uses the default name REGISTRY.LIS.

12–16 OpenVMS Registry Server Management



OpenVMS Registry Server Management
LIST KEY

Examples
REG> LIST KEY/FULL HKEY_USERS\GUEST

Key name: HKEY_USERS\GUEST
Security policy: REG$K_POLICY_NT_40
Volatile: REG$K_NONE
Cache: REG$K_WRITEBEHIND
Class: System Authorization
Link Type: REG$K_NONE
Last written: 7-AUG-1998 12:42:08.55

Key information:
Number of subkeys: 2 Number of values: 0
Max size of subkey name: 40 Max size of class name: 40
Max size of value name: 0 Max size of value data: 0

Subkey(s):

Key name: QUOTAS
Security policy: REG$K_POLICY_NT_40
Volatile: REG$K_NONE
Cache: REG$K_WRITEBEHIND
Class: Disk quota
Link Type: REG$K_NONE
Last written: 7-AUG-1998 12:41:19.21

Key information:
Number of subkeys: 0 Number of values: 0
Max size of subkey name: 0 Max size of class name: 0
Max size of value name: 0 Max size of value data: 0

Key name: IDENTIFIER
Security policy: REG$K_POLICY_NT_40
Volatile: REG$K_NONE
Cache: REG$K_WRITETHRU
Class: Disk quota
Link Type: REG$K_SYMBOLICLINK
Link Path: HKEY_LOCAL_MACHINE\SOFTWARE\IDENTIFIER\GUEST
Last written: 7-AUG-1998 12:42:08.55

Key information:
Number of subkeys: 0 Number of values: 0
Max size of subkey name: 0 Max size of class name: 0
Max size of value name: 0 Max size of value data: 0

The LIST KEY/FULL command in this example displays the GUEST key
attributes as well as the name and attributes of the subkeys of GUEST.

Note

The Max sizes information shows the number of bytes, not characters.
(Each character is 4 bytes long.)

OpenVMS Registry Server Management 12–17



OpenVMS Registry Server Management
LIST VALUE

LIST VALUE

Displays all values and value attributes of the specified key.

Note

Symbolic links are not followed.

This command requires the SYSPRV privilege or the REG$LOOKUP rights identifier.

Format

LIST VALUE key-name

Parameters

key-name
Specifies the name of the key to enumerate.

Qualifiers

/FULL
Displays all available information—that is, information displayed by the /TYPE_
CODE, /LINK_PATH, /DATA_FLAGS, and /VALUE_DATA qualifiers.

/TYPE_CODE
Display the type code of the value.

/FLAGS
Displays an ASCII representation of the data flag of the value in hexadecimal
format.

/LINK_PATH
Displays the key path to which the subkey is linked.

/DATA
Displays an ASCII representation of the value in hexadecimal format.

/OUTPUT=file-spec
Controls where the output of the command is sent. If you do not specify a file
name, the system uses the default name REGISTRY.LIS.

Examples
REG> LIST VALUE/TYPE_CODE/DATA HKEY_LOCAL_MACHINE\SOFTWARE\FORTRAN

Key name: HKEY_LOCAL_MACHINE\SOFTWARE\FORTRAN
Security policy: REG$K_POLICY_NT_40
Volatile: REG$K_NONE
Last written: 11-AUG-1998 16:27:55.81

Value(s):

Value name: Version
Volatile: REG$K_NONE
Type: REG$K_SZ
Data: 5.3-50

12–18 OpenVMS Registry Server Management



OpenVMS Registry Server Management
LIST VALUE

Value name: Date Installed
Volatile: REG$K_NONE
Type: REG$K_SZ
Data: 04-Jan-1998

The LIST VALUE/TYPE_CODE/DATA command in this example displays the
FORTRAN key and its value names, types, and data.

OpenVMS Registry Server Management 12–19



OpenVMS Registry Server Management
MODIFY KEY

MODIFY KEY

Modifies the attributes of the specified key.

Caution

Modifying a key results in symbolic links not being followed. This is
because the system modifies the key you specified, not the key pointed to
by the symbolic link.

This command requires the SYSPRV privilege or the REG$UPDATE rights identifier.

Format

MODIFY KEY key-name

Parameters

key-name
Specifies the name of the key to modify.

Qualifiers

/CACHE_ACTION=value
Specifies the cache attribute for the new key. The value can be WRITEBEHIND
(default) or WRITETHRU (write to disk immediately).

/CLASS_NAME= string
Specifies the new class name of the key.

/WRITEBEHIND
/NOWRITEBEHIND (default)
Specifies that the key information must be written to disk immediately.
/NOWRITEBEHIND specifies a write-through operation.

/NEW_NAME=new-key-name
Specifies the new name of the key.

/SECPOLICY=policy
Defines the security policy for the key. Currently the only valid policy is NT_40.

/LINK=(TYPE=value, NAME=key-name)
Defines the key as a link to another key. The link value must be one of the
following:

• SYMBOLICLINK

• NONE

To remove a link, enter the following:

/LINK=(TYPE=NONE,NAME="")

12–20 OpenVMS Registry Server Management



OpenVMS Registry Server Management
MODIFY KEY

Examples
REG> MODIFY KEY/CACHE_ACTION=WRITEBEHIND HKEY_USERS\GUEST

Modifies the cache attribute of the GUEST key.

OpenVMS Registry Server Management 12–21



OpenVMS Registry Server Management
MODIFY VALUE

MODIFY VALUE

Specifies the data component for the specified value. This command modifies an
existing value.

Caution

Modifying a value results in symbolic links not being followed. This is
because the system modifies the value you specified, not the value pointed
to by the symbolic link.

This command requires the SYSPRV privilege or the REG$UPDATE rights identifier.

Format

MODIFY VALUE /NAME=string key-name

Parameters

key-name
Specifies the name of the key for which to set the value.

Qualifiers

/FLAGS=flag
Specifies the data flags value. This is an application-dependent 64-bit flag
specified as a decimal number or as a hexadecimal number preceded by 0x or %X.

/WRITEBEHIND
/NOWRITEBEHIND (default)
Specifies that the value information must be written to disk immediately.
/NOWRITEBEHIND specifies a write-through operation.

/DATA=value
Specifies the data for the value. The value can be:

• A string (for example, /DATA=COSMOS)

• An array of strings separated by a comma and enclosed in parentheses (for
example, /DATA=(COSMOS,Noidea)

• A longword in octal (%O), decimal, or hexadecimal (%X) format (for example,
/DATA=%X1A0FCB or /DATA=1234)

/NAME=string
Specifies the name of the value.

/TYPE_CODE=type
Specifies the type of the new value. The type value must be one of the following:

• SZ: a null-terminated Unicode string

• EXPAND_SZ: a string of Unicode characters

• MULTI_SZ: a concatenated array of SZ strings

• DWORD: a 32-bit number

12–22 OpenVMS Registry Server Management



OpenVMS Registry Server Management
MODIFY VALUE

/LINK=(TYPE=value, NAME=key-name)
Defines the key as a link to another key. The link value must be one of the
following:

• SYMBOLICLINK

• NONE

To remove a link, enter the following:

/LINK=(TYPE=NONE,NAME="")

Examples
REG> MODIFY VALUE/DATA=COSMOS/TYPE=SZ/NAME=COMPUTERNAME HKEY_LOCAL_MACHINE\NODE

Creates COMPUTERNAME value for the key HKEY_LOCAL_MACHINE\NODE, and sets
its type code to SZ and its data value to COSMOS.

OpenVMS Registry Server Management 12–23



OpenVMS Registry Server Management
MODIFY TREE

MODIFY TREE

Modifies the information for the specified key and its subkeys.

Caution

Modifying a tree results in symbolic links not being followed. This is
because the key and subkeys you specify are modified, not the key pointed
to by the symbolic link.

This command requires the SYSPRV privilege or the REG$UPDATE rights identifier.

Format

MODIFY TREE key-name

Parameters

key-name
Specifies the name of key to modify.

Qualifiers

/CACHE_ACTION=value
Specifies the cache attribute for the key and its subkeys. The value can be
WRITEBEHIND (default) or WRITETHRU (write to disk immediately).

/CLASS_NAME= string
Specifies the new class name for the given key and all its subkeys.

/WRITEBEHIND
/NOWRITEBEHIND (default)
Specifies that the key information must be written to disk immediately.
/NOWRITEBEHIND specifies a write-through operation.

/SECPOLICY=policy
Defines the security policy for the key. Currently the only valid policy is NT_40.

Examples
REG> MODIFY TREE/CACHE_ACTION=WRITEBEHIND HKEY_USERS\GUEST

Modifies the cache attribute of the GUEST key and all its subkeys.

12–24 OpenVMS Registry Server Management



OpenVMS Registry Server Management
SEARCH KEY

SEARCH KEY

Displays the path name of all the keys that match the specified key.

This command requires the SYSPRV privilege or the REG$LOOKUP rights identifier.

Format

SEARCH KEY key-search

Parameters

key-search
Specifies the key name for which to search.

Qualifiers

/OUTPUT=file-spec
Controls where the output of the command is sent. If you do not specify a file
name, the system uses the default name REGISTRY.LIS.

Examples
REG> SEARCH KEY HKEY_LOCAL_MACHINE\...\NODE
HARDWARE\CLUSTER\NODE
HARDWARE\LOCAL\NODE
NODE

Displays all the key paths that match the HKEY_LOCAL_MACHINE\...\NODE
selection. The ellipsis (...) wildcard specifies that there can be any number of
subkeys between the HKEY_LOCAL_MACHINE entry point and the NODE subkey.
Note that the search is not case sensitive.

OpenVMS Registry Server Management 12–25



OpenVMS Registry Server Management
SEARCH VALUE

SEARCH VALUE

Displays the path name of all the values that match the specified value name.

This command requires the SYSPRV privilege or the REG$LOOKUP rights identifier.

Format

SEARCH VALUE key-name value-name

Parameters

key-name
Specifies the name of the key path to search.

value-name
Specifies the value name for which to search.

Qualifiers

/OUTPUT=file-spec
Controls where the output of the command is sent. If you do not specify a file
name, the system uses the default name REGISTRY.LIS.

Examples
REG> SEARCH VALUE HKEY_LOCAL_MACHINE\... *AM%
HARDWARE\CLUSTER\Name
HARDWARE\CLUSTER\NODE\Name
HARDWARE\LOCAL\NODE\Name
NODE\COMPUTERNAME

Displays all the value names that match the HKEY_LOCAL_MACHINE\...\*am%
selection. The ellipsis (...) wildcard specifies that there can be any number
of subkeys between the HKEY_LOCAL_MACHINE entry point and the *am% value
name. Note that the search is not case sensitive.

12–26 OpenVMS Registry Server Management



OpenVMS Registry Server Management
SHOW

SHOW

Displays OpenVMS Registry server internal statistics and information.

• SHOW COUNTERS

Displays monitoring information from the OpenVMS Registry server.

• SHOW FILE

Displays status information on files loaded into the OpenVMS Registry server.

This command requires the SYSPRV privilege or the REG$PERFORMANCE rights
identifier.

Format

SHOW COUNTERS/FILE [name]

SHOW FILE [name]

Parameters

name
Identifies the file (used with the /FILE qualifier only).

Qualifiers

/FILE
Displays counters for the specified file or for all files.

/PERFORMANCE
Displays performance counters.

/OUTPUT=file-spec
Controls where the output of the command is sent. If you do not specify a file
name, the system uses the default name REGISTRY.LIS.

Examples
REG> SHOW COUNTERS/FILE

Displays monitoring information from the OpenVMS Registry server.

OpenVMS Registry Server Management 12–27



OpenVMS Registry Server Management
START MONITORING

START MONITORING

Starts a monitoring component within the OpenVMS Registry server.

This command requires the SYSPRV privilege or the REG$PERFORMANCE rights
identifier.

Format

START MONITORING/FILE [name]

START MONITORING/PERFORMANCE

Parameters

name
Identifies the file (used with the /FILE qualifier only).

Qualifiers

/FILE
Start gathering counters for the specified file or for all files.

/PERFORMANCE
Start gathering performance counters.

Examples
REG> START MONITORING/PERFORMANCE

Enables a monitoring component of the OpenVMS Registry.

12–28 OpenVMS Registry Server Management



OpenVMS Registry Server Management
STOP

STOP

Stops a monitoring component within the OpenVMS Registry server.

This command is used to stop a monitoring component within the OpenVMS
Registry server.

This command requires the SYSPRV privilege or the REG$PERFORMANCE rights
identifier.

Format

STOP MONITORING/FILE [name]

STOP MONITORING/PERFORMANCE

Parameters

name
Identifies the file (used with the /FILE qualifier only).

Qualifiers

/FILE
Stop gathering counters for the specified file or for all files.

/PERFORMANCE
Stop gathering performance counters.

Examples
REG> STOP MONITORING/PERFORMANCE

Disables a monitoring component of the OpenVMS Registry.

OpenVMS Registry Server Management 12–29



OpenVMS Registry Server Management
ZERO COUNTERS

ZERO COUNTERS

Initializes counters within the OpenVMS Registry server.

This command requires the SYSPRV privilege or the REG$PERFORMANCE rights
identifier.

Format

ZERO COUNTERS/FILE [name]

ZERO COUNTERS/PERFORMANCE

Parameters

name
Identifies the file (used with the /FILE qualifier only).

Qualifiers

/FILE
Initializes the file counters for the specified file or for all files.

/PERFORMANCE
Initializes all performance counters.

Examples
REG> ZERO COUNTERS/PERFORMANCE

Resets the performance counters.

12–30 OpenVMS Registry Server Management



13
OpenVMS Registry System Services

This chapter lists and describes the OpenVMS Registry $REGISTRY and
$REGISTRYW system services.

OpenVMS Registry System Services OR–1



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

$REGISTRY and $REGISTRYW
Interface to the OpenVMS Registry Database

The $REGISTRY and $REGISTRYW system services are the interface to the
OpenVMS Registry database server. The $REGISTRY service allows you to query,
update, and set keys, subkeys, and values in the OpenVMS Registry database.

The $REGISTRY service supports both asynchronous and synchronous operations.
For asynchronous completion, use the Registry ($REGISTRY) system service. For
synchronous completion, use the Registry and Wait ($REGISTRYW) system
service. The $REGISTRYW system service is identical to the $REGISTRY
system service, except that $REGISTRYW returns to the caller after the system
completes the requested operation. For additional information about system
service completion, see the Synchronize ($SYNCH) system service.

This system service is 64-bit compatible.

Format

SYS$REGISTRY [efn], func, 0, itmlst, [iosb or iosa_64], [astadr or astadr_64], [astprm or astprm_64]

SYS$REGISTRYW [efn], func, 0, itmlst, [iosb or iosa_64], [astadr or astadr_64], [astprm or astprm_64]

Arguments

efn
OpenVMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be used by $REGISTRY. If you do not specify the
event flag, the system defaults to event flag 0. The event flag is initially cleared
by $REGISTRY and then set when the operation completes.

func
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by value

Function code specifying the action that $REGISTRY is to perform. The func
argument is a longword containing this function code. The function code can
contain function modifiers. For more information on function modifiers, see the
Function Modifiers section in this chapter.

A single call to $REGISTRY can specify only one function code. All function codes
require additional information to be passed in the call with the itmlst argument.

itmlst
OpenVMS usage: item_list3 or item_list_64b
type: longword (unsigned)
access: read only
mechanism: by reference

Item list supplying information that the system will use to perform the function
specified by the func argument. The itmlst argument is the address of the item

OR–2 OpenVMS Registry System Services



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

list. The item list consists of one or more sets of item descriptors. Each descriptor
is either an item-list-3 or item-list-64b format.

Some function codes allow you specify multiple operations in a single call. In
this case, you must place the REG$_SEPARATOR item code between each set of item
codes. Each request, separated by a REG$_SEPARATOR item code, can contain the
item codes in any order.

You can specify item codes as either input or output parameters. Input
parameters modify functions, set context, or describe the information to be
returned. Output parameters return the requested information. For item-list-3
lists, you must terminate the list with a longword of 0. For item-list-64b lists,
you must terminate the list with a quadword of 0.

Figure 13–1 shows the structure of an item-list-3 descriptor.

Figure 13–1 Item-list-3 Structure

VM-0224A-AI

Buffer address

Item code Buffer length

31 015

Return length address

Figure 13–2 shows the structure of an item-list-64b descriptor.

Figure 13–2 Item-list-64b Structure

VM-0225A-AI

Buffer address

Buffer length

Item code Must be one

31 015

Must be minus one

Return length address

Table 13–1 defines the item descriptor fields.

Table 13–1 Item Descriptor Fields

Descriptor Field Definition

Buffer length A word that specifies the length of the buffer. The buffer
either supplies information to be used by $REGISTRY,
or receives information from $REGISTRY. The required
length of the buffer varies, depending on the item
code specified. Each item code description specifies the
required length.

(continued on next page)

OpenVMS Registry System Services OR–3



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

Table 13–1 (Cont.) Item Descriptor Fields

Descriptor Field Definition

Item code A word containing a symbolic code that describes the
type of information currently in the buffer or that is
returned in the buffer. The buffer address field points to
the location of the buffer.

Buffer address A longword that contains the address of the buffer that
specifies or receives the information.

Return length address A longword that contains the address of a word that
specifies the actual length in bytes of the information
returned by $REGISTRY. The information resides in a
buffer identified by the buffer address field. The field
applies to output item list entries only, and must be 0
(zero) for input entries. If the return length address is 0,
it is ignored.

iosb or iosa_64
OpenVMS usage: status_block
type: buffer
access: write only
mechanism: by reference

Status block to receive the final completion status and information of the
$REGISTRY operation. If multiple operations are requested for a function code,
the value returned in iosb is either SS$_NORMAL or SS$_REGERROR. A more specific
return status for each operation is returned in the REG$_RETURNSTATUS item code
(if specified). The iosb argument is the address of the $REGISTRY status block.

VM-0226A-AI

Reserved

31 015

Status

When $REGISTRY begins execution, it clears the quadword I/O status block if
you specify the iosb argument.

Although the iosb argument is optional, Compaq strongly recommends that you
specify it for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using the $SYNCH system service to synchronize completion of the
service, the I/O status block is a required argument for $SYNCH.

The condition value returned in R0 and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$REGISTRY service. The condition value returned in R0 provides information
about the success or failure of the service call itself; the condition value returned
in the I/O status block provides information about the success or failure of the
service operation.

OR–4 OpenVMS Registry System Services



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

To assess the success or failure of the call to $REGISTRY accurately, you must
first check the condition value returned in R0. If R0 contains a successful value,
you must check the condition value in the I/O status block.

Table 13–2 defines the item descriptor fields.

Table 13–2 Descriptor Fields

Descriptor Field Definition

Status A longword specifying the final status of the
$REGISTRY service. If you request multiple operations
for a function code, the system returns either
SS$_NORMAL or SS$_REGERROR to iosb. This field is
set to 0 (zero) when the operation begins.

Reserved A reserved longword.

astadr or astadr_64
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $REGISTRY completes. The astadr
argument is the address of this routine. If you specify astadr, the AST routine
executes at the same access mode as the caller of the $REGISTRY service.

If the $REGISTRY service is not called successfully (that is, if it returns an error
immediately), the AST routine is not executed.

astprm or astprm_64
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument specifies this longword parameter.

Description

The $REGISTRY service provides the means to create, delete and modify registry
keys, key values, and key attributes.

The $REGISTRY service uses process P1 space to store handles to keys. The
$REGISTRY service must be called at IPL 0, and requires system dynamic
memory to deliver AST requests.

Related Services

$REGISTRYW

OpenVMS Registry System Services OR–5



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

Condition Values Returned

SS$_ACCVIO One of the arguments cannot be read/written
SS$_BADPARAM Function code or one of the item list code is

invalid
SS$_EXASTLM Exceeded AST limit
SS$_EXBYTLM Exceeded byte count quota
SS$_ILLEFC Illegal event flag number
SS$_INSFARG Insufficient number of argument supplied
SS$_INSFMEM Insufficient dynamic memory
SS$_NORMAL Normal successful completion
SS$_TOO_MANY_ARGS Too many arguments
REG$_ACCESSDENIED Requested access to key is denied
REG$_BADFILEVER Bad file version number
REG$_BUFFEROVF Buffer overflow
REG$_CANTCLEANVOLSEG Cannot clean the registry volatile segments
REG$_CANTCONVCS Code set conversion error
REG$_CANTOPENOUTFILE Cannot open the specified output file
REG$_DBACCESS Cannot access registry database object
REG$_DBALREADYLOADED Database is already loaded
REG$_DBCREATE Cannot create registry database
REG$_DBCSMISMATCH Database checksum mismatch: Stored=!XL

Calculated=!XL
REG$_DBFIND Cannot locate registry database
REG$_DBFULL Registry database is full
REG$_DBLOAD Cannot load registry database
REG$_DBNOTYETLOADED Database is not yet loaded
REG$_DBVERMISMATCH Database version mismatch: Current=V!UW.!UW

Database=V!UW.!UW
REG$_DELROOTKEY Root key was deleted
REG$_DOUBLEDEALLOC Structure is already on the free list
REG$_DTMUTEXERROR DECthreads mutex lock/unlock error
REG$_DTMUTEXINIT DECthreads mutex init error !UL
REG$_DTMUTEXLOCK DECthreads mutex lock error !UL
REG$_DTMUTEXLOCKED DECthreads mutex is already held by another

thread
REG$_DTMUTEXUNLOCK DECthreads mutex unlock error !UL
REG$_DTRWLOCKINIT DECthreads read/write lock init error !UL
REG$_DTRWLOCKLOCK DECthreads read/write lock error !UL
REG$_DTRWLOCKUNLOCK DECthreads read/write unlock error !UL
REG$_DUPLREQUEST Work-in-progress hash table insert found

duplicate request
REG$_EXQUOTA Registry file quota or page file quota exceeded

OR–6 OpenVMS Registry System Services



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

REG$_FILECREATE Error creating !AZ!AZ
REG$_FILENAMEINVAL Invalid file name
REG$_FILEOPEN Error opening !AZ!AZ
REG$_FILEREADEOF Attempt to read past end of file; FTE !XL
REG$_FNAMMISMATCH Physical/logical file name mismatch; FTE=!AZ

LTE=!AZ
REG$_FSOCORRUPT File was previously flagged as corrupt; FSO: !XL

!XL
REG$_FSOFILEINDEX Invalid file index in FSO: !XL !XL
REG$_FSOOFFSET Invalid offset in FSO: !XL !XL
REG$_FSOSEGNUMBER Invalid segment number in FSO: !XL !XL
REG$_FSOSEGREADERR Error reading segment in FSO: !XL !XL
REG$_FTEALLOC Error allocating file table entry !XL for !AZ
REG$_FTEALREADYEXIST Cannot create file !AZ!AZ; file already exists
REG$_FTEALREADYOPEN File is already open
REG$_FTEDUPNAME Error allocating file table entry; duplicate file

name
REG$_FTEINSUFFINFO Specified file table entry is not allocated
REG$_FTEINUSE Error allocating file table entry; entry in use
REG$_FTENOTEXIST Specified file table entry does not exist
REG$_FTENOTOPEN Specified file is not open
REG$_FTIMISMATCH Physical file index mismatch; LTE = !XL, FTE =

!XL
REG$_HASLINK Key has a link to another key
REG$_HAVESUBKEYS Cannot delete a key with subkeys
REG$_INTERNERR Registry internal error
REG$_INVCACHEACTION Invalid cache action parameter
REG$_INVCREDENTIALS NT credentials are not valid
REG$_INVDATA Invalid data value
REG$_INVDATATYPE Invalid data type parameter
REG$_INVFUNCCODE Invalid function code
REG$_INVKEYFLAGS Invalid key flags
REG$_INVKEYID Key does not exist or invalid key ID was specified
REG$_INVKEYNAME Invalid key name
REG$_INVLINK Invalid link or link type
REG$_INVLINKPATH Invalid link path
REG$_INVLOG Invalid log file
REG$_INVLOGREC Invalid log record
REG$_INVPARAM Invalid parameter
REG$_INVPATH Invalid key path
REG$_INVSECDESCRIPTOR Invalid security descriptor
REG$_INVSECPOLICY Invalid security policy parameter
REG$_INVSEGNUM Invalid segment number

OpenVMS Registry System Services OR–7



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

REG$_INVVOLROOTKEY Cannot create a new file with a volatile root key
REG$_IOREADERR Disk read error at block !UL for length !UL
REG$_IOWRITERR Disk write error at block !UL for length !UL
REG$_IPCCONACC IPC connect accept failure: !XL
REG$_IPCCONREJ IPC connect reject failure: !XL
REG$_IPCDCLAST IPC cannot declare AST for synch completion:

!XL
REG$_IPCOPEASS IPC open association failure: !XL
REG$_IPLTOOHIGH Callers above IPL 0 cannot call this service
REG$_KEYCHANGED Key or subkey has changed
REG$_KEYEXIST Key already exists
REG$_KEYLOCKED Key locked by another thread
REG$_KEYNAMEEXIST Key name already exists
REG$_LOGFILETABFULL Logical file table is full
REG$_LTENOTEXIST Specified logical file table entry does not exist
REG$_MOREDATA Buffer provided is too small for requested data
REG$_NOBLOCKFOUND Registry database has no available blocks
REG$_NOKEY Specified key does not exist
REG$_NOMEMORY Insufficient memory
REG$_NOMOREITEMS No more items for specified key
REG$_NOMORESEG No more segments available
REG$_NOMORESUBSTRING No substring found
REG$_NOPATHFOUND Path not found
REG$_NORESPONSE OpenVMS Registry server not available
REG$_NOSUCHFILE No such file
REG$_NOTROOTKEY Invalid root key index
REG$_NOTSUPPORTED Function code, item code, or item value is not

supported
REG$_NOVALUE Specified value does not exist
REG$_OBJWITHLINK Deleted key or value had link(s)pointing to it
REG$_REQRECEIVED Received request for key change notification
REG$_RESERVED Cannot delete or modify a reserved key or value
REG$_ROOTINSFILE Insufficient file list in root file
REG$_RUIDMISMATCH Root key UID mismatch; LTE = !@XQ !@XQ; Root

key = !@XQ !@XQ
REG$_SECVIO Violates the security access method specified

when this key was last opened
REG$_SEGREADERR Error reading segment !UL of file !AZ
REG$_STRINGTOOLONG Input string too long
REG$_STRINGTRUNC Output buffer is not large enough to contain the

converted string
REG$_SVRVERMISMATCH Version mismatch: Server=V!UL.!UL

Database=V!UL.!UL

OR–8 OpenVMS Registry System Services



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

REG$_SVRSHUTDOWN Server shutdown in progress
REG$_TOOMANYOPENKEY Number of opened keys exceeds the limit; close

some opened key
REG$_UNKTHRREQ Unknown thread request code
REG$_VALUEEXIST Value already exists
REG$_VOLMISMATCH Cannot create nonvolatile subkey for a volatile

key

Function Codes

Table 13–3 provides a summary of valid function codes, a brief description of their
function, and the OpenVMS Registry rights identifier required to perform the
function. You can find a detailed description of each item code in the Item Codes
section of this chapter.

The OpenVMS Registry identifier is required only if you do not provide a valid
NT access token and you do not have the SYSPRV privilege. If you have a granted
REG$UPDATE identifier, you can perform all the functions in Table 13–3.

Table 13–3 Valid Function Codes

Function Code Identifier Description

REG$FC_CLOSE_KEY REG$LOOKUP Closes an open key or subkey.
REG$FC_CREATE_KEY REG$UPDATE Creates (and opens) a subkey.
REG$FC_DELETE_KEY REG$UPDATE Removes a subkey from a key.
REG$FC_DELETE_VALUE REG$UPDATE Removes a value from a key.
REG$FC_ENUM_KEY REG$LOOKUP Lists (enumerates) the subkeys of a

key.
REG$FC_ENUM_VALUE REG$LOOKUP Lists (enumerates) the values of a key.
REG$FC_FLUSH_KEY REG$UPDATE Ensures that all information for the

key is backed to disk.
REG$FC_MODIFY_KEY REG$UPDATE Modifies a key.
REG$FC_MODIFY_TREE_KEY REG$UPDATE Modifies a key and all its subkeys.
REG$FC_NOTIFY_CHANGE_KEY_VALUE REG$UPDATE Notifies when a key or value has

changed.
REG$FC_OPEN_KEY REG$LOOKUP Opens a key or subkey.
REG$FC_QUERY_KEY REG$LOOKUP Fetches information about a key.
REG$FC_QUERY_VALUE REG$LOOKUP Fetches information about a value.
REG$FC_SEARCH_TREE_DATA REG$LOOKUP Searches the value data of key and its

subkeys.
REG$FC_SEARCH_TREE_KEY REG$LOOKUP Searches the names of a key and its

subkeys.
REG$FC_SEARCH_TREE_VALUE REG$LOOKUP Searches the values of a key and its

subkeys.
REG$FC_SET_VALUE REG$UPDATE Changes the data associated with a

value name.

OpenVMS Registry System Services OR–9



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

REG$FC_CLOSE_KEY
This request releases the open resources of the specified key. If REG$_KEYID
indicates a predefined key, the system ignores the action and returns success.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_KEYID Yes Input
REG$_RETURNSTATUS No Output

REG$FC_CREATE_KEY
If the key does not exist, this request creates a new subkey under the key
specified by REG$_KEYID. If the key does exist, the system does not modify it.

If you specify the REG$_KEYRESULT item code, the system opens the specified
subkey.

The system returns the result in the REG$_DISPOSITION item code buffer.

Using this function code, you can group multiple requests into a single call to
the $REGISTRY service. To use the multiple-request feature, you must use the
REG$_SEPARATOR item code to indicate the end of the set of item codes for the
current request and that there is another request to process.

To set a value for a key, call the $REGISTRY service with the REG$FC_SET_VALUE
function code.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_CACHEACTION No Input
REG$_CLASSNAME No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_DISPOSITION No Output
REG$_KEYFLAGS No Input
REG$_KEYID Yes Input
REG$_KEYRESULT No Output
REG$_LINKPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_LINKTYPE No Input
REG$_RETURNSTATUS No Output
REG$_SECACCESS No Input
REG$_SECURITYPOLICY No Input
REG$_SEPARATOR No n/a
REG$_SUBKEYNAME Yes Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_VOLATILE No Input

If you specify the REG$_LINKPATH item code, it must point to a key path
already defined in the OpenVMS Registry; otherwise the system returns the
REG$_INVALIDPATH error.

OR–10 OpenVMS Registry System Services



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

Note

If you do not specify the REG$_CACHEACTION item code, the new key is
created with the same cache action value as the parent key. The same
rule applies to the REG$_VOLATILE and REG$_SECURITYPOLICY item codes.

REG$FC_DELETE_KEY
This request removes the specified subkey and its values from the OpenVMS
Registry database. If the specified key has subkeys, the key is not deleted. You
must delete the subkeys first.

Using this function code, you can group multiple requests into a single call
to the $REGISTRY service. If you use this multiple-request feature, use the
REG$_SEPARATOR item code to indicate the end of the set of item codes for the
current request and that there is another request to process.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_KEYID Yes Input
REG$_KEYPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_RETURNSTATUS No Output
REG$_SEPARATOR No n/a
REG$_SUBKEYNAME Yes Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)

REG$FC_DELETE_VALUE
This request deletes the specified value from the key.

Using this function code, you can group multiple requests into a single call
to the $REGISTRY service. If you use this multiple-request feature, use the
REG$_SEPARATOR item code to indicate the end of the set of item codes for the
current request and that there is another request to process.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_KEYID Yes Input
REG$_KEYPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_RETURNSTATUS No Output
REG$_SEPARATOR No n/a
REG$_VALUENAME Yes Input

REG$FC_ENUM_KEY
This request retrieves information about one subkey of the key. You identify
the subkey in the REG$_SUBKEYINDEX item code. To enumerate all the key’s
subkeys, the application must call the $REGISTRY service repeatedly using the
REG$FC_ENUM_KEY function code. Begin with a REG$_SUBKEYINDEX of zero, then
increment the count until the request returns a REG$_NOMOREITEMS error.

OpenVMS Registry System Services OR–11



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_CACHEACTION No Output
REG$_CLASSNAME No Output (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_KEYFLAGS No Output
REG$_KEYID Yes Input
REG$_KEYPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_LASTWRITE No Output
REG$_LINKCOUNT No Output
REG$_LINKPATH No Output (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_LINKTYPE No Output
REG$_RETURNSTATUS No Output
REG$_SECURITYPOLICY No Output
REG$_SUBKEYINDEX Yes Input
REG$_SUBKEYNAME No Output (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_VOLATILE No Output

REG$FC_ENUM_VALUE
This request retrieves information about a value of the specified key identifier.
The value to retrieve is identified in the REG$_VALUEINDEX item code.

To enumerate all a key’s values, the application must call the $REGISTRY
service repeatedly using the REG$FC_ENUM_VALUE function code. Begin with a
REG$_VALUEINDEX of zero, then increment the count until the request returns a
REG$_NOMOREITEMS error.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_DATAFLAGS No Output
REG$_DATATYPE No Output
REG$_KEYID Yes Input
REG$_KEYPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_RETURNSTATUS No Output
REG$_VALUEDATA No Output
REG$_VALUEINDEX Yes Input
REG$_VALUENAME No Output
REG$_VOLATILE No Output

OR–12 OpenVMS Registry System Services



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

REG$FC_FLUSH_KEY
This request writes all the information about a specified key to disk. This request
returns only after the operation is complete and all attributes of the key have
been written to the OpenVMS Registry database.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_KEYID Yes Input
REG$_KEYPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_RETURNSTATUS No Output

REG$FC_MODIFY_KEY
This request modifies a specified key’s attributes.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_CACHEACTION No Input
REG$_CLASSNAME No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_KEYFLAGS No Input
REG$_KEYID Yes Input
REG$_KEYPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_LINKPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_LINKTYPE No Input
REG$_NEWNAME No Input
REG$_RETURNSTATUS No Output
REG$_SECURITYPOLICY No Input

To remove the link from the specified key, enter a REG$_LINKPATH item code with
an address of zero. You cannot add a link to a key that has either values or
subkeys (or both).

REG$FC_MODIFY_TREE_KEY
This request modifies a specified key and all its subkey attributes. No link will
be followed or modified.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_CACHEACTION No Input
REG$_CLASSNAME No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_KEYID Yes Input

OpenVMS Registry System Services OR–13



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

Item Code Required Parameter Type

REG$_KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_RETURNSTATUS No Output
REG$_SECURITYPOLICY No Input

REG$FC_NOTIFY_CHANGE_KEY_VALUE
This request notifies the calling process when a specified key or any of its subkeys
has changed. That is, the requested function waits for the specified condition
before returning.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_FLAGSUBKEY Yes Input
REG$_KEYID Yes Input
REG$_KEYPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_NOTIFYFILTER Yes Input
REG$_RETURNSTATUS No Output

REG$FC_OPEN_KEY
This request opens the specified key. If you do not specify a subkey, the system
opens the key specified in REG$_KEYID. If REG$_KEYID specifies a key other than a
predefined key, the system opens the key again (duplicates the key).

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_KEYID Yes Input
REG$_KEYRESULT Yes Output
REG$_KEYPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_RETURNSTATUS No Output
REG$_SECACCESS Yes Input
REG$_SUBKEYNAME No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)

REG$FC_QUERY_KEY
This request retrieves attributes about a specified key.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_CACHEACTION No Output

OR–14 OpenVMS Registry System Services



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

Item Code Required Parameter Type

REG$_CLASSNAME No Output (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_CLASSNAMEMAX No Output
REG$_KEYFLAGS No Output
REG$_KEYID Yes Input
REG$_KEYPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_LASTWRITE No Output
REG$_LINKCOUNT No Output
REG$_LINKPATH No Output (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_LINKTYPE No Output
REG$_RETURNSTATUS No Output
REG$_SECURITYPOLICY No Output
REG$_SUBKEYNAMEMAX No Output
REG$_SUBKEYSNUMBER Yes Output
REG$_VALUEDATAMAX No Output
REG$_VALUENAMEMAX No Output
REG$_VALUENUMBER No Output
REG$_VOLATILE No Output

REG$FC_QUERY_VALUE
This request retrieves the type, data flags, and data for the specified value name.

Using this function code, you can group multiple requests into a single call
to the $REGISTRY service. If you use this multiple-request feature, use the
REG$_SEPARATOR item code to indicate the end of the set of item codes for the
current request and that there is another request to process.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_DATAFLAGS No Output
REG$_DATATYPE No Output
REG$_KEYPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_KEYID Yes Input
REG$_LINKCOUNT No Output
REG$_LINKPATH No Output (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_LINKTYPE No Output
REG$_RETURNSTATUS No Output
REG$_SEPARATOR No n/a
REG$_VALUEDATA No Output

OpenVMS Registry System Services OR–15



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

Item Code Required Parameter Type

REG$_VALUENAME Yes Input
REG$_VOLATILE No Output

REG$FC_SEARCH_TREE_DATA
This request scans a specified key and all its descendants for a match with a
specified set of data information. The set of data information can be either the
REG$_DATAFLAGS item code, or the pair REG$_DATATYPE and REG$_VALUEDATA item
codes, or all three item codes.

The REG$_FLAGOPCODE item code specifies how the REG$_DATAFLAGS item code
should be matched against the database. (See the item codes description for more
information about the REG$_FLAGOPCODE item code.)

Every time the system finds a match, it appends the path name relative to the
specified key to the REG$_PATHBUFFER item code. A Unicode null character is used
to separate the value path names.

If the buffer supplied by the application is not big enough to hold all the value
path names found, the system returns the SS$_BUFFEROVF error message in the
iosb argument, and the length required to complete the operation successfully is
returned in the REG$_REQLENGTH item (if specified).

Use the ellipsis (...) wildcard to match zero or more subkeys in the REG$_KEYPATH
item code. (For example, Hardware\...\disks finds all the paths that start with
the Hardware subkey and end with the disk subkey, with zero or more subkeys in
between.) Use the asterisk (*) wildcard to match an entire subkey or a portion of
a subkey in the REG$_KEYPATH item code. Use the percent (%) wildcard to match
one character in a key name in the REG$_KEYPATH item code.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_DATAFLAGS No Input
REG$_DATATYPE No Input
REG$_FLAGOPCODE No Input
REG$_KEYPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_KEYID Yes Input
REG$_PATHBUFFER Yes Output
REG$_REQLENGTH No Output
REG$_RETURNSTATUS No Output
REG$_VALUEDATA No Input

REG$FC_SEARCH_TREE_KEY
This request scans a specified key and all its descendants for a specified key path.

For this function code, a valid key path is a Unicode string that can include the
ellipsis (...), asterisk (*), or percent (%) wildcard character, but that cannot start
with the backslash character (\).

OR–16 OpenVMS Registry System Services



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

Use the ellipsis (...) wildcard to match zero or more subkeys in the REG$_KEYPATH
item code. (For example, Hardware\...\disks finds all the paths that start with
the Hardware subkey and end with the disk subkey, with zero or more subkeys in
between.) Use the asterisk (*) wildcard to match an entire subkey or a portion of
a subkey in the REG$_KEYPATH item code. Use the percent (%) wildcard to match
one character in a key name in the REG$_KEYPATH item code.

An example of a valid key path is as follows:

hardware\system\*\disk%%

Every time the system finds a match, the system appends its path name relative
to the specified key identifier to the REG$_PATHBUFFER item code. A Unicode null
character (4 bytes) separates the subkey path names.

If the buffer supplied by the application is not big enough to contain all the
subkey path names found, the system returns the SS$_BUFFEROVF error message
in the iosb argument, and the system returns the required length to complete the
operation successfully in the REG$_REQLENGTH item (if specified).

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_KEYID Yes Input
REG$_KEYPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_PATHBUFFER Yes Output
REG$_REQLENGTH No Output
REG$_RETURNSTATUS No Output

REG$FC_SEARCH_TREE_VALUE
This request scans a specified key and all its descendants for a specified value
name.

For this function code a valid key name is a Unicode string that can include the
ellipsis (...), asterisk (*), or percent (%) wildcard character, but cannot start with
the backslash character (\).

Use the ellipsis (...) wildcard to match zero or more subkeys in the REG$_KEYPATH
item code. (For example, Hardware\...\disks finds all the paths that start with
the Hardware subkey and end with the disk subkey, with zero or more subkeys in
between.) Use the asterisk (*) wildcard to match an entire subkey or a portion of
a subkey in the REG$_KEYPATH item code. Use the percent (%) wildcard to match
one character in a key name in the REG$_KEYPATH item code.

An example of a valid key path is as follows:

hardware\system\...

For this function code, a valid name is a Unicode string that can include the
asterisk (*) and percent (%) wildcard characters.

Every time the system finds a match, the system appends its path name relative
to the specified key identifier to the REG$_PATHBUFFER item code. A Unicode null
character (4 bytes) separates the subkey path names.

OpenVMS Registry System Services OR–17



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

If the buffer supplied by the application is not big enough to contain all the
subkey path names found, the system returns the SS$_BUFFEROVF error message
in the iosb argument, and the system returns the required length to complete the
operation successfully in the REG$_REQLENGTH item (if specified).

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_KEYPATH No Input (Pointer to Unicode string.
Unicode character is 4 bytes long.)

REG$_KEYID Yes Input
REG$_PATHBUFFER Yes Output
REG$_REQLENGTH No Output
REG$_RETURNSTATUS No Output
REG$_VALUENAME Yes Input

REG$FC_SET_VALUE
This request sets value and type information for a specified key.

Using this function code, you can group multiple requests into a single call
to the $REGISTRY service. If you use this multiple-request feature, use the
REG$_SEPARATOR item code to indicate the end of the set of item codes for the
current request and that there is another request to process.

When a value is set to a link, the system validates the link unless you specify the
REG$M_IGNORE_LINKS function code modifier.

Specify the item codes as follows:

Item Code Required Parameter Type

REG$_DATAFLAGS No Input
REG$_DATATYPE No Input
REG$_KEYID Yes Input
REG$_KEYPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_LINKPATH No Input (Pointer to Unicode string.

Unicode character is 4 bytes long.)
REG$_LINKTYPE No Input
REG$_RETURNSTATUS No Output
REG$_SEPARATOR No n/a
REG$_VALUEDATA No Input
REG$_VALUENAME No Input

Item Codes

Table 13–4 provides a summary of item codes that are valid as an item descriptor
in the itmlst argument. The table lists the item codes, input/output usage, and
data types. Complete descriptions of each item code are provided in the sections
that follow this table.

OR–18 OpenVMS Registry System Services



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

Table 13–4 Item Code Summary

Item Code Input/Output Data Type

REG$_CACHEACTION Input, output Longword
REG$_CLASSNAME Input, output (Pointer to Unicode

string. Unicode
character is 4 bytes
long.)

REG$_CLASSNAMEMAX Output Longword
REG$_DATAFLAGS Input, output Quadword
REG$_DATATYPE Input, output Longword
REG$_DISPOSITION Output Longword
REG$_FILELOAD Input Unicode string
REG$_FLAGOPCODE Input Longword
REG$_FLAGSUBKEY Input Longword
REG$_KEYPATH Input (Pointer to Unicode

string. Unicode
character is 4 bytes
long.)

REG$_KEYFLAGS Input, output Longword
REG$_KEYID Input, output Longword
REG$_KEYRESULT Output Longword
REG$_LASTWRITE Output Quadword
REG$_LINKCOUNT Output Longword
REG$_LINKPATH Input, output (Pointer to Unicode

string. Unicode
character is 4 bytes
long.)

REG$_LINKTYPE Input, output Longword
REG$_NEWNAME Input Unicode string
REG$_NOTIFYFILTER Input Longword
REG$_PATHBUFFER Output Buffer
REG$_REQLENGTH Output Longword
REG$_RETURNSTATUS Output Longword
REG$_SECACCESS Input Longword
REG$_SECURITYPOLICY Input, output Longword
REG$_SEPARATOR n/a None
REG$_SUBKEYINDEX Input Longword
REG$_SUBKEYNAME Input, output (Pointer to Unicode

string. Unicode
character is 4 bytes
long.)

REG$_SUBKEYNAMEMAX Output Longword
(continued on next page)

OpenVMS Registry System Services OR–19



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

Table 13–4 (Cont.) Item Code Summary

Item Code Input/Output Data Type

REG$_SUBKEYSNUMBER Output Longword
REG$_VALUEDATA Input, output Buffer
REG$_VALUEDATAMAX Output Longword
REG$_VALUEINDEX Input Longword
REG$_VALUENAME Input, output Unicode string
REG$_VALUENAMEMAX Output Longword
REG$_VALUENUMBER Output Longword
REG$_VOLATILE Input, output Longword

REG$_CACHEACTION
The REG$_CACHEACTION item code is an input item code. It is a longword flag that
specifies whether the information on a specified object should be written to disk
immediately. It takes one of the following values:

Cache Value Description

REG$K_WRITEBEHIND Write information about the specified object written to
disk at a later time (default).

REG$K_WRITETHRU Write information about the specified object to disk
immediately.

Note

If you do not specify this item code, the value or key inherits
its value from the parent object. By default, the entry
points (REG$_HKEY_CLASSES_ROOT, REG$_HKEY_LOCAL_MACHINE,
and REG$_HKEY_USERS) are set with a value equal to that of
REG$K_WRITEBEHIND.

REG$_CLASSNAME
The REG$_CLASSNAME item code is, depending on the function code, either an input
or output item code. The class name is an information field for a key. The type
of an object is an example of a class name. It can be composed of any string of
Unicode characters. A Unicode character is 4 bytes long.

REG$_CLASSNAMEMAX
The REG$_CLASSNAMEMAX item code is an output item code. It receives the length,
in bytes, of the longest string specifying a subkey class name.

REG$_DATAFLAGS
Depending on the function code, the REG$_DATAFLAGS item code is either an input
or output item code. It is a 64-bit application-dependent value data flag.

REG$_DATATYPE
Depending on the function code, the REG$_DATATYPE item code is either an input
or output item code. It is a longword that either specifies the type of information

OR–20 OpenVMS Registry System Services



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

to be stored as a value data or receives the type of information of a specified value
data component. It takes one of the following values:

Type code Description

REG$K_BINARY Binary data
REG$K_DWORD A 32-bit number
REG$K_EXPAND_SZ A string of Unicode characters
REG$K_MULTI_SZ A concatenated array of REG$K_SZ strings
REG$K_NONE No defined value type (default)
REG$K_QWORD A 64-bit number
REG$K_SZ A null-terminated Unicode string

The difference between REG$K_EXPAND_SZ and REG$K_SZ

A string is a set of characters usually in human-readable form. Many
value entries in the OpenVMS Registry are written using a string
(REG_SZ) or an expandable string (REG_EXPAND_SZ) format. An
expandable string is usually human-readable text, but it can also
include a variable that will be replaced when the string is called by
an application.

For example, on a Windows NT system, in the value entry
%SystemRoot%\System32\Bootok.exe, %SystemRoot% is the expandable
portion of the variable. This part is replaced with the actual location of
the directory that contains the Windows NT system files.

REG$_DISPOSITION
The REG$_DISPOSITION item code is an output item code. It is a longword and
takes one of the following values:

Disposition value Description

REG$K_CREATENEWKEY The key did not exist and was created.
REG$K_OPENEXISTINGKEY The key existed and was opened.

REG$_FLAGOPCODE
The REG$_FLAGOPCODE item code is an input item code. It is a longword flag that
indicates how the REG$_DATAFLAGS input item code should be matched against the
data flags field in the OpenVMS Registry database. It takes one of the following
values:

Operator code options Description

REG$K_ANY The data field in the OpenVMS Registry database must
contain at least one of the flags in the REG$_DATAFLAGS
input item code.

REG$K_EXACTMATCH The REG$_DATAFLAGS input item code must match exactly
the data flags field in the OpenVMS Registry database.

OpenVMS Registry System Services OR–21



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

Operator code options Description

REG$K_EXCLUDE The data flags field in the OpenVMS Registry database
must not contain the flags in the REG$_DATAFLAGS input
item code.

REG$K_INCLUDE The data flags field in the OpenVMS Registry
database must contain, at a minimum, the flags in
the REG$_DATAFLAGS input item code.

REG$K_NOTANY The data field in the OpenVMS Registry database must
not contain any of the flags in the REG$_DATAFLAGS input
item code.

REG$_FLAGSUBKEY
The REG$_FLAGSUBKEY item code is an input item code. It is a longword Boolean
field that indicates the following:

• If set to 1, report changes in a specified key and any of its subkeys.

• If set to 0, report changes to a specified key only.

REG$_KEYID
The REG$_KEYID item code is an input item code. It is a longword that contains
the key identifier.

REG$_KEYRESULT
The REG$_KEYRESULT item code is an output item code. It is a longword that
receives a key identifier. The key identifier can be passed to other Registry calls
using the REG$_KEYID item code.

REG$_KEYPATH
The REG$_KEYPATH item code is an input item code. It is a string of Unicode
characters that specifies a key path. A Unicode character is 4 bytes long.

REG$_LASTWRITE
The REG$_LASTWRITE item code is an output item code. It is a quadword
representation of absolute time that receives the time a specified key was
last written to (including changes to its values).

REG$_LINKCOUNT
The REG$_LINKCOUNT item code is an output item code. It is longword count of the
number of symbolic links that refer to the item.

REG$_LINKPATH
The REG$_LINKPATH item code is, depending on the function code, either an input
or an output item code. It is a string of Unicode characters that specifies the key
path to which a specified key is linked. A Unicode character is 4 bytes long.

REG$_LINKTYPE
The REG$_LINKTYPE item code is, depending on the function code, either an input
or an output item code. It is longword type that indicates the link type.

Link Type Description

REG$K_NONE No link (default)

OR–22 OpenVMS Registry System Services



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

Link Type Description

REG$K_SYMBOLICLINK Symbolic (logical) link

REG$_NEWNAME
The REG$_NEWNAME item code is a string of Unicode characters that specifies the
new name of the key.

REG$_NOTIFYFILTER
The REG$_NOTIFYFILTER item code is an input item code. It is a longword mask
that specifies which changes to the specified key and its subkeys and values to
report. It takes any combination of the following values:

Value Description

REG$M_CHANGEATTRIBUTES An attribute change of the specified key or its
subkeys.

REG$M_CHANGELASTSET Changes to the last write time of the specified
key or its subkeys.

REG$M_CHANGENAME A key name change, including creation and
deletion, of the specified key or its subkeys.

Note

The system report changes to subkeys of the specified key only if the
REG$_FLAGSUBKEY item code is set to 1.

REG$_PATHBUFFER
The REG$_PATHBUFFER item code is an output item code. It is a buffer that
receives a set of either key paths or value paths, separated by a null Unicode
character (4 bytes long). (The third longword of the item descriptor contains the
number of bytes written to the buffer.)

REG$_REQLENGTH
The REG$_REQLENGTH item code is an output item code. It is a longword that
receives the required buffer size (in bytes) to complete the operation successfully.

REG$_RETURNSTATUS
The REG$_RETURNSTATUS item code is an output item code. It is a longword
that receives the final completion status for a specified operation. For more
information, see the Condition Values Returned section of this chapter.

REG$_SECACCESS
The REG$_SECACCESS item code is an input item code. It is a longword mask that
specifies the desired security access for the new key. It takes any combination of
the following values:

OpenVMS Registry System Services OR–23



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

Security access mask Description

REG$M_ALLACCESS A combination of the following access values:

REG$K_CREATELINK
REG$K_CREATESUBKEY
REG$K_ENUMSUBKEYS
REG$K_NOTIFY
REG$K_QUERYVALUE
REG$K_SETVALUE

REG$M_CREATELINK Allows creation of a symbolic link.
REG$M_CREATESUBKEY Allows creation of subkeys.
REG$M_ENUMSUBKEYS Allows enumeration of subkeys.
REG$M_EXECUTE Allows read access.
REG$M_NOTIFY Allows change notification.
REG$M_QUERYVALUE Allows queries of subkey data.
REG$M_READ A combination of the following access values:

REG$K_ENUMSUBKEYS
REG$K_QUERYVALUE
REG$K_NOTIFY

REG$M_SETVALUE Allows setting of values and data.
REG$M_WRITE A combination of the following access values:

REG$K_CREATESUBKEY
REG$K_SETVALUE

REG$_SECURITYPOLICY
The REG$_SECURITYPOLICY item code is an input item code. It is a longword that
specifies the security policy to enforce for the key. It takes the following value:

Policy Setting Description

REG$K_POLICY_NT_40 Access is required to the first key and the requested key
(default).

REG$_SEPARATOR
The REG$_SEPARATOR item code is an empty item code that provides a separator
between sets of item codes.

Using this item code, you can group multiple requests into a single call to
the $REGISTRY service. If you use this multiple-request feature, use the
REG$_SEPARATOR item code to indicate the end of the set of item codes for the
current request and that there is another request to process.

REG$_SUBKEYINDEX
The REG$_SUBKEYINDEX item code is an input item code. It is a longword that
specifies the index of the subkey to retrieve.

REG$_SUBKEYNAME
The REG$_SUBKEYNAME item code is an input item code. It is a string of Unicode
characters that specifies the name of a subkey. A Unicode character is 4 bytes
long.

OR–24 OpenVMS Registry System Services



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

REG$_SUBKEYNAMEMAX
The REG$_SUBKEYNAMEMAX item code is an output item code. It is a longword that
receives the length (in characters) of a specified key’s longest subkey name.

REG$_SUBKEYSNUMBER
The REG$_SUBKEYSNUMBER item code is an output item code. It is a longword that
receives the number of subkeys contained in a specified key.

REG$_VALUEINDEX
The REG$_VALUEINDEX item code is an input item code. It is a longword that
specifies the index of the value to retrieve within a specified key. Note that the
value index starts at zero and can be any value up to one less than the count
returned by REG$_VALUENUMBER.

REG$_VALUEDATA
The REG$_VALUEDATA item code is, depending on the function code, either an input
or output item code. It is a buffer that contains either the value data component
to write to the OpenVMS Registry (input), or it receives a data value component
from the OpenVMS Registry (output).

REG$_VALUEDATAMAX
The REG$_VALUEDATAMAX item code is an output item code. It is a longword that
receives the length (in bytes) of the specified key’s longest data component value.

REG$_VALUENAME
The REG$_VALUENAME item code is, depending on the function code, either an input
or an output item code. It is a string of Unicode characters that specifies the
name of a value.

REG$_VALUENAMEMAX
The REG$_VALUENAMEMAX item code is an output item code. It is a longword that
receives the length (in characters) of a specified key’s longest value name.

REG$_VALUENUMBER
The REG$_VALUENUMBER item code is an output item code. It is a longword that
receives the number of values contained in a specified key.

REG$_VOLATILE
The REG$_VOLATILE item code identifies the volatility of an item. As an output,
it returns the volatility of the object. On OpenVMS, volatile keys and values are
lost when all nodes running an OpenVMS Registry server are rebooted. (In a
standalone system, volatile keys and values are lost when the system reboots.)

Volatile Type Description

REG$K_CLUSTER The item is removed when the cluster reboots.
REG$K_NONE The item is not volatile (default).

Function Modifiers

You can optionally specify the high-order bits of a function code value with
function modifiers. These individual bits can alter the operation of the function.

OpenVMS Registry System Services OR–25



OpenVMS Registry System Services
$REGISTRY and $REGISTRYW

For example, you can specify the function modifier REG$M_CASE_SENSITIVE
with the function REG$FC_CREATE_KEY. When you use the function and function
modifier together, the data passed to the OpenVMS Registry is treated as case
sensitive. The two values are written in DEC C as REG$M_CASE_SENSITIVE |
REG$FC_CREATE_KEY.

The OpenVMS Registry function modifiers are defined in the header file REGDEF.H.

REG$M_CASE_SENSITIVE
Use case-sensitive matching for keys and values.

REG$M_DISABLE_WILDCARDS
Treat wildcard characters as normal characters for this function.

REG$M_IGNORE_LINKS
Force the operation to not follow any symbolic links associated with a key or a
value.

By default, if a key or value is symbolically linked to another key or value, the
system follows all links so that the operation specified by the function code is
performed on the linked key or value.

When you specify the REG$M_IGNORE_LINKS function modifier, the operation
specified by the function code affects only the specified key or value, not the
linked key or value.

By default, if a key or value has a symbolic link, it can not be deleted. If you
specify the REG$M_IGNORE_LINKS function modifier, the system deletes the key or
value.

REG$M_NOW
Write to disk immediately, regardless of the REG$_CACHEACTION item code value.

OR–26 OpenVMS Registry System Services



Part III
OpenVMS Events

This part contains reference information about OpenVMS Events.





14
OpenVMS Events

14.1 What are Events?
On a Windows NT system, an event is any significant occurrence in the system
or an application—for example, a service starting or stopping, a user logging
on or off, or accessing resources. When the system encounters an event, the
Event Log service writes the event (or audit entry) in the form of a record
that contains date and time, source, category, event number, user, and computer
information to a system, security, or application log, creating an audit trail. On
Windows NT systems, you display these logs and their recorded events using the
Event Viewer.

With COM Version 1.0 for OpenVMS, OpenVMS wrote all COM for OpenVMS
events to the DCOM$EVENTLOG.RPT text file. With COM Version 1.1-B for
OpenVMS, OpenVMS supports both Windows NT logging and Advanced Server
for OpenVMS logging of COM for OpenVMS events. You can now log a COM for
OpenVMS event (such as the starting of a COM server on OpenVMS), and review
these OpenVMS events from a Windows NT system or an OpenVMS system.

For a detailed review of OpenVMS Events dependencies and a description of how
OpenVMS Events interacts with other parts of the OpenVMS infrastructure, see
Section 4.8.

14.1.1 Suggested Reading
The following sources can provide you with more information on Events and
related topics:

• Third-party books on event logging:

— Windows NT Server 4.0 Unleashed, Jason Garms, SAMS Publishing,
Indianapolis, IN, 1998. ISBN: 0-672-30933-5.

— Win32 System Services: The Heart of Window 95 and Windows NT,
Marshall Brain, Prentice Hall, Upper Saddle River, NJ, 1996. ISBN:
0-13-324732-5.

• Other sources:

— Microsoft Win32 Software Development Kit

In particular, see the sections about the RegisterEventSource,
ReportEvent, and DeregisterEventSource functions, and System
Services: Event Logging section.

OpenVMS Events 14–1



OpenVMS Events
14.2 Overview of OpenVMS Events

14.2 Overview of OpenVMS Events
The system logs OpenVMS Events to a Windows NT event log, to the Advanced
Server for OpenVMS event log, and to a log file on the OpenVMS system.

You can use the following techniques to view OpenVMS Events:

• Windows NT event viewer (see Section 14.2.1)

• Advanced Server for OpenVMS event viewer (see Section 14.2.2)

• OpenVMS event log file (see Section 14.2.3)

14.2.1 Viewing OpenVMS Events Using Windows NT Event Viewer
Use the following procedure to view OpenVMS Events through the Windows NT
event viewer:

1. Start the Windows NT event viewer.

From the Start menu, select Programs, Administrative Tools, Event
Viewer.

2. From the Event Viewer window, click the menu bar Log option. Click Select
Computer...., and select the OpenVMS system from the list box.

3. From the Event Viewer window, click the menu bar Log option. Click
System to display the System event log. The System event log contains the
COM for OpenVMS events.

To display COM for OpenVMS events only, use the following procedure:

• From the Event Viewer window, click the menu bar View option. Click
Filter Events....

The system displays the Filter window.

• On the Filter window, click the Source: list box. From the list, choose
DCOM.

14.2.2 Viewing OpenVMS Events Using Advanced Server for OpenVMS Event
Viewer

Use the following procedure to view the COM for OpenVMS events:

1. Ensure that the Advanced Server for OpenVMS is running.

2. Enter the following Advanced Server for OpenVMS ADMINISTRATOR
command:

$ ADMIN SHOW EVENTS/TYPE=SYSTEM/SOURCE=DCOM/FULL

The viewer displays COM for OpenVMS events only, along with any additional
information associated with the COM for OpenVMS event.

14.2.3 Event Logging on OpenVMS Only
In some cases, you might want to write and view COM for OpenVMS events only
on an OpenVMS system. In place of the Windows NT log, Compaq has included
an alternate event logger that writes COM event information to an OpenVMS
file. You can find this file in the following location:

SYS$MANAGER:DCOM$EVENTLOG.RPT

14–2 OpenVMS Events



OpenVMS Events
14.2 Overview of OpenVMS Events

COM for OpenVMS creates this event logging report automatically when the
COM server (DCOM$RPCSS) encounters an error. The event logger appends new
events at the bottom (end) of the file. A logged event has the following format:

event type : ddd mmm dd hh:mm:ss yyyy
First event message

event type : ddd mmm dd hh:mm:ss yyyy
Second event message
.
.
.

Example 14–1 shows the contents of an event log.

Example 14–1 Sample OpenVMS Event Log

$ Type SYS$MANAGER:DCOM$EVENTLOG.RPT

!
ERROR : Tue Sep 15 11:18:54 1998
Unable to start a DCOM Server: {5E9DDEC7-5767-11CF-BEAB-00AA006C3606}
Runas (null)/SMITH
The Windows NT error: 1326
Happened while starting: device:[account]SSERVER.EXE

"
ERROR : Tue Sep 15 19:14:45 1998
The server {0C092C21-882C-11CF-A6BB-0080C7B2D682} did not register
with DCOM within the required timeout.

! The system logged the first error event on Tue Sep 15 11:18:54 1998. The
COM server (DCOM$RPCSS) was unable to start the COM application
device:[account]SSERVER.EXE on behalf of the client running under the
SMITH account. (The client may have received an error such as ‘‘access
denied.’’) The resulting Windows NT error was 1326, which translates as
"Logon failure: unknown user name or bad password."

If you see this error, check the validity of the user account using the
OpenVMS Authorize utility (AUTHORIZE).

" The system logged the second error event on Tue Sep 15 19:14:45 1998.
The COM server (DCOM$RPCSS) was able to start the COM application
{0C092C21-882C-11CF-A6BB-0080C7B2D682}, but the application did not run
successfully. The application failed to register with DCOM$RPCSS within the
specified time limit. (The client may have received an error such as ‘‘Server
execution failed’’ CO_E_SERVER_EXEC_FAILURE.)

If you see this error, run the server application interactively to determine its
integrity.

OpenVMS Events 14–3



OpenVMS Events Routine
NTA$EVENTW

NTA$EVENTW
Interface to OpenVMS Events

Allows an application to record information in the event log files.

The NTA$EVENTW routine completes all operations synchronously.

Format

NTA$EVENTW [nullarg], func, itmlst, evsb

Arguments

nullarg
OpenVMS usage: reserved
type: longword (unsigned)
access: read only
mechanism: by value

Reserved for Compaq use.

func
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by value

Function code specifying the function NTA$EVENTW is to perform. The func
argument is a longword containing this function code. The $EVENTDEF macro
defines the names of each function code.

itmlst
OpenVMS usage: address of item list
type: 64-bit address
access: read only
mechanism: by value

Item list specifying information about the event source or the event. The itmlst
argument is the 64-bit address of a list of item descriptors, each of which
describes an item of information. An item list in 64-bit format is terminated by a
quadword of 0.

The following diagram shows the 64-bit format of a single item descriptor.

14–4 OpenVMS Events



OpenVMS Events Routine
NTA$EVENTW

ZK−8782A−GE

Buffer address

Buffer length

Item code (MBO)

31 015

(MBMO)

0

4

8

16

Return length address 24

evsb
OpenVMS usage: address of status block
type: 64-bit address
access: write only
mechanism: by reference

Event status block to contain the completion status for the requested operation.

NTA$EVENTW sets the status block to 0 upon request initiation. Upon request
completion, the EVT$L_VMS_STATUS field contains the primary (OpenVMS)
completion status for the operation.

If an error occurs, EVT$L_NT_STATUS (if non-zero) is the secondary error status
to further define the error condition.

Function Codes

EVT$_FC_REGISTER_EVENT_SOURCE
Open an association with an event log.

Item code Required Parameter Data type

EVT$_SERVER_NAME No Input String (4-byte Unicode)
EVT$_SOURCE No Input String (4-byte Unicode)
EVT$_HANDLE Yes Output Unsigned longword

• EVT$_SERVER_NAME

The universal naming convention (UNC) name of the server on which this
operation is to be performed.

UNC names have the form \\server\share\path\file. This item must be
zero or unspecified. This performs the operation on an available Advanced
Server for OpenVMS server in the cluster.

• EVT$_SOURCE

The name of the application that logs the event. This field associates an
application message file that contains descriptive text with the application’s
event log entries.

OpenVMS Events 14–5



OpenVMS Events Routine
NTA$EVENTW

If specified, the source must be a subkey of the Eventlog\System key, the
Eventlog\Security key, or the Eventlog\Application registry key. For
example, a source name of Myapp indicates a registry entry in the following:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\
Services\Eventlog\Application\Myapp)

The Myapp registry value EventMessageFile names the path and message file
to be used to translate this application’s events.

The source can be unspecified or specified as NULL. In this case, the system
logs events to the Application log file but the application logs no message file
(and, as a result, no replacement text) for the associated events.

• EVT$_HANDLE

Returns a handle to the Application event log. This handle is required input
for other $EVENT functions.

On failure, a handle of 0 is returned. This handle is outside the responsibility
of the CloseHandle API.

EVT$_FC_REPORT_EVENT
Generate an event log entry.

Item code Required Parameter Data type

EVT$_HANDLE Yes Input Unsigned longword
EVT$_EVENT_TYPE Yes Input Word mask
EVT$_EVENT_CATEGORY No Input Word
EVT$_EVENT_ID Yes Input Longword
EVT$_USER_SID No Input NT Security ID
EVT$_NUMSTRINGS No Input Word
EVT$_DATASIZE No Input Longword
EVT$_STRING_ARRAY No Input Array of varying-length

descriptors. (4-byte
Unicode)

EVT$_RAW_DATA No Input Binary data

• EVT$_HANDLE

Value returned by a previous EVT$_FC_REGISTER_EVENT_SOURCE call.

• EVT$_EVENT_TYPE

Indicates the severity of the event. The type is one of the following:

EVT$_SUCCESS
EVT$_ERROR
EVT$_WARNING
EVT$_INFO
EVT$_AUDIT_SUCCESS
EVT$_AUDIT_FAILURE

The severity type maps to its Windows NT equivalent, defined in WINNT.H.

• EVT$_EVENT_CATEGORY

An integer value from 1 to 65535. EVT$_EVENT_CATEGORY is unique to a
particular source.

14–6 OpenVMS Events



OpenVMS Events Routine
NTA$EVENTW

EVT$_EVENT_CATEGORY allows an application to divide its message file
into sections, each indexed by event ID. If you do not specify a category, the
system defaults to a category of zero.

• EVT$_EVENT_ID

An unlimited integer value. This value indexes the category in an application
message file that locates the text string displayed for this event message. The
event ID is unique to a particular source.

• EVT$_USER_SID

The optional Windows NT Security ID of the thread logging the event.
An application that has acquired Windows NT credentials through the
$PERSONA system service can obtain its SID through calls to the
OpenProcessToken and GetTokenInformation Win32 APIs. The format is
opaque to this service.

• EVT$_NUMSTRINGS

A count of the strings specified in the EVT$_STRING_ARRAY item code.

• EVT$_DATASIZE

Length in bytes of the buffer indicated by the EVT$_RAW_DATA item code.

• EVT$_STRING_ARRAY

An array of string pointers. Each entry points to a null terminated string.
A description string in a message file can contain string placeholders in the
form %n, where %1 indicates the first placeholder. Strings specified in this
array replace these placeholders when the system displays the event message.

• EVT$_RAW_DATA

Allows you to include binary data in an event message.

For example, you might use this to dump a data structure from a failing
component.

EVT$_DEREGISTER_EVENT_SOURCE
Close an association with an event log.

Item code Required Parameter Data type

EVT$_HANDLE Yes Input Unsigned longword

• EVT$_HANDLE

Value returned by a previous EVT$_FC_REGISTER_EVENT_SOURCE call.

Item Codes

Item Code
Parameter
Type Data Type

EVT$_SERVER_NAME Input String
EVT$_SOURCE Input String
EVT$_HANDLE Input/OutputUnsigned longword

OpenVMS Events 14–7



OpenVMS Events Routine
NTA$EVENTW

Item Code
Parameter
Type Data Type

EVT$_EVENT_TYPE Input Word mask
EVT$_EVENT_CATEGORY Input Word
EVT$_EVENT_ID Input Longword
EVT$_USER_SID Input NT security ID
EVT$_NUMSTRINGS Input Word
EVT$_DATASIZE Input Longword
EVT$_STRING_ARRAY Input Array of string pointers
EVT$_RAW_DATA Input Binary data

Description

The NTA$EVENTW routine allows you to register and deregister an event source
and report event data. This event logging allows you to record information from
within an application. You can use the events routines to track progress within
an application or identify problems encountered by an application.

The NTA$EVENTW routine completes synchronously; that is, control is returned
to the caller only after the request completes.

Use the following process to write event data:

1. Register the event source.

This operation defines the event log to which the system writes event data.

2. Report the event.

This operation causes the system to write the information to the appropriate
event log.

3. Deregister the event source.

This operation frees resources acquired as part of the event source
registration operation.

Condition Values Returned

SS$_NORMAL Service completed successfully.
SS$_ACCVIO One of the arguments cannot be read/written.
SS$_BADPARAM Bad parameter.
SS$_NOPRIV Insufficient privilege to access the specified event

log.
SS$_TIMEOUT Request timed out.
SS$_UNREACHABLE Events service unavailable.
SS$_REJECT The Windows NT LAN Manager server

encountered an error. See the Win32 status
for more information.

14–8 OpenVMS Events



OpenVMS Events
14.3 Writing Your Own Events

14.3 Writing Your Own Events
By default, the system logs DCOM events generated by COM for OpenVMS. In
addition to recording COM for OpenVMS events, the system can also log COM
application events for COM applications that you create.

The COM for OpenVMS kit includes sample code that shows how to generate
an application event using Win32 APIs. You can use this example as is on a
Windows NT system. The example also builds correctly using the instructions
for building COM for OpenVMS applications on OpenVMS (to get the required
header files from DCOM$LIBRARY). See Chapter 7 for these instructions.
The example also includes the linking instructions to build the example using
Wind/U.

14.4 Troubleshooting OpenVMS Events
Errors that occur during event reporting can be difficult to trace because of the
number of intervening software layers through which the event passes. The
following list describes how OpenVMS Events pass through other software layers
until they are recorded in the Windows NT log.

1. An application calls one of the Win32 event functions (RegisterEventSource,
ReportEvent, or DeregisterEventSource).

2. Using the supplied arguments, the Win32 API builds an appropriate item list
and calls the NTA$EVENTW routine.

3. The NTA$EVENTW routine validates the information supplied (function code,
item list, and so on) and builds an appropriate item list for the SYS$ACM
system service.

If NTA$EVENT detects any errors NTA$EVENT returns the errors to the
Win32 API using R0 and the event status block.

4. The SYS$ACM system service validates the information and passes it to the
NT ACME.

If SYS$ACM detects any errors, SYS$ACM returns the errors to
NTA$EVENTW using R0 and the ACM status block..

5. The NT ACME passes the supplied information (using an IPC pipe) to a
dispatcher in the Advanced Server for OpenVMS.

If the NT ACME detects any errors, the NT ACME returns the errors to the
caller using the ACM status block.

6. The Advanced Server for OpenVMS dispatcher validates the information and
calls the appropriate routines to perform the requested operation (register,
report, or deregister).

If the Advanced Server for OpenVMS detects any errors, it reports the errors
to the NT ACME. The NT ACME passes the errors back to the other callers.

Checking the contents of the event status block help you determine where the
failure might have happened. Table 14–1 lists (in order of importance) the checks
you should perform.

OpenVMS Events 14–9



OpenVMS Events
14.4 Troubleshooting OpenVMS Events

Table 14–1 Troubleshooting OpenVMS Events Failures

R0 Status Status Field Value Component to Check

Failure (bit 0 clear) EVT$L_NT_STATUS
field is nonzero.

Error most likely occurred within Advanced Server
for OpenVMS.

Failure EVT$L_VMS_STATUS
field is nonzero and the
EVT$L_NT_STATUS is
zero.

Error most likely occurred within the SYS$ACM
system service or the NT ACME.

Failure EVT$L_VMS_STATUS
is zero and EVT$L_NT_
STATUS is zero.

Error most likely occurred within the SYS$ACM
system service.

Note

The Win32 API usually converts the error status to an appropriate NT
error status code and makes it available through the GetLastError Win32
API. (The status returned by the event API simply indicates a generic
failure.)

14–10 OpenVMS Events



Part IV
Appendixes

This part contains reference information about COM for OpenVMS and the
OpenVMS Registry.

The appendixes provide information about the MIDL compiler, troubleshooting
tips, COM sample code, running COM for OpenVMS in an unauthenticated
environment, and APIs and interfaces.

This part also includes coupons for related COM books, a glossary, and a list of
acronyms.





A
MIDL Compiler Options

A.1 Mode
Switch Use

/ms_ext Microsoft extensions to the IDL language (default)

/c_ext Allow Microsoft C extensions in the IDL file (default)

/osf OSF mode - disables /ms_ext and /c_ext options

/app_config Allow selected ACF attributes in the IDL file

/mktyplib203 MKTYPLIB Version 2.03 compatibility mode

A.2 Input
Switch Use

/acf filename Specify the attribute configuration file

/I directory-list Specify one or more directories for include path

/no_def_idir Ignore the current and the INCLUDE directories

A.3 Output File Generation
Switch Use

/client none Do not generate client files

/client stub Generate client stub file only

/out directory Specify destination directory for output files

/server none Generate no server files

/server stub Generate server stub file only

/syntax_check Check syntax only; do not generate output files

/Zs Check syntax only; do not generate output files

/old Generate old format type libraries

/new Generate new format type libraries

A.4 Output File Names
Switch Use

/cstub filename Specify client stub file name

/dlldata filename Specify dlldata file name

/h filename Specify header file name

MIDL Compiler Options A–1



MIDL Compiler Options
A.4 Output File Names

Switch Use

/header filename Specify header file name

/iid filename Specify interface UUID file name

/proxy filename Specify proxy file name

/sstub filename Specify server stub file name

/tlb filename Specify type library file name

A.5 C Compiler and Preprocessor Options
Switch Use

/cpp_cmd cmd_line Specify name of C preprocessor

/cpp_opt options Specify additional C preprocessor options

/D name[=def] Pass #define name, optional value to C preprocessor

/no_cpp Turn off the C preprocessing option

/nocpp Turn off the C preprocessing option

/U name Remove any previous definition (undefine)

A.6 Environment
Switch Use

/char signed C compiler default char type is signed

/char unsigned C compiler default char type is unsigned

/char ascii7 Char values limited to 0-127

/dos Target environment is MS-DOS client

/env dos Target environment is MS-DOS client

/env mac Target environment is Apple Macintosh

/env powermac Target environment is Apple PowerMac

/env win16 Target environment is Microsoft Windows 16-bit (Win 3.x)

/env win32 Target environment is Microsoft Windows 32-bit (NT)

/mac Target environment is Apple Macintosh

/ms_union Use Midl 1.0 non-DCE wire layout for non-encapsulated unions

/oldnames Do not mangle version number into names

/powermac Target environment is Apple PowerMac

/rpcss Automatically activate rpc_sm_enable_allocate

/use_epv Generate server side application calls via entry-pt vector

/no_default_epv Do not generate a default entry-point vector

/prefix client str Add ‘‘str’’ prefix to client-side entry points

/prefix server str Add ‘‘str’’ prefix to server-side manager routines

/prefix switch str Add ‘‘str’’ prefix to switch routine prototypes

/prefix all str Add ‘‘str’’ prefix to all routines

/win16 Target environment is Microsoft Windows 16-bit (Win 3.x)

/win32 Target environment is Microsoft Windows 32-bit (NT)

A–2 MIDL Compiler Options



MIDL Compiler Options
A.7 Error and Warning Messages

A.7 Error and Warning Messages
Switch Use

/error none Turn off all error checking options

/error allocation Check for out of memory errors

/error bounds_check Check size vs transmission length specification

/error enum Check enum values to be in allowable range

/error ref Check ref pointers to be non-null

/error stub_data Emit additional check for server side stub data validity

/no_warn Suppress compiler warning messages

A.8 Optimization
Switch Use

/align {1|2|4|8} Designate packing level of structures

/pack {1|2|4|8} Designate packing level of structures

/Zp{1|2|4|8} Designate packing level of structures

/Oi Generate fully interpreted stubs

/Oic Generate fully interpreted stubs for standard interfaces and stubless proxies for
object interfaces as of NT 3.51 release

/Oicf Generate fully interpreted stubs with extensions and stubless proxies for object
interfaces as of NT 4.0 release

/Os Generate inline stubs

/hookole Generate HookOle debug info for local object interfaces

A.9 Miscellaneous
Switch Use

@response_file Accept input from a response file

/? Display a list of MIDL compiler switches

/confirm Display options without compiling MIDL source

/help Display a list of MIDL compiler switches

/nologo Suppress displaying of the banner lines

/o filename Redirects output from screen to a file

/W{0|1|2|3|4} Specify warning level 0-4 (default = 1)

/WX Report warnings at specified /W level as errors

MIDL Compiler Options A–3





B
Troubleshooting

B.1 RPC Troubleshooting
When you perform a significant number of simultaneous NTLM authentications,
the following errors are likely to occur. Several factors affect the number of
simultaneous NTLM authentications, however, you are most likely to see these
errors when the network is congested or when the RPC application server does
not respond to requests in a timely manner. The errors are returned as standard
RPC application return values.

Table B–1 provides a description of the suspected cause and possible
workarounds.

Table B–1 RPC Errors

Error Cause/Corrective Actions

RPC_S_CONNECTION_REJECTED This error is seen by the client application as an exception
when using either DECnet Phase IV or DECnet Phase V as a
transport and when the server is heavily loaded servicing other
DECnet clients.

The system returns this error when the client RPC run time
binds to a newly created socket and the socket call returns
error 61 (connection refused).

Possible solutions:

1. Raise DECnet resource quotas.

2. Enhance the client RPC program to catch the exception
and either retry the RPC or choose a different server.

(continued on next page)

Troubleshooting B–1



Troubleshooting
B.1 RPC Troubleshooting

Table B–1 (Cont.) RPC Errors

Error Cause/Corrective Actions

RPC_S_CONNECTION_TIMED_OUT This error is seen by the client application as an exception
when using TCP or DECnet as a transport and when the server
is heavily loaded.

The system returns this error when the client RPC run time
binds to a newly created socket and the server takes too long to
either accept or reject the connection.

Possible solutions:

1. Configure TCP or DECnet to wait longer before sockets
time out.

2. Enhance the RPC client application to call
rpc_mgmt_set_com_timeout() and instruct the RPC
run time to retry when it gets this socket error.

3. Recode the client RPC program to catch the exception and
either retry the RPC or choose a different server.

RPC_S_ASSOC_SHUTDOWN This error is seen by the client application as an exception
when using TCP or DECnet as a transport and when the
client is heavily loaded (usually when the client is also an RPC
server).

After an RPC server receives an RPC_BIND packet from
a client and the server sends back an RPC_BIND_ACK
packet to the client, the server expects to receive a REQUEST
packet within 12 seconds. If the client does not send the
REQUEST packet within 12 seconds, the RPC server deletes the
association and sends a SHUTDOWN packet to the client. The
client RPC run time raises an exception to the RPC application.

This scenario is likely to occur when the client RPC application
is also acting as an RPC server and that RPC server is already
heavily loaded.

Possible solutions:

1. Implement the client RPC program to catch the exception
and either retry the RPC or choose a different server.

(continued on next page)

B–2 Troubleshooting



Troubleshooting
B.1 RPC Troubleshooting

Table B–1 (Cont.) RPC Errors

Error Cause/Corrective Actions

RPC_S_COMM_FAILURE

This error is seen by the client application as an exception
when using DG (UDP) as a transport and when the RPC server
is heavily loaded.

The RPC client sends a REQUEST packet to the server. If the
client does not get a WORKING packet response from the server
within 30 seconds, the client sends a PING packet to the server
to see if the server is still active and working on the client’s
request. If the RPC server is under heavy load, the server may
not return the WORKING packet to the client before the client
times out.

Possible solutions:

1. RPC client application can call
rpc_mgmt_set_com_timeout() to instruct the RPC
run time to wait longer than 30 seconds before timing out.

2. Implement the client RPC program to catch the exception
and either retry the RPC or choose a different server.

B.2 Troubleshooting the ACME server
Use the following procedure to troubleshoot problems with the ACME server:

1. Verify that the ACME_SERVER process is running (use the SHOW SERVER ACME
command) and verify there is a connection between the MSV1_0 ACME agent
and the Advanced Server for OpenVMS process.

2. If no connection exists, verify that the PWRK$ACME_SERVER logical name
contains the SCS node names of systems in the cluster that are running the
Advanced Server for OpenVMS process.

3. If the PWRK$ACME_SERVER logical name is defined correctly, verify
that the Advanced Server for OpenVMS process is running on the systems
specified (look for the PWRK$LMSRV process).

4. If authentications are failing, check the following:

• Interdomain authentication (EASTOSHKOSK\JOE) requires trust
relationships. Use the Advanced Server for OpenVMS ADMINISTER
ADD TRUST[/TRUSTED] or [/PERMITTED] command to establish the
desired trust relationships between two domains.

• Windows NT passwords are case sensitive. Be sure you have entered the
passwords using the correct case.

• Windows NT user either has no OpenVMS hostmap account or
maps to an invalid OpenVMS account (the default UAF mapping is
PWRK$DEFAULT, which has DISUSER flag set). Use the Advanced
Server for OpenVMS ADMINISTER ADD HOSTMAP command to map
the Windows NT user name to a valid OpenVMS account.

Troubleshooting B–3



Troubleshooting
B.2 Troubleshooting the ACME server

• Windows NT user account is invalid, expired, disabled, or has an invalid
password. Use the Advanced Server for OpenVMS ADMINISTER SHOW
USER/FULL command to display the complete user account information.
Use the Advanced Server for OpenVMS ADMINISTER SHOW ACCOUNT
POLICY command to display the domain policy information.

• OpenVMS account does not have EXTAUTH flag set. In AUTHORIZE,
use the UAF utility MODIFY user-name/FLAG=EXTAUTH command.
(You can override this requirement by setting the IGNORE_EXTAUTH bit
(bit number 11 [decimal]) in the SECURITY_POLICY system parameter.)

• UAF record flag is set to DISUSER. In AUTHORIZE, use the UAF utility
MODIFY user-name/FLAG=NODISUSER command.

• UAF record modal restrictions prevent ‘‘login’’ (check local dialup,
remote, network, and batch access restrictions). In AUTHORIZE,
use the UAF utility MOD user-name/LOCAL (or DIALUP, BATCH,
NETWORK,REMOTE) keywords; INTERACTIVE sets LOCAL, DIALUP,
and REMOTE access restrictions.

• Intrusion subsystem has entered break-in evasion mode because the
number of failed logins has exceeded the system threshold (set by
SYSGEN parameter LGI_BRK_LIM). Use the SHOW INTRUSION
command to view the intrusion database. Use the DELETE/INTRUSION
source command to remove entries from the database. If the LGI_BRK_
DISUSER is set, the UAF record may be set to DISUSER. Use the
OpenVMS AUTHORIZE command to reset the flag.

B.3 Troubleshooting the DCOM$RPCSS Process
The DCOM$RPCSS process must be running to run any COM for OpenVMS
applications on your OpenVMS system. The DCOM$STARTUP.COM command
file is automatically starts this process. If you have problems running COM for
OpenVMS applications, check that this process is running. Use the following
command:

$ SHOW SYSTEM

If the process is initializing, the process name is DCOM$STARTUP-**. If the
process is in its normal running state, the process name is be DCOM$RPCSS.

Check the SYS$MANAGER:DCOM$RPCSS.OUT log file for error messages from
the DCOM$RPCSS process. The messages can include the following:

• %ACME-E-PWDEXPIRED, password has expired

If the DCOM$RPCSS log file contains this error, do the following:

1. Run the Advanced Server for OpenVMS ADMIN utility and to change the
password of the DCOM$RPCSS account. See Section 6.2.1.

2. Update the COM for OpenVMS Service Control Manager password file.
See Section 6.2.1.

B–4 Troubleshooting



Troubleshooting
B.4 Troubleshooting the Advanced Server for OpenVMS

B.4 Troubleshooting the Advanced Server for OpenVMS
The Advanced Server for OpenVMS must be running to authenticate users with
NT credentials.

A troubleshooter may wish to enable the audit policy to capture failures for
logonoff and system events. For example, on systems running Advanced Server
for OpenVMS, issue the command:

$ ADMINISTER SET AUDIT POLICY/AUDIT/FAILURE=(LOGONOFF,SYSTEM)

To monitor events, issue the commands:

$ ADMINISTER SHOW EVENT /FULL /TYPE=SYSTEM
$ ADMINISTER SHOW EVENT /FULL /TYPE=SECURITY

For more information, the Advanced Server for OpenVMS Server Administrator’s
Guide provides a chapter on Monitoring Events and Troubleshooting.

Additionally, the system manager may want to check the system operator
log, SYSMANAGER:OPERATOR.LOG, to verify that no network errors have
occurred.

B.5 Troubleshooting COM for OpenVMS Application Failures
This section describes problems you may encounter when running a COM
application.

B.5.1 Access Denied Failures
For information on access denied failures, see Section 5.4.6.

Troubleshooting B–5





C
Cookbook Examples: Building a Sample

Application on OpenVMS

Note

SAMPLE1 and DISPATCH_SAMPLE1 are taken from Dale Rogerson’s book,
Inside COM, published by Microsoft Press.

C.1 COM Example (Sample1)
This sample implements a COM client and server in which the component
provides two interfaces: IX and IY. The client also queries the component for a
third interface, IZ, an interface that the component does not provide.

This sample demonstrates connectivity between two OpenVMS systems, between
two Windows NT systems, or between an OpenVMS system and a Windows NT
system.

Note

Before you build the application on OpenVMS, you must run
NTA$LOGON and acquire Windows NT credentials. For more
information, see Section 8.2.

C.1.1 OpenVMS Instructions
The following sections describe how to build the application on an OpenVMS
system.

C.1.1.1 Building the Application on OpenVMS
Copy files from the DCOM examples directory to your local directory. For example:

$ set default mydisk:[mydirectory]
$ copy dcom$examples:[sample1]*.* []

To build the application, run the following command procedure:

$ @build_sample1

If you have MMS, you can use the included description file as follows:

$ MMS/DESCRIPTION=BUILD_SAMPLE1.MMS

The BUILD file builds and registers both the in-process and out-of-process servers.

Cookbook Examples: Building a Sample Application on OpenVMS C–1



Cookbook Examples: Building a Sample Application on OpenVMS
C.1 COM Example (Sample1)

C.1.1.2 Registering the Application on OpenVMS
The build procedure automatically registers both DISPCMPNT$SHR.EXE and
DISPCMPNT.EXE. To register the components manually, use the following procedure:

• To register the in-process server, use the REGSVR32 utility as follows:

$ regsvr32 :== $DCOM$REGSVR32.EXE
$ regsvr32 path-nameDISPCMPNT$SHR.EXE

• To unregister the in-process server, use the REGSVR32 utility as follows:

$ regsvr32 /u path-nameDISPCMPNT$SHR.EXE

• To register the out-of-process server:

$ dispcmpnt :== $path-nameDISPCMPNT.EXE
$ dispcmpnt /regserver

• To unregister the out-of-process server:

$ dispcmpnt /unregserver

• To register the Proxy Stub, use the REGSVR32 utility as follows:

$ regsvr32 path-namePROXY$SHR.EXE

• To unregister the Proxy Stub, use the REGSVR32 utility as follows:

$ regsvr32 /u path-namePROXY$SHR.EXE

C.1.1.3 Running the Application on OpenVMS as an Out-of-Process Server
To run the sample where the component is an out-of-process server, run
DISPCMPNT.EXE. When the system displays the Server: Waiting message from
the component, run the client in a separate window or terminal session.

• Window (or terminal session) 1:

$ run dispcmpnt

• Window (or terminal session) 2:

$ client :== $path-nameCLIENT.EXE
For OutProc:
$ client
2
$

The client displays the following:

To which server do you want to connect?
1) In-Process Server
2) Out-of-Process Server
:

Enter 2 to select the out-of-process server.

C.1.1.4 Running the Application on OpenVMS and Specifying a Remote Server
Run DISPCMPNT.EXE on the system you designate as the remote machine (or
server system). The remote system can also be a Windows NT system. When you
receive the Server: Waiting message from the component, run the client on the
system you designate as the local machine (or client system). For example:

$ client :== $path-nameCLIENT.EXE
$ client remote-system-name
2
$

C–2 Cookbook Examples: Building a Sample Application on OpenVMS



Cookbook Examples: Building a Sample Application on OpenVMS
C.1 COM Example (Sample1)

The client displays the following:

To which server do you want to connect?
1) In-Process Server
2) Out-of-Process Server
:

Enter 2 to select remote server execution, out-of-process server.

C.1.1.5 Running the Application on OpenVMS as an In-Process Server
To run the sample where the component is an in-process server, run only the
client. For example:

For InProc:
$ client
1
$

The client displays the following:

To which server do you want to connect?
1) In-Process Server
2) Out-of-Process Server
:

Enter 1 to select the in-process server.

C.1.2 Windows NT Instructions
The following sections describe how to build the application on a Windows NT
system.

Note

In order to build Visual C++ applications from a DOS window, you must
first set up a number of environment variables. If you did not select the
option to have these variables set up automatically when you installed
Visual C++, you will need to set them up each time you create a DOS
window. To set up these variables, execute the file

C:\Program Files\Microsoft Visual Studio\VC98\BIN\VCVARS32.BAT

C.1.2.1 Building the Application on Windows NT
Copy the README-SAMPLE1.TXT file and the following files from the COM examples
directory to your Windows NT system:

CLIENT.CXX
DCLIENT.CXX
DISPCMPNT.CXX
DISPCMPNT.DEF
DISPCMPNT.IDL
MAKE-ONE.
MAKEFILE.BAT
REGISTRY.CXX
REGISTRY.H

Build the sample using the MAKEFILE.BAT file. For example:

> MAKEFILE

The Makefile builds and registers both the in-process and out-of-process servers.

Cookbook Examples: Building a Sample Application on OpenVMS C–3



Cookbook Examples: Building a Sample Application on OpenVMS
C.1 COM Example (Sample1)

C.1.2.2 Registering the Application on Windows NT
The build procedure make-one automatically registers DISPCMPNT.DLL, PROXY.DLL,
and CMPNT.EXE as follows:

regsvr32 -s Dispcmpnt.dll
regsvr32 -s Proxy.dll
Dispcmpnt /RegServer

To unregister the application, enter the following:

regsvr32 -u Dispcmpnt.dll
regsvr32 -u Proxy.dll
Dispcmpnt /UnRegServer

C.1.2.3 Running the Application on Windows NT
Run CLIENT. Follow the same procedure as described for OpenVMS for running
the application as an in-process server (Section C.1.1.5) and out-of-process server
Section C.2.1.3).

Use the name of a remote machine (UNC or DNS) as an argument to instantiate
the object on the remote machine. For example:

>Client hostname ! point the client at the remote system
2 ! means outproc invocation
>

C.2 Automation Example (Dispatch_Sample1)
This sample implements the Automation component server as a dual interface.
There are two separate clients: Dclient, which connects to the dual interface
through the dispinterface, and Client, which is a COM client implementation
that connects through the IUnknown interface (using a v-table).

This sample demonstrates connectivity between two OpenVMS systems, between
two Windows NT systems, or between an OpenVMS system and a Windows NT
system.

C.2.1 OpenVMS Instructions
The following sections describe how to build the application on an OpenVMS
system.

C.2.1.1 Building the Application on OpenVMS
Copy files from the DCOM examples directory to your local directory. For example:

$ set default mydisk:[mydirectory]
$ copy dcom$examples:[dispatch_sample1]*.* []

To build the application, run the following command procedure:

$ @build_dispatch_sample1

If you have MMS, you can use the included description file as follows:

$ MMS/DESCRIPTION=BUILD_DISPATCH_SAMPLE1.MMS

The BUILD file builds and registers both the in-process and out-of-process servers.

C–4 Cookbook Examples: Building a Sample Application on OpenVMS



Cookbook Examples: Building a Sample Application on OpenVMS
C.2 Automation Example (Dispatch_Sample1)

C.2.1.2 Registering the Application on OpenVMS
The build procedure automatically registers both DISPCMPNT$SHR.EXE and
DISPCMPNT.EXE. To register the components manually, use the following procedure:

• To register the in-process server, use the REGSVR32 utility as follows:

$ regsvr32 :== $DCOM$REGSVR32.EXE
$ regsvr32 path-nameDISPCMPNT$SHR.EXE

• To unregister the in-process server, use the REGSVR32 utility as follows:

$ regsvr32 /u path-nameDISPCMPNT$SHR.EXE

• To register the out-of-process server:

$ dispcmpnt :== $path-nameDISPCMPNT.EXE
$ dispcmpnt /regserver

• To unregister the out-of-process server:

$ dispcmpnt /unregserver

C.2.1.3 Running the Application on OpenVMS as an Out-of-process Server
To run the sample where the component is an out-of-process server, run
DISPCMPNT.EXE.

When the system displays the Server: Waiting message from the component,
run the client in a separate window or terminal session.

• Window (or terminal session) 1:

$ run dispcmpnt

• Window (or terminal session) 2:

— For dispatch client:

$ run dclient

— For COM client:

$ run client

The client displays the following:

To which server do you want to connect?
1) In-Process Server
2) Out-of-Process Server
:

Enter 2 to select the out-of-process server.

C.2.1.4 Running the Application on OpenVMS and Specifying a Remote Server
Run DISPCMPNT.EXE on the system you designate as the remote machine (or
server system). The remote system can also be a Windows NT system. When you
receive the Server: Waiting message from the component, run the client on the
system you designate as the local machine (or client system). For example:

To use the COM client, enter the following:

$ client :== $path-nameCLIENT.EXE
$ client remote-system-name
To which server do you want to connect?
1) In-Process Server
2) Out-of-Process Server
:

Cookbook Examples: Building a Sample Application on OpenVMS C–5



Cookbook Examples: Building a Sample Application on OpenVMS
C.2 Automation Example (Dispatch_Sample1)

Enter 2 to select remote server execution, out-of-process server.

C.2.1.5 Running the Application on OpenVMS as an In-Process Server
To run the sample where the component is an in-process server, run only the
client. For example:

• For dispatch client:

$ run dclient

• For COM client:

$ run client

The client displays the following:

To which server do you want to connect?
1) In-Process Server
2) Out-of-Process Server
:

Enter 1 to select the in-process server.

C.2.2 Windows NT Instructions
The following sections describe how to build the application on a Windows NT
system.

Note

In order to build Visual C++ applications from a DOS window, you must
first set up a number of environment variables. If you did not select the
option to have these variables set up automatically when you installed
Visual C++, you will need to set them up each time you create a DOS
window. To set up these variables, execute the file

C:\Program Files\Microsoft Visual Studio\VC98\BIN\VCVARS32.BAT

C.2.2.1 Building the Application on Windows NT
Copy the README-DISPATCH-SAMPLE1.TXT file and the following files from the COM
examples directory to your Windows NT system:

CLIENT.CXX
DCLIENT.CXX
DISPCMPNT.CXX
DISPCMPNT.DEF
DISPCMPNT.IDL
MAKE-ONE.
MAKEFILE.BAT
REGISTRY.CXX
REGISTRY.H

Build the sample using the MAKEFILE.BAT file. For example:

C:> MAKEFILE

The Makefile builds and registers both the in-process and out-of-process servers.

C–6 Cookbook Examples: Building a Sample Application on OpenVMS



Cookbook Examples: Building a Sample Application on OpenVMS
C.2 Automation Example (Dispatch_Sample1)

C.2.2.2 Registering the Application on Windows NT
The build procedure make-one automatically registers DISPCMPNT.DLL, PROXY.DLL,
and DISPCMPNT.EXE as follows:

regsvr32 -s Dispcmpnt.dll
Dispcmpnt /RegServer

To unregister the application, enter the following:

regsvr32 -u Dispcmpnt.dll
Dispcmpnt /UnRegServer

C.2.2.3 Running the Application on Windows NT
Run DCLIENT or CLIENT. Follow the same procedure as described for OpenVMS
for running the application as an in-process server (Section C.2.1.5) and an
out-of-process server (Section C.2.1.3).

Use the name of a remote machine (UNC or DNS) as an argument to instantiate
the object on the remote machine.

C.3 Cross-Domain Security Example (CLIENTAUTH)
This sample shows how you can authenticate a remote client that is not in the
server’s domain or in a domain that has a trust with the server’s domain. The
client must pass to this application the credentials (user name, domain and
password) of an account on the server’s domain that is allowed access and launch
permissions. In fact, the client need not be in any domain and can be anywhere
on the network. This is demonstrated in Section C.3.1.3.

C.3.1 OpenVMS Instructions
The following sections describe how to build the application on an OpenVMS
system.

Note

Not all functionality is present in the underlying Windows NT
infrastructure on OpenVMS. Therefore, you cannot currently run the
client on OpenVMS. This sample works when you run the client on
Windows NT and the server on OpenVMS.

Copy files from the DCOM examples directory to your local directory.

$ set default mydisk:[mydirectory]
$ copy dcom$examples:[clientauth]*.* []

To build the application, run the command procedure:

$ @build_clientauth

The BUILD file builds and registers both the in-process and out-of-process
servers.

Cookbook Examples: Building a Sample Application on OpenVMS C–7



Cookbook Examples: Building a Sample Application on OpenVMS
C.3 Cross-Domain Security Example (CLIENTAUTH)

C.3.1.1 Registering the Application on OpenVMS
PROXY$SHR.EXE, CLIENTAUTH$SHR.EXE, and CLIENTAUTH.EXE are registered
automatically by the build procedure. To register the application manually,
use the following procedure:

• To register the in-process server, use the REGSVR32 utility provided:

$ regsvr32 :== $DCOM$REGSVR32.EXE
$ regsvr32 <path-name>CLIENTAUTH$SHR.EXE
$ regsvr32 <path-name>PROXY$SHR.EXE

• To unregister the in-process server:

$ regsvr32 /u <path-name>CLIENTAUTH$SHR.EXE
$ regsvr32 /u <path-name>PROXY$SHR.EXE

• To register the out-of-process server:

$ clientauth :== $<path-name>CLIENTAUTH.EXE
$ clientauth /regserver

• To unregister the out-of-process server:

$ clientauth /unregserver

C.3.1.2 Running the Application on OpenVMS as an Out-of-Process Server
To run the sample where the component is an out-of-process server, run
CLIENTAUTH.EXE. When you receive the server waiting message from the
component, run the client (in a separate window or terminal session).

• Window (or terminal session) 1:

$ run clientauth

• Window (or terminal session) 2:

$ client :== $<path-name>CLIENT.EXE
For OutProc:
$ client
2
$

The client will ask whether you want to start an in-process server or an
out-of-process server. Select out-of-process server.

C.3.1.3 Running the Application on OpenVMS and Specifying a Remote Server
Run CLIENTAUTH.EXE on the system you designate as the remote machine, or
server system. The remote system can also be a Windows NT system. When you
receive the server waiting message from the component, run the client on the
system you designate as the local machine, or client system.

$ client :== $<path-name>CLIENT.EXE
$ client <remote-system-name>
2
$ Please enter account to use on remote machine:
$ Username:
$ Domain:
$ Password:

The client will ask whether you want to start an in-process server or an out-of-
process server. For remote server execution, select out-of-process server. You will
then be prompted to enter the user name, domain and password of an account on
the remote server. Make sure this account has been granted access and launch
permissions to the component (see Section 6.3.2).

C–8 Cookbook Examples: Building a Sample Application on OpenVMS



Cookbook Examples: Building a Sample Application on OpenVMS
C.3 Cross-Domain Security Example (CLIENTAUTH)

C.3.1.4 Running the Application on OpenVMS as an In-Process Server
To run the sample where the component is an in-process server, run only the
client:

For InProc:
$ client
1
$

The client will ask whether you want to start an in-process server or an out-of-
process server. Select in-process server.

C.3.2 Windows NT Instructions
The following sections describe how to build the application on a Windows NT
system.

Note

In order to build Visual C++ applications from a DOS window, you must
first set up a number of environment variables. If you did not select the
option to have these variables set up automatically when you installed
Visual C++, you will need to set them up each time you create a DOS
window. To set up these variables, execute the file

C:\Program Files\Microsoft Visual Studio\VC98\BIN\VCVARS32.BAT

C.3.2.1 Building the Application on Windows NT
Copy this file README-CLIENTAUTH.TXT and the following files from the DCOM
examples directory to your Windows NT system:

CLIENT.CXX
CLIENTAUTH.CXX
CLIENTAUTH.DEF
CLIENTAUTH.IDL
GUIDS.CXX
MAKE-ONE.
MAKEFILE.BAT
PROXY.DEF
REGISTRY.CXX
REGISTRY.H

Build the sample using the MAKEFILE.BAT file.

> MAKEFILE

The Makefile builds and registers both the in-process and out-of-process servers.

C.3.2.2 Registering the Application on Windows NT
CLIENTAUTH.DLL, PROXY.DLL, and CLIENTAUTH.EXE are registered automatically by
the build procedure <make-one>:

regsvr32 -s clientauth.dll
regsvr32 -s Proxy.dll
clientauth /RegServer

To unregister:

regsvr32 -u clientauth.dll
regsvr32 -u Proxy.dll
clientauth /UnRegServer

Cookbook Examples: Building a Sample Application on OpenVMS C–9



Cookbook Examples: Building a Sample Application on OpenVMS
C.3 Cross-Domain Security Example (CLIENTAUTH)

C.3.2.3 Running the Application on Windows NT
Run CLIENT. Follow the same procedure as described for OpenVMS for
running application as in-process and out-of-process (see Section C.3.1.2 and
Section C.3.1.4).

Do not use command line arguments to instantiate the object on the current
machine. Use the name of a remote machine (UNC or DNS) as an argument to
instantiate the object on the remote machine.

(i.e) >Client hostname ! point the client at the remote system
2 ! means outproc invocation
>
>Username:
>Domain:
>Password:

C–10 Cookbook Examples: Building a Sample Application on OpenVMS



D
Upgrading to COM Version 1.1-B for OpenVMS

from COM Version 1.0 for OpenVMS

D.1 Upgrading from Earlier Versions of COM for OpenVMS
The following sections describe tasks you must complete when upgrading from a
previous version of COM for OpenVMS.

D.1.1 Rebuild Existing COM for OpenVMS Applications
If your COM for OpenVMS applications include references to any of the following
APIs, you must recompile the modules that include the references and relink the
application:

LoadLibraryA
LoadLibraryW
LoadLibraryExW
LoadLibraryExA
GetModuleFileNameA
GetModuleFileNameW
GetModuleHandleW
GetProcAddress
FreeLibrary

Some sample COM applications that shipped with COM Version 1.0 for OpenVMS
include references to these APIs in the modules REGISTRY and CMPNT. If you
built any samples, or if you built your own COM applications based on these
samples, you should recompile and relink those applications.

D.1.2 Configuring the Windows NT Systems
For COM Version 1.0 for OpenVMS (unauthenticated COM) the COM for
OpenVMS documentation instructed you to change specific values in your
Windows NT registry to allow unauthenticated COM for OpenVMS to
interoperate with Windows NT. COM Version 1.1-A for OpenVMS and COM
Version 1.1-B for OpenVMS support authentication. As a result, you must set or
reset the Windows NT Registry values we asked you to change for COM Version
1.0 for OpenVMS back to their default authenticated settings. To set the Windows
NT Registry values, use the following procedure:

1. Start the Windows NT Registry editor.

2. Select the following registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\Ole

Upgrading to COM Version 1.1-B for OpenVMS from COM Version 1.0 for OpenVMS D–1



Upgrading to COM Version 1.1-B for OpenVMS from COM Version 1.0 for OpenVMS
D.1 Upgrading from Earlier Versions of COM for OpenVMS

3. Delete the following value names and value data:

Value name
Recommended COM
V1.0 setting

Default (Authenticated)
Value data (COM V1.1-B
setting) Registry type

ActivationSecurity N Remove REG_SZ

PersonalClasses N Remove REG_SZ

4. Verify the Default Authentication Level and Default Impersonation
Level and change if necessary. Use the following procedure:

Note

You must have Windows NT Administrator privileges to view and update
these settings.

a. From the Start menu, choose Run...

b. In the Run dialog box, enter dcomcnfg.

The system displays the Distributed COM Configuration Properties sheet.

c. Click the Default Properties tab.

• The Default Authentication Level list box should display Connect. If
it does not, click the list box arrow and select Connect from the list.

• The Default Impersonation Level list box should display Identity.
If it does not, click the list box arrow and select Identity from the
list.

5. You must reboot the Windows NT system for these changes to take effect.

D.1.3 Configuring the OpenVMS System
On OpenVMS systems, you must set or reset the specific OpenVMS Registry
values. You can use the Windows NT Registry editor to edit the OpenVMS
Registry, or you can use the REG$CP utility. To set the OpenVMS Registry
values, use the following procedure:

1. Select the following OpenVMS Registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\Ole

2. Delete the ActivationSecurity, PersonalClasses,
LegacyAuthenticationLevel, and LegacyImpersonationLevel keys. Use
the following commands to delete the keys:

$ MCR REG$CP
REG> LIST VALUE HKEY_LOCAL_MACHINE\Software\Microsoft\Ole
REG> DELETE VALUE HKEY_LOCAL_MACHINE\Software\Microsoft\Ole ActivationSecurity
REG> DELETE VALUE HKEY_LOCAL_MACHINE\Software\Microsoft\Ole PersonalClasses
REG> DELETE VALUE HKEY_LOCAL_MACHINE\Software\Microsoft\Ole LegacyAuthenticationLevel
REG> DELETE VALUE HKEY_LOCAL_MACHINE\Software\Microsoft\Ole LegacyImpersonationLevel
REG> LIST VALUE HKEY_LOCAL_MACHINE\Software\Microsoft\Ole
REG> EXIT

D–2 Upgrading to COM Version 1.1-B for OpenVMS from COM Version 1.0 for OpenVMS



Upgrading to COM Version 1.1-B for OpenVMS from COM Version 1.0 for OpenVMS
D.2 Previously Configured Applications on Windows NT

D.2 Previously Configured Applications on Windows NT
If you configured an application to run with COM Version 1.0 for OpenVMS
(unauthenticated COM for OpenVMS) on Windows NT, you might want to
reconfigure the Windows NT settings to take advantage of COM Version 1.1-B for
OpenVMS (authenticated COM for OpenVMS).

Under COM Version 1.0 for OpenVMS after you registered a component, the COM
for OpenVMS documentation instructed you to check the security properties on
that component to ensure that an unauthenticated user can activate the image.
Use the following procedure:

1. From the Windows NT Start menu, choose Run...

2. In the Run dialog box, enter dcomcnfg.

The system displays the Distributed COM Configuration Properties sheet.

3. Select the object by name from the Applications list, then click the
Properties... button.

The system displays the property sheet for the selected object.

4. From the property sheet, click the Security tab.

• For COM Version 1.0 for OpenVMS you had to set the access permissions
(Registry value AccessPermission) so that user Everyone was allowed
access (Allow access).

For COM Version 1.1-B for OpenVMS, you can set custom access
permissions (Registry value AccessPermission) to a specific user.

Click Use custom access permissions , then click the Edit button to
display the Registry Key Permissions box.

• For COM Version 1.0 for OpenVMS you had to set the launch permissions
(Registry value LaunchPermission) so that user Everyone was allowed to
launch the application server (Allow launch).

For COM Version 1.1-B for OpenVMS, you can set the custom launch
permissions (Registry value LaunchPermission) to remove Everyone.

Click Use custom access permissions , then click the Edit button to
display the Registry Key Permissions box.

• For COM Version 1.0 for OpenVMS you had to set the configuration
permissions so that user Everyone was allowed at least Read access to
the Registry values.

For COM Version 1.1-B for OpenVMS, you can set the custom
configuration permissions to remove Everyone.

Click Use custom access permissions , then click the Edit button to
display the Registry Key Permissions box.

Under COM Version 1.0 for OpenVMS after you set security properties, you
had to set the identity of the account to run the application.

For COM Version 1.1-B for OpenVMS, you can set the identity of the account
to option 1 or 2.

Click the Identity tab to display the user account selection. Select The
interactive user option.

Upgrading to COM Version 1.1-B for OpenVMS from COM Version 1.0 for OpenVMS D–3



Upgrading to COM Version 1.1-B for OpenVMS from COM Version 1.0 for OpenVMS
D.2 Previously Configured Applications on Windows NT

D.2.1 You Must Repopulate the OpenVMS Registry for COM Version 1.1-B for
OpenVMS

For COM Version 1.1-B for OpenVMS, you must repopulate the OpenVMS
Registry to include security settings. Use the DCOM$SETUP command procedure
to display the OpenVMS COM Tools menu, and choose option 3.

D.2.2 Changing Application Security Settings in the OpenVMS Registry
COM Version 1.0 for OpenVMS, which shipped with OpenVMS 7.2, did not
support NTLM security. As a result, the OpenVMS account through which
you (or the system) registered the COM Version 1.0 for OpenVMS COM
application was the owner for any OpenVMS Registry keys created as part of
the application registration. For example, using COM Version 1.0 for OpenVMS,
if you logged into the SYSTEM account and registered the SAMPLE1 application,
all SAMPLE1’s OpenVMS Registry keys are owned by SYSTEM.

COM Version 1.1-B for OpenVMS supports NTLM security. The system now uses
the network account to control access to the OpenVMS Registry keys. As a result
of this change, previous security settings might prevent a nonprivileged user from
accessing an application’s registry keys. This means that a nonprivileged user
working on an existing application might not be able to unregister or reregister
an application.

To prevent this registration lockout, you must change the permission of the
application. You can change the permission from either the Windows NT system
or the OpenVMS system. Use either of the following procedures:

• Changing the permission from a Windows NT system

1. From a Windows NT system, start RegEdt32.

2. From the Registry menu, choose Select Computer and connect to the
OpenVMS system that contains the OpenVMS Registry.

3. Select the key associated with the application you want to change.

4. From the Security menu, choose Permissions... and grant the user Full
Control.

5. Repeat the last two steps for each registry key associated with the
application. For a list of COM application-related registry keys, see
Section D.2.2.1.

• Changing the permission from an OpenVMS system

1. Log into a privileged OpenVMS account.

2. Unregister the application. Use the DCOM$REGSVR32 utility. See
Example 6–5.

3. Delete all registry keys associated with the application. For a list of COM
application-related registry keys, see Section D.2.2.1.

4. Log into the nonprivileged user account.

5. Register the application. Use the DCOM$REGSVR32 utility (see
Example 6–4), or from the OpenVMS COM Tools menu, choose option
6 (see Section 6.2).

D–4 Upgrading to COM Version 1.1-B for OpenVMS from COM Version 1.0 for OpenVMS



Upgrading to COM Version 1.1-B for OpenVMS from COM Version 1.0 for OpenVMS
D.2 Previously Configured Applications on Windows NT

D.2.2.1 COM Application Registry Keys
A COM application can have several registry keys associated with it. You must
be sure to change all keys associated with the application. An application usually
registers the following keys:

HKEY_CLASSES_ROOT\CLSID\{guid} and subkeys
HKEY_CLASSES_ROOT\APPID\{guid}
HKEY_CLASSES_ROOT\APPID\filename
HKEY_CLASSES_ROOT\TYPELIB\{typelib guid}
HKEY_CLASSES_ROOT\INTERFACES\{interface guid(s)} and subkeys
HKEY_CLASSES_ROOT\name and subkeys
HKEY_CLASSES_ROOT\version independent name and subkeys

Note

HKEY_CLASSES_ROOT is an alias for
HKEY_LOCAL_MACHINE\SOFTWARE\Classes. If you connect to the OpenVMS
Registry from Windows NT using Regedt32 and you want to edit the
HKEY_CLASSES_ROOT key, edit the HKEY_LOCAL_MACHINE\SOFTWARE\Classes
key.

Upgrading to COM Version 1.1-B for OpenVMS from COM Version 1.0 for OpenVMS D–5





E
Running COM Version 1.1-B for OpenVMS in

an Unauthenticated Mode

COM Version 1.1-B for OpenVMS includes an option that allows you to run the
software in an unauthenticated environment in which NTLM support is not
utilized. If you enable this option, only OpenVMS security semantics are used
to control COM applications’ access to resources. This is essentially the same
behavior as in COM Version 1.0 for OpenVMS.

For a list of security differences between an unauthenticated implementation and
an authenticated implementation of COM for OpenVMS, see Table 1–1.

Note

When you run COM for OpenVMS in unauthenticated mode, detached
processes started by DCOM$RPCSS to run COM servers run in the context of
the OpenVMS DCOM$GUEST account. These detached processes have the
security attributes of the DCOM$GUEST account.

The following sections describes tasks you must complete in order to run COM
for OpenVMS in an unauthenticated environment.

E.1 Installing COM V1.1-B for OpenVMS to Run in Unauthenticated
Mode

If you are installing COM for OpenVMS for the first time, or if you are upgrading
from an earlier version, perform the following steps:

• Follow the installation and upgrade procedures described in Chapter 4. Note:
You can skip the steps relating to the installation, configuration, and startup
of Advanced Server for OpenVMS.

• Follow the configuration procedures in Section E.2 to configure COM for
OpenVMS in unauthenticated mode.

The ACME Server process is started automatically by RPC, but it is not required
if you are in unauthenticated mode. To cause the ACME Server process to not
start when the system reboots, edit the SYLOGICALS.COM file as follows:

$ DEFINE ACME$TO_BE_STARTED FALSE ! ACME Server

Running COM Version 1.1-B for OpenVMS in an Unauthenticated Mode E–1



Running COM Version 1.1-B for OpenVMS in an Unauthenticated Mode
E.2 Configuring COM V1.1-B for OpenVMS to Run in Unauthenticated Mode

E.2 Configuring COM V1.1-B for OpenVMS to Run in
Unauthenticated Mode

The following section describes how to configure COM Version 1.1-B for OpenVMS
to run in an unauthenticated environment.

Note

Before you begin configuring COM for OpenVMS for unauthenticated
mode, make a note of your current Windows NT system default values and
application settings. This makes returning to authenticated mode easier.
(See Section E.5 for information on how to convert from unauthenticated
mode to authenticated mode.)

E.2.1 Define the DCOM$UNAUTHENTICATED Logical Systemwide
Define DCOM$UNAUTHENTICATED to be "Y" or "YES" systemwide. If this logical is
undefined or defined as any other value, COM V1.1-B for OpenVMS will run in
the usual authenticated mode utilizing NTLM security.

To cause COM for OpenVMS to start automatically in unauthenticated mode
when the system boots, edit the SYLOGICALS.COM file and add the following
line:

$ DEFINE/SYSTEM DCOM$UNAUTHENTICATED YES

E.2.2 Populate the OpenVMS Registry
Use option 3 in the DCOM$SETUP utility to populate the OpenVMS Registry. (See
Section 6.2 for more information.)

Note

If you are upgrading from COM V1.1-A for OpenVMS, you do not need to
populate the OpenVMS Registry.

E.2.3 Create the DCOM$GUEST Account
Create the OpenVMS DCOM$GUEST account using option 7 in the DCOM$SETUP
utility. (See Section 6.2 for more information.)

E.2.4 Create the DCOM$RPCSS Account
Create the OpenVMS DCOM$RPCSS account using option 8 in the DCOM$SETUP
utility. (See Section 6.2 for more information.)

E.3 Configuring Windows NT to Interoperate with Unauthenticated
COM

For COM objects to interoperate correctly between unauthenticated COM V1.1-B
for OpenVMS systems and Windows NT, perform the steps described in the
following sections. This will configure the COM objects to run without security
enabled on the Windows NT system.

E–2 Running COM Version 1.1-B for OpenVMS in an Unauthenticated Mode



Running COM Version 1.1-B for OpenVMS in an Unauthenticated Mode
E.3 Configuring Windows NT to Interoperate with Unauthenticated COM

E.3.1 Setting the Windows NT Systemwide Authentication Level
On Windows NT systems, set the systemwide authentication level using this
procedure:

1. Run DCOMCNFG on the Windows NT system.

2. Select the Default Properties tab.

3. Set the Default Authentication Level to None.

E.3.2 Setting Windows NT Application Security Properties
After a COM application has been registered, check the security properties on
that application to ensure that an unauthenticated user can activate the image.

To do this, perform the following steps:

1. Run DCOMCNFG on the Windows NT system.

2. Select the application by name.

3. Click the Properties button.

4. Click the Security tab.

Set the access permissions (Registry value AccessPermission) so that user
Everyone is allowed access (Allow access).

Set the launch permissions (Registry value LaunchPermission) so that user
Everyone is allowed access (Allow access).

Set the configuration permissions so that user Everyone is allowed at least
Read access to the Registry values.

E.3.3 Setting the Windows NT Application Security Identity
After you set security permissions, you must set the identity of the account to run
the application. To do this, click the Identity tab, and select The interactive
user.

E.4 Expected Failures from CLIENTAUTH Sample Program
While you are running COM Version 1.1-B for OpenVMS in unauthenticated
mode, the Cross-Domain Security example (CLIENTAUTH) does not work
because it requires NTLM authentication to be enabled.

E.5 Converting from Unauthenticated Mode to Authenticated Mode
If you performed the steps in this appendix to run COM Version 1.1-B for
OpenVMS in unauthenticated mode and you now want to return to authenticated
mode, perform the following steps.

1. Log in to the SYSTEM account.

2. Stop the COM server. Use option 5 in the DCOM$SETUP utility. (See Section 6.2
for more information.)

3. Edit SYLOGICALS.COM with the following changes:

• Undefine the DCOM$UNAUTHENTICATED logical by entering:

$ DEFINE/SYSTEM DCOM$UNAUTHENTICATED NO

Running COM Version 1.1-B for OpenVMS in an Unauthenticated Mode E–3



Running COM Version 1.1-B for OpenVMS in an Unauthenticated Mode
E.5 Converting from Unauthenticated Mode to Authenticated Mode

• Comment the following line, as shown:

$! DEFINE ACME$TO_BE_STARTED FALSE ! ACME Server

4. Enter the following command:

$ DEFINE/SYSTEM DCOM$UNAUTHENTICATED NO

5. Install, configure, and start Advanced Server for OpenVMS, if it is not already
present.

6. Repopulate the OpenVMS Registry.

To do this, use option 3 in the DCOM$SETUP utility. (See Section 6.2 for more
information.)

7. Add the DCOM$RPCSS account to include the Advanced Server for OpenVMS
account and hostmap. Use option 8 in the DCOM$SETUP utility. (See Section 6.2
for more information.)

8. Reset your Windows NT system default values and application settings to the
values that were set before you followed the procedure in Section E.3.

9. Start the COM server. Use option 4 in the DCOM$SETUP utility. (See
Section 6.2 for more information.)

10. Update or add network accounts. (See Section 5.1 for more information.)

E–4 Running COM Version 1.1-B for OpenVMS in an Unauthenticated Mode



F
Lists of Differences, APIs, and Interfaces

This appendix contains a list of implementation differences between COM for
OpenVMS and Microsoft COM as well as a list of APIs and interfaces provided in
this release of COM for OpenVMS.

F.1 Differences between COM for OpenVMS and Microsoft COM
The following sections list important implementation differences between COM
for OpenVMS and Microsoft’s COM.

F.1.1 Service Control Manager (SCM)
OpenVMS does not provide an equivalent to the Windows NT Service Control
Manager. As a result, applications that depend on Server services (such as stop,
start, pause, and resume) rely on the OpenVMS features that provide similar
functionality (if the features are available).

For example, you would use the OpenVMS site-specific startup and shutdown
command procedures to implement automatic starting of services at system
startup and automatic shutdown of services at system shutdown. Service APIs
such as RegisterServiceCtrlHandler, ChangeServiceConfig, and so on, are not
provided on OpenVMS.

F.1.2 Server Application Stack Size
In COM for OpenVMS, server application functions run in the context of server
threads. As a result, server functions have a limited stack space of 48 KB. If
you require additional space for local variables or structures, you should allocate
dynamic memory for local variables or structures.

F.1.3 Use of the ‘‘char’’ Datatype
OpenVMS and Windows NT translate the IDL base data type ‘‘char’’ differently.

OpenVMS translates the data type as MIDL_CHAR, which is defined to be
CHAR, and further defined to be ‘‘char.’’ The OpenVMS compiler by default
takes this to be equivalent to ‘‘unsigned char;’’ in most cases they can be used
interchangeably. The two are not the same—C++ treats them as different data
types you specify them in class member definitions.

Windows NT translates the data type directly as ‘‘unsigned char.’’ This causes
conflicts with Visual C++, which treats the ‘‘char’’ datatype as equivalent to
‘‘signed char.’’ As in OpenVMS, ‘‘char’’ is not the same as ‘‘signed char’’ in class
member definitions.

There are two workarounds to this mismatch:

• Use the data type ‘‘CHAR’’ instead of ‘‘char’’ in the IDL file and all member
definitions. This is the most portable solution; you can expect this to work on
other systems (such as UNIX) as well.

Lists of Differences, APIs, and Interfaces F–1



Lists of Differences, APIs, and Interfaces
F.1 Differences between COM for OpenVMS and Microsoft COM

• Conditionally compile the method definitions so that OpenVMS sees the
object methods defined as ‘‘char’’ and Windows NT sees the methods defined
as ‘‘unsigned char.’’

F.1.4 MIDL Compiler Version
The MIDL compiler supplied with COM for OpenVMS is based on Microsoft’s
MIDL compiler V3.00.44.

F.1.4.1 The OpenVMS MIDL Compiler
The OpenVMS MIDL compiler is identical to the Microsoft Interface Definition
Language (MIDL) compiler V3.00.44 except for the following:

1. The Microsoft MIDL implementation supports several optimization levels.
The OpenVMS MIDL implementation supports only -Oicf. Do not use any
other optimization level.

2. The /cpp_cmd and /cpp_opt switches are not fully functional in the OpenVMS
MIDL implementation.

3. On a Windows NT system, Microsoft MIDL commands, switches, and
qualifiers are case sensitive. The OpenVMS MIDL compiler is not case
sensitive; all commands, switches, and qualifiers passed to the OpenVMS
MIDL compiler are lowercase. As a result, the Microsoft MIDL switches /I
and /i are equivalent on OpenVMS.

4. MIDL-generated files are platform specific.

You must run MIDL on both platforms. The MIDL output files generated on
one platform (OpenVMS or Windows NT) cannot be copied and used on the
other platform.

5. MIDL -w switch

The Microsoft MIDL compiler allows you to specify either -w or -warn to
limit the level of warnings generated by the compiler. The OpenVMS MIDL
compiler supports only the -w switch.

F.1.5 Using DCOM$CNFG to Change Application Configuration Permission
Use the Application Security Submenu options 5 and 6 to change the OpenVMS
Registry key permissions of some keys associated with an application. Option 5
and 6 affect the security settings of the following keys:

HKEY_CLASSES_ROOT\APPID\{guid}
HKEY_CLASSES_ROOT\CLSID\{guid} and subkeys

On Windows NT systems, the security settings of the subkeys under
HKEY_CLASSES_ROOT\CLSID\{guid} are changed only if the existing security
settings match the original settings of HKEY_CLASSES_ROOT\APPID\{guid}.

On OpenVMS systems, the settings of the subkeys are changed even if the existing
settings do not match the original settings of HKEY_CLASSES_ROOT\APPID\{guid}.

Options 5 and 6 do not change the settings of all keys associated with an
application. For example, options 5 and 6 do not affect the following keys:

HKEY_CLASSES_ROOT\APPID\filename
HKEY_CLASSES_ROOT\TYPELIB\{typelib guid}
HKEY_CLASSES_ROOT\INTERFACES\{interface guid(s)} and subkeys.
HKEY_CLASSES_ROOT\name and subkeys
HKEY_CLASSES_ROOT\version independent name and subkeys

F–2 Lists of Differences, APIs, and Interfaces



Lists of Differences, APIs, and Interfaces
F.1 Differences between COM for OpenVMS and Microsoft COM

To change the security settings of these keys, use the following procedure:

1. From a Windows NT system, start RegEdt32.

2. From the Registry menu, choose Select Computer and connect to the
OpenVMS system that contains the OpenVMS Registry.

3. Select the key associated with the application you want to change.

4. From the Security menu, choose Permissions... and grant the user Full
Control.

5. Repeat the last two steps for each registry key associated with the application
(see the list of keys described earlier in this section).

Note

HKEY_CLASSES_ROOT is an alias for
HKEY_LOCAL_MACHINE\SOFTWARE\Classes. If you connect to the OpenVMS
Registry from Windows NT using Regedt32 and you want to edit the
HKEY_CLASSES_ROOT key, edit the HKEY_LOCAL_MACHINE\SOFTWARE\Classes
key.

F.2 APIs
APIs that require security support are not supported in COM Version 1.0 for
OpenVMS.

The APIs supported in this release are as follows:

BindMoniker
BstrFromVector
CLSIDFromProgID
CLSIDFromString
CoAddRefServerProcess
CoCopyProxy
CoCreateErrorInfo
CoCreateFreeThreadedMarshaler
CoCreateGuid
CoCreateInstance
CoCreateInstanceEx
CoDisconnectObject
CoDosDateTimeToFileTime
CoFileTimeNow
CoFileTimeToDosDateTime
CoFreeAllLibraries
CoFreeLibrary
CoFreeUnusedLibraries
CoGetCallContext
CoGetClassObject
CoGetCurrentProcess
CoGetErrorInfo
CoGetInstanceFromFile
CoGetInstanceFromIStorage
CoGetInterfaceAndReleaseStream
CoGetMalloc
CoGetMarshalSizeMax
CoGetPSClsid
CoGetStandardMarshal
CoGetTreatAsClass

Lists of Differences, APIs, and Interfaces F–3



Lists of Differences, APIs, and Interfaces
F.2 APIs

CoImpersonateClient
CoInitialize
CoInitializeEx
CoInitializeSecurity
CoIsHandlerConnected
CoLoadLibrary
CoLockObjectExternal
CoMarshalInterface
CoQueryAuthenticationServices
CoQueryClientBlanket
CoQueryProxyBlanket
CoRegisterChannelHook
CoRegisterClassObject
CoRegisterMallocSpy
CoRegisterMessageFilter
CoRegisterPSClsid
CoReleaseMarshalData
CoReleaseServerProcess
CoResumeClassObjects
CoRevertToSelf
CoRevokeClassObject
CoRevokeMallocSpy
CoSetErrorInfo
CoSetProxyBlanket
CoSuspendClassObjects
CoTaskMemAlloc
CoTaskMemFree
CoTaskMemRealloc
CoTreatAsClass
CoUninitialize
CoUnmarshalInterface
CreateAntiMoniker
CreateBindCtx
CreateClassMoniker
CreateDataAdviseHolder
CreateDispTypeInfo
CreateErrorInfo
CreateGenericComposite
CreateILockBytesOnHGlobal
CreateItemMoniker
CreatePointerMoniker
CreateStdDispatch
CreateStreamOnHGlobal
CreateTypeLib
DispGetIDsOfNames
DispGetParam
DispInvoke
DllCanUnloadNow
DllGetClassObject
DllGetClassObject
DllMain
DllRegisterServer
DllUnregisterServer
DosDateTimeToVariantTime
FreePropVariantArray
GetActiveObject
GetAltMonthNames
GetClassFile
GetConvertStg
GetErrorInfo
GetHGlobalFromILockBytes
GetHGlobalFromStream
GetRunningObjectTable
IIDFromString
IsEqualCLSID

F–4 Lists of Differences, APIs, and Interfaces



Lists of Differences, APIs, and Interfaces
F.2 APIs

IsEqualGUID
IsEqualIID
IsValidIid
IsValidInterface
IsValidPtrIn
IsValidPtrOut
LHashValOfName
LHashValOfNameSys
LoadRegTypeLib
LoadTypeLibEx
MkParseDisplayName
MonikerCommonPrefixWith
MonikerRelativePathTo
ProgIDFromCLSID
PropStgNameToFmtId
PropVariantClear
PropVariantCopy
QueryPathOfRegTypeLib
ReadClassStg
ReadClassStm
ReadFmtUserTypeStg
RegisterActiveObject
RegisterTypeLib
ReleaseStgMedium
RevokeActiveObject
SafeArrayAccessData
SafeArrayAllocData
SafeArrayAllocDescriptor
SafeArrayCopy
SafeArrayCopyData
SafeArrayCreate
SafeArrayCreateVector
SafeArrayDestroy
SafeArrayDestroyData
SafeArrayDestroyDescriptor
SafeArrayGetDim
SafeArrayGetElement
SafeArrayGetElemsize
SafeArrayGetLBound
SafeArrayGetUBound
SafeArrayLock
SafeArrayPtrOfIndex
SafeArrayPutElement
SafeArrayRedim
SafeArrayUnaccessData
SafeArrayUnlock
SetConvertStg
SetErrorInfo
StgCreateDocfile
StgCreateDocfileOnILockBytes
StgCreatePropSetStg
StgCreatePropStg
StgIsStorageFile
StgIsStorageILockBytes
StgOpenPropStg
StgOpenStorage
StgOpenStorageOnILockBytes
StgSetTimes
StringFromCLSID
StringFromGUID2
StringFromIID
SysAllocString
SysAllocStringByteLen
SysAllocStringLen
SysFreeString

Lists of Differences, APIs, and Interfaces F–5



Lists of Differences, APIs, and Interfaces
F.2 APIs

SysReAllocString
SysReAllocStringLen
SysStringByteLen
SysStringLen
SystemTimeToVariantTime
UnRegisterTypeLib
VarDateFromUdate
VarNumFromParseNum
VarParseNumFromStr
VarUdateFromDate
VariantChangeType
VariantChangeTypeEx
VariantClear
VariantCopy
VariantCopyInd
VariantInit
VariantTimeToDosDateTime
VariantTimeToSystemTime
VectorFromBstr
WriteClassStg
WriteClassStm
WriteFmtUserTypeStg

F.3 Interfaces
The interfaces supported in this release are as follows:

IAdviseSink
IBindCtx
IClassActivator
IClassFactory
IConnectionPoint
IConnectionPointContainer
ICreateErrorInfo
ICreateTypeInfo
ICreateTypeLib
IDataAdviseHolder
IDataObject
IDispatch
IEnumCallBack
IEnumConnectionPoints
IEnumConnections
IEnumFORMATETC
IEnumMoniker
IEnumOLEVerb
IEnumSTATDATA
IEnumSTATPROPSETSTG
IEnumSTATSTG
IEnumString
IEnumUnknown
IEnumVariant
IErrorInfo
IExternalConnection
ILockBytes
IMalloc
IMallocSpy
IMarshal
IMessageFilter
IMoniker
IMultiQI
IParseDisplayName
IPersist
IPersistFile
IPersistStorage
IPersistStream

F–6 Lists of Differences, APIs, and Interfaces



Lists of Differences, APIs, and Interfaces
F.3 Interfaces

IPropertySetStorage
IPropertyStorage
IRootStorage
IRunnableObject
IRunningObjectTable
IStdMarshalInfo
IStorage
IStream
ISupportErrorInfo
ITypeComp
ITypeInfo
ITypeInfo2
ITypeLib
ITypeLib2
IUnknown

Lists of Differences, APIs, and Interfaces F–7





G
List of Files Installed by COM for OpenVMS

G.1 Files Installed by COM for OpenVMS
The following files are installed as part of the COM for OpenVMS installation
process:

[000000]DEC-AXPVMS-DCOM-V0101-B-1.PCSI$TLB
[DCOM$LIBRARY]ATLBASE.H
[DCOM$LIBRARY]ATLCOM.H
[DCOM$LIBRARY]ATLCONV.CPP
[DCOM$LIBRARY]ATLCONV.H
[DCOM$LIBRARY]ATLDEF.H
[DCOM$LIBRARY]ATLIFACE.H
[DCOM$LIBRARY]ATLIFACE.IDL
[DCOM$LIBRARY]ATLIMPL.CPP
[DCOM$LIBRARY]ATLMAIN.CXX
[DCOM$LIBRARY]CDERR.H
[DCOM$LIBRARY]CGUID.H
[DCOM$LIBRARY]COGUID.H
[DCOM$LIBRARY]COMCAT.H
[DCOM$LIBRARY]COMCAT.IDL
[DCOM$LIBRARY]COMMDLG.H
[DCOM$LIBRARY]CONIO.H
[DCOM$LIBRARY]CRTDBG.H
[DCOM$LIBRARY]DCOM$GUIDGEN.CLD
[DCOM$LIBRARY]DCOM$REGDATA.REG
[DCOM$LIBRARY]DCOM$RUNSHRLIB.CLD
[DCOM$LIBRARY]DCOM.OPT
[DCOM$LIBRARY]DDE.H
[DCOM$LIBRARY]DDEML.H
[DCOM$LIBRARY]DLGS.H
[DCOM$LIBRARY]EXCPT.H
[DCOM$LIBRARY]IMM.H
[DCOM$LIBRARY]INITGUID.H
[DCOM$LIBRARY]LZEXPAND.H
[DCOM$LIBRARY]MCX.H
[DCOM$LIBRARY]MIDLES.H
[DCOM$LIBRARY]MIDL_STUB_TYPES.H
[DCOM$LIBRARY]MMSYSTEM.H
[DCOM$LIBRARY]NB30.H
[DCOM$LIBRARY]NTA_MESSAGE.H
[DCOM$LIBRARY]OAIDL.ACF
[DCOM$LIBRARY]OAIDL.H
[DCOM$LIBRARY]OAIDL.IDL
[DCOM$LIBRARY]OBJBASE.H
[DCOM$LIBRARY]OBJIDL.H
[DCOM$LIBRARY]OBJIDL.IDL
[DCOM$LIBRARY]OCIDL.ACF
[DCOM$LIBRARY]OCIDL.H
[DCOM$LIBRARY]OCIDL.IDL
[DCOM$LIBRARY]OLE2.H
[DCOM$LIBRARY]OLEAUTO.H
[DCOM$LIBRARY]OLECTL.H
[DCOM$LIBRARY]OLEIDL.H

List of Files Installed by COM for OpenVMS G–1



List of Files Installed by COM for OpenVMS
G.1 Files Installed by COM for OpenVMS

[DCOM$LIBRARY]OLEIDL.IDL
[DCOM$LIBRARY]POPPACK.H
[DCOM$LIBRARY]PRSHT.H
[DCOM$LIBRARY]PSHPACK1.H
[DCOM$LIBRARY]PSHPACK2.H
[DCOM$LIBRARY]PSHPACK4.H
[DCOM$LIBRARY]PSHPACK8.H
[DCOM$LIBRARY]PTHREAD.H
[DCOM$LIBRARY]PTHREAD_EXCEPTION.H
[DCOM$LIBRARY]RPC.H
[DCOM$LIBRARY]RPCDCE.H
[DCOM$LIBRARY]RPCDCEP.H
[DCOM$LIBRARY]RPCNDR.H
[DCOM$LIBRARY]RPCNSI.H
[DCOM$LIBRARY]RPCNSIP.H
[DCOM$LIBRARY]RPCNTERR.H
[DCOM$LIBRARY]RPCPROXY.H
[DCOM$LIBRARY]SERVPROV.H
[DCOM$LIBRARY]SERVPROV.IDL
[DCOM$LIBRARY]SHELLAPI.H
[DCOM$LIBRARY]SHLWAPI.H
[DCOM$LIBRARY]STATREG.CPP
[DCOM$LIBRARY]STATREG.H
[DCOM$LIBRARY]STDOLE2.TLB
[DCOM$LIBRARY]STDOLE32.TLB
[DCOM$LIBRARY]TCHAR.H
[DCOM$LIBRARY]UNKNWN.H
[DCOM$LIBRARY]UNKNWN.IDL
[DCOM$LIBRARY]URLMON.H
[DCOM$LIBRARY]URLMON.IDL
[DCOM$LIBRARY]UUID.OLB
[DCOM$LIBRARY]VMS_ATL.H
[DCOM$LIBRARY]VMS_DCOM.H
[DCOM$LIBRARY]VMS_IOCTL.H
[DCOM$LIBRARY]WCHAR.H
[DCOM$LIBRARY]WINBASE.H
[DCOM$LIBRARY]WINCON.H
[DCOM$LIBRARY]WINDEF.H
[DCOM$LIBRARY]WINDOWS.H
[DCOM$LIBRARY]WINDU_PLATFORM.H
[DCOM$LIBRARY]WINDU_STDLIB.H
[DCOM$LIBRARY]WINDU_STRING.H
[DCOM$LIBRARY]WINDU_VTBL.H
[DCOM$LIBRARY]WINERROR.H
[DCOM$LIBRARY]WINGDI.H
[DCOM$LIBRARY]WINNETWK.H
[DCOM$LIBRARY]WINNLS.H
[DCOM$LIBRARY]WINNT.H
[DCOM$LIBRARY]WINPERF.H
[DCOM$LIBRARY]WINREG.H
[DCOM$LIBRARY]WINSOCK.H
[DCOM$LIBRARY]WINSPOOL.H
[DCOM$LIBRARY]WINSVC.H
[DCOM$LIBRARY]WINUSER.H
[DCOM$LIBRARY]WINVER.H
[DCOM$LIBRARY]WTYPES.H
[DCOM$LIBRARY]WTYPES.IDL
[DCOM$LIBRARY]WUEXTEN.H
[DCOM$LIBRARY]WUUNALIGNED.H
[DCOM$LIBRARY]WUVERSION.H
[DCOM$WIN32.NLS]BIG5.NLS
[DCOM$WIN32.NLS]CTYPE.NLS
[DCOM$WIN32.NLS]C_037.NLS
[DCOM$WIN32.NLS]C_10000.NLS
[DCOM$WIN32.NLS]C_10001.NLS

G–2 List of Files Installed by COM for OpenVMS



List of Files Installed by COM for OpenVMS
G.1 Files Installed by COM for OpenVMS

[DCOM$WIN32.NLS]C_10002.NLS
[DCOM$WIN32.NLS]C_10003.NLS
[DCOM$WIN32.NLS]C_10004.NLS
[DCOM$WIN32.NLS]C_10005.NLS
[DCOM$WIN32.NLS]C_10006.NLS
[DCOM$WIN32.NLS]C_10007.NLS
[DCOM$WIN32.NLS]C_10008.NLS
[DCOM$WIN32.NLS]C_10010.NLS
[DCOM$WIN32.NLS]C_10017.NLS
[DCOM$WIN32.NLS]C_10029.NLS
[DCOM$WIN32.NLS]C_10079.NLS
[DCOM$WIN32.NLS]C_10081.NLS
[DCOM$WIN32.NLS]C_10082.NLS
[DCOM$WIN32.NLS]C_1026.NLS
[DCOM$WIN32.NLS]C_1250.NLS
[DCOM$WIN32.NLS]C_1251.NLS
[DCOM$WIN32.NLS]C_1252.NLS
[DCOM$WIN32.NLS]C_1253.NLS
[DCOM$WIN32.NLS]C_1254.NLS
[DCOM$WIN32.NLS]C_1255.NLS
[DCOM$WIN32.NLS]C_1256.NLS
[DCOM$WIN32.NLS]C_1257.NLS
[DCOM$WIN32.NLS]C_1258.NLS
[DCOM$WIN32.NLS]C_1361.NLS
[DCOM$WIN32.NLS]C_20105.NLS
[DCOM$WIN32.NLS]C_20261.NLS
[DCOM$WIN32.NLS]C_20269.NLS
[DCOM$WIN32.NLS]C_20273.NLS
[DCOM$WIN32.NLS]C_20277.NLS
[DCOM$WIN32.NLS]C_20278.NLS
[DCOM$WIN32.NLS]C_20280.NLS
[DCOM$WIN32.NLS]C_20284.NLS
[DCOM$WIN32.NLS]C_20285.NLS
[DCOM$WIN32.NLS]C_20290.NLS
[DCOM$WIN32.NLS]C_20297.NLS
[DCOM$WIN32.NLS]C_20420.NLS
[DCOM$WIN32.NLS]C_20423.NLS
[DCOM$WIN32.NLS]C_20833.NLS
[DCOM$WIN32.NLS]C_20838.NLS
[DCOM$WIN32.NLS]C_20866.NLS
[DCOM$WIN32.NLS]C_20871.NLS
[DCOM$WIN32.NLS]C_20880.NLS
[DCOM$WIN32.NLS]C_20905.NLS
[DCOM$WIN32.NLS]C_21025.NLS
[DCOM$WIN32.NLS]C_21027.NLS
[DCOM$WIN32.NLS]C_28592.NLS
[DCOM$WIN32.NLS]C_28593.NLS
[DCOM$WIN32.NLS]C_28594.NLS
[DCOM$WIN32.NLS]C_28595.NLS
[DCOM$WIN32.NLS]C_28596.NLS
[DCOM$WIN32.NLS]C_28597.NLS
[DCOM$WIN32.NLS]C_28598.NLS
[DCOM$WIN32.NLS]C_28599.NLS
[DCOM$WIN32.NLS]C_29001.NLS
[DCOM$WIN32.NLS]C_437.NLS
[DCOM$WIN32.NLS]C_500.NLS
[DCOM$WIN32.NLS]C_708.NLS
[DCOM$WIN32.NLS]C_720.NLS
[DCOM$WIN32.NLS]C_737.NLS
[DCOM$WIN32.NLS]C_775.NLS
[DCOM$WIN32.NLS]C_850.NLS
[DCOM$WIN32.NLS]C_852.NLS
[DCOM$WIN32.NLS]C_855.NLS
[DCOM$WIN32.NLS]C_857.NLS
[DCOM$WIN32.NLS]C_860.NLS

List of Files Installed by COM for OpenVMS G–3



List of Files Installed by COM for OpenVMS
G.1 Files Installed by COM for OpenVMS

[DCOM$WIN32.NLS]C_861.NLS
[DCOM$WIN32.NLS]C_862.NLS
[DCOM$WIN32.NLS]C_863.NLS
[DCOM$WIN32.NLS]C_864.NLS
[DCOM$WIN32.NLS]C_865.NLS
[DCOM$WIN32.NLS]C_866.NLS
[DCOM$WIN32.NLS]C_869.NLS
[DCOM$WIN32.NLS]C_870.NLS
[DCOM$WIN32.NLS]C_874.NLS
[DCOM$WIN32.NLS]C_875.NLS
[DCOM$WIN32.NLS]C_932.NLS
[DCOM$WIN32.NLS]C_936.NLS
[DCOM$WIN32.NLS]C_949.NLS
[DCOM$WIN32.NLS]C_950.NLS
[DCOM$WIN32.NLS]KSC.NLS
[DCOM$WIN32.NLS]LOCALE.NLS
[DCOM$WIN32.NLS]L_EXCEPT.NLS
[DCOM$WIN32.NLS]L_INTL.NLS
[DCOM$WIN32.NLS]PRC.NLS
[DCOM$WIN32.NLS]PRCP.NLS
[DCOM$WIN32.NLS]SORTKEY.NLS
[DCOM$WIN32.NLS]SORTTBLS.NLS
[DCOM$WIN32.NLS]UNICODE.NLS
[DCOM$WIN32.NLS]XJIS.NLS
[DCOM$WIN32]WINDU$GDISHR.EXE
[DCOM$WIN32]WINDU$KERNELSHR.EXE
[DCOM$WIN32]WINDU$PRNTSHR.EXE
[DCOM$WIN32]WINDU$USERSHR.EXE
[DCOM$WIN32]WINDU.INI
[DCOM$WIN32]WINDU.OPT
[SYS$STARTUP]DCOM$RPCSS.COM
[SYS$STARTUP]DCOM$SHUTDOWN.COM
[SYS$STARTUP]DCOM$STARTUP.COM
[SYSEXE]DCOM$CNFG.EXE
[SYSEXE]DCOM$COMREGEDT.EXE
[SYSEXE]DCOM$GUIDGEN.EXE
[SYSEXE]DCOM$MIDL.EXE
[SYSEXE]DCOM$REGSVR32.EXE
[SYSEXE]DCOM$RPCSS.EXE
[SYSEXE]DCOM$RUNSHRLIB.EXE
[SYSEXE]DCOM$SCLIENT.EXE
[SYSEXE]DCOM$SSERVER.EXE
[SYSEXE]DCOM$SSERVER_REG.COM
[SYSEXE]DCOM$TOOL.EXE
[SYSHLP.EXAMPLES.DCOM.CLIENTAUTH]BUILD_CLIENTAUTH.COM
[SYSHLP.EXAMPLES.DCOM.CLIENTAUTH]CLIENT.CXX
[SYSHLP.EXAMPLES.DCOM.CLIENTAUTH]CLIENTAUTH$SHR.OPT
[SYSHLP.EXAMPLES.DCOM.CLIENTAUTH]CLIENTAUTH.CXX
[SYSHLP.EXAMPLES.DCOM.CLIENTAUTH]CLIENTAUTH.DEF
[SYSHLP.EXAMPLES.DCOM.CLIENTAUTH]CLIENTAUTH.IDL
[SYSHLP.EXAMPLES.DCOM.CLIENTAUTH]MAKE-ONE.
[SYSHLP.EXAMPLES.DCOM.CLIENTAUTH]MAKEFILE.BAT
[SYSHLP.EXAMPLES.DCOM.CLIENTAUTH]PROXY$SHR.OPT
[SYSHLP.EXAMPLES.DCOM.CLIENTAUTH]PROXY.DEF
[SYSHLP.EXAMPLES.DCOM.CLIENTAUTH]README-CLIENTAUTH.TXT
[SYSHLP.EXAMPLES.DCOM.CLIENTAUTH]REGISTRY.CXX
[SYSHLP.EXAMPLES.DCOM.CLIENTAUTH]REGISTRY.H
[SYSHLP.EXAMPLES.DCOM.DISPATCH_SAMPLE1]BUILD_DISPATCH_SAMPLE1.COM
[SYSHLP.EXAMPLES.DCOM.DISPATCH_SAMPLE1]BUILD_DISPATCH_SAMPLE1.MMS
[SYSHLP.EXAMPLES.DCOM.DISPATCH_SAMPLE1]CLIENT.CXX
[SYSHLP.EXAMPLES.DCOM.DISPATCH_SAMPLE1]DCLIENT.CXX
[SYSHLP.EXAMPLES.DCOM.DISPATCH_SAMPLE1]DISPCMPNT$SHR.OPT
[SYSHLP.EXAMPLES.DCOM.DISPATCH_SAMPLE1]DISPCMPNT.CXX
[SYSHLP.EXAMPLES.DCOM.DISPATCH_SAMPLE1]DISPCMPNT.DEF
[SYSHLP.EXAMPLES.DCOM.DISPATCH_SAMPLE1]DISPCMPNT.IDL

G–4 List of Files Installed by COM for OpenVMS



List of Files Installed by COM for OpenVMS
G.1 Files Installed by COM for OpenVMS

[SYSHLP.EXAMPLES.DCOM.DISPATCH_SAMPLE1]MAKE-ONE.
[SYSHLP.EXAMPLES.DCOM.DISPATCH_SAMPLE1]MAKEFILE.BAT
[SYSHLP.EXAMPLES.DCOM.DISPATCH_SAMPLE1]README-DISPATCH-SAMPLE1.TXT
[SYSHLP.EXAMPLES.DCOM.DISPATCH_SAMPLE1]REGISTRY.CXX
[SYSHLP.EXAMPLES.DCOM.DISPATCH_SAMPLE1]REGISTRY.H
[SYSHLP.EXAMPLES.DCOM.EVENTS]BUILD_EVENTS_SAMPLE.COM
[SYSHLP.EXAMPLES.DCOM.EVENTS]EVENTS_SAMPLE.C
[SYSHLP.EXAMPLES.DCOM.EVENTS]EVENTS_SAMPLE.H
[SYSHLP.EXAMPLES.DCOM.EVENTS]NTA_WIN32.C
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]BUILD_SAMPLE1.COM
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]BUILD_SAMPLE1.MMS
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]CLIENT.CXX
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]CMPNT$SHR.OPT
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]CMPNT.CXX
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]CMPNT.DEF
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]MAKE-ONE.
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]MAKEFILE.BAT
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]PROXY$SHR.OPT
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]PROXY.DEF
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]README-SAMPLE1.TXT
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]REGISTRY.CXX
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]REGISTRY.H
[SYSHLP.EXAMPLES.DCOM.SAMPLE1]SERVER.IDL
[SYSHLP.EXAMPLES.DCOM.SIMPLE]BUILD_SIMPLE.COM
[SYSHLP.EXAMPLES.DCOM.SIMPLE]INSTALL.BAT
[SYSHLP.EXAMPLES.DCOM.SIMPLE]MAKEFILE.
[SYSHLP.EXAMPLES.DCOM.SIMPLE]README-SIMPLE.TXT
[SYSHLP.EXAMPLES.DCOM.SIMPLE]REGISTER_SIMPLE.COM
[SYSHLP.EXAMPLES.DCOM.SIMPLE]SCLIENT.CPP
[SYSHLP.EXAMPLES.DCOM.SIMPLE]SSERVER.CPP
[SYSHLP.EXAMPLES.DCOM.SIMPLE]SSERVER.REG
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]BUILD_TESTATL_INPROC.COM
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]BUILD_TESTATL_INPROC.MMS
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]CLIENT.CXX
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]MATH101$SHR.OPT
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]MATH101.CXX
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]MATH101.IDL
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]MATH101PS$SHR.OPT
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]MATHFORMULAS.CXX
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]MATHFORMULAS.H
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]MATHFORMULAS.RGS
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]README-TESTATL_INPROC.TXT
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]RESOURCE.H
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]STDAFX.CXX
[SYSHLP.EXAMPLES.DCOM.TESTATL_INPROC]STDAFX.H
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]BUILD_TESTATL_OUTPROC.COM
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]BUILD_TESTATL_OUTPROC.MMS
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]CLIENT.CXX
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]INSIDEDCOM.CXX
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]INSIDEDCOM.H
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]INSIDEDCOM.RGS
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]README-TESTATL_OUTPROC.TXT
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]RESOURCE.H
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]STDAFX.CXX
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]STDAFX.H
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]TESTATL.CXX
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]TESTATL.IDL
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]TESTATL.RGS
[SYSHLP.EXAMPLES.DCOM.TESTATL_OUTPROC]TESTATLPS$SHR.OPT
[SYSHLP.EXAMPLES.DCOM.WRAPPER]BUILD_WRAPPER.COM
[SYSHLP.EXAMPLES.DCOM.WRAPPER]MAKE-ONE.
[SYSHLP.EXAMPLES.DCOM.WRAPPER]MAKEFILE.BAT
[SYSHLP.EXAMPLES.DCOM.WRAPPER]README.TXT
[SYSHLP.EXAMPLES.DCOM.WRAPPER]REGISTRY.CXX
[SYSHLP.EXAMPLES.DCOM.WRAPPER]REGISTRY.H

List of Files Installed by COM for OpenVMS G–5



List of Files Installed by COM for OpenVMS
G.1 Files Installed by COM for OpenVMS

[SYSHLP.EXAMPLES.DCOM.WRAPPER]TEST.COM
[SYSHLP.EXAMPLES.DCOM.WRAPPER]VBCLIENT.FRM
[SYSHLP.EXAMPLES.DCOM.WRAPPER]VBCLIENT.VBP
[SYSHLP.EXAMPLES.DCOM.WRAPPER]WR$SHR.OPT
[SYSHLP.EXAMPLES.DCOM.WRAPPER]WRAPPER.CXX
[SYSHLP.EXAMPLES.DCOM.WRAPPER]WRAPPER.DEF
[SYSHLP.EXAMPLES.DCOM.WRAPPER]WRAPPER.IDL
[SYSHLP.EXAMPLES.DCOM.WRAPPER]WRAPPERCLIENT.CXX
[SYSHLP]OVMS_CONNECT_DEV_GDE_0700.HTML
[SYSHLP]OVMS_CONNECT_DEV_GDE_0700.PDF
[SYSHLP]OVMS_CONNECT_DEV_GDE_0700.PS
[SYSHLP]OVMS_CONNECT_DEV_GDE_0700_001.HTML
[SYSHLP]OVMS_CONNECT_DEV_GDE_0700_002.HTML
[SYSHLP]OVMS_CONNECT_DEV_GDE_0700_003.HTML
[SYSHLP]OVMS_CONNECT_DEV_GDE_0700_004.HTML
[SYSHLP]OVMS_CONNECT_DEV_GDE_0700_005.HTML
[SYSHLP]OVMS_CONNECT_DEV_GDE_0700_006.HTML
[SYSHLP]OVMS_CONNECT_DEV_GDE_0700_CONTENTS.HTML
[SYSHLP]OVMS_CONNECT_DEV_GDE_0700_CONTENTS_001.HTML
[SYSHLP]OVMS_CONNECT_DEV_GDE_0700_INDEX.HTML
[SYSHLP]VM-0126A.GIF
[SYSHLP]VM-0224A.GIF
[SYSHLP]VM-0225A.GIF
[SYSHLP]VM-0226A.GIF
[SYSHLP]VM-0227A.GIF
[SYSHLP]VM-0228A.GIF
[SYSHLP]VM-0283A.GIF
[SYSHLP]VM-0331A.GIF
[SYSHLP]VM-8782A.GIF
[SYSHLP]ZK-8782A.GIF
[SYSLIB]DCOM$MIDL_SHR.EXE
[SYSLIB]DCOM$NT_WRAPPERS_SHR.EXE
[SYSLIB]DCOM$OLE32_SHR.EXE
[SYSLIB]DCOM$OLEAUT32_SHR.EXE
[SYSLIB]DCOM$RPCRT4_SHR.EXE
[SYSLIB]DCOM$WIN32_SHR.EXE
[SYSMGR]DCOM$CREATE_ACCOUNT.COM
[SYSMGR]DCOM$REGISTRY_KEYS.COM
[SYSMGR]DCOM$SETUP.COM
[SYSMSG]DCOM$GUIDGEN_MSG.EXE
[SYSMSG]NTARPCMSG.EXE
[SYSMSG]NTAWINMSG.EXE
[000000]DEC-AXPVMS-DCOM-V0101-B-1.PCSI$DESCRIPTION

G–6 List of Files Installed by COM for OpenVMS



H
Discount Coupons for COM Books

By special arrangement with the publishers, Compaq is able to provide COM
for OpenVMS developers with the following discount coupons for some of the
third-party COM books mentioned in this manual. Please follow the instructions
on the coupon when ordering books.

20%
Essential COM

by Don Box,  Addison-Wesley Object Technology Series
Essential COM helps developers go beyond simplistic applications of COM and become truly effective 
COM programmers. You will find comprehensive coverage of core concepts of Distributed COM 
(interfaces, classes, apartments, and applications), including detailed descriptions of COM theory, the 
C++ language mapping, COM IDL (Interface Definition Language), the remoting architecture, IUnknown, 
monikers, threads, marshalers, security, and more. Written by the premier authority on the COM 
architecture, this book offers a thorough explanation of COM's basic vocabulary, provides a complete 
Distributed COM application to illustrate programming techniques, and includes the author's test library 
of COM utility code. By showing the why of COM, not just the how, Don Box enables you to apply the 
model creatively and effectively to everyday programming problems.
ISBN: 0-201-63446-5, Paperback, 464 pages. Copyright ©1998.

As a Compaq customer,
this book is offered to you by Addison Wesley Longman at a 20% discount

Telephone orders: (800) 824-7799 (U.S. orders only)   Discount code: 719CQ
Fax orders: (781) 944-7273   Discount code: 719CQ

http://store.awl.com/scatalog/compaq.mhtml   Discount code: 719CQ

COUPON

20% discount 20% discount
VM-0228A-AI

Discount Coupons for COM Books H–1



Discount Coupons for COM Books

20%
As a Compaq customer,

this book is offered to you by Addison Wesley Longman at a 20% discount
Telephone orders: (800) 824-7799 (U.S. orders only)   Discount code: 719CQ

Fax orders: (781) 944-7273   Discount code: 719CQ
http://store.awl.com/scatalog/compaq.mhtml   Discount code: 719CQ

COUPON
Effective COM

50 Ways to Improve your COM and MTS-based Applications
by Don Box, Keith Brown, Tim Ewald, and Chris Sells,  Addison-Wesley Object Technology Series

20% discount 20% discount

Written by best-selling author Don Box, along with other instructors from DevelopMentor, Effective COM 
offers fifty concrete guidelines for COM derived from the communal wisdom formed over the past five 
years of COM-based development. This book is targeted at developers who are living and breathing 
COM, humbled by its complexity and challenged by the breadth of distributed object computing. 
Although the book is written for developers who work in C++, many of the topics (e.g., interface design 
and security) are accessible by developers who work in Visual Basic®, Java®, or Object Pascal. The 
authors, four COM experts, provide insight on complex subjects such as the difference between pure 
C++ development and COM-based C++ development, COM interface design, concurrency and 
apartments, and security. ISBN: 0-201-37968-6, Paperback, 240 pages. Copyright © 1999.

VM-0227A-AI

20%
DCOM Explained

by Rosemary Rock-Evans
DCOM Explained helps describes what services DCOM provides, both development and runtime. Thus 
the aim of the book is not to teach how to program using DCOM, but to explain what DCOM does so 
readers will become better able to use it more effectively, understand the options available when using 
DCOM, and understand the types of applications that can be built by using DCOM.

CONTENTS: Introduction, What is DCOM?, Main Concepts Used in DCOM, Main Services of DCOM,
COM, Active X, MS RPC, Cedar, Other Communication Functions, DCOM and Windows NT, DCOM and 
Other Platform Support, DCOM and the Internet, Microsoft Transaction Server, MSMQ (Falcon), OLE DB
and Active Data Objects, Security, Directory Services, Administration, Summary. 
ISBN: 1-55558-216-8, Paperback, 256 pages. Copyright ©1998.

As a Compaq customer,
this book is offered to you by Digital Press at a 20% discount

Telephone orders: (800) 366-2665 (U.S. orders only)   Discount code: DA123
Fax orders: (800) 446-6520   Discount code: DA123
E-mail: orders@bhusa.com   Discount code: DA123

COUPON

20% discount 20% discount
VM-0283A-AI

H–2 Discount Coupons for COM Books



I
Glossary

class (registry class)

Registry element attribute that allows you to store additional descriptive
information with a registry key or subkey.

encapsulation

The process of updating or extending the life of existing application code by
leaving most of the code and its functionality intact, while including new or
updated code (usually in a different programming language) at key entry points.

For example, you might add a Windows graphical interface to a character-cell
application by writing some Visual Basic code that collects information from a
Windows client, then formats and submits the data to the existing character cell
application as if the data had come from the character cell interface.

hive

A discrete set of keys, subkeys, and value entries contained in the registry.

in-process server

An application that is located on the same system as the requesting client. On
Windows NT systems, in-process servers are usually implemented as DLLs. On
OpenVMS systems, in-process servers are usually implemented as shareable
images.

key (registry key)

Registry element that contains information specific to the computer, system, or
user.

out-of-process server

An application that is located on a different system than the requesting client.
On Windows NT systems, out-of-process servers are usually implemented as .EXE
files.

registry

A hierarchical database consisting of one or more files that stores configuration
information about system hardware and software.

subkey (registry subkey)

Registry element that is a child of a registry key. A registry key can have zero or
more subkeys.

value (registry value)

Registry element that is the entry or value for a registry key or subkey.

Glossary I–1



Glossary

wrapper

See encapsulation.

I–2 Glossary



J
Acronyms

ACM

Authentication and Credential Management Authority

ACME

Authentication and Credential Management Extension

API

Application Program Interface

ATL

Active Template Library

COM

Component Object Model

CLSID

Class ID

DCOM

Distributed Component Object Model

DLL

Dynamic Link Library

FMS

Forms Management System

GUI

Graphical User Interface

GUID

Globally Unique Identifier

MIDL

Microsoft Interface Definition Language

OO

Object oriented

RPC

Remote Procedure Call

Acronyms J–1



Acronyms

SAM

Security Account Manager

SID

Security Identifier

SMG

Screen Management Facility

SSPI

Security Support Provider Interface

UI

User Interface

UIC

User Identification Code

J–2 Acronyms



Index

A
Access denied problems, 5–6
Access rights to the OpenVMS Registry, 10–8
Accessing the OpenVMS Registry database, 10–6
Activation security, 5–4
Active Template Library, 9–1
Advanced Server for OpenVMS event viewer,

14–2
Application security, 5–4
ATL, 9–1
Authentication, 8–1

disabling, 5–5
Authentication and Credential Management

(ACM) Authority, 8–5

B
Backing up the OpenVMS Registry, 11–11

C
Checking Windows NT credentials, 10–7
Class

defined, 10–4
Cluster failover of OpenVMS Registry server,

11–9
COM

defined, 3–1
Microsoft website, 3–4

COM for OpenVMS
building a COM application, 7–2, 9–4
C qualifiers, 7–5
C++ qualifiers, 7–5
CLSID registration, 7–8
compiling a COM application, 7–4
compiling a COM ATL application, 9–4
component CLSID, 7–8
creating an application, 7–1
creating the ATL component, 9–2
DCOM$CNFG, 6–1
DCOM$REGSVR32, 6–1
DCOM$RUNSHRLIB, 7–3
DCOM$SETUP, 6–1
defined, 3–2
developing new applications, 3–5
encapsulating existing applications, 3–5

COM for OpenVMS (cont’d)
generating unique identifiers (GUIDs), 7–1
GUID format options, 7–2
GUIDGEN, Globally Unique Identifier

Generator, 6–2
header file, 7–5
HKEY_CLASSES_ROOT\CLSID subkey, 7–8, 7–9
HKEY_CLASSES_ROOT\Interface subkey, 7–9
InProcServer32 subkey, 7–9
installed files, G–1
link the COM application, 7–5
linking the COM application, 9–5
LocalServer32 subkey, 7–8
macro definitions, 7–4
MIDL compiler, 7–2, 9–4
NumMethods subkey, 7–9
OpenVMS Registry entries, 7–8
Populate the OpenVMS Registry database for

COM, 6–2
ProgID subkey, 7–9
proxy/stub CLSIDs, 7–9
ProxyStubClsid32 subkey, 7–9
Register a COM for OpenVMS server

application, 6–2
sample development applications, 7–1
Start the COM for OpenVMS server, 6–2
Stop the COM for OpenVMS server, 6–2
Summary of security implementation

differences, 1–1
supported COM APIs, F–3
supported COM interfaces, F–6
Type Libraries, 7–9
Typelib subkey, 7–9
use of OpenVMS Registry, 3–4
using, 3–4
Utilities for configuring, 6–1
VersionIndependentProgID subkey, 7–9
VMS_DCOM, 7–5

COM for OpenVMS developer kit, 3–4
COM for OpenVMS run-time, 3–4
Concepts and definitions for OpenVMS Registry,

10–1
Configuration

system, 5–1
Connecting to a Windows NT system, 11–9

Index–1



Controlling OpenVMS Registry server operations,
10–9

Creating
proxy/stub shareable image, 7–7

Creating COM events, 14–9
Creating keys and values, 10–3
Credentials, 8–1

acquring for Windows NT, 5–3

D
DCE integrated login, 5–2
DCOM$CNFG

Add Registry Key Permissions submenu, 6–18
Add Registry Value Permissions submenu,

6–14
Application Identity submenu, 6–18
Application List submenu, 6–9
Application Location submenu, 6–10
Application Properties submenu, 6–10
Application Security submenu, 6–12
Default Authentication Level submenu, 6–20
Default Impersonation Level submenu, 6–20
defined, 6–8
Edit Registry Key Permissions submenu, 6–15
Edit Registry Value Permissions submenu,

6–13
menu, 6–8
Registry Key Permissions submenu, 6–15
Registry Value Permissions submenu, 6–13
running, 6–8
Special Access Registry Key Permissions

submenu, 6–16
System-wide Default Properties submenu, 6–20
System-wide Default Security submenu, 6–21

DCOM$CNFG option
Default authentication level, 6–20
Default impersonation level, 6–20
Enable Distributed COM on this computer,

6–20
Launching user, 6–19
List all COM application on a machine, 6–9
Location: Machine to run application, 6–10
NTLM account, 6–19
OpenVMS DCOM Guest Account, 6–19
OpenVMS username, 6–19
Run application on another computer, 6–11
Run application on this computer, 6–11
Security permissions for application, 6–11
Show systemwide default properties, 6–9
Show systemwide default security, 6–9
User account to use to run application, 6–11

DCOM$REGSVR32
activation, 6–22
command line options, 6–23
defined, 6–22
example, 6–23
location, 6–22

DCOM$REGSVR32 utility, 6–22
DCOM$RPCSS process, 6–6
DCOM$SETUP

conventions, 6–1
defined, 6–1
menu, 6–2
options, 6–2
requirements, 6–1
running, 6–2

DCOM$TO_BE_STARTED logical, 4–15
DECwindows Motif required, 4–2
Disabling authentication, 5–5
Domains, 5–5

E
Encapsulation, 3–5
Event Log service, 14–1
Event Viewer, 14–1
Events, 14–1
External authentication

disabling, 5–5

G
Granting credentials, 10–7

H
Hive

defined, 10–4
HKEY_CLASSES_ROOT

defined, 10–4
HKEY_LOCAL_MACHINE

defined, 10–4
HKEY_USERS

defined, 10–4

I
Infrastructure, 3–2
Integrated login, 5–2
Interoperation

Configuring authentication between trusted
domains using HostMapDomains, 5–3

Configuring OpenVMS and Windows NT, D–1

K
Key, 10–2

L
Launch security, 5–4
LGI-callout, 5–2
Linking

creating a symbol vector, 7–6, 9–6
in-process component, 7–6, 9–6

Index–2



Linking (cont’d)
out-of-process component, 7–6, 9–6
proxy/stub shareable image, 7–7

Linking of keys, 10–3
List of files installed by COM for OpenVMS, G–1
List of supported COM APIs, F–3
List of supported COM interfaces, F–6
LOGINOUT.EXE, 5–2

M
Microsoft MIDL compiler, F–2
MIDL compiler, 7–2

DCOM$RUNSHRLIB, 7–3
defined, 7–2
header files, 7–4
images, 7–2
include directories, 7–4
running, 7–3
switches, 7–4

Modifying the SYLOGICALS file for COM for
OpenVMS, 4–15

N
NT credentials

acquring, 5–3
NTA$LOGON, 3–4, 8–1
NTLM

running COM without support for, E–1

O
OpenVMS event log file, 14–2
OpenVMS Events

logging, 14–2
viewing, 14–2

OpenVMS infrastructure, 3–2
OpenVMS MIDL compiler, F–2
OpenVMS Registry

backup, 11–11
connecting to a Windows NT system, 11–9
controlling server operations, 10–9
defined, 10–1
failover in a cluster, 11–9
granting access rights, 10–8
installing, 11–1
quotas, 11–10
reading and writing, 10–6
restoring, 11–11
running in an OpenVMS Alpha mixed-version

cluster, 11–11
security, 11–10
security models, 10–6
shutting down, 11–6
starting, 11–5
Unicode support, 11–11
use with COM for OpenVMS, 3–4

OpenVMS Registry (cont’d)
Utilities for configuring, 11–1

OpenVMS Registry Configuration utility
menu, 11–2
options, 11–2

OpenVMS Registry server commands, 11–6
OpenVMS Registry server operations

Age Checker Interval, 10–9
Database Log Cleaner Interval, 10–9
Default File Quota, 10–10
File Quota Interval, 10–10
Initial Log File Size, 10–9
Log Registry Value Error, 10–10
Maximum Reply Age, 10–9
Operator Communications Interval, 10–11
Process Time Limit, 10–11
Reply Log Cleaner Interval, 10–11
Scan Interval, 10–10
Snapshot Interval, 10–11
Snapshot Location, 10–11
Snapshot Versions, 10–11
Write Retry Interval, 10–12

OpenVMS security model, 10–7
OpenVMS/Windows NT differences, F–1
OpenVMS/Windows NT differences:

Changing Application Configuration
Permissions, F–2

‘‘char’’ datatype, F–1
MIDL compiler version, F–2
Server application stack size, F–1
Service control manager, F–1

P
Persona, 8–1
Proxy/stub shareable image, 7–7

R
REG$CP server management utility, 10–6
Registering an application

example, 6–6
$REGISTRY system service, 10–6
Registry value, 10–2
$REGISTRYW system service, 10–6
Release note: CoCreateInstanceEx API, 1–9
Release note: COM for OpenVMS

Cached IID value not equal to Registry value
failure, 1–5

Changes to the examples, 1–3
DCERPC-E-UNKNOWNREJECT failure, 1–5
DCERPC-E-WHOAREYOUFAILED failure

(EE1282FA), 1–5
DCOM$CNFG utility and disabling

applications, 1–7
DCOM$RPCSS process resource exhaustion,

1–4
DCOM$RPCSS stalls on restart, 1–6

Index–3



Release note: COM for OpenVMS (cont’d)
IDispatch, 1–4
IGNORE_EXTAUTH support, 1–5
Kernel threads and upcalls not supported, 1–6
Memory leak in COM for OpenVMS servers,

1–4
MIDL -w Switch, 1–6
MIDL compiler treats wchar_t literals as char,

1–6
NTARPC-E-PROTOCOL_ERROR failure

(800706C0), 1–5
Only one version of COM for OpenVMS in a

cluster, 1–8
Previously registered applications that use

logicals for local server path name, 1–3
Remote activation of an in-process server, 1–8
RPC Cannot Support Failure (800706E4), 1–9
RPC communications failures caused by

Advanced Server, 1–9
SAFEARRAY limitation, 1–7
SP4, 1–8
Threading model supported by COM for

OpenVMS, 1–8
Trusted-domain authentication, 1–4
Upgrade instructions, 1–2
Windows 2000 not supported, 1–8
You must repopulating the OpenVMS Registry

for COM Version 1.1-B for OpenVMS, 1–2
Release note: OpenVMS Registry

key access policy, 2–1
Limited Search command functions, 2–1
Maximum data size, 2–1
Maximum database size, 2–2
No notification on key changes, 2–1
REG$_EXQUOTA errors, 2–2

Restoring the OpenVMS Registry, 11–11

S
Security

activation, 5–4
application, 5–4
launch, 5–4

SET SERVER REGISTRY_SERVER, 11–8
SHOW SERVER REGISTRY_SERVER, 11–7
Shutting down COM for OpenVMS, 4–16

NOCONFIRM parameter, 4–17
‘‘Simple’’ application example

build, 6–6
register, 6–6
register on NT, 6–7
register on OpenVMS, 6–6
reregister on OpenVMS, 6–7

Starting the COM for OpenVMS server, 6–6
Starting the DCOM$RPCSS process, 6–6
Starting the OpenVMS Registry, 11–5

manually, 11–6

Stopping the COM for OpenVMS server, 6–6
Stopping the DCOM$RPCSS process, 6–6
Subkey, 10–2
Supported COM APIs, F–3
Supported COM interfaces, F–6
Symbol vector, 7–6, 9–6
System configuration, 5–1

T
Translating OpenVMS and Windows error codes,

7–10
Troubleshooting

ACME server, B–3
Advanced Server for OpenVMS, B–5
DCOM$RPCSS process, B–4
RPC, B–1

Troubleshooting OpenVMS Events, 14–9

U
Unauthenticated COM

authentication level, E–3
configuring, E–2
installing, E–1

Unauthenticated mode
running COM, E–1

Unicode, 11–11
Unregister a component, 6–23
Upgrade note: COM for OpenVMS

Changing application security settings, D–4
Configuring OpenVMS and Windows NT to

interoperate, D–1
Rebuild existing applications, D–1
You must repopulating the OpenVMS Registry

for COM Version 1.1-B for OpenVMS, D–4
Using COM for OpenVMS, 3–4
Utilities for configuring COM for OpenVMS, 6–1
Utilities for configuring OpenVMS Registry, 11–1

V
Value, 10–2
Value entry, 10–2
Viewing COM for OpenVMS events from Advanced

Server for OpenVMS, 14–2
Viewing COM for OpenVMS events from Windows

NT, 14–2
Viewing COM for OpenVMS events in an

OpenVMS event log file, 14–2
Volatility of keys and values, 10–2

W
Windows NT credentials

acquiring, 5–3
checking, 10–7
granting, 10–7

Index–4



Windows NT event viewer, 14–2
Windows NT Registry

defined, 10–1
Windows NT security model, 10–9
Write-behind of keys, 10–3
Write-through of keys, 10–3
Writing your own COM events to the event log,

14–9

Index–5




