HP OpenVMS Programming
Concepts Manual, Volumel

Order Number: AA-PV67H-TK

January 2005

This manual is Volume II of two volumes. It describes the features that
the HP OpenVMS operating system provides to programmers.

Revision/Update Information: This manual supersedes the HP
OpenVMS Programming Concepts
Manual, Version 7.3-1.

Software Version: OpenVMS 164 Version 8.2
OpenVMS Alpha Version 8.2

Hewlett Packard Company
Palo Alto, California

© 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group.

X/Open is a registered trademark, and the X device is a trademark of X/Open Company Ltd. in the
UK and other countries.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Printed in the U.S.

7K6641
The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface
Part| OpenVMS Programming Interfaces: Calling a System Routine

17 Call Format to OpenVMS Routines

17.1 OVEIVIEW . .ottt e e e e e e e
172 Format Heading e
17.2.1 Procedure Call Format
17.2.2 JSB Call Format (VAX only)
17.3 Returns Heading i
17.3.1 Condition Values Returned in a Register
17.3.2 Other Returned Values
17.3.3 Condition Values Signaled
17.4 Arguments Heading
17.41 OpenVMS Usage Entry
17.4.2 Type Entry oo
17.4.3 Access Entry
17.4.4 Mechanism Entry.
17.4.5 Explanatory Text
17.5 Condition Values Returned Heading
17.5.1 Condition Values Returned
17.5.2 Condition Values Returned in an I/O Status Block
17.5.3 Condition Values Returned in a Mailbox
17.5.4 Condition Values Signaled

18 Basic Calling Standard Conventions

18.1 Hardware Registers i
18.1.1 Register Usage for OpenVMS VAX
18.1.2 Register Usage for OpenVMS Alpha
18.1.2.1 Integer Registers i
18.1.2.2 Floating-Point Registers.
18.1.3 Register Usage for OpenVMS 164
18.1.3.1 Partitioning
18.1.3.2 164 General Register Usage,
18.1.3.3 164 Floating-Point Register Usage
18.1.3.4 164 Predicate Register Usage,
18.1.3.5 164 Branch Register Usagec.......
18.2 Stack Usage for Procedures
18.2.1 Stack Procedure Usage for VAX
18.2.1.1 Calling Sequence ittt
18.2.1.2 Call Frameson Return

XXi

171
172
17-3
17-4
17-4
17-4
17-5
17-6
17-6
17-6
17-7
17-9
17-10
17-10
17-11
17-12
1712
17-13
17-13

18.2.2 Stack Procedure Usage for Alpha.............................

18.2.2.1 Fixed-Size Stack Frame
18.2.2.2 Variable-Size Stack Frame
18.2.3 Stack Procedure Usage for 164
18.2.3.1 Procedure Typest e
18.2.3.2 Memory Stack
18.2.3.3 Procedure Frames
18.2.3.4 Register Stack
18.2.3.4.1 Input and Local Registers
18.2.3.4.2 Output Registers
18.2.3.4.3 Rotating Registers
18.2.3.4.4 Frame Markers
18.2.3.4.5 Backing Store for Register Stack
18.3 Procedure Representation0 iiiiiinin.o..
18.4 Argument List
18.5 Argument Passing Mechanisms
18.5.1 Passing Arguments by Value
18.5.2 Passing Arguments by Reference
18.5.3 Passing Arguments by Descriptor
18.5.4 Parameter Passing Mechanisms for 164
18.5.41 Allocation of Parameter Slots.
18.5.5 Normal Register Parameters
18.5.6 Argument Information (AI) Register
18.5.7 Memory Stack Parameters............
18.5.8 Variable Argument Lists
18.5.9 Pointers to Formal Parameters
18.5.91 Languages Otherthan C
18.5.10 Rounding Floating-Point Values
18.6 Passing Scalars as Arguments
18.7 Passing Arrays as Arguments i
18.8 Passing Strings as Arguments
18.9 Combinations of Descriptor Class and Data Type
18.10 Function Value Return.
18.11 Condition Value Return
18.12 Macro-32 Register Usage and Mapping for 164
18.12.1 164 Register Usage Compared with Alpha and VAX
18.12.1.1 164 Register Mapping in MACRO Compiler
18.12.1.2 Use of MACRO Linkage Directives to Preserve Registers
18.12.2 High-Level Language Compiler Register Mapping

19 Calling Run-Time Library Routines

191 OVeIVIEW . ottt it et e e e e e e e
19.2 Call Instructions
19.2.1 Facility Prefix and Routine Name
19.2.2 The RTL Call Entry
19.2.2.1 JSB Call Entries (VAXOnly)
19.2.3 Returns from an RTL Routine
19.2.3.1 Facility Return Status and Condition Value Symbols
19.3 Calling a Library Procedure in VAX MACRO (VAX Only)
19.3.1 VAX MACRO Calling Sequenceouiiueinnuennn..
19.3.2 VAX MACRO CALLS Instruction Example
19.3.3 VAX MACRO CALLG Instruction Example
19.3.4 VAX MACRO JSB Entry Points

18-10
18-10
18-11
18-13
18-14
18-15
18-15
18-17
18-17
18-18
18-18
18-19
18-19
18-20
18-20
18-24
18-27
18-27
18-29
18-31
18-31
18-32
18-34
18-36
18-36
18-36
18-37
18-37
18-37
18-37
18-37
18-38
18—41
1842
18—-43
18—-43
18-44
18—-46
1847

191
19-3
19-3
19-4
19-6
19-6
19-6
19-7
19-7
19-8
19-9
19-9

19.3.5 Return Status e 19-10

19.3.6 Function Return Values in VAX MACRO (VAX and Alpha) 19-11
19.4 Calling a Library Routine in BLISS. 19-12
19.4.1 BLISS Calling Sequenceiiiiiiiieennnenn.. 1912
19.4.2 Accessing a Return Status in BLISS 19-13
19.4.3 Calling JSB Entry Points from BLISS 19-13

20 Calling System Services

20.1 OVEIVIEW . .ottt e e e e 20-1
20.2 Preserving System Integrity, 20-2
20.2.1 User Privileges e 20-2
20.2.2 Resource Quotas e 20-2
20.2.3 Access Modeso 202
20.3 System Service Call Entry 20-3
20.4 System Service Completion, 20-5
20.4.1 Asynchronous and Synchronous System Services. 20-5
20.4.2 System Service Resource Wait Mode 20-6
20.4.3 Condition Values Returned from System Services 20-7
20.4.4 Testing the Condition Value 20-8
20.4.4.1 Testing the Condition Value With $VMS_STATUS_SUCCESS

Macro 20-8
20.4.5 Special Condition Values Using Symbolic Codes 20-9
20.4.6 Testing the Return Condition Value for VA X MACRO 20-10
20.4.7 System Messages Generated by Condition Values 20-10
20.5 Program Examples with System Service Calls...................... 20-12

21 STARLET Structures and Definitions for C Programmers
21.1 SYS$STARLET C.TLB Equivalency to STARLETSD.TLB............. 21-1
21.2 NEW STARLET Definitions for C 21-2
Part Il 1/0O, System, and Programming Routines

22 Run-Time Library Input/Output Operations

221 Choosing I/0O Techniques 22—1
22.2 Using SYS$INPUT and SYSSOUTPUT, 22-3
22.2.1 Default Input and Output Devices 22-3
2222 Reading and Writing to Alternate Devices and External Files 224
22.3 Working with Simple User /O 224
22.3.1 Default Devices for Simple /O 22-4
22.3.2 Getting a Line of Input 22-4
22.3.3 Getting Several Lines of Input. 22-5
22.3.4 Writing Simple Output. 22-6
22.4 Working with Complex User /O i.... 227
22.4.1 HP DECwindows Motif 22-7
22411 DECwindows Server Height or Width Exceeding 32767 (VAX

Only) .. 22-8
22.4.2 SMG$ Run-Time Routinesov oo 22-8
22.4.3 Pasteboards 22-10
22.4.3.1 Erasing a Pasteboard 22—-10
22.4.3.2 Deleting a Pasteboard 22-10
22.4.3.3 Setting Screen Dimensions and Background Color 22-10

22.4.4 Virtual Displays

22.4.41 Creating a Virtual Display
22442 Pasting Virtual Displays
22,443 Rearranging Virtual Displays
22.4.4.4 Removing Virtual Displays.
22.4.4.5 Modifying a Virtual Display
22.4.4.6 Using Spawned Subprocesses.uiiiininann..
2245 VieWPOrtS . . o e e
22.4.6 Writing Text to Virtual Display
22.4.6.1 Positioning the Cursor
22.46.2 Writing Data Character by Character
22.4.6.3 Writing Data Lineby Line
22.4.6.4 Drawing Lines
22.4.6.5 Deleting Text e
22.4.7 Using Menust e
22.4.8 Reading Data e
22.4.8.1 Reading from a Display
22.4.8.2 Reading from a Virtual Keyboard
22.4.8.3 Reading from the Keypad.
22.4.8.4 Reading Composed Input
2249 Controlling Screen Updates
22.4.10 Maintaining Modularity
22.5 Performing Special Input/Output Actions
22.5.1 Using Ctrl/C and Ctrl/Y Interrupts
22.5.2 Detecting Unsolicited Input
22.5.3 Using the Type-Ahead Buffer.
2254 Using Echo. e
22.5.5 Using Timeout e e
22.5.6 Converting Lowercase to Uppercase.
22.5.7 Performing Line Editing and Control Actions
22.5.8 Using Broadcasts
22.5.8.1 Default Handling of Broadcasts
22.5.8.2 How to Create Alternate Broadcast Handlers

23 System Service Input/Output Operations

vi

23.1 Overview of OpenVMS QIO Operations
23.2 Quotas, Privileges, and Protection
23.2.1 Buffered /O Quota.
23.2.2 Buffered I/O Byte Count Quota
23.2.3 Direct /O Quota
23.24 AST Quotao
23.2.5 Physical I/O Privilege
23.2.6 Logical I/O Privilege. e
23.2.7 Mount Privilege
23.2.8 Share Privilege
23.2.9 Volume Protection
23.2.10 Device Protection
23.2.11 System Privilege e
23.2.12 Bypass Privilege. e
23.3 Physical, Logical, and Virtual /O
23.3.1 Physical I/O Operations
23.3.2 Logical /O Operationsttt
23.3.3 Virtual I/O Operations

22-11
22-11
22-12
22-14
22-15
22-16
22-17
22-18
22-18
22-18
22-19
22-20
22-21
22-22
22-22
22-23
22-23
22-24
22-25
22-28
22-30
22-30
22-32
22-32
22-35
22-38
22-39
22-40
22-41
22-41
22-42
22-42
22-42

23-2
23-2
23-3
23-3
23-3
23-3
23-3
23-4
23-4
23-4
23-4
23-5
23-5
23-5
23-5
23-5
23-6
23-6

23.4 1/O Function Encoding

23.4.1 Function Codes i
23.4.2 Function Modifiers
23.5 Assigning Channels i
23.5.1 Using the Share Privilege with the SYS$ASSIGN and SYS$DASSGN

S OIVICES & o vttt
23.6 Queuing /O Requests i
23.7 Synchronizing Service Completion
23.8 Recommended Method for Testing Asynchronous Completion
23.9 Synchronous and Asynchronous Forms of Input/Output Services
23.9.1 Reading Operations with SYS$QIOW
23.9.2 Reading Operations with SYS$QIO,
23.9.3 Write Operations with SYS$QIOW
23.10 I/O Completion Status e
23.11 Deassigning I/O Channels
23.12 Using Complete Terminal /O.
23.13 Canceling I/O Requests i
23.14 Logical Names and Physical Device Names
23.15 Device Name Defaults
23.16 Obtaining Information About Physical Devices
23.16.1 Checking the Terminal Device
23.16.2 Terminal Characteristics o,
23.16.3 Record Terminators,
23.16.4 File Terminatorst
23.17 Device Allocationt
23.17.1 Implicit Allocation
23.17.2 Deallocation
23.18 Mounting, Dismounting, and Initializing Volumes
23.18.1 Mounting a Volume
23.18.1.1 Calling the SYS$MOUNT System Service
23.18.1.2 Calling the SYS$DISMOU System Service
23.18.2 Initializing Volumes
23.18.2.1 Calling the Initialize Volume System Service.................
23.18.2.2 Expanding Volumes Dynamically
23.19 Formatting Output Strings
23.20 MailboXes . . . o it
23.20.1 Mailbox Name e
23.20.2 System Mailboxes
23.20.3 Mailboxes for Process Termination Messages
23.21 Example of Using I/O Services i
23.22 Fast I/O and Fast Path Features (Alpha and 164 Only)
23.22.1 Fast I/O (Alpha and 164 Only)
23.22.1.1 Fast /O Benefits
23.22.1.2 Buffer Objects
23.22.2 Fast Path (Alpha and 164 Only).
23.22.2.1 Fast Path Features and Benefits
23.22.2.2 Additional Information About Fast Path

23-10
23-10
2311
2311

23-12
23-12
23-13
23-18
23-19
23-19
23-21
23-22
23-23
23-24
23-24
23-26
23-26
23-27
23-28
23-28
23-29
23-31
23-31
23-31
23-33
23-33
23-33
23-33
23-34
23-35
23-36
23-36
23-38
23-38
23-39
23-43
23-43
23-44
23-45
23-48
23-48
23-48
23-49
23-51
23-51
23-52

Vii

24

25

26

viii

Using Run-Time Library Routines to Access Operating System
Components

241 System Service Access Routines.
24.2 Access to the Command Language Interpreter
24.2.1 Obtaining the Command Line
2422 Chaining from One Program to Another
24.2.3 Executing a CLI Command
2424 Using Symbols and Logical Names
2425 Disabling and Enabling Control Characters.....................
24.2.6 Creating and Connecting to a Subprocess
24.3 Access to VAX Machine Instructions
24.3.1 Variable-Length Bit Field Instruction Routines
24.3.2 Integer and Floating-Point Routines
24.3.3 Queue Access Routines
24.3.4 Character String Routines

24.3.5 Miscellaneous Instruction Routines
24.4 Processwide Resource Allocation Routines
24.41 Allocating Logical Unit Numbers

2442 Allocating Event Flag Numbers
24,5 Performance Measurement Routines
24.6 Output Formatting Control Routines
247 Miscellaneous Interface Routines
2471 Indicating Asynchronous System Trap in Progress
24.7.2 Create a Directory or Subdirectory
24.7.3 File Searching Routines
24.7.4 Inserting an Entry into a Balanced Binary Tree

Using Cross-Reference Routines

251 How to Use the Cross-Reference Routines
25.2 $CRFCTLTABLE Macro.ottt
25.3 $CRFFIELD MACIO . . . o v ot e e e e e e e e e e e s
25.4 $CRFFIELDEND MACIrO . . vt vo et et e e e e e e e i
25.5 Cross-Reference Output
25.6 Example.
25.6.1 Defining Control Tables
25.6.2 Inserting Table Information
25.6.3 Formatting Information for Output
25.7 How to Link to the Cross-Reference Shareable Image

Shareable Resources

26.1 Sharing Program Code
26.1.1 Object Librarieso

26.1.1.1 System- and User-Defined Default Object Libraries............
26.1.1.2 How the Linker Searches Libraries
26.1.1.3 Creating an Object Library
26.1.1.4 Managing an Object Library

26.1.2 Text and Macro Libraries i
26.2 Shareable Images.
26.3 Symbols e
26.3.1 Defining Symbols
26.3.2 Local and Global Symbols

241
24-2
24-3
24-5
24-7
24-8
24-8
24-9
24-9
24-10
2412
24-12
24-14
24-15
24-16
24-16
2417
24-17
24-20
24-21
24-21
24-22
24-22
24-29

26-1
26-2
26-2
26-2
26-2
26-2
26-3
26-3
26-3
26-3
26—4

27

26.3.3 Resolving Global Symbols 264
26.3.3.1 Explicitly Named Modules and Libraries 26-5
26.3.3.2 System Default Libraries 26-5
26.3.3.3 User Default Libraries 26-5
26.3.3.4 Making a Library Available for Systemwide Use 26-5
26.3.3.5 Macro Libraries 26-5
26.3.4 Sharing Data 26—6
26.3.4.1 Installed Common Blocks. 26-6
26.3.4.2 Using Global Sections 269
26.3.4.3 Synchronizing Access to Global Sections 26-13
26.3.4.4 RMS Shared Files 26-13

System Time Operations

271 System Time Format 27-1
2711 Absolute Time Format 271
27.1.2 Delta Time Format. 27-2
27.2 Time Conversion and Date/Time Manipulation 27-2
27.2.1 Time Conversion Routines 272
27.2.1.1 Calculating and Displaying Time with SYS$GETTIM and

LIBSSUBX 27-4
27.21.2 Obtaining Absolute Time with SYS$ASCTIM and

SYSSBINTIM e e 27-6
27.2.1.3 Obtaining Delta Time with SYS$BINTIM 27-6
27.21.4 Obtaining Numeric and ASCII Time with SYSNUMTIM 27-7
27.2.2 Date/Time Manipulation Routines 27-7
27.3 Timer Routines Used to Obtain and Set Current Time 27-8
27.3.1 Obtaining Current Time and Date with LIB§DATE_TIME 27-9
27.3.2 Obtaining Current Time and Date with SYS$GETTIM 27-10
27.3.3 Setting the Current Time with SYS$SETIME 2711
27.4 Routines Used for Timer Requests 27-13
27.41 Setting Timer Requests with SYS$SETIMR 27-14
27.4.2 Canceling a Timer Request with SYS$CANTIM 27-16
27.4.3 Scheduling Wakeups with SYSSWAKE 27-16
27.4.4 Canceling a Scheduled Wakeup with SYS$CANWAK. 27-17
27.4.5 Executing a Program at Timed Intervals 27-18
27.5 Routines Used for Timer Statistics 27-18
27.6 Date/Time Formatting Routines 27-21
27.6.1 Performing Date/Time Logical Initialization 27-21
27.6.2 Selectinga Format........... 27-24
27.6.2.1 Formatting Run-Time Mnemonics 27-24
27.6.2.2 Specifying Formats at Run Time 27-26
27.6.2.3 Specifying Input Formats at Run Time 27-26
27.6.2.4 Specifying Output Formats at Run Time 27-29
27.6.2.5 Specifying Formats at Compile Time 27-31
27.6.2.6 Specifying Input Format Mnemonics at Compile Time 27-32
27.6.2.7 Specifying Output Formats at Compile Time 27-33
27.6.3 Converting with the LIBSCONVERT _DATE_STRING Routine 27-33
27.6.4 Retrieving with LIB§GET_DATE_FORMAT Routine 27-34
27.6.4.1 Using User-Defined Output Formats 27-34
27.7 Coordinated Universal Time Format 27-36

28 File Operations

28.1 File Attributes
28.1.1 Specifying File Attributes
28.2 File Access Strategies e
28.3 File Protection and Accesst
28.3.1 Read-Only Accesst e
28.3.2 Shared AcCessot
28.4 File Access and Mappingottt
28.4.1 Using SYSSCRMPSC
28.4.1.1 Mappinga File. e
28.4.1.2 Using the User-Open Routine
28.4.1.3 Initializing a Mapped Database
28.4.1.4 Saving a Mapped File
28.5 Opening and Updating a Sequential File
28.6 User-Open Routines
28.6.1 Openinga File
28.6.1.1 Specifying USEROPEN,
28.6.1.2 Writing the User-Open Routine
28.6.1.3 Setting FAB and RABFields

29 Overview of Extended File Specifications (Alpha and 164 Only)

29.1 Benefits of Extended File Specifications.
29.2 Features of Extended File Specifications
29.2.1 ODS-5 Volume Structure
29.2.1.1 Long File Names,
29.21.2 More Characters Legal Within File Names
29.2.1.3 Preservation of Caset
29.2.2 Deep Directory Structures
29.2.2.1 Directory Naming Syntax
29.3 Considerations Before Enabling ODS-5 Volumes
29.3.1 Considerations for System Management
29.3.2 Considerations for Users
29.3.2.1 Mixed-Version Supportiite i
29.3.2.2 Mixed-Architecture Support
29.3.3 NF'S Support for Extended File Specifications
29.3.4 Considerations for Applications
29.4 Extended File Naming Considerations for OpenVMS Application
Developers
29.4.1 Evaluating Your Current Support Status.
29.4.2 Default Support
29.4.3 No Support for Extended File Names
29.4.4 No Support for ODS-5 Volumes
29.5 Upgrading an Application to Support Extended File Specifications
29.5.1 Upgrading to Default Support
29.5.1.1 Providing Support for ODS-5
29.51.2 Providing Support for Extended File Naming
29.5.2 Upgrading to Full Support,

28-1
28-2
28-2
28-2
28-3
28-3
28-4
28-4
28-5
28-10
28-11
28-11
28-12
28-15
28-15
28-15
28-16
28-17

30 Distributed Transaction Manager (DECdtm)

30.1 Overview of DECdtm i
30.2 Single Branch Application
30.2.1 Calling DECdtm System Services for a Single Branch Application . . .
30.2.1.1 Sample Single Branch Transaction
30.3 Multiple Branch Application
30.3.1 Resource Manager Use of the Branch Services
30.3.2 Branch Synchronization............
30.4 Default Transactions
30.4.1 Multithreaded Applications,
30.5 Resource Manager Interface..............
30.5.1 Creating RM Instances and Participants
30.5.2 Reporting an Event Notification.
30.5.3 Responding to Events.
30.5.4 Aborting a Transaction.
30.5.5 Performing Recovery i,
30.5.6 Volatile Resource Manager.,
30.5.7 Modifying the DECdtm Log
30.5.8 Transaction Class. e
30.6 Communication Resource Manager Interface
30.7 DECdtm XA Interface (Alpha Only).............
30.7.1 Usingthe XA Veneer

30.7.1.1 Transaction

Demarcation

30.7.1.2 Locking Between Processes
30.7.1.3 Binding to the XA Interface
30.7.1.38.1 Static Binding
30.7.1.3.2 Dynamic Binding
30.7.1.3.3 Resource Manager Instances

30.7.1.3.4 Hints .

30.7.1.4 Implementation Characteristics

30.7.1.4.1 Threads

30.7.1.4.2 Heuristic Decision
30.7.1.4.3 Resource Manager Synchronization
30.7.1.4.4 Asynchronous Operation
30.7.1.4.5 Resource Manager Switch
30.7.1.4.6 Image Termination and Recovery.......................
30.7.1.4.7 Transaction Branch Identification
30.7.1.4.8 Error Handling,
30.7.1.4.9 XAFunctionst
30.7.1.5 Recovery Processes.
30.7.1.6 Error Logging.

30.7.1.7 Tracing . . .

30.7.2 Nonstandard XA Functions

ax_bind_decdtm_2
ax_close_decdtm . .
ax_lock_decdtm ..
ax_open_decdtm . .
ax_unbind_decdtm
ax_unlock_decdtm

30-1
30-2
30-3
30-3
30-4
30-5
30-5
30-6
30-7
30-7
30-8
30-8

30-10

30-12

30-12

30-13

30-13

30-14

30-14

30-15

30-17

30-17

30-18

30-18

30-19

30-19

30-19

3020

3020

30-21

30-21

30-21

30-21

30-21

30-22

30-22

30-22

30-22

30-24

30-25

30-25

30-26

30-27

30-29

30-30

30-31

30-32

30-33

xi

31

30.7.3 Usingthe XA Gateway,

30.7.3.1 Gateway Configuration
30.7.3.2 XA RM Configuration.
30.7.3.2.1 Hints
30.7.3.3 Implementation Characteristics
30.7.3.3.1 Default Transaction
30.7.3.3.2 Locking Between Processes
30.7.3.3.3 Read-Only Optimization..............................
30.7.3.3.4 Blocking Conditions
30.7.3.3.5 XA Return Values
30.7.3.4 Error Logging.
30.7.3.5 Tracing
30.7.4 XA Gateway Control Program (XGCP) Utility
30.7.4.1 XGCP Descriptiont
30.7.4.2 XGCP Usage SUMMATY . ..o vvv et e et ie e it e e e
30.7.4.3 XGCP Descriptiont
30.7.4.4 XGCP Commandsiiiiii it
30.8 Program Examples Using DECdtm
30.8.1 Fortran Program Example
30.8.2 C Program Examples
30.8.2.1 $DECLARE_RMW i
30.8.2.2 $GET_DEFAULT_TRANS and $JOIN. RMW
30.8.2.3 Event Handler and $ACK EVENT
30.8.2.4 $GETDTI and $SETDTI
30.8.3 BLISS Program Examaple

Creating User-Written System Services

B1.1 OVEIVIEW . .ottt e e e e
31.2 Writing a Privileged Routine (User-Written System Service)
31.3 Creating a Privileged Shareable Image (VAX Only)
31.3.1 Creating User-Written Dispatch Routines on VAX Systems
31.3.2 Creating a PLVon VAX Systems
31.3.3 Declaring Privileged Routines as Universal Symbols Using Transfer
Vectors on VAX Systems.
31.4 Creating a User-Written System Service (Alpha and 164 Only)
31.4.1 Creating a PLV on Alpha and 164 Systems
31.4.2 Declaring Privileged Routines as Universal Symbols Using Symbol
Vectors on Alpha and 164 Systems

32 System Security Services

Xii

32.1 Overview of the Operating System’s Protection Scheme
32.2 Identifiers
32.2.1 Identifier Format
32.2.2 General Identifiers
32.2.3 System-Defined Identifiers
32.2.4 UIC Identifiers i e e
32.2.5 Facility Identifiers
32.2.6 Identifier Attributes
32.3 Rights Database.......... e
32.3.1 Initializing a Rights Database

30-34
30-34
30-35
30-36
30-36
30-36
30-36
30-37
30-37
30-37
30-38
30-38
30-38
30-38
30-39
30-39
30-39
30-39
30-39
30-42
30-43
30-43
30-44
30-45
30-46

31-1
31-3
31-4
31-4
31-5

31-9
31-9
31-9

32-1
32-2
32-2
32-2
32-3
32-3
32-4
32-5
32-8
32-9

33

32.3.2 Using System Services to Affect a Rights Database

32.3.2.1 Translating Identifier Values and Identifier Names
32.3.2.2 Adding Identifiers and Holders to the Rights Database
32.3.2.3 Determining Holders of Identifiers.
32.3.2.4 Determining Identifiers Held by a Holder
32.3.2.5 Modifying the Identifier Record
32.3.2.6 Modifying a Holder Record
32.3.2.7 Removing Identifiers and Holders from the Rights Database.

32.3.3 Search Operations
32.3.4 Modifying a Rights List
324 Persona (Alphaand 164 Onlyl)

32.4.1 Impersonation Services (Alpha and 164 Only)
32.4.1.1 Using Impersonation System Services
32.4.2 Per-Thread Security (Alpha and 164 Only)......................
32.4.2.1 Previous Security Model
32422 Per-Thread Security Model

32.4.3 Persona Extensions (Alpha and 164 Only)
32.5 Managing Object Protection
32.5.1 Protected Objects e
32.5.2 Object Security Profile

32.5.2.1 Displaying the Security Profile
32.5.2.2 Modifying the Security Profile
32.5.3 Types of Access Control Entries
32.5.3.1 Design Considerations
32.5.3.2 Translating ACEs. e
32.5.3.3 Creating and Maintaining ACEs

32.6 Protected Subsystems
32.7 Security Auditing
32.8 Checking Access Protection
32.8.1 Creating a Security Profile.
32.8.2 SYS$CHKPRO System Sevicecuuuieeimunnneeeennn..
32.8.3 SYS$CHECK_ACCESS System Serviceuuuuuunnn..
32.9 SYS$CHECK PRIVILEGE
32.10 Implementing Site-Specific Security Policies
32.10.1 Creating Loadable Security Services

32.10.1.1 Preparing and Loading a System Service....................
32.10.1.2 Removing an Executive Loaded Image
32.10.2 Installing Filters for Site-Specific Password Policies
32.10.2.1 Creating a Shareable Image.
32.10.2.2 Installing a Shareable Image

Authentication and Credential Management (ACM) System Service
(Alpha and 164 Only)

33.1 Identification, Authentication, and Authorization
33.2 ACME Subsystem Componentsouiiuneinneennn..
33.3 SYS$SACM[W] Call MechaniCso v et e
33.3.1 SYSSACM[W] Function Codest ..
33.3.2 SYSSACM[W] Function Modifierso, .
33.3.3 Status Returned by the SYS$ACM[W] System Service

33.3.3.1 When the Return Status Indicates Failure
33.3.3.2 When the Return Status Indicates Success
33.3.3.2.1 When the Primary Status Indicates an Item Code Failure . ..
33.3.3.2.2 When the Primary Status is ACME$_OPINCOMPL

32-10
32-11
32-12
32-13
32-13
32-13
32-14
32-16
32-16
32-19
32-19
32-20
32-20
32-21
32-21
32-21
32-22
32-23
32-23
32-24
32-24
32-24
32-24
32-25
32-25
32-26
32-27
32-28
32-28
32-29
32-29
32-29
32-30
32-30
32-30
32-31
32-33
32-33
32-33
32-33

33-1
33-2
33-4
33-4
33-5
33-6
33-6
33-6
33—7
33-7

xiii

34

Xiv

33.3.4 ItemCodes

33.3.4.1 Common vs. ACME-Specific Item Codes
33.3.4.2 Distinguishing Between Input and Output Item Codes
33.3.4.3 Text vs. Nontext Items
33.34.4 Single-Valued vs. Multivalued Item Semantics

33.3.5 Item Lists
33.3.5.1 Item List Chains

33.3.6 The ACM Communications Buffer and Itemset

33.3.7 Itemset Entries

33.3.8 Synchronization of Your System Service Calls

33.4 Authentication Techniques...........
33.4.1 Nondialogue Mode Operation
33.4.2 Dialogue Mode Operation.........
33.4.3 Login Categories and Classes.

33.4.4 Principal Names.
33.4.5 Targeting Your System Service Calls
33.4.5.1 DOINamescoiii e e e
33.4.5.2 When to Use DOI NAME vs. DOLID
33.4.5.3 Looking Up DOl and ACME IDs

33.4.6 Determining ACME Information with the Query Function

33.4.7 Reporting an Event
33.5 Authentication Scenarios
33.5.1 Simple User Authentication
33.5.2 Evaluating Status Codes
33.5.3 Password Change Dialogue
33.5.4 Reauthentication of Current User . .
33.5.5 Manipulating Personas
33.5.6 Using CREPRC on Behalf of a User.
33.6 Authentication Examples

33.6.1 Example Using Nondialogue Mode (C).........................
33.6.2 Example Using Dialogue Mode (Pascal)

Logical Name and Logical Name Tables

34.1 Logical Name System Services and DCL Commands

34.1.1 Logical Names, Equivalence Names, and Search Lists
34.1.2 Logical Name Tables
34.1.2.1 Logical Name Directory Tables
34.1.2.2 Process, Job, Group, System and Clusterwide Default Logical
Name Tables e
34.1.2.2.1 Process Logical Name Table
34.1.22.2 Job Logical Name Table
34.1.2.2.3 Group Logical Name Table.
34.1.2.2.4 System Logical Name Table
34.1.2.2.5 Clusterwide Logical Name Table
34.1.3 Logical Name Table Names and Search Lists
34.1.4 Specifying the Logical Name Table Search List
34.2 Creating User-Defined and Clusterwide Logical Name Tables
34.2.1 Creating Clusterwide Logical Name Tables

34.3 Checking Access and Protection
34.4 Specifying Access Modes
34.5 Translating Logical Names
34.6 Specifying Attributes
34.7 Establishing Logical Name Table Quotas

33-7

33-7

33-8

33-8

33-8

33-9

33-9

33-9
33-10
33-11
33-11
33-11
33-12
33-13
33-14
33-15
33-15
33-15
33-16
33-16
33-17
33-17
33-17
33-19
33-19
33-21
33-21
33-22
33-24
33-24
33-31

34-1
34-2
34-3
34-3

34-4
34-4
34-5
34-6
34-6
34-6
347
34-8
34-8
34-9
34-10
34-10
34-11
34-13
34-15

34.7.1
34.7.2
34.7.3
34.7.4
34.8
34.9
34.10

34.10.1
34.10.2
34.10.3
34.10.4
34.10.5

Directory Table Quotas
Default Logical Name Table Quotas.
Job Logical Name Table Quotas
User-Defined Logical Name Table Quotas
Interprocess Communication
Using Logical Name and Equivalence Name Format Conventions.
Using Logical Names and Logical Name Table System Services in
Programs e
Using SYS$CRELNM to Create a Logical Name
Using SYS$CRELNT to Create Logical Name Tables
Using SYS$DELLNM to Delete Logical Names
Using SYS$TRNLNM to Translate Logical Names
Using SYS$CRELNM, SYS$TRNLNM, and SYS$DELLNM in a
Program Example

35 Image Initialization

35.1
35.2
35.3
35.4
35.5
35.6

Initializing an Image
Initializing an Argument List
Declaring Initialization Routines
Dispatching to Initialization Routines
Initialization Routine Options
Initialization Example

Part Il Appendixes and Glossary

A Generic Macros for Calling System Services

A
A1

A1.2
A1.3

A2
A.2.1
A2.1.1
A2.2
A23
A2.4

Using Macros to Construct Argument Lists
Specifying Arguments with the $name_S Macro and the $name Macro
Conventions for Specifying Arguments to System Services
Defining Symbolic Names for Argument List Offsets: $name and
SnameDEF . ..

Using Macros to Call System Services
The $name_ S MaCTO o oot e e e e e e e

Example of $name_S MacroCall
The $name_G MaCroo oot e
The $name MACrOo et e e e e
Example of $name and $name_G Macro Calls

B OpenVMS Data Types

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11

OpenVMS Data Typesot e e e e e
Ada Implementations i
Application Programming Language (APL) Implementations
BASIC Implementations i
BLISS Implementations
C and C++ Implementations,
COBOL Implementationst
FORTRAN Implementations iiieiinieeon..
Pascal Implementations
PL/I Implementations
VAX MACRO Implementations

34-15
34-15
34-15
34-16
34-16
34-17

34-18
34-18
34-21
34-21
34-22

34-24

35-1
35-5
35-6
35—7
35-7
35-7

A-2
A-4

A-4
A-5
A-6
A-6
A-6
A-6
A7

B-17
B-20
B-22
B-25
B-28
B-30
B-34
B-38
B-42
B-48

XV

B.12
B.13

RPG IT Implementations,
SCAN Implementations

C Distributed Name Service Clerk (VAX Only)

C.1
C11

C.1.11
C11.2
c.2
C.21
c22
c.23
C.2.31
c.232
C.2.3.3
C.3

DECdns Clerk System Service
Using the DECdns System Service and Run-Time Library

Routines

Using the SYS$DNS System Servicecovve....

Using the Run-Time Library Routines

Using the SYS$DNS System Service Call

Creating Objects

Modifying Objects and Their Attributes

Requesting Information from DECdns

Using the Distributed File Service (DFS)....................

Reading Attributes from DNS

Enumerating DECdns Names and Attributes

Using the DCL Command DEFINE with DECdns Logical Names

Authentication Glossary

Index

Examples

XVi

20-1
20-2
20-3
20-4
20-5
20-6
20-7
20-8
20-9
221
22-2
22-3
22-4
22-5
22-6
22-7
22-8
22-9
22-10
22-11
22-12
22-13
22-14
22-15

Example of SYS$SYNCH System Service in FORTRAN
System Service Callin Ada,
System Service Call in BASIC
System Service Call in BLISS
System Service Callin C
System Service Callin COBOL
System Service Call in FORTRAN
System Service Call in Pascal
System Service Call in VAX MACRO
Readinga Lineof Data
Reading a Varying Number of Input Records
Associating a Pasteboard with a Terminal
Creating a Pasteboard
Modifying Screen Dimensions and Background Color
Defining and Pasting a Virtual Display
Scrolling Forward Through a Display
Scrolling Backward Through a Display
Creating a Statistics Display
Reading Data from a Virtual Keyboard
Reading Data from the Keypad
Redefining Keys
Using Interrupts to Perform I/O
Receiving Unsolicited Input from a Virtual Keyboard
Trapping Broadcast Messages,

|
—_

OOOO(POOO O

|
|
ODWOoOOWOoOor~MIANN

O(I')O

23-1
23-2
23-3
23-4
23-5
23-6
23—7
23-8
26-1
271
27-2
27-3
27-4
28-1
28-2
28-3
28-4
28-5
28-6
31-1
31-2
31-3
31-4

Figures

181
18-2
18-3
18—4
18-5
18-6
18—7
18-8
18-9
18-10
18—11
18-12
18-13
18-14
18-15

EventFlags
AST Routine
I/O Status Block
Reading Data from the Terminal Synchronously .
Reading Data from the Terminal Asynchronously
Writing Character Data to a Terminal
Using SYS$GETDVIW to Verify the Device Name

Disabling the HOSTSYNC Terminal Characteristic...............
Interprocess Communication Using Global Sections

Calculating and Displaying the Time
Settingan Event Flag
Specifying an AST Service Routine
Displaying and Writing Timer Statistics

Mapping a Data File to the Common Block on a VAX System
Mapping a Data File to the Common Block on an Alpha System.

Using a User-Open Routine
Closing a Mapped File

Creating a Sequential File of Fixed-Length Records

Updating a Sequential File
Sample Dispatching Routine
Assigning Values to a PLV on a VAX System
Creating a PLV on Alpha and 164 Systems

Declaring Universal Symbols for Privileged Shareable Image on Alpha

and 164 Systems.
Using Keywords with the $name_S Macro

Specifying Arguments in Positional Order with the $name_S

Macro.ot
Using Keywords with the $name Macro.

Specifying Arguments in Positional Order with the $name Macro

Call Frame Generated by CALLG and CALLS Instructions.

Fixed-Size Stack Frame Format..............
Variable-Size Stack Frame Format
Procedure Frame
Operation of the Register Stack
Structure of a VAX Argument List............
Alpha Argument List Format................
Argument Information (AI) Register (R25) Format
Parameter Passing in Registers and Memory . . .
Alpha Procedure Argument-Passing Mechanisms

VAX Procedure Argument-Passing Mechanisms. .
Argument Information Register Representation .
Atomic Data Types and Descriptor Classes
String Data Types and Descriptor Classes
Miscellaneous Data Types and Descriptor Classes

23-14
23-16
23-17
23-20
23-21
23-23
23-29
23-29

26-9

27-5
27-14
27-15
27-19

28-6

28-8
28-10
28-12
28-13
28-14

31-5

31-8
31-12

18-9
18-11
18-13
18-15
18-18
18-21
18-22
18-22
18-24
18-25
18-26
18-35
18-39
18-40
18-40

XVii

18-16 Condition Value Format 1843

191 Calling the Run-Time Library 19-2
22—1 Defining and Pasting Virtual Displays 22-13
22-2 Moving a Virtual Display 22-14
22-3 Repasting a Virtual Display 22-15
224 Popping a Virtual Display 22-16
22-5 Statistics Display e 2221
23-1 Mailbox Protection Fields., 23-5
23-2 Physical I/O Access Checks 23-7
23-3 Logical I/O Access Checks 23-8
234 Physical, Logical, and Virtual /O 23-9
23-5 I/O Function Format 23-10
23-6 Function Modifier Format 23-11
23-7 I/O Status Block 23-24
23-8 SYS$SMOUNT Item Descriptorvvvi ettt e 23-34
241 Format of a Variable-Length Bit Field 24-11
25-1 Using Cross-Reference Routines. 25-2
25-2 Summary of Symbol Names and Values 25-5
25-3 Summary of Symbol Names, Values, and Name of Referring

Modules 25-5
254 Summary Indicating Defining Module 25-5
25-5 Output Line for LIB§CRF_OUTPUT 25-6
271 Predefined Output Date Formats 27-23
272 Predefined Output Time Formats. 27-23
30-1 Participants in a Distributed Transaction 304
30-2 XA Veneer Example 30-15
30-3 XA Gateway Example 30-16
304 TX Wrapper Example. 30-16
31-1 Flow of Control Accessing a Privileged Routine on VAX Systems. 31-6
31-2 Components of the Privileged Library Vector on VAX Systems 31-7
31-3 Linkage for a Privileged Routine After Image Activation........... 31-10
321 ID Format 32-3
32-2 UIC Identifier Format 324
32-3 Facility-Specific Identifiers. 324
324 Format of the Identifier Record 32-8
32-5 Format of the Holder Record 32-9
32-6 Format of the Holder Argument. 32-13
32-7 Previous Per-Thread Security Model 32-21
32-8 Per-Thread Security Profile Model 32-22
33-1 SYSSACM[W] OVErVIEW . . o o v oottt e e e e e 33-4
33-2 Item List Chain 33-9
33-3 Ttemset Layout 33-10
334 Nondialogue Mode Operation. iuirn... 33-11
33-5 Dialogue Mode e 33-12
35-1 Sequence of Events During Image Initialization on VAX Systems 354
35-2 Sequence of Events During Image Initialization on Alpha and 164

SYStemMS . . .o 35-5

xviii

Tables

171 Main Headings in the Documentation Format for System Routines .. 17-2
17-2 General Rules of Syntax for Procedure Call Formats.............. 17-3
17-3 Standard Data Types and Their Descriptor Field Symbols 177
17-4 Descriptor Classes of Passing Mechanisms 17-10
18—1 VAX Register Usaget e e e 18—1
18-2 Alpha Integer Registers 18-2
18-3 Alpha Floating-Point Registers 18-3
18-4 164 General Register Usage 18-5
18-5 164 Floating-Point Register Usage 18-7
18-6 164 Predicate Register Usage 18-8
18-7 164 Branch Register Usage, 18-8
18-8 Summary of Function Descriptor Kinds 18-20
18-9 Contents of the Argument Information (AI) Register (Alpha only). . .. 18-23
18-10 Rules for Allocating Parameter Slots 18-31
18-11 Data Types and the Unused Bits in Passed Data................. 18-33
18-12 Extension Type Codes, 18-34
18-13 Argument Information Register Codes 18-36
18-14 String-Passing Descriptors. 18-37
18-15 Rules for 164 Return Values 18-41
18-16 Register Mapping Table for OpenVMS VAX/OpenVMS Alpha to

OpenVMS 164 e 18-44
20-1 OpenVMS System Access Modes, 20-3
20-2 Severity Codes of Condition Value Returned 20-7
21-1 Structures Used by _NEW_STARLET Prototypes 214
221 SYS$INPUT and SYS$OUTPUT Values 22-3
22-2 Setting Video Attributes. 22-17
23-1 Read and Write I/O Functions 23-10
23-2 Asynchronous Input/Output Services and Their Synchronous Versions

... 23-19
23-3 System Services for Translating Logical Names. 23-27
23-4 Default Device Names for I/O Services 23-28
23-5 SYSGEN Buffer Object Parameters 23-50
241 System Service Access Routines 24-2
24-2 CLI Access Routines 24-2
24-3 Variable-Length Bit Field Routines 24-10
24-4 Integer and Floating-Point Routines 24-12
24-5 Queue Access Routines 24-13
24-6 Character String Routines, 24-14
24-7 Miscellaneous Instruction Routines 24-15
24-8 Processwide Resource Allocation Routines 24-16
24-9 Performance Measurement Routines 24-17
24-10 The Code Argument in LIB§SHOW_TIMER and

LIB$STAT_TIMERo 24-18
24-11 Routines for Customizing Output............................. 24-20
2412 Miscellaneous Interface Routines 24-21
25-1 Cross-Reference Routines 25-1

Xix

XX

271
27-2
27-3
27-4
27-5
27-6
27-7
27-8
27-9
27-10
27-11
27-12
30-1
30-2
30-3
304
31-1
31-2
32-1

32-2

32-3
34-1
34-2

B-10
B—11
B-12
B-13

Time Conversion Routines and System Services
Date/Time Manipulation Routines
Timer RTLs and System Services
Timer System Services,
Available Languages for Date/Time Formatting
Format Mnemonics
Input String Punctuation and Defaults
Predefined Output Date Formats
Predefined Output Time Formats.
Available Components for Specifying Formats at Compile Time
Legible Format Mnemonicsuuuiiiiinennenn..
Sample Input Format Strings
Fields in an Event Report Block
Abort Reason Codes
XA Veneer Error Names.t
Input Flags for ax_bind_decdtm_2
Components of the VAX Privileged Library Vector
Components of the Alpha and 164 Privileged Library Vector

Using System Services to Manipulate Elements of the Rights
Database

Returned Records of SYS$IDTOASC, SYS$FIND_HELD, and
SYSSFIND HOLDER.ottt e

Item Code Symbols and Meanings
Logical Name Services and DCL Commands
Summary of Privileges
Generic Argument List Macros of the System Service Interface
OpenVMS Usage Data Type Entries
Ada Implementations
APL Implementations
BASIC Implementations 0.,
BLISS Implementations
C and C++ Implementations
COBOL Implementations
FORTRAN Implementations
Pascal Implementations
PL/T Implementations,
VAX MACRO Implementations
RPG IT Implementations
SCAN Implementations 0.,

32-10

32-17
32-26
34-2
34-10
A-1
B-2
B-17
B-20
B-22
B-25
B-28
B-31
B-34
B-39
B-43
B-48
B-51
B-53

Preface

Intended Audience

This manual is intended for system and application programmers. It presumes
that its readers have some familiarity with the HP OpenVMS programming
environment, derived from the OpenVMS Programming Environment Manual
and OpenVMS high-level language documentation. The OpenVMS Programming
Environment Manual has been archived and is available on the OpenVMS
Documentation Web site at:

http://www.hp.com/go/openvms/doc/

Document Structure

The printed copy of the HP OpenVMS Programming Concepts Manual is a
two-volume manual. The second volume contains the following three parts:

e OpenVMS Programming Interfaces: Calling a System Routine
e J/O, System and Programming Routines
e Appendixes

The chapters in Volume II provide information about the programming features
of the OpenVMS operating system. A list of the chapters and a summary of their
content follows:

e Chapter 17 describes the format used to document system routine calls and
explains where to find and how to interpret information about routine calls.

e Chapter 18 describes the concepts and conventions used by common
languages to invoke routines and pass data between them.

e Chapter 19 describes a set of language-independent routines that establishes
a common run-time environment for user programs.

e Chapter 20 describes the system services available to application and system
programs for use at run time.

e Chapter 21 describes the libraries that contain C header files for routines.

e Chapter 22 describes the different I/O programming capabilities provided by
the run-time library.

e Chapter 23 describes how to use system services to perform input and output
operations.

¢ Chapter 24 describes the run-time library (RTL) routines that allow access to
various operating system components.

e Chapter 25 describes how cross-reference routines that are contained in a
separate, shareable image are capable of creating a cross-reference analysis of
symbols.

XXi

e Chapter 26 describes the techniques available for sharing data and program
code among programs.

e Chapter 27 describes the system time format, and the manipulation of
date/time and time conversion. It further describes how to obtain and set
the current date and time, how to set and cancel timer requests, and how to
schedule and cancel wakeups. The Coordinated Universal Time (UTC) system
is also described.

e Chapter 28 describes file attributes, strategies to access files, and file
protection techniques.

e Chapter 29 presents an overview of Extended File Specifications (for the
OpenVMS Alpha and 164 platforms only).

e Chapter 30 describes the DECdtm programming interfaces, and the DECdtm
X/Open Distributed Transaction Processing XA interface.

e Chapter 31 describes how to create user-written system services with
privileged shareable images for VAX, Alpha, and 164 systems.

e Chapter 32 describes the system services that establish protection by using
identifiers, rights databases, and access control entries. This chapter also
describes how to modify a rights list as well as check access protection.

e Chapter 33 describes how to write an authentication and credential
management (ACM) client program or update existing programs to be
an ACM client program.

e Chapter 34 describes how to create and use logical name services, how to use
logical and equivalence names, and how to add and delete entries to a logical
name table.

e Chapter 35 describes how to use the LIBSINITIALIZE routine to initialize an
image.

e Appendix A describes the use of generic macros to specify argument lists

with appropriate symbols and conventions in the system services interface to
MACRO assembles.

e Appendix B describes the data types that provide compatibility between
procedure calls that support many different high-level languages.

e Appendix C describes the DIGITAL Distributed Name Service (DECdns)
Clerk by introducing the functions of the DECdns (SYS$DNS) system service
and various run-time library routines.

e Authentication Glossary contains definitions for terms used in Chapter 33,
Authentication and Credential Management (ACM) System Service.

Related Documents

XXii

For a detailed description of each run-time library and system service routine
mentioned in this manual, see the OpenVMS Run-Time Library documentation
and the HP OpenVMS System Services Reference Manual.

You can find additional information about calling OpenVMS system services and
Run-Time Library routines in your language processor documentation. You may
also find the following documents useful:

e HP OpenVMS DCL Dictionary
e OpenVMS User’s Manual

* Guide to OpenVMS File Applications

e HP OpenVMS Guide to System Security

e DECnet for OpenVMS Networking Manual

e OpenVMS Record Management Services documentation
e OpenVMS Utility Routines Manual

e HP OpenVMS 1/0 User’s Reference Manual

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

Reader’s Comments

HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZK0O3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation

For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The following conventions may be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

XXiii

O

{}

bold type

italic type

Example

UPPERCASE TYPE

numbers

XXiv

A horizontal ellipsis in examples indicates one of the following
possibilities:

e Additional optional arguments in a statement have been
omitted.

e The preceding item or items can be repeated one or more
times.

e Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.

Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

Italic type indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLSs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

Partl

OpenVMS Programming Interfaces: Calling a
System Routine

This part of this second volume describes the basic calling format for OpenVMS
routines and system services. It also describes the STARLET structures and
definitions for C programmers.

17

Call Format to OpenVMS Routines

This chapter describes the format used to document system routine calls and
explains where to find and how to interpret information about routine calls.
Subsequent chapters provide more specific information about calling run-time
library (RTL) routines and system services.

Note

The documentation format described in this chapter is generic; portions

of it are used or not used, as appropriate, in the following OpenVMS
manuals that document system routines:

HP OpenVMS System Services Reference Manual: A—-GETUAI
HP OpenVMS System Services Reference Manual: GETUTC-Z
OpenVMS Run-Time Library manuals

OpenVMS Utility Routines Manual

OpenVMS Record Management Services Reference Manual

17.1 Overview

This chapter provides additional explanations for the following documentation
categories for routines:

e Format

e Returns

e Arguments

¢ Condition values returned

However, some main categories in the routine format contain information
requiring no explanation beyond that given in Table 17-1.

Call Format to OpenVMS Routines 17-1

Call Format to OpenVMS Routines
17.1 Overview

Table 17-1 Main Headings in the Documentation Format for System Routines

Main Heading Description

Routine Name Always present. The routine entry point name appears at the
top of the first page. It is usually followed by the English text
name of the routine.

Routine Overview Always present. Appears directly below the routine name and
briefly explains what the routine does.

Format Always present. Follows the routine overview and gives the
routine entry point name and the routine argument list.

Returns Always present. Follows the routine format and explains what
information is returned by the routine.

Arguments Always present. Follows the Returns heading and gives
detailed information about each argument. If a routine takes
no arguments, the word None appears.

Description Optional. Follows the Arguments heading and contains
information about specific actions taken by the routine:
interaction between routine arguments, if any; operation of
the routine within the context of OpenVMS; user privileges
needed to call the routine, if any; system resources used by the
routine; and user quotas that might affect the operation of the
routine.

Note that any restrictions on the use of the routine are always
discussed first in the Description section. For example, any
required user privileges or necessary system resources are
explained first.

For some simple routines, a Description section is not
necessary because the routine overview provides the needed

information.
Condition Values Always present. Follows the Description section and lists the
Returned condition values (typically status or completion codes) that are

returned by the routine.

Example Optional. Follows the Condition Values Returned heading and
contains one or more programming examples that illustrate
how to use the routine, followed by an explanation.

All examples under this heading are complete. They have
been tested and should run when compiled (or assembled)
and linked. Throughout the manuals that document system
routines, examples are provided in as many different
programming languages as possible.

17.2 Format Heading
The following three types of information can be present in the format heading:
¢ Procedure call format
e Explanatory text
e Jump to Subroutine (JSB) format (VAX only)

On VAX processors, all system routines have a procedure call format, but few
system routines have JSB formats. If a routine has a JSB format, the format
always appears after the routine’s procedure call format.

17-2 Call Format to OpenVMS Routines

Call Format to OpenVMS Routines
17.2 Format Heading

17.2.1 Procedure Call Format

Procedure call formats can appear in many forms. The following four formats
illustrate the meaning of syntactical elements, such as brackets and commas.
General rules of syntax governing how to use procedure call formats are shown in
Table 17-2.

Table 17-2 General Rules of Syntax for Procedure Call Formats

Element Syntax Rule

Entry point names Entry point names are always shown in uppercase characters.
Argument names Argument names are always shown in lowercase characters.
Spaces One or more spaces are used between the entry point name

and the first argument, and between each argument.

Braces ({}) Braces surround two or more arguments. You must choose one
of the arguments.

Brackets ([]) Brackets surround optional arguments. Note that commas
can also be optional (see the comma element). Note that
programming language syntax for optional arguments differs
between languages. Refer to your language user’s guide for
more information.

Commas () Between arguments, the comma always follows the space.
If the argument is optional, the comma might appear either
inside or outside the brackets, depending on the position of the
argument in the list and on whether surrounding arguments
are optional or required.

Null arguments A null argument is a placeholding argument. It is used for one
of the following reasons: (1) to hold a place in the argument
list for an argument that has not yet been implemented by
HP but might be in the future; or (2) to mark the position of
an argument that was used in earlier versions of the routine
but is not used in the latest version (upward compatibility
is thereby ensured because arguments that follow the null
argument in the argument list keep their original positions). A
null argument is always given the name nullarg.

In the argument list constructed when a procedure is called,
both null arguments and omitted optional arguments are
represented by argument list entries containing the value

0. The programming language syntax required to produce
argument list entries containing 0 differs from language to
language. See your language user’s guide for language-specific
syntax.

Format 1 This format illustrates the standard representation of optional
arguments and best describes the use of commas as delimiters. Arguments
enclosed within square brackets are optional. In most languages, if an optional
argument other than a trailing optional argument is omitted, you must include a
comma as a delimiter for the omitted argument.

ROUTINE_NAME argl/, [arg2]l, arg3]]

Typically, OpenVMS RMS system routines use this format when a maximum of
three arguments appear in the argument list.

Call Format to OpenVMS Routines 17-3

Call Format to OpenVMS Routines
17.2 Format Heading

Format 2 When the argument list contains three or more optional arguments,
the syntax does not provide enough information. If you omit the optional
arguments arg3 and arg4 and specify the trailing argument arg5, you must use
commas to delimit the positions of the omitted arguments.

ROUTINE_NAME argl, [arg2], nullarg, [arg3], [arg4], argh

Typically, system services, utility routines, and run-time library routines contain
call formats with more than three arguments.

Format 3 In the following call format, the trailing four arguments are optional
as a group; that is, you specify either arg2, arg3, arg4, and arg5, or none of
them. Therefore, if you do not specify the optional arguments, you need not use
commas to delimit unoccupied positions.

However, if you specify a required argument or a separate optional argument
after arg5, you must use commas when arg2, arg3, arg4, and arg5 are omitted.

ROUTINE_NAME argl/, arg2, arg3, arg4, args]

Format 4 In the following example, you can specify arg2 and omit arg3.
However, whenever you specify arg3, you must specify arg2.

ROUTINE_NAME arg1/, arg2l, arg3]]

17.2.2 JSB Call Format (VAX only)

The JSB call format indicates that the named routine is called using the VAX JSB
instruction. The routine returns using Return from Subroutine (RSB). You can
use the JSB call format with only the VAX MACRO and VAX BLISS languages.

Explanatory Text

Explanatory text might follow the procedure call format or the JSB call format, or
both. This text is present only when needed to clarify the format. For example,
in the call format, you indicate that arguments are optional by enclosing them

in brackets ([]). However, brackets alone cannot convey all the important
information that might apply to optional arguments. For example, in some
routines that have many optional arguments, if you select one optional argument,
you must also select another optional argument. In such cases, text following the
format clarifies this.

17.3 Returns Heading

The Returns heading contains a description of any information returned by the
routine to the caller. A routine can return information to the caller in various
ways. The following subsections discuss each possibility and then describe how
this returned information is presented.

17.3.1 Condition Values Returned in a Register

Most routines return a condition value in register RO. This condition value
contains various kinds of information, the most important for the caller (in bits
<3:0>) being the completion status of the operation. You test the condition value
to determine whether the routine completed successfully. On OpenVMS 164,

the calling standard specifies that return status is returned in R8. As an aid to
portable code, the MACRO complier automatically maps RO to R8. See the HP
OpenVMS MACRO Compiler Porting and User’s Guide for additional information.

On Alpha and 164 processors, a 32-bit condition value is represented in the Alpha
register sign-extended to 64 bits.

17-4 Call Format to OpenVMS Routines

Call Format to OpenVMS Routines
17.3 Returns Heading

If you program in high-level languages for OpenVMS environments, the fact
that status information is returned by means of a condition value and that it is
returned in a hardware register is of little importance because you receive this
status information in the return (or status) variable. The run-time environment
established for the high-level language program allows the status information in
RO (R8, R9 for 164) to be moved automatically to the user’s return variable.

Nevertheless, for routines that return a condition value, the Returns heading in
the documentation contains the following information:

OpenVMS usage: cond value

type: longword (unsigned)
access: write only
mechanism: by value

The OpenVMS usage entry specifies the OpenVMS data type of the information
returned. Because a condition value in any OpenVMS operating system
environment is returned in a specific condition value structure, the OpenVMS
usage entry is cond_value.

The type entry specifies the standard data type of the information returned.
Because the condition value structure is 32 bits, the type heading is longword
(unsigned).

The access entry specifies the way in which the called routine accesses the
object. Because the called routine is returning the condition value, the routine
writes the value into RO (R8, R9 for 164), so the access heading is write only.

The mechanism heading specifies the passing mechanism used by the called
routine in returning the condition value. Because the called routine is writing the
condition value directly into RO (R8, R9 for 164), the mechanism heading is by
value. (If the called routine had written the address of the condition value into
RO (R8, R9 for 164), the passing mechanism would have been by reference.)

Note that if a routine returns a condition value, another main heading in
the documentation format (Condition Values Returned) describes the possible
condition values that the routine can return.

17.3.2 Other Returned Values

If a routine returns actual data, the Returns heading in the documentation
of that routine contains the following information (for example, from a math
routine):

OpenVMS usage: floating point

type: G_floating
access: write only
mechanism: by value

In this mathematics routine notation, the OpenVMS data type is floating_point
and the standard data type is G_floating point. The meaning of the contents of
the access and mechanism headings is discussed in Sections 17.4.3 and 17.4.4.

The registers used to return values vary with the type of the result and the
specific hardware environment. For more information, see the HP OpenVMS
Calling Standard.

In addition, under the Returns heading, some text can be provided after the
information about the type, access, and mechanism. This text explains other
relevant information about what the routine is returning.

Call Format to OpenVMS Routines 17-5

Call Format to OpenVMS Routines
17.3 Returns Heading

For example, because the routine is returning actual data in the VAX, Alpha,

or 164 registers, the registers cannot be used to convey completion status
information. All routines that return actual data in VAX, Alpha, or 164 registers
must signal the condition value, which contains the completion status. Thus, the
text under the Returns heading points out that the routine signals its completion
status.

17.3.3 Condition Values Signaled

Although most routines return condition values, some routines choose to signal
their condition values using the OpenVMS signaling mechanism. Routines can
signal their completion status whether or not they are returning actual data in
the hardware registers, but all routines that return actual data in the hardware
registers must signal their completion status if they are to return this status
information at all.

If a routine signals its completion status, text under the Returns heading explains
this, and the Condition Values Signaled heading in the documentation format
describes the possible condition values that the routine can signal.

HP’s system routines never signal condition values indicating success. Only error
condition values are signaled.
17.4 Arguments Heading

Detailed information about each argument is listed in the call format under the
Arguments heading. Arguments are described in the order in which they appear
in the call format. If the routine has no arguments, the word None appears.

The following format is used to describe each argument:

argument-name
OpenVMS usage: OpenVMS data type

type: arqument data type
access: argument access
mechanism: argument passing mechanism

A paragraph of structured text describing the arguments follows the argument
format along with additional information, if needed.

17.4.1 OpenVMS Usage Entry

The purpose of the OpenVMS usage entry is to facilitate the coding of source-
language data type declarations in application programs. Ordinarily, the standard
data type, discussed in Section 17.4.2, is sufficient to describe the type of data
passed by an argument. However, within the OpenVMS operating system
environment, many system routines contain arguments whose conceptual nature
or complexity requires additional explanation. For instance, when an argument
passes the name of an event flag, the type entry longword (unsigned) alone
does not indicate the nature of the value. In this instance, an accompanying
OpenVMS usage entry, denoting the OpenVMS data type ef_number, further
explains the actual usage.

See Table B—1 for a list of the possible OpenVMS usage entries and their
definitions. Refer to the appropriate language implementation table in
Appendix B to determine the correct syntax of the type declaration in the
language you are using.

17-6 Call Format to OpenVMS Routines

Call Format to OpenVMS Routines
17.4 Arguments Heading

Note that the OpenVMS usage entry is not a traditional data type (such as the
standard data types of byte, word, longword, and so on). It is significant only
within the context of the OpenVMS operating system and is intended solely to
expedite data declarations within application programs.

17.4.2 Type Entry

In actuality, an argument does not have a data type; rather, the data specified
by an argument has a data type. The argument is merely the vehicle for passing
data to the called routine. Nevertheless, the phrase argument data type is used
to describe the standard data type of the data specified by the argument.

Procedure calls result in the construction of an argument list. (This process is
described in the HP OpenVMS Calling Standard.) An argument list is a sequence
of entries together with a count of the number of entries.

On VAX systems, an argument list is represented as a vector of longwords, where
the first longword contains the count and each remaining longword contains one
argument.

On Alpha systems, an argument list is represented as quadword entities that
comprise an argument item sequence, partly in hardware registers and (when
there are more than six arguments for Alpha) partly on the stack. The argument
information (AI) register contains the argument count that specifies the number
of 64-bit argument items.

For 164 systems, parameters are passed in a combination of general registers,
floating-point registers, and memory, as described in Chapter 18, and as
illustrated in Figure 18-9. The parameter list is formed by placing each
individual parameter into fixed-size elements of the parameter list, referred

to as parameter slots. Each parameter slot is 64 bits wide; parameters larger
than 64 bits are placed in as many consecutive parameter slots as are needed to
contain the entire parameter. The rules for allocation and alignment of parameter
slots are described in Section 18.5.4.1. The contents of the first eight parameter
slots are always passed in registers, while the remaining parameters are always
passed on the memory stack, beginning at the caller’s stack pointer plus 16 bytes.

When arguments are passed by descriptors, these standard data types are defined
with symbolic codes. Table 17-3 lists the standard data types for VAX, Alpha,
and 164 systems that can appear for the type entry in an argument description,
along with their symbolic code (DTYPE) used in argument descriptors.

For a detailed description of each of the following symbolic codes, see the HP
OpenVMS Calling Standard.

Table 17-3 Standard Data Types and Their Descriptor Field Symbols

Data Type Symbolic Code
Absolute date and time DSC$K_DTYPE_ADT
Byte integer (signed) DSC$K_DTYPE_B
Bound label value DSC$K DTYPE BLV
Bound procedure value! DSC$K_DTYPE_BPV

IVAX specific.

(continued on next page)

Call Format to OpenVMS Routines 17-7

Call Format to OpenVMS Routines

17.4 Arguments Heading

Table 17-3 (Cont.) Standard Data Types and Their Descriptor Field Symbols

Data Type

Symbolic Code

Byte (unsigned)

COBOL intermediate temporary

D_floating
D_floating complex
Descriptor
F_floating
F_floating complex
G_floating
G_floating complex
H_floating®

H_floating complex!

S_floating (32-bit IEEE)?
T_floating (64-bit IEEE)?
X_floating (128-bit IEEE)?

S_floating complex®
T_floating complex?

X_floating complex?

Longword integer (signed)

Longword (unsigned)

Numeric string, left separate sign
Numeric string, left overpunched sign
Numeric string, right separate sign
Numeric string, right overpunched sign
Numeric string, unsigned

Numeric string, zoned sign

Octaword integer (signed)

Octaword (unsigned)

Packed decimal string

Quadword integer (signed)

Quadword (unsigned)
Character string

Aligned bit string

Varying character string

Unaligned bit string
Word integer (signed)
Word (unsigned)
Unspecified

DSC$K_DTYPE_BU
DSC$K_DTYPE_CIT
DSC$K_DTYPE_D
DSC$K_DTYPE_DC
DSC$K_DTYPE_DSC
DSC$K_DTYPE_F
DSC$K_DTYPE_FC
DSC$K_DTYPE_G
DSC$K_DTYPE_GC
DSC$K_DTYPE_H
DSC$K_DTYPE_HC
DSC$K_DTYPE_FS
DSC$K_DTYPE_FT
DSC$K_DTYPE_FX
DSC$K_DTYPE_FSC
DSC$K_DTYPE_FTC
DSC$K_DTYPE_FXC
DSC$K_DTYPE_L
DSC$K_DTYPE_LU
DSC$K_DTYPE_NL
DSC$K_DTYPE_NLO
DSC$K_DTYPE_NR
DSC$K_DTYPE_NRO
DSC$K_DTYPE_NU
DSC$K_DTYPE_NZ
DSC$K_DTYPE_O
DSC$K_DTYPE_OU
DSC$K_DTYPE_P
DSC$K_DTYPE_Q
DSC$K_DTYPE_QU
DSC$K_DTYPE_T
DSC$K_DTYPE_V
DSC$K_DTYPE_VT
DSC$K_DTYPE_VU
DSC$K_DTYPE_W
DSC$K_DTYPE_WU
DSC$K_DTYPE_Z

1VAX specific.
2Alpha and 164 specific.

17-8 Call Format to OpenVMS Routines

(continued on next page)

Call Format to OpenVMS Routines
17.4 Arguments Heading

Table 17-3 (Cont.) Standard Data Types and Their Descriptor Field Symbols

Data Type Symbolic Code
Procedure entry mask’ DSC$K_DTYPE_ZEM
Sequence of instruction’ DSC$K DTYPE ZI
IVAX specific.

17.4.3 Access Entry

The access entry describes the way in which the called routine accesses the data
specified by the argument, or access method. The following methods of access
are most common:

e Read only. Data upon which a routine operates, or data needed by the routine
to perform its operation, must be read by the called routine. Such data is
also called input data. When an argument specifies input data, the access
entry is read only.

The term only is present to indicate that the called routine does not both read
and write (that is, modify) the input data. Thus, input data supplied by a
variable is preserved when the called routine completes execution.

e Write only. Data that the called routine returns to the calling program must
be written into a location where the calling program can access it. Such
data is also called output data. When an argument specifies output data, the
access entry is write only.

In this context, the term only is present to indicate that the called routine
does not read the contents of the location either before or after it writes into
the location.

e Modify. When an argument specifies data that is both read and written by
the called routine, the access entry is modify. In this case, the called routine
reads the input data, which it uses in its operation, and then overwrites the
input data with the results (the output data) of the operation. Thus, when the
called routine completes execution, the input data specified by the argument
is lost.

Following is a complete list of access methods that can appear under the access
entry in an argument description:

e Read only

e Write only

e Modify

e Function call (before return)
e JMP after unwind

e (Call after stack unwind

e (Call without stack unwind

For more information, see the HP OpenVMS Calling Standard.

Call Format to OpenVMS Routines 17-9

Call Format to OpenVMS Routines
17.4 Arguments Heading

17.4.4 Mechanism Entry

The way in which an argument specifies the actual data to be used by the called
routine is defined in terms of the argument passing mechanism. There are
three basic passing mechanism types:

e By value. When the argument in the argument list contains the actual data
to be used by the routine, the actual data is said to be passed to the routine
by value. In this case, the argument is the actual data.

e By reference. When the argument in the argument list contains the address
of the data to be used by the routine, the data is said to be passed by
reference. In this case, the argument is a pointer to the data.

e By descriptor. When the argument in the argument list contains the address
of a descriptor, the data is said to be passed by descriptor. A descriptor
consists of two or more longwords (depending on the type of descriptor used)
that describe the location, length, and the OpenVMS standard data type of
the data to be used by the called routine. In this case, the argument is a
pointer to a descriptor that points to the actual data.

There are several kinds of descriptors. Each one contains a value, or class,
in the fourth byte of the first longword. The class identifies the type of
descriptor it is. Each class has a symbolic code.

Table 17—4 lists the types of descriptors and their corresponding code names.
See the HP OpenVMS Calling Standard for a detailed description of each
descriptor class.

Table 17-4 Descriptor Classes of Passing Mechanisms

Passing Mechanism Descriptor Symbolic Code
By descriptor, fixed-length (scalar) DSC$K_CLASS_S
By descriptor, dynamic string DSC$K_CLASS_D
By descriptor, array DSC$K_CLASS_A
By descriptor, procedure DSC$K_CLASS_P

By descriptor, decimal string

By descriptor, noncontiguous array

By descriptor, varying string

By descriptor, varying string array

By descriptor, unaligned bit string

By descriptor, unaligned bit array

By descriptor, string with bounds

By descriptor, unaligned bit string with bounds

DSC$K_CLASS_SD
DSC$K_CLASS_NCA
DSC$K_CLASS_VS
DSC$K_CLASS_VSA
DSC$K_CLASS_UBS
DSC$K_CLASS_UBA
DSC$K_CLASS_SB
DSC$K_CLASS_UBSB

17.4.5 Explanatory Text

For each argument, one or more paragraphs of explanatory text follow the
OpenVMS usage, type, access, and mechanism entries. The first paragraph is
highly structured and always contains information in the following sequence:

1. A sentence or a sentence fragment that describes (1) the nature of the
data specified by the argument, and (2) the way in which the routine uses
this data. For example, if an argument were supplying a number, which

17-10 Call Format to OpenVMS Routines

Call Format to OpenVMS Routines
17.4 Arguments Heading

the routine converts to another data type, the argument description would
contain the following sentence fragment:

Integer to be converted to an F_floating point number

2. A sentence that expresses the relationship between the argument and the
data that it specifies. This relationship is the passing mechanism used to
pass the data and, for a given argument, is expressed in one of the following
ways:

a. If the passing mechanism is by value, the sentence should read as follows:

The attrib argument is a longword that contains
(or is) the bit mask specifying the attributes.

b. If the passing mechanism is by reference, the sentence should read as
follows:

The objtyp argument is the address of a longword
containing a value indicating whether the object is
a file or a device.

c. If the passing mechanism is by descriptor, the sentence should read as
follows:

The devnam argument is the address of a string
descriptor of a logical name denoting a device
name.

3. Additional explanatory paragraphs that appear for each argument, as needed.
For example, some arguments specify complex data consisting of many
discrete fields, each of which has a particular purpose and use. In such
cases, additional paragraphs provide detailed descriptions of each such field,
symbolic names for the fields, if any, and guidance on their use.

17.5 Condition Values Returned Heading

A condition value is a longword that has the following uses on the OpenVMS
VAX, OpenVMS Alpha, and OpenVMS 164 systems:

¢ Indicates the success or failure of a called procedure

¢ Describes an exception condition when an exception is signaled
e Identifies system messages

e Reports program success or failure to the command level

The HP OpenVMS Calling Standard explains in detail the uses for the condition
value and depicts its format and contents.

The Condition Values Returned heading describes the condition values that

are returned by the routine when it completes execution without generating an
exception condition. These condition values describe the completion status of the
operation.

If a called routine generates an exception condition during execution, the
exception condition is signaled; the exception condition is then handled by a
condition handler (either user supplied or system supplied). Depending on the
nature of the exception condition and on the condition handler, the called routine
either continues normal execution or terminates abnormally.

Call Format to OpenVMS Routines 17-11

Call Format to OpenVMS Routines
17.5 Condition Values Returned Heading

If a called routine executes without generating an exception condition, the called
routine returns a condition value in one or two of the following ways:

e Condition Values Returned

¢ Condition Values Returned in an I/O Status Block
¢ Condition Values Returned in a Mailbox

¢ Condition Values Signaled

The method used to return the condition value is indicated under the Condition
Values Returned heading in the documentation of each routine. These methods
are discussed individually in the following subsections.

Under these headings, a two-column list shows the symbolic code for each
condition value the routine can return and an accompanying description. The
description explains whether the condition value indicates success or failure
and, if failure, what user action might have caused the failure and what to do to
correct it. Condition values that indicate success are listed first.

Symbolic codes for condition values are defined by the system. Though the
condition value consists of several fields, each of which can be interpreted

individually for specific information, the entire condition value itself can be
interpreted as an integer, and this integer has an equivalent symbolic code.

The three sections that follow discuss the ways in which the called routine
returns condition values.

17.5.1 Condition Values Returned

The possible condition values that the called routine can return in general
register RO (R8, R9 for 164) are listed under the Condition Values Returned
heading in the documentation. Most routines return a condition value in this
way.

In the documentation of system services that complete asynchronously, both the
Condition Values Returned and Condition Values Returned in the I/O Status
Block headings are used. Under the Condition Values Returned heading, the
condition values returned by the asynchronous service refer to the success or
failure of the system service request—that is, to the status associated with the
correctness of the syntax of the call, in contrast to the final status associated
with the completion of the service operation. For asynchronous system services,
condition values describing the success or failure of the actual service operation—
that is, the final completion status—are listed under the Condition Values
Returned in the I/O Status Block heading.

17.5.2 Condition Values Returned in an I/O Status Block

The possible condition values that the called routine can return in an I/O status
block are listed under the Condition Values Returned in the I/O Status Block
heading.

The routines that return condition values in the I/O status block are the system
services that are completed asynchronously. Each of these asynchronous

system services returns to the caller as soon as the service call is queued.

This allows the continued use of the calling program during the execution of the
service operations. System services that are completed asynchronously all have
arguments that specify an I/O status block. When the system service operation is
completed, a condition value specifying the completion status of the operation is
written in the first word of this I/O status block.

17-12 Call Format to OpenVMS Routines

Call Format to OpenVMS Routines
17.5 Condition Values Returned Heading

Representing a condition value in a word-length field is possible for system
services because the high-order segment of all system service condition values
is 0. See cond_value in Table B—1 or Section 18.11 for the field detail of the
condition value structure.

17.5.3 Condition Values Returned in a Mailbox

The possible condition values that the called routine can return in a mailbox are
listed under the Condition Values Returned in a Mailbox heading.

Routines such as SYS$SNDOPR that return condition values in a mailbox send
information to another process to perform a task. The receiving process performs
the action and returns the status of the task to the mailbox of the sending
process.

17.5.4 Condition Values Signaled

The possible condition values that the called routine can signal (instead of
returning them in RO (R8, R9 for 164) are listed under the Condition Values
Signaled heading.

Routines that signal condition values as a way of indicating the completion status
do so because these routines are returning actual data as the value of the routine.

As mentioned, the signaling of condition values occurs whenever a routine
generates an exception condition, regardless of how the routine returns its
completion status under normal circumstances.

Call Format to OpenVMS Routines 17-13

18

Basic Calling Standard Conventions

The HP OpenVMS Calling Standard defines the concepts and conventions used
by common languages to invoke routines and pass data between them. This
chapter briefly describes the following calling standard conventions:

e Register usage

e Stack usage

e Argument list

e Argument passing
¢ Returns

Section 18.12.1 briefly compares OpenVMS 164 register usage to that on
OpenVMS Alpha and OpenVMS VAX.

Refer to the HP OpenVMS Calling Standard for more detail on calling
conventions and for standards defining argument data types, descriptor formats,
and procedures for condition handling and stack unwinding.

18.1 Hardware Registers

Registers in the hardware provide the necessary temporary storage for
computation within OpenVMS software procedures. The number of registers
available and their usage vary between the OpenVMS Alpha, OpenVMS VAX,
and OpenVMS 164 systems.

18.1.1 Register Usage for OpenVMS VAX

The calling standard defines several VAX registers and their use, as listed in
Table 18-1.

Table 18-1 VAX Register Usage

Register Use

PC Program counter

SP Stack pointer

FP Current stack frame pointer

AP Argument pointer

R1 Environment value (when necessary)
RO, R1 Function return value registers

By definition, any called routine can use registers R2 through R11 for
computation and the AP register as a temporary register.

Basic Calling Standard Conventions 18-1

Basic Calling Standard Conventions
18.1 Hardware Registers

18.1.2 Register Usage for OpenVMS Alpha

On Alpha systems, there are two groups of 64-bit wide, general-purpose Alpha
hardware registers:

e Integer

¢ Floating point

The first 32 general-purpose registers support integer processing; the second 32
support floating-point operations.

18.1.2.1 Integer Registers

The calling standard defines the Alpha general-purpose integer registers and
their use, as listed in Table 18-2.

Table 18-2 Alpha Integer Registers

Register

Usage

RO

R1

R2-15

R16-21

R22-24

R25

R26

R27

R28

R29

R30

R31

Function value register. A standard call that returns a nonfloating-point
function must return the function result in this register. The register can be
modified by the called procedure without being saved and restored.

Conventional scratch register. In a standard call, this register can be
modified by the called procedure without being saved and restored.

Conventional saved registers. If a standard-conforming procedure modifies
one of these registers, the procedure must save and restore it.

Argument registers. Up to six nonfloating-point items of the argument list
are passed in these registers and the registers can be modified by the called
procedure without being saved and restored.

Conventional scratch registers. The registers can be modified by the called
procedure without being saved and restored.

Argument information (AI) register. The register describes the argument
list (see Section 18.4 for a detailed description) and can be modified by the
called procedure without being saved and restored.

Return address (RA) register. The return address must be passed in this
register and can be modified by the called procedure without being saved
and restored.

Procedure value (PV) register. The procedure value of the procedure being
called is passed in this register and can be modified by the called procedure
without being saved and restored.

Volatile scratch register. The contents of this register are always
unpredictable after any external transfer of control either to or from a
procedure.

Frame pointer (FP). This register defines which procedure is the current
procedure.

Stack pointer (SP). This register contains a pointer to the top (start) of the
current operating stack.

ReadAsZero/Sink (RZ). Hardware defined: binary zero as a source operand,
sink (no effect) as a result operand.

18-2 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.1 Hardware Registers

18.1.2.2 Floating-Point Registers

The calling standard defines the Alpha floating-point registers and their use, as
listed in Table 18-3.

Table 18-3 Alpha Floating-Point Registers

Register

Usage

FO

F1

F2-9

F10-15

F16-21

F22-30

F31

Floating-point function value register. In a standard call that returns a
floating-point result in a register, this register is used to return the real part
of the result. The register can be modified by the called procedure without
being saved and restored.

Floating-point function value register. In a standard call that returns a
complex floating-point result in registers, this register is used to return the
imaginary part of the result. This register can be modified by the called
procedure without being saved and restored.

Conventional saved registers. If a standard-conforming procedure modifies
one of these registers, the procedure must save and restore it.

Conventional scratch registers. The registers can be modified by the called
procedure without being saved and restored.

Argument registers. Up to six floating-point arguments can be passed by
value in these registers. These registers can be modified by the called
procedure without being saved and restored.

Conventional scratch registers. The registers can be modified by the called
procedure without being saved and restored.

ReadAsZero/Sink. Hardware defined: binary zero as a source operand, sink
(no effect) as a result operand.

18.1.3 Register Usage for OpenVMS 164

The Intel® Itanium® architecture defines 128 general purpose registers, 128
floating-point registers, 64 predicate registers, 8 branch registers, and up to

128 application registers. The large number of architectural registers enable
multiple computations to be performed without having to frequently spill and fill
intermediate data to memory.

The instruction pointer is a 64-bit register that points to the currently executing
instruction bundle.

This section describes the register conventions for OpenVMS 164.

OpenVMS 164 uses the following register types:

e General

e Floating-point

e Predicate

e Branch

e Application

Basic Calling Standard Conventions 18-3

Basic Calling Standard Conventions
18.1 Hardware Registers

18.1.3.1 Partitioning

Registers are partitioned into the following classes that define the way a register
can be used within a procedure:

Scratch registers — may be modified by a procedure call; the caller must save
these registers before a call if needed (caller save).

Preserved registers — must not be modified by a procedure call; the callee
must save and restore these registers if used (callee save). A procedure
using one of the preserved general registers must save and restore the
caller’s original contents, including the NaT bits associated with the registers,
without generating a NaT consumption fault.

One way to preserve a register is not to use it at all.

Automatic registers — saved and restored automatically by the hardware
call/return mechanism.

Constant or Read-only registers — contain a fixed value that cannot be
changed by the program.

Special registers — used in the calling standard call/return mechanism.

Global registers — shared across a set of cooperating routines as global static
storage that happens to be allocated in a register. (Details regarding the
dynamic lifetime of such storage are not addressed here.)

OpenVMS 164 further defines the way that static registers can be used between
routines:

Special registers — used in the calling standard call/return mechanism. (These
are the same as the set of special registers in the preceding list of registers
used within a procedure.)

Input registers — may be used to pass information into a procedure (in
addition to the normal stacked input registers).

Output registers — may be used to pass information back from a called
procedure to its caller (in addition to the normal return value registers).

Volatile registers — may not be used to pass information between procedures,
either as input or output.

18.1.3.2 164 General Register Usage
There are 128, 64-bit general-purpose registers (R0-R127) that are used to hold
values for integer and multimedia computations. Each of the 128 registers has
one additional NaT (Not a Thing) bit that is used to indicate whether the value
stored in the register is valid. Execution of 164 speculative instructions can result
in a register’s NaT bit being set. Register RO is read only and contains a value of
zero (0). Attempting to write to RO will cause a fault.

This standard defines the usage of the OpenVMS general registers as listed in
Table 18-4.

18-4 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.1 Hardware Registers

Table 18-4 164 General Register Usage

Register

Class

Usage

RO
R1

R2

R3

R4-R7

R8-R9

R10-R11

R12

R13
R14-R18

R19-R24

Constant

Special

Volatile

Scratch

Preserved

Scratch

Scratch

Special

Special
Volatile

Scratch

Always 0.

Global data pointer (GP). Designated to hold the address
of the currently addressable global data segment. Its use
is subject to the following conventions:

1. On entry to a procedure, GP is guaranteed valid for
that procedure.

2. At any direct procedure call, GP must be valid (for
the caller). This guarantees that an import stub can
access the caller’s linkage table.

3. Any procedure call (indirect or direct) may modify GP
unless the call is known to be local to the image.

4. At procedure return, GP must be valid (for the
returning procedure). This allows the compiler to
optimize calls known to be local (an exception to
convention 3).

The effect of these rules is that GP must be treated as a
scratch register at a point of call (that is, it must be saved
by the caller), and it must be preserved from entry to exit.

May not be used to pass information between procedures,
either as inputs or outputs.

May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control.

General-purpose preserved registers. Used for any value
that needs to be preserved across a procedure call.

May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control.

Return value. Can also be used as input (whether or
not the procedure has a return value), but not in any
additional ways.

May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control.

Memory stack pointer (SP). Holds the lowest address of
the current stack frame. At a call, the stack pointer must
point to a 0 mod 16 aligned area. The stack pointer is also
used to access any memory arguments upon entry to a
function. Except in the case of dynamic stack allocation,
code can use the stack pointer to reference stack items
without having to set up a frame pointer for this purpose.

Reserved as a thread pointer (TP).

May not be used to pass information between procedures,
either as inputs or outputs.

May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control.

(continued on next page)

Basic Calling Standard Conventions 18-5

Basic Calling Standard Conventions
18.1 Hardware Registers

Table 18-4 (Cont.) 164 General Register Usage

Register Class Usage
R25 Special Argument information (see Section 18.5.6).
R26-R31 Scratch May be used within and between procedures in any

mutually consistent combination of ways under explicit
user control.

INO-IN7 Automatic Stacked input registers. Code may allocate a register
stack frame of up to 96 registers with the ALLOC
instruction, and partition this frame into three regions:
input registers (INO, IN1, ...), local registers (LOCO, LOC1,
...), and output registers (OUTO, OUT1], ...). R32-R39
(INO-IN7) are used as incoming argument registers.
Arguments beyond these registers appear in memory.

LOCO0-LOC95 Automatic Stacked local registers. Code may allocate a register stack
frame of up to 96 registers with the ALLOC instruction,
and partition this frame into three regions: input registers
(INO, IN1, ...), local registers (LOCO, LOC1, ...), and output
registers (OUTO, OUT1, ...). LOC0-LOC95 are used for
local storage.

OUTo-0UT7 Scratch Stacked output registers. Code may allocate a register
stack frame of up to eight registers with the ALLOC
instruction, and partition this frame into three regions:
input registers (INO, IN1, ...), local registers (LOCO, LOC1,
...), and output registers (OUTO0, OUT1], ...). OUT0-OUT7
are used to pass the first eight arguments in calls.

18-6 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.1 Hardware Registers

18.1.3.3 164 Floating-Point Register Usage

There are 128, 82-bit floating-point registers (F0-F127) that are used for
floating-point computations. The first two registers, FO and F1, are read only
and read as +0.0 and +1.0, respectively. Instructions that write to FO or F1 will
fault.

This standard defines the usage of the OpenVMS floating-point registers as listed
in Table 18-5.

Table 18-5 164 Floating-Point Register Usage

Register Class Usage

Fo Constant Always 0.0.

F1 Constant Always 1.0.

F2-F5 Preserved Can be used for any value that needs to be preserved across

a procedure call. A procedure using one of the preserved
floating-point registers must save and restore the caller’s
original contents without generating a NaT consumption

fault.

F6-F7 Scratch May be used within and between procedures in any mutually
consistent combination of ways under explicit user control.

F8-F9 Scratch Argument/Return values. See 18.4 and 18.10 for the
OpenVMS specifications for use of these registers.

F10-F15 Scratch Argument values. See Section 18.4 for the OpenVMS

specifications for use of these registers.

F16-F31 Preserved Can be used for any value that needs to be preserved across
a procedure call. A procedure using one of the preserved
floating-point registers must save and restore the caller’s
original contents without generating a NaT consumption
fault.

F32-F127 Scratch Rotating registers or scratch registers.

Note

VAX floating-point data are never loaded or manipulated in the 164
floating-point registers. However, VAX floating-point values may be
converted to IEEE floating-point values, which are then manipulated in
the 164 floating-point registers.

18.1.3.4 164 Predicate Register Usage
Predicate registers are single-bit-wide registers used for controlling the execution
of predicated instructions. There are 64, one-bit predicate registers (P0-P63) that
control conditional execution of instructions and conditional branches. The first
register, PO, is read only and always reads true (1). The results of instructions
that write to PO are discarded.

This standard defines the usage of the OpenVMS predicate registers as listed in
Table 18-6.

Basic Calling Standard Conventions 18-7

Basic Calling Standard Conventions
18.1 Hardware Registers

Table 18-6 164 Predicate Register Usage

Register Class Usage
PO Constant Always 1.
P1-P5 Preserved Can be used for any predicate value that needs to be

preserved across a procedure call. A procedure using one
of the preserved predicate registers must save and restore the
caller’s original contents.

P6-P13 Scratch Can be used within a procedure as a scratch register.

P14-P15 Volatile Cannot be used to pass information between procedures,
either as input or output.

P16-P63 Preserved Rotating registers.

18.1.3.5 164 Branch Register Usage

Branch registers are used for making indirect branches. There are 8, 64-bit
branch registers (B0-B7) that are used to specify the target addresses of indirect
branches.

This standard defines the usage of the OpenVMS branch registers as listed in
Table 18-7.

Table 18-7 164 Branch Register Usage

Register Class Usage

BO Scratch Contains the return address on entry to a procedure;
otherwise a scratch register.

B1-B5 Preserved Can be used for branch target addresses that need to be
preserved across a procedure call.

B6-B7 Volatile May not be used to pass information between procedures,
either as input or output.

18.2 Stack Usage for Procedures

A stack is a last-in/first-out (LIFO) temporary storage area that the system
allocates for every user process. The system keeps information about each
routine call in the current image on the call stack. Then, each time you call a
routine, the system creates a structure on the stack, defined as the stack frame.

Stack frames and call frames are synonymous. A call frame for each procedure
has a specified format containing pointers and control information necessary
in the transfer of control between procedures of a call chain. Stack frames
(call frames) of standard calling procedures differ across Alpha, VAX, and 164
systems.

18.2.1 Stack Procedure Usage for VAX

Figure 18-1 shows the format of the stack frame created for the called procedure
by the CALLG or CALLS instruction. The stack frame (pointed to by SP) is in
the context of the current procedure, and call frames (pointed to by FP) are the
preserved stack frames of other active procedures in the call chain. The stack
frame (call frame) for each procedure in the chain contains the following:

e A pointer to the call frame of the previous procedure call, defined as the frame
pointer (FP).

18-8 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

Note that FP points at the condition handler longword at the beginning of
the previous call frame. Unless the procedure has a condition handler, this
longword contains all zeros. See the HP OpenVMS Calling Standard for more
information on condition handlers.

¢ The argument pointer (AP) of the previous routine call.

¢ The stored address (program count) of the point at which the routine was
called. Specifically, this address is the program count from the program
counter (PC) of the instruction following the call to the current routine.

e The contents of other general registers. Based on a register save mask
specified in the control information of the second longword, the system
restores the saved contents of the identified registers to the calling routine
when control returns to it.

Figure 18-1 Call Frame Generated by CALLG and CALLS Instructions

31 0
Condition handler (none=0) ((SP) :(FP)
SPA|S|0| Register save mask Processor status word
Argument pointer (AP)

Frame pointer (FP)

Program counter (PC)

Saved register (R2)

Saved register (R11)

ZK-5249A-GE

The contents of the stack located at addresses following the call frame belong to
the calling program; they should not be read or written by the called procedure,
except as specified in the argument list. The contents of the stack located at
addresses lower than the call frame (at FP) belong to interrupt and exception
routines; they are modified continually and unpredictably.

The called procedure allocates local storage by subtracting the required number of
bytes from the stack provided on entry. This local storage is freed automatically
by the RET instruction.

Basic Calling Standard Conventions 18-9

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

18.2.1.1 Calling Sequence

At the option of the calling procedure, the called procedure is invoked using the
CALLG or CALLS instruction, as follows:

CALLG arglst, procedure
CALLS argent, procedure

CALLS pushes the argument count argent onto the stack as a longword and sets
the argument pointer, AP, to the top of the stack. The complete sequence using
CALLS follows:

push argn

push argl
CALLS #n, procedure

18.2.1.2 Call Frames on Return

If the called procedure returns control to the calling procedure, control must
return to the instruction immediately following the CALLG or CALLS instruction.
Skip returns and GOTO returns are allowed only during stack unwind operations.

The called procedure returns control to the calling procedure by executing the
return instruction (RET).

Note that when a routine completes execution, the system uses the FP in the call
frame of the current procedure to locate the frame of the previous procedure. The
system then removes the stack frame of the current procedure from the stack.

18.2.2 Stack Procedure Usage for Alpha

On Alpha systems, when a standard procedure is called, the language compiler
creates a stack frame for that procedure. The stack format of a stack frame
procedure consists of a fixed part (the size of which is known at compile time) and
an optional variable part. There are two basic types of stack frames:

e Fixed size

e Variable size

18.2.2.1 Fixed-Size Stack Frame

Figure 18-2 illustrates the format of the stack frame for a procedure with a fixed
amount of stack. The SP register is the stack base pointer for a fixed-size stack.
In this case, R29 (FP) typically contains the address of the procedure descriptor
for the current procedure.

The optional parts of the stack frame are created only as required by the
particular procedure. As shown in Figure 18-2, the field names within brackets
are optional fields. The fixed temporary locations are optional sections of any
stack frame that contain language-specific locations required by the procedure
context of some high-level languages.

The register save area is a set of consecutive quadwords in which registers
that are saved and restored by the current procedure are stored. The register
save area (RSA) begins at the location pointed to by the RSA offset. The contents
of the return address register (R26) are always saved in the first register field
(SAVED_RETURN) of the register save area.

18-10 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

Use of the arguments passed in memory appending the end of the frame is
described in Section 18.4. For more detail concerning the fixed-size stack frame,
see the HP OpenVMS Calling Standard.

Figure 18-2 Fixed-Size Stack Frame Format

octaword aligned

:0 (from SP)

[Fixed temporary locations]

:RSA_OFFSET
(from SP)

Register save area

[Fixed temporary locations]

[Argument home area]

:SIZE (from SP)

[Arguments passed in memory]

ZK-4650A-GE

18.2.2.2 Variable-Size Stack Frame

Figure 18-3 illustrates the format of the stack frame for procedures with a
varying amount of stack when PDSC$V_BASE_REG_IS_FP is 1. In this case,
R29 (FP) contains the address that points to the base of the stack frame on the
stack. This frame-base quadword location contains the address of the current
procedure’s descriptor.

The optional parts of the stack frame are created as required by the particular
procedure. As shown in Figure 18-3, field names within brackets are optional
fields. The fixed temporary locations are optional sections of any stack frame
that contain language-specific locations required by the procedure context of some
high-level languages.

A compiler can use the stack temporary area pointed to by the SP base register
for fixed local variables, such as constant-sized data items and program state,

as well as for dynamically sized local variables. The stack temporary area may
also be used for dynamically sized items with a limited lifetime, for example, a
dynamically sized function result or string concatenation that cannot be directly

Basic Calling Standard Conventions 18-11

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

stored in a target variable. When a procedure uses this area, the compiler
must keep track of its base and reset SP to the base to reclaim storage used by
temporaries.

The register save area is a set of consecutive quadwords in which registers
saved and restored by the current procedure are stored. The register save area
(RSA) begins at the location pointed to by the offset PDSC$W_RSA_OFFSET. The
contents of the return address register (R26) is always saved in the first register
field (SAVED_RETURN) of the register save area.

Use of the arguments passed in memory appending the end of the frame is
described in Section 18.4. For more detail concerning the variable-size stack
frame, see the HP OpenVMS Calling Standard.

18-12 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

Figure 18-3 Variable-Size Stack Frame Format

octaword aligned

:0 (from SP)
[Stack temporary area]
:0 (from FP)
Procedure descriptor address
:8 (from FP)
[Fixed temporary locations]

:RSA_OFFSET

(from FP)

Register save area

[Fixed temporary locations]

[Argument home area]

:SIZE (from FP)

[Arguments passed in memory]

ZK-4651A-GE

18.2.3 Stack Procedure Usage for 164

The 164 general registers are organized as a logically infinite set of stack frames
that are allocated from a finite pool of physical registers.

Registers RO through R31 are called global or static registers and are not

part of the stacked registers. The stacked registers are numbered R32 up to

a user-configurable maximum of R127. A called procedure specifies the size

of its new stack frame using the alloc instruction. The procedure can use

this instruction to allocate up to 96 registers per frame shared among input,
output, and local values. When a call is made, the output registers of the calling
procedure are overlapped with the input registers of the called procedure, thereby
allowing parameters to be passed with no register copying or spilling. The

Basic Calling Standard Conventions 18-13

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

hardware renames physical registers so that the stacked registers are always
referenced in a procedure starting at R32.

Management of the register stack is handled by a hardware mechanism called
the Register Stack Engine (RSE). The RSE moves the contents of physical
registers between the general register file and memory without explicit program
intervention. This provides a programming model that looks like an unlimited
physical register stack to compilers; however, saving and restoring of registers
by the RSE may be costly, so compilers should still attempt to minimize register
usage.

18.2.3.1 Procedure Types
This calling standard defines the following basic types of procedures:

e Memory stack procedure—allocates a memory stack and may maintain part or
all of its caller’s context on that stack.

e Register stack procedure—allocates only a register stack and maintains its
caller’s context in registers.

e Null frame procedure—allocates neither a memory stack nor a register stack
and therefore preserves no context of its caller.

Note

Unlike an Alpha null frame procedure (see the HP OpenVMS Calling
Standard), an 164 null frame procedure does not execute in the context
of its caller because the 164 call instruction (br.call) changes the register
set so that only the caller’s output registers are accessible in the called
routine. The caller’s input and local registers cannot be accessed at all.
The call instruction also changes the previous frame state (PFS) of the
164 processor.

A compiler may choose which type of procedure to generate based on the
requirements of the procedure in question. A calling procedure does not need
to know what type of procedure it is calling.

Every memory stack procedure or register stack procedure must have an
associated unwind description (see the HP OpenVMS Calling Standard) that
describes what type of procedure it is and other procedure characteristics. A
null frame procedure may also have an associated unwind description. (If not, a
default description applies.) This data structure is used to interpret the call stack
at any given point in a thread’s execution. It is typically built at compile time
and usually is not accessed at run time except to support exception processing or
other rarely executed code.

Read access to unwind descriptions is provided through the procedural interfaces
described in the HP OpenVMS Calling Standard.

An unwind description for a procedure is provided for the following reasons:

e To make invocations of that procedure visible to and interpretable by facilities
such as the debugger, exception-handling system, and the unwinder.

e To ensure that the context of the caller saved by the called procedure can be
restored if an unwind occurs. (For a description of unwinding, see the HP
OpenVMS Calling Standard.)

18-14 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

18.2.3.2 Memory Stack

The memory stack is used for local dynamic storage, spilled registers, and
parameter passing. It is organized as a stack of procedure frames, beginning with
the main program’s frame at the base of the stack, and continuing towards the
top of the stack with nested procedure calls. At the top of the stack is the frame
for the currently active procedure. (There may be some system-dependent frames
at the base of the stack, prior to the main program’s frame, but an application
program may not make any assumptions about them.)

The memory stack begins at an address determined by the operating system, and
grows towards lower addresses in memory. The stack pointer register (SP) always
points to the lowest address in the current, topmost frame on the stack.

Each procedure creates its frame on entry by subtracting its frame size from
the stack pointer, and removes its frame from the stack on exit by restoring the
previous value of SP (usually by adding its frame size, but a procedure may save
the original value of SP when its frame size varies).

Because the register stack is also used for the same purposes as the memory
stack, not all procedures need a memory stack frame. However, every nonleaf
procedure must save at least its return link and the previous frame marker,
either on the register stack or on the memory stack. This ensures that there is
an invocation context for every nonleaf procedure on one or both of the stacks.

18.2.3.3 Procedure Frames

A memory stack procedure frame consists of five regions, as illustrated in
Figure 18-4.

Figure 18-4 Procedure Frame

:0 (from SP)
scratch area (16 bytes)
outgoing parameters
frame marker frame size
dynamic allocation
local storage
previous SP
VM-0959A-Al

These regions are:

e Scratch area. This 16-byte region is provided as scratch storage for
procedures that are called by the current procedure. Leaf procedures need
not allocate this region. A procedure may use the 16 bytes pointed to by the
stack pointer (SP) as scratch memory, but the contents of this area are not
preserved by a procedure call.

e QOutgoing parameters. Parameters in excess of those passed in registers are
stored in this region of the stack frame. A procedure accesses its incoming
parameters in the outgoing parameter region of its caller’s stack frame.

Basic Calling Standard Conventions 18-15

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

e Frame marker (optional). This region may contain information required
for unwinding through the stack (for example, a copy of the previous stack
pointer).

¢ Dynamic allocation. This variable-sized region (initially zero length) can be
created as needed.

e Local storage. A procedure can store local variables, temporaries, and spilled
registers in this region. For conventions affecting the layout of this area for
spilled registers, see the HP OpenVMS Calling Standard.

Whenever control is transferred to another procedure, the stack pointer must be
octaword aligned; at other times there is no stack alignment requirement. (A side
effect of this is that the in-memory portion of the argument list will start on an
octaword boundary.) During a procedure invocation, the SP can never be set to a
value higher than the SP at entry to that procedure invocation.

Note

A stack pointer that is not octaword aligned is valid only in a variable-
sized frame because the unwind descriptor MEM_STACK_F, see the HP
OpenVMS Calling Standard) for a fixed-size frame specifies the size in
16-byte units.

An application may not write to memory addresses lower than the stack pointer,
because this memory area may be written to asynchronously (for example, as a
result of exception processing).

Most procedures are expected to have a fixed-size frame, and the conventions
are biased in favor of this. A procedure with a fixed-size frame may reference
all regions of the frame with a compile-time constant offset relative to the stack
pointer. Compilers should determine the total size required for each region, and
pad the local storage area to make the total frame size a multiple of 16 bytes.
The procedure can then create the frame by subtracting an immediate constant
from the stack pointer in the prologue, and remove the frame by adding the same
immediate constant to the stack pointer in the epilogue.

If a procedure has a variable-size frame (for example, a C routine that calls the
alloca builtin), it should make a copy of SP to serve as a frame pointer before
subtracting the initial frame size from the stack pointer. The procedure can then
restore the previous value of the stack pointer in the epilogue without regard for
how much dynamic storage has been allocated within the frame. It can also use
the frame pointer to access the local storage region, because offsets from SP will
vary.

A frame pointer is not required if both of the following conditions are true:

e The procedure uses an equivalent method of addressing the local storage
region correctly before and after dynamic allocation.

e The code satisfies the conditions imposed by the stack unwind mechanism.

To expand a stack frame dynamically, the scratch area, outgoing parameters,
and frame marker regions (which are always located relative to the current
stack pointer), must be relocated to the new top of stack. If the scratch area and
outgoing parameter area are both clear of any live values, there is no actual work
involved in relocating these areas. For procedures with dynamically sized frames,
it is recommended that the previous stack pointer value be stored in a local

18-16 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

stacked general register instead of the frame marker, so that the frame marker is
also empty. If the previous stack pointer is stored in the frame marker, the code
must take care to ensure that the stack is always unwindable while the stack is
being expanded (see the HP OpenVMS Calling Standard).

Other issues depend on the compiler and the code being compiled. The standard
calling sequence does not define a maximum stack frame size, nor does it restrict
how a language system uses any stack frame region beyond those purposes
described here. For example, the outgoing parameter region can be used as
scratch storage whenever it is not needed for passing parameters.

18.2.3.4 Register Stack

General registers R32 through R127 form a register stack that is automatically
managed across procedure calls and returns. Each procedure frame on the
register stack is divided into two dynamically sized regions: one for input
parameters and local variables, and one for output parameters.

On a procedure call, the registers are automatically renamed by the hardware
so that the caller’s output registers form the base of the register stack frame of
the callee. On return, the registers are restored to the previous state, so that the
input and local registers are preserved across the call.

The ALLOC instruction is used at the beginning of a procedure to allocate

the input, local, and output regions; the sizes of these regions are supplied as
immediate operands. A procedure is not required to issue an ALLOC instruction
if it does not need to store any values in its register stack frame. It may write to
the first N stacked registers, where N is the value of the argument count passed
in the argument information (Al) register (see Section 18.5.6). It may not write to
any other stack register without first issuing an ALLOC instruction.

Figure 18-5 illustrates the operation of the register stack across an example
procedure call. In this example, the caller allocates eight input, twelve local, and
four output registers; the callee allocates four input, six local, and five output
registers with the following instruction:

ALLOC R36=rspfs, 4, 6, 5, 0

The actual registers to which the stacking registers are physically mapped are
not directly addressable by the application software.

18.2.3.4.1 Input and Local Registers The hardware makes no distinction
between input and local registers. The caller’s output registers automatically
become the callee’s register stack frame on a procedure call, with all registers
initially allocated as output registers. An ALLOC instruction may increase or
decrease the total size of the register stack frame, and may adjust the boundary
between the input and local region and the output region.

The software conventions specify that up to eight general registers are used for
parameter passing. Any registers in the input and local region beyond those eight
may be allocated for use as preserved locals. Floating-point parameters may
produce holes in the parameter list that is passed in the general registers; those
unused input registers may also be used for preserved locals.

The caller’s output registers do not need to be preserved for the caller. Once an
input parameter is no longer needed, or has been copied elsewhere, that register
may be reused for any other purpose within the procedure.

Basic Calling Standard Conventions 18-17

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

Figure 18-5 Operation of the Register Stack

R32 R40 R52 R56
Input Local Output | Caller’s frame

INO LOCo ouTo

R32 R36
Callee’s frame before ALLOC Output
ouTo
R32 R36 R42 R47
Callee’s frame after ALLOC Input Local Output

INO LOCO ouTo

VM-0958A-Al

18.2.3.4.2 Output Registers Up to eight output registers are used for passing
parameters. If a procedure call requires fewer than eight general registers for
its parameters, the calling procedure does not need to allocate more than are
needed. If the called procedure expects more parameters, it will allocate extra
input registers; these registers will be uninitialized.

A procedure may also allocate more than eight registers in the output region.
While the extra registers may not be used for passing parameters, they can be
used as extra scratch registers. On a procedure call, they will show up in the
called procedure’s output area as excess registers, and may be modified by that
procedure. The called procedure may also allocate few enough total registers

in its stack frame that the top of the called procedure’s frame is lower than the
caller’s top-of-frame, but those registers will become available again when control

returns to the caller.

18.2.3.4.3 Rotating Registers A subset of the registers in the procedure frame
may be designated as rotating registers. The rotating register region always
starts with R32, and may be any multiple of eight registers in number, up to a
maximum of 96 rotating registers. The renaming is under control of the Register

Rename Base (RRB).

If the rotating registers include any or all of the output registers, software must
be careful when using the output registers for passing parameters, because a non-
zero RRB will change the virtual register numbers that are part of the output
region. In general, software should ensure either that the rotating region does
not overlap the output region, or that the RRB is cleared to zero before setting

output parameter registers.

18-18 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.2 Stack Usage for Procedures

18.2.3.4.4 Frame Markers The current application-visible state of the register
stack is stored in an architecturally inaccessible register called the current frame
marker. On a procedure call, this register is automatically saved by copying it to
an application register, the previous function state (AR.PFS). The current frame
marker is modified to describe a new stack frame whose input and local area is
initially zero size, and whose output area is equal in size to the previous output
area. On return, the previous frame state register is used to restore the current
frame marker to its earlier value, and the base of the register stack is adjusted
accordingly.

It is the responsibility of a procedure to save the previous function state register
before issuing any procedure calls of its own, and to restore it before returning.

18.2.3.4.5 Backing Store for Register Stack When the depth of the procedure
call stack exceeds the capacity of the physical register file, the hardware frees
physical registers by saving them into a memory stack. This backing store is
distinct from the memory stack described in Section 18.2.3.2.

As returns unwind the procedure call stack, the hardware also restores
previously-saved physical registers from the backing store.

The operation of this register stack engine (RSE) is mostly transparent to
application software. While the RSE is running, application software may not
examine the contents of the backing store, and may not make any assumptions
about how much of the register stack is still in physical registers or in the backing
store. In order to examine previous stack frames, application software must
synchronize the RSE with the FLUSHRS instruction. Synchronizing the RSE
forces all stack frames up to, but not including, the current frame to be saved in
backing store, allowing the software to examine the contents of the backing store
without asynchronous operations modifying the memory. Modifications to the
backing store require setting the RSE to enforced lazy mode after synchronizing
it, which prevents the RSE from doing any operations other than those required
by calls and returns. The procedure for synchronizing the RSE and setting the
mode is described in the Intel® Itanium® Software Conventions and Runtime
Architecture Guide.

The backing store grows towards higher addresses. The top of the stack, which
corresponds to the top of the previous procedure frame, is available in the Backing
Store Pointer (BSP) application register. The BSP must always point to a valid
backing store address, because the operating system may need to start the RSE
to process an exception.

Backing store overflow is automatically detected by the OpenVMS operating
system, which will either extend the backing store to allow continued operation or
will raise an exception. Unlike for the memory stack (see Section 18.2.3.2), there
are no specific rules or requirements that must be satisfied to facilitate detection
of backing store overflow.

A NaT collection register is stored into the backing store following each group
of 63 physical registers. The NaT bit of each register stored is shifted into

the collection register. When the BSP reaches the quadword just before a
64-quadword boundary, the RSE stores the collection register. Software can
determine the position of the NaT collection registers in the backing store by
examining the memory address. This process is described in greater detail in the
Intel® Itanium® Architecture Software Developer’s Manual.

Basic Calling Standard Conventions 18-19

Basic Calling Standard Conventions
18.3 Procedure Representation

18.3 Procedure Representation
A procedure value is an address value that represents a procedure.

On VAX systems, the procedure value is the address of the procedure entry mask
that begins the actual code sequence of the procedure.

On Alpha systems, the procedure value in R27 is the address of the procedure
descriptor that describes that procedure. So any OpenVMS Alpha procedure can
be invoked by calling the stored address at offset 8 from the procedure descriptor
(PDSC) starting address (procedure value).

For OpenVMS 164, a procedure value is the address of a function descriptor,
which consists of at least two quadword fields: the address of the entry point and
the GP value required by that procedure.

Every procedure whose address is taken, or might be taken, must have a unique
official function descriptor. The address of this function descriptor is used for
the procedure value that is passed as a parameter or when two procedure values
are compared. For other purposes, additional local function descriptors may
be used for efficiency (notably in images other than the image that contains the
procedure).

An official function descriptor for any procedure which might be callable from

a VAX or Alpha translated image must include signature information. A local
function descriptor used to call a procedure that might be part of a VAX or Alpha
translated image must also include additional fields to facilitate the call. Both of
these cases are described in the HP OpenVMS Calling Standard.

A function descriptor for a bound procedure uses a special pseudo-GP value and
includes an uplevel frame pointer. Such function descriptors are described in HP
OpenVMS Calling Standard.

The several kinds of function descriptors are summarized in Table 18-8.

Table 18-8 Summary of Function Descriptor Kinds

Size
Kinds and Roles (Quadwords)
Local function descriptor without translated image support 2
Local function descriptor with translated image support (jacket function 4

descriptor)
Official function descriptor without translated image support
Official function descriptor with translated image support

Bound function descriptor

Note that the different kinds of function descriptor are not self-identifying (that
is, they do not contain any form of tag or kind field).

18.4 Argument List

The calling standard defines a data structure called the argument list. An
argument list is a sequence of locations in memory that represents a routine
parameter list and possibly includes a function value. You use an argument list
to pass information to a routine and receive results.

18-20 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.4 Argument List

On VAX systems, the first longword in an argument list (see Figure 18-6) stores
the number of arguments (the argument count, n) as an unsigned integer value.
The maximum argument count is 255. The remaining 24 bits of the first longword
are reserved for use by HP and must be 0.

Both integer and floating-point values can be an argument passed in the
argument list. Note that a 64-bit floating-point argument counts as 2 longword
arguments in the list.

Figure 18-6 Structure of a VAX Argument List

31 0
Must be 0 Pc%gl?rw%r]w; :arglst

argl

arg2

argn
ZK-4648A-GE

On Alpha systems, arguments are quadwords, and the calling program passes
arguments in an argument item sequence. Each quadword in the sequence
specifies a single argument. The argument item sequence is formed using R16-21
or F16-21 (a register for each argument). The argument item sequence can have
a mix of integer and floating-point items that use both register types but must
not repeat the same number. For example, an argument list might use R16,
R17, F18, and R19. If there are more than six arguments, the argument items
overflow to the end of the stack, as shown in Figure 18-7.

The calling procedure must pass to the called procedure information about the
argument list. For high-level languages, this is performed by the language
processor. In the argument information (AI) register (R25), the quadword format
is the structure shown in Figure 18-8. The Al register contains the argument
count in the first byte. Table 18-9 describes the argument information fields in
detail.

Basic Calling Standard Conventions 18-21

Basic Calling Standard Conventions

18.4 Argument List

Figure 18-7 Alpha Argument List Format

Argument Item Sequence

Alpha Registers
R16 (arg1)
R17 (arg2)
R18 (arg3)
R19 (arg4)
R20 (arg5) End of stack frame
R21 (arg6)) arg?
T A e
R25 (Al) Arg Count
argn
T] ArgumentsTpassed in
memory for more than
R30 (SP) six arguments
F16 (arg1)
F17 (arg2)
F18 (arg3)
F19 (arg4)
F20 (arg5)
F21 (arg6)
ZK-5273A-GE
Figure 18-8 Argument Information (Al) Register (R25) Format
64 25 7 0
Must be 0 ARG_REG_INFO
|
ARG_COUNT
ZK-6510A-GE

18-22 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.4 Argument List

Table 18-9 Contents of the Argument Information (Al) Register (Alpha only)

Field Name

Contents

AI$B_ARG_COUNT Unsigned byte <7:0> that specifies the number of 64-bit argument items in the

argument list (known as the argument count).

AI$V_ARG_REG_INFO An 18-bit vector field <25:8> divided into 6 groups of 3 bits that correspond to

Bits <63:26>

the 6 arguments passed in registers. These groups describe how each of the first
six arguments are passed in registers with the first group <10:8> describing the
first argument. The encoding for each group for the argument register usage

follows:

Value Name Meaning

0 AT$K_AR_I64 64-bit or 32-bit sign-extended to 64-bit argument
passed in an integer register or
Argument is not present.

1 AI$K AR _FF VAX F_floating argument passed in a floating
register.

2 AI$K AR FD VAX D_floating argument passed in a floating
register.

3 AI$K_AR_FG VAX G_floating argument passed in a floating
register.

4 AI$K_AR_FS IEEE S_floating argument passed in a floating
register.

5 AT$K_AR_FT IEEE T floating argument passed in a floating
register.

6,7 Reserved.

Reserved and must be 0.

For 164, parameters are passed in a combination of general registers, floating-
point registers, and memory, as illustrated in Figure 18-9.

The parameter list is formed by placing each individual parameter into fixed-
size elements of the parameter list, referred to as parameter slots. Each
parameter slot is 64 bits wide; parameters larger than 64 bits are placed in as
many consecutive parameter slots as are needed to contain the entire parameter.
The rules for allocation and alignment of parameter slots are described in
Section 18.5.4.1.

The contents of the first eight parameter slots are always passed in registers,
while the remaining parameters are always passed on the memory stack,
beginning at the caller’s stack pointer plus 16 bytes. The caller uses up to eight
of the registers in the output region of its register stack for integer and VAX
floating-point parameters, and up to eight floating-point registers for IEEE
floating-point parameters. The maximum number of registers used is eight.

Basic Calling Standard Conventions 18-23

Basic Calling Standard Conventions
18.4 Argument List

Figure 18-9 Parameter Passing in Registers and Memory

Parameter Slots

slotO | slot1 | slot2 | slot3 | slot4 | slot5 | slot6 | slot7 | slot8 | slot9 |slot 10 | slot 11

IRERAERA

OUTO | OUT1 | OUT2 | OUT3|0UT4 | OUT5 |OUT6 | OUT7

=

Flodting Registers

F8 FO | F10 | F11 | F12 | F13 | F14 | Fi5

Memory Stack

SP +8 +16 +24 432 +40 +48

VM-0962A-Al

To accommodate variable argument lists in the C language, there is a fixed
correspondence between parameter slots; the first parameter slot is always in
either the first general output register or the first floating-point register (never
both), the second parameter slot is always in the second general output register or
the second floating-point register (never both), and so on. This allows a procedure
to spill its register parameters easily to memory to form the argument home
area before stepping through the parameter list with a pointer. The Argument
Information register (AI) makes this possible, as explained in Section 18.5.6.

A procedure can assume that the NaT bits on its incoming general register
arguments are clear, and that the incoming floating-point register arguments

are not NaTVals. A procedure making a call must ensure only that registers
containing actual parameters are clear of NaT bits or NaTVals; registers not used
for actual parameters are undefined.

18.5 Argument Passing Mechanisms

Each high-level language supported by OpenVMS provides a mechanism for
passing arguments to a procedure. The specifics of the mechanism and the
terminology used, however, vary from one language to another. For specific
information, refer to the appropriate high-level language user’s guide.

OpenVMS system routines are external procedures that accept arguments. The
argument list contains the parameters that are passed to the routine. Depending
on the passing mechanisms for these parameters, the forms of the arguments
contained in the argument list vary. As shown in Figures 18-10 and 18-11,
argument entries labeled argl through argn are the actual parameters, which
can be any of the following addresses or value:

¢ An uninterpreted 32-bit value on VAX or 64-bit value on Alpha and 164
systems is passed by value.

¢ An address of a data value is passed by reference.

18-24 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

e An address of a descriptor that contains a pointer to a data value is passed by
descriptor (for example, a string might be the data value).

Figure 18-10 Alpha Procedure Argument-Passing Mechanisms

Argument Passed by Value
Argument ltem Sequence

R16/F16 (arg1 actual value)

R17/F17 (arg2 actual value)

R18/F18 (arg3 actual value)

argn actual value

Argument Passed by Reference
Argument ltem Sequence

R16/F16 arg1 pointer

R17/F17 arg2 pointer
Data
R18/F18 arg3 pointer Actual value
argn pointer
Argument Passed by Descriptor
Argument ltem Sequence
R16/F16 arg1 pointer to DSC
R17/F17 arg2 pointer to DSC Descriptor
R18/F18 arg3 pointer to DSC Class D Type Length e
Pointer I
Data
argn pointer to DSC
D C B A le—!
H G F E
ZK-5248A-GE

Basic Calling Standard Conventions 18-25

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

Figure 18-11 VAX Procedure Argument-Passing Mechanisms

) Argument Passed by Value
Argument List

n | :(AP)
argi
arg2
Actual value
argn
Argument Passed by Reference
n | :(AP)
arg1
arg2
Pointer to
actual value Data J
~ : ~ Actual Value
argn
Data (bytes)
Argument Passed by Descriptor A
n | «(AP) B
arg1 C
D
arg2 J Descriptor J Length
Pointer to Class | D Type Length E
descriptor w g
A . A Pointer E
argn G
H

Note: arg1, arg2, and argn can be passed by value,
by reference, or by descriptorin any of these examples.

:(AP) = Argument pointer
n = Number of arguments

ZK-1962-GE

OpenVMS programming reference manuals provide a description of each
OpenVMS system routine that indicates how each argument is to be passed.
Phrases such as “an address” and “address of a character string descriptor”
identify reference and descriptor arguments, respectively. Terms like “Boolean

18-26 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

»” &« ” &«

value,” “number,” “value,” and “mask” indicate an argument that is passed by

value.

18.5.1 Passing Arguments by Value

When your program passes an argument using the by value mechanism, the
argument list entry contains either the actual uninterpreted 32-bit VAX value

or a 64-bit Alpha or 164 value (zero- or sign-extended) of the argument. For
example, to pass the constant 100 by value, the calling program puts 100 directly
in the argument list or sequence. For more information about passing 64-bit
Alpha and 164 values, refer to Chapter 11.

All high-level languages (except C) require you to specify the by-value mechanism
explicitly when you call a procedure that accepts an argument by value. For
example, FORTRAN uses the % VAL built-in function, while COBOL uses the BY
VALUE qualifier on the CALL [USING] statement.

A FORTRAN program calls a procedure using the by-value mechanism as follows:

INCLUDE ' ($SSDEF)’
CALL LIB$STOP (%VAL(SS$_ INTOVF))

A BLISS program calls this procedure as follows:
LIB$SIGNAL (SS$_INTOVF)
The equivalent VAX MACRO code is as follows:

PUSHL #5S$_INTOVF ; Push longword by value
CALLS #1,G"LIBSSIGNAL ; Call LIB$SIGNAL

A C language program calls a procedure using the by-value mechanism as follows:

#include <starlet.h> /* Declare the function*/

enum cluster0

completion, breakdown, beginning
} event;

int status;
event = completion;

status = sys$setef(event); /* Set event flag */

18.5.2 Passing Arguments by Reference

When your program passes arguments using the by reference mechanism, the
argument list entry contains the address of the location that contains the value
of the argument. For example, if variable x is allocated at location 1000, the
argument list entry will contain 1000, the address of the value of x.

On Alpha processors and 164, the address is sign-extended from 32 bits to 64 bits.

Most languages (but not C) pass scalar data by reference by default. Therefore, if
you simply specify x in the CALL statement or function invocation, the language
automatically passes the value stored at the location allocated to x to the
OpenVMS system routine.

A VAX BLISS program calls a procedure using the by-reference mechanism as
follows:

LIB$FLT UNDER (%REF(1))

Basic Calling Standard Conventions 18-27

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

The equivalent VAX MACRO code is as follows:

ONE: .LONG 1 ; Longword value 1

PUSHAL ONE ; Push address of longword
CALLS #l,GALIB$FLT_UNDER ; Call LIB$FLT_UNDER

A C language program calls a procedure using the by-reference mechanism as
follows:

/* This program shows how to call system service SYSSREADEF. */

#include <ssdef.h>
#include <stdio.h>

#include <starlet.h> /* Declare the function */
main(void)
{
/* Longword that receives the status *
* of the event flag cluster */
unsigned cluster status;
int return status; /* Status: SYSS$READEF */

/* Argument values for SYSSREADEF */
enum cluster0

{
completion, breakdown, beginning
} event;
event = completion; /* Event flag in cluster 0 */
/* Obtain status of cluster 0. *
* Pass value of event and *
* address of cluster status. */

return status = SYSSREADEF(event, &cluster status);

/* Check for successful call */
if (return status != SSSWASCLR && return status != SSSWASSSET)

/* Handle the error here. */
}
else
/* Check bits of interest in cluster_ status here. */
}

18-28 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

18.5.3 Passing Arguments by Descriptor

When a procedure specifies that an argument is passed by descriptor, the
argument list entry must contain the address of a descriptor for the argument.
For more information about OpenVMS Alpha 64-bit descriptors, refer to Chapter
11.

On Alpha and 164 processors, the address is sign-extended from 32 bits to 64 bits.

This mechanism is used to pass more complicated data. For both Alpha and VAX
systems, a descriptor includes at least the following fields:

Symbol Description

DSC$W_LENGTH Length of data (or DSC$W_MAXSTRLEN, maximum length, for
varying strings)

DSC$B_DTYPE Data type
DSC$B_CLASS Descriptor class code
DSC$A_POINTER Address at which the data begins

The HP OpenVMS Calling Standard describes these fields in greater detail.

OpenVMS high-level languages include extensions for passing arguments by
descriptor. When you specify by descriptor in these languages, the compiler
creates the descriptor, defines its fields, and passes the address of the descriptor
to the OpenVMS system routine. In some languages, by descriptor is the default
passing mechanism for certain types of arguments, such as character strings. For
example, the default mechanism for passing strings in BASIC is by descriptor.

100 COMMON STRING GREETING = 30
200 CALL LIBSPUT SCREEN(GREETING)

The default mechanism for passing strings in COBOL, however, is by reference.

Therefore, when passing a string argument to an OpenVMS system routine from
a COBOL program, you must specify BY DESCRIPTOR for the string argument
in the CALL statement.

CALL LIB$PUT OUTPUT USING BY DESCRIPTOR GREETING

In VAX MACRO or BLISS, you must define the descriptor’s fields explicitly
and push its address onto the stack. Following is the VAX MACRO code that
corresponds to the previous examples.

MSGDSC: .WORD LEN
.BYTE DSC$K DTYPE T
.BYTE DSC$K CLASS S
.ADDRESS MSG -

DESCRIPTOR: DSC$W LENGTH
DSC$B DTYPE -
DSC$B CLASS

DSC$A_POINTER

~e ~e ~eo =eo

MSG: .ASCII/Hello/ ; String itself

LEN = .-MSG ; Define the length of the string
.ENTRY EXI,"M<>
PUSHAQ MSGDSC ; Push address of descriptor
CALLS #1,G"LIB$PUT OUTPUT ; Output the string
RET B
.END EX1

Basic Calling Standard Conventions 18-29

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

The equivalent BLISS code looks like this:

MODULE BLISS1 (MAIN = BLISSI, ! Example of calling LIBSPUT OUTPUT
IDENT = '1-001',
ADDRESSING MODE(EXTERNAL = GENERAL)) =

BEGIN

EXTERNAL ROUTINE
LIBS$SSTOP, ! Stop execution via signaling
LIBSPUT OUTPUT; ! Put a line to SYSSOUTPUT

FORWARD ROUTINE
BLISS1 : NOVALUE;

LIBRARY ’'SYSSLIBRARY:STARLET.L32';

ROUTINE BLISS1 ! Routine
:+ NOVALUE =

BEGIN
1+
! Allocate the necessary local storage.
| =

LOCAL
STATUS, ! Return status
MSG_DESC : BLOCK [8, BYTE]; ! Message descriptor
BIND

MSG = UPLIT('HELLO');

1+

! Initialize the string descriptor.

| =
MSG_DESC [DSC$B_CLASS] = DSC$K_CLASS S;
MSG_DESC [DSCSB_DTYPE] DSC$K_DTYPE T;
MSG_DESC [DSC$W_LENGTH] =5;
MSG_DESC [DSCSA POINTER] = MSG;

I+
! Put out the string. Test the return status.
! If it is not a success, then signal the RMS error.
| -
STATUS = LIB$PUT_OUTPUT(MSG_DESC);
IF NOT .STATUS THEN LIBSSTOP(.STATUS);

END; ! End of routine BLISS1
END ! End of module BLISS1
ELUDOM
A C language program calls a procedure using the by-descriptor mechanism as
follows:
/* This program shows a call to system service SYS$SETPRN. */

#include <ssdef.h>
#include <stdio.h>

/* Define structures for descriptors */
#include <descrip.h>

#include starlet.h /* Declare the function */

int main(void)

{
int ret; /* Define return status of SYSSSETPRN */

struct dscS$descriptor s name desc; /* Name the descriptor */

char *name = "NEWPROC"; /* Define new process name */

name_desc.dsc$w_length = strlen(name); /* Length of name without *
* null terminator */

18-30 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

name desc.dsc$a pointer = name; /* Put address of shortened string *
* in descriptor

name_desc.dsc$b_class

name desc.dsc$b_dtype

ret = sys$setprn(&name desc);

if (ret != SS$_NORMAL) /* Test return status
fprintf(stderr, "Failed to set process name\n"),

exit(ret);

}

18.5.4 Parameter Passing Mechanisms for 164

*/

DSC$K_CLASS S; /* String descriptor class */
DSC$K_DTYPE T; /* Data type: ASCII string */

*/

The parameter passing mechanisms for 164 are generally the same as for Alpha
and are included here for completeness. Two notable difference between Alpha
and 164 are that the first six parameter slots are passed in registers for Alpha,
while for 164 the first eight parameter slots are passed in registers; and that 164
passes VAX floating-point parameters in general registers.

18.5.4.1 Allocation of Parameter Slots

Parameter slots are allocated for each parameter, based on the parameter passing
mechanism, type, and size, treating each parameter in sequence, from left to
right. The rules for allocating parameter slots and placing the contents within
the slot are given in Table 18-10. The allocation column of the table indicates

how parameter slots are allocated to each type of parameter.

Table 18-10 Rules for Allocating Parameter Slots

Type Size (Bits) Number of Slots
Integer, small set 1-64 1
Address/pointer (including all types passed by reference or 64 1
descriptor)

IEEE single-precision floating-point (S_floating) 32 1

IEEE single-precision floating-point complex (S_floating) 64 2

IEEE double-precision floating-point (T_floating) 64 1

IEEE double-precision floating-point complex (T_floating) 128 2

IEEE quad-precision floating-point (X_floating) 64 (by reference) 1

IEEE quad-precision floating-point complex (X_floating) 64 (by reference) 1
Aggregates (noncomplex) any (size+63)/64
VAX single-precision floating-point (F_floating) 32 1

VAX single-precision floating-point complex (F_floating) 64 2

VAX double-precision floating-point (D_ & G_floating) 64 1

VAX double-precision floating-point complex (D_ & G_floating) 128 2

Basic Calling Standard Conventions 18-31

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

Note

These rules are applied based on the type of the parameter after any
type-promotion rules specified by the language have been applied. For
example, a short integer passed without a function prototype in C is
promoted to the int type, and is then passed according to the rules for the
int type.

OpenVMS does not support passing the 164 double-precision extended floating-
point type (__float80), although that type may be used from time to time in code
generation sequences.

This placement policy does not ensure that parameters greater than 64 bits
in size will fall on a natural alignment boundary if passed in memory. Such
parameters may need to be copied by the called procedure into an aligned
temporary prior to use, or accessed in a way that does not depend on natural
alignment.

18.5.5 Normal Register Parameters

The first eight parameter slots (64 bytes) are passed in registers, according to the
rules in this section.

These eight argument slots are associated, one-to-one, with the stacked
output general registers, as shown in Figure 18-9.

Integral scalar parameters, (including addresses and pointers), VAX floating-
point parameters, and aggregate parameters in these slots are passed only in
the corresponding output general registers.

Aggregate parameters in these slots are passed by value only in the
corresponding output general registers. The aggregate is treated as a
sequence of 64-bit integral values, with each value allocated into the next
available slot in aggregate memory address order. If the size of the aggregate
is not an even multiple of 64 bits, then the unused bits in the last slot are
undefined.

If an aggregate or VAX floating-point complex parameter straddles the
boundary between slot 7 and slot 8, the part that lies within the first eight
slots is passed in general registers, and the remainder is passed in memory,
as described in Table 18-11.

Complex values (other than IEEE quad-precision floating-point complex), in
those languages that include complex types, are passed as a pair of floating-
point values (either single-precision or double-precision as appropriate). It
is possible for the first of the two floating-point values in a complex value
to occupy the last output register slot; in this case, the second floating-point
value is passed in memory. IEEE quad-precision floating-point complex
values are passed by reference.

IEEE single-precision and double-precision floating-point scalar parameters
are passed in the corresponding floating-point register slot. IEEE quad-
precision floating point scalar parameters are passed by reference in the
corresponding output general registers.

18-32 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

When IEEE floating-point parameters are passed in floating-point registers, they
are passed in the register format, rounded to the appropriate precision. They
are never passed in the general registers unless part of an aggregate, in which
case they are passed in the aggregate memory format. When VAX floating-point
parameters are passed in general registers, they are passed in memory format.

Parameters allocated beyond the eighth parameter slot are never passed in
registers.

Unsigned integral (except unsigned 32-bit), set, and VAX floating-point values
passed in registers are zero-filled; signed integral values as well as unsigned
32-bit integral values are sign-extended to 64 bits. For all other types passed in
the general registers, unused bits are undefined.

Note

Bit 31 is replicated in bits 32-63, even for unsigned 32-bit integers.

The rules contained in this section are summarized in Tables 18-11 and 18-12.

Table 18-11 Data Types and the Unused Bits in Passed Data

Register Memory

Data Size Extension Extension
Data Type (OpenVMS Names) Type Designator’ (bytes) Type Type
Byte logical DSC$K_DTYPE_BU 1 Zero64 Zero64
Word logical DSC$K_DTYPE WU 2 Zero64 Zero64
Longword logical DSC$K_DTYPE_LU 4 Sign64 Sign64
Quadword logical DSC$K_DTYPE_QU 8 Data64 Data64
Byte integer DSC$K_DTYPE_B 1 Sign64 Sign64
Word integer DSC$K_DTYPE_W 2 Sign64 Sign64
Longword integer DSC$K_DTYPE_L 4 Sign64 Sign64
Quadword integer DSC$K_DTYPE_Q 8 Data64 Data64
F_floating DSC$K_DTYPE_F 4 VAXF64 Data32
D_floating DSC$K_DTYPE_D 8 VAXDG64 Data64
G_floating DSC$K_DTYPE_G 8 VAXDG64 Data64
F_floating complex DSC$K_DTYPE_FC 24 2*VAXF64 2xData32
D_floating complex DSC$K_DTYPE_DC 248 2*VAXDG64 2+Data64
G_floating complex DSC$K_DTYPE_GC 2% 8 2*VAXDG64 2+Data64
S_floating DSC$K_DTYPE_FS 4 Hard Data32
T floating DSC$K_DTYPE_FT 8 Hard Data64
X _floating DSC$K_DTYPE_FX 16 N/A N/A
S_floating complex DSC$K_DTYPE_FSC 2% 4 2+Hard 2+Data32
T floating complex DSC$K_DTYPE_FTC 2 %8 2xHard 2xData64
X _floating complex DSC$K_DTYPE_FXC 2% 16 N/A N/A

10penVMS also provides symbols of the form DSC64$K_DTYPE_xxx for each type designator.

(continued on next page)

Basic Calling Standard Conventions 18-33

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

Table 18-11 (Cont.) Data Types and the Unused Bits in Passed Data

Register Memory
Data Size Extension Extension
Data Type (OpenVMS Names) Type Designator’ (bytes) Type Type
Small structures of 8 bytes or less N/A <8 Nostd Nostd
Small arrays of 8 bytes or less N/A <8 Nostd Nostd
32-bit address N/A 4 Sign64 Sign64
64-bit address N/A 8 Data64 Data64

10penVMS also provides symbols of the form DSC64$K_DTYPE_xxx for each type designator.

Table 18-12 contains the defined meanings for the memory extension type
symbols used in Table 18-11.

Table 18-12 Extension Type Codes

Sign Extension

Type Defined Function

Sign64 Sign-extended to 64 bits.

Zero64 Zero-extended to 64 bits.

Data32 Data is 32 bits. The state of bits <63:32> is unpredictable.

2xData32 Two single-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as Data32).

Data64 Data is 64 bits.

2+Data64 Two double-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as Data64).

VAXF64 Data is 64 bits. Low-order 32 bits are the same as the F_floating
memory format and the high-order 32 bits are zero. (Used only in a
general register, never in a floating-point register.)

VAXDG64 Data is 64 bits. Uses the corresponding D_floating or G_floating
memory format. (Used only in a general register, never in a floating-
point register.)

2*VAXF64 Two single-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as VAXF64).

2*VAXDG64 Two double-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as VAXDG64).

Hard Passed in the layout defined by the hardware SRM.

2+Hard Two floating-point parts of the complex value are stored in a pair of
registers as independent floating-point values (each handled as Hard).

Nostd State of all high-order bits not occupied by the data is unpredictable

across a call or return.

18.5.6 Argument Information (Al) Register

In addition to the normal parameters, an implicit argument information value
is passed in register R25, the Argument Information (AI) register. This value is
shown in Figure 18-12. Note that 164 passes eight arguments in registers, while
Alpha passes six arguments in registers.

18-34 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

Figure 18-12 Argument Information Register Representation

)) Argument
Must Be Zero Argument Register Information Count
<63:32> <31:8> <7:0>

VM-1006A-Al

Argument Count is an unsigned byte that specifies the number of 64-bit argument
slots used for the argument list. (Note that single- and double-precision complex
values use two slots, which is reflected in this count.)

Argument Register Information is a contiguous group of eight 3-bit fields that
correspond to the eight arguments passed in registers. The first group, bits
<10:8>, describes the first argument; the second group, bits <13:11>, describes

the second argument; and so on. The encoding for each group is described in
Table 18-13.

Basic Calling Standard Conventions 18-35

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

Table 18-13 Argument Information Register Codes

OpenVMS

Value Name Meaning

0 AI$K AR _164 64-bit or 32-bit sign-extended to 64-bit argument passed in an
integer register (including addresses)
or
Argument is not present

1 AI$K AR _FF F_floating (also known as VAX single-precision floating-point)
argument passed in a general register

2 AI$K_AR_FD D_floating (also known as VAX double-precision floating-point)
argument passed in a general register

3 AI$K_AR_FG G_floating (also known as VAX double-precision floating-point)
argument passed in a general register

4 AI$K_AR_FS S_floating (also known as IEEE single-precision floating-point)
argument passed in a floating-point register

5 AI$K AR FT T _floating (also known as IEEE double-precision floating-point)
argument passed in a floating-point register

6,7 Reserved

18.5.7 Memory Stack Parameters

The remainder of the parameter list, beginning with slot 8, is passed in the
outgoing parameter area of the memory stack frame, as described in the HP
OpenVMS Calling Standard. Parameters are mapped directly to memory, with
slot 8 placed at location SP+16, slot 9 placed at location SP+24, and so on. Each
argument is stored in memory as a series of one or more 64-bit storage units,
with unused bits in the last unit undefined.

18.5.8 Variable Argument Lists

The rules above support variable-argument list functions in both the K&R and
the ANSI dialects of the C language. (Note that argument location is independent
of whether a prototype is in scope.)

The nth argument is in either Rn or Frn regardless of the type of parameter in
the preceding register slot. Therefore, a function with variable arguments may
assume that the variable arguments that lie within the first eight argument slots
can be found in either the stacked input integer registers (INO-IN7), or in the
floating-point parameter registers (F8-F15). Using the information codes from
the the Al (Argument Information) register (see Table 18-13), the function can
then store these registers to memory using the 16-byte scratch area for IN6/F14
and IN7/F15, and up to 48 bytes at the base of its own stack frame for INO/F8-
IN5/F13, as necessary. This arrangement places all of the variable parameters in
one contiguous block of memory.

18.5.9 Pointers to Formal Parameters

Whenever the address is formed of a formal parameter that is passed in a
register, the compiler must store the parameter to the stack, as it would for a
variable argument list.

18-36 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.5 Argument Passing Mechanisms

18.5.9.1 Languages Other than C

The placement of arguments in general registers versus floating-point registers
does not depend on any notion or concept of a prototype being in scope. It is
therefore applicable to all languages at all times.

18.5.10 Rounding Floating-Point Values

There must be no difference in behavior between a floating-point parameter
passed directly in a register and a floating-point parameter that has been stored
to memory and reloaded. In either case, the floating-point value must be the
same. This implies that floating-point parameters passed in floating-point
registers must be explicitly rounded to the proper precision by the caller.

18.6 Passing Scalars as Arguments

When you are passing an input scalar value to an OpenVMS system routine,

you usually pass it either by reference or by value. You usually pass output
scalar arguments by reference to OpenVMS system routines. An output scalar
argument is the address of a location where some scalar output of the routine will
be stored.

18.7 Passing Arrays as Arguments

Arrays are passed to OpenVMS system routines by reference or by descriptor.

Sometimes the routine knows the length and dimensions of the array to be
received, as in the case of the table passed to LIBSCRC_TABLE. Arrays such as
this are normally passed by reference.

In other cases, the routine actually analyzes and operates on the input array.
The routine does not necessarily know the length or dimensions of such an input
array, so a descriptor is necessary to provide the information the routine needs to
describe the array accurately.

18.8 Passing Strings as Arguments

Strings are passed by descriptor to OpenVMS system routines. Table 18-14 lists
the string-passing descriptors recognized by a system routine.

Table 18-14 String-Passing Descriptors

Descriptor Function Descriptor Class Code Numeric Value
Fixed length (string/scalar) DSC$K_CLASS_S 1

Dynamic DSC$K _CLASS D 2

Array DSC$K_CLASS_A 4

Scaled decimal DSC$K_CLASS_SD 9
Noncontiguous array DSC$K_CLASS_NCA 10

Varying length DSC$K _CLASS VS 11

An OpenVMS system routine writes strings according to the following types of
semantics:

¢ Fixed length — Characterized by an address and a constant length

e Varying length — Characterized by an address, a current length, and a
maximum length

Basic Calling Standard Conventions 18-37

Basic Calling Standard Conventions
18.8 Passing Strings as Arguments

e Dynamic — Characterized by a current address and a current length

18.9 Combinations of Descriptor Class and Data Type

Some combinations of descriptor class and data type are not permitted, either
because they are not meaningful or because the calling standard does not
recognize them. Possibly, the same function can be performed with more than
one combination. This section describes the restrictions on the combinations
of descriptor classes and data types. These restrictions help to keep procedure
interfaces simple by allowing a procedure to accept a limited set of argument
formats without sacrificing functional flexibility.

The tables in Figures 18-13, 18-14, and 18-15 show all possible combinations of
descriptor classes and data types. For example, Figure 18-13 shows that your
program can pass an argument to an OpenVMS system routine whose descriptor
class is DSC$K_CLASS_A (array descriptor) and whose data type is unsigned
byte (DSC$K_DTYPE_BU). The calling standard does not permit your program to
pass an argument whose descriptor class is DSC$K_CLASS_D (dynamic string)
and whose data type is unsigned byte.

A descriptor with data type DSC$K_DTYPE_DSC (24) points to a descriptor that
has class DSC$K_CLASS_D (2) and data type DSC$K_DTYPE_T (14). All other
class and data type combinations in the target descriptor are reserved for future
definition in the standard.

The scale factor for DSC$K_CLASS_SD is always a decimal data type. It does
not vary with the data type of the data described by the descriptor.

For DSC$K_CLASS_UBS and DSC$K_CLASS_UBA, the length field specifies the
length of the data field in bits. For example, if the data type is unsigned word
(DSC$K_DTYPE_WU), DSC$W_LENGTH equals 16.

18-38 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.9 Combinations of Descriptor Class and Data Type

Figure 18-13 Atomic Data Types and Descriptor Classes

DSC$K_CLASS
S |[_D Vv _A _P | SD |_NCA _Vs _VSA |_UBS |_UBA |_BFA
Data Type Valie |24 |22 |23 [=4 |=5 [z9 |=10 | =11 |=12 |=13 |=14 [=191
DSC$K_DTYPE_Z =0 Yes - - Yes - - Yes - - Yes Yes -
DSC$K_DTYPE_BU =2 Yes - - Yes | Yes - Yes - - Yes Yes -
DSC$K_DTYPE WU = 3 Yes - - Yes - - Yes - - Yes Yes -
DSC$K_DTYPE_LU =4 Yes - - Yes - - Yes - - Yes Yes -
DSC$K_DTYPE_.QU = 5 Yes - - Yes - - Yes - - - - -
DSC$K_DTYPE_OU =25 Yes - - Yes - - Yes - - - - -
DSC$K_DTYPE_B =6 Yes - - Yes | Yes | Yes Yes - - Yes Yes -
DSC$K_DTYPE_W =7 Yes - - Yes | Yes | Yes Yes - - Yes Yes Yes
DSC$K_DTYPE_L =8 Yes - - Yes | Yes | Yes Yes - - Yes Yes Yes
DSC$K_DTYPE_Q =9 Yes - - Yes - Yes Yes - - - - -
DSC$K_DTYPE_O =26 Yes - - Yes - Yes Yes - - - - -
DSC$K_DTYPE_F =10 Yes - - Yes | Yes | Yes Yes - - Yes Yes Yes
DSC$K_DTYPE_D =11 Yes - - Yes | Yes | Yes Yes - - - - Yes
DSC$K_DTYPE_G =27 Yes - - Yes | Yes | Yes Yes - - - - -
T DSC$K_DTYPE_H =28 Yes - - Yes | Yes | Yes Yes - - - - -
DSC$K_DTYPE_FC =12 Yes - - Yes | Yes - Yes - - - - -
DSC$K_DTYPE_DC =13 Yes - - Yes | Yes - Yes - - - - -
DSC$K_DTYPE_GC =29 Yes - - Yes | Yes - Yes - - - - -
1t DSC$K_DTYPE_HC =30 - - - - - - - - - - - -
¥ DSC$K_DTYPE_FS =52 Yes - - Yes | Yes | Yes Yes - - Yes Yes Yes
* DSC$K_DTYPE_FT =53 Yes | - - Yes | Yes | Yes Yes - - - - -
+ DSC$K_DTYPE_FSC =54 Yes - - Yes | Yes | - Yes - - - - -
¥ DSC$K_DTYPE_FTC =55 Yes - - Yes | Yes - Yes - - - - -
¥ DSC$K_DTYPE_FX =57 Yes - - Yes | Yes - Yes - - - - -
+ DSC$K_DTYPE_FXC =58 Yes - - Yes | Yes [- Yes - - - - -

Yes The calling standard allows this combination of class and data type.

- The calling standard forbids the use of this combination of class and data type.
Higher—level languages and their run—-time support must conform to this restriction.

T = VAX specific
¥ = Alpha specific

ZK-4267-GE

Basic Calling Standard Conventions 18-39

Basic Calling Standard Conventions
18.9 Combinations of Descriptor Class and Data Type

Figure 18-14 String Data Types and Descriptor Classes

DSC$K_CLASS
_S _D v _A _P | _SD | _NCA _Vs _VSA | _UBS _UBA _BFA
Data Type Value | 24 | 2o | 23 | =4 | =5 | = =10 | =11 | =12 | =13 =14 | =191
DSC$K_DTYPE_V =1 Yes - - Yes | — - Yes - - Yes Yes -
DSC$K_DTYPE_T =14 Yes | Yes — Yes | Yes | Yes Yes Yes Yes Yes Yes Yes
DSC$K_DTYPE_NU =15 Yes — — — — Yes Yes - - - - -
DSC$K_DTYPE_NL =16 Yes - - - - Yes Yes - - - - -
DSC$K_DTYPE_NLO =17 Yes - - - - Yes Yes - - - - -
DSC$K_DTYPE_NR =18 Yes — — — — Yes Yes — — — — —
DSC$K_DTYPE_NRO =19 Yes - - - - Yes Yes - - - - -
DSC$K_DTYPE_NZ =20 Yes - - - - Yes Yes - - - - -
DSC$K_DTYPE_P =21 Yes - - - - Yes Yes - - - - -
DSC$K_DTYPE_VT =37 - - - - - - - Yes Yes - - -
DSC$K_DTYPE_VU =34 * * * * o * * * * * * *
Yes The calling standard allows this combination of class and data type.
* No valid interpretation exists for this combination.
The calling standard forbids the use of this combination of class and data type.
- Higher-level languages and their run-time support must conform to this restriction.

ZK-4266-Al

Figure 18-15 Miscellaneous Data Types and Descriptor Classes

DSC$K_CLASS
Data Type vae | 3|23 |5 |4 |5 <o | w0 | =w | =i | =18 | = | =191
DSC$K_DTYPE_ZI =22 Yes - - - - * - - - - - -
DSC$K_DTYPE_ZEM =23 Yes - - - - * - - - - - -
DSC$K_DTYPE_DSC = 3 - - - Yes - * Yes - - - - -
DSC$K_DTYPE_BPV =32 Yes - - - - * Yes . - - - -
DSC$K_DTYPE_BLV =33 Yes - - - - * Yes - - - - -

Yes The calling standard allows this combination of class and data type.

* No valid interpretation exists for this combination.

- The calling standard forbids the use of this combination of class and data type.
Higher-level languages and their run—time support must conform to this restriction.

ZK-4265-GE

18-40 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.10 Function Value Return

18.10 Function Value Return

A function is a routine that returns a single value to the calling routine. The
function value represents the value of the expression in the return statement.
As specified by the calling standard, a function value may be returned as an
actual value in RO.

On VAX systems, if the actual function value returned is greater than 32 bits,
then both RO and R1 should be used.

On Alpha systems, if the actual function returned is a floating-point value, the
floating-point value is returned either in F0 or in both FO and F1.

A standard function must return its function value by one of the following
mechanisms:

e Immediate value
e Reference
e Descriptor

These mechanisms are the standard return convention because they support
the language-independent data types. For information about condition values
returned in RO, see Section 18.11.

For 164, values up to 128 bits are returned directly in the registers, according to
the rules in Table 18-15.

Integer, enumeration, record, and set values (bit vectors) smaller than 64 bits
must be zero-filled (unsigned integers, enumerations, records, sets) or sign-
extended (signed integrals) to a full 64 bits. However, for unsigned 32-bit
integers, bit 31 is replicated in bits 32—63.

When floating-point values are returned in floating-point registers, they are
returned in the register format, rounded to the appropriate precision. When they
are returned in the general registers (for example, as part of a record), they are
returned in their memory format.

OpenVMS does not support a general notion of homogeneous floating-point
aggregates. However, the special case of two single-precision or double-precision
floating-point values implementing values of a complex type are handled in an
analogous manner.

Table 18-15 Rules for 164 Return Values

Size Location of

Type (Bits) Return Value Alignment
Integer/pointer, small secord, set 1-64 R8 LSB
IEEE single-precision floating-point (S_floating) 32 F8 N/A

IEEE double-precision floating-point 64 F8 N/A
(T_floating)

IEEE single-precision complex (S_floating) 64 F8, F9 N/A

IEEE double-precision complex (T_floating) 128 F8, F9 N/A

VAX single-precision floating-point (F_floating) 32 R8 N/A

(continued on next page)

Basic Calling Standard Conventions 18-41

Basic Calling Standard Conventions
18.10 Function Value Return

Table 18-15 (Cont.) Rules for 164 Return Values

Size Location of
Type (Bits) Return Value Alignment
VAX double-precision floating-point 64 R8 N/A
(D_ & G_floating)
VAX single-precision floating-point complex (F_ 64 R8, R9 N/A
floating)
VAX double-precision floating-point complex (D_ 128 R8, R9 N/A

& G_floating)

Note

X _floating and X_floating complex are not included in this table because
they are returned using the hidden parameter method.

The rules in Table 18-15 are expressed in more detail in Table 18-11. F_floating
and F_floating complex values in the general registers are zero-extended (Zero64),
because this most closely approximates the effect of using the Alpha register
format.

Hidden Parameter

Return values other than those covered by Table 18-15 are returned in a buffer
allocated by the caller. A pointer to the buffer is passed to the called procedure as
a hidden first parameter, and all normal parameters are shifted one slot to make
this possible. The return buffer must be aligned at a 16-byte boundary.

18.11 Condition Value Return

An OpenVMS system routine can indicate success or failure to the calling
program by returning a condition value. In addition, an error condition to the
calling program can return as a condition value in RO (R8, R9 for 164) or by error
signaling.

A condition value in RO (R8, R9 for 164), also called a return status or completion
code, is either a success (bit 0 = 1) value or an error condition (bit 0 = 0) value.
In an error condition value, the low-order 3 bits specify the severity of the error
(see Figure 18-16). Bits <27:16> contain the facility number, and bits <15:3>
indicate the particular condition. Bits <31:28> are the control field. When the
called procedure returns a condition value, the calling program can test RO and
choose a recovery path. A general guideline to follow when testing for success or
failure is that all success codes have odd values and all error codes have even
values.

When the completion code is signaled, the calling program must establish a
handler to get control and take appropriate action. (See Chapter 9 or the HP
OpenVMS Calling Standard for a description of signaling and condition handling
and for more information about the condition value.)

18-42 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.12 Macro-32 Register Usage and Mapping for 164

Figure 18-16 Condition Value Format

31 2827 32 0
Control Condition identification Severity
N / W /
2 1 0
*S
27 1615 3
Facility number Message number
*S = Success
ZK-1795-GE

18.12 Macro-32 Register Usage and Mapping for 164

Because the 164 calling standard diverges from the Alpha and VAX calling
standards regarding the use of registers and register mapping, and because
Macro-32 assumes that registers are preserved across calls, the MACRO compiler
maps registers to allow existing code to compile unmodified.

If you use OpenVMS high-level languages, the register and register mapping
differences in the calling standards are handled by the compilers and are not
exposed to your code. However, if your code uses Macro-32, C #pragma linkages,
or BLISS linkages, your code might have to take into account the differences in
register mapping.

This section describes 164 register usage and mapping.

18.12.1 164 Register Usage Compared with Alpha and VAX

OpenVMS 164 systems employ 32 integer registers, RO through R31, with RO
being a read-only register that contains 0. This is different from OpenVMS
Alpha, where R31 is a read-write register that contains 0.

In addition, the 164 calling standard has been written to be highly compatible
with the Intel calling standard, and is quite different from the OpenVMS Alpha
calling standard. For example, the standard return registers on 164 are R8/R9,
not RO/R1 as on Alpha. The 164 calling standard reserves R1 as the GP (global
pointer), does not include a standardized FP (frame pointer), and only has R4
through R7 as preserved across calls, not R2 through R15 as on Alpha.

164 register usage differs from that of Alpha and VAX in the following key ways:
e Registers 2 through 11 are preserved on OpenVMS VAX

e Registers 2 through 15 are preserved on OpenVMS Alpha

e Registers 4 through 7 are preserved on OpenVMS 164

e 164 has more “volatile” registers

e 164 returns values in R8/R9 instead of RO/R1

¢ RO is readonly in 164

e 164 reserves R1 as the GP (global pointer)

Basic Calling Standard Conventions 18-43

Basic Calling Standard Conventions

18.12 Macro-32 Register Usage and Mapping for 164

e 164 does not include a standardized FP (frame pointer)

e Arguments are also passed in stacked registers in 164. R32-R39 are used as

incoming argument registers.

18.12.1.1 164 Register Mapping in MACRO Compiler
The OpenVMS MACRO compiler compiles Macro-32 source code written for
OpenVMS VAX systems (the VAX MACRO assembler) into machine code that
runs on OpenVMS Alpha and OpenVMS 164 systems. Because Macro-32 source
code is written with the VAX and Alpha calling standards in mind, the compiler
performs several transformations to allow existing code to compile unmodified

with the 164 compiler.

The MACRO compiler maps the registers in Macro-32 source programs to 164
registers on your behalf, as shown in Table 18-16, to minimize source changes.
This allows existing programs to use “MOVL SS$_NORMAL, R0” and have the
generated code return the value in R8 as prescribed by the calling standard. The
mapping to an actual 164 register is totally transparent to the Macro-32 source

code (and most of the compiler).

Table 18-16 Register Mapping Table for OpenVMS VAX/OpenVMS Alpha to

OpenVMS 164

OpenVMS VAX/OpenVMS Alpha
Register in Source Code

OpenVMS 164 Register Used in Generated Code

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19

18-44 Basic Calling Standard Conventions

R8
R9
R28
R3
R4
R5
R6
R7
R26
R27
R10
R11
R30
R31
R20
R21
R14
R15
R16
R17

(continued on next page)

Basic Calling Standard Conventions
18.12 Macro-32 Register Usage and Mapping for 164

Table 18-16 (Cont.) Register Mapping Table for OpenVMS VAX/OpenVMS Alpha
to OpenVMS 164

OpenVMS VAX/OpenVMS Alpha

Register in Source Code OpenVMS 164 Register Used in Generated Code
R20 R18

R21 R19

R22 R22

R23 R23

R24 R24

R25 R25

R26 Itanium stacked register
R27 Itanium stacked register
R28 Itanium stacked register
R29 R29

R30 R12

R31 RO

The register mapping was carefully chosen based on which registers were
preserved across calls, which registers may be modified across calls, and which
registers are volatile and do not even survive into or out of a call.

As on Alpha, Macro-32 references to AP are mapped by the compiler to the
appropriate location depending on whether the arguments have been saved to
the stack. To support references to FP, the compiler creates an FP value where
needed. The compiler supports references to O(FP) to establish condition handlers
just like on VAX and Alpha.

The compiler does not provide any syntax for accessing 164 registers directly
without going through the mapping table.

The automatic register mapping done by the compiler allows many Macro-
32 programs (including those that access Alpha registers R16-R31) to compile
without modificiations.

Note, however, that use of registers R16-R21 as routine parameters on Alpha is
not portable to 164. Use PUSHL to pass parameters to a CALL, and use 4(AP),
8(AP), and so forth in the called routine to refer to them. The compiler will
generate the correct register references instead of the stack references implied by
the VAX operands.

On 164 systems, the compiler continues to recognize many of the EVAX_* builtins
that provide direct access to Alpha instructions on Alpha systems. These built-ins
will generate one or more 164 instructions to perform the same logical operation.
See the HP OpenVMS MACRO Compiler Porting and User’s Guide for a complete
list of which EVAX_* built-ins are also supported on 164.

Basic Calling Standard Conventions 18-45

Basic Calling Standard Conventions
18.12 Macro-32 Register Usage and Mapping for 164

18.12.1.2 Use of MACRO Linkage Directives to Preserve Registers
For 164 systems, add linkage directives (CALL_LINKAGE, .DEFINE_LINKAGE,
or .USE_LINKAGE) to mark VAX CALLS or CALLG instructions that call
routines that return values in registers other than RO or R1, or to JSB to routines
written in a language other than Macro-32. These directives look similar to the
.CALL_ENTRY directive and specify input, output, preserved, and scratch masks.
In addition, they also have a language keyword to provide an alternative quick
specification.

The .CALL_LINKAGE directive associates a named or anonymous linkage with a
routine name. When the compiler sees a CALLS, CALLG, JSB, BSBB, or BSBW
instruction with the routine name as the target, it will use the associated linkage
to decide which registers need to be saved and restored around the call.

The .USE_LINKAGE directive establishes a temporary named or anonymous
linkage that will be used by the compiler for the next CALLS, CALLG, JSB,
BSBB, or BSBW instruction processed in lexical order. This directive is used
when the target of the next CALLS, CALLG, JSB, BSBB, or BSBW instruction
is not a name, but a run-time value (for example, CALLS #0, (R6)). When the
compiler sees the next CALLS, CALLG, JSB, BSBB, or BSBW instruction, it will
use the associated linkage to decide which registers need to be saved and restored
around the call. After the instruction is processed, the temporary linkage is reset
to null.

The .DEFINE_LINKAGE directive defines a named linkage that can be used with
subsequent .CALL_LINKAGE or .USE_LINKAGE directives.

If your Macro-32 code uses a CALLS or CALLG instruction to access routines
that return values in registers other than RO or R1, the contents of the saved
and restored registers may not be what you expect. Existing Macro-32 code
traditionally assumes that registers R2-R11 and R15 are preserved and returned
across calls. For CALLS and CALLG instructions, the MACRO compiler
automatically saves and restores registers R2-R3 and R8-R15 in case the target
of the call is not Macro-32. However, this means that changes made to these
registers by the routine call are undone. This can cause problems if the routine
return values were in registers other than R0-R1.

In the following example, m1.mar saves and preserve registers R2, R3, and R9
and undoes the changes made to these registers by the routine call.

M1l.mar

calls #3,9"body_scan
M2 .mar

Body scan:

.calI;entry preserve=<r6,r7,r8>, output=<r2,r3,r4,r5,r9>

To avoid this problem, add a .CALL_LINKAGE directive to m1.mar (or to a
common prefix file or macro):

.call linkage rtn name=body scan preserve=<r6,r7,r8> -
output=<r2,r3,r4,r5,r9>

For JSB instructions, the MACRO compiler assumes that the target is also
Macro-32 and does not save and restore anything. The compiler assumes that
all registers flow in and out of the target routine. Alpha high-level language
compilers would have preserved registers R2-R15. However, 164 high-level
language compilers preserve only registers R4-R7.

18-46 Basic Calling Standard Conventions

Basic Calling Standard Conventions
18.12 Macro-32 Register Usage and Mapping for 164

In the following example m1.mar assumes that registers R0-R15 are returned or
preserved by the target BLISS routine. On Alpha, BLISS would have done that.
On 164, it preserves only registers R4-R7:

Ml.mar
jsb search path

M2.bli
linkage 1 = jsb(register=0) : global(wrk=10,prc=11)
global routine search path : 1 = begin . . . End;

To avoid this problem, add a .CALL_LINKAGE directive to m1.mar:

.call linkage rtn_name=search path language=other -
output=<rl0,rll>

Indirect calls with mismatched registers are not detected by the linker since it
does not know what routine is being called. An indirect JSB to a BLISS or C
routine requires a .USE_LINKAGE directive:

.use_linkage language=other
jsb (r5)

If the routine returns a register other than R0O/R1:

.use_linkage language=other output=<r5,r9>

jsb (r3)
See the HP OpenVMS MACRO Compiler Porting and User’s Guide for additional
information.

18.12.2 High-Level Language Compiler Register Mapping

If you use OpenVMS high-level languages, the register and register mapping
differences in the calling standards are handled by the compilers and are not
exposed to your code. However, if your code uses C #pragma linkages or BLISS
linkages to interface with Macro-32 source code, your code might have to take
into account the differences in register mapping.

BLISS added a new qualifier and source level switch to enable register mapping
for register numbers in linkage and register declarations. It is off by default.
BLISS also has additional support for linkages that reference arguments. The C
compiler changed the #pragma linkage to map the registers by default, along with
additional support for linkages that reference arguments or floating registers.
There are new pragmas to get unmapped linkages.

See your compiler documentation for additional information.

Basic Calling Standard Conventions 18-47

19

Calling Run-Time Library Routines

The OpenVMS Run-Time Library is a set of language-independent routines that
establish a common run-time environment for user programs. The procedures
ensure correct operation of complex language features and help enforce consistent
operations on data across languages.

The HP OpenVMS Calling Standard describes the mechanisms used by
OpenVMS languages for invoking routines and passing data between them.
In effect, this standard describes the interface between your program and the
run-time library routines that your program calls. This chapter describes the
basic methods for coding calls to run-time library routines from an OpenVMS
common language.

19.1 Overview

When you call a run-time library routine from your program, you must furnish
whatever arguments the routine requires. When the routine completes execution,
in most cases it returns control to your program. If the routine returns a status
code, your program should check the value of the code to determine whether or
not the routine completed successfully. If the return status indicates an error,
you may want to change the flow of execution of your program to handle the error
before returning control to your program.

When you log in, the operating system creates a process that exists until you log
out. When you run a program, the system activates an executable image in your
process. This image consists of a set of user procedures.

From the run-time library’s point of view, user procedures are procedures that
exist outside the run-time library and that can call run-time library routines.
When you write a program that calls a run-time library routine, the run-time
library views your program as a user procedure. User procedures also can call
other user procedures that are either supplied by HP or written by you. Because
an OpenVMS native-mode language compiler program exists outside the run-time
library, compiler-generated programs that call any run-time library routine are
also defined as a set of user procedures.

The main program, or main procedure, is the first user procedure that the
system calls after calling a number of initialization procedures. A user program
consists of the main program and all of the other user procedures that it calls.

Figure 19-1 shows the calling relationships among a main program, other user
procedures, library routines, and the operating system. In this figure, Call
indicates that the calling procedures requested some information or action;
Return indicates that the called procedure returned the information to the calling
procedure or performed the action.

Calling Run-Time Library Routines 19-1

Calling Run-Time Library Routines
19.1 Overview

Figure 19-1 Calling the Run-Time Library

Main Program User Operating
(User Procedure) Procedure System
Call —»
Return
Library
Procedure
RTL Call ----Call
1
|
Return ---¥ Retumn [¢——
Service Call
Return
ZK-4262-GE

Although library routines can always call either other library routines or the
operating system, they can call user procedures only in the following cases:

e When a user procedure establishes its own condition handler. For example,
LIB$SIGNAL operates by searching for and calling user procedures that have
been established as condition handlers (see the HP OpenVMS RTL Library
(LIB$) Manual for more information).

e When a user procedure passes to a routine the address of another procedure
that the library will call later. For example, when your program calls
LIB$SHOW_TIMER, you can pass the address of an action routine that
LIB$SHOW_TIMER will call to process timing statistics.

19-2 Calling Run-Time Library Routines

Calling Run-Time Library Routines
19.2 Call Instructions

19.2 Call Instructions

Each run-time library routine requires a specific calling sequence. This calling
sequence indicates the elements that you must include when calling the routine,
and the order of those elements. The form of a calling sequence first specifies
the type of call being made. A library routine can be invoked either by a CALL
instruction or possibly by a JSB instruction (for VAX systems only) as follows:

e CALL — Call procedure from a high-level language
CALLS — Call procedure with stack argument list instruction (VAX MACRO)

CALLG — Call procedure with general argument list instruction (VAX
MACRO)

JSB — Jump to subroutine instruction (for VAX systems only)
JSR — Jump to subroutine instruction (MACRO-64)

On VAX systems, the following restrictions apply to the different types of calls:

e High-level languages do not differentiate between CALLS and CALLG. They
use a CALL statement or a function reference to invoke a run-time library
routine.

e VAX MACRO does not differentiate between functions and subroutines in its
CALLS and CALLG instructions.

e Only VAX MACRO and BLISS programs on VAX systems can explicitly access
the JSB entry points that are provided for some routines in the run-time
library. You cannot write a program to access the JSB entry points directly
from a high-level language.

19.2.1 Facility Prefix and Routine Name

Each routine is identified by a unique entry point name consisting of the facility
prefix (for example, MTH$) and the procedure name (for example, MTH$SIN).
Run-time library entry points follow the OpenVMS conventions for naming global
symbols. A global entry point takes the following general form:

fac$symbol
The elements that make up this format represent the following:

fac A 2- or 3-character facility name

symbol A 1- to 27-character symbol

The facility names are maintained in a systemwide HP registry. A unique, 12-bit
facility number is assigned to each facility name for use in (1) condition value
symbols, and (2) condition values in procedure return status codes, signaled
conditions, and messages. The high-order bit of this number is 0 for facilities
assigned by HP and 1 for those assigned by Application Project Services (APS)
and customers. For further information, refer to the HP OpenVMS Calling

Standard.

The run-time library facility names are as follows:
CVT$ Convert routines
DTK$ DECtalk routines
LIB$ Library routines

Calling Run-Time Library Routines 19-3

Calling Run-Time Library Routines
19.2 Call Instructions

MTHS$ Mathematics routines

OTS$ General-purpose routines
PPL$ Parallel processing routines
SMG$ Screen management routines
STR$ String-handling routines

19.2.2 The RTL Call Entry

Arguments passed to a routine must be listed in your call entry in the order
shown in the format section of the routine description. Each argument has four
characteristics: OpenVMS usage, data type, access type, and passing mechanism.
These characteristics are described in Chapter 17.

Some arguments are optional. Optional arguments are indicated by brackets
in the routine descriptions. When your program invokes a run-time library
routine using a CALL entry point, you can omit optional arguments at the end
of the argument list. If the optional argument is not the last argument in the
list, you must either pass a zero by value or use a comma to indicate the place
of the omitted argument. Some languages, such as C, require that you pass
zero by value for trailing optional arguments. See your language processor
documentation for further information.

On VAX systems, the calling program passes an argument list of longwords to a
called routine; each longword in the argument list specifies a single argument.
Note that a 64-bit floating-point argument would count as 2 longword arguments
in the list.

On Alpha systems, the calling program passes arguments in an argument item
sequence; each quadword in the sequence specifies a single argument item. Note
that the argument item sequence is formed using R16-21 or F16-21 (a register
for each argument). The argument item sequence can have a mix of integer and
floating-point items that use both register types but must not repeat the same
number.

For 164, parameters are passed in a combination of general registers, floating-
point registers, and memory, as illustrated in Figure 18-9. The first eight
parameters are passed in R32 through R39, with the parameter count in R25 and
subsequent parameters in quadwords on the stack.

In the Alpha, VAX, and 164 environments, the called routine interprets each
argument using one of three standard passing mechanisms: by value, by
reference, or by descriptor. For more information on arguments, see Sections
18.4 and 18.5.

Optional arguments apply only to the CALL entry points. For example, the call
format for a procedure with two optional arguments is as follows:

LIBSGET_INPUT get-str [,prompt-str] [,out-len]

A FORTRAN program could include any one of the following calls to this
procedure:

INTEGER*4 STAT

STAT = LIBSGET INPUT (GET STR,PROMPT,LENGTH)
STAT = LIBSGET INPUT (GET_STR,PROMPT)
STAT = LIB$GET INPUT (GET_STR,PROMPT,)

19-4 Calling Run-Time Library Routines

Calling Run-Time Library Routines
19.2 Call Instructions

STAT = LIBSGET INPUT (GET STR,,LENGTH)
STAT = LIB$GET INPUT (GET STR)
STAT = LIB$GET INPUT (GET_STR,)
STAT = LIBSGET INPUT (GET STR,3%VAL(0))

The following examples illustrate the standard mechanism for calling an external
procedure, subroutine, or function in most high-level languages.

BASIC
CALL LIB$SMOVTC(SRC, FILL, TABLE, DEST)

STATUS = LIBSGET_INPUT(STRING, 'NAME:')

BLISS

LOCAL
MSG_DESC : BLOCK [8,BYTE];

MSG_DESC [DSC$B_CLASS] = DSCSK_CLASS_S;
MSG_DESC [DSC$B DTYPE] = DSC$K_DTYPE T;
MSG_DESC [DSC$W_LENGTH] = 5;

MSG_DESC [DSC$A_POINTER] = MSG;

STATUS = LIB$SPUT OUTPUT(MSG_DESC);

Cc

#include <lib$routines.h>
#include <descrip.h>

$DESCRIPTOR (name, "Name:");
struct dsc$descriptor s string:

status = lib$get input(&string, &name);

CcoBOL

CALL LIB$MOVTC USING BY DESCRIPTOR
SRC,
FILL,
TABLE,
DEST,
GIVING RET-STATUS.

FORTRAN
CALL LIB$MOVTC(SRC, FILL, TABLE, DEST)

STATUS = LIBSGET INPUT(STRING, 'NAME:’)

Pascal
RET _STATUS := LIBSMOVTC (SRC, FILL, TABLE, DEST);

PL/I
CALL LIB$SMOVTC(SRC, FILL, TABLE, DEST);

STATUS = LIBSGET INPUT(STRING, 'NAME:’);

VAX MACRO

In VAX MACRDO, a calling sequence takes one of three forms, as illustrated by the
following examples:

CALLS $2,G"LIB$GET_INPUT
CALLG ~ ARGLIST, G"LIB$GET VM
JSB G"MTH$SIN R4

Calling Run-Time Library Routines 19-5

Calling Run-Time Library Routines
19.2 Call Instructions

As these examples show, high-level languages use different forms of the call
statement. Each language’s user guide gives specific information about calling
the run-time library from that language.

19.2.2.1 JSB Call Entries (VAX Only)

On VAX systems, JSB entry point names follow the naming conventions explained
in Section 19.2.1, except that they include a suffix indicating the number of the
highest register accessed or modified. This suffix helps ensure that the calling
program and the called routine agree on the number of registers that the called
routine is going to change.

The following example illustrates the VAX MACRO code that invokes the library
routine MTH$SIN_R4 by means of a JSB instruction. As indicated in the JSB
entry point name, this routine uses RO through R4.

JSB G"MTH$SIN R4 ;F_floating sine uses RO through R4

JSB entry points are available only to VAX MACRO and VAX BLISS programs.
No VAX high-level language provides a mechanism for accessing JSB entry
points.

19.2.3 Returns from an RTL Routine

On VAX systems, some run-time library routines return a function value.
Typically on a VAX system, the return is in the form of a 32-bit value in register
RO or a 64-bit value in registers RO and R1. In high-level languages, statuses

or function return values in RO appear as the function result. When a routine
returns a function value in RO, it cannot also use R1 to return a status code.
Therefore, such a procedure signals errors rather than returning a status. For
more information, refer to the HP OpenVMS Calling Standard or the description
of LIB$SIGNAL in the HP OpenVMS RTL Library (LIB$) Manual.

On Alpha systems, a standard function returns its function value in RO, FO, or FO
and F1. A function value of less than 64 bits returned by immediate value in RO

is zero-extended or sign-extended to a full quadword as required by the data type.
Note that a floating function value is returned by immediate value in FO or in FO
and F1.

For 164, values up to 128 bits are returned directly in the registers (R8, R9 or F8,
F9), according to the rules in Table 18-15. Integer, enumeration, record, and set
values (bit vectors) smaller than 64 bits must be zero-filled (unsigned integers,
enumerations, records, sets) or sign-extended (signed integrals) to a full 64 bits.
However, for unsigned 32-bit integers, bit 31 is replicated in bits 32—-63.

When floating-point values are returned in floating-point registers, they are
returned in the register format, rounded to the appropriate precision. When they
are returned in the general registers (for example, as part of a record), they are
returned in their memory format.

19.2.3.1 Facility Return Status and Condition Value Symbols

Library return status and condition value symbols have the following general
form:

fac$_abcmnoxyz

19-6 Calling Run-Time Library Routines

Calling Run-Time Library Routines
19.2 Call Instructions

The elements that make up this format represent the following:

fac The 2- or 3-letter facility symbol

abe The first 3 letters of the first word of the associated message
mno The first 3 letters of the next word

xyz The first 3 letters of the third word, if any

Articles and prepositions are not considered significant words in this format. If a
significant word is only two letters long, an underscore is used to fill out the third
space. Some examples follow. Note that, in most facilities, the normal or success

symbol is an exception to the convention described here.

SS$_NORMAL Routine successfully completed

LIB$_INSVIRMEM Insufficient virtual memory

MTH$_FLOOVEMAT Floating overflow in mathematics library procedure

OTS$_FATINTERR Fatal internal error in a language-independent
support procedure

LIB$_SCRBUFOVF Screen buffer overflow

19.3 Calling a Library Procedure in VAX MACRO (VAX Only)

This section describes how to code MACRO calls to library routines using a
CALLS, CALLG, or JSB instruction for VAX systems. The routine descriptions
that appear later in this manual describe the entry points for each routine. You
can use either a CALLS or a CALLG instruction to invoke a procedure with a
CALL entry point. You must use a JSB instruction to invoke a procedure with a
JSB entry point. All MACRO calls are explicitly defined.

19.3.1 VAX MACRO Calling Sequence

All run-time library routines have a CALL entry point. Some routines also have
a JSB entry point. In MACRO, you invoke a CALL entry point with a CALLS or
CALLG instruction. To access a JSB entry point, use a JSB instruction.

Arguments are passed to CALLS and CALLG entry points by a pointer to the
argument list. The only difference between the CALLS and CALLG instructions
is as follows:

e For CALLS, the calling procedure pushes the argument list onto the stack (in
reverse order) before performing the call. The list is automatically removed
from the stack upon return.

e For CALLG, the calling program specifies the address of the argument list,
which can be anywhere in memory. This list remains in memory upon return.

Both of these instructions have the same effect on the called procedure.

JSB instructions execute faster than CALL instructions. They do not set up a
new stack frame, do not change the enabling of hardware traps or faults, and

do not preserve the contents of any registers before modifying them. For these
reasons, you must be careful when invoking a JSB entry point in order to prevent
the loss of information stored by the calling program.

Whichever type of call you use, the actual reference to the procedure entry point
should use general-mode addressing (G*). This ensures that the linker and the
image activator are able to locate the module within the shareable image.

Calling Run-Time Library Routines 19-7

Calling Run-Time Library Routines
19.3 Calling a Library Procedure in VAX MACRO (VAX Only)

In most cases, you have to tell a library routine where to find input values and
store output values. You must select a data type for each argument when you
code your program. Most routines accept and return 32-bit arguments.

For input arguments of byte, word, or longword values, you can supply a constant
value, a variable name, or an expression in the run-time library routine call. If
you supply a variable name for the argument, the data type of the variable must
be as large as or larger than the data types that the called procedure requires.
For example, if the called procedure expects a byte in the range 0 to 100, you can
use a variable data type of a byte, word, or longword with a value between 0 and
100.

For each output argument, you must declare a variable of exactly the length
required to avoid extraneous data. For example, if the called procedure returns a
byte value to a word-length variable, the leftmost 8 bits of the variable <15:8> are
not overwritten on output. Conversely, if a procedure returns a longword value to
a word-length variable, it modifies variables in the next higher word.

19.3.2 VAX MACRO CALLS Instruction Example

Before executing a CALLS instruction, you must push the necessary arguments
on the stack. Arguments are pushed in reverse order; the last argument listed in
the calling sequence is pushed first. The following example shows how a MACRO
program calls the procedure that allocates virtual memory in the program region
for LIBSGET_VM.

.PSECT DATA PIC,USR,CON,REL, GBL,NOSHR, NOEXE, RD, WRT , NOVEC

MEM: IONG 0 ; Longword to hold address of
; allocated memory
LEN: .LONG 700 ; Number of bytes to allocate

.PSECT CODE PIC,USR,CON,REL,GBL, SHR,EXE,RD,NOWRT, NOVEC
.ENTRY PROG, "M<>

PUSHAL MEM Push address of longword
to receive address of block
PUSHAL LEN Push address of longword

containing number of bytes
desired

CALLS #2, G"LIBSGET VM Allocate memory

~e e ~e ~e =~ =o =o

BLBC RO, 1$ Branch if memory not available
RET
1§: PUSHL RO ; Signal the error
CALLS #1, G"LIB$SIGNAL
RET
.END PROG

Because the stack grows toward location 0, arguments are pushed onto the stack
in reverse order from the order shown in the general format for the routine.
Thus, the base-address argument, here called START, is pushed first, and then
the number-bytes argument, called LEN. Upon return from LIB§GET_VM, the
calling program tests the return status (ret-status), which is returned in RO and
branches to an appropriate error routine if an error occurred.

19-8 Calling Run-Time Library Routines

Calling Run-Time Library Routines
19.3 Calling a Library Procedure in VAX MACRO (VAX Only)

19.3.3 VAX MACRO CALLG Instruction Example

When you use the CALLG instruction, the arguments are set up in any location,
and the call includes a reference to the argument list. The following example of a
CALLG instruction is equivalent to the preceding CALLS example.

ARGLST:
.LONG 2 ; Argument list count
.ADDRESS LEN ; Address of longword containing
; the number of bytes to allocate.
.ADDRESS START ; Address of longword to receive
; the starting address of the
; virtual memory allocated.
LEN: .LONG 20 ; Number of bytes to allocate
START: .BLKL 1 ; Starting address of the virtual

; Mmemory.

CALLG ARGLIST, G"LIBSGET VM ; Get virtual memory
BLBC RO, ERROR ; Check for error
BRB 108

19.3.4 VAX MACRO JSB Entry Points

A procedure’s JSB entry point name indicates the highest numbered register that
the procedure modifies. Thus, a procedure with a suffix Rn modifies registers

RO through Rn. (You should always assume that RO and R1 are modified.) The
calling program loads the arguments in the registers before the JSB instruction
is executed.

A calling program must use a JSB instruction to invoke a run-time library routine
by means of its JSB entry point. You pass arguments to a JSB entry point by
placing them in registers in the following manner:

NUM: .FLOAT 0.7853981 ; Constant P1/4
MOVF NUM, RO ; Set up input argument
JSB G"MTHS$SIN R4 ; Call F floating sine procedure
- ; Return with value in R0

In this example, R4 in the entry point name indicates that MTH$SIN_R4 changes
the contents of registers RO through R4. The routine does not reference or change
the contents of registers R5 through R11.

The entry mask of a calling procedure should specify all the registers to be saved
if the procedure invokes a JSB routine. This step is necessary because a JSB
procedure does not have an entry mask and thus has no way to specify registers
to be saved or restored.

For example, consider program A calling procedure B by means of a CALL entry
point.

e Procedure B modifies the contents of R2 through R6, so the contents of these
registers are preserved at the time of the call.

¢ Procedure B then invokes procedure C by means of a JSB entry point.
¢ Procedure C modifies registers RO through R7.

e When control returns to procedure B, R7 has been modified, but when
procedure B passes control back to procedure A, it restores only R2 through
R6. Thus, the contents of R7 are unpredictable, and program A does not
execute as expected. Procedure B should be rewritten so that R2 through R7
are saved in procedure B’s entry mask.

Calling Run-Time Library Routines 19-9

Calling Run-Time Library Routines
19.3 Calling a Library Procedure in VAX MACRO (VAX Only)

A similar problem occurs if the stack is unwound, because unwinding the stack
restores the contents of registers for each stack frame as it removes the previous
frame. Because a JSB entry point does not create a stack frame, the contents
of the registers before the JSB instruction will not be restored unless they were
saved in the entry mask of the calling program. You do this by naming the
registers to be saved in the calling program’s entry mask, so a stack unwind
correctly restores all registers from the stack. In the following example, the
function Y=PROC(A,B) returns the value Y, where Y = SIN(A)*SIN(B):

.ENTRY PROC, "M <R2, R3, R4, R5> Save R2:R5
MOVF @4(AP), RO RO = A
JSB G"MTH$SIN R4 R0 = SIN(A)

MOVF RO , RS Copy result to register

not modified by MTHS$SIN

MOVF @8(AP) , RO RO = B

JSB G"MTHSSIN R4 RO = SIN(B)

MULF R5 , RO - RO = SIN(A)SIN(B)
RET Return

Ne e ~e Ne N ~o ~e = =e

19.3.5 Return Status

Your VAX MACRO program can test for errors by examining segments of the
32-bit status code returned by a run-time library routine.

To test for errors, check for a zero in bit 0 using a Branch on Low Bit Set (BLBS)
or Branch on Low Bit Clear (BLBC) instruction.

To test for a particular condition value, compare the 32 bits of the return status
with the appropriate return status symbol using a Compare Long (CMPL)
instruction or the run-time library routine LIBSMATCH_COND.

There are three ways to define a symbol for the condition value returned by
a run-time library routine so that you can compare the value in RO with a
particular error code:

e Using the .EXTRN symbol directive. This causes the assembler to generate
an external symbol declaration.

e Using the $facDEF macro call. Calling the $LIBDEF macro, for example,
causes the assembler to define all LIB$ condition values.

e By default. The assembler automatically declares the condition value as an
external symbol that is defined as a global symbol in the run-time library.

The following example asks for the user’s name. It then calls the run-time library
routine LIBSGET _INPUT to read the user’s response from the terminal. If the
string returned is longer than 30 characters (the space allocated to receive the
name), LIBSGET_INPUT returns in RO the condition value equivalent to the
error LIB$_INPSTRTRU, ’input string truncated.” This value is defined as a
global symbol by default. The example then checks for the specific error by
comparing LIB$_INPSTRTRU with the contents of RO. If LIB$_INPSTRTRU is
the error returned, the program considers that the routine executed successfully.
If any other error occurs, the program handles it as a true error.

$SSDEF ; Define SS$ symbols
SDSCDEF ; Define DSC$ symbols
.PSECT SDATA

PROMPT D: Descriptor for prompt

~ .WORD PROMPT LEN
.BYTE DSC$K DTYPE T
.BYTE DSC$K CLASS S
.ADDRESS PROMPT -

Length field

Type field is text
Class field is string
Address

~e ~e ~e¢ ~o =o

19-10 Calling Run-Time Library Routines

PROMPT: .ASCII
PROMPT LEN = .
STR LEN = 30
STRING D:
~ .WORD
.BYTE
.BYTE
.ADDRES

STR AREA: .BLKB

10S:

Calling Run-Time Library Routines
19.3 Calling a Library Procedure in VAX MACRO (VAX Only)

/NAME: /
- PROMPT

STR LEN
DSCSK DTYPE T
DSC$K CLASS S
S STR AREA
STR_LEN

.PSECT $CODE
.ENTRY START ,
PUSHAQ PROMPT D

"M<>

PUSHAQ STRING D

CALLS #2 , G"LIBSGET INPUT

BLBS RO , 10$

CMPL RO , #LIB$ INPSTRTRU
BEQL 10$

PUSHL RO

CALLS #1 , G"LIB$SIGNAL

MOVL ~ #SS$_NORMAL , RO
RET
.END START

~e Ne ~e ~e¢ =~e ~e =o

~e ~e ~e¢ =o

~e ~e ~e ~o =o

String descriptor
Calculate length of
string

Use 30-byte string
Input string descriptor
Length field

Type field in text
Class field is string
Address

Area to receive string

Push address of prompt
descriptor
Push address of string
descriptor

Get input string

Check for success
Error: Was it
truncated string?

No, more serious error

Success, or name too
long

19.3.6 Function Return Values in VAX MACRO (VAX and Alpha)

Function values are generally returned in RO (32-bit values) or RO and R1 (64-bit
values). A MACRO program can access a function value by referencing RO or RO
and R1 directly. For functions that return a string, the address of the string or
the address of its descriptor is returned in RO. If a function needs to return a
value larger than 64 bits, it must return the value by using an output argument.

Note the following exceptions to these rules:

e JSB entry points in the MTHS$ facility return H_floating values in RO through

R3.

¢ One routine, MTH$SINCOS, returns two function values: the sine and the
cosine of an angle. Depending on the data type of the function values, the
function values are returned in the following registers:

F_floating
D_floating
G_floating
H_floating

RO and R1

RO through R3
RO through R3
RO through R7

As in the case of output arguments, a variable declared to receive the function

values must be

the same length as the value.

Calling Run-Time Library Routines 19-11

Calling Run-Time Library Routines
19.4 Calling a Library Routine in BLISS

19.4 Calling a Library Routine in BLISS

This section describes how to code BLISS calls to library routines. A called
routine can return only one of the following:

e No value.

e A function value (typically, an integer or floating point number). For example,
MTHS$SIN returns its result as an F_floating value in RO on VAX systems, in
FO on Alpha systems, or in R8 on 164 systems.

On Alpha processors, BLISS cannot access floating point registers. Direct use
of the 164 floating-point registers is not supported.

e A return status (typically, a 32-bit condition value) indicating that the
routine has either executed successfully or failed. For example, LIB$GET_
INPUT returns a return status in RO (R8, R9 for 164). If the routine executes
successfully, it returns SS$_NORMAL; if not, it returns one of several possible
error condition values. BLISS treats the return status like any other value.

19.4.1 BLISS Calling Sequence

Scalar arguments are usually passed to run-time library routines by reference.
Thus, when a BLISS program passes a variable, the variable appears with no
preceding period in the procedure-call actual argument list. A constant value can
be easily passed by using the %REF built-in function.

The following example shows how a BLISS program calls LIB$PUT_OUTPUT.
This routine writes a record at the user’s terminal.

MODULE SHOWTIME (IDENT='1-1' $TITLE'Print time’, MAIN=TIMEOUT)=

BEGIN
LIBRARY 'SYS$LIBRARY:STARLET'; ! Defines system services, etc.
MACRO
DESC[]=%CHARCOUNT ($REMAINING), ! VAX string descriptor
UPLIT BYTE(%REMAINING) %; ! definition
BIND

FMTDESC=UPLIT(DESC('At the tone, the time will be ',
SCHAR(7), "!$T'));
EXTERNAL ROUTINE
LIB$PUT_OUTPUT: ADDRESSING MODE (GENERAL) ;

ROUTINE TIMEOUT

BEGIN

LOCAL
TIMEBUF: VECTOR[2], ! 64-bit system time
MSGBUF: VECTOR[80,BYTE], ! Output message buffer
MSGDESC: BLOCK[8,BYTE], ! Descriptor for message buffer
RSLT: WORD; ! Length of result string

I+

! Initialize the fields of the string descriptor.

|-
MSGDESC[DSC$B_CLASS]=DSC$K CLASS S;
MSGDESC[DSC$B_DTYPE]=DSC$K_DTYPE_T;
MSGDESC[DSCSW_LENGTH]=80;
MSGDESC[DSCSA_POINTER]=MSGBUF[0]

SGETTIM(TIMADR=TIMEBUF); ! Get time as 64-bit integer

19-12 Calling Run-Time Library Routines

Calling Run-Time Library Routines
19.4 Calling a Library Routine in BLISS

$FAOL (CTRSTR=FMTDESC, ! Format descriptor
OUTLEN=RSLT, ! Output length (only a word!)
OUTBUF=MSGDESC, ! Output buffer desc.

Address of 64-bit
time block

PRMLST= $REF (TIMEBUF));

MSGDESC [DSCSW _LENGTH] = .RSLT; Modify output desc.
RETURN (LIB$PUT OUTPUT(MSGDESC); Return status
END; -

END

ELUDOM

19.4.2 Accessing a Return Status in BLISS

BLISS accesses a function return value or condition value returned in RO (R8, R9
for 164) as follows:

STATUS = LIB$PUT_OUTPUT(MSG_DESC);
IF NOT .STATUS THEN LIBSSTOP(.STATUS);

19.4.3 Calling JSB Entry Points from BLISS
Note

164 register usage differs from that of Alpha and VAX. If you use
OpenVMS high-level languages, the register and register mapping
differences in the calling standards are handled by the compilers and are
not exposed to your code. However, if your code uses BLISS linkages to
interface with Macro-32 source code, your code might have to take into
account the differences in register mapping.

BLISS added a new qualifier and source level switch to enable register
mapping for register numbers in linkage and register declarations. It
is off by default. BLISS also has additional support for linkages that
reference arguments.

See your compiler documentation for additional information.

Many of the library mathematics routines have JSB entry points. You can
invoke these routines efficiently from a BLISS procedure using LINKAGE and
EXTERNAL ROUTINE declarations, as in the following example:

MODULE JSB LINK (MAIN = MATH JSB, ! Example of using JSB linkage
IDENT = '1-001', -
ADDRESSING MODE (EXTERNAL = GENERAL)) =
BEGIN -
LINKAGE
LINK MATH R4 = JSB (REGISTER = 0; ! input reg
-7 REGISTER = 0): ! output reg
NOPRESERVE (0,1,2,3,4)
NOTUSED (5,6,7,8,9,10,11);

EXTERNAL ROUTINE
MTH$SIND R4 : LINK MATH Rd;

FORWARD ROUTINE
MATH JSB;
LIBRARY 'SYSSLIBRARY:STARLET.L32';

ROUTINE MATH JSB = ! Routine

BEGIN
LOCAL
INPUT VALUE : INITIAL (3E’30.0"),
SIN_VALUE;

Calling Run-Time Library Routines 19-13

Calling Run-Time Library Routines
19.4 Calling a Library Routine in BLISS

1+
! Get the sine of single floating 30 degrees. The input, 30 degrees,
! is passed in RO, and the answer, is returned in RO. Registers
! 0 to 4 are modified by MTH$SIND R4.
|-

MTHSSIND_R4 (.INPUT_VALUE ; SIN VALUE);

RETURN SSS_NORMAL;
END; ! End of routine

END ! End of module JSB LINK
ELUDOM

19-14 Calling Run-Time Library Routines

20

Calling System Services

The OpenVMS operating system kernel has many services that are made
available to application and system programs for use at run time. These system
services are procedures that the OpenVMS operating system uses to control
resources available to processes; to provide for communication among processes;
and to perform basic operating system functions, such as the coordination of
input/output operations.

This chapter describes the basic methods and conventions for coding calls to
system services from OpenVMS high-level languages or from an assembly
language.

For more information about using the system services that support 64-bit
addressing and to see example programs that demonstrate the use of these
services, refer to Chapter 11.

20.1 Overview

System services are called by using the conventions of the HP OpenVMS Calling
Standard. The programming languages that generate VAX, Alpha, or 164 native
mode instructions provide mechanisms for specifying the procedure calls.

When you call a system service from your program, you must furnish whatever
arguments the routine requires. When the system service procedure completes
execution, in most cases it returns control to your program. If the service returns
a status code, your program should check the value of the code to determine
whether or not the service completed successfully. If the return status indicates
an error, you may want to change the flow of execution of your program to handle
the error before returning control to your program.

When you write a program that calls a system service in the OpenVMS operating
system, the operating system views your program as a user procedure. User
procedures also can call other user procedures that are either supplied by HP or
written by you. Because an OpenVMS native-mode language compiler program
exists outside the operating system, compiler generated programs calling any
system service are also defined as a set of user procedures.

If you program in a high-level language, refer to Chapter 21 for information
about the SYS$LIBRARY:SYS$LIB_C.TLB file, which is an OpenVMS Alpha and
OpenVMS 164 library of C header files.

For VAX MACRO, system service macros generate argument lists and CALL
instructions to call system services. These macros are located in the system
library (see SYS$LIBRARY:STARLET.MLB). When you assemble a source
program, this library is searched automatically for unresolved references. (See
Appendix A for further details.) Similar macros are available for BLISS and are
located in SYS$LIBRARY:STARLET.REQ.

Calling System Services 20-1

Calling System Services
20.2 Preserving System Integrity

20.2 Preserving System Integrity

As described in this document and the HP OpenVMS System Services Reference
Manual, many system services are available and suitable for application
programs, but the use of some of these powerful services must be restricted to
protect the performance of the system and the integrity of user processes.

For example, because the creation of permanent mailboxes uses system dynamic
memory, the unrestricted use of permanent mailboxes could decrease the amount
of memory available to other users. Therefore, the ability to create permanent
mailboxes is controlled: a user must be specifically assigned the privilege to

use the Create Mailbox (SYS$CREMBX) system service to create a permanent
mailbox.

The various controls and restrictions applied to system service usage are
described in this chapter. The Description section of each system service in the
HP OpenVMS System Services Reference Manual lists any privileges and quotas
necessary to use the service.

20.2.1 User Privileges

The system manager, who maintains the user authorization file for the
system, grants privileges for access to the protected system services. The user
authorization file contains, in addition to profile information about each user, a
list of specific user privileges and resource quotas.

When you log in to the system, the privileges and quotas assigned to you are
associated with the process created on your behalf. These privileges and quotas
are applied to every image the process executes.

When an image issues a call to a system service that is protected by privilege, the
privilege list is checked. If you have the specific privilege required, the image is
allowed to execute the system service; otherwise, a condition value indicating an
error is returned.

For a list of privileges, see the description of the Create Process ($CREPRC)
system service in the HP OpenVMS System Services Reference Manual.

20.2.2 Resource Quotas

Many system services require certain system resources for execution. These
resources include system dynamic memory and process quotas for I/O operations.
When a system service that uses a resource controlled by a quota is called, the
process’s quota for that resource is checked. If the process has exceeded its quota,
or if it has no quota allotment, an error condition value may be returned.

20.2.3 Access Modes

A process can execute at any one of four access modes: user, supervisor, executive,
or kernel. The access modes determine a process’s ability to access pages of
virtual memory. Each page has a protection code associated with it, specifying
the type of access—read, write, or no access—allowed for each mode.

For the most part, user-written programs execute in user mode; system programs
executing at the user’s request (system services, for example) may execute at one
of the other three, more privileged access modes.

20-2 Calling System Services

Calling System Services
20.2 Preserving System Integrity

In some system service calls, the access mode of the caller is checked. For
example, when a process tries to cancel timer requests, it can cancel only those
requests that were issued from the same or less privileged access modes. For
example, a process executing in user mode cannot cancel a timer request made
from supervisor, executive, or kernel mode.

Note that many system services use access modes to protect system resources,
and thus employ a special convention for interpreting access mode arguments.
You can specify an access mode using a numeric value or a symbolic name.
Table 20—1 shows the access modes and their numeric values, symbolic names,
and privilege ranks.

Table 20-1 OpenVMS System Access Modes

Access Numeric Symbolic Privilege
Mode Value Name Rank
Kernel 0 PSL$C_KERNEL Highest
Executive 1 PSL$C_EXEC

Supervisor 2 PSL$C_SUPER

User 3 PSL$C_USER Lowest

The symbolic names are defined by the symbolic definition macro SYS$PSLDEF.

System services that permit an access mode argument allow callers to specify
only an access mode of equal or lesser privilege than the access mode from which
the service was called. If the specified access mode is more privileged than the
access mode from which the service was called, the less privileged access mode is
always used.

To determine the mode to use, the operating system compares the specified access
mode with the access mode from which the service was called. Because this
operation results in an access mode with a higher numeric value (when the access
mode of the caller is different from the specified access mode), the access mode is
said to be maximized.

Because much of the code you write executes in user mode, you can omit the
access mode argument. The argument value defaults to 0 (kernel mode), and
when this value is compared with the value of the current execution mode

(3, user mode), the higher value (3) is used.

20.3 System Service Call Entry

The Format section of each system service description in the HP OpenVMS
System Services Reference Manual indicates the positional dependencies and
keyword names of each argument, as shown in the following format:

$SERVICE arga ,argb ,argc ,argd

This format indicates that the macro name of the service is $SERVICE and that
it requires four arguments, ordered as shown and with keyword names arga,
argb, arge, and argd.

Arguments passed to a service must be listed in your call entry in the order
shown in the Format section of the service description. Each argument has four
characteristics: OpenVMS usage, data type, access type, and passing mechanism.
These characteristics are described in Chapter 17.

Calling System Services 20-3

Calling System Services
20.3 System Service Call Entry

The OpenVMS Alpha and OpenVMS 164 SYS$LIBRARY:SYS$LIB_C.TLB

file contains C function prototypes for system services. These prototypes are
documented in HP OpenVMS System Services Reference Manual: A—-GETUAI
and and HP OpenVMS System Services Reference Manual: GETUTC-Z. For each
prototype, the manuals provide the correct syntax (which shows the arguments
the function accepts in the order in which it expects them), a description of each
argument, and the type of data returned by the function.

Some arguments are optional. Optional arguments are indicated by brackets in
the service descriptions. When your program invokes a system service by using a
CALL entry point, you can omit optional arguments at the end of the argument
list. If the optional argument is not the last argument in the list, you must
either pass a zero by value or use a comma to indicate the place of the omitted
argument. Some languages, such as C, require that you pass a zero by value for
all trailing optional arguments. See your language processor documentation for
further information.

In the call statement of a high-level language program, you must prefix the macro
function service name with SYS (the system service facility prefix). For example,
the call statement in a C program procedure that calls the SYS$GETDVI system
service with four arguments is as follows:

return_status = sys$getdvi(event flagnum, channel, &devnam, &item list,0,0,0);

Note that in C, you must not omit the optional trailing arguments and should
pass a zero by value for these unused parameters. See your language processor
documentation for further information.

The HP OpenVMS System Services Reference Manual provides a description of
each service that indicates how each argument is to be passed. Phrases such as
“an address” and “address of a character string descriptor” identify reference and
descriptor arguments, respectively. Terms like “Boolean value,” “number,” “value,”
or “mask” indicate an argument that is passed by value.

In the Alpha, VAX, and 164 environments, the called routine interprets each
argument using one of three standard passing mechanisms: by value, by
reference, or by descriptor.

On VAX systems, the calling program passes an argument list of longwords to a
called service; each longword in the argument list specifies a single argument.

On Alpha systems, the calling program passes arguments in an argument item
sequence; each quadword in the sequence specifies a single argument item. Note
that the argument item sequence is formed using R16-R21 or F16-F21 (a register
for each argument).

On 164 systems, the first eight parameters are passed in R32 through R39, with
the parameter count in R25 and subsequent parameters in quadwords on the
stack.

For more detailed information on arguments lists and passing mechanisms, see
Sections 18.4 and 18.5.

Some services also require service-specific data structures that either indicate
functions to be performed or hold information to be returned. The HP OpenVMS
System Services Reference Manual includes descriptions of these service-specific
data structures. You can use this information and information from your
programming language manuals to define such service-specific item lists.

20-4 Calling System Services

Calling System Services
20.4 System Service Completion

20.4 System Service Completion

When a system service completes, control is returned to your program. You
can specify how and when control is returned to your program by choosing
synchronous or asynchronous forms of system services and by enabling process
execution modes.

The following sections describe:

e When synchronous system services return control to your program

e When asynchronous system services return control to your program

e How you can synchronize the completion of asynchronous system services

e How control is returned to your program when special process execution
modes are enabled

20.4.1 Asynchronous and Synchronous System Services

You can execute a number of system services either asynchronously or
synchronously (such as, SYS$GETJPI and SYS$GETJIJPIW or SYS$ENQ and
SYS$ENQW). The W at the end of the system service name indicates the
synchronous version of the system service.

The asynchronous version of a system service queues a request and returns
control to your program. You can perform operations while the system service
executes; however, you should not attempt to access information returned by the
service until you check for the system service completion.

Typically, you pass to an asynchronous system service an event flag and an I/O
status block or a lock status block. When the system service completes, it sets the
event flag and places the final status of the request in the status block. You use
the SYS$SYNCH system service to ensure that the system service has completed.
You pass SYS$SYNCH the event flag and the status block that you passed to the
asynchronous system service; SYS$SYNCH waits for the event flag to be set, then
ensures that the system service (rather than some other program) sets the event
flag by checking the status block. If the status block is still zero, SYS$SYNCH
waits until the status block is filled.

The synchronous version of a system service acts exactly as if you had used the
asynchronous version followed immediately by a call to SYS$SYNCH. If you omit
the efn argument, the service uses event flag number 0 whether you use the
synchronous or asynchronous version of a system service.

Example 20-1 illustrates the use of the SYS$SYNCH system service to check the
completion status of the asynchronous service SYS$GETJPI.

Calling System Services 20-5

Calling System Services
20.4 System Service Completion

Example 20-1 Example of SYS$SYNCH System Service in FORTRAN

! Data structure for SYS$GETJPI

INTEGER*4 STATUS,

2 FLAG,

2 PID VALUE

! I/0 status block

INTEGER*2 JPISTATUS,

2 LEN

INTEGER*4 ZERO /0/

COMMON /IO_BLOCK/ JPISTATUS,
2 LEN,

2 ZERO

! Call SYSSGETJPI and wait for information
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIBSSIGNAL ($VAL(STATUS))

STATUS = SYSSGETJPI (%VAL(FLAG),

2 PID VALUE,

2 '

2 NAME BUF_LEN,

2 JPISTATUS,

2 r)

IF (.NOT. STATUS) CALL LIB$SIGNAL (S$VAL(STATUS))

STATUS = SYS$SYNCH (S$VAL(FLAG),
2 JPISTATUS)
IF (.NOT. JPISTATUS) THEN
CALL LIB$SIGNAL (S$VAL(JPISTATUS))
END IF

END

20.4.2 System Service Resource Wait Mode

Normally, when a system service is called and a required resource is not available,
the process is placed in a wait state until the resource becomes available. Then
the service completes execution. This mode is called resource wait mode.

In a real-time environment, however, it may not be practical or desirable for a
program to wait. In these cases, you can choose to disable resource wait mode

so that when a required resource is unavailable, control returns immediately to
the calling program with an error condition value. You can disable (and reenable)
resource wait mode with the Set Resource Wait Mode (SYS$SETRWM) system
service.

If resource wait mode is disabled, it remains disabled until it is explicitly
reenabled or until your process is deleted. For example, if your program has
disabled resource wait mode and has exited to the DCL prompt, subsequent
programs or utilities invoked by this process continue to run with resource wait
mode disabled and might not perform properly because they are not prepared to
handle a failure to obtain a resource. In this case, you should reenable the wait
mode before your program exits to the DCL prompt.

20-6 Calling System Services

Calling System Services
20.4 System Service Completion

How a program responds to the unavailability of a resource depends primarily
on the application and the particular service being called. In some instances, the
program may be able to continue execution and retry the service call later. In
other instances, it may be necessary for the program to wait for the resource and
the system service to complete.

20.4.3 Condition Values Returned from System Services

When a service returns control to your program, it places a return status value
in the general register RO (R8, R9 for 164). The value in the low-order word
indicates either that the service completed successfully or that some specific error
prevented the service from performing some or all of its functions. After each call
to a system service, you must check whether it completed successfully. You can
also test for specific errors in the condition value.

Depending on your specific needs, you can test just the low-order bit, the low-
order 3 bits, or the entire condition value, as follows:

e The low-order bit indicates successful (1) or unsuccessful (0) completion of the
service.

e The low-order 3 bits, taken together, represent the severity of the error.
Table 20-2 lists the possible severity code values returned.

For VAX MACRO, the symbolic definition macro SYS$STSDEF defines the
symbolic names. For the C programming language, the SSDEF.H file defines
the symbolic names.

¢ The remaining bits (bits 3 through 31) classify the particular return condition
and the operating system component that issued the condition value. For
system service return status values, the high-order word (bits 16 through 31)
contains zeros.

Table 20-2 Severity Codes of Condition Value Returned

Value Meaning Symbolic Name

0 Warning STS$K_WARNING
1 Success STS$K_SUCCESS
2 Error STS$K_ERROR

3 Informational STS$K_INFO

4 Severe or fatal error STS$K_SEVERR
5-17 Reserved

Each numeric condition value has a unique symbolic name in the following
format:

SS$_code

where code is a mnemonic describing the return condition.

For example, the following symbol usually indicates a successful return:
SS$_NORMAL

An example of an error return condition value is as follows:

S_ACCVIO

Calling System Services 20-7

Calling System Services
20.4 System Service Completion

This condition value indicates that an access violation occurred because a service
could not read an input field or write an output field.

The symbolic definitions for condition values are included in the default system
library SYS$LIBRARY:STARLET.OLB. You can obtain a listing of these symbolic
codes at assembly time by invoking the system macro SYS$SSDEF. To check
return conditions, use the symbolic names for system condition values.

The OpenVMS operating system does not automatically handle system service
failure or warning conditions; you must test for them and handle them yourself.
This contrasts with the operating system’s handling of exception conditions
detected by the hardware or software; the system handles these exceptions

by default, although you can intervene in or override the default handling by
declaring a condition handler.

20.4.4 Testing the Condition Value

Each language provides some mechanism for testing the return status. Often
you need only check the low-order bit, such as by a test for TRUE (success or
informational return) or FALSE (error or warning return). Condition values that
are returned by system services can provide information and whether the service
completed successfully. The condition value that usually indicates success is
SS$_NORMAL, but others are defined. For example, the condition value SS$_
BUFFEROVF, which is returned when a character string returned by a service
is longer than the buffer provided to receive it, is a success code. This condition
value, however, gives the program additional information.

Warning returns and some error returns indicate that the service performed
some, but not all, of the requested function.

The possible condition values that each service can return are described with the
individual service descriptions in the HP OpenVMS System Services Reference
Manual. When you write calls to system services, read the descriptions of the
return condition values to determine whether you want the program to check for
particular return conditions.

To check the entire value for a specific return condition, each language provides
a way for your program to determine the values associated with specific
symbolically defined codes. You should always use these symbolic names when
you write tests for specific conditions.

For information about how to test for these codes, see the user’s guide for your
programming language.

20.4.4.1 Testing the Condition Value With $VMS_STATUS_SUCCESS Macro

You can use the $VMS_STATUS_SUCCESS macro, defined in stsdef.h, to test

an OpenVMS condition value. $VMS_STATUS_SUCCESS depends on the
documented format of an OpenVMS condition value, and particularly on the
setting of the lowest bit in a condition value. If the lowest bit is set, the condition
indicates a successful status, while the bit is clear for an unsuccessful status.

$VMS_STATUS_SUCCESS is used only with condition values that follow the
OpenVMS condition status value format, and not with C standard library
routines and return values that follow C native status value norms. For deails
on the OpenVMS condition status value structure, please see Chapter 9. For
information on the return values from the various C standard library routines,
see the HP C Run-Time Library Reference Manual for OpenVMS Systems.

20-8 Calling System Services

Calling System Services
20.4 System Service Completion

For example, the following code demonstrates a test that causes a return on error.

RetStat = sys$dassgn(IOChan);
if (!$VMS STATUS SUCCESS(RetStat))
return RetStat;

20.4.5 Special Condition Values Using Symbolic Codes

Individual services have symbolic codes for special return conditions, argument
list offsets, identifiers, and flags associated with these services. For example,
the Create Process (SYS$CREPRC) system service (which is used to create a
subprocess or a detached process) has symbolic codes associated with the various
privileges and quotas you can grant to the created process.

The SYS$LIBRARY:SYS$LIB_C.TLB file contains the C header files for OpenVMS
Alpha and OpenVMS 164 C data structures and definitions. For more information
about SYS$LIBRARY:SYS$LIB_C.TLB, refer to Chapter 21.

The default system macro library, STARLET.MLB, contains the macro definitions
for most system symbols. When you assemble a source program that calls any of
these macros, the assembler automatically searches STARLET.MLB for the macro
definitions. Each symbol name has a numeric value.

If your language has a method of obtaining values for these symbols, this method
is explained in the user’s guide.

If your language does not have such a method, you can do the following:
1. Write a short VAX MACRO program containing the desired macros.

2. Assemble or compile the program and generate a listing. Using the listing,
find the desired symbols and their hexadecimal values.

3. Define each symbol with its value within your source program.

For example, to use the Get Job/Process Information ($GETJPI) system service
to find out the accumulated CPU time (in 10-millisecond ticks) for a specified
process, you must obtain the value associated with the item identifier JPI$_
CPUTIM. You can do this in the following way:

1. Create the following three-line VAX MACRO program (named JPIDEF.MAR
here; you can choose any name you want):

.TITLE JPIDEF "Obtain values for $JPIDEF"

SJPIDEF GLOBAL ; These MUST be UPPERCASE
.END

2. On VAX, assemble and link the program to create the file JPIDEF.MAP as
follows:

$ MACRO JPIDEF
$ LINK/NOEXE/MAP/FULL JPIDEF
$LINK-W-USRTFR, image NL:[].EXE; has no user transfer address

The file JPIDEF.MAP contains the symbols defined by $JPIDEF listed both
alphabetically and numerically.

On Alpha and 164, to compile the program to create the JPIDEF.MAP, enter
the following:

$ MACRO/MIGRATION JPIDEF
$ LINK/NOEXE/MAP/FULL JPIDEF
$LINK-W-USRTFR, image NL:[].EXE; has no user transfer address

3. Find the value of JPI$_CPUTIM and define the symbol in your program.

Calling System Services 20-9

Calling System Services
20.4 System Service Completion

20.4.6 Testing the Return Condition Value for VAX MACRO

To check for successful completion after a system service call, the program can
test the low-order bit of RO and branch to an error-checking routine if this bit is
not set, as follows:

BLBC RO,errlabel ; Error if low bit clear

Programs should not test for success by comparing the return status to SS$_
NORMAL. A future release of OpenVMS may add new, alternate success codes to
an existing service, causing programs that test for SS$_NORMAL to fail.

The error-checking routine may check for specific values or for specific severity
levels. For example, the following VAX MACRO instruction checks for an illegal
event flag number error condition:

CMPL #ss$_ILLEFC,R0 ; Is event flag number illegal?

Note that return condition values are always longword values; however, all
system services always return the same value in the high-order word of all
condition values returned in RO.

20.4.7 System Messages Generated by Condition Values

When you execute a program with the DCL command RUN, the command
interpreter uses the contents of RO to issue a descriptive message if the program
completes with an unsuccessful status. On 164, the calling standard specifies
that the return status is returned in R8. As an aid to portable code, the MACRO
compiler automatically maps uses of RO to R8. See the HP OpenVMS MACRO
Compiler Porting and User’s Guide for additional information.

The following VAX MACRO code fragment shows a simple error-checking
procedure in a main program:

$READEF S -
EFN=#64, -
STATE=TEST

BSBW ERROR

ERROR: BLBC R0O,10$; Check register 0
RSB ; Success, return
10$: RET ; Exit with RO status

After a system service call, the BSBW instruction branches to the subroutine
ERROR. The subroutine checks the low-order bit in register 0 and, if the bit is
clear, branches to a RET instruction that causes the program to exit with the
status of RO preserved. Otherwise, the subroutine issues an RSB instruction to
return to the main program.

If the event flag cluster requested in this call to $READEF is not currently
available to the process, the program exits and the command interpreter displays
the following message:

$SYSTEM-F-UNASEFC, unassociated event flag cluster

The keyword UNASEFC in the message corresponds to the condition value
SS$_UNASEFC.

20-10 Calling System Services

Calling System Services
20.4 System Service Completion

The following three severe errors generated by the calls, not the services, can be
returned from calls to system services:

Error Meaning

SS$_ACCVIO The argument list cannot be read by the caller (using the
$name_G macro), and the service is not called.

This meaning of SS$_ACCVIO is different from its meaning
for individual services. When SS$_ACCVIO is returned from
individual services, the service is called, but one or more
arguments to the service cannot be read or written by the

caller.
SS$_INSFARG Not enough arguments were supplied to the service.
SS$_ILLSER An illegal system service was called.

Calling System Services 20-11

Calling System Services
20.5 Program Examples with System Service Calls

20.5 Program Examples with System Service Calls

This section provides code examples that illustrate the use of a system service
call in the following programming languages:

Ada — Example 20-2

BASIC — Example 20-3
BLISS — Example 20-4

C — Example 20-5

COBOL — Example 20-6
FORTRAN — Example 20-7
Pascal — Example 20-8

VAX MACRO — Example 20-9

PL/I, Fortran 77, and ADA 83 are not supported on OpenVMS 164. If your
application has code written in PL/I, HP recommends rewriting it in another
language such as C or C++. Update code written in Ada 83 to Ada 95, and code
written in Fortran 77 to Fortran 90.

Example 20-2 System Service Call in Ada

with SYSTEM, TEXT IO, STARLET, CONDITION HANDLING; @
procedure ORION is
-- Declare variables to hold equivalence name and length

EQUIV NAME: STRING (1..255); @
pragma VOLATILE (EQUIV NAME);

NAME LENGTH: SYSTEM.UNSIGNED WORD;
pragma VOLATILE (NAME LENGTH);

-- Declare itemlist and fill in entries.

ITEM LIST: STARLET.ITEM LIST 3 TYPE (1..2) := ©
(1 =>
(ITEM CODE => STARLET.LNM STRING, @
BUF LEN => EQUIV NAME'LENGTH,

BUF ADDRESS => EQUIV NAME'ADDRESS,

RET_ADDRESS => NAME_LENGTH'ADDRESS),
2 =>

(ITEM CODE => 0,

BUF LEN = 0,

BUF ADDRESS => SYSTEM.ADDRESS ZERO,

RET_ADDRESS => SYSTEM.ADDRESS ZERO));

STATUS: CONDITION HANDLING.COND VALUE TYPE; ©

begin
-- Translate the logical name
STARLET.TRNINM (@
STATUS => STATUS,
TABNAM => “LNM$FILE_DEV“,

LOGNAM => "CYGNUS",
ITMLST => ITEM LIST);

(continued on next page)

20-12 Calling System Services

Calling System Services
20.5 Program Examples with System Service Calls

Example 20-2 (Cont.) System Service Call in Ada

-- Display name if success, else signal error
if not CONDITION HANDLING.SUCCESS (STATUS) then (7]
CONDITION HANDLING.SIGNAL (STATUS);
else -
TEXT I0.PUT ("CYGNUS translates to """);
TEXT 10.PUT (EQUIV NAME (1..INTEGER(NAME LENGTH)));
TEXT I0.PUT LINE (™"""); -
end if; -

end ORION;

Ada Notes

(1]

@ © © o

The with clause names the predefined packages of declarations used in this
program. SYSTEM and TEXT_IO are standard Ada packages; STARLET
defines the OpenVMS system service routines, data types, and constants; and
CONDITION_HANDLING defines error-handling facilities.

Enough space is allocated to EQUIV_NAME to hold the longest possible
logical name. NAME_LENGTH will receive the actual length of the
translated logical name. The VOLATILE pragma is required for variables
that will be modified by means other than an assignment statement or being
an output parameter to a routine call.

ITEM_LIST_3_TYPE is a predeclared type in package STARLET that defines
the OpenVMS three-longword item list structure.

The dollar-sign character is not valid in Ada identifiers; package STARLET
defines the fac$ names by removing the dollar sign.

COND_VALUE_TYPE is a predeclared type in package CONDITION_
HANDLING that is used for return status values.

System services are defined in package STARLET using names that omit the
prefix SYS$. The passing mechanisms are specified in the routine declaration
in STARLET, so they need not be specified here.

In this example, any failure status from the SYS$TRNLNM service is
signaled as an error. Other means of error recovery are possible; see your
Ada language documentation for more details.

Calling System Services 20-13

Calling System Services
20.5 Program Examples with System Service Calls

Example 20-3 System Service Call in BASIC

10 SUB ORION (1] ! Subprogram ORION
OPTION TYPE=EXPLICIT ! Require declaration of all
! symbols
EXTERNAL LONG FUNCTION SYSSTRNLNM ! Declare the system service

EXTERNAL WORD CONSTANT LNM$ STRING ! The request code that
! we will use
DECLARE WORD NAMLEN, (2 ! Word to receive length
LONG SYS_STATUS ! Longword to receive status

COMMON (BUF) STRING NAME STRING = 255 (3]

RECORD ITEM LIST ! Define item
! descriptor structure
WORD BUFFER LENGTH ! The buffer length
WORD ITEM ! The request code
LONG BUFFER ADDRESS ! The buffer address
LONG RETURN LENGTH ADDRESS ! The address of the return len
- - ! word
! The terminator
1

End of structure definition

LONG TERMINATOR
END RECORD ITEM LIST

DECLARE ITEM LIST ITEMS ! Declare an item list
ITEMS: :BUFFER LENGTH = 255% ! Initialize the item list
ITEMS: : ITEM =_LNM$ STRING

ITEMS: : BUFFER ADDRESS = LOC(NAME STRING)

ITEMS: :RETURN LENGTH ADDRESS = LOC(NAMLEN)

ITEMS: : TERMINATOR = 0

(4]

SYS _STATUS = SYS$TRNLNM(, 'LNM$FILE DEV', 'CYGNUS’,, ITEMS) @
IF (SYS_STATUS AND 1%) = 0% @
THEN

! Error path
ELSE

! Success path
END IF
END SUB

BASIC Notes

© The SUB statement defines the routine and its entry mask.

® The DECLARE WORD NAMLEN declaration reserves a 16-bit word for the
output value.

©® The COMMON (BUF) STRING NAME STRING = 255 declaration allocates
255 bytes for the output data in a static area. The compiler builds the
descriptor.

O The SYS$ form invokes the system service as a function.

Enclose the arguments in parentheses and specify them in positional order
only. Specify a comma for each optional argument that you omit (including
trailing arguments).

@O The input character string is specified directly in the system service call; the
compiler builds the descriptor.

@ The IF statement performs a test on the low-order bit of the return status.
This form is recommended for all status returns.

20-14 Calling System Services

Calling System Services

20.5 Program Examples with System Service Calls

Example 20-4 System Service Call in BLISS

MODULE ORION=

BEGIN
EXTERNAL ROUTINE
ERROR_PROC: NOVALUE;

LIBRARY ’'SYS$SLIBRARY:STARLET.L32';

GLOBAL ROUTINE ORION: NOVALUE=

Error processing routine

Library containing OpenvMS
macros (including $TRNLNM).
This declaration

is required.

BEGIN
OWN
NAMBUF : VECTOR[255, BYTE], ! Output buffer
NAMLEN : WORD, ! Translated string length
ITEMS : BLOCK[16,BYTE]
INITIAL(WORD (255, ! Output buffer length
LNM$ STRING), ! Item code
NAMBUF, ! Output buffer
NAMLEN, ! Address of word for
! translated
! string length
0); ! List terminator
LOCAL ! Return status from
STATUS; ! system service

STATUS = $TRNLNM(TABNAM = $ASCID'LNM$FILE DEV',
LOGNAME = $ASCID’CYGNUS',
ITMLST = ITEMS); @

IF NOT .STATUS THEN ERROR_PROC(.STATUS); 6)
END;

BLISS Notes

@ The macro is invoked by its service name, without a suffix.

Enclose the arguments in parentheses and specify them by keyword.
(Keyword names correspond to the names of the arguments shown in
lowercase in the system service format descriptions in the HP OpenVMS
System Services Reference Manual.)

® The return status, which is assigned to the variable STATUS, is tested for
TRUE or FALSE. FALSE (low bit = 0) indicates failure or warning.

Calling System Services 20-15

Calling System Services
20.5 Program Examples with System Service Calls

Example 20-5 System Service Call in C

#include <starlet.h> @
#include <libS$routines.h>
#include <ssdef.h>
#include <lnmdef.h>
#include <descrip.h>
#include <stdio.h>

typedef struct { (2

unsigned short buffer length;
unsigned short item code;

char *buffer addr;
short *return len addr;
unsigned terminator;

} item list t;

main ()

{

}

(3]
SDESCRIPTOR(table name, "LNMS$FILE DEV");
$DESCRIPTOR(log name, "CYGNUS"); ~
char translated name[255];
int status;
short return length;
item list t item list;

item list.buffer length = sizeof(translated name); (4)
item list.item code = LNM$ STRING;

item list.buffer addr = translated name;

item list.return len addr = &return length;

item list.terminator = 0; -

status = sys$trnlnm(0, &table name, &log name, 0, &item list); (5]

if (!(status & 1)) (6]
lib$signal(status);
else
printf("The logical name %s is equivalent to %*s\n",
log name.dsc$a pointer,
return length,
translated name);

C Notes

(1]

The C language header file starlet.h defines OpenVMS system services
entry points. The file 1ib$routines.h declares the LIB$ Run-Time Library
routines.

The structure of an item list entry is defined.

The $DESCRIPTOR macro declares and initializes a character string
descriptor. Here, two descriptors are created for use with the sys$trnlnm
system service.

The function sizeof is used to obtain the size of the string. The returned
length will be stored as a short integer in return length.

The sys$trnlnm routine is defined in starlet.h.

The IF statement performs a logical test following the function reference to
determine whether the service completed successfully. If an error or warning
occurs during the service call, the error is signaled.

20-16 Calling System Services

Calling System Services
20.5 Program Examples with System Service Calls

Example 20-6 System Service Call in COBOL

IDENTIFICATION DIVISION.

PROGRAM-ID. ORION. @

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 TABNAM PIC X(11) VALUE "LNM$FILE DEV".

01 CYGDES PIC X(6) VALUE "CYGNUS".

01 NAMDES PIC X(255) VALUE SPACES. @

01 NAMLEN PIC S9(4) COMP.

01 ITMLIS.
02 BUFLEN PIC S9(4) COMP VALUE 225.
02 ITMCOD PIC S9(4) COMP VALUE 2. ©
02 BUFADR POINTER VALUE REFERENCE NAMDES.
02 RETLEN POINTER VALUE REFERENCE NAMLEN.
02 FILLER PIC S9(5) COMP VALUE 0.

01 RESULT PIC S9(9) COMP.

PROCEDURE DIVISION.
START-ORION.
CALL "SYSSTRNINM" @
USING OMITTED
BY DESCRIPTOR TABNAM
BY DESCRIPTOR CYGDES O
OMITTED
BY REFERENCE ITMLIS
GIVING RESULT.
IF RESULT IS FAILURE @
GO TO ERROR-CHECK.
DISPLAY "NAMDES: ", NAMDES(1:NAMLEN).
GO TO THE-END.
ERROR-CHECK.
DISPLAY "Returned Error: ", RESULT CONVERSION.
THE-END.
STOP RUN.

COBOL Notes

©@ The PROGRAM-ID paragraph identifies the program by specifying the
program name, which is the global symbol associated with the entry point.
The compiler builds the entry mask.

® Enough bytes are allocated for the alphanumeric output data. The compiler
generates a descriptor when you specify USING BY DESCRIPTOR in the
CALL statement.

© The value of the symbolic code LNM$STRING is 2. Section 20.4.5 explains
how to obtain values for symbolic codes.

O This definition reserves a signed longword with COMP (binary) usage to
receive the output value.

@ The service is called by the SYS$ form of the service name, and the name is
enclosed in quotation marks.

Specify arguments in positional order only, with the USING statement. You
cannot omit arguments; if you are accepting the default for an argument, you
must pass the default value explicitly (OMITTED in this example).

You can specify explicitly how each argument is being passed: by descriptor,
by reference (that is, by address), or by value. You can also implicitly
specify how an argument is being passed: through the default mechanism

Calling System Services 20-17

Calling System Services
20.5 Program Examples with System Service Calls

(by reference), or through association with the last specified mechanism (thus,
the last two arguments in the example are implicitly passed by value).

@ The input string is defined as alphanumeric (ASCII) data. The compiler
generates a descriptor when you specify USING BY DESCRIPTOR in the
CALL statement.

@ The IF statement tests RESULT for a failure status. In this case, control is
passed to the routine ERROR-CHECK.

Example 20-7 System Service Call in FORTRAN

SUBROUTINE ORION

IMPLICIT NONE ! Require declaration of all symbols
INCLUDE ' ($SYSSRVNAM)'’ ! Declare system service names
INCLUDE ' (SLNMDEF) '’ ! Declare STRNLNM item codes

INCLUDE ' (LIB$ROUTINES)' ! Declare LIB$ routines

STRUCTURE /ITEM LIST 3 TYPE/ ! Structure of item list @
INTEGER*2 BUFLEN ~ Item buffer length
INTEGER*2 ITMCOD Item code
INTEGER*4 BUFADR Item buffer address
INTEGER*4 RETADR Item return length address

END STRUCTURE

RECORD /ITEM_LIST_3_TYPE/ ITEMLIST(2) ! Declare itemlist
CHARACTER*255 EQUIV_NAME ! For returned equivalence name
INTEGER*2 NAMLEN ! For returned name length

VOLATILE EQUIV_NAME,NAMLEN (3]

INTEGER*4 STATUS | For returned service status @

! Fill in itemlist
|

ITEMLIST(1).ITMCOD

LNM$ STRING

ITEMLIST(1).BUFLEN = LEN(EQUIV NAME) @
ITEMLIST(1).BUFADR = $LOC(EQUIV NAME)
ITEMLIST(1).RETADR = 3%LOC (NAMLEN)

ITEMLIST(2).ITMCOD = 0 ! For terminator

ITEMLIST(2).BUFLEN

! Call SYSSTRNLM
!

STATUS = SYSSTRNLNM (,

0

| ATTR omitted @

|
1 "LNMSFILE DEV', ! TABNAM
2 "CYGNUS', ™ ! LOGNAM
3 , ! ACMODE omitted
4 ITEMLIST) ! ITMLST

! Check return status, display translation if successful
|
IF (.NOT. STATUS) THEN @

CALL LIBS$SIGNAL(%VAL(STATUS))

ELSE
WRITE (*,*) 'CYGNUS translates to: "',

1 EQUIV NAME(1:NAMLEN), '"’

END IF -

END

FORTRAN Notes

© The module $SYSSRVNAM in the FORTRAN system default library
FORSYSDEF.TLB contains INTEGER and EXTERNAL declarations for each
of the system services, so you need not explicitly provide these declarations in
your program. Module $LNMDEF defines constants and data structures used

20-18 Calling System Services

@ 6 o

Calling System Services
20.5 Program Examples with System Service Calls

when calling the logical name services, and module LIBSROUTINES contains
declarations for the LIB$ Run-Time Library routines.

The structure of an OpenVMS 3-longword item list is declared and then used
to define the record variable ITEM_LIST. The second element will be used for
the terminator.

The VOLATILE declaration is required for variables that are modified by
means other than a direct assignment or as an argument in a routine call.

Return status variables should always be declared as longword integers.

The LEN intrinsic function returns the allocated length of EQUIV_NAME.
The %LOC built-in function returns the address of its argument.

By default, FORTRAN passes arguments by reference, except for strings
which are passed by CLASS_S descriptor. Arguments are omitted in
FORTRAN by leaving the comma as a placeholder. All arguments must
be specified or explicitly omitted.

A condition value can be tested for success or failure by a true/false test. For
more information on testing return statuses, see the OpenVMS FORTRAN
documentation.

Example 20-8 System Service Call in Pascal

[INHERIT('SYSSLIBRARY:STARLET', (1]

"SYSSLIBRARY:PASCALSLIB ROUTINES')]

PROGRAM ORION (OUTPUT);
TYPE

VAR

Item_List_Cell = RECORD CASE INTEGER OF @
1:({ Normal Cell }
Buffer Length : [WORD] 0..65535;

Item Code : [WORD] 0..65535;
Buffer Addr : UNSIGNED;
Return Addr : UNSIGNED

)i

2:({ Terminator }
Terminator : UNSIGNED
)i

END;

Item List Template(Count:INTEGER) = ARRAY [l..Count] OF Item List Cell;

Item List : Item List Template(2);

Translated Name : [VOLATILE] VARYING [255] OF CHAR; ©
Status : INTEGER;

BEGIN

{ Specify the buffer to return the translation } @

Item List[1].Buffer Length := SIZE(Translated Name.Body);
ITtem List[1l].Item Code := LNM$ String;

Item List[1].Buffer Addr

3 . IADDRESS (Translated Name.Body);
Item List[1l].Return Addr

IADDRESS (Translated Name.Length);

{ Terminate the item list }
Item List[2].Terminator := 0;

(continued on next page)

Calling System Services 20-19

Calling System Services
20.5 Program Examples with System Service Calls

Example 20-8 (Cont.) System Service Call in Pascal

{ Translate the CYGNUS logical name }

Status := $trnlnm(Tabnam := 'LNM$FILE DEV’, Lognam := ’'CYGNUS', (5]
Itmlst := Item List); -

IF NOT ODD(Status) O

THEN
LIB$SIGNAL(Status)

ELSE
WRITELN('CYGNUS is equivalent to ’,Translated Name);

END.

Pascal Notes

1]

2]

The Pascal environment file STARLET.PEN defines OpenVMS system
services, data structures and constants. PASCAL$LIB_ROUTINES declares
the LIB$ Run-Time Library routines.

The structure of an item list entry is defined using a variant record type.

The VARYING OF CHAR type is a variable-length character string with two
components: a word-integer length and a character string body, which in this
example is 255 bytes long. The VOLATILE attribute is required for variables
that are modified by means other than a direct assignment or as an argument
in a routine call.

The functions SIZE and IADDRESS obtain the allocated size of the string
body and the address of the string body and length. The returned length will
be stored into the length field of the varying string Translated_Name, so that
it will appear to be the correct size.

The definition of the SYS$TRNLNM routine in STARLET.PEN contains
specifications of the passing mechanism to be used for each argument; thus, it
is not necessary to specify the mechanism here.

The IF statement performs a logical test following the function reference to
see if the service completed successfully. If an error or warning occurs during
the service call, the error is signaled.

20-20 Calling System Services

Calling System Services
20.5 Program Examples with System Service Calls

Example 20-9 System Service Call in VAX MACRO

CYGDES: .ASCID /CYGNUS/ @ ; Descriptor for CYGNUS string
TBLDES: .ASCID /LNM$FILE DEV/ @ ; Logical name table
NAMBUF: .BLKB 255 © ; Output buffer

NAMLEN: .BLKW 1

; Word to receive length

.WORD LNMS$STRING ; Item code

ITEMS: .WORD 255 ; Output buffer length
r

.ADDRESS - ; Output buffer
NAMBUF
.ADDRESS - ; Return length
NAMLEN
.ILONG 0 ; List terminator
.ENTRY ORION,0 @ ; Routine entry point & mask
$TRNLNM S -

“TABNAM=TBLDES, -
LOGNAM=CYGDES, -
ITMLST=ITEMS
BLBC RO,ERROR @ ; Check for error

.END

VAX MACRO Notes

©@ 66 o600 @©

The input character string descriptor argument is defined using the .ASCID
directive.

The name of the table to search is defined using the .ASCID directive.

Enough bytes to hold the output data are allocated for an output character
string argument.

The MACRO directive .BLKW reserves a word to hold the output length.

A routine name and entry mask show the beginning of executable code in a
routine or subroutine.

A macro name that has the suffix _S or _G calls the service.

You can specify arguments either by keyword (as in this example) or by
positional order. (Keyword names correspond to the names of the arguments
shown in lowercase in the system service format descriptions in the HP
OpenVMS System Services Reference Manual.) If you omit any optional
arguments (if you accept the defaults), you can omit them completely if you
specify arguments by keyword. If you specify arguments by positional order,
however, you must specify the comma for each missing argument.

Use the number sign (#) to indicate a literal value for an argument.
The BLBC instruction causes a branch to a subroutine named ERROR (not
shown) if the low bit of the condition value returned from the service is clear

(low bit clear = failure or warning). You can use a BSBW instruction to
branch unconditionally to a routine that checks the return status.

Calling System Services 20-21

21

STARLET Structures and Definitions for C
Programmers

This chapter describes the libraries that contain C header files for routines
supplied by the OpenVMS Alpha and OpenVMS 164 operating systems.

21.1 SYS$STARLET_C.TLB Equivalency to STARLETSD.TLB

The SYS$STARLET_C.TLB file, which was introduced in OpenVMS Alpha
Version 1.0, contains all the .H files that provide STARLET functionality
equivalent to STARLETSD.TLB. The file SYS$STARLET_C.TLB, together with
DECC$RTLDEF.TLB that ships with the HP C Compiler, replaces VAXCDEF.TLB
that previously shipped with the VAX C Compiler. DECC$RTLDEF.TLB contains
all the .H files that support the compiler and RTL, such as STDIO.H.

If you are running an application from a release prior to OpenVMS Alpha Version
1.0, the following differences may require source changes:

e RMS structures

Previously, the RMS structures FAB, NAM, RAB, XABALL, and so forth,
were defined in the appropriate .H files as “struct RAB {...”, for example. The
.H files supplied in OpenVMS Alpha Version 1.0 define them as “struct rabdef
{...”. To compensate for this difference, lines of the form “#define RAB rabdef”
have been added. However, there is one situation where a source change is
required because of this change. If you have a private structure that contains
a pointer to one of these structures and your private structure is defined

(but not used) before the RMS structure has been defined, you will receive
compile-time errors similar to the following:

%CC-E-PASNOTMEM, In this statement, "rab$b rac" is not a member of "rab".

This error can be avoided by reordering your source file so that the RMS
structure is defined before the private structure. Typically, this involves
moving around “#include” statements.

e LIB (privileged interface) structures

Historically, three structures from LIB (NFBDEF.H, FATDEF.H, and
FCHDEF.H) have been made available as .H files. These files were
shipped as .H files in OpenVMS Alpha Version 1.0 and 1.5 (not in the
new SYS$STARLET_C.TLB). As of OpenVMS Alpha Version 7.0, the file
SYS$LIB_C.TLB, containing all LIB structures and definitions, was added.
These three .H files are now part of that .TLB and are no longer shipped
separately. Source changes may be required, because no attempt has been
made to preserve any existing anomalies in these files. The structures and
definitions from LIB are for privileged interfaces only and are therefore
subject to change.

STARLET Structures and Definitions for C Programmers 21-1

STARLET Structures and Definitions for C Programmers
21.1 SYS$STARLET_C.TLB Equivalency to STARLETSD.TLB

e Use of “variant_struct” and “variant_union”

In the new .H files, “variant_struct” and “variant_union” are always used;
whereas previously some structures used “struct” and “union”. Therefore,
the intermediate structure names cannot be specified when referencing fields
within data structures.

For example, the following statement:

AlignFaultItem.PC[0]

DataPtr->afr$r pc data overlay.afr$q fault pc[0];

becomes:

AlignFaultItem.PC[0] = DataPtr->afr$q fault pc[0];

e Member alignment

Each of the .H files in SYS$STARLET C.TLB saves and restores the state of
“#pragma member_alignment”.

e (Conventions

The .H files in SYS$STARLET C.TLB adhere to some conventions that
were only partly followed in VAXCDEF.TLB. All constants (#defines) have
uppercase names. All identifiers (routines, structure members, and so forth)
have lowercase names. Where there is a difference from VAXCDEF.TLB, the
old symbol name is also included for compatibility, but users are encouraged
to follow the new conventions.

e Use of Librarian utility to access the .H files

During installation of OpenVMS Alpha, the contents of SYS$STARLET_
C.TLB are not extracted into the separate .H files. The HP C Compiler
accesses these files from within SYS$STARLET_C.TLB, regardless of the
format of the #include statement. If you want to inspect an individual .H file,
you can use the Librarian utility, as in the following example:

$ LIBRARY /EXTRACT=AFRDEF /OUTPUT=AFRDEF.H SYSSLIBRARY:SYSSSTARLET C.TLB

e Additional .H files included in SYS$STARLET C.TLB

In addition to the .H files derived from STARLET sources, SYS$STARLET_
C.TLB includes .H files that provide support for POSIX Threads Library, such
as CMA.H.

21.2 NEW STARLET Definitions for C

SYS$LIBRARY:SYS$STARLET C.TLB (or STARLET) provides C function
prototypes for system services, as well as data structure definitions. The compiler
searches the library file SYS$LIBRARY:SYS$STARLET C.TLB for the STARLET
header files. The definitions are consistent with the OpenVMS C language coding
conventions and definitions (typedefs) used in SYS$LIBRARY:SYS$LIB_C.TLB.

To maintain source compatibility for users of STARLET.H as provided prior to
OpenVMS Alpha Version 7.0, the “old style” function declarations and definitions
are still provided by default. To take advantage of the new system service
function prototypes and type definitions, you must explicitly enable them.

You can define the __ NEW_STARLET symbol with a HP C command line
qualifier or include the definition directly in your source program. For example:

e Define the _NEW_STARLET symbol with the HP C command line qualifier as
follows:

21-2 STARLET Structures and Definitions for C Programmers

STARLET Structures and Definitions for C Programmers
21.2 NEW STARLET Definitions for C

/DEFINE=(__NEW_STARLET=1)

or

¢ Define the _NEW_STARLET symbol in your C source program before
including the SYS$STARLET C.TLB header files:

#define _ NEW_STARLET 1

#include <starlet.h>
#include <vadef.h>

To see the available system service function prototypes in STARLET.H, you can
use the Librarian utility as shown in the following example:

$ LIBRARY/OUTPUT=STARLET.H SYS$LIBRARY:SYS$STARLET_C.TLB/EXTRACT=STARLET

The following example shows a new system service function prototype as it is

defined in STARLET.H:

#pragma _ required pointer size long

int sys$expreg 64(

struct generic 64 *region_id 64,
unsigned _ int64 length 64,

unsigned int acmode,
unsigned int flags,

void *(*(return va 64)),
unsigned _ int64 *return length 64);

#pragma _ required pointer size _ short

For more information about HP C pointer size pragmas, see the HP C User’s

Guide for OpenVMS Systems.

The following source code example shows the sys$expreg 64 function prototype

referenced in a program.

#define _ NEW STARLET 1

#include <starlet.h>
#include <gen64def.h>
#include <vadef.h>

#include <ints.h>
#include <far pointers.h>

/*

/*
/*
/*

/*
/*

/*
/*
/*
/*
/*

Enable "New Starlet" features */

Declare prototypes for system services */
Define GENERIC 64 type */
Define VAS$ constants */

Define 64-bit integer types */
Define 64-bit pointer types */

Ubiquitous VMS status value */
Expand in "default" P2 region */
Returned VA in P2 space */
Allocated size in bytes */

Page size in bytes */

status = sys$expreg 64(®ion, request size, 0, 0, &p2_va, &length);

{
int status;
GENERIC 64 region = { VASC P2 };
VOID PQ p2 va; -
uint64 length;
extern uint64 page size;

}

Table 21-1 lists the data structures that are used by the new function protypes.

STARLET Structures and Definitions for C Programmers 21-3

STARLET Structures and Definitions for C Programmers
21.2 NEW STARLET Definitions for C

Table 21-1 Structures Used by _NEW_STARLET Prototypes

Common Prefix for

Structure Used by Defined by Structure Member

Prototype Header File Names Description

struct _acmecb acmedef.h acmedef$ ACM communications buffer

struct _acmesb acmedef.h acmedef$ ACM status block

struct _cluevthndl cluevtdef.h cluevthndl$ Cluster event handle

struct _fabdef fabdef.h fab$ File access block

struct _generic_64 gen64def.h gen64$ Generic quadword structure

struct _ieee ieeedef.h ieee$ IEEE Floating point control
structure

struct _ile2 ! iledef.h ile2$ Item list entry 2

struct _ile3 ! iledef.h ile3$ Item list entry 3

struct _ilea 64! iledef.h ilea_64$% 64-bit item list entry A structure

struct _ileb 64! iledef.h ileb_64$ 64-bit item list entry B structure

struct _iosa iosadef.h iosa$ I/O status area

struct _iosb iosbdef.h iosb$ I/O status block

struct _lksb lksbdef.h lksb$ Lock status block

struct _rabdef rabdef.h rab$ RMS record access block

struct _secid seciddef.h secid$ Global section identifier

struct _va_range va_rangedef.h va_range$ 32-bit virtual address range

1Use of this structure type is not required by the function prototypes in starlet.h. This structure type is provided as a
convenience and can be used where it is appropriate.

21-4 STARLET Structures and Definitions for C Programmers

Part I

I/0, System, and Programming Routines

This part of this second volume describes the I/O operations, and the system and
programming routines used by run-time libraries and system services.

22

Run-Time Library Input/Output Operations

This chapter describes the different I/O programming capabilities provided by the
run-time library and illustrates these capabilities with examples of common I/O
tasks. This chapter contains the following sections:

Section 22.1 describes the input and output operations within a program.
Section 22.2 describes using SYS$INPUT and SYS$OUTPUT.

Section 22.3 describes using LIB§GET_INPUT and LIB$PUT_OUTPUT for
simple user I/O.

Section 22.4 describes using the SMG$ run-time library routines for managing
the appearance of terminal screens.

Section 22.5 describes using screen management input routines and the SYS$QIO
and SYS$QIOW system services to perform special actions.
22.1 Choosing I/O Techniques

The operating system and its compilers provide the following methods for
completing input and output operations within a program:

e DEC Text Processing Utility
e DECforms software
e Program language I/O statements

e OpenVMS Record Management Services (RMS) and Run-Time Library (RTL)
routines

e SYS$QIO and SYS$QIOW system services
e Non-HP-supplied device drivers to control the I/O to the device itself

The DEC Text Processing Utility (DECTPU) is a text processor that can be used
to create text editing interfaces. DECTPU has the following features:

e High-level procedure language with several data types, relational operators,
error interception, looping, case language statements, and built-in procedures

e Compiler for the DECTPU procedure language
e Interpreter for the DECTPU procedure language

e Extensible Versatile Editor (EVE) editing interface which, in addition to the
EVE keypad, provides EDT, VT100, WPS, and numeric keypad emulation

In addition, DECTPU offers the following special features:
e Multiple buffers
e Multiple windows

e Multiple subprocesses

Run-Time Library Input/Output Operations 22-1

Run-Time Library Input/Output Operations
22.1 Choosing I/0 Techniques

e Text processing in batch mode
e Insert or overstrike text entry
e Free or bound cursor motion
e Learn sequences

e Pattern matching

e Key definition

The method you select for I/O operations depends on the task you want to
accomplish, ease of use, speed, and level of control you want.

The HP DECforms for OpenVMS software is a forms management product

for transaction processing. DECforms integrates text and graphics into forms
and menus that application programs use as an interface to users. DECforms
software offers application developers software development tools and a run-time
environment for implementing interfaces.

DECforms software integrates with the Application Control and Management
System (ACMS), a transaction process (TP) monitor that works with other HP
commercial applications to provide complete customizable development and
run-time environments for TP applications. An asynchronous call interface to
ACMS allows a single DECforms run-time process to control multiple terminals
simultaneously in a multithreaded way, resulting in an efficient use of memory.
By using the ACMS Remote Access Option, DECforms software can be distributed
to remote CPUs. This technique allows the host CPU to offload forms processing
and distribute it as closely as possible to the end user.

In contrast to OpenVMS RMS, RTLs, SYS$QIOs, and device driver I/O, program
language I/0 statements have the slowest speed and lowest level of control, but
they are the easiest to use and are highly portable.

OpenVMS RMS and RTL routines can perform most I/O operations for a high-
level or assembly language program. For information about OpenVMS RMS, see
the OpenVMS Record Management Services Reference Manual.

System services can complete any I/O operation and can access devices not
supported within OpenVMS RMS. See Chapter 23 for a description of using I/O
system services.

Writing a device driver provides the most control over I/O operations, but can
be more complex to implement. For information about device drivers for VAX
systems, see the OpenVMS VAX Device Support Manual. The OpenVMS VAX
Device Support Manual has been archived but is available on the OpenVMS
Documentation CD-ROM.

Several types of I/O operations can be performed within a program, including the
following:

e RTL routines allow you either to read simple input from a user or send simple
output to a user. One RTL routine allows you to specify a string to prompt
for input from the current input device, defined by SYS$INPUT. Another RTL
routine allows you to write a string to the current output device, defined by
SYS$OUTPUT. See Section 22.2 and Section 22.3 for more information.

22-2 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.1 Choosing I/0 Techniques

e RTL routines allow you either to read complex input from a user or to
send complex output to a user. By providing an extensive number of screen
management (SMG$) routines, the RTL allows you either to read multiple
lines of input from users or to send complex output to users. The SMG$
routines also allow you to create and modify complicated displays that accept
input and produce output. See Section 22.4 for more information.

e RTL routines allow you to use programming language I/O statements to send
data to and receive data from files. Program language I/O statements call
OpenVMS RMS routines to complete most file I/O. You can also use OpenVMS
RMS directly in your programs for accomplishing file I/O. See Chapter 28 for
more information.

e The SYS$QIO and SYS$QIOW system services allow you to send data to
and from devices with the most flexibility and control. You can use system
services to access devices not supported by your programming language or by
OpenVMS RMS.

You can perform other special I/O actions, such as using interrupts,
controlling echo, handling unsolicited input, using the type-ahead buffer,
using case conversion, and sending sytem broadcast messges, by using
SMG$ routines or, for example, by using SYS$BRKTHRU system service to
broadcast messages. See Section 22.5 for more information.

22.2 Using SYSSINPUT and SYS$SOUTPUT

Typically, you set up your program so that the user is the invoker. The user starts
the program either by entering a DCL command associated with the program or
by using the RUN command.

22.2.1 Default Input and Output Devices

The user’s input and output devices are defined by the logical names SYS$INPUT
and SYS$OUTPUT, which are initially set to the values listed in Table 22—1.

Table 22-1 SYSSINPUT and SYSSOUTPUT Values

Logical Name User Mode Equivalence Device or File
SYS$INPUT Interactive Terminal at which the user is logged in
Batch job Data lines following the invocation of the
program
Command procedure Data lines following the invocation of the
program
SYS$OUTPUT Interactive Terminal at which the user is logged in
Batch job Batch log file
Command procedure Terminal at which the user is logged in

Generally, use of SYS$INPUT and SYS$OUTPUT as the primary input and
output devices is recommended. A user of the program can redefine SYS$INPUT
and SYS$OUTPUT to redirect input and output as desired. For example, the
interactive user might redefine SYS$OUTPUT as a file name to save output in a
file rather than display it on the terminal.

Run-Time Library Input/Output Operations 22-3

Run-Time Library Input/Output Operations
22.2 Using SYSSINPUT and SYSSOUTPUT

22.2.2 Reading and Writing to Alternate Devices and External Files

Alternatively, you can design your program to read input from and write output
to a file or a device other than the user’s terminal. Files may be useful for writing
large amounts of data, for writing data that the user might want to save, and for
writing data that can be reused as input. If you use files or devices other than
SYS$INPUT and SYS$OUTPUT, you should provide the names of the files or
devices (best form is to use logical names) and any conventions for their use. You
can specify such information by having the program write it to the terminal, by
creating a help file, or by providing user documentation.

22.3 Working with Simple User 1/O

Usually, you can request information from or provide information to the user with
little regard for formatting. For such simple I/O, use either LIB§GET_INPUT
and LIB§PUT_OUTPUT or the I/O statements for your programming language.

To provide complex screen displays for input or output, use the screen
management facility described in Section 22.4.

22.3.1 Default Devices for Simple 1/0

The LIB$GET_INPUT and LIB$PUT_OUTPUT routines read from SYS$INPUT
and write to SYS$OUTPUT, respectively. The logical names SYS$INPUT and
SYS$OUTPUT are implicit to the routines, because you need only call the
routine to access the I/O unit (device or file) associated with SYS$INPUT and
SYS$OUTPUT. You cannot use these routines to access an I/O unit other than
the one associated with SYS$INPUT or SYS$OUTPUT.

22.3.2 Getting a Line of Input

A read operation transfers one record from the input unit to a variable or
variables of your choice. At a terminal, the user ends a record by pressing a
terminator. The terminators are the ASCII characters NUL through US (0
through 31) except for LF, VT, FF, TAB, and BS. The usual terminator is CR
(carriage return), which is generated by pressing the Return key.

If you are reading character data, LIBSGET_INPUT is a simple way of prompting
for and reading the data. If you are reading noncharacter data, programming
language I/O statements are preferable since they allow you to translate the data
to a format of your choice.

For example, Fortran offers the ACCEPT statement, which reads data from
SYS$INPUT, and the READ statement, which reads data from an I/O unit of your
choice.

Make sure the variables that you specify can hold the largest number of
characters the user of your program might enter, unless you want to truncate the
input deliberately. Overflowing the input variable using LIBSGET_INPUT causes
the fatal error LIB$_INPSTRTRU (defined in $LIBDEF); overflowing the input
variable using language I/O statements may not cause an error but does truncate
your data.

LIB$GET_INPUT places the characters read in a variable of your choice. You
must define the variable type as a character. Optionally, LIBSGET_INPUT places
the number of characters read in another variable of your choice. For input at a
terminal, LIBSGET INPUT optionally writes a prompt before reading the input.
The prompt is suppressed automatically for an operation not taking place at a
terminal.

22-4 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.3 Working with Simple User I/0

Example 22-1 uses LIBSGET_INPUT to read a line of input.

Example 22-1 Reading a Line of Data

INTEGER*4 STATUS,

2 LIBSGET INPUT

INTEGER*2 INPUT SIZE

CHARACTER*512 INPUT

STATUS = LIB$GET_INPUT (INPUT, ! Input value

2 "Input value: ', ! Prompt (optional)

2 INPUT SIZE) ! Input size (optional)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

22.3.3 Getting Several Lines of Input

The usual technique for obtaining a variable number of input records—either
values for which you are prompting or data records from a file—is to read and
process records until the end-of-file. End-of-file means one of the following:

e Terminal—The user has pressed Ctrl/Z. To ensure that the convention is
followed, you might first write a message telling the user to press Ctrl/Z to
terminate the input sequence.

e Command procedure—The end of a sequence of data lines has been reached.
That is, a sequence of data lines ends at the next DCL command (a line in
the procedure beginning with a dollar sign [$]) or at the end of the command
procedure file.

e File—The end of an actual file has been reached.

Process the records in a loop (one record per iteration) and terminate the loop
on end-of-file. LIB$GET INPUT returns the error RMS$ EOF (defined in
$RMSDEF) when end-of-file occurs.

Example 22—-2 uses a Fortran READ statement in a loop to read a sequence of
integers from SYS$INPUT.
Example 22-2 Reading a Varying Number of Input Records

! Return status and error codes
INTEGER STATUS,

2 IOSTAT,

3 STATUS_OK,

4 IOSTAT OK
PARAMETER (STATUS OK = 1,
2 10 OK = 0)
INCLUDE ' (S$FORDEF)’

! Data record read on each iteration
INTEGER INPUT NUMBER

! Accumulated data records

INTEGER STORAGE COUNT,

2 STORAGE MAX

PARAMETER (STORAGE MAX = 255)

INTEGER STORAGE:NUMBER (STORAGE_MAX)

(continued on next page)

Run-Time Library Input/Output Operations 22-5

Run-Time Library Input/Output Operations
22.3 Working with Simple User I/0

Example 22-2 (Cont.) Reading a Varying Number of Input Records

! Write instructions to interactive user

TYPE *,

2 'Enter values below. Press CTRL/Z when done.’
! Get first input value

WRITE (UNIT=%,

2 FMT='(A,$)') ' Input value: '
READ (UNIT=%*,

2 IOSTAT=IOSTAT,

2 FMT='(BN,I)’) INPUT NUMBER

IF (IOSTAT .EQ. IO OK) THEN
STATUS = STATUS OK
ELSE B
CALL ERRSNS (,,,,STATUS)
END IF
! Process each input value until end-of-file
DO WHILE ((STATUS .NE. FORS ENDDURREA) .AND.
(STORAGE COUNT .LT. STORAGE MAX))
! Keep repeating on conversion error
DO WHILE (STATUS .EQ. FOR$ INPCONERR)
WRITE (UNIT=*, -
2 FMT='(A,$)") ' Try again: ’
READ (UNIT=*,
IOSTAT=IOSTAT,
2 FMT='(BN,I)’) INPUT NUMBER
IF (IOSTAT .EQ. IO OK) THEN
STATUS = STATUS OK
ELSE -
CALL ERRSNS (,,,,STATUS)
END IF
END DO
! Continue if end-of-file not entered
IF (STATUS .NE. FORS ENDDURREA) THEN
! Status check on Tast read
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Store input numbers in input array
STORAGE COUNT = STORAGE COUNT + 1
STORAGE NUMBER (STORAGE_COUNT) = INPUT NUMBER
! Get next input value -
WRITE (UNIT=%,

[\S)

2 FMT='(A,$)") ' Input value: '
READ (UNIT=*,

2 IOSTAT=IOSTAT,

2 FMT='(BN,I)’) INPUT NUMBER

IF (IOSTAT .EQ. IO OK) THEN
STATUS = STATUS OK
ELSE B
CALL ERRSNS (,,,,STATUS)
END IF
END IF
END DO

22.3.4 Writing Simple Output

You can use LIB§PUT_OUTPUT to write character data. If you are writing
noncharacter data, programming language I/O statements are preferable because
they allow you to translate the data to a format of your choice.

22-6 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.3 Working with Simple User I/0

LIB$PUT_OUTPUT writes one record of output to SYS$OUTPUT. Typically,

you should avoid writing records that exceed the device width. The width of

a terminal is 80 or 132 characters, depending on the setting of the physical
characteristics of the device. The width of a line printer is 132 characters. If your
output record exceeds the width of the device, the excess characters are either
truncated or wrapped to the next line, depending on the setting of the physical
characteristics.

You must define a value (a variable, constant, or expression) to be written. The
value must be expressed in characters. You should specify the exact number of
characters being written and not include the trailing portion of a variable.

The following example writes a character expression to SYS$OUTPUT:

INTEGER*4 STATUS,

2 LIBSPUT OUTPUT
CHARACTER*40 ANSWER
INTEGER*4 ANSWER SIZE

STATUS = LIBSPUT OUTPUT ('Answer: ' // ANSWER (1:ANSWER SIZE))

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

22.4 Working with Complex User I/O

The following sections present HP DECwindows Motif for OpenVMS
(DECwindows Motif), and the SMG$ run-time library routines that enable
complex screen display 1/O.

22.4.1 HP DECwindows Motif

The HP DECwindows Motif environment provides a consistent user interface
for developing software applications. It also includes an extensive set of
programming libraries and tools. The following HP DECwindows Motif software
allows you to build a graphical user interface:

e Toolkit composed on graphical user interface objects, such as widgets and
gadgets. Widgets provide advanced programming capabilities that permit you
to create graphic applications easily; gadgets, similar to widgets, require less
memory to create labels, buttons, and separators.

e Language to describe visual aspects of objects, such as menus, labels, and
forms, and to specify changes resulting from user interaction.

e OSF/Motif Window Manager to allow you to customize the interface.

HP DECwindows Motif environment also makes available the LinkWorks services
for creating, managing, and traversing informational links between different
application-specific data. Along with the LinkWorks Manager application,
LinkWorks services help organize information into a hyperinformation
environment. LinkWorks Developer’s Tools provide a development environment
for creating, modifying, and maintaining hyperapplications.

Run-Time Library Input/Output Operations 22-7

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/0

22.4.1.1 DECwindows Server Height or Width Exceeding 32767 (VAX Only)

On OpenVMS VAX systems, when an X application sends the display server
a width or height greater than 32767, the application may terminate with a
BadValue error similar to the following:

X error event received from server: BadValue (integer parameter out of
range for operation)

Major opcode of failed request: 61 (X ClearArea)

Value in failed request: Oxffff****

Serial number of failed request: ###

Current serial number in output stream: ###

The following calls can cause this problem:

CopyAreal()
CreateWindow ()
PutImage()
GetImage()
CopyPlane()
ClearArea()

This is due to the width and height being defined as a signed word by the display
server when it should be defined as an unsigned word (CARD16) that allows for
values up to 65536.

To modify the default operation, perform the following steps:
1. Set the logical name DECW$CARD16_VALIDATE to TRUE as follows:

$DEFINE/TABLE=DECW$SERVERO_TABLE DECWSCARD16_VALIDATE TRUE

2. Exit the session and log back in.

Exiting the session causes the display server to reset using the new value
of the logical name DECW$CARD16_VALIDATE. The server will now accept
values that are greater than 32767 without generating an error.

To make this a permanent change, add the command from step 1 to the file
SYS$MANAGER:DECW$PRIVATE_SERVER_SETUP.COM.

22.4.2 SMG$ Run-Time Routines

The SMG$ run-time library routines provide a simple, device-independent
interface for managing the appearance of the terminal screen. The SMG$
routines are primarily for use with video terminals; however, they can be used
with files or hardcopy terminals.

To use the screen management facility for output, do the following:

1. Create a pasteboard—A pasteboard is a logical, two-dimensional area on
which you place virtual displays. Use the SMG$CREATE_PASTEBOARD
routine to create a pasteboard, and associate it with a physical device. When
you refer to the pasteboard, SMG performs the necessary I/O operation to the
device.

2. Create a virtual display—A virtual display is a logical, two-dimensional area
in which you place the information to be displayed. Use the SMG$CREATE_
VIRTUAL_DISPLAY routine to create a virtual display.

3. Paste virtual displays to the pasteboard—To make a virtual display visible,
map (or paste) it to the pasteboard using the SMG$PASTE_VIRTUAL._
DISPLAY routine. You can reference a virtual display regardless of whether
that display is currently pasted to a pasteboard.

22-8 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User 1/0

4. Create a viewport for a virtual display—A viewport is a rectangular viewing
area that can be moved around on a buffer to view different pieces of the
buffer. The viewport is associated with a virtual display.

Example 22-3 associates a pasteboard with the terminal, creates a virtual display
the size of the terminal screen, and pastes the display to the pasteboard. When
text is written to the virtual display, the text appears on the terminal screen.

Example 22-3 Associating a Pasteboard with a Terminal

! Screen management control structures

INTEGER*4 PBID, ! Pasteboard ID

2 VDID, ! Virtual display ID
2 ROWS, ! Rows on screen

2 COLS ! Columns on screen

! Status variable and routines called as functions
INTEGER*4 STATUS,

2 SMGSCREATE_PASTEBOARD,
2 SMGSCREATE VIRTUAL DISPLAY,
2 SMG$PASTE VIRTUAL DISPLAY

! Set up SYSS$OUTPUT for screen management
! and get the number of rows and columns on the screen

STATUS = SMGSCREATE_PASTEBOARD (PBID, ! Return value
2 "SYSSOUTPUT' ,

2 ROWS, ! Return value
2 COLUMNS) ! Return value

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

! Create virtual display that pastes to the full screen size
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (ROWS,

2 COLUMNS,

2 VDID) ! Return value

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Paste virtual display to pasteboard
STATUS = SMG$PASTE VIRTUAL DISPLAY (VDID,

2 PBID,
2 1, ! Starting at row 1 and
2 1) ! column 1 of the screen

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))

To use the SMG$ routines for input, you associate a virtual keyboard with a
physical device or file using the SMG$CREATE_VIRTUAL_KEYBOARD routine.
The SMG$ input routines can be used alone or with the output routines. This
section assumes that you are using the input routines with the output routines.
Section 22.5 describes how to use the input routines without the output routines.

The screen management facility keeps an internal representation of the screen
contents; therefore, it is important that you do not mix SMG$ routines with
other forms of terminal I/0. The following subsections contain guidelines for
using most of the SMG$ routines; for more details, see the OpenVMS RTL Screen
Management (SMG$) Manual.

Run-Time Library Input/Output Operations 22-9

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/0

22.4.3 Pasteboards

Use the SMG$CREATE_PASTEBOARD routine to create a pasteboard and
associate it with a physical device. SMG$CREATE_PASTEBOARD returns

a unique pasteboard identification number; use that number to refer to the
pasteboard in subsequent calls to SMG$ routines. After associating a pasteboard
with a device, your program references only the pasteboard. The screen
management facility performs all necessary operations between the pasteboard
and the physical device. Example 22—4 creates a pasteboard.

Example 22-4 Creating a Pasteboard

STATUS = SMG$CREATE PASTEBOARD (PBID, ROWS, COLUMNS)
IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

22.4.3.1 Erasing a Pasteboard

When you create a pasteboard, the screen management facility clears the screen
by default. To clear the screen yourself, invoke the SMG$ERASE_PASTEBOARD
routine. Any virtual displays associated with the pasteboard are removed from
the screen, but their contents in memory are not affected. The following example
erases the screen:

STATUS = SMGSERASE PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SSIGNAL (%VAL (STATUS))

22.4.3.2 Deleting a Pasteboard

Invoking the SMG$DELETE_PASTEBOARD routine deletes a pasteboard,
making the screen unavailable for further pasting. The optional second argument
of the SMG$DELETE_PASTEBOARD routine allows you to indicate whether the
routine clears the screen (the default) or leaves it as is. The following example
deletes a pasteboard and clears the screen:

STATUS = SMGSDELETE PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

By default, the screen is erased when you create a pasteboard. Generally, you
should erase the screen at the end of a session.

22.4.3.3 Setting Screen Dimensions and Background Color
The SMG$CHANGE _PBD CHARACTERISTICS routine sets the dimensions of
the screen and its background color. You can also use this routine to retrieve
dimensions and background color. To get more detailed information about the
physical device, use the SMG$GET_PASTEBOARD_ATTRIBUTES routine.
Example 22-5 changes the screen width to 132 and the background to white,
then restores the original width and background before exiting.

Example 22-5 Modifying Screen Dimensions and Background Color

INTEGER*4 WIDTH,
2 COLOR
INCLUDE ' ($SMGDEF)’

(continued on next page)

22-10 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User 1/0

Example 22-5 (Cont.) Modifying Screen Dimensions and Background Color

! Get current width and background color

STATUS = SMGSCHANGE PBD CHARACTERISTICS (PBID,,

2 -7 WIDTH,,,,

2 COLOR)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Change width and background color

STATUS = SMGSCHANGE PBD CHARACTERISTICS (PBID,

2 - 132,,,,

2 SMGSC COLOR WHITE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Restore width and background color

STATUS = SMGSCHANGE PBD CHARACTERISTICS (PBID,

2 - WIDTH,,,,

2 COLOR)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

22.4.4 Virtual Displays

You write to virtual displays, which are logically configured as rectangles, by
using the SMG$ routines. The dimensions of a virtual display are designated
vertically as rows and horizontally as columns. A position in a virtual display is
designated by naming a row and a column. Row and column numbers begin at
1.

22.4.41 Creating a Virtual Display
Use the SMG$CREATE_VIRTUAL DISPLAY routine to create a virtual
display. SMG$CREATE_VIRTUAL_DISPLAY returns a unique virtual display
identification number; use that number to refer to the virtual display.

Optionally, you can use the fifth argument of SMG$CREATE_VIRTUAL_
DISPLAY to specify one or more of the following video attributes: blinking,
bolding, reversing background, and underlining. All characters written to that
display will have the specified attribute unless you indicate otherwise when
writing text to the display. The following example makes everything written to
the display HEADER_VDID appear bold by default:

INCLUDE ' ($SMGDEF) '

STATUS = SMG$CREATE VIRTUAL DISPLAY (1,

! Rows
2 80, ! Columns
2 HEADER VDID,,
2 SMG$M_BOLD)

You can border a virtual display by specifying the fourth argument when you
invoke SMG$CREATE_VIRTUAL_ DISPLAY. You can label the border with the
routine SMG$LABEL_BORDER. If you use a border, you must leave room for it:
a border requires two rows and two columns more than the size of the display.
The following example places a labeled border around the STATS_VDID display.
As pasted, the border occupies rows 2 and 13 and columns 1 and 57.

Run-Time Library Input/Output Operations 22-11

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/0

STATUS = SMGS$CREATE VIRTUAL DISPLAY (10, ! Rows

2 - - 55, ! Columns
2 STATS VDID,

2 SMG$M_ BORDER)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($%VAL (STATUS))
STATUS = SMG$LABEL_BORDER (STATS_VDID,

2 "statistics’)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (STATS VDID,

2 PBID,
2 3, ! Row
2 2) ! Column

22.4.4.2 Pasting Virtual Displays
To make a virtual display visible, paste it to a pasteboard using the
SMG$PASTE_VIRTUAL_DISPLAY routine. You position the virtual display
by specifying which row and column of the pasteboard should contain the upper
left corner of the display. Example 22—6 defines two virtual displays and pastes
them to one pasteboard.

Example 22-6 Defining and Pasting a Virtual Display

INCLUDE ' ($SMGDEF)’
INTEGER*4 PBID,

2 HEADER VDID,

2 STATS VDID

INTEGER*4 STATUS,

2 SMG$CREATE PASTEBOARD,

2 SMGS$CREATE VIRTUAL DISPLAY,
2 SMG$PASTE VIRTUAL DISPLAY

! Create pasteboard for SYSSOUTPUT

STATUS = SMGSCREATE PASTEBOARD (PBID)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))
! Header pastes to first rows of screen

STATUS = SMG$CREATE VIRTUAL DISPLAY (3, ! Rows
2 - - 78, ! Columns
2 HEADER VDID, ! Name
2 SMG$M BORDER) ! Border

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMGSPASTE VIRTUAL DISPLAY (HEADER VDID,

2 PBID,
2 2, ! Row
2 2) ! Column

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

(continued on next page)

22-12 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User 1/0

Example 22-6 (Cont.) Defining and Pasting a Virtual Display

! Statistics area pastes to rows 5 through 15,
! columns 2 through 56

STATUS = SMGS$CREATE VIRTUAL DISPLAY (10, ! Rows

2 - - 55, ! Columns
2 STATS VDID, ! Name

2 SMGSM BORDER) ! Border
IF (.NOT. STATUS) CALL LIB$SIGNAL (VAL (STATUS))

STATUS = SMGSPASTE VIRTUAL DISPLAY (STATS VDID,

2 - - PBID,

2 5, ! Row

2 2) ! Column

IF (.NOT. STATUS) CALL LIBSSIGNAL ($VAL (STATUS))

Figure 22—-1 shows the screen that results from Example 22-6.

Figure 22-1 Defining and Pasting Virtual Displays

ZK-2044-GE

You can paste a single display to any number of pasteboards. Any time you
change the display, all pasteboards containing the display are automatically
updated.

A pasteboard can hold any number of virtual displays. You can paste virtual
displays over one another to any depth, occluding the displays underneath. The
displays underneath are only occluded to the extent that they are covered; that
is, the parts not occluded remain visible on the screen. (In Figure 22-2, displays
1 and 2 are partially occluded.) When you unpaste a virtual display that occludes
another virtual display, the occluded part of the display underneath becomes
visible again.

You can find out whether a display is occluded by using the SMG$CHECK_FOR_
OCCLUSION routine. The following example pastes a two-row summary display
over the last two rows of the statistics display, if the statistics display is not
already occluded. If the statistics display is occluded, the example assumes that
it is occluded by the summary display and unpastes the summary display, making
the last two rows of the statistics display visible again.

Run-Time Library Input/Output Operations 22-13

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/0

[)]

STATUS = SMG$CHECK FOR_OCCLUSION (STATS_VDID,

OCCLUDE STATE must be defined as INTEGER*4

IF (OCCLUDE STATE) THEN
STATUS = SMG$UNPASTE VIRTUAL DISPLAY (SUM VDID,

PBID)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

ELSE

PBID,

OCCLUDE STATE)

STATUS = SMG$PASTE VIRTUAL DISPLAY (SUM VDID,

PBID,

11,
2)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

END IF

22.4.4.3 Rearranging Virtual Displays
Pasted displays can be rearranged by moving or repasting.
Moving—To move a display, use the SMG$MOVE_VIRTUAL_DISPLAY

routine. The following example moves display 2. Figure 22-2 shows the
screen before and after the statement executes.

STATUS = SMG$MOVE VIRTUAL DISPLAY (VDID,
PBID,

2
2
2

5,
10)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))

Figure 22-2 Moving a Virtual Display

Before Moving Display 2

ff

adaaaaaaa

[—

2

bbbbbbbb
bbbbbbbb

\\

bbbbbb[__ 3
bbbbbb Cccccececccece

bbbbbb! Cccccececcece

cccecceccce
cccececcce
ccceccececce

s

)/

After Moving Display 2

ff

2

bb|

bb,
bb,

aaaaaa bbbbbbbb

aaaaad bbbbbb%b

ccceececce
cccecececce
ccceececce
ccceececce
ccceececce

s

=

ZK-2045-GE

Repasting—To repaste a display, use the SMG$REPASTE_VIRTUAL_
DISPLAY routine. The following example repastes display 2. Figure 22—-3
shows the screen before and after the statement executes.

STATUS = SMG$REPASTE VIRTUAL DISPLAY (VDID,
PBID,

2
2
2

4,
4)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))

22-14 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User 1/0

Figure 22-3 Repasting a Virtual Display

Before Repasting Display 2 After Repasting Display 2

/f

—\ (=

aaadaaaaa aaadaaaaa
aaaaaaaga aaaaaaaada 5
aaaaad
ada bbbbbbbb aaaaad bbbbbbbb
ad bbbbbbbb| 4 aaaaaa ngggggg
ngggg coceccece bbbbbbbb | cC
bbbbbb gggggggg bbbbbbbb | cC
CcC
Cccccecececce Ccccceecce
\ Cccccecececce J \ Cccccecececece J

ZK-2046-GE

You can obtain the pasting order of the virtual displays using SMG$LIST_
PASTING_ORDER. This routine returns the identifiers of all the virtual displays
pasted to a specified pasteboard.

22.4.4.4 Removing Virtual Displays

You can remove a virtual display from a pasteboard in a number of different
ways:

Erase a virtual display—Invoking SMG$UNPASTE_VIRTUAL_DISPLAY
erases a virtual display from the screen but retains its contents in memory.
The following example erases the statistics display:

STATUS = SMGSUNPASTE_VIRTUAL DISPLAY (STATS VDID,
2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

Delete a virtual display—Invoking SMG$DELETE_VIRTUAL_DISPLAY
removes a virtual display from the screen and removes its contents from
memory. The following example deletes the statistics display:

STATUS = SMG$DELETE VIRTUAL DISPLAY (STATS VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

Delete several virtual displays—Invoking SMG$POP_VIRTUAL_DISPLAY
removes a specified virtual display and any virtual displays pasted after that
display from the screen and removes the contents of those displays from
memory. The following example “pops” display 2. Figure 22—-4 shows the
screen before and after popping. (Note that display 3 is deleted because it
was pasted after display 2, and not because it is occluding display 2.)

STATUS = SMG$POP_VIRTUAL DISPLAY (STATS VDID,
2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

Run-Time Library Input/Output Operations 22-15

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/0

Figure 22-4 Popping a Virtual Display

Before Popping Display 2 After Popping Display 2
/f - \\ // 1 \\
aaaaaaaaa aaaaaaaaa
aaaaaaaza aaaaaaaaa
2 aaaaaaaaa
aa bbbbbbbb aaaaaaaaa
ag bbbbbbbb 3 222222222
bbbbbb
bbbbbb! cccccecccec
bbbbbb! cccceccec
cceececece
cceeccece
\ cceeccece J \ J
—1 —1
ZK-2047-GE

22.4.4.5 Modifying a Virtual Display
The screen management facility provides several routines for modifying the
characteristics of an existing virtual display:

e SMG$CHANGE_VIRTUAL_DISPLAY—Changes the size, video attributes, or
border of a display

¢ SMG$CHANGE_RENDITION—Changes the video attributes of a portion of a
display

e SMG$MOVE_TEXT—Moves text from one virtual display to another

The following example uses SMG$CHANGE_VIRTUAL_DISPLAY to change the

size of the WHOOPS display to five rows and seven columns and to turn off all of

the display’s default video attributes. If you decrease the size of a display that is
on the screen, any characters in the excess area are removed from the screen.

STATUS = SMG$CHANGE VIRTUAL DISPLAY (WHOOPS VDID,

2 5, ! Rows
2 7,, ! Columns
2 0) ! Vvideo attributes off

The following example uses SMG$CHANGE_RENDITION to direct attention to
the first 20 columns of the statistics display by setting the reverse video attribute
to the complement of the display’s default setting for that attribute:

STATUS = SMG$CHANGE RENDITION (STATS VDID,

2 1, ! Row

2 1, ! Column

2 10, ! Number of rows

2 20, ! Number of columns

2 ' ! Video-set argument
2 SMG$M_REVERSE) ! Video-comp argument
2

22-16 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User 1/0

SMG$CHANGE_RENDITION uses three sets of video attributes to determine the
attributes to apply to the specified portion of the display: (1) the display’s default
video attributes, (2) the attributes specified by the rendition-set argument of
SMG$CHANGE_RENDITION, and (3) the attributes specified by the rendition-
complement argument of SMG$CHANGE_RENDITION. Table 22—2 shows the
result of each possible combination.

Table 22-2 Setting Video Attributes

rendition-set rendition-complement Result

off off Uses display default

on off Sets attribute

off on Uses the complement of display
default

on on Clears attribute

In the preceding example, the reverse video attribute is set in the rendition-
complement argument but not in the rendition-set argument, thus specifying
that SMG$CHANGE_RENDITION use the complement of the display’s default
setting to ensure that the selected portion of the display is easily seen.

Note that the resulting attributes are based on the display’s default attributes,
not its current attributes. If you use SMG$ routines that explicitly set video
attributes, the current attributes of the display may not match its default
attributes.

22.4.4.6 Using Spawned Subprocesses

You can create a spawned subprocess directly with an SMG$ routine to

allow execution of a DCL command from an application. Only one spawned
subprocess is allowed per virtual display. Use the following routines to work with
subprocesses:

e SMG$CREATE_SUBPROCESS—Creates a DCL spawned subprocess and
associates it with a virtual display.

e SMG$EXECUTE_COMMAND—AIllows execution of a specified command in
the created spawned subprocess by using mailboxes. Some restrictions apply
to specifying the following commands:

— SPAWN, GOTO, or LOGOUT cannot be used and will result in
unpredictable results.

— Single-character commands such as Ctrl/C have no effect. You can
signal an end-of-file (that is, press Ctrl/Z) command by setting the flags
argument.

— A dollar sign ($) must be specified as the first character of any DCL
command.

e SMG$DELETE_SUBPROCESS—Deletes the subprocess created by
SMG$CREATE_SUBPROCESS.

Run-Time Library Input/Output Operations 22-17

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/0

22.4.5 Viewports

Viewports allow you to view different pieces of a virtual display by moving a

rectangular area around on the virtual display. Only one viewport is allowed for
each virtual display. Once you have associated a viewport with a virtual display,
the only part of the virtual display that is viewable is contained in the viewport.

The SMGS$ routines for working with viewports include the following:

e SMG$CREATE_VIEWPORT—Creates a viewport and associates it with
a virtual display. You must create the virtual display first. To view the
viewport, you must paste the virtual display first with SMG$PASTE_
VIRTUAL_DISPLAY.

e SMG$SCROLL_VIEWPORT—Scrolls the viewport within the virtual display.
If you try to move the viewport outside of the virtual display, the viewport is
truncated to stay within the virtual display. This routine allows you to specify
the direction and extent of the scroll.

¢ SMG$CHANGE_VIEWPORT—Moves the viewport to a new starting location
and changes the size of the viewport.

e SMG$DELETE_VIEWPORT—Deletes the viewport and dissociates it from the
virtual display. The viewport is automatically unpasted. The virtual display
associated with the viewport remains intact. You can unpaste a viewport
without deleting it by using SMG$UNPASTE_VIRTUAL_DISPLAY.

22.4.6 Writing Text to Virtual Display

The SMG$ output routines allow you to write text to displays and to delete or
modify the existing text of a display. Remember that changes to a virtual display
are visible only if the virtual display is pasted to a pasteboard.

22.4.6.1 Positioning the Cursor
Each virtual display has its own logical cursor position. You can control the
position of the cursor in a virtual display with the following routines:

e SMG$HOME_CURSOR—Moves the cursor to a corner of the virtual display.
The default corner is the upper left corner, that is, row 1, column 1 of the
display.

e SMG$SET_CURSOR_ABS—Moves the cursor to a specified row and column.
e SMG$SET CURSOR_REL—Moves the cursor to offsets from the current

cursor position. A negative value means up (rows) or left (columns). A value
of 0 means no movement.

In addition, many routines permit you to specify a starting location other than
the current cursor position for the operation.

The SMG$RETURN_CURSOR_POS routine returns the row and column of the
current cursor position within a virtual display. You do not have to write special
code to track the cursor position.

Typically, the physical cursor is at the logical cursor position of the most recently
written-to display. If necessary, you can use the SMG$SET PHYSICAL_CURSOR
routine to set the physical cursor location.

22-18 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User 1/0

22.4.6.2 Writing Data Character by Character

If you are writing character by character (see Section 22.4.6.3 for line-oriented
output), you can use three routines:

e SMG$DRAW_CHAR—Puts one line-drawing character on the screen at a
specified position. It does not change the cursor position.

e SMG$PUT_CHARS—Puts one or more characters on the screen at a specified
position, with the option of one video attribute.

e SMG$PUT CHARS MULTI—Puts several characters on the screen at a
specified position, with multiple video attributes.

These routines are simple and precise. They place exactly the specified characters
on the screen, starting at a specified position in a virtual display. Anything
currently in the positions written-to is overwritten; no other positions on the
screen are affected. Convert numeric data to character data with language I/0
statements before invoking SMG$PUT_CHARS.

The following example converts an integer to a character string and places it at a
designated position in a virtual display:

CHARACTER*4 HOUSE NO STRING
INTEGER*4 HOUSE NO,

2 LINE NO,

2 STATS_VDID

WRITE (UNIT=HOUSE NO STRING,

2 FMT='(I4)') HOUSE NO

STATUS = SMG$PUT CHARS (STATS VDID,

2 - HOUSE NO STRING,

2 LINE NO, ! Row

2 1) ! Column

Note that the converted integer is right-justified from column 4 because the
format specification is I4 and the full character string is written. To left-justify
a converted number, you must locate the first nonblank character and write a
substring starting with that character and ending with the last character.

Inserting and Overwriting Text

To insert characters rather than overwrite the current contents of the screen, use
the routine SMG$INSERT_CHARS. Existing characters at the location written to
are shifted to the right. Characters pushed out of the display are truncated; no
wrapping occurs and the cursor remains at the end of the last character inserted.

Specifying Double-Size Characters

In addition to the preceding routines, you can use SMG$PUT_CHARS_WIDE to
write characters to the screen in double width or SMG$PUT_CHARS_HIGHWIDE
to write characters to the screen in double height and double width. When you
use these routines, you must allot two spaces for each double-width character on
the line and two lines for each line of double-height characters. You cannot mix
single-and double-size characters on a line.

All the character routines provide rendition-set and rendition-complement
arguments, which allow you to specify special video attributes for the characters
being written. SMG$PUT_CHARS_MULTI allows you to specify more than one
video attribute at a time. The explanation of the SMG$CHANGE_RENDITION
routine in Section 22.4.4.5 discusses how to use rendition-set and rendition-
complement arguments.

Run-Time Library Input/Output Operations 22-19

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/0

22.4.6.3 Writing Data Line by Line

The SMG$PUT_LINE and SMG$PUT_LINE_MULTI routines write lines to
virtual displays one line after another. If the display area is full, it is scrolled.
You do not have to keep track of which line you are on. All routines permit you to
scroll forward (up); SMG$PUT_LINE and SMG$PUT_LINE_MULTI permit you
to scroll backward (down) as well. SMG$PUT_LINE permits spacing other than
single spacing.

Example 22-7 writes lines from a buffer to a display area. The output is scrolled
forward if the buffer contains more lines than the display area.

Example 22-7 Scrolling Forward Through a Display

INTEGER*4 BUFF_COUNT,
2 BUFF _SIZE (4096)
CHARACTER*512 BUFF (4096)

DO I = 1, BUFF COUNT
STATUS = SMGSPUT LINE (VDID,
2 - BUFF (I) (1:BUFF SIZE (I)))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
END DO

Example 22-8 scrolls the output backward.

Example 22-8 Scrolling Backward Through a Display

DO I = BUFF COUNT, 1, -1
STATUS = SMG$PUT_LINE (VDID,

2 BUFF (I) (1:BUFF SIZE (I)),
2 SMG$M DOWN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (SVAL (STATUS))
END DO

Cursor Movement and Scrolling

To maintain precise control over cursor movement and scrolling, you can write
with SMG$PUT_CHARS and scroll explicitly with SMG$SCROLL_DISPLAY _
AREA. SMG$PUT CHARS leaves the cursor after the last character written
and does not force scrolling; SMG$SCROLL_DISPLAY_AREA scrolls the current
contents of the display forward, backward, or sideways without writing to the
display. To restrict the scrolling region to a portion of the display area, use the
SMG$SET_DISPLAY_SCROLL_REGION routine.

Inserting and Overwriting Text

To insert text rather than overwrite the current contents of the screen, use the
SMG$INSERT_LINE routine. Existing lines are shifted up or down to open space
for the new text. If the text is longer than a single line, you can specify whether
or not you want the excess characters to be truncated or wrapped.

Using Double-Width Characters

In addition, you can use SMG$PUT_LINE_WIDE to write a line of text to the
screen using double-width characters. You must allot two spaces for each double-
width character on the line. You cannot mix single- and double-width characters
on a line.

22-20 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User 1/0

Specifying Special Video Attributes

All line routines provide rendition-set and rendition-complement arguments,
which allow you to specify special video attributes for the text being written.
SMG$PUT_LINE_MULTI allows you to specify more than one video attribute
for the text. The explanation of the SMG$CHANGE_RENDITION routine

in Section 22.4.4.5 discusses how to use the rendition-set and rendition-
complement arguments.

22.4.6.4 Drawing Lines

The routine SMG$DRAW_LINE draws solid lines on the screen. Appropriate
corner and crossing marks are drawn when lines join or intersect. The routine
SMG$DRAW_CHARACTER draws a single character. You can also use the
routine SMG$DRAW_RECTANGLE to draw a solid rectangle. Suppose that you
want to draw an object such as that shown in Figure 22-5 in the statistics display
area (an area of 10 rows by 55 columns).

Figure 22-5 Statistics Display

ZK-2048-GE

Example 22-9 shows how you can create a statistics display using SMG$DRAW _
LINE and SMG$DRAW_RECTANGLE.

Example 22-9 Creating a Statistics Display

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (10,
2 55,
2 STATS _VDID)
IF (.NOT. STATUS) CALL LIB$SSIGNAL (%$VAL (STATUS))
! Draw rectangle with upper left corner at row 1 column 1
! and lower right corner at row 10 column 55
STATUS =SMG$DRAW RECTANGLE (STATS VDID,
2 - 1, 1,”
2 10, 55)
IF (.NOT. STATUS) CALL LIB$SSIGNAL ($VAL (STATUS))
! Draw vertical lines at columns 11, 21, and 31
DO I =11, 31, 10

STATUS = SMG$DRAW_LINE (STATS_VDID,

2 1, 1,
2 10, I)

IF (.NOT. STATUS) CALL LIB$SSIGNAL ($VAL (STATUS))
END DO

(continued on next page)

Run-Time Library Input/Output Operations 22-21

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/0

Example 22-9 (Cont.) Creating a Statistics Display

! Draw horizontal line at row 3

STATUS = SMG$DRAW_LINE (STATS_VDID,

2 3, 1,

2 3, 55)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE VIRTUAL DISPLAY (STATS_VDID,

2 PBID,
2 3,
2 2)

IF (.NOT. STATUS) CALL LIB$SSIGNAL (%VAL (STATUS))

22.4.6.5 Deleting Text

The following routines erase specified characters, leaving the rest of the screen
intact:

e SMG$ERASE_CHARS—Erases specified characters on one line.

e SMG$ERASE_LINE—Erases the characters on one line starting from a
specified position.

e SMG$ERASE_DISPLAY—Erases specified characters on one or more lines.

e SMG$ERASE_COLUMN—Erases a column from the specified row to the end
of the column from the virtual display.

The following routines perform delete operations. In a delete operation,
characters following the deleted characters are shifted into the empty space.

e SMG$DELETE_CHARS—Deletes specified characters on one line. Any
characters to the right of the deleted characters are shifted left.

e SMG$DELETE_LINE—Deletes one or more full lines. Any remaining lines in
the display are scrolled up to fill the empty space.

The following example erases the remaining characters on the line whose line
number is specified by LINE_NO, starting at the column specified by COLUMN_

NO:

STATUS = SMG$ERASE_LINE (STATS_VDID,
2 LINE_NO,

2 COLUMN NO)

IF (.NOT. STATUS) CALL LIB$SIGNAL (SVAL (STATUS))

22.4.7 Using Menus

You can use SMG$ routines to set up menus to read user input. The type of
menus you can create include the following:

¢ Block menu—Selections are in matrix format. This is the type of menu often
used.

e Vertical menu—Each selection is on its own line.
e Horizontal menu—All selections are on one line.

Menus are associated with a virtual display, and only one menu can be used for
each virtual display.

22-22 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User 1/0

The menu routines include the following:

e SMG$CREATE_MENU—Creates a menu associated with a virtual display.
This routine allows you to specify the type of menu, the position in which
the menu is displayed, the format of the menu (single or double spaced), and
video attributes.

e SMG$SELECT_FROM_MENU—Sets up menu selection capability. You can
specify a default menu selection (which is shown in reverse video), whether
online help is available, a maximum time limit for making a menu selection,
a key indicating read termination, whether to send the text of the menu item
selected to a string, and a video attribute.

¢ SMG$DELETE _MENU—Discontinues access to the menu and erases it.

When you are using menus, no other output should be sent to the menu area;
otherwise, unpredictable results may occur.

The default SMG$SELECT_FROM_MENU allows specific operations, such as
use of the arrow keys to move up and down the menu selections, keys to make a
menu selection, ability to select more than one item at a time, ability to reselect
an item already selected, and the key sequence to invoke online help. By using
the flags argument to modify this operation, you have the option of disallowing
reselection of a menu item and of allowing any key pressed to select an item.

22.4.8 Reading Data

You can read text from a virtual display (SMG$READ_FROM_DISPLAY) or from
a virtual keyboard (SMG$READ_STRING, SMG$READ_COMPOSED_LINE, or
SMG$READ_KEYSTROKE). The three routines for virtual keyboard input are
known as the SMG$ input routines. SMG$READ_FROM_DISPLAY is not a true
input routine because it reads text from the virtual display rather than from a
user.

The SMG$ input routines can be used alone or with the SMG$ output routines.
This section assumes that you are using the input routines with the output
routines. Section 22.5 describes how to use the input routines without the output
routines.

When you use the SMG$ input routines with the SMG$ output routines, always
specify the optional vdid argument of the input routine, which specifies the
virtual display in which the input is to occur. The specified virtual display must
be pasted to the device associated with the virtual keyboard that is specified as
the first argument of the input routine. The display must be pasted in column 1,
cannot be occluded, and cannot have any other display to its right; input begins
at the current cursor position, but the cursor must be in column 1.

22.4.8.1 Reading from a Display
You can read the contents of the display using the routine SMG$READ_
FROM_DISPLAY. By default, the read operation reads all of the characters
from the current cursor position to the end of that line. The row argument of
SMG$READ_FROM_DISPLAY allows you to choose the starting point of the read
operation, that is, the contents of the specified row to the rightmost column in
that row.

If the terminator-string argument is specified, SMG$READ_FROM_DISPLAY
searches backward from the current cursor position and reads the line beginning
at the first terminator encountered (or at the beginning of the line). A

Run-Time Library Input/Output Operations 22-23

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/0

terminator is a character string. You must calculate the length of the character
string read operation yourself.

The following example reads the current contents of the first line in the STATS_
VDID display:

CHARACTER*4 STRING
INTEGER*4 SIZE

STATUS = SMG$HOME CURSOR (STATS VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (S$VAL(STATUS))
STATUS = SMG$READ FROM DISPLAY (STATS VDID,

2 STRING)
IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))
SIZE = 55
DO WHILE ((STRING (SIZE:SIZE) .EQ. ' ') .AND.
2 (SIZE .GT. 1))
SIZE = SIZE - 1
END DO

22.4.8.2 Reading from a Virtual Keyboard

The SMG$CREATE_VIRTUAL_KEYBOARD routine establishes a device for input
operations; the default device is the user’s terminal. The routine SMG$READ_
STRING reads characters typed on the screen either until the user types a
terminator or until the maximum size (which defaults to 512 characters) is
exceeded. (The terminator is usually a carriage return; see the routine description
in the OpenVMS RTL Screen Management (SMG$) Manual for a complete list of
terminators.) The current cursor location for the display determines where the
read operation begins.

The operating system’s terminal driver processes carriage returns differently
than the SMG$ routines. Therefore, in order to scroll input accurately, you must
keep track of your vertical position in the display area. Explicitly set the cursor
position and scroll the display. If a read operation takes place on a row other
than the last row of the display, advance the cursor to the beginning of the next
row before the next operation. If a read operation takes place on the last row of
the display, scroll the display with SMG$SCROLL_DISPLAY_AREA and then set
the cursor to the beginning of the row. Modify the read operation with TRM$M_
TM_NOTRMECHO to ensure that no extraneous scrolling occurs.

Example 22-10 reads input until Ctrl/Z is pressed.

Example 22-10 Reading Data from a Virtual Keyboard

! Read first record

STATUS = SMG$HOME CURSOR (VDID)

IF (.NOT. STATUS)_CALL LIB$SIGNAL ($VAL (STATUS))
STATUS = SMG$READ_STRING (KBID,

2 TEXT,

2 "Prompt: ',

2 4,

2 TRMS$M TM TRMNOECHO, ,,
2 TEXT SIZE,,

2 VDID)

(continued on next page)

22-24 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User 1/0

Example 22-10 (Cont.) Reading Data from a Virtual Keyboard

! Read remaining records until CTRL/Z

DO WHILE (STATUS .NE. SMG$ EOF)
IF (.NOT. STATUS) CALL LIB$SIGNAL (SVAL (STATUS))
! Process record

! Set up screen for next read
! Display area contains four rows
STATUS = SMGSRETURN CURSOR POS (VDID, ROW, COL)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
IF (ROW .EQ. 4) THEN
STATUS = SMGSSCROLL DISPLAY AREA (VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMGSSET CURSOR ABS (VDID, 4, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (VAL (STATUS))
ELSE
STATUS = SMGSSET CURSOR ABS (VDID,, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (SVAL (STATUS))
STATUS = SMGSSET CURSOR REL (VDID, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (SVAL (STATUS))
END IF
! Read next record
STATUS = SMG$READ_STRING (KBID,

2 TEXT,

2 "Prompt: ',

2 4,

2 TRM$M TM TRMNOECHO, ,,
2 TEXT SIZE,,

2 VDID)

END DO

Note

Because you are controlling the scrolling, SMG$PUT_LINE and
SMG$PUT_LINE_MULTI might not scroll as expected. When scrolling a
mix of input and output, you can prevent problems by using SMG$PUT_
CHARS.

22.4.8.3 Reading from the Keypad
To read from the keypad in keypad mode (that is, pressing a keypad character to
perform some special action rather than entering data), modify the read operation
with TRM$M_TM ESCAPE and TRM$M _TM NOECHO. Examine the terminator
to determine which key was pressed.

Example 22—-11 moves the cursor on the screen in response to the user’s pressing
the keys surrounding the keypad 5 key. The keypad 8 key moves the cursor north
(up); the keypad 9 key moves the cursor northeast; the keypad 6 key moves the
cursor east (right); and so on. The SMG$SET_CURSOR_REL routine is called,
instead of being invoked as a function, because you do not want to abort the
program on an error. (The error attempts to move the cursor out of the display
area and, if this error occurs, you do not want the cursor to move.) The read
operation is also modified with TRM$M_TM_PURGE to prevent the user from
getting ahead of the cursor.

Run-Time Library Input/Output Operations 22-25

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/0

See Section 22.4.8.1 for the guidelines for reading from the display.

Example 22-11 Reading Data from the Keypad

INTEGER STATUS,

PBID,
ROWS,

COLUMNS,

VDID, ! Virtual display ID
KID, ! Keyboard ID

SMGS$CREATE PASTEBOARD,
SMG$CREATE VIRTUAL DISPLAY,
SMGS$CREATE VIRTUAL KEYBOARD,
SMGS$PASTE VIRTUAL DISPLAY,
SMG$HOME CURSOR,

SMG$SET CURSOR_REL,

SMGS$READ STRING,

SMGSERASE PASTEBOARD,
SMGS$PUT CHARS,

SMGSREAD FROM DISPLAY
CHARACTER*31 INPUT STRING,

2 MENU STRING

INTEGER*2 TERMINATOR

INTEGER*4 MODIFIERS

INCLUDE ' ($SMGDEF)’

INCLUDE ' ($TRMDEF)’

! Set up screen and keyboard

STATUS = SMG$CREATE_PASTEBOARD (PBID,

DO DD NN

2 'SYSSOUTPUT',
2 ROWS,
2 COLUMNS)

IF (.NOT. STATUS) CALL LIB$SIGNAL (SVAL (STATUS))
STATUS = SMG$CREATE_VIRTUAL DISPLAY (ROWS,

2 COLUMNS,

2 VDID)

IF (.NOT. STATUS) CALL LIB$SIGNAL (SVAL (STATUS))
STATUS = SMG$PUT CHARS (VDID,

2 '__ MENU CHOICE ONE’,

2 10,30)

IF (.NOT. STATUS) CALL LIB$SIGNAL (SVAL (STATUS))
STATUS = SMG$PUT CHARS (VDID,

2 - ' MENU CHOICE TWO',

2 15,30)

IF (.NOT. STATUS) CALL LIB$SIGNAL (SVAL (STATUS))
STATUS = SMG$CREATE_VIRTUAL KEYBOARD (KID)

IF (.NOT. STATUS) CALL LIB$SIGNAL (SVAL (STATUS))
STATUS = SMG$PASTE VIRTUAL DISPLAY (VDID,

2 PBID,
2 1,
2 1)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
! Put cursor in NW corner

STATUS = SMGSHOME CURSOR (VDID)

IF (.NOT. STATUS)_CALL LIB$SIGNAL ($VAL (STATUS))

22-26 Run-Time Library Input/Output Operations

(continued on next page)

Run-Time Library Input/Output Operations
22.4 Working with Complex User 1/0

Example 22-11 (Cont.) Reading Data from the Keypad

! Read character from keyboard
MODIFIERS = TRMS$M TM ESCAPE .OR.
2 TRM$M TM NOECHO .OR.
2 TRMS$M TM PURGE
STATUS = SMG$READ STRING (KID,

2 INPUT STRING,

2 , -

2 6,

2 MODIFIERS,

2 '

2 '

2 '

2 TERMINATOR)

DO WHILE ((STATUS) .AND.

2 (TERMINATOR .NE. SMG$K_TRM CR))

! Check status of last read
IF (.NOT. STATUS) CALL LIB$SSIGNAL ($VAL (STATUS))
! North
IF (TERMINATOR .EQ. SMG$K TRM KP8) THEN
CALL SMG$SET CURSOR REL™ (VDID, -1, 0)
! Northeast
ELSE IF (TERMINATOR .EQ. SMGSK TRM KP9) THEN
CALL SMG$SET CURSOR REL (VDID, -1, 1)
! Northwest
ELSE IF (TERMINATOR .EQ. SMG$K TRM KP7) THEN
CALL SMG$SET CURSOR REL (VDID, -1, -1)
! South
ELSE IF (TERMINATOR .EQ. SMG$K TRM KP2) THEN
CALL SMG$SET CURSOR REL (VDID, 1, 0)
! Southeast
ELSE IF (TERMINATOR .EQ. SMG$K TRM KP3) THEN
CALL SMG$SET CURSOR REL (VDID, 1, 1)
! Southwest
ELSE IF (TERMINATOR .EQ. SMGSK TRM KP1) THEN
CALL SMGS$SET CURSOR REL (VDID, 1, -1)
! East - -
ELSE IF (TERMINATOR .EQ. SMGSK TRM KP6) THEN
CALL SMG$SET CURSOR REL (VDID, 0, 1)
! West
ELSE IF (TERMINATOR .EQ. SMGSK TRM KP4) THEN
CALL SMGS$SET CURSOR REL (VDID, 0, -1)
END IF - -
! Read another character
STATUS = SMGSREAD STRING (KID,
- INPUT_STRING,
I
6,
MODIFIERS,
’
I

I
TERMINATOR)

EH oD DDDNDDNDDND

ND DO

(continued on next page)

Run-Time Library Input/Output Operations 22-27

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/0

Example 22-11 (Cont.) Reading Data from the Keypad
! Read menu entry and process

STATUS = SMGSREAD FROM DISPLAY (VDID,
2 MENU_STRING)
IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

! Clear screen
STATUS = SMG$ERASE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

22.4.8.4 Reading Composed Input
The SMG$CREATE_KEY_TABLE routine creates a table that equates keys
to character strings. When you read input using the routine SMG$READ_
COMPOSED_LINE and the user presses a defined key, the corresponding
character string in the table is substituted for the key. You can use the
SMG$ADD_KEY_DEF routine to load the table. Composed input also permits the
following:

e [If states—You can define the same key to mean different things in different
states. You can define a key to cause a change in state. The change in state
can be temporary (until after the next defined key is pressed) or permanent
(until a key that changes states is pressed).

¢ Input termination—You can define the key to cause termination of the input
transmission (as if the Return key were pressed after the character string). If
the key is not defined to cause termination of the input, the user must press
a terminator or another key that does cause termination.

Example 22-12 defines keypad keys 1 through 9 and permits the user to
change state temporarily by pressing the PF1 key. Pressing the keypad 1 key
is equivalent to typing 1000 and pressing the Return key. Pressing PF1 key and
then the keypad 1 key is equivalent to typing 10000 and pressing the Return
key.

Example 22-12 Redefining Keys

INTEGER*4 TABLEID

! Create table for key definitions

STATUS = SMGSCREATE KEY TABLE (TABLEID)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Load table

! If user presses PFl, the state changes to BYTEN

! The BYTEN state is in effect only for the very next key
STATUS = SMGSADD KEY DEF (TABLEID,

2 - 'PF1l’,

2 .+ BYTEN')

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

(continued on next page)

22-28 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User 1/0

Example 22-12 (Cont.) Redefining Keys

! Pressing KP1 through Kp9 in the null state is like typing
! 1000 through 9000 and pressing return
STATUS = SMG$ADD_KEY_DEF (TABLEID,

2 'KP1’,
2 '

2 SMGSM KEY TERMINATE,
2 '10007)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
STATUS = SMGSADD KEY DEF (TABLEID,

2 "KP2’,
2 '

2 SMG$M KEY TERMINATE,
2 '20007)

IF (.NOT. STATUS) CALL LIBSSIGNAL ($%VAL (STATUS))

STATUS = SMGSADD KEY DEF (TABLEID,

2 'KP9’,
2 '

2 SMG$M_KEY_TERMINATE,
2 90007)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Pressing KP1 through KP9 in the BYTEN state is like
! typing 10000 through 90000 and pressing return
STATUS = SMG$ADD KEY DEF (TABLEID,

2 'KP1’,
2 'BYTEN',

2 SMGSM KEY TERMINATE,
2 100007)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$ADD KEY DEF (TABLEID,

2 'KP2,
2 'BYTEN',

2 SMGSM KEY TERMINATE,
2 1200007)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

STATUS = SMG$SADD KEY DEF (TABLEID,

2 'KP9’,
2 "BYTEN',
2 SMG$M_KEY TERMINATE,
2 90000")

IF (.NOT. STATUS) CALL LIBSSIGNAL ($VAL (STATUS))

(continued on next page)

Run-Time Library Input/Output Operations 22-29

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/0

Example 22-12 (Cont.) Redefining Keys
! End loading key definition table

! Read input which substitutes key definitions where appropriate
STATUS = SMG$READ_COMPOSED_LINE (KBID,

2 TABLEID,
2 STRING,
2 SIZE,

2 VDID)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

Use the SMG$DELETE_KEY_DEF routine to delete a key definition; use the
SMG$GET_KEY_DEF routine to examine a key definition. You can also load
key definition tables with the SMG$DEFINE_KEY and SMG$LOAD_KEY_DEFS
routines; use the DCL command DEFINE/KEY to specify input to these routines.

To use keypad keys 0 through 9, the keypad must be in application mode.
For details, see SMG$SET_KEYPAD_MODE in the OpenVMS RTL Screen
Management (SMG$) Manual.

22.4.9 Controlling Screen Updates

If your program needs to make a number of changes to a virtual display, you can
use SMG$ routines to make all of the changes before updating the display. The
SMG$BEGIN_DISPLAY_UPDATE routine causes output operations to a pasted
display to be reflected only in the display’s buffers. The SMG$END_DISPLAY _
UPDATE routine writes the display’s buffer to the pasteboard.

The SMG$BEGIN_DISPLAY_UPDATE and SMG$END_DISPLAY_UPDATE
routines increment and decrement a counter. When this counter’s value is

0, output to the virtual display is sent to the pasteboard immediately. The
counter mechanism allows a subroutine to request and turn off batching without
disturbing the batching state of the calling program.

A second set of routines, SMG$BEGIN_PASTEBOARD_UPDATE and
SMG$END_PASTEBOARD_UPDATE, allow you to buffer output to a pasteboard
in a similar manner.

22.4.10 Maintaining Modularity

When using the SMG$ routines, you must take care not to corrupt the mapping
between the screen appearance and the internal representation of the screen.
Therefore, observe the following guidelines:

e Mixing SMG I/O and other forms of I/O

In general, do not use any other form of terminal I/O while the terminal is
active as a pasteboard. If you do use I/O other than SMG I/O (for example,

if you invoke a subprogram that may perform non-SMG terminal I/O), first
invoke the SMG$SAVE_PHYSICAL_SCREEN routine and when the non-SMG
I/O completes, invoke the SMG$RESTORE_PHYSICAL_SCREEN routine, as
demonstrated in the following example:

22-30 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.4 Working with Complex User 1/0

STATUS = SMGSSAVE PHYSICAL SCREEN (PBID,

2 B - SAVE VDID)

IF (.NOT. STATUS) CALL LIBS$SIGNAL (%VAL (STATUS))
CALL GET EXTRA INFO (INFO ARRAY)

STATUS = SMGSRESTORE PHYSICAL SCREEN (PBID,

2 B B SAVE VDID)
IF (.NOT. STATUS) CALL LIBS$SIGNAL (%VAL (STATUS))

Sharing the pasteboard

A routine using the terminal screen without consideration for its current
contents must use the existing pasteboard ID associated with the terminal
and delete any virtual displays it creates before returning control to the
high-level code. This guideline also applies to the program unit that invokes
a subprogram that also performs screen I/0. The safest way to clean up your
virtual displays is to call the SMG$POP_VIRTUAL_DISPLAY routine and
name the first virtual display you created. The following example invokes a
subprogram that uses the terminal screen:

Invoking Program Unit

CALL GET EXTRA INFO (PBID,
2 INFO_ARRAY)

CALL STATUS = SMG$CREATE PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

Subprogram
SUBROUTINE GET EXTRA INFO (PBID,
2 INFO_ARRAY)

! Start executable code

STATUS = SMG$CREATE VIRTUAL DISPLAY (4,

2 B - 40,

2 INSTR VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (VAL (STATUS))
STATUS = SMG$PASTE VIRTUAL DISPLAY (INSTR VDID,

2 B - PBID, 1, 1)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))

STATUS = SMG$POP_VIRTUAL DISPLAY (INSTR VDID,

2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
END

Sharing virtual displays

To share a virtual display created by high-level code, the low-level code must
use the virtual display ID created by the high-level code; an invoking program
unit must pass the virtual display ID to the subprogram. To share a virtual
display created by low-level code, the high-level code must use the virtual
display ID created by the low-level code; a subprogram must return the
virtual display ID to the invoking program.

Run-Time Library Input/Output Operations 22-31

Run-Time Library Input/Output Operations
22.4 Working with Complex User I/0

The following example permits a subprogram to use a virtual display created
by the invoking program unit:

Invoking Program Unit

STATUS = SMG$CREATE VIRTUAL DISPLAY (4,

2 - - 40,

2 INSTR VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE VIRTUAL DISPLAY (INSTR VDID,

2 - - PBID, 1, 1)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
CALL GET EXTRA INFO (PBID,

2 - B INSTR VDID)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))

Subprogram
SUBROUTINE GET EXTRA INFO (PBID,
2 INSTR_VDID)

22.5 Performing Special Input/Output Actions

Screen management input routines and the SYS$QIO and SYS$QIOW system
services allow you to perform I/O operations otherwise unavailable to high-level
languages. For example, you can allow a user to interrupt normal program
execution by typing a character and by providing a mechanism for reading that
character. You can also control such things as echoing, time allowed for input,
and whether data is read from the type-ahead buffer.

Some of the operations described in the following sections require the use of the
SYS$QIO or SYS$QIOW system services. For more information about the QIO
system services, see the HP OpenVMS System Services Reference Manual and
Chapter 23.

Other operations, described in the following sections, can be performed by calling
the SMGS$ input routines. The SMG$ input routines can be used alone or with
the SMG$ output routines. Section 22.4 describes how to use the input routines
with the output routines. This section assumes that you are using the input
routines alone. To use the SMG$ input routines, do the following:

1. Call SMG$CREATE_VIRTUAL_KEYBOARD to associate a logical keyboard
with a device or file specification (SYS$INPUT by default). SMG$CREATE _
VIRTUAL_KEYBOARD returns a keyboard identification number; use that
number to identify the device or file to the SMG$ input routines.

2. Call an SMG$ input routine (SMG$READ_STRING or SMG$READ_
COMPOSED_LINE) to read data typed at the device associated with the
virtual keyboard.

When using the SMG$ input routines without the SMG$ output routines, do not
specify the optional VDID argument of the input routine.

22.5.1 Using Ctrl/C and Ctrl/Y Interrupts

The QIO system services enable you to detect a Ctrl/C or Ctrl/Y interrupt at a
user terminal, even if you have not issued a read to the terminal. To do so, you
must take the following steps:

1. Queue an asynchronous system trap (AST)—Issue the SYS$QIO or
SYS$QIOW system service with a function code of I0$_SETMODE modified
by either IO$M_CTRLCAST (for Ctrl/C interrupts) or
I0$M_CTRLYAST (for Ctrl/Y interrupts). For the P1 argument, provide the

22-32 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

name of a subroutine to be executed when the interrupt occurs. For the P2
argument, you can optionally identify one longword argument to pass to the
AST subroutine.

Write an AST subroutine—Write the subroutine identified in the P1 argument
of the QIO system service and link the subroutine into your program. Your
subroutine can take one longword dummy argument to be associated with the
P2 argument in the QIO system service. You must define common areas to
access any other data in your program from the AST routine.

If you press Ctrl/C or Ctrl/Y after your program queues the appropriate AST, the
system interrupts your program and transfers control to your AST subroutine
(this action is called delivering the AST). After your AST subroutine executes,
the system returns control to your program at the point of interruption (unless
your AST subroutine causes the program to exit, or unless another AST has been
queued). Note the following guidelines for using Ctrl/C and Ctrl/Y ASTs:

ASTs are asynchronous—Since your AST subroutine does not know exactly
where you are in your program when the interrupt occurs, you should avoid
manipulating data or performing other mainline activities. In general, the
AST subroutine should either notify the mainline code (for example, by
setting a flag) that the interrupt occurred, or clean up and exit from the
program (if that is what you want to do).

ASTs need new channels to the terminal—If you try to access the terminal
with language I/O statements using SYS$INPUT or SYS$OUTPUT, you may
receive a redundant I/O error. You must establish another channel to the
terminal by explicitly opening the terminal.

Ctrl/C and Ctrl/Y ASTs are one-time ASTs—After a Ctrl/C or Ctrl/Y AST is
delivered, it is dequeued. You must reissue the QIO system service if you
wish to trap another interrupt.

Many ASTs can be queued—You can queue multiple ASTs (for the same or
different AST subroutines, on the same or different channels) by issuing the
appropriate number of QIO system services. The system delivers the ASTs on
a last-in, first-out (LIFO) basis.

Unhandled Ctrl/Cs turn into Ctrl/Ys—If the user enters Ctrl/C and you do
not have an AST queued to handle the interrupt, the system turns the Ctrl/C
interrupt into a Ctrl/Y interrupt.

DCL handles Ctrl/Y interrupts—DCL handles Ctrl/Y interrupts by returning
the user to DCL command level, where the user has the option of continuing
or exiting from your program. DCL takes precedence over your AST
subroutine for Ctrl/Y interrupts. Your Ctrl/Y AST subroutine is executed
only under the following circumstances:

— If Ctrl/Y interrupts are disabled at DCL level (SET NOCONTROL_Y)
before your program is executed

— If your program disables DCL Ctrl/Y interrupts with LIB§DISABLE_
CTRL

— If the user elects to continue your program after DCL interrupts it

You can dequeue Ctrl/C and Ctrl/Y ASTs—You can dequeue all Ctrl/C or
Ctrl/Y ASTs on a channel by issuing the appropriate QIO system service
with a value of 0 for the P1 argument (passed by immediate value). You can
dequeue all Ctrl/C ASTs on a channel by issuing the SYS$CANCEL system

Run-Time Library Input/Output Operations 22-33

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

service for the appropriate channel. You can dequeue all Ctrl/'Y ASTs on a
channel by issuing the SYS$DASSGN system service for the appropriate
channel.

® You can use SMG$ routines—You can connect to the terminal using the SMG$
routines from either AST level or mainline code. Do not attempt to connect to
the terminal from AST level if you do so in your mainline code.

Example 22-13 permits the terminal user to interrupt a display to see how many
lines have been typed up to that point.

Example 22-13 Using Interrupts to Perform 1/O

!Main Program

INTEGER STATUS
! Accumulated data records
CHARACTER*132 STORAGE (255)
INTEGER*4 STORAGE_SIZE (255),
2 STORAGE COUNT
! QIOW and QIO structures
INTEGER*2 INPUT CHAN
INTEGER*4 CODE —
STRUCTURE /IOSTAT BLOCK/
INTEGER*2 IOSTAT
BYTE TRANSMIT,
RECEIVE,
CRFILL,
LFFILL,
PARITY,
2 ZERO
END STRUCTURE
RECORD /IOSTAT BLOCK/ IOSB
! Flag to notify program of CTRL/C interrupt
LOGICAL*4 CTRLC_CALLED
! AST subroutine to handle CTRL/C interrupt
EXTERNAL CTRLC_AST
! Subroutines
INTEGER SYSSASSIGN,
2 SYSSQIOW
! Symbols used for I/0O operations
INCLUDE ' ($IODEF)’
! Put values into array
CALL LOAD STORAGE (STORAGE,
2 - STORAGE SIZE,
2 STORAGE:COUNT)
! Assign channel and set up QIOW structures
STATUS = SYSSASSIGN (’SYS$INPUT',
2 INPUT CHAN,,)
IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
CODE = IO$_SETMODE .OR. IO$M_CTRLCAST

[N SN S I S)

(continued on next page)

22-34 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

Example 22-13 (Cont.) Using Interrupts to Perform I/O

! Queue an AST to handle CTRL/C interrupt
STATUS = SYS$QIOW (,

2 $VAL (INPUT CHAN),

2 $VAL (CODE),

2 I0SB,

2 rr

2 CTRLC AST, ! Name of AST routine

2 CTRLc:CALLED, ! Argument for AST routine
2 III)

IF (.NOT. STATUS) CALL LIB$SSIGNAL ($%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT)
2 CALL LIBSSIGNAL (%VAL (IOSB.IOSTAT))
! Display STORAGE array, one element per line
DO I = 1, STORAGE COUNT
TYPE *, STORAGE (I) (1:STORAGE SIZE (I))

! Additional actions if user types CTRL/C
IF (CTRLC CALLED) THEN
CTRLC_CALLED = .FALSE.
! Show user number of lines displayed so far
TYPE *, 'Number of lines: ', I
! Requeue AST
STATUS = SYSSQIOW (,

2 $VAL (INPUT CHAN),

2 $VAL (CODE),

2 I0SB,

2 r

2 CTRLC_AST,

2 CTRLC_CALLED,

2 rrr)
IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))
IF (.NOT. IOSB.IOSTAT)

2 CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))

END IF

END DO

END

AST Routine

! AST routine

! Notifies program that user typed CTRL/C
SUBROUTINE CTRLC AST (CTRLC CALLED)
LOGICAL*4 CTRLC CALLED -
CTRLC_CALLED = L TRUE.

END

22.5.2 Detecting Unsolicited Input

You can detect input from the terminal even if you have not called SMG$READ_
COMPOSED_LINE or SMG$READ_STRING by using SMG$ENABLE_
UNSOLICITED_INPUT. This routine uses the AST mechanism to transfer
control to a subprogram of your choice each time the user types at the terminal,
the AST subprogram is responsible for reading any input. When the subprogram
completes, control returns to the point in your mainline code where it was
interrupted.

Run-Time Library Input/Output Operations 22-35

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

The SMG$ENABLE_UNSOLICITED_INPUT routine is not an SMG$ input
routine. Before invoking SMGSENABLE_UNSOLICITED_INPUT, you must
invoke SMG$CREATE_PASTEBOARD to associate a pasteboard with the
terminal and SMG$CREATE_VIRTUAL_KEYBOARD to associate a virtual
keyboard with the same terminal.

SMG$ENABLE_UNSOLICITED_INPUT accepts the following arguments:

e The pasteboard identification number (use the value returned by
SMG$CREATE_PASTEBOARD)

¢ The name of an AST subprogram
e An argument to be passed to the AST subprogram

When SMG$ENABLE_UNSOLICITED_INPUT invokes the AST subprogram, it
passes two arguments to the subprogram: the pasteboard identification number
and the argument that you specified. Typically, you write the AST subprogram
to read the unsolicited input with SMG$READ_STRING. Since SMG$READ_
STRING requires that you specify the virtual keyboard at which the input was
typed, specify the virtual keyboard identification number as the second argument
to pass to the AST subprogram.

Example 22-14 permits the terminal user to interrupt the display of a series
of arrays, and either to go on to the next array (by typing input beginning with
an uppercase N) or to exit from the program (by typing input beginning with
anything else).

Example 22-14 Receiving Unsolicited Input from a Virtual Keyboard

Main Program

The main program calls DISPLAY ARRAY once for each array.
DISPLAY ARRAY displays the array in a DO loop.

If the user enters input from the terminal, the loop is
interrupted and the AST routine takes over.

If the user types anything beginning with an N, the AST
sets DO_NEXT and resumes execution -- DISPLAY ARRAY drops
out of the loop processing the array (because DO NEXT is
set -- and the main program calls DISPLAY ARRAY for the
next array.

If the user types anything not beginning with an N,

!
|
!
|
!
|
!
|
!
|
!
! the program exits.

INTEGER*4 STATUS,

2 VKID, ! Virtual keyboard ID
2 PBID ! Pasteboard ID

! Storage arrays

INTEGER*4 ARRAY1 (256),

2 ARRAY2 (256),

2 ARRAY3 (256)

! System routines

INTEGER*4 SMGSCREATE PASTEBOARD,

2 SMG$CREATE_VIRTUAL KEYBOARD,
2 SMGSENABLE UNSOLICITED INPUT
! AST routine - -
EXTERNAL AST ROUTINE

(continued on next page)

22-36 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

Example 22-14 (Cont.) Receiving Unsolicited Input from a Virtual Keyboard

! Create a pasteboard

STATUS = SMG$CREATE PASTEBOARD (PBID, ! Pasteboard ID
2 - "SYSSINPUT')

IF (.NOT. STATUS) CALL LIB$SSIGNAL ($VAL (STATUS))

! Create a keyboard for the same device

STATUS = SMGSCREATE VIRTUAL KEYBOARD (VKID, ! Keyboard ID

2 - B "SYSSINPUT')

IF (.NOT. STATUS) CALL LIB$SSIGNAL ($VAL (STATUS))

! Enable unsolicited input

STATUS = SMGSENABLE_UNSOLICITED_INPUT (PBID, ! Pasteboard ID

2 AST ROUTINE,
2 VKID) ! Pass keyboard
! ID to AST

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))

! Call display subroutine once for each array
CALL DISPLAY ARRAY (ARRAY1)
CALL DISPLAY ARRAY (ARRAY2)
CALL DISPLAY ARRAY (ARRAY3)

END

Array Display Routine

! Subroutine to display one array

SUBROUTINE DISPLAY ARRAY (ARRAY)

! Dummy argument

INTEGER*4 ARRAY (256)

! Status

INTEGER*4 STATUS

! Flag for doing next array

LOGICAL*4 DO NEXT

COMMON /DO _NEXT/ DO_NEXT

! If AST has been delivered, reset

IF (DO NEXT) DO NEXT = .FALSE.

! Initialize control variable

I=1

! Display entire array unless interrupted by user

! If interrupted by user (DO NEXT is set), drop out of loop

DO WHILE ((I .LE. 256) .AND.” (.NOT. DO NEXT))
TYPE *, ARRAY (I)
I=I+1

END DO

END

(continued on next page)

Run-Time Library Input/Output Operations 22-37

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

Example 22-14 (Cont.) Receiving Unsolicited Input from a Virtual Keyboard
AST Routine

! Subroutine to read unsolicited input
SUBROUTINE AST ROUTINE (PBID,

2 VKID)

! dummy arguments

INTEGER*4 PBID, ! Pasteboard ID
2 VKID ! Keyboard ID

! Status

INTEGER*4 STATUS
! Flag for doing next array
LOGICAL*4 DO NEXT
COMMON /DO NEXT/ DO NEXT
! Input string -
CHARACTER*4 INPUT
! Routines
INTEGER*4 SMG$READ_STRING
! Read input
STATUS = SMGSREAD STRING (VKID, ! Keyboard ID
2 - INPUT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! If user types anything beginning with N, set DO NEXT
! otherwise, exit from program
IF (INPUT (1:1) .EQ. 'N’) THEN
DO NEXT = .TRUE.
ELSE
CALL EXIT
END IF

END

22.5.3 Using the Type-Ahead Buffer

Normally, if the user types at the terminal before your application is able to
read from that device, the input is saved in a special data structure maintained
by the system called the type-ahead buffer. When your application is ready to
read from the terminal, the input is transferred from the type-ahead buffer to
your input buffer. The type-ahead buffer is preset at a size of 78 bytes. If the
HOSTSYNC characteristic is on (the usual condition), input to the type-ahead
buffer is stopped (the keyboard locks) when the buffer is within 8 bytes of being
full. If the HOSTSYNC characteristic is off, the bell rings when the type-ahead
buffer is within 8 bytes of being full; if you overflow the buffer, the excess data
is lost. The TTY_ALTALARM system parameter determines the point at which
either input is stopped or the bell rings.

You can clear the type-ahead buffer by reading from the terminal with
SMG$READ_STRING and by specifying TRM$M_TM_PURGE in the modifiers
argument. Clearing the type-ahead buffer has the effect of reading only what the
user types on the terminal after the read operation is invoked. Any characters
in the type-ahead buffer are lost. The following example illustrates how to purge
the type-ahead buffer:

INTEGER*4 SMGSCREATE VIRTUAL KEYBOARD,

2 SMGSREAD STRING,

2 STATUS,

2 VKID, ! Virtual keyboard ID
2 INPUT SIZE

22-38 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

CHARACTER*512 INPUT

INCLUDE " (STRMDEF) ’

STATUS = SMGSCREATE VIRTUAL KEYBOARD (VKID,

2 - B "SYSSINPUT') ! I/0 device
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read

2 'Prompt> ',

2 512,

2 TRM$M_TM_PURGE,

2 rr

2 INPUT SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can also clear the type-ahead buffer with a QIO read operation modified by
IO$M_PURGE (defined in $IODEF). You can turn off the type-ahead buffer for
further read operations with a QIO set mode operation that specifies TT$M_
NOTYPEAHD as a basic terminal characteristic.

You can examine the type-ahead buffer by issuing a QIO sense mode operation
modified by IO$M_TYPEAHDCNT. The number of characters in the type-ahead
buffer and the value of the first character are returned to the P1 argument.

The size of the type-ahead buffer is determined by the TTY_TYPAHDSZ system
parameter. You can specify an alternative type-ahead buffer by turning on the
ALTYPEAHD terminal characteristic; the size of the alternative type-ahead
buffer is determined by the TTY_ALTYPAHD system parameter.

22.5.4 Using Echo

Normally, the system writes back to the terminal any printable characters that
the user types at that terminal. The system also writes highlighted words in
response to certain control characters; for example, the system writes EXIT if the
user enters Ctrl/Z. If the user types ahead of your read, the characters are not
echoed until you read them from the type-ahead buffer.

You can turn off echoing when you invoke a read operation by reading from the
terminal with SMG$READ_STRING and by specifying TRM$M_TM_NOECHO
in the modifiers argument. You can turn off echoing for control characters only
by modifying the read operation with TRM$M_TM_TRMNOECHO. The following
example turns off all echoing for the read operation:

INTEGER*4 SMG$CREATE VIRTUAL KEYBOARD,

2 SMGSREAD STRING,

2 STATUS, ~

2 VKID, ! Virtual keyboard ID

2 INPUT SIZE

CHARACTER*512 INPUT

INCLUDE " ($TRMDEF) '

STATUS = SMG$SCREATE VIRTUAL KEYBOARD (VKID, ! Keyboard ID
2 - B "SYSSINPUT') ! I/0 device
IF (.NOT. STATUS) CALL LIB$SSIGNAL ($VAL (STATUS))

STATUS = SMG$READ STRING (VKID, ! Keyboard ID

2 INPUT, ! Data read

2 'Prompt> ',

2 512,

2 TRM$M_TM NOECHO,

2 r

2 INPUT SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Run-Time Library Input/Output Operations 22-39

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

You can also turn off echoing with a QIO read operation modified by IO$M_
NOECHO (defined in $IODEF). You can turn off echoing for further read
operations with a QIO set mode operation that specifies TT$M_NOECHO as
a basic terminal characteristic.

22.5.5 Using Timeout

Using SMG$READ_STRING, you can restrict the user to a certain amount of
time in which to respond to a read command. If your application reads data
from the terminal using SMG$READ_STRING, you can modify the timeout
characteristic by specifying, in the timeout argument, the number of seconds the
user has to respond. If the user fails to type a character in the allotted time, the
error condition SS$_TIMEOUT (defined in $SSDEF) is returned. The following
example restricts the user to 8 seconds in which to respond to a read command:

INTEGER*4 SMG$CREATE VIRTUAL KEYBOARD,
2 SMGSREAD STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT SIZE
CHARACTER*512 INPUT
INCLUDE " ($SSDEF) ’
STATUS = SMGSCREATE VIRTUAL KEYBOARD (VKID,
2 - - "SYSSINPUT')
IF (.NOT. STATUS) CALL LIBS$SIGNAL ($%VAL (STATUS))
STATUS = SMGSREAD STRING (VKID, ! Keyboard ID
2 - INPUT, ! Data read
2 "Prompt> ',
2 512,
2 /
2 8,
2 /
2 INPUT SIZE)
IF (.NOT. STATUS) THEN B

IF (STATUS .EQ. SS$ TIMEOUT) CALL NO RESPONSE ()
ELSE - -

CALL LIBS$SIGNAL (VAL (STATUS))
END IF

You can cause a QIO read operation to time out after a certain number of seconds
by modifying the operation with IO$M_TIMED and by specifying the number of
seconds in the P3 argument. A message broadcast to a terminal resets a timer
that is set for a timed read operation (regardless of whether the operation was
initiated with QIO or SMG).

Note that the timed read operations work on a character-by-character basis. To
set a time limit on an input record rather than an input character, you must use
the SYS$SETIMR system service. The SYS$SETIMR executes an AST routine at
a specified time. The specified time is the input time limit. When the specified
time is reached, the AST routine cancels any outstanding I/O on the channel that
is assigned to the user’s terminal.

22-40 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

22.5.6 Converting Lowercase to Uppercase

You can automatically convert lowercase user input to uppercase by reading from
the terminal with the SMG$READ_STRING routine and by specifying TRM$M_
TM_CVTLOW in the modifiers argument, as shown in the following example:

INTEGER*4 SMG$CREATE VIRTUAL KEYBOARD,

2 SMGSREAD STRING,

2 STATUS,

2 VKID, ! Virtual keyboard ID

2 INPUT SIZE

CHARACTER*512 INPUT

INCLUDE " ($TRMDEF) '

STATUS = SMG$CREATE VIRTUAL KEYBOARD (VKID, ! Keyboard ID
2 "SYSSINPUT')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMGSREAD STRING (VKID, ! Keyboard ID

2 - INPUT, ! Data read

2 "Prompt> ',

2 512,

2 TRM$M TM CVTLOW,

2 r

2 INPUT SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can also convert lowercase characters to uppercase with a QIO read operation
modified by IO$M_CVTLOW (defined in $IODEF).

22.5.7 Performing Line Editing and Control Actions

Normally, the user can edit input as explained in the HP OpenVMS I/0 User’s
Reference Manual. You can inhibit line editing on the read operation by reading
from the terminal with SMG$READ_STRING and by specifying TRM$M_TM_
NOFILTR in the modifiers argument. The following example shows how you can
inhibit line editing:

INTEGER*4 SMG$CREATE VIRTUAL KEYBOARD,

2 SMGSREAD STRING,

2 STATUS, ~

2 VKID, ! Virtual keyboard ID

2 INPUT SIZE

CHARACTER*512 INPUT

INCLUDE " ($TRMDEF) '

STATUS = SMGSCREATE VIRTUAL KEYBOARD (VKID, ! Keyboard ID
2 - B "SYSSINPUT')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMGS$READ STRING (VKID, ! Keyboard ID

2 - INPUT, ! Data read

2 "Prompt> ',

2 512,

2 TRM$M TM NOFILTR,

2 rr

2 INPUT SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can also inhibit line editing with a QIO read operation modified by IO$M_
NOFILTR (defined in $IODEF).

Run-Time Library Input/Output Operations 22-41

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

22.5.8 Using Broadcasts

You can write, or broadcast, to any interactive terminal by using the
SYS$BRKTHRU system service. The following example broadcasts a message to
all terminals at which users are currently logged in. Use of SYS$BRKTHRU to
write to a terminal allocated to a process other than your own requires the OPER

privilege.

INTEGER*4 STATUS,

2 SYS$BRKTHRUW

INTEGER*2 B STATUS (4)

INCLUDE ' ($BRKDEF)’

STATUS = SYSSBRKTHRUW (,

2 "Accounting system started’,,
2 $VAL (BRK$C_ALLUSERS) '

2 B STATUS,,,,,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

22.5.8.1 Default Handling of Broadcasts

If the terminal user has taken no action to handle broadcasts, a broadcast is
written to the terminal screen at the current position (after a carriage return and
line feed). If a write operation is in progress, the broadcast occurs after the write
ends. If a read operation is in progress, the broadcast occurs immediately; after
the broadcast, any echoed user input to the aborted read operation is written to
the screen (same effect as pressing Ctrl/R).

22.5.8.2 How to Create Alternate Broadcast Handlers

You can handle broadcasts to the terminal on which your program is running with
SMG$SET _BROADCAST TRAPPING. This routine uses the AST mechanism to
transfer control to a subprogram of your choice each time a broadcast message is
sent to the terminal; when the subprogram completes, control returns to the point
in your mainline code where it was interrupted.

The SMG$SET_BROADCAST TRAPPING routine is not an SMG$ input
routine. Before invoking SMG$SET_BROADCAST TRAPPING, you must invoke
SMG$CREATE_PASTEBOARD to associate a pasteboard with the terminal.
SMG$CREATE_PASTEBOARD returns a pasteboard identification number; pass
that number to SMG$SET_BROADCAST_TRAPPING to identify the terminal
in question. Read the contents of the broadcast with SMG$GET_BROADCAST_
MESSAGE.

Example 22—-15 demonstrates how you might trap a broadcast and write it at the
bottom of the screen. For more information about the use of SMG$ pasteboards
and virtual displays, see Section 22.4.

22-42 Run-Time Library Input/Output Operations

Run-Time Library Input/Output Operations
22.5 Performing Special Input/Output Actions

Example 22-15 Trapping Broadcast Messages

INTEGER*4 STATUS,

2 PBID, ! Pasteboard ID

2 VDID, ! Virtual display ID
2 SMGSCREATE PASTEBOARD,

2 SMGS$SET BROADCAST TRAPPING

2 SMG$PASTE VIRTUAL DISPLAY

COMMON /ID/ PBID, -

2 VDID

INTEGER*2 B STATUS (4)

INCLUDE ' ($SMGDEF)’

INCLUDE ' ($BRKDEF)’

EXTERNAL BRKTHRU ROUTINE
STATUS = SMG$CREATE PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

STATUS = SMGSCREATE VIRTUAL DISPLAY (3, ! Height

2 - B 80, ! Width

2 VDID,, ! Display ID
2 SMG$M REVERSE)

IF (.NOT. STATUS) CALL LIBS$SIGNAL (VAL (STATUS))

STATUS = SMG$SET BROADCAST TRAPPING (PBID, ! Pasteboard ID
2 B B BRKTHRU ROUTINE) ! AST

IF (.NOT. STATUS) CALL LIBS$SIGNAL ($VAL (STATUS))

SUBROUTINE BRKTHRU ROUTINE ()

INTEGER*4 STATUS,

2 PBID, ! Pasteboard ID

2 VDID, ! Virtual display ID
2 SMGS$GET BROADCAST MESSAGE,

2 SMG$PUT CHARS,

2 SMG$PASTE VIRTUAL DISPLAY

COMMON /ID/ PBID, -

2 VDID

CHARACTER*240 MESSAGE

INTEGER*2 MESSAGE_SIZE

! Read the message

STATUS = SMGSGET BROADCAST MESSAGE (PBID,

2 - - MESSAGE,

2 MESSAGE SIZE)
IF (.NOT. STATUS) CALL LIBS$SIGNAL (VAL (STATUS))
! Write the message to the virtual display
STATUS = SMG$PUT_CHARS (vDID,

2 MESSAGE (1:MESSAGE SIZE),
2 1, ! Line
2 1) ! Column

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Make the display visble by pasting it to the pasteboard
STATUS = SMGSPASTE_VIRTUAL_DISPLAY (VDID,

2 PBID,

2 22, ! Row

2 1) ! Column
END

Run-Time Library Input/Output Operations 22-43

23

System Service Input/Output Operations

This chapter describes how to use system services to perform input and output
operations. It contains the following sections:

Section 23.1 describes the QIO operation.

Section 23.2 describes the use of quotas, privileges, and protection.
Section 23.3 describes device addressing modes.

Section 23.4 describes I/O function encoding.

Section 23.5 describes how to assign channels.

Section 23.6 describes how to queue I/O requests.

Section 23.7 describes how to synchronize I/O completions.

Section 23.8 describes the routine to use to wait for completion of an
asynchronous event.

Section 23.9 describes executing I/O services synchronously or asynchronously.
Section 23.10 describes the completion status of an I/O operation.
Section 23.11 describes how to deassign I/O channels.

Section 23.12 presents a program example of a complete input and output
operation.

Section 23.13 describes how to cancel I/O requests.

Section 23.14 describes how to use logical names and physical device names for
I/0O operations.

Section 23.15 describes how to use device name defaults.
Section 23.16 describes how to obtain information about physical devices.
Section 23.17 describes device allocation.

Section 23.18 describes how to mount, dismount, and initialize disk and tape
volumes.

Section 23.19 describes format output strings.
Section 23.20 describes how to use mailboxes for I/O operations.
Section 23.21 provides a program example of using I/O system services.

Section 23.22 describes the Fast I/O and Fast Path features that improve I/O
performance.

Examples are provided to show you how to use the I/O services for simple
functions, such as terminal input and output operations. If you plan to write
device-dependent I/O routines, see the HP OpenVMS 1/0 User’s Reference
Manual.

System Service Input/Output Operations 23-1

System Service Input/Output Operations

On VAX systems, if you want to write your own device driver or connect to a
device interrupt vector, see the OpenVMS VAX Device Support Reference Manual.
The OpenVMS VAX Device Support Reference Manual has been archived but is
available on the OpenVMS Documentation CD-ROM.

Besides using I/O system services, you can use OpenVMS Record Management
Services (RMS). OpenVMS RMS provides a set of routines for general-purpose,
device-independent functions such as data storage, retrieval, and modification.

Unlike RMS services, I/O system services permit you to use the I/O resources of
the operating system directly in a device-dependent manner. I/O services also
provide some specialized functions not available in OpenVMS RMS. Using I/O
services requires more programming knowledge than using OpenVMS RMS, but
can result in more efficient input/output operations.

23.1 Overview of OpenVMS QIO Operations

The OpenVMS operating system provides QIO operations that perform three
basic I/0O functions: read, write, and set mode. The read function transfers data
from a device to a user-specified buffer. The write function transfers data in the
opposite direction—from a user-specified buffer to the device. For example, in

a read QIO function to a terminal device, a user-specified buffer is filled with
characters received from the terminal. In a write QIO function to the terminal,
the data in a user-specified buffer is transferred to the terminal where it is
displayed.

The set mode QIO function is used to control or describe the characteristics and
operation of a device. For example, a set mode QIO function to a line printer can
specify either uppercase or lowercase character format. Not all QIO functions are
applicable to all types of devices. The line printer, for example, cannot perform a
read QIO function.

23.2 Quotas, Privileges, and Protection

To preserve the integrity of the operating system, the I/O operations are
performed under the constraints of quotas, privileges, and protection.

Quotas limit the number and type of I/O operations that a process can perform
concurrently and the total size of outstanding transfers. They ensure that all
users have an equitable share of system resources and usage.

Privileges are granted to a user to allow the performance of certain I/O-related
operations, for example, creating a mailbox and performing logical I/O to a
file-structured device. Restrictions on user privileges protect the integrity and
performance of both the operating system and the services provided to other
users.

Protection controls access to files and devices. Device protection is provided in
much the same way as file protection: shareable and nonshareable devices are
protected by protection masks.

The Set Resource Wait Mode (SYS$SETRWM) system service allows a process
to select either of two modes when an attempt to exceed a quota occurs. In the
enabled (default) mode, the process waits until the required resource is available
before continuing. In the disabled mode, the process is notified immediately by
a system service status return that an attempt to exceed a quota has occurred.
Waiting for resources is transparent to the process when resource wait mode is
enabled; the process takes no explicit action when a wait is necessary.

23-2 System Service Input/Output Operations

System Service Input/Output Operations
23.2 Quotas, Privileges, and Protection

The different types of I/O-related quotas, privilege, and protection are described
in the following sections.

23.2.1 Buffered I/0 Quota

The buffered I/O limit quota (BIOLM) specifies the maximum number of
concurrent buffered I/O operations that can be active in a process. In a buffered
I/O operation, the user’s data is buffered in system dynamic memory. The driver
deals with the system buffer and not the user buffer. Buffered I/O is used

for terminal, line printer, card reader, network, mailbox, and console medium
transfers and file system operations. For a buffered I/O operation, the system
does not have to lock the user’s buffer in memory.

The system manager, or the person who creates the process, establishes the
buffered I/O quota value in the user authorization file. If you use the Set
Resource Wait Mode (SYS$SETRWM) system service to enable resource wait
mode for the process, the process enters resource wait mode if it attempts to
exceed its direct I/O quota.

23.2.2 Buffered I/0 Byte Count Quota

The buffered I/O byte count quota (BYTLM) specifies the maximum amount of
buffer space that can be consumed from system dynamic memory for buffering
I/0 requests. All buffered I/0 requests require system dynamic memory in which
the actual I/O operation takes place.

The system manager, or the person who creates the process, establishes the
buffered I/O byte count quota in the user authorization file. If you use the
SYS$SETRWM system service to enable resource wait mode for the process, the
process enters resource wait mode if it attempts to exceed its direct I/O quota.

23.2.3 Direct I/0 Quota

The direct I/O limit quota (DIOLM) specifies the maximum number of concurrent
direct (unbuffered) I/O operations that a process can have active. In a direct I/O
operation, data is moved directly to or from the user buffer. Direct I/O is used
for disk, magnetic tape, most direct memory access (DMA) real-time devices, and
nonnetwork transfers, such as DMC11/DMR11 write transfers. For direct I/O, the
user’s buffer must be locked in memory during the transfer.

The system manager, or the person who creates the process, establishes the direct
I/O quota value in the user authorization file. If you use the SYS$SETRWM
system service to enable resource wait mode for the process, the process enters
resource wait mode if it attempts to exceed its direct I/O quota.

23.2.4 AST Quota

The AST quota specifies the maximum number of outstanding asynchronous
system traps that a process can have. The system manager, or the person who
creates the process, establishes the quota value in the user authorization file.
There is never an implied wait for that resource.

23.2.5 Physical I/O Privilege

Physical I/0 privilege (PHY_IO) allows a process to perform physical I/O
operations on a device. Physical I/O privilege also allows a process to perform
logical I/O operations on a device.

System Service Input/Output Operations 23-3

System Service Input/Output Operations
23.2 Quotas, Privileges, and Protection

23.2.6 Logical I/O Privilege

Logical 1/O privilege (LOG_IO) allows a process to perform logical I/O operations
on a device. A process can also perform physical operations on a device if the
process has logical I/O privilege, the volume is mounted foreign, and the volume
protection mask allows access to the device. (A foreign volume is one volume that
contains no standard file structure understood by any of the operating system
software.) See Section 23.3.2 for further information about logical I/O privilege.

23.2.7 Mount Privilege

Mount privilege (MOUNT) allows a process to use the I0$_MOUNT function to
perform mount operations on disk and magnetic tape devices. The I0$_MOUNT
function is used in ancillary control processs (ACP) interface operations.

23.2.8 Share Privilege

Share privilege (SHARE) allows a process to use the SYS$ASSIGN system service
to override another process’s exclusive access request on the specified device.

Performing any I/O operations to a device driver coded to expect exclusive
access—performing I/O to any device driver not explicitly coded to expect shared
multiple-process access—can result in unusual and unexpected device and
application behaviour, and can result in problems of device ownership, and
failures during the device driver last channel deassign operation.

Using SHARE to override access is useful for a few specific situations, such as
user-written device driver debugging and user-written device driver diagnostic
tools. General use of SHARE is not recommended.

23.2.9 Volume Protection

Volume protection protects the integrity of mailboxes and both foreign and
Files-11 On-Disk Structure Level 2 structured volumes. Volume protection for a
foreign volume is established when the volume is mounted. Volume protection
for a Files-11 structured volume is established when the volume is initialized. (If
the process mounting the volume has the override volume protection privilege,
VOLPRO, protection can be overridden when the volume is mounted.)

The SYS$CREMBX system service protection mask argument establishes mailbox
protection.

Set Protection QIO requests allow you to set volume protection on a mailbox. You
must either be the owner of the mailbox or have the BYPASS privilege.

Protection for structured volumes and mailboxes is provided by a volume
protection mask that contains four 4-bit fields. These fields correspond to the
four classes of user permitted to access the volume. (User classes are based on
the volume owner’s UIC.)

The 4-bit fields are interpreted differently for volumes that are mounted as
structured (that is, volumes serviced by an ACP), volumes that are mounted as
foreign, and mailboxes (both temporary and permanent).

Figure 23-1 shows the 4-bit protection fields for mailboxes. Usually, volume
protection is meaningful only for read and write operations.

23-4 System Service Input/Output Operations

System Service Input/Output Operations
23.2 Quotas, Privileges, and Protection

Figure 23-1 Mailbox Protection Fields

11 10 9 8
Logical I/O * Write Read
*Not Used ZK-0624-GE

23.2.10 Device Protection

Device protection protects the allocation of nonshareable devices, such as
terminals and card readers.

Protection is provided by a device protection mask similar to that of volume
protection. The difference is that only the bit corresponding to read access is
checked, and that bit determines whether the process can allocate or assign a
channel to the device.

You establish device protection with the DCL command SET
PROTECTION/DEVICE. This command sets both the protection mask and
the device owner UIC.

23.2.11 System Privilege
System UIC privilege (SYSPRV) allows a process to be eligible for the volume or
device protection specified for the system protection class, even if the process does
not have a UIC in one of the system groups.

23.2.12 Bypass Privilege

Bypass privilege (BYPASS) allows a process to bypass volume and device
protection completely.

23.3 Physical, Logical, and Virtual 1/0

I/0 data transfers can occur in any one of three device addressing modes:
physical, logical, or virtual. Any process with device access allowed by the volume
protection mask can perform logical I/O on a device that is mounted foreign;
physical I/O requires privileges. Virtual I/O does not require privileges; however,
intervention by an ACP to control user access might be necessary if the device is
under ACP control. (ACP functions are described in the HP OpenVMS I/0 User’s
Reference Manual.)

23.3.1 Physical I/0 Operations

In physical I/O operations, data is read from and written to the actual, physically
addressable units accepted by the hardware (for example, sectors on a disk or
binary characters on a terminal in the PASSALL mode). This mode allows direct
access to all device-level I/O operations.

Physical I/O requires that one of the following conditions be met:
e The issuing process has physical I/O privilege (PHY_IO).
e The issuing process has all of the following characteristics:

— The issuing process has logical I/0O privilege (LOG_IO).

— The device is mounted foreign.

System Service Input/Output Operations 23-5

System Service Input/Output Operations
23.3 Physical, Logical, and Virtual 1/0

— The volume protection mask allows physical access to the device.

If neither of these conditions is met, the physical I/O operation is rejected by the
SYS$QIO system service, which returns a condition value of SS$_NOPRIV (no
privilege). Figure 23-2 illustrates the physical I/O access checks in greater detail.

The inhibit error-logging function modifier (IO$M_INHERLOG) can be specified
for all physical I/O functions. The IO$M_INHERLOG function modifier inhibits
the logging of any error that occurs during the I/O operation.

23.3.2 Logical I/O Operations

In logical I/O operations, data is read from and written to logically addressable
units of the device. Logical operations can be performed on both block-
addressable and record-oriented devices. For block-addressable devices (such
as disks), the addressable units are 512-byte blocks. They are numbered from
0 to n—1, where n is the number of blocks on the device. For record-oriented or
non-block-structured devices (such as terminals), logical addressable units are
not pertinent and are ignored. Logical I/O requires that one of the following
conditions be met:

e The issuing process has physical I/O privilege (PHY_IO).
e The issuing process has logical I/O privilege (LOG_IO).

¢ The volume is mounted foreign and the volume protection mask allows access
to the device.

If none of these conditions is met, the logical I/O operation is rejected by the
SYS$QIO system service, which returns a condition value of SS$_NOPRIV (no
privilege). Figure 23-3 illustrates the logical I/O access checks in greater detail.

23.3.3 Virtual I/O Operations

You can perform virtual I/O operations on both record-oriented (non-file-
structured) and block-addressable (file-structured) devices. For record-oriented
devices (such as terminals), the virtual function is the same as a logical function;
the virtual addressable units of the devices are ignored.

For block-addressable devices (such as disks), data is read from and written

to open files. The addressable units in the file are 512-byte blocks. They are
numbered starting at 1 and are relative to a file rather than to a device. Block-
addressable devices must be mounted and structured and must contain a file that
was previously accessed on the I/O channel.

Virtual I/O operations also require that the volume protection mask allow
access to the device (a process having either physical or logical I/O privilege can
override the volume protection mask). If these conditions are not met, the virtual
I/0O operation is rejected by the QIO system service, which returns one of the
following condition values:

Condition Value Meaning

SS$_NOPRIV No privilege

SS$_ DEVNOTMOUNT Device not mounted
SS$ DEVFOREIGN Volume mounted foreign

Figure 23-4 shows the relationship of physical, logical, and virtual I/O to the
driver.

23-6 System Service Input/Output Operations

System Service Input/Output Operations
23.3 Physical, Logical, and Virtual 1/0

Figure 23-2 Physical /0 Access Checks

Physical

I/0

Privilege
?

Yes

Logical

I/0

Privilege
?

No

No

Device

Mounted
?

No

v

Shareable

Device
?

Yes

Mounted No

Foreign
?

v

Physical /0 No

Permitted*
?

l Yes

v

A

v v

Allow Deny
Access Access

*Volume protection mask allows access. ZK-0625—-GE

System Service Input/Output Operations 23-7

System Service Input/Output Operations
23.3 Physical, Logical, and Virtual 1/0

Figure 23-3 Logical I/O Access Checks

Yes

4

Yes

4

Physical
I/0
Privilege
?

Logical
I/0
Privilege
?

No Spooled

No

Shareable

Device
?

A

?

A

v

Allow
Access

* Volume protection mask allows access.

23-8 System Service Input/Output Operations

Device
Mounted
?

Mounted
Foreign
?

Logical I/O
Permitted*

Yes

Device
?

Yes

Deny
Access

ZK-0626-GE

System Service Input/Output Operations
23.3 Physical, Logical, and Virtual 1/0

Figure 23-4 Physical, Logical, and Virtual 1/0

QIo
Request

Physical Yi
No 0 es

Request
?

Logical
e Yes
Request
?

v

Translate Logical
Block Address

to Physical
Block Address
Virtual _
o) Yes >
Request
? v
No Map Virtual Block /O
Address to Logical Driver
Block Address
Error
Iy
ACP No
Intervention*
?
Go to
ACP
v
Wake ACP to
Change Mapping
Window
*Needed to map virtual address to logical address.
ZK-0627-GE

System Service Input/Output Operations 23-9

System Service Input/Output Operations
23.4 1/0 Function Encoding

23.4 1/0 Function Encoding

I/0 functions fall into three groups that correspond to the three I/O device
addressing modes (physical, logical, and virtual) described in Section 23.3.
Depending on the device to which it is directed, an I/O function can be expressed
in one, two, or all three modes.

I/0 functions are described by 16-bit, symbolically expressed values that specify
the particular I/O operation to be performed and any optional function modifiers.
Figure 23-5 shows the format of the 16-bit function value.

Symbolic names for I/O function codes are defined by the $IODEF macro.
Figure 23-5 1/0O Function Format

15 6 5 0

Function Modifiers Code

ZK-0628-GE

23.4.1 Function Codes

The low-order 6 bits of the function value are a code that specifies the particular
operation to be performed. For example, the code for read logical block is
expressed as I0$_READLBLK. Table 23—1 lists the symbolic values for read and
write I/O functions in the three transfer modes.

Table 23-1 Read and Write I/0 Functions

Physical I/O Logical 1/0 Virtual I/O
10$_READPBLK I0$_READLBLK 10$_READVBLK
I0$_WRITEPBLK I0$_WRITELBLK 10$_WRITEVBLK

The set mode I/O function has a symbolic value of IO$_SETMODE.

Function codes are defined for all supported devices. Although some of the
function codes (for example, I0O$_READVBLK and I0$_WRITEVBLK) are used
with several types of devices, most are device dependent; that is, they perform
functions specific to particular types of devices. For example, I0O$_CREATE is a
device-dependent function code; it is used only with file-structured devices such
as disks and magnetic tapes. The I/O user’s reference documentation provides
complete descriptions of the functions and function codes.

Note

You should determine the device class before performing any QIO
function, because the requested function might be incompatible with some
devices. For example, the SYS$INPUT device could be a terminal, a disk,
or some other device. Unless this device is a terminal, an I0$_SETMODE
request that enables a Ctrl/C AST is not performed.

23-10 System Service Input/Output Operations

System Service Input/Output Operations
23.4 1/0 Function Encoding

23.4.2 Function Modifiers

The high-order 10 bits of the function value are function modifiers. These are
individual bits that alter the basic operation to be performed. For example,
you can specify the function modifier IO$M_NOECHO with the function I0$_
READLBLK to a terminal. When used together, the two values are written in
VAX MACRO as I0$_READLBLK!IO$M_NOECHO. This causes data typed at
the terminal keyboard to be entered into the user buffer but not echoed to the
terminal. Figure 23-6 shows the format of function modifiers.

Figure 23-6 Function Modifier Format

15 13 12 6 0
Device/Function Device/Function
Independent Dependent
ZK-0629-GE

As shown in Figure 23-6, bits <15:13> are device- or function-independent bits,
and bits <12:6> are device- or function-dependent bits. Device- or function-
dependent bits have the same meaning, whenever possible, for different device
classes. For example, the function modifier IO$M_ACCESS is used with both disk
and magnetic tape devices to cause a file to be accessed during a create operation.
Device- or function-dependent bits always have the same function within the
same device class.

There are two device- or function-independent modifier bits: IO$M_INHRETRY
and IO$M_DATACHECK (a third bit is reserved). IO$M_INHRETRY is used to
inhibit all error recovery. If any error occurs and this modifier bit is specified, the
operation is terminated immediately and a failure status is returned in the I/O
status block (see Section 23.10). Use IO$M_DATACHECK to compare the data in
memory with that on a disk or magnetic tape.

23.5 Assigning Channels

Before any input or output operation can be performed on a physical device, you
must assign a channel to the device to provide a path between the process and
the device. The Assign I/O Channel (SYS$ASSIGN) system service establishes
this path.

When you write a call to the SYS$ASSIGN service, you must supply the name
of the device, which can be a physical device name or a logical name, and the
address of a word to receive the channel number. The service returns a channel
number, and you use this channel number when you write an input or output
request.

For example, the following lines assign an I/O channel to the device TTA2. The
channel number is returned in the word at TTCHAN.

System Service Input/Output Operations 23-11

System Service Input/Output Operations
23.5 Assigning Channels

#include <descrip.h>
#include <libS$routines.h>
#include <ssdef.h>
#include <starlet.h>
#include <stdio.h>
#include <stsdef.h>

main() {
unsigned int status;
unsigned short ttchan;
SDESCRIPTOR (ttname, "TTA2:");

/* Assign a channel to a device */
status = SYS$ASSIGN(&ttname, /* devnam - device name */
&ttchan, /* chan - channel number */

0, /* acmode - access mode */
0, /* mbxnam - logical name for mailbox */
0); /* flags */

if (!$VMS STATUS SUCCESS(status))
LIBSSIGNAL(status);

return SS$_NORMAL;
}

To assign a channel to the current default input or output device, use the logical
name SYS$INPUT or SYS$OUTPUT.

For more details on how SYS$ASSIGN and other I/O services handle logical
names, see Section 23.2.5.

23.5.1 Using the Share Privilege with the SYS$SASSIGN and SYS$DASSGN
Services

Use of SHARE privilege should be made only with caution, as applications,
application protocols, and device drivers coded to expect only exclusive access can
encounter unexpected and potentially errant behavior when access to the device
is unexpectedly shared via use of SHARE privilege.

If you use the SHARE privilege to override the exclusivity requested by another
process’s call to the system service SYS$ASSIGN, and the original process then
attempts to deassign its channels via explicit calls to SYS$DASSGN or via the
implicit calls to SYS$DASSGN made during image or process rundown, the
OpenVMS last-channel-deassign code may not operate as expected due to the
assignment of the additional I/O channels to the device. The presence of these
extra channels will prevent the last-channel-deassign code from releasing the
ownership of the device, potentially resulting in a device owned by the process
identification (PID) of a nonexistent process.

Unless its use is explicitly supported by the application, the application protocol,
and the device driver, the use of SHARE privilege is generally discouraged.

23.6 Queuing I/0O Requests

All input and output operations in the operating system are initiated with the
Queue I/O Request (SYS$QIO) system service. The SYS$QIO system service
permits direct interaction with the system’s terminal driver. SYS$QIOs permit
some operations that cannot be performed with language I/O statements and
RTL routines; calls to SYS$QIO reduce overhead and permit asynchronous I/O
operations. However, calls to SYS$QIO are device dependent. The SYS$QIO
service queues the request and returns immediately to the caller. While the

23-12 System Service Input/Output Operations

System Service Input/Output Operations
23.6 Queuing I/0 Requests

operating system processes the request, the program that issued the request can
continue execution.

The format for SYS$QIO is as follows:
SYS$QIO([efn],chan,func],iosb][,astadr][,astprm][,p1]1[,p21[,p3][.p41[,p5][,P6]

Required arguments to the SYS$QIO service include the channel number
assigned to the device on which the I/O is to be performed, and a function code
(expressed symbolically) that indicates the specific operation to be performed.
Depending on the function code, one to six additional parameters may be
required.

For example, the I0$_WRITEVBLK and I0$_READVBLK function codes are
device-independent codes used to read and write single records or virtual
blocks. These function codes are suitable for simple terminal I/O. They require
parameters indicating the address of an input or output buffer and the buffer
length. A call to SYS$QIO to write a line to a terminal may look like the
following:

#include <starlet.h>

unsigned int status, func=I0$ WRITEVBLK;

status = SYS$QIO(0, /* efn - event flag */
ttchan, /* chan - channel number */
func, /* func - function modifier */
0, /* iosb - I/0 status block */
0, /* astadr - AST routine */
0, /* astprm - AST parameter */
buffadr, /* pl - output buffer */
buflen); /* p2 - length of message */

Function codes are defined for all supported device types, and most of the codes
are device dependent; that is, they perform functions specific to a particular
device. The $IODEF macro defines symbolic names for these function codes.

For information about how to obtain a listing of these symbolic names, see
Appendix A. For details about all function codes and an explanation of the
parameters required by each, see the HP OpenVMS 1/0 User’s Reference Manual.

To read from or write to a terminal with the SYS$QIO or SYS$QIOW system
service, you must first associate the terminal name with an I/O channel by
calling the SYS$ASSIGN system service, then use the assigned channel in the
SYS$QIO or SYS$QIOW system service. To read from SYS$INPUT or write to
SYS$OUTPUT, specify the appropriate logical name as the terminal name in
the SYS$ASSIGN system service. In general, use SYS$QIO for asynchronous
operations, and use SYS$QIOW for all other operations.

23.7 Synchronizing Service Completion

The SYS$QIO system service returns control to the calling program as soon

as a request is queued; the status code returned in RO indicates whether the
request was queued successfully. To ensure proper synchronization of the queuing
operation with respect to the program, the program must do the following:

e Test whether the operation was queued successfully.

e Test whether the operation itself completed successfully.

System Service Input/Output Operations 23-13

System Service Input/Output Operations
23.7 Synchronizing Service Completion

Optional arguments to the SYS$QIO service provide techniques for synchronizing
I/0 completion. There are three methods you can use to test for the completion of
an I/O request:

e Specify the number of an event flag to be set when the operation completes.

e Specify the address of an AST routine to be executed when the operation
completes.

e Specify the address of an I/O status block in which the system can place the
return status when the operation completes.

I/0 status blocks are explained in Section 23.10.

The use of these three techniques is shown in the examples that follow.
Example 23—-1 shows specifying event flags.

Example 23-1 Event Flags
#include <lib$routines.h>

#include <starlet.h>
unsigned int status, efn=0, efnl=1, efn=2;

status = SYS$QIO(efnl, ...); /* Issue lst I/0 request */

if (1$VMS_STATUS SUCCESS(status))

LIB$SSIGNAL(status); /* Queued successfully? */ @
status = SYS$QIO(efn2, ...); /* Issue second I/O request */ @
if (!$VMS STATUS SUCCESS(status)) /* Queued successfully? */

LIBS$SIGNAL(status);

. (3]
status = SYSSWFLAND(efn, / *Wait until both are done */
&mask, .. .

© When you specify an event flag number as an argument, SYS$QIO clears the
event flag when it queues the I/0 request. When the I/O completes, the flag
is set.

@ In this example, the program issues two Queue I/O requests. A different
event flag is specified for each request.

© The Wait for Logical AND of Event Flags (SYS$WFLAND) system service
places the process in a wait state until both I/O operations are complete. The
efn argument indicates that the event flags are both in cluster 0; the mask
argument indicates the flags for which the process is to wait.

O Note that the SYSSWFLAND system service (and the other wait system
services) wait for the event flag to be set; they do not wait for the I/O
operation to complete. If some other event were to set the required event
flags, the wait for event flag would complete too soon. You must coordinate

23-14 System Service Input/Output Operations

System Service Input/Output Operations
23.7 Synchronizing Service Completion

the use of event flags carefully. (See Section 23.8 for a discussion of the
recommended method for testing I/O completion.)

System Service Input/Output Operations 23-15

System Service Input/Output Operations
23.7 Synchronizing Service Completion

Example 23—-2 shows specifying an AST routine.

Example 23-2 AST Routine

#include <libS$routines.h>
#include <starlet.h>
#include <stsdef.h>
unsigned int status, astprm=1;

status = SYS$QIO(... &ttast, /* I/O request with AST */ @
astprm . . .);
if (!$VMS_STATUS SUCCESS(status)) /* Queued successfully? */
LIB$SIGNAL(status);

}

void ttast (int astprm) { /* AST service routine */ @

/* Handle I/0 completion */

return;
} /* End of AST routine */

©@ When you specify the astadr argument to the SYS$QIO system service, the
system interrupts the process when the I/O completes and passes control to
the specified AST service routine.

The SYS$QIO system service call specifies the address of the AST routine,
TTAST, and a parameter to pass as an argument to the AST service routine.
When $QIO returns control, the process continues execution.

® When the I/O completes, the AST routine TTAST is called, and it responds to
the I/O completion. By examining the AST parameter, TTAST can determine
the origin of the I/O request.

When this routine is finished executing, control returns to the process at the
point at which it was interrupted. If you specify the astadr argument in your
call to SYS$QIO, you should also specify the iosb argument so that the AST
routine can evaluate whether the I/O completed successfully.

23-16 System Service Input/Output Operations

System Service Input/Output Operations
23.7 Synchronizing Service Completion

Example 23—-3 shows specifying an I/O status block.

Example 23-3 1/O Status Block

#include <libS$routines.h>
#include <stdio.h>
#include <ssdef.h>
#include <starlet.h>
#include <stsdef.h>

/* 1/0 status block */
struct {
unsigned short iostat, iolen;
unsigned int dev_info;
}ttiosb; (1)

unsigned int status;

status = SYS$QIO(, ... , &ttiosb, ...); @
if(!$VMS_STATUS SUCCESS(status)) /* Queued successfully? */
LIBSSIGNAL(status);

while(ttiosb.iostat == 0) {
/* Loop -- with delay -- until done */ (3
}

if(!$VMS_STATUS_SUCCESS(ttiosb.iostat)) {
/* Perform error handling */

}

@ An I/O status block is a quadword structure that the system uses to post
the status of an I/O operation. You must define the quadword area in your
program. TTIOSB defines the I/O status block for this I/O operation. The
iosb argument in the SYS$QIO system service refers to this quadword.

® Instead of polling the low-order word of the I/O status block for the completion
status, the program uses the preferred method of using an event flag and
calling SYS$SYNCH to determine I/O completion.

© The process polls the I/O status block. If the low-order word still contains
zero, the I/0O operation has not yet completed. In this example, the program
loops until the request is complete.

System Service Input/Output Operations 23-17

System Service Input/Output Operations
23.8 Recommended Method for Testing Asynchronous Completion

23.8 Recommended Method for Testing Asynchronous Completion

HP recommends that you use the Synchronize (SYS$SYNCH) system service to
wait for completion of an asynchronous event. The SYS$SYNCH service correctly
waits for the actual completion of an asynchronous event, even if some other
event sets the event flag.

To use the SYS$SYNCH service to wait for the completion of an asynchronous
event, you must specify both an event flag number and the address of an

I/0 status block (IOSB) in your call to the asynchronous system service. The
asynchronous service queues the request and returns control to your program.
When the asynchronous service completes, it sets the event flag and places the
final status of the request in the IOSB.

In your call to SYS$SYNCH, you must specify the same efn and I/O status block
that you specified in your call to the asynchronous service. The SYS$SYNCH
service waits for the event flag to be set by means of the SYS$WAITFR system
service. When the specified event flag is set, SYS$SYNCH checks the specified
I/0 status block. If the I/O status block is nonzero, the system service has
completed and SYS$SYNCH returns control to your program. If the I/O status
block is zero, SYS$SYNCH clears the event flag by means of the SYS$CLREF
service and calls the $WAITFR service to wait for the event flag to be set.

The SYS$SYNCH service sets the event flag before returning control to your
program. This ensures that the call to SYS$SYNCH does not interfere

with testing for completion of another asynchronous event that completes at
approximately the same time and uses the same event flag to signal completion.

The following call to the Queue I/O Request (SYS$QIO) system service
demonstrates how the SYS$SYNCH service is used:

#include <libS$routines.h>
#include <starlet.h>
unsigned int status, event flag = 1;
struct {
short int iostat, iolen;
unsigned int dev info;
}ttiosb; -

/* Request I/0 */
status = SYS$QIO (event flag, ... , &ttiosb ...);
if (!$VMS_ STATUS SUCCESS(status))
LIBSSIGNAL(status);

/* Wait until I/0 completes */
status = SYS$SYNCH (event flag, &ttiosb);
if (!$VMS STATUS SUCCESS(Status))
LIB$SSIGNAL(status);

23-18 System Service Input/Output Operations

System Service Input/Output Operations
23.8 Recommended Method for Testing Asynchronous Completion

Note

The SYS$QIOW service provides a combination of SYS$QIO and
SYS$SYNCH.

23.9 Synchronous and Asynchronous Forms of Input/Output
Services

You can execute some input/output services either synchronously or
asynchronously. A “W” at the end of a system service name indicates the
synchronous version of the system service.

The synchronous version of a system service combines the functions of the
asynchronous version of the service and the Synchronize (SYS$SYNCH)
system service. The synchronous version acts exactly as if you had used the
asynchronous version of the system service followed immediately by a call to
SYS$SYNCH; it queues the I/O request, and then places the program in a wait
state until the I/O request completes. The synchronous version takes the same
arguments as the asynchronous version.

Table 23-2 lists the asynchronous and synchronous names of input/output
services that have synchronous versions.

Table 23-2 Asynchronous Input/Output Services and Their Synchronous

Versions
Asynchronous Name Synchronous Name Description
$BRKTHRU $BRKTHRUW Breakthrough
$GETDVI $GETDVIW Get Device/Volume Information
$GETJPI $GETJPIW Get Job/Process Information
$GETLKI $GETLKIW Get Lock Information
$GETQUI $GETQUIW Get Queue Information
$GETSYI $GETSYIW Get Systemwide Information
$QIO $QIOW Queue I/O Request
$SNDJBC $SNDJBCW Send to Job Controller
$UPDSEC $UPDSECW Update Section File on Disk

23.9.1 Reading Operations with SYS$QIOW

The SYS$QIO and SYS$QIOW system services move one record of data from

a terminal to a variable. For synchronous I/O, use SYS$QIOW. Complete
information about the SYS$QIO and SYS$QIOW system services is presented in
the HP OpenVMS System Services Reference Manual.

The SYS$QIO and SYS$QIOW system services place the data read in the variable
specified in the 1 argument. The second word of the status block contains the
offset from the beginning of the buffer to the terminator—hence, it equals the size
of the data read. Always reference the data as a substring, using the offset to the
terminator as the position of the last character (that is, the size of the substring).
If you reference the entire buffer, your data will include the terminator for

the operation (for example, the CR character) and any excess characters from

System Service Input/Output Operations 23-19

System Service Input/Output Operations
23.9 Synchronous and Asynchronous Forms of Input/Output Services

a previous operation using the buffer. (The only exception to the substring
guideline is if you deliberately overflow the buffer to terminate the I/O operation.)

Example 23—4 shows use of the SYS$QIOW system service and reads a line of
data from the terminal and waits for the I/O to complete.

Example 23-4 Reading Data from the Terminal Synchronously

INTEGER STATUS

! QIOW structures
INTEGER*2 INPUT CHAN
INTEGER CODE,

I/0 channel
Type of I/0 operation

2 INPUT BUFF SIZE, Size of input buffer

2 PROMPT SIZE, Size of prompt

2 INPUT SIZE Size of input line as read
PARAMETER (PROMPT SIZE = 13,

2 INPUT BUFF SIZE = 132)

CHARACTER*132 INPUT
CHARACTER* (*) PROMPT
PARAMETER (PROMPT = 'Input value: ')

! Define symbols used in I/0 operations
INCLUDE ' ($IODEF)’

! Status block for QIOW

STRUCTURE /IOSTAT BLOCK/

INTEGER*2 IOSTAT, Return status

!
2 TERM OFFSET, ! Location of line terminator
2 TERMINATOR, ! Value of terminator
2 TERM SIZE ! Size of terminator

END STRUCTURE

RECORD /IOSTAT_BLOCK/ I0SB
! Subprograms

INTEGER*4 SYS$ASSIGN,

2 SYS$QIOW

! Assign an I/0 channel to SYSSINPUT

STATUS = SYSSASSIGN (’'SYS$INPUT',

2 INPUT CHAN,,)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
! Read with prompt

CODE = I0S$S READPROMPT

STATUS = SYSS$SQIOW (s

2 $VAL (INPUT CHAN),

$VAL (CODE),

I0SB,

rr
SREF (INPUT),
$VAL (INPUT BUFF SIZE),

rr
$REF (PROMPT),
VAL (PROMPT SIZE))

DO DN

(continued on next page)

23-20 System Service Input/Output Operations

System Service Input/Output Operations
23.9 Synchronous and Asynchronous Forms of Input/Output Services

Example 23-4 (Cont.) Reading Data from the Terminal Synchronously

! Check QIOW status

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL (STATUS))

! Check status of I/0O operation

IF (.NOT. IOSB.IOSTAT) CALL LIBSSIGNAL (%VAL (IOSB.IOSTAT))
! Set size of input string

INPUT SIZE = IOSB.TERM OFFSET

23.9.2 Reading Operations with SYS$QIO

To perform an asynchronous read operation, use the SYS$QIO system service
and specify an event flag (the first argument, which must be passed by value).
Your program continues while the I/O is taking place. When you need the input
from the I/O operation, invoke the SYS$SYNCH system service to wait for the
event flag and status block specified in the SYS$QIO system service. If the

I/0 is not complete, your program pauses until it is. In this manner, you can
overlap processing within your program. Naturally, you must take care not to
assume data has been returned by the I/O operation before you call SYS$SYNCH
and it returns successfully. Example 23-5 demonstrates an asynchronous read
operation.

Example 23-5 Reading Data from the Terminal Asynchronously

INTEGER STATUS

! QIO structures

INTEGER*2 INPUT CHAN ! I/0 channel

INTEGER CODE, ! Type of I/0 operation
2 INPUT BUFF SIZE, ! Size of input buffer
|
|

2 PROMPT SIZE, Size of prompt

2 INPUT SIZE Size of input line as read
PARAMETER (INPUT BUFF SIZE = 132,

2 PROMPT = 13)

CHARACTER*132 INPUT

CHARACTER* (*) PROMPT

PARAMETER (PROMPT = 'Input value: ')

INCLUDE ' ($IODEF)’ ! Symbols used in I/0 operations
! Status block for QIO

STRUCTURE /IOSTAT BLOCK/

INTEGER*2 IOSTAT, Return status

|
2 TERM OFFSET, ! Location of line terminator
2 TERMINATOR, ! Value of terminator
2 TERM_SIZE ! Size of terminator

END STRUCTURE
RECORD /IOSTAT BLOCK/ IOSB

(continued on next page)

System Service Input/Output Operations 23-21

System Service Input/Output Operations
23.9 Synchronous and Asynchronous Forms of Input/Output Services

Example 23-5 (Cont.) Reading Data from the Terminal Asynchronously

! Event flag for I/O
INTEGER INPUT EF

! Subprograms
INTEGER*4 SYSSASSIGN,
2 SYS$QIO,

2 SYSS$SYNCH,
2 LIB$GET_EF

! Assign an I/0 channel to SYSSINPUT

STATUS = SYSSASSIGN ('SYSSINPUT,

2 INPUT CHAN,,)

IF (.NOT. STATUS) CALL LIBSSIGNAL ($VAL (STATUS))
! Get an event flag

STATUS = LIBSGET EF (INPUT EF)

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))
! Read with prompt

CODE = I0$ READPROMPT

STATUS = SYS$QIO (%VAL (INPUT EF),

2 $VAL (INPUT CHAN),

$VAL (CODE),

10SB,

rr
SREF (INPUT),
$VAL (INPUT BUFF SIZE),

r

SREF (PROMPT),

SVAL (PROMPT SIZE))

! Check status of QIO

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

DO DNDDND

STATUS = SYSSSYNCH (%VAL (INPUT EF),

2 I0SB) -

! Check status of SYNCH

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Check status of I/O operation

IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL ($VAL (IOSB.IOSTAT))
! Set size of input string

INPUT SIZE = IOSB.TERM OFFSET

Be sure to check the status of the I/O operation as returned in the I/O status
block. In an asynchronous operation, you can check this status only after the I/O
operation is complete (that is, after the call to SYS$SYNCH).

23.9.3 Write Operations with SYS$QIOW

The SYS$QIO and SYS$QIOW system services move one record of data from a
character value to the terminal. Do not use these system services, as described
here, for output to a file or nonterminal device.

For synchronous I/O, use SYS$QIOW and omit the first argument (the event flag
number). For complete information about SYS$QIO and SYS$QIOW, refer to the
HP OpenVMS System Services Reference Manual.

23-22 System Service Input/Output Operations

System Service Input/Output Operations
23.9 Synchronous and Asynchronous Forms of Input/Output Services

Example 23—6 writes a line of character data to the terminal.

Example 23—-6 Writing Character Data to a Terminal

INTEGER STATUS,

2 ANSWER SIZE

CHARACTER*31 ANSWER

INTEGER*2 OUT CHAN

! Status block for QIO

STRUCTURE /IOSTAT BLOCK/
INTEGER*2 IOSTAT,

2 BYTE COUNT,

2 LINES OUTPUT
BYTE COLUMN,

2 LINE

END STRUCTURE

RECORD /IOSTAT BLOCK/ IOSB
! Routines -

INTEGER SYSSASSIGN,

2 SYSSQIOW

! I0$ symbol definitions
INCLUDE ' ($IODEF)’

STATUS = SYS$ASSIGN ('SYS$OUTPUT',

2 OUT CHAN,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL (SVAL (STATUS))
STATUS = SYS$QIOW (,

2 $VAL (OUT CHAN),

2 $VAL (IO$ WRITEVBLK),

2 10SB, -

2 /

2 /

2 SREF ('Answer: '//ANSWER(1:ANSWER SIZE)),
2 $VAL (8+ANSWER SIZE), -

2 /

2 $VAL (32),,) ! Single spacing

IF (.NOT. STATUS) CALL LIB$SIGNAL (VAL (STATUS))

IF (.NOT. IOSB.IOSTAT) CALL LIBS$SIGNAL ($VAL (IOSB.IOSTAT))
END

23.10 1/0 Completion Status

When an I/O operation completes, the system posts the completion status in the
I/0 status block, if one is specified. The completion status indicates whether the
operation completed successfully, the number of bytes that were transferred, and
additional device-dependent return information.

Figure 23-7 illustrates the format for the SYS$QIO system service of the
information written in the IOSB.

The first word contains a system status code indicating the success or failure of
the operation. The status codes used are the same as for all returns from system
services; for example, SS$_ NORMAL indicates successful completion.

System Service Input/Output Operations 23-23

System Service Input/Output Operations
23.10 I/0 Completion Status

Figure 23-7 1/O Status Block

31 1615 0

Count Condition value

Device—dependent information

ZK-0856-GE

The second word contains the number of bytes actually transferred in the I/O
operation. Note that for some devices this word contains only the low-order word
of the count. For information about specific devices, see the HP OpenVMS 1/0
User’s Reference Manual.

The second longword contains device-dependent return information.

System services other than SYS$QIO use the quadword I/O status block, but
the format is different. See the description of each system service in the HP
OpenVMS System Services Reference Manual for the format of the information
written in the IOSB for that service.

To ensure successful I/O completion and the integrity of data transfers, you
should check the IOSB following I/O requests, particularly for device-dependent
I/O functions. For complete details about how to use the I/O status block, see the
HP OpenVMS 1I/0 User’s Reference Manual.

23.11 Deassigning I/0 Channels

When a process no longer needs access to an I/O device, it should release
the channel assigned to the device by calling the Deassign I/O Channel
(SYS$DASSGN) system service:

$DASSGN_S CHAN=TTCHAN

This service call releases the terminal channel assignment acquired in the
SYS$ASSIGN example shown in Section 23.5. The system automatically
deassigns channels for a process when the image that assigned the channel
exits.

23.12 Using Complete Terminal I/0

The following example shows a complete sequence of input and output
operations using the $QIOW macro to read and write lines to the current
default SYS$INPUT device. Because the input/output of this program must be to
the current terminal, it functions correctly only if you execute it interactively.

#include <descrip.h>

#include <iodef.h>

#include <libSroutines.h>

#include <ssdef.h>

#include <starlet.h>

#include <stdio.h>

#include <string.h>

#define BUFSIZ 80

/* I/0 status block */

struct { (1]
unsigned short iostat, ttiolen;
unsigned int dev info;

}ttiosb; -

23-24 System Service Input/Output Operations

System Service Input/Output Operations
23.12 Using Complete Terminal I/O

main() {
unsigned int status ,outlen, inlen = BUFSIZ;
unsigned short ttchan;
char buffer[BUFSIZ]; (2]
$DESCRIPTOR (ttname, "SYSSINPUT"); (3)

/* Assign a channel */
status = SYSSASSIGN(&ttname, /* devnam - device number */ @
&ttchan, /* chan - channel number */
0, 0, 0);
if (!$VMS_STATUS SUCCESS(status))
LIBSSIGNAL(status);

/* Request I/0 */

status = SYSSQIOW(O, /* efn - event flag */
ttchan, /* chan - channel number */
10$ READVBLK, /* func - function modifier */
&ttiosb, /* iosb - I/0 status block */
0, /* astadr - AST routine */
0, /* astprm - AST parameter */
buffer, /* pl - buffer */
inlen, /* p2 - length of buffer */

0,0,00; O
if (!$VMS STATUS SUCCESS(status)) @
LIBSSIGNAL(status);

/* Get length from IOSB */

outlen = ttiosb.ttiolen; (7]
status = SYS$QIOW(0, ttchan, IO$ WRITEVBLK, &ttiosb, 0, 0, buffer, outlen,
0, 0, 0, 0);

if (1$VMS_STATUS SUCCESS(status))
LIB$SIGNAL(status); O
/* Deassign the channel */
status = SYS$SDASSGN(ttchan); /* chan - channel */ @

if (!$VMS_STATUS SUCCESS(status))
LIBSSIGNAL(status);

© The IOSB for the I/O operations is structured so that the program can easily
check for the completion status (in the first word) and the length of the input
string returned (in the second word).

® The string will be read into the buffer BUFFER; the longword OUTLEN will
contain the length of the string for the output operation.

© The TTNAME label is a character string descriptor for the logical device
SYS$INPUT, and TTCHAN is a word to receive the channel number assigned
to it.

O The $ASSIGN service assigns a channel and writes the channel number at
TTCHAN.

O If the $ASSIGN service completes successfully, the $QIOW macro reads a line
from the terminal, and requests that the completion status be posted in the
I/O status block defined at TTIOSB.

@O The process waits until the I/O is complete, then checks the first word in the
I/O status block for a successful return. If unsuccessful, the program takes an
error path.

System Service Input/Output Operations 23-25

System Service Input/Output Operations
23.12 Using Complete Terminal I/O

@ The length of the string read is moved into the longword at OUTLEN, because
the $QIOW macro requires a longword argument. However, the length field
of the I/O status block is only 1 word long. The $QIOW macro writes the line
just read to the terminal.

©® The program performs error checks. First, it ensures that the $OUTPUT
macro successfully queued the I/O request; then, when the request is
completed, it ensures that the I/O was successful.

O When all I/O operations on the channel are finished, the channel is
deassigned.

23.13 Canceling I/O Requests

If a process must cancel I/O requests that have been queued but not yet
completed, it can issue the Cancel I/O On Channel (SYS$CANCEL) system
service. All pending I/O requests issued by the process on that channel are
canceled; you cannot specify a particular I/O request.

The SYS$CANCEL system service performs an asynchronous cancel operation.
This means that the application must wait for each I/O operation issued to the
driver to complete before checking the status for that operation.

For example, you can call the SYS$CANCEL system service as follows:

unsigned int status, efnl=3, efn2=4;

status = SYS$QIO(efnl, ttchan, &iosbl, ...);
status = SYS$QIO(efn2, ttchan, &iosb2, ...);
status = SYSSCANCEL(ttchan);

status = SYS$SYNCH(efnl, &iosbl);

status = SYS$SYNCH(efn2, &iosb2);

In this example, the SYS$CANCEL system service initiates the cancellation of all
pending I/O requests to the channel whose number is located at TTCHAN.

The SYS$CANCEL system service returns after initiating the cancellation of the
I/O requests. If the call to SYS$QIO specified either an event flag, AST service
routine, or I/O status block, the system sets either the flag, delivers the AST, or
posts the I/O status block as appropriate when the cancellation is completed.

23.14 Logical Names and Physical Device Names

When you specify a device name as input to an I/O system service, it can be a
physical device name or a logical name. If the device name contains a colon (:),
the colon and the characters after it are ignored. When an underscore character
(_) precedes a device name string, it indicates that the string is a physical device
name string, for example, _TTB3:.

Any string that does not begin with an underscore is considered a logical name,
even though it may be a physical device name. Table 23-3 lists system services
that translate a logical name iteratively until a physical device name is returned,
or until the system default number of translations have been performed.

23-26 System Service Input/Output Operations

System Service Input/Output Operations
23.14 Logical Names and Physical Device Names

Table 23-3 System Services for Translating Logical Names

System Service Definition

SYS$ALLOC Allocate Device

SYS$ASSIGN Assign I/O Channel
SYS$BRDCST Broadcast

SYS$DALLOC Deallocate Device
SYS$DISMOU Dismount Volume
SYS$GETDEV Get I/0 Device Information
SYS$GETDVI Get Device/Volume Information
SYS$MOUNT Mount Volume

In each translation, the logical name tables defined by the logical name
LNMS$FILE_DEV are searched in order. These tables, listed in search order,

are normally LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM. If
a physical device name is located, the I/O request is performed for that device.

If the services do not locate an entry for the logical name, the I/O service treats
the name specified as a physical device name. When you specify the name of an
actual physical device in a call to one of these services, include the underscore
character to bypass the logical name translation.

When the SYS$ALLOC system service returns the device name of the physical
device that has been allocated, the device name string returned is prefixed
with an underscore character. When this name is used for the subsequent
SYS$ASSIGN system service, the SYS$ASSIGN service does not attempt to
translate the device name.

If you use logical names in I/O service calls, you must be sure to establish a
valid device name equivalence before program execution. You can do this either
by issuing a DEFINE command from the command stream, or by having the
program establish the equivalence name before the I/O service call with the
Create Logical Name (SYS$CRELNM) system service.

For details about how to create and use logical names, see Chapter 34.

23.15 Device Name Defaults

If, after logical name translation, a device name string in an I/O system service
call does not fully specify the device name (that is, device, controller, and unit),
the service either provides default values for nonspecified fields, or provides
values based on device availability.

The following rules apply:

e The SYS$ASSIGN and SYS$DALLOC system services apply default values,
as shown in Table 23—4.

¢ The SYS$ALLOC system service treats the device name as a generic device
name and attempts to find a device that satisfies the components of the device
name specified, as shown in Table 23-4.

System Service Input/Output Operations 23-27

System Service Input/Output Operations
23.15 Device Name Defaults

Table 23-4 Default Device Names for I/0 Services

Device Device Name' Generic Device

dd: ddAO0: (unit 0 on controller ddxy: (any available device of the specified
A) type)

ddec: ddc0: (unit 0 on controller ddcy: (any available unit on the specified
specified) controller)

ddu: ddAu: (unit specified on ddxu: (device of specified type and unit on any
controller A) available controller)

ddcu: ddcu: (unit and controller ddcu: (unit and controller specified)
specified)

1See the OpenVMS User’s Manual for a summary of the device names.
Key

dd—Specified device type (capital letters indicate a specific controller; numbers indicate a specific
unit)

c—Specified controller

x—Any controller

u—Specified unit number

y—Any unit number

23.16 Obtaining Information About Physical Devices

The Get Device/Volume Information (SYS$GETDVI) system service returns
information about devices. The information returned is specified by an item list
created before the call to SYS$GETDVI.

When you call the SYS$GETDVI system service, you must provide the address of
an item list that specifies the information to be returned. The format of the item
list is described in the description of SYS$GETDVI in the HP OpenVMS System
Services Reference Manual. The HP OpenVMS 1/0 User’s Reference Manual
contains details on the device-specific information these services return.

In cases where a generic (that is, nonspecific) device name is used in an I/O
service, a program may need to find out what device has been used. To do this,
the program should provide SYS$GETDVI with the number of the channel to
the device and request the name of the device with the DVI$_DEVNAM item
identifier.

The operating system also supports a device called the null device for program
development. The mnemonic for the null device is NL. Its characteristics are as
follows:

e A read from NL returns an end-of-file error (SS$_ENDOFFILE).
e A write to NL immediately returns a success message (SS$_NORMAL).

The null device functions as a virtual device to which you can direct output but
from which the data does not return.

23.16.1 Checking the Terminal Device

You are restricted to a terminal device if you use any of the special functions
described in this section. If the user of your program redirects SYS$INPUT

or SYS$OUTPUT to a file or nonterminal device, an error occurs. You can use
the SYS§GETDVIW system service to make sure the logical name is associated
with a terminal, as shown in Example 23-7. SYS$GETDVIW returns a status
of SS$_IVDEVNAM if the logical name is defined as a file or otherwise does not

23-28 System Service Input/Output Operations

System Service Input/Output Operations
23.16 Obtaining Information About Physical Devices

equate to a device name. The type of device is the response associated with the
DVI$_DEVCLASS request code and should be DC$_TERM for a terminal.

Example 23-7 Using SYS$GETDVIW to Verify the Device Name

RECORD /ITMLST/ DVI LIST

LOGICAL*4 STATUS

! GETDVI buffers

INTEGER CLASS, ! Response buffer

2 CLASS LEN ! Response length

! GETDVI symbols

INCLUDE ' ($DCDEF)’

INCLUDE ' ($SSDEF)’

INCLUDE ' ($DVIDEF)’

! Define subprograms

INTEGER SYSS$GETDVIW

! Find out the device class of SYSSINPUT

DVI LIST.BUFLEN = 4

DVI LIST.CODE = DVI$ DEVCLASS

DVI LIST.BUFADR = $LOC (CLASS)

DVI LIST.RETLENADR = %LOC (CLASS LEN)

STATUS = SYSSGETDVIW (,,’'SYSSINPUT',

2 DVI LIST,,,,,)

IF ((.NOT. STATUS) .AND. (STATUS .NE. SS$ IVDEVNAM)) THEN
CALL LIB$SIGNAL (SVAL (STATUS)) -

END IF

! Make sure device is a terminal

IF ((STATUS .NE. SS$ IVDEVNAM) .AND. (CLASS .EQ. DC$ TERM)) THEN

ELSE
TYPE *, 'Input device not a terminal’
END IF

23.16.2 Terminal Characteristics

The HP OpenVMS 1/0 User’s Reference Manual describes device-specific
characteristics associated with terminals. To examine a characteristic, issue
a call to SYS$QIO or SYS$QIOW system service with the I0$_SENSEMODE
function and examine the appropriate bit in the structure returned to the P1
argument. To change a characteristic:

1. Issue a call to SYS$QIO or SYS$QIOW system service with the IO$_
SENSEMODE function.

2. Set or clear the appropriate bit in the structure returned to the P1 argument.

3. Issue a call to SYS$QIO or SYS$QIOW system service with the I0$_
SETMODE function passing, as the P1 argument, to modify the structure you
obtained from the sense mode operation.

Example 23-8 turns off the HOSTSYNC terminal characteristic. To check
whether NOHOSTSYNC has been set, enter the SHOW TERMINAL command.

Example 23-8 Disabling the HOSTSYNC Terminal Characteristic

(continued on next page)

System Service Input/Output Operations 23-29

System Service Input/Output Operations
23.16 Obtaining Information About Physical Devices

Example 23-8 (Cont.) Disabling the HOSTSYNC Terminal Characteristic

INTEGER*4 STATUS
! I/0 channel
INTEGER*2 INPUT_CHAN
! I/0 status block
STRUCTURE /IOSTAT BLOCK/
INTEGER*2 IOSTAT
BYTE TRANSMIT,
RECEIVE,
CRFILL,
LFFILL,
PARITY,
ZERO
END STRUCTURE
RECORD /IOSTAT BLOCK/ IOSB
! Characteristics buffer
! Note: basic characteristics are first three
! bytes of second longword -- length is
! last byte
STRUCTURE /CHARACTERISTICS/
BYTE CLASS,
2 TYPE
INTEGER*2 WIDTH
UNION
MAP
INTEGER*4 BASIC
END MAP
MAP
BYTE LENGTH(4)
END MAP
END UNION
INTEGER*4 EXTENDED
END STRUCTURE
RECORD /CHARACTERISTICS/ CHARBUF
! Define symbols used for I/O and terminal operations
INCLUDE ' ($IODEF)’
INCLUDE ' (STTDEF)’
! Subroutines
INTEGER*4 SYSSASSIGN,
2 SYSSQIOW
! Assign channel to terminal
STATUS = SYSSASSIGN (’SYS$INPUT',
2 INPUT CHAN,,)
IF (.NOT. STATUS) CALL LIBESIGNAL (%VAL (STATUS))
! Get current characteristics
STATUS = SYSSQIOW (,

[N SN SR (S I (S]

2 $VAL (INPUT CHAN),

2 $VAL (IO$ SENSEMODE),

2 I0SB,,,

2 CHARBUF, ! Buffer

2 $VAL (12),,,,) ! Buffer size

IF (.NOT. STATUS) CALL LIBSSIGNAL (%VAL (STATUS))

IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL ($VAL (IOSB.IOSTAT))
! Turn off hostsync

CHARBUF.BASIC = IBCLR (CHARBUF.BASIC, TT$V_HOSTSYNC)

(continued on next page)

23-30 System Service Input/Output Operations

System Service Input/Output Operations
23.16 Obtaining Information About Physical Devices

Example 23-8 (Cont.) Disabling the HOSTSYNC Terminal Characteristic

! Set new characteristics
STATUS = SYSSQIOW (,

2 $VAL (INPUT CHAN),
2 $VAL (I0$_ SETMODE),
2 10SB, ,,

2 CHARBUF,

2 SVAL (12),,4,)

IF (.NOT. STATUS) CALL LIB$SIGNAL (3VAL (STATUS))
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (SVAL (IOSB.IOSTAT))

END

If you modify terminal characteristics with set mode QIO operations, you should
save the characteristics buffer that you obtain on the first sense mode operation,
and restore those characteristics with a set mode operation before exiting.
(Resetting is not necessary if you just use modifiers on each read operation.) To
ensure that the restoration is performed if the program aborts (for example, if
the user presses Ctrl/Y), you should restore the user’s environment in an exit
handler. See Chapter 9 for a description of exit handlers.

23.16.3 Record Terminators

A QIO read operation ends when the user enters a terminator or when the input
buffer fills, whichever occurs first. The standard set of terminators applies unless
you specify the 4 argument in the read QIO operation. You can examine the
terminator that ended the read operation by examining the input buffer starting
at the terminator offset (second word of the I/O status block). The length, in
bytes, of the terminator is specified by the high-order word of the I/O status
block. The third word of the I/O status block contains the value of the first
character of the terminator.

Examining the terminator enables you to read escape sequences from the
terminal, provided that you modify the QIO read operation with the IO$M_
ESCAPE modifier (or the ESCAPE terminal characteristic is set). The first
character of the terminator will be the ESC character (an ASCII value of 27). The
remaining characters will contain the value of the escape sequence.

23.16.4 File Terminators

You must examine the terminator to detect end-of-file (Ctrl/Z) on the terminal.
No error condition is generated at the QIO level. If the user presses Ctrl/Z, the
terminator will be the SUB character (an ASCII value of 26).

23.17 Device Allocation

Many I/O devices are shareable; that is, more than one process at a time can
access the device. By calling the Assign I/O Channel (SYS$ASSIGN) system
service, a process is given a channel to the device for I/O operations.

In some cases, a process may need exclusive use of a device so that data is not
affected by other processes. To reserve a device for exclusive use, you must
allocate it.

Device allocation is normally accomplished with the DCL command ALLOCATE.
A process can also allocate a device by calling the Allocate Device (SYS$ALLOC)
system service. When a device has been allocated by a process, only the process
that allocated the device and any subprocesses it creates can assign channels to
the device.

System Service Input/Output Operations 23-31

System Service Input/Output Operations
23.17 Device Allocation

When you call the SYS$ALLOC system service, you must provide a device name.
The device name specified can be any of the following:

e A physical device name, for example, the tape drive MTB3:
¢ A logical name, for example, TAPE
e A generic device name, for example, MT:

If you specify a physical device name, SYS$ALLOC attempts to allocate the
specified device.

If you specify a logical name, SYS$ALLOC translates the logical name and
attempts to allocate the physical device name equated to the logical name.

If you specify a generic device name (that is, if you specify a device type but
do not specify a controller or unit number, or both), SYS$ALLOC attempts to
allocate any device available of the specified type. For more information about
the allocation of devices by generic names, see Section 23.15.

When you specify generic device names, you must provide fields for the
SYS$ALLOC system service to return the name and the length of the physical
device that is actually allocated so that you can provide this name as input to the
SYS$ASSIGN system service.

The following example illustrates the allocation of a tape device specified by the
logical name TAPE:

#include <descrip.h>
#include <lib$routines.h>
#include <ssdef.h>
#include <starlet.h>
#include <stdio.h>

main() {
unsigned int status;
char devstr[64];
unsigned short phylen, tapechan;

$DESCRIPTOR(logdev, "TAPE"); /* Descriptor for logical name */
$DESCRIPTOR(devdesc,devstr); /* Descriptor for physical name */

/* Allocate a device */
status = SYSSALLOC(&logdev, /* devnam - device name */ (1)
&phylen, /* phylen - length device name string */
&devdesc, /* phybuf - buffer for devnam string */
0, 0);
if (!$VMS_STATUS_SUCCESS(status))
LIBSSIGNAL(status);

/* Assign a channel to the device */

status = SYSSASSIGN(&devdesc, /* devnam - device name */ @
&tapechan, /* chan - channel number */
0, 0, 0);

if (!$VMS_STATUS SUCCESS(status))
LIBSSIGNAL(status);

/* Deassign the channel */
status = SYS$DASSGN(tapechan); /* chan - channel number */©
if (!$VMS STATUS SUCCESS(status))
LIB$SSIGNAL(status);

/* Deallocate the device */
status = SYSSDALLOC(&devdesc, /* devnam - device name */
0); /* acmode - access mode */
if (1$VMS STATUS SUCCESS(status))
LIB$SIGNAL(status);

23-32 System Service Input/Output Operations

System Service Input/Output Operations
23.17 Device Allocation

-

@ The SYS$ALLOC system service call requests allocation of a device
corresponding to the logical name TAPE, defined by the character string
descriptor LOGDEV. The argument DEVDESC refers to the buffer provided
to receive the physical device name of the device that is allocated and the
length of the name string. The SYS$ALLOC service translates the logical
name TAPE and returns the equivalence name string of the device actually
allocated into the buffer at DEVDESC. It writes the length of the string in
the first word of DEVDESC.

® The SYS$ASSIGN command uses the character string returned by the
SYS$ALLOC system service as the input device name argument, and
requests that the channel number be written into TAPECHAN.

© When I/O operations are completed, the SYS$DASSGN system service
deassigns the channel, and the SYS$DALLOC system service deallocates the
device. The channel must be deassigned before the device can be deallocated.

23.17.1 Implicit Allocation

Devices that cannot be shared by more than one process (for example, terminals
and line printers) do not have to be explicitly allocated. Because they are
nonshareable, they are implicitly allocated by the SYS$ASSIGN system service
when SYS$ASSIGN is called to assign a channel to the device.

23.17.2 Deallocation

When the program has finished using an allocated device, it should release the
device with the Deallocate Device (SYS$DALLOC) system service to make it
available for other processes.

At image exit, the system automatically deallocates devices allocated by the
image.

23.18 Mounting, Dismounting, and Initializing Volumes

This section introduces you to using system services to mount, dismount, and
initialize disk and tape volumes.

23.18.1 Mounting a Volume

Mounting a volume establishes a link between a volume, a device, and a process.
A volume, or volume set, must be mounted before I/O operations can be performed
on the volume. You interactively mount or dismount a volume from the DCL
command stream with the MOUNT or DISMOUNT command. A process can also
mount or dismount a volume or volume set programmatically using the Mount
Volume (SYS$MOUNT) or the Dismount Volume (SYS$DISMOU) system service,
respectively.

Mounting a volume involves two operations:

1. Place the volume on the device and start the device (by pressing the START
or LOAD button).

2. Mount the volume with the SYS$MOUNT system service.

System Service Input/Output Operations 23-33

System Service Input/Output Operations
23.18 Mounting, Dismounting, and Initializing Volumes

23.18.1.1 Calling the SYSSMOUNT System Service

The Mount Volume (SYS$MOUNT) system service allows a process to mount a
single volume or a volume set. When you call the SYSSMOUNT system service,
you must specify a device name.

The SYS$MOUNT system service has a single argument, which is the address of
a list of item descriptors. The list is terminated by a longword of binary zeros.
Figure 23-8 shows the format of an item descriptor.

Figure 23-8 SYS$SMOUNT Item Descriptor

31 15 0

Item code Buffer length

Buffer address

Return length address

ZK-1705-GE

Most item descriptors do not have to be in any order. To mount volume sets,
you must specify one item descriptor per device and one item descriptor per
volume; you must specify the descriptors for the volumes in the same order as the
descriptors for the devices on which the volumes are loaded.

For item descriptors other than device and volume names, if you specify the same
item descriptor more than once, the last occurrence of the descriptor is used.

The following example illustrates a call to SYS$MOUNT. The call is equivalent to
the DCL command that precedes the example.

$ MOUNT/SYSTEM/NOQUOTA DRA4:,DRA5: USER01,USER02 USERD$

#include <descrip.h>
#include <libSroutines.h>
#include <mntdef.h>
#include <starlet.h>
#include <stdio.h>

struct {
unsigned short buflen, item code;
void *bufaddr;
int *retlenaddr;

}itm;

struct itm itm[7];

main() {

unsigned int status, flags;

23-34 System Service Input/Output Operations

System Service Input/Output Operations
23.18 Mounting, Dismounting, and Initializing Volumes

$DESCRIPTOR (devl, "DRA4:");
$DESCRIPTOR(voll, "USER01");
$DESCRIPTOR (dev2, "DRA5: ") ;
$DESCRIPTOR(vol2, "USER02");
$DESCRIPTOR(log, "USERD$: ") ;

flags = MNT$M SYSTEM | MNT$M NODISKQ;
i=0;

itm[i].buflen = sizeof(flags);
itm[i].item code = MNT$ FLAGS;
itm[i].bufaddr = flags;
itm[i++].retlenaddr = NULL;

itm[i].buflen = devl.dsc$w length;
itm[i].item code = MNT$ DEVNAM;
itm[i].bufaddr = devl.dsc$a pointer;
itm[i++].retlenaddr = NULL;

itm[i].buflen = voll.dsc$w length;
itm[i].item code = MNT$ VOLNAM;
itm[i].bufaddr = voll.dsc$a pointer;
itm[i++].retlenaddr = NULL;

itm[i].buflen = dev2.dsc$w length;
itm[i].item code = MNT$ DEVNAM;
itm[i].bufaddr = dev2.dsc$a pointer;
itm[i++].retlenaddr = NULL;
itm[i].buflen = vol2.dsc$w_length;
itm[i].item code = MNT$ VOLNAM;
itm[i].bufaddr = vol2.dsc$a_pointer;
itm[i++].retlenaddr = NULL;
itm[i].buflen = log.dsc$w_length;
itm[i].item code = MNT$ LOGNAM;
itm[i].bufaddr = log.dsc$a_pointer;
itm[i++].retlenaddr = NULL;
itm[i].buflen = 0;

itm[i].item code = 0;

itm[i].bufaddr = NULL;
itm[i++].retlenaddr = NULL;

status = SYS$MOUNT (itm);
if (1$VMS_STATUS SUCCESS(status))
LIB$SIGNAL(status);

}

23.18.1.2 Calling the SYS$DISMOU System Service

The SYS$DISMOU system service allows a process to dismount a volume or
volume set. When you call SYS$DISMOU, you must specify a device name. If the
volume mounted on the device is part of a fully mounted volume set, and you do
not specify flags, the whole volume set is dismounted.

The following example illustrates a call to SYS$DISMOU. The call dismounts the
volume set mounted in the previous example.

System Service Input/Output Operations 23-35

System Service Input/Output Operations
23.18 Mounting, Dismounting, and Initializing Volumes

$DESCRIPTOR (devl desc,"DRA4:");

status = SYS$DISMOU(&devl desc); /* devnam - device */

23.18.2 Initializing Volumes

Initializing a volume writes a label on the volume, sets protection and ownership
for the volume, formats the volume (depending on the device type), and overwrites
data already on the volume.

You interactively initialize a volume from the DCL command stream using the
INITIALIZE command. A process can programmatically initialize a volume using
the Initialize Volume (SYS$INIT VOL) system service.

23.18.2.1 Calling the Initialize Volume System Service

You must specify a device name and a new volume name when you call the
SYS$INIT _VOL system service. You can also use the itmlst argument of $INIT_
VOL to specify options for the initialization. For example, you can specify that
data compaction should be performed by specifying the INIT$_COMPACTION
item code. See the HP OpenVMS System Services Reference Manual for more
information on initialization options.

Before initializing the volume with SYS$INIT_VOL, be sure you have placed the
volume on the device and started the device (by pressing the START or LOAD
button).

The default format for files on disk volumes is called Files-11 On-Disk Structure
Level 2. Files-11 On-Disk Structure Level 1 format, available on VAX systems,
is used by other HP operating systems, including RSX-11M, RSX-11M-PLUS,
RSX-11D, and IAS, but is not supported on Alpha systems. For more information,
see the HP OpenVMS System Manager’s Manual.

Here are two examples of calling SYS$INIT VOL programmatically: one from a
C program and one from a BASIC program.

The following example illustrates a call to SYS$INIT_VOL from HP C:

#include <descrip.h>
#include <initdef.h>
#include <libSroutines.h>
#include <starlet.h>
#include <stsdef.h>

struct item descrip 3

{
unsigned short buffer size;
unsigned short item code;
void *buffer address;
unsigned short *return length;
i

23-36 System Service Input/Output Operations

System Service Input/Output Operations
23.18 Mounting, Dismounting, and Initializing Volumes

main ()

{

}

unsigned long

density code,

status;
$DESCRIPTOR(drive_dSC, "MUAO:");
$DESCRIPTOR(label dsc, "USER0L");
struct
{

struct item descrip 3 density item;

long terminator;
} init itmlst;
/*
** Initialize the input item list.
*/
density code = INITSK DENSITY 6250 BPI;
init_itmlst.density item.buffer size = 4;
init_itmlst.density item.item code = INIT$ DENSITY;
init_itmlst.density item.buffer address = &density code;

init itmlst.terminator = 0;
/*

** Tnitialize the volume.
*/

status = SYS$INIT VOL (&drive dsc, &label dsc, &init itmlst);
/*

** Report an error if one occurred.

*/

if (!$VMS_STATUS SUCCESS (status))
LIBSSTOP (status);

The following example illustrates a call to SYS$INIT_VOL from VAX BASIC:

OPTION TYPE = EXPLICIT

$INCLUDE '$INITDEF’ $FROM $LIBRARY
EXTERNAL LONG FUNCTION SYSSINIT VOL
RECORD ITEM DESC

VARTANT
CASE
WORD BUFLEN
WORD ITMCOD
LONG BUFADR
LONG LENADR
CASE
LONG TERMINATOR
END VARIANT

END RECORD
DECLARE LONG RET STATUS, &

ITEM DESC INIT ITMLST(2)

! Initialize the input item list.

INIT ITMLST(0)::ITMCOD = INIT$ READCHECK
INIT ITMLST(1)::TERMINATOR = 0

! Initialize the volume.

RET STATUS = SYS$INIT VOL ("DJA21:" BY DESC, "USERVOLUME" BY DESC,
INIT ITMLST() BY REF)

System Service Input/Output Operations 23-37

System Service Input/Output Operations
23.18 Mounting, Dismounting, and Initializing Volumes

23.18.2.2 Expanding Volumes Dynamically

OpenVMS dynamic volume expansion (DVE) allows you to expand explicitly a file
system if the container is itself expandable. The container can be expanded by
the following methods:

¢ By adding a dissimilar device into a shadow set and then removing the
smaller member of the set

e By using the HSV controller to add storage to a unit

If you use only parts of disks for performance reasons, and then if your
application suddenly needs more storage space, DVE lets you expand without
having to take the application offline.

You prepare the disks for future volume expansion by using either the SYS$INIT
VOL system service, or the DCL SET VOLUME command with the /[LIMIT=nn
and /SIZE[=nnnn] qualifiers. The SET VOLUME/LIMIT=nn specifies the new
maximum volume size and causes the storage bitmap to be reallocated and
extended. The SET VOLUME/ SIZE[=nnnn] specifies that the logical volume size
is extended to the size requested. If no value is specified in the command, the size
is extended to the space available on the device. Both qualifiers can be combined
in the same command. Both qualifiers can be combined to increase the volume
expansion limit and expand the volume in one operation.

The volume must be mounted privately (nonshared disk) and allocated to the
particular process. But once prepared, the file system size can be grown as many
times as you would like, up to the size specified in the preparation command.

For more information about DVE, see the HP OpenVMS DCL Dictionary: N-Z,
the HP OpenVMS System Services Reference Manual: GETUTC-Z, and the HP
OpenVMS System Manager’s Manual.

23.19 Formatting Output Strings

When you are preparing output strings for a program, you may need to insert
variable information into a string prior to output, or you may need to convert

a numeric value to an ASCII string. The Formatted ASCII Output (SYS$FAO)
system service performs these functions.

Input to the SYS$FAO system service consists of the following:

e A control string that contains the fixed text portion of the output and
formatting directives. The directives indicate the position within the string
where substitutions are to be made, and describe the data type and length of
the input values that are to be substituted or converted.

e An output buffer to contain the string after conversions and substitutions
have been made.

e An optional argument indicating a word to receive the final length of the
formatted output string.

e Parameters that provide arguments for the formatting directives.

The following example shows a call to the SYS$FAO system service to format an

output string for a SYS$QIOW macro. Complete details on how to use SYS$FAO,
with additional examples, are provided in the description of the SYS$FAO system
service in the HP OpenVMS System Services Reference Manual.

23-38 System Service Input/Output Operations

System Service Input/Output Operations
23.19 Formatting Output Strings

#include <descrip.h>
#include <libS$routines.h>
#include <ssdef.h>
#include <starlet.h>
#include <stdio.h>
#include <stsdef.h>

main() {

unsigned int status, faolen;
char faobuf[80];

$DESCRIPTOR (faostr,"FILE !AS DOES NOT EXIST"); (1)
$DESCRIPTOR (outbuf, faobuf); (2]
$DESCRIPTOR (filespec, "DISKSUSER:MYFILE.DAT"); (3)
status = SYS$FAO(&faostr, &outlen, &outbuf, &filespec); @

if (!$VMS STATUS SUCCESS(status))
LIBSSIGNAL(status);

status = SYS$QIOW(... faobuf, outlen, ...); @
if (1$VMS STATUS SUCCESS (status))
LIB$SIGNAL(status);

©@ FAOSTR provides the FAO control string. !AS is an example of an FAO
directive: it requires an input parameter that specifies the address of a
character string descriptor. When SYS$FAO is called to format this control
string, !AS will be substituted with the string whose descriptor address is
specified.

® FAODESC is a character string descriptor for the output buffer; SYS$FAO
writes the string into the buffer, and writes the length of the final formatted
string in the low-order word of FAOLEN. (A longword is reserved so that it
can be used for an input argument to the SYS$QIOW macro.)

© FILESPEC is a character string descriptor defining an input string for the
FAO directive !AS.

O The call to SYS$FAO specifies the control string, the output buffer and length
fields, and the parameter P1, which is the address of the string descriptor for
the string to be substituted.

©® When SYS$FAO completes successfully, SYS$QIOW writes the following
output string:

FILE DISKSUSER:MYFILE.DAT DOES NOT EXIST

23.20 Mailboxes

Mailboxes are virtual devices that can be used for communication among
processes. You accomplish actual data transfer by using OpenVMS RMS or I/O
services. When the Create Mailbox and Assign Channel (SYS$CREMBX) system
service creates a mailbox, it also assigns a channel to it for use by the creating
process. Other processes can then assign channels to the mailbox using either
the SYS$CREMBX or SYS$ASSIGN system service.

System Service Input/Output Operations 23-39

System Service Input/Output Operations
23.20 Mailboxes

The SYS$CREMBX system service creates the mailbox. The SYS$CREMBX
system service identifies a mailbox by a user-specified logical name and assigns
it an equivalence name. The equivalence name is a physical device name in the
format MBAn, where n is a unit number. The equivalence name has the terminal
attribute.

When another process assigns a channel to the mailbox with the SYSSCREMBX
or SYS$ASSIGN system service, it can identify the mailbox by its logical name.
The service automatically translates the logical name. The process can obtain
the MBAn name either by translating the logical name (with the SYS$TRNLNM
system service), or by calling the Get Device/Volume Information (SYS$GETDVI)
system service to obtain the unit number and the physical device name.

On VAX systems, channels assigned to mailboxes can be either bidirectional or
unidirectional. Bidirectional channels (read/write) allow both SYS$QIO read and
SYS$QIO write requests to be issued to the channel. Unidirectional channels
(read-only or write-only) allow only a read request or a write request to the
channel. The unidirectional channels and unidirectional $QIO function modifiers
provide for greater synchronization between users of the mailbox.

On VAX systems, the Create Mailbox and Assign Channel (SYS$CREMBX) and
Assign I/0 Channel (SYS$ASSIGN) system services use the flags argument to
enable unidirectional channels. If the flags argument is not specified or is zero,
then the channel assigned to the mailbox is bidirectional (read/write). For more
information, see the discussion and programming examples in the mailbox driver
chapter in the HP OpenVMS I/0 User’s Reference Manual. Chapter 3 of this
manual also discusses the use of mailboxes.

Mailboxes are either temporary or permanent. You need the user privileges
TMPMBX and PRMMBX to create temporary and permanent mailboxes,
respectively.

For a temporary mailbox, the SYS$CREMBX service enters the logical name and
equivalence name in the logical name table LNM$TEMPORARY_MAILBOX. This
logical name table name usually specifies the LNM$JOB logical name table name.
The system deletes a temporary mailbox when no more channels are assigned to

it.

For a permanent mailbox, the SYS$CREMBX service enters the logical name and
equivalence name in the logical name table LNM$PERMANENT_MAILBOX. This
logical name table name usually specifies the LNM$SYSTEM logical name table
name. Permanent mailboxes continue to exist until they are specifically marked
for deletion with the Delete Mailbox (SYS$DELMBX) system service.

The following example shows how processes can communicate by means of a
mailbox:

/* Process ORION */

#include <descrip.h>
#include <iodef.h>
#include <lib$routines.h>
#include <ssdef.h>
#include <starlet.h>
#include <stdio.h>
#define MBXBUFSIZ 128
#define MBXBUFQUO 384

23-40 System Service Input/Output Operations

System Service Input/Output Operations

/* I/0 status block */

struct {
unsigned short iostat,
unsigned int remainder;
}mbxiosb;
main() {

void *pl, mbxast();

23.20 Mailboxes

iolen;

char mbuffer[MBXBUFSIZ], prmflg=0;
unsigned short mbxchan, mbxiosb;

unsigned int status, outlen;
unsigned int mbuflen=MBXBUFSIZ,

bufquo=MBXBUFQUO, promsk=0;

$DESCRIPTOR (mblognam, "GROUP100 MAILBOX");

/* Create a mailbox */

status = SYS$SCREMBX(prmflg,
&mbxchan,
mbuflen,
bufquo,
promsk,
0,
&mblognam,
0);

/* Permanent or temporary */ @

/* chan - channel number */

/* maxmsg - buffer length */

/* bufquo - quota */

/* promsk - protection mask */

/* acmode - access mode */

/* lognam - mailbox logical name */
/* flags - options */

if (!$VMS STATUS SUCCESS(status))

LIBS$SIGNAL (status);

/* Request I/0 */
status

SYS$QIO(0,
mbxchan,
IO$_READVBLK,
&mbxiosb,
&mbxast,
&mbuffer,

mbuflen);

/* efn - event flag */ @

/* chan - channel number */

/* func - function modifier */
/* iosb - I/0 status block */
/* astadr - AST routine */

/* pl - output buffer */

/* p2 - length of buffer */

if (!$VMS STATUS SUCCESS(status))

LIBSSIGNAL(status);

}
void mbxast(void) {

if (mbxiosb.iostat != SS$ NORMAL)

status = SYS$SQIOW(. . .

, &mbuffer, &outlen, ...)

if (!$VMS STATUS SUCCESS(status))

LIBS$SIGNAL (status);

return;

}

/* Process Cygnus */

#include
#include
#include
#include
#include

<descrip.h>
<iodef.h>
<libS$routines.h>
<ssdef.h>
<starlet.h>
#include <stdio.h>
#include <stsdef.h>
#define MBXBUFSIZ 128

main() {

System Service Input/Output Operations 23-41

System Service Input/Output Operations
23.20 Mailboxes

unsigned short int mailchan;

unsigned int status, outlen;

char outbuf[MBXBUFSIZ];
$DESCRIPTOR(mailbOX,“GROUPlOO_MAILBOX");

status = SYSSASSIGN(&mailbox, &mailchan, 0, 0, 0); (4]
if (!$VMS_STATUS_SUCCESS(Status))
LIB$SSIGNAL(status);

status = SYS$QIOW(0, mailchan, 0, 0, 0, 0, &outbuf, outlen, 0, 0, 0, 0)
if (!$VMS_STATUS_SUCCESS(status))
LIBSSIGNAL(status);

—~

© Process ORION creates the mailbox and receives the channel number at
MBXCHAN.

The prmflg argument indicates that the mailbox is a temporary mailbox.
The logical name is entered in the LNM$TEMPORARY_MAILBOX logical
name table.

The maxmsg argument limits the size of messages that the mailbox can

receive. Note that the size indicated in this example is the same size as the
buffer MBUFFER) provided for the SYS$QIO request. A buffer for mailbox
I/O must be at least as large as the size specified in the maxmsg argument.

When a process creates a temporary mailbox, the amount of system memory
allocated for buffering messages is subtracted from the process’s buffer quota.
Use the bufquo argument to specify how much of the process quota should
be used for mailbox message buffering.

Mailboxes are protected devices. By specifying a protection mask with the
promsk argument, you can restrict access to the mailbox. (In this example,
all bits in the mask are clear, indicating unlimited read and write access.)

@ After creating the mailbox, process ORION calls the SYS$QIO system service,
requesting that it be notified when I/O completes (that is, when the mailbox
receives a message) by means of an AST interrupt. The process can continue
executing, but the AST service routine at MBXAST will interrupt and begin
executing when a message is received.

© When a message is sent to the mailbox (by CYGNUS), the AST is delivered
and ORION responds to the message. Process ORION gets the length of the
message from the first word of the I/O status block at MBXIOSB and places it
in the longword OUTLEN so it can pass the length to SYS$QIOW_S.

O Process CYGNUS assigns a channel to the mailbox, specifying the logical
name the process ORION gave the mailbox. The SYS$QIOW system service
writes a message from the output buffer provided at OUTBUF.

Note that on a write operation to a mailbox, the I/O is not complete until
the message is read, unless you specify the IO$M_NOW function modifier.
Therefore, if SYS$QIOW (without the IO$M_NOW function modifier) is used
to write the message, the process will not continue executing until another
process reads the message.

23-42 System Service Input/Output Operations

System Service Input/Output Operations
23.20 Mailboxes

23.20.1 Mailbox Name

The lognam argument to the SYSSCREMBX service specifies a descriptor that
points to a character string for the mailbox name.

Translation of the lognam argument proceeds as follows:

1. The current name string is prefixed with MBX$ and the result is subject to
logical name translation.

2. If the result is a logical name, step 1 is repeated until translation does not
succeed or until the number of translations performed exceeds the number
specified by the SYSGEN parameter LNM$C_MAXDEPTH.

3. The MBXS$ prefix is stripped from the current name string that could not be
translated. This current string is made a logical name with an equivalence
name MBAn (n is a number assigned by the system).

For example, assume that you have made the following logical name assignment:
$ DEFINE MBXSCHKPNT CHKPNT_OOl
Assume also that your program contains the following statements:

SDESCRIPTOR (mbxdesc, "CHKPNT") ;

status = SYSSCREMBX(... ,&mbxdesc, ...);
The following logical name translation takes place:
1. MBXS$ is prefixed to CHKPNT.
2. MBX$CHKPNT is translated to CHKPNT_001.

Because further translation is unsuccessful, the logical name CHKPNT_001 is
created with the equivalence name MBAn (n is a number assigned by the system).

There are two exceptions to the logical name translation method discussed in this
section:

e If the name string starts with an underscore (_), the operating system strips
the underscore and considers the resultant string to be the actual name (that
is, further translation is not performed).

e If the name string is the result of a logical name translation, then the name
string is checked to see whether it has the terminal attribute. If the name
string is marked with the terminal attribute, the operating system considers
the resultant string to be the actual name (that is, further translation is not
performed).

23.20.2 System Mailboxes

The system uses mailboxes for communication among system processes. All
system mailbox messages contain, in the first word of the message, a constant
that identifies the sender of the message. These constants have symbolic names
(defined in the $MSGDEF macro) in the following format:

MSG$_sender

System Service Input/Output Operations 23-43

System Service Input/Output Operations

23.20 Mailboxes

The symbolic names included in the $MSGDEF macro and their meanings are as

follows:

Symbolic Name

Meaning

MSG$_TRMUNSOLIC
MSG$_CRUNSOLIC
MSG$_ABORT
MSG$_CONFIRM
MSG$_CONNECT
MSG$_DISCON
MSG$_EXIT
MSG$_INTMSG
MSG$_PATHLOST
MSG$_PROTOCOL
MSG$_REJECT
MSG$_THIRDPARTY
MSG$_TIMEOUT
MSG$_NETSHUT
MSG$_NODEACC
MSG$_NODEINACC
MSG$_EVTAVL
MSG$_EVTRCVCHG
MSG$_INCDAT
MSG$_RESET
MSG$_LINUP
MSG$_LINDWN
MSG$_EVTXMTCHG

Unsolicited terminal data
Unsolicited card reader data
Network partner aborted link
Network connect confirm

Network inbound connect initiate
Network partner disconnected
Network partner exited prematurely
Network interrupt message; unsolicited data
Network path lost to partner
Network protocol error

Network connect reject

Network third-party disconnect
Network connect timeout

Network shutting down

Node has become accessible

Node has become inaccessible
Events available to DECnet Event Logger
Event receiver database change
Unsolicited incoming data available
Request to reset the virtual circuit
PVC line up

PVC line down

Event transmitter database change

The remainder of the message contains variable information, depending on the

system component that is sending the message.

The format of the variable information for each message type is documented with

the system function that uses the mailbox.

23.20.3 Mailboxes for Process Termination Messages

When a process creates another process, it can specify the unit number of a
mailbox as an argument to the Create Process (SCREPRC) system service. When
you delete the created process, the system sends a message to the specified
termination mailbox.

You cannot use a mailbox in memory shared by multiple processors as a process
termination mailbox.

23-44 System Service Input/Output Operations

System Service Input/Output Operations
23.21 Example of Using I/O Services

23.21 Example of Using I/O Services

In the following Fortran example, the first program, SEND.FOR, creates a
mailbox named MAIL_BOX, writes data to it, and then indicates the end of the
data by writing an end-of-file message.

The second program, RECEIVE.FOR, creates a mailbox with the same logical
name, MAIL_BOX. It reads the messages from the mailbox into an array. It stops
the read operations when a read operation generates an end-of-file message and
the second longword of the I/O status block is nonzero. By checking that the I/0
status block is nonzero, the second program confirms that the writing process
sent the end-of-file message.

The processes use common event flag number 64 to ensure that SEND.FOR
does not exit until RECEIVE.FOR has established a channel to the mailbox. (If
RECEIVE.FOR executes first, an error occurs because SYS$ASSIGN cannot find
the mailbox.)

SEND.FOR
INTEGER STATUS

! Name and channel number for mailbox
CHARACTER* (*) MBX_ NAME

PARAMETER (MBX NAME = 'MAIL BOX')
INTEGER*2 MBX_CHAN -

! Mailbox message
CHARACTER*80 MBX MESSAGE
INTEGER LEN

CHARACTER*80 MESSAGES (255)
INTEGER MESSAGE LEN (255)
INTEGER MAX MESSAGE
PARAMETER (MAX MESSAGE = 255)

! 1/0 function codes and status block
INCLUDE ' ($IODEF)’

INTEGER*4 WRITE CODE

INTEGER*2 IOSTAT,

2 MSG LEN

INTEGER READER PID

COMMON /IOBLOCK/ IOSTAT,

2 MSG LEN,

2 READER PID

! System routines
INTEGER SYS$CREMBX,

2 SYSSASCEFC,
2 SYSSWAITFR,
2 SYSSQIOW

! Create the mailbox.
STATUS = SYS$SCREMBX (,

2 MBX CHAN,
2 rrrir
2 MBX NAME)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))
! Fill MESSAGES array

System Service Input/Output Operations 23-45

System Service Input/Output Operations
23.21 Example of Using I/O Services

! Write the messages.

DO I = 1, MAX MESSAGE
WRITE CODE = I0O$ WRITEVBLK .OR. IO$M NOW
MBX MESSAGE = MESSAGES(I) -
LEN = MESSAGE LEN(I)
STATUS = SYS$QIOW (,

%VAL(MBX_CHAN), ! Channel
$VAL(WRITE CODE), ! I/O code
IOSTAT, ! Status block

rr

$REF (MBX MESSAGE), ! Pl

SVAL(LEN),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTAT) CALL LIB$SIGNAL (%VAL(STATUS))
END DO

! Write end of file
WRITE_CODE = IO$_WRITEOF .OR. IO$M_NOW
STATUS = SYSSQIOW (,

DO

2 %VAL(MBX_CHAN), ! Channel
2 $VAL(WRITE CODE), ! End of file code
2 IOSTAT, ! Status block

2 IIIIII’)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))
IF (.NOT. IOSTAT) CALL LIB$SIGNAL ($VAL(IOSTAT))

! Make sure cooperating process can read the information
! by waiting for it to assign a channel to the mailbox.

STATUS = SYS$ASCEFC (SVAL(64),

2 'CLUSTER', ,)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))
STATUS = SYS$WAITFR (3VAL(64))

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))

END

RECEIVE.FOR
INTEGER STATUS

INCLUDE ' ($IODEF)’
INCLUDE ' ($SSDEF)’

! Name and channel number for mailbox
CHARACTER* (*) MBX NAME

PARAMETER (MBX NAME = 'MAIL BOX')
INTEGER*2 MBX_CHAN -

! QIO function code
INTEGER READ_CODE

! Mailbox message
CHARACTER*80 MBX MESSAGE
INTEGER*4 LEN

! Message arrays
CHARACTER*80 MESSAGES (255)
INTEGER*4 MESSAGE LEN (255)

! I/0 status block
INTEGER*2 IOSTAT,

2 MSG_LEN

INTEGER READER PID

COMMON /IOBLOCK/ IOSTAT,

2 MSG_LEN,

2 READER PID

23-46 System Service Input/Output Operations

System Service Input/Output Operations
23.21 Example of Using I/O Services

! System routines
INTEGER SYS$ASSIGN,

2 SYS$ASCEFC,
2 SYS$SETEF,
2 SYS$SQIOW

! Create the mailbox and let the other process know
STATUS = SYS$SASSIGN (MBX NAME,

2 MBX CHAN,,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))
STATUS = SYSSASCEFC ($VAL(64),

2 "CLUSTER', ,)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYSSSETEF ($VAL(64))

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Read first message
READ CODE = IO$_READVBLK .OR. IO$M_NOW

LEN = 80

STATUS = SYSSQIOW (,

2 $VAL(MBX CHAN), ! Channel

2 $VAL(READ CODE), ! Function code
2 IOSTAT, ! Status block
2 rr

2 SREF (MBX MESSAGE), ! Pl

2 $VAL(LEN),,,,) ! P2

IF (.NOT. STATUS) CALL LIB$SIGNAL ($VAL(STATUS))
IF ((.NOT. IOSTAT) .AND.
2 (IOSTAT .NE. SS$ ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL(IOSTAT))
ELSE IF (IOSTAT .NE. SS$_ENDOFFILE) THEN
I1=1
MESSAGES(I) = MBX MESSAGE
MESSAGE LEN(I) = MSG LEN
END IF -

! Read messages until cooperating process writes end-of-file
DO WHILE (.NOT. ((IOSTAT .EQ. SSS ENDOFFILE) .AND.

2 (READER PID .NE. 0)))
STATUS = SYSSQIOW (,
2 %VAL (MBX CHAN), ! Channel
2 $VAL(READ_CODE), ! Function code
2 IOSTAT, ! Status block
2 r
2 $REF (MBX MESSAGE), ! Pl
2 SVAL(LEN),,,,) ! P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (S$VAL(STATUS))
IF ((.NOT. IOSTAT) .AND.
2 (IOSTAT .NE. SS$ ENDOFFILE)) THEN
CALL LIB$SIGNAL ($VAL(IOSTAT))
ELSE IF (IOSTAT .NE. SS$ ENDOFFILE) THEN
I=I+1 -
MESSAGES(I) = MBX MESSAGE
MESSAGE LEN(I) = MSG LEN
END IF -

END DO

System Service Input/Output Operations 23-47

System Service Input/Output Operations
23.22 Fast I/0 and Fast Path Features (Alpha and 164 Only)

23.22 Fast I/O and Fast Path Features (Alpha and 164 Only)

Fast I/O and Fast Path are two optional features that can provide improved

I/O performance. Performance improvement is achieved by reducing the CPU
cost per I/O request, and improving symmetric multiprocessing (SMP) scaling
of I/O operations. The CPU cost per /O is reduced by optimizing code for high-
volume I/0 and by using better SMP CPU memory cache. SMP scaling of /O is
increased by reducing the number of spinlocks taken per I/O and by substituting
finer-granularity spinlocks for global spinlocks.

The improvements follow a division that already exists between the device-
independent and device-dependent layers in the OpenVMS I/O subsystem. The
device-independent overhead is addressed by Fast I/O, which is a set of system
services that can substitute for certain $QIO operations. Using these services
requires some coding changes in existing applications, but the changes are
usually modest and well contained. The device-dependent overhead is addressed
by Fast Path, which is an optional performance feature that creates a “fast path”
to the device. It requires no application changes.

Fast I/0 and Fast Path can be used independently. However, together they can
provide a reduction in CPU cost per I/O on uniprocessor and on multiprocessor
systems.

23.22.1 Fast I/0 (Alpha and 164 Only)

Fast I/O is a set of three system services, SYSIO_SETUP, SYSIO_PERFORM,
and SYS$IO_CLEANUP, that were developed as an alternative to $QIO.

These services are not a $QIO replacement; $QIO is unchanged, and $QIO
interoperation with these services is fully supported. Rather, the services
substitute for a subset of $QIO operations, namely, only the high-volume
read/write I/O requests.

The Fast I/O services support 64-bit addresses for data transfers to and from disk
and tape devices.

While Fast I/O services are available on OpenVMS VAX, the performance
advantage applies only to OpenVMS Alpha and OpenVMS 164. OpenVMS VAX
has a run-time library (RTL) compatibility package that translates the Fast I/O
service requests to $QIO system service requests, so one set of source code can be
used on VAX, Alpha, and 164 systems.

23.22.1.1 Fast I/O Benefits

The performance benefits of Fast I/O result from streamlining high-volume I/O
requests. The Fast I/O system service interfaces are optimized to avoid the
overhead of general-purpose services. For example, I/O request packets (IRPs)
are now permanently allocated and used repeatedly for I/O rather than allocated
and deallocated anew for each I/O.

The greatest benefits stem from having user data buffers and user I/O status
structures permanently locked down and mapped using system space. This
allows Fast I/0 to do the following:

e Avoid per-I/O buffer lockdown or unlocking for direct I/O.

¢ Avoid allocation and deallocation for buffered I/O of a separate system buffer,
because the user buffer is always addressable.

23-48 System Service Input/Output Operations

System Service Input/Output Operations
23.22 Fast I/0 and Fast Path Features (Alpha and 164 Only)

e Complete Fast I/O operations at IPL 8, thereby avoiding the interrupt
chaining usually required by the more general-purpose $QIO system service.
For each I/O, this eliminates the IPL 4 IOPOST interrupt and a kernel AST.

In total, Fast I/O services eliminate four spinlock acquisitions per I/O (two for the
MMG spinlock and two for the SCHED spinlock). The reduction in CPU cost per
1/0 is 20% for uniprocessor systems and 10% for multiprocessor systems.

23.22.1.2 Buffer Objects

Buffer objects accomplish the lockdown of user-process data structures. Buffer
objects are process entities that are associated with a process’s virtual address
range. When a buffer object is created, all its physical pages in its address range
are locked in memory and can be double-mapped into system space. These locked
pages in a process’s address range cannot be freed until the buffer object has been
deleted. The Fast I/O environment uses this feature by locking the buffer object
itself during $I0_SETUP. This prevents the buffer object and its associated pages
from being deleted. The buffer object is unlocked during $I0_CLEANUP, or at
image rundown. After creating a buffer object, the process remains fully pageable
and swappable and the process retains normal virtual memory access to its pages
in the buffer object.

If the buffer object contains process data structures to be passed to an OpenVMS
system service, the OpenVMS system can use the buffer object to avoid any
probing, lockdown, and unlocking overhead associated with these process data
structures. Additionally, if the buffer object has performed double-mapping into
system space, this allows the OpenVMS system direct access to the process
memory from system context.

To date, only the Fast I/O services are supported with buffer objects. For example,
a buffer object allows a programmer to eliminate I/O memory management
overhead. On each I/O, each page of a user data buffer is probed and then locked
down on I/O initiation and unlocked on I/O completion. Instead of incurring

this overhead for each I/O, it can be done once at buffer object creation time.
Subsequent I/O operations involving the buffer object can completely avoid this
memory management overhead.

System Space Window Buffer Objects

The system space window buffer object allows several I/O related tasks to be
performed entirely from system context at high IPL, without having to assume
process context. When a buffer object is created, the system maps by default a
section of system space (S2) to process pages associated with the buffer object.
This protected system space window allows read and write access only from
kernel mode. Because all of system space is equally accessible from within any
context, it is now possible to avoid the context switch to assume the original
user’s process context. Optionally, the system space window can be in S0/S1
space, or it can be suppressed.

Buffer Object System Services

Two system services are used to create and delete buffer objects: SYS$SCREATE_
BUFOBJ_64 and SYS$DELETE_BUFOBJ. Both services can be called from any
access mode. To create a buffer object, the SYS§CREATE_BUFOBJ_64 system
service is called. This service expects as inputs an existing process memory range
and returns a handle for the buffer object. The handle is an opaque identifier
used to identify the buffer object on future requests. The SYS$DELETE_BUFOBJ
system service is used to delete the buffer object and accepts as input the handle.
Although image rundown deletes all existing buffer objects, it is good practice for
the application to clean up properly.

System Service Input/Output Operations 23-49

System Service Input/Output Operations
23.22 Fast I/0 and Fast Path Features (Alpha and 164 Only)

Buffer Object Management

Buffer objects require system management. Because buffer objects tie up physical
memory, extensive use of buffer objects require system management planning.
All the bytes of memory in the buffer object are deducted from the systemwide
SYSGEN parameter MAXBOBMEM (maximum buffer object memory). System
managers must set this parameter correctly for the application loads that run on
their systems. Additionally, two other SYSGEN parameters MAXBOBS0S1

and MAXBOBS2 are available for system managers. MAXBOBSO0S1 and
MAXBOBS2, however, are now regarded as obsolete system parameters. Initially,
the MAXBOBS0S1 and MAXBOBS2 parameters were intended to ensure that
users could not adversely affect the system by creating hugh buffer objects. But
as users began to use buffer objects more widely, managing the combination of
these parameters proved to be too complex.

Now, users who want to create buffer objects must either hold the
VMS$BUFFER_OBJECT_USER identifier or execute in executive or kernel
mode. Therefore, these users are considered privileged applications, and the
additional safeguard that these parameters provided is unnecessary.

To determine current usage of system memory resources, enter the following
command:

$SHOW MEMORY/BUFFER_OBJECT

Table 23-5 shows these three parameters and their meanings.

Table 23-5 SYSGEN Buffer Object Parameters

Parameter Meaning

MAXBOBMEM Defines the maximum amount of physical memory, measured in
pagelets, that can be associated with buffer objects.

A page associated with a buffer object is counted against this
parameter only once, even if it is associated with more than one
buffer object at the same time.

Memory resident pages are not counted against this parameter.
However, pages locked in memory through the SYS$LCKPAG
system service are counted.

This is a DYNAMIC parameter.

MAXBOBS0S1 Defines the maximum amount of 32-bit system space, measured
in pagelets, that can be used as windows to buffer objects.

This is a DYNAMIC parameter.

MAXBOBS2 Defines the maximum amount of 64-bit system space, measured
in pagelets, that can be used as windows to buffer objects.

This is a DYNAMIC parameter.

The MAXBOBMEM, MAXBOBSO0S1, and MAXBOBS2 parameters default to

100 Alpha pages, but for applications with large buffer pools it can be set much
larger. To prevent user-mode code from tying up excessive physical memory,
user-mode callers of $CREATE_BUFOBJ_64 must have a new system identifier,
VMS$BUFFER_OBJECT_USER, assigned. The system manager can assign

this identifier with the DCL command SET ACL command to a protected
subsystem or application that creates buffer objects from user mode. It may
also be appropriate to grant the identifier to a particular user with the Authorize
utility command GRANT/IDENTIFIER, for example, to a programmer who is
working on a development system.

23-50 System Service Input/Output Operations

System Service Input/Output Operations
23.22 Fast I/0 and Fast Path Features (Alpha and 164 Only)

Buffer Object Restrictions
There are several buffer object restrictions which are listed as follows:

e Buffer objects can only be associated with process space (PO, P1, or P2) pages.
e PFN-mapped pages cannot be associated with buffer objects.

e The special buffer object type without associated system space can only be
used to describe Fast I/O data buffers. The IOSA must always be associated
with a full buffer object with system space.

Further Fast I/0 Information

For complete information about using Fast I/O, the Fast I/O system services,
and the buffer objects system services that are in the following list, see the HP
OpenVMS I/0 User’s Reference Manual, and the HP OpenVMS System Services
Reference Manual: A—-GETUAI and the HP OpenVMS System Services Reference
Manual: GETUTC-Z:

SYS$CREATE_BUFOBJ_64
SYS$DELETE_BUFOBJ
SYS$IO_SETUP
SYS$I0_PERFORM
SYS$I0_CLEANUP

23.22.2 Fast Path (Alpha and 164 Only)

Like Fast I/0, Fast Path is an optional, high-performance feature designed to
improve I/O performance. By restructuring and optimizing class and port device
driver code around high-volume I/O code paths, Fast Path creates a streamlined
path to the device. Fast Path is of interest to any application where enhanced
I/0O performance is desirable. Two examples are database systems and real-time
applications, where the speed of transferring data to disk is often a vital concern.

Using Fast Path features does not require source-code changes. Minor interface
changes are available for expert programmers who want to maximize Fast Path
benefits.

At this time, Fast Path is not available on the OpenVMS VAX operating system.

23.22.2.1 Fast Path Features and Benefits

Fast Path achieves performance gains by reducing CPU time for I/O requests on
both uniprocessor and SMP systems. The performance benefits are produced by:

¢ Reducing code paths through streamlining for the case of high-volume I/0
e Substituting port-specific spinlocks for global I/O subsystem spinlocks
e Affinitizing an I/O request for a given port to a specific CPU

The performance improvement can best be seen by contrasting the current
OpenVMS I/O scheme to the new Fast Path scheme. While transparent to an
OpenVMS user, each disk and tape device is tied to a specific port interconnect.
All T/O for a device is sent out over its assigned port. Under the current
OpenVMS I/O scheme, a multiprocessor I/O can be initiated on any CPU, but
I/O completion must occur on the primary CPU. Under Fast Path, all I/O for
a given port is affinitized to a specific CPU, eliminating the requirement for
completing the I/O on the primary CPU. This means that the entire I/O can be
initiated and completed on a single CPU. Because I/O operations are no longer
split among different CPUs, performance increases as memory cache thrashing
between CPUs decreases.

System Service Input/Output Operations 23-51

System Service Input/Output Operations
23.22 Fast I/0 and Fast Path Features (Alpha and 164 Only)

Fast Path also removes a possible SMP bottleneck on the primary CPU. If

the primary CPU must be involved in all I/O, then once this CPU becomes
saturated, no further increase in I/O throughput is possible. Spreading the I/O
load evenly among CPUs in a multiprocessor system provides greater maximum
I/0 throughput on a multiprocessor system.

With most of the I/O code path executing under port-specific spinlocks and with
each port assigned to a specific CPU, a scalable SMP model of parallel operation
exists. Given multiple port and CPUs, I/O can be issued in parallel to a large
degree.

23.22.2.2 Additional Information About Fast Path

For complete information about using Fast Path, see the HP OpenVMS 1/0
User’s Reference Manual.

23-52 System Service Input/Output Operations

24

Using Run-Time Library Routines to Access
Operating System Components

This chapter describes the run-time library (RTL) routines that allow access to
various operating system components and it contains the following sections:

Section 24.1 describes how to use RTL routines to make system services return
different types of strings.

Section 24.2 describes how to use RTL routines to provide access to the command
language interpreter.

Section 24.3 describes how to use RTL routines to allow high-level language
programs to use most VAX machine instructions or their Alpha equivalent.

Section 24.4 describes how to use RTL routines to allocate processwide resources
to a single operating system process.

Section 24.5 describes how to use RTL routines to measure performance.
Section 24.6 describes how to use RTL routines to control output formatting.

Section 24.7 describes how to use RTL routines for miscellaneous interface
routines.

Run-time library routines allow access to the following operating system
components:

e System services
e Command language interpreter

e Some VAX machine instructions

24.1 System Service Access Routines

You can usually call the OpenVMS system services directly from your program.
However, system services return only fixed-length strings. In some applications,
you may want the result of a system service to be returned as a character array,
dynamic string, or variable-length string. For this reason, the RTL provides
jacket routines for the system services that return strings.

You call jacket routines exactly as you would the corresponding system service,
but you can pass an output argument of any valid string class. The routines write
the output string using the semantics (fixed, varying, or dynamic) associated with
the string’s descriptor.

The jacket routines follow the conventions established for all RTL routines, except
that the arguments are listed in the order of the arguments for the corresponding
system service. Thus, they may not be listed in the standard RTL order (read,
modify, write).

Using Run-Time Library Routines to Access Operating System Components 24-1

Using Run-Time Library Routines to Access Operating System Components
24.1 System Service Access Routines

For example, the LIB§SYS_ASCTIM routine calls the SYS$ASCTIM system

service to convert a binary date and time value to ASCII text. It returns the
resulting string using the semantics that the calling program specifies in the
destination string argument.

For further information about the operations of the system services, see the HP
OpenVMS System Services Reference Manual.

The RTL routines provide access to only the system services that produce output
strings, which are listed in Table 24-1. The corresponding RTL routines recognize
all VAX string classes.

The RTL does not provide jacket routines for all the system services that accept
strings as input. Your program should pass only fixed-length or dynamic input
strings to all system services and RTL jacket routines.

Table 24-1 System Service Access Routines

Entry Point System Service Function

LIB$SYS_ASCTIM $ASCTIM Converts system time in binary form
to ASCII text

LIB$SYS_FAO $FAO Converts a binary value to ASCII text

LIB$SYS_FAOL $FAOL Converts a binary value to ASCII text,
using a list argument

LIB$SYS_GETMSG $GETMSG Obtains a system or user-defined
message text

LIB$SYS_TRNLOG $TRNLOG Returns the translation of the specified

logical name

24.2 Access to the Command Language Interpreter

Two command language interpreters (CLIs) are available on the operating
system: DCL and MCR. The run-time library provides several routines that
provide access to the CLI callback facility. These routines allow your program to
call the current CLIL. In most cases, these routines are called from programs that
execute as part of a command procedure. They allow the command procedure and
the CLI to exchange information.

These routines call the CLI associated with the current process to perform the
specified function. In some cases, however, a CLI is not present. For example, the
program may be running directly as a subprocess or as a detached process. If a
CLI is not present, these routines return the status LIB$_NOCLI. Therefore, you
should be sure that these routines are called when a CLI is active. Table 24-2
lists the RTL routines that access the CLI.

Table 24-2 CLI Access Routines

Entry Point Function

LIB$GET_FOREIGN Gets a command line

LIB$DO_COMMAND Executes a command line after exiting the current
program

(continued on next page)

24-2 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.2 Access to the Command Language Interpreter

Table 24-2 (Cont.) CLI Access Routines

Entry Point Function

LIBSRUN_PROGRAM Runs another program after exiting the current program
(chain)

LIB$GET_SYMBOL Returns the value of a CLI symbol as a string

LIB$DELETE_SYMBOL Deletes a CLI symbol

LIB$SET SYMBOL Defines or redefines a CLI symbol

LIB$DELETE_LOGICAL Deletes a supervisor-mode process logical name

LIB$SET_LOGICAL Defines or redefines a supervisor-mode process logical
name

LIB$DISABLE CTRL Disables CLI interception of control characters

LIBSENABLE_CTRL Enables CLI interception of control characters

LIB$ATTACH Attaches a terminal to another process

LIB$SPAWN Creates a subprocess of the current process

The following routines execute only when the current CLI is DCL:

LIB$GET_SYMBOL
LIB$SET SYMBOL
LIB$DELETE_SYMBOL
LIB$DISABLE_CTRL
LIBSENABLE_CTRL
LIB$SPAWN
LIB$SATTACH

24.2.1 Obtaining the Command Line

The LIB$GET FOREIGN routine returns the contents of the command line that
you use to activate an image. You can use it either to give your program access to
the qualifiers of a foreign command or to prompt for further command line text.

A foreign command is a command that you can define and then use, as if it
were a DCL or MCR command to run a program. When you use the foreign
command at command level, the CLI parses the foreign command only and
activates the image. It ignores any options or qualifiers that you have defined for
the foreign command. Once the CLI has activated the image, the program can
call LIB§GET_FOREIGN to obtain and parse the remainder of the command line
(after the command itself) for whatever options it may contain.

The HP OpenVMS DCL Dictionary describes how to define a foreign command.

The action of LIB§GET_FOREIGN depends on the environment in which the
image is activated:

e If you use a foreign command to invoke the image, you can call LIB$GET_
FOREIGN to obtain the command qualifiers following the foreign command.
You can also use LIBSGET_FOREIGN to prompt repeatedly for more
qualifiers after the command. This technique is illustrated in the following
example.

e If the image is in the SYS$SYSTEM: directory, the image can be invoked
by the DCL command MCR or by the MCR CLI. In this case, LIB§GET_
FOREIGN returns the command line text following the image name.

Using Run-Time Library Routines to Access Operating System Components 24-3

Using Run-Time Library Routines to Access Operating System Components
24.2 Access to the Command Language Interpreter

e If the image is invoked by the DCL command RUN, you can use LIB§GET_
FOREIGN to prompt for additional text.

e If the image is not invoked by a foreign command or by MCR, or if there is no
information remaining on the command line, and the user-supplied prompt
is present, LIBSGET _INPUT is called to prompt for a command line. If the
prompt is not present, LIB§GET_FOREIGN returns a zero-length string.

Example

The following PL/I example illustrates the use of the optional force-prompt
argument to permit repeated calls to LIB§GET_FOREIGN. The command line
text is retrieved on the first pass only; after this, the program prompts from
SYS$INPUT.

EXAMPLE: ROUTINE OPTIONS (MAIN);
$INCLUDE $STSDEF; /* Status-testing definitions */

DECLARE COMMAND LINE CHARACTER(80) VARYING,
PROMPT FLAG FIXED BINARY(31) INIT(0),
LIB$GET FOREIGN ENTRY (CHARACTER(*) VARYING,
- CHARACTER (*) VARYING,
FIXED BINARY(15),
FIXED BINARY(31))
OPTIONS (VARIABLE) RETURNS (FIXED BINARY(31)),
RMS$ EOF GLOBALREF FIXED BINARY(31) VALUE;

/* Call LIBS$GET FOREIGN repeatedly to obtain and print
subcommand text. Exit when end-of-file is found. */

DO WHILE ('1'B); /* Do while TRUE */
STS$VALUE = LIB$GET FOREIGN
(COMMAND LINE,'Input: ',,
PROMPT FLAG);
IF STS$SUCCESS THEN
PUT LIST (’ Command was ',COMMAND LINE);
ELSE DO; -
IF STS$VALUE "= RMS$ EOF THEN
PUT LIST (’Error encountered’);

RETURN;
END;

PUT SKIP; /* Skip to next line */

END; /* End of DO WHILE loop */

END;

Assuming that this program is present as SYS$SYSTEM:EXAMPLE.EXE, you
can define the foreign command EXAMPLE to invoke it, as follows:

$ EXAM*PLE :== $EXAMPLE

Note the optional use of the asterisk in the symbol name to denote an abbreviated
command name. This permits the command name to be abbreviated as EXAM,
EXAMP, EXAMPL or to be specified fully as EXAMPLE. See the HP OpenVMS
DCL Dictionary for information about abbreviated command names.

Note that the use of the dollar sign ($) before the image name is required in
foreign commands.

24-4 Using Run-Time Library Routines to Access Operating System Components

Using Run-Time Library Routines to Access Operating System Components
24.2 Access to the Command Language Interpreter

Now assume that a user runs the image by typing the foreign command and
giving “subcommands” that the program displays:

$ EXAMP Subcommand 1

Command was SUBCOMMAND 1
Input: Subcommand 2

Command was SUBCOMMAND 2
Input: "2
$

In this example, Subcommand 1 was obtained from the command line; the
program prompts the user for the second subcommand. The program terminated
when the user pressed the Ctrl/Z key sequence (displayed as ~Z) to indicate
end-of-file.

24.2.2 Chaining from One Program to Another

The LIBSRUN_PROGRAM routine causes the current image to exit at the point
of the call and directs the CLI, if present, to start running another program.

If LIBSRUN_PROGRAM executes successfully, control passes to the second
program; if not, control passes to the CLI. The calling program cannot regain
control. This technique is called chaining.

This routine is provided primarily for compatibility with PDP-11 systems, on
which chaining is used to extend the address space of a system. Chaining may
also be useful in an operating system environment where address space is
severely limited and large images are not possible. For example, you can use
chaining to perform system generation on a small virtual address space because
disk space is lacking.

With LIBSRUN_PROGRAM, the calling program can pass arguments to the
next program in the chain only by using the common storage area. One way to
do this is to direct the calling program to call LIB§PUT_COMMON to pass the
information into the common area. The called program then calls LIB§GET_
COMMON to retrieve the data.

In general, this practice is not recommended. There is no convenient way

to specify the order and type of arguments passed into the common area, so
programs that pass arguments in this way must know about the format of the
data before it is passed. Fortran COMMON or BASIC MAP/COMMON areas
are global OWN storage. When you use this type of storage, it is very difficult
to keep your program modular and AST reentrant. Further, you cannot use
LIB$RUN_PROGRAM if a CLI is present, as with image subprocesses and
detached subprocesses.

Examples

The following PL/I example illustrates the use of LIBSRUN_PROGRAM. It
prompts the user for the name of a program to run and calls the RTL routine to
execute the specified program.

Using Run-Time Library Routines to Access Operating System Components 24-5

Using Run-Time Library Routines to Access Operating System Components
24.2 Access to the Command Language Interpreter

CHAIN: ROUTINE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));
DECLARE LIBSRUN PROGRAM ENTRY (CHARACTER (*)) /* Address of string
/* descriptor */
RETURNS (FIXED BINARY (31)); /* Return status */
$INCLUDE $STSDEF; /* Include definition of return status values */
DECLARE COMMAND CHARACTER (80);
GET LIST (COMMAND) OPTIONS (PROMPT('Program to run: '));
STSSVALUE = LIB$RUN_PROGRAM (COMMAND) ;
/*
If the function call is successful, the program will terminate
here. Otherwise, return the error status to command level.
*
/
RETURN (STSSVALUE);
END CHAIN;

The following COBOL program also demonstrates the use of LIBSRUN_
PROGRAM. When you compile and link these two programs, the first calls
LIB$RUN_PROGRAM, which activates the executable image of the second. This
call results in the following screen display:

THIS MESSAGE DISPLAYED BY PROGRAM PROG2
WHICH WAS RUN BY PROGRAM PROG1
USING LIBSRUN PROGRAM

IDENTIFICATION DIVISION.
PROGRAM-ID. PROGI.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 PROG-NAME PIC X(9) VALUE "PROG2.EXE".
01 STAT PIC 9(9) COMP.
88 SUCCESSFUL VALUE 1.
ROUTINE DIVISION.
001-MAIN.

CALL "LIBSRUN PROGRAM"
USING BY DESCRIPTOR PROG-NAME
GIVING STAT.
IF NOT SUCCESSFUL
DISPLAY "ATTEMPT TO CHAIN UNSUCCESSFU