
HP Pascal for OpenVMS
User Manual
Order Number: AA-PXSND-TK

January 2005

This manual contains information about selected programming tasks using
the HP Pascal programming language.

Revision/Update Information: This revised manual supersedes the
Compaq Pascal User Manual for
OpenVMS Systems, Version 5.7.

Operating System: OpenVMS I64 Version 8.2 or higher
OpenVMS Alpha Version 6.1 or higher
OpenVMS VAX Version 5.5 or higher

Software Version: HP Pascal for OpenVMS I64 Systems
Version 5.9
HP Pascal for OpenVMS Alpha Systems
Version 5.9
HP Pascal for OpenVMS VAX Systems
Version 5.8

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Printed in the US

ZK6140

This manual is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xi

1 Compiling HP Pascal Programs

1.1 PASCAL Command . 1–1
1.1.1 PASCAL Command Examples . 1–3
1.1.2 PASCAL Qualifiers . 1–3
1.1.3 Contents of the Compilation Listing File 1–26
1.1.3.1 Table of Contents (OpenVMS VAX systems) 1–27
1.1.3.2 Source Code . 1–27
1.1.3.3 Cross-Reference Section . 1–27
1.1.3.4 Machine Code Section . 1–27
1.1.3.5 Structured Layout Section . 1–28
1.1.3.6 Inline Summary (OpenVMS VAX systems) 1–28
1.1.3.7 Compilation Statistics . 1–28
1.1.4 Text Libraries . 1–29
1.1.4.1 Using the %INCLUDE Directive for Text Libraries 1–29
1.1.4.2 Specifying Text Libraries on the Command Line 1–30
1.1.4.3 Defining Default Libraries . 1–31
1.2 LINK Command . 1–31
1.2.1 LINK Command Examples . 1–32
1.2.2 LINK Qualifiers . 1–33
1.2.3 Object Module Libraries . 1–36
1.3 RUN Command . 1–37
1.4 Error Messages . 1–38

iii

2 Separate Compilation

2.1 ENVIRONMENT, HIDDEN, and INHERIT Attributes 2–1
2.2 Interfaces and Implementations . 2–7
2.3 Data Models . 2–12
2.4 Separate Compilation Examples . 2–16

3 Program Correctness, Optimization, and Efficiency

3.1 Compiler Optimizations . 3–1
3.1.1 Compile-Time Evaluation of Constants 3–3
3.1.2 Elimination of Common Subexpressions 3–4
3.1.3 Elimination of Unreachable Code . 3–5
3.1.4 Code Hoisting from Structured Statements 3–5
3.1.5 Inline Code Expansion for Predeclared Functions 3–6
3.1.6 Inline Code Expansion for User-Declared Routines 3–6
3.1.7 Testing for Inline Expansion on OpenVMS VAX Systems . . . 3–6
3.1.8 Operation Rearrangement . 3–7
3.1.9 Partial Evaluation of Logical Expressions 3–8
3.1.10 Value Propagation . 3–8
3.1.11 Strength Reduction (OpenVMS I64 and OpenVMS Alpha

systems) . 3–9
3.1.12 Split Lifetime Analysis (OpenVMS I64 and OpenVMS Alpha

systems) . 3–9
3.1.13 Code Scheduling (OpenVMS I64 and OpenVMS Alpha

systems) . 3–10
3.1.14 Loop Unrolling (OpenVMS I64 and OpenVMS Alpha

systems) . 3–10
3.1.15 Alignment of Compiler-Generated Labels 3–11
3.1.16 Error Reduction Through Optimization 3–11
3.1.17 Software Pipelining (OpenVMS I64 and OpenVMS Alpha

systems) . 3–12
3.1.18 Processor Selection and Tuning (OpenVMS Alpha

systems) . 3–13
3.1.19 Compiling for Optimal Performance . 3–13
3.2 Programming Considerations . 3–14
3.3 Implementation-Dependent Behavior . 3–16
3.3.1 Subexpression Evaluation Order . 3–16
3.3.2 MAXINT and MAXINT64 Predeclared Constants 3–17
3.3.3 Pointer References . 3–17
3.3.4 Variant Records . 3–18
3.3.5 Atomicity, Granularity, Volatility, and Write Ordering 3–19
3.3.6 Debugging Considerations . 3–21

iv

4 Programming Tools

4.1 Debugger Support for HP Pascal . 4–1
4.2 Language-Sensitive Editor/Source Code Analyzer Support for HP

Pascal . 4–2
4.2.1 Programming Language Placeholders and Tokens 4–3
4.2.2 Placeholder and Design Comment Processing 4–3
4.2.3 LSE and SCA Examples . 4–5
4.3 Accessing CDD/Repository from HP Pascal 4–8
4.3.1 Equivalent HP Pascal and CDDL Data Types 4–10
4.3.2 CDD/Repository Example . 4–12

5 Calling Conventions

5.1 OpenVMS Calling Standard . 5–1
5.1.1 Parameter Lists . 5–2
5.1.2 Function Return Values . 5–2
5.1.3 Contents of the Call Stack . 5–4
5.1.4 Unbound Routines . 5–6
5.2 Parameter-Passing Semantics . 5–6
5.3 Parameter-Passing Mechanisms . 5–7
5.3.1 By Immediate Value . 5–8
5.3.2 By Reference . 5–8
5.3.3 By Descriptor . 5–9
5.3.3.1 CLASS_S Attribute . 5–13
5.3.3.2 CLASS_A and CLASS_NCA Attributes 5–13
5.3.3.3 %STDESCR Mechanism Specifier 5–13
5.3.3.4 %DESCR Mechanism Specifier . 5–14
5.3.4 Summary of Passing Mechanisms and Passing Semantics . . . 5–15
5.4 Passing Parameters between HP Pascal and Other

Languages . 5–16
5.4.1 Parameter Mechanisms Versus Parameter Semantics 5–16
5.4.2 Passing Nonroutine Parameters between HP Pascal and

Other Languages . 5–17
5.4.3 Passing Routine Parameters between HP Pascal and Other

Languages . 5–20

v

6 Programming on OpenVMS Systems

6.1 Using System Definitions Files . 6–1
6.2 Declaring System Routines . 6–5
6.2.1 Methods Used to Obtain OpenVMS Data Types 6–6
6.2.2 Methods Used to Obtain Access Methods 6–6
6.2.3 Methods Used to Obtain Passing Mechanisms 6–7
6.2.4 Data Structure Parameters . 6–9
6.2.5 Default Parameters . 6–11
6.2.6 Arbitrary Length Parameter Lists . 6–12
6.3 Calling System Routines . 6–13
6.4 Using Attributes . 6–14
6.5 Using Item Lists . 6–14
6.6 Using Foreign Mechanism Specifiers on Actual Parameters 6–16
6.7 Using 64-Bit Pointer Types . 6–17
6.7.1 Pascal Language Features Not Supported with 64-Bit

Pointers . 6–17
6.7.2 Using 64-Bit Pointers with System Definition Files 6–19

7 Input and Output Processing

7.1 Environment I/O Support . 7–1
7.1.1 Indexed Files . 7–2
7.1.2 OpenVMS Components and RMS Records 7–2
7.1.3 Count Fields for Variable-Length Components 7–2
7.1.4 Variable-Length with Fixed-Length Control Field (VFC)

Component Format . 7–3
7.1.5 Random Access by Record File Address (RFA) 7–3
7.1.6 OPEN Procedure . 7–3
7.1.6.1 OPEN Defaults . 7–4
7.1.6.2 OPEN and RMS Data Structures 7–5
7.1.7 Default Line Limits . 7–10
7.2 User-Action Functions . 7–10
7.3 File Sharing . 7–14
7.4 Record Locking . 7–15

vi

8 Error Processing and Condition Handling

8.1 Condition Handling Terms . 8–2
8.2 Overview of Condition Handling . 8–3
8.2.1 Condition Signals . 8–3
8.2.2 Handler Responses . 8–3
8.3 Writing Condition Handlers . 8–4
8.3.1 Establishing and Removing Handlers 8–4
8.3.2 Declaring Parameters for Condition Handlers 8–6
8.3.3 Handler Function Return Values . 8–7
8.3.4 Condition Values and Symbols . 8–8
8.3.5 Using Condition Handlers that Return SS$_CONTINUE . . . 8–9
8.4 Fault and Trap Handling (OpenVMS VAX systems) 8–10
8.5 Examples of Condition Handlers . 8–11

9 Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS
Alpha

9.1 Sharing Environment Files Across Platforms 9–1
9.2 Default Size for Enumerated Types and Booleans 9–1
9.3 Default Data Layout for Unpacked Arrays and Records 9–2
9.4 Overflow Checking . 9–2
9.5 Bound Procedure Values . 9–2
9.6 Different Descriptor Classes for Conformant Array

Parameters . 9–3
9.7 Data Layout and Conversion . 9–3
9.7.1 Natural Alignment, VAX Alignment, and Enumeration

Sizes . 9–4
9.7.2 HP Pascal Features Affecting Data Alignment and Size 9–5
9.7.3 Optimal Record Layout . 9–5
9.7.4 Optimal Data Size . 9–7
9.7.5 Converting Existing Records . 9–8
9.7.6 Applications with No External Data Dependencies 9–8
9.7.7 Applications with External Data Dependencies 9–10

A Errors Returned by STATUS and STATUSV Functions

vii

B Entry Points to HP Pascal Utilities

B.1 PAS$FAB(f) . B–1
B.2 PAS$RAB(f) . B–2
B.3 PAS$MARK2(s) . B–2
B.4 PAS$RELEASE2(p) . B–3

C Diagnostic Messages

C.1 Compiler Diagnostics . C–1
C.2 Run-Time Diagnostics . C–65

Index

Examples

2–1 An Interface Module for Graphics Objects and Routines 2–16
2–2 An Implementation Module for Graphics Objects and

Routines . 2–17
2–3 A Graphics Main Program . 2–18
4–1 Using LSE to Create a FOR Statement 4–5
4–2 Using LSE Comments in Program Design (OpenVMS VAX

systems) . 4–6
4–3 Using %DICTIONARY to Access a Oracle CDD/Repository

Record Definition . 4–13
6–1 Inheriting STARLET.PEN to Call SYS$HIBER 6–4
6–2 Using $GETJPIW to Retrieve a Process Name 6–10
7–1 User-Action Function . 7–12

Figures

2–1 Cascading Inheritance of Environment Files 2–3
2–2 Inheritance Path of an Interface, an Implementation, and a

Program . 2–8
2–3 Cascading Using the Interface and Implementation

Design . 2–10

viii

Tables

1–1 /ALIGN Qualifier Options . 1–4
1–2 /ARCHITECTURE Qualifier Options 1–5
1–3 /CHECK Qualifier Options . 1–8
1–4 /DEBUG Qualifier Options . 1–11
1–5 /DESIGN Qualifier Options . 1–12
1–6 /ENUMERATION_SIZE Qualifier Options 1–12
1–7 /FLOAT Qualifier Options . 1–13
1–8 /OPTIMIZE Qualifier Options . 1–17
1–9 /PLATFORMS Qualifier Options . 1–18
1–10 /SHOW Qualifier Options . 1–19
1–11 /STANDARD Qualifier Options . 1–20
1–12 /TERMINAL Qualifier Options . 1–21
1–13 /USAGE Qualifier Options . 1–22
1–14 Compilation Listing Contents and Qualifiers 1–26
4–1 Placeholders Within the Declaration Section 4–4
4–2 Placeholders Within the Executable Section 4–4
4–3 Equivalent CDD/Repository Language and HP Pascal Data

Types . 4–10
5–1 Parameter-Passing Descriptions . 5–7
5–2 Parameter-Passing Syntax on HP Pascal 5–7
5–3 Parameter Descriptors . 5–9
5–4 Summary of Passing Mechanisms and Passing Semantics . . . 5–16
6–1 HP Pascal Definitions Files . 6–2
6–2 Access Type Translations . 6–7
6–3 Mechanism Type Translations . 6–7
7–1 Default Values for OpenVMS File Specifications 7–4
7–2 Setting of RMS File Access Block Fields by a Call to the

OPEN Procedure . 7–5
7–3 Setting of RMS Record Access Block Fields by a Call to the

OPEN Procedure . 7–8
7–4 Setting of Extended Attribute Block Fields by a Call to the

OPEN Procedure . 7–9
7–5 Setting of Name Block Fields by a Call to the OPEN

Procedure . 7–10
9–1 Unpacked Sizes of Fields and Components 9–4
A–1 STATUS and STATUSV Return Values A–2

ix

C–1 Compiler Message Warning Levels . C–1

x

Preface

This manual describes selected programming tasks using the HP Pascal
programming language. It contains information on using some HP Pascal
language elements in combination, and it provides examples of how to improve
programming efficiency.

You can use the information in this manual to write programs or modules for
the OpenVMS operating system. If you need to write HP Pascal programs or
modules that must be compiled by another compiler, see the HP Pascal for
OpenVMS Language Reference Manual for a checklist of language extensions
not included in the Pascal standard. The HP Pascal for OpenVMS Language
Reference Manual also provides information on the Pascal standard.

Intended Audience
This manual is intended for experienced applications programmers with a firm
understanding of the Pascal language. Some familiarity with the operating
system is helpful.

Document Structure
This manual contains the following chapters and appendixes:

• Chapter 1 provides information on compiling programs, linking programs,
running programs, and using text and object-module libraries.

• Chapter 2 describes the use of separately compiled modules.

• Chapter 3 describes programming techniques that improve the efficiency of
compilation and execution.

• Chapter 4 provides information on tools that you may want to use to
develop HP Pascal programs.

• Chapter 5 provides information on the OpenVMS Calling Standard as
applied to HP Pascal programs.

xi

• Chapter 6 provides information on HP Pascal system definitions files, and
declaring and calling system routines.

• Chapter 7 provides information on the relationship between HP Pascal
input and output, and the underlying OpenVMS VAX Record Management
Services (RMS) constructs.

• Chapter 8 provides information on error processing and writing condition
handlers.

• Chapter 9 provides information on migrating from OpenVMS to OpenVMS
I64 or OpenVMS Alpha systems.

• Appendix A provides a list of possible error values returned by the STATUS
and STATUSV functions.

• Appendix B provides a list of entry points to utilities in the OpenVMS
Run-Time Library that can be called as external routines by an HP Pascal
program.

• Appendix C provides descriptions of diagnostic messages that can be
generated by an HP Pascal program at compile time and run time.

Related Documents
The following manuals are also part of the HP Pascal documentation set:

• HP Pascal for OpenVMS Language Reference Manual—Provides
information on the syntax and semantics of the HP Pascal programming
language, including information about the alignment, allocation, and
internal representation of data types supported by HP Pascal.

• HP Pascal for OpenVMS Installation Guide—Provides information on how
to install HP Pascal on your operating system.

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either
of the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

xii

HP Pascal Home Page
You can access the HP Pascal home page at:

http://h71000.www7.hp.com/commercial/pascal/pascal_index.html

Conventions
The following product names may appear in this manual:

• HP OpenVMS Industry Standard 64 for Integrity Servers

• OpenVMS I64

• I64

All three names—the longer form and the two abbreviated forms—refer to the
version of the OpenVMS operating system that runs on the Intel® Itanium®
architecture.

The following typographic conventions might be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention
appears as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the
following possibilities:

• Additional optional arguments in a statement have
been omitted.

• The preceding item or items can be repeated one or
more times.

• Additional parameters, values, or other information can
be entered.

.

.

.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.

xiii

() In command format descriptions, parentheses indicate that
you must enclose choices in parentheses if you specify more
than one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in
an assignment statement.

| In command format descriptions, vertical bars separate
choices within brackets or braces. Within brackets, the
choices are optional; within braces, at least one choice is
required. Do not type the vertical bars on the command
line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information
that varies in system output (Internal error number), in
command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code
for the device type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xiv

1
Compiling HP Pascal Programs

After you use a text editor to write code to a file, you use Digital Command
Language (DCL) commands to compile modules and programs, and to link and
run programs. This chapter covers the following topics:

• Section 1.1, PASCAL Command

• Section 1.2, LINK Command

• Section 1.3, RUN Command

• Section 1.4, Error Messages

For information on DCL syntax, see HELP or the OpenVMS documentation
set.

1.1 PASCAL Command
The PASCAL command invokes the HP Pascal compiler, which verifies program
source statements, issues error messages, and generates and groups machine
language instructions into an object module for the linker.

The default for compiler output files (object modules) is the .OBJ file type.

The Pascal command format is as follows:

PASCAL [[{/command-qualifier} . . .]] {file-spec[[{/file-qualifier} . . .]]}
� +

,

�
. . .

/qualifier [[=

�������
������

file-spec
identifier
(identifier, . . .)
n
name=identifier, . . .
directory, . . .

�������
������

]]

Compiling HP Pascal Programs 1–1

/command-qualifier
The name of a qualifier that indicates special processing to be performed by the
compiler on all files listed.

file-spec
The name of one of the following:

• The input source file that contains the program or module to be compiled.
If you separate multiple source file specifications with commas, the
programs are compiled separately. If you separate the file specifications
with plus signs, the files are concatenated and compiled as one program.

The default file type for an input file is either .PAS (source file) or .TLB
(text-library module).

• The output file used only with the /ANALYSIS_DATA, /ENVIRONMENT,
/LIST, /OBJECT, or /DIAGNOSTICS qualifiers.

/file-qualifier
The name of a qualifier that indicates special processing to be performed by the
compiler on the files to which the qualifier is attached.

identifier
The name of one or more options that modify the /ALIGN, /CHECK, /DEBUG,
/DESIGN, /FLOAT, /OPTIMIZE, /SHOW, /STANDARD, /TERMINAL, and
/USAGE qualifiers.

n
The value of an integer constant. When used with the /ERROR_LIMIT qual-
ifier, this parameter indicates the maximum number of errors to be detected
before compilation ceases. When used with the /OPTIMIZATION=LEVEL=n
qualifier, this parameter indicates a specific level of optimization.

name=value
The definition of a constant or name with the specified value when used with
the /CONSTANT qualifier.

directory
The input directory that contains the include file, environment file, or text
library processed by a %INCLUDE directive or [INHERIT] attribute when
used with the /INCLUDE qualifier.

1–2 Compiling HP Pascal Programs

1.1.1 PASCAL Command Examples
This section contains examples of PASCAL command lines.

$ PASCAL/LIST [DIR]M

The source file M.PAS in directory [DIR] is compiled, producing an object file
named M.OBJ and a listing file named M.LIS. The compiler places the object
and listing files in the default directory.

$ PASCAL/LIST A, B, C

Source files A.PAS, B.PAS, and C.PAS are compiled as separate files, producing
object files named A.OBJ, B.OBJ, and C.OBJ, and listing files named A.LIS,
B.LIS, and C.LIS.

$ PASCAL X + Y + Z

Source files X.PAS, Y.PAS, and Z.PAS are concatenated and compiled as one
file producing an object file named X.OBJ. By default, batch mode produces
a listing file, which takes its name from the name of the first file on the
command line. In this example, the name of the listing file would be X.LIS.

$ PASCAL A, B, C+D/LIST, F

When a qualifier follows the file specification, it applies only to the file
immediately preceding it. Files concatenated with plus signs are considered
one file. This command line produces four object files, A.OBJ, B.OBJ, C.OBJ,
and F.OBJ, and one listing file, D.LIS.

$ PASCAL A + CIRC/NOOBJECT + X

This command completely suppresses the object file; that is, source files A.PAS,
CIRC.PAS, and X.PAS are concatenated and compiled, but no object file is
produced.

1.1.2 PASCAL Qualifiers
This section describes the command and file qualifiers that you can use when
compiling code.

/ALIGN=keyword
Controls the default alignment rules. Note that specifying the ALIGN attribute
overrides any value that was previously specified for the /ALIGN qualifier.

Compiling HP Pascal Programs 1–3

Table 1–1 lists the values for keyword.

Table 1–1 /ALIGN Qualifier Options

Option Action Default Information

NATURAL1 Uses natural alignment when positioning
record fields or array components.
Natural alignment is when a record
field or an array component is positioned
on a boundary based on its size. For
example, 32-bit integers are aligned on
the nearest 32-bit boundary.

Default on OpenVMS I64 and
OpenVMS Alpha systems if /ALIGN
is not specified.

VAX Uses byte alignment when positioning
record fields or array components.
Record fields or array components larger
than 32 bits are positioned on the nearest
byte boundary.

Default on OpenVMS VAX systems if
/ALIGN is not specified.

1Previous versions of HP Pascal used ALPHA_AXP for this keyword. The NATURAL keyword is now the
recommended spelling for the same behavior. The ALPHA_AXP keyword will continue to be recognized for
compatibility with old command lines.

On OpenVMS VAX systems, when you specify a value of NATURAL, automatic
variables are aligned on longword boundaries instead of quadword boundaries.
This occurs because the largest allowable alignment for the stack is longword
alignment.

/[NO]ANALYSIS_DATA
/NOANALYSIS_DATA (default)
Creates a file containing source code analysis information. If you omit the file
specification, the analysis file defaults to the name of your source file with a
.ANA file type. The source code analysis file is used with products such as the
Language-Sensitive Editor/Source Code Analyzer (LSE/SCA).

[/NO]ARCHITECTURE
/ARCHITECTURE=GENERIC (default) (OpenVMS Alpha systems only)
Specifies which version of the Alpha architecture instructions should be
generated for. All Alpha processors implement a core set of instructions and,
in some cases, the following extensions: BWX (byte- and word- manipulation
instructions) and MAX (multimedia instructions). See the Alpha Architecture
Reference Manual for additional information. Table 1–2 lists the available
keywords:

1–4 Compiling HP Pascal Programs

Table 1–2 /ARCHITECTURE Qualifier Options

Option Action Default Information

GENERIC Generate instructions that are appropriate
for all Alpha processors.

This option is the default.

HOST Generate instructions for the processor
on which the compiler is running (for
example, EV56 instructions on an EV56
processor, and EV4 instructions on an EV4
processor).

EV4,
EV5

Generate instructions for the EV4
processor (21064, 20164A, 21066, and
21068 chips) and EV5 processor (some
21164 chips). (Note that the EV5 and
EV56 processors both have the same chip
number - 21164.)

EV56 Generate instructions for EV56 processors
(some 21164 chips). This option permits
the compiler to generate any EV4
instruction, plus any instructions
contained in the BWX extension.

Applications compiled with this option may
incur emulation overhead on EV4 and EV5
processors.

PCA56 Generate instructions for PCA56
processors (21164PC chips). This option
permits the compiler to generate any
EV4 instruction, plus any instructions
contained in the BWX and MAX
extensions. However, HP Pascal does
not generate any of the instructions in the
MAX (multimedia) extension to the Alpha
architecture.

(continued on next page)

Compiling HP Pascal Programs 1–5

Table 1–2 (Cont.) /ARCHITECTURE Qualifier Options

Option Action Default Information

EV6 Generate instructions for EV6 processors
(21264 chips). This option permits the
compiler to generate any EV4 instruction,
any instruction contained in the BWX and
MAX extensions, plus any instructions
added for the EV6 chip. These new
instructions include a floating-point square
root instruction (SQRT), integer/floating-
point register transfer instructions,
and additional instructions to identify
extensions and processor groups.

Applications compiled with this option may
incur emulation overhead on EV4, EV5,
EV56, and PCA56 processors.

EV6 Generate instructions for EV7 processors
(21364 chips).

This option permits the compiler to
generate any EV67 instruction. There
are no additional instructions available on
the EV7 processor, but the compiler does
have different instruction scheduling and
prefetch rules for tuning code for the EV7.

Applications compiled with this option may
incur emulation overhead on EV4, EV5,
EV56, and PCA56 processors.

EV67,
EV68

Generate instructions for EV67 and EV68
processors (21264A chips).

This option permits the compiler to
generate any EV6 instruction, plus the
new bit count instructions (CTLZ, CTPOP,
and CTTZ). However, HP Pascal does not
currently generate any of the new bit count
instructions, and the EV67 and EV68 have
identical instruction scheduling models,
so the EV67 and EV68 are essentially
identical to the EV6.

Applications compiled with this option may
incur emulation overhead on EV4, EV5,
EV56, and PCA56 processors.

Beginning with OpenVMS Alpha V7.1 and continuing with subsequent
versions, the operating system includes an instruction emulator. This
capability allows any Alpha chip to execute and produce correct results

1–6 Compiling HP Pascal Programs

from Alpha instructions, regardless of whether some of the instructions are not
implemented on the chip. Applications using emulated instructions will run
correctly, but may incur significant emulation overhead at run time.

/ASSUME=([NO]ACCURACY_SENSITIVE) (OpenVMS I64 and Alpha systems
only)
/ASSUME=ACCURACY_SENSITIVE (default)
Specifies whether certain code transformations that affect floating-point
operations are allowed. These changes may or may not affect the accuracy of
the program’s results.

If you specify NOACCURACY_SENSITIVE, the compiler is free to reorder
floating-point operations based on algebraic identities (inverses, associativity,
and distribution). This allows the compiler to move additional floating-point
operations outside of loops or reduce or remove floating-point operations totally,
thereby improving performance.

The default, ACCURACY_SENSITIVE, directs the compiler to avoid certain
floating-point trasformations that might slighly affect the program’s accuracy.

/[NO]CHECK
/CHECK=(BOUNDS,DECLARATIONS) (default)
Directs the compiler to generate code to perform run-time checks. A single
identifier or a list of identifiers enclosed in parentheses can follow /CHECK;
these identifiers are the names of options that tell the compiler which aspects
of the compilation unit to check.

The system issues an error message and normally terminates execution if any
of the conditions in the options list occur. Table 1–3 lists the available checking
options, their corresponding actions, and their negations.

Compiling HP Pascal Programs 1–7

Table 1–3 /CHECK Qualifier Options

Option Action Negation

ALL Generates checking code for all
options.

NONE

BOUNDS Verifies that an index expression is
within the bounds of an array’s index
type, that character-string sizes are
compatible with the operations being
performed, and that schemata are
compatible.

NOBOUNDS

CASE_SELECTORS Verifies that the value of a case
selector is contained in the
corresponding case-label list.

NOCASE_SELECTORS

DECLARATIONS Verifies that schema definitions yield
valid types and that uses of GOTO
from one block to an enclosing block
are correct. Also controls whether the
ASSERT statement is processed.

NODECLARATIONS

OVERFLOW Verifies that the result of an integer
computation does not exceed the
machine representation.

NOOVERFLOW

POINTERS Verifies that the value of a pointer
variable is not NIL.

NOPOINTERS

SUBRANGE Verifies that values assigned to
variables of subrange types are within
the subrange; verifies that a set
expression is assignment compatible
with a set variable; verifies that MOD
operates on positive numbers.

NOSUBRANGE

The BOUNDS and DECLARATIONS options are the only checking options
enabled by default. The /CHECK qualifier without options is equivalent to
/CHECK=ALL. The negation /NOCHECK is equivalent to /CHECK=NONE.

The CHECK attribute in the source program or module overrides the /CHECK
qualifier on the command line.

/CONSTANT=(name=value, . . .)
The /CONSTANT qualifier allows a limited set of Pascal constants to be
defined from the command line. This capability can be used to augment the
conditional-compilation facility.

name is the name of a Pascal constant to create. You cannot define any
predeclared Pascal name by the command line.

1–8 Compiling HP Pascal Programs

value can be one of the following:

• integer-literal

• –integer-literal

• TRUE

• FALSE

• "string-literal"

• ’string-literal’

Nonbase-10 integer literals are not supported on the command line. For
example:

$ PASCAL/CONSTANT=(DEBUG=TRUE,MAXSIZE=10,OFFSET=-10,IDENT="V1.0")

Note that the definition of /CONSTANT is such that DCL does not remove
any double-quote characters used in the name=value clauses. All characters
are literally passed to the compiler for processing. This behavior is slightly
different from the usual behavior of putting items in double quotes on DCL
commands to preserve the case, but not to pass the double quotes to the target
application.

This definition of /CONSTANT allows you to define Pascal string literals with
embedded single quotes and for DCL symbol substitutions. For example,

$ PASCAL/CONSTANT=MSG="Special compile run for Monday"
$ IDENT = "V1.0"
$ PASCAL/CONSTANT=MSG="’’IDENT’"

Inserting double-quote characters and inserting adjacent single-quote
characters can be accomplished by using the \ escape character allowed in
HP Pascal double-quoted string constants.

By using the \’ single-quote escape character, you can insert adjacent single
quotes without DCL interpreting it as a symbol substition, as shown in the
following example:

$ PASCAL/CONSTANT=MSG="String with 2 \’\’ single quote characters"

Do not use \" to insert a double-quote character into the string literal, as DCL
will interpret the double quote as the end of the string. Instead, use the \x22
character literal (16#22 is the ASCII code for the double-quote character) to
insert a double-quote character into the string literal without DCL interpreting
it as the end of the string. This is shown in the following example:

$ PASCAL/CONSTANT=MSG="String with a \x22 double-quote character"

Compiling HP Pascal Programs 1–9

To use a single-quote string literal with /CONSTANT, enclose the entire
name=value clause in double quotes to prevent DCL from trying to perform
symbol substitution when it sees the single-quote character. For example:

$ PASCAL/CONSTANT="MSG=’Single-quoted literal’"

In this case, the double quotes are discarded by the compiler, and the single-
quoted string literal is processed. However, using double-quoted literals with
/CONSTANT is easier and more flexible.

The extended-string syntax for string literals is not supported on the command
line. The extended-string syntax is as follows:

{’printing-string’({constant-expression},...)}...
{"printing-string"({constant-expression},...)}...

These extended-string literals are constant expressions, not simple literals.

To insert nonprintable characters into a string literal from the command line,
you can use a double-quoted string literal and the \xnn escape sequence.

/[NO]CROSS_REFERENCE
/NOCROSS_REFERENCE (default)
Produces a cross-reference section within the listing file. The compiler ignores
this qualifier if you do not also specify /LIST on the same command line.

/[NO]DEBUG
/DEBUG=TRACEBACK (default)
Specifies that the compiler is to generate information for use by the debugger
and the run-time error traceback mechanism. A single identifier or a list of
identifiers enclosed in parentheses can follow /DEBUG; these identifiers are
the names of options that inform the compiler which type of information it
should generate.

Table 1–4 lists the available options, their corresponding actions, and their
negations.

1–10 Compiling HP Pascal Programs

Table 1–4 /DEBUG Qualifier Options

Option Action Negation

ALL Specifies that the compiler should
include symbol and traceback
information in the object module.

NONE

SYMBOLS Specifies that the compiler should
include in the object module symbol
definitions for all identifiers in the
compilation.

NOSYMBOLS

TRACEBACK Specifies that the compiler should
include in the object module traceback
information permitting virtual
addresses to be translated into source
program routine names and compiler-
generated line numbers.

NOTRACEBACK

When debugging programs that contain schema, you must use the
/NOOPTIMIZE qualifier on the PASCAL DCL command. If you do not use
/NOOPTIMIZE, you might receive incorrect debug information or an Internal
Debug Error when manipulating schema.

When you specify SYMBOLS without TRACEBACK, the table of compiler-
generated line numbers is omitted from the debugger symbol table.

You should consider using /NOOPTIMIZE when you are using /DEBUG.
Allowing optimizations to occur can make debugging difficult and can obscure
some sections of the compilation unit.

The /DEBUG qualifier without options is equivalent to /DEBUG=ALL. The
negation /NODEBUG is equivalent to /DEBUG=NONE.

/[NO]DESIGN
/NODESIGN (default)
Directs the compiler to accept design phase placeholders on all OpenVMS
systems and comments on OpenVMS VAX systems as valid program elements
within an HP Pascal program. Placeholders are produced by you or by
LSE/SCA; design comments are intended for use with LSE/SCA. Table 1–5 lists
the options, their corresponding action, and their negation.

Compiling HP Pascal Programs 1–11

Table 1–5 /DESIGN Qualifier Options

Option Action Negation

PLACEHOLDERS Directs the compiler to accept
placeholders as valid program
elements.

NOPLACEHOLDERS

COMMENTS
(OpenVMS VAX
systems)

Directs the compiler to recognize design
comments.

NOCOMMENTS

The /DESIGN qualifier without an option is equivalent to
/DESIGN=(PLACEHOLDERS) on OpenVMS I64 and OpenVMS Alpha systems
and /DESIGN=(PLACEHOLDERS, COMMENTS) on OpenVMS VAX systems.

/[NO]DIAGNOSTICS
/NODIAGNOSTICS (default)
Creates a file containing compiler messages and diagnostic information. If
you omit the file specification, the diagnostics file defaults to the name of your
source file with a .DIA file type. The diagnostics file is used by products such
as LSE/SCA..

/ENUMERATION_SIZE=keyword
Controls the allocation of unpacked enumerated data types and Boolean data
types, which are considered to be an enumerated type containing two elements.
Note that specifying the ENUMERATION_SIZE attribute overrides any value
you previously specified with this qualifier.
Table 1–6 lists the available values for keyword.

Table 1–6 /ENUMERATION_SIZE Qualifier Options

Option Action Default Information

BYTE Allocates unpacked enumerated data
types with up to 255 elements in a
single byte. Otherwise, enumerated
data types are allocated in a 16-bit
word.

Default on OpenVMS VAX systems.

LONG Allocates all unpacked enumerated
data types in a 32-bit longword.

Default on OpenVMS I64 and
OpenVMS Alpha systems.

/[NO]ENVIRONMENT

1–12 Compiling HP Pascal Programs

determined by attributes (default)
Produces an environment file in which declarations and definitions made at the
outermost level of a compilation unit are saved. The default file name is the
same as the source file name. The default file type is .PEN, an abbreviation
for Pascal Environment. You can provide a different name for the environment
file by including a file specification after the /ENVIRONMENT qualifier, for
example, /ENVIRONMENT=MASTER.PEN.

The /ENVIRONMENT qualifier on the command line overrides the
ENVIRONMENT attribute in the source program or module. By default, the
attributes of the source program or module determine whether an environment
file is created; however, if the /ENVIRONMENT qualifier is specified at compile
time, an environment file will always be created.

/[NO]ERROR_LIMIT
/ERROR_LIMIT=30 (default)
Terminates compilation after the occurrence of a specified number of error
messages, excluding warning-level and information-level errors. If you specify
/NOERROR_LIMIT, compilation continues until 500 errors have been detected.

/FLOAT=floattype
Selects the default format for REAL and DOUBLE data types. You must
specify floattype if you use the /FLOAT qualifier. Table 1–7 lists the available
options, their corresponding actions, and default information.

If the source program includes the [NO]G_FLOATING attribute, then the value
of the /FLOAT qualifier must be in agreement with the value of the attribute.

Table 1–7 /FLOAT Qualifier Options

Option Action Default Information

D_FLOAT REAL data type will be defined
in the F_floating-point format;
DOUBLE will be defined in the
D_floating-point format.

Default for OpenVMS VAX systems if
/FLOAT or
/NOG_FLOATING is not specified.

G_FLOAT REAL data type will be defined
in the F_floating-point format;
DOUBLE will be defined in the
G_floating-point format.

Default for OpenVMS Alpha systems if
/FLOAT or
/NOG_FLOATING is not specified.

IEEE_FLOAT REAL data type is defined in the
IEEE S floating-point format;
DOUBLE is defined in the IEEE
T floating-point format.

Default for OpenVMS I64 systems if
/FLOAT or
/NOG_FLOATING is not specified.

Compiling HP Pascal Programs 1–13

Routines and compilation units between which double-precision quantities are
passed should not mix floating-point formats.
On OpenVMS I64 systems, VAX floating-point support is implemented by
converting the VAX floating format values to IEEE format, performing the
operation, and converting the result back to VAX floating format. Because
of the conversion, some programs might get slightly different results for
F_floating, D_floating, and G_floating computations than they produce on
OpenVMS Alpha and OpenVMS VAX systems.

OpenVMS VAX systems do not support /FLOAT=IEEE_FLOAT.

file-spec/LIBRARY
none (default)
Specifies that a file is a text library file. The text library file specification is
required. The text library files in a list of source files must be concatenated by
plus signs. The default file type is .TLB.

/GRANULARITY=keyword
Directs the compiler to generate additional code to preserve the indicated
granularity. Granularity refers to the amount of storage that can be modified
when updating a variable. You can specify the following values for keyword:

• BYTE

• LONGWORD

• QUADWORD (default)

To update a variable that is smaller than a longword on older Alpha systems,
HP Pascal must issue multiple instructions to fetch the surrounding longword
or quadword, update the memory inside to longword or quadword, and then
write the longword or quadword back into memory. If multiple processes are
writing into memory that is contained in the same longword or quadword, you
might incur inaccurate results, unless /GRANULARITY=BYTE or some other
synchronization mechanism is used.

On newer Alpha systems, the architecture has additional instructions that can
modify byte and word-sized data directly. See the /ARCHITECTURE qualifier
for additional information.

On OpenVMS I64 systems, the compiler may use quadword instructions to
update unaligned variables unless modified by use of the /GRANULARITY
qualifier.

1–14 Compiling HP Pascal Programs

/INCLUDE=(directory, . . .)
Allows you to specify search locations for %INCLUDE directives and
[INHERIT] attributes that specify file names without explicit disk or directory
specifications.

The qualifier takes a list of directories to search. The compiler applies the
/INCLUDE information to the following Pascal constructs:

• %INCLUDE ’name’ or %INCLUDE ’name.ext’

• [INHERIT(’name’)] or [INHERIT(’name.ext’)]

• %INCLUDE ’name(modname)’ or %INCLUDE ’name.ext(modname)’

The compiler searches as follows:

1. The current directory with a default extension of .pas for %INCLUDE
directives, .pen for [INHERIT] attributes, and .tlb for %INCLUDE from
text libraries (just like before)

2. Any directories specified with the /INCLUDE qualifer (in the order
specified) with the appropriate default extension

3. SYS$LIBRARY: with the appropriate default extension

/[NO]LIST
/NOLIST (interactive default)
/LIST=input_file_name.LIS (batch default)
Produces a source listing file with a file type of .LIS. See the /SHOW qualifier
for more information on controlling the contents of the source listing file.

/[NO]MACHINE_CODE
/NOMACHINE_CODE (default)
Produces a machine code section within the listing file. If the compiler detects
errors in the source code, the compiler does not generate this section. The
compiler ignores this qualifier if you do not also specify /LIST on the same
command line.

/MATH_LIBRARY=keyword (OpenVMS Alpha systems only)
Determines whether the compiler uses alternate math library routines that
boost performance, but sacrifice accuracy. You can specify the following values
for keyword:

• ACCURATE (default)

• FAST

Compiling HP Pascal Programs 1–15

/[NO]OBJECT
/OBJECT=input_file_name.OBJ (default)
Specifies the name of the object file. If the compiler detects errors in the source
code, the compiler writes no representation of object code to the listing file.

/[NO]OPTIMIZE
/OPTIMIZE (default)
Directs the compiler to optimize the code for the program or module being
compiled so that the compiler generates more efficient code. A single identifier
or a list of identifiers enclosed in parentheses can follow /OPTIMIZE; these
identifiers are the names of options that tell the compiler which aspects of the
compilation unit to optimize.

Table 1–8 lists the available options, their corresponding actions, and their
negations.

1–16 Compiling HP Pascal Programs

Table 1–8 /OPTIMIZE Qualifier Options

Option Action Negation

ALL Enables all optimization components. NONE

INLINE=keyword Enables inline expansion of user-defined
routines.

NOINLINE

LEVEL=num Controls the optimization level (OpenVMS I64
and OpenVMS Alpha systems only). Values for
num are:

0 Disables all optimizations. Identical in
function to /NOOPTIMIZE.

1 Enables local optimizations and
recognition of common subexpressions.

2 Enables all level 1 optimizations and
some global optimizations, including
the following: code motion, strength
reduction and test replacement, split
lifetime analysis, and code scheduling.

3 Enables all level 2 optimizations and
some additional global optimizations
that improve speed at the cost of
extra code size. These optimizations
include integer multiplication and
division expansion (using shifts), loop
unrolling, and code replication to
eliminate branches.

Identical in function to
/OPTIMIZE=NOINLINE.

4 Enables all level 3 optimizations and
inline expansion of procedures and
functions. Identical in function to
/OPTIMIZE.

5 Enables software pipelining and
additional software dependancy
analysis, which in certain cases
improves run-time performance.

UNROLL=num Controls number of times loops are unrolled. The
default is 4. /UNROLL=0 disables loop unrolling.
Loop unrolling is only enabled above optimzation
level 2. (OpenVMS I64 and OpenVMS Alpha
systems only.)

TUNE=processor Tune the object code to run best on the processor
chosen. The default is Generic. Values for the
processor are EV4, EV5, EV56, EV6, EV7, EV67,
EV68, Generic, and Host. (OpenVMS Alpha
systems only.)

Compiling HP Pascal Programs 1–17

The /OPTIMIZE qualifier without options is equivalent to /OPTIMIZE=ALL.
The negation /NOOPTIMIZE is equivalent to /OPTIMIZE=NONE.

The OPTIMIZE and NOOPTIMIZE attributes in the source program or module
override the /OPTIMIZE and /NOOPTIMIZE qualifiers on the command line.

For More Information:

• On compiler optimizations (Section 3.1)

The /NOOPTIMIZE qualifier guarantees full evaluation of both operands
of the AND and OR Boolean operators to aid in diagnosing all potential
programming errors. If you wish to have short-circuit evaluation even with
the /NOOPTIMIZE qualifier, use the AND_THEN and OR_ELSE Boolean
operators.

On OpenVMS I64 and OpenVMS Alpha systems, you can also specify an
optimization level. Optimization levels from level 2 and higher include all
optimizations from lower levels.

/[NO]PLATFORMS
/NOPLATFORMS (default)
Displays informational messages about nonportable language features for the
specified platform. Table 1–9 lists the supported platforms.

Table 1–9 /PLATFORMS Qualifier Options

Option Action

COMMON Displays informational messages for all platforms.

OpenVMS_I64 Displays informational messages for the OpenVMS I64 platform.

OpenVMS_Alpha Displays informational messages for the OpenVMS Alpha platform.

OpenVMS_VAX Displays informational messages for the OpenVMS VAX platform.

/PSECT_MODEL=[NO]MULTILANGUAGE (OpenVMS Alpha systems only)
/PSECT_MODEL=NOMULTILANGUAGE (default)
This qualifier controls whether the compiler pads the size of overlaid PSECTs,
so as to ensure compatibility when the PSECT is shared by code created by
other OpenVMS Alpha compilers.

When a PSECT generated with a [COMMON] attribute is overlaid with a
PSECT consisting of a C struct or a Fortran COMMON block, linker error
messages can result due to the inconsistent sizes of the PSECTs; some
languages pad the size of PSECTS, while other do not.

1–18 Compiling HP Pascal Programs

/[NO]SHOW
/SHOW=(DICTIONARY,HEADER,INCLUDE,SOURCE,STATISTICS,
TABLE_OF_CONTENTS) (default)
Specifies a list of items to be included in the listing file. A single identifier or
a list of identifiers enclosed in parentheses can follow /SHOW; these identifiers
are the names of options that inform the compiler which type of information it
should generate.

Table 1–10 lists the available options, their corresponding actions, and their
negations.

Table 1–10 /SHOW Qualifier Options

Option Action Negation

ALL Enables listing of all options. NONE

DICTIONARY Enables listing of %DICTIONARY
records.

NODICTIONARY

HEADER Enables page headers. NOHEADER

INCLUDE Enables listing of %INCLUDE
files.

NOINCLUDE

INLINE (OpenVMS
VAX systems only)

Enables listing of inline
summary.

NOINLINE

SOURCE Enables listing of HP Pascal
source code.

NOSOURCE

STATISTICS Enables listing of compilation
statistics.

NOSTATISTICS

STRUCTURE_
LAYOUT

Enables listing of the sizes,
record field offsets, and
comments about nonoptimal
performance for variables and
types in your program.

NOSTRUCTURE_LAYOUT

TABLE_OF_
CONTENTS
(OpenVMS VAX
systems only)

Enables listing of a table of
contents only if the %TITLE
or %SUBTITLE directive was
specified in the source code.

NOTABLE_OF_
CONTENTS

On OpenVMS VAX systems, the inline summary, enabled by the /SHOW=INLINE
qualifier, shows only the names of routines that were expanded inline in the
compilation. If you want to know why routines were not expanded inline,
you must specify an additional qualifier, either /OPTIMIZE=INLINE or
/OPTIMIZE=ALL. Although /OPTIMIZE defaults to /OPTIMIZE=ALL, you
must explicitly specify the ALL option to generate these reasons.

Compiling HP Pascal Programs 1–19

The compiler ignores the /SHOW qualifier if you do not also specify the /LIST
qualifier on the same command line. The negation /NOSHOW is equivalent to
/SHOW=NONE; /SHOW is equivalent to /SHOW=ALL.

/[NO]STANDARD
/NOSTANDARD (default)
Causes the compiler to generate messages wherever the compilation unit
uses HP Pascal language extensions, which are nonstandard Pascal features.
Within the HP Pascal documentation set, these standards are collectively
referred to as the Pascal standard.

Table 1–11 lists the available options, their corresponding actions, and their
negations.

Table 1–11 /STANDARD Qualifier Options

Option Action Negation

NONE Disables standards checking. N.A.

ANSI Uses the rules of the ANSI standard. N.A.

ISO Uses the rules of the ISO standard. N.A.

EXTENDED Uses the rules of the Extended
standard.

N.A.

VALIDATION Performs validation for the given
standard.

NOVALIDATION

The /STANDARD qualifier allows you to use only two options. The first option
selects the standard to be used (ANSI, ISO or EXTENDED). The second
option determines whether the strict validation rules are to be enforced
([NO]VALIDATION). /STANDARD=(ANSI, ISO, VALIDATION) is not allowed
because both ANSI and ISO are specified.

By default, these information-level messages are written to the error file
SYS$ERROR. Using the VALIDATION option changes all nonstandard
information-level messages to error-level messages.

The /STANDARD qualifier without options is equivalent to
/STANDARD=(ANSI, NOVALIDATION). /STANDARD=VALIDATION is equiv-
alent to /STANDARD=(ANSI, VALIDATION). The negation /NOSTANDARD is
equivalent to /STANDARD=NONE.

1–20 Compiling HP Pascal Programs

/[NO]SYNCHRONOUS_EXCEPTIONS (OpenVMS Alpha systems only)
/NOSYNCHRONOUS_EXCEPTIONS (default)
Specifies that the compiler should generate code to insure that exceptions are
reported as near as possible to the instruction that generated the exception.
This can avoid confusion in tracing the source of an exception, however, there
is a performance penalty for using this qualifier.

/[NO]TERMINAL
/NOTERMINAL (default)
Specifies a list of items to be displayed on the terminal. A single identifier or a
list of identifiers enclosed in parentheses can follow the /TERMINAL qualifier;
these identifiers are options that inform the compiler which type of information
to display.

Table 1–12 lists the available options, their corresponding actions, and their
negations.

Table 1–12 /TERMINAL Qualifier Options

Option Action Negation

ALL Displays all options. NONE

FILE_NAME Displays file names on Pascal
command line as they are being
processed.

NOFILE_NAME

ROUTINE_NAME
(OpenVMS VAX
systems only)

Displays routine names as code
is generated.

NOROUTINE_NAME

STATISTICS Displays compiler statistics. NOSTATISTICS

The /TERMINAL qualifier without options is equivalent to
/TERMINAL=ALL. The negation /NOTERMINAL is equivalent to
/TERMINAL=NONE.

/[NO]TIE (OpenVMS Alpha systems only)
/NOTIE(default)
Specifies that the generated code can call images translated by the VAX
Environment Software Translator (VEST) utility, which translates OpenVMS
VAX system images into functionally equivalent OpenVMS Alpha system
images. The Translated Image Environment (TIE) allows translated images to
execute as if on an OpenVMS VAX system.

Compiling HP Pascal Programs 1–21

/[NO]USAGE
(/USAGE=EMPTY_RECORDS, NONGRNACC, PACKED_ACTUALS,
UNSUPPORTED_CDD, UNINITIALIZED, VOLATILE) (defaults)
Directs the compiler to perform compile-time checks indicated by the chosen
options. A single identifier or a list of identifiers enclosed in parentheses can
follow /USAGE; these identifiers are options that tell the compiler which checks
to perform.

Table 1–13 lists the available options, their corresponding actions, and their
negations.

Table 1–13 /USAGE Qualifier Options

Option Action Negation

ALL Enables checking of all options. NONE

EMPTY_RECORDS Checks for fetching records
with no fields. Such fields
are usually created by the
%DICTIONARY directive for
unsupported data types.

NOEMPTY_RECORDS

(continued on next page)

1–22 Compiling HP Pascal Programs

Table 1–13 (Cont.) /USAGE Qualifier Options

Option Action Negation

NONGRNACC
(OpenVMS I64 and
OpenVMS Alpha
systems)

Specifies that the compiler
should issue warning messages
for code sequences that
might not match your
granularity request from the
/GRANULARITY qualifier.

When the compiler cannot
guarantee that the generated
code matches the granularity
setting, a warning message is
issued. You should examine
your code to make sure that
the variable being accessed
is quadword-aligned and is a
multiple of quadwords in size.
In this case, the resulting code
will be correct, although the
compiler might not be able to
determine that at compile
time. Such cases involve
pointer dereferences or VAR
parameters.

These messages are enabled by
default by the compiler.

NONONGRNACC

PACKED_ACTUALS Checks for passing components
of packed structures to VAR
parameters.

NOPACKED_ACTUALS

PERFORMANCE
(OpenVMS I64 and
OpenVMS Alpha
systems)

Checks for variables and
record fields that are poorly
sized or aligned on inefficient
boundaries. This provides the
same information that is found
in the /SHOW=STRUCTURE_
LAYOUT listing section.

NOPERFORMANCE

UNCALLABLE
(OpenVMS I64 and
OpenVMS Alpha
systems)

Specifies whether the compiler
should issue informational
messages for routines that are
declared but never called.

NOUNCALLABLE

(continued on next page)

Compiling HP Pascal Programs 1–23

Table 1–13 (Cont.) /USAGE Qualifier Options

Option Action Negation

UNCERTAIN Checks for variables that can
be uninitialized depending on
program flow.

NOUNCERTAIN

UNINITIALIZED Checks for variables that are
known to be uninitialized.

NOUNINITIALIZED

UNSUPPORTED_CDD Checks for usage of
CDD/Repository constructs
that do not correspond to HP
Pascal data types.

NOUNSUPPORTED_CDD

UNUSED Checks for variables that are
declared but never referenced.

NOUNUSED

VOLATILE
(OpenVMS I64 and
OpenVMS Alpha
systems)

Checks for VOLATILE
variables that are not aligned
properly. On OpenVMS I64
and OpenVMS Alpha systems,
certain unaligned VOLATILE
variables cannot be updated in
an atomic fashion.

NOVOLATILE

The following types of variables are not checked for uninitialization:

• Variables that have a file component

• Predeclared INPUT or OUTPUT identifiers

• Variables that have global, external, or inherited visibility

• Variables declared with the AT attribute

• Variables declared with the COMMON attribute

• Variables declared with the READONLY attribute

• Variables declared with the VOLATILE attribute

• Variables used as parameters

• Variables used as function identifiers

The /USAGE qualifier without options is equivalent to /USAGE=ALL. The
negation /NOUSAGE is equivalent to /USAGE=NONE.

The HP Pascal compiler can detect when some variables are uninitialized;
however, it cannot detect that an uplevel variable is uninitialized at the point
at which it was referenced. This is because at the time the routine is lexically
scanned, the compiler has not seen any of the calls to that routine.

1–24 Compiling HP Pascal Programs

/[NO]VERSION
/NOVERSION (default)
Controls whether the compiler prints compiler and OpenVMS version
information to SYS$OUTPUT and then returns to the operating system.
No other command qualifiers or source files are processed when /VERSION is
used.

/[NO]WARNINGS
/WARNINGS (default)
Directs the compiler to generate diagnostic messages in response to warning-
level or informational-level errors.

By default, these messages are written to the error file SYS$ERROR. A
warning or informational diagnostic message indicates that the compiler has
detected acceptable but unorthodox syntax or has performed some corrective
action; in either case, unexpected results can occur.

Note that informational messages generated when you specify the /STANDARD
qualifier do not appear if /NOWARNINGS is enabled.

/[NO]ZERO_HEAP (OpenVMS I64 and OpenVMS Alpha systems)
/ZERO_HEAP (default)
Specifies that heap memory should be zeroed after allocation. By default, the
Pascal RTL will return zero-filled memory for each call to the NEW built-in.
Using the /NOZERO_HEAP qualifier can increase runtime performance.

For More Information:

• On debugging (Section 4.1)

• On text libraries (Section 1.1.4)

• On LSE and SCA information (Section 4.2)

• On error messages (Section 1.4)

• On the contents of a compiler listing (Section 1.1.3)

• On Pascal standards (HP Pascal for OpenVMS Language Reference
Manual)

• On using environment files (Section 2.1)

• On the AND_THEN and OR_ELSE Boolean operators (HP Pascal for
OpenVMS Language Reference Manual)

Compiling HP Pascal Programs 1–25

1.1.3 Contents of the Compilation Listing File
You control the contents of a compilation listing by appending qualifiers to the
PASCAL command. Table 1–14 lists the parts of a complete compilation listing
and the qualifiers that cause them to be generated.

Table 1–14 Compilation Listing Contents and Qualifiers

Section Generated With

Table of contents (OpenVMS
VAX systems)

/LIST /SHOW=TABLE_OF_CONTENTS

Source code /LIST

Cross-reference /LIST /CROSS_REFERENCE

Machine code /LIST /MACHINE_CODE

Inline summary (OpenVMS
VAX systems)

/LIST /SHOW=INLINE

Compilation statistics /LIST /SHOW=STATISTICS

Structure layout /LIST /SHOW=STRUCTURE_LAYOUT

A compilation listing file usually contains source code because the
/SHOW=SOURCE qualifier is enabled by default. The /LIST qualifier does
not initiate the printing of the listing file. To obtain a line printer copy of your
listing file, use the PRINT command.

You can control the number of lines that appear on a listing page by defining
the SYS$LP_LINES logical name before invoking the compiler. For example:

$ DEFINE SYS$LP_LINES 100
$ PASCAL/LIST [DIR]M

This set of commands creates a printed page size of 94 lines (the compiler
subtracts six lines for margins).

The following sections describe the contents of each part of the listing file.

For More Information:

• On the PASCAL command qualifiers (Section 1.1.2)

• On the SYS$LP_LINES logical (HP OpenVMS Programming Concepts
Manual)

1–26 Compiling HP Pascal Programs

1.1.3.1 Table of Contents (OpenVMS VAX systems)
The table of contents lists the line number, listing page number, and source file
page number of each section of the source code. These sections are delineated
by %TITLE or %SUBTITLE directives that indicate the name by which the
section is known; for example, Main Program Body. The compiler ignores the
/SHOW=TABLE_OF_CONTENTS qualifier if the compilation unit does not
contain a %TITLE or %SUBTITLE directive.

1.1.3.2 Source Code
The source code part of a listing file includes source code line numbers (LINE
column); a notation identifying %INCLUDE directive code, %DICTIONARY
directive code, and comments (IDC column); a procedure nesting level (PL
column); a statement nesting level (SL column); source code; and diagnostic
messages.

The following example shows several lines of a procedure accessed with an
%INCLUDE directive on an OpenVMS VAX system. On OpenVMS I64 and
OpenVMS Alpha systems, the format can be slightly different.

(LINE) (IDC) (PL) (SL)
00021 I 1 0 PROCEDURE PRINT (Arr : Arrtype);
00022 I 1 0 VAR I := INTEGER;
00023 I 1 1 BEGIN

1.1.3.3 Cross-Reference Section
The cross-reference part of a listing file contains a list of all identifiers and
labels used within the source code. This list includes the name of the identifier
or label, the program element it represents, the source code line numbers
where it appears, and, where applicable, the attributes, declaring block, and
function result type associated with it.

1.1.3.4 Machine Code Section
The machine code part of a listing file contains a representation of the object
code generated by the compiler. Information is organized by program section
and, within each program section, by executable block.

For each program section, the compiler generates the program section name
and properties, hexadecimal representation of the code, computer-generated
labels, symbolic opcode, and symbolic operands (if needed). Note that the
listing format is similar to, but not exactly like, MACRO. That is, if the
section is edited to remove the hexadecimal notation on the left side, it will
not assemble using the Itanium assembler, MACRO-64 assembler, or the
MACRO-32 assemblers for I64 or Alpha or VAX systems, respectively.

Compiling HP Pascal Programs 1–27

1.1.3.5 Structured Layout Section
This listing section gives the sizes, record field offsets, and comments about
nonoptional performance for variables and types in your program.

This section is useful to aid in restructuring data types for optimal
performance.

1.1.3.6 Inline Summary (OpenVMS VAX systems)
The inline summary part of a listing file contains a summary indicating which
routine calls of user-defined routines were or were not expanded inline. This
summary includes the name of the calling routine, program, or module; the
call and line number of the call; and a notation indicating whether expansion
occurred.

1.1.3.7 Compilation Statistics
The compilation statistics part of a listing file contains the following categories
of summary information:

• Psect Summary, listing the program section name, number of bytes, and
attributes of all program sections created during compilation.

• Environment Statistics, listing the names of all environment files inherited
by the compilation and symbol information. This information includes the
total number of symbols in the environment file, the number of symbols
actually used by the compilation, and the percentage of used symbols
versus defined symbols.

Note that the HP Pascal compiler defines symbol in terms of internal
representation. This definition can not reflect the complexity of the
environment source; that is, the number of symbols shown loaded can
not reflect the number of symbols in your program.

• Command Qualifiers and Options List, containing the exact command line
passed by DCL to the HP Pascal compiler, and the qualifier options in
effect during compilation.

• Compiler Internal Timing Statistics, noting the number of page faults
and amount of elapsed time and CPU time required for each phase of the
compilation.

• Compilation Statistics, listing the total number of messages generated at
each level—informational, warning, error, and fatal; the time and speed of
compilation; and the number of page faults that occurred. The last line is a
message indicating that the compilation of the source code is complete.

1–28 Compiling HP Pascal Programs

1.1.4 Text Libraries
A text library contains modules of source text that you can incorporate in
a program by using the %INCLUDE directive. This directive indicates the
module and, optionally, the text library in which the module can be found. Text
library names can be specified in the following ways:

• In the %INCLUDE directive

• On the PASCAL command line

• In a DEFINE default library command (DCL)

1.1.4.1 Using the %INCLUDE Directive for Text Libraries
The %INCLUDE directive has the following form:

%INCLUDE ’[[file-spec]] (module-name) [[/[[NO]]LIST]] ’

file-spec
The name of the text library containing a module to be included in the
compilation.

module-name
The name of a text module, located in a text library, that is to be included in
the source file. The name of the module must be enclosed in parentheses. The
module names can include any printable character except a space, horizontal
tab, comma, or exclamation point. The maximum length of the module name
is determined when the text library is created. Module names are also case
insensitive.

/[NO]LIST
Indicates that the included module should be printed in the listing of the
program if a listing is being generated. If not specified, the default is
determined by the [NO]INCLUDE option on the /SHOW qualifier. The
INCLUDE option enables the listing of %INCLUDE files and is enabled by
default.

For example, the following %INCLUDE directive specifies both the text library
DATAB.TLB and the module External_Declarations:

%INCLUDE ’DATAB.TLB (External_Declarations)’

If the text library is not specified in the %INCLUDE directive, its name
must appear on the PASCAL command line or it must be specified by a DCL
DEFINE command.

Compiling HP Pascal Programs 1–29

For More Information:

• On /LIST and /SHOW qualifiers (Section 1.1.2)

• On default libraries (Section 1.1.4.3)

1.1.4.2 Specifying Text Libraries on the Command Line
The /LIBRARY qualifier identifies text libraries specified on the PASCAL
command line. When you compile a source file that includes a module from a
text library, concatenate the name of the text library to the name of the source
file and append the /LIBRARY qualifier. You specify concatenation with a plus
sign. For example:

$ PASCAL APPLIC+DATAB/LIBRARY

This command instructs the compiler to search the DATAB text library each
time it encounters an %INCLUDE directive within the APPLIC source file.

If more than one library is specified, the compiler searches the libraries in the
order they appear on the command line. For example:

$ PASCAL APPLIC+DATAB/LIBRARY+DATAC/LIBRARY+DATAD/LIBRARY

If you request multiple compilations, the /LIBRARY qualifier must appear after
each compilation in which it is needed. For example:

$ PASCAL METRIC+DATAB/LIBRARY, APPLIC+DATAB/LIBRARY

If you are concatenating source files, the /LIBRARY qualifier can appear only
after the last source file. For example:

$ PASCAL METRIC.PAS+APPLIC.PAS+DATAB/LIBRARY

Any Pascal output qualifiers that appear after the /LIBRARY qualifier, such as
/OBJECT or /LISTING, apply to the last source file name that you specified.
For example, the following PASCAL command creates APPLIC.OBJ:

$ PASCAL METRIC+APPLIC+DATAB/LIBRARY/OBJECT

For More Information:

• On the PASCAL command and qualifiers (Section 1.1)

1–30 Compiling HP Pascal Programs

1.1.4.3 Defining Default Libraries
You can define one of your private text libraries as a default text library for the
Pascal compiler to search. The HP Pascal compiler searches the default library
after it searches libraries specified in the PASCAL command.

To establish a default library, define the logical name PASCAL$LIBRARY, as in
the following example of the DEFINE command:

$ DEFINE PASCAL$LIBRARY DISK$:[LIB]DATAB

While this assignment is in effect, the compiler automatically searches the
library DISK$:[LIB]DATAB.TLB for any included modules that it cannot locate
in libraries explicitly specified on the PASCAL command.

The HP Pascal compiler uses PASCAL$LIBRARY as the file name for the
default text library; the location and search order of the logical name tables are
controlled by Record Management Services (RMS).

If PASCAL$LIBRARY is defined as a search list, the compiler opens the first
item specified in the list. If the include module is not found there, the search
is terminated and an error message is issued.

For More Information:

• On the DCL command DEFINE (HP OpenVMS DCL Dictionary)

1.2 LINK Command
The LINK command invokes the OpenVMS Linker, which combines object
modules into one executable image, which can then be executed by the
OpenVMS operating system.

The linker uses the name of the input file that you specified first on the
command line for the name of the output file. The default for linker output
files (executable images) is the .EXE file type.

The LINK command format is as follows:

LINK [[{/command-qualifier} . . .]] {file-spec[[{/file-qualifier} . . .]]} , . . .

/qualifier [[=

	 file-spec
library-module
(library-module, . . .)

]]

Compiling HP Pascal Programs 1–31

/command-qualifier
The name of a qualifier that indicates special processing to be performed by the
linker on all files listed.

file-spec
The name of one of the following:

• The input file (which can be the name of an object module library) that
contains the object code to be linked.

• The options file, used only with the /OPTIONS qualifier.

• The output file, used only with the /EXECUTABLE and /MAP qualifiers.

/file-qualifier
The name of a qualifier (the /INCLUDE, /LIBRARY, or /OPTIONS qualifier)
that indicates special processing to be performed by the linker on the files to
which the qualifier is attached.

library-module
The name of one or more object modules or shareable image libraries that you
can only specify using the /INCLUDE or /LIBRARY qualifiers.

A source program or module cannot run on the system until it is linked. If you
are using .PEN (Pascal Environment) files that include variables, procedures,
or functions, make sure you link the object file into the .EXE file. When you
execute the LINK command, the OpenVMS Linker performs the following
functions:

• Resolves local and global symbolic references in the object code

• Assigns values to the global symbolic references

• Signals an error message for any unresolved symbolic reference

1.2.1 LINK Command Examples
This section contains examples of LINK command lines.

$ LINK DANCE.OBJ, CHACHA.OBJ, SWING.OBJ

This command links the object files DANCE.OBJ, CHACHA.OBJ, and
SWING.OBJ to produce one executable image called DANCE.EXE.

$ LINK/EXECUTABLE=TEST CIRCLE

This command links CIRCLE.OBJ and then causes the executable image
generated by the linker to be named TEST.EXE.

1–32 Compiling HP Pascal Programs

$ LINK SCHEDULE,COURSES/INCLUDE=(HISTORY,ALGEBRA,PHILOSOPHY)

This example shows the use of the /INCLUDE qualifier with a library named
COURSES. The linker extracts the modules HISTORY, ALGEBRA, and
PHILOSOPHY from the library COURSES and includes them in the executable
image SCHEDULE.EXE.

$ LINK SCHEDULE,COURSES/LIBRARY/INCLUDE=(HISTORY,ALGEBRA,
PHILOSOPHY)

This example also causes the linker to include the modules HISTORY,
ALGEBRA, and PHILOSOPHY in the image file SCHEDULE.EXE. However,
the /LIBRARY qualifier causes the linker to search the rest of the library
COURSES and link in any other modules needed to resolve symbolic references
in SCHEDULE, HISTORY, ALGEBRA, and PHILOSOPHY.

$ LINK UPDATE/EXE=[PROJECT.EXE]/MAP=[PROJECT.MAP]

This command produces these files:

• [PROJECT.EXE]UPDATE.EXE

• [PROJECT.MAP]UPDATE.MAP

For More Information:

• On debugging (Section 4.1)

• On error messages (Section 1.4)

• On including modules from object module libraries (Section 1.2.3)

• On messages generated by the linker (HP OpenVMS Linker Utility Manual)

• On DCL syntax (HELP)

• On the OpenVMS Linker (HP OpenVMS Linker Utility Manual)

1.2.2 LINK Qualifiers
The following are command and file qualifiers that you can use when linking
object modules:

/[NO]DEBUG
/NODEBUG (default)
Indicates that the VMS Debugger is to be included in the executable image
and that a symbol table is to be generated. If you specify LINK/DEBUG, the
program links and then executes under the control of the debugger.

Compiling HP Pascal Programs 1–33

/[NO]EXECUTABLE
/EXECUTABLE (default)
Produces an executable image. A file specification can follow /EXECUTABLE
to designate a name for the image file. The /NOEXECUTABLE qualifier, which
suppresses production of the image file, is useful when you want to verify the
results of linking an object file before the image is produced.

/INCLUDE
none (default)
Specifies that the input file is an object module or a shareable image library,
and that the modules named are the only ones in the library to be explicitly
included as input. In the case of shareable image libraries, the module is the
shareable image name. You must specify at least one module name with the
/INCLUDE qualifier. The default for library modules is the .OLB file type.

This qualifier is a file qualifier and cannot be used directly on the LINK
command.

/LIBRARY
none (default)
Specifies that the input file is an object module or shareable image library,
which the linker must search to resolve undefined symbols within other input
modules specified on the same command line.

You can use the /LIBRARY qualifier with the /INCLUDE qualifier to modify
the same input file specification. In that case, the same library is searched for
unresolved references.

This qualifier is a file qualifier and cannot be used directly on the LINK
command. The default for the file to which this qualifier is applied is the .OLB
file type.

/[NO]MAP
/NOMAP (interactive default)
/MAP/NOCROSS_REFERENCE (batch default)
Controls the generation of a map file and its contents. The /MAP qualifier
produces a map file, which you can name by including a file specification.

The map file is stored on the default device in the default directory. If you do
not include a file specification with /MAP, the map file is given the name of the
first input file and a .MAP file type.

With the /MAP qualifier, you can use the qualifiers /BRIEF, /FULL, and
/CROSS_REFERENCE to define the type of information included in the map
file.

1–34 Compiling HP Pascal Programs

filename/OPTIONS
none (default)
Specifies that the input file is a linker options file, which can contain input file
specifications as well as special instructions recognized only by the linker. You
can also use options files to create shareable images.

/[NO]SHAREABLE
/NOSHAREABLE (default)
Creates a shareable image. A shareable image has all of its internal references
resolved, but must be linked with one or more object modules to produce an
executable image. For example, a shareable image can contain a library of
routines or can be used by the system manager to create a global section for all
users.

To include a shareable image as input to the linker, you can insert the
shareable image into a shareable image library and specify the library as
input to the LINK command. By default, the linker automatically searches the
system-supplied shareable image library SYS$LIBRARY:IMAGELIB.OLB after
searching any libraries you specify on the LINK command line. You can also
include a shareable image by using a linker options file.

The /NOSHAREABLE qualifier specifies that the image produced cannot be
linked with other images.

/[NO]TRACEBACK
/TRACEBACK (default)
Causes the generation of error messages to be accompanied by symbolic
traceback information. This information shows the sequence of calls
that transferred control to the program in which the error occurred.
/NOTRACEBACK suppresses production of traceback information.

The traceback capability is automatically included with the /DEBUG
qualifier; therefore, if you specify both /DEBUG and /NOTRACEBACK,
/NOTRACEBACK has no effect.

For More Information:

• On debugging (Section 4.1)

• On object-module libraries (Section 1.2.3)

• On shareable images, options files, and contents of map files
(HP OpenVMS Linker Utility Manual)

Compiling HP Pascal Programs 1–35

1.2.3 Object Module Libraries
An object module library contains modules of program text that have been
successfully compiled. To link modules contained in a object module library,
use the /INCLUDE qualifier and specify the modules you want to link. For
example:

$ LINK GARDEN,VEGETABLES/INCLUDE=(EGGPLANT,TOMATO,
BROCCOLI,ONION)

This example directs the linker to link the subprogram modules EGGPLANT,
TOMATO, BROCCOLI, and ONION with the main program module GARDEN.

Besides program modules, an object module library can also contain a symbol
table with the names of each global symbol in the library, and the name of the
module in which they are defined. You specify the name of the object module
library containing symbol definitions with the /LIBRARY qualifier. When you
use the /LIBRARY qualifier during a link operation, the linker searches the
specified library for all unresolved references found in the included modules
during compilation.

Also, by default, the linker automatically searches the system-supplied
shareable image library SYS$LIBRARY:IMAGELIB.OLB after searching any
libraries you specify on the LINK command.

In the following example, the linker uses the library RACQUETS to resolve
undefined symbols in BADMINTON, TENNIS, and RACQUETBALL.

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library to be your default library by using
the DCL command DEFINE. The linker searches default user libraries for
unresolved references after it searches modules and libraries specified in the
LINK command.

For More Information:

• On the LINK command and qualifiers (Section 1.2)

• On the OpenVMS Linker (HP OpenVMS Linker Utility Manual)

• On the DCL command DEFINE (HP OpenVMS DCL Dictionary)

1–36 Compiling HP Pascal Programs

1.3 RUN Command
The RUN command executes programs that have been linked into an
executable image by the OpenVMS Linker. This command has the following
format:

RUN [/command-qualifier] file-spec

/command-qualifier
The name of a qualifier that indicates special processing to be performed by
the linker on all files listed.

file-spec
The name of the executable image you want to run. The default file type for
executable images is .EXE.

The image activator accepts one command qualifier, as follows:

/[NO]DEBUG
depends on linking (default)
The /[NO]DEBUG qualifier is optional. Specify the /DEBUG qualifier to
request the debugger, if the image was not linked with it. You cannot use
/DEBUG on images linked with the /NOTRACEBACK qualifier. If the image
was linked with the /DEBUG qualifier and you do not want the debugger to
prompt, use the /NODEBUG qualifier. The default action depends on whether
you specified /DEBUG on the LINK command line.

Consider the following examples:

$ RUN PROG

This example executes the image PROG.EXE. If you specified /DEBUG to the
linker while creating PROG.EXE, the image activator passes control to the
debugger upon execution. If you did not specify /DEBUG to the linker while
creating PROG.EXE, the image activator executes the program.

$ RUN/NODEBUG PROG

This example executes the image PROG.EXE without invoking the debugger.

For More Information:

• On debugging (Section 4.1)

• On messages generated by the image activator (Section 1.4)

• On the DCL command RUN (HP OpenVMS DCL Dictionary)

Compiling HP Pascal Programs 1–37

1.4 Error Messages
During program development, you can have to respond to messages regarding
possible syntax or logic errors in your program. These messages have the
following form:

%SOURCE-CLASS-MNEMONIC, message_text

SOURCE
A code that identifies the origin of the message. For example, the PASCAL
code identifies the HP Pascal compiler, and the PAS code identifies the HP
Pascal run-time system.

CLASS
A single character that determines message severity. The four classes of error
messages are: Informational (I), Warning (W), Error (E), and Fatal (F). The
definition for each class depends on the source of the message, but execution of
your request does not continue when E- or F-level errors occur.

MNEMONIC
A name that is unique to that message.

message_text
Explains the event that caused the message to be generated.

For example, a common linker error occurs when you omit required file
or library names from the command line, and the linker cannot locate
the definition for a specified global symbol reference. The following error
messages appear when a main program in OCEAN.OBJ calls a subprogram in
SEAWEED.OBJ that is not specified in the LINK command:

%LINK-W-NUDFSYMS, 1 undefined symbol
%LINK-I-UDFSYMS, SEAWEED
%LINK-W-USEUNDEF, module "OCEAN" references undefined symbol "SEAWEED"
%LINK-W-DIAGISUED, completed but with diagnostics

For More Information:

• On the complete list of HP Pascal compile-time and run-time errors
(Appendix C)

• On the complete list of linker messages (HP OpenVMS Linker Utility
Manual)

1–38 Compiling HP Pascal Programs

2
Separate Compilation

Pascal allows you to divide your application into subprograms by creating
procedures and functions. HP Pascal allows you further modularity by
allowing you to create compilation units, called programs and modules, that
can be compiled separately. This chapter discusses the following topics about
separate compilation:

• Section 2.1, ENVIRONMENT, HIDDEN, and INHERIT Attributes

• Section 2.2, Interfaces and Implementations

• Section 2.3, Data Models

• Section 2.4, Separate Compilation Examples

Note

The sections at the beginning of this chapter use code fragments from
the examples in this chapter and in the online example directory, which
by default is PASCAL$EXAMPLES.

For More Information:

• On the ENVIRONMENT, HIDDEN, and INHERIT attributes
(HP Pascal for OpenVMS Language Reference Manual)

• On compiling and executing programs and modules (Chapter 1)

2.1 ENVIRONMENT, HIDDEN, and INHERIT Attributes
To divide your program into a program and a series of modules, you need
to decide, according to the needs of your application, which data types,
constants, variables, and routines need to be shared either by other modules
or by the program. To share data, create an environment file by using the
ENVIRONMENT attribute in a module. Consider the following example:

Separate Compilation 2–1

{
Source File: share_data.pas
This program initializes data to be shared with another compilation
unit.
}
[ENVIRONMENT(’share_data’)]
Module Share_Data;
CONST

Rate_For_Q1 = 0.1211;
Rate_For_Q2 = 0.1156;
Rate_For_Q3 = 0.1097;
Rate_For_Q4 = 0.11243;

TYPE
Initialized_Type = ARRAY[1..10] OF INTEGER VALUE

[1..5: 67; 6,9: 105; OTHERWISE 33];
END.

If you do not specify a file name, HP Pascal creates an environment file using
the file name of the source file and a default extension of .PEN. Another
compilation unit can access the types and constants in the previous example by
inheriting the environment file, as follows:

{
Source File: program.pas
This code inherits data declarations and uses them in a program.
}
[INHERIT(’share_data’)]
PROGRAM Use_Data(OUTPUT);
VAR

a, b, c : Initialized_Type;
Total : REAL VALUE 0.0;

BEGIN
Total := Total + (Total * Rate_For_Q3);
WRITELN(b[7]); {b is of an initialized type}
END.

To build and run the application made up of the code in the previous examples,
use the following commands:

$ PASCAL SHARE_DATA
$ PASCAL PROGRAM
$ LINK PROGRAM
$ RUN PROGRAM

33

If a module contains variable declarations, routine declarations, schema
types, or module initialization or finalization sections, you must link the
program with the module that created the environment file to resolve external
references. To prevent errors, you may wish to link programs with modules of
inherited environment files as standard programming practice. For example, if

2–2 Separate Compilation

SHARE_DATA contained a variable declaration, you must enter the following
to resolve the external reference:

$ PASCAL SHARE_DATA
$ PASCAL PROGRAM
$ LINK PROGRAM, SHARE_DATA
$ RUN PROGRAM

33

For many applications, it is a good idea to place all globally accessible data
into one module, create a single environment file, and inherit that module in
other compilation units that need to make use of that data. Using environment
files in this way reduces the difficulties in maintaining the data (it is easier to
maintain one file) and it eliminates problems that can occur when you cascade
environment files. If compilation unit A inherits an environment file from
compilation unit B, and if unit B inherits a file from unit C, then inheritance is
cascading. Figure 2–1 shows a cascading inheritance path and a noncascading
inheritance path.

Figure 2–1 Cascading Inheritance of Environment Files

ZK−1469A−GE

Problematic: Efficient:

Key:

Inherited by

C.U.1

C.U.4

C.U.2 C.U.3

C.U.1 C.U.3

C.U.4

C.U.2

Cascading is not always undesirable; it depends on your application and on the
nature of the environment files. For example, if cascading occurs for a series
of constant and type definitions that are not likely to change, cascading may
require very little recompiling and relinking. However, if the constant and type
definitions change often or if environment files contain routines and variables,
you may find it easier to redesign the inheritance paths of environment files
due to the recompiling and relinking involved.

Separate Compilation 2–3

Also, the inheritance path labeled Efficient in Figure 2–1 is not immune to
misuse. That inheritance path, although it avoids the problems of cascading,
may still involve multiply declared identifiers (identical identifiers contained
in several of the compilation units whose environment files are inherited by
compilation unit 4).

In many instances, HP Pascal does not allow multiply declared identifiers
in one application. For example, a compilation unit cannot inherit two
environment files that declare the same identifier; also, a compilation unit
usually cannot inherit an environment file that contains an identifier that is
identical to an identifier in the outermost level of the unit (one exception, for
example, is the redeclaration of a redefinable reserved word or of an identifier
predeclared by HP Pascal). Also, HP Pascal allows the following exceptions to
the rules concerning multiply declared identifiers:

• A variable identifier can be multiply declared if all declarations of the
variable have the same type and attributes, and if all but one declaration
at most are external.

• A procedure identifier can be multiply declared if all declarations of the
procedure have congruent parameter lists and if all but one declaration at
most are external.

• A function identifier can be multiply declared if all declarations of the
function have congruent parameter lists and identical result types, and if
all but one declaration at most are external.

If a compilation unit creates an environment file and if it contains data
that you do not want to share with other compilation units, you can use the
HIDDEN attribute. Consider the following example:

[ENVIRONMENT]
MODULE Example;
TYPE

Array_Template(Upper : INTEGER) =
[HIDDEN] ARRAY[1..Upper] OF INTEGER;

Global_Type : Array_Template(10);
VAR

i : [HIDDEN] INTEGER; {Used for local incrementing}

PROCEDURE x;
BEGIN

i := i + 1;
END;

2–4 Separate Compilation

PROCEDURE y;
BEGIN

FOR i := i + 1;
END;

END.

The code in the previous example hides the schema type, preventing the
schema type from being used in inheriting modules. (Whether to hide the type
depends on the requirements of a given application.) Also, HP Pascal does not
include the variable i in the environment file; this allows inheriting modules
to declare the identifier variable i as an incrementing variable without being
concerned about generating errors for a multiply defined identifier.

HP Pascal performs compile-time and link-time checks to ensure that
all compilations that inherit environment files actually used the same
environment file definition. Information is placed in the object file such that
the OpenVMS Linker performs the same check between each object file that
inherited environment files.

By default, compilation units that inherit an environment file compare the
embedded compilation time inside the environment file:

• Uses found in any other environment files that are also inherited.

If the times are different, a compile-time message is displayed.

This checking can be disabled or modified by using the PEN_CHECKING_
STYLE attribute in the Pascal source file that created the environment file.
Once the environment file exists, its selected checking style will be performed
at each use.

The PEN_CHECKING_STYLE attribute is valid at the beginning of a
MODULE that creates an environment. The syntax is:

PEN_CHECKING_STYLE(keyword)

In this format "keyword" is:

• COMPILATION_TIME

Uses the compilation time of the environment file in all subsequent
compile-time checking for users of this environment file. This is the
default.

• IDENT_STRING

Uses the [IDENT()] string of the environment file in all subsequent
compile-time checking for users of this environment file.

• NONE

Separate Compilation 2–5

Disables all compile-time checking for users of this environment file.

When HP Pascal compiles a module with the /ENVIRONMENT qualifier
or [ENVIRONMENT] attribute, it generates an environment file and an
object file. This is also true when compiling a or program, although it is
not customary to generate an environment from a program. The PEN file
contains compressed symbol table information and is used by subsequent
Pascal compilations with the INHERIT attribute.

Neither the OpenVMS Linker or ANALYZE/OBJECT reads environment
files. Only the HP Pascal compiler uses these files. The OBJ file contains the
following:

• Storage for variables declared at the outermost level of the module

• Code for procedures/functions contained in the module

• Linker timestamp verification for all inherited environment files and for
the environment file being created.

• Compiler-generated variables and routines to support schema types
declared or discriminated at the outermost level of the module

• Code for the TO BEGIN DO or TO END DO sections (the module will have
an invisible TO BEGIN DO section if it inherits an environment whose
creating module also had a TO BEGIN DO or TO END DO section)

It is possible for the OBJ file to contain just the linker timestamp record
for the environment being created. Since the linker does not require the
timestamp record for correct behavior, you may not need the OBJ file created
when generating a PEN file however, if the module is used inherited variables
or routines, then the OBJ file is needed at link time. This applies not only
to the environments inherited by the program, but also to any environments
inherited by modules which create subsequent environments.

With the addition of schema types and TO BEGIN DO and TO END DO
sections, the decision on which OBJ files to include on the LINK command
becomes more complicated. This is due to:

• The compiler-generated variables and routines for schema types

• Any module initialization or finalization sections (TO BEGIN DO and TO
END DO sections)

• The fact that currently PROGRAMs that inherit modules with initialization
routines do not call the module’s initialization routines directly but rely on
the OpenVMS LIB$INITIALIZE feature to activate them.

2–6 Separate Compilation

The rule is still basically "Use any OBJ whose module contained variables
or routines" but now you must consider compiler-generated variables or
routines, as well as user-defined variables or routines. Depending on the
modules involved, missing OBJ files might not be detected by the linker, since
PROGRAMs do not directly call their inherited initialization routines.

Compiling with the /DEBUG qualifier might require more OBJ files to be
included on the LINK command. Normally, the compiler only uses the
inherited compiler-generated variables and routines if the corresponding
schema types are used in certain Pascal constructs. However, the Debug
information generated to describe the schema types always requires the
compiler-generated variables and routines. This is because a user might ask
the Debugger to perform some operation on the variable that did not appear in
the source code. Therefore, if you omitted an OBJ file on the LINK command
and did not get a linker error, you might get an error if the /DEBUG qualifier
was used.

All OBJ files from modules creating environments must be included on the
LINK command line if they contain variables or routines (either user-generated
or compiler-generated). To receive the full benefit of the linker’s timestamp
verification, you should include all OBJ files on the LINK command.

2.2 Interfaces and Implementations
If your application requires, you can use a method of creating and inheriting
environment files that minimizes the number of times you have to recompile
compilation units. This method involves the division of module declarations
into two separate modules: an interface module and an implementation
module. The interface module contains data that is not likely to change:
constant definitions, variable declarations, and external routine declarations.
The implementation module contains data that may change: bodies of
the routines declared in the interface module, and private types, variables,
routines, and so forth.

The interface module creates the environment file that is inherited by both the
implementation module and by the program. Figure 2–2 shows the inheritance
process.

Separate Compilation 2–7

Figure 2–2 Inheritance Path of an Interface, an Implementation, and a
Program

Interface
Module

Program Implementation
Module

ZK−1491A−GE

means "is inherited by"

Consider this code fragment from the interface module in Example 2–1 (see
Section 2.4):

[ENVIRONMENT(’interface’)]
MODULE Graphics_Interface(OUTPUT);

{Globally accessible type}

{Provide routines that manipulate the shapes:}
PROCEDURE Draw(s : Shape); EXTERNAL;
PROCEDURE Rotate(s : Shape); EXTERNAL;
PROCEDURE Scale(s : Shape); EXTERNAL;
PROCEDURE Delete(s : Shape); EXTERNAL;

{Module initialization section}

END.

The code contained in the interface is not likely to change often. The
implementation code can change without requiring recompilation of the
other modules in the application. Consider this code fragment from the
implementation module in Example 2–2 (see Section 2.4):

2–8 Separate Compilation

[INHERIT(’Interface’)] {Predeclared graphics types and routines}
MODULE Graphics_Implementation(OUTPUT);

[GLOBAL] PROCEDURE Rotate(s : Shape);
BEGIN
WRITELN(’Rotating the shape :’, s.t);
END;

To compile, link, and run the code in Examples 2–1, 2–2, and 2–3 (the main
program), use the following commands:

$ PASCAL GRAPHICS_INTERFACE
$ PASCAL GRAPHICS_IMPLEMENTATION
$ PASCAL GRAPHICS_MAIN_PROGRAM
$ LINK GRAPHICS_MAIN_PROGRAM, GRAPHICS_IMPLEMENTATION,-
_$ GRAPHICS_INTERFACE
$ RUN GRAPHICS_MAIN_PROGRAM

If you need to change the code contained in any of the routine bodies declared
in the implementation module, you do not have to recompile the program
to reflect the changes. For example, if you have to edit the implementation
module, you can regenerate the application with the following commands:

$ EDIT GRAPHICS_IMPLEMENTATION
$ PASCAL GRAPHICS_IMPLEMENTATION
$ LINK GRAPHICS_MAIN_PROGRAM, GRAPHICS_IMPLEMENTATION,-
_$ GRAPHICS_INTERFACE
$ RUN GRAPHICS_MAIN_PROGRAM

In this manner, interfaces and implementations can save you maintenance
time and effort. In addition, the interface and implementation design allows
you to better predict when cascading inheritance may provide maintenance
problems. Figure 2–3 shows two forms of cascading.

Separate Compilation 2–9

Figure 2–3 Cascading Using the Interface and Implementation Design

ZK−1492A−GE

Interface
and

Implementation

Interface
and

Implementation

Interface
and

Implementation

Interface

Interface

Interface

A B

If the compilation units creating environment files are designed to contain both
interface and implementation declarations, the cascading in column A may lead
to more recompiling, more relinking, and more multiply declared identifiers.
The design shown in column B does not always provide easy maintenance,
but it is more likely to do so. For example, if each interface provided a
different kind of constant or type (as determined by your application) and if the
constants and types are not derived from one another, the inheritance path in
column B may be quite efficient and orderly, and may require little recompiling
and relinking.

Do not place the following in an implementation module:

• Nonstatic types and variables at the module level

• A module initialization section (TO BEGIN DO)

2–10 Separate Compilation

• A module finalization section (TO END DO)

These restrictions are necessary because HP Pascal cannot determine the
order of activation of initialization and finalization sections that do not directly
follow an environment-file inheritance path. Since implementation modules do
not create environment files, the initialization and finalization sections in those
modules are effectively outside of any inheritance path. Also, if you use the
previously listed objects in implementation modules, there may be attempts to
access data that has not yet been declared. Consider the following example:

{In one file:}
[ENVIRONMENT(’interface’)]
MODULE Interface;
PROCEDURE x; EXTERNAL;
END.

{In another file:}
[INHERIT(’interface’)]
MODULE Implementation(OUTPUT);
VAR

My_String : STRING(10);

[GLOBAL] PROCEDURE x;
BEGIN
WRITELN(My_String);
END;

TO BEGIN DO
My_String := ’Okay’;

END.

In the previous example, it is possible for you to call procedure x
(in some other module that also inherits INTERFACE.PEN) before the
creation and initialization of the variable My_String. You can circumvent this
problem by using a routine call to initialize the variable and by moving the
code to the interface module, as shown in the next example:

{In one file:}
[ENVIRONMENT(’interface’)]
MODULE Interface;
VAR

My_String : STRING(10);

PROCEDURE x; EXTERNAL;
PROCEDURE Initialize; EXTERNAL;

TO BEGIN DO
Initialize;

END.

Separate Compilation 2–11

{In another file:}
[INHERIT(’interface’)]
MODULE Implementation(OUTPUT);

[GLOBAL] PROCEDURE x;
BEGIN
WRITELN(My_String);
END;

[GLOBAL] PROCEDURE Initialize;
BEGIN
My_String := ’Okay’;
END;

END.

2.3 Data Models
Using separate compilation and a few other features of HP Pascal (including
initial states, constructors, the HIDDEN attribute, and TO BEGIN DO and
TO END DO sections), you can construct models for creating, distributing,
isolating, and restricting data in an application.

Of course, the design of the data model depends on the needs of a particular
application. However, to show some of the power of HP Pascal features used
in conjunction, Examples 2–1, 2–2, and 2–3 in Section 2.4 create a generic
graphics application. Consider the following code fragment from Example 2–1:

TYPE
Shape_Types = (Rectangle, Circle); {Types of graphics objects}

Shape(t : Shape_Types) = RECORD
{Starting coordinate points}

Coordinate_X, Coordinate_Y : REAL VALUE 50.0;
CASE t OF {Shape-specific values}

Rectangle : (Height, Width : REAL VALUE 10.0);
Circle : (Radius : REAL VALUE 5.0);

END;

{Provide routines that manipulate the shapes:}
PROCEDURE Draw(s : Shape); EXTERNAL;
PROCEDURE Rotate(s : Shape); EXTERNAL;
PROCEDURE Scale(s : Shape); EXTERNAL;
PROCEDURE Delete(s : Shape); EXTERNAL;

The interface module provides an interface to the rest of the application.
This module contains types and external procedure declarations that the data
model chooses to make available to other compilation units in the application;
other units can access these types and routines by inheriting the generated
environment file.

2–12 Separate Compilation

The type Shape_Types defines two legal graphical objects for this application:
a circle and a rectangle. The type Shape can be used by other units to create
circles and rectangles of specified dimensions. This code uses a variant record
to specify the different kinds of data needed for a circle (a radius value) and a
rectangle (height and width values).

Since the type has initial-state values, any variable declared to be of this type
receives these values upon declaration. Providing initial states for types that
are included in environment files can prevent errors when other compilation
units try to access uninitialized data.

The initial states in this code are specified for the individual record values. You
can also provide an initial state for this type using a constructor, as follows:

Shape(t : Shape_Types) = RECORD
Coordinate_X, Coordinate_Y : REAL;
CASE t OF

Square : (Height, Width : REAL);
Circle : (Radius : REAL);

END VALUE [Coordinate_X : 50.0; Coordinate_Y : 50.0;
CASE Circle OF [Radius : 5.0]];

If you use constructors for variant records, you can only specify an initial state
for one of the variant values. If you need to specify initial states for all variant
values, you must specify the initial states on the individual variants, as shown
in Example 2–1.

The interface module also declares routines that can draw, rotate, scale, and
delete an object of type Shape. The bodies of these routines are located in the
implementation module. The interface module also contains a TO BEGIN DO
section, as shown in the following code fragment:

[HIDDEN] PROCEDURE Draw_Logo; EXTERNAL;

{
Before program execution, display a logo to which the main
program has no access.
}
TO BEGIN DO

Draw_Logo;

As with the other routines, the body of Draw_Logo is located in the
implementation module. The HIDDEN attribute prevents compilation
units that inherit the interface environment file from calling the Draw_Logo
routine. This ensures that the application only calls Draw_Logo once at the
beginning of the application.

Separate Compilation 2–13

Using this design, the interface module can provide graphical data and
tools to be used by other compilation units without the other units having
to worry about implementation details. The actual details are contained in
one implementation module. For example, the routine bodies are contained
in the implementation module. Consider the following code fragment from
Example 2–2:

{Declare routine bodies for declarations in the interface}
[GLOBAL] PROCEDURE Draw(s : Shape);

BEGIN
CASE s.t OF

Circle : WRITELN(’Code that draws a circle’);
Rectangle : WRITELN(’Code that draws a rectangle’);
END;

END; {Procedure Draw}

The routine bodies of the external routines declared in the interface module
are located in the implementation module. The code in each of the routines
uses the actual discriminant of parameter s to determine if the shape is a circle
or a rectangle and draws the shape. If this code needs to change, it does not
require that you recompile the code in Examples 2–1 or 2–3 in Section 2.4.

Example 2–2 also contains code that is isolated and hidden from other
compilation units that inherit the interface environment file. Consider the
following code fragment from the interface module:

[GLOBAL] PROCEDURE Draw_Logo;
VAR

Initial_Shape : Shape(Circle) {Declare object}
VALUE [Coordinate_X : 50.0;

Coordinate_Y : 50.0;
CASE Circle OF
[Radius : 15.75;]];

BEGIN
WRITELN(’Drawing a company logo’);
Draw(Initial_Shape);
{Code pauses for 30 seconds as the user looks at the logo.}
Delete(Initial_Shape);
WRITELN;
{Ready for the rest of the graphics program to begin.}
END;

In the graphical data model, you may wish to define a company logo, and you
may wish to display that logo on the screen before any other graphical data is
drawn or displayed. This code declares the variable Initial_Shape. Since this
variable is declared locally to Draw_Logo and since Draw_Logo is contained
in a module that does not produce an environment file, other modules that
may have access to the interface environment file do not have access to this

2–14 Separate Compilation

variable. In this application, you may not wish to give other compilation units
the power to alter the company logo.

The code in the interface’s TO BEGIN DO section, which executes before any
program code, displays the company logo and deletes it to begin the application.
Consider again the compilation process for interfaces, implementations, and
programs:

$ PASCAL GRAPHICS_INTERFACE
$ PASCAL GRAPHICS_IMPLEMENTATION
$ PASCAL GRAPHICS_MAIN_PROGRAM
$ LINK GRAPHICS_MAIN_PROGRAM, GRAPHICS_IMPLEMENTATION,-
_$ GRAPHICS_INTERFACE
$ RUN GRAPHICS_MAIN_PROGRAM

HP Pascal executes the TO BEGIN DO section according to the inheritance
order of environment files. Remember that HP Pascal cannot determine the
order of execution for TO BEGIN DO sections contained in implementation
modules, so do not use them there.

Using this design, you can allow different sites that run the graphics
application to access global data through the interface module. One location
can maintain and control the contents of the implementation module, shipping
the implementation’s object module for use at other sites. You can use this
method for other types of sensitive data or data that needs to be maintained
locally.

Separate Compilation 2–15

2.4 Separate Compilation Examples
Example 2–1 shows an interface module that creates the environment file
INTERFACE.PEN. This environment file is inherited in Examples 2–2 and
in 2–3.

Example 2–1 An Interface Module for Graphics Objects and Routines

{
Source File: graphics_interface.pas
This module creates an interface to graphical data and routines.
}
[ENVIRONMENT(’interface’)]
MODULE Graphics_Interface;
TYPE

Shape_Types = (Rectangle, Circle); {Types of graphics objects}

Shape(t : Shape_Types) = RECORD
{Starting coordinate points:}

Coordinate_X, Coordinate_Y : REAL VALUE 50.0;
CASE t OF {Shape-specific values}

Rectangle : (Height, Width : REAL VALUE 10.0);
Circle : (Radius : REAL VALUE 5.0);

END;

{Provide routines that manipulate the shapes:}
PROCEDURE Draw(s : Shape); EXTERNAL;
PROCEDURE Rotate(s : Shape); EXTERNAL;
PROCEDURE Scale(s : Shape); EXTERNAL;
PROCEDURE Delete(s : Shape); EXTERNAL;
[HIDDEN] PROCEDURE Draw_Logo; EXTERNAL;

{
Before program execution, display a logo to which the main
program has no access.
}
TO BEGIN DO

Draw_Logo;
END.

2–16 Separate Compilation

Example 2–2 shows the implementation of the routines declared in
Example 2–1.

Example 2–2 An Implementation Module for Graphics Objects and Routines

{
Source File: graphics_implementation.pas
This module implements the graphics routines and data declarations
made global by the interface module.
}
[INHERIT(’Interface’)] {Predeclared graphics types and routines}
MODULE Graphics_Implementation(OUTPUT);

{Declare routine bodies for declarations in the interface:}
[GLOBAL] PROCEDURE Draw(s : Shape);

BEGIN
CASE s.t OF

Circle : WRITELN(’Code that draws a circle’);
Rectangle : WRITELN(’Code that draws a rectangle’);
END;

END; {Procedure Draw}

[GLOBAL] PROCEDURE Rotate(s : Shape);
BEGIN
WRITELN(’Rotating the shape :’, s.t);
END;

[GLOBAL] PROCEDURE Scale(s : Shape);
BEGIN
WRITELN(’Scaling the shape :’, s.t);
END;

[GLOBAL] PROCEDURE Delete(s : Shape);
BEGIN
WRITELN(’Deleting the shape :’, s.t);
END;

(continued on next page)

Separate Compilation 2–17

Example 2–2 (Cont.) An Implementation Module for Graphics Objects and
Routines

[GLOBAL] PROCEDURE Draw_Logo;
VAR

Initial_Shape : Shape(Circle) {Declare object}
VALUE [Coordinate_X : 50.0;

Coordinate_Y : 50.0;
CASE Circle OF
[Radius : 15.75;]];

BEGIN
WRITELN(’Drawing a company logo’);
Draw(Initial_Shape);
{Code pauses for 30 seconds as the user looks at the logo.}
Delete(Initial_Shape);
WRITELN;
{Ready for the rest of the graphics program to begin.}
END;

END.

Example 2–3 shows a main program and its use of the types and routines
provided by the interface module.

Example 2–3 A Graphics Main Program

{
Source File: graphics_main_program.pas
This program inherits the interface environment file, which gives it
access to the implementation’s declarations.
}
[INHERIT(’Interface’)] {Types and routines in interface module}
PROGRAM Graphics_Main_Program(OUTPUT);

VAR
My_Shape : Shape(Rectangle)

VALUE [Coordinate_X : 25.0;
Coordinate_Y : 25.0;
CASE Rectangle OF
[Height : 12.50; Width : 25.63]];

BEGIN
{
You cannot access the variable Initial_Shape, because it is in the
implementation module, and that module does not create an environment
file.

(continued on next page)

2–18 Separate Compilation

Example 2–3 (Cont.) A Graphics Main Program

You can work with My_Shape. If you did not provide initial values in
this declaration section, the module Graphics_Interface provided
initial values for the schema type Shape.
}
Draw(My_Shape);
Scale(My_Shape);
Rotate(My_Shape);
Delete(My_Shape);
END.

To compile, link, and run the code in Examples 2–1, 2–2, and 2–3, enter the
following:

$ PASCAL GRAPHICS_INTERFACE
$ PASCAL GRAPHICS_IMPLEMENTATION
$ PASCAL GRAPHICS_MAIN_PROGRAM
$ LINK GRAPHICS_MAIN_PROGRAM, GRAPHICS_IMPLEMENTATION,-
_$ GRAPHICS_INTERFACE
$ RUN GRAPHICS_MAIN_PROGRAM
Drawing a company logo
Code that draws a circle
Deleting the shape : CIRCLE

Code that draws a rectangle
Scaling the shape : RECTANGLE
Rotating the shape : RECTANGLE
Deleting the shape : RECTANGLE

Separate Compilation 2–19

3
Program Correctness, Optimization, and

Efficiency

This chapter discusses the following topics:

• Section 3.1, Compiler Optimizations

• Section 3.2, Programming Considerations

• Section 3.3, Implementation-Dependent Behavior

The objective of optimization is to produce source and object programs that
achieve the greatest amount of processing with the least amount of time and
memory. Realizing this objective requires programs that are carefully designed
and written, and compilation techniques, such as those used by
HP Pascal, that take advantage of the operating system and machine
architecture environment. (The benefits of portable code and program
efficiency depend on the requirements of your application.)

3.1 Compiler Optimizations
By default, programs compiled with the HP Pascal compiler undergo
optimization. An optimizing compiler automatically attempts to remove
repetitious instructions and redundant computations by making assumptions
about the values of certain variables. This, in turn, reduces the size of the
object code, allowing a program written in a high-level language to execute
at a speed comparable to that of a well-written assembly language program.
Optimization can increase the amount of time required to compile a program,
but the result is a program that may execute faster and more efficiently than a
nonoptimized program.

The language elements you use in the source program directly affect the
compiler’s ability to optimize the object program. Therefore, you should be
aware of the ways in which you can assist compiler optimization. In addition,
this awareness often makes it easier for you to track down the source of a
problem when your program exhibits unexpected behavior.

Program Correctness, Optimization, and Efficiency 3–1

The compiler performs the following optimizations:

• Compile-time evaluation of constant expressions

• Elimination of some common subexpressions

• Partial elimination of unreachable code

• Code hoisting from structured statements, including the removal of
invariant computations from loops

• Inline code expansion for many predeclared functions

• Inline code expansion for user-declared routines

• Rearrangement of unary minus and NOT operations to eliminate unary
negation and complement operations

• Partial evaluation of logical expressions

• Propagation of compile-time known values

• Strength reduction (OpenVMS I64 and OpenVMS Alpha systems)

• Split lifetime analysis (OpenVMS I64 and OpenVMS Alpha systems)

• Code scheduling (OpenVMS I64 and OpenVMS Alpha systems)

• Loop unrolling (OpenVMS I64 and OpenVMS Alpha systems)

• Software pipelining (OpenVMS I64 and OpenVMS Alpha systems)

These optimizations are described in the following sections. In addition, the
compiler performs the following optimizations, which can be detected only by a
careful examination of the machine code produced by the compiler:

• Global assignment of variables to registers

If possible, reduce the number of memory references needed by assigning
frequently referenced variables to registers.

• Reordering the evaluation of expressions

This minimizes the number of temporary values required.

• Peephole optimization of instruction sequences

The compiler examines code a few instructions at a time to find operations
that can be replaced by shorter and faster equivalent operations.

For More Information:

• On HP Pascal language elements (HP Pascal for OpenVMS Language
Reference Manual)

3–2 Program Correctness, Optimization, and Efficiency

3.1.1 Compile-Time Evaluation of Constants
The compiler performs the following computations on constant expressions at
compile time:

• Negation of constants

The value of a constant preceded by unary minus signs is negated at
compile time. For example:

x := -10.0;

• Type conversion of constants

The value of a lower-ranked constant is converted to its equivalent in the
data type of the higher-ranked operand at compile time. For example:

x := 10 * y;

If x and y are both real numbers, then this operation is compiled as follows:

x := 10.0 * y;

• Arithmetic on integer and real constants

An expression that involves +, –, *, or / operators is evaluated at compile
time. For example:

CONST
nn = 27;

{In the executable section:}
i := 2 * nn + j;

This is compiled as follows:

i := 54 + j;

• Array address calculations involving constant indexes

These are simplified at compile time whenever possible. For example:

VAR
i : ARRAY[1..10, 1..10] OF INTEGER;

{In the executable section:}
i[1,2] := i[4,5];

• Evaluation of constant functions and operators

Arithmetic, ordinal, transfer, unsigned, allocation size, CARD, EXPO, and
ODD functions involving constants, concatenation of string constants, and
logical and relational operations on constants, are evaluated at compile
time.

Program Correctness, Optimization, and Efficiency 3–3

For More Information:

• On the complete list of compile-time operations and routines (HP Pascal for
OpenVMS Language Reference Manual)

3.1.2 Elimination of Common Subexpressions
The same subexpression often appears in more than one computation within a
program. For example:

a := b * c + e * f;

h := a + g - b * c;

IF ((b * c) - h) <> 0 THEN ...

In this code sequence, the subexpression b * c appears three times. If the
values of the operands b and c do not change between computations, the
value b * c can be computed once and the result can be used in place of the
subexpression. The previous sequence is compiled as follows:

t := b * c;

a := t + e * f;

h := a + g - t;

IF ((t) - h) <> 0 THEN ...

Two computations of b * c have been eliminated. In this case, you could have
modified the source program itself for greater program optimization.

The following example shows a more significant application of this kind of
compiler optimization, in which you could not reasonably modify the source
code to achieve the same effect:

VAR
a, b : ARRAY[1..25, 1..25] OF REAL;

{In the executable section:}
a[i,j] := b[i,j];

Without optimization, this source program would be compiled as follows:

t1 := (j - 1) * 25 + i;
t2 := (j - 1) * 25 + i;
a[t1] := b[t2];

Variables t1 and t2 represent equivalent expressions. The compiler eliminates
this redundancy by producing the following optimization:

t = (j - 1) * 25 + i;
a[t] := b[t];

3–4 Program Correctness, Optimization, and Efficiency

3.1.3 Elimination of Unreachable Code
The compiler can determine which lines of code, if any, are never executed
and eliminates that code from the object module being produced. For example,
consider the following lines from a program:

CONST
Debug_Switch = FALSE;

{In the executable section:}
IF Debug_Switch THEN WRITELN(’Error found here’);

The IF statement is designed to write an error message if the value of the
symbolic constant Debug_Switch is TRUE. Suppose that the error has been
removed, and you change the definition of Debug_Switch to give it the value
FALSE. When the program is recompiled, the compiler can determine that
the THEN clause will never be executed because the IF condition is always
FALSE; no machine code is generated for this clause. You need not remove the
IF statement from the source program.

Code that is otherwise unreachable, but contains one or more labels, is not
eliminated unless the GOTO statement and the label itself are located in the
same block.

3.1.4 Code Hoisting from Structured Statements
The compiler can improve the execution speed and size of programs by
removing invariant computations from structured statements. For example:

FOR j := 1 TO i + 23 DO
BEGIN
IF Selector THEN a[i + 23, j - 14] := 0
ELSE b[i + 23, j - 14] := 1;
END;

If the compiler detected this IF statement, it would recognize that, regardless
of the Boolean value of Selector, a value is stored in the array component
denoted by [i + 23, j – 14]. The compiler would change the sequence to the
following:

t := i + 23;
FOR j := 1 TO t DO

BEGIN
u := j - 14;
IF Selector THEN a[t,u] := 0
ELSE b[t,u] := 1;
END;

This removes the calculation of j – 14 from the IF statement, and the
calculation of i + 23 from both the IF statement and the loop.

Program Correctness, Optimization, and Efficiency 3–5

3.1.5 Inline Code Expansion for Predeclared Functions
The compiler can often replace calls to predeclared routines with the actual
algorithm for performing the calculation. For example:

Square := SQR(a);

The compiler replaces this function call with the following, and generates
machine code based on the expanded call:

Square := a * a;

The program executes faster because the algorithm for the SQR function has
already been included in the machine code.

3.1.6 Inline Code Expansion for User-Declared Routines
Inline code expansion for user-declared routines performs in the same manner
as inline code expansion for predeclared functions: the compiler can often
replace calls to user-declared routines with an inline expansion of the routine’s
executable code. Inline code expansion is useful on routines that are called
only a few times. The overhead of an actual procedure call is avoided, which
increases program execution. The size of the program, however, may increase
due to the routine’s expansion.

To determine whether or not it is desirable to inline expand a routine,
compilers use a complex algorithm. Section 3.1.7 describes the algorithm
for HP Pascal on OpenVMS VAX systems; HP Pascal on OpenVMS I64 and
OpenVMS Alpha systems uses a similar algorithm to make the determination.

3.1.7 Testing for Inline Expansion on OpenVMS VAX Systems
The first part of the algorithm performs tests for cases that always prohibit the
routine from being inlined. A failure of one of these tests can be thought of as
a hard failure. These hard failure tests verify that the following are false; if
any one of these tests is true, the routine is not inlined:

• The called routine is an external or inherited routine.

• Either the calling routine or the called routine does not have inlining
optimization enabled. Note that optimization is enabled by default.

• The called routine establishes an exception handler, or is used as an
exception handler.

• The called function result is a structured result type.

• The calling routine and the called routine do not have the same checking
options enabled.

3–6 Program Correctness, Optimization, and Efficiency

• The calling routine and the called routine do not use the same program
section.

• The called routine declares a routine parameter or is itself a routine
parameter.

• The called routine’s parameter list contains a LIST or TRUNCATE
parameter, a read-only VAR parameter, or a conformant parameter.

• The called routine declares local file variables or contains any nonlocal
GOTO operations.

• The called routine references automatic variables in an enclosing scope.

• The called routine uses or declares nonstatic types.

The second part of the algorithm performs tests to determine how desirable it
is to inline the routine at a particular call point. A failure to one of these tests
can be thought of as a soft failure. These tests check for the number of formal
parameters, number of local variables, whether the called routine is directly
recursive, the number of direct calls to the routine, and the size of both the
calling and the called routine.

If an explicit [OPTIMIZE(INLINE)] attribute is specified on the routine
declaration, the hard failure tests are still performed; however, the soft failure
tests are not. So if the routine passes the hard failure tests, that routine is
inlined at all call points. Specifying this attribute provides you with more
power in deciding which routines should be inlined.

Note

There is no stack frame for an inline user-declared routine and
no debugger symbol table information for the expanded routine.
Debugging the execution of an inline routine is difficult and is not
recommended.

3.1.8 Operation Rearrangement
The compiler can produce more efficient machine code by rearranging
operations to avoid having to negate and then calculate the complement of
the values involved. For example:

(-c) * (b - a)

Program Correctness, Optimization, and Efficiency 3–7

If a program includes this operation, the compiler rearranges the operation to
read as follows:

c * (a - b)

These two operations produce the same result, but because the compiler has
eliminated negation or complement operations, the machine code produced is
more efficient.

3.1.9 Partial Evaluation of Logical Expressions
The Pascal language does not specify the order in which the components of an
expression must be evaluated. If the value of an expression can be determined
by partial evaluation, then some subexpressions may not be evaluated at all.
This situation occurs most frequently in the evaluation of logical expressions.
For example:

WHILE (i < 10) AND (a[i] <> 0) DO
BEGIN
a[i] := a[i] + 1;
i := i + 1;
END;

In this WHILE statement, the order in which the two subexpressions
(i < 10) and (a[i] <> 0) are evaluated is not specified; in fact, the compiler
may evaluate them simultaneously. Regardless of which subexpression is
evaluated first, if its value is FALSE the condition being tested in the WHILE
statement is also FALSE. The other subexpression need not be evaluated at
all. In this case, the body of the loop is never executed.

To force the compiler to evaluate expressions in left-to-right order with short
circuiting, you can use the AND_THEN operator, as shown in the following
example:

WHILE (i < 10) AND_THEN (a[i] <> 0) DO
BEGIN
a[i] := a[i] + 1;
i := i + 1;
END;

3.1.10 Value Propagation
The compiler keeps track of the values assigned to variables and traces the
values to most of the places that they are used. If it is more efficient to use the
value rather than a reference to the variable, the compiler makes this change.
This optimization is called value propagation. Value propagation causes the
object code to be smaller, and may also improve run-time speed.

3–8 Program Correctness, Optimization, and Efficiency

Value propagation performs the following actions:

• It allows run-time operations to be replaced with compile-time operations.
For example:

Pi := 3.14;
Pi_Over_2 := Pi/2;

In a program that includes these assignments, the compiler recognizes the
fact that Pi’s value did not change between the time of Pi’s assignment
and its use. So, the compiler would use Pi’s value instead of a reference
to Pi and perform the division at compile time. The compiler treats the
assignments as if they were as follows:

Pi := 3.14;
Pi_Over_2 := 1.57;

This process is repeated, allowing for further constant propagation to occur.

• It allows comparisons and branches to be avoided at run time. For
example:

x := 3;
IF x <> 3 THEN y := 30
ELSE y := 20;

In a program that includes these operations, the compiler recognizes that
the value of x is 3 and the THEN statement cannot be reached. The
compiler will generate code as if the statements were written as follows:

x := 3;
y := 20;

3.1.11 Strength Reduction (OpenVMS I64 and OpenVMS Alpha
systems)
Strength reduction speeds computations by replacing a multiply operation with
a more efficient add instruction when computing array addresses each time
around a loop.

3.1.12 Split Lifetime Analysis (OpenVMS I64 and OpenVMS Alpha
systems)
Split lifetime analysis improves register usage by determining if the lifetime of
a variable can be broken into multiple, independent sections. If so, the variable
may be stored in different registers for each section. The registers can then
be reused for other purposes between sections. Therefore, there may be times
when the value of the variable does not exist anywhere in the registers. For
example:

Program Correctness, Optimization, and Efficiency 3–9

v:= 3.0 *q;
.
.
.

x:= SIN(y)*v:
.
.
.

v:= PI*x:
.
.
.

y:= COS(y)*v;

This example shows that the variable v has two disjoint usage sections. The
value of v in the first section does not affect the value of v in the second
section. The compiler may use different registers for each section.

3.1.13 Code Scheduling (OpenVMS I64 and OpenVMS Alpha systems)
Code scheduling is a technique for reordering machine instructions to maximize
the amount of overlap of the multiple execution units inside the CPU. The
exact scheduling algorithms depend on the implementation of the target
architecture.

3.1.14 Loop Unrolling (OpenVMS I64 and OpenVMS Alpha systems)
Loop unrolling is a technique for increasing the amount of code between
branch instructions and labels by replicating the body of a loop. Increasing
the code optimizes instruction scheduling. The following code shows such a
transformation:

Original Code
FOR i:= 1 to 12 DO

a[i]:= b[i] + c[i]

Unrolled Loop Code
i:= 1
WHILE i < 12 DO

BEGIN
a[i]:= b[i] + c[i];
a[i+1]:= b[i+1] + c[i+1];
a[i+2]:= b[i+2] + c[i+2];
a[i+3]:= b[i+3] + c[i+3];
i:= i+4;
END;

In this example, the loop body was replicated four times, allowing the
instruction scheduler to overlap the fetching of array elements with the
addition of other array elements.

3–10 Program Correctness, Optimization, and Efficiency

By default, loop unrolling makes 4 copies of an unrolled loop. You can change
the number of copies from 1 to 16. This is controlled by:

/OPTIMIZE=UNROLL="number"

Numbers larger than 4 may improve performance at a cost of additional
code size. However, larger numbers may decrease performance due to cache
requirements, register conflicts, and other factors.

3.1.15 Alignment of Compiler-Generated Labels
The compiler aligns the labels it generates for the top of loops, the beginnings
of ELSE branches, and others, on machine-specific boundaries by filling in
unused bytes with NO-OP instructions.

A branch to a longword-aligned address is faster than a branch to an unaligned
address. This optimization may increase the size of the generated code;
however, it increases run-time speed.

3.1.16 Error Reduction Through Optimization
An optimized program produces results and run-time diagnostic messages
identical to those produced by an equivalent unoptimized program. An
optimized program may produce fewer run-time diagnostics, however, and
the diagnostics may occur at different statements in the source program. For
example:

Unoptimized Code Optimized Code

a := x/y; t := x/y;

b := x/y; a := t;

FOR i := 1 TO 10 DO b := t;

c[i] := c[i] * x/y; FOR i := 1 TO 10 DO
c[i] := c[i] * t;

If the value of y is 0.0, the unoptimized program would produce 12 divide-
by-zero errors at run time; the optimized program produces only one. (The
variable t is a temporary variable created by the compiler.) Eliminating
redundant calculations and removing invariant calculations from loops can
affect the detection of such arithmetic errors. You should keep this in mind
when you include error-detection routines in your program.

Program Correctness, Optimization, and Efficiency 3–11

3.1.17 Software Pipelining (OpenVMS I64 and OpenVMS Alpha
systems)
Software pipelining and additional software dependency analysis are enabled
using the /OPTIMIZE=LEVEL=5 command-line option, which in certain cases
improves run-time performance. /OPTIMIZE=LEVEL=5 is not the default;
/OPTIMIZE=LEVEL=4 remains the default.

As compared to regular loop unrolling (enabled at optimization level 3 or
above), software pipelining uses instruction scheduling to eliminate instruction
stalls within loops, rearranging instructions between different unrolled loop
iterations to improve performance.

For instance, if software dependency anaylsis of data flow reveals that certain
calculations can be done before or after that iteration of the unrolled loop,
software pipelining reschedules those instructions ahead or behind that loop
iteration at places where their execution can prevent instruction stalls or
otherwise improve performance.

For this version of HP Pascal, loops chosen for software pipelining:

• Are always innermost loops (those executed the most).

• Do not contain branches or procedure calls.

By modifying the unrolled loop and inserting instructions as needed before
and/or after the unrolled loop, software pipelining generally improves run-
time performance, except for cases where the loops contain a large number of
instructions with many existing overlapped operations. In this case, software
pipelining may not have enough registers available to effectively improve
execution performance and using optimization level 5 instead of optimization
level 4 may not improve run-time performance.

To determine whether using optimization level 5 benefits your particular
program, time program execution for the same program compiled at level 4
and 5. For programs that contain loops that exhaust available registers, longer
execution times may result with optimization level 5.

In cases where performance does not improve, consider compiling using
/OPTIMIZE=(UNROLL=1,LEVEL=5) to (possibly) improve the effects of
software pipelining.

3–12 Program Correctness, Optimization, and Efficiency

3.1.18 Processor Selection and Tuning (OpenVMS Alpha systems)
HP Pascal provides support for generating code for specific Alpha processors
and for tuning code for a preferred processor. The supported Alpha processors
are EV4, EV5, EV56, EV6, EV7, EV67, and EV68.

The EV4 and EV5 processors are basically identical, with the only difference
in the preferred instruction scheduling phase. The EV56 processor added byte
and word opcodes. The EV6 processor added a SQRT instruction, instructions
to move data directly between floating and integer registers, and a few
other instructions. The EV7 processor is similar to the EV6 processor with
differences only in the instruction scheduling phase.

The default architecture (see the /ARCHITECTURE qualifier) is for the EV4
processor. This restricts the compiler to instructions that exist on the EV4
processor. It essentially tells the compiler the earliest Alpha processor that
will execute the code. If you run the code on earlier Alpha systems, you
might get invalid opcode errors or OpenVMS might attempt to emulate the
instructions at a severe performance penalty.

The default tuning (see the /OPTIMIZE=TUNE qualifier) is ‘‘generic.’’ The
tuning is for an average Alpha processor. You can achieve better performance
it you allow the compiler to tune the code for a specific processor.

Specifying an explicit /ARCHITECTURE setting also defaults the
/OPTIMIZE=TUNE setting to the same processor.

For example, specifying /ARCHITECTURE=EV56/OPTIMIZE=TUNE=EV7
tells the compiler to use instructions that the generated code should be able
to run on an EV56 system, but that it should tune the generated code for best
performance on an EV7 system. In these situations, the compiler can actually
generate multiple code sequences, one using only EV56 instructions, and the
other using EV7 instructions and the AMASK instruction to dynamically
execute the faster sequence based on the system executing the program.

Since most Alpha systems are EV56 or later, you might see a significant
improvement by specifying /ARCHITECTURE=EV56 on the command line.

3.1.19 Compiling for Optimal Performance
The following command lines will result in producing the fastest code from the
compiler. Depending on the system, use one of the following:

For OpenVMS I64 systems, use:

PASCAL /NOZERO_HEAP /OPT=LEVEL=4 /NOCHECK

Program Correctness, Optimization, and Efficiency 3–13

For OpenVMS Alpha systems, use:

PASCAL /NOZERO_HEAP /MATH_LIBRARY=FAST /OPT=LEVEL=4 /NOCHECK /ARCH=HOST
/ASSUME=NOACCURACY_SENSITIVE

For OpenVMS VAX systems, use:

PASCAL /OPTIMIZE /NOCHECK

In both cases, you may also want to use the performance flagger to identify
datatypes that could be modified for additional performance.

For More Information:

• On performance flagger (Section 1.1.2)

3.2 Programming Considerations
The language elements that you use in a source program directly affect the
compiler’s ability to optimize the resulting object program. Therefore, you
should be aware of the following ways in which you can assist compiler
optimization and obtain a more efficient program:

• Define constant identifiers to represent values that do not change during
your program. The use of constant identifiers generally makes a program
easier to read, understand, and later modify. In addition, the resulting
object code is more efficient because symbolic constants are evaluated only
once, at compile time, while variables must be reevaluated whenever they
are assigned new values.

• Whenever possible, use the structured control statements CASE, FOR,
IF-THEN-ELSE, REPEAT, WHILE, and WITH rather than the GOTO
statement. You can use the GOTO statement to exit from a loop, but
careless use of it interferes with both optimization and the straightforward
analysis of program flow.

• Enclose in parentheses any subexpression that occurs frequently in your
program. The compiler checks whether any assignments have affected
the subexpression’s value since its last occurrence. If the value has
not changed, the compiler recognizes that a subexpression enclosed
in parentheses has already been evaluated and does not repeat the
evaluation. For example:

x := SIN(u + (b - c));
y := COS(v + (b - c));

3–14 Program Correctness, Optimization, and Efficiency

The compiler evaluates the subexpression (� � �) as a result of performing
the SIN function. When it is encountered again, the compiler checks to
see whether new values have been assigned to either b or c since they
were last used. If their values have not changed, the compiler does not
reevaluate (�� �).

• Once your program has been completely debugged, disable all checking
with [CHECK(NONE)] or with the appropriate compilation switch. Recall
that HP Pascal enables bounds and declaration checking by default. When
no checking code is generated, more optimizations can occur, and the
program executes faster.

Integer overflow checking is disabled by default. If you are sure that your
program is not in danger of integer overflow, you should not enable overflow
checking. Because overflow checking precludes certain optimizations, you
can achieve a more efficient program by leaving it disabled.

• When a variable is accessed by a program block other than the one
in which it was declared, the variable should have static rather than
automatic allocation. An automatically allocated variable has a varying
location in memory; accessing it in another block is time-consuming and
less efficient than accessing a static variable.

• On OpenVMS VAX systems, avoid using the same temporary variable
many times in the course of a program. Instead, use a new variable every
time your program needs a temporary variable. Because variables stored in
registers are the easiest to access, your program is most efficient when as
many variables as possible can be allocated in registers. If you use several
different temporary variables, the lifetime of each one is greatly reduced;
thus, there is a greater chance that storage for them can be allocated in
registers rather than at memory locations.

• When creating schema records (or records with nonstatic fields), place the
fields with run-time size at the end of the record. The generated code has
to compute the offset of all record fields after a field with run-time size,
and this change minimizes the overhead.

For More Information:

• On HP Pascal language elements and on attributes (HP Pascal for
OpenVMS Language Reference Manual)

• On compilation switches (Chapter 1)

Program Correctness, Optimization, and Efficiency 3–15

3.3 Implementation-Dependent Behavior
The Pascal language has several implementation-dependent behaviors that a
program must not rely upon. Relying on these behaviors for correct behavior is
illegal and is not portable to other platforms or other compiler versions.

Refer to the HP Pascal for OpenVMS Language Reference Manual for a list of
the implementation-dependent behaviors.

For More Information:

• On attributes and on static and automatic variables (HP Pascal for
OpenVMS Language Reference Manual)

• On compilation switches (Chapter 1)

3.3.1 Subexpression Evaluation Order
The compiler can evaluate subexpressions in any order and may even choose
not to evaluate some of them. Consider the following subexpressions that
involve a function with side effects:

IF f(a) AND f(b) THEN ...

This IF statement contains two designators for function f with the same
parameter a. If f has side effects, the compiler does not guarantee the order in
which the side effects will be produced. In fact, if one call to f returns FALSE,
the other call to f might never be executed, and the side effects that result from
that call would never be produced. For example:

q := f(a) + f(a);

The Pascal standard allows a compiler to optimize the code as follows:

Q := 2 * f(a)

If the compiler does so, and function f has side effects, the side effects would
occur only once because the compiler has generated code that evaluates
f(a) only once.

If you wish to ensure left-to-right evaluation with short circuiting, use the
AND_THEN and OR_ELSE Boolean operators.

For More Information:

• On the order of expression evaluation, see the description of the
NOOPTIMIZE attribute (HP Pascal for OpenVMS Language Reference
Manual)

3–16 Program Correctness, Optimization, and Efficiency

3.3.2 MAXINT and MAXINT64 Predeclared Constants
The smallest possible value of the INTEGER type is represented by the
predeclared constant �MAXINT. The largest possible value of the INTEGER
type is represented by the predeclared constant MAXINT. However, the
Itanium, Alpha, and VAX architectures support an additional integer value,
which is (�MAXINT �1). If your program contains a subexpression with
this value, the program’s evaluation might result in an integer overflow trap.
Therefore, a computation involving the value (�MAXINT �1) might not
produce the expected result. To evaluate expressions that include (�MAXINT
�1), you should disable either optimization or integer overflow checking.

Similarly, on OpenVMS I64 and OpenVMS Alpha systems, (�MAXINT64 �1)
might not produce the expected results.

3.3.3 Pointer References
The compiler assumes that the value of a pointer variable is either the
constant identifier NIL or a reference to a variable allocated in heap storage
by the NEW procedure. A variable allocated in heap storage is not declared in
a VAR section and has no identifier of its own; you can refer to it only by the
name of a pointer variable followed by a circumflex (^). Consider the following
example:

VAR
x : INTEGER;
p : ^INTEGER;

{In the executable section:}
NEW(p);
p^ := 0;
x := 0;
IF p^ = x THEN p^ := p^ + 1;

If a pointer variable in your program must refer to a variable with an explicit
name, that variable must be declared VOLATILE or READONLY. The compiler
makes no assumptions about the value of volatile variables and therefore
performs no optimizations on them.

Use of the ADDRESS function, which creates a pointer to a variable, can result
in a warning message because of optimization characteristics. By passing a
nonread-only or nonvolatile static or automatic variable as the parameter to
the ADDRESS function, you indicate to the compiler that the variable was
not allocated by NEW but was declared with its own identifier. Because the
compiler’s assumptions are incorrect, a warning message occurs. You can also
use IADDRESS, which functions similarly to the ADDRESS function except
that IADDRESS returns an INTEGER_ADDRESS value and does not generate
any warning messages. Use caution when using IADDRESS.

Program Correctness, Optimization, and Efficiency 3–17

Similarly, when the parameter to ADDRESS is a formal VAR parameter
or a component of a formal VAR parameter, the compiler issues a warning
message that not all dynamic variables allocated by NEW may be passed to the
function.

For More Information:

• On attributes and on predeclared routines (HP Pascal for OpenVMS
Language Reference Manual)

3.3.4 Variant Records
Because all the variants of a record variable are stored in the same memory
location, a program can use several different field identifiers to refer to the
same storage space. However, only one variant is valid at a given time; all
other variants are undefined. You must store a value in a field of a particular
variant before you attempt to use it. For example:

VAR
x : INTEGER;
a : RECORD

CASE t : BOOLEAN OF
TRUE : (b : INTEGER);
FALSE : (c : REAL);

END;
{In the executable section:}
x := a.b + 5;
a.c := 3.0;
x := a.b + 5;

Record a has two variants, b and c, which are located at the same storage
address. When the assignment a.c := 3.0 is executed, the value of a.b becomes
undefined because TRUE is no longer the currently valid variant. When the
statement x := a.b + 5 is executed for the second time, the value of a.b is
unknown. The compiler may choose not to evaluate a.b a second time because
it has retained the field’s previous value. To eliminate any misinterpretations
caused by this assumption, variable a should be associated with the VOLATILE
attribute. The compiler makes no assumptions about the value of VOLATILE
objects.

For More Information:

• On variant records or on the VOLATILE attribute (HP Pascal for OpenVMS
Language Reference Manual)

3–18 Program Correctness, Optimization, and Efficiency

3.3.5 Atomicity, Granularity, Volatility, and Write Ordering
When data is shared by multiple code streams (either multiple processes,
multiple threads, or asynchronous events such as AST routines or condition
handlers), you need to be aware of certain issues to guarantee correct sharing
of data.

You must inform the compiler that the data being shared may change in an
asynchronous fashion. By default, the compiler assumes that data is only
modified by assignment statements, routine calls, etc. If the data is being
changed in a way that the compiler does not know about you must use the
VOLATILE attribute to tell the compiler that it must fetch the data in an
atomic fashion from memory at each reference and the compiler must store the
data in an atomic fashion back into memory at each assignment.

To accomplish atomic access on OpenVMS I64 systems for volatile objects
64 bits or smaller, fetches and stores are done with the normal ldn and stn
instructions.

To accomplish atomic access on the Alpha for volatile objects smaller than 32
bits, fetches and stores are done with the LDx_L/STx_C instruction sequence.
This pair of instructions ensures that the volatile data is accessed in an
atomic fashion. Without the VOLATILE attribute, you will not get this special
instruction sequence, and the data might become corrupted if two writers are
trying to store to the shared data at the same time. Items of 32 bits or 64
bits are accessed with single longword and quadword instructions and do not
use the LDx_L/STx_C sequence. Newer Alpha systems include byte and word
instructions. See the /ARCHITECTURE qualifier for more information. Only
aligned data objects are guaranteed to be accessed atomically. Larger objects
that are manipulated with run-time routines are not atomic, as those routines
may be interrupted.

Granularity is a term on Alpha machines to describe the situation where two
threads update nearby data at the same time. Because the compiler on the
older Alpha must fetch the surrounding longword or quadword, modify it, and
store it back, the two threads could possibly overwrite each others data. For
these situations, the nearby data should be moved to separate quadwords or
use the /GRANULARITY qualifier to tell the compiler that you want longword
or byte granularity at the expense of additional LDx_L/STx_C sequences. (See
the /ARCHITECTURE qualifier for more information on the byte and word
instructions available on newer Alpha systems.)

Program Correctness, Optimization, and Efficiency 3–19

To accomplish atomic access on the VAX for volatile objects 32 bits or smaller,
fetches and stores are done with the normal MOVB/MOVW/MOVL/INSV/EXTV
instructions. In a single CPU environment, the alignment of the objects
is not relevant. However, in a multiple CPU SMP system, the data being
accessed must reside in a single 32-bit longword otherwise the underlying
memory system may return incorrect data if two CPUs are updating the same
longwords at the same time. Larger objects that are manipulated with the
MOVC3/MOVC5 instructions are not atomic as those instructions may be
interrupted.

Besides atomic accesses, many programs want to perform atomic operations
on shared data. To facilitate this, HP Pascal provides the following built-in
routines:

• ADD_INTERLOCKED(expr,variable)

This routine adds the expression to the aligned word variable and returns
�1 if the new value is negative, 0 if it is zero, or 1 if it is positive. On
OpenVMS I64 systems, it uses the cmpxchg instruction. On OpenVMS
Alpha systems, it uses the LDx_L/STx_C instructions. On OpenVMS VAX
systems, it generates the VAX ADAWI instruction.

• CLEAR_INTERLOCKED(Boolean-variable)
SET_INTERLOCKED(Boolean-variable)

These routines clear or set a Boolean variable, respectively, and return
the original value. On OpenVMS I64 systems, they use the cmpxchg
instruction. On OpenVMS Alpha systems, they use the LDx_L/STx_C
instructions. On OpenVMS VAX systems, they generate the BBCCI and
BBSSI instructions, respectively.

• ADD_ATOMIC(expr,variable)
AND_ATOMIC(expr,variable)
OR_ATOMIC(expr,variable)

These routines atomically add/and/or the value of the expression with the
variable and return the original value. On OpenVMS I64 systems, they
use the cmpxchg instruction. On OpenVMS Alpha systems, they use the
LDx_L/STx_C instructions. These routines are not on OpenVMS VAX
systems.

On the VAX, write operations to independent memory locations are completed
in the order of the instructions. However, on Alpha and Itanium, the
architectures do not guarantee that independent writes will complete in
the order in which they were issued. Both architectures provide a special
instruction to serialize write operations. HP Pascal provides the BARRIER
built-in routine on these systems to generate the MB instruction on Alpha

3–20 Program Correctness, Optimization, and Efficiency

systems and the mf instruction on Itanium systems in order to preserve write
ordering.

If your code uses a higher-level synchronization scheme to guard
critical regions (such as a lock manager or a semaphore package), then
using the VOLATILE attribute, the GRANULARITY qualifier, and the
INTERLOCKED/ATOMIC built-ins may not be necessary; you have already
ensured that there are only single readers/writers in the critical section.

3.3.6 Debugging Considerations
Some of the effects of optimized programs on debugging are as follows:

• Use of registers

When the compiler determines that the value of an expression does
not change between two given occurrences, it may save the value in a
register. In such a case, it does not recompute the value for the next
occurrence, but assumes that the value saved in the register is valid. If,
while debugging the program, you attempt to change the value of the
variable in the expression, then the value of that variable is changed,
but the corresponding value stored in the register is not. When execution
continues, the value in the register may be used instead of the changed
value in the expression, causing unexpected results.

When the value of a variable is being held in a register, its value in
memory is generally invalid; therefore, a spurious value may be displayed
if you try to examine a variable under these circumstances.

• Coding order

Some of the compiler optimizations cause code to be generated in a
order different from the way it appears in the source. Sometimes code is
eliminated altogether. This causes unexpected behavior when you try to
step by line, use source display features, or examine or deposit variables.

• Use of condition codes (OpenVMS VAX systems)

This optimization technique takes advantage of the way in which the VAX
processor condition codes are set. For example, consider the following
source code:

x := x + 2.5;
IF x < 0 THEN ...

Rather than test the new value of x to determine whether to branch, the
optimized object code bases its decision on the condition code settings after
2.5 is added to x. If you attempt to set a debugging breakpoint at the
second line and deposit a different value into x, you cannot achieve the
intended result because the condition codes no longer reflect the value of x.

Program Correctness, Optimization, and Efficiency 3–21

In other words, the decision to branch is being made without regard to the
deposited value of the variable.

• Inline code expansion on user-declared routines

There is no stack frame for an inline user-declared routine and no
debugger symbol table information for the expanded routine. Debugging
the execution of an inline user-declared routine is difficult and is not
recommended.

To prevent conflicts between optimization and debugging, you should always
compile your program with a compilation switch that deactivates optimization
until it is thoroughly debugged. Then you can recompile the program (which
by default is optimized) to produce efficient code.

For More Information:

• On debugging tools (Chapter 4)

• On compilation switches (Chapter 1)

3–22 Program Correctness, Optimization, and Efficiency

4
Programming Tools

This chapter describes some Pascal-specific assistance provided in the set of
Hewlett-Packard CASE tools. For general information on each tool, see the
documentation for the tool.

This chapter provides information on:

• Section 4.1, Debugger Support for HP Pascal

• Section 4.2, Language-Sensitive Editor/Source Code Analyzer Support for
HP Pascal

• Section 4.3, Accessing CDD/Repository from HP Pascal

4.1 Debugger Support for HP Pascal
In general, the debugger supports the data types and operators of HP Pascal
and the other debugger-supported languages. However, there are important
language-specific limitations. (To get information on the supported data types
and operators of any of the languages, enter the HELP LANGUAGE command
at the DBG> prompt.)

In general, you can examine, evaluate, and deposit into variables, record
fields, and array components. An exception to this occurs under the following
circumstances: if a variable is not referenced in a program, the HP Pascal
compiler may not allocate the variable. If the variable is not allocated and you
try to examine it or deposit into it, you will receive an error message.

When depositing data into variables, the debugger truncates the high-order
bits if the value being deposited is larger than the variable; it fills the high-
order bits with zeros if the value being deposited is smaller than the variable.
If the deposit violates the rules of assignment compatibility, the debugger
displays an informational message.

Programming Tools 4–1

Automatic variables (within any active block) can be examined and can have
values deposited into them; however, since automatic variables are allocated
in stack storage and are contained in registers, their values are considered
undefined until the variables are initialized or assigned a value. For example:

DBG> EXAMINE X
MAINP\X: 2147287308

In this example, the value of variable X should be considered undefined until
after a value has been assigned to X.

In addition, you may examine a VARYING OF CHAR string, but it is not
possible to examine the LENGTH field. For example, the following is not
supported:

DBG> EXAMINE VARY_STRING.LENGTH

Because the current LENGTH of a VARYING string is the first word, you
should do the following to examine the LENGTH:

DBG> EXAMINE/WORD VARY_STRING

It should also be noted that the type cast operator (::) is not permitted when
evaluating HP Pascal expressions.

Pointers to undiscriminated schema cannot be correctly described to the
debugger at this time since the type of the pointer is dependent upon the
value pointed to by the pointer. They are described as pointers to UNSIGNED
integers. For example,

TYPE S(I:INTEGER) = ARRAY [1..I] OF INTEGER;
VAR P : ^S;
BEGIN
NEW(P,expression);
END;

4.2 Language-Sensitive Editor/Source Code Analyzer
Support for HP Pascal

This section describes HP Pascal specific information for the following
Language-Sensitive Editor/Source Code Analyzer (LSE/SCA) features:

• Programming language placeholders and tokens

• Placeholder processing

• Design comment processing (OpenVMS VAX systems)

4–2 Programming Tools

4.2.1 Programming Language Placeholders and Tokens
LSE accepts keywords, or tokens, for all languages with LSE support, but the
specific tokens themselves are language-defined. For example, you can expand
the %INCLUDE token only when using HP Pascal.

Likewise, LSE provides placeholders, or prompt markers, for all languages
with LSE support, but the specific text or choices these markers call for
are language-defined. For example, you see the %{environ_name_string}%
placeholder only when using HP Pascal.

Some HP Pascal keywords, like TYPE, VAR, IF, and FOR, can be placeholders
as well as tokens. LSE supplies language constructs for these keywords when
they appear on your screen as placeholders. You can also type the keywords
into the buffer yourself, enter the EXPAND command, and see the same
language constructs appear on your screen.

You can use the SHOW TOKEN and SHOW PLACEHOLDER commands to
display a list of all HP Pascal tokens and placeholders, or a particular token or
placeholder. For example:

LSE> SHOW TOKEN IF {lists the token IF}
LSE> SHOW TOKEN {lists all tokens }

To copy the listed information into a separate file, first enter the appropriate
SHOW command to put the list into the $SHOW buffer. Then enter the
following command:

LSE> GOTO BUFFER $SHOW
LSE> SAVE FILE filename.filetype

4.2.2 Placeholder and Design Comment Processing
While all languages with LSE support provide placeholder processing, each
language defines specific contexts in which placeholders can be accepted
as valid program code. HP Pascal defines contexts for declaration section
placeholders and executable section placeholders. Table 4–1 lists the valid
contexts within an HP Pascal declaration section where you can insert
placeholders.

Programming Tools 4–3

Table 4–1 Placeholders Within the Declaration Section

Can Replace Cannot Replace

PROGRAM or
MODULE identifier

Directive

Program parameter Attribute

Identifier Declaration-begin reserved word

Data type Complete declaration

Value

Complete variant within the
variant part of record

Table 4–2 lists valid contexts within an HP Pascal executable section where
you can insert placeholders.

Table 4–2 Placeholders Within the Executable Section

Can Replace Cannot Replace

Statement LABEL identifier

Variable TO | DOWNTO within a FOR statement

Expression

Case label

Complete case expression

Iteration variable within a
FOR statement

HP Pascal support for placeholder and design comment processing includes the
following language-specific stipulations:

• Pseudocode placeholders are designated with double left- and right-angle
brackets (<< >>) or the 8 bit format (« »).

• The compiler produces an empty object file when it encounters pseudocode
or LSE placeholders within a source program.

• Comment processing is limited to the declaration section.

4–4 Programming Tools

4.2.3 LSE and SCA Examples
Example 4–1 shows how you can use LSE tokens and placeholders to create a
FOR statement within an HP Pascal program. The callout numbers identify
the steps in this process, which are detailed in the notes appearing after the
example.

Example 4–1 Using LSE to Create a FOR Statement

BEGIN
! %[statement_list]%...

END.
.
.
.

BEGIN
" FOR %{control_var}% %{iteration_clause}% DO

%{statement}%;
%[statement_list]%...
END.

.

.

.
BEGIN
FOR INDEX := 1 TO MAX DO

%{statement}%;
%[statement_list]%...
END.

.

.

.
BEGIN
FOR INDEX := 1 TO MAX DO

$ %{variable | func_id}% := %{value_expr}%;
%[statement_list]%...
END.

.

.

.
BEGIN

% FOR INDEX := 1 TO MAX DO
ARR[INDEX] := 0;

%[statement_list]%...
END.

! As you begin the executable section of your program, the cursor rests
on the placeholder %[statement_list]%. Type the token FOR over this
placeholder and expand FOR.

Programming Tools 4–5

" LSE provides the FOR statement template. Select a FOR variable option
from the menu. Expand the %{iteration_clause}% placeholder and expand
the %{statement}% placeholder.

LSE displays a menu, from which you can select the %{simple_statement}%
option. A further menu appears, from which you select the ASSIGNMENT
statement option.

$ LSE provides the assignment statement template. Type an appropriate
identifer or value expression over each placeholder.

% The completed FOR statement appears in your buffer.

Example 4–2 shows some contexts in which LSE placeholders and design
comments might appear in the design of an HP Pascal program. Placeholder
contexts are self-explanatory; the callout numbers identify types of comments,
which are detailed in the notes following the example.

Example 4–2 Using LSE Comments in Program Design (OpenVMS VAX
systems)

PROGRAM Semester_Grades (input,output) ;

!
{ Author : P. Knox }
{ Creation Date : 03/03/89 }

{ Functional Description :
This program calculates the numerical semester grade
and determines the corresponding alphabetic grade
for each student in a class. }

{ Nonlocal References : None }

{ Included Files : None }

{ Keywords :
Grade array procedures, semester grade file }

CONST
«number of students» = %{compile_time_exp}%;
«number of semester grades» = %{compile_time_exp}%;

TYPE
«grade array» = ARRAY [1..«number of semester grades»] OF

«integer or real? determine later»;
«grade range» = 0 .. 100;

(continued on next page)

4–6 Programming Tools

Example 4–2 (Cont.) Using LSE Comments in Program Design (OpenVMS
VAX systems)

" VAR
A_Grade_Array : «grade array» ; { var for array of grades }
A_Grade : «grade range» ; { var for individual grade }
Total : «grade range» ; { var for semester grade }
%{variable}% : INTEGER; { control var, FOR loops }

PROCEDURE «compute semester grade»
(VAR Grd_Arry : «grade array» ;
VAR Sum : «grade range») ;

#
{ Parameters :

Grd_Arry : value parameter, array of semester grades for one
student:

Sum : variable parameter, returns the semester grade }

BEGIN
FOR %{control_var}% %{iteration_clause}% DO

«sum the grades in Grd_Arry»
«Sum gets Sum divided by number of grades in array»
«write student’s semester grade»

END;

PROCEDURE «assign letter grade»
(Semester_Grade : «grade range») ;

BEGIN
CASE %{case_selector}% OF

%{case_labels}%... : %{statement}%;
%{case_labels}%... : %{statement}%;
%{case_labels}%... : %{statement}%;
%{case_labels}%... : %{statement}%
OTHERWISE %{statement_list}%...

END
END;

(continued on next page)

Programming Tools 4–7

Example 4–2 (Cont.) Using LSE Comments in Program Design (OpenVMS
VAX systems)

BEGIN
FOR «number of students» DO

BEGIN
«enter semester grades for student» ;
FOR %{control_var}% := %{value_expr}% TO

«number of semester grades» DO
BEGIN

«read grades and load into array»
END;

Total := 0;
«compute routine» (Grade_Array, Total);
«assign_letter routine» (Total)
END

END.

! These comments, which could be placed at the beginning of the program,
are tagged comments. The comment begins with a predefined term called a
tag. The tag is followed by a tag terminator symbol (:) and free text.

" These comments, which do not contain tags, are called remark comments.
A remark comment consists of free text.

This structured comment contains both a tag (the identifier parameters)
and subtags (the identifiers Grd_Arry and Sum). A tag terminator and a
blank comment line separate the two subtags from each other.

4.3 Accessing CDD/Repository from HP Pascal
The Oracle CDD/Repository (CDD/Repository) must be purchased separately.
The CDD/Repository allows language-independent structure declarations that
can be shared by many OpenVMS layered products. HP Pascal support of the
CDD/Repository allows HP Pascal programmers to share common record and
data definitions with other Hewlett-Packard languages and data management
products.

A system manager or data administrator creates the CDD/Repository’s
directory hierarchies, history lists, and access control lists with the Dictionary
Management Utility (DMU). Once record paths are established, you can enter
data definitions into and extract them from the CDD/Repository.

4–8 Programming Tools

To enter data definitions into the CDD/Repository, you first create
CDD/Repository source files written in the Common Data Dictionary
Language (CDDL). The CDDL compiler converts the definitions to an internal
form—making them independent of the language used to access them.

To extract data definitions from the CDD/Repository, include the
%DICTIONARY directive in your HP Pascal source program. If the data
attributes of the data definitions are consistent with HP Pascal requirements,
the data definitions are included in the HP Pascal program during compilation.

The %DICTIONARY directive incorporates CDD/Repository data definitions
into the current HP Pascal source file during compilation.

This directive can appear only in the TYPE section of an HP Pascal program,
not in the executable section. For example:

PROGRAM SAMPLE1;

TYPE
%DICTIONARY ’Pascal_SALESMAN_RECORD/LIST’
.
.
.

A /LIST option in the %DICTIONARY directive (or the /SHOW= DICTIONARY
qualifier on the Pascal command line) includes the translated record in the
program’s listing. For example:

TYPE
%DICTIONARY ’PASCAL_SALESMAN_RECORD/LIST’
{ CDD Path Name => PASCAL_SALESMAN_RECORD }

PAYROLL_RECORD = PACKED RECORD
SALESMAN : PACKED RECORD
NAME : PACKED ARRAY [1..30] OF CHAR;
ADDRESS : PACKED ARRAY [1..40] OF CHAR;
SALESMAN_ID : [BYTE(5)] RECORD END; { numeric string, unsigned }
END; { record salesman }

END; { record payroll_record }

The option (/LIST or /NOLIST) overrides the qualifier
(/SHOW=NODICTIONARY or /SHOW=DICTIONARY).

For More Information:

• On CDD/Repository (CDD/Repository CDO Reference Manual, Using
CDD/Repository on VMS Systems, and CDD/Administrator User’s Guide)

• On the HP Pascal %DICTIONARY directive (HP Pascal for OpenVMS
Language Reference Manual)

Programming Tools 4–9

4.3.1 Equivalent HP Pascal and CDDL Data Types
The CDD/Repository supports some data types that are not native to HP
Pascal. If a data definition contains a field declared with an unsupported
data type, HP Pascal replaces the field with one declared as a [BYTE(n)]
RECORD END, where n is the appropriate length in bytes. By making the
data addressable in this way, you are able to manipulate the data either by
passing it to external routines as variables or by using the HP Pascal type
casting capabilities to perform an assignment.

However, because these empty records do not have fields, the size of the record
is 0 bits. They should not be used in expressions or passed to formal value
parameters. Recall that a size attribute used on a type definition has no effect
on fetches. When fetching from these records, the compiler will fetch the actual
size of the record, 0 bits.

Table 4–3 summarizes the mapping between CDDL data types and the
corresponding HP Pascal data types.

NOTE

Although this practice is discouraged, you can use both D_floating and
G_floating data types in the same compilation unit; however, both types
cannot be handled in the same expression. Not all processors support
the G_floating and H_floating types.

Table 4–3 Equivalent CDD/Repository Language and HP Pascal Data Types

CDDL Data Type HP Pascal Data Type

Unspecified [BYTE(n)] RECORD END

Byte logical [BYTE] 0..255

Word logical [WORD] 0..65535

Longword logical UNSIGNED

Quadword logical [BYTE(8)] RECORD END

Octaword logical [BYTE(16)] RECORD END

Byte integer [BYTE] –128..127

Word integer [WORD] –32768..32767

(continued on next page)

4–10 Programming Tools

Table 4–3 (Cont.) Equivalent CDD/Repository Language and HP Pascal Data
Types

CDDL Data Type HP Pascal Data Type

Longword integer INTEGER

Quadword integer [BYTE(8)] RECORD END

Octaword integer [BYTE(16)] RECORD END

F_floating SINGLE

D_floating DOUBLE (/NOG_FLOATING)

G_floating DOUBLE (/G_FLOATING)

H_floating (OpenVMS VAX systems) QUADRUPLE

F_floating complex [BYTE (8)] RECORD END

D_floating complex [BYTE(16)] RECORD END

G_floating complex [BYTE(16)] RECORD END

H_floating complex [BYTE(32)] RECORD END

Text PACKED ARRAY [l..u] OF CHAR

Varying text VARYING [u] OF CHAR

Numeric string,
unsigned

[BYTE(n)] RECORD END

Numeric string,
left separate

[BYTE(n)] RECORD END

Numeric string,
left overpunch

[BYTE(n)] RECORD END

Numeric string,
right separate

[BYTE(n)] RECORD END

Numeric string,
right overpunch

[BYTE(n)] RECORD END

Numeric string,
zoned sign

[BYTE(n)] RECORD END

Bit [BIT(n)] 0..((2n)–1) or
[BIT(32)]UNSIGNED or
[BIT(N)] RECORD END or ignored

(continued on next page)

Programming Tools 4–11

Table 4–3 (Cont.) Equivalent CDD/Repository Language and HP Pascal Data
Types

CDDL Data Type HP Pascal Data Type

Bit unaligned [BIT(n), POS(x)] 0..((2n)n–1) or
[BIT(32), POS(x)] UNSIGNED or
[BIT(n), POS(x)] RECORD END or
ignored

Date and time
Date

[BYTE(n)] RECORD END
[BYTE(n)] RECORD END

Virtual field Ignored

Varying string VARYING [u] OF CHAR

Overlay Variant record

Pointer Pointer type

4.3.2 CDD/Repository Example
In Example 4–3, the %DICTIONARY directive is used to access the
CDD/Repository record definition Mail_Order_Info. With this definition,
the HP Pascal program Show_Keys performs ISAM file manipulation on an
existing indexed file, CUSTOMERS.DAT. Assume that CUSTOMERS.DAT has
the primary key Order_Num and a field name called Zip_Code.

Note

Oracle CDD/Repository has no equivalent for the HP Pascal KEY
attribute, which is required to create new indexed files. You can use
Oracle CDD/Repository data definitions to open existing indexed files
(as in this example) but not new indexed files.

4–12 Programming Tools

Example 4–3 Using %DICTIONARY to Access a Oracle CDD/Repository
Record Definition

Program Show_Keys(OUTPUT);

TYPE
%DICTIONARY ’Mail_Order_Info/LIST’

VAR
Old_Customer_File : FILE OF Mail_Order;
Order_Rec : Mail_Order;
Continue : BOOLEAN;

BEGIN
OPEN(File_Variable := Old_Customer_File,

File_Name := ’Customers.Dat’,
History := OLD,
Organization := Indexed,
Access_Method := Keyed);

FINDK(Old_Customer_File, 1, ’1000’, NXTEQL);
Continue := TRUE;
WHILE Continue and NOT UFB(Old_Customer_File) DO

BEGIN
READ(Old_Customer_File, Order_Rec);
IF Order_Rec.Zip_Code < ’5000’
THEN

WRITELN(’Order number’, Order_Rec.Order_Num, ’has zip code’,
Order_Rec.Zip_Code)

ELSE
Continue := False;

END;
END.

During the compilation of Show_Keys, the record definition Mail_Order_Info is
extracted from the CDD/Repository. Show_Keys prints the order number and
zip code of each file component that has a zip code greater than or equal to
1000 but less than 5000.

Programming Tools 4–13

5
Calling Conventions

This chapter describes how HP Pascal passes parameters and calls routines. It
discusses the following topics:

• Section 5.1, OpenVMS Calling Standard

• Section 5.2, Parameter-Passing Semantics

• Section 5.3, Parameter-Passing Mechanisms

• Section 5.4, Passing Parameters between HP Pascal and Other Languages

For More Information:

• On declaring and calling HP Pascal routines (HP Pascal for OpenVMS
Language Reference Manual)

• On procedure-calling and argument-passing mechanisms (HP OpenVMS
Calling Standard)

5.1 OpenVMS Calling Standard
Programs compiled by the HP Pascal compiler conform to the OpenVMS
calling standard. This standard describes how parameters are passed, how
function values are returned, and how routines receive and return control.
Because HP Pascal conforms to the calling standard, you can call and pass
parameters to routines written in other Hewlett-Packard languages from HP
Pascal programs.

For More Information:

• See the HP OpenVMS Calling Standard

Calling Conventions 5–1

5.1.1 Parameter Lists
Each time a routine is called, the HP Pascal compiler constructs a parameter
list.

On OpenVMS I64 systems, the parameters are a sequence of quadword (8-
byte) entries. The first 8 integer parameters are located in integer registers
designated as R32 to R39; the first 8 floating-point parameters are located
in floating-point registers designated as F8 to F15. Information about the
parameter list is passed in the argument information register (R25). The first
byte of the register specifies the parameter count. Arguments beyond 8 are
passed on the stack starting at offset +16.

On OpenVMS Alpha systems, the parameters are a sequence of quadword
(8-byte) entries. The first 6 integer parameters are located in integer registers
designated as R16 to R21; the first 6 floating-point parameters are located
in floating-point registers designated as F16 to F21. Information about the
parameter list is passed in the argument information register (R25). The first
byte of the register specifies the parameter count. Arguments beyond 6 are
passed on the top of the stack.

On OpenVMS VAX systems, the parameters are a sequence of longword (4-
byte) entries pointed to by the array pointer (AP). The first byte of the first
entry in the list is a parameter count, which indicates how many parameters
follow in the list.

The form in which the parameters in the list are represented is determined
by the passing mechanisms you specify in the formal parameter list and the
values you pass in the actual parameter list. The parameter list contains the
actual parameters passed to the routine.

5.1.2 Function Return Values
In HP Pascal, a function returns to the calling block the value that was
assigned to its identifier during execution. HP Pascal chooses one of three
methods for returning this value. The method chosen depends on the amount
of storage required for values of the type returned, as follows:

On OpenVMS I64 Systems:

• An nonfloating-point scalar type, a schematic subrange, an array, a record,
or set with size less than 64 bits, is returned in the first integer register,
designated as r8. If the value is less than 64 bits, r8 is sign-extended or
zero-extended depending on the type.

• A floating-point value that can be represented in 64 bits of storage is
returned in the first floating-point register, designated as f8.

5–2 Calling Conventions

• If the value is too large to be represented in 64 bits, if its type is a string
type (PACKED ARRAY OF CHAR, VARYING OF CHAR, or STRING), or if
the type is nonstatic, the calling routine allocates the required storage. An
extra parameter (a pointer to the location where the function result will be
stored) is added to the beginning of the calling routine’s actual parameter
list.

On OpenVMS Alpha Systems:

• An nonfloating-point scalar type, a schematic subrange, an array, a record,
or set with size less than 64 bits, is returned in the first integer register,
designated as r0. If the value is less than 64 bits, r0 is sign-extended or
zero-extended depending on the type.

• A floating-point value that can be represented in 64 bits of storage is
returned in the first floating-point register, designated as f0.

• If the value is too large to be represented in 64 bits, if its type is a string
type (PACKED ARRAY OF CHAR, VARYING OF CHAR, or STRING), or if
the type is nonstatic, the calling routine allocates the required storage. An
extra parameter (a pointer to the location where the function result will be
stored) is added to the beginning of the calling routine’s actual parameter
list.

On OpenVMS VAX Systems:

• If the value can be represented in 32 bits of storage, it is returned in
register R0. If the value is less than 32 bits, the upper bits of R0 are
undefined.

• If the value requires from 33 to 64 bits, the low-order bits of the result are
returned in register R0 and the high-order bits are returned in register R1.

• If the value is too large to be represented in 64 bits, if its type is a string
type (PACKED ARRAY OF CHAR, VARYING OF CHAR, or STRING), or if
the type is nonstatic, the calling routine allocates the required storage. An
extra parameter (a pointer to the location where the function result will be
stored) is added to the beginning of the calling routine’s actual parameter
list.

Note that functions that require the use of an extra parameter can have no
more than 254 parameters; functions that store their results in registers can
have 255 parameters.

Calling Conventions 5–3

5.1.3 Contents of the Call Stack
The OpenVMS I64 and OpenVMS Alpha system conventions define three
types of procedures. The calling process does not need to know what type it is
calling; the compiler chooses which type to generate based on the requirements
of the procedure.

On OpenVMS I64 Systems:
On OpenVMS I64 systems, the types of procedures are:

• Memory stack procedures

These procedures allocate a memory stack and may maintain part or all of
its caller’s context on that stack.

• Register stack procedures

These procedures allocate only a register stack and maintains its caller’s
context in registers.

• Null frame procedures

These procedures do not allocate a memory stack or a register stack and
therefore preserve no context of its caller. However, unlike an OpenVMS
Alpha null frame procedure, these procedures do not execute in the context
of its caller.

On OpenVMS I64 systems, the compiler determines the exact contents
of the memory stack frame, but all memory stack frames have common
characteristics:

• Scratch area: A 16-byte region is provided as scratch storage for procedures
that are called by the current procedure. Leaf procedures need not allocate
this area. A procedure can use the 16 bytes pointed to by the stack pointer
as scratch memory, but the contents of this area are not preserved by a
procedure call.

• Arguments passed in memory: Parameters beyond those passed in
registers are stored in this area of the memory stack frame. A procedure
accesses its incoming parameters in the outgoing parameter area of its
caller’s memory stack frame.

• Local storage: A procedure can store local variables, temporaries, and
spilled registers in this area. There are specific conventions that affect the
layout for spilled registers.

5–4 Calling Conventions

On OpenVMS Alpha Systems:
On OpenVMS Alpha systems, the types of procedures are:

• Stack frame procedures, in which the calling context is placed on the stack

• Register frame procedures, in which the calling context is in registers

• No frame procedures, for which the compiler does not establish a context
and which, therefore, execute in the context of the caller

If a stack frame is required, it consists of a fixed part (which is known at
compile time) and an optional variable part.

The compiler determines the exact contents of the stack frame, but all stack
frames have common characteristics:

• Fixed temporary locations: This is an optional section that contains
language-specific locations required by the procedure context of some
languages

• Register save area: This is a set of consecutive quadwords for storing
registers saved and restored by the current procedure

• Argument home area: If allocated, this is a region of memory used by
the called process to assemble the arguments passed in registers adjacent
to the arguments passed in memory. This allows all arguments to be
addressed as a contiguous array. The argument home area is also used to
store arguments passed in registers if an address for such an argument is
required.

• Arguments passed in memory

On OpenVMS VAX Systems:
Each time a routine is called by an HP Pascal program on an OpenVMS VAX
system, the hardware creates a call frame structure on the call stack. The call
frame for each active routine contains the following:

• A pointer to the call frame of the previous routine call. This pointer is
called the saved frame pointer (FP).

• The saved argument pointer (AP) of the previous routine call.

• The storage address of the point at which the routine was called; that is,
the address of the instruction following the call to the current routine. This
address is called the saved program counter (PC).

• The saved contents of other general registers. Based on a mask specified
in the control information, the system restores the saved contents of these
registers to the calling routine when control returns to it.

Calling Conventions 5–5

When execution of a routine ceases, the system uses the frame pointer in the
call frame of the current routine to locate the frame of the previous routine.
The system then removes the call frame of the current routine from the stack.

For More Information:

• On procedure types and characteristics (HP OpenVMS Calling Standard)

5.1.4 Unbound Routines
The frame pointer of calling routines is stored in an implementation-defined
register. If, however, you declare a routine with the UNBOUND attribute, the
system does not assume that the frame pointer of the calling routine is stored
in a register and there is no link between the calling and the called routines.
As a result, an unbound routine has the following restrictions:

• It cannot access automatic variables declared in enclosing blocks.

• It cannot call bound routines declared in enclosing blocks.

• It cannot use a GOTO statement to transfer control to enclosing blocks
other than the main program block.

By default, routines declared at program or module level and all other routines
declared with the INITIALIZE, GLOBAL, or EXTERNAL attributes have the
characteristics of unbound routines. Routines passed by the immediate value
mechanism must be UNBOUND.

Asynchronous system trap routines (ASTs) and RMS completion routines must
have both the ASYNCHRONOUS and UNBOUND attributes. Because they
are asynchronous, such routines can access only volatile variables, predeclared
routines, and other asynchronous routines. Note that the HP Pascal run-time
system does not permit a program and an asynchronous routine (such as an
AST) to access the same file simultaneously.

For More Information:

• On attributes (HP Pascal for OpenVMS Language Reference Manual)

• On the immediate value mechanism (Section 5.3.1)

5.2 Parameter-Passing Semantics
Parameter-passing semantics describe how parameters behave when passed
between the calling and called routine. HP Pascal passes parameter values by
the following methods:

• Value passing semantics (Standard)

• Variable passing semantics (Standard)

5–6 Calling Conventions

• Foreign passing semantics (HP Pascal extension)

By default, HP Pascal passes arguments using value semantics.

For More Information:

• On value, variable, and foreign semantics (HP Pascal for OpenVMS
Language Reference Manual)

5.3 Parameter-Passing Mechanisms
The way in which an argument specifies how the actual data to be passed
by the called routine is defined by the parameter-passing mechanism. In
compliance with the OpenVMS calling standard, HP Pascal supports the basic
parameter-passing mechanisms, shown in Table 5–1.

Table 5–1 Parameter-Passing Descriptions

Mechanism Description

By immediate value The argument contains the value of the data item.

By reference The argument contains the address of the data to be used by
the routine.

By descriptor The argument contains the address of a descriptor, which
describes type of the data and its location.

By default, HP Pascal uses the by reference mechanism to pass all actual
parameters except those that correspond to conformant parameters and
undiscriminated schema parameters, in which case the by descriptor
mechanism is used. Table 5–2 describes the syntax you use in HP Pascal
to obtain the desired parameter-passing mechanism.

Table 5–2 Parameter-Passing Syntax on HP Pascal

Mechanism Syntax Used by HP Pascal

By immediate value %IMMED or [IMMEDIATE]

By reference Default for nonconformant and nonschema parameters or
%REF

By descriptor Default for conformant and schema parameters or %DESCR,
%STDESCR, [CLASS_S],[CLASS_A], or [CLASS_NCA]

A mechanism specifier usually appears before the name of a formal parameter,
or if a passing attribute is used it appears in the attribute list of the formal

Calling Conventions 5–7

parameter. However, in HP Pascal, a mechanism specifier can also appear
before the name of an actual parameter. In the latter case, the specifier
overrides the type, passing semantics, passing mechanism, and the number of
formal parameters specified in the formal parameter declaration.

For More Information:

• On passing mechanisms and passing semantics (Section 5.3.4)

5.3.1 By Immediate Value
The by immediate value passing mechanism passes a copy of a value instead
of the address. HP Pascal provides the %IMMED foreign passing mechanism
and the IMMEDIATE attribute in order to pass a parameter by immediate
value. You cannot use variable semantics with the by immediate value passing
mechanism.

On OpenVMS I64 and OpenVMS Alpha systems, values that are less than or
equal to 64 bits in size can be passed by immediate value.

On OpenVMS VAX systems, values that are less than or equal to 32 bits in size
can be passed by immediate value.

5.3.2 By Reference
The by reference mechanism passes the address of the parameter to the called
routine. This is the default parameter-passing mechanism for non-conformant
and non-schematic parameters.

When using the by reference mechanism, the type of passing semantics used
depends on the use of the VAR keyword. If the formal parameter name is
preceded by the reserved word VAR, variable semantics is used; otherwise,
value semantics is used.

In addition to using the defaults, the HP Pascal compiler provides the %REF
foreign passing mechanism and the REFERENCE attribute, which has
more than one interpretation for the passing semantics depending on the
data item represented by the actual parameter. This allows you to have
the called routine use either variable semantics or true foreign semantics.
The mechanism specifier appears before the name of a formal parameter.
The parameter passing attribute appears in the attribute list of the formal
parameter.

5–8 Calling Conventions

5.3.3 By Descriptor
There are several types of descriptors. Each descriptor contains a value that
identifies the descriptor’s type. The called routine then uses the information
held in the descriptor to identify its type and size. This is the default
parameter-passing mechanism for conformant and schematic parameters.

When you use one of the HP Pascal by descriptor mechanisms, the compiler
passes the address of a string, array, or scalar descriptor. The HP Pascal
compiler generates the descriptor supplying the necessary information.

HP Pascal provides three attributes for the by descriptor passing mechanism:
[CLASS_S], [CLASS_A], and [CLASS_NCA]. With these three attributes, the
type of passing semantics used for the by descriptor argument depends on the
use of the VAR keyword. If the formal parameter name is preceded by the
reserved word VAR, variable semantics is used; otherwise, value semantics
is used. The parameter-passing attribute appears in the attribute list of the
formal parameters.

Sometimes you may want to choose either variable semantics or true foreign
semantics. In these cases, the HP Pascal compiler provides two foreign passing
mechanism specifiers, %DESCR and %STDESCR. These specifiers have more
than one interpretation for the passing semantics depending on the data type
of the actual parameter. The mechanism specifier appears before the name of a
formal parameter.

Table 5–3 lists the class and type of descriptor generated for parameters that
can be passed using the by descriptor mechanism.

Table 5–3 Parameter Descriptors

Parameter Type Descriptor Class and Type

%DESCR %STDESCR
Value or VAR
Semantics

Ordinal DSC$K_CLASS_S1 — —

SINGLE DSC$K_CLASS_S,
DSC$K_DTYPE_F,
DSC$K_DTYPE_FS

— —

1Descriptor’s D_type depends on size of type.

(continued on next page)

Calling Conventions 5–9

Table 5–3 (Cont.) Parameter Descriptors

Parameter Type Descriptor Class and Type

%DESCR %STDESCR
Value or VAR
Semantics

DOUBLE DSC$K_CLASS_S,
DSC$K_DTYPE_D,
DSC$K_DTYPE_G,
DSC$K_DTYPE_FT

— —

QUADRUPLE DSC$K_CLASS_S
DSC$K_DTYPE_H/_FX6

— —

RECORD — — —

ARRAY DSC$K_CLASS_A/_NCA2�5 DSC$K_CLASS_S
DSC$K_DTYPE_T3

—

ARRAY OF
VARYING OF
CHAR

DSC$K_CLASS_VSA
DSC$K_DTYPE_VT

— —

Conformant
ARRAY

DSC$K_CLASS_A/_NCA2�5 DSC$K_CLASS_S
DSC$K_DTYPE_T3

DSC$K_CLASS_A/_
NCA2�5

Conformant
ARRAY OF
VARYING OF
CHAR4

DSC$K_CLASS_VSA
DSC$K_DTYPE_VT

— DSC$K_CLASS_VSA
DSC$K_DTYPE_VT

VARYING OF
CHAR

DSC$K_CLASS_VS
DSC$K_DTYPE_VT

— —

Conformant
VARYING OF
CHAR

DSC$K_CLASS_VS
DSC$K_DTYPE_VT

— DSC$K_CLASS_VS
DSC$K_DTYPE_VT

STRING — — DSC$K_CLASS_VS
DSC$K_DTYPE_VT

Schema
name

— — Internal HP Pascal
descriptor

2Descriptor’s D_type depends on component type.
3Only if PACKED ARRAY OF CHAR.
4Component type can be a conformant VARYING OF CHAR.
5 CLASS_NCA is used on OpenVMS I64 and OpenVMS Alpha systems. CLASS_A is used on OpenVMS VAX
systems.
6 DTYPE_FX is used on OpenVMS I64 and OpenVMS Alpha systems. DTYPE_H is used on OpenVMS VAX
systems.

(continued on next page)

5–10 Calling Conventions

Table 5–3 (Cont.) Parameter Descriptors

Parameter Type Descriptor Class and Type

%DESCR %STDESCR
Value or VAR
Semantics

Discriminated
schema

— — —

SET DSC$K_CLASS_S
DSC$K_DTYPE_Z

— —

FILE DSC$K_CLASS_S
DSC$K_DTYPE_Z

—

Pointer DSC$K_CLASS_S
DSC$K_DTYPE_LU

— —

PROCEDURE
or
FUNCTION

DSC$K_CLASS_S
DSC$K_DTYPE_BPV

— Bound procedure
value by reference

CLASS_A CLASS_NCA CLASS_S

Ordinal — — DSC$K_CLASS_S1

SINGLE — — DSC$K_CLASS_S,
DSC$K_DTYPE_F,
DSC$K_DTYPE_FS

DOUBLE — — DSC$K_CLASS_S,
DSC$K_DTYPE_D,
DSC$K_DTYPE_G,
DSC$K_DTYPE_FT

QUADRUPLE — — DSC$K_CLASS_S
DSC$K_DTYPE_H/_
FX6

RECORD — — —

ARRAY DSC$K_CLASS_A2 DSC$K_CLASS_
NCA2

DSC$K_CLASS_S
DSC$K_DTYPE_T3

1Descriptor’s D_type depends on size of type.
2Descriptor’s D_type depends on component type.
3Only if PACKED ARRAY OF CHAR.
6 DTYPE_FX is used on OpenVMS I64 and OpenVMS Alpha systems. DTYPE_H is used on OpenVMS VAX
systems.

(continued on next page)

Calling Conventions 5–11

Table 5–3 (Cont.) Parameter Descriptors

Parameter Type Descriptor Class and Type

CLASS_A CLASS_NCA CLASS_S

ARRAY OF
VARYING OF
CHAR

— — —

Conformant
ARRAY

DSC$K_CLASS_A2 DSC$K_CLASS_
NCA2

DSC$K_CLASS_S
DSC$K_DTYPE_T3

Conformant
ARRAY OF
VARYING OF
CHAR4

— — —

VARYING OF
CHAR

— — —

Conformant
VARYING OF
CHAR

— — —

STRING — — —

Schema
name

— — —

Discriminated
schema

— — —

SET — — DSC$K_CLASS_S
DSC$K_DTYPE_Z

FILE — — DSC$K_CLASS_S
DSC$K_DTYPE_Z

Pointer — — DSC$K_CLASS_S
DSC$K_DTYPE_LU

PROCEDURE
or
FUNCTION

— — —

2Descriptor’s D_type depends on component type.
3Only if PACKED ARRAY OF CHAR.
4Component type can be a conformant VARYING OF CHAR.

5–12 Calling Conventions

5.3.3.1 CLASS_S Attribute
When the CLASS_S attribute is used on a formal parameter, the compiler
generates a fixed-length scalar descriptor of a variable and passes its address
to the called routine. Only ordinal, real, set, pointer, and one-dimensional
packed arrays (fixed or conformant) that are of type OF CHAR can have the
CLASS_S attribute on the formal parameter.

With the CLASS_S attribute, the type of passing semantics used for the by
descriptor argument depends on the use of the VAR keyword. If the formal
parameter name is preceded by the reserved word VAR, variable semantics is
used; otherwise, value semantics is used.

5.3.3.2 CLASS_A and CLASS_NCA Attributes
When you use the CLASS_A or CLASS_NCA attribute on a formal parameter,
the compiler generates an array descriptor and passes its address to the called
routine. The type of the CLASS_A and CLASS_NCA parameter must be an
array (packed or unpacked, fixed or conformant) of an ordinal or real type.

With the CLASS_A and CLASS_NCA attributes, the type of passing semantics
used for the by descriptor argument depends on the use of the VAR keyword.
If the formal parameter name is preceded by the reserved word VAR, variable
semantics is used; otherwise, value semantics is used.

5.3.3.3 %STDESCR Mechanism Specifier
When you use the %STDESCR mechanism specifier, the compiler generates a
fixed-length descriptor of a character-string variable and passes its address
to the called routine. Only items of the following types can have the
%STDESCR specifier on the actual parameter: character-string constants,
string expressions, packed character arrays with lower bounds of 1, and packed
conformant arrays with indexes of an integer or integer subrange type. The
passing semantics depend on the variable represented by the actual parameter
as follows:

• If the actual parameter is a variable of type PACKED ARRAY OF CHAR,
%STDESCR implies variable semantics within the called routine.

• If the actual parameter is either a variable enclosed in parentheses, an
expression, or a VARYING OF CHAR variable, %STDESCR implies foreign
semantics.

If the actual parameter is not modified by the called external routine, the
corresponding formal parameter should be declared READONLY, saving the
copy from having to be made.

Calling Conventions 5–13

The following function declaration requires one fixed-length string descriptor
as a parameter:

[ASYNCHRONOUS,EXTERNAL(SYS$SETDDIR)] FUNCTION $SETDDIR
(%STDESCR New_Dir : PACKED ARRAY [$L1..$U1: INTEGER] OF CHAR;
VAR Old_Dir_Len : $UWORD := %IMMED 0;
VAR Old_Dir : [CLASS_S]PACKED ARRAY [$L2..$U2 : INTEGER] OF CHAR

:= %IMMED 0) : INTEGER; EXTERN;

.

.

.
Status := $SETDDIR(’[HP_Pascal]’);

The actual parameter ’[HP_Pascal]’ is passed by string descriptor with foreign
semantics to the formal parameter New_Dir.

5.3.3.4 %DESCR Mechanism Specifier
When you use the %DESCR mechanism specifier, the parameter generates a
descriptor for an ordinal, real, or array variable and passes its address to the
called routine. The type of %DESCR parameter can be any ordinal or real
type, a VARYING OF CHAR string, or an array (packed or unpacked, fixed or
conformant) of an ordinal or real type.

The passing semantics depend on the actual parameter’s data type as follows:

• If the actual parameter is a variable, the %DESCR formal parameter
implies variable semantics within the called routine.

• If the actual parameter is an expression or a variable enclosed in
parentheses, %DESCR implies foreign semantics.

If the actual parameter is not modified by the called external routine, the
corresponding formal parameter should be declared READONLY, saving the
copy from having to be made.

The following function declaration requires a varying-length string descriptor
as its parameter:

TYPE
Vary = VARYING [30] OF CHAR;

VAR
Obj_String : Vary;
Times_Found : INTEGER;

[EXTERNAL] FUNCTION Search_String(%DESCR String_Val : Vary)
: BOOLEAN; EXTERNAL;

5–14 Calling Conventions

.

.

.
IF Search_String(Obj_String)

THEN
Times_Found := Times_Found + 1;

The actual parameter Obj_String is passed by varying string descriptor with
variable semantics to the formal parameter String_Val.

For More Information:

• On descriptor classes and types (HP OpenVMS Calling Standard)

5.3.4 Summary of Passing Mechanisms and Passing Semantics
Table 5–4 summarizes the passing semantics used when various mechanisms
are specified on either the formal or the actual parameter. For example, if
a variable is passed to a formal parameter that was declared without the
keyword VAR and either %REF or [REFERENCE] was specified, then variable
passing semantics will be used. Likewise, if a variable is passed to a formal
parameter which was declared with the keyword VAR and either %REF or
[REFERENCE] was specified, then an error will occur.

If an actual parameter is preceded by an %IMMED specifier, regardless of what
passing mechanism is used to declare the formal parameter, foreign semantics
would be used, because a specifier appearing on the actual parameter always
overrides the semantics specified on the formal parameter.

Calling Conventions 5–15

Table 5–4 Summary of Passing Mechanisms and Passing Semantics

Actual Parameter

Variable (Variable) or Expression

Passing Mechanism
No VAR
on Formal

VAR
on Formal

No VAR
on Formal

VAR
on Formal

By immediate value
%IMMED or
[IMMEDIATE]

Foreign Error Foreign Error

By reference
Default for non-
conformant or
nonschema
%REF or
[REFERENCE]

Value

Variable

Variable

Error

Value

Foreign

Value1

Error

By descriptor
Default for
conformant
and schema
[CLASS_S]
[CLASS_A]
[CLASS_NCA]
%STDESCR
%DESCR

Value

Value
Value
Value
Variable
Variable

Variable

Variable
Variable
Variable
Error
Error

Value

Value
Value
Value
Foreign
Foreign

Value1

Value1

Value1

Value1

Error
Error

1If the formal parameter is declared with the READONLY attribute, then value-passing semantics is used;
otherwise, it is an error.

5.4 Passing Parameters between HP Pascal and Other
Languages

Passing parameters between HP Pascal and other languages on OpenVMS
systems requires some additional knowledge about the semantics and
mechanisms used by the HP Pascal and the other compilers involved.

5.4.1 Parameter Mechanisms Versus Parameter Semantics
The Pascal language provides three parameter semantics: ‘‘VAR parameters,’’
‘‘value parameters,’’ and ‘‘routine parameters.’’ These models define what
happens to the parameters, not how the compiler actually implements them.
‘‘VAR parameters’’ are parameters that represent the actual variable passed
to the routine. Changes made to the VAR parameter are reflected back to the
actual variable passed in to the routine. ‘‘Value parameters’’ are parameters
that are local copies of the expression passed into the routine. Changes made

5–16 Calling Conventions

to the value parameter are not reflected back to any actual parameter passed
in to the routine. ‘‘Routine parameters’’ are parameters that represent entire
routines that may be called from inside the called routine.

The HP Pascal compiler provides three parameter mechanisms: ‘‘by immediate
value,’’ ‘‘by reference,’’ and ‘‘by descriptor.’’ These forms represent the actual
implementation used by the compiler for the parameter. These forms are
denoted by the [IMMEDIATE], [CLASS_S], [CLASS_A], and [CLASS_NCA]
attributes (note, the [REFERENCE] attribute doesn’t just specify a parameter
mechanism, but also specifies a parameter semantic model).

HP Pascal also provides a fourth parameter model called ‘‘foreign parameters.’’
These parameters become either VAR or value parameters depending on the
actual parameter. If the actual parameter is a variable, then the parameter is
treated as a VAR parameter. If the actual parameter is an expression, then the
parameter is treated as a value parameter. These parameters are denoted by
the %REF, %DESCR, and %STDESCR foreign mechanism specifiers and the
[REFERENCE] attribute (identical in behavior to the %REF foreign parameter
specifier).

Be careful not to confuse the term ‘‘value parameter’’ with the ‘‘by immediate
value’’ mechanism. The ‘‘value’’ in ‘‘value parameter’’ describes the semantics
of the parameter where changes made to the parameter inside the called
routine are not reflected back to the actual parameter. It is a common
misconception that HP Pascal uses the ‘‘by immediate value’’ mechanism
for ‘‘value parameters.’’

5.4.2 Passing Nonroutine Parameters between HP Pascal and Other
Languages

By default, HP Pascal will use the ‘‘by reference’’ mechanism for the following
VAR and value parameter types: Ordinal (integer, unsigned, char, Boolean,
pointers, subranges, and enumerated types), Real (real, double, quadruple),
Record, Array, Set, Varying, and File.

If you want to pass a parameter with the ‘‘by immediate value’’ mechanism,
you can place the [IMMEDIATE] attribute on the definition of the formal
parameter’s definition or use the %IMMED foreign mechanism specifier
on the actual parameter to override the default mechanism of the formal
parameter. Only ordinal and real types may be passed with the ‘‘by immediate
value’’ mechanism. Only value parameters may use the ‘‘by immediate value’’
mechanism.

Calling Conventions 5–17

If you want to accept a value parameter with the ‘‘by immediate value,’’ you can
place the [IMMEDIATE] attribute on the definition of the formal parameter.
Only ordinal and real types may be accepted with the ‘‘by immediate value’’
mechanism.

For example, to pass an integer with the ‘‘by immediate value’’ mechanisn to
another routine,

[external] procedure rtn(p : [immediate] integer); external;

begin
rtn(3);
rtn(some-integer-expression);
end;

If you want to pass a parameter with the ‘‘by descriptor’’ mechanism, you can
place the [CLASS_A], [CLASS_S], or [CLASS_NCA] attributes on the formal
parameter’s definition. You can also use the %DESCR and %STDESCR foreign
mechanism specifiers, but be aware that these also imply parameter semantics
as well as the parameter-passing mechanism.

When passing values to a subrange parameter in a Pascal routine, the
argument must be large enough to hold a value of the subrange’s base-type
even if the formal parameter contained a size attribute.

When passing Boolean or enumerated-type values to a VAR parameter in a
Pascal routine, the calling routine must ensure that the sizes of the Boolean or
enumerated-type matches the setting of the /ENUMERATION_SIZE qualifier
or [ENUMERATION_SIZE] attribute used in the Pascal routine. For value
parameters, you can pass the address of a longword as that will work for either
setting.

When passing arrays or records to a Pascal routine, the calling routine
must ensure that the array and record has the same layout (including any
alignment holes) as chosen by the HP Pascal compiler. You may want to use
the /SHOW=STRUCTURE_LAYOUT listing section to help you determine the
layout chosen by the HP Pascal compiler.

By default, HP Pascal will use the ‘‘by descriptor’’ mechanism for VAR and
value conformant parameters. For conformant-varying parameters, HP Pascal
uses a CLASS_VS desciptor. For conformant-array parameters, HP Pascal uses
a CLASS_NCA descriptor on OpenVMS I64 and OpenVMS Alpha systems and
a CLASS_A descriptor on OpenVMS VAX systems.

5–18 Calling Conventions

Using a conformant-varying parameter or STRING schema parameter with
a routine not written in Pascal is not very common since the called routine
does not know how to deal with these strings. If you just are passing a string
expression to the non-Pascal routine, using a conformant PACKED ARRAY OF
CHAR is the right solution.

Since HP Pascal will use either a CLASS_A or CLASS_NCA descriptor for the
conformant PACKED ARRAY OF CHAR, but other languages will expect either
a CLASS_S descriptor or the string "by reference", you will need to use either
the [CLASS_S] attribute or the %REF foreign mechanism specifier.

For example, to pass a string expression to Fortran (which expects a CLASS_S
descriptor),

[external] procedure fortrtn(
p : [class_s] packed array [l..u:integer] of char); external;

begin
fortrtn(’string’);
fortrtn(some-string-expression);
end;

To pass a string expression to C (which expects a "by-reference" parameter and
a null-terminated string),

[external] procedure crtn(
%ref p : packed array [l..u:integer] of char); external;

begin
crtn(’string’(0));
crtn(some-string-expression+’0’);
end;

HP Pascal on OpenVMS I64 and OpenVMS Alpha systems has additional
support to deal with null-terminated strings.

For More Information

• HP Pascal Language Reference Manual

When passing strings to an HP Pascal routine from another language,
you must use a descriptor if the Pascal formal parameter is a conformant
parameter. HP Pascal cannot accept a conformant parameter with the ‘‘by
reference’’ mechanism. For conformant array parameters, you must generate a
CLASS_A descriptor on OpenVMS or a CLASS_NCA descriptor on OpenVMS
Alpha unless you select another descriptor class using the [CLASS_S],
[CLASS_A], or [CLASS_NCA] attributes. For conformant varying parameters,
you must generate a CLASS_VS descriptor on both platforms.

Calling Conventions 5–19

If you wish to use the "by reference" mechanism to pass strings into a Pascal
routine, you must define a Pascal datatype that represents a fixed-length string
(or varying-string with a maximum size) and use that datatype in the formal
parameter definition.

The HP Pascal schema type STRING is passed by CLASS_VS descriptor. Other
HP Pascal schema types use private data structures when passed between
routines and cannot be accessed from routines written in other languages.

5.4.3 Passing Routine Parameters between HP Pascal and Other
Languages

On OpenVMS I64 Systems:
By default, HP Pascal on OpenVMS I64 systems passes the address of a
function descriptor for PROCEDURE or FUNCTION parameters. The presence
of the [UNBOUND] attribute or the %IMMED foreign mechanism specifier
has no effect over the generated code since the function descriptors in the
OpenVMS Calling Standard allow any combination of bound and unbound
routines to be passed around and invoked.

On OpenVMS I64 systems, HP Pascal expects the address of a function
descriptor for routine parameters. In all OpenVMS I64 languages, asking
for the address of a routine yields the address of its function descriptor, since
the actual address of the instructions is not useful by itself.

On OpenVMS Alpha Systems:
By default, HP Pascal on OpenVMS Alpha systems passes the address of
a procedure descriptor for PROCEDURE or FUNCTION parameters. The
presence of the [UNBOUND] attribute or the %IMMED foreign mechanism
specifier has no effect over the generated code since the procedure descriptors
in the OpenVMS Calling Standard allow any combination of bound and
unbound routines to be passed around and invoked.

On OpenVMS Alpha systems, HP Pascal expects the address of a procedure
descriptor for routine parameters. In all OpenVMS Alpha languages, asking
for the address of a routine yields the address of its procedure descriptor, since
the actual address of the instructions is not useful by itself.

On OpenVMS VAX Systems:
By default, HP Pascal on OpenVMS VAX will pass the address of a BPV
(Bound Procedure Value) for PROCEDURE or FUNCTION parameters. The
BPV is a 2 longword structure with the 1st longword being the address of the
entry mask of the routine being passed; the 2nd longword is either a 0 or a
frame-pointer for any uplevel references that the called routine may attempt
to perform. If you use the [UNBOUND] attribute on the PROCEDURE or
FUNCTION parameter, the compiler still passes the address of a BPV, but the

5–20 Calling Conventions

2nd longword will always be zero. If you use the %IMMED foreign mechanism
specifier along with the [UNBOUND] attribute, HP Pascal will pass the
address of the routine with the ‘‘by immediate’’ mechanism.

For example, if you want to pass a Pascal routine to an external routine that
just expects the address of the routine (like a C routine or system service),

[external] procedure crtn(
%immed [unbound] procedure p); external;

procedure x;
begin ... end;

begin
crtn(x);
end;

Most system routines expect to be called in this fashion. A few routines like
EDT$EDIT actually expect BPVs and not just entry point addresses.

On OpenVMS VAX, HP Pascal only accepts a routine parameter by BPV. To
pass a routine from a non-Pascal routine to a Pascal routine, you must use the
[UNBOUND] attribute on the formal routine parameter and you must pass the
address of a longword containing the address of the routine’s entry point.

Calling Conventions 5–21

6
Programming on OpenVMS Systems

To eliminate duplication of programming and debugging efforts, OpenVMS
systems provide many routines to perform common programming tasks. These
routines are collectively known as system routines. They include routines
in the run-time library to assist you in such areas as mathematics, screen
management, and string manipulation. Also included are OpenVMS Record
Management Services (RMS), which are used to access files and their records.
There are also system services that perform tasks such as resource allocation,
information sharing, and input/output coordination.

This chapter discusses the following topics:

• Section 6.1, Using System Definitions Files

• Section 6.2, Declaring System Routines

• Section 6.3, Calling System Routines

• Section 6.4, Using Attributes

• Section 6.5, Using Item Lists

• Section 6.6, Using Foreign Mechanism Specifiers on Actual Parameters

• Section 6.7, Using 64-Bit Pointer Types

Because all OpenVMS system routines adhere to the HP OpenVMS Calling
Standard, you can declare any system routine as an external routine and then
call the routine from an HP Pascal program.

6.1 Using System Definitions Files
To access system entry points, data structures, symbol definitions, and
messages, HP Pascal provides files that you can inherit (.PEN) or include
(.PAS) in your application. Table 6–1 summarizes the source and environment
files that HP Pascal makes available to you in the directory SYS$LIBRARY
(for instance, SYS$LIBRARY:STARLET.PEN).

Programming on OpenVMS Systems 6–1

Table 6–1 HP Pascal Definitions Files

File Description

System Services Definitions File:

STARLET.PAS/.PEN Contains OpenVMS system service
definitions, LIB$ messages, MTH$
messages, OTS$ messages, SMG$
data structures and termtable, STR$
messages, RMS routine declarations,
system symbolic names, and RMS
data structures.

Run-Time Library Definitions Files:

PASCAL$ACLEDIT_ROUTINES.PAS/.PEN Contains ACLEDIT$ routine entry
points.

PASCAL$C_ROUTINES.PAS/.PEN Contains C$ routine entry points.

PASCAL$CLI_ROUTINES.PAS/.PEN Contains CLI$ routine entry points.

PASCAL$CMA_ROUTINES.PAS/.PEN2 Contains routine entry points,
data structures, and messages for
DECthreads. For more information
on DECthreads, see the Guide to the
POSIX Threads Library.

PASCAL$CONV_ROUTINES.PAS/.PEN Contains CONV$ routine entry
points.

PASCAL$CVT_ROUTINES.PAS/.PEN Contains CVT$ routine entry points.

PASCAL$DCX_ROUTINES.PAS/.PEN Contains DCX$ routine entry points.

PASCAL$DTK_ROUTINES.PAS/.PEN Contains DTK$ routine entry points,
data structures, and messages.

PASCAL$EDT_ROUTINES.PAS/.PEN Contains EDT$ routine entry points.

PASCAL$FDL_ROUTINES.PAS/.PEN Contains FDL$ routine entry points.

PASCAL$LBR_ROUTINES.PAS/.PEN Contains LBR$ routine entry points.

PASCAL$LIB_ROUTINES.PAS/.PEN Contains LIB$ routine entry points.

PASCAL$MAIL_ROUTINES.PAS/.PEN Contains MAIL$ routine entry
points.

PASCAL$MTH_ROUTINES.PAS/.PEN Contains MTH$ routine entry points.

PASCAL$NCS_ROUTINES.PAS/.PEN Contains NCS$ routine entry points.

2These files are only provided on OpenVMS I64 and OpenVMS Alpha systems.

(continued on next page)

6–2 Programming on OpenVMS Systems

Table 6–1 (Cont.) HP Pascal Definitions Files

File Description

Run-Time Library Definitions Files:

PASCAL$OTS_ROUTINES.PAS/.PEN Contains OTS$ routine entry points.

PASCAL$PPL_ROUTINES.PAS/.PEN Contains PPL$ routine entry points,
data structures, and messages.

PASCAL$PSM_ROUTINES.PAS/.PEN Contains PSM$ routine entry points.

PASCAL$SMB_ROUTINES.PAS/.PEN Contains SMB$ routine entry points.

PASCAL$SMG_ROUTINES.PAS/.PEN Contain SMG$ routine entry points
and messages.

PASCAL$SOR_ROUTINES.PAS/.PEN Contains SOR$ routine entry points
and messages.

PASCAL$STR_ROUTINES.PAS/.PEN Contains STR$ routine entry points.

PASCAL$TPU_ROUTINES.PAS/.PEN Contains TPU$ routine entry points.

Symbol Definitions Files:1

LIBDEF.PAS Contains definitions for all condition
symbols from the general utility
run-time library routines.

MTHDEF.PAS Contains definitions for all condition
symbols from the mathematical
routines library.

SIGDEF.PAS Contains miscellaneous symbol
definitions used in condition
handlers. These definitions are
also included in STARLET.PEN.

HP Pascal Run-Time Library Files:

PASDEF.PAS Contains definitions for all condition
symbols from the HP Pascal run-
time library routines.

1These files are retained for compatibility with older versions of this product and do not contain
symbol definitions for subsequent releases of the product. (For definitions that are complete for the
latest release of OpenVMS, use the individual PASCAL$ files or STARLET). To access these files,
use the %INCLUDE directive in the CONST declaration section of your program.

(continued on next page)

Programming on OpenVMS Systems 6–3

Table 6–1 (Cont.) HP Pascal Definitions Files

File Description

HP Pascal Run-Time Library Files:

PASSTATUS.PAS Contains definitions for all values
returned by the STATUS and
STATUSV routines.

For instance, the external routine declarations in STARLET define new
identifiers by which you can refer to the routines. Example 6–1 shows that you
can refer to SYS$HIBER as $HIBER if you use STARLET.

Example 6–1 Inheriting STARLET.PEN to Call SYS$HIBER

[INHERIT(’SYS$LIBRARY:STARLET’)] PROGRAM Suspend (INPUT,OUTPUT);
TYPE

Sys_Time = RECORD
I,J : INTEGER;
END;

Unsigned_Word = [WORD] 0..65535;
VAR

Current_Time : PACKED ARRAY[1..80] OF CHAR;
Length : Unsigned_Word;
Job_Name : VARYING[15] OF CHAR;
Ascii_Time : VARYING[80] OF CHAR;
Binary_Time : Sys_Time;

BEGIN
{ Print current date and time }
$ASCTIM (TIMLEN := Length, TIMBUF := Current_Time);
WRITELN (’The current time is ’, SUBSTR(Current_Time, 1, Length);

{ Get name of process to suspend }
WRITE (’Enter name of process to suspend: ’);
READLN (Job_Name);

{ Get time to wake process }
WRITE (’Enter time to wake process: ’);
READLN (Ascii_Time);

(continued on next page)

6–4 Programming on OpenVMS Systems

Example 6–1 (Cont.) Inheriting STARLET.PEN to Call SYS$HIBER

{ Convert time to binary }
IF NOT ODD ($BINTIM (Ascii_Time, Binary_Time))
THEN

BEGIN
WRITELN (’Illegal format for time string’);
HALT;

END;

{ Suspend process }
IF NOT ODD ($SUSPND (PRCNAM := Job_Name))
THEN

BEGIN
WRITELN (’Cannot suspend process’);
HALT;

END;

{ Schedule wakeup request for self }
IF ODD ($SCHDWK (DAYTIME := Binary_Time))
THEN

$HIBER { Put self to sleep }
ELSE

BEGIN
WRITELN (’Cannot schedule wakeup’);
WRITELN (’Process will resume immediately’);

END;

{ Resume process }
IF NOT ODD ($RESUME (PRCNAM := Job_Name))
THEN

BEGIN
WRITELN (’Cannot resume process’);
HALT;

END;
END.

6.2 Declaring System Routines
Before calling a routine, you must declare it. System routine names conform to
one of the two following conventions:

[[facility-code]]$procedure-name

For example, LIB$PUT_OUTPUT is the run-time library routine used to write
a record to the current output device and $ASCTIM is a system service routine
used to convert binary time to ASCII time.

Programming on OpenVMS Systems 6–5

Because system routines are often called from condition handlers or
asynchronous trap (AST) routines, you should declare system routines
with the ASYNCHRONOUS attribute.

Each system routine is documented with a structured format in the appropriate
OpenVMS reference manual. The documentation for each routine describes the
routine’s purpose, the declaration format, the return value, and any required
or optional parameters. Detailed information about each parameter is listed in
the description. The following format is used to describe each parameter:

parameter-name
OpenVMS Usage : OpenVMS data type
type : parameter data type
access : parameter access
mechanism : parameter-passing mechanism

Using this information, you must determine the parameter’s data type (type),
the parameter’s passing semantics (access), the mechanism used to pass the
parameter (mechanism), and whether the parameter is required or optional
from the call format.

The following sections describe the methods available in HP Pascal to obtain
the various data types, access methods, and passing mechanisms.

6.2.1 Methods Used to Obtain OpenVMS Data Types
The data specified by a parameter has a data type. Several OpenVMS standard
data types exist. A system routine parameter must use one of these data
types.

For More Information:

• On OpenVMS data types and equivalent HP Pascal declarations (HP
OpenVMS Calling Standard)

6.2.2 Methods Used to Obtain Access Methods
The access method describes the way in which the called routine accesses the
data specified by the parameter. The following three methods of access are the
most common:

• Read only—data must be read by the called routine. The called routine
does not write the input data. Thus, input data supplied by a variable is
preserved when the called routine completes execution.

• Write only—data that the called routine returns to the calling routine must
be written into a location where the calling routine can access it. Such
data can be thought of as output data. The called routine does not read the
contents either before or after it writes into the location.

6–6 Programming on OpenVMS Systems

• Modify—a parameter specifies data that is both read and written by the
called routine. In this case, the called routine reads the input data, which
it uses in its operations, and then overwrites the input data with the
results. Thus, when the called routine completes execution, the input data
specified by the argument is lost.

Table 6–2 lists all access methods that may appear under the access entry in a
parameter description, as well as the HP Pascal translation.

Table 6–2 Access Type Translations

Access Entry Method Used in HP Pascal

Call after stack unwind Procedure or function parameter passed by
immediate value

Function call (before return) Function parameter

Jump after unwind Not available

Modify Variable semantics1

Read only Value or foreign semantics

Call without stack unwind Procedure parameter

Write only Variable semantics1

1It is possible to obtain variable semantics by either specifying the VAR keyword on the formal
parameter or by passing a variable as an actual parameter using %REF, %DESCR, or %STDESCR.

6.2.3 Methods Used to Obtain Passing Mechanisms
The way in which an argument specifies the actual data to be used by the
called routine is defined in terms of the parameter-passing mechanism.

Table 6–3 lists all passing mechanisms that may appear under the mechanism
entry in an argument description and the method used in HP Pascal to obtain
the passing mechanism.

Table 6–3 Mechanism Type Translations

Mechanism Entry Method Used in HP Pascal

By value %IMMED or [IMMEDIATE]

By reference VAR, %REF or [REFERENCE] or default

(continued on next page)

Programming on OpenVMS Systems 6–7

Table 6–3 (Cont.) Mechanism Type Translations

Mechanism Entry Method Used in HP Pascal

By descriptor
Fixed-length %STDESCR parameter of type PACKED ARRAY OF

CHAR or [CLASS_S]

Dynamic-string %STDESCR parameter of type PACKED ARRAY OF
CHAR or [CLASS_S]

Array Array type, conformant array parameter, or [CLASS_A]

Procedure N.A.

Decimal-string N.A.

Noncontiguous-
array

%DESCR or [CLASS_NCA]

Varying-string Value, VAR, or %DESCR conformant parameter of type
VARYING OF CHAR, or %DESCR parameter of type
VARYING OF CHAR

Varying-string-
array

Value, VAR, or %DESCR conformant parameter
of type array of VARYING OF CHAR, or %DESCR
parameter of type array of VARYING OF CHAR

Unaligned-bit-
string

N.A.

Unaligned-bit-array N.A.

String-with-bounds N.A.

Unaligned-bit-
string-with-
bounds

N.A.

Parameters passed by reference and used solely as input to a system service
should be declared with HP Pascal value semantics; this allows actual
parameters to be compile-time and run-time expressions. When a system
service requires a formal parameter with a mechanism specifier, you should
declare the formal parameter with the READONLY attribute to specify value

6–8 Programming on OpenVMS Systems

semantics. Other parameters passed by reference should be declared with
HP Pascal variable semantics to ensure that the output data is interpreted
correctly. In some cases, by reference parameters are used for both input and
output and should also be declared with variable semantics.

The following example shows the declaration of the Convert ASCII String
to Binary Time (SYS$BINTIM) system service and a corresponding function
designator:

TYPE
$QUAD = [QUAD,UNSAFE] RECORD

L0 : UNSIGNED;
L1 : INTEGER;

END;

VAR
Ascii_Time : VARYING[80] OF CHAR;
Binary_Time : $QUAD;

[ASYNCHRONOUS,EXTERNAL(SYS$BINTIM)] FUNCTION $BINTIM
(TIMBUF : [CLASS_S] PACKED ARRAY [$l1..$u1:INTEGER] OF CHAR;
VAR TIMADR : [VOLATILE] $QUAD)
: INTEGER; EXTERNAL;

{In the executable section:}
IF NOT ODD ($BINTIM(Ascii_Time, Binary_Time))
THEN

BEGIN
WRITELN (’Illegal format for time string’);
HALT;

END;

The first formal parameter requires the address of a character-string descriptor
with value semantics; the second requires an address and uses variable
semantics to manipulate the parameter within the service. Because you can
call $BINTIM from a condition handler or AST routine, you should declare it
with the ASYNCHRONOUS attribute. Also, because you may want to pass a
volatile variable to the TIMADR parameter, you should use the VOLATILE
attribute to indicate that the argument is allowed to be volatile.

6.2.4 Data Structure Parameters
Some system services require a parameter to be the address of a data structure
that indicates a function to be performed or that holds information to be
returned. Such a structure can be described as a list, a control block, or a
vector. The size and POS attributes provide an efficient method of laying out
these data structures. The size attributes ensure that the fields of the data
structure are of the size required by the system service, and the POS attribute
allows you to position the fields correctly.

Programming on OpenVMS Systems 6–9

For example, the Get Job/Process Information (SYS$GETJPIW) system service
requires an item list consisting of an array of records of 12 bytes, where all but
the last array cell requests one piece of data and the last array cell represents
the item list terminator. By packing the record, you can guarantee that the
fields of each record are allocated contiguously. Example 6–2 uses the system
service routine $GETJPIW to retrieve the process’s name as a 12-byte string.

Example 6–2 Using $GETJPIW to Retrieve a Process Name

[INHERIT(’SYS$LIBRARY:STARLET’)] PROGRAM Userid(OUTPUT);

TYPE
Uword = [WORD] 0..65535;
Itmlst_Cell = PACKED RECORD

CASE INTEGER OF
1 : (Buf_Len : Uword;

Item_Code : Uword;
Buf_Addr : INTEGER;
Len_Addr : INTEGER);

2 : (Term : INTEGER);
END;

VAR
Username_String : [VOLATILE] VARYING [12] OF CHAR;
Itmlst : ARRAY [1..2] OF Itmlst_Cell := ZERO;

BEGIN
Itmlst[1].Buf_Len := 12; { 12 bytes returned }
Itmlst[1].Item_Code := JPI$_USERNAME; { return user name }
Itmlst[1].Buf_Addr := { store returned name here }

IADDRESS(Username_String.BODY);
Itmlst[1].Len_Addr := { store returned length here }

IADDRESS(Username_String.LENGTH);
Itmlst[2].Term := 0; { terminate item list }

IF NOT ODD($GETJPIW(,,,Itmlst))
THEN

WRITELN(’error’)
ELSE

WRITELN(’user name is ’,Username_String);
END.

For More Information:

• On size attributes (HP Pascal for OpenVMS Language Reference Manual)

6–10 Programming on OpenVMS Systems

6.2.5 Default Parameters
In some cases, you do not have to supply actual parameters to correspond to
all the formal parameters of a system service. In HP Pascal, you can supply
default values for such optional parameters when you declare the service.
You can then omit the corresponding actual parameters from the routine call.
If you choose not to supply an optional parameter, you should initialize the
formal parameter with the appropriate value using the by immediate value
(%IMMED) mechanism. The correct default value is usually 0.

For example, the Cancel Timer (SYS$CANTIM) system service has two
optional parameters. If you do not specify values for them in the actual
parameter list, you must initialize them with zeros when they are declared.
The following example is the routine declaration for SYS$CANTIM:

[ASYNCHRONOUS,EXTERNAL(SYS$CANTIM)] FUNCTION $CANTIM (
%IMMED REQIDT : UNSIGNED := %IMMED 0;
%IMMED ACMODE : UNSIGNED := %IMMED 0) : INTEGER; EXTERNAL;

A call to $CANTIM must indicate the position of omitted parameters with a
comma, unless they all occur at the end of the parameter list. For example, the
following are legal calls to $CANTIM using the previous external declaration:

$CANTIM (, PSL$C_USER);
$CANTIM (I);
$CANTIM;

PSL$C_USER is a symbolic constant that represents the value of a user access
mode, and I is an integer that identifies the timer request being canceled. If
you call $CANTIM with both of its default parameters, you can omit the actual
parameter list completely.

When it is possible for the parameter list to be truncated, you can also specify
the TRUNCATE attribute on the formal parameter declaration of the optional
parameter. The TRUNCATE attribute indicates that an actual parameter list
for a routine can be truncated at the point that the attribute was specified.
However, once one optional parameter is omitted in the actual parameter list,
it is not possible to specify any optional parameter following that. For example:

[ASYNCHRONOUS] FUNCTION LIB$GET_FOREIGN (
VAR Resultant_String : [CLASS_S,VOLATILE]

PACKED ARRAY [$l1..$u1:INTEGER] OF CHAR;
Prompt_String : [CLASS_S,TRUNCATE]

PACKED ARRAY [$l2..$u2:INTEGER] OF CHAR := %IMMED 0;
VAR Resultant_Length : [VOLATILE,TRUNCATE] $UWORD := %IMMED 0;
VAR Flags : [VOLATILE,TRUNCATE] UNSIGNED := %IMMED 0)

: INTEGER; EXTERNAL;

Programming on OpenVMS Systems 6–11

With this declaration, it is possible to specify values for Resultant_String
and Prompt_String and truncate the call list at that point. In this case, two
parameters would be passed in the CALL instruction.

You may want to use a combination of the %IMMED 0 and TRUNCATE
methods. This combination would allow you to skip the specification of
intermediate optional parameters, as well as allow you to truncate the call list
once all desired parameters have been specified.

Note that OpenVMS system services require a value to be passed by
parameters, including optional parameters; therefore, you should not use
the TRUNCATE attribute when defining optional parameters to a system
service. Instead, you should specify default values on the formal parameter
declaration.

The TRUNCATE attribute is useful when calling routines for which the
optional parameter is truly optional, for example, when calling run-time library
routines.

For More Information:

• On the TRUNCATE attribute (HP Pascal for OpenVMS Language Reference
Manual)

6.2.6 Arbitrary Length Parameter Lists
Some run-time library routines require a variable number of parameters. For
example, there is no fixed limit on the number of values that can be passed
to functions that return the minimum or maximum value from a list of input
parameters. The LIST attribute supplied by HP Pascal allows you to indicate
the mechanism by which excess actual parameters are to be passed. For
example:

[ASYNCHRONOUS] FUNCTION MTH$DMIN1 (
D_FLOATING : DOUBLE;
EXTRA_PARAMS : [LIST] DOUBLE) : DOUBLE; EXTERNAL;

Because the function MTH$DMIN1 returns the D_floating minimum of an
arbitrary number of D_floating parameters, the formal parameter EXTRA_
PARAMS is declared with the LIST attribute. All actual parameters must be
double-precision real numbers passed by reference with value semantics.

For More Information:
On the LIST attribute (HP Pascal for OpenVMS Language Reference Manual)

6–12 Programming on OpenVMS Systems

6.3 Calling System Routines
All system routines are functions that return an integer condition value; this
value indicates whether the function executed successfully. An odd-numbered
condition value indicates successful completion; an even-numbered condition
value indicates a warning message or failure. Your program can use the
HP Pascal predeclared function ODD to test the function return value for
success or failure. For example:

IF NOT ODD ($BINTIM(Ascii_Time,Binary_Time))
THEN

BEGIN
WRITELN(’Illegal format for time string’);
HALT;

END;

In addition, run-time library routines return one or two values: the result
of a computation or the routine’s completion status, or both. When the
routine returns a completion status, you should verify the return status
before checking the result of a computation. You can use the function ODD to
test for success or failure or you can check for a particular return status by
comparing the return status to one of the status codes defined by the system.
For example:

VAR
Seed_Value : INTEGER;
Rand_Result : REAL;

[ASYNCHRONOUS] FUNCTION MTH$RANDOM (
VAR seed : [VOLATILE] UNSIGNED) : SINGLE; EXTERNAL;

{In the executable section:}
Rand_Result := MTH$RANDOM (Seed_Value);

When the routine’s completion status is irrelevant, your program can treat the
function as though it were an external procedure and ignore the return value.
For example, your program can declare the Hibernate (SYS$HIBER) system
service as a function but call it as though it were a procedure:

[ASYNCHRONOUS,EXTERNAL(SYS$HIBER)] FUNCTION $HIBER
: INTEGER; EXTERNAL;

{In the executable section:}
$HIBER; { Put process to sleep }

Because SYS$HIBER is expected to execute successfully, the program will
ignore the integer condition value that is returned.

Programming on OpenVMS Systems 6–13

6.4 Using Attributes
When writing programs that use OpenVMS System Services and run-time
library routines, it is common to use several HP Pascal attributes.

The VOLATILE attribute indicates that a variable is written or read indirectly
without explicit program action. The most common occurrence for this is
with item lists. In that case, the address of the variable is placed in the item
list (most likely using the IADDRESS routine). This address is then used
later when the entire item list is passed to a system service. Without the
VOLATILE attribute, the compiler does not realize that the call to the system
service or run-time library routine uses the variable.

The UNBOUND attribute designates a routine that does not have a static link
available to it. Without a static link, a routine can only access local variables,
parameters, or statically allocated variables. System services that require AST
or action routines want the address of an UNBOUND routine. Routines at the
outer level of a PROGRAM or MODULE are UNBOUND by default.

The ASYNCHRONOUS attribute designates a routine that might be called
asynchronously of any program action. This allows the compiler to verify
that the asynchronous routine only accesses local variables, parameters, and
VOLATILE variables declared at outer levels. Without the assurance that
only VOLATILE variables are used, the asynchronous routine might access
incorrect data, or data written by the routine will not be available to the main
program.

6.5 Using Item Lists
Many OpenVMS system services use item lists. Item lists are sequences of
control structures that provide input to the system service and that describe
where the service should place its output. These item lists can have an
arbitrary number of cells and are terminated with a longword of value 0.

Since different programs need a different number of item list cells, you can
use a schema type to define a generic item list data type. This schema type
can then be discriminated with the appropriate number of cells. Consider the
following example:

6–14 Programming on OpenVMS Systems

TYPE
Item_List_Cell = RECORD

CASE INTEGER OF
1: ({ Normal Cell }

Buffer_Length : [WORD] 0..65535;
Item_Code : [WORD] 0..65535;
Buffer_Addr : UNSIGNED;
Return_Addr : UNSIGNED

);
2: ({ Terminator }

Terminator : UNSIGNED
);

END;
Item_List_Template(Count : INTEGER) =

ARRAY [1..Count] OF Item_List_Cell;

The Item_List_Cell data type specifies what a single cell looks like. The
Buffer_Addr and Return_Addr fields are declared as UNSIGNED since most
applications use the IADDRESS predeclared routine to fill them in. The
Item_List_Template schema type defines an array of item list cells with a
upper bound to be filled in by an actual discriminant.

To use this schema type, first determine the number of item list cells required
including one cell for the terminator. After the number of cells has been
determined, declare a variable discriminating the schema. Consider the
following example:

VAR
Item_List : Item_List_Template(2);

Additionally, since actual discriminants to schema can be run-time expressions,
you can write a routine that can have item lists with a number of cells that is
determined at run time.

After the item list variable has been declared, each cell must be filled in
according to the system service and operation requested.

Consider the following example using the SYS$TRNLNM system service:

VAR
Item_List : Item_List_Template(2);
Translated_Name : [VOLATILE] VARYING [132] OF CHAR;

{Specify the buffer to return the translation:}
Item_List[1].Buffer_Length := SIZE(Translated_Name.BODY);
Item_List[1].Item_Code := LNM$_String;
Item_List[1].Buffer_Addr := IADDRESS(Translated_Name.BODY);
Item_List[1].Return_Addr := IADDRESS(Translated_Name.LENGTH);

{ Terminate the item list:}
Item_List[2].Terminator := 0;

Programming on OpenVMS Systems 6–15

The VAR section declares an item list with two cells. It also declares an output
buffer for the system service. The VOLATILE attribute is used since the call
to SYS$TRNLNM indirectly writes into the variable. The first cell is filled in
with the operation desired, the size of the output buffer, the location to write
the result, and the location to write the size of the result.

Using the SIZE predeclared function prevents the code from having to be
modified if the output buffer ever changes size. Using the BODY and LENGTH
predeclared fields of the VARYING string allows the system service to construct
a valid VARYING OF CHAR string. Finally, the second cell of the item list is
initialized. Since the second cell is the last cell, the terminator field must be
filled in with a value of 0.

6.6 Using Foreign Mechanism Specifiers on Actual
Parameters

The definition files provided by HP Pascal (SYS$LIBRARY:STARLET.PAS
and so forth) are created from a generic description language used by the
OpenVMS operating system. Since this description language does not contain
all the features found in HP Pascal, some of the translations do not take
advantage of HP Pascal features. Also, since several of the system services are
generic in nature, it is impossible to provide a definitive definition for every
situation.

If a formal parameter definition does not reflect the current usage, you can use
a foreign mechanism specifier to direct the compiler to use a different passing
mechanism or different descriptor type than the default for that parameter.

Consider the following:

• ASTADR parameter

Many system services define this parameter to be a procedure parameter
with no formal parameters. This is because the format of the arguments
passed to the AST routine vary with the system service. If you specify a
routine with parameters as the actual parameter to an ASTADR parameter,
you will receive a compile-time error saying that the formal parameter and
actual parameter have different parameter lists. To solve this problem,
you can specify the %IMMED foreign mechanism specifier on the actual
parameter. This causes the compiler to pass the address of the routine
without verifying that the parameter lists are identical.

• ASTPRM parameter

6–16 Programming on OpenVMS Systems

Many system services define this parameter to be an UNSIGNED
parameter passed by immediate value. Since the parameter to an AST
routine is dependent on the application, it is often desired to pass the
address of a variable instead of its contents. To solve this problem, you can
specify the %REF foreign mechanism specifier on the actual parameter.
This causes the compiler to pass the address of the variable instead of the
contents of the variable.

• P1..Pn parameters

The P1 through P6 parameters of the $QIO and $QIOW system services
and the P1 through P20 parameters of the $FAO system services are
also defined to be UNSIGNED parameters passed by immediate value. If
the actual parameter is not UNSIGNED or requires a different passing
mechanism, you can specify the %REF foreign mechanism specifier on
the actual parameter. This causes the compiler to pass the address of the
variable instead of the contents of the variable.

• RESULTANT_FILESPEC parameter of the LIB$FIND_FILE run-time
library routine

This parameter is declared to be a VAR conformant PACKED ARRAY
OF CHAR parameter and is passed by a CLASS_A descriptor. However,
the LIB$FIND_FILE routine can also accept CLASS_VS descriptors of
VARYING OF CHAR variables. To cause the compiler to build a CLASS_
VS descriptor instead of the default CLASS_A descriptor, you can specify
the %DESCR foreign mechanism specifier on the actual VARYING OF
CHAR parameter.

6.7 Using 64-Bit Pointer Types
HP Pascal on OpenVMS I64 and OpenVMS Alpha systems includes limited
support for 64-bit pointers.

64-bit pointers can be declared by using the [QUAD] attribute on a pointer
variable declaration. When [QUAD] is used, the generated code will use all 64
bits of the pointer.

6.7.1 Pascal Language Features Not Supported with 64-Bit Pointers
Several Pascal features are not supported with 64-bit pointers. These features
are:

• Base types of 64-bit pointers cannot contain file types or schema types.

Programming on OpenVMS Systems 6–17

• The READ built-in routine cannot read into variables accessed with 64-bit
pointers. For example, the following code fragment will be rejected by the
compiler:

var quad_ptr : [quad] ^integer;

begin
quad_ptr := my_alloc_routine(size(integer));
read(quad_ptr^);
end

• Strings allocated in P2 address space cannot be used with the READV or
WRITEV predeclared routines.

• HP Pascal understands 32-bit descriptors as defined by the OpenVMS
calling standard. Therefore, any HP Pascal construct that relies on
descriptors is not supported for variables accessed with 64-bit pointers.
The features rejected for 64-bit pointers are:

– The use of %DESCR or %STDESCR on actual parameter values
accessed with 64-bit pointers. For example, you cannot do the
following:

type
s32 = packed array [1..32] of char;

var
qp : [quad] ^s;

begin
qp := my_alloc_routine(size(s32));
some_routine(%stdescr qp^);

end;

– Passing variables accessed with 64-bit pointers to formal parameters
declared with %DESCR or %STDESCR foreign mechanism specifiers.

– Passing variables accessed with 64-bit pointers to conformant array or
conformant varying parameters.

– Passing variables accessed with 64-bit pointers to STRING parameters.

– At run time, the compiler will generate incorrect code when passing a
VAR parameter that is accessed with a 64-bit pointer to a parameter
that requires a descriptor. The generated code will build the descriptor
with the lower 32-bits of the 64-bit address. For example:

6–18 Programming on OpenVMS Systems

type
s32 = packed array [1..32] of char;

var
qp : [quad] ^s;

procedure a(p : packed array [l..u:integer] of char);
begin
writeln(a);
end;

procedure b(var p : s32);
begin
a(p); { This will generate a bad descriptor }
end;

begin
qp := my_alloc_routine(size(s32));
b(qp^);
end;

6.7.2 Using 64-Bit Pointers with System Definition Files
For routines that have parameters that are 64-bit pointers, the Pascal
definition uses a 64-bit record type. The definition files do not support either
the INTEGER64 datatype or 64-bit pointers.

You can override the formal definition inside of definition files by using a
foreign mechanism specifier (that is, %IMMED, %REF, %STDESCR, and
%DESCR) on an actual parameter.

For example, the following is an example of calling lib$get_vm_64 using %ref
to override the definition from PASCAL$LIB_ROUTINES.PEN:

[inherit(’sys$library:pascal$lib_routines’)]
program p64(input,output);

const
arr_size = (8192 * 10) div 4; ! Make each array be 10 pages

type
arr = array [1..arr_size] of integer;
arrptr = [quad] ^arr;

var
ptr : arrptr;
ptrarr : array [1..10] of arrptr;
i,j,stat : integer;
sum : integer64;

Programming on OpenVMS Systems 6–19

! PASCAL$LIB_ROUTINES.PAS on a V7.1 system contains
! the following definitions for LIB$GET_VM_64
!
!type
! $QUAD = [QUAD,UNSAFE] RECORD
! L0:UNSIGNED; L1:INTEGER; END;
! $UQUAD = [QUAD,UNSAFE] RECORD
! L0,L1:UNSIGNED; END;
! lib$routines$$typ4 = ^$QUAD;
!
![ASYNCHRONOUS] FUNCTION lib$get_vm_64 (
! number_of_bytes : $QUAD;
! VAR base_address : [VOLATILE] lib$routines$$typ4;
! zone_id : $UQUAD := %IMMED 0) : INTEGER; EXTERNAL;
!
! Note that the BASE_ADDRESS parameter is a 64-bit pointer
! that will be returned by LIB$GET_VM_64. The definition
! incorrectly declared it as a pointer to a record that is
! quadword sized.
!

begin

! Allocate memory with lib$get_vm_64. The definition of
! lib$get_vm_64 declares the return address parameter as
! a quadword-sized record since it doesn’t have sufficient
! information to generate a INTEGER64 or other type.
!
! Use an explicit ’%ref’ foreign mechanism specifier to
! override the formal parameter’s type definition and pass
! our pointer to lib$get_vm_64.
!

writeln(’arr_size = ’,arr_size:1);
for i := 1 to 10 do
begin
stat := lib$get_vm_64(size(arr), %ref ptrarr[i]);
if not odd(stat)
then

begin
writeln(’Error from lib$get_vm_64: ’,hex(stat));
lib$signal(stat);
end;

writeln(’ptrarr[’,i:1,’] = ’,hex(ptrarr[i]));
end;

! Read/write all the memory locations to get some page faults
!
writeln(’Initialize all memory’);
for i := 1 to 10 do
for j := 1 to arr_size do
ptrarr[i]^[j] := i + j;

6–20 Programming on OpenVMS Systems

sum := 0;
writeln(’Add up all memory in reverse direction’);
for i := 10 downto 1 do
for j := arr_size downto 1 do
sum := sum + ptrarr[i]^[j];

writeln(’Sum of array contents = ’,sum:1);

end.

On OpenVMS I64 and OpenVMS Alpha systems, the compiler allows the
LONG and QUAD attributes to be specified on pointer types, as shown in the
following example:

var long_ptr : ^integer;
quad_ptr : [quad] ^integer;

Both pointers point to integers, but long_ptr is 32 bits while quad_ptr is 64
bits.

Programming on OpenVMS Systems 6–21

7
Input and Output Processing

This chapter provides details on the input/output (I/O) support provided for
OpenVMS systems and discusses the following topics:

• Section 7.1, Environment I/O Support

• Section 7.2, User-Action Functions

• Section 7.3, File Sharing

• Section 7.4, Record Locking

7.1 Environment I/O Support
HP Pascal uses the Record Management Services (RMS) to perform I/O tasks
at the system level. In this environment, all of the HP Pascal I/O model is
supported; the model is based on RMS concepts. If these sections contain no
information on a concept or element in the HP Pascal I/O model, then this
environment supports the concept or element exactly as it is described in the
HP Pascal for OpenVMS Language Reference Manual.

You can use RMS features through HP Pascal when you call the OPEN
procedure. For instance, when you call this procedure, you can specify the file
organization, the component format, and the access method.

If you choose to use additional features of RMS that are not available in the
HP Pascal I/O model, you can write a user-action function that manipulates
the RMS control blocks: the file access block (FAB), the record access block
(RAB), and the extended attribute block (XAB). Once you write the user-action
function, you pass the function name as a parameter to the OPEN procedure.

For More Information:

• On user-action functions (Section 7.2)

• On OPEN defaults (Section 7.1.6.1)

• On OPEN and the HP Pascal I/O model (HP Pascal for OpenVMS
Language Reference Manual)

Input and Output Processing 7–1

• On RMS concepts (Guide to OpenVMS File Applications)

• On the user interface to RMS (OpenVMS Record Management Services
Reference Manual)

7.1.1 Indexed Files
The HP Pascal I/O model allows you to use most of the features of RMS
indexed files. However, if you wish to use segmented or null keys, you must
write a user-action function.

When an existing indexed file is opened, the run-time library compares the
keys in the file against the KEY attributes specified in the program. If no
KEY attribute was specified for the corresponding key in the indexed file,
then the comparison is bypassed and the open continues. The run-time
library compares the position and the data type of the file’s keys against the
KEY attributes specified. If the KEY attribute explicitly specifies a collating
sequence (ASCENDING or DESCENDING), then the specified sequence must
match that of the key in the file. If no sequence is specified, either sequence is
allowed. The CHANGES and DUPLICATES options are not checked.

For More Information:

• On user-action functions (Section 7.2)

• On the OPEN procedure (Section 7.1.6)

• On indexed file organization and the KEY attribute (HP Pascal for
OpenVMS Language Reference Manual)

7.1.2 OpenVMS Components and RMS Records
In the HP Pascal I/O model, data items in a file are called components. In
RMS, these items are called records.

7.1.3 Count Fields for Variable-Length Components
Each variable-length component contains a count field as a prefix. This count
field contains the number of bytes in the rest of the component. For files on
tape, this count field is 4 bytes in length; for files on disk, this count field is 2
bytes in length.

7–2 Input and Output Processing

7.1.4 Variable-Length with Fixed-Length Control Field (VFC)
Component Format

The HP Pascal I/O model does not provide a direct means to create files of
variable-length components with fixed-length control fields (VFC). If you open
a file of this component format, HP Pascal treats the file like a file of variable-
length components. If you want to create files of this component format, you
must write a user-action function.

For More Information:

• On user-action functions (Section 7.2)

• On VFC components (Guide to OpenVMS File Applications)

7.1.5 Random Access by Record File Address (RFA)
The HP Pascal I/O model does not allow random access by record file address.
If you want to use this type of access, you must write a user-action function.

RMS supports random access by Record File Address (RFA) for relative and
indexed files, and for sequential files only on disk. The RFA is a unique
number supplied for files on disk. The RFA remains constant as long as the
record is in the file. RMS makes the RFA available to your program every time
the record is stored or retrieved. Your program can either ignore the RFA or it
can keep it as a random-access pointer to the record for subsequent accesses.

If your disk file is sequential with variable-length records, the RFA provides
the only method for randomly accessing records of that file.

For More Information:

• On user-action functions (Section 7.2)

• On RFA (Guide to OpenVMS File Applications)

7.1.6 OPEN Procedure
When you use the OPEN procedure, RMS applies default values for OpenVMS
file specifications, and assigns values to FAB, RAB, XAB, and Name Block data
structures.

Input and Output Processing 7–3

7.1.6.1 OPEN Defaults
When you use OPEN to open a file, RMS applies certain defaults when
attempting to locate the physical file. Table 7–1 presents these defaults.

Table 7–1 Default Values for OpenVMS File Specifications

Element Default

Node Local computer

Device Current user device

Directory Current user directory

File name HP Pascal file variable name or its
logical name translation

File type .DAT

Version number (history) OLD: highest current number
NEW: highest current number + 1

The OPEN procedure includes a default file-name parameter. Using this
parameter, you can access the RMS default file-name parameter to set file-
specification defaults. Consider the following example:

VAR
My_File : VARYING [20] OF CHAR;
My_File_Var : TEXT;

BEGIN
My_File := ’foo.bar’;
OPEN(FILE_NAME := My_File,

FILE_VARIABLE := My_File_Var,
DEFAULT := ’[another.dir]’);

The OPEN statement in the previous example opens the file called
[ANOTHER.DIR]FOO.BAR. RMS applies the defaults in Table 7–1 to
determine the node, the device, and the version number of the file.

For More Information:

• On file specifications (OpenVMS User’s Manual)

• On the OPEN procedure (HP Pascal for OpenVMS Language Reference
Manual)

7–4 Input and Output Processing

7.1.6.2 OPEN and RMS Data Structures
Table 7–2 presents the status of RMS FAB fields when you call the OPEN
procedure. If a field is not included in the following tables, it is initialized to
zero.

Table 7–2 Setting of RMS File Access Block Fields by a Call to the OPEN Procedure

Field Name OPEN Parameters and Value

FAB$L_CTX Context Reserved to Hewlett-Packard.

FAB$L_DEV Device characteristics Returned by RMS.

FAB$L_DNA Default file specification
string address

DEFAULT parameter value, if specified;
else, .DAT.

FAB$L_DNS Default file specification
string size

Set to length of default file name string.

FAB$B_FAC File access options

FAB$V_DEL Allow deletions 1, if not HISTORY:=READONLY.

FAB$V_GET Allow reads 1

FAB$V_PUT Allow writes 1, if not HISTORY:=READONLY.

FAB$V_TRN Allow truncations 1, if not HISTORY:=READONLY.

FAB$V_UPD Allow updates 1, if not HISTORY:=READONLY.

FAB$L_FNA File specification string
address

FILE_NAME if specified, name of file
variable if external file, else 0.

FAB$B_FNS File specification string
size

Set to length of file name string.

FAB$L_FOP File processing options

FAB$V_CIF Create if nonexistent 1, if HISTORY := UNKNOWN.

FAB$V_DFW Deferred write 1

FAB$V_DLT Delete on close service Set when file is closed, depends on
DISPOSITION.

FAB$V_NAM Name block inputs 1, if terminal file reopened to enable
prompting.

FAB$V_SFC Submit command file
(when closed)

Set when file is closed, depends on
DISPOSITION.

FAB$V_SQO Sequential only 1, if ACCESS_METHOD:=SEQUENTIAL
(default).

(continued on next page)

Input and Output Processing 7–5

Table 7–2 (Cont.) Setting of RMS File Access Block Fields by a Call to the OPEN
Procedure

Field Name OPEN Parameters and Value

FAB$V_TEF Truncate at end of file Initialized to 0, set to 1 after REWRITE or
TRUNCATE of a sequential organization
file.

FAB$V_TMD Temporary (marked for
deletion)

1, if nonexternal file with no FILE_NAME
specified and DISPOSITION:=DELETE
specified or implied.

FAB$B_FSZ Fixed control area size 2, if terminal file enabled for prompting.

FAB$W_IFI Internal file identifier Returned by RMS.

FAB$W_MRS Maximum record size RECORD_LENGTH if specified; file
component size if ORGANIZATION
is not SEQUENTIAL or if RECORD_
TYPE:=FIXED.

FAB$L_NAM1 Name block address Set to address of name block (the expanded
and resultant string areas are set up, but
the related file name string is not).

FAB$B_ORG File organization FAB$C_REL if ORGANIZATION:=RELATIVE;

FAB$C_IDX if ORGANIZATION:=INDEXED;

FAB$C_SEQ in all other cases.

FAB$B_RAT Record attributes

FAB$V_FTN FORTRAN carriage
control

1, if CARRIAGE_CONTROL:=FORTRAN.

FAB$V_CR Add LF and CR 1, if CARRIAGE_CONTROL:=LIST (default
for TEXT and VARYING OF CHAR files).

FAB$V_PRN Print file format 1, if terminal file enabled for prompting.

1After the call to OPEN, FAB$L_NAM must contain the same value it had before the call.

(continued on next page)

7–6 Input and Output Processing

Table 7–2 (Cont.) Setting of RMS File Access Block Fields by a Call to the OPEN
Procedure

Field Name OPEN Parameters and Value

FAB$B_RFM Record format FAB$C_FIX if RECORD_TYPE:=FIXED or
if file component is of fixed size;
FAB$C_VAR if RECORD_TYPE:=VARIABLE
or file is VARYING or TEXT;
FAB$C_STM if RECORD_TYPE:=STREAM;
FAB$C_STMCR if RECORD_TYPE:=STREAM_
CR;
FAB$C_STMLF if RECORD_TYPE:=STREAM_
LF;
FAB$C_VFC if a terminal file enabled for
prompting.

FAB$L_SDC Spooling device
characteristics

Returned by RMS.

FAB$L_XAB2 Extended attribute block
address

The XAB chain always has a File Header
Characteristics (FHC) extended attribute
block in order to get the longest record
length (XAB$W_LRL). If ACCESS_
METHOD:=KEYED, key index definition
blocks are also present. Hewlett-Packard
may add additional XABs in the future.
Your user-action function may insert
XABs anywhere in the chain. This field
is only valid during execution of user-action
functions; HP Pascal places 0 in this field
after the call to OPEN.

FAB$B_SHR File sharing

FAB$V_SHRPUT Allow other PUTs 1, if SHARING:=READWRITE.

FAB$V_SHRGET Allow other GETs 1, if SHARING is not NONE (default if
HISTORY:=READONLY).

FAB$V_SHRDEL Allow other DELETEs 1, if SHARING:=READWRITE.

FAB$V_SHRUPD Allow other UPDATEs 1, if SHARING:=READWRITE.

FAB$V_NIL Allow no other operations 1, if SHARING:=NONE (default if
HISTORY is not READONLY).

2You cannot change XABs provided by Hewlett-Packard, but you can add and delete XABs that you insert
using a user-action function.

Table 7–3 presents the status of RMS RAB fields when you call the OPEN
procedure. If a field is not included in the following table, it is initialized to
zero.

Input and Output Processing 7–7

Table 7–3 Setting of RMS Record Access Block Fields by a Call to the OPEN
Procedure

Field Name OPEN Parameters and Value

RAB$L_CTX Context Reserved to Hewlett-Packard.

RAB$L_FAB1 FAB address Set to address of FAB (allocated by
HP Pascal RTL).

RAB$W_ISI Internal stream identifier Returned by RMS.

RAB$L_KBF Key buffer address May be modified for individual file
operations after the file is opened.

RAB$B_KRF Key of reference May be modified for individual file
operations after the file is opened.

RAB$B_KSZ Key size May be modified for individual file
operations after the file is opened.

RAB$B_RAC Record access mode May be modified for individual file
operations after the file is opened.

RAB$L_RBF Record address May be modified for individual file
operations after the file is opened.

RAB$L_RHB Record header buffer Set to address of 2-byte carriage-control
information for terminal files enabled for
prompting.

RAB$L_ROP Record options

RAB$V_NLK No lock May be modified for individual file
operations after the file is opened.

RAB$V_RAH Read ahead 1

RAB$V_TPT Truncate file often PUT May be modified for individual file
operations after the file is opened.

RAB$V_UIF Update if record exists 1, if ACCESS:=DIRECT.

RAB$V_WBH Write behind 1

RAB$W_RSZ Record size May be modified for individual file
operations after the file is opened.

RAB$L_STS Completion status code Returned by RMS.

RAB$L_UBF1 User record area address Set to buffer address after file is opened
(HP Pascal RTL allocates buffer).

1After the call to OPEN, this field must contain the same value it had before the call.

(continued on next page)

7–8 Input and Output Processing

Table 7–3 (Cont.) Setting of RMS Record Access Block Fields by a Call to the OPEN
Procedure

Field Name OPEN Parameters and Value

RAB$W_USZ1 User record area size Set to size of record area; for files other
than TEXT, the size is equal to the size of
the component type; for TEXT files, the size
is equal to the value of RECORD_LENGTH;
otherwise, 255.

1After the call to OPEN, this field must contain the same value it had before the call.

Table 7–4 presents the status of RMS XAB fields when you call the OPEN
procedure. If a field is not included in the following table, it is initialized to
zero.

Table 7–4 Setting of Extended Attribute Block Fields by a Call to the OPEN Procedure

Field Name PASCAL OPEN Keyword and Value

XAB$B_DTP Data type of key Set to data type of key

XAB$B_FLG Key option flags

XAB$V_CHG Changes allowed 0 if key is 0, else 1

XAB$V_DUP Duplicates allowed 0 if key is 0, else 1

XAB$W_POS0 Key position Position of key in indexed file

XAB$B_REF Key of reference Primary key is 0, first alternate key is 1,
second alternate key is 2, and so on

XAB$B_SIZ0 Key size Size of key

Table 7–5 presents the status of RMS Name Block fields when you call
the OPEN procedure. If a field is not included in the following table, it is
initialized to zero.

Input and Output Processing 7–9

Table 7–5 Setting of Name Block Fields by a Call to the OPEN Procedure

Field Name OPEN Keyword and Value

NAM$L_ESA1 Expanded string area Address of RTL buffer

NAM$B_ESS1 Expanded string area NAM$C_MAXRSS

NAM$L_RSA Expanded string area Address of RTL buffer

NAM$B_RSS Expanded string area NAM$C_MAXRSS

1These fields are only valid during execution of user-action functions; HP Pascal places 0 in these fields after
the call to OPEN.

For More Information:

• On opening indexed files (Section 7.1.1)

7.1.7 Default Line Limits
HP Pascal determines a default line limit for TEXT files by translating the
logical name PAS$LINELIMIT as a string of decimal digits. If this logical
name has not been defined, there is no default line limit. You can override the
default by calling the LINELIMIT procedure.

For More Information:

• On LINELIMIT (HP Pascal for OpenVMS Language Reference Manual)

7.2 User-Action Functions
The user-action parameter of the OPEN procedure allows you to access RMS
facilities not explicitly available in the HP Pascal language by writing a
function that controls the opening of the file. Inclusion of the user-action
parameter causes the run-time library to call your function to open the file
instead of calling RMS to open it according to its normal defaults.

The user-action parameter of the CLOSE procedure is similar to that of
the OPEN procedure. It allows you to access RMS facilities not directly
available in HP Pascal by writing a function that controls the closing of the
file. Including the user-action parameter causes the run-time library to call
your function to close the file instead of calling RMS to close it according to its
normal defaults.

When an OPEN or CLOSE procedure is executed, the run-time library uses
the procedure’s parameters to establish the RMS file access block (FAB) and
the record access block (RAB), as well as to establish its own internal data
structures. These blocks are used to transmit requests for file and record

7–10 Input and Output Processing

operations to RMS; they are also used to return the data contents of files,
information about file characteristics, and status codes.

In order, the three parameters passed to a user-action function by the run-time
library are as follows:

• FAB address

• RAB address

• File variable

A user-action function is usually written in HP Pascal and includes the
following:

• Modifications to the FAB or RAB, or both (optional)

• $OPEN and $CONNECT for existing files or $CREATE and $CONNECT
for new files (required)

• Status check of the values returned by $OPEN or $CREATE and
$CONNECT (required)

• Storage of FAB and RAB values in program variables (optional)

• Return of success or failure status value for the user-action function
(required)

Note

Modification of any of the RMS file access blocks provided by the
run-time library may interfere with the normal operation of the library.

Example 7–1 shows an HP Pascal program that copies one file into another.
The program features two user-action functions, which allow the output file
to be created with the same size as the input file and to be given contiguous
allocation on the storage media.

Input and Output Processing 7–11

Example 7–1 User-Action Function

[INHERIT(’SYS$LIBRARY:STARLET’)]
PROGRAM Contiguous_Copy(F_In, F_Out);

{
The input file F_In is copied to the output file F_Out.
F_Out has the same size as F_In and has contiguous
allocation.
}

TYPE
FType = FILE OF VARYING[133] OF CHAR;

VAR
F_In, F_Out : FType;
Alloc_Quantity : UNSIGNED;

FUNCTION User_Open(VAR FAB : FAB$TYPE;
VAR RAB : RAB$TYPE;
VAR F : FType) : INTEGER;

VAR
Status : INTEGER;

BEGIN { Function User_Open }
{Open file and remember allocation quantity }
Status := $OPEN(FAB);
IF ODD(Status) THEN

Status := $CONNECT(RAB);
Alloc_Quantity := FAB.FAB$L_ALQ;
User_Open := Status;
END; { Function User_Open }

FUNCTION User_Create(VAR FAB : FAB$TYPE;
VAR RAB : RAB$TYPE;
VAR F : FType) : INTEGER;

VAR
Status : INTEGER;

BEGIN { Function User_Create }
{ Set up contiguous allocation }
FAB.FAB$L_ALQ := Alloc_Quantity;
FAB.FAB$V_CBT := FALSE;
FAB.FAB$V_CTG := TRUE;
Status := $CREATE(FAB);
IF ODD(Status) THEN

Status := $CONNECT(RAB);
User_Create := Status;
END; { Function User_Create }

(continued on next page)

7–12 Input and Output Processing

Example 7–1 (Cont.) User-Action Function
BEGIN { main program }
{ Open files }
OPEN(F_In, HISTORY := READONLY, USER_ACTION := User_Open);
RESET(F_In);
OPEN(F_Out, HISTORY := NEW, USER_ACTION := User_Create);
REWRITE(F_Out);

{ Copy F_In to F_Out }
WHILE NOT EOF(F_In) DO

BEGIN
WRITE(F_Out, F_In_^);
GET(F_In);
END;

{ Close files }
CLOSE(F_In);
CLOSE(F_Out);
END. { main program }

In this example, the record types FAB$TYPE and RAB$TYPE are defined in
SYS$LIBRARY:STARLET, which the program inherits. The function User_
Open is called as a result of the OPEN procedure for the input file F_In. The
function begins by opening the file with the RMS service $OPEN. If $OPEN
succeeds, the value of Status is odd; in that case, $CONNECT is performed.
The allocation quantity contained in the FAB.FAB$L_ALQ field of the FAB is
assigned to a variable so that this value can be used in the second user-action
function. User_Open is then assigned the value of Status (in this case, TRUE),
which is returned to the main program.

The function User_Create is called as a result of the OPEN procedure for the
output file F_Out. The function assigns the allocation quantity of the input file
to the FAB.FAB$L_ALQ field of the FAB, which contains the allocation size for
the output file. The FAB field FAB.FAB$V_CBT is set to FALSE to disable the
request that file storage be allocated contiguously on a best try basis. Then,
the FAB field FAB.FAB$V_CTG is set to TRUE so that contiguous storage
allocation is mandatory. Finally, the RMS service $CREATE is performed.
If $CREATE is successful, $CONNECT will be done and the function return
value will be that of $CREATE.

Once the OPEN procedures have been performed successfully, the program can
then accomplish its main task, copying the input file F_In to the output file
F_Out, which is the same size as F_In and has contiguous allocation. The last
step in the program is to close the files.

Input and Output Processing 7–13

For More Information:

• On the OPEN and CLOSE procedures (HP Pascal for OpenVMS Language
Reference Manual)

• On RMS file access blocks (Section 7.1.6.2)

7.3 File Sharing
Through the RMS file sharing capability, a file can be accessed by more than
one executingprogram at a time or by the same program through more than
one file variable. There are two kinds of file sharing: read sharing and write
sharing. Read sharing occurs when several programs are reading a file at the
same time. Write sharing takes place when at least one program is writing a
file and at least one other program is either reading or writing the same file.

The extent to which file sharing can take place is determined by the following
factors:

• Device type

Sharing is possible only on disk files, since other files must be accessed
sequentially.

• File organization

All three file organizations permit read and write sharing on disk files.

• Explicit user-supplied information

Whether or not file sharing actually takes place depends on two items
of information that you provide for each program accessing the file. In
HP Pascal programs, this information is supplied by the values of the
SHARING and HISTORY parameters in the OPEN procedure.

The HISTORY parameter determines how the program will access the
file. HISTORY := NEW, HISTORY := OLD, and HISTORY := UNKNOWN
determine that the program will read from and write to the file. HISTORY
:= READONLY determines that the program will only read from the file.
If you try to open an existing file with HISTORY := OLD or HISTORY :=
UNKNOWN, the run-time library retries the OPEN procedure with HISTORY
:= READONLY if the initial OPEN fails with a privilege violation.

The SHARING parameter determines what other programs are allowed to
do with the file. Read sharing can occur when SHARING := READONLY is
specified by all programs that access the file. Write sharing is accomplished
when all programs specify SHARING := READWRITE. To prevent sharing,
specify SHARING:= NONE with the first program to access the file.

7–14 Input and Output Processing

Programs that specify SHARING := READONLY or SHARING := READWRITE
can access a file simultaneously; however, file sharing can fail under certain
circumstances. For example, a program without either of these parameters
will fail when it attempts to open a file currently being accessed by some
other program. Or, a program that specifies SHARING := READONLY or
SHARING := READWRITE can fail to open a file because a second program
with a different specification is currently accessing that file.

When two or more programs are write sharing a file, each program should
include a condition handler. This error-processing mechanism prevents
program failure due to a record-locking error.

For More Information:

• On record-locking errors (Section 7.4)

• On condition handling (Chapter 8)

• On the OPEN procedure (HP Pascal for OpenVMS Language Reference
Manual)

7.4 Record Locking
The RMS record locking facility, along with the logic of the program, prevents
two processes from accessing the same component simultaneously. It ensures
that a program can add, delete, or update a component without having to do a
synchronization check to determine whether that component is currently being
accessed by another process.

When a program opens a relative or indexed file and specifies SHARING :=
READWRITE, RMS locks each component as it is accessed. When a component
is locked, any program that attempts to access it fails and a record-locked error
results. A subsequent I/O operation on the file variable unlocks the previously
accessed component. Thus, at most one component is locked for each file
variable.

If you use the READ procedure, HP Pascal will implicitly unlock the component
by executing the UNLOCK procedure during the execution of the READ
procedure.

An HP Pascal program can explicitly unlock a component by executing the
UNLOCK procedure. To minimize the time during which a component is
locked against access by other programs, the UNLOCK procedure should be
used in programs that retrieve components from a shared file but that do not
attempt to update them. HP Pascal requires that a component be locked before
a DELETE or an UPDATE procedure can be executed.

Input and Output Processing 7–15

For More Information:

• On the OPEN, UNLOCK, DELETE, and UPDATE procedures (HP Pascal
for OpenVMS Language Reference Manual)

7–16 Input and Output Processing

8
Error Processing and Condition Handling

This chapter discusses the following topics:

• Section 8.1, Condition Handling Terms

• Section 8.2, Overview of Condition Handling

• Section 8.3, Writing Condition Handlers

• Section 8.4, Fault and Trap Handling (OpenVMS VAX systems)

• Section 8.5, Examples of Condition Handlers

An exception condition is an event, usually an error, that occurs during
program execution and is detected by system hardware or software or the logic
in a user application program. A condition handler is a routine that is used
to resolve exception conditions.

By default, the Condition Handling Facility (CHF) provides condition handling
sufficient for most HP Pascal programs. The CHF also processes user-written
condition handlers.

The use of condition handlers requires considerable programming experience.
You should understand the discussions of condition handling in the following
volumes before attempting to write your own condition handler:

• HP OpenVMS Programming Concepts Manual

• HP OpenVMS System Services Reference Manual

• HP OpenVMS Calling Standard

Error Processing and Condition Handling 8–1

8.1 Condition Handling Terms
The following terms are used in the discussion of condition handling:

• Condition value—An integer value that identifies a specific condition.

• Stack frame—A standard data structure built on the stack during a routine
call, starting from the location addressed by the frame pointer (FP) and
proceeding to both higher and lower addresses; it is popped off the stack
during the return from a routine.

• Routine activation—The environment in which a routine executes. This
environment includes a unique stack frame on the run-time stack; the
stack frame contains the address of a condition handler for the routine
activation. A new routine activation is created every time a routine is
called and is deleted when control passes from the routine.

• Establish—The process of placing the address of a condition handler
in the stack frame of the current routine activation. A condition handler
established for a routine activation is automatically called when a condition
occurs. In HP Pascal, condition handlers are established by means of the
predeclared procedure ESTABLISH. A routine that establishes a condition
handler is known as an establisher.

• Program exit status—The status of the program at its completion.

• Signal—The means by which the occurrence of an exception condition is
made known. Signals are generated by the operating system in response to
I/O events and hardware errors, by the system-supplied library routines,
and by user routines. All signals are initiated by a call to the signaling
facility, for which there are two entry points:

LIB$SIGNAL—Used to signal a condition and, possibly, to continue
program execution

LIB$STOP—Used to signal a severe error and discontinue program
execution, unless a condition handler performs an unwind operation

• Resignal—The means by which a condition handler indicates that the
signaling facility is to continue searching for a condition handler to process
a previously signaled error. To resignal, a condition handler returns the
value SS$_RESIGNAL.

• Unwind—The return of control to a particular routine activation, bypassing
any intermediate routine activations. For example, if X calls Y, and Y calls
Z, and Z detects an error, then a condition handler associated with X or Y
can unwind to X, bypassing Y. Control returns to X immediately following
the point at which X called Y.

8–2 Error Processing and Condition Handling

8.2 Overview of Condition Handling
When the OpenVMS system creates a user process, a system-defined condition
handler is established in the absence of any user-written condition handler.
The system-defined handler processes errors that occur during execution of
the user image. Thus, by default, a run-time error causes the system-defined
condition handler to print error messages and to terminate or continue
execution of the image, depending on the severity of the error.

When a condition is signaled, the system searches for condition handlers to
process the condition. The system conducts the search for condition handlers
by proceeding down the stack, frame by frame, until a condition handler is
found that does not resignal. The default handler calls the system’s message
output routine to send the appropriate message to the user. Messages are sent
to the SYS$OUTPUT and SYS$ERROR files. If the condition is not a severe
error, program execution continues. If the condition is a severe error, the
default handler forces program termination, and the condition value becomes
the program exit status.

You can create and establish your own condition handlers according to the
needs of your application. For example, a condition handler could create and
display messages that describe specific conditions encountered during the
execution of your program, instead of relying on system error messages.

8.2.1 Condition Signals
A condition signal consists of a call to either LIB$SIGNAL or LIB$STOP, the
two entry points to the signaling facility. These entry points can be inherited
from SYS$LIBRARY:PASCAL$LIB_ROUTINES.PEN.

If a condition occurs in a routine that is not prepared to handle it, a signal is
issued to notify other active routines. If the current routine can continue after
the signal is propagated, you can call LIB$SIGNAL. A higher-level routine
can then determine whether program execution should continue. If the nature
of the condition does not allow the current routine to continue, you can call
LIB$STOP.

8.2.2 Handler Responses
A condition handler responds to an exception condition by taking action in
three major areas:

• Condition correction

• Condition reporting

• Execution control

Error Processing and Condition Handling 8–3

The handler first determines whether the condition can be corrected. If so, it
takes the appropriate action and execution continues. If the handler cannot
correct the condition, the condition may be resignaled; that is, the handler
requests that another condition handler be sought to process the condition.

A handler’s condition reporting can involve one or more of the following actions:

• Maintaining a count of exceptions encountered during program execution

• Resignaling the same condition to send the appropriate message to the
output file

• Changing the severity field of the condition value and resignaling the
condition

• Signaling a different condition, for example, the production of a message
designed for a specific application

A handler can control execution in several ways:

• By continuing from the signal. If the signal was issued through a call to
LIB$STOP, the program exits.

• By doing a nonlocal GOTO operation (see Section 8.5, Example 5).

• By unwinding to the establisher at the point of the call that resulted in the
exception. The handler can then determine the function value returned by
the called routine.

• By unwinding to the establisher’s caller (the routine that called the routine
which established the handler). The handler can then determine the
function value returned by the called routine.

8.3 Writing Condition Handlers
The following sections describe how to write and establish condition handlers
and provide some simple examples.

8.3.1 Establishing and Removing Handlers
To use a condition handler, you must first declare the handler as a routine in
the declaration section of your program; then, within the executable section,
you must call the predeclared procedure ESTABLISH. The ESTABLISH
procedure sets up an HP Pascal language-specific condition handler that in
turn allows your handler to be called. User-written condition handlers set up
by ESTABLISH must have the ASYNCHRONOUS attribute and two integer
array formal parameters. Such routines can access only local, read-only, and
volatile variables, and local, predeclared, and asynchronous routines.

8–4 Error Processing and Condition Handling

Because condition handlers are asynchronous, any attempt to access a nonread-
only or nonvolatile variable declared in an enclosing block will result in a
warning message. The predeclared file variables INPUT and OUTPUT are
such nonvolatile variables; therefore, simultaneous access to these files from
both an ordinary program and from an asynchronous condition handler’s
activation may have undefined results. The following steps outline the
recommended method for performing I/O operations from a condition handler:

1. Declare a file with the VOLATILE attribute at program level.

2. Open this file to refer to SYS$INPUT, SYS$OUTPUT, or another
appropriate file.

3. Use this file in the condition handler.

External routines (including system services) that are called by a condition
handler require the ASYNCHRONOUS attribute in their declaration.

You should set up a user-written condition handler with the predeclared
procedure ESTABLISH rather than with the run-time library routine
LIB$ESTABLISH. ESTABLISH follows the HP Pascal procedure-calling
rules and is able to handle HP Pascal condition handlers more efficiently than
LIB$ESTABLISH. A condition handler set up by LIB$ESTABLISH might
interfere with the default error handling of the HP Pascal run-time system,
and cause unpredictable results.

The following example shows how to establish a condition handler using the
HP Pascal procedure ESTABLISH:

[EXTERNAL,ASYNCHRONOUS] FUNCTION Handler
(VAR Sigargs : Sigarr;
VAR Mechargs : Mecharr) : INTEGER;
EXTERN;
.
.
.

ESTABLISH (Handler);

To establish the handler, call the ESTABLISH procedure. To remove an
established handler, call the predeclared procedure REVERT, as follows:

REVERT;

As a result of this call, the condition handler established in the current stack
frame is removed. When control passes from a routine, any condition handler
established during the routine’s activation is automatically removed.

Error Processing and Condition Handling 8–5

8.3.2 Declaring Parameters for Condition Handlers
A condition handler is an integer-valued function that is called when a
condition is signaled. Two formal VAR parameters must be declared for a
condition handler:

• An integer array to refer to the parameter list from the call to the signal
routine (the signal array); that is, the list of parameters included in calls to
LIB$SIGNAL or LIB$STOP (see Section 8.2.1)

• An integer array to refer to information concerning the routine activation
that established the condition handler (the mechanism array). The size and
contents of the mechanism array is different on OpenVMS I64, OpenVMS
Alpha, and OpenVMS VAX systems.

For example, a condition handler can be defined as follows:

TYPE
Sigarr = ARRAY[0..9] OF INTEGER;
Mecharr = ARRAY[0..(SIZE(CHF2$TYPE)-4) DIV 4] OF INTEGER;

[EXTERNAL,ASYNCHRONOUS] FUNCTION Handler
(VAR Sigargs : Sigarr;
VAR Mechargs : Mecharr) : INTEGER;
EXTERN;

.

.

.
ESTABLISH (Handler);

.

.

.

The signal procedure passes the following values to the array Sigargs:

Value Description

Sigargs[0] The number of parameters being passed in this array (parameter
count).

Sigargs[1] The primary condition being signaled (condition value). See
Section 8.3.4 for a discussion of condition values.

Sigargs[2 to n] The optional parameters supplied in the call to LIB$SIGNAL
or LIB$STOP; note that the index range of Sigargs should
include as many entries as are needed to refer to the optional
parameters.

The routine that established the condition handler passes the following values,
which contain information about the establisher’s routine activation, to the
array Mechargs:

8–6 Error Processing and Condition Handling

OpenVMS I64
Value

OpenVMS Alpha
Value

OpenVMS VAX
Value Description

Mechargs[0] Mechargs[0] Mechargs[0] The number of parame-
ters being passed in this
array.

Not available Mechargs[2] Mechargs[1] The address of the stack
frame that established the
handler.

Mechargs[2] Not available Not available The previous stack
pointer for the frame that
established the handler.

Mechargs[4] Mechargs[4] Mechargs[2] The number of calls
that have been made
(that is, the stack frame
depth) from the routine
activation up to the point
at which the condition
was signaled.

Mechargs[11] Mechargs[11] Mechargs[3] The value of register R0
(R8 on OpenVMS I64) at
the time of the signal.

Mechargs[13] Mechargs[13] Mechargs[4] The value of register R1
(R9 on OpenVMS I64) at
the time of the signal.

For a complete description of the mechanism array, see the HP OpenVMS
Calling Standard.

8.3.3 Handler Function Return Values
Condition handlers are functions that return values to control subsequent
execution. These values and their effects are listed as follows:

Value Effect

SS$_CONTINUE Continues execution from the signal. If the signal was issued by
a call to LIB$STOP, the program does not continue, but exits.

SS$_RESIGNAL Resignals to continue the search for a condition handler to
process the condition.

In addition, a condition handler can request a stack unwind by calling
the $UNWIND system service routine. You can inherit $UNWIND from
SYS$LIBRARY:STARLET.PEN.

Error Processing and Condition Handling 8–7

When $UNWIND is called, the function return value of the condition handler is
ignored. The handler modifies the saved registers R0 and R1 in the mechanism
parameters to specify the called function’s return value.

A stack unwind is usually made to one of two places:

• The point in the establisher at which the call was made that resulted in
the exception. Specify the following:

Status := $UNWIND (Mechargs[2],0); { OpenVMS VAX }
Status := $UNWIND (Mechargs[4],0); { OpenVMS I64/OpenVMS Alpha }

• The routine that called the establisher. Specify the following:

Status := $UNWIND (Mechargs[2]+1,0); { OpenVMS VAX }
Status := $UNWIND (Mechargs[4]+1,0); { OpenVMS I64/OpenVMS Alpha }

8.3.4 Condition Values and Symbols
The OpenVMS system uses condition values to indicate that a called routine
has either executed successfully or failed, and to report exception conditions.
Condition values are usually symbolic names that represent
32-bit packed records, consisting of fields (usually interpreted as integers) that
indicate which system component generated the value, the reason the value
was generated, and the severity of the condition.

A warning severity code (0) indicates that although output was produced, the
results may be unpredictable. An error severity code (2) indicates that output
was produced even though an error was detected. Execution can continue, but
the results may not be correct. A severe error code (4) indicates that the error
was of such severity that no output was produced.

A condition handler can alter the severity code of a condition value to allow
execution to continue or to force an exit, depending on the circumstances.

Occasionally a condition handler may require a particular condition to be
identified by an exact match; that is, each bit of the condition value bits (0..31)
must match the specified condition. For example, you may want to process
a floating overflow condition only if the severity code is still 4 (that is, if no
previous condition handler has changed the severity code) and the control bits
have not been modified. A typical condition handler response is to change the
severity code and resignal.

In most cases, however, you want some response to a condition, regardless of
the value of the severity code or control bits. To ignore the severity and control
fields of a condition value, declare and call the LIB$MATCH_COND function.

8–8 Error Processing and Condition Handling

8.3.5 Using Condition Handlers that Return SS$_CONTINUE
HP Pascal condition handlers can do one of the following after appropriately
responding to the error:

• Use a nonlocal GOTO to transfer control to a label in an enclosing block

• Return SS$_CONTINUE if the handler is conditioned to dismiss the error
then signal to continue processing

• Return SS$_RESIGNAL if the handler is conditioned to continue searching
for additional handlers to call

• Call the $UNWIND system service to establish a new point to resume
execution when the handler returns to the system

When an exception occurs, the system calls a handler in the Pascal Run-
Time Library that is established by the generated code. This handler in the
RTL in turn calls the user condition handler that was established with the
ESTABLISH built-in routine.

The RTL handler contains a check to prevent a user handler from returning
SS$_CONTINUE for a certain class of Pascal Run-Time Errors that could
cause an infinite loop if execution was to continue at the point of the error.

There are two situations in which this check may cause unexpected behavior:

• The user handler called $UNWIND and then returned with SS$_
CONTINUE. Because the $UNWIND service was called, execution will
not resume at the point of the error even if SS$_CONTINUE is returned
to the system. However, the RTL handler is not aware that $UNWIND
has been called, and will report that program operation cannot continue
for this type of error. The solution is to return SS$_RESIGNAL instead of
SS$_CONTINUE after calling $UNWIND in the user handler.

However, this solution is not possible if you establish the LIB$SIG_TO_
RET routine with the ESTABLISH built-in routine. LIB$SIG_TO_RET is
a routine that can be used as a condition handler to convert a signal into
a return to the caller of the routine that established LIB$SIG_TO_RET.
Because LIB$SIG_TO_RET returns SS$_NORMAL, which in turn is the
same value as SS$_CONTINUE, the handler in the Pascal RTL will report
that program operation cannot continue for this type of error. The solution
for this case is to establish your own handler with the ESTABLISH built-in
routine that calls LIB$SIG_TO_RET and then returns SS$_RESIGNAL.
You cannot establish LIB$SIG_TO_RET directly as a handler with the
ESTABLISH built-in routine.

• If you are moving code from OpenVMS VAX to OpenVMS I64 or OpenVMS
Alpha.

Error Processing and Condition Handling 8–9

On OpenVMS VAX systems, only certain run-time errors are not allowed to
return SS$_CONTINUE from a handler. These errors are those associated
with the SUBSTR and PAD built-in routines, and those associated with
checking code for set constructors. On OpenVMS I64 and OpenVMS
Alpha systems, many more run-time errors are not allowed to return SS$_
CONTINUE from a handler. It is recommended that you do not return
SS$_CONTINUE for any Pascal run-time error that is not associated with
a file operation.

For More Information:

• On the format of a condition value (HP OpenVMS Calling Standard)

• On calling the LIB$MATCH_COND function (Section 8.5)

8.4 Fault and Trap Handling (OpenVMS VAX systems)
If a VAX processor detects an error while executing a machine instruction,
it can take one of two actions. The first action, called a fault, preserves the
contents of registers and memory in a consistent state so that the instruction
can be restarted. The second action, called a trap, completes the instruction,
but with a predefined result. For example, if an integer overflow trap occurs,
the result is the correct low-order part of the true value.

The action taken when an exception occurs depends on the type of exception.
For example, faults occur for access violations and for detection of a floating
reserved operand. Traps occur for integer overflow and for integer divide-
by-zero exceptions. However, when a floating overflow, floating underflow, or
floating divide-by-zero exception occurs, the action taken depends on the type
of VAX processor executing the instruction. The original VAX-11/780 processor
traps when these errors occur and stores a floating reserved operand in the
destination. All other VAX processors fault on these exceptions, which allows
the error to be corrected and the instruction restarted.

If your program is written to handle floating traps but runs on a VAX processor
that generates faults, execution may continue incorrectly. For example, if a
condition handler causes execution to continue after a floating trap, a reserved
operand is stored and the next instruction is executed. However, the same
handler used on a processor that generates faults causes an infinite loop of
faults because it restarts the erroneous instruction. Therefore, you should
write floating-point exception handlers that take the appropriate actions for
both faults and traps.

8–10 Error Processing and Condition Handling

Separate sets of condition values are signaled by the processor for faults and
traps. Exceptions and their condition code names are as follows:

Exception Fault Trap

Floating overflow SS$_FLTOVF_F SS$_FLTOVF

Floating underflow SS$_FLTUND_F SS$_FLTUND

Floating divide-by-zero SS$_FLTDIV_F SS$_FLTDIV

To convert faults to traps, you can use the run-time library LIB$SIM_TRAP
procedure either as a condition handler or as a called routine from a user-
written handler. When LIB$SIM_TRAP recognizes a floating fault, it simulates
the instruction completion as if a floating trap had occurred.

8.5 Examples of Condition Handlers
The examples in this section inherit the $UNWIND system service routine
from SYS$LIBRARY:STARLET.PEN. They also assume the following
declaration has been made:

[INHERIT(’SYS$LIBRARY:STARLET’, ’SYS$LIBRARY:PASCAL$LIB_ROUTINES’)]
PROGRAM Error_Handling(INPUT, OUTPUT);

TYPE
Sig_Args = ARRAY[0..100] OF INTEGER; { Signal parameters }
Mech_Args = ARRAY[0..(SIZE(CHF2$TYPE)-4)DIV 4] OF [UNSAFE] INTEGER;

{ Mechanism parameters }

Example 1
[ASYNCHRONOUS] FUNCTION Handler_0

(VAR SA : Sig_Args;
VAR MA : Mech_Args) : [UNSAFE] INTEGER;

BEGIN
IF LIB$MATCH_COND (SA[1], condition-name ,...) <> 0
THEN

BEGIN
.
. { do something appropriate }
.

Handler_0 := SS$_CONTINUE; { condition handled,
propagate no further }

END
ELSE

Handler_0 := SS$_RESIGNAL; { propagate condition
status to other handlers }

END;

Error Processing and Condition Handling 8–11

This example shows a simple condition handler. The handler identifies the
condition being signaled as one that it is prepared to handle and then takes
appropriate action. Note that for all unidentified condition statuses, the
handler resignals. A handler must always follow this behavior.

Example 2
[ASYNCHRONOUS] FUNCTION Handler_1

(VAR SA : Sig_Args;
VAR MA : Mech_Args) : [UNSAFE] INTEGER;

BEGIN
IF SA[1] = SS$_UNWIND
THEN

BEGIN
.
. { cleanup }
.

END;
Handler_1 := SS$_RESIGNAL;
END;

When writing a handler, remember that it can be activated with a condition
of SS$_UNWIND, signifying that the establisher’s stack frame is about to be
unwound. If the establisher has special cleanup to perform, such as freeing
dynamic memory, closing files, or releasing locks, the handler should check for
the SS$_UNWIND condition status. If there is no cleanup, the required action
of resignaling all unidentified conditions results in the correct behavior. On
return from a handler activated with SS$_UNWIND, the stack frame of the
routine that established the handler is deleted (unwound).

Example 3
[ASYNCHRONOUS] FUNCTION Handler_2

(VAR SA : Sig_Args;
VAR MA : Mech_Args) : [UNSAFE] INTEGER;

BEGIN
IF LIB$MATCH_COND (SA[1], condition-name ,...) <> 0
THEN

BEGIN
.
. { cleanup }
.

MA[3] := expression; { establish function result seen by caller
(MA[11] on OpenVMS I64/OpenVMS Alpha)}

$UNWIND; { unwind to caller of establisher }

END;
Handler_2 := SS$_RESIGNAL;
END;

8–12 Error Processing and Condition Handling

A handler can perform a default unwind to force return to the caller of its
establisher. If the establisher is a function whose result is expected in R0
or R0 and R1, the handler must establish the return value by modifying the
appropriate positions of the mechanism array (the locations of the return R0
and R1 values). If the establisher is a function whose result is returned by
the extra-parameter method, the handler must establish the condition value
by assignment to the function identifier. In this case, you must observe two
additional restrictions:

• The handler must be nested within the function

• The function result must be declared VOLATILE

Example 4
[ASYNCHRONOUS] FUNCTION Handler_3

(VAR SA : Sig_Args;
VAR MA : Mech_Args) : [UNSAFE] INTEGER;

BEGIN
IF LIB$MATCH_COND (SA[1], condition-name ,...) <> 0
THEN

BEGIN
.
. { cleanup }
.

MA[3] := expression; { establish function result seen by caller }
$UNWIND (MA[2]); { unwind to establisher[4] for

OpenVMS I64/OpenVMS Alpha }
END;

Handler_3 := SS$_RESIGNAL;
END;

A handler can also force return to its establisher immediately following the
point of call. In this case, you should make sure that the handler understands
whether the currently uncompleted call was a function call (in which case a
returned value is expected) or a procedure call. If the uncompleted call is a
function call that will return a value in R0 or R0 and R1, then the handler can
modify the mechanism array to supply a value. If, however, the uncompleted
call is a function call that will return a value using the extra-parameter
mechanism, then there is no way for the handler to supply a value.

Error Processing and Condition Handling 8–13

Example 5
[ASYNCHRONOUS] FUNCTION Handler_4

(VAR SA : Sig_Args;
VAR MA : Mech_Args) : [UNSAFE] INTEGER;

BEGIN
IF LIB$MATCH_COND (SA[1], condition-name ,...) <> 0
THEN

GOTO 99;
Handler_4 := SS$_RESIGNAL;
END;

A handler can force control to resume at an arbitrary label in its scope. Note
that this reference is to a label in an enclosing block, because a GOTO to
a local label will remain within the handler. In accordance with the HP
OpenVMS Calling Standard, HP Pascal implements references to labels in
enclosing blocks by signaling SS$_UNWIND in all stack frames that must be
deleted.

Example 6
FUNCTION EXP_With_Status

(X : REAL;
VAR Status : INTEGER) : REAL;

FUNCTION MTH$EXP
(A : REAL) : REAL;
EXTERNAL;

[ASYNCHRONOUS] FUNCTION Math_Error
(VAR SA : Sig_Args;
VAR MA : Mech_Args) : [UNSAFE] INTEGER;

BEGIN { Math_Error }
IF LIB$MATCH_COND (SA[1], MTH$_FLOOVEMAT, MTH$_FLOUNDMAT) <> 0
THEN

BEGIN
IF ODD(Status) { record condition status
THEN if no previous error }

Status := SA[1]::Cond_Status; { condition handled,
Math_Error := SS$_CONTINUE; propagate no further }

END
ELSE

Math_Error := SS$_RESIGNAL; { propagate condition status
to other handlers }

END;

BEGIN { EXP_With_Status }
STATUS := SS$_SUCCESS;
ESTABLISH (Math_Error);
EXP_With_Status := MTH$EXP (X);
END;

8–14 Error Processing and Condition Handling

This example shows a handler that records the condition status if a
floating overflow or underflow error is detected during the execution of the
mathematical function MTH$EXP.

Example 7

[INHERIT(’SYS$LIBRARY:STARLET’)]
PROGRAM Use_A_Handler(INPUT,OUTPUT);

TYPE
Sigarr = ARRAY [0..9] OF INTEGER;
Mecharr = ARRAY [0..(Size(CHF2$TYPE)-4)DIV 4)] OF INTEGER;

VAR
F1,F2 : REAL;

[ASYNCHRONOUS] FUNCTION My_Handler
(VAR Sigargs : Sigarr;
VAR Mechargs : Mecharr) : INTEGER;

VAR
Outfile : TEXT;

[ASYNCHRONOUS] FUNCTION LIB$FIXUP_FLT
(VAR Sigargs : Sigarr;
VAR Mechargs : Mecharr;

New_Opnd : REAL := %IMMED 0) : INTEGER;
EXTERNAL;

[ASYNCHRONOUS] FUNCTION LIB$SIM_TRAP
(VAR Sigargs : Sigarr;
VAR Mechargs : Mecharr) : INTEGER;
EXTERNAL;
BEGIN
OPEN(Outfile,’TT:’);
REWRITE(Outfile);

{ Handle various conditions }
CASE Sigargs[1] OF

{ Convert floating faults to traps }
SS$_FLTDIV_F, SS$_FLTOVF_F :

LIB$SIM_TRAP(Sigargs,Mechargs);

{ Handle the floating divide by zero trap }
SS$_FLTDIV :

BEGIN
WRITELN(Outfile,’Floating divide by zero’);
My_Handler := SS$_CONTINUE;

END;

{ Handle the floating overflow trap }
SS$_FLTOVF :

BEGIN
WRITELN(Outfile,’Floating overflow’);
My_Handler := SS$_CONTINUE;

END;

Error Processing and Condition Handling 8–15

{ Handle taking the square root }
MTH$_SQUROONEG :

BEGIN
WRITELN(Outfile,’Square root of a negative number’);
My_Handler := SS$_CONTINUE;

END;

{ Handle the reserved operand left by SQRT }
SS$_ROPRAND :

BEGIN
WRITELN(Outfile,’Reserved floating operand’);
LIB$FIXUP_FLT(Sigargs,Mechargs);
My_Handler := SS$_CONTINUE;

END;

OTHERWISE
BEGIN

WRITELN(Outfile,’Condition occurred, ’,HEX(Sigargs[1]));
My_Handler := SS$_RESIGNAL;

END;

END;

CLOSE(Outfile);

END;
BEGIN
ESTABLISH(My_Handler);
F1 := 0.0;
F2 := 1E38;

{ Generate exception conditions }
F1 := F2 / 0.0;
F1 := F2 * f2;
F1 := SQRT(-1.0);
END.

8–16 Error Processing and Condition Handling

9
Migrating from OpenVMS VAX to
OpenVMS I64 or OpenVMS Alpha

This chapter provides information on issues that affect programs being moved
from OpenVMS VAX systems to OpenVMS I64 or OpenVMS Alpha systems:

• Section 9.1, Sharing Environment Files Across Platforms

• Section 9.2, Default Size for Enumerated Types and Booleans

• Section 9.3, Default Data Layout for Unpacked Arrays and Records

• Section 9.4, Overflow Checking

• Section 9.5, Bound Procedure Values

• Section 9.6, Different Descriptor Classes for Conformant Array Parameters

• Section 9.7, Data Layout and Conversion

9.1 Sharing Environment Files Across Platforms
HP Pascal inherits environment files created from a compiler for the same
target platform. For example, you cannot inherit environment files generated
by VAX Pascal with the HP Pascal compiler for OpenVMS I64 or OpenVMS
Alpha systems.

9.2 Default Size for Enumerated Types and Booleans
The default size for enumerations and Booleans in unpacked structures is
longword on OpenVMS I64 and OpenVMS Alpha systems. On OpenVMS VAX
systems, the default size is byte for Booleans and small enumerations or words
for larger enumerations.

If you need the OpenVMS VAX behavior on OpenVMS I64 or OpenVMS Alpha
systems, you can use one of the following:

• /ENUMERATION_SIZE=BYTE qualifier

Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS Alpha 9–1

• [ENUMERATION_SIZE(BYTE)] attribute

• Individual [BYTE] or [WORD] attributes on the affected fields or
components

The default for OpenVMS VAX compilers is /ENUMERATION_SIZE=BYTE, for
compatibility.

9.3 Default Data Layout for Unpacked Arrays and Records
On OpenVMS I64 and OpenVMS Alpha systems, the default data layout is
‘‘natural’’ alignment, where record fields and array components are aligned
on boundaries based on their size (for example, INTEGERs on longword
boundaries, INTEGER64s on quadword boundaries).

On OpenVMS VAX systems, the default alignment rule is to allocate such
fields on the next byte boundary. If you need the OpenVMS VAX behavior
on OpenVMS I64 or OpenVMS Alpha systems, you can use the /ALIGN=VAX
qualifier or the [ALIGN(VAX)] attribute.

9.4 Overflow Checking
When overflow checking is enabled on OpenVMS I64 and OpenVMS Alpha
systems, the INT built-in signals a run-time error if its actual parameter
cannot be represented as an INTEGER32 value.

If you have a large unsigned value that you wish to convert to a negative
integer, you must use a typecast to perform the operation.

9.5 Bound Procedure Values
On OpenVMS VAX systems, a Bound Procedure Value is a 2-longword data
structure holding the address of the entry point and a frame-pointer to define
the nested environment. HP Pascal expects one of these 2-longword structures
for PROCEDURE or FUNCTION parameters.

A routine not written in Pascal needs different code depending on whether
it will receive a Bound Procedure Value or a simple routine address. When
passing routines to %IMMED formal routine parameters, HP Pascal passes
the address of the entry point; otherwise, it passes the address of a Bound
Procedure Value.

On OpenVMS I64 and OpenVMS Alpha systems, a Bound Procedure Value
is a special type of procedure descriptor that invokes a hidden jacket routine
that in turn initializes the frame-pointer and calls the real routine. HP Pascal
expects a procedure descriptor for PROCEDURE or FUNCTION parameters.

9–2 Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS Alpha

A routine not written in Pascal does not require difference code for Bound
Procedure Values. When passing routines to %IMMED formal routine
parameters, (or asking for the IADDRESS of a routine) HP Pascal passes the
address of a procedure descriptor as if the %IMMED was not present. There
is no direct way in HP Pascal to obtain the actual code address of a routine
because it is not generally useful without the associated procedure descriptor.

9.6 Different Descriptor Classes for Conformant Array
Parameters

HP Pascal uses the ‘‘by descriptor’’ mechanism to pass conformant parameters
from one routine to another. For conformant array parameters, HP Pascal
uses a CLASS_A descriptor on OpenVMS VAX systems and a CLASS_NCA
descriptor on OpenVMS I64 and OpenVMS Alpha systems. The CLASS_NCA
descriptors generate more efficient code when accessing array components and
are able to describe arrays with alignment holes or padding (more common on
Itanium and Alpha systems).

If you have a foreign routine that constructs CLASS_A descriptors for Pascal,
you need to examine the code to see if changes are necessary:

• For certain actual parameters, the CLASS_A and CLASS_NCA descriptors
are identical except for the DSC$B_CLASS field (which HP Pascal does not
examine).

• For other parameters, you will either have to generate a CLASS_NCA
descriptor or you can add an explicit CLASS_A attribute to the formal
conformant parameter in the Pascal routine.

9.7 Data Layout and Conversion
On OpenVMS I64 and OpenVMS Alpha systems (and to a lesser extent
OpenVMS VAX systems), the layout of data can severely impact performance.
The Itanium and Alpha architecture and the OpenVMS I64 and OpenVMS
Alpha systems have strong preferences about data alignment and size.

The HP Pascal compiler has several features to enable you to write Pascal code
that will get the best performance on the target system.

The remainder of this section describes the different types of record layouts,
HP Pascal features that support them, how to get the best performance with
your data structures, and how to convert existing code for better performance.

This section focuses on records, but arrays also have similar properties. In
almost all cases, where record fields are discussed, you can substitute array
components.

Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS Alpha 9–3

9.7.1 Natural Alignment, VAX Alignment, and Enumeration Sizes
The compiler has the ability to lay out records in two ways:

• OpenVMS VAX alignment

Fields and components less than or equal to 32 bits are allocated on the
next available bit; otherwise they are allocated on the next available byte.

• Natural alignment where an object is aligned based on its size

Essentially fields and components are allocated on the next naturally
aligned address for their data type. For example:

– 8-bit character strings should start on byte boundaries

– 16-bit integers should start at addresses that are a multiple of 2 bytes
(word alignment)

– 32-bit integers and single-precision real numbers should start at
addresses that are a multiple of 4 bytes (longword alignment)

– 64-bit integers and double-precision real numbers should start at
addresses that are a multiple of 8 bytes (quadword alignment)

For aggregates such as arrays and records, the data type to be considered for
purposes of alignment is not the aggregate itself, but rather the elements of
which the aggregate is composed. Varying 8-bit character strings must, for
example, start at addresses that are a multiple of 2 bytes (word alignment)
because of the 16-bit count at the beginning of the string. For records, the size
is rounded up to a multiple of their natural alignment (a record with natural
alignment of longword has a size that is a multiple of longwords, for example).

The OpenVMS VAX and naturally aligned record formats are fully documented
in the HP OpenVMS Calling Standard.

The size as well as the alignment of record fields and array components can
affect performance. On OpenVMS I64 and OpenVMS Alpha systems, HP
Pascal uses larger allocation for unpacked Booleans and enumeration types to
help performance, as shown in Table 9–1.

Table 9–1 Unpacked Sizes of Fields and Components

Datatype Unpacked Size on VAX Unpacked Size on I64/Alpha

Boolean 1 byte 4 bytes

Enumerated types 1 or 2 bytes 4 bytes

9–4 Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS Alpha

For compatibility reasons, the size of all data types in PACKED records and
arrays are the same for both VAX and natural alignment formats.

9.7.2 HP Pascal Features Affecting Data Alignment and Size
HP Pascal has the following DCL qualifiers:

• /ALIGN=keyword, where keyword is either NATURAL1 or VAX

• /ENUMERATION_SIZE=keyword, where keyword is either BYTE or LONG

The /ALIGN qualifier option controls the default record format used by the
compiler. The /ENUMERATION_SIZE qualifier option controls whether the
compiler allocates Boolean and enumeration types as longwords or as 1 or 2
bytes.

On OpenVMS VAX systems, the default alignment format is VAX and
the default enumeration size is BYTE. On OpenVMS I64 and OpenVMS
Alpha systems, the default alignment format is NATURAL and the default
enumeration size is LONG.

A corresponding pair of attributes can be used at the PROGRAM/MODULE
level and on VAR and TYPE sections to specify the desired alignment format
and enumeration size:

• ALIGN(keyword), where keyword is either NATURAL or VAX

• ENUMERATION_SIZE(keyword), where keyword is either BYTE or LONG

By using these attributes at the MODULE level, you can extract the records
into a separate module and create an environment file with the desired
alignment format. By using these attributes on VAR or TYPE sections, you can
isolate the records in the same source file.

9.7.3 Optimal Record Layout
The optimal record layout is one where all the record’s fields are naturally
sized on naturally aligned boundaries and the overall record is as small as
possible (for example, the fewest number of padding bytes required for proper
alignment).

On OpenVMS I64 and OpenVMS Alpha systems, the compiler automatically
places all fields of unpacked records on naturally aligned boundaries. On
OpenVMS VAX systems, you have to explicitly ask for natural alignment by
using either a DCL qualifier or the corresponding attribute.

1 Previous versions of HP Pascal used ALPHA_AXP for this keyword. The NATURAL
keyword is now the recommended spelling for the same behavior. The ALPHA_AXP
keyword will continue to be recognized for compatibility with old command lines.

Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS Alpha 9–5

To allow the compiler to do this placement, you should refrain from using
explicit positioning and alignment attributes on record fields unless required
by your application. The keyword PACKED should be avoided in all cases
except:

• PACKED ARRAY OF CHARs require the PACKED keyword to be
manipulated as strings. Since chars are each 1 byte, using the PACKED
keyword does not hurt their performance in any way.

• PACKED SETs may perform better than unpacked SETs. For PACKED
SETs, the compiler can sometimes allocate fewer bits for the set field
or variable. These smaller sets can often be manipulated directly with
longword or quadword instructions, instead of using a generic run-time
library routine for larger sets.

Inside unpacked records, PACKED SET fields are no slower than unpacked
SET fields. The same holds true for variables of PACKED SETs. PACKED
SETs of size 32 or 64 bits are the best performing set types; otherwise a
multiple of 8 bits improves performance to a lesser degree.

You may still need to use PACKED if you rely on the record for compatability
with binary data files or when assuming that types like PACKED ARRAY OF
BOOLEAN are implemented as bit strings.

While the compiler can position record fields at natural boundaries, it cannot
minimize the alignment bytes that are required between fields. The calling
standard requires the compiler to allocate record fields in the same lexical
order that they appear in the source file. For example:

type t1 = record
f1 : char;
f2 : integer;
f3 : char;
f4 : integer;
end;

The size of this record is 16 bytes:

• F1 is a byte field, followed by 3 padding bytes to position F2 at a longword
boundary

• F2 is 4 bytes

• F3 is a single byte, followed by 3 more padding bytes to position F4 at a
longword boundary

• F4 is 4 bytes

9–6 Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS Alpha

The optimal layout would be:

type t2 = record
f1,f2 : integer;
f3,f4 : char;
end;

The size of this record is only 12 bytes:

• F1 and F2 are placed on adjacent longword boundaries

• F3 and F4 can immediately follow, since they can appear on any byte
boundary, they in turn are followed by 2 padding bytes to round the size of
the record up to a multiple of its natural alignment of longword.

To achieve the fewest alignment bytes, you should place larger fields at the
beginning of the record and smaller fields at the end. If you have record fields
of schema types that have run-time size, you should place those at the very
end of the record, since their offset requires run-time computation.

You can get the optimal record layout by:

• Avoiding the PACKED keyword except for PACKED ARRAY OF CHARs
and possibly PACKED SETs

• Avoiding explicit POS or ALIGNED attributes

• Placing larger fields before smaller fields

• Placing fixed-size fields before run-time sized fields

9.7.4 Optimal Data Size
Data items that are smaller than 32 bits might impose a performance penalty,
due to the additional instructions required to access them. The compiler will
attempt to reorder loads and stores that manipulate adjacent items smaller
than 32 bits to minimize the number of memory references required.

For performance reasons, HP Pascal on OpenVMS I64 and OpenVMS Alpha
systems will allocate Boolean and enumerated types as longwords in unpacked
records or arrays. On OpenVMS VAX systems, you have to explicitly request
this with a DCL qualifier or the corresponding attribute.

You should avoid any explicit size attributes on subrange types. While it is
true that [BYTE] 0..255 is smaller than 0..255 (which would allocate 4 bytes,
since it is a subrange of INTEGER), the additional overhead of accessing the
byte-sized subrange might be than the extra 3 bytes of storage. Using the BIT
attribute on subranges is even less effective in terms of the extra instructions
required to manipulate a 13-bit integer subrange inside a record. Use these
attributes only where needed.

Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS Alpha 9–7

9.7.5 Converting Existing Records
When moving code from an OpenVMS VAX system to an OpenVMS I64 or
OpenVMS Alpha system, you probably want to make sure that you are getting
the best performance on the new system. To do that, you must use natural
alignment on your record types.

9.7.6 Applications with No External Data Dependencies
If your application has no external data dependencies (such as no stored
binary data files, no binary data transmitted to some external device), then the
conversion is as simple as:

• Using the default natural alignment.

• Using the default enumeration size.

• Removing any uses of PACKED that are not needed.

• Removing any explicit positioning or size attributes that are not needed.

• Optionally reordering fields to place larger fields before smaller fields. This
does not make the record faster, but does make it smaller.

Depending on your data types, the removal of any PACKED keywords or
attributes may make little improvement in performance. For example,
a PACKED ARRAY OF REAL is identical in size and performance to an
unpacked ARRAY OF REAL.

HP Pascal has two features to help you identify poorly aligned records and how
often they are used:

• The /USAGE=PERFORMANCE command-line option

This option causes the compiler to generate messages for declarations and
uses of record fields that are poorly aligned or poorly sized. For example:

program a;

type r = packed record
f1 : boolean;
f2 : integer;
end;

begin
end.

9–8 Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS Alpha

In this program the compiler can highlight the following:

$ pascal/usage=performance test.pas

f1 : boolean;
.........^
%PASCAL-I-COMNOTSIZ, Component is not optimally sized
at line number 4 in file DISK$:[DIR]TEST.PAS;32

f2 : integer;
.........^
%PASCAL-I-COMNOTALN, Component is not optimally aligned
at line number 5 in file DISK$:[DIR]TEST.PAS;32
%PASCAL-S-ENDDIAGS, PASCAL completed with 2 diagnostics

In this example, the size of the Boolean field in the PACKED ARRAY
is only 1 bit. Single bit fields require additional instructions to process.
The integer field is not aligned on a well-aligned boundary for the target
system. The /USAGE=PERFORMANCE qualifier gives performance
information customized to the target system. For example, on an OpenVMS
I64 or OpenVMS Alpha system, INTEGERs should be on a longword
boundary; on an OpenVMS VAX system, INTEGERs need only be aligned
on a byte boundary for ‘‘good’’ performance.

• The /SHOW=STRUCTURE_LAYOUT command-line option.

This option causes the compiler to generate a structure layout summary in
the listing file.

This summary gives size and offset information about variables, types, and
fields. It also flags the same information as the /USAGE=PERFORMANCE
command-line option.

For example, compiling the above program with the following command
produces the following in the listing file:

$ pascal/list/show=structure_layout test.pas

Comments Offset Size
----------- ----------- -----------

5 Bytes R {In PROGRAM A} = PACKED RECORD
Size 0 Bytes 1 Bit F1 : BOOLEAN
Align 1 Bit 4 Bytes F2 : INTEGER

END

This output shows the size of the record R as well as the sizes and offsets
of the records fields. It also highlights any components that were poorly
sized or poorly aligned.

Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS Alpha 9–9

9.7.7 Applications with External Data Dependencies
If your application has external data dependencies, the process is more
involved, since you have to isolate and understand the dependencies.

Possible steps when porting the code include:

• Using the /ALIGN=VAX qualifier

• Using the /ENUMERATION_SIZE=BYTE qualifier

• Using the /FLOAT=D_FLOAT qualifier (if you have any DOUBLE binary
data)

• Leaving the code exactly as is

This should produce the same behavior on the OpenVMS I64 or OpenVMS
Alpha system as you had on your OpenVMS VAX system with the following
exception: Using D_Floating data on Alpha systems only provides 53 bits
of mantissa instead of 56 bits as on VAX systems; using D_floating data on
OpenVMS I64 systems causes the compiler to convert to/from D_Floating data
and IEEE T_Floating data to actually perform any needed operations.

You then have to identify which records in your program have external data
dependencies. These include binary files (for example, FILE OF xxx), shared
memory sections with other programs, and binary information passed to a
library routine (such as an OpenVMS item list).

You can immediately begin to convert records without external data
dependencies into optimal format (for example, remove any unneeded PACKED
keywords and attributes as described earlier).

You need to classify records with external dependencies further into:

• Records that cannot be naturally aligned due to a hard dependency that
cannot be changed (like a record that maps onto an external piece of
hardware, or a record that is passed to some software you cannot change).

• Records that can be changed after conversion of binary data or cooperating
software.

Isolate records that you cannot change into their own environment file by using
/ALIGN=VAX, /ENUM=BYTE, and /FLOAT=D_FLOAT. You can also attach the
ALIGN and ENUMERATION_SIZE attributes to the TYPE or VAR sections
that define these records. In this case, you need to also change any uses of
the DOUBLE datatype to the D_FLOAT datatype, to ensure that the proper
floating format is used.

9–10 Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS Alpha

You do not need to isolate the record if it uses the PACKED keyword, since
PACKED records are identical regardless of the /ALIGN or /ENUM qualifiers.
Nevertheless, isolating the records with dependencies might be useful in the
future if you eventually intend to change the format.

For records that you might change, you need to decide whether it is worthwhile
to convert the record and any external binary data. If the record is of low
use and you have a large quantity of external data, the cost of conversion is
probably too high. If a record is of high use but is mostly aligned, then the
conversion also may not be worthwhile. However, a high-use record that is
poorly aligned suggests conversion of external data regardless of the amount of
effort required.

There are two types of poorly aligned records:

• Records that use the PACKED keyword

PACKED records lay out the same with either setting of the /ALIGN or
/ENUMERATION_SIZE qualifiers. To get natural alignment, you must
remove the PACKED keyword. However, the keyword PACKED by itself
does not guarantee poor alignment. For example:

type t = packed record
f1,f2 : integer;
end;

This record is well aligned with or without the PACKED keyword. It is also
well aligned with /ALIGN=NATURAL and /ALIGN=VAX. You can remove
the PACKED keyword for completeness, but nothing else needs to be done.

• Unpacked records that lay out differently with /ALIGN=NATURAL and
/ALIGN=VAX

These records automatically are well-aligned by the compiler when
recompiled with /ALIGN=NATURAL. However, there are some unpacked
records are already well-aligned with both alignment formats. For
example:

type t = record
f1,f2 : integer;
end;

This unpacked record is well aligned with /ALIGN=NATURAL and
/ALIGN=VAX. Nothing else needs to be done to this record.

The /USAGE=PERFORMANCE and /SHOW=STRUCTURE_LAYOUT DCL
qualifiers can be helpful for identifying poorly aligned records.

For PACKED keywords, you can compile with and without the PACKED
keyword to see if the fields are positioned at the same offsets or not.

Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS Alpha 9–11

You have classified the records with external data dependencies into:

• Records that are well-aligned with both alignment/enumeration formats

• Records that are poorly aligned, where conversion is not worthwhile

• Records that are poorly aligned, where conversion is worthwhile

For the well-aligned records, no additional work is needed now, but be aware
that you still have an external data dependency that might cause problems if
you add fields to the record in the future.

Isolate records that are not being converted into the same environment file or
into the TYPE or VAR sections where you placed the records that you could not
convert.

For records that are worth converting, you need to plan how to convert the
external binary data or cooperating software. For cooperating software, you
need to ensure that it gets modified so it views the record with the ‘‘natural’’
layout. You can determine the layout by using the /SHOW=STRUCTURE_
LAYOUT command-line option described above. For binary data, you need to
write a conversion program.

Converting existing binary data involves writing a program that reads the
existing data into a poorly aligned record, copies the data into a well aligned
record, and then writes out the new record.

A simple conversion program would look like:

program convert_it(oldfile,newfile);

[align(vax),enumeration_size(byte)]
type oldtype = packed record

{ Existing record fields }
end;

type newtype = record
{ Record fields reorganized for optimal alignment }
end;

var oldfile = file of oldtype;
newfile = file of newtype;
oldvar : oldtype;

newvar : newtype;

begin
reset(oldfile);
rewrite(newfile);
while not eof(oldfile) do

begin
read(oldfile,oldvar);

9–12 Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS Alpha

{ For each field, sub-field, etc. move the data }
newvar.field1 := oldvar.field1;
newvar.field2 := oldvar.field2;

write(newfile,newtype);
end;

close(oldfile);
close(newfile);
end.

Notice the ‘‘type’’ keyword before the definition of the ‘‘newtype’’ type. Without
this keyword, ‘‘newtype’’ would be in the same type definition part as ‘‘oldtype’’
and would be processed with the same ALIGN and ENUMERATION_SIZE
settings.

If you have embedded DOUBLE data, you must use the D_FLOAT predefined
type in the ‘‘oldtype’’ definition, since the default on OpenVMS I64 systems
is for T_floating format and the default on OpenVMS Alpha systems is for
G_Floating format. The compiler does not allow a simple assignment of a
D_FLOAT value to a T_FLOAT or G_FLOAT variable. You need to use the
CNV$CONVERT_FLOAT routine provided with OpenVMS to convert the
floating data.

Migrating from OpenVMS VAX to OpenVMS I64 or OpenVMS Alpha 9–13

A
Errors Returned by STATUS and STATUSV

Functions

This appendix lists the error conditions detected by the STATUS and
STATUSV functions, their symbolic names, and the corresponding
values. The symbolic names and their values are defined in the file
SYS$LIBRARY:PASSTATUS.PAS, which you can include with a %INCLUDE
directive in a CONST section of your program. To test for a specific condition,
you compare the STATUS or STATUSV return values against the value of a
symbolic name.

The symbolic names correspond to some of the run-time errors listed in
Appendix C; however, not all run-time errors can be detected by STATUS.

There is a one-to-one correspondence between the symbolic constants returned
by STATUS or STATUSV documented in PASSTATUS.PAS and the OpenVMS
condition code values in SYS$LIBRARY:PASDEF.PAS. The following routine
shows how to map the return value of STATUS to its corresponding condition
code located in PASDEF.PAS:

FUNCTION CONVERT_STATUS_TO_CONDITION(STAT:INTEGER):INTEGER;
BEGIN

CONVERT_STATUS_TO_CONDITION := 16#218644 + STAT * 8;
END;

Table A–1 lists the symbolic names and the values returned by the STATUS
and STATUSV functions and explains the error condition that corresponds to
each value.

Errors Returned by STATUS and STATUSV Functions A–1

Table A–1 STATUS and STATUSV Return Values

Name Value Meaning

PAS$K_ACCMETINC 5 Specified access method is not compatible with
this file.

PAS$K_AMBVALENU 30 ‘‘String’’ is an ambiguous value for the
enumerated type ‘‘type’’.

PAS$K_CURCOMUND 73 DELETE or UPDATE was attempted while the
current component was undefined.

PAS$K_DELNOTALL 100 DELETE is not allowed for a file with sequential
organization.

PAS$K_EOF –1 File is at end-of-file.

PAS$K_ERRDURCLO 16 Error occurred while the file was being closed.

PAS$K_ERRDURDEL 101 Error occurred during execution of DELETE.

PAS$K_ERRDUREXT 127 Error occurred during execution of EXTEND.

PAS$K_ERRDURFIN 102 Error occurred during execution of FIND or
FINDK.

PAS$K_ERRDURGET 103 Error occurred during execution of GET.

PAS$K_ERRDUROPE 2 Error occurred during execution of OPEN.

PAS$K_ERRDURPRO 36 Error occurred during prompting.

PAS$K_ERRDURPUT 104 Error occurred during execution of PUT.

PAS$K_ERRDURRES 105 Error occurred during execution of RESET or
RESETK.

PAS$K_ERRDURREW 106 Error occurred during execution of REWRITE.

PAS$K_ERRDURTRU 107 Error occurred during execution of TRUNCATE.

PAS$K_ERRDURUNL 108 Error occurred during execution of UNLOCK.

PAS$K_ERRDURUPD 109 Error occurred during execution of UPDATE.

PAS$K_ERRDURWRI 50 Error occurred during execution of WRITELN.

PAS$K_EXTNOTALL 128 EXTEND is not allowed for a shared file.

PAS$K_FAIGETLOC 74 GET failed to retrieve a locked component.

PAS$K_FILALRCLO 15 File is already closed.

PAS$K_FILALROPE 1 File is already open.

PAS$K_FILNAMREQ 14 File name must be specified in order to save,
print, or submit an internal file.

(continued on next page)

A–2 Errors Returned by STATUS and STATUSV Functions

Table A–1 (Cont.) STATUS and STATUSV Return Values

Name Value Meaning

PAS$K_FILNOTDIR 110 File is not open for direct access.

PAS$K_FILNOTFOU 3 File was not found.

PAS$K_FILNOTGEN 111 File is not in generation mode.

PAS$K_FILNOTINS 112 File is not in inspection mode.

PAS$K_FILNOTKEY 113 File is not open for keyed access.

PAS$K_FILNOTOPE 114 File is not open.

PAS$K_FILNOTSEQ 115 File does not have sequential organization.

PAS$K_FILNOTTEX 116 File is not a text file.

PAS$K_GENNOTALL 117 Generation mode is not allowed for a read-only
file.

PAS$K_GETAFTEOF 118 GET attempted after end-of-file has been
reached.

PAS$K_INSNOTALL 119 Inspection mode is not allowed for a write-only
file.

PAS$K_INSVIRMEM 120 Insufficient virtual memory.

PAS$K_INVARGPAS 121 Invalid argument passed to an HP Pascal Run-
Time Library procedure.

PAS$K_INVFILSYN 4 Invalid syntax for file name.

PAS$K_INVKEYDEF 9 Key definition is invalid.

PAS$K_INVRECLEN 12 Record length nnn is invalid.

PAS$K_INVSYNBIN 37 ‘‘String’’ is invalid syntax for a binary value.

PAS$K_INVSYNENU 31 ‘‘String’’ is invalid syntax for a value of an
enumerated type.

PAS$K_INVSYNHEX 38 ‘‘String’’ is invalid syntax for a hexadecimal
value.

PAS$K_INVSYNINT 32 ‘‘String’’ is invalid syntax for an integer.

PAS$K_INVSYNOCT 39 ‘‘String’’ is invalid syntax for an octal value.

PAS$K_INVSYNREA 33 ‘‘String’’ is invalid syntax for a real number.

PAS$K_INVSYNUNS 34 ‘‘String’’ is invalid syntax for an unsigned integer.

PAS$K_KEYCHANOT 72 Changing the key field is not allowed.

PAS$K_KEYDEFINC 10 KEY(nnn) definition is inconsistent with this file.

(continued on next page)

Errors Returned by STATUS and STATUSV Functions A–3

Table A–1 (Cont.) STATUS and STATUSV Return Values

Name Value Meaning

PAS$K_KEYDUPNOT 71 Duplication of key field is not allowed.

PAS$K_KEYNOTDEF 11 KEY(nnn) is not defined in this file.

PAS$K_KEYVALINC 70 Key value is incompatible with file’s key nnn.

PAS$K_LINTOOLON 52 Line is too long; exceeds record length by nnn
characters.

PAS$K_LINVALEXC 122 LINELIMIT value exceeded.

PAS$K_NEGWIDDIG 53 Negative value in width or digits (of a field width
specification) is invalid.

PAS$K_NOTVALTYP 35 ‘‘String’’ is not a value of type ‘‘type’’.

PAS$K_ORGSPEINC 8 Specified organization is inconsistent with this
file.

PAS$K_RECLENINC 6 Specified record length is inconsistent with this
file.

PAS$K_RECTYPINC 7 Specified record type is inconsistent with this
file.

PAS$K_RESNOTALL 124 RESET is not allowed for an internal file that
has not been opened.

PAS$K_REWNOTALL 123 REWRITE is not allowed for a file opened for
sharing.

PAS$K_SUCCESS 0 Last file operation completed successfully.

PAS$K_TEXREQSEQ 13 Text files must have sequential organization and
sequential access.

PAS$K_TRUNOTALL 125 TRUNCATE is not allowed for a file opened for
sharing.

PAS$K_UPDNOTALL 126 UPDATE is not allowed for a file that has
sequential organization.

PAS$K_WRIINVENU 54 WRITE operation attempted on an invalid
enumerated value

A–4 Errors Returned by STATUS and STATUSV Functions

B
Entry Points to HP Pascal Utilities

This appendix describes the entry points to utilities in the OpenVMS Run-Time
Library that can be called as external routines by an HP Pascal program.
These utilities allow you to access HP Pascal extensions that are not directly
provided by the language.

B.1 PAS$FAB(f)
The PAS$FAB function returns a pointer to the RMS file access block (FAB)
of file f. After this function has been called, the FAB can be used to get
information about the file and to access RMS facilities not explicitly available
in the HP Pascal language.

The component type of file f can be any type; the file must be open.

PAS$FAB is an external function that must be explicitly declared by a
declaration such as the following:

TYPE
Unsafe_File = [UNSAFE] FILE OF CHAR;
Ptr_to_FAB = ^FAB$TYPE;

FUNCTION PAS$FAB
(VAR F : Unsafe_File) : Ptr_to_FAB;
EXTERN;

This declaration allows a file of any type to be used as an actual parameter to
PAS$FAB. The type FAB$TYPE is defined in the HP Pascal environment file
STARLET.PEN, which your program or module can inherit.

You should take care that your use of the RMS FAB does not interfere with the
normal operations of the OpenVMS Run-Time Library (RTL). Future changes
to the RTL may change the way in which the FAB is used, which may in turn
require you to change your program.

For More Information:

• On the OpenVMS Run-Time Library (HP OpenVMS Programming Concepts
Manual)

Entry Points to HP Pascal Utilities B–1

B.2 PAS$RAB(f)
The PAS$RAB function returns a pointer to the RMS record access block
(RAB) of file f. After this function has been called, the RAB can be used to get
information about the file and to access RMS facilities not explicitly available
in the HP Pascal language.

The component type of file f can be any type; the file must be open.

PAS$RAB is an external function that must be explicitly declared by a
declaration such as the following:

TYPE
Unsafe_File = [UNSAFE] FILE OF CHAR;
Ptr_to_RAB = ^RAB$TYPE;

FUNCTION PAS$RAB
(VAR F : Unsafe_File) : Ptr_to_RAB;
EXTERN;

This declaration allows a file of any type to be used as an actual parameter to
PAS$RAB. The type RAB$TYPE is defined in the HP Pascal environment file
STARLET.PEN, which your program or module can inherit.

You should take care that your use of the RMS RAB does not interfere with the
normal operations of the OpenVMS Run-Time Library. Future changes to the
RTL may change the way in which the RAB is used, which may in turn require
you to change your program.

For More Information:

• On the OpenVMS Run-Time Library (HP OpenVMS Programming Concepts
Manual)

B.3 PAS$MARK2(s)
The PAS$MARK2 function returns a pointer to a heap-allocated object of the
size specified by s. If this pointer value is then passed to the PAS$RELEASE2
function, all objects allocated with NEW or PAS$MARK2 since the object was
allocated are deallocated. PAS$MARK2 and PAS$RELEASE2 are provided
only for compatibility with some other implementations of HP Pascal. Their
use is not recommended in a modular programming environment. The
PAS$MARK2 and PAS$RELEASE2 routines do not work with 64-bit pointers
on OpenVMS I64 and OpenVMS Alpha.

While a mark is in effect, any DISPOSE operation will not actually delete the
storage, but merely mark the storage for deletion. To free the memory, you
must use PAS$RELEASE2.

B–2 Entry Points to HP Pascal Utilities

PAS$MARK2 is an external function that must be explicitly declared. Because
the parameter to PAS$MARK2 is the size of the object (unlike the parameter
to the predeclared procedure NEW), the best method for using this function
is to declare a separate function name for each object you wish to mark. The
following example shows how PAS$MARK2 could be declared and used as a
function named Mark_Integer to allocate and mark an integer variable:

TYPE
Ptr_to_Integer = ^Integer;

VAR
Marked_Integer: Ptr_to_Integer;

[EXTERNAL(PAS$MARK2)] FUNCTION Mark_Integer
(%IMMED S : Integer := SIZE(Integer))
: Ptr_to_Integer;
EXTERN;
.
.
.

Marked_Integer := Mark_Integer;

The parameter to PAS$MARK2 can be 0, in which case the function value is
only a pointer to a marker, and cannot be used to store data.

B.4 PAS$RELEASE2(p)
The PAS$RELEASE2 function deallocates all storage allocated by NEW or
PAS$MARK2 since the call to PAS$MARK2 allocates the parameter p.

PAS$MARK2 and PAS$RELEASE2 are provided only for compatibility with
some other implementations of HP Pascal. Their use is not recommended in a
modular programming environment. PAS$RELEASE2 disables AST delivery
during its execution, so it should not be used in a real-time environment. The
PAS$MARK2 and PAS$RELEASE2 routines do not work with 64-bit pointers
on OpenVMS I64 and OpenVMS Alpha.

PAS$RELEASE2 is an external function that must be explicitly declared. An
example of its declaration and use is as follows:

TYPE
Ptr_to_Integer = ^Integer;

VAR
Marked_Integer : Ptr_to_Integer;

Entry Points to HP Pascal Utilities B–3

[EXTERNAL(PAS$RELEASE2)] PROCEDURE Release
(P :[UNSAFE] Ptr_to_Integer);
EXTERN;
.
.
.

Release (Marked_Integer);

In this example, Marked_Integer is assumed to contain the pointer value
returned by a previous call to PAS$MARK2.

For More Information:

• On PAS$MARK2 (Section B.3)

B–4 Entry Points to HP Pascal Utilities

C
Diagnostic Messages

This appendix summarizes the error messages that can be generated by an HP
Pascal program at compile time and at run time.

C.1 Compiler Diagnostics
The HP Pascal compiler reports compile-time diagnostics in the source listing
(if one is being generated) and summarizes them on the terminal (in interactive
mode) or in the batch log file (in batch mode). Compile-time diagnostics are
preceded by the following:

I-
%PASCAL- W-

E-
F-

Table C–1 shows the severity level indicated by each letter.

Table C–1 Compiler Message Warning Levels

Letter Meaning

I An informational message that flags extensions to the Pascal standard,
identifies unused or possibly uninitialized variables, or provides
additional information about a more severe error.

W A warning that flags an error or construct that may cause unexpected
results, but that does not prevent the program from linking and
executing.

E An error that prevents generation of machine code; instead, the compiler
produces an empty object module indicating that E-level messages were
detected in the source program.

F A fatal error.

If the source program contains either E- or F-level messages, the errors must
be corrected before the program can be linked and executed.

Diagnostic Messages C–1

All diagnostic messages contain a brief explanation of the event that caused
the error. This section lists compile-time diagnostic messages in alphabetical
order, including their severity codes and explanatory message text. Where the
message text is not self-explanatory, additional explanation follows. Portions
of the message text enclosed in quotation marks are items that the compiler
substitutes with the name of a data object when it generates the message.

64BITBASTYP, 64-bit pointer base types cannot contain file variables
ERROR: File types may not be allocated in 64-bit P2 address space,
because their implementation currently assumes 32-bit pointers in internal
data structures.

64BITNOTALL, 64-bit pointers are not allowed in this context
ERROR: File types may not be allocated in 64-bit P2 address space,
because their implementation currently assumes 32-bit pointers in internal
data structures.

ABSALIGNCON, Absolute address / alignment conflict
Error: The address specified by the AT attribute does not have the number
of low-order bits implied by the specified alignment attribute.

ACCMETHCON, Specified ACCESS_METHOD conflicts with file’s record
organization
Warning: You cannot specify ACCESS_METHOD:=DIRECT for a file that
has indexed organization or sequential organization and variable-length
records. You cannot specify ACCESS_METHOD:=KEYED for a file with
sequential or relative organization.

ACTHASNOFRML, Actual parameter has no corresponding formal
parameter
Error: The number of actual parameters specified in a routine call exceeds
the number of formal parameters in the routine’s declaration, and the last
formal parameter does not have the LIST attribute.

ACTMULTPL, Actual parameter specified more than once
Error: Each formal parameter (except one with the LIST attribute) can
have only one corresponding actual parameter.

C–2 Diagnostic Messages

ACTPASCNVTMP, Conversion: actual passed is resulting temporary
ACTPASRDTMP, Formal requires read access: actual parameter is resulting

temporary
ACTPASSIZTMP, Size mismatch: actual passed is resulting temporary
ACTPASWRTMP, Formal requires write access: actual parameter is resulting

temporary
Warning: A temporary variable is created if an actual parameter does
not have the size, type, and accessibility properties required by the
corresponding foreign formal parameter.

ACTPRMORD, Actual parameter must be ordinal
Error: The actual parameter that specifies the starting index of an array
for the PACK or UNPACK procedure must have an ordinal type.

ADDIWRDALIGN, ADD_INTERLOCKED requires variable with at least word
alignment

ADDIWRDSIZE, ADD_INTERLOCKED requires 16-bit variable
Error: These restrictions are imposed by the instruction sequence that is
used on the target architecture.

ADDRESSVAR, ‘‘parameter name’’ is a VAR parameter, ADDRESS is illegal
Warning: You should not use the ADDRESS function on a nonvolatile
variable or component or on a formal VAR parameter.

ADISCABSENT, Formal discriminant ‘‘discriminant name’’ has no correspond-
ing actual discriminant
Error: An actual discriminant must be specified for every formal
discriminant in a schema type definition.

ADISCHASNOFRML, Actual discriminant has no corresponding formal
discriminant
Error: The number of actual discriminants specified is greater than the
number of formal discriminants defined in the schema type definition.

AGGNOTALL, Aggregate variable access of this type not allowed, must be
indexed

Error.

ALIATRTYPCON, Alignment attribute / type conflict

Diagnostic Messages C–3

ALIGNAUTO, Alignment greater than n conflicts with automatic allocation
Error: The value n has the value 4 on OpenVMS I64; 3 on OpenVMS
Alpha, and 2 on OpenVMS VAX. OpenVMS I64 systems align the stack
on an octaword boundary. OpenVMS Alpha systems align the stack on a
quadword boundary. OpenVMS VAX systems align the stack on a longword
boundary. You cannot specify a greater alignment for automatically
allocated variables.

ALIDOWN, Alignment down-graded from default of ALIGNED(n)
Info: The value of n is based on the size of the object that is being
downgraded.

ALIGNFNCRES, Alignment greater than n not allowed on function result
Error: The value n has the value 4 on OpenVMS I64 systems; 3 on
OpenVMS Alpha systems; and 2 on OpenVMS VAX systems. The use of an
attribute on a routine conflicts with the requirements of the object’s type.

ALIGNINT, ALIGNED expression must be integer value in range 0..n,
defaulting to m
Error: The value n has the value of the largest argument to the ALIGNED
attribute allowed on the platform.

ALIGNVALPRM, Alignment greater than n not allowed on value parameter
Error: The value n has the value 4 on OpenVMS I64 systems; 3 on
OpenVMS Alpha systems; and 2 on OpenVMS VAX systems. The use of
an attribute on a parameter conflicts with the requirements of the object’s
type.

ALLPRMSAM, All parameters to ’MIN’ or ’MAX’ must have the same type

Error.

APARMACTDEF, Anonymous parameter ‘‘parameter number’’ has neither
actual nor default
Error: If the declaration of a routine failed to specify a name for a formal
parameter, a call to the routine will result in this error message. The
routine declaration will also cause an error to be reported.

ARITHOPNDREQ, Arithmetic operand(s) required

Error.

C–4 Diagnostic Messages

ARRCNTPCK, Array cannot be PACKED
Error: At least one parameter to the PACK or UNPACK procedure must
be unpacked.

ARRHAVSIZ, ‘‘routine name’’ requires that ARRAY component have compile-
time known size
Error: You cannot use the PACK and UNPACK procedures to pack
or unpack one multidimensional conformant array into another. The
component type of the dimension being copied must have a compile-time
known size; that is, it must have some type other than a conformant
schema.

ARRMSTPCK, Array must be PACKED
Error: At least one parameter to the PACK or UNPACK procedure must
be of type PACKED.

ARRNOTSTR, Array type is not a string type
Error: You cannot write a value to a text file (using WRITE or
WRITELN) or to a VARYING string (using WRITEV) if there is no
textual representation for the type. Similarly, you cannot read a value from
a text file (using READ or READLN) or from a VARYING string (using
READV) if there is no textual representation for the type. The only legal
array, therefore, is PACKED ARRAY [1..n] OF CHAR.

ASYREQASY, ASYNCHRONOUS ‘‘calling routine’’ requires that ‘‘called
routine’’ also be ASYNCHRONOUS

Warning.

ASYREQVOL, ASYNCHRONOUS ‘‘routine name’’ requires that ‘‘variable
name’’ be VOLATILE
Warning: A variable referred to in a nested asynchronous routine must
have the VOLATILE attribute.

ATINTUNS, AT address must be an integer value

Error.

ATREXTERN, ‘‘attribute name’’ attribute allowed only on external routines
Error: The LIST and CLASS_S attributes can be specified only with the
declarations of external routines.

Diagnostic Messages C–5

ATTRCONCMDLNE, Attribute contradicts command line qualifier
Error: The double-precision attribute specified contradicts the /FLOAT,
/G_FLOATING, or /NOG_FLOATING qualifier specified on the compile
command line.

ATTRCONFLICT, Attribute conflict: ‘‘attribute name’’
Information: This message can appear as additional information on other
error messages.

ATTRONTYP, Descriptor class attribute not allowed on this type
Error: The use of the descriptor class attribute on the variable, parameter,
or routine conflicts with the requirements of the object’s type.

AUTOGTRMAXINT, Allocation of ‘‘variable name’’ causes automatic storage to
exceed MAXINT bits
Error: The HP Pascal implementation restricts automatic storage to a size
of 2,147,483,647 bits.

AUTOMAX, Unable to quadword align automatic variables, using long
alignment

Information.

BADANAORG, Analysis data file ‘‘file name’’ is not on a random access device

Fatal.

BADENVORG, Environment file ‘‘file name’’ is not on a random access device

Fatal.

BADSETCMP, < and > not permitted in set comparisons

Error.

BINOCTHEX, Expecting BIN, OCT, or HEX
Error: You must supply BIN, OCT, or HEX as a variable modifier when
reading the variable on a nondecimal basis.

BLKNOTFND, ‘‘routine’’ block ‘‘routine name’’ declared FORWARD in ‘‘block
name’’ is missing

Error.

BLKTOODEEP, Routine blocks nested too deeply
Error: You cannot nest more than 31 routine blocks.

C–6 Diagnostic Messages

BNDACTDIFF, Actual’s array bounds differ from those of other parameters in
same section
Error: All actual parameters passed to a formal parameter section
whose type is a conformant schema must have identical bounds and be
structurally compatible.

BNDCNFRUN, Bounds of conformant ARRAY ‘‘array name’’ not known until
run-time
Error: You cannot use the UPPER and LOWER functions on a dynamic
array parameter in a compile-time constant expression.

BNDSUBORD, Bound expressions in a subrange type must be ordinal
Error: The expressions that designate the upper and lower limits of a
subrange must be of an ordinal type.

BOOLOPREQ, BOOLEAN operand(s) required
Error: The operation being performed requires operands of type
BOOLEAN. Such operations include the AND, OR, and NOT operators and
the SET_INTERLOCKED and CLEAR_INTERLOCKED functions.

BOOSETREQ, BOOLEAN or SET operand(s) required

Error.

BYTEALIGN, Type larger than 32 bits can be positioned only on a byte
boundary
Error: See the HP Pascal for OpenVMS Language Reference Manual for
information on the types that are allocated more than 32 bits.

CALLFUNC, Function ‘‘function name’’ called as procedure, function value
discarded

Warning.

CARCONMNGLS, CARRIAGE_CONTROL parameter is meaningless given
file’s type
Warning: The carriage-control parameter is usually meaningful only for
files of type TEXT and VARYING OF CHAR.

CASLABEXPR, Case label and case selector expressions are not compatible
Error: All case labels in a CASE statement must be compatible with the
expression specified as the case selector.

Diagnostic Messages C–7

CASORDRELPTR, Compile-time cast allowed only between ordinal, real, and
pointer types

CASSELORD, Case selector expression must be an ordinal type

Error.

CASSRCSIZ, Source type of a cast must have a size known at compile-time
CASTARSIZ, Target type of a cast must have a size known at compile-time

Error: A variable being cast by the type cast operator cannot be a
conformant array or a conformant VARYING parameter. An expression
being cast cannot be a conformant array parameter, a conformant
VARYING parameter, or a VARYING OF CHAR expression. The target
type of the cast cannot be VARYING OF CHAR.

CDDABORT, %DICTIONARY processing of CDD record definition aborted
Error: The HP Pascal compiler is unable to process the CDD record
description. See the accompanying CDD messages for more information.

CDDBADDIR, %DICTIONARY directive not allowed in deepest %INCLUDE,
ignored
Error: A program cannot use the %DICTIONARY directive in the fifth
nested %INCLUDE level. The compiler ignores all %DICTIONARY
directives in the fifth nested %INCLUDE level.

CDDBADPTR, invalid pointer was specified in CDD record description
Warning: The CDD pointer data type refers to a CDD path name that
cannot be extracted, and is replaced by ^INTEGER.

CDDBIT, Ignoring bit field in CDD record description
Information: The HP Pascal compiler cannot translate a CDD bit data
type that is not aligned on a byte boundary and whose size is greater than
32 bits.

CDDBLNKZERO, Ignoring blank when zero attribute specified in CDD record
description
Information: The HP Pascal compiler does not support the CDD BLANK
WHEN ZERO clause.

CDDCOLMAJOR, CDD description specifies a column-major array
Error: The HP Pascal compiler supports only row-major arrays. Change
the CDD description to specify a row-major array.

C–8 Diagnostic Messages

CDDDEPITEM, Ignoring depends item attribute specified in CDD record
description
Information: The HP Pascal compiler does not support the CDD
DEPENDING ON ITEM attribute.

CDDDFLOAT, D_floating CDD datatype was specified when compiling with
G_FLOATING
Warning: The CDD record description contains a D_floating data type
while compiling with G_floating enabled. It is replaced with [BYTE(8)]
RECORD END.

CDDFLDVAR, CDD record description contains field(s) after CDD variant
clause
Error: The CDD record description contains fields after the CDD variant
clause. Because HP Pascal translates a CDD variant clause into a Pascal
variant clause, and a Pascal variant clause must be the last field in a
record type definition, the fields following the CDD variant clause are
illegal.

CDDGFLOAT, G_floating CDD datatype was specified when compiling with
NOG_FLOATING
Warning: The CDD record description contains a G_floating data type
while compiling with D_floating enabled. It is replaced with [BYTE(8)]
RECORD END.

CDDILLARR, Aligned array elements can not be represented, replacing with
[BIT(n)] RECORD END
Information: The HP Pascal compiler does not support CDD record
descriptions that specify an array whose array elements are aligned on a
boundary greater than the size needed to represent the data type. It is
replaced with [BIT(n)] RECORD END, where n is the appropriate length in
bits.

CDDINITVAL, Ignoring specified initial value specified in CDD record
description
Information: The HP Pascal compiler does not support the CDD INITIAL
VALUE clause.

CDDMINOCC, Ignoring minimum occurs attribute specified in CDD record
description
Information: The HP Pascal compiler does not support the CDD
MINIMUM OCCURS attribute.

Diagnostic Messages C–9

CDDONLYTYP, %DICTIONARY may only appear in a TYPE definition part
Error: The %DICTIONARY directive is allowed only in the TYPE section
of a program.

CDDRGHTJUST, Ignoring right justified attribute specified in CDD record
description
Information: The HP Pascal compiler does not support the CDD
JUSTIFIED RIGHT clause.

CDDSCALE, Ignoring scaled attribute specified in CDD record description
Information: The HP Pascal compiler does not support the CDD scaled
data types.

CDDSRCTYPE, Ignoring source type attribute specified in CDD record
description
Information: The HP Pascal compiler does not support the CDD source
type attribute.

CDDTAGDEEP, CDD description nested variants too deep
Error: A CDD record description may not include more than 15 levels of
CDD variants. The compiler ignores variants beyond the fifteenth level.

CDDTAGVAR, Ignoring tag variable and any tag values specified in CDD
record description
Information: The HP Pascal compiler does not fully support the CDD
VARIANTS OF field description statement. The specified tag variable and
any tag values are ignored.

CDDTOODEEP, CDD description nested too deep
Error: Attributes for the CDD record description exceed the
implementation’s limit for record complexity. Modify the CDD description
to reduce the level of nesting in the record description.

CDDTRUNCREF, Reference string which exceeds 255 characters has been
truncated
Information: The HP Pascal compiler does not support reference strings
greater than 255 characters.

C–10 Diagnostic Messages

CDDUNSTYP, Unsupported CDD datatype ‘‘standard data type name’’
Information: The CDD record description for an item has attempted
to use a data type that is not supported by HP Pascal. The HP Pascal
compiler makes the data type accessible by declaring it as [BYTE(n)]
RECORD END where n is the appropriate length in bytes. Change the
data type to one that is supported by HP Pascal or manipulate the contents
of the field by passing it to external routines as variables or by using the
HP Pascal type casting capabilities to perform an assignment.

CLSCNFVAL, CLASS_S is only valid with conformant strings
Error: When the CLASS_S attribute is used in the declaration of an
internal routine, it can be used only on a conformant PACKED ARRAY OF
CHAR. The conformant variable must also be passed by value semantics.

CLSNOTALLW, ‘‘descriptor class name’’ not allowed on a parameter of this
type
Error: Descriptor class attributes are not allowed on formal parameters
defined with either an immediate or a reference passing mechanism.

CMTBEFEOF, Comment not terminated before end of input

Error.

CNFCANTCNF, Component of PACKED conformant parameter cannot be
conformant

Error.

CNFREQNCA, Conformants of this parameter type require CLASS_NCA
Error: The conformant parameter cannot be described with the default
CLASS_A descriptor. Add the CLASS_NCA attribute to the parameter
declaration.

CNSTRNOTALL, Nonstandard constructors are not allowed on nonstatic types
Error: You can write constructors for nonstatic types using the standard
style of constructor.

CNSTRONZERO, Record constructors only allow OTHERWISE ZERO

Error.

Diagnostic Messages C–11

CNTBEARRCMP, Not allowed on an array component
CNTBEARRIDX, Not allowed on an array index
CNTBECAST, Not allowed on a cast
CNTBECNFCMP, Not allowed on a conformant array component
CNTBECNFIDX, Not allowed on a conformant array index
CNTBECNFVRY, Not allowed on a conformant varying component
CNTBECOMP, Not allowed on a compilation unit
CNTBECONST, Not allowed on a CONST definition part

CNTBEDEFDECL, Not allowed on any definition or declaration part
CNTBEDESPARM, Not allowed on a %DESCR foreign mechanism

parameter
CNTBEEXESEC, Not allowed on an executable section
CNTBEFILCMP, Not allowed on a file component
CNTBEFORMAL, Not allowed on a formal discriminant
CNTBEFUNC, Not allowed on a function result
CNTBEIMMPARM, Not allowed on a parameter passed by an immediate

passing mechanism
CNTBELABEL, Not allowed on a LABEL declaration part
CNTBEPCKCNF, Not allowed on a PACKED conformant array component

CNTBEPTRBAS, Not allowed on a pointer base
CNTBERECFLD, Not allowed on a record field
CNTBEREFPARM, Not allowed on a parameter passed by a reference passing

mechanism
CNTBERTNDECL, Not allowed on a routine declaration
CNTBERTNPARM, Not allowed on a routine parameter
CNTBESCHEMA, Not allowed on a nonstatic type
CNTBESETRNG, Not allowed on a set range
CNTBESTDPARM, Not allowed on a %STDESCR foreign mechanism

parameter
CNTBETAGFLD, Not allowed on a variant tag field

CNTBETAGTYP, Not allowed on a variant tag type
CNTBETO, Not allowed on TO BEGIN/END DO
CNTBETYPDEF, Not allowed on a type definition
CNTBETYPE, Not allowed on a TYPE definition part
CNTBEVALPARM, Not allowed on a value parameter
CNTBEVALUE, Not allowed on a VALUE initialization part
CNTBEVALVAR, Not allowed on a VALUE variable
CNTBEVAR, Not allowed on a VAR declaration part
CNTBEVARBLE, Not allowed on a variable

C–12 Diagnostic Messages

CNTBEVARPARM, Not allowed on a VAR parameter
CNTBEVRYCMP, Not allowed on a varying component

Information: These messages can appear as additional information on
other error messages.

COMCONFLICT, COMMON ‘‘block name’’ conflicts with another COMMON or
PSECT of same name
Error: You can allocate only one variable in a particular common block,
and the name of the common block cannot be the same as the names of
other common blocks or program sections used by your program.

COMNOTALN, Component is not optimally aligned
Information: The component indicated is not well aligned and accesses to
it will be inefficient.

COMNOTSIZ, Component is not optimally sized
Information: The component indicated is not well sized and accesses to it
will be inefficient.

COMNOTALNSIZE, Component is not optimally aligned and sized
Information: The component indicated is not naturally aligned and sized,
accesses to it will be inefficient.

COMNOTPOS, Fixed size field positioned after a run-time sized field is not
optimal
Information: Much better code can be generated for indicated component
if it preceedes all of the run-time sized fields.

CONTXTIGN, Text following constant definition ignored
Warning: When defining constants with the /CONSTANT DCL qualifier,
any text appearing after a valid constant definition is ignored.

CPPFILERR, Unable to open included file

Error.

CRETIMMOD, Creation time for module ‘‘module name’’ in environment ‘‘envi-
ronment file name’’ differs from creation time in previous environments
Warning: Two or more PEN files referred to a module, but the PEN files
did not agree on the creation date/time for the module. This can occur if
you recompile a module but do not recompile all the modules that inherited
its PEN file.

Diagnostic Messages C–13

CSTRBADTYP, Constructor: only ARRAY, RECORD, or SET type
CSTRCOMISS, Constructor: component(s) missing
CSTRNOVRNT, Constructor: no matching variant
CSTRREFAARR, Repetition factor allowed only in ARRAY constructors
CSTRREFAINT, Repetition factor must be integer
CSTRREFALRG, Repetition factor too large
CSTRREFANEG, Repetition factor cannot be negative
CSTRTOOMANY, Constructor: too many components

Error: You can write constructors only for data items of an ARRAY
type. You must specify one and only one value in the constructor for each
component of the type. In an array constructor, you cannot use a negative
integer value as a repetition factor to specify values for consecutive
components.

CSTRREFAINT, Repetition factor must be an integer

Error.

CTESTRSIZ, Compile-time strings must be less than 8192 characters

Error.

CTGARRDESC, Contiguous array descriptor cannot describe size/alignment
properties
Information: Conformant array parameters, dynamic array parameters,
and %DESCR array parameters all use the contiguous array descriptor
mechanism in the HP OpenVMS Calling Standard. Size and alignment
attributes are prohibited on such arrays, as these attributes can create
noncontiguous allocation. This message can appear as additional
information in other error messages.

DEBUGOPT, /NOOPTIMIZE is recommended with /DEBUG
Information: Unexpected results may be seen when debugging an
optimized program. To prevent conflicts between optimization and
debugging, you should compile your program with /NOOPTIMIZE until
it is thoroughly debugged. Then you can recompile the program with
optimization enabled to produce more efficient code.

DECLORDER, Declarations are out of order
Error: The TO BEGIN DO and TO END DO declarations in a module
must appear at the end of the module and may not be reordered.

C–14 Diagnostic Messages

DEFRTNPARM, Default parameter syntax not allowed on routine
parameters

DEFVARPARM, Default parameter syntax not allowed on VAR parameters

Error.

DESCOMABORT, Further processing of /DESIGN=COMMENTS has been
aborted
Error: An error has occurred that prohibits further comment processing.

DESCOMERR, An error has occurred while processing design information

Error.

DESCOMSEVERR, An internal error has occurred while processing
/DESIGN=COMMENTS - please submit an SPR
Error: A fatal error has occurred during comment processing. Please
submit a problem report including sufficient information to reproduce
the program, including the version numbers of the Language-Sensitive
Editor/Source Code Analyzer and the HP Pascal compiler.

DESCTYPCON, Descriptor class / type conflict
Error: The descriptor class for parameter passing conflicts with the
parameter’s type. Refer to Section 5.3.3 of the HP Pascal for OpenVMS
User Manual for legal descriptor class/type combinations.

DESIGNTOOOLD, The comment processing routines are too old for the
compiler
Error: The support routines for the /DESIGN=COMMENT qualifier are
obsolete. Contact your system manager.

DIRCONVISIB, Directive contradicts visibility attribute
Error: The EXTERN, EXTERNAL, and FORTRAN directives conflict
directly with the LOCAL and GLOBAL attributes.

DIREXPECT, No matching directive for the %IF directive
Error:: A %IF directive must contain a %THEN clause and be terminated
by %ENDIF.

DIRUNEXP
Error:: Conditional compilation directives other than %IF are only valid
after the parts of a %IF directive.

Diagnostic Messages C–15

DISCLIMIT, Limit of 255 discriminants exceeded

Error.

DISNOTORD, Discriminant type must be an ordinal type
Error: The formal discriminant in a schema type definition must be an
ordinal type.

DONTPACKVAR, ‘‘routine name’’ is illegal, variable can never appear in a
packed context
Error: You cannot call the BITSIZE and BITNEXT functions for
conformant parameters.

DUPLALIGN, Alignment already specified
DUPLALLOC, Allocation already specified
DUPLATTR, Attribute already specified
DUPLCLASS, Descriptor class already specified
DUPLDOUBLE, Double precision already specified

Error: Only one member of a particular attribute class can appear in the
same attribute list.

DUPLFIN, TO END DO already specified
DUPLINIT, TO BEGIN DO already specified

Error: Only one TO BEGIN DO and one TO END DO section can appear
in the same module.

DUPLGBLNAM, Duplicated global name
Warning: The GLOBAL attribute cannot appear on more than one
variable or routine with the same name.

DUPLMECH, Passing mechanism already specified
DUPLOPT, Optimization already specified
DUPLSIZE, Size already specified
DUPLVISIB, Visibility already specified

Error: Only one member of a particular attribute class can appear in the
same attribute list.

C–16 Diagnostic Messages

DUPTYPALI, Alignment already specified by type identifier ‘‘type name’’
DUPTYPALL, Allocation already specified by type identifier ‘‘type name’’
DUPTYPATR, Attribute already specified by type identifier ‘‘type name’’
DUPTYPDES, Descriptor class already specified by type identifier ‘‘type name’’
DUPTYPSIZ, Size already specified by type identifier ‘‘type name’’
DUPTYPVIS, Visibility already specified by the type identifier ‘‘type name’’

Error: An attribute specified for an object was already specified in the
definition of the object’s type.

ELEOUTRNG, Element out of range
Error: A value specified in a set constructor used as a compile-time
constant expression does not fall within the subrange defined as the set’s
base type.

EMPTYCASE, Empty case body
Error: You failed to specify any case labels and corresponding statements
in the body of a CASE statement.

ENVERROR, Environment resulted from a compilation with Errors
Error: When a program inherits an environment file that compiled with
errors, unexpected results may occur during the program’s compilation.
The environment file inherited by the program compiled with errors.
Unexpected results may occur in the program now being compiled.

ENVFATAL, Environment resulted from a compilation with Fatal Errors
Error: The environment file inherited by the program compiled with fatal
errors. Unexpected results may occur in the program now being compiled.

ENVOLDVER, Environment was created by a VAX Pascal V2 compiler, please
recompile
Warning: The environment file inherited by the program was created by a
VAX Pascal Version 2.0 compiler. You should regenerate the environment
file with a newer version of the compiler.

ENVWARN, Environment resulted from a compilation with Warnings
Warning: The environment file inherited by the program compiled with
warnings. Unexpected results may occur in the program now being
compiled.

ENVWRGCMP, Environment identifier was compiled by an HP Pascal for
platform compiler

Fatal.

Diagnostic Messages C–17

ERREALCNST, Error in real constant: digit expected

Error.

ERRNONPOS, ERROR parameter can be specified only with nonpositional
syntax

Error.

ERROR, %ERROR
Error: This message is generated by the %ERROR directive.

ERRORLIMIT, Error Limit = ‘‘current error limit’’, source analysis
terminated
Fatal: The error limit specified for the program’s compilation was
exceeded; the compiler was unable to continue processing the program. By
default, the error limit is set at 30, but you can use the error limit switch
at compile time to change it.

ESTBASYNCH, ESTABLISH requires that ‘‘routine name’’ be
ASYNCHRONOUS

Warning.

EXPLCONVREQ, Explicit conversion to lower type required
Error: An expression of a higher-ranked type cannot be assigned to a
variable of a lower-ranked type; you must first convert the higher-ranked
expression by using DBLE, SNGL, TRUNC, ROUND, UTRUNC, or
UROUND, as appropriate.

EXPNOTRES, Expression does not contribute to result
Information: The optimizer has determined that part of the expression
does not affect the result of the expression and it will not evaluate that
part of the expression.

EXPR2ONVAL, Expression is allowed only on real, integer, or unsigned values
Error: The second expression (and preceding colon) are allowed only if the
value being written is of a real, integer, or unsigned type.

EXPRARITH, Expression must be arithmetic
Error: An expression whose type is not arithmetic cannot be assigned to a
variable of a real type.

C–18 Diagnostic Messages

EXPRARRIDX, Expression is incompatible with unpacked array’s index type
Error: The index type of the unpacked array is not compatible with the
index type of either the PACK or UNPACK procedure it was passed to.

EXPRCOMTAG, Expression is not compatible with tag type
Error: A case label specified for a NEW, DISPOSE, or SIZE routine must
be assignment compatible with the tag type of the variant.

EXPRINFUNC, Expression allowed only in FUNCTION

Error.

EXPRNOTSET, Expression is not a SET type
Error: The compiler encountered an expression of some type other than
SET in a call to the CARD function.

EXTRNALLOC, Allocation attribute conflicts with EXTERNAL visibility
Error: The storage for an external variable or routine is not allocated
by the current compilation; therefore, the specification of an allocation
attribute is meaningless.

EXTRNAMDIFF, External names are different
Information: This message can appear as additional information on other
error messages.

EXTRNCFLCT, ‘‘PSECT or FORWARD’’ conflicts with EXTERNAL visibility
Error: The storage for an external variable or routine is not allocated
by the current compilation; therefore, the specification of an allocation
attribute is meaningless.

FILEVALASS, FILE evaluation / assignment is not allowed
Error: You cannot attempt to evaluate a file variable or assign values to
it.

FILHASSCH, FILE component may not contain nonstatic types or discriminant
identifiers
Error: HP Pascal restricts components of files to those with compile-time
size.

FILOPNDREQ, FILE operand required
Error: The EOF, EOLN, and UFB functions require parameters of file
types.

Diagnostic Messages C–19

FILVARFIL, FILE_VARIABLE parameter must be of a FILE type
Error: The file variable parameter to the OPEN and CLOSE procedures
must denote a file variable.

FLDIVPOS, Field ‘‘field name’’ is illegally positioned
Error: A POS attribute attempted to position a record field before the end
of the previous field in the declaration.

FLDNOTKNOWN, Unknown record field

Error.

FLDONLYTXT, Field width allowed only when writing to a TEXT file

Error.

FLDRADINT, Field width or radix expression must be of type INTEGER
Error: The field-width or radix expression in a WRITE, WRITELN, or
WRITEV routine must be of type INTEGER.

FORACTORD, FOR loop control variable must be of an ordinal type
FORACTVAR, FOR loop control must be a true variable

Error: The control variable of a FOR statement must be a simple variable
of an ordinal type and must be declared in a VAR section. For example, it
cannot be a field in a record that was specified by a WITH statement, or a
function identifier.

FLDWDTHINT, Field-width expression must be of type integer

Error.

FORCTLVAR, ‘‘variable name’’ is a FOR control variable
Warning: The control variable of a FOR statement cannot be assigned a
value; used as a parameter to the ADDRESS function; passed as a writable
VAR, %REF, %DESCR, or %STDESCR parameter; used as the control
variable of a nested FOR statement; or written into by a READ, READLN,
or READV procedure.

FORINEXPR, Expression is incompatible with FOR loop control variable
Error: The type of the initial or final value specified in a FOR statement
is variable.

C–20 Diagnostic Messages

FRMLPRMDESC, Formal parameters use different descriptor formats
FRMLPRMINCMP, Formal routine parameters are not compatible
FRMLPRMNAM, Formal parameters have different names
FRMLPRMSIZ, Formal parameters have different size attributes
FRMLPRMTYP, Formal parameters have different types

Information: These messages can appear as additional information on
other error messages.

FRSTPRMSTR, READV requires first parameter to be a string expression
Error: You must specify at least two parameters for the READV
procedure—a character-string expression and a variable into which
new values will be read.

FRSTPRMVARY, WRITEV requires first parameter to be a variable of type
VARYING

Error.

FTRNOTHER, Feature not supported io this context

Error.

FTRNOTPOR, Feature not supported on platform(s)

Information.

FTRNOTSUP, Feature not supported on this platform

Error.

FUNCTRESTYP, Routine must be declared as FUNCTION to specify a result
type
Error: You cannot specify a result type on a PROCEDURE declaration.

FUNRESTYP, Function result types are different
Information: This message can appear as additional information on other
error messages.

Diagnostic Messages C–21

FWDREPATRLST, Declared FORWARD; repetition of attribute list not allowed
FWDREPPRMLST, Declared FORWARD; repetition of formal parameter list

not allowed
FWDREPRESTYP, Declared FORWARD; repetition of result type not allowed

Error: If the heading of a routine has the FORWARD directive, the
declaration of the routine body cannot repeat the formal parameter list, the
result type (applies only if the routine is a function), or any attribute lists
that appeared in the heading.

FWDWASFUNC, FORWARD declaration was FUNCTION
FWDWASPROC, FORWARD declaration was PROCEDURE

Error.

GOTONOTALL, GOTO not allowed to jump into a structured statement
Warning: Jumping into a structured statement may yield incorrect
behavior and/or additional compile-time errors.

GOTSZOVFL, GOT table overflow for module "name"
Error: The GOT (Global Offset Table) for the module is too large. Break
up the module into multiple modules.

GTR32BITS, ‘‘routine name’’ cannot accept parameters larger than 32 bits
Error: DEC and UDEC cannot translate objects larger than 32 bits into
their textual equivalent.

HIDATOUTER, HIDDEN legal only on definitions and declarations at
outermost level
Error: When an environment file is being generated, it is possible to
prevent information concerning a declaration from being included in the
environment file by using the HIDDEN attribute. However, because
an environment file consists only of declarations and definitions at the
outermost level of a compilation unit, the HIDDEN attribute is legal only
on these definitions and declarations.

IDENTGTR31, Identifier longer than 31 characters exceeds capacity of
compiler

Warning.

IDNOTLAB, Identifier ‘‘symbol name’’ not declared as a label

Error.

C–22 Diagnostic Messages

IDXNOTCOMPAT, Index type is not compatible with declaration
Error: The type of an index expression is not assignment compatible with
the index type specified in the array’s type definition.

IDXREQDKEY, Creating INDEXED organization requires dense keys
Warning: When you specify ORGANIZATION:=INDEXED when opening a
file with HISTORY := NEW or UNKNOWN, the file’s alternate keys must
be dense; that is, you may not omit any key numbers in the range from 0
through the highest key number specified for the file’s component type.

IDXREQKEY0, Creating INDEXED organization requires FILE OF RECORD
with at least KEY(0)
Warning: When you specify ORGANIZATION:=INDEXED when opening a
file with HISTORY := NEW or UNKNOWN, the file’s component type must
be a record for which a primary key, designated by the [KEY(0)] attribute,
is defined.

ILLINISCH, Illegal initialization of variable of nonstatic type
Error: Nonstatic variables, such as those created from schema types,
cannot be initialized in the VALUE declaration part. To initialize these
variables, you must use the initial state feature.

IMMEDBNDROU, Immediate passing mechanism may not be used on bound
routine ‘‘routine name’’
Warning: You cannot prefix a formal or an actual routine parameter with
the immediate passing mechanism unless the routine was declared with
the UNBOUND attribute.

IMMEDUNBND, Routines passed by immediate passing mechanism must be
UNBOUND
Warning: A formal routine parameter that has the immediate passing
mechanism must also have the UNBOUND attribute.

IMMGTR32, Immediate passing mechanism not allowed on values larger than
32 or 64 bits
Error: See the HP Pascal for OpenVMS Language Reference Manual for
more information on the types that are allocated more than 32 or 64 bits.

IMMHAVSIZ, Type passed by immediate passing mechanism must have
compile-time known size
Error: You cannot specify an immediate passing mechanism for a
conformant parameter or a formal parameter of type VARYING OF CHAR.

Diagnostic Messages C–23

INCMPBASE, Incompatible with SET base type
Error: If no type identifier denotes the base type of a set constructor, the
first element of the constructor determines the base type. The type of all
subsequent elements specified in the constructor must be compatible with
the type of the first.

INCMPFLDS, Record fields are not the same type

Error.

INCMPOPND, Incompatible operand(s)
Error: The types of one or more operands in an expression are not
compatible with the operation being performed.

INCMPPARM, Incompatible ‘‘routine’’ parameter
Error: An actual routine parameter is incompatible with the
corresponding formal parameter.

INCMPTAGTYP, Incompatible variant tag types
Error: This message can appear as additional information on other error
messages.

INCTOODEEP, %INCLUDE directives nested too deeply, ignored
Error: A program cannot include more than five levels of files with the
%INCLUDE directive. The compiler ignores %INCLUDE files beyond the
fifth level.

INDNOTORD, Index type must be an ordinal type
Error: The index type of an array must be an ordinal type.

INFO, %INFO
Information: This message is generated by the %INFO directive.

INITNOEXT, INITIALIZE routine may not be EXTERNAL
INITNOFRML, INITIALIZE routine must have no formal parameter list

Error.

INITSYNVAR, Illegal initialization syntax—Use VALUE

Error.

C–24 Diagnostic Messages

INPNOTDECL, INPUT not declared in heading
Error: A call to EOF, EOLN, READLN, or WRITELN did not specify a file
variable, and the default INPUT or OUTPUT was not listed in the program
heading.

INSTNEWLSE, Please install a new version of LSE
Error: The version of the Language-Sensitive Editor/Source Code Analyzer
on your system is too old for the compiler. Contact your system manager.

INVCASERNG, Invalid range in case label list

Error.

INVEVAL, Array or Record evaluation not allowed

Error.

INVQUAVAL, Value for optimizer level is out of range. Default value will be
used.

Error.

IVATTOPT, Unrecognized option for attribute
Explanation: Explanation: You attempted to specify an invalid option for
one of the following attributes:

• CHECK (Warning)

• FLOAT (Warning)

• KEY (Error)

• OPTIMIZE (Warning)

IVATTR, Unrecognized attribute

Error.

IVAUTOMOD, AUTOMATIC variable is illegal at the outermost level of a
MODULE
Error: You cannot specify the AUTOMATIC attribute for a variable
declared at module level.

IVCHKOPT, Unrecognized CHECK option

Warning.

Diagnostic Messages C–25

IVCOMBFLOAT, Illegal combination of D_floating and G_floating
Error: You cannot combine D_floating and G_floating numbers in a binary
operation.

IVDIRECTIVE, Unrecognized directive
Error: The directive following a procedure or function heading is not one
of those recognized by the HP Pascal compiler.

IVENVIRON, Environment ‘‘environment name’’ has illegal format, source
analysis terminated
Fatal: The environment file inherited by the program has an illegal
format; compilation is immediately aborted. However, a listing will still be
produced if one was being generated.

IVFUNC, Invalid use of function ‘‘function name’’
IVFUNCALL, Invalid use of function call
IVFUNCID, Invalid use of function identifier

Error: These messages result from illegal attempts to assign values or
otherwise refer to the components of the function result (if its type is
structured), use the type cast operator on a function identifier or its result,
or deallocate the storage reserved for the function result (if its type is a
pointer).

IVKEYOPT, Unrecognized KEY option

Error.

IVKEYVAL, FINDK KEY_VALUE cannot be an array (other than PACKED
ARRAY [1..n] OF CHAR)

Error.

IVKEYWORD, Missing or unrecognized keyword
Error: The compiler failed to find an identifier where it expected one in a
call to the OPEN or CLOSE procedure, or it found an identifier that was
not legal in this position in the parameter list.

IVMATCHTYP, Invalid MATCH_TYPE parameter to FINDK

Error.

IVOPTMOPT, Unrecognized OPTIMIZE option

Warning.

C–26 Diagnostic Messages

IVOTHVRNT, Illegal use of OTHERWISE within CASE variant
Error: The HP Pascal extension of using OTHERWISE in a record
constructor is only defined at the outer level of a record.

IVQUALFILE, Illegal switch ‘‘switch name’’ on file specification
Warning: Only the /LIST and /NOLIST qualifiers are allowed on the file
specification of a %INCLUDE directive.

IVQUOCHAR, Illegal nonprinting character (ASCII ‘‘nnn’’) within quotes
Warning: The only nonprinting characters allowed in a quoted string
are the space and tab; the use of other nonprinting characters in a string
causes this warning. To include nonprinting characters in a string, you
should use the extended string syntax described in the HP Pascal for
OpenVMS Language Reference Manual.

IVRADIX, Invalid radix was specified in the extended number

Error.

IVRADIXDGIT, Illegal digit in binary, octal, or hexadecimal constant

Error.

IVREDECL, Illegal redeclaration gives ‘‘symbol name’’ multiple meanings in
‘‘scope name’’

IVREDECLREC, Illegal redeclaration gives ‘‘symbol name’’ multiple meanings
in this record

IVREDEF, Illegal redefinition gives ‘‘symbol name’’ multiple meanings in ‘‘scope
name’’
Warning: When an identifier is used in any given block, it must have the
same meaning wherever it appears in the block.

IVUSEALIGN, Invalid use of alignment attribute
IVUSEALLOC, Invalid use of allocation attribute

Error.

IVUSEATTR, Invalid use of ‘‘attribute name’’ attribute
Error: The use of an attribute on a variable, parameter, or routine
conflicts with the requirements of the object’s type.

IVUSEATTRLST, Invalid use of an attribute list

Error.

Diagnostic Messages C–27

IVUSEBNDID, Illegal use of bound identifier ‘‘identifier name’’
Error: An identifier that represents one bound of a conformant schema
was used where a variable was expected, such as in an assignment
statement or in a formal VAR parameter section. The restrictions on the
use of a bound identifier are identical to those on a constant identifier.

IVUSEDES, Invalid use of descriptor class attribute
Error: The use of an attribute on a variable, parameter, or routine
conflicts with the requirements of the object’s type.

IVUSEFNID, Illegal use of function identifier ‘‘identifier name’’
Error: Two examples of illegal uses are the assignment of values to the
components of the function result (if its type is structured) and the passing
of the function identifier as a VAR parameter.

IVUSEPOI, Illegal use of type POINTER or UNIV_PTR
Error: Values of type POINTER and UNIV_PTR can not be dereferenced
with the ^ operator or used with the built-in routines NEW and DISPOSE.

IVUSESIZ, Invalid use of size attribute
Error: The use of an attribute on a variable, parameter, or routine
conflicts with the requirements of the object’s type.

IVUSEVISIB, invalid use of visibility attribute
Error: The use of a visibility attribute conflicts with the requirements of
the object’s type.

KEYINTRNG, KEY number must be an integer value in range 0..254
Error: The key number specified by a KEY attribute must fall in the
integer subrange 0..254.

KEYNOTALIGN, KEY ‘‘key number’’ field ‘‘field name’’ at bit position ‘‘bit
position’’ is unaligned

KEYORDSTR, KEY allowed only on ordinal and fixed-length string fields
KEYPCKREC, KEY field in PACKED RECORD must have an alignment

attribute
KEYREDECL, Key number ‘‘key number’’ is multiply defined
KEYSIZ1_2_4, Size of an ordinal key must be 1, 2 or 4 bytes
KEYSIZ2_4, Size of a signed integer key must be 2 or 4 bytes
KEYSIZSTR, Size of a string key cannot exceed 255 bytes
KEYUNALIGN, KEY field cannot be UNALIGNED

Error.

C–28 Diagnostic Messages

LABDECIMAL, Label number must be expressed in decimal radix

Error.

LABINCTAG, Variant case label’s type is incompatible with tag type
Error: The type of a constant specified as a case label of a variant record
is not assignment compatible with the type of the tag field.

LABNOTFND, No definition of label ‘‘label name’’ in statement part of ‘‘block
name’’
Error: A label that you declared in a LABEL section does not prefix a
statement in the executable section.

LABREDECL, Redefinition of label ‘‘label name’’ in ‘‘block name’’
Error: A label cannot prefix more than one statement in the same block.

LABRNGTAG, Variant case label does not fall within range of tag type
Error: A constant specified as a case label of a variant record is not within
the range defined for the type of the tag field.

LABTOOBIG, Label ‘‘label number’’ is greater than MAXINT

Error.

LABUNDECL, Undeclared label ‘‘label name’’
Error: HP Pascal requires that you declare all labels in a LABEL
declaration section before you use them in the executable section.

LABUNSATDECL, Unsatisfied declaration of label ‘‘label name’’ is not local to
‘‘block name’’
Error: A label that prefixes a statement in a nested block was declared in
an enclosing block.

LIBESTAB, LIB$ESTABLISH is incompatible with HP Pascal; use predeclared
procedure ESTABLISH
Warning: HP Pascal establishes its own condition handler for processing
Pascal-specific run-time signals. Calling LIB$ESTABLISH directly replaces
the handler supplied by the compiler with a user-written handler; the
probable result is improper handling of run-time signals. You should
use Pascal’s predeclared ESTABLISH procedure to establish user-written
condition handlers.

Diagnostic Messages C–29

LISTONEND, LIST attribute allowed only on final formal parameter

Error.

LISTUSEARG, Formal parameter has LIST attribute, use predeclared function
ARGUMENT
Error: A formal parameter with the LIST attribute cannot be directly
referenced. You should use the predeclared function ARGUMENT to
reference the actual parameters corresponding to the formal parameter.

LNETOOLNG, Line too long, is truncated to 255 characters
Error: A source line cannot exceed 255 characters. If it does, the compiler
disregards the remainder of the line.

LOWGTRHIGH, Low-bound exceeds high-bound
Error: The definition of the flagged subrange type is illegal because the
value specified for the lower limit exceeds that for the upper limit.

MAXLENINT, Max-length must be a value of type integer
Error: The maximum length specified for type VARYING OF CHAR must
be an integer in the range 1..65535; that is, the type definition must denote
a legal character string.

MAXLENRNG, Max-length must be in range 1..65535
Error: The maximum length specified for type VARYING OF CHAR must
be an integer in the range 1..65535; that is, the type definition must denote
a legal character string.

MAXNUMENV, Maximum number of environments exceeded
Fatal: More than 512 environment files were used in the
compilation.

MECHEXTERN, Foreign mechanism specifier allowed only on external
routines

Error.

MISSINGEND, No matching END, expected near line ‘‘line number’’
Information: The compiler expected an END statement at a location
where none was found. Compilation proceeds as though the END
statement were correctly located.

C–30 Diagnostic Messages

MODINIT26, Module name limited to 26 characters when initialization
required
Error: When a module contains schema types, discriminated schema
types, variables of discriminated schema types, or a TO BEGIN DO
statement clause, the module name is limited to 26 characters.

MODOFNEGNUM, MOD of a negative modulus has no mathematical
definition
Error: In the MOD operation A MOD B, the operand B must have
a positive integer value. This message is issued only when the MOD
operation occurs in a compile-time constant expression.

MSTBEARRAY, Type must be ARRAY

Error.

MSTBEARRVRY, Type must be ARRAY or VARYING
Error: You cannot use the syntax [index] to refer to an object that is not of
type ARRAY or VARYING OF CHAR.

MSTBEBOOL, Control expression must be of type BOOLEAN
Error: The IF, REPEAT, and WHILE statements require a Boolean control
expression.

MSTBEDEREF, Must be dereferenced

Information.

MSTBEDISCR, Schema type must be discriminated
Error: An undiscriminated schema type is not allowed everywhere that a
regular type name is allowed.

MSTBEORDSETARR, Type must be ordinal, SET, or ARRAY

Error.

MSTBEREC, Type must be RECORD

Error.

MSTBERECVRY, Type must be RECORD or VARYING
Error: You cannot use the syntax ‘‘Variable.Identifier’’ to refer to an object
that is not of type RECORD or VARYING OF CHAR.

Diagnostic Messages C–31

MSTBESTAT, Cannot initialize non-STATIC variables
Error: You cannot initialize variables declared without the STATIC
attribute in nested blocks, nor can you initialize program-level variables
whose attributes give them some allocation other than static.

MSTBETEXT, ‘‘I/O routine’’ requires FILE_VARIABLE of type TEXT
Error: The READLN and WRITELN procedures operate only on text files.

MULTDECL, ‘‘symbol name’’ has multiple conflicting declarations, reason(s):

Error.

NCATOA, Cannot reformat content of actual’s CLASS_NCA descriptor as
CLASS_A
Error: This message can appear as additional information on other error
messages.

NEWQUADAGN, ‘‘type name’’’s base type is ALIGNED(‘‘nnn’’); NEW handles
at most ALIGNED(3)
Error: You cannot call the NEW procedure to allocate pointer variables
whose base types specify alignment greater than a quadword. To allocate
such variables, you must use external routines.

NOACTCOM, No actuals are compatible with schema formal parameter
Information: Undiscriminated schema formal parameters denoting
subranges or sets cannot be used as value parameters. In these cases, no
actual parameter can ever be compatible with the formal parameter.

NOASSTOFNC, Block does not contain an assignment to function result
‘‘function name’’
Warning: The block of a function must include a statement that assigns a
return value to the function identifier.

NOCONVAL, A constant value was not specified for field ‘‘field name’’

Error.

NODECLVAR, ‘‘symbol name’’ is not declared in a VAR section of ‘‘block name’’
Error: You cannot initialize a variable using the VALUE section if the
variable was not declared in the same block in which the VALUE section
appears.

C–32 Diagnostic Messages

NODSCREC, No descriptor class for RECORD type
Error: The HP OpenVMS Calling Standard does not define a descriptor
format for records; therefore, you cannot specify %DESCR for a parameter
of type RECORD.

NODSCRSCH, No descriptor class for schematic types

Error.

NOFLDREC, No field ‘‘field name’’ in RECORD type ‘‘type name’’
Error: The field specified does not exist in the specified record.

NOFRMINDECL, Declaration of ‘‘routine’’ parameter ‘‘routine name’’ supplied
no formal parameter list
Information: You specified actual parameters in a call on a formal routine
parameter that was declared with no formal parameters. Although such a
call was legal in VAX Pascal Version 1.0, it does not follow the rules of the
Pascal standard. You should edit your program to reflect this change.

NOINITEXT, Initialization not allowed on EXTERNAL variables
NOINITINH, Initialization not allowed on inherited variables

Error: You can initialize only those variables whose storage is allocated in
this compilation.

NOINITVAR, Cannot initialize ‘‘symbol name’’—it is not declared as a variable
Error: Variables are the only data items that can be initialized, and they
can be initialized only once.

NOLISTATTR, Parameter to this predeclared function must have LIST
attribute
Error: ARGUMENT and ARGUMENT_LIST_LENGTH require their first
parameter to be a formal parameter with the LIST attribute.

NONATOMIC, Unable to generate code for atomic access
Warning: Due to poor alignment, the code generator is unable to generate
an atomic code sequence to read or write the volatile object.

NONGRNACC, Unable to generate code for requested granularity
Warning: Due to poor alignment, the code generator is unable to generate
a code sequence for the granularity requested.

Diagnostic Messages C–33

NOREPRE, No textual representation for values of this type
Error: You cannot write a value to a text file (using WRITE or
WRITELN) or to a VARYING string (using WRITEV) if there is no
textual representation for the type. Similarly, you cannot read a value from
a text file (using READ or READLN) or from a VARYING string (using
READV) if there is no textual representation for the type. Such types are
RECORD, ARRAY (other than PACKED ARRAY [1..n] OF CHAR), SET,
and pointer.

NOTAFUNC, ‘‘symbol name’’ is not declared as a ‘‘routine.’’
Error: An identifier followed by a left parenthesis, a semicolon, or one of
the reserved words END, UNTIL, and ELSE is interpreted as a call to a
routine with no parameters. This message is issued if the identifier was
not declared as a procedure or function identifier. Note that in the current
version, functions can be called with the procedure call statement.

NOTASYNCH, ‘‘routine name’’ is not ASYNCHRONOUS
Information: This message can appear as additional information on other
error messages.

NOTATAG, ‘‘identifier’’ is not a tag-identifier
Error: The identifier used with the CASE OF construct in a record
constructor must be a tag identifier.

NOTATYPE, ‘‘symbol name’’ is not a type identifier
Error: An identifier that does not represent a type was used in a context
where the compiler expected a type identifier.

NOTAVAR, ‘‘symbol name’’ is not declared as a variable
Error: You cannot assign a value to any object other than a variable.

NOTAVARFNID, ‘‘symbol name’’ is not declared as a variable or a function
identifier
Error: You cannot assign a value to any object other than a variable or a
function identifier.

NOTAVARPARM, ‘‘symbol name’’ is not declared as a variable or parameter

Error.

C–34 Diagnostic Messages

NOTBEADDR, May not be parameter to ADDRESS
NOTBEARGV, May not be used as a parameter to ARGV
NOTBEASSIGN, May not be assigned
NOTBECALL, May not be called as a FUNCTION
NOTBECAST, May not be type cast
NOTBEDEREF, May not be dereferenced
NOTBEDES, May not be passed by untyped %DESCR
NOTBEEVAL, May not be evaluated
NOTBEFILOP, May not be used in a file operation

NOTBEFLD, May not be field selected
NOTBEFNCPRM, May not be passed as a FUNCTION parameter
NOTBEFORCTL, May not be used as FOR loop variable
NOTBEFORDES, May not be passed as a descriptor foreign parameter
NOTBEFOREF, May not be passed as a reference foreign parameter
NOTBEIADDR, May not be parameter to IADDRESS
NOTBEIDX, May not be indexed
NOTBEIMMED, May not be passed by untyped immediate passing mechanism

NOTBENEW, May not be written into by NEW
NOTBENSTCTL, May not be control variable for an inner FOR loop
NOTBEREAD, May not be written into by READ
NOTBEREF, May not be passed by untyped reference passing mechanism
NOTBERODES, May not be passed as a READONLY descriptor foreign

parameter
NOTBEROFOR, May not be passed as a READONLY reference foreign

parameter
NOTBEROVAR, May not be passed as a READONLY VAR parameter
NOTBETOUCH, May not be read/modified/written

NOTBEVAR, May not be passed as a VAR parameter
NOTBEWODES, May not be passed as a WRITEONLY descriptor foreign

parameter
NOTBEWOFOR, May not be passed as a WRITEONLY reference foreign

parameter
NOTBEWOVAR, May not be passed as a WRITEONLY VAR parameter
NOTBEWRTV, May not be parameter to WRITEV

Information: These messages can appear as additional information on
other error messages.

NOTBYTOFF, Field ‘‘field name’’ is not aligned on a byte boundary

Error.

Diagnostic Messages C–35

NOTDECLROU, ‘‘symbol name’’ is not declared as a ‘‘routine.’’
NOTINITIAL, ‘‘routine name’’ is not INITIALIZE

Information: These messages can appear as additional information on
other error messages.

NOTINRNG, Value does not fall within range of the tag type
Error: The value specified as the case label of a variant record is not a
legal value of the tag field’s type. This message is also issued if a case label
in a call to NEW, DISPOSE, or SIZE falls outside the range of the tag type.

NOTNEWTYP, Schema must define a new type
Error: The type-denoter of a schema definition must define a new type; for
example, a subrange, an array, or a record.

NOTXTLIB, No text library was specified at compile time
Error: The specified %INCLUDE module could not be accessed
because a text library was not specified on the command line or in the
PASCAL$LIBRARY logical name.

NOTSAMTYP, Not the same type
NOTUNBOUND, ‘‘routine name’’ is not UNBOUND

Information: These messages can appear as additional information on
other error messages.

NOTSCHEMA, ‘‘symbol name’’ is not a schema type

Error.

NOTVARNAM, Parameter to this predeclared function must be simple variable
name
Error: The parameter cannot be indexed, be dereferenced, have a field
selected, or be an expression. It must be the name of the entire variable.

NOTVOLATILE, ‘‘variable name’’ is non-VOLATILE
Warning: You should not use the ADDRESS function on a nonvolatile
variable or component or on a formal VAR parameter.

NOUNSATDECL, No unsatisfied declaration of label ‘‘label name’’ in ‘‘block
name’’

Error.

C–36 Diagnostic Messages

NUMFRMLPARM, Different numbers of formal parameters
Information: This message can appear as additional information on other
error messages.

NXTACTDIFF, NEXT of actual’s component differs from that of other
parameters in same section
Error: All actual parameters passed to a formal parameter section
whose type is a conformant schema must have identical bounds and be
structurally compatible. This message refers to the allocation size and
alignment of the array’s inner dimensions.

OLDDECLSYN, Obsolete ‘‘routine’’ parameter declaration syntax
Information: The declaration of a formal routine parameter uses the
obsolete VAX Pascal Version 1.0 syntax. You should edit your program to
incorporate the current version syntax, which is mandated by the Pascal
standard.

OPNDASSCOM, Operands are not assignment compatible
OPNOTINT, Operand(s) must be of type integer

Error.

OPNDNAMCOM, Operands are not name compatible

Error.

ORDOPNDREQ, Ordinal operand(s) required
Error or Warning: This message is at warning level if you try to use INT,
ORD, or UINT on a pointer expression. It is at error level if you use PRED
or SUCC on an expression whose type is not ordinal.

OUTNOTDECL, OUTPUT not declared in heading
Error: A call to EOF, EOLN, READLN, or WRITELN did not specify a file
variable, and the default INPUT or OUTPUT was not listed in the program
heading.

OVRDIVZERO, Overflow or division by zero in compile-time expression

Error.

Diagnostic Messages C–37

PACKSTRUCT, ‘‘component name’’ of a PACKED structured type
Error or Warning: You cannot use the data items listed in a call to
the ADDRESS function, nor can you pass them as writable VAR, %REF,
%DESCR, or %STDESCR parameters. This message is at warning level
if the variable or component has the UNALIGNED attribute, and at error
level if the variable or component is actually unaligned.

PARMACTDEF, Formal parameter ‘‘parameter name’’ has neither actual nor
default
Error: If a formal parameter is not declared with a default, you must pass
an actual parameter to it when calling its routine.

PARMCLAMAT, Parameter section classes do not match
Information: This message can appear as additional information on other
error messages.

PARMLIMIT, OpenVMS architectural limit of 255 parameters exceeded
Error: You cannot declare a procedure with more than 255 formal
parameters. A function whose result type requires that the result be stored
in more than 64 bits or whose result type is a character string cannot have
more than 254 formal parameters. In a call to a routine declared with
the LIST attribute, you also cannot pass more than 255 (or 254) actual
parameters.

PARMSECTMAT, Division into parameter sections does not match
Information: This message can appear as additional information on other
error messages.

PARSEFAIL, error parsing command line; use PASCAL command
Fatal: The HP Pascal compiler was invoked without using the PASCAL
DCL command.

PARSEFAIL, error parsing command line; using an invalid CLD table
Fatal: The HP Pascal compiler was invoked with an incorrect or obsolete
command-line definition in SYS$LIBRARY:DCLTABLES. Contact your
system manager to reinstall SYS$LIBRARY: DCLTABLES.

C–38 Diagnostic Messages

PASPREILL, Passing predeclared ‘‘routine name’’ is illegal
Error: You cannot use the IADDRESS function on a predeclared routine
for which there is no corresponding routine in the run-time library (such
as the interlocked functions). In addition, you cannot pass a predeclared
routine as a parameter if there is no way to write the predeclared routine’s
formal parameter list in HP Pascal. Examples of the latter case are the
PRED and SUCC functions and many of the I/O routines.

PASSEXTERN, Passing mechanism allowed only on external routines

Error.

PASSNOTLEG, Passing mechanism not legal for this type

Error.

PCKARRBOO, PACKED ARRAY OF BOOLEAN parameter expected

Error.

PCKUNPCKCON, Packed/unpacked conflict
Information: This message can appear as additional information on other
error messages.

PLACEBEFEOLN, Placeholder not terminated before end of line

Error.

PLACEIVCHAR, Illegal nonprinting character (ASCII ‘‘decimal representation
of character’’) within placeholder

Warning.

PLACENODOT, Repetition of pseudocode placeholders not allowed

Error.

PLACESEEN, Placeholder encountered

Error.

PLACEUNMAT, Unmatched placeholder delimiter

Error.

POSAFTNONPOS, Positional parameter cannot follow a nonpositional
parameter

Error.

Diagnostic Messages C–39

POSALIGNCON, Position / alignment conflict
Error: The bit position specified by the POS attribute does not have the
number of low-order bits implied by the specified alignment attribute.

POSINT, POS expression must be a positive integer value

Error.

PRENAMRED, Predeclared name cannot be redefined
Error: A predeclared name may not be redefined when defining constants
with the /CONSTANT DCL qualifier.

PREREQPRMLST, Passing predeclared ‘‘routine name’’ requires formal to
include parameter list
Error: To pass one of the predeclared routines EXPO, ROUND, TRUNC,
UNDEFINED, UTRUNC, UROUND, DBLE, SNGL, QUAD, INT, ORD,
and UINT as an actual parameter to a routine, you must specify a formal
parameter list in the corresponding formal routine parameter.

PRMKWNSIZ, Parameter must have a size known at compile-time
Error: The BIN, HEX, OCT, DEC, and UDEC functions cannot be used on
conformant parameters. The SIZE and NEXT functions cannot be used on
conformant parameters in compile-time constant expressions.

PROCESSFILE, Compiling file ‘‘file name’’

Information.

PROCESSRTN, Generating code for routine ‘‘routine name’’

Information.

PROGSCHENV, PROGRAM with schema may not create environment
Error: A program that declares a schema type cannot have the
[ENVIRONMENT] attribute. Schema declarations should be placed in
a separate module and inherited by the program.

C–40 Diagnostic Messages

PROPRMEXT, Declaration of ‘‘program parameter name’’ is EXTERNAL—
program parameter files must be locally allocated

PROPRMFIL, A program parameter must be a variable of type FILE
PROPRMINH, Declaration of ‘‘program parameter name’’ is inherited—

program parameter files must be locally allocated
PROPRMLEV, Program parameter ‘‘program parameter name’’ is not declared

as a variable at the outermost level
Error: Any external file variable (other than INPUT and OUTPUT) that
is listed in the program heading must also be declared as a file variable in
a VAR section in the program block.

PSECTMAXINT, Allocation of ‘‘symbol name’’ causes PSECT ‘‘PSECT name’’ to
exceed MAXINT bits
Error: The HP Pascal implementation restricts the size of a program
section to 2,147,483,647 bits.

PTRCMPEQL, Pointer values may only be compared for equality
Error: The equality (=) and inequality (<>) operators are the only
operators allowed for values of a pointer type; all other operators are
illegal.

PTREXPRCOM, Pointer expressions are not compatible
Error: The base types of two pointer expressions being compared for
equality (=) or inequality (<>) are not structurally compatible.

QUOBEFEOL, Quoted string not terminated before end of line

Error.

QUOSTRING, Quoted string expected
Error: The compiler expects the %DICTIONARY and %INCLUDE
directives, and the radix notations for binary (%B), hexadecimal (%X), and
octal constants (%O), to be followed by a quoted string of characters.

RADIXTEXT, Radix input requires FILE_VARIABLE of type TEXT
Error: The input radix specifiers (BIN, OCT, and HEX) operate only on
text files.

READONLY, ‘‘variable name’’ is READONLY
Warning: You cannot use a read-only variable in any context that would
store a new value in the variable. For example, a read-only variable cannot
be used in a file operation.

Diagnostic Messages C–41

REALCNSTRNG, Real constant out of range
Error: See the HP Pascal for OpenVMS Language Reference Manual for
details on the range of real numbers.

REALOPNDREQ, Real (SINGLE, DOUBLE or QUADRUPLE) operand(s)
required

Error.

RECHASFILE, Record contains one or more FILE components, POS is illegal

Error.

RECHASTMSTMP, Record contains one or more TIMESTAMP components,
POS is illegal

Error.

RECLENINT, RECORD_LENGTH expression must be of type integer
Error: The value of the record length parameter to the OPEN procedure
must be an integer.

RECLENMNGLS, RECORD_LENGTH parameter is meaningless given file’s
type
Warning: The record length parameter is usually relevant only for files of
type TEXT and VARYING OF CHAR.

RECMATCHTYP, MATCH_TYPE identifier ‘‘NXT or NXTEQL’’ is recommended
instead of ‘‘GTR or GEQ’’

Information.

REDECL, A declaration of ‘‘symbol name’’ already exists in ‘‘block name’’
Error: You cannot redeclare an identifier or a label in the same block
in which it was declared. Inheriting an environment is equivalent to
including all of its declarations at program or module level.

REDECLATTR, ‘‘attribute name’’ already specified
Error: Only one member of a particular attribute class can appear in the
same attribute list.

REDECLFLD, Record already contains a field ‘‘field name’’
Error: The names of the fields in a record must be unique; they cannot be
duplicated between variants.

C–42 Diagnostic Messages

REINITVAR, ‘‘variable name’’ has already been initialized
Error: Variables are the only data items that can be initialized, and they
can be initialized only once.

REPCASLAB, Value has already appeared as a label in this CASE statement
Error: You cannot specify the same value more than once as a case label
in a CASE statement.

REPFACZERO, Repetition factor cannot be the function ZERO
REQCLAORNCA, Arrays and conformants of this parameter type require

either CLASS_A or CLASS_NCA
REQCLS, Scalars and strings of this parameter type require CLASS_S

Error.

REGNATAGN, Operand must be naturally aligned

Error.

REQNOCH, Primary key requires NOCHANGES option

Error.

REQPKDARR, The combination of CLASS_S and %STDESCR requires a
PACKED ARRAY OF CHAR structure

Error.

REQREADVAR, READ or READV requires at least one variable to read into
Error: The READ and READV procedures require that you specify at least
one variable to be read from a file.

REQWRITELEM, WRITE requires at least one write-list-element
Error: The WRITE procedure requires that you specify at least one item
to be written to a file.

RESPTRTYP, Result must be a pointer type

Information.

REVRNTLAB, Value has already appeared as a label in this variant part
Error: You cannot specify the same value more than once as a case label
in a variant part of a record.

Diagnostic Messages C–43

RTNSTDESCR, Routines cannot be passed using %STDESCR

Error.

SCHCONST, Nonstatic constants are not allowed
Error: Constants cannot be made for nonstatic types since that would
yield constants without compile-time size and value.

SCHFLDALN, Field in nonstatic type may not have greater than byte
alignment

Error.

SCHOVERLAID, Use of schema types conflicts with OVERLAID attribute
Error: The OVERLAID attribute cannot be used on programs or modules
that discriminate schema at the outermost level.

SENDSPR, Internal Compiler Error
Fatal: An error has occurred in the execution of the HP Pascal compiler.
Along with this message, you will receive information that helps you find
the location in the source program and the name of the compilation phase
at which the error occurred. You may be able to rewrite the section of your
program that caused the error and thus successfully compile the program.
However, even if you are able to remedy the problem, please submit a
report to Hewlett-Packard and provide a machine-readable copy of the
program.

SEQ11FORT, PDP-11 specific directive SEQ11 treated as equivalent to
FORTRAN directive

Information.

SETBASCOM, SET base types are not compatible
Error: The base type of two sets used in a set operation are not
compatible.

SETELEORD, SET element expression must be of an ordinal type
Error: The expressions used to denote the elements of a set constructor or
the bounds of a set type definition must have an ordinal type.

SETNOTRNG, SET element is not in range 0..255
Error: In a set whose base type is a subrange of integers or unsigned
integers, all set elements in the set’s type definition or in a constructor for
the set must be in the range 0..255.

C–44 Diagnostic Messages

SIZACTDIFF, SIZE of actual differs from that of other parameters in same
section
Error: All actual parameters passed to a formal parameter section
whose type is a conformant schema must have identical bounds and be
structurally compatible. This message refers to the allocation size of the
array’s outermost dimension.

SIZARRNCA, Explicit size on ARRAY dimension makes CLASS_NCA
mandatory

Error.

SIZATRTYPCON, Size attribute / type conflict
Error: For an ordinal type, the size specified must be at least as large as
the packed size but no larger than 32 bits on OpenVMS VAX or 64 bits on
OpenVMS Alpha and OpenVMS I64 systems. Pointer types may be either
32 or 64 bits on OpenVMS I64 and OpenVMS Alpha systems. Pointers
types must be 32 bits on OpenVMS VAX systems. Type SINGLE exactly
32 bits, type DOUBLE exactly 64 bits, and type QUADRUPLE exactly 128
bits. For types ARRAY, RECORD, SET, and VARYING OF CHAR, the size
specified must be at least as large as their packed sizes. For the details of
allocation sizes in HP Pascal, see the HP Pascal for OpenVMS Language
Reference Manual.

SIZCASTYP, Variable’s size conflicts with cast’s target type
Error: In a type cast operation, the size of the variable and the size of the
type to which it is cast must be identical.

SIZEDIFF, Sizes are different
Information: This message can appear as additional information on other
error messages.

SIZEINT, Size expression must be a positive integer value

Error.

SIZGTRMAX, Size exceeds MAXINT bits
Error: The size of a record or an array type or the size specified by a
size attribute exceeds 2,147,483,647 bits. The HP Pascal implementation
imposes this size restriction.

Diagnostic Messages C–45

SIZMULTBYT, Size of component of array passed by descriptor is not a
multiple of bytes
Error: When an array or a conformant parameter is passed using the
%DESCR mechanism specifier, the descriptor built by the compiler must
follow the HP OpenVMS Calling Standard. Such a descriptor can describe
only an array whose components fall on byte boundaries.

SPEOVRDECL, Foreign mechanism specifier required to override parameter
declaration
Error: When you specify a default value for a formal VAR or routine
parameter, you must also use a mechanism specifier to override the
characteristics of the parameter section.

SPURIOUS, ‘‘error message’’ at ‘‘line number’’—‘‘column number’’
Information: The compiler did not correctly note the location of this error
in your program and later could not position and print the correct error
message. You may be able to correct the section of your program that
caused the error and thus avoid this error. Please submit a report (SPR)
and provide a machine-readable copy of the program if you receive this
error.

SRCERRORS, Source errors inhibit continued compilation—correct and
recompile
Fatal: A serious error previously detected in the source program has
corrupted the compiler’s symbol tables and inhibits further compilation.
Correct the serious error and recompile the program.

SRCTXTIGNRD, Source text following end of compilation unit ignored
Warning: The compiler ignores any text following the END statement
that terminates a compilation unit. This error probably resulted from an
unmatched END statement in your program.

STDACTINCMP, Nonstandard: actual is not name compatible with other
parameters in same section
Information: According to the Pascal standard, all actual parameters
passed to a parameter section must have the same type identifier or the
same type definition. This message is issued only if you have specified the
standard switch on the compile command line.

C–46 Diagnostic Messages

STDATTRLST, Nonstandard: attribute list
STDBIGLABEL, Nonstandard: label number greater than 9999
STDBLANKPAD, Nonstandard: blank-padding used during string operation
STDBNDRMUSE, Nonstandard: usage of formal parameter for routine

‘‘routine name’’
STDCALLFUNC, Nonstandard: function ‘‘function name’’ called as a procedure
STDCASLBLRNG, Nonstandard: label range in case selector

STDCAST, Nonstandard: type cast operator
STDCMPCOMPAT, Nonstandard: cannot ‘‘PACK or UNPACK’’, array

component types are incompatible
STDCMPDIR, Nonstandard: compiler directive
STDCOMFUNACC, Nonstandard: component function access
STDCNFARR, Nonstandard: conformant array syntax

Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

STDCNSTR, Nonstandard: array or record constructor
Information: A VAX Pascal Version 1.0 style constructor was used. You
should convert this constructor to the new constructor syntax provided
in the current version of HP Pascal to be compatible with the Extended
Pascal standard.

STDCONCAT, Nonstandard: concatenation operator
Information: This message refers to extensions to Pascal and is issued
only if you have specified the standard switch on the compile command
line.

STDCONST, Nonstandard: ‘‘type name’’ constant
Information: Binary, hexadecimal, and octal constants and constants
of type DOUBLE, QUADRUPLE, UNSIGNED, INTEGER64, and
UNSIGNED64 are extensions to Pascal. This message is issued only
if you have specified the standard switch on the compile command line.

STDCONSTACC, Nonstandard: structured constant access
Information: This message is issued if you have specified a standard
option other than extended on the compile command line.

Diagnostic Messages C–47

STDCTLDECL, Nonstandard: control variable ‘‘variable name’’ not declared in
VAR section of ‘‘block name’’
Information: The Pascal standard requires that the control variable of a
FOR statement be declared in the same block in which the FOR statement
appears.

STDDECLSEC, Nonstandard: declaration sections either out of order or
duplicated in ‘‘block name’’
Information: In the Pascal standard, the declaration sections must
appear in the order LABEL, CONST, TYPE, VAR, PROCEDURE, and
FUNCTION. The ability to specify the sections in any order is an
extension. This message occurs only if you have specified the standard
switch on the compile command line.

STDDEFPARM, Nonstandard: default parameter declaration
Information: This message refers to extensions to Pascal and is issued
only if you have specified the standard switch on the compile command
line.

STDDIRECT, Nonstandard: ‘‘directive name’’ directive
Information: The EXTERN, EXTERNAL, FORTRAN, and SEQ11
directives are extensions to Pascal. (FORWARD is the only directive
specified by the Pascal standard.) This message is issued only if you have
specified the standard switch on the compile command line.

STDDISCREF, Nonstandard: schema discriminant reference
STDDISCSCHEMA, Nonstandard: discriminated schema

Information: These messages are issued if you have specified a standard
argument other than extended on the compile command line.

STDEMPCASLST, Nonstandard: empty case-list element
Information: This message is issued if you do not specify any case labels
and executable statements between two semicolons or between OF and
a semicolon in the CASE statement. You must also have specified the
standard switch on the compile command line.

STDEMPPARM, Nonstandard: empty actual parameter position
Information: This message refers to extensions to Pascal and is issued
only if you have specified the standard switch on the compile command
line.

C–48 Diagnostic Messages

STDEMPREC, Nonstandard: empty record section
Information: The Pascal standard does not allow record type definitions
of the form RECORD END. This message appears only if you have specified
the standard switch on the compile command line.

STDEMPSTR, Nonstandard: empty string
Information: This message refers to extensions to Pascal and is issued
only if you have specified the standard switch on the compile command
line.

STDEMPVRNT, Nonstandard: empty variant
Information: This message occurs if you do not specify a variant between
two semicolons or between OF and a semicolon. You must also have
specified the standard switch on the compile command line.

STDEOLCOM, Nonstandard: End of line comment

Information: The message is issued if you use the exclamation point
character to treat the remainder of the line as a comment. You must also
have specified the standard switch on the compile command line.

STDERRPARM, Nonstandard: error-recovery parameter
STDEXPON, Nonstandard: exponentiation operator
STDEXTSTR, Nonstandard: extended string syntax

Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

STDFLDHIDPTR, Nonstandard: record field identifier ‘‘field identifier name’’
hides type identifier ‘‘field identifier name’’

Information.

STDFORIN, Nonstandard: SET-iteration in FOR statement
Information: This message is issued if you have specified a standard
argument other than extended on the compile command line.

STDFORMECH, Nonstandard: foreign mechanism specifier
Information: This message refers to an extension to Pascal and is issued
only if you have specified the standard switch on the compile command
line.

Diagnostic Messages C–49

STDFORWARD, Nonstandard: PROCEDURE/FUNCTION block ‘‘routine
name’’ and its FORWARD heading are not in the same section
Information: The Extended Pascal standard requires that FORWARD
declared routines must specify their corresponding blocks without
intervening LABEL, CONST, TYPE, or VAR sections. This message is
issued only if you have specified the extended argument to the standard
switch on the compile command line.

STDFUNIDEVAR, Nonstandard: function identified variable
Information: This message is issued if you have specified a standard
argument other than extended on the compile command line.

STDFUNCTRES, Nonstandard: FUNCTION returning a value of a ‘‘type
name’’ type
Information: The ability of functions to have structured result types is an
extension to Pascal. This message is issued only if you have specified the
standard switch on the compile command line.

STDINCLUDE, Nonstandard: %INCLUDE directive
STDINITVAR, Nonstandard: initialization syntax in VAR section

Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

STDKEYWRD, Nonstandard: ‘‘keyword name’’
Information: This message is issued if you have specified a standard
option other than extended on the compile command line.

STDMATCHVRNT, Nonstandard: no matching variant label
Information: This message is issued if you call the NEW or DISPOSE
procedure, and one of the case labels specified in the call does not
correspond to a case label in the record variable. You must also have
specified the standard switch on the compile command line.

STDMODCTL, Nonstandard: potential uplevel modification of ‘‘variable name’’
prohibits use as control variable
Information: You cannot use as the control variable of a FOR statement
any variable that might be modified in a nested block. This message
is issued only if you have specified the standard switch on the compile
command line.

C–50 Diagnostic Messages

STDMODULE, Nonstandard: MODULE declaration
Information: The item listed in this message is an extension to Pascal.
This message is issued only if you have specified the standard switch on
the compile command line.

STDNILCON, Nonstandard: use of reserved word NIL as a constant
Information: Only simple constants and quoted strings are allowed by
the Pascal standard to appear as constants. Simple constants are integers,
character strings, real constants, symbolic constants, and constants of
BOOLEAN and enumerated types. This message is issued only if you have
specified the standard switch on the compile command line.

STDNOFRML, Nonstandard: FUNCTION or PROCEDURE parameter
declaration lacks formal parameter list
Information: This message is issued if you try to pass actual parameters
to a formal routine parameter for which you declared no formal parameter
list. You must also have specified the standard switch on the compile
command line.

STDNONPOS, Nonstandard: nonpositional parameter syntax
STDOTHER, Nonstandard: OTHERWISE clause
STDPASSPRE, Nonstandard: passing predeclared ‘‘routine name’’

Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

STDNOTIN, Nonstandard: NOT IN operator
Information: This message refers to an extension in Pascal and is issued
only if you have specified the standard switch on the compile command
line.

STDPCKSET, Nonstandard: combination of packed and unpacked sets
Information: The Pascal standard does not allow packed and unpacked
sets to be combined in set operations. This message is issued only if you
have specified the standard switch on the compile command line.

Diagnostic Messages C–51

STDPRECONST, Nonstandard: predeclared constant ‘‘constant name’’
Information: The constants MAXCHAR, MAXINT64, MAXUNSIGNED,
MAXUNSIGNED64, MAXREAL, MINREAL, EPSREAL, MAXDOUBLE,
MINDOUBLE, EPSDOUBLE, MAXQUADRUPLE, MINQUADRUPLE,
and EPSQUADRUPLE are extensions to Pascal. MAXCHAR, MAXREAL,
MINREAL, and EPSREAL are contained in Extended Pascal. This
message is issued only if you have specified the standard switch on the
compile command line.

STDPREDECL, Nonstandard: predeclared ‘‘routine’’
Information: Many predeclared procedures and functions are extensions
to Pascal. The use of these routines causes this message to be issued if you
have specified the standard switch on the compile command line.

STDPRESCH, Nonstandard: predefined schema ‘‘type name’’
Information: This message is issued if you have specified a standard
switch other than extended on the compile command line.

STDPRETYP, Nonstandard: predefined type ‘‘type name’’
Information: The types SINGLE, DOUBLE, INTEGER64, QUADRUPLE,
UNSIGNED, UNSIGNED64, and VARYING OF CHAR are extensions to
Pascal. This message is issued only if you have specified the standard
switch on the compile command line.

STDQUOSTR, Nonstandard: quotes enclosing radix constant
Information: This message is issued if you have specified the extended
option on the compile command line.

STDRADFORMAT, Nonstandard: use format ‘‘radix’’#nnn for radix constant
Information: This message refers to the use of an extension to Pascal.
This message is issued only if you have specified the extended argument to
the standard switch on the compile command line.

STDRADIX, Nonstandard: radix constant
Information: This message refers to the use of an extension to Pascal.
This message is issued only if you have specified a standard switch other
than extended on the compile command line.

C–52 Diagnostic Messages

STDRDBIN, Nonstandard: binary input from a TEXT file
STDRDENUM, Nonstandard: enumerated type input from a TEXT file
STDRDHEX, Nonstandard: hexadecimal input from a TEXT file
STDRDOCT, Nonstandard: octal input from a TEXT file
STDRDSTR, Nonstandard: string input from a TEXT file

Information: The Pascal standard allows only INTEGER, CHAR, and
REAL values to be read from a text file. The ability to read values of other
types is an extension to Pascal. These messages are issued only if you have
specified the standard switch on the compile command line.

STDREDECLNIL, Nonstandard: redeclaration of reserved word NIL
Information: The Pascal standard considers NIL a reserved word, while
HP Pascal considers it to be a predeclared identifier. Thus, if you have
specified the standard switch on the compile command line, this message
will be issued if you attempt to redefine NIL.

STDREM, Nonstandard: REM operator
Information: The item listed in this message is an extension to Pascal.
This message is issued only if you have specified the standard switch on
the compile command line.

STDSCHEMA, Nonstandard: schema type definition
Information: This message is issued if you have specified a standard
argument other than extended on the compile command line.

STDSCHEMAUSE, Nonstandard: use of schema type
Information: This message is issued if you have specified a standard
argument other than extended on the compile command line.

STDSIMCON, Nonstandard: only simple constant (optional sign) or quoted
string
Information: Only simple constants and quoted strings are allowed by
the Pascal standard to appear as constants. Simple constants are integers,
character strings, real constants, symbolic constants, constants of type
BOOLEAN, and enumerated types. This message is issued only if you have
specified the standard switch on the compile command line.

STDSPECHAR, Nonstandard: ‘‘$’’ or ‘‘_’’ in identifier
STDSTRCOMPAT, Nonstandard: string compatibility

Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

Diagnostic Messages C–53

STDSTRUCT, Nonstandard: types do not have same name
Information: Because the Pascal standard does not recognize structural
compatibility, two types must have the same type identifier or type
definition to be compatible. This message is issued only if you have
specified the standard switch on the compile command line.

STDSYMLABEL, Nonstandard: symbolic label
Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

STDTAGFLD, Nonstandard: invalid use of tag field
Information: The tag field of a variant record cannot be a parameter to
the ADDRESS function, nor can you pass it as a writable VAR, %REF,
%DESCR, or %STDESCR formal parameter. This message is issued only if
you have specified the standard switch on the compile command line.

STDTODECL, Nonstandard: TO BEGIN/END DO declaration
Information: This message is issued if you have specified a standard
argument other than extended on the compile command line.

STDUNSAFE, Nonstandard: UNSAFE compatibility
Information: If you have used the UNSAFE attribute on an object that is
later tested for compatibility, you will receive this message. You must also
have specified the standard switch on the compile command line.

STDUSEDCNF, Nonstandard: conformant array used as a string
STDUSEDPCK, Nonstandard: PACKED ARRAY [1..1] OF CHAR used as a

string
Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

STDVALCNFPRM, Nonstandard: conformant array may not be passed to value
conformant parameter

Information.

STDVALUE, Nonstandard: VALUE initialization section
STDVAXCDD, Nonstandard: %DICTIONARY directive

Information: These messages refere to extensions to Pascal and are
issued only if you have specified the standard switch on the compile
command line.

C–54 Diagnostic Messages

STDVRNTCNSTR, Nonstandard: variant field outside constructor variant part
Information: This message refers to the use of an extension to Pascal.
This message is issued only if you have specified the extended argument to
the standard switch the compile command line.

STDVRNTPART, Nonstandard: empty variant part
Information: According to the Pascal standard, a variant part that
declares no case labels and field lists between the words OF and END is
illegal. This message occurs only if you have specified the standard switch
on the compile command line.

STDVRNTRNG, Nonstandard: variant labels do not cover the range of the tag
type
Information: According to the Pascal standard, you must specify one
case label for each value in the tag type of a variant record. This message
is issued only if you have specified the standard switch on the compile
command line.

STDWRTBIN, Nonstandard: binary output to a TEXT file
STDWRTENUM, Nonstandard: user defined enumerated type output to a

TEXT file
STDWRTHEX, Nonstandard: hexadecimal output to a TEXT file
STDWRTOCT, Nonstandard: octal output to a TEXT file

Information: The Pascal standard allows only INTEGER, BOOLEAN,
CHAR, REAL, and PACKED ARRAY [1..n] OF CHAR values to be written
to a text file. The ability to write values of other types is an extension to
Pascal. These messages are issued only if you have specified the standard
switch on the compile command line.

STDSUBSTRING, Nonstandard: Substring notation

Information.

STDZERO, Nonstandard: ZERO function used in constructor
Information: This message refers to an extension in Pascal and is issued
only if you have specified the standard switch on the compile command
line.

STOREQEXC, Allocations to Psect "name" exceeded growth bounds
Error: Too much data is allocated to the Psect. Either place variables into
different Psects or break up the program into multiple modules

Diagnostic Messages C–55

STREQLLEN, String values must be of equal length
Error: You cannot perform string comparisons on character strings that
have different lengths.

STROPNDREQ, String (CHAR, PACKED ARRAY [1..n] OF CHAR, or
VARYING) operand required

STRPARMREQ, String (CHAR, PACKED ARRAY [1..n] OF CHAR, or
VARYING) parameter required

STRTYPREQ, String (CHAR, PACKED ARRAY [1..n] OF CHAR, or VARYING)
type required
Error: The file-name parameter to the OPEN procedure and the
parameter to the LENGTH function must be character strings of the
types listed.

SYNASCII, Illegal ASCII character
SYNASSERP, Syntax: ‘‘:=’’, ‘‘;’’ or ‘‘)’’ expected
SYNASSIGN, Syntax: ‘‘:=’’ expected
SYNASSIN, Syntax: ‘‘:=’’ or IN expected
SYNASSSEMI, Syntax: ‘‘:=’’ or ‘‘;’’ expected
SYNATRCAST, Syntax: attribute list not allowed on a type cast
SYNATTTYPE, Syntax: attribute-list or type specification
SYNBEGDECL, Syntax: BEGIN or declaration expected

SYNBEGEND, Syntax: BEGIN or END expected
SYNBEGIN, Syntax: BEGIN expected
SYNCOASSERP, Syntax: ‘‘,’’, ‘‘:=’’, ‘‘;’’ or ‘‘)’’ expected
SYNCOELRB, Syntax: ‘‘,’’, ‘‘..’’ or ‘‘]’’ expected
SYNCOLCOMRP, Syntax: ‘‘:’’, ‘‘,’’ or ‘‘)’’ expected
SYNCOLON, Syntax: ‘‘:’’ expected
SYNCOMCOL, Syntax: ‘‘,’’ or ‘‘:’’ expected
SYNCOMDO, Syntax: ‘‘,’’ or DO expected
SYNCOMEQL, Syntax: ‘‘,’’ or ‘‘=’’ expected

SYNCOMMA, Syntax: ‘‘,’’ expected
SYNCOMRB, Syntax: ‘‘,’’ or ‘‘]’’ expected
SYNCOMRP, Syntax: ‘‘,’’ or ‘‘)’’ expected
SYNCOMSEM, Syntax: ‘‘,’’ or ‘‘;’’ expected
SYNCONTMESS, Syntax: CONTINUE or MESSAGE expected
SYNCOSERP, Syntax: ‘‘,’’, ‘‘;’’ or ‘‘)’’ expected
SYNDIRBLK, Syntax: directive or block expected

Error: The compiler either failed to find an important lexical or syntactical
element where one was expected, or it detected an error in such an element
that does exist in your program.

C–56 Diagnostic Messages

SYNDIRMIS, Syntax: directive missing, EXTERNAL assumed
Error: In the absence of a directive where one is expected, the compiler
assumes that EXTERNAL is the intended directive and proceeds with
compilation based on that assumption.

SYNDO, Syntax: DO expected
SYNELIPSIS, Syntax: ‘‘..’’ expected
SYNELSESTMT, Syntax: ELSE or start of new statement expected
SYNEND, Syntax: END expected
SYNEQL, Syntax: ‘‘=’’ expected
SYNEQLLP, Syntax: ‘‘=’’ or ‘‘(’’ expected
SYNERRCTE, Error in compile-time expression
SYNEXPR, Syntax: expression expected
SYNEXSEOTEN, Syntax: expression, ‘‘;’’, OTHERWISE or END expected

SYNFUNPRO, Syntax: FUNCTION or PROCEDURE expected
SYNHEADTYP, Syntax: routine heading or type identifier expected
SYNIDCAEND, Syntax: identifier, CASE or END expected
SYNIDCARP, Syntax: identifier, CASE or ‘‘)’’ expected
SYNIDCASE, Syntax: identifier or CASE expected
SYNIDENT, Syntax: identifier expected
SYNILLEXPR, Syntax: ill-formed expression
SYNINT, Syntax: integer expected
SYNINTBOO, Syntax: integer, boolean, or string literal expected

SYNINVSEP, Syntax: invalid token separator
SYNIVATRLST, Syntax: illegal attribute list
SYNIVPARM, Syntax: illegal actual parameter
SYNIVPRMLST, Syntax: illegal actual parameter list
SYNIVSYM, Syntax: illegal symbol
SYNIVVAR, Syntax: illegal variable
SYNLABEL, Syntax: label expected
SYNLBRAC, Syntax: ‘‘[’’ expected

SYNLPAREN, Syntax: ‘‘(’’ expected
SYNLPASEM, Syntax: ‘‘(’’ or ‘‘;’’ expected
SYNLPCORB, Syntax: ‘‘(’’, ‘‘,’’ or ‘‘]’’ expected
SYNLPSECO, Syntax: ‘‘(’’, ‘‘;’’ or ‘‘:’’ expected
SYNMECHEXPR, Syntax: mechanism specifier or expression expected
SYNNEWSTMT, Syntax: start of new statement expected
SYNOF, Syntax: OF expected
SYNPARMLST, Syntax: actual parameter list

Diagnostic Messages C–57

SYNPARMSEC, Syntax: parameter section expected
SYNPERIOD Syntax: ‘‘.’’ expected.
SYNPROMOD, Syntax: PROGRAM or MODULE expected
SYNQUOSTR, Syntax: quoted string expected
SYNRBRAC, Syntax: ‘‘]’’ expected
SYNRESWRD, Syntax: reserved word cannot be redefined
SYNRPAREN, Syntax: ‘‘)’’ expected
SYNRPASEM, Syntax: ‘‘;’’ or ‘‘)’’ expected
SYNRTNTYPCNF, Syntax: routine heading, type identifier or conformant

parameter expected

SYNSEMI, Syntax: ‘‘;’’ expected
SYNSEMIEND, Syntax: ‘‘;’’ or END expected
SYNSEMMODI, Syntax: ‘‘;’’, ‘‘::’’, ‘‘^’’, or ‘‘[’’ expected
SYNSEMRB, Syntax: ‘‘;’’ or ‘‘]’’ expected
SYNSEOTEN, Syntax: ‘‘;’’, OTHERWISE or END expected
SYNTHEN, Syntax: THEN expected
SYNTODOWN, Syntax: TO or DOWNTO expected
SYNSEOTRP, Syntax: ‘‘;’’, OTHERWISE, or ‘‘)’’ expected
SYNTYPCNF, Syntax: type identifier or conformant parameter expected

SYNTYPID, Syntax: type identifier expected

Error: The compiler either failed to find an important lexical or syntactical
element where one was expected, or it detected an error in such an element
that does exist in your program.

SYNTYPPACK, Only ARRAY, FILE, RECORD or SET types can be PACKED
Warning: You cannot pack any type other than the structured types listed
in the message.

SYNTYPSPEC, Syntax: type specification expected
SYNUNEXDECL, Syntax: declaration encountered in executable section
SYNUNTIL, Syntax: UNTIL expected
SYNXTRASEMI, Syntax: ‘‘; ELSE’’ is not valid Pascal, ELSE matched with IF

on line ‘‘line number’’
Error: The compiler either detected an error in a lexical or syntactical
element in your program, or it failed to find such an element where one
was expected.

TAGNOTORD, Tag type must be an ordinal type
Error: The type of a variant record’s tag field must be one of the ordinal
types.

C–58 Diagnostic Messages

TOOIDXEXPR, Too many index expressions; type has only ‘‘number of
dimensions’’ dimensions
Error: A call to the UPPER or LOWER function specified an index value
that exceeds the number of dimensions in the dynamic array.

TOOMANYIFS, Conditional compilation nesting level exceeds implementation
limit
Error: %IF directives may only be nested 32 deep.

TOPROGRAM, TO BEGIN/END DO not allowed in PROGRAM
Error: TO BEGIN DO and TO END DO declarations are only allowed in
modules.

TYPCNTDISCR, Type can not be discriminated in this context

Error.

TYPFILSIZ, Type contains one or more FILE components, size attribute is
illegal
Error: The allocation size of a FILE type cannot be controlled by a size
attribute; therefore, you cannot use a size attribute on any type that has a
file component.

TYPHASFILE, Type contains one or more FILE components
Error: Many operations are illegal on objects of type FILE and objects of
structured types with file components; for example, you cannot initialize
them, use them as value parameters, or read them with input procedures.

TYPHASNOVRNT, Type contains no variant part
Error: You can only use the formats of the NEW, DISPOSE, and SIZE
routines that allow case labels to be specified when their parameters have
variants.

TYPPTRFIL, Type must be pointer or FILE
Error: You cannot use the syntax ‘‘Variable^’’ to refer to an object whose
type is not pointer or FILE.

TYPREF, %REF not allowed for this type
Error: The %REF foreign mechanism specifier cannot be used with
schematic variables.

Diagnostic Messages C–59

TYPSTDESCR, %STDESCR not allowed for this type
Error: The %STDESCR mechanism specifier is allowed only on objects of
type CHAR, PACKED ARRAY [1..n] OF CHAR, VARYING OF CHAR, and
arrays of these types.

TYPVARYCHR, Component type of VARYING must be CHAR

Error.

UNALIGNED, ‘‘variable name’’ is UNALIGNED
Error or Warning: You cannot use the data items listed in a call to
the ADDRESS function, nor can you pass them as writable VAR, %REF,
%DESCR, or %STDESCR parameters. This message is at warning level
if the variable or component has the UNALIGNED attribute, and at error
level if the variable or component is actually unaligned.

UNAVOLACC, Volatile access appears unaligned, but must be aligned at
run-time to ensure atomicity and byte granularity
Warning: The code generator was unable to determine if a volatile access
was aligned or not. It generated two sequences; one sequence will perform
the atomic access if it was aligned properly; the second sequence accesses
the object, but may contain a timing window where incorrect results may
occur.

UNBPNTRET, ‘‘routine name’’ is not UNBOUND—frame-pointer not returned
Warning: The IADDRESS function returns only the address of the
procedure value (on OpenVMS VAX systems, the entry mask of the routine
is called). This address may be sufficient information to successfully
invoke an unbound routine, but not a bound routine. (Bound routines are
represented as a pair of addresses: one pointing to the procedure value
and the other to the frame pointer to the routine in which the routine was
declared.)

UNCALLABLE, Routine "name" can never be called

Information.

UNCERTAIN, ‘‘Variable name’’ has not been initialized

Information.

C–60 Diagnostic Messages

UNDECLFRML, Undeclared formal parameter ‘‘symbol name’’
Error: A formal parameter name listed in a nonpositional call to a routine
does not match any of the formal parameters declared in the routine
heading.

UNDECLID, Undeclared identifier ‘‘symbol name’’
Error: In Pascal, an identifier must be declared before it is used. There
are no default or implied declarations.

UNDSCHILL, Undiscriminated schema type is illegal
Error: An undiscriminated schema type does not have any actual
discriminants. Without discriminants, the type size, any nested ARRAY
bounds, and the offset of any nested RECORD fields are unknown.

UNINIT, "Variable name" is fetched, not initialized

Information.

UNPREDRES, Calling FUNCTION ‘‘function name’’ declared FORWARD may
yield unpredictable results
Warning: By using FORWARD declared functions in actual discriminant
expressions, you can cause infinite loops at run time or access violations.

UNREAD, Variable, ‘‘variable name’’ is assigned into, but never read

Information.

UNSCNFVRY, UNSAFE attribute not allowed on conformant VARYING
parameter

Error.

UNSEXCRNG, constant exceeds range of "datatype"
Error: The largest value allowed for an UNSIGNED value is
4,294,967,295. The largest value allowed for an UNSIGNED64 value
is 18,446,744,073,709,551,615.

UNUSED, Variable, ‘‘variable name’’ is never referenced

Information.

UNWRITTEN, Variable ‘‘variable name’’ is read, but never assigned into

Warning.

Diagnostic Messages C–61

UPLEVELACC, Unbound ‘‘routine name’’ precludes uplevel access to ‘‘variable
name’’
Error: A routine that was declared with the UNBOUND attribute cannot
refer to automatic variables, routines, or labels declared in outer blocks.

UPLEVELGOTO, Unbound ‘‘routine name’’ precludes uplevel GOTO to ‘‘label
name’’
Error: A routine that was declared with the UNBOUND attribute cannot
refer to automatic variables, routines, or labels declared in outer blocks.

USEDBFDECL, ‘‘symbol name’’ was used before being declared

Warning.

USEINISTA, Use initial-state (VALUE clause) on TYPE or VAR declaration
Information: Nonstatic variables, such as those created from schema
types, cannot be initialized in the VALUE declaration part. To initialize
these variables, you must use the initial state feature.

V1DYNARR, Decommitted Version 1 dynamic array type
Error: The type syntax used to define a dynamic array parameter has
been decommitted for the current version of HP Pascal. You should edit
your program to make the type definition conform to the current version
conformant array syntax.

V1DYNARRASN, Decommitted Version 1 dynamic array assignment
Error: In VAX Pascal Version 1.0, dynamic arrays used in assignments
could not be checked for compatibility until run time. This warning
indicates that your program depends on an obsolete feature, which
you should consider changing to reflect the current version syntax for
conformant array parameters.

V1MISSPARM, Decommitted missing parameter syntax: correct by adding
‘‘number of commas’’ comma(s)
Error: An OPEN procedure called with the decommitted VAX Pascal
Version 1.0 syntax fails to mark omitted parameters with commas. Your
program depends on this obsolete feature, and you should insert the correct
number of commas as listed in the message.

C–62 Diagnostic Messages

V1PARMSYN, Use of unsupported V1 omitted parameter syntax with new V2
feature(s)
Error: In a parameter list for the OPEN procedure, you cannot use both
the Version 1.0 syntax for OPEN and the parameters that are new to
subsequent versions of HP Pascal.

V1RADIX, Decommitted Version 1 radix output specification
Error: In VAX Pascal Version 1.0, octal and hexadecimal values could
be written by placing the keywords OCT or HEX after a field width
expression. Your program uses this obsolete feature; you should consider
changing it to use the current versions OCT or HEX predeclared functions.

VALOUTBND, Value to be assigned is out of bounds
Error: A value specified in an array or record constructor exceeds the
subrange defined as the type of the corresponding component.

VALUEINIT, VALUE variables must be initialized
Error: Variables with both the VALUE and GLOBAL attributes must be
given an initial value in either the VAR section or in the VALUE section.

VALUETOOBIG, VALUE attribute not allowed on objects larger than 32 bits
Error: Variables with the VALUE attribute cannot be larger than 32 bits
because they are expressed to the linker as global symbol references.

VALUETYP, VALUE allowed only on ordinal or real types

Error.

VALUEVISIB, GLOBAL or EXTERNAL visibility is required with the VALUE
attribute
Error: Variables with the VALUE attribute must be given either external
or global visibility. (If the variable is given global visibility, then it must
also be given an initial value.)

VARCOMFRML, Variable is not compatible with formal parameter ‘‘formal
parameter name’’
Error: A variable being passed as an actual parameter is not compatible
with the corresponding formal parameter indicated. Variable parameters
must be structurally compatible. The reason for the incompatibility is
provided in an informational message that the compiler prints along with
this error message.

Diagnostic Messages C–63

VARNOTEXT, Variable must be of type TEXT
Error: The EOLN function requires that its parameter be a file of type
TEXT.

VARPRMRTN, Formal VAR parameter may not be a routine
Error: The reserved word VAR cannot precede the word PROCEDURE or
FUNCTION in a formal parameter declaration.

VARPTRTYP, Variable must be of a pointer type
Error: The NEW and DISPOSE procedures operate only on pointer
variables.

VARYFLDS, LENGTH and BODY are the only fields in a VARYING type
Error: You cannot use the syntax ‘‘Variable.Identifier’’ to specify any fields
of a VARYING OF CHAR variable other than LENGTH and BODY.

VISAUTOCON, Visibility / AUTOMATIC allocation conflict
Error: The GLOBAL, EXTERNAL, WEAK_GLOBAL, and WEAK_
EXTERNAL attributes require static allocation and therefore conflict with
the AUTOMATIC attribute.

VISGLOBEXT, Visibilities are not GLOBAL/EXTERNAL or
EXTERNAL/EXTERNAL
Information: In repeated declarations of a variable or routine, only
one declaration at most can be global; all others must be external. This
message can appear as additional information for other error messages.

VRNTRNG, Variant labels do not cover the range of the tag type
Error: According to the Pascal standard, you must specify one case
label for each value in the tag type of a variant record or include an
OTHERWISE clause.

WDTHONREAL, Second field width is allowed only when value is of a real
type
Error: The fraction value in a field-width specification is allowed only for
real-number values.

WRITEONLY, ‘‘variable name’’ is WRITEONLY
Warning: You cannot use a write-only variable in any context that
requires the variable to be evaluated. For example, a write-only variable
cannot be used as the control variable of a FOR statement.

C–64 Diagnostic Messages

XTRAERRORS, Additional diagnostics occurred on this line
Information: The number of errors occurring on this line exceeds the
implementation’s limit for outputting errors. You should correct the errors
given and recompile your program.

ZERNOTALL, ZERO is not allowed for type or types containing ‘‘type name’’
Error: ZERO may not be used to initialize objects of type FILE, TEXT, or
TIMESTAMP or objects containing these types.

C.2 Run-Time Diagnostics
During execution, an image can generate a fatal error called an exception
condition. When the HP Pascal run-time system detects such a condition, the
system displays an error message and aborts program execution.

Run-time errors can also be issued by other facilities, such as the OpenVMS
Sort Utility or the OpenVMS operating system. HP Pascal run-time system
diagnostics are preceded by the following:

%PAS- F-

The severity level of a run-time error is F, fatal error.

Some conditions, particularly I/O errors, may cause several messages to be
generated. The first message is a diagnostic that specifies the file that was
being accessed (if any) when the error occurred and the nature of the error.
Next, an RMS error message may be generated. In most cases, you should be
able to understand the error by looking up the first message in the following
list. If not, see the OpenVMS System Messages and Recovery Procedures
Reference Manual for an explanation of the RMS error message.

All diagnostic messages contain a brief explanation of the event that caused
the error. This section lists run-time diagnostic messages in alphabetical
order, including explanatory message text. Where the message text is not
self-explanatory, additional explanation follows. Portions of the message text
enclosed in quotation marks are items that the compiler substitutes with the
name of a data object when it generates the message.

Diagnostic Messages C–65

ACCMETINC, ACCESS_METHOD specified is incompatible with this file
Explanation: The value of the ACCESS_METHOD parameter for a call
to the OPEN procedure is not compatible with the file’s organization or
record type. You can use DIRECT access only with files that have relative
organization or sequential organization and fixed-length records. You can
use KEYED access only with indexed files.
User Action: Make sure that you are accessing the correct file. See
Chapter 7 to determine which access method you should use.

AMBVALENU, ‘‘string’’ is an ambiguous value for enumerated type ‘‘type’’
Explanation: While a value of an enumerated type was being read from
a text file, not enough characters of the identifier were found to specify an
unambiguous value.
User Action: Specify enough characters of the identifier so that it is not
ambiguous.

ARRINDVAL, array index value is out of range
Explanation: You enabled bounds checking for a compilation unit and
attempted to specify an index that is outside the array’s index bounds.
User Action: Correct the program or data so that all references to array
indexes are within the declared bounds.

ARRNOTCOM, conformant array is not compatible
Explanation: You attempted to assign one dynamic array to another that
did not have the same index bounds. This error occurs only when the
arrays use the decommitted VAX Pascal Version 1.0 syntax for dynamic
array parameters.
User Action: Correct the program so that the two dynamic arrays have
the same index bounds. You could also change the arrays to conform to the
current syntax for conformant arrays; most incompatibilities could then be
detected at compile time rather than at run time. See the HP Pascal for
OpenVMS Language Reference Manual for more information on current
conformant arrays.

ARRNOTSTR, conformant array is not a string
Explanation: In a string operation, you used a conformant PACKED
ARRAY OF CHAR value whose index had a lower bound not equal to 1 or
an upper bound greater than 65535.
User Action: Correct the array’s index so that the array is a character
string.

C–66 Diagnostic Messages

ASSERTION, Pascal assertion failure
Explanation: The expression used in the Pascal ASSERT built-in routine
evaluated to false.
User Action: Correct the problem that was being checked with the
ASSERT built-in in the source program.

BUGCHECK, internal consistency failure ‘‘nnn’’ in Pascal Run-Time Library
Explanation: The run-time library has detected an internal error or
inconsistency. This problem may be caused by an out-of-bounds array
reference or a similar error in your program.
User Action: Rerun your program with all CHECK options enabled. If
you are unable to find an error in your program, please submit a Software
Performance Report (SPR) to Hewlett-Packard, including a machine-
readable copy of your program, data, and a sample execution illustrating
the problem.

CANCNTERR, handler cannot continue from a nonfile error
Explanation: A user condition handler attempted to return
SS$_CONTINUE for an error not involving file input/output. To recover
from such an error, you must use either an uplevel GOTO statement or the
SYS$UNWIND system service.
User Action: Modify the user handler to use one of the allowed recovery
actions for nonfile errors, or to resignal the error if no recovery action is
possible.

CASSELVAL, CASE selector value is out of range
Explanation: The value of the case selector in a CASE statement does
not equal any of the specified case labels, and the statement has no
OTHERWISE clause.
User Action: Either add an OTHERWISE clause to the CASE statement
or change the value of the case selector so that it equals one of the case
labels. See the HP Pascal for OpenVMS Language Reference Manual for
more information.

CONCATLEN, string concatenation has more than 65535 characters
Explanation: The result of a string concatenation operation would result
in a string longer than 65,535 characters, which is the maximum length of
a string.
User Action: Correct the program so that all concatenations result in
strings no longer than 65,535 characters.

Diagnostic Messages C–67

CSTRCOMISS, invalid constructor: component(s) missing
Explanation: The constructor did not specify sufficient component values
to initialize a variable of the type.
User Action: Specify more components in the constructor, use the
OTHERWISE clause in the constructor, or modify the type definition to
specify fewer components.

CURCOMUND, current component is undefined for DELETE or UPDATE
Explanation: You attempted a DELETE or UPDATE procedure when
no current component was defined. A current component is defined
by a successful GET, FIND, FINDK, RESET, or RESETK that locks
the component. Files opened with HISTORY:=READONLY never lock
components.
User Action: Correct the program so that a current component is defined
before executing DELETE or UPDATE.

DELNOTALL, DELETE is not allowed for a sequential organization file
Explanation: You attempted a DELETE procedure for a file with
sequential organization, which is not allowed. DELETE is valid only on
files with relative or indexed organization.
User Action: Make sure that the program is referencing the correct file.
See Chapter 7 to determine what file characteristics are appropriate for
your application.

ERRDURCLO, error during CLOSE
Explanation: RMS reported an unexpected error during execution of
the CLOSE procedure. The RMS error message is also displayed. This
message may also be issued with error severity when files are implicitly
closed during a procedure or image exit.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for the description of the RMS error.

ERRDURDEL, error during DELETE
Explanation: RMS reported an unexpected error during execution of a
DELETE procedure. The RMS error message is also displayed.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for the description of the RMS error.

C–68 Diagnostic Messages

ERRDURDIS, error during DISPOSE
Explanation: An error occurred during execution of a DISPOSE
procedure. An additional message that further describes the error
may also be displayed.
User Action: Make sure that the heap storage being freed was allocated
by a successful call to the NEW procedure, and that it has not been
already freed. If an additional message is shown, see the OpenVMS System
Messages and Recovery Procedures Reference Manual for the description of
that message.

ERRDUREXT, error during EXTEND
Explanation: RMS reported an unexpected error during execution of an
EXTEND procedure. The RMS error message is also displayed.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for the description of the RMS error.

ERRDURFIN, error during FIND or FINDK
Explanation: RMS reported an unexpected error during execution of a
FIND or FINDK procedure. The RMS error message is also displayed.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for the description of the RMS error.

ERRDURGET, error during GET
Explanation: RMS reported an unexpected error during execution of the
GET procedure. The RMS error message is also displayed.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for the description of the RMS error.

ERRDURMAR, error during MARK
Explanation: An error occurred during execution of the PAS$MARK2
procedure. An additional message is displayed that further describes the
error.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for a description of the additional message.

ERRDURNEW, error during NEW
Explanation: An error occurred during execution of the NEW procedure.
An additional message is displayed that further describes the error.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for a description of the additional message.

Diagnostic Messages C–69

ERRDUROPE, error during OPEN
Explanation: An unexpected error occurred during execution of the OPEN
procedure, or during an implicit open caused by a RESET or REWRITE
procedure. An additional message is displayed that further describes the
error.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for a description of the additional message.

ERRDURPRO, error during prompting
Explanation: RMS reported an unexpected error during output of partial
lines to a terminal. The RMS error message is also displayed.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for a description of the RMS error.

ERRDURPUT, error during PUT
Explanation: RMS reported an unexpected error during execution of the
PUT procedure. The RMS error message is also displayed.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for a description of the RMS message.

ERRDURREL, error during RELEASE
Explanation: An unexpected error occurred during execution of the
PAS$RELEASE2 procedure. An additional message may be displayed that
further describes the error.
User Action: Make sure that the marker argument was returned from a
successful call to PAS$MARK2 and that the storage has not been already
freed. If an additional message is displayed, see the OpenVMS System
Messages and Recovery Procedures Reference Manual for a description of
that message.

ERRDURRES, error during RESET or RESETK
Explanation: RMS reported an unexpected error during execution of the
RESET or RESETK procedure. The RMS error message is also displayed.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for a description of the RMS error.

ERRDURREW, error during REWRITE
Explanation: RMS reported an unexpected error during execution of the
REWRITE procedure. The RMS error message is also displayed.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for a description of the RMS error.

C–70 Diagnostic Messages

ERRDURTRU, error during TRUNCATE
Explanation: RMS reported an unexpected error during execution of the
TRUNCATE procedure. The RMS error message is also displayed.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for a description of the RMS error.

ERRDURUNL, error during UNLOCK
Explanation: RMS reported an unexpected error during execution of the
UNLOCK procedure. The RMS error message is also displayed.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for a description of the RMS error.

ERRDURUPD, error during UPDATE
Explanation: RMS reported an unexpected error during execution of the
UPDATE procedure. The RMS error message is also displayed.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for a description of the RMS error.

ERRDURWRI, error during WRITELN
Explanation: RMS reported an unexpected error during execution of the
WRITELN procedure. The RMS error message is also displayed.
User Action: See the OpenVMS System Messages and Recovery Procedures
Reference Manual for a description of the RMS error.

EXTNOTALL, EXTEND is not allowed for a shared file
Explanation: Your program attempted an EXTEND procedure for a file
for which the program did not have exclusive access. EXTEND requires
that no other users be allowed to access the file. Note that this message
may also be issued if you do not have permission to extend to the file.
User Action: Correct the program so that the file is opened with
SHARING:=NONE, which is the default, before performing an EXTEND
procedure.

FAIGETLOC, failed to GET locked component
Explanation: Your program attempted to access a component of a file that
was locked by another user. You can usually expect this condition to occur
when more than one user is accessing the same relative or indexed file.
User Action: Determine whether this condition should be allowed to
occur. If so, modify your program so that it detects the condition and
retries the operation later. See Chapter 7 for more information.

Diagnostic Messages C–71

FILALRACT, file ‘‘file name’’ is already active
Explanation: Your program attempted a file operation on a file for which
another operation was still in progress. This error can occur if a file is used
in AST or condition-handling routines.
User Action: Modify your program so that it does not try to use files that
may currently be in use.

FILALRCLO, file is already closed
Explanation: Your program attempted to close a file that was already
closed.
User Action: Modify your program so that it does not try to close files
that are not open.

FILALROPE, file is already open
Explanation: Your program attempted to open a file that was already
open.
User Action: Modify your program so that it does not try to open files
that are already open.

FILNAMREQ, FILE_NAME required for this HISTORY or DISPOSITION
Explanation: Your program attempted to open a nonexternal file without
specifying a file-name parameter to the OPEN procedure, but the HISTORY
or DISPOSITION parameter specified requires a file name.
User Action: Add a file-name parameter to the OPEN procedure call,
specifying an appropriate file name.

FILNOTDIR, file is not opened for direct access
Explanation: Your program attempted to execute a DELETE, FIND,
LOCATE, or UPDATE procedure on a file that was not opened for direct
access.
User Action: Modify the program to specify the ACCESS_
METHOD:=DIRECT parameter to the OPEN procedure when opening
the file. See Chapter 7 to determine if direct access is appropriate for your
application.

C–72 Diagnostic Messages

FILNOTFOU, file not found
Explanation: Your program attempted to open a file that does not
exist. An additional RMS message is displayed that further describes the
problem.
User Action: Make sure that you are specifying the correct file. See the
OpenVMS System Messages and Recovery Procedures Reference Manual for
a description of the additional RMS message.

FILNOTGEN, file is not in Generation mode
Explanation: Your program attempted a file operation that required the
file to be in generation mode (ready for writing).
User Action: Modify the program to use a REWRITE, TRUNCATE, or
LOCATE procedure to place the file in generation mode as appropriate.
See Chapter 7 for more information.

FILNOTINS, file is not in Inspection mode
Explanation: Your program attempted a file operation that required the
file to be in inspection mode (ready for reading).
User Action: Modify the program to use a RESET, RESETK, FIND, or
FINDK procedure to place the file in inspection mode as appropriate. See
Chapter 7 for more information.

FILNOTKEY, file is not opened for keyed access
Explanation: Your program attempted to execute a FINDK, RESETK,
DELETE, or UPDATE procedure on a file that was not opened for keyed
access.
User Action: Modify the program to specify the ACCESS_
METHOD:=KEYED parameter to the OPEN procedure when opening
the file. See Chapter 7 to make sure that keyed access is appropriate to
your application.

FILNOTOPE, file is not open
Explanation: Your program attempted to execute a file manipulation
procedure on a file that was not open.
User Action: Correct the program to open the file using a RESET,
REWRITE, or OPEN procedure as appropriate. See Chapter 7 for more
information.

Diagnostic Messages C–73

FILNOTSEQ, file is not sequential organization
Explanation: Your program attempted to execute the TRUNCATE
procedure on a file that does not have sequential organization. TRUNCATE
is valid only on sequential files.
User Action: Make sure that your program is accessing the correct file.
Correct the program so that all TRUNCATE operations are performed on
sequential files.

FILNOTTEX, file is not a textfile
Explanation: Your program performed a file operation that required a
file of type TEXT on a nontext file. Note that the type FILE OF CHAR is
not equivalent to TEXT unless you have compiled the program with the
/OLD_VERSION qualifier.
User Action: Make sure that your program is accessing the correct file.
Correct the program so that a text file is always used when required.

GENNOTALL, Generation mode is not allowed for a READONLY file
Explanation: Your program attempted to place a file declared with
the READONLY attribute into generation mode, which is not allowed.
Note that the READONLY file attribute is not equivalent to the
HISTORY:=READONLY parameter to the OPEN procedure.
User Action: Correct the program so that the file either does not have the
READONLY attribute or is not placed into generation mode.

GETAFTEOF, GET attempted after end-of-file
Explanation: Your program attempted a GET operation on a file while
EOF(f) was TRUE. This situation occurs when a previous GET operation
(possibly implicitly performed by a RESET, RESETK, or READ procedure)
reads to the end of the file and causes the EOF(f) function to return TRUE.
If another GET is then performed, this error is given.
User Action: Correct the program so that it either tests whether EOF(f)
is TRUE, before attempting a GET operation, or repositions the file before
the end-of-file marker.

C–74 Diagnostic Messages

GOTOFAILED, non-local GOTO failed
Explanation: An error occurred while a nonlocal GOTO statement was
being executed. This error might occur because of an error in the user
program, such as an out-of-bounds array reference.
User Action: Rerun your program, enabling all CHECK options. If you
cannot locate an error in your program and the problem persists, please
submit a Software Performance Report (SPR) to Hewlett-Packard, and
include a machine-readable copy of your program, data, and results of a
sample execution showing the problem.

HALT, HALT procedure called
Explanation: The program terminated its execution by executing the
HALT procedure. This message is solely informational.
User Action: None.

ILLGOTO, illegal uplevel GOTO during routine activation
Explanation: An uplevel GOTO was made into the body of a routine
before the declaration part of the routine was completely processed.
User Action: Correct the program to avoid the uplevel GOTO until the
declaration part has been completely processed.

INSNOTALL, Inspection mode is not allowed for a WRITEONLY file
Explanation: Your program attempted to place a file declared with the
WRITEONLY attribute into inspection mode, which is not allowed.
User Action: Correct the program so that the file variable either does not
have the WRITEONLY attribute or is not placed into inspection mode.

INSVIRMEM, insufficient virtual memory
Explanation: The run-time library was unable to allocate enough heap
storage to open the file.
User Action: Examine your program to see whether it is making excessive
use of heap storage, which might be allocated using the NEW procedure or
the run-time library procedure LIB$GET_VM. Modify your program to free
any heap storage it does not need.

Diagnostic Messages C–75

INVARGPAS, invalid argument to Pascal Run-Time Library
Explanation: An invalid argument or inconsistent data structure was
passed to the run-time library by the compiled code, or a system service
returned an unrecognized value to the run-time library.
User Action: Rerun your program with all CHECK options enabled.
Make sure that the version of the current operating system is compatible
with the version of the compiler. If you cannot locate an error in your
program and the problem persists, please submit a Software Performance
Report (SPR) to Hewlett-Packard, and include a machine-readable copy
of your program, data, and results of a sample execution showing the
problem.

INVFILSYN, invalid file name syntax
Explanation: Your program attempted to open a file with an invalid file
name. The file name used can be derived from the file variable name, the
value of the file-name parameter to the OPEN procedure, or the logical
name translations (if any) of the file variable name and portions of the
file-name parameter and your default device and directory. The displayed
text may include the erroneous file name. This error can also occur if the
value of the file-name parameter is longer than 255 characters. Additional
RMS messages may be displayed that further describe the error.
User Action: Use the information provided in the displayed messages to
determine which component of the file name is invalid. Verify that any
logical names used are defined correctly. See the HP Pascal for OpenVMS
Language Reference Manual for information on file names.

INVFILVAR, invalid file variable at location ‘‘nnn’’
Explanation: The file variable passed to a run-time library procedure was
invalid or corrupted. This problem might be caused by an error in the user
program, such as an out-of-bounds array access. It can also occur if a file
variable is passed from a routine compiled with a version of VAX Pascal
earlier than Version 2.0 to a routine compiled with a later version of the
compiler, or if the new key options are used on OpenVMS systems earlier
than Version 4.6.
User Action: Rerun your program with all CHECK options enabled, and
recompile all modules using the same compiler. If the problem persists,
please submit a Software Performance Report (SPR) to Hewlett-Packard
and include a machine-readable copy of your program, data, and results of
a sample execution showing the problem.

C–76 Diagnostic Messages

INVKEYDEF, invalid key definition
Explanation: Your program attempted to open a file of type RECORD
whose component type contained a field with an invalid KEY attribute.
One of the following errors occurred:

• A new file was being created and the key numbers were not dense.

• A key field was defined at an offset of more than 65,535 bytes from the
beginning of the record.

User Action: If a new file is being created, make sure that the key fields
are numbered consecutively, starting with 0 for the required primary
key. If you are opening an existing file, you must explicitly specify
HISTORY:=OLD or HISTORY:=READONLY as a parameter to the OPEN
procedure. Make sure that the length of the record is within the maximum
permitted for the file organization being used. See Chapter 7 for more
information.

INVRADIX, specified radix must be in the range 2-36
Explanation: The specified radix for writing an ordinal value must be in
the range of 2 through 36.
User Action: Modify the program to specify a radix in the proper range

INVRECLEN, invalid record length of ‘‘nnn’’
Explanation: A file was being opened, and one of the following errors
occurred:

• The length of the file components was greater than that allowed for
the file organization and record format (for most operations, the largest
length allowed is 32,765 bytes).

• The value of the RECORD_LENGTH parameter to the OPEN procedure
was greater than that allowed for the file organization and record
format (for most operations, the largest value allowed is 32,765 bytes).

User Action: Correct the program so that the record length used is within
the permitted limits for the type of file being used. See the OpenVMS
Record Management Services Reference Manual for more information.

Diagnostic Messages C–77

INVSYNBIN, ‘‘string’’ is invalid syntax for a binary value
Explanation: While a READ or READV procedure was reading a binary
value from a text file, the characters read did not conform to the syntax for
a binary value. The displayed message includes the text actually read and
the record number in which this text occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the HP Pascal for OpenVMS Language Reference
Manual for more information.

INVSYNHEX, ‘‘string’’ is invalid syntax for a hexadecimal value
Explanation: While a READ or READV procedure was reading a
hexadecimal value from a text file, the characters read did not conform to
the syntax for an hexadecimal value. The displayed message includes the
text actually read and the record number in which this text occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the HP Pascal for OpenVMS Language Reference
Manual for more information.

INVSYNENU, ‘‘string’’ is invalid syntax for an enumerated value
Explanation: While a READ or READV procedure was reading an
identifier of an enumerated type from a text file, the characters read did
not conform to the syntax for an enumerated value. The displayed message
includes the text actually read and the record number in which this text
occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the HP Pascal for OpenVMS Language Reference
Manual for more information.

INVSYNINT, ‘‘string’’ is invalid syntax for an integer value
Explanation: While a READ or READV procedure was reading a value for
an integer identifier from a text file, the characters read did not conform to
the syntax for an integer value. The displayed message includes the text
actually read and the record number in which this text occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the HP Pascal for OpenVMS Language Reference
Manual for more information.

C–78 Diagnostic Messages

INVSYNOCT, ‘‘string’’ is invalid syntax for an octal value
Explanation: While a READ or READV procedure was reading an octal
value from a text file, the characters read did not conform to the syntax for
an octal value. The displayed message includes the text actually read and
the record number in which this text occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the HP Pascal for OpenVMS Language Reference
Manual for more information.

INVSYNREA, ‘‘string’’ is invalid syntax for a real value
Explanation: While a READ or READV procedure was reading a value
for a real identifier from a text file, the characters read did not conform
to the syntax for a real value. The displayed message includes the text
actually read and the record number in which this text occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the HP Pascal for OpenVMS Language Reference
Manual for more information.

INVSYNUNS, ‘‘string’’ is invalid syntax for an unsigned value
Explanation: While a READ or READV procedure was reading a value for
an unsigned identifier from a text file, the characters read did not conform
to the syntax for an unsigned value. The displayed message includes the
text actually read and the record number in which this text occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the HP Pascal for OpenVMS Language Reference
Manual for more information.

KEYCHANOT, key field change is not allowed
Explanation: Your program attempted an UPDATE procedure for a record
of an indexed file that would have changed the value of a key field, and
this situation was disallowed when the file was created.
User Action: If the program needs to detect this situation when it occurs,
specify the ERROR:=CONTINUE parameter for the UPDATE procedure,
and use the STATUS function to determine which error, if any, occurred.
If necessary, modify the program so that it does not improperly change a
key field, or recreate the file specifying that the key field is permitted to
change. See Chapter 7 for more information.

Diagnostic Messages C–79

KEYDEFINC, KEY ‘‘nnn’’ definition is inconsistent with this file
Explanation: An indexed file of type RECORD was opened, and the
component type contained fields whose KEY attributes did not match those
of the existing file. The number of the key in error is displayed in the
message.
User Action: Correct the RECORD definition so that it describes the
correct KEY fields, or recreate the file so that it matches the declared keys.
See Chapter 7 for more information.

KEYDUPNOT, key field duplication is not allowed
Explanation: Your program attempted an UPDATE or PUT procedure
for a record of an indexed file that would have duplicated a key field value
of an existing record, and this situation was disallowed when the file was
created.
User Action: If the program needs to detect this situation when it occurs,
specify the ERROR:=CONTINUE parameter for the PUT or UPDATE
procedure, and use the STATUS function to determine which error, if any,
occurred. If necessary, modify the program so that it does not improperly
duplicate a key field, or recreate the file specifying that the key field is
permitted to be duplicated. See Chapter 7 for more information.

KEYNOTDEF, KEY ‘‘nnn’’ is not defined for this file
Explanation: Your program attempted a FINDK or RESETK procedure
on an indexed file, and the key number specified does not exist in the file.
User Action: Correct the program so that the correct key numbers are
used when accessing the file.

KEYVALINC, key value is incompatible with the file’s key ‘‘nnn’’
Explanation: The key value specified for the FINDK procedure was
incompatible in type or size with the key field of the file, or your program
attempted an OPEN on an existing file and the key check failed.
User Action: Make sure that the correct key value is being specified for
FINDK and OPEN. Correct the program so that the type of the key value
is compatible with the key of the file.

C–80 Diagnostic Messages

LINTOOLON, line is too long, exceeded record length by ‘‘nnn’’ character(s)
Explanation: Your program attempted a WRITE, PUT, WRITEV, or other
output procedure on a text file that would have placed more characters in
the current line than the record length of the file would allow. The number
of characters that did not fit is displayed in the message.
User Action: Correct the program so that it does not place too many
characters in the current line. If appropriate, use the WRITELN procedure,
or specify an increased record length parameter when opening the file with
the OPEN procedure.

LINVALEXC, LINELIMIT value exceeded
Explanation: The number of lines written to the file exceeded the
maximum specified as the line limit. The line limit value is determined by
the translation of the logical name PAS$LINELIMIT, if any, or the value
specified in a call to the LINELIMIT procedure for the file.
User Action: As appropriate, correct the program so that it does not write
as many lines, or increase the line limit for the file. Note that if a line
limit is specified for a nontext file, each PUT procedure called for the file
is considered to be one line. See the HP Pascal for OpenVMS Language
Reference Manual for more information.

LOWGTRHIGH, low-bound exceeds high-bound
Explanation: The lower bound of a subrange definition is larger than the
higher bound.
User Action: Modify the declaration so the lower bound is less than or
equal to the higher bound.

MAXLENRNG, maximum length must be in range 1..65535
Explanation: The maximum length for a string type is 65,535.
User Action: Modify the declaration to specify a smaller amount.

MODNEGNUM, MOD of a negative modulus has no mathematical definition
Explanation: In the MOD operation A MOD B, the operand B must have
a positive integer value.
User Action: Correct the program so that the operand B has a positive
integer value.

Diagnostic Messages C–81

NEGDIGARG, negative Digits argument to BIN, HEX or OCT is not allowed
Explanation: Your program attempted to specify a negative value for the
Digits argument in a call to the BIN, HEX, or OCT procedure, which is not
permitted.
User Action: Correct the program so that only nonnegative Digits
arguments are used for calls to BIN, HEX, and OCT.

NEGWIDDIG, negative Width or Digits specification is not allowed
Explanation: A WRITE or WRITEV procedure on a text file contained
a field width specification that included a negative Width or Digits value,
which is not permitted.
User Action: Correct the program so that only nonnegative Width and
Digits parameters are used.

NOTVALTYP, ‘‘string’’ is not a value of type ‘‘type’’
Explanation: Your program attempted a READ or READV procedure on
a text file, but the value read could not be expressed in the specified type.
For example, this error results if a real value read is outside the range of
the identifier’s type, or if an enumerated value is read that does not match
any of the valid constant identifiers in its type.
User Action: Correct the program or the input data so that the values
read are compatible with the types of the identifiers receiving the data.

OPNDASSCOM, operands are not assignment compatible
Explanation: The operands do not have the same type.
User Action: Examine the declarations of the operands and make sure
they have compatible types.

ORDVALOUT, ordinal value is out of range
Explanation: A value of an ordinal type is outside the range of values
specified by the type. For example, this error results if you try to use the
SUCC function on the last value in the type or the PRED function on the
first value.
User Action: Correct the program so that all ordinal values are within
the range of values specified by the ordinal type.

C–82 Diagnostic Messages

ORGSPEINC, ORGANIZATION specified is inconsistent with this file
Explanation: The value of the ORGANIZATION parameter for the OPEN
procedure that opened an existing file was inconsistent with the actual
organization of the file.
User Action: Correct the program so that the correct organization is
specified. See Chapter 7 for more information.

PADLENERR, PAD length error
Explanation: The length of the character string to be padded by the PAD
function is greater than the length specified as the finished size, or the
finished size specified is greater than 65,535.
User Action: Correct the call to PAD so that the finished size specified
describes a character string of the correct length. See the HP Pascal for
OpenVMS Language Reference Manual for the rules governing the PAD
function.

PTRREFNIL, pointer reference to NIL
Explanation: Your program attempted to evaluate a pointer value while
its value was NIL.
User Action: Make sure that the pointer has a value before you try to
evaluate it. See the HP Pascal for OpenVMS Language Reference Manual
for more information on pointer values.

RECLENINC, RECORD_LENGTH specified is inconsistent with this file
Explanation: The record length obtained from the file component’s length
or from the value of the record length parameter specified for the OPEN
procedure was inconsistent with the actual record length of an existing file.
User Action: Correct the program so that the record length specified, if
any, is consistent with the file. See Chapter 7 for more information.

RECTYPINC, RECORD_TYPE specified is inconsistent with this file
Explanation: The value of the RECORD_LENGTH parameter specified
for the OPEN procedure was inconsistent with the actual record type of an
existing file.
User Action: Correct the program so that the record type specified, if any,
is consistent with the file. See Chapter 7 for more information.

REFINAVAR, read or write of inactive variant
Explanation: A field of an inactive variant was read or written.
User Action: Correct the program so the variant is active or remove the
reference to the inactive field.

Diagnostic Messages C–83

RESNOTALL, RESET is not allowed on an unopened internal file
Explanation: Your program attempted a RESET procedure for a
nonexternal file that was not open. This operation is not permitted because
RESET must operate on an existing file, and there is no information
associated with a nonexternal file that allows RESET to open it.
User Action: Correct the program so that nonexternal files are opened
before using RESET. Either OPEN or REWRITE may be used to open a
nonexternal file. See the HP Pascal for OpenVMS Language Reference
Manual for more information.

REWNOTALL, REWRITE is not allowed for a shared file
Explanation: Your program attempted a REWRITE procedure for a file
for which the program did not have exclusive access. REWRITE requires
that no other users be allowed to access the file while the file’s data is
deleted. Note that this message may also be issued if you do not have
permission to write to the file.
User Action: Correct the program so that the file is opened with
SHARING := NONE, which is the default, before performing a REWRITE
procedure.

SETASGVAL, set assignment value has element out of range
Explanation: Your program attempted to assign to a set variable a value
that is outside the range specified by the variable’s component type.
User Action: Correct the assignment statement so that the value being
assigned falls within the component type of the set variable. See the HP
Pascal for OpenVMS Language Reference Manual for more information on
sets.

SETCONVAL, set constructor value out of range
Explanation: Your program attempted to include in a set constructor a
value that is outside the range specified by the set’s component type, or a
value that is greater than 255 or less than 0.
User Action: Correct the constructor so that it includes only those values
within the range of the set’s component type. See the HP Pascal for
OpenVMS Language Reference Manual for more information on sets.

SETNOTRNG, set element is not in range 0..255
Explanation: Sets of INTEGER or UNSIGNED must be in the range of
0..255.
User Action: Modify the declaration to specify a smaller range.

C–84 Diagnostic Messages

STRASGLEN, string assignment length error
Explanation: Your program attempted to assign to a string variable a
character string that is longer than the declared maximum length of the
variable (if the variable’s type is VARYING) or that is not of the same
length as the variable (if the variable’s type is PACKED ARRAY OF
CHAR).
User Action: Correct the program so that the string is of a correct length
for the variable to which it is being assigned.

STRCOMLEN, string comparison length error
Explanation: Your program attempted to compare two character strings
that do not have the same current length.
User Action: Correct the program so that the two strings have the same
length at the time of the comparison.

SUBASGVAL, subrange assignment value out of range
Explanation: Your program attempted to assign to a subrange variable a
value that is not contained in the subrange type.
User Action: Correct the program so that all values assigned to a
subrange variable fall within the variable’s type.

SUBSTRSEL, SUBSTR selection error
Explanation: A SUBSTR function attempted to extract a substring that
was not entirely contained in the original string.
User Action: Correct the call to SUBSTR so that it specifies a substring
that can be extracted from the original string. See the HP Pascal for
OpenVMS Language Reference Manual for complete information on the
SUBSTR function.

TEXREQSEQ, textfiles require sequential organization and access
Explanation: Your program attempted to open a file of type TEXT that
either did not have sequential organization, or had an ACCESS_METHOD
other than SEQUENTIAL (the default) when opened by the OPEN
procedure.
User Action: Make sure that the program refers to the correct file.
Correct the program so that only sequential organization and access are
used for text files.

Diagnostic Messages C–85

TRUNOTALL, TRUNCATE is not allowed for a shared file
Explanation: Your program attempted to call the TRUNCATE procedure
for a file that was opened for shared access. You cannot truncate files that
might be shared by other users. This message may also be issued if you do
not have permission to write to the file.
User Action: Correct the program so that it does not try to truncate
shared files. If the file is opened with the OPEN procedure, do not specify
a value other than NONE (the default) for the SHARING parameter.

UPDNOTALL, UPDATE not allowed for a sequential organization file
Explanation: Your program attempted to call the UPDATE procedure for
a sequential file. UPDATE is valid only on relative and indexed files.
User Action: Correct the program so that it does not try to use
UPDATE for sequential files, or recreate the file with relative or indexed
organization. If you are using direct access on a sequential file, individual
records can be updated with the LOCATE and PUT procedures. See
Chapter 7 to determine whether a different file organization may be
appropriate for your application.

VARINDVAL, VARYING index value exceeds current length
Explanation: The index value specified for a VARYING OF CHAR string
is greater than the string’s current length.
User Action: Correct the index value so that it specifies a legal character
in the string.

WIDTOOLRG, totalwidth too large
Explanation: The requested total-width for the floating point write
operation overflowed an internal buffer.
User Action: Examine the source program to see if the specified total-
width parameter is correct. If it is correct, please submit a problem report
including a machine-readable copy of your program, data, and a sample
execution illustrating the problem.

WRIINVENU, WRITE of an invalid enumerated value
Explanation: Your program attempted to write an enumerated value
using a WRITE or WRITEV procedure, but the internal representation of
that value was outside the possible range for the enumerated type.
User Action: Verify that your program is not improperly using PRED,
SUCC, or type casting to assign an invalid value to a variable of
enumerated type.

C–86 Diagnostic Messages

Index

A
Access method

type translations, 6–7
ACCURACY_SENSITIVE, 1–7
Action routine

using the UNBOUND attribute with,
6–14

ADDRESS function
effect on optimization, 3–17

/ALIGN qualifier
with PASCAL command, 1–3

Alpha emulation, 1–6
/ANALYSIS_DATA qualifier, 1–4
/ARCHITECTURE qualifier, 1–4
Argument pointer

saved by routine call, 5–5
Assignment

with unsupported CDD/Repository data
type, 4–10

/ASSUME qualifier, 1–7
AST

ASTADR parameter, 6–16
ASTPRM parameter, 6–17
using the UNBOUND attribute with,

6–14
ASTADR parameter, 6–16
ASTPRM parameter, 6–17
AST routine

attributes required for, 5–6
ASYNCHRONOUS attribute, 6–14

in condition handler, 8–4
use with system routines, 6–6

Asynchronous system trap routine
See AST routine

Atomicity, 3–19
Attributes

ASYNCHRONOUS, 6–14
BYTE

use with CDD/Repository, 4–10
CHECK, C–25
ENVIRONMENT, 2–1
FLOAT, C–25
for by descriptor passing mechanism, 5–9
HIDDEN, 2–4
INHERIT, 2–2
KEY, C–25
OPTIMIZE, C–25
UNBOUND attribute, 6–14
used during OpenVMS programming,

6–14
VOLATILE, 6–14

Automatic variable
in debugging, 4–2

B
Block

RMS control, 7–1
Bound procedure values, 9–2
Branch

to longword-aligned address, 3–11
/BRIEF qualifier

with /MAP on LINK command, 1–34
BYTE attribute

use with CDD/Repository, 4–10

Index–1

C
Calling block

function return value to, 5–2
Calling standard, 5–1
Call stack

contents of, 5–4
Call stack (OpenVMS Alpha systems)

contents of, 5–5
Call stack (OpenVMS I64 systems)

contents of, 5–4
Call stack (OpenVMS VAX systems)

contents of, 5–5
CASE statement

effect on efficiency, 3–14
run-time checking of, 1–7

CDD/Repository
accessing from source program, 4–9
creating directory hierarchies, 4–8, 4–9
definition of, 4–8
entering definitions, 4–9
equivalent HP Pascal data types, 4–10 to

4–12
example of use, 4–12
HP Pascal support of, 4–8

CDDL, 4–9
Character string

as function results, 5–2
run-time checking of, 1–7

CHECK attribute, C–25
effect on efficiency, 3–15

/CHECK qualifier, 1–7
CHF, 8–1
CLASS_A attribute, 5–13
CLASS_NCA attribute, 5–13
CLASS_S attribute, 5–13
CLASS_VS descriptor used with LIB$FIND_

FILE, 6–17
CLOSE procedure

with user-action parameters, 7–10
Code scheduling, 3–10

Comment processing (OpenVMS VAX
systems), 4–3

Common Data Dictionary
See CDD/Repository

Common Data Dictionary Language
See CDDL

Compilation statistics
in listing file, 1–28

Compilation switch
See Compile-time qualifiers

Compilation unit, 2–1
Compiler

command qualifiers, 1–3 to 1–25
diagnostics, C–1
generated labels, 3–11
invoking, 1–1

Compiler information, 1–25
Compile-time qualifiers, 1–3 to 1–25
Compiling

for optimal performance, 3–13
Condition handler

controlling execution, 8–4
declaring parameters for, 8–6
definition of, 8–1
establishing, 8–4
examples of, 8–11
for faults, 8–10
for traps, 8–10
overview of, 8–3
performing I/O to and from, 8–5
removing, 8–5
reporting conditions, 8–4
return value of, 8–7
system-defined, 8–3
writing of, 8–4 to 8–16

Condition handlers returning SS$_
CONTINUE, 8–9

Condition Handling Facility
See CHF

Condition signal, 8–3
Condition value, 8–8

definition of, 8–2
for faults, 8–11
for traps, 8–11

Index–2

Condition value (cont’d)
matching, 8–8
severity code of, 8–8

Conformant array parameters
different descriptor classes, 9–3

/CONSTANT qualifier, 1–8
Constants

compile-time evaluation of, 3–3
effect on efficiency, 3–14

Constructor
for schema variant record (example),

2–13
using OTHERWISE (example), 2–1

Conversion
of constants, 3–3

Cross-reference section
in listing file, 1–27

/CROSS_REFERENCE qualifier, 1–10
with /MAP on LINK command, 1–34

D
Data conversion, 9–3
Data layout, 9–3
Data structure parameters, 6–9
Data type

initial-state specifier for, 2–13
Data types

D_floating
restrictions, 4–10

G_floating
restrictions, 4–10

HP Pascal and CDDL equivalent, 4–10
Debugger

HP Pascal support of
assignment compatibility, 4–1
automatic variables, 4–2
examining LENGTH field, 4–2
type cast operator, 4–2
unreferenced variables, 4–1

Debugging
effects of optimization, 3–21

/DEBUG qualifier
use with /NOOPTIMIZE qualifier, 1–11
with LINK command, 1–33
with PASCAL command, 1–10

/DEBUG qualifier (cont’d)
with RUN command, 1–37

Declaration section
multiply declared identifiers, 2–4

Declaration sharing, 4–8 to 4–13
Default parameters

in system services, 6–11
DEFINE command

use with text library, 1–31
Definition file

for system routines, 6–1
Definition sharing, 4–8 to 4–13
Dependency checking

environment file, 2–5
Descriptor

parameter, 5–9
%DESCR mechanism specifier, 5–14
%DESCR mechanism used with LIB$FIND_

FILE, 6–17
/DESIGN qualifier, 1–11
/DIAGNOSTICS qualifier, 1–12
%DICTIONARY directive

use with CDD/Repository, 4–9
example of, 4–12

Dictionary Management Utility
See DMU

Directives
%DICTIONARY

using to access CDD/Repository
definitions, 4–8

DMU, 4–8

E
Emulation of Alpha instructions, 1–6
Enumerated type

used in graphical data model (example),
2–12

/ENUMERATION_SIZE qualifier, 1–12
Environment file

cascading inheritance of (figure), 2–3
cascading interfaces (figure), 2–9
creating, 1–13, 2–1
linking, 1–32

Index–3

Environment file dependency checking, 2–5
/ENVIRONMENT qualifier, 1–13
Error conditions

detected by STATUS and STATUSV, A–1
to A–4

Error messages
compiler, C–1 to C–65
run-time, C–65 to C–86
syntax of, 1–38

/ERROR_LIMIT qualifier, 1–13
Establisher routine

definition of, 8–2
ESTABLISH procedure, 8–4
Evaluation order of operands

effect of /NOOPTIMIZE, 1–18
EXAMINE command (debugger)

automatic variables, 4–2
use with LENGTH field, 4–2

Examples
of an implementation module, 2–17
of an interface module, 2–16
of separate compilation, 2–16

Exception condition, 8–1
/EXECUTABLE qualifier

with LINK command, 1–34
EXPAND command (LSE), 4–3
Extended attribute block

See XAB
Extensions to standard Pascal

detecting, 1–20
EXTERNAL attribute

compared with UNBOUND, 5–6
effect on routine call, 5–6

External routine declaration
example of, 6–4

F
FAB

access to, B–1
fields when calling OPEN, 7–5
passed as parameter by run-time library,

7–10
used to write user-action functions, 7–1

Fault
condition handling for, 8–10
converting to trap, 8–11

Fetch
with unsupported CDD/Repository data

type, 4–10
Field

initial-state specifier for, 2–12
File

locked component in, 7–15
sharing, 7–14

File access block
See FAB

File component
locked, 7–15

File type
of environment file, 1–13
of listing file, 1–15
of object file, 1–16

FLOAT attribute, C–25
/FLOAT qualifier, 1–13
Foreign mechanism

parameters, 5–15
Foreign mechanism specifier, 6–16
FOR statement

effect on efficiency, 3–14
Frame pointer

of unbound routine, 5–6
saved by routine call, 5–5

/FULL qualifier
with /MAP on LINK command, 1–34

Function
methods of returning result, 5–2
optimization of, 3–6
user-action, 7–10

G
GLOBAL attribute

compared with UNBOUND, 5–6
effect on routine call, 5–6

GOTO statement
effect on efficiency, 3–14

Index–4

Granularity, 3–19
/GRANULARITY qualifier, 1–14

H
HELP LANGUAGE command (debugger),

4–1
HIDDEN attribute, 2–4
HISTORY parameter

use when accessing files, 7–14
HP OpenVMS Calling Standard, 5–1

I
I/O processing, 7–1 to 7–16
IADDRESS function

effect on optimization, 3–17
use with VOLATILE and item lists, 6–14

Identifier
multiply declared, 2–4

IF-THEN-ELSE statement
effect on efficiency, 3–14

%IMMED mechanism specifier, 5–8
on default parameter, 6–11

%IMMED specifier on actual parameters,
6–16

Implementation-Dependent Behavior, 3–16
Implementation module, 2–7

See also Separate compilation
example of, 2–17

%INCLUDE directive
use with text library, 1–29

/INCLUDE qualifier, 1–15
with LINK command, 1–34

Indexed file, 7–2
locked component in, 7–15

Infinite loop
See Loop

Information-level error message
effect of /ERROR_LIMIT, 1–13
for extensions, 1–20

INHERIT attribute, 2–2
INITIALIZE attribute

compared with UNBOUND, 5–6
effect on routine call, 5–6

Initial-state specifier
for array variable (example), 2–1
on a data type, 2–13
on variant record fields (example), 2–12
variant record constructor (example),

2–13
Inline summary

in listing file, 1–28
Integer overflow

run-time checking of, 1–7, 3–15
Interface module, 2–7

See also Separate compilation
example of, 2–16

Item list, 6–14
using the SIZE function, 6–16
using the VOLATILE attribute with,

6–14

K
KEY attribute, C–25
Keywords

use with LSE, 4–3

L
Language expression

optimization of, 3–8, 3–16
order of evaluation, 3–8
reordering of, 3–2

Language-Sensitive Editor/Source Code
Analyzer

See LSE, LSE/SCA, 3–2
LIB$ESTABLISH routine

establishing condition handler with, 8–5
LIB$FIND_FILE routine

Resultant_Filespec parameter, 6–17
LIB$MATCH_COND function, 8–8
LIB$SIGNAL procedure

signaling condition with, 8–3
LIB$SIM_TRAP procedure, 8–11
LIB$STOP procedure

signaling condition with, 8–3

Index–5

LIBDEF.PAS definition file, 6–3
Library

object module, 1–36
of shareable images, 1–35
text, 1–29

/LIBRARY qualifier, 1–14
with LINK command, 1–34

LINELIMIT procedure, 7–10
LINK command, 2–2

examples of, 1–32
qualifiers for, 1–33 to 1–35
relinking implementation modules, 2–9
syntax of, 1–31
TO BEGIN DO execution order, 2–15

Linker
including shareable image as input to,

1–35
LIST attribute

with run-time library routine, 6–12
Listing file

compilation statistics, 1–28
cross-reference section, 1–27
inline summary, 1–28
machine code section, 1–27
OpenVMS VAX systems, 1–26
printing of, 1–26
source code, 1–27
table of contents, 1–27

Listing section
structured layout, 1–28

/LIST qualifier, 1–15
use with %DICTIONARY directive, 4–9

Locked record, 7–15
in indexed file, 7–15
in relative file, 7–15
unlocking, 7–15

Logical expression
optimization of, 3–8

LONG on pointer types, 6–21
Loop

See Infinite Loop
Loop unrolling, 3–10
LSE

comment processing
example of, 4–6

LSE (cont’d)
example of use within program, 4–5 to

4–8
HP Pascal support of

for keywords or tokens, 4–3
placeholder processing, 4–3

placeholder processing
example of, 4–6

LSE/SCA
support of HP Pascal, 4–2 to 4–4

M
Machine code section

in listing file, 1–27
/MACHINE_CODE qualifier, 1–15
Map file, 1–34
/MAP qualifier

with LINK command, 1–34
/MATH_LIBRARY qualifier, 1–15
MAXINT64 predeclared constant, 3–17
MAXINT predeclared constant, 3–17
Mechanism array, 8–6
Mechanism specifier

%DESCR, 5–14
%STDESCR, 5–13

Messages
compiler, C–1 to C–65
run-time, C–65 to C–86
syntax of, 1–38

Methods
to obtain access methods, 6–6
to obtain OpenVMS data types, 6–6

Migrate
bound procedure values, 9–2
default data layout, 9–2
INT, 9–2

Migrating HP Pascal programs
OpenVMS VAX to OpenVMS I64 or

OpenVMS Alpha, 9–1
Module, 2–1

finalization section, 2–15
implementations and interfaces, 2–7

restrictions, 2–10
initialization and finalization sections

restrictions, 2–10

Index–6

Module (cont’d)
initialization section, 2–15
interface inheritance path (figure), 2–7
multiply declared identifiers, 2–4
relinking implementation modules, 2–9
requirements for linking modules, 2–2
TO BEGIN DO section, 2–12

MTHDEF.PAS definition file, 6–3
/MULTILANGUAGE qualifier, 1–18

N
Name block fields

when calling OPEN, 7–9
NOACCURACY_SENSITIVE, 1–7
Nonstatic type

restriction in modules, 2–10
/NOOPTIMIZE qualifier, 1–18

effect on debugging, 1–11

O
Object file, 1–16
Object module library, 1–36

symbol table in, 1–36
/OBJECT qualifier, 1–16
OPEN procedure

default for VMS files, 7–4
related to RMS data structures, 7–5 to

7–10
with user-action parameters, 7–10

OpenVMS programming
attributes used during, 6–14

Operation, optimization of, 3–7
Operator

type cast
use with CDD/Repository, 4–10
use with debugger, 4–2

Optimal performance, 3–13
compiling for, 3–13

Optimization, 1–16, 3–1
code scheduling, 3–10
definition of, 3–1
effect on debugging, 3–21
kinds of, 3–2
loop unrolling, 3–10

Optimization (cont’d)
reducing errors through, 3–11
split lifetime analysis, 3–9
strength reduction, 3–9

OPTIMIZE attribute, C–25
/OPTIMIZE qualifier, 1–16
/OPTIONS qualifier

with LINK command, 1–35
OTHERWISE reserved word

initializing an array (example), 2–1
Overflow

run-time checking of, 1–7
Overflow checking

effect on efficiency, 3–15
Overview of record layout, 9–3

P
PACKED ARRAY OF CHAR type

as function result type, 5–3
Parameter

ASTADR parameter, 6–16
ASTPRM parameter, 6–17
data structure, 6–9
default value for, 6–11
descriptors, 5–9
for condition handler, 8–6
of LIB$FIND_FILE, 6–17
of SYSQIO, SYSQIOW, and SYS$FAO,

6–17
passing to run-time library routines,

6–12
passing to system services, 6–8
using foreign mechanisms on actual

parameters, 6–16
Parameter list, 5–2

of arbitrary length, 6–12
Parameter-passing semantics, 5–6
Parentheses

effect on efficiency, 3–14
PAS$FAB function, B–1
PAS$LINELIMIT logical name, 7–10
PAS$MARK2 function, B–2

Index–7

PAS$RAB function, B–2
PAS$RELEASE2 function, B–3
PASCAL command, 2–2

examples of, 1–3
qualifiers with, 1–3 to 1–25
specifying text libraries in, 1–30
syntax of, 1–1

PASDEF.PAS definition file, 6–3
Passing mechanisms, 5–7

by descriptor, 5–9
by immediate value, 5–8
by reference, 5–8
foreign, 5–15
summary of, 5–15
type translations, 6–7

Passing semantics
summary of, 5–15

PC
saved by routine call, 5–5

Performance
optimal, 3–13

Pipelining
software, 3–12

Placeholder processing, 4–3
/PLATFORMS qualifier, 1–18
Pointer

run-time checking of, 1–7
Pointer types

64-bit, 6–17
POS attribute

with data structure parameter, 6–9
Predeclared function

optimization of, 3–6
Predeclared routines

I/O processing, 7–1 to 7–16
Procedure calling standard, 5–1
Processor selection, 3–13
Processor tuning, 3–13
Program

See also Separate compilation
compiling, 1–1
linking, 1–31
modularity of, 2–1 to 2–19

Program counter
See PC

Program exit status
definition of, 8–2

Propagation
value, 3–8

Q
QUAD on pointer types, 6–21
Qualifiers

/ALIGN, 1–3
/ANALYSIS_DATA, 1–4
/ARCHITECTURE, 1–4
/ASSUME, 1–7
/BRIEF, 1–34
/CHECK, 1–7
/CONSTANT, 1–8
/CROSS_REFERENCE, 1–10
/DEBUG, 1–10, 1–33
/DESIGN, 1–11
/DIAGNOSTICS, 1–12
/ENUMERATION_SIZE, 1–12
/ENVIRONMENT, 1–13
/ERROR_LIMIT, 1–13
/EXECUTABLE, 1–34
/FLOAT, 1–13
/FULL, 1–34
/GRANULARITY, 1–14
/INCLUDE, 1–15, 1–34
/LIBRARY, 1–14, 1–34
/LIST, 1–15
/MACHINE_CODE, 1–15
/MAP, 1–34
/MATH_LIBRARY, 1–15
/MULTILANGUAGE, 1–18
/OBJECT, 1–16
/OPTIMIZE, 1–16
/OPTIONS, 1–35
/PLATFORMS, 1–18
/SHAREABLE, 1–35
/SHOW, 1–19
/STANDARD, 1–20
/SYNCHRONOUS_EXCEPTIONS, 1–21
/TERMINAL, 1–21

Index–8

Qualifiers (cont’d)
/TIE, 1–21
/TRACEBACK, 1–35
/USAGE, 1–22
/VERSION, 1–25
/WARNINGS, 1–25
with LINK command, 1–33 to 1–35
with PASCAL command, 1–3 to 1–25
with RUN command, 1–37
/ZERO_HEAP, 1–25

R
RAB

access to, B–2
fields when calling OPEN, 7–7
passed as parameter by run-time library,

7–10
used to write user-action functions, 7–1

READONLY attribute
on pointer variables, 3–17
with system services, 6–9

Read sharing, 7–14
Record

efficient use of nonstatic fields, 3–15
locking, 7–15
variant (example), 2–12

Record access block
See RAB

Record file address
See RFA

Record layout
overview, 9–3

Record Management Services
See RMS

%REF specifier on actual parameters, 6–17
Register

assignment of variables to, 3–2
contents saved by routine call, 5–5
effects of optimization, 3–21

Relative file
locked component in, 7–15

REPEAT statement
effect on efficiency, 3–14

Resignal
definition of, 8–2

Resultant_Filespec parameter of LIB$FIND_
FILE, 6–17

Return value
function, 5–2

REVERT procedure, 8–5
RFA

random access by, 7–3
RMS

file sharing capability, 7–14
locking components with, 7–15
used to perform I/O tasks, 7–1 to 7–16

Routine
I/O processing, 7–1 to 7–16
requirements for linking modules, 2–2
using foreign mechanisms on actual

parameters, 6–16
Routine activation

definition of, 8–2
RTL

opening and closing a file, 7–10
symbol definitions for, 6–3
using LIST attribute with, 6–12

RUN command, 2–2
examples of, 1–37
qualifier for, 1–37
syntax of, 1–37

Run-time error
detected by STATUS or STATUSV, A–1
messages, C–65 to C–86

Run-time library
See RTL

S
SAVE FILE command (LSE), 4–3
SCA

example of use within program, 4–5 to
4–8

support of HP Pascal, 4–2 to 4–8
Schema type

efficient use of nonstatic fields, 3–15
of variant record (example), 2–12

Index–9

Semantics
of parameter passing, 5–6, 5–15
variable with system services, 6–9

Separate compilation, 2–1 to 2–19
cascading inheritance (figure), 2–3
cascading interfaces (figure), 2–9
examples, 2–16
interface inheritance path (figure), 2–7
multiply declared identifiers, 2–4
relinking implementation modules, 2–9
TO BEGIN DO section, 2–12

SET type
run-time checking of, 1–7

Shareable image, 1–35
library, 1–35

/SHAREABLE qualifier
with LINK command, 1–35

Sharing of files, 7–14
SHOW PLACEHOLDER command (LSE),

4–3
/SHOW qualifier, 1–19
SHOW TOKEN command (LSE), 4–3
SIGDEF.PAS definition file, 6–3
Signal

definition of, 8–2
Signal array, 8–6

in condition handlers, 8–6
Size attributes

with data structure parameter, 6–9
SIZE function

used with item lists, 6–16
Software

pipelining, 3–12
Source code

in listing file, 1–27
Source Code Analyzer

See SCA
Split lifetime analysis, 3–9
SS$_CONTINUE return value

returned by condition handler, 8–7
SS$_RESIGNAL return value

returned by condition handler, 8–7
Stack frame

definition of, 8–2

/STANDARD qualifier, 1–20
STARLET file

contents of, 6–1
STATUS function

conditions detected by, A–1 to A–4
STATUSV function

conditions detected by, A–1 to A–4
%STDESCR mechanism specifier, 5–13
Strength reduction, 3–9
STRING type

as function result type, 5–3
Structured statement

effect on efficiency, 3–14
optimization of, 3–5

Structure layout, 1–28
Subexpression

optimization of, 3–4
Subrange

run-time checking of, 1–7
Symbol table

in object module library, 1–36
/SYNCHRONOUS_EXCEPTIONS qualifier,

1–21
SYS$FAO routine

P1..P20 parameters, 6–17
SYS$LP_LINES logical name, 1–26
SYS$QIO routine

P1..P6 parameters, 6–17
SYS$QIOW routine

P1..P6 parameters, 6–17
System routines, 6–1 to 6–13

calling of, 6–13
data structure parameter, 6–9
declaring, 6–5
definition file for, 6–1
optional parameters for, 6–11

System services, 6–13

T
Table of contents

in listing file, 1–27
Temporary variable

effect on efficiency, 3–15

Index–10

/TERMINAL qualifier, 1–21
Text library

defining a default, 1–31
specifying with %INCLUDE directive,

1–29
specifying with PASCAL command, 1–30

/TIE qualifier, 1–21
TO BEGIN DO section, 2–12, 2–15
Tokens

use with LSE, 4–3
/TRACEBACK qualifier

with LINK command, 1–35
Trap

condition handling for, 8–10
TRUNCATE attribute

use with system routines, 6–11
Type cast operator

use with CDD/Repository, 4–10
use with debugger, 4–2

Type conversion
of constants, 3–3

Type translations
access, 6–7
mechanism, 6–7

U
UNBOUND attribute, 6–14

effect on routine call, 5–6
Uninitialized variables

types not checked, 1–24
UNLOCK procedure, 7–15
Unwind

definition of, 8–2
of stack by condition handler, 8–7

$UNWIND function
called by condition handler, 8–7

/USAGE qualifier, 1–22
User-action function

example of, 7–11
parameters to, 7–11
to open a file, 7–10

V
Variable

effect on efficiency, 3–15
initialization of, 2–13
multiply declared identifiers, 2–4
pointer, 3–17
requirements for linking modules, 2–2
types not checked for uninitialization,

1–24
Variable semantics

with system services, 6–9
Variant record

initial-state specifiers for (example), 2–12
optimization considerations, 3–18

VARYING OF CHAR type
as function result type, 5–3
used with LIB$FIND_FILE, 6–17

Version information, 1–25
/VERSION qualifier, 1–25
VMS programming

using foreign mechanisms on actual
parameters, 6–16

using item lists, 6–14
VOLATILE attribute, 6–14

on pointer variables, 3–17
Volatility, 3–19

W
Warning-level error messages, 1–25

effect of /ERROR_LIMIT, 1–13
/WARNINGS qualifier, 1–25
WHILE statement

effect on efficiency, 3–14
WITH statement

effect on efficiency, 3–14
Write ordering, 3–19
Write sharing, 7–14

Index–11

X
XAB

fields when calling OPEN, 7–9
passed as parameter by run-time library,

7–10
used to write user-action functions, 7–1

Z
/ZERO_HEAP qualifier, 1–25

Index–12

