
HP OpenVMS Programming
ConceptsManual,Volume II
Order Number: AA–PV67H–TK

January 2005

This manual is Volume II of two volumes. It describes the features that
the HP OpenVMS operating system provides to programmers.

Revision/Update Information: This manual supersedes the HP
OpenVMS Programming Concepts
Manual, Version 7.3-1.

Software Version: OpenVMS I64 Version 8.2
OpenVMS Alpha Version 8.2

Hewlett Packard Company
Palo Alto, California

© 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group.

X/Open is a registered trademark, and the X device is a trademark of X/Open Company Ltd. in the
UK and other countries.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Printed in the U.S.

ZK6641

The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xxi

Part I OpenVMS Programming Interfaces: Calling a System Routine

17 Call Format to OpenVMS Routines

17.1 Overview . 17–1
17.2 Format Heading . 17–2
17.2.1 Procedure Call Format . 17–3
17.2.2 JSB Call Format (VAX only) . 17–4
17.3 Returns Heading . 17–4
17.3.1 Condition Values Returned in a Register . 17–4
17.3.2 Other Returned Values . 17–5
17.3.3 Condition Values Signaled . 17–6
17.4 Arguments Heading . 17–6
17.4.1 OpenVMS Usage Entry . 17–6
17.4.2 Type Entry . 17–7
17.4.3 Access Entry . 17–9
17.4.4 Mechanism Entry . 17–10
17.4.5 Explanatory Text . 17–10
17.5 Condition Values Returned Heading . 17–11
17.5.1 Condition Values Returned . 17–12
17.5.2 Condition Values Returned in an I/O Status Block 17–12
17.5.3 Condition Values Returned in a Mailbox . 17–13
17.5.4 Condition Values Signaled . 17–13

18 Basic Calling Standard Conventions

18.1 Hardware Registers . 18–1
18.1.1 Register Usage for OpenVMS VAX . 18–1
18.1.2 Register Usage for OpenVMS Alpha . 18–2
18.1.2.1 Integer Registers . 18–2
18.1.2.2 Floating-Point Registers . 18–3
18.1.3 Register Usage for OpenVMS I64 . 18–3
18.1.3.1 Partitioning . 18–4
18.1.3.2 I64 General Register Usage . 18–4
18.1.3.3 I64 Floating-Point Register Usage . 18–7
18.1.3.4 I64 Predicate Register Usage . 18–7
18.1.3.5 I64 Branch Register Usage . 18–8
18.2 Stack Usage for Procedures . 18–8
18.2.1 Stack Procedure Usage for VAX . 18–8
18.2.1.1 Calling Sequence . 18–10
18.2.1.2 Call Frames on Return . 18–10

iii

18.2.2 Stack Procedure Usage for Alpha . 18–10
18.2.2.1 Fixed-Size Stack Frame . 18–10
18.2.2.2 Variable-Size Stack Frame . 18–11
18.2.3 Stack Procedure Usage for I64 . 18–13
18.2.3.1 Procedure Types . 18–14
18.2.3.2 Memory Stack . 18–15
18.2.3.3 Procedure Frames . 18–15
18.2.3.4 Register Stack . 18–17
18.2.3.4.1 Input and Local Registers . 18–17
18.2.3.4.2 Output Registers . 18–18
18.2.3.4.3 Rotating Registers . 18–18
18.2.3.4.4 Frame Markers . 18–19
18.2.3.4.5 Backing Store for Register Stack . 18–19
18.3 Procedure Representation . 18–20
18.4 Argument List . 18–20
18.5 Argument Passing Mechanisms . 18–24
18.5.1 Passing Arguments by Value . 18–27
18.5.2 Passing Arguments by Reference . 18–27
18.5.3 Passing Arguments by Descriptor . 18–29
18.5.4 Parameter Passing Mechanisms for I64 . 18–31
18.5.4.1 Allocation of Parameter Slots . 18–31
18.5.5 Normal Register Parameters . 18–32
18.5.6 Argument Information (AI) Register . 18–34
18.5.7 Memory Stack Parameters . 18–36
18.5.8 Variable Argument Lists . 18–36
18.5.9 Pointers to Formal Parameters . 18–36
18.5.9.1 Languages Other than C . 18–37
18.5.10 Rounding Floating-Point Values . 18–37
18.6 Passing Scalars as Arguments . 18–37
18.7 Passing Arrays as Arguments . 18–37
18.8 Passing Strings as Arguments . 18–37
18.9 Combinations of Descriptor Class and Data Type 18–38
18.10 Function Value Return . 18–41
18.11 Condition Value Return . 18–42
18.12 Macro-32 Register Usage and Mapping for I64 . 18–43
18.12.1 I64 Register Usage Compared with Alpha and VAX 18–43
18.12.1.1 I64 Register Mapping in MACRO Compiler 18–44
18.12.1.2 Use of MACRO Linkage Directives to Preserve Registers 18–46
18.12.2 High-Level Language Compiler Register Mapping 18–47

19 Calling Run-Time Library Routines

19.1 Overview . 19–1
19.2 Call Instructions . 19–3
19.2.1 Facility Prefix and Routine Name . 19–3
19.2.2 The RTL Call Entry . 19–4
19.2.2.1 JSB Call Entries (VAX Only) . 19–6
19.2.3 Returns from an RTL Routine . 19–6
19.2.3.1 Facility Return Status and Condition Value Symbols 19–6
19.3 Calling a Library Procedure in VAX MACRO (VAX Only) 19–7
19.3.1 VAX MACRO Calling Sequence . 19–7
19.3.2 VAX MACRO CALLS Instruction Example . 19–8
19.3.3 VAX MACRO CALLG Instruction Example . 19–9
19.3.4 VAX MACRO JSB Entry Points . 19–9

iv

19.3.5 Return Status . 19–10
19.3.6 Function Return Values in VAX MACRO (VAX and Alpha) 19–11
19.4 Calling a Library Routine in BLISS . 19–12
19.4.1 BLISS Calling Sequence . 19–12
19.4.2 Accessing a Return Status in BLISS . 19–13
19.4.3 Calling JSB Entry Points from BLISS . 19–13

20 Calling System Services

20.1 Overview . 20–1
20.2 Preserving System Integrity . 20–2
20.2.1 User Privileges . 20–2
20.2.2 Resource Quotas . 20–2
20.2.3 Access Modes . 20–2
20.3 System Service Call Entry . 20–3
20.4 System Service Completion . 20–5
20.4.1 Asynchronous and Synchronous System Services 20–5
20.4.2 System Service Resource Wait Mode . 20–6
20.4.3 Condition Values Returned from System Services 20–7
20.4.4 Testing the Condition Value . 20–8
20.4.4.1 Testing the Condition Value With $VMS_STATUS_SUCCESS

Macro . 20–8
20.4.5 Special Condition Values Using Symbolic Codes 20–9
20.4.6 Testing the Return Condition Value for VAX MACRO 20–10
20.4.7 System Messages Generated by Condition Values 20–10
20.5 Program Examples with System Service Calls . 20–12

21 STARLET Structures and Definitions for C Programmers

21.1 SYS$STARLET_C.TLB Equivalency to STARLETSD.TLB 21–1
21.2 NEW STARLET Definitions for C . 21–2

Part II I/O, System, and Programming Routines

22 Run-Time Library Input/Output Operations

22.1 Choosing I/O Techniques . 22–1
22.2 Using SYS$INPUT and SYS$OUTPUT . 22–3
22.2.1 Default Input and Output Devices . 22–3
22.2.2 Reading and Writing to Alternate Devices and External Files 22–4
22.3 Working with Simple User I/O . 22–4
22.3.1 Default Devices for Simple I/O . 22–4
22.3.2 Getting a Line of Input . 22–4
22.3.3 Getting Several Lines of Input . 22–5
22.3.4 Writing Simple Output . 22–6
22.4 Working with Complex User I/O . 22–7
22.4.1 HP DECwindows Motif . 22–7
22.4.1.1 DECwindows Server Height or Width Exceeding 32767 (VAX

Only) . 22–8
22.4.2 SMG$ Run-Time Routines . 22–8
22.4.3 Pasteboards . 22–10
22.4.3.1 Erasing a Pasteboard . 22–10
22.4.3.2 Deleting a Pasteboard . 22–10
22.4.3.3 Setting Screen Dimensions and Background Color 22–10

v

22.4.4 Virtual Displays . 22–11
22.4.4.1 Creating a Virtual Display . 22–11
22.4.4.2 Pasting Virtual Displays . 22–12
22.4.4.3 Rearranging Virtual Displays . 22–14
22.4.4.4 Removing Virtual Displays . 22–15
22.4.4.5 Modifying a Virtual Display . 22–16
22.4.4.6 Using Spawned Subprocesses . 22–17
22.4.5 Viewports . 22–18
22.4.6 Writing Text to Virtual Display . 22–18
22.4.6.1 Positioning the Cursor . 22–18
22.4.6.2 Writing Data Character by Character . 22–19
22.4.6.3 Writing Data Line by Line . 22–20
22.4.6.4 Drawing Lines . 22–21
22.4.6.5 Deleting Text . 22–22
22.4.7 Using Menus . 22–22
22.4.8 Reading Data . 22–23
22.4.8.1 Reading from a Display . 22–23
22.4.8.2 Reading from a Virtual Keyboard . 22–24
22.4.8.3 Reading from the Keypad . 22–25
22.4.8.4 Reading Composed Input . 22–28
22.4.9 Controlling Screen Updates . 22–30
22.4.10 Maintaining Modularity . 22–30
22.5 Performing Special Input/Output Actions . 22–32
22.5.1 Using Ctrl/C and Ctrl/Y Interrupts . 22–32
22.5.2 Detecting Unsolicited Input . 22–35
22.5.3 Using the Type-Ahead Buffer . 22–38
22.5.4 Using Echo . 22–39
22.5.5 Using Timeout . 22–40
22.5.6 Converting Lowercase to Uppercase . 22–41
22.5.7 Performing Line Editing and Control Actions 22–41
22.5.8 Using Broadcasts . 22–42
22.5.8.1 Default Handling of Broadcasts . 22–42
22.5.8.2 How to Create Alternate Broadcast Handlers 22–42

23 System Service Input/Output Operations

23.1 Overview of OpenVMS QIO Operations . 23–2
23.2 Quotas, Privileges, and Protection . 23–2
23.2.1 Buffered I/O Quota . 23–3
23.2.2 Buffered I/O Byte Count Quota . 23–3
23.2.3 Direct I/O Quota . 23–3
23.2.4 AST Quota . 23–3
23.2.5 Physical I/O Privilege . 23–3
23.2.6 Logical I/O Privilege . 23–4
23.2.7 Mount Privilege . 23–4
23.2.8 Share Privilege . 23–4
23.2.9 Volume Protection . 23–4
23.2.10 Device Protection . 23–5
23.2.11 System Privilege . 23–5
23.2.12 Bypass Privilege . 23–5
23.3 Physical, Logical, and Virtual I/O . 23–5
23.3.1 Physical I/O Operations . 23–5
23.3.2 Logical I/O Operations . 23–6
23.3.3 Virtual I/O Operations . 23–6

vi

23.4 I/O Function Encoding . 23–10
23.4.1 Function Codes . 23–10
23.4.2 Function Modifiers . 23–11
23.5 Assigning Channels . 23–11
23.5.1 Using the Share Privilege with the SYS$ASSIGN and SYS$DASSGN

Services . 23–12
23.6 Queuing I/O Requests . 23–12
23.7 Synchronizing Service Completion . 23–13
23.8 Recommended Method for Testing Asynchronous Completion 23–18
23.9 Synchronous and Asynchronous Forms of Input/Output Services 23–19
23.9.1 Reading Operations with SYS$QIOW . 23–19
23.9.2 Reading Operations with SYS$QIO . 23–21
23.9.3 Write Operations with SYS$QIOW . 23–22
23.10 I/O Completion Status . 23–23
23.11 Deassigning I/O Channels . 23–24
23.12 Using Complete Terminal I/O . 23–24
23.13 Canceling I/O Requests . 23–26
23.14 Logical Names and Physical Device Names . 23–26
23.15 Device Name Defaults . 23–27
23.16 Obtaining Information About Physical Devices . 23–28
23.16.1 Checking the Terminal Device . 23–28
23.16.2 Terminal Characteristics . 23–29
23.16.3 Record Terminators . 23–31
23.16.4 File Terminators . 23–31
23.17 Device Allocation . 23–31
23.17.1 Implicit Allocation . 23–33
23.17.2 Deallocation . 23–33
23.18 Mounting, Dismounting, and Initializing Volumes 23–33
23.18.1 Mounting a Volume . 23–33
23.18.1.1 Calling the SYS$MOUNT System Service 23–34
23.18.1.2 Calling the SYS$DISMOU System Service 23–35
23.18.2 Initializing Volumes . 23–36
23.18.2.1 Calling the Initialize Volume System Service 23–36
23.18.2.2 Expanding Volumes Dynamically . 23–38
23.19 Formatting Output Strings . 23–38
23.20 Mailboxes . 23–39
23.20.1 Mailbox Name . 23–43
23.20.2 System Mailboxes . 23–43
23.20.3 Mailboxes for Process Termination Messages . 23–44
23.21 Example of Using I/O Services . 23–45
23.22 Fast I/O and Fast Path Features (Alpha and I64 Only) 23–48
23.22.1 Fast I/O (Alpha and I64 Only) . 23–48
23.22.1.1 Fast I/O Benefits . 23–48
23.22.1.2 Buffer Objects . 23–49
23.22.2 Fast Path (Alpha and I64 Only) . 23–51
23.22.2.1 Fast Path Features and Benefits . 23–51
23.22.2.2 Additional Information About Fast Path . 23–52

vii

24 Using Run-Time Library Routines to Access Operating System
Components

24.1 System Service Access Routines . 24–1
24.2 Access to the Command Language Interpreter . 24–2
24.2.1 Obtaining the Command Line . 24–3
24.2.2 Chaining from One Program to Another . 24–5
24.2.3 Executing a CLI Command . 24–7
24.2.4 Using Symbols and Logical Names . 24–8
24.2.5 Disabling and Enabling Control Characters . 24–8
24.2.6 Creating and Connecting to a Subprocess . 24–9
24.3 Access to VAX Machine Instructions . 24–9
24.3.1 Variable-Length Bit Field Instruction Routines 24–10
24.3.2 Integer and Floating-Point Routines . 24–12
24.3.3 Queue Access Routines . 24–12
24.3.4 Character String Routines . 24–14
24.3.5 Miscellaneous Instruction Routines . 24–15
24.4 Processwide Resource Allocation Routines . 24–16
24.4.1 Allocating Logical Unit Numbers . 24–16
24.4.2 Allocating Event Flag Numbers . 24–17
24.5 Performance Measurement Routines . 24–17
24.6 Output Formatting Control Routines . 24–20
24.7 Miscellaneous Interface Routines . 24–21
24.7.1 Indicating Asynchronous System Trap in Progress 24–21
24.7.2 Create a Directory or Subdirectory . 24–22
24.7.3 File Searching Routines . 24–22
24.7.4 Inserting an Entry into a Balanced Binary Tree 24–29

25 Using Cross-Reference Routines

25.1 How to Use the Cross-Reference Routines . 25–1
25.2 $CRFCTLTABLE Macro . 25–2
25.3 $CRFFIELD Macro . 25–3
25.4 $CRFFIELDEND Macro . 25–4
25.5 Cross-Reference Output . 25–4
25.6 Example . 25–6
25.6.1 Defining Control Tables . 25–6
25.6.2 Inserting Table Information . 25–8
25.6.3 Formatting Information for Output . 25–9
25.7 How to Link to the Cross-Reference Shareable Image 25–10

26 Shareable Resources

26.1 Sharing Program Code . 26–1
26.1.1 Object Libraries . 26–2
26.1.1.1 System- and User-Defined Default Object Libraries 26–2
26.1.1.2 How the Linker Searches Libraries . 26–2
26.1.1.3 Creating an Object Library . 26–2
26.1.1.4 Managing an Object Library . 26–2
26.1.2 Text and Macro Libraries . 26–3
26.2 Shareable Images . 26–3
26.3 Symbols . 26–3
26.3.1 Defining Symbols . 26–3
26.3.2 Local and Global Symbols . 26–4

viii

26.3.3 Resolving Global Symbols . 26–4
26.3.3.1 Explicitly Named Modules and Libraries . 26–5
26.3.3.2 System Default Libraries . 26–5
26.3.3.3 User Default Libraries . 26–5
26.3.3.4 Making a Library Available for Systemwide Use 26–5
26.3.3.5 Macro Libraries . 26–5
26.3.4 Sharing Data . 26–6
26.3.4.1 Installed Common Blocks . 26–6
26.3.4.2 Using Global Sections . 26–9
26.3.4.3 Synchronizing Access to Global Sections . 26–13
26.3.4.4 RMS Shared Files . 26–13

27 System Time Operations

27.1 System Time Format . 27–1
27.1.1 Absolute Time Format . 27–1
27.1.2 Delta Time Format . 27–2
27.2 Time Conversion and Date/Time Manipulation . 27–2
27.2.1 Time Conversion Routines . 27–2
27.2.1.1 Calculating and Displaying Time with SYS$GETTIM and

LIB$SUBX . 27–4
27.2.1.2 Obtaining Absolute Time with SYS$ASCTIM and

SYS$BINTIM . 27–6
27.2.1.3 Obtaining Delta Time with SYS$BINTIM 27–6
27.2.1.4 Obtaining Numeric and ASCII Time with SYS$NUMTIM 27–7
27.2.2 Date/Time Manipulation Routines . 27–7
27.3 Timer Routines Used to Obtain and Set Current Time 27–8
27.3.1 Obtaining Current Time and Date with LIB$DATE_TIME 27–9
27.3.2 Obtaining Current Time and Date with SYS$GETTIM 27–10
27.3.3 Setting the Current Time with SYS$SETIME 27–11
27.4 Routines Used for Timer Requests . 27–13
27.4.1 Setting Timer Requests with SYS$SETIMR . 27–14
27.4.2 Canceling a Timer Request with SYS$CANTIM 27–16
27.4.3 Scheduling Wakeups with SYS$WAKE . 27–16
27.4.4 Canceling a Scheduled Wakeup with SYS$CANWAK 27–17
27.4.5 Executing a Program at Timed Intervals . 27–18
27.5 Routines Used for Timer Statistics . 27–18
27.6 Date/Time Formatting Routines . 27–21
27.6.1 Performing Date/Time Logical Initialization . 27–21
27.6.2 Selecting a Format . 27–24
27.6.2.1 Formatting Run-Time Mnemonics . 27–24
27.6.2.2 Specifying Formats at Run Time . 27–26
27.6.2.3 Specifying Input Formats at Run Time . 27–26
27.6.2.4 Specifying Output Formats at Run Time . 27–29
27.6.2.5 Specifying Formats at Compile Time . 27–31
27.6.2.6 Specifying Input Format Mnemonics at Compile Time 27–32
27.6.2.7 Specifying Output Formats at Compile Time 27–33
27.6.3 Converting with the LIB$CONVERT_DATE_STRING Routine 27–33
27.6.4 Retrieving with LIB$GET_DATE_FORMAT Routine 27–34
27.6.4.1 Using User-Defined Output Formats . 27–34
27.7 Coordinated Universal Time Format . 27–36

ix

28 File Operations

28.1 File Attributes . 28–1
28.1.1 Specifying File Attributes . 28–2
28.2 File Access Strategies . 28–2
28.3 File Protection and Access . 28–2
28.3.1 Read-Only Access . 28–3
28.3.2 Shared Access . 28–3
28.4 File Access and Mapping . 28–4
28.4.1 Using SYS$CRMPSC . 28–4
28.4.1.1 Mapping a File . 28–5
28.4.1.2 Using the User-Open Routine . 28–10
28.4.1.3 Initializing a Mapped Database . 28–11
28.4.1.4 Saving a Mapped File . 28–11
28.5 Opening and Updating a Sequential File . 28–12
28.6 User-Open Routines . 28–15
28.6.1 Opening a File . 28–15
28.6.1.1 Specifying USEROPEN . 28–15
28.6.1.2 Writing the User-Open Routine . 28–16
28.6.1.3 Setting FAB and RAB Fields . 28–17

29 Overview of Extended File Specifications (Alpha and I64 Only)

29.1 Benefits of Extended File Specifications . 29–1
29.2 Features of Extended File Specifications . 29–2
29.2.1 ODS-5 Volume Structure . 29–2
29.2.1.1 Long File Names . 29–2
29.2.1.2 More Characters Legal Within File Names 29–2
29.2.1.3 Preservation of Case . 29–2
29.2.2 Deep Directory Structures . 29–3
29.2.2.1 Directory Naming Syntax . 29–4
29.3 Considerations Before Enabling ODS-5 Volumes . 29–4
29.3.1 Considerations for System Management . 29–4
29.3.2 Considerations for Users . 29–5
29.3.2.1 Mixed-Version Support . 29–5
29.3.2.2 Mixed-Architecture Support . 29–5
29.3.3 NFS Support for Extended File Specifications 29–6
29.3.4 Considerations for Applications . 29–6
29.4 Extended File Naming Considerations for OpenVMS Application

Developers . 29–7
29.4.1 Evaluating Your Current Support Status . 29–7
29.4.2 Default Support . 29–8
29.4.3 No Support for Extended File Names . 29–8
29.4.4 No Support for ODS-5 Volumes . 29–8
29.5 Upgrading an Application to Support Extended File Specifications 29–8
29.5.1 Upgrading to Default Support . 29–9
29.5.1.1 Providing Support for ODS-5 . 29–9
29.5.1.2 Providing Support for Extended File Naming 29–9
29.5.2 Upgrading to Full Support . 29–10

x

30 Distributed Transaction Manager (DECdtm)

30.1 Overview of DECdtm . 30–1
30.2 Single Branch Application . 30–2
30.2.1 Calling DECdtm System Services for a Single Branch Application . . . 30–3
30.2.1.1 Sample Single Branch Transaction . 30–3
30.3 Multiple Branch Application . 30–4
30.3.1 Resource Manager Use of the Branch Services 30–5
30.3.2 Branch Synchronization . 30–5
30.4 Default Transactions . 30–6
30.4.1 Multithreaded Applications . 30–7
30.5 Resource Manager Interface . 30–7
30.5.1 Creating RM Instances and Participants . 30–8
30.5.2 Reporting an Event Notification . 30–8
30.5.3 Responding to Events . 30–10
30.5.4 Aborting a Transaction . 30–12
30.5.5 Performing Recovery . 30–12
30.5.6 Volatile Resource Manager . 30–13
30.5.7 Modifying the DECdtm Log . 30–13
30.5.8 Transaction Class . 30–14
30.6 Communication Resource Manager Interface . 30–14
30.7 DECdtm XA Interface (Alpha Only) . 30–15
30.7.1 Using the XA Veneer . 30–17
30.7.1.1 Transaction Demarcation . 30–17
30.7.1.2 Locking Between Processes . 30–18
30.7.1.3 Binding to the XA Interface . 30–18
30.7.1.3.1 Static Binding . 30–19
30.7.1.3.2 Dynamic Binding . 30–19
30.7.1.3.3 Resource Manager Instances . 30–19
30.7.1.3.4 Hints . 30–20
30.7.1.4 Implementation Characteristics . 30–20
30.7.1.4.1 Threads . 30–21
30.7.1.4.2 Heuristic Decision . 30–21
30.7.1.4.3 Resource Manager Synchronization . 30–21
30.7.1.4.4 Asynchronous Operation . 30–21
30.7.1.4.5 Resource Manager Switch . 30–21
30.7.1.4.6 Image Termination and Recovery . 30–22
30.7.1.4.7 Transaction Branch Identification . 30–22
30.7.1.4.8 Error Handling . 30–22
30.7.1.4.9 XA Functions . 30–22
30.7.1.5 Recovery Processes . 30–24
30.7.1.6 Error Logging . 30–25
30.7.1.7 Tracing . 30–25
30.7.2 Nonstandard XA Functions . 30–26

ax_bind_decdtm_2 . 30–27
ax_close_decdtm . 30–29
ax_lock_decdtm . 30–30
ax_open_decdtm . 30–31
ax_unbind_decdtm . 30–32
ax_unlock_decdtm . 30–33

xi

30.7.3 Using the XA Gateway . 30–34
30.7.3.1 Gateway Configuration . 30–34
30.7.3.2 XA RM Configuration . 30–35
30.7.3.2.1 Hints . 30–36
30.7.3.3 Implementation Characteristics . 30–36
30.7.3.3.1 Default Transaction . 30–36
30.7.3.3.2 Locking Between Processes . 30–36
30.7.3.3.3 Read-Only Optimization . 30–37
30.7.3.3.4 Blocking Conditions . 30–37
30.7.3.3.5 XA Return Values . 30–37
30.7.3.4 Error Logging . 30–38
30.7.3.5 Tracing . 30–38
30.7.4 XA Gateway Control Program (XGCP) Utility 30–38
30.7.4.1 XGCP Description . 30–38
30.7.4.2 XGCP Usage Summary . 30–39
30.7.4.3 XGCP Description . 30–39
30.7.4.4 XGCP Commands . 30–39
30.8 Program Examples Using DECdtm . 30–39
30.8.1 Fortran Program Example . 30–39
30.8.2 C Program Examples . 30–42
30.8.2.1 $DECLARE_RMW . 30–43
30.8.2.2 $GET_DEFAULT_TRANS and $JOIN_RMW 30–43
30.8.2.3 Event Handler and $ACK_EVENT . 30–44
30.8.2.4 $GETDTI and $SETDTI . 30–45
30.8.3 BLISS Program Examaple . 30–46

31 Creating User-Written System Services

31.1 Overview . 31–1
31.2 Writing a Privileged Routine (User-Written System Service) 31–3
31.3 Creating a Privileged Shareable Image (VAX Only) 31–4
31.3.1 Creating User-Written Dispatch Routines on VAX Systems 31–4
31.3.2 Creating a PLV on VAX Systems . 31–5
31.3.3 Declaring Privileged Routines as Universal Symbols Using Transfer

Vectors on VAX Systems . 31–9
31.4 Creating a User-Written System Service (Alpha and I64 Only) 31–9
31.4.1 Creating a PLV on Alpha and I64 Systems . 31–9
31.4.2 Declaring Privileged Routines as Universal Symbols Using Symbol

Vectors on Alpha and I64 Systems . 31–13

32 System Security Services

32.1 Overview of the Operating System’s Protection Scheme 32–1
32.2 Identifiers . 32–2
32.2.1 Identifier Format . 32–2
32.2.2 General Identifiers . 32–2
32.2.3 System-Defined Identifiers . 32–3
32.2.4 UIC Identifiers . 32–3
32.2.5 Facility Identifiers . 32–4
32.2.6 Identifier Attributes . 32–5
32.3 Rights Database . 32–8
32.3.1 Initializing a Rights Database . 32–9

xii

32.3.2 Using System Services to Affect a Rights Database 32–10
32.3.2.1 Translating Identifier Values and Identifier Names 32–11
32.3.2.2 Adding Identifiers and Holders to the Rights Database 32–12
32.3.2.3 Determining Holders of Identifiers . 32–13
32.3.2.4 Determining Identifiers Held by a Holder 32–13
32.3.2.5 Modifying the Identifier Record . 32–13
32.3.2.6 Modifying a Holder Record . 32–14
32.3.2.7 Removing Identifiers and Holders from the Rights Database 32–16
32.3.3 Search Operations . 32–16
32.3.4 Modifying a Rights List . 32–19
32.4 Persona (Alpha and I64 Only1) . 32–19
32.4.1 Impersonation Services (Alpha and I64 Only) 32–20
32.4.1.1 Using Impersonation System Services . 32–20
32.4.2 Per-Thread Security (Alpha and I64 Only) . 32–21
32.4.2.1 Previous Security Model . 32–21
32.4.2.2 Per-Thread Security Model . 32–21
32.4.3 Persona Extensions (Alpha and I64 Only) . 32–22
32.5 Managing Object Protection . 32–23
32.5.1 Protected Objects . 32–23
32.5.2 Object Security Profile . 32–24
32.5.2.1 Displaying the Security Profile . 32–24
32.5.2.2 Modifying the Security Profile . 32–24
32.5.3 Types of Access Control Entries . 32–24
32.5.3.1 Design Considerations . 32–25
32.5.3.2 Translating ACEs . 32–25
32.5.3.3 Creating and Maintaining ACEs . 32–26
32.6 Protected Subsystems . 32–27
32.7 Security Auditing . 32–28
32.8 Checking Access Protection . 32–28
32.8.1 Creating a Security Profile . 32–29
32.8.2 SYS$CHKPRO System Sevice . 32–29
32.8.3 SYS$CHECK_ACCESS System Service . 32–29
32.9 SYS$CHECK_PRIVILEGE . 32–30
32.10 Implementing Site-Specific Security Policies . 32–30
32.10.1 Creating Loadable Security Services . 32–30
32.10.1.1 Preparing and Loading a System Service . 32–31
32.10.1.2 Removing an Executive Loaded Image . 32–33
32.10.2 Installing Filters for Site-Specific Password Policies 32–33
32.10.2.1 Creating a Shareable Image . 32–33
32.10.2.2 Installing a Shareable Image . 32–33

33 Authentication and Credential Management (ACM) System Service
(Alpha and I64 Only)

33.1 Identification, Authentication, and Authorization 33–1
33.2 ACME Subsystem Components . 33–2
33.3 SYS$ACM[W] Call Mechanics . 33–4
33.3.1 SYS$ACM[W] Function Codes . 33–4
33.3.2 SYS$ACM[W] Function Modifiers . 33–5
33.3.3 Status Returned by the SYS$ACM[W] System Service 33–6
33.3.3.1 When the Return Status Indicates Failure 33–6
33.3.3.2 When the Return Status Indicates Success 33–6
33.3.3.2.1 When the Primary Status Indicates an Item Code Failure . . . 33–7
33.3.3.2.2 When the Primary Status is ACME$_OPINCOMPL 33–7

xiii

33.3.4 Item Codes . 33–7
33.3.4.1 Common vs. ACME-Specific Item Codes . 33–7
33.3.4.2 Distinguishing Between Input and Output Item Codes 33–8
33.3.4.3 Text vs. Nontext Items . 33–8
33.3.4.4 Single-Valued vs. Multivalued Item Semantics 33–8
33.3.5 Item Lists . 33–9
33.3.5.1 Item List Chains . 33–9
33.3.6 The ACM Communications Buffer and Itemset 33–9
33.3.7 Itemset Entries . 33–10
33.3.8 Synchronization of Your System Service Calls 33–11
33.4 Authentication Techniques . 33–11
33.4.1 Nondialogue Mode Operation . 33–11
33.4.2 Dialogue Mode Operation . 33–12
33.4.3 Login Categories and Classes . 33–13
33.4.4 Principal Names . 33–14
33.4.5 Targeting Your System Service Calls . 33–15
33.4.5.1 DOI Names . 33–15
33.4.5.2 When to Use DOI_NAME vs. DOI_ID . 33–15
33.4.5.3 Looking Up DOI and ACME IDs . 33–16
33.4.6 Determining ACME Information with the Query Function 33–16
33.4.7 Reporting an Event . 33–17
33.5 Authentication Scenarios . 33–17
33.5.1 Simple User Authentication . 33–17
33.5.2 Evaluating Status Codes . 33–19
33.5.3 Password Change Dialogue . 33–19
33.5.4 Reauthentication of Current User . 33–21
33.5.5 Manipulating Personas . 33–21
33.5.6 Using CREPRC on Behalf of a User . 33–22
33.6 Authentication Examples . 33–24
33.6.1 Example Using Nondialogue Mode (C) . 33–24
33.6.2 Example Using Dialogue Mode (Pascal) . 33–31

34 Logical Name and Logical Name Tables

34.1 Logical Name System Services and DCL Commands 34–1
34.1.1 Logical Names, Equivalence Names, and Search Lists 34–2
34.1.2 Logical Name Tables . 34–3
34.1.2.1 Logical Name Directory Tables . 34–3
34.1.2.2 Process, Job, Group, System and Clusterwide Default Logical

Name Tables . 34–4
34.1.2.2.1 Process Logical Name Table . 34–4
34.1.2.2.2 Job Logical Name Table . 34–5
34.1.2.2.3 Group Logical Name Table . 34–6
34.1.2.2.4 System Logical Name Table . 34–6
34.1.2.2.5 Clusterwide Logical Name Table . 34–6
34.1.3 Logical Name Table Names and Search Lists 34–7
34.1.4 Specifying the Logical Name Table Search List 34–8
34.2 Creating User-Defined and Clusterwide Logical Name Tables 34–8
34.2.1 Creating Clusterwide Logical Name Tables . 34–9
34.3 Checking Access and Protection . 34–10
34.4 Specifying Access Modes . 34–10
34.5 Translating Logical Names . 34–11
34.6 Specifying Attributes . 34–13
34.7 Establishing Logical Name Table Quotas . 34–15

xiv

34.7.1 Directory Table Quotas . 34–15
34.7.2 Default Logical Name Table Quotas . 34–15
34.7.3 Job Logical Name Table Quotas . 34–15
34.7.4 User-Defined Logical Name Table Quotas . 34–16
34.8 Interprocess Communication . 34–16
34.9 Using Logical Name and Equivalence Name Format Conventions 34–17
34.10 Using Logical Names and Logical Name Table System Services in

Programs . 34–18
34.10.1 Using SYS$CRELNM to Create a Logical Name 34–18
34.10.2 Using SYS$CRELNT to Create Logical Name Tables 34–21
34.10.3 Using SYS$DELLNM to Delete Logical Names 34–21
34.10.4 Using SYS$TRNLNM to Translate Logical Names 34–22
34.10.5 Using SYS$CRELNM, SYS$TRNLNM, and SYS$DELLNM in a

Program Example . 34–24

35 Image Initialization

35.1 Initializing an Image . 35–1
35.2 Initializing an Argument List . 35–5
35.3 Declaring Initialization Routines . 35–6
35.4 Dispatching to Initialization Routines . 35–7
35.5 Initialization Routine Options . 35–7
35.6 Initialization Example . 35–7

Part III Appendixes and Glossary

A Generic Macros for Calling System Services

A.1 Using Macros to Construct Argument Lists . A–2
A.1.1 Specifying Arguments with the $name_S Macro and the $name Macro

. A–2
A.1.2 Conventions for Specifying Arguments to System Services A–4
A.1.3 Defining Symbolic Names for Argument List Offsets: $name and

$nameDEF . A–4
A.2 Using Macros to Call System Services . A–5
A.2.1 The $name_S Macro . A–6
A.2.1.1 Example of $name_S Macro Call . A–6
A.2.2 The $name_G Macro . A–6
A.2.3 The $name Macro . A–6
A.2.4 Example of $name and $name_G Macro Calls A–7

B OpenVMS Data Types

B.1 OpenVMS Data Types . B–1
B.2 Ada Implementations . B–17
B.3 Application Programming Language (APL) Implementations B–20
B.4 BASIC Implementations . B–22
B.5 BLISS Implementations . B–25
B.6 C and C++ Implementations . B–28
B.7 COBOL Implementations . B–30
B.8 FORTRAN Implementations . B–34
B.9 Pascal Implementations . B–38
B.10 PL/I Implementations . B–42
B.11 VAX MACRO Implementations . B–48

xv

B.12 RPG II Implementations . B–50
B.13 SCAN Implementations . B–53

C Distributed Name Service Clerk (VAX Only)

C.1 DECdns Clerk System Service . C–1
C.1.1 Using the DECdns System Service and Run-Time Library

Routines . C–2
C.1.1.1 Using the SYS$DNS System Service . C–2
C.1.1.2 Using the Run-Time Library Routines . C–4
C.2 Using the SYS$DNS System Service Call . C–4
C.2.1 Creating Objects . C–4
C.2.2 Modifying Objects and Their Attributes . C–6
C.2.3 Requesting Information from DECdns . C–9
C.2.3.1 Using the Distributed File Service (DFS) . C–9
C.2.3.2 Reading Attributes from DNS . C–10
C.2.3.3 Enumerating DECdns Names and Attributes C–13
C.3 Using the DCL Command DEFINE with DECdns Logical Names C–16

Authentication Glossary

Index

Examples

20–1 Example of SYS$SYNCH System Service in FORTRAN 20–6
20–2 System Service Call in Ada . 20–12
20–3 System Service Call in BASIC . 20–14
20–4 System Service Call in BLISS . 20–15
20–5 System Service Call in C . 20–16
20–6 System Service Call in COBOL . 20–17
20–7 System Service Call in FORTRAN . 20–18
20–8 System Service Call in Pascal . 20–19
20–9 System Service Call in VAX MACRO . 20–21
22–1 Reading a Line of Data . 22–5
22–2 Reading a Varying Number of Input Records . 22–5
22–3 Associating a Pasteboard with a Terminal . 22–9
22–4 Creating a Pasteboard . 22–10
22–5 Modifying Screen Dimensions and Background Color 22–10
22–6 Defining and Pasting a Virtual Display . 22–12
22–7 Scrolling Forward Through a Display . 22–20
22–8 Scrolling Backward Through a Display . 22–20
22–9 Creating a Statistics Display . 22–21
22–10 Reading Data from a Virtual Keyboard . 22–24
22–11 Reading Data from the Keypad . 22–26
22–12 Redefining Keys . 22–28
22–13 Using Interrupts to Perform I/O . 22–34
22–14 Receiving Unsolicited Input from a Virtual Keyboard 22–36
22–15 Trapping Broadcast Messages . 22–43

xvi

23–1 Event Flags . 23–14
23–2 AST Routine . 23–16
23–3 I/O Status Block . 23–17
23–4 Reading Data from the Terminal Synchronously 23–20
23–5 Reading Data from the Terminal Asynchronously 23–21
23–6 Writing Character Data to a Terminal . 23–23
23–7 Using SYS$GETDVIW to Verify the Device Name 23–29
23–8 Disabling the HOSTSYNC Terminal Characteristic 23–29
26–1 Interprocess Communication Using Global Sections 26–9
27–1 Calculating and Displaying the Time . 27–5
27–2 Setting an Event Flag . 27–14
27–3 Specifying an AST Service Routine . 27–15
27–4 Displaying and Writing Timer Statistics . 27–19
28–1 Mapping a Data File to the Common Block on a VAX System 28–6
28–2 Mapping a Data File to the Common Block on an Alpha System 28–8
28–3 Using a User-Open Routine . 28–10
28–4 Closing a Mapped File . 28–12
28–5 Creating a Sequential File of Fixed-Length Records 28–13
28–6 Updating a Sequential File . 28–14
31–1 Sample Dispatching Routine . 31–5
31–2 Assigning Values to a PLV on a VAX System . 31–8
31–3 Creating a PLV on Alpha and I64 Systems . 31–12
31–4 Declaring Universal Symbols for Privileged Shareable Image on Alpha

and I64 Systems . 31–13
A–1 Using Keywords with the $name_S Macro . A–2
A–2 Specifying Arguments in Positional Order with the $name_S

Macro . A–2
A–3 Using Keywords with the $name Macro . A–3
A–4 Specifying Arguments in Positional Order with the $name Macro A–3

Figures

18–1 Call Frame Generated by CALLG and CALLS Instructions 18–9
18–2 Fixed-Size Stack Frame Format . 18–11
18–3 Variable-Size Stack Frame Format . 18–13
18–4 Procedure Frame . 18–15
18–5 Operation of the Register Stack . 18–18
18–6 Structure of a VAX Argument List . 18–21
18–7 Alpha Argument List Format . 18–22
18–8 Argument Information (AI) Register (R25) Format 18–22
18–9 Parameter Passing in Registers and Memory 18–24
18–10 Alpha Procedure Argument-Passing Mechanisms 18–25
18–11 VAX Procedure Argument-Passing Mechanisms 18–26
18–12 Argument Information Register Representation 18–35
18–13 Atomic Data Types and Descriptor Classes . 18–39
18–14 String Data Types and Descriptor Classes . 18–40
18–15 Miscellaneous Data Types and Descriptor Classes 18–40

xvii

18–16 Condition Value Format . 18–43
19–1 Calling the Run-Time Library . 19–2
22–1 Defining and Pasting Virtual Displays . 22–13
22–2 Moving a Virtual Display . 22–14
22–3 Repasting a Virtual Display . 22–15
22–4 Popping a Virtual Display . 22–16
22–5 Statistics Display . 22–21
23–1 Mailbox Protection Fields . 23–5
23–2 Physical I/O Access Checks . 23–7
23–3 Logical I/O Access Checks . 23–8
23–4 Physical, Logical, and Virtual I/O . 23–9
23–5 I/O Function Format . 23–10
23–6 Function Modifier Format . 23–11
23–7 I/O Status Block . 23–24
23–8 SYS$MOUNT Item Descriptor . 23–34
24–1 Format of a Variable-Length Bit Field . 24–11
25–1 Using Cross-Reference Routines . 25–2
25–2 Summary of Symbol Names and Values . 25–5
25–3 Summary of Symbol Names, Values, and Name of Referring

Modules . 25–5
25–4 Summary Indicating Defining Module . 25–5
25–5 Output Line for LIB$CRF_OUTPUT . 25–6
27–1 Predefined Output Date Formats . 27–23
27–2 Predefined Output Time Formats . 27–23
30–1 Participants in a Distributed Transaction . 30–4
30–2 XA Veneer Example . 30–15
30–3 XA Gateway Example . 30–16
30–4 TX Wrapper Example . 30–16
31–1 Flow of Control Accessing a Privileged Routine on VAX Systems 31–6
31–2 Components of the Privileged Library Vector on VAX Systems 31–7
31–3 Linkage for a Privileged Routine After Image Activation 31–10
32–1 ID Format . 32–3
32–2 UIC Identifier Format . 32–4
32–3 Facility-Specific Identifiers . 32–4
32–4 Format of the Identifier Record . 32–8
32–5 Format of the Holder Record . 32–9
32–6 Format of the Holder Argument . 32–13
32–7 Previous Per-Thread Security Model . 32–21
32–8 Per-Thread Security Profile Model . 32–22
33–1 SYS$ACM[W] Overview . 33–4
33–2 Item List Chain . 33–9
33–3 Itemset Layout . 33–10
33–4 Nondialogue Mode Operation . 33–11
33–5 Dialogue Mode . 33–12
35–1 Sequence of Events During Image Initialization on VAX Systems 35–4
35–2 Sequence of Events During Image Initialization on Alpha and I64

Systems . 35–5

xviii

Tables

17–1 Main Headings in the Documentation Format for System Routines . . 17–2
17–2 General Rules of Syntax for Procedure Call Formats 17–3
17–3 Standard Data Types and Their Descriptor Field Symbols 17–7
17–4 Descriptor Classes of Passing Mechanisms . 17–10
18–1 VAX Register Usage . 18–1
18–2 Alpha Integer Registers . 18–2
18–3 Alpha Floating-Point Registers . 18–3
18–4 I64 General Register Usage . 18–5
18–5 I64 Floating-Point Register Usage . 18–7
18–6 I64 Predicate Register Usage . 18–8
18–7 I64 Branch Register Usage . 18–8
18–8 Summary of Function Descriptor Kinds . 18–20
18–9 Contents of the Argument Information (AI) Register (Alpha only) 18–23
18–10 Rules for Allocating Parameter Slots . 18–31
18–11 Data Types and the Unused Bits in Passed Data 18–33
18–12 Extension Type Codes . 18–34
18–13 Argument Information Register Codes . 18–36
18–14 String-Passing Descriptors . 18–37
18–15 Rules for I64 Return Values . 18–41
18–16 Register Mapping Table for OpenVMS VAX/OpenVMS Alpha to

OpenVMS I64 . 18–44
20–1 OpenVMS System Access Modes . 20–3
20–2 Severity Codes of Condition Value Returned . 20–7
21–1 Structures Used by _NEW_STARLET Prototypes 21–4
22–1 SYS$INPUT and SYS$OUTPUT Values . 22–3
22–2 Setting Video Attributes . 22–17
23–1 Read and Write I/O Functions . 23–10
23–2 Asynchronous Input/Output Services and Their Synchronous Versions

. 23–19
23–3 System Services for Translating Logical Names 23–27
23–4 Default Device Names for I/O Services . 23–28
23–5 SYSGEN Buffer Object Parameters . 23–50
24–1 System Service Access Routines . 24–2
24–2 CLI Access Routines . 24–2
24–3 Variable-Length Bit Field Routines . 24–10
24–4 Integer and Floating-Point Routines . 24–12
24–5 Queue Access Routines . 24–13
24–6 Character String Routines . 24–14
24–7 Miscellaneous Instruction Routines . 24–15
24–8 Processwide Resource Allocation Routines . 24–16
24–9 Performance Measurement Routines . 24–17
24–10 The Code Argument in LIB$SHOW_TIMER and

LIB$STAT_TIMER . 24–18
24–11 Routines for Customizing Output . 24–20
24–12 Miscellaneous Interface Routines . 24–21
25–1 Cross-Reference Routines . 25–1

xix

27–1 Time Conversion Routines and System Services 27–3
27–2 Date/Time Manipulation Routines . 27–8
27–3 Timer RTLs and System Services . 27–8
27–4 Timer System Services . 27–13
27–5 Available Languages for Date/Time Formatting 27–22
27–6 Format Mnemonics . 27–24
27–7 Input String Punctuation and Defaults . 27–28
27–8 Predefined Output Date Formats . 27–29
27–9 Predefined Output Time Formats . 27–30
27–10 Available Components for Specifying Formats at Compile Time 27–31
27–11 Legible Format Mnemonics . 27–32
27–12 Sample Input Format Strings . 27–34
30–1 Fields in an Event Report Block . 30–9
30–2 Abort Reason Codes . 30–10
30–3 XA Veneer Error Names . 30–25
30–4 Input Flags for ax_bind_decdtm_2 . 30–27
31–1 Components of the VAX Privileged Library Vector 31–7
31–2 Components of the Alpha and I64 Privileged Library Vector 31–11
32–1 Using System Services to Manipulate Elements of the Rights

Database . 32–10
32–2 Returned Records of SYS$IDTOASC, SYS$FIND_HELD, and

SYS$FIND_HOLDER . 32–17
32–3 Item Code Symbols and Meanings . 32–26
34–1 Logical Name Services and DCL Commands . 34–2
34–2 Summary of Privileges . 34–10
A–1 Generic Argument List Macros of the System Service Interface A–1
B–1 OpenVMS Usage Data Type Entries . B–2
B–2 Ada Implementations . B–17
B–3 APL Implementations . B–20
B–4 BASIC Implementations . B–22
B–5 BLISS Implementations . B–25
B–6 C and C++ Implementations . B–28
B–7 COBOL Implementations . B–31
B–8 FORTRAN Implementations . B–34
B–9 Pascal Implementations . B–39
B–10 PL/I Implementations . B–43
B–11 VAX MACRO Implementations . B–48
B–12 RPG II Implementations . B–51
B–13 SCAN Implementations . B–53

xx

Preface

Intended Audience
This manual is intended for system and application programmers. It presumes
that its readers have some familiarity with the HP OpenVMS programming
environment, derived from the OpenVMS Programming Environment Manual
and OpenVMS high-level language documentation. The OpenVMS Programming
Environment Manual has been archived and is available on the OpenVMS
Documentation Web site at:

http://www.hp.com/go/openvms/doc/

Document Structure
The printed copy of the HP OpenVMS Programming Concepts Manual is a
two-volume manual. The second volume contains the following three parts:

• OpenVMS Programming Interfaces: Calling a System Routine

• I/O, System and Programming Routines

• Appendixes

The chapters in Volume II provide information about the programming features
of the OpenVMS operating system. A list of the chapters and a summary of their
content follows:

• Chapter 17 describes the format used to document system routine calls and
explains where to find and how to interpret information about routine calls.

• Chapter 18 describes the concepts and conventions used by common
languages to invoke routines and pass data between them.

• Chapter 19 describes a set of language-independent routines that establishes
a common run-time environment for user programs.

• Chapter 20 describes the system services available to application and system
programs for use at run time.

• Chapter 21 describes the libraries that contain C header files for routines.

• Chapter 22 describes the different I/O programming capabilities provided by
the run-time library.

• Chapter 23 describes how to use system services to perform input and output
operations.

• Chapter 24 describes the run-time library (RTL) routines that allow access to
various operating system components.

• Chapter 25 describes how cross-reference routines that are contained in a
separate, shareable image are capable of creating a cross-reference analysis of
symbols.

xxi

• Chapter 26 describes the techniques available for sharing data and program
code among programs.

• Chapter 27 describes the system time format, and the manipulation of
date/time and time conversion. It further describes how to obtain and set
the current date and time, how to set and cancel timer requests, and how to
schedule and cancel wakeups. The Coordinated Universal Time (UTC) system
is also described.

• Chapter 28 describes file attributes, strategies to access files, and file
protection techniques.

• Chapter 29 presents an overview of Extended File Specifications (for the
OpenVMS Alpha and I64 platforms only).

• Chapter 30 describes the DECdtm programming interfaces, and the DECdtm
X/Open Distributed Transaction Processing XA interface.

• Chapter 31 describes how to create user-written system services with
privileged shareable images for VAX, Alpha, and I64 systems.

• Chapter 32 describes the system services that establish protection by using
identifiers, rights databases, and access control entries. This chapter also
describes how to modify a rights list as well as check access protection.

• Chapter 33 describes how to write an authentication and credential
management (ACM) client program or update existing programs to be
an ACM client program.

• Chapter 34 describes how to create and use logical name services, how to use
logical and equivalence names, and how to add and delete entries to a logical
name table.

• Chapter 35 describes how to use the LIB$INITIALIZE routine to initialize an
image.

• Appendix A describes the use of generic macros to specify argument lists
with appropriate symbols and conventions in the system services interface to
MACRO assembles.

• Appendix B describes the data types that provide compatibility between
procedure calls that support many different high-level languages.

• Appendix C describes the DIGITAL Distributed Name Service (DECdns)
Clerk by introducing the functions of the DECdns (SYS$DNS) system service
and various run-time library routines.

• Authentication Glossary contains definitions for terms used in Chapter 33,
Authentication and Credential Management (ACM) System Service.

Related Documents
For a detailed description of each run-time library and system service routine
mentioned in this manual, see the OpenVMS Run-Time Library documentation
and the HP OpenVMS System Services Reference Manual.

You can find additional information about calling OpenVMS system services and
Run-Time Library routines in your language processor documentation. You may
also find the following documents useful:

• HP OpenVMS DCL Dictionary

• OpenVMS User’s Manual

xxii

• Guide to OpenVMS File Applications

• HP OpenVMS Guide to System Security

• DECnet for OpenVMS Networking Manual

• OpenVMS Record Management Services documentation

• OpenVMS Utility Routines Manual

• HP OpenVMS I/O User’s Reference Manual

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The following conventions may be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

xxiii

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

Example This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xxiv

Part I
OpenVMS Programming Interfaces: Calling a

System Routine

This part of this second volume describes the basic calling format for OpenVMS
routines and system services. It also describes the STARLET structures and
definitions for C programmers.

17
Call Format to OpenVMS Routines

This chapter describes the format used to document system routine calls and
explains where to find and how to interpret information about routine calls.
Subsequent chapters provide more specific information about calling run-time
library (RTL) routines and system services.

Note

The documentation format described in this chapter is generic; portions
of it are used or not used, as appropriate, in the following OpenVMS
manuals that document system routines:

HP OpenVMS System Services Reference Manual: A–GETUAI
HP OpenVMS System Services Reference Manual: GETUTC–Z
OpenVMS Run-Time Library manuals
OpenVMS Utility Routines Manual
OpenVMS Record Management Services Reference Manual

17.1 Overview
This chapter provides additional explanations for the following documentation
categories for routines:

• Format

• Returns

• Arguments

• Condition values returned

However, some main categories in the routine format contain information
requiring no explanation beyond that given in Table 17–1.

Call Format to OpenVMS Routines 17–1

Call Format to OpenVMS Routines
17.1 Overview

Table 17–1 Main Headings in the Documentation Format for System Routines

Main Heading Description

Routine Name Always present. The routine entry point name appears at the
top of the first page. It is usually followed by the English text
name of the routine.

Routine Overview Always present. Appears directly below the routine name and
briefly explains what the routine does.

Format Always present. Follows the routine overview and gives the
routine entry point name and the routine argument list.

Returns Always present. Follows the routine format and explains what
information is returned by the routine.

Arguments Always present. Follows the Returns heading and gives
detailed information about each argument. If a routine takes
no arguments, the word None appears.

Description Optional. Follows the Arguments heading and contains
information about specific actions taken by the routine:
interaction between routine arguments, if any; operation of
the routine within the context of OpenVMS; user privileges
needed to call the routine, if any; system resources used by the
routine; and user quotas that might affect the operation of the
routine.

Note that any restrictions on the use of the routine are always
discussed first in the Description section. For example, any
required user privileges or necessary system resources are
explained first.

For some simple routines, a Description section is not
necessary because the routine overview provides the needed
information.

Condition Values
Returned

Always present. Follows the Description section and lists the
condition values (typically status or completion codes) that are
returned by the routine.

Example Optional. Follows the Condition Values Returned heading and
contains one or more programming examples that illustrate
how to use the routine, followed by an explanation.

All examples under this heading are complete. They have
been tested and should run when compiled (or assembled)
and linked. Throughout the manuals that document system
routines, examples are provided in as many different
programming languages as possible.

17.2 Format Heading
The following three types of information can be present in the format heading:

• Procedure call format

• Explanatory text

• Jump to Subroutine (JSB) format (VAX only)

On VAX processors, all system routines have a procedure call format, but few
system routines have JSB formats. If a routine has a JSB format, the format
always appears after the routine’s procedure call format.

17–2 Call Format to OpenVMS Routines

Call Format to OpenVMS Routines
17.2 Format Heading

17.2.1 Procedure Call Format
Procedure call formats can appear in many forms. The following four formats
illustrate the meaning of syntactical elements, such as brackets and commas.
General rules of syntax governing how to use procedure call formats are shown in
Table 17–2.

Table 17–2 General Rules of Syntax for Procedure Call Formats

Element Syntax Rule

Entry point names Entry point names are always shown in uppercase characters.

Argument names Argument names are always shown in lowercase characters.

Spaces One or more spaces are used between the entry point name
and the first argument, and between each argument.

Braces ({}) Braces surround two or more arguments. You must choose one
of the arguments.

Brackets ([]) Brackets surround optional arguments. Note that commas
can also be optional (see the comma element). Note that
programming language syntax for optional arguments differs
between languages. Refer to your language user’s guide for
more information.

Commas (,) Between arguments, the comma always follows the space.
If the argument is optional, the comma might appear either
inside or outside the brackets, depending on the position of the
argument in the list and on whether surrounding arguments
are optional or required.

Null arguments A null argument is a placeholding argument. It is used for one
of the following reasons: (1) to hold a place in the argument
list for an argument that has not yet been implemented by
HP but might be in the future; or (2) to mark the position of
an argument that was used in earlier versions of the routine
but is not used in the latest version (upward compatibility
is thereby ensured because arguments that follow the null
argument in the argument list keep their original positions). A
null argument is always given the name nullarg.

In the argument list constructed when a procedure is called,
both null arguments and omitted optional arguments are
represented by argument list entries containing the value
0. The programming language syntax required to produce
argument list entries containing 0 differs from language to
language. See your language user’s guide for language-specific
syntax.

Format 1 This format illustrates the standard representation of optional
arguments and best describes the use of commas as delimiters. Arguments
enclosed within square brackets are optional. In most languages, if an optional
argument other than a trailing optional argument is omitted, you must include a
comma as a delimiter for the omitted argument.

ROUTINE_NAME arg1[, [arg2][, arg3]]

Typically, OpenVMS RMS system routines use this format when a maximum of
three arguments appear in the argument list.

Call Format to OpenVMS Routines 17–3

Call Format to OpenVMS Routines
17.2 Format Heading

Format 2 When the argument list contains three or more optional arguments,
the syntax does not provide enough information. If you omit the optional
arguments arg3 and arg4 and specify the trailing argument arg5, you must use
commas to delimit the positions of the omitted arguments.

ROUTINE_NAME arg1, [arg2], nullarg, [arg3], [arg4], arg5

Typically, system services, utility routines, and run-time library routines contain
call formats with more than three arguments.

Format 3 In the following call format, the trailing four arguments are optional
as a group; that is, you specify either arg2, arg3, arg4, and arg5, or none of
them. Therefore, if you do not specify the optional arguments, you need not use
commas to delimit unoccupied positions.

However, if you specify a required argument or a separate optional argument
after arg5, you must use commas when arg2, arg3, arg4, and arg5 are omitted.

ROUTINE_NAME arg1[, arg2, arg3, arg4, arg5]

Format 4 In the following example, you can specify arg2 and omit arg3.
However, whenever you specify arg3, you must specify arg2.

ROUTINE_NAME arg1[, arg2[, arg3]]

17.2.2 JSB Call Format (VAX only)
The JSB call format indicates that the named routine is called using the VAX JSB
instruction. The routine returns using Return from Subroutine (RSB). You can
use the JSB call format with only the VAX MACRO and VAX BLISS languages.

Explanatory Text
Explanatory text might follow the procedure call format or the JSB call format, or
both. This text is present only when needed to clarify the format. For example,
in the call format, you indicate that arguments are optional by enclosing them
in brackets ([]). However, brackets alone cannot convey all the important
information that might apply to optional arguments. For example, in some
routines that have many optional arguments, if you select one optional argument,
you must also select another optional argument. In such cases, text following the
format clarifies this.

17.3 Returns Heading
The Returns heading contains a description of any information returned by the
routine to the caller. A routine can return information to the caller in various
ways. The following subsections discuss each possibility and then describe how
this returned information is presented.

17.3.1 Condition Values Returned in a Register
Most routines return a condition value in register R0. This condition value
contains various kinds of information, the most important for the caller (in bits
<3:0>) being the completion status of the operation. You test the condition value
to determine whether the routine completed successfully. On OpenVMS I64,
the calling standard specifies that return status is returned in R8. As an aid to
portable code, the MACRO complier automatically maps R0 to R8. See the HP
OpenVMS MACRO Compiler Porting and User’s Guide for additional information.

On Alpha and I64 processors, a 32-bit condition value is represented in the Alpha
register sign-extended to 64 bits.

17–4 Call Format to OpenVMS Routines

Call Format to OpenVMS Routines
17.3 Returns Heading

If you program in high-level languages for OpenVMS environments, the fact
that status information is returned by means of a condition value and that it is
returned in a hardware register is of little importance because you receive this
status information in the return (or status) variable. The run-time environment
established for the high-level language program allows the status information in
R0 (R8, R9 for I64) to be moved automatically to the user’s return variable.

Nevertheless, for routines that return a condition value, the Returns heading in
the documentation contains the following information:

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

The OpenVMS usage entry specifies the OpenVMS data type of the information
returned. Because a condition value in any OpenVMS operating system
environment is returned in a specific condition value structure, the OpenVMS
usage entry is cond_value.

The type entry specifies the standard data type of the information returned.
Because the condition value structure is 32 bits, the type heading is longword
(unsigned).

The access entry specifies the way in which the called routine accesses the
object. Because the called routine is returning the condition value, the routine
writes the value into R0 (R8, R9 for I64), so the access heading is write only.

The mechanism heading specifies the passing mechanism used by the called
routine in returning the condition value. Because the called routine is writing the
condition value directly into R0 (R8, R9 for I64), the mechanism heading is by
value. (If the called routine had written the address of the condition value into
R0 (R8, R9 for I64), the passing mechanism would have been by reference.)

Note that if a routine returns a condition value, another main heading in
the documentation format (Condition Values Returned) describes the possible
condition values that the routine can return.

17.3.2 Other Returned Values
If a routine returns actual data, the Returns heading in the documentation
of that routine contains the following information (for example, from a math
routine):

OpenVMS usage: floating_point
type: G_floating
access: write only
mechanism: by value

In this mathematics routine notation, the OpenVMS data type is floating_point
and the standard data type is G_floating point. The meaning of the contents of
the access and mechanism headings is discussed in Sections 17.4.3 and 17.4.4.

The registers used to return values vary with the type of the result and the
specific hardware environment. For more information, see the HP OpenVMS
Calling Standard.

In addition, under the Returns heading, some text can be provided after the
information about the type, access, and mechanism. This text explains other
relevant information about what the routine is returning.

Call Format to OpenVMS Routines 17–5

Call Format to OpenVMS Routines
17.3 Returns Heading

For example, because the routine is returning actual data in the VAX, Alpha,
or I64 registers, the registers cannot be used to convey completion status
information. All routines that return actual data in VAX, Alpha, or I64 registers
must signal the condition value, which contains the completion status. Thus, the
text under the Returns heading points out that the routine signals its completion
status.

17.3.3 Condition Values Signaled
Although most routines return condition values, some routines choose to signal
their condition values using the OpenVMS signaling mechanism. Routines can
signal their completion status whether or not they are returning actual data in
the hardware registers, but all routines that return actual data in the hardware
registers must signal their completion status if they are to return this status
information at all.

If a routine signals its completion status, text under the Returns heading explains
this, and the Condition Values Signaled heading in the documentation format
describes the possible condition values that the routine can signal.

HP’s system routines never signal condition values indicating success. Only error
condition values are signaled.

17.4 Arguments Heading
Detailed information about each argument is listed in the call format under the
Arguments heading. Arguments are described in the order in which they appear
in the call format. If the routine has no arguments, the word None appears.

The following format is used to describe each argument:

argument-name
OpenVMS usage: OpenVMS data type
type: argument data type
access: argument access
mechanism: argument passing mechanism

A paragraph of structured text describing the arguments follows the argument
format along with additional information, if needed.

17.4.1 OpenVMS Usage Entry
The purpose of the OpenVMS usage entry is to facilitate the coding of source-
language data type declarations in application programs. Ordinarily, the standard
data type, discussed in Section 17.4.2, is sufficient to describe the type of data
passed by an argument. However, within the OpenVMS operating system
environment, many system routines contain arguments whose conceptual nature
or complexity requires additional explanation. For instance, when an argument
passes the name of an event flag, the type entry longword (unsigned) alone
does not indicate the nature of the value. In this instance, an accompanying
OpenVMS usage entry, denoting the OpenVMS data type ef_number, further
explains the actual usage.

See Table B–1 for a list of the possible OpenVMS usage entries and their
definitions. Refer to the appropriate language implementation table in
Appendix B to determine the correct syntax of the type declaration in the
language you are using.

17–6 Call Format to OpenVMS Routines

Call Format to OpenVMS Routines
17.4 Arguments Heading

Note that the OpenVMS usage entry is not a traditional data type (such as the
standard data types of byte, word, longword, and so on). It is significant only
within the context of the OpenVMS operating system and is intended solely to
expedite data declarations within application programs.

17.4.2 Type Entry
In actuality, an argument does not have a data type; rather, the data specified
by an argument has a data type. The argument is merely the vehicle for passing
data to the called routine. Nevertheless, the phrase argument data type is used
to describe the standard data type of the data specified by the argument.

Procedure calls result in the construction of an argument list. (This process is
described in the HP OpenVMS Calling Standard.) An argument list is a sequence
of entries together with a count of the number of entries.

On VAX systems, an argument list is represented as a vector of longwords, where
the first longword contains the count and each remaining longword contains one
argument.

On Alpha systems, an argument list is represented as quadword entities that
comprise an argument item sequence, partly in hardware registers and (when
there are more than six arguments for Alpha) partly on the stack. The argument
information (AI) register contains the argument count that specifies the number
of 64-bit argument items.

For I64 systems, parameters are passed in a combination of general registers,
floating-point registers, and memory, as described in Chapter 18, and as
illustrated in Figure 18–9. The parameter list is formed by placing each
individual parameter into fixed-size elements of the parameter list, referred
to as parameter slots. Each parameter slot is 64 bits wide; parameters larger
than 64 bits are placed in as many consecutive parameter slots as are needed to
contain the entire parameter. The rules for allocation and alignment of parameter
slots are described in Section 18.5.4.1. The contents of the first eight parameter
slots are always passed in registers, while the remaining parameters are always
passed on the memory stack, beginning at the caller’s stack pointer plus 16 bytes.

When arguments are passed by descriptors, these standard data types are defined
with symbolic codes. Table 17–3 lists the standard data types for VAX, Alpha,
and I64 systems that can appear for the type entry in an argument description,
along with their symbolic code (DTYPE) used in argument descriptors.

For a detailed description of each of the following symbolic codes, see the HP
OpenVMS Calling Standard.

Table 17–3 Standard Data Types and Their Descriptor Field Symbols

Data Type Symbolic Code

Absolute date and time DSC$K_DTYPE_ADT

Byte integer (signed) DSC$K_DTYPE_B

Bound label value DSC$K_DTYPE_BLV

Bound procedure value1 DSC$K_DTYPE_BPV

1VAX specific.

(continued on next page)

Call Format to OpenVMS Routines 17–7

Call Format to OpenVMS Routines
17.4 Arguments Heading

Table 17–3 (Cont.) Standard Data Types and Their Descriptor Field Symbols

Data Type Symbolic Code

Byte (unsigned) DSC$K_DTYPE_BU

COBOL intermediate temporary DSC$K_DTYPE_CIT

D_floating DSC$K_DTYPE_D

D_floating complex DSC$K_DTYPE_DC

Descriptor DSC$K_DTYPE_DSC

F_floating DSC$K_DTYPE_F

F_floating complex DSC$K_DTYPE_FC

G_floating DSC$K_DTYPE_G

G_floating complex DSC$K_DTYPE_GC

H_floating1 DSC$K_DTYPE_H

H_floating complex1 DSC$K_DTYPE_HC

S_floating (32-bit IEEE)2 DSC$K_DTYPE_FS

T_floating (64-bit IEEE)2 DSC$K_DTYPE_FT

X_floating (128-bit IEEE)2 DSC$K_DTYPE_FX

S_floating complex2 DSC$K_DTYPE_FSC

T_floating complex2 DSC$K_DTYPE_FTC

X_floating complex2 DSC$K_DTYPE_FXC

Longword integer (signed) DSC$K_DTYPE_L

Longword (unsigned) DSC$K_DTYPE_LU

Numeric string, left separate sign DSC$K_DTYPE_NL

Numeric string, left overpunched sign DSC$K_DTYPE_NLO

Numeric string, right separate sign DSC$K_DTYPE_NR

Numeric string, right overpunched sign DSC$K_DTYPE_NRO

Numeric string, unsigned DSC$K_DTYPE_NU

Numeric string, zoned sign DSC$K_DTYPE_NZ

Octaword integer (signed) DSC$K_DTYPE_O

Octaword (unsigned) DSC$K_DTYPE_OU

Packed decimal string DSC$K_DTYPE_P

Quadword integer (signed) DSC$K_DTYPE_Q

Quadword (unsigned) DSC$K_DTYPE_QU

Character string DSC$K_DTYPE_T

Aligned bit string DSC$K_DTYPE_V

Varying character string DSC$K_DTYPE_VT

Unaligned bit string DSC$K_DTYPE_VU

Word integer (signed) DSC$K_DTYPE_W

Word (unsigned) DSC$K_DTYPE_WU

Unspecified DSC$K_DTYPE_Z

1VAX specific.
2Alpha and I64 specific.

(continued on next page)

17–8 Call Format to OpenVMS Routines

Call Format to OpenVMS Routines
17.4 Arguments Heading

Table 17–3 (Cont.) Standard Data Types and Their Descriptor Field Symbols

Data Type Symbolic Code

Procedure entry mask1 DSC$K_DTYPE_ZEM

Sequence of instruction1 DSC$K_DTYPE_ZI

1VAX specific.

17.4.3 Access Entry
The access entry describes the way in which the called routine accesses the data
specified by the argument, or access method. The following methods of access
are most common:

• Read only. Data upon which a routine operates, or data needed by the routine
to perform its operation, must be read by the called routine. Such data is
also called input data. When an argument specifies input data, the access
entry is read only.

The term only is present to indicate that the called routine does not both read
and write (that is, modify) the input data. Thus, input data supplied by a
variable is preserved when the called routine completes execution.

• Write only. Data that the called routine returns to the calling program must
be written into a location where the calling program can access it. Such
data is also called output data. When an argument specifies output data, the
access entry is write only.

In this context, the term only is present to indicate that the called routine
does not read the contents of the location either before or after it writes into
the location.

• Modify. When an argument specifies data that is both read and written by
the called routine, the access entry is modify. In this case, the called routine
reads the input data, which it uses in its operation, and then overwrites the
input data with the results (the output data) of the operation. Thus, when the
called routine completes execution, the input data specified by the argument
is lost.

Following is a complete list of access methods that can appear under the access
entry in an argument description:

• Read only

• Write only

• Modify

• Function call (before return)

• JMP after unwind

• Call after stack unwind

• Call without stack unwind

For more information, see the HP OpenVMS Calling Standard.

Call Format to OpenVMS Routines 17–9

Call Format to OpenVMS Routines
17.4 Arguments Heading

17.4.4 Mechanism Entry
The way in which an argument specifies the actual data to be used by the called
routine is defined in terms of the argument passing mechanism. There are
three basic passing mechanism types:

• By value. When the argument in the argument list contains the actual data
to be used by the routine, the actual data is said to be passed to the routine
by value. In this case, the argument is the actual data.

• By reference. When the argument in the argument list contains the address
of the data to be used by the routine, the data is said to be passed by
reference. In this case, the argument is a pointer to the data.

• By descriptor. When the argument in the argument list contains the address
of a descriptor, the data is said to be passed by descriptor. A descriptor
consists of two or more longwords (depending on the type of descriptor used)
that describe the location, length, and the OpenVMS standard data type of
the data to be used by the called routine. In this case, the argument is a
pointer to a descriptor that points to the actual data.

There are several kinds of descriptors. Each one contains a value, or class,
in the fourth byte of the first longword. The class identifies the type of
descriptor it is. Each class has a symbolic code.

Table 17–4 lists the types of descriptors and their corresponding code names.
See the HP OpenVMS Calling Standard for a detailed description of each
descriptor class.

Table 17–4 Descriptor Classes of Passing Mechanisms

Passing Mechanism Descriptor Symbolic Code

By descriptor, fixed-length (scalar) DSC$K_CLASS_S

By descriptor, dynamic string DSC$K_CLASS_D

By descriptor, array DSC$K_CLASS_A

By descriptor, procedure DSC$K_CLASS_P

By descriptor, decimal string DSC$K_CLASS_SD

By descriptor, noncontiguous array DSC$K_CLASS_NCA

By descriptor, varying string DSC$K_CLASS_VS

By descriptor, varying string array DSC$K_CLASS_VSA

By descriptor, unaligned bit string DSC$K_CLASS_UBS

By descriptor, unaligned bit array DSC$K_CLASS_UBA

By descriptor, string with bounds DSC$K_CLASS_SB

By descriptor, unaligned bit string with bounds DSC$K_CLASS_UBSB

17.4.5 Explanatory Text
For each argument, one or more paragraphs of explanatory text follow the
OpenVMS usage, type, access, and mechanism entries. The first paragraph is
highly structured and always contains information in the following sequence:

1. A sentence or a sentence fragment that describes (1) the nature of the
data specified by the argument, and (2) the way in which the routine uses
this data. For example, if an argument were supplying a number, which

17–10 Call Format to OpenVMS Routines

Call Format to OpenVMS Routines
17.4 Arguments Heading

the routine converts to another data type, the argument description would
contain the following sentence fragment:

Integer to be converted to an F_floating point number

2. A sentence that expresses the relationship between the argument and the
data that it specifies. This relationship is the passing mechanism used to
pass the data and, for a given argument, is expressed in one of the following
ways:

a. If the passing mechanism is by value, the sentence should read as follows:

The attrib argument is a longword that contains
(or is) the bit mask specifying the attributes.

b. If the passing mechanism is by reference, the sentence should read as
follows:

The objtyp argument is the address of a longword
containing a value indicating whether the object is
a file or a device.

c. If the passing mechanism is by descriptor, the sentence should read as
follows:

The devnam argument is the address of a string
descriptor of a logical name denoting a device
name.

3. Additional explanatory paragraphs that appear for each argument, as needed.
For example, some arguments specify complex data consisting of many
discrete fields, each of which has a particular purpose and use. In such
cases, additional paragraphs provide detailed descriptions of each such field,
symbolic names for the fields, if any, and guidance on their use.

17.5 Condition Values Returned Heading
A condition value is a longword that has the following uses on the OpenVMS
VAX, OpenVMS Alpha, and OpenVMS I64 systems:

• Indicates the success or failure of a called procedure

• Describes an exception condition when an exception is signaled

• Identifies system messages

• Reports program success or failure to the command level

The HP OpenVMS Calling Standard explains in detail the uses for the condition
value and depicts its format and contents.

The Condition Values Returned heading describes the condition values that
are returned by the routine when it completes execution without generating an
exception condition. These condition values describe the completion status of the
operation.

If a called routine generates an exception condition during execution, the
exception condition is signaled; the exception condition is then handled by a
condition handler (either user supplied or system supplied). Depending on the
nature of the exception condition and on the condition handler, the called routine
either continues normal execution or terminates abnormally.

Call Format to OpenVMS Routines 17–11

Call Format to OpenVMS Routines
17.5 Condition Values Returned Heading

If a called routine executes without generating an exception condition, the called
routine returns a condition value in one or two of the following ways:

• Condition Values Returned

• Condition Values Returned in an I/O Status Block

• Condition Values Returned in a Mailbox

• Condition Values Signaled

The method used to return the condition value is indicated under the Condition
Values Returned heading in the documentation of each routine. These methods
are discussed individually in the following subsections.

Under these headings, a two-column list shows the symbolic code for each
condition value the routine can return and an accompanying description. The
description explains whether the condition value indicates success or failure
and, if failure, what user action might have caused the failure and what to do to
correct it. Condition values that indicate success are listed first.

Symbolic codes for condition values are defined by the system. Though the
condition value consists of several fields, each of which can be interpreted
individually for specific information, the entire condition value itself can be
interpreted as an integer, and this integer has an equivalent symbolic code.

The three sections that follow discuss the ways in which the called routine
returns condition values.

17.5.1 Condition Values Returned
The possible condition values that the called routine can return in general
register R0 (R8, R9 for I64) are listed under the Condition Values Returned
heading in the documentation. Most routines return a condition value in this
way.

In the documentation of system services that complete asynchronously, both the
Condition Values Returned and Condition Values Returned in the I/O Status
Block headings are used. Under the Condition Values Returned heading, the
condition values returned by the asynchronous service refer to the success or
failure of the system service request—that is, to the status associated with the
correctness of the syntax of the call, in contrast to the final status associated
with the completion of the service operation. For asynchronous system services,
condition values describing the success or failure of the actual service operation—
that is, the final completion status—are listed under the Condition Values
Returned in the I/O Status Block heading.

17.5.2 Condition Values Returned in an I/O Status Block
The possible condition values that the called routine can return in an I/O status
block are listed under the Condition Values Returned in the I/O Status Block
heading.

The routines that return condition values in the I/O status block are the system
services that are completed asynchronously. Each of these asynchronous
system services returns to the caller as soon as the service call is queued.
This allows the continued use of the calling program during the execution of the
service operations. System services that are completed asynchronously all have
arguments that specify an I/O status block. When the system service operation is
completed, a condition value specifying the completion status of the operation is
written in the first word of this I/O status block.

17–12 Call Format to OpenVMS Routines

Call Format to OpenVMS Routines
17.5 Condition Values Returned Heading

Representing a condition value in a word-length field is possible for system
services because the high-order segment of all system service condition values
is 0. See cond_value in Table B–1 or Section 18.11 for the field detail of the
condition value structure.

17.5.3 Condition Values Returned in a Mailbox
The possible condition values that the called routine can return in a mailbox are
listed under the Condition Values Returned in a Mailbox heading.

Routines such as SYS$SNDOPR that return condition values in a mailbox send
information to another process to perform a task. The receiving process performs
the action and returns the status of the task to the mailbox of the sending
process.

17.5.4 Condition Values Signaled
The possible condition values that the called routine can signal (instead of
returning them in R0 (R8, R9 for I64) are listed under the Condition Values
Signaled heading.

Routines that signal condition values as a way of indicating the completion status
do so because these routines are returning actual data as the value of the routine.

As mentioned, the signaling of condition values occurs whenever a routine
generates an exception condition, regardless of how the routine returns its
completion status under normal circumstances.

Call Format to OpenVMS Routines 17–13

18
Basic Calling Standard Conventions

The HP OpenVMS Calling Standard defines the concepts and conventions used
by common languages to invoke routines and pass data between them. This
chapter briefly describes the following calling standard conventions:

• Register usage

• Stack usage

• Argument list

• Argument passing

• Returns

Section 18.12.1 briefly compares OpenVMS I64 register usage to that on
OpenVMS Alpha and OpenVMS VAX.

Refer to the HP OpenVMS Calling Standard for more detail on calling
conventions and for standards defining argument data types, descriptor formats,
and procedures for condition handling and stack unwinding.

18.1 Hardware Registers
Registers in the hardware provide the necessary temporary storage for
computation within OpenVMS software procedures. The number of registers
available and their usage vary between the OpenVMS Alpha, OpenVMS VAX,
and OpenVMS I64 systems.

18.1.1 Register Usage for OpenVMS VAX
The calling standard defines several VAX registers and their use, as listed in
Table 18–1.

Table 18–1 VAX Register Usage

Register Use

PC Program counter

SP Stack pointer

FP Current stack frame pointer

AP Argument pointer

R1 Environment value (when necessary)

R0, R1 Function return value registers

By definition, any called routine can use registers R2 through R11 for
computation and the AP register as a temporary register.

Basic Calling Standard Conventions 18–1

Basic Calling Standard Conventions
18.1 Hardware Registers

18.1.2 Register Usage for OpenVMS Alpha
On Alpha systems, there are two groups of 64-bit wide, general-purpose Alpha
hardware registers:

• Integer

• Floating point

The first 32 general-purpose registers support integer processing; the second 32
support floating-point operations.

18.1.2.1 Integer Registers
The calling standard defines the Alpha general-purpose integer registers and
their use, as listed in Table 18–2.

Table 18–2 Alpha Integer Registers

Register Usage

R0 Function value register. A standard call that returns a nonfloating-point
function must return the function result in this register. The register can be
modified by the called procedure without being saved and restored.

R1 Conventional scratch register. In a standard call, this register can be
modified by the called procedure without being saved and restored.

R2–15 Conventional saved registers. If a standard-conforming procedure modifies
one of these registers, the procedure must save and restore it.

R16–21 Argument registers. Up to six nonfloating-point items of the argument list
are passed in these registers and the registers can be modified by the called
procedure without being saved and restored.

R22–24 Conventional scratch registers. The registers can be modified by the called
procedure without being saved and restored.

R25 Argument information (AI) register. The register describes the argument
list (see Section 18.4 for a detailed description) and can be modified by the
called procedure without being saved and restored.

R26 Return address (RA) register. The return address must be passed in this
register and can be modified by the called procedure without being saved
and restored.

R27 Procedure value (PV) register. The procedure value of the procedure being
called is passed in this register and can be modified by the called procedure
without being saved and restored.

R28 Volatile scratch register. The contents of this register are always
unpredictable after any external transfer of control either to or from a
procedure.

R29 Frame pointer (FP). This register defines which procedure is the current
procedure.

R30 Stack pointer (SP). This register contains a pointer to the top (start) of the
current operating stack.

R31 ReadAsZero/Sink (RZ). Hardware defined: binary zero as a source operand,
sink (no effect) as a result operand.

18–2 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.1 Hardware Registers

18.1.2.2 Floating-Point Registers
The calling standard defines the Alpha floating-point registers and their use, as
listed in Table 18–3.

Table 18–3 Alpha Floating-Point Registers

Register Usage

F0 Floating-point function value register. In a standard call that returns a
floating-point result in a register, this register is used to return the real part
of the result. The register can be modified by the called procedure without
being saved and restored.

F1 Floating-point function value register. In a standard call that returns a
complex floating-point result in registers, this register is used to return the
imaginary part of the result. This register can be modified by the called
procedure without being saved and restored.

F2–9 Conventional saved registers. If a standard-conforming procedure modifies
one of these registers, the procedure must save and restore it.

F10–15 Conventional scratch registers. The registers can be modified by the called
procedure without being saved and restored.

F16–21 Argument registers. Up to six floating-point arguments can be passed by
value in these registers. These registers can be modified by the called
procedure without being saved and restored.

F22–30 Conventional scratch registers. The registers can be modified by the called
procedure without being saved and restored.

F31 ReadAsZero/Sink. Hardware defined: binary zero as a source operand, sink
(no effect) as a result operand.

18.1.3 Register Usage for OpenVMS I64
The Intel® Itanium® architecture defines 128 general purpose registers, 128
floating-point registers, 64 predicate registers, 8 branch registers, and up to
128 application registers. The large number of architectural registers enable
multiple computations to be performed without having to frequently spill and fill
intermediate data to memory.

The instruction pointer is a 64-bit register that points to the currently executing
instruction bundle.

This section describes the register conventions for OpenVMS I64.

OpenVMS I64 uses the following register types:

• General

• Floating-point

• Predicate

• Branch

• Application

Basic Calling Standard Conventions 18–3

Basic Calling Standard Conventions
18.1 Hardware Registers

18.1.3.1 Partitioning
Registers are partitioned into the following classes that define the way a register
can be used within a procedure:

• Scratch registers – may be modified by a procedure call; the caller must save
these registers before a call if needed (caller save).

• Preserved registers – must not be modified by a procedure call; the callee
must save and restore these registers if used (callee save). A procedure
using one of the preserved general registers must save and restore the
caller’s original contents, including the NaT bits associated with the registers,
without generating a NaT consumption fault.

One way to preserve a register is not to use it at all.

• Automatic registers – saved and restored automatically by the hardware
call/return mechanism.

• Constant or Read-only registers – contain a fixed value that cannot be
changed by the program.

• Special registers – used in the calling standard call/return mechanism.

• Global registers – shared across a set of cooperating routines as global static
storage that happens to be allocated in a register. (Details regarding the
dynamic lifetime of such storage are not addressed here.)

OpenVMS I64 further defines the way that static registers can be used between
routines:

• Special registers – used in the calling standard call/return mechanism. (These
are the same as the set of special registers in the preceding list of registers
used within a procedure.)

• Input registers – may be used to pass information into a procedure (in
addition to the normal stacked input registers).

• Output registers – may be used to pass information back from a called
procedure to its caller (in addition to the normal return value registers).

• Volatile registers – may not be used to pass information between procedures,
either as input or output.

18.1.3.2 I64 General Register Usage
There are 128, 64-bit general-purpose registers (R0-R127) that are used to hold
values for integer and multimedia computations. Each of the 128 registers has
one additional NaT (Not a Thing) bit that is used to indicate whether the value
stored in the register is valid. Execution of I64 speculative instructions can result
in a register’s NaT bit being set. Register R0 is read only and contains a value of
zero (0). Attempting to write to R0 will cause a fault.

This standard defines the usage of the OpenVMS general registers as listed in
Table 18–4.

18–4 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.1 Hardware Registers

Table 18–4 I64 General Register Usage

Register Class Usage

R0 Constant Always 0.

R1 Special Global data pointer (GP). Designated to hold the address
of the currently addressable global data segment. Its use
is subject to the following conventions:

1. On entry to a procedure, GP is guaranteed valid for
that procedure.

2. At any direct procedure call, GP must be valid (for
the caller). This guarantees that an import stub can
access the caller’s linkage table.

3. Any procedure call (indirect or direct) may modify GP
unless the call is known to be local to the image.

4. At procedure return, GP must be valid (for the
returning procedure). This allows the compiler to
optimize calls known to be local (an exception to
convention 3).

The effect of these rules is that GP must be treated as a
scratch register at a point of call (that is, it must be saved
by the caller), and it must be preserved from entry to exit.

R2 Volatile May not be used to pass information between procedures,
either as inputs or outputs.

R3 Scratch May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control.

R4-R7 Preserved General-purpose preserved registers. Used for any value
that needs to be preserved across a procedure call.
May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control.

R8-R9 Scratch Return value. Can also be used as input (whether or
not the procedure has a return value), but not in any
additional ways.

R10-R11 Scratch May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control.

R12 Special Memory stack pointer (SP). Holds the lowest address of
the current stack frame. At a call, the stack pointer must
point to a 0 mod 16 aligned area. The stack pointer is also
used to access any memory arguments upon entry to a
function. Except in the case of dynamic stack allocation,
code can use the stack pointer to reference stack items
without having to set up a frame pointer for this purpose.

R13 Special Reserved as a thread pointer (TP).

R14-R18 Volatile May not be used to pass information between procedures,
either as inputs or outputs.

R19-R24 Scratch May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control.

(continued on next page)

Basic Calling Standard Conventions 18–5

Basic Calling Standard Conventions
18.1 Hardware Registers

Table 18–4 (Cont.) I64 General Register Usage

Register Class Usage

R25 Special Argument information (see Section 18.5.6).

R26-R31 Scratch May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control.

IN0-IN7 Automatic Stacked input registers. Code may allocate a register
stack frame of up to 96 registers with the ALLOC
instruction, and partition this frame into three regions:
input registers (IN0, IN1, ...), local registers (LOC0, LOC1,
...), and output registers (OUT0, OUT1, ...). R32–R39
(IN0–IN7) are used as incoming argument registers.
Arguments beyond these registers appear in memory.

LOC0-LOC95 Automatic Stacked local registers. Code may allocate a register stack
frame of up to 96 registers with the ALLOC instruction,
and partition this frame into three regions: input registers
(IN0, IN1, ...), local registers (LOC0, LOC1, ...), and output
registers (OUT0, OUT1, ...). LOC0-LOC95 are used for
local storage.

OUT0-OUT7 Scratch Stacked output registers. Code may allocate a register
stack frame of up to eight registers with the ALLOC
instruction, and partition this frame into three regions:
input registers (IN0, IN1, ...), local registers (LOC0, LOC1,
...), and output registers (OUT0, OUT1, ...). OUT0-OUT7
are used to pass the first eight arguments in calls.

18–6 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.1 Hardware Registers

18.1.3.3 I64 Floating-Point Register Usage
There are 128, 82-bit floating-point registers (F0-F127) that are used for
floating-point computations. The first two registers, F0 and F1, are read only
and read as +0.0 and +1.0, respectively. Instructions that write to F0 or F1 will
fault.

This standard defines the usage of the OpenVMS floating-point registers as listed
in Table 18–5.

Table 18–5 I64 Floating-Point Register Usage

Register Class Usage

F0 Constant Always 0.0.

F1 Constant Always 1.0.

F2-F5 Preserved Can be used for any value that needs to be preserved across
a procedure call. A procedure using one of the preserved
floating-point registers must save and restore the caller’s
original contents without generating a NaT consumption
fault.

F6-F7 Scratch May be used within and between procedures in any mutually
consistent combination of ways under explicit user control.

F8-F9 Scratch Argument/Return values. See 18.4 and 18.10 for the
OpenVMS specifications for use of these registers.

F10-F15 Scratch Argument values. See Section 18.4 for the OpenVMS
specifications for use of these registers.

F16–F31 Preserved Can be used for any value that needs to be preserved across
a procedure call. A procedure using one of the preserved
floating-point registers must save and restore the caller’s
original contents without generating a NaT consumption
fault.

F32-F127 Scratch Rotating registers or scratch registers.

Note

VAX floating-point data are never loaded or manipulated in the I64
floating-point registers. However, VAX floating-point values may be
converted to IEEE floating-point values, which are then manipulated in
the I64 floating-point registers.

18.1.3.4 I64 Predicate Register Usage
Predicate registers are single-bit-wide registers used for controlling the execution
of predicated instructions. There are 64, one-bit predicate registers (P0-P63) that
control conditional execution of instructions and conditional branches. The first
register, P0, is read only and always reads true (1). The results of instructions
that write to P0 are discarded.

This standard defines the usage of the OpenVMS predicate registers as listed in
Table 18–6.

Basic Calling Standard Conventions 18–7

Basic Calling Standard Conventions
18.1 Hardware Registers

Table 18–6 I64 Predicate Register Usage

Register Class Usage

P0 Constant Always 1.

P1-P5 Preserved Can be used for any predicate value that needs to be
preserved across a procedure call. A procedure using one
of the preserved predicate registers must save and restore the
caller’s original contents.

P6-P13 Scratch Can be used within a procedure as a scratch register.

P14-P15 Volatile Cannot be used to pass information between procedures,
either as input or output.

P16-P63 Preserved Rotating registers.

18.1.3.5 I64 Branch Register Usage
Branch registers are used for making indirect branches. There are 8, 64-bit
branch registers (B0-B7) that are used to specify the target addresses of indirect
branches.

This standard defines the usage of the OpenVMS branch registers as listed in
Table 18–7.

Table 18–7 I64 Branch Register Usage

Register Class Usage

B0 Scratch Contains the return address on entry to a procedure;
otherwise a scratch register.

B1-B5 Preserved Can be used for branch target addresses that need to be
preserved across a procedure call.

B6-B7 Volatile May not be used to pass information between procedures,
either as input or output.

18.2 Stack Usage for Procedures
A stack is a last-in/first-out (LIFO) temporary storage area that the system
allocates for every user process. The system keeps information about each
routine call in the current image on the call stack. Then, each time you call a
routine, the system creates a structure on the stack, defined as the stack frame.

Stack frames and call frames are synonymous. A call frame for each procedure
has a specified format containing pointers and control information necessary
in the transfer of control between procedures of a call chain. Stack frames
(call frames) of standard calling procedures differ across Alpha, VAX, and I64
systems.

18.2.1 Stack Procedure Usage for VAX
Figure 18–1 shows the format of the stack frame created for the called procedure
by the CALLG or CALLS instruction. The stack frame (pointed to by SP) is in
the context of the current procedure, and call frames (pointed to by FP) are the
preserved stack frames of other active procedures in the call chain. The stack
frame (call frame) for each procedure in the chain contains the following:

• A pointer to the call frame of the previous procedure call, defined as the frame
pointer (FP).

18–8 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

Note that FP points at the condition handler longword at the beginning of
the previous call frame. Unless the procedure has a condition handler, this
longword contains all zeros. See the HP OpenVMS Calling Standard for more
information on condition handlers.

• The argument pointer (AP) of the previous routine call.

• The stored address (program count) of the point at which the routine was
called. Specifically, this address is the program count from the program
counter (PC) of the instruction following the call to the current routine.

• The contents of other general registers. Based on a register save mask
specified in the control information of the second longword, the system
restores the saved contents of the identified registers to the calling routine
when control returns to it.

Figure 18–1 Call Frame Generated by CALLG and CALLS Instructions

31 0

Condition handler (none=0)

ZK−5249A−GE

Register save mask Processor status wordSPA S 0

Argument pointer (AP)

Frame pointer (FP)

Program counter (PC)

Saved register (R2)

Saved register (R11)

:(SP) :(FP)

The contents of the stack located at addresses following the call frame belong to
the calling program; they should not be read or written by the called procedure,
except as specified in the argument list. The contents of the stack located at
addresses lower than the call frame (at FP) belong to interrupt and exception
routines; they are modified continually and unpredictably.

The called procedure allocates local storage by subtracting the required number of
bytes from the stack provided on entry. This local storage is freed automatically
by the RET instruction.

Basic Calling Standard Conventions 18–9

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

18.2.1.1 Calling Sequence
At the option of the calling procedure, the called procedure is invoked using the
CALLG or CALLS instruction, as follows:

CALLG arglst, procedure
CALLS argcnt, procedure

CALLS pushes the argument count argcnt onto the stack as a longword and sets
the argument pointer, AP, to the top of the stack. The complete sequence using
CALLS follows:

push argn
.
.
.
push arg1
CALLS #n, procedure

18.2.1.2 Call Frames on Return
If the called procedure returns control to the calling procedure, control must
return to the instruction immediately following the CALLG or CALLS instruction.
Skip returns and GOTO returns are allowed only during stack unwind operations.

The called procedure returns control to the calling procedure by executing the
return instruction (RET).

Note that when a routine completes execution, the system uses the FP in the call
frame of the current procedure to locate the frame of the previous procedure. The
system then removes the stack frame of the current procedure from the stack.

18.2.2 Stack Procedure Usage for Alpha
On Alpha systems, when a standard procedure is called, the language compiler
creates a stack frame for that procedure. The stack format of a stack frame
procedure consists of a fixed part (the size of which is known at compile time) and
an optional variable part. There are two basic types of stack frames:

• Fixed size

• Variable size

18.2.2.1 Fixed-Size Stack Frame
Figure 18–2 illustrates the format of the stack frame for a procedure with a fixed
amount of stack. The SP register is the stack base pointer for a fixed-size stack.
In this case, R29 (FP) typically contains the address of the procedure descriptor
for the current procedure.

The optional parts of the stack frame are created only as required by the
particular procedure. As shown in Figure 18–2, the field names within brackets
are optional fields. The fixed temporary locations are optional sections of any
stack frame that contain language-specific locations required by the procedure
context of some high-level languages.

The register save area is a set of consecutive quadwords in which registers
that are saved and restored by the current procedure are stored. The register
save area (RSA) begins at the location pointed to by the RSA offset. The contents
of the return address register (R26) are always saved in the first register field
(SAVED_RETURN) of the register save area.

18–10 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

Use of the arguments passed in memory appending the end of the frame is
described in Section 18.4. For more detail concerning the fixed-size stack frame,
see the HP OpenVMS Calling Standard.

Figure 18–2 Fixed-Size Stack Frame Format

ZK−4650A−GE

octaword aligned

[Fixed temporary locations]

Register save area

[Fixed temporary locations]

[Argument home area]

[Arguments passed in memory]

:0 (from SP)

:SIZE (from SP)

:RSA_OFFSET
(from SP)

18.2.2.2 Variable-Size Stack Frame
Figure 18–3 illustrates the format of the stack frame for procedures with a
varying amount of stack when PDSC$V_BASE_REG_IS_FP is 1. In this case,
R29 (FP) contains the address that points to the base of the stack frame on the
stack. This frame-base quadword location contains the address of the current
procedure’s descriptor.

The optional parts of the stack frame are created as required by the particular
procedure. As shown in Figure 18–3, field names within brackets are optional
fields. The fixed temporary locations are optional sections of any stack frame
that contain language-specific locations required by the procedure context of some
high-level languages.

A compiler can use the stack temporary area pointed to by the SP base register
for fixed local variables, such as constant-sized data items and program state,
as well as for dynamically sized local variables. The stack temporary area may
also be used for dynamically sized items with a limited lifetime, for example, a
dynamically sized function result or string concatenation that cannot be directly

Basic Calling Standard Conventions 18–11

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

stored in a target variable. When a procedure uses this area, the compiler
must keep track of its base and reset SP to the base to reclaim storage used by
temporaries.

The register save area is a set of consecutive quadwords in which registers
saved and restored by the current procedure are stored. The register save area
(RSA) begins at the location pointed to by the offset PDSC$W_RSA_OFFSET. The
contents of the return address register (R26) is always saved in the first register
field (SAVED_RETURN) of the register save area.

Use of the arguments passed in memory appending the end of the frame is
described in Section 18.4. For more detail concerning the variable-size stack
frame, see the HP OpenVMS Calling Standard.

18–12 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

Figure 18–3 Variable-Size Stack Frame Format

ZK−4651A−GE

octaword aligned

[Stack temporary area]

Procedure descriptor address

[Fixed temporary locations]

[Arguments passed in memory]

:0 (from SP)

:SIZE (from FP)

:RSA_OFFSET
(from FP)

[Argument home area]

[Fixed temporary locations]

Register save area

:0 (from FP)

:8 (from FP)

18.2.3 Stack Procedure Usage for I64
The I64 general registers are organized as a logically infinite set of stack frames
that are allocated from a finite pool of physical registers.

Registers R0 through R31 are called global or static registers and are not
part of the stacked registers. The stacked registers are numbered R32 up to
a user-configurable maximum of R127. A called procedure specifies the size
of its new stack frame using the alloc instruction. The procedure can use
this instruction to allocate up to 96 registers per frame shared among input,
output, and local values. When a call is made, the output registers of the calling
procedure are overlapped with the input registers of the called procedure, thereby
allowing parameters to be passed with no register copying or spilling. The

Basic Calling Standard Conventions 18–13

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

hardware renames physical registers so that the stacked registers are always
referenced in a procedure starting at R32.

Management of the register stack is handled by a hardware mechanism called
the Register Stack Engine (RSE). The RSE moves the contents of physical
registers between the general register file and memory without explicit program
intervention. This provides a programming model that looks like an unlimited
physical register stack to compilers; however, saving and restoring of registers
by the RSE may be costly, so compilers should still attempt to minimize register
usage.

18.2.3.1 Procedure Types
This calling standard defines the following basic types of procedures:

• Memory stack procedure–allocates a memory stack and may maintain part or
all of its caller’s context on that stack.

• Register stack procedure–allocates only a register stack and maintains its
caller’s context in registers.

• Null frame procedure–allocates neither a memory stack nor a register stack
and therefore preserves no context of its caller.

Note

Unlike an Alpha null frame procedure (see the HP OpenVMS Calling
Standard), an I64 null frame procedure does not execute in the context
of its caller because the I64 call instruction (br.call) changes the register
set so that only the caller’s output registers are accessible in the called
routine. The caller’s input and local registers cannot be accessed at all.
The call instruction also changes the previous frame state (PFS) of the
I64 processor.

A compiler may choose which type of procedure to generate based on the
requirements of the procedure in question. A calling procedure does not need
to know what type of procedure it is calling.

Every memory stack procedure or register stack procedure must have an
associated unwind description (see the HP OpenVMS Calling Standard) that
describes what type of procedure it is and other procedure characteristics. A
null frame procedure may also have an associated unwind description. (If not, a
default description applies.) This data structure is used to interpret the call stack
at any given point in a thread’s execution. It is typically built at compile time
and usually is not accessed at run time except to support exception processing or
other rarely executed code.

Read access to unwind descriptions is provided through the procedural interfaces
described in the HP OpenVMS Calling Standard.

An unwind description for a procedure is provided for the following reasons:

• To make invocations of that procedure visible to and interpretable by facilities
such as the debugger, exception-handling system, and the unwinder.

• To ensure that the context of the caller saved by the called procedure can be
restored if an unwind occurs. (For a description of unwinding, see the HP
OpenVMS Calling Standard.)

18–14 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

18.2.3.2 Memory Stack
The memory stack is used for local dynamic storage, spilled registers, and
parameter passing. It is organized as a stack of procedure frames, beginning with
the main program’s frame at the base of the stack, and continuing towards the
top of the stack with nested procedure calls. At the top of the stack is the frame
for the currently active procedure. (There may be some system-dependent frames
at the base of the stack, prior to the main program’s frame, but an application
program may not make any assumptions about them.)

The memory stack begins at an address determined by the operating system, and
grows towards lower addresses in memory. The stack pointer register (SP) always
points to the lowest address in the current, topmost frame on the stack.

Each procedure creates its frame on entry by subtracting its frame size from
the stack pointer, and removes its frame from the stack on exit by restoring the
previous value of SP (usually by adding its frame size, but a procedure may save
the original value of SP when its frame size varies).

Because the register stack is also used for the same purposes as the memory
stack, not all procedures need a memory stack frame. However, every nonleaf
procedure must save at least its return link and the previous frame marker,
either on the register stack or on the memory stack. This ensures that there is
an invocation context for every nonleaf procedure on one or both of the stacks.

18.2.3.3 Procedure Frames
A memory stack procedure frame consists of five regions, as illustrated in
Figure 18–4.

Figure 18–4 Procedure Frame

scratch area (16 bytes)

outgoing parameters

frame marker frame size

dynamic allocation

local storage

previous SP

VM-0959A-AI

:0 (from SP)

These regions are:

• Scratch area. This 16-byte region is provided as scratch storage for
procedures that are called by the current procedure. Leaf procedures need
not allocate this region. A procedure may use the 16 bytes pointed to by the
stack pointer (SP) as scratch memory, but the contents of this area are not
preserved by a procedure call.

• Outgoing parameters. Parameters in excess of those passed in registers are
stored in this region of the stack frame. A procedure accesses its incoming
parameters in the outgoing parameter region of its caller’s stack frame.

Basic Calling Standard Conventions 18–15

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

• Frame marker (optional). This region may contain information required
for unwinding through the stack (for example, a copy of the previous stack
pointer).

• Dynamic allocation. This variable-sized region (initially zero length) can be
created as needed.

• Local storage. A procedure can store local variables, temporaries, and spilled
registers in this region. For conventions affecting the layout of this area for
spilled registers, see the HP OpenVMS Calling Standard.

Whenever control is transferred to another procedure, the stack pointer must be
octaword aligned; at other times there is no stack alignment requirement. (A side
effect of this is that the in-memory portion of the argument list will start on an
octaword boundary.) During a procedure invocation, the SP can never be set to a
value higher than the SP at entry to that procedure invocation.

Note

A stack pointer that is not octaword aligned is valid only in a variable-
sized frame because the unwind descriptor (MEM_STACK_F, see the HP
OpenVMS Calling Standard) for a fixed-size frame specifies the size in
16-byte units.

An application may not write to memory addresses lower than the stack pointer,
because this memory area may be written to asynchronously (for example, as a
result of exception processing).

Most procedures are expected to have a fixed-size frame, and the conventions
are biased in favor of this. A procedure with a fixed-size frame may reference
all regions of the frame with a compile-time constant offset relative to the stack
pointer. Compilers should determine the total size required for each region, and
pad the local storage area to make the total frame size a multiple of 16 bytes.
The procedure can then create the frame by subtracting an immediate constant
from the stack pointer in the prologue, and remove the frame by adding the same
immediate constant to the stack pointer in the epilogue.

If a procedure has a variable-size frame (for example, a C routine that calls the
alloca builtin), it should make a copy of SP to serve as a frame pointer before
subtracting the initial frame size from the stack pointer. The procedure can then
restore the previous value of the stack pointer in the epilogue without regard for
how much dynamic storage has been allocated within the frame. It can also use
the frame pointer to access the local storage region, because offsets from SP will
vary.

A frame pointer is not required if both of the following conditions are true:

• The procedure uses an equivalent method of addressing the local storage
region correctly before and after dynamic allocation.

• The code satisfies the conditions imposed by the stack unwind mechanism.

To expand a stack frame dynamically, the scratch area, outgoing parameters,
and frame marker regions (which are always located relative to the current
stack pointer), must be relocated to the new top of stack. If the scratch area and
outgoing parameter area are both clear of any live values, there is no actual work
involved in relocating these areas. For procedures with dynamically sized frames,
it is recommended that the previous stack pointer value be stored in a local

18–16 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

stacked general register instead of the frame marker, so that the frame marker is
also empty. If the previous stack pointer is stored in the frame marker, the code
must take care to ensure that the stack is always unwindable while the stack is
being expanded (see the HP OpenVMS Calling Standard).

Other issues depend on the compiler and the code being compiled. The standard
calling sequence does not define a maximum stack frame size, nor does it restrict
how a language system uses any stack frame region beyond those purposes
described here. For example, the outgoing parameter region can be used as
scratch storage whenever it is not needed for passing parameters.

18.2.3.4 Register Stack
General registers R32 through R127 form a register stack that is automatically
managed across procedure calls and returns. Each procedure frame on the
register stack is divided into two dynamically sized regions: one for input
parameters and local variables, and one for output parameters.

On a procedure call, the registers are automatically renamed by the hardware
so that the caller’s output registers form the base of the register stack frame of
the callee. On return, the registers are restored to the previous state, so that the
input and local registers are preserved across the call.

The ALLOC instruction is used at the beginning of a procedure to allocate
the input, local, and output regions; the sizes of these regions are supplied as
immediate operands. A procedure is not required to issue an ALLOC instruction
if it does not need to store any values in its register stack frame. It may write to
the first N stacked registers, where N is the value of the argument count passed
in the argument information (AI) register (see Section 18.5.6). It may not write to
any other stack register without first issuing an ALLOC instruction.

Figure 18–5 illustrates the operation of the register stack across an example
procedure call. In this example, the caller allocates eight input, twelve local, and
four output registers; the callee allocates four input, six local, and five output
registers with the following instruction:

ALLOC R36=rspfs, 4, 6, 5, 0

The actual registers to which the stacking registers are physically mapped are
not directly addressable by the application software.

18.2.3.4.1 Input and Local Registers The hardware makes no distinction
between input and local registers. The caller’s output registers automatically
become the callee’s register stack frame on a procedure call, with all registers
initially allocated as output registers. An ALLOC instruction may increase or
decrease the total size of the register stack frame, and may adjust the boundary
between the input and local region and the output region.

The software conventions specify that up to eight general registers are used for
parameter passing. Any registers in the input and local region beyond those eight
may be allocated for use as preserved locals. Floating-point parameters may
produce holes in the parameter list that is passed in the general registers; those
unused input registers may also be used for preserved locals.

The caller’s output registers do not need to be preserved for the caller. Once an
input parameter is no longer needed, or has been copied elsewhere, that register
may be reused for any other purpose within the procedure.

Basic Calling Standard Conventions 18–17

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

Figure 18–5 Operation of the Register Stack

R32 R40 R52

R32

R32 R36 R42

R56

R36

R47

Input Local Output

Output

Input Local Output

Caller’s frame

Callee’s frame before ALLOC

Callee’s frame after ALLOC

VM-0958A-AI

IN0 LOC0 OUT0

OUT0

IN0 LOC0 OUT0

18.2.3.4.2 Output Registers Up to eight output registers are used for passing
parameters. If a procedure call requires fewer than eight general registers for
its parameters, the calling procedure does not need to allocate more than are
needed. If the called procedure expects more parameters, it will allocate extra
input registers; these registers will be uninitialized.

A procedure may also allocate more than eight registers in the output region.
While the extra registers may not be used for passing parameters, they can be
used as extra scratch registers. On a procedure call, they will show up in the
called procedure’s output area as excess registers, and may be modified by that
procedure. The called procedure may also allocate few enough total registers
in its stack frame that the top of the called procedure’s frame is lower than the
caller’s top-of-frame, but those registers will become available again when control
returns to the caller.

18.2.3.4.3 Rotating Registers A subset of the registers in the procedure frame
may be designated as rotating registers. The rotating register region always
starts with R32, and may be any multiple of eight registers in number, up to a
maximum of 96 rotating registers. The renaming is under control of the Register
Rename Base (RRB).

If the rotating registers include any or all of the output registers, software must
be careful when using the output registers for passing parameters, because a non-
zero RRB will change the virtual register numbers that are part of the output
region. In general, software should ensure either that the rotating region does
not overlap the output region, or that the RRB is cleared to zero before setting
output parameter registers.

18–18 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

18.2.3.4.4 Frame Markers The current application-visible state of the register
stack is stored in an architecturally inaccessible register called the current frame
marker. On a procedure call, this register is automatically saved by copying it to
an application register, the previous function state (AR.PFS). The current frame
marker is modified to describe a new stack frame whose input and local area is
initially zero size, and whose output area is equal in size to the previous output
area. On return, the previous frame state register is used to restore the current
frame marker to its earlier value, and the base of the register stack is adjusted
accordingly.

It is the responsibility of a procedure to save the previous function state register
before issuing any procedure calls of its own, and to restore it before returning.

18.2.3.4.5 Backing Store for Register Stack When the depth of the procedure
call stack exceeds the capacity of the physical register file, the hardware frees
physical registers by saving them into a memory stack. This backing store is
distinct from the memory stack described in Section 18.2.3.2.

As returns unwind the procedure call stack, the hardware also restores
previously-saved physical registers from the backing store.

The operation of this register stack engine (RSE) is mostly transparent to
application software. While the RSE is running, application software may not
examine the contents of the backing store, and may not make any assumptions
about how much of the register stack is still in physical registers or in the backing
store. In order to examine previous stack frames, application software must
synchronize the RSE with the FLUSHRS instruction. Synchronizing the RSE
forces all stack frames up to, but not including, the current frame to be saved in
backing store, allowing the software to examine the contents of the backing store
without asynchronous operations modifying the memory. Modifications to the
backing store require setting the RSE to enforced lazy mode after synchronizing
it, which prevents the RSE from doing any operations other than those required
by calls and returns. The procedure for synchronizing the RSE and setting the
mode is described in the Intel® Itanium® Software Conventions and Runtime
Architecture Guide.

The backing store grows towards higher addresses. The top of the stack, which
corresponds to the top of the previous procedure frame, is available in the Backing
Store Pointer (BSP) application register. The BSP must always point to a valid
backing store address, because the operating system may need to start the RSE
to process an exception.

Backing store overflow is automatically detected by the OpenVMS operating
system, which will either extend the backing store to allow continued operation or
will raise an exception. Unlike for the memory stack (see Section 18.2.3.2), there
are no specific rules or requirements that must be satisfied to facilitate detection
of backing store overflow.

A NaT collection register is stored into the backing store following each group
of 63 physical registers. The NaT bit of each register stored is shifted into
the collection register. When the BSP reaches the quadword just before a
64-quadword boundary, the RSE stores the collection register. Software can
determine the position of the NaT collection registers in the backing store by
examining the memory address. This process is described in greater detail in the
Intel® Itanium® Architecture Software Developer’s Manual.

Basic Calling Standard Conventions 18–19

Basic Calling Standard Conventions
18.3 Procedure Representation

18.3 Procedure Representation
A procedure value is an address value that represents a procedure.

On VAX systems, the procedure value is the address of the procedure entry mask
that begins the actual code sequence of the procedure.

On Alpha systems, the procedure value in R27 is the address of the procedure
descriptor that describes that procedure. So any OpenVMS Alpha procedure can
be invoked by calling the stored address at offset 8 from the procedure descriptor
(PDSC) starting address (procedure value).

For OpenVMS I64, a procedure value is the address of a function descriptor,
which consists of at least two quadword fields: the address of the entry point and
the GP value required by that procedure.

Every procedure whose address is taken, or might be taken, must have a unique
official function descriptor. The address of this function descriptor is used for
the procedure value that is passed as a parameter or when two procedure values
are compared. For other purposes, additional local function descriptors may
be used for efficiency (notably in images other than the image that contains the
procedure).

An official function descriptor for any procedure which might be callable from
a VAX or Alpha translated image must include signature information. A local
function descriptor used to call a procedure that might be part of a VAX or Alpha
translated image must also include additional fields to facilitate the call. Both of
these cases are described in the HP OpenVMS Calling Standard.

A function descriptor for a bound procedure uses a special pseudo-GP value and
includes an uplevel frame pointer. Such function descriptors are described in HP
OpenVMS Calling Standard.

The several kinds of function descriptors are summarized in Table 18–8.

Table 18–8 Summary of Function Descriptor Kinds

Kinds and Roles
Size
(Quadwords)

Local function descriptor without translated image support 2

Local function descriptor with translated image support (jacket function
descriptor)

4

Official function descriptor without translated image support 3

Official function descriptor with translated image support 3

Bound function descriptor 6

Note that the different kinds of function descriptor are not self-identifying (that
is, they do not contain any form of tag or kind field).

18.4 Argument List
The calling standard defines a data structure called the argument list. An
argument list is a sequence of locations in memory that represents a routine
parameter list and possibly includes a function value. You use an argument list
to pass information to a routine and receive results.

18–20 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.4 Argument List

On VAX systems, the first longword in an argument list (see Figure 18–6) stores
the number of arguments (the argument count, n) as an unsigned integer value.
The maximum argument count is 255. The remaining 24 bits of the first longword
are reserved for use by HP and must be 0.

Both integer and floating-point values can be an argument passed in the
argument list. Note that a 64-bit floating-point argument counts as 2 longword
arguments in the list.

Figure 18–6 Structure of a VAX Argument List

ZK−4648A−GE

Must be 0

arg2

Argument

arg1

count (n)

argn

:arglst
31 0

On Alpha systems, arguments are quadwords, and the calling program passes
arguments in an argument item sequence. Each quadword in the sequence
specifies a single argument. The argument item sequence is formed using R16–21
or F16–21 (a register for each argument). The argument item sequence can have
a mix of integer and floating-point items that use both register types but must
not repeat the same number. For example, an argument list might use R16,
R17, F18, and R19. If there are more than six arguments, the argument items
overflow to the end of the stack, as shown in Figure 18–7.

The calling procedure must pass to the called procedure information about the
argument list. For high-level languages, this is performed by the language
processor. In the argument information (AI) register (R25), the quadword format
is the structure shown in Figure 18–8. The AI register contains the argument
count in the first byte. Table 18–9 describes the argument information fields in
detail.

Basic Calling Standard Conventions 18–21

Basic Calling Standard Conventions
18.4 Argument List

Figure 18–7 Alpha Argument List Format

ZK−5273A−GE

Arg Count

Arguments passed in

Argument Item Sequence

memory for more than

R16 (arg1)

six arguments

R17 (arg2)

R18 (arg3)

Alpha Registers

R19 (arg4)

R20 (arg5)

R21 (arg6)

F16 (arg1)

F17 (arg2)

F18 (arg3)

F19 (arg4)

F20 (arg5)

F21 (arg6)

R25 (AI)

R30 (SP)

End of stack frame

arg7

arg8

argn

Figure 18–8 Argument Information (AI) Register (R25) Format

Must be 0 ARG_REG_INFO

ARG_COUNT

64 25 7 0

ZK−6510A−GE

18–22 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.4 Argument List

Table 18–9 Contents of the Argument Information (AI) Register (Alpha only)

Field Name Contents

AI$B_ARG_COUNT Unsigned byte <7:0> that specifies the number of 64-bit argument items in the
argument list (known as the argument count).

AI$V_ARG_REG_INFO An 18-bit vector field <25:8> divided into 6 groups of 3 bits that correspond to
the 6 arguments passed in registers. These groups describe how each of the first
six arguments are passed in registers with the first group <10:8> describing the
first argument. The encoding for each group for the argument register usage
follows:

Value Name Meaning

0 AI$K_AR_I64 64-bit or 32-bit sign-extended to 64-bit argument
passed in an integer register or

Argument is not present.

1 AI$K_AR_FF VAX F_floating argument passed in a floating
register.

2 AI$K_AR_FD VAX D_floating argument passed in a floating
register.

3 AI$K_AR_FG VAX G_floating argument passed in a floating
register.

4 AI$K_AR_FS IEEE S_floating argument passed in a floating
register.

5 AI$K_AR_FT IEEE T_floating argument passed in a floating
register.

6, 7 Reserved.

Bits <63:26> Reserved and must be 0.

For I64, parameters are passed in a combination of general registers, floating-
point registers, and memory, as illustrated in Figure 18–9.

The parameter list is formed by placing each individual parameter into fixed-
size elements of the parameter list, referred to as parameter slots. Each
parameter slot is 64 bits wide; parameters larger than 64 bits are placed in as
many consecutive parameter slots as are needed to contain the entire parameter.
The rules for allocation and alignment of parameter slots are described in
Section 18.5.4.1.

The contents of the first eight parameter slots are always passed in registers,
while the remaining parameters are always passed on the memory stack,
beginning at the caller’s stack pointer plus 16 bytes. The caller uses up to eight
of the registers in the output region of its register stack for integer and VAX
floating-point parameters, and up to eight floating-point registers for IEEE
floating-point parameters. The maximum number of registers used is eight.

Basic Calling Standard Conventions 18–23

Basic Calling Standard Conventions
18.4 Argument List

Figure 18–9 Parameter Passing in Registers and Memory

VM-0962A-AI

slot 0

OUT0 OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7

F8 F9 F10 F11 F12 F13 F14 F15

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6 slot 7 slot 8 slot 9 slot 10 slot 11

SP +8 +16 +24 +32 +40 +48

Parameter Slots

General Registers

Floating Registers

Memory Stack

To accommodate variable argument lists in the C language, there is a fixed
correspondence between parameter slots; the first parameter slot is always in
either the first general output register or the first floating-point register (never
both), the second parameter slot is always in the second general output register or
the second floating-point register (never both), and so on. This allows a procedure
to spill its register parameters easily to memory to form the argument home
area before stepping through the parameter list with a pointer. The Argument
Information register (AI) makes this possible, as explained in Section 18.5.6.

A procedure can assume that the NaT bits on its incoming general register
arguments are clear, and that the incoming floating-point register arguments
are not NaTVals. A procedure making a call must ensure only that registers
containing actual parameters are clear of NaT bits or NaTVals; registers not used
for actual parameters are undefined.

18.5 Argument Passing Mechanisms
Each high-level language supported by OpenVMS provides a mechanism for
passing arguments to a procedure. The specifics of the mechanism and the
terminology used, however, vary from one language to another. For specific
information, refer to the appropriate high-level language user’s guide.

OpenVMS system routines are external procedures that accept arguments. The
argument list contains the parameters that are passed to the routine. Depending
on the passing mechanisms for these parameters, the forms of the arguments
contained in the argument list vary. As shown in Figures 18–10 and 18–11,
argument entries labeled arg1 through argn are the actual parameters, which
can be any of the following addresses or value:

• An uninterpreted 32-bit value on VAX or 64-bit value on Alpha and I64
systems is passed by value.

• An address of a data value is passed by reference.

18–24 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

• An address of a descriptor that contains a pointer to a data value is passed by
descriptor (for example, a string might be the data value).

Figure 18–10 Alpha Procedure Argument-Passing Mechanisms

ZK−5248A−GE

R16/F16 (arg1 actual value)

R17/F17 (arg2 actual value)

R18/F18 (arg3 actual value)

argn actual value

Argument Item Sequence
Argument Passed by Value

Argument Passed by Reference

R16/F16 arg1 pointer

R17/F17 arg2 pointer

R18/F18 arg3 pointer

argn pointer

Argument Item Sequence

Data

Argument Passed by Descriptor

R16/F16 arg1 pointer to DSC

R17/F17 arg2 pointer to DSC

R18/F18 arg3 pointer to DSC

argn pointer to DSC

Argument Item Sequence

Actual value

Length

Pointer

Data

Descriptor

Class D Type

D C B A

H G F E

Basic Calling Standard Conventions 18–25

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

Figure 18–11 VAX Procedure Argument-Passing Mechanisms

descriptor
Pointer to

actual value
Pointer to

Argument List

:(AP)

 Argument Passed by Value

:(AP)

 Argument Passed by Reference

:(AP)

 Argument Passed by Descriptor

Pointer

Class D Type Length

Descriptor

Actual Value

Data

A

B

C

D

E

F

G

H

:(AP) = Argument pointer

n = Number of arguments

ZK−1962−GE

Data (bytes)

can be passed by value, Note: arg1, arg2, and argn

n

n

n

in any of these examples.by reference, or by descriptor

arg1

arg2

Actual value

argn

arg1

arg2

argn

arg1

arg2

argn

Length

OpenVMS programming reference manuals provide a description of each
OpenVMS system routine that indicates how each argument is to be passed.
Phrases such as ‘‘an address’’ and ‘‘address of a character string descriptor’’
identify reference and descriptor arguments, respectively. Terms like ‘‘Boolean

18–26 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

value,’’ ‘‘number,’’ ‘‘value,’’ and ‘‘mask’’ indicate an argument that is passed by
value.

18.5.1 Passing Arguments by Value
When your program passes an argument using the by value mechanism, the
argument list entry contains either the actual uninterpreted 32-bit VAX value
or a 64-bit Alpha or I64 value (zero- or sign-extended) of the argument. For
example, to pass the constant 100 by value, the calling program puts 100 directly
in the argument list or sequence. For more information about passing 64-bit
Alpha and I64 values, refer to Chapter 11.

All high-level languages (except C) require you to specify the by-value mechanism
explicitly when you call a procedure that accepts an argument by value. For
example, FORTRAN uses the %VAL built-in function, while COBOL uses the BY
VALUE qualifier on the CALL [USING] statement.

A FORTRAN program calls a procedure using the by-value mechanism as follows:

INCLUDE ’($SSDEF)’
CALL LIB$STOP (%VAL(SS$_INTOVF))

A BLISS program calls this procedure as follows:

LIB$SIGNAL (SS$_INTOVF)

The equivalent VAX MACRO code is as follows:

PUSHL #SS$_INTOVF ; Push longword by value
CALLS #1,G^LIB$SIGNAL ; Call LIB$SIGNAL

A C language program calls a procedure using the by-value mechanism as follows:

#include <starlet.h> /* Declare the function*/
.
.

enum cluster0
{

completion, breakdown, beginning
} event;

int status;
event = completion;
.
.

status = sys$setef(event); /* Set event flag */

18.5.2 Passing Arguments by Reference
When your program passes arguments using the by reference mechanism, the
argument list entry contains the address of the location that contains the value
of the argument. For example, if variable x is allocated at location 1000, the
argument list entry will contain 1000, the address of the value of x.

On Alpha processors and I64, the address is sign-extended from 32 bits to 64 bits.

Most languages (but not C) pass scalar data by reference by default. Therefore, if
you simply specify x in the CALL statement or function invocation, the language
automatically passes the value stored at the location allocated to x to the
OpenVMS system routine.

A VAX BLISS program calls a procedure using the by-reference mechanism as
follows:

LIB$FLT_UNDER (%REF(1))

Basic Calling Standard Conventions 18–27

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

The equivalent VAX MACRO code is as follows:

ONE: .LONG 1 ; Longword value 1
.
.
.

PUSHAL ONE ; Push address of longword
CALLS #1,G^LIB$FLT_UNDER ; Call LIB$FLT_UNDER

A C language program calls a procedure using the by-reference mechanism as
follows:

/* This program shows how to call system service SYS$READEF. */

#include <ssdef.h>
#include <stdio.h>

#include <starlet.h> /* Declare the function */

main(void)
{

/* Longword that receives the status *
* of the event flag cluster */

unsigned cluster_status;

int return_status; /* Status: SYS$READEF */

/* Argument values for SYS$READEF */
enum cluster0

{
completion, breakdown, beginning

} event;
.
.
.

event = completion; /* Event flag in cluster 0 */

/* Obtain status of cluster 0. *
* Pass value of event and *
* address of cluster_status. */

return_status = SYS$READEF(event, &cluster_status);

/* Check for successful call */
if (return_status != SS$WASCLR && return_status != SS$WASSSET)

{
/* Handle the error here. */

.

.

.
}

else
{

/* Check bits of interest in cluster_status here. */
.
.
.

}
}

18–28 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

18.5.3 Passing Arguments by Descriptor
When a procedure specifies that an argument is passed by descriptor, the
argument list entry must contain the address of a descriptor for the argument.
For more information about OpenVMS Alpha 64-bit descriptors, refer to Chapter
11.

On Alpha and I64 processors, the address is sign-extended from 32 bits to 64 bits.

This mechanism is used to pass more complicated data. For both Alpha and VAX
systems, a descriptor includes at least the following fields:

Symbol Description

DSC$W_LENGTH Length of data (or DSC$W_MAXSTRLEN, maximum length, for
varying strings)

DSC$B_DTYPE Data type

DSC$B_CLASS Descriptor class code

DSC$A_POINTER Address at which the data begins

The HP OpenVMS Calling Standard describes these fields in greater detail.

OpenVMS high-level languages include extensions for passing arguments by
descriptor. When you specify by descriptor in these languages, the compiler
creates the descriptor, defines its fields, and passes the address of the descriptor
to the OpenVMS system routine. In some languages, by descriptor is the default
passing mechanism for certain types of arguments, such as character strings. For
example, the default mechanism for passing strings in BASIC is by descriptor.

100 COMMON STRING GREETING = 30
200 CALL LIB$PUT_SCREEN(GREETING)

The default mechanism for passing strings in COBOL, however, is by reference.
Therefore, when passing a string argument to an OpenVMS system routine from
a COBOL program, you must specify BY DESCRIPTOR for the string argument
in the CALL statement.

CALL LIB$PUT_OUTPUT USING BY DESCRIPTOR GREETING

In VAX MACRO or BLISS, you must define the descriptor’s fields explicitly
and push its address onto the stack. Following is the VAX MACRO code that
corresponds to the previous examples.

MSGDSC: .WORD LEN ; DESCRIPTOR: DSC$W_LENGTH
.BYTE DSC$K_DTYPE_T ; DSC$B_DTYPE
.BYTE DSC$K_CLASS_S ; DSC$B_CLASS
.ADDRESS MSG ; DSC$A_POINTER

MSG: .ASCII/Hello/ ; String itself
LEN = .-MSG ; Define the length of the string

.ENTRY EX1,^M<>
PUSHAQ MSGDSC ; Push address of descriptor
CALLS #1,G^LIB$PUT_OUTPUT ; Output the string
RET
.END EX1

Basic Calling Standard Conventions 18–29

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

The equivalent BLISS code looks like this:

MODULE BLISS1 (MAIN = BLISS1, ! Example of calling LIB$PUT_OUTPUT
IDENT = ’1-001’,
ADDRESSING_MODE(EXTERNAL = GENERAL)) =

BEGIN
EXTERNAL ROUTINE

LIB$STOP, ! Stop execution via signaling
LIB$PUT_OUTPUT; ! Put a line to SYS$OUTPUT

FORWARD ROUTINE
BLISS1 : NOVALUE;

LIBRARY ’SYS$LIBRARY:STARLET.L32’;

ROUTINE BLISS1 ! Routine
: NOVALUE =

BEGIN
!+
! Allocate the necessary local storage.
!-

LOCAL
STATUS, ! Return status
MSG_DESC : BLOCK [8, BYTE]; ! Message descriptor

BIND
MSG = UPLIT(’HELLO’);

!+
! Initialize the string descriptor.
!-

MSG_DESC [DSC$B_CLASS] = DSC$K_CLASS_S;
MSG_DESC [DSC$B_DTYPE] = DSC$K_DTYPE_T;
MSG_DESC [DSC$W_LENGTH] = 5;
MSG_DESC [DSC$A_POINTER] = MSG;

!+
! Put out the string. Test the return status.
! If it is not a success, then signal the RMS error.
!-

STATUS = LIB$PUT_OUTPUT(MSG_DESC);
IF NOT .STATUS THEN LIB$STOP(.STATUS);
END; ! End of routine BLISS1

END ! End of module BLISS1
ELUDOM

A C language program calls a procedure using the by-descriptor mechanism as
follows:

/* This program shows a call to system service SYS$SETPRN. */

#include <ssdef.h>
#include <stdio.h>

/* Define structures for descriptors */
#include <descrip.h>

#include starlet.h /* Declare the function */

int main(void)
{
int ret; /* Define return status of SYS$SETPRN */

struct dsc$descriptor_s name_desc; /* Name the descriptor */

char *name = "NEWPROC"; /* Define new process name */
.
.
.

name_desc.dsc$w_length = strlen(name); /* Length of name without *
* null terminator */

18–30 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

name_desc.dsc$a_pointer = name; /* Put address of shortened string *
* in descriptor */

name_desc.dsc$b_class = DSC$K_CLASS_S; /* String descriptor class */

name_desc.dsc$b_dtype = DSC$K_DTYPE_T; /* Data type: ASCII string */
.
.
.

ret = sys$setprn(&name_desc);

if (ret != SS$_NORMAL) /* Test return status */
fprintf(stderr, "Failed to set process name\n"),
exit(ret);
.
.
.

}

18.5.4 Parameter Passing Mechanisms for I64
The parameter passing mechanisms for I64 are generally the same as for Alpha
and are included here for completeness. Two notable difference between Alpha
and I64 are that the first six parameter slots are passed in registers for Alpha,
while for I64 the first eight parameter slots are passed in registers; and that I64
passes VAX floating-point parameters in general registers.

18.5.4.1 Allocation of Parameter Slots
Parameter slots are allocated for each parameter, based on the parameter passing
mechanism, type, and size, treating each parameter in sequence, from left to
right. The rules for allocating parameter slots and placing the contents within
the slot are given in Table 18–10. The allocation column of the table indicates
how parameter slots are allocated to each type of parameter.

Table 18–10 Rules for Allocating Parameter Slots

Type Size (Bits) Number of Slots

Integer, small set 1-64 1

Address/pointer (including all types passed by reference or
descriptor)

64 1

IEEE single-precision floating-point (S_floating) 32 1

IEEE single-precision floating-point complex (S_floating) 64 2

IEEE double-precision floating-point (T_floating) 64 1

IEEE double-precision floating-point complex (T_floating) 128 2

IEEE quad-precision floating-point (X_floating) 64 (by reference) 1

IEEE quad-precision floating-point complex (X_floating) 64 (by reference) 1

Aggregates (noncomplex) any (size+63)/64

VAX single-precision floating-point (F_floating) 32 1

VAX single-precision floating-point complex (F_floating) 64 2

VAX double-precision floating-point (D_ & G_floating) 64 1

VAX double-precision floating-point complex (D_ & G_floating) 128 2

Basic Calling Standard Conventions 18–31

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

Note

These rules are applied based on the type of the parameter after any
type-promotion rules specified by the language have been applied. For
example, a short integer passed without a function prototype in C is
promoted to the int type, and is then passed according to the rules for the
int type.

OpenVMS does not support passing the I64 double-precision extended floating-
point type (_ _float80), although that type may be used from time to time in code
generation sequences.

This placement policy does not ensure that parameters greater than 64 bits
in size will fall on a natural alignment boundary if passed in memory. Such
parameters may need to be copied by the called procedure into an aligned
temporary prior to use, or accessed in a way that does not depend on natural
alignment.

18.5.5 Normal Register Parameters
The first eight parameter slots (64 bytes) are passed in registers, according to the
rules in this section.

• These eight argument slots are associated, one-to-one, with the stacked
output general registers, as shown in Figure 18–9.

• Integral scalar parameters, (including addresses and pointers), VAX floating-
point parameters, and aggregate parameters in these slots are passed only in
the corresponding output general registers.

• Aggregate parameters in these slots are passed by value only in the
corresponding output general registers. The aggregate is treated as a
sequence of 64-bit integral values, with each value allocated into the next
available slot in aggregate memory address order. If the size of the aggregate
is not an even multiple of 64 bits, then the unused bits in the last slot are
undefined.

• If an aggregate or VAX floating-point complex parameter straddles the
boundary between slot 7 and slot 8, the part that lies within the first eight
slots is passed in general registers, and the remainder is passed in memory,
as described in Table 18–11.

Complex values (other than IEEE quad-precision floating-point complex), in
those languages that include complex types, are passed as a pair of floating-
point values (either single-precision or double-precision as appropriate). It
is possible for the first of the two floating-point values in a complex value
to occupy the last output register slot; in this case, the second floating-point
value is passed in memory. IEEE quad-precision floating-point complex
values are passed by reference.

• IEEE single-precision and double-precision floating-point scalar parameters
are passed in the corresponding floating-point register slot. IEEE quad-
precision floating point scalar parameters are passed by reference in the
corresponding output general registers.

18–32 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

When IEEE floating-point parameters are passed in floating-point registers, they
are passed in the register format, rounded to the appropriate precision. They
are never passed in the general registers unless part of an aggregate, in which
case they are passed in the aggregate memory format. When VAX floating-point
parameters are passed in general registers, they are passed in memory format.

Parameters allocated beyond the eighth parameter slot are never passed in
registers.

Unsigned integral (except unsigned 32-bit), set, and VAX floating-point values
passed in registers are zero-filled; signed integral values as well as unsigned
32-bit integral values are sign-extended to 64 bits. For all other types passed in
the general registers, unused bits are undefined.

Note

Bit 31 is replicated in bits 32–63, even for unsigned 32-bit integers.

The rules contained in this section are summarized in Tables 18–11 and 18–12.

Table 18–11 Data Types and the Unused Bits in Passed Data

Data Type (OpenVMS Names) Type Designator1
Data Size
(bytes)

Register
Extension
Type

Memory
Extension
Type

Byte logical DSC$K_DTYPE_BU 1 Zero64 Zero64

Word logical DSC$K_DTYPE_WU 2 Zero64 Zero64

Longword logical DSC$K_DTYPE_LU 4 Sign64 Sign64

Quadword logical DSC$K_DTYPE_QU 8 Data64 Data64

Byte integer DSC$K_DTYPE_B 1 Sign64 Sign64

Word integer DSC$K_DTYPE_W 2 Sign64 Sign64

Longword integer DSC$K_DTYPE_L 4 Sign64 Sign64

Quadword integer DSC$K_DTYPE_Q 8 Data64 Data64

F_floating DSC$K_DTYPE_F 4 VAXF64 Data32

D_floating DSC$K_DTYPE_D 8 VAXDG64 Data64

G_floating DSC$K_DTYPE_G 8 VAXDG64 Data64

F_floating complex DSC$K_DTYPE_FC 2 � 4 2*VAXF64 2�Data32

D_floating complex DSC$K_DTYPE_DC 2 � 8 2*VAXDG64 2�Data64

G_floating complex DSC$K_DTYPE_GC 2 � 8 2*VAXDG64 2�Data64

S_floating DSC$K_DTYPE_FS 4 Hard Data32

T_floating DSC$K_DTYPE_FT 8 Hard Data64

X_floating DSC$K_DTYPE_FX 16 N/A N/A

S_floating complex DSC$K_DTYPE_FSC 2 � 4 2�Hard 2�Data32

T_floating complex DSC$K_DTYPE_FTC 2 � 8 2�Hard 2�Data64

X_floating complex DSC$K_DTYPE_FXC 2 � 16 N/A N/A

1OpenVMS also provides symbols of the form DSC64$K_DTYPE_xxx for each type designator.

(continued on next page)

Basic Calling Standard Conventions 18–33

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

Table 18–11 (Cont.) Data Types and the Unused Bits in Passed Data

Data Type (OpenVMS Names) Type Designator1
Data Size
(bytes)

Register
Extension
Type

Memory
Extension
Type

Small structures of 8 bytes or less N/A �8 Nostd Nostd

Small arrays of 8 bytes or less N/A �8 Nostd Nostd

32-bit address N/A 4 Sign64 Sign64

64-bit address N/A 8 Data64 Data64

1OpenVMS also provides symbols of the form DSC64$K_DTYPE_xxx for each type designator.

Table 18–12 contains the defined meanings for the memory extension type
symbols used in Table 18–11.

Table 18–12 Extension Type Codes

Sign Extension
Type Defined Function

Sign64 Sign-extended to 64 bits.

Zero64 Zero-extended to 64 bits.

Data32 Data is 32 bits. The state of bits <63:32> is unpredictable.

2�Data32 Two single-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as Data32).

Data64 Data is 64 bits.

2�Data64 Two double-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as Data64).

VAXF64 Data is 64 bits. Low-order 32 bits are the same as the F_floating
memory format and the high-order 32 bits are zero. (Used only in a
general register, never in a floating-point register.)

VAXDG64 Data is 64 bits. Uses the corresponding D_floating or G_floating
memory format. (Used only in a general register, never in a floating-
point register.)

2*VAXF64 Two single-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as VAXF64).

2*VAXDG64 Two double-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as VAXDG64).

Hard Passed in the layout defined by the hardware SRM.

2�Hard Two floating-point parts of the complex value are stored in a pair of
registers as independent floating-point values (each handled as Hard).

Nostd State of all high-order bits not occupied by the data is unpredictable
across a call or return.

18.5.6 Argument Information (AI) Register
In addition to the normal parameters, an implicit argument information value
is passed in register R25, the Argument Information (AI) register. This value is
shown in Figure 18–12. Note that I64 passes eight arguments in registers, while
Alpha passes six arguments in registers.

18–34 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

Figure 18–12 Argument Information Register Representation

Must Be Zero
<63:32>

Argument Register Information
<31:8>

Argument
Count
<7:0>

VM-1006A-AI

Argument Count is an unsigned byte that specifies the number of 64-bit argument
slots used for the argument list. (Note that single- and double-precision complex
values use two slots, which is reflected in this count.)

Argument Register Information is a contiguous group of eight 3-bit fields that
correspond to the eight arguments passed in registers. The first group, bits
<10:8>, describes the first argument; the second group, bits <13:11>, describes
the second argument; and so on. The encoding for each group is described in
Table 18–13.

Basic Calling Standard Conventions 18–35

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

Table 18–13 Argument Information Register Codes

Value
OpenVMS
Name Meaning

0 AI$K_AR_I64 64-bit or 32-bit sign-extended to 64-bit argument passed in an
integer register (including addresses)
or
Argument is not present

1 AI$K_AR_FF F_floating (also known as VAX single-precision floating-point)
argument passed in a general register

2 AI$K_AR_FD D_floating (also known as VAX double-precision floating-point)
argument passed in a general register

3 AI$K_AR_FG G_floating (also known as VAX double-precision floating-point)
argument passed in a general register

4 AI$K_AR_FS S_floating (also known as IEEE single-precision floating-point)
argument passed in a floating-point register

5 AI$K_AR_FT T_floating (also known as IEEE double-precision floating-point)
argument passed in a floating-point register

6,7 Reserved

18.5.7 Memory Stack Parameters
The remainder of the parameter list, beginning with slot 8, is passed in the
outgoing parameter area of the memory stack frame, as described in the HP
OpenVMS Calling Standard. Parameters are mapped directly to memory, with
slot 8 placed at location SP+16, slot 9 placed at location SP+24, and so on. Each
argument is stored in memory as a series of one or more 64-bit storage units,
with unused bits in the last unit undefined.

18.5.8 Variable Argument Lists
The rules above support variable-argument list functions in both the K&R and
the ANSI dialects of the C language. (Note that argument location is independent
of whether a prototype is in scope.)

The nth argument is in either Rn or Fn regardless of the type of parameter in
the preceding register slot. Therefore, a function with variable arguments may
assume that the variable arguments that lie within the first eight argument slots
can be found in either the stacked input integer registers (IN0-IN7), or in the
floating-point parameter registers (F8-F15). Using the information codes from
the the AI (Argument Information) register (see Table 18–13), the function can
then store these registers to memory using the 16-byte scratch area for IN6/F14
and IN7/F15, and up to 48 bytes at the base of its own stack frame for IN0/F8-
IN5/F13, as necessary. This arrangement places all of the variable parameters in
one contiguous block of memory.

18.5.9 Pointers to Formal Parameters
Whenever the address is formed of a formal parameter that is passed in a
register, the compiler must store the parameter to the stack, as it would for a
variable argument list.

18–36 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

18.5.9.1 Languages Other than C
The placement of arguments in general registers versus floating-point registers
does not depend on any notion or concept of a prototype being in scope. It is
therefore applicable to all languages at all times.

18.5.10 Rounding Floating-Point Values
There must be no difference in behavior between a floating-point parameter
passed directly in a register and a floating-point parameter that has been stored
to memory and reloaded. In either case, the floating-point value must be the
same. This implies that floating-point parameters passed in floating-point
registers must be explicitly rounded to the proper precision by the caller.

18.6 Passing Scalars as Arguments
When you are passing an input scalar value to an OpenVMS system routine,
you usually pass it either by reference or by value. You usually pass output
scalar arguments by reference to OpenVMS system routines. An output scalar
argument is the address of a location where some scalar output of the routine will
be stored.

18.7 Passing Arrays as Arguments
Arrays are passed to OpenVMS system routines by reference or by descriptor.

Sometimes the routine knows the length and dimensions of the array to be
received, as in the case of the table passed to LIB$CRC_TABLE. Arrays such as
this are normally passed by reference.

In other cases, the routine actually analyzes and operates on the input array.
The routine does not necessarily know the length or dimensions of such an input
array, so a descriptor is necessary to provide the information the routine needs to
describe the array accurately.

18.8 Passing Strings as Arguments
Strings are passed by descriptor to OpenVMS system routines. Table 18–14 lists
the string-passing descriptors recognized by a system routine.

Table 18–14 String-Passing Descriptors

Descriptor Function Descriptor Class Code Numeric Value

Fixed length (string/scalar) DSC$K_CLASS_S 1

Dynamic DSC$K_CLASS_D 2

Array DSC$K_CLASS_A 4

Scaled decimal DSC$K_CLASS_SD 9

Noncontiguous array DSC$K_CLASS_NCA 10

Varying length DSC$K_CLASS_VS 11

An OpenVMS system routine writes strings according to the following types of
semantics:

• Fixed length — Characterized by an address and a constant length

• Varying length — Characterized by an address, a current length, and a
maximum length

Basic Calling Standard Conventions 18–37

Basic Calling Standard Conventions
18.8 Passing Strings as Arguments

• Dynamic — Characterized by a current address and a current length

18.9 Combinations of Descriptor Class and Data Type
Some combinations of descriptor class and data type are not permitted, either
because they are not meaningful or because the calling standard does not
recognize them. Possibly, the same function can be performed with more than
one combination. This section describes the restrictions on the combinations
of descriptor classes and data types. These restrictions help to keep procedure
interfaces simple by allowing a procedure to accept a limited set of argument
formats without sacrificing functional flexibility.

The tables in Figures 18–13, 18–14, and 18–15 show all possible combinations of
descriptor classes and data types. For example, Figure 18–13 shows that your
program can pass an argument to an OpenVMS system routine whose descriptor
class is DSC$K_CLASS_A (array descriptor) and whose data type is unsigned
byte (DSC$K_DTYPE_BU). The calling standard does not permit your program to
pass an argument whose descriptor class is DSC$K_CLASS_D (dynamic string)
and whose data type is unsigned byte.

A descriptor with data type DSC$K_DTYPE_DSC (24) points to a descriptor that
has class DSC$K_CLASS_D (2) and data type DSC$K_DTYPE_T (14). All other
class and data type combinations in the target descriptor are reserved for future
definition in the standard.

The scale factor for DSC$K_CLASS_SD is always a decimal data type. It does
not vary with the data type of the data described by the descriptor.

For DSC$K_CLASS_UBS and DSC$K_CLASS_UBA, the length field specifies the
length of the data field in bits. For example, if the data type is unsigned word
(DSC$K_DTYPE_WU), DSC$W_LENGTH equals 16.

18–38 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.9 Combinations of Descriptor Class and Data Type

Figure 18–13 Atomic Data Types and Descriptor Classes

ZK−4267−GE

Higher−level languages and their run−time support must conform to this restriction.
The calling standard forbids the use of this combination of class and data type.

The calling standard allows this combination of class and data type.Yes

−

= VAX specific

= Alpha specific

DSC$K_CLASS

= 191
_BFA

= 14
_UBA

= 13
_UBS

= 12
_VSA

= 11
_VS

= 3
_V

= 2
_D

= 1
_S _A

= 4 = 5
_P

= 9
_SD

= 10
_NCA

−

−

−

Data Type Value

Yes

Yes

DSC$K_DTYPE_O

DSC$K_DTYPE_F

DSC$K_DTYPE_D

= 27DSC$K_DTYPE_G

= 28DSC$K_DTYPE_H

= 12DSC$K_DTYPE_FC

= 13DSC$K_DTYPE_DC

= 29DSC$K_DTYPE_GC

= 30DSC$K_DTYPE_HC

= 52DSC$K_DTYPE_FS

Yes

Yes

Yes

Yes

Yes

Yes

Yes

−

Yes − −

− Yes Yes Yes − −

Yes Yes

Yes Yes

Yes Yes

− Yes

− Yes

− Yes

− −

− − − Yes − −

−

− − Yes Yes − − − − Yes

−−−−−

− − − − −

−−−−−

− − − − −

−−−−−

− −

Yes

−

Yes

Yes

Yes

Yes

YesYes−−

− − Yes

Yes−−

− − Yes

Yes−−

− − −

Yes Yes

Yes Yes Yes Yes

DSC$K_DTYPE_FT = 53

DSC$K_DTYPE_FSC = 54

DSC$K_DTYPE_FTC = 55

Yes

Yes

Yes

−−

−−

−−

−−

Yes Yes

Yes Yes

Yes Yes

Yes Yes

Yes

−

−

Yes

Yes

Yes

− −

− −

− −

− −

− − −

− − −

− − −

− − −

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

−

−

Yes

Yes

Yes

−

−

−

−

−

−

−

−

−

Yes

Yes

Yes

−

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

−

−

−

−

−

−

−

−

−

Yes

Yes

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

DSC$K_DTYPE_Z

DSC$K_DTYPE_BU

DSC$K_DTYPE_WU

DSC$K_DTYPE_LU

DSC$K_DTYPE_QU

DSC$K_DTYPE_OU

DSC$K_DTYPE_B

DSC$K_DTYPE_W

DSC$K_DTYPE_L

DSC$K_DTYPE_Q

 0=

=

=

=

=

=

=

=

=

=

25

2

3

4

5

6

7

8

9

26=

= 10

= 11

DSC$K_DTYPE_FX

DSC$K_DTYPE_FXC

= 57

= 58

Yes

Yes

−−

−−

Yes Yes

Yes Yes

−

−

Yes

Yes

− −

− −

− − −

− − −

Basic Calling Standard Conventions 18–39

Basic Calling Standard Conventions
18.9 Combinations of Descriptor Class and Data Type

Figure 18–14 String Data Types and Descriptor Classes

DSC$K_CLASS

Yes

*

= 191
_BFA

= 14
_UBA

= 3
_V

= 2
_D

= 1
_S _A

= 4 = 5
_P

= 9
_SD

1=DSC$K_DTYPE_V

= 14DSC$K_DTYPE_T

= 15DSC$K_DTYPE_NU

= 16DSC$K_DTYPE_NL

= 17DSC$K_DTYPE_NLO

= 18DSC$K_DTYPE_NR

= 19DSC$K_DTYPE_NRO

= 20DSC$K_DTYPE_NZ

= 21DSC$K_DTYPE_P

= 37DSC$K_DTYPE_VT

= 34DSC$K_DTYPE_VU

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes

Yes Yes Yes Yes Yes Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

* * * * *

= 13
_UBS

Yes

Yes

* *

= 12
_VSA

Yes

Yes

** *

Yes

Yes

= 11
_VS

*

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

= 10
_NCA

Data Type Value

Higher-level languages and their run-time support must conform to this restriction.
The calling standard forbids the use of this combination of class and data type.

No valid interpretation exists for this combination.

The calling standard allows this combination of class and data type.Yes

*

ZK-4266-AI

Figure 18–15 Miscellaneous Data Types and Descriptor Classes

ZK−4265−GE

DSC$K_CLASS

Yes *

−

= 191
_BFA

= 14
_UBA

= 13
_UBS

= 12
_VSA

= 11
_VS

= 3
_V

= 2
_D

= 1
_S _A

= 4 = 5
_P

= 9
_SD

= 10
_NCA

= 33DSC$K_DTYPE_BLV

= 32DSC$K_DTYPE_BPV

DSC$K_DTYPE_ZEM = 23

DSC$K_DTYPE_ZI = 22

Yes

Yes

Yes

− − −

− − −

−

−

−

−

−

−

−

−

− − − − −

−−

−

−

−

−

−

−

−

−

−

−

−

*

*

*

*

Yes

Yes

Yes

−

−

−

−

− −

− −

− −

− −

− −

Yes

Data Type Value

Higher−level languages and their run−time support must conform to this restriction.
The calling standard forbids the use of this combination of class and data type.

No valid interpretation exists for this combination.

The calling standard allows this combination of class and data type.Yes

*

−

DSC$K_DTYPE_DSC = 3

18–40 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.10 Function Value Return

18.10 Function Value Return
A function is a routine that returns a single value to the calling routine. The
function value represents the value of the expression in the return statement.
As specified by the calling standard, a function value may be returned as an
actual value in R0.

On VAX systems, if the actual function value returned is greater than 32 bits,
then both R0 and R1 should be used.

On Alpha systems, if the actual function returned is a floating-point value, the
floating-point value is returned either in F0 or in both F0 and F1.

A standard function must return its function value by one of the following
mechanisms:

• Immediate value

• Reference

• Descriptor

These mechanisms are the standard return convention because they support
the language-independent data types. For information about condition values
returned in R0, see Section 18.11.

For I64, values up to 128 bits are returned directly in the registers, according to
the rules in Table 18–15.

Integer, enumeration, record, and set values (bit vectors) smaller than 64 bits
must be zero-filled (unsigned integers, enumerations, records, sets) or sign-
extended (signed integrals) to a full 64 bits. However, for unsigned 32-bit
integers, bit 31 is replicated in bits 32–63.

When floating-point values are returned in floating-point registers, they are
returned in the register format, rounded to the appropriate precision. When they
are returned in the general registers (for example, as part of a record), they are
returned in their memory format.

OpenVMS does not support a general notion of homogeneous floating-point
aggregates. However, the special case of two single-precision or double-precision
floating-point values implementing values of a complex type are handled in an
analogous manner.

Table 18–15 Rules for I64 Return Values

Type
Size
(Bits)

Location of
Return Value Alignment

Integer/pointer, small secord, set 1–64 R8 LSB

IEEE single-precision floating-point (S_floating) 32 F8 N/A

IEEE double-precision floating-point
(T_floating)

64 F8 N/A

IEEE single-precision complex (S_floating) 64 F8, F9 N/A

IEEE double-precision complex (T_floating) 128 F8, F9 N/A

VAX single-precision floating-point (F_floating) 32 R8 N/A

(continued on next page)

Basic Calling Standard Conventions 18–41

Basic Calling Standard Conventions
18.10 Function Value Return

Table 18–15 (Cont.) Rules for I64 Return Values

Type
Size
(Bits)

Location of
Return Value Alignment

VAX double-precision floating-point
(D_ & G_floating)

64 R8 N/A

VAX single-precision floating-point complex (F_
floating)

64 R8, R9 N/A

VAX double-precision floating-point complex (D_
& G_floating)

128 R8, R9 N/A

Note

X_floating and X_floating complex are not included in this table because
they are returned using the hidden parameter method.

The rules in Table 18–15 are expressed in more detail in Table 18–11. F_floating
and F_floating complex values in the general registers are zero-extended (Zero64),
because this most closely approximates the effect of using the Alpha register
format.

Hidden Parameter
Return values other than those covered by Table 18–15 are returned in a buffer
allocated by the caller. A pointer to the buffer is passed to the called procedure as
a hidden first parameter, and all normal parameters are shifted one slot to make
this possible. The return buffer must be aligned at a 16-byte boundary.

18.11 Condition Value Return
An OpenVMS system routine can indicate success or failure to the calling
program by returning a condition value. In addition, an error condition to the
calling program can return as a condition value in R0 (R8, R9 for I64) or by error
signaling.

A condition value in R0 (R8, R9 for I64), also called a return status or completion
code, is either a success (bit 0 = 1) value or an error condition (bit 0 = 0) value.
In an error condition value, the low-order 3 bits specify the severity of the error
(see Figure 18–16). Bits <27:16> contain the facility number, and bits <15:3>
indicate the particular condition. Bits <31:28> are the control field. When the
called procedure returns a condition value, the calling program can test R0 and
choose a recovery path. A general guideline to follow when testing for success or
failure is that all success codes have odd values and all error codes have even
values.

When the completion code is signaled, the calling program must establish a
handler to get control and take appropriate action. (See Chapter 9 or the HP
OpenVMS Calling Standard for a description of signaling and condition handling
and for more information about the condition value.)

18–42 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.12 Macro-32 Register Usage and Mapping for I64

Figure 18–16 Condition Value Format

ZK−1795−GE

Message numberFacility number

27 31516

2 01

Control Severity

28 27 3 2

*S

*S = Success

Condition identification

31 0

18.12 Macro-32 Register Usage and Mapping for I64
Because the I64 calling standard diverges from the Alpha and VAX calling
standards regarding the use of registers and register mapping, and because
Macro-32 assumes that registers are preserved across calls, the MACRO compiler
maps registers to allow existing code to compile unmodified.

If you use OpenVMS high-level languages, the register and register mapping
differences in the calling standards are handled by the compilers and are not
exposed to your code. However, if your code uses Macro-32, C #pragma linkages,
or BLISS linkages, your code might have to take into account the differences in
register mapping.

This section describes I64 register usage and mapping.

18.12.1 I64 Register Usage Compared with Alpha and VAX
OpenVMS I64 systems employ 32 integer registers, R0 through R31, with R0
being a read-only register that contains 0. This is different from OpenVMS
Alpha, where R31 is a read-write register that contains 0.

In addition, the I64 calling standard has been written to be highly compatible
with the Intel calling standard, and is quite different from the OpenVMS Alpha
calling standard. For example, the standard return registers on I64 are R8/R9,
not R0/R1 as on Alpha. The I64 calling standard reserves R1 as the GP (global
pointer), does not include a standardized FP (frame pointer), and only has R4
through R7 as preserved across calls, not R2 through R15 as on Alpha.

I64 register usage differs from that of Alpha and VAX in the following key ways:

• Registers 2 through 11 are preserved on OpenVMS VAX

• Registers 2 through 15 are preserved on OpenVMS Alpha

• Registers 4 through 7 are preserved on OpenVMS I64

• I64 has more ‘‘volatile’’ registers

• I64 returns values in R8/R9 instead of R0/R1

• R0 is readonly in I64

• I64 reserves R1 as the GP (global pointer)

Basic Calling Standard Conventions 18–43

Basic Calling Standard Conventions
18.12 Macro-32 Register Usage and Mapping for I64

• I64 does not include a standardized FP (frame pointer)

• Arguments are also passed in stacked registers in I64. R32-R39 are used as
incoming argument registers.

18.12.1.1 I64 Register Mapping in MACRO Compiler
The OpenVMS MACRO compiler compiles Macro-32 source code written for
OpenVMS VAX systems (the VAX MACRO assembler) into machine code that
runs on OpenVMS Alpha and OpenVMS I64 systems. Because Macro-32 source
code is written with the VAX and Alpha calling standards in mind, the compiler
performs several transformations to allow existing code to compile unmodified
with the I64 compiler.

The MACRO compiler maps the registers in Macro-32 source programs to I64
registers on your behalf, as shown in Table 18–16, to minimize source changes.
This allows existing programs to use ‘‘MOVL SS$_NORMAL, R0’’ and have the
generated code return the value in R8 as prescribed by the calling standard. The
mapping to an actual I64 register is totally transparent to the Macro-32 source
code (and most of the compiler).

Table 18–16 Register Mapping Table for OpenVMS VAX/OpenVMS Alpha to
OpenVMS I64

OpenVMS VAX/OpenVMS Alpha
Register in Source Code OpenVMS I64 Register Used in Generated Code

R0 R8

R1 R9

R2 R28

R3 R3

R4 R4

R5 R5

R6 R6

R7 R7

R8 R26

R9 R27

R10 R10

R11 R11

R12 R30

R13 R31

R14 R20

R15 R21

R16 R14

R17 R15

R18 R16

R19 R17

(continued on next page)

18–44 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.12 Macro-32 Register Usage and Mapping for I64

Table 18–16 (Cont.) Register Mapping Table for OpenVMS VAX/OpenVMS Alpha
to OpenVMS I64

OpenVMS VAX/OpenVMS Alpha
Register in Source Code OpenVMS I64 Register Used in Generated Code

R20 R18

R21 R19

R22 R22

R23 R23

R24 R24

R25 R25

R26 Itanium stacked register

R27 Itanium stacked register

R28 Itanium stacked register

R29 R29

R30 R12

R31 R0

The register mapping was carefully chosen based on which registers were
preserved across calls, which registers may be modified across calls, and which
registers are volatile and do not even survive into or out of a call.

As on Alpha, Macro-32 references to AP are mapped by the compiler to the
appropriate location depending on whether the arguments have been saved to
the stack. To support references to FP, the compiler creates an FP value where
needed. The compiler supports references to 0(FP) to establish condition handlers
just like on VAX and Alpha.

The compiler does not provide any syntax for accessing I64 registers directly
without going through the mapping table.

The automatic register mapping done by the compiler allows many Macro-
32 programs (including those that access Alpha registers R16-R31) to compile
without modificiations.

Note, however, that use of registers R16-R21 as routine parameters on Alpha is
not portable to I64. Use PUSHL to pass parameters to a CALL, and use 4(AP),
8(AP), and so forth in the called routine to refer to them. The compiler will
generate the correct register references instead of the stack references implied by
the VAX operands.

On I64 systems, the compiler continues to recognize many of the EVAX_* builtins
that provide direct access to Alpha instructions on Alpha systems. These built-ins
will generate one or more I64 instructions to perform the same logical operation.
See the HP OpenVMS MACRO Compiler Porting and User’s Guide for a complete
list of which EVAX_* built-ins are also supported on I64.

Basic Calling Standard Conventions 18–45

Basic Calling Standard Conventions
18.12 Macro-32 Register Usage and Mapping for I64

18.12.1.2 Use of MACRO Linkage Directives to Preserve Registers
For I64 systems, add linkage directives (.CALL_LINKAGE, .DEFINE_LINKAGE,
or .USE_LINKAGE) to mark VAX CALLS or CALLG instructions that call
routines that return values in registers other than R0 or R1, or to JSB to routines
written in a language other than Macro-32. These directives look similar to the
.CALL_ENTRY directive and specify input, output, preserved, and scratch masks.
In addition, they also have a language keyword to provide an alternative quick
specification.

The .CALL_LINKAGE directive associates a named or anonymous linkage with a
routine name. When the compiler sees a CALLS, CALLG, JSB, BSBB, or BSBW
instruction with the routine name as the target, it will use the associated linkage
to decide which registers need to be saved and restored around the call.

The .USE_LINKAGE directive establishes a temporary named or anonymous
linkage that will be used by the compiler for the next CALLS, CALLG, JSB,
BSBB, or BSBW instruction processed in lexical order. This directive is used
when the target of the next CALLS, CALLG, JSB, BSBB, or BSBW instruction
is not a name, but a run-time value (for example, CALLS #0, (R6)). When the
compiler sees the next CALLS, CALLG, JSB, BSBB, or BSBW instruction, it will
use the associated linkage to decide which registers need to be saved and restored
around the call. After the instruction is processed, the temporary linkage is reset
to null.

The .DEFINE_LINKAGE directive defines a named linkage that can be used with
subsequent .CALL_LINKAGE or .USE_LINKAGE directives.

If your Macro-32 code uses a CALLS or CALLG instruction to access routines
that return values in registers other than R0 or R1, the contents of the saved
and restored registers may not be what you expect. Existing Macro-32 code
traditionally assumes that registers R2-R11 and R15 are preserved and returned
across calls. For CALLS and CALLG instructions, the MACRO compiler
automatically saves and restores registers R2-R3 and R8-R15 in case the target
of the call is not Macro-32. However, this means that changes made to these
registers by the routine call are undone. This can cause problems if the routine
return values were in registers other than R0-R1.

In the following example, m1.mar saves and preserve registers R2, R3, and R9
and undoes the changes made to these registers by the routine call.

M1.mar
calls #3,g^body_scan

M2.mar
Body_scan:
.call_entry preserve=<r6,r7,r8>, output=<r2,r3,r4,r5,r9>

To avoid this problem, add a .CALL_LINKAGE directive to m1.mar (or to a
common prefix file or macro):

.call_linkage rtn_name=body_scan preserve=<r6,r7,r8> -
output=<r2,r3,r4,r5,r9>

For JSB instructions, the MACRO compiler assumes that the target is also
Macro-32 and does not save and restore anything. The compiler assumes that
all registers flow in and out of the target routine. Alpha high-level language
compilers would have preserved registers R2-R15. However, I64 high-level
language compilers preserve only registers R4-R7.

18–46 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.12 Macro-32 Register Usage and Mapping for I64

In the following example m1.mar assumes that registers R0-R15 are returned or
preserved by the target BLISS routine. On Alpha, BLISS would have done that.
On I64, it preserves only registers R4-R7:

M1.mar
jsb search_path

M2.bli
linkage l = jsb(register=0) : global(wrk=10,prc=11)
global routine search_path : l = begin . . . End;

To avoid this problem, add a .CALL_LINKAGE directive to m1.mar:

.call_linkage rtn_name=search_path language=other -
output=<r10,r11>

Indirect calls with mismatched registers are not detected by the linker since it
does not know what routine is being called. An indirect JSB to a BLISS or C
routine requires a .USE_LINKAGE directive:

.use_linkage language=other
jsb (r5)

If the routine returns a register other than R0/R1:

.use_linkage language=other output=<r5,r9>
jsb (r3)

See the HP OpenVMS MACRO Compiler Porting and User’s Guide for additional
information.

18.12.2 High-Level Language Compiler Register Mapping
If you use OpenVMS high-level languages, the register and register mapping
differences in the calling standards are handled by the compilers and are not
exposed to your code. However, if your code uses C #pragma linkages or BLISS
linkages to interface with Macro-32 source code, your code might have to take
into account the differences in register mapping.

BLISS added a new qualifier and source level switch to enable register mapping
for register numbers in linkage and register declarations. It is off by default.
BLISS also has additional support for linkages that reference arguments. The C
compiler changed the #pragma linkage to map the registers by default, along with
additional support for linkages that reference arguments or floating registers.
There are new pragmas to get unmapped linkages.

See your compiler documentation for additional information.

Basic Calling Standard Conventions 18–47

19
Calling Run-Time Library Routines

The OpenVMS Run-Time Library is a set of language-independent routines that
establish a common run-time environment for user programs. The procedures
ensure correct operation of complex language features and help enforce consistent
operations on data across languages.

The HP OpenVMS Calling Standard describes the mechanisms used by
OpenVMS languages for invoking routines and passing data between them.
In effect, this standard describes the interface between your program and the
run-time library routines that your program calls. This chapter describes the
basic methods for coding calls to run-time library routines from an OpenVMS
common language.

19.1 Overview
When you call a run-time library routine from your program, you must furnish
whatever arguments the routine requires. When the routine completes execution,
in most cases it returns control to your program. If the routine returns a status
code, your program should check the value of the code to determine whether or
not the routine completed successfully. If the return status indicates an error,
you may want to change the flow of execution of your program to handle the error
before returning control to your program.

When you log in, the operating system creates a process that exists until you log
out. When you run a program, the system activates an executable image in your
process. This image consists of a set of user procedures.

From the run-time library’s point of view, user procedures are procedures that
exist outside the run-time library and that can call run-time library routines.
When you write a program that calls a run-time library routine, the run-time
library views your program as a user procedure. User procedures also can call
other user procedures that are either supplied by HP or written by you. Because
an OpenVMS native-mode language compiler program exists outside the run-time
library, compiler-generated programs that call any run-time library routine are
also defined as a set of user procedures.

The main program, or main procedure, is the first user procedure that the
system calls after calling a number of initialization procedures. A user program
consists of the main program and all of the other user procedures that it calls.

Figure 19–1 shows the calling relationships among a main program, other user
procedures, library routines, and the operating system. In this figure, Call
indicates that the calling procedures requested some information or action;
Return indicates that the called procedure returned the information to the calling
procedure or performed the action.

Calling Run-Time Library Routines 19–1

Calling Run-Time Library Routines
19.1 Overview

Figure 19–1 Calling the Run-Time Library

Service Call

ZK−4262−GE

Return

Call

Return

RTL Call

Return

(User Procedure)
Main Program

Procedure
User

Call

Return

System
Operating

Procedure
Library

Although library routines can always call either other library routines or the
operating system, they can call user procedures only in the following cases:

• When a user procedure establishes its own condition handler. For example,
LIB$SIGNAL operates by searching for and calling user procedures that have
been established as condition handlers (see the HP OpenVMS RTL Library
(LIB$) Manual for more information).

• When a user procedure passes to a routine the address of another procedure
that the library will call later. For example, when your program calls
LIB$SHOW_TIMER, you can pass the address of an action routine that
LIB$SHOW_TIMER will call to process timing statistics.

19–2 Calling Run-Time Library Routines

Calling Run-Time Library Routines
19.2 Call Instructions

19.2 Call Instructions
Each run-time library routine requires a specific calling sequence. This calling
sequence indicates the elements that you must include when calling the routine,
and the order of those elements. The form of a calling sequence first specifies
the type of call being made. A library routine can be invoked either by a CALL
instruction or possibly by a JSB instruction (for VAX systems only) as follows:

• CALL — Call procedure from a high-level language

• CALLS — Call procedure with stack argument list instruction (VAX MACRO)

• CALLG — Call procedure with general argument list instruction (VAX
MACRO)

• JSB — Jump to subroutine instruction (for VAX systems only)

• JSR — Jump to subroutine instruction (MACRO-64)

On VAX systems, the following restrictions apply to the different types of calls:

• High-level languages do not differentiate between CALLS and CALLG. They
use a CALL statement or a function reference to invoke a run-time library
routine.

• VAX MACRO does not differentiate between functions and subroutines in its
CALLS and CALLG instructions.

• Only VAX MACRO and BLISS programs on VAX systems can explicitly access
the JSB entry points that are provided for some routines in the run-time
library. You cannot write a program to access the JSB entry points directly
from a high-level language.

19.2.1 Facility Prefix and Routine Name
Each routine is identified by a unique entry point name consisting of the facility
prefix (for example, MTH$) and the procedure name (for example, MTH$SIN).
Run-time library entry points follow the OpenVMS conventions for naming global
symbols. A global entry point takes the following general form:

fac$symbol

The elements that make up this format represent the following:

fac A 2- or 3-character facility name

symbol A 1- to 27-character symbol

The facility names are maintained in a systemwide HP registry. A unique, 12-bit
facility number is assigned to each facility name for use in (1) condition value
symbols, and (2) condition values in procedure return status codes, signaled
conditions, and messages. The high-order bit of this number is 0 for facilities
assigned by HP and 1 for those assigned by Application Project Services (APS)
and customers. For further information, refer to the HP OpenVMS Calling
Standard.

The run-time library facility names are as follows:

CVT$ Convert routines

DTK$ DECtalk routines

LIB$ Library routines

Calling Run-Time Library Routines 19–3

Calling Run-Time Library Routines
19.2 Call Instructions

MTH$ Mathematics routines

OTS$ General-purpose routines

PPL$ Parallel processing routines

SMG$ Screen management routines

STR$ String-handling routines

19.2.2 The RTL Call Entry
Arguments passed to a routine must be listed in your call entry in the order
shown in the format section of the routine description. Each argument has four
characteristics: OpenVMS usage, data type, access type, and passing mechanism.
These characteristics are described in Chapter 17.

Some arguments are optional. Optional arguments are indicated by brackets
in the routine descriptions. When your program invokes a run-time library
routine using a CALL entry point, you can omit optional arguments at the end
of the argument list. If the optional argument is not the last argument in the
list, you must either pass a zero by value or use a comma to indicate the place
of the omitted argument. Some languages, such as C, require that you pass
zero by value for trailing optional arguments. See your language processor
documentation for further information.

On VAX systems, the calling program passes an argument list of longwords to a
called routine; each longword in the argument list specifies a single argument.
Note that a 64-bit floating-point argument would count as 2 longword arguments
in the list.

On Alpha systems, the calling program passes arguments in an argument item
sequence; each quadword in the sequence specifies a single argument item. Note
that the argument item sequence is formed using R16–21 or F16–21 (a register
for each argument). The argument item sequence can have a mix of integer and
floating-point items that use both register types but must not repeat the same
number.

For I64, parameters are passed in a combination of general registers, floating-
point registers, and memory, as illustrated in Figure 18–9. The first eight
parameters are passed in R32 through R39, with the parameter count in R25 and
subsequent parameters in quadwords on the stack.

In the Alpha, VAX, and I64 environments, the called routine interprets each
argument using one of three standard passing mechanisms: by value, by
reference, or by descriptor. For more information on arguments, see Sections
18.4 and 18.5.

Optional arguments apply only to the CALL entry points. For example, the call
format for a procedure with two optional arguments is as follows:

LIB$GET_INPUT get-str [,prompt-str] [,out-len]

A FORTRAN program could include any one of the following calls to this
procedure:

INTEGER*4 STAT
.
.
.
STAT = LIB$GET_INPUT (GET_STR,PROMPT,LENGTH)

STAT = LIB$GET_INPUT (GET_STR,PROMPT)

STAT = LIB$GET_INPUT (GET_STR,PROMPT,)

19–4 Calling Run-Time Library Routines

Calling Run-Time Library Routines
19.2 Call Instructions

STAT = LIB$GET_INPUT (GET_STR,,LENGTH)

STAT = LIB$GET_INPUT (GET_STR)

STAT = LIB$GET_INPUT (GET_STR,)

STAT = LIB$GET_INPUT (GET_STR,%VAL(0))

The following examples illustrate the standard mechanism for calling an external
procedure, subroutine, or function in most high-level languages.

BASIC
CALL LIB$MOVTC(SRC, FILL, TABLE, DEST)

STATUS = LIB$GET_INPUT(STRING, ’NAME:’)

BLISS
LOCAL

MSG_DESC : BLOCK [8,BYTE];

MSG_DESC [DSC$B_CLASS] = DSC$K_CLASS_S;
MSG_DESC [DSC$B_DTYPE] = DSC$K_DTYPE_T;
MSG_DESC [DSC$W_LENGTH] = 5;
MSG_DESC [DSC$A_POINTER] = MSG;

STATUS = LIB$PUT_OUTPUT(MSG_DESC);

C
#include <lib$routines.h>
#include <descrip.h>

$DESCRIPTOR(name, "Name:");
struct dsc$descriptor_s string:

.

.

.
status = lib$get_input(&string, &name);

COBOL
CALL LIB$MOVTC USING BY DESCRIPTOR

SRC,
FILL,
TABLE,
DEST,
GIVING RET-STATUS.

FORTRAN
CALL LIB$MOVTC(SRC, FILL, TABLE, DEST)

STATUS = LIB$GET_INPUT(STRING, ’NAME:’)

Pascal
RET_STATUS := LIB$MOVTC (SRC, FILL, TABLE, DEST);

PL/I
CALL LIB$MOVTC(SRC, FILL, TABLE, DEST);

STATUS = LIB$GET_INPUT(STRING, ’NAME:’);

VAX MACRO
In VAX MACRO, a calling sequence takes one of three forms, as illustrated by the
following examples:

CALLS #2,G^LIB$GET_INPUT

CALLG ARGLIST, G^LIB$GET_VM

JSB G^MTH$SIN_R4

Calling Run-Time Library Routines 19–5

Calling Run-Time Library Routines
19.2 Call Instructions

As these examples show, high-level languages use different forms of the call
statement. Each language’s user guide gives specific information about calling
the run-time library from that language.

19.2.2.1 JSB Call Entries (VAX Only)
On VAX systems, JSB entry point names follow the naming conventions explained
in Section 19.2.1, except that they include a suffix indicating the number of the
highest register accessed or modified. This suffix helps ensure that the calling
program and the called routine agree on the number of registers that the called
routine is going to change.

The following example illustrates the VAX MACRO code that invokes the library
routine MTH$SIN_R4 by means of a JSB instruction. As indicated in the JSB
entry point name, this routine uses R0 through R4.

JSB G^MTH$SIN_R4 ;F_floating sine uses R0 through R4

JSB entry points are available only to VAX MACRO and VAX BLISS programs.
No VAX high-level language provides a mechanism for accessing JSB entry
points.

19.2.3 Returns from an RTL Routine
On VAX systems, some run-time library routines return a function value.
Typically on a VAX system, the return is in the form of a 32-bit value in register
R0 or a 64-bit value in registers R0 and R1. In high-level languages, statuses
or function return values in R0 appear as the function result. When a routine
returns a function value in R0, it cannot also use R1 to return a status code.
Therefore, such a procedure signals errors rather than returning a status. For
more information, refer to the HP OpenVMS Calling Standard or the description
of LIB$SIGNAL in the HP OpenVMS RTL Library (LIB$) Manual.

On Alpha systems, a standard function returns its function value in R0, F0, or F0
and F1. A function value of less than 64 bits returned by immediate value in R0
is zero-extended or sign-extended to a full quadword as required by the data type.
Note that a floating function value is returned by immediate value in F0 or in F0
and F1.

For I64, values up to 128 bits are returned directly in the registers (R8, R9 or F8,
F9), according to the rules in Table 18–15. Integer, enumeration, record, and set
values (bit vectors) smaller than 64 bits must be zero-filled (unsigned integers,
enumerations, records, sets) or sign-extended (signed integrals) to a full 64 bits.
However, for unsigned 32-bit integers, bit 31 is replicated in bits 32–63.

When floating-point values are returned in floating-point registers, they are
returned in the register format, rounded to the appropriate precision. When they
are returned in the general registers (for example, as part of a record), they are
returned in their memory format.

19.2.3.1 Facility Return Status and Condition Value Symbols
Library return status and condition value symbols have the following general
form:

fac$_abcmnoxyz

19–6 Calling Run-Time Library Routines

Calling Run-Time Library Routines
19.2 Call Instructions

The elements that make up this format represent the following:

fac The 2- or 3-letter facility symbol

abc The first 3 letters of the first word of the associated message

mno The first 3 letters of the next word

xyz The first 3 letters of the third word, if any

Articles and prepositions are not considered significant words in this format. If a
significant word is only two letters long, an underscore is used to fill out the third
space. Some examples follow. Note that, in most facilities, the normal or success
symbol is an exception to the convention described here.

SS$_NORMAL Routine successfully completed

LIB$_INSVIRMEM Insufficient virtual memory

MTH$_FLOOVEMAT Floating overflow in mathematics library procedure

OTS$_FATINTERR Fatal internal error in a language-independent
support procedure

LIB$_SCRBUFOVF Screen buffer overflow

19.3 Calling a Library Procedure in VAX MACRO (VAX Only)
This section describes how to code MACRO calls to library routines using a
CALLS, CALLG, or JSB instruction for VAX systems. The routine descriptions
that appear later in this manual describe the entry points for each routine. You
can use either a CALLS or a CALLG instruction to invoke a procedure with a
CALL entry point. You must use a JSB instruction to invoke a procedure with a
JSB entry point. All MACRO calls are explicitly defined.

19.3.1 VAX MACRO Calling Sequence
All run-time library routines have a CALL entry point. Some routines also have
a JSB entry point. In MACRO, you invoke a CALL entry point with a CALLS or
CALLG instruction. To access a JSB entry point, use a JSB instruction.

Arguments are passed to CALLS and CALLG entry points by a pointer to the
argument list. The only difference between the CALLS and CALLG instructions
is as follows:

• For CALLS, the calling procedure pushes the argument list onto the stack (in
reverse order) before performing the call. The list is automatically removed
from the stack upon return.

• For CALLG, the calling program specifies the address of the argument list,
which can be anywhere in memory. This list remains in memory upon return.

Both of these instructions have the same effect on the called procedure.

JSB instructions execute faster than CALL instructions. They do not set up a
new stack frame, do not change the enabling of hardware traps or faults, and
do not preserve the contents of any registers before modifying them. For these
reasons, you must be careful when invoking a JSB entry point in order to prevent
the loss of information stored by the calling program.

Whichever type of call you use, the actual reference to the procedure entry point
should use general-mode addressing (G^). This ensures that the linker and the
image activator are able to locate the module within the shareable image.

Calling Run-Time Library Routines 19–7

Calling Run-Time Library Routines
19.3 Calling a Library Procedure in VAX MACRO (VAX Only)

In most cases, you have to tell a library routine where to find input values and
store output values. You must select a data type for each argument when you
code your program. Most routines accept and return 32-bit arguments.

For input arguments of byte, word, or longword values, you can supply a constant
value, a variable name, or an expression in the run-time library routine call. If
you supply a variable name for the argument, the data type of the variable must
be as large as or larger than the data types that the called procedure requires.
For example, if the called procedure expects a byte in the range 0 to 100, you can
use a variable data type of a byte, word, or longword with a value between 0 and
100.

For each output argument, you must declare a variable of exactly the length
required to avoid extraneous data. For example, if the called procedure returns a
byte value to a word-length variable, the leftmost 8 bits of the variable <15:8> are
not overwritten on output. Conversely, if a procedure returns a longword value to
a word-length variable, it modifies variables in the next higher word.

19.3.2 VAX MACRO CALLS Instruction Example
Before executing a CALLS instruction, you must push the necessary arguments
on the stack. Arguments are pushed in reverse order; the last argument listed in
the calling sequence is pushed first. The following example shows how a MACRO
program calls the procedure that allocates virtual memory in the program region
for LIB$GET_VM.

.PSECT DATA PIC,USR,CON,REL,GBL,NOSHR,NOEXE,RD,WRT,NOVEC

MEM: .LONG 0 ; Longword to hold address of
; allocated memory

LEN: .LONG 700 ; Number of bytes to allocate

.PSECT CODE PIC,USR,CON,REL,GBL,SHR,EXE,RD,NOWRT,NOVEC

.ENTRY PROG, ^M<>

PUSHAL MEM ; Push address of longword
; to receive address of block

PUSHAL LEN ; Push address of longword
; containing number of bytes
; desired

CALLS #2, G^LIB$GET_VM ; Allocate memory
BLBC R0, 1$; Branch if memory not available
RET

1$: PUSHL R0 ; Signal the error
CALLS #1, G^LIB$SIGNAL
RET

.END PROG

Because the stack grows toward location 0, arguments are pushed onto the stack
in reverse order from the order shown in the general format for the routine.
Thus, the base-address argument, here called START, is pushed first, and then
the number-bytes argument, called LEN. Upon return from LIB$GET_VM, the
calling program tests the return status (ret-status), which is returned in R0 and
branches to an appropriate error routine if an error occurred.

19–8 Calling Run-Time Library Routines

Calling Run-Time Library Routines
19.3 Calling a Library Procedure in VAX MACRO (VAX Only)

19.3.3 VAX MACRO CALLG Instruction Example
When you use the CALLG instruction, the arguments are set up in any location,
and the call includes a reference to the argument list. The following example of a
CALLG instruction is equivalent to the preceding CALLS example.

ARGLST:
.LONG 2 ; Argument list count
.ADDRESS LEN ; Address of longword containing

; the number of bytes to allocate.
.ADDRESS START ; Address of longword to receive

; the starting address of the
; virtual memory allocated.

LEN: .LONG 20 ; Number of bytes to allocate
START: .BLKL 1 ; Starting address of the virtual

; memory.

CALLG ARGLIST, G^LIB$GET_VM ; Get virtual memory
BLBC R0, ERROR ; Check for error
BRB 10$

19.3.4 VAX MACRO JSB Entry Points
A procedure’s JSB entry point name indicates the highest numbered register that
the procedure modifies. Thus, a procedure with a suffix Rn modifies registers
R0 through Rn. (You should always assume that R0 and R1 are modified.) The
calling program loads the arguments in the registers before the JSB instruction
is executed.

A calling program must use a JSB instruction to invoke a run-time library routine
by means of its JSB entry point. You pass arguments to a JSB entry point by
placing them in registers in the following manner:

NUM: .FLOAT 0.7853981 ; Constant P1/4
MOVF NUM, R0 ; Set up input argument
JSB G^MTH$SIN_R4 ; Call F_floating sine procedure

; Return with value in R0

In this example, R4 in the entry point name indicates that MTH$SIN_R4 changes
the contents of registers R0 through R4. The routine does not reference or change
the contents of registers R5 through R11.

The entry mask of a calling procedure should specify all the registers to be saved
if the procedure invokes a JSB routine. This step is necessary because a JSB
procedure does not have an entry mask and thus has no way to specify registers
to be saved or restored.

For example, consider program A calling procedure B by means of a CALL entry
point.

• Procedure B modifies the contents of R2 through R6, so the contents of these
registers are preserved at the time of the call.

• Procedure B then invokes procedure C by means of a JSB entry point.

• Procedure C modifies registers R0 through R7.

• When control returns to procedure B, R7 has been modified, but when
procedure B passes control back to procedure A, it restores only R2 through
R6. Thus, the contents of R7 are unpredictable, and program A does not
execute as expected. Procedure B should be rewritten so that R2 through R7
are saved in procedure B’s entry mask.

Calling Run-Time Library Routines 19–9

Calling Run-Time Library Routines
19.3 Calling a Library Procedure in VAX MACRO (VAX Only)

A similar problem occurs if the stack is unwound, because unwinding the stack
restores the contents of registers for each stack frame as it removes the previous
frame. Because a JSB entry point does not create a stack frame, the contents
of the registers before the JSB instruction will not be restored unless they were
saved in the entry mask of the calling program. You do this by naming the
registers to be saved in the calling program’s entry mask, so a stack unwind
correctly restores all registers from the stack. In the following example, the
function Y=PROC(A,B) returns the value Y, where Y = SIN(A)*SIN(B):

.ENTRY PROC, ^M <R2, R3, R4, R5> ; Save R2:R5
MOVF @4(AP), R0 ; R0 = A
JSB G^MTH$SIN_R4 ; R0 = SIN(A)
MOVF R0 , R5 ; Copy result to register

; not modified by MTH$SIN
MOVF @8(AP) , R0 ; R0 = B
JSB G^MTH$SIN_R4 ; R0 = SIN(B)
MULF R5 , R0 ; R0 = SIN(A)SIN(B)
RET ; Return

19.3.5 Return Status
Your VAX MACRO program can test for errors by examining segments of the
32-bit status code returned by a run-time library routine.

To test for errors, check for a zero in bit 0 using a Branch on Low Bit Set (BLBS)
or Branch on Low Bit Clear (BLBC) instruction.

To test for a particular condition value, compare the 32 bits of the return status
with the appropriate return status symbol using a Compare Long (CMPL)
instruction or the run-time library routine LIB$MATCH_COND.

There are three ways to define a symbol for the condition value returned by
a run-time library routine so that you can compare the value in R0 with a
particular error code:

• Using the .EXTRN symbol directive. This causes the assembler to generate
an external symbol declaration.

• Using the $facDEF macro call. Calling the $LIBDEF macro, for example,
causes the assembler to define all LIB$ condition values.

• By default. The assembler automatically declares the condition value as an
external symbol that is defined as a global symbol in the run-time library.

The following example asks for the user’s name. It then calls the run-time library
routine LIB$GET_INPUT to read the user’s response from the terminal. If the
string returned is longer than 30 characters (the space allocated to receive the
name), LIB$GET_INPUT returns in R0 the condition value equivalent to the
error LIB$_INPSTRTRU, ’input string truncated.’ This value is defined as a
global symbol by default. The example then checks for the specific error by
comparing LIB$_INPSTRTRU with the contents of R0. If LIB$_INPSTRTRU is
the error returned, the program considers that the routine executed successfully.
If any other error occurs, the program handles it as a true error.

$SSDEF ; Define SS$ symbols
$DSCDEF ; Define DSC$ symbols
.PSECT $DATA

PROMPT_D: ; Descriptor for prompt
.WORD PROMPT_LEN ; Length field
.BYTE DSC$K_DTYPE_T ; Type field is text
.BYTE DSC$K_CLASS_S ; Class field is string
.ADDRESS PROMPT ; Address

19–10 Calling Run-Time Library Routines

Calling Run-Time Library Routines
19.3 Calling a Library Procedure in VAX MACRO (VAX Only)

PROMPT: .ASCII /NAME: / ; String descriptor
PROMPT_LEN = . - PROMPT ; Calculate length of

; string

STR_LEN = 30 ; Use 30-byte string
STRING_D: ; Input string descriptor

.WORD STR_LEN ; Length field

.BYTE DSC$K_DTYPE_T ; Type field in text

.BYTE DSC$K_CLASS_S ; Class field is string

.ADDRESS STR_AREA ; Address
STR_AREA: .BLKB STR_LEN ; Area to receive string

.PSECT $CODE

.ENTRY START , ^M<>
PUSHAQ PROMPT_D ; Push address of prompt

; descriptor
PUSHAQ STRING_D ; Push address of string

; descriptor

CALLS #2 , G^LIB$GET_INPUT ; Get input string
BLBS R0 , 10$; Check for success
CMPL R0 , #LIB$_INPSTRTRU ; Error: Was it

; truncated string?
BEQL 10$; No, more serious error
PUSHL R0
CALLS #1 , G^LIB$SIGNAL

10$: MOVL #SS$_NORMAL , R0 ; Success, or name too
; long

RET
.END START

19.3.6 Function Return Values in VAX MACRO (VAX and Alpha)
Function values are generally returned in R0 (32-bit values) or R0 and R1 (64-bit
values). A MACRO program can access a function value by referencing R0 or R0
and R1 directly. For functions that return a string, the address of the string or
the address of its descriptor is returned in R0. If a function needs to return a
value larger than 64 bits, it must return the value by using an output argument.

Note the following exceptions to these rules:

• JSB entry points in the MTH$ facility return H_floating values in R0 through
R3.

• One routine, MTH$SINCOS, returns two function values: the sine and the
cosine of an angle. Depending on the data type of the function values, the
function values are returned in the following registers:

F_floating R0 and R1

D_floating R0 through R3

G_floating R0 through R3

H_floating R0 through R7

As in the case of output arguments, a variable declared to receive the function
values must be the same length as the value.

Calling Run-Time Library Routines 19–11

Calling Run-Time Library Routines
19.4 Calling a Library Routine in BLISS

19.4 Calling a Library Routine in BLISS
This section describes how to code BLISS calls to library routines. A called
routine can return only one of the following:

• No value.

• A function value (typically, an integer or floating point number). For example,
MTH$SIN returns its result as an F_floating value in R0 on VAX systems, in
F0 on Alpha systems, or in R8 on I64 systems.

On Alpha processors, BLISS cannot access floating point registers. Direct use
of the I64 floating-point registers is not supported.

• A return status (typically, a 32-bit condition value) indicating that the
routine has either executed successfully or failed. For example, LIB$GET_
INPUT returns a return status in R0 (R8, R9 for I64). If the routine executes
successfully, it returns SS$_NORMAL; if not, it returns one of several possible
error condition values. BLISS treats the return status like any other value.

19.4.1 BLISS Calling Sequence
Scalar arguments are usually passed to run-time library routines by reference.
Thus, when a BLISS program passes a variable, the variable appears with no
preceding period in the procedure-call actual argument list. A constant value can
be easily passed by using the %REF built-in function.

The following example shows how a BLISS program calls LIB$PUT_OUTPUT.
This routine writes a record at the user’s terminal.

MODULE SHOWTIME(IDENT=’1-1’ %TITLE’Print time’, MAIN=TIMEOUT)=
BEGIN
LIBRARY ’SYS$LIBRARY:STARLET’; ! Defines system services, etc.

MACRO
DESC[]=%CHARCOUNT(%REMAINING), ! VAX string descriptor

UPLIT BYTE(%REMAINING) %; ! definition
BIND

FMTDESC=UPLIT(DESC(’At the tone, the time will be ’,
%CHAR(7), ’!%T’));

EXTERNAL ROUTINE
LIB$PUT_OUTPUT: ADDRESSING_MODE(GENERAL);

ROUTINE TIMEOUT
=
BEGIN
LOCAL

TIMEBUF: VECTOR[2], ! 64-bit system time
MSGBUF: VECTOR[80,BYTE], ! Output message buffer
MSGDESC: BLOCK[8,BYTE], ! Descriptor for message buffer
RSLT: WORD; ! Length of result string

!+
! Initialize the fields of the string descriptor.
!-

MSGDESC[DSC$B_CLASS]=DSC$K_CLASS_S;
MSGDESC[DSC$B_DTYPE]=DSC$K_DTYPE_T;
MSGDESC[DSC$W_LENGTH]=80;
MSGDESC[DSC$A_POINTER]=MSGBUF[0]

$GETTIM(TIMADR=TIMEBUF); ! Get time as 64-bit integer

19–12 Calling Run-Time Library Routines

Calling Run-Time Library Routines
19.4 Calling a Library Routine in BLISS

$FAOL(CTRSTR=FMTDESC, ! Format descriptor
OUTLEN=RSLT, ! Output length (only a word!)
OUTBUF=MSGDESC, ! Output buffer desc.
PRMLST= %REF(TIMEBUF)); ! Address of 64-bit

! time block
MSGDESC [DSC$W_LENGTH] = .RSLT; ! Modify output desc.
RETURN (LIB$PUT_OUTPUT(MSGDESC); ! Return status
END;

END
ELUDOM

19.4.2 Accessing a Return Status in BLISS
BLISS accesses a function return value or condition value returned in R0 (R8, R9
for I64) as follows:

STATUS = LIB$PUT_OUTPUT(MSG_DESC);
IF NOT .STATUS THEN LIB$STOP(.STATUS);

19.4.3 Calling JSB Entry Points from BLISS
Note

I64 register usage differs from that of Alpha and VAX. If you use
OpenVMS high-level languages, the register and register mapping
differences in the calling standards are handled by the compilers and are
not exposed to your code. However, if your code uses BLISS linkages to
interface with Macro-32 source code, your code might have to take into
account the differences in register mapping.

BLISS added a new qualifier and source level switch to enable register
mapping for register numbers in linkage and register declarations. It
is off by default. BLISS also has additional support for linkages that
reference arguments.

See your compiler documentation for additional information.

Many of the library mathematics routines have JSB entry points. You can
invoke these routines efficiently from a BLISS procedure using LINKAGE and
EXTERNAL ROUTINE declarations, as in the following example:

MODULE JSB_LINK (MAIN = MATH_JSB, ! Example of using JSB linkage
IDENT = ’1-001’,
ADDRESSING_MODE(EXTERNAL = GENERAL)) =

BEGIN
LINKAGE

LINK_MATH_R4 = JSB (REGISTER = 0; ! input reg
REGISTER = 0): ! output reg

NOPRESERVE (0,1,2,3,4)
NOTUSED (5,6,7,8,9,10,11);

EXTERNAL ROUTINE
MTH$SIND_R4 : LINK_MATH_R4;

FORWARD ROUTINE
MATH_JSB;

LIBRARY ’SYS$LIBRARY:STARLET.L32’;

ROUTINE MATH_JSB = ! Routine

BEGIN
LOCAL

INPUT_VALUE : INITIAL (%E’30.0’),
SIN_VALUE;

Calling Run-Time Library Routines 19–13

Calling Run-Time Library Routines
19.4 Calling a Library Routine in BLISS

!+
! Get the sine of single floating 30 degrees. The input, 30 degrees,
! is passed in R0, and the answer, is returned in R0. Registers
! 0 to 4 are modified by MTH$SIND_R4.
!-

MTH$SIND_R4 (.INPUT_VALUE ; SIN_VALUE);

RETURN SS$_NORMAL;
END; ! End of routine

END ! End of module JSB_LINK
ELUDOM

19–14 Calling Run-Time Library Routines

20
Calling System Services

The OpenVMS operating system kernel has many services that are made
available to application and system programs for use at run time. These system
services are procedures that the OpenVMS operating system uses to control
resources available to processes; to provide for communication among processes;
and to perform basic operating system functions, such as the coordination of
input/output operations.

This chapter describes the basic methods and conventions for coding calls to
system services from OpenVMS high-level languages or from an assembly
language.

For more information about using the system services that support 64-bit
addressing and to see example programs that demonstrate the use of these
services, refer to Chapter 11.

20.1 Overview
System services are called by using the conventions of the HP OpenVMS Calling
Standard. The programming languages that generate VAX, Alpha, or I64 native
mode instructions provide mechanisms for specifying the procedure calls.

When you call a system service from your program, you must furnish whatever
arguments the routine requires. When the system service procedure completes
execution, in most cases it returns control to your program. If the service returns
a status code, your program should check the value of the code to determine
whether or not the service completed successfully. If the return status indicates
an error, you may want to change the flow of execution of your program to handle
the error before returning control to your program.

When you write a program that calls a system service in the OpenVMS operating
system, the operating system views your program as a user procedure. User
procedures also can call other user procedures that are either supplied by HP or
written by you. Because an OpenVMS native-mode language compiler program
exists outside the operating system, compiler generated programs calling any
system service are also defined as a set of user procedures.

If you program in a high-level language, refer to Chapter 21 for information
about the SYS$LIBRARY:SYS$LIB_C.TLB file, which is an OpenVMS Alpha and
OpenVMS I64 library of C header files.

For VAX MACRO, system service macros generate argument lists and CALL
instructions to call system services. These macros are located in the system
library (see SYS$LIBRARY:STARLET.MLB). When you assemble a source
program, this library is searched automatically for unresolved references. (See
Appendix A for further details.) Similar macros are available for BLISS and are
located in SYS$LIBRARY:STARLET.REQ.

Calling System Services 20–1

Calling System Services
20.2 Preserving System Integrity

20.2 Preserving System Integrity
As described in this document and the HP OpenVMS System Services Reference
Manual, many system services are available and suitable for application
programs, but the use of some of these powerful services must be restricted to
protect the performance of the system and the integrity of user processes.

For example, because the creation of permanent mailboxes uses system dynamic
memory, the unrestricted use of permanent mailboxes could decrease the amount
of memory available to other users. Therefore, the ability to create permanent
mailboxes is controlled: a user must be specifically assigned the privilege to
use the Create Mailbox (SYS$CREMBX) system service to create a permanent
mailbox.

The various controls and restrictions applied to system service usage are
described in this chapter. The Description section of each system service in the
HP OpenVMS System Services Reference Manual lists any privileges and quotas
necessary to use the service.

20.2.1 User Privileges
The system manager, who maintains the user authorization file for the
system, grants privileges for access to the protected system services. The user
authorization file contains, in addition to profile information about each user, a
list of specific user privileges and resource quotas.

When you log in to the system, the privileges and quotas assigned to you are
associated with the process created on your behalf. These privileges and quotas
are applied to every image the process executes.

When an image issues a call to a system service that is protected by privilege, the
privilege list is checked. If you have the specific privilege required, the image is
allowed to execute the system service; otherwise, a condition value indicating an
error is returned.

For a list of privileges, see the description of the Create Process ($CREPRC)
system service in the HP OpenVMS System Services Reference Manual.

20.2.2 Resource Quotas
Many system services require certain system resources for execution. These
resources include system dynamic memory and process quotas for I/O operations.
When a system service that uses a resource controlled by a quota is called, the
process’s quota for that resource is checked. If the process has exceeded its quota,
or if it has no quota allotment, an error condition value may be returned.

20.2.3 Access Modes
A process can execute at any one of four access modes: user, supervisor, executive,
or kernel. The access modes determine a process’s ability to access pages of
virtual memory. Each page has a protection code associated with it, specifying
the type of access—read, write, or no access—allowed for each mode.

For the most part, user-written programs execute in user mode; system programs
executing at the user’s request (system services, for example) may execute at one
of the other three, more privileged access modes.

20–2 Calling System Services

Calling System Services
20.2 Preserving System Integrity

In some system service calls, the access mode of the caller is checked. For
example, when a process tries to cancel timer requests, it can cancel only those
requests that were issued from the same or less privileged access modes. For
example, a process executing in user mode cannot cancel a timer request made
from supervisor, executive, or kernel mode.

Note that many system services use access modes to protect system resources,
and thus employ a special convention for interpreting access mode arguments.
You can specify an access mode using a numeric value or a symbolic name.
Table 20–1 shows the access modes and their numeric values, symbolic names,
and privilege ranks.

Table 20–1 OpenVMS System Access Modes

Access
Mode

Numeric
Value

Symbolic
Name

Privilege
Rank

Kernel 0 PSL$C_KERNEL Highest

Executive 1 PSL$C_EXEC

Supervisor 2 PSL$C_SUPER

User 3 PSL$C_USER Lowest

The symbolic names are defined by the symbolic definition macro SYS$PSLDEF.

System services that permit an access mode argument allow callers to specify
only an access mode of equal or lesser privilege than the access mode from which
the service was called. If the specified access mode is more privileged than the
access mode from which the service was called, the less privileged access mode is
always used.

To determine the mode to use, the operating system compares the specified access
mode with the access mode from which the service was called. Because this
operation results in an access mode with a higher numeric value (when the access
mode of the caller is different from the specified access mode), the access mode is
said to be maximized.

Because much of the code you write executes in user mode, you can omit the
access mode argument. The argument value defaults to 0 (kernel mode), and
when this value is compared with the value of the current execution mode
(3, user mode), the higher value (3) is used.

20.3 System Service Call Entry
The Format section of each system service description in the HP OpenVMS
System Services Reference Manual indicates the positional dependencies and
keyword names of each argument, as shown in the following format:

$SERVICE arga ,argb ,argc ,argd

This format indicates that the macro name of the service is $SERVICE and that
it requires four arguments, ordered as shown and with keyword names arga,
argb, argc, and argd.

Arguments passed to a service must be listed in your call entry in the order
shown in the Format section of the service description. Each argument has four
characteristics: OpenVMS usage, data type, access type, and passing mechanism.
These characteristics are described in Chapter 17.

Calling System Services 20–3

Calling System Services
20.3 System Service Call Entry

The OpenVMS Alpha and OpenVMS I64 SYS$LIBRARY:SYS$LIB_C.TLB
file contains C function prototypes for system services. These prototypes are
documented in HP OpenVMS System Services Reference Manual: A–GETUAI
and and HP OpenVMS System Services Reference Manual: GETUTC–Z. For each
prototype, the manuals provide the correct syntax (which shows the arguments
the function accepts in the order in which it expects them), a description of each
argument, and the type of data returned by the function.

Some arguments are optional. Optional arguments are indicated by brackets in
the service descriptions. When your program invokes a system service by using a
CALL entry point, you can omit optional arguments at the end of the argument
list. If the optional argument is not the last argument in the list, you must
either pass a zero by value or use a comma to indicate the place of the omitted
argument. Some languages, such as C, require that you pass a zero by value for
all trailing optional arguments. See your language processor documentation for
further information.

In the call statement of a high-level language program, you must prefix the macro
function service name with SYS (the system service facility prefix). For example,
the call statement in a C program procedure that calls the SYS$GETDVI system
service with four arguments is as follows:

return_status = sys$getdvi(event_flagnum, channel, &devnam, &item_list,0,0,0);

Note that in C, you must not omit the optional trailing arguments and should
pass a zero by value for these unused parameters. See your language processor
documentation for further information.

The HP OpenVMS System Services Reference Manual provides a description of
each service that indicates how each argument is to be passed. Phrases such as
‘‘an address’’ and ‘‘address of a character string descriptor’’ identify reference and
descriptor arguments, respectively. Terms like ‘‘Boolean value,’’ ‘‘number,’’ ‘‘value,’’
or ‘‘mask’’ indicate an argument that is passed by value.

In the Alpha, VAX, and I64 environments, the called routine interprets each
argument using one of three standard passing mechanisms: by value, by
reference, or by descriptor.

On VAX systems, the calling program passes an argument list of longwords to a
called service; each longword in the argument list specifies a single argument.

On Alpha systems, the calling program passes arguments in an argument item
sequence; each quadword in the sequence specifies a single argument item. Note
that the argument item sequence is formed using R16–R21 or F16–F21 (a register
for each argument).

On I64 systems, the first eight parameters are passed in R32 through R39, with
the parameter count in R25 and subsequent parameters in quadwords on the
stack.

For more detailed information on arguments lists and passing mechanisms, see
Sections 18.4 and 18.5.

Some services also require service-specific data structures that either indicate
functions to be performed or hold information to be returned. The HP OpenVMS
System Services Reference Manual includes descriptions of these service-specific
data structures. You can use this information and information from your
programming language manuals to define such service-specific item lists.

20–4 Calling System Services

Calling System Services
20.4 System Service Completion

20.4 System Service Completion
When a system service completes, control is returned to your program. You
can specify how and when control is returned to your program by choosing
synchronous or asynchronous forms of system services and by enabling process
execution modes.

The following sections describe:

• When synchronous system services return control to your program

• When asynchronous system services return control to your program

• How you can synchronize the completion of asynchronous system services

• How control is returned to your program when special process execution
modes are enabled

20.4.1 Asynchronous and Synchronous System Services
You can execute a number of system services either asynchronously or
synchronously (such as, SYS$GETJPI and SYS$GETJPIW or SYS$ENQ and
SYS$ENQW). The W at the end of the system service name indicates the
synchronous version of the system service.

The asynchronous version of a system service queues a request and returns
control to your program. You can perform operations while the system service
executes; however, you should not attempt to access information returned by the
service until you check for the system service completion.

Typically, you pass to an asynchronous system service an event flag and an I/O
status block or a lock status block. When the system service completes, it sets the
event flag and places the final status of the request in the status block. You use
the SYS$SYNCH system service to ensure that the system service has completed.
You pass SYS$SYNCH the event flag and the status block that you passed to the
asynchronous system service; SYS$SYNCH waits for the event flag to be set, then
ensures that the system service (rather than some other program) sets the event
flag by checking the status block. If the status block is still zero, SYS$SYNCH
waits until the status block is filled.

The synchronous version of a system service acts exactly as if you had used the
asynchronous version followed immediately by a call to SYS$SYNCH. If you omit
the efn argument, the service uses event flag number 0 whether you use the
synchronous or asynchronous version of a system service.

Example 20–1 illustrates the use of the SYS$SYNCH system service to check the
completion status of the asynchronous service SYS$GETJPI.

Calling System Services 20–5

Calling System Services
20.4 System Service Completion

Example 20–1 Example of SYS$SYNCH System Service in FORTRAN

! Data structure for SYS$GETJPI
.
.
.
INTEGER*4 STATUS,
2 FLAG,
2 PID_VALUE
! I/O status block
INTEGER*2 JPISTATUS,
2 LEN
INTEGER*4 ZERO /0/
COMMON /IO_BLOCK/ JPISTATUS,
2 LEN,
2 ZERO
.
.
.

! Call SYS$GETJPI and wait for information
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

STATUS = SYS$GETJPI (%VAL(FLAG),
2 PID_VALUE,
2 ,
2 NAME_BUF_LEN,
2 JPISTATUS,
2 ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
.
.
.
STATUS = SYS$SYNCH (%VAL(FLAG),
2 JPISTATUS)
IF (.NOT. JPISTATUS) THEN
CALL LIB$SIGNAL (%VAL(JPISTATUS))

END IF

END

20.4.2 System Service Resource Wait Mode
Normally, when a system service is called and a required resource is not available,
the process is placed in a wait state until the resource becomes available. Then
the service completes execution. This mode is called resource wait mode.

In a real-time environment, however, it may not be practical or desirable for a
program to wait. In these cases, you can choose to disable resource wait mode
so that when a required resource is unavailable, control returns immediately to
the calling program with an error condition value. You can disable (and reenable)
resource wait mode with the Set Resource Wait Mode (SYS$SETRWM) system
service.

If resource wait mode is disabled, it remains disabled until it is explicitly
reenabled or until your process is deleted. For example, if your program has
disabled resource wait mode and has exited to the DCL prompt, subsequent
programs or utilities invoked by this process continue to run with resource wait
mode disabled and might not perform properly because they are not prepared to
handle a failure to obtain a resource. In this case, you should reenable the wait
mode before your program exits to the DCL prompt.

20–6 Calling System Services

Calling System Services
20.4 System Service Completion

How a program responds to the unavailability of a resource depends primarily
on the application and the particular service being called. In some instances, the
program may be able to continue execution and retry the service call later. In
other instances, it may be necessary for the program to wait for the resource and
the system service to complete.

20.4.3 Condition Values Returned from System Services
When a service returns control to your program, it places a return status value
in the general register R0 (R8, R9 for I64). The value in the low-order word
indicates either that the service completed successfully or that some specific error
prevented the service from performing some or all of its functions. After each call
to a system service, you must check whether it completed successfully. You can
also test for specific errors in the condition value.

Depending on your specific needs, you can test just the low-order bit, the low-
order 3 bits, or the entire condition value, as follows:

• The low-order bit indicates successful (1) or unsuccessful (0) completion of the
service.

• The low-order 3 bits, taken together, represent the severity of the error.
Table 20–2 lists the possible severity code values returned.

For VAX MACRO, the symbolic definition macro SYS$STSDEF defines the
symbolic names. For the C programming language, the SSDEF.H file defines
the symbolic names.

• The remaining bits (bits 3 through 31) classify the particular return condition
and the operating system component that issued the condition value. For
system service return status values, the high-order word (bits 16 through 31)
contains zeros.

Table 20–2 Severity Codes of Condition Value Returned

Value Meaning Symbolic Name

0 Warning STS$K_WARNING

1 Success STS$K_SUCCESS

2 Error STS$K_ERROR

3 Informational STS$K_INFO

4 Severe or fatal error STS$K_SEVERR

5–7 Reserved

Each numeric condition value has a unique symbolic name in the following
format:

SS$_code

where code is a mnemonic describing the return condition.

For example, the following symbol usually indicates a successful return:

SS$_NORMAL

An example of an error return condition value is as follows:

SS$_ACCVIO

Calling System Services 20–7

Calling System Services
20.4 System Service Completion

This condition value indicates that an access violation occurred because a service
could not read an input field or write an output field.

The symbolic definitions for condition values are included in the default system
library SYS$LIBRARY:STARLET.OLB. You can obtain a listing of these symbolic
codes at assembly time by invoking the system macro SYS$SSDEF. To check
return conditions, use the symbolic names for system condition values.

The OpenVMS operating system does not automatically handle system service
failure or warning conditions; you must test for them and handle them yourself.
This contrasts with the operating system’s handling of exception conditions
detected by the hardware or software; the system handles these exceptions
by default, although you can intervene in or override the default handling by
declaring a condition handler.

20.4.4 Testing the Condition Value
Each language provides some mechanism for testing the return status. Often
you need only check the low-order bit, such as by a test for TRUE (success or
informational return) or FALSE (error or warning return). Condition values that
are returned by system services can provide information and whether the service
completed successfully. The condition value that usually indicates success is
SS$_NORMAL, but others are defined. For example, the condition value SS$_
BUFFEROVF, which is returned when a character string returned by a service
is longer than the buffer provided to receive it, is a success code. This condition
value, however, gives the program additional information.

Warning returns and some error returns indicate that the service performed
some, but not all, of the requested function.

The possible condition values that each service can return are described with the
individual service descriptions in the HP OpenVMS System Services Reference
Manual. When you write calls to system services, read the descriptions of the
return condition values to determine whether you want the program to check for
particular return conditions.

To check the entire value for a specific return condition, each language provides
a way for your program to determine the values associated with specific
symbolically defined codes. You should always use these symbolic names when
you write tests for specific conditions.

For information about how to test for these codes, see the user’s guide for your
programming language.

20.4.4.1 Testing the Condition Value With $VMS_STATUS_SUCCESS Macro
You can use the $VMS_STATUS_SUCCESS macro, defined in stsdef.h, to test
an OpenVMS condition value. $VMS_STATUS_SUCCESS depends on the
documented format of an OpenVMS condition value, and particularly on the
setting of the lowest bit in a condition value. If the lowest bit is set, the condition
indicates a successful status, while the bit is clear for an unsuccessful status.

$VMS_STATUS_SUCCESS is used only with condition values that follow the
OpenVMS condition status value format, and not with C standard library
routines and return values that follow C native status value norms. For deails
on the OpenVMS condition status value structure, please see Chapter 9. For
information on the return values from the various C standard library routines,
see the HP C Run-Time Library Reference Manual for OpenVMS Systems.

20–8 Calling System Services

Calling System Services
20.4 System Service Completion

For example, the following code demonstrates a test that causes a return on error.

RetStat = sys$dassgn(IOChan);
if (!$VMS_STATUS_SUCCESS(RetStat))
return RetStat;

20.4.5 Special Condition Values Using Symbolic Codes
Individual services have symbolic codes for special return conditions, argument
list offsets, identifiers, and flags associated with these services. For example,
the Create Process (SYS$CREPRC) system service (which is used to create a
subprocess or a detached process) has symbolic codes associated with the various
privileges and quotas you can grant to the created process.

The SYS$LIBRARY:SYS$LIB_C.TLB file contains the C header files for OpenVMS
Alpha and OpenVMS I64 C data structures and definitions. For more information
about SYS$LIBRARY:SYS$LIB_C.TLB, refer to Chapter 21.

The default system macro library, STARLET.MLB, contains the macro definitions
for most system symbols. When you assemble a source program that calls any of
these macros, the assembler automatically searches STARLET.MLB for the macro
definitions. Each symbol name has a numeric value.

If your language has a method of obtaining values for these symbols, this method
is explained in the user’s guide.

If your language does not have such a method, you can do the following:

1. Write a short VAX MACRO program containing the desired macros.

2. Assemble or compile the program and generate a listing. Using the listing,
find the desired symbols and their hexadecimal values.

3. Define each symbol with its value within your source program.

For example, to use the Get Job/Process Information ($GETJPI) system service
to find out the accumulated CPU time (in 10-millisecond ticks) for a specified
process, you must obtain the value associated with the item identifier JPI$_
CPUTIM. You can do this in the following way:

1. Create the following three-line VAX MACRO program (named JPIDEF.MAR
here; you can choose any name you want):

.TITLE JPIDEF "Obtain values for $JPIDEF"
$JPIDEF GLOBAL ; These MUST be UPPERCASE
.END

2. On VAX, assemble and link the program to create the file JPIDEF.MAP as
follows:

$ MACRO JPIDEF
$ LINK/NOEXE/MAP/FULL JPIDEF
%LINK-W-USRTFR, image NL:[].EXE; has no user transfer address

The file JPIDEF.MAP contains the symbols defined by $JPIDEF listed both
alphabetically and numerically.

On Alpha and I64, to compile the program to create the JPIDEF.MAP, enter
the following:

$ MACRO/MIGRATION JPIDEF
$ LINK/NOEXE/MAP/FULL JPIDEF
%LINK-W-USRTFR, image NL:[].EXE; has no user transfer address

3. Find the value of JPI$_CPUTIM and define the symbol in your program.

Calling System Services 20–9

Calling System Services
20.4 System Service Completion

20.4.6 Testing the Return Condition Value for VAX MACRO
To check for successful completion after a system service call, the program can
test the low-order bit of R0 and branch to an error-checking routine if this bit is
not set, as follows:

BLBC R0,errlabel ; Error if low bit clear

Programs should not test for success by comparing the return status to SS$_
NORMAL. A future release of OpenVMS may add new, alternate success codes to
an existing service, causing programs that test for SS$_NORMAL to fail.

The error-checking routine may check for specific values or for specific severity
levels. For example, the following VAX MACRO instruction checks for an illegal
event flag number error condition:

CMPL #SS$_ILLEFC,R0 ; Is event flag number illegal?

Note that return condition values are always longword values; however, all
system services always return the same value in the high-order word of all
condition values returned in R0.

20.4.7 System Messages Generated by Condition Values
When you execute a program with the DCL command RUN, the command
interpreter uses the contents of R0 to issue a descriptive message if the program
completes with an unsuccessful status. On I64, the calling standard specifies
that the return status is returned in R8. As an aid to portable code, the MACRO
compiler automatically maps uses of R0 to R8. See the HP OpenVMS MACRO
Compiler Porting and User’s Guide for additional information.

The following VAX MACRO code fragment shows a simple error-checking
procedure in a main program:

$READEF_S -
EFN=#64, -
STATE=TEST

BSBW ERROR
.
.
.

ERROR: BLBC R0,10$; Check register 0
RSB ; Success, return

10$: RET ; Exit with R0 status

After a system service call, the BSBW instruction branches to the subroutine
ERROR. The subroutine checks the low-order bit in register 0 and, if the bit is
clear, branches to a RET instruction that causes the program to exit with the
status of R0 preserved. Otherwise, the subroutine issues an RSB instruction to
return to the main program.

If the event flag cluster requested in this call to $READEF is not currently
available to the process, the program exits and the command interpreter displays
the following message:

%SYSTEM-F-UNASEFC, unassociated event flag cluster

The keyword UNASEFC in the message corresponds to the condition value
SS$_UNASEFC.

20–10 Calling System Services

Calling System Services
20.4 System Service Completion

The following three severe errors generated by the calls, not the services, can be
returned from calls to system services:

Error Meaning

SS$_ACCVIO The argument list cannot be read by the caller (using the
$name_G macro), and the service is not called.

This meaning of SS$_ACCVIO is different from its meaning
for individual services. When SS$_ACCVIO is returned from
individual services, the service is called, but one or more
arguments to the service cannot be read or written by the
caller.

SS$_INSFARG Not enough arguments were supplied to the service.

SS$_ILLSER An illegal system service was called.

Calling System Services 20–11

Calling System Services
20.5 Program Examples with System Service Calls

20.5 Program Examples with System Service Calls
This section provides code examples that illustrate the use of a system service
call in the following programming languages:

Ada — Example 20–2
BASIC — Example 20–3
BLISS — Example 20–4
C — Example 20–5
COBOL — Example 20–6
FORTRAN — Example 20–7
Pascal — Example 20–8
VAX MACRO — Example 20–9

PL/I, Fortran 77, and ADA 83 are not supported on OpenVMS I64. If your
application has code written in PL/I, HP recommends rewriting it in another
language such as C or C++. Update code written in Ada 83 to Ada 95, and code
written in Fortran 77 to Fortran 90.

Example 20–2 System Service Call in Ada

with SYSTEM, TEXT_IO, STARLET, CONDITION_HANDLING; !
procedure ORION is

-- Declare variables to hold equivalence name and length
--
EQUIV_NAME: STRING (1..255); "
pragma VOLATILE (EQUIV_NAME);
NAME_LENGTH: SYSTEM.UNSIGNED_WORD;
pragma VOLATILE (NAME_LENGTH);

-- Declare itemlist and fill in entries.
--
ITEM_LIST: STARLET.ITEM_LIST_3_TYPE (1..2) := #

(1 =>
(ITEM_CODE => STARLET.LNM_STRING, $
BUF_LEN => EQUIV_NAME’LENGTH,
BUF_ADDRESS => EQUIV_NAME’ADDRESS,
RET_ADDRESS => NAME_LENGTH’ADDRESS),

2 =>
(ITEM_CODE => 0,
BUF_LEN => 0,
BUF_ADDRESS => SYSTEM.ADDRESS_ZERO,
RET_ADDRESS => SYSTEM.ADDRESS_ZERO));

STATUS: CONDITION_HANDLING.COND_VALUE_TYPE; %

begin
-- Translate the logical name
--
STARLET.TRNLNM (&
STATUS => STATUS,
TABNAM => "LNM$FILE_DEV",
LOGNAM => "CYGNUS",
ITMLST => ITEM_LIST);

(continued on next page)

20–12 Calling System Services

Calling System Services
20.5 Program Examples with System Service Calls

Example 20–2 (Cont.) System Service Call in Ada

-- Display name if success, else signal error
--
if not CONDITION_HANDLING.SUCCESS (STATUS) then ’
CONDITION_HANDLING.SIGNAL (STATUS);
else

TEXT_IO.PUT ("CYGNUS translates to """);
TEXT_IO.PUT (EQUIV_NAME (1..INTEGER(NAME_LENGTH)));
TEXT_IO.PUT_LINE ("""");

end if;
end ORION;

Ada Notes

! The with clause names the predefined packages of declarations used in this
program. SYSTEM and TEXT_IO are standard Ada packages; STARLET
defines the OpenVMS system service routines, data types, and constants; and
CONDITION_HANDLING defines error-handling facilities.

" Enough space is allocated to EQUIV_NAME to hold the longest possible
logical name. NAME_LENGTH will receive the actual length of the
translated logical name. The VOLATILE pragma is required for variables
that will be modified by means other than an assignment statement or being
an output parameter to a routine call.

ITEM_LIST_3_TYPE is a predeclared type in package STARLET that defines
the OpenVMS three-longword item list structure.

$ The dollar-sign character is not valid in Ada identifiers; package STARLET
defines the fac$ names by removing the dollar sign.

% COND_VALUE_TYPE is a predeclared type in package CONDITION_
HANDLING that is used for return status values.

& System services are defined in package STARLET using names that omit the
prefix SYS$. The passing mechanisms are specified in the routine declaration
in STARLET, so they need not be specified here.

’ In this example, any failure status from the SYS$TRNLNM service is
signaled as an error. Other means of error recovery are possible; see your
Ada language documentation for more details.

Calling System Services 20–13

Calling System Services
20.5 Program Examples with System Service Calls

Example 20–3 System Service Call in BASIC

10 SUB ORION ! ! Subprogram ORION

OPTION TYPE=EXPLICIT ! Require declaration of all
! symbols

EXTERNAL LONG FUNCTION SYS$TRNLNM ! Declare the system service
EXTERNAL WORD CONSTANT LNM$_STRING ! The request code that

! we will use
DECLARE WORD NAMLEN, " ! Word to receive length

LONG SYS_STATUS ! Longword to receive status
COMMON (BUF) STRING NAME_STRING = 255 #

RECORD ITEM_LIST ! Define item
! descriptor structure

WORD BUFFER_LENGTH ! The buffer length
WORD ITEM ! The request code
LONG BUFFER_ADDRESS ! The buffer address
LONG RETURN_LENGTH_ADDRESS ! The address of the return len

! word
LONG TERMINATOR ! The terminator

END RECORD ITEM_LIST ! End of structure definition

DECLARE ITEM_LIST ITEMS ! Declare an item list
ITEMS::BUFFER_LENGTH = 255% ! Initialize the item list
ITEMS::ITEM = LNM$_STRING
ITEMS::BUFFER_ADDRESS = LOC(NAME_STRING)
ITEMS::RETURN_LENGTH_ADDRESS = LOC(NAMLEN)
ITEMS::TERMINATOR = 0

$
SYS_STATUS = SYS$TRNLNM(, ’LNM$FILE_DEV’, ’CYGNUS’,, ITEMS) %

IF (SYS_STATUS AND 1%) = 0% &
THEN

! Error path
ELSE

! Success path
END IF
END SUB

BASIC Notes

! The SUB statement defines the routine and its entry mask.

" The DECLARE WORD NAMLEN declaration reserves a 16-bit word for the
output value.

The COMMON (BUF) STRING NAME_STRING = 255 declaration allocates
255 bytes for the output data in a static area. The compiler builds the
descriptor.

$ The SYS$ form invokes the system service as a function.

Enclose the arguments in parentheses and specify them in positional order
only. Specify a comma for each optional argument that you omit (including
trailing arguments).

% The input character string is specified directly in the system service call; the
compiler builds the descriptor.

& The IF statement performs a test on the low-order bit of the return status.
This form is recommended for all status returns.

20–14 Calling System Services

Calling System Services
20.5 Program Examples with System Service Calls

Example 20–4 System Service Call in BLISS

MODULE ORION=

BEGIN
EXTERNAL ROUTINE

ERROR_PROC: NOVALUE; ! Error processing routine

LIBRARY ’SYS$LIBRARY:STARLET.L32’; ! Library containing OpenVMS
! macros (including $TRNLNM).
! This declaration
! is required.

GLOBAL ROUTINE ORION: NOVALUE=

BEGIN
OWN

NAMBUF : VECTOR[255, BYTE], ! Output buffer
NAMLEN : WORD, ! Translated string length
ITEMS : BLOCK[16,BYTE]

INITIAL(WORD(255, ! Output buffer length
LNM$_STRING), ! Item code
NAMBUF, ! Output buffer
NAMLEN, ! Address of word for

! translated
! string length

0); ! List terminator

LOCAL ! Return status from
STATUS; ! system service

STATUS = $TRNLNM(TABNAM = %ASCID’LNM$FILE_DEV’,
LOGNAME = %ASCID’CYGNUS’,
ITMLST = ITEMS); !

IF NOT .STATUS THEN ERROR_PROC(.STATUS); "

END;

BLISS Notes

! The macro is invoked by its service name, without a suffix.

Enclose the arguments in parentheses and specify them by keyword.
(Keyword names correspond to the names of the arguments shown in
lowercase in the system service format descriptions in the HP OpenVMS
System Services Reference Manual.)

" The return status, which is assigned to the variable STATUS, is tested for
TRUE or FALSE. FALSE (low bit = 0) indicates failure or warning.

Calling System Services 20–15

Calling System Services
20.5 Program Examples with System Service Calls

Example 20–5 System Service Call in C

#include <starlet.h> !
#include <lib$routines.h>
#include <ssdef.h>
#include <lnmdef.h>
#include <descrip.h>
#include <stdio.h>

typedef struct { "
unsigned short buffer_length;
unsigned short item_code;
char *buffer_addr;
short *return_len_addr;
unsigned terminator;

} item_list_t;

main ()
{ #

$DESCRIPTOR(table_name, "LNM$FILE_DEV");
$DESCRIPTOR(log_name, "CYGNUS");
char translated_name[255];
int status;
short return_length;
item_list_t item_list;

item_list.buffer_length = sizeof(translated_name); $
item_list.item_code = LNM$_STRING;
item_list.buffer_addr = translated_name;
item_list.return_len_addr = &return_length;
item_list.terminator = 0;

status = sys$trnlnm(0, &table_name, &log_name, 0, &item_list); %

if (!(status & 1)) &
lib$signal(status);

else
printf("The logical name %s is equivalent to %*s\n",

log_name.dsc$a_pointer,
return_length,
translated_name);

}

C Notes

! The C language header file starlet.h defines OpenVMS system services
entry points. The file lib$routines.h declares the LIB$ Run-Time Library
routines.

" The structure of an item list entry is defined.

The $DESCRIPTOR macro declares and initializes a character string
descriptor. Here, two descriptors are created for use with the sys$trnlnm
system service.

$ The function sizeof is used to obtain the size of the string. The returned
length will be stored as a short integer in return_length.

% The sys$trnlnm routine is defined in starlet.h.

& The IF statement performs a logical test following the function reference to
determine whether the service completed successfully. If an error or warning
occurs during the service call, the error is signaled.

20–16 Calling System Services

Calling System Services
20.5 Program Examples with System Service Calls

Example 20–6 System Service Call in COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. ORION. !
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TABNAM PIC X(11) VALUE "LNM$FILE_DEV".
01 CYGDES PIC X(6) VALUE "CYGNUS".
01 NAMDES PIC X(255) VALUE SPACES. "
01 NAMLEN PIC S9(4) COMP.
01 ITMLIS.

02 BUFLEN PIC S9(4) COMP VALUE 225.
02 ITMCOD PIC S9(4) COMP VALUE 2. #
02 BUFADR POINTER VALUE REFERENCE NAMDES.
02 RETLEN POINTER VALUE REFERENCE NAMLEN.
02 FILLER PIC S9(5) COMP VALUE 0.

01 RESULT PIC S9(9) COMP. $

PROCEDURE DIVISION.
START-ORION.

CALL "SYS$TRNLNM" %
USING OMITTED

BY DESCRIPTOR TABNAM
BY DESCRIPTOR CYGDES &
OMITTED
BY REFERENCE ITMLIS

GIVING RESULT.
IF RESULT IS FAILURE ’

GO TO ERROR-CHECK.
DISPLAY "NAMDES: ", NAMDES(1:NAMLEN).
GO TO THE-END.

ERROR-CHECK.
DISPLAY "Returned Error: ", RESULT CONVERSION.

THE-END.
STOP RUN.

COBOL Notes

! The PROGRAM-ID paragraph identifies the program by specifying the
program name, which is the global symbol associated with the entry point.
The compiler builds the entry mask.

" Enough bytes are allocated for the alphanumeric output data. The compiler
generates a descriptor when you specify USING BY DESCRIPTOR in the
CALL statement.

The value of the symbolic code LNM$STRING is 2. Section 20.4.5 explains
how to obtain values for symbolic codes.

$ This definition reserves a signed longword with COMP (binary) usage to
receive the output value.

% The service is called by the SYS$ form of the service name, and the name is
enclosed in quotation marks.

Specify arguments in positional order only, with the USING statement. You
cannot omit arguments; if you are accepting the default for an argument, you
must pass the default value explicitly (OMITTED in this example).

You can specify explicitly how each argument is being passed: by descriptor,
by reference (that is, by address), or by value. You can also implicitly
specify how an argument is being passed: through the default mechanism

Calling System Services 20–17

Calling System Services
20.5 Program Examples with System Service Calls

(by reference), or through association with the last specified mechanism (thus,
the last two arguments in the example are implicitly passed by value).

& The input string is defined as alphanumeric (ASCII) data. The compiler
generates a descriptor when you specify USING BY DESCRIPTOR in the
CALL statement.

’ The IF statement tests RESULT for a failure status. In this case, control is
passed to the routine ERROR-CHECK.

Example 20–7 System Service Call in FORTRAN

SUBROUTINE ORION
IMPLICIT NONE ! Require declaration of all symbols
INCLUDE ’($SYSSRVNAM)’ ! Declare system service names !
INCLUDE ’($LNMDEF)’ ! Declare $TRNLNM item codes
INCLUDE ’(LIB$ROUTINES)’ ! Declare LIB$ routines

STRUCTURE /ITEM_LIST_3_TYPE/ ! Structure of item list "
INTEGER*2 BUFLEN ! Item buffer length
INTEGER*2 ITMCOD ! Item code
INTEGER*4 BUFADR ! Item buffer address
INTEGER*4 RETADR ! Item return length address

END STRUCTURE
RECORD /ITEM_LIST_3_TYPE/ ITEMLIST(2) ! Declare itemlist

CHARACTER*255 EQUIV_NAME ! For returned equivalence name
INTEGER*2 NAMLEN ! For returned name length
VOLATILE EQUIV_NAME,NAMLEN #

INTEGER*4 STATUS ! For returned service status $

! Fill in itemlist
!
ITEMLIST(1).ITMCOD = LNM$_STRING
ITEMLIST(1).BUFLEN = LEN(EQUIV_NAME) %
ITEMLIST(1).BUFADR = %LOC(EQUIV_NAME)
ITEMLIST(1).RETADR = %LOC(NAMLEN)
ITEMLIST(2).ITMCOD = 0 ! For terminator
ITEMLIST(2).BUFLEN = 0

! Call SYS$TRNLM
!
STATUS = SYS$TRNLNM (, ! ATTR omitted &
1 ’LNM$FILE_DEV’, ! TABNAM
2 ’CYGNUS’, ! LOGNAM
3 , ! ACMODE omitted
4 ITEMLIST) ! ITMLST

! Check return status, display translation if successful
!
IF (.NOT. STATUS) THEN ’

CALL LIB$SIGNAL(%VAL(STATUS))
ELSE

WRITE (*,*) ’CYGNUS translates to: "’,
1 EQUIV_NAME(1:NAMLEN), ’"’
END IF
END

FORTRAN Notes

! The module $SYSSRVNAM in the FORTRAN system default library
FORSYSDEF.TLB contains INTEGER and EXTERNAL declarations for each
of the system services, so you need not explicitly provide these declarations in
your program. Module $LNMDEF defines constants and data structures used

20–18 Calling System Services

Calling System Services
20.5 Program Examples with System Service Calls

when calling the logical name services, and module LIB$ROUTINES contains
declarations for the LIB$ Run-Time Library routines.

" The structure of an OpenVMS 3-longword item list is declared and then used
to define the record variable ITEM_LIST. The second element will be used for
the terminator.

The VOLATILE declaration is required for variables that are modified by
means other than a direct assignment or as an argument in a routine call.

$ Return status variables should always be declared as longword integers.

% The LEN intrinsic function returns the allocated length of EQUIV_NAME.
The %LOC built-in function returns the address of its argument.

& By default, FORTRAN passes arguments by reference, except for strings
which are passed by CLASS_S descriptor. Arguments are omitted in
FORTRAN by leaving the comma as a placeholder. All arguments must
be specified or explicitly omitted.

’ A condition value can be tested for success or failure by a true/false test. For
more information on testing return statuses, see the OpenVMS FORTRAN
documentation.

Example 20–8 System Service Call in Pascal

[INHERIT(’SYS$LIBRARY:STARLET’, !
’SYS$LIBRARY:PASCAL$LIB_ROUTINES’)]

PROGRAM ORION (OUTPUT);

TYPE
Item_List_Cell = RECORD CASE INTEGER OF "

1:({ Normal Cell }
Buffer_Length : [WORD] 0..65535;
Item_Code : [WORD] 0..65535;
Buffer_Addr : UNSIGNED;
Return_Addr : UNSIGNED
);

2:({ Terminator }
Terminator : UNSIGNED
);

END;

Item_List_Template(Count:INTEGER) = ARRAY [1..Count] OF Item_List_Cell;

VAR
Item_List : Item_List_Template(2);
Translated_Name : [VOLATILE] VARYING [255] OF CHAR; #
Status : INTEGER;

BEGIN

{ Specify the buffer to return the translation } $
Item_List[1].Buffer_Length := SIZE(Translated_Name.Body);
Item_List[1].Item_Code := LNM$_String;
Item_List[1].Buffer_Addr := IADDRESS(Translated_Name.Body);
Item_List[1].Return_Addr := IADDRESS(Translated_Name.Length);

{ Terminate the item list }
Item_List[2].Terminator := 0;

(continued on next page)

Calling System Services 20–19

Calling System Services
20.5 Program Examples with System Service Calls

Example 20–8 (Cont.) System Service Call in Pascal

{ Translate the CYGNUS logical name }
Status := $trnlnm(Tabnam := ’LNM$FILE_DEV’, Lognam := ’CYGNUS’, %

Itmlst := Item_List);
IF NOT ODD(Status) &
THEN

LIB$SIGNAL(Status)
ELSE

WRITELN(’CYGNUS is equivalent to ’,Translated_Name);

END.

Pascal Notes

! The Pascal environment file STARLET.PEN defines OpenVMS system
services, data structures and constants. PASCAL$LIB_ROUTINES declares
the LIB$ Run-Time Library routines.

" The structure of an item list entry is defined using a variant record type.

The VARYING OF CHAR type is a variable-length character string with two
components: a word-integer length and a character string body, which in this
example is 255 bytes long. The VOLATILE attribute is required for variables
that are modified by means other than a direct assignment or as an argument
in a routine call.

$ The functions SIZE and IADDRESS obtain the allocated size of the string
body and the address of the string body and length. The returned length will
be stored into the length field of the varying string Translated_Name, so that
it will appear to be the correct size.

% The definition of the SYS$TRNLNM routine in STARLET.PEN contains
specifications of the passing mechanism to be used for each argument; thus, it
is not necessary to specify the mechanism here.

& The IF statement performs a logical test following the function reference to
see if the service completed successfully. If an error or warning occurs during
the service call, the error is signaled.

20–20 Calling System Services

Calling System Services
20.5 Program Examples with System Service Calls

Example 20–9 System Service Call in VAX MACRO

CYGDES: .ASCID /CYGNUS/ ! ; Descriptor for CYGNUS string
TBLDES: .ASCID /LNM$FILE_DEV/ " ; Logical name table
NAMBUF: .BLKB 255 # ; Output buffer
NAMLEN: .BLKW 1 $; Word to receive length
ITEMS: .WORD 255 ; Output buffer length

.WORD LNM$STRING ; Item code

.ADDRESS - ; Output buffer
NAMBUF

.ADDRESS - ; Return length
NAMLEN

.LONG 0 ; List terminator
.
.
.

.ENTRY ORION,0 % ; Routine entry point & mask
$TRNLNM_S - &

TABNAM=TBLDES, -
LOGNAM=CYGDES, -
ITMLST=ITEMS

BLBC R0,ERROR ’ ; Check for error
.
.
.
.END

VAX MACRO Notes

! The input character string descriptor argument is defined using the .ASCID
directive.

" The name of the table to search is defined using the .ASCID directive.

Enough bytes to hold the output data are allocated for an output character
string argument.

$ The MACRO directive .BLKW reserves a word to hold the output length.

% A routine name and entry mask show the beginning of executable code in a
routine or subroutine.

& A macro name that has the suffix _S or _G calls the service.

You can specify arguments either by keyword (as in this example) or by
positional order. (Keyword names correspond to the names of the arguments
shown in lowercase in the system service format descriptions in the HP
OpenVMS System Services Reference Manual.) If you omit any optional
arguments (if you accept the defaults), you can omit them completely if you
specify arguments by keyword. If you specify arguments by positional order,
however, you must specify the comma for each missing argument.

Use the number sign (#) to indicate a literal value for an argument.

’ The BLBC instruction causes a branch to a subroutine named ERROR (not
shown) if the low bit of the condition value returned from the service is clear
(low bit clear = failure or warning). You can use a BSBW instruction to
branch unconditionally to a routine that checks the return status.

Calling System Services 20–21

21
STARLET Structures and Definitions for C

Programmers

This chapter describes the libraries that contain C header files for routines
supplied by the OpenVMS Alpha and OpenVMS I64 operating systems.

21.1 SYS$STARLET_C.TLB Equivalency to STARLETSD.TLB
The SYS$STARLET_C.TLB file, which was introduced in OpenVMS Alpha
Version 1.0, contains all the .H files that provide STARLET functionality
equivalent to STARLETSD.TLB. The file SYS$STARLET_C.TLB, together with
DECC$RTLDEF.TLB that ships with the HP C Compiler, replaces VAXCDEF.TLB
that previously shipped with the VAX C Compiler. DECC$RTLDEF.TLB contains
all the .H files that support the compiler and RTL, such as STDIO.H.

If you are running an application from a release prior to OpenVMS Alpha Version
1.0, the following differences may require source changes:

• RMS structures

Previously, the RMS structures FAB, NAM, RAB, XABALL, and so forth,
were defined in the appropriate .H files as ‘‘struct RAB {...’’, for example. The
.H files supplied in OpenVMS Alpha Version 1.0 define them as ‘‘struct rabdef
{...’’. To compensate for this difference, lines of the form ‘‘#define RAB rabdef’’
have been added. However, there is one situation where a source change is
required because of this change. If you have a private structure that contains
a pointer to one of these structures and your private structure is defined
(but not used) before the RMS structure has been defined, you will receive
compile-time errors similar to the following:

%CC-E-PASNOTMEM, In this statement, "rab$b_rac" is not a member of "rab".

This error can be avoided by reordering your source file so that the RMS
structure is defined before the private structure. Typically, this involves
moving around ‘‘#include’’ statements.

• LIB (privileged interface) structures

Historically, three structures from LIB (NFBDEF.H, FATDEF.H, and
FCHDEF.H) have been made available as .H files. These files were
shipped as .H files in OpenVMS Alpha Version 1.0 and 1.5 (not in the
new SYS$STARLET_C.TLB). As of OpenVMS Alpha Version 7.0, the file
SYS$LIB_C.TLB, containing all LIB structures and definitions, was added.
These three .H files are now part of that .TLB and are no longer shipped
separately. Source changes may be required, because no attempt has been
made to preserve any existing anomalies in these files. The structures and
definitions from LIB are for privileged interfaces only and are therefore
subject to change.

STARLET Structures and Definitions for C Programmers 21–1

STARLET Structures and Definitions for C Programmers
21.1 SYS$STARLET_C.TLB Equivalency to STARLETSD.TLB

• Use of ‘‘variant_struct’’ and ‘‘variant_union’’
In the new .H files, ‘‘variant_struct’’ and ‘‘variant_union’’ are always used;
whereas previously some structures used ‘‘struct’’ and ‘‘union’’. Therefore,
the intermediate structure names cannot be specified when referencing fields
within data structures.

For example, the following statement:

AlignFaultItem.PC[0] = DataPtr->afr$r_pc_data_overlay.afr$q_fault_pc[0];

becomes:

AlignFaultItem.PC[0] = DataPtr->afr$q_fault_pc[0];

• Member alignment

Each of the .H files in SYS$STARLET_C.TLB saves and restores the state of
‘‘#pragma member_alignment’’.

• Conventions
The .H files in SYS$STARLET_C.TLB adhere to some conventions that
were only partly followed in VAXCDEF.TLB. All constants (#defines) have
uppercase names. All identifiers (routines, structure members, and so forth)
have lowercase names. Where there is a difference from VAXCDEF.TLB, the
old symbol name is also included for compatibility, but users are encouraged
to follow the new conventions.

• Use of Librarian utility to access the .H files

During installation of OpenVMS Alpha, the contents of SYS$STARLET_
C.TLB are not extracted into the separate .H files. The HP C Compiler
accesses these files from within SYS$STARLET_C.TLB, regardless of the
format of the #include statement. If you want to inspect an individual .H file,
you can use the Librarian utility, as in the following example:

$ LIBRARY /EXTRACT=AFRDEF /OUTPUT=AFRDEF.H SYS$LIBRARY:SYS$STARLET_C.TLB

• Additional .H files included in SYS$STARLET_C.TLB

In addition to the .H files derived from STARLET sources, SYS$STARLET_
C.TLB includes .H files that provide support for POSIX Threads Library, such
as CMA.H.

21.2 NEW STARLET Definitions for C
SYS$LIBRARY:SYS$STARLET_C.TLB (or STARLET) provides C function
prototypes for system services, as well as data structure definitions. The compiler
searches the library file SYS$LIBRARY:SYS$STARLET_C.TLB for the STARLET
header files. The definitions are consistent with the OpenVMS C language coding
conventions and definitions (typedefs) used in SYS$LIBRARY:SYS$LIB_C.TLB.

To maintain source compatibility for users of STARLET.H as provided prior to
OpenVMS Alpha Version 7.0, the ‘‘old style’’ function declarations and definitions
are still provided by default. To take advantage of the new system service
function prototypes and type definitions, you must explicitly enable them.

You can define the _ _NEW_STARLET symbol with a HP C command line
qualifier or include the definition directly in your source program. For example:

• Define the _NEW_STARLET symbol with the HP C command line qualifier as
follows:

21–2 STARLET Structures and Definitions for C Programmers

STARLET Structures and Definitions for C Programmers
21.2 NEW STARLET Definitions for C

/DEFINE=(__NEW_STARLET=1)

or

• Define the _NEW_STARLET symbol in your C source program before
including the SYS$STARLET_C.TLB header files:

#define __NEW_STARLET 1

#include <starlet.h>
#include <vadef.h>

To see the available system service function prototypes in STARLET.H, you can
use the Librarian utility as shown in the following example:

$ LIBRARY/OUTPUT=STARLET.H SYS$LIBRARY:SYS$STARLET_C.TLB/EXTRACT=STARLET

The following example shows a new system service function prototype as it is
defined in STARLET.H:

#pragma __required_pointer_size __long

int sys$expreg_64(
struct _generic_64 *region_id_64,
unsigned __int64 length_64,
unsigned int acmode,
unsigned int flags,
void *(*(return_va_64)),
unsigned __int64 *return_length_64);

#pragma __required_pointer_size __short

For more information about HP C pointer size pragmas, see the HP C User’s
Guide for OpenVMS Systems.

The following source code example shows the sys$expreg_64 function prototype
referenced in a program.

#define __NEW_STARLET 1 /* Enable "New Starlet" features */

#include <starlet.h> /* Declare prototypes for system services */
#include <gen64def.h> /* Define GENERIC_64 type */
#include <vadef.h> /* Define VA$ constants */

#include <ints.h> /* Define 64-bit integer types */
#include <far_pointers.h> /* Define 64-bit pointer types */

{
int status; /* Ubiquitous VMS status value */
GENERIC_64 region = { VA$C_P2 }; /* Expand in "default" P2 region */
VOID_PQ p2_va; /* Returned VA in P2 space */
uint64 length; /* Allocated size in bytes */
extern uint64 page_size; /* Page size in bytes */

status = sys$expreg_64(®ion, request_size, 0, 0, &p2_va, &length);
...

}

Table 21–1 lists the data structures that are used by the new function protypes.

STARLET Structures and Definitions for C Programmers 21–3

STARLET Structures and Definitions for C Programmers
21.2 NEW STARLET Definitions for C

Table 21–1 Structures Used by _NEW_STARLET Prototypes

Structure Used by
Prototype

Defined by
Header File

Common Prefix for
Structure Member
Names Description

struct _acmecb acmedef.h acmedef$ ACM communications buffer

struct _acmesb acmedef.h acmedef$ ACM status block

struct _cluevthndl cluevtdef.h cluevthndl$ Cluster event handle

struct _fabdef fabdef.h fab$ File access block

struct _generic_64 gen64def.h gen64$ Generic quadword structure

struct _ieee ieeedef.h ieee$ IEEE Floating point control
structure

struct _ile2 1 iledef.h ile2$ Item list entry 2

struct _ile3 1 iledef.h ile3$ Item list entry 3

struct _ilea_64 1 iledef.h ilea_64$ 64-bit item list entry A structure

struct _ileb_64 1 iledef.h ileb_64$ 64-bit item list entry B structure

struct _iosa iosadef.h iosa$ I/O status area

struct _iosb iosbdef.h iosb$ I/O status block

struct _lksb lksbdef.h lksb$ Lock status block

struct _rabdef rabdef.h rab$ RMS record access block

struct _secid seciddef.h secid$ Global section identifier

struct _va_range va_rangedef.h va_range$ 32-bit virtual address range

1Use of this structure type is not required by the function prototypes in starlet.h. This structure type is provided as a
convenience and can be used where it is appropriate.

21–4 STARLET Structures and Definitions for C Programmers

Part II
I/O, System, and Programming Routines

This part of this second volume describes the I/O operations, and the system and
programming routines used by run-time libraries and system services.

22
Run-Time Library Input/Output Operations

This chapter describes the different I/O programming capabilities provided by the
run-time library and illustrates these capabilities with examples of common I/O
tasks. This chapter contains the following sections:

Section 22.1 describes the input and output operations within a program.

Section 22.2 describes using SYS$INPUT and SYS$OUTPUT.

Section 22.3 describes using LIB$GET_INPUT and LIB$PUT_OUTPUT for
simple user I/O.

Section 22.4 describes using the SMG$ run-time library routines for managing
the appearance of terminal screens.

Section 22.5 describes using screen management input routines and the SYS$QIO
and SYS$QIOW system services to perform special actions.

22.1 Choosing I/O Techniques
The operating system and its compilers provide the following methods for
completing input and output operations within a program:

• DEC Text Processing Utility

• DECforms software

• Program language I/O statements

• OpenVMS Record Management Services (RMS) and Run-Time Library (RTL)
routines

• SYS$QIO and SYS$QIOW system services

• Non-HP-supplied device drivers to control the I/O to the device itself

The DEC Text Processing Utility (DECTPU) is a text processor that can be used
to create text editing interfaces. DECTPU has the following features:

• High-level procedure language with several data types, relational operators,
error interception, looping, case language statements, and built-in procedures

• Compiler for the DECTPU procedure language

• Interpreter for the DECTPU procedure language

• Extensible Versatile Editor (EVE) editing interface which, in addition to the
EVE keypad, provides EDT, VT100, WPS, and numeric keypad emulation

In addition, DECTPU offers the following special features:

• Multiple buffers

• Multiple windows

• Multiple subprocesses

Run-Time Library Input/Output Operations 22–1

Run-Time Library Input/Output Operations
22.1 Choosing I/O Techniques

• Text processing in batch mode

• Insert or overstrike text entry

• Free or bound cursor motion

• Learn sequences

• Pattern matching

• Key definition

The method you select for I/O operations depends on the task you want to
accomplish, ease of use, speed, and level of control you want.

The HP DECforms for OpenVMS software is a forms management product
for transaction processing. DECforms integrates text and graphics into forms
and menus that application programs use as an interface to users. DECforms
software offers application developers software development tools and a run-time
environment for implementing interfaces.

DECforms software integrates with the Application Control and Management
System (ACMS), a transaction process (TP) monitor that works with other HP
commercial applications to provide complete customizable development and
run-time environments for TP applications. An asynchronous call interface to
ACMS allows a single DECforms run-time process to control multiple terminals
simultaneously in a multithreaded way, resulting in an efficient use of memory.
By using the ACMS Remote Access Option, DECforms software can be distributed
to remote CPUs. This technique allows the host CPU to offload forms processing
and distribute it as closely as possible to the end user.

In contrast to OpenVMS RMS, RTLs, SYS$QIOs, and device driver I/O, program
language I/O statements have the slowest speed and lowest level of control, but
they are the easiest to use and are highly portable.

OpenVMS RMS and RTL routines can perform most I/O operations for a high-
level or assembly language program. For information about OpenVMS RMS, see
the OpenVMS Record Management Services Reference Manual.

System services can complete any I/O operation and can access devices not
supported within OpenVMS RMS. See Chapter 23 for a description of using I/O
system services.

Writing a device driver provides the most control over I/O operations, but can
be more complex to implement. For information about device drivers for VAX
systems, see the OpenVMS VAX Device Support Manual. The OpenVMS VAX
Device Support Manual has been archived but is available on the OpenVMS
Documentation CD-ROM.

Several types of I/O operations can be performed within a program, including the
following:

• RTL routines allow you either to read simple input from a user or send simple
output to a user. One RTL routine allows you to specify a string to prompt
for input from the current input device, defined by SYS$INPUT. Another RTL
routine allows you to write a string to the current output device, defined by
SYS$OUTPUT. See Section 22.2 and Section 22.3 for more information.

22–2 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.1 Choosing I/O Techniques

• RTL routines allow you either to read complex input from a user or to
send complex output to a user. By providing an extensive number of screen
management (SMG$) routines, the RTL allows you either to read multiple
lines of input from users or to send complex output to users. The SMG$
routines also allow you to create and modify complicated displays that accept
input and produce output. See Section 22.4 for more information.

• RTL routines allow you to use programming language I/O statements to send
data to and receive data from files. Program language I/O statements call
OpenVMS RMS routines to complete most file I/O. You can also use OpenVMS
RMS directly in your programs for accomplishing file I/O. See Chapter 28 for
more information.

• The SYS$QIO and SYS$QIOW system services allow you to send data to
and from devices with the most flexibility and control. You can use system
services to access devices not supported by your programming language or by
OpenVMS RMS.

You can perform other special I/O actions, such as using interrupts,
controlling echo, handling unsolicited input, using the type-ahead buffer,
using case conversion, and sending sytem broadcast messges, by using
SMG$ routines or, for example, by using SYS$BRKTHRU system service to
broadcast messages. See Section 22.5 for more information.

22.2 Using SYS$INPUT and SYS$OUTPUT
Typically, you set up your program so that the user is the invoker. The user starts
the program either by entering a DCL command associated with the program or
by using the RUN command.

22.2.1 Default Input and Output Devices
The user’s input and output devices are defined by the logical names SYS$INPUT
and SYS$OUTPUT, which are initially set to the values listed in Table 22–1.

Table 22–1 SYS$INPUT and SYS$OUTPUT Values

Logical Name User Mode Equivalence Device or File

SYS$INPUT Interactive Terminal at which the user is logged in

Batch job Data lines following the invocation of the
program

Command procedure Data lines following the invocation of the
program

SYS$OUTPUT Interactive Terminal at which the user is logged in

Batch job Batch log file

Command procedure Terminal at which the user is logged in

Generally, use of SYS$INPUT and SYS$OUTPUT as the primary input and
output devices is recommended. A user of the program can redefine SYS$INPUT
and SYS$OUTPUT to redirect input and output as desired. For example, the
interactive user might redefine SYS$OUTPUT as a file name to save output in a
file rather than display it on the terminal.

Run-Time Library Input/Output Operations 22–3

Run-Time Library Input/Output Operations
22.2 Using SYS$INPUT and SYS$OUTPUT

22.2.2 Reading and Writing to Alternate Devices and External Files
Alternatively, you can design your program to read input from and write output
to a file or a device other than the user’s terminal. Files may be useful for writing
large amounts of data, for writing data that the user might want to save, and for
writing data that can be reused as input. If you use files or devices other than
SYS$INPUT and SYS$OUTPUT, you should provide the names of the files or
devices (best form is to use logical names) and any conventions for their use. You
can specify such information by having the program write it to the terminal, by
creating a help file, or by providing user documentation.

22.3 Working with Simple User I/O
Usually, you can request information from or provide information to the user with
little regard for formatting. For such simple I/O, use either LIB$GET_INPUT
and LIB$PUT_OUTPUT or the I/O statements for your programming language.

To provide complex screen displays for input or output, use the screen
management facility described in Section 22.4.

22.3.1 Default Devices for Simple I/O
The LIB$GET_INPUT and LIB$PUT_OUTPUT routines read from SYS$INPUT
and write to SYS$OUTPUT, respectively. The logical names SYS$INPUT and
SYS$OUTPUT are implicit to the routines, because you need only call the
routine to access the I/O unit (device or file) associated with SYS$INPUT and
SYS$OUTPUT. You cannot use these routines to access an I/O unit other than
the one associated with SYS$INPUT or SYS$OUTPUT.

22.3.2 Getting a Line of Input
A read operation transfers one record from the input unit to a variable or
variables of your choice. At a terminal, the user ends a record by pressing a
terminator. The terminators are the ASCII characters NUL through US (0
through 31) except for LF, VT, FF, TAB, and BS. The usual terminator is CR
(carriage return), which is generated by pressing the Return key.

If you are reading character data, LIB$GET_INPUT is a simple way of prompting
for and reading the data. If you are reading noncharacter data, programming
language I/O statements are preferable since they allow you to translate the data
to a format of your choice.

For example, Fortran offers the ACCEPT statement, which reads data from
SYS$INPUT, and the READ statement, which reads data from an I/O unit of your
choice.

Make sure the variables that you specify can hold the largest number of
characters the user of your program might enter, unless you want to truncate the
input deliberately. Overflowing the input variable using LIB$GET_INPUT causes
the fatal error LIB$_INPSTRTRU (defined in $LIBDEF); overflowing the input
variable using language I/O statements may not cause an error but does truncate
your data.

LIB$GET_INPUT places the characters read in a variable of your choice. You
must define the variable type as a character. Optionally, LIB$GET_INPUT places
the number of characters read in another variable of your choice. For input at a
terminal, LIB$GET_INPUT optionally writes a prompt before reading the input.
The prompt is suppressed automatically for an operation not taking place at a
terminal.

22–4 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.3 Working with Simple User I/O

Example 22–1 uses LIB$GET_INPUT to read a line of input.

Example 22–1 Reading a Line of Data

INTEGER*4 STATUS,
2 LIB$GET_INPUT
INTEGER*2 INPUT_SIZE
CHARACTER*512 INPUT
STATUS = LIB$GET_INPUT (INPUT, ! Input value
2 ’Input value: ’, ! Prompt (optional)
2 INPUT_SIZE) ! Input size (optional)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

22.3.3 Getting Several Lines of Input
The usual technique for obtaining a variable number of input records—either
values for which you are prompting or data records from a file—is to read and
process records until the end-of-file. End-of-file means one of the following:

• Terminal—The user has pressed Ctrl/Z. To ensure that the convention is
followed, you might first write a message telling the user to press Ctrl/Z to
terminate the input sequence.

• Command procedure—The end of a sequence of data lines has been reached.
That is, a sequence of data lines ends at the next DCL command (a line in
the procedure beginning with a dollar sign [$]) or at the end of the command
procedure file.

• File—The end of an actual file has been reached.

Process the records in a loop (one record per iteration) and terminate the loop
on end-of-file. LIB$GET_INPUT returns the error RMS$_EOF (defined in
$RMSDEF) when end-of-file occurs.

Example 22–2 uses a Fortran READ statement in a loop to read a sequence of
integers from SYS$INPUT.

Example 22–2 Reading a Varying Number of Input Records

! Return status and error codes
INTEGER STATUS,
2 IOSTAT,
3 STATUS_OK,
4 IOSTAT_OK
PARAMETER (STATUS_OK = 1,
2 IO_OK = 0)
INCLUDE ’($FORDEF)’
! Data record read on each iteration
INTEGER INPUT_NUMBER
! Accumulated data records
INTEGER STORAGE_COUNT,
2 STORAGE_MAX
PARAMETER (STORAGE_MAX = 255)
INTEGER STORAGE_NUMBER (STORAGE_MAX)

(continued on next page)

Run-Time Library Input/Output Operations 22–5

Run-Time Library Input/Output Operations
22.3 Working with Simple User I/O

Example 22–2 (Cont.) Reading a Varying Number of Input Records
! Write instructions to interactive user
TYPE *,
2 ’Enter values below. Press CTRL/Z when done.’
! Get first input value
WRITE (UNIT=*,
2 FMT=’(A,$)’) ’ Input value: ’
READ (UNIT=*,
2 IOSTAT=IOSTAT,
2 FMT=’(BN,I)’) INPUT_NUMBER
IF (IOSTAT .EQ. IO_OK) THEN
STATUS = STATUS_OK

ELSE
CALL ERRSNS (,,,,STATUS)

END IF
! Process each input value until end-of-file
DO WHILE ((STATUS .NE. FOR$_ENDDURREA) .AND.

(STORAGE_COUNT .LT. STORAGE_MAX))
! Keep repeating on conversion error
DO WHILE (STATUS .EQ. FOR$_INPCONERR)
WRITE (UNIT=*,

2 FMT=’(A,$)’) ’ Try again: ’
READ (UNIT=*,

2 IOSTAT=IOSTAT,
2 FMT=’(BN,I)’) INPUT_NUMBER

IF (IOSTAT .EQ. IO_OK) THEN
STATUS = STATUS_OK

ELSE
CALL ERRSNS (,,,,STATUS)

END IF
END DO
! Continue if end-of-file not entered
IF (STATUS .NE. FOR$_ENDDURREA) THEN
! Status check on last read
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Store input numbers in input array
STORAGE_COUNT = STORAGE_COUNT + 1
STORAGE_NUMBER (STORAGE_COUNT) = INPUT_NUMBER
! Get next input value
WRITE (UNIT=*,

2 FMT=’(A,$)’) ’ Input value: ’
READ (UNIT=*,

2 IOSTAT=IOSTAT,
2 FMT=’(BN,I)’) INPUT_NUMBER

IF (IOSTAT .EQ. IO_OK) THEN
STATUS = STATUS_OK

ELSE
CALL ERRSNS (,,,,STATUS)

END IF
END IF

END DO

22.3.4 Writing Simple Output
You can use LIB$PUT_OUTPUT to write character data. If you are writing
noncharacter data, programming language I/O statements are preferable because
they allow you to translate the data to a format of your choice.

22–6 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.3 Working with Simple User I/O

LIB$PUT_OUTPUT writes one record of output to SYS$OUTPUT. Typically,
you should avoid writing records that exceed the device width. The width of
a terminal is 80 or 132 characters, depending on the setting of the physical
characteristics of the device. The width of a line printer is 132 characters. If your
output record exceeds the width of the device, the excess characters are either
truncated or wrapped to the next line, depending on the setting of the physical
characteristics.

You must define a value (a variable, constant, or expression) to be written. The
value must be expressed in characters. You should specify the exact number of
characters being written and not include the trailing portion of a variable.

The following example writes a character expression to SYS$OUTPUT:

INTEGER*4 STATUS,
2 LIB$PUT_OUTPUT
CHARACTER*40 ANSWER
INTEGER*4 ANSWER_SIZE

.

.

.
STATUS = LIB$PUT_OUTPUT (’Answer: ’ // ANSWER (1:ANSWER_SIZE))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

22.4 Working with Complex User I/O
The following sections present HP DECwindows Motif for OpenVMS
(DECwindows Motif), and the SMG$ run-time library routines that enable
complex screen display I/O.

22.4.1 HP DECwindows Motif
The HP DECwindows Motif environment provides a consistent user interface
for developing software applications. It also includes an extensive set of
programming libraries and tools. The following HP DECwindows Motif software
allows you to build a graphical user interface:

• Toolkit composed on graphical user interface objects, such as widgets and
gadgets. Widgets provide advanced programming capabilities that permit you
to create graphic applications easily; gadgets, similar to widgets, require less
memory to create labels, buttons, and separators.

• Language to describe visual aspects of objects, such as menus, labels, and
forms, and to specify changes resulting from user interaction.

• OSF/Motif Window Manager to allow you to customize the interface.

HP DECwindows Motif environment also makes available the LinkWorks services
for creating, managing, and traversing informational links between different
application-specific data. Along with the LinkWorks Manager application,
LinkWorks services help organize information into a hyperinformation
environment. LinkWorks Developer’s Tools provide a development environment
for creating, modifying, and maintaining hyperapplications.

Run-Time Library Input/Output Operations 22–7

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

22.4.1.1 DECwindows Server Height or Width Exceeding 32767 (VAX Only)
On OpenVMS VAX systems, when an X application sends the display server
a width or height greater than 32767, the application may terminate with a
BadValue error similar to the following:

X error event received from server: BadValue (integer parameter out of
range for operation)
Major opcode of failed request: 61 (X_ClearArea)
Value in failed request: 0xffff****
Serial number of failed request: ###
Current serial number in output stream: ###

The following calls can cause this problem:

CopyArea()
CreateWindow ()
PutImage()
GetImage()
CopyPlane()
ClearArea()

This is due to the width and height being defined as a signed word by the display
server when it should be defined as an unsigned word (CARD16) that allows for
values up to 65536.

To modify the default operation, perform the following steps:

1. Set the logical name DECW$CARD16_VALIDATE to TRUE as follows:

$DEFINE/TABLE=DECW$SERVER0_TABLE DECW$CARD16_VALIDATE TRUE

2. Exit the session and log back in.

Exiting the session causes the display server to reset using the new value
of the logical name DECW$CARD16_VALIDATE. The server will now accept
values that are greater than 32767 without generating an error.

To make this a permanent change, add the command from step 1 to the file
SYS$MANAGER:DECW$PRIVATE_SERVER_SETUP.COM.

22.4.2 SMG$ Run-Time Routines
The SMG$ run-time library routines provide a simple, device-independent
interface for managing the appearance of the terminal screen. The SMG$
routines are primarily for use with video terminals; however, they can be used
with files or hardcopy terminals.
To use the screen management facility for output, do the following:

1. Create a pasteboard—A pasteboard is a logical, two-dimensional area on
which you place virtual displays. Use the SMG$CREATE_PASTEBOARD
routine to create a pasteboard, and associate it with a physical device. When
you refer to the pasteboard, SMG performs the necessary I/O operation to the
device.

2. Create a virtual display—A virtual display is a logical, two-dimensional area
in which you place the information to be displayed. Use the SMG$CREATE_
VIRTUAL_DISPLAY routine to create a virtual display.

3. Paste virtual displays to the pasteboard—To make a virtual display visible,
map (or paste) it to the pasteboard using the SMG$PASTE_VIRTUAL_
DISPLAY routine. You can reference a virtual display regardless of whether
that display is currently pasted to a pasteboard.

22–8 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

4. Create a viewport for a virtual display—A viewport is a rectangular viewing
area that can be moved around on a buffer to view different pieces of the
buffer. The viewport is associated with a virtual display.

Example 22–3 associates a pasteboard with the terminal, creates a virtual display
the size of the terminal screen, and pastes the display to the pasteboard. When
text is written to the virtual display, the text appears on the terminal screen.

Example 22–3 Associating a Pasteboard with a Terminal
.
.
.

! Screen management control structures
INTEGER*4 PBID, ! Pasteboard ID
2 VDID, ! Virtual display ID
2 ROWS, ! Rows on screen
2 COLS ! Columns on screen
! Status variable and routines called as functions
INTEGER*4 STATUS,
2 SMG$CREATE_PASTEBOARD,
2 SMG$CREATE_VIRTUAL_DISPLAY,
2 SMG$PASTE_VIRTUAL_DISPLAY
! Set up SYS$OUTPUT for screen management
! and get the number of rows and columns on the screen
STATUS = SMG$CREATE_PASTEBOARD (PBID, ! Return value
2 ’SYS$OUTPUT’,
2 ROWS, ! Return value
2 COLUMNS) ! Return value
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Create virtual display that pastes to the full screen size
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (ROWS,
2 COLUMNS,
2 VDID) ! Return value
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Paste virtual display to pasteboard
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 1, ! Starting at row 1 and
2 1) ! column 1 of the screen
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.

To use the SMG$ routines for input, you associate a virtual keyboard with a
physical device or file using the SMG$CREATE_VIRTUAL_KEYBOARD routine.
The SMG$ input routines can be used alone or with the output routines. This
section assumes that you are using the input routines with the output routines.
Section 22.5 describes how to use the input routines without the output routines.

The screen management facility keeps an internal representation of the screen
contents; therefore, it is important that you do not mix SMG$ routines with
other forms of terminal I/O. The following subsections contain guidelines for
using most of the SMG$ routines; for more details, see the OpenVMS RTL Screen
Management (SMG$) Manual.

Run-Time Library Input/Output Operations 22–9

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

22.4.3 Pasteboards
Use the SMG$CREATE_PASTEBOARD routine to create a pasteboard and
associate it with a physical device. SMG$CREATE_PASTEBOARD returns
a unique pasteboard identification number; use that number to refer to the
pasteboard in subsequent calls to SMG$ routines. After associating a pasteboard
with a device, your program references only the pasteboard. The screen
management facility performs all necessary operations between the pasteboard
and the physical device. Example 22–4 creates a pasteboard.

Example 22–4 Creating a Pasteboard

STATUS = SMG$CREATE_PASTEBOARD (PBID, ROWS, COLUMNS)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

22.4.3.1 Erasing a Pasteboard
When you create a pasteboard, the screen management facility clears the screen
by default. To clear the screen yourself, invoke the SMG$ERASE_PASTEBOARD
routine. Any virtual displays associated with the pasteboard are removed from
the screen, but their contents in memory are not affected. The following example
erases the screen:

STATUS = SMG$ERASE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

22.4.3.2 Deleting a Pasteboard
Invoking the SMG$DELETE_PASTEBOARD routine deletes a pasteboard,
making the screen unavailable for further pasting. The optional second argument
of the SMG$DELETE_PASTEBOARD routine allows you to indicate whether the
routine clears the screen (the default) or leaves it as is. The following example
deletes a pasteboard and clears the screen:

STATUS = SMG$DELETE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

By default, the screen is erased when you create a pasteboard. Generally, you
should erase the screen at the end of a session.

22.4.3.3 Setting Screen Dimensions and Background Color
The SMG$CHANGE_PBD_CHARACTERISTICS routine sets the dimensions of
the screen and its background color. You can also use this routine to retrieve
dimensions and background color. To get more detailed information about the
physical device, use the SMG$GET_PASTEBOARD_ATTRIBUTES routine.
Example 22–5 changes the screen width to 132 and the background to white,
then restores the original width and background before exiting.

Example 22–5 Modifying Screen Dimensions and Background Color
.
.
.

INTEGER*4 WIDTH,
2 COLOR
INCLUDE ’($SMGDEF)’

(continued on next page)

22–10 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

Example 22–5 (Cont.) Modifying Screen Dimensions and Background Color

! Get current width and background color
STATUS = SMG$CHANGE_PBD_CHARACTERISTICS (PBID,,
2 WIDTH,,,,
2 COLOR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Change width and background color
STATUS = SMG$CHANGE_PBD_CHARACTERISTICS (PBID,
2 132,,,,
2 SMG$C_COLOR_WHITE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
! Restore width and background color
STATUS = SMG$CHANGE_PBD_CHARACTERISTICS (PBID,
2 WIDTH,,,,
2 COLOR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

22.4.4 Virtual Displays
You write to virtual displays, which are logically configured as rectangles, by
using the SMG$ routines. The dimensions of a virtual display are designated
vertically as rows and horizontally as columns. A position in a virtual display is
designated by naming a row and a column. Row and column numbers begin at
1.

22.4.4.1 Creating a Virtual Display
Use the SMG$CREATE_VIRTUAL_DISPLAY routine to create a virtual
display. SMG$CREATE_VIRTUAL_DISPLAY returns a unique virtual display
identification number; use that number to refer to the virtual display.

Optionally, you can use the fifth argument of SMG$CREATE_VIRTUAL_
DISPLAY to specify one or more of the following video attributes: blinking,
bolding, reversing background, and underlining. All characters written to that
display will have the specified attribute unless you indicate otherwise when
writing text to the display. The following example makes everything written to
the display HEADER_VDID appear bold by default:

INCLUDE ’($SMGDEF)’
.
.
.

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (1, ! Rows
2 80, ! Columns
2 HEADER_VDID,,
2 SMG$M_BOLD)

You can border a virtual display by specifying the fourth argument when you
invoke SMG$CREATE_VIRTUAL_DISPLAY. You can label the border with the
routine SMG$LABEL_BORDER. If you use a border, you must leave room for it:
a border requires two rows and two columns more than the size of the display.
The following example places a labeled border around the STATS_VDID display.
As pasted, the border occupies rows 2 and 13 and columns 1 and 57.

Run-Time Library Input/Output Operations 22–11

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (10, ! Rows
2 55, ! Columns
2 STATS_VDID,
2 SMG$M_BORDER)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$LABEL_BORDER (STATS_VDID,
2 ’statistics’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID,
2 3, ! Row
2 2) ! Column

22.4.4.2 Pasting Virtual Displays
To make a virtual display visible, paste it to a pasteboard using the
SMG$PASTE_VIRTUAL_DISPLAY routine. You position the virtual display
by specifying which row and column of the pasteboard should contain the upper
left corner of the display. Example 22–6 defines two virtual displays and pastes
them to one pasteboard.

Example 22–6 Defining and Pasting a Virtual Display
.
.
.

INCLUDE ’($SMGDEF)’
INTEGER*4 PBID,
2 HEADER_VDID,
2 STATS_VDID
INTEGER*4 STATUS,
2 SMG$CREATE_PASTEBOARD,
2 SMG$CREATE_VIRTUAL_DISPLAY,
2 SMG$PASTE_VIRTUAL_DISPLAY
! Create pasteboard for SYS$OUTPUT
STATUS = SMG$CREATE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Header pastes to first rows of screen
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (3, ! Rows
2 78, ! Columns
2 HEADER_VDID, ! Name
2 SMG$M_BORDER) ! Border
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (HEADER_VDID,
2 PBID,
2 2, ! Row
2 2) ! Column
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

(continued on next page)

22–12 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

Example 22–6 (Cont.) Defining and Pasting a Virtual Display

! Statistics area pastes to rows 5 through 15,
! columns 2 through 56
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (10, ! Rows
2 55, ! Columns
2 STATS_VDID, ! Name
2 SMG$M_BORDER) ! Border
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID,
2 5, ! Row
2 2) ! Column
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.

Figure 22–1 shows the screen that results from Example 22–6.

Figure 22–1 Defining and Pasting Virtual Displays

ZK−2044−GE

You can paste a single display to any number of pasteboards. Any time you
change the display, all pasteboards containing the display are automatically
updated.

A pasteboard can hold any number of virtual displays. You can paste virtual
displays over one another to any depth, occluding the displays underneath. The
displays underneath are only occluded to the extent that they are covered; that
is, the parts not occluded remain visible on the screen. (In Figure 22–2, displays
1 and 2 are partially occluded.) When you unpaste a virtual display that occludes
another virtual display, the occluded part of the display underneath becomes
visible again.

You can find out whether a display is occluded by using the SMG$CHECK_FOR_
OCCLUSION routine. The following example pastes a two-row summary display
over the last two rows of the statistics display, if the statistics display is not
already occluded. If the statistics display is occluded, the example assumes that
it is occluded by the summary display and unpastes the summary display, making
the last two rows of the statistics display visible again.

Run-Time Library Input/Output Operations 22–13

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

STATUS = SMG$CHECK_FOR_OCCLUSION (STATS_VDID,
2 PBID,
2 OCCLUDE_STATE)
! OCCLUDE_STATE must be defined as INTEGER*4
IF (OCCLUDE_STATE) THEN
STATUS = SMG$UNPASTE_VIRTUAL_DISPLAY (SUM_VDID,

2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

ELSE
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (SUM_VDID,

2 PBID,
2 11,
2 2)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
END IF

22.4.4.3 Rearranging Virtual Displays
Pasted displays can be rearranged by moving or repasting.

• Moving—To move a display, use the SMG$MOVE_VIRTUAL_DISPLAY
routine. The following example moves display 2. Figure 22–2 shows the
screen before and after the statement executes.

STATUS = SMG$MOVE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 5,
2 10)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Figure 22–2 Moving a Virtual Display

1

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

1

bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb

2

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

1

ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc

3

bbbbbbbb

Before Moving Display 2 After Moving Display 2

ZK−2045−GE

bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb

2

3

ccccccccc
ccccccccc

ccccccccc
ccccccccc
ccccccccc

• Repasting—To repaste a display, use the SMG$REPASTE_VIRTUAL_
DISPLAY routine. The following example repastes display 2. Figure 22–3
shows the screen before and after the statement executes.

STATUS = SMG$REPASTE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 4,
2 4)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

22–14 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

Figure 22–3 Repasting a Virtual Display

1

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

1

bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb

2

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

1

ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc

3

bbbbbbbb

Before Repasting Display 2 After Repasting Display 2

ZK−2046−GE

3

ccccccccc
ccccccccc

bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb

2

cc
cc
cc

You can obtain the pasting order of the virtual displays using SMG$LIST_
PASTING_ORDER. This routine returns the identifiers of all the virtual displays
pasted to a specified pasteboard.

22.4.4.4 Removing Virtual Displays
You can remove a virtual display from a pasteboard in a number of different
ways:

• Erase a virtual display—Invoking SMG$UNPASTE_VIRTUAL_DISPLAY
erases a virtual display from the screen but retains its contents in memory.
The following example erases the statistics display:

STATUS = SMG$UNPASTE_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

• Delete a virtual display—Invoking SMG$DELETE_VIRTUAL_DISPLAY
removes a virtual display from the screen and removes its contents from
memory. The following example deletes the statistics display:

STATUS = SMG$DELETE_VIRTUAL_DISPLAY (STATS_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

• Delete several virtual displays—Invoking SMG$POP_VIRTUAL_DISPLAY
removes a specified virtual display and any virtual displays pasted after that
display from the screen and removes the contents of those displays from
memory. The following example ‘‘pops’’ display 2. Figure 22–4 shows the
screen before and after popping. (Note that display 3 is deleted because it
was pasted after display 2, and not because it is occluding display 2.)

STATUS = SMG$POP_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Run-Time Library Input/Output Operations 22–15

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

Figure 22–4 Popping a Virtual Display

1

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

1

bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb

2

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

1

ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc

3

bbbbbbbb

Before Popping Display 2 After Popping Display 2

ZK−2047−GE

22.4.4.5 Modifying a Virtual Display
The screen management facility provides several routines for modifying the
characteristics of an existing virtual display:

• SMG$CHANGE_VIRTUAL_DISPLAY—Changes the size, video attributes, or
border of a display

• SMG$CHANGE_RENDITION—Changes the video attributes of a portion of a
display

• SMG$MOVE_TEXT—Moves text from one virtual display to another

The following example uses SMG$CHANGE_VIRTUAL_DISPLAY to change the
size of the WHOOPS display to five rows and seven columns and to turn off all of
the display’s default video attributes. If you decrease the size of a display that is
on the screen, any characters in the excess area are removed from the screen.

STATUS = SMG$CHANGE_VIRTUAL_DISPLAY (WHOOPS_VDID,
2 5, ! Rows
2 7,, ! Columns
2 0) ! Video attributes off

The following example uses SMG$CHANGE_RENDITION to direct attention to
the first 20 columns of the statistics display by setting the reverse video attribute
to the complement of the display’s default setting for that attribute:

STATUS = SMG$CHANGE_RENDITION (STATS_VDID,
2 1, ! Row
2 1, ! Column
2 10, ! Number of rows
2 20, ! Number of columns
2 , ! Video-set argument
2 SMG$M_REVERSE) ! Video-comp argument
2

22–16 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

SMG$CHANGE_RENDITION uses three sets of video attributes to determine the
attributes to apply to the specified portion of the display: (1) the display’s default
video attributes, (2) the attributes specified by the rendition-set argument of
SMG$CHANGE_RENDITION, and (3) the attributes specified by the rendition-
complement argument of SMG$CHANGE_RENDITION. Table 22–2 shows the
result of each possible combination.

Table 22–2 Setting Video Attributes

rendition-set rendition-complement Result

off off Uses display default

on off Sets attribute

off on Uses the complement of display
default

on on Clears attribute

In the preceding example, the reverse video attribute is set in the rendition-
complement argument but not in the rendition-set argument, thus specifying
that SMG$CHANGE_RENDITION use the complement of the display’s default
setting to ensure that the selected portion of the display is easily seen.

Note that the resulting attributes are based on the display’s default attributes,
not its current attributes. If you use SMG$ routines that explicitly set video
attributes, the current attributes of the display may not match its default
attributes.

22.4.4.6 Using Spawned Subprocesses
You can create a spawned subprocess directly with an SMG$ routine to
allow execution of a DCL command from an application. Only one spawned
subprocess is allowed per virtual display. Use the following routines to work with
subprocesses:

• SMG$CREATE_SUBPROCESS—Creates a DCL spawned subprocess and
associates it with a virtual display.

• SMG$EXECUTE_COMMAND—Allows execution of a specified command in
the created spawned subprocess by using mailboxes. Some restrictions apply
to specifying the following commands:

SPAWN, GOTO, or LOGOUT cannot be used and will result in
unpredictable results.

Single-character commands such as Ctrl/C have no effect. You can
signal an end-of-file (that is, press Ctrl/Z) command by setting the flags
argument.

A dollar sign ($) must be specified as the first character of any DCL
command.

• SMG$DELETE_SUBPROCESS—Deletes the subprocess created by
SMG$CREATE_SUBPROCESS.

Run-Time Library Input/Output Operations 22–17

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

22.4.5 Viewports
Viewports allow you to view different pieces of a virtual display by moving a
rectangular area around on the virtual display. Only one viewport is allowed for
each virtual display. Once you have associated a viewport with a virtual display,
the only part of the virtual display that is viewable is contained in the viewport.

The SMG$ routines for working with viewports include the following:

• SMG$CREATE_VIEWPORT—Creates a viewport and associates it with
a virtual display. You must create the virtual display first. To view the
viewport, you must paste the virtual display first with SMG$PASTE_
VIRTUAL_DISPLAY.

• SMG$SCROLL_VIEWPORT—Scrolls the viewport within the virtual display.
If you try to move the viewport outside of the virtual display, the viewport is
truncated to stay within the virtual display. This routine allows you to specify
the direction and extent of the scroll.

• SMG$CHANGE_VIEWPORT—Moves the viewport to a new starting location
and changes the size of the viewport.

• SMG$DELETE_VIEWPORT—Deletes the viewport and dissociates it from the
virtual display. The viewport is automatically unpasted. The virtual display
associated with the viewport remains intact. You can unpaste a viewport
without deleting it by using SMG$UNPASTE_VIRTUAL_DISPLAY.

22.4.6 Writing Text to Virtual Display
The SMG$ output routines allow you to write text to displays and to delete or
modify the existing text of a display. Remember that changes to a virtual display
are visible only if the virtual display is pasted to a pasteboard.

22.4.6.1 Positioning the Cursor
Each virtual display has its own logical cursor position. You can control the
position of the cursor in a virtual display with the following routines:

• SMG$HOME_CURSOR—Moves the cursor to a corner of the virtual display.
The default corner is the upper left corner, that is, row 1, column 1 of the
display.

• SMG$SET_CURSOR_ABS—Moves the cursor to a specified row and column.

• SMG$SET_CURSOR_REL—Moves the cursor to offsets from the current
cursor position. A negative value means up (rows) or left (columns). A value
of 0 means no movement.

In addition, many routines permit you to specify a starting location other than
the current cursor position for the operation.

The SMG$RETURN_CURSOR_POS routine returns the row and column of the
current cursor position within a virtual display. You do not have to write special
code to track the cursor position.

Typically, the physical cursor is at the logical cursor position of the most recently
written-to display. If necessary, you can use the SMG$SET_PHYSICAL_CURSOR
routine to set the physical cursor location.

22–18 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

22.4.6.2 Writing Data Character by Character
If you are writing character by character (see Section 22.4.6.3 for line-oriented
output), you can use three routines:

• SMG$DRAW_CHAR—Puts one line-drawing character on the screen at a
specified position. It does not change the cursor position.

• SMG$PUT_CHARS—Puts one or more characters on the screen at a specified
position, with the option of one video attribute.

• SMG$PUT_CHARS_MULTI—Puts several characters on the screen at a
specified position, with multiple video attributes.

These routines are simple and precise. They place exactly the specified characters
on the screen, starting at a specified position in a virtual display. Anything
currently in the positions written-to is overwritten; no other positions on the
screen are affected. Convert numeric data to character data with language I/O
statements before invoking SMG$PUT_CHARS.

The following example converts an integer to a character string and places it at a
designated position in a virtual display:

CHARACTER*4 HOUSE_NO_STRING
INTEGER*4 HOUSE_NO,
2 LINE_NO,
2 STATS_VDID

.

.

.
WRITE (UNIT=HOUSE_NO_STRING,
2 FMT=’(I4)’) HOUSE_NO
STATUS = SMG$PUT_CHARS (STATS_VDID,
2 HOUSE_NO_STRING,
2 LINE_NO, ! Row
2 1) ! Column

Note that the converted integer is right-justified from column 4 because the
format specification is I4 and the full character string is written. To left-justify
a converted number, you must locate the first nonblank character and write a
substring starting with that character and ending with the last character.

Inserting and Overwriting Text
To insert characters rather than overwrite the current contents of the screen, use
the routine SMG$INSERT_CHARS. Existing characters at the location written to
are shifted to the right. Characters pushed out of the display are truncated; no
wrapping occurs and the cursor remains at the end of the last character inserted.

Specifying Double-Size Characters
In addition to the preceding routines, you can use SMG$PUT_CHARS_WIDE to
write characters to the screen in double width or SMG$PUT_CHARS_HIGHWIDE
to write characters to the screen in double height and double width. When you
use these routines, you must allot two spaces for each double-width character on
the line and two lines for each line of double-height characters. You cannot mix
single-and double-size characters on a line.

All the character routines provide rendition-set and rendition-complement
arguments, which allow you to specify special video attributes for the characters
being written. SMG$PUT_CHARS_MULTI allows you to specify more than one
video attribute at a time. The explanation of the SMG$CHANGE_RENDITION
routine in Section 22.4.4.5 discusses how to use rendition-set and rendition-
complement arguments.

Run-Time Library Input/Output Operations 22–19

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

22.4.6.3 Writing Data Line by Line
The SMG$PUT_LINE and SMG$PUT_LINE_MULTI routines write lines to
virtual displays one line after another. If the display area is full, it is scrolled.
You do not have to keep track of which line you are on. All routines permit you to
scroll forward (up); SMG$PUT_LINE and SMG$PUT_LINE_MULTI permit you
to scroll backward (down) as well. SMG$PUT_LINE permits spacing other than
single spacing.

Example 22–7 writes lines from a buffer to a display area. The output is scrolled
forward if the buffer contains more lines than the display area.

Example 22–7 Scrolling Forward Through a Display

INTEGER*4 BUFF_COUNT,
2 BUFF_SIZE (4096)
CHARACTER*512 BUFF (4096)

.

.

.
DO I = 1, BUFF_COUNT
STATUS = SMG$PUT_LINE (VDID,

2 BUFF (I) (1:BUFF_SIZE (I)))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END DO

Example 22–8 scrolls the output backward.

Example 22–8 Scrolling Backward Through a Display

DO I = BUFF_COUNT, 1, -1
STATUS = SMG$PUT_LINE (VDID,

2 BUFF (I) (1:BUFF_SIZE (I)),
2 SMG$M_DOWN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END DO

Cursor Movement and Scrolling
To maintain precise control over cursor movement and scrolling, you can write
with SMG$PUT_CHARS and scroll explicitly with SMG$SCROLL_DISPLAY_
AREA. SMG$PUT_CHARS leaves the cursor after the last character written
and does not force scrolling; SMG$SCROLL_DISPLAY_AREA scrolls the current
contents of the display forward, backward, or sideways without writing to the
display. To restrict the scrolling region to a portion of the display area, use the
SMG$SET_DISPLAY_SCROLL_REGION routine.

Inserting and Overwriting Text
To insert text rather than overwrite the current contents of the screen, use the
SMG$INSERT_LINE routine. Existing lines are shifted up or down to open space
for the new text. If the text is longer than a single line, you can specify whether
or not you want the excess characters to be truncated or wrapped.

Using Double-Width Characters
In addition, you can use SMG$PUT_LINE_WIDE to write a line of text to the
screen using double-width characters. You must allot two spaces for each double-
width character on the line. You cannot mix single- and double-width characters
on a line.

22–20 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

Specifying Special Video Attributes
All line routines provide rendition-set and rendition-complement arguments,
which allow you to specify special video attributes for the text being written.
SMG$PUT_LINE_MULTI allows you to specify more than one video attribute
for the text. The explanation of the SMG$CHANGE_RENDITION routine
in Section 22.4.4.5 discusses how to use the rendition-set and rendition-
complement arguments.

22.4.6.4 Drawing Lines
The routine SMG$DRAW_LINE draws solid lines on the screen. Appropriate
corner and crossing marks are drawn when lines join or intersect. The routine
SMG$DRAW_CHARACTER draws a single character. You can also use the
routine SMG$DRAW_RECTANGLE to draw a solid rectangle. Suppose that you
want to draw an object such as that shown in Figure 22–5 in the statistics display
area (an area of 10 rows by 55 columns).

Figure 22–5 Statistics Display

ZK−2048−GE

Example 22–9 shows how you can create a statistics display using SMG$DRAW_
LINE and SMG$DRAW_RECTANGLE.

Example 22–9 Creating a Statistics Display

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (10,
2 55,
2 STATS_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Draw rectangle with upper left corner at row 1 column 1
! and lower right corner at row 10 column 55
STATUS =SMG$DRAW_RECTANGLE (STATS_VDID,
2 1, 1,
2 10, 55)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Draw vertical lines at columns 11, 21, and 31
DO I = 11, 31, 10
STATUS = SMG$DRAW_LINE (STATS_VDID,

2 1, I,
2 10, I)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END DO

(continued on next page)

Run-Time Library Input/Output Operations 22–21

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

Example 22–9 (Cont.) Creating a Statistics Display

! Draw horizontal line at row 3
STATUS = SMG$DRAW_LINE (STATS_VDID,
2 3, 1,
2 3, 55)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID,
2 3,
2 2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

22.4.6.5 Deleting Text
The following routines erase specified characters, leaving the rest of the screen
intact:

• SMG$ERASE_CHARS—Erases specified characters on one line.

• SMG$ERASE_LINE—Erases the characters on one line starting from a
specified position.

• SMG$ERASE_DISPLAY—Erases specified characters on one or more lines.

• SMG$ERASE_COLUMN—Erases a column from the specified row to the end
of the column from the virtual display.

The following routines perform delete operations. In a delete operation,
characters following the deleted characters are shifted into the empty space.

• SMG$DELETE_CHARS—Deletes specified characters on one line. Any
characters to the right of the deleted characters are shifted left.

• SMG$DELETE_LINE—Deletes one or more full lines. Any remaining lines in
the display are scrolled up to fill the empty space.

The following example erases the remaining characters on the line whose line
number is specified by LINE_NO, starting at the column specified by COLUMN_
NO:

STATUS = SMG$ERASE_LINE (STATS_VDID,
2 LINE_NO,
2 COLUMN_NO)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

22.4.7 Using Menus
You can use SMG$ routines to set up menus to read user input. The type of
menus you can create include the following:

• Block menu—Selections are in matrix format. This is the type of menu often
used.

• Vertical menu—Each selection is on its own line.

• Horizontal menu—All selections are on one line.

Menus are associated with a virtual display, and only one menu can be used for
each virtual display.

22–22 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

The menu routines include the following:

• SMG$CREATE_MENU—Creates a menu associated with a virtual display.
This routine allows you to specify the type of menu, the position in which
the menu is displayed, the format of the menu (single or double spaced), and
video attributes.

• SMG$SELECT_FROM_MENU—Sets up menu selection capability. You can
specify a default menu selection (which is shown in reverse video), whether
online help is available, a maximum time limit for making a menu selection,
a key indicating read termination, whether to send the text of the menu item
selected to a string, and a video attribute.

• SMG$DELETE_MENU—Discontinues access to the menu and erases it.

When you are using menus, no other output should be sent to the menu area;
otherwise, unpredictable results may occur.

The default SMG$SELECT_FROM_MENU allows specific operations, such as
use of the arrow keys to move up and down the menu selections, keys to make a
menu selection, ability to select more than one item at a time, ability to reselect
an item already selected, and the key sequence to invoke online help. By using
the flags argument to modify this operation, you have the option of disallowing
reselection of a menu item and of allowing any key pressed to select an item.

22.4.8 Reading Data
You can read text from a virtual display (SMG$READ_FROM_DISPLAY) or from
a virtual keyboard (SMG$READ_STRING, SMG$READ_COMPOSED_LINE, or
SMG$READ_KEYSTROKE). The three routines for virtual keyboard input are
known as the SMG$ input routines. SMG$READ_FROM_DISPLAY is not a true
input routine because it reads text from the virtual display rather than from a
user.

The SMG$ input routines can be used alone or with the SMG$ output routines.
This section assumes that you are using the input routines with the output
routines. Section 22.5 describes how to use the input routines without the output
routines.

When you use the SMG$ input routines with the SMG$ output routines, always
specify the optional vdid argument of the input routine, which specifies the
virtual display in which the input is to occur. The specified virtual display must
be pasted to the device associated with the virtual keyboard that is specified as
the first argument of the input routine. The display must be pasted in column 1,
cannot be occluded, and cannot have any other display to its right; input begins
at the current cursor position, but the cursor must be in column 1.

22.4.8.1 Reading from a Display
You can read the contents of the display using the routine SMG$READ_
FROM_DISPLAY. By default, the read operation reads all of the characters
from the current cursor position to the end of that line. The row argument of
SMG$READ_FROM_DISPLAY allows you to choose the starting point of the read
operation, that is, the contents of the specified row to the rightmost column in
that row.

If the terminator-string argument is specified, SMG$READ_FROM_DISPLAY
searches backward from the current cursor position and reads the line beginning
at the first terminator encountered (or at the beginning of the line). A

Run-Time Library Input/Output Operations 22–23

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

terminator is a character string. You must calculate the length of the character
string read operation yourself.

The following example reads the current contents of the first line in the STATS_
VDID display:

CHARACTER*4 STRING
INTEGER*4 SIZE

.

.

.
STATUS = SMG$HOME_CURSOR (STATS_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SMG$READ_FROM_DISPLAY (STATS_VDID,
2 STRING)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
SIZE = 55
DO WHILE ((STRING (SIZE:SIZE) .EQ. ’ ’) .AND.
2 (SIZE .GT. 1))
SIZE = SIZE - 1

END DO

22.4.8.2 Reading from a Virtual Keyboard
The SMG$CREATE_VIRTUAL_KEYBOARD routine establishes a device for input
operations; the default device is the user’s terminal. The routine SMG$READ_
STRING reads characters typed on the screen either until the user types a
terminator or until the maximum size (which defaults to 512 characters) is
exceeded. (The terminator is usually a carriage return; see the routine description
in the OpenVMS RTL Screen Management (SMG$) Manual for a complete list of
terminators.) The current cursor location for the display determines where the
read operation begins.

The operating system’s terminal driver processes carriage returns differently
than the SMG$ routines. Therefore, in order to scroll input accurately, you must
keep track of your vertical position in the display area. Explicitly set the cursor
position and scroll the display. If a read operation takes place on a row other
than the last row of the display, advance the cursor to the beginning of the next
row before the next operation. If a read operation takes place on the last row of
the display, scroll the display with SMG$SCROLL_DISPLAY_AREA and then set
the cursor to the beginning of the row. Modify the read operation with TRM$M_
TM_NOTRMECHO to ensure that no extraneous scrolling occurs.

Example 22–10 reads input until Ctrl/Z is pressed.

Example 22–10 Reading Data from a Virtual Keyboard
.
.
.

! Read first record
STATUS = SMG$HOME_CURSOR (VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (KBID,
2 TEXT,
2 ’Prompt: ’,
2 4,
2 TRM$M_TM_TRMNOECHO,,,
2 TEXT_SIZE,,
2 VDID)

(continued on next page)

22–24 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

Example 22–10 (Cont.) Reading Data from a Virtual Keyboard

! Read remaining records until CTRL/Z
DO WHILE (STATUS .NE. SMG$_EOF)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Process record
.
.
.
! Set up screen for next read
! Display area contains four rows
STATUS = SMG$RETURN_CURSOR_POS (VDID, ROW, COL)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (ROW .EQ. 4) THEN
STATUS = SMG$SCROLL_DISPLAY_AREA (VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$SET_CURSOR_ABS (VDID, 4, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

ELSE
STATUS = SMG$SET_CURSOR_ABS (VDID,, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$SET_CURSOR_REL (VDID, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END IF
! Read next record
STATUS = SMG$READ_STRING (KBID,

2 TEXT,
2 ’Prompt: ’,
2 4,
2 TRM$M_TM_TRMNOECHO,,,
2 TEXT_SIZE,,
2 VDID)
END DO

Note

Because you are controlling the scrolling, SMG$PUT_LINE and
SMG$PUT_LINE_MULTI might not scroll as expected. When scrolling a
mix of input and output, you can prevent problems by using SMG$PUT_
CHARS.

22.4.8.3 Reading from the Keypad
To read from the keypad in keypad mode (that is, pressing a keypad character to
perform some special action rather than entering data), modify the read operation
with TRM$M_TM_ESCAPE and TRM$M_TM_NOECHO. Examine the terminator
to determine which key was pressed.

Example 22–11 moves the cursor on the screen in response to the user’s pressing
the keys surrounding the keypad 5 key. The keypad 8 key moves the cursor north
(up); the keypad 9 key moves the cursor northeast; the keypad 6 key moves the
cursor east (right); and so on. The SMG$SET_CURSOR_REL routine is called,
instead of being invoked as a function, because you do not want to abort the
program on an error. (The error attempts to move the cursor out of the display
area and, if this error occurs, you do not want the cursor to move.) The read
operation is also modified with TRM$M_TM_PURGE to prevent the user from
getting ahead of the cursor.

Run-Time Library Input/Output Operations 22–25

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

See Section 22.4.8.1 for the guidelines for reading from the display.

Example 22–11 Reading Data from the Keypad
.
.
.

INTEGER STATUS,
2 PBID,
2 ROWS,
2 COLUMNS,
2 VDID, ! Virtual display ID
2 KID, ! Keyboard ID
2 SMG$CREATE_PASTEBOARD,
2 SMG$CREATE_VIRTUAL_DISPLAY,
2 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$PASTE_VIRTUAL_DISPLAY,
2 SMG$HOME_CURSOR,
2 SMG$SET_CURSOR_REL,
2 SMG$READ_STRING,
2 SMG$ERASE_PASTEBOARD,
2 SMG$PUT_CHARS,
2 SMG$READ_FROM_DISPLAY
CHARACTER*31 INPUT_STRING,
2 MENU_STRING
INTEGER*2 TERMINATOR
INTEGER*4 MODIFIERS
INCLUDE ’($SMGDEF)’
INCLUDE ’($TRMDEF)’
! Set up screen and keyboard
STATUS = SMG$CREATE_PASTEBOARD (PBID,
2 ’SYS$OUTPUT’,
2 ROWS,
2 COLUMNS)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (ROWS,
2 COLUMNS,
2 VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PUT_CHARS (VDID,
2 ’__ MENU CHOICE ONE’,
2 10,30)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PUT_CHARS (VDID,
2 ’__ MENU CHOICE TWO’,
2 15,30)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (KID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 1,
2 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Put cursor in NW corner
STATUS = SMG$HOME_CURSOR (VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

(continued on next page)

22–26 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

Example 22–11 (Cont.) Reading Data from the Keypad
! Read character from keyboard
MODIFIERS = TRM$M_TM_ESCAPE .OR.
2 TRM$M_TM_NOECHO .OR.
2 TRM$M_TM_PURGE
STATUS = SMG$READ_STRING (KID,
2 INPUT_STRING,
2 ,
2 6,
2 MODIFIERS,
2 ,
2 ,
2 ,
2 TERMINATOR)
DO WHILE ((STATUS) .AND.
2 (TERMINATOR .NE. SMG$K_TRM_CR))
! Check status of last read
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! North
IF (TERMINATOR .EQ. SMG$K_TRM_KP8) THEN
CALL SMG$SET_CURSOR_REL (VDID, -1, 0)

! Northeast
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP9) THEN
CALL SMG$SET_CURSOR_REL (VDID, -1, 1)

! Northwest
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP7) THEN
CALL SMG$SET_CURSOR_REL (VDID, -1, -1)

! South
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP2) THEN
CALL SMG$SET_CURSOR_REL (VDID, 1, 0)

! Southeast
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP3) THEN
CALL SMG$SET_CURSOR_REL (VDID, 1, 1)

! Southwest
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP1) THEN
CALL SMG$SET_CURSOR_REL (VDID, 1, -1)

! East
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP6) THEN
CALL SMG$SET_CURSOR_REL (VDID, 0, 1)

! West
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP4) THEN
CALL SMG$SET_CURSOR_REL (VDID, 0, -1)

END IF
! Read another character
STATUS = SMG$READ_STRING (KID,

2 INPUT_STRING,
2 ,
2 6,
2 MODIFIERS,
2 ,
2 ,
2 ,
2 TERMINATOR)
END DO

(continued on next page)

Run-Time Library Input/Output Operations 22–27

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

Example 22–11 (Cont.) Reading Data from the Keypad

! Read menu entry and process
!
STATUS = SMG$READ_FROM_DISPLAY (VDID,
2 MENU_STRING)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
! Clear screen
STATUS = SMG$ERASE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

22.4.8.4 Reading Composed Input
The SMG$CREATE_KEY_TABLE routine creates a table that equates keys
to character strings. When you read input using the routine SMG$READ_
COMPOSED_LINE and the user presses a defined key, the corresponding
character string in the table is substituted for the key. You can use the
SMG$ADD_KEY_DEF routine to load the table. Composed input also permits the
following:

• If states—You can define the same key to mean different things in different
states. You can define a key to cause a change in state. The change in state
can be temporary (until after the next defined key is pressed) or permanent
(until a key that changes states is pressed).

• Input termination—You can define the key to cause termination of the input
transmission (as if the Return key were pressed after the character string). If
the key is not defined to cause termination of the input, the user must press
a terminator or another key that does cause termination.

Example 22–12 defines keypad keys 1 through 9 and permits the user to
change state temporarily by pressing the PF1 key. Pressing the keypad 1 key
is equivalent to typing 1000 and pressing the Return key. Pressing PF1 key and
then the keypad 1 key is equivalent to typing 10000 and pressing the Return
key.

Example 22–12 Redefining Keys

INTEGER*4 TABLEID
.
.
.

! Create table for key definitions
STATUS = SMG$CREATE_KEY_TABLE (TABLEID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Load table
! If user presses PF1, the state changes to BYTEN
! The BYTEN state is in effect only for the very next key
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’PF1’,
2 ,,,’BYTEN’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

(continued on next page)

22–28 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

Example 22–12 (Cont.) Redefining Keys
! Pressing KP1 through Kp9 in the null state is like typing
! 1000 through 9000 and pressing return
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’KP1’,
2 ,
2 SMG$M_KEY_TERMINATE,
2 ’1000’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’KP2’,
2 ,
2 SMG$M_KEY_TERMINATE,
2 ’2000’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’KP9’,
2 ,
2 SMG$M_KEY_TERMINATE,
2 ’9000’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Pressing KP1 through KP9 in the BYTEN state is like
! typing 10000 through 90000 and pressing return
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’KP1’,
2 ’BYTEN’,
2 SMG$M_KEY_TERMINATE,
2 ’10000’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’KP2’,
2 ’BYTEN’,
2 SMG$M_KEY_TERMINATE,
2 ’20000’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’KP9’,
2 ’BYTEN’,
2 SMG$M_KEY_TERMINATE,
2 ’90000’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

(continued on next page)

Run-Time Library Input/Output Operations 22–29

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

Example 22–12 (Cont.) Redefining Keys

! End loading key definition table
.
.
.

! Read input which substitutes key definitions where appropriate
STATUS = SMG$READ_COMPOSED_LINE (KBID,
2 TABLEID,
2 STRING,
2 SIZE,
2 VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.

Use the SMG$DELETE_KEY_DEF routine to delete a key definition; use the
SMG$GET_KEY_DEF routine to examine a key definition. You can also load
key definition tables with the SMG$DEFINE_KEY and SMG$LOAD_KEY_DEFS
routines; use the DCL command DEFINE/KEY to specify input to these routines.

To use keypad keys 0 through 9, the keypad must be in application mode.
For details, see SMG$SET_KEYPAD_MODE in the OpenVMS RTL Screen
Management (SMG$) Manual.

22.4.9 Controlling Screen Updates
If your program needs to make a number of changes to a virtual display, you can
use SMG$ routines to make all of the changes before updating the display. The
SMG$BEGIN_DISPLAY_UPDATE routine causes output operations to a pasted
display to be reflected only in the display’s buffers. The SMG$END_DISPLAY_
UPDATE routine writes the display’s buffer to the pasteboard.

The SMG$BEGIN_DISPLAY_UPDATE and SMG$END_DISPLAY_UPDATE
routines increment and decrement a counter. When this counter’s value is
0, output to the virtual display is sent to the pasteboard immediately. The
counter mechanism allows a subroutine to request and turn off batching without
disturbing the batching state of the calling program.

A second set of routines, SMG$BEGIN_PASTEBOARD_UPDATE and
SMG$END_PASTEBOARD_UPDATE, allow you to buffer output to a pasteboard
in a similar manner.

22.4.10 Maintaining Modularity
When using the SMG$ routines, you must take care not to corrupt the mapping
between the screen appearance and the internal representation of the screen.
Therefore, observe the following guidelines:

• Mixing SMG I/O and other forms of I/O

In general, do not use any other form of terminal I/O while the terminal is
active as a pasteboard. If you do use I/O other than SMG I/O (for example,
if you invoke a subprogram that may perform non-SMG terminal I/O), first
invoke the SMG$SAVE_PHYSICAL_SCREEN routine and when the non-SMG
I/O completes, invoke the SMG$RESTORE_PHYSICAL_SCREEN routine, as
demonstrated in the following example:

22–30 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

STATUS = SMG$SAVE_PHYSICAL_SCREEN (PBID,
2 SAVE_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
CALL GET_EXTRA_INFO (INFO_ARRAY)
STATUS = SMG$RESTORE_PHYSICAL_SCREEN (PBID,
2 SAVE_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

• Sharing the pasteboard

A routine using the terminal screen without consideration for its current
contents must use the existing pasteboard ID associated with the terminal
and delete any virtual displays it creates before returning control to the
high-level code. This guideline also applies to the program unit that invokes
a subprogram that also performs screen I/O. The safest way to clean up your
virtual displays is to call the SMG$POP_VIRTUAL_DISPLAY routine and
name the first virtual display you created. The following example invokes a
subprogram that uses the terminal screen:

Invoking Program Unit
CALL GET_EXTRA_INFO (PBID,
2 INFO_ARRAY)

.

.

.
CALL STATUS = SMG$CREATE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Subprogram
SUBROUTINE GET_EXTRA_INFO (PBID,
2 INFO_ARRAY)

.

.

.
! Start executable code
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (4,
2 40,
2 INSTR_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (INSTR_VDID,
2 PBID, 1, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
STATUS = SMG$POP_VIRTUAL_DISPLAY (INSTR_VDID,
2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

• Sharing virtual displays

To share a virtual display created by high-level code, the low-level code must
use the virtual display ID created by the high-level code; an invoking program
unit must pass the virtual display ID to the subprogram. To share a virtual
display created by low-level code, the high-level code must use the virtual
display ID created by the low-level code; a subprogram must return the
virtual display ID to the invoking program.

Run-Time Library Input/Output Operations 22–31

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/O

The following example permits a subprogram to use a virtual display created
by the invoking program unit:

Invoking Program Unit
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (4,
2 40,
2 INSTR_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (INSTR_VDID,
2 PBID, 1, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
CALL GET_EXTRA_INFO (PBID,
2 INSTR_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Subprogram
SUBROUTINE GET_EXTRA_INFO (PBID,
2 INSTR_VDID)

22.5 Performing Special Input/Output Actions
Screen management input routines and the SYS$QIO and SYS$QIOW system
services allow you to perform I/O operations otherwise unavailable to high-level
languages. For example, you can allow a user to interrupt normal program
execution by typing a character and by providing a mechanism for reading that
character. You can also control such things as echoing, time allowed for input,
and whether data is read from the type-ahead buffer.

Some of the operations described in the following sections require the use of the
SYS$QIO or SYS$QIOW system services. For more information about the QIO
system services, see the HP OpenVMS System Services Reference Manual and
Chapter 23.

Other operations, described in the following sections, can be performed by calling
the SMG$ input routines. The SMG$ input routines can be used alone or with
the SMG$ output routines. Section 22.4 describes how to use the input routines
with the output routines. This section assumes that you are using the input
routines alone. To use the SMG$ input routines, do the following:

1. Call SMG$CREATE_VIRTUAL_KEYBOARD to associate a logical keyboard
with a device or file specification (SYS$INPUT by default). SMG$CREATE_
VIRTUAL_KEYBOARD returns a keyboard identification number; use that
number to identify the device or file to the SMG$ input routines.

2. Call an SMG$ input routine (SMG$READ_STRING or SMG$READ_
COMPOSED_LINE) to read data typed at the device associated with the
virtual keyboard.

When using the SMG$ input routines without the SMG$ output routines, do not
specify the optional VDID argument of the input routine.

22.5.1 Using Ctrl/C and Ctrl/Y Interrupts
The QIO system services enable you to detect a Ctrl/C or Ctrl/Y interrupt at a
user terminal, even if you have not issued a read to the terminal. To do so, you
must take the following steps:

1. Queue an asynchronous system trap (AST)—Issue the SYS$QIO or
SYS$QIOW system service with a function code of IO$_SETMODE modified
by either IO$M_CTRLCAST (for Ctrl/C interrupts) or
IO$M_CTRLYAST (for Ctrl/Y interrupts). For the P1 argument, provide the

22–32 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

name of a subroutine to be executed when the interrupt occurs. For the P2
argument, you can optionally identify one longword argument to pass to the
AST subroutine.

2. Write an AST subroutine—Write the subroutine identified in the P1 argument
of the QIO system service and link the subroutine into your program. Your
subroutine can take one longword dummy argument to be associated with the
P2 argument in the QIO system service. You must define common areas to
access any other data in your program from the AST routine.

If you press Ctrl/C or Ctrl/Y after your program queues the appropriate AST, the
system interrupts your program and transfers control to your AST subroutine
(this action is called delivering the AST). After your AST subroutine executes,
the system returns control to your program at the point of interruption (unless
your AST subroutine causes the program to exit, or unless another AST has been
queued). Note the following guidelines for using Ctrl/C and Ctrl/Y ASTs:

• ASTs are asynchronous—Since your AST subroutine does not know exactly
where you are in your program when the interrupt occurs, you should avoid
manipulating data or performing other mainline activities. In general, the
AST subroutine should either notify the mainline code (for example, by
setting a flag) that the interrupt occurred, or clean up and exit from the
program (if that is what you want to do).

• ASTs need new channels to the terminal—If you try to access the terminal
with language I/O statements using SYS$INPUT or SYS$OUTPUT, you may
receive a redundant I/O error. You must establish another channel to the
terminal by explicitly opening the terminal.

• Ctrl/C and Ctrl/Y ASTs are one-time ASTs—After a Ctrl/C or Ctrl/Y AST is
delivered, it is dequeued. You must reissue the QIO system service if you
wish to trap another interrupt.

• Many ASTs can be queued—You can queue multiple ASTs (for the same or
different AST subroutines, on the same or different channels) by issuing the
appropriate number of QIO system services. The system delivers the ASTs on
a last-in, first-out (LIFO) basis.

• Unhandled Ctrl/Cs turn into Ctrl/Ys—If the user enters Ctrl/C and you do
not have an AST queued to handle the interrupt, the system turns the Ctrl/C
interrupt into a Ctrl/Y interrupt.

• DCL handles Ctrl/Y interrupts—DCL handles Ctrl/Y interrupts by returning
the user to DCL command level, where the user has the option of continuing
or exiting from your program. DCL takes precedence over your AST
subroutine for Ctrl/Y interrupts. Your Ctrl/Y AST subroutine is executed
only under the following circumstances:

If Ctrl/Y interrupts are disabled at DCL level (SET NOCONTROL_Y)
before your program is executed

If your program disables DCL Ctrl/Y interrupts with LIB$DISABLE_
CTRL

If the user elects to continue your program after DCL interrupts it

• You can dequeue Ctrl/C and Ctrl/Y ASTs—You can dequeue all Ctrl/C or
Ctrl/Y ASTs on a channel by issuing the appropriate QIO system service
with a value of 0 for the P1 argument (passed by immediate value). You can
dequeue all Ctrl/C ASTs on a channel by issuing the SYS$CANCEL system

Run-Time Library Input/Output Operations 22–33

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

service for the appropriate channel. You can dequeue all Ctrl/Y ASTs on a
channel by issuing the SYS$DASSGN system service for the appropriate
channel.

• You can use SMG$ routines—You can connect to the terminal using the SMG$
routines from either AST level or mainline code. Do not attempt to connect to
the terminal from AST level if you do so in your mainline code.

Example 22–13 permits the terminal user to interrupt a display to see how many
lines have been typed up to that point.

Example 22–13 Using Interrupts to Perform I/O

!Main Program
.
.
.

INTEGER STATUS
! Accumulated data records
CHARACTER*132 STORAGE (255)
INTEGER*4 STORAGE_SIZE (255),
2 STORAGE_COUNT
! QIOW and QIO structures
INTEGER*2 INPUT_CHAN
INTEGER*4 CODE
STRUCTURE /IOSTAT_BLOCK/
INTEGER*2 IOSTAT
BYTE TRANSMIT,

2 RECEIVE,
2 CRFILL,
2 LFFILL,
2 PARITY,
2 ZERO
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB
! Flag to notify program of CTRL/C interrupt
LOGICAL*4 CTRLC_CALLED
! AST subroutine to handle CTRL/C interrupt
EXTERNAL CTRLC_AST
! Subroutines
INTEGER SYS$ASSIGN,
2 SYS$QIOW
! Symbols used for I/O operations
INCLUDE ’($IODEF)’
! Put values into array
CALL LOAD_STORAGE (STORAGE,
2 STORAGE_SIZE,
2 STORAGE_COUNT)
! Assign channel and set up QIOW structures
STATUS = SYS$ASSIGN (’SYS$INPUT’,
2 INPUT_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
CODE = IO$_SETMODE .OR. IO$M_CTRLCAST

(continued on next page)

22–34 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

Example 22–13 (Cont.) Using Interrupts to Perform I/O
! Queue an AST to handle CTRL/C interrupt
STATUS = SYS$QIOW (,
2 %VAL (INPUT_CHAN),
2 %VAL (CODE),
2 IOSB,
2 ,,
2 CTRLC_AST, ! Name of AST routine
2 CTRLC_CALLED, ! Argument for AST routine
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT)
2 CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Display STORAGE array, one element per line
DO I = 1, STORAGE_COUNT
TYPE *, STORAGE (I) (1:STORAGE_SIZE (I))

! Additional actions if user types CTRL/C
IF (CTRLC_CALLED) THEN
CTRLC_CALLED = .FALSE.
! Show user number of lines displayed so far
TYPE *, ’Number of lines: ’, I
! Requeue AST
STATUS = SYS$QIOW (,

2 %VAL (INPUT_CHAN),
2 %VAL (CODE),
2 IOSB,
2 ,,
2 CTRLC_AST,
2 CTRLC_CALLED,
2 ,,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT)

2 CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
END IF

END DO

END

AST Routine

! AST routine
! Notifies program that user typed CTRL/C
SUBROUTINE CTRLC_AST (CTRLC_CALLED)
LOGICAL*4 CTRLC_CALLED
CTRLC_CALLED = .TRUE.

END

22.5.2 Detecting Unsolicited Input
You can detect input from the terminal even if you have not called SMG$READ_
COMPOSED_LINE or SMG$READ_STRING by using SMG$ENABLE_
UNSOLICITED_INPUT. This routine uses the AST mechanism to transfer
control to a subprogram of your choice each time the user types at the terminal;
the AST subprogram is responsible for reading any input. When the subprogram
completes, control returns to the point in your mainline code where it was
interrupted.

Run-Time Library Input/Output Operations 22–35

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

The SMG$ENABLE_UNSOLICITED_INPUT routine is not an SMG$ input
routine. Before invoking SMG$ENABLE_UNSOLICITED_INPUT, you must
invoke SMG$CREATE_PASTEBOARD to associate a pasteboard with the
terminal and SMG$CREATE_VIRTUAL_KEYBOARD to associate a virtual
keyboard with the same terminal.

SMG$ENABLE_UNSOLICITED_INPUT accepts the following arguments:

• The pasteboard identification number (use the value returned by
SMG$CREATE_PASTEBOARD)

• The name of an AST subprogram

• An argument to be passed to the AST subprogram

When SMG$ENABLE_UNSOLICITED_INPUT invokes the AST subprogram, it
passes two arguments to the subprogram: the pasteboard identification number
and the argument that you specified. Typically, you write the AST subprogram
to read the unsolicited input with SMG$READ_STRING. Since SMG$READ_
STRING requires that you specify the virtual keyboard at which the input was
typed, specify the virtual keyboard identification number as the second argument
to pass to the AST subprogram.

Example 22–14 permits the terminal user to interrupt the display of a series
of arrays, and either to go on to the next array (by typing input beginning with
an uppercase N) or to exit from the program (by typing input beginning with
anything else).

Example 22–14 Receiving Unsolicited Input from a Virtual Keyboard

! Main Program
! The main program calls DISPLAY_ARRAY once for each array.
! DISPLAY_ARRAY displays the array in a DO loop.
! If the user enters input from the terminal, the loop is
! interrupted and the AST routine takes over.
! If the user types anything beginning with an N, the AST
! sets DO_NEXT and resumes execution -- DISPLAY_ARRAY drops
! out of the loop processing the array (because DO_NEXT is
! set -- and the main program calls DISPLAY_ARRAY for the
! next array.
! If the user types anything not beginning with an N,
! the program exits.

.

.

.
INTEGER*4 STATUS,
2 VKID, ! Virtual keyboard ID
2 PBID ! Pasteboard ID
! Storage arrays
INTEGER*4 ARRAY1 (256),
2 ARRAY2 (256),
2 ARRAY3 (256)
! System routines
INTEGER*4 SMG$CREATE_PASTEBOARD,
2 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$ENABLE_UNSOLICITED_INPUT
! AST routine
EXTERNAL AST_ROUTINE

(continued on next page)

22–36 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

Example 22–14 (Cont.) Receiving Unsolicited Input from a Virtual Keyboard
! Create a pasteboard
STATUS = SMG$CREATE_PASTEBOARD (PBID, ! Pasteboard ID
2 ’SYS$INPUT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Create a keyboard for the same device
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID
2 ’SYS$INPUT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Enable unsolicited input
STATUS = SMG$ENABLE_UNSOLICITED_INPUT (PBID, ! Pasteboard ID
2 AST_ROUTINE,
2 VKID) ! Pass keyboard

! ID to AST
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
! Call display subroutine once for each array
CALL DISPLAY_ARRAY (ARRAY1)
CALL DISPLAY_ARRAY (ARRAY2)
CALL DISPLAY_ARRAY (ARRAY3)

END

Array Display Routine

! Subroutine to display one array
SUBROUTINE DISPLAY_ARRAY (ARRAY)
! Dummy argument
INTEGER*4 ARRAY (256)
! Status
INTEGER*4 STATUS
! Flag for doing next array
LOGICAL*4 DO_NEXT
COMMON /DO_NEXT/ DO_NEXT
! If AST has been delivered, reset
IF (DO_NEXT) DO_NEXT = .FALSE.
! Initialize control variable
I = 1
! Display entire array unless interrupted by user
! If interrupted by user (DO_NEXT is set), drop out of loop
DO WHILE ((I .LE. 256) .AND. (.NOT. DO_NEXT))
TYPE *, ARRAY (I)
I = I + 1

END DO

END

(continued on next page)

Run-Time Library Input/Output Operations 22–37

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

Example 22–14 (Cont.) Receiving Unsolicited Input from a Virtual Keyboard

AST Routine

! Subroutine to read unsolicited input
SUBROUTINE AST_ROUTINE (PBID,
2 VKID)
! dummy arguments
INTEGER*4 PBID, ! Pasteboard ID
2 VKID ! Keyboard ID
! Status
INTEGER*4 STATUS
! Flag for doing next array
LOGICAL*4 DO_NEXT
COMMON /DO_NEXT/ DO_NEXT
! Input string
CHARACTER*4 INPUT
! Routines
INTEGER*4 SMG$READ_STRING
! Read input
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! If user types anything beginning with N, set DO_NEXT
! otherwise, exit from program
IF (INPUT (1:1) .EQ. ’N’) THEN
DO_NEXT = .TRUE.

ELSE
CALL EXIT

END IF

END

22.5.3 Using the Type-Ahead Buffer
Normally, if the user types at the terminal before your application is able to
read from that device, the input is saved in a special data structure maintained
by the system called the type-ahead buffer. When your application is ready to
read from the terminal, the input is transferred from the type-ahead buffer to
your input buffer. The type-ahead buffer is preset at a size of 78 bytes. If the
HOSTSYNC characteristic is on (the usual condition), input to the type-ahead
buffer is stopped (the keyboard locks) when the buffer is within 8 bytes of being
full. If the HOSTSYNC characteristic is off, the bell rings when the type-ahead
buffer is within 8 bytes of being full; if you overflow the buffer, the excess data
is lost. The TTY_ALTALARM system parameter determines the point at which
either input is stopped or the bell rings.

You can clear the type-ahead buffer by reading from the terminal with
SMG$READ_STRING and by specifying TRM$M_TM_PURGE in the modifiers
argument. Clearing the type-ahead buffer has the effect of reading only what the
user types on the terminal after the read operation is invoked. Any characters
in the type-ahead buffer are lost. The following example illustrates how to purge
the type-ahead buffer:

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT_SIZE

22–38 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

CHARACTER*512 INPUT
INCLUDE ’($TRMDEF)’
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID,
2 ’SYS$INPUT’) ! I/O device
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 ’Prompt> ’,
2 512,
2 TRM$M_TM_PURGE,
2 ,,
2 INPUT_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can also clear the type-ahead buffer with a QIO read operation modified by
IO$M_PURGE (defined in $IODEF). You can turn off the type-ahead buffer for
further read operations with a QIO set mode operation that specifies TT$M_
NOTYPEAHD as a basic terminal characteristic.

You can examine the type-ahead buffer by issuing a QIO sense mode operation
modified by IO$M_TYPEAHDCNT. The number of characters in the type-ahead
buffer and the value of the first character are returned to the P1 argument.

The size of the type-ahead buffer is determined by the TTY_TYPAHDSZ system
parameter. You can specify an alternative type-ahead buffer by turning on the
ALTYPEAHD terminal characteristic; the size of the alternative type-ahead
buffer is determined by the TTY_ALTYPAHD system parameter.

22.5.4 Using Echo
Normally, the system writes back to the terminal any printable characters that
the user types at that terminal. The system also writes highlighted words in
response to certain control characters; for example, the system writes EXIT if the
user enters Ctrl/Z. If the user types ahead of your read, the characters are not
echoed until you read them from the type-ahead buffer.

You can turn off echoing when you invoke a read operation by reading from the
terminal with SMG$READ_STRING and by specifying TRM$M_TM_NOECHO
in the modifiers argument. You can turn off echoing for control characters only
by modifying the read operation with TRM$M_TM_TRMNOECHO. The following
example turns off all echoing for the read operation:

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT_SIZE
CHARACTER*512 INPUT
INCLUDE ’($TRMDEF)’
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID
2 ’SYS$INPUT’) ! I/O device
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 ’Prompt> ’,
2 512,
2 TRM$M_TM_NOECHO,
2 ,,
2 INPUT_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Run-Time Library Input/Output Operations 22–39

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

You can also turn off echoing with a QIO read operation modified by IO$M_
NOECHO (defined in $IODEF). You can turn off echoing for further read
operations with a QIO set mode operation that specifies TT$M_NOECHO as
a basic terminal characteristic.

22.5.5 Using Timeout
Using SMG$READ_STRING, you can restrict the user to a certain amount of
time in which to respond to a read command. If your application reads data
from the terminal using SMG$READ_STRING, you can modify the timeout
characteristic by specifying, in the timeout argument, the number of seconds the
user has to respond. If the user fails to type a character in the allotted time, the
error condition SS$_TIMEOUT (defined in $SSDEF) is returned. The following
example restricts the user to 8 seconds in which to respond to a read command:

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT_SIZE
CHARACTER*512 INPUT
INCLUDE ’($SSDEF)’
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID,
2 ’SYS$INPUT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 ’Prompt> ’,
2 512,
2 ,
2 8,
2 ,
2 INPUT_SIZE)
IF (.NOT. STATUS) THEN
IF (STATUS .EQ. SS$_TIMEOUT) CALL NO_RESPONSE ()

ELSE
CALL LIB$SIGNAL (%VAL (STATUS))

END IF

You can cause a QIO read operation to time out after a certain number of seconds
by modifying the operation with IO$M_TIMED and by specifying the number of
seconds in the P3 argument. A message broadcast to a terminal resets a timer
that is set for a timed read operation (regardless of whether the operation was
initiated with QIO or SMG).

Note that the timed read operations work on a character-by-character basis. To
set a time limit on an input record rather than an input character, you must use
the SYS$SETIMR system service. The SYS$SETIMR executes an AST routine at
a specified time. The specified time is the input time limit. When the specified
time is reached, the AST routine cancels any outstanding I/O on the channel that
is assigned to the user’s terminal.

22–40 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

22.5.6 Converting Lowercase to Uppercase
You can automatically convert lowercase user input to uppercase by reading from
the terminal with the SMG$READ_STRING routine and by specifying TRM$M_
TM_CVTLOW in the modifiers argument, as shown in the following example:

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT_SIZE
CHARACTER*512 INPUT
INCLUDE ’($TRMDEF)’
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID
2 ’SYS$INPUT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 ’Prompt> ’,
2 512,
2 TRM$M_TM_CVTLOW,
2 ,,
2 INPUT_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can also convert lowercase characters to uppercase with a QIO read operation
modified by IO$M_CVTLOW (defined in $IODEF).

22.5.7 Performing Line Editing and Control Actions
Normally, the user can edit input as explained in the HP OpenVMS I/O User’s
Reference Manual. You can inhibit line editing on the read operation by reading
from the terminal with SMG$READ_STRING and by specifying TRM$M_TM_
NOFILTR in the modifiers argument. The following example shows how you can
inhibit line editing:

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT_SIZE
CHARACTER*512 INPUT
INCLUDE ’($TRMDEF)’
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID
2 ’SYS$INPUT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 ’Prompt> ’,
2 512,
2 TRM$M_TM_NOFILTR,
2 ,,
2 INPUT_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can also inhibit line editing with a QIO read operation modified by IO$M_
NOFILTR (defined in $IODEF).

Run-Time Library Input/Output Operations 22–41

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

22.5.8 Using Broadcasts
You can write, or broadcast, to any interactive terminal by using the
SYS$BRKTHRU system service. The following example broadcasts a message to
all terminals at which users are currently logged in. Use of SYS$BRKTHRU to
write to a terminal allocated to a process other than your own requires the OPER
privilege.

INTEGER*4 STATUS,
2 SYS$BRKTHRUW
INTEGER*2 B_STATUS (4)
INCLUDE ’($BRKDEF)’
STATUS = SYS$BRKTHRUW (,
2 ’Accounting system started’,,
2 %VAL (BRK$C_ALLUSERS),
2 B_STATUS,,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

22.5.8.1 Default Handling of Broadcasts
If the terminal user has taken no action to handle broadcasts, a broadcast is
written to the terminal screen at the current position (after a carriage return and
line feed). If a write operation is in progress, the broadcast occurs after the write
ends. If a read operation is in progress, the broadcast occurs immediately; after
the broadcast, any echoed user input to the aborted read operation is written to
the screen (same effect as pressing Ctrl/R).

22.5.8.2 How to Create Alternate Broadcast Handlers
You can handle broadcasts to the terminal on which your program is running with
SMG$SET_BROADCAST_TRAPPING. This routine uses the AST mechanism to
transfer control to a subprogram of your choice each time a broadcast message is
sent to the terminal; when the subprogram completes, control returns to the point
in your mainline code where it was interrupted.

The SMG$SET_BROADCAST_TRAPPING routine is not an SMG$ input
routine. Before invoking SMG$SET_BROADCAST_TRAPPING, you must invoke
SMG$CREATE_PASTEBOARD to associate a pasteboard with the terminal.
SMG$CREATE_PASTEBOARD returns a pasteboard identification number; pass
that number to SMG$SET_BROADCAST_TRAPPING to identify the terminal
in question. Read the contents of the broadcast with SMG$GET_BROADCAST_
MESSAGE.

Example 22–15 demonstrates how you might trap a broadcast and write it at the
bottom of the screen. For more information about the use of SMG$ pasteboards
and virtual displays, see Section 22.4.

22–42 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

Example 22–15 Trapping Broadcast Messages
.
.
.

INTEGER*4 STATUS,
2 PBID, ! Pasteboard ID
2 VDID, ! Virtual display ID
2 SMG$CREATE_PASTEBOARD,
2 SMG$SET_BROADCAST_TRAPPING
2 SMG$PASTE_VIRTUAL_DISPLAY
COMMON /ID/ PBID,
2 VDID
INTEGER*2 B_STATUS (4)
INCLUDE ’($SMGDEF)’
INCLUDE ’($BRKDEF)’
EXTERNAL BRKTHRU_ROUTINE
STATUS = SMG$CREATE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (3, ! Height
2 80, ! Width
2 VDID,, ! Display ID
2 SMG$M_REVERSE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$SET_BROADCAST_TRAPPING (PBID, ! Pasteboard ID
2 BRKTHRU_ROUTINE) ! AST
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.

SUBROUTINE BRKTHRU_ROUTINE ()
INTEGER*4 STATUS,
2 PBID, ! Pasteboard ID
2 VDID, ! Virtual display ID
2 SMG$GET_BROADCAST_MESSAGE,
2 SMG$PUT_CHARS,
2 SMG$PASTE_VIRTUAL_DISPLAY
COMMON /ID/ PBID,
2 VDID
CHARACTER*240 MESSAGE
INTEGER*2 MESSAGE_SIZE
! Read the message
STATUS = SMG$GET_BROADCAST_MESSAGE (PBID,
2 MESSAGE,
2 MESSAGE_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Write the message to the virtual display
STATUS = SMG$PUT_CHARS (VDID,
2 MESSAGE (1:MESSAGE_SIZE),
2 1, ! Line
2 1) ! Column
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Make the display visble by pasting it to the pasteboard
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 22, ! Row
2 1) ! Column

END

Run-Time Library Input/Output Operations 22–43

23
System Service Input/Output Operations

This chapter describes how to use system services to perform input and output
operations. It contains the following sections:

Section 23.1 describes the QIO operation.

Section 23.2 describes the use of quotas, privileges, and protection.

Section 23.3 describes device addressing modes.

Section 23.4 describes I/O function encoding.

Section 23.5 describes how to assign channels.

Section 23.6 describes how to queue I/O requests.

Section 23.7 describes how to synchronize I/O completions.

Section 23.8 describes the routine to use to wait for completion of an
asynchronous event.

Section 23.9 describes executing I/O services synchronously or asynchronously.

Section 23.10 describes the completion status of an I/O operation.

Section 23.11 describes how to deassign I/O channels.

Section 23.12 presents a program example of a complete input and output
operation.

Section 23.13 describes how to cancel I/O requests.

Section 23.14 describes how to use logical names and physical device names for
I/O operations.

Section 23.15 describes how to use device name defaults.

Section 23.16 describes how to obtain information about physical devices.

Section 23.17 describes device allocation.

Section 23.18 describes how to mount, dismount, and initialize disk and tape
volumes.

Section 23.19 describes format output strings.

Section 23.20 describes how to use mailboxes for I/O operations.

Section 23.21 provides a program example of using I/O system services.

Section 23.22 describes the Fast I/O and Fast Path features that improve I/O
performance.

Examples are provided to show you how to use the I/O services for simple
functions, such as terminal input and output operations. If you plan to write
device-dependent I/O routines, see the HP OpenVMS I/O User’s Reference
Manual.

System Service Input/Output Operations 23–1

System Service Input/Output Operations

On VAX systems, if you want to write your own device driver or connect to a
device interrupt vector, see the OpenVMS VAX Device Support Reference Manual.
The OpenVMS VAX Device Support Reference Manual has been archived but is
available on the OpenVMS Documentation CD-ROM.

Besides using I/O system services, you can use OpenVMS Record Management
Services (RMS). OpenVMS RMS provides a set of routines for general-purpose,
device-independent functions such as data storage, retrieval, and modification.

Unlike RMS services, I/O system services permit you to use the I/O resources of
the operating system directly in a device-dependent manner. I/O services also
provide some specialized functions not available in OpenVMS RMS. Using I/O
services requires more programming knowledge than using OpenVMS RMS, but
can result in more efficient input/output operations.

23.1 Overview of OpenVMS QIO Operations
The OpenVMS operating system provides QIO operations that perform three
basic I/O functions: read, write, and set mode. The read function transfers data
from a device to a user-specified buffer. The write function transfers data in the
opposite direction—from a user-specified buffer to the device. For example, in
a read QIO function to a terminal device, a user-specified buffer is filled with
characters received from the terminal. In a write QIO function to the terminal,
the data in a user-specified buffer is transferred to the terminal where it is
displayed.

The set mode QIO function is used to control or describe the characteristics and
operation of a device. For example, a set mode QIO function to a line printer can
specify either uppercase or lowercase character format. Not all QIO functions are
applicable to all types of devices. The line printer, for example, cannot perform a
read QIO function.

23.2 Quotas, Privileges, and Protection
To preserve the integrity of the operating system, the I/O operations are
performed under the constraints of quotas, privileges, and protection.

Quotas limit the number and type of I/O operations that a process can perform
concurrently and the total size of outstanding transfers. They ensure that all
users have an equitable share of system resources and usage.

Privileges are granted to a user to allow the performance of certain I/O-related
operations, for example, creating a mailbox and performing logical I/O to a
file-structured device. Restrictions on user privileges protect the integrity and
performance of both the operating system and the services provided to other
users.

Protection controls access to files and devices. Device protection is provided in
much the same way as file protection: shareable and nonshareable devices are
protected by protection masks.

The Set Resource Wait Mode (SYS$SETRWM) system service allows a process
to select either of two modes when an attempt to exceed a quota occurs. In the
enabled (default) mode, the process waits until the required resource is available
before continuing. In the disabled mode, the process is notified immediately by
a system service status return that an attempt to exceed a quota has occurred.
Waiting for resources is transparent to the process when resource wait mode is
enabled; the process takes no explicit action when a wait is necessary.

23–2 System Service Input/Output Operations

System Service Input/Output Operations
23.2 Quotas, Privileges, and Protection

The different types of I/O-related quotas, privilege, and protection are described
in the following sections.

23.2.1 Buffered I/O Quota
The buffered I/O limit quota (BIOLM) specifies the maximum number of
concurrent buffered I/O operations that can be active in a process. In a buffered
I/O operation, the user’s data is buffered in system dynamic memory. The driver
deals with the system buffer and not the user buffer. Buffered I/O is used
for terminal, line printer, card reader, network, mailbox, and console medium
transfers and file system operations. For a buffered I/O operation, the system
does not have to lock the user’s buffer in memory.

The system manager, or the person who creates the process, establishes the
buffered I/O quota value in the user authorization file. If you use the Set
Resource Wait Mode (SYS$SETRWM) system service to enable resource wait
mode for the process, the process enters resource wait mode if it attempts to
exceed its direct I/O quota.

23.2.2 Buffered I/O Byte Count Quota
The buffered I/O byte count quota (BYTLM) specifies the maximum amount of
buffer space that can be consumed from system dynamic memory for buffering
I/O requests. All buffered I/O requests require system dynamic memory in which
the actual I/O operation takes place.

The system manager, or the person who creates the process, establishes the
buffered I/O byte count quota in the user authorization file. If you use the
SYS$SETRWM system service to enable resource wait mode for the process, the
process enters resource wait mode if it attempts to exceed its direct I/O quota.

23.2.3 Direct I/O Quota
The direct I/O limit quota (DIOLM) specifies the maximum number of concurrent
direct (unbuffered) I/O operations that a process can have active. In a direct I/O
operation, data is moved directly to or from the user buffer. Direct I/O is used
for disk, magnetic tape, most direct memory access (DMA) real-time devices, and
nonnetwork transfers, such as DMC11/DMR11 write transfers. For direct I/O, the
user’s buffer must be locked in memory during the transfer.

The system manager, or the person who creates the process, establishes the direct
I/O quota value in the user authorization file. If you use the SYS$SETRWM
system service to enable resource wait mode for the process, the process enters
resource wait mode if it attempts to exceed its direct I/O quota.

23.2.4 AST Quota
The AST quota specifies the maximum number of outstanding asynchronous
system traps that a process can have. The system manager, or the person who
creates the process, establishes the quota value in the user authorization file.
There is never an implied wait for that resource.

23.2.5 Physical I/O Privilege
Physical I/O privilege (PHY_IO) allows a process to perform physical I/O
operations on a device. Physical I/O privilege also allows a process to perform
logical I/O operations on a device.

System Service Input/Output Operations 23–3

System Service Input/Output Operations
23.2 Quotas, Privileges, and Protection

23.2.6 Logical I/O Privilege
Logical I/O privilege (LOG_IO) allows a process to perform logical I/O operations
on a device. A process can also perform physical operations on a device if the
process has logical I/O privilege, the volume is mounted foreign, and the volume
protection mask allows access to the device. (A foreign volume is one volume that
contains no standard file structure understood by any of the operating system
software.) See Section 23.3.2 for further information about logical I/O privilege.

23.2.7 Mount Privilege
Mount privilege (MOUNT) allows a process to use the IO$_MOUNT function to
perform mount operations on disk and magnetic tape devices. The IO$_MOUNT
function is used in ancillary control processs (ACP) interface operations.

23.2.8 Share Privilege
Share privilege (SHARE) allows a process to use the SYS$ASSIGN system service
to override another process’s exclusive access request on the specified device.

Performing any I/O operations to a device driver coded to expect exclusive
access—performing I/O to any device driver not explicitly coded to expect shared
multiple-process access—can result in unusual and unexpected device and
application behaviour, and can result in problems of device ownership, and
failures during the device driver last channel deassign operation.

Using SHARE to override access is useful for a few specific situations, such as
user-written device driver debugging and user-written device driver diagnostic
tools. General use of SHARE is not recommended.

23.2.9 Volume Protection
Volume protection protects the integrity of mailboxes and both foreign and
Files-11 On-Disk Structure Level 2 structured volumes. Volume protection for a
foreign volume is established when the volume is mounted. Volume protection
for a Files-11 structured volume is established when the volume is initialized. (If
the process mounting the volume has the override volume protection privilege,
VOLPRO, protection can be overridden when the volume is mounted.)

The SYS$CREMBX system service protection mask argument establishes mailbox
protection.

Set Protection QIO requests allow you to set volume protection on a mailbox. You
must either be the owner of the mailbox or have the BYPASS privilege.

Protection for structured volumes and mailboxes is provided by a volume
protection mask that contains four 4-bit fields. These fields correspond to the
four classes of user permitted to access the volume. (User classes are based on
the volume owner’s UIC.)

The 4-bit fields are interpreted differently for volumes that are mounted as
structured (that is, volumes serviced by an ACP), volumes that are mounted as
foreign, and mailboxes (both temporary and permanent).

Figure 23–1 shows the 4-bit protection fields for mailboxes. Usually, volume
protection is meaningful only for read and write operations.

23–4 System Service Input/Output Operations

System Service Input/Output Operations
23.2 Quotas, Privileges, and Protection

Figure 23–1 Mailbox Protection Fields

11 10 9 8

Logical I/O Write

ZK−0624−GE*Not Used

* Read

23.2.10 Device Protection
Device protection protects the allocation of nonshareable devices, such as
terminals and card readers.

Protection is provided by a device protection mask similar to that of volume
protection. The difference is that only the bit corresponding to read access is
checked, and that bit determines whether the process can allocate or assign a
channel to the device.

You establish device protection with the DCL command SET
PROTECTION/DEVICE. This command sets both the protection mask and
the device owner UIC.

23.2.11 System Privilege
System UIC privilege (SYSPRV) allows a process to be eligible for the volume or
device protection specified for the system protection class, even if the process does
not have a UIC in one of the system groups.

23.2.12 Bypass Privilege
Bypass privilege (BYPASS) allows a process to bypass volume and device
protection completely.

23.3 Physical, Logical, and Virtual I/O
I/O data transfers can occur in any one of three device addressing modes:
physical, logical, or virtual. Any process with device access allowed by the volume
protection mask can perform logical I/O on a device that is mounted foreign;
physical I/O requires privileges. Virtual I/O does not require privileges; however,
intervention by an ACP to control user access might be necessary if the device is
under ACP control. (ACP functions are described in the HP OpenVMS I/O User’s
Reference Manual.)

23.3.1 Physical I/O Operations
In physical I/O operations, data is read from and written to the actual, physically
addressable units accepted by the hardware (for example, sectors on a disk or
binary characters on a terminal in the PASSALL mode). This mode allows direct
access to all device-level I/O operations.

Physical I/O requires that one of the following conditions be met:

• The issuing process has physical I/O privilege (PHY_IO).

• The issuing process has all of the following characteristics:

The issuing process has logical I/O privilege (LOG_IO).

The device is mounted foreign.

System Service Input/Output Operations 23–5

System Service Input/Output Operations
23.3 Physical, Logical, and Virtual I/O

The volume protection mask allows physical access to the device.

If neither of these conditions is met, the physical I/O operation is rejected by the
SYS$QIO system service, which returns a condition value of SS$_NOPRIV (no
privilege). Figure 23–2 illustrates the physical I/O access checks in greater detail.

The inhibit error-logging function modifier (IO$M_INHERLOG) can be specified
for all physical I/O functions. The IO$M_INHERLOG function modifier inhibits
the logging of any error that occurs during the I/O operation.

23.3.2 Logical I/O Operations
In logical I/O operations, data is read from and written to logically addressable
units of the device. Logical operations can be performed on both block-
addressable and record-oriented devices. For block-addressable devices (such
as disks), the addressable units are 512-byte blocks. They are numbered from
0 to n��, where n is the number of blocks on the device. For record-oriented or
non-block-structured devices (such as terminals), logical addressable units are
not pertinent and are ignored. Logical I/O requires that one of the following
conditions be met:

• The issuing process has physical I/O privilege (PHY_IO).

• The issuing process has logical I/O privilege (LOG_IO).

• The volume is mounted foreign and the volume protection mask allows access
to the device.

If none of these conditions is met, the logical I/O operation is rejected by the
SYS$QIO system service, which returns a condition value of SS$_NOPRIV (no
privilege). Figure 23–3 illustrates the logical I/O access checks in greater detail.

23.3.3 Virtual I/O Operations
You can perform virtual I/O operations on both record-oriented (non-file-
structured) and block-addressable (file-structured) devices. For record-oriented
devices (such as terminals), the virtual function is the same as a logical function;
the virtual addressable units of the devices are ignored.

For block-addressable devices (such as disks), data is read from and written
to open files. The addressable units in the file are 512-byte blocks. They are
numbered starting at 1 and are relative to a file rather than to a device. Block-
addressable devices must be mounted and structured and must contain a file that
was previously accessed on the I/O channel.

Virtual I/O operations also require that the volume protection mask allow
access to the device (a process having either physical or logical I/O privilege can
override the volume protection mask). If these conditions are not met, the virtual
I/O operation is rejected by the QIO system service, which returns one of the
following condition values:

Condition Value Meaning

SS$_NOPRIV No privilege

SS$_DEVNOTMOUNT Device not mounted

SS$_DEVFOREIGN Volume mounted foreign

Figure 23–4 shows the relationship of physical, logical, and virtual I/O to the
driver.

23–6 System Service Input/Output Operations

System Service Input/Output Operations
23.3 Physical, Logical, and Virtual I/O

Figure 23–2 Physical I/O Access Checks

Physical
I/O

Privilege
?

Logical
I/O

Privilege
?

File
Device

?

Device
Mounted

?

Start

?
Foreign
Mounted

?
Permitted*
Physical I/O

Access
Deny

Access
Allow

Yes

No

ZK−0625−GE

?
Device

Shareable

No

Yes

No

No

No

Yes

Yes

Yes

Yes

No

Yes

No

*Volume protection mask allows access.

System Service Input/Output Operations 23–7

System Service Input/Output Operations
23.3 Physical, Logical, and Virtual I/O

Figure 23–3 Logical I/O Access Checks

Physical
I/O

Privilege
?

Device
Mounted

?

Start

?
Foreign
Mounted

Access
Deny

Access
Allow

Yes

ZK−0626−GE

?
Device

Shareable

No

No

No

No

Yes

Yes

Yes

No

Yes

No

?
Device

File

Yes

No

Yes

?
Privilege

I/O
LogicalYes No

Spooled
Device

?

?
Permitted*
Logical I/O

* Volume protection mask allows access.

23–8 System Service Input/Output Operations

System Service Input/Output Operations
23.3 Physical, Logical, and Virtual I/O

Figure 23–4 Physical, Logical, and Virtual I/O

Yes

ZK−0627−GE

No

No

Yes

Yes

No

Request
QIO

?
Request

I/O
Logical

Block Address
to Physical

Block Address
Translate Logical

?
Request

I/O
Virtual

No

Yes

Error

?
Request

I/O
Physical

Block Address
Address to Logical
Map Virtual Block

Driver
I/O

?
Intervention*

ACP

Window
Change Mapping

Wake ACP to

*Needed to map virtual address to logical address.

ACP
Go to

System Service Input/Output Operations 23–9

System Service Input/Output Operations
23.4 I/O Function Encoding

23.4 I/O Function Encoding
I/O functions fall into three groups that correspond to the three I/O device
addressing modes (physical, logical, and virtual) described in Section 23.3.
Depending on the device to which it is directed, an I/O function can be expressed
in one, two, or all three modes.

I/O functions are described by 16-bit, symbolically expressed values that specify
the particular I/O operation to be performed and any optional function modifiers.
Figure 23–5 shows the format of the 16-bit function value.

Symbolic names for I/O function codes are defined by the $IODEF macro.

Figure 23–5 I/O Function Format

15 6 5 0

Function Modifiers Code

ZK−0628−GE

23.4.1 Function Codes
The low-order 6 bits of the function value are a code that specifies the particular
operation to be performed. For example, the code for read logical block is
expressed as IO$_READLBLK. Table 23–1 lists the symbolic values for read and
write I/O functions in the three transfer modes.

Table 23–1 Read and Write I/O Functions

Physical I/O Logical I/O Virtual I/O

IO$_READPBLK IO$_READLBLK IO$_READVBLK

IO$_WRITEPBLK IO$_WRITELBLK IO$_WRITEVBLK

The set mode I/O function has a symbolic value of IO$_SETMODE.

Function codes are defined for all supported devices. Although some of the
function codes (for example, IO$_READVBLK and IO$_WRITEVBLK) are used
with several types of devices, most are device dependent; that is, they perform
functions specific to particular types of devices. For example, IO$_CREATE is a
device-dependent function code; it is used only with file-structured devices such
as disks and magnetic tapes. The I/O user’s reference documentation provides
complete descriptions of the functions and function codes.

Note

You should determine the device class before performing any QIO
function, because the requested function might be incompatible with some
devices. For example, the SYS$INPUT device could be a terminal, a disk,
or some other device. Unless this device is a terminal, an IO$_SETMODE
request that enables a Ctrl/C AST is not performed.

23–10 System Service Input/Output Operations

System Service Input/Output Operations
23.4 I/O Function Encoding

23.4.2 Function Modifiers
The high-order 10 bits of the function value are function modifiers. These are
individual bits that alter the basic operation to be performed. For example,
you can specify the function modifier IO$M_NOECHO with the function IO$_
READLBLK to a terminal. When used together, the two values are written in
VAX MACRO as IO$_READLBLK!IO$M_NOECHO. This causes data typed at
the terminal keyboard to be entered into the user buffer but not echoed to the
terminal. Figure 23–6 shows the format of function modifiers.

Figure 23–6 Function Modifier Format

15 6 0

ZK−0629−GE

Independent
Device/Function

Dependent
Device/Function

13 12

As shown in Figure 23–6, bits <15:13> are device- or function-independent bits,
and bits <12:6> are device- or function-dependent bits. Device- or function-
dependent bits have the same meaning, whenever possible, for different device
classes. For example, the function modifier IO$M_ACCESS is used with both disk
and magnetic tape devices to cause a file to be accessed during a create operation.
Device- or function-dependent bits always have the same function within the
same device class.

There are two device- or function-independent modifier bits: IO$M_INHRETRY
and IO$M_DATACHECK (a third bit is reserved). IO$M_INHRETRY is used to
inhibit all error recovery. If any error occurs and this modifier bit is specified, the
operation is terminated immediately and a failure status is returned in the I/O
status block (see Section 23.10). Use IO$M_DATACHECK to compare the data in
memory with that on a disk or magnetic tape.

23.5 Assigning Channels
Before any input or output operation can be performed on a physical device, you
must assign a channel to the device to provide a path between the process and
the device. The Assign I/O Channel (SYS$ASSIGN) system service establishes
this path.

When you write a call to the SYS$ASSIGN service, you must supply the name
of the device, which can be a physical device name or a logical name, and the
address of a word to receive the channel number. The service returns a channel
number, and you use this channel number when you write an input or output
request.

For example, the following lines assign an I/O channel to the device TTA2. The
channel number is returned in the word at TTCHAN.

System Service Input/Output Operations 23–11

System Service Input/Output Operations
23.5 Assigning Channels

#include <descrip.h>
#include <lib$routines.h>
#include <ssdef.h>
#include <starlet.h>
#include <stdio.h>
#include <stsdef.h>

main() {
unsigned int status;
unsigned short ttchan;
$DESCRIPTOR(ttname,"TTA2:");

/* Assign a channel to a device */
status = SYS$ASSIGN(&ttname, /* devnam - device name */

&ttchan, /* chan - channel number */
0, /* acmode - access mode */
0, /* mbxnam - logical name for mailbox */
0); /* flags */

if (!$VMS_STATUS_SUCCESS(status))
LIB$SIGNAL(status);

return SS$_NORMAL;
}

To assign a channel to the current default input or output device, use the logical
name SYS$INPUT or SYS$OUTPUT.

For more details on how SYS$ASSIGN and other I/O services handle logical
names, see Section 23.2.5.

23.5.1 Using the Share Privilege with the SYS$ASSIGN and SYS$DASSGN
Services

Use of SHARE privilege should be made only with caution, as applications,
application protocols, and device drivers coded to expect only exclusive access can
encounter unexpected and potentially errant behavior when access to the device
is unexpectedly shared via use of SHARE privilege.

If you use the SHARE privilege to override the exclusivity requested by another
process’s call to the system service SYS$ASSIGN, and the original process then
attempts to deassign its channels via explicit calls to SYS$DASSGN or via the
implicit calls to SYS$DASSGN made during image or process rundown, the
OpenVMS last-channel-deassign code may not operate as expected due to the
assignment of the additional I/O channels to the device. The presence of these
extra channels will prevent the last-channel-deassign code from releasing the
ownership of the device, potentially resulting in a device owned by the process
identification (PID) of a nonexistent process.

Unless its use is explicitly supported by the application, the application protocol,
and the device driver, the use of SHARE privilege is generally discouraged.

23.6 Queuing I/O Requests
All input and output operations in the operating system are initiated with the
Queue I/O Request (SYS$QIO) system service. The SYS$QIO system service
permits direct interaction with the system’s terminal driver. SYS$QIOs permit
some operations that cannot be performed with language I/O statements and
RTL routines; calls to SYS$QIO reduce overhead and permit asynchronous I/O
operations. However, calls to SYS$QIO are device dependent. The SYS$QIO
service queues the request and returns immediately to the caller. While the

23–12 System Service Input/Output Operations

System Service Input/Output Operations
23.6 Queuing I/O Requests

operating system processes the request, the program that issued the request can
continue execution.

The format for SYS$QIO is as follows:

SYS$QIO([efn],chan,func[,iosb][,astadr][,astprm][,p1][,p2][,p3][,p4][,p5][,p6]

Required arguments to the SYS$QIO service include the channel number
assigned to the device on which the I/O is to be performed, and a function code
(expressed symbolically) that indicates the specific operation to be performed.
Depending on the function code, one to six additional parameters may be
required.

For example, the IO$_WRITEVBLK and IO$_READVBLK function codes are
device-independent codes used to read and write single records or virtual
blocks. These function codes are suitable for simple terminal I/O. They require
parameters indicating the address of an input or output buffer and the buffer
length. A call to SYS$QIO to write a line to a terminal may look like the
following:

#include <starlet.h>

unsigned int status, func=IO$_WRITEVBLK;
.
.
.

status = SYS$QIO(0, /* efn - event flag */
ttchan, /* chan - channel number */
func, /* func - function modifier */
0, /* iosb - I/O status block */
0, /* astadr - AST routine */
0, /* astprm - AST parameter */
buffadr, /* p1 - output buffer */
buflen); /* p2 - length of message */

Function codes are defined for all supported device types, and most of the codes
are device dependent; that is, they perform functions specific to a particular
device. The $IODEF macro defines symbolic names for these function codes.
For information about how to obtain a listing of these symbolic names, see
Appendix A. For details about all function codes and an explanation of the
parameters required by each, see the HP OpenVMS I/O User’s Reference Manual.

To read from or write to a terminal with the SYS$QIO or SYS$QIOW system
service, you must first associate the terminal name with an I/O channel by
calling the SYS$ASSIGN system service, then use the assigned channel in the
SYS$QIO or SYS$QIOW system service. To read from SYS$INPUT or write to
SYS$OUTPUT, specify the appropriate logical name as the terminal name in
the SYS$ASSIGN system service. In general, use SYS$QIO for asynchronous
operations, and use SYS$QIOW for all other operations.

23.7 Synchronizing Service Completion
The SYS$QIO system service returns control to the calling program as soon
as a request is queued; the status code returned in R0 indicates whether the
request was queued successfully. To ensure proper synchronization of the queuing
operation with respect to the program, the program must do the following:

• Test whether the operation was queued successfully.

• Test whether the operation itself completed successfully.

System Service Input/Output Operations 23–13

System Service Input/Output Operations
23.7 Synchronizing Service Completion

Optional arguments to the SYS$QIO service provide techniques for synchronizing
I/O completion. There are three methods you can use to test for the completion of
an I/O request:

• Specify the number of an event flag to be set when the operation completes.

• Specify the address of an AST routine to be executed when the operation
completes.

• Specify the address of an I/O status block in which the system can place the
return status when the operation completes.

I/O status blocks are explained in Section 23.10.

The use of these three techniques is shown in the examples that follow.
Example 23–1 shows specifying event flags.

Example 23–1 Event Flags

#include <lib$routines.h>
#include <starlet.h>
unsigned int status, efn=0, efn1=1, efn=2;

.

.

.
status = SYS$QIO(efn1, . . .); /* Issue 1st I/O request */
if (!$VMS_STATUS_SUCCESS(status))
LIB$SIGNAL(status); /* Queued successfully? */ !

.

.

.
status = SYS$QIO(efn2, . . .); /* Issue second I/O request */ "
if (!$VMS_STATUS_SUCCESS(status)) /* Queued successfully? */

LIB$SIGNAL(status);
.
.
. #

status = SYS$WFLAND(efn, / *Wait until both are done */
&mask, . . . $
.
.
.

! When you specify an event flag number as an argument, SYS$QIO clears the
event flag when it queues the I/O request. When the I/O completes, the flag
is set.

" In this example, the program issues two Queue I/O requests. A different
event flag is specified for each request.

The Wait for Logical AND of Event Flags (SYS$WFLAND) system service
places the process in a wait state until both I/O operations are complete. The
efn argument indicates that the event flags are both in cluster 0; the mask
argument indicates the flags for which the process is to wait.

$ Note that the SYS$WFLAND system service (and the other wait system
services) wait for the event flag to be set; they do not wait for the I/O
operation to complete. If some other event were to set the required event
flags, the wait for event flag would complete too soon. You must coordinate

23–14 System Service Input/Output Operations

System Service Input/Output Operations
23.7 Synchronizing Service Completion

the use of event flags carefully. (See Section 23.8 for a discussion of the
recommended method for testing I/O completion.)

System Service Input/Output Operations 23–15

System Service Input/Output Operations
23.7 Synchronizing Service Completion

Example 23–2 shows specifying an AST routine.

Example 23–2 AST Routine

#include <lib$routines.h>
#include <starlet.h>
#include <stsdef.h>

unsigned int status, astprm=1;
.
.
.

status = SYS$QIO(. . . &ttast, /* I/O request with AST */ !
astprm . . .);

if (!$VMS_STATUS_SUCCESS(status)) /* Queued successfully? */
LIB$SIGNAL(status);

.

.

.
}

void ttast (int astprm) { /* AST service routine */ "

/* Handle I/O completion */
.
.
.

return;
} /* End of AST routine */

! When you specify the astadr argument to the SYS$QIO system service, the
system interrupts the process when the I/O completes and passes control to
the specified AST service routine.

The SYS$QIO system service call specifies the address of the AST routine,
TTAST, and a parameter to pass as an argument to the AST service routine.
When $QIO returns control, the process continues execution.

" When the I/O completes, the AST routine TTAST is called, and it responds to
the I/O completion. By examining the AST parameter, TTAST can determine
the origin of the I/O request.

When this routine is finished executing, control returns to the process at the
point at which it was interrupted. If you specify the astadr argument in your
call to SYS$QIO, you should also specify the iosb argument so that the AST
routine can evaluate whether the I/O completed successfully.

23–16 System Service Input/Output Operations

System Service Input/Output Operations
23.7 Synchronizing Service Completion

Example 23–3 shows specifying an I/O status block.

Example 23–3 I/O Status Block

#include <lib$routines.h>
#include <stdio.h>
#include <ssdef.h>
#include <starlet.h>
#include <stsdef.h>

.

.

.
/* I/O status block */

struct {
unsigned short iostat, iolen;
unsigned int dev_info;

}ttiosb; !

unsigned int status;
.
.
.

status = SYS$QIO(, . . . , &ttiosb, . . .); "
if(!$VMS_STATUS_SUCCESS(status)) /* Queued successfully? */

LIB$SIGNAL(status);
.
.
.

while(ttiosb.iostat == 0) {
/* Loop -- with delay -- until done */ #

}

if(!$VMS_STATUS_SUCCESS(ttiosb.iostat)) {
/* Perform error handling */

.

.

.
}

! An I/O status block is a quadword structure that the system uses to post
the status of an I/O operation. You must define the quadword area in your
program. TTIOSB defines the I/O status block for this I/O operation. The
iosb argument in the SYS$QIO system service refers to this quadword.

" Instead of polling the low-order word of the I/O status block for the completion
status, the program uses the preferred method of using an event flag and
calling SYS$SYNCH to determine I/O completion.

The process polls the I/O status block. If the low-order word still contains
zero, the I/O operation has not yet completed. In this example, the program
loops until the request is complete.

System Service Input/Output Operations 23–17

System Service Input/Output Operations
23.8 Recommended Method for Testing Asynchronous Completion

23.8 Recommended Method for Testing Asynchronous Completion
HP recommends that you use the Synchronize (SYS$SYNCH) system service to
wait for completion of an asynchronous event. The SYS$SYNCH service correctly
waits for the actual completion of an asynchronous event, even if some other
event sets the event flag.

To use the SYS$SYNCH service to wait for the completion of an asynchronous
event, you must specify both an event flag number and the address of an
I/O status block (IOSB) in your call to the asynchronous system service. The
asynchronous service queues the request and returns control to your program.
When the asynchronous service completes, it sets the event flag and places the
final status of the request in the IOSB.

In your call to SYS$SYNCH, you must specify the same efn and I/O status block
that you specified in your call to the asynchronous service. The SYS$SYNCH
service waits for the event flag to be set by means of the SYS$WAITFR system
service. When the specified event flag is set, SYS$SYNCH checks the specified
I/O status block. If the I/O status block is nonzero, the system service has
completed and SYS$SYNCH returns control to your program. If the I/O status
block is zero, SYS$SYNCH clears the event flag by means of the SYS$CLREF
service and calls the $WAITFR service to wait for the event flag to be set.

The SYS$SYNCH service sets the event flag before returning control to your
program. This ensures that the call to SYS$SYNCH does not interfere
with testing for completion of another asynchronous event that completes at
approximately the same time and uses the same event flag to signal completion.

The following call to the Queue I/O Request (SYS$QIO) system service
demonstrates how the SYS$SYNCH service is used:

.

.

.
#include <lib$routines.h>
#include <starlet.h>

unsigned int status, event_flag = 1;
struct {

short int iostat, iolen;
unsigned int dev_info;

}ttiosb;
.
.
.

/* Request I/O */
status = SYS$QIO (event_flag, . . . , &ttiosb . . .);
if (!$VMS_STATUS_SUCCESS(status))

LIB$SIGNAL(status);
.
.
.

/* Wait until I/O completes */
status = SYS$SYNCH (event_flag, &ttiosb);
if (!$VMS_STATUS_SUCCESS(status))

LIB$SIGNAL(status);
.
.
.

23–18 System Service Input/Output Operations

System Service Input/Output Operations
23.8 Recommended Method for Testing Asynchronous Completion

Note

The SYS$QIOW service provides a combination of SYS$QIO and
SYS$SYNCH.

23.9 Synchronous and Asynchronous Forms of Input/Output
Services

You can execute some input/output services either synchronously or
asynchronously. A ‘‘W’’ at the end of a system service name indicates the
synchronous version of the system service.

The synchronous version of a system service combines the functions of the
asynchronous version of the service and the Synchronize (SYS$SYNCH)
system service. The synchronous version acts exactly as if you had used the
asynchronous version of the system service followed immediately by a call to
SYS$SYNCH; it queues the I/O request, and then places the program in a wait
state until the I/O request completes. The synchronous version takes the same
arguments as the asynchronous version.

Table 23–2 lists the asynchronous and synchronous names of input/output
services that have synchronous versions.

Table 23–2 Asynchronous Input/Output Services and Their Synchronous
Versions

Asynchronous Name Synchronous Name Description

$BRKTHRU $BRKTHRUW Breakthrough

$GETDVI $GETDVIW Get Device/Volume Information

$GETJPI $GETJPIW Get Job/Process Information

$GETLKI $GETLKIW Get Lock Information

$GETQUI $GETQUIW Get Queue Information

$GETSYI $GETSYIW Get Systemwide Information

$QIO $QIOW Queue I/O Request

$SNDJBC $SNDJBCW Send to Job Controller

$UPDSEC $UPDSECW Update Section File on Disk

23.9.1 Reading Operations with SYS$QIOW
The SYS$QIO and SYS$QIOW system services move one record of data from
a terminal to a variable. For synchronous I/O, use SYS$QIOW. Complete
information about the SYS$QIO and SYS$QIOW system services is presented in
the HP OpenVMS System Services Reference Manual.

The SYS$QIO and SYS$QIOW system services place the data read in the variable
specified in the 1 argument. The second word of the status block contains the
offset from the beginning of the buffer to the terminator—hence, it equals the size
of the data read. Always reference the data as a substring, using the offset to the
terminator as the position of the last character (that is, the size of the substring).
If you reference the entire buffer, your data will include the terminator for
the operation (for example, the CR character) and any excess characters from

System Service Input/Output Operations 23–19

System Service Input/Output Operations
23.9 Synchronous and Asynchronous Forms of Input/Output Services

a previous operation using the buffer. (The only exception to the substring
guideline is if you deliberately overflow the buffer to terminate the I/O operation.)

Example 23–4 shows use of the SYS$QIOW system service and reads a line of
data from the terminal and waits for the I/O to complete.

Example 23–4 Reading Data from the Terminal Synchronously
.
.
.

INTEGER STATUS
! QIOW structures
INTEGER*2 INPUT_CHAN ! I/O channel
INTEGER CODE, ! Type of I/O operation
2 INPUT_BUFF_SIZE, ! Size of input buffer
2 PROMPT_SIZE, ! Size of prompt
2 INPUT_SIZE ! Size of input line as read
PARAMETER (PROMPT_SIZE = 13,
2 INPUT_BUFF_SIZE = 132)
CHARACTER*132 INPUT
CHARACTER*(*) PROMPT
PARAMETER (PROMPT = ’Input value: ’)
! Define symbols used in I/O operations
INCLUDE ’($IODEF)’
! Status block for QIOW
STRUCTURE /IOSTAT_BLOCK/
INTEGER*2 IOSTAT, ! Return status

2 TERM_OFFSET, ! Location of line terminator
2 TERMINATOR, ! Value of terminator
2 TERM_SIZE ! Size of terminator
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB
! Subprograms
INTEGER*4 SYS$ASSIGN,
2 SYS$QIOW

.

.

.
! Assign an I/O channel to SYS$INPUT
STATUS = SYS$ASSIGN (’SYS$INPUT’,
2 INPUT_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Read with prompt
CODE = IO$_READPROMPT
STATUS = SYS$QIOW (,
2 %VAL (INPUT_CHAN),
2 %VAL (CODE),
2 IOSB,
2 ,,
2 %REF (INPUT),
2 %VAL (INPUT_BUFF_SIZE),
2 ,,
2 %REF (PROMPT),
2 %VAL (PROMPT_SIZE))

(continued on next page)

23–20 System Service Input/Output Operations

System Service Input/Output Operations
23.9 Synchronous and Asynchronous Forms of Input/Output Services

Example 23–4 (Cont.) Reading Data from the Terminal Synchronously

! Check QIOW status
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Check status of I/O operation
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Set size of input string
INPUT_SIZE = IOSB.TERM_OFFSET

.

.

.

23.9.2 Reading Operations with SYS$QIO
To perform an asynchronous read operation, use the SYS$QIO system service
and specify an event flag (the first argument, which must be passed by value).
Your program continues while the I/O is taking place. When you need the input
from the I/O operation, invoke the SYS$SYNCH system service to wait for the
event flag and status block specified in the SYS$QIO system service. If the
I/O is not complete, your program pauses until it is. In this manner, you can
overlap processing within your program. Naturally, you must take care not to
assume data has been returned by the I/O operation before you call SYS$SYNCH
and it returns successfully. Example 23–5 demonstrates an asynchronous read
operation.

Example 23–5 Reading Data from the Terminal Asynchronously
.
.
.

INTEGER STATUS
! QIO structures
INTEGER*2 INPUT_CHAN ! I/O channel
INTEGER CODE, ! Type of I/O operation
2 INPUT_BUFF_SIZE, ! Size of input buffer
2 PROMPT_SIZE, ! Size of prompt
2 INPUT_SIZE ! Size of input line as read
PARAMETER (INPUT_BUFF_SIZE = 132,
2 PROMPT = 13)
CHARACTER*132 INPUT
CHARACTER*(*) PROMPT
PARAMETER (PROMPT = ’Input value: ’)
INCLUDE ’($IODEF)’ ! Symbols used in I/O operations
! Status block for QIO
STRUCTURE /IOSTAT_BLOCK/
INTEGER*2 IOSTAT, ! Return status

2 TERM_OFFSET, ! Location of line terminator
2 TERMINATOR, ! Value of terminator
2 TERM_SIZE ! Size of terminator
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB

(continued on next page)

System Service Input/Output Operations 23–21

System Service Input/Output Operations
23.9 Synchronous and Asynchronous Forms of Input/Output Services

Example 23–5 (Cont.) Reading Data from the Terminal Asynchronously
! Event flag for I/O
INTEGER INPUT_EF
! Subprograms
INTEGER*4 SYS$ASSIGN,
2 SYS$QIO,
2 SYS$SYNCH,
2 LIB$GET_EF

.

.

.
! Assign an I/O channel to SYS$INPUT
STATUS = SYS$ASSIGN (’SYS$INPUT’,
2 INPUT_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get an event flag
STATUS = LIB$GET_EF (INPUT_EF)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Read with prompt
CODE = IO$_READPROMPT
STATUS = SYS$QIO (%VAL (INPUT_EF),
2 %VAL (INPUT_CHAN),
2 %VAL (CODE),
2 IOSB,
2 ,,
2 %REF (INPUT),
2 %VAL (INPUT_BUFF_SIZE),
2 ,,
2 %REF (PROMPT),
2 %VAL (PROMPT_SIZE))
! Check status of QIO
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
STATUS = SYS$SYNCH (%VAL (INPUT_EF),
2 IOSB)
! Check status of SYNCH
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Check status of I/O operation
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Set size of input string
INPUT_SIZE = IOSB.TERM_OFFSET

.

.

.

Be sure to check the status of the I/O operation as returned in the I/O status
block. In an asynchronous operation, you can check this status only after the I/O
operation is complete (that is, after the call to SYS$SYNCH).

23.9.3 Write Operations with SYS$QIOW
The SYS$QIO and SYS$QIOW system services move one record of data from a
character value to the terminal. Do not use these system services, as described
here, for output to a file or nonterminal device.

For synchronous I/O, use SYS$QIOW and omit the first argument (the event flag
number). For complete information about SYS$QIO and SYS$QIOW, refer to the
HP OpenVMS System Services Reference Manual.

23–22 System Service Input/Output Operations

System Service Input/Output Operations
23.9 Synchronous and Asynchronous Forms of Input/Output Services

Example 23–6 writes a line of character data to the terminal.

Example 23–6 Writing Character Data to a Terminal

INTEGER STATUS,
2 ANSWER_SIZE
CHARACTER*31 ANSWER
INTEGER*2 OUT_CHAN
! Status block for QIO
STRUCTURE /IOSTAT_BLOCK/
INTEGER*2 IOSTAT,

2 BYTE_COUNT,
2 LINES_OUTPUT
BYTE COLUMN,

2 LINE
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB
! Routines
INTEGER SYS$ASSIGN,
2 SYS$QIOW
! IO$ symbol definitions
INCLUDE ’($IODEF)’

.

.

.
STATUS = SYS$ASSIGN (’SYS$OUTPUT’,
2 OUT_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SYS$QIOW (,
2 %VAL (OUT_CHAN),
2 %VAL (IO$_WRITEVBLK),
2 IOSB,
2 ,
2 ,
2 %REF (’Answer: ’//ANSWER(1:ANSWER_SIZE)),
2 %VAL (8+ANSWER_SIZE),
2 ,
2 %VAL (32),,) ! Single spacing
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
END

23.10 I/O Completion Status
When an I/O operation completes, the system posts the completion status in the
I/O status block, if one is specified. The completion status indicates whether the
operation completed successfully, the number of bytes that were transferred, and
additional device-dependent return information.

Figure 23–7 illustrates the format for the SYS$QIO system service of the
information written in the IOSB.

The first word contains a system status code indicating the success or failure of
the operation. The status codes used are the same as for all returns from system
services; for example, SS$_NORMAL indicates successful completion.

System Service Input/Output Operations 23–23

System Service Input/Output Operations
23.10 I/O Completion Status

Figure 23–7 I/O Status Block

16

Condition valueCount

ZK−0856−GE

Device−dependent information

31 015

The second word contains the number of bytes actually transferred in the I/O
operation. Note that for some devices this word contains only the low-order word
of the count. For information about specific devices, see the HP OpenVMS I/O
User’s Reference Manual.

The second longword contains device-dependent return information.

System services other than SYS$QIO use the quadword I/O status block, but
the format is different. See the description of each system service in the HP
OpenVMS System Services Reference Manual for the format of the information
written in the IOSB for that service.

To ensure successful I/O completion and the integrity of data transfers, you
should check the IOSB following I/O requests, particularly for device-dependent
I/O functions. For complete details about how to use the I/O status block, see the
HP OpenVMS I/O User’s Reference Manual.

23.11 Deassigning I/O Channels
When a process no longer needs access to an I/O device, it should release
the channel assigned to the device by calling the Deassign I/O Channel
(SYS$DASSGN) system service:

$DASSGN_S CHAN=TTCHAN

This service call releases the terminal channel assignment acquired in the
SYS$ASSIGN example shown in Section 23.5. The system automatically
deassigns channels for a process when the image that assigned the channel
exits.

23.12 Using Complete Terminal I/O
The following example shows a complete sequence of input and output
operations using the $QIOW macro to read and write lines to the current
default SYS$INPUT device. Because the input/output of this program must be to
the current terminal, it functions correctly only if you execute it interactively.

#include <descrip.h>
#include <iodef.h>
#include <lib$routines.h>
#include <ssdef.h>
#include <starlet.h>
#include <stdio.h>
#include <string.h>
#define BUFSIZ 80
/* I/O status block */
struct { !

unsigned short iostat, ttiolen;
unsigned int dev_info;

}ttiosb;

23–24 System Service Input/Output Operations

System Service Input/Output Operations
23.12 Using Complete Terminal I/O

main() {
unsigned int status ,outlen, inlen = BUFSIZ;
unsigned short ttchan;
char buffer[BUFSIZ]; "
$DESCRIPTOR(ttname,"SYS$INPUT"); #

/* Assign a channel */
status = SYS$ASSIGN(&ttname, /* devnam - device number */ $

&ttchan, /* chan - channel number */
0, 0, 0);

if (!$VMS_STATUS_SUCCESS(status))
LIB$SIGNAL(status);

/* Request I/O */
status = SYS$QIOW(0, /* efn - event flag */

ttchan, /* chan - channel number */
IO$_READVBLK, /* func - function modifier */
&ttiosb, /* iosb - I/O status block */
0, /* astadr - AST routine */
0, /* astprm - AST parameter */
buffer, /* p1 - buffer */
inlen, /* p2 - length of buffer */
0, 0, 0, 0); %

if (!$VMS_STATUS_SUCCESS(status)) &
LIB$SIGNAL(status);

/* Get length from IOSB */
outlen = ttiosb.ttiolen; ’

status = SYS$QIOW(0, ttchan, IO$_WRITEVBLK, &ttiosb, 0, 0, buffer, outlen,
0, 0, 0, 0);

if (!$VMS_STATUS_SUCCESS(status))
LIB$SIGNAL(status); (

/* Deassign the channel */
status = SYS$DASSGN(ttchan); /* chan - channel */)
if (!$VMS_STATUS_SUCCESS(status))

LIB$SIGNAL(status);

}

! The IOSB for the I/O operations is structured so that the program can easily
check for the completion status (in the first word) and the length of the input
string returned (in the second word).

" The string will be read into the buffer BUFFER; the longword OUTLEN will
contain the length of the string for the output operation.

The TTNAME label is a character string descriptor for the logical device
SYS$INPUT, and TTCHAN is a word to receive the channel number assigned
to it.

$ The $ASSIGN service assigns a channel and writes the channel number at
TTCHAN.

% If the $ASSIGN service completes successfully, the $QIOW macro reads a line
from the terminal, and requests that the completion status be posted in the
I/O status block defined at TTIOSB.

& The process waits until the I/O is complete, then checks the first word in the
I/O status block for a successful return. If unsuccessful, the program takes an
error path.

System Service Input/Output Operations 23–25

System Service Input/Output Operations
23.12 Using Complete Terminal I/O

’ The length of the string read is moved into the longword at OUTLEN, because
the $QIOW macro requires a longword argument. However, the length field
of the I/O status block is only 1 word long. The $QIOW macro writes the line
just read to the terminal.

(The program performs error checks. First, it ensures that the $OUTPUT
macro successfully queued the I/O request; then, when the request is
completed, it ensures that the I/O was successful.

) When all I/O operations on the channel are finished, the channel is
deassigned.

23.13 Canceling I/O Requests
If a process must cancel I/O requests that have been queued but not yet
completed, it can issue the Cancel I/O On Channel (SYS$CANCEL) system
service. All pending I/O requests issued by the process on that channel are
canceled; you cannot specify a particular I/O request.

The SYS$CANCEL system service performs an asynchronous cancel operation.
This means that the application must wait for each I/O operation issued to the
driver to complete before checking the status for that operation.

For example, you can call the SYS$CANCEL system service as follows:

unsigned int status, efn1=3, efn2=4;
.
.
.

status = SYS$QIO(efn1, ttchan, &iosb1, . . .);
status = SYS$QIO(efn2, ttchan, &iosb2, . . .);

.

.

.
status = SYS$CANCEL(ttchan);
status = SYS$SYNCH(efn1, &iosb1);
status = SYS$SYNCH(efn2, &iosb2);

In this example, the SYS$CANCEL system service initiates the cancellation of all
pending I/O requests to the channel whose number is located at TTCHAN.

The SYS$CANCEL system service returns after initiating the cancellation of the
I/O requests. If the call to SYS$QIO specified either an event flag, AST service
routine, or I/O status block, the system sets either the flag, delivers the AST, or
posts the I/O status block as appropriate when the cancellation is completed.

23.14 Logical Names and Physical Device Names
When you specify a device name as input to an I/O system service, it can be a
physical device name or a logical name. If the device name contains a colon (:),
the colon and the characters after it are ignored. When an underscore character
(_) precedes a device name string, it indicates that the string is a physical device
name string, for example, _TTB3:.

Any string that does not begin with an underscore is considered a logical name,
even though it may be a physical device name. Table 23–3 lists system services
that translate a logical name iteratively until a physical device name is returned,
or until the system default number of translations have been performed.

23–26 System Service Input/Output Operations

System Service Input/Output Operations
23.14 Logical Names and Physical Device Names

Table 23–3 System Services for Translating Logical Names

System Service Definition

SYS$ALLOC Allocate Device

SYS$ASSIGN Assign I/O Channel

SYS$BRDCST Broadcast

SYS$DALLOC Deallocate Device

SYS$DISMOU Dismount Volume

SYS$GETDEV Get I/O Device Information

SYS$GETDVI Get Device/Volume Information

SYS$MOUNT Mount Volume

In each translation, the logical name tables defined by the logical name
LNM$FILE_DEV are searched in order. These tables, listed in search order,
are normally LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM. If
a physical device name is located, the I/O request is performed for that device.

If the services do not locate an entry for the logical name, the I/O service treats
the name specified as a physical device name. When you specify the name of an
actual physical device in a call to one of these services, include the underscore
character to bypass the logical name translation.

When the SYS$ALLOC system service returns the device name of the physical
device that has been allocated, the device name string returned is prefixed
with an underscore character. When this name is used for the subsequent
SYS$ASSIGN system service, the SYS$ASSIGN service does not attempt to
translate the device name.

If you use logical names in I/O service calls, you must be sure to establish a
valid device name equivalence before program execution. You can do this either
by issuing a DEFINE command from the command stream, or by having the
program establish the equivalence name before the I/O service call with the
Create Logical Name (SYS$CRELNM) system service.

For details about how to create and use logical names, see Chapter 34.

23.15 Device Name Defaults
If, after logical name translation, a device name string in an I/O system service
call does not fully specify the device name (that is, device, controller, and unit),
the service either provides default values for nonspecified fields, or provides
values based on device availability.

The following rules apply:

• The SYS$ASSIGN and SYS$DALLOC system services apply default values,
as shown in Table 23–4.

• The SYS$ALLOC system service treats the device name as a generic device
name and attempts to find a device that satisfies the components of the device
name specified, as shown in Table 23–4.

System Service Input/Output Operations 23–27

System Service Input/Output Operations
23.15 Device Name Defaults

Table 23–4 Default Device Names for I/O Services

Device Device Name1 Generic Device

dd: ddA0: (unit 0 on controller
A)

ddxy: (any available device of the specified
type)

ddc: ddc0: (unit 0 on controller
specified)

ddcy: (any available unit on the specified
controller)

ddu: ddAu: (unit specified on
controller A)

ddxu: (device of specified type and unit on any
available controller)

ddcu: ddcu: (unit and controller
specified)

ddcu: (unit and controller specified)

1See the OpenVMS User’s Manual for a summary of the device names.
Key

dd—Specified device type (capital letters indicate a specific controller; numbers indicate a specific
unit)
c—Specified controller
x—Any controller
u—Specified unit number
y—Any unit number

23.16 Obtaining Information About Physical Devices
The Get Device/Volume Information (SYS$GETDVI) system service returns
information about devices. The information returned is specified by an item list
created before the call to SYS$GETDVI.

When you call the SYS$GETDVI system service, you must provide the address of
an item list that specifies the information to be returned. The format of the item
list is described in the description of SYS$GETDVI in the HP OpenVMS System
Services Reference Manual. The HP OpenVMS I/O User’s Reference Manual
contains details on the device-specific information these services return.

In cases where a generic (that is, nonspecific) device name is used in an I/O
service, a program may need to find out what device has been used. To do this,
the program should provide SYS$GETDVI with the number of the channel to
the device and request the name of the device with the DVI$_DEVNAM item
identifier.

The operating system also supports a device called the null device for program
development. The mnemonic for the null device is NL. Its characteristics are as
follows:

• A read from NL returns an end-of-file error (SS$_ENDOFFILE).

• A write to NL immediately returns a success message (SS$_NORMAL).

The null device functions as a virtual device to which you can direct output but
from which the data does not return.

23.16.1 Checking the Terminal Device
You are restricted to a terminal device if you use any of the special functions
described in this section. If the user of your program redirects SYS$INPUT
or SYS$OUTPUT to a file or nonterminal device, an error occurs. You can use
the SYS$GETDVIW system service to make sure the logical name is associated
with a terminal, as shown in Example 23–7. SYS$GETDVIW returns a status
of SS$_IVDEVNAM if the logical name is defined as a file or otherwise does not

23–28 System Service Input/Output Operations

System Service Input/Output Operations
23.16 Obtaining Information About Physical Devices

equate to a device name. The type of device is the response associated with the
DVI$_DEVCLASS request code and should be DC$_TERM for a terminal.

Example 23–7 Using SYS$GETDVIW to Verify the Device Name

RECORD /ITMLST/ DVI_LIST
LOGICAL*4 STATUS
! GETDVI buffers
INTEGER CLASS, ! Response buffer
2 CLASS_LEN ! Response length
! GETDVI symbols
INCLUDE ’($DCDEF)’
INCLUDE ’($SSDEF)’
INCLUDE ’($DVIDEF)’
! Define subprograms
INTEGER SYS$GETDVIW
! Find out the device class of SYS$INPUT
DVI_LIST.BUFLEN = 4
DVI_LIST.CODE = DVI$_DEVCLASS
DVI_LIST.BUFADR = %LOC (CLASS)
DVI_LIST.RETLENADR = %LOC (CLASS_LEN)
STATUS = SYS$GETDVIW (,,’SYS$INPUT’,
2 DVI_LIST,,,,,)
IF ((.NOT. STATUS) .AND. (STATUS .NE. SS$_IVDEVNAM)) THEN
CALL LIB$SIGNAL (%VAL (STATUS))

END IF
! Make sure device is a terminal
IF ((STATUS .NE. SS$_IVDEVNAM) .AND. (CLASS .EQ. DC$_TERM)) THEN

.

.

.
ELSE

TYPE *, ’Input device not a terminal’
END IF

23.16.2 Terminal Characteristics
The HP OpenVMS I/O User’s Reference Manual describes device-specific
characteristics associated with terminals. To examine a characteristic, issue
a call to SYS$QIO or SYS$QIOW system service with the IO$_SENSEMODE
function and examine the appropriate bit in the structure returned to the P1
argument. To change a characteristic:

1. Issue a call to SYS$QIO or SYS$QIOW system service with the IO$_
SENSEMODE function.

2. Set or clear the appropriate bit in the structure returned to the P1 argument.

3. Issue a call to SYS$QIO or SYS$QIOW system service with the IO$_
SETMODE function passing, as the P1 argument, to modify the structure you
obtained from the sense mode operation.

Example 23–8 turns off the HOSTSYNC terminal characteristic. To check
whether NOHOSTSYNC has been set, enter the SHOW TERMINAL command.

Example 23–8 Disabling the HOSTSYNC Terminal Characteristic

(continued on next page)

System Service Input/Output Operations 23–29

System Service Input/Output Operations
23.16 Obtaining Information About Physical Devices

Example 23–8 (Cont.) Disabling the HOSTSYNC Terminal Characteristic
.
.
.

INTEGER*4 STATUS
! I/O channel
INTEGER*2 INPUT_CHAN
! I/O status block
STRUCTURE /IOSTAT_BLOCK/
INTEGER*2 IOSTAT
BYTE TRANSMIT,

2 RECEIVE,
2 CRFILL,
2 LFFILL,
2 PARITY,
2 ZERO
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB
! Characteristics buffer
! Note: basic characteristics are first three
! bytes of second longword -- length is
! last byte
STRUCTURE /CHARACTERISTICS/
BYTE CLASS,

2 TYPE
INTEGER*2 WIDTH
UNION
MAP
INTEGER*4 BASIC

END MAP
MAP
BYTE LENGTH(4)

END MAP
END UNION
INTEGER*4 EXTENDED

END STRUCTURE
RECORD /CHARACTERISTICS/ CHARBUF
! Define symbols used for I/O and terminal operations
INCLUDE ’($IODEF)’
INCLUDE ’($TTDEF)’
! Subroutines
INTEGER*4 SYS$ASSIGN,
2 SYS$QIOW
! Assign channel to terminal
STATUS = SYS$ASSIGN (’SYS$INPUT’,
2 INPUT_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get current characteristics
STATUS = SYS$QIOW (,
2 %VAL (INPUT_CHAN),
2 %VAL (IO$_SENSEMODE),
2 IOSB,,,
2 CHARBUF, ! Buffer
2 %VAL (12),,,,) ! Buffer size
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Turn off hostsync
CHARBUF.BASIC = IBCLR (CHARBUF.BASIC, TT$V_HOSTSYNC)

(continued on next page)

23–30 System Service Input/Output Operations

System Service Input/Output Operations
23.16 Obtaining Information About Physical Devices

Example 23–8 (Cont.) Disabling the HOSTSYNC Terminal Characteristic

! Set new characteristics
STATUS = SYS$QIOW (,
2 %VAL (INPUT_CHAN),
2 %VAL (IO$_SETMODE),
2 IOSB,,,
2 CHARBUF,
2 %VAL (12),,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))

END

If you modify terminal characteristics with set mode QIO operations, you should
save the characteristics buffer that you obtain on the first sense mode operation,
and restore those characteristics with a set mode operation before exiting.
(Resetting is not necessary if you just use modifiers on each read operation.) To
ensure that the restoration is performed if the program aborts (for example, if
the user presses Ctrl/Y), you should restore the user’s environment in an exit
handler. See Chapter 9 for a description of exit handlers.

23.16.3 Record Terminators
A QIO read operation ends when the user enters a terminator or when the input
buffer fills, whichever occurs first. The standard set of terminators applies unless
you specify the 4 argument in the read QIO operation. You can examine the
terminator that ended the read operation by examining the input buffer starting
at the terminator offset (second word of the I/O status block). The length, in
bytes, of the terminator is specified by the high-order word of the I/O status
block. The third word of the I/O status block contains the value of the first
character of the terminator.

Examining the terminator enables you to read escape sequences from the
terminal, provided that you modify the QIO read operation with the IO$M_
ESCAPE modifier (or the ESCAPE terminal characteristic is set). The first
character of the terminator will be the ESC character (an ASCII value of 27). The
remaining characters will contain the value of the escape sequence.

23.16.4 File Terminators
You must examine the terminator to detect end-of-file (Ctrl/Z) on the terminal.
No error condition is generated at the QIO level. If the user presses Ctrl/Z, the
terminator will be the SUB character (an ASCII value of 26).

23.17 Device Allocation
Many I/O devices are shareable; that is, more than one process at a time can
access the device. By calling the Assign I/O Channel (SYS$ASSIGN) system
service, a process is given a channel to the device for I/O operations.

In some cases, a process may need exclusive use of a device so that data is not
affected by other processes. To reserve a device for exclusive use, you must
allocate it.

Device allocation is normally accomplished with the DCL command ALLOCATE.
A process can also allocate a device by calling the Allocate Device (SYS$ALLOC)
system service. When a device has been allocated by a process, only the process
that allocated the device and any subprocesses it creates can assign channels to
the device.

System Service Input/Output Operations 23–31

System Service Input/Output Operations
23.17 Device Allocation

When you call the SYS$ALLOC system service, you must provide a device name.
The device name specified can be any of the following:

• A physical device name, for example, the tape drive MTB3:

• A logical name, for example, TAPE

• A generic device name, for example, MT:

If you specify a physical device name, SYS$ALLOC attempts to allocate the
specified device.

If you specify a logical name, SYS$ALLOC translates the logical name and
attempts to allocate the physical device name equated to the logical name.

If you specify a generic device name (that is, if you specify a device type but
do not specify a controller or unit number, or both), SYS$ALLOC attempts to
allocate any device available of the specified type. For more information about
the allocation of devices by generic names, see Section 23.15.

When you specify generic device names, you must provide fields for the
SYS$ALLOC system service to return the name and the length of the physical
device that is actually allocated so that you can provide this name as input to the
SYS$ASSIGN system service.

The following example illustrates the allocation of a tape device specified by the
logical name TAPE:

#include <descrip.h>
#include <lib$routines.h>
#include <ssdef.h>
#include <starlet.h>
#include <stdio.h>

main() {
unsigned int status;
char devstr[64];
unsigned short phylen, tapechan;

$DESCRIPTOR(logdev,"TAPE"); /* Descriptor for logical name */
$DESCRIPTOR(devdesc,devstr); /* Descriptor for physical name */

/* Allocate a device */
status = SYS$ALLOC(&logdev, /* devnam - device name */ !

&phylen, /* phylen - length device name string */
&devdesc, /* phybuf - buffer for devnam string */
0, 0);

if (!$VMS_STATUS_SUCCESS(status))
LIB$SIGNAL(status);

/* Assign a channel to the device */
status = SYS$ASSIGN(&devdesc, /* devnam - device name */ "

&tapechan, /* chan - channel number */
0, 0, 0);

if (!$VMS_STATUS_SUCCESS(status))
LIB$SIGNAL(status);

/* Deassign the channel */
status = SYS$DASSGN(tapechan); /* chan - channel number */#
if (!$VMS_STATUS_SUCCESS(status))

LIB$SIGNAL(status);

/* Deallocate the device */
status = SYS$DALLOC(&devdesc, /* devnam - device name */

0); /* acmode - access mode */
if (!$VMS_STATUS_SUCCESS(status))

LIB$SIGNAL(status);

23–32 System Service Input/Output Operations

System Service Input/Output Operations
23.17 Device Allocation

}

! The SYS$ALLOC system service call requests allocation of a device
corresponding to the logical name TAPE, defined by the character string
descriptor LOGDEV. The argument DEVDESC refers to the buffer provided
to receive the physical device name of the device that is allocated and the
length of the name string. The SYS$ALLOC service translates the logical
name TAPE and returns the equivalence name string of the device actually
allocated into the buffer at DEVDESC. It writes the length of the string in
the first word of DEVDESC.

" The SYS$ASSIGN command uses the character string returned by the
SYS$ALLOC system service as the input device name argument, and
requests that the channel number be written into TAPECHAN.

When I/O operations are completed, the SYS$DASSGN system service
deassigns the channel, and the SYS$DALLOC system service deallocates the
device. The channel must be deassigned before the device can be deallocated.

23.17.1 Implicit Allocation
Devices that cannot be shared by more than one process (for example, terminals
and line printers) do not have to be explicitly allocated. Because they are
nonshareable, they are implicitly allocated by the SYS$ASSIGN system service
when SYS$ASSIGN is called to assign a channel to the device.

23.17.2 Deallocation
When the program has finished using an allocated device, it should release the
device with the Deallocate Device (SYS$DALLOC) system service to make it
available for other processes.

At image exit, the system automatically deallocates devices allocated by the
image.

23.18 Mounting, Dismounting, and Initializing Volumes
This section introduces you to using system services to mount, dismount, and
initialize disk and tape volumes.

23.18.1 Mounting a Volume
Mounting a volume establishes a link between a volume, a device, and a process.
A volume, or volume set, must be mounted before I/O operations can be performed
on the volume. You interactively mount or dismount a volume from the DCL
command stream with the MOUNT or DISMOUNT command. A process can also
mount or dismount a volume or volume set programmatically using the Mount
Volume (SYS$MOUNT) or the Dismount Volume (SYS$DISMOU) system service,
respectively.

Mounting a volume involves two operations:

1. Place the volume on the device and start the device (by pressing the START
or LOAD button).

2. Mount the volume with the SYS$MOUNT system service.

System Service Input/Output Operations 23–33

System Service Input/Output Operations
23.18 Mounting, Dismounting, and Initializing Volumes

23.18.1.1 Calling the SYS$MOUNT System Service
The Mount Volume (SYS$MOUNT) system service allows a process to mount a
single volume or a volume set. When you call the SYS$MOUNT system service,
you must specify a device name.

The SYS$MOUNT system service has a single argument, which is the address of
a list of item descriptors. The list is terminated by a longword of binary zeros.
Figure 23–8 shows the format of an item descriptor.

Figure 23–8 SYS$MOUNT Item Descriptor

ZK−1705−GE

Return length address

Buffer address

Item code Buffer length

31 015

Most item descriptors do not have to be in any order. To mount volume sets,
you must specify one item descriptor per device and one item descriptor per
volume; you must specify the descriptors for the volumes in the same order as the
descriptors for the devices on which the volumes are loaded.

For item descriptors other than device and volume names, if you specify the same
item descriptor more than once, the last occurrence of the descriptor is used.

The following example illustrates a call to SYS$MOUNT. The call is equivalent to
the DCL command that precedes the example.

$ MOUNT/SYSTEM/NOQUOTA DRA4:,DRA5: USER01,USER02 USERD$

#include <descrip.h>
#include <lib$routines.h>
#include <mntdef.h>
#include <starlet.h>
#include <stdio.h>

.

.

.

struct {
unsigned short buflen, item_code;
void *bufaddr;
int *retlenaddr;

}itm;

struct itm itm[7];

main() {
.
.
.

unsigned int status, flags;

23–34 System Service Input/Output Operations

System Service Input/Output Operations
23.18 Mounting, Dismounting, and Initializing Volumes

$DESCRIPTOR(dev1,"DRA4:");
$DESCRIPTOR(vol1,"USER01");
$DESCRIPTOR(dev2,"DRA5:");
$DESCRIPTOR(vol2,"USER02");
$DESCRIPTOR(log,"USERD$:");

flags = MNT$M_SYSTEM | MNT$M_NODISKQ;

i = 0;
itm[i].buflen = sizeof(flags);
itm[i].item_code = MNT$_FLAGS;
itm[i].bufaddr = flags;
itm[i++].retlenaddr = NULL;

itm[i].buflen = dev1.dsc$w_length;
itm[i].item_code = MNT$_DEVNAM;
itm[i].bufaddr = dev1.dsc$a_pointer;
itm[i++].retlenaddr = NULL;

itm[i].buflen = vol1.dsc$w_length;
itm[i].item_code = MNT$_VOLNAM;
itm[i].bufaddr = vol1.dsc$a_pointer;
itm[i++].retlenaddr = NULL;

itm[i].buflen = dev2.dsc$w_length;
itm[i].item_code = MNT$_DEVNAM;
itm[i].bufaddr = dev2.dsc$a_pointer;
itm[i++].retlenaddr = NULL;

itm[i].buflen = vol2.dsc$w_length;
itm[i].item_code = MNT$_VOLNAM;
itm[i].bufaddr = vol2.dsc$a_pointer;
itm[i++].retlenaddr = NULL;

itm[i].buflen = log.dsc$w_length;
itm[i].item_code = MNT$_LOGNAM;
itm[i].bufaddr = log.dsc$a_pointer;
itm[i++].retlenaddr = NULL;

itm[i].buflen = 0;
itm[i].item_code = 0;
itm[i].bufaddr = NULL;
itm[i++].retlenaddr = NULL;

.

.

.
status = SYS$MOUNT (itm);
if (!$VMS_STATUS_SUCCESS(status))

LIB$SIGNAL(status);
.
.
.

}

23.18.1.2 Calling the SYS$DISMOU System Service
The SYS$DISMOU system service allows a process to dismount a volume or
volume set. When you call SYS$DISMOU, you must specify a device name. If the
volume mounted on the device is part of a fully mounted volume set, and you do
not specify flags, the whole volume set is dismounted.

The following example illustrates a call to SYS$DISMOU. The call dismounts the
volume set mounted in the previous example.

System Service Input/Output Operations 23–35

System Service Input/Output Operations
23.18 Mounting, Dismounting, and Initializing Volumes

$DESCRIPTOR(dev1_desc,"DRA4:");
.
.
.

status = SYS$DISMOU(&dev1_desc); /* devnam - device */
.
.
.

23.18.2 Initializing Volumes
Initializing a volume writes a label on the volume, sets protection and ownership
for the volume, formats the volume (depending on the device type), and overwrites
data already on the volume.

You interactively initialize a volume from the DCL command stream using the
INITIALIZE command. A process can programmatically initialize a volume using
the Initialize Volume (SYS$INIT_VOL) system service.

23.18.2.1 Calling the Initialize Volume System Service
You must specify a device name and a new volume name when you call the
SYS$INIT_VOL system service. You can also use the itmlst argument of $INIT_
VOL to specify options for the initialization. For example, you can specify that
data compaction should be performed by specifying the INIT$_COMPACTION
item code. See the HP OpenVMS System Services Reference Manual for more
information on initialization options.

Before initializing the volume with SYS$INIT_VOL, be sure you have placed the
volume on the device and started the device (by pressing the START or LOAD
button).

The default format for files on disk volumes is called Files-11 On-Disk Structure
Level 2. Files-11 On-Disk Structure Level 1 format, available on VAX systems,
is used by other HP operating systems, including RSX-11M, RSX-11M-PLUS,
RSX-11D, and IAS, but is not supported on Alpha systems. For more information,
see the HP OpenVMS System Manager’s Manual.

Here are two examples of calling SYS$INIT_VOL programmatically: one from a
C program and one from a BASIC program.

The following example illustrates a call to SYS$INIT_VOL from HP C:

#include <descrip.h>
#include <initdef.h>
#include <lib$routines.h>
#include <starlet.h>
#include <stsdef.h>

struct item_descrip_3
{

unsigned short buffer_size;
unsigned short item_code;
void *buffer_address;
unsigned short *return_length;

};

23–36 System Service Input/Output Operations

System Service Input/Output Operations
23.18 Mounting, Dismounting, and Initializing Volumes

main ()
{

unsigned long
density_code,
status;

$DESCRIPTOR(drive_dsc, "MUA0:");
$DESCRIPTOR(label_dsc, "USER01");
struct
{

struct item_descrip_3 density_item;
long terminator;

} init_itmlst;

/*
** Initialize the input item list.
*/

density_code = INIT$K_DENSITY_6250_BPI;
init_itmlst.density_item.buffer_size = 4;
init_itmlst.density_item.item_code = INIT$_DENSITY;
init_itmlst.density_item.buffer_address = &density_code;

init_itmlst.terminator = 0;

/*
** Initialize the volume.
*/

status = SYS$INIT_VOL (&drive_dsc, &label_dsc, &init_itmlst);

/*
** Report an error if one occurred.
*/

if (!$VMS_STATUS_SUCCESS (status))
LIB$STOP (status);

}

The following example illustrates a call to SYS$INIT_VOL from VAX BASIC:

OPTION TYPE = EXPLICIT

%INCLUDE ’$INITDEF’ %FROM %LIBRARY

EXTERNAL LONG FUNCTION SYS$INIT_VOL

RECORD ITEM_DESC
VARIANT
CASE

WORD BUFLEN
WORD ITMCOD
LONG BUFADR
LONG LENADR

CASE
LONG TERMINATOR

END VARIANT
END RECORD

DECLARE LONG RET_STATUS, &
ITEM_DESC INIT_ITMLST(2)

! Initialize the input item list.

INIT_ITMLST(0)::ITMCOD = INIT$_READCHECK
INIT_ITMLST(1)::TERMINATOR = 0

! Initialize the volume.

RET_STATUS = SYS$INIT_VOL ("DJA21:" BY DESC, "USERVOLUME" BY DESC,
INIT_ITMLST() BY REF)

System Service Input/Output Operations 23–37

System Service Input/Output Operations
23.18 Mounting, Dismounting, and Initializing Volumes

23.18.2.2 Expanding Volumes Dynamically
OpenVMS dynamic volume expansion (DVE) allows you to expand explicitly a file
system if the container is itself expandable. The container can be expanded by
the following methods:

• By adding a dissimilar device into a shadow set and then removing the
smaller member of the set

• By using the HSV controller to add storage to a unit

If you use only parts of disks for performance reasons, and then if your
application suddenly needs more storage space, DVE lets you expand without
having to take the application offline.

You prepare the disks for future volume expansion by using either the SYS$INIT_
VOL system service, or the DCL SET VOLUME command with the /LIMIT=nn
and /SIZE[=nnnn] qualifiers. The SET VOLUME/LIMIT=nn specifies the new
maximum volume size and causes the storage bitmap to be reallocated and
extended. The SET VOLUME/ SIZE[=nnnn] specifies that the logical volume size
is extended to the size requested. If no value is specified in the command, the size
is extended to the space available on the device. Both qualifiers can be combined
in the same command. Both qualifiers can be combined to increase the volume
expansion limit and expand the volume in one operation.

The volume must be mounted privately (nonshared disk) and allocated to the
particular process. But once prepared, the file system size can be grown as many
times as you would like, up to the size specified in the preparation command.

For more information about DVE, see the HP OpenVMS DCL Dictionary: N–Z,
the HP OpenVMS System Services Reference Manual: GETUTC–Z, and the HP
OpenVMS System Manager’s Manual.

23.19 Formatting Output Strings
When you are preparing output strings for a program, you may need to insert
variable information into a string prior to output, or you may need to convert
a numeric value to an ASCII string. The Formatted ASCII Output (SYS$FAO)
system service performs these functions.

Input to the SYS$FAO system service consists of the following:

• A control string that contains the fixed text portion of the output and
formatting directives. The directives indicate the position within the string
where substitutions are to be made, and describe the data type and length of
the input values that are to be substituted or converted.

• An output buffer to contain the string after conversions and substitutions
have been made.

• An optional argument indicating a word to receive the final length of the
formatted output string.

• Parameters that provide arguments for the formatting directives.

The following example shows a call to the SYS$FAO system service to format an
output string for a SYS$QIOW macro. Complete details on how to use SYS$FAO,
with additional examples, are provided in the description of the SYS$FAO system
service in the HP OpenVMS System Services Reference Manual.

23–38 System Service Input/Output Operations

System Service Input/Output Operations
23.19 Formatting Output Strings

#include <descrip.h>
#include <lib$routines.h>
#include <ssdef.h>
#include <starlet.h>
#include <stdio.h>
#include <stsdef.h>

main() {

unsigned int status, faolen;
char faobuf[80];
$DESCRIPTOR(faostr,"FILE !AS DOES NOT EXIST"); !
$DESCRIPTOR(outbuf, faobuf); "
$DESCRIPTOR(filespec,"DISK$USER:MYFILE.DAT"); #

status = SYS$FAO(&faostr, &outlen, &outbuf, &filespec); $
if (!$VMS_STATUS_SUCCESS(status))

LIB$SIGNAL(status);
.
.
.

status = SYS$QIOW(. . . faobuf, outlen, . . .); %
if (!$VMS_STATUS_SUCCESS(status))

LIB$SIGNAL(status);
.
.
.

}

! FAOSTR provides the FAO control string. !AS is an example of an FAO
directive: it requires an input parameter that specifies the address of a
character string descriptor. When SYS$FAO is called to format this control
string, !AS will be substituted with the string whose descriptor address is
specified.

" FAODESC is a character string descriptor for the output buffer; SYS$FAO
writes the string into the buffer, and writes the length of the final formatted
string in the low-order word of FAOLEN. (A longword is reserved so that it
can be used for an input argument to the SYS$QIOW macro.)

FILESPEC is a character string descriptor defining an input string for the
FAO directive !AS.

$ The call to SYS$FAO specifies the control string, the output buffer and length
fields, and the parameter P1, which is the address of the string descriptor for
the string to be substituted.

% When SYS$FAO completes successfully, SYS$QIOW writes the following
output string:

FILE DISK$USER:MYFILE.DAT DOES NOT EXIST

23.20 Mailboxes
Mailboxes are virtual devices that can be used for communication among
processes. You accomplish actual data transfer by using OpenVMS RMS or I/O
services. When the Create Mailbox and Assign Channel (SYS$CREMBX) system
service creates a mailbox, it also assigns a channel to it for use by the creating
process. Other processes can then assign channels to the mailbox using either
the SYS$CREMBX or SYS$ASSIGN system service.

System Service Input/Output Operations 23–39

System Service Input/Output Operations
23.20 Mailboxes

The SYS$CREMBX system service creates the mailbox. The SYS$CREMBX
system service identifies a mailbox by a user-specified logical name and assigns
it an equivalence name. The equivalence name is a physical device name in the
format MBAn, where n is a unit number. The equivalence name has the terminal
attribute.

When another process assigns a channel to the mailbox with the SYS$CREMBX
or SYS$ASSIGN system service, it can identify the mailbox by its logical name.
The service automatically translates the logical name. The process can obtain
the MBAn name either by translating the logical name (with the SYS$TRNLNM
system service), or by calling the Get Device/Volume Information (SYS$GETDVI)
system service to obtain the unit number and the physical device name.

On VAX systems, channels assigned to mailboxes can be either bidirectional or
unidirectional. Bidirectional channels (read/write) allow both SYS$QIO read and
SYS$QIO write requests to be issued to the channel. Unidirectional channels
(read-only or write-only) allow only a read request or a write request to the
channel. The unidirectional channels and unidirectional $QIO function modifiers
provide for greater synchronization between users of the mailbox.

On VAX systems, the Create Mailbox and Assign Channel (SYS$CREMBX) and
Assign I/O Channel (SYS$ASSIGN) system services use the flags argument to
enable unidirectional channels. If the flags argument is not specified or is zero,
then the channel assigned to the mailbox is bidirectional (read/write). For more
information, see the discussion and programming examples in the mailbox driver
chapter in the HP OpenVMS I/O User’s Reference Manual. Chapter 3 of this
manual also discusses the use of mailboxes.

Mailboxes are either temporary or permanent. You need the user privileges
TMPMBX and PRMMBX to create temporary and permanent mailboxes,
respectively.

For a temporary mailbox, the SYS$CREMBX service enters the logical name and
equivalence name in the logical name table LNM$TEMPORARY_MAILBOX. This
logical name table name usually specifies the LNM$JOB logical name table name.
The system deletes a temporary mailbox when no more channels are assigned to
it.

For a permanent mailbox, the SYS$CREMBX service enters the logical name and
equivalence name in the logical name table LNM$PERMANENT_MAILBOX. This
logical name table name usually specifies the LNM$SYSTEM logical name table
name. Permanent mailboxes continue to exist until they are specifically marked
for deletion with the Delete Mailbox (SYS$DELMBX) system service.

The following example shows how processes can communicate by means of a
mailbox:

/* Process ORION */

#include <descrip.h>
#include <iodef.h>
#include <lib$routines.h>
#include <ssdef.h>
#include <starlet.h>
#include <stdio.h>
#define MBXBUFSIZ 128
#define MBXBUFQUO 384

23–40 System Service Input/Output Operations

System Service Input/Output Operations
23.20 Mailboxes

/* I/O status block */
struct {

unsigned short iostat, iolen;
unsigned int remainder;

}mbxiosb;

main() {
void *p1, mbxast();
char mbuffer[MBXBUFSIZ], prmflg=0;
unsigned short mbxchan, mbxiosb;
unsigned int status, outlen;
unsigned int mbuflen=MBXBUFSIZ, bufquo=MBXBUFQUO, promsk=0;
$DESCRIPTOR(mblognam,"GROUP100_MAILBOX");

/* Create a mailbox */
status = SYS$CREMBX(prmflg, /* Permanent or temporary */ !

&mbxchan, /* chan - channel number */
mbuflen, /* maxmsg - buffer length */
bufquo, /* bufquo - quota */
promsk, /* promsk - protection mask */
0, /* acmode - access mode */
&mblognam, /* lognam - mailbox logical name */
0); /* flags - options */

if (!$VMS_STATUS_SUCCESS(status))
LIB$SIGNAL(status);

.

.

.
/* Request I/O */

status = SYS$QIO(0, /* efn - event flag */ "
mbxchan, /* chan - channel number */
IO$_READVBLK, /* func - function modifier */
&mbxiosb, /* iosb - I/O status block */
&mbxast, /* astadr - AST routine */
&mbuffer, /* p1 - output buffer */
mbuflen); /* p2 - length of buffer */

if (!$VMS_STATUS_SUCCESS(status))
LIB$SIGNAL(status);

.

.

.

}

void mbxast(void) { #

if (mbxiosb.iostat != SS$_NORMAL)

status = SYS$QIOW(. . . , &mbuffer, &outlen, . . .)
if (!$VMS_STATUS_SUCCESS(status))

LIB$SIGNAL(status);

return;
}

/* Process Cygnus */

#include <descrip.h>
#include <iodef.h>
#include <lib$routines.h>
#include <ssdef.h>
#include <starlet.h>
#include <stdio.h>
#include <stsdef.h>
#define MBXBUFSIZ 128

main() {

System Service Input/Output Operations 23–41

System Service Input/Output Operations
23.20 Mailboxes

unsigned short int mailchan;
unsigned int status, outlen;
char outbuf[MBXBUFSIZ];
$DESCRIPTOR(mailbox,"GROUP100_MAILBOX");

status = SYS$ASSIGN(&mailbox, &mailchan, 0, 0, 0); $
if (!$VMS_STATUS_SUCCESS(status))

LIB$SIGNAL(status);
.
.
.

status = SYS$QIOW(0, mailchan, 0, 0, 0, 0, &outbuf, outlen, 0, 0, 0, 0)
if (!$VMS_STATUS_SUCCESS(status))

LIB$SIGNAL(status);
.
.
.

}

! Process ORION creates the mailbox and receives the channel number at
MBXCHAN.

The prmflg argument indicates that the mailbox is a temporary mailbox.
The logical name is entered in the LNM$TEMPORARY_MAILBOX logical
name table.

The maxmsg argument limits the size of messages that the mailbox can
receive. Note that the size indicated in this example is the same size as the
buffer (MBUFFER) provided for the SYS$QIO request. A buffer for mailbox
I/O must be at least as large as the size specified in the maxmsg argument.

When a process creates a temporary mailbox, the amount of system memory
allocated for buffering messages is subtracted from the process’s buffer quota.
Use the bufquo argument to specify how much of the process quota should
be used for mailbox message buffering.

Mailboxes are protected devices. By specifying a protection mask with the
promsk argument, you can restrict access to the mailbox. (In this example,
all bits in the mask are clear, indicating unlimited read and write access.)

" After creating the mailbox, process ORION calls the SYS$QIO system service,
requesting that it be notified when I/O completes (that is, when the mailbox
receives a message) by means of an AST interrupt. The process can continue
executing, but the AST service routine at MBXAST will interrupt and begin
executing when a message is received.

When a message is sent to the mailbox (by CYGNUS), the AST is delivered
and ORION responds to the message. Process ORION gets the length of the
message from the first word of the I/O status block at MBXIOSB and places it
in the longword OUTLEN so it can pass the length to SYS$QIOW_S.

$ Process CYGNUS assigns a channel to the mailbox, specifying the logical
name the process ORION gave the mailbox. The SYS$QIOW system service
writes a message from the output buffer provided at OUTBUF.

Note that on a write operation to a mailbox, the I/O is not complete until
the message is read, unless you specify the IO$M_NOW function modifier.
Therefore, if SYS$QIOW (without the IO$M_NOW function modifier) is used
to write the message, the process will not continue executing until another
process reads the message.

23–42 System Service Input/Output Operations

System Service Input/Output Operations
23.20 Mailboxes

23.20.1 Mailbox Name
The lognam argument to the SYS$CREMBX service specifies a descriptor that
points to a character string for the mailbox name.

Translation of the lognam argument proceeds as follows:

1. The current name string is prefixed with MBX$ and the result is subject to
logical name translation.

2. If the result is a logical name, step 1 is repeated until translation does not
succeed or until the number of translations performed exceeds the number
specified by the SYSGEN parameter LNM$C_MAXDEPTH.

3. The MBX$ prefix is stripped from the current name string that could not be
translated. This current string is made a logical name with an equivalence
name MBAn (n is a number assigned by the system).

For example, assume that you have made the following logical name assignment:

$ DEFINE MBX$CHKPNT CHKPNT_001

Assume also that your program contains the following statements:

$DESCRIPTOR(mbxdesc,"CHKPNT");
.
.
.

status = SYS$CREMBX(. . . ,&mbxdesc, . . .);

The following logical name translation takes place:

1. MBX$ is prefixed to CHKPNT.

2. MBX$CHKPNT is translated to CHKPNT_001.

Because further translation is unsuccessful, the logical name CHKPNT_001 is
created with the equivalence name MBAn (n is a number assigned by the system).

There are two exceptions to the logical name translation method discussed in this
section:

• If the name string starts with an underscore (_), the operating system strips
the underscore and considers the resultant string to be the actual name (that
is, further translation is not performed).

• If the name string is the result of a logical name translation, then the name
string is checked to see whether it has the terminal attribute. If the name
string is marked with the terminal attribute, the operating system considers
the resultant string to be the actual name (that is, further translation is not
performed).

23.20.2 System Mailboxes
The system uses mailboxes for communication among system processes. All
system mailbox messages contain, in the first word of the message, a constant
that identifies the sender of the message. These constants have symbolic names
(defined in the $MSGDEF macro) in the following format:

MSG$_sender

System Service Input/Output Operations 23–43

System Service Input/Output Operations
23.20 Mailboxes

The symbolic names included in the $MSGDEF macro and their meanings are as
follows:

Symbolic Name Meaning

MSG$_TRMUNSOLIC Unsolicited terminal data

MSG$_CRUNSOLIC Unsolicited card reader data

MSG$_ABORT Network partner aborted link

MSG$_CONFIRM Network connect confirm

MSG$_CONNECT Network inbound connect initiate

MSG$_DISCON Network partner disconnected

MSG$_EXIT Network partner exited prematurely

MSG$_INTMSG Network interrupt message; unsolicited data

MSG$_PATHLOST Network path lost to partner

MSG$_PROTOCOL Network protocol error

MSG$_REJECT Network connect reject

MSG$_THIRDPARTY Network third-party disconnect

MSG$_TIMEOUT Network connect timeout

MSG$_NETSHUT Network shutting down

MSG$_NODEACC Node has become accessible

MSG$_NODEINACC Node has become inaccessible

MSG$_EVTAVL Events available to DECnet Event Logger

MSG$_EVTRCVCHG Event receiver database change

MSG$_INCDAT Unsolicited incoming data available

MSG$_RESET Request to reset the virtual circuit

MSG$_LINUP PVC line up

MSG$_LINDWN PVC line down

MSG$_EVTXMTCHG Event transmitter database change

The remainder of the message contains variable information, depending on the
system component that is sending the message.

The format of the variable information for each message type is documented with
the system function that uses the mailbox.

23.20.3 Mailboxes for Process Termination Messages
When a process creates another process, it can specify the unit number of a
mailbox as an argument to the Create Process ($CREPRC) system service. When
you delete the created process, the system sends a message to the specified
termination mailbox.

You cannot use a mailbox in memory shared by multiple processors as a process
termination mailbox.

23–44 System Service Input/Output Operations

System Service Input/Output Operations
23.21 Example of Using I/O Services

23.21 Example of Using I/O Services
In the following Fortran example, the first program, SEND.FOR, creates a
mailbox named MAIL_BOX, writes data to it, and then indicates the end of the
data by writing an end-of-file message.

The second program, RECEIVE.FOR, creates a mailbox with the same logical
name, MAIL_BOX. It reads the messages from the mailbox into an array. It stops
the read operations when a read operation generates an end-of-file message and
the second longword of the I/O status block is nonzero. By checking that the I/O
status block is nonzero, the second program confirms that the writing process
sent the end-of-file message.

The processes use common event flag number 64 to ensure that SEND.FOR
does not exit until RECEIVE.FOR has established a channel to the mailbox. (If
RECEIVE.FOR executes first, an error occurs because SYS$ASSIGN cannot find
the mailbox.)

SEND.FOR
INTEGER STATUS

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = ’MAIL_BOX’)
INTEGER*2 MBX_CHAN

! Mailbox message
CHARACTER*80 MBX_MESSAGE
INTEGER LEN

CHARACTER*80 MESSAGES (255)
INTEGER MESSAGE_LEN (255)
INTEGER MAX_MESSAGE
PARAMETER (MAX_MESSAGE = 255)

! I/O function codes and status block
INCLUDE ’($IODEF)’
INTEGER*4 WRITE_CODE
INTEGER*2 IOSTAT,
2 MSG_LEN
INTEGER READER_PID
COMMON /IOBLOCK/ IOSTAT,
2 MSG_LEN,
2 READER_PID

! System routines
INTEGER SYS$CREMBX,
2 SYS$ASCEFC,
2 SYS$WAITFR,
2 SYS$QIOW

! Create the mailbox.
STATUS = SYS$CREMBX (,
2 MBX_CHAN,
2 ,,,,
2 MBX_NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Fill MESSAGES array
.
.
.

System Service Input/Output Operations 23–45

System Service Input/Output Operations
23.21 Example of Using I/O Services

! Write the messages.
DO I = 1, MAX_MESSAGE
WRITE_CODE = IO$_WRITEVBLK .OR. IO$M_NOW
MBX_MESSAGE = MESSAGES(I)
LEN = MESSAGE_LEN(I)
STATUS = SYS$QIOW (,

2 %VAL(MBX_CHAN), ! Channel
2 %VAL(WRITE_CODE), ! I/O code
2 IOSTAT, ! Status block
2 ,,
2 %REF(MBX_MESSAGE), ! P1
2 %VAL(LEN),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTAT) CALL LIB$SIGNAL (%VAL(STATUS))

END DO

! Write end of file
WRITE_CODE = IO$_WRITEOF .OR. IO$M_NOW
STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(WRITE_CODE), ! End of file code
2 IOSTAT, ! Status block
2 ,,,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTAT) CALL LIB$SIGNAL (%VAL(IOSTAT))

.

.

.
! Make sure cooperating process can read the information
! by waiting for it to assign a channel to the mailbox.

STATUS = SYS$ASCEFC (%VAL(64),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

RECEIVE.FOR
INTEGER STATUS

INCLUDE ’($IODEF)’
INCLUDE ’($SSDEF)’

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = ’MAIL_BOX’)
INTEGER*2 MBX_CHAN

! QIO function code
INTEGER READ_CODE

! Mailbox message
CHARACTER*80 MBX_MESSAGE
INTEGER*4 LEN

! Message arrays
CHARACTER*80 MESSAGES (255)
INTEGER*4 MESSAGE_LEN (255)

! I/O status block
INTEGER*2 IOSTAT,
2 MSG_LEN
INTEGER READER_PID
COMMON /IOBLOCK/ IOSTAT,
2 MSG_LEN,
2 READER_PID

23–46 System Service Input/Output Operations

System Service Input/Output Operations
23.21 Example of Using I/O Services

! System routines
INTEGER SYS$ASSIGN,
2 SYS$ASCEFC,
2 SYS$SETEF,
2 SYS$QIOW

! Create the mailbox and let the other process know
STATUS = SYS$ASSIGN (MBX_NAME,
2 MBX_CHAN,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$ASCEFC (%VAL(64),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Read first message
READ_CODE = IO$_READVBLK .OR. IO$M_NOW
LEN = 80
STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(READ_CODE), ! Function code
2 IOSTAT, ! Status block
2 ,,
2 %REF(MBX_MESSAGE), ! P1
2 %VAL(LEN),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTAT) .AND.
2 (IOSTAT .NE. SS$_ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL(IOSTAT))

ELSE IF (IOSTAT .NE. SS$_ENDOFFILE) THEN
I = 1
MESSAGES(I) = MBX_MESSAGE
MESSAGE_LEN(I) = MSG_LEN

END IF

! Read messages until cooperating process writes end-of-file
DO WHILE (.NOT. ((IOSTAT .EQ. SS$_ENDOFFILE) .AND.
2 (READER_PID .NE. 0)))

STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(READ_CODE), ! Function code
2 IOSTAT, ! Status block
2 ,,
2 %REF(MBX_MESSAGE), ! P1
2 %VAL(LEN),,,,) ! P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTAT) .AND.

2 (IOSTAT .NE. SS$_ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL(IOSTAT))

ELSE IF (IOSTAT .NE. SS$_ENDOFFILE) THEN
I = I + 1
MESSAGES(I) = MBX_MESSAGE
MESSAGE_LEN(I) = MSG_LEN
END IF

END DO
.
.
.

System Service Input/Output Operations 23–47

System Service Input/Output Operations
23.22 Fast I/O and Fast Path Features (Alpha and I64 Only)

23.22 Fast I/O and Fast Path Features (Alpha and I64 Only)
Fast I/O and Fast Path are two optional features that can provide improved
I/O performance. Performance improvement is achieved by reducing the CPU
cost per I/O request, and improving symmetric multiprocessing (SMP) scaling
of I/O operations. The CPU cost per I/O is reduced by optimizing code for high-
volume I/O and by using better SMP CPU memory cache. SMP scaling of I/O is
increased by reducing the number of spinlocks taken per I/O and by substituting
finer-granularity spinlocks for global spinlocks.

The improvements follow a division that already exists between the device-
independent and device-dependent layers in the OpenVMS I/O subsystem. The
device-independent overhead is addressed by Fast I/O, which is a set of system
services that can substitute for certain $QIO operations. Using these services
requires some coding changes in existing applications, but the changes are
usually modest and well contained. The device-dependent overhead is addressed
by Fast Path, which is an optional performance feature that creates a ‘‘fast path’’
to the device. It requires no application changes.

Fast I/O and Fast Path can be used independently. However, together they can
provide a reduction in CPU cost per I/O on uniprocessor and on multiprocessor
systems.

23.22.1 Fast I/O (Alpha and I64 Only)
Fast I/O is a set of three system services, SYSIO_SETUP, SYSIO_PERFORM,
and SYS$IO_CLEANUP, that were developed as an alternative to $QIO.
These services are not a $QIO replacement; $QIO is unchanged, and $QIO
interoperation with these services is fully supported. Rather, the services
substitute for a subset of $QIO operations, namely, only the high-volume
read/write I/O requests.

The Fast I/O services support 64-bit addresses for data transfers to and from disk
and tape devices.

While Fast I/O services are available on OpenVMS VAX, the performance
advantage applies only to OpenVMS Alpha and OpenVMS I64. OpenVMS VAX
has a run-time library (RTL) compatibility package that translates the Fast I/O
service requests to $QIO system service requests, so one set of source code can be
used on VAX, Alpha, and I64 systems.

23.22.1.1 Fast I/O Benefits
The performance benefits of Fast I/O result from streamlining high-volume I/O
requests. The Fast I/O system service interfaces are optimized to avoid the
overhead of general-purpose services. For example, I/O request packets (IRPs)
are now permanently allocated and used repeatedly for I/O rather than allocated
and deallocated anew for each I/O.

The greatest benefits stem from having user data buffers and user I/O status
structures permanently locked down and mapped using system space. This
allows Fast I/O to do the following:

• Avoid per-I/O buffer lockdown or unlocking for direct I/O.

• Avoid allocation and deallocation for buffered I/O of a separate system buffer,
because the user buffer is always addressable.

23–48 System Service Input/Output Operations

System Service Input/Output Operations
23.22 Fast I/O and Fast Path Features (Alpha and I64 Only)

• Complete Fast I/O operations at IPL 8, thereby avoiding the interrupt
chaining usually required by the more general-purpose $QIO system service.
For each I/O, this eliminates the IPL 4 IOPOST interrupt and a kernel AST.

In total, Fast I/O services eliminate four spinlock acquisitions per I/O (two for the
MMG spinlock and two for the SCHED spinlock). The reduction in CPU cost per
I/O is 20% for uniprocessor systems and 10% for multiprocessor systems.

23.22.1.2 Buffer Objects
Buffer objects accomplish the lockdown of user-process data structures. Buffer
objects are process entities that are associated with a process’s virtual address
range. When a buffer object is created, all its physical pages in its address range
are locked in memory and can be double-mapped into system space. These locked
pages in a process’s address range cannot be freed until the buffer object has been
deleted. The Fast I/O environment uses this feature by locking the buffer object
itself during $IO_SETUP. This prevents the buffer object and its associated pages
from being deleted. The buffer object is unlocked during $IO_CLEANUP, or at
image rundown. After creating a buffer object, the process remains fully pageable
and swappable and the process retains normal virtual memory access to its pages
in the buffer object.

If the buffer object contains process data structures to be passed to an OpenVMS
system service, the OpenVMS system can use the buffer object to avoid any
probing, lockdown, and unlocking overhead associated with these process data
structures. Additionally, if the buffer object has performed double-mapping into
system space, this allows the OpenVMS system direct access to the process
memory from system context.

To date, only the Fast I/O services are supported with buffer objects. For example,
a buffer object allows a programmer to eliminate I/O memory management
overhead. On each I/O, each page of a user data buffer is probed and then locked
down on I/O initiation and unlocked on I/O completion. Instead of incurring
this overhead for each I/O, it can be done once at buffer object creation time.
Subsequent I/O operations involving the buffer object can completely avoid this
memory management overhead.

System Space Window Buffer Objects
The system space window buffer object allows several I/O related tasks to be
performed entirely from system context at high IPL, without having to assume
process context. When a buffer object is created, the system maps by default a
section of system space (S2) to process pages associated with the buffer object.
This protected system space window allows read and write access only from
kernel mode. Because all of system space is equally accessible from within any
context, it is now possible to avoid the context switch to assume the original
user’s process context. Optionally, the system space window can be in S0/S1
space, or it can be suppressed.

Buffer Object System Services
Two system services are used to create and delete buffer objects: SYS$CREATE_
BUFOBJ_64 and SYS$DELETE_BUFOBJ. Both services can be called from any
access mode. To create a buffer object, the SYS$CREATE_BUFOBJ_64 system
service is called. This service expects as inputs an existing process memory range
and returns a handle for the buffer object. The handle is an opaque identifier
used to identify the buffer object on future requests. The SYS$DELETE_BUFOBJ
system service is used to delete the buffer object and accepts as input the handle.
Although image rundown deletes all existing buffer objects, it is good practice for
the application to clean up properly.

System Service Input/Output Operations 23–49

System Service Input/Output Operations
23.22 Fast I/O and Fast Path Features (Alpha and I64 Only)

Buffer Object Management
Buffer objects require system management. Because buffer objects tie up physical
memory, extensive use of buffer objects require system management planning.
All the bytes of memory in the buffer object are deducted from the systemwide
SYSGEN parameter MAXBOBMEM (maximum buffer object memory). System
managers must set this parameter correctly for the application loads that run on
their systems. Additionally, two other SYSGEN parameters MAXBOBS0S1
and MAXBOBS2 are available for system managers. MAXBOBS0S1 and
MAXBOBS2, however, are now regarded as obsolete system parameters. Initially,
the MAXBOBS0S1 and MAXBOBS2 parameters were intended to ensure that
users could not adversely affect the system by creating hugh buffer objects. But
as users began to use buffer objects more widely, managing the combination of
these parameters proved to be too complex.

Now, users who want to create buffer objects must either hold the
VMS$BUFFER_OBJECT_USER identifier or execute in executive or kernel
mode. Therefore, these users are considered privileged applications, and the
additional safeguard that these parameters provided is unnecessary.

To determine current usage of system memory resources, enter the following
command:

$SHOW MEMORY/BUFFER_OBJECT

Table 23–5 shows these three parameters and their meanings.

Table 23–5 SYSGEN Buffer Object Parameters

Parameter Meaning

MAXBOBMEM Defines the maximum amount of physical memory, measured in
pagelets, that can be associated with buffer objects.

A page associated with a buffer object is counted against this
parameter only once, even if it is associated with more than one
buffer object at the same time.

Memory resident pages are not counted against this parameter.
However, pages locked in memory through the SYS$LCKPAG
system service are counted.

This is a DYNAMIC parameter.

MAXBOBS0S1 Defines the maximum amount of 32-bit system space, measured
in pagelets, that can be used as windows to buffer objects.

This is a DYNAMIC parameter.

MAXBOBS2 Defines the maximum amount of 64-bit system space, measured
in pagelets, that can be used as windows to buffer objects.

This is a DYNAMIC parameter.

The MAXBOBMEM, MAXBOBS0S1, and MAXBOBS2 parameters default to
100 Alpha pages, but for applications with large buffer pools it can be set much
larger. To prevent user-mode code from tying up excessive physical memory,
user-mode callers of $CREATE_BUFOBJ_64 must have a new system identifier,
VMS$BUFFER_OBJECT_USER, assigned. The system manager can assign
this identifier with the DCL command SET ACL command to a protected
subsystem or application that creates buffer objects from user mode. It may
also be appropriate to grant the identifier to a particular user with the Authorize
utility command GRANT/IDENTIFIER, for example, to a programmer who is
working on a development system.

23–50 System Service Input/Output Operations

System Service Input/Output Operations
23.22 Fast I/O and Fast Path Features (Alpha and I64 Only)

Buffer Object Restrictions
There are several buffer object restrictions which are listed as follows:

• Buffer objects can only be associated with process space (P0, P1, or P2) pages.

• PFN-mapped pages cannot be associated with buffer objects.

• The special buffer object type without associated system space can only be
used to describe Fast I/O data buffers. The IOSA must always be associated
with a full buffer object with system space.

Further Fast I/O Information
For complete information about using Fast I/O, the Fast I/O system services,
and the buffer objects system services that are in the following list, see the HP
OpenVMS I/O User’s Reference Manual, and the HP OpenVMS System Services
Reference Manual: A–GETUAI and the HP OpenVMS System Services Reference
Manual: GETUTC–Z:

SYS$CREATE_BUFOBJ_64
SYS$DELETE_BUFOBJ
SYS$IO_SETUP
SYS$IO_PERFORM
SYS$IO_CLEANUP

23.22.2 Fast Path (Alpha and I64 Only)
Like Fast I/O, Fast Path is an optional, high-performance feature designed to
improve I/O performance. By restructuring and optimizing class and port device
driver code around high-volume I/O code paths, Fast Path creates a streamlined
path to the device. Fast Path is of interest to any application where enhanced
I/O performance is desirable. Two examples are database systems and real-time
applications, where the speed of transferring data to disk is often a vital concern.

Using Fast Path features does not require source-code changes. Minor interface
changes are available for expert programmers who want to maximize Fast Path
benefits.

At this time, Fast Path is not available on the OpenVMS VAX operating system.

23.22.2.1 Fast Path Features and Benefits
Fast Path achieves performance gains by reducing CPU time for I/O requests on
both uniprocessor and SMP systems. The performance benefits are produced by:

• Reducing code paths through streamlining for the case of high-volume I/O

• Substituting port-specific spinlocks for global I/O subsystem spinlocks

• Affinitizing an I/O request for a given port to a specific CPU

The performance improvement can best be seen by contrasting the current
OpenVMS I/O scheme to the new Fast Path scheme. While transparent to an
OpenVMS user, each disk and tape device is tied to a specific port interconnect.
All I/O for a device is sent out over its assigned port. Under the current
OpenVMS I/O scheme, a multiprocessor I/O can be initiated on any CPU, but
I/O completion must occur on the primary CPU. Under Fast Path, all I/O for
a given port is affinitized to a specific CPU, eliminating the requirement for
completing the I/O on the primary CPU. This means that the entire I/O can be
initiated and completed on a single CPU. Because I/O operations are no longer
split among different CPUs, performance increases as memory cache thrashing
between CPUs decreases.

System Service Input/Output Operations 23–51

System Service Input/Output Operations
23.22 Fast I/O and Fast Path Features (Alpha and I64 Only)

Fast Path also removes a possible SMP bottleneck on the primary CPU. If
the primary CPU must be involved in all I/O, then once this CPU becomes
saturated, no further increase in I/O throughput is possible. Spreading the I/O
load evenly among CPUs in a multiprocessor system provides greater maximum
I/O throughput on a multiprocessor system.

With most of the I/O code path executing under port-specific spinlocks and with
each port assigned to a specific CPU, a scalable SMP model of parallel operation
exists. Given multiple port and CPUs, I/O can be issued in parallel to a large
degree.

23.22.2.2 Additional Information About Fast Path
For complete information about using Fast Path, see the HP OpenVMS I/O
User’s Reference Manual.

23–52 System Service Input/Output Operations

24
Using Run-Time Library Routines to Access

Operating System Components

This chapter describes the run-time library (RTL) routines that allow access to
various operating system components and it contains the following sections:

Section 24.1 describes how to use RTL routines to make system services return
different types of strings.

Section 24.2 describes how to use RTL routines to provide access to the command
language interpreter.

Section 24.3 describes how to use RTL routines to allow high-level language
programs to use most VAX machine instructions or their Alpha equivalent.

Section 24.4 describes how to use RTL routines to allocate processwide resources
to a single operating system process.

Section 24.5 describes how to use RTL routines to measure performance.

Section 24.6 describes how to use RTL routines to control output formatting.

Section 24.7 describes how to use RTL routines for miscellaneous interface
routines.

Run-time library routines allow access to the following operating system
components:

• System services

• Command language interpreter

• Some VAX machine instructions

24.1 System Service Access Routines
You can usually call the OpenVMS system services directly from your program.
However, system services return only fixed-length strings. In some applications,
you may want the result of a system service to be returned as a character array,
dynamic string, or variable-length string. For this reason, the RTL provides
jacket routines for the system services that return strings.

You call jacket routines exactly as you would the corresponding system service,
but you can pass an output argument of any valid string class. The routines write
the output string using the semantics (fixed, varying, or dynamic) associated with
the string’s descriptor.

The jacket routines follow the conventions established for all RTL routines, except
that the arguments are listed in the order of the arguments for the corresponding
system service. Thus, they may not be listed in the standard RTL order (read,
modify, write).

Using Run-Time Library Routines to Access Operating System Components 24–1

Using Run-Time Library Routines to Access Operating System Components
24.1 System Service Access Routines

For example, the LIB$SYS_ASCTIM routine calls the SYS$ASCTIM system
service to convert a binary date and time value to ASCII text. It returns the
resulting string using the semantics that the calling program specifies in the
destination string argument.

For further information about the operations of the system services, see the HP
OpenVMS System Services Reference Manual.

The RTL routines provide access to only the system services that produce output
strings, which are listed in Table 24–1. The corresponding RTL routines recognize
all VAX string classes.

The RTL does not provide jacket routines for all the system services that accept
strings as input. Your program should pass only fixed-length or dynamic input
strings to all system services and RTL jacket routines.

Table 24–1 System Service Access Routines

Entry Point System Service Function

LIB$SYS_ASCTIM $ASCTIM Converts system time in binary form
to ASCII text

LIB$SYS_FAO $FAO Converts a binary value to ASCII text

LIB$SYS_FAOL $FAOL Converts a binary value to ASCII text,
using a list argument

LIB$SYS_GETMSG $GETMSG Obtains a system or user-defined
message text

LIB$SYS_TRNLOG $TRNLOG Returns the translation of the specified
logical name

24.2 Access to the Command Language Interpreter
Two command language interpreters (CLIs) are available on the operating
system: DCL and MCR. The run-time library provides several routines that
provide access to the CLI callback facility. These routines allow your program to
call the current CLI. In most cases, these routines are called from programs that
execute as part of a command procedure. They allow the command procedure and
the CLI to exchange information.

These routines call the CLI associated with the current process to perform the
specified function. In some cases, however, a CLI is not present. For example, the
program may be running directly as a subprocess or as a detached process. If a
CLI is not present, these routines return the status LIB$_NOCLI. Therefore, you
should be sure that these routines are called when a CLI is active. Table 24–2
lists the RTL routines that access the CLI.

Table 24–2 CLI Access Routines

Entry Point Function

LIB$GET_FOREIGN Gets a command line

LIB$DO_COMMAND Executes a command line after exiting the current
program

(continued on next page)

24–2 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.2 Access to the Command Language Interpreter

Table 24–2 (Cont.) CLI Access Routines

Entry Point Function

LIB$RUN_PROGRAM Runs another program after exiting the current program
(chain)

LIB$GET_SYMBOL Returns the value of a CLI symbol as a string

LIB$DELETE_SYMBOL Deletes a CLI symbol

LIB$SET_SYMBOL Defines or redefines a CLI symbol

LIB$DELETE_LOGICAL Deletes a supervisor-mode process logical name

LIB$SET_LOGICAL Defines or redefines a supervisor-mode process logical
name

LIB$DISABLE_CTRL Disables CLI interception of control characters

LIB$ENABLE_CTRL Enables CLI interception of control characters

LIB$ATTACH Attaches a terminal to another process

LIB$SPAWN Creates a subprocess of the current process

The following routines execute only when the current CLI is DCL:

LIB$GET_SYMBOL
LIB$SET_SYMBOL
LIB$DELETE_SYMBOL
LIB$DISABLE_CTRL
LIB$ENABLE_CTRL
LIB$SPAWN
LIB$ATTACH

24.2.1 Obtaining the Command Line
The LIB$GET_FOREIGN routine returns the contents of the command line that
you use to activate an image. You can use it either to give your program access to
the qualifiers of a foreign command or to prompt for further command line text.

A foreign command is a command that you can define and then use, as if it
were a DCL or MCR command to run a program. When you use the foreign
command at command level, the CLI parses the foreign command only and
activates the image. It ignores any options or qualifiers that you have defined for
the foreign command. Once the CLI has activated the image, the program can
call LIB$GET_FOREIGN to obtain and parse the remainder of the command line
(after the command itself) for whatever options it may contain.

The HP OpenVMS DCL Dictionary describes how to define a foreign command.

The action of LIB$GET_FOREIGN depends on the environment in which the
image is activated:

• If you use a foreign command to invoke the image, you can call LIB$GET_
FOREIGN to obtain the command qualifiers following the foreign command.
You can also use LIB$GET_FOREIGN to prompt repeatedly for more
qualifiers after the command. This technique is illustrated in the following
example.

• If the image is in the SYS$SYSTEM: directory, the image can be invoked
by the DCL command MCR or by the MCR CLI. In this case, LIB$GET_
FOREIGN returns the command line text following the image name.

Using Run-Time Library Routines to Access Operating System Components 24–3

Using Run-Time Library Routines to Access Operating System Components
24.2 Access to the Command Language Interpreter

• If the image is invoked by the DCL command RUN, you can use LIB$GET_
FOREIGN to prompt for additional text.

• If the image is not invoked by a foreign command or by MCR, or if there is no
information remaining on the command line, and the user-supplied prompt
is present, LIB$GET_INPUT is called to prompt for a command line. If the
prompt is not present, LIB$GET_FOREIGN returns a zero-length string.

Example
The following PL/I example illustrates the use of the optional force-prompt
argument to permit repeated calls to LIB$GET_FOREIGN. The command line
text is retrieved on the first pass only; after this, the program prompts from
SYS$INPUT.

EXAMPLE: ROUTINE OPTIONS (MAIN);

%INCLUDE $STSDEF; /* Status-testing definitions */

DECLARE COMMAND_LINE CHARACTER(80) VARYING,
PROMPT_FLAG FIXED BINARY(31) INIT(0),
LIB$GET_FOREIGN ENTRY (CHARACTER(*) VARYING,

CHARACTER(*) VARYING,
FIXED BINARY(15),
FIXED BINARY(31))

OPTIONS(VARIABLE) RETURNS (FIXED BINARY(31)),
RMS$_EOF GLOBALREF FIXED BINARY(31) VALUE;

/* Call LIB$GET_FOREIGN repeatedly to obtain and print
subcommand text. Exit when end-of-file is found. */

DO WHILE (’1’B); /* Do while TRUE */
STS$VALUE = LIB$GET_FOREIGN

(COMMAND_LINE,’Input: ’,,
PROMPT_FLAG);

IF STS$SUCCESS THEN
PUT LIST (’ Command was ’,COMMAND_LINE);

ELSE DO;
IF STS$VALUE ^= RMS$_EOF THEN
PUT LIST (’Error encountered’);

RETURN;
END;

PUT SKIP; /* Skip to next line */
END; /* End of DO WHILE loop */

END;

Assuming that this program is present as SYS$SYSTEM:EXAMPLE.EXE, you
can define the foreign command EXAMPLE to invoke it, as follows:

$ EXAM*PLE :== $EXAMPLE

Note the optional use of the asterisk in the symbol name to denote an abbreviated
command name. This permits the command name to be abbreviated as EXAM,
EXAMP, EXAMPL or to be specified fully as EXAMPLE. See the HP OpenVMS
DCL Dictionary for information about abbreviated command names.

Note that the use of the dollar sign ($) before the image name is required in
foreign commands.

24–4 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.2 Access to the Command Language Interpreter

Now assume that a user runs the image by typing the foreign command and
giving ‘‘subcommands’’ that the program displays:

$ EXAMP Subcommand 1
Command was SUBCOMMAND 1

Input: Subcommand 2
Command was SUBCOMMAND 2

Input: ^Z
$

In this example, Subcommand 1 was obtained from the command line; the
program prompts the user for the second subcommand. The program terminated
when the user pressed the Ctrl/Z key sequence (displayed as ^Z) to indicate
end-of-file.

24.2.2 Chaining from One Program to Another
The LIB$RUN_PROGRAM routine causes the current image to exit at the point
of the call and directs the CLI, if present, to start running another program.
If LIB$RUN_PROGRAM executes successfully, control passes to the second
program; if not, control passes to the CLI. The calling program cannot regain
control. This technique is called chaining.

This routine is provided primarily for compatibility with PDP-11 systems, on
which chaining is used to extend the address space of a system. Chaining may
also be useful in an operating system environment where address space is
severely limited and large images are not possible. For example, you can use
chaining to perform system generation on a small virtual address space because
disk space is lacking.

With LIB$RUN_PROGRAM, the calling program can pass arguments to the
next program in the chain only by using the common storage area. One way to
do this is to direct the calling program to call LIB$PUT_COMMON to pass the
information into the common area. The called program then calls LIB$GET_
COMMON to retrieve the data.

In general, this practice is not recommended. There is no convenient way
to specify the order and type of arguments passed into the common area, so
programs that pass arguments in this way must know about the format of the
data before it is passed. Fortran COMMON or BASIC MAP/COMMON areas
are global OWN storage. When you use this type of storage, it is very difficult
to keep your program modular and AST reentrant. Further, you cannot use
LIB$RUN_PROGRAM if a CLI is present, as with image subprocesses and
detached subprocesses.

Examples
The following PL/I example illustrates the use of LIB$RUN_PROGRAM. It
prompts the user for the name of a program to run and calls the RTL routine to
execute the specified program.

Using Run-Time Library Routines to Access Operating System Components 24–5

Using Run-Time Library Routines to Access Operating System Components
24.2 Access to the Command Language Interpreter

CHAIN: ROUTINE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));
DECLARE LIB$RUN_PROGRAM ENTRY (CHARACTER (*)) /* Address of string

/* descriptor */
RETURNS (FIXED BINARY (31)); /* Return status */

%INCLUDE $STSDEF; /* Include definition of return status values */
DECLARE COMMAND CHARACTER (80);

GET LIST (COMMAND) OPTIONS (PROMPT(’Program to run: ’));
STS$VALUE = LIB$RUN_PROGRAM (COMMAND);

/*
If the function call is successful, the program will terminate
here. Otherwise, return the error status to command level.

*/
RETURN (STS$VALUE);

END CHAIN;

The following COBOL program also demonstrates the use of LIB$RUN_
PROGRAM. When you compile and link these two programs, the first calls
LIB$RUN_PROGRAM, which activates the executable image of the second. This
call results in the following screen display:

THIS MESSAGE DISPLAYED BY PROGRAM PROG2

WHICH WAS RUN BY PROGRAM PROG1

USING LIB$RUN_PROGRAM

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG1.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 PROG-NAME PIC X(9) VALUE "PROG2.EXE".
01 STAT PIC 9(9) COMP.

88 SUCCESSFUL VALUE 1.

ROUTINE DIVISION.

001-MAIN.
CALL "LIB$RUN_PROGRAM"

USING BY DESCRIPTOR PROG-NAME
GIVING STAT.

IF NOT SUCCESSFUL
DISPLAY "ATTEMPT TO CHAIN UNSUCCESSFUL"
STOP RUN.

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG2.

ENVIRONMENT DIVISION.

DATA DIVISION.

ROUTINE DIVISION.

001-MAIN.
DISPLAY " ".
DISPLAY "THIS MESSAGE DISPLAYED BY PROGRAM PROG2".
DISPLAY " ".
DISPLAY "WHICH WAS RUN BY PROGRAM PROG1".
DISPLAY " ".
DISPLAY "USING LIB$RUN_PROGRAM".
STOP RUN.

24–6 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.2 Access to the Command Language Interpreter

24.2.3 Executing a CLI Command
The LIB$DO_COMMAND routine stops program execution and directs the CLI to
execute a command. The routine’s argument is the text of the command line that
you want to execute.

This routine is especially useful when you want to execute a CLI command after
your program has finished executing. For example, you could set up a series of
conditions, each associated with a different command. You could also use the
routine to execute a SUBMIT or PRINT command to handle a file that your
program creates.

Because of the following restrictions on LIB$DO_COMMAND, you should be
careful when you incorporate it in your program:

• After the call to LIB$DO_COMMAND, the current image exits, and control
cannot return to it.

• The text of the command is passed to the current CLI. Because you can define
your own CLI in addition to DCL and MCR, you must make sure that the
command is handled by the intended CLI.

• If the routine is called from a subprocess and a CLI is not associated with
that subprocess, the routine executes correctly.

You can also use LIB$DO_COMMAND to execute a DCL command file. To do
this, include the at sign (@) along with a command file specification as the input
argument to the routine.

Some DCL CLI$ routines perform the functions of LIB$DO_COMMAND. See the
HP OpenVMS DCL Dictionary for more information.

Example
The following PL/I example prompts the user for a DCL command to execute after
the program exits:

EXECUTE: ROUTINE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));

DECLARE LIB$DO_COMMAND ENTRY (CHARACTER (*)) /* Pass DCL command */
/* by descriptor */

RETURNS (FIXED BINARY (31)); /* Return status */
%INCLUDE $STSDEF; /* Include definition of return status values */

DECLARE COMMAND CHARACTER (80);

GET LIST (COMMAND) OPTIONS (PROMPT(’DCL command to execute: ’));
STS$VALUE = LIB$DO_COMMAND (COMMAND);

/*
If the call to LIB$DO_COMMAND is successful, the program will terminate
here. Otherwise, it will return the error status to command level.

*/

RETURN (STS$VALUE);

END EXECUTE;

This example displays the following prompt:

DCL command to execute:

Using Run-Time Library Routines to Access Operating System Components 24–7

Using Run-Time Library Routines to Access Operating System Components
24.2 Access to the Command Language Interpreter

What you type after this prompt determines the action of LIB$DO_COMMAND.
LIB$DO_COMMAND executes any command that is entered as a valid string
according to the syntax of PL/I. If the command you enter is incomplete, you
are prompted for the rest of the command. For example, if you enter the SHOW
command, you receive the following prompt:

$_Show what?:

24.2.4 Using Symbols and Logical Names
The RTL provides a number of routines that give you access to the CLI callback
facility. These routines allow a program to ‘‘call back’’ to the CLI to perform
functions that normally are performed by CLI commands. These routines perform
the following functions:

LIB$GET_SYMBOL Returns the value of a CLI symbol as a string.

Optionally, this routine also returns the length of the
returned value and a value indicating whether the symbol
was found in the local or global symbol table. This routine
executes only when the current CLI is DCL.

LIB$SET_SYMBOL Causes the CLI to define or redefine a CLI symbol.

The optional argument specifies whether the symbol is to
be defined in the local or global symbol table; the default
is local. This routine executes only when the current CLI
is DCL.

LIB$DELETE_SYMBOL Causes the CLI to delete a symbol.

An optional argument specifies the local or global symbol
table. If the argument is omitted, the symbol is deleted
from the local symbol table. This routine executes only
when the current CLI is DCL.

LIB$SET_LOGICAL Defines or redefines a supervisor-mode process logical
name.

Supervisor-mode logical names are not deleted when
an image exits. This routine is equivalent to the DCL
command DEFINE. LIB$SET_LOGICAL allows the
calling program to define a supervisor-mode process
logical name without itself executing in supervisor mode.

LIB$DELETE_LOGICAL Deletes a supervisor-mode process logical name.

This routine is equivalent to the DCL command
DEASSIGN. LIB$DELETE_LOGICAL does not require
the calling program to be executing in supervisor mode to
delete a supervisor-mode logical name.

For information about using logical names, see Chapter 34.

24.2.5 Disabling and Enabling Control Characters
Two run-time library routines, LIB$ENABLE_CTRL and LIB$DISABLE_CTRL,
allow you to call the CLI to enable or disable control characters. These routines
take a longword bit mask argument that specifies the control characters to be
disabled or enabled. Acceptable values for this argument are LIB$M_CLI_CTRLY
and LIB$M_CLI_CTRLT.

24–8 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.2 Access to the Command Language Interpreter

LIB$DISABLE_CTRL Disables CLI interception of control characters.

This routine performs the same function as the DCL
command SET NOCONTROL=n, where n is T or Y.

It prevents the currently active CLI from intercepting the
control character specified during an interactive session.

For example, you might use LIB$DISABLE_CTRL to
disable CLI interception of Ctrl/Y. Normally, Ctrl/Y
interrupts the current command, command procedure,
or image. If LIB$DISABLE_CTRL is called with LIB$M_
CLI_CTRLY specified as the control character to be
disabled, Ctrl/Y is treated like Ctrl/U followed by a
carriage return.

LIB$ENABLE_CTRL Enables CLI interception of control characters.

This routine performs the same function as the DCL
command SET CONTROL=n, where n is T or Y.

LIB$ENABLE_CTRL restores the normal operation of
Ctrl/Y or Ctrl/T.

24.2.6 Creating and Connecting to a Subprocess
You can use LIB$SPAWN and LIB$ATTACH together to spawn a subprocess and
attach the terminal to that subprocess. These routines execute correctly only
if the current CLI is DCL. For more information on the SPAWN and ATTACH
commands, see the HP OpenVMS DCL Dictionary. For more information on
creating processes, see Chapter 2.

LIB$SPAWN Spawns a subprocess.

This routine is equivalent to the DCL command SPAWN. It requests
the CLI to spawn a subprocess for executing CLI commands.

LIB$ATTACH Attaches the terminal to another process.

This routine is equivalent to the DCL command ATTACH. It requests
the CLI to detach the terminal from the current process and reattach it
to a different process.

24.3 Access to VAX Machine Instructions
The VAX instruction set was designed for efficient use by high-level languages
and, therefore, contains many functions that are directly useful in your programs.
However, some of these functions cannot be used directly by high-level languages.

The run-time library provides routines that allow your high-level language
program to use most VAX machine instructions that are otherwise unavailable.
On Alpha machines, these routines execute a series of Alpha instructions that
emulate the operation of the VAX instructions. In most cases, these routines
simply execute the instruction, using the arguments you provide. Some routines
that accept string arguments, however, provide some additional functions that
make them easier to use.

These routines fall into the following categories:

• Variable-length bit field instruction routines (Section 24.3.1)

• Integer and floating-point instructions (Section 24.3.2)

• Queue instructions (Section 24.3.3)

• Character string instructions (Section 24.3.4)

Using Run-Time Library Routines to Access Operating System Components 24–9

Using Run-Time Library Routines to Access Operating System Components
24.3 Access to VAX Machine Instructions

• Routine call instructions (Section 24.3.5)

• Cyclic redundancy check (CRC) instruction (Section 24.3.5)

The VAX Architecture Reference Manual describes the VAX instruction set in
detail.

24.3.1 Variable-Length Bit Field Instruction Routines
The variable-length bit field is a VAX data type used to store small integers
packed together in a larger data structure. It is often used to store single flag
bits.

The run-time library contains five routines for performing operations on variable-
length bit fields. These routines give higher-level languages that do not have the
inherent ability to manipulate bit fields direct access to the bit field instructions
in the VAX instruction set. Further, if a program calls a routine written in a
different language to perform some function that also involves bit manipulation,
the called routine can include a call to the run-time library to perform the bit
manipulation.

Table 24–3 lists the run-time library variable-length bit field routines.

Table 24–3 Variable-Length Bit Field Routines

Entry Point Function

LIB$EXTV Extracts a field from the specified variable-length bit field and returns
it in sign-extended longword form.

LIB$EXTZV Extracts a field from the specified variable-length bit field and returns
it in zero-extended longword form.

LIB$FFC Searches the specified field for the first clear bit. If it finds one, it
returns SS$_NORMAL and the bit position (find-pos argument) of
the clear bit. If not, it returns a failure status and sets the find-pos
argument to the start position plus the size.

LIB$FFS Searches the specified field for the first set bit. If it finds one, it
returns SS$_NORMAL and the bit position (find-pos argument) of
the set bit. If not, it returns a failure status and sets the find-pos
argument to the start position plus the size.

LIB$INSV Replaces the specified field with bits 0 through [size -1] of the source
(src argument). If the size argument is 0, nothing is inserted.

Three scalar attributes define a variable bit field:

• Base address—The address of the byte in memory that serves as a reference
point for locating the bit field.

• Bit position—The signed longword containing the displacement of the least
significant bit of the field with respect to bit 0 of the base address.

• Size—A byte integer indicating the size of the bit field in bits (in the range
0 <= size <= 32). That is, a bit field can be no more than one longword in
length.

Figure 24–1 shows the format of a variable-length bit field. The shaded area
indicates the field.

24–10 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.3 Access to VAX Machine Instructions

Figure 24–1 Format of a Variable-Length Bit Field

P+S−1

S = Size of Field in Bits

ZK−1981−GE

 from Bit 0 of Address A
P = Bit Displacement of Field

:A

0P 8 7

. . . .

Bit fields are zero-origin, which means that the routine regards the first bit in
the field as being the zero position. For more detailed information about VAX bit
numbering and data formats, see the VAX Architecture Reference Manual.

The attributes of the bit field are passed to an RTL routine in the form of three
arguments in the following order:

pos

Operating system usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Bit position relative to the base address. The pos argument is the address of a
signed longword integer that contains this bit position.

size

Operating system usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field. The size argument is the address of an unsigned byte that
contains this size.

base

Operating system usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Base address. The base argument contains the address of the base address.

Example
The following BASIC example illustrates three RTL routines. It opens the
terminal as a file and specifies HEX> as the prompt. This prompt allows
you to obtain input from the terminal without the question mark that VAX
BASIC normally adds to the prompt in an INPUT statement. The program calls
OTS$CVT_TZ_L to convert the character string input to a longword. It then
calls LIB$EXTZV once for each position in the longword to extract the bit in
that position. Because LIB$EXTVZ is called with a function reference within the
PRINT statement, the bits are displayed.

Using Run-Time Library Routines to Access Operating System Components 24–11

Using Run-Time Library Routines to Access Operating System Components
24.3 Access to VAX Machine Instructions

10 EXTERNAL LONG FUNCTION
OTS$CVT_TZ_L, ! Convert hex text to LONG
LIB$EXTZV ! Extract zero-ended bit field

20 OPEN "TT:" FOR INPUT AS FILE #1% ! Open terminal as a file
INPUT #1%, "HEX>"; HEXIN$! Prompt for input
STAT%=OTS$CVT_TZ_L(HEXIN$, BINARY%) ! Convert to longword
IF (STAT% AND 1%) <> 1% ! Failed?
THEN

PRINT "Conversion failed, decimal status ";STAT%
GO TO 20 ! Try again

ELSE
PRINT HEXIN$,
PRINT STR$(LIB$EXTZV(N%, 1%, BINARY%));

FOR N%=31% to 0% STEP -1%

24.3.2 Integer and Floating-Point Routines
Integer and floating-point routines give a high-level language program access
to the corresponding machine instructions. For a complete description of these
instructions, see the VAX Architecture Reference Manual. Table 24–4 lists the
integer and floating-point routines once up front.

Table 24–4 Integer and Floating-Point Routines

Entry Point Function

LIB$EMUL Multiplies integers with extended precision

LIB$EDIV Divides integers with extended precision

24.3.3 Queue Access Routines
A queue is a doubly linked list. A run-time library routine specifies a queue entry
by its address. Two longwords, a forward link and a backward link, define the
location of the entry in relation to the preceding and succeeding entries. A self-
relative queue is a queue in which the links between entries are displacements;
the two longwords represent the displacements of the current entry’s predecessor
and successor. The VAX instructions INSQHI, INSQTI, REMQHI, and REMQTI
allow you to insert and remove an entry at the head or tail of a self-relative
queue. Each queue instruction has a corresponding RTL routine.

The self-relative queue instructions are interlocked and cannot be interrupted,
so that other processes cannot insert or remove queue entries while the current
program is doing so. Because the operation requires changing two pointers at the
same time, a high-level language cannot perform this operation without calling
the RTL queue access routines.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on a
single processor or in a multiprocessor environment. The queue access routines
are also useful in an AST environment; they allow you to add or remove an entry
from a queue without being interrupted by an asynchronous system trap.

The remove queue instructions (REMQHI or REMQTI) return the address of the
removed entry. Some languages, such as BASIC, COBOL, and Fortran, do not
provide a mechanism for accessing an address returned from a routine. Further,
BASIC and COBOL do not allow routines to be arguments.

24–12 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.3 Access to VAX Machine Instructions

Table 24–5 lists the queue access routines.

Table 24–5 Queue Access Routines

Entry Point Function

LIB$INSQHI Inserts queue entry at head

LIB$INSQTI Inserts queue entry at tail

LIB$REMQHI Removes queue entry at head

LIB$REMQTI Removes queue entry at tail

Examples
LIB$INSQHI
In BASIC and Fortran, queues can be quadword aligned in a named COMMON
block by using a linker option file to specify alignment of program sections. The
LIB$GET_VM routine returns memory that is quadword aligned. Therefore,
you should use LIB$GET_VM to allocate the virtual memory for a queue. For
instance, to create a COMMON block called QUEUES, use the LINK command
with the FILE/OPTIONS qualifier, where FILE.OPT is a linker option file
containing the line:

PSECT = QUEUES, QUAD

A Fortran application using processor-shared memory follows:

INTEGER*4 FUNCTION INSERT_Q (QENTRY)
COMMON/QUEUES/QHEADER
INTEGER*4 QENTRY(10), QHEADER(2)
INSERT_Q = LIB$INSQHI (QENTRY, QHEADER)
RETURN
END

A BASIC application using processor-shared memory follows:

COM (QUEUES) QENTRY%(9), QHEADER%(1)
EXTERNAL INTEGER FUNCTION LIB$INSQHI
IF LIB$INSQHI (QENTRY%() BY REF, QHEADER%() BY REF) AND 1%

THEN GOTO 1000
.
.
.

1000 REM INSERTED OK

LIB$REMQHI
In Fortran, the address of the removed queue entry can be passed to another
routine as an array using the %VAL built-in function.

Using Run-Time Library Routines to Access Operating System Components 24–13

Using Run-Time Library Routines to Access Operating System Components
24.3 Access to VAX Machine Instructions

In the following example, queue entries are 10 longwords, including the two
longword pointers at the beginning of each entry:

COMMON/QUEUES/QHEADER
INTEGER*4 QHEADER(2), ISTAT
ISTAT = LIB$REMQHI (QHEADER, ADDR)
IF (ISTAT) THEN

CALL PROC (%VAL (ADDR)) ! Process removed entry
GO TO ...

ELSE IF (ISTAT .EQ. %LOC(LIB$_QUEWASEMP)) THEN
GO TO ... ! Queue was empty
ELSE IF

... ! Secondary interlock failed
END IF

.

.

.
END
SUBROUTINE PROC (QENTRY)
INTEGER*4 QENTRY(10)

.

.

.
RETURN
END

24.3.4 Character String Routines
The character string routines listed in Table 24–6 give a high-level language
program access to the corresponding VAX machine instructions. For a complete
description of these instructions, see the VAX Architecture Reference Manual. For
each instruction, the VAX Architecture Reference Manual specifies the contents of
all the registers after the instruction executes. The corresponding RTL routines
do not make the contents of all the registers available to the calling program.

Table 24–6 lists the LIB$ character string routines and their functions.

Table 24–6 Character String Routines

Entry Point Function

LIB$LOCC Locates a character in a string

LIB$MATCHC Returns the relative position of a substring

LIB$SCANC Scans characters

LIB$SKPC Skips characters

LIB$SPANC Spans characters

LIB$MOVC3 Moves characters

LIB$MOVC5 Moves characters and fills

LIB$MOVTC Moves translated characters

LIB$MOVTUC Move translated characters until specified character is found

The OpenVMS RTL String Manipulation (STR$) Manual describes STR$ string
manipulation routines.

24–14 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.3 Access to VAX Machine Instructions

Example
This COBOL program uses LIB$LOCC to return the position of a given letter of
the alphabet.

IDENTIFICATION DIVISION.
PROGRAM-ID. LIBLOC.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 SEARCH-STRING PIC X(26)
VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

01 SEARCH-CHAR PIC X.
01 IND-POS PIC 9(9) USAGE IS COMP.
01 DISP-IND PIC 9(9).

ROUTINE DIVISION.

001-MAIN.
MOVE SPACE TO SEARCH-CHAR.
DISPLAY " ".
DISPLAY "ENTER SEARCH CHARACTER: " WITH NO ADVANCING.
ACCEPT SEARCH-CHAR.
CALL "LIB$LOCC"

USING BY DESCRIPTOR SEARCH-CHAR, SEARCH-STRING
GIVING IND-POS.

IF IND-POS = ZERO
DISPLAY

"CHAR ENTERED (" SEARCH-CHAR ") NOT A VALID SEARCH CHAR"
STOP RUN.

MOVE IND-POS TO DISP-IND.
DISPLAY

"SEARCH CHAR (" SEARCH-CHAR ") WAS FOUND IN POSITION "
DISP-IND.

GO TO 001-MAIN.

24.3.5 Miscellaneous Instruction Routines
Table 24–7 lists additional routines that you can use.

Table 24–7 Miscellaneous Instruction Routines

Entry Point Function

LIB$CALLG Calls a routine using an array argument list

LIB$CRC Computes a cyclic redundancy check

LIB$CRC_TABLE Constructs a table for a cyclic redundancy check

LIB$CALLG
The LIB$CALLG routine gives your program access to the CALLG instruction.
This instruction calls a routine using an argument list stored as an array in
memory, as opposed to the CALLS instruction, in which the argument list is
pushed on the stack.

Using Run-Time Library Routines to Access Operating System Components 24–15

Using Run-Time Library Routines to Access Operating System Components
24.3 Access to VAX Machine Instructions

LIB$CRC
The LIB$CRC routine allows your high-level language program to use the CRC
instruction, which calculates the cyclic redundancy check. This instruction checks
the integrity of a data stream by comparing its state at the sending point and the
receiving point. Each character in the data stream is used to generate a value
based on a polynomial. The values for each character are then added together.
This operation is performed at both ends of the data transmission, and the two
result values are compared. If the results disagree, then an error occurred during
the transmission.

LIB$CRC_TABLE
The LIB$CRC_TABLE routine takes a polynomial as its input and builds the
table that LIB$CRC uses to calculate the CRC. You must specify the polynomial
to be used.

For more details, see the VAX Architecture Reference Manual.

24.4 Processwide Resource Allocation Routines
This section discusses routines that allocate processwide resources to a single
operating system process. The processwide resources discussed here are:

• Local event flags

• BASIC and Fortran logical unit numbers (LUNs)

The resource allocation routines are provided so that user routines can use the
processwide resources without conflicting with one another.

In general, you must use run-time library resource allocation routines when your
program needs processwide resources. This allows RTL routines supplied by HP,
and user routines that you write to perform together within a process.

If your called routine includes a call to any RTL routine that frees a processwide
resource, and that called routine fails to execute normally, the resource will not
be freed. Thus, your routine should establish a condition handler that frees
the allocated resource before resignaling or unwinding. For information about
condition handling, see Chapter 9.

Table 24–8 list routines that perform processwide resource allocation.

Table 24–8 Processwide Resource Allocation Routines

Entry Point Function

LIB$FREE_LUN Deallocates a specific logical unit number

LIB$GET_LUN Allocates next arbitrary logical unit number

LIB$FREE_EF Frees a local event flag

LIB$GET_EF Allocates a local event flag

LIB$RESERVE_EF Reserves a local event flag

24.4.1 Allocating Logical Unit Numbers
BASIC and Fortran use a logical unit number (LUN) to define the file or device
a program uses to perform input and output. For a routine to be modular, it
does not need to know the LUNs being used by other routines that are running
at the same time. For this reason, logical units are allocated and deallocated at
run time. You can use LIB$GET_LUN and LIB$FREE_LUN to obtain the next

24–16 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.4 Processwide Resource Allocation Routines

available number. This ensures that your BASIC or Fortran routine does not
use a logical unit that is already being used by a calling program. Therefore,
you should use this routine whenever your program calls or is called by another
program that also allocates LUNs. Logical unit numbers 100 to 119 are available
to modular routines through these entry points.

To allocate an LUN, call LIB$GET_LUN and use the value returned as the LUN
for your I/O statements. If no LUNs are available, an error status is returned
and the logical unit is set to ��. When the program unit exits, it should use
LIB$FREE_LUN to free any LUNs that have been allocated by LIB$GET_LUN.
If it does not free any LUNs, the available pool of numbers is freed for use.

If your called routine contains a call to LIB$FREE_LUN to free the LUNs upon
exit, and your routine fails to execute normally, the LUNs will not be freed.
For this reason, you should make sure to establish a condition handler to call
LIB$FREE_LUN before resignaling or unwinding. Otherwise, the allocated LUN
is lost until the image exits.

24.4.2 Allocating Event Flag Numbers
The LIB$GET_EF and LIB$FREE_EF routines operate in a similar way to
LIB$GET_LUN and LIB$FREE_LUN. They cause local event flags to be allocated
and deallocated at run time, so that your routine remains independent of other
routines executing in the same process.

Local event flags numbered 32 to 63 are available to your program. These event
flags allow routines to communicate and synchronize their operations. If you
use a specific event flag in your routine, another routine may attempt to use the
same flag, and the flag will no longer function as expected. Therefore, you should
call LIB$GET_EF to obtain the next arbitrary event flag and LIB$FREE_EF
to return it to the storage pool. You can obtain a specific event flag number by
calling LIB$RESERVE_EF. This routine takes as its argument the event flag
number to be allocated.

For information about using event flags, see Chapter 3 and Chapter 6.

24.5 Performance Measurement Routines
The run-time library timing facility consists of four routines to store count and
timing information, display the requested information, and deallocate the storage.
Table 24–9 lists these routines and their functions.

Table 24–9 Performance Measurement Routines

Entry Point Function

LIB$INIT_TIMER Stores the values of the specified times and counts in units of
static or heap storage, depending on the value of the routine’s
argument

LIB$SHOW_TIMER Obtains and formats for output the specified times and counts
that are accumulated since the last call to LIB$INIT_TIMER

LIB$STAT_TIMER Obtains one of the times and counts since the last call to
LIB$INIT_TIMER and returns it as an unsigned quadword or
longword

LIB$FREE_TIMER Frees the storage allocated by LIB$INIT_TIMER

Using these routines, you can access the following statistics:

Using Run-Time Library Routines to Access Operating System Components 24–17

Using Run-Time Library Routines to Access Operating System Components
24.5 Performance Measurement Routines

• Elapsed time

• CPU time

• Buffered I/O count

• Direct I/O count

• Page faults

The LIB$SHOW_TIMER and LIB$STAT_TIMER routine are relatively simple
tools for testing the performance of a new application. To obtain more detailed
information, use the system services SYS$GETTIM (Get Time) and SYS$GETJPI
(Get Job/Process Information).

The simplest way to use the run-time library routines is to call LIB$INIT_TIMER
with no arguments at the beginning of the portion of code to be monitored. This
causes the statistics to be placed in OWN storage. To get the statistics from OWN
storage, call LIB$SHOW_TIMER (with no arguments) at the end of the portion of
code to be monitored.

If you want a particular statistic, you must include a code argument with a call
to LIB$SHOW_TIMER or LIB$STAT_TIMER. LIB$SHOW_TIMER returns the
specified statistic(s) in formatted form and sends them to SYS$OUTPUT. On
each call, LIB$STAT_TIMER returns one statistic to the calling program as an
unsigned longword or quadword value.

Table 24–10 shows the code argument in LIB$SHOW_TIMER or LIB$STAT_
TIMER.

Table 24–10 The Code Argument in LIB$SHOW_TIMER and LIB$STAT_TIMER

Argument
Value Meaning

LIB$SHOW_TIMER
Format

LIB$STAT_TIMER
Format

1 Elapsed real time dddd hh:mm:ss.cc Quadword, in
system time
format

2 Elapsed CPU time hhhh:mm:ss.cc Longword, in
10-millisecond
increments

3 Number of buffered I/O
operations

nnnn Longword

4 Number of direct I/O
operations

nnnn Longword

5 Number of page faults nnnn Longword

When you call LIB$INIT_TIMER, you must use the optional handler argument
only if you want to keep several sets of statistics simultaneously. This argument
points to a block in heap storage where the statistics are to be stored. You need to
call LIB$FREE_TIMER only if you have specified handler in LIB$INIT_TIMER
and you want to deallocate all heap storage resources. In most cases, the implicit
deallocation when the image exits is sufficient.

The LIB$STAT_TIMER routine returns only one of the five statistics for each call,
and it returns that statistic in the form of an unsigned quadword or longword.
LIB$SHOW_TIMER returns the virtual address of the stored information,
which BASIC cannot directly access. Therefore, a BASIC program must call

24–18 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.5 Performance Measurement Routines

LIB$STAT_TIMER and format the returned statistics, as the following example
demonstrates.

Example
The following BASIC example uses the run-time library performance analysis
routines to obtain timing statistics. It then calls the $ASCTIM system service to
translate the 64-bit binary value returned by LIB$STAT_TIMER into an ASCII
text string.

100 EXTERNAL INTEGER FUNCTION LIB$INIT_TIMER
EXTERNAL INTEGER FUNCTION LIB$STAT_TIMER
EXTERNAL INTEGER FUNCTION LIB$FREE_TIMER
EXTERNAL INTEGER CONSTANT SS$_NORMAL

200 DECLARE LONG COND_VALUE, RANDOM_SLEEP
DECLARE LONG CODE, HANDLE
DECLARE STRING TIME_BUFFER
HANDLE = 0
TIME_BUFFER = SPACE$(50%)

300 MAP (TIMER) LONG ELAPSED_TIME, FILL
MAP (TIMER) LONG CPU_TIME
MAP (TIMER) LONG BUFIO
MAP (TIMER) LONG DIRIO
MAP (TIMER) LONG PAGE_FAULTS

400 PRINT "This program returns information about:"
PRINT "Elapsed time (1)"
PRINT "CPU time (2)"
PRINT "Buffered I/O (3)"
PRINT "Direct I/O (4)"
PRINT "Page faults (5)"
PRINT "Enter zero to exit program"
PRINT "Enter a number from one to"
PRINT "five for performance information"
INPUT "One, two, three, four, or five"; CODE
PRINT

450 GOTO 32766 IF CODE = 0

500 COND_VALUE = LIB$INIT_TIMER(HANDLE)

550 IF (COND_VALUE <> SS$_NORMAL) THEN PRINT @
"Error in initialization"

GOTO 32767

650 A = 0 !
FOR I = 1 to 100000 ! This code merely uses some CPU time
A = A + 1 !
NEXT I !

700 COND_VALUE = LIB$STAT_TIMER(CODE, ELAPSED_TIME, HANDLE)

750 IF (COND_VALUE <> SS$_NORMAL) THEN PRINT @
"Error in statistics routine"

GOTO 32767

800 GOTO 810 IF CODE <> 1%
CALL SYS$ASCTIM (, TIME_BUFFER, ELAPSED_TIME, 1% BY VALUE)
PRINT "Elapsed time: "; TIME_BUFFER

810 PRINT "CPU time in seconds: "; .01 * CPU_TIME IF CODE = 2%
PRINT "Buffered I/O: ";BUFIO IF CODE = 3%
PRINT "Direct I/O: ";DIRIO IF CODE = 4%
PRINT "Page faults: ";PAGE_FAULTS IF CODE = 5%
PRINT

900 GOTO 400

Using Run-Time Library Routines to Access Operating System Components 24–19

Using Run-Time Library Routines to Access Operating System Components
24.5 Performance Measurement Routines

32765 COND_VALUE = LIB$FREE_TIMER(HANDLE)
32766 IF (COND_VALUE <> SS$_NORMAL) THEN PRINT @

"Error in LIB$FREE_TIMER"
GOTO 32767

32767 END

For information about using system time, see Chapter 27.

24.6 Output Formatting Control Routines
Table 24–11 lists the run-time library routines that customize output.

Table 24–11 Routines for Customizing Output

Entry Point Function

LIB$CURRENCY Defines the default currency symbol for process

LIB$DIGIT_SEP Defines the default digit separator for process

LIB$LP_LINES Defines the process default size for a printed page

LIB$RADIX_POINT Defines the process default radix point character

The LIB$CURRENCY, LIB$DIGIT_SEP, LIB$LP_LINES, and LIB$RADIX_
POINT routines allow you to customize output. Using them, you can define
the logical names SYS$CURRENCY, SYS$DIGIT_SEP, SYS$LP_LINES, and
SYS$RADIX_POINT to specify your own currency symbol, digit separator, radix
point, or number of lines per printed page. Each routine works by attempting
to translate the associated logical name as a process, group, or system logical
name. If you have redefined a logical name for a specific local application, then
the translation succeeds, and the routine returns the value that corresponds to
the option you have chosen. If the translation fails, the routine returns a default
value provided by the run-time library, as follows:

$ SYS$CURRENCY

, SYS$DIGIT_SEP

. SYS$RADIX_POINT

66 SYS$LP_LINES

For example, if you want to use the British pound sign (£) as the currency symbol
within your process, but you want to leave the dollar sign ($) as the system
default, define SYS$CURRENCY to be in your process logical name table. Then,
any calls to LIB$CURRENCY within your process return ‘‘£’’, while any calls
outside your process return ‘‘$’’.

You can use LIB$LP_LINES to monitor the current default length of the line
printer page. You can also supply your own default length for the current process.
United States standard paper size permits 66 lines on each physical page.

If you are writing programs for a utility that formats a listing file to be printed
on a line printer, you can use LIB$LP_LINES to make your utility independent
of the default page length. Your program can use LIB$LP_LINES to obtain the
current length of the page. It can then calculate the number of lines of text per
page by subtracting the lines used for margins and headings.

The following is one suggested format:

• Three lines for the top margin

• Three lines for the bottom margin

24–20 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.6 Output Formatting Control Routines

• Three lines for listing heading information, consisting of:

Language-processor identification line

Source program identification line

One blank line

24.7 Miscellaneous Interface Routines
There are several other RTL routines that permit high-level access to components
of the operating system. Table 24–12 lists these routines and their functions. The
sections that follow give further details about some of these routines.

Table 24–12 Miscellaneous Interface Routines

Entry Point Function

LIB$AST_IN_PROG Indicates whether an asynchronous system trap is in
progress

LIB$ASN_WTH_MBX Assigns an I/O channel and associates it with a
mailbox

LIB$CREATE_DIR Creates a directory or subdirectory

LIB$FIND_IMAGE_SYMBOL Reads a global symbol from the shareable image file
and dynamically activates a shareable image into the
P0 address space of a process

LIB$ADDX Performs addition on signed two’s complement
integers of arbitrary length (multiple-precision
addition)

LIB$SUBX Performs subtraction on signed two’s complement
integers of arbitrary length (multiple-precision
subtraction)

LIB$FILE_SCAN Finds file names given OpenVMS RMS file access
block (FAB)

LIB$FILE_SCAN_END Specifies end-of-file scan

LIB$FIND_FILE Finds file names given string

LIB$FIND_FILE_END Specifies the end-of-find file

LIB$INSERT_TREE Inserts an element in a binary tree

LIB$LOOKUP_TREE Finds an element in a binary tree

LIB$TRAVERSE_TREE Traverses a binary tree

LIB$GET_COMMON Gets a record from the process’s COMMON storage
area

LIB$PUT_COMMON Puts a record to the process’s COMMON storage area

24.7.1 Indicating Asynchronous System Trap in Progress
An asynchronous system trap (AST) is a mechanism for providing a software
interrupt when an external event occurs, such as when a user presses the Ctrl/C
key sequence. When an external event occurs, the operating system interrupts
the execution of the current process and calls a routine that you supply. While
that routine is active, the AST is said to be in progress, and the process is said to
be executing at AST level. When your AST routine returns control to the original
process, the AST is no longer active and execution continues where it left off.

Using Run-Time Library Routines to Access Operating System Components 24–21

Using Run-Time Library Routines to Access Operating System Components
24.7 Miscellaneous Interface Routines

The LIB$AST_IN_PROG routine indicates to the calling program whether an
AST is currently in progress. Your program can call LIB$AST_IN_PROG to
determine whether it is executing at AST level, and then take appropriate action.
This routine is useful if you are writing AST-reentrant code.

For information about using ASTs, see Chapter 8.

24.7.2 Create a Directory or Subdirectory
The LIB$CREATE_DIR routine creates a directory or a subdirectory. The calling
program must specify the directory specification in standard OpenVMS RMS
format. This directory specification may also contain a disk specification.

In addition to the required directory specification argument, LIB$CREATE_DIR
takes the following five optional arguments:

• The user identification code (UIC) of the owner of the created directory or
subdirectory

• The protection enable mask

• The protection value mask

• The maximum number of versions allowed for files created in this directory or
subdirectory

• The relative volume number within the volume set on which the directory or
subdirectory is created

See the HP OpenVMS RTL Library (LIB$) Manual for a complete description of
LIB$CREATE_DIR.

24.7.3 File Searching Routines
The run-time library provides two routines that your program can call to search
for a file and two routines that your program can call to end a search sequence:

• When you call LIB$FILE_SCAN with a wildcard file specification and an
action routine, the routine calls the action routine for each file or error, or
both, found in the wildcard sequence. LIB$FILE_SCAN allows the search
sequence to continue even though certain errors are present.

• When you call LIB$FIND_FILE with a wildcard file specification, it finds the
next file specification that matches the wildcard specification.

In addition to the wildcard file specification, which is a required argument,
LIB$FIND_FILE takes the following four optional arguments:

• The default specification.

• The related specification.

• The OpenVMS RMS secondary status value from a failing RMS operation.

• A longword containing two flag bits. If bit 1 is set, LIB$FIND_FILE performs
temporary defaulting for multiple input files and the related specification
argument is ignored. See the HP OpenVMS RTL Library (LIB$) Manual for a
complete description of LIB$FIND_FILE in template format.

The LIB$FIND_FILE_END routine is called once after each call to LIB$FIND_
FILE in interactive use. LIB$FIND_FILE_END prevents the temporary default
values retained by the previous call to LIB$FIND_FILE from affecting the next
file specification.

24–22 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.7 Miscellaneous Interface Routines

The LIB$FILE_SCAN routine uses an optional context argument to perform
temporary defaulting for multiple input files. For example, a command such as
the following would specify A, B, and C in successive calls, retaining context, so
that portions of one file specification would affect the next file specification:

$ COPY [smith]A,B,C *

The LIB$FILE_SCAN_END routine is called once after each sequence of calls to
LIB$FILE_SCAN. LIB$FILE_SCAN_END performs a parse of the null string to
deallocate saved OpenVMS RMS context and to prevent the temporary default
values retained by the previous call to LIB$FILE_SCAN from affecting the next
file specification. For instance, in the previous example, LIB$FILE_SCAN_END
should be called after the C file specification is parsed, so that specifications from
the $COPY files do not affect file specifications in subsequent commands.

The following BLISS example illustrates the use of LIB$FIND_FILE. It prompts
for a file specification and default specification. The default specification indicates
the default information for the file for which you are searching. Once the routine
has searched for one file, the resulting file specification determines both the
related file specification and the default file specification for the next search.
LIB$FIND_FILE_END is called at the end of the following BLISS program to
deallocate the virtual memory used by LIB$FIND_FILE.

%TITLE ’FILE_EXAMPLE1 - Sample program using LIB$FIND_FILE’
MODULE FILE_EXAMPLE1(! Sample program using LIB$FIND_FILE

IDENT = ’1-001’,
MAIN = EXAMPLE_START
) =

BEGIN

%SBTTL ’Declarations’
!+
! SWITCHES:
!-

SWITCHES ADDRESSING_MODE (EXTERNAL = GENERAL, NONEXTERNAL = WORD_RELATIVE);

!+
! TABLE OF CONTENTS:
!-

FORWARD ROUTINE
EXAMPLE_START; ! Main program

!+
! INCLUDE FILES:
!-

LIBRARY ’SYS$LIBRARY:STARLET.L32’; ! System symbols

!+
! Define facility-specific messages from shared system messages.
!-
$SHR_MSGDEF(CLI,3,LOCAL,

(PARSEFAIL,WARNING));
!+
! EXTERNAL REFERENCES:
!-

EXTERNAL ROUTINE
LIB$GET_INPUT, ! Read from SYS$INPUT
LIB$FIND_FILE, ! Wildcard scanning routine
LIB$FIND_FILE_END, ! End find file
LIB$PUT_OUTPUT, ! Write to SYS$OUTPUT
STR$COPY_DX; ! String copier

Using Run-Time Library Routines to Access Operating System Components 24–23

Using Run-Time Library Routines to Access Operating System Components
24.7 Miscellaneous Interface Routines

LITERAL
TRUE = 1, ! Success
FALSE = 0; ! Failure

%SBTTL ’EXAMPLE_START - Sample program main routine’;
ROUTINE EXAMPLE_START =
BEGIN
!+
! This program reads a file specification and default file
! specification from SYS$INPUT. It then prints all the files that
! match that specification and prompts for another file specification.
! After the first file specification no default specification is requested,
! and the previous resulting file specification becomes the related
! file specification.
!-
LOCAL

LINEDESC : $BBLOCK[DSC$C_S_BLN], ! String desc. for input line
RESULT_DESC : $BBLOCK[DSC$C_S_BLN], ! String desc. for result file
CONTEXT, ! LIB$FIND_FILE context pointer
DEFAULT_DESC : $BBLOCK[DSC$C_S_BLN], ! String desc. for default spec
RELATED_DESC : $BBLOCK[DSC$C_S_BLN], ! String desc. for related spec
HAVE_DEFAULT,
STATUS;

!+
! Make all string descriptors dynamic.
!-
CH$FILL(0,DSC$C_S_BLN,LINEDESC);
LINEDESC[DSC$B_CLASS] = DSC$K_CLASS_D;
CH$MOVE(DSC$C_S_BLN,LINEDESC,RESULT_DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,DEFAULT_DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,RELATED_DESC);
HAVE_DEFAULT = FALSE;
CONTEXT = 0;
!+
! Read file specification, default file specification, and
! related file specification.
!-

WHILE (STATUS = LIB$GET_INPUT(LINEDESC,
$DESCRIPTOR(’FILE SPECIFICATION: ’))) NEQ RMS$_EOF

DO BEGIN
IF NOT .STATUS

THEN SIGNAL_STOP(.STATUS);
!+
! If default file specification was not obtained, do so now.
!-
IF NOT .HAVE_DEFAULT
THEN BEGIN

STATUS = LIB$GET_INPUT(DEFAULT_DESC,
$DESCRIPTOR(’DEFAULT FILE SPECIFICATION: ’));

IF NOT .STATUS
THEN SIGNAL_STOP(.STATUS);

HAVE_DEFAULT = TRUE;
END;

24–24 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.7 Miscellaneous Interface Routines

!+
! CALL LIB$FIND_FILE until RMS$_NMF (no more files) is returned.
! If an error other than RMS$_NMF is returned, it is signaled.
! Print out the file specification if the call is successful.
!-
WHILE (STATUS = LIB$FIND_FILE(LINEDESC,RESULT_DESC,CONTEXT,

DEFAULT_DESC,RELATED_DESC)) NEQ RMS$_NMF
DO IF NOT .STATUS

THEN SIGNAL(CLI$_PARSEFAIL,1,RESULT_DESC,.STATUS)
ELSE LIB$PUT_OUTPUT(RESULT_DESC);

!+
! Make this resultant file specification the related file
! specification for next file.
!-
STR$COPY_DX(RELATED_DESC,LINEDESC);
END; ! End of loop

! reading file specification

!+
! Call LIB$FIND_FILE_END to deallocate the virtual memory used by LIB$FIND_FILE.
! Note that we do this outside of the loop. Since the MULTIPLE bit of the
! optional user flags argument to LIB$FIND_FILE wasn’t used, it is not
! necessary to call LIB$FIND_FILE_END after each call to LIB$FIND_FILE.
! (The MULTIPLE bit would have caused temporary defaulting for multiple input
! files.)
!-
STATUS = LIB$FIND_FILE_END (CONTEXT);

IF NOT .STATUS
THEN SIGNAL_STOP (.STATUS);

RETURN TRUE
END; ! End of main program
END ! End of module

ELUDOM

The following BLISS example illustrates the use of LIB$FILE_SCAN and
LIB$FILE_SCAN_END.

%TITLE ’FILE_EXAMPLE2 - Sample program using LIB$FILE_SCAN’
MODULE FILE_EXAMPLE1(! Sample program using LIB$FILE_SCAN

IDENT = ’1-001’,
MAIN = EXAMPLE_START
) =

BEGIN

%SBTTL ’Declarations’
!+
! SWITCHES:
!-

SWITCHES ADDRESSING_MODE (EXTERNAL = GENERAL,
NONEXTERNAL = WORD_RELATIVE);

!+
! TABLE OF CONTENTS:
!-

FORWARD ROUTINE
EXAMPLE_START, ! Main program
SUCCESS_RTN, ! Success action routine
ERROR_RTN; ! Error action routine

!+
! INCLUDE FILES:
!-

Using Run-Time Library Routines to Access Operating System Components 24–25

Using Run-Time Library Routines to Access Operating System Components
24.7 Miscellaneous Interface Routines

LIBRARY ’SYS$LIBRARY:STARLET.L32’; ! System symbols

!+
! Define VMS block structures (BLOCK[,BYTE]).
!-
STRUCTURE

BBLOCK [O, P, S, E; N] =
[N]
(BBLOCK + O) <P, S, E>;

!+
! EXTERNAL REFERENCES:
!-

EXTERNAL ROUTINE
LIB$GET_INPUT, ! Read from SYS$INPUT
LIB$FILE_SCAN, ! Wildcard scanning routine
LIB$FILE_SCAN_END, ! End of file scan
LIB$PUT_OUTPUT; ! Write to SYS$OUTPUT

%SBTTL ’EXAMPLE_START - Sample program main routine’;
ROUTINE EXAMPLE_START =
BEGIN
!+
! This program reads the file specification, default file specification,
! and related file specification from SYS$INPUT and then displays on
! SYS$OUTPUT all files which match the specification.
!-
LOCAL

RESULT_BUFFER : VECTOR[NAM$C_MAXRSS,BYTE], !Buffer for resultant
! name string

EXPAND_BUFFER : VECTOR[NAM$C_MAXRSS,BYTE], !Buffer for expanded
! name string

LINEDESC : BBLOCK[DSC$C_S_BLN], !String descriptor
! for input line

RESULT_DESC : BBLOCK[DSC$C_S_BLN], !String descriptor
! for result file

DEFAULT_DESC : BBLOCK[DSC$C_S_BLN], !String descriptor
! for default specification

RELATED_DESC : BBLOCK[DSC$C_S_BLN], !String descriptor
! for related specification

IFAB : $FAB_DECL, !FAB for file_scan
INAM : $NAM_DECL, ! and a NAM block
RELNAM : $NAM_DECL, ! and a related NAM block
STATUS;

24–26 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.7 Miscellaneous Interface Routines

!+
! Make all descriptors dynamic.
!-
CH$FILL(0,DSC$C_S_BLN,LINEDESC);
LINEDESC[DSC$B_CLASS] = DSC$K_CLASS_D;
CH$MOVE(DSC$C_S_BLN,LINEDESC,RESULT_DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,DEFAULT_DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,RELATED_DESC);
!+
! Read file specification, default file specification, and related
! file specification
!-
STATUS = LIB$GET_INPUT(LINEDESC,

$DESCRIPTOR(’File specification: ’));
IF NOT .STATUS

THEN SIGNAL_STOP(.STATUS);
STATUS = LIB$GET_INPUT(DEFAULT_DESC,

$DESCRIPTOR(’Default file specification: ’));
IF NOT .STATUS

THEN SIGNAL_STOP(.STATUS);
STATUS = LIB$GET_INPUT(RELATED_DESC,

$DESCRIPTOR(’Related file specification: ’));
IF NOT .STATUS

THEN SIGNAL_STOP(.STATUS);
!+
! Initialize the FAB, NAM, and related NAM blocks.
!-
$FAB_INIT(FAB=IFAB,

FNS=.LINEDESC[DSC$W_LENGTH],
FNA=.LINEDESC[DSC$A_POINTER],
DNS=.DEFAULT_DESC[DSC$W_LENGTH],
DNA=.DEFAULT_DESC[DSC$A_POINTER],
NAM=INAM);

$NAM_INIT(NAM=INAM,
RSS=NAM$C_MAXRSS,
RSA=RESULT_BUFFER,
ESS=NAM$C_MAXRSS,
ESA=EXPAND_BUFFER,
RLF=RELNAM);

$NAM_INIT(NAM=RELNAM);
RELNAM[NAM$B_RSL] = .RELATED_DESC[DSC$W_LENGTH];
RELNAM[NAM$L_RSA] = .RELATED_DESC[DSC$A_POINTER];
!+
! Call LIB$FILE_SCAN. Note that errors need not be checked
! here because LIB$FILE_SCAN calls error_rtn for all errors.
!-
LIB$FILE_SCAN(IFAB,SUCCESS_RTN,ERROR_RTN);

!+
! Call LIB$FILE_SCAN_END to deallocate virtual memory used for
! file scan structures.
!-
STATUS = LIB$FILE_SCAN_END (IFAB);

IF NOT .STATUS
THEN SIGNAL_STOP (.STATUS);

RETURN 1
END; ! End of main program

Using Run-Time Library Routines to Access Operating System Components 24–27

Using Run-Time Library Routines to Access Operating System Components
24.7 Miscellaneous Interface Routines

ROUTINE SUCCESS_RTN (IFAB : REF BBLOCK) =
BEGIN
!+
! This routine is called by LIB$FILE_SCAN for each file that it
! successfully finds in the search sequence.
!
! Inputs:
!
! IFAB Address of a fab
!
! Outputs:
!
! file specification printed on SYS$OUTPUT
!-
LOCAL

DESC : BBLOCK[DSC$C_S_BLN]; ! A local string descriptor
BIND

INAM = .IFAB[FAB$L_NAM] : BBLOCK; ! Find NAM block
! from pointer in FAB

CH$FILL(0,DSC$C_S_BLN,DESC); ! Make static
! string descriptor

DESC[DSC$W_LENGTH] = .INAM[NAM$B_RSL]; ! Get string length
! from NAM block

DESC[DSC$A_POINTER] = .INAM[NAM$L_RSA]; ! Get pointer to the string
RETURN LIB$PUT_OUTPUT(DESC) ! Print name on SYS$OUTPUT

! and return
END;

ROUTINE ERROR_RTN (IFAB : REF BBLOCK) =
BEGIN
!+
! This routine is called by LIB$FILE_SCAN for each file specification that
! produces an error.
!
! Inputs:
!
! ifab Address of a fab
!
! Outputs:
!
! Error message is signaled
!-
LOCAL

DESC : BBLOCK[DSC$C_S_BLN]; ! A local string descriptor

BIND
INAM = .IFAB[FAB$L_NAM] : BBLOCK; ! Get NAM block pointer

! from FAB

CH$FILL(0,DSC$C_S_BLN,DESC); ! Create static
! string descriptor

DESC[DSC$W_LENGTH] = .INAM[NAM$B_RSL];
DESC[DSC$A_POINTER] = .INAM[NAM$L_RSA];
!+
! Signal the error using the shared message PARSEFAIL
! and the CLI facility code. The second part of the SIGNAL
! is the RMS STS and STV error codes.
!-
RETURN SIGNAL((SHR$_PARSEFAIL+3^16),1,DESC,

.IFAB[FAB$L_STS],.IFAB[FAB$L_STV])

END;
END ! End of module

ELUDOM

24–28 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.7 Miscellaneous Interface Routines

24.7.4 Inserting an Entry into a Balanced Binary Tree
Three routines allow you to manipulate the contents of a balanced binary tree:

• LIB$INSERT_TREE adds an entry to a balanced binary tree.

• LIB$LOOKUP_TREE looks up an entry in a balanced binary tree.

• LIB$TRAVERSE_TREE calls an action routine for each node in the tree.

Example
The following BLISS example illustrates all three routines. The program prompts
for input from SYS$INPUT and stores each data line as an entry in a binary
tree. When the user enters the end-of-file character (Ctrl/Z), the tree is printed in
sorted order. The program includes three subroutines:

• The first subroutine allocates virtual memory for a node.

• The second subroutine compares a key with a node.

• The third subroutine is called during the tree traversal. It prints out the left
and right subtree pointers, the current node balance, and the name of the
node.

%TITLE ’TREE_EXAMPLE - Sample program using binary tree routines’
MODULE TREE_EXAMPLE(! Sample program using trees

IDENT = ’1-001’,
MAIN = TREE_START
) =

BEGIN

%SBTTL ’Declarations’
!+
! SWITCHES:
!-
SWITCHES ADDRESSING_MODE (EXTERNAL = GENERAL, NONEXTERNAL = WORD_RELATIVE);

!+
! LINKAGES:
!
! NONE
!
! TABLE OF CONTENTS:
!-

FORWARD ROUTINE
TREE_START, ! Main program
ALLOC_NODE, ! Allocate memory for a node
COMPARE_NODE, ! Compare two nodes
PRINT_NODE; ! Print a node (action routine

! for LIB$TRAVERSE_TREE)

!+
! INCLUDE FILES:
!-

LIBRARY ’SYS$LIBRARY:STARLET.L32’; ! System symbols

Using Run-Time Library Routines to Access Operating System Components 24–29

Using Run-Time Library Routines to Access Operating System Components
24.7 Miscellaneous Interface Routines

!+
! Define VMS block structures (BLOCK[,BYTE]).
!-
STRUCTURE

BBLOCK [O, P, S, E; N] =
[N]
(BBLOCK + O) <P, S, E>;

!+
! MACROS:
!-
MACRO

NODE$L_LEFT = 0,0,32,0%, ! Left subtree pointer in node
NODE$L_RIGHT = 4,0,32,0%, ! Right subtree pointer
NODE$W_BAL = 8,0,16,0%, ! Balance this node
NODE$B_NAMLNG = 10,0,8,0%, ! Length of name in this node
NODE$T_NAME = 11,0,0,0%; ! Start of name (variable length)

LITERAL
NODE$C_LENGTH = 11; ! Length of fixed part of node

!+
! EXTERNAL REFERENCES:
!-

EXTERNAL ROUTINE
LIB$GET_INPUT, ! Read from SYS$INPUT
LIB$GET_VM, ! Allocate virtual memory
LIB$INSERT_TREE, ! Insert into binary tree
LIB$LOOKUP_TREE, ! Lookup in binary tree
LIB$PUT_OUTPUT, ! Write to SYS$OUTPUT
LIB$TRAVERSE_TREE, ! Traverse a binary tree
STR$UPCASE, ! Convert string to all uppercase
SYS$FAO; ! Formatted ASCII output routine

%SBTTL ’TREE_START - Sample program main routine’;
ROUTINE TREE_START =
BEGIN
!+
! This program reads from SYS$INPUT and stores each data line
! as an entry in a binary tree. When end-of-file character (CTRL/Z)
! is entered, the tree will be printed in sorted order.
!-
LOCAL

NODE : REF BBLOCK, ! Address of allocated node
TREEHEAD, ! List head of binary tree
LINEDESC : BBLOCK[DSC$C_S_BLN], ! String descriptor for input line
STATUS;

24–30 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.7 Miscellaneous Interface Routines

TREEHEAD = 0; ! Zero binary tree head
CH$FILL(0,DSC$C_S_BLN,LINEDESC); ! Make a dynamic descriptor
LINEDESC[DSC$B_CLASS] = DSC$K_CLASS_D; ! ...
!+
! Read input lines until end of file seen.
!-
WHILE (STATUS = LIB$GET_INPUT(LINEDESC, ! Read input line

$DESCRIPTOR(’Text: ’))) ! with this prompt
NEQ RMS$_EOF

DO IF NOT .STATUS ! Report any errors found
THEN SIGNAL(.STATUS)
ELSE BEGIN

STR$UPCASE(LINEDESC,LINEDESC); ! Convert string
! to uppercase

IF NOT (STATUS = LIB$INSERT_TREE(
TREEHEAD, ! Insert good data into the tree
LINEDESC, ! Data to insert
%REF(1), ! Insert duplicate entries
COMPARE_NODE, ! Addr. of compare routine
ALLOC_NODE, ! Addr. of node allocation routine
NODE, ! Return addr. of
0)) ! allocated node here

THEN SIGNAL(.STATUS);
END;

!+
! End of file character encountered. Print the whole tree and exit.
!-
IF NOT (STATUS = LIB$TRAVERSE_TREE(

TREEHEAD, ! Listhead of tree
PRINT_NODE, ! Action routine to print a node
0))

THEN SIGNAL(.STATUS);

RETURN SS$_NORMAL
END; ! End of routine tree_start

ROUTINE ALLOC_NODE (KEYDESC,RETDESC,CONTEXT) =
BEGIN
!+
! This routine allocates virtual memory for a node.
!
! INPUTS:
!
! KEYDESC Address of string descriptor for key
! (this is the linedesc argument passed
! to LIB$INSERT_TREE)
! RETDESC Address of location to return address of
! allocated memory
! CONTEXT Address of user context argument passed
! to LIB$INSERT_TREE (not used in this
! example)
!
! OUTPUTS:
!
! Memory address returned in longword pointed to by retdesc
!-
MAP

KEYDESC : REF BBLOCK,
RETDESC : REF VECTOR[,LONG];

LOCAL
NODE : REF BBLOCK,
STATUS;

Using Run-Time Library Routines to Access Operating System Components 24–31

Using Run-Time Library Routines to Access Operating System Components
24.7 Miscellaneous Interface Routines

STATUS = LIB$GET_VM(%REF(NODE$C_LENGTH+.KEYDESC[DSC$W_LENGTH]),NODE);
IF NOT .STATUS

THEN RETURN .STATUS
ELSE BEGIN

NODE[NODE$B_NAMLNG] = .KEYDESC[DSC$W_LENGTH]; ! Set name length
CH$MOVE(.KEYDESC[DSC$W_LENGTH], ! Copy in the name

.KEYDESC[DSC$A_POINTER],
NODE[NODE$T_NAME]);

RETDESC[0] = .NODE; ! Return address to caller
END;

RETURN .STATUS

END;

ROUTINE COMPARE_NODE (KEYDESC,NODE,CONTEXT) =
BEGIN
!+
! This routine compares a key with a node.
!
! INPUTS:
!
! KEYDESC Address of string descriptor for new key
! (This is the linedesc argument passed to
! LIB$INSERT_TREE)
! NODE Address of current node
! CONTEXT User context data (Not used in this example)
!-
MAP

KEYDESC : REF BBLOCK,
NODE : REF BBLOCK;

RETURN CH$COMPARE(.KEYDESC[DSC$W_LENGTH], ! Compare key with
! current node

.KEYDESC[DSC$A_POINTER],

.NODE[NODE$B_NAMLNG],
NODE[NODE$T_NAME])

END;

ROUTINE PRINT_NODE (NODE,CONTEXT) =
BEGIN
!+
! This routine is called during the tree traversal. It
! prints out the left and right subtree pointers, the
! current node balance, and the name of the node.
!-
MAP

NODE : REF BBLOCK;

24–32 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.7 Miscellaneous Interface Routines

LOCAL
OUTBUF : BBLOCK[512], ! FAO output buffer
OUTDESC : BBLOCK[DSC$C_S_BLN], ! Output buffer descriptor
STATUS;

CH$FILL(0,DSC$C_S_BLN,OUTDESC); ! Zero descriptor
OUTDESC[DSC$W_LENGTH] = 512;
OUTDESC[DSC$A_POINTER] = OUTBUF;
IF NOT (STATUS = SYS$FAO($DESCRIPTOR(’!XL !XL !XL !XW !AC’),

OUTDESC,OUTDESC,
.NODE,.NODE[NODE$L_LEFT],
.NODE[NODE$L_RIGHT],
.NODE[NODE$W_BAL],
NODE[NODE$B_NAMLNG]))

THEN SIGNAL(.STATUS)
ELSE BEGIN

STATUS = LIB$PUT_OUTPUT(OUTDESC); ! Output the line
IF NOT .STATUS

THEN SIGNAL(.STATUS);
END;

RETURN SS$_NORMAL

END;
END ! End of module TREE_EXAMPLE

ELUDOM

Using Run-Time Library Routines to Access Operating System Components 24–33

25
Using Cross-Reference Routines

The cross-reference routines are contained in a separate, shareable image capable
of creating a cross-reference analysis of symbols. They accept cross-reference
data, summarize it, and format it for output. Three facilities that use the
cross-reference routines are the VMS Linker, the MACRO assembler, and the
Librarian. They are sufficiently general, however, to be used by any native-mode
utility.

Table 25–1 lists the entry points and functions of the cross-reference routines.

Table 25–1 Cross-Reference Routines

Entry Point Function

LIB$CRF_INS_KEY Inserts key information

LIB$CRF_INS_REF Inserts reference information

LIB$CRF_OUTPUT Summarizes and formats cross-reference information

The interface to the cross-reference routines is by way of a set of control blocks,
format definition tables, and a set of callable entry points. Macros are provided
for assembly language and BLISS initialization of the control blocks and format
definition tables.

25.1 How to Use the Cross-Reference Routines
Using the cross-reference routines involves the following steps:

1. Define a table of control information, using the $CRFCTLTABLE macro.

2. Define each field of the output line, using the $CRFFIELD macro.

3. Specify the end of each set of macros that define a field in the output line,
using the $CRFFIELDEND macro.

4. Provide data by calling one of the two following cross-reference entry points:

• LIB$CRF_INS_KEY inserts an entry for the specified key in the specified
symbol table.

• LIB$CRF_INS_REF inserts a reference to a key in the specified symbol
table.

5. Call LIB$CRF_OUTPUT, the cross-reference output routine, to summarize
and format the data.

6. Supply a routine that the output routine calls to print each line in the output
file. Because you supply this routine, you can control the number of lines per
page and the header lines.

Using Cross-Reference Routines 25–1

Using Cross-Reference Routines
25.1 How to Use the Cross-Reference Routines

Figure 25–1 illustrates the steps required in using the cross-reference routines.

Figure 25–1 Using Cross-Reference Routines

Step 1:

Step 2:

Step 3:

ZK−1970−GE

LIB$CRF_OUTPUT when all data is accumulated
Call the cross−reference procedure

to summarize cross−reference output and
format the output lines. LIB$CRF_OUTPUT calls
the user−supplied print routine once for each line
of output.

Build the control blocks and the format
definition tables used for output.

Call the cross−reference procedures
LIB$CRF_INS_KEY and LIB$CRF_INS_REF
to enter cross−reference data in the tables.

The Run-Time Library provides three macros to initialize the data structures
used by the cross-reference routines:

1. $CRFCTLTABLE defines a table of control information.

2. $CRFFIELD defines each field of the output format definition table. Multiple
$CRFFIELD macro instructions can be issued in defining one particular field.

3. $CRFFIELDEND ends a set of $CRFFIELD macro instructions (a format
table).

25.2 $CRFCTLTABLE Macro
$CRFCTLTABLE initializes a cross-reference control table. Your program must
issue one $CRFCTLTABLE macro for each cross-reference table you build. You
can accumulate information for more than one cross-reference table at a time.
For this reason, you must define a table for each set of cross-references, and
include the address of that table each time you call a cross-reference routine to
insert data.

The $CRFCTLTABLE macro instruction has the following format:

label: $CRFCTLTABLE keytype, output, error, memexp, key1table,
key2table, val1table, val2table,
ref1table, ref2table

25–2 Using Cross-Reference Routines

Using Cross-Reference Routines
25.2 $CRFCTLTABLE Macro

label
The address of the control table. You must specify a control table address in all
calls to the cross-reference routines.

keytype
The type of key to enter into the table. The following key types are defined:

ASCIC Keys are counted ASCII strings, with a maximum of 255 characters
(symbol name).

BIN_U32 Keys are 32-bit unsigned binary values. The binary-to-ASCII conversion is
done by $FAO using the format string for the KEY1 field.

ASCIZ Keys are zero-terminated ASCII strings. (Alpha and I64 Only)

BIN_U64 Keys are 64-bit unsigned binary values. The binary-to-ASCII conversion is
done by $FAO using the format string for the KEY1 field. (Alpha and I64
Only)

output
The address of the routine that you supply to print a formatted output line. The
output line is passed to the output routine by descriptor.

error
The address of an error routine to execute if the called cross-reference routine
encounters an error. The error code (longword) is passed to the error routine by
value. In other words, it is a copy of the constant on the stack. A value of zero
indicates that no error routine is supplied.

memexp
The number of pages by which to expand region when needed. The default is 50.

key1table
The address of the field descriptor table for the KEY1 field. A value of zero
indicates that the field is not to be included in the output line.

The remaining arguments provide the address of the field descriptor tables for
the KEY2, VAL1, VAL2, REF1, and REF2 fields, respectively, of the output line.
You can use these argument names as keywords in the macros. For example, you
can use KEYTYPE as a keyword when issuing the $CRFCTLTABLE macro.

25.3 $CRFFIELD Macro
For each field in the output line, you must issue a $CRFFIELD instruction to
identify the field, supply an $FAO command string to control the printing of the
field, and provide flag information. See the program example and the description
of $FAO (formatted ASCII output) in the OpenVMS System Services Reference
Manual. The $CRFFIELD macro has the following format:

label: $CRFFIELD bit_mask, fao_string, field_width, set_clear

label
The address of the field descriptor table generated as a result of this set of
$CRFFIELD macro instructions. The label field can be omitted after the first
macro of the set. These addresses correspond to the field descriptor table
addresses in the $CRFCTLTABLE macro.

Using Cross-Reference Routines 25–3

Using Cross-Reference Routines
25.3 $CRFFIELD Macro

bit_mask
A 16-bit mask. When the user enters a key or reference, the cross-reference
routine stores flag information with the entry. When preparing the output line,
LIB$CRF_OUTPUT performs an AND operation on the 16-bit mask in the field
descriptor table with the flag stored with the entry. Any number of bit masks can
be defined for a field. $CRFFIELD macro instructions are used to define multiple
bit patterns for a flag field. The high-order bit is reserved to the cross-reference
routines.

fao_string
The $FAO command string. LIB$CRF_OUTPUT uses this string to determine the
$FAO format when formatting this field for output.

field_width
The maximum width of the output field.

set_clear
The indicator used to determine whether the bit mask is to be tested as set or
clear when determining which flag to use. SET indicates test for set; CLEAR
indicates test for clear.

You can use the argument names shown here as keywords in your program.

In the following Bliss example, one bit pattern is defined twice; once indicating a
string that is to be printed if the pattern is set, and once indicating that spaces
are to appear if the pattern is clear.

$CRFFIELD BIT_MASK=SYM$M_REL, FAO_STRING=’ ’,-
SET_CLEAR=CLEAR, FIELD_WIDTH=2

$CRFFIELD BIT_MASK=SYM$M_REL, FAO_STRING=’-R’,-
SET_CLEAR=SET, FIELD_WIDTH=2

If more than one set of flags is defined for a field, each FAO string must print the
same number of characters; otherwise, the output is not aligned in columns.

The fields for the symbol name, symbol value, and references are always
formatted using the first descriptor in the corresponding table.

25.4 $CRFFIELDEND Macro
The $CRFFIELDEND macro marks the end of a set of macros that describe one
field of the output line. It is used once to end each set of field descriptors. It has
the following format:

$CRFFIELDEND

25.5 Cross-Reference Output
LIB$CRF_OUTPUT can format output lines for three types of cross-reference
listings:

1. A summary of symbol names and their values, as illustrated in Figure 25–2.

2. A summary of symbol names, their values, and the names of modules that
refer to the symbol, as illustrated in Figure 25–3.

3. A summary of symbol names, their values, the name of the defining module,
and the names of those modules that refer to the symbol, as illustrated in
Figure 25–4.

25–4 Using Cross-Reference Routines

Using Cross-Reference Routines
25.5 Cross-Reference Output

Figure 25–2 Summary of Symbol Names and Values

ZK−1973−GE

00002108−RU
00002110−RU
000022F0−RU
000022E8−RU
00002310−RU
000020C8−RU
000020B8−RU
000020C0−RU
00002338−RU
00002308−RU
−−−−−
Value

BAS$VAL_F
BAS$VAL_D
BAS$UPDATE_COUN
BAS$UPDATE
BAS$UNLOCK
BAS$STR_L
BAS$STR_F
BAS$STR_D
BAS$STATUS
BAS$SCRATCH
−−−−−−
Symbol

00002268−RU
000021A8−RU
00001674−R
000021D0−RU
000021D8−RU
000021F8−RU
000021E0−RU
000021E8−RU
000021F0−RU
000020B0−RU
−−−−−
Value

BAS$MAT_INPUT
BAS$LINPUT
BAS$LINKAGE
BAS$IO_END
BAS$IN_W_R
BAS$IN_T_DX
BAS$IN_L_R
BAS$IN_F_R
BAS$IN_D_R
BAS$INSTR
−−−−−−
Symbol

Figure 25–3 Summary of Symbol Names, Values, and Name of Referring Modules

BAS$$REC_PROC
BAS$$SIGNAL_IO
BAS$POWRR
BAS$POWII
BAS$ERROR

ALLGBL
BAS$$UDF_RL
ALLGBL
ALLGBL
BAS$POWRJ
BAS$POWDJ
ALLGBL
−−−−−−−−−−−−−−−−−
Referenced By ...

0000006C

0000000B
00000086

0000003D
−−−−−
Value

BAS$K_ENDOF_STA

BAS$K_DIVBY_ZER
−−−−−−
Symbol

ZK−1974−GE

BAS$K_ENDFILDEV
BAS$K_DUPKEYDET

Figure 25–4 Summary Indicating Defining Module

ALLGBL
ALLGBL
STR$REPLACE
STR$DUPL_CHAR
STR$APPEND
FOR$VM
BAS$XLATE
BAS$MARGIN
ALLGBL
−−−−−−−−−−−−−−−−−
Referenced By ...

LIB$COMMON
LIB$GET_INPUT

LIB$VM
−−−−−−−−−−
Defined By

0001E4D6−RLIB$GET_COMMON
LIB$GET_COMMAND

LIB$FREE_VM
−−−−−−
Symbol

0001E2B0−R

ZK−1971−GE

0001E185−R
−−−−−
Value

Regardless of the format of the output, LIB$CRF_OUTPUT considers the output
line to consist of the following six different field types:

1. KEY1 is the first field in the line. It contains a symbol name.

2. KEY2 is the second field in the line. It contains a set of flags (for example,–R)
providing information about the symbol.

3. VAL1 is the third field in the line. It contains the value of the symbol.

4. VAL2 is the fourth field in the line. It contains a set of flags describing VAL1.

5. REF1 and REF2 fields. Within each REF1 and REF2 pair, REF1 provides
a set of flags and REF2 provides the name of a module that references the
symbol.

Using Cross-Reference Routines 25–5

Using Cross-Reference Routines
25.5 Cross-Reference Output

Figure 25–5 shows that any of these fields can be omitted from the output.

Figure 25–5 Output Line for LIB$CRF_OUTPUT

Symbol

Symbol
−−−−−−
BAS$INSTR

KEY1

−−−−−−

Value

LIB$FREE_VM

−−−−−
Symbol
−−−−−−
BAS$SCRATCH

KEY1

000020B0−RU

KEY1

VAL1 VAL2

Value
−−−−−
00002308−RU

VAL1 VAL2

Value
−−−−−
0001E185−R

VAL1 VAL2

Defined By
−−−−−−−−−−
LIB$VM

REF2

Referenced By ...
−−−−−−−−−−−−−−−−−
ALLGBL

REF2
(CRF$K_DEF) (CRF$K_REF)

ZK−1972−GE

25.6 Example
The VAX Linker uses the cross-reference routines to generate cross-reference
listings. This section uses the linker’s code as an example of using the cross-
reference routines in a MACRO program.

25.6.1 Defining Control Tables
Cross-reference routines use two control tables:

• The symbol-by-name table

• The symbol-by-value table

First, the linker uses the $CRFCTLTABLE macro to set up the characteristics
and fields of the symbol-by-name table. This table will list symbols by name and
provide a cross-reference synopsis. The table is set up as follows:

LNK$NAMTAB:
$CRFCTLTABLE KEYTYPE=ASCIC,ERROR=LNK$ERR_RTN,_

OUTPUT=LNK$MAPOUT,KEY1TABLE=LNK$KEY1,_
KEY2TABLE=LNK$KEY2,VAL1TABLE=LNK$VAL1,_
VAL2TABLE=LNK$VAL2,REF1TABLE=LNK$REF1,_
REF2TABLE=LNK$REF2

LNK$NAMTAB Names the address of the control table

KEYTYPE=ASCIC Specifies that the keys are counted ASCII strings (that is,
symbol names)

ERROR=LNK$ERR_RTN Indicates that LNK$ERR_RTN is the address of the
routine to be executed in case of error

OUTPUT=LNK$MAPOUT Names LNK$MAPOUT as the address of the user-
supplied routine that prints the formatted table

The remaining arguments provide the addresses of the field descriptor tables.

25–6 Using Cross-Reference Routines

Using Cross-Reference Routines
25.6 Example

After setting up the control tables, the linker defines each field of the cross-
reference output line, using the $CRFFIELD macro. After each set of definitions
for a field, it calls $CRFFIELDEND to mark the end of the field.

Note particularly the following two features of this set of definitions:

• The definition of LNK$VAL2 describes a flag to be associated with VAL1. The
definition contains alternative bit patterns, depending on the bit mask. When
an entry is made to the table, the entry contains flag information. Then,
when LIB$CRF_OUTPUT is called to format the data, the routine checks
each entry, matching the flags argument against the bit masks specified
in the control table. When LIB$CRF_OUTPUT finds a match, it uses that
definition to determine the format of the entry in the output table. For
example, BIT_MASK=SYM$M_DEF marks an entry as the defining reference.
The corresponding VAL1 entry is placed in the output table with an asterisk
in its flags field.

• The FAO control strings are defined to produce an output of the maximum
character size for each field. This ensures that the columns will line up
correctly in the output. For example, !15AC produces the variable symbol
name left-aligned and right-filled with spaces. Another example is the three
sets of characters to be printed for field VAL2. Each FAO control string
produces two characters, which is the maximum size of the field.

LNK$KEY1:
$CRFFIELD BIT_MASK=0, FAO_STRING=\!15AC\,-

SET_CLEAR=SET,FIELD_WIDTH=15
$CRFFIELDEND

LNK$KEY2:
$CRFFIELD BIT_MASK=0,FAO_STRING=\ \,-

SET_CLEAR=SET, FIELD_WIDTH=1
$CRFFIELDEND

LNK$VAL1:
$CRFFIELD BIT_MASK=0,FAO_STRING=\!XL\,-

SET_CLEAR=SET,FIELD_WIDTH=8
$CRFFIELDEND

LNK$VAL2:
$CRFFIELD BIT_MASK=0, FAO_STRING=\!2* \,-

SET_CLEAR=SET,FIELD_WIDTH=2
$CRFFIELD BIT_MASK=SYM$M_REL,FAO_STRING=\-R\,-

SET_CLEAR=SET,FIELD_WIDTH=2
$CRFFIELD BIT_MASK=SYM$M_DEF, FAO_STRING=\-*\,-

SET_CLEAR=CLEAR,FIELD_WIDTH=2
$CRFFIELDEND

LNK$REF1:
$CRFFIELD BIT_MASK=0,FAO_STRING=\!6* \,-

SET_CLEAR=SET,FIELD_WIDTH=6
$CRFFIELD BIT_MASK=SYM$M_WEAK,FAO_STRING=\!3* WK-\,-

SET_CLEAR=SET,FIELD_WIDTH=6
$CRFFIELDEND

LNK$REF2:
$CRFFIELD BIT_MASK=0,FAO_STRING=\!16AC\,-

SET_CLEAR=SET,FIELD_WIDTH=16
$CRFFIELDEND

After initializing the symbol-by-name table, the linker sets up a second control
table. This table defines the output for a symbol-by-value synopsis. For this
output, the value fields are eliminated. The symbols having this value are
entered as reference indicators. None is specified as the defining reference. The
control table uses the field descriptors set up previously. The following macro
instructions are used:

Using Cross-Reference Routines 25–7

Using Cross-Reference Routines
25.6 Example

LNK$VALTAB:
$CRFCTLTABLE KEYTYPE=BIN_U32, ERROR=LNK$ERR_RTN,-

OUTPUT=LNK$MAPOUT,KEY1TABLE=LNK$VAL1,-
KEY2TABLE=LNK$VAL2,VAL1TABLE=0,-
VAL2TABLE=0,REF1TABLE=LNK$REF1,-
REF2TABLE=LNK$REF2

25.6.2 Inserting Table Information
After initializing the format data for the symbol tables, the linker enters data
into the cross-reference tables by calling LIB$CRF_INS_KEY.

As the linker processes the first object module, MAPINITIAL, it encounters a
symbol definition for $MAPFLG. The following is an example of a call to enter the
symbol MAPINITIAL as a key in the cross-reference symbol table:

PUSHAB VALUE_FLAGS
PUSHAB VALUE_ADDR
PUSHAB SYMBOL_ADDR
PUSHAB LNK$NAMTAB
CALLS #4,G^LIB$CRF_INS_KEY

LNK$NAMTAB Is the address of the control table

SYMBOL_ADDR Is the address of the counted ASCII string $MAPFLG

VALUE_ADDR Is the address of the symbol value

VALUE_FLAGS Is the address of a word whose bits are used to select special
characters to print beside the value

The linker then calls LIB$CRF_INS_REF to process the defining reference
indicator:

DEF: .LONG CRF$K_DEF
PUSHAB DEF
PUSHAB REF_FLAGS
PUSHAB REF_ADDR
PUSHAB SYMBOL_ADDR
PUSHAB LNK$NAMTAB
CALLS #5,G^LIB$CRF_INS_REF

LNK$NAMTAB Is the address of the control table

SYMBOL_ADDR Is the address of the counted string $MAPFLG

REF_ADDR Is the address of the referrer’s counted ASCII string

REF_FLAGS Is the address of a word whose bits are used to select special
characters to print beside the reference

Further on in the input module, the linker encounters a global symbol reference
to CS$GBL. The call to store data for this reference is as follows:

REF: .LONG CRF$K_REF
PUSHAB REF
PUSHAB REF_FLAGS
PUSHAB REF_ADDR
PUSHAB SYMBOL_ADDR
PUSHAB LNK$NAMTAB
CALLS #5,G^LIB$CRF_INS_REF

The arguments are similar to the previous example, except for CRF$K_REF,
which indicates that this is not the defining reference.

25–8 Using Cross-Reference Routines

Using Cross-Reference Routines
25.6 Example

After it has performed symbol relocation for the module being linked, the linker
calls LIB$CRF_INS_REF to build a table ordered by value.

PUSHAB REF
PUSHAB REF_FLAGS
PUSHAB REF_ADDR
PUSHAB VAL_ADDR
PUSHAB LNK$VALTAB
CALLS #5,G^LIB$CRF_INS_REF

LNK$VALTAB Is the address of the control table for the symbol synopsis by value

VAL_ADDR Is the address of the value (binary longword key)

REF_ADDR Is the address of the symbol name having the value contained in
VAL_ADDR

REF_FLAGS Is the address of a word whose bits are used to select special
characters to print beside the value

CRF$K_REF Is the indicator that this is not a defining reference

25.6.3 Formatting Information for Output
After all input modules are processed, the linker requests the information for
the map. It calls LIB$CRF_OUTPUT once for each type of output. The following
MACRO example illustrates a call to list the symbols and their values. Three
calls are illustrated here.

LNWID: .LONG 132
LNSP1: .LONG LINES_PAGE1
LNSOP: .LONG LINES_OTHR_PAGE
SAVE: .LONG CRF$K_SAVE
VAL: .LONG CRF$K_VALUES

PUSHAB VAL
PUSHAB SAVE
PUSHAB LNSOP
PUSHAB LNSP1
PUSHAB LNWID
PUSHAB LNK$NAMTAB
CALLS #6,G^LIB$CRF_OUTPUT

In this example, CRF$K_VALUES means that no reference indicators are to be
printed, while CRF$K_SAVE means that the cross-reference table is to be saved.
It is also possible to list all cross-reference data. The type of output produced by
this call is shown in Section 25.5, Figure 25–2.

The following call produces such a summary and releases the storage at the same
time:

LNWID: .LONG 132
LNSP1: .LONG LINES_PAGE1
LNSOP: .LONG LINES_OTHR_PAGE
DELETE: .LONG CRF$K_DELETE
DEFREF: .LONG CRF$K_DEF_REF

PUSHAB DELETE
PUSHAB DEFREF
PUSHAB LNSOP
PUSHAB LNSP1
PUSHAB LNWID
PUSHAB LNK$NAMTAB
CALLS #6,G^LIB$CRF_OUTPUT

The type of output produced by this call is shown in Section 25.5, Figure 25–4.

CRF$K_DEFS_REFS indicates that the first two reference fields are used for the
defining references, and CRF$K_DELETE indicates that the table is deleted.

Using Cross-Reference Routines 25–9

Using Cross-Reference Routines
25.6 Example

Another call is made to list the symbol by value synopsis, as follows:

LNWID: .LONG 132
LNSP1: .LONG LINES_PAGE1
LNSOP: .LONG LINES_OTHR_PAGE
VALREF: .LONG CRF$K_VALS_REF
DELETE: .LONG CRF$K_DELETE

PUSHAB DELETE
PUSHAB VALREF
PUSHAB LNSOP
PUSHAB LNSP1
PUSHAB LNWID
PUSHAB LNK$VALTAB
CALLS #6,G^LIB$CRF_OUTPUT

This is similar to the previous call in that it produces a complete cross-reference
output by value, but it does not have the defining reference fields.

25.7 How to Link to the Cross-Reference Shareable Image
The cross-reference routines are located in a shareable image CRFSHR.EXE.
This shareable image is part of the default system shareable image library,
SYS$LIBRARY:IMAGELIB.OLB. For this reason, the cross-reference routines
are automatically included in your image, unless you specify /NOSYSSHR in
the LINK command. If you have specified /NOSSYSHR and you want to include
CRFSHR.EXE, your LINK command must include the following:

SYS$LIBRARY:IMAGELIB/INCLUDE=CRFSHR

25–10 Using Cross-Reference Routines

26
Shareable Resources

This chapter describes the techniques available for sharing data and program
code among programs. It contains the following sections:

Section 26.1 describes how to share code among programs.

Section 26.2 describes shareable images.

Section 26.3 defines and describes how to use local and global symbols to share
images.

The operating system provides the following techniques for sharing data and
program code among programs:

• DCL symbols and logical names

• Libraries

• Shareable images

• Global sections

• Common blocks installed in a shareable image

• OpenVMS Record Management Services (RMS) shared files

Symbols and logical names are also used for intraprocess and interprocess
communication; therefore, they are discussed in Chapter 34.

Libraries and shareable images are used for sharing program code.

Global sections, common blocks stored in shareable images, and RMS shared
files are used for sharing data. You can also use common blocks for interprocess
communication. For more information, refer to Chapter 3.

26.1 Sharing Program Code
To share code among programs, you can use the following operating system
resources:

• Text, macro, or object libraries that store sections of code. Text and macro
libraries store source code; object libraries store object code. You can create
and manage libraries using the Librarian utility (LIBRARIAN). Refer to the
HP OpenVMS Command Definition, Librarian, and Message Utilities Manual
for complete information about using the Librarian utility.

• Shareable images are images that can be linked with executable images.
These images can also be stored in libraries.

Shareable Resources 26–1

Shareable Resources
26.1 Sharing Program Code

26.1.1 Object Libraries
You can use object libraries to store frequently used routines, thereby avoiding
repeated recompiling, which allows you to minimize the number of files you
must maintain, and simplify the linking process. The source code for the object
modules can be in any supported language, and the object modules can be linked
with any other modules written in any supported language.

Use the .OLB file extension for any object library. All modules stored in an object
library must have the file extension .OBJ.

26.1.1.1 System- and User-Defined Default Object Libraries
The operating system provides a default system object library, STARLET.OLB.
You can also define one or more default object libraries to be automatically
searched before the system object library. The logical names for the default object
libraries are LNK$LIBRARY and LNK$LIBRARY_1 through LNK$LIBRARY_
999. To use one of these default libraries, first define the logical name. The
libraries are searched sequentially starting at LNK$LIBRARY. Do not skip any
numbers. If you store object modules in the default libraries, you do not have to
specify them at link time. However, you do have to maintain and manage them
as you would any library.

The following example defines the library in the file PROCEDURES.OLB (the file
type defaults to .OLB, meaning object library) in $DISK1:[DEV] as a default user
library:

$ DEFINE LNK$LIBRARY $DISK1:[DEV]PROCEDURES

26.1.1.2 How the Linker Searches Libraries
When the linker is resolving global symbol references, it searches user default
libraries at the process level first, then libraries at the group and system level.
Within levels, the library defined as LNK$LIBRARY is searched first, then
LNK$LIBRARY_1, LNK$LIBRARY_2, and so on.

26.1.1.3 Creating an Object Library
To create an object library, invoke the Librarian utility by entering the LIBRARY
command with the /CREATE qualifier and the name you are assigning the library.
The following example creates a library in a file named INCOME.OLB (.OLB is
the default file type):

$ LIBRARY/CREATE INCOME

26.1.1.4 Managing an Object Library
To add or replace modules in a library, enter the LIBRARY command with the
/REPLACE qualifier followed by the name of the library (first parameter) and
the names of the files containing the (second parameter). After you put object
modules in a library, you can delete the object file. The following example adds
or replaces the modules from the object file named GETSTATS.OBJ to the object
library named INCOME.OLB and then deletes the object file:

$ LIBRARY/REPLACE INCOME GETSTATS
$ DELETE GETSTATS.OBJ;*

You can examine the contents of an object library with the /LIST qualifier. Use
the /ONLY qualifier to limit the display. The following command displays all the
modules in INCOME.OLB that start with GET:

$ LIBRARY/LIST/ONLY=GET* INCOME

26–2 Shareable Resources

Shareable Resources
26.1 Sharing Program Code

Use the /DELETE qualifier to delete a library module and the /EXTRACT
qualifier to recreate an object file. If you delete many modules, you should
also compress (/COMPRESS qualifier) and purge (PURGE command) the library.
Note that the /ONLY, /DELETE, and /EXTRACT qualifiers require the names of
modules—not file names—and that the names are specified as qualifier values,
not parameter values.

26.1.2 Text and Macro Libraries
Any frequently used routine can be stored in libraries as source code. Then, when
you need the routine, it can be called in from your source program.

Source code modules are stored in text libraries. The file extension for a text
library is .TLB.

When using VAX MACRO assembly language, any source code module can be
stored in a macro library. The file extension for a macro library is .MLB. Any
source code module stored in a macro library must have the file extension .MAR.

You also use LIBRARIAN to create and manage text and macro libraries. Refer to
Section 26.1.1.3 and Section 26.1.1.4 for a summary of LIBRARIAN commands.

26.2 Shareable Images
A shareable image is an image that can be linked with executable images. If
you have a program unit that is invoked by more than one program, linking it as
a shareable image provides the following benefits:

• Saves disk space—The executable images to which the shareable image is
linked do not physically include the shareable image. Only one copy of the
shareable image exists.

• Simplifies maintenance—If you use transfer vectors and the GSMATCH (on
VAX systems) or symbol vectors (on Alpha and I64 systems) option, you can
modify, recompile, and relink a shareable image without having to relink any
executable image that is linked with it.

Shareable images can also save memory, provided that they are installed
as shared images. See the HP OpenVMS Linker Utility Manual for more
information about creating shareable images and shareable image libraries.

26.3 Symbols
Symbols are names that represent locations (addresses) in virtual memory. More
precisely, a symbol’s value is the address of the first, or low-order, byte of a
defined area of virtual memory, while the characteristics of the defined area
provide the number of bytes referred to. For example, if you define TOTAL_
HOUSES as an integer, the symbol TOTAL_HOUSES is assigned the address of
the low-order byte of a 4-byte area in virtual memory. Some system components
(for example, the debugger) permit you to refer to areas of virtual memory by
their actual addresses, but symbolic references are always recommended.

26.3.1 Defining Symbols
A symbolic name can consist of letters, digits, underscores (_), and dollar signs
($). Uppercase and lowercase letters are equivalent. By convention, dollar
signs are restricted to symbols used in system components. (If you do not use
the dollar sign in your symbolic names, you will never accidentally duplicate a
system-defined symbol.)

Shareable Resources 26–3

Shareable Resources
26.3 Symbols

26.3.2 Local and Global Symbols
Symbols are either local or global in scope. A local symbol can only be
referenced within the program unit in which it is defined. Local symbol names
must be unique among all other local symbols within the program unit but not
within other program units in the program. References to local symbols are
resolved at compile time.

A global symbol can be referenced outside the program unit in which it is
defined. Global symbol names must be unique among all other global symbols
within the program. References to global symbols are not resolved until link time.

References to global symbols in the executable portion of a program unit are
usually invocations of subprograms. If you reference a global symbol in any other
capacity (as an argument or data value—see the following paragraph), you must
define the symbol as external or intrinsic in the definition portion of the program
unit.

System facilities, such as the Message utility and the VAX MACRO assembler,
use global symbols to define data values.

The following program segment shows how to define and reference a global
symbol, RMS$_EOF (a condition code that may be returned by LIB$GET_
INPUT):

CHARACTER*255 NEW_TEXT
INTEGER STATUS
INTEGER*2 NT_SIZ
INTEGER LIB$GET_INPUT
EXTERNAL RMS$_EOF
STATUS = LIB$GET_INPUT (NEW_TEXT,
2 ’New text: ’,
2 NT_SIZ)
IF ((.NOT. STATUS) .AND.
2 (STATUS .NE. %LOC (RMS$_EOF))) THEN
CALL LIB$SIGNAL (RETURN_STATUS BY VALUE)

END IF

26.3.3 Resolving Global Symbols
References to global symbols are resolved by including the module that defines
the symbol in the link operation. When the linker encounters a global symbol, it
uses the following search method to find the defining module:

1. Explicitly named modules and libraries—Generally used to resolve user-
defined global symbols, such as subprogram names and condition codes.
These modules and libraries are searched in the order in which they are
specified.

2. System default libraries—Generally used to resolve system-defined global
symbols, such as procedure names and condition codes.

3. User default libraries—Generally used to avoid explicitly naming libraries,
thereby simplifying linking.

If the linker cannot find the symbol, the symbol is said to be unresolved and
a warning results. You can run an image containing unresolved symbols. The
image runs successfully as long as it does not access any unresolved symbol. For
example, if your code calls a subroutine but the subroutine call is not executed,
the image runs successfully.

26–4 Shareable Resources

Shareable Resources
26.3 Symbols

If an image accesses an unresolved global symbol, results are unpredictable.
Usually the image fails with an access violation (attempting to access a physical
memory location outside those assigned to the program’s virtual memory
addresses).

26.3.3.1 Explicitly Named Modules and Libraries
You can resolve a global symbol reference by naming the defining object module
in the link command. For example, if the program unit INCOME references the
subprogram GET_STATS, you can resolve the global symbol reference when you
link INCOME by including the file containing the object module for GET_STATS,
as follows:

$ LINK INCOME, GETSTATS

If the modules that define the symbols are in an object library, name the library
in the link operation. In the following example, the GET_STATS module resides
in the object module library INCOME.OLB:

$ LINK INCOME,INCOME/LIBRARY

26.3.3.2 System Default Libraries
Link operations automatically check the system object and shareable image
libraries for any references to global symbols not resolved by your explicitly
named object modules and libraries. The system object and shareable image
libraries include the entry points for the RTL routines and system services,
condition codes, and other system-defined values. Invocations of these modules do
not require any explicit action by you at link time.

26.3.3.3 User Default Libraries
If you write general-purpose procedures or define general-purpose symbols, you
can place them in a user default library. (You can also make your development
library a user default library.) In this way, you can link to the modules containing
these procedures and symbols without explicitly naming the library in the DCL
LINK command. To name a single-user library, equate the file name of the
library to the logical name LNK$LIBRARY. For subsequent default libraries, use
the logical names LNK$LIBRARY_1 through LNK$LIBRARY_999, as described
in Section 26.1.1.

26.3.3.4 Making a Library Available for Systemwide Use
To make a library available to everyone using the system, define it at the system
level. To restrict use of a library or to override a system library, define the library
at the process or group level. The following command line defines the default
user library at the system level:

$ DEFINE/SYSTEM LNK$LIBRARY $DISK1:[DEV]PROCEDURES

26.3.3.5 Macro Libraries
Some system symbols are not defined in the system object and shareable image
libraries. In such cases, the HP OpenVMS System Services Reference Manual
notes that the symbols are defined in the system macro library and tells
you the name of the macro containing the symbols. To access these symbols,
you must first assemble a macro routine with the following source code. The
keyword GLOBAL must be in uppercase. The .TITLE directive is optional but
recommended.

Shareable Resources 26–5

Shareable Resources
26.3 Symbols

.TITLE macro-name
macro-name GLOBAL
.
.
.

.END

The following example is a macro program that includes two system macros:

LBRDEF.MAR
.TITLE $LBRDEF
$LBRDEF GLOBAL
$LHIDEF GLOBAL
.END

Assemble the routine containing the macros with the MACRO command. You can
place the resultant object modules in a default library or in a library that you
specify in the LINK command, or you can specify the object modules in the LINK
command. The following example places the $LBRDEF and $LHIDEF modules in
a library before performing a link operation:

$ MACRO LBRDEF
$ LIBRARY/REPLACE INCOME LBRDEF
$ DELETE LBRDEF.OBJ;*
$ LINK INCOME,INCOME/LIBRARY

The following LINK command uses the object file directly:

$ LINK INCOME,LBRDEF,INCOME/LIBRARY

26.3.4 Sharing Data
Typically, you use an installed common block either to facilitate interprocess
communication or to allow two or more processes to access the same data
simultaneously. However, you must have the CMKRNL privilege to install the
common block. If you do not have the CMKRNL privilege, global sections allow
you to perform the same operations.

26.3.4.1 Installed Common Blocks
To share data among processes by using a common block, you must install the
common block as a shared shareable image and link each program that references
the common block against that shareable image.

To install a common block as a shared image:

1. Define a common block—Write a program that declares the variables in
the common block and defines the common block. This program should not
contain executable code. The following HP Fortran program defines a common
block:

INC_COMMON.FOR
INTEGER TOTAL_HOUSES
REAL PERSONS_HOUSE (2048),
2 ADULTS_HOUSE (2048),
2 INCOME_HOUSE (2048)
COMMON /INCOME_DATA/ TOTAL_HOUSES,
2 PERSONS_HOUSE,
2 ADULTS_HOUSE,
2 INCOME_HOUSE

END

26–6 Shareable Resources

Shareable Resources
26.3 Symbols

2. Create the shareable image—Compile the program containing the common
block. Use the LINK/SHAREABLE command to create a shareable image
containing the common block.

$ FORTRAN INC_COMMON
$ LINK/SHAREABLE INC_COMMON

For Alpha only, you need to specify a Linker options file (shown here as
SYS$INPUT to allow typed input) to specify the PSECT attributes of the
COMMON block PSECT and include it in the global symbol table:

$ LINK/SHAREABLE INC_COMMON ,SYS$INPUT/OPTION
_ SYMBOL_VECTOR=(WORK_AREA=PSECT)
_ PSECT_ATTR=WORK_AREA,SHR

With HP Fortran 90 on OpenVMS Alpha systems, the default PSECT
attribute for a common block is NOSHR. To use a shared installed common
block, you must specify one of the following:

• The SHR attribute in a cDEC$ PSECT directive in the source file

• The SHR attribute in the PSECT_ATTR option in the Linker options file.
The shareable image must be installed.

If the !DEC$ PSECT (same as cDEC$ PSECT) directive specified the SHR
attribute, the LINK command is as follows:

$ LINK/SHAREABLE INC_COMMON ,SYS$INPUT/OPTION
_ SYMBOL_VECTOR=(WORK_AREA=PSECT)

Copy the shareable image. Once created, you should copy the shareable
image into SYS$SHARE before it is installed. The file protection of the .EXE
file must allow write access for the processes running programs that will
access the shareable image (shown for Group access in the following COPY
command):

$ COPY/LOG DISK$:[INCOME.DEV]INC_COMMON.EXE SYS$SHARE:*.*
_ /PROTECTION=G:RWE

If you do not copy the installed shareable image to SYS$SHARE, before
running executable images that reference the installed shareable common
image, you must define a logical name that specifies the location of that
image.

On Alpha and I64 systems, when compiling the program that contains
the common block declarations, consistently use the same /ALIGNMENT
and /GRANULARITY qualifiers used to compile the common block data
declaration program that has been installed as a shareable image. For more
information, see Section 26.3.4.3.

3. Install the shareable image—Use the DCL command SET
PROCESS/PRIVILEGE to give yourself CMKRNL privilege (required for
use of the Install utility). Use the DCL command INSTALL to invoke
the interactive Install utility. When the INSTALL prompt appears, enter
CREATE, followed by the complete file specification of the shareable image
that contains the common block (the file type defaults to .EXE) and the
qualifiers /WRITEABLE and /SHARED. The Install utility installs your
shareable image and reissues the INSTALL prompt. Enter EXIT to exit.
Remember to remove CMKRNL privilege. (For complete documentation of the
Install utility, see the HP OpenVMS System Management Utilities Reference
Manual.)

Shareable Resources 26–7

Shareable Resources
26.3 Symbols

The following example shows how to install a shareable image:

$ SET PROCESS/PRIVILEGE=CMKRNL
$ INSTALL
INSTALL> CREATE DISK$USER:[INCOME.DEV]INC_COMMON -
_INSTALL> /WRITEABLE/SHARED
INSTALL> EXIT
$ SET PROCESS/PRIVILEGE=NOCMKRNL

Note

A disk containing an installed image cannot be dismounted. To remove an
installed image, invoke the Install utility and enter DELETE followed by
the complete file specification of the image. The DELETE subcommand
does not delete the file from the disk; it removes the file from the list of
known installed images.

Perform the following steps to write or read the data in an installed common
block from within any program:

1. Include the same variable and common block definitions in the program.

2. Compile the program.

For Alpha and I64, when compiling the program that contains the
common block declarations, consistently use the same /ALIGNMENT
and /GRANULARITY qualifiers used to compile the common block data
declaration program that has been installed as a shareable image. For more
information, see Section 26.3.4.3.

3. Link the program against the shareable image that contains the common
block. (Linking against a shareable image requires an options file.)

$ LINK INCOME, DATA/OPTION
$ LINK REPORT, DATA/OPTION

DATA.OPT
INC_COMMON/SHAREABLE

For Alpha only, linking is as follows:

INC_COMMON/SHAREABLE
PSECT_ATTR=WORK_AREA, SHR

If a !DEC$ PSECT (cDEC$ PSECT) directive specified the SHR PSECT
attribute, the linker options file INCOME.OPT would contain the following
line:

INC_COMMON/SHAREABLE

The source line containing the !DEC$ PSECT directive would be as follows:

!DEC$ PSECT /INC_COMMON/ SHR

4. Execute the program.

If the installed image is not located in SYS$SHARE, you must define a logical
name that specifies the location of that image. The logical name (in this
example INC_COMMON) is the name of the installed base.

In the previous series of examples, the two programs INCOME and REPORT
access the same area of memory through the installed common block INCOME_
DATA (defined in INC_COMMON.FOR).

26–8 Shareable Resources

Shareable Resources
26.3 Symbols

Typically, programs that access shared data use common event flag clusters
to synchronize read and write access to the data. Refer to Chapter 7 for more
information about using event flags for program synchronization.

26.3.4.2 Using Global Sections
To share data by using global sections, each process that plans to access the data
includes a common block of the same name, which contains the variables for
the data. The first process to reference the data declares the common block as a
global section and, optionally, maps data to the section. (Data in global sections,
as in private sections, must be page aligned.)

To create a global section, invoke SYS$CRMPSC and add the following:

• Additional argument—Specify the name of the global section (argument 5). A
program uses this name to access a global section.

• Additional flag—Set the SEC$V_GBL bit of the flags argument to indicate
that the section is a global section.

As other programs need to reference the data, each can use either SYS$CRMPSC
or SYS$MGBLSC to map data into the global section. If you know that the global
section exists, the best practice is to use the SYS$MGBLSC system service.

The format for SYS$MGBLSC is as follows:

SYS$MGBLSC (inadr ,[retadr] ,[acmode] ,[flags] ,gsdnam ,[ident] ,[relpag])

Refer to the HP OpenVMS System Services Reference Manual for complete
information about this system service.

In Example 26–1, one image, DEVICE.FOR, passes device names to another
image, GETDEVINF.FOR. GETDEVINF.FOR returns the process name and
the terminal associated with the process that allocated each device. The two
processes use the global section GLOBAL_SEC to communicate. GLOBAL_SEC is
mapped to the common block named DATA, which is page aligned by the options
file DATA.OPT. Event flags are used to synchronize the exchange of information.
UFO_CREATE.FOR, DATA.OPT, and DEVICE.FOR are included here for easy
reference. Refer to Section 28.4 for additional information about global sections.

Example 26–1 Interprocess Communication Using Global Sections

!UFO_CREATE.FOR
.
.
.

INTEGER FUNCTION UFO_CREATE (FAB,
2 RAB,
2 LUN)

! Include RMS definitions
INCLUDE ’($FABDEF)’
INCLUDE ’($RABDEF)’

! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN

(continued on next page)

Shareable Resources 26–9

Shareable Resources
26.3 Symbols

Example 26–1 (Cont.) Interprocess Communication Using Global Sections

! Declare channel
INTEGER*4 CHAN
COMMON /CHANNEL/ CHAN

! Declare status variable
INTEGER STATUS

! Declare system procedures
INTEGER SYS$CREATE

! Set useropen bit in the FAB options longword
FAB.FAB$L_FOP = FAB.FAB$L_FOP .OR. FAB$M_UFO
! Open file
STATUS = SYS$CREATE (FAB)

! Read channel from FAB status word
CHAN = FAB.FAB$L_STV

! Return status of open operation
UFO_CREATE = STATUS

END

DATA.OPT

PSECT_ATTR = DATA, PAGE

DEVICE.FOR

! Define global section flags
INCLUDE ’($SECDEF)’
! Mask for section flags
INTEGER SEC_MASK
! Logical unit number for section file
INTEGER INFO_LUN
! Channel number for section file
INTEGER SEC_CHAN
COMMON /CHANNEL/ SEC_CHAN
! Length for the section file
INTEGER SEC_LEN
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL
! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)
! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

(continued on next page)

26–10 Shareable Resources

Shareable Resources
26.3 Symbols

Example 26–1 (Cont.) Interprocess Communication Using Global Sections
! User-open routines
INTEGER UFO_CREATE
EXTERNAL UFO_CREATE

.

.

.
! Open the section file
STATUS = LIB$GET_LUN (INFO_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
SEC_MASK = SEC$M_WRT .OR. SEC$M_DZRO .OR. SEC$M_GBL
! (last address -- first address + length of last element + 511)/512
SEC_LEN = ((%LOC(TERMINAL) - %LOC(DEVICE) + 6 + 511)/512)
OPEN (UNIT=INFO_LUN,
2 FILE=’INFO.TMP’,
2 STATUS=’NEW’,
2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)
! Free logical unit number and map section
CLOSE (INFO_LUN)
! Get location of data
PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = %LOC (TERMINAL)
STATUS = SYS$CRMPSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Addresses mapped
2 ,
2 %VAL(SEC_MASK), ! Section mask
2 ’GLOBAL_SEC’, ! Section name
2 ,,
2 %VAL(SEC_CHAN), ! I/O channel
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Create the subprocess
STATUS = SYS$CREPRC (,
2 ’GETDEVINF’, ! Image
2 ,,,,,
2 ’GET_DEVICE’, ! Process name
2 %VAL(4),,,) ! Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Write data to section
DEVICE = ’$FLOPPY1’
! Get common event flag cluster and set flag
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! When GETDEVINF has the information, INFO_FLAG is set
STATUS = SYS$WAITFR (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

.

.

.

(continued on next page)

Shareable Resources 26–11

Shareable Resources
26.3 Symbols

Example 26–1 (Cont.) Interprocess Communication Using Global Sections

GETDEVINF.FOR

! Define section flags
INCLUDE ’($SECDEF)’
! Mask for section flags
INTEGER SEC_MASK
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL
! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)
! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

.

.

.
! Get common event flag cluster and wait
! for GBL1.FOR to set REQUEST_FLAG
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get location of data
PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = %LOC (TERMINAL)
! Set write flag
SEC_MASK = SEC$M_WRT
! Map the section
STATUS = SYS$MGBLSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Address mapped
2 ,
2 %VAL(SEC_MASK), ! Section mask
2 ’GLOBAL_SEC’,,) ! Section name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Call GETDVI to get the process ID of the
! process that allocated the device, then
! call GETJPI to get the process name and terminal
! name associated with that process ID.
! Set PROCESS equal to the process name and
! set TERMINAL equal to the terminal name.

.

.

.
! After information is in GLOBAL_SEC
STATUS = SYS$SETEF (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

26–12 Shareable Resources

Shareable Resources
26.3 Symbols

By default, a global section is deleted when no image is mapped to it. Such global
sections are called temporary global sections. If you have the PRMGBL privilege,
you can create a permanent global section (set the SEC$V_PERM bit of the flags
argument when you invoke SYS$CRMPSC). A permanent global section is not
deleted until after it is marked for deletion with the SYS$DGBLSC system service
(requires PRMGBL). Once a permanent section is marked for deletion, it is like a
temporary section; when no image is mapped to it, the section is deleted.

26.3.4.3 Synchronizing Access to Global Sections
On Alpha and I64 systems, if more than one process or thread will write to a
shared global section containing COMMON block data, the user program may
need to synchronize access to COMMON block variables.

On Alpha and I64 systems, compile all programs referencing the shared common
area with the same value for the /ALIGNMENT and /GRANULARITY qualifiers,
as shown in the following:

$ F90 /ALIGN=COMMONS=NATURAL /GRANULARITY=LONGWORD INC_COMMON

On Alpha and I64 systems, using /GRANULARITY=LONGWORD for 4-byte
variables or /GRANULARITY=QUADWORD for 8-byte variables ensures that
adjacent data is not accidentally effected. To ensure access to 1-byte variables,
specify /GRANULARITY=BYTE.

On Alpha systems, accessing data items less than four bytes slows run-time
performance. In this case you might want to consider synchronizing read and
write access to the data on the same node.

One way for programs accessing shared data is to use common event flag clusters
to synchronize read and write access to the data on the same node. In the
simplest case, one event flag in a common event flag cluster might indicate that
a program is writing data, and a second event flag in the cluster might indicate
that a program is reading data. Before accessing the shared data, a program
must examine the common event flag cluster to ensure that accessing the data
does not conflict with an operation already in progress.

Other ways of synchronizing access on a single node include using the following
OpenVMS system services:

• The lock manager system services (SYS$ENQ and SYS$DEQ)

• The hibernate and wake system services (SYS$HIBER and SYS$WAKE)

You could also use Assembler code for synchronization.

26.3.4.4 RMS Shared Files
RMS allows concurrent access to a file. Shared files can be one of the following
formats:

• Indexed files

• Relative files

• Sequential files with 512-byte fixed-length records

To coordinate access to a file, RMS uses the lock manager. You can override the
RMS lock manager by controlling access yourself. Refer to Chapter 7 for more
information about synchronizing access to resources.

Shareable Resources 26–13

27
System Time Operations

This chapter describes the types of system time operations performed by the
operating system and contains the following sections:

Section 27.1 describes the system time format.

Section 27.2 describes time conversion and date/time manipulation.

Section 27.3 describes how to get the current date and time and set the current
time.

Section 27.4 describes how to set and cancel timer requests and how to schedule
and cancel wakeups.

Section 27.5 describes using run-time library (RTL) routines to collect timer
statistics.

Section 27.6 describes using date/time formatting routines.

Section 27.7 describes the Coordinated Universal Time (UTC) system.

27.1 System Time Format
The operating system maintains the current date and time in 64-bit format.
The time value is a binary number in 100-nanosecond (ns) units offset from
the system base date and time, which is 00:00 o’clock, November 17, 1858 (the
Smithsonian base date and time for the astronomic calendar). Time values must
be passed to or returned from system services as the address of a quadword
containing the time in 64-bit format. A time value can be expressed as either of
the following:

• An absolute time that is a specific date or time of day, or both. Absolute times
are always positive values (or 0).

• A delta time that is an offset from the current time to a time or date in the
future. Delta times are always expressed as negative values and cannot be
zero. The binary format number for delta time will always be negative.

If you specify 0 as the address of a time value, the operating system supplies the
current date and time.

27.1.1 Absolute Time Format
The operating system uses the following format for absolute time. The full date
and time require a character string of 23 characters. The punctuation is required.

dd-MMM-yyyy hh:mm:ss.cc

dd Day of the month (2 characters)

MMM Month (first 3 characters of the month in uppercase)

System Time Operations 27–1

System Time Operations
27.1 System Time Format

yyyy Year (4 characters)

hh Hours of the day in 24-hour format (2 characters)

mm Minutes (2 characters)

ss.cc Seconds and hundredths of a second (5 characters)

27.1.2 Delta Time Format
The operating system uses the following format for delta time. The full date and
time require a character string of 16 characters. The punctuation is required.

dddd hh:mm:ss.cc

dddd Day of the month (4 characters)

hh Hour of the day (2 characters)

mm Minutes (2 characters)

ss.cc Seconds and hundredths of a second (5 characters)

A delta time is maintained as an integer value representing an amount of time in
100-ns units.

27.2 Time Conversion and Date/Time Manipulation
This section presents information about time conversion and date/time
manipulation features, and the routines available to implement them.

27.2.1 Time Conversion Routines
Since the timer system services require you to specify the time in a 64-bit format,
you can use time conversion run-time library and system service routines to work
with time in a different format. Run-time library and system services do the
following:

• Obtain the current date and time in an ASCII string or in system format

• Convert an ASCII string into the system time format

• Convert a system time value into an ASCII string

• Convert the time from system format to integer values

Table 27–1 shows time conversion run-time and system service routines.

27–2 System Time Operations

System Time Operations
27.2 Time Conversion and Date/Time Manipulation

Table 27–1 Time Conversion Routines and System Services

Routine Function

Time Conversion Run-Time Library (LIB$) Routines

LIB$CONVERT_DATE_STRING Converts an input date/time string to an
operating system internal time.

LIB$CVT_FROM_INTERNAL_TIME Converts an operating system standard
internal binary time value to an external
integer value. The value is converted
according to a selected unit of time
operation.

LIB$CVTF_FROM_INTERNAL_TIME Converts an operating system standard
internal binary time to an external
F-floating point value. The value is
converted according to a selected unit of
time operation.

LIB$CVT_TO_INTERNAL_TIME Converts an external integer time value
to an operating system standard internal
binary time value. The value is converted
according to a selected unit of time
operation.

LIB$CVTF_TO_INTERNAL_TIME Converts an F-floating-point time value
to an internal binary time value.

LIB$CVT_VECTIM Converts a seven-word array (as returned
by the SYS$NUMTIM system service)
to an operating system standard format
internal time.

LIB$FORMAT_DATE_TIME Allows you to select at run time a specific
output language and format for a date or
time, or both.

LIB$SYS_ASCTIM Provides a simplified interface between
higher-level languages and the $ASCTIM
system service.

(continued on next page)

System Time Operations 27–3

System Time Operations
27.2 Time Conversion and Date/Time Manipulation

Table 27–1 (Cont.) Time Conversion Routines and System Services

Routine Function

Time Conversion System Service Routines

SYS$ASCTIM Converts an absolute or delta time from
64-bit binary time format to an ASCII
string.

SYS$ASCUTC Converts an absolute time from 128-
bit Coordinated Universal Time (UTC)
format to an ASCII string.

SYS$BINTIM Converts an ASCII string to an absolute
or delta time value in a binary time
format.

SYS$BINUTC Converts an ASCII string to an absolute
time value in the 128-bit UTC format.

SYS$FAO Converts a binary value into an ASCII
character string in decimal, hexadecimal,
or octal notation and returns the
character string in an output string.

SYS$GETUTC Returns the current time in 128-bit UTC
format.

SYS$NUMTIM Converts an absolute or delta time from
64-bit system time format to binary
integer date and time values.

SYS$NUMUTC Converts an absolute 128-bit binary
time into its numeric components. The
numeric components are returned in local
time.

SYS$TIMCON Converts 128-bit UTC to 64-bit system
format or 64-bit system format to 128-bit
UTC based on the value of the convert
flag.

You can use the SYS$GETTIM system service to get the current time in internal
format, or you can use SYS$BINTIM to convert a formatted time to an internal
time, as shown in Section 27.3.2. You can also use the LIB$DATE_TIME routine
to obtain the time, LIB$CVT_FROM_INTERNAL_TIME to convert an internal
time to an external time, and LIB$CVT_TO_INTERNAL to convert from an
external time to an internal time.

27.2.1.1 Calculating and Displaying Time with SYS$GETTIM and LIB$SUBX
Example 27–1 calculates differences between the current time and a time input
in absolute format, and then displays the result as delta time. If the input time
is later than the current time, the difference is a negative value (delta time) and
can be displayed directly. If the input time is an earlier time, the difference is a
positive value (absolute time) and must be converted to delta time before being
displayed. To change an absolute time to a delta time, negate the time array
by subtracting it from 0 (specified as an integer array) using the LIB$SUBX
routine, which performs subtraction on signed two’s complement integers of
arbitrary length. For the absolute or delta time format, see Section 27.1.1 and
Section 27.1.2.

27–4 System Time Operations

System Time Operations
27.2 Time Conversion and Date/Time Manipulation

Example 27–1 Calculating and Displaying the Time
.
.
.

! Internal times
! Input time in absolute format, dd-mmm-yyyy hh:mm:ss.ss
!
INTEGER*4 CURRENT_TIME (2),
2 PAST_TIME (2),
2 TIME_DIFFERENCE (2),
2 ZERO (2)
DATA ZERO /0,0/
! Formatted times
CHARACTER*23 PAST_TIME_F
CHARACTER*16 TIME_DIFFERENCE_F
! Status
INTEGER*4 STATUS
! Integer functions
INTEGER*4 SYS$GETTIM,
2 LIB$GET_INPUT,
2 SYS$BINTIM,
2 LIB$SUBX,
2 SYS$ASCTIM
! Get current time
STATUS = SYS$GETTIM (CURRENT_TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get past time and convert to internal format
STATUS = LIB$GET_INPUT (PAST_TIME_F,
2 ’Past time (in absolute format): ’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SYS$BINTIM (PAST_TIME_F,
2 PAST_TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Subtract past time from current time
STATUS = LIB$SUBX (CURRENT_TIME,
2 PAST_TIME,
2 TIME_DIFFERENCE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! If resultant time is in absolute format (positive value means
! most significant bit is not set), convert it to delta time
IF (.NOT. (BTEST (TIME_DIFFERENCE(2),31))) THEN
STATUS = LIB$SUBX (ZERO,

2 TIME_DIFFERENCE,
2 TIME_DIFFERENCE)
END IF
! Format time difference and display
STATUS = SYS$ASCTIM (, TIME_DIFFERENCE_F,
2 TIME_DIFFERENCE,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
TYPE *, ’Time difference = ’, TIME_DIFFERENCE_F
END

If you are ignoring the time portion of date/time (that is, working just at the date
level), the LIB$DAY routine might simplify your calculations. LIB$DAY returns
to you the number of days from the base system date to a given date.

System Time Operations 27–5

System Time Operations
27.2 Time Conversion and Date/Time Manipulation

27.2.1.2 Obtaining Absolute Time with SYS$ASCTIM and SYS$BINTIM
The Convert Binary Time to ASCII String (SYS$ASCTIM) system service is the
converse of the Convert ASCII String to Binary Time (SYS$BINTIM) system
service. You provide the service with the time in the ASCII format shown in
Section 27.3.2. The service then converts the string to a time value in 64-bit
format. You can use this returned value as input to a timer scheduling service.

When you specify the ASCII string buffer, you can omit any of the fields, and
the service uses the current date or time value for the field. Thus, if you want a
timer request to be date independent, you could format the input buffer for the
SYS$BINTIM service as shown in the following example. The two hyphens that
are normally embedded in the date field must be included, and at least one blank
must precede the time field.

#include <stdio.h>
#include <descrip.h>

/* Buffer to receive binary time */
struct {

unsigned int buff1, buff2;
}binary_noon;

main() {

unsigned int status;
$DESCRIPTOR(ascii_noon,"-- 12:00:00.00"); /* noon (absolute time) */

/* Convert time */
status = SYS$BINTIM(&ascii_noon, /* timbuf - ASCII time */

&binary_noon); /* timadr - binary time */

}

When the SYS$BINTIM service completes, a 64-bit time value representing ‘‘noon
today’’ is returned in the quadword at BINARY_NOON.

27.2.1.3 Obtaining Delta Time with SYS$BINTIM
The SYS$BINTIM system service also converts ASCII strings to delta time values
to be used as input to timer services. The buffer for delta time ASCII strings has
the following format:

dddd hh:mm:ss.cc

The first field, indicating the number of days, must be specified as 0 if you are
specifying a delta time for the current day.

The following example shows how to use the SYS$BINTIM service to obtain a
delta time in system format:

#include <stdio.h>
#include <descrip.h>

/* Buffer to receive binary time */
struct {

unsigned int buff1, buff2;
}btenmin;

main() {

unsigned int status;
$DESCRIPTOR(atenmin,"0 00:10:00.00"); /* 10-min delta */

/* Convert time from ASCII to binary */
status = SYS$BINTIM(&atenmin, /* timbuf - time in ASCII */

&btenmin); /* timadr - binary time */

}

27–6 System Time Operations

System Time Operations
27.2 Time Conversion and Date/Time Manipulation

If you are programming in VAX MACRO, you can also specify approximate
delta time values when you assemble a program, using two MACRO .LONG
directives to represent a time value in 100-ns units. The arithmetic is based on
the following formula:

1 second = 10 million * 100 ns

For example, the following statement defines a delta time value of 5 seconds:

FIVESEC: .LONG -10*1000*1000*5,-1 ; Five seconds

The value 10 million is expressed as 10*1000*1000 for readability. Note that the
delta time value is negative.

If you use this notation, however, you are limited to the maximum number of
100-ns units that can be expressed in a longword. In time values this is slightly
more than 7 minutes.

27.2.1.4 Obtaining Numeric and ASCII Time with SYS$NUMTIM
The Convert Binary Time to Numeric Time (SYS$NUMTIM) system service
converts a time in the system format into binary integer values. The service
returns each of the components of the time (year, month, day, hour, and so on)
into a separate word of a 7-word buffer. The SYS$NUMTIM system service and
the format of the information returned are described in the HP OpenVMS System
Services Reference Manual.

You use the SYS$ASCTIM system service to format the time in ASCII for
inclusion in an output string. The SYS$ASCTIM service accepts as an argument
the address of a quadword that contains the time in system format and returns
the date and time in ASCII format.

If you want to include the date and time in a character string that contains
additional data, you can format the output string with the Formatted ASCII
Output (SYS$FAO) system service. The SYS$FAO system service converts binary
values to ASCII representations, and substitutes the results in character strings
according to directives supplied in an input control string. Among these directives
are !%T and !%D, which convert a quadword time value to an ASCII string and
substitute the result in an output string. For examples of how to do this, see the
discussion of $FAO in the HP OpenVMS System Services Reference Manual.

27.2.2 Date/Time Manipulation Routines
The run-time LIB$ facility provides several date/time manipulation routines.
These routines let you add, subtract, and multiply dates and times. Use the
LIB$ADDX and LIB$SUBX routines to add and subtract times, since the times
are defined in integer arrays. Use LIB$ADD_TIMES and LIB$SUB_TIMES
to add and subtract two quadword times. When manipulating delta times,
remember that they are stored as negative numbers. For example, to add a delta
time to an absolute time, you must subtract the delta time from the absolute time.
Use LIB$MULT_DELTA_TIME and LIB$MULTF_DELTA_TIME to multiply delta
times by scalar and floating scalar.

Table 27–2 lists all the LIB$ routines that perform date/time manipulation.

System Time Operations 27–7

System Time Operations
27.2 Time Conversion and Date/Time Manipulation

Table 27–2 Date/Time Manipulation Routines

Routine Function

LIB$ADD_TIMES Adds two quadword times

LIB$FORMAT_DATE_TIME Formats a date and/or time for output

LIB$FREE_DATE_TIME_CONTEXT Frees the date/time context

LIB$GET_MAXIMUM_DATE_LENGTH Returns the maximum possible length of
an output date/time string

LIB$GET_USERS_LANGUAGE Returns the user’s selected language

LIB$INIT_DATE_TIME_CONTEXT Initializes the date/time context with a
user-specified format

LIB$MULT_DELTA_TIME Multiplies a delta time value by an
integer scalar value

LIB$MULTF_DELTA_TIME Multiplies a delta time value by an
F-floating point scalar value

LIB$SUB_TIMES Subtracts two quadword times

27.3 Timer Routines Used to Obtain and Set Current Time
This section presents information about obtaining the current date and time,
and setting current time. The run-time library (LIB$) facility provides date/time
utility routines for languages that do not have built-in time and date functions.
These routines return information about the current date and time or a date/time
specified by the user. You can obtain the current time by using the LIB$DATE_
TIME routine or by implementing the SYS$GETTIM system service. To set the
current time, use the SYS$SETTIME system service.

Table 27–3 describes the date/time routines.

Table 27–3 Timer RTLs and System Services

Routine Function

Timer Run-Time Library (LIB$) Routines

LIB$DATE_TIME Returns, using a string descriptor, the
operating system date and time in the
semantics of a string that the user provides.

(continued on next page)

27–8 System Time Operations

System Time Operations
27.3 Timer Routines Used to Obtain and Set Current Time

Table 27–3 (Cont.) Timer RTLs and System Services

Routine Function

Timer Run-Time Library (LIB$) Routines

LIB$DAY Returns the number of days since the system
zero date of November 17, 1858. This routine
takes one required argument and two optional
arguments:

• The address of a longword to contain the
number of days since the system zero date
(required)

• A quadword passed by reference
containing a time in system time format
to be used instead of the current system
time (optional)

• A longword integer to contain the number
of 10-millisecond units since midnight
(optional)

LIB$DAY_OF_WEEK Returns the numeric day of the week for an
input time value. If the input time value is 0,
the current day of the week is returned. The
days are numbered 1 through 7: Monday is
day 1 and Sunday is day 7.

System Service Routine

SYS$SETIME Changes the value of or recalibrates the
system time.

27.3.1 Obtaining Current Time and Date with LIB$DATE_TIME
The LIB$DATE_TIME routine returns a character string containing the current
date and time in absolute time format. The full string requires a declaration of 23
characters. If you specify a shorter string, the value is truncated. A declaration of
16 characters obtains only the date. The following example displays the current
date and time:

! Formatted date and time
CHARACTER*23 DATETIME
! Status and library procedures
INTEGER*4 STATUS,
2 LIB$DATE_TIME
EXTERNAL LIB$DATE_TIME
STATUS = LIB$DATE_TIME (DATETIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
TYPE *, DATETIME

System Time Operations 27–9

System Time Operations
27.3 Timer Routines Used to Obtain and Set Current Time

27.3.2 Obtaining Current Time and Date with SYS$GETTIM
You can obtain the current date and time in internal format with the
SYS$GETTIM system service. You can convert from internal to character
format with the SYS$ASCTIM system service or a directive to the SYS$FAO
system service and convert back to internal format with the SYS$BINTIM system
service. The Get Time (SYS$GETTIM) system service places the time into a
quadword buffer. For example:

/* Buffer to receive the binary time */
struct {

unsigned int buff1, buff2;
}time;

.

.

.
main() {

unsigned status;

This call to SYS$GETTIM returns the current date and time in system format in
the quadword buffer TIME.

The Convert Binary Time to ASCII String (SYS$ASCTIM) system service converts
a time in system format to an ASCII string and returns the string in a 23-byte
buffer. You call the SYS$ASCTIM system service as follows:

#include <stdio.h>
#include <descrip.h>

struct {
unsigned int buff1, buff2;

}time_value;

main() {

unsigned int status;
char timestr[23];
$DESCRIPTOR(atimenow, timestr);

/* Get binary time */
status = SYS$GETTIM(&time_value);
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Convert binary time to ASCII */
status = SYS$ASCTIM(0, /* timlen - Length of ASCII string */

&atimenow, /* timbuf - ASCII time buffer */
&time_value, /* timadr - Binary time */
0); /* cvtflags - Conversion indicator */

if ((status & 1) != 1)
LIB$SIGNAL(status);

}

Because the address of a 64-bit time value is not supplied, the default value, 0, is
used.

The string the service returns has the following format:

dd-MMM-yyyy hh:mm:ss.cc

27–10 System Time Operations

System Time Operations
27.3 Timer Routines Used to Obtain and Set Current Time

dd Day of the month

MMM Month (a 3-character alphabetic abbreviation)

yyyy Year

hh:mm:ss.cc Time in hours, minutes, seconds, and hundredths of a second

27.3.3 Setting the Current Time with SYS$SETIME
The Set System Time (SYS$SETIME) system service allows a user with the
operator (OPER) and logical I/O (LOG_IO) privileges to set the current system
time. You can specify a new system time (using the timadr argument), or you
can recalibrate the current system time using the processor’s hardware time-of-
year clock (omitting the timadr argument). If you specify a time, it must be an
absolute time value; a delta time (negative) value is invalid.

The system time is set whenever the system is bootstrapped. Normally you do not
need to change the system time between system bootstrap operations; however, in
certain circumstances you may want to change the system time without rebooting.
For example, you might specify a new system time to synchronize two processors,
or to adjust for changes between standard time and Daylight Savings Time. Also,
you may want to recalibrate the time to ensure that the system time matches the
hardware clock time (the hardware clock is more accurate than the system clock).

The DCL command SET TIME calls the SYS$SETIME system service.

If a process issues a delta time request and then the system time is changed, the
interval remaining for the request does not change; the request executes after the
specified time has elapsed. If a process issues an absolute time request and the
system time is changed, the request executes at the specified time, relative to the
new system time.

The following example shows the effect of changing the system time on an
existing timer request. In this example, two set timer requests are scheduled:
one is to execute after a delta time of 5 minutes and the other specifies an
absolute time of 9:00.

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <stdlib.h>

void gemini (int x);
unsigned int status;

/* Buffers to receive binary times */
struct {

unsigned int buff1, buff2;
}abs_binary, delta_binary;

main() {
$DESCRIPTOR(abs_time,"-- 19:37:00.00"); /* 9 am absolute time */
$DESCRIPTOR(delta_time,"0 :00:30"); /* 5-min delta time */

/* Convert ASCII absolute time to binary format */
status = SYS$BINTIM(&abs_time, /* ASCII absolute time */

&abs_binary); /* Converted to binary */

System Time Operations 27–11

System Time Operations
27.3 Timer Routines Used to Obtain and Set Current Time

if (status == SS$_NORMAL)
{

status = SYS$SETIMR(0, /* efn - event flag */
&abs_binary, /* daytim - expiration time */
&gemini, /* astadr - AST routine */
1, /* reqidt - timer request id */
0); /* flags */

if (status == SS$_NORMAL)
printf("Setting system timer A\n");

}
else

LIB$SIGNAL(status);

/* Convert ASCII delta time to binary format */
status = SYS$BINTIM(&delta_time, /* ASCII delta time */

&delta_binary); /* Converted to binary */
if (status == SS$_NORMAL)
{

printf("Converting delta time to binary format\n");
status = SYS$SETIMR(0, /* efn - event flag */

&delta_binary, /* daytim - expiration time */
&gemini, /* astadr - AST routine */
2, /* reqidt - timer request id */
0); /* flags */

if (status == SS$_NORMAL)
printf("Setting system timer B\n");

else
LIB$SIGNAL(status);

}
else

LIB$SIGNAL(status);

status = SYS$HIBER();
}

void gemini (int reqidt) {

unsigned short outlen;
unsigned int cvtflg=1;
char timenow[12];
char fao_str[80];
$DESCRIPTOR(nowdesc, timenow);
$DESCRIPTOR(fao_in, "Request ID !UB answered at !AS");
$DESCRIPTOR(fao_out, fao_str);

/* Returns and converts the current time */
status = SYS$ASCTIM(0, /* timlen - length of ASCII string */

&nowdesc, /* timbuf - receives ASCII string */
0, /* timadr - time value to convert */
cvtflg); /* cvtflg - conversion flags */

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Receives the formatted output string */
status = SYS$FAO(&fao_in, /* srcstr - control FAO string */

&outlen, /* outlen - length in bytes */
&fao_out, /* outbuf - output buffer */
reqidt, /* p1 - param needed for 1st FAO dir */
&nowdesc); /* p2 - param needed for 2nd FAO dir */

if ((status & 1) != 1)
LIB$SIGNAL(status);

status = LIB$PUT_OUTPUT(&fao_out);

return;

}

27–12 System Time Operations

System Time Operations
27.3 Timer Routines Used to Obtain and Set Current Time

The following example shows the output received from the preceding program.
Assume the program starts execution at 8:45. Seconds later, the system time is
set to 9:15. The timer request that specified an absolute time of 9:00 executes
immediately, because 9:00 has passed. The request that specified a delta time of
5 minutes times out at 9:20.

$ SHOW TIME
30-DEC-1993 8:45:04.56 +----------------------+

$ RUN SCORPIO | operator sets system |
<---| time to 9:15 |
Request ID number 1 executed at 09:15:00.00 +----------------------+
Request ID number 2 executed at 09:20:00.02
$

27.4 Routines Used for Timer Requests
This section presents information about setting and canceling timer requests,
and scheduling and canceling wakeups. Since many applications require the
scheduling of program activities based on clock time, the operating system allows
an image to schedule events for a specific time of day or after a specified time
interval. For example, you can use timer system services to schedule, convert,
or cancel events. For example, you can use the timer system services to do the
following:

• Schedule the setting of an event flag or the queuing of an asynchronous
system trap (AST) for the current process, or cancel a pending request that
has not yet been processed

• Schedule a wakeup request for a hibernating process, or cancel a pending
wakeup request that has not yet been processed

• Set or recalibrate the current system time, if the caller has the proper user
privileges

Table 27–4 describes system services that set, cancel, and schedule timer
requests.

Table 27–4 Timer System Services

Timer System Service Routine Function

SYS$SETIMR Sets the timer to expire at a specified time. This
service sets a per-thread timer.

SYS$CANTIM Cancels all or a selected subset of the Set Timer
requests previously issued by the current image
executing in a process. This service cancels all
timers associated with the process.

SYS$SCHDWK Schedules the awakening (restarting) of a
kernel thread that has placed itself in a state
of hibernation with the Hibernate (SYS$HIBER)
service.

SYS$CANWAK Removes all scheduled wakeup requests for a
process from the timer queue, including those
made by the caller or by other processes. The
Schedule Wakeup ($SCHDWK) service makes
scheduled wakeup requests.

System Time Operations 27–13

System Time Operations
27.4 Routines Used for Timer Requests

27.4.1 Setting Timer Requests with SYS$SETIMR
Timer requests made with the Set Timer (SYS$SETIMR) system service are
queued; that is, they are ordered for processing according to their expiration
times. The quota for timer queue entries (TQELM quota) controls the number of
entries a process can have pending in this timer queue.

When you call the SYS$SETIMR system service, you can specify either an
absolute time or a delta time value. Depending on how you want the request
processed, you can specify either or both of the following:

• The number of an event flag to be set when the time expires. If you do not
specify an event flag, the system sets event flag 0.

• The address of an AST service routine to be executed when the time expires.

Optionally, you can specify a request identification for the timer request. You
can use this identification to cancel the request, if necessary. The request
identification is also passed as the AST parameter to the AST service routine, if
one is specified, so that the AST service routine can identify the timer request.

Example 27–2 and Example 27–3 show timer requests using event flags and
ASTs, respectively. Event flags, event flag services, and ASTs are described in
more detail in Chapter 8.

Example 27–2 Setting an Event Flag

#include <stdio.h>
#include <ssdef.h>
#include <descrip.h>

/* Buffer to receive binary time */
struct {

unsigned int buff1, buff2;
}b30sec;

main() {

unsigned int efn = 4,status;
$DESCRIPTOR(a30sec,"0 00:00:30.00");

/* Convert time to binary format */
status = SYS$BINTIM(&a30sec, /* timbuf - ASCII time */

&b30sec);/* timadr - binary time */
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Converting ASCII to binary time...\n");

/* Set timer to wait */
status = SYS$SETIMR(efn, /* efn - event flag */

&b30sec,/* daytim - binary time */
0, /* astadr - AST routine */
0, /* reqidt - timer request */
0); /* flags */ !

if ((status & 1) != 1)
LIB$SIGNAL(status);

else
printf("Request event flag be set in 30 seconds...\n");

(continued on next page)

27–14 System Time Operations

System Time Operations
27.4 Routines Used for Timer Requests

Example 27–2 (Cont.) Setting an Event Flag

/* Wait 30 seconds */
status = SYS$WAITFR(efn); "
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Timer expires...\n");

}

! The call to SYS$SETIMR requests that event flag 4 be set in 30 seconds
(expressed in the quadword B30SEC).

" The Wait for Single Event Flag (SYS$WAITFR) system service places the
process in a wait state until the event flag is set. When the timer expires, the
flag is set and the process continues execution.

Example 27–3 Specifying an AST Service Routine

#include <stdio.h>
#include <descrip.h>

#define NOON 12

struct {
unsigned int buff1, buff2;

}bnoon;

/* Define the AST routine */

void astserv(int);

main() {
unsigned int status, reqidt=12;
$DESCRIPTOR(anoon,"-- 12:00:00.00");

/* Convert ASCII time to binary */
status = SYS$BINTIM(&anoon, /* timbuf - ASCII time */ !

&bnoon); /* timadr - binary time buffer */
if((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Converting ASCII to binary...\n");

/* Set timer */
status = SYS$SETIMR(0, /* efn - event flag */ "

&bnoon, /* daytim - timer expiration */
&astserv, /* astadr - AST routine */
reqidt, /* reqidt - timer request id */
0); /* cvtflg - conversion flags */

if((status & 1) != 1)
LIB$SIGNAL(status);

else
printf("Setting timer expiration...\n");

status = SYS$HIBER();

}

void astserv(int astprm) { #

(continued on next page)

System Time Operations 27–15

System Time Operations
27.4 Routines Used for Timer Requests

Example 27–3 (Cont.) Specifying an AST Service Routine

/* Do something if it’s a "noon" request */
if (astprm == NOON)

printf("This is a noon AST request\n");
else

printf("Handling some other request\n");

status = SYS$SCHDWK(0, /* pidadr - process id */
0);/* prcnam - process name */

return;
}

! The call to SYS$BINTIM converts the ASCII string representing 12:00
noon to format. The value returned in BNOON is used as input to the
SYS$SETIMR system service.

" The AST routine specified in the SYS$SETIMR request will be called when
the timer expires, at 12:00 noon. The reqidt argument identifies the timer
request. (This argument is passed as the AST parameter and is stored
at offset 4 in the argument list. See Chapter 8.) The process continues
execution; when the timer expires, it is interrupted by the delivery of the
AST. Note that if the current time of day is past noon, the timer expires
immediately.

This AST service routine checks the parameter passed by the reqidt
argument to determine whether it must service the 12:00 noon timer request
or another type of request (identified by a different reqidt value). When the
AST service routine completes, the process continues execution at the point of
interruption.

27.4.2 Canceling a Timer Request with SYS$CANTIM
The Cancel Timer Request (SYS$CANTIM) system service cancels timer requests
that have not been processed. The SYS$CANTIM system service removes the
entries from the timer queue. Cancellation is based on the request identification
given in the timer request. For example, to cancel the request illustrated in
Example 27–3, you would use the following call to SYS$CANTIM:

unsigned int status, reqidt=12;
.
.
.

status = SYS$CANTIM(reqidt, 0);

If you assign the same identification to more than one timer request, all requests
with that identification are canceled. If you do not specify the reqidt argument,
all your requests are canceled.

27.4.3 Scheduling Wakeups with SYS$WAKE
Example 27–2 shows a process placing itself in a wait state using the
SYS$SETIMR and SYS$WAITFR services. A process can also make itself inactive
by hibernating. A process hibernates by issuing the Hibernate (SYS$HIBER)
system service. Hibernation is reversed by a wakeup request, which can be put
into effect immediately with the SYS$WAKE system service or scheduled with the
Schedule Wakeup (SYS$SCHDWK) system service. For more information about
the SYS$HIBER and SYS$WAKE system services, see Chapter 4.

27–16 System Time Operations

System Time Operations
27.4 Routines Used for Timer Requests

The following example shows a process scheduling a wakeup for itself prior to
hibernating:

#include <stdio.h>
#include <descrip.h>

struct {
unsigned int buff1, buff2;

}btensec;

main() {

unsigned int status;
$DESCRIPTOR(atensec,"0 00:00:10.00");

/* Convert time */
status = SYS$BINTIM(&atensec, /* timbuf - ASCII time */

&btensec);/* timadr - binary time */
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Schedule wakeup */
status = SYS$SCHDWK(0, /* pidadr - process id */

0, /* prcnam - process name */
&btensec, /* daytim - wake up time */
0); /* reptim - repeat interval */

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Sleep ten seconds */
status = SYS$HIBER();
if ((status & 1) != 1)

LIB$SIGNAL(status);
}

Note that a suitably privileged process can wake or schedule a wakeup request
for another process; thus, cooperating processes can synchronize activity using
hibernation and scheduled wakeups. Moreover, when you use the SYS$SCHDWK
system service in a program, you can specify that the wakeup request be repeated
at fixed time intervals. See Chapter 4 for more information on hibernation and
wakeup.

27.4.4 Canceling a Scheduled Wakeup with SYS$CANWAK
You can cancel scheduled wakeup requests that are pending but have not yet
been processed with the Cancel Wakeup (SYS$CANWAK) system service. This
service cancels a wakeup request for a specific kernel thread, if a process ID is
specified. If a process name is specified, then the initial thread’s wakeup request
is canceled.

The following example shows the scheduling of wakeup requests for the process
CYGNUS and the subsequent cancellation of the wakeups. The SYS$SCHDWK
system service in this example specifies a delta time of 1 minute and an interval
time of 1 minute; the wakeup is repeated every minute until the requests are
canceled.

#include <stdio.h>
#include <descrip.h>

/* Buffer to hold one minute */

struct {
unsigned int buff1, buff2;

}interval;

main() {

System Time Operations 27–17

System Time Operations
27.4 Routines Used for Timer Requests

unsigned int status;
$DESCRIPTOR(one_min,"0 00:01:00.00"); /* One minute delta */
$DESCRIPTOR(cygnus, "CYGNUS"); /* Process name */

/* Convert time to binary */
status = SYS$BINTIM(&one_min, /* timbuf - ASCII delta time */

&interval); /* timadr - Buffer to hold binary time */
if((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Converting time to binary format...\n");

/* Schedule wakeup */
status = SYS$SCHDWK(0, /* pidadr - process id */

&cygnus, /* prcnam - process name */
&interval, /* daytim - time to be awakened */
&interval); /* reptim - repeat interval */

if((status & 1) != 1)
LIB$SIGNAL(status);

}
else

printf("Scheduling wakeup...\n");

/* Cancel wakeups */
status = SYS$CANWAK(0, /* pidadr - process id */

&cygnus); /* prcnam - process name */

}

27.4.5 Executing a Program at Timed Intervals
To execute a program at timed intervals, you can use either the LIB$SPAWN
routine or the SYS$CREPRC system service. With LIB$SPAWN, you can create
a subprocess that executes a command procedure containing three commands:
the DCL command WAIT, the command that invokes the desired program, and a
GOTO command that directs control back to the WAIT command. To prevent the
parent process from remaining in hibernation until the subprocess executes, you
should execute the subprocess concurrently; that is, you should specify CLI$M_
NOWAIT.

For more information about using LIB$SPAWN and SYS$CREPRC, see Chapter
4.

27.5 Routines Used for Timer Statistics
This section presents information about the LIB$INIT_TIMER, LIB$SHOW_
TIMER, LIB$STAT_TIMER, and LIB$FREE_TIMER routines. By calling these
run-time library routines, you can collect the following timer statistics from the
system:

• Elapsed time—Actual time that has passed since setting a timer

• CPU time—CPU time that has passed since setting a timer

• Buffered I/O—Number of buffered I/O operations that have occurred since
setting a timer

• Direct I/O—Number of direct I/O operations that have occurred since setting
a timer

• Page faults—Number of page faults that have occurred since setting a timer

27–18 System Time Operations

System Time Operations
27.5 Routines Used for Timer Statistics

Following are descriptions of each routine:

• LIB$INIT_TIMER—Allocates and initializes space for collecting the statistics.
You should specify the handle-adr argument as a variable with a value of 0
to ensure the modularity of your program. When you specify the argument,
the system collects the information in a specially allocated area in dynamic
storage. This prevents conflicts with other timers used by the application.

• LIB$SHOW_TIMER—Obtains one or all of five statistics (elapsed time, CPU
time, buffered I/O, direct I/O, and page faults); the statistics are formatted for
output. The handle-adr argument must be the same value as specified for
LIB$INIT_TIMER (do not modify this variable). Specify the code argument
to obtain one particular statistic rather than all the statistics.

You can let the system write the statistics to SYS$OUTPUT (the default), or
you can process the statistics with your own routine. To process the statistics
yourself, specify the name of your routine in the action-rtn argument.
You can pass one argument to your routine by naming it in the user-arg
argument. If you use your own routine, it must be written as an integer
function and return an error code (return a value of 1 for success). This error
code becomes the error code returned by LIB$SHOW_TIMER. Two arguments
are passed to your routine: the first is a passed-length character string
containing the formatted statistics, and the second is the value of the fourth
argument (if any) specified to LIB$SHOW_TIMER.

• LIB$STAT_TIMER—Obtains one of five unformatted statistics. Specify the
statistic you want in the code argument. Specify a storage area for the
statistic in value. The handle-adr argument must be the same value as you
specified for LIB$INIT_TIMER.

• LIB$FREE_TIMER—Ensures the modularity of your program. Invoke this
procedure when you are done with the timer. The value in the handle-adr
argument must be the same as that specified for LIB$INIT_TIMER.

You must invoke LIB$INIT_TIMER to allocate storage for the timer. You should
invoke LIB$FREE_TIMER before you exit from your program unit. In between,
you can invoke LIB$SHOW_TIMER or LIB$STAT_TIMER, or both, as often as
you want. Example 27–4 invokes LIB$SHOW_TIMER and uses a user-written
subprogram either to display the statistics or to write them to a file.

Example 27–4 Displaying and Writing Timer Statistics
.
.
.

! Timer arguments
INTEGER*4 TIMER_ADDR,
2 TIMER_DATA,
2 TIMER_ROUTINE
EXTERNAL TIMER_ROUTINE
! Declare library procedures as functions
INTEGER*4 LIB$INIT_TIMER,
2 LIB$SHOW_TIMER
EXTERNAL LIB$INIT_TIMER,
2 LIB$SHOW_TIMER

(continued on next page)

System Time Operations 27–19

System Time Operations
27.5 Routines Used for Timer Statistics

Example 27–4 (Cont.) Displaying and Writing Timer Statistics
! Work variables
CHARACTER*5 REQUEST
INTEGER*4 STATUS
! User request - either WRITE or FILE
INTEGER*4 WRITE,
2 FILE
PARAMETER (WRITE = 1,
2 FILE = 2)
! Get user request
WRITE (UNIT=*, FMT=’($,A)’) ’ Request: ’
ACCEPT *, REQUEST
IF (REQUEST .EQ. ’WRITE’) TIMER_DATA = WRITE
IF (REQUEST .EQ. ’FILE’) TIMER_DATA = FILE
! Set timer
STATUS = LIB$INIT_TIMER (TIMER_ADDR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
! Get statistics
STATUS = LIB$SHOW_TIMER (TIMER_ADDR,,
2 TIMER_ROUTINE,
2 TIMER_DATA)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
! Free timer
STATUS = LIB$FREE_TIMER (TIMER_ADDR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
INTEGER FUNCTION TIMER_ROUTINE (STATS,
2 TIMER_DATA)
! Dummy arguments
CHARACTER*(*) STATS
INTEGER TIMER_DATA
! Logical unit number for file
INTEGER STATS_FILE
! User request
INTEGER WRITE,
2 FILE
PARAMETER (WRITE = 1,
2 FILE = 2)
! Return code
INTEGER SUCCESS,
2 FAILURE
PARAMETER (SUCCESS = 1,
2 FAILURE = 0)

(continued on next page)

27–20 System Time Operations

System Time Operations
27.5 Routines Used for Timer Statistics

Example 27–4 (Cont.) Displaying and Writing Timer Statistics

! Set return status to success
TIMER_ROUTINE = SUCCESS
! Write statistics or file them in STATS.DAT
IF (TIMER_DATA .EQ. WRITE) THEN
TYPE *, STATS

ELSE IF (TIMER_DATA .EQ. FILE) THEN
CALL LIB$GET_LUN (STATS_FILE)
OPEN (UNIT=STATS_FILE,

2 FILE=’STATS.DAT’)
WRITE (UNIT=STATS_FILE,

2 FMT=’(A)’) STATS
ELSE

TIMER_ROUTINE = FAILURE
END IF
END

You can use the SYS$GETSYI system service to obtain more detailed system
information about boot time, the cluster, processor type, emulated instructions,
nodes, paging files, swapping files, and hardware and software versions. With
SYS$GETQUI and LIB$GETQUI, you can obtain queue information.

27.6 Date/Time Formatting Routines
This section provides information about using date/time formatting routines that
allow you to specify input and output formats other than the standard operating
system format for dates and times. These include international formats with
appropriate language spellings for days and months.

If the desired language is English (the default language) and the desired format
is the standard operating system format, then initialization of logical names is
not required in order to use the date/time input and output routines. However,
if the desired language and format are not the defaults, the system manager (or
any user having CMEXEC, SYSNAM, and SYSPRV privileges) must initialize the
required logical names.

27.6.1 Performing Date/Time Logical Initialization
Note

You must complete the initialization steps outlined in this section
before you can use any of the date/time input and output routines with
languages and formats other than the defaults.

As an alternative to the standard operating system format, the command
procedure SYS$MANAGER:LIB$DT_STARTUP.COM defines several output
formats for dates and times. This command procedure must be executed by the
system manager before using any of the run-time library date/time routines for
input or output formats other than the default. Ideally, this command procedure
should be executed from a site-specific startup procedure.

In addition to defining the date/time formats, the LIB$DT_STARTUP.COM
command procedure also defines spellings for date and time elements in
languages other than English. If different language spellings are required,
the system manager must define the logical name SYS$LANGUAGES before
invoking LIB$DT_STARTUP.COM. The translation of SYS$LANGUAGES is then
used to select which languages are defined.

System Time Operations 27–21

System Time Operations
27.6 Date/Time Formatting Routines

Table 27–5 shows the available languages and their logical names.

Table 27–5 Available Languages for Date/Time Formatting

Language Logical Name

Austrian AUSTRIAN

Danish DANISH

Dutch DUTCH

Finnish FINNISH

French FRENCH

French Canadian CANADIAN

German GERMAN

Hebrew HEBREW

Italian ITALIAN

Norwegian NORWEGIAN

Portuguese PORTUGUESE

Spanish SPANISH

Swedish SWEDISH

Swiss French SWISS_FRENCH

Swiss German SWISS_GERMAN

For example, if the system managers want the spellings for French, German, and
Italian languages to be defined, they must define SYS$LANGUAGES as shown,
prior to invoking LIB$DT_STARTUP.COM:

$ DEFINE SYS$LANGUAGES FRENCH, GERMAN, ITALIAN

If the user requires an additional language, for example FINNISH, then the
system manager must add FINNISH to the definition of SYS$LANGUAGES and
reexecute the command procedure.

Date/Time Manipulation Option
The Date/Time Manipulation option provides date/time spelling support for
four new languages. Users or application programmers can select the desired
language by defining the logical name SYS$LANGUAGES. The new languages
and their equivalent names are as follows:

Language Equivalent Name

Chinese (simplified character) Hanzi

Chinese (traditional character) Hanyu

Korean Hangul

Thai Thai

27–22 System Time Operations

System Time Operations
27.6 Date/Time Formatting Routines

Defining Date/Time Spelling
To define the spelling for Hanzi and Hanyu, define SYS$LANGUAGES as shown
below, prior to invoking LIB$DT_STARTUP.COM:

$ DEFINE SYS$LANGUAGES HANZI, HANYU
$ @SYS$MANAGER:LIB$DT_STARTUP

Predefined Output Formats
Figure 27–1 lists the new predefined date format logical names in the first
column, their formats in the second column, and examples of the output generated
using these formats in the third column.

Figure 27–1 Predefined Output Date Formats

!MNB !DB !WAU!Y4 3 7

3 7

3 7

3 7

()

()

1994

1994

1994

1994

1994

1994

LIB$DATE_FORMAT_042

LIB$DATE_FORMAT_043

LIB$DATE_FORMAT_044

LIB$DATE_FORMAT_045

LIB$DATE_FORMAT_046

LIB$DATE_FORMAT_047

!MNB !DB !WAU!Y4

!MNB !DB !WU!Y4

!MNB !DB !WU!Y4

!MNB !DB !WU!Y4

!MNB !DB !WAU!Y4 ()

3 7

3 7
ZK-7263A-AI

Note

LIB$DATE_FORMAT_042 and LIB$DATE_FORMAT_043 support the
DEC Hanzi coded character set.

LIB$DATE_FORMAT_044 and LIB$DATE_FORMAT_045 support the
DEC Hanyu coded character set.

LIB$DATE_FORMAT_046 and LIB$DATE_FORMAT_047 support the
DEC Hangul coded character set.

Figure 27–2 lists the new predefined time format logical names in the first
column, their formats in the second column, and examples of the output generated
using these formats in the third column.

Figure 27–2 Predefined Output Time Formats

!MB !SB
LIB$TIME_FORMAT_021 !MIU!HB2 !MB !SB 3 3 6

LIB$TIME_FORMAT_022 !MIU!HB2 !MB !SB 3 3 6

LIB$TIME_FORMAT_023 !MIU !HB2 !MB !SB 3 3 6
ZK-7262A-AI

System Time Operations 27–23

System Time Operations
27.6 Date/Time Formatting Routines

Note

LIB$TIME_FORMAT_021 supports the DEC Hanzi coded character set.

LIB$TIME_FORMAT_022 supports the DEC Hanyu coded character set.

LIB$TIME_FORMAT_023 supports the DEC Hangul coded character set.

Thus, to select a particular format for a date or time, or both, you can define the
LIB$DT_FORMAT logical name using the following logicals:

• LIB$DATE_FORMAT_nnn, where nnn can range from 001 to 047

• LIB$TIME_FORMAT_nnn, where nnn can range from 001 to 023

27.6.2 Selecting a Format
There are two methods by which date/time input and output formats can be
selected:

• The language and format are determined at run time through the translation
of the logical names SYS$LANGUAGE, LIB$DT_FORMAT, and LIB$DT_
INPUT_FORMAT.

• The language and format are programmable at compile time through the use
of the LIB$INIT_DATE_TIME_CONTEXT routine.

In general, if an application accepts text from a user or formats text for
presentation to a user, you should use the logical name method of specifying
language and format. With this method, the user assigns equivalence names to
the logical names SYS$LANGUAGE, LIB$DT_FORMAT, and LIB$DT_INPUT_
FORMAT, thereby selecting the language and input or output format of the date
and time at run time.

If an application reads text from internal storage or formats text for internal
storage or transmission, the language and format should be specified at compile
time. If this is the case, the routine LIB$INIT_DATE_TIME_CONTEXT specifies
the language and format of choice.

27.6.2.1 Formatting Run-Time Mnemonics
The format mnemonics listed in Table 27–6 define both input and output formats
at run time.

Table 27–6 Format Mnemonics

Date Explanation

!D0 Day; zero-filled

!DD Day; no fill

!DB Day; blank-filled

!WU Weekday; uppercase

!WAU Weekday; abbreviated, uppercase

!WC Weekday; capitalized

(continued on next page)

27–24 System Time Operations

System Time Operations
27.6 Date/Time Formatting Routines

Table 27–6 (Cont.) Format Mnemonics

Date Explanation

!WAC Weekday; abbreviated, capitalized

!WL Weekday; lowercase

!WAL Weekday; abbreviated, lowercase

!MAU Month; alphabetic, uppercase

!MAAU Month; alphabetic, abbreviated, uppercase

!MAC Month; alphabetic, capitalized

!MAAC Month; alphabetic, abbreviated, capitalized

!MAL Month; alphabetic, lowercase

!MAAL Month; alphabetic, abbreviated, lowercase

!MN0 Month; numeric, zero-filled

!MNM Month; numeric, no fill

!MNB Month; numeric, blank-filled

!Y4 Year; 4 digits

!Y3 Year; 3 digits

!Y2 Year; 2 digits

!Y1 Year; 1 digit

!Z4 Year; 4 digits

!Z3 Year; 3 digits

!Z2 Year; 2 digits (see LIB$CONVERT_DATE_STRING)

!Z1 Year; 1 digit

Time Explanation

!H04 Hours; zero-filled, 24-hour clock

!HH4 Hours; no fill, 24-hour clock

!HB4 Hours; blank-filled, 24-hour clock

!H02 Hours; zero-filled, 12-hour clock

!HH2 Hours; no fill, 12-hour clock

!HB2 Hours; blank-filled, 12-hour clock

!M0 Minutes; zero-filled

!MM Minutes; no fill

!MB Minutes; blank-filled

!S0 Seconds; zero-filled

!SS Seconds; no fill

!SB Seconds; blank-filled

!C7 Fractional seconds; 7 digits

!C6 Fractional seconds; 6 digits

!C5 Fractional seconds; 5 digits

!C4 Fractional seconds; 4 digits

(continued on next page)

System Time Operations 27–25

System Time Operations
27.6 Date/Time Formatting Routines

Table 27–6 (Cont.) Format Mnemonics

Time Explanation

!C3 Fractional seconds; 3 digits

!C2 Fractional seconds; 2 digits

!C1 Fractional seconds; 1 digit

!MIU Meridiem indicator; uppercase

!MIC Meridiem indicator; capitalized (mixed case)

!MIL Meridiem indicator; lowercase

27.6.2.2 Specifying Formats at Run Time
If an application accepts text from a user or formats text for presentation to a
user, you should use the logical name method of specifying language and format.
With this method, the user assigns equivalence names to the logical names
SYS$LANGUAGE, LIB$DT_FORMAT, and LIB$DT_INPUT_FORMAT, thereby
selecting the language and format of the date and time at run time. LIB$DT_
INPUT_FORMAT must be defined using the mnemonics listed in Table 27–6. The
possible choices for SYS$LANGUAGE and LIB$DT_FORMAT are defined in the
SYS$MANAGER:LIB$DT_STARTUP.COM command procedure that is executed
by the system manager before using these routines.

The following actions occur when any translation of a logical name fails:

• If the translation of SYS$LANGUAGE or any logical name relating to text
fails, then English is used and a status of LIB$_ENGLUSED is returned.

• If the translation of LIBDT_FORMAT, LIBDT_INPUT_FORMAT, or
any logical name relating to format fails, the operating system standard
(SYS$ASCTIM) representation of the date and time is used, that is, dd-
MMM-yyyy hh:mm:ss.cc, and a status of LIB$_DEFFORUSE is returned.

Since English is the default language and must therefore always be available,
English spellings are not taken from logical name translations, but rather are
looked up in an internal table.

27.6.2.3 Specifying Input Formats at Run Time
Using the logical name LIB$DT_INPUT_FORMAT, you can define your own input
format at run time using the mnemonics listed in Table 27–6. Once an input
format is defined, any dates or times that are input to the application are parsed
against this format. For example:

$ DEFINE LIB$DT_INPUT_FORMAT -
_$ "!MAU !DD, !Y4 !H02:!M0:!S0:!C2 !MIU"

A valid input date string would be as follows:

JUNE 15, 1993 08:45:06:50 PM

If the user has selected a language other than English, then the translation
of SYS$LANGUAGE is used by the parser to recognize alphabetic months and
meridiem indicators in the selected language.

27–26 System Time Operations

System Time Operations
27.6 Date/Time Formatting Routines

Input Format String
The input format string used to define the input date/time format must contain
at least the first seven of the following eight fields:

• Month (either alphabetic or numeric)

• Day of the month (numeric)

• Year (from 1 to 4 digits)

• Hour (12- or 24-hour clock)

• Minute of the hour

• Second of the minute

• Fractional seconds

• Meridiem indicator (required for 12-hour clock; illegal for 24-hour clock)

If the input format string specifies a 24-hour clock, the string contains only the
first seven fields in the preceding list. If a 12-hour clock is specified, the eighth
field (the meridiem indicator) is required.

The format string fields must appear in two groups: one for date and one for time
(date and time fields cannot be intermixed within a group). For the input format,
alphabetic case distinctions and abbreviation-specific codes have no significance.
For example, the following format string specifies that the month name will be
uppercase and spelled out in full:

!MAU !DD, !Y4 !H02:!M0:!S0:!C2 !MIU

If the input string corresponding to this format string contains a month name
that is abbreviated and lowercase, the parse of the input string still works
correctly. For example:

feb 25, 1988 04:39:02:55 am

If this input string is entered, the parse still recognizes ‘‘feb’’ as the month name
and ‘‘am’’ as the meridiem indicator, even though the format string specified both
of these fields as uppercase, and the month name as unabbreviated.

Punctuation in the Format and Input Strings
One important aspect to consider when formatting date/time input strings is
punctuation. The punctuation referred to here is the characters that separate the
various date/time fields or the date and time groups. Punctuation in these strings
is important because it is used as an outline for the parser, allowing the parser to
synchronize the input fields to the format fields.

There are three distinct classes of punctuation:

• None
Although it is common for no punctuation to begin or end an input format
string, you can specify a date/time format that also has no punctuation
between the fields or groups of the format string. If this is the case, the
corresponding input string must not have any punctuation between the
respective fields or groups, although white space (see the next item in this
list) may appear at the beginning or end of the input string.

System Time Operations 27–27

System Time Operations
27.6 Date/Time Formatting Routines

• White space
White space includes any combination of spaces and tabs. In the
interpretation of the format string, any white space is condensed to a single
space. When parsing an input string, white space is generally noted as
synchronizing punctuation and is skipped; however, white space is significant
in some situations, such as with blank-filled numbers.

• Explicit
Explicit punctuation refers to any string of one or more characters that is
used as punctuation and is not solely comprised of white space. Any white
space appearing within an explicit punctuation string is interpreted literally;
in other words, the white space is not compressed. In the format string, you
can use explicit punctuation to denote a particular format and to guide the
parser in parsing the input string. In the input string, you can use explicit
punctuation to synchronize the parse of the input string against the format
string. The explicit punctuation used should not be a subset of the valid input
of any field that it precedes or follows it.

Punctuation is especially important in providing guidelines for the parser to
translate the input date/time string properly.

Default Date/Time Fields
Punctuation in a date/time string is also useful for specifying which fields you
want to omit in order to accept the default values. That is, you can control the
parsing of the input string by supplying punctuation without the appropriate
field values. If only the punctuation is supplied and a user-supplied default is not
specified, the value of the omitted field defaults according to the following rules:

• For the date group, the default is the current date.

• For the time group, the default is 00:00:00.00.

Table 27–7 gives some examples of input strings (using punctuation to indicate
defaulted fields) and their full translations (assuming a current date of 25-FEB-
1993 and using the default input format).

Table 27–7 Input String Punctuation and Defaults

Input Full Date/Time Input String

31 31-FEB-1993 00:00:00.00

-MAR 25-MAR-1993 00:00:00.00

-SEPTEMBER 25-SEP-1993 00:00:00.00

-1993 25-FEB-1993 00:00:00.00

23: 25-FEB-1993 23:00:00.00

:45: 25-FEB-1993 00:45:00.00

::23 25-FEB-1993 00:00:23.00

.01 25-FEB-1993 00:00:00.01

Note on the Changing Century
Because the default is the current date for the date group, if you specify a value
of 00 with the !Y2 format, the year is interpreted as 1900. After January 1, 2000,
the value 00 will be interpreted as 2000.

27–28 System Time Operations

System Time Operations
27.6 Date/Time Formatting Routines

For example, 02/29/00 is interpreted as 29-FEB-1900, which results in LIB$_
INVTIME because 1900 is not a leap year. After the turn of the century (the year
2000), 02/29/00 will be 29-FEB-2000, which is a valid date because 2000 is a leap
year.

27.6.2.4 Specifying Output Formats at Run Time
If the logical name method is used to specify an output format at run time, the
translations of the logical names SYS$LANGUAGE and LIB$DT_FORMAT
specify one or more executive mode logical names which in turn must be
translated to determine the actual format string. These additional logical names
supply such things as the names of the days of the week and the months in the
selected language (as determined by SYS$LANGUAGE). All of these logicals are
predefined, so that a nonprivileged user can select any one of these languages and
formats. In addition, a user can create his or her own languages and formats;
however, the CMEXEC, SYSNAM and SYSPRV privileges are required.

To select a particular format for a date or time, or both, you must define the
LIB$DT_FORMAT logical name using the following:

• LIB$DATE_FORMAT_nnn, where nnn ranges from 001 to 040

• LIB$TIME_FORMAT_nnn, where nnn ranges from 001 to 020

The order in which these logical names appear in the definition of LIB$DT_
FORMAT determines the order in which they are output. A single space is
inserted into the output string between the two elements, if the definition
specifies that both are output. For example:

$ DEFINE LIB$DT_FORMAT LIB$DATE_FORMAT_006, LIB$TIME_FORMAT_012

This definition causes the date to be output in the specified format, followed by a
space and the time in the specified format, as follows:

13 JAN 93 9:13 AM

Table 27–8 lists all predefined date format logical names, their formats, and
examples of the output generated using those formats. (The mnemonics used to
specify the formats are listed in Table 27–6.)

Table 27–8 Predefined Output Date Formats

Date Format Logical Name Format Example

LIB$DATE_FORMAT_001 !DB-!MAAU-!Y4 13-JAN-1993

LIB$DATE_FORMAT_002 !DB !MAU !Y4 13 JANUARY 1993

LIB$DATE_FORMAT_003 !DB.!MAU !Y4 13.JANUARY 1993

LIB$DATE_FORMAT_004 !DB.!MAU.!Y4 13.JANUARY.1993

LIB$DATE_FORMAT_005 !DB !MAU !Y2 13 JANUARY 93

LIB$DATE_FORMAT_006 !DB !MAAU !Y2 13 JAN 93

LIB$DATE_FORMAT_007 !DB.!MAAU !Y2 13.JAN 93

LIB$DATE_FORMAT_008 !DB.!MAAU.!Y2 13.JAN.93

LIB$DATE_FORMAT_009 !DB !MAAU !Y4 13 JAN 1993

LIB$DATE_FORMAT_010 !DB.!MAAU !Y4 13.JAN 1993

(continued on next page)

System Time Operations 27–29

System Time Operations
27.6 Date/Time Formatting Routines

Table 27–8 (Cont.) Predefined Output Date Formats

Date Format Logical Name Format Example

LIB$DATE_FORMAT_011 !DB.!MAAU.!Y4 13.JAN.1993

LIB$DATE_FORMAT_012 !MAU !DD, !Y4 JANUARY 13, 1993

LIB$DATE_FORMAT_013 !MN0/!D0/!Y2 01/13/93

LIB$DATE_FORMAT_014 !MN0-!D0-!Y2 01-13-93

LIB$DATE_FORMAT_015 !MN0.!D0.!Y2 01.13.93

LIB$DATE_FORMAT_016 !MN0 !D0 !Y2 01 13 93

LIB$DATE_FORMAT_017 !D0/!MN0/!Y2 13/01/93

LIB$DATE_FORMAT_018 !D0/!MN0-!Y2 13/01-93

LIB$DATE_FORMAT_019 !D0-!MN0-!Y2 13-01-93

LIB$DATE_FORMAT_020 !D0.!MN0.!Y2 13.01.93

LIB$DATE_FORMAT_021 !D0 !MN0 !Y2 13 01 93

LIB$DATE_FORMAT_022 !Y2/!MN0/!D0 93/01/13

LIB$DATE_FORMAT_023 !Y2-!MN0-!D0 93-01-13

LIB$DATE_FORMAT_024 !Y2.!MN0.!D0 93.01.13

LIB$DATE_FORMAT_025 !Y2 !MN0 !D0 93 01 13

LIB$DATE_FORMAT_026 !Y2!MN0!D0 930113

LIB$DATE_FORMAT_027 /!Y2.!MN0.!D0 /93.01.13

LIB$DATE_FORMAT_028 !MN0/!D0/!Y4 01/13/1993

LIB$DATE_FORMAT_029 !MN0-!D0-!Y4 01-13-1993

LIB$DATE_FORMAT_030 !MN0.!D0.!Y4 01.13.1993

LIB$DATE_FORMAT_031 !MN0 !D0 !Y4 01 13 1993

LIB$DATE_FORMAT_032 !D0/!MN0/!Y4 13/01/1993

LIB$DATE_FORMAT_033 !D0-!MN0-!Y4 13-01-1993

LIB$DATE_FORMAT_034 !D0.!MN0.!Y4 13.01.1993

LIB$DATE_FORMAT_035 !D0 !MN0 !Y4 13 01 1993

LIB$DATE_FORMAT_036 !Y4/!MN0/!D0 1993/01/13

LIB$DATE_FORMAT_037 !Y4-!MN0-!D0 1993-01-13

LIB$DATE_FORMAT_038 !Y4.!MN0.!D0 1993.01.13

LIB$DATE_FORMAT_039 !Y4 !MN0 !D0 1993 01 13

LIB$DATE_FORMAT_040 !Y4!MN0!D0 19930113

Table 27–9 lists all predefined time format logical names, their formats, and
examples of the output generated using those formats.

Table 27–9 Predefined Output Time Formats

Time Format Logical Format Example

LIB$TIME_FORMAT_001 !H04:!M0:!S0.!C2 09:13:25.14

LIB$TIME_FORMAT_002 !H04:!M0:!S0 09:13:25

(continued on next page)

27–30 System Time Operations

System Time Operations
27.6 Date/Time Formatting Routines

Table 27–9 (Cont.) Predefined Output Time Formats

Time Format Logical Format Example

LIB$TIME_FORMAT_003 !H04.!M0.!S0 09.13.25

LIB$TIME_FORMAT_004 !H04 !M0 !S0 09 13 25

LIB$TIME_FORMAT_005 !H04:!M0 09:13

LIB$TIME_FORMAT_006 !H04.!M0 09.13

LIB$TIME_FORMAT_007 !H04 !M0 09 13

LIB$TIME_FORMAT_008 !HH4:!M0 9:13

LIB$TIME_FORMAT_009 !HH4.!M0 9.13

LIB$TIME_FORMAT_010 !HH4 !M0 9 13

LIB$TIME_FORMAT_011 !H02:!M0 !MIU 09:13 AM

LIB$TIME_FORMAT_012 !HH2:!M0 !MIU 9:13 AM

LIB$TIME_FORMAT_013 !H04!M0 0913

LIB$TIME_FORMAT_014 !H04H!M0m 09H13m

LIB$TIME_FORMAT_015 kl !H04.!M0 kl 09.13

LIB$TIME_FORMAT_016 !H04H!M0’ 09H13’

LIB$TIME_FORMAT_017 !H04.!M0 h 09.13 h

LIB$TIME_FORMAT_018 h !H04.!M0 h 09.13

LIB$TIME_FORMAT_019 !HH4 h !MM 9 h 13

LIB$TIME_FORMAT_020 !HH4 h !MM min !SS s 9 h 13 min 25 s

27.6.2.5 Specifying Formats at Compile Time
If an application reads text from internal storage or formats text for internal
storage or transmission, you should specify the language and format at compile
time. The routine LIB$INIT_DATE_TIME_CONTEXT allows the user to specify
the language and format at compile time by initializing the context area used by
LIB$FORMAT_DATE_TIME for output or LIB$CONVERT_DATE_STRING for
input with specific strings, instead of through logical name translations. Note
that when the text will be parsed by another program, LIB$INIT_DATE_TIME_
CONTEXT expects all required context information (including spellings) to be
specified. For applications where the context specifies a user’s preferred format
style, the spellings can be looked up from the logical name tables.

Only one context component can be initialized per call to LIB$INIT_DATE_
TIME_CONTEXT. Table 27–10 lists the available components and their number
of elements. (_ABB indicates an abbreviated version of the month and weekday
names.)

Table 27–10 Available Components for Specifying Formats at Compile Time

Available Component Number of Elements

LIB$K_MONTH_NAME 12

LIB$K_MONTH_NAME_ABB 12

LIB$K_FORMAT_MNEMONICS 9

(continued on next page)

System Time Operations 27–31

System Time Operations
27.6 Date/Time Formatting Routines

Table 27–10 (Cont.) Available Components for Specifying Formats at Compile
Time

Available Component Number of Elements

LIB$K_WEEKDAY_NAME 7

LIB$K_WEEKDAY_NAME_ABB 7

LIB$K_RELATIVE_DAY_NAME 3

LIB$K_MERIDIEM_INDICATOR 2

LIB$K_OUTPUT_FORMAT 2

LIB$K_INPUT_FORMAT 1

LIB$K_LANGUAGE 1

To specify the actual values for these elements, you must use an initialization
string in the following format:

"[delim][string-1][delim][string-2][delim]...[delim][string-n][delim]"

In this format, [-] is a delimiting character that is not in any of the strings, and
[string-n] is the spelling of the nth instance of the component.

For example, a string passed to this routine to specify the English spellings of the
abbreviated month names might be as follows:

"|JAN|FEB|MAR|APR|MAY|JUN
|JUL|AUG|SEP|OCT|NOV|DEC|"

The string must contain the exact number of elements for the associated
component; otherwise the error LIB$_NUMELEMENTS is returned. Note that
the string begins and ends with a delimiter. Thus, there is one more delimiter
than the number of string elements in the initialization string.

27.6.2.6 Specifying Input Format Mnemonics at Compile Time
To specify the input format mnemonics at compile time, the user must initialize
the component LIB$K_FORMAT_MNEMONICS with the appropriate values.
Table 27–11 lists the nine fields that must be initialized, in the appropriate order,
along with their default (English) values.

Table 27–11 Legible Format Mnemonics

Order Format Field Legible Mnemonic (Default)

1 Year YYYY

2 Numeric month MM

3 Numeric day DD

4 Hours (12- or 24-hour) HH

5 Minutes MM

6 Seconds SS

7 Fractional seconds CC

8 Meridiem indicator AM/PM

9 Alphabetic month MONTH

For example, the following is a valid definition of the component LIB$K_
FORMAT_MNEMONICS, using English as the natural language:

27–32 System Time Operations

System Time Operations
27.6 Date/Time Formatting Routines

|YYYY|MM|DD|HH|MM|SS|CC|AM/PM|MONTH|

If the user were entering the same string using Austrian as the natural language,
the definition of the component LIB$K_FORMAT_MNEMONICS would be as
follows:

|JJJJ|MM|TT|SS|MM|SS|HH| |MONAT|

27.6.2.7 Specifying Output Formats at Compile Time
To specify an output format at compile time, the user must preinitialize the
component LIB$K_OUTPUT_FORMAT. Two elements are associated with this
output format string. One describes the date format fields, the other the time
format fields. The order in which they appear in the string determines the order
in which they are output. A single space is inserted into the output stream
between the two elements, if the call to LIB$FORMAT_DATE_TIME specifies
that both be output. For example:

" | !DB-!MAAU-!Y4 | !H04:!M0:!S0.!C2 | "

(These mnemonics are listed in Table 27–6.) This format string represents the
format used by the $ASCTIM system service for outputting times. Note that the
middle delimiter is replaced by a space in the resultant output.

13-JAN-1993 14:54:09:24

27.6.3 Converting with the LIB$CONVERT_DATE_STRING Routine
The LIB$CONVERT_DATE_STRING routine converts an absolute date/time
string into an operating system internal format date/time quadword. You can
optionally specify which fields of the input string can be defaulted (using the
input-flags argument), and what the default values should be (using the
defaults argument). By default, the time fields can be defaulted but the date
fields cannot. Table 27–7 gives some examples of these default values.

You can use the optional defaulted-fields argument to LIB$CONVERT_
DATE_STRING to determine which input fields were defaulted. That is, the
defaulted-fields argument is a bit mask in which each set bit indicates that the
corresponding field was defaulted in the input date/time string.

If you want to use LIB$CONVERT_DATE_STRING to return the current time as
well as the current date, you can call the $NUMTIM system service and pass the
timbuf argument, which contains the current date and time, to LIB$CONVERT_
DATE_STRING as the defaults argument. This tells the LIB$CONVERT_
DATE_STRING routine to take the default values for the date and time fields
from the 7-word array returned by $NUMTIM.

LIV$CONVERT_DATE_STRING specifies 2-digit years from input by selecting
the current century as the default for the century portion of the date. This is true
when the !Y2 format is used. This selection may not be desirable for you since 00
would be interpreted as 1900 (and as 2000 on 1/1/2000).

A new format has been added so that you can select a new behavior for
LIB$CONVERT_DATE_STRING. You can use the Z format in every place the Y
format is used to represent years. The Z format acts exactly like the Y format
except for !Z2. Using !Z2 causes LIB$CONVERT_DATE_STRING to interpret a
2-digit year of 99 as 1999 and a 2-digit year of 01 as 2001. The transition year
is on a sliding scale determined by the current year minus 43. So if the current
year is 1999, the transition year is 56. A 2-digit year greater or equal to this
has a century of 1900 and a 2-digit year less than this has a century of 2000.
Thus, the year 60 would be 1960 and the year 50 would be 2050. You can use the

System Time Operations 27–33

System Time Operations
27.6 Date/Time Formatting Routines

!Z2 format either in the logical LIB$DT_INPUT_FORMAT, or in the init-string
parameter for a call to LIB$INIT_DATE_TIME_CONTEXT to establish the input
format for LIB$CONVERT_DATE_STRING. Below is a list of the new Z formats:

Date Explanation

!Z4 Year; 4 digits

!Z3 Year; 3 digits

!Z2 Year; 2 digits (New behavior for the LIB$CONVERT_DATE_STRING routine)

!Z1 Year; 1 digit

27.6.4 Retrieving with LIB$GET_DATE_FORMAT Routine
The LIB$GET_DATE_FORMAT routine enables you to retrieve information about
the currently selected input format. The string returned by LIB$GET_DATE_
FORMAT parallels the currently defined input format string, consisting of the
format punctuation (with most white space compressed) and legible mnemonics
representing the various format fields.

Based on the currently defined input date/time format, LIB$GET_DATE_
FORMAT returns a string comprised of the mnemonics that represent the current
format. These mnemonics are listed in Table 27–11.

Table 27–12 gives some examples of input format strings and their resultant
mnemonic strings (using English as the default language).

Table 27–12 Sample Input Format Strings

Sample Format String LIB$GET_DATE_FORMAT Value

!MAU !DD, !Y4 !H04:!M0:!S0:!C2 MONTH DD, YYYY4 HH:MM:SS:CC2

!MN0-!D0-!Y2 !H04:!M0:!S0.!C2 MM-DD-YYYY2 HH:MM:SS.CC2

!MN0/!D0/!Y2 !H02:!M0:!S0.!C2 !MIU MM/DD/YYYY2 HH:MM:SS.CC2 AM/PM

27.6.4.1 Using User-Defined Output Formats
In addition to the 40 date output formats and 20 time output formats, users
can define their own date and time output formats using the logical names
LIB$DATE_FORMAT_nnn and LIB$TIME_FORMAT_nnn, where nnn ranges
from 501 to 999. (That is, values of nnn from 001 to 500 are reserved for use by
HP.) The mnemonics used to define output formats are listed in Table 27–6.

User-defined output formats must be defined as executive-mode logicals, and
they must be defined in the table LNM$DT_FORMAT_TABLE. These formats are
normally defined from the site-specific startup command procedure. The following
example illustrates the steps the system manager must use to create a particular
output format using French as the language:

$ DEFINE/EXEC/TABLE=LNM$DT_FORMAT_TABLE LIB$DATE_FORMAT_501 -
_$ "!WL, le !DD !MAL !Y4"
$ DEFINE/EXEC/TABLE=LNM$DT_FORMAT_TABLE LIB$TIME_FORMAT_501 -
_$ "!H04 heures et !M0 minutes"

27–34 System Time Operations

System Time Operations
27.6 Date/Time Formatting Routines

After the system manager defines the desired formats, the user can access them
by using the following commands:

$ DEFINE SYS$LANGUAGE FRENCH
$ DEFINE LIB$DT_FORMAT LIB$DATE_FORMAT_501, LIB$TIME_FORMAT_501

After completing these steps, a program outputting the date and time provides
the following results:

mardi, le 20 janvier 1993 13 heures et 50 minutes

In addition to creating their own date and time formats, users can also define
their own language tables (provided they have the SYSNAM, SYSPRV and
CMEXEC privileges). To create a language table, a user must define all the
logical names required.

The following example defines a portion of the Dutch language table. This table
is included in its entirety in the set of predefined languages provided with the
international date/time formatting routines.

$ CREATE/NAME/PARENT=LNM$SYSTEM_DIRECTORY/EXEC/PROT=(S:RWED,G:R,W:R) -
_$ LNM$LANGUAGE_DUTCH
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$WEEKDAYS_L -
_$ "maandag", "dinsdag", "woensdag", "donderdag", "vrijdag", -
_$ "zaterdag", "zondag"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$WEEKDAY_ABBREVIATIONS_L -
_$ "maa", "din", "woe", "don", "vri", "zat", "zon"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$MONTHS_L "januari", -
_$ "februari", "maart", "april", "mei", "juni", "juli", "augustus", -
_$ "september", "oktober", "november", "december"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$MONTH_ABBREVIATIONS_L -
_$ "jan", "feb", "mrt", "apr", "mei", "jun", "jul", "aug", "sep", -
_$ "okt", "nov", "dec"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_AUSTRIAN LIB$RELATIVE_DAYS_L -
_$ "gisteren", "vandaag", "morgen"

All logical names that are used to build a language are as follows:

LIB$WEEKDAYS_[U | L | C]
These logical names supply the names of the weekdays, spelled out in full
(uppercase, lowercase, or mixed case). Weekdays must be defined in order,
starting with Monday.

LIB$WEEKDAY_ABBREVIATIONS_[U | L | C]
These logical names supply the abbreviated names of the weekdays (uppercase,
lowercase, or mixed case). Weekday abbreviations must be defined in order,
starting with Monday.

LIB$MONTHS_[U | L | C]
These logical names supply the names of the months, spelled out in full
(uppercase, lowercase, or mixed case). Months must be defined in order, starting
with January.

LIB$MONTH_ABBREVIATIONS_[U | L | C]
These logical names supply the abbreviated names of the months (uppercase,
lowercase, or mixed case). Month abbreviations must be defined in order, starting
with January.

System Time Operations 27–35

System Time Operations
27.6 Date/Time Formatting Routines

LIB$MI_[U | L | C]
These logical names supply the spellings for the meridiem indicators (uppercase,
lowercase, or mixed case). Meridiem indicators must be defined in order; the first
indicator represents the hours 0:00:0.0 to 11:59:59.99, and the second indicator
represents the hours 12:00:00.00 to 23:59:59.99.

LIB$RELATIVE_DAYS_[U | L | C]
These logical names supply the spellings for the relative days (uppercase,
lowercase, or mixed case). Relative days must be defined in order: yesterday,
today, and tomorrow, respectively.

LIB$FORMAT_MNEMONICS
This logical name supplies the abbreviations for the appropriate format
mnemonics. That is, the information supplied in this logical name is used
to specify a desired input format in the user-defined language. The format
mnemonics, along with their English values, are listed in the order in which they
must be defined.

1. Year (YYYY)

2. Numeric month (MM)

3. Day of the month (DD)

4. Hour of the day (HH)

5. Minutes of the hour (MM)

6. Seconds of the minute (SS)

7. Parts of the second (CC)

8. Meridiem indicator (AM/PM)

9. Alphabetic month (MONTH)

The English definition of LIB$FORMAT_MNEMONIC is therefore as follows:

$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_ENGLISH LIB$FORMAT_MNEMONICS -
_$ "YYYY", "MM", "DD", "HH", "MM", "SS", "CC", "AM/PM ", "MONTH"

27.7 Coordinated Universal Time Format
This section provides information about VAX systems that supply system base
date and time format other than the Smithsonian base date and time system.
The other base date and time format system is the Coordinated Universal Time
(UTC) system. UTC time is determined by a network of atomic clocks that are
maintained by standard bodies in several countries. Formerly, applications that
spanned time zones often used Greenwich Mean Time (GMT) as a time reference.

UTC binary timestamps are opaque octawords of 128-bits that contain several
fields. Important fields of the UTC format are an absolute time value, a time
differential factor (TDF) that contains the offset of the host node’s clock from
UTC, and an inaccuracy, or tolerance, that can be applied to the absolute time
value. Unlike UTC, the operating system binary date and timestamps in the
Smithsonian base date and time format represent only the local time of the host
node; they do not contain TDF values or inaccuracy values.

27–36 System Time Operations

System Time Operations
27.7 Coordinated Universal Time Format

The UTC system services allow applications to gain the benefits of a Coordinated
Universal Time reference. The UTC system services enable applications to
reference a common time standard independent of the host’s location and local
date and time value.

By calling the UTC system services, applications can perform the following
functions:

• Obtain binary representations of UTC in the binary UTC format

• Convert the binary operating system format date and time to binary
UTC-format date and time

• Convert binary UTC-format date and time to the binary operating system
date and time

• Convert ASCII-format date and time to binary UTC-format date and time

• Convert binary UTC-format date and time to ASCII-format date and time

System services that implement the UTC-format date and time are:

• SYS$ASCUTC—Convert UTC to ASCII

• SYS$BINUTC—Convert ASCII String to UTC Binary Time

• SYS$GETUTC—Get UTC Time

• SYS$NUMUTC—Convert UTC Time to Numeric Components

• SYS$TIMCON—Time Converter

For specific implementation information about the UTC system services, see the
HP OpenVMS System Services Reference Manual.

System Time Operations 27–37

28
File Operations

This chapter describes file operations that support file input/output (I/O) and
file I/O instructions of the operating system’s high-level languages. This chapter
contains the following sections:

Section 28.1 describes file attributes.

Section 28.2 describes strategies to access files.

Section 28.3 describes protection and access of files.

Section 28.4 describes file mapping.

Section 28.5 describes how to open and update a sequential file.

Section 28.6 describes using the Fortran user-open routines.

I/O statements transfer data between records in files and variables in your
program. The I/O statement determines the operation to be performed; the
I/O control list specifies the file, record, and format attributes; and the I/O list
contains the variables to be acted upon.

Note

Some confusion might arise between records in a file and record variables.
Where this chapter refers to a record variable, the term record variable is
used; otherwise, record refers to a record in a file.

28.1 File Attributes
Before writing a program that accesses a data file, you must know the attributes
of the file and the order of the data. To determine this information, see your
language-specific programming manual.

File attributes (organization, record structure, and so on) determine how data is
stored and accessed. Typically, the attributes are specified by keywords when you
open the data file.

Ordering of the data within a file is not important mechanically. However, if you
attempt to read data without knowing how it is ordered within the file, you are
likely to read the wrong data; if you attempt to write data without knowing how
it is ordered within the file, you are likely to corrupt existing data.

File Operations 28–1

File Operations
28.1 File Attributes

28.1.1 Specifying File Attributes
You can specify large sets of attributes using the File Definition Language utility
(FDL). You can specify all of the file attributes using OpenVMS RMS in a user-
open routine (see Section 28.6). Typically, you need only programming language
file specifiers. Use FDL only when language specifiers are unavailable.

Refer to the appropriate programming language reference manual for information
about the use of language specifiers.

For complete information about how to use FDL, see the OpenVMS Record
Management Utilities Reference Manual.

28.2 File Access Strategies
When determining the file attributes and order of your data file, consider how you
plan to access that data. File access strategies fall into the following categories:

• Complete access

If your program processes all or most of the data in the file and especially if
many references are made to the data, you should read the entire file into
memory. Put each record in its own variable or set of variables.

If your program is larger than the amount of virtual memory available
(including the additional memory you get by using memory allocation
routines), you must declare fewer variables and process your file in pieces. To
determine the size of your program, add the number of bytes in each program
section. The DCL command LINK/MAP produces a listing that includes the
length of each program section (PSECT).

• Record-by-record access

If your program accesses records one after another, or if you cannot fit the
entire file into memory, you should read one record into memory at a time.

• Discrete records access

If your program processes only a selection of the file’s records, you should
read only the necessary records into memory.

• Sequential and indexed file access

If your program demands speed and needs to conserve disk space, use an
unformatted sequential file. Use indexed files either to process selected
sets of records or to access records directly. Use either a sequential file
with fixed-length records, a relative file, or an indexed file to access records
directly.

28.3 File Protection and Access
Files are owned by the process that creates them and receive the default
protection of the creating process. To create a file with ownership and protection
other than the default, use the File Definition Language (FDL) attributes
OWNER and PROTECTION in the file.

28–2 File Operations

File Operations
28.3 File Protection and Access

28.3.1 Read-Only Access
By default, the user of your program must have write access to a file in order
for your program to open that file. However, if you specify use of the Fortran
READONLY specifier when opening the file, the user needs only read access to
the file to open it. The READONLY specifier does not set the protection on a file.
The user cannot write to a file opened with the READONLY specifier.

28.3.2 Shared Access
The Fortran specifier READONLY and the SHARED specifier allow multiple
processes to open the same file simultaneously, provided that each process uses
one of these specifiers when opening the file. The READONLY specifier allows
the process read access to the file; the SHARED specifier allows other processes
read and write access to the file. If a process opens the file without specifying
READONLY or SHARED, no other process can open that file even by specifying
READONLY or SHARED.

In the following Fortran segment, if the read operation indicates that the record
is locked, the read operation is repeated. You should not attempt to read a locked
record without providing a delay (in this example, the call to ERRSNS) to allow
the other process time to complete its operation and unlock the record.

! Status variables and values
INTEGER STATUS,
2 IOSTAT,
2 IO_OK
PARAMETER (IO_OK = 0)
INCLUDE ’($FORDEF)’
! Logical unit number
INTEGER LUN /1/
! Record variables
INTEGER LEN
CHARACTER*80 RECORD

.

.

.
READ (UNIT = LUN,
2 FMT = ’(Q,A)’
2 IOSTAT = IOSTAT) LEN, RECORD (1:LEN)
IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .EQ. FOR$_SPERECLOC) THEN
DO WHILE (STATUS .EQ. FOR$_SPERECLOC)
READ (UNIT = LUN,

2 FMT = ’(Q,A)’
2 IOSTAT = IOSTAT) LEN, RECORD(1:LEN)

IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_SPERECLOC) THEN

CALL LIB$SIGNAL(%VAL(STATUS))
END IF

END IF
END DO

ELSE
CALL LIB$SIGNAL (%VAL(STATUS))
END IF

END IF
.
.
.

File Operations 28–3

File Operations
28.3 File Protection and Access

In Fortran, each time you access a record in a shared file, that record is
automatically locked either until you perform another I/O operation on the
same logical unit, or until you explicitly unlock the record using the UNLOCK
statement. If you plan to modify a record, you should do so before unlocking it;
otherwise, you should unlock the record as soon as possible.

28.4 File Access and Mapping
To copy an entire data file from the disk to program variables and back again,
either use language I/O statements to read and write the data or use the Create
and Map Section (SYS$CRMPSC) system service to map the data. Often times,
mapping the file is faster than reading it. However, a mapped file usually uses
more virtual memory than one that is read using language I/O statements. Using
I/O statements, you have to store only the data that you have entered. Using
SYS$CRMPSC, you have to initialize the database and store the entire structure
in virtual memory including the parts that do not yet contain data.

28.4.1 Using SYS$CRMPSC
Mapping a file means associating each byte of the file with a byte of program
storage. You access data in a mapped file by referencing the program storage;
your program does not use I/O statements.

Note

Files created using OpenVMS RMS typically contain control information.
Unless you are familiar with the structure of these files, do not attempt
to map one. The best practice is to map only those files that have been
created as the result of mapping.

To map a file, perform the following operations:

1. Place the program variables for the data in a common block. Page align
the common block at link time by specifying an options file containing the
following link option for VAX, Alpha, and I64 systems:

For VAX systems, specify the following:

PSECT_ATTR = name, PAGE

For Alpha and I64 systems, specify the following:

PSECT_ATTR = name, solitary

The variable name is the name of the common block.

Within the common block, you should specify the data in order from most
complex to least complex (high to low rank), with character data last. This
naturally aligns the data, thus preventing troublesome page breaks in virtual
memory.

2. Open the data file using a user-open routine. The user-open routine must
open the file for user I/O (as opposed to OpenVMS RMS I/O) and return the
channel number on which the file is opened.

3. Map the data file to the common block.

4. Process the records using the program variables in the common block.

28–4 File Operations

File Operations
28.4 File Access and Mapping

5. Free the memory used by the common block, forcing modified data to be
written back to the disk file.

Do not initialize variables in a common block that you plan to map; the initial
values will be lost when SYS$CRMPSC maps the common block.

28.4.1.1 Mapping a File
The format for SYS$CRMPSC is as follows:

SYS$CRMPSC [inadr],[retadr],[acmode],[flags],[gsdnam],[ident],[relpag],
[chan], [pagcnt],[vbn],[prot],[pfc]

For a complete description of the SYS$CRMPSC system service, see the HP
OpenVMS System Services Reference Manual.

Starting and Ending Addresses of the Mapped Section
On VAX systems, specify the location of the first variable in the common block as
the value of the first array element of the array passed by the inadr argument.
Specify the location of the last variable in the common block as the value of the
second array element.

On Alpha and I64 systems, specify the location of the first variable in the common
block as the value of the first array element of the array passed by the inadr
argument; the second array element must be the address of the last variable in
the common block, which is derived by performing a logical OR with the value of
the size of a memory page minus 1. The size of the memory page can be retrieved
by a call to the SYS$GETSYI system service.

If the first variable in the common block is an array or string, the first variable in
the common block is the first element of that array or string. If the last variable
in the common block is an array or string, the last variable in the common block
is the last element in that array or string.

Returning the Location of the Mapped Section
On VAX systems, SYS$CRMPSC returns the location of the first and last
elements mapped in the retadr argument. The value returned as the starting
virtual address should be the same as the starting address passed to the inadr
argument. The value returned as the ending virtual address should be equal to
or slightly more than (within 512 bytes, or 1 block) the value of the ending virtual
address passed to the inadr argument.

On Alpha and I64 systems, SYS$CRMPSC returns the location of the first and
last elements mapped in the retadr argument. The value returned as the
starting virtual address should be the same as the starting address passed to the
inadr argument. The value returned as the ending virtual address should be
equal to or slightly less than (within a single page size) the value of the ending
virtual address passed to the inadr argument.

If the first element is in error, you probably forgot to page-align the common block
containing the mapped data.

If the second element is in error, you were probably creating a new data file and
forgot to specify the size of the file in your program (see Section 28.4.1.3).

Using Private Sections
Specify SEC$M_WRT for the flags to indicate that the section is writable. If
the file is new, also specify SEC$M_DZRO to indicate that the section should be
initialized to zero.

File Operations 28–5

File Operations
28.4 File Access and Mapping

Obtaining the Channel Number
You must use a user-open routine to get the channel number (see
Section 28.4.1.2). Pass the channel number to the chan argument.

On VAX systems, Example 28–1 maps a data file consisting of one longword and
three real arrays to the INC_DATA common block. The options file INCOME.OPT
page-aligns the INC_DATA common block.

If SYS$CRMPSC returns a status of SS$_IVSECFLG and you have correctly
specified the flags in the mask argument, check to see if you are passing a
channel number of 0.

Example 28–1 Mapping a Data File to the Common Block on a VAX System

!INCOME.OPT

PSECT_ATTR = INC_DATA, PAGE

INCOME.FOR
! Declare variables to hold statistics
REAL PERSONS_HOUSE (2048),
2 ADULTS_HOUSE (2048),
2 INCOME_HOUSE (2048)
INTEGER TOTAL_HOUSES
! Declare section information
! Data area
COMMON /INC_DATA/ PERSONS_HOUSE,
2 ADULTS_HOUSE,
2 INCOME_HOUSE,
2 TOTAL_HOUSES
! Addresses
INTEGER ADDR(2),
2 RET_ADDR(2)
! Section length
INTEGER SEC_LEN
! Channel
INTEGER*2 CHAN,
2 GARBAGE
COMMON /CHANNEL/ CHAN,
2 GARBAGE
! Mask values
INTEGER MASK
INCLUDE ’($SECDEF)’
! User-open routines
INTEGER UFO_OPEN,
2 UFO_CREATE
EXTERNAL UFO_OPEN,
2 UFO_CREATE
! Declare logical unit number
INTEGER STATS_LUN
! Declare status variables and values
INTEGER STATUS,
2 IOSTAT,
2 IO_OK
PARAMETER (IO_OK = 0)
INCLUDE ’($FORDEF)’
EXTERNAL INCOME_BADMAP
! Declare logical for INQUIRE statement
LOGICAL EXIST
! Declare subprograms invoked as functions
INTEGER LIB$GET_LUN,
2 SYS$CRMPSC,
2 SYS$DELTVA,
2 SYS$DASSGN

(continued on next page)

28–6 File Operations

File Operations
28.4 File Access and Mapping

Example 28–1 (Cont.) Mapping a Data File to the Common Block on a VAX
System

! Get logical unit number for STATS.SAV
STATUS = LIB$GET_LUN (STATS_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
INQUIRE (FILE = ’STATS.SAV’,
2 EXIST = EXIST)
IF (EXIST) THEN
OPEN (UNIT=STATS_LUN,

2 FILE=’STATS.SAV’,
2 STATUS=’OLD’,
2 USEROPEN = UFO_OPEN)
MASK = SEC$M_WRT

ELSE
! If STATS.SAV does not exist, create new database
MASK = SEC$M_WRT .OR. SEC$M_DZRO
SEC_LEN =

! (address of last - address of first + size of last + 511)/512
2 ((%LOC(TOTAL_HOUSES) - %LOC(PERSONS_HOUSE(1)) + 4 + 511)/512)
OPEN (UNIT=STATS_LUN,

2 FILE=’STATS.SAV’,
2 STATUS=’NEW’,
2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)
END IF
! Free logical unit number and map section
CLOSE (STATS_LUN)
! ********
! MAP DATA
! ********
! Specify first and last address of section
ADDR(1) = %LOC(PERSONS_HOUSE(1))
ADDR(2) = %LOC(TOTAL_HOUSES)
! Map the section
STATUS = SYS$CRMPSC (ADDR,
2 RET_ADDR,
2 ,
2 %VAL(MASK),
2 ,,,
2 %VAL(CHAN),
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Check for correct mapping
IF (ADDR(1) .NE. RET_ADDR (1))

2 CALL LIB$SIGNAL (%VAL (%LOC(INCOME_BADMAP)))
.
.
.

! Reference data using the
! data structures listed
! in the common block

.

.

.
! Close and update STATS.SAV
STATUS = SYS$DELTVA (RET_ADDR,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$DASSGN (%VAL(CHAN))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

END

File Operations 28–7

File Operations
28.4 File Access and Mapping

Example 28–2 shows the code for performing the same functions as Example 28–1
but in an Alpha system’s environment.

Example 28–2 Mapping a Data File to the Common Block on an Alpha System

!INCOME.OPT

PSECT_ATTR = INC_DATA, SOLITARY, SHR, WRT

INCOME.FOR
! Declare variables to hold statistics
REAL PERSONS_HOUSE (2048),
2 ADULTS_HOUSE (2048),
2 INCOME_HOUSE (2048)
INTEGER TOTAL_HOUSES, STATUS
! Declare section information
! Data area
COMMON /INC_DATA/ PERSONS_HOUSE,
2 ADULTS_HOUSE,
2 INCOME_HOUSE,
2 TOTAL_HOUSES
! Addresses
INTEGER ADDR(2),
2 RET_ADDR(2)
! Section length
INTEGER SEC_LEN
! Channel
INTEGER*2 CHAN,
2 GARBAGE
COMMON /CHANNEL/ CHAN,
2 GARBAGE
! Mask values
INTEGER MASK
INCLUDE ’($SECDEF)’
! User-open routines
INTEGER UFO_OPEN,
2 UFO_CREATE
EXTERNAL UFO_OPEN,
2 UFO_CREATE
! Declare logical unit number
INTEGER STATS_LUN
! Declare status variables and values
INTEGER STATUS,
2 IOSTAT,
2 IO_OK
PARAMETER (IO_OK = 0)
INCLUDE ’($FORDEF)’
EXTERNAL INCOME_BADMAP
! Declare logical for INQUIRE statement
LOGICAL EXIST
! Declare subprograms invoked as functions
INTEGER LIB$GET_LUN,
2 SYS$CRMPSC,
2 SYS$DELTVA,
2 SYS$DASSGN
! Get logical unit number for STATS.SAV
STATUS = LIB$GET_LUN (STATS_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
INQUIRE (FILE = ’STATS.SAV’,
2 EXIST = EXIST)

(continued on next page)

28–8 File Operations

File Operations
28.4 File Access and Mapping

Example 28–2 (Cont.) Mapping a Data File to the Common Block on an Alpha
System

IF (EXIST) THEN
OPEN (UNIT=STATS_LUN,

2 FILE=’STATS.SAV’,
2 STATUS=’OLD’,
2 USEROPEN = UFO_OPEN)
MASK = SEC$M_WRT

ELSE
! If STATS.SAV does not exist, create new database
MASK = SEC$M_WRT .OR. SEC$M_DZRO
SEC_LEN =

! (address of last - address of first + size of last + 511)/512
2 ((%LOC(TOTAL_HOUSES) - %LOC(PERSONS_HOUSE(1)) + 4 + 511)/512)
OPEN (UNIT=STATS_LUN,

2 FILE=’STATS.SAV’,
2 STATUS=’NEW’,
2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)
END IF
! Free logical unit number and map section
CLOSE (STATS_LUN)
! ********
! MAP DATA
! ********
STATUS = LIB$GETSYI(SYI$_PAGE_SIZE, PAGE_MAX,,,,)
IF (.NOT. STATUS) CALL LIB$STOP (%VAL (STATUS))
! Specify first and last address of section
ADDR(1) = %LOC(PERSONS_HOUSE(1))
! Section will always be smaller than page_max bytes
ADDR(2) = ADDR(1) + PAGE_MAX -1
! Map the section
STATUS = SYS$CRMPSC (ADDR,
2 RET_ADDR,
2 ,
2 %VAL(MASK),
2 ,,,
2 %VAL(CHAN),
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Check for correct mapping
IF (ADDR(1) .NE. RET_ADDR (1))

2 CALL LIB$SIGNAL (%VAL (%LOC(INCOME_BADMAP)))
.
.
.

! Reference data using the
! data structures listed
! in the common block

.

.

.
! Close and update STATS.SAV
STATUS = SYS$DELTVA (RET_ADDR,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$DASSGN (%VAL(CHAN))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

END

File Operations 28–9

File Operations
28.4 File Access and Mapping

28.4.1.2 Using the User-Open Routine
When you open a file for mapping in Fortran, for example, you must specify
a user-open routine (Section 28.6 discusses user-open routines) to perform the
following operations:

1. Set the user-file open bit (FAB$V_UFO) in the file access block (FAB) options
mask.

2. Open the file using SYS$OPEN for an existing file or SYS$CREATE for a new
file. (Do not invoke SYS$CONNECT if you have set the user-file open bit.)

3. Return the channel number to the program unit that started the OPEN
operation. The channel number is in the additional status longword of the
FAB (FAB$L_STV) and must be returned in a common block.

4. Return the status of the open operation (SYS$OPEN or SYS$CREATE) as the
value of the user-open routine.

After setting the user-file open bit in the FAB options mask, you cannot use
language I/O statements to access data in that file. Therefore, you should free the
logical unit number associated with the file. The file is still open. You access the
file with the channel number.

Example 28–3 shows a user-open routine invoked by the sample program in
Section 28.4.1.1 if the file STATS.SAV exists. (If STATS.SAV does not exist, the
user-open routine must invoke SYS$CREATE rather than SYS$OPEN.)

Example 28–3 Using a User-Open Routine

!UFO_OPEN.FOR

INTEGER FUNCTION UFO_OPEN (FAB,
2 RAB,
2 LUN)

! Include Open VMS RMS definitions
INCLUDE ’($FABDEF)’
INCLUDE ’($RABDEF)’
! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN
! Declare channel
INTEGER*4 CHAN
COMMON /CHANNEL/ CHAN
! Declare status variable
INTEGER STATUS
! Declare system procedures
INTEGER SYS$OPEN
! Set useropen bit in the FAB options longword
FAB.FAB$L_FOP = FAB.FAB$L_FOP .OR. FAB$M_UFO
! Open file
STATUS = SYS$OPEN (FAB)
! Read channel from FAB status word
CHAN = FAB.FAB$L_STV

! Return status of open operation
UFO_OPEN = STATUS

END

28–10 File Operations

File Operations
28.4 File Access and Mapping

28.4.1.3 Initializing a Mapped Database
The first time you map a file you must perform the following operations in
addition to those listed at the beginning of Section 28.4.1:

1. Specify the size of the file—SYS$CRMPSC maps data based on the size of the
file. Therefore, when creating a file that is to be mapped, you must specify in
your program a file large enough to contain all of the expected data. Figure
the size of your database as follows:

• Find the size of the common block (in bytes)—Subtract the location of the
first variable in the common block from the location of the last variable in
the common block and then add the size of the last element.

• Find the number of blocks in the common block—Add 511 to the size and
divide the result by 512 (512 bytes = 1 block).

2. Initialize the file when you map it—The blocks allocated to a file might not be
initialized and therefore contain random data. When you first map the file,
you should initialize the mapped area to zeros by setting the SEC$V_DZRO
bit in the mask argument of SYS$CRMPSC.

The user-open routine for creating a file is the same as the user-open routine for
opening a file except that SYS$OPEN is replaced by SYS$CREATE.

28.4.1.4 Saving a Mapped File
To close a data file that was opened for user I/O, you must deassign the I/O
channel assigned to that file. Before you can deassign a channel assigned to a
mapped file, you must delete the virtual memory associated with the file (the
memory used by the common block). When you delete the virtual memory used
by a mapped file, any changes made while the file was mapped are written back
to the disk file. Use the Delete Virtual Address Space (SYS$DELTVA) system
service to delete the virtual memory used by a mapped file. Use the Deassign I/O
Channel (SYS$DASSGN) system service to deassign the I/O channel assigned to
a file.

The program segment shown in Example 28–4 closes a mapped file, automatically
writing any modifications back to the disk. To ensure that the proper locations
are deleted, pass SYS$DELTVA the addresses returned to your program by
SYS$CRMPSC rather than the addresses you passed to SYS$CRMPSC. If you
want to save modifications made to the mapped section without closing the
file, use the Update Section File on Disk (SYS$UPDSEC) system service. To
ensure that the proper locations are updated, pass SYS$UPDSEC the addresses
returned to your program by SYS$CRMPSC rather than the addresses you
passed to SYS$CRMPSC. Typically, you want to wait until the update operation
completes before continuing program execution. Therefore, use the efn argument
of SYS$UPDSEC to specify an event flag to be set when the update is complete,
and wait for the system service to complete before continuing. For a complete
description of the SYS$DELTVA, SYS$DASSGN, and SYS$UPDSEC system
services, see the HP OpenVMS System Services Reference Manual.

File Operations 28–11

File Operations
28.4 File Access and Mapping

Example 28–4 Closing a Mapped File

! Section address
INTEGER*4 ADDR(2),
2 RET_ADDR(2)
! Event flag
INTEGER*4 FLAG
! Status block
STRUCTURE /IO_BLOCK/
INTEGER*2 IOSTAT,

2 HARDWARE
INTEGER*4 BAD_PAGE

END STRUCTURE
RECORD /IO_BLOCK/ IOSTATUS

.

.

.
! Get an event flag
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Update the section
STATUS = SYS$UPDSEC (RET_ADDR,
2 ,,,
2 %VAL(FLAG)
2 ,
2 IOSTATUS,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Wait for section to be updated
STATUS = SYS$SYNCH (%VAL(FLAG),
2 IOSTATUS)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

.

.

.

28.5 Opening and Updating a Sequential File
This section provides an example, written in HP Fortran, of how to open and
update a sequential file on a VAX system. A sequential file consists of records
arranged one after the other in the order in which they are written to the file.
Records can only be added to the end of the file. Typically, sequential files are
accessed sequentially.

Creating a Sequential File
To create a sequential file, use the OPEN statement and specify the following
keywords and keyword values:

• STATUS =’NEW’

• ACCESS = ’SEQUENTIAL’

• ORGANIZATION = ’SEQUENTIAL’

The file structure keyword ORGANIZATION also accepts the value ’INDEXED’
or ’RELATIVE’.

28–12 File Operations

File Operations
28.5 Opening and Updating a Sequential File

Example 28–5 creates a sequential file of fixed-length records.

Example 28–5 Creating a Sequential File of Fixed-Length Records
.
.
.

INTEGER STATUS,
2 LUN,
2 LIB$GET_INPUT,
2 LIB$GET_LUN,
2 STR$UPCASE
INTEGER*2 FN_SIZE,
2 REC_SIZE
CHARACTER*256 FILENAME
CHARACTER*80 RECORD
! Get file name
STATUS = LIB$GET_INPUT (FILENAME,
2 ’File name: ’,
2 FN_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get free unit number
STATUS = LIB$GET_LUN (LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Open the file
OPEN (UNIT = LUN,
2 FILE = FILENAME (1:FN_SIZE),
2 ORGANIZATION = ’SEQUENTIAL’,
2 ACCESS = ’SEQUENTIAL’,
2 RECORDTYPE = ’FIXED’,
2 FORM = ’UNFORMATTED’,
2 RECL = 20,
2 STATUS = ’NEW’)
! Get the record input
STATUS = LIB$GET_INPUT (RECORD,
2 ’Input: ’,
2 REC_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
DO WHILE (REC_SIZE .NE. 0)

! Convert to uppercase
STATUS = STR$UPCASE (RECORD,RECORD)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

WRITE (UNIT=LUN) RECORD(1:REC_SIZE)
! Get more record input
STATUS = LIB$GET_INPUT (RECORD,

2 ’Input: ’,
2 REC_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END DO

END

Updating a Sequential File
To update a sequential file, read each record from the file, update it, and write it
to a new sequential file. Updated records cannot be written back as replacement
records for the same sequential file from which they were read.

Example 28–6 updates a sequential file, giving the user the option of modifying
a record before writing it to the new file. The same file name is used for both
files; because the new update file was opened after the old file, the new file has a
higher version number.

File Operations 28–13

File Operations
28.5 Opening and Updating a Sequential File

Example 28–6 Updating a Sequential File
.
.
.

INTEGER STATUS,
2 LUN1,
2 LUN2,
2 IOSTAT
INTEGER*2 FN_SIZE
CHARACTER*256 FILENAME
CHARACTER*80 RECORD
CHARACTER*80 NEW_RECORD
INCLUDE ’($FORDEF)’
INTEGER*4 LIB$GET_INPUT,
2 LIB$GET_LUN,
2 STR$UPCASE
! Get file name
STATUS = LIB$GET_INPUT (FILENAME,
2 ’File name: ’,
2 FN_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get free unit number
STATUS = LIB$GET_LUN (LUN1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Open the old file
OPEN (UNIT=LUN1,
2 FILE=FILENAME (1:FN_SIZE),
2 ORGANIZATION=’SEQUENTIAL’,
2 ACCESS=’SEQUENTIAL’,
2 RECORDTYPE=’FIXED’,
2 FORM=’UNFORMATTED’,
2 RECL=20,
2 STATUS=’OLD’)
! Get free unit number
STATUS = LIB$GET_LUN (LUN2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Open the new file
OPEN (UNIT=LUN2,
2 FILE=FILENAME (1:FN_SIZE),
2 ORGANIZATION=’SEQUENTIAL’,
2 ACCESS=’SEQUENTIAL’,
2 RECORDTYPE=’FIXED’,
2 FORM=’UNFORMATTED’,
2 RECL=20,
2 STATUS=’NEW’)
! Read a record from the old file
READ (UNIT=LUN1,
2 IOSTAT=IOSTAT) RECORD
IF (IOSTAT .NE. IOSTAT_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN
CALL LIB$SIGNAL (%VAL(STATUS))

END IF
END IF

DO WHILE (STATUS .NE. FOR$_ENDDURREA)

TYPE *, RECORD

(continued on next page)

28–14 File Operations

File Operations
28.5 Opening and Updating a Sequential File

Example 28–6 (Cont.) Updating a Sequential File

! Get record update
STATUS = LIB$GET_INPUT (NEW_RECORD,

2 ’Update: ’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Convert to uppercase
STATUS = STR$UPCASE (NEW_RECORD,

2 NEW_RECORD)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Write unchanged record or updated record
IF (NEW_RECORD .EQ. ’ ’) THEN
WRITE (UNIT=LUN2) RECORD

ELSE
WRITE (UNIT=LUN2) NEW_RECORD

END IF

! Read the next record
READ (UNIT=LUN1,

2 IOSTAT=IOSTAT) RECORD
IF (IOSTAT .NE. IOSTAT_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN
CALL LIB$SIGNAL (%VAL(STATUS))

END IF
END IF

END DO

END

28.6 User-Open Routines
A user-open routine in Fortran, for example, gives you direct access to the
file access block (FAB) and record access block (RAB) (the OpenVMS RMS
structures that define file characteristics). Use a user-open routine to specify file
characteristics that are otherwise unavailable from your programming language.

When you specify a user-open routine, you open the file rather than allow the
program to open the file for you. Before passing the FAB and RAB to your
user-open routine, any default file characteristics and characteristics that can
be specified by keywords in the programming language are set. Your user-open
routine should not set or modify such file characteristics because the language
might not be aware that you have set the characteristics and might not perform
as expected.

28.6.1 Opening a File
Section 28.4.1.2 provides guidelines on opening a file with a user-open routine.
This section provides an example of a Fortran user-open routine.

28.6.1.1 Specifying USEROPEN
To open a file with a user-open routine, include the USEROPEN specifier in the
Fortran OPEN statement. The value of the USEROPEN specifier is the name
of the routine (not a character string containing the name). Declare the user-
open routine as an INTEGER*4 function. Because the user-open routine name is
specified as an argument, it must be declared in an EXTERNAL statement.

File Operations 28–15

File Operations
28.6 User-Open Routines

The following statement instructs Fortran to open SECTION.DAT using the
routine UFO_OPEN:

! Logical unit number
INTEGER LUN

! Declare user-open routine
INTEGER UFO_OPEN
EXTERNAL UFO_OPEN

.

.

.
OPEN (UNIT = LUN,
2 FILE = ’SECTION.DAT’,
2 STATUS = ’OLD’,
2 USEROPEN = UFO_OPEN)

.

.

.

Note that Fortran can use the $RAB64DEF style of RABs. Code that uses
USEROPEN should expected this types of structure. RTL internally uses
NAM$C_MAXRSS as a length limit, and file names must reside in a low memory
address.

28.6.1.2 Writing the User-Open Routine
Write a user-open routine as an INTEGER function that accepts three dummy
arguments:

• FAB address—Declare this argument as a RECORD variable. Use
the record structure FABDEF defined in the $FABDEF module of
SYS$LIBRARY:FORSYSDEF.TLB.

• RAB address—Declare this argument as a RECORD variable. Use
the record structure RABDEF defined in the $RABDEF module of
SYS$LIBRARY:FORSYSDEF.TLB.

• Logical unit number—Declare this argument as an INTEGER.

A user-open routine must perform at least the following operations. In addition,
before opening the file, a user-open routine usually adjusts one or more fields in
the FAB or the RAB or in both.

• Opens the file—To open the file, invoke the SYS$OPEN system service if the
file already exists, or the SYS$CREATE system service if the file is being
created.

• Connects the file—Invoke the SYS$CONNECT system service to establish a
record stream for I/O.

• Returns the status—To return the status, equate the return status of the
SYS$OPEN or SYS$CREATE system service to the function value of the
user-open routine.

The following user-open routine opens an existing file. The file to be opened is
specified in the OPEN statement of the invoking program unit.

28–16 File Operations

File Operations
28.6 User-Open Routines

UFO_OPEN.FOR
INTEGER FUNCTION UFO_OPEN (FAB,
2 RAB,
2 LUN)

! Include Open VMS RMS definitions
INCLUDE ’($FABDEF)’
INCLUDE ’($RABDEF)’
! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN
! Declare status variable
INTEGER STATUS
! Declare system routines
INTEGER SYS$CREATE,
2 SYS$OPEN,
2 SYS$CONNECT
! Optional FAB and/or RAB modifications

.

.

.
! Open file
STATUS = SYS$OPEN (FAB)
IF (STATUS)
2 STATUS = SYS$CONNECT (RAB)

! Return status of $OPEN or $CONNECT
UFO_OPEN = STATUS

END

28.6.1.3 Setting FAB and RAB Fields
Each field in the FAB and RAB is identified by a symbolic name, such as FAB$L_
FOP. Where separate bits in a field represent different attributes, each bit offset
is identified by a similar symbolic name, such as FAB$V_CTG. The first three
letters identify the structure containing the field. The letter following the dollar
sign indicates either the length of the field (B for byte, W for word, or L for
longword) or that the name is a bit offset (V for bit) rather than a field. The
letters following the underscore identify the attribute associated with the field or
bit. The symbol FAB$L_FOP identifies the FAB options field, which is a longword
in length; the symbol FAB$V_CTG identifies the contiguity bit within the options
field.

The STRUCTURE definitions for the FAB and RAB are in the $FABDEF and
$RABDEF modules of the library SYS$LIBRARY:FORSYSDEF.TLB. To use these
definitions, do the following:

1. Include the modules in your program unit.

2. Declare RECORD variables for the FAB and the RAB.

3. Reference the various fields of the FAB and RAB using the symbolic name of
the field.

The following user-open routine specifies that the blocks allocated for the file
must be contiguous. To specify contiguity, you clear the best-try-contiguous bit
(FAB$V_CBT) of the FAB$L_FOP field and set the contiguous bit (FAB$V_CTG)
of the same field.

File Operations 28–17

File Operations
28.6 User-Open Routines

UFO_CONTIG.FOR
INTEGER FUNCTION UFO_CONTIG (FAB,
2 RAB,
2 LUN)

! Include Open VMS RMS definitions
INCLUDE ’($FABDEF)’
INCLUDE ’($RABDEF)’
! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN
! Declare status variable
INTEGER STATUS
! Declare system procedures
INTEGER SYS$CREATE,
2 SYS$CONNECT
! Clear contiguous-best-try bit and
! set contiguous bit in FAB options
FAB.FAB$L_FOP = IBCLR (FAB.FAB$L_FOP, FAB$V_CBT)
FAB.FAB$L_FOP = IBSET (FAB.FAB$L_FOP, FAB$V_CTG)
! Open file
STATUS = SYS$CREATE (FAB)
IF (STATUS) STATUS = SYS$CONNECT (RAB)

! Return status of open or connect
UFO_CONTIG = STATUS

END

28–18 File Operations

29
Overview of Extended File Specifications

(Alpha and I64 Only)

Alpha OpenVMS Version 7.2 and greater and OpenVMS I64 implement Extended
File Specifications, which consists of two major components:

• An optional volume structure, ODS-5, which provides support for file names
that are longer and have a greater range of legal characters than in previous
versions of OpenVMS

• Support for deep directories

Taken together, these components provide much greater flexibility for OpenVMS
Alpha systems (using Advanced Server for OpenVMS formerly known as
PATHWORKS for OpenVMS), to store, manage, serve, and access files that have
names similar to those in a Windows environment. Advanced Server support for
OpenVMS I64 is planned for a subsequent release.

This chapter provides a brief overview of the benefits, features, and support for
Extended File Specifications, as well as changes in OpenVMS behavior that occur
under Extended File Specifications.

For more information about extended file specifications, see the Guide to
OpenVMS File Applications, and the HP OpenVMS System Manager’s Manual.

29.1 Benefits of Extended File Specifications
The deep directories and extended file names supported by Extended File
Specifications provide the following benefits:

• Users of Advanced Server for OpenVMS V7.2 and later (formerly known
as PATHWORKS for OpenVMS) have the ability to store longer file names,
preserve the case of file names, and use deeper directory structures. These
new capabilities make the use of an OpenVMS file server more transparent to
Windows users.

• OpenVMS system managers can see files on OpenVMS systems with the
names as specified by Windows users.

• Applications developers who are porting applications from other environments
that have support for deep directories can use a parallel structure on
OpenVMS.

• Longer file naming capabilities and Unicode support enables OpenVMS to act
as a DCOM server for Windows clients, and ODS-5 provides capabilites that
make the OpenVMS and Windows environment more homogeneous for DCOM
developers.

• Java® applications on OpenVMS will comply with Java® object naming
standards.

Overview of Extended File Specifications (Alpha and I64 Only) 29–1

Overview of Extended File Specifications (Alpha and I64 Only)
29.1 Benefits of Extended File Specifications

• General OpenVMS users can make use of long file names, new character
support, and the ability to have lowercase and mixed-case file names.

These benefits result from the features described in Section 29.2.

29.2 Features of Extended File Specifications
Extended File Specifications consists of two main features, the ODS-5 volume
structure, and support for deep directories. These features are described in the
sections that follow.

29.2.1 ODS-5 Volume Structure
OpenVMS implements On-Disk Structure Level 5 (ODS-5). This structure
provides the basis for creating and storing files with extended file names. You
can choose whether or not to convert a volume to ODS-5 on your OpenVMS Alpha
and OpenVMS I64 systems.

The ODS-5 volume structure allows the following features:

• Long file names

• More characters legal within file names

• Preservation of case within file names

These features are described in the sections that follow.

29.2.1.1 Long File Names
On an ODS-5 volume, the name of a file (excluding the version number) can be up
to 236 8-bit or 118 16-bit characters long. Complete file specifications longer than
255 bytes are abbreviated by RMS when presented to unmodified applications.

29.2.1.2 More Characters Legal Within File Names
A broader set of characters is available for naming files on OpenVMS. ODS-5
offers support for file names that use the 8-bit ISO Latin-1 character and 16-bit
Unicode (UCS-2) character sets.

ISO LATIN-1 and Unicode (UCS-2) Character Sets
The ISO Latin-1 Multinational character set is a superset of the traditional ASCII
character set used by versions of OpenVMS previous to Version 7.2. In extended
file specifications, all characters from the 8-bit ISO Latin-1 Multinational
character set are valid in file specifications as of OpenVMS Version 8.2, except
the following:

Asterisk (*)
Question mark (?)

To unambiguously enter or display certain special characters in an ODS-5
compliant file specification, such as a space, you must precede the character
with a circumflex (^).

29.2.1.3 Preservation of Case
On ODS-5 disks on Alpha and I64 systems, the Extended File Specifications
support preserving case (as in uppercase and lowercase letters). If a file is
created with lowercase letters from program control, the name, as stored on disk,
is lowercase.

29–2 Overview of Extended File Specifications (Alpha and I64 Only)

Overview of Extended File Specifications (Alpha and I64 Only)
29.2 Features of Extended File Specifications

From the DCL command interface, file names that are entered at the command
prompt with lowercase letters will be translated by default to uppercase before
they are passed to RMS. Case may be preserved from the DCL command interface
by using the DCL command SET PROCESS/PARSE_STYLE=EXTENDED (also
see the SYS$SET_PROCESS_PROPERTIESW system service).

File look-ups, however, are case-blind. For example, the filename "File.Txt" (as
stored on an ODS-5 disk) could be accessed with a reference to "FILE.TXT" or
"file.txt".

An option may be set for file look-ups at either the process or file level to request
RMS to either ignore or notice the case sensitivity of file names on ODS-5 disks.

At the process level, the user may request RMS to ignore case by using SET
PROCESS/CASE_LOOKUP=BLIND. If a file on an ODS-5 disk already exists
whose name matches that of a file being created except for its case, the new file
will be created with the same case as the existing file (rather than with the case
as entered). This is the default behavior. In contrast, the user may request RMS
to notice case by using SET PROCESS/CASE_LOOKUP=SENSITIVE (also see
the SYS$SET_PROCESS_PROPERTIESW system service). If the SENSITIVE
option is in effect and the user creates more than one file on an ODS-5 disk with
the same name differing only in case, each file is treated as a new file.

At the file level, the NAML$V_CASE_LOOKUP flag can be used to instruct RMS
to ignore or notice case for a file on an ODS-5 disk (see the NAM$L_INPUT_
FLAGS field in the NAML structure in the OpenVMS Record Management
Utilities Reference Manual. NAML$C_CASE_BLIND is set to tell RMS to ignore
case or NAML$C_CASE_LOOKUP_SENSITIVE to notice case when creating,
deleting or searching for a file on an ODS-5 disk. If the NAML structure is not
used or this flag is zero, the current process setting for CASE_LOOKUP is used.

The SET PROCESS/PARSE_STYLE qualifier is independent of the /CASE_
LOOKUP qualifier. If the creation, deletion, or search of files on an ODS-5 disk
is being done using the DCL command interface and case is relevant, /PARSE_
STYLE=EXTENDED must be used to inform the DCL interface to preserve the
case specified in the DCL command. The /CASE_LOOKUP qualifier instructs
RMS whether to ignore or notice the case (either preserved or not).

29.2.2 Deep Directory Structures
Both ODS-2 and ODS-5 volume structures support deep nesting of directories,
subject to the following limits:

• There can be up to 255 levels of directories.

• The name of each directory can be up to 236 8-bit or 118 16-bit characters
long.

For example, a user can create the following deeply nested directory:

$ CREATE/DIRECTORY [.a.b.c.d.e.f.g.h.i.j.k.l.m]

A user can create the following directory with a long name on an ODS-5 volume:

$ CREATE/DIRECTORY
[.AVeryLongDirectoryNameWhichHasNothingToDoWithAnythingInParticular]

Complete file specifications longer than 255 bytes are abbreviated by RMS when
presented to unmodified applications.

Overview of Extended File Specifications (Alpha and I64 Only) 29–3

Overview of Extended File Specifications (Alpha and I64 Only)
29.2 Features of Extended File Specifications

29.2.2.1 Directory Naming Syntax
On an ODS-5 volume, directory names conform to most of the same conventions
as file names when using the ISO Latin-1 character set. Periods and special
characters can be present in the directory name, but in some cases, they must be
preceded by a circumflex (^) in order to be recognized as literal characters.

29.3 Considerations Before Enabling ODS-5 Volumes
ODS-5 provides enhanced file sharing capabilities for users of Advanced Server
for OpenVMS 7.2 (formerly known as PATHWORKS for OpenVMS), as well as
DCOM and JAVA applications.

Once ODS-5 volumes are enabled, some of the new capabilities can potentially
impact certain applications or layered products, as well as some areas of system
management. The new syntax for file names that is allowed on ODS-5 volumes
cannot be fully utilized on ODS-2 volumes. Because pre-Version 7.2 Alpha
systems cannot access ODS-5 volumes, and Open VMS Version 7.2 VAX systems
have limited ODS-5 functionality, you must be careful where and how you enable
ODS-5 volumes in mixed-version and mixed-architecture OpenVMS Clusters.

The following sections comprise a summary of how enabling ODS-5 volumes can
impact system management, users, and applications.

29.3.1 Considerations for System Management
RMS access to deep directories and extended file names is available only on
ODS-5 volumes mounted on OpenVMS I64 and OpenVMS Alpha V7.2 and greater
systems. HP recommends that ODS-5 volumes be enabled only on a homogeneous
OpenVMS I64 or OpenVMS Alpha V7.2 and greater Cluster.

If ODS-5 is enabled in a mixed-version or mixed-architecture OpenVMS Cluster,
the system manager must follow special procedures and be aware of specific
restrictions on mixed-version and mixed-architecture OpenVMS Clusters with
ODS-5 volumes enabled:

• Users must access ODS-5 files and deep directories from OpenVMS I64 and
OpenVMS Alpha V7.2 and greater systems only, because these capabilities
are not supported on earlier versions.

• Users who have created deep directories can view those directories only from
OpenVMS I64 and OpenVMS Alpha V7.2 and greater systems.

• Pre-Version 7.2 systems cannot mount an ODS-5 volume nor read ODS-2 or
ODS-5 file names on that volume.

Section 29.3.2 describes in greater detail the limitations of ODS-5 support for
users in a mixed-version or mixed-architecture OpenVMS Cluster.

Most unprivileged applications will work with most extended file names, but
some may need modifications to work with all extended file names. Privileged
applications that use physical or logical I/O to disk and applications that have a
specific need to access ODS-5 file names or volumes may require modifications
and should be analyzed. See the website http://h71000.www7.hp.com for a list of
fully supported OpenVMS applications. Section 29.3.4 describes in greater detail
the impact of ODS-5 on OpenVMS applications.

29–4 Overview of Extended File Specifications (Alpha and I64 Only)

Overview of Extended File Specifications (Alpha and I64 Only)
29.3 Considerations Before Enabling ODS-5 Volumes

29.3.2 Considerations for Users
Users of OpenVMS I64 and OpenVMS Alpha Version 7.2 and higher systems can
take advantage of all Extended File Specifications capabilities on ODS-5 volumes
mounted on an OpenVMS I64 and OpenVMS Alpha Version 7.2 and greater
system.

Users of mixed-version or mixed-architecture OpenVMS Clusters are subject to
some limitations in ODS-5 functionality. Section 29.3.2.1 lists those restrictions
that exist on a mixed-version OpenVMS Cluster. Section 29.3.2.2 lists those
restrictions that exist on a mixed-architecture OpenVMS Cluster.

29.3.2.1 Mixed-Version Support
Systems running prior versions of OpenVMS cannot mount ODS-5 volumes,
correctly handle extended file names, or even see extended file names.

The following sections describe support on OpenVMS Version 7.2 and greater and
on prior versions of OpenVMS in a mixed-version cluster.

OpenVMS I64 and OpenVMS Alpha Version 7.2 and Higher Systems
OpenVMS I64 and OpenVMS Alpha Version 7.2 and higher system can continue
to access pre-Version 7.2 files and directories; for example, users can do all of the
following:

• Create and access deep directory structures on ODS-2 volumes.

• Read a BACKUP saveset created on an earlier version of OpenVMS.

• Use DECnet to copy a file with an ODS-5 name to a file with an ODS-2 name
on a system running an earlier version of OpenVMS.

Users of Pre-Version 7.2 Systems
On mixed-version clusters, some restrictions exist. Users on a version of
OpenVMS prior to Version 7.2:

• Cannot access any files on an ODS-5 volume. This is true regardless of
whether the volume is connected physically on a CI or SCSI bus, or by an
MSCP or QIO server.

• Cannot successfully create or restore an ODS-5 image saveset. However,
these users can successfully restore ODS-2-compliant file names from an
ODS-5 saveset.

29.3.2.2 Mixed-Architecture Support
Current ODS-2 volume and file management functions remain the same on VAX,
Alpha Version 7.2 and greater systems, and I64 systems; however, extended file
naming and parsing are not available on VAX systems.

The following sections describe support on OpenVMS VAX, Alpha, and I64
systems in a mixed-architecture cluster.

Limited Extended File Specifications Capabilities on VAX Systems
In mixed-architecture OpenVMS Version 7.2 and greater clusters, OpenVMS
Version 7.2 and greater VAX systems are limited to the following Extended File
Specifications functionality:

• Ability to mount an ODS-5 volume

• Ability to write and manage ODS-2-compliant files on an ODS-5 volume

Overview of Extended File Specifications (Alpha and I64 Only) 29–5

Overview of Extended File Specifications (Alpha and I64 Only)
29.3 Considerations Before Enabling ODS-5 Volumes

• See pseudonames (\pISO_LATIN\.??? or \pUNICODE\.???) when accessing an
ODS-5 file specification

BACKUP Limitations
From a VAX system, users cannot successfully create or restore an ODS-5 image
saveset. However, these users can successfully restore ODS-2-compliant file
names from an ODS-5 saveset.

29.3.3 NFS Support for Extended File Specifications
The NFS server and the NFS client support OpenVMS extended file specifications
(EFS) on ODS-5 disk volumes.

You can use NFS server to export files on OpenVMS ODS-5 volumes. The
traditional ODS-2 volumes continue to be supported. The NFS client can emulate
an ODS-5 volume.

Note that the NFS server and NFS client support the ISO Latin-1 character set
only.

If an ODS-5 volume is mapped and exported, the NFS server automatically
supports EFS features and ignores the NAME_CONVERSION option of the
EXPORT command, if it is specified in the export record.

On ODS-2 volumes (with or without the NAME_CONVERSION option), files with
all uppercase names are displayed on non-OpenVMS clients with all lowercase
letters. On ODS-5 volumes, the file names are displayed by clients in the same
case as they are displayed locally on the server host.

If an ODS-2 volume contains file names that were created using the NAME_
CONVERSION option of the NFS EXPORT command and include lowercase
or special characters that are invalid for ODS-2 file names, those file names
displayed locally on the server host contain character sequences (escape codes),
as described in HP TCP/IP Services for OpenVMS Management. If the DCL SET
VOLUME /STRUCTURE_LEVEL=5 command is performed on this volume, the
names are displayed by clients with the character sequences exactly as they are
displayed locally on the server host.

29.3.4 Considerations for Applications
ODS-5 functionality can be selected on a volume-by-volume basis. If ODS-5
volumes have not been enabled on your system, all existing applications will
continue to function as before. If ODS-5 volumes have been enabled, you need to
be aware of the following changes:

• OpenVMS file handling and command line parsing have been modified to
enable them to work with extended file names on ODS-5 volumes while
still being compatible with existing applications. The majority of existing,
unprivileged applications will work with most extended file names, but some
may need modifications to work with all extended file names.

• Privileged applications that use physical or logical I/O to disk may require
modifications and should be analyzed. Applications that have a specific need
to access ODS-5 file names or volumes should be analyzed to determine if
they require modification.

On ODS-5 volumes, existing applications and layered products that are coded
to documented interfaces, as well as most DCL command procedures, should
continue to work without modification.

29–6 Overview of Extended File Specifications (Alpha and I64 Only)

Overview of Extended File Specifications (Alpha and I64 Only)
29.3 Considerations Before Enabling ODS-5 Volumes

However, applications that are coded to undocumented interfaces, or include any
of the following, may need to be modified in order to function as expected on an
ODS-5 volume:

• Internal knowledge of the file system, including knowledge of:

The data layout on disk
The contents of file headers
The contents of directory files

• File parsing tailored to a particular on-disk structure.

• Assumptions about the syntax of file specifications, such as the placement of
delimiters and legal characters.

• Assumptions about the case of file specifications. Mixed and lowercase file
specifications will not be converted to uppercase, which can affect string
matching operations.

• Assumptions that file specifications are identical between RMS and the file
system.

Note

All unmodified XQP applications running on an OpenVMS VAX,
OpenVMS Alpha, or OpenVMS I64 system that access an ODS-5 volume
will see pseudonames returned in place of Unicode or ISO Latin-1 names
that are not ODS-2 compliant. This can cause applications to act in an
unpredictable manner.

Applications that specify or retrieve filenames with the XQP interface
using ODS-5 disks must be modified in order to access files with extended
names.

29.4 Extended File Naming Considerations for OpenVMS
Application Developers

This section describes considerations for applications and how to evaluate an
application’s support for Extended File Specifications.

29.4.1 Evaluating Your Current Support Status
Any applications that are coded to undocumented interfaces may not provide
support for either deep directories or extended file names. Section 29.4.3 lists
additional application attributes that may prevent an application from supporting
extended file names. Section 29.4.4 lists additional application attributes that
may prevent an application from supporting ODS-5 volumes.

You can choose either to modify these applications to support Extended File
Specifications or not to use them under Extended File Specifications. For
information on how to modify an application to provide default support for
Extended File Specifications, see Section 29.5.1. For information on how to
upgrade an application to full support, see Section 29.5.2.

Overview of Extended File Specifications (Alpha and I64 Only) 29–7

Overview of Extended File Specifications (Alpha and I64 Only)
29.4 Extended File Naming Considerations for OpenVMS Application Developers

29.4.2 Default Support
Most unmodified OpenVMS applications fall into the default support category.
Specifically, these applications use the traditional API rather than the new API
when making RMS calls. Applications that use high-level language calls to
perform file operations will also fit into this category unless the language run-
time libraries have been modified to full support. In most cases, you will not need
to modify these applications for them to function successfully under Extended
File Specifications.

29.4.3 No Support for Extended File Names
An application that does any of the following may not support extended file
names:

1. Uses the QIO interface to specify file names. Developers should examine
all layered products and applications and evaluate any file name interaction
between the RMS and the XQP interfaces. The format for extended file names
varies for each interface. As a result, an application can no longer assume
that it can use the same file name for both RMS and the XQP. In addition,
the XQP does not allow an unmodified application to use extended file names.
Valid file names could differ between interfaces.

2. Makes assumptions about the syntax of file specifications, such as the
placement of delimiters and legal characters.

3. Makes assumptions about the case of file specifications. RMS no longer
converts mixed and lowercase file specifications to uppercase in all cases.
This could affect string matching operations.

4. Depends on the traditional directory depth (fewer than 8 levels).

29.4.4 No Support for ODS-5 Volumes
An application that uses internal knowledge of the file system, including
knowledge of the contents of a directory and how file header data is structured on
a disk cannot work correctly on an ODS-5 volume.

29.5 Upgrading an Application to Support Extended File
Specifications

The following sections describe the changes necessary to upgrade the level of
support for extended file specifications. Note that you must first ensure that the
application meets the default support level before you can upgrade it to the full
support level.

Note

If you are not using the RMS or QIO interfaces to perform disk I/O, the
Extended File Specifications support level of your application depends on
whether the interface you are using (such as a language run-time library)
provides full support.

29–8 Overview of Extended File Specifications (Alpha and I64 Only)

Overview of Extended File Specifications (Alpha and I64 Only)
29.5 Upgrading an Application to Support Extended File Specifications

29.5.1 Upgrading to Default Support
To upgrade an application to provide default support for Extended File
Specifications, you must ensure that it minimally supports both the ODS-5
volume structure and extended file naming as recommended in naming as
recommended in Sections 29.5.1.1 and 29.5.1.2, respectively. Default support is
defined in Section 29.4.2.

29.5.1.1 Providing Support for ODS-5
Applications that do not support the new ODS-5 volume structure do not
operate successfully on these volumes even if they encounter only traditional
file specifications.

If an application does not work properly on an ODS-5 volume, examine the
application for the following:

• Does the application use physical or logical I/O to bypass the file system when
accessing the volume, or does it access metadata files such as BITMAP.SYS
directly? These applications are usually system programs, such as disk
defragmenters, or programs that try to avoid overhead by accessing the disk
directly. These applications rely on specific knowledge of the file or directory
structure on the disk, which has changed with introduction of the ODS-5
structure.

Recommendation: Applications should use documented interfaces and
structures whenever possible.

• Does the application access and interpret the contents of directory files directly?
If so, the application may fail when it encounters a directory that contains
extended file names.

Recommendation: Modify the application to use the search functions provided
with the RMS or QIO interface, or with LIBRTL routines such as LIB$FIND_
FILE.

29.5.1.2 Providing Support for Extended File Naming
If an application does not handle extended names successfully, examine the
application for any the following:

• Does the application attempt to parse or assume knowledge of the syntax
of a file specification? For example, the application might search for a
bracket ([) to locate the beginning of a directory specification, or for a
space character to mark the end of a file specification.

Recommendation: The application should rely on RMS to determine
whether a file specification is legal rather than pretesting the actual
name. Use the NAML_NODE, NAML_DEV, NAML_DIR, NAML_
TYPE, and NAM$L_VER fields of the NAM block or SYS$FILESCAN to
retrieve this information.

• Does the application attempt to determine if two file names are the same
by doing a string comparison? Because file names are case-insensitive,
and because there are several ways to represent some characters, a string
compare may fail even though two strings represent the same file.

Recommendation: See the example program
[SYSHLP.EXAMPLES]FILENAME_COMPARE.C for a way to use the
system service $CVT_FILENAMES to compare filenames.

Overview of Extended File Specifications (Alpha and I64 Only) 29–9

Overview of Extended File Specifications (Alpha and I64 Only)
29.5 Upgrading an Application to Support Extended File Specifications

• Does the application depend on the NAM$V_DIR_LVLS bits in the
NAM$L_FNB field to determine how many directory levels there are in
the current file specification? Because there are only three bits in this
field, it can only specify a maximum of eight levels. Applications seldom
use these bits; they are mainly used by RMS when a NAM is specified as
a related file specification.

Recommendation: With OpenVMS Version 7.2 and greater, there is a
larger field available in both the NAM and the NAML blocks, NAM$W_
LONG_DIR_LEVELS. Use this field to locate the correct number of
directory levels.

• Does the application rely on the NAM$V_WILD_UFD and SFD1 - SFD7
bits to determine where there are wildcard directories? Because there are
only eight of these bits, they can only report wildcards in the first eight
directory levels. Applications seldom use these bits; they are mainly used
by RMS when a NAM is specified as a related file specification.

Recommendation: With OpenVMS Version 7.2 and greater, there is a field
available in both the NAM and NAML block, NAML$W_FIRST_WILD_
DIR. Use this field to locate the highest directory level where a wildcard
is to be found.

• Does the application use the QIO interface to the file system and specify or
request a file name from QIO directly? The QIO interface requires that
an application specify explicitly that it understands extended file names
before it will accept or return the names. In addition, the file name
format for extended file names is not identical between RMS and the
QIO interface. Additionally, some file names may be specified in 2-byte
Unicode (UCS-2) characters. Your application must be capable of dealing
with 1 character that spans 2 bytes.

Recommendations: Most applications that use the QIO interface also use
RMS to parse file specifications and retrieve the file and directory ID for
the file. They then use these ID values to access the file with the QIO
interface. This method of access continues to work with extended names.
HP recommends changing to this method to fix the problem.

You can also obtain the name that the QIO system uses from the
NAML$L_FILESYS_NAME field of a NAML block, or use the system
service (SYS$CVT_FILENAME) to convert between the RMS and the
QIO file name. In this case, you will also need to provide an expanded
FIB block to the QIO service to specify that your application understands
extended names, expand your buffers to the maximum size, and prepare
to deal with 2-byte Unicode characters.

29.5.2 Upgrading to Full Support
Some OpenVMS applications, such as system or disk management utilities, may
require full support for Extended File Specifications. Typically, these are utilities
that must be able to view and manipulate all file specifications without DID or
FID abbreviation. To upgrade an application so that it fully supports all the
features of Extended File Specifications, do the following:

1. Convert all uses of the RMS NAM block to the NAML block.

29–10 Overview of Extended File Specifications (Alpha and I64 Only)

Overview of Extended File Specifications (Alpha and I64 Only)
29.5 Upgrading an Application to Support Extended File Specifications

2. Expand the input and output file name buffers used by RMS. To do this,
use the NAML long_expanded and long_resultant buffer pointers (NAML$L_
LONG_EXPAND and NAML$L_LONG_RESULT) rather than the short buffer
pointers (NAML$L_ESA and NAML$L_RSA), and increase the buffer sizes
from NAM$C_MAXRSS to NAML$C_MAXRSS.

3. If long file names (greater than 255 bytes) are specified in the FAB file
name buffer field (FAB$L_FNA), use the NAML long_filename buffer field
(NAML$L_LONG_FILENAME) instead. If long file names are specified in the
FAB default name buffer field (FAB$L_DNA), use the NAML default name
buffer field (NAML$L_LONG_DEFNAME) instead.

4. If you use the LIB$FIND_FILE, LIB$RENAME or LIB$DELETE routines, set
LIB$M_FIL_LONG_NAMES in the flags argument (flags is an argument to
the LIB$DELETE routine). Note that you can use the NAML block in place
of the NAM block to pass information to LIB$FILE_SCAN without additional
changes.

5. If you use the LIB$FID_TO_NAME routine, the descriptor for the returned
file specification may need to be changed to take advantage of the increased
maximum allowed of 4095 (NAML$C_MAXRSS) bytes.

6. If you use the FDL$CREATE, FDL$GENERATE, FDL$PARSE, or
FDL$RELEASE routine, you must set FDL$M_LONG_NAMES in the
flags argument.

7. Examine the source code for any additional assumptions made internally that
a file specification is no longer than 255 8-bit bytes.

Overview of Extended File Specifications (Alpha and I64 Only) 29–11

30
Distributed Transaction Manager (DECdtm)

This chapter describes the programming interfaces of the Distributed Transaction
Manager (DECdtm). You use these interfaces to implement distributed
transactions or when you write resource managers that participate in distributed
transactions. Examples of single and multiple branch applications are also
presented. Additionally, this chapter describes the implementation of the X/Open
Distributed Transaction Processing XA interface. This interface allows DECdtm
to coordinate XA-compliant resource managers and XA-compliant transaction
processing systems to coordinate resource managers compliant with DECdtm.

DECdtm system services are documented in the HP OpenVMS System Services
Reference Manual.

This chapter contains the following sections:

Section 30.1 provides an overview of the DECdtm programming interfaces.
Section 30.2 describes single branch applications.
Section 30.3 describes multiple branch applications.
Section 30.4 describes default transactions.
Section 30.5 describes the Resource Manager interface.
Section 30.6 describes the Communication Resource Manager interface.
Section 30.7 describes the XA interface (Alpha only).
Section 30.8 provides program examples that use DECdtm.

30.1 Overview of DECdtm
DECdtm provides a basic infrastructure for a distributed transaction processing
system. A transaction is a collection of operations that change the system
from one valid state to another. A transaction performs operations on resources.
Examples of resources are databases and files.

Specifically, a transaction has the ACID properties:

Atomicity Either all of the changes for a transaction are made, or none are. If
the changes for a transaction cannot be completed, partial changes
by the transaction must be undone.

Consistency A transaction is expected to change the system from one consistent
state to another.

Isolation Intermediate changes by a transaction must not be visible to other
transactions.

Durability The changes made by a transaction should survive computer and
media failures.

A transaction often needs to use more than one resource on one or more system.
This type of transaction is called a distributed transaction.

Individual OpenVMS systems within the distributed system are called nodes in
this chapter.

Distributed Transaction Manager (DECdtm) 30–1

Distributed Transaction Manager (DECdtm)
30.1 Overview of DECdtm

The DECdtm model constructs a distributed transaction processing system from
three types of component:

• An Application Program (AP) provides the application-specific code for the
system and defines the boundaries between transactions.

A transaction may be implemented by a single AP running in one node of
the distributed system, or it may have multiple AP processes. Typically, each
process runs on multiple nodes of the system.

• A Resource Manager (RM) provides ACID operations for one or more data
resources on a single node of the system. Oracle Rdb and RMS Journaling
are examples of resource managers.

Typically, a distributed transaction involves two or more RMs. This might be
dissimilar RMs on a single node of the system (for example, Oracle Rdb and
RMS Journaling), or it might be RMs on different nodes.

• The Transaction Manager (TM) controls the interaction of APs and RMs,
ensuring that they maintain a common view of the state of each transaction
(in-progress, committed, or aborted).

DECdtm is a TM. Typically, it is the sole TM in an OpenVMS system, but it
also provides services that enable it to interoperate with other TMs.

DECdtm implements a two-phase commit protocol. This is a simple consensus
protocol that allows a collection of participants to reach a single conclusion.
The two-phase commit protocol makes sure that all of the operations can take
effect before the transaction is committed. If any operation cannot take effect, for
example if a network link is lost, then the transaction is aborted, and none of the
operations take effect. Given a list of participants and a designated coordinator,
the protocol proceeds as follows:

Phase 1: The coordinator asks each participant if it can agree to commit. Each
participant examines its internal state. If the answer is yes, it does
whatever it requires to ensure that it can either commit or abort the
transaction, regardless of failures. Typically, this requires logging
information to disk. It then votes either yes or no.

Phase 2: The coordinator records the outcome on disk: yes, if all the votes were
positive, or no, if any votes were negative or missing.

The coordinator then informs each participant of the final result.

Note that this protocol reaches a single decision while it allows the coordinator
and participants to fail. Any failure during phase 1 causes the transaction to be
aborted. If the coordinator fails during phase 2, participants wait for it to recover
and read the decision from disk. If a participant fails, it can ask the coordinator
for the decision on recovery.

While DECdtm is not complex in itself, construction of a full-function resource
manager needs knowledge of more techniques than can be given in this manual.
Transaction Processing: Concepts and Techniques by Jim Gray and Andreas
Reuter (Morgan Kaufman Publishers, 1993) may be helpful.

30.2 Single Branch Application
A sequence of AP operations that occurs within a single transaction is called a
branch of the transaction. In the simplest use of DECdtm, a single AP invokes
two or more RMs.

30–2 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.2 Single Branch Application

The AP uses just three of the DECdtm services: $START_TRANS, $END_
TRANS, and $ABORT_TRANS. These services are documented in the HP
OpenVMS System Services Reference Manual. They have not changed, but
additional information is given in this manual.

$START_TRANS initiates a new transaction and returns a transaction
identifier (TID) that is passed to other DECdtm services. $END_TRANS
ends a transaction by attempting to commit it and returns the outcome of the
transaction with either a commit or abort. $ABORT_TRANS ends the transaction
by aborting it.

During the transaction, the AP passes the TID to each RM that it uses. The TID
may be passed explicitly, or through the default transaction mechanism described
in Section 30.4. Internally, each RM calls the DECdtm RM services. It also
uses the branch services if parts of the transaction can be executed by different
processes or on different nodes.

DECdtm aborts a transaction if the process executing a branch terminates. By
default, it also aborts a transaction if the current program image terminates.

30.2.1 Calling DECdtm System Services for a Single Branch Application
An application using the DECdtm system services follows these steps:

1. Calls SYS$START_TRANSW. This starts a new transaction and returns the
transaction identifier.

2. Instructs the resource managers to perform the required operations on their
resources.

3. Ends the transaction in one of two ways:

• Commit: To attempt to perform or commit the transaction, the
application calls SYS$END_TRANSW. This checks whether all
participants can commit their operations. If any participant cannot
commit an operation, the transaction is aborted.

When SYS$END_TRANSW returns, the application determines the
outcome of the transaction by reading the completion status in the I/O
status block.

• Abort: To abort the transaction, the application calls
SYS$ABORT_TRANSW. Typically, an application aborts a transaction
if a resource manager returns an error or if the user enters invalid
information during the transaction.

30.2.1.1 Sample Single Branch Transaction
Edward Jessup, an employee of a computer company in Italy, is transferring to
a subsidiary of the company in Japan. An application must remove his personal
information from an Italian DBMS database and add it to a Japanese Rdb
database. Both of these operations must happen, otherwise Edward’s personal
information may either end up cyber space (the application might remove him
from the Italian database but then lose a network link while trying to add him
to the Japanese database) or find that he is in both databases at the same time.
Either way, the two databases would be out of step.

If the application used DECdtm to execute both operations as an atomic
transaction, then this error could never happen; DECdtm would automatically
detect the network link failure and abort the transaction. Neither of the
databases would be updated, and the application could then try again.

Distributed Transaction Manager (DECdtm) 30–3

Distributed Transaction Manager (DECdtm)
30.2 Single Branch Application

Figure 30–1 shows the participants in the distributed transaction discussed in
this sample transaction. The application is on node ITALY.

Figure 30–1 Participants in a Distributed Transaction

node ITALY

ZK−4771A−GE

Application

node JAPAN

Resource
Manager

(Rdb/VMS)

Transaction
Manager

Transaction
Manager

Resource
Manager
(DBMS)

ResourceResource

30.3 Multiple Branch Application
A transaction may have multiple branches. A separate branch is required for
each process that takes part in a transaction, regardless of whether the processes
run on the same node or on different nodes of the system.

The top branch of the transaction is created by $START_TRANS. A new branch
can be requested in the following ways:

• By making explicit use of the $ADD_BRANCH and $START_BRANCH
services. The application can use any suitable communication technique to
pass application calls between the processes and nodes of the system. Such
communication is not a function of DECdtm.

• By calling an RM such as Oracle Rdb that allows resource processing to be
requested on another node of the system.

• By calling a transaction processing framework such as ACMS that allows
processing tasks to be requested on other nodes of the system.

Note that in the last two cases, the RM or TP framework make the necessary
branch service calls on behalf of the application. There is no difference in the
three cases from the viewpoint of DECdtm.

The top branch of a transaction is created by calling $START_TRANS. A
subordinate branch is authorized when an existing branch calls $ADD_BRANCH.
This returns a globally unique branch identifier (BID). The application passes
the BID and TID with an application-specific request to another process or node
of the system. $START_BRANCH is then called on the target node to add a new
branch to the transaction. A subordinate branch of a transaction may in turn
create further branches.

30–4 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.3 Multiple Branch Application

DECdtm can connect the two parts of the transaction together because $ADD_
BRANCH specifies the name of the target node while $START_BRANCH
specifies the name of the parent node. Either the two nodes must be in the same
OpenVMS Cluster or they must be able to communicate by DECnet. DECdtm
operation is more efficient within an OpenVMS Cluster.

Unless DECdtm operation is confined to a single cluster, you must configure each
node with the same DECnet node name as its cluster node name.

An application may complete its processing within a branch by calling $END_
BRANCH.

On $START_BRANCH, DECdtm checks that the two nodes are able to
communicate, but it does not validate that the branch is authorized until
$END_BRANCH is called. At that point, an unauthorized branch is aborted
without affecting the ability of the authorized branches to commit.

Be careful in situations in which an application attempts to access the same
resource from different branches of a transaction. Some RMs can recognize that
the branches form part of the same transaction and allow concurrent access to
the resource. In that case, just like multiple threads in a process, the application
may need to serialize its own operations on the shared resource. Other RMs
may lock one branch against another. In that case, the application is likely to
deadlock.

Multiple branches in a transaction can serialize their operations on a shared
resource within an OpenVMS Cluster using the Lock Manager. Care is needed if
two branches outside an OpenVMS Cluster implicitly share a resource, perhaps
by each creating a subordinate branch on a third system.

A single process may have multiple branches. For example, a server process may
execute parallel operations on behalf of different transactions.

30.3.1 Resource Manager Use of the Branch Services
Strictly defined, an RM provides access to resources on the same process as an AP
that has started a transaction or added a branch. However an RM may perform
work for a transaction in a different process to the original request. In that case,
it must use the branch services to join the transaction in the worker process.

Similarly, an RM such as Oracle Rdb may provide an application interface that
allows remote resources to be accessed. In that case, the RM uses the branch
services to add a branch on the local node and start a branch on the remote
node.

30.3.2 Branch Synchronization
Processing in all branches of a transaction must be complete before calling
$END_TRANS.

Normally DECdtm is used to ensure branch completion. In this case:

• The call to $START_BRANCH does not specify the DDTM$M_BRANCH_
UNSYNCHED flag.

• Either $END_BRANCH or $ABORT_TRANS must be called to end the
branch.

Distributed Transaction Manager (DECdtm) 30–5

Distributed Transaction Manager (DECdtm)
30.3 Multiple Branch Application

• $END_BRANCH and $END_TRANS calls are not completed with a success
status until all synchronized subordinate branches of the transaction have
initiated calls to $END_BRANCH and the top branch has initiated a call to
$END_TRANS.

• $END_TRANS and $END_BRANCH are not completed with an SS$_ABORT
status until all synchronized branches on the local node have initiated calls to
$END_TRANS, $END_BRANCH, or $ABORT_TRANS.

In other words, when a transaction completes successfully, all synchronized
branches complete together. When a transaction aborts, all synchronized
branches on a single node complete together, but branches on different nodes
complete at different times. Using synchronized branches does not add extra
message overhead, because the synchronization events are implicit in the normal
DECdtm commitment protocol.

DECdtm branch synchronization is redundant when branch processing is initiated
by a synchronous call to a process or remote node, and that call does not return
until processing is complete. For example, remote operations may be requested
by Remote Procedure Call (RPC). In this case:

• The call to $START_BRANCH specifies the DDTM$M_BRANCH_
UNSYNCHED flag.

• The branch must not call $END_BRANCH or $ABORT_TRANS. If the
transaction is to be aborted, the branch must return an error status to its
superior branch.

See Section 30.4 for a case in which unsynchronized branches are not advised.

30.4 Default Transactions
A default transaction TID is maintained for each process. Some DECdtm services
act on the default transaction if no transaction is explicitly specified in the call.
The default transaction of a process has two states:

• Set: The process has a default transaction.

• Clear: The process does not have a default transaction.

The default transaction is cleared during the processing that occurs when the
transaction commits or aborts.

Some operations ($START_TRANS, $START_BRANCH) that set the default
transaction of a process will fail if the default transaction of the process was not
previously clear. Such operations will update the default transaction without
error if it is still set but commit or abort processing that is already in progress.

The default transaction TID is read by the $GET_DEFAULT_TRANS service.

Some RMs check if a default transaction has been started by the application. If
there is none, the requested operation is performed as a single atomic operation.
Do not use unsynchronized branches with such RMs. The problem is that a
transaction might be aborted asynchronously (by another branch) before the
branch calls the RM in question. The RM would then perform the operation
separately instead of joining the transaction and then receiving an abort
notification. This problem cannot occur with a synchronized branch because the
default transaction TID is not cleared until $END_BRANCH is called.

30–6 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.4 Default Transactions

30.4.1 Multithreaded Applications
Because the default transaction TID is per-process, not per-thread, it is preferable
to use explicit TIDs in multithreaded processes.

However, you must use the default transaction with RMs that do not provide
an interface that allows the AP to specify the TID. In this case, use the $SET_
DEFAULT_TRANS service to set the appropriate TID in each thread. Take
care to serialize each sequence of operations that sets and uses the default
transaction.

30.5 Resource Manager Interface
A resource manager provides transaction operations on one or more resources.
The RM must have the following characteristics:

• It should implement transactions with the ACID properties on the resources
it manages. This is not a precondition for using DECdtm. For example,
some RMs compromise on isolation for improved performance; but unless
this characteristic is observed, distributed transactions constructed with
DECdtm will not have the ACID properties expected by most applications.
Section 30.5.6 describes where volatile (nondurable) resources are used.

• It must be able to participate in the two-phase commit protocol. This means
that it must be able to store the state of a transaction on disk in phase 1 and
subsequently commit or roll back the changes as requested in phase 2.

• It must respond correctly to DECdtm events in the event handler declared by
$DECLARE_RM.

• On recovery from an RM or node failure it must call DECdtm to determine
the state of each transaction that was in phase 2 at the time of the failure. It
must then commit or roll back the transaction as determined by DECdtm.

DECdtm recognizes two components of an RM:

• RM instance (RMI) for each process that makes RM-related calls to
DECdtm.

• RM participant for each transaction in which an RM instance takes part.

The RMI and its RM participants share a single event handler, but each
participant may have a different name and context. The name is used to find
relevant transactions on recovery. The context is a handle, opaque to DECdtm,
which is passed to the event handler and may be used to address RM-specific
data.

An RM uses the following DECdtm services during normal execution of
transactions:

$DECLARE_RM Creates an RM instance in the current process.

$JOIN_RM Adds an RM participant to a transaction.

$ACK_EVENT Acknowledges an event reported to an RMI or RM participant.

$FORGET_RM Deletes an RMI from the current process.

An RM uses the following DECdtm services during recovery from an RM or
system failure:

Distributed Transaction Manager (DECdtm) 30–7

Distributed Transaction Manager (DECdtm)
30.5 Resource Manager Interface

$GETDTI Gets distributed transaction information. Used to get
information about the state of transactions.

$SETDTI Sets distributed transaction information. Used to remove RM
participants from a transaction.

30.5.1 Creating RM Instances and Participants
You can create an RMI by calling $DECLARE_RM. This specifies an event
handler for the RM in the process and returns the RM_ID that is needed to add
participants to transactions.

The RM can add an RM participant as follows:

• The RM may call $JOIN_RM on the first operation for a new TID.

• The RM may request transaction start events (DDTM$M_EV_TRANS_
START). It calls $ACK_EVENT to join every transaction. If an RM
participant finds that it takes no part in a transaction, it can vote SS$_
FORGET in phase 1.

In either case, the RM specifies a participant name, the RM_ID, which is used as
a key to retrieve transaction state information on recovery from an RM or system
failure. The RM_ID has the following characteristics:

• It must have an RM or facility prefix that is unique to the RM.

• Typically it includes an RM-specific name for a group of resources that are
recovered as a unit, such as a database or volume.

• It may also include an RM log version (see Section 30.5.5).

You can design an RM to be used either with or without DECdtm. In the latter
case, the RM may perform a single request as a transaction without calling
DECdtm. Such RMs must take care when using $GET_DEFAULT_TRANS. A
status of SS$_NOCURTID indicates that either no transaction has started, or
that a transaction started and then aborted before the RM was called. Therefore,
the RM interface must provide some way for an AP to specify whether requests
are for DECdtm transactions or not, for example, by using an interface function,
or by setting a mode switch with a logical name. Do not decide if a DECdtm
transaction is required just by checking $GET_DEFAULT_TRANS for a TID. The
RM should return an error (for example, SS$_ABORTED) if the AP requires a
DECdtm transaction and there is no current TID.

30.5.2 Reporting an Event Notification
The DECdtm transaction manager reports events to an RMI and the RM
participants associated with it using asynchronous system traps (ASTs) executed
in the access mode specified in the call $DECLARE_RM that created that RMI.

The DECdtm transaction manager creates an event report block, and passes its
address to the AST routine in the parameter of the AST. Each event report block
contains the following:

• The identifier of the event report.

• A code that describes the event.

• The identifier (TID) of the transaction.

• The name of the RM participant or RMI.

• The context of the RM participant or RMI.

30–8 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.5 Resource Manager Interface

• Other data that depend on the type of the event.

Table 30–1 describes the fields in an event report block, in alphabetical order.

Table 30–1 Fields in an Event Report Block

Symbol Description

DDTM$A_TID_PTR Address of the identifier (TID) of the transaction.

DDTM$L_ABORT_REASON Abort reason code (longword).

See Appendix B for a list of possible values. Present
only in abort event reports.

DDTM$L_EVENT_TYPE A code that identifies the event (longword). The
following table shows the possible values.

Symbol Event

DDTM$K_ABORT Abort

DDTM$K_COMMIT Commit

DDTM$K_PREPARE Prepare

DDTM$K_ONE_PHASE_
COMMIT

One-phase commit

DDTM$K_STARTED_DEFAULT Default
transaction
started

DDTM$K_STARTED_
NONDEFAULT

Nondefault
transaction
started

DDTM$L_REPORT_ID Event report identifier (unsigned longword).

DDTM$L_RM_CONTEXT The context of the RM participant or RMI to which the
event report is being delivered (unsigned longword).

DDTM$Q_PART_NAME The name of the RM participant or RMI to which the
event report is being delivered (descriptor).

DDTM$Q_TX_CLASS The transaction class of the transaction (descriptor).

Each event report must be acknowledged by calling $ACK_EVENT, specifying the
identifier of the report. This acknowledgment need not come from AST context.

The DECdtm transaction manager delivers only one event report at a time to
each RM participant. For example, if a prepare event report has been delivered
to an RM participant, and the transaction is aborted while the RM participant
is doing its prepare processing, then the DECdtm transaction manager does not
deliver an abort event report to that RM participant until it has acknowledged
the prepare event report by a call to $ACK_EVENT. Note that the DECdtm
transaction manager may deliver multiple reports to an RMI.

After acknowledging the event report, the RMI or RM participant should no
longer access the event report block.

Distributed Transaction Manager (DECdtm) 30–9

Distributed Transaction Manager (DECdtm)
30.5 Resource Manager Interface

30.5.3 Responding to Events
The primary requirement of an RM participant is that it should respond to the
following DECdtm events by calling $ACK_EVENT.

DDTM$K_PREPARE:

Delivered at the start of phase 1. Normally, the participant saves on disk
information needed to commit or abort the transaction, and responds with SS$_
PREPARED.

If the participant has not updated any resources during the transaction, it may
respond with SS$_FORGET. The participant should then release any locks on its
resources. This optimization eliminates an unnecessary commit or abort event.

If the participant had an error while the transaction was active, or is unable to
save information to disk, it responds with SS$_VETO. The participant may then
abort its transaction and release any locks on its resources.

DDTM$K_ONE_PHASE_COMMIT:

Delivered as an alternative to DDTM$K_PREPARE if there is a single participant
and it is in the process that started the transaction.

The participant may commit the transaction and respond with SS$_NORMAL.
This optimization eliminates the need for DECdtm to log information and to
deliver a commit event.

The participant may respond with SS$_PREPARED to request a regular two-
phase commit, or with SS$_VETO to abort the transaction.

DDTM$K_COMMIT:

Delivered when all participants have voted SS$_PREPARED in phase 1.

Normally, the participant commits the transaction and responds with SS$_
FORGET. This allows DECdtm to discard the transaction from its log. The
participant may then release any locks on its resources.

Alternatively, the participant may respond with SS$_REMEMBER. This is
used if the RM encounters an error while committing the transaction. DECdtm
retains information about the transaction in its log. The RM must commit the
transaction later, as a recovery operation.

DDTM$K_ABORT:

Delivered after $ABORT_TRANS has been called on any node, or when one or
more of the participants have responded with SS$_VETO in phase 1.

Table 30–2 shows the the abort reason codes.

Table 30–2 Abort Reason Codes

Symbolic Name Description

DDTM$_ABORTED Application aborted the transaction without giving a
reason.

DDTM$_COMM_FAIL Transaction aborted because a communications link
failed.

(continued on next page)

30–10 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.5 Resource Manager Interface

Table 30–2 (Cont.) Abort Reason Codes

Symbolic Name Description

DDTM$_INTEGRITY Transaction aborted because a resource manager
integrity constraint check failed.

DDTM$_LOG_FAIL Transaction aborted because an attempt to write to the
transaction log failed.

DDTM$_ORPHAN_BRANCH Transaction aborted because it had an unauthorized
branch.

DDTM$_PART_SERIAL Transaction aborted because a resource manager
serialization check failed.

DDTM$_PART_TIMEOUT Transaction aborted because a resource manager
timeout expired.

DDTM$_SEG_FAIL Transaction aborted because a process or image
terminated.

DDTM$_SERIALIZATION Transaction aborted because a serialization check
failed.

DDTM$_SYNC_FAIL Transaction aborted because a branch had been
authorized for it but had not been added to it.

DDTM$_TIMEOUT Transaction aborted because its timeout expired.

DDTM$_UNKNOWN Transaction aborted for an unknown reason.

DDTM$_VETOED Transaction aborted because a resource manager was
unable to commit it.

The participant must abort the transaction and respond with SS$_FORGET. It
may then release any locks on its resources.

The previous descriptions suggest that a participant drops locks after calling
$ACK_EVENT. It could equally well drop locks immediately before calling $ACK_
EVENT.

To ensure isolation between transactions (distributed or otherwise), RMs set locks
on all resources that are either read or updated, and observe a two-phase lock
protocol. This specifies that a transaction must be divided into a phase when
locks may be acquired and a following phase when locks may be released. When
any lock is released, no further locks may be acquired. An RM may gain a useful
improvement in concurrency by releasing locks on non-updated resources at the
end of the active phase, before the transaction is saved on disk.

To obey the two-phase lock protocol for distributed transactions, an RM
participant must hold all locks until the start of phase 1. In other words, it
must wait for the other participants to complete their active phases of the
transaction.

(This is not an absolute requirement by DECdtm. Some RMs allow an application
to request reduced isolation between transactions, to get higher concurrency. But
if an RM releases locks on non-updated resources before phase 1, distributed
transactions constructed with DECdtm will not have the isolation property
expected by most applications.)

Distributed Transaction Manager (DECdtm) 30–11

Distributed Transaction Manager (DECdtm)
30.5 Resource Manager Interface

30.5.4 Aborting a Transaction
If an RM detects an error during a transaction, it may return an error status to
the AP and allow the AP to decide whether to abort the transaction. For some
errors, the RM may decide to veto the transaction when it receives a request to
prepare.

However, an RM should not call $ABORT_TRANS itself. A synchronized branch
is terminated by $ABORT_TRANS and the decision to terminate the branch
should be taken by the AP that started it, not by an RM that it called.

DECdtm has no control over the execution of APs. Therefore, an RM must be
prepared to receive and reject application requests for a transaction after calling
$ABORT_TRANS, and after DECdtm has signaled the start of phase 1. Under
rare conditions, an RM may be asked to vote despite calling $ABORT_TRANS.

30.5.5 Performing Recovery
An RM may fail at any time, or the process or node on which it is running
may fail. When the RM is restarted, it must clean up the on-disk state of any
transaction that was running at the time of the failure. Typically, this is done by
maintaining an RM-specific log of operations. On recovery, you should examine
the log to find updates that must be undone (for transactions that are being
aborted) or redone (for transactions that are being committed). The RM cannot
resume normal operation until it has either reacquired locks for in-progress
transactions, or completed or aborted them appropriately.

Logging is a common technique because it performs well, but other methods may
be suitable for specific RMs. The key point is that the RM must store sufficient
information on disk so that it can abort or complete in-progress transactions
following an RM or node restart.

If the RM failed before voting, the RM can assume that the transaction is to be
aborted, because the RM never voted to commit the transaction.

If the RM failed after voting, it must determine the outcome of the transaction
from DECdtm. This is done using the $GETDTI system service. The RM may
query the outcome of a specific transaction, using a TID stored in its own log.
Alternatively, it may select all transactions using a prefix of the RM participant
names.

Two features allow the RM to match its log against the DECdtm log. This is
desirable because, for instance, the wrong log might be used if either log has been
incorrectly restored from backup following a disk failure. Following are the two
features:

• $DECLARE_RM returns the ID of the DECdtm log on the local node. The
RM should save this ID with its own log, and check the value in a call to
$GETDTI. This check will fail if either the wrong TM log or the wrong RM
log is used.

• The backup sequence number for the RM log may be encoded as a suffix
to the RM participant name. On recovery, a $GETDTI scan may be used
to check if the DECdtm log records participants with more recent backup
sequence numbers than expected. This would indicate that an out-of-date RM
log is being recovered.

This check is recommended for RMs that use per-resource logs (rather
than a single per-system log), where the risk of an old log being restored is
significant.

30–12 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.5 Resource Manager Interface

Two transaction states allow the RM to take action: DTI$K_COMMITTED and
DTI$K_ABORTED. The RM may specify that $GETDTI does not complete until a
selected transaction has one of these two states.

Alternatively, other states may be returned if the final state of a transaction
has not been resolved yet, perhaps because the DECdtm log is unavailable, or
DECdtm is still waiting for votes from other RMs or TMs. This allows the RM
to continue recovery for other transactions, to take locks for the outstanding
unrecovered transactions, and then to resume normal operation.

When an RM has committed or aborted a transaction, it must allow DECdtm to
remove the transaction from its log. This is done using the DTI$K_DELETE_
RM_NAME function of $SETDTI.

DECdtm implements a presumed-abort optimization. This removes the need for
DECdtm to log abort decisions. Therefore, if a query for a TID returns SS$_
NOSUCHTID, or the TID is missing from the results of a wildcard query, the RM
must assume that the transaction has aborted. There is no need to call $SETDTI
in this case.

DECdtm writes the removal of a transaction from its log when the transaction
is committed. This means that following a system failure, the DECdtm log may
hold commit records for transactions that the RM has forgotten. To prevent
such records from eventually filling the log, the RM must occasionally perform
recovery by the wildcard scan method, instead of querying specific transactions,
and remove its association from any committed transaction that is unknown to
the RM.

30.5.6 Volatile Resource Manager
An RM may be declared as volatile in $DECLARE_RM if it manages resources
that do not need to survive an RM or node failure, such as the following:

• Managing a cache of information that is transactionally consistent, but that
can be regenerated from information held by another nonvolatile RM.

• Implementing a scratchpad for communication between APs during a series
of transactions. Changes to the scratchpad should be undone on transaction
abort, but the scratchpad does not need to be reconstructed following a system
failure.

• Monitoring transaction start, commit, and abort events for performance
information or perhaps to clean up volatile state, without managing a real
resource.

Declaring an RM as volatile removes the need for DECdtm to log information
about RM participants. By definition, the RM does not need to perform recovery
after a failure, and does not call $GETDTI.

30.5.7 Modifying the DECdtm Log
On recovery, RMs are expected to wait until each transaction state can be
resolved as committed or aborted. During this time, they may be unavailable
for new operations, or they may hold locks that block the normal functioning of
applications.

When you use DECdtm within an OpenVMS Cluster, any node can access the
DECdtm log for recovery, provided that the log is configured on a clustered disk.
However, if the log is on a failed node outside the cluster, if communication to

Distributed Transaction Manager (DECdtm) 30–13

Distributed Transaction Manager (DECdtm)
30.5 Resource Manager Interface

the node has failed, or if the disk holding the log has failed, applications may be
blocked indefinitely.

In this scenario, you may prefer to intervene manually rather than to tolerate an
unavailable system. The DTI$K_MODIFY_STATE function of $SETDTI allows
you to change the state of an in-doubt transaction in a DECdtm log. The DTI$K_
DELETE_TRANSACTION allows you to remove a transaction from a DECdtm
log.

You can make these changes using the Log Manager Control Program (LMCP)
REPAIR command rather than calling $SETDTI directly. Intervention of this
type is for emergency use and is likely to break the consistency of distributed
resources. You may need to perform application-specific updates to resources to
restore consistency.

30.5.8 Transaction Class
An AP may specify a transaction class parameter to $START_TRANS or $ADD_
BRANCH. This is passed as a string to the RM event handler. The mechanism
is provided so that an RM may monitor transaction activity for suitably labeled
transactions or branches. Its use is optional.

30.6 Communication Resource Manager Interface
A Communication Resource Manager (CRM) is a special resource manager that
acts as a gateway between DECdtm and another TM. Typically, the other TM
would be on a system other than an OpenVMS system. You can also write a CRM
to link two DECdtm systems using an otherwise unsupported communication
mechanism such TCP/IP.

A CRM in a subordinate branch of a DECdtm transaction is indistinguishable
from a normal RM. It responds to DECdtm events normally, except that internally
it forwards the events to the remote TM instead of dealing with them directly.

A CRM may create a DECdtm subordinate branch using the $JOIN_RM service
as follows:

• Sets the DDTM$M_COORDINATOR flag to indicate that it is a coordinator
on behalf of another TM.

• Specifies a new TID. No call to $START_TRANS is required.

• Calls $START_BRANCH with the branch ID returned by $JOIN_RM. Specify
the CRM instance node as the transaction manager node name (tm_name).
No call to $ADD_BRANCH is required.

• Uses the $TRANS_EVENT service to prepare, commit, or abort a transaction.

The new TID is derived from the remote TM and must be a universal unique
identifier (UUID). If the remote TM does not use UUIDs for its TIDs, the CRM
must generate a new TID (using the $CREATE_UID service) and maintain a
mapping between remote TM TIDs and DECdtm TIDs. If multiple branches of
the same transaction are created, you must use the same DECdtm TID on all
branches. Otherwise, RMs may detect spurious lock collisions between branches
of the same transaction.

30–14 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.7 DECdtm XA Interface (Alpha Only)

30.7 DECdtm XA Interface (Alpha Only)
The DECdtm XA interface allows a transaction manager (TM) to coordinate
transactions performed by a resource manager (RM). For an overview and
documentation of the XA interface, see the X/Open CAE Specification document
Distributed Transaction Processing: The XA Specification.

The DECdtm XA interface provides the following levels of support for the XA
interface:

• The DECdtm XA Veneer allows an XA-compliant RM (such as Oracle) to
participate in a global transaction coordinated by DECdtm. As Figure 30–2
shows, you typically use this to combine the XA-compliant RM in a
transaction with DECdtm-compliant RMs, such as ACMS, Oracle Rdb,
and RMS Journaling.

The XA Veneer is a per-process set of functions that call DECdtm system
services on behalf of the RM and map DECdtm events to XA function calls.

• The DECdtm XA Gateway allows you to coordinate a DECdtm-compliant RM
(such as Oracle Rdb or RMS Journaling) using an XA-compliant transaction
processing system, such as BEA TUXEDO. (See Figure 30–3.)

The XA Gateway is an XA RM that DECdtm uses to participate in an XA
transaction as a subordinate TM. DECdtm passes transaction events to the
DECdtm-compliant RMs.

Figure 30–2 XA Veneer Example

XA
Veneer

XAACMS
EXC

ACMS
Task Shell

DECdtm

Application
Code

Oracle

RMS
Journaling

VM-0811A-AI

Distributed Transaction Manager (DECdtm) 30–15

Distributed Transaction Manager (DECdtm)
30.7 DECdtm XA Interface (Alpha Only)

Figure 30–3 XA Gateway Example

XA
Gateway

XA

TUXEDO
Monitor

Application
Code

Oracle

RMS
Journaling

VM-0812A-AI

TUXEDO
TM

XA

DECdtm

Figure 30–4 TX Wrapper Example

XA
Veneer

XA

TX DECdtm

Application
Code

Oracle

RMS
Journaling

VM-0813A-AI

For the convenience of application writers, the DECdtm XA Interface also
provides an implementation of the X/Open TX (Transaction Demarcation)
interface. This is a simple set of function wrappers for DECdtm system services.
(See Figure 30–4.)

The following sections describe the DECdtm XA interface:

• Section 30.7.1 describes how to write an application that uses XA.

• Section 30.7.2 describes the DECdtm Veneer extensions.

• Section 30.7.3 describes how to use a DECdtm-compliant resource manager.

• Section 30.7.4 describes the XA Gateway Control Program (XGCP) utility.

30–16 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.7 DECdtm XA Interface (Alpha Only)

30.7.1 Using the XA Veneer
This section describes how to write an application program that uses an XA-
compliant RM in transactions coordinated by DECdtm.

30.7.1.1 Transaction Demarcation
Application programs can use the $START_TRANS, $END_TRANS, and
$ABORT_TRANS system services to control transactions.

XA RMs can participate only in the default transaction, because the XA interface
model does not allow for explicit transaction IDs passed to RMs by APs.

DECdtm does not support DECthreads or POSIX threads. That is, you can use
threading within an application, but the default transaction is managed per
process, not per thread.

The XA Veneer does not support the use of $SET_DEFAULT_TRANS to change
the current default transaction. That is, an application program may attempt
to change the current default transaction, but XA RMs will continue to perform
operations in the context of the original default transaction.

The Veneer reports RM xa_start() errors on $START_TRANS by an SS$_ABORT
exception. Any RM error also causes the transaction to be aborted and a reason
code to be returned from $END_TRANS.

RM return codes are translated to reason codes as follows:

XA Return Code DECdtm Reason Code

XA_RBCOMMFAIL DDTM$_COMM_FAIL

XA_RBDEADLOCK DDTM$_PART_SERIAL

XA_RBINTEGRITY DDTM$_INTEGRITY

XA_RBTIMEOUT DDTM$_PART_TIMEOUT

Other XA_RB* DDTM$_VETOED

XAER_DUPID Veneer fails

XAER_INVAL Veneer fails

XAER_NOTA DDTM$_UNKNOWN

XAER_PROTO Veneer fails

XAER_RMFAIL DDTM$_SEG_FAIL

All others DDTM$_UNKNOWN

The XA Veneer implements the functions ax_open_decdtm() and ax_close_
decdtm(). They are identical to the X/Open TX functions tx_open() and tx_
close. If ax_open_decdtm() is not called, XA RMs are automatically opened at the
start of the first transaction.

Application programs can use the X/Open TX functions instead of DECdtm
system services. The TX functions are available in an object module that can
be used with the XA Veneer. The tx_begin() function includes an exception
handler that maps XA Veneer exceptions to tx_begin() return codes. While the
TX wrapper module requires the XA Veneer, the TX functions apply equally to XA
and DECdtm RMs.

Distributed Transaction Manager (DECdtm) 30–17

Distributed Transaction Manager (DECdtm)
30.7 DECdtm XA Interface (Alpha Only)

30.7.1.2 Locking Between Processes
A transaction may access an RM from more than one process. The XA Veneer
creates a separate branch of the transaction for each process. This requests
the RM to treat each process as a loosely coupled thread as defined by the
XA specification. The RM takes locks to isolate access to a resource in one
process from access in another process. Consequently, the processes may deadlock
against each other if they attempt to access the same resource within a single
transaction.

30.7.1.3 Binding to the XA Interface
Before a resource manager can take part in transaction processing, it must be
bound to the XA interface. The XA interface requires the following:

• The address of the XA Switch data structure for the resource manager. See
the resource manager documentation for the symbolic name of this switch.

• The xa_info text strings for xa_open() and xa_close(). See the resource
manager documentation for the specification of these strings.

• An optional name for the resource manager instance. (See Section 30.7.1.3.3.)
The maximum length of the name is 24 characters, excluding the null
terminator.

DECdtm supports the following methods of binding:

• Static binding is the method implied by the XA standard. The address of the
XA Switch and the xa_info text strings are determined at link time.

• Dynamic binding requires a run-time call to a nonstandard function. This
method gives the application control over the time at which binding and
recovery is performed.

You can find definitions of the data structures and constants required to use
the XA interface in SYS$LIBRARY:XA.H. This is the "xa.h" as listed in the
XA specification. Additional nonstandard functions and flags are defined in
SYS$LIBRARY:DDTM_XA.H.

To use an XA compliant RM, you must link the application with the following:

• The RM’s shareable image or object files.

• SYS$LIBRARY:DDTM$XA_RM.OBJ. This object module contains a table of
well-known resource managers and initialization code to load the XA Veneer.

• SYS$LIBRARY:DDTM$XA.EXE. This shareable image implements the XA
Veneer.

You can also link an application against SYS$LIBRARY:DDTM$TX.OBJ to use
the TX transaction demarcation interface instead of DECdtm system service calls.

You must install the privileged shareable image SYS$LIBRARY:DDTM$XA_
SS.EXE. It provides system services for internal use by the XA interface.

30–18 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.7 DECdtm XA Interface (Alpha Only)

30.7.1.3.1 Static Binding You bind resource managers by creating and linking
a small object module. The object module places references to the XA Switch and
xa_info string in the predefined PSECT DDTM$AX_RM. Consider the following
HP C sample:

/* TODO: define or reference your RM switch */
extern struct xa_switch_t SampleSwitch;

/* TODO: define the info strings for xa_open() and xa_close() */
static char RmInfoOpen[] = "SampleInfoOpen";
static char RmInfoClose[] = "SampleInfoClose";

/* TODO: define the RM instance name */
static char RmName[] = "SampleName";

/* put the switch and info addresses in the DDTM$AX_RM psect */
#pragma extern_model strict_refdef "DDTM$AX_RM" pic, shr

void* RmDefSample[] = {&RmSwitchSample,
RmInfoOpen, RmInfoClose, RmName};

To bind the resource manager, make the following changes to the sample file:

1. Change "SampleSwitch" to the symbolic name of the XA switch structure as
given in the documentation for your RM.

2. Change "SampleInfoOpen" and "SampleInfoClose" to xa_info strings as given
in the documentation for your RM. Typically, the xa_open string will specify a
database name and access information, and the xa_close string may be null.

3. Change "SampleName" to a resource manager instance name that you choose,
as described in Section 30.7.1.3.3.

If you prefer to code the RM definition in another language, such as VAX MACRO,
note the full attributes of the PSECT as follows:

.PSECT DDTM$AX_RM,CON,GBL,SHR,NOEXE,WRT,NOCOM,4

To make the xa_info strings configurable, the XA Veneer attempts to translate the
strings in the SYS$DECDTM_XA_RM logical name table. If the strings cannot be
translated, they are passed unchanged to the resource manager.

When you use static binding, the XA Veneer calls xa_recover() either when tx_
open() is called or at the start of the first transaction in the image lifetime.

You can use ax_close_decdtm() to close statically bound resource managers.

30.7.1.3.2 Dynamic Binding An application program can bind additional RMs
to the XA Veneer by calling ax_bind_decdtm_2(). Dynamic binding requests the
XA Veneer to call xa_recover(), which allows recovery to be initiated earlier than
with static binding.

Note that ax_open_decdtm() and ax_close_decdtm() have no effect on dynamically
bound resource managers.

30.7.1.3.3 Resource Manager Instances You must specify the resource
manager instance name if the resource manager implements multiple instances
(or databases) that may be recovered independently. You cannot bind a resource
manager into a single process multiple times, unless each binding is for a
different named instance.

Distributed Transaction Manager (DECdtm) 30–19

Distributed Transaction Manager (DECdtm)
30.7 DECdtm XA Interface (Alpha Only)

You must also specify a resource manager instance name if the resource
manager instance name in the XA Switch structure is longer than 24 characters.
Otherwise, if the resource manager does not support multiple instances, the
instance name may be set null, and DECdtm uses the resource manager name in
the XA Switch structure as the instance name.

The definition of resource manager instances controls the following features of the
XA Veneer:

• When DECdtm calls xa_recover(), it expects that the resource manager
instance returns the complete list of prepared transaction branches for the
instance. DECdtm will forget any transactions for the instance that are not
returned by xa_recover().

• If a process or OpenVMS Cluster node using the XA Veneer fails, DECdtm
initiates recovery in any one of the surviving processes in the cluster that are
bound to the resource manager instance.

When you choose the instance name, you must set it identically in all processes.
It has a maximum size of 24 characters (excluding the null terminator). HP
recommends that the first part of the name is the same as the resource manager
name in the XA Switch structure, provided that this is possible within the overall
limit of 24 characters.

You can bind a maximum of 1024 resource manager instances in a process.

In this manual, the term "resource manager instance" is used in the same sense
as "Oracle Instance" in the Oracle documentation. In the HP OpenVMS System
Services Reference Manual, the DECdtm services descriptions use the same term
in a different context and with a different meaning.

30.7.1.3.4 Hints You may find the following hints to be of help:

• Check any OpenVMS documentation for your resource manager as well as the
generic documentation. For example, the generic documentation for Oracle
suggests that you may need to specify an explicit shared library for the Oracle
XA RM. However, on OpenVMS no specific action is needed; a reference to the
Oracle XA switch structure is sufficient.

• To use XA transactions with Oracle 8i on OpenVMS, you must install the
Oracle DDBOPT product (Distributed Database Option), and you must enable
the Distributed Database Option in the configuration options for the Oracle
RDBMS product.

30.7.1.4 Implementation Characteristics
This section provides information for developers of XA-compliant RMs that are to
be used with the DECdtm XA Veneer.

The DECdtm XA Veneer does not use some features of the XA interface that must
normally be provided by resource managers. This information is provided for the
convenience of RM developers, to help them decide if an existing implementation
is likely to work with DECdtm. Future implementations of DECdtm XA may
make use of these features.

This section also describes possible deviations from the XA standard or common
interpretations of the standard.

30–20 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.7 DECdtm XA Interface (Alpha Only)

30.7.1.4.1 Threads DECdtm does not support DECthreads or POSIX p-threads.
That is, the default transaction is managed per process, not per thread. When
reading the XA specification, you must regard a thread as equivalent to a process.

The Veneer assumes there is a single default transaction per process and does
not attempt to suspend or migrate the association of a transaction branch with a
thread or process. Thus, it never sets the TMSUSPEND or TMMIGRATE flags on
a call to xa_end(), and never sets TMRESUME on a call to xa_start().

The Veneer never sets the TMJOIN flag on a call to xa_start().

30.7.1.4.2 Heuristic Decision DECdtm does not support heuristic decisions. If
the RM reports a heuristic decision on xa_commit() or xa_rollback(), the Veneer
records the decision in a log file. The xa_forget() function is called immediately
and the transaction is treated as if it committed or aborted normally.

30.7.1.4.3 Resource Manager Synchronization The XA Veneer always calls XA
functions at non-AST level in user mode. The Veneer never interrupts an XA call
with another XA call.

The Veneer may interrupt application processing to call the following functions:

• xa_recover()

• xa_commit() or xa_rollback() for a transaction listed by xa_recover()

However, such calls are not made while the process has an active transaction,
that is, between xa_start() and xa_end(). Therefore, they cannot interrupt the
RM while it is executing a call from the application.

TP frameworks, implemented using the earliest version of the DECdtm interface,
may run application code in concurrent DECdtm unsynchronized branches. This
is not recommended (see the OpenVMS DECdtm Services Reference Manual),
partly because the Veneer cannot determine when branch processing ends, and
may therefore make xa_end() and xa_rollback() calls asynchronously while an XA
RM is processing a call from the application. This occurs only when a transaction
is aborted by another DECdtm branch. This problem does not occur with ACMS,
because ACMS executes branches serially, not concurrently.

If the version of the TP framework in use does not make a clear statement that
synchronized branches are used, and transactions have multiple branches, HP
recommends that applications protect XA RM calls against asynchronous events
using the nonstandard functions ax_lock_decdtm() and ax_unlock_decdtm(). The
Veneer may be locked at the start of branch processing and unlocked at the end,
or individual RM calls may be protected by paired lock/unlock calls.

30.7.1.4.4 Asynchronous Operation This implementation does not use
asynchronous operations.

The RM Switch flag TMUSEASYNC is ignored. The TMASYNC flag is never set
on calls to the resource manager. The xa_complete() function is never called.

30.7.1.4.5 Resource Manager Switch An RM can ensure that a future version
of the Veneer preserves restrictions and possible nonstandard behavior by setting
the nonstandard flag TM_DDTM_V1 in the flags field of the XA Switch data
structure.

Distributed Transaction Manager (DECdtm) 30–21

Distributed Transaction Manager (DECdtm)
30.7 DECdtm XA Interface (Alpha Only)

30.7.1.4.6 Image Termination and Recovery No XA functions are called directly
when an image or process terminates.

The RM is dissociated from any active transaction, and the transaction is aborted.

After an image terminates, a process terminates, or a cluster node fails, DECdtm
calls xa_recover() on any one of the surviving processes in the cluster that is
bound to the same resource manager instance.

30.7.1.4.7 Transaction Branch Identification In this implementation, formatID
is set to 223585243, gtrid_length is 16 and bqual_length is 36. However, RMs
should not make assumptions about the values of these fields.

30.7.1.4.8 Error Handling In most cases, the return values XAER_INVAL and
XAER_PROTO are treated as failures of the XA Veneer. An SS$_BUGCHECK
exception is reported. See xa_close() and xa_open() in Section 30.7.1.4.9 for
exceptions.

In most cases, XAER_RMERR and XAER_RMFAIL have a common interpretation
by the Veneer. The current transaction is aborted, but the RM continues to
participate in new transactions. The error return values differ only in that they
cause different DECdtm reason codes to be returned to the application. See xa_
commit() below for an exception.

30.7.1.4.9 XA Functions

ax_reg() A return value of TMER_INVAL indicates that either arguments are
invalid or the TMREGISTER flag in the resource manager’s xa_switch_
t data structure was not set.

A successful call that returns a NULLXID blocks the AP from starting
a new default transaction. Other RMs that register through the same
thread also receive a success status with a NULLXID.

A call to ax_reg() made while registered fails with XAER_PROTO.
TM_JOIN is never returned.

A return value of TMER_PROTO may also indicate that xa_reg() was
called while there was a current transaction, but called too late to join
it.

ax_unreg() There is no additional information for this function.

xa_close() This function is called for the following reasons:

• For all statically bound resource managers, when ax_close_
decdtm() is called.

• For a dynamically bound resource manager, when ax_unbind_
decdtm() is called.

• In unusual error cases, typically after an unexpected status is
returned by the RM.

This function is not called on image exit or process exit.

The return value XAER_INVAL is assumed to be an invalid rm_info
string, not a Veneer failure.

30–22 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.7 DECdtm XA Interface (Alpha Only)

xa_commit() DECdtm does not use the TMNOWAIT flag.

The return value XAER_RMERR is treated as a catastrophic failure of
the resource manager. The error is logged and the Veneer fails with a
SS$_BUGCHECK exception to prevent further processing.

The return value XAER_RMFAIL is treated as a less severe error. The
error is logged. It is assumed that the resource manager will continue
to fail all new transactions with XAER_RMFAIL, but that it may
eventually be possible to commit the transaction on recovery.

The Veneer attempts to retry xa_commit() when XAER_RETRY is
returned. It retries the operation at 10-second intervals for up to 2
minutes.

xa_complete() The Veneer never calls this function.

xa_end() DECdtm does not use the TMSUSPEND or TMMIGRATE flags.

xa_forget() DECdtm does not support heuristic decisions. It calls xa_forget()
immediately after an RM reports a heuristic decision.

Error return values are recorded in the Veneer error log, but are
otherwise ignored.

xa_open() Any error return leaves the RM unregistered. The error is recorded in
the Veneer error log.

The return value XAER_INVAL is assumed to be an invalid rm_info
string, not a Veneer failure.

xa_prepare() There is no additional information for this function.

xa_recover() DECdtm calls xa_recover() for the following reasons:

• When it receives an ax_bind_decdtm_2() call with the DDTM_M_
RECOVER flag set.

• At the start of the first transaction in the image lifetime, if the
resource manager is statically bound to DECdtm.

• When an image that has performed a transaction using XA Veneer
terminates, and other processes are still using the XA Veneer.

• When the resource manager returns from an xa_recover() call with
a value equal to count.

DECdtm never sets TMENDRSCAN. Thus, it always performs full
scans for prepared transaction branches.

DECdtm expects that the RM returns the complete list of prepared
transactions started on the current node of the OpenVMS Cluster for
an RM instance. Any other transactions that the RM has forgotten
will be forgotten by DECdtm. The RM may also return prepared
transactions started on other nodes, and these will be resolved.

xa_rollback() There is no additional information for this function.

xa_start() DECdtm does not use the TMNOWAIT flag.

DECdtm does not use the TMJOIN or TMRESUME flags.

The return value XAER_DUPID is not expected, because DECdtm calls
each resource manager once only for each transaction. It causes the
Veneer to report an SS$_BUGCHECK exception.

The current DECdtm implementation is unable to return an error from
$START_TRANS when the RM returns an error. Instead, the Veneer
raises an SS$_ABORT exception, which the application may dismiss.
The application should call $END_TRANS or $ABORT_TRANS. The
transaction will be aborted in either case. $END_TRANS returns.

Distributed Transaction Manager (DECdtm) 30–23

Distributed Transaction Manager (DECdtm)
30.7 DECdtm XA Interface (Alpha Only)

30.7.1.5 Recovery Processes
By default, the XA Veneer calls xa_recover in any process that has bound an RM
instance. This is undesirable if the process called to perform recovery runs at
low priority or executes an application that may be blocked for link periods with
an active transaction. It is especially undesirable if the process uses a resource
manager such as Oracle that waits during an active transaction if it finds data
that needs recovery.

It is therefore preferable to create one or more processes that are available to
perform recovery but which do not execute transactions. You can do this in the
following way:

1. Define the logical name SYS$DECDTM_XA_RECOVER as "FALSE" or "F"
for all processes that may execute transactions. This will prevent xa_recover
from being called in those processes. The logical name may be defined group
or system wide.

2. Create a recovery process that binds all XA RMs and has the logical name
SYS$DECDTM_XA_RECOVER defined as "TRUE" or "T". This will prevent
the process from joining active XA transactions.

3. Ensure that one or more instances of the recovery process are started before
starting any application processes.

The executable code of the process is provided by the module
SYS$LIBRARY:DDTM$XA_RECOVERY.OBJ. Alternatively, you can create a
custom process using the following code as a starting point:

#define DESC_INIT_S(p1, p2, p3) \
(p1).dsc$w_length = p2, \
(p1).dsc$b_dtype = DSC$K_DTYPE_T, \
(p1).dsc$b_class = DSC$K_CLASS_S, \
(p1).dsc$a_pointer = (char *) (p3)

main() {

int status;
struct dsc$descriptor dscName;
struct dsc$descriptor dscValue;

/* enable recovery in this process */
DESC_INIT_S(dscName, strlen("SYS$DECDTM_XA_RECOVER"),

"SYS$DECDTM_XA_RECOVER");
DESC_INIT_S(dscValue, 1, "T");
status = lib$set_logical(&dscName, &dscValue);
if ((status & 1) != 1) {

printf("Failed to define logical name, status %d\n", status);
exit(EXIT_FAILURE);

}

/* open XA RMs */
status = ax_open_decdtm();
if (status != TX_OK) {

printf("Error %d on ax_open_decdtm\n", status);
exit(EXIT_FAILURE);

}

/* wait for recovery requests */
while (1)

sys$hiber();
}

To link the process, include the following object modules and libraries:

• SYS$LIBRARY:DDTM$XA_RECOVERY.OBJ, or the code shown previously.

30–24 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.7 DECdtm XA Interface (Alpha Only)

• An object module binding each RM to the XA Veneer, as described in
Section 30.7.1.3.1.

• Shareable images or object files for each XA RM.

• SYS$LIBRARY:DDTM$XA_RM.OBJ.

• SYS$LIBRARY:DDTM$XA.EXE / SHARABLE.

To restore the default behavior (process joins active transactions and may perform
recovery) when SYS$DECDTM_XA_RECOVER has been defined as a group or
systemwide logical, define SYS$DECDTM_XA_RECOVER as 0 (zero) for the
process.

30.7.1.6 Error Logging
The DECdtm XA log file records heuristic decisions and other serious errors that
may impact transaction consistency. Typically, these occur on xa_commit() or
xa_rollback(), or during recovery. Less serious errors, such as on xa_prepare, are
not logged.

To enable logging, define the logical name SYS$DECDTM_XA_LOG to specify a
log file. You can define the logical name processwide, groupwide or systemwide.
The log file is created automatically and is shared between processes.

Each record on the log file has the following format:

tid, bid, time, error_name, rm_name, [reserved], additional_information

Error names are fixed-length 8-character strings with space padding as shown in
Table 30–3.

Table 30–3 XA Veneer Error Names

Error Name Meaning

GETDTI DECdtm was unable to resolve the transaction state.

HEURCOM The transaction branch has been heuristically committed.

HEURHAZ The transaction branch may have been heuristically completed.

HEURMIX The transaction branch has been heuristically committed and rolled
back.

HEURRB The transaction branch has been heuristically rolled back.

INVAL Invalid arguments were specified to xa_open. Probably the rm_info
string is incorrect.

RMERR Catastrophic RM failure on xa_commit().

RMFAIL An error occurred that makes the resource manager unavailable.

UNKNOWN Unexpected return code from the RM.

30.7.1.7 Tracing
The XA Veneer includes a trace facility to help investigate problems of interaction
between DECdtm and XA resource managers. The trace file shows the sequence
of operations. It also shows more detailed error information than that revealed
by XA return values.

To enable tracing, define the logical name SYS$DECDTM_XA_TRACE to specify a
trace file. You can define the logical name processwide, groupwide or systemwide.
The trace file is created automatically and is shared between processes.

Distributed Transaction Manager (DECdtm) 30–25

Distributed Transaction Manager (DECdtm)
30.7 DECdtm XA Interface (Alpha Only)

The trace file records the following information:

• All ax_ calls from the application and the resource managers.

• All xa_ calls to the resource managers.

• XA and OpenVMS error status results returned by the above functions. If no
status return is included in the trace, success can be assumed.

• DECdtm events and their corresponding acknowledgements.

Trace records have the following formats:

Record Type Format

Operation time csid pid operation [rmid]
Status time csid pid xa_status ["VMS" vms_status] [extra_info]

30.7.2 Nonstandard XA Functions
This section describes the following DECdtm Veneer extensions to the standard
XA interface. Use of these functions is optional.

Function Description

ax_bind_decdtm_2() Connects an XA resource manager to DECdtm services.

ax_close_decdtm() Closes all statically bound resource managers.

ax_lock_decdtm() Prevents the XA Veneer from making asynchronous calls to
RMs.

ax_open_decdtm() Opens all statically bound resource managers.

ax_unbind_decdtm() Disconnects a resource manager from DECdtm services.

ax_unlock_decdtm() Allows the XA Veneer to call RMs again.

30–26 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
ax_bind_decdtm_2

ax_bind_decdtm_2

Makes a connection to DECdtm or starts recovery processing.

Format

#include <xa.h>

int ax_bind_decdtm_2 (xa_switch_t *rmswitch, long flags, int*rmid_out, char
*xa_info_open, char *xa_info_close, char *instance_name)

Parameters

Input
Rmswitch The address of the XA Switch data structure.
Flags Control whether ax_bind_decdtm_2() makes

a connection to DECdtm, starts recovery
processing, or both. See Table 30–4 for the
flags and their meaning.

xa_info_open A null-terminated character string containing
contextual information for the resource manager.
The maximum length of the string is 256 bytes,
including the null terminator. DECdtm does
not use the information in xa_info. The Veneer
passes this parameter to the resource manager
with an xa_open() call.

xa_info_close The same as xa_info_open, except that the
Veneer passes this parameter to the resource
manager with an xa_close() call.

instance_name Resource manager instance name. The maximum
size of the name is 24 characters, excluding the
null terminator.

Output
rmid_out The identifier of the resource manager. This

value is unique within the process.

Table 30–4 Input Flags for ax_bind_decdtm_2

Flag Meaning

DDTM_M_DECLARE Makes a connection between the resource manager and
DECdtm.

DDTM_M_RECOVER Allows xa_recover() to be called in the current process.

Description

An application calls ax_bind_decdtm_2() to bind a resource manager into the
local process, as follows:

1. Call xa_open() to open the resource manager.

2. Make a connection to DECdtm.

Distributed Transaction Manager (DECdtm) 30–27

Distributed Transaction Manager (DECdtm)
ax_bind_decdtm_2

Setting the DDTM_M_DECLARE flag allows XA calls for current transactions
to be issued in the local process.

3. Allow XA recover to be performed in the current process.

Setting the DDTM_M_RECOVER flag enables the local process to call xa_
recover() when necessary. At least one process must be enabled to perform
recovery . If multiple processes are enabled, the XA Veneer will choose one.

4. Start recovery.

Before returning from ax_bnd_decdtm_2(), DECdtm calls xa_recover() in one
of the processes enabled to perform recovery.

The parameter rmid_out may be specified as NULL if the corresponding value is
not required.

Return Values

XA_OK Normal execution.
XAER_INVAL One of the following errors occurred:

• The arguments are invalid.

• The xa_info_open or xa_info_close string is
longer than 256 characters.

• Both the instance name and the RM name in
rmswitch are null.

• The instance name or the RM name is longer
than 32 characters.

• The xa_info_open string is invalid.

XAER_RMERR A resource manager error occurred when opening
the resource.

XAER_RMFAIL A DECdtm error occurred.

See Also

ax_unbind_decdtm()

30–28 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
ax_close_decdtm

ax_close_decdtm

Closes all statically bound resource managers.

Format

int ax_close_decdtm (void)

Description

This function is provided to allow an implementation of the X/Open TX
specification to implement tx_close().

The function has a nonstandard name to allow a TX implementation other than
DECdtm TX to be linked without name conflicts.

This function must not be called from an AST, or with ASTs disabled.

Return Values

TX_OK Normal execution.
TX_ERROR One or more of the resource managers

encountered a transient error. All resource
managers that could be closed are closed.

TX_FAIL One or more of the resource managers
encountered a fatal error.

See Also

ax_open_decdtm()

Distributed Transaction Manager (DECdtm) 30–29

Distributed Transaction Manager (DECdtm)
ax_lock_decdtm

ax_lock_decdtm

Prevents the XA Veneer from making asynchronous calls to resource managers.

Format

#include <xa.h>

int ax_lock_decdtm (void)

Description

An application program or resource manager may call ax_lock_decdtm() to
prevent the XA Veneer from issuing XA calls to resource managers. This ensures
that the Veneer cannot make a call to an RM to end and roll back a transaction
while the RM is concurrently processing a call from the application.

An application program that calls an XA-compliant RM and that may be run
under a TP framework using unsynchronized DECdtm branches should protect
all RM calls. This may be done either by locking the Veneer at the start of
the transaction, and unlocking it at the end, or by locking the Veneer for each
individual RM call.

This function is provided as a temporary measure. Applications do not need to
use it if one of the following is true:

• Application processing is performed in a single branch.

• The application is run under a TP framework that executes branches serially,
not concurrently. This is true for ACMS.

• The application is run under a TP framework known to use synchronized
branches.

The XA Veneer keeps a count of the number of ax_lock_decdtm() calls. The
matching number of ax_unlock_decdtm() calls must be made to remove the lock.

Return Values

TM_OK Normal execution.

See Also

ax_unlock_decdtm()

30–30 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
ax_open_decdtm

ax_open_decdtm

Opens all statically bound resource managers.

Format

int ax_open_decdtm (void)

Description

This function is provided to allow an implementation of the X/Open TX
specification to implement tx_open().

The function has a nonstandard name to allow a TX implementation other than
DECdtm TX to be linked without name conflicts.

Return Values

TX_OK Normal execution.
TX_ERROR One or more of the resource managers

encountered a transient error. No resource
managers are open.

TX_FAIL One or more of the resource managers
encountered a fatal error.

See Also

ax_close_decdtm()

Distributed Transaction Manager (DECdtm) 30–31

Distributed Transaction Manager (DECdtm)
ax_unbind_decdtm

ax_unbind_decdtm

Disconnects a resource manager from DECdtm.

Format

#include <xa.h>

int ax_unbind_decdtm (int rmid, long flags)

Parameters

Input
rmid The identifier of the resource manager. This

must be the same as the rmid_out value returned
by DECdtm in the bind_decdtm() call.

flags Must be set to TMNOFLAGS.

Description

A dynamically bound resource manager calls ax_unbind_decdtm() to disconnect
itself from DECdtm. On receiving the ax_unbind_decdtm() call, DECdtm calls
xa_close().

This function must not be called from an AST, or with ASTs disabled.

Return Values

XA_OK Normal execution.
XAER_INVAL Either the arguments are invalid or the rm_info_

close string is invalid.
XAER_RMERR An error occurred when closing the resource.
XAER_RMFAIL A DECdtm error occurred.

Related Information

ax_bind_decdtm_2()

30–32 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
ax_unlock_decdtm

ax_unlock_decdtm

Allows the XA Veneer to make asynchronous calls to resource managers again.

Format

#include <xa.h>

int ax_unlock_decdtm (void)

Description

This function removes the lock requested by ax_lock_decdtm().

Return Values

TM_OK Normal execution.
TMERR_INVAL The resource manager has called ax_unlock_

decdtm() more often than it has called ax_lock_
decdtm().

See Also

ax_lock_decdtm()

Distributed Transaction Manager (DECdtm) 30–33

Distributed Transaction Manager (DECdtm)
ax_unlock_decdtm

30.7.3 Using the XA Gateway
This section describes how to use a resource manager compliant with DECdtm,
such as RMS Journaling or Oracle Rdb, with an XA-compliant transaction
processing system.

The XA Gateway is configured into each TP process as an XA-compliant resource
manager. It handles XA calls from the XA TM and maps these into DECdtm
system services. This causes DECdtm to send the appropriate events to any
DECdtm compliant Resource Manager (RM) used in a TP process.

The operation of the Gateway is transparent to the RM; DECdtm RMs do not
need any modification to be used with the Gateway.

30.7.3.1 Gateway Configuration
The XA Gateway uses a log file to record the mapping between XA transactions
and DECdtm transactions. The log file is managed by the Gateway server process
DDTM$XG_SERVER.

As of Version 2.1, HP DECdtm/XA Gateway has clusterwide transaction recovery
support. Transactions from applications that use a clusterwide DECdtm Gateway
Domain Log can be recovered from any single-node failure. Gateway servers
running on the remaining cluster nodes can initiate the transaction recovery
process on behalf of the failed node.

Use the XGCP utility (described in Section 30.7.4 of this manual) to create the
Gateway log. The size of the log file depends on the number of concurrently
active transactions. Each active transaction requires up to 600 bytes, depending
on the size of the transaction ID used by the XA TM. However, the log expands
automatically when required.

The log file is created in the directory specified by the logical name
SYS$JOURNAL and has a name of the form SYSTEM$name.DDTM$XG_
JOURNAL. For optimum performance, move each Gateway log and each DECdtm
log to a separate physical device, and define SYS$JOURNAL as a search list for
the set of physical devices.

The XA Gateway requires an association on each OpenVMS Cluster node
between an XA transaction manager and the XA Gateway log. You manage
this association by specifying a Gateway name as follows:

1. Create a Gateway log with the Gateway name using the XGCP utility.

2. Specify the gateway name in the xa_open information string when you
configure Gateway RM into applications run under the control of an XA TM.
(XA RM configuration is described in Section 30.7.3.2.)

The first XA application run by the XA TM binds the Gateway name to the
local node of the OpenVMS Cluster. It remains bound to that node until the
Gateway server is stopped.

You must configure all XA applications run on the local node with the same
Gateway name. XA applications using the same name cannot run on other
OpenVMS Cluster nodes. Therefore, you should normally define one Gateway
name and create one log for each node of an OpenVMS Cluster.

However, you can move a Gateway name to a different node, provided that the
Gateway log can be accessed from that node. Move the name to another node as
follows:

1. Stop any XA applications on the original node.

30–34 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
ax_unlock_decdtm

2. Stop the Gateway server on the original node, using the XGCP utility.

3. Stop any XA applications on the target node.

4. Stop the Gateway server on the target node, and restart it.

5. Run the original XA applications on the target node.

Take care to protect against the loss of a Gateway log, perhaps by shadowing
the device that holds it. If a new log has to be created, or an out-of-date log is
used, transactions that were originally recorded as committed may be incorrectly
rolled back. This can cause databases to become inconsistent with each other or
inconsistent with reports given to other systems or users.

In general, Gateway logs are not large and it is better never to delete them.
Before deleting an unwanted Gateway log, use the DECdtm XGCP utility to
check that the Gateway is not still a participant in any prepared transactions.
The Gateway participant name is DDTM$XG/name.

The Gateway server has the following parameters:

• Number of concurrent requests processed by the server, in the range 100
to 100,000. This determines the size of the global section DDTM$XG, used
for communication with the server, and the quotas required by the server.
Specify the parameter by defining the logical name SYS$DECDTM_XG_
REQS. Changes to the parameter do not take effect until after the server and
all client processes have been stopped.

If this parameter is exceeded in operation, client requests are simply blocked
instead of being processed in parallel.

• Estimated number of concurrent XA transactions, in the range 1000 to
1,000,000. This determines the size of indexing tables used internally in the
server. Specify the parameter by defining the logical name SYS$DECDTM_
XA_TRANS. Changes to this parameter do not take effect until after the
server has been stopped.

If this parameter is exceeded in operation, server CPU use will increase.
However, the effect is unlikely to be noticeable until the parameter is
exceeded by a factor of 10 or more.

30.7.3.2 XA RM Configuration
Each XA-compliant transaction manager (TM) defines its own method for
including resource managers (RMs). Typically, a configuration file is edited
and used as input to build application programs that run under the control of the
TM. You may also need to configure and build a separate TM worker process that
performs transaction prepare and commit operations.

See the documentation for your XA TM for specific instructions. You will need
the following information about the XA Gateway RM. This is published in the XA
Specification (Section 7.2).

xa_switch_t structure name: DDTM$XG_RM_SWITCH

RM name within the RM switch: DDTM$XG

Information string for xa_open: "SYSTEM$gateway", where gateway is the
name of the gateway for the local node of an
OpenVMS Cluster.

Information string for xa_close: Ignored. May be null.

Distributed Transaction Manager (DECdtm) 30–35

Distributed Transaction Manager (DECdtm)
ax_unlock_decdtm

Sharable image library: SYS$LIBRARY:DDTM$XG.EXE

Transaction semantics: See Section 30.7.3.3.2

Protocol optimizations: See Section 30.7.3.3.3

Association migration: Not allowed.

Dynamic registration: Not used.

Asynchrony: Not supported.

Heuristics: Not used.

The Gateway is implemented by the shareable image
SYS$LIBRARY:DDTM$XG.EXE.

You must install the privileged sharable image SYS$LIBRARY:DDTM$XG_
SS.EXE. It provides system services for internal use by the Gateway and the
XGCP utility.

30.7.3.2.1 Hints You may find the following hints to be of help:

• The XA switch name is uppercase. Some transaction managers specify exact
case compilation when generating references to RM, so you should specify the
switch name in uppercase.

• Check any OpenVMS documentation for your transaction manager as well
as the generic documentation. For example, the generic documentation for
Tuxedo uses a colon (:) to separate the resource manager name and XA
information strings in a configuration table. However, on OpenVMS, the
separator has been changed to a comma (,).

30.7.3.3 Implementation Characteristics
The following sections describe the implementation characteristics of the XA
Gateway.

30.7.3.3.1 Default Transaction The XA Gateway sets the DECdtm default
transaction for each XA transaction.

Most DECdtm RMs join the default transaction if an explicit TID is not specified
on a call to the RM. If an RM does require an explicit TID, the application can
use the $GET_DEFAULT_TRANS system service to read the current default
TID.

30.7.3.3.2 Locking Between Processes DECdtm does not distinguish between
loosely coupled and tightly coupled threads, as defined by the XA specification.
Instead, each RM makes its own decision whether to allow transaction branches
in different processes to share data.

The Gateway allocates a separate DECdtm TID for each branch of an XA global
transaction. This allows a branch to be prepared while other branches continue
to perform work, as required by Section 2.2.6 of the XA specification.

Consequently, DECdtm RMs enforce isolation between the branches of an XA
global transaction. This behavior is consistent with the XA specification, but not
required by it.

When multiple processes perform work on a single branch within a single node of
an OpenVMS Cluster, the gateway allocates a single DECdtm TID for the branch.
In principle, this allows the RMs to recognize that work in multiple processes
is part of a single transaction, and to use tightly coupled threads. However, it
depends on the RM whether this is implemented.

30–36 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
ax_unlock_decdtm

The Gateway does not use the same TID for a single branch of a transaction
seen on multiple nodes of an OpenVMS Cluster. However, it is unlikely that any
XA TM will use the same branch on different nodes, or that any DECdtm RM is
capable of implementing tightly coupled threads between nodes.

30.7.3.3.3 Read-Only Optimization DECdtm RMs may choose to implement
a read-only optimization when a transaction is prepared (see Section 2.3.2 of
the XA specification). If all DECdtm RMs use the optimization for a given
transaction, the Gateway uses the same optimization on the xa_prepare call for
the transaction.

30.7.3.3.4 Blocking Conditions The Gateway is unable to determine if a
blocking condition exists or not. Consequently, it always returns XA_RETRY
when the TMNOWAIT flag is set.

30.7.3.3.5 XA Return Values The Gateway translates DECdtm reason codes to
XA return codes as follows:

DECdtm Reason Code XA Return Code

DDTM$_ABORTED XA_RBROLLBACK

DDTM$_COMM_FAIL XA_RBCOMMFAIL

DDTM$_INTEGRITY XA_RBINTEGRITY

DDTM$_PART_SERIAL XA_RBDEADLOCK

DDTM$_PART_TIMEOUT XA_RBTIMEOUT

DDTM$_SERIALIZATION XA_RBDEADLOCK

DDTM$_TIMEOUT XA_RBTIMEOUT

DDTM$_VETOED XA_RBROLLBACK

All others XA_RBOTHER

The Gateway uses XAER_RMFAIL to indicate a failure to access data on disk,
while XAER_RMERR indicates an internal failure. It translates DECdtm error
codes to XA return codes as follows:

DECdtm Error Code XA Return Code

SS$_ALRCURTID XAER_PROTO

SS$_BRANCHSTARTED XAER_PROTO

SS$_NOLOG XAER_RMFAIL

SS$_TPDISABLED XAER_RMFAIL

SS$_WRONGSTATE XAER_RBROLLBACK

All others XAER_RMERR

An exception is xa_commit. This function returns XAER_RMFAIL instead of
XA_RMERR, because the XA specification states that XA_RMERR indicated a
catastrophic failure for this function.

Distributed Transaction Manager (DECdtm) 30–37

Distributed Transaction Manager (DECdtm)
ax_unlock_decdtm

30.7.3.4 Error Logging
The Gateway error log file records errors that prevent it from passing transaction
information to DECdtm resource managers. The log file shows more detailed
error information than that revealed by XA return values.

To enable error logging, define the logical name SYS$DECDTM_XG_ERROR to
specify an error file. You can define the logical name processwide, groupwide, or
systemwide. However, you must define it for both TP processes and the Gateway
server process. The error file is created automatically and is shared between
processes.

Error records have the following formats:

Record Type Format

General time csid pid "VMS" vms_status "on" operation
Transaction time csid pid "VMS" vms_status "on" operation ", DECdtm TID"

tid
TP process time csid pid "XA" xa_status "VMS" vms_status "on"

operation ", DECdtm TID" tid

30.7.3.5 Tracing
The Gateway includes a trace facility to help investigate problems of interaction
between an XA TM and DECdtm resource managers. The trace file shows the
sequence of operations. It also shows more detailed error information than that
revealed by XA return values.

To enable tracing, define the logical name SYS$DECDTM_XG_TRACE to specify a
trace file. You can define the logical name processwide, groupwide, or systemwide.
However, you must define it for TP processes and for the Gateway server process.
The trace file is created automatically and is shared between processes.

The trace file records the following information:

• All xa_ calls to the Gateway.

• XA and OpenVMS error status results returned by the XA functions.

• Transaction events reported to DECdtm by the Gateway.

Trace records have the following formats:

Record Type Format

Operation time csid pid operation [flags]
Status time csid pid xa_status ["VMS" vms_status] [extra_info]

30.7.4 XA Gateway Control Program (XGCP) Utility
This section describes the XA Gateway Control Program (XGCP) utility.

30.7.4.1 XGCP Description
The XGCP utility creates the transaction logs used by the DECdtm XA Gateway.
You can also use it to stop and restart the XA Gateway server.

The Gateway allows a resource manager compliant with DECdtm, such as RMS
Journaling or Oracle Rdb, to be used with an XA-compliant transaction manager.

30–38 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
ax_unlock_decdtm

30.7.4.2 XGCP Usage Summary
XGCP provides the management interface to the DECdtm XA Gateway.

30.7.4.3 XGCP Description
To invoke XGCP, enter the RUN SYS$SYSTEM:XGCP command at the DCL
command prompt. The command has no parameters. At the XGCP> prompt, you
can enter any of the XGCP commands described in Section 30.7.4.4.

To exit from XGCP, enter the EXIT command at the XGCP> prompt, or press
Ctrl/Z.

30.7.4.4 XGCP Commands
The following table summarizes the XGCP commands.

Command Format Description

CREATE_LOG CREATE_LOG Creates a new XA Gateway log.

This command requires SYSPRV privilege or read/write access
to the SYS$JOURNAL directory.

Create a gateway log with the name
SYS$JOURNAL:SYSTEM$name.DDTM$XG_JOURNAL.

Create a separate log for each node of an OpenVMS Cluster.

The log file is automatically expanded when necessary.

Qualifier Description

/GATEWAY_
NAME=name

Specifies a gateway name of up
to 15 characters. This qualifier is
required.

/SIZE=size Specifies the initial size of the log,
in blocks. If you omit this qualifier,
the log is created with an initial size
of 242 blocks.

EXIT EXIT Exits XGCP

START_SERVER START_SERVER Starts the XA Gateway server.

Requires the IMPERSONATE privilege.

This command executes the DCL command file
SYS$STARTUP:DDTM$XG_STARTUP.COM. The server
process is called DDTM$XG_SERVER.

STOP_SERVER STOP_SERVER Stops the XA Gateway server. Requires OPER privilege.

30.8 Program Examples Using DECdtm
The following sections present Fortran, C, and BLISS examples of applications
using DECdtm.

30.8.1 Fortran Program Example
The following is a sample Fortran application that uses DECdtm system services.
(See SYS$EXAMPLES:DECDTM$EXAMPLE1.)

The application opens two files, sets a counter, then enters a loop to perform the
following steps:

1. Increments the counter by 1.

Distributed Transaction Manager (DECdtm) 30–39

Distributed Transaction Manager (DECdtm)
30.8 Program Examples Using DECdtm

2. Calls SYS$START_TRANSW to start a new transaction.

3. Writes the counter value to the two files.

4. Either calls SYS$END_TRANSW to attempt to commit the transaction, or
calls SYS$ABORT_TRANSW to abort the transaction.

The application repeats these steps until either an error occurs or the user
requests an interrupt. Because DECdtm services are used, the two files will
always be in step with each other. If DECdtm services were not used, one file
could have been updated while the other was not. This would result in the files
being out of step.

This example contains numbered callouts, which are explained after the program
listing.

C
C This program assumes that the files DECDTM$EXAMPLE1.FILE_1 and
C DECDTM$EXAMPLE1.FILE_2 are created and marked for recovery unit
C journaling using the command file SYS$EXAMPLES:DECDTM$EXAMPLE1.COM
C
C To run this example, enter the following:
C $ FORTRAN SYS$EXAMPLES:DECDTM$EXAMPLE1
C $ LINK DECDTM$EXAMPLE1
C $ @SYS$EXAMPLES:DECDTM$EXAMPLE1
C $ RUN DECDTM$EXAMPLE1
C
C
C SYS$EXAMPLES also contains an example C application, DECDTM$EXAMPLE2.C
C The C application performs the same operations as this Fortran example.
C

IMPLICIT NONE

INCLUDE ’($SSDEF)’
INCLUDE ’($FORIOSDEF)’

CHARACTER*12 STRING
INTEGER*2 IOSB(4)
INTEGER*4 STATUS,COUNT,TID(4)
INTEGER*4 SYS$START_TRANSW,SYS$END_TRANSW,SYS$ABORT_TRANSW
EXTERNAL SYS$START_TRANSW,SYS$END_TRANSW,SYS$ABORT_TRANSW
EXTERNAL JOURNAL_OPEN

C
C Open the two files
C
! OPEN (UNIT = 10, FILE = ’DECDTM$EXAMPLE1.FILE_1’, STATUS = ’OLD’,

1 ACCESS = ’DIRECT’, RECL = 3, USEROPEN = JOURNAL_OPEN)
OPEN (UNIT = 11, FILE = ’DECDTM$EXAMPLE1.FILE_2’, STATUS = ’OLD’,
1 ACCESS = ’DIRECT’, RECL = 3, USEROPEN = JOURNAL_OPEN)

COUNT = 0

30–40 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.8 Program Examples Using DECdtm

TYPE *, ’Running DECdtm example program’
TYPE *, ’Press CTRL-Y to interrupt’

C
C Loop forever, updating both files under transaction control
C

DO WHILE (.TRUE.)
C
C Update the count and convert it to ASCII
C
" COUNT = COUNT + 1

ENCODE (12,8000,STRING) COUNT
8000 FORMAT (I12)
C
C Start the transaction
C
STATUS = SYS$START_TRANSW (%VAL(1),,IOSB,,,TID)

IF (STATUS .NE. SS$_NORMAL .OR. IOSB(1) .NE. SS$_NORMAL) GO TO 9040
C
C Update the record in each file
C
$ WRITE (UNIT = 10, REC = 1, ERR = 9000, IOSTAT = STATUS) STRING

WRITE (UNIT = 11, REC = 1, ERR = 9010, IOSTAT = STATUS) STRING
C
C Attempt to commit the transaction
C
% STATUS = SYS$END_TRANSW (%VAL(1),,IOSB,,,TID)

IF (STATUS .NE. SS$_NORMAL .OR. IOSB(1) .NE. SS$_NORMAL) GO TO 9050

END DO
C
C Errors that should cause the transaction to abort
C
&
9000 TYPE *, ’Failed to update DECDTM$EXAMPLE1.FILE_1’

GO TO 9020

9010 TYPE *, ’Failed to update DECDTM$EXAMPLE1.FILE_2’
9020 STATUS = SYS$ABORT_TRANSW (%VAL(1),,IOSB,,,TID)

IF (STATUS .NE. SS$_NORMAL .OR. IOSB(1) .NE. SS$_NORMAL) GO TO 9060
STOP

C
C Errors from DECdtm system services
C
9040 TYPE *, ’Unable to start a transaction’

GO TO 9070
9050 TYPE *, ’Failed to commit the transaction’

GO TO 9070
9060 TYPE *, ’Failed to abort the transaction’
9070 TYPE *, ’Status = ’, STATUS, ’ IOSB = ’, IOSB(1)

END
C
C Switch off TRUNCATE access and PUT with truncate on OPEN for RU Journaling
C

INTEGER FUNCTION JOURNAL_OPEN (FAB, RAB, LUN)

INCLUDE ’($FABDEF)’
INCLUDE ’($RABDEF)’
INCLUDE ’($SYSSRVNAM)’

RECORD /FABDEF/ FAB, /RABDEF/ RAB

FAB.FAB$B_FAC = FAB.FAB$B_FAC .AND. .NOT. FAB$M_TRN
RAB.RAB$L_ROP = RAB.RAB$L_ROP .AND. .NOT. RAB$M_TPT

JOURNAL_OPEN = SYS$OPEN (FAB)
IF (.NOT. JOURNAL_OPEN) RETURN
JOURNAL_OPEN = SYS$CONNECT (RAB)

Distributed Transaction Manager (DECdtm) 30–41

Distributed Transaction Manager (DECdtm)
30.8 Program Examples Using DECdtm

RETURN
END

! The application opens DECDTM$EXAMPLE1.FILE_1 and
DECDTM$EXAMPLE1.FILE_2 for writing. It then zeroes the variable
COUNT and enters an infinite loop.

" The application increments the count by one and converts it to an ASCII
string.

The application calls SYS$START_TRANSW to start a transaction. The
application checks the immediate return status and service completion status
to see whether they signify an error.

$ The application attempts to write the string to the two files. If it cannot,
the application aborts the transaction. Because the files are OpenVMS RMS
journaled files, the default transaction is assumed.

% The application calls SYS$END_TRANSW to attempt to commit the
transaction. It checks the immediate return status and service completion
status to see whether they signify an error. If they do, the application reports
the error and exits. If there are no errors, the transaction is committed and
the application continues with the loop.

& If either of the two files cannot be updated, the application calls
SYS$ABORT_TRANSW to abort the transaction. It checks the immediate
return status and service completion status to see whether they signify an
error. If they do, the application reports the error and exits.

30.8.2 C Program Examples
The C examples are taken from the Transactional Array of Strings (TAOS) sample
resource manager. It implements a file holding an array of string values that are
updated by transactions. The sample is too large to reproduce in this manual, but
is available in SYS$EXAMPLES.

TAOS uses three in-memory data structures:

• taos: This holds global information about the string array, including the
rm_id. It is passed an opaque handle to applications using TAOS.

• part: This is created when TAOS participates in a transaction. It holds the
TID and is specified as the rm_context to $JOIN_RM. The taos structure
holds a list of par structures indexed by TID.

• res: This is created when a TAOS resource (a string) is referenced or updated
in a transaction. The part structure holds a list of res structures indexed by
array number.

The C examples use the following OpenVMS include files:

#include <ddtmdef.h>
#include <ddtmmsgdef.h>
#include <descrip.h>
#include <dtidef.h>
#include <iosbdef.h>
#include <ssdef.h>
#include <starlet.h>
#include <stsdef.h>

30–42 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.8 Program Examples Using DECdtm

30.8.2.1 $DECLARE_RMW
This example shows the declaration of a resource manager to DECdtm.

struct taos {
uint tmLogId[4]; /* transaction manager log ID */
uint efn; /* event flag for TAOS operations */
uint rmId; /* resource manager ID */

struct dsc$descriptor_s resNameDsc; /* resource name */
char resName[24]; /* "TAOS____" + array ID */

};

int taos_Open(...) {

int status;
IOSB iosb;
BOOL declaredRm = FALSE;

status = sys$declare_rmw(pTaos->efn, 0, &iosb, NULL, 0, &pTaos->rmId,
&HandleEvent, &pTaos->resNameDsc, NULL,
0, pTaos->tmLogId, 0);

if (SUCCESS(status))
status = iosb.iosb$w_status;

if (SUCCESS(status))
declaredRm = TRUE;

return status;
}

30.8.2.2 $GET_DEFAULT_TRANS and $JOIN_RMW
This example shows how to check for a default transaction, and join the resource
manager to a transaction.

The function GetParticipantData() (not shown here) searches a list of part
structures for an existing TID. If one is not found, a new part structure is
allocated.

int taos_Write(.., uint pTid[4]) {

int status;

/* get transaction ID */
if (pTid != NULL)

CopyUid(tid, pTid);
else {

status = sys$get_default_trans(tid);
if (FAILURE(status))

return status;
}

/* if this is a new transaction, join it */
if (GetParticipantData(pTaos, tid, &pPart)) {

status = sys$join_rmw(pTaos->efn, 0, &iosb, NULL, 0,
pTaos->rmId, tid, NULL, pPart);

if (SUCCESS(status))
status = iosb.iosb$w_status;

if (FAILURE(status))
return status;

}
}

Distributed Transaction Manager (DECdtm) 30–43

Distributed Transaction Manager (DECdtm)
30.8 Program Examples Using DECdtm

30.8.2.3 Event Handler and $ACK_EVENT
This example shows the event handler specified to DECdtm with $DECLARE_
RM.

static int HandleEvent(DDTM$R_REPORTDEF *pReport) {

struct taos *pTaos;

switch (pReport->ddtm$l_event_type) {

case DDTM$K_PREPARE:
Prepare(pReport);
break;

case DDTM$K_ABORT:
Abort(pReport);
break;

case DDTM$K_ONE_PHASE_COMMIT:
OnePhaseCommit(pReport);
break;

case DDTM$K_COMMIT:
Commit(pReport);
break;

return SS$_NORMAL;
}

/* Abort the transaction */

static void Abort(DDTM$R_REPORTDEF *pReport) {

struct part *pPart = (struct part *) pReport->ddtm$l_rm_context;

/* Undo the transaction here, using the list of resources
* attached to the part structure.
*/

/* DECdtm can forget the transaction */
sys$ack_event(0, pReport->ddtml_report_id, SS_FORGET);

}

/* Prepare transaction (phase 1 commit) */

static void Prepare(DDTM$R_REPORTDEF *pReport) {

int status = SS$_NORMAL;
BOOL updates = FALSE;

/* Save updates on disk, using the list of resources attached to
* the part structure. Set updates if there are any. Set status
* on error;

/* vote on transaction */

if (FAILURE(status))
status = SS$_VETO; /* can’t prepare, so abort tran */

else if (!updates)
status = SS$_FORGET; /* read-only transaction */

else
status = SS$_PREPARED; /* ready to commit or abort */

sys$ack_event(0, pReport->ddtm$l_report_id, status);
}

/* Commit transaction (phase 2) */

static void Commit(DDTM$R_REPORTDEF *pReport) {

int status = SS$_NORMAL;

30–44 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.8 Program Examples Using DECdtm

/* Make updates permanent and visible to other users here.
* Set status on error.
*/

if (SUCCESS(status))
status = SS$_FORGET; /* DECdtm can forget transaction */

else {
/* We can’t commit the transaction yet. We must ask DECdtm to
* remember the transaction, and we must terminate operations
* until a successful recovery is performed.
*/

pTaos->status = status;
status = SS$_REMEMBER;

}

/* acknowledge event */
sys$ack_event(0, pReport->ddtm$l_report_id, status);

}

/* Prepare and commit transaction in a single phase */

static void OnePhaseCommit(DDTM$R_REPORTDEF *pReport) {

int status = SS$_NORMAL;

/* Combine operations from Prepare() and Commit() here.
* Set status on error.
*/

/* report outcome to DECdtm */
if (FAILURE(status))

status = SS$_VETO; /* aborted */
else

status = SS$_NORMAL; /* committed */
status = SS$_NORMAL; /* committed */

sys$ack_event(0, pReport->ddtm$l_report_id, status);
}

30.8.2.4 $GETDTI and $SETDTI
This example shows the use of $GETDTI on recovery to determine the final state
of a transaction. $SETDTI is used to remove the resource manager from the
transaction.

/* Recover the state of a prepared resource after a failure */

RecoverString(...) {

int status;
IOSB iosb;
uint context = 0; /* context from $GETDTI */
int retlen;
Int state; /* transaction state */

DTIRECDEF dti;

ITMLST3_DECL (search, 1);
ITMLST3_ITEM (search, 0, DTI$_SEARCH_RESOLVED_STATE,

DTI$S_TRANSACTION_INFORMATION, &dti, 0);
DTI$S_TRANSACTION_INFORMATION, &dti, 0);

ITMLST3_END (search);

ITMLST3_DECL (result, 1);
ITMLST3_ITEM (result, 0, DTI$_TRANSACTION_INFORMATION,

DTI$S_TRANSACTION_INFORMATION, &dti, &retlen);
ITMLST3_END (result);

Distributed Transaction Manager (DECdtm) 30–45

Distributed Transaction Manager (DECdtm)
30.8 Program Examples Using DECdtm

/* get final state of transaction */
dti.dti$b_part_name_len = 0; /* no RM name specified */

CopyUid((uint *) dti.dti$t_tid, pTaos->stringBuf.tid);
status = sys$getdtiw(pTaos->efn, DDTM$M_FULL_STATE, &iosb, NULL, 0,

pTaos->tmLogId, &context, &search, &result);
if (SUCCESS(status))

status = iosb.iosb$w_status;
if (SUCCESS(status))

state = dti.dti$b_state;

/* treat forgotten TID as presumed abort */
if (status == SS$_NOSUCHTID) {

state = DTI$K_ABORTED;
status = SS$_NORMAL;

}

if (SUCCESS(status)) {
switch (state) {

case DTI$K_COMMITTED:
/* Make update permanent and visible here.

* Set status on error. */
break;

case DTI$K_ABORTED:
/* Undo the update here. Set status on error. */
break;

}
}
if (SUCCESS(status)) {

/* allow DECdtm to remove this RM from the transaction */
status = sys$setdtiw(pTaos->efn, 0, &iosb, NULL, 0, &context

DTI$K_DELETE_RM_NAME, &result);
}

}

30.8.3 BLISS Program Examaple
The following BLISS program demonstrates how a simple resource manager
may perform recovery following a system failure. In the example, a $GETDTI
is executed on behalf of a remote node (MYNODE) specifying a transaction
identifier, named resource manager, participant log identifier and transaction
manager log identifier.

When the $GETDTI finishes processing, the recovery logic in the resource
manager performs its own recovery and issues a $SETDTI to remove the resource
manager name from the transaction.

MODULE RECOVER_TRANSACTION (MAIN=MAIN)=
BEGIN

LIBRARY’SYS$LIBRARY:STARLET’;

FORWARD ROUTINE
MAIN,
AST_COMPLETION_ROUTINE : NOVALUE;

30–46 Distributed Transaction Manager (DECdtm)

Distributed Transaction Manager (DECdtm)
30.8 Program Examples Using DECdtm

ROUTINE MAIN =
BEGIN

OWN
STATUS

: LONG UNSIGNED,
IOSB

: VECTOR [4,WORD],
SEARCH_CONTEXT

: LONG UNSIGNED
INITIAL (0),

PART_LOG_ID
: $BBLOCK [DTI$S_PART_LOG_ID]

INITIAL (REP DTI$S_PART_LOG_ID OF BYTE (0)),
TM_LOG_ID

: $BBLOCK [DTI$S_PART_LOG_ID]
INITIAL (REP DTI$S_PART_LOG_ID OF BYTE (0)),

TID
: $BBLOCK [DTI$S_TID]

INITIAL (REP DTI$S_TID OF BYTE (0)),
SEARCH_LIST

: $ITMLST_DECL (ITEMS=2),
ITEM_LIST

: $ITMLST_DECL (ITEMS=1),
TRANS_INFO

: $BBLOCK [DTI$S_TRANSACTION_INFORMATION];
BIND

SEARCH_NODE_NAME = UPLIT (%ASCII’MYNODE’),
RESOURCE_MANAGER = UPLIT (%ASCII’FRED’);

LITERAL
SEARCH_NODE_NAME_LENGTH = %CHARCOUNT (’MYNODE’),
RESOURCE_MANAGER_LENGTH = %CHARCOUNT (’FRED’);

! Resource manager opens recovery log and reads first resolved
! recovery record. The information in the recovery record
! should contain the transaction identifier, resource manager
! log identifier and transaction manager log identifier. This
! information is written into the transaction information
! record.

CH$MOVE (DTI$S_TID,
TID,
TRANS_INFO [DTI$T_TID]);

CH$MOVE (DTI$S_PART_LOG_ID,
PART_LOG_ID,
TRANS_INFO [DTI$T_PART_LOG_ID]);

CH$MOVE (RESOURCE_MANAGER_LENGTH,
.RESOURCE_MANAGER,
TRANS_INFO [DTI$T_PART_NAME]);

TRANS_INFO [DTI$B_PART_NAME_LEN] = RESOURCE_MANAGER_LENGTH;

! The search item list is initialized with a node
! name and transaction information record.

$ITMLST_INIT (ITMLST=SEARCH_LIST,
(ITMCOD=DTI$_SEARCH_AS_NODE,
BUFADR=.SEARCH_NODE_NAME,
BUFSIZ=SEARCH_NODE_NAME_LENGTH),
(ITMCOD=DTI$_SEARCH_RESOLVED_STATE,
BUFADR=TRANS_INFO,
BUFSIZ=DTI$S_TRANSACTION_INFORMATION));

! The item list is initialized to return a transaction
! information record containing the resolved state of the
! transaction.
! transaction.

Distributed Transaction Manager (DECdtm) 30–47

Distributed Transaction Manager (DECdtm)
30.8 Program Examples Using DECdtm

$ITMLST_INIT (ITMLST=ITEM_LIST,
(ITMCOD=DTI$_TRANSACTION_INFORMATION,
BUFADR=TRANS_INFO,
BUFSIZ=DTI$S_TRANSACTION_INFORMATION));

! A $GETDTI is now performed to return the state of the
! transaction and the node name.

STATUS = $GETDTIW (EFN=10,
FLAGS=DDTM$M_FULL_STATE,
IOSB=IOSB,
ASTADR=AST_COMPLETION_ROUTINE,
ASTPRM=0,
CONTXT=SEARCH_CONTEXT,
LOG_ID=TM_LOG_ID,
SEARCH=SEARCH_LIST,
ITMLST=ITEM_LIST);

! If the transaction was committed then perform resource manager
! recovery and then delete the resource manager from the
! transaction.

IF .TRANS_INFO [DTI$B_STATE] EQLU DTI$K_COMMITTED THEN
STATUS = $SETDTIW (EFN=10,

FLAGS=0,
IOSB=IOSB,
ASTADR=AST_COMPLETION_ROUTINE,
ASTPRM=0,
CONTXT=SEARCH_CONTEXT,
FUNC=DTI$K_DELETE_RM_NAME,
ITMLST=ITEM_LIST);

RETURN .STATUS
END;

ROUTINE AST_COMPLETION_ROUTINE (ASTPRM : LONG UNSIGNED) : NOVALUE =
BEGIN

RETURN;
END;

END
ELUDOM

30–48 Distributed Transaction Manager (DECdtm)

31
Creating User-Written System Services

This chapter describes how to create user-written system services. It contains the
following sections:

Section 31.1 describes privileged routines and privileged shareable images.

Section 31.2 describes how to write a privileged routine.

Section 31.3 describes how to create a privileged shareable image on VAX
systems.

Section 31.4 describes how to create a privileged shareable image on Alpha and
I64 systems.

31.1 Overview
Your application may contain certain routines that perform privileged functions,
called user-written system services. To create these routines, put them in
a privileged shareable image. User-mode routines in other modules can call
the routines in the privileged shareable image to perform functions in a more
privileged mode.

You create a privileged shareable image as you would any other shareable image,
using the /SHAREABLE qualifier with the linker. (For more information about
how to create a shareable image, see the HP OpenVMS Linker Utility Manual.)
However, because a call to a routine in a more privileged mode must be vectored
through the system service dispatch routine, you must perform some additional
steps. The following steps outline the basic procedure. Section 31.3 provides
more detail about requirements specific to VAX systems. Section 31.4 describes
the necessary steps for Alpha and I64 systems.

1. Create the source file. The source file for a privileged shareable image
contains the routines that perform privileged functions. In addition, because
user-written system services are called using the system service dispatcher,
you must include a privileged library vector (PLV) in your shareable image.
A PLV is an operating-system-defined data structure that communicates the
location of the privileged routines to the operating system.

On VAX systems, the PLV contains the addresses of dispatch routines for
each access mode used in the image. You must write these dispatch routines
and include them in your shareable image. Section 31.3.1 provides more
information.

On Alpha and I64 systems, you list the names of the privileged routines in
the PLV, sorted by access mode. You do not need to create dispatch routines;
the image activator creates them for you automatically.

Section 31.2 provides guidelines for creating privileged routines.

2. Compile or assemble the source file.

Creating User-Written System Services 31–1

Creating User-Written System Services
31.1 Overview

3. Create the shareable image. You create a privileged shareable image as you
would any other shareable image: by specifying the /SHAREABLE qualifier
to the LINK command. Note, however, that creating privileged shareable
images has some additional requirements. The following list summarizes
these requirements. See the HP OpenVMS Linker Utility Manual for
additional information about linker qualifiers and options.

• Declare the privileged routine entry points as universal symbols.
Privileged shareable images use the same mechanisms to declare
universal symbols as other shareable images: transfer vectors on VAX
and symbol vectors on Alpha and I64 systems. However, because calls to
user-written system services must be vectored through the system service
dispatcher, you must use extensions to these mechanisms for privileged
shareable images. Section 31.3.3 describes how to declare a universal
symbol in a VAX privileged shareable image. Section 31.4.2 describes
how to declare a universal symbol in an Alpha and I64 system privileged
shareable image.

• Prevent the linker from processing the system default shareable image
library, SYS$LIBRARY:IMAGELIB.OLB, by specifying the /NOSYSSHR
linker qualifier. Otherwise, the linker processes this library by default.

• Protect the shareable image from user-mode access by specifying the
/PROTECT linker qualifier. If you want to protect only certain portions
of the shareable image, instead of the entire image, use the PROTECT=
linker option.

• Set the VEC attribute of the program section containing the PLV by
using the PSECT_ATTR= linker option. Modules written in MACRO can
specify this attribute in the .PSECT directive. The PLV must appear in a
program section with the VEC attribute set.

• Set the shareable image identification numbers using the GSMATCH=
option.

If your privileged application requires that you link against the system
executive, see the HP OpenVMS Linker Utility Manual for more information.

4. Install the privileged shareable image as a protected permanent global
section. Privileged shareable images must be installed to be available to
nonprivileged programs. The following procedure is recommended:

a. Move the privileged shareable image to a protected directory, such as
SYS$SHARE.

b. Invoke the Install utility, specifying the /PROTECT, /OPEN, and
/SHARED qualifiers. You can also specify the /HEADER_RESIDENT
qualifier. The following entry could be used to install a user-written
system service whose image name is MY_PRIV_SHARE:

$ INSTALL
INSTALL> ADD SYS$SHARE:MY_PRIV_SHARE/PROTECT/OPEN/SHARED/HEADER_RES

To use a privileged shareable image, you include it in a link operation as you
would any other shareable image: specifying the shareable image in a linker
options file with the /SHAREABLE qualifier appended to the file specification to
identify it as a shareable image.

31–2 Creating User-Written System Services

Creating User-Written System Services
31.2 Writing a Privileged Routine (User-Written System Service)

31.2 Writing a Privileged Routine (User-Written System Service)
On VAX, Alpha, and I64 systems, the routines that implement user-written
system services must enable any privileges they need that the nonprivileged user
of the user-written system service lacks. The user-written system service must
also disable any such privileges before the nonprivileged user receives control
again. To enable or disable a set of privileges, use the Set Privileges ($SETPRV)
system service. The following example shows the operator (OPER) and physical
I/O (PHY_IO) privileges being enabled. (Any code executing in executive or kernel
mode is granted an implicit SETPRV privilege so it can enable any privileges it
needs.)

PRVMSK: .LONG <1@PRV$V_OPER>!<1@PRV$V_PHY_IO> ;OPER and PHY_IO
.LONG 0 ;quadword mask required. No bits set in

;high-order longword for these privileges.
.
.
.

$SETPRV_S ENBFLG=#1,- ;1=enable, 0=disable
PRVADR=PRVMSK ;Identifies the privileges

When you design your system service, you must carefully define the boundaries
between the protected subsystem and the user who calls the service. A protected
image has privileges to perform tasks on its own behalf. When your image
performs tasks on behalf of users, you must ensure that your image performs
only those tasks the users could not have done on their own. Always keep the
following coding principles in mind:

• Keep privileges off, and turn them on only when necessary.

• Make sure privileges are off on all exit paths. When you perform a task for
the user, operate in user mode whenever possible and operate at all times
with the user’s privileges, identity, and so on. Make sure that operating in
an inner mode does not give you any special privileges with respect to the
operation being performed. Resume a privileged state only when you are
about to resume operation on your own behalf.

• If user input can affect an operation executed with privilege, you have to
carefully validate the input. Never pass user parameters directly to an
operation executed in an inner mode or with privilege. When designing your
program, keep in mind that the inner modes implicitly provide a user with
the system privileges SETPRV, CMKRNL, SYSNAM, and SYSLCK. (See the
HP OpenVMS Guide to System Security for descriptions.)

• As a protected image, your program does not have the entire operating system
programming environment at its disposal. Unless a module has the prefix
SYS$ or EXE$, you must avoid calling it from an inner mode. In particular,
do not call LIB$GET_VM or LIB$RET_VM from an inner mode. You can call
OpenVMS RMS routines from executive mode but not from kernel mode.

On VAX systems, Version 5.4 or later of the operating system, any OpenVMS
RMS files that were opened with privilege from an inner mode can be left
open during user execution; however, this is not acceptable on earlier versions
of the operating system.

• Never make subroutine calls to other shareable images from kernel or
executive mode.

Creating User-Written System Services 31–3

Creating User-Written System Services
31.2 Writing a Privileged Routine (User-Written System Service)

• When a protected subsystem opens a file on its own behalf, it should specify
executive-mode logical names only by naming executive mode explicitly in the
FAB$V_LNM_MODE subfield of the file access block (FAB). This prevents a
user’s logical name from redirecting a file specification.

On VAX systems, refer to SYS$EXAMPLES:USSDISP.MAR and USSTEST.MAR
for listings of modules in a user-written system service and of a module that calls
the user-written system service.

On Alpha and I64 systems, for C examples refer to SYS$EXAMPLES:UWSS.C
and SYS$EXAMPLES:UWSS_TEST.C.

31.3 Creating a Privileged Shareable Image (VAX Only)
On VAX systems, you must create dispatch routines that transfer control to the
privileged routines in your shareable image. You then put the addresses of these
dispatch routines in a privileged library vector (PLV). Section 31.3.1 describes
how to create a dispatch routine. Section 31.3.2 describes how to create a PLV.

31.3.1 Creating User-Written Dispatch Routines on VAX Systems
On VAX systems, you must create kernel-mode and executive-mode dispatching
routines that transfer control to the routine entry points. You must supply one
dispatch routine for all your kernel mode routines and a separate routine for all
the executive mode routines. The dispatcher is usually written using the CASE
construct, with each routine identified by a code number. Make sure that the
identification code you use in the dispatch routine and the code specified in the
transfer vector identify the same routine.

The image activator, when it activates a privileged shareable image, obtains the
addresses of the dispatch routines from the PLV and stores these addresses at a
location known to the system service dispatcher. When a call to a privileged
routine is initiated by a CHME or CHMK instruction, the system service
dispatcher attempts to match the code number with a system service code. If
there is no match, it transfers control to the location where the image activator
has stored the address of your dispatch routines.

A dispatch routine must validate the CHMK or CHME operand identification
code number, handling any invalid operands. In addition, the dispatching routine
must transfer control to the appropriate routine for each identification code if
the user-written system service contains functionally separate coding segments.
The CASE instruction in VAX MACRO or a computed GOTO-type statement in a
high-level language provides a convenient mechanism for determining where to
transfer control.

31–4 Creating User-Written System Services

Creating User-Written System Services
31.3 Creating a Privileged Shareable Image (VAX Only)

Note

Users of your privileged shareable image must specify the same code
number to identify a privileged routine as you used to identify it in the
dispatch routine. Users specify the code number in their CHMK or CHME
instruction. See Section 31.3.3 for information about transfer vectors.

In your source file, a dispatch routine must precede the routines that implement
the user-written system service.

Example 31–1 illustrates a sample dispatching routine, taken from the sample
privileged shareable image in SYS$EXAMPLES named USSDISP.MAR.

Example 31–1 Sample Dispatching Routine

KERNEL_DISPATCH:: ; Entry to dispatcher
MOVAB W^-KCODE_BASE(R0),R1 ; Normalize dispatch code value
BLSS KNOTME ; Branch if code value too low
CMPW R1,#KERNEL_COUNTER ; Check high limit
BGEQU KNOTME ; Branch if out of range

;
; The dispatch code has now been verified as being handled by this dispatcher,
; now the argument list will be probed and the required number of arguments
; verified.
;

MOVZBL W^KERNEL_NARG[R1],R1 ; Get required argument count
MOVAL @#4[R1],R1 ; Compute byte count including argcount
IFNORD R1,(AP),KACCVIO ; Branch if arglist not readable
CMPB (AP),W^<KERNEL_NARG-KCODE_BASE>[R0] ; Check for required number
BLSSU KINSFARG ; of arguments
MOVL FP,SP ; Reset stack for service routine
CASEW R0,- ; Case on change mode
.
.
.

31.3.2 Creating a PLV on VAX Systems
On VAX systems, a call to a privileged routine goes to the transfer vector that
executes a change mode instruction (CHMx) specifying the identification code of
the privileged routine as the operand to the instruction. The operating system
routes the change mode instruction to the system service dispatch routine, which
attempts to locate the system service with the code specified. Because the code is
a negative number, the system service dispatcher drops through its list of known
services and transfers control to a user-written dispatch routine, if any have been
specified.

Creating User-Written System Services 31–5

Creating User-Written System Services
31.3 Creating a Privileged Shareable Image (VAX Only)

The image activator has already placed at this location the address of whatever
user-written dispatch routines it found in the privileged shareable image’s PLV
when it activated the PLV. The dispatch routine transfers control to the routine in
the shareable image identified by the code. (You must ensure that the code used
in the transfer vector and the code specified in the dispatch routine both identify
the same routine.) Figure 31–1 illustrates this flow of control.

Figure 31–1 Flow of Control Accessing a Privileged Routine on VAX Systems

ZK−5071A−GE

my_share_k_dispatcher:

my_share_e_dispatcher:

my_serv_int:

return

OpenVMS Change Mode Dispatcher

my_serv

Executable Image
(mytest.exe)

CHMK <change_mode_code>
CHMK <change_mode_code>
CHME <change_mode_code>

Privileged Shareable
Image (my_share.exe)

kernel−mode dispatcher address
exec−mode dispatcher address

exe$cmdxxxx:

Image Activator Vector
of User−Written Dispatchers

[code does not

JSB my_share_k_dispatcher

match OpenVMS codes]

JSB my_share_e_dispatcher

JSB

Image activator
set these fields to
addresses of user−
written dispatchers
when it activates a
privileged shareable
image.

Transfer
Vector

Privileged
Library Vector

OpenVMS Common
Exit Path

SRVEXIT:

REI:

31–6 Creating User-Written System Services

Creating User-Written System Services
31.3 Creating a Privileged Shareable Image (VAX Only)

Figure 31–2 shows the components of the PLV in VAX shareable images.

Figure 31–2 Components of the Privileged Library Vector on VAX Systems

31 0

Vector Type Code

Reserved

ZK−5401A−GE

Kernel−Mode Dispatcher

Executive−Mode Entry

User Rundown Service

Reserved

RMS Dispatcher

Address Check

Table 31–1 describes each field in the PLV on a VAX processor, including the
symbolic names the operating system defines to access each field. These names
are defined by the $PLVDEF macro in SYS$LIBRARY:STARLET.MLB.

Table 31–1 Components of the VAX Privileged Library Vector

Component Symbol Description

Vector type code PLV$L_TYPE Identifies the type of vector. For PLVs, you must specify
the symbolic constant defined by the operating system,
PLV$C_TYP_CMOD, which identifies a privileged
library vector.

Kernel-mode dispatcher PLV$L_KERNEL Contains the address of the user-supplied kernel-mode
dispatching routine if your privileged library contains
routines that run in kernel mode. The address is
expressed as an offset relative to the start of the data
structure (self-relative pointer). A value of 0 indicates
that a kernel-mode dispatcher does not exist.

Executive-mode
dispatcher

PLV$L_EXEC Contains the address of the user-supplied executive-
mode dispatching routine if your privileged library
contains routines that run in executive mode. The
address is expressed as an offset relative to the start of
the data structure (self-relative pointer). A value of 0
indicates that a kernel-mode dispatcher does not exist.

(continued on next page)

Creating User-Written System Services 31–7

Creating User-Written System Services
31.3 Creating a Privileged Shareable Image (VAX Only)

Table 31–1 (Cont.) Components of the VAX Privileged Library Vector

Component Symbol Description

User-supplied rundown
routine

PLV$L_USRUNDWN Contains the address of a user-supplied rundown
routine that performs image-specific cleanup and
resource deallocation if your privileged library contains
such a routine. When the image linked against the
user-written system service is run down by the system,
this run-time routine is invoked. Unlike exit handlers,
the routine is always called when a process or image
exits. (The image rundown code calls this routine with
a JSB instruction; it returns with an RSB instruction
called in kernel mode at IPL 0.)

RMS dispatcher PLV$L_RMS Contains the address of a user-supplied dispatcher for
OpenVMS RMS services. A value of 0 indicates that a
user-supplied OpenVMS RMS dispatcher does not exist.
Only one user-written system service should specify the
OpenVMS RMS vector, because only the last value is
used. This field is intended for use only by HP.

Address check PLV$L_CHECK Contains a value to verify that a user-written system
service that is not position independent is located at
the proper virtual address. If the image is position
independent, this field should contain a zero. If the
image is not position independent, this field should
contain its own address.

Example 31–2 illustrates how the sample privileged shareable image in
SYS$EXAMPLES assigns values to the PLV.

Example 31–2 Assigning Values to a PLV on a VAX System

.PAGE
$PLVDEF ; Define PLV fields
.SBTTL Change Mode Dispatcher Vector Block

! .PSECT USER_SERVICES,PAGE,VEC,PIC,NOWRT,EXE

" .LONG PLV$C_TYP_CMOD ; Set type of vector to change mode
.LONG 0 ; Reserved
.LONG KERNEL_DISPATCH-. ; Offset to kernel mode dispatcher
.LONG EXEC_DISPATCH-. ; Offset to executive mode dispatcher
.LONG USER_RUNDOWN-. ; Offset to user rundown service
.LONG 0 ; Reserved.
.LONG 0 ; No RMS dispatcher
.LONG 0 ; Address check - PIC image

! The sample program sets the VEC attribute of the program section containing
the PLV.

" Values are assigned to each field of the PLV.

31–8 Creating User-Written System Services

Creating User-Written System Services
31.3 Creating a Privileged Shareable Image (VAX Only)

31.3.3 Declaring Privileged Routines as Universal Symbols Using Transfer
Vectors on VAX Systems

On VAX systems, you use the transfer vector mechanism to declare universal
symbols (described in the HP OpenVMS Linker Utility Manual). However, for
privileged shareable images, the transfer vector must also contain a CHMx
instruction because the target routine operates in a more privileged mode. You
identify the privileged routine by its identification code, supplied as the only
operand to the CHMx instruction. Note that the code number used must match
the code used to identify the routine in the dispatch routine. The following
example illustrates a typical transfer vector for a privileged routine:

.TRANSFER my_serv

.MASK my_serv
CHMK <code_number>
RET

Because the OpenVMS system services codes are all positive numbers and
because the call to a privileged routine is initially handled by the system service
dispatcher, you should assign negative code numbers to identify your privileged
routines so they do not conflict with system services identification codes.

31.4 Creating a User-Written System Service (Alpha and I64 Only)
On Alpha and I64 systems, in addition to the routines that perform privileged
functions, you must also include a PLV in your source file. However, on Alpha
and I64 systems, you list the privileged routines by name in the PLV. You do not
need to create a dispatch routine that transfers control to the routine; the routine
is identified by a special code.

31.4.1 Creating a PLV on Alpha and I64 Systems
On Alpha and I64 systems, the PLV contains a list of the actual addresses
of the privileged routines. The image activator creates the dispatch routines.
Figure 31–3 illustrates the linkage for a privileged routine on Alpha and I64
systems.

Creating User-Written System Services 31–9

Creating User-Written System Services
31.4 Creating a User-Written System Service (Alpha and I64 Only)

Figure 31–3 Linkage for a Privileged Routine After Image Activation

PLV

List of Kernel Mode Procedure Values

Linkage Section

Symbol Vector

System Service Transfer Routines and Procedure Descriptors

ZK-5910A-AI

KERNEL_ROUTINE_LIST

.ADDRESS K_RTN1_INT

.ADDRESS K_RTN2_INT

Procedure descriptor for K_RTN2_INT

Procedure descriptor for K_RTN1_INT

Linkage pair for K_RTN2_EXT

Linkage pair for K_RTN1_EXT

Procedure descriptor for K_RTN2_EXT

Procedure descriptor for K_RTN1_EXT

K_RTN1_EXT::

K_RTN2_EXT::

BIS

BIS

K_RTN1_INT::
; service
specific procedure

SP,R31,R28

SP,R31,R28

LDAH R0,2(R31)

K_RTN2_INT::
; service
specific procedure

CALL_PAL CHMK

LDAH R0,1(R31)

RET

CALL_PAL CHMK
RET

Table 31–2 describes the components of the privileged library vector on Alpha and
I64 systems.

31–10 Creating User-Written System Services

Creating User-Written System Services
31.4 Creating a User-Written System Service (Alpha and I64 Only)

Table 31–2 Components of the Alpha and I64 Privileged Library Vector

Component Symbol Description

Vector type code PLV$L_TYPE Identifies the type of vector. You must specify
the symbolic constant, PLV$C_TYP_CMOD,
to identify a privileged library vector.

System version number PLV$L_VERSION Specifies the system version number
(unused).

Kernel-mode routine
count

PLV$L_KERNEL_ROUTINE_
COUNT

Specifies the number of user-supplied kernel-
mode routines listed in the kernel-mode
routine list. The address of this list is
specified in PLV$PS_KERNEL_ROUTINE_
LIST.

Executive-mode routine
count

PLV$L_EXEC_ROUTINE_
COUNT

Specifies the number of user-supplied
executive-mode routines listed in the
executive-mode routine list. The address
of this list is specified in PLV$PS_EXEC_
ROUTINE_LIST.

Kernel-mode routine list PLV$PS_KERNEL_ROUTINE_
LIST

Specifies the address of a list of user-supplied
kernel-mode routines.

Executive-mode routine
list

PLV$PS_EXEC_ROUTINE_
LIST

Specifies the address of a list of user-supplied
executive-mode routines.

User-supplied rundown
routine

PLV$PS_KERNEL_
RUNDOWN_HANDLER

May contain the address of a user-supplied
rundown routine that performs image-specific
cleanup and resource deallocation. When
the image linked against the user-written
system service is run down by the system,
this run-time routine is invoked. Unlike exit
handlers, the routine is always called when
a process or image exits. (Image rundown
code calls this routine with a JSB instruction;
it returns with an RSB instruction called in
kernel mode at IPL 0.)

Thread-safe system
service

PLV$M_THREAD_SAFE Flags the system service dispatcher that the
service requires no explicit synchronization.
It is assumed by the dispatcher that the
service provides its own internal data
synchronization and that multiple kernel
threads can safely execute the service in
parallel.

RMS dispatcher PLV$PS_RMS_DISPATCHER Specifies the address of an alternative RMS
dispatching routine.

Kernel Routine Flags
Vector

PLV$PS_KERNEL_ROUTINE_
FLAGS

Contains either the address of an array of
quadwords that contains the defined flags
associated with each kernel system service,
or a zero. If a flag is set, the kernel mode
service may return the status SS$_WAIT_
CALLERS_MODE.

Executive Routine Flags
Vector

PLV$PS_EXEC_ROUTINE_
FLAGS

Contains a zero value, because there are no
defined flags for executive mode.

Example 31–3 illustrates how to create a PLV on Alpha and I64 systems.

Creating User-Written System Services 31–11

Creating User-Written System Services
31.4 Creating a User-Written System Service (Alpha and I64 Only)

Example 31–3 Creating a PLV on Alpha and I64 Systems

! What follows is the definition of the PLV. The PLV lives
! in its own PSECT, which must have the VEC attribute. The
! VEC attribute is forced in the linker. The PLV looks like
! this:
!
! +-------------------------------------+
! | Vector Type Code | PLV$L_TYPE
! | (PLV$C_TYP_CMOD) |
! +-------------------------------------+
! | System Version Number | PLV$L_VERSION
! | (unused) |
! +-------------------------------------+
! | Count of Kernel Mode Services | PLV$L_KERNEL_ROUTINE_COUNT
! | |
! +-------------------------------------+
! | Count of Exec Mode Services | PLV$L_EXEC_ROUTINE_COUNT
! | |
! +-------------------------------------+
! | Address of a List of Entry Points | PLV$PS_KERNEL_ROUTINE_LIST
! | for Kernel Mode Services |
! +-------------------------------------+
! | Address of a List of Entry Points | PLV$PS_EXEC_ROUTINE_LIST
! | for Exec Mode Services |
! +-------------------------------------+
! | Address of Kernel Mode | PLV$PS_KERNEL_RUNDOWN_HANDLER
! | Rundown Routine |
! +-------------------------------------+
! | | PLV$M_THREAD_SAFE
! | |
! +-------------------------------------+
! | Address of Alternative RMS | PLV$PS_RMS_DISPATCHER
! | Dispatching Routine |
! +-------------------------------------+
! | Kernel Routine Flags Vector | PLV$PS_KERNEL_ROUTINE_FLAGS
! | |
! +-------------------------------------+
! | Exec Routine Flags Vector | PLV$PS_EXEC_ROUTINE_FLAGS
! | |
! +-------------------------------------+
!
PSECT OWN = USER_SERVICES (NOWRITE, NOEXECUTE);

OWN PLV_STRUCT : $BBLOCK[PLV$C_LENGTH] INITIAL (LONG (PLV$C_TYP_CMOD,! Type
! of vector

0, ! System version number
(KERNEL_TABLE_END - KERNEL_TABLE_START) / %UPVAL, ! Number of kernel mode

! services
(EXEC_TABLE_END - EXEC_TABLE_START) / %UPVAL, ! Number of exec mode

! services
KERNEL_TABLE_START, ! Address of list of kernel mode service routine
EXEC_TABLE_START, ! Address of list of exec mode service routine
RUNDOWN_HANDLER, ! Address of list of kernel mode rundown routine
0, ! Reserved longword
0, ! Address of alternate RMS dispatcher
0, ! reserved
0)); ! reserved

PSECT OWN = OWN;

31–12 Creating User-Written System Services

Creating User-Written System Services
31.4 Creating a User-Written System Service (Alpha and I64 Only)

31.4.2 Declaring Privileged Routines as Universal Symbols Using Symbol
Vectors on Alpha and I64 Systems

On Alpha and I64 systems, you declare a user-written system service to be a
universal symbol by using the symbol vector mechanism. (See the HP OpenVMS
Linker Utility Manual for more information about creating symbol vectors.)
However, because user-written system services must be accessed by using the
privileged library vector (PLV), you must specify an alias for the user-written
system service. Use the following syntax for the SYMBOL_VECTOR= option to
specify an alias that can be universal:

SYMBOL_VECTOR = ([universal_alias_name/]internal_name = {PROCEDURE | |
DATA})

In a privileged shareable image, calls from within the image that use the alias
name result in a fixup and subsequent vectoring through the PLV, which results
in a mode change. Calls from within the shareable image that use the internal
name are made in the caller’s mode. (Calls from external images always result in
a fixup.)

The linker command procedures and options file shown in Example 31–4
illustrate how to declare universal symbols in Alpha and I64 system privileged
shareable images.

Example 31–4 Declaring Universal Symbols for Privileged Shareable Image on
Alpha and I64 Systems

$!
$! Link the protected shareable image containing
$! the user-written system services
$!
$ LINK /SHARE=UWSS -

/PROTECT -
/MAP=UWSS -
/SYSEXE -
/FULL/CROSS/NOTRACE -
UWSS, -
SYS$INPUT:/OPTIONS

!
! Set the GSMATCH options
!
GSMATCH=LEQUAL,1,1

!
! Define transfer vectors for protected shareable image
!
SYMBOL_VECTOR = (-

FIRST_SERVICE = PROCEDURE, -
SECOND_SERVICE = PROCEDURE, -
THIRD_SERVICE = PROCEDURE, -
FOURTH_SERVICE = PROCEDURE -
)

!
! Need to add the VEC attribute to the PLV psect
!
PSECT=USER_SERVICES,VEC

Creating User-Written System Services 31–13

32
System Security Services

This chapter describes the security system services that provide various
mechanisms to enhance the security of operating systems. It contains the
following sections:

Section 32.1 provides an overview of the protection scheme.

Section 32.2 describes identifiers and how they are used in security.

Section 32.3 describes the rights database.

Section 32.4 describes the persona and per-thread security features.

Section 32.5 describes how to create, translate, and maintain access control
entries (ACEs).

Section 32.6 describes protected subsystems.

Section 32.7 describes security auditing.

Section 32.8 describes how to determine a user’s access to an object.

Section 32.9 describes SYS$CHECK_PRIVILEGE system service.

Section 32.10 describes how to implement site-specific security policies.

32.1 Overview of the Operating System’s Protection Scheme
The basis of the security scheme is an identifier, which is a 32-bit binary value
that represents a set of users to the system. An identifier can represent an
individual user, a group of users, or some aspect of the environment in which
a user is operating. A process is a holder of an identifier when that identifier
can represent that process to the system. The protection scheme also includes
the user identification code (UIC), the authorization database, and access control
lists.

Authorization Database
The authorization database consists of the system authorization file
(SYSUAF.DAT), the network proxy database, and the rights list database
(RIGHTSLISTS.DAT). Note that the network proxy database is called
NETPROXY.DAT on Alpha and I64 systems and NET$PROXY.DAT on VAX
systems. (The file NETPROXY.DAT on VAX systems is maintained for platform
compatibility, translation of DECnet Phase IV node names, and layered product
support.) The system rights database is an indexed file consisting of identifier
and holder records. These records define the identifiers and the holders of those
identifiers on a system. When a user logs in to the system, a process is created
and LOGINOUT creates a rights list for the process from the applicable entries
in the rights database. The process rights list contains all the identifiers that
the process holds. A process can be the holder of a number of identifiers. These
identifiers determine the access rights of the list holder. The process rights list
becomes part of the process and is propagated to any created subprocesses.

System Security Services 32–1

System Security Services
32.1 Overview of the Operating System’s Protection Scheme

Access Protection
When a process without special privileges attempts to access an object (protected
by an ACL) in the system, the operating system uses the rights list when
performing a protection check. The system compares the identifiers in the rights
list to the protection attributes of the object and grants or denies access to the
object based on the comparison. In other words, the entries in the rights list
do not specifically grant access; instead, the system uses them to perform a
protection check when the process attempts to access an object.

Access Control Lists
The protection scheme provides security with the mechanism of the access control
list (ACL). An ACL consists of access control entries (ACEs) that specify the
type of access an identifier has to an object like a file, device, or queue. When a
process attempts to access an object with an associated ACL, the system grants
or denies access based on whether an exact match for the identifier in the ACL
exists in the process rights list.

The following sections describe each of the components of the security scheme—
identifiers, rights database, process and system rights lists, protection codes, and
ACLs—and the system services affecting those components.

32.2 Identifiers
The basic component of the protection scheme is an identifier. An identifier
represents various types of agents using the system. The types of agents
represented include individual users, groups of users, and environments in which
a process is operating. Identifiers and their attributes apply to both processes
and objects. An identifier name consists of 1 to 31 alphanumeric characters
with no embedded blanks and must contain at least one nonnumeric character. It
can include the uppercase letters A through Z, dollar signs ($), and underscores
(_), as well as the numbers 0 through 9. Any lowercase letters are automatically
converted to uppercase.

32.2.1 Identifier Format
Each of the three types of identifier has an internal format in the rights database:
user identification code (UIC) format, identification (ID) format, and facility-
specific format. The high-order bits <31:28> of the identifier value specify the
format of the identifier.

32.2.2 General Identifiers
You can define general identifiers to meet the specific needs of your site. You
grant these identifiers to users by establishing holder records in the rights
database. General identifiers can identify a single user, a single UIC group, a
group of users, or a number of groups.

Bit <31>, which is set to 1, specifies ID format used by general identifiers as
shown in Figure 32–1. Bits <30:28> are reserved by HP. The remaining bits
specify the identifier value.

32–2 System Security Services

System Security Services
32.2 Identifiers

Figure 32–1 ID Format

31 027

1 0 0 0

ZK−5908A−GE

System−generated value

You define identifiers and their holders in the rights database with the Authorize
utility or with the appropriate system services. Each user can hold multiple
identifiers. This allows you to create a different kind of group designation from
the one used with the user’s UIC.

The alternative grouping described here permits each user to be a member of
multiple overlapping groups. Access control lists (ACLs) define the access to
protected objects based on the identifiers the user holds rather than on the user’s
UIC. See Section 32.5.3.1 for information on creating ACLs.

You can also define identifiers to represent particular terminals, times of day, or
other site-specific environmental attributes. These identifiers are not given holder
records in the rights database but may be granted to users by customer-written
privileged software. This feature of the security system allows each site flexibility
and, because the identifiers can be specific to the site, enhanced security. For a
programming example demonstrating this technique, see Section 32.3.2.4. For
more information, also see the HP OpenVMS Guide to System Security.

32.2.3 System-Defined Identifiers
System-defined identifiers, or environmental identifiers, are general identifiers
that are automatically defined when the rights database is initialized. The
following system-defined identifiers correspond directly with the login classes and
relate to the environment in which the process operates:

BATCH All attempts at access made by batch jobs

NETWORK All attempts at access made across the network

INTERACTIVE All attempts at access made by interactive processes

LOCAL All attempts at access made by users logged in at local terminals

DIALUP All attempts at access made by users logged in at dialup terminals

REMOTE All attempts at access made by users logged in on a network

Depending on the environment in which the process is operating, the system
includes one or more of these identifiers when creating the process rights list.

32.2.4 UIC Identifiers
Each UIC identifier is unique and represents a system user. By default, when an
account is created, its UIC is associated with the account’s user name generating
an identifier value. When the high-order bit <31> of the identifier value is zero,
the value identifies a UIC format identifier as shown in Figure 32–2.

System Security Services 32–3

System Security Services
32.2 Identifiers

Figure 32–2 UIC Identifier Format

31 0151627

0 0 0 0 UIC group UIC member

ZK−5907A−GE

Bits <27:16> and <15:0> designate a group field and member field. Group
numbers range from 1 through 16,382; member numbers range from 0 through
65,534.

32.2.5 Facility Identifiers
Facility-specific rights identifiers allow a range of unique binary identifier values
to be reserved for a particular software product or application. Compare the
format of facility-specific identifiers with the format of general identifiers and
UIC identifiers, as shown in Section 32.2.1. The system normally determines the
binary values of general identifiers when the system manager creates them; the
system manager determines the binary values of UIC identifiers.

Figure 32–3 shows the facility-specific identifiers.

Figure 32–3 Facility-Specific Identifiers

31 0151627

1 0 0 1 Facility code Facility−specific value

ZK−5909A−GE

The binary value of a facility-specific identifier is determined at the time the
application is designed. The facility number of the identifier must match
the facility number the application has chosen for its condition and message
codes. The remaining 16-bit facility-specific value may be assigned at will by
the application designer. By reserving specific binary identifier values, the
application designer may code fixed identifier values into an application’s calls to
$CHECK_PRIVILEGE, $GRANT_ID, and so forth. It avoids the added complexity
of first having to translate an identifier name to binary with $ASCTOID.

An application can choose to register the identifiers in the rights database or
not, depending on its needs. If the identifiers are registered, they are visible
to the system manager who may grant them to users. In any case, they will
be displayed properly if they appear on access control lists. If they are not
registered, they will remain invisible to the system manager. Unregistered
identifiers that appear on access control lists are displayed as a hexadecimal
value.

To register its identifiers, the installation procedure of the application must
run a program that enters the identifiers into the rights database using the
$ADD_IDENT service. You cannot specify facility-specific identifier values to
AUTHORIZE with the ADD/IDENTIFIER command.

32–4 System Security Services

System Security Services
32.2 Identifiers

Typically, facility-specific identifiers serve to extend the OpenVMS privilege
mechanism for an application. For example, consider a database manager that
includes a function to allow appropriately privileged users to modify a schema.
Access to this function could be controlled through a facility-specific identifier
named, for example, DBM$MOD_SCHEMA. The system manager grants the
identifier to authorized persons using the AUTHORIZE command GRANT/ID.
The database services that modify schemas use the $CHECK_PRIVILEGE service
to check that the caller holds the identifier.

In another example, a privileged program run by users when they log in uses
$GRANT_ID to grant the user certain facility-specific identifiers, depending on
conditions determined by the program; for example, time of day or access port
name. These identifiers can be placed on the ACLs of files to control file access,
or they might be checked by other software with $CHECK_PRIVILEGE.

32.2.6 Identifier Attributes
An identifier has attributes associated with it in the rights database. The process
rights list includes the attributes of any identifiers that the process holds.

The use of rights identifiers can be extended with the following identifier attribute
keywords:

DYNAMIC Allows unprivileged holders of an identifier to add or remove
the identifier from the process rights list using the DCL SET
RIGHTS command. Conversely, an unprivileged user who does
not have the attribute cannot modify the identifier.

HOLDER_HIDDEN Prevents someone from using the SYS$FIND_HOLDER system
service to get a list of users who hold an identifier, unless that
person holds the identifier.

NAME_HIDDEN Allows only the holders of an identifier to have it translated,
either from binary to ASCII or from ASCII to binary.

NO_ACCESS Specifies that the identifier does not affect the access rights of
the user holding the identifier.

RESOURCE Allows the holder of an identifier to charge resources, such as
disk blocks, to an identifier.

SUBSYSTEM Allows holders of the identifier to create and maintain protected
subsystems.

Using the Resource Attribute
The following example demonstrates the advantages of defining an identifier and
holders for a project.

The Physics department of a school has a common library with an associated disk
quota on the system. In order to use the Resource attribute, you must enable disk
quotas and establish a quota file entry using the SYSMAN utility. You want to
allow the faculty members to charge disk quota that they use in conjunction with
the library to the identifier PHYSICS associated with the common library and to
prevent the students from charging resources to that identifier.

• Define an identifier PHYSICS with the Resource attribute in the rights
database using the SYS$ADD_IDENT service.

• Enable disk quotas using SYSMAN as shown in the example.

System Security Services 32–5

System Security Services
32.2 Identifiers

$ MCR SYSMAN
SYSMAN> DISKQUOTA CREATE/DEVICE=DKB0:
SYSMAN> DISKQUOTA MODIFY/DEVICE=DKB0: PHYSICS /PERMQUOTA=150000 -
_SYSMAN> /OVERDRAFT=5000
SYSMAN> EXIT

• Create the common library and assign the identifier PHYSICS using the
run-time library routine LIB$CREATE_DIR.

• Grant the identifier PHYSICS to holders FRED, a faculty member, and
GEORGE, a student, using the SYS$ADD_HOLDER service.

If you specify the Resource attribute for identifier FRED, he can charge disk
resources to the PHYSICS identifier; if you do not specify the Resource attribute
for identifier GEORGE, he will not inherit the Resource attribute associated
with the identifier PHYSICS and cannot charge disk resources to the PHYSICS
identifier. The following input file, USERLIST.DAT, contains valid UIC identifiers
of students and faculty members:

FRED NORESOURCE
GEORGE RESOURCE
NANCY NORESOURCE
HAROLD RESOURCE
SUSAN RESOURCE
CHERYL NORESOURCE
MARVIN NORESOURCE

The following program reads USERLIST.DAT and associates the UIC identifiers
with the identifier PHYSICS:

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <lib$routines.h>
#include <kgbdef.h>
#include <nam.h>
#include <string.h>
#include <stdlib.h>

#define IDENT_LEN 31
#define NO_ATTR 0

#define RESOURCE 1
#define NORESOURCE 0

unsigned int sys$asctoid(),
sys$add_ident(),
sys$add_holder(),
sys$idtoasc(),
convert_id(struct dsc$descriptor_s, unsigned int);

void add_holder(unsigned int, unsigned int, unsigned int);

struct {
unsigned int uic;
unsigned int terminator;

}holder;

static char ascii_ident[IDENT_LEN],
abuffer[IDENT_LEN],
dirbuf[NAM$C_MAXRSS],
targbuf[IDENT_LEN];

$DESCRIPTOR(target,targbuf);

unsigned int status;

main() {

32–6 System Security Services

System Security Services
32.2 Identifiers

FILE *ptr;
char attr[11];
unsigned int owner_uic, attrib, resid, bin_id;
$DESCRIPTOR(dirspec,dirbuf);
$DESCRIPTOR(aident, abuffer);

printf("\nEnter directory spec: ");
gets(dirbuf);
dirspec.dsc$w_length = strlen(dirbuf);

printf("\nEnter its owner identifier: ");
gets(targbuf);
target.dsc$w_length = strlen(targbuf);

/* Add target identifier WITH resource attribute to the rights database */

attrib = KGB$M_RESOURCE;
status = sys$add_ident(&target, 0, attrib, &resid);
if((status & 1) != SS$_NORMAL)

lib$signal(status);
else

printf("\nAdding identifier %s to rights database...\n",
target.dsc$a_pointer);

/* Create the common directory with the target id as owner */

owner_uic = resid;
status = lib$create_dir(&dirspec, &owner_uic, 0, 0);
if((status & 1) != SS$_NORMAL)

lib$signal(status);
else

printf("Creating the directory %s...\n",dirspec.dsc$a_pointer);

/* Open an input file of UIC identifiers and attribute types */
if((ptr = fopen("USERLIST.DAT","r")) == NULL) {

perror("OPEN");
exit(EXIT_FAILURE);

}

/* Read the input file of UIC identifiers */
while((fscanf(ptr,"%s %s\n",abuffer,attr)) != EOF) {

aident.dsc$w_length = strlen(abuffer);
attrib = (strcmp(attr,"RESOURCE")) == 0 ? KGB$M_RESOURCE : NO_ATTR;
bin_id = convert_id(aident, attrib);
add_holder(bin_id, resid, attrib);

}

/* Close the input file */
fclose(ptr);

}

unsigned int convert_id(struct dsc$descriptor_s uic_id,
unsigned int attr) {

unsigned int bin_id;

status = sys$asctoid(&uic_id, &bin_id, &attr);
if((status & 1) != SS$_NORMAL)

lib$signal(status);
else {

printf("Converting identifier %s to binary format...\n",
uic_id.dsc$a_pointer);

return bin_id;
}

}

void add_holder(unsigned int bin_id, unsigned int resid,
unsigned int attrib) {

System Security Services 32–7

System Security Services
32.2 Identifiers

int i;
$DESCRIPTOR(nambuf, ascii_ident);

holder.uic = bin_id;
holder.terminator = 0;

status = sys$add_holder(resid, &holder, attrib);
if((status & 1) != SS$_NORMAL)

lib$signal(status);
else {

status = sys$idtoasc(bin_id, 0, &nambuf, 0, 0, 0);
if((status & 1) != SS$_NORMAL)

lib$signal(status);
/* Remove padding */

nambuf.dsc$w_length = strlen(ascii_ident);
for(i=0;i < nambuf.dsc$w_length + 1; i++)

if (ascii_ident[i] == 0x20)
ascii_ident[i] = ’\0’;

printf("\nAdding holder %s to target identifier %s...\n", \
nambuf.dsc$a_pointer,target.dsc$a_pointer);

}
}

32.3 Rights Database
The rights database is an indexed file containing two types of records that define
all identifiers: identifier records and holder records.

One identifier record appears in the rights database for each identifier. The
identifier record associates the identifier name with its 32-bit binary value and
specifies the attributes of the identifier. Figure 32–4 depicts the format of the
identifier record.

Figure 32–4 Format of the Identifier Record

0

Identifier Name

ZK−1904−GE

0

Attributes

Identifier Value

Identifier Name

Identifier Name

Identifier Name

32–8 System Security Services

System Security Services
32.3 Rights Database

One holder record exists in the rights database for each holder of each identifier.
The holder record associates the holder with the identifier, specifies the attributes
of the holder, and identifies the UIC identifier of the holder. Figure 32–5 depicts
the format of the holder record.

Figure 32–5 Format of the Holder Record

(Reserved)

UIC Identifier of Holder

Attributes

Identifier Value

(Reserved)

(Reserved)

(Reserved)

ZK−1907−GE

The rights database is an indexed file with three keys. The primary key is the
identifier value, the secondary key is the holder ID, and the tertiary key is the
identifier name. Through the use of the secondary key of the holder ID, all the
identifiers held by a process can be retrieved quickly when the system creates the
process’s rights list.

32.3.1 Initializing a Rights Database
You initialize the rights database in one of the following ways:

• When a system is installed

• With the Authorize utility

• With the SYS$CREATE_RDB system service

When you call SYS$CREATE_RDB, you can use the sysid argument to pass the
system identification value associated with the rights database. If you omit sysid,
the system uses the current system time in 64-bit format. If the rights database
already exists, SYS$CREATE_RDB fails with the error code RMS$_FEX. To
create a new rights database when one already exists, you must explicitly delete
or rename the old one.

You can specify the location and name of the rights database by defining the
logical name RIGHTSLIST as a system logical name in executive mode; its
equivalence string must contain the device, directory, and file name of the rights
database.

The file RIGHTSLIST.DAT has the protection of (S:RWED,O:RWED,G:R,W).

System Security Services 32–9

System Security Services
32.3 Rights Database

In order to use SYS$CREATE_RDB, write access to the database is necessary.
If the database is in SYS$SYSTEM, which is the default, you need the SYSPRV
privilege to grant write access to the directory.

When SYS$CREATE_RDB initializes a rights database, system-defined
identifiers, which describe the environment in which a process can operate,
are automatically created.

To add any other identifiers to the rights database, you must define them with
the Authorize utility or with the appropriate system service.

32.3.2 Using System Services to Affect a Rights Database
The identifier and holder records in the rights database contain the following
elements:

• Identifier binary value

• Identifier name

• Holders of each identifier

• Attribute of each identifier and each holder of each identifier

You can use the Authorize utility or one of the system services described in
Table 32–1 to add, delete, display, modify, or translate the various elements of the
rights database.

Table 32–1 Using System Services to Manipulate Elements of the Rights
Database

Action Element Service Used

Translate Identifier name to identifier binary value SYS$ASCTOID

Identifier binary value to identifier name SYS$IDTOASC

Add Identifier holder record SYS$ADD_HOLDER

New identifier record SYS$ADD_IDENT

Find Identifier value held by holder SYS$FIND_HELD

Holders of an identifier SYS$FIND_HOLDER

All identifiers SYS$IDTOASC

Modify Attribute in holder record SYS$MOD_HOLDER

Attribute in identifier record SYS$MOD_IDENT

Delete Holder from identifier record SYS$REM_HOLDER

Identifier and all its holders SYS$REM_IDENT

The following table shows what access you need for which services:

Service Required Access

SYS$ADD_HOLDER Write

SYS$ADD_IDENT Write

SYS$ASCTOID Read1

1On VAX systems, read access is required when certain restrictions are present (for example, if the
identifiers have the name hidden or holder hidden attributes).

32–10 System Security Services

System Security Services
32.3 Rights Database

Service Required Access

SYS$CREATE_RDB Write2

SYS$FIND_HELD Read1

SYS$FIND_HOLDER Read1

SYS$FINISH_RDB Read1

SYS$IDTOASC Read1

SYS$MOD_HOLDER Write

SYS$MOD_IDENT Write

SYS$REM_HOLDER Write

SYS$REM_IDENT Write

1On VAX systems, read access is required when certain restrictions are present (for example, if the
identifiers have the name hidden or holder hidden attributes).
2File creation access.

32.3.2.1 Translating Identifier Values and Identifier Names
To the system, an identifier is a 32-bit binary value; however, to make identifiers
easy to use, each binary value has an associated identifier name. The identifier
value and the ASCII identifier name string are associated in the rights database.
You can use the SYS$ASCTOID and SYS$IDTOASC system services to translate
from one format to another. When you pass to SYS$ASCTOID the address of
a string descriptor pointing to an identifier name, the corresponding identifier
binary value is returned. Conversely, you use the SYS$IDTOASC service to
translate a binary identifier value to an ASCII identifier name string.

Preventing a Translation
You can prevent a translation operation by unauthorized users by specifying the
KGB$V_NAME_HIDDEN within an attributes mask.

Listing Identifiers in the Rights Database
You can also use the SYS$IDTOASC service to list the identifier names of all of
the identifiers in the rights database. Specify the id argument as ��, initialize
the context argument to 0, and repeatedly call SYS$IDTOASC until the status
code SS$_NOSUCHID is returned. The SYS$IDTOASC service returns the
identifier names in alphabetical order. When SS$_NOSUCHID is returned,
SYS$IDTOASC clears the context longword and deallocates the record stream. If
you complete your calls to SYS$IDTOASC before SS$_NOSUCHID is returned,
use SYS$FINISH_RDB to clear the context longword and to deallocate the record
stream.

The following programming example uses SYS$IDTOASC to identify all
identifiers in a rights database:

Program ID_LIST

*
* Produce a list of all the identifiers
*

integer SYS$IDTOASC
external SS$_NORMAL, SS$_NOSUCHID

character*31 NAME
integer IDENTIFIER, ATTRIBUTES

integer ID/-1/, LENGTH, CONTEXT/0/
integer NAME_DSC(2)/31, 0/

System Security Services 32–11

System Security Services
32.3 Rights Database

integer STATUS
*
* Initialization
*

NAME_DSC(2) = %loc(NAME)
STATUS = %loc(SS$_NORMAL)

*
* Scan through the entire RDB ...
*

do while (STATUS .and. (STATUS .ne. %loc(SS$_NOSUCHID)))

STATUS = SYS$IDTOASC(%val(ID), LENGTH, NAME_DSC,
+ IDENTIFIER, ATTRIBUTES, CONTEXT)

if (STATUS .and. (STATUS .ne. %loc(SS$_NOSUCHID))) then

NAME(LENGTH+1:LENGTH+1) = ’,’

print 1, NAME, IDENTIFIER, ATTRIBUTES
1 format(1X,’Name: ’,A31,’ Id: ’,Z8,’, Attributes: ’,Z8)

end if

end do
*
* Do we need to finish the RDB ???
*

if (STATUS .ne. %loc(SS$_NOSUCHID)) then
call SYS$FINISH_RDB(CONTEXT)

end if

end

32.3.2.2 Adding Identifiers and Holders to the Rights Database
To add identifiers to the rights database, use the SYS$ADD_IDENT service in a
program. When you call SYS$ADD_IDENT, use the name argument to pass the
identifier name you want to add. You can specify an identifier value with the id
argument; however, if you do not specify a value, the system selects an identifier
value from the general identifier space.

In addition to defining the identifier value and identifier name, you use
SYS$ADD_IDENT to specify attributes in the identifier record. Attributes are
enabled for a holder of an identifier only when they are set in both the identifier
record and the holder record. The attrib argument is a longword containing a bit
mask specifying the attributes. The symbol KGB$V_RESOURCE, defined in the
system macro library $KGBDEF, sets the Resource bit in the attribute longword,
and the symbol KGB$V_DYNAMIC sets the Dynamic bit. (You can use the prefix
KGB$M rather than KGB$V.) See the description of SYS$ADD_IDENT in the HP
OpenVMS System Services Reference Manual for a complete list of symbols.

When SYS$ADD_IDENT successfully completes execution, a new identifier record
containing the identifier value, the identifier name, and the attributes of the
identifier exists in the rights database.

When the identifier record exists in the rights database, you define the holders of
that identifier with the SYS$ADD_HOLDER system service. You pass the binary
identifier value with the id argument and you specify the holder with the holder
argument, which is the address of a quadword data structure in the following
format. Figure 32–6 shows the format of the holder argument.

32–12 System Security Services

System Security Services
32.3 Rights Database

Figure 32–6 Format of the Holder Argument

ZK−1903−GE

31 0

0

UIC identifier of holder

In the rights database, the holder identifier is in UIC format. You specify the
attributes of the holder with the attrib argument in the same manner as with
SYS$ADD_IDENT.

After SYS$ADD_HOLDER completes execution, a new holder record containing
the binary value of the identifier that the holder holds, the attributes of the
holder, and the UIC of the holder exists in the rights database.

32.3.2.3 Determining Holders of Identifiers
To determine the holders of a particular identifier, use the SYS$FIND_HOLDER
service in a program. When you call SYS$FIND_HOLDER, use the id argument
to pass the binary value of the identifier whose holder you want to determine. On
successful execution, SYS$FIND_HOLDER returns the holder identifier with the
holder argument and the attributes of the holder with the attrib argument.

You can identify all of the identifier’s holders by initializing the context
argument to 0 and repeatedly calling SYS$FIND_HOLDER, as detailed in
Section 32.3.3. Because SYS$FIND_HOLDER identifies the records by the same
key (holder ID), it returns the records in the order in which they were written.

32.3.2.4 Determining Identifiers Held by a Holder
To determine the identifiers held by a holder, use the SYS$FIND_HELD service
in a program. When you call SYS$FIND_HELD, use the holder argument to
specify the holder whose identifier is to be found.

On successful execution, SYS$FIND_HELD returns the identifier’s binary
identifier value and attributes.

You can identify all the identifiers held by the specified holder by initializing the
context argument to 0 and repeatedly calling SYS$FIND_HELD, as detailed in
Section 32.3.3. Because SYS$FIND_HELD identifies the records by the same key
(identifier), it returns the records in the order in which they were written.

32.3.2.5 Modifying the Identifier Record
To modify an identifier record by changing the identifier’s name, value, or
attributes, or all three in the rights database, use the SYS$MOD_IDENT service
in a program. Use the id argument to pass the binary value of the identifier
whose record you want to modify. To enable attributes, use the set_attrib
argument, which is a longword containing a bit mask specifying the attributes.
The symbol KGB$V_RESOURCE, defined in the system macro library $KGBDEF,
sets the Resource bit in the attribute longword. The symbol KGB$V_DYNAMIC
sets the Dynamic bit. (You can use the prefix KGB$M rather than KGB$V.)
See the description of SYS$MOD_IDENT in the HP OpenVMS System Services
Reference Manual for a complete list of symbols.

System Security Services 32–13

System Security Services
32.3 Rights Database

If you want to disable the attributes for the identifier, use the clr_attrib
argument, which is a longword containing a bit mask specifying the attributes.
If the same attribute is specified in set_attrib and clr_attrib, the attribute is
enabled.

You can also change the identifier name, value, or both with the new_name and
new_value arguments. The new_name argument is the address of a descriptor
pointing to the identifier name string; new_value is a longword containing the
binary identifier value. If you change the value of an identifier that is the holder
of other identifiers (a UIC, for example), SYS$MOD_IDENT updates all the
corresponding holder records with the new holder identifier value.

When SYS$MOD_IDENT successfully completes execution, a new identifier
record containing the identifier value, the identifier name, and the attributes of
the identifier exists in the rights database.

32.3.2.6 Modifying a Holder Record
To modify a holder record, use the SYS$MOD_HOLDER service in a program.
When you call SYS$MOD_HOLDER, use the id argument and the holder
argument to pass the binary identifier value and the UIC holder identifier whose
holder record you want to modify.

Use the SYS$MOD_HOLDER service to enable or disable the attributes of an
identifier in the same way as with SYS$MOD_HOLDER.

When SYS$MOD_HOLDER completes execution, a new holder record containing
the identifier value, the identifier name, and the attributes of the identifier exists
in the rights database.

The following programming example uses SYS$MOD_HOLDER to modify holder
records in the rights database:

Program MOD_HOLDER

*
* Modify the attributes of all the holders of identifiers to reflect
* the current attribute setting of the identifiers themselves.
*

external SS$_NOSUCHID
parameter KGB$M_RESOURCE = 1, KGB$M_DYNAMIC = 2
integer SYS$IDTOASC, SYS$FIND_HELD, SYS$MOD_HOLDER

*
* Store information about the holder here.
*

integer HOLDER(2)/2*0/
equivalence (HOLDER(1), HOLDER_ID)
integer HOLDER_NAME(2)/31, 0/
integer HOLDER_ID, HOLDER_CTX/0/
character*31 HOLDER_STRING

*
* Store attributes here.
*

integer OLD_ATTR, NEW_ATTR, ID_ATTR, CONTEXT

*
* Store information about the identifier here.
*

integer IDENTIFIER, ID_NAME(2)/31, 0/
character*31 ID_STRING

32–14 System Security Services

System Security Services
32.3 Rights Database

integer STATUS
*
* Initialize the descriptors.
*

HOLDER_NAME(2) = %loc(HOLDER_STRING)
ID_NAME(2) = %loc(ID_STRING)

*
* Scan through all the identifiers.
*

do while
+ (SYS$IDTOASC(%val(-1),, HOLDER_NAME, HOLDER_ID,, HOLDER_CTX)
+ .ne. %loc(SS$_NOSUCHID))

*
* Test all the identifiers held by this identifier (our HOLDER).
*

if (HOLDER_ID .le. 0) go to 2

CONTEXT = 0

do while
+ (SYS$FIND_HELD(HOLDER, IDENTIFIER, OLD_ATTR, CONTEXT)
+ .ne. %loc(SS$_NOSUCHID))

*
* Get name and attributes of held identifier.
*

STATUS = SYS$IDTOASC(%val(IDENTIFIER),, ID_NAME,, ID_ATTR,)

*
* Modify the holder record to reflect the state of the identifier itself.
*

if ((ID_ATTR .and. KGB$M_RESOURCE) .ne. 0) then
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER, %val(KGB$M_RESOURCE),)
NEW_ATTR = OLD_ATTR .or. KGB$M_RESOURCE

else
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER,, %val(KGB$M_RESOURCE))
NEW_ATTR = OLD_ATTR .and. (.not. KGB$M_RESOURCE)

end if

if ((ID_ATTR .and. KGB$M_DYNAMIC) .ne. 0) then
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER, %val(KGB$M_DYNAMIC),)
NEW_ATTR = OLD_ATTR .or. KGB$M_DYNAMIC

else
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER,, %val(KGB$M_DYNAMIC))
NEW_ATTR = OLD_ATTR .and. (.not. KGB$M_DYNAMIC)

end if

*
* Was it successful?
*

if (.not. STATUS) then
NEW_ATTR = OLD_ATTR
call LIB$SIGNAL(%val(STATUS))

end if
*
* Report it all.
*

System Security Services 32–15

System Security Services
32.3 Rights Database

print 1, HOLDER_STRING, ID_STRING,
+ OLD_ATTR, ID_ATTR, NEW_ATTR
1 format(1X, ’Holder: ’, A31, ’ Id: ’, A31,
+ ’ Old: ’, Z8, ’ Id: ’, Z8, ’ New: ’, Z8)

end do

2 continue

end do

end

32.3.2.7 Removing Identifiers and Holders from the Rights Database
To remove an identifier and all of its holders, use the SYS$REM_IDENT service
in a program. When you call SYS$REM_IDENT, use the id argument to pass
the binary value of the identifier you want to remove. When SYS$REM_IDENT
completes execution, the identifier and all of its associated holder records are
removed from the rights database.

To remove a holder from the list of an identifier’s holders, use the SYS$REM_
HOLDER service in a program. When you call SYS$REM_HOLDER, use the id
argument and the holder argument to pass the binary ID value and the UIC
identifier of the holder whose holder record you want to delete.

On successful execution, SYS$REM_HOLDER removes the holder from the list of
the identifier’s holders.

32.3.3 Search Operations
You can search the entire rights database when you use the SYS$IDTOASC,
SYS$FIND_HELD, and SYS$FIND_HOLDER services. You initialize the context
longword to 0 and repeatedly call one of the three services until the status code
SS$_NOSUCHID is returned. When SS$_NOSUCHID is returned, the service
clears the context longword and deallocates the record stream. If you complete
your calls to one of these services before SS$_NOSUCHID is returned, you must
use SYS$FINISH_RDB to clear the context longword and to deallocate the record
stream.

The structure of the rights database affects the order in which each of these
services returns the records when you search the rights database. The rights
database is an indexed file with three keys. The primary key is the identifier
binary value, the secondary key is the holder UIC identifier, and the tertiary key
is the identifier name.

During a searching operation, the service obtains the first record with an indexed
OpenVMS RMS GET operation. The key used for the GET operation depends on
the service. The SYS$FIND_HOLDER service uses the identifier binary value;
SYS$FIND_HELD uses the holder UIC identifier. After the indexed GET, the
service returns the records with sequential RMS GET operations. Consequently,
the file organization, the key used for the first GET operation, and the order in
which the records were originally written in the database determine the order of
records returned.

Table 32–2 summarizes how records are returned by the SYS$IDTOASC,
SYS$FIND_HELD, and SYS$FIND_HOLDER services when used in a searching
operation.

32–16 System Security Services

System Security Services
32.3 Rights Database

Table 32–2 Returned Records of SYS$IDTOASC, SYS$FIND_HELD, and
SYS$FIND_HOLDER

Service Record Order

SYS$IDTOASC Identifier name order.

SYS$FIND_HELD First GET operation—holder key. Subsequent records are
returned in the order in which they were written.

SYS$FIND_HOLDER First GET operation—identifier key. Subsequent records are
returned in the order in which they were written.

The following programming example uses SYS$IDTOASC, SYS$FINISH_RDB,
and SYS$FIND_HOLDER to search the entire rights database for identifiers with
holders and produces a list of those identifiers and their holders:

Module ID_HOLDER
(main = MAIN,

addressing_mode(external=GENERAL)) =
begin

!
! Produce a list of all the identifiers, that have holders,
! with their respective holders.
!

!
! Declarations:
!

library

’SYS$LIBRARY:LIB’;

forward routine

MAIN;

external routine

LIB$PUT_OUTPUT,

SYS$FAO,
SYS$IDTOASC,
SYS$FINISH_RDB,
SYS$FIND_HOLDER;

!
! To create static descriptors
!

macro S_DESCRIPTOR[NAME, SIZE] =
own

%name(NAME, ’_BUFFER’): block[%number(SIZE), byte],
%name(NAME): block[DSC$K_S_BLN, byte]

preset([DSC$B_CLASS] = DSC$K_CLASS_S,
[DSC$W_LENGTH] = %number(SIZE),
[DSC$A_POINTER] = %name(NAME, ’_BUFFER’)); %;

!
! Descriptors for ID, holder NAME, and output LINE
!

S_DESCRIPTOR(’ID_NAME’, 31);
S_DESCRIPTOR(’NAME’, 31);
S_DESCRIPTOR(’LINE’, 76);

own

STATUS,

System Security Services 32–17

System Security Services
32.3 Rights Database

ID,
ID_LENGTH,
ID_CONTEXT: initial(0),

HOLDER,
LENGTH,
CONTEXT: initial(0),

ATTRIBS,
VALUE,
LINE_: block[DSC$K_S_BLN, byte]

preset([DSC$B_CLASS] = DSC$K_CLASS_S,
[DSC$A_POINTER] = LINE_BUFFER);

!
! To check for existence of an ID or HOLDER
!

macro CHECK(EXPRESSION) =
(STATUS = %remove(EXPRESSION)) and (.STATUS neq SS$_NOSUCHID) %;

!
! List all the identifiers, which have holders, with their holders.
!

routine MAIN =
begin

!
! Examine all IDs (-1).
!

while
CHECK(<SYS$IDTOASC(-1, ID_LENGTH, ID_NAME, ID, ATTRIBS, ID_CONTEXT)>)

do
begin

CONTEXT = 0;

!
! Find all holders of ID.
!

while CHECK(<SYS$FIND_HOLDER(.ID, HOLDER, ATTRIBS, CONTEXT)>) do
begin

!
! Translate the HOLDER to find its NAME.
!

SYS$IDTOASC(.HOLDER, LENGTH, NAME, VALUE, ATTRIBS, 0);

!
! Print a message reporting ID and HOLDER.
!

SYS$FAO(%ascid’Id: !AD, Holder: !AD’,
LINE_[DSC$W_LENGTH], LINE,
.ID_LENGTH, .ID_NAME[DSC$A_POINTER],
.LENGTH, .NAME[DSC$A_POINTER]);

LIB$PUT_OUTPUT(LINE_);

end;

end;

return SS$_NORMAL;

end;

end

eludom

32–18 System Security Services

System Security Services
32.3 Rights Database

32.3.4 Modifying a Rights List
When a process is created, LOGINOUT builds a rights list for the process
consisting of the identifiers the user holds and any appropriate environmental
identifiers. A system rights list is the default rights list used in addition to
any process rights list. Modifications to the system rights list effectively become
modifications to the rights of each process.

A privileged user can alter the process or system rights list with the
SYS$GRANTID or SYS$REVOKID services. These services are not intended
for the general system user. Use of these services requires CMKRNL privilege.
The SYS$GRANTID service adds an identifier to a rights list or, if the identifier is
already part of the rights list, the SYS$GRANTID service modifies the attributes
of the identifier. The SYS$REVOKID service removes an identifier from a rights
list.

The SYS$GRANTID and SYS$REVOKID services treat the pidadr and prcnam
arguments the same way all other process control services treat these arguments.
For more details, see the HP OpenVMS Guide to System Security.

You can also modify the process or system rights list with the DCL command
SET RIGHTS_LIST. Additionally, you can use SET RIGHTS_LIST to modify
the attributes of the identifier if the identifier is already part of the rights list.
Note that you cannot use the SET RIGHTS_LIST command to modify the rights
database from which the rights list was created. For more information about
using the SET RIGHTS_LIST command, see the HP OpenVMS DCL Dictionary.

32.4 Persona (Alpha and I64 Only1)
A persona contains a user’s security profile. The persona contains all identity
and credential information about the process, including the username, UIC,
privileges masks, and rights identifiers. Every process in the system has at least
one persona, the natural persona of the process. The natural persona is created
during process creation. OpenVMS stores a persona in a single data structure,
the Persona Security Block (PSB).

The persona block (PSB) contains the following:

• UIC

• Persona and system rights chains

• Permanent, authorized, and working privileges

• Account name

• User name

• Auditing flags and counters

1 Earlier versions of OpenVMS contained base support for the persona. The base
support was provided by the SYS$PERSONA_CREATE, SYS$PERSONA_ASSUME, and
SYS$PERSON_DELETE system services. VAX support is limited to these base services.

System Security Services 32–19

System Security Services
32.4 Persona (Alpha and I64 Only1)

32.4.1 Impersonation Services (Alpha and I64 Only)
For client/server applications, the server processes requests on behalf of the
client. With OpenVMS, the server application developer can use impersonation
services for client requests. This mechanism allows the operating system to
perform object access checking (and auditing) for the server.

The impersonation system services allow a privileged OpenVMS process to
create and use personae. A process, for example a server, can acquire more
Persona System Blocks and switch between them using impersonation system
services, such as SYS$PERSONA_CREATE, SYS$PERSONA_ASSUME, and
SYS$PERSONA_CLONE. Each process has a persona array which is used to
store the addresses of all PSBs allocated to the process. Other impersonation
services support PSB lookup and attribute retrieval and modification, such as
SYS$PERSONA_FIND, SYS$PERSONA_QUERY, and SYS$PERSONA_MODIFY,
respectively.

32.4.1.1 Using Impersonation System Services
The following discussion assumes there is a running server that has the ability to
impersonate clients and is able to perform work requests for clients. This could
be a file server, for example.

When the client connects to the server, the server creates a user profile using the
SYS$PERSONA_CREATE service with the username argument. The server can
do the following to process a client’s requests:

• Switch the server’s execution context to the client’s profile, which has been
previously created, by having the server call SYS$PERSONA_ASSUME,
specifying the client’s persona.

• Make copies of the created profile and then execute client requests under
thread control with a multithreaded server. That is, the server calls
the SYS$PERSONA_CLONE service, specifying the client’s persona as
input, resulting in a copy. The server can now handle multiple requests
from the client, using an available copy of the client’s persona as input to
SYS$PERSONA_ASSUME.

• Check to determine if a given client’s profile already exists by calling
SYS$PERSONA_FIND. The SYS$PERSONA_FIND service enables the caller
to find the personae, within a process, that have certain attributes or settings.
For example, the service could specify the USERNAME item as an attribute.

• Check the client’s profile, since some client requests may require certain
privileges or rights, by calling SYS$PERSONA_QUERY, specifying the
persona to check and the items to retrieve. If required and allowable,
the server can update the person’s working privileges or rights by calling
SYS$PERSONA_MODIY, specifying the client’s persona and the attributes to
change.

• Remove a client’s profiles with a client disconnects. The server again
could use SYS$PERSONA_FIND to locate personae that match the client’s
USERNAME attribute. The server invokes SYS$PERSONA_DELETE to
remove the specified persona from the server’s process.

For more information about the persona system services, see the HP OpenVMS
System Services Reference Manual: GETUTC–Z.

32–20 System Security Services

System Security Services
32.4 Persona (Alpha and I64 Only1)

32.4.2 Per-Thread Security (Alpha and I64 Only)
OpenVMS provides per-thread security capabilities. With per-thread security,
a multithreaded process allows each thread of execution to have an individual
security profile. That is, a PSB is bound to a thread of execution. Each process
has at least one kernel thread. The kernel thread block (KTB) points to the PSB
for the currently active thread. Individual user threads can point to different
PSBs, which give each user thread a separate identity. Per-thread security
profiles are supported by impersonation system services and changes to the
underlying system framework.

32.4.2.1 Previous Security Model
Prior to OpenVMS V7.2, the information that constitutes a user’s security profile
was bound at the process level, common to all threads of execution within a
process. Figure 32–7 shows this relationship.

Figure 32–7 Previous Per-Thread Security Model

ZK−9134A−GE

Security profile

Thread 1

Security profile Security profile

Thread 2 Thread 4

Profile

Execution

Security profile

Thread 3

Generic
Security Profile

(ARB, PCB, JIB, ...)

DATA DATA DATA DATA

Modifications that are made to the security profile by one thread are potentially
visible to other threads, depending on two key factors:

• Whether multiple threads can truly execute simultaneously

• How the threads perform profile management among themselves

32.4.2.2 Per-Thread Security Model
As of OpenVMS Version 7.2, the users’ security profile (that is, their privileges,
rights, and identifier information) is shifted from the process level to the user
thread level. The security information previously stored in several structures,
including the Access Rights Block (ARB), the Process Control Block (PCB), the
Process Header Descriptor (PHD), the Job Information Block (JIB), and the
Control (CTL) region fields, has moved to the new Persona Security Block (PSB)
data structure.

System Security Services 32–21

System Security Services
32.4 Persona (Alpha and I64 Only1)

Each thread of execution can share a security profile with other threads or have a
thread-specific security profile. Figure 32–8 shows these relationships.

Figure 32–8 Per-Thread Security Profile Model

ZK−9135A−GE

Thread 1 Thread 2 Thread 3

Security
Profile 1
(PSB)

Security Security
Profile 2 Profile 3
(PSB) (PSB)

Thread 4

Profile

Execution

As is the case with the previous model, modifications to a shared profile are
potentially visible to all threads that share the profile. However, modifications
made to a thread-specific profile are only applicable to the particular thread.

For more information about per-thread security, see the HP OpenVMS Guide to
System Security.

32.4.3 Persona Extensions (Alpha and I64 Only)
A persona extension is a mechanism to attach support for additional security
credentials into the already existing persona support. This mechanism consists
of extension-specific execlet-based code and an extension-specific data structure
(PXB) attached to an existing persona block (PSB).

To extend these capabilities, persona extension blocks (PXBs) that represent
identity and credential information of a security agent other than OpenVMS can
be attached to a PSB. The process can therefore have multiple identities: for
example, one for OpenVMS and one for NT.

An extension is more than just a data structure attached to a PSB. Routines
provided by the extension are called to process the extension data structure. This
leaves the layout of the PXB completely up to the author of the extension support
routines. A new credential/security extension can be added to a system by simply
creating the new extension routines that describe a PXB. This capability will be
added in a future release of OpenVMS.

The new and existing SYS$PERSONA system services invoke extension-specific
support routines on behalf of the registered extensions. The services also handle
new item codes that describe values stored in the PXB. Besides operating on
items for individually named extension-specific data, the services use other item
codes to establish a current PXB on which subsequent items operate. Before
using an extension-specific item code, that extension must be switched to by using
the SWITCH_EXTENSION item code. A generic set of item codes pointing to

32–22 System Security Services

System Security Services
32.4 Persona (Alpha and I64 Only1)

generally useful PXB values (for example, principal name and domain) can be
used to fetch these values without concern for the extension-specific name.

32.5 Managing Object Protection
An ACL is a list of entries defining the type of access allowed to an object in the
system such as a file, device, or mailbox. An access control entry (ACE) consists
of an identifier and one or more access types.

(IDENTIFIER=GREEN,ACCESS=WRITE+READ+CONTROL)
(IDENTIFIER=YELLOW,ACCESS=READ)
(IDENTIFIER=RED,ACCESS=NOACCESS)

Managing object protection involves using system services to manipulate
protection codes, UICs, and ACEs; that is, creating, translating, and maintaining
ACEs, establishing object ownership, and manipulating the protection codes of
protected objects.

32.5.1 Protected Objects
A protected object is an entity that can contain or receive information. When
such information is not considered shareable, access to those objects can be
restricted. The system recognizes eleven classes of protected objects as shown in
the following table:

Class Name Description

Capability1 A resource to which the system controls access;
currently, the only defined capability is the vector
processor.

Common event flag cluster A set of 32 event flags that enable cooperating
processes to post event notifications to each other.

Device A class of peripherals connected to a processor that are
capable of receiving, storing, or transmitting data.

File Files-11 On-Disk Structure Level 2 (ODS-2) files and
directories.

Group global section A shareable memory section potentially available to all
processes in the same group.

Logical name table A shareable table of logical names and their
equivalence names for the system or a particular
group.

Queue A set of jobs to be processed in a batch, terminal,
server, or print job queue.

Resource domain A namespace controlling access to the lock manager’s
resources.

Security class A data structure containing the elements and
management routines for all members of the security
class.

System global section A shareable memory section potentially available to all
processes in the system.

Volume A mass storage medium, such as a disk or tape, that
is in ODS-2 format. Volumes contain files and may be
mounted on devices.

1Exists only on systems with vector processors

System Security Services 32–23

System Security Services
32.5 Managing Object Protection

32.5.2 Object Security Profile
The security profile summarizes the various types of protection mechanisms
applied to a protected object. The security profile associates a protected object
with an owner, a protection code, and optionally an ACL. When a user or process
requests access to a protected object, the system compares the user’s privileges
and identifiers in the system authorization database with appropriate elements
in the object’s security profile.

32.5.2.1 Displaying the Security Profile
You can display an object’s security profile by using the SYS$GET_SECURITY
system service. On your first call to SYS$GET_SECURITY, be sure to initialize
the context variable to 0. Use the OSS$M_RELCTX flag to release any locks
on the context structure when the routine completes execution. The following
example illustrates the type of information contained in the security profile of a
logical name table:

LNM$GROUP object of class LOGICAL_NAME_TABLE

Owner: [ACCOUNTING]
Protection: (System: RWCD, Owner: RWCD, Group: R, World: R)
Access Control List:

(IDENTIFIER=[USER,CHEHKOV],ACCESS=CONTROL)
(IDENTIFIER=[USER,VANNEST],ACCESS=READ+WRITE)

After you have returned owner and protection code information, you can call
SYS$GET_SECURITY iteratively to return each ACE in the ACL (if it exists) or
you can read the entire ACL. In addition, you can perform iterative searches to
retrieve objects and their templates.

32.5.2.2 Modifying the Security Profile
You can modify all the security characteristics listed in a protected object’s profile
by using the SYS$SET_SECURITY system service. You can add or delete ACEs
in the ACL selectively or you can delete the entire ACL. You have the option of
modifying a local copy of the profile without altering the master copy using the
OSS$M_LOCAL flags or you can modify the master copy directly. Also, use the
context to release the context structure after the service completes execution.

32.5.3 Types of Access Control Entries
There are seven types of security-related ACEs as described in the following
table:

ACE Description

Alarm Sets an alarm

Application Contains application-dependent information

Audit Sets a security audit

Creator Controls access to an object based on creators

Default Protection Specifies the default protection for all files and subdirectories
created in the directory

Identifier Controls the type of access allowed based on identifiers

Subsystem Maintains protected subsystems

For information about the structure of specific types of ACEs, see the
SYS$FORMAT_ACL system service in HP OpenVMS System Services Reference
Manual.

32–24 System Security Services

System Security Services
32.5 Managing Object Protection

You use SYS$FORMAT_ACL and SYS$PARSE_ACL to translate ACEs from one
format to another in the same way that SYS$IDTOASC and SYS$ASCTOID
translate identifiers from binary to text format and text to binary format.

To create and manipulate ACLs, use the ACL editor, the DCL command SET
ACL, or the SYS$GET_SECURITY and SYS$SET_SECURITY system services in
a program. The following table lists services that manipulate ACEs:

Service Description

SYS$FORMAT_ACL Converts an ACE from binary format to ASCII text

SYS$GET_SECURITY Retrieves the security characteristics of an object

SYS$PARSE_ACL Converts an ACE from ASCII text to binary format

SYS$SET_SECURITY Modifies the security characteristics of a protected
object

32.5.3.1 Design Considerations
Before you attempt to manipulate ACLs, you should understand the meaning and
relationship among existing identifiers. If you are populating a previously empty
ACL, you need to plan the access types and position of each ACE within the ACL.

The position of the ACE within the ACL is an important consideration when
creating an ACE. By default, ACEs are added to the top of an ACL. The ACL
management services accept options allowing you to control the placement of
ACEs. The system compares the identifiers granted to the process requesting
access with those associated with the object starting with the top ACE in the
object’s ACL. Once a matching identifier name is found in the object’s ACL, the
search stops.

32.5.3.2 Translating ACEs
To translate ACEs from binary format to a text string, use the SYS$FORMAT_
ACL service. The aclent argument is the address of a descriptor pointing to a
buffer containing the description of the ACE. The first byte of the buffer contains
the length of the ACE and the second byte contains the type, which in turn
defines the format of the ACE.

The acllen argument specifies the length of the text string written to the buffer
pointed to by aclstr. You use the width, trmdsc, and indent arguments to
specify a particular width, termination character, and number of blank characters
for an ACE. The accnam argument contains the address of an array of 32
quadword descriptors called an access name table. The access name table
defines the names of the bits in the access mask of the ACE. The access mask
defines the access types associated with a protected object. Use run-time library
(RTL) routine LIB$GET_ACCNAM described in the HP OpenVMS RTL Library
(LIB$) Manual to obtain the address of the access name table. If accnam is
omitted, the following names are used:

System Security Services 32–25

System Security Services
32.5 Managing Object Protection

Bit <0> READ
Bit <1> WRITE
Bit <2> EXECUTE
Bit <3> DELETE
Bit <4> CONTROL
Bit <5> BIT_5
Bit <6> BIT_6

.

.

.
Bit <31> BIT_31

The SYS$PARSE_ACL service translates an ACE from text string format to
binary format. The aclstr argument is the address of a string descriptor pointing
to the ACE text string. As with SYS$FORMAT_ACL, the aclent argument is the
address of a descriptor pointing to a buffer containing the description of the ACE.
The first byte of the buffer contains the length of the ACE and the second byte
contains the type, which in turn defines the format of the ACE. If SYS$PARSE_
ACL fails, the errpos argument points to the failing point in the string. The
accnam argument contains the address of an array of 32 quadword descriptors
that define the names of the bits in the access mask of the ACE. If accnam is
omitted, the names specified in the description of SYS$FORMAT_ACL are used.

32.5.3.3 Creating and Maintaining ACEs
The SYS$GET_SECURITY and SYS$SET_SECURITY system services replace
the SYS$CHANGE_ACL system service. The HP OpenVMS System Services
Reference Manual: A–GETUAI and the HP OpenVMS System Services Reference
Manual: GETUTC–Z describe these system services.

To create or modify an ACL associated with a protected object, you use the
SYS$SET_SECURITY service. You specify the object whose ACL is to be modified
with either the objhan argument, which specifies the I/O channel associated
with the object, or the objnam argument, which specifies the object name. If
you specify objnam, objhan must be omitted or specified as 0. The clsnam
argument specifies the type of object.

Use the acmode argument to specify the access mode used when checking file
access protection. By default, kernel mode is used, but the system compares
acmode against the caller’s access mode and uses the least privileged mode. HP
recommends that this argument be omitted (passed as zero).

The item code specifies the change to be made to the ACL. Table 32–3 describes
the symbols for the item codes that are defined in the system macro library
($ACLDEF). Note that without the itmlst argument, you can manipulate only
the security profile locks or release contxt resources.

Table 32–3 Item Code Symbols and Meanings

Item Code Description

OSS$_ACL_ADD_ENTRY Adds an access control entry (ACE)

OSS$_ACL_DELETE Deletes all unprotected ACEs from an ACL

OSS$_ACL_DELETE_ALL Deletes the ACL, including protected ACEs

OSS$_ACL_DELETE_ENTRY Deletes an ACE

(continued on next page)

32–26 System Security Services

System Security Services
32.5 Managing Object Protection

Table 32–3 (Cont.) Item Code Symbols and Meanings

Item Code Description

OSS$_ACL_FIND_ENTRY Locates an ACE

OSS$_ACL_FIND_NEXT Moves the current position to the next ACE in
the ACL

OSS$_ACL_FIND_TYPE Locates an ACE of the specified type

OSS$_ACL_MODIFY_ENTRY Replaces an ACE at the current position

OSS$_ACL_POSITION_BOTTOM Sets a marker that points to the end of the
ACL

OSS$_ACL_POSITION_TOP Sets a marker that points to the beginning of
the ACL

OSS$_OWNER Sets the UIC or general identifier of the
object’s owner

OSS$_PROTECTION Sets the protection code of the object

32.6 Protected Subsystems
A protected subsystem is a set of application programs that allows controlled
access to objects. It has under its control one or more protected objects and a
gatekeeper application. Users cannot access the objects within the subsystem
unless they execute the gatekeeper application. Once users have successfully
executed the application, their process rights list acquires the identifiers
necessary to access objects owned by the subsystem. The identifiers allow
processes to use the resources of the subsystem. When the application completes
execution or the user exits, the identifiers are removed from the user’s process
rights list. Protected subsystems are an alternative to creating privileged images
and protected shareable images (user-written system services), and help prevent
the overuse of privileges.

Roles and Responsibilities
You should think of a protected subsystem as an isolated security domain where
the system manager creates and grants SUBSYSTEM identifiers using the
Authorize utility as shown in the following example:

UAF> ADD/IDENTIFIER FOO/ATTRIBUTES=SUBSYSTEM
UAF> GRANT/IDENTIFIER FOO FRANK /ATTRIBUTES=SUBSYSTEM

The system manager can delegate responsibility for the maintenance of the
subsystem to subsystem managers who can associate existing identifiers with the
subsystem executable and its data. In the following example, the manager of a
protected subsystem creates an ACE in a subsystem’s image and data files:

$ SET SECURITY BLOP.EXE -
_$ /ACL=(SUBSYSTEM, IDENTIFIER=FOO) -
$ SET SECURITY BLOP.DAT -
_$ /ACL=(IDENTIFIER=FOO, ACCESS=READ+WRITE) -
$ SET SECURITY BLOP.EXE -
_$ /ACL=(IDENTIFIER=HARRY, ACCESS=EXECUTE) -

Finally, a user uses the protected subsystem to access data available only through
the subsystem.

System Security Services 32–27

System Security Services
32.6 Protected Subsystems

Subsystem Security
During the execution of a protected subsystem, $IMGACT adds subsystem
identifiers to the image rights list. What happens if the user presses the Ctrl/Y
key sequence during execution? Will the user retain whatever privileges were
granted by the subsystem? If the user presses Ctrl/Y, image identifiers are
removed from the process. Also, subprocesses do not inherit image identifiers
by default. However, SYS$CREPRC and LIB$SPAWN do contain flags PRC$M_
SUBSYSTEM and SUBSYSTEM, respectively, that allow subprocesses to inherit
image identifiers.

32.7 Security Auditing
Auditing is the recording of security-relevant activity as it occurs on a system.
See the HP OpenVMS Guide to System Security for a list of all types of security-
relevant activity or classes of events that are audited. The following table
describes the security services that provide security auditing:

Service Description

SYS$AUDIT_EVENT Appends an event message to the system audit log file
or sends an alarm to a security operator terminal

SYS$CHECK_PRIVILEGE Determines whether the caller has the specified
privileges or identifiers

The system service SYS$AUDIT_EVENT is used to report security events to the
auditing system. It examines the settings of the DCL command SET AUDIT to
determine if an event is enabled for auditing. If the event is enabled for alarms
or audits, SYS$AUDIT_EVENT generates an audit record and appends it to the
system audit log file (or sends an alarm to a security operator terminal) that
identifies the process involved and lists information supplied by its caller.

32.8 Checking Access Protection
The operating system provides two system services that allow a process to check
access to objects on the system: SYS$CHKPRO and SYS$CHECK_ACCESS.
The SYS$CHKPRO service performs the system access protection check on a
user attempting direct access to an object on the system; SYS$CHECK_ACCESS
performs a similar check on a third party attempting access to an object. The
following table describes the security services that provide access checking:

Service Description

SYS$CHECK_ACCESS Invokes a system access protection check on behalf of
another user

SYS$CHKPRO Invokes a system access protection check

The SYS$CHKPRO and SYS$CHECK_ACCESS system services have been
extended to support auditing. The HP OpenVMS Guide to System Security
describes how to use the auditing function. The HP OpenVMS System Services
Reference Manual: A–GETUAI describes how to use the two system services.
These services are described in the following sections.

32–28 System Security Services

System Security Services
32.8 Checking Access Protection

32.8.1 Creating a Security Profile
The SYS$CREATE_USER_PROFILE system service returns a user profile,
using information in the rights database and the system authorization
database to generate the profile. The system services SYS$CHECK_ACCESS or
SYS$CHKPRO accept as input the profile from SYS$CREATE_USER_PROFILE.

32.8.2 SYS$CHKPRO System Sevice
The SYS$CHKPRO system service invokes the access protection check used by
the system. The service does not grant or deny access; rather, it performs the
protection check. Subsequently, an application might grant or deny access to the
specified object.

To pass the input and output information to SYS$CHKPRO, use the itmlst
argument, which is the address of an item list of descriptors. The SYS$CHKPRO
service compares the item list of the rights and privileges of the accessor to a list
of the protection attributes of the object to be accessed. If the accessor can access
the object, SYS$CHKPRO returns the status SS$_NORMAL; if the accessor
cannot access the object, SYS$CHKPRO returns the status SS$_NOPRIV. The
SYS$CHKPRO service does not grant or deny access. The subsystem itself must
grant or deny access based on the output (SS$_NORMAL or SS$_NOPRIV) from
SYS$CHKPRO.

The SYS$CHKPRO service also returns an item list of the rights or privileges
that allowed the accessor access to the object, as well as the names of security
alarms raised by the access attempt. For information about the item codes
defined for SYS$CHKPRO, see the description of SYS$CHKPRO in the HP
OpenVMS System Services Reference Manual.

See the HP OpenVMS Guide to System Security for a flowchart describing how
SYS$CHKPRO evaluates an access request attempt.

32.8.3 SYS$CHECK_ACCESS System Service
The SYS$CHECK_ACCESS service performs a protection check on a third-party
accessor. An example of this is a file server program that uses SYS$CHECK_
ACCESS to ensure that an accessor (the third party) requesting a file has the
required privileges to do so.

You pass the input and output information to SYS$CHECK_ACCESS by using
the itmlst argument, which is the address of an item list of descriptors. You
also pass the name of the accessor and the name and type of the object being
accessed by using the usrnam, objnam, and objtyp arguments, respectively.
The SYS$CHECK_ACCESS service compares the rights and privileges of the
accessor to a list of the protection attributes of the object to be accessed. If
the accessor can access the object, SYS$CHECK_ACCESS returns the status
SS$_NORMAL; if the accessor cannot access the object, SYS$CHECK_ACCESS
returns the status SS$_NOPRIV.

The SYS$CHECK_ACCESS service does not grant or deny access. The subsystem
itself must explicitly grant or deny access based on the output (SS$_NORMAL or
SS$_NOPRIV) from SYS$CHECK_ACCESS.

The SYS$CHECK_ACCESS service also returns an item list of the rights or
privileges that allowed the accessor to access the object, as well as the names of
security alarms raised by the access attempt. For information about the item
codes defined for SYS$CHECK_ACCESS, see the description of SYS$CHECK_
ACCESS in the HP OpenVMS System Services Reference Manual.

System Security Services 32–29

System Security Services
32.9 SYS$CHECK_PRIVILEGE

32.9 SYS$CHECK_PRIVILEGE
The SYS$CHECK_PRIVILEGE system service determines whether the caller
has the specified privileges or identifiers. The service performs the privilege
check and looks at the SET AUDIT settings to determine whether the system
administrator enabled privilege auditing. When privilege auditing is enabled,
SYS$CHECK_PRIVILEGE generates an audit record. The audit record identifies
the process (subject) and privilege involved, provides the result of the privilege
check, and lists supplemental event information supplied by its caller. Privilege
audit records usually contain either the DCL command line or the system service
name associated with the privilege check.

SYS$CHECK_PRIVILEGE completes asynchronously; that is, it does not wait for
final status. For synchronous completion, use the SYS$CHECK_PRIVILEGEW
service.

32.10 Implementing Site-Specific Security Policies
Occasionally, you may need to write routines that implement site-specific policies
or special algorithms. The routines that you write can either replace or augment
built-in operating system policies. This section contains instructions for replacing
key operating system security routines with routines that are specific to your
site. Two types of routines are discussed: loadable system services and shareable
images.

32.10.1 Creating Loadable Security Services
This section describes how to create a system service image and how to update
the SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA file, which
controls site-specific loading of system images. These procedures update the
loading of system images for all nodes of a cluster.

Currently, you can replace the following three system services with services
specific to your site:

Service Description

SYS$ERAPAT Generates a security erasure pattern

SYS$MTACCESS Controls magnetic tape access

SYS$HASH_PASSWORD Applies a hash algorithm to an ASCII password

When you create the system service, you code the source module and define the
vector offsets, the entry point, and the program sections for the system service.
Then, you can assemble and link the module to create a loadable image.

Once you have created the loadable image, you install it. First, you copy the
image into the SYS$LOADABLE_IMAGES directory and add an entry for it
in the operating system’s images file using the System Management utility
(SYSMAN). Next, you invoke the system images command procedure to generate
a new system image data file. Finally, you reboot the system to load your service.

The following sections describe how to create and load the the Get Security Erase
Pattern (SYS$ERAPAT) system service.

32–30 System Security Services

System Security Services
32.10 Implementing Site-Specific Security Policies

Note

The following files in SYS$EXAMPLES: are present only on VAX systems,
though they work on Alpha and I64 systems, but are not supplied on
Alpha and I64 systems:

DOD_ERAPAT.MAR
HASH_PASSWORD.MAR
DOD_ERAPAT_LNK.COM
VMS$PASSWORD_POLICY_LINK.COM

You can find an example of the SYS$ERAPAT system service in
SYS$EXAMPLES:DOD_ERAPAT.MAR on a VAX system. The description
here also applies to the Hash Password (SYS$HASH_PASSWORD) and
Magnetic Tape Accessibility (SYS$MTACCESS) system services. You can find
an example of how to prepare and load the SYS$HASH_PASSWORD service in
SYS$EXAMPLES:HASH_PASSWORD.MAR on a VAX system.

32.10.1.1 Preparing and Loading a System Service
With the following example, use this procedure to prepare and load a system
service, in this case SYS$ERAPAT:

1. Create the source module.

a. Include the following macro to define system service vector offsets:

$SYSVECTORDEF ; Define system service vector offsets

b. Use the following macro to define the system service entry point:

SYSTEM_SERVICE ERAPAT, - ; Entry point name
<R4>, - ; Register to save
MODE=KERNEL,- ; Mode of system service
NARG=3 ; Number of arguments

(The code immediately following this macro is the first instruction of the
SYS$ERAPAT system service.)

c. Use the following macros to declare the desired program sections:

DECLARE_PSECT EXEC$PAGED_CODE ; Pageable code PSCET

DECLARE_PSECT EXEC$PAGED_DATA ; Pageable data PSECT

DECLARE_PSECT EXEC$NONPAGED_DATA ; Nonpageable data PSECT

DECLARE_PSECT EXEC$NONPAGED_CODE ; Nonpageable code PSCET

2. Assemble the source module by using the following command:

$ MACRO DOD_ERAPAT+SYS$LIBRARY:LIB.MLB/LIB

3. Link the module to create a SYS$ERAPAT.EXE executive loaded image. You
can link the module using the command procedure DOD_ERAPAT_LNK.COM
in SYS$EXAMPLES on a VAX system. (A command procedure is also
available to link the SYS$HASH_PASSWORD example.) To link the
SYS$ERAPAT module, enter the following command:

$ @SYS$EXAMPLES:DOD_ERAPAT_LNK.COM

System Security Services 32–31

System Security Services
32.10 Implementing Site-Specific Security Policies

4. Prepare the operating system image to be loaded.

a. Copy the SYS$ERAPAT.EXE image produced by the link command into
the SYS$COMMON:[SYS$LDR] directory. Note that privilege is required
to put files into this directory.

b. Add an entry for the SYS$ERAPAT.EXE image in the
SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX data file.

You add an entry by using the SYSMAN command SYS_LOADABLE
ADD. (See the HP OpenVMS System Management Utilities Reference
Manual for a description of this command.) For example, the
following commands add an entry in VMS$SYSTEM_IMAGES.IDX for
SYS$ERAPAT.EXE:

$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> SYS_LOADABLE ADD _LOCAL_ SYS$ERAPAT -
_SYSMAN> /LOAD_STEP = SYSINIT -
_SYSMAN> /SEVERITY = WARNING -
_SYSMAN> /MESSAGE = "failure to load SYS$ERAPAT.EXE"

This entry specifies that the SYS$ERAPAT.EXE image is to be loaded by
the SYSINIT process during the bootstrap. If there is an error loading the
image, the following messages are printed on the console terminal:

%SYSINIT-E-failure to load SYS$ERAPAT.EXE
-SYSINIT-E-error loading <SYS$LDR>SYS$ERAPAT.EXE, status = "status"

The following table shows other error messages that may be returned:

Message Meaning User Action

NO_PHYSICAL_
MEMORY

Physical memory is not
available.

Check SYSGEN
parameters.

NO_POOL Amount of nonpaged
pool is insufficient.

Check SYSGEN
parameters.

MULTIPLE_ISDS Encountered more than
one image section of a
given type.

Check link options.

BAD_GSD An inconsistency was
detected.

Verify that the image was
linked properly.

NO_SUCH_IMAGE The requested image
cannot be located.

Check image name
against images in
SYS$LOADABLE_
IMAGES.

c. Invoke the SYS$UPDATE:VMS$SYSTEM_IMAGES.COM command
procedure to generate a new system image data file (VMS$SYSTEM_
IMAGES.DATA). The system bootstrap uses this image data file to load
the appropriate images into the system.

d. Reboot the system, which loads the original SYS$ERAPAT.EXE image
into the system. Subsequent calls to the SYS$ERAPAT system service use
the normal operating system routine.

As the default, the system bootstrap loads all images described in
VMS$SYSTEM_IMAGES.DATA. You can disable this feature by setting
the special system parameter LOAD_SYS_IMAGES to 0.

32–32 System Security Services

System Security Services
32.10 Implementing Site-Specific Security Policies

32.10.1.2 Removing an Executive Loaded Image
With the following example, use this procedure to remove an executive loaded
image; in this case, SYS$ERAPAT.EXE:

1. Enter the following SYSMAN command:

SYSMAN> SYS_LOADABLE REMOVE _LOCAL_ SYS$ERAPAT

2. Invoke the SYS$UPDATE:VMS$SYSTEM_IMAGES.COM command
procedure to generate a new system image data file (VMS$SYSTEM_
IMAGES.DATA). The system bootstrap uses this image data file to load
the appropriate images into the system.

3. Reboot the system, which loads the installation-specific SYS$ERAPAT.EXE
image into the system. Subsequent calls to the SYS$ERAPAT system service
use the installation-specific routine.

As the default, the system bootstrap loads all images described in the
system image data file (VMS$SYSTEM_IMAGES.DATA). You can disable this
functionality by setting the special system parameter LOAD_SYS_IMAGES
to 0.

32.10.2 Installing Filters for Site-Specific Password Policies
A site security administrator can screen new passwords to make sure they
comply with a site-specific password policy. (See the HP OpenVMS Guide to
System Security for more information.) This section describes how a security
administrator can encode the policy, create a shareable image and install it in
SYS$LIBRARY, and enable the policy by setting a SYSGEN parameter.

Installing and enabling a site-specific password policy image requires both
SYSPRV and CMKRNL privileges.

32.10.2.1 Creating a Shareable Image
To compile and link a shareable image that filters passwords for words that are
sensitive to your site, perform the following steps:

1. Create the source module VMS$PASSWORD_POLICY.*.

Bliss and Ada examples of the policy module’s interface, called
VMS$PASSWORD_POLICY.*, are located in SYS$EXAMPLES.

Define two routine names in the source module: POLICY_PLAINTEXT and
POLICY_HASH. These routines must be global (see your language reference
for instructions on defining a global routine). The Set Password utility looks
for these routine names and displays the message SYMNOTFOU either if the
names are missing or if the routines are not defined as global.

2. Link the source file.

For examples, use the VMS$PASSWORD_POLICY_LNK.COM command
procedure, located in SYS$EXAMPLES on a VAX system.

32.10.2.2 Installing a Shareable Image
To install a shareable image, perform the following steps:

1. Copy the file to SYS$LIBRARY and install it using the following commands:

$ COPY VMS$PASSWORD_POLICY.EXE SYS$COMMON:[SYSLIB]/PROTECTION=(W:RE)
$ INSTALL ADD SYS$LIBRARY:VMS$PASSWORD_POLICY/OPEN/HEAD/SHARE

System Security Services 32–33

System Security Services
32.10 Implementing Site-Specific Security Policies

2. Set the system parameter LOAD_PWD_POLICY to 1 as follows:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> USE ACTIVE
SYSGEN> SET LOAD_PWD_POLICY 1
SYSGEN> WRITE ACTIVE
SYSGEN> WRITE CURRENT

3. To make the changes permanent, add the INSTALL command from step 1
to the SYS$SYSTEM:SYSTARTUP_VMS.COM file and modify the system
parameter file, MODPARAMS.DAT, so that the LOAD_PWD_POLICY
parameter is set to 1.

4. Run AUTOGEN as follows to ensure that the system parameters are set
correctly on subsequent system startups:

$ @SYS$UPDATE:AUTOGEN SAVPARAMS SETPARAMS

32–34 System Security Services

33
Authentication and Credential Management
(ACM) System Service (Alpha and I64 Only)

This chapter describes how to write a new Authentication and Credential
Management (ACM) client program. An ACM client program uses the
SYS$ACM[W] system service to do one or more of the following:

• Determine whether users are actually the individuals they claim to be.

• Acquire credentials1 for a new user security context (persona).

• Change a user account password.

The Authentication and Credential Management (SYS$ACM[W]) service provides
a standard programming interface for authentication, and can return credentials
needed to enforce security policies of OpenVMS system logins. The SYS$ACM
system service also provides a standard programming interface for user password
management.

The SYS$ACM service might require the user, depending on the user name, to
furnish two, one, or zero passwords. Other requirements might exist, such as
supplying a code number from a "see-through" hardware token, or inserting a
smart card into a reader. It is important that the program that calls SYS$ACM
be relieved of the need to know all of these requirements, particularly because
such a program might be used at multiple sites having different sets of rules.

Along with user authentication, the ACM service provides integrated credentials
through normal and extended persona support. Normal persona support allows
code to obtain native, that is, OpenVMS, process credentials, which contain
username, UIC, and rights identifiers. Extended persona support also enables a
process to obtain non-native credentials. As an example, this support would use
both Windows NT credentials and OpenVMS credentials.

Use this chapter together with the description of the SYS$ACM[W] system
service from the HP OpenVMS System Services Reference Manual: A–GETUAI.
While this chapter presents a conceptual view, that manual contains the detailed
formats and rules.

33.1 Identification, Authentication, and Authorization
When a user logs in to a system or runs an application that requires
authentication, a dialogue takes place between that user and the system (or
application). Policies may differ in some respects, but each requires the following
basic functions of user identification, authentication, and authorization:

• Request user’s user name.

• Request user’s password.

1 See the Authentication Glossary at the end of this manual for an explanation of this and
other terminology.

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–1

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.1 Identification, Authentication, and Authorization

• Verify user name and password.

• Check for expired passwords.

• Apply account restrictions.

• Issue credentials.

• Display system messages (optional).

An authentication policy is defined by a particular combination of user
identification, authentication, and authorization attributes.

Policy attributes include the following:

• Identification syntax (simple user name, combination of
domain/realm/principal-name)

• Authentication token mechanism (re-useable password, one-time password,
system-generated password, single or dual password, challenge-response,
hardware)

• Token re-use filters (password dictionary, password history, password legal
character set, password minimum/maximum lengths, forced change schedule,
expiration)

• Intrusion detection

• Case sensitivity

• Access restrictions (time-of-day, day-of-week, type of access)

• User account controls, such as account lock (disable) and account expiration

• Credential information (user and group identifiers, privileges, and so on)

Two authentication policies are presently supported: standard OpenVMS policy
and external authentication with Microsoft distributed authentication policy.

33.2 ACME Subsystem Components
The Authentication and Credential Management Extensions (ACME) subsystem
provides authentication and persona-based credential services. Applications
can use these services to interact with the user to perform one or more of
the following functions: user authentication, password change, and persona
creation and modification. Both standard OpenVMS authentication and external
authentication policies are supported, so applications use the same mechanisms
as used by the system’s LOGINOUT and SET PASSWORD components.

The ACME subsystem consists of the SYS$ACM system service, the ACME_
SERVER process, one or more ACME (policy-provider) agents, and SET [SHOW]
SERVER ACME configuration and management commands:

• SYS$ACM is a context-driven system service. The service is designed in
such a way so that applications transparently adapt themselves to various
authentication dialogues without requiring changes to the application.
Applications call SYS$ACM to perform functions such as authenticate
principal and change password. The service can return a complete security
profile of the user in the form of a persona upon successful authentication.

33–2 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.2 ACME Subsystem Components

• The ACME_SERVER process is a multithreaded server supporting one
or more authentication policies. Each authentication policy is installed
by configuring an ACME agent shareable image that "plugs in" to the
ACME_SERVER process using a standard interface. The server manages the
authentication sequence in an orderly fashion by calling each ACME agent
in turn according to a defined sequence of phases. ACME agents are also
responsible for adhering to certain rules regarding how agents can interact
during an authentication sequence.

• ACME agents each define a single authentication policy that augments or
replaces portions of the standard OpenVMS authentication policy. OpenVMS
currently supports two ACME agents: an OpenVMS ACME agent (VMS)
that provides the standard OpenVMS authentication policy, and a Microsoft
ACME agent (MSV1_0) that provides external authentication using Microsoft
distributed authentication protocol.

• The ACME subsystem is configured and managed using the DCL commands
SET [SHOW] SERVER ACME.

With the introduction of the SYS$ACM[W] system service, operations that were
formerly handled entirely within the LOGINOUT and SET PASSWORD programs
are now distributed across multiple processes. The user interface activities
remain in the original programs, as shown on the left side of Figure 33–1. Actual
authentication calculations, however, have been moved to the ACME server
process, as shown on the right side of that figure. The VMS ACME supports
traditional authentication interactions for the VMS domain of interpretation
(DOI). Other ACME agents may support additional DOIs or assist the VMS
ACME, for example by providing stronger authentication.

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–3

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.2 ACME Subsystem Components

Figure 33–1 SYS$ACM[W] Overview

ACM Client Process

Your Program VMS ACME

Ancillary ACME

VMS DOI

NT ACME

NT DOI

Other ACME

Other DOI

ACME ServerSYS$ACM[W]

ACME Server Process

VM-0844A-AI

33.3 SYS$ACM[W] Call Mechanics
The HP OpenVMS System Services Reference Manual: A–GETUAI provides
a comprehensive reference to various values and structures used to call the
SYS$ACM[W] system service. This section describes just some of those.

33.3.1 SYS$ACM[W] Function Codes
When your ACM client program calls the SYS$ACM[W] system service, it must
specify one of the following function codes to indicate which capability is to be
invoked:

• ACME$_FC_AUTHENTICATE_PRINCIPAL

Determine whether a subject really is a particular individual, typically based
on password or some more advanced mechanism. Often this call is also used
to return credentials.

• ACME$_FC_CHANGE_PASSWORD

Modify the password stored on the computer system or network that is used
to authenticate a particular individual.

• ACME$_FC_RELEASE_CREDENTIALS

Relinquish the credentials obtained by calling ACME$_FC_
AUTHENTICATE_PRINCIPAL.

• ACME$_FC_QUERY

Obtain information about a particular ACME agent.

33–4 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.3 SYS$ACM[W] Call Mechanics

• ACME$_FC_EVENT

Send information for storage or processing in a manner specific to a particular
ACME agent.

• ACME$_FC_FREE_CONTEXT

Cancel a dialogue mode Authenticate Principal or Change Password request
before it is complete.

33.3.2 SYS$ACM[W] Function Modifiers
When your ACM client program calls the SYS$ACM[W] system service, it may
specify a combination of the following function codes to request variations in the
basic processing.

The first function modifier is equally applicable to all function codes:

• ACME$M_NOAUDIT

Suppress auditing in the VMS ACME.

The second set of function modifiers consists of those particularly intended for the
Authenticate Principal and Change Password function codes:

• ACME$M_UCS2_4

Indicate that this client program presents information as UCS-2 characters
stored in 4-byte cells, rather than the default Latin-1 single-byte cells.

• ACME$M_ACQUIRE_CREDENTIALS

Supply credentials at the location specified by item code ACME$_PERSONA_
HANDLE_OUT.

• ACME$M_MERGE_PERSONA

Create the ACME$_PERSONA_HANDLE_OUT persona by merging the
new credentials into the persona supplied by item code ACME$_PERSONA_
HANDLE_IN.

• ACME$M_COPY_PERSONA

Create the ACME$_PERSONA_HANDLE_OUT persona by merging the
new credentials into a copy of the persona supplied by item code ACME$_
PERSONA_HANDLE_IN.

• ACME$M_OVERRIDE_MAPPING

Perform the operation even though the mapping performed by an ACME
agent has a VMS user name different from that specified in the ACME$_
PERSONA_HANDLE_IN persona.

• ACME$M_NOAUTHORIZATION

Suppress authorization checks in the VMS ACME.

• ACME$M_FOREIGN_POLICY_HINTS

Apply the behavior specified by the ACME$M_NOAUDIT and ACME$M_
NOAUTHORIZATION modifiers to add-on ACME agents where possible.

• ACME$M_DEFAULT_PRINCIPAL

Default the ACME$_PRINCIPAL_NAME_IN value to the principal name
from the current persona of the calling process.

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–5

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.3 SYS$ACM[W] Call Mechanics

33.3.3 Status Returned by the SYS$ACM[W] System Service
The SYS$ACM[W] system service follows the standard pattern of returning a
32-bit status value, but that return status indicates only whether the call was
accepted for transmission to the ACME server process.

33.3.3.1 When the Return Status Indicates Failure
If the return status is the failure code ACME$_INVALIDCTX and your program
was attempting to continue with an ongoing dialogue mode request, the possible
causes of this failure are the following:

• The continuation call was made with a different function code from the
original call.

• The continuation call was made with a different set of function modifiers from
the original call.

• The continuation call was made with an ACM context argument containing
a different pointer from that returned by the previous call.

33.3.3.2 When the Return Status Indicates Success
In cases where the return status indicates success, your program can determine
the overall resultant effect of a call to the SYS$ACM[W] system service by
examining the contents of fields within the ACMESB structure it provided via the
ACMSB argument. The following table describes the fields and their contents:

Field Name Data Type Contents

ACMESB$L_STATUS VMS Status Code The primary status regarding the
success of an operation.

ACMESB$L_SECONDARY_
STATUS

VMS Status Code An auxiliary status to further
explain the primary status.

ACMESB$L_ACME_ID ACME ID Type The identity of the ACME agent
that provided information for this
status block.

ACMESB$L_ACME_STATUS ACME-specific A status using a format specific to
the particular ACME agent.

If no special value is appropriate for the ACMESB$L_SECONDARY_STATUS
field, it contains the same value as the ACMESB$L_STATUS. Thus, your program
should check to see if the two are equal rather than reporting them both as
separate status values.

The values in fields ACMESB$L_STATUS and ACMESB$L_SECONDARY_
STATUS, along with the value in ACMESB$L_ACME_STATUS if provided,
all indicate the same success. For ACMESB$L_STATUS and ACMESB$L_
SECONDARY_STATUS, that means that the low-order bits will either both be
set (success) or both be cleared (failure). Because ACMESB$L_ACME_STATUS
syntax is determined on an ACME-specific basis, the success or failure semantics
of that value provided in that longword will match that for the other two fields.

33–6 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.3 SYS$ACM[W] Call Mechanics

33.3.3.2.1 When the Primary Status Indicates an Item Code Failure There is
a special case when an error with an item code causes the SYS$ACM[W] system
service to return one of the following values in the ACMESB$L_STATUS field:

• SS$_BADITMCOD—An ACME-specific item code is undefined or is
inappropriate in the circumstance (for example, incompatible with the
function code or another item). Alternatively, a required item code is not
provided.

• SS$_BADBUFLEN—An item length is wrong for the item code used.

• SS$_BADPARAM—The contents of an item are incorrect for the circumstance.

In those cases, the field ACMESB$L_ACME_STATUS contains the item code for
the item on which the problem was encountered.

33.3.3.2.2 When the Primary Status is ACME$_OPINCOMPL When the
primary status contains ACME$_OPINCOMPL, your program must make
at least one more call to the SYS$ACM[W] system service, based on the data in
the ACM communications buffer, as discussed in Section 33.3.6.

33.3.4 Item Codes
Item codes provided to the SYS$ACM[W] system service can be characterized by
particular bit patterns that indicate their type and purpose.

33.3.4.1 Common vs. ACME-Specific Item Codes
Item codes provided to the SYS$ACM[W] system service have a theoretical range
from 1 to 65535 and are divided into the following groups:

• The first half, from 1 to 32767, are called common item codes, because they
can be used for the same meaning by all ACME agents.

• The second half, from 32768 to 65535, are called ACME-specific item codes,
because they carry information only to a single ACME agent.

Another way of making that distinction is to say that bit 15 of the item code
indicates whether the item code is ACME-specific.

While the common item codes are defined once for all ACME agents, the ACME-
specific item codes are defined separately by each ACME agent, as shown in
Figure 33–2, Item List Chain. When the SYS$ACM[W] system service encounters
an ACME-specific item code, it attributes it to whichever ACME agent was most
recently mentioned with one of the following item codes:

• ACME$_CONTEXT_ACME_ID

• ACME$_CONTEXT_ACME_NAME

• ACME$_TARGET_DOI_ID

• ACME$_TARGET_DOI_NAME

If none of those item codes have been specified before the first ACME-specific
item code, the SYS$ACM[W] system service returns a primary status of ACME$_
NOACMECTX.

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–7

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.3 SYS$ACM[W] Call Mechanics

33.3.4.2 Distinguishing Between Input and Output Item Codes
Bit 14 of the item code indicates whether the item code is for an output item. If
the bit is clear, it is for an input item.

The SYS$ACM[W] system service does not return data for output items until
the final successful completion of an operation. For Authenticate Principal and
Change Password operations, that could be after many intervening dialogue mode
calls to the SYS$ACM[W] system service.

33.3.4.3 Text vs. Nontext Items
Bit 13 of the item code indicates whether the item code is a text item, and thus
susceptible to Unicode translation. Your program can call the SYS$ACM[W]
system service either with or without the ACME$M_UCS2_4 function modifier.
If that function modifier is present, it means your program is supplying unicode
character set (UCS) data for item codes that have bit 13 set. If the function
modifier is missing, your program is supplying Latin-1 (similar to ASCII)
characters for those item codes. The SYS$ACM[W] system service uses the
encoding of the function code to determine which input items it should translate
from Latin-1 to UCS for input items, and in the reverse direction for output
items.

The setting of bit 13 in an item code gives another important indication for
dialogue mode operations. For an ACME agent to ask for input from an arbitrary
ACM client program, it must be clear that the ACM client program is capable of
handling the data format to be used for input. At the present time, character-
string data is the only such input that is understood by all ACM client programs.
An ACME agent can only ask for dialogue items that have bit 13 set.

33.3.4.4 Single-Valued vs. Multivalued Item Semantics
It is mechanically possible for your program to put the same item code at
two different places in a single item list. The following are the possible
interpretations of such a circumstance:

• Single-valued input item semantics

When multiple itemset entries have the same input item code, the last one
on the item list takes effect.

• Single-valued output item semantics

When multiple itemset entries have the same output item code, they all get
the same output data.

• Multivalued input item semantics

When multiple itemset entries have the same input item code, each is taken
as a separate instance of that input.

• Multivalued output item semantics

When multiple itemset entries have the same output item code, each gets a
distinct portion of the output data.

The SYS$ACM[W] system service always honors the well-known items with
single-valued semantics.

33–8 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.3 SYS$ACM[W] Call Mechanics

33.3.5 Item Lists
Even in dialogue mode, your first call to the SYS$ACM[W] system service must
specify all required input items and desired output items except for those input
items that the SYS$ACM[W] system service will specify with a subsequent input
itemset entry in the ACM communications buffer.

33.3.5.1 Item List Chains
The item list you pass to the SYS$ACM[W] system service can be built from
as many as 32 different item list segments, each of which can be composed
of traditional 32-bit ILE3 items or 64-bit ILEB_64 items. All items in a single
item list segment must be of the same type. Figure 33–2 illustrates an item list
chain.

Figure 33–2 Item List Chain

First Item List Segment

VM-0845A-AI

ACME$_LOGON_TYPE

ACME$_NULL

ACME$_CONTEXT_ACME_ID

ACME$_CHAIN

youracme_manager_name

ACME$_PASSWORD_2

ACME$_NULL

ACME$_NULL

0

ACME$_CONTEXT_ACME_ID

youracme_billing_group

ACME$_ACCESS_PORT

ACME$_CHAIN

SYS$ACM Item List

<vendor>$_codeword

33.3.6 The ACM Communications Buffer and Itemset
For dialogue mode calls using Authenticate Principal or Change Password
function codes, the SYS$ACM[W] system service may return a primary status
of ACME$_OPINCOMPL, indicating more data is needed. In that case, a
description of the data needed is provided within the ACM communications buffer
pointed to from the ACM context argument longword you supplied.

Field ACMECB$L_ITEM_SET_COUNT indicates how many entries are in the
itemset, while field ACMECB$PS_ITEM_SET points to an array of itemset
entries, as shown in Figure 33–3.

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–9

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.3 SYS$ACM[W] Call Mechanics

Figure 33–3 Itemset Layout

VM-0846A-AI

ACMECB$Q_CONTEXT_ID

ACMECB$W_SIZE

ACMECB$W_REVISION_LEVEL

ACMECB$L_ACME_ID

ACMECB$L_ITEM_SET_COUNT(=3)

ACMECB$PS_ITEM_SET

SYS$ACM ICommunications Buffer

ACMEIS$L_FLAGS

ACMEIS$W_ITEM_CODE

ACMEIS$W_MAX_LENGTH

ACMEIS$Q_DATA_1

ACMEIS$Q_DATA_2

ACMEIS$L_FLAGS

ACMEIS$W_ITEM_CODE

ACMEIS$W_MAX_LENGTH

ACMEIS$Q_DATA_1

ACMEIS$Q_DATA_2

ACMEIS$L_FLAGS

ACMEIS$W_ITEM_CODE

ACMEIS$W_MAX_LENGTH

ACMEIS$Q_DATA_1

ACMEIS$Q_DATA_2

Item Set Array

1

2

3

33.3.7 Itemset Entries
Within a single itemset entry, when the flag ACMEDLOGFLG$V_INPUT is set
in field ACMEIS$L_FLAGS, the third field is called ACMEIS$W_MAX_LENGTH
and indicates the maximum acceptable length in bytes for the input requested.

When the flag ACMEDLOGFLG$V_INPUT is clear, however, the third field is
called ACMEIS$W_MSG_TYPE and indicates the message category of the output
text. That category can be used to decide placement or presentation of output
text for a user. Bit 14 of that code, like bit 13 of an item code, indicates that the
data in question (output data in this case) is textual in nature and your program
can handle it using methods appropriate for text.

No ACME agent will ever send an ACME-specific message category to an ACM
client program without knowing that the ACM client program is familiar with
that message category.

33–10 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.3 SYS$ACM[W] Call Mechanics

Because there is no ACMEIS$W_MSG_TYPE field when flag
ACMEDLOGFLG$V_INPUT is set, the SYS$ACM[W] system service performs
Unicode conversion of prompting information based on whether or not the
resulting input data is eligible for Unicode conversion. Thus, it is not possible to
have multiple text formats in prompts with the corresponding input.

33.3.8 Synchronization of Your System Service Calls
As with many other system services, you have your choice of the SYS$ACM
or SYS$ACMW interface. Choose one or the other based on whether your
program will be doing other work (authentication-related or otherwise) while
the authentication operation is underway. This choice has only to do with
synchronization within your program; it is unrelated to your choice of dialogue
mode or nondialogue mode.

33.4 Authentication Techniques
Your ACM client program can call the SYS$ACM[W] system service to change a
password, and the effect is the same as if SET PASSWORD had made the call.

Your ACM client program can call the SYS$ACM[W] system service to
authenticate a user. Your authentication is audited and break-in evasion is
checked in the ACME server process, just as for LOGINOUT.

Your program can call the SYS$ACM[W] system service to log an event or to
query for information specific to a particular domain of interpretation (DOI).
With the exception of the general ACM information described in Section 33.4.5.3,
Looking Up DOI and ACME IDs, all use of the Event or Query function codes is
specific to a DOI.

33.4.1 Nondialogue Mode Operation
The simplest form of call to the SYS$ACM[W] system service is the nondialogue
mode call, illustrated in Figure 33–4. It resembles many other system services,
except that the item list contains a wider variety of both input and output items.

Figure 33–4 Nondialogue Mode Operation

Your Program SYS$ACM

VM-0847A-AI

Output Items

ACME Status Block

Logon Type, Principal Name,
Password 1, Password 2, Output Item Buffers

Use nondialogue mode when only a limited amout of interaction is possible,
such as when an existing network protocol like FAL or FTP does not allow an
arbitrary authentication exchange. Typically, such programs should specify an

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–11

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.4 Authentication Techniques

ACME$_LOGON_TYPE of ACME$K_NETWORK, indicating that while they
supply a password, no complex interaction is possible.

33.4.2 Dialogue Mode Operation
Use dialogue mode when your ACM client program is flexible enough to respond
to password change notification, to allow the user to answer arbitrary questions,
such as the charge code for a session, and so on.

In dialogue mode, the SYS$ACM[W] system service uses the longword you
provide by the ACM context argument parameter to store a pointer to an ACM
communications buffer. Figure 33–5 illustrates dialogue mode operation.

Figure 33–5 Dialogue Mode

Your Program SYS$ACM

VM-0848A-AI

Principal Name?

LOGON_TYPE, Output Item Buffers

Password 1?

Principal Name

Password 2?

Password 1

Welcome Message

Password 2

New Password 2?

(Null Response)

Confirm New Password 2?

New Password 2

Output Items

Confirm New Password 2

ACME Status Block

As with nondialogue mode, your ACM client program must provide on the initial
call to the SYS$ACM[W] system service all output items and all input items that
are not going to be the subject of an itemset entry.

33–12 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.4 Authentication Techniques

On intermediate returns, where the SYS$ACM[W] system service provides the
primary status ACME$_OPINCOMPL in ACMESB$L_STATUS, it also creates
an itemset within the ACM communications buffer indicating what further
information exchange is required. The action your program should take depends
upon the nature of each itemset entry within the itemset as follows:

• Output itemset entries

The SYS$ACM[W] system service provides information for display to the
user. The exact form of this display is up to your program, as guided by
the message category provided in field ACMEIS$W_MSG_TYPE and by the
item code provided in field ACMEIS$W_ITEM_CODE. Your program may
in fact choose to ignore any or all output itemset entries, except for certain
message category values that would not be appropriate, such as suppressing
ACMEMC$K_SELECTION information that tells users about possible choices
for their next input.

• Input itemset entries

The SYS$ACM[W] system service provides information regarding input
needed on the next call to the SYS$ACM[W] system service. In the simplest
case, you can handle this by prompting a character cell terminal, using the
prompt text provided in the itemset entry. For a more complex interface,
some of the information sought might be provided by the program without
user interaction, for instance if authentication were being done with the
assistance of a smart card or other personalized hardware device.

If all of the itemset entries within the itemset were output itemset entries, your
program should call the SYS$ACM[W] system service with an empty item list
(containing just the terminator entry).

Dialogue mode operation applies only to the Authenticate Principal and Change
Password functions. Calls to any other functions must be in nondialogue mode.

33.4.3 Login Categories and Classes
The OpenVMS Guide to System Security outlines the following login categories
and login classes that are of interest for calling the SYS$ACM[W] system service:

Login Category Login Class

Interactive Local, Dialup, Remote

Noninteractive Batch, Network

Those login classes correspond to the values used in the ACME$_LOGON_
TYPE item for the SYS$ACM[W] system service. Each may have specific policy
requirements, and may be authenticated differently. Batch jobs, for example,
start without specification of a password or other authentication information.

This choice can also influence authorization decisions, such as the VMS day and
time restrictions.

Specifying item ACME$_LOGON_TYPE requires the IMPERSONATE privilege.
It is defaulted to match the login class of the process that called the SYS$ACM[W]
system service.

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–13

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.4 Authentication Techniques

The login type affects the degree of interaction required to call the SYS$ACM[W]
system service, as shown in the following table:

Login Type Interaction Details

Batch No authentication is involved. This may mean that credentials
are not provided for certain domains of interpretation that
base their credential creation on presentation of a password.

Network Authentication is involved, but it operates in nondialogue mode
unless an ACME agent (other than the VMS ACME agent)
requires dialogue for authentication.

Local, Dialup, and
Remote

Authentication is involved and further dialogue may be
encountered to change expiring passwords, and so on. The
SYS$ACM[W] system service expects a person to be available
to answer questions raised through dialogue.

Thus in the case of the local, dialup, or remote values for ACME$_LOGON_
TYPE, you must provide an ACM context argument argument on all calls
to the SYS$ACM[W] system service (and you must provide item ACME$_
DIALOGUE_SUPPORT on the initial call to indicate support for input dialogue).
With the network value for ACME$_LOGON_TYPE, those elements might be
required with certain add-on ACME agents.

33.4.4 Principal Names
So long as there is no targeting by the caller of the SYS$ACM[W] system service
(discussed in Section 33.4.5), the decision regarding which ACME agent handles
a particular request is governed by the following factors:

• The ordering of ACME agents selected by the system manager

• The syntax of the principal name

• The spelling of the principal name

If the syntax provided to the SYS$ACM[W] system service can be handled by only
one ACME agent, that settles the matter. If it can be handled by more than one
ACME agent, then the decision also depends on which ACME agent (in order) is
the first to be able to map the particular principal name to a VMS user name.

Whether a particular ACME agent can map a particular principal name also
depends on the mapping tables or algorithms specific to that ACME agent, but
this is typically more time-consuming than simple decisions made on the basis
of the syntax presented in the principal name. Consider the acceptable syntax
presented in the following table:

Domain of
Interpretation Principal Name Syntax

VMS username

Windows NT domain\user OR user@domain OR user

Given those two ACME agents, it is possible to specify a principal name that can
only be handled by the Windows NT DOI (by a full specification including the
execute (@) command), but it is not possible to specify a principal name that can
only be handled by the VMS DOI.

33–14 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.4 Authentication Techniques

But that table only describes the situation for the combination of those two ACME
agents, the initial ones produced by HP. The VMS ACME is always present on
any OpenVMS system, but on some systems you might omit the NT ACME and/or
include some other ACME agents, one of which might honor some of the same
syntax as the NT ACME agent.

33.4.5 Targeting Your System Service Calls
Most Authenticate Principal and Change Password calls are handled by one or
more ACME agents chosen in accordance with selection criteria set by the system
manager.

Your calling program can specify a target DOI using one of the following item
codes:

• ACME$_TARGET_DOI_ID

• ACME$_TARGET_DOI_NAME

These item codes are used when your program requires that a particular DOI
handle your request.

33.4.5.1 DOI Names
The following two DOI names supplied by HP are currently defined:

Domain of
Interpretation Name Source of the ACME Agent

VMS VMS OpenVMS

Windows NT MSV1_0 Advanced Server

33.4.5.2 When to Use DOI_NAME vs. DOI_ID
The following item codes affect the SYS$ACM[W] system service operations in the
same way:

• ACME$_TARGET_DOI_ID

• ACME$_TARGET_DOI_NAME

A similar relationship exists between the following item codes:

• ACME$_CONTEXT_ACME_ID

• ACME$_CONTEXT_ACME_NAME

The system manager specifies DOI names in configuring the ACME server,
although in most cases the system manager uses the registered names specified
by a vendor.

DOI IDs are implicitly specified by the system manager by the order in which
each is specified for the first time after each boot of the system. That means that
a particular DOI ID may have an entirely different meaning on the same machine
after the next reboot.

Specifying a DOI_NAME clearly gives better ease-of-use, while specifying a
DOI_ID gives slightly better performance with an overhead penalty paid up
front to look up a DOI_ID based on a DOI_NAME. Some programs that call the
SYS$ACM[W] system service, however, need to perform that lookup in order to
interpret the contents of the ACM communications buffer, so in those cases the
DOI_ID is already available and can be used in calls to the SYS$ACM[W] system
service.

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–15

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.4 Authentication Techniques

33.4.5.3 Looking Up DOI and ACME IDs
Use the Query function code with a Target DOI ID of 0 (meaning the
SYS$ACM[W] system service itself) to determine what DOI_ID corresponds to
a given name.

The item list to do this would be as follows:

• SYS$ACM[W] server query - ID value 0:

ITMCOD = ACME$_TARGET_DOI_ID
BUFSIZ = 4
BUFADR = Address of longword containing 0

• Query based on ACME name:

ITMCOD = ACME$_QUERY_KEY_TYPE
BUFSIZ = 4
BUFADR = Address of longword containing ACME$K_QUERY_ACME_
NAME

• Specify ACME name:

ITMCOD = ACME$_QUERY_KEY_VALUE
BUFSIZ = Characters in ACME name (times 4 if setting ACME$M_
UCS2_4)
BUFADR = Address of buffer containing ACME name

• Specify ACME ID as the return value:

ITMCOD = ACME$_QUERY_TYPE
BUFSIZ = 4
BUFADR = Address of longword containing ACME$K_QUERY_ACME_ID

• Specify the output buffer

ITMCOD = ACME$_QUERY_DATA
BUFSIZ = 4
BUFADR = Address of longword to receive the ACME_ID

33.4.6 Determining ACME Information with the Query Function
The general nature of the Query function is that your code supplies the following
items:

• ACME$_TARGET_DOI_ID (or ACME$_TARGET_DOI_NAME)

• ACME$_QUERY_TYPE

• ACME$_QUERY_KEY_TYPE

• ACME$_QUERY_KEY_VALUE

Your program receives back the item ACME$_QUERY_DATA.

Semantics of those items and where the data comes from is entirely up to the
ACME agent that you specify as the target of the Query function.

See the documentation for that ACME agent for more information.

33–16 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.4 Authentication Techniques

33.4.7 Reporting an Event
The general nature of the Event function is that your code supplies the following
items:

• ACME$_EVENT_TYPE

• ACME$_EVENT_DATA_IN

Your program possibly receives back item ACME$_EVENT_DATA_OUT. Whether
ACME$_EVENT_DATA_OUT is supported and the exact nature of what the
SYS$ACM[W] system service is supposed to do for an event is up to the ACME
agent that you specify as the target of the Event function.

See the documentation for that ACME agent for more information.

33.5 Authentication Scenarios
You can use the SYS$ACM[W] system service to accomplish the following
functions:

• Authenticate a specified user.

• Change a password.

• Reauthenticate the current user.

• Create a process on behalf of a user.

It was possible to perform many of these functions prior to introduction of the
SYS$ACM[W] system service by combining the use of the following techniques:

• SYS$GETUAI

• SYS$SETUAI

• SYS$HASH_PASSWORD

• SYS$SCAN_INTRUSION

• Modal restriction enforcement (network, batch, interactive, and so on)

• Checks for account disabled, account expired, and so on

These steps made it difficult to provide a complete and bug-free implementation.
Furthermore, such an approach dealt only with traditional VMS password-based
authentication rather than including add-on mechanisms. With the introduction
of the SYS$ACM[W] system service, those scenarios can be handled in a uniform,
supported manner.

33.5.1 Simple User Authentication
If all information is known in advance, a call to SYS$ACMW is quite simple, as
in the following example:

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–17

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.5 Authentication Scenarios

LOCAL
STATUS,
ACME_STATUS_BLOCK : VECTOR [4,LONG],
NON_DIALOGUE_ITMLST : ALIAS_ON_AXP $ITMLST_DECL (ITEMS=2);

!
! Populate that item list
!
$ITMLST_INIT(ITMLST = NON_DIALOGUE_ITMLST,

!
! What is the Principal Name
!
(ITMCOD = ACME$_PRINCIPAL_NAME_IN,
BUFSIZ = %CHARCOUNT(’JENKINS’),
BUFADR = UPLIT BYTE(’JENKINS’)),
!
! What Password was given to this routine ?
!
(ITMCOD = ACME$_PASSWORD_1,
BUFSIZ = .INPUT_STRING [DSC$W_LENGTH],
BUFADR = .INPUT_STRING [DSC$A_POINTER]));

!
! Now call the System Service
!
STATUS = $ACMW (EFN=EFN$C_ENF,

FUNC=ACME$_FC_AUTHENTICATE_PRINCIPAL,
ITMLST=NON_DIALOGUE_ITMLST,
ACMSB=ACME_STATUS_BLOCK);

33–18 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.5 Authentication Scenarios

33.5.2 Evaluating Status Codes
After any call to the SYS$ACM[W] system service, you must check the return
status from the call and the primary status in the ACM Status Block. Following
is a sample check:

IF NOT .STATUS
THEN

SIGNAL_STOP (STATUS);

IF NOT .ACME_STATUS_BLOCK [ACMESB$L_STATUS]
AND (.ACME_STATUS_BLOCK [ACMESB$L_STATUS] NEQ ACME$_OPINCOMPL)
THEN

BEGIN
IF .ACME_STATUS_BLOCK [ACMESB$L_ACME_ID] NEQ 0
THEN

REPORT_ACME_SPECIFIC_ERROR (ACME_STATUS_BLOCK)
ELSE

IF .ACME_STATUS_BLOCK [ACMESB$L_SECONDARY_STATUS]
EQL .ACME_STATUS_BLOCK [ACMESB$L_STATUS]

THEN
SIGNAL_STOP (

.ACME_STATUS_BLOCK [ACMESB$L_STATUS])
ELSE

SIGNAL_STOP (
.ACME_STATUS_BLOCK [ACMESB$L_STATUS], 0,
.ACME_STATUS_BLOCK [ACMESB$L_SECONDARY_STATUS], 0);

END;

The details of handling the field ACMESB$L_ACME_STATUS depend on the
nature of the ACME agent indicated in field ACMESB$L_ACME_ID. If that
ACME agent is not specifically known to the program that calls the SYS$ACM[W]
system service, there is no way to interpret that field. The previous example
presumes there is special knowledge regarding at least one ACME agent held in
routine REPORT_ACME_SPECIFIC_ERROR, which is not supplied.

33.5.3 Password Change Dialogue
Particularly with the function code ACME$_FC_CHANGE_PASSWORD, you
cannot reliably predict all the necessary input at the time of the initial call,
because the first password chosen might be found in the password history file or
be unacceptable in some other way.

Following is a sample of how you might decode and process a dialogue response:

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–19

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.5 Authentication Scenarios

BIND
ACMECB = .CONTEXT : BLOCK[,BYTE],
ITEM_SET = .ACMECB[ACMECB$PS_ITEM_SET] : BLOCKVECTOR[,ACMEIS$K_LENGTH,BYTE],
RESPONSE_ITEM_COUNTER : INITIAL [0],
!
! A real program should calculate the size for the following
! by basing it on .ACMECB[ACMECB$L_ITEM_SET_COUNT].
!
RESPONSE_ITEM_LIST : ALIAS_ON_AXP $ITMLST_DECL (ITEMS=9999);

!
! Store a terminator in case there are no input items.
!
RESPONSE_ITEM_LIST [0,ITM$L_TERMINATOR] = 0;
!
! Iterate over Itemset Array
!
INCRU ITEM_SET_INDEX FROM 1 TO .ACMECB[ACMECB$L_ITEM_SET_COUNT] DO

BEGIN
BIND

ITEM_SET_ENTRY = ITEM_SET [.ITEM_SET_INDEX,0,0,0,0],
ITEM_FLAGS = ITEM_SET_ENTRY [ACMEIS$L_FLAGS] : BLOCK[4,BYTE],
ITEM_CODE = ITEM_SET_ENTRY [ACMEIS$W_ITEM_CODE] : BLOCK[2,BYTE];

IF NOT .ITEM_CODE[ACMEIC$V_UCS]
THEN

SIGNAL_STOP (THIS_PROGRAM_HANDLES_ONLY_TEXT);
IF NOT .ITEM_CODE[ACMEIC$V_OUTPUT]
THEN

BEGIN ! Respond to an input item
!
! Call subroutines to read input and put it in the item list.
!
IF .ITEM_FLAGS[ACMEDLOGFLG$V_NOECHO]
THEN

!
! Read the input - Last parameter (if any) indicates the prompt
! to be used on a confirmation read. That confirmation must
! match the initial response before returning here.
!
CONSTRUCT_ITEM_NOECHO_FROM_TERMINAL (

RESPONSE_ITEM_LIST [.RESPONSE_ITEM_COUNTER,0,0,0,0],
.ITEM_SET_ENTRY [acmeis$w_max_length],
ITEM_SET_ENTRY [acmeis$q_data_1],
ITEM_SET_ENTRY [acmeis$q_data_2])

ELSE
!
! Just read the input - Last parameter indicates a default
! that will be taken by SYS$ACM if a blank line is supplied.
!
CONSTRUCT_ITEM_FROM_TERMINAL (

RESPONSE_ITEM_LIST [.RESPONSE_ITEM_COUNTER,0,0,0,0],
.ITEM_SET_ENTRY [acmeis$w_max_length],
ITEM_SET_ENTRY [acmeis$q_data_1],
ITEM_SET_ENTRY [acmeis$q_data_2]);

!
! Advance past this item.
!
RESPONSE_ITEM_COUNTER = .RESPONSE_ITEM_COUNTER + 1;
!
! Store a terminator in case this was the last input item.
!
RESPONSE_ITEM_LIST [.RESPONSE_ITEM_COUNTER,ITM$L_TERMINATOR] = 0;
BEGIN

END;
!
! Now call the System Service again, with the same FUNC argument.

33–20 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.5 Authentication Scenarios

!
! If all the item set entries were for output, we send a null item list.
!
STATUS = $ACMW (EFN=EFN$C_ENF,

FUNC=ACME$_FC_CHANGE_PASSWORD,
CONTXT=CONTEXT,
ITMLST=RESPONSE_ITEM_LIST,
ACMSB=ACMESB);

This example leaves the details of handling an optional confirmation prompt to
the routine CONSTRUCT_ITEM_NOECHO_FROM_TERMINAL, which is not
supplied. In addition, the code to process and display output items is not shown.

Confirmation prompts are more common in Change Password than in
Authenticate Principal, but the program that calls SYS$ACM[W] system service
should be prepared to handle them in either situation (that is, any time dialogue
mode is used).

33.5.4 Reauthentication of Current User
The following code illustrates what you might do within an application to ensure
that the same user was still at the terminal. An example of reauthentication
would be a check-writing application that requires reauthentication for any check
over a certain value.

LOCAL
STATUS,
ACME_STATUS_BLOCK : VECTOR [4,LONG],
NON_DIALOGUE_ITMLST : ALIAS_ON_AXP $ITMLST_DECL (ITEMS=1);

!
! Populate that item list
!
$ITMLST_INIT(ITMLST = NON_DIALOGUE_ITMLST,

!
! What Password was given to this routine ?
!
(ITMCOD = ACME$_PASSWORD_1,
BUFSIZ = .INPUT_STRING [DSC$W_LENGTH],
BUFADR = .INPUT_STRING [DSC$A_POINTER]));

!
! Now call the System Service
!
STATUS = $ACMW (EFN=EFN$C_ENF,

FUNC=ACME$_FC_AUTHENTICATE_PRINCIPAL
+ACME$M_DEFAULT_PRINCIPAL,

ITMLST=NON_DIALOGUE_ITMLST,
ACMSB=ACME_STATUS_BLOCK);

33.5.5 Manipulating Personas
The following example is a slight variant on the example in Section 33.5.1:

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–21

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.5 Authentication Scenarios

LOCAL
STATUS,
OLD_PERSONA,
NEW_PERSONA,
ACME_STATUS_BLOCK : VECTOR [4,LONG],
NON_DIALOGUE_ITMLST : ALIAS_ON_AXP $ITMLST_DECL (ITEMS=3);

!
! Populate that item list
!
$ITMLST_INIT(ITMLST = NON_DIALOGUE_ITMLST,

!
! What is the Principal Name
!
(ITMCOD = ACME$_PRINCIPAL_NAME_IN,
BUFSIZ = %CHARCOUNT(’JENKINS’),
BUFADR = UPLIT BYTE(’JENKINS’)),
!
! What Password was given to this routine ?
!
(ITMCOD = ACME$_PASSWORD_1,
BUFSIZ = .INPUT_STRING [DSC$W_LENGTH],
BUFADR = .INPUT_STRING [DSC$A_POINTER])),
!
! Where do we want the new Persona ID ?
!
(ITMCOD = ACME$_PERSONA_HANDLE_OUT,
BUFADR = NEW_PERSONA));

!
! Now call the System Service
!
STATUS = $ACMW (EFN=EFN$C_ENF,

FUNC=ACME$_FC_AUTHENTICATE_PRINCIPAL
+ACME$M_ACQUIRE_CREDENTIALS,

ITMLST=NON_DIALOGUE_ITMLST,
ACMSB=ACME_STATUS_BLOCK);

CHECK_STATUS (.STATUS);
CHECK_ACME_STATUS (ACME_STATUS_BLOCK);
!
! Now assume the new Persona
!
STATUS = $PERSONA_ASSUME (PERSONA=NEW_PERSONA,

FLAGS=0,
previous=OLD_PERSONA);

!

This example does not use item code ACME$_PERSONA_HANDLE_IN. That
is for manipulating the characteristics of an existing persona, which is not the
objective of this example.

33.5.6 Using CREPRC on Behalf of a User
After authentication, you can use the SYS$ACM[W] system service to create a
process on behalf of the user, with process quotas set according the values in
SYSUAF, as in the following example:

33–22 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.5 Authentication Scenarios

LOCAL
STATUS,
OLD_PERSONA,
NEW_PERSONA,
PIDADR,
CREPRC_QUOTA : VECTOR [255,BYTE], ! hopefully long enough
ACME_STATUS_BLOCK : VECTOR [4,LONG],
NON_DIALOGUE_ITMLST : ALIAS_ON_AXP $ITMLST_DECL (ITEMS=4);

!
! Populate that item list
!
$ITMLST_INIT(ITMLST = NON_DIALOGUE_ITMLST,

!
! What is the Principal Name
!
(ITMCOD = ACME$_PRINCIPAL_NAME_IN,
BUFSIZ = %CHARCOUNT(’JENKINS’),
BUFADR = UPLIT BYTE(’JENKINS’)),
!
! What Password was given to this routine ?
!
(ITMCOD = ACME$_PASSWORD_1,
BUFSIZ = .INPUT_STRING [DSC$W_LENGTH],
BUFADR = .INPUT_STRING [DSC$A_POINTER])),
!
! Where do we want the new persona ID?
!
(ITMCOD = ACME$_PERSONA_HANDLE_OUT,
BUFADR = NEW_PERSONA),
!
! Where do we want quota requirements stored ?
!
(ITMCOD = ACMEVMS$_CREPRC_QUOTA,
BUFSIZ = %ALLOCATION(CREPRC_QUOTA),
BUFADR = CREPRC_QUOTA));

!
! Now call the System Service
!
STATUS = $ACMW (EFN=EFN$C_ENF,

FUNC=ACME$_FC_AUTHENTICATE_PRINCIPAL,
ITMLST=NON_DIALOGUE_ITMLST,
ACMSB=ACME_STATUS_BLOCK);

CHECK_STATUS (.STATUS);
CHECK_ACME_STATUS (ACME_STATUS_BLOCK);
!
! That routine just detected any buffer too short error
!
! Temporarily assume the new Persona
!
STATUS = $PERSONA_ASSUME (PERSONA=NEW_PERSONA,

FLAGS=0,
previous=OLD_PERSONA);

CHECK_STATUS (.STATUS);
!
! Now create the process under that persona
!
STATUS = $CREPRC (PIDADR=PIDADR,

IMAGE=$DESCRIPTOR(’SYS$SYSTEM:LOGINOUT’),
INPUT=$DESCRIPTOR(’TXA3:’),
OUTPUT=$DESCRIPTOR(’TXA3:’),
ERROR=$DESCRIPTOR(’TXA3:’),
QUOTA=CREPRC_QUOTA,
STSFLG=PRC$M_NOUAF+PRC$M_INHERIT_PERSONA);

CHECK_STATUS (.STATUS);
!

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–23

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.5 Authentication Scenarios

! Revert to our old Persona
!
STATUS = $PERSONA_ASSUME (PERSONA=OLD_PERSONA);
CHECK_STATUS (.STATUS);
!
! Delete the new persona from this process
!
STATUS = $PERSONA_DELETE (PERSONA=NEW_PERSONA);
CHECK_STATUS (.STATUS);
!

The PRC$M_NOUAF flag prevents LOGINOUT from modifying process quotas,
while the PRC$M_INHERIT_PERSONA prevents LOGINOUT from modifying
the process persona, allowing use of the persona (and persona extension) of the
parent process. The main purpose of LOGINOUT in this case becomes setting up
the DCL environment.

33.6 Authentication Examples
This section provides two complete examples of using the SYS$ACM[W] system
service. In addition to these examples, a utility program called ACMEUTIL is
available for issuing authentication and change-password SYS$ACM system
service calls and examining the results in both dialogue and nondialogue mode.

You interact with the ACMEUTIL utility using the DCL interface. For example,
to issue a dialogue request for authentication, use the following syntax:

$acme auth/dial=(input,noecho)

See the comments in ACMEUTIL_SETUP.COM for additional information on
ACMEUTIL DCL syntax and capabilities.

ACMEUTIL is located in the SYS$EXAMPLES directory and is built by running
the ACMEUTIL.COM procedure. To define the DCL verb ACMEUTIL, run the
ACMEUTIL_SETUP.COM procedure.

33.6.1 Example Using Nondialogue Mode (C)
This theoretical example supports a hardware badge reader and provides all
necessary authentication information with a single call to the SYS$ACM[W]
system service. The simple linear programming style used here would also be
appropriate for a situation in which that authentication information is received
from a network connection using a fixed protocol that does not allow queries back
to the originator.

Line Activity Special Notes

45 Declare local storage This subroutine avoids static storage.

105 Determine MAXBUF MAXBUF limits hardware interaction.

105 Determine MAXBUF MAXBUF limits hardware interaction.

158 Prepare a SYS$ACM item list We will add data as we go.

210 Prepare to use the badge reader Subsequent steps use it.

233 Compare DNA Invoking a hardware function.

264 Read the principal name Data from the badge reader.

298 Read the primary password Data from the badge reader.

324 Read the secondary password Data from the badge reader.

33–24 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

Line Activity Special Notes

357 Free the badge reader We do not know when image will exit.

372 Call SYS$ACMW Here is where we authenticate.

389 Return status to our caller We choose to provide no details.

1 #pragma module ACM_BADGE "V1.0"
2 /*
3 ** ACM_BADGE.C
4 */
5 #define __NEW_STARLET 1
6
7 #include <string> // NULL and memset
8 #include <starlet.h> // for calling SYS$ACM
9 #include <iledef.h> // Item Lists
10 #include <iodef.h> // for calling $QIO
11 #include <iosbdef.h> // IO status blocks
12 #include <stsdef> // decoding status code fields
13 #include <efndef> // For event flag number definitions
14 #include <descrip.h> // for descriptor definitions
15 #include <utcblkdef.h> // required for acmedef.h
16 #include <acmedef.h> // ACME codes
17 #include <syidef.h> // GETSYI codes
18
19 /*
20 ** ACM_BADGE
21 **
22 ** This subroutine obtains a user name and password from a
23 ** hardware badge reader and passes them in a nondialogue call to
24 ** SYS$ACM for evaluation. It returns success or failure status
25 ** to its caller.
26 **
27 ** Obviously the hardware badge reader construction must be secure
28 ** enough to never divulge the password without validating a DNA
29 ** sample from the person who places the badge in the reader,
30 ** and that is why this is just a code sample in SYS$EXAMPLES:
31 ** rather than something that comes with a real hardware product.
32 **
33 ** Arguments:
34 **
35 ** None.
36 **
37 ** Return values:
38 **
39 ** ACME$_NORMAL - authentic
40 ** ACME$_AUTHFAILURE - not authentic
41 ** anything else - processing failure
42 */
43 int ACM_BADGE()
44 {
45 int RetStatus;
46 int DasStatus;
47 char devnam[5]="BRA0:";
48 struct dsc$descriptor_s devnam_desc = { 0, // length
49 DSC$K_DTYPE_T, // type
50 DSC$K_CLASS_S, // class
51 0}; // buf address
52 IOSB iosb;
53 ACMESB acmsb;
54 unsigned short int badge_reader_channel;
55 int logon_type = ACME$K_NETWORK;
56 int maxbuf;

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–25

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

57 int read_size;
58
59 /*
60 ** We will call SYS$ACM with multiple entries in an item list.
61 */
62 enum acm_items
63 {
64 acm_logon_type,
65 acm_principal_name_in,
66 acm_password_1,
67 acm_password_2,
68 acm_terminator
69 };
70 ILE3 acm_itmlst[acm_terminator+1];
71 enum getsyi_items
72 {
73 getsyi_maxbuf,
74 getsyi_terminator
75 };
76 ILE3 getsyi_itmlst[getsyi_terminator+1];
77
78 /*
79 ** Our badge reader might provide very long input items,
80 ** because a user does not have to type them. Internally
81 ** the items will be carried in Unicode format, so the
82 ** length limit imposed by the 16-bit length field is
83 ** 1/4 of what one might first expect.
84 **
85 ** Internal limits on the size of a single SYS$ACM request
86 ** actually constrain the total of all items to this size,
87 ** but we cannot predict how imbalanced the item lengths
88 ** will be, so we make all buffers be this maximum size.
89 **
90 ** Depending on the value of system parameter MAXBUF, this
91 ** subroutine may try to read as many as buffer_size bytes
92 ** from the badge reader, so the Buffered IO Byte Limit
93 ** quota should be as large as buffer_size if the badge
94 ** reader is not a Direct IO device.
95 */
96 enum sizes
97 {
98 buffer_size = 65535/4
99 };
100 char principal_name_in[buffer_size];
101 char password_1[buffer_size];
102 char password_2[buffer_size];
103
104
105 /*
106 ** Get the SYS$GETSYI item list ready. First zero it out, then fill it in.
107 */
108 memset (// clear out memory
109 getsyi_itmlst, // - Address to write to
110 0, // - Character to fill
111 sizeof (getsyi_itmlst)); // - size to fill
112
113 /*
114 ** System Parameter MAXBUF constrains the size of Buffered IO
115 **
116 ** Buffer maxbuf will be filled in by SYS$GETSYI.
117 */
118 getsyi_itmlst[getsyi_maxbuf].ile3$w_code = SYI$_MAXBUF;
119 getsyi_itmlst[getsyi_maxbuf].ile3$w_length = sizeof (maxbuf);
120 getsyi_itmlst[getsyi_maxbuf].ile3$ps_bufaddr = &maxbuf;
121 getsyi_itmlst[getsyi_maxbuf].ile3$ps_retlen_addr = NULL;

33–26 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

122
123 /*
124 ** End the item list with a terminator
125 */
126 getsyi_itmlst[getsyi_terminator].ile3$w_code = 0;
127 getsyi_itmlst[getsyi_terminator].ile3$w_length = 0;
128 getsyi_itmlst[getsyi_terminator].ile3$ps_bufaddr = NULL;
129 getsyi_itmlst[getsyi_terminator].ile3$ps_retlen_addr = NULL;
130
131 RetStatus = sys$getsyiw (
132 EFN$C_ENF, /* no event flag */
133 NULL, /* CSID address */
134 NULL, /* Node Name */
135 &getsyi_itmlst, /* Item List */
136 &iosb, /* IO Status block */
137 NULL, /* AST routine */
138 0); /* AST Parameter */
139 if (RetStatus & STS$M_SUCCESS)
140 {
141 /*
142 ** We use the smaller of maxbuf or the buffer size
143 */
144 if (maxbuf < buffer_size)
145 {
146 read_size = maxbuf;
147 }
148 else
149 {
150 read_size = buffer_size;
151 }
152 }
153 else
154 {
155 return RetStatus;
156 }
157
158 /*
159 ** Get the SYS$ACM item list ready. First zero it out, then fill it in.
160 */
161 memset (// clear out memory
162 acm_itmlst, // - Address to write to
163 0, // - Character to fill
164 sizeof (acm_itmlst)); // - size to fill
165
166 /*
167 ** Buffer logon_type contains a constant ACME$K_NETWORK.
168 **
169 ** Using an interactive Logon Type would subject us to password
170 ** change requests, which are not viable in nondialogue mode (or
171 ** from our hypothetical badge reader, for that matter).
172 */
173 acm_itmlst[acm_logon_type].ile3$w_code = ACME$_LOGON_TYPE;
174 acm_itmlst[acm_logon_type].ile3$w_length = sizeof (logon_type);
175 acm_itmlst[acm_logon_type].ile3$ps_bufaddr = &logon_type;
176 acm_itmlst[acm_logon_type].ile3$ps_retlen_addr = NULL;
177
178 /*
179 ** Buffer principal_name_in will be filled in from the badge reader.
180 */
181 acm_itmlst[acm_principal_name_in].ile3$w_code = ACME$_PRINCIPAL_NAME_IN;
182 acm_itmlst[acm_principal_name_in].ile3$w_length = maxbuf;
183 acm_itmlst[acm_principal_name_in].ile3$ps_bufaddr = &principal_name_in;
184 acm_itmlst[acm_principal_name_in].ile3$ps_retlen_addr = NULL;
185
186 /*

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–27

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

187 ** Buffer password_1 will be filled in from the badge reader.
188 */
189 acm_itmlst[acm_password_1].ile3$w_code = ACME$_PASSWORD_1;
190 acm_itmlst[acm_password_1].ile3$w_length = maxbuf;
191 acm_itmlst[acm_password_1].ile3$ps_bufaddr = &password_1;
192 acm_itmlst[acm_password_1].ile3$ps_retlen_addr = NULL;
193
194 /*
195 ** Buffer password_2 will be filled in from the badge reader.
196 */
197 acm_itmlst[acm_password_2].ile3$w_code = ACME$_PASSWORD_2;
198 acm_itmlst[acm_password_2].ile3$w_length = maxbuf;
199 acm_itmlst[acm_password_2].ile3$ps_bufaddr = &password_2;
200 acm_itmlst[acm_password_2].ile3$ps_retlen_addr = NULL;
201
202 /*
203 ** End the item list with a terminator
204 */
205 acm_itmlst[acm_terminator].ile3$w_code = 0;
206 acm_itmlst[acm_terminator].ile3$w_length = 0;
207 acm_itmlst[acm_terminator].ile3$ps_bufaddr = NULL;
208 acm_itmlst[acm_terminator].ile3$ps_retlen_addr = NULL;
209
210 /*
211 ** Assign a channel to the Badge Reader.
212 */
213
214 devnam_desc.dsc$w_length = sizeof(devnam);
215 devnam_desc.dsc$a_pointer = &devnam[0];
216 RetStatus = sys$assign (
217 &devnam_desc, /* Device Name */
218 &badge_reader_channel, /* channel to badge reader */
219 0, /* access mode */
220 0); /* Mailbox Name */
221 if (!(RetStatus & STS$M_SUCCESS))
222 {
223 return RetStatus;
224 }
225
226 /*
227 ** Exit from this one pass loop to deassign the channel and return.
228 */
229
230 do
231 {
232
233 /*
234 ** Have the reader compare DNA.
235 **
236 ** A failed DNA comparison from the hardware is reported
237 ** to the user the same as any other authentication failure,
238 ** withholding details regarding what went wrong.
239 */
240
241 RetStatus = sys$qiow (
242 EFN$C_ENF, /* no event flag */
243 badge_reader_channel, /* channel to badge reader */
244 IO$_ACCESS, /* IO function code */
245 &iosb, /* IO Status block */
246 NULL, /* AST routine */
247 0, /* AST Parameter */
248 0, /* p1 */
249 0, /* p2 */
250 0, /* p3 */
251 0, /* p4 */

33–28 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

252 0, /* p5 */
253 0); /* p6 */
254 if (RetStatus & STS$M_SUCCESS)
255 {
256 RetStatus = iosb.iosb$w_status;
257 }
258 if (!(RetStatus & STS$M_SUCCESS))
259 {
260 RetStatus = ACME$_AUTHFAILURE; /* hide the exact cause */
261 continue; /* exit from the do loop */
262 }
263
264 /*
265 ** Read the Principal Name.
266 */
267
268 RetStatus = sys$qiow (
269 EFN$C_ENF, /* no event flag */
270 badge_reader_channel, /* channel to badge reader */
271 IO$_READVBLK, /* IO function code */
272 &iosb, /* IO Status block */
273 NULL, /* AST routine */
274 0, /* AST Parameter */
275 &principal_name_in, /* Buffer address */
276 read_size, /* Buffer length */
277 0, /* p3 */
278 0, /* p4 */
279 0, /* p5 */
280 0); /* p6 */
281 if (RetStatus & STS$M_SUCCESS)
282 {
283 RetStatus = iosb.iosb$w_status;
284 }
285 if (RetStatus & STS$M_SUCCESS)
286 {
287 acm_itmlst[acm_principal_name_in].ile3$w_length = iosb.iosb$w_bcnt;
288 }
289 else
290 {
291 continue; /* exit from the do loop */
292 }
293
294 /*
295 ** Read the Primary Password.
296 */
297
298 RetStatus = sys$qiow (
299 EFN$C_ENF, /* no event flag */
300 badge_reader_channel, /* channel to badge reader */
301 IO$_READVBLK, /* IO function code */
302 &iosb, /* IO Status block */
303 NULL, /* AST routine */
304 0, /* AST Parameter */
305 &password_1, /* Buffer address */
306 read_size, /* Buffer length */
307 0, /* p3 */
308 0, /* p4 */
309 0, /* p5 */
310 0); /* p6 */
311 if (RetStatus & STS$M_SUCCESS)
312 {
313 RetStatus = iosb.iosb$w_status;
314 }
315 if (RetStatus & STS$M_SUCCESS)
316 {

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–29

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

317 acm_itmlst[acm_password_1].ile3$w_length = iosb.iosb$w_bcnt;
318 }
319 else
320 {
321 continue; /* exit from the do loop */
322 }
323
324 /*
325 ** Read the Secondary Password.
326 */
327
328 RetStatus = sys$qiow (
329 EFN$C_ENF, /* no event flag */
330 badge_reader_channel, /* channel to badge reader */
331 IO$_READVBLK, /* IO function code */
332 &iosb, /* IO Status block */
333 NULL, /* AST routine */
334 0, /* AST Parameter */
335 &password_2, /* Buffer address */
336 read_size, /* Buffer length */
337 0, /* p3 */
338 0, /* p4 */
339 0, /* p5 */
340 0); /* p6 */
341 if (RetStatus & STS$M_SUCCESS)
342 {
343 RetStatus = iosb.iosb$w_status;
344 }
345 if (RetStatus & STS$M_SUCCESS)
346 {
347 acm_itmlst[acm_password_2].ile3$w_length = iosb.iosb$w_bcnt;
348 }
349 else
350 {
351 continue; /* exit from the do loop */
352 }
353
354 }
355 while (1 == 2);
356
357 /*
358 ** Deassign the channel to the Badge Reader.
359 */
360
361 DasStatus = sys$dassgn (
362 badge_reader_channel); /* channel to badge reader */
363 if (RetStatus & STS$M_SUCCESS)
364 {
365 RetStatus = DasStatus;
366 }
367 if (!(RetStatus & STS$M_SUCCESS))
368 {
369 return RetStatus;
370 }
371
372 /*
373 ** Attempt authentication.
374 */
375
376 RetStatus = sys$acmw (
377 EFN$C_ENF, /* no event flag */
378 ACME$_FC_AUTHENTICATE_PRINCIPAL, /* ACM function code */
379 NULL, /* pointer to Context pointer */
380 &acm_itmlst, /* Item List */
381 &acmsb, /* ACM Status block */

33–30 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

382 NULL, /* AST routine */
383 0); /* AST Parameter */
384 if (RetStatus & STS$M_SUCCESS)
385 {
386 RetStatus = acmsb.acmesb$l_status;
387 }
388
389 return RetStatus; // return with ACM status
390 }

33.6.2 Example Using Dialogue Mode (Pascal)
This more complex example can respond to an arbitrary itemset provided in the
ACM communications buffer by successive calls to the SYS$ACM[W] system
service. In particular, the item list allocated to respond to a given itemset is
automatically made large enough to respond to each possible itemset entry if it
happens to be an input itemset entry. This differs from the programming tactic
used in Section 33.5.3 because variable sizing of automatic (stack) variables is
available in Pascal but not in BLISS.

This theoretical example shows support for a fingerprint reader. It is written to
demonstrate programming techniques, rather than to correspond to a particular
hardware product.

Line Activity Special Notes

22 Function AUTHENTICATE Called by one line at the very end.

180 Function RESPOND Provide input requested by SYS$ACM[W].

239 Function RECURSE_OVER_
ITEMS

Mandatory specification of attributes.
Handle one possible input and many
possible output entries.

276 Procedure WRITE_ITEM_PLAIN Write to the terminal.

298 Procedure SET_BUFFER Use input code rather than reading
terminal.

321 Fail on non-text other than
FINGERPRINT_READIT

No ACME should request any other non-
text.

358 Read a fingerprint Use the hardware.

438 Synthesize principal name Call SET_BUFFER with the proper string.

496 Prompt the user for other text If any ACME agent requests prompt, it
may do so; other ACME agents may request
additional information.

587 Fill in the item list Store input text.

608 Process output item set entries Send output text to the terminal.

750 Call SYS$ACM with response When recursion is done, send it.

761 Make the initial call to
RECURSE_OVER_ITEMS

Initialize for this iteration and start
recursion.

775 Learn the ACME_ID of the
fingerprint ACME

ACME-specific item codes are specific to an
ACME.

805 Make an initial SYS$ACMW call Start with invariant information.

828 Loop calling RESPOND So long as the status is ACME$_
OPINCOMPL.

863 Close channels Clean-up of open channels.

885 Return status to caller Failures exited earlier.

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–31

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

2 ’sys$Library:PASCAL$LIB_ROUTINES’)]
3 PROGRAM ACM_SHOPFLOOR(OUTPUT);
4 { }
5 { AUTHENTICATE - major subroutine of this module }
6 { }
7 { This function is called with a USER_INDEX, indicating which }
8 { of 10 buttons on the shop floor kiosk was pushed, and thus }
9 { which of ten employees is to be authenticated. }
10 { }
11 TYPE PRINCIPAL_INDEX_TYPE = (
12 PRINCIPAL_1,
13 PRINCIPAL_2,
14 PRINCIPAL_3,
15 PRINCIPAL_4,
16 PRINCIPAL_5,
17 PRINCIPAL_6,
18 PRINCIPAL_7,
19 PRINCIPAL_8,
20 PRINCIPAL_9,
21 PRINCIPAL_10);
22 { }
23 { This subroutine translates each of the 10 possible index }
24 { values into one of ten generic principal names. To avoid }
25 { changes to this client program, those principal names are }
26 { mapped into the principal names actually corresponding to }
27 { individual names within the ACME Server, so that a single }
28 { data file can be modified by a designated administrator }
29 { without changing the client software. }
30 { }
31 { }
32 { After the Principal Name has been determined, the user must }
33 { be authenticated. At some kiosks there is a fingerprint }
34 { reader that will be used for authentication, while at the }
35 { spray painting station a keyboard is always used because }
36 { employees are wearing rubber gloves. For some sensitive }
37 { combinations of Principal Name and kiosk, a fingerprint }
38 { and passwords might both be required. These variations, }
39 { however, are determined by ACMEs within the ACME Server, }
40 { and this client code merely authenticates using whatever }
41 { method might be specified in the Context Area returned by }
42 { successive SYS$ACM calls. }
43 { }
44 CONST
45 FINGERPRINT_READIT = 32770; { from the Fingerprint ACME }
46 { }
47 { After authentication it is also possible that password }
48 { expirations may need to be handled, in which case even in }
49 { situations where a fingerprint would normally be sufficient,}
50 { the user will actually have to engage in typing. Whether }
51 { users who normally authenticate with a fingerprint even }
52 { have a password is an administrative issue enforced by }
53 { configuration of the ACMEs. As in the authentication step, }
54 { this client software just implements whatever mechanism is }
55 { specified in the Context Area returned by successive }
56 { SYS$ACM calls. }
57 { }
58 FUNCTION AUTHENTICATE (PRINCIPAL_INDEX : PRINCIPAL_INDEX_TYPE):BOOLEAN;
59 TYPE
60 ACMECB_PTR = ^ACMECB$TYPE;
61 CHANNEL_TYPE = [WORD] 0..65535;
62 VAR
63 FINGERPRINT_READER_CHANNEL : CHANNEL_TYPE VALUE 0;
64 TERMINAL_CHANNEL : CHANNEL_TYPE VALUE 0;
65 MY_LOGON_TYPE : INTEGER VALUE ACME$K_LOCAL;
66 MY_DIALOGUE_SUPPORT : INTEGER

33–32 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

67 VALUE ACMEDLOGFLG$M_INPUT + ACMEDLOGFLG$M_NOECHO;
68 { }
69 { We rely on an initial query to determine the ACME ID }
70 { of the Fingerprint ACME in the current running system. }
71 { We use that ACME ID to compare against ACMECB$L_ACME_ID }
72 { in the ACME Communications Buffer to determine whether }
73 { an ACME-specific input item set is one created by the }
74 { Fingerprint ACME, because ACME-specific item codes must }
75 { qualified by the originating ACME. }
76 { }
77 { Field ACMECB$L_ACME_ID.ACMEID$V_ACME_NUM will be the }
78 { actual basis of comparison, because it is sufficient to }
79 { identify a particular ACME and the other fields within }
80 { an ACME ID might change between when our query call }
81 { completes and when we make our authenticate call. }
82 { }
83 { We make our query against the reserved ID value of 0, }
84 { to gather information about the ACME Agents. This query }
85 { is actually handled by the SYS$ACMW system service. }
86 { }
87 { Data elements for the query for ACME ID }
88 { }
89 { Addresses of these elements will be set into item list }
90 { ACM_QUERY_ITMLST by procedural code below. }
91 { }
92 SYS$ACM_ACME_ID : INTEGER VALUE 0;
93 ACME_QUERY_ACME_NAME : INTEGER VALUE ACME$K_QUERY_ACME_NAME;
94 FINGERPRINT_ACME_NAME : STRING(16) VALUE ’FINGERPRINT_ACME’;
95 ACME_TARGET_DOI_ID : INTEGER VALUE ACME$K_QUERY_ACME_ID;
96 FINGERPRINT_ACME_ID : ACMEID$TYPE;
97 { }
98 { Item list for the Query }
99 { }
100 ACM_QUERY_ITMLST : ARRAY[0..5] OF ILE3$TYPE
101 VALUE [0:[ILE3$W_LENGTH:4;
102 ILE3$W_CODE:ACME$_TARGET_DOI_ID;
103 ILE3$PS_BUFADDR:0;
104 ILE3$PS_RETLEN_ADDR:NIL];
105 1:[ILE3$W_LENGTH:4;
106 ILE3$W_CODE:ACME$_QUERY_KEY_TYPE;
107 ILE3$PS_BUFADDR:0;
108 ILE3$PS_RETLEN_ADDR:NIL];
109 2:[ILE3$W_LENGTH:16;
110 ILE3$W_CODE:ACME$_QUERY_KEY_VALUE;
111 ILE3$PS_BUFADDR:0;
112 ILE3$PS_RETLEN_ADDR:NIL];
113 3:[ILE3$W_LENGTH:4;
114 ILE3$W_CODE:ACME$_QUERY_TYPE;
115 ILE3$PS_BUFADDR:0;
116 ILE3$PS_RETLEN_ADDR:NIL];
117 4:[ILE3$W_LENGTH:4;
118 ILE3$W_CODE:ACME$_QUERY_DATA;
119 ILE3$PS_BUFADDR:0;
120 ILE3$PS_RETLEN_ADDR:NIL];
121 5:[ILE3$W_LENGTH:0;
122 ILE3$W_CODE:0;
123 ILE3$PS_BUFADDR:0;
124 ILE3$PS_RETLEN_ADDR:NIL]];
125 { }
126 { Item list for initial Authentication call }
127 { }
128 MY_ACM_ITMLST_A : ARRAY[0..2] OF ILE3$TYPE
129 VALUE [0:[ILE3$W_LENGTH:4;
130 ILE3$W_CODE:ACME$_LOGON_TYPE;
131 ILE3$PS_BUFADDR:0;

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–33

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

132 ILE3$PS_RETLEN_ADDR:NIL];
133 1:[ILE3$W_LENGTH:4;
134 ILE3$W_CODE:ACME$_DIALOGUE_SUPPORT;
135 ILE3$PS_BUFADDR:0;
136 ILE3$PS_RETLEN_ADDR:NIL];
137 2:[ILE3$W_LENGTH:0;
138 ILE3$W_CODE:0;
139 ILE3$PS_BUFADDR:0;
140 ILE3$PS_RETLEN_ADDR:NIL]];
141 { }
142 { Variables used both inside and outside Function RESPOND }
143 { }
144 MY_ACMESB : ACMESB$TYPE;
145 MY_CONTXT : ACMECB_PTR;
146 MY_STATUS : UNSIGNED;
147 TRASH_STATUS : UNSIGNED;
148 { }
149 { The ITEMSET array we will read }
150 { }
151 TYPE
152 { }
153 { A string longer than we will ever see, defined to }
154 { avoid exceeding Pascal’s 2**16-1 limit on string }
155 { length. }
156 { }
157 CHAR_ARRAY_TYPE = PACKED ARRAY [1..65535]
158 OF CHAR;
159 CHAR_ARRAY_TYPE_POINTER = ^CHAR_ARRAY_TYPE;
160 { }
161 { An array longer than we will ever see, defined to }
162 { avoid: }
163 { }
164 { "%PASCAL-E-SIZGTRMAX, Size exceeds MAXINT bits". }
165 { }
166 ITEMSET_ARRAY_TYPE =
167 PACKED ARRAY [1..MAXINT DIV (ACMEIS$K_LENGTH*8)]
168 OF ACMEITMSET$TYPE;
169 ITEMSET_ARRAY_TYPE_POINTER = ^ITEMSET_ARRAY_TYPE;
170 VAR
171 ITEMSET_ARRAY : ITEMSET_ARRAY_TYPE_POINTER;
172 { }
173 { A special declaration is required in order to }
174 { Synchronize on an ACM Status Block }
175 { }
176 [ASYNCHRONOUS,EXTERNAL(SYS$SYNCH)] FUNCTION $SYNCH_ACMESB (
177 %IMMED EFN : UNSIGNED := %IMMED 0;
178 VAR IOSB : [VOLATILE] ACMESB$TYPE := %IMMED 0)
179 : INTEGER; EXTERNAL;
180 { }
181 { Function to fill in responses to input itemsets }
182 { }
183 { Input itemsets will require buffer space, and }
184 { although each input itemset will use no more }
185 { than 65535 bytes, the number of input itemsets }
186 { provided in a single dialogue step is not }
187 { bounded. }
188 { }
189 { Therefore we invoke this function recursively }
190 { each time we encounter an input itemset, }
191 { making use of a conformant parameter to }
192 { allocate the appropriate length buffer. When }
193 { all itemsets have been processed, we make our }
194 { continuation call to $ACM from the deepest }
195 { level of recursion (when all buffers are still }
196 { intact), and then return from function RESPOND }

33–34 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

197 { entirely to wait for completion of the call. }
198 { }
199 { This recursive approach using stack-based }
200 { buffers is fine for operation on the expandable }
201 { main VMS user-mode stack, but an application }
202 { operating on non-expandable stacks, such as }
203 { non-initial stack from VAX Ada or DECthreads, }
204 { should obviously use iteration and heap-based }
205 { explicit allocation instead. }
206 { }
207 FUNCTION RESPOND (ITEMSET_COUNT : INTEGER):INTEGER;
208 { }
209 { The Item List we will write for use on the }
210 { next call to SYS$ACM will never have more }
211 { entries than the Itemset List we received }
212 { in the ACM Communications Buffer from the }
213 { previous call to SYS$ACM, so we choose that }
214 { maximum size for our item list. }
215 { }
216 TYPE
217 ITEM_LIST_TEMPLATE (UPPER_BOUND : INTEGER)
218 = ARRAY [1..UPPER_BOUND] OF ILE3$TYPE;
219 VAR
220 ITEM_LIST : ITEM_LIST_TEMPLATE (ITEMSET_COUNT + 1);
221 EACH_ITEM : INTEGER VALUE 1;
222 { }
223 { Each invocation of RECURSE_OVER_ITEMS will }
224 { allocate an automatic (stack-based) buffer. }
225 { }
226 TYPE
227 INPUT_BUFFER_TEMPLATE (MAX_SIZE : INTEGER)
228 = PACKED ARRAY [1..MAX_SIZE] OF CHAR;
229 { }
230 { Variables for parsing the Itemset List }
231 { }
232 VAR
233 CHAR_ARRAY_LENGTH_1 : INTEGER;
234 CHAR_ARRAY_POINTER_1 : CHAR_ARRAY_TYPE_POINTER;
235 CHAR_ARRAY_LENGTH_2 : INTEGER;
236 CHAR_ARRAY_POINTER_2 : CHAR_ARRAY_TYPE_POINTER;
237 EACH_ITEMSET : INTEGER VALUE 1;
238 INPUT_IOSB, CONFIRM_IOSB : IOSB$TYPE;
239 { }
240 { RECURSE_OVER_ITEMS }
241 { }
242 { This function gets called: }
243 { }
244 { 1. Once with a parameter of zero at the }
245 { start of processing an Itemset List. }
246 { }
247 { 2. Recursively as each input itemset is }
248 { encountered in the Itemset List. }
249 { }
250 { Multiple output itemsets are processed at a }
251 { single recursion level until the end of the }
252 { Itemset List or until an input itemset }
253 { is found. }
254 FUNCTION RECURSE_OVER_ITEMS (MAX_SIZE : INTEGER):INTEGER;
255 { }
256 { The buffer we will use for this input item }
257 { }
258 { The INPUT_BUFFER lifetime needs only be for }
259 { the lifetime of RECURSE_OVER_ITEMS because it }
260 { is filled by SYS$QIOW at this recursion }
261 { level and provided as input to SYS$ACM at }

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–35

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

262 { the innermost recursion level. }
263 { }
264 VAR
265 { }
266 { We use MAX_SIZE+1 to avoid the error: }
267 { }
268 { %PAS-F-LOWGTRHIGH, low-bound exceeds high-bound }
269 { }
270 { when MAX_SIZE is 0. }
271 { }
272 INPUT_BUFFER : INPUT_BUFFER_TEMPLATE (MAX_SIZE+1);
273 CONFIRM_BUFFER : INPUT_BUFFER_TEMPLATE (MAX_SIZE+1);
274 QIO_FUNC : INTEGER;
275 { }
276 PROCEDURE WRITE_ITEM_PLAIN;
277 BEGIN { WRITE_ITEM_PLAIN }
278 IF CHAR_ARRAY_POINTER_1 <> NIL
279 THEN
280 IF CHAR_ARRAY_LENGTH_1 = 0
281 THEN
282 WRITELN
283 ELSE
284 WRITELN (
285 CHAR_ARRAY_POINTER_1^[1..
286 CHAR_ARRAY_LENGTH_1]);
287 IF CHAR_ARRAY_POINTER_2 <> NIL
288 THEN
289 IF CHAR_ARRAY_LENGTH_2 = 0
290 THEN
291 WRITELN
292 ELSE
293 WRITELN (
294 CHAR_ARRAY_POINTER_2^[1..
295 CHAR_ARRAY_LENGTH_2]);
296 END; { WRITE_ITEM_PLAIN }
297 { }
298 PROCEDURE SET_BUFFER (
299 PRINCIPAL_NAME : STRING);
300 BEGIN { PROCEDURE SET_BUFFER }
301 INPUT_IOSB.IOSB$W_BCNT :=
302 MIN (SIZE (PRINCIPAL_NAME),
303 SIZE (INPUT_BUFFER));
304 { }
305 { The following line will produce a }
306 { Pascal run-time error if SYS$ACM does }
307 { not specify input lengths of at least }
308 { 12 characters. }
309 { }
310 READV (PRINCIPAL_NAME, INPUT_BUFFER);
311 { }
312 END; { PROCEDURE SET_BUFFER }
313 { }
314 BEGIN { FUNCTION RECURSE_OVER_ITEMS }
315 { }
316 { Process any initial Input Itemset }
317 { }
318 IF MAX_SIZE <> 0
319 THEN
320 BEGIN { process Input Itemset }
321 { }
322 { First we consider non-text ACME-specific }
323 { item codes, and the only one of those we }
324 { are prepared to handle is the Fingerprint }
325 { ACME code FINGERPRINT_READIT. }
326 { }

33–36 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

327 IF ITEMSET_ARRAY^[EACH_ITEMSET]
328 .ACMEIS$W_ITEM_CODE.ACMEIC$V_ACME_SPECIFIC
329 AND NOT ITEMSET_ARRAY^[EACH_ITEMSET]
330 .ACMEIS$W_ITEM_CODE.ACMEIC$V_UCS
331 THEN
332 BEGIN { ACME-specific non-text input }
333 { }
334 { Comparing MY_CONTXT^.ACMECB$L_ACME_ID }
335 { .ACMEID$V_ACME_NUM field against the }
336 { (previously queried) IDs of ACMEs from }
337 { which this client expects ACME-specific}
338 { input itemsets and also comparing
339 { }
340 { ITEMSET_ARRAY^[EACH_ITEMSET] }
341 { .ACMEIS$W_ITEM_CODE.ACMEIC$W_ITEM_CODE}
342 { against the 16-bit values of expected }
343 { ACME-specific item codes, we get the }
344 { information to dispatch to handle each }
345 { of the ACME-specific message types that}
346 { this client program knows about. }
347 { }
348 { In our case, it is only the Fingerprint}
349 { ACME and only code FINGERPRINT_READIT. }
350 { }
351 ASSERT((MY_CONTXT^.ACMECB$L_ACME_ID.ACMEID$V_ACME_NUM
352 = FINGERPRINT_ACME_ID.ACMEID$V_ACME_NUM)
353 AND (ITEMSET_ARRAY^[EACH_ITEMSET]
354 .ACMEIS$W_ITEM_CODE
355 .ACMEIC$W_ITEM_CODE
356 = FINGERPRINT_READIT),
357 ’unknown ACME-specific item code’);
358 { }
359 { Exchange Fingerprint Data }
360 { }
361 { This client contains little knowledge }
362 { regarding the workings of the }
363 { Fingerprint Reader. It knows to call }
364 { SYS$QIOW using the function code }
365 { IO$_READPROMPT providing the output }
366 { "prompt" data and accepting whatever }
367 { the device provides. Buffer sizes }
368 { (within the 65535 limit) and the number}
369 { of exchanges to read a fingerprint }
370 { are governed by the Fingerprint ACME, }
371 { which has knowledge of the device }
372 { characteristics. }
373 { }
374 { Perhaps the channel is open from a }
375 { previous dialogue or recursion step. }
376 { }
377 IF FINGERPRINT_READER_CHANNEL = 0
378 THEN
379 BEGIN { a channel must be assigned }
380 MY_STATUS :=
381 $ASSIGN (
382 DEVNAM := ’FPA0:’,
383 CHAN := FINGERPRINT_READER_CHANNEL);
384 { }
385 { If there is no Fingerprint Reader }
386 { on this machine, the Fingerprint }
387 { ACME should have figured that out }
388 { and not requested Fingerprint }
389 { Reader data. }
390 { }
391 IF NOT ODD(MY_STATUS)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–37

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

392 then
393 RETURN MY_STATUS;
394 END; { A channel must be assigned.}
395 { }
396 { Exchange Fingerprint data }
397 { }
398 MY_STATUS :=
399 $QIOW (
400 EFN := EFN$C_ENF,
401 CHAN := FINGERPRINT_READER_CHANNEL,
402 FUNC := IO$_READPROMPT,
403 IOSB := INPUT_IOSB,
404 P1 := INPUT_BUFFER,
405 P2 := SIZE(INPUT_BUFFER),
406 P5 := IADDRESS(CHAR_ARRAY_POINTER_1^),
407 P6 := CHAR_ARRAY_LENGTH_1);
408 IF ODD(MY_STATUS)
409 THEN
410 MY_STATUS := INPUT_IOSB.IOSB$W_STATUS;
411 IF NOT ODD(MY_STATUS)
412 THEN
413 RETURN MY_STATUS;
414 { }
415 END { ACME-specific non-text input }
416 ELSE
417 BEGIN { general or text input itemset }
418 { }
419 { Pascal does not give us the ability }
420 { that more strongly typed languages do }
421 { to force a compile-time failure in the }
422 { case where new message types have been }
423 { added to a subsequent release of VMS, }
424 { so we make these run-time checks. }
425 { }
426 ASSERT(ACMEMC$K_MIN_GEN_MSG
427 = ACMEMC$K_GENERAL,
428 ’ACMEMC$K_MIN_GEN_MSG has shifted’);
429 ASSERT(ACMEMC$K_MAX_GEN_MSG
430 = ACMEMC$K_DIALOGUE_ALERT,
431 ’ACMEMC$K_MAX_GEN_MSG has shifted’);
432 ASSERT(ACMEMC$K_MIN_LOGON_MSG
433 = ACMEMC$K_SYSTEM_IDENTIFICATION,
434 ’ACMEMC$K_MIN_LOGON_MSG has shifted’);
435 ASSERT(ACMEMC$K_MAX_LOGON_MSG
436 = ACMEMC$K_MAIL_NOTICES,
437 ’ACMEMC$K_MAX_LOGON_MSG has shifted’);
438 { }
439 { The only general item codes we know of }
440 { for input itemsets are those that are }
441 { "well known items", and those all }
442 { carry text. To be flexible for any }
443 { possible future additions, however, }
444 { we choose to handle any text input }
445 { item code, and we can detect those }
446 { by looking at bit ACMEIC$V_UCS in }
447 { the item code. That bit is simply a }
448 { predefined characteristic of the item }
449 { code and is quite independent of }
450 { whether or not a particular caller }
451 { of SYS$ACM might set the ACME$V_UCS2_4 }
452 { function modifier to indicate strings }
453 { are provided in UCS format. }
454 { }
455 IF ITEMSET_ARRAY^[EACH_ITEMSET]
456 .ACMEIS$W_ITEM_CODE.ACMEIC$V_UCS

33–38 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

457 THEN
458 IF ITEMSET_ARRAY^[EACH_ITEMSET]
459 .ACMEIS$W_ITEM_CODE.ACMEIC$W_ITEM_CODE
460 = ACME$_PRINCIPAL_NAME_IN
461 THEN
462 BEGIN { ACME$_PRINCIPAL_NAME_IN }
463 { }
464 { Choose a canned value. }
465 { }
466 CASE PRINCIPAL_INDEX OF
467 PRINCIPAL_1:
468 SET_BUFFER (’KIOSKUSER_1’);
469 PRINCIPAL_2:
470 SET_BUFFER (’KIOSKUSER_2’);
471 PRINCIPAL_3:
472 SET_BUFFER (’KIOSKUSER_3’);
473 PRINCIPAL_4:
474 SET_BUFFER (’KIOSKUSER_4’);
475 PRINCIPAL_5:
476 SET_BUFFER (’KIOSKUSER_5’);
477 PRINCIPAL_6:
478 SET_BUFFER (’KIOSKUSER_6’);
479 PRINCIPAL_7:
480 SET_BUFFER (’KIOSKUSER_7’);
481 PRINCIPAL_8:
482 SET_BUFFER (’KIOSKUSER_8’);
483 PRINCIPAL_9:
484 SET_BUFFER (’KIOSKUSER_9’);
485 PRINCIPAL_10:
486 SET_BUFFER (’KIOSKUSER_10’);
487 OTHERWISE
488 { }
489 { There is a bug in this program.}
490 { }
491 RETURN SS$_BUGCHECK;
492 { }
493 END; { CASE PRINCIPAL_INDEX }
494 END { ACME$_PRINCIPAL_NAME_IN }
495 ELSE
496 BEGIN { Item Code is for text }
497 { }
498 { Perhaps the channel is open }
499 { from a previous dialogue step. }
500 { }
501 IF TERMINAL_CHANNEL = 0
502 THEN
503 BEGIN { a channel must be assigned }
504 MY_STATUS :=
505 $ASSIGN (
506 DEVNAM := ’SYS$INPUT’,
507 CHAN := TERMINAL_CHANNEL);
508 IF NOT ODD(MY_STATUS)
509 then
510 LIB$SIGNAL(MY_STATUS);
511 END; { a channel must be assigned }
512 { }
513 {We honor SYS$ACM specification of }
514 {Noecho, but because this client }
515 { software only has to work with }
516 { a limited number of hardware }
517 { configurations, we do not bother }
518 { to support Local Echo terminals }
519 { by masking Noecho values the way }
520 { LOGINOUT does. If we chose to }
521 { do that, we could support longer }

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–39

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

522 { input strings than the limit }
523 { LOGINOUT imposes because LOGINOUT }
524 { must fit the prompt and the }
525 {masking into a 255-character }
526 { maximum length imposed by RMS, }
527 { whereas we are using QIO directly. }
528 { }
529 IF ITEMSET_ARRAY^[EACH_ITEMSET]
530 .ACMEIS$L_FLAGS.ACMEDLOGFLG$V_NOECHO
531 THEN
532 QIO_FUNC := IO$_READPROMPT
533 + IO$M_NOECHO
534 ELSE
535 QIO_FUNC := IO$_READPROMPT;
536 MY_STATUS :=
537 $QIOW (
538 EFN := EFN$C_ENF,
539 CHAN := TERMINAL_CHANNEL,
540 FUNC := QIO_FUNC,
541 IOSB := INPUT_IOSB,
542 P1 := INPUT_BUFFER,
543 P2 := SIZE(INPUT_BUFFER),
544 P5 := IADDRESS(CHAR_ARRAY_POINTER_1^),
545 P6 := CHAR_ARRAY_LENGTH_1);
546 IF ODD(MY_STATUS)
547 THEN
548 MY_STATUS := INPUT_IOSB.IOSB$W_STATUS;
549 IF NOT ODD(MY_STATUS)
550 THEN
551 RETURN MY_STATUS;
552 CONFIRM_IOSB.IOSB$W_BCNT := 0;
553 IF CHAR_ARRAY_POINTER_2 <> NIL
554 THEN
555 REPEAT
556 BEGIN { Confirmation Specified }
557 MY_STATUS :=
558 $QIOW (
559 EFN := EFN$C_ENF,
560 CHAN := TERMINAL_CHANNEL,
561 FUNC := QIO_FUNC,
562 IOSB := CONFIRM_IOSB,
563 P1 := CONFIRM_BUFFER,
564 P2 := SIZE(CONFIRM_BUFFER),
565 P5 := IADDRESS(CHAR_ARRAY_POINTER_2^),
566 P6 := CHAR_ARRAY_LENGTH_2);
567 IF ODD(MY_STATUS)
568 THEN
569 MY_STATUS := INPUT_IOSB.IOSB$W_STATUS;
570 IF NOT ODD(MY_STATUS)
571 THEN
572 RETURN MY_STATUS;
573 END { Confirmation Specified }
574 UNTIL SUBSTR(CONFIRM_BUFFER,1,
575 CONFIRM_IOSB.IOSB$W_BCNT)
576 = SUBSTR(INPUT_BUFFER,1,
577 INPUT_IOSB.IOSB$W_BCNT);
578 END { Item Code is for text }
579 ELSE
580 { }
581 { Only ACME-specific itemsets }
582 { can have non-text item codes. }
583 { }
584 RETURN SS$_BUGCHECK;
585 { }
586 END; { general or text input itemset }

33–40 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

587 { }
588 { Fill in the Item List with the }
589 { input we just gathered. }
590 { }
591 { Bubble the null terminator up by 1.}
592 { }
593 ITEM_LIST[EACH_ITEM+1] :=
594 ITEM_LIST[EACH_ITEM];
595 { }
596 { Add the new entry. }
597 { }
598 ITEM_LIST[EACH_ITEM].ILE3$W_LENGTH :=
599 INPUT_IOSB.IOSB$W_BCNT;
600 ITEM_LIST[EACH_ITEM].ILE3$W_CODE::ACMEIC$TYPE :=
601 ITEMSET_ARRAY^[EACH_ITEMSET].ACMEIS$W_ITEM_CODE;
602 ITEM_LIST[EACH_ITEM].ILE3$PS_BUFADDR :=
603 IADDRESS(INPUT_BUFFER);
604 EACH_ITEM := EACH_ITEM + 1;
605 EACH_ITEMSET := EACH_ITEMSET + 1;
606 { }
607 END; { process Input Itemset }
608 { }
609 { Process Output Itemsets up to the next }
610 { Input Itemset. }
611 { }
612 WHILE EACH_ITEMSET <= ITEMSET_COUNT DO
613 BEGIN { process one itemset }
614 CHAR_ARRAY_LENGTH_1
615 := ITEMSET_ARRAY^[EACH_ITEMSET]
616 .acmeis$q_data_1
617 .L0 MOD 65536;
618 CHAR_ARRAY_POINTER_1
619 := ITEMSET_ARRAY^[EACH_ITEMSET]
620 .acmeis$q_data_1
621 .L1::CHAR_ARRAY_TYPE_POINTER;
622 CHAR_ARRAY_LENGTH_2
623 := ITEMSET_ARRAY^[EACH_ITEMSET]
624 .acmeis$q_data_2
625 .L0 MOD 65536;
626 CHAR_ARRAY_POINTER_2
627 := ITEMSET_ARRAY^[EACH_ITEMSET]
628 .acmeis$q_data_2
629 .L1::CHAR_ARRAY_TYPE_POINTER;
630 IF ITEMSET_ARRAY^[EACH_ITEMSET].ACMEIS$L_FLAGS
631 .ACMEDLOGFLG$V_INPUT
632 THEN
633 { }
634 { Recurse to provide an input buffer }
635 { for this input itemset. }
636 { }
637 RETURN RECURSE_OVER_ITEMS (
638 ITEMSET_ARRAY^[EACH_ITEMSET]
639 .ACMEIS$W_MAX_LENGTH)
640 { }
641 ELSE
642 IF ITEMSET_ARRAY^[EACH_ITEMSET].ACMEIS$W_MSG_TYPE
643 .ACMEMC$V_ACME_SPECIFIC
644 AND NOT ITEMSET_ARRAY^[EACH_ITEMSET]
645 .ACMEIS$W_ITEM_CODE.ACMEIC$V_UCS
646 THEN { ACME-specific non-text }
647 { }
648 { Comparing MY_CONTXT^.ACMECB$L_ACME_ID }
649 { .ACMEID$V_ACME_NUM field against the }
650 { (previously queried) IDs of ACMEs from }
651 { which this client expects ACME-specific}

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–41

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

652 { output itemsets, and also }
653 { }
654 { comparing ITEMSET_ARRAY^[EACH_ITEMSET] }
655 { .ACMEIS$W_MSG_TYPE.ACMEMC$W_MSG_CODE}
656 { against the 16-bit values of expected }
657 { ACME-specific message types, we get the}
658 { information to dispatch to handle each }
659 { of the ACME-specific message types that}
660 { this client program knows about. }
661 { }
662 { But this client does not know about any}
663 { ACME-specific message types, so an ACME}
664 { that sent a message we cannot handle is}
665 { behaving totally incorrectly, and we }
666 { give up. }
667 { }
668 ASSERT(FALSE,
669 ’unknown ACME-specific message type’)
670 { }
671 ELSE
672 BEGIN { text or general output itemset }
673 { }
674 { Pascal does not give us the ability }
675 { that more strongly typed languages do }
676 { to force a compile-time failure in the }
677 { case where new message types have been }
678 { added to a subsequent release of VMS, }
679 { so we make these run-time checks. }
680 { }
681 ASSERT(ACMEMC$K_MIN_GEN_MSG
682 = ACMEMC$K_GENERAL,
683 ’ACMEMC$K_MIN_GEN_MSG has shifted’);
684 ASSERT(ACMEMC$K_MAX_GEN_MSG
685 = ACMEMC$K_DIALOGUE_ALERT,
686 ’ACMEMC$K_MAX_GEN_MSG has shifted’);
687 ASSERT(ACMEMC$K_MIN_LOGON_MSG
688 = ACMEMC$K_SYSTEM_IDENTIFICATION,
689 ’ACMEMC$K_MIN_LOGON_MSG has shifted’);
690 ASSERT(ACMEMC$K_MAX_LOGON_MSG
691 = ACMEMC$K_MAIL_NOTICES,
692 ’ACMEMC$K_MAX_LOGON_MSG has shifted’);
693 { }
694 { All general output itemsets carry text,}
695 { but based on the type of item, it would}
696 { be possible to display them on various }
697 { parts of the screen with distinctive }
698 { colors and video characteristics. }
699 { }
700 { That part is left as an exercise for }
701 { the reader, and in each case we call }
702 { WRITE_ITEM_PLAIN. }
703 { }
704 CASE ITEMSET_ARRAY^[EACH_ITEMSET]
705 .ACMEIS$W_MSG_TYPE
706 .ACMEMC$W_MSG_CODE of
707 ACMEMC$K_GENERAL :
708 { General text }
709 WRITE_ITEM_PLAIN;
710 ACMEMC$K_HEADER :
711 { Header text }
712 WRITE_ITEM_PLAIN;
713 ACMEMC$K_TRAILER :
714 { Trailer text }
715 WRITE_ITEM_PLAIN;
716 ACMEMC$K_SELECTION :

33–42 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

717 { Acceptable choices }
718 WRITE_ITEM_PLAIN;
719 ACMEMC$K_DIALOGUE_ALERT :
720 { Alert (advisory) }
721 WRITE_ITEM_PLAIN;
722 ACMEMC$K_SYSTEM_IDENTIFICATION :
723 { System identification text }
724 WRITE_ITEM_PLAIN;
725 ACMEMC$K_SYSTEM_NOTICES :
726 { System notices }
727 WRITE_ITEM_PLAIN;
728 ACMEMC$K_WELCOME_NOTICES :
729 { Welcome notices, }
730 WRITE_ITEM_PLAIN;
731 ACMEMC$K_LOGON_NOTICES :
732 { Logon notices }
733 WRITE_ITEM_PLAIN;
734 ACMEMC$K_PASSWORD_NOTICES :
735 { Password notices }
736 WRITE_ITEM_PLAIN;
737 ACMEMC$K_MAIL_NOTICES :
738 { MAIL notices }
739 WRITE_ITEM_PLAIN;
740 otherwise
741 { }
742 { Some other output message type.}
743 { }
744 WRITE_ITEM_PLAIN;
745 { }
746 END; { CASE ACMEMC$W_MSG_CODE }
747 END; { text or general output itemset }
748 EACH_ITEMSET := EACH_ITEMSET + 1;
749 END; { process one itemset }
750 { }
751 { We have reached the end, call SYS$ACM. }
752 { }
753 RECURSE_OVER_ITEMS := $ACM (
754 EFN := EFN$C_ENF,
755 FUNC := ACME$_FC_AUTHENTICATE_PRINCIPAL,
756 ITMLST := ITEM_LIST,
757 CONTXT := %IMMED IADDRESS(MY_CONTXT),
758 ACMSB := MY_ACMESB);
759 END; { FUNCTION RECURSE_OVER_ITEMS }
760 BEGIN { FUNCTION RESPOND }
761 ITEM_LIST[EACH_ITEM].ILE3$W_LENGTH := 0;
762 ITEM_LIST[EACH_ITEM].ILE3$W_CODE := 0;
763 ITEM_LIST[EACH_ITEM].ILE3$PS_BUFADDR := 0;
764 ITEM_LIST[EACH_ITEM].ILE3$PS_RETLEN_ADDR := NIL;
765 { }
766 { We provide 0 as an indication that this is the }
767 { outermost call, rather than one made due to }
768 { encountering an input itemset. }
769 { }
770 RESPOND := RECURSE_OVER_ITEMS (0);
771 { }
772 END; { FUNCTION RESPOND }
773 BEGIN { FUNCTION AUTHENTICATE }
774 { }
775 { Make an initial query to determine the ACME ID of }
776 { the Fingerprint ACME in the current running system. }
777 { }
778 ACM_QUERY_ITMLST[0].ILE3$PS_BUFADDR := IADDRESS(SYS$ACM_ACME_ID);
779 ACM_QUERY_ITMLST[1].ILE3$PS_BUFADDR := IADDRESS(ACME_QUERY_ACME_NAME);
780 ACM_QUERY_ITMLST[2].ILE3$PS_BUFADDR := IADDRESS(FINGERPRINT_ACME_NAME);
781 ACM_QUERY_ITMLST[3].ILE3$PS_BUFADDR := IADDRESS(ACME_TARGET_DOI_ID);

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–43

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

782 ACM_QUERY_ITMLST[4].ILE3$PS_BUFADDR := IADDRESS(FINGERPRINT_ACME_ID);
783 MY_STATUS:=1;
784 MY_ACMESB.ACMESB$L_STATUS := ACME$_NOSUCHDOI;
785 IF not ODD(MY_STATUS) then
786 MY_STATUS := $ACMW (
787 EFN := EFN$C_ENF,
788 FUNC := ACME$_FC_QUERY,
789 ITMLST := ACM_QUERY_ITMLST,
790 ACMSB := MY_ACMESB);
791 IF ODD(MY_STATUS)
792 then
793 MY_STATUS := MY_ACMESB.ACMESB$L_STATUS;
794 IF NOT ODD(MY_STATUS)
795 then
796 { }
797 { "No Fingerprint ACME present" is a perfectly valid }
798 { state of affairs, and we record a zero ACME ID. }
799 { }
800 IF MY_STATUS = ACME$_NOSUCHDOI
801 THEN
802 FINGERPRINT_ACME_ID := ZERO
803 ELSE
804 LIB$SIGNAL(MY_STATUS);
805 { }
806 { Make an initial authentication call. }
807 { }
808 MY_CONTXT := (-1)::ACMECB_PTR;
809 MY_ACM_ITMLST_A[0].ILE3$PS_BUFADDR := IADDRESS(MY_LOGON_TYPE);
810 MY_ACM_ITMLST_A[1].ILE3$PS_BUFADDR := IADDRESS(MY_DIALOGUE_SUPPORT);
811 MY_STATUS := $ACMW (
812 EFN := EFN$C_ENF,
813 FUNC := ACME$_FC_AUTHENTICATE_PRINCIPAL,
814 ITMLST := MY_ACM_ITMLST_A,
815 CONTXT := %IMMED IADDRESS(MY_CONTXT),
816 ACMSB := MY_ACMESB);
817 IF ODD(MY_STATUS)
818 then
819 MY_STATUS := MY_ACMESB.ACMESB$L_STATUS;
820 IF NOT ODD(MY_STATUS)
821 then
822 { }
823 { "Operation Incomplete" is to be expected. }
824 { }
825 IF MY_STATUS <> ACME$_OPINCOMPL
826 THEN
827 LIB$SIGNAL(MY_STATUS);
828 { }
829 { Respond to successive dialogue steps. }
830 { }
831 WHILE MY_STATUS = ACME$_OPINCOMPL DO
832 BEGIN
833 ITEMSET_ARRAY := MY_CONTXT^
834 .acmecb$ps_item_set::ITEMSET_ARRAY_TYPE_POINTER;
835 MY_STATUS
836 := RESPOND (MY_CONTXT^.acmecb$l_item_set_count);
837 IF NOT ODD(MY_STATUS)
838 then
839 BEGIN { Abandon the authentication }
840 MY_ACM_ITMLST_A[0].ILE3$W_LENGTH := 0;
841 MY_ACM_ITMLST_A[0].ILE3$W_CODE := 0;
842 MY_ACM_ITMLST_A[0].ILE3$PS_BUFADDR := 0;
843 MY_ACM_ITMLST_A[0].ILE3$PS_RETLEN_ADDR := NIL;
844 TRASH_STATUS := $ACMW (
845 EFN := EFN$C_ENF,
846 FUNC := ACME$_FC_FREE_CONTEXT,

33–44 Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only)
33.6 Authentication Examples

847 ITMLST := MY_ACM_ITMLST_A,
848 CONTXT := %IMMED IADDRESS(MY_CONTXT),
849 ACMSB := MY_ACMESB);
850 LIB$SIGNAL(MY_STATUS);
851 END; { Abandon the authentication }
852 MY_STATUS := $SYNCH_ACMESB (
853 EFN := EFN$C_ENF,
854 IOSB := MY_ACMESB);
855 IF ODD(MY_STATUS)
856 then
857 MY_STATUS := MY_ACMESB.ACMESB$L_STATUS;
858 END;
859 IF NOT ODD(MY_STATUS)
860 then
861 LIB$SIGNAL(MY_STATUS);
862 { }
863 IF FINGERPRINT_READER_CHANNEL <> 0
864 THEN
865 BEGIN { a channel was assigned }
866 MY_STATUS :=
867 $DASSGN (
868 CHAN := FINGERPRINT_READER_CHANNEL);
869 IF NOT ODD(MY_STATUS)
870 then
871 LIB$SIGNAL(MY_STATUS);
872 END; { a channel was assigned }
873 { }
874 IF TERMINAL_CHANNEL <> 0
875 THEN
876 BEGIN { a channel was assigned }
877 MY_STATUS :=
878 $DASSGN (
879 CHAN := TERMINAL_CHANNEL);
880 IF NOT ODD(MY_STATUS)
881 then
882 LIB$SIGNAL(MY_STATUS);
883 END; { a channel was assigned }
884 { }
885 AUTHENTICATE := TRUE;
886 END; { FUNCTION AUTHENTICATE }
887 BEGIN { PROGRAM ACM_SHOPFLOOR }
888 AUTHENTICATE (PRINCIPAL_10);
889 END. { PROGRAM ACM_SHOPFLOOR }

Authentication and Credential Management (ACM) System Service (Alpha and I64 Only) 33–45

34
Logical Name and Logical Name Tables

This chapter describes how to create and use logical names and logical name
tables. It contains the following sections:

Section 34.1 describes how to use logical name system services and DCL
commands, how to use logical and equivalence names, and how to use logical
name tables.

Section 34.2 describes how to create user-defined and clusterwide logical name
tables.

Section 34.3 describes how to check access and protection of logical names and
logical name tables.

Section 34.4 describes how to specify access modes of a logical name.

Section 34.5 describes how to translate logical names.

Section 34.6 describes how to specify attributes.

Section 34.7 describes how to establish logical name table quotas.

Section 34.8 describes interprocess communication.

Section 34.9 describes the format convention for logical names and equivalence
names.

Section 34.10 describes how to use logical name and logical name tables system
services with example programs.

34.1 Logical Name System Services and DCL Commands
This section describes how to use system services to establish logical names
for general application purposes. The system performs special logical name
translation procedures for names associated with certain system services. For
further information, see the following chapters:

• Mailbox names and device names for I/O services: Chapter 9

• Common event flag cluster names: Chapter 6

• Global section names: Chapter 21

The operating system’s logical name services provide a technique for
manipulating and substituting character-string names. Logical names are
commonly used to specify devices or files for input or output operations. You can
also use logical names to communicate information between processes by creating
a logical name in one process in a shared logical name table and translating the
logical name in another process.

Logical Name and Logical Name Tables 34–1

Logical Name and Logical Name Tables
34.1 Logical Name System Services and DCL Commands

Besides using logical name system services, you can use DCL commands to
create and manipulate logical names and logical name tables. Table 34–1
lists the operating system’s logical name system services and equivalent DCL
commands.

Table 34–1 Logical Name Services and DCL Commands

System Service Meaning DCL Command Meaning

SYS$CRELNM Create Logical Name ALLOCATE Optionally associates a
logical name with a device

ASSIGN Creates a logical
name and assigns an
equivalence string to a
specific logical name

DEFINE Associates an equivalence
name with a logical name

MOUNT Allows the optional
naming of a logical name
for a disk or magnetic
tape volume

SYS$CRELNT Create Logical Name
Table

CREATE/NAME_TABLE Creates a new logical
name table

SYS$DELLNM Delete Logical Name DEASSIGN Cancels a logical name
assignment

SYS$TRNLNM Translate Logical Name SHOW LOGICAL Displays translations and
the logical name table for
a specified logical name

SHOW TRANSLATION Displays the first
translation found for
the specified logical name

As the names of the logical name system services imply, when you use the logical
name system services, you are concerned with creating, deleting, and translating
logical names and with creating and deleting logical name tables.

The following sections describe various concepts you should be aware of when you
use the logical name system services. For further discussion of logical names, see
the OpenVMS User’s Manual.

34.1.1 Logical Names, Equivalence Names, and Search Lists
A logical name is a user-specified character string that can represent a
file specification, device name, logical name table name, application-specific
information, or another logical name. Typically, for process-private purposes, you
specify logical names that are easy to use and to remember. System managers
and privileged users choose mnemonics for files, system devices, and search lists
that are frequently accessed by all users.

An equivalence string, or an equivalence name, is a character string that
denotes the actual file specification, device name, or character string. An
equivalence name can also be a logical name. In this case, further translation is
necessary to reveal the actual equivalence name.

A multivalued logical name, commonly called a search list, is a logical name
that has more than one equivalence string. Each equivalence string in the search
list is assigned an index number starting at zero. A logical name can have a
maximum of 128 equivalence names.

34–2 Logical Name and Logical Name Tables

Logical Name and Logical Name Tables
34.1 Logical Name System Services and DCL Commands

Logical names and their equivalence strings are stored in logical name tables.
Logical names can have a maximum length of 255 characters. Equivalence
strings can have a maximum of 255 characters. You can establish logical name
and equivalence string pairs as follows:

• At the command level, with the DCL commands ALLOCATE, ASSIGN,
DEFINE, or MOUNT

• In a program, with the Create Logical Name (SYS$CRELNM), Create Mailbox
and Assign Channel (SYS$CREMBX), or Mount Volume (SYS$MOUNT)
system service

For example, you could use the symbolic name TERMINAL to refer to an output
terminal in a program. For a particular run of the program, you could use the
DEFINE command to establish the equivalence name TTA2.

To create a logical name in a program, you must define character-string
descriptors for the name strings and call the system service within your
program.

34.1.2 Logical Name Tables
A logical name table contains logical name and equivalence string pairs. Each
table is an independent name space. When you translate a logical name, you
specify the table containing the name. A logical name table is referred to by its
name, which is itself a logical name, or by another logical name that translates
into the table name.

Logical name tables can be created in process space or in system space. Tables
created in process space are accessible only by that process. Tables created in
system space are potentially shareable among many processes. OpenVMS creates
a number of logical name tables with specific characteristics. These predefined
logical name tables have names beginning with the prefix LNM$.

Logical name and equivalence name pairs are maintained in three types of logical
name tables:

• Directory tables

• Default tables

• User-defined name tables

34.1.2.1 Logical Name Directory Tables
Because the names of logical name tables are logical names, table names must
reside in logical name tables. Two special tables called directories exist for this
purpose. Table names are translated from these logical name directory tables.
Logical name and equivalence name pairs for logical name tables are maintained
in the following two directory tables:

• Process directory table (LNM$PROCESS_DIRECTORY)

• System directory table (LNM$SYSTEM_DIRECTORY)

The process directory table contains the names of all process-private user-defined
logical name tables created through the SYS$CRELNT system service. In
addition, the process directory table contains system-assigned logical name table
names and the name of the process logical name table LNM$PROCESS_TABLE.

Logical Name and Logical Name Tables 34–3

Logical Name and Logical Name Tables
34.1 Logical Name System Services and DCL Commands

The system directory table contains the names of potentially shareable logical
name tables and system-assigned logical name table names. Typically, you must
have the SYSPRV privilege to create a logical name in the system directory table.
For a discussion of privileges, see Section 34.3.

Logical names other than logical name table names can exist within these tables,
but are strongly discouraged. The length of the logical names and table names
created in either of these tables must not exceed 31 characters. Logical table
names and logical names created in the directory tables must consist of uppercase
alphanumeric characters, dollar signs ($), and underscores (_). Equivalence
strings must not exceed 255 characters.

34.1.2.2 Process, Job, Group, System and Clusterwide Default Logical Name Tables
OpenVMS creates a number of logical name tables automatically, some at system
initialization and some at process creation. Some of these tables are accessible to
all processes, and some are accessible only to selected processes. These tables are
called the default logical name tables.

Each default logical name table has a logical name associated with it in addition
to its table name. The default logical name table names and the common logical
names used to refer to them are as follows:

Table Name Logical Name

Process LNM$PROCESS_TABLE LNM$PROCESS

Job LNM$JOB_xxxxxxxx1 LNM$JOB

Group LNM$GROUP_gggggg2 LNM$GROUP

System LNM$SYSTEM_TABLE,
LNM$SYSCLUSTER

LNM$SYSTEM

Clusterwide
system table

LNM$SYSCLUSTER_TABLE LNM$SYSCLUSTER

Clusterwide
parent table

LNM$CLUSTER_TABLE LNM$CLUSTER

1The letter x represents a numeral in an 8-digit hexadecimal number that uniquely identifies the job
logical name table.
2 The letter g represents a numeral in a 6-digit octal number that contains the user’s group number.

The length of the logical names created in these tables cannot exceed 255
characters, with no restriction on the types of characters used. Equivalence
strings cannot exceed 255 characters. By convention, an HP-created logical name
begins with a facility-specific prefix, followed by a dollar sign ($) and a name
within that facility. You are strongly encouraged to define logical names without
the dollar sign ($) to avoid inadvertent conflicts.

34.1.2.2.1 Process Logical Name Table The process logical name table
LNM$PROCESS_TABLE contains names used exclusively by the process. A
process logical name table exists for each process in the system. Some entries
in the process logical name table are made by system programs executing at
more privileged access modes; these entries are qualified by the access mode from
which the entry was made. The process logical name table contains the following
process-permanent logical names:

34–4 Logical Name and Logical Name Tables

Logical Name and Logical Name Tables
34.1 Logical Name System Services and DCL Commands

Logical Name Meaning

SYS$INPUT Default input stream

SYS$OUTPUT Default output stream

SYS$COMMAND Original first-level (SYS$INPUT) input stream

SYS$ERROR Default device to which the system writes error messages

SYS$COMMAND is created only for processes that execute LOGINOUT.

Usually, you create logical names only in your process logical name table. Most
entries in the process logical name table are made in user or supervisor mode.

Process logical names that are created in user mode are deleted whenever the
creating process runs an image down. The following DCL commands illustrate
this behavior with supervisor mode and /TABLE=LNM$PROCESS as the defaults
(default mode and default table) for the DEFINE command:

$ DEFINE/USER ABC XYZ
$ SHOW TRANSLATION ABC
ABC = XYZ

$ DIRECTORY
.
.
.

$ SHOW LOGICAL ABC
ABC = (undefined)

The DCL command DIRECTORY performs image rundown when it is finished
operating. At that time, all user-mode process-private logical names are deleted,
including the logical name ABC.

34.1.2.2.2 Job Logical Name Table The job logical name table is a shareable
table that is accessible by all processes within the same job tree. Whenever a
detached process is created, a job logical name table is created for this process
and for all of its potential subprocesses. At the same time, the process-private
logical name LNM$JOB is created in the process directory logical name table
LNM$PROCESS_DIRECTORY. The logical name LNM$JOB translates to the
name of the job logical name table.

Because the job logical name table already exists for the main process, only the
process-private logical name LNM$JOB is created when a subprocess is created.

The job logical name table contains the following three process-permanent logical
names for processes that execute LOGINOUT:

Logical Name Meaning

SYS$LOGIN Original default device and directory

SYS$LOGIN_DEVICE Original default device

SYS$SCRATCH Default device and directory to which temporary files are
written

Instead of creating these logical names within the process logical name table
LNM$PROCESS_TABLE for every process within a job tree, LOGINOUT creates
these logical names once when it is executed for the process at the root of the job
tree.

Logical Name and Logical Name Tables 34–5

Logical Name and Logical Name Tables
34.1 Logical Name System Services and DCL Commands

Additionally, the job logical name table can contain the following logical names:

• The logical name optionally specified and associated with a newly created
temporary mailbox

• The logical name optionally specified and associated with a privately mounted
volume

You do not need special privileges to modify the job logical name table. For a
discussion of privileges, see Section 34.3.

34.1.2.2.3 Group Logical Name Table The group logical name table contains
names that cooperating processes in the same group can use. You need the
GRPNAM privilege to add or delete a logical name in the group logical name
table. For a discussion of privileges, see Section 34.3.

A group logical name table is created when a top-level process with a unique
group code is created. The logical name LNM$GROUP exists in each process’s
process directory LNM$PROCESS_DIRECTORY. This logical name translates
into the name of the group logical name table.

34.1.2.2.4 System Logical Name Table The system logical name table
LNM$SYSTEM_TABLE contains names that all processes in the system can
access. This table includes the default names for all system-assigned logical
names. You need the SYSNAM or SYSPRV privilege to add or delete a logical
name in the system logical name table. For a discussion of privileges, see
Section 34.3.

The system logical table contains system-assigned logical names accessible to
all processes in the system. For example, the logical names SYS$LIBRARY and
SYS$SYSTEM provide logical names that all users can access to use the device
and directory that contain system files.

Logical Name Equivalence Name

SYS$LIBRARY SYS$SYSROOT:[SYSLIB]

SYS$SYSTEM SYS$SYSROOT:[SYSEXE]

.

.

.

The Logical Names section of the OpenVMS User’s Manual contains a list of these
system-assigned logical names.

34.1.2.2.5 Clusterwide Logical Name Table The clusterwide system logical
name table LNM$SYSCLUSTER_TABLE contains names that all processes in
the cluster can access. This is the clusterwide table that contains system logical
names. Because this table exists on all systems, the programs and command
procedures that use clusterwide logical names are transportable to both clustered
and nonclustered systems. The names in this table are available to anyone
translating a logical name using SHOW LOGICAL/SYSTEM and specifying a
table name of LNM$SYSTEM, or LNM$DCL_LOGICAL (DCL’s default table
search list), or LNM$FILE_DEV (system and RMS default).

LNM$SYSCLUSTER is the logical name for LNM$SYSCLUSTER_TABLE. It
is provided for convenience in referencing LNM$SYSCLUSTER_TABLE and
it is consistent in format with LNM$SYSTEM_TABLE and its logical name,
LNM$SYSTEM.

34–6 Logical Name and Logical Name Tables

Logical Name and Logical Name Tables
34.1 Logical Name System Services and DCL Commands

You need either the SYSNAM or SYSPRV privilege or write access to the table to
create or delete a name in this table.

The definition of LNM$SYSTEM has been expanded to include
LNM$SYSCLUSTER. When a system logical name is translated, the search
order is LNM$SYSTEM_TABLE, LNM$SYSCLUSTER.

The clusterwide logical name table LNM$CLUSTER_TABLE is the parent table
for all logical names, including LNM$SYSCLUSTER_TABLE. When you create a
new table using LNM$CLUSTER_TABLE as the parent table, the new table will
be available clusterwide.

LNM$CLUSTER is the logical name for LNM$CLUSTER_TABLE. It is provided
for convenience in referencing LNM$CLUSTER_TABLE.

You need either the SYSPRV privilege or write access to the table to create or
delete a name in this table.

Logical names in these two tables and their descendant tables are clusterwide.
Creation and deletion of cluster wide logical names are replicated on other
nodes of the cluster. Creation and deletion of clusterwide logical name tables
are replicated on other nodes of the cluster. When a node boots into a cluster, it
receives the current set of clusterwide logical names.

LNM$SYSCLUSTER_TABLE and LNM$CLUSTER_TABLE are created on all
systems, regardless of whether they are cluster nodes. Their existence enables
OpenVMS to maintain a consistent application environment.

34.1.3 Logical Name Table Names and Search Lists
The process, job, group, and system tables are typically referred to indirectly. For
example, the process table is usually specified as LNM$PROCESS. This indirect
reference enables you to redefine LNM$PROCESS as multiple equivalence names
and thus include one or more of your own tables in it.

The system table is specified as LNM$SYSTEM. The logical name LNM$SYSTEM
is defined as LNM$SYSTEM_TABLE, LNM$SYSCLUSTER. Thus, it includes
both systemwide names specific to the node and systemwide names common to
all nodes in the cluster. When a system name is translated, the search order is
LNM$SYSTEM_TABLE, LNM$SYSCLUSTER.

As described in the OpenVMS User’s Manual, OpenVMS automatically defines
a number of logical names, some of which are names of logical name tables. In
addition to the table names in the table in Section 34.1.2.2, OpenVMS defines
LNM$FILE_DEV and LNM$DCL_LOGICAL.

RMS and other system components specify the table LNM$FILE_DEV for file
specification and device name translations. Its definition is LNM$PROCESS,
LNMJOB, LNMGROUP, LNM$SYSTEM. Thus, the precedence order for
resolving logical names using this search list is as follows:

process-->job-->group-->system-->clusterwide system

The table name LNM$DCL_LOGICAL is used for the SHOW LOGICAL and
SHOW TRANSLATION DCL commands and for the logical name lexical
functions. Its definition is LNM$FILE_DEV.

Logical Name and Logical Name Tables 34–7

Logical Name and Logical Name Tables
34.1 Logical Name System Services and DCL Commands

34.1.4 Specifying the Logical Name Table Search List
Logical names exist as entries within logical name tables. When a logical name
is to be created, deleted, or translated, you must specify or take the default name
that designates the logical name table that contains the logical name. This name
possesses one or more of the following characteristics:

• It is the name of a logical name table.

• It is a logical name that iteratively translates in the process or system
directory table to the name of a logical name table.

• It is a multivalued logical name (search list) that iteratively translates to
the names of several logical name tables. The tables are used in the order in
which they appear.

As mentioned in Section 34.1.2, predefined logical names exist for certain logical
name tables. These predefined names begin with the prefix LNM$. You can
redefine these names to modify the search order or the tables used.

Instead of a fixed set of logical name tables and a rigidly defined order (process,
job, group, system) for searching those tables, you can specify which tables are
to be searched and the order in which they are to be searched. Logical names in
the directory tables are used to specify this searching order. By convention, each
class of logical name (for example, device or file specification) uses a particular
predefined name for this purpose.

For example, LNM$FILE_DEV is the logical name that defines the list of logical
name tables used whenever file specifications or device names are translated
by OpenVMS RMS or the I/O services. LNM$FILE_DEV is the default for file
specifications and device names. This name must translate to a list of one or
more logical name table names that specify the tables to be searched when
translating file specifications.

By default, LNM$FILE_DEV specifies that the process, job, group, and system
tables are all searched, in that order, and that the first match found is returned.

Logical name table names are translated from two tables: the process logical
name directory table LNM$PROCESS_DIRECTORY and the system logical name
directory table LNM$SYSTEM_DIRECTORY. The LNM$FILE_DEV logical name
table must be defined in one of these tables.

Thus, if identical logical names exist in the process and group tables, the process
table entry is found first, and the job and group tables are not searched. When
the process logical name table is searched, the entries are searched in order
of access mode, with user-mode entries matched first, supervisor-mode entries
second, and so on.

If you want to change the list of tables used for device and file specifications, you
can redefine LNM$FILE_DEV in the process directory table LNM$PROCESS_
DIRECTORY.

34.2 Creating User-Defined and Clusterwide Logical Name Tables
You can create process-private tables and shareable tables by calling the
SYS$CRELNT system service in a program, or with the DCL command
CREATE/NAME_TABLE. However, to create a shareable table you must
have create (C) access to the parent table and either SYSPRV privilege or write
(W) access to LNM$SYSTEM_DIRECTORY. If granted access, processes other
than the creating process can use shareable tables. For a discussion of privileges,

34–8 Logical Name and Logical Name Tables

Logical Name and Logical Name Tables
34.2 Creating User-Defined and Clusterwide Logical Name Tables

see Section 34.3. Processes other than the creating process cannot use logical
names contained in process-private tables.

You can assign protection to these shareable tables through the promsk
argument of the SYS$CRELNT system service. The promsk argument allows
you to specify the type of access for system, owner, group, and world users, as
follows:

• Read privileges allow access to names in the logical name table.

• Write privileges allow creation and deletion of names within the logical name
table.

• Delete privileges allow deletion of the logical name table.

• Create privilege to a table allows creation of children tables.

You can apply the following types of ownership and access to a shareable logical
name table:

• OWNERSHIP: SYSTEM(S), GROUP(G), or WORLD(W)

• ACCESS: READ(R), WRITE(W), CREATE(C), or DELETE(D)

If the promsk argument is omitted, complete access is granted to system and
owner, and no access is granted to group and world.

When a shareable table is created, both the specified promsk argument and the
current default security profile for tables are applied.

In addition, you can specify finer-grained access rights by modifying the access
control list using either the DCL command SET SECURITY or the SYS$SET_
SECURITY system service. For more information, see Chapter 25 and HP
OpenVMS Guide to System Security.

The length of logical names created in user-defined logical name tables cannot
exceed 255 characters. Equivalence strings cannot exceed 255 characters.

34.2.1 Creating Clusterwide Logical Name Tables
You might want to create additional clusterwide logical name tables for the
following purposes:

• For use by a multiprocess clusterwide application

• For sharing by members of a UIC group

You can create additional clusterwide logical name tables in the same way that
you can create additional process, job, and group logical name tables—with the
CREATE/NAME_TABLE command or with the $CRELNT system service. When
creating a clusterwide logical name table, you must specify the /PARENT_TABLE
qualifier and provide a value for the qualifier that is a clusterwide name. Any
existing clusterwide table used as the parent table will make the new table
clusterwide.

The following example shows how to create a clusterwide logical name table:

$ CREATE/NAME_TABLE/PARENT_TABLE=LNM$CLUSTER_TABLE -
_$ new_clusterwide_logical_name_table

Logical Name and Logical Name Tables 34–9

Logical Name and Logical Name Tables
34.2 Creating User-Defined and Clusterwide Logical Name Tables

To create clusterwide logical names that will reside in the clusterwide logical
name table you created, you define the new clusterwide logical name with the
DEFINE command, specifying your new clusterwide table’s name with the
/TABLE qualifier, as shown in the following example:

$ DEFINE/TABLE=new_clusterwide_logical_name_table logical_name -
_$ equivalence_string

34.3 Checking Access and Protection
When a user tries to access a logical name table, the operating system compares
the security profile of the user with the security profile of the table. The operating
system uses the following sequence:

1. Scans the table’s access control list for an entry matching any of the user’s
rights identifiers.

2. Evaluates the table’s protection mask against the user’s UIC.

3. Looks for special privileges.

The system checks the privileges in the user authorization file (UAF) granted
to you when your system manager sets up your account. Privileges allow you to
perform the functions listed in Table 34–2.

Table 34–2 Summary of Privileges

Privilege Function

GRPNAM Creates or deletes a logical name in your group logical name table

GRPPRV Creates or deletes a logical name in your group logical name table

SYSNAM Creates executive-mode or kernel-mode logical names; creates or deletes
a logical name in the system logical name table; deletes a logical name
or table at an inner access mode

SYSPRV Creates or deletes a logical name in the system logical name table
Creates or deletes a shareable table

The system also checks for read, write, and delete access.

For example, a user without SYSPRV privilege but with write access to
LNM$SYSTEM_DIRECTORY can create or delete a shareable table.

All users can create, delete, and translate their own process-private logical names
and process-private logical name tables.

34.4 Specifying Access Modes
You can specify the access mode of a logical name when you define the logical
name. If you do not specify an access mode, then the access mode defaults to that
of the caller of the SYS$CRELNM system service. If you specify the acmode
argument and the process has SYSNAM privilege, the logical name is created
with the specified access mode. Otherwise, the access mode cannot have more
privileges than the mode from which the service was requested. For information
about access modes, see Chapter 20 and the discussion of SYS$CRELNM in the
HP OpenVMS System Services Reference Manual.

34–10 Logical Name and Logical Name Tables

Logical Name and Logical Name Tables
34.4 Specifying Access Modes

A logical name table can contain multiple definitions of the same logical name
with different access modes. If a request to translate such a logical name specifies
the acmode argument, then the SYS$TRNLNM system service ignores all names
defined at a less privileged mode. A request to delete a logical name includes the
access mode of the logical name. Unless the process has the SYSNAM privilege,
the mode specified can be no more privileged than the caller.

By default, the command interpreter places entries made from the command
stream into the process-private logical name table; these are supervisor-mode
entries and are not deleted at image exit (except for the logical names defined
by the DCL commands ASSIGN/USER and DEFINE/USER). During certain
system operations, such as the activation of an image installed with privilege,
only executive-mode and kernel-mode logical names are used.

Logical names or logical name table names, which either an image running
in user mode or the DCL commands ASSIGN/USER and DEFINE/USER have
placed in a process-private logical name table, are automatically deleted at
image exit. Shareable user-mode names, however, survive image exit and process
deletion.

34.5 Translating Logical Names
Only one entry can exist for a particular logical name of a given access mode in
a logical name table. However, a logical name table can contain entries for the
same logical name at different access modes. Different logical name tables can
contain entries for the same logical name.

Because identical logical names can exist in more than one logical name table, the
translation that the system uses depends on the order in which it searches the
logical name tables. For example, when the system attempts to translate a logical
name to identify the location of a file, it uses the logical name LNM$FILE_DEV
to provide the list of tables in which to look for the name.

If, for example, a logical name exists in both the process and the group logical
name tables, the logical name within the process table is used.

By default, the DEFINE and DEASSIGN commands place names in, and delete
names from, your process table. However, you can request a different table with
the /TABLE qualifier, as shown in the following example:

$ DEFINE/TABLE=LNM$SYSTEM REVIEWERS DISK3:[PUBLIC]REVIEWERS.DIS

Any number of logical names can have the same equivalence name. Consider the
following examples of the logical name TERMINAL defined in several tables. The
logical name TERMINAL translates differently depending on the table specified.

Process Logical Name Table for Process A
The following process logical name table equates the logical name TERMINAL
to the specific terminal TTA2. The INFILE and OUTFILE logical names are
equated to disk specifications. The logical names were created from supervisor
mode.

Logical Name Equivalence Name Access Mode

INFILE DM1:[HIGGINS]TEST.DAT Supervisor

OUTFILE DM1:[HIGGINS]TEST.OUT Supervisor

Logical Name and Logical Name Tables 34–11

Logical Name and Logical Name Tables
34.5 Translating Logical Names

Logical Name Equivalence Name Access Mode

TERMINAL TTA2: Supervisor

.

.

To determine the equivalence string for the logical name TERMINAL in the
preceding table, enter the following command:

$ SHOW LOGICAL TERMINAL

The system returns the equivalence string TTA2:.

Job Logical Name Table
The portion of the following job logical name table assigns the logical name
TERMINAL to a virtual terminal VTA14. The logical name SYS$LOGIN is the
device and directory for the process when you log in. The SYS$LOGIN logical
name is defined in executive mode.

Logical Name Equivalence Name Access Mode

SYS$LOGIN DBA9:[HIGGINS] Executive

TERMINAL VTA14: User

.

.

To determine the equivalence string of the logical name TERMINAL defined in
the preceding table, enter the following command:

$ SHOW LOGICAL/JOB TERMINAL

The system returns the equivalence string VTA14: as the translation.

User-Defined Logical Name Table
The following user-defined logical name table (called LOG_TBL for purposes
of this discussion) contains a definition of TERMINAL as the mailbox device
MBA407. The multivalued logical name (search list) XYZ has two translations:
DISK1 and DISK3.

Logical Name Equivalence Name Access Mode

TERMINAL MBA407: Supervisor

XYZ DISK1:,DISK3: Supervisor

.

.

To determine the equivalence string for the logical name TERMINAL in the
preceding user-defined table, enter the following command:

$ SHOW LOGICAL/TABLE=LOG_TBL TERMINAL

The system returns the equivalence string MBA407. In order to use this
definition of TERMINAL as a device or file specification, you must redefine
the logical name LNM$FILE_DEV to reference the user-defined table, as follows:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV LOG_TBL, -
_$ LNM$PROCESS,LNM$JOB,LNM$GROUP,LNM$SYSTEM

34–12 Logical Name and Logical Name Tables

Logical Name and Logical Name Tables
34.5 Translating Logical Names

In this example, the DCL command DEFINE is used to redefine the default
search list LNM$FILE_DEV. The /TABLE qualifier specifies the table
LNM$PROCESS_DIRECTORY that is to contain the redefined search list. The
system searches the tables defined by LNM$FILE_DEV in the following order:
LOG_TBL, LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM.

Logical Name Supersession
If the logical name TERMINAL is equated to TTA2 in the process table, as shown
in the previous examples, and the process subsequently equates the logical name
TERMINAL to TTA3, the equivalence of TERMINAL TTA2 is replaced by the new
equivalence name. The successful return status code SS$_SUPERSEDE indicates
that a new entry replaced an old one.

The definitions of TERMINAL in the job table and in the user-defined table LOG_
TBL are unaffected.

34.6 Specifying Attributes
Generally, attributes specified through the logical name system services perform
two functions: they affect the creation of logical names or govern how the system
service operates, and they affect the translation of logical names and equivalence
strings.

Attributes that affect the creation of the logical names are specified optionally in
the attr argument of a system service call. The attr argument attributes that
are available from the SYS$CRELNM system service are as follows:

Attribute Meaning

LNM$M_CONFINE Prevents this process-private logical name from being copied to
subprocesses. Subprocesses are created by the DCL command
SPAWN or by the run-time library LIB$SPAWN routine.

LNM$M_NO_ALIAS Prevents creation of a duplicate logical name in the specified
logical name table at an outer access mode. If another logical
name already exists in the table at an outer access mode, that
name is deleted.

The attr argument attributes that are available from the SYS$CRELNT system
service are as follows:

Attribute Meaning

LNM$M_CONFINE Prevents this process-private logical table from being copied to
subprocesses. Subprocesses are created by the DCL command
SPAWN or by the run-time library LIB$SPAWN routine.

LNM$M_CREATE_IF Prevents creation of a nonclusterwide logical name table if the
specified table already exists at the specified access mode in the
appropriate directory table. This attribute applies only to local
tables.

LNM$M_NO_ALIAS Prevents creation of a logical name table at an outer access
mode in a directory table if the table name already exists in the
directory table.

The attr argument attributes that are available from the SYS$TRNLNM system
service are as follows:

Logical Name and Logical Name Tables 34–13

Logical Name and Logical Name Tables
34.6 Specifying Attributes

Attribute Meaning

LNM$M_CASE_BLIND Governs the translation process and causes
SYS$TRNLNM to ignore uppercase and lowercase
differences in letters when searching for logical names.

LNM$M_INTERLOCKED Ensures that any clusterwide logical name
modifications in progress are completed before the
name is translated.

The translation attributes LNM$M_CONCEALED and LNM$M_TERMINAL
associated with logical names and equivalence strings are specified optionally
through the LNM$_ATTRIBUTES item code in the itmlst argument of the
SYS$CRELNM system service call. The equivalence name attributes for
SYS$CRELNM are as follows:

Attribute Meaning

LNM$M_CONCEALED Indicates that the equivalence string at the current
index value for the logical name is an OpenVMS RMS
concealed device name.

LNM$M_TERMINAL Indicates that the equivalence strings cannot be
translated further.

When the item code LNM$_ATTRIBUTES is specified through SYS$TRNLNM,
the system returns the current attributes associated with the logical name and
equivalence string at the current index value. Since a logical name can have
more than one equivalence name, each equivalence name is identified by an
index value. The item code LNM$_INDEX of SYS$TRNLNM searches for an
equivalence name that has the specified index value.

The equivalence returned attributes for SYS$TRNLNM are as follows:

Attribute Meaning

LNM$M_CONCEALED Indicates that the equivalence string at the current
index value for the logical name is an OpenVMS RMS
concealed device name.

LNM$M_CONFINE Indicates that the logical name cannot be used by
spawned subprocesses. Subprocesses are created by
the DCL command SPAWN or by the run-time library
LIB$SPAWN routine.

LNM$M_CRELOG Indicates that the logical name was created by the
SYS$CRELOG system service.

LNM$M_EXISTS Indicates that the equivalence string at the specified
index value exists.

LNM$M_NO_ALIAS Indicates that if the logical name already exists in the
table, it cannot be created in that table at an outer
access mode.

LNM$M_TABLE Indicates that the logical name is the name of a logical
name table.

LNM$M_TERMINAL Indicates that the equivalence strings cannot be
translated further.

LNM$V_CLUSTERWIDE Indicates that the logical name is clusterwide.

34–14 Logical Name and Logical Name Tables

Logical Name and Logical Name Tables
34.6 Specifying Attributes

The attributes of multiple equivalence strings do not have to match. For more
information about attributes, refer to the appropriate system service in the HP
OpenVMS System Services Reference Manual.

34.7 Establishing Logical Name Table Quotas
A logical name table quota is the number of bytes allocated in memory for
logical names contained in a logical name table. Logical name table quotas are
established in the following instances:

• When the system is initialized

• When a process is created

• When logical name tables are created

Each logical name table has a quota associated with it that limits the number of
bytes of memory (either process pool or system paged pool) that can be occupied
by the names defined in the table. The quota for a table is established when the
table is created.

If no quota is specified, the newly created table has unlimited quota. Note that
this table can expand to consume all available process or system memory, and
all users with write access to such a shareable table can cause the unlimited
consumption of system paged pool.

34.7.1 Directory Table Quotas
When the system is initialized, unlimited quota is automatically established for
the system directory table LNM$SYSTEM_DIRECTORY.

When you log in to the system, unlimited quota is automatically established for
the process directory table LNM$PROCESS_DIRECTORY.

34.7.2 Default Logical Name Table Quotas
The process, group, system, clusterwide system, and clusterwide parent logical
name tables have unlimited quota.

34.7.3 Job Logical Name Table Quotas
Because the job logical name table is a shareable table, and because you do not
need special privileges to create logical names within it, the quota allocated
to this logical name table is constrained at the time the table is created. The
following three mechanisms specify the quota for the job logical name table at the
time of its creation:

• For all processes that activate LOGINOUT, the quota for the job logical
name table is obtained from the system authorization file. This allows the
quota for the job to be specified on a user-by-user basis. You can modify the
job logical name table quota by specifying a value with the DCL command
AUTHORIZE/JTQUOTA.

• For all processes that do not activate LOGINOUT, the quota for the job logical
name table can be specified as a quota list item (PQL$_JTQUOTA) in the call
to the Create Process (SYS$CREPRC) system service. If a detached process is
to be created by means of the DCL command RUN/DETACHED, then you can
use the /JOB_TABLE_QUOTA qualifier to specify the SYS$CREPRC quota
list item.

Logical Name and Logical Name Tables 34–15

Logical Name and Logical Name Tables
34.7 Establishing Logical Name Table Quotas

• For all processes that do not activate LOGINOUT and do not specify a PQL$_
JTQUOTA quota list item in their call to SYS$CREPRC, the quota for the
job logical name table is taken from the dynamic System Generation utility
(SYSGEN) parameter PQL$_DJTQUOTA. You can use SYSGEN to display
both PQL$_DJTQUOTA and PQL$_MJTQUOTA, the default and minimum
job logical name table quotas, respectively.

34.7.4 User-Defined Logical Name Table Quotas
User-defined logical name tables can be created with either an explicit limited
quota or no quota limit.

The presence of user-defined logical name table quotas eliminates the need for a
privilege (for example, SYSNAM or GRPNAM) to control consumption of paged
pool when you create logical names in a shareable table.

34.8 Interprocess Communication
Although logical names typically represent device and file names, shareable
logical names can also be used to pass information among cooperating processes.
When a process creates a shareable logical name, it can store up to 255 bytes of
information in each equivalence name. The processes can agree to any arbitrary
form for the information. Cooperating processes can translate the shareable
name to retrieve the data in its eqivalence names.

The operating system ensures one process cannot change a logical name at the
same time another process is either translating the name or trying to change
it. In other words, the synchronization provided by OpenVMS allows multiple
concurrent readers or a single writer to access shared logical names that are not
clusterwide.

Each instance of OpenVMS has its own shareable logical name database. When
a process creates a new shareable logical name, that name can be translated
immediately by any other process in the system with access to the containing
table.

On an OpenVMS cluster, each node has its own shareable logical name database.
In addition, the clusterwide tables and their names are replicated on each node
of the cluster. Cluster communication and replication time can delay the time
when a clusterwide logical name is visible on other cluster nodes. For increased
performance, the default synchronization provided by OpenVMS for clusterwide
logical names allows a single writer to access shared logical names, but it does
not block concurrent readers.

Synchronization provided by OpenVMS may therefore be insufficient for a given
application. In particular, the following circumstances require that an application
provide additional synchronization:

• Retrieval of the most recent version of a clusterwide logical name

• Multiple modifiers of a given logical name, clusterwide or local

If you have an application where a logical name translator must be certain of
getting the most recent definition of a clusterwide logical name, you should
specify in the application the LNM$M_INTERLOCKED attribute in the attr
argument. Use of this attribute synchronizes the translation with any pending
changes to clusterwide names and ensures that the translation retrieves the most
recent definition of the name. Use of this attribute to translate a local name adds
a small amount of overhead but is otherwise harmless.

34–16 Logical Name and Logical Name Tables

Logical Name and Logical Name Tables
34.8 Interprocess Communication

No logical name service provides an atomic modify of a logical name, clusterwide
or local; it is thus not possible in one system service call to read the information
in a logical name’s equivalence names and recreate it with updated information.
This means that if you have an interprocess application in which multiple
processes modify a logical name, you must provide additional synchronization to
create a critical section containing the SYS$TRNLNM and SYS$CRELNM calls.
For example, your application could take the following steps:

1. Call SYS$ENQ to acquire a restrictive lock on an application-specific resource
name.

2. Call SYS$TRNLNM to retrieve the current equivalence names, modify them,
and call SYS$CRELNM to recreate the logical name. Use the LNM$M_
INTERLOCKED attribute if the name could be clusterwide.

3. Call SYS$DEQ to release the lock.

Because locks synchronize processes running on multiple cluster nodes, this
method synchronizes processes that are running on a single node or multiple
nodes.

34.9 Using Logical Name and Equivalence Name Format
Conventions

The operating system uses special conventions for assigning logical names to
equivalence names and for translating logical names. These conventions are
generally transparent to user programs; however, you should be aware of the
programming considerations involved.

If a logical name string presented in I/O services is preceded by an underscore
(_), the I/O services bypass logical name translation, drop the underscore, and
treat the logical name as a physical device name.

When you log in, the system creates default logical name table entries for
process-permanent files. The equivalence names for these entries (for example,
SYS$INPUT and SYS$OUTPUT) are preceded by a 4-byte header that contains
the following information:

Byte Contents

0 ^X1B (escape character)

1 ^X00

2–3 OpenVMS RMS Internal File Identifier (IFI)

This header is followed by the equivalence name string. If any of your program
applications must translate system-assigned logical names, you must prepare the
program both to check for the existence of this header and to use only the desired
part of the equivalence string. The following program demonstrates how to do
this:

#include <stdio.h>
#include <lnmdef.h>
#include <ssdef.h>
#include <descrip.h>
#include <ctype.h>
#include <string.h>

#define HEADER 4

Logical Name and Logical Name Tables 34–17

Logical Name and Logical Name Tables
34.9 Using Logical Name and Equivalence Name Format Conventions

/* Define an item descriptor */
struct {

unsigned short buflen, item_code;
void *bufaddr;
void *retlenaddr;
unsigned int terminator;

}item_lst;

main() {

unsigned int status,len,i;
char resstring[LNM$C_NAMLENGTH];
$DESCRIPTOR(tabdesc,"LNM$FILE_DEV");
$DESCRIPTOR(logdesc,"SYS$OUTPUT");

item_lst.buflen = LNM$C_NAMLENGTH;
item_lst.item_code = LNM$_STRING;
item_lst.bufaddr = resstring;
item_lst.retlenaddr = 0;
item_lst.terminator = 0;

/* Translate the logical name */
status = SYS$TRNLNM(0, /* attr - attributes of the logical name */

&tabdesc, /* tabnam - logical name table */
&logdesc, /* lognam - logical name */
0, /* acmode - accessm mode */
&item_lst); /* itmlst - item list */

if((status & 1) != 1)
LIB$SIGNAL(status);

/*
Examine 4-byte header
Is first character an escape char?
If so, dump the header

*/
if(resstring[0] == 0x1B) {

printf("\nDumping the header...\n");
for(i = 0; i < HEADER; i++)

printf(" Byte %d: %X\n",i,resstring[i]);

printf("\nEquivalence string: %s\n",(resstring + HEADER));
}
else

printf("Header not found\n");

}

34.10 Using Logical Names and Logical Name Table System
Services in Programs

The following sections describe by programming examples how to use
SYS$CRELNM, SYS$CRELNT, SYS$DELLNM, and SYS$TRNLNM system
services.

34.10.1 Using SYS$CRELNM to Create a Logical Name
To perform an assignment in a program, you must provide character-string
descriptors for the name strings, select the table to contain the logical name,
and use the SYS$CRELNM system service as shown in the following example.
In either case, the result is the same: the logical name DISK is equated to the
physical device name DUA2 in table LNM$JOB.

34–18 Logical Name and Logical Name Tables

Logical Name and Logical Name Tables
34.10 Using Logical Names and Logical Name Table System Services in Programs

#include <stdio.h>
#include <lnmdef.h>
#include <descrip.h>
#include <string.h>
#include <ssdef.h>

/* Define an item descriptor */

struct itm {
unsigned short buflen, item_code;
void *bufaddr;
void *retlenaddr;

};

/* Declare an item list */

struct {
struct itm items2];
unsigned int terminator;

}itm_lst;

main() {

static char eqvnam[] = "DUA2:";
unsigned int status, lnmattr;
$DESCRIPTOR(logdesc,"DISK");
$DESCRIPTOR(tabdesc,"LNM$JOB");

lnmattr = LNM$M_TERMINAL;

/* Initialize the item list */

itm_lst.items[0].buflen = 4;
itm_lst.items[0].item_code = LNM$_ATTRIBUTES;
itm_lst.items[0].bufaddr = &lnmattr;
itm_lst.items[0].retlenaddr = 0;

itm_lst.items[1].buflen = strlen(eqvnam);
itm_lst.items[1].item_code = LNM$_STRING;
itm_lst.items[1].bufaddr = eqvnam;
itm_lst.items[1].retlenaddr = 0;
itm_lst.terminator = 0;

/* Create the logical name */
status = SYS$CRELNM(0, /* attr - attributes */

&tabdesc, /* tabnam - logical table name */
&logdesc, /* lognam - logical name */
0, /* acmode - access mode 0 means use the */

/* access mode of the caller=user mode */
&itm_lst); /* itmlst - item list */

if((status & 1) != 1)
LIB$SIGNAL(status);

}

Note that the translation attribute is specified as terminal. This attribute
indicates that iterative translation of the logical name DISK ends when the
equivalence string DUA2 is returned. In addition, because the acmode argument
was not specified, the access mode of the logical name DISK is the access mode
from which the image requested the SYS$CRELNM service.

The following example shows how a process-private logical name with multiple
equivalence names can be created in user mode by an image:

Logical Name and Logical Name Tables 34–19

Logical Name and Logical Name Tables
34.10 Using Logical Names and Logical Name Table System Services in Programs

#include <stdio.h>
#include <lnmdef.h>
#include <ssdef.h>
#include <descrip.h>

/* Define an item descriptor */
struct lst {

unsigned short buflen, item_code;
void *bufaddr;
void *retlenaddr;

};

/* Declare an item list */
struct {

struct lst items[2];
unsigned int terminator;

}item_lst;

/* Equivalence name strings */

static char eqvnam1[] = "XYZ";
static char eqvnam2[] = "DEF";

main() {

unsigned int status;
$DESCRIPTOR(logdesc,"ABC");
$DESCRIPTOR(tabdesc,"LNM$PROCESS");

item_lst.items[0].buflen = strlen(eqvnam1);
item_lst.items[0].item_code = LNM$_STRING;
item_lst.items[0].bufaddr = eqvnam1;
item_lst.items[0].retlenaddr = 0;

item_lst.items[1].buflen = strlen(eqvnam2);
item_lst.items[1].item_code = LNM$_STRING;
item_lst.items[1].bufaddr = eqvnam2;
item_lst.items[1].retlenaddr = 0;
item_lst.terminator = 0;

/* Create a logical name */
status = SYS$CRELNM(0, /* attr - attributes of logical name */

&tabdesc, /* tabnam - name of logical name table */
&logdesc, /* lognam - name of logical name */
0, /* acmode - access mode 0 means use the */

/* access mode of the caller=user mode */
&item_lst); /* itm_lst - item list */

if((status & 1) != 1)
LIB$SIGNAL(status);

}

In the preceding example, logical name ABC was created and represents a search
list with two equivalence strings, XYZ and DEF. Each time the LNM$_STRING
item code of the itmlst argument is invoked, an index value is assigned to the
next equivalence string. The newly created logical name and its equivalence
string are contained in the process logical name table LNM$PROCESS_TABLE.

The following example illustrates the creation of a logical name in supervisor
mode through DCL:

$ DEFINE/SUPERVISOR_MODE/TABLE=LNM$PROCESS ABC XYZ,DEF

In the preceeding example, supervisor mode and /TABLE=LNM$PROCESS are
the defaults (default mode and default table) for the DEFINE command.

34–20 Logical Name and Logical Name Tables

Logical Name and Logical Name Tables
34.10 Using Logical Names and Logical Name Table System Services in Programs

34.10.2 Using SYS$CRELNT to Create Logical Name Tables
The Create Logical Name Table (SYS$CRELNT) system service creates logical
name tables. Logical name tables can be created in any access mode depending on
the privileges of the calling process. A user-specified logical name that identifies
a process-private created logical name table is stored in the process directory
table LNM$PROCESS_DIRECTORY. The name of a shareable table is stored in
the system directory table LNM$SYSTEM_DIRECTORY.

The following example illustrates a call to the SYS$CRELNT system service:

#include <stdio.h>
#include <ssdef.h>
#include <lnmdef.h>
#include <descrip.h>

main() {

unsigned int status, tab_attr=LNM$M_CONFINE, tab_quota=5000;
$DESCRIPTOR(tabdesc,"LOG_TABLE");
$DESCRIPTOR(pardesc,"LNM$PROCESS_TABLE");

/* Create the logical name table */
status = SYS$CRELNT(&tab_attr, /* attr - table attributes */

0, /* resnam - logical table name */
0, /* reslen - length of table name */
&tab_quota, /* quota - max no. of bytes allocated */

/* for names in this table */
0, /* promsk - protection mask */
&tabdesc, /* tabnam - name of new table */
&pardesc, /* partab - name of parent table */
0); /* acmode - access mode */

if((status & 1) != 1) {
LIB$SIGNAL(status);

}

In this example, a user-defined table LOG_TABLE is created with an explicit
quota of 5000 bytes. The name of the newly created table is an entry in the
process-private directory LNM$PROCESS_DIRECTORY. The quota of 5000
bytes is deducted from the parent table LNM$PROCESS_TABLE. Because the
CONFINE attribute is associated with the logical name table, the table cannot be
copied from the process to its spawned processes.

34.10.3 Using SYS$DELLNM to Delete Logical Names
The Delete Logical Name (SYS$DELLNM) system service deletes entries from a
logical name table. When you write a call to the SYS$DELLNM system service,
you can specify a single logical name to delete, or you can specify that you want
to delete all logical names from a particular table. For example, the following call
deletes the process logical name TERMINAL from the job logical name table:

#include <stdio.h>
#include <lnmdef.h>
#include <ssdef.h>
#include <descrip.h>

main() {

unsigned int status;
$DESCRIPTOR(logdesc,"DISK");
$DESCRIPTOR(tabdesc,"LNM$JOB");

Logical Name and Logical Name Tables 34–21

Logical Name and Logical Name Tables
34.10 Using Logical Names and Logical Name Table System Services in Programs

/* Delete the logical name */
status = SYS$DELLNM(&tabdesc, /* tabnam - logical table name */

&logdesc, /* lognam - logical name */
0); /* acmode - access mode */

if ((status & 1) != 1)
LIB$SIGNAL(status);

}

For information about access modes and the deletion of logical names, see
Chapter 20 and Appendix B.

34.10.4 Using SYS$TRNLNM to Translate Logical Names
The Translate Logical Name (SYS$TRNLNM) system service translates a logical
name to its equivalence string. In addition, SYS$TRNLNM returns information
about the logical name and equivalence string.

The system service call to SYS$TRNLNM specifies the tables to search for the
logical name. The tabnam argument can be either the name of a logical name
table or a logical name that translates to a list of one or more logical name tables.

Because logical names can have many equivalence strings, you can specify which
equivalence string you want to receive.

A number of system services that require a device name accept a logical name
and translate the logical name iteratively until a physical device name is found
(or until the system default number of logical name translations has been
performed, typically 10). These services implicitly use the logical name table
name LNM$FILE_DEV. For more information about LNM$FILE_DEV, refer to
Section 34.1.4.

The following system services perform iterative logical name translation
automatically:

• Allocate Device (SYS$ALLOC)

• Assign I/O Channel (SYS$ASSIGN)

• Broadcast (SYS$BRDCST)

• Create Mailbox (SYS$CREMBX)

• Deallocate Device (SYS$DALLOC)

• Dismount Volume (SYS$DISMOU)

• Get Device/Volume Information (SYS$GETDVI)

• Mount Volume (SYS$MOUNT)

In many cases, however, a program must perform the logical name translation
to obtain the equivalence name for a logical name outside the context of a
device name or file specification. In that case, you must supply the name of
the table or tables to be searched. The SYS$TRNLNM system service searches
the user-specified logical name tables for a specified logical name and returns
the equivalence name. In addition, SYS$TRNLNM returns attributes that are
specified optionally for the logical name and equivalence string.

The following example shows a call to the SYS$TRNLNM system service to
translate the logical name ABC:

34–22 Logical Name and Logical Name Tables

Logical Name and Logical Name Tables
34.10 Using Logical Names and Logical Name Table System Services in Programs

#include <stdio.h>
#include <lnmdef.h>
#include <descrip.h>
#include <ssdef.h>

/* Define an item descriptor */

struct itm {
unsigned short buflen, item_code;
void *bufaddr;
void *retlenaddr;

};

/* Declare an item list */
struct {

struct itm items[2];
unsigned int terminator;

}trnlst;

main() {

char eqvbuf1[LNM$C_NAMLENGTH], eqvbuf2[LNM$C_NAMLENGTH];
unsigned int status, trnattr=LNM$M_CASE_BLIND;
unsigned int eqvdesc1, eqvdesc2;
$DESCRIPTOR(logdesc,"ABC");
$DESCRIPTOR(tabdesc,"LNM$FILE_DEV");

/* Assign values to the item list */

trnlst.items[0].buflen = LNM$C_NAMLENGTH;
trnlst.items[0].item_code = LNM$_STRING;
trnlst.items[0].bufaddr = eqvbuf1;
trnlst.items[0].retlenaddr = &eqvdesc1;

trnlst.items[1].buflen = LNM$C_NAMLENGTH;
trnlst.items[1].item_code = LNM$_STRING;
trnlst.items[1].bufaddr = eqvbuf2;
trnlst.items[1].retlenaddr = &eqvdesc2;
trnlst.terminator = 0;

/* Translate the logical name */
status = SYS$TRNLNM(&trnattr, /* attr - attributes */

&tabdesc, /* tabnam - table name */
&logdesc, /* lognam - logical name */
0, /* acmode - access mode */
&trnlst); /* itmlst - item list */

if((status & 1) != 1)
LIB$SIGNAL(status);

}

This call to the SYS$TRNLNM system service results in the translation of the
logical name ABC. In addition, LNM$FILE_DEV is specified in the tabnam
argument as the search list that SYS$TRNLNM is to use to find the logical name
ABC. The logical name ABC was assigned two equivalence strings. The LNM$_
STRING item code in the itmlst argument directs SYS$TRNLNM to look for
an equivalence string at the current index value. Note that the LNM$_STRING
item code is invoked twice. The equivalence strings are placed in the two output
buffers, EQVBUF1 and EQVBUF2, described by TRNLIST.

The attribute LNM$M_CASE_BLIND governs the translation process. The
SYS$TRNLNM system service searches for the equivalence strings without
regard to uppercase or lowercase letters. The SYS$TRNLNM system service
matches any of the following character strings: ABC, aBC, AbC, abc, and so forth.

Logical Name and Logical Name Tables 34–23

Logical Name and Logical Name Tables
34.10 Using Logical Names and Logical Name Table System Services in Programs

The output equivalence name string length is written into the first word of the
character string descriptor. This descriptor can then be used as input to another
system service.

34.10.5 Using SYS$CRELNM, SYS$TRNLNM, and SYS$DELLNM in a Program
Example

In the following example, the Fortran program CALC.FOR creates a spawned
subprocess to perform an iterative calculation. The logical name REP_NUMBER
specifies the number of times that REPEAT should perform the calculation.
Because the two processes are part of the same job, REP_NUMBER is placed
in the job logical name table LNM$JOB. (Note that logical name table names
are case sensitive. Specifically, LNM$JOB is a system-defined logical name that
refers to the job logical name table; lnm$job is not.)

PROGRAM CALC

! Status variable and system routines

INCLUDE ’($LNMDEF)’
INCLUDE ’($SYSSRVNAM)’
INTEGER*4 STATUS

INTEGER*2 NAME_LEN,
2 NAME_CODE
INTEGER*4 NAME_ADDR,
2 RET_ADDR /0/,
2 END_LIST /0/

COMMON /LIST/ NAME_LEN,
2 NAME_CODE,
2 NAME_ADDR,
2 RET_ADDR,
2 END_LIST

CHARACTER*3 REPETITIONS_STR
INTEGER REPETITIONS

EXTERNAL CLI$M_NOLOGNAM,
2 CLI$M_NOCLISYM,
2 CLI$M_NOKEYPAD,
2 CLI$M_NOWAIT

NAME_LEN = 3
NAME_CODE = (LNM$_STRING)
NAME_ADDR = %LOC(REPETITIONS_STR)
STATUS = SYS$CRELNM (,’LNM$JOB’,’REP_NUMBER’,,NAME_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

MASK = %LOC (CLI$M_NOLOGNAM) .OR.
2 %LOC (CLI$M_NOCLISYM) .OR.
2 %LOC (CLI$M_NOKEYPAD) .OR.
2 %LOC (CLI$M_NOWAIT)
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$SPAWN (’RUN REPEAT’,,,MASK,,,,FLAG)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

34–24 Logical Name and Logical Name Tables

Logical Name and Logical Name Tables
34.10 Using Logical Names and Logical Name Table System Services in Programs

PROGRAM REPEAT
INTEGER STATUS,
2 SYS$TRNLNM,SYS$DELLNM
INTEGER*4 REITERATE,
2 REPEAT_STR_LEN
CHARACTER*3 REPEAT_STR
! Item list for SYS$TRNLNM
INTEGER*2 NAME_LEN,
2 NAME_CODE
INTEGER*4 NAME_ADDR,
2 RET_ADDR,
2 END_LIST /0/
COMMON /LIST/ NAME_LEN,
2 NAME_CODE,
2 NAME_ADDR,
2 RET_ADDR,
2 END_LIST

NAME_LEN = 3
NAME_CODE = (LNM$_STRING)
NAME_ADDR = %LOC(REPEAT_STR)
RET_ADDR = %LOC(REPEAT_STR_LEN)
STATUS = SYS$TRNLNM (,
2 ’LNM$JOB’, ! Logical name table
2 ’REP_NUMBER’,, ! Logical name
2 NAME_LEN) ! List requesting equivalence string
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

READ (UNIT = REPEAT_STR,
2 FMT = ’(I3)’) REITERATE

DO I = 1, REITERATE
END DO

STATUS = SYS$DELLNM (’LNM$JOB’, ! Logical name table
2 ’REP_NUMBER’,) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

Logical Name and Logical Name Tables 34–25

35
Image Initialization

This chapter describes the system declaration mechanism, including
LIB$INITIALIZE, which performs calls to any initialization routine declared
for the image by the user. However, use of LIB$INITIALIZE is discouraged and
should be used only when no other method is suitable. This chapter contains the
following sections:

Section 35.1 describes the steps to perform image initialization.

Section 35.2 describes the argument list that is passed from the command
interpreter, the debugger, or LIB$INITIALIZE to the main program.

Section 35.3 describes how a library or user program can declare an initialization
routine.

Section 35.4 describes how the LIB$INITIALIZE dispatcher calls the initialization
routine in a list.

Section 35.5 describes the options available to an initialization routine.

Section 35.6 illustrates with a code example several functions of an initialization
routine on VAX, Alpha, and I64 systems.

35.1 Initializing an Image
In most cases, both user and library routines are self-initializing. This means
that they can process information with no special action required by the calling
program. Initialization is automatic in two situations:

• When the routine’s statically allocated data storage is initialized at compile or
link time

• When a statically allocated flag is tested and set on each call so that
initialization occurs only on the first call

Any special initialization, such as a call to other routines or to system services,
can be performed on the first call before the main program is initialized. For
example, you can establish a new environment to alter the way errors are
handled or the way messages are printed.

Such special initialization is required only rarely; however, when it is required,
the caller of the routine does not need to make an explicit initialization call. The
run-time library provides a system declaration mechanism that performs all such
initialization calls before the main program is called. Thus, special initialization
is invisible to later callers of the routine.

On VAX systems, before the main program or main routine is called, a number
of system initialization routines are called as specified by a 1-, 2-, or 3-longword
initialization list set up by the linker.

Image Initialization 35–1

Image Initialization
35.1 Initializing an Image

On Alpha and I64 systems, before the main program or main routine is called,
a number of system initialization routines are called as specified by a 1-, 2-, or
3-quadword initialization list set up by the linker.

On VAX systems, the initialization list consists of the following (in order):

• The addresses of the debugger (if present)

• The LIB$INITIALIZE routine (if present)

• The entry point of the main program or main routine

On Alpha and I64 systems, the initialization list consists of the following (in
order):

• The procedure value addresses of the debugger (if present)

• The LIB$INITIALIZE routine (if present)

• The entry point of the main program or main routine

The following initialization steps take place:

1. The image activator maps the user program into the address space of the
process and sets up useful information, such as the program name. Then it
starts the command language interpreter (CLI).

2. The CLI sets up an argument list and calls the next routine in the
initialization list (debugger, LIB$INITIALIZE, main program, or main
routine).

3. On VAX systems, the debugger, if present, initializes itself and calls the next
routine in the initialization list (LIB$INITIALIZE, main program, or main
routine).

On Alpha and I64 systems, the CLI calls the debugger, if present, to set the
initial breakpoints. Then the CLI calls the next entry in the vector.

4. The LIB$INITIALIZE library routine, if present, calls each library and user
initialization routine declared using the system LIB$INITIALIZE mechanism.
Then it calls the main program or main routine.

5. The main program or main routine executes and, at the user’s discretion,
accesses its argument list to scan the command or to obtain information about
the image. The main program or main routine can then call other routines.

6. Eventually, the main program or main routine terminates by executing a
return instruction (RET) with R0 set to a standard completion code to indicate
success or failure, where bit <0> equals 1 (success) or 0 (failure).

The MACRO compiler maps the registers in Macro-32 source programs to
I64 registers on your behalf, as shown in Table 18–16, to minimize source
changes. This allows existing programs to use R0 and have the generated
code return the value in R8 as prescribed by the calling standard.

7. The completion code is returned to LIB$INITIALIZE (if present), the
debugger (if present), and, finally, to the CLI, which issues a SYS$EXIT
system service with the completion status as an argument. Any declared exit
handlers are called at this point.

35–2 Image Initialization

Image Initialization
35.1 Initializing an Image

Note

Main programs should not call the SYS$EXIT system service directly. If
they do, other programs cannot call them as routines.

Figure 35–1 and Figure 35–2 illustrate the sequence of calls and returns in a
typical image initialization. Each box is a routine activation as represented
on the image stack. The top of the stack is at the top of the figure. Each
upward arrow represents the result of a call instruction that creates a routine
activation on the stack to which control is being transferred. Each downward
arrow represents the result of a RET (return) instruction. A RET instruction
removes the routine activation from the stack and causes control to be transferred
downward to the next box.

A user program can alter the image initialization sequence by making a program
section (PSECT) contribution to PSECT LIB$INITIALIZE and by declaring
EXTERNAL LIB$INITIALIZE. This adds the optional initialization steps
shown in Figure 35–1 and Figure 35–2 labeled ‘‘Program Section Contribution
to LIB$INITIALIZE.’’ (A program section is a portion of a program with a
given protection and set of storage management attributes. Program sections
that have the same attributes are gathered together by the linker to form
an image section.) If the initialization routine also performs a coroutine call
back to LIB$INITIALIZE, the optional steps labeled ‘‘Coroutine Call Back to
LIB$INITIALIZE’’ in Figure 35–1 and Figure 35–2 are added to the image
initialization sequence.

On VAX systems, Figure 35–1 shows the call instruction calling the debugger, if
present, and the debugger then directly calling LIB$INITIALIZE and the main
program.

Image Initialization 35–3

Image Initialization
35.1 Initializing an Image

Figure 35–1 Sequence of Events During Image Initialization on VAX Systems

*These procedures are (or can be) user supplied.

ZK−1977−GE

Coroutine Call Back to
LIB$INITIALIZE
(Optional)

Program Section
Contribution to
LIB$INITIALIZE
(Optional)

Main Program*

LIB$INITIALIZE

Library
Procedure

Initialization
Procedure*

Debugger
(If Present)

Command
Language
Interpreter

Image
Activator

Library
Procedure

User
Procedure*

User
Procedure*

Initialization
Procedure*

Initialization
Procedure*

User
Procedure*User Procedure*

LIB$INITIALIZE

On Alpha and I64 systems, Figure 35–2 shows the call instruction calling the
debugger, if present, to set a breakpoint at the main program’s entry point.

35–4 Image Initialization

Image Initialization
35.1 Initializing an Image

Figure 35–2 Sequence of Events During Image Initialization on Alpha and I64 Systems

*These procedures are (or can be) user supplied.

ZK−5911A−GE

Coroutine Call Back to
LIB$INITIALIZE
(Optional)

Program Section
Contribution to
LIB$INITIALIZE
(Optional)

Main Program*

LIB$INITIALIZE

Library
Procedure

Initialization
Procedure*

Library
Procedure

User
Procedure*

User
Procedure*

Initialization
Procedure*

Initialization
Procedure*

User
Procedure*User Procedure*

LIB$INITIALIZE

Command
Language
Interpreter

Debugger
(If Present)

Image
Activator

35.2 Initializing an Argument List
The following argument list is passed from the CLI, the debugger, or
LIB$INITIALIZE to the main program. This argument list is the same for
each routine activation.

(start ,cli-coroutine [,image-info])

The start argument is the address of the entry in the initialization vector that is
used to perform the call.

The cli-coroutine argument is the address of a CLI coroutine to obtain command
arguments. For more information, see the OpenVMS Utility Routines Manual.

The image-info argument is useful image information, such as the program
name.

Image Initialization 35–5

Image Initialization
35.2 Initializing an Argument List

The debugger or LIB$INITIALIZE, or both, can call the next routine in the
initialization chain using the following coding sequence:

.

.

.
ADDL #4, 4(AP) ; Step to next initialization list entry
MOVL @4(AP), R0 ; R0 = next address to call
CALLG (AP), (R0) ; Call next initialization routine

.

.

.

This coding sequence modifies the contents of an argument list entry. Thus, the
sequence does not follow the OpenVMS calling standard. However, the argument
list can be expanded in the future without requiring any change either to the
debugger or to LIB$INITIALIZE.

35.3 Declaring Initialization Routines
Any library or user program module can declare an initialization routine. This
routine is called when the image is started. The declaration is made by making
a contribution to the LIB$INITIALIZE program section, which contains a list
of routine entry point addresses to be called before the main program or main
routine is called.

The following example declares an initialization routine by placing the routine
entry address INIT_PROC in the list:

.EXTRN LIB$INITIALIZE ; Cause library initialization
; Dispatcher to be loaded

.PSECT LIB$INITIALIZE, NOPIC, USR, CON, REL, GBL, NOSHR, NOEXE, RD, NOWRT, LONG

.LONG INIT_PROC ; Contribute entry point address of
; initialization routine.

.PSECT ...

The .EXTRN declaration links the initialization routine dispatcher,
LIB$INITIALIZE, into your program’s image. The reference contains a definition
of the special global symbol LIB$INITIALIZE, which is the routine entry point
address of the dispatcher. The linker stores the value of this special global symbol
in the initialization list along with the starting address of the debugger and the
main program. The GBL specification ensures that the PSECT LIB$INITIALIZE
contribution is not affected by any clustering performed by the linker.

Note that moving modules and PSECTS around to affect symbol resolution may
result in unintended memory placement within your image. If, for example, you
add a CLUSTER statement to your linker options file, the initialization code may
not run because the CLUSTER statement in the linker option file may cause the
various LIB$INITIALIZE PSECTS to become separated. To remedy this possible
condition, either add to your options file a CLUSTER or COLLECT statement
like the following:

CLUSTER = <cluster name>,,,<module>, SYS$LIBRARY:STARLET.OLB/include = LIB$INITIALIZE

COLLECT = <cluster name>, LIB$INITIALIZDZ, LIB$INITIALIZD_, LIB$INITIALIZE,LIB$INITIALIZE$

35–6 Image Initialization

Image Initialization
35.4 Dispatching to Initialization Routines

35.4 Dispatching to Initialization Routines
The LIB$INITIALIZE dispatcher calls each initialization routine in the list with
the following argument list:

CALL init-proc (init-coroutine ,cli-coroutine [, image-info])

The init-coroutine argument is the address of a library coroutine to be called to
effect a coroutine linkage with LIB$INITIALIZE.

The cli-coroutine is the address of a CLI coroutine used to obtain command
arguments.

The image-info argument is useful image information, such as the program
name.

35.5 Initialization Routine Options
An initialization routine can be used to do the following:

• Set up an exit handler by calling the Declare Exit Handler ($DCLEXH)
system service, although exit handlers are generally set up by using a
statically allocated first-time flag.

• Initialize statically allocated storage, although this is done preferably at
image activation time using compile-time and link-time data initialization
declarations or by using a first-time call flag in its statically allocated storage.

• Call the initialization dispatcher (instead of returning to it) by calling the
init-coroutine argument. This achieves a coroutine link. Control returns to
the initialization routine when the main program returns control. Then the
initialization routine should also return control to pass back the completion
code returned by the main program (to the debugger or CLI, or both).

• Establish a condition handler in the current frame before performing the
preceding actions. This leaves the initialization routine condition handler on
the image stack for the duration of the image execution. This occurs after the
CLI sets up the catchall stack frame handler and after the debugger sets up
its stack frame handler. Thus, the initialization routine handler can override
either of these handlers, because it will receive signals before they do.

35.6 Initialization Example
The following code fragment, which works on VAX, Alpha, and I64 systems,
shows how an initialization routine does the following:

• Establishes a handler

• Calls the init-coroutine argument routine, so that the coroutine calls the
initialization dispatcher

• Gains control after the main program returns

• Returns to the normal exit processing

.ENTRY INIT_PROC, ^M<> ; No registers used
MOVAL HANDLER, (FP) ; Establish handler
... ; Perform any other initialization

Image Initialization 35–7

Image Initialization
35.6 Initialization Example

CALLG (AP), @INIT_CO_ROUTINE(AP)
; Continue initialization which

10$: ; then calls main program or
; routine.

... ; Return here when main program
; returns with R0 = completion

RET ; Status return to normal exit
; processing with R0 = completion
; status

.ENTRY HANDLER, ^M<...> ; Register mask

... ; handle condition
; could unwind to 10$

MOVL #..., R0 ; Set completion status with a
; condition value

RET ; Resignal or continue depending
; on R0 being SS$_RESIGNAL or
; SS$_CONTINUE.

35–8 Image Initialization

Part III
Appendixes and Glossary

This part of this second volume describes the generic macros used for calling
system services, OpenVMS data types, and the distributed name services on
OpenVMS VAX systems. It also includes a glossary of authentication terminology.

A
Generic Macros for Calling System Services

This appendix describes the use of generic macros to specify argument lists with
appropriate symbols and conventions in the system services interface to MACRO
assemblers.

The OpenVMS MACRO compiler compiles Macro-32 source code written for
OpenVMS VAX systems (the VAX MACRO assembler) into machine code that
runs on OpenVMS Alpha and OpenVMS I64 systems. This Appendix also applies
to Macro-32 on OpenVMS Alpha and OpenVMS I64 systems.

System service macros generate argument lists and CALL instructions
to call system services. These macros are located in the system library
SYS$LIBRARY:STARLET.MLB. When you assemble a source program, this
library is searched automatically for unresolved references.

Knowledge of VAX MACRO rules for assembly language programming is required
for understanding the material presented in this appendix. The VAX MACRO
and Instruction Set Reference Manual contains the necessary prerequisite
information.

Each system service has four macros associated with it. These macros allow
you to define symbolic names for argument offsets, construct argument lists for
system services, and call system services. Table A–1 lists the generic macros and
the functions they serve.

Table A–1 Generic Argument List Macros of the System Service Interface

Macro Function

$nameDEF Defines symbolic names for the argument list offsets

$name Defines symbolic names for the argument list offsets and constructs
the argument list

$name_S Calls the system service and constructs the argument list

$name_G Calls the system service and uses the argument list constructed by
$name macro

Generic Macros for Calling System Services A–1

Generic Macros for Calling System Services
A.1 Using Macros to Construct Argument Lists

A.1 Using Macros to Construct Argument Lists
You can use two generic macros for constructing argument lists for system
services:

$name
$name_S

The macro you use depends on which macro you are going to use to call the
system service. If you use the $name_G macro to call a system service, you
should use the $name macro to construct the argument list. If you use the
$name_S macro to call a system service, you can also use it to construct the
argument list.

A.1.1 Specifying Arguments with the $name_S Macro and the $name Macro
When you use the $name_S or the $name macro to construct an argument list for
a system service, you can specify arguments in any one of three ways:

• By using keywords to describe the arguments. All keywords must be followed
by an equals sign (=) and then by the value of the argument.

• By using positional order, with omitted arguments indicated by commas in the
argument positions. You can omit commas for optional trailing arguments.

• By using both positional order and keyword names (positional arguments
must be listed first).

For example, $MYSERVICE can have the following format:

$MYSERVICE arga ,[argb] ,[argc] ,argd

For purposes of this example, assume that arga and argb require you to specify
numeric values and that argc and argd require you to specify addresses.

Examples A–1 and A–2 show valid ways of writing the $name_S macro to call
$MYSERVICE.

Example A–1 Using Keywords with the $name_S Macro

MYARGD: .LONG 100
.
.
.

$MYSERVICE_S ARGB=#0,ARGC=0,ARGA=#1,ARGD=MYARGD

Example A–2 Specifying Arguments in Positional Order with the $name_S
Macro

MYARGD: .LONG 100
.
.
.

$MYSERVICE_S #1,,,MYARGD

(continued on next page)

A–2 Generic Macros for Calling System Services

Generic Macros for Calling System Services
A.1 Using Macros to Construct Argument Lists

Example A–2 (Cont.) Specifying Arguments in Positional Order with the
$name_S Macro

The argument list is pushed on the stack, as follows:

PUSHAL MYARGD
PUSHL #0
PUSHL #0
PUSHL #1

Note that all arguments, whether specified positionally or with keywords, must
be valid assembler expressions because they are used as source operands in
instructions.

Examples A–3 and A–4 show valid ways of writing a $name macro to construct
an argument list for a later call to $MYSERVICE.

Example A–3 Using Keywords with the $name Macro

LIST: $MYSERVICE -
ARGB=0, -
ARGC=0, -
ARGA=1, -
ARGD=MYARGD

Example A–4 Specifying Arguments in Positional Order with the $name Macro

LIST: $MYSERVICE -
1,,,MYARGD

Both methods generate the following:

LIST: .LONG 4
.LONG 1
.LONG 0
.LONG 0
.ADDRESS -

MYARGD

Note that all arguments, whether specified positionally or by keyword, must be
expressions that the assembler can evaluate to generate .LONG or .ADDRESS
data directives. Contrast this to the arguments for the $name_S macro, which
must be valid assembler expressions because they are used as source operands in
instructions.

Generic Macros for Calling System Services A–3

Generic Macros for Calling System Services
A.1 Using Macros to Construct Argument Lists

A.1.2 Conventions for Specifying Arguments to System Services
You must specify the arguments according to the VAX MACRO assembler rules
for specifying and addressing operands.

The way to specify a particular argument depends on the following factors:

• Whether the system service requires an address or a value as the argument.
In the HP OpenVMS System Services Reference Manual, the descriptions
of the arguments following a system service macro format always indicate
whether the argument is an address. A Boolean value, number, or mask
takes a value as the argument.

• The system service macro being used. The expansions of the $name and
$name_S macros in the examples in Section A.1.1 show the code generated by
each macro.

If you are unsure whether you specified a value or an address argument correctly,
you can assemble the program with the .LIST MEB directive to check the macro
expansion. See the VAX MACRO and Instruction Set Reference Manual for
details.

A.1.3 Defining Symbolic Names for Argument List Offsets: $name and
$nameDEF

You can refer symbolically to arguments in the argument list. Each argument in
an argument list has an offset from the beginning of the list; a symbolic name is
defined for the numeric offset of each argument. If you use the symbolic names to
refer to the arguments in a list, you do not have to remember the numeric offset
(which is based on the position of the argument shown in the macro format).

There are two additional advantages to referring to arguments by their symbolic
names:

• Your program is easier to read.

• If an argument list for a system service changes with a later release of a
system, the symbols remain the same.

You form the offset names for all system service argument lists by following the
service macro name with $_ and the keyword name of the argument. In the
following example, name is the name for the system service macro and keyword is
the keyword argument:

name$_keyword

Similarly, you can define a symbolic name for the number of arguments a
particular macro requires, as follows:

name$_NARGS

You can define symbolic names for argument list offsets automatically whenever
you use the $name macro for a particular system service. You can also define
symbolic names for system service argument lists using the $nameDEF macro.
This macro does not generate any executable code; it merely defines the symbolic
names so they can be used later in the program. For example:

$QIODEF

This macro defines the symbol QIO$_NARGS and the symbolic names for the
$QIO argument list offsets.

A–4 Generic Macros for Calling System Services

Generic Macros for Calling System Services
A.1 Using Macros to Construct Argument Lists

You may need to use the $nameDEF macro either if you specify an argument list
to a system service without using the $name macro or if a program refers to an
argument list in a separately assembled module.

For example, the $READEF and $READEFDEF macros define the values listed
in the following table.

Symbolic Name Meaning

READEF$_NARGS Number of arguments in the list (2)

READEF$_EFN Offset of EFN argument (4)

READEF$_STATE Offset of STATE argument (8)

Thus, you can specify the $READEF macro to build an argument list for a
$READEF system service call, as follows:

READLST: $READEF EFN=1,STATE=TEST1

Later, the program may want to use a different value for the state argument to
call the service. The following lines show how you can do this with a call to the
$name_G macro.

MOVAL TEST2,READLST+READEF$_STATE
$READEF_G READLST

The MOVAL instruction replaces the address TEST1 in the $READEF argument
list with the address TEST2; the $READEF_G macro calls the system service
with the modified list.

A.2 Using Macros to Call System Services
You can use two generic macros for writing calls to system services:

$name_S
$name_G

Which macro you use depends on how the argument list for the system service is
constructed.

• The $name_S macro requires you to supply the arguments to the system
service in the system service macro. The macro generates code to push the
argument list onto the call stack during program execution. With this macro,
you can use registers to contain or point to arguments so that you can write
reentrant programs.

• The $name_G macro requires you to construct an argument list elsewhere
in the program and specify the address of this list as an argument to the
system service. (A macro is provided to create an argument list for each
system service.) With this macro, you can use the same argument list, with
modifications if necessary, for more than one invocation of the macro.

The $name_S macro generates a CALLS instruction; the $name_G macro
generates a CALLG instruction. The services are called according to the standard
procedure-calling conventions. System services save all registers except R0 and
R1, and restore the saved registers before returning control to the caller.

The following sections describe how to code system service calls using each of
these macros.

Generic Macros for Calling System Services A–5

Generic Macros for Calling System Services
A.2 Using Macros to Call System Services

A.2.1 The $name_S Macro
The $name_S macro call has the following format:

$name_S arg1, ..., argn

The macro generates code to push the arguments on the stack in reverse order.
The actual instructions used to place the arguments on the stack are determined
as follows:

• If the system service requires a value for an argument, either a PUSHL
instruction or a MOVZWL to –(SP) instruction is generated.

• If the system service requires an address for an argument, a PUSHAB,
PUSHAW, PUSHAL, or PUSHAQ instruction is generated, depending on the
context.

The macro then generates a call to the system service in the following format:

CALLS #n,@#SYS$name

In this format, n is the number of arguments on the stack.

A.2.1.1 Example of $name_S Macro Call
Because a $name_S macro constructs the argument list at execution time, you
can supply addresses and values by using register addressing modes. You can use
the following line to execute the $READEF_S macro:

$READEF_S EFN=#1,STATE=(R10)

R10 contains the address of the longword that will receive the status of the flags.

This macro instruction is expanded as follows.

PUSHAL (R10)
PUSHL #1
CALLS #2,@#SYS$READEF

A.2.2 The $name_G Macro
The $name_G macro requires a single operand:

$name_G label

In this format, label is the address of the argument list.

A.2.3 The $name Macro
Macros are provided to create argument lists for the $name_G macro. The
$name_G macro (used with the $name macro) is especially useful for doing the
following:

• Making calls to system services that have long argument lists

• Calling services repeatedly during the execution of a single program with the
same, or essentially the same, argument list

The format of the macros is as follows:

label: $name arg1,...,argn

A–6 Generic Macros for Calling System Services

Generic Macros for Calling System Services
A.2 Using Macros to Call System Services

label
Symbolic address of the generated argument list. This is the label given as an
argument in the $name_G macro.

$name
The service macro name.

arg1,...,argn
Arguments to be placed in successive longwords in the argument list.

A.2.4 Example of $name and $name_G Macro Calls
The example that follows shows how you can write a call to the Read Event Flags
($READEF) system service using an argument list created by $name.

The $READEF system service has the following macro format:

$READEF efn ,state

The efn argument must specify the number of an event flag cluster, and the state
argument must supply the address of a longword that will receive the contents of
the cluster.

You can specify these arguments using the $name macro, as follows:

READLST:
$READEF EFN=1, - ; Argument list for $READEF

STATE=TESTFLAG

This $READEF macro generates the following code:

READLST:
.LONG 2 ; Argument list for $READEF
.ADDRESS 1
.ADDRESS -

TESTFLAG

Executing the $READEF macro requires only the following line:

$READEF_G READLST

The macro generates the following code to call the Read Event Flags system
service:

CALLG READLST,@#SYS$READEF

SYS$READEF is the name of a vector to the entry point of the Read Event Flags
system service. The linker automatically resolves the entry point addresses for
all system services.

Generic Macros for Calling System Services A–7

B
OpenVMS Data Types

As part of the OpenVMS common language environment, the OpenVMS system
routine data types provide compatibility between procedure calls that support
many different high-level languages. Specifically, the OpenVMS data types
apply to the Alpha, I64, and VAX architectures as the mechanism for passing
argument data between procedures. This appendix describes the context and
structure of the OpenVMS system routine data types and identifies the associated
declarations to each of the specific high-level language implementations.

B.1 OpenVMS Data Types
The OpenVMS usage entry in the documentation format for system routines
indicates the OpenVMS data type of the argument. Most data types can be
considered conceptual types; that is, their meaning is unique in the context of
the OpenVMS operating system. The OpenVMS data type access_mode is one
example. The storage representation of this OpenVMS type is an unsigned byte,
and the conceptual content of this unsigned byte is the fact that it designates
a hardware access mode and therefore has only four valid values: 0, kernel
mode; 1, executive mode; 2, supervisor mode; and 3, user mode. However, some
OpenVMS data types are not conceptual types; that is, they specify a storage
representation but carry no other semantic content in the OpenVMS context. For
example, the data type byte_signed is not a conceptual type.

Note

The OpenVMS usage entry is not a traditional data type such as the
OpenVMS standard data types—byte, word, longword, and so on. It
is significant only within the OpenVMS operating system environment
and is intended solely to expedite data declarations within application
programs.

To use the OpenVMS usage entry, perform the following steps:

1. Find the data type in Table B–1 and read its definition.

2. Find the same OpenVMS data type in the appropriate high-level language
implementation table (Tables B–2 through B–13) and its corresponding
source-language type declaration.

3. Use this code as your type declaration in your application program. Note
that, in some instances, you might have to modify the declaration.

For Alpha, I64, and VAX, Table B–1 lists and describes the standard OpenVMS
data type declarations for the OpenVMS usage entry of any system routine call.

OpenVMS Data Types B–1

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 OpenVMS Usage Data Type Entries

Data Type Definition

access_bit_names Homogeneous array of 32 quadword descriptors; each descriptor defines the name
of one of the 32 bits in an access mask. The first descriptor names bit <0>, the
second descriptor names bit <1>, and so on.

access_mode Unsigned byte denoting a hardware access mode. This unsigned byte can contain
one of four values: 0, kernel mode; 1, executive mode; 2, supervisor mode; and 3,
user mode.

address Unsigned value denoting a position in virtual memory. On VAX systems the value
is an unsigned longword. On Alpha and I64 systems the value is an unsigned
quadword that can either be a 32-bit, sign extended value (the high-order 33 bits
are the same) to represent 32-bit addresses or a 64-bit value to represent 64-bit
addresses.

address_range Unsigned quadword denoting a range of virtual addresses that identifies an area
of memory. The first longword specifies the beginning address in the range; the
second longword specifies the ending address in the range.

arg_list Vector in memory representing a procedure call argument list containing a
sequence of entries together with a count of the number of argument entries.

On VAX systems, and Alpha and I64 systems when passing 32-bit arguments,
an argument list (shown in the following figure) is represented as a vector of
longwords, where the first longword contains the count and each remaining
longword contains one argument. On Alpha and I64 systems when passing 64-
bit arguments, an argument list is represented as a vector of quadwords, where
the first quadword contains the count and each remaining quadword contains one
argument.

ZK−4721A−GE

31 0

:arglst

VAX Specific

Must be 0

arg1

arg2

argn

Argument
count (n)

ast_procedure The procedure value of a procedure to be called at asynchronous system trap (AST)
level. (Procedures that are not to be called at AST level are of type procedure.)

boolean Unsigned longword denoting a Boolean truth value flag. This longword can have
one of two values: 1 (true) or 0 (false).

buffer Generic term for temporary memory.

buffer_length Generic term for temporary memory that indicates the size of a buffer.

byte_signed Same as the data type byte integer (signed) in Table 17–3.

byte_unsigned Same as the data type byte (unsigned) in Table 17–3.

channel Unsigned word integer that is an index to an I/O channel.

(continued on next page)

B–2 OpenVMS Data Types

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

char_string String of from 0 to 65535 eight-bit characters. This OpenVMS data type is the
same as the data type character string in Table 17–3. The following diagram
shows the character string XYZ:

:A

:A+2

ZK−4202−GE

"X"

"Y"

"Z"

:A+1

07

complex_number One of the OpenVMS standard complex floating-point data types. The six complex
floating point numbers are F_floating complex, D_floating complex, G_floating
complex, S_floating, T_floating, and X_floating.

As shown in the following figure, an F_floating point complex number
(real, imaginary) is composed of two F_floating point numbers: the first is the
real part of the complex number; the second is the imaginary part. For more
structure detail, see floating_point described later in this table.

31 031 0
:A

:A+4

63 32

F_floating number (real)

F_floating number (imaginary)

ZK−4720A−GE

As shown in the following figure, a D_floating point complex number
(real, imaginary) is composed of two D_floating point numbers: the first is the
real part of the complex number; the second is the imaginary part.

For more structure detail, see floating_point described later in this table.

31 0

:A

:A+8

ZK−4719A−GE

D_floating number (real)

D_floating number (imaginary)

(continued on next page)

OpenVMS Data Types B–3

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

As shown in the following figure, a G_floating point complex number
(real, imaginary) is composed of two G_floating point numbers: the first is the
real part of the complex number; the second is the imaginary part.

For more structure detail, see floating_point described later in this table.

31 0
:A

:A+8

G_floating number (real)

G_floating number (imaginary)

ZK−4728A−GE

On VAX systems only, as shown in the following figure, an H_floating complex
number (real, imaginary) is composed of two H_floating point numbers: the first is
the real part of the complex number; the second is the imaginary part. Note that
H_float numbers apply to VAX environments only.

For more structure detail, see floating_point described later in this table.

ZK−4729A−GE

31 0
:A

:A+16

H_floating number (real)

H_floating number (imaginary)

VAX Specific

(continued on next page)

B–4 OpenVMS Data Types

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

On Alpha and I64 systems only, as shown in the following figure, an S_floating
point complex number (real, imaginary) is composed of two S_floating point
numbers: the first is the real part of the complex number; the second is the
imaginary part.

For more structure detail, see floating_point described later in this table.

3131 0
:A

:A+4

63 32

S_floating number (real)

S_floating number (imaginary)

ZK−5189A−GE

Alpha Specific

On Alpha and I64 systems only, as shown in the following figure, a T_floating
complex number (real, imaginary) is composed of two T_floating point numbers:
the first is the real part of the complex number; the second is the imaginary part.

For more structure detail, see floating_point described later in this table.

31 0

:A

:A+8

ZK−5190A−GE

T_floating number (real)

T_floating number (imaginary)

Alpha Specific

(continued on next page)

OpenVMS Data Types B–5

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

On Alpha and I64 systems only, as shown in the following figure, an X_floating
complex number (real, imaginary) is composed of two X_floating point numbers:
the first is the real part of the complex number; the second is the imaginary part.

For more structure detail, see floating_point described later in this table.

ZK−6512A−GE

31 0
:A

:A+16

X_floating number (real)

X_floating number (imaginary)

Alpha Specific

cond_value Longword integer for VAX or quadword sign-extended integer for Alpha and I64
denoting a condition value (a return status or system condition code) that is
typically returned by a procedure in R0 on VAX and Alpha and R8 on I64. Each
numeric condition value has a unique symbolic name in the following format, where
the severity condition code is a mnemonic describing the return condition:

ZK−1795−GE

Message numberFacility number

27 31516

2 01

Control Severity

28 27 3 2

*S

*S = Success

Condition identification

31 0

(continued on next page)

B–6 OpenVMS Data Types

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

Depending on your specific needs, you can test just the low-order bit, the low-order
three bits, or the entire value.

• The low-order bit indicates successful (1) or unsuccessful (0) completion of the
service.

• The low-order 3 bits taken together represent the severity of the error.

• The remaining bits <31:3> classify the particular return condition and the
operating system component that issued the condition value.

context Unsigned longword used by a called procedure to maintain position over an
iterative sequence of calls. The data type is usually initialized by the caller but
thereafter is manipulated by the called procedure.

date_time Unsigned 64-bit binary integer denoting a date and time as the number of elapsed
100-nanosecond units since 00:00 o’clock, November 17, 1858. This OpenVMS data
type is the same as the data type absolute date and time in Table 17–3.

device_name Character string denoting the 1- to 15-character name of a device. This string can
be a logical name, but if it is, it must translate to a valid device name. If the device
name contains a colon (:), the colon and the characters following it are ignored.
An underscore (_) preceding the device name string indicates that the string is a
physical device name.

ef_cluster_name Character string denoting the 1- to 15-character name of an event flag cluster. This
string can be a logical name, but if it is, it must translate to a valid event-flag
cluster name.

ef_number Unsigned longword integer denoting the number of an event flag. Local event flags
numbered 32 to 63 are available to your programs.

exit_handler_block Variable-length structure denoting an exit-handler control block. This control block,
which describes the exit handler, is depicted in the following diagram:

Forward link (used by OpenVMS only)

Must be 0

Address condition value (written by OpenVMS)

ZK−1714−GE

31 0

Argument count

Exit handler address

argument per longword
exit handler; optional; one

Additional argument for the

fab Structure denoting an RMS file access block.

(continued on next page)

OpenVMS Data Types B–7

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

file_protection Unsigned word that is a 16-bit mask that specifies file protection. The mask
contains four 4-bit fields, each of which specifies the protection (access protected
when a bit is 1) to be applied to file access attempts by one of the four categories
of users, from rightmost field to leftmost field: (1) system users, (2) file owner, (3)
users in the same UIC group as the owner, and (4) all other users (the world). Each
field specifies, from rightmost bit to leftmost bit: (1) read access, (2) write access,
(3) execute access, (4) delete access. Set bits indicate that access is denied.

The following diagram depicts the 16-bit file-protection mask:

ZK−1706−GE

World Group Owner System

D

15

E W R D E W R D E W D E R

13 12 11 10 9 8 7 6 5 4 3 2 1 014

R W

floating_point One of the Alpha, I64, or VAX standard floating-point data types. VAX systems
support F_floating, D_floating, G_floating, or H_floating data types. In addition,
Alpha systems support S_floating, T_floating, or X_floating types. IPF systems
support S_floating and T_floating in hardware but the compilers can generate code
to support F_floating, D_floating, and G_floating data types. See the "OpenVMS
Floating Point White Paper" for more information. The following paragraphs briefly
describe these data types:

The structure of an F_floating datum follows. It contains two fraction fields.
Note that the field 2 extension holds the least significant portion of the fractional
number.

015 714 6

31 16

S Exponent Fraction field 1

Fraction field 2

:A

:A+2

ZK−4722A−GE

(continued on next page)

B–8 OpenVMS Data Types

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

The structure of a D_floating datum follows. It contains four fraction fields. Note
that the field 4 extension holds the least significant portion of the fractional
number.

While OpenVMS Alpha and I64 support the manipulation of D_floating and D_
floating complex data, compiled-code support invokes conversion from D_floating
to G_floating for Alpha and I64 arithmetic operations. Also, the conversion of G_
floating intermediate results are converted back to D_floating when needed either
for stores to memory or for passing parameters. However, use of D_floating data in
arithmetic operations on Alpha and I64 produces results that are limited to G_float
precision.

ZK−4723A−GE

015 7 015 714 6

4863

S Exponent Fraction field 1

Fraction field 2

Fraction field 3

Fraction field 4

:A

:A+2

:A+4

:A+6

The structure of a G_floating datum follows. It contains four fraction fields. Note
that the field 4 extension holds the least significant portion of the fractional
number.

ZK−4724A−GE

015 015 14

4863

S Exponent Field 1

Fraction field 2

Fraction field 3

Fraction field 4

:A

:A+2

:A+4

:A+6

04 3

(continued on next page)

OpenVMS Data Types B–9

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

The structure of an H_floating datum follows (VAX systems only). It contains seven
fraction fields. Note that the field 7 extension holds the least significant portion of
the fractional number.

ZK−4725A−GE

015 015 14

S Exponent

Fraction field 4

:A

:A+2

:A+4

:A+6

0

Fraction field 1

Fraction field 2

Fraction field 3

Fraction field 5

Fraction field 6

Fraction field 7

:A+8

:A+10

:A+12

:A+14

VAX Specific

The structure of an S_floating datum follows (Alpha and I64 systems only).
It contains two fraction fields. Note that the field 2 extension holds the least
significant portion of the fractional number.

015

31 16

S ExponentFraction field 1

:A

:A+2

ZK−4726A−GE

Fraction field 2

2330 22

Alpha Specific

(continued on next page)

B–10 OpenVMS Data Types

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

The structure of a T_floating datum follows (Alpha and I64 systems only). It
contains four fraction fields. Note that fraction field 1 holds the most significant
bits, and the field 4 extension holds the least significant portion of the fractional
number.

015

ZK−4727A−GE

63

Exponent Field 1

Fraction field 3

Fraction field 2

Fraction field 4
:A

:A+2

:A+4

:A+6

62 485152

S

Alpha Specific

The structure of an X_floating datum follows (Alpha and I64 systems only). An X_
floating datum occupies 16 contiguous bytes in memory or two consecutive floating-
point registers. It contains seven fraction fields (0–6). Note that fraction field 6
holds the most significant bits and the field 0 extension holds the least significant
portion of the fractional number.

ZK−6511A−GE

015 015

S Exponent

Fraction field 4

:A

:A+2

:A+4

:A+6

0

Fraction field 1

Fraction field 2

Fraction field 3

Fraction field 5

Fraction field 6

Fraction field 0

:A+8

:A+10

:A+12

:A+14

Alpha Specific

127 112

function_code Unsigned longword specifying the exact operations a procedure is to perform. This
longword has two word-length fields: the first field is a number specifying the major
operation; the second field is a mask or bit vector specifying various suboperations
within the major operation.

(continued on next page)

OpenVMS Data Types B–11

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

identifier Unsigned longword that identifies an object returned by the system.

invo_context_blk2 Structure that contains the context information of a specific procedure invocation
in a call chain. For information describing the invocation context block, see the HP
OpenVMS Calling Standard.

invo_handle2 Unsigned longword that refers to a specific procedure invocation at run time. The
invo_handle longword defines the invocation handle of a procedure in a call chain.

io_status_block Quadword structure containing information returned by a procedure that completes
asynchronously. The information returned varies depending on the procedure.

The following figure illustrates the format of the information written in the IOSB
for SYS$QIO:

16

Condition valueCount

ZK−0856−GE

Device−dependent information

31 015

The first word contains a condition value indicating the success or failure of the
operation. The condition values used are the same as for all returns from system
services; for example, SS$_NORMAL indicates successful completion.

The second word contains the number of bytes actually transferred in the I/O
operation. Note that for some devices this word contains only the low-order word of
the count.

The second longword contains device-dependent return information.

To ensure successful I/O completion and the integrity of data transfers, you should
check the IOSB following I/O requests, particularly for device-dependent I/O
functions.

item_list_2 Structure that consists of one or more item descriptors and is terminated by
a longword containing 0. Each item descriptor is a 2-longword structure that
contains three fields.

The following diagram depicts a single-item descriptor:

ZK−1709−GE

Component address

Component length

31 015

Item code

2Alpha and I64 specific.

(continued on next page)

B–12 OpenVMS Data Types

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

The first field is a word in which the service writes the length (in characters) of the
requested component. If the service does not locate the component, it returns the
value 0 in this field and in the component address field.

The second field contains a user-supplied, word-length symbolic code that specifies
the component desired. The item codes are defined by the macros specific to the
service.

The third field is a longword in which the service writes the starting address of the
component. This address is within the input string itself.

item_list_3 Structure that consists of one or more item descriptors and is terminated by
a longword containing 0. Each item descriptor is a 3-longword structure that
contains four fields.

The following diagram depicts the format of a single-item descriptor:

ZK−1705−GE

Return length address

Buffer address

Item code Buffer length

31 015

The first field is a word containing a user-supplied integer specifying the length (in
bytes) of the buffer in which the service writes the information. The length of the
buffer needed depends on the item code specified in the item code field of the item
descriptor. If the value of buffer length is too small, the service truncates the data.

The second field is a word containing a user-supplied symbolic code specifying the
item of information that the service is to return. These codes are defined by macros
specific to the service.

The third field is a longword containing the user-supplied address of the buffer in
which the service writes the information.

The fourth field is a longword containing the user-supplied address of a word in
which the service writes the length in bytes of the information it actually returned.

item_list_pair Structure that consists of one or more longword pairs, or doublets, and is
terminated by a longword containing 0. Typically, the first longword contains
an integer value such as a code. The second longword can contain a real or integer
value.

item_quota_list Structure that consists of one or more quota descriptors and is terminated by
a byte containing a value defined by the symbolic name PQL$_LISTEND. Each
quota descriptor consists of a 1-byte quota name followed by an unsigned longword
containing the value for that quota.

lock_id Unsigned longword integer denoting a lock identifier. This lock identifier is
assigned to a lock by the lock manager when the lock is granted.

(continued on next page)

OpenVMS Data Types B–13

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

lock_status_block Structure into which the lock manager writes status information about a lock. A
lock status block always contains at least two longwords: the first word of the
first longword contains a condition value; the second word of the first longword is
reserved by HP. The second longword contains the lock identifier.

The lock status block receives the final condition value plus the lock identification,
and optionally contains a lock value block. When a request is queued, the lock
identification is stored in the lock status block even if the lock has not been granted.
This allows a procedure to dequeue locks that have not been granted.

The condition value is placed in the lock status block only when the lock is granted
(or when errors occur in granting the lock).

The following diagram depicts a lock status block that includes the optional 16-byte
(VAX or Alpha) or 64-byte (Alpha or I64) lock value block:

ZK-1708-AI

Lock identification

Lock value block
(Used only when the LCK$M_VALBLK flag is set)
 16 bytes if only the LCK$M_VALBLK flag is set.

64 bytes if the LCK$M_XVALBLK flag and the LCK$M_VALBLK flag are both set.

Reserved Condition value

31 15 0

lock_value_block A 16-byte block (VAX and Alpha) or a 64-byte block (Alpha and I64) that the lock
manager includes in a lock status block if the user requests it. The contents of the
lock value block are user-defined and are not interpreted by the lock manager.

logical_name Character string of from 1 to 255 characters that identifies a logical name or
equivalence name to be manipulated by OpenVMS logical name system services.
Logical names that denote specific OpenVMS objects have their own OpenVMS
types; for example, a logical name identifying a device has the OpenVMS type
device_name.

longword_signed Same as the data type longword integer (signed) in Table 17–3.

longword_unsigned Same as the data type longword (unsigned) in Table 17–3.

mask_byte Unsigned byte in which each bit is interpreted by the called procedure. A mask is
also referred to as a set of flags or as a bit mask.

mask_longword Unsigned longword in which each bit is interpreted by the called procedure. A
mask is also referred to as a set of flags or as a bit mask.

mask_quadword Unsigned quadword in which each bit is interpreted by the called procedure. A
mask is also referred to as a set of flags or as a bit mask.

mask_word Unsigned word in which each bit is interpreted by the called procedure. A mask is
also referred to as a set of flags or as a bit mask.

mechanism_args Structure (array) of mechanism argument vectors that contain information about
the machine state when an exception occurs or when a condition is signaled. For
more information concerning mechanism argument vectors, see the HP OpenVMS
Calling Standard.

null_arg Unsigned longword denoting a null argument. (A null argument is one whose only
purpose is to hold a place in the argument list.)

(continued on next page)

B–14 OpenVMS Data Types

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

octaword_signed Same as the data type octaword integer (signed) in Table 17–3.

octaword_unsigned Same as the data type octaword (unsigned) in Table 17–3.

page_protection Unsigned longword specifying page protection to be applied by the Alpha and I64
or VAX hardware. Protection values are specified using bits <3:0>; bits <31:4> are
ignored. If you specify the protection as 0, the protection defaults to kernel read
only.

The $PRTDEF macro defines the following symbolic names for the protection codes:

Symbol Description

PRT$C_NA No access

PRT$C_KR Kernel read only

PRT$C_KW Kernel write

PRT$C_ER Executive read only

PRT$C_EW Executive write

PRT$C_SR Supervisor read only

PRT$C_SW Supervisor write

PRT$C_UR User read only

PRT$C_UW User write

PRT$C_ERKW Executive read; kernel write

PRT$C_SRKW Supervisor read; kernel write

PRT$C_SREW Supervisor read; executive write

PRT$C_URKW User read; kernel write

PRT$C_UREW User read; executive write

PRT$C_URSW User read; supervisor write

procedure Procedure value of a procedure that is not to be called at AST level. (Arguments
specifying procedures to be called at AST level have the OpenVMS type ast_
procedure.)

A procedure value is an address that represents a procedure. On VAX systems,
a procedure value is the address of the procedure entry mask. On Alpha and
I64 systems, a procedure value is the address of the procedure descriptor for the
procedure. For more information, see the HP OpenVMS Calling Standard.

process_id Unsigned longword integer denoting a process identification (PID). This process
identification is assigned to a process by the operating system when the process is
created.

process_name Character string containing 1 to 15 characters that specifies the name of a process.

quadword_signed Same as the data type quadword integer (signed) in Table 17–3.

quadword_unsigned Same as the data type quadword (unsigned) in Table 17–3.

(continued on next page)

OpenVMS Data Types B–15

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

rights_holder Unsigned quadword specifying a user’s access rights to a system object. This
quadword consists of two fields: the first is an unsigned longword identifier
(OpenVMS type rights_id), and the second is a longword bit mask in which each
bit specifies an access right. The following diagram depicts the format of a rights
holder:

ZK−1903−GE

31 0

0

UIC identifier of holder

rights_id Unsigned longword denoting a rights identifier, which identifies an interest group
in the context of the OpenVMS security environment. This rights environment
might consist of all or part of a user’s user identification code (UIC).

Identifiers have two formats in the rights database: UIC format (OpenVMS type
uic) and ID format. The high-order bits of the identifier value specify the format of
the identifier. Two high-order zero bits identify a UIC format identifier; bit <31>,
set to 1, identifies an ID format identifier. Bits <30:28> are reserved by HP. The
remaining bits specify the identifier value. The following diagram depicts the ID
format of a rights identifier:

0

Identifier1000

ZK−1906−GE

31 27

To the system, an identifier is a binary value; however, to make identifiers easy to
use, the system translates the binary identifier value into an identifier name. The
binary value and the identifier name are associated in the rights database.

An identifier name consists of 1 to 31 alphanumeric characters and contains at
least one nonnumeric character. An identifier name cannot consist entirely of
numeric characters. It can include the characters A through Z, dollar signs ($),
and underscores (_), as well as the numbers 0 through 9. Any lowercase characters
are automatically converted to uppercase.

rab Structure denoting an RMS record access block.

section_id Unsigned quadword denoting a global section identifier. This identifier specifies
the version of a global section and the criteria to be used in matching that global
section.

section_name Character string denoting a 1- to 43-character global-section name. This character
string can be a logical name, but it must translate to a valid global section name.

system_access_id Unsigned quadword that denotes a system identification value to be associated with
a rights database.

time_name Character string specifying a time value in an OpenVMS format.

transaction_id Unsigned octaword that denotes a unique transaction identifier.

(continued on next page)

B–16 OpenVMS Data Types

OpenVMS Data Types
B.1 OpenVMS Data Types

Table B–1 (Cont.) OpenVMS Usage Data Type Entries

Data Type Definition

uic Unsigned longword denoting a user identification code (UIC). Each UIC is unique
and represents a system user. The UIC identifier contains two high-order bits that
designate format, a member field, and a group field. Member numbers range from
0 to 65534; group numbers range from 1 to 16382. The following diagram depicts
the UIC format:

31 0

00

ZK−1905−GE

MemberGroup

user_arg On VAX systems, an unsigned longword, and on Alpha and I64 systems, an
unsigned quadword denoting a user-defined argument. The longword (VAX) or
quadword (Alpha and I64) is passed to a procedure as an argument, but the
contents of the longword or quadword are defined and interpreted by the user.

varying_arg On VAX systems, an unsigned longword, and on Alpha and I64 systems, an
unsigned quadword denoting a varying argument. A variable argument can have
variable types, depending on specifications made for other arguments in the call.

vector_byte_signed Homogeneous array whose elements are all signed bytes.

vector_byte_unsigned Homogeneous array whose elements are all unsigned bytes.

vector_longword_
signed

Homogeneous array whose elements are all signed longwords.

vector_longword_
unsigned

Homogeneous array whose elements are all unsigned longwords.

vector_quadword_
signed

Homogeneous array whose elements are all signed quadwords.

vector_quadword_
unsigned

Homogeneous array whose elements are all unsigned quadwords.

vector_word_signed Homogeneous array whose elements are all signed words.

vector_word_
unsigned

Homogeneous array whose elements are all unsigned words.

word_signed Same as the data type word integer (signed) in Table 17–3.

word_unsigned Same as the data type word (unsigned) in Table 17–3.

B.2 Ada Implementations
Table B–2 lists the OpenVMS data types and their corresponding Ada data type
declarations.

Table B–2 Ada Implementations

OpenVMS Data Types Ada Declarations

access_bit_names STARLET.ACCESS_BIT_NAMES_TYPE

access_mode STARLET.ACCESS_MODE_TYPE

address SYSTEM.ADDRESS

(continued on next page)

OpenVMS Data Types B–17

OpenVMS Data Types
B.2 Ada Implementations

Table B–2 (Cont.) Ada Implementations

OpenVMS Data Types Ada Declarations

address_range STARLET.ADDRESS_RANGE_TYPE

arg_list STARLET.ARG_LIST_TYPE

ast_procedure SYSTEM.AST_HANDLER

boolean STANDARD.BOOLEAN

byte_signed STANDARD.SHORT_SHORT_INTEGER

byte_unsigned SYSTEM.UNSIGNED_BYTE

channel STARLET.CHANNEL_TYPE

char_string STANDARD.STRING

complex_number User-defined record

cond_value CONDITION_HANDLING.COND_VALUE_TYPE

context STARLET.CONTEXT_TYPE

date_time STARLET.DATE_TIME_TYPE

device_name STARLET.DEVICE_NAME_TYPE

ef_cluster_name STARLET.EF_CLUSTER_NAME_TYPE

ef_number STARLET.EF_NUMBER_TYPE

exit_handler_block STARLET.EXIT_HANDLER_BLOCK_TYPE

fab STARLET.FAB_TYPE

file_protection STARLET.FILE_PROTECTION_TYPE

floating_point STANDARD.FLOAT
STANDARD.LONG_FLOAT
STANDARD.LONG_LONG_FLOAT
SYSTEM.F_FLOAT
SYSTEM.D_FLOAT
SYSTEM.G_FLOAT
SYSTEM.H_FLOAT
SYSTEM.IEEE_SINGLE_FLOAT1

SYSTEM.IEEE_DOUBLE_FLOAT1

function_code STARLET.FUNCTION_CODE_TYPE

identifier SYSTEM.UNSIGNED_LONGWORD

invo_context_blk1 User-defined record

invo_handle1 SYSTEM.UNSIGNED_LONGWORD

io_status_block STARLET.IOSB_TYPE

item_list_pair SYSTEM.UNSIGNED_LONGWORD

item_list_2 STARLET.ITEM_LIST_2_TYPE

item_list_3 STARLET.ITEM_LIST_3_TYPE

item_quota_list User-defined record

lock_id STARLET.LOCK_ID_TYPE

lock_status_block STARLET.LOCK_STATUS_BLOCK_TYPE

lock_value_block STARLET.LOCK_VALUE_BLOCK_TYPE

logical_name STARLET.LOGICAL_NAME_TYPE

1Alpha specific.

(continued on next page)

B–18 OpenVMS Data Types

OpenVMS Data Types
B.2 Ada Implementations

Table B–2 (Cont.) Ada Implementations

OpenVMS Data Types Ada Declarations

longword_signed STANDARD.INTEGER

longword_unsigned SYSTEM.UNSIGNED_LONGWORD

mask_byte SYSTEM.UNSIGNED_BYTE

mask_longword SYSTEM.UNSIGNED_LONGWORD

mask_quadword SYSTEM.UNSIGNED_QUADWORD

mask_word SYSTEM.UNSIGNED_WORD

mechanism_args STARLET.CHFDEF2_TYPE

null_arg SYSTEM.UNSIGNED_LONGWORD

octaword_signed array(1..4) of SYSTEM.UNSIGNED_LONGWORD

octaword_unsigned array(1..4) of SYSTEM.UNSIGNED_LONGWORD

page_protection STARLET.PAGE_PROTECTION_TYPE

procedure SYSTEM.ADDRESS

process_id STARLET.PROCESS_ID_TYPE

process_name STARLET.PROCESS_NAME_TYPE

quadword_signed SYSTEM.UNSIGNED_QUADWORD

quadword_unsigned SYSTEM.UNSIGNED_QUADWORD

rights_holder STARLET.RIGHTS_HOLDER_TYPE

rights_id STARLET.RIGHTS_ID_TYPE

rab STARLET.RAB_TYPE

section_id STARLET.SECTION_ID_TYPE

section_name STARLET.SECTION_NAME_TYPE

system_access_id STARLET.SYSTEM_ACCESS_ID_TYPE

time_name STARLET.TIME_NAME_TYPE

transaction_id array(1..4) of SYSTEM.UNSIGNED_LONGWORD

uic STARLET.UIC_TYPE

user_arg STARLET.USER_ARG_TYPE

varying_arg SYSTEM.UNSIGNED_LONGWORD

vector_byte_signed array(1..n) of STANDARD.SHORT_SHORT_
INTEGER

vector_byte_unsigned array(1..n) of SYSTEM.UNSIGNED_BYTE

vector_longword_signed array(1..n) of STANDARD.INTEGER

vector_longword_unsigned array(1..n) of SYSTEM.UNSIGNED_LONGWORD

vector_quadword_signed array(1..n) of SYSTEM.UNSIGNED_QUADWORD

vector_quadword_unsigned array(1..n) of SYSTEM.UNSIGNED_QUADWORD

vector_word_signed array(1..n) of STANDARD.SHORT_INTEGER

vector_word_unsigned array(1..n) of SYSTEM.UNSIGNED_WORD

word_signed STANDARD.SHORT_INTEGER

word_unsigned SYSTEM.UNSIGNED_WORD

OpenVMS Data Types B–19

OpenVMS Data Types
B.3 Application Programming Language (APL) Implementations

B.3 Application Programming Language (APL) Implementations
Table B–3 lists the OpenVMS data types and their corresponding APL data type
declarations.

Table B–3 APL Implementations

OpenVMS Data Types APL Declarations

access_bit_names na

access_mode /TYPE=BU

address na

address_range na

arg_list na

ast_procedure na

boolean /TYPE=V

byte_signed /TYPE=B

byte_unsigned /TYPE=BU

channel /TYPE=WU

char_string /TYPE=T

complex_number /TYPE=FC
/TYPE=DC
/TYPE=GC
/TYPE=HC

cond_value /TYPE=LU

context na

date_time na

device_name /TYPE=T

ef_cluster_name /TYPE=T

ef_number /TYPE=LU

exit_handler_block na

fab na

file_protection /TYPE=WU

floating_point /TYPE=F
/TYPE=D
/TYPE=G
/TYPE=H

function_code na

identifier na

io_status_block na

item_list_2 na

item_list_3 na

item_list_pair na

item_quota_list na

lock_id /TYPE=LU

(continued on next page)

B–20 OpenVMS Data Types

OpenVMS Data Types
B.3 Application Programming Language (APL) Implementations

Table B–3 (Cont.) APL Implementations

OpenVMS Data Types APL Declarations

lock_status_block na

lock_value_block na

logical_name /TYPE=T

longword_signed /TYPE=L

longword_unsigned /TYPE=LU

mask_byte /TYPE=BU

mask_longword /TYPE=LU

mask_quadword na

mask_word /TYPE=WU

null_arg /TYPE=LU

octaword_signed na

octaword_unsigned na

page_protection /TYPE=LU

procedure na

process_id /TYPE=LU

process_name /TYPE=T

quadword_signed na

quadword_unsigned na

rights_holder na

rights_id /TYPE=LU

rab na

section_id na

section_name /TYPE=T

system_access_id na

time_name /TYPE=T

transaction_id na

uic /TYPE=LU

user_arg /TYPE=LU

varying_arg na

vector_byte_signed /TYPE=B

vector_byte_unsigned /TYPE=BU

vector_longword_signed /TYPE=L

vector_longword_unsigned /TYPE=LU

vector_quadword_signed na

vector_quadword_unsigned na

vector_word_signed /TYPE=W

(continued on next page)

OpenVMS Data Types B–21

OpenVMS Data Types
B.3 Application Programming Language (APL) Implementations

Table B–3 (Cont.) APL Implementations

OpenVMS Data Types APL Declarations

vector_word_unsigned /TYPE=WU

word_signed /TYPE=W

word_unsigned /TYPE=WU

B.4 BASIC Implementations
Table B–4 lists the OpenVMS data types and their corresponding BASIC data
type declarations.

Table B–4 BASIC Implementations

OpenVMS Data Type BASIC Declarations

access_bit_names na

access_mode BYTE (signed)

address LONG

address_range LONG address_range (1)
or
RECORD address_range

LONG beginning_address
LONG ending_address

END RECORD

arg_list na

ast_procedure EXTERNAL LONG ast_proc

boolean LONG

byte_signed BYTE

byte_unsigned BYTE1

channel WORD

char_string STRING

complex_number RECORD complex
REAL real_part
REAL imaginary_part

END RECORD

cond_value LONG

context LONG

date_time RECORD date_time
LONG FILL (2)

END RECORD

device_name STRING

ef_cluster_name STRING

ef_number LONG

1Although unsigned data types are not directly supported in BASIC, you may substitute the signed
equivalent provided you do not exceed the range of the signed data type.

(continued on next page)

B–22 OpenVMS Data Types

OpenVMS Data Types
B.4 BASIC Implementations

Table B–4 (Cont.) BASIC Implementations

OpenVMS Data Type BASIC Declarations

exit_handler_block RECORD EHCB
LONG flink
LONG handler_addr
BYTE arg_count
BYTE FILL (3)
LONG status_value_addr

END RECORD

fab na

file_protection LONG

floating_point SINGLE
DOUBLE
GFLOAT
HFLOAT

function_code RECORD function-code
WORD major-function
WORD subfunction

END RECORD

identifier LONG

io_status_block RECORD iosb
WORD iosb-field (3)

END RECORD

item_list_2 RECORD item_list_two
GROUP item(15)

VARIANT
CASE

WORD comp_length
WORD code
LONG comp_address

CASE
LONG terminator

END VARIANT
END GROUP

END RECORD

item_list_3 RECORD item_list_3
GROUP item (15)

VARIANT
CASE

WORD buf_len
WORD code
LONG buffer_address
LONG length_address

CASE
LONG terminator

END VARIANT
END GROUP

END RECORD

(continued on next page)

OpenVMS Data Types B–23

OpenVMS Data Types
B.4 BASIC Implementations

Table B–4 (Cont.) BASIC Implementations

OpenVMS Data Type BASIC Declarations

item_list_pair RECORD item_list_pair
GROUP item (15)

VARIANT
CASE

LONG code
LONG value

CASE
LONG terminator

END VARIANT
END GROUP

END RECORD item_list_pair

item_quota_list RECORD item_quota_list
GROUP quota (n)

VARIANT
CASE

BYTE quota_name
LONG value

CASE
BYTE list_end

END VARIANT
END GROUP

END RECORD

lock_id LONG

lock_status_block na

lock_value_block na

logical_name STRING

longword_signed LONG

longword_unsigned LONG1

mask_byte BYTE

mask_longword LONG

mask_quadword RECORD quadword
LONG FILL (2)

END RECORD1

mask_word WORD

null_arg A null argument is indicated by a comma used as a
placeholder in the argument list.

octaword_signed na

octaword_unsigned na

page_protection LONG

procedure EXTERNAL LONG proc

process_id LONG

process_name STRING

quadword_signed RECORD quadword
LONG FILL (2)

END RECORD

1Although unsigned data types are not directly supported in BASIC, you may substitute the signed
equivalent provided you do not exceed the range of the signed data type.

(continued on next page)

B–24 OpenVMS Data Types

OpenVMS Data Types
B.4 BASIC Implementations

Table B–4 (Cont.) BASIC Implementations

OpenVMS Data Type BASIC Declarations

quadword_unsigned RECORD quadword
LONG FILL (2)

END RECORD1

rights_holder RECORD quadword
LONG FILL (2)

END RECORD1

rights_id LONG

rab na

section_id RECORD quadword
LONG FILL (2)

END RECORD1

section_name STRING

system_access_id RECORD quadword
LONG FILL (2)

END RECORD1

time_name STRING

transaction_id na

uic LONG

user_arg LONG

varying_arg Depends on the application.

vector_byte_signed BYTE array n

vector_byte_unsigned BYTE array n1

vector_longword_signed LONG array n

vector_longword_unsigned LONG array n1

vector_quadword_signed na

vector_quadword_unsigned na

vector_word_signed WORD array n

vector_word_unsigned WORD array n1

word_signed WORD

word_unsigned WORD1

1Although unsigned data types are not directly supported in BASIC, you may substitute the signed
equivalent provided you do not exceed the range of the signed data type.

B.5 BLISS Implementations
Table B–5 lists the OpenVMS data types and their corresponding BLISS data
type declarations.

Table B–5 BLISS Implementations

OpenVMS Data Types BLISS Declarations

access_bit_names BLOCKVECTOR[32,8,BYTE]

(continued on next page)

OpenVMS Data Types B–25

OpenVMS Data Types
B.5 BLISS Implementations

Table B–5 (Cont.) BLISS Implementations

OpenVMS Data Types BLISS Declarations

access_mode UNSIGNED BYTE

address UNSIGNED LONG

address_range VECTOR[2,LONG,UNSIGNED]

arg_list VECTOR[n,LONG,UNSIGNED]
where n is the number of arguments + 1.

ast_procedure UNSIGNED LONG

boolean UNSIGNED LONG

byte_signed SIGNED BYTE

byte_unsigned UNSIGNED BYTE

channel UNSIGNED WORD

char_string VECTOR[65536,BYTE,UNSIGNED]

complex_number F_Complex: VECTOR[2,LONG]
D_Complex: VECTOR[4,LONG]
G_Complex: VECTOR[4,LONG]
H_Complex: VECTOR[8,LONG]

cond_value UNSIGNED LONG

context UNSIGNED LONG

date_time VECTOR[2,LONG,UNSIGNED]

device_name VECTOR[n,BYTE,UNSIGNED]
where n is the length of the device name.

ef_cluster_name VECTOR[n,BYTE,UNSIGNED]
where n is the length of the event-flag cluster name.

ef_number UNSIGNED LONG

exit_handler_block BLOCK[n,BYTE]
where n is the size of the exit-handler control block.

fab $FAB_DECL (from STARLET.REQ)

file_protection BLOCK[2,BYTE]

floating_point F_Floating: VECTOR[1,LONG]
D_Floating: VECTOR[2,LONG]
G_Floating: VECTOR[2,LONG]
H_Floating: VECTOR[4,LONG]

function_code BLOCK[2,WORD]

identifier UNSIGNED LONG

io_status_block BLOCK[8,BYTE]

item_list_2 BLOCKVECTOR[n,8,BYTE]
where n is the number of the item descriptors + 1.

item_list_3 BLOCKVECTOR[n,12,BYTE]
where n is the number of the item descriptors + 1.

$ITMLST_DECL/$ITMLST_INIT
from STARLET.REQ

item_list_pair BLOCKVECTOR[n,2,LONG]
where n is the number of the item descriptors + 1.

(continued on next page)

B–26 OpenVMS Data Types

OpenVMS Data Types
B.5 BLISS Implementations

Table B–5 (Cont.) BLISS Implementations

OpenVMS Data Types BLISS Declarations

item_quota_list BLOCKVECTOR[n,5,BYTE]
where n is the number of the quota descriptors + 1.

lock_id UNSIGNED_LONG

lock_status_block BLOCK[n,BYTE]
where n is the size of the lock_status_block minus at
least 8.

lock_value_block BLOCK[16,BYTE]

logical_name VECTOR[255,BYTE,UNSIGNED]

longword_signed SIGNED LONG

longword_unsigned UNSIGNED LONG

mask_byte BITVECTOR[8]

mask_longword BITVECTOR[32]

mask_quadword BITVECTOR[64]

mask_word BITVECTOR[16]

null_arg UNSIGNED LONG

octaword_signed VECTOR[4,LONG,UNSIGNED]

octaword_unsigned VECTOR[4,LONG,UNSIGNED]

page_protection UNSIGNED LONG

procedure UNSIGNED LONG

process_id UNSIGNED LONG

process_name VECTOR[n,BYTE,UNSIGNED]
where n is the length of the process name.

quadword_signed VECTOR[2,LONG,UNSIGNED]

quadword_unsigned VECTOR[2,LONG,UNSIGNED]

rights_holder BLOCK[8,BYTE]

rights_id UNSIGNED LONG

rab $RAB_DECL
from STARLET.REQ

section_id VECTOR[2,LONG,UNSIGNED]

section_name VECTOR[n,BYTE,UNSIGNED]
where n is the length of the global section name.

system_access_id VECTOR[2,LONG,UNSIGNED]

time_name VECTOR[n,BYTE,UNSIGNED]
where n is the length of the time value in OpenVMS
format.

transaction_id VECTOR[4,LONG,UNSIGNED]

uic UNSIGNED LONG

user_arg UNSIGNED LONG

varying_arg UNSIGNED LONG

vector_byte_signed VECTOR[n,BYTE,SIGNED]
where n is the size of the array.

(continued on next page)

OpenVMS Data Types B–27

OpenVMS Data Types
B.5 BLISS Implementations

Table B–5 (Cont.) BLISS Implementations

OpenVMS Data Types BLISS Declarations

vector_byte_unsigned VECTOR[n,BYTE,UNSIGNED]
where n is the size of the array.

vector_longword_signed VECTOR[n,LONG,SIGNED]
where n is the size of the array.

vector_longword_unsigned VECTOR[n,LONG,UNSIGNED]
where n is the size of the array.

vector_quadword_signed BLOCKVECTOR[n,2,LONG]
where n is the size of the array.

vector_quadword_unsigned BLOCKVECTOR[n,2,LONG]
where n is the size of the array.

vector_word_signed VECTOR[n,BYTE,SIGNED]
where n is the size of the array.

vector_word_unsigned VECTOR[n,BYTE,UNSIGNED]
where n is the size of the array.

word_signed SIGNED WORD

word_unsigned UNSIGNED WORD

B.6 C and C++ Implementations
Table B–6 lists the OpenVMS data types and their corresponding C and C++ data
type declarations.

Table B–6 C and C++ Implementations

OpenVMS Data Types C and C++ Declarations

access_bit_names User defined1

access_mode unsigned char

address User defined1 *pointer2�4

address_range int *array [2] 2�3�4

arg_list User defined1

ast_procedure Pointer to function2

boolean unsigned long int

byte_signed char

byte_unsigned unsigned char

channel unsigned short int

char_string char array[n]3�5

complex_number User defined1

1The declaration of a user-defined data structure depends on how the data will be used. Such data
structures can be declared in a variety of ways, each of which is suitable only to specific applications.
2C and C++ pointers are declared with special syntax and are associated with the data type of the
object being pointed to. This object is often user defined.
3The term array denotes the syntax of a C or C++ array declaration.
4The data type specified can be changed to any valid C or C++ data type.
5The size of the array must be substituted for n.

(continued on next page)

B–28 OpenVMS Data Types

OpenVMS Data Types
B.6 C and C++ Implementations

Table B–6 (Cont.) C and C++ Implementations

OpenVMS Data Types C and C++ Declarations

cond_value unsigned long int

context unsigned long int

date_time User defined1

device_name char array[n]3�5

ef_cluster_name char array[n]3�5

ef_number unsigned long int

exit_handler_block User defined1

fab #include <fab.h>
struct FAB

file_protection unsigned short int or user defined1

floating_point float, double, or long double

function_code unsigned long int or user defined1

identifier unsigned long int *pointer2�4

invo_context_blk6 #include <libicb.h>
struct invo_context_blk

invo_handle6 unsigned long int

io_status_block User defined1

item_list_2 User defined1

item_list_3 User defined1

item_list_pair User defined1

item_quota_list User defined1

lock_id unsigned long int

lock_status_block User defined1

lock_value_block User defined1

logical_name char array[n]3�5

longword_signed long int

longword_unsigned unsigned long int

mask_byte unsigned char

mask_longword unsigned long int

mask_quadword User defined1

mask_word unsigned short int

mechanism_args #include <chfdef.h>
struct chf$mech_array

null_arg unsigned long int

1The declaration of a user-defined data structure depends on how the data will be used. Such data
structures can be declared in a variety of ways, each of which is suitable only to specific applications.
2C and C++ pointers are declared with special syntax and are associated with the data type of the
object being pointed to. This object is often user defined.
3The term array denotes the syntax of a C or C++ array declaration.
4The data type specified can be changed to any valid C or C++ data type.
5The size of the array must be substituted for n.
6Alpha and I64 specific.

(continued on next page)

OpenVMS Data Types B–29

OpenVMS Data Types
B.6 C and C++ Implementations

Table B–6 (Cont.) C and C++ Implementations

OpenVMS Data Types C and C++ Declarations

octaword_signed User defined1

octaword_unsigned User defined1

page_protection unsigned long int

procedure Pointer to function2

process_id unsigned long int

process_name char array[n]3�5

quadword_signed User defined1

quadword_unsigned User defined1

rights_holder User defined1

rights_id unsigned long int

rab #include <rab.h>
struct RAB

section_id User defined1

section_name char array[n]3�5

system_access_id User defined1

time_name char array[n]3�5

transaction_id User defined1

uic unsigned long int

user_arg User defined1

varying_arg User defined1

vector_byte_signed char array[n]3�5

vector_byte_unsigned unsigned char array[n]3�5

vector_longword_signed long int array[n]3�5

vector_longword_unsigned unsigned long int array[n]3�5

vector_quadword_signed User defined1

vector_quadword_unsigned User defined1

vector_word_signed short int array[n]3�5

vector_word_unsigned unsigned short int array[n]3�5

word_signed short int

word_unsigned unsigned short int

1The declaration of a user-defined data structure depends on how the data will be used. Such data
structures can be declared in a variety of ways, each of which is suitable only to specific applications.
2C and C++ pointers are declared with special syntax and are associated with the data type of the
object being pointed to. This object is often user defined.
3The term array denotes the syntax of a C or C++ array declaration.
5The size of the array must be substituted for n.

B.7 COBOL Implementations
Table B–7 lists the OpenVMS data types and their corresponding COBOL data
type declarations.

B–30 OpenVMS Data Types

OpenVMS Data Types
B.7 COBOL Implementations

Table B–7 COBOL Implementations

OpenVMS Data Types COBOL Declarations

access_bit_names na . . . PIC X(128)1

access_mode na . . . PIC X1

The access_mode data type is usually passed BY VALUE
as PIC 9(5) COMP.

address USAGE POINTER

address_range 01 ADDRESS-RANGE
02 BEGINNING-ADDRESS USAGE POINTER
02 ENDING-ADDRESS USAGE POINTER

arg_list na . . . Constructed by the compiler as a result of using
the COBOL CALL statement. An argument list may
be created as follows, but cannot be referenced by the
COBOL CALL statement.

01 ARG-LIST
02 ARG-COUNT PIC S9(5) COMP
02 ARG-BY-VALUE PIC S9(5) COMP
02 ARG-BY-REFERENCE USAGE POINTER
02 VALUE REFERENCE ARG-NAME
. . . continue as needed

ast_procedure 01 AST-PROC PIC 9(5) COMP2

boolean 01 BOOLEAN-VALUE PIC 9(5) COMP2

byte_signed na . . . PIC X1

byte_unsigned na . . . PIC X1

channel 01 CHANNEL PIC 9(4) COMP2

char_string 01 CHAR-STRING PIC X to PIC X(65535)

complex_number na . . . PIC X(n), where n is the length.1

cond_value 01 COND-VALUE PIC 9(5) COMP2

context 01 CONTEXT PIC 9(5) COMP2

date_time na . . . PIC X(16)1

device_name 01 DEVICE-NAME PIC X(n), where n is the length.

ef_cluster_name 01 CLUSTER-NAME PIC X(n), where n is the length.

ef_number 01 EF-NO PIC 9(5) COMP2

exit_handler_block na . . . PIC X(n), where n is the length.1

fab na . . . Too complex for general COBOL use. Most of a
FAB structure can be described by a lengthy COBOL
record description, but such a FAB cannot then be
referenced by a COBOL I-O statement. It is much
simpler to do the I-O completely within COBOL, and let
the COBOL compiler generate the FAB structure or do
the I-O in another language.

file_protection 01 FILE-PROT PIC 9(4) COMP2

1Most OpenVMS data types not directly supported in COBOL can be represented as an alphanumeric
data item of a certain number of bytes. While COBOL does not interpret the data type, you can use it
to pass objects from one language to another.
2Although unsigned computational data structures are not directly supported in COBOL, you may
substitute the signed equivalent provided you do not exceed the range of the signed data structure.

(continued on next page)

OpenVMS Data Types B–31

OpenVMS Data Types
B.7 COBOL Implementations

Table B–7 (Cont.) COBOL Implementations

OpenVMS Data Types COBOL Declarations

floating_point 01 F-FLOAT USAGE COMP-1
01 D-FLOAT USAGE COMP-2
The G-float and H-float data types are not supported in
COBOL.

function_code 01 FUNCTION-CODE
02 MAJOR-FUNCTION PIC 9(4) COMP2

02 SUB-FUNCTION PIC 9(4) COMP2

identifier 01 ID PIC 9(5) COMP2

invo_context_blk3 na

invo_handle3 na

io_status_block 01 IOSB
02 COND-VAL PIC 9(4) COMP2

02 BYTE-CNT PIC 9(4) COMP2

02 DEV-INFO PIC 9(5) COMP2

item_list_2 01 ITEM-LIST-TWO
02 ITEM-LIST OCCURS n TIMES

04 COMP-LENGTH PIC S9(4) COMP
04 ITEM-CODE PIC S9(4) COMP
04 COMP-ADDRESS PIC S9(5) COMP

02 TERMINATOR PIC S9(5) COMP VALUE 0

item_list_3 01 ITEM-LIST-3
02 ITEM-LIST OCCURS n TIMES

04 BUF-LEN PIC S9(4) COMP
04 ITEM-CODE PIC S9(4) COMP
04 BUFFER-ADDRESS PIC S9(5) COMP
04 LENGTH-ADDRESS PIC S9(5) COMP

02 TERMINATOR PIC S9(5) COMP VALUE 0

item_list_pair 01 ITEM-LIST-PAIR
02 ITEM-LIST OCCURS n TIMES

04 ITEM-CODE PIC S9(5) COMP
04 ITEM-VALUE PIC S9(5) COMP

02 TERMINATOR PIC S9(5) COMP VALUE 0

item_quota_list na

lock_id 01 LOCK-ID PIC 9(5) COMP2

lock_status_block na

lock_value_block na

logical_name 01 LOG-NAME PIC X TO X(255)

longword_signed 01 LWS PIC S9(5) COMP

longword_unsigned 01 LWU PIC 9(5) COMP2

mask_byte na . . . PIC X1

mask_longword 01 MLW PIC 9(5) COMP2

mask_quadword 01 MQW PIC 9(18) COMP2

1Most OpenVMS data types not directly supported in COBOL can be represented as an alphanumeric
data item of a certain number of bytes. While COBOL does not interpret the data type, you can use it
to pass objects from one language to another.
2Although unsigned computational data structures are not directly supported in COBOL, you may
substitute the signed equivalent provided you do not exceed the range of the signed data structure.
3Alpha and I64 specific.

(continued on next page)

B–32 OpenVMS Data Types

OpenVMS Data Types
B.7 COBOL Implementations

Table B–7 (Cont.) COBOL Implementations

OpenVMS Data Types COBOL Declarations

mask_word 01 MW PIC 9(4) COMP2

mechanism_args na

null_arg CALL . . . USING OMITTED or
PIC S9(5) COMP VALUE 0 passed USING BY VALUE

octaword_signed na

octaword_unsigned na

page_protection 01 PAGE-PROT PIC 9(5) COMP2

procedure 01 ENTRY-MASK PIC 9(5) COMP2

process_id 01 PID PIC 9(5) COMP2

process_name 01 PROCESS-NAME PIC X TO X(15)

quadword_signed 01 QWS PIC S9(18) COMP

quadword_unsigned 01 QWU PIC 9(18) COMP2

rights_holder 01 RIGHTS-HOLDER
02 RIGHTS-ID PIC 9(5) COMP2

02 ACCESS-RIGHTS PIC 9(5) COMP2

rights_id 01 RIGHTS-ID PIC 9(5) COMP2

rab na . . . Too complex for general COBOL use. Most of a
RAB structure can be described by a lengthy COBOL
record description, but such a RAB cannot then be
referenced by a COBOL I-O statement. It is much
simpler to do the I-O completely within COBOL, and let
the COBOL compiler generate the RAB structure, or do
the I-O in another language.

section_id 01 SECTION-ID PIC 9(18) COMP2

section_name 01 SECTION-NAME PIC X to X(43)

system_access_id 01 SECTION-ACCESS-ID PIC 9(18) COMP2

time_name 01 TIME-NAME PIC X(n), where n is the length.

transaction_id na

uic 01 UIC PIC 9(5) COMP2

user_arg 01 USER-ARG PIC 9(5) COMP2

varying_arg Depends on the application.

vector_byte_signed na . . . 3

vector_byte_unsigned na . . . 3

vector_longword_signed na . . . 3

vector_longword_unsigned na . . . 3

vector_quadword_signed na . . . 3

vector_quadword_unsigned na . . . 3

vector_word_signed na . . . 3

2Although unsigned computational data structures are not directly supported in COBOL, you may
substitute the signed equivalent provided you do not exceed the range of the signed data structure.
3Alpha and I64 specific.

(continued on next page)

OpenVMS Data Types B–33

OpenVMS Data Types
B.7 COBOL Implementations

Table B–7 (Cont.) COBOL Implementations

OpenVMS Data Types COBOL Declarations

vector_word_unsigned na . . . 4

word_signed 01 WS PIC S9(4) COMP

word_unsigned 01 WS PIC 9(4) COMP2

2Although unsigned computational data structures are not directly supported in COBOL, you may
substitute the signed equivalent provided you do not exceed the range of the signed data structure.
4COBOL does not permit the passing of variable-length data structures.

B.8 FORTRAN Implementations
Table B–8 lists the OpenVMS data types and their corresponding FORTRAN data
type declarations.

Table B–8 FORTRAN Implementations

OpenVMS Data Types FORTRAN Declarations

access_bit_names INTEGER*4(2,32)
or
STRUCTURE /access_bit_names/

INTEGER*4 access_name_len
INTEGER*4 access_name_buf

END STRUCTURE !access_bit_names
RECORD /access_bit_names/ my_names(32)

access_mode BYTE
or
INTEGER*11

address INTEGER*4

address_range INTEGER*4(2)
or
INTEGER*81

or
STRUCTURE /address_range/

INTEGER*4 low_address
INTEGER*4 high_address

END STRUCTURE

arg_list INTEGER*4(n)
or
INTEGER*81(n)

ast_procedure EXTERNAL

boolean LOGICAL*4

byte_signed BYTE
or
INTEGER*1

1Alpha and I64 specific.

(continued on next page)

B–34 OpenVMS Data Types

OpenVMS Data Types
B.8 FORTRAN Implementations

Table B–8 (Cont.) FORTRAN Implementations

OpenVMS Data Types FORTRAN Declarations

byte_unsigned BYTE2

or
INTEGER*11, 2

channel INTEGER*2

char_string CHARACTER*n

complex_number COMPLEX*8
COMPLEX*16

cond_value INTEGER*4

context INTEGER*4

date_time INTEGER*4(2)
or
INTEGER*81

device_name CHARACTER*n

ef_cluster_name CHARACTER*n

ef_number INTEGER*4

exit_handler_block STRUCTURE /exhblock/
INTEGER*4 flink
INTEGER*4 exit_handler_addr
BYTE(3) /0/
BYTE arg_count
INTEGER*4 cond_value
! .
! .(optional arguments . . . one argument
! . per longword)
!

END STRUCTURE !cntrlblk

RECORD /exhblock/ myexh_block

fab INCLUDE ’($FABDEF)’
RECORD /fabdef/ myfab

file_protection INTEGER*4

floating_point REAL*43

REAL*83

DOUBLE PRECISION3

REAL*164

function_code INTEGER*4

identifier INTEGER*4

invo_context_blk1 INCLUDE (’LIBICB’)
RECORD /INVO_CONTEXT_BLK/ invo_context_blk

invo_handle1 INTEGER*4

1Alpha and I64 specific.
2Unsigned data types are not directly supported by FORTRAN. However, in most cases you can
substitute the signed equivalent as long as you do not exceed the range of the signed data structure.
3The format used by floating-point data in memory is determined by the FORTRAN command qualifier
/FLOAT.
4The REAL*16 type is used for both H_floating on VAX systems and X_floating on Alpha and I64
systems.

(continued on next page)

OpenVMS Data Types B–35

OpenVMS Data Types
B.8 FORTRAN Implementations

Table B–8 (Cont.) FORTRAN Implementations

OpenVMS Data Types FORTRAN Declarations

io_status_block STRUCTURE /iosb/
INTEGER*2 iostat, !return status
2 term_offset, !location of line terminator
2 terminator, !value of terminator
2 term_size !size of terminator

END STRUCTURE

RECORD /iosb/ my_iosb

item_list_2 STRUCTURE /itmlst/
UNION
MAP
INTEGER*2 buflen,code
INTEGER*4 bufadr
END MAP
MAP
INTEGER*4 end_list /0/
END MAP
END UNION

END STRUCTURE !itmlst

RECORD /itmlst/ my_itmlst_2(n)
(Allocate n records, where n is the number of item
codes plus an extra element for the end-of-list item.)

item_list_3 STRUCTURE /itmlst/
UNION
MAP
INTEGER*2 buflen,code
INTEGER*4 bufadr,retlenadr
END MAP
MAP
INTEGER*4 end_list /0/
END MAP
END UNION

END STRUCTURE !itmlst

RECORD /itmlst/ my_itmlst_2(n)
(Allocate n records, where n is the number of item
codes plus an extra element for the end-of-list item.)

item_list_pair STRUCTURE /itmlist_pair/
UNION
MAP

INTEGER*4 code
INTEGER*4 value

END MAP
MAP

INTEGER*4 end_list /0/
END MAP
END UNION

END STRUCTURE !itmlst_pair

RECORD /itmlst_pair/ my_itmlst_pair(n)
(Allocate n records, where n is the number of item
codes plus an extra element for the end-of-list item.)

(continued on next page)

B–36 OpenVMS Data Types

OpenVMS Data Types
B.8 FORTRAN Implementations

Table B–8 (Cont.) FORTRAN Implementations

OpenVMS Data Types FORTRAN Declarations

item_quota_list STRUCTURE /item_quota_list/
MAP
BYTE quota_name
INTEGER*4 quota_value
END MAP
MAP
BYTE end_quota_list
END MAP

END STRUCTURE !item_quota_list

lock_id INTEGER*4

lock_status_block STRUCTURE/lksb/
INTEGER*2 cond_value
INTEGER*2 unused
INTEGER*4 lock_id
BYTE(16)

END STRUCTURE !lock_status_lock

lock_value_block BYTE(16)

logical_name CHARACTER*n

longword_signed INTEGER*4

longword_unsigned INTEGER*42

mask_byte BYTE
or
INTEGER*1

mask_longword INTEGER*4

mask_quadword INTEGER*4(2)
or
INTEGER*81

mask_word INTEGER*2

mechanism_args INCLUDE ’($CHFDEF)’
RECORD /CHFDEF2/ mechargs

null_arg %VAL(0)

octaword_signed INTEGER*4(4)

octaword_unsigned INTEGER*4(4)2

page_protection INTEGER*4

procedure INTEGER*4

process_id INTEGER*4

process_name CHARACTER*n

quadword_signed INTEGER*4(2)
or
INTEGER*81

quadword_unsigned INTEGER*4(2)2

or
INTEGER*81

1Alpha and I64 specific.
2Unsigned data types are not directly supported by FORTRAN. However, in most cases you can
substitute the signed equivalent as long as you do not exceed the range of the signed data structure.

(continued on next page)

OpenVMS Data Types B–37

OpenVMS Data Types
B.8 FORTRAN Implementations

Table B–8 (Cont.) FORTRAN Implementations

OpenVMS Data Types FORTRAN Declarations

rights_holder INTEGER*4(2)
or
STRUCTURE /rights_holder/

INTEGER*4 rights_id
INTEGER*4 rights_mask

END STRUCTURE !rights_holder

rights_id INTEGER*4

rab INCLUDE ’($RABDEF)’
RECORD /rabdef/ myrab

section_id INTEGER*4(2)
or
INTEGER*81

section_name CHARACTER*n

system_access_id INTEGER*4(2)
or
INTEGER*81

time_name CHARACTER*23

transaction_id INTEGER*4(4)2

uic INTEGER*4

user_arg Any longword quantity

varying_arg INTEGER*4

vector_byte_signed BYTE(n)

vector_byte_unsigned BYTE(n)2

vector_longword_signed INTEGER*4(n)

vector_longword_unsigned INTEGER*4(n)2

vector_quadword_signed INTEGER*4(2,n)
or
INTEGER*8(n1)

vector_quadword_unsigned INTEGER*4(2,n)2

or
INTEGER*8(n)1,2

vector_word_signed INTEGER*2(n)

vector_word_unsigned INTEGER*2(n)2

word_signed INTEGER*2(n)

word_unsigned INTEGER*2(n)2

1Alpha and I64 specific.
2Unsigned data types are not directly supported by FORTRAN. However, in most cases you can
substitute the signed equivalent as long as you do not exceed the range of the signed data structure.

B.9 Pascal Implementations
Table B–9 lists the OpenVMS data types and their corresponding Pascal data
type declarations.

B–38 OpenVMS Data Types

OpenVMS Data Types
B.9 Pascal Implementations

Table B–9 Pascal Implementations

OpenVMS Data Types Pascal Declarations

access_bit_names PACKED ARRAY [1..32] OF [QUAD] RECORD END;1�2

access_mode [BYTE] 0..3;2

address ^ base-type { 32-bit address }
[QUAD] ^ base-type { 64-bit address } 7;

address_range PACKED ARRAY [1..2] OF UNSIGNED;2

arg_list PACKED ARRAY [1..n] OF UNSIGNED;2

ast_procedure UNSIGNED;

boolean BOOLEAN;3

byte_signed [BYTE] �128..127;2

byte_unsigned [BYTE] 0..255;2

channel [WORD] 0..65535;2

char_string [CLASS_S] PACKED ARRAY [L..U:INTEGER] OF
CHAR;4

complex_number [LONG(2)] RECORD END; * F_Floating Complex *1�2

[QUAD(2)] RECORD END; * D/G_Floating Complex *
[OCTA(2)] RECORD END; * H_Floating Complex *

cond_value UNSIGNED;

context UNSIGNED;

date_time [QUAD] RECORD END;1�2

device_name [CLASS_S] PACKED ARRAY [L..U:INTEGER] OF
CHAR;4

ef_cluster_name [CLASS_S] PACKED ARRAY [L..U:INTEGER] OF
CHAR;4

ef_number UNSIGNED;

exit_handler_block PACKED ARRAY [1..n] OF UNSIGNED;2

fab FAB$TYPE;5

file_protection [WORD] RECORD END;1�2

1This type is not available in Pascal when an empty record has been inserted. To manipulate the
contents, declare with explicit field components. If you pass an empty record as a parameter to a
Pascal routine, you must use the VAR keyword.
2Pascal expects either a type identifier or conformant schema. Declare this under the TYPE
declaration and use the type identifier in the formal parameter declaration.
3Pascal allocates a byte for a BOOLEAN variable. Use the [LONG] attribute when passing to routines
that expect a longword.
4This parameter declaration accepts VARYING OF CHAR or PACKED ARRAY OF CHAR and
produces the CLASS_S descriptor required by system services.
5The program must inherit the STARLET environment file located in SYS$LIBRARY:STARLET.PEN.
7Alpha and I64 specific.

(continued on next page)

OpenVMS Data Types B–39

OpenVMS Data Types
B.9 Pascal Implementations

Table B–9 (Cont.) Pascal Implementations

OpenVMS Data Types Pascal Declarations

floating_point REAL; { F or S floating }8

SINGLE; { F or S floating }8

DOUBLE; { D, G, or T floating }8

QUADRUPLE; { H or X floating }9

F_FLOAT; { F floating }
D_FLOAT; { D floating }
G_FLOAT; { G floating }
H_FLOAT; { H floating }10

X_FLOAT; { X floating }7

S_FLOAT; { S floating }7

T_FLOAT; { T floating }7

function_code UNSIGNED;

identifier UNSIGNED;

invo_context_blk7 LIBICB$INFO_CONTEXT_BLK5

invo_handle7 [UNSAFE]INTEGER;

io_status_block [QUAD] RECORD END;1�2

item_list_2 PACKED ARRAY [1..n] OF PACKED RECORD2

CASE INTEGER OF
1: (
FIELD1 : [WORD] 0..65535;
FIELD2 : [WORD] 0..65535;
FIELD3 : UNSIGNED);
2: (
TERMINATOR : UNSIGNED);
END;

item_list_3 PACKED ARRAY [1..n] OF PACKED RECORD2

CASE INTEGER OF
1: (
FIELD1 : [WORD] 0..65535;
FIELD2 : [WORD] 0..65535;
FIELD3 : UNSIGNED;
FIELD4 : UNSIGNED);
2: (
TERMINATOR : UNSIGNED);
END;

1This type is not available in Pascal when an empty record has been inserted. To manipulate the
contents, declare with explicit field components. If you pass an empty record as a parameter to a
Pascal routine, you must use the VAR keyword.
2Pascal expects either a type identifier or conformant schema. Declare this under the TYPE
declaration and use the type identifier in the formal parameter declaration.
5The program must inherit the STARLET environment file located in SYS$LIBRARY:STARLET.PEN.
7Alpha and I64 specific.
8The mapping of these types is controlled by the /FLOAT DCL qualifier and the [FLOAT] module
attribute.
9QUADRUPLE maps to H floating on OpenVMS VAX and maps to X floating on OpenVMS Alpha and
OpenVMS I64.
10Available only on OpenVMS VAX.

(continued on next page)

B–40 OpenVMS Data Types

OpenVMS Data Types
B.9 Pascal Implementations

Table B–9 (Cont.) Pascal Implementations

OpenVMS Data Types Pascal Declarations

item_list_pair PACKED ARRAY [1..n] OF PACKED RECORD2

CASE INTEGER OF
1: (
FIELD1 : INTEGER;
FIELD2 : INTEGER);
2: (
TERMINATOR : UNSIGNED);
END;

item_quota_list PACKED ARRAY [1..n] OF PACKED RECORD2

CASE INTEGER OF
1: (
QUOTA_NAME : [BYTE] 0..255;
QUOTA_VALUE: UNSIGNED);
2: (
QUOTA_TERM : [BYTE] 0..255);
END;

lock_id UNSIGNED;

lock_status_block [BYTE(24)] RECORD END;1�2

lock_value_block [BYTE(16)] RECORD END;1�2

logical_name [CLASS_S] PACKED ARRAY [L..U:INTEGER] OF
CHAR;4

longword_signed INTEGER;

longword_unsigned UNSIGNED;

mask_byte [BYTE,UNSAFE] PACKED ARRAY [1..8] OF BOOLEAN;2

mask_longword [LONG,UNSAFE] PACKED ARRAY [1..32] OF
BOOLEAN;2

mask_quadword [QUAD,UNSAFE] PACKED ARRAY [1..64] OF
BOOLEAN;2

mask_word [WORD,UNSAFE] PACKED ARRAY [1..16] OF
BOOLEAN;2

mechanism_args CHF$TYPE;5

null_arg UNSIGNED;

octaword_signed [OCTA] RECORD END;1�2

octaword_unsigned [OCTA] RECORD END;1�2

page_protection [LONG] 0..7;2

procedure UNSIGNED;

process_id UNSIGNED;

process_name [CLASS_S] PACKED ARRAY [L..U:INTEGER] OF
CHAR;4

quadword_signed [QUAD] RECORD END;1�2

1This type is not available in Pascal when an empty record has been inserted. To manipulate the
contents, declare with explicit field components. If you pass an empty record as a parameter to a
Pascal routine, you must use the VAR keyword.
2Pascal expects either a type identifier or conformant schema. Declare this under the TYPE
declaration and use the type identifier in the formal parameter declaration.
4This parameter declaration accepts VARYING OF CHAR or PACKED ARRAY OF CHAR and
produces the CLASS_S descriptor required by system services.
5The program must inherit the STARLET environment file located in SYS$LIBRARY:STARLET.PEN.

(continued on next page)

OpenVMS Data Types B–41

OpenVMS Data Types
B.9 Pascal Implementations

Table B–9 (Cont.) Pascal Implementations

OpenVMS Data Types Pascal Declarations

quadword_unsigned [QUAD] RECORD END;1�2

rights_holder [QUAD] RECORD END;1�2

rights_id UNSIGNED;

rab RAB$TYPE;5

section_id [QUAD] RECORD END;1�2

section_name [CLASS_S] PACKED ARRAY [L..U:INTEGER] OF
CHAR;4

system_access_id [QUAD] RECORD END;1�2

time_name [CLASS_S] PACKED ARRAY [L..U:INTEGER] OF
CHAR;4

transaction_id [OCTA] RECORD END;1�2

uic UNSIGNED;

user_arg [UNSAFE] UNSIGNED;

varying_arg [UNSAFE,REFERENCE] PACKED ARRAY
[L..U:INTEGER] OF [BYTE] 0..255;

vector_byte_signed PACKED ARRAY [1..n] OF [BYTE] �128..127;2

vector_byte_unsigned PACKED ARRAY [1..n] OF [BYTE] 0..255;2

vector_longword_signed PACKED ARRAY [1..n] OF INTEGER;2

vector_longword_unsigned PACKED ARRAY [1..n] OF UNSIGNED;2

vector_quadword_signed PACKED ARRAY [1..n] OF [QUAD] RECORD END;1�2

vector_quadword_unsigned PACKED ARRAY [1..n] OF [QUAD] RECORD END;1�2

vector_word_signed PACKED ARRAY [1..n] OF [WORD] �32768..32767;2

vector_word_unsigned PACKED ARRAY [1..n] OF [WORD] 0..65535;2

word_signed [WORD] �32768..32767;2

word_unsigned [WORD] 0..65535;2

1This type is not available in Pascal when an empty record has been inserted. To manipulate the
contents, declare with explicit field components. If you pass an empty record as a parameter to a
Pascal routine, you must use the VAR keyword.
2Pascal expects either a type identifier or conformant schema. Declare this under the TYPE
declaration and use the type identifier in the formal parameter declaration.
4This parameter declaration accepts VARYING OF CHAR or PACKED ARRAY OF CHAR and
produces the CLASS_S descriptor required by system services.
5The program must inherit the STARLET environment file located in SYS$LIBRARY:STARLET.PEN.

B.10 PL/I Implementations
Table B–10 lists the OpenVMS data types and their corresponding PL/I data type
declarations.

B–42 OpenVMS Data Types

OpenVMS Data Types
B.10 PL/I Implementations

Table B–10 PL/I Implementations

OpenVMS Data Types PL/I Declarations

access_bit_names 1 ACCESS_BIT_NAMES(32),
2 LENGTH FIXED BINARY(15),
2 DTYPE FIXED BINARY(7)
INITIAL((32)DSC$K_DTYPE_T),
2 CLASS FIXED BINARY(7)
INITIAL((32)DSC$K_CLASS_S),
2 CHAR_PTR POINTER;1

The length of the LENGTH field in each element of
the array should correspond to the length of a string
of characters pointed to by the CHAR_PTR field. The
constants DSC$K_CLASS_S and DSC$K_DTYPE_T
can be used by including the module $DSCDEF from
PLI$STARLET.

access_mode FIXED BINARY(7)
(The constants for this type—PSLC_KERNEL, PSLC_
EXEC, PSLC_SUPER, PSLC_USER—are declared in
module $PSLDEF in PLI$STARLET.)

address POINTER

address_range (2) POINTER1

arg_list 1 ARG_LIST BASED,
2 ARGCOUNT FIXED BINARY(31),
2 ARGUMENT (X REFER (ARGCOUNT))
POINTER;1

If the arguments are passed by value, you may need
to change the type of the ARGUMENT field of the
structure. Alternatively, you can use the POSINT, INT,
or UNSPEC built-in functions and pseudovariables to
access the data. X should be an expression with a value
in the range 0 to 255 when the structure is allocated.

ast_procedure PROCEDURE or ENTRY2

boolean BIT ALIGNED1

byte_signed FIXED BINARY(7)

byte_unsigned FIXED BINARY(7)3

channel FIXED BINARY(15)

char_string CHARACTER(n)4

complex_number (2) FLOAT BINARY(n) (See floating_point for values
of n.)

cond_value See STS$VALUE in module $STSDEF in
PLI$STARLET.1

1System routines are often written so the parameter passed occupies more storage than the object
requires. For example, some system services have parameters that return a bit value as a longword.
These variables must be declared BIT(32) ALIGNED (not BIT(n) ALIGNED) so that adjacent storage
is not overwritten by return values or used incorrectly as input. (Longword parameters are always
declared BIT(32) ALIGNED.)
2AST procedures and those passed as parameters of type ENTRY VALUE or ANY VALUE must be
external procedures. This applies to all system routines that take procedure parameters.
3This is actually an unsigned integer. This declaration is interpreted as a signed number; use the
POSINT function to determine the actual value.
4System services require CHARACTER string representation for parameters. Most other system
routines allow either CHARACTER or CHARACTER VARYING. For parameter declarations, n should
be an asterisk (*).

(continued on next page)

OpenVMS Data Types B–43

OpenVMS Data Types
B.10 PL/I Implementations

Table B–10 (Cont.) PL/I Implementations

OpenVMS Data Types PL/I Declarations

context FIXED BINARY(31)

date_time BIT(64) ALIGNED5�6

device_name CHARACTER(n)4

ef_cluster_name CHARACTER(n)4

ef_number FIXED BINARY(31)

exit_handler_block 1 EXIT_HANDLER_BLOCK BASED,
2 FORWARD_LINK POINTER,
2 HANDLER POINTER,
2 ARGCOUNT FIXED BINARY(31),
2 ARGUMENT (n REFER (ARGCOUNT))
POINTER;1

(Replace n with an expression that yields a value
between 0 and 255 when the structure is allocated.)

fab See module $FABDEF in PLI$STARLET.

file_protection BIT(16) ALIGNED1

floating_point FLOAT BINARY(n)
The values for n are as follows:
1 <= n <= 24 — F_floating
25 <= n <= 53 — D_floating
25 <= n <= 53 — G_floating (with /G_FLOAT)
54 <= n <= 113 — H_floating

function_code BIT(32) ALIGNED

identifier POINTER

invo_context_blk7 %INCLUDE LIBICB

invo_handle7 FIXED BINARY(31)

1System routines are often written so the parameter passed occupies more storage than the object
requires. For example, some system services have parameters that return a bit value as a longword.
These variables must be declared BIT(32) ALIGNED (not BIT(n) ALIGNED) so that adjacent storage
is not overwritten by return values or used incorrectly as input. (Longword parameters are always
declared BIT(32) ALIGNED.)
4System services require CHARACTER string representation for parameters. Most other system
routines allow either CHARACTER or CHARACTER VARYING. For parameter declarations, n should
be an asterisk (*).
5PL/I does not support FIXED BINARY numbers with precisions greater than 31. To use larger
values, declare variables to be BIT variables of the appropriate size and use the POSINT and
SUBSTR bits as necessary to access the values, or declare the item as a structure. The RTL routines
LIB$ADDX and LIB$SUBX may be useful if you need to perform arithmetic on these types.
6Routines declared in PLI$STARLET often use ANY, so you are free to declare the data structure
in the most convenient way for the application. ANY may be necessary in some cases because PL/I
does not allow parameter declarations for some data types used by OpenVMS. (In particular, PL/I
parameters with arrays passed by reference cannot be declared to have nonconstant bounds.)
7Alpha and I64 specific.

(continued on next page)

B–44 OpenVMS Data Types

OpenVMS Data Types
B.10 PL/I Implementations

Table B–10 (Cont.) PL/I Implementations

OpenVMS Data Types PL/I Declarations

io_status_block Because the format for I/O status blocks differs with the
system service, you can vary the definitions accordingly.
Some of the common formats are as follows:

1 IOSB_SYS$GETSYI,
2 STATUS FIXED BINARY(31),
2 RESERVED FIXED BINARY(31);

1 IOSB_TTDRIVER_A,
2 STATUS FIXED BINARY(15),
2 BYTE_COUNT FIXED BINARY(15),
2 MBZ FIXED BINARY(31) INITIAL(0);

1 IOSB_TTDRIVER_B,
2 STATUS FIXED BINARY(15),
2 TRANSMIT_SPEED FIXED BINARY(7),
2 RECEIVE_SPEED FIXED BINARY(7),
2 CR_FILL FIXED BINARY(7),
2 LF_FILL FIXED BINARY(7),
2 PARITY_FLAGS FIXED BINARY(7),
2 MBZ FIXED BINARY(7) INITIAL(0);

item_list_2 1 ITEM_LIST_2,
2 ITEM(SIZE),

3 COMPONENT_LENGTH FIXED
BINARY(15),
3 ITEM_CODE FIXED BINARY(15),
3 COMPONENT_ADDRESS POINTER,

2 TERMINATOR FIXED BINARY(31)
INITIAL(0);1

(Replace SIZE with the number of items you want.)

item_list_3 1 ITEM_LIST_3,
2 ITEM(SIZE),

3 BUFFER_LENGTH FIXED
BINARY(15),
3 ITEM_CODE FIXED BINARY(15),
3 BUFFER_ADDRESS POINTER,
3 RETURN_LENGTH POINTER,

2 TERMINATOR FIXED BINARY(31)
INITIAL(0);1

(Replace SIZE with the number of items you want.)

item_list_pair 1 ITEM_LIST_PAIR,
2 ITEM(SIZE),

3 ITEM_CODE FIXED BINARY(31),
3 ITEM UNION,

4 INTEGER FIXED BINARY(31),
4 REAL FLOAT BINARY(24),

2 TERMINATOR FIXED BINARY(31)
INITIAL(0);1

(Replace SIZE with the number of items you want.)

1System routines are often written so the parameter passed occupies more storage than the object
requires. For example, some system services have parameters that return a bit value as a longword.
These variables must be declared BIT(32) ALIGNED (not BIT(n) ALIGNED) so that adjacent storage
is not overwritten by return values or used incorrectly as input. (Longword parameters are always
declared BIT(32) ALIGNED.)

(continued on next page)

OpenVMS Data Types B–45

OpenVMS Data Types
B.10 PL/I Implementations

Table B–10 (Cont.) PL/I Implementations

OpenVMS Data Types PL/I Declarations

item_quota_list 1 ITEM_QUOTA_LIST,
2 QUOTA(SIZE),

3 NAME FIXED BINARY(7),
3 VALUE FIXED BINARY(31),

2 TERMINATOR FIXED BINARY(7)
INITIAL(PQL$_LISTEND);1

(Replace SIZE with the number of quota entries you
want to use. The constant PQL$_LISTEND can be used
by including the module $PQLDEF from PLI$STARLET
or by declaring it GLOBALREF FIXED BINARY(31)
VALUE.)

lock_id FIXED BINARY(31)

lock_status_block 1 LOCK_STATUS_BLOCK,
2 STATUS_CODE FIXED BINARY(15),
2 RESERVED FIXED BINARY(15),
2 LOCK_ID FIXED BINARY(31);1

lock_value_block The declaration of an item of this structure depends on
the use of the structure because the OpenVMS operating
system does not interpret the value.1

logical_name CHARACTER(n)4

longword_signed FIXED BINARY(31)

longword_unsigned FIXED BINARY(31)3

mask_byte BIT(8) ALIGNED

mask_longword BIT(32) ALIGNED

mask_quadword BIT(64) ALIGNED

mask_word BIT(16) ALIGNED

mechanism_args INCLUDE $CHFDEF
Declare mechanism_args like CHF$MECH_ARRAY

null_arg Omit the corresponding parameter in the call. For
example, FOO(A,,B) would omit the second parameter.

octaword_signed BIT(128) ALIGNED5�6

octaword_unsigned BIT(128) ALIGNED5�6

page_protection FIXED BINARY(31) (The constants for this type are
declared in module $PRTDEF in PLI$STARLET.)

1System routines are often written so the parameter passed occupies more storage than the object
requires. For example, some system services have parameters that return a bit value as a longword.
These variables must be declared BIT(32) ALIGNED (not BIT(n) ALIGNED) so that adjacent storage
is not overwritten by return values or used incorrectly as input. (Longword parameters are always
declared BIT(32) ALIGNED.)
3This is actually an unsigned integer. This declaration is interpreted as a signed number; use the
POSINT function to determine the actual value.
4System services require CHARACTER string representation for parameters. Most other system
routines allow either CHARACTER or CHARACTER VARYING. For parameter declarations, n should
be an asterisk (*).
5PL/I does not support FIXED BINARY numbers with precisions greater than 31. To use larger
values, declare variables to be BIT variables of the appropriate size and use the POSINT and
SUBSTR bits as necessary to access the values, or declare the item as a structure. The RTL routines
LIB$ADDX and LIB$SUBX may be useful if you need to perform arithmetic on these types.
6Routines declared in PLI$STARLET often use ANY, so you are free to declare the data structure
in the most convenient way for the application. ANY may be necessary in some cases because PL/I
does not allow parameter declarations for some data types used by OpenVMS. (In particular, PL/I
parameters with arrays passed by reference cannot be declared to have nonconstant bounds.)

(continued on next page)

B–46 OpenVMS Data Types

OpenVMS Data Types
B.10 PL/I Implementations

Table B–10 (Cont.) PL/I Implementations

OpenVMS Data Types PL/I Declarations

procedure PROCEDURE or ENTRY2

process_id FIXED BINARY(31)

process_name CHARACTER(n)4

quadword_signed BIT(64) ALIGNED5�6

quadword_unsigned BIT(64) ALIGNED5�6

rights_holder 1 RIGHTS_HOLDER,
2 RIGHTS_ID FIXED BINARY(31),
2 ACCESS_RIGHTS BIT(32)
ALIGNED;1

rights_id FIXED BINARY(31)

rab See module $RABDEF in PLI$STARLET.1

section_id BIT(64) ALIGNED

section_name CHARACTER(n)4

system_access_id BIT(64) ALIGNED

time_name CHARACTER(n)4

transaction_id BIT(128) ALIGNED5�6

uic FIXED BINARY(31)

user_arg ANY

varying_arg ANY with OPTIONS(VARIABLE) on the routine
declaration or with OPTIONAL on the parameter
declaration.

vector_byte_signed (n) FIXED BINARY(7)8

vector_byte_unsigned (n) FIXED BINARY(7)3�8

vector_longword_signed (n) FIXED BINARY(31)8

vector_longword_unsigned (n) FIXED BINARY(31)3�8

vector_quadword_signed (n) BIT(64) ALIGNED 5�6�8

vector_quadword_unsigned (n) BIT(64) ALIGNED3�5�6�8

1System routines are often written so the parameter passed occupies more storage than the object
requires. For example, some system services have parameters that return a bit value as a longword.
These variables must be declared BIT(32) ALIGNED (not BIT(n) ALIGNED) so that adjacent storage
is not overwritten by return values or used incorrectly as input. (Longword parameters are always
declared BIT(32) ALIGNED.)
2AST procedures and those passed as parameters of type ENTRY VALUE or ANY VALUE must be
external procedures. This applies to all system routines that take procedure parameters.
3This is actually an unsigned integer. This declaration is interpreted as a signed number; use the
POSINT function to determine the actual value.
4System services require CHARACTER string representation for parameters. Most other system
routines allow either CHARACTER or CHARACTER VARYING. For parameter declarations, n should
be an asterisk (*).
5PL/I does not support FIXED BINARY numbers with precisions greater than 31. To use larger
values, declare variables to be BIT variables of the appropriate size and use the POSINT and
SUBSTR bits as necessary to access the values, or declare the item as a structure. The RTL routines
LIB$ADDX and LIB$SUBX may be useful if you need to perform arithmetic on these types.
6Routines declared in PLI$STARLET often use ANY, so you are free to declare the data structure
in the most convenient way for the application. ANY may be necessary in some cases because PL/I
does not allow parameter declarations for some data types used by OpenVMS. (In particular, PL/I
parameters with arrays passed by reference cannot be declared to have nonconstant bounds.)
8For parameter declarations, the bounds must be constant for arrays passed by reference. For arrays
passed by descriptor, *s should be used for the array extent instead. (OpenVMS system routines
almost always take arrays by reference.)

(continued on next page)

OpenVMS Data Types B–47

OpenVMS Data Types
B.10 PL/I Implementations

Table B–10 (Cont.) PL/I Implementations

OpenVMS Data Types PL/I Declarations

vector_word_signed (n) FIXED BINARY(15)8

vector_word_unsigned (n) FIXED BINARY(15)3�8

word_signed FIXED BINARY(15)

word_unsigned FIXED BINARY(15)5

3This is actually an unsigned integer. This declaration is interpreted as a signed number; use the
POSINT function to determine the actual value.
5PL/I does not support FIXED BINARY numbers with precisions greater than 31. To use larger
values, declare variables to be BIT variables of the appropriate size and use the POSINT and
SUBSTR bits as necessary to access the values, or declare the item as a structure. The RTL routines
LIB$ADDX and LIB$SUBX may be useful if you need to perform arithmetic on these types.
8For parameter declarations, the bounds must be constant for arrays passed by reference. For arrays
passed by descriptor, *s should be used for the array extent instead. (OpenVMS system routines
almost always take arrays by reference.)

Note

All system services and many system constants and data structures are
declared in PLI$STARLET.TLB.

While the current version of PL/I does not support unsigned fixed binary
numbers or fixed binary numbers with a precision greater than 31, future
versions may support these features. If PL/I is extended to support these
types, declarations in PLISTARLET may change to use the new data
types where appropriate.

B.11 VAX MACRO Implementations
Table B–11 lists the OpenVMS data types and their corresponding VAX MACRO
data type declarations.

Table B–11 VAX MACRO Implementations

OpenVMS Data Type VAX MACRO Declarations

access_bit_names .ASCID /name_for_bit0/
.ASCID /name_for_bit1/ . . .
.ASCID /name_for_bit31/

access_mode .BYTE PSL$C_xxxx

address .ADDRESSS virtual_address

address_range .ADDRESS start_address,end_address

arg_list .LONG n_args, arg1, arg2, . . .

ast_procedure .ADDRESS ast_procedure

boolean .LONG 1 or .LONG 0

byte_signed .SIGNED_BYTE byte_value

byte_unsigned .BYTE byte_value

(continued on next page)

B–48 OpenVMS Data Types

OpenVMS Data Types
B.11 VAX MACRO Implementations

Table B–11 (Cont.) VAX MACRO Implementations

OpenVMS Data Type VAX MACRO Declarations

channel .WORD channel_number

char_string .ASCID /string/

complex_number na

cond_value .LONG cond_value

context .LONG 0

date_time .QUAD date_time

device_name .ASCID /ddcu:/

ef_cluster_name .ASCID /ef_cluster_name/

ef_number .LONG ef_number

exit_handler_block .LONG 0
.ADDRESS exit_handler_routine
.LONG 1
.ADDRESS status
STATUS: .BLKL 1

fab MYFAB: $FAB

file_protection .WORD prot_value

floating_point .FLOAT, .G_FLOAT, or .H_FLOAT

function_code .LONG code_mask

identifier .ADDRESSS virtual_address

invo_context_blk1 $LIBICBDEF

invo_handle1 .LONG

io_status_block .QUAD 0

item_list_2 .WORD component_length
.WORD item_code
.ADDRESS component_address

item_list_3 .WORD buffer_length
.WORD item_code
.ADDRESS buffer_address
.ADDRESS return_length_address

item_list_pair .LONG item_code
.LONG data

item_quota_list .BYTE PQL$_xxxx
.LONG value_for_quota
.BYTE pql$_listend

lock_id .LONG lock_id

lock_status_block .QUAD 0

lock_value_block .BLKB 16

logical_name .ASCID /logical_name/

longword_signed .LONG value

longword_unsigned .LONG value

mask_byte .BYTE mask_byte

1Alpha and I64 specific.

(continued on next page)

OpenVMS Data Types B–49

OpenVMS Data Types
B.11 VAX MACRO Implementations

Table B–11 (Cont.) VAX MACRO Implementations

OpenVMS Data Type VAX MACRO Declarations

mask_longword .LONG mask_longword

mask_quadword .QUAD mask_quadword

mask_word .WORD mask_word

mechanism_args MECH_ARGS: $CHFDEF

null_arg .LONG 0

octaword_signed na

octaword_unsigned .OCTA value

page_protection .LONG page_protection

procedure .ADDRESS procedure

process_id .LONG process_id

process_name .ASCID /process_name/

quadword_signed na

quadword_unsigned .QUAD value

rights_holder .LONG identifier, access_rights_bitmask

rights_id .LONG rights_id

rab MYRAB: $RAB

section_id .LONG sec$k_matxxx, version_number

section_name .ASCID /section_name/

system_access_id .QUAD system_access_id

time_name .ASCID /dd-mmm-yyyy:hh:mm:ss.cc/

transaction_id .OCTA value

uic .LONG uic

user_arg .LONG data

varying_arg Depends on the application.

vector_byte_signed .SIGNED_BYTE val1,val2, . . . valn

vector_byte_unsigned .BYTE val1,val2, . . . valn

vector_longword_signed .LONG val1,val2, . . . valn

vector_longword_unsigned .LONG val1,val2, . . . valn

vector_quadword_signed na

vector_quadword_unsigned .QUAD val1, val2, . . . valn

vector_word_signed .SIGNED_WORD val1,val2, . . . valn

vector_word_unsigned .WORD val1,val2, . . . valn

word_signed .SIGNED_WORD value

word_unsigned .WORD value

B.12 RPG II Implementations
Table B–12 lists the OpenVMS data types and their corresponding RPG II data
type declarations.

B–50 OpenVMS Data Types

OpenVMS Data Types
B.12 RPG II Implementations

Table B–12 RPG II Implementations

OpenVMS Data Type RPG II Declarations

access_bit_names na

access_mode Declare as text string of 1 byte. When using this data
structure, you must interpret the ASCII contents of
the string to determine access_mode.

address L1

address_range Q1

arg_list na

ast_procedure L1

boolean na

byte_signed Declare as text string of 1 byte. When using this data
structure, you must interpret the ASCII contents of
the string.

byte_unsigned Same as for byte_signed.1

channel W1

char_string TEXT STRING

complex_number DATA STRUCTURE

cond_value cond_value GIVNG OPCODE

context L1

date_time Q1

device_name TEXT STRING

ef_cluster_name TEXT STRING

ef_number L1

exit_handler_block DATA STRUCTURE

fab Implicitly generated by the compiler on your behalf.
You cannot access the fab data structure from an RPG
II program.

file_protection W1

floating_point F
D

function_code F

identifier L1

io_status_block Q

item_list_pair DATA STRUCTURE

item_list_2 DATA STRUCTURE

item_list_3 DATA STRUCTURE

item_quota_list na

lock_id L1

lock_status_block DATA STRUCTURE

lock_value_block DATA STRUCTURE

1Technically, RPG II does not support unsigned data structures. However, unsigned information may
be passed using the signed equivalent, provided the contents do not exceed the range of the signed
data structure.

(continued on next page)

OpenVMS Data Types B–51

OpenVMS Data Types
B.12 RPG II Implementations

Table B–12 (Cont.) RPG II Implementations

OpenVMS Data Type RPG II Declarations

logical_name TEXT STRING

longword_signed L

longword_unsigned L1

mask_byte Same as for byte_signed1

mask_longword L1

mask_quadword Q1

mask_word W1

null_arg na

octaword_signed DATA STRUCTURE

octaword_unsigned DATA STRUCTURE

page_protection L1

procedure L1

process_id L1

process_name TEXT STRING

quadword_signed Q

quadword_unsigned Q1

rights_holder Q1

rights_id L1

rab Implicitly generated by the compiler on your behalf.
You cannot access the rab data structure from an RPG
II program.

section_id Q1

section_name TEXT STRING

system_access_id Q1

time_name TEXT STRING

transaction_id DATA STRUCTURE

uic L1

user_arg L1

varying_arg Depends on the application.

vector_byte_signed ARRAY OF TEXT STRING

vector_byte_unsigned ARRAY OF TEXT STRING1

vector_longword_signed ARRAY OF LONGWORD INTEGER (SIGNED) L

vector_longword_unsigned RAY OF LONGWORD INTEGER L1

vector_quadword_signed na

vector_quadword_unsigned na

1Technically, RPG II does not support unsigned data structures. However, unsigned information may
be passed using the signed equivalent, provided the contents do not exceed the range of the signed
data structure.

(continued on next page)

B–52 OpenVMS Data Types

OpenVMS Data Types
B.12 RPG II Implementations

Table B–12 (Cont.) RPG II Implementations

OpenVMS Data Type RPG II Declarations

vector_word_signed ARRAY OF WORD INTEGER (SIGNED) W

vector_word_unsigned ARRAY OF WORD INTEGER W1

word_signed W

word_unsigned W1

1Technically, RPG II does not support unsigned data structures. However, unsigned information may
be passed using the signed equivalent, provided the contents do not exceed the range of the signed
data structure.

B.13 SCAN Implementations
Table B–13 lists the OpenVMS data types and their corresponding SCAN data
type declarations.

Table B–13 SCAN Implementations

OpenVMS Data Type SCAN Declarations

access_bit_name FILL(8*32)1

access_mode FILL(1)1

address POINTER

address_range RECORD

start: POINTER,
end: POINTER,

END RECORD

arg_list RECORD

count: INTEGER,
arg1: POINTER, ! if by reference
arg2: INTEGER, ! if by value
. . . ! depending on needs

END RECORD

ast_procedure POINTER

boolean BOOLEAN2

byte_signed FILL(1)1

byte_unsigned FILL(1)1

channel FILL(2)1

char_string FIXED STRING(x), where x is the length.

complex_number FILL(x), where x is the length.1

cond_value INTEGER

context INTEGER

1FILL is a data type that can always be used. A FILL is an object between 0 and 65K bytes in length.
SCAN does not interpret the contents of an object. Thus, it can be used to pass or return the object to
another language that does understand the type.
2SCAN Boolean is just 1 byte.

(continued on next page)

OpenVMS Data Types B–53

OpenVMS Data Types
B.13 SCAN Implementations

Table B–13 (Cont.) SCAN Implementations

OpenVMS Data Type SCAN Declarations

date_time FILL(8)1

device_name FIXED STRING(x), where x is the length.

ef_cluster_name FIXED STRING(x), where x is the length.

ef_number INTEGER

exit_handler_block FILL(x), where x is the length.1

fab A FAB data type is too large a structure to include
in this table (see the OpenVMS Record Management
Services Reference Manual); most of the fields can be
described with a SCAN record. However, fab data
structures are simpler to use with less coding errors
when accessed from other languages that have the
record predefined.

file_protection FILL(2)1

floating_point FILL(x), where x is the length.1

function_code INTEGER

identifier POINTER

io_status_block FILL(8)1

item_list_2 RECORD

item1: FILL(8),
item2: FILL(8),
. . .

terminator: INTEGER,

END RECORD1

item_list_3 RECORD

item1: FILL(12),
item2: FILL(12),
. . .

terminator: INTEGER,

END RECORD1

item_list_pair RECORD

pair_1: RECORD ! 2 integer pair

long1: INTEGER,
long2: INTEGER,
END RECORD,

pair_2: RECORD ! integer-real pair

long1: INTEGER,
long2: FILL(4),
END RECORD,

. . . ! depending on need
terminator: INTEGER,

END RECORD

1FILL is a data type that can always be used. A FILL is an object between 0 and 65K bytes in length.
SCAN does not interpret the contents of an object. Thus, it can be used to pass or return the object to
another language that does understand the type.

(continued on next page)

B–54 OpenVMS Data Types

OpenVMS Data Types
B.13 SCAN Implementations

Table B–13 (Cont.) SCAN Implementations

OpenVMS Data Type SCAN Declarations

item_quota_list RECORD

item1: RECORD

type: FILL(1),
value: INTEGER,

END RECORD
item2: RECORD

type: FILL(1),
value: INTEGER,

END RECORD,
. . .

terminator: FILL(1),

END RECORD1

lock_id INTEGER

lock_status_block RECORD

status: FILL(2),
reserved: FILL(2),
ock_id: INTEGER,

END RECORD1

lock_value_block FILL(16)1

logical_name FIXED STRING(x), where x is the length.

longword_signed INTEGER

longword_unsigned INTEGER

mask_byte FILL(1)1

mask_longword INTEGER

mask_quadword RECORD

first_half: INTEGER,
second_half: INTEGER,

END RECORD

mask_word FILL(2)1

null_arg Use asterisk (*) for argument.

octaword_signed FILL(16)1

octaword_unsigned FILL(16)1

page_protection INTEGER

procedure POINTER

process_id INTEGER

process_name FIXED STRING(x), where x is the length.

quadword_signed FILL(8)1

quadword_unsigned FILL(8)1

1FILL is a data type that can always be used. A FILL is an object between 0 and 65K bytes in length.
SCAN does not interpret the contents of an object. Thus, it can be used to pass or return the object to
another language that does understand the type.

(continued on next page)

OpenVMS Data Types B–55

OpenVMS Data Types
B.13 SCAN Implementations

Table B–13 (Cont.) SCAN Implementations

OpenVMS Data Type SCAN Declarations

rights_holder RECORD

rights_id: INTEGER,
bitmask: INTEGER,

END RECORD

rights_id INTEGER

rab A rab data type is too large a structure to include
in this table (see the OpenVMS Record Management
Services Reference Manual); most of the fields can be
described with a SCAN record. However, RAB data
structures are simpler to use with less coding errors
when accessed from other languages that have the
record predefined.

second_name FILL(8)1

section_name FIXED STRING(x), where x is the length.

system_access_id FILL(8)1

time_name FIXED STRING(x), where x is the length.

transaction_id FILL(16)1

uic INTEGER

user_arg INTEGER

varying_arg INTEGER

vector_byte_signed FILL(x), where x is the length.1

vector_byte_unsigned FILL(x), where x is the length.1

vector_longword_signed FILL(4*x), where x is the length.1

vector_longword_unsigned FILL(4*x), where x is the length.1

vector_quadword_signed FILL(8*x), where x is the length.1

vector_quadword_unsigned FILL(8*x), where x is the length.1

vector_word_signed FILL(2*x), where x is the length.1

vector_word_unsigned FILL(2*x), where x is the length.1

word_signed FILL(2)1

word_unsigned FILL(2)1

1FILL is a data type that can always be used. A FILL is an object between 0 and 65K bytes in length.
SCAN does not interpret the contents of an object. Thus, it can be used to pass or return the object to
another language that does understand the type.

B–56 OpenVMS Data Types

C
Distributed Name Service Clerk (VAX Only)

This chapter describes the DIGITAL Distributed Name Service (DECdns) Clerk
by introducing the functions of the DECdns (SYS$DNS) system service and
various run-time library routines. It is divided into the following sections:

Section C.1 describes how to use the portable application programming interface
and the operating system’s system service and run-time library interface.

Section C.2 describes how to use the SYS$DNS system service.

Section C.3 describes how to use the DCL command DEFINE.

C.1 DECdns Clerk System Service
The DECdns Clerk (SYS$DNS) system service provides applications with a
means of assigning networkwide names to system resources. Applications can
use DECdns to name such resources as printers, files, disks, nodes, servers, and
application databases. Once an application has named a resource using DECdns,
the name is available for all users of the application.

The SYS$DNS system service supports two programming interfaces:

• Portable application programming interface

• System service and run-time library (RTL)

Portable Application Interface
Application designers should select an interface for their application based on
programming language, application base, and the specific requirements of their
application.

The portable interface provides support for applications written in the C
programming language, and it provides a high-level interface with easy-to-use
methods of creating and maintaining DECdns names. Use the portable interface
for applications that must be portable between VAX systems and the HP Tru64
UNIX operating system.

The portable interface is documented in the Guide to Programming with
DECdns.

VAX System Services and RTL Routines
The VAX system services and run-time library routines can be used by
applications written in the high-level and midlevel languages listed in the preface
of this document. However, applications that use these interfaces are limited to
the VAX system environment. Use the system service when an application meets
any of the following requirements:

• The application needs the full capabilities, flexibility, and functions of
asynchronous support.

Distributed Name Service Clerk (VAX Only) C–1

Distributed Name Service Clerk (VAX Only)
C.1 DECdns Clerk System Service

• The application will run as part of a privileged shareable image on the
operating system.

• The application is not written in the C programming language.

The SYS$DNS system service is documented in the HP OpenVMS System Services
Reference Manual. Before using this system service, familiarize yourself with the
basic operating principles, terms, and definitions used by DECdns. You can gain
a working knowledge of DECdns by reading about the following topics in the
Guide to Programming with DECdns:

• DECdns component operation

• Namespace directories, objects, soft links, groups, and clearinghouses

• DECdns name syntax

• Attributes

• Clerk caching

• Setting confidence and timeouts

• Recommendations for DECdns application programmers

By understanding these topics, you can proceed more easily with this chapter,
which provides an introduction to the DECdns system service and run-time
library routines and discusses the following topics:

• Functions provided by the service and routines

• How to use the SYS$DNS system service

C.1.1 Using the DECdns System Service and Run-Time Library Routines
You can use the SYS$DNS system service and run-time library routines together
to assign, maintain, and retrieve DECdns names. This section describes the
capabilities of each interface.

C.1.1.1 Using the SYS$DNS System Service
DECdns provides a single system service call (SYS$DNS) to create, delete, modify,
and retrieve DECdns names from a namespace. The SYS$DNS system service
completes asynchronously; that is, it returns to the client immediately after
making a name service call. The status returned to the client indicates whether a
request was queued successfully to the name service.

The SYS$DNSW system service is the synchronous equivalent of SYS$DNS. The
SYS$DNSW call is identical to SYS$DNS in every way except that SYS$DNSW
returns to the caller after the operation completes.

The SYS$DNS call has two main parameters:

• A function code that identifies the particular service to perform

• An item list that specifies all the parameters for the required function

The system service provides the following functions:

• Create and delete DECdns names in the namespace

• Enumerate DECdns names in a particular directory

• Add, read, remove, and test attributes and attribute values

• Add, create, remove, restore, and update directories

C–2 Distributed Name Service Clerk (VAX Only)

Distributed Name Service Clerk (VAX Only)
C.1 DECdns Clerk System Service

• Create, remove, and resolve soft links

• Create and remove groups

• Add, remove, and test members in a group

• Parse names to convert string format names to DECdns opaque format names
and back to string

You specify item codes as either input or output parameters in the item list.
Input parameters modify functions, set context, or describe the information to be
returned. Output parameters return the requested information.

You can specify the following in input item codes:

• An attribute name and type

• The class of a DECdns name and, optionally, a class filter

• The class version of a DECdns name

• A confidence setting to indicate whether the request should be serviced from
the clerk’s cache or from a server

• An indication that the application will repeat a read call, which forces caching
of recently read data

• A name or timestamp that sets the context from which to begin or restart
enumerating or reading

• The name and type of an object, directory, group, member, clearinghouse, or
soft link, and the ability to suppress the namespace nickname from the full
name

• A simple or full name in opaque or string format

• A request to search subgroups for a member

• An operation, either adding or deleting an attribute

• A value for an attribute

• A pointer to the address of the next character in a full or simple name

• A timeout period to wait for a call to complete

• An expiration time and extension time for soft links

The output item codes return the following information:

• A creation timestamp for an object

• A set of child directories, soft links, attribute names, attribute values, or
object names

• An opaque simple or full name

• A string name and length

• A resolved soft link

• A name or timestamp context variable that indicates the last directory, object,
soft link, or attribute that was enumerated or read

Distributed Name Service Clerk (VAX Only) C–3

Distributed Name Service Clerk (VAX Only)
C.1 DECdns Clerk System Service

C.1.1.2 Using the Run-Time Library Routines
You can use the DECdns run-time library routines to manipulate output from the
SYS$DNS system service. The routines provide the following functions:

• Remove a value from a set returned by an enumeration or read system service
function

• Compare, append, concatenate, and count opaque names that were created
with the system service

• Convert addresses

To read a single attribute value using the system service and run-time library
routines, use the following routines:

• DNS$_ENUMERATE_OBJECTS function code to enumerate objects

• DNS$REMOVE_FIRST_SET_VALUE run-time library routine to remove the
first set value

• DNS$_READ_ATTRIBUTE function code to read the first set value

You can also use the system service and run-time library routines together to add
an opaque simple name to a full name by performing the following steps:

1. Obtain a string full name from a user.

2. Use the system service DNS$_PARSE_FULLNAME_STRING function code to
convert the string name to opaque format.

3. Use the DNS$_APPEND_SIMPLE_TO_RIGHT run-time library routine to
add an opaque simple name to the end of the full name.

C.2 Using the SYS$DNS System Service Call
The following sections describe how to create and modify an object, and then how
to read attributes and enumerate names and attributes in the namespace.

Each section contains a code example. These code examples are all contained
in the sample program that resides on your distribution medium under the file
name SYS$EXAMPLES:SYS$DNS_SAMPLE.C.

C.2.1 Creating Objects
Applications that use DECdns can create an object in the namespace for
each resource used by the application. You can create objects using either
the SYS$DNS or the SYS$DNSW system service.

A DECdns object consists of a name and its associated attributes. When you
create the object, you must assign a class and a class version. You can modify
the object to hold additional attributes, such as class-specific attributes, on an
as-needed basis.

Note that applications can use objects that are created by other applications.

To create an object in the namespace with SYS$DNS:

1. Prompt the user for a name.

The name that an application assigns to an object should come from a
user, a configuration file, a system logical name, or some other source. The
application never assigns an object’s name because the namespace structure
is uncertain. The name the application receives from the user is in string
format.

C–4 Distributed Name Service Clerk (VAX Only)

Distributed Name Service Clerk (VAX Only)
C.2 Using the SYS$DNS System Service Call

2. Use the SYS$DNS parse function to convert the full name string into an
opaque format. Specify the DNS$_NEXTCHAR_PTR item code to obtain the
length of the opaque name.

3. Optionally, reserve an event flag so you can check for completion of the
service.

4. Build an item list that contains the following elements:

• The opaque name for the object (resulting from the translation in step 2)

• The class name given by the application, which should contain the facility
code

• The class version assigned by the application

• An optional timeout value that specifies when the call expires

5. Optionally, provide the address of the DECdns status block to receive status
information from the name service.

6. Optionally, provide the address of the asynchronous system trap (AST) service
routine. AST routines allow a program to continue execution while waiting
for parts of the program to complete.

7. Optionally, supply a parameter to pass to the AST routine.

8. Call the create object function and provide all the parameters supplied in
steps 1 through 7.

If a clerk call is not complete when timeout occurs, then the call completes with
an error. The error is returned in the DECdns status block.

An application should check for errors that are returned; it is not enough to check
the return of the SYS$DNS call itself. You need to check the DECdns status
block to be sure no errors are returned by the DECdns server.

The following routine, written in C, shows how to create an object in the
namespace with the synchronous service SYS$DNSW. The routine demonstrates
how to construct an item list.

#include <dnsdef.h>
#include <dnsmsg.h>
/*
* Parameters:
* class_name = address of the opaque simple name of the class
* to assign to the object
* class_len = length (in bytes) of the class opaque simple name
* object_name= address of opaque full name of the object
* to create in the namespace.
* object_len = length (in bytes) of the opaque full name of the
* object to create
*/

create_object(class_name, class_len, object_name, object_len)
unsigned char *class_name; /*Format is a DECdns opaque simple name*\
unsigned short class_len;
unsigned char *object_name; /*Format is a DECdns opaque simple name*\
unsigned short object_len;
{

struct $dnsitmdef createitem[4]; /* Item list used by system service */
struct $dnscversdef version; /* Version assigned to the object */
struct $dnsb iosb; /* Used to determine DECdns server status */
int status; /* Status return from system service */

Distributed Name Service Clerk (VAX Only) C–5

Distributed Name Service Clerk (VAX Only)
C.2 Using the SYS$DNS System Service Call

/*
* Construct the item list that creates the object:
*/
createitem[0].dns$w_itm_size = class_len; !
createitem[0].dns$w_itm_code = dns$_class;
createitem[0].dns$a_itm_address = class_name;

createitem[1].dns$w_itm_size = object_len; "
createitem[1].dns$w_itm_code = dns$_objectname;
createitem[1].dns$a_itm_address = object_name;

version.dns$b_c_major = 1; #
version.dns$b_c_minor = 0;

createitem[2].dns$w_itm_size = sizeof(struct $dnscversdef); $
createitem[2].dns$w_itm_code = dns$_version;
createitem[2].dns$a_itm_address = &version;

*((int *)&createitem[3]) = 0; %

status = sys$dnsw(0, dns$_create_object, &createitem, &iosb, 0, 0); &

if(status == SS$_NORMAL)
{

status = iosb.dns$l_dnsb_status; ’
}

return(status);
}

! The first entry in the item list is the address of the opaque simple name that
represents the class of the object.

" The second entry is the address of the opaque full name for the object.

The next step is to build a version structure that indicates the version of the
object. In this case, the object is version 1.0.

$ The third entry is the address of the version structure that was just built.

% A value of 0 terminates the item list.

& The next step is to call the system service to create the object.

’ Check to see that both the system service and DECdns were able to perform
the operation without error.

C.2.2 Modifying Objects and Their Attributes
After you create objects that identify resources, you can add or modify attributes
that describe properties of the object. There is no limit imposed on the number of
attributes an object can have.

You modify an object whenever you need to add an attribute or attribute value,
change an attribute value, or delete an attribute or attribute value. When you
modify an attribute, DECdns updates the timestamp contained in the DNS$UTS
attribute for that attribute.

To modify an attribute or attribute value, use the DNS$_MODIFY_ATTRIBUTE
function code. Specify the attribute name in the input item code along with the
following required input item codes:

• DNS$_ATTRIBUTETYPE to specify a set-valued (DNS$K_SET) or single-
valued (DNS$K_SINGLE) attribute

• DNS$_MODOPERATION to specify that the value is being added (DNS$K_
PRESENT) or deleted (DNS$K_ABSENT)

C–6 Distributed Name Service Clerk (VAX Only)

Distributed Name Service Clerk (VAX Only)
C.2 Using the SYS$DNS System Service Call

Use the DNS$_MODVALUE item code to specify the value of the attribute. Note
that the DNS$_MODVALUE item code must be specified to add a single-valued
attribute. You can specify a null value for a set-valued attribute. DECdns
modifies attribute values in the following way:

• If the attribute exists and you specify an attribute value, the attribute value
is removed from a set-valued attribute. All other values are unaffected. For a
single-valued attribute, DECdns removes the attribute and its value from the
name.

• If you do not specify an attribute value, DECdns removes the attribute and
all values of the attribute for both set-valued and single-valued attributes.

To delete an attribute, use the DNS$_MODOPERATION item code.

The following is an example of how to use the DNS$_MODIFY_ATTRIBUTE
function code to add a new member to a group object. To do this, you add the new
member to the DNS$Members attribute of the group object. Use the following
function codes:

• Specify the group object (DNS$_ENTRY) and type (DNS$_LOOKINGFOR).
The type should be specified as object (DNS$K_OBJECT).

• Use DNS$_MODOPERATION to add a member to the DNS$Members
attribute (DNS$_ATTRIBUTENAME), which is a set-valued attribute (DNS$_
ATTRIBUTETYPE).

• Specify the new member object name in DNS$_MODVALUE.

• Use another DNS$_MODIFY_ATTRIBUTE call to assign access rights for the
new member to the DNS$ACS attribute of the member object.

Perform the following steps to modify an object with SYS$DNSW:

1. Build an item list that contains the following elements:

• Opaque name of the object you are modifying

• Type of object

• Operation to perform

• Type of attribute you are modifying

• Attribute name

• Value being added to the attribute

2. Supply any of the optional parameters described in Section C.2.1.

3. Call the modify attribute function, supplying the parameters established in
steps 1 and 2.

Distributed Name Service Clerk (VAX Only) C–7

Distributed Name Service Clerk (VAX Only)
C.2 Using the SYS$DNS System Service Call

The following example, written in C, shows how to add a set-valued attribute and
a value to an object:

#include <dnsdef.h>
#include <dnsmsg.h>
/*
* Parameters:
* obj_name = address of opaque full name of object
* obj_len = length of opaque full name of object
* att_name = address of opaque simple name of attribute to create
* att_len = length of opaque simple name of attribute
* att_value= value to associate with the attribute
* val_len = length of added value (in bytes)
*/

add_attribute(obj_name, obj_len, att_name, att_len, att_value, val_len)
unsigned char *obj_name;
unsigned short obj_len;
unsigned char *att_name;
unsigned short att_len;
unsigned char *att_value;
unsigned short val_len;

main() {
struct $dnsitmdef moditem[7]; /* Item list for $DNSW */
unsigned char objtype = dns$k_object; /* Using objects */
unsigned char opertype = dns$k_present; /* Adding an object */
unsigned char attype = dns$k_set; /* Attribute will be type set */
struct $dnsb iosb; /* Used to determine DECdns status */
int status; /* Status of system service */

/*
* Construct the item list to add an attribute to an object.
*/
moditem[0].dns$w_itm_size = obj_len;
moditem[0].dns$w_itm_code = dns$_entry;
moditem[0].dns$a_itm_address = obj_name; !

moditem[1].dns$w_itm_size = sizeof(char);
moditem[1].dns$w_itm_code = dns$_lookingfor;
moditem[1].dns$a_itm_address = &objtype; "

moditem[2].dns$w_itm_size = sizeof(char);
moditem[2].dns$w_itm_code = dns$_modoperation;
moditem[2].dns$a_itm_address = &opertype; #

moditem[3].dns$w_itm_size = sizeof(char);
moditem[3].dns$w_itm_code = dns$_attributetype;
moditem[3].dns$a_itm_address = &attype; $

moditem[4].dns$w_itm_size = att_len;
moditem[4].dns$w_itm_code = dns$_attributename;
moditem[4].dns$a_itm_address = att_name; %

moditem[5].dns$w_itm_size = val_len;
moditem[5].dns$w_itm_code = dns$_modvalue;
moditem[5].dns$a_itm_address = att_value; &

*((int *)&moditem[6]) = 0; ’

/*
* Call $DNSW to add the attribute to the object.
*/
status = sys$dnsw(0, dns$_modify_attribute, &moditem, &iosb, 0, 0);(

C–8 Distributed Name Service Clerk (VAX Only)

Distributed Name Service Clerk (VAX Only)
C.2 Using the SYS$DNS System Service Call

if(status == SS$_NORMAL)
{
status = iosb.dns$l_dnsb_status;)
}

return(status);
}

! The first entry in the item list is the address of the opaque full name of the
object.

" The second entry shows that this is an object, not a soft link or child directory
pointer.

The third entry is the operation to perform. The program adds an attribute
with its value to the object.

$ The fourth entry is the attribute type. The attribute has a set of values
rather than a single value.

% The fifth entry is the opaque simple name of the attribute being added.

& The sixth entry is the value associated with the attribute.

’ A value of 0 terminates the item list.

(A call is made to the SYS$DNSW system service to perform the operation.

) A check is made to see that both the system service and DECdns performed
the operation without error.

C.2.3 Requesting Information from DECdns
Once an application adds its objects to the namespace and modifies the names to
contain all necessary attributes, the application is ready to use the namespace.
An application can request that the DECdns Clerk either read attribute
information stored with an object or list all the application’s objects that are
stored in a particular directory. An application might also need to resolve all soft
links in a name in order to identify a target.

To request information from DECdns, use the read or enumerate function codes,
as follows:

• The DNS$_READ_ATTRIBUTE function reads and returns a set whose
members are the values of the specified attribute.

• The DNS$_ENUMERATE functions return a list of names for attributes,
child directories, objects, and soft links.

C.2.3.1 Using the Distributed File Service (DFS)
The VAX Distributed File Service (DFS) uses DECdns for resource naming.
This section gives an example of the DNS$_READ_ATTRIBUTE call as used by
DFS. The DFS application uses DECdns to give the operating system’s users
the ability to use remote operating system disks as if the disks were attached
to their local VAX system. The DFS application creates DECdns names for the
operating system’s directory structures (a directory and all of its subdirectories).
Each DFS object in the namespace references a particular file access point. DFS
creates each object with a class attribute of DFS$ACCESSPOINT and modifies
the address attribute (DNS$Address) of each object to hold the DECnet node
address where the directory structures reside. As a final step in registering its
resources, DFS creates a database that maps DECdns names to the appropriate
operating system directory structures.

Distributed Name Service Clerk (VAX Only) C–9

Distributed Name Service Clerk (VAX Only)
C.2 Using the SYS$DNS System Service Call

Whenever the DFS application receives the following mount request, DFS sends a
request for information to the DECdns Clerk:

MOUNT ACCESS_POINT dns-name vms-logical-name

To read the address attribute of the access point object, the DFS application
performs the following steps:

1. Translates the DECdns name that is supplied through the user to opaque
format using the SYS$DNS parse function

2. Reads the class attribute of the object with the $DNS read attribute function,
indicating that there is a second call to read other attributes of the object

3. Makes a second call to the SYS$DNS read attribute function to read the
address attribute of the object

4. Sends the DECdns name to the DFS server, which looks up the disk on which
the access point is located

5. Verifies that the DECdns name is valid on the DFS server

The DFS client and DFS server now can communicate to complete the mount
function.

C.2.3.2 Reading Attributes from DNS
When requesting information from DNS, an application always takes an object
name from the user, translates the name into opaque format, and passes it in an
item list to the DECdns Clerk.

Each read request returns a set of attribute values. The DNS$_READ_
ATTRIBUTE service uses a context item code called DNS$_CONTEXTVARTIME
to maintain context when reading the attribute values. The context item code
saves the last member that is read from the set. When the next read call is
issued, the item code sets the context to the next member in the set, reads it, and
returns it. The context item code treats single-valued attributes as though they
were a set of one.

If an enumeration call returns DNS$_MOREDATA, not all matching names or
attributes have been enumerated. If you receive this message, you should make
further calls, setting DNS$_CONTEXTVARTIME to the last value returned until
the procedure returns SS$_NORMAL.

The following program, written in C, shows how an application reads an object
attribute. The SYS$DNSW service uses an item list to return a set of objects.
Then the application calls a run-time library routine to read each value in the
set.

#include <dnsdef.h>
#include <dnsmsg.h>
/*
* Parameters:
* opaque_objname = address of opaque full name for the object
* containing the attribute to be read
* obj_len = length of opaque full name of the object
* opaque_attname = address of the opaque simple name of the
* attribute to be read
* attname_len = length of opaque simple name of attribute
*/

C–10 Distributed Name Service Clerk (VAX Only)

Distributed Name Service Clerk (VAX Only)
C.2 Using the SYS$DNS System Service Call

read_attribute(opaque_objname, obj_len, opaque_attname, attname_len)
unsigned char *opaque_objname;
unsigned short obj_len;
unsigned char *opaque_attname;
unsigned short attname_len;
{

struct $dnsb iosb; /* Used to determine DECdns status */
char objtype = dns$k_object; /* Using objects */

struct $dnsitmdef readitem[6]; /* Item list for system service */
struct dsc$descriptor set_dsc, value_dsc, newset_dsc, cts_dsc;

unsigned char attvalbuf[dns$k_maxattribute]; /* To hold the attribute */
/* values returned from extraction routine. */

unsigned char attsetbuf[dns$k_maxattribute]; /* To hold the set of */
/* attribute values after the return from $DNSW. */

unsigned char ctsbuf[dns$k_cts_length]; /* Needed for context of multiple reads */

int read_status; /* Status of read attribute routine */
int set_status; /* Status of remove value routine */
int xx; /* General variable used by print routine */

unsigned short setlen; /* Contains current length of set structure */
unsigned short val_len; /* Contains length of value extracted from set */
unsigned short cts_len; /* Contains length of CTS extracted from set */

/* Construct an item list to read values of the attribute. */ !
readitem[0].dns$w_itm_code = dns$_entry;
readitem[0].dns$w_itm_size = obj_len;
readitem[0].dns$a_itm_address = opaque_objname;

readitem[1].dns$w_itm_code = dns$_lookingfor;
readitem[1].dns$w_itm_size = sizeof(char);
readitem[1].dns$a_itm_address = &objtype;

readitem[2].dns$w_itm_code = dns$_attributename;
readitem[2].dns$a_itm_address = opaque_attname;
readitem[2].dns$w_itm_size = attname_len;

readitem[3].dns$w_itm_code = dns$_outvalset;
readitem[3].dns$a_itm_ret_length = &setlen;
readitem[3].dns$w_itm_size = dns$k_maxattribute;
readitem[3].dns$a_itm_address = attsetbuf;

*((int *)&readitem[4]) = 0;

do "
{

read_status = sys$dnsw(0, dns$_read_attribute, &readitem, &iosb, 0, 0);

if(read_status == SS$_NORMAL)
{

read_status = iosb.dns$l_dnsb_status;
}

if((read_status == SS$_NORMAL) || (read_status == DNS$_MOREDATA))
{

do
{

set_dsc.dsc$w_length = setlen;
set_dsc.dsc$a_pointer = attsetbuf; /* Address of set */

value_dsc.dsc$w_length = dns$k_simplenamemax;
value_dsc.dsc$a_pointer = attvalbuf; /* Buffer to hold */

/* attribute value */

cts_dsc.dsc$w_length = dns$k_cts_length;
cts_dsc.dsc$a_pointer = ctsbuf; /* Buffer to hold value’s CTS*/

Distributed Name Service Clerk (VAX Only) C–11

Distributed Name Service Clerk (VAX Only)
C.2 Using the SYS$DNS System Service Call

newset_dsc.dsc$w_length = dns$k_maxattribute;
newset_dsc.dsc$a_pointer = attsetbuf; /* Same buffer for */

/* each call */

set_status = dns$remove_first_set_value(&set_dsc, &value_dsc,
&val_len, &cts_dsc,

&cts_len, &newset_dsc,
&setlen);

if(set_status == SS$_NORMAL)
{ $

readitem[4].dns$w_itm_code = dns$_contextvartime;
readitem[4].dns$w_itm_size = cts_len;
readitem[4].dns$a_itm_address = ctsbuf;

*((int *)&readitem[5]) = 0;

printf("\tValue: "); %
for(xx = 0; xx < val_len; xx++)

printf("%x ", attvalbuf[xx]);
printf("\n");

}
else if (set_status != 0)
{

printf("Error %d returned when removing value from set\n",
set_status);

exit(set_status);
}

} while(set_status == SS$_NORMAL);
}
else
{

printf("Error reading attribute = %d\n", read_status);
exit(read_status);

}
} while(read_status == DNS$_MOREDATA);

}

! The item list contains five entries:

• Opaque full name of the object with the attribute the program wants to
read

• Type of object to access

• Opaque simple name of the attribute to read

• Address of the buffer containing the set of values returned by the read
operation

• A value of 0 to terminate the item list

" The loop repeatedly calls the SYS$DNSW service to read the values of the
attribute because the first call might not return all the values. The loop
executes until $DNSW returns something other than DNS$_MOREDATA.

The DNS$REMOVE_FIRST_SET_VALUE routine extracts a value from the
set.

$ This attribute name may be the context the routine uses to read additional
attributes. The attribute’s creation timestamp (CTS), not its value, provides
the context.

% Finally, display the value in hexadecimal format. (You could also take the
attribute name and convert it to a printable format before displaying the
result.)

C–12 Distributed Name Service Clerk (VAX Only)

Distributed Name Service Clerk (VAX Only)
C.2 Using the SYS$DNS System Service Call

See the discussion about setting confidence in the Guide to Programming with
DECdns for information about obtaining up-to-date data on read requests.

C.2.3.3 Enumerating DECdns Names and Attributes
The enumerate functions return DECdns names for objects, child directories, soft
links, groups, or attributes in a specific directory. Use either the asterisk (*) or
question mark (?) wildcard to screen enumerated items. DECdns matches any
single character against the specified wildcard.

Enumeration calls return a set of simple names or attributes. If an enumeration
call returns DNS$_MOREDATA, not all matching names or attributes have been
enumerated. If you receive this message, use the context-setting conventions
that are described for the DNS$_READ_ATTRIBUTE call. You should make
further calls, setting DNS$_CONTEXTVARNAME to the last value returned
until the procedure returns SS$_NORMAL. For more information, see the
SYS$DNS system service in the HP OpenVMS System Services Reference Manual:
A–GETUAI.

The following program, written in C, shows how an application can read the
objects in a directory with the SYS$DNS system service. The values that
DECdns returns from read and enumerate functions are in different structures.
For example, an enumeration of objects returns different structures than an
enumeration of child directories. To clarify how to use this data, the sample
program demonstrates how to parse any set that the enumerate objects function
returns with a run-time library routine in order to remove the first value from
the set. The example also demonstrates how the program takes each value from
the set.

#include <dnsdef.h>
#include <dnsmsg.h>
/*
* Parameters:
* fname_p : opaque full name of the directory to enumerate
* fname_len : length of full name of the directory
*/

struct $dnsitmdef enumitem[4]; /* Item list for enumeration */
unsigned char setbuf[100]; /* Values from enumeration */
struct $dnsb enum_iosb; /* DECdns status information */
int synch_event; /* Used for synchronous AST threads */
unsigned short setlen; /* Length of output in setbuf */

enumerate_objects(fname_p, fname_len)
unsigned char *fname_p;
unsigned short fname_len;
{

int enumerate_objects_ast();

int status; /* General routine status */
int enum_status; /* Status of enumeration routine */

/* Set up item list */

enumitem[0].dns$w_itm_code = dns$_directory; /* Opaque directory name */
enumitem[0].dns$w_itm_size = fname_len;
enumitem[0].dns$a_itm_address = fname_p;

enumitem[1].dns$w_itm_code = dns$_outobjects; /* output buffer */
enumitem[1].dns$a_itm_ret_length = &setlen;
enumitem[1].dns$w_itm_size = 100;
enumitem[1].dns$a_itm_address = setbuf;

*((int *)&enumitem[2]) = 0; /* Zero terminate item list */

Distributed Name Service Clerk (VAX Only) C–13

Distributed Name Service Clerk (VAX Only)
C.2 Using the SYS$DNS System Service Call

status = lib$get_ef(&synch_event); !

if(status != SS$_NORMAL)
{

printf("Could not get event flag to synch AST threads\n");
exit(status);

}

enum_status = sys$dns(0, dns$_enumerate_objects, &enumitem,
" &enum_iosb, enumerate_objects_ast, setbuf);

if(enum_status != SS$_NORMAL) #
{

printf("Error enumerating objects = %d\n", enum_status);
exit(enum_status);

}
status = sys$synch(synch_event, &enum_iosb); $

if(status != SS$_NORMAL)
{

printf("Synchronization with AST threads failed\n");
exit(status);

}
}

/* AST routine parameter: */
/* outbuf : address of buffer that contains enumerated names. */

%
unsigned char objnamebuf[dns$k_simplenamemax]; /* Opaque object name */

enumerate_objects_ast(outbuf)
unsigned char *outbuf;
{

struct $dnsitmdef cvtitem[3]; /* Item list for class name */
struct $dnsb iosb; /* Used for name service status information */
struct dsc$descriptor set_dsc, value_dsc, newset_dsc;

unsigned char simplebuf[dns$k_simplestrmax]; /* Object name string */

int enum_status; /* The status of the enumeration itself */
int status; /* Used for checking immediate status returns */
int set_status; /* Status of remove value routine */

unsigned short val_len; /* Length of set value */
unsigned short sname_len; /* Length of object name */

enum_status = enum_iosb.dns$l_dnsb_status; /* Check status */
if((enum_status != SS$_NORMAL) && (enum_status != DNS$_MOREDATA))
{

printf("Error enumerating objects = %d\n", enum_status);
sys$setef(synch_event);
exit(enum_status);

}

do
{

/*
* Extract object names from output buffer one
* value at a time. Set up descriptors for the extraction.
*/
set_dsc.dsc$w_length = setlen; /* Contains address of */
set_dsc.dsc$a_pointer = setbuf; /* the set whose values */

/* are to be extracted */

value_dsc.dsc$w_length = dns$k_simplenamemax;
value_dsc.dsc$a_pointer = objnamebuf; /* To contain the */

/* name of an object */
/* after the extraction */

C–14 Distributed Name Service Clerk (VAX Only)

Distributed Name Service Clerk (VAX Only)
C.2 Using the SYS$DNS System Service Call

newset_dsc.dsc$w_length = 100; /* To contain a new */
newset_dsc.dsc$a_pointer = setbuf; /* set structure after */

/* the extraction. */

/* Call yRTL routine to extract the value from the set */
set_status = dns$remove_first_set_value(&set_dsc, &value_dsc, &val_len,

0, 0, &newset_dsc, &setlen);

if(set_status == SS$_NORMAL)
{ &

cvtitem[0].dns$w_itm_code = dns$_fromsimplename;
cvtitem[0].dns$w_itm_size = val_len;
cvtitem[0].dns$a_itm_address = objnamebuf;

cvtitem[1].dns$w_itm_code = dns$_tostringname;
cvtitem[1].dns$w_itm_size = dns$k_simplestrmax;
cvtitem[1].dns$a_itm_address = simplebuf;
cvtitem[1].dns$a_itm_ret_length = &sname_len;

*((int *)&cvtitem[2]) = 0;

status = sys$dnsw(0, dns$_simple_opaque_to_string, &cvtitem,
&iosb, 0, 0);

if(status == SS$_NORMAL)
status = iosb.dns$l_dnsb_status; /* Check for errors */

if(status != SS$_NORMAL) /* If error, terminate processing */
{

printf("Converting object name to string returned %d\n",
status);

exit(status);
}
else
{

printf("%.*s\n", sname_len,simplebuf);
}

enumitem[2].dns$w_itm_code = dns$_contextvarname; ’
enumitem[2].dns$w_itm_size = val_len;
enumitem[2].dns$a_itm_address = objnamebuf;

*((int *)&enumitem[3]) = 0;
}
else if (set_status != 0)
{

printf("Error %d returned when removing value from set\n",
set_status);

exit(set_status);
}

} while(set_status == SS$_NORMAL);

if(enum_status == DNS$_MOREDATA)
{ (

enum_status = sys$dns(0, dns$_enumerate_objects, &enumitem,
&enum_iosb, enumerate_objects_ast, setbuf);

if(enum_status != SS$_NORMAL) /* Check status of $DNS */
{

printf("Error enumerating objects = %d\n", enum_status);
sys$setef(synch_event);

}
}
else
{)

sys$setef(synch_event);
}

}

! Get an event flag to synchronize the execution of AST threads.

Distributed Name Service Clerk (VAX Only) C–15

Distributed Name Service Clerk (VAX Only)
C.2 Using the SYS$DNS System Service Call

" Use the system service to enumerate the object names.

Check the status of the system service itself before waiting for threads.

$ Use the SYS$SYNCH call to make sure the DECdns Clerk has completed and
that all threads have finished executing.

% After enumerating objects, SYS$DNS calls an AST routine. The routine
shows how DNS$REMOVE_FIRST_SET_VALUE extracts object names from
the set returned by the DNS$_ENUMERATE_OBJECTS function.

& Use an item list to convert the opaque simple name to a string name so you
can display it to the user. The item list contains the following entries:

• Address of the opaque simple name to be converted

• Address of the buffer that will hold the string name

• A value of 0 to terminate the item list

’ This object name may provide the context for continuing the enumeration.
Append the context variable to the item list so the enumeration can continue
from this name if there is more data.

(Use the system service to enumerate the object names as long as there is
more data.

) Set the event flag to indicate that all AST threads have completed and that
the program can terminate.

C.3 Using the DCL Command DEFINE with DECdns Logical Names
When the DECdns Clerk is started on the operating system, the VAX system
creates a unique logical name table for DECdns to use in translating full names.
This logical name table, called DNS$SYSTEM, prevents unintended interaction
with other system logical names.

To define systemwide logical names for DECdns objects, you must have the
appropriate privileges to use the DCL command DEFINE. Use the DEFINE
command to create the logical RESEARCH.PROJECT_DISK, for example, by
entering the following DCL command:

$ DEFINE/TABLE=DNS$SYSTEM RESEARCH "ENG.RESEARCH"

When parsing a name, the SYS$DNS service specifies the logical name
DNS$LOGICAL as the table it uses to translate a simple name into a full name.
This name translates to DNS$SYSTEM (by default) to access the systemwide
DECdns logical name table.

To define process or job logical names for SYS$DNS, you must create a process
or job table and redefine DNS$LOGICAL as a search list, as in the following
example (note that elevated privileges are required to create a job table):

$ CREATE /NAME_TABLE DNS_PROCESS_TABLE
$ DEFINE /TABLE=LNM$PROCESS_DIRECTORY DNS$LOGICAL -
_$DNS_PROCESS_TABLE,DNS$SYSTEM

Once you have created the process or job table and redefined DNS$LOGICAL,
you can create job-specific logical names for DECdns by using the DCL command
DEFINE, as follows:

$ DEFINE /TABLE=DNS_PROCESS_TABLE RESEARCH "ENG.RESEARCH.MYGROUP"

C–16 Distributed Name Service Clerk (VAX Only)

Authentication Glossary

ACM

Authentication and Credential Management.

ACM client process

A process that calls the SYS$ACM[W] system service.

ACM client program

A program that calls the SYS$ACM[W] system service.

ACM communications buffer

A protected area provided by the SYS$ACM[W] system service by the ACM
context argument containing an itemset to specify required user interaction
when using dialogue mode.

ACM context argument

An argument to the SYS$ACM[W] system service that passes a pointer variable.
If the SYS$ACM[W] system service requires additional information in dialogue
mode, it will fill in that variable so it points to an ACM communications buffer.

ACME

Authentication and Credential Management Extension.

ACME agent

ACME agent shareable image.

ACME agent shareable image

A shareable image used within the ACME server process to implement one or
more forms of authentication and optionally provide credentials to the process
that called the SYS$ACM[W] system service. The VMS ACME is an example of
an ACME agent shareable image that ships with the OpenVMS operating system.

ACME server process

A detached process that performs backend operations in support of the
SYS$ACM[W] system service. It is sometimes refered to as the ACM Dispatcher.

Glossary–1

ACME status

The fourth longword returned in the structure to which the ACMSB argument
to the SYS$ACM[W] system service points. The symbolic name of this cell is
ACMESB$L_ACME_STATUS. The ACME status contains a status encoded in a
format specific to a particular ACME agent unless the primary status contains
one of the following values:

• SS$_BADITMCOD

• SS$_BADBUFLEN

• SS$_BADPARAM

When the primary status contains one of those values, the ACME status indicates
what item code was in error.

authentication policy

A set of rules determining how users are authenticated on a system. A system
can have different authentication policies defined at the same time.

credentials

A set of items used to represent the user’s security profile attributes for a
particular DOI. The SYS$ACM[W] system service returns credentials to the ACM
client program as an attachment to a persona in the form of a persona extension.

deferred confirmation

A pattern of dialogue mode operation in which an ACM client program confirms
a no-echo prompt (such as for a new password) only after the initial response
has been at least partially qualified by an ACME agent. This presents a more
hospital interface to users than immediate confirmation.

designated DOI

The Domain of Interpretation (DOI) chosen to prevail in processing a particular
Authenticate Principal or Change Password request. Interactiion between the
various ACME agents on a system, in accordance with policy controls set by the
system manager, leads to one of the ACME agents becoming the designated DOI.
Other DOIs may contribute to authentication and may provide credentials. When
the call to the SYS$ACM[W] system service specifies a target DOI, that DOI
becomes the designated DOI.

dialogue mode

A form of operation whereby the ACM client program calls the SYS$ACM[W]
system service successively to complete a full Authenticate Principal or Change
Password operation. You specify dialogue mode by providing the context
argument when calling the SYS$ACM[W] system service.

DOI

A Domain of Interpretation is an authentication policy implemented by an ACME
agent shareable image or by several in combination. In addition, a DOI defines
the set of credentials that represents a user in its security environment.

Glossary–2

event

Information an ACM client program transmits to an ACME agent for use in
some fashion specific to a particular DOI. It might be recorded in a log or used
to trigger some mode of operation. Requirements for sending an event, including
any required privilege, are specific to the DOI.

immediate confirmation

A pattern of dialogue mode operation in which an ACM client program confirms
a no-echo prompt (such as for a new password) before returning the initial
response to the ACME server process (and thus before any qualification of the
new password regarding acceptability). This presents a lighter system load than
deferred confirmation.

item list

A chain of item list segments, with each segment terminated by the item
ACME$_CHAIN except for the final segment, which is terminated by a zero item.
Each ACME$_CHAIN item points to the successor segment.

item list segment

An array of standard VMS item_list_3 or item list entry B descriptors.

itemset

An array of itemset entries provided by the SYS$ACM[W] system service within
its ACM communications buffer to specify required user interaction.

itemset entry

An element within an itemset describing a single user interaction request from
an ACME agent.

LGI callout

A mechanism introduced in OpenVMS Version 5.5 for customizing LOGINOUT
interaction. This was the predecessor to the ACME mechanism.

login type

Also known as login class. One of the five types of authentication supported by
the SYS$ACM[W] system service (local, dialup, remote, network, and batch).

nondialogue mode

Nondialogue mode is a form of operation whereby the ACM client program
calls the SYS$ACM[W] system service once with all items required. You can
specify that your call to the SYS$ACM[W] system service is to be handled in
nondialogue mode by not providing any ACM context argument when calling the
SYS$ACM[W] system service.

persona

A kernel data structure (PSB) associated with a process forming the basis for
identity within the operating system.

persona extension

A kernel data structure (PSB) attached to a persona associated with a process for
the purpose of holding credentials for a particular DOI.

Glossary–3

persona ID

A longword value representing a persona held by a particular process.

primary status

The first longword returned in the structure to which the ACMSB argument
to the SYS$ACM[W] system service points. The symbolic name of this cell is
ACMESB$L_STATUS. It indicates the overall status of the request.

principal name

The initial name used to claim an identity, expressed in a syntax appropriate for
a particular DOI. Note that the traditional input prompt Username: is actually
requesting a principal name be entered. In simple cases, the spelling of the
principal name is the same as the spelling of the VMS user name to which it
maps.

principal name mapping

The transformation performed by an ACME agent that determines what VMS
use name is associated with a particular principal name.

message category

The code value indicating the purpose of output dialogue text.

request

The collection of data within the ACME server process pertaining to a particular
call or related set of calls to the SYS$ACM[W] system service by a client process.

return status

The value returned by the SYS$ACM[W] system service. Success indicates only
that the request was sent to the ACME server process. Success does not indicate
the final result of processing.

secondary status

The second longword returned in the structure to which the ACMSB argument
to the SYS$ACM[W] system service points. The symbolic name of this cell is
ACMESB$L_SECONDARY_STATUS. It indicates a more detailed explanation of
the primary status.

status ACME ID

The third longword returned in the structure to which the ACMSB argument
to the SYS$ACM[W] system service points. The symbolic name of this cell
is ACMESB$L_ACME_ID. It indicates the identity of the ACME agent that
provided status information.

SYS$ACM[W] system service

The Authenication and Credential Management system service.

target DOI

The DOI specified on the initial call to the SYS$ACM[W] system service to be the
one to handle the request.

Glossary–4

targeted request

A request where the caller of the SYS$ACM[W] system service specifies item
code ACME$_TARGET_DOI_ID or item code ACME$_TARGET_DOI_NAME to
indicate which DOI should handle the request.

TCB

Trusted Computing Base. The set of components on a system that must be
trusted for secure operation of the system.

UCS encoding

Unicode Character Set encoding. This uses the character set under which
characters are represented in 16 bits. OpenVMS uses UCS2-4, in which each
16-bit character is stored in a 32-bit cell (4 bytes).

VMS ACME

The ACME agent that implements the traditional OpenVMS authentication
policy.

VMS user name

The name used to identify a user to the OpenVMS operating system after a user
is logged in. It is case-blind and limited to 12 alphanumeric characters making it
considerable less flexible than the principal name.

well-known item

The seven common input text items that might be requested by any ACME
agent: ACME$_PASSWORD_SYSTEM, ACME$_PRINCIPAL_NAME, ACME$_
PASSWORD_1, ACME$_PASSWORD_2, ACME$_NEW_PASSWORD_SYSTEM,
ACME$_NEW_PASSWORD_1, or ACME$_NEW_PASSWORD_2.

Glossary–5

Index

A
Absolute time, 27–1

in system format, 27–6
Access, physical I/O, 23–6
Access and protection

checking, 34–10
Access control entries

See ACEs
Access control lists

See ACLs
Access entry, in argument descriptions, 17–9
Access mask, 32–25
Access methods, to argument data, 17–9
Access modes, 20–2

processor, B–2
specifying, 20–3, 34–10

Access name table, 32–25
access_bit_names data type, B–2
access_mode data type, B–2
ACEs (access control entries)

creating, 32–25, 32–26
maintaining, 32–25, 32–26
translating, 32–25, 32–26

ACLs (access control lists), 32–2
ACM client programs

reference, 33–1, 33–4, 33–5, 33–8, 33–10,
33–11, 33–12

ACM communications buffer
reference, 33–7, 33–9, 33–12, 33–13, 33–15,

33–31
ACM context argument

reference, 33–6, 33–9, 33–12, 33–14
ACME agents

reference, 33–4, 33–5, 33–7, 33–8, 33–10,
33–14, 33–15, 33–16, 33–17, 33–19

ACME server process
reference, 33–3, 33–6, 33–11

Ada
data type declarations, B–17
implementation table, B–17

address data type, B–2
Addresses, virtual memory, 26–3
address_range data type, B–2

AI (argument information)
format, 18–34
register, 18–34

AI (argument information), format, 18–21
Aligning data, 28–4
APL (Application Programming Language)

data type declarations, B–20
implementation table, B–20

Argument home area, 18–24
Argument information (AI) format, 18–21
Argument Information Register (AI), 18–34
Argument items

for I64, 18–31
Argument lists, 17–7, 18–20, 18–36

creating, A–4
for I64, 18–23
generic macro generated, A–1
using macros, A–2

Argument list structure
I64, 18–23

Argument passing
for RTL routines, 19–4
for system services, 20–4
mechanisms, 18–24

by descriptor, 18–29
by reference, 18–27
by value, 18–27

Arguments, 17–7
passed in memory, 18–24
specifying, A–4

Arguments heading
in routine documentation, 17–2t

Arguments heading, in routine documentation,
17–6

arg_list data type, B–2
ASCII (American Standard Code for Information

Interchange)
time, 27–7

ASCII character set, 29–2
ASSIGN command, 34–3
ASTs (asynchronous system traps), 24–21

quota, 23–3
ast_procedure data type, B–2
Asynchronous input/output, 23–21
Asynchronous system services, 20–5

Index–1

Asynchronous system traps
See ASTs

Attributes
Dynamic, 32–5
Holder Hidden, 32–5
Name Hidden, 32–5
No Access, 32–5
Resource, 32–5
Subsystem, 32–5

Automatic registers, 18–4

B
Backing store for register stack, 18–19
BASIC

data type declarations, B–22
implementation table, B–22

BIOLM (buffered I/O limit) quota, 23–3
Bits

unused in passed data, 18–33
BLISS

data type declarations, B–25
implementation table, B–25

Boolean data type, B–2
Boolean value flag, B–2
Borders, virtual display, 22–11
Branch register usage, 18–8
Broadcast messages, 22–42
buffer data type, B–2
Buffered I/O, operations, 27–18
Buffer object management, 23–50
Buffer objects, Fast I/O, 23–49
buffer_length data type, B–2
BYPASS privilege, 23–5
byte_signed data type, B–2
BYTLM (buffered I/O byte count) quota, 23–3

C
C

data type declarations, B–28
implementation table, B–28

C++
data type declarations, B–28
implementation table, B–28

Call entry
for RTL, 19–4
for system service, 20–3

Call frames, 18–8
Calling sequence, system routine, 18–10
Calling standard, 19–1

conventions, 18–1
Chaining, 24–5
Channel data type, B–2
Channels

assigning I/O, 23–11
deassigning, 23–24

Character sets, 29–2, 29–4
Character string routines, 24–14

translation routines, 24–14
Character strings, B–3
char_string data type, B–3
Checking access and protection of logical name

tables, 34–10
Circumflex character, 29–2, 29–4
CLI (command language interpreter), 24–2
CLI access routine, 24–2
Clocks, setting system, 27–11
Cluster-aware services

SY$GETQUI, 27–21
SYS$BRKTHRU, 22–42
SYS$BRKTHRUW, 22–42
SYS$CANWAK, 27–13, 27–17
SYS$DISMOU, 23–35
SYS$GETDVI, 23–28
SYS$GETSYI, 27–21
SYS$GETSYIW, 27–21
SYS$GET_SECURITY, 32–25, 32–26
SYS$MOUNT, 23–34
SYS$SCHDWK, 27–13
SYS$SETIME, 27–11
SYS$SET_SECURITY, 32–25, 32–26

Clusterwide logical name tables, 34–6, 34–8, 34–9
COBOL

data type declarations, B–30
implementation table, B–30

Code values
logon types

ACME$K_NETWORK
reference, 33–12

message categories, 33–13
ACMEMC$K_SELECTION, 33–13

Command language interpreter
See CLI

Common blocks
aligning, 28–4
installing as a shared image, 26–6
interprocess, 26–6

complex_number data type, B–3
Components, of item lists, B–12
Condition handlers, 17–11

exiting, B–7
Condition values, 18–42, 20–7, B–6

information provided by, 20–8
returned, 17–12

in I/O status block, 17–12
in mailbox, 17–13
in R0, 17–4
signaled in register, 17–6, 17–13

RTL symbols, 19–6
signaled, 17–6, 17–13
symbolic codes, 20–9
testing, 20–8, 20–10
testing with $VMS_STATUS_SUCCES, 20–8

Index–2

Condition Values Returned heading, 17–11
in routine documentation, 17–2t

cond_value data type, B–6
Constant registers, 18–4
context data type, B–7
Control actions, inhibiting, 22–41
Coordinated Universal Time

See UTC system services
credentials

reference, 33–4, 33–14
$CRFCTLTABLE macro, 25–1, 25–2
$CRFFIELDEND macro, 25–1, 25–4
$CRFFIELD macro, 25–1, 25–3
Cross-Reference routines, 25–1
Ctrl/C key sequence, 22–32
Ctrl/Y key sequence, 22–32
Ctrl/Z key sequence, 22–5, 23–31
Current time, 27–9
Cursor movement, 22–20

D
Data

aligning, 28–4
interprocess, 26–6
sharing, 26–6

Databases, record, 28–12
Data passing, 18–31

unused bits, 18–32
Data structures

ACMEDLOGFLG
ACMEDLOGFLG$V_INPUT

reference, 33–10, 33–11
ACMEIS

ACMEIS$L_FLAGS
reference, 33–10

ACMEIS$W_ITEM_CODE, 33–13
ACMEIS$W_MAX_LENGTH

reference, 33–10
ACMEIS$W_MSG_TYPE, 33–13

reference, 33–10, 33–11
ACMESB

ACMESB$L_ACME_ID
reference, 33–6, 33–19

ACMESB$L_ACME_STATUS
reference, 33–6, 33–19

ACMESB$L_SECONDARY_STATUS
reference, 33–6

ACMESB$L_STATUS
reference, 33–6, 33–7, 33–13

Data types, 17–7, B–1
Ada declarations, B–17
APL declarations, B–20
BASIC declarations, B–22
BLISS declarations, B–25
C++ declarations, B–28
C declarations, B–28
COBOL declarations, B–30

Data types (cont’d)
Fortran declarations, B–34
MACRO declarations, B–48
OpenVMS, B–1, B–2

standard, 17–7
usage, 17–6

Pascal declarations, B–38
PL/I declarations, B–42
RPG II declarations, B–50
SCAN declarations, B–53
symbolic code, 17–7

Date/time formats, 27–22
Date/time manipulation, converting, 27–7
Date and time format logical names, 27–29
Date format logical names, 27–29 to 27–30
Dates

64-bit system format, 27–1
128-bit system format, 27–36
getting current system, 27–10
Smithsonian base, 27–1

date_time data type, B–7
DCOM, 29–1, 29–4
DECdns call, timeout, C–5
DECdns naming conventions

defining logicals, C–16
logical names, C–16

DECdns objects
creating, C–4
reading attributes, C–10

DECdtm
Distributed Transaction Manager, 30–1
event notification, 30–8

DECdtm BLISS program example, 30–46
DECdtm C program examples, 30–42
DECdtm Fortran program example, 30–39
DECdtm program examples, 30–39
DECdtm XA interface (Alpha Only), 30–15
DECforms, 22–2
DECnet, file copying, 29–5
DEC Text Processing Utility (DECTPU), 22–1
Default logical name tables

group, 34–6
job, 34–5
process, 34–4
quotas, 34–15
system, 34–6

DEFINE command, 34–3
/DELETE qualifier

LIBRARY command, 26–2
Delta time, 27–1

example, 27–6
in system format, 27–6

Description heading, in routine documentation,
17–2t

Descriptors
argument item for I64, 18–31
class, 18–38
class codes, 17–10

Index–3

Descriptors (cont’d)
data type, 18–38
fields, 18–29

Device drivers
last channel deassign, 23–4
SHARE privilege, 23–4

Devices
allocating, 23–31
deallocating, 23–33
default name, 23–27
getting information about, 23–28
implicit allocation, 23–33
names, 23–26
ownership, 23–4
protection, 23–5
SHARE privilege, 23–4

Device types, 23–28
device_name data type, B–7
dialogue mode

reference, 33–5, 33–6, 33–8, 33–9, 33–11,
33–12, 33–13, 33–21, 33–31

DIOLM (direct I/O limit)
quota, 23–3

Direct I/O, 27–18
Directory logical name tables

process, 34–3
system, 34–3

Directory structures
limits, 29–3

Directory table quotas, 34–15
Disk volumes

mounting, 23–33
Distributed Transaction Manager

DECdtm, 30–1
Documentation format

See System routine documentation
DOI

reference, 33–3, 33–11, 33–15
Double-width characters

See also Screen management
See also Virtual displays
specifying, 22–20

DVE
dynamic volume expansion, 23–38

Dynamic attributes, 32–5
Dynamic Volume Expansion

See also DVE

E
Echo

terminal, 22–39
terminators, 22–24

ef_cluster_name data type, B–7
ef_number data type, B–7

Entry masks, B–15
Entry points

CALL entry points, 19–4, 20–4
RTL names, 19–3

EOF (end-of-file), 22–5
Equivalence names

defining, 34–2
format convention, 34–17

Error checking, 20–10
Error recovery, 23–11
Error returns, 18–42
Errors

returning condition value, 18–42
signaling condition value, 18–42

Escape sequences, read, 23–31
Event flags

allocation of, 24–17
cluster, B–7
number, B–7

Event notification
DECdtm, 30–8

Example heading, in routine documentation,
17–2t

Exception conditions, 17–11
Exit handlers, 23–31
exit_handler_block data type, B–7
Explanatory text

in argument documentation, 17–10
in routine documentation, 17–4

Extended File Specifications, 29–1
benefits, 29–1
features, 29–2
long file names, 29–2
mixed-architecture support, 29–5
mixed-version support, 29–5

/EXTRACT qualifier
LIBRARY command, 26–2

F
FAB data type, B–7
FABs (file access blocks), 28–15, B–7
Facility identifiers, 32–4
Fast I/O, 23–48 to 23–51

benefits, 23–48
buffer objects, 23–49

Fast Path, 23–48, 23–51 to 23–52
File access, protection, B–8
File access blocks

See FABs
File access strategies, 28–2
File attributes, 28–1
Files

attributes, 28–1, 28–2
complete access, 28–2
discrete records access, 28–2
mapping, 28–4
record-by-record access, 28–2

Index–4

Files (cont’d)
sequential, 28–12
sequential and indexed access, 28–2

File terminators, 23–31
file_protection data type, B–8
Fixed-size stack frames, 18–10, 18–16
Flag words, bit mask, B–14
Floating-point numbers, B–3 to B–11

D_floating complex, B–3
D_floating standard, B–9
F_floating complex, B–3
F_floating standard, B–8
G_floating complex, B–4
G_floating standard, B–9
H_floating complex, B–4
H_floating standard, B–10
S_floating complex, B–5
S_floating standard, B–10
T_floating complex, B–5
T_floating standard, B–11
X_floating complex, B–6
X_floating standard, B–11

Floating-point register usage, 18–3, 18–7
floating_point data type, B–8
Flow control, 18–14
Foreign commands, 24–3
Foreign devices, 23–5
Foreign volumes, 23–4, 23–6
Format convention of equivalence names, 34–17
Format convention of logical names, 34–17
Format heading, 17–2

See also System routine documentation
in routine documentation, 17–2t

Fortran
data type declarations, B–34
implementation table, B–34

FP
zero offset, 18–45

Frame markers
for I64, 18–19

Function code
SYS$ACM

ACME$_FC_AUTHENTICATE_
PRINCIPAL, 33–4

Function codes, 23–10
SYS$ACM

ACME$_FC_AUTHENTICATE_
PRINCIPAL, 33–4

ACME$_FC_CHANGE_PASSWORD, 33–4
reference, 33–19

ACME$_FC_EVENT, 33–5
ACME$_FC_FREE_CONTEXT, 33–5
ACME$_FC_QUERY, 33–4
ACME$_FC_RELEASE_CREDENTIALS,

33–4
Function modifiers, 23–11

ACME$M_ACQUIRE_CREDENTIALS, 33–5
ACME$M_COPY_PERSONA, 33–5

Function modifiers (cont’d)
ACME$M_DEFAULT_PRINCIPAL, 33–5
ACME$M_FOREIGN_POLICY_HINTS, 33–5
ACME$M_MERGE_PERSONA, 33–5
ACME$M_NOAUDIT, 33–5
ACME$M_NOAUTHORIZATION, 33–5
ACME$M_OVERRIDE_MAPPING, 33–5
ACME$M_UCS2_4, 33–5, 33–8, 33–16
IO$M_INHERLOG, 23–6
types of

IO$M_DATACHECK, 23–11
IO$M_INHRETRY, 23–11

Function value returns
for I64, 18–41

function_code data type, B–11

G
General register usage, 18–4
Global registers, 18–4
Global sections, 26–9, B–16

permanent, 26–13
temporary, 26–13

Global symbols, 26–4
GMT (Greenwich Mean Time), 27–36
Group logical name tables, 34–6

H
Hardware registers

for Alpha, 18–2
for I64, 18–3
for VAX, 18–1

.H files
from SYS$STARLET_C.TLB to support HP

POSIX Threads Library, 21–2
provided by SYS$STARLET_C.TLB, 21–2

Holder Hidden attribute, 32–5
Holder records, 32–8

adding, 32–12
format, 32–9
modifying, 32–14
removing, 32–16

HP DECwindows Motif, 22–7
height and width restrictions, 22–8

HP language implementation tables
See Implementation tables

HP POSIX Threads Library
.H file support, 21–2

I
I/O (input/output)

asynchronous, 23–21
checking device type, 23–28
complex, 22–2
echo, 22–39
exit handler, 23–31

Index–5

I/O (input/output) (cont’d)
lowercase, 22–41
reading a single line, 22–4
reading several lines, 22–5
screen updates, 22–30
simple, 22–2
status, 23–22
synchronous, 23–19
terminator, 22–4

end of file, 23–31
record, 23–31

timeout, 22–40
unsolicited input, 22–35
uppercase, 22–41
using SYS$QIO system service, 23–22
using SYS$QIOW system service, 23–22
writing simple character data, 22–6

I/O channel indexes, B–2
I/O channels, 23–11

deassigning, 23–24
I/O completion

recommended test, 23–18
status, 23–23
synchronizing, 23–13

I/O functions
codes, 23–10, 23–13
modifier, 23–11

I/O operations
logical, 23–6
overview, 23–2
physical, 23–5
quotas, privileges, and protection, 23–2
virtual, 23–6

I/O performance
Fast I/O, 23–48
Fast Path, 23–48

I/O requests
canceling, 23–26
queuing, 23–12

I/O services
asynchronous version, 23–19
synchronous version, 23–19

I/O status blocks
See IOSBs

ICBs (invocation context blocks), B–12
identifier data type, B–12
Identifier names, translating, 32–11
Identifier records, 32–8

adding to rights database, 32–12
format, 32–8
modifying, 32–13
removing from rights database, 32–16

Identifiers, 32–1, 32–2
adding to rights database, 32–12
attributes, 32–4, 32–5
defining, 32–1
determining holders of, 32–13
facility, 32–4

Identifiers (cont’d)
format, 32–2
general, 32–2
global sections, B–16
new attributes, 32–5
removing from rights database, 32–16
rights, B–16
rights database, B–16
system-defined, 32–3
UIC, 32–3
user, B–16, B–17

Identifier values, translating, 32–11
If states, composed input, 22–28
IMAGELIB.OLB file, 26–5
Image rundown, effect on logical names, 34–5
Images

loading site-specific, 32–30
shareable, 26–3

Immediate value
argument item for I64, 18–31

Impersonation services, 32–20
Implementation tables

Ada, B–17
APL, B–20
BASIC, B–22
BLISS, B–25
C and C++, B–28
COBOL, B–30
Fortran, B–34
MACRO language, B–48
OpenVMS usage, B–1
Pascal, B–38
PL/I, B–42
RPG II, B–50
SCAN, B–53

Initialization
argument list, 35–5
volume

from within a program, 23–36
within a program

example, 23–36
Initialization routines

declaring, 35–6
dispatching, 35–7
options, 35–7

Input registers, 18–4, 18–17
Integer and floating-point routines, 24–12
Integer register usage, 18–2
Internal file identifiers, 34–17
Interprocess communication

shareable logical names, 34–16
Invocation context blocks

See ICBs
Invocation handles, B–12
invo_context_blk data type, B–12
invo_handle data type, B–12

Index–6

IOSBs (I/O status blocks), B–12
in synchronization, 23–13
return condition value field, 23–23

io_status_block data type, B–12
Item codes

SYS$ACM[W]
ACME$_CONTEXT_ACME_ID

reference, 33–7, 33–15
ACME$_CONTEXT_ACME_NAME

reference, 33–7, 33–15
ACME$_DIALOGUE_SUPPORT

reference, 33–14
ACME$_EVENT_DATA_IN

reference, 33–17
ACME$_EVENT_DATA_OUT

reference, 33–17
ACME$_EVENT_TYPE

reference, 33–17
ACME$_LOGON_TYPE

reference, 33–12, 33–13, 33–14
ACME$_PERSONA_HANDLE_IN

reference, 33–5, 33–22
ACME$_PERSONA_HANDLE_OUT

reference, 33–5
ACME$_QUERY_DATA

reference, 33–16
ACME$_QUERY_KEY_TYPE

reference, 33–16
ACME$_QUERY_KEY_VALUE

reference, 33–16
ACME$_QUERY_TYPE

reference, 33–16
ACME$_TARGET_DOI_ID

reference, 33–7, 33–15, 33–16
ACME$_TARGET_DOI_NAME

reference, 33–7, 33–15, 33–16
Item lists, 33–8, 33–11, 33–13

reference, 33–9, 33–31
item list segments

reference, 33–9
itemset, 33–9

reference, 33–9, 33–13, 33–31
itemset entries

reference, 33–8, 33–9, 33–10, 33–12, 33–13,
33–31

item_list_2 data type, B–12
item_list_3 data type, B–13
item_list_pair data type, B–13
item_quota_list data type, B–13

J
Jacket routines, 24–1
Java

applications on OpenVMS, 29–1
object naming standards, 29–1

Job logical name tables, 34–5, 34–15
JSB call format, 17–4
JSB entry points, 19–6

K
Keypads, reading from, 22–25
Key tables, reading from, 22–28

L
Latin-1 encoding

reference, 33–8
LIB$ADDX routine, 27–7
LIB$ADD_TIME routine, 27–7
LIB$AST_IN_PROG routine, 24–22
LIB$ATTACH routine, 24–9
LIB$CALLG routine, 24–15
LIB$CONVERT_DATE_STRING system routine,

27–33
LIB$CRC routine, 24–16
LIB$CRC_TABLE routine, 24–16
LIB$CREATE_DIR routine, 24–22
LIB$CRF_INS_KEY, 25–1
LIB$CRF_INS_REF, 25–1
LIB$CRF_OUTPUT, 25–1
LIB$CURRENCY system routine, 24–20
LIB$DATE_TIME routine, 27–9
LIB$DAY routine, 27–5
LIB$DAY_OF_WEEK system routine, 27–9
LIB$DELETE_LOGICAL routine, 24–8
LIB$DELETE_SYMBOL routine, 24–8
LIB$DIGIT_SEP system routine, 24–20
LIB$DISABLE_CTRL routine, 24–9
LIB$DO_COMMAND routine, 24–7
LIB$DT_FORMAT logical name, 27–24, 27–29
LIB$DT_INPUT_FORMAT logical name, 27–24
LIB$EMUL system routine, 24–12
LIB$ENABLE_CTRL routine, 24–9
LIB$EXTV system routine, 24–10
LIB$EXTZV system routine, 24–10
LIB$FFC system routine, 24–10
LIB$FFS, 24–10
LIB$FILE_SCAN system routine, 24–22, 24–23
LIB$FILE_SCAN_END system routine, 24–23
LIB$FIND_FILE system routine, 24–22
LIB$FIND_FILE_END system routine, 24–22
LIB$FLT_UNDER procedure call, 18–27
LIB$FREE_EF system routine, 24–16
LIB$FREE_LUN system routine, 24–16
LIB$FREE_TIMER routine, 27–19
LIB$GETQUI routine, 27–21
LIB$GET_COMMON routine, 24–5
LIB$GET_DATE_FORMAT system routine, 27–34
LIB$GET_EF system routine, 24–16
LIB$GET_FOREIGN routine, 24–3

Index–7

LIB$GET_INPUT procedure call, 19–4
LIB$GET_INPUT routine, 22–4 to 22–6

example, 22–4
obtaining several lines of input, 22–5
obtaining single line of input, 22–4
prompt, 22–4

LIB$GET_LUN system routine, 24–16
LIB$GET_SYMBOL routine, 24–8
LIB$INITIALIZE routine, 35–1
LIB$INIT_DATE_TIME_CONTEXT system

routine, 27–24
LIB$INIT_TIMER routine, 27–19
LIB$INSERT_TREE routine, 24–29
LIB$INSQHI system routine, 24–13
LIB$INSQTI system routine, 24–13
LIB$INSV system routine, 24–10
LIB$LOCC system routine, 24–14
LIB$LOOKUP_TREE routine, 24–29
LIB$LP_LINES system routine, 24–20
LIB$MATCHC system routine, 24–14
LIB$MOVC3 system routine, 24–14
LIB$MOVC5 system routine, 24–14
LIB$MOVTC system routine, 24–14
LIB$MOVTUC system routine, 24–14
LIB$MULTF_DELTA_TIME routine, 27–7
LIB$MULT_DELTA_TIME routine, 27–7
LIB$PUT_COMMON routine, 24–5
LIB$PUT_OUTPUT routine, 22–4

example, 22–7
writing simple output, 22–6

LIB$RADIX_POINT system routine, 24–20
LIB$REMQHI system routine, 24–13
LIB$REMQTI system routine, 24–13
LIB$RESERVE_EF system routine, 24–16
LIB$RUN_PROGRAM routine, 24–5
LIB$SCANC system routine, 24–14
LIB$SET_LOGICAL routine, 24–8
LIB$SET_SYMBOL routine, 24–8
LIB$SHOW_TIMER procedure call, 19–2
LIB$SHOW_TIMER routine, 27–19
LIB$SIGNAL procedure call, 19–2
LIB$SKPC system routine, 24–14
LIB$SPANC system routine, 24–14
LIB$SPAWN routine, 24–9
LIB$STAT_TIMER routine, 27–19
LIB$SUBX routine, 27–7
LIB$SUB_TIME routine, 27–7
LIB$TRAVERSE_TREE routine, 24–29
Libraries

default object, 26–2
macro, 26–3, 26–5
object, 26–2, 26–5

adding modules, 26–2
creating, 26–2
deleting a module, 26–2
extracting a module, 26–2
listing modules, 26–2
replacing modules, 26–2

Libraries
object (cont’d)

system default, 26–2
user default, 26–2

system default, 26–5
text, 26–3
user default, 26–5

LIBRARY command
/CREATE qualifier, 26–2
/DELETE qualifier, 26–3
/EXTRACT qualifier, 26–3
/LIST qualifier, 26–2
/REPLACE qualifier, 26–2

Line editing, inhibiting, 22–41
LINK/SHAREABLE command, 26–7
Linker utility, searching object libraries, 26–2
/LIST qualifier

LIBRARY command, 26–2
LNK$LIBRARY routine, 26–2

See also Libraries
See also Linker utility (LINK)

Local registers, 18–17
Local symbols, 26–4
Lock manager, B–13
Lock values, B–14
lock_id data type, B–13
lock_status_block data type, B–14
lock_value_block data type, B–14
Logical I/Os

operations, 23–6
privilege, 23–4, 23–5, 23–6

Logical names, 23–26, C–16
attributes, 34–13
creating with SYS$CRELNM, 34–18
defining, 34–2
deleting with SYS$DELLNM, 34–21
format convention, 34–17
image rundown, 34–5
LIB$DT_FORMAT, 27–24
LIB$DT_INPUT_FORMAT, 27–24
multivalued, 34–2
superseding, 34–13
SYS$LANGUAGE, 27–24
translating, 34–11
translating with SYS$TRNLNM, 34–22

Logical name system service calls
SYS$CRELNM system service, 34–18
SYS$CRELNT system service, 34–21
SYS$DELLNM system service, 34–21
SYS$TRNLNM system service, 34–22

Logical name table names and search lists, 34–7
Logical name tables

clusterwide, 34–6, 34–8
creating with SYS$CRELNT, 34–21
default, 34–4
directory, 34–3
group, 34–6
job, 34–5

Index–8

Logical name tables (cont’d)
predefined logical names, 34–3
process, 34–4
process-private, 34–8
quotas, 34–15
search list, 34–8

modifying, 34–8
shareable, 34–8
system, 34–6
types, 34–3
user-defined, 34–8

Logical unit numbers, allocating, 24–16
logical_name data type, B–14
longword_signed data type, B–14
longword_unsigned data type, B–14

M
Macro-32 register mapping, 18–43
MACRO compiler

register mapping, 18–44
MACRO language

data type declarations, B–48
generating argument lists, A–1
implementation table, B–48

Macro libraries, 26–5
MACRO linkage directives

use in preserving register, 18–46
Macros

calling system services, A–5
expansion, A–4
generating argument list

CALLG instruction, A–6
CALLS instruction, A–6

system services, 20–1, A–1
Magnetic tapes

initializing within a program, 23–36
example, 23–36

Mailboxes, 20–2, 23–39
name, 23–43
protection, 23–4
system, 23–43

messages, 23–44
Mapped files, 28–4

closing, 28–11
saving, 28–11

mask_byte data type, B–14
mask_longword data type, B–14
mask_quadword data type, B–14
mask_word data type, B–14
MAXBOBMEN

SYSGEN parameter, 23–50
MAXBOBS0S1

SYSGEN parameter, 23–50
MAXBOBS2

SYSGEN parameter, 23–50

Mechanism argument vectors, B–14
Mechanism entry, in argument descriptions,

17–10
mechanism_args data type, B–14
Memory stack, 18–15
Memory stack parameters, 18–36
Menus

creating with SMG$ routines, 22–22
reading, 22–24

Messages
system, 20–10

Mixed-language programming, calling conventions,
18–1

Modularity, virtual displays, 22–30
MOUNT privilege, 23–4
MTH$SIN_R4, 19–6

N
Name Hidden attribute, 32–5
Name services, 34–1, C–1
Namespaces, listing information, C–13
$name_G macro, A–6
$name_G macro call, A–7
$name_S macro, A–6
$name_S macro call, A–6
NARGS keyword, A–4
NaT bits

in floating-point register arguments, 18–23
in general register arguments, 18–23
preserving, 18–4

NatVals
in floatng-point register arguments, 18–23

No Access attribute, 32–5
nondialogue mode

reference, 33–11, 33–12, 33–13, 33–14, 33–24
Null devices, 23–28
Null frame procedures, 18–14

for I64, 18–13
null_arg data type, B–14
Numeric time, 27–7

O
Object libraries, 26–2, 26–5

adding a module, 26–2
creating, 26–2
deleting a module, 26–2
extracting a module, 26–2
listing modules, 26–2
replacing a module, 26–2

Objects
DECdns, C–4
modifying, C–6
protected, 32–23

octaword_signed data type, B–15

Index–9

octaword_unsigned data type, B–15
OpenVMS RMS

See RMS
OpenVMS usage entry, B–1

in argument descriptions, 17–6
OpenVMS usage implementation table

See Implementation tables
Output formatting control routine, 24–20
Output registers, 18–4, 18–18

P
Page access, B–15
Page faults, 27–18
page_protection data type, B–15
Parameter passing

for I64, 18–23
Parameter slots, 18–31
Partitioning, 18–4
Pascal

data type declarations, B–38
implementation table, B–38

Passing mechanisms, 17–10
by descriptor, 18–29

code, 17–10
by reference, 18–27
by value, 18–27
for arrays, 18–37
for scalars, 18–37
for strings, 18–37

Pasteboards, 22–10
creating, 22–10
deleting, 22–10
ID, 22–31
sharing, 22–31

PATHWORKS for OpenVMS, 29–1, 29–4
Performance, measurement routine, 24–17
Persona, 32–19
Persona extensions, 32–22

reference, 33–24
personas

reference, 33–1, 33–5, 33–21
Personas

reference, 33–24
Per-thread security, 32–21

model, 32–21
Physical device names, B–7
Physical I/Os

access checks, 23–6
operations, 23–5
privilege, 23–3, 23–5, 23–6

Physical names, 23–26
PID (process identifier), non-existent process,

23–12
PL/I

data type declarations, B–42
implementation table, B–42

Predefined logical name
LNM$FILE_DEV, 34–8

Predicate register usage, 18–7
Preserved registers, 18–4
primary status

reference, 33–8, 33–9, 33–13, 33–19
Primary status

reference, 33–7
Principal names

reference, 33–14, 33–31
reference., 33–24

Printers
device widths, 22–6

Privileged shareable images
creating, 31–1
definition, 31–1

Privileges
BYPASS, 23–5
defined by access mode, 20–2
I/O operations, 23–2
IMPERSONATE

reference, 33–13
logical I/Os, 23–4 to 23–6
MOUNT, 23–4
physical I/Os, 23–3, 23–5, 23–6
SHARE, 23–4, 23–12
SYSTEM, 23–5
system services, 20–2

Procedure call format, 17–3
Procedure calls, testing for successful completion,

18–42, 20–10
procedure data type, B–15
Procedure frames

for I64, 18–15
Procedures

function code, B–11
operation, B–11
procedure value, 18–20
representation, 18–20
types, 18–14

Procedure types, 18–14
for I64, 18–13

Procedure values, 18–20, B–15
Process, directory tables, 34–3
Process logical name tables, 34–4
Process rights lists, 32–1
process_id data type, B–15
process_name data type, B–15
Program examples

DECdtm, 30–39
Programming examples, calling system services,

20–12
Prompt for input, with LIB$GET_INPUT routine,

22–4
Protection

by access mode, 20–2
devices, 23–5
I/O operations, 23–2

Index–10

Protection (cont’d)
mailboxes, 23–4
volumes, 23–4

Protection masks, 23–4
$PRTDEF macro, B–15

Q
QIO interface, 29–8, 29–9, 29–10
quadword_signed data type, B–15
quadword_unsigned data type, B–15
Queue access routines, 24–13
Queue information, obtaining, 27–21
Queues, 24–12

self-relative, 24–12
Quotas, B–13

AST, 23–3
buffered I/O, 23–3
buffered I/O byte count, 23–3
default logical name table, 34–15
direct I/O, 23–3
directory table, 34–15
I/O operations, 23–2
job logical name table, 34–15
logical name tables, 34–15
system service resources, 20–2
user-defined logical name table, 34–16

R
RAB data type, B–16
RABs (record access blocks), 28–15, B–16
Read-only registers, 18–4
Record access blocks

See RABs
Records, I/O, 28–12
Register classes, 18–4
Register mapping

for I64, 18–43, 18–44
performed by I64 compilers, 18–47
use of MACRO linkage directives, 18–46

Registers
branch usage, 18–8
data, 17–5
floating-point usage, 18–7
for returns, 17–4, 17–13
general usage for I64, 18–4
predicate usage, 18–7

Register stack, 18–17
Register usage

for Alpha, 18–2
for I64, 18–3
for VAX, 18–1

Register use
comparison of I64, Alpha, and VAX, 18–43

/REPLACE qualifier
LIBRARY command, 26–2

Requests
reference, 33–14

Resource attributes, 32–5
Resource quotas, system services, 20–2
Resource wait mode, system service, 20–6
Return conditions, wait, 20–6
Return condition values, 19–6, 20–7
Returns, 17–12

call frame, 18–10
condition value, 18–42
errors, 18–42
function value, 18–41
I/O status, B–12
in I/O status block, 17–12
in mailbox, 17–13
object, B–12
RTL routines, 19–6
signaled in register, 17–13
system service condition value, 20–7

Returns heading
in routine documentation, 17–2t

Returns heading, in routine documentation, 17–4
Return status

reference, 33–6, 33–19
Return symbols

for RTL routines, 19–6
Return values

for I64, 18–41
Rights databases, 32–1, 32–8, 32–16

adding to, 32–12
default protection, 32–9
elements of, 32–10
holder record, 32–8
identifier records, 32–8
initializing, 32–9
keys, 32–9
modifying, 32–13, 32–14, 32–16

Rights identifiers
See Identifiers

Rights lists
process, 32–19
system, 32–19

rights_holder data type, B–16
rights_id data type, B–16
RMS, structures, 28–15
Rotating registers, 18–18
Routine Name heading, in routine documentation,

17–2t
Routine Overview heading, in routine

documentation, 17–2t
Routines

calling, 19–1
how to call, 19–3
processwide resource allocation, 24–16
variable-length bit field, 24–10

Index–11

RPG II
data type declarations, B–50
implementation table, B–50

RTL routines
See Run-time library routines

Run-time library routines
accessing command language interpreter, 24–2
accessing operating system components, 24–1
accessing VAX instruction set, 24–9
calling, 19–1, 19–3
entry point, 19–3, 19–4, 19–6, 20–4
integer and floating-point, 24–12
interaction with operating system, 24–1
jacket routine, 24–1
manipulating character string, 24–14
names, 19–3
output formatting control, 24–20
performance measurement, 24–17
queue access, 24–12
system service access, 24–1
variable-length bit field instruction, 24–10

S
SCAN

data type declarations, B–53
implementation table, B–53

Screen management, 22–8
See also Key tables
See also Pasteboards
See also Video attributes
See also Viewports
See also Virtual displays
See also Virtual keyboards
deleting text, 22–22
double-width characters, 22–19, 22–20
drawing lines, 22–21
inserting characters, 22–19
menus

creating, 22–22
reading, 22–24
types of, 22–22

reading data, 22–23
scrolling, 22–20
setting background color, 22–10
setting screen dimensions, 22–10
video attributes, 22–21
viewports, 22–18

Scrolling instructions, 22–20
Search lists, defining, 34–2
Search operations, 32–16
Sections

deleting, 28–11
global, 26–9
mapping, 28–4
private, 28–5
updating, 28–11

section_id data type, B–16
section_name data type, B–16
Security model, 32–21
Security profiles

displaying, 32–24
modifying, 32–24

Sequential files
creating, 28–12
updating, 28–13

Shareable images, 26–3
privileged, 31–1

Shareable logical names, interprocess
communication, 34–16

Shared files, 26–13
SHARE privilege, 23–4, 23–12
Sharing data, RMS shared files, 26–13
SMG$ADD_KEY_DEF routine, 22–28
SMG$BEGIN_DISPLAY_UPDATE routine, 22–30
SMG$CHANGE_PBD_CHARACTERISTICS

routine, 22–10
SMG$CHANGE_RENDITION routine, 22–16
SMG$CHANGE_VIEWPORT routine, 22–18
SMG$CHANGE_VIRTUAL_DISPLAY routine,

22–16
SMG$CHECK_FOR_OCCLUSION routine, 22–13
SMG$CREATE_KEY_TABLE routine, 22–28
SMG$CREATE_MENU routine, 22–23
SMG$CREATE_PASTEBOARD routine, 22–9
SMG$CREATE_SUBPROCESS routine, 22–17
SMG$CREATE_VIEWPORT routine, 22–18
SMG$CREATE_VIRTUAL_DISPLAY routine,

22–9
SMG$CREATE_VIRTUAL_KEYBOARD routine,

22–24
SMG$DELETE_CHARS routine, 22–22
SMG$DELETE_LINE routine, 22–22
SMG$DELETE_MENU routine, 22–23
SMG$DELETE_PASTEBOARD routine, 22–10
SMG$DELETE_SUBPROCESS routine, 22–17
SMG$DELETE_VIEWPORT routine, 22–18
SMG$DELETE_VIRTUAL_DISPLAY routine,

22–15
SMG$DRAW_CHARACTER routine, 22–21
SMG$DRAW_CHAR routine, 22–19
SMG$DRAW_LINE routine, 22–21
SMG$DRAW_RECTANGLE routine, 22–21
SMG$ENABLE_UNSOLICITED_INPUT routine,

22–35
SMG$END_DISPLAY_UPDATE routine, 22–30
SMG$ERASE_CHARS routine, 22–22
SMG$ERASE_COLUMN routine, 22–22
SMG$ERASE_DISPLAY routine, 22–22
SMG$ERASE_LINE routine, 22–22
SMG$ERASE_PASTEBOARD routine, 22–10
SMG$EXECUTE_COMMAND routine, 22–17
SMG$HOME_CURSOR routine, 22–18

Index–12

SMG$INSERT_CHARS routine, 22–19
SMG$INSERT_LINE routine, 22–20
SMG$LABEL_BORDER routine, 22–11
SMG$LIST_PASTING_ORDER routine, 22–15
SMG$MOVE_TEXT routine, 22–16
SMG$MOVE_VIRTUAL_DISPLAY routine, 22–14
SMG$PASTE_VIRTUAL_DISPLAY routine, 22–9
SMG$POP_VIRTUAL_DISPLAY routine, 22–31
SMG$PUT_CHARS routine, 22–19
SMG$PUT_CHARS_HIGHWIDE routine, 22–19
SMG$PUT_CHARS_MULTI routine, 22–19
SMG$PUT_CHARS_WIDE routine, 22–19
SMG$PUT_LINE routine, 22–20
SMG$PUT_LINE_MULTI routine, 22–20
SMG$PUT_LINE_WIDE routine, 22–20
SMG$PUT_WITH_SCROLL routine, 22–20
SMG$READ_COMPOSED_LINE routine, 22–28
SMG$READ_FROM_DISPLAY routine, 22–24
SMG$READ_KEYSTROKE routine, 22–23
SMG$READ_STRING routine, 22–24
SMG$REPASTE_VIRTUAL_DISPLAY routine,

22–14
SMG$RESTORE_PHYSICAL_SCREEN routine,

22–30
SMG$RETURN_CURSOR_POS routine, 22–18
SMG$SAVE_PHYSICAL_SCREEN routine, 22–30
SMG$SCROLL_DISPLAY_AREA routine, 22–20
SMG$SCROLL_VIEWPORT routine, 22–18
SMG$SELECT_FROM_MENU routine, 22–23
SMG$SET_BROADCAST_TRAPPING routine,

22–42
SMG$SET_CURSOR_ABS routine, 22–18
SMG$SET_CURSOR_REL routine, 22–18
SMG$SET_DISPLAY_SCROLL_REGION routine,

22–20
SMG$SET_PHYSICAL_CURSOR routine, 22–18
SMG$UNPASTE_VIRTUAL_DISPLAY routine,

22–15
Special registers, 18–4
Specifying access modes of logical names, 34–10
Specifying attributes of logical names, 34–13
Stack frames, 18–8

procedures for I64, 18–15
variable size, 18–16

Stack procedure usage
for I64, 18–13

Stacks
for Alpha procedure calls, 18–10
for VAX procedure calls, 18–8

Stack temporary area, 18–16
Stack usage, 18–8, 18–10
STARLET.OLB file, 26–2, 26–5
STARLET data structures and definitions

for C programmers, 21–1
Status codes

ACME$_INVALIDCTX
reference, 33–6

ACME$_NOACMECTX

Status codes
ACME$_NOACMECTX (cont’d)

reference, 33–7
ACME$_OPINCOMPL

reference, 33–7, 33–9, 33–13, 33–31
SS$_BADBUFLEN

reference, 33–7
SS$_BADITMCOD

reference, 33–7
SS$_BADPARAM

reference, 33–7
Subprocesses

connecting to using LIB$ATTACH routine,
24–9

creating
with SMG$ routines, 22–17

creation of using LIB$SPAWN routine, 24–9
Subsystem attribute, 32–5
Symbolic codes, for condition values, 20–9
Symbolic definition macros, A–4
Symbolic names, for argument lists, A–4
Symbols

defining, 26–3
global, 26–4
local, 26–4
referring to, 26–3
storage, 26–3
unresolved, 26–4

Synchronous input/output, 23–19
Synchronous system services, 20–5
SYS$ABORT_TRANSW system service, 30–39
SYS$ADD_HOLDER system service, 32–12
SYS$ADD_IDENT system service, 32–12
SYS$ALLOC system service

example, 23–33
SYS$ASCTIM system service, 27–6

example, 27–10
SYS$ASCTOID system service, 32–11
SYS$ASCUTC system service, 27–2 to 27–4
SYS$ASSIGN system service, 23–12

example, 23–11
SYS$BINTIM system service, 27–2 to 27–4, 27–6
SYS$BINUTC system service, 27–2 to 27–4
SYS$BRKTHRU system service, 22–42
SYS$BRKTHRUW system service, 22–42
SYS$CANCEL system service

example, 23–26
SYS$CANTIM system service, 27–13

example, 27–16
SYS$CANWAK system service, 27–13, 27–17
SYS$CHECK_ACCESS system service, 32–29
SYS$CHECK_PRIVILEGE system service, 32–30
SYS$CHKPRO system service, 32–29
SYS$COMMAND logical name, 34–4
SYS$CREATE system service, 28–10

Index–13

SYS$CREATE_BUFOBJ_64 system service,
23–49, 23–51

SYS$CREATE_RDB system service, 32–9
SYS$CREATE_USER_PROFILE system service,

32–29
SYS$CRMPSC system service, 28–4, 28–5
SYS$DALLOC system service, 23–33
SYS$DASSGN system service, 23–12, 28–11

example, 23–24
SYS$DELETE_BUFOBJ system service, 23–49,

23–51
SYS$DELTVA system service, 28–11
SYS$DISMOU system service, 23–35
SYS$DNS system service, C–1
SYS$END_TRANSW system service, 30–39
SYS$ERROR logical name, 34–4
SYS$FAO system service, 27–2 to 27–4

example, 23–38
SYS$FIND_HELD system service, 32–13, 32–16
SYS$FIND_HOLDER system service, 32–13,

32–16
SYS$FORMAT_ACL system service, 32–25, 32–26
SYS$GETDVI system service, 23–28
SYS$GETDVIW system service, 23–28
SYS$GETQUI system service, 27–21
SYS$GETSYI system service, 27–21
SYS$GETSYIW system service, 27–21
SYS$GETTIM system service, 27–2 to 27–4,

27–10
SYS$GETUTC system service, 27–2 to 27–4
SYS$GET_SECURITY system service, 32–25,

32–26
SYS$IDTOASC system service, 32–11, 32–16
SYS$INIT_VOL system service, 23–36

example, 23–36
SYS$INPUT logical name, 22–2, 22–4, 22–33,

26–7, 34–4, 34–17
default value, 22–3
example, 22–5, 22–32, 24–4, 24–29
redefining value, 22–3
using with LIB$GET_INPUT routine, 22–4
using with LIB$PUT_OUTPUT routine, 22–4

SYS$IO_CLEANUP, 23–51
SYS$IO_PERFORM, 23–51
SYS$IO_SETUP, 23–51
SYS$LANGUAGE logical name, 27–24
SYS$MGBLSC system service, 26–9
SYS$MOD_HOLDER system service, 32–14
SYS$MOD_IDENT system service, 32–13
SYS$MOUNT system service, 23–34
SYS$NUMTIM system service, 27–2 to 27–4,

27–7
SYS$NUMUTC system service, 27–2 to 27–4
SYS$OPEN system service, 28–10
SYS$OUTPUT logical name, 22–2, 22–4, 22–6,

22–33, 24–18, 34–4, 34–17
default value, 22–3
example, 22–7

SYS$OUTPUT logical name (cont’d)
redefining value, 22–3
using with LIB$GET_INPUT routine, 22–4
using with LIB$PUT_OUTPUT routine, 22–4

SYS$PARSE_ACL system service, 32–25, 32–26
SYS$PROCESS_SCAN system service

termination mailboxes, 23–44
SYS$QIO system service, 23–12

example, 23–13
SYS$REM_HOLDER system service, 32–16
SYS$REM_IDENT system service, 32–16
SYS$SCHDWK system service, 27–13, 27–16,

27–17
canceling, 27–17
example, 27–17
request, 27–16

SYS$SETIME system service, 27–11
SYS$SETIMR system service

routines, 27–13
SYS$SETRWM system service, 23–2
SYS$SET_SECURITY system service, 32–25,

32–26
SYS$STARLET_C.TLB

adherence to conventions, 21–2
functional equivalency to STARLETSD.TLB,

21–1
impact on use of ‘‘variant_struct’’ and ‘‘variant_

union’’, 21–1
potential impact on LIB structures, 21–1
potential impact on RMS structures, 21–1
providing .H files, 21–2

SYS$START_TRANSW system service, 30–39
SYS$SYNCH system service, 23–18, 23–19
SYS$TIMCON system service, 27–2 to 27–4
SYS$UPDSEC system service, 28–11
SYSGEN parameter

MAXBOBMEN, 23–50
MAXBOBS0S1, 23–50
MAXBOBS2, 23–50

SYSPRV privilege, 23–5
System, directory table, 34–3
System clock, setting, 27–11
System information

See Timers statistics
System library, 20–1, A–1
System logical name tables, 34–6
System macro library, default, 20–9
System messages, 20–10
System objects, access, B–16
System routine documentation, 17–1

Arguments heading, 17–2t, 17–6
access entry, 17–9
mechanism entry, 17–10
OpenVMS usage entry, 17–6
text entry, 17–10
type entry, 17–7

Condition Values Returned heading, 17–2t,
17–11

Index–14

System routine documentation
Condition Values Returned heading (cont’d)

returns, 17–11, 17–12
returns in I/O status block, 17–12
returns in mailbox, 17–13
returns signaled, 17–13

Description heading, 17–2t
Example heading, 17–2t
Format heading, 17–2t

explanatory text, 17–4
JSB call format, 17–4
procedure call format, 17–3

Returns heading, 17–2t, 17–4
condition values, 17–4

Routine Name heading, 17–2t
Routine Overview heading, 17–2t

System routine returns, register data, 17–5
System routine template, understanding, 17–1
Systems, mailbox, 23–43
System service access, 24–1, 24–2
System services

calling, 20–1
executing

asynchronously, 20–5
synchronously, 20–5

execution wait, 20–6
initializing volumes, 23–36
loading site-specific, 32–30
macros, 20–1, A–1
privileges, 20–2
resource wait, 20–6
restrictions, 20–2
SYS$ACM, 33–11

reference, 33–4, 33–11
SYS$ACMW, 33–11
testing for successful completion, 20–10

system_access_id data type, B–16

T
Tape volumes, mounting, 23–33
Target DOI

reference, 33–15
Terminal characteristics, 23–29
Terminal echo, 22–39

disabling, 22–40
Terminal I/O, example, 23–24
Terminals, device widths, 22–6
Terminal timeouts, 22–40
Termination mailboxes, 23–44
Terminators

See also I/O (input/output)
echos, 22–24
file, 23–31
record, 23–31

Time
See also Current time
absolute, 27–1

Time (cont’d)
64-bit system format, 27–1
128-bit system format, 27–36
converting ASCII to binary, 27–6
delta, 27–1
getting current system, 27–10
internal format, 27–2
numeric and ASCII, 27–7
obtaining

using SYS$ASCTIM system service, 27–2
to 27–4

using SYS$ASCUTC system service, 27–2
to 27–4

using SYS$BINTIM system service, 27–2
to 27–4

using SYS$BINUTC system service, 27–2
to 27–4

using SYS$FAO system service, 27–2 to
27–4

using SYS$GETTIM system service, 27–2
to 27–4

using SYS$GETUTC system service, 27–2
to 27–4

using SYS$NUMUTC system service, 27–2
to 27–4

using SYS$TIMCON system service, 27–2
to 27–4

setting system, 27–11
using system services, 27–2 to 27–4

Time, conversions, 27–2
Time, current, 27–9
Time conversions

formatting, 27–4
Time format logical names, 27–30 to 27–31
Time manipulation

using LIB$ADDX routine, 27–7
using LIB$ADD_TIMES routine, 27–7
using LIB$DAY routine, 27–5
using LIB$MULTF_DELTA_TIME, 27–7
using LIB$MULT_DELTA_TIME routine, 27–7
using LIB$ routines, 27–5 to 27–7
using LIB$SUBX routine, 27–7
using LIB$SUB_TIMES routine, 27–7

Timer requests, 27–13
canceling, 27–16

Timers
deallocating, 27–19
initializing, 27–19
obtaining statistics, 27–19
statistics, 27–18

buffered input/output, 27–18
CPU time, 27–18
direct input/output, 27–18
elapsed time, 27–18
page faults, 27–18

time_name data type, B–16

Index–15

Transactions
programming, 30–1

transaction_id data type, B–16
Translating logical names, 34–11
TRM$M_TM_ESCAPE routine, 22–25
TRM$M_TM_NOECHO routine, 22–25
TRM$M_TM_NOTRMECHO routine, 22–24
TRM$M_TM_PURGE routine, 22–25
Type-ahead buffers, 22–38
Type entry, in argument descriptions, 17–7

U
UFO (user-file open), 28–10

See also User-open routine
uic data type, B–17
UICs (user identification codes), B–16, B–17
Unicode (UCS-2), 29–2
Unicode encoding

reference, 33–8
Unused bits in passed data, 18–33
User-defined logical name tables, 34–8, 34–16
User-file open

See UFO
User identification codes

See UICs
User-open routines, 28–15
User privileges, 20–2
User procedures, 19–1
user_arg data type, B–17
Using impersonation system services, 32–20
UTC (Coordinated Universal Time)

system services, 27–37

V
Variable-length bit field routine, 24–10
Variable-size stack frames, 18–11
‘‘variant_struct’’, impact of SYS$STARLET_C.TLB,

21–2
‘‘variant_union’’, impact of SYS$STARLET_C.TLB,

21–2
varying_arg data type, B–17
VAX Ada

See Ada
VAX APL

See APL
VAX BASIC

See BASIC
VAX BLISS

See BLISS
VAX C

See C
VAXCDEF.TLB

replaced by new files, 21–1

VAX COBOL
See COBOL

VAX data types
See Data types

VAX FORTRAN
See Fortran

VAX instruction set, accessing through run-time
library, 24–9

VAX language implementation tables
See Implementation tables

VAX MACRO
See MACRO

VAX Pascal
See Pascal

VAX PL/I
See PL/I

VAX RPG II
See RPG II

VAX SCAN
See SCAN

vector_byte_signed data type, B–17
vector_byte_unsigned data type, B–17
vector_longword_signed data type, B–17
vector_longword_unsigned data type, B–17
vector_quadword_signed data type, B–17
vector_quadword_unsigned data type, B–17
vector_word_signed data type, B–17
vector_word_unsigned data type, B–17
Video attributes, 22–11, 22–17, 22–21

current, 22–17
default, 22–17

Viewports, 22–18
Virtual displays, 22–11

See also Viewports
checking occlusion, 22–13
creating, 22–11
creating a subprocess from, 22–17
cursor movement, 22–20
deleting, 22–15
deleting text, 22–22
drawing lines, 22–21
erasing, 22–15
ID, 22–11, 22–32
inserting text, 22–19, 22–20
list pasting order of, 22–15
logical cursor position, 22–18
modifying, 22–16
obtaining the pasting order, 22–15
overwriting text, 22–19, 22–20
pasting, 22–12
physical cursor position, 22–18
popping, 22–15
reading data from, 22–23
rearranging, 22–14
scrolling, 22–20
sharing, 22–32
specifying double-size characters, 22–20

Index–16

Virtual displays (cont’d)
specifying video attributes, 22–11
viewports, 22–18
writing double-width characters, 22–19
writing text to, 22–18

Virtual I/O, 23–6
Virtual keyboards

reading data from, 22–23, 22–24
VMS ACME

reference, 33–5, 33–15
VMS user names

reference, 33–5, 33–14
$VMS_STATUS_SUCCES

testing condition values with, 20–8
Volatile registers, 18–4
Volume protection, 23–4
Volumes

initializing
example, 23–36
within a program, 23–36

mounting, 23–33

W
Wait mode, system service, 20–6
Wakeup requests, scheduling, 27–16
Well-known items

reference, 33–8
word_signed data type, B–17
word_unsigned data type, B–17

X
X/Open Distributed Transaction Processing

XA interfaces, 30–1
XA interface

DECdtm, 30–15
XA interfaces

X/Open Distributed Transaction Processing,
30–1

Index–17

