
HP OpenVMS Delta/XDelta
DebuggerManual
Order Number: AA–PWCAE–TE

January 2005

This manual describes the OpenVMS DELTA and XDELTA debuggers.
OpenVMS DELTA is used to debug programs that run in privileged
processor mode at interrupt priority level 0. OpenVMS XDELTA is used
to debug programs that run at an elevated interrupt priority level.

Revision/Update Information: This manual supersedes the HP
OpenVMS Delta/XDelta Debugger
Manual, OpenVMS Alpha Version 7.3
OpenVMS VAX Version 7.3

Software Version: OpenVMS I64 Version 8.2
OpenVMS Alpha Version 8.2
OpenVMS VAX Version 7.3

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Printed in the US

ZK4540

The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . vii

1 Invoking, Exiting, and Setting Breakpoints

1.1 Overview of the DELTA and XDELTA Debuggers 1–1
1.2 Privileges Required for Running DELTA . 1–1
1.3 Guidelines for Using XDELTA . 1–2
1.4 Invoking DELTA . 1–2
1.5 Exiting from DELTA . 1–3
1.6 Invoking XDELTA . 1–3
1.7 Requesting an Interrupt . 1–4
1.7.1 Requesting Interrupts on VAX Computers . 1–5
1.7.2 Requesting Interrupts on Alpha Computers . 1–6
1.7.3 Requesting Interrupts on Intel® Itanium® Computers 1–6
1.8 Accessing the Initial Breakpoint . 1–7
1.9 Proceeding from Initial XDELTA Breakpoints . 1–7
1.10 Exiting from XDELTA . 1–8

2 DELTA and XDELTA Symbols and Expressions

2.1 Symbols Supplied by DELTA and XDELTA . 2–1
2.2 Floating Point Register Support . 2–3
2.3 Forming Numeric Expressions . 2–4

3 Debugging Programs

3.1 Referencing Addresses . 3–1
3.1.1 Referencing Addresses (VAX Only) . 3–2
3.1.2 Referencing Addresses (Alpha and I64 Only) . 3–4
3.2 Referencing Registers . 3–6
3.2.1 Referencing Registers (VAX Only) . 3–6
3.2.2 Referencing Registers (Alpha Only) . 3–6
3.2.3 Referencing Registers (I64 Only) . 3–7
3.3 Interpreting the Error Message . 3–8
3.4 Debugging Kernel Mode Code Under Certain Conditions 3–8
3.4.1 Setup Required (VAX Only) . 3–8
3.4.2 Setup Required (Alpha Only) . 3–9
3.4.3 Accessing XDELTA . 3–9
3.5 Debugging an Installed, Protected, Shareable Image 3–9
3.6 Using XDELTA on Multiprocessor Computers . 3–10
3.7 Debugging Code When Single-Stepping Fails (Alpha Only) 3–10
3.8 Debugging Code that Does Not Match the Compiler Listings (Alpha and

I64 Only) . 3–11

iii

4 DELTA/XDELTA Commands

4.1 Command Usage Summary . 4–1
[(Set Display Mode) . 4–3
/ (Open Location and Display Contents in Prevailing Width Mode) 4–4
! (Open Location and Display Contents in Instruction Mode) 4–7
" (Open Location and Display Contents in ASCII) 4–9
ESC (Open Location and Display Previous Location) 4–11
EXIT (Exit from DELTA Debugging Session) . 4–12
LINEFEED (Close Current Location, Open Next) 4–13
RETURN (Close Current Location) . 4–15
TAB (Open Location and Display Indirect Location) 4–16
;B (Breakpoint) . 4–17
;C (Force the system to bugcheck and crash) (Alpha and I64Only) 4–21
;D (Dump) (Alpha and I64) . 4–22
;E (Execute Command String) . 4–24
;G (Go) . 4–26
;H (Video Terminal Display Command) (Alpha and I64 Only) 4–27
;I (List Information About the Current Main Image and Its Shareable
Images) (Alpha Only) . 4–28
;L (List Names and Locations of Loaded Executive Images) 4–30
;M (Set All Processes Writable) . 4–33
;P (Proceed from Breakpoint) . 4–34
;Q (Validate Queue) (Alpha and I64 Only) . 4–36
;T (Display Interrupt Stack Frame) (I64 Only) . 4–37
;W (List Name and Location of a Single Loaded Image) (Alpha and I64
Only) . 4–40
;X (Load Base Register) . 4–42
O (Step Instruction over Subroutine) . 4–45
S (Step Instruction) . 4–48
’ (Deposit ASCII String) . 4–50
= (Display Value of Expression) . 4–51
\string\ (Immediate mode text display command) (Alpha and I64
Only) . 4–52

A Sample DELTA Debug Session on VAX

B Sample DELTA Debug Session on Alpha

Index

iv

Examples

A–1 Program for Getting LOGINTIMs . A–1
A–2 LOGINTIM Program .Map File . A–2
A–3 DELTA Debugging Session Example . A–3
B–1 Listing File for LOG: C Source Code . B–1
B–2 Listing File for LOG: Machine Code . B–3
B–3 .MAP File for the Sample Program . B–7
B–4 DELTA Debugging Session of the Sample Program B–7

Tables

1–1 Boot Command Qualifier Values . 1–4
2–1 DELTA/XDELTA Symbols for OpenVMS VAX systems 2–1
2–2 DELTA/XDELTA Symbols for OpenVMS Alpha systems 2–2
2–3 DELTA/XDELTA Symbols for OpenVMS I64 systems 2–2
2–4 Floating Point Register Support by Platform . 2–4
2–5 Arithmetic Operators . 2–4
4–1 DELTA/XDELTA Command Summary (All platforms) 4–1
4–2 DELTA/XDELTA Command Summary (Alpha and I64 Only) 4–2
4–3 DELTA/XDELTA Command Summary (I64 Only) 4–2

v

Preface

Intended Audience
This manual is written for programmers who debug system code for device
drivers and other images that execute in privileged processor-access modes or at
an elevated interrupt priority level (IPL).

Document Structure
This manual consists of the following chapters and appendixes:

• Chapter 1 provides an overview and descriptions for the DELTA and XDELTA
Debuggers and breakpoints.

• Chapter 2 describes the DELTA and XDELTA symbols.

• Chapter 3 describes how to debug programs.

• Chapter 4 describes the DELTA and XDELTA commands.

• Appendix A describes an OpenVMS VAX debugging session using DELTA.

• Appendix B describes an OpenVMS Alpha debugging session using DELTA.

Related Documents
This manual refers to several documents that contain the primary descriptions
of topics discussed in this manual. The following table lists the topics and those
documents.

Topic Document

Accessing OpenVMS VAX through a
lower priority interrupt level

HP OpenVMS System Manager’s Manual

Boot command qualifiers for Volume
Shadowing

HP Volume Shadowing for OpenVMS

Device name parameters HP OpenVMS System Manager’s Manual

IPRs for OpenVMS Alpha
PALcode opcodes for OpenVMS Alpha

Alpha Architecture Reference Manual

Intel® Itanium® hardware architecture
and environment

Intel® IA-64 Architecture Software Developer’s
Manual Volume 1: IA-64 Application
Architecture

Intel® IA-64 Architecture Software Developer’s
Manual Volume 2: IA-64 System Architecture

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

vii

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation
For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

viii

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

ix

1
Invoking, Exiting, and Setting Breakpoints

This chapter presents an overview of the DELTA and XDELTA Debuggers. It
then describes the following:

• Privileges required for running DELTA

• Guidelines for using XDELTA

• Invoking and terminating DELTA and XDELTA debugging sessions on
OpenVMS systems

• Booting XDELTA, requesting interrupts, and accessing initial breakpoints on
OpenVMS systems

1.1 Overview of the DELTA and XDELTA Debuggers
The DELTA and XDELTA debuggers are used to monitor the execution of user
programs and the OpenVMS operating system. They use the same commands
and the same expressions, but they differ in how they operate. DELTA operates
as an exception handler in a process context. XDELTA is invoked directly from
the hardware SCB vector in a system context.

Use DELTA to debug process or context user-mode programs or programs that
execute at interrupt priority level (IPL) 0 in any processor mode. You cannot use
DELTA to debug code that executes at an elevated IPL. To debug with DELTA,
invoke it from within your process by specifying it as the debugger (as opposed to
the symbolic debugger).

Use XDELTA to debug programs executing in any processor mode or at any
IPL level. Use it to debug programs that execute at an elevated IPL. Because
XDELTA is not process specific, it is not invoked from a process. To debug with
XDELTA, you must boot the processor with commands to include XDELTA in
memory. XDELTA’s existence terminates when you reboot the processor without
XDELTA.

1.2 Privileges Required for Running DELTA
No privileges are required to run DELTA to debug a program that runs in user
mode. To debug a program that runs in other processor-access modes, the process
in which you run the program must have the necessary privileges.

To use the ;M command, your process must have change-mode-to-kernel
(CMKRNL) privilege. The ;M command sets all processes writable.

To use the ;L command (List All Loaded Executive Modules), you must have
change-mode-to-executive (CMEXEC) privilege.

Invoking, Exiting, and Setting Breakpoints 1–1

Invoking, Exiting, and Setting Breakpoints
1.3 Guidelines for Using XDELTA

1.3 Guidelines for Using XDELTA
Because XDELTA is not process specific, privileges are not required.

When using XDELTA, you must use the console terminal. You should run
XDELTA only on a standalone system because all breakpoints are handled at
IPL 31.

You cannot redirect output from XDELTA. To determine if your system maintains
a log file, check your hardware manual. You can produce a log of console sessions
by connecting the console port of the system that will boot with XDELTA to the
serial port of a LAT server. Then, from another system, use the command SET
HOST/LAT/LOG to that LAT port.

1.4 Invoking DELTA
To invoke DELTA, perform the following steps after assembling (or compiling)
and linking your program:

1. Define DELTA as the default debugger instead of the symbolic debugger with
the following command:

$ DEFINE LIB$DEBUG SYS$LIBRARY:DELTA

2. Use the following RUN command to execute your program:

$ RUN/DEBUG MYPROG

When DELTA begins execution, it displays its name and current version number.
DELTA displays the first executable instruction in the program with which it is
linked. It displays the address of that instruction, a separator (a slash (/) on VAX
and an exclamation point (!) on Alpha), and the instruction and its operands.

On VAX, the name, current version number, and address are displayed as follows:

DELTA Version 5.5
address/instruction operands

On Alpha, the name, current version number, and address are displayed as
follows:

OpenVMS Alpha DELTA Version 1.0
address!instruction operands

On Alpha and VAX, DELTA is then ready for your commands.

You can redirect output from a DELTA debugging session by assigning
DBG$DELTA to the I/O device.

Note

The image activator on OpenVMS Alpha systems automatically activates
SYS$SHARE:SYS$SSISHR.EXE when an image is debugged using the
RUN/DEBUG command or is linked using the /DEBUG qualifier. The
presence of this image should not alter your program’s correctness, but if
your program is sensitive to virtual address layout or if for some reason
SYS$SHARE:SYS$SSISHR.EXE is not installed properly on your system,
you may want to bypass its automatic activation.

1–2 Invoking, Exiting, and Setting Breakpoints

Invoking, Exiting, and Setting Breakpoints
1.4 Invoking DELTA

To keep the image activator from activating
SYS$SHARE:SYS$SSISHR.EXE for you, define the logical name
SSI$AUTO_ACTIVATE to be "OFF" before running the program to
be debugged with Delta.

1.5 Exiting from DELTA
To exit from DELTA, type EXIT and press 4540INVOK.SDMLthe Return key.
When you are in user mode, you exit DELTA and your process remains. When
you are in a privileged access mode, your process can be deleted.

1.6 Invoking XDELTA
To invoke XDELTA, perform the following steps:

1. Boot the system using a console command or a command procedure that
includes XDELTA.

2. On VAX, an initial XDELTA breakpoint is taken so that you can set additional
breakpoints or examine and change locations in memory. XDELTA displays
the following breakpoint message:

1 BRK at address
address/instruction

Note

Never clear breakpoint 1 from any code being debugged in XDELTA. If
you accidentally clear breakpoint 1 and no other breakpoints are set, you
cannot use XDELTA until you reboot again with XDELTA.

On Alpha and I64, two initial XDELTA breakpoints are taken so that you
can set additional breakpoints or examine and change locations in memory.
XDELTA displays the following message for the first breakpoint:

BRK 0 at address
address!instruction

3. On all processors, proceed from the initial breakpoint, using the following
command:

;P Return

On VAX, the procedure for booting the system with XDELTA differs, depending on
the model of your system. Each procedure uses commands that include XDELTA
in memory and cause the execution of a breakpoint in OpenVMS initialization
routines. Execution of the breakpoint instruction transfers program control to a
fault handler located in XDELTA.

Some boot procedures require the use of the /R5 qualifier with the boot command.
The /R5 qualifier enters a value for a flag that controls the way XDELTA is
loaded. The flag is a 32-bit hexadecimal integer loaded into R5 as input to
VMB.EXE, the primary boot program. Refer to Table 1–1 for a description of the
valid values for this flag.

Invoking, Exiting, and Setting Breakpoints 1–3

Invoking, Exiting, and Setting Breakpoints
1.6 Invoking XDELTA

Note

When you deposit a boot command qualifier value in R5, make sure that
any other values you would normally deposit are included. For example,
if you were depositing the number of the system root directory from which
you were booting and an XDELTA value, R5 would contain both values.

For directions for booting XDelta on a VAX computer, refer to the OpenVMS VAX
supplement specific to your computer.

On Alpha, the procedure for booting all Alpha systems with XDELTA is the same.
For one example of how to boot XDELTA, use the boot command as follows:

>>> BOOT -FLAG 0,7

On I64, the procedure for booting all Intel® Itanium® systems with XDELTA is
the same. For an example of how to boot XDELTA, use the boot command as
follows:

fs0:\efi\vms\> vms_loader -fl 0,7

On Alpha and I64, the flag for specifying boot qualifiers is a 64-bit integer that
is passed directly as input to the primary boot program; APB.EXE on Alpha and
IPB.EXE on I64. Refer to Table 1–1 for a description of the valid values for this
flag.

Table 1–1 Boot Command Qualifier Values

Value Description

0 Normal, nonstop boot (default)

1 Stop in SYSBOOT

2 Include XDELTA, but do not take the initial breakpoint

3 Stop in SYSBOOT, include XDELTA, but do not take the initial breakpoint

6 Include XDELTA, and take the initial breakpoint

7 Include XDELTA, stop in SYSBOOT, and take the initial breakpoint at system
initialization

1.7 Requesting an Interrupt
If you set the boot control flag to 7, XDELTA will stop at an initial breakpoint
during the system boot process. You can then set other breakpoints or examine
locations in memory.

Your program can also call the routine INI$BRK, which in turn executes the first
XDELTA breakpoint. Refer to Section 1.8 for the breakpoint procedure.

Once loaded into memory, XDELTA can also be invoked at any time from the
console by requesting a software interrupt. For example, you might need to use a
software interrupt to enter XDELTA if your program is in an infinite loop or no
INI$BRK call had been made.

On VAX, INI$BRK is defined as XDELTA’s breakpoint 1.

1–4 Invoking, Exiting, and Setting Breakpoints

Invoking, Exiting, and Setting Breakpoints
1.7 Requesting an Interrupt

Note

Never clear breakpoint 1 from any code being debugged in XDELTA. If
you accidentally clear breakpoint 1 and no other breakpoints are set, you
cannot use XDELTA again until you reboot with XDELTA.

On Alpha and I64, INI$BRK is defined as XDELTA’s breakpoint 0. It is not
possible to clear breakpoint 0 from any code being debugged in XDELTA.

1.7.1 Requesting Interrupts on VAX Computers
For a VAX 8530, 8550, 8600, 8650, 8810 (8700), 8820, 8820-N (8800), 8830,
8840, VAX-11/780, or VAX-11/785 computer, enter the following commands at the
console terminal to request the interrupt:

$ Ctrl/P

>>> HALT
>>> D/I 14 E
>>> C

For a VAX 9000 computer, enter the following commands at the console terminal
to request the interrupt:

$ Ctrl/P

>>> HALT/CPU=ALL
>>> D/I 14 E
>>> C/CPU=ALL

For a VAX 6000 series, 8200, 8250, 8300, 8350, VAX-11/730, or a VAX-11/750
computer, enter the following commands:

$ Ctrl/P

>>> D/I 14 E
>>> C

For a VAXstation 3520 or 3540 computer, perform the following steps:

1. Press and release the Halt button on the CPU control panel. When you
release the Halt button, make sure it is popped out or the system will remain
halted. You can also press the Break key (if enabled) on the console terminal.

2. Enter the following commands:

>>> D/I 14 E
>>> C/ALL

For a VAXft 3000, VAXft-410, VAXft-610, or VAXft-612 computer, enter the
following commands at the console terminal to request the interrupt:

$ Break or F5

>>> HALT
>>> D/I 14 E
>>> CONT
>>> PIO

For a VAX 7000 or VAX 10000 series computer, enter the following commands
at the console terminal to request the interrupt. If you are operating in secure
mode, first set the keyswitch to ENABLE before entering these commands.

$ Ctrl/P

>>> D IPR:14 E
>>> CONT

Invoking, Exiting, and Setting Breakpoints 1–5

Invoking, Exiting, and Setting Breakpoints
1.7 Requesting an Interrupt

For a VAXstation 2000, MicroVAX 2000, MicroVAX 3300/3400 series, MicroVAX
or VAXstation 3500/3600 series, MicroVAX 3800/3900 series, VAX 4000 series, or
MicroVAX II computer, perform the following steps:

1. Press and release the Halt button on the CPU control panel. When you
release the Halt button, make sure it is popped out or the system will remain
halted. You can also press the Break key (if enabled) on the console terminal.

2. Enter the following commands:

>>> D/I 14 E
>>> C

For an alternative method of accessing OpenVMS through a lower priority
interrupt, refer to the HP OpenVMS System Manager’s Manual.

1.7.2 Requesting Interrupts on Alpha Computers
On Alpha, to request an interrupt, perform the following steps:

1. Halt the processor with the following command:

^P

2. Request an IPL 14 software interrupt with the following command:

>>> DEP SIRR E

This command deposits a 1410 into the software interrupt request register.

3. Reactivate the processor by issuing the CONTINUE command as follows:

>>> CONT

The process should enter XDELTA as soon as IPL drops to 14.

The following message is displayed:

Brk 0 at address
address! instruction

At this point, the exception frame is on the stack. The saved PC/PS in the
exception frame tells you where you were in the program when you requested the
interrupt.

1.7.3 Requesting Interrupts on Intel® Itanium® Computers
To to request an interrupt on an Intel® Itanium® computer, type CTRL/P on
the console terminal. When the system is executing at device IPL 8 or lower, the
interrupt is acknowledged and the execution of the system is suspended. XDELTA
displays the instruction that was executing at the time of the interruption.

Note

Use CTRL/P with caution. If you type CTRL/P on the console terminal
and XDELTA is not loaded, you are asked if you want to crash the
system and then execution is supended at device IPL 8 until you answer.
Answering with an affirmative (Y) will cause an immediate crash, any
other character will resume normal system operation.

1–6 Invoking, Exiting, and Setting Breakpoints

Invoking, Exiting, and Setting Breakpoints
1.8 Accessing the Initial Breakpoint

1.8 Accessing the Initial Breakpoint
When debugging a program, you can set a breakpoint in the code so that XDELTA
gains control of program execution.

To set a breakpoint, place a call to the system routine INI$BRK in the source
code.

On systems that are booted with XDELTA, the INI$BRK routine executes a
breakpoint instruction. On systems that are not booted with XDELTA, INI$BRK
is effectively a NOP instruction.

You can use the INI$BRK routine as a debugging tool, placing calls to this routine
in any part of the source code you want to debug.

On VAX, the instruction following the breakpoint is RSB. After the break is
taken, the return address (the address in the program to which control returns
when you proceed from the breakpoint) is on the top of the stack.

The following command calls the INI$BRK system routine to reach the
breakpoint:

JSB G^INI$BRK

On Alpha, the instruction following the breakpoint is JSR R31,(R26). After the
break is taken, the return address (the address in the program to which control
returns when you proceed from the breakpoint) is in R26.

On I64, simply step until you reach a br.ret instruction.

The following C routine calls the INI$BRK system routine to reach the
breakpoint:

extern void ini$brk(void);

main()
{
ini$brk();
}

1.9 Proceeding from Initial XDELTA Breakpoints
On VAX, when XDELTA reaches one of its breakpoints, it displays the following
message:

1 BRK AT nnnnnnnn

address/instruction operands

On Alpha and I64, when XDELTA reaches one of its breakpoints, it displays the
following message:

BRK 1 AT nnnnnnnn

address!instruction operands

On multiprocessor computers, the XDELTA breakpoint is taken on the processor
upon which the XDELTA software interrupt was requested, which is generally
the primary processor.
At this point, XDELTA is waiting for input. If you want to proceed with program
execution, enter the ;P command. If you want to do step-by-step program
execution, enter the S command. If you know where you have set breakpoints,

Invoking, Exiting, and Setting Breakpoints 1–7

Invoking, Exiting, and Setting Breakpoints
1.9 Proceeding from Initial XDELTA Breakpoints

examine them using the ;B command. You can also set additional breakpoints or
modify existing ones.

If you entered the ;P command to proceed with program execution and the system
halts with a fatal bugcheck, the system prints the bugcheck information on the
console terminal. Bugcheck information consists of the following:

• Type of bugcheck

• Contents of the registers

• A dump of one or more stacks

• A list of loaded executive images

The contents of the program counter (PC) and the stack indicate where the
failure was detected. Then, if the system parameter BUGREBOOT was set to 0,
XDELTA issues a prompt. You can examine the system’s state further by entering
XDELTA commands.

1.10 Exiting from XDELTA
XDELTA remains in memory with the operating system until you reboot without
it.

1–8 Invoking, Exiting, and Setting Breakpoints

2
DELTA and XDELTA Symbols and Expressions

This chapter describes how to form the symbolic expressions used as arguments
to many DELTA and XDELTA commands.

2.1 Symbols Supplied by DELTA and XDELTA
DELTA and XDELTA define symbols that are useful in forming expressions and
referring to registers. Table 2–1 shows symbols that pertain to OpenVMS VAX
systems. Table 2–2 shows symbols that pertain to OpenVMS Alpha systems.
Table 2–3 shows the symbols that pertain to OpenVMS I64 systems.

Table 2–1 DELTA/XDELTA Symbols for OpenVMS VAX systems

Symbol Description

. The address of the current location. The value of this symbol is set by
the Open Location and Display Contents (/), Open Location and Display
Instruction (!), and the Open Location and Display Indirect (TAB)
commands.

G ^X80000000, the prefix for system space addresses. G2E, for example, is
equivalent to ^X8000002E.

H ^X7FFE0000, the prefix for addresses in the control region (P1 space). H2E,
for example, is equivalent to ^X7FFE002E.

Pn The internal processor register at processor address n, where n can range
from 0 to 3F (hexadecimal). See the VAX Architecture Reference Manual for a
description of these processor registers.

Q The last value displayed. The value of Q is set by every command that causes
DELTA or XDELTA to display the contents of memory or the value of an
expression.

Rn General register n, where n can range from 0 to F (hexadecimal). RF+4 is
the processor status longword (PSL), RE is the stack pointer, and RF is the
program counter (PC).

Xn Base register n, where n can range from 0 to F (hexadecimal). These registers
are used for storing values, most often the base addresses of data structures
in memory.

For XDELTA only, XE and XF contain the addresses of two command strings
that XDELTA stores in memory. See the Execute Command String (;E)
command for more information.

For XDELTA only, registers X4 and X5 contain specific addresses. X4 contains
the address of the location that contains the PCB address of the current
process on the current processor. The address that X4 contains is that of the
per-CPU database for the current processor. X5 contains SCH$GL_PCBVEC,
the symbolic address of the start of the PCB vector, and the list of PCB slots.

DELTA and XDELTA Symbols and Expressions 2–1

DELTA and XDELTA Symbols and Expressions
2.1 Symbols Supplied by DELTA and XDELTA

Table 2–2 DELTA/XDELTA Symbols for OpenVMS Alpha systems

Symbol Description

. The address of the current location. The value of this symbol is set by
the Open Location and Display Contents (/), Open Location and Display
Instruction (!), and the Open Location and Display Indirect (TAB)
commands.

FPn Floating point register n, where n can range from 0 to 31 (decimal).

FPCR The floating point control register.

G ^XFFFFFFFF80000000, the prefix for system space addresses.

H ^X7FFE0000, the prefix for addresses in the control region (P1 space). H2E,
for example, is equivalent to ^X7FFE002E.

PC The program counter register.

pid:PC The program counter in the process specified by process ID pid.

PS The processor status register.

Q The last value displayed. The value of Q is set by every command that causes
DELTA or XDELTA to display the contents of memory or the value of an
expression.

pid:Rn General register n in the process specified by process ID pid.

Rn General register n, where n can range from 0 to 31 (decimal).

Xn Base register n, where n can range from 0 to 15 (decimal). These registers
are used for storing values, most often the base addresses of data structures
in memory.

For XDELTA only, X14 and X15 contain the addresses of two command
strings that XDELTA stores in memory. See the Execute Command String
(;E) command for more information.

For XDELTA only, registers X4 and X5 contain specific addresses. X4 contains
the address of the location that contains the PCB address of the current
process on the current processor. The address that X4 contains is that of the
per-CPU database for the current processor. X5 contains SCH$GL_PCBVEC,
the symbolic address of the start of the PCB vector, and the list of PCB slots.

Table 2–3 DELTA/XDELTA Symbols for OpenVMS I64 systems

Symbol Description

. The address of the current location. The value of this symbol is set by
the Open Location and Display Contents (/), Open Location and Display
Instruction (!), and the Open Location and Display Indirect (TAB)
commands.

ARn Application register n where n can range from 0 to 127 (decimal). Also see the
P(ipr) symbol description.

BRn Branch register n where n can range from 0 to 7.

CRn Control register n where n can range from 0 to 127 (decimal). See also the
P(ipr) symbol description.

FPn Floating point register n, where n can range from 0 to 127 (decimal).

FPSR The floating point status register.

G ^XFFFFFFFF80000000, the prefix for system space addresses.

(continued on next page)

2–2 DELTA and XDELTA Symbols and Expressions

DELTA and XDELTA Symbols and Expressions
2.1 Symbols Supplied by DELTA and XDELTA

Table 2–3 (Cont.) DELTA/XDELTA Symbols for OpenVMS I64 systems

Symbol Description

H ^X7FFE0000, the prefix for addresses in the control region (P1 space). H2E,
for example, is equivalent to ^X7FFE002E.

P(ipr) The OpenVMS I64 software implementation of an Alpha internal processor
register whose name is ipr. See the Alpha Architecture Reference Manual
for the names and descriptions of these processor registers. Not all Alpha
internal processor registers are implemented on OpenVMS I64.

This syntax is also used to refer to Intel® Itanium® application and control
registers using meaningful names, where ipr is the name of the Intel®
Itanium® register. For example, you can refer to Intel® Itanium® register
CR20 using either of the following:

P(IFA)
P(CR.IFA)

See the Intel® IA-64 Architecture Software Developer’s Manual, Volume 2: IA-
64 System Architecture manual for the names of the application and control
registers.

PC The OpenVMS I64 software implementation of a program counter register,
formed by the union of the IP (instruction bundle pointer) and the slot offset
(PSR.ri).

PS The processor status register.

Pn Predicate register n where n can range from 0 to 63 (decimal).

Q The last value displayed. The value of Q is set by every command that causes
DELTA or XDELTA to display the contents of memory or the value of an
expression.

Rn General register n where n can range from 0 to 127 (decimal).

Xn Base register n, where n can range from 0 to 15 (decimal). These registers
are used for storing values, most often the base addresses of data structures
in memory.

For XDELTA only, X14 and X15 contain the addresses of two command
strings that XDELTA stores in memory. See the Execute Command String
(;E) command for more information.

For XDELTA only, registers X4 and X5 contain specific addresses. X4 contains
the address of the location that contains the PCB address of the current
process on the current processor. The address that X4 contains is that of the
per-CPU database for the current processor. X5 contains SCH$GL_PCBVEC,
the symbolic address of the start of the PCB vector, and the list of PCB slots.

2.2 Floating Point Register Support
On OpenVMS Alpha, floating point registers can be accessed from DELTA and
from XDELTA but only if floating point arithmetic is enabled in the current
process. On OpenVMS I64, floating point registers FP6 through FP11 are
always available. The other floating point registers are available if floating point
arithmetic is enabled in the current process.

DELTA runs in the context of a process. Access to floating-point registers is
enabled as soon as the first floating point instruction in the code being examined
is executed. Access is disabled as soon as that image completes execution.

DELTA and XDELTA Symbols and Expressions 2–3

DELTA and XDELTA Symbols and Expressions
2.2 Floating Point Register Support

Table Table 2–4 shows these relationships:

Table 2–4 Floating Point Register Support by Platform

Alpha I64

XDELTA No access FD6—FP11

DELTA FPn if FP access is
enabled

N/A

When the system enters XDELTA, it may not be obvious which process is the
current process. If the current process happens to have floating point enabled
(because a floating point instruction has executed and the image containing the
floating point instruction is still executing), then you can access the floating
point registers. Otherwise, you cannot. XDELTA checks the FEN (floating point
enable) IPR (internal processor register) to see whether it needs to provide access
to floating point registers.

2.3 Forming Numeric Expressions
Expressions are combinations of numbers, symbols that have numeric values, and
arithmetic operators.

On all platforms, DELTA and XDELTA store and display all numbers in
hexadecimal. They also interpret all numbers as hexadecimal.

On Alpha and I64, all numbers except integer and floating point registers are
stored and displayed in hexadecimal. These registers are stored and displayed in
decimal.

Expressions are formed using regular (infix) notation. Both DELTA and XDELTA
ignore operators that trail the expression. The following is a typical expression
(in hexadecimal):

G4A32+24

DELTA and XDELTA evaluate expressions from left to right. No operator takes
precedence over any other.

DELTA and XDELTA recognize five binary arithmetic operators, one of which also
acts as a unary operator. They are listed in Table 2–5.

Table 2–5 Arithmetic Operators

Operator Action

+ or SPACE Addition

- Subtraction when used as a binary operator, or negation when
used as a unary operator

* Multiplication

% Division

@ Arithmetic shift

The following example shows the arguments required by the arithmetic-shift
operator:

n@j

2–4 DELTA and XDELTA Symbols and Expressions

DELTA and XDELTA Symbols and Expressions
2.3 Forming Numeric Expressions

In this example, n is the number to be shifted, and j is the number of bits to shift
it. If j is positive, n is shifted to the left; if j is negative, n is shifted to the right.
Argument j must be less than 2016 and greater than -2016. Bits shifted beyond
the limit of the longword are lost; therefore, the result must fit into a longword.

Note

Do not enter unnecessary spaces, as DELTA/XDELTA treats the space as
an additional operator.

DELTA and XDELTA Symbols and Expressions 2–5

3
Debugging Programs

When you use DELTA or XDELTA, there are no prompts, few symbols, and one
error message. You move through program code by referring directly to address
locations. This chapter provides directions for the following actions:

• Referencing addresses

• Referencing registers, the PSL or PS, and the stack

• Interpreting the error message

• Debugging kernel mode code under certain conditions

• Debugging an installed, protected, shareable image

• Using XDELTA on multiprocessor computers

• Debugging code when single-stepping fails (Alpha only)

• Debugging code that does not match the compiler listings (Alpha and I64
only)

For examples of DELTA debugging sessions on VAX and Alpha, refer respectively
to Appendix A and Appendix B.

3.1 Referencing Addresses
When using DELTA or XDELTA to debug programs, you move through the code
by referring to addresses. To help you identify address locations within your
program, use a list file and a map file. The list file (.LIS) lists each instruction
and its offset value from the base address of the program section. The full
map file (.MAP) lists the base addresses for each section of your program. To
determine the base address of a device driver program, refer to the OpenVMS
VAX Device Support Manual1.

Once you have the base addresses of the program sections, locate the instruction
in the list file where you want to start the debugging work. Add the offset
from the list program to the base address from the map file. Remember that
all calculations of address locations are done in hexadecimal. You can use
DELTA/XDELTA to do the calculations for you with the = command.

To make address referencing easier, you can use offsets to a base address. Then
you do not have to calculate all address locations. First, place the base address
into a base register. Then move to a location using the offset to the base address
stored in the register.

Whenever DELTA/XDELTA displays an address, it will display a relative address
if the offset falls within the permitted range (see the ;X command in Chapter 4).

1 This manual has been archived but is available on the OpenVMS Docmentation
CD–ROM.

Debugging Programs 3–1

Debugging Programs
3.1 Referencing Addresses

3.1.1 Referencing Addresses (VAX Only)
On VAX, to reference addresses during a DELTA debug session, use the
following example as a guide. The example uses a simple VAX MACRO
program (EXAMPLE.MAR). You can also use the same commands in an XDELTA
debugging session.

0000 1 .title example
0000 2
0000 3 .entry start ^M<r3,r4>
0002 4 clrl r3
0004 5 movl #5,r4
0007 6 10$: addl r4,r3
000A 7 sobgtr r4,10$
000D 8 ret
000E 9
000E 10 .end start

The following procedure generates information to assist you with address
referencing:

1. Use the /LIST qualifier to assemble the program and generate the list file.

To generate the list file for the previous example, use the following command:

$ MACRO/LIST EXAMPLE

2. Use the /MAP qualifier with the link command to generate the full map file
(.MAP file). Make sure that the default /DEBUG or /TRACEBACK qualifier is
active for your link command. If not, specify /DEBUG or /TRACEBACK along
with the /MAP qualifier.

To generate the map file for the example program, use the following command:

$ LINK/MAP EXAMPLE

3. Refer to the Program Section Synopsis of the map file, locate the section that
you want to debug, and look up the base address.

For the example program, the map file is EXAMPLE.MAP. A portion of the
Program Section Synopsis is shown below. The first section of the program
has a base address of 200.

+--------------------------+
! Program Section Synopsis !
+--------------------------+

Psect Name Module Name Base End Length
---------- ----------- ---- --- ------

. BLANK . 00000200 0000020D 0000000E (14.)
EXAMPLE 00000200 0000020D 0000000E (14.)

4. Refer to the list file for the location of the specific instruction where you want
to start debugging.

For the example program, start with the second instruction (MOVL #5,R4)
with an offset of 4.

5. Enable DELTA using the following commands:

$ DEFINE LIB$DEBUG SYS$LIBRARY:DELTA
$ RUN/DEBUG EXAMPLE

6. If you want to store the base address in a base register, use the ;X command
to load the base register.

3–2 Debugging Programs

Debugging Programs
3.1 Referencing Addresses

For the example program, use the following DELTA/XDELTA command to
store the base address 200 in base register 0.

200,0;X Return

7. Now you can move to specific address locations.

For example, if you want to place a breakpoint at the second instruction
(MOVL #5,R4), you would calculate the address as 200 (base address) plus 4
(offset), or 204, and specify the ;B command as follows:

204;B Return

Alternatively, if you stored the base address in the base register, you could
use the address expression X0+4 (or ‘‘X0 4’’, where the + sign is implied), as
follows:

X0+4;B Return

Reverse this technique to find an instruction displayed by DELTA/XDELTA in the
.LIS file, as follows:

1. Note the address of the instruction you want to locate in the .LIS file.

For example, DELTA/XDELTA displays the following instruction at address
020A:

20A! sobgtr r4,00000207

The following steps allow you to find the instruction at location 207:

2. Refer to the .MAP file and identify the PSECT and MODULE where the
address of the instruction is located. Check the base address value and
the end address value of each PSECT and MODULE. When the instruction
address is between the base and end address values, record the PSECT and
MODULE names.

In the example, the instruction address is located in the EXAMPLE module
(.BLANK. psect). The address instruction, 207, is between the base address
200 and the end address 20D.

3. Subtract the base address from the instruction address. Remember that all
calculations are in hexadecimal and that you can use the DELTA/XDELTA =
command to do the calculations. The result is the offset.

For the example, subtract the base address 200 from the instruction address
207. The offset is 7.

4. Refer to the .LIS file. Look up the MODULE and then find the correct
PSECT. Look for the offset value you calculated in the previous step.

In the example, there is only one PSECT and MODULE. Look up the
instruction at offset 7. The program is branching to the following instruction:

10$: addl r4,r3

Debugging Programs 3–3

Debugging Programs
3.1 Referencing Addresses

3.1.2 Referencing Addresses (Alpha and I64 Only)
On Alpha and I64, to reference addresses during a DELTA debug session, use the
following example as a guide. The example uses a simple C program (HELLO.C).
You can also use the same commands in an XDELTA debug session.

#include <stdio.h>

main()
{
printf("Hello world\n");
}

The following procedure generates information to assist you with the address
referencing:

1. Use the /LIST and /MACHINE_CODE qualifiers to compile the program and
generate the list file containing the Alpha machine instructions.

To generate the list file for the previous example, use the following command:

$ cc/list/machine_code hello

The compiler will generate the following Alpha code in the machine code
portion of the listing file:

.PSECT $CODE, OCTA, PIC, CON, REL, LCL, SHR,-
EXE, NORD, NOWRT

0000 main:: ; 000335
0000 LDA SP, -32(SP) ; SP, -32(SP)
0004 LDA R16, 48(R27) ; R16, 48(R27) ; 000337
0008 STQ R27, (SP) ; R27, (SP) ; 000335
000C MOV 1, R25 ; 1, R25 ; 000337
0010 STQ R26, 8(SP) ; R26, 8(SP) ; 000335
0014 STQ FP, 16(SP) ; FP, 16(SP)
0018 LDQ R26, 32(R27) ; R26, 32(R27) ; 000337
001C MOV SP, FP ; SP, FP ; 000335
0020 LDQ R27, 40(R27) ; R27, 40(R27) ; 000337
0024 JSR R26, DECC$GPRINTF ; R26, R26
0028 MOV FP, SP ; FP, SP ; 000338
002C LDQ R28, 8(FP) ; R28, 8(FP)
0030 LDQ FP, 16(FP) ; FP, 16(FP)
0034 MOV 1, R0 ; 1, R0
0038 LDA SP, 32(SP) ; SP, 32(SP)
003C RET R28 ; R28

Notice the statement numbers on the far right of some of the lines. These
numbers correspond to the source line statement numbers from the listing file
as shown next:

335 main()
336 {
337 printf("Hello world\n");
338 }

2. Use the /MAP qualifier with the link command to generate the full map file
(.MAP file). To produce a debuggable image, make sure that either /DEBUG
or /TRACEBACK (the default) is also specified with the link command.

To generate the map file for the example program, use the following command:

$ LINK/MAP/FULL HELLO

3. Refer to the Program Section Synopsis of the map file. Locate the code section
that you want to debug and its base address.

3–4 Debugging Programs

Debugging Programs
3.1 Referencing Addresses

For the example program, the map file is HELLO.MAP. A portion of the
Program Section Synopsis is shown below. The $CODE section of the program
has a base address of 20000.

+--------------------------+
! Program Section Synopsis !
+--------------------------+

Psect Name Module Name Base End Length
---------- ----------- ---- --- ------
$LINKAGE 00010000 0001007F 00000080 (128.)

HELLO 00010000 0001007F 00000080 (128.)
$CODE 00020000 000200BB 000000BC (188.)

HELLO 00020000 000200BB 000000BC (188.)

4. Refer to the list file for the location where you want to start debugging. First
find the source line statement number. Next find that statement number in
the machine code listing portion of the list file. This is the specific instruction
where you want to start debugging.

For the example program, source statement 337 is the following:

printf("Hello world\n");

Search the machine code listing for statement 337. The first occurrence is the
instruction at offset 4 from the start of "main::" and the base of the $CODE
PSECT.

5. Enable DELTA using the following commands:

$ DEFINE LIB$DEBUG SYS$LIBRARY:DELTA
$ RUN/DEBUG HELLO

6. If you want to store the base address in a base register, use the ;X command
to load the base register.

For the example program, use the following DELTA/XDELTA command to
store the base address of 20000 in base register 0.

20000,0;X

7. Now you can move to specific address locations.

For example, if you want to place a breakpoint at offset 4, you would calculate
the address as 20000 (base address) plus 4 (offset), or 20004, and specify the
;B command as follows:

20004;B

Alternatively, if you stored the base address in the base register, you could
use the address expression X0+4 (or "X0 4", where the + sign is implied) to
set the breakpoint as follows:

X0+4;B

Reverse this technique to find an instruction displayed by DELTA/XDELTA in the
.LIS file, as follows:

1. Note the address of the instruction you want to locate in the .LIS file.

For example, DELTA/XDELTA displays the following instruction at address
20020:

20020! LDQ R27,#X0028(R27)

The following steps allow you to find this instruction in the .LIS file.

Debugging Programs 3–5

Debugging Programs
3.1 Referencing Addresses

2. Refer to the .MAP file, and identify the psect and module where the address of
the instruction is located. Check the base address value and the end address
value of each psect and module. When the instruction address is between the
base and end address values, record the psect and module names.

In the example, the instruction address is located in the HELLO module
($CODE PSECT). The address, 20020, is between the base address 20000 and
the end address 200BB.

3. Subtract the base address from the instruction address. Remember that all
calculations are in hexadecimal and that you can use the DELTA/XDELTA =
command to do the calculations. The result is the offset.

For example, subtract the base address of 20000 from the instruction address
20020. The offset is 20.

4. Refer to the .LIS file. Look up the module and then find the correct psect.
Look for the offset value you calculated in the previous step.

In the example, there are two psects and one module but only one $CODE
psect. Look up the instruction at offset 20, and you will find the following in
the .LIS file:

0020 LDQ R27, 40(R27) ; R27, 40(R27) ; 000337

3.2 Referencing Registers
When using DELTA or XDELTA to debug programs, you can view the contents
of registers. The following sections describe the types of registers that are
referenced by each OpenVMS platform.

3.2.1 Referencing Registers (VAX Only)
On VAX, to view the contents of the 16 general registers (including the program
counter and the stack pointer) and the processor status longword (PSL), use the
same DELTA/XDELTA commands as you use to view the contents of any memory
location (for example, the /, LINEFEED, and the ESC commands). The symbols
used to identify the locations of the registers and PSL are as follows:

• The general registers are referred to by the symbol R and a hexadecimal
number from 016 to F16 representing the number of the register. For
example, general register 110 is R116 and general register 1010 is RA16.
The stack pointer is located in general register 1410, RE16. The program
counter is in general register 1510, RF16.

• Upon entry to DELTA or XDELTA, the PSL is stored in the longword directly
following the longword representing general register F16. Reference it by
using the general register F16 symbol plus a longword (RF+4).

3.2.2 Referencing Registers (Alpha Only)
On Alpha, to view the contents of the 32 integer registers, the program counter
(PC), the stack pointer (SP), the processor status (PS), the 32 floating point
registers, the floating point control register (FPCR), and the internal processor
registers (IPRs), use the same DELTA/XDELTA commands that you use to view
the contents of any memory location. These commands include /, LINEFEED,
and ESC. The symbols for identifying these registers follow:

• Integer registers are referenced by the symbol R and a decimal number
from 0 to 31. For example, register 110 is R110 and register 1010 is R1010.

3–6 Debugging Programs

Debugging Programs
3.2 Referencing Registers

(Decimal notation differs from the original implementation on VAX which
uses hexadecimal notation.)

• PC is referenced symbolically by PC.

• PS is referenced symbolically by PS.

• FP is referenced by R29.

• SP is referenced by R30.

• Floating point registers are referenced by FP and a decimal number from 0
to 31. For example, floating point register 110 is FP110 and floating point
register 1010 is FP1010.

• FPCR is treated like any other floating point register except, to explicitly
open it, you specify FPCR/.

• Internal processor registers (IPRs) are accessed symbolically, for example,
P(ASTEN). For IPR names, see the Alpha Architecture Reference Manual.

Floating point registers can be accessed from DELTA and from XDELTA but only
if floating point arithmetic is enabled in the current process.

DELTA runs in the context of a process. Access to floating point registers is
enabled as soon as the first floating point instruction in the code being examined
is executed. Access is disabled as soon as that image completes execution.

When the system enters XDELTA, some process is the current process, and that
current process may not be obvious. If that process happens to have floating point
enabled at the time (because a floating point instruction had executed and the
image containing the floating point instruction was still executing), then you can
access the floating point registers. Otherwise, you cannot. XDELTA checks the
FEN (floating point enable) IPR (internal processor register) to see if it needs to
provide access to floating point registers.

3.2.3 Referencing Registers (I64 Only)
On I64, you can reference the following kinds of registers: integer, floating,
application, branch, control, special purpose, and software equivilents of special
OpenVMS symbolic locations.

These registers are identified by the following symbols:

• General registers — R0 through R127

• Floating registers — F0 through F127

• Branch registers — B0 through B7

• Predicate registers — P0 through P63

• Application registers — AR16 (RSC), AR17 (BSP), AR18 (BSPSTORE), AR19
(RNAT), AR25 (CSD), AR26 (SSD), AR32 (CCV), AR36 (UNAT), AR64 (PFS),
AR65 (LC), AR66 (EC)

• PC — A program counter, obtained from the hardware IP register and the ri
field of the PSR register

Debugging Programs 3–7

Debugging Programs
3.3 Interpreting the Error Message

3.3 Interpreting the Error Message
When you make an error entering a command in DELTA or XDELTA, you get the
"Eh?" error message. This is the only error message generated by DELTA and
XDELTA. It is displayed under the following circumstances:

• You entered characters that DELTA/XDELTA does not recognize

• You entered a command incorrectly

• You exceeded the limits of the command (for example, trying to set another
breakpoint when all breakpoints are used)

• You attempted to display a particular memory address and one or more of the
following is true:

– location is not a valid memory address

– you have no privilege to read the address

– the process to which the read applies does not exist (DELTA only)

• You attempted to change a particular memory address (including setting a
breakpoint) and one or more of the following is true:

– the location is not a valid memory address

– you have no privilege to write to the address

– the process to which the write applies does not exist (DELTA only)

On Alpha, the error message is also displayed if you are unable to single-step or
proceed due to no write access to the address of the next instruction.

On I64, the error message is also displayed if you are unable to step over a
subroutine call due to no write access to the address of the next instruction.

3.4 Debugging Kernel Mode Code Under Certain Conditions
On Alpha and VAX, some programs exist which, while running in process space,
change mode to kernel and raise IPL. Typically, this code is debugged with both
DELTA and XDELTA. DELTA is used to debug the kernel mode code at IPL zero.
XDELTA is used to debug the code at elevated IPL. (DELTA does not work at
elevated IPL.)

Before you can debug such code with XDELTA on an Alpha or VAX computer, you
must do some setup work.

3.4.1 Setup Required (VAX Only)
On VAX, some setup work is required before you can debug kernel mode code
that runs in process space at an elevated IPL. Before you access XDELTA, do the
following:

1. Ensure that page faults do not occur at elevated IPL by locking into memory
(or the working set) the code that runs at elevated IPL.

2. Make the code writable if you plan to do anything more than single-step
through your code (such as set breakpoints, step-overs, and so forth). (By
default, code pages are read only.) To make the code writable, modify the
code psect attributes in the link options file or set the affected code pages to
writable with $SETPRT.

3–8 Debugging Programs

Debugging Programs
3.4 Debugging Kernel Mode Code Under Certain Conditions

3.4.2 Setup Required (Alpha Only)
On Alpha, some setup work is required before you can debug kernel mode code
that runs in process space at an elevated IPL. Before you access XDelta, do the
following:

1. Ensure that page faults do not occur at elevated IPL by locking into memory
(or the working set) the code that runs at elevated IPL.

2. Make the code writable. (By default, code pages are read only.) To do this,
modify the code psect attributes in the link options file or set the affected code
pages to writable with $SETPRT.

3. Make code pages copy-on-reference (CRF). You can do this when you make the
code writable. If you modify the link options file, set the code psect attributes
to be WRT, NOSHR. If you use $SETPRT, it automatically makes the pages
CRF.

3.4.3 Accessing XDELTA
On Alpha and VAX, after you set up the code for debugging, you are ready to
access XDELTA. The most convenient method is to invoke INI$BRK from the
code at elevated IPL. This causes a trap into XDELTA. You can then step out of
the INI$BRK routine into the code to be debugged.

3.5 Debugging an Installed, Protected, Shareable Image
Some shareable images, such as user-written system services, must be linked and
installed in a way that precludes debugging with DELTA unless you take further
steps. Those steps are described in this section.

Typically, a user-written system service is linked and installed in such a way that
the code is shared in a read-only global section, the data is copy-on-reference, and
the default code psects are read-only and shareable. Such a shareable image is
installed with the Install utility using a command like the following:

INSTALL> myimage.exe /share/protect/open/header

Other qualifiers can also be used.

When installed in this way, the shareable image code is read-only. However,
to debug a user-written system service with DELTA, to single-step and to set
breakpoints, the code must either be writable or DELTA must be able to change
the code page protection to make it writable. Neither is possible when the code
resides in a read-only global section.

Therefore, to debug a user-written system service, you must link and install it
differently. In linking the image, the code psects must be set to writable and,
preferably, to nonshareable (to force the code pages to be copy-on-reference).
Multiple processes accessing this code through the global section will each have
their own private copy. You can do this in the link options file by adding a line
such as the following for each code psect:

PSECT=$CODE$,NOSHR,WRT

Then, the image must be installed writable with the /WRITE qualifier and
without the /RESIDENT qualifier, as follows:

INSTALL> myimage.exe /share/protect/open/header/write

After you have installed the image in this way, you can use DELTA to set
breakpoints in the shareable image code and single-step through it.

Debugging Programs 3–9

Debugging Programs
3.6 Using XDELTA on Multiprocessor Computers

3.6 Using XDELTA on Multiprocessor Computers
On multiprocessor computers, only one processor can use XDELTA at a time.
If a second processor attempts to enter XDELTA when another processor has
already entered it, the second processor waits until the first processor has exited
XDELTA. If the processor using XDELTA sets a breakpoint, other processors are
aware of the breakpoint. Therefore, when the code with the XDELTA breakpoint
is executed on another processor, that processor will enter XDELTA and stop at
the specified breakpoint.

On Alpha and VAX systems, XDELTA uses its own system control block (SCB) to
direct all interrupt handling to an error handling routine in XDELTA. Therefore,
an error encountered by XDELTA does not affect any other processors that share
the standard system SCB. On I64 systems the implementation is different, but
the outcome is the same: XDELTA avoids causing errors that could lead to
unintended effects to other processors.

On VAX, when a breakpoint is taken by a processor in a multiprocessor
environment, the processor’s physical identification number is displayed on
the XDELTA breakpoint message line as a 2-digit hexadecimal number. The
following is an example of a breakpoint message in a multiprocessor environment:

1 BRK AT 00000400 ON CPU 03

00000400/movl #5,r4

On Alpha and I64, the processor’s physical identification number is similarly
displayed but the number is decimal instead of hexadecimal with no leading
zeros. For example:

BRK 1 AT 20000 ON CPU 2

20000! LDL R1,(R2)

3.7 Debugging Code When Single-Stepping Fails (Alpha Only)
On Alpha, the use of the S command to single-step occasionally fails and the error
message Eh? is displayed. This can happen either when you are single-stepping
through code or when you have stopped at a breakpoint. In each case, it fails
because XDELTA does not have write access to the next instruction. Directions
on how to continue debugging for both cases follow:

• You are single-stepping through your code and your single-step fails.

You can set other breakpoints and proceed with the ;P command. If this
occurs at a JSR or BSR instruction, you can first use the O command
and then either single-step (with the S command) or proceed (with the ;P
command).

• You have stopped at a breakpoint and your attempt to single-step fails.

You can delete the breakpoint and then proceed with the ;P command. If
this occurs at a JSR or BSR instruction, it may be possible to first use the O
command and then either single-step (with the S command) or proceed (with
the ;P command).

3–10 Debugging Programs

Debugging Programs
3.8 Debugging Code that Does Not Match the Compiler Listings (Alpha and I64 Only)

3.8 Debugging Code that Does Not Match the Compiler Listings
(Alpha and I64 Only)

There are two cases when the code in your image does not exactly match your
compiler listings. As long as you understand why these differences exist, they
should not interfere with your debugging. The explanations follow:

• The compilers generate listings with mnemonics that replace some of the
Alpha assembly language instructions. This makes the listings easier to read
but can initially cause confusion because the code does not exactly match the
code in your image. In every case, there is a 1–to–1 correlation between the
line of code in your image and the line of code in your listing.

• In certain situations, the linker can modify the instructions in your image so
that they do not exactly match your compiler listings. On Alpha, for example,
the linker can replace JSR instructions and the call setup to use a BSR
instruction for better performance. On I64, the linker sometimes generates
code and performs jumps and calls.

Debugging Programs 3–11

4
DELTA/XDELTA Commands

This chapter describes how to use each DELTA and XDELTA command to
debug a program. It also describes which commands are used only with DELTA.
Table 4–1 provides a summary of the DELTA/XDELTA commands that are
common to OpenVMS VAX, Alpha, and I64 systems. Table 4–2 provides a
summary of the DELTA/XDELTA commands that are available only on OpenVMS
Alpha and I64. Table 4–3 provides a summary of the DELTA/XDELTA commands
that are available only on OpenVMS I64.

Many commands in this chapter include an example. The program used for all
the examples, except those illustrating commands available only on OpenVMS
Alpha and I64, is listed in Appendix A.

4.1 Command Usage Summary
DELTA and XDELTA use the same commands with the following exceptions:

• Only DELTA uses the EXIT and ;M commands and arguments that specify a
process identification.

• XDELTA defines some base registers that DELTA does not (refer to
Chapter 2).

• On Alpha, only DELTA uses the ;I command.

For I64, Alpha, and VAX, all differences are noted in command descriptions.

Enter the LINEFEED, ESC, TAB, and RETURN commands by pressing the
corresponding key.

Table 4–1 DELTA/XDELTA Command Summary (All platforms)

Command Description

[Set Display Mode

/ Open Location and Display Contents in Prevailing Width Mode

! Open Location and Display Contents in Instruction Mode

LINEFEED Close Current Location, Open Next

ESC Open Location and Display Previous Location

TAB Open Location and Display Indirect Location

" Open Location and Display Contents in ASCII Mode

RETURN Close Current Location

;B Breakpoint

(continued on next page)

DELTA/XDELTA Commands 4–1

DELTA/XDELTA Commands
4.1 Command Usage Summary

Table 4–1 (Cont.) DELTA/XDELTA Command Summary (All platforms)

Command Description

;P Proceed from Breakpoint

;G Go

S Step Instruction

O Step Instruction over Subroutine

;D’string’ Deposit ASCII String

;E Execute Command String

;X Load Base Register

= Display Value of Expression
1;M Set All Processes Writable (available only on DELTA)
2;M Set All Processes Writable; also, set selected registers of other

processes writable (available only on DELTA)

;L Lists Names and Locations of Loaded Executive Images

EXIT Exit from DELTA debugging session

1VAX specific
2Alpha and I64 specific

The commands in Table 4–2 are available only on OpenVMS Alpha and I64.

Table 4–2 DELTA/XDELTA Command Summary (Alpha and I64 Only)

Command Description

;D Dumps a region of memory

;Q Validate queue

;C Force system to bugcheck and crash

;W Locate and display the executive image that contains the
specified address

;I Locate and display information about the current main image
that contains the specified address; also display information
about all shareable images activated by the current main
image (available only on DELTA)

;H Display on video terminal or at hardcopy terminal

\string\ Display the ASCII text string enclosed in backslashes

The commands in Table 4–3 are available only on OpenVMS I64.

Table 4–3 DELTA/XDELTA Command Summary (I64 Only)

Command Description

;T Display the address of the interrupt stack frame.

4–2 DELTA/XDELTA Commands

[(Set Display Mode)

[(Set Display Mode)

Sets the width mode of displays produced by DELTA/XDELTA commands.

Format

[mode

Argument

mode
Specifies the display mode as follows:

Mode Meaning

B Byte mode. Subsequent open and display location commands display the
contents of one byte of memory.

L Longword mode. Subsequent open and display location commands
display the contents of a longword of memory. This is the default mode.

W Word mode. Subsequent open and display location commands display the
contents of one word of memory.

On Alpha and I64, the following modes are also available.

Mode Meaning

A Address display of 32-bit/64-bit. Subsequent address displays will be 64
bits.

Q Quadword mode. Subsequent open and display location commands
display the contents of a quadword of memory.

Description

The Set Display Mode command changes the prevailing display width to byte,
word, longword, or quadword. The default display width is longword on Alpha
and VAX, quadword on I64. The display mode remains in effect until you enter
another Set Display Mode command.

Example
R0/ 00000001 !
[B "
R0/ 01 #

! Contents of general register 0 (R0) are displayed using the / command. The
display is the default mode, longword.

" Display mode is changed to byte mode using the [B command.

Contents of R0 are displayed in byte mode. The least significant byte is
displayed.

DELTA/XDELTA Commands 4–3

/ (Open Location and Display Contents in Prevailing Width Mode)

/ (Open Location and Display Contents in Prevailing Width Mode)

Opens a location and displays its contents in the prevailing display mode.

Format

[pid:][start-addr-exp][,end-addr-exp]/ current-contents [new-exp]

Arguments

pid
The internal process identification (PID) of a process you want to access. If you
specify zero or do not specify a PID, the default process is the current process.
This argument cannot be used with XDELTA.

If you use the pid argument, every time you use this command during the
debugging session the contents of the same process are displayed, unless you
specify a different pid.

You can obtain the internal PID of processes by running the System Dump
Analyzer utility (SDA). Use the SDA command SHOW SUMMARY to determine
the external PID. Then use the SDA command SHOW PROCESS/INDEX to
determine the internal PID. Refer to your operating system’s System Dump
Analyzer Utility Manual for more information about using SDA commands.

Note

The register examples in the descriptions of start-addr-exp and
end-addr-exp apply to both VAX and Alpha registers. (Alpha register
numbers are displayed in decimal, and VAX register numbers are
displayed in hexadecimal.)

start-addr-exp
The address of the location to be opened, or the start of a range of addresses to be
opened. If not specified, the address displayed is that currently specified by the
symbol Q (last quantity displayed). Use the following syntax to display a single
address location:

start-addr-exp/

You can also specify a register for this parameter. For example, if you want to
view the contents of general register 3 (R3), enter the following DELTA/XDELTA
command:

R3/

end-addr-exp
The address of the last location to be opened. Use the following syntax to display
a range of address locations:

start-addr-exp,end-addr-exp/

You can also specify a range of registers. For example, if you want to view the
contents of general registers 3 through 5, enter the following DELTA/XDELTA
command:

R3,R5/

4–4 DELTA/XDELTA Commands

/ (Open Location and Display Contents in Prevailing Width Mode)

If you specify an address expression for end-addr-exp that is less than start-
addr-exp, DELTA/XDELTA displays the contents of start-addr-exp only.

current-contents
You do not specify this parameter. It is a hexadecimal value, displayed by
DELTA/XDELTA, of the contents of the location (or range of locations) you
specified with the pid argument and the address expression. It is displayed in
the prevailing width display mode.

new-exp
An expression, the value of which is deposited into the location just displayed. If
you specify new-exp after a range of locations, the new value is placed only in
the last location (specified by end-addr-exp).

When you specify new-exp, terminate the command by pressing the Return key.

If you want to deposit a new value into a location in another process (that is, you
specified a PID other than the current process), you must have already set the
target process to be writable using the ;M command.

If the value you deposit is longer than the last location where it will be deposited,
the new value overwrites subsequent locations. For example, the values at
address locations 202 and 204 are as follows:

202/ 05D053D4
204/ C05405D0

If you deposited the value FFFFFFFFF at address 202, the overflow value would
overwrite the value stored at address location 204, as follows:

202/ 05D053D4 FFFFFFFFF Return

204/ C054FFFF

Description

The Open Location and Display Contents command opens the location or range
of locations at start-addr-exp and displays current-contents, the contents of
that location, in hexadecimal format. You can place a new value in the location
by specifying an expression. A new value overwrites the last value displayed.

To display a range of locations, give the start-addr-exp argument as the first
address in the range, followed by a comma, followed by the last address in the
range (the end-addr-exp argument). For example, if you want to display all
locations from 402 to 4F0, the command is as follows:

402,4F0/

This command changes the current address (. symbol) to the contents of the
opened location. A subsequent Close Location command does not change the
current address. However, a subsequent Close Current Location and Open Next
command (ESC or LINEFEED) executes as follows:

• Writes any new-exp specified

• Closes the location opened by the / command

• Adds the number of bytes (defined by the prevailing display width mode) to
the address just opened with the / command

• Changes the current address to the new value

• Opens the new location and displays the contents

DELTA/XDELTA Commands 4–5

/ (Open Location and Display Contents in Prevailing Width Mode)

The display mode remains hexadecimal until the next Open Location and Display
Contents in Instruction Mode (!) command or Open Location and Display
Contents in ASCII Mode (") command.

In DELTA, not XDELTA, processes having the CMKRNL privilege can examine
the address space of any existing process. Use pid to specify the internal PID
of the process you want to examine. For example, use the following command to
view address location 402 in the process with a PID of 00010010:

00010010:402/

On Alpha, DELTA also permits the examination of general purpose registers in
another process. The PID specifies the internal PID of the process you want to
examine. For example, use the following command to examine R5 in the process
with a PID of 00010010:

00010010:R5/

Example
R0,R9/00000001
R1/00000000
R2/00000226
R3/7FF2AD94
R4/000019B4
R5/00000000
R6/7FF2AA49
R7/8001E4DD
R8/7FFED052
R9/7FFED25A

Contents of all the general registers R0 through R9 are displayed.

4–6 DELTA/XDELTA Commands

! (Open Location and Display Contents in Instruction Mode)

! (Open Location and Display Contents in Instruction Mode)

Displays an instruction and its operands.

Format

[pid:][start-addr-exp][,end-addr-exp] !

Arguments

pid
The internal process identification (PID) of a process you want to access. If you
specify zero, or do not specify any PID, the default process is the current process.
This argument cannot be used with XDELTA.

Subsequent open location and display contents commands, issued after using the
pid argument, display the contents of the location of the specified process until
you specify another PID with this command.

You can obtain the internal PID of processes by running the System Dump
Analyzer utility (SDA). Use the SDA command SHOW SUMMARY to determine
the external PID. Then use the SDA command SHOW PROCESS/INDEX to
determine the internal PID. Refer to your operating system’s System Dump
Analyzer Utility Manual for more information about SDA commands.

start-addr-exp
The address of the instruction, or the first address of the range of instructions,
to display. If you do not specify this parameter, the address displayed is that
currently specified by Q (last quantity displayed). When you want to view just
one location, the syntax is as follows:

start-addr-exp!

end-addr-exp
The address of the last instruction in the range to display. When you want to
view several instructions, the syntax is as follows:

start-addr-exp,end-addr-exp!

Each location within the range is displayed with the address, a slash (/), and the
machine instruction.

Description

The Open Location and Display Contents in Instruction Mode command displays
the contents of a location or range of locations as a machine instruction.
DELTA/XDELTA does not make any distinction between reasonable and
unreasonable instructions or instruction streams.

This command does not allow you to modify the contents of the location. The
command sets a flag that causes subsequent Close Current Location and Display
Next (LINEFEED) and Open Location and Display Indirect Location (TAB)
commands to display MACRO instructions. You can clear the flag by using the
Open Location and Display Contents (/) command, which displays the contents of
the location as a hexadecimal number, or Open Location and Display Contents in
ASCII Mode ("), which displays the contents of the location in ASCII.

DELTA/XDELTA Commands 4–7

! (Open Location and Display Contents in Instruction Mode)

When an address appears as an instruction’s operand, DELTA/XDELTA sets the
Q symbol to that address. Then enter ! again to go to the address specified in
the instruction operand. DELTA/XDELTA changes Q only for operands that use
program-counter or branch-displacement addressing modes; Q is not altered for
operands that use literal and register addressing modes. This feature is useful
for branches that follow.

The following examples illustrate the command on each OpenVMS platform.

Examples

VAX example:

69B!BRB 0000067A !
!CLRQ -(SP) "

! The instruction at address 69B is displayed using the ! command.
DELTA/XDELTA displays a branch instruction and sets Q (last address
location displayed) to the branch address 67A.

" The instruction at address 67A is displayed using the ! command. The value
of Q is used as the address location.

Alpha example:

30000! LDA SP,#XFFE0(SP) !
00030004! BIS R31,R31,R18 "

! The instruction at address 30000 is displayed using the ! command.
DELTA/XDELTA displays a LDA instruction. Note that unlike on a VAX
computer, an absolute address never appears in an instruction operand. So
the value of Q has no use after an instruction display.

" After typing a LINEFEED command, DELTA/XDELTA displays the next
instruction location and the instruction at that address.

I64 example:

G0BF5D60! add r33 = 0008, r33 ;; !
80BF5D62! nop.i 000000 ;; "
80BF5D70! ld4 r2 = [r2] ;;
80BF5D71! nop.m 000000
80BF5D72! sxt4 r2 = r2 ;;
80BF5D80! cmp.eq p14, p0 = r2, r0
80BF5D81! nop.f 000000
80BF5D82! (p14) br.cond.dpnt.few.clr 0000030 ;;
80BF5D90! ld8 r14 = [r2], 008 ;;
80BF5D91! nop.m 000000
80BF5D92! mov b7 = r14 ;;
80BF5DA0! ld8 r1 = [r2]

! The instruction at the base address G0BF5D60 is displayed using the !
command. XDELTA displays an add instruction.

" After typing a LINEFEED command, XDELTA displays the next instruction
location and the instruction at that address, and so on.

4–8 DELTA/XDELTA Commands

" (Open Location and Display Contents in ASCII)

" (Open Location and Display Contents in ASCII)

Displays the contents of a location as an ASCII string.

Format

[pid:] start-addr-exp[,end-addr-exp] "

Arguments

pid
The internal process identification (PID) of a process you want to access. If you
specify zero, or do not specify any PID, the default process is the current process.
This argument cannot be used with XDELTA.

Subsequent open location and display contents commands issued after using the
pid argument, display the contents of the location of the specified process until
you specify another PID with this command.

You can obtain the internal PID of processes by running the System Dump
Analyzer utility (SDA). Use the SDA command SHOW SUMMARY to determine
the external PID. Then use the SDA command SHOW PROCESS/INDEX to
determine the internal PID. Refer to your operating system’s System Dump
Analyzer Utility Manual for more information about SDA commands.

start-addr-exp
The address of the location, or the start of a range of locations, to be displayed. If
you want to view one location, the syntax is as follows:

start-add-exp"

end-addr-exp
The last address within a range of locations to be viewed. If you want to view a
series of locations, the syntax is as follows:

start-add-exp,end-addr-exp"

Description

The Open Location and Display Contents in ASCII command opens the location
or range of locations at start-addr-exp and displays the contents in ASCII
format. This command does not change the width of the display (byte, word,
longword) from the prevailing mode. If the prevailing mode is word mode, two
ASCII characters are displayed; if byte mode, one character is displayed.

The display mode remains ASCII until you enter the next Open Location and
Display Contents command (/) or Open Location and Display Contents in
Instruction Mode command (!). These commands change the display mode to
hexadecimal or instruction, respectively.

You can modify the contents of the locations, starting at start-addr-exp, with the
Deposit ASCII string (’) command.

DELTA/XDELTA Commands 4–9

" (Open Location and Display Contents in ASCII)

Example

235FC2 [W/415A !
235FC2" ZA " Linefeed #
235FC4/PP

! The current display mode is word (displays one word in hexadecimal).

" The " command changes the prevailing display mode to ASCII but does not
affect the width of the display.

The next Close Current Location, Open Next command (LINEFEED),
determines the address of the location to open by adding the width, in
bytes, to the value contained in the symbol . (the current address). Then it
opens the number of bytes equal to the width of the prevailing display mode,
which in this example is two bytes.

The ASCII representation of the contents of the location presents the bytes
left to right, while the hexadecimal representation presents them right to left.

4–10 DELTA/XDELTA Commands

ESC (Open Location and Display Previous Location)

ESC (Open Location and Display Previous Location)

Opens the previous location and displays its contents.

Format

ESC

Description

The Open Location and Display Previous Location command decrements the
location counter (.) by the width (in bytes) of the prevailing display mode, opens
that many bytes, and displays the contents on a new line. The address of the
location is displayed on the new line in the prevailing mode, followed by a slash
(/) and the contents of that address.

On VAX, this command is ignored if the prevailing display mode is instruction
mode (set by the ! command).

On all platforms, use this command to move backwards through a series of
locations. Set the address where you want to start (for example, with the
/ command). Then press the ESC key repeatedly to display each preceding
location. ESC is echoed as a dollar sign ($) on the terminal.

On keyboards without a separate ESC key, press Ctrl/3 or the escape key
sequence that you defined on your keyboard. The ESC key on LK201 keyboards
(VT220, VT240, VT340, and workstation keyboards) generates different
characters and cannot be used for the ESC command. You must use Ctrl/3.

Example

R1/00000000 ! $ " ESC

R0/00000001

! The contents of general register 1 are displayed using the / command.

" The contents of general register 0, the location prior to general register 1, are
displayed by pressing ESC.

DELTA/XDELTA Commands 4–11

EXIT (Exit from DELTA Debugging Session)

EXIT (Exit from DELTA Debugging Session)

Terminates the DELTA debugging session. Use with DELTA only.

Format

EXIT

Description

Use the EXIT command to terminate a DELTA debugging session. You cannot
use EXIT in XDELTA.

You may have to enter EXIT twice, such as when your program terminates
execution by the $EXIT system service or by the Return key (to DCL).

4–12 DELTA/XDELTA Commands

LINEFEED (Close Current Location, Open Next)

LINEFEED (Close Current Location, Open Next)

Closes the currently open location and opens the next location, displaying its
contents.

Format

LINEFEED

Description

The Close Current Location Open Next command closes the currently open
location, then opens the next and displays its contents. This command accepts
no arguments, and thus can only be used to open the next location. It is useful
for examining a series of locations one after another. First, set the location where
you want to start (for example, with the / or (!) command). Then, press the
Linefeed key repeatedly to examine each successive location.

The LINEFEED command displays the contents of the next location in the
prevailing display mode and display width. If the current display mode is
hexadecimal (the / command was used) and the display width is word, the next
location displayed is calculated by adding a word to the current location. Its
contents are displayed in hexadecimal. If the current display mode is instruction,
the next location displayed is the next instruction, and the contents are displayed
as a MACRO instruction.

On keyboards without a separate Linefeed key, press CTRL/J. The Linefeed
key on LK201 keyboards (VT220, VT240, VT340, and workstation keyboards)
generates different characters and cannot be used for the LINEFEED command.
You must use CTRL/J.

This command is useful for displaying a series of machine instructions, a series of
register values, or a series of values on the stack or in memory.

The values in the symbol Q and the symbol . are changed automatically.

The following examples illustrate the command on each OpenVMS platform.

Examples

VAX example:

6B9!CLRQ -(SP) ! Linefeed "
000006BB/CLRQ -(SP) Linefeed

000006BD/PUSHL X1+002E Linefeed

000006C1/PUSHAL X1+003A Linefeed

000006C5/CLRQ -(SP) Linefeed

000006C7/PUSHL #00

! Instruction at address 6B9 is displayed using the ! command.

" Five successive instructions are displayed by pressing the Linefeed key five
times. The LINEFEED command is not echoed on the terminal.

Alpha example:

30000! LDA SP,#XFFE0(SP) !
00030004! BIS R31,R31,R18 "

DELTA/XDELTA Commands 4–13

LINEFEED (Close Current Location, Open Next)

00030008! STQ R27,(SP)
0003000C! BIS R31,R31,R19
00030010! STQ R26,#X0008(SP)
00030014! BIS R31,#X04,R25

! Instruction at address 30000 is displayed using the ! command.

" Five successive instructions are displayed by pressing the Linefeed key five
times. The LINEFEED command is not echoed on the terminal.

I64 example:

G0BF5D60! add r33 = 0008, r33 ;; !
80BF5D62! nop.i 000000 ;; "
80BF5D71! nop.m 000000
80BF5D72! sxt4 r2 = r2 ;;
80BF5D80! cmp.eq p14, p0 = r2, r0
80BF5D81! nop.f 000000
80BF5D82! (p14) br.cond.dpnt.few.clr 0000030 ;;
80BF5D90! ld8 r14 = [r2], 008 ;;
80BF5D91! nop.m 000000
80BF5D92! mov b7 = r14 ;;
80BF5DA0! ld8 r1 = [r2]

! The instruction at the base address G0BF5D60 is displayed using the !
command. XDELTA displays an add instruction.

" Ten successive instructions are displayed by pressing the Linefeed key twelve
times. The LINEFEED command is not echoed on the terminal.

4–14 DELTA/XDELTA Commands

RETURN (Close Current Location)

RETURN (Close Current Location)

Closes a location that has been opened by one of the open location and display
contents commands.

Format

RETURN

Description

If you have opened a location with one of the open location and display contents
commands (/, LINEFEED, ESC, TAB, !, or "), press the Return key to close the
location. Use this command to make sure that a specific location has not been left
open with the possibility of being overwritten.

You also press the Return key to terminate the following DELTA/XDELTA
commands:

• ;X

• ;E

• ;G

• ;P

• ;B

• ;M

• ’string’

• ;L

• EXIT (DELTA only)

On Alpha and I64, the same is true for the commands that are specific to this
implementation, as follow:

• ;Q

• ;C

• ;D

• ;H

• ;I

• ;T (I64 only)

• ;W

• \string\

On all platforms, you can also use the Return key as an ASCII character in a
quoted string. Refer to the Deposit ASCII String command (’).

DELTA/XDELTA Commands 4–15

TAB (Open Location and Display Indirect Location)

TAB (Open Location and Display Indirect Location)

Opens the location addressed by the contents of the current location and displays
its contents.

Format

TAB

Description

The Open Location and Display Indirect Location command opens the location
addressed by the contents of the current location and displays the contents of the
addressed location on a new line. The display is in the prevailing display mode.
This command is useful for examining data structures that have been placed in a
queue, or the operands of instructions.

To execute this command, press the Tab key.

This command changes the current address (.) to the location displayed.

This command does not affect the display mode.

The following examples illustrate the command on each OpenVMS platform.

Examples

VAX example:

69B!BRB 0000067A ! Tab

0000067A/CLRQ -(SP) "

! The instruction at 69B is displayed using the ! command. DELTA/XDELTA
displays a branch instruction.

" The instruction at the address referred to by the branch instruction is
displayed by pressing the Tab key. DELTA/XDELTA displays the instruction
at address 67A.

VAX, Alpha, and I64 example:

10000/00083089 !

00010004/00000000 "

00010008/00030000 #
00030000/23DEFFE0

! The contents of location 10000 are displayed using the / command.

" The subsequent two locations are displayed using the LINEFEED command.

After displaying the contents of location 10008 (30000), the TAB command is
used to display the contents of location 30000.

4–16 DELTA/XDELTA Commands

;B (Breakpoint)

;B (Breakpoint)

Shows, sets, and clears breakpoints.

Format

[addr-exp][,n][,display-addr-exp][,cmd-string-addr] ;B

Arguments

addr-exp
The address where you want the breakpoint.

n
The number to assign to the breakpoint. If you omit a number, DELTA/XDELTA
assigns the first unused number to the breakpoint; if all numbers are in use,
DELTA/XDELTA displays the error message, ‘‘Eh?’’.

On VAX, for XDELTA, the range is from 2 to 8. For XDELTA, breakpoint 1 is
reserved for INI$BRK. For DELTA, the range is from 1 to 8.

On Alpha and I64, for XDELTA, the range is from 1 to 8. For DELTA, the range
is from 1 to 8.

display-addr-exp
The address of a location, the contents of which are to be displayed in
hexadecimal in the prevailing width mode when the breakpoint is encountered.
Omit this argument by specifying zero or two consecutive commas. If omitted,
DELTA/XDELTA displays only the instruction that begins at the specified
address.

cmd-string-addr
The address of the string of DELTA/XDELTA commands to execute when this
breakpoint is encountered. Refer to the Execute Command String (;E) command.
DELTA/XDELTA displays the information requested before executing the string
of commands associated with complex breakpoints. You must have previously
deposited the string of commands using the ’ command or have coded the string
into an identifiable location in your program. If omitted, DELTA/XDELTA
executes no commands automatically and waits for you to enter commands
interactively.

Description

The breakpoint command shows, sets, and clears breakpoints. The action of
this command depends on the arguments used with it. Each action is described
below.

Displaying Breakpoints
To show all the breakpoints currently set, enter ;B. For each breakpoint,
DELTA/XDELTA displays the following information:

• Number of the breakpoint

• Address of the breakpoint

• Address of a location the contents of which will be displayed when the
breakpoint is encountered

DELTA/XDELTA Commands 4–17

;B (Breakpoint)

• Address of the command string associated with this breakpoint (for complex
breakpoints, refer to the section in this Description called Setting Complex
Breakpoints)

Setting Simple Breakpoints
To set a breakpoint, enter an address expression followed by ;B. Then press the
Return key, as follows:

addr-exp;B Return

DELTA/XDELTA sets a breakpoint at the specified location and assigns it the first
available breakpoint number.

When DELTA/XDELTA reaches the breakpoint, it completes the following actions:

• Suspends instruction execution.

• Sets a flag to change the display mode to instruction mode. Any subsequent
Close Current Location, Open Next (LINEFEED) commands, and Open and
Display Indirect Location (TAB) commands will display locations as machine
instructions.

• On VAX, the following message is displayed, listing the number of the
breakpoint, the address of the breakpoint, and the instruction stored at
the breakpoint location:

n BRK at address

address/decoded-instruction

On Alpha and I64, the format of the display differs slightly, as shown in the
following example:

Brk n at address [on CPUn] [new mode =]
[new IPL =]

address!decoded-instruction

• On Alpha and I64 systems, if the interrupt priority level (IPL) has changed,
the new IPL is printed (XDELTA only). Also on Alpha and I64 systems, if
the processor mode has changed, the new mode is printed (both XDELTA and
DELTA).

If you are using XDELTA in a multiprocessor environment, the CPU ID of the
processor where the break was taken is also displayed.

On VAX, the CPU ID is displayed as a 2-digit hexadecimal number.

On Alpha and I64, the CPU ID is displayed as a decimal number with no leading
zeros.

On all platforms, after the breakpoint message is displayed, you can enter other
DELTA/XDELTA commands. You can reset the flag that controls the mode in
which instructions are displayed by entering the Open Location and Display
Contents (/) command.

Setting a Breakpoint and Assigning a Number to It
To set a breakpoint and assign it a number, enter the address where you want
the breakpoint, a comma, a single digit for the breakpoint number, a semicolon
(;), the letter B, and then press the Return key.

4–18 DELTA/XDELTA Commands

;B (Breakpoint)

For example, if you wanted to set breakpoint 4 at address 408, the command is as
follows:

408,4;B Return

DELTA/XDELTA sets a breakpoint at the specified location and assigns it the
specified breakpoint number.

Clearing Breakpoints
To clear a breakpoint, enter zero (0), followed by a comma, the number of the
breakpoint to remove, a semicolon (;), the letter B, and then press the Return
key. DELTA/XDELTA clears the specified breakpoint. For example, if you wanted
to clear breakpoint 4, the command is as follows:

0,4;B Return

On VAX, when using XDELTA, do not clear breakpoint 1. If you do, any calls to
INI$BRK in your program will not result in entry into XDELTA.

Setting Complex Breakpoints
On all platforms, a complex breakpoint completes one or more of the following
actions:

• Always displays the next instruction to be executed

• Optionally displays the contents of another, specified location

• Optionally executes a string of DELTA/XDELTA commands stored in memory

To use the complex breakpoint, you must first create the string of DELTA
commands you want executed. Then deposit those commands at a memory
location with the Deposit ASCII String command (’).

To set a complex breakpoint, use the following syntax:

addr-exp,n,display-addr-exp,cmd-string-addr;B

Example

;B
1 00000690
2 00000699 !
0,2;B "
;B
1 00000690 #
;P $

! Two breakpoints have already been set and are displayed. Using ;B,
DELTA/XDELTA displays each breakpoint number and the address location
of each breakpoint.

" Breakpoint 2 is cleared.

Current breakpoints are displayed. Because breakpoint 2 has been cleared,
DELTA/XDELTA displays just breakpoint 1.

$ Program execution is continued using the ;P command.

DELTA/XDELTA Commands 4–19

;B (Breakpoint)

Displaying Breakpoints in a Multithreaded Application
To support the debugging of multithreaded applications, DELTA has the
capability of displaying a thread ID at a breakpoint. When DELTA reaches a
breakpoint in a multithreaded application, DELTA displays the thread ID and
stops the execution of all other threads. (When DELTA reaches a breakpoint in a
single-threaded application, the display and behavior is the same as in the past;
DELTA displays the address and stops program execution.)

In the following example, a breakpoint is set in a multithreaded application with
30000;B and is followed by the ;P (Proceed from Breakpoint) command. The
breakpoint is taken. Because it is a multithreaded application, the thread ID is
included in the display.

30000;B ;P
Brk 1 at 30000 on Thread 12
00030000! LDA SP,#XFF80(SP)

4–20 DELTA/XDELTA Commands

;C (Force the system to bugcheck and crash) (Alpha and I64Only)

;C (Force the system to bugcheck and crash) (Alpha and I64Only)

Force the system to bugcheck and crash.

Format

;C

Description

The ;C command forces the system to bugcheck and crash. You can do this from
wherever you are in your debugging session. Although this command is for use
primarily with XDELTA, you can also use it with DELTA, but only in kernel
mode. When you issue this command, the following message is generated:

BUG$_DEBUGCRASH, Debugger forced system crash

DELTA/XDELTA Commands 4–21

;D (Dump) (Alpha and I64)

;D (Dump) (Alpha and I64)

Dumps a region of memory.

Format

addr_exp length ;D

Parameters

addr-exp
The starting address of the dump.

length
The length of bytes to dump.

Description

On Alpha and I64 systems, the ;D command dumps a region of memory. The
display is in a format similar to the DCL DUMP command.

Example

G,200;D !

Dump of 80000000 for 00000200 bytes "

00840008 80000200 0000241F 00E8401D .@...$.......... : 80000000 #
00840008 80000200 00002400 0004401D .@...$.......... : 80000010
00840008 80000200 00000001 0000001D : 80000020
00000000 00000000 00000000 00000000 : 80000030
00040000 00203008 00202400 0260100B ..‘..$..0 : 80000040
90000A00 40038004 10700001 00000001p....@.... : 80000050
00800070 00000200 00001418 04200810p... : 80000060
00000000 00000000 00000000 00000000 : 80000070
00000000 00000000 00000000 00000000 : 80000080
00000000 00000000 00000000 00000000 : 80000090
00000000 00000000 00000000 00000000 : 800000A0
00000000 00000000 00000000 00000000 : 800000B0
00000000 00000000 00000000 00000000 : 800000C0
00000000 00000000 00000000 00000000 : 800000D0
00000000 00000000 00000000 00000000 : 800000E0
00000000 00000000 00000000 00000000 : 800000F0
00040000 00040000 00300580 020900010......... : 80000100
00840008 80000200 00000001 0000001D : 80000110
00840008 80000200 00000001 0000001D : 80000120
00840008 80000200 00002400 0004401D .@...$.......... : 80000130
00840008 80000200 0000241C 0128401D .@(..$.......... : 80000140
84000804 40006200 02000580 060D0800b.@.... : 80000150
20000000 00000200 00002400 0000C81D$......... : 80000160
50000178 00000200 00000001 0000001Dx..P : 80000170
07000A00 00005501 08002100 44000802 ...D.!...U...... : 80000180
00840008 80000200 00000001 0000001D : 80000190
00840008 80000200 00002400 0004401D .@...$.......... : 800001A0
00840008 80000200 00002400 0004401D .@...$.......... : 800001B0
00840008 80000200 00002400 0004401D .@...$.......... : 800001C0
00840008 80000200 00002400 0004401D .@...$.......... : 800001D0
00840008 80000200 00002400 0004401D .@...$.......... : 800001E0
00840008 80000200 00002400 0004401D .@...$.......... : 800001F0

FFFFFFFF 8 $

4–22 DELTA/XDELTA Commands

;D (Dump) (Alpha and I64)

! The dump command is issued.

" The dump output summarizes the operation.

The memory dump is displayed. The output is in the same format as the DCL
DUMP command.

$ The starting location of the dump is printed.

DELTA/XDELTA Commands 4–23

;E (Execute Command String)

;E (Execute Command String)

Executes a string of DELTA/XDELTA commands stored in memory.

Format

address-expression ;E

Arguments

address-expression
The address of the string of DELTA/XDELTA commands to execute.

Description

The Execute Command String command executes a string of DELTA/XDELTA
commands. Load the ASCII text command string to a specific location in memory
using the Deposit ASCII String command (’) or code the string in your program
into an identifiable location.

If you want DELTA/XDELTA to proceed with program execution after it executes
the string of commands, end the command string with the ;P command. If you
want DELTA/XDELTA to wait for you to enter a command after it executes the
string of commands, end the command string with a null byte (a byte containing
0).

XDELTA, but not DELTA, provides two command strings in memory.

On VAX, the addresses of these command strings are stored in base registers XE
and XF. The string addressed by XE displays the physical page number (PFN)
database for the PFN in X0. The string addressed by XF copies the PFN in R0 to
base register X0. It then displays the PFN database for that PFN.

On Alpha, the addresses of these command strings are stored in base registers
X14 and X15. The string addressed by X14 displays the physical page number
(PFN) database for the PFN in X0. The string addressed by X15 copies the PFN
in R0 to base register X0. It then displays the PFN database for that PFN.

You can use the command strings provided with XDELTA to obtain the following
information:

• Specified PFN

• PFN state and type

• PFN reference count

• PFN backward link or working-set-list index

• PFN forward link or share count

• Page table entry (PTE) address that points to the PFN

• PFN backing-store address

• On VAX, the virtual block number in the process swap image, the block to
which the page’s entry in the SWPVBN array points

• On Alpha, the virtual page number in process swap image, the collection of
blocks containing the page as pointed to by the PFN database

4–24 DELTA/XDELTA Commands

;E (Execute Command String)

Example

7FFE1600,0;X !
7FFE1600 "
X0;E #
R0/00000001 $
R1/00000000
R2/00000000

! The address (7FFE1600) where an ASCII string is stored is placed into base
register 0 using ;X.

" DELTA/XDELTA displays the value in X0.

The command string stored at address 7FFE1600, which is to examine the
contents of R0, R1, and R2 (R0/ Linefeed Linefeed), is executed with ;E.

$ DELTA/XDELTA executes the commands and displays the contents of R0, R1,
and R2.

DELTA/XDELTA Commands 4–25

;G (Go)

;G (Go)

Continues program execution.

Format

address-expression ;G

Parameters

address-expression
The address at which to continue program execution.

Description

The Go command places the address you specified in address-expression into
the PC and continues execution of the program at that address. It is useful when
you want to ignore specific lines of code or return to a previous program location
to repeat execution.

Example

6A2;G

Program execution is started at address 6A2.

4–26 DELTA/XDELTA Commands

;H (Video Terminal Display Command) (Alpha and I64 Only)

;H (Video Terminal Display Command) (Alpha and I64 Only)

Specifies the display mode, either hardcopy terminal mode or DEC-CRT.

Format

;H

Description

The ;H command enables you to choose the display mode of DELTA/XDELTA
output. You can display output either in hardcopy terminal mode or DEC-CRT
mode. The default display is DEC-CRT mode. You can toggle back and forth from
one display mode to the other by repeating the ;H command.

DELTA/XDELTA Commands 4–27

;I (List Information About the Current Main Image...)

;I (List Information About the Current Main Image and Its Shareable
Images) (Alpha Only)

List information about the current main image and all shareable images that
were activated, including those that were installed /RESIDENT.

Format

;I

Description

The ;I command peruses the image control block (IMCB) list and displays
information about the current main image and all shareable images that were
activated, including those that were installed /RESIDENT. The ;I command
differs from the ;L command which displays information about the loadable image
database.

The display of the ;I command is similar to the ;L command display. It shows the
image name, the starting and ending addresses, the symbol vector address, and
some flags. The command is useful for debugging shareable images. For example,
the display enables you to determine where LIBRTL is mapped.

The field flags are M, S, and P. The flag M indicates the main image; S or P
indicates images that are installed as shareable or protected, respectively.

Unlike the ;L command, which only works from kernel mode or when you
have CMEXEC or CMKRNL privileges, the ;I command works from any mode.
However, to modify the IMCB database, you must be in executive or kernel mode.

For sliced main and shareable images, the ;I command also includes an entry for
each resident code section and each compressed data section, which shows the
base and end address for each section.

The ;I command is implemented only for DELTA.

Example
$ define lib$debug delta
$ run/debug hello
OpenVMS Alpha DELTA Version 1.5

Brk 0 at 00020040

00020040! LDA SP,#XFFD0(SP) ;i
Image Name Base End Symbol-Vector Flags

HELLO 00010000 000301FF M
DECC$SHR 00032000 001233FF 00106B90 S
DPML$SHR 0012C000 001AC5FF 0019DED0 S
LIBRTL 001AE000 0025E7FF 00240790 S
Resident Code Sections:

8015A000 801BBA00
LIBOTS 00124000 0012A1FF 00128000 S

4–28 DELTA/XDELTA Commands

;I (List Information About the Current Main Image...)

Resident Code Sections:
801BC000 801C2C00

Compressed Data Sections:
00124000 00124A00
00126000 00126800
00128000 00128600
0012A000 0012A200

SYS$PUBLIC_VECTORS 80401C98 80403028 80401C98
DELTA 00260000 002943FF 00260000
SYS$BASE_IMAGE 8040C5B0 804163E0 8040C5B0

DELTA/XDELTA Commands 4–29

;L (List Names and Locations of Loaded Executive Images)

;L (List Names and Locations of Loaded Executive Images)

List the names and virtual addresses of all loaded executive images.

Format

[sequence number];L

Argument

sequence number
On Alpha and I64, specifies a single executive image.

Description

Use the ;L command when you are debugging code that resides in system space.
Although you use this command mostly with XDELTA, you can use it with
DELTA if your process has change-mode-to-executive (CMEXEC) privilege and
you are running a program in executive mode.

This command lists the names and locations of the loaded modules of the
executive. A loading mechanism maps a number of images of the executive into
system space. The ;L command lists the currently loaded images with their
starting and ending virtual addresses. If you enter ;L before all the executive
images are loaded (for example, at an XDELTA initial breakpoint), only those
images that have been loaded will be displayed.

On Alpha, this command displays additional information and provides a second
use, based on the additional information. For each loaded executive image that is
sliced into discontiguous image sections, the display shows the sequence number
for the executive image and the base and ending addresses of each image section.
A second use of this command is to display the base and ending addresses of a
single image if you specify its sequence number.

The following examples illustrate the command on each platform.

Examples

VAX example, showing the names and the starting and ending virtual addresses
of the three executive images that are loaded in memory.

;L
PRIMITIVE_IO.EXE 800EAA00 800EBC00
SYSTEM_SYNCHRONIZATION.EXE 800EBC00 800ED400
SYSTEM_PRIMITIVES.EXE 800ED400 800F1000

Alpha example, showing the names, the starting and ending virtual addresses,
and the sequence numbers for all the loaded executive images. Only one image,
EXEC_INIT.EXE, was not split into image sections. For every image that was
split into image sections, it also shows the name and the base and ending address
of each section.

4–30 DELTA/XDELTA Commands

;L (List Names and Locations of Loaded Executive Images)

;L

Seq# Image Name Base End

0012 EXEC_INIT.EXE 8080C000 80828000
0010 SYS$CPU_ROUTINES_0101.EXE

Nonpaged read only 80038000 8003A200
Nonpaged read/write 80420200 80420A00
Initialization 80808000 80808400

000E ERRORLOG.EXE
Nonpaged read only 8002E000 80036600
Nonpaged read/write 8041BE00 80420200
Initialization 80804000 80804800

000C SYSTEM_SYNCHRONIZATION.EXE
Nonpaged read only 80024000 8002C800
Nonpaged read/write 8041A000 8041BE00
Initialization 80800000 80800800

. . .

. . .

. . .
0002 SYS$BASE_IMAGE

Nonpaged read only 80002000 80009400
Nonpaged read/write 80403000 80414C00
Fixup 80620000 80620600
Symbol Vector 8040B010 80414560

0000 SYS$PUBLIC_VECTORS.EXE
Nonpaged read only 80000000 80001C00
Nonpaged read/write 80400000 80403000
Fixup 8061E000 8061E200
Symbol Vector 80401BF0 80402ED0

The following Alpha example illustrates the use of the sequence number with
the ;L command to display information about one image. In this example,
the sequence number C for the SYSTEM_SYNCHRONIZATION.EXE module
is specified with the ;L command. (It is not necessary to specify the leading
zeros in the command.) The resulting display shows only the SYSTEM_
SYNCHRONIZATION.EXE module (whose sequence number is 000C). The
display includes the names of the image sections within the module and their
base and ending addresses.

C;L

Seq# Image Name Base End

000C SYSTEM_SYNCHRONIZATION.EXE
Nonpaged read only 80024000 8002C800
Nonpaged read/write 8041A000 8041BE00
Initialization 80800000 80800800

I64 example, showing the names, the starting and ending virtual addresses, and
the sequence number for the specified loaded executive image. Images are split
into image sections, showing the name and the base, link, and ending address
of each respective section. In these examples, sequence number 24 selects the
PROCESS_MANAGEMENT; sequence number selects SYS$PUBLIC_VECTORS;
and sequence number 32 selects RMS.

DELTA/XDELTA Commands 4–31

;L (List Names and Locations of Loaded Executive Images)

24;L

Seq# LDRISD Image Name Base End Link End

0024 83881B80 PROCESS_MANAGEMENT
0 83881C70 Read Write 83203800 83203808 00010000 00010008
1 83881CB8 Read Execute 805AF300 806E4D70 00014000 00149A70
2 83881D00 Read 83203A00 83230C78 0014C000 00179278
3 83881D48 Read Write 83230E00 8323C120 0017C000 00187320
4 83881D90 Read Write 8323C200 8323C214 00188000 00188014
7 83881E68 Read Write 8323C400 8323C414 00194000 00194014
8 83881EB0 Read Write 8323C600 8323C604 00198000 00198004
9 83881EF8 Read Write 8323C800 83240660 0019C000 0019FE60

0;L

Seq# LDRISD Image Name Base End Link End

0000 83868580 SYS$PUBLIC_VECTORS
0 83868670 Read Execute 80000000 80000070 00010000 00010070
1 838686B8 Read 83000000 830000B0 00014000 000140B0
2 83868700 Read Write 83000200 83000218 00018000 00018018
3 83868748 Read 83000400 83008788 0001C000 00024388

Symbol Vector 83000400

32;L

Seq# LDRISD Image Name Base End Link End

0032 83885500 RMS
0 838855E0 Read Write 832B5800 832B5F40 00010000 00010740
1 83885628 Read Execute 8014E900 8014FAE0 00014000 000151E0
2 83885670 Read Execute 8098D100 80B9C8A0 00018000 002277A0
3 838856B8 Read 832B6000 832EC400 00228000 0025E400
4 83885700 Read Write 832EC400 832EFAE8 00260000 002636E8
5 83885748 Read Write 832EFC00 832EFC14 00264000 00264014
6 83885790 Read Write 832EFE00 832EFE50 00268000 00268050
9 83885868 Read Write 832F0000 832F0014 00274000 00274014
A 838858B0 Read Write 832F0200 832F0204 00278000 00278004
B 838858F8 Read Write 832F0400 832F3DC0 0027C000 0027F9C0

4–32 DELTA/XDELTA Commands

;M (Set All Processes Writable)

;M (Set All Processes Writable)

Sets the address spaces of all processes to be writable or read-only by your
DELTA process. This command can be used only with DELTA. Use of this
command requires CMKRNL privilege.

On Alpha, this command also sets writable the general purpose registers of other
processes, if, after issuing the ;M command, you specify another process with any
command that takes the PID argument, such as the / command.

Format

n;M

Argument

n
Specifies your process privileges for reading and writing at other processes. If 0,
your DELTA process can only read locations in other processes; if 1, your process
can read or write any location in any process. If not specified, DELTA returns the
current value of the M (modify) flag (0 or 1).

Description

The Set All Processes Writable command is useful for changing values in the
running system.

Note

Use this activity very carefully during timesharing. It affects all processes
on the system. For this reason, your process must have change-mode-to-
kernel (CMKRNL) privilege to use this command. It is safest to use this
command only on a standalone system.

DELTA/XDELTA Commands 4–33

;P (Proceed from Breakpoint)

;P (Proceed from Breakpoint)

Continue program execution following a breakpoint.

Format

;P

Description

The Proceed from Breakpoint command continues program execution at the
address contained in the PC of the program. Program execution continues until
the next breakpoint or until program completion.

Note

If DELTA/XDELTA does not have write access to the target of a JSR
instruction, you cannot use the S or ;P command at the JSR instruction.
First, you must use the O command; then you can use the S or ;P
command.

The following examples illustrate the command on each OpenVMS platform.

Example

VAX example:

;B
2 00000699 !
;P "
2 BRK AT 00000699
00000699/BSBB 000006A2 #

! Current breakpoints are displayed using ;B (breakpoint 2 at address 699).

" Program execution is continued using the ;P command.

Program execution halts at breakpoint 2. DELTA/XDELTA displays the
breakpoint message (the breakpoint number and the address) and the
instruction.

Alpha example:

;B
1 00030010 !

;P "

Brk 1 at 00030010

00030010! STQ R26,#X0008(SP) #

! Current breakpoints are displayed using ;B (breakpoint 1 at address 30010).

" Program execution is continued using the ;P command.

4–34 DELTA/XDELTA Commands

;P (Proceed from Breakpoint)

Program execution halts at breakpoint 1. DELTA/XDELTA displays the
breakpoint message (the breakpoint number and the address) and the
instruction.

I64 example:

G0BF5D60,0;X !
G0BF5D60

X0+60;B
1 00000060 "

;P #

Brk 1 at X0+00000060 on CPU 0 $

X0+00000060! alloc r53 = ar.pfs, 18, 08, 00 (New IPL = 0) -
(New mode = USER)

! Set the base register.

" Set a breakpoint at address X0+00000060 using ;B.

Program execution is continued using the ;P command.

$ Program execution halts at breakpoint 1. DELTA/XDELTA displays the
breakpoint message (the breakpoint number and the address) and the
instruction.

DELTA/XDELTA Commands 4–35

;Q (Validate Queue) (Alpha and I64 Only)

;Q (Validate Queue) (Alpha and I64 Only)

Analyzes absolute and self-relative longword queues and displays the results of
the analysis.

Format

queue_header_address[,queue_type];Q

Argument

queue_header_address
The queue header must be at least longword aligned.

queue_type
A queue type of zero (the default) represents an absolute queue. A queue type of
1 indicates a self-relative queue.

Description

The validate queue function is similar to the one in the OpenVMS System Dump
Analyzer Utility. It can analyze both absolute and self-relative longword queues
and display the results of the analysis. This function identifies various problems
in the queue headers and invalid backward links for queue entries and evaluates
the readability of both. For valid queues, it tells you the total number of entries.
For invalid queues, it tells you the queue entry number and the address that is
invalid and why.

Example
FFFFFFFF8000F00D;Q !Absolute at GF00D
GF00D,0;Q !Absolute at GF00D
GF00,1;Q !Self-relative at GF00

4–36 DELTA/XDELTA Commands

;T (Display Interrupt Stack Frame) (I64 Only)

;T (Display Interrupt Stack Frame) (I64 Only)

Displays contents of an interrupt stack frame.

Format

addr_exp ;T

Parameters

addr-exp
The address of the stack frame. This is an optional argument. If not specified,
the ;T command without any argument displays the interrupt stack frame with
which XDELTA was invoked.

Description

On I64 systems, the ;T command displays the contents of an interrupt stack
frame.

Example/WIDE

In the following example, the ;T command displays the machine state at the
time of the exception.

;T

* Exception Frame Display: *

Exception taken at IP FFFFFFFF.8063D830, slot 01
from Kernel mode Exception Frame at FFFFFFFF.89DA1CE0
Trap Type 00000080 (External Interrupt)
IVT Offset 00003000 (External Interrupt)
External Interrupt Vector 00000000

* = Value read directly from the register rather than the frame

Control Registers:
CR0 Default Control Register (DCR) 00000000.00007F00
CR1 Interval Timer Match Register (ITM) * 0000C6F7.31F82D5B
CR2 Interruption Vector Address (IVA) * FFFFFFFF.801D0000
CR8 Page Table Address (PTA) * FFFFFFFF.7FFF013D
CR16 Processor Status Register (IPSR) 00001210.0A026010
CR17 Interrupt Status Register (ISR) 00000200.00000000
CR19 Instruction Pointer (IIP) FFFFFFFF.8063D830
CR20 Faulting Address (IFA) FFFFFFFF.88580078
CR21 TLB Insertion Register (ITIR) 00000000.00000334
CR22 Instruction Previous Address (IIPA) FFFFFFFF.8063D830
CR23 Function State (IFS) 80000000.00000FA7
CR24 Instruction immediate (IIM) FFFFFFFF.88580078
CR25 VHPT Hash Address (IHA) FFFFFFFF.7FFF5860
CR64 Local Interrupt ID (LID) * 00000000.00000000
CR66 Task Priority Register (TPR) * 00000000.00010000
CR68 External Interrupt Req Reg 0 (IRR0) * 00000000.00000000
CR69 External Interrupt Req Reg 1 (IRR1) * 00000000.00000000
CR70 External Interrupt Req Reg 2 (IRR2) * 00000000.00000000
CR71 External Interrupt Req Reg 3 (IRR3) * 00020000.00000000
CR72 Interval Time Vector (ITV) * 00000000.000000F1
CR73 Performance Monitoring Vector (PMV) * 00000000.000000FB
CR74 Corrected Machinecheck Vector (CMCV) * 00000000.00010000
CR80 Local Redirection Register 0 (LRR0) * 00000000.00010000
CR81 Local Redirection Register 1 (LRR1) * 00000000.00010000

DELTA/XDELTA Commands 4–37

;T (Display Interrupt Stack Frame) (I64 Only)

Application Registers:
AR0 Kernel Register (KR0) * 00000000.20570000
AR1 Kernel Register (KR1) * 00000000.60000000
AR2 Kernel Register (KR2) * 00000000.00000000
AR3 Kernel Register (KR3) * 00000000.00000000
AR4 Kernel Register (KR4) * 00000000.00000000
AR5 Kernel Register (KR5) * 0000C6F7.31F82D5B
AR6 Kernel Register (KR6) * FFFFFFFF.84C3E000
AR7 Kernel Register (KR7) * FFFFFFFF.89D4B000
AR16 Register Stack Config Reg (RSC) 00000000.00000000
AR17 Backing Store Pointer (BSP) FFFFF802.A3EAC300
AR18 Backing Store for Mem Store (BSPSTORE) FFFFF802.A3EAC300
AR19 RSE NaT Collection Register (RNAT) 00000000.00000000
AR32 Compare/Exchange Comp Value Reg (CCV) FFFFFFFF.84132680
AR36 User NaT Collection Register (UNAT) 00000000.00000000
AR40 Floating-point Status Reg (FPSR) 0009804C.0270033F
AR44 Interval Time Counter (ITC) * 0000C6FB.A91997B5
AR64 Previous Function State (PFS) 00000000.00000FA7
AR65 Loop Count Register (LC) 00000000.00000000
AR66 Epilog Count Register (EC) 00000000.00000000

Processor Status Register (IPSR):
AC = 0 MFL= 1 MFH= 0 IC = 1 I = 1 DT = 1
DFL= 0 DFH= 0 RT = 1 CPL= 0 IT = 1 MC = 0 RI = 1
Interrupt Status Register (ISR):
Code 00000000 X = 0 W = 0 R = 0 NA = 0 SP = 0
RS = 0 IR = 0 NI = 0 SO = 0 EI = 1 ED = 0

Branch Registers: Region Registers:
B0 FFFFFFFF.8063C570 RR0 * 00000000.00000035
B1 00000000.00000000 RR1 * 00000000.00000030
B2 00000000.00000000 RR2 * 00000000.00000030
B3 00000000.00000000 RR3 * 00000000.00000030
B4 00000000.00000000 RR4 * 00000000.00000030
B5 00000000.00000000 RR5 * 00000000.00000030
B6 FFFFFFFF.80001580 RR6 * 00000000.00000030
B7 FFFFFFFF.806F4D30 RR7 * 00000000.00000335

Floating Point Registers: FPSR 0009804C.0270033F
F6 00000000.0001003E.00000000.0000FCBE
F7 00000000.0001003E.00000000.00000040
F8 00000000.0001003E.00000000.003F2F80
F9 00000000.00010003.80000000.00000000
F10 00000000.0000FFFB.80000000.00000000
F11 00000000.0000FFFB.80000000.00000000

Miscellaneous Registers:
Processor Identifier (CPUID 0,1) GenuineIntel

(CPUID 3) 00000000.1F010504
Interrupt Priority Level (IPL) 00000003
Stack Align 000002D0
NaT Mask 001C
PPrev Mode 00
Previous Stack 00
Interrupt Depth 00
Preds 00000000.FF65CCA3
Nats 00000000.00000000
Context 00000000.FF61CEA3

4–38 DELTA/XDELTA Commands

;T (Display Interrupt Stack Frame) (I64 Only)

General Registers:
R0 00000000.00000000 GP FFFFFFFF.8442E200 R2 FFFFFFFF.84132688
R3 FFFFFFFF.8442E200 R4 FFFFFFFF.8442E200 R5 00000000.00000001
R6 FFFFFFFF.84C3E000 R7 00000000.00000000 R8 00000000.00000003
R9 00000000.00000009 R10 00000000.00000008 R11 00000000.00000000
SP FFFFFFFF.89DA0D18 TP 00000000.00000000 R14 00000000.00000001
R15 FFFFFFFF.8401BD90 R16 FFFFFFFF.84017508 R17 FFFFFFFF.84009E98
R18 FFFFFFFF.84C3F274 R19 00000000.00000000 R20 FFFFFFFF.84009E00
R21 FFFFFFFF.84132627 R22 FFFFFFFF.84C3E01C R23 00000000.0000000F
R24 00000000.00011F90 R25 00000000.00000003 R26 00000000.00000000
R27 FFFFFFFF.84132668 R28 FFFFFFFF.8416D7C8 R29 FFFFFFFF.89DA1FB0
R30 00000000.7FF2E318 R31 00000000.00000000

Interrupted Frame RSE Backing Store , Size = 39 registers

FFFFF802.A3EAC300: FFFFFFFF.84C3E080 (R32)
FFFFF802.A3EAC308: E0000000.00000000 (R33)
FFFFF802.A3EAC310: FFFFFFFF.84132628 (R34)
FFFFF802.A3EAC318: FFFFFFFF.88598080 (R35)
FFFFF802.A3EAC320: 00000000.00000001 (R36)
FFFFF802.A3EAC328: FFFFFFFF.806029A0 (R37)
FFFFF802.A3EAC330: 00000000.FF65C563 (R38)
FFFFF802.A3EAC338: 00000000.00000000 (R39)
FFFFF802.A3EAC340: FFFFFFFF.8442E200 (R40)
FFFFF802.A3EAC348: FFFFFFFF.806029C0 (R41)
FFFFF802.A3EAC350: FFFFFFFF.8442E200 (R42)
FFFFF802.A3EAC358: FFFFFFFF.88598080 (R43)
FFFFF802.A3EAC360: FFFFFFFF.84191000 (R44)
FFFFF802.A3EAC368: 00000000.00000009 (R45)
FFFFF802.A3EAC370: FFFFFFFF.8416D7C8 (R46)
FFFFF802.A3EAC378: FFFFFFFF.8442E200 (R47)
FFFFF802.A3EAC380: 00000000.00000000 (R48)
FFFFF802.A3EAC388: FFFFFFFF.84132668 (R49)
FFFFF802.A3EAC390: 00000000.00000008 (R50)
FFFFF802.A3EAC398: 00000000.00000000 (R51)
FFFFF802.A3EAC3A0: 00000000.7FF2E318 (R52)
FFFFF802.A3EAC3A8: 00000000.00000000 (R53)
FFFFF802.A3EAC3B0: 00000000.00000FB2 (R54)
FFFFF802.A3EAC3B8: FFFFFFFF.84132627 (R55)
FFFFF802.A3EAC3C0: 00000000.00000003 (R56)
FFFFF802.A3EAC3C8: FFFFFFFF.89DA1FB0 (R57)
FFFFF802.A3EAC3D0: FFFFFFFF.801D9BD0 (R58)
FFFFF802.A3EAC3D8: FFFFFFFF.806029C0 (R59)
FFFFF802.A3EAC3E0: 00000000.00000001 (R60)
FFFFF802.A3EAC3E8: FFFFFFFF.89DA1FB0 (R61)
FFFFF802.A3EAC3F0: FFFFFFFF.8442E200 (R62)
FFFFF802.A3EAC400: 00000000.00000003 (R63)
FFFFF802.A3EAC408: FFFFFFFF.8063C570 (R64)
FFFFF802.A3EAC410: 00000000.00000008 (R65)
FFFFF802.A3EAC418: 00000000.00000008 (R66)
FFFFF802.A3EAC420: FFFFFFFF.84132668 (R67)
FFFFF802.A3EAC428: FFFFFFFF.8416D7C8 (R68)
FFFFF802.A3EAC430: 00000000.00000008 (R69)
FFFFF802.A3EAC438: FFFFFFFF.8416DAA0 (R70)

DELTA/XDELTA Commands 4–39

;W (List Name and Location of a Single Loaded Image) (Alpha and I64 Only)

;W (List Name and Location of a Single Loaded Image) (Alpha and I64
Only)

Lists information about an image that contains the address you supplied.

Format

address-expression;W

Format

sequence number, offset;W

Arguments

address-expression
An address contained within an executive image or a user image.

sequence number
The identifier assigned to an executive image.

offset
The distance from the base address of the image.

Description

The ;W command is used for debugging code that resides in system or user space.
You can use this command with XDELTA for debugging an executive image. You
can also use this command with DELTA.

To examine the executive image list, you must be running in executive mode or
your process must have change-mode-to-executive (CMEXEC) privilege.

This command can be used in two ways. In the first way, if you supply an address
that you are trying to locate, the command lists the name of the executive or user
image that contains the address, its base and ending addresses, and the offset of
the address from the base of the image. For any executive image that has been
sliced, it also displays its sequence number. The offset can be used with the link
map of the image to locate the actual code or data. This offset is saved in the
value Q.

In the second way, if you supply the sequence number of a sliced executive image
and an offset, the command computes and displays the address in memory. The
address is saved in the value Q.

Examples

The first form of the command takes a system space address as a parameter
and attempts to locate that address within the loaded executive images. This
command works for both sliced and unsliced loadable executive images. The
output is very similar to ;L, except the offset is displayed for you, as shown in the
following example:

4–40 DELTA/XDELTA Commands

;W (List Name and Location of a Single Loaded Image) (Alpha and I64 Only)

80026530;W

Seq# Image Name Base End Image Offset

000C SYSTEM_SYNCHRONIZATION.EXE
Nonpaged read only 80024000 8002C800 00002530

The second form of the command takes a loadable executive image sequence
number and an image offset from the map file as parameters. The output, again,
is very similiar to ;L, except that the system space address that corresponds to
the image offset is displayed, as shown in the following example:

C,2530;W

Seq# Image Name Base End Address

000C SYSTEM_SYNCHRONIZATION.EXE
Nonpaged read only 80024000 8002C800 80026530

DELTA/XDELTA Commands 4–41

;X (Load Base Register)

;X (Load Base Register)

Places an address in a base register.

Format

address-expression,n[,y];X

Arguments

address-expression
The address to place in the base register.

n
The number of the base register.

y
On Alpha and I64, a parameter for modifying the default offset of 1000016. The
valid range is 1 to FFFFFFFF.

Description

On VAX, to place an address in a base register, enter an expression followed by a
comma (,), a number from 0 to F16, a semicolon (;), and the letter X.

On Alpha and I64, to place an address in a base register, enter an expression
followed by a comma (,), or a number from 0 to 1510, optionally, a number from 1
to FFFFFFFF, a semicolon (;), and the letter X.

On all platforms, DELTA/XDELTA places the address in the base register.
DELTA/XDELTA confirms that the base register is set by displaying the value
deposited in the base register.

For example, the following command places the address 402 in base register 0.
DELTA/XDELTA then displays the value in the base register to verify it.

402,0;X Return

00000402

Whenever DELTA/XDELTA displays an address, it will display a relative address
if the address falls within the computer’s valid range for an offset from a base
register. The relative address consists of the base register identifier (Xn), followed
by an offset. The offset gives the address location in relation to the address stored
in the base register.

For example, if base register 2 contains 800D046A, the address that would be
displayed is X2+C4, the base register identifier followed by the offset.

Relative addresses are computed for both opened and displayed locations and for
addresses that are instruction operands.

If you have defined several base registers, the offset will be relative to the closest
base register. If an address falls outside the valid range, it is displayed as a
hexadecimal value.

On VAX, the default offset is 200016 bytes. It cannot be modified.

On Alpha, the default offset is 1000016, which can be modified.

On I64, the default offset is 10000016, which can be modified.

4–42 DELTA/XDELTA Commands

;X (Load Base Register)

The following examples illustrate the command on each platform.

Examples

VAX example:

00000664/CLRQ -(SP) 200,1;X !
00000200 "

X1 490!CMPL R0,#000009A8 #
X1 499!BSBB X1+04A2 $

! The base address of the program (determined from the map file) is virtual
address 200. The base address is stored in base register 1 with ;X.

" DELTA/XDELTA displays the value in base register 1 just loaded, 200.

The instruction at offset 490 is displayed in instruction mode using the !
command. The address reference is X1+490 (the + sign is implied when not
specified). DELTA/XDELTA displays the instruction at address X1+490.

$ The instruction at offset 499 is displayed. This instruction is a branch
instruction. DELTA/XDELTA displays the address of the branch in offset
notation.

Alpha example:

30000,0;X !
00030000
30070,1,200;X "
00030070
;X #
0 00030000
1 00030070 00000200

S $
X0+00000004! BIS R31,R31,R18

x1+10! STQ FP,#X0020(SP) %

! The base address of the program (determined from the map file) is virtual
address 30000. The base address is stored in base register 0 with ;X, using
the default offset. DELTA/XDELTA displays the value in base register 0 just
loaded, 30000.

" The address of a subroutine, 30070, is stored in base register 1, specifying
a new offset of 200 (to override the default value of 100000). Note
that this command could also have been expressed as "x0+70,1,200;X".
DELTA/XDELTA displays the value in base register 1 just loaded, 30070.

The ;x command is used to display the current base registers. Note that for
those not using the default offset, the offset is also displayed.

$ The S command is used to execute the first instruction in the main routine.
DELTA/XDELTA displays the address of the next instruction, 30004, as
x0+00000004 and then displays the instruction at that address.

% The instruction at offset 10 from base register 1 is displayed in instruction
mode using the ! command.

DELTA/XDELTA Commands 4–43

;X (Load Base Register)

I64 example:

G0BF5D60,0,200;X 1

;X

0 80BF5D60 00000200
4 8392A900
5 83009DE0
13 FFFFF802 06C00000
14 830937F0
15 83093700

G0BF5D60,0,200;X !

;X

0 80BF5D60 00000200
4 8392A900
5 83009DE0
13 FFFFF802 06C00000
14 830937F0
15 83093700 "

! Set the base register, with an offset.

" The ;X command with no arguments displays the existing base register
values. Offset values are also displayed, if their value is other than the
default offset.

4–44 DELTA/XDELTA Commands

O (Step Instruction over Subroutine)

O (Step Instruction over Subroutine)

Executes one instruction, steps over a subroutine by executing it, and displays
the instruction to which the subroutine returns control.

Format

O

Description

The Step Instruction over Subroutine command executes one instruction and
displays the address of the next instruction. If the instruction executed is a call
to a subroutine, the subroutine is executed and the next instruction displayed is
the instruction to which the subroutine returns control. Use this command to do
single-step instruction execution excluding single-stepping of instructions within
subroutines. If you want to do single-step execution of all instructions, including
those in subroutines, use the S command.

This command sets a flag to change the display mode to instruction mode. Any
subsequent Close Current Location, Open Next (LINEFEED) commands and
Open and Display Indirect Location (TAB) commands will display locations as
machine instructions. The Open Location and Display Contents (/) command
clears the flag, causing the display mode to revert to longword, hexadecimal
mode.

On VAX, the subroutine call instructions are BSBB, BSBW, JSB, CALLG, and
CALLS.

On Alpha, the subroutine call instructions are JSR and BSR.

On I64, the subroutine call instruction is br.call.

On all platforms, if you set a breakpoint in the subroutine and enter the O
command, program execution breaks at the subroutine breakpoint. When you
enter a Proceed command (;P), and program execution returns to the instruction
to which the subroutine returns control, a message is displayed, as follows:

On VAX systems:

STEPOVER BRK AT nnnnnnnn

instruction

On Alpha and I64 systems:

Step-over at nnnnnnnn

instruction

The message informs you that program execution has returned from a subroutine.

If you are using XDELTA in a multiprocessor environment, the CPU ID of the
processor where the break was taken is also displayed.

On VAX, the CPU ID is displayed as a 2-digit hexadecimal number.

On Alpha and I64, the CPU ID is displayed as a decimal number with no leading
zeros.

DELTA/XDELTA Commands 4–45

O (Step Instruction over Subroutine)

The following examples illustrate the command on each OpenVMS platform.

Examples

VAX example:

6D5;B !
;P "
1 BRK AT 000006D5
000006D5/CALLS #0C,@#7FFEDE00 ;P #

PID= 0006 LOGINTIME= 12:50:29.45
2 BRK AT 00000699
00000699/BSBB 000006A2 ;P $
1 BRK AT 000006D5
000006D5/CALLS #0C,@#7FFEDE00 ;P %

PID= 0007 LOGINTIME= 12:50:37.08
2 BRK AT 00000699
00000699/BSBB 000006A2 O &
1 BRK AT 000006D5
000006D5/CALLS #0C,@#7FFEDE00 ;P ’

PID= 0008 LOGINTIME= 12:50:45.64
STEPOVER BRK AT 0000069B (
0000069B/BRB X1+047A

! One breakpoint has been set at address 699 in the main routine. A simple
breakpoint is set at 6D5 using ;B. This breakpoint is in a subroutine.

" Program execution continues using ;P.

Program execution stops at breakpoint 1, which is in the subroutine.
DELTA/XDELTA displays the breakpoint message and the instruction at
the new breakpoint. Program execution continues using ;P.

$ The subroutine completes and displays some output. Program execution
continues until breakpoint 2. DELTA/XDELTA displays the breakpoint
message and the breakpoint 2 instruction. Program execution continues with
the ;P command.

% Program execution stops at breakpoint 1. Program execution continues
with the ;P command. The subroutine completes execution and displays the
output.

& Program execution stops at breakpoint 2. The subroutine is stepped over to
the next instruction using the O command.

’ Program execution stops at breakpoint 1 in the subroutine. Program
execution continues using the ;P command.

(The subroutine completes execution and displays output. DELTA/XDELTA
displays a STEPOVER break message that states the O command has been
completed, returning control at address 69B.

Alpha example:

30040;B !
30070;B "

;B
1 00030040
2 00030070

4–46 DELTA/XDELTA Commands

O (Step Instruction over Subroutine)

;P #

Brk 1 at 00030040

00030040! LDA R27,#XFFC8(R2) O $
00030044! BSR R26,#X00000A O %
Brk 2 at 00030070

00030070! LDA SP,#XFFD0(SP) ;P &

Step-over at 30048
00030048! LDQ R26,#X0048(R2) S ’
0003004C! BIS R31,R31,R17

! A simple breakpoint is set in the main routine at address 30040, just prior to
the subroutine call.

" A simple breakpoint is set in the subroutine at address 30070. The
breakpoints are displayed using the ;B command.

Program execution continues using ;P.

$ Program execution stops at breakpoint 1. DELTA/XDELTA displays the
breakpoint message and the instruction at the breakpoint address. The O
command is used to single-step (DELTA/XDELTA recognizes that this is not a
call instruction and turns it into a single-step instead).

% The next instruction is a subroutine call (BSR). The subroutine is stepped
over using the O command.

& Ordinarily, the step-over would continue execution at the instruction following
the subroutine call. However, in this case, program execution stops at
breakpoint 2 inside the subroutine at address 30070. Program execution
continues with the ;P command.

’ The subroutine completes execution. DELTA/XDELTA displays a step-over
break message that indicates that the O command has been completed,
returning control at address 30048.

I64 example:

X0+00000380! mov r7 = r23S !
X0+00000381! nop.f 000000S
X0+00000382! br.call.sptk.many b0 = 0000E30 O "
X0+00000390! mov r29 = r41S #
X0+00000391! mov r1 = r40S

! Program execution is currently at Base Register X0, plus offset 00000380.
The instruction at X0+380 is a Move Application Register instruction. Step
execution is then continued using the S command.

" Program execution is stopped at Base Register X0, plus offset 00000381. The
instruction at offset 00000381 is a No Operation instruction. Step execution
is then continued using the S command.

Program execution is stopped at offset 00000382. The instruction at 00000382
is a "br.call" instruction. Execution is continued using the O command, thus
skipping the routine(s) being called.

DELTA/XDELTA Commands 4–47

S (Step Instruction)

S (Step Instruction)

Executes one instruction and displays the next. If the executed instruction is a
call to a subroutine, it steps into the subroutine and displays the next instruction
to be executed in the subroutine.

Format

S

Description

The Step Instruction command executes one instruction and displays the next
instruction (in instruction mode) and its address. Use this command to single-
step instructions, including single-stepping all instructions in subroutines. If you
want to exclude single-stepping instructions in subroutines, use the O command.

The instruction displayed has not yet been executed. This command sets a flag
to change the display mode to instruction mode. Any subsequent Close Current
Location, Open Next (LINEFEED) commands and Open and Display Indirect
Location (TAB) commands will display locations as machine instructions. The
Open Location and Display Contents (/) command clears the flag, causing the
display mode to revert to longword, hexadecimal mode.

On VAX, if the instruction being executed is a BSBB, BSBW, JSB, CALLG, or
CALLS instruction, Step moves to the subroutine called by these instructions and
displays the first instruction within the subroutine.

On Alpha, if the instruction being executed is a JSR or BSR instruction, Step
moves to the subroutine called by these instructions and displays the first
instruction within the subroutine.

Note

If DELTA/XDELTA does not have write access to the target of a JSR
instruction, you cannot use the S or ;P command at the JSR instruction.
First, you must use the O command; then you can use the S or ;P
command.

On I64, if the instruction is a br.call instruction, Step moves to the subroutine
called by these instructions and displays the first instruction within the
subroutine.

On Alpha and VAX, in general, you move to the instruction where you want to
start single-step execution by placing a breakpoint at that instruction and typing
;P. Then press S to execute the first instruction and display the next one.

4–48 DELTA/XDELTA Commands

S (Step Instruction)

Examples

OpenVMS VAX example:

00000690/CMPL R0,#000009A8 S !
00000697/BEQL 0000069D S "
00000699/BSBB 000006A2 S #
000006A2/PUSHL R2 $

! Step program execution is started at address 690. The instruction at 690 is
executed and the next instruction is displayed. Step execution is continued
using S.

" At address 697, there is a branch instruction to the instruction at address
69D. However, because the condition (BEQL) is not met, program execution
continues at the next instruction. The next S command is executed.

At address 699, there is a branch instruction to the instruction at address
6A2, a subroutine. The next S command is executed.

$ Program execution moves to the subroutine.

Alpha example:

0003003C! BLBC R0,#X000006 S !
00030040! LDQ R16,#X0050(R2) S "
00030044! BIS R31,R31,R17 S #
00030048! LDQ R26,#X0040(R2)

! Step program execution is started at address 3003C. The instruction at 3003C
is a conditional branch instruction. Step execution is continued using the S
command.

" Because the condition (BLBC) was not met, program execution continued at
the next instruction at address 30040. Had the branch been taken, execution
would have continued at address 30058. The second S command causes the
LDQ instruction to be executed.

The instruction at address 30044 is displayed. The S command is executed.

I64 example:

X0+00000061! mov r52 = b0 S !
X0+00000062! mov r40 = r1 S "
X0+00000070! st8 [r12] = r0 ;; #

! Program execution has been stopped at base register X0 plus offset 0000061.
The instruction at this address is a Move Branch Register. Step execution is
continued using the S command.

" Program execution is now stopped at base register X0 plus offset 0000062.
The instruction at this address is a Move Application Register. Step execution
is then continued using the S command.

The instruction at offset 0000070 is displayed.

DELTA/XDELTA Commands 4–49

’ (Deposit ASCII String)

’ (Deposit ASCII String)

Deposits the ASCII string at the current address.

Format

’string’

Arguments

string
The string of characters to be deposited.

Description

The Deposit ASCII String command deposits string at the current location (.)
in ASCII format. The second apostrophe is required to terminate the string. All
characters typed between the first and second apostrophes are entered as ASCII
character text. Avoid embedding an apostrophe (’) within the string you want to
deposit.

When you want to use key commands (LINEFEED, RETURN, ESC, or TAB),
press the key. These commands are entered as text.

This command stores the characters in 8-bit bytes and increments the current
address (.) by one for each character stored.

This command does not change the prevailing display mode.

Example

7FFE1600/’R0/ Linefeed Linefeed ’

The ASCII string ‘‘R0/ Linefeed Linefeed ’’ is stored at address 7FFE1600. This
string, if subsequently executed with the ;E command, examines the contents of
general register 0 (the command R0/), then examines two subsequent registers
(using two LINEFEED commands).

4–50 DELTA/XDELTA Commands

= (Display Value of Expression)

= (Display Value of Expression)

Evaluates an expression and displays its value.

Format

expression =

Argument

expression
The expression to be evaluated.

Description

The Display Value of Expression command evaluates an expression and displays
its value in hexadecimal. The expression can be any valid DELTA/XDELTA
expression. See Section 2.1 for a description of DELTA/XDELTA expressions.

All calculations and displays are in hexadecimal in the prevailing length mode.

Note

Because DELTA and XDELTA treat the space as an addition operator, do
not enter an unnecessary space.

Example
FF+1=00000100 !
A-1=00000009 "

! FF16 and 116 are added together. DELTA/XDELTA displays the sum in
hexadecimal.

" 116 is subtracted from A16. DELTA/XDELTA displays the result in
hexadecimal.

DELTA/XDELTA Commands 4–51

\string\ (Immediate mode text display command) (Alpha and I64 Only)

\string\ (Immediate mode text display command) (Alpha and I64 Only)

Displays the ASCII text string enclosed in backslashes.

Format

\string\

Description

This mode is useful when creating your own predefined command strings. Use
the backslash to begin and end an ASCII text string. Follow the ending backslash
with a terminator. When DELTA or XDELTA encounters the ending backslash
and terminator, it prints the ASCII text string.

4–52 DELTA/XDELTA Commands

A
Sample DELTA Debug Session on VAX

This appendix gives an example of using DELTA to debug a program on
OpenVMS VAX. The program, LOGINTIM, uses the system service SYS$GETJPI
to obtain the login times of each process. Although this is an example of using
DELTA, most of the commands in the example could be used in an XDELTA
debugging session.

To run this program without error, you need WORLD privilege.

The .LIS file is listed in Example A–1. Only the offsets and source code are
shown.

Example A–1 Program for Getting LOGINTIMs

0000 1 ;++
0000 2 ; This sample program uses the wildcard feature of GETJPI to get the
0000 3 ; LOGINTIM for each active process. It outputs the PID and LOGINTIM
0000 4 ; for each and exits when there are NOMOREPROCs.
0000 5 ;--
0000 6
0000 7 ;
0000 8 ; Data areas.
0000 9 ;
0000 10 DEVNAM: .ASCID /SYS$OUTPUT/ ;Output device specifier
000E
0012 11
0012 12 CHAN: .LONG 0 ;Assigned output channel
0016 13
0016 14 ITMLST: ;Item list for GETJPI call
0016 15 .WORD 8 ; Byte length of output buffer
0018 16 .WORD JPI$_LOGINTIM ; Specify LOGINTIM item code
001A 17 .ADDRESS TIME ; Address of output buffer
001E 18 .LONG 0 ; Not interested in return length
0022 19 .LONG 0 ;Item list terminator
0026 20
0026 21 TIME: .QUAD 0 ;Buffer to hold LOGINTIM
002E 22
002E 23 OUTLEN: .LONG 0 ;FAO buffer length
0032 24 OUTBUF: .LONG 1024 ;FAO buffer descriptor
0036 25 .ADDRESS BUF
003A 26 BUF: .BLKB 1024 ;FAO buffer
043A 27
043A 28 CTRSTR: .ASCID *!/!_PID= !XW!_LOGINTIME= !%T* ;FAO control string
0448
0454
045E 29
045E 30 PIDADR: .LONG -1 ;Wildcard PID control longword
0462 31
0462 32 ;++
0462 33 ; Start of program.

(continued on next page)

Sample DELTA Debug Session on VAX A–1

Sample DELTA Debug Session on VAX

Example A–1 (Cont.) Program for Getting LOGINTIMs
0462 34 ;--
0462 35 S: .WORD 0 ;Entry mask
0464 36 $ASSIGN_S DEVNAM,CHAN ;Assign output channel
0475 37 MOVAB TIME,R2 ;Load pointer to LOGINTIM
047A 38 ; output buffer
047A 39 LOOP: $GETJPI_S ITMLST=ITMLST,-;Get LOGINTIM for a process
047A 40 PIDADR=PIDADR
0490 41 CMPL R0,#SS$_NOMOREPROC ;Are we done?
0497 42 BEQL 5$;If EQL yes
0499 43 BSBB GOT_IT ;Process data for this process
049B 44 BRB LOOP ;Look for another process
049D 45
049D 46 5$: MOVZBL #SS$_NORMAL,R0 ;Set successful completion code
04A1 47 RET ;Return, no more processes
04A2 48
04A2 49 GOT_IT: $FAO_S CTRSTR,- ;Format the output data
04A2 50 OUTLEN,-
04A2 51 OUTBUF,-
04A2 52 PIDADR,R2
04B9 53 $QIOW_S CHAN=CHAN,- ;Output to SYS$OUTPUT
04B9 54 FUNC=#IO$_WRITEVBLK,-
04B9 55 P1=BUF,-
04B9 56 P2=OUTLEN
04DC 57 RSB ;Done with this process data
04DD 58
04DD 59 .END S

The .MAP file is listed in Example A–2. Only the Program Section Synopsis with
the PSECT, MODULE, base address, end address, and length are listed.

Example A–2 LOGINTIM Program .Map File

+--------------------------+
! Program Section Synopsis !
+--------------------------+

Psect Name Module Name Base End Length
---------- ----------- ---- --- ------
. BLANK . 00000200 000006E2 000004E3 (1251.)

.MAIN. 00000200 000006E2 000004E3 (1251.)

A–2 Sample DELTA Debug Session on VAX

Sample DELTA Debug Session on VAX

The DELTA debugging session is listed in Example A–3.

Example A–3 DELTA Debugging Session Example

$ DEFINE LIB$debugging SYS$LIBRARY:DELTA !
$ RUN/debugging LOGINTIM "
DELTA Version 6.0

00000664/CLRQ -(SP) 200,1;X #
00000200 $

X1 490!CMPL R0,#000009A8 .;B %
X1 499!BSBB X1+04A2 .;B &
;P ’

1 BRK AT 00000690
X1+0490/CMPL R0,#000009A8 R0/00000001 ;P (
2 BRK AT 00000699
X1+499/BSBB X1+04A2 O)

PID= 0000 LOGINTIME= 00:00:00.00 +>
X1+049B/BRB X1+047A ;P +?
1 BRK AT 00000690
X1+0490/CMPL R0,#000009A8 R0/00000001 ;P +@
2 BRK AT 00000699
X1+0499/BSBB X1+04A2 O +A

PID= 0001 LOGINTIME= 00:00:00.00
X1+049B/BRB X1+047A ;P
1 BRK AT 00000690
X1+0490/CMPL R0,#000009A8 +B
;B +C
1 00000690
2 00000699 +D
0,1;B +E
;B +F
2 00000699 +G
;P ,>
2 BRK AT 00000699
X1+0499/BSBB X1+04A2 O

PID= 0004 LOGINTIME= 12:50:20.40
X1+049B/BRB X1+047A ;P ,?
2 BRK AT 00000699
X1+0499/BSBB X1+04A2 ;P

PID= 0005 LOGINTIME= 12:50:25.61 ,@
2 BRK AT 00000699
X1+0499/BSBB X1+04A2 X1 4B9!CLRQ -(SP) ,A

Linefeed ,B
X1+04BB/CLRQ -(SP) Linefeed

X1+04BD/PUSHL X1+002E Linefeed

X1+04C1/PUSHAL X1+003A Linefeed

X1+04C5/CLRQ -(SP) Linefeed

X1+04C7/PUSHL #00 Linefeed

X1+04C9/MOVZWL #0030;-(SP) Linefeed

X1+04CE/MOVZWL X1+0012,-(SP) Linefeed

X1+04D3/PUSHL #00 Linefeed

X1+04D5/CALLS #0C,@#7FFEDE00 .;B ,C
;B ,D
1 000006D5
2 00000699

(continued on next page)

Sample DELTA Debug Session on VAX A–3

Sample DELTA Debug Session on VAX

Example A–3 (Cont.) DELTA Debugging Session Example

;P ,E
1 BRK AT 000006D5
X1+04D5/CALLS #0C,@#7FFEDE00 ;P ,F

PID= 0006 LOGINTIME= 12:50:29.45
2 BRK AT 00000699
X1+0499/BSBB X1+04A2 ;P ,G
1 BRK AT 000006D5
X1+04D5/CALLS #0C,@#7FFEDE00 ;P −>

PID= 0007 LOGINTIME= 12:50:37.08
2 BRK AT 00000699
X1+0499/BSBB X1+04A2 O −?
1 BRK AT 000006D5
X1+04D5/CALLS #0C,@#7FFEDE00 ;P −@

PID= 0008 LOGINTIME= 12:50:45.64
STEPOVER BRK AT 0000069B −A
X1+049B/BRB X1+047A ;B −B
1 000006D5
2 00000699 −C
0,2;B −D
0,1;B −E
;B −F
;P −G

PID= 0009 LOGINTIME= 12:51:22.51
PID= 000A LOGINTIME= 12:51:30.26
PID= 000B LOGINTIME= 12:51:36.21
PID= 000C LOGINTIME= 12:51:58.86 .>

EXIT 00000001 .?
80187E7E/POPR #03 EXIT .@

! DELTA is enabled as the debugger.

" The example program LOGINTIM is invoked with DELTA.

DELTA displays a version number and the first executable instruction. The
base address of the program (determined from the map file) is virtual address
200. The base address is placed in base register 1 with ;X. Now references
to an address can use the address offset notation. For example, a reference
to the first instruction is X1+464 (or base address 200 + offset 464). Also,
DELTA displays some address locations as offsets to the base address.

$ DELTA displays the value in base register 1, just loaded 200.

% The instruction at address 690 is displayed in instruction mode using !.
Its address location is expressed as the base address plus an offset. In the
listing file, the offset is 490. The base address in base register X1 is 200. The
address reference, then, is X1+490. (Note that the + sign is implied when not
specified.)

A simple breakpoint is set at that address using the ;B command. The
address reference for ;B is the . symbol, representing the current address.
X1+490;B would have done the same thing.

& The same commands (! command to view the instruction and ;B to set a
breakpoint) are repeated for the instruction at offset 499. When DELTA
displays the instruction (BSBB GOT_IT), it displays the destination of the
branch (GOT_IT) as the address location. DELTA displays the value as an
offset to base register 1.

’ Program execution is begun using ;P.

A–4 Sample DELTA Debug Session on VAX

Sample DELTA Debug Session on VAX

(Program execution halts at the first breakpoint. DELTA displays the
breakpoint message (1 BRK AT 00000690) with the breakpoint number 1
and the virtual address. The virtual address is 00000690, which is the base
address (200) plus the offset 490. DELTA then displays the instruction in
instruction mode (CMPL R0,#000009A8). The contents of general register 0
are displayed with the / command. DELTA displays the contents of R0, which
is 1. Program execution continues using the ;P command.

) Program execution halts at breakpoint 2. DELTA displays the breakpoint
message, then the instruction. Step-instruction execution, excluding
instructions in subroutines, is initiated with O.

+> The subroutine GOT_IT is executed, and the output (PID and login time) is
displayed.

+? The O command halts program execution at the instruction where the
subroutine returns control (BRB LOOP). DELTA displays the instruction in
instruction mode (BRB X1+047A), where X1+047A is the address of the first
instruction in LOOP. Program execution continues with ;P.

+@ Breakpoint 1 is encountered again; DELTA displays the breakpoint message
and the instruction. The contents of R0 are examined (/ command) and
program execution continues (;P).

+A Breakpoint 2 is encountered again; DELTA displays the breakpoint message
and the instruction. The subroutine is stepped over again with the O
command. The subroutine is executed, and the output is displayed. The
instruction where the subroutine returns control is displayed. Program
execution continues (;P command).

+B Breakpoint 1 is encountered; DELTA displays the breakpoint message and
the instruction.

+C All breakpoints in the program are listed with the ;B command.

+D DELTA displays the breakpoints (by breakpoint number) and the address
locations.

+E Breakpoint 1 is cleared using 0,[breakpoint #];B. (Never clear breakpoint 1 in
XDELTA.)

+F All breakpoints are listed again with ;B command.

+G DELTA displays breakpoint 2 (breakpoint 1 cleared).

,> Program execution continues using the ;P command.

,? Breakpoint 2 is encountered; DELTA displays the breakpoint message and
the instruction. The subroutine is executed with the O command and the
subroutine output is displayed. The next instruction where the subroutine
returns control is displayed. Program execution continues with the ;P
command.

,@ Breakpoint 2 is encountered; DELTA displays the breakpoint message and
the instruction. Program execution continues to the next breakpoint with
the ;P command. The subroutine is executed, and the subroutine output is
displayed.

,A Breakpoint 2 is encountered again; the instruction at offset 4B9 (in the
subroutine) is displayed using !. This instruction is part of the setup for the
call to the system service $QIOW.

Sample DELTA Debug Session on VAX A–5

Sample DELTA Debug Session on VAX

,B Successive address locations are displayed by pressing the Linefeed key nine
times. These instructions are the remainder of the setup and the call to the
system service $QIOW.

,C A breakpoint at X1+04D5 (the current address) is set using the ;B command.
This breakpoint is in the subroutine. The . symbol represents the current
address.

,D The current breakpoints in the program are listed. The new breakpoint is
assigned breakpoint 1.

,E Program execution continues with the ;P command.

,F Program execution stops at the new breakpoint 1, which is in the subroutine
GOT_IT. DELTA displays the breakpoint message and the instruction at the
new breakpoint. Program execution continues with the ;P command.

,G The subroutine completes and displays the output, and program execution
continues until breakpoint 2. DELTA displays the breakpoint message
and the breakpoint 2 instruction. Program execution continues with the ;P
command.

−> Program execution stops at breakpoint 1 in the subroutine. Program
execution continues with the ;P command. The subroutine is executed, and
the output is displayed.

−? Program execution stops at breakpoint 2. The O command is entered to
execute and step over the subroutine.

−@ Program execution stops at breakpoint 1 in the subroutine. Program
execution continues with the ;P command.

−A The subroutine completes execution and displays output. DELTA displays a
STEPOVER break message to state that the O command has been completed,
returning control at address 69B (an instruction in the main routine).

−B The instruction where the subroutine returns is displayed, and program
execution is halted. The ;B command is entered to display all current
breakpoints.

−C The two current breakpoints are listed.

−D The command 0,2;B clears breakpoint 2.

−E The command 0,1;B clears breakpoint 1.

−F The ;B command is entered to display all current breakpoints. Because all
breakpoints have been cleared, DELTA does not display any.

−G Program execution continues with the ;P command. Because there are no
longer any breakpoints, the program executes to the end.

.> All current process login times are displayed.

.? Final exit status is displayed.

.@ The DELTA EXIT command is entered to terminate the debugging session
and leave DELTA.

A–6 Sample DELTA Debug Session on VAX

B
Sample DELTA Debug Session on Alpha

This appendix gives an example of using DELTA to debug a program on
OpenVMS Alpha. The C program named LOG uses the system service
SYS$GETJPIW to obtain the PID, process name, and login time of each process.
Although this is an example of using DELTA, most of the commands in the
example could be used in an XDELTA debugging session.

To run this program without error, you need WORLD privilege.

The listing file for LOG is shown in two parts. The C source code part is shown
in Example B–1. The machine code part is shown in Example B–2.

Example B–1 Listing File for LOG: C Source Code

1 #include <descrip.h>
434 #include <jpidef.h>
581 #include <ssdef.h>
1233 #include <starlet.h>
3784 #include <stdio.h>
4117 #include <stdlib.h>
4345
4346 void print_line(unsigned long int pid, char *process_name,
4347 unsigned long int *time_buffer);
4348
4349 typedef struct {
4350 unsigned short int il3_buffer_len;
4351 unsigned short int il3_item_code;
4352 void *il3_buffer_ptr;
4353 unsigned short int *il3_return_len_ptr;
4354 } item_list_3;
4355
4356 #define NUL ’\0’
4357
4358 main()
4359 {
4360 static char name_buf[16];
4361 static unsigned long int pid, time_buf[2];
4362 static unsigned short int name_len;
4363
4364 unsigned short int pidadr[2] = {-1, -1};
4365 unsigned long int ss_sts;
4366 item_list_3 jpi_itmlst[] = {
4367 /* Get’s login time */
4368 {sizeof(time_buf),
4369 JPI$_LOGINTIM,
4370 (void *) time_buf,
4371 NULL},
4372
4373 /* Get’s process name */

(continued on next page)

Sample DELTA Debug Session on Alpha B–1

Sample DELTA Debug Session on Alpha

Example B–1 (Cont.) Listing File for LOG: C Source Code
4374 {sizeof(name_buf) - 1,
4375 JPI$_PRCNAM,
4376 (void *) name_buf,
4377 &name_len},
4378
4379 /* Get’s process ID (PID) */
4380 {sizeof(pid),
4381 JPI$_PID,
4382 (void *) &pid,
4383 NULL},
4384
4385 /* End of list */
4386 {0,
4387 0,
4388 NULL,
4389 NULL}
4390 };
4391
4392 /*
4393 While there’s more GETJPI information to process and a catastrophic
4394 error has not occurred then
4395 If GETJPI was successful then
4396 NUL terminate the process name string and
4397 print the information returned by GETJPI
4398 */
4399
4400 while(
4401 (ss_sts = sys$getjpiw(0, &pidadr, 0, &jpi_itmlst, 0, 0, 0)) != SS$_NOMOREPROC &&
4402 ss_sts != SS$_BADPARAM &&
4403 ss_sts != SS$_ACCVIO)
4404 {
4405 if (ss_sts == SS$_NORMAL)
4406 {
4407 *(name_buf + name_len) = NUL;
4408 print_line(pid, name_buf, time_buf);
4409 }
4410 }
4411 exit(EXIT_SUCCESS);
4412 }
4413
4414 void print_line(unsigned long int pid, char *process_name,
4415 unsigned long int *time_buffer)
4416 {
4417 static char ascii_time[12];
4418
4419 struct dsc$descriptor_s time_dsc = {
4420 sizeof(ascii_time) - 1,
4421 DSC$K_DTYPE_T,
4422 DSC$K_CLASS_S,
4423 ascii_time
4424 };
4425 unsigned short int time_len;
4426
4427 /*
4428 Convert the logged in time to ASCII and NUL terminate it
4429 */
4430 sys$asctim(&time_len, &time_dsc, time_buffer, 1);
4431 *(ascii_time + time_len) = NUL;
4432

(continued on next page)

B–2 Sample DELTA Debug Session on Alpha

Sample DELTA Debug Session on Alpha

Example B–1 (Cont.) Listing File for LOG: C Source Code

4433 /*
4434 Output the PID, process name and logged in time
4435 */
4436 printf("\n\tPID= %08.8X\t\tPRCNAM= %s\tLOGINTIM= %s", pid,
4437 process_name, ascii_time);
4438
4439 return;
4440 }
4441 __main(void *p1, void *p2, void *p3, void *p4, void *p5, void *p6)
4442 {
4443 void decc$exit(int);
4444 void decc$main(void *, void *, void *, void *, void *, void *, int *, void **, void **);
4445 int status;
4446 int argc;
4447 void *argv;
4448 void *envp;
4449
4450 decc$main(p1, p2, p3, p4, p5, p6, &argc, &argv, &envp);
4451
4452 status = main
4453 (
4454
4455
4456
4457);
4458
4459 decc$exit(status);
4460 }

Example B–2 Listing File for LOG: Machine Code

.PSECT $CODE, OCTA, PIC, CON, REL, LCL, SHR,-
EXE, NORD, NOWRT

0000 print_line:: ; 004414
0000 LDA SP, -80(SP) ; SP, -80(SP)
0004 MOV 1, R19 ; 1, R19 ; 004430
0008 STQ R27, (SP) ; R27, (SP) ; 004414
000C MOV 4, R25 ; 4, R25 ; 004430
0010 STQ R26, 32(SP) ; R26, 32(SP) ; 004414
0014 STQ R2, 40(SP) ; R2, 40(SP)
0018 STQ R3, 48(SP) ; R3, 48(SP)
001C STQ R4, 56(SP) ; R4, 56(SP)
0020 STQ FP, 64(SP) ; FP, 64(SP)
0024 MOV SP, FP ; SP, FP
0028 MOV R27, R2 ; R27, R2
002C STL R17, process_name ; R17, 16(FP)
0030 LDQ R0, 40(R2) ; R0, 40(R2) ; 004419
0034 MOV R16, pid ; R16, R3 ; 004414
0038 LDQ R26, 48(R2) ; R26, 48(R2) ; 004430
003C LDA R16, time_len ; R16, 8(FP)

(continued on next page)

Sample DELTA Debug Session on Alpha B–3

Sample DELTA Debug Session on Alpha

Example B–2 (Cont.) Listing File for LOG: Machine Code
0040 LDQ R4, 32(R2) ; R4, 32(R2) ; 004423
0044 LDA R17, time_dsc ; R17, 24(FP) ; 004430
0048 STQ R0, time_dsc ; R0, 24(FP) ; 004419
004C LDQ R27, 56(R2) ; R27, 56(R2) ; 004430
0050 STL R4, 28(FP) ; R4, 28(FP) ; 004419
0054 JSR R26, SYS$ASCTIM ; R26, R26 ; 004430
0058 LDL R0, time_len ; R0, 8(FP) ; 004431
005C MOV pid, R17 ; R3, R17 ; 004436
0060 LDQ R27, 88(R2) ; R27, 88(R2)
0064 MOV R4, R19 ; R4, R19
0068 LDQ R26, 80(R2) ; R26, 80(R2)
006C MOV 4, R25 ; 4, R25
0070 ZEXTW R0, R0 ; R0, R0 ; 004431
0074 ADDQ R4, R0, R0 ; R4, R0, R0
0078 LDQ_U R16, (R0) ; R16, (R0)
007C MSKBL R16, R0, R16 ; R16, R0, R16
0080 STQ_U R16, (R0) ; R16, (R0)
0084 LDQ R16, 64(R2) ; R16, 64(R2) ; 004436
0088 LDL R18, process_name ; R18, 16(FP)
008C JSR R26, DECC$GPRINTF ; R26, R26
0090 MOV FP, SP ; FP, SP ; 004439
0094 LDQ R28, 32(FP) ; R28, 32(FP)
0098 LDQ R2, 40(FP) ; R2, 40(FP)
009C LDQ R3, 48(FP) ; R3, 48(FP)
00A0 LDQ R4, 56(FP) ; R4, 56(FP)
00A4 LDQ FP, 64(FP) ; FP, 64(FP)
00A8 LDA SP, 80(SP) ; SP, 80(SP)
00AC RET R28 ; R28

Routine Size: 176 bytes, Routine Base: $CODE + 0000
00B0 main:: ; 004358
00B0 LDA SP, -144(SP) ; SP, -144(SP)
00B4 MOV 48, R17 ; 48, R17 ; 004366
00B8 STQ R27, (SP) ; R27, (SP) ; 004358
00BC STQ R26, 64(SP) ; R26, 64(SP)
00C0 STQ R2, 72(SP) ; R2, 72(SP)
00C4 STQ R3, 80(SP) ; R3, 80(SP)
00C8 STQ R4, 88(SP) ; R4, 88(SP)
00CC STQ R5, 96(SP) ; R5, 96(SP)
00D0 STQ R6, 104(SP) ; R6, 104(SP)
00D4 STQ R7, 112(SP) ; R7, 112(SP)
00D8 STQ R8, 120(SP) ; R8, 120(SP)
00DC STQ FP, 128(SP) ; FP, 128(SP)
00E0 MOV SP, FP ; SP, FP
00E4 MOV R27, R2 ; R27, R2
00E8 LDA SP, -16(SP) ; SP, -16(SP)
00EC LDQ R26, 40(R2) ; R26, 40(R2) ; 004366
00F0 LDQ R18, 64(R2) ; R18, 64(R2)
00F4 LDA R16, jpi_itmlst ; R16, 16(FP)
00F8 JSR R26, OTS$MOVE ; R26, R26
00FC LDA R6, jpi_itmlst ; R6, 16(FP) ; 004401
0100 LDQ R3, -64(R2) ; R3, -64(R2) ; 004370
0104 LDA R7, pidadr ; R7, 8(FP) ; 004401
0108 LDQ R0, 32(R2) ; R0, 32(R2) ; 004364
010C MOV 2472, R8 ; 2472, R8 ; 004401
0110 STL R0, pidadr ; R0, 8(FP) ; 004364
0114 LDA R3, time_buf ; R3, 16(R3) ; 004370

(continued on next page)

B–4 Sample DELTA Debug Session on Alpha

Sample DELTA Debug Session on Alpha

Example B–2 (Cont.) Listing File for LOG: Machine Code
0118 MOV R3, R5 ; R3, R5
011C STL R5, 20(FP) ; R5, 20(FP) ; 004366
0120 LDA R4, 8(R3) ; R4, 8(R3) ; 004376
0124 STL R4, 32(FP) ; R4, 32(FP) ; 004366
0128 LDA R17, 24(R3) ; R17, 24(R3)
012C STL R17, 36(FP) ; R17, 36(FP)
0130 LDA R19, 28(R3) ; R19, 28(R3)
0134 STL R19, 44(FP) ; R19, 44(FP)
0138 L$6: ; 004400
0138 LDQ R26, 48(R2) ; R26, 48(R2) ; 004401
013C CLR R16 ; R16
0140 LDQ R27, 56(R2) ; R27, 56(R2)
0144 MOV R7, R17 ; R7, R17
0148 STQ R31, (SP) ; R31, (SP)
014C CLR R18 ; R18
0150 MOV R6, R19 ; R6, R19
0154 CLR R20 ; R20
0158 CLR R21 ; R21
015C MOV 7, R25 ; 7, R25
0160 JSR R26, SYS$GETJPIW ; R26, R26
0164 CMPEQ ss_sts, 20, R16 ; R0, 20, R16 ; 004402
0168 CMPEQ ss_sts, R8, R17 ; R0, R8, R17 ; 004401
016C CMPEQ ss_sts, 12, R18 ; R0, 12, R18 ; 004403
0170 BIS R17, R16, R17 ; R17, R16, R17 ; 004401
0174 BIS R17, R18, R18 ; R17, R18, R18
0178 BNE R18, L$10 ; R18, L$10 ; 004400
017C CMPEQ ss_sts, 1, R0 ; R0, 1, R0 ; 004405
0180 BEQ R0, L$6 ; R0, L$6
0184 MOV R4, R17 ; R4, R17 ; 004408
0188 LDQ_U R19, 24(R3) ; R19, 24(R3) ; 004407
018C MOV R5, R18 ; R5, R18 ; 004408
0190 LDA R27, -96(R2) ; R27, -96(R2)
0194 EXTWL R19, R3, R19 ; R19, R3, R19 ; 004407
0198 ADDQ R4, R19, R19 ; R4, R19, R19
019C LDQ_U R22, (R19) ; R22, (R19)
01A0 MSKBL R22, R19, R22 ; R22, R19, R22
01A4 STQ_U R22, (R19) ; R22, (R19)
01A8 LDL R16, 28(R3) ; R16, 28(R3) ; 004408
01AC BSR R26, print_line ; R26, print_line
01B0 BR L$6 ; L$6 ; 004405
01B4 NOP ;
01B8 L$10: ; 004400
01B8 LDQ R26, 80(R2) ; R26, 80(R2) ; 004411
01BC CLR R16 ; R16
01C0 LDQ R27, 88(R2) ; R27, 88(R2)
01C4 MOV 1, R25 ; 1, R25
01C8 JSR R26, DECC$EXIT ; R26, R26
01CC MOV FP, SP ; FP, SP ; 004412
01D0 LDQ R28, 64(FP) ; R28, 64(FP)
01D4 MOV 1, R0 ; 1, R0
01D8 LDQ R2, 72(FP) ; R2, 72(FP)
01DC LDQ R3, 80(FP) ; R3, 80(FP)
01E0 LDQ R4, 88(FP) ; R4, 88(FP)
01E4 LDQ R5, 96(FP) ; R5, 96(FP)

(continued on next page)

Sample DELTA Debug Session on Alpha B–5

Sample DELTA Debug Session on Alpha

Example B–2 (Cont.) Listing File for LOG: Machine Code
01E8 LDQ R6, 104(FP) ; R6, 104(FP)
01EC LDQ R7, 112(FP) ; R7, 112(FP)
01F0 LDQ R8, 120(FP) ; R8, 120(FP)
01F4 LDQ FP, 128(FP) ; FP, 128(FP)
01F8 LDA SP, 144(SP) ; SP, 144(SP)
01FC RET R28 ; R28

Routine Size: 336 bytes, Routine Base: $CODE + 00B0
0200 __main:: ; 004441
0200 LDA SP, -48(SP) ; SP, -48(SP)
0204 MOV 9, R25 ; 9, R25 ; 004450
0208 STQ R27, (SP) ; R27, (SP) ; 004441
020C STQ R26, 24(SP) ; R26, 24(SP)
0210 STQ R2, 32(SP) ; R2, 32(SP)
0214 STQ FP, 40(SP) ; FP, 40(SP)
0218 MOV SP, FP ; SP, FP
021C LDA SP, -32(SP) ; SP, -32(SP)
0220 MOV R27, R2 ; R27, R2
0224 LDA R0, argc ; R0, 16(FP) ; 004450
0228 LDQ R26, 48(R2) ; R26, 48(R2)
022C LDA R1, argv ; R1, 12(FP)
0230 STQ R0, (SP) ; R0, (SP)
0234 LDA R0, envp ; R0, 8(FP)
0238 STQ R1, 8(SP) ; R1, 8(SP)
023C LDQ R27, 56(R2) ; R27, 56(R2)
0240 STQ R0, 16(SP) ; R0, 16(SP)
0244 JSR R26, DECC$MAIN ; R26, R26
0248 LDA R27, -96(R2) ; R27, -96(R2) ; 004452
024C BSR R26, main ; R26, main
0250 LDQ R27, 40(R2) ; R27, 40(R2) ; 004459
0254 MOV status, R16 ; R0, R16
0258 MOV 1, R25 ; 1, R25
025C LDQ R26, 32(R2) ; R26, 32(R2)
0260 JSR R26, DECC$EXIT ; R26, R26
0264 MOV FP, SP ; FP, SP ; 004460
0268 LDQ R28, 24(FP) ; R28, 24(FP)
026C LDQ R2, 32(FP) ; R2, 32(FP)
0270 LDQ FP, 40(FP) ; FP, 40(FP)
0274 LDA SP, 48(SP) ; SP, 48(SP)
0278 RET R28 ; R28

Routine Size: 124 bytes, Routine Base: $CODE + 0200

The .MAP file for the sample program is shown in Example B–3. Only the
Program Section Synopsis with the psect, module, base address, end address, and
length are listed.

B–6 Sample DELTA Debug Session on Alpha

Sample DELTA Debug Session on Alpha

Example B–3 .MAP File for the Sample Program

+--------------------------+
! Program Section Synopsis !
+--------------------------+

Psect Name Module Name Base End Length
---------- ----------- ---- --- ------

$LINKAGE 00010000 000100FF 00000100 (256.)
LOG 00010000 000100FF 00000100 (256.)

$LITERAL 00010100 00010158 00000059 (89.)
LOG 00010100 00010158 00000059 (89.)

$READONLY 00010160 00010160 00000000 (0.)
LOG 00010160 00010160 00000000 (0.)

$INIT 00020000 00020000 00000000 (0.)
LOG 00020000 00020000 00000000 (0.)

$UNINIT 00020000 0002002F 00000030 (48.)
LOG 00020000 0002002F 00000030 (48.)

$CODE 00030000 0003027B 0000027C (636.)
LOG 00030000 0003027B 0000027C (636.)

The DELTA debug session is shown in Example B–4.

Example B–4 DELTA Debugging Session of the Sample Program

$ DEFINE LIB$DEBUG SYS$LIBRARY:DELTA !
$ RUN/DEBUG LOG "
Alpha/VMS DELTA Version 1.5 #

Brk 0 at 00030200

00030200! LDA SP,#XFFD0(SP) 30000,1;X
X1 164! CMPEQ R0,#X14,R16 .;B $

X1 1AC! BSR R26,#XFFFF94 .;B %

;P

Brk 1 at 00030164 &

X1+00000164! CMPEQ R0,#X14,R16 R0/ 00000001 ;P

Brk 2 at 000301AC

X1+000001AC! BSR R26,#XFFFF94 O

PID= 00000021 PRCNAM= SWAPPER LOGINTIM= 00:00:00.00 ’
X1+000001B0! BR R31,#XFFFFE1 ;P

Brk 1 at 00030164

X1+00000164! CMPEQ R0,#X14,R16 R0/ 00000001 ;P

(continued on next page)

Sample DELTA Debug Session on Alpha B–7

Sample DELTA Debug Session on Alpha

Example B–4 (Cont.) DELTA Debugging Session of the Sample Program

Brk 2 at 000301AC

X1+000001AC! BSR R26,#XFFFF94 O (
PID= 00000024 PRCNAM= ERRFMT LOGINTIM= 16:24:01.03

X1+000001B0! BR R31,#XFFFFE1 ;P

Brk 1 at 00030164

X1+00000164! CMPEQ R0,#X14,R16

;B
1 00030164
2 000301AC

0,1;B

;B
2 000301AC

;P

Brk 2 at 000301AC)

X1+000001AC! BSR R26,#XFFFF94 O
PID= 00000025 PRCNAM= OPCOM LOGINTIM= 16:24:02.56

X1+000001B0! BR R31,#XFFFFE1 ;P

Brk 2 at 000301AC +>

X1+000001AC! BSR R26,#XFFFF94 O
PID= 00000026 PRCNAM= AUDIT_SERVER LOGINTIM=16:24:03.66

X1+000001B0! BR R31,#XFFFFE1 ;P

Brk 2 at 000301AC +?

X1+000001AC! BSR R26,#XFFFF94 X1 84! LDQ R16,#X0040(R2)
Linefeed +@

X1+00000088! LDL R18,#X0010(FP) Linefeed

X1+0000008C! JSR R26,(R26) .;B +A

;B
1 0003008C
2 000301AC

;P +B

Brk 1 at 0003008C +C

X1+0000008C! JSR R26,(R26) O
PID= 00000027 PRCNAM= JOB_CONTROL LOGINTIM= 16:24:06.83

X1+00000090! BIS R31,FP,SP ;P

Brk 2 at 000301AC

X1+000001AC! BSR R26,#XFFFF94 ;P
Brk 1 at 0003008C +D

X1+0000008C! JSR R26,(R26) O
PID= 00000028 PRCNAM= NETACP LOGINTIM= 16:24:22.86

X1+00000090! BIS R31,FP,SP ;P

Brk 2 at 000301AC

X1+000001AC! BSR R26,#XFFFF94

(continued on next page)

B–8 Sample DELTA Debug Session on Alpha

Sample DELTA Debug Session on Alpha

Example B–4 (Cont.) DELTA Debugging Session of the Sample Program
;B
1 0003008C
2 000301AC

0,2;B

0,1;B

;B

;P

PID= 00000029 PRCNAM= EVL LOGINTIM= 16:24:26.67
PID= 0000002A PRCNAM= REMACP LOGINTIM= 16:24:38.21
PID= 0000002B PRCNAM= LATACP LOGINTIM= 16:24:43.18
PID= 0000004C PRCNAM= GODDARD LOGINTIM= 07:40:49.34
PID= 0000002D PRCNAM= SYMBIONT_0001 LOGINTIM= 16:25:47.54
PID= 0000002F PRCNAM= MCCORMICK LOGINTIM= 16:27:45.27

Exit 00000001

8002228C! ADDL R15,SP,SP EXIT

! DELTA is enabled as the debugger.

" The example program LOG is invoked with DELTA.

DELTA displays a version number and the first executable instruction. The
base address of the program (determined from the map file) is virtual address
30000. The base address is placed in base register 1 with ;X. Now references
to an address can use the address offset notation. For example, a reference to
the first instruction is X1+200 (or the base address 30000 + offset 200). Also,
DELTA displays some address locations as offsets to the base address.

$ The instruction at address 30164 is displayed in instruction mode using !.
Its address location is expressed as the base address plus an offset. In the
listing file, the offset is 164. (This is the point where the return status from
SYS$GETJPIW is checked.) The base address in base address register X1 is
30000. The address reference, then, is X1+164. Note the + sign is implied
when not specified.

A simple breakpoint is set at that address using the ;B command. The
address reference for ;B is the . symbol, representing the current address.
X1+164;B would have done the same thing.

% The same commands (! command to view the instruction and ;B to set a
breakpoint) are repeated for the instruction at offset 1AC. (This is the point
at which the print_line function is called.)

& Program execution halts at the first breakpoint. DELTA displays the
breakpoint message (Brk 1 at 00030164) with the breakpoint number 1
and the virtual address. The virtual address is 30164, which is the base
address (30000) plus the offset 164. DELTA then displays the instruction in
instruction mode (CMPEQ R0,#X14,R16). The contents of the general register
0 are displayed with the / command. DELTA displays the contents of R0,
which is 1. Program execution continues using the ;P command.

’ The function print_line is executed, and the output (PID, process name, and
login time) is displayed.

Sample DELTA Debug Session on Alpha B–9

Sample DELTA Debug Session on Alpha

(The O command halts program execution at the instruction where the
function returns control (BR R31,#XFFFFE1). (This is the point at which
control passes to checking the conditions of the while loop.) Program
execution continues with ;P.

) Breakpoint 2 is encountered. DELTA displays the breakpoint message,
and the instruction. The function is executed with the O command and the
function output is displayed. The next instruction where the function returns
control is displayed. Program execution continues with the ;P command.

+> Breakpoint 2 is encountered again. DELTA displays the breakpoint message,
and the instruction. The function is executed with the O command and the
function output is displayed. The next instruction where the function returns
control is displayed. Program execution continues with the ;P command.

+? Breakpoint 2 is encountered again. The instruction at offset 84 (in print_line)
is displayed using !. This instruction is part of the setup for the call to the
printf function.

+@ Successive address locations are displayed by pressing the Linefeed key two
times. These instructions are the remainder of the setup and the call to
printf.

+A A breakpoint at X1+8C (the current address) is set using the ;B command.
This breakpoint is in the function print_line. The . symbol represents the
current address. Note that breakpoint 1 was cleared earlier and is now
reused by DELTA for the new breakpoint.

+B Program execution continues with the ;P command.

+C Program execution stops at the new breakpoint 1, which is in the print_line
function. DELTA displays the breakpoint message and the instruction at the
new breakpoint. The O command halts program execution at the instruction
where the function returns control, stepping over the routine call. Note the O
command must be used in this case, as opposed to the ;P command, because
the printf function resides in read-only protected memory. Program execution
is continued with the ;P command.

+D Program execution stops at breakpoint 1 in the print_line function. Program
execution is continued using a combination of the O and ;P commands.

B–10 Sample DELTA Debug Session on Alpha

Index

A
Address location

changing the value, 4–5
closing current, 4–13, 4–15
command strings (XDELTA), 2–1, 4–24
displaying, from other processes, 4–4
displaying contents of current, 4–4
displaying in ASCII, 4–9
displaying location pointed to by current

location, 4–16
displaying next, 4–13
displaying previous, 4–11
displaying range, 4–4
listing for executive images, 4–30
PCB, 2–1, 2–2, 2–3
referencing, 3–1
using base address and offsets, 3–2, 3–4

Address symbol
current, 2–1, 2–2

Alpha computers
requesting interrupts, 1–6

Application register (I64)
See AR symbol

Arithmetic operators, 2–4
Arithmetic shift, 2–4
AR symbol (Application register)

I64 systems, 2–2
ASCII

depositing string, 4–50
displaying contents, 4–9

B
Base register

loading, 4–42
symbol, 2–1

;B command, 4–17
Boot command

qualifiers for XDELTA, 1–4
Boot procedures for XDELTA, 1–4
Branch register (I64)

See BR symbol
Breakpoint

accessing initial on Alpha, 1–7
accessing initial on I64, 1–7

Breakpoint (cont’d)
accessing initial on VAX, 1–7
clearing, 4–17, 4–19
complex, 4–19
initial in multiprocessor environment, 1–7
initial in XDELTA, 1–7
multiprocessor environment, 1–7, 3–10, 4–45
proceeding from, 4–34
proceeding from initial, 1–7
range for DELTA, 4–17
range for XDELTA, 4–17
setting, 4–17, 4–18
showing, 4–17
simple, 4–18
XDELTA restriction on breakpoint 1, 1–4

Breakpoint command, 4–17
BR symbol (Branch register)

I64 systems, 2–2
Bugcheck information, 1–8

C
;C command, 4–21
Close Current Location, Open Next command,

4–13
Code pages

making writable, 3–9
’ command, 4–50
/ command, 4–4
= command, 4–51
[command, 4–3
" command, 4–9
Command list, 4–1
Complex breakpoint, 4–19
Control register (I64)

See CR symbol
Copy-on-reference

See CRF
CPU ID, 4–18, 4–45
Crash command, 4–21
CRF (copy-on-reference), 3–9
CR symbol (Control register)

I64 systems, 2–2

Index–1

D
;D command, 4–22
Debugging

at elevated IPL, 1–1
at IPL 0, 1–1
code that does not match compiler listing, 3–11
kernel mode code in process space, 3–8
privileged code, 1–1
user-mode programs, 1–1

Delta/XDelta Debugger
exiting from DELTA, 1–3
exiting from XDELTA, 1–8
invoking XDELTA, 1–3

DELTA/XDELTA Debugger
invoking DELTA, 1–2

Delta/XDelta utility
debugging an installed, protected, shareable

image, 3–9
Deposit ASCII String command, 4–50
Display information commands

See List commands
Display mode

how to set, 4–3
Display Value of Expression command, 4–51
Dump command, 4–22

E
;E command, 4–24
Eh? error message, 3–8
ESC command, 4–11
ESC key equivalent, 4–11
Evaluation precedence, 2–4
Exclamation Point (!) command, 4–7
Execute Command String command, 4–24
Executive images

listing names and addresses, 4–30, 4–40
Exit command, 4–12
Exiting

from DELTA, 1–3, 4–12
from XDELTA, 1–8

Expressions
See also Numeric expressions
forming numeric, 2–4
precedence in, 2–4

F
Floating point control register (Alpha)

See FPCR symbol
Floating point register (Alpha)

See FP
See FP symbol

Floating point register (I64)
See FP
See FP symbol

Floating point status register (I64)
See FPSR symbol

FP (Floating point register)
Alpha systems, 2–3
I64 systems, 2–3

FPCR symbol (Floating point control register)
Alpha systems, 2–2

FPSR symbol (Floating point status register)
I64 systems, 2–2

FP symbol (Floating point register)
Alpha systems, 2–2, 2–4
I64 systems, 2–2, 2–4

G
;G command, 4–26
General register (I64)

See Rn symbol
General register symbol, 3–6
Go command, 4–26
G symbol (Alpha), 2–2
G symbol (I64), 2–2
G symbol (VAX), 2–1

H
Hardcopy output command, 4–27
;H command, 4–27
H symbol (Alpha), 2–2
H symbol (I64), 2–2
H symbol (VAX), 2–1

I
;I command, 4–28
Image code

does not match compiler listing, 3–11
Images, sliced, 4–28, 4–30, 4–40
Immediate mode text display command, 4–52
INI$BRK routine, 3–9, 4–18

Alpha, 1–5, 1–7
I64, 1–5, 1–7
VAX, 1–4, 1–7

Initial breakpoint
See Breakpoint

Instructions
how to display, 4–7

Intel® Itanium® computers
requesting interrupt, 1–6

Interrupt request
on Alpha computers, 1–6
on Intel® Itanium® computers, 1–6
on VAX computers, 1–5
XDELTA, 1–4

Index–2

Interrupt stack frame
displaying contents, 4–37

Invoking
See also Boot procedures for XDELTA; Interrupt

request for XDELTA
DELTA, 1–2
XDELTA, 1–3

IPID, 4–4, 4–7, 4–9

K
Kernel mode code in process space

debugging, 3–8

L
;L command, 4–30

privileges required, 1–1
LINEFEED command, 4–13
Linefeed key equivalent, 4–13
Linker options file

used with XDELTA, 3–9
LIS file, 3–1, 3–3
List commands

Information About the Current Main Image and
Its Shareable Images, 4–28

name and Location of a Single Image, 4–40
Names and Addresses of Loaded Executive

Images, 4–30
Load Base Register command, 4–42

M
MAP file, 3–1, 3–2, 3–3
;M command, 4–33

privileges required, 1–1
Memory management

dumping region of memory, 4–22
Multiprocessor environment

initial breakpoint, 1–7
XDELTA breakpoints, 1–7, 3–10, 4–18, 4–45
XDELTA operation, 3–10

N
Numeric expressions, 2–4, 4–51

O
O command, 4–45
Open Location and Display Contents command,

4–4
Open Location and Display Contents in Instruction

Mode command, 4–7
Open Location and Display Indirect Location

command, 4–16

Open Location and Display Previous Location
command, 4–11

Operators
arithmetic, 2–4

Output
from DELTA, 1–1
from XDELTA, 1–2

P
P(ipr) symbol

internal processor register, 2–3
Page faults

preventing, 3–9
PCB address location, 2–1, 2–2, 2–3
PCB vector start symbolic address, 2–1, 2–2, 2–3
;P command, 4–34
PC symbol (program counter)

Alpha systems, 2–2
I64 systems, 2–3

PFN (physical page number), 4–24
Physical page number

See PFN
PID (process ID), 2–2
pid:PC symbol (Alpha), 2–2
PID:Rn symbol (Alpha), 2–2
Pn symbol (Pedicate register)

I64 systems, 2–3
Pn symbol (Processor status register)

VAX systems, 2–1
Predicate register (I64)

See Pn symbol
Printed output command, 4–27
Privileges

DELTA, 1–1
XDELTA, 1–2

Proceed from Breakpoint command, 4–34
Processes

how to set writable, 4–33
Processor status register

See PS symbol
Processor status register (Alpha)

See PS symbol
Processor status register (I64)

See PS symbol
Processor status register (VAX)

See Pn symbol
Program counter (Alpha)

See PC symbol
Program counter (I64)

See PC symbol
Program execution

continuing, 4–26
proceeding from breakpoint, 4–34
step execution, 4–48

Index–3

Program execution (cont’d)
step over subroutine execution, 4–45

PSL (processor status longword), 3–6
PS symbol (Processor status register)

Alpha systems, 2–2, 3–6
I64 systems, 2–3

Q
;Q command, 4–36
Q symbol (Alpha), 2–2
Q symbol (I64), 2–3
Q symbol (VAX), 2–1
Queue

validate, 4–36

R
Radix, 2–1
Redirecting output

DELTA, 1–1
XDELTA, 1–2

Registers
display contents, 4–4
examining general purpose registers of another

process, 4–6
loading base, 4–42
referencing, 3–6
symbol for base, 2–1
symbol for general, 3–6

RETURN command, 4–15
Rn symbol (general register)

Alpha systems, 2–2
I64 systems, 2–3
VAX systems, 2–1

S
SCH$GL_PCBVEC symbolic address, 2–1, 2–2,

2–3
S command, 4–48
Set All Processes Writable command, 4–33
Set Display Mode command, 4–3
$SETPRT

used with XDELTA, 3–9
Shareable images

debugging installed, protected, 3–9
list information about current main and, 4–28

Simple breakpoint, 4–18
Single-step

fails, 3–10
Sliced images, 4–28, 4–30, 4–40
Stack pointer symbol, 3–6
Step Instruction command, 4–48
Step Instruction over Subroutine command, 4–45
String

depositing ASCII, 4–50

\string\ command, 4–52
Symbol

DELTA, 2–1
XDELTA, 2–1

. symbol (Alpha), 2–2

. symbol (I64), 2–2

. symbol (VAX), 2–1
System space prefix symbol, 2–1, 2–2

T
TAB command, 4–16
;T command, 4–37
Terminating DELTA, 4–12
Terminating DELTA/XDELTA commands, 4–15

V
Validate queue command, 4–36
Value (last) displayed symbol, 2–1, 2–2, 2–3
VAX computers

requesting interrupt, 1–5
Video Terminal Display command, 4–27

W
;W command, 4–40

X
;X command, 4–42
XE base register, 4–24
XE base register (VAX), 2–1
XF base register, 4–24
XF base register (VAX), 2–1
Xn symbol (Alpha)

X4 symbol, 2–2
X5 symbol, 2–2

Xn symbol (I64)
X4 symbol, 2–3
X5 symbol, 2–3

Xn symbol(VAX)
X4 symbol, 2–1
X5 symbol, 2–1

Index–4

