
Encryption for OpenVMS
Installation and Reference
Manual
Order Number: AA–EY97E–TE

July 2001

Revision/Update Information: This manual supersedes the
Encryption for OpenVMS Installation
and Reference Manual, Version 1.3

Operating System: OpenVMS VAX Versions 7.2, 7.3
OpenVMS Alpha Versions 7.2-1, 7.3

Software Version: Encryption for OpenVMS Version 1.6

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

Compaq, VAX, VMS, POLYCENTER, and the Compaq logo Registered in U.S. Patent and
Trademark Office.

OpenVMS is a trademark of Compaq Information Technologies Group, L.P. in the United states and
other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK6477

The Compaq OpenVMS documentation set is available on CD-ROM.

Contents

Preface . vii

1 Product Overview

1.1 Encryption Process . 1–1
1.1.1 DES Encryption Algorithm . 1–1
1.1.2 Keys . 1–1
1.1.3 Decryption . 1–2
1.2 Authentication Process . 1–3
1.3 Encryption Interfaces . 1–3
1.4 Compatibility . 1–3

2 Installing the Encryption for OpenVMS Software

2.1 Requirements . 2–1
2.2 Before You Run the Installation Procedure . 2–1
2.2.1 De-Installing Previous Versions . 2–1
2.2.2 Pre-Installation: Installing onto OpenVMS VAX Systems 2–1
2.2.3 Pre-Installation: Loading the License PAK . 2–2
2.2.3.1 Installing After You Load the License PAK 2–2
2.2.3.2 Installing Before You Load the License PAK 2–2
2.2.4 Disk onto Which You Install . 2–3
2.3 Installing the Software . 2–3
2.3.1 Installation Procedure . 2–3
2.4 After You Run the Installation Procedure . 2–5
2.4.1 Rereading the Release Notes . 2–5
2.5 De-Installing . 2–6

3 Using the Encryption for OpenVMS Features

3.1 Defining Keys . 3–1
3.1.1 Specifying the Key Name . 3–1
3.1.2 Specifying the Key Value . 3–2
3.1.3 Verifying Key Creation . 3–2
3.1.4 Specifying Key Storage Tables . 3–3
3.1.5 Key Maintenance . 3–4
3.2 Encrypting Files . 3–4
3.2.1 Input File Specification . 3–4
3.2.2 Output File Specification . 3–4
3.2.3 Displaying Processing Information . 3–5
3.2.3.1 FILES Keyword . 3–5
3.2.3.2 STATISTICS Keyword . 3–5

iii

3.2.4 Specifying Files to Encrypt . 3–6
3.2.4.1 /BACKUP Qualifier . 3–6
3.2.4.2 /BEFORE Qualifier . 3–6
3.2.4.3 /BY_OWNER Qualifier . 3–7
3.2.4.4 /CONFIRM Qualifier . 3–7
3.2.4.5 /EXCLUDE Qualifier . 3–7
3.2.4.6 /EXPIRED Qualifier . 3–8
3.2.4.7 /MODIFIED Qualifier . 3–8
3.2.4.8 /SINCE Qualifier . 3–9
3.2.5 Deleting Encrypted Files . 3–9
3.2.5.1 /DELETE Qualifier . 3–9
3.2.5.2 /ERASE Qualifier . 3–10
3.2.6 Encryption Algorithms . 3–10
3.2.7 Encryption Algorithm Qualifiers . 3–11
3.2.7.1 /KEY_ALGORITHM Qualifier . 3–12
3.2.7.2 /DATA_ALGORITHM Qualifier . 3–12
3.2.8 File Compression . 3–12
3.2.9 Displaying the Version Number . 3–13
3.3 Authenticating Files . 3–13
3.3.1 Associating MACs with Files . 3–14
3.3.2 Checking Files . 3–14
3.3.3 Specifying a File for MACs Generated from File Contents 3–15
3.3.4 Specifying a Security MAC File . 3–15
3.3.5 Specifying a Listing File . 3–15
3.3.6 Logging the Authentication Operation . 3–16
3.4 Deleting Key Definitions . 3–16
3.5 Decrypting Files . 3–17
3.5.1 Input File Specification . 3–17
3.5.2 Output File Specification . 3–18
3.5.3 Displaying Processing Information . 3–18
3.5.3.1 FILES Keyword . 3–18
3.5.3.2 STATISTICS Keyword . 3–18
3.5.4 Specifying Files to Decrypt . 3–19
3.5.4.1 /BACKUP Qualifier . 3–19
3.5.4.2 /BEFORE Qualifier . 3–20
3.5.4.3 /BY_OWNER Qualifier . 3–20
3.5.4.4 /CONFIRM Qualifier . 3–20
3.5.4.5 /EXCLUDE Qualifier . 3–21
3.5.4.6 /EXPIRED Qualifier . 3–21
3.5.4.7 /MODIFIED Qualifier . 3–22
3.5.4.8 /SINCE Qualifier . 3–22
3.5.5 Deleting Decrypted Files . 3–22
3.5.5.1 /DELETE Qualifier . 3–23
3.5.5.2 /ERASE Qualifier . 3–23
3.5.6 Algorithm Qualifiers . 3–23
3.6 Encrypting Save Sets . 3–24
3.6.1 Restoring Files . 3–25
3.6.2 Encrypting Distribution Files . 3–26

iv

4 Programming with Encryption for OpenVMS Routines

4.1 How the Routines Work . 4–2
4.1.1 DES Key and Data Semantics . 4–2
4.2 Maintaining Keys . 4–3
4.3 Operations on Files . 4–4
4.4 Operations on Records and Blocks . 4–4
4.5 Routine Descriptions . 4–5
4.5.1 Specifying Arguments . 4–5
4.5.2 Bitmasks . 4–5
4.5.3 Error Handling . 4–5

ENCRYPT$DECRYPT . 4–6
ENCRYPT$DECRYPT_ONE_RECORD . 4–8
ENCRYPT$DEFINE_KEY . 4–10
ENCRYPT$DELETE_KEY . 4–12
ENCRYPT$ENCRYPT . 4–13
ENCRYPT$ENCRYPT_FILE . 4–15
ENCRYPT$ENCRYPT_ONE_RECORD . 4–18
ENCRYPT$FINI . 4–20
ENCRYPT$GENERATE_KEY . 4–21
ENCRYPT$INIT . 4–23
ENCRYPT$STATISTICS . 4–26

A Command Reference

BACKUP /ENCRYPT . A–2
DECRYPT . A–3
ENCRYPT . A–6
ENCRYPT /AUTHENTICATE . A–9
ENCRYPT /CREATE_KEY . A–12
ENCRYPT /REMOVE_KEY . A–14

B Error Messages

B.1 ENCRYPT and DECRYPT Messages . B–1
B.2 BACKUP Utility Messages . B–10

Index

Figures

1–1 Encrypting a File . 1–2
1–2 Decrypting a File . 1–3
3–1 Relationship of Keys and Algorithms . 3–11
4–1 OpenVMS Numbering Overlay on FIPS-46 Numbering 4–3
4–2 NBS Numbering Overlay on an OpenVMS Quadword 4–3

v

Tables

1–1 Components of the Encryption Operation . 1–2
4–1 Comparison of NBS and OpenVMS Numbering Conventions 4–2
4–2 Routines for Maintaining Keys . 4–3
4–3 ENCRYPT$DEFINE_KEY Flags . 4–11
4–4 ENCRYPT$ENCRYPT_FILE Flags . 4–16

vi

Preface

The Encryption for OpenVMS product (Encryption) is a standalone layered
product that runs on OpenVMS Alpha and OpenVMS VAX systems.

Purpose
The purpose of this manual is to explain the Encryption for OpenVMS product,
show you how to use it, and describe how to write programs with its application
programming interface.

Intended Audience
This document is for OpenVMS programmers, system managers, and users of this
security software.

Document Structure
This manual consists of four chapters and two appendixes.

• Chapter 1 introduces the features of the Encryption for OpenVMS product.

• Chapter 2 shows how to install the software.

• Chapter 3 describes how to use the Encryption features.

• Chapter 4 describes how to develop programs with the Encryption
for OpenVMS programming interface and provides complete reference
information for the routines.

• Appendix A describes the syntax of the Encryption commands.

• Appendix B explains the error messages generated by the Encryption
commands.

Related Information
For additional information about the Encryption for OpenVMS product refer to
the Software Product Description (SPD) 26.74.xx.

For additional information about Compaq OpenVMS products and services, access
the Compaq website at the following location:

http://www.openvms.compaq.com/

vii

Terminology
This document uses the terms:

• Encryption — the software in the Encryption for OpenVMS product. This
software is a separately orderable OpenVMS layered product.

• Command — a Digital Command Language (DCL) command. Any other
command is identified as such.

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Visit the following World Wide Web address for information about how to order
additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x or
GOLD x

A sequence such as PF1 x or GOLD x indicates that you must
first press and release the key labeled PF1 or GOLD and then
press and release another key or a pointing device button.

GOLD key sequences can also have a slash (/), dash (–), or
underscore (_) as a delimiter in EVE commands.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

viii

.

.

.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

{ } In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of
manuals, or variables.

Variables include information that varies in system
output (Internal error number), in command lines
(/PRODUCER=name), and in command parameters in
text (where device-name contains up to five alphanumeric
characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, the name of a node, the name of a user
account, or the abbreviation for a system privilege.

Monospace type Monospace type indicates command examples and interactive
screen displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes — binary, octal, or
hexadecimal — are explicitly indicated.

ix

1
Product Overview

The OpenVMS operating system provides several data protection schemes. For
example, by using UIC-based protection you can protect data by controlling
access to files. You can use ACLs to refine access control to specific groups or
individual users. For a protection scheme with yet greater security for your data,
you can encrypt the files. Encrypting a file transforms it into unrecognizable,
unintelligible data, even if someone manages to gain access to it.

1.1 Encryption Process
The process of encryption takes readable data, called plaintext, and uses
a mathematical algorithm to transform the plaintext into an unreadable,
unintelligible form, called ciphertext.

To encrypt the plaintext data, the encryption operation requires a key. The
key is a variable that controls the encryption operation. The same plaintext,
encrypted with different keys, results in different ciphertext. In addition,
repeated encryption of the same plaintext with the same key also results in
different ciphertext each time.

1.1.1 DES Encryption Algorithm
The algorithm used by the Encryption for OpenVMS product is a software
implementation of the Data Encryption Standard (DES) defined by the National
Bureau of Standards (NBS). The NBS document FIPS-PUB-46 describes the
operation of the DES algorithm in detail.

Because the DES algorithm is public knowledge, the security of your ciphertext
files depends on the keys you define.

1.1.2 Keys
The Encryption for OpenVMS implementation uses two keys:

• Key that you provide

• Key that the software randomly generates, called the data key.

The key you provide encrypts the data key, which is stored in the first block of
the ciphertext file. The process uses the encrypted data key to encrypt the file.
You have the option to encrypt either the data key or the file. Table 1–1 shows
the components of the encryption process.

Product Overview 1–1

Table 1–1 Components of the Encryption Operation

Input Algorithm Output

User-supplied data key Key encryption Encrypted key

Data (plaintext) and
the encrypted data key

Data encryption Encrypted file

Figure 1–1 illustrates the data encryption operation. In this example, the input
file contains the text "secret" and the key has been defined as "elmno jflghi." The
output file is unreadable text.

Figure 1–1 Encrypting a File

PLAINTEXT

KEY

OPERATION

CIPHERTEXT

ZK−8662A−GE

elmno
jflghi

secret

Encryption
0 $5R w%

+

=

1.1.3 Decryption
To gain access to the data in an encrypted file, reverse the encryption process by
performing the decryption process. Decryption uses a mathematical encryption
algorithm to change ciphertext into the original plaintext.

Before decrypting a file, the software checks the validity of the key you provide.
This validation is a checksum operation on the encrypted data stored in the first
block of the ciphertext file.

When you specify the DES algorithm to decrypt a file, use the key that is identical
to the one used in the original encryption process.

Warning

Only the correct key can decrypt your file. If you lose or forget the key,
you cannot gain access to the data in any understandable, useful form.

Figure 1–2 shows the data decryption operation. In this example, the input file
holds unreadable text. The key, "elmno jflghi," is the same key that was used to
encrypt this file. The output file contains the readable text "secret."

1–2 Product Overview

Figure 1–2 Decrypting a File

CIPHERTEXT

0 $5R w%

PLAINTEXT

secret

KEY

OPERATION

ZK−8663A−GE

elmno
jflghi

+ =
Decryption

1.2 Authentication Process
The Encryption for OpenVMS software detects any modification made to
both plaintext and ciphertext files. This process is called authentication.
Authentication checks for and reports on any changes to:

• File data

• File location

• Authentication key

• Security settings

The software calculates two Message Authentication Codes (MACs): one based
on file contents and one based on security settings. The software then associates
them with one or more files and stores this information. When you subsequently
check file integrity, the software recalculates the MACs and compares them
against the stored codes.

For information about how to authenticate files, see Section 3.3.

1.3 Encryption Interfaces
To define and delete keys and to encrypt and decrypt files, use the following
Encryption interfaces:

• DCL commands — for interactive encryption functions. These commands
encrypt files and backup save sets (see Chapter 3).

• Callable routines — for application programming. These routines encrypt
files and small blocks (Chapter 4).

1.4 Compatibility
The Encryption for OpenVMS software includes full backward compatibility with
previous releases of the product.

In addition, encrypted files are fully compatible between OpenVMS systems.
You can copy them from system to system and do all remote file operations that
OpenVMS systems support for other kinds of files. In addition, you can encrypt
files on one system and decrypt them on another system that also runs the
Encryption software.

Product Overview 1–3

Inter-system encryption operations with non-OpenVMS platforms are not
supported.

1–4 Product Overview

2
Installing the Encryption for OpenVMS

Software

The Encryption for OpenVMS layered product uses the POLYCENTER Software
Installation procedure.

For CD kits, the POLYCENTER Software Installation procedure automatically
identifies and installs the distribution kit that is appropriate to your platform —
either an OpenVMS Alpha or OpenVMS VAX system.

2.1 Requirements
Before you start the procedure, ensure that you meet the following installation
requirements:

• Operating system — one of the following:

OpenVMS Alpha Version 7.2-1, 7.3

OpenVMS VAX Version 7.2, 7.3

• License (see Software Product Description [SPD] 26.74.xx)

• Disk space

2000 blocks

• If the Encryption for OpenVMS software is not currently installed on your
system, the installation procedure may require an additional 1000 blocks.

For complete information about hardware and software requirements,
see the SPD.

2.2 Before You Run the Installation Procedure
Before you start the installation, complete the following pre-installation tasks.

2.2.1 De-Installing Previous Versions
Compaq recommends that you de-install previous versions of Encryption for
OpenVMS before you install Version 1.6. See Section 2.5 for de-installation
information.

2.2.2 Pre-Installation: Installing onto OpenVMS VAX Systems
If you are installing the kit onto an OpenVMS VAX system, follow these steps:

1. Check that the operating system is registered with the POLYCENTER
Software. Enter:

$ PRODUCT SHOW PRODUCT VMS

Installing the Encryption for OpenVMS Software 2–1

2. If the output shows that no products were found, register the operating
system:

$ PRODUCT REGISTER PRODUCT VMS /SOURCE=SYS$UPDATE:

2.2.3 Pre-Installation: Loading the License PAK
Before you install onto a newly licensed node or cluster, register the Product
Authorization Key (License PAK). Use the License Management facility (LMF).
If you are installing Encryption for OpenVMS Version 1.6 as an update onto a
node or cluster already licensed for this software, you have already completed the
License PAK registration requirements.

Your PAK might be shipped along with the kit if you ordered the license and
media together. Otherwise, it is shipped separately to a location based on your
license order.

To register a license, follow these steps:

1. Log in to the SYSTEM account.

2. Do one of the following steps:

• Run SYS$UPDATE:VMSLICENSE.COM and enter the data from your
License PAK.

• Enter the DCL LICENSE REGISTER command.

• To run the software on multiple cluster nodes, perform a LICENSE LOAD
on each node.

For complete information about LMF, see the OpenVMS License Management
Utility Manual.

The POLYCENTER Software Installation procedure automatically calls the
Installation Verification Procedure (IVP). The availability of a valid license is
checked. If your Encryption license is registered, the procedure runs the IVP. If
your license is not registered, you receive a message showing that the installation
is complete, but verification cannot be performed.

2.2.3.1 Installing After You Load the License PAK
When you register your PAK before starting the installation, the IVP might
display these messages during the installation procedure:

% Verification of installation starting

Displayed when IVP is run.

% Successful verification of installation

Displayed when the IVP is run without any errors.

2.2.3.2 Installing Before You Load the License PAK
If you install the Encryption software before registering your PAK, the IVP might
display these messages during the installation procedure:

% Installation complete, but verification cannot be run because
license for ENCRYPTION is not available

A valid license is not loaded.

% Installation complete, but verification cannot be run because
test data files are not in SYS$COMMON:[SYSTEST.ENCRYPTION]

2–2 Installing the Encryption for OpenVMS Software

You set the destination for the installed files to a device other than
SYS$COMMON.

% Verification of installation failed

The IVP cannot successfully complete.

2.2.4 Disk onto Which You Install
Compaq strongly suggests that you install the software onto the system
disk SYS$COMMON:. If you use a different device, neither the IVP nor the
Encryption software can run until you complete these additional steps:

• Edit the IVP.

• Edit the Encryption startup procedure.

• Edit your system startup procedure.

• Modify other associated files and utilities.

2.3 Installing the Software
The Encryption for OpenVMS CD kits support both OpenVMS Alpha systems and
OpenVMS VAX systems (see Section 2.3.1).

2.3.1 Installation Procedure
To start the procedure, follow these steps:

1. Log in to the SYSTEM account.

2. Refer to the Software Product Library Master Index for the correct CD
number and directory name for the Encryption software. Insert the CD into
the drive.

3. Mount the CD using the volume label of the CD containing the encryption
software. Instructions on how to mount the CD are contained in the Software
Product Library Getting Started document. Additional information on
mounting the discs is contained in the [README] directory on disc 1. The
following example assumes that SPRING is your system’s name and DKA400
is the name of the device onto which you are mounting the compact disc
medium.

$ MOUNT /SYSTEM DKA400: volume-label

%MOUNT-I-WRITELOCK, volume is write locked
%MOUNT-I-MOUNTED, volume-label mounted on _SPRING$DKA400:

4. Check the directory of the CD. Enter the DIRECTORY command and specify
the installation device, for example:

$ DIRECTORY DKA400:[ENCRYPT0106...]

Directory DKA400:[ENCRYPT0106]

DOCUMENTATION.DIR;1 KIT.DIR;1

Total of 2 files.

Directory DKA400:[ENCRYPT0106.DOCUMENTATION]

Installing the Encryption for OpenVMS Software 2–3

CPQ-VMS-ENCRYPT-V0106_RELEASE_NOTES.TXT;1
CPQ-VMS-ENCRYPT-V0106_RELEASE_NOTES.PS;1
CPQ-VMS-ENCRYPT-V0106_SPD.PS;1
CPQ-VMS-ENCRYPT-V0106_SPD.TXT;1
CPQ-VMS-ENCRYPT-V0106_COVER_LETTER.TXT;1
CPQ-VMS-ENCRYPT-V0106_COVER_LETTER.PS;1

Total of 6 files.

Directory DKA400:[ENCRYPT0106.KIT]

CPQ-AXPVMS-ENCRYPT-V0106--1.PCSI;1
CPQ-VAXVMS-ENCRYPT-V0106--1.PCSI;1

Total of 2 files.

Grand total of 3 directories, 10 files.

5. Finish reading the Release Notes, if you have not already done so.

To read them on-line, enter the TYPE command, as follows:

$ TYPE /PAGE -
_$ DKA400:[ENCRYPT0106.DOCUMENTATION]CPQ-VMS-ENCRYPT-V0106.RELEASE_NOTES

To print a PostScript file, enter the PRINT command. The following example
prints the Release Notes, mounted on DKA400:, to print queue PRINTER_7:

$ PRINT /QUEUE=PRINTER_7 -
_$ DKA400:[ENCRYPT0106.DOCUMENTATION]DEC-VMS-ENCRYPT-V0106_RELEASE_NOTES.PS

6. Run the installation procedure. Use the same command line whether you are
installing onto an OpenVMS Alpha system or an OpenVMS VAX system. The
POLYCENTER Software Installation procedure selects the appropriate save
set for your platform. For example, if the CD is mounted on device DKA400:,
enter:

$ PRODUCT INSTALL ENCRYPT /SOURCE=DKA400:ENCRYPT0106

If you omit the /SOURCE qualifier, the POLYCENTER Software
Installation procedure searches in the location defined by the logical
name PCSI$SOURCE. If you omit both /SOURCE and PCSI$SOURCE,
the procedure searches your current default directory for the
Encryption for OpenVMS kit.

In the following example, the command installs the software from the
CD-ROM with device name DKA400: onto an OpenVMS Alpha system.

$ PRODUCT INSTALL ENCRYPT /SOURCE=DKA400:[ENCRYPT0106.KIT]

The following product has been selected:

CPQ AXPVMS ENCRYPT V1.6 Layered Product

Do you want to continue? [YES]) Return

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirements.

CPQ AXPVMS ENCRYPT V1.6: Compaq Encryption for OpenVMS Alpha

(c) Compaq Computer Corporation 2001. All rights reserved.

Do you want the defaults for all options? [YES]) Return

Do you want to review the options? [NO] Return

2–4 Installing the Encryption for OpenVMS Software

Execution phase starting ...

The following product will be installed to destination:
CPQ AXPVMS ENCRYPT V1.6 DISK$ALPHA:[VMS$COMMON.]

Portion done: 0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%

The following product has been installed:
CPQ AXPVMS ENCRYPT V1.6 Layered Product

CPQ AXPVMS ENCRYPT V1.6: Compaq Encryption for OpenVMS Alpha

@ SYS$STARTUP:ENCRYPT_START.COM required in system startup

Note: Upgrading OpenVMS requires Encryption product reinstallation

Refer to SYS$HELP: CPQ-VMS-ENCYRPT-V0106.RELEASE.NOTES for more information.

7. To see a list of the files installed, issue the following command:

PRODUCT LIST ENCRYPT/SOURCE=[pcsi kit location]

2.4 After You Run the Installation Procedure
When the installation is finished, before you run the Encryption for OpenVMS
software, follow these post-installation steps:

1. Edit the system startup procedure, SYS$STARTUP:SYSTARTUP_VMS.COM.

• Add the following line:

$ @SYS$SYSROOT:[SYS$STARTUP]ENCRYPT_START.COM

As part of installation, PCSI runs the Encryption startup procedure.
However, ENCRYPT_START.COM also needs to be run upon each reboot.
Adding this instruction to your system startup procedure ensures that
ENCRYPT_START.COM runs whenever your system reboots.

• If you plan to use the Encryption programming interface from an image
installed with privileges, add this line:

$ INSTALL ADD SYS$LIBRARY:ENCRYPSHR.EXE /OPEN /HEADER
/SHARED

The programming interface resides in the ENCRYPSHR shareable image.
The INSTALL ADD command installs the ENCRYPSHR shareable image
as a known image.

2. Log out and then log in again.

2.4.1 Rereading the Release Notes
After installation, you can access the Encryption for OpenVMS Release
Notes, even if you dismounted the distribution medium, or if you deleted
a copy of the Release Notes from the Encryption directory. Use the
PRODUCT EXTRACT RELEASE_NOTES command to copy the document
from the installed kit to a file.

The default file name is DEFAULT.PCSI$RELEASE_NOTES, in your current
directory. To specify a different name for the file, use the /FILE qualifier. Follow
these steps:

1. Ensure that one of the following is true:

• The logical name PCSI$SOURCE is defined to point to the directory
containing the .PCSI files.

• The directory containing the .PCSI files is your default directory.

Installing the Encryption for OpenVMS Software 2–5

2. Enter the PRODUCT EXTRACT RELEASE_NOTES command. For example:

$ PRODUCT EXTRACT RELEASE_NOTES CPQ-VMS-ENCRYPT-V0106.RELEASE_NOTES -
_$ /FILE=[ENCRYPT0106]RELEASE_NOTES.TXT

2.5 De-Installing
To de-install Encryption files, use the PRODUCT REMOVE command:

$ PRODUCT REMOVE ENCRYPT

The following product has been selected:
CPQ AXPVMS ENCRYPT V1.6 Layered Product

Do you want to continue? [YES] Return

The following product will be removed from destination:
CPQ AXPVMS ENCRYPT V1.6 DISK$COE_X92N:[VMS$COMMON.]

Portion done: 0%...20%...30%...40%...50%...60%...70%...80%...90%...100%

The following product has been removed:
CPQ AXPVMS ENCRYPT V1.6 Layered Product

2–6 Installing the Encryption for OpenVMS Software

3
Using the Encryption for OpenVMS Features

Interactively using the features of the Encryption for OpenVMS product consists
of the following tasks:

• Defining keys (Section 3.1)

• Encrypting files (Section 3.2)

• Authenticating files (Section 3.3)

• Deleting key definitions (Section 3.4)

• Decrypting files (Section 3.5)

• Encrypting save sets (Section 3.6)

Use DCL commands to accomplish these tasks. For information about
adding encryption and decryption processes to your software applications, see
Chapter 4.

3.1 Defining Keys
To define a key, enter the ENCRYPT /CREATE_KEY command:

ENCRYPT /CREATE key-name key-value [qualifiers]

where

key-name is the name of the key.

key-value is the value you assign to the key.

qualifiers are options that control the format of the key value or where the key is
stored.

3.1.1 Specifying the Key Name
To specify key-name on the ENCRYPT /CREATE_KEY command line, specify a
character string using the following rules:

• Valid length: 1 to 243 characters.

• Valid: alphanumeric characters, dollar signs, and underscores.

• Case sensitive: no.

To help you remember the name, use one that has meaning to you.

Note

Key names beginning with ENCRYPT$ are reserved for Compaq.

Using the Encryption for OpenVMS Features 3–1

3.1.2 Specifying the Key Value
To specify a key-value on the ENCRYPT /CREATE_KEY command line, use either
a text string or a hexadecimal constant, using the following rules:

ASCII text string (default):

• Length: 8 to 240 characters.

• The string is not case sensitive.

• If you use any non-alphanumeric characters, for example, space characters,
enclose them in quotation marks (" ").

Example: This command defines a key named HAMLET with character string
value And you yourself shall keep the key of it:

$ ENCRYPT /CREATE_KEY HAMLET

_ Key value: "And you yourself shall keep the key of it"

Hexadecimal constant

• Use the /HEXADECIMAL qualifier.

• Valid characters: 0 to 9, A to F.

• Valid minimum length: 15 characters.

• Do not enclose the value in quotation marks.

Example: The following command defines a key named ARCANE with
hexadecimal value 2F4A98F46BBC11D:

$ ENCRYPT /CREATE_KEY /HEX ARCANE 2F4A98F46BBC11D

In addition, when you specify key-value, do not use weak keys. These are key
values with a pattern of repeated characters or groups of characters. Using a
pattern results in an encrypted form that might be easy for unauthorized users to
decrypt. For example, the hexadecimal constant 0101010101010101 and the text
string ’abcabcabc’ are weak keys.

Using weak keys might produce the following consequences:

• Security of encrypted data may be at risk.

• Encryption may be the same as decryption.

• Encryption with one weak key followed by encryption with another weak key
may result in the original plaintext.

Compaq supplies a table of known weak keys with the Encryption software. The
software checks keys you define against this table and displays an error message
when you supply a weak key.

3.1.3 Verifying Key Creation
To verify the successful creation of a key, use the /LOG qualifier. For example,
this command reports that the key HAMLET is defined:

$ ENCRYPT /CREATE_KEY /LOG HAMLET

_ Key value: "And you yourself shall keep the key of it"
%ENCRYPT-S-KEYDEF, key defined for key name = HAMLET

3–2 Using the Encryption for OpenVMS Features

3.1.4 Specifying Key Storage Tables
When you define a key, it is stored in encrypted form in a key storage table. The
key value is stored under the key name. When you encrypt files, the process
takes this stored information and does the following:

• It compresses the key value taken from the key storage table into a key
consisting of 8 bytes of binary digits.

• It ensures the odd parity of each byte by modifying one of two things for each
byte:

Sign bit, as needed (default)

Low bit (bit 0) (if you specify the /HEXADECIMAL qualifier)

• For text string key values, it converts letters to uppercase, reduces multiple
consecutive spaces to one space, removes some punctuation characters, and
compresses the key string.

As a result, you do not need to remember the exact syntax of the key value.
For example, if you define a key value with two spaces between each word,
remembering this spacing is not required to respecify the key.

Key storage tables determine which users can access keys. The following key
storage tables control user access:

• Process key storage table (default) — accessible only to the process that
defined the keys within the table.

If you are defining a key that is intended for use by other processes, specify
the appropriate qualifier (/JOB, /GROUP, or /SYSTEM) so that the intended
users of the key can access it.

• Job key storage table — accessible only to processes within the same job tree
as the process that defined the keys within the table.

• Group key storage table — accessible to users in the same UIC group as the
process that defined the keys in the table.

• System storage table — accessible to all system users.

To enter keys into the key storage tables, use the following
ENCRYPT /CREATE_KEY qualifiers:

• /PROCESS

• /JOB

• /GROUP (requires GRPNAM or SYSPRV privilege)

• /SYSTEM (requires SYSPRV privilege)

Defines a key that anyone working on the system can use to encrypt his or
her files. Because the key is stored in encrypted form, they cannot see the
value of the key. The key is available for use until the system is rebooted.

For example, the following command defines a key named SYSMASTER and
places it in the system key storage table.

$ ENCRYPT /CREATE_KEY /SYSTEM SYSMASTER

_$ Key Value: "The human heart has hidden treasures, in secret kept,
in silence sealed"

Using the Encryption for OpenVMS Features 3–3

3.1.5 Key Maintenance
When you encrypt a file, the key you use is like a password to that file. It is
important to keep it secret. In addition, ensure that you remember the key value.
You need both the key and the value to decrypt the file.

A key stored in the process key storage table lasts for the life span of the process
that defined the keys in the table. Like other process-specific structures, the
process key storage table disappears when you log out.

Key values that are meaningful to you are the most memorable, but avoid easily
guessed choices such as your nickname or the make of your car. Never post a key
name or value in your office or store it online. Like operating system passwords,
increasing the length of a key value lessens the possibility of discovery.

The DES algorithm requires that a key value have a minimum length of eight
non-null characters. To improve the security of the key value, specify more than
eight.

3.2 Encrypting Files
After you define a key with the ENCRYPT /CREATE_KEY command, use this key
to encrypt files. Enter the ENCRYPT command. In addition to the key, specify a
plaintext file. The syntax of the ENCRYPT command is as follows:

ENCRYPT file-spec key-name [qualifiers]

where

file-spec is the plaintext input file specification.

key-name is the name of the key.

qualifiers are options that control the encryption process or the selection of files you
want to encrypt

3.2.1 Input File Specification
For the plaintext file specified on the ENCRYPT command line, use a file that
resides on disk and that is not a directory file.

To specify multiple input files, use wildcard characters in the file specification. To
control file selection, specify the appropriate ENCRYPT command qualifiers (see
Section 3.2.4). Do not use wildcard characters to specify directory files or files
containing bad blocks.

3.2.2 Output File Specification
The result of the encryption operation is a ciphertext file. One ciphertext file is
created for each input file that is encrypted.

By default, the ENCRYPT command writes each ciphertext file to a separate
output file with the same name except that it has a version number one higher
than that of the current input file.

To specify an alternate output file specification, use the /OUTPUT qualifier.
Specify only the file specification parts that you want to change from the defaults.
For example, the following command encrypts all the files in the current directory
that match the wildcard file specification *.COM. The /OUTPUT qualifier specifies
that any output files created have a file type of .ENC. FRANCISSCOTT is the key
used to encrypt the files.

$ ENCRYPT *.COM /OUTPUT=.ENC FRANCISSCOTT

3–4 Using the Encryption for OpenVMS Features

Do not specify a file that already exists. For example, you cannot name the
output file NEWS.DAT;2 if NEWS.DAT;2 already exists. However, specifying
NEWS.DAT as both the input and output files is valid.

3.2.3 Displaying Processing Information
By default, information about the encryption operation is not displayed. To
display information about file encryption operations on SYS$COMMAND, use the
/SHOW qualifier. The /SHOW qualifier has the format:

/SHOW=keyword

or

/SHOW=(keyword-list)

Specify one or more of the following keywords:

• FILES (Section 3.2.3.1)

• STATISTICS (Section 3.2.3.2)

3.2.3.1 FILES Keyword
The FILES keyword displays the file specifications of the input and output files.
For example, /SHOW=FILES in the following command specifies that each input
and output file specification be displayed as it is encrypted.

$ ENCRYPT /SHOW=FILES *.COM FRANCISSCOTT

%ENCRYPT-S-ENCRYPTED, DISK2:[FLYNN]MOVE.COM.2 encrypted to DISK2:[FLYNN]MOVE.COM;3 (8 blocks)
.
.
.

3.2.3.2 STATISTICS Keyword
Use the STATISTICS keyword to display encryption stream statistics after the
completion of each file operation. The statistics displayed are:

• Bytes processed

• Internal records processed

• CPU time consumed within the encryption algorithm

The following command specifies that encryption stream statistics be displayed on
SYS$COMMAND.

$ ENCRYPT /SHOW=STATISTICS *.COM FRANCISSCOTT

%ENCRYPT-S-STATISTICS, encryption stream statistics:
Total Records: 65
Total Bytes: 4083
Total Time: 00:00:01.63

.

.

.

Using the Encryption for OpenVMS Features 3–5

3.2.4 Specifying Files to Encrypt
To specify multiple input files, use the ENCRYPT command with wildcard
characters in the input file specification.

The following ENCRYPT command qualifiers can help you select files:

• /BACKUP (Section 3.2.4.1)

• /BEFORE (Section 3.2.4.2)

• /BY_OWNER (Section 3.2.4.3)

• /CONFIRM (Section 3.2.4.4)

• /EXCLUDE (Section 3.2.4.5)

• /EXPIRED (Section 3.2.4.6)

• /MODIFIED (Section 3.2.4.7)

• /SINCE (Section 3.2.4.8)

3.2.4.1 /BACKUP Qualifier
The /BACKUP qualifier selects files for encryption according to the date of their
most recent backup. This qualifier is meaningful only when used with either the
/BEFORE or the /SINCE qualifier. The /BACKUP qualifier has the format:

/BACKUP /BEFORE[=time]

or

/BACKUP /SINCE[=time]

where

time is an OpenVMS time.

For more information on time specifications, see the OpenVMS DCL Dictionary.
If you do not specify a time, TODAY is used. TODAY is the current day, month,
and year at 00:00:00.

The following command selects for encryption all files in the current directory
matching the wildcard file specification of *.COM that had backup copies made
before 00:00:00 15-APR-2001.

$ ENCRYPT /BACKUP /BEFORE=15-APR-2001 *.COM FRANCISSCOTT

Do not use the /BACKUP qualifier with either the /EXPIRED or the /MODIFIED
qualifier.

3.2.4.2 /BEFORE Qualifier
The /BEFORE qualifier selects files for encryption that have a creation time
before the time specified with the qualifier. The /BEFORE qualifier has the
format:

/BEFORE[=time]

where

time is an OpenVMS time.

For more information on time specifications, see the OpenVMS DCL Dictionary.
If you do not specify a time, TODAY is used. TODAY is the current day, month,
and year at 00:00:00.

3–6 Using the Encryption for OpenVMS Features

The following command selects for encryption all files in the current directory
matching the wildcard file specification of *.COM that were created before
00:00:00 15-APR-2001.

$ ENCRYPT /BEFORE=15-APR-2001 *.COM FRANCISSCOTT

3.2.4.3 /BY_OWNER Qualifier
The /BY_OWNER qualifier allows you to select files for encryption that have a
particular owner User Identification Code (UIC). If no UIC is specified with the
qualifier, the UIC of the current process is used. The /BY_OWNER qualifier has
the format:

/BY_OWNER=uic

where uic is the UIC of the owner of the file.

For more information on specifying UIC format, see the OpenVMS DCL
Dictionary.

The following command selects for encryption all files in the current directory
owned by the user whose UIC is [FLYNN] that match the wildcard file
specification of *.COM.

$ ENCRYPT /BY_OWNER=[FLYNN] *.COM FRANCISSCOTT

3.2.4.4 /CONFIRM Qualifier
By default, all input files specified on the command line are processed without
confirming that those files are selected for encryption. Use the /CONFIRM
qualifier if you want a prompt with the name of each file selected for encryption.
Your response determines whether or not a particular file is encrypted, as follows:

Response Meaning

YES Encrypt the file.

NO or Return Do not encrypt the file. This is the default.

QUIT or Ctrl/Z Do not encrypt the file or any subsequent files.

ALL Encrypt the file and all subsequent files.

The following command selects for encryption all files in the current directory
matching the wildcard file specification of *.COM. Because the /CONFIRM
qualifier is specified, the user is prompted on a file-by-file basis to confirm that
each file is to be encrypted. Because the prompt is answered in the affirmative
for the file MOVE.COM;3, the output file MOVE.COM;4 is created.

$ ENCRYPT /CONFIRM *.COM FRANCISSCOTT
Encrypt DISK2:[FLYNN]MOVE.COM;3 ? [N] YES

3.2.4.5 /EXCLUDE Qualifier
Use the /EXCLUDE qualifier to exclude one or more files from an encryption
operation. If a file matches the file specification provided with the /EXCLUDE
qualifier, the file will not be encrypted. The /EXCLUDE qualifier has the format:

/EXCLUDE=(file-spec[,...])

where

file-spec is the name of the file to remain unencrypted.

Using the Encryption for OpenVMS Features 3–7

Wildcard characters are allowed in the file specification. There is no default
for the file specification. Because directory files are never encrypted, you need
not specify them with the /EXCLUDE qualifier. However, if you do specify
/EXCLUDE=*.DIR, you will not get the warning message %ENCRYPT-W-FILNODIR,
file encryption of directories is not supported, filename.dir.

The following command selects for encryption all files in the current directory
that match the wildcard file specification of *.COM, except LOGIN.COM, which is
specified with /EXCLUDE.

$ ENCRYPT /EXCLUDE=LOGIN.COM *.COM FRANCISSCOTT

3.2.4.6 /EXPIRED Qualifier
The /EXPIRED qualifier selects files for encryption according to the dates on
which they expire. (The expiration date is set with the SET FILE /EXPIRATION_
DATE command.) This qualifier is meaningful only when used with either the
/BEFORE or the /SINCE qualifier. The /EXPIRED qualifier has the format:

/EXPIRED /BEFORE[=time]

or

/EXPIRED /SINCE[=time]

where time is an OpenVMS time.

For more information on time specifications, see the OpenVMS DCL Dictionary.
If you do not specify a time, TODAY is used. TODAY is the current day, month,
and year at 00:00:00.

The following command selects for encryption all files in the current directory
matching the wildcard file specification of *.COM that expire after 00:00:00
15-APR-2001.

$ ENCRYPT /EXPIRED /SINCE=15-APR-2001 *.COM FRANCISSCOTT

Do not use the /EXPIRED qualifier with either the /BACKUP or the /MODIFIED
qualifier.

3.2.4.7 /MODIFIED Qualifier
The /MODIFIED qualifier selects files for encryption according to the dates on
which they were last modified. This qualifier is meaningful only when used with
either the /BEFORE or the /SINCE qualifier. The /MODIFIED qualifier has the
format:

/MODIFIED /BEFORE[=time]

or

/MODIFIED /SINCE[=time]

where

time is an OpenVMS time.

For more information on time specifications, see the OpenVMS DCL Dictionary.
If you do not specify a time, TODAY is used. TODAY is the current day, month,
and year at 00:00:00.

3–8 Using the Encryption for OpenVMS Features

The following command selects for encryption all files in the current directory
matching the wildcard file specification of *.COM that were modified after
00:00:00 15-APR-2001.

$ ENCRYPT /MODIFIED /SINCE=15-APR-2001 *.COM FRANCISSCOTT

Do not use the /MODIFIED qualifier with either the /BACKUP or the /EXPIRED
qualifier.

3.2.4.8 /SINCE Qualifier
The /SINCE qualifier selects for encryption files that have a creation date after
the time specified with the qualifier. The /SINCE qualifier has the format:

/SINCE[=time]

where

time is an OpenVMS time.

For more information on time specifications, see the OpenVMS DCL Dictionary.
If you do not specify a time, TODAY is used. TODAY is the current day, month,
and year at 00:00:00.

The following command selects for encryption all files in the current directory
matching the wildcard file specification of *.COM that were created after 00:00:00
15-APR-2001.

$ ENCRYPT /SINCE=15-APR-2001 *.COM FRANCISSCOTT

3.2.5 Deleting Encrypted Files
By default, when the ENCRYPT software encrypts an input file and writes the
resulting output file, the input file is retained. However, do not encrypt a file and
then leave the plaintext file online if you are concerned about the security of the
file.

You can use the DCL DELETE command with the /ERASE qualifier to remove
the contents of the plaintext file from the disk, or you can use the following
qualifiers with the ENCRYPT command:

• /DELETE

• /ERASE

3.2.5.1 /DELETE Qualifier
The /DELETE qualifier deletes the input file after the encryption operation
completes and the output file is written and closed. If you have multiple versions
of the input file, they are not all deleted. /DELETE acts on only the version of the
input file that you encrypted.

To delete the unencrypted input file from the disk, use the /DELETE qualifier.
The following command specifies that the SAVEDMAIL.MAI file be encrypted
using the TWENTYFIVECENTS encryption key. Because the /DELETE qualifier
is specified, the input file is deleted after the encrypted output file is written.

$ ENCRYPT /DELETE SAVEDMAIL.MAI TWENTYFIVECENTS

Using the Encryption for OpenVMS Features 3–9

3.2.5.2 /ERASE Qualifier
When you delete or purge a file, the file’s header record is destroyed so that the
file can no longer be accessed by normal means. The information in the file,
however, stays on the disk until it is overwritten. Disk scavenging is a technique
used to obtain such file data from a disk. To thwart disk scavenging, use the
/ERASE qualifier with the /DELETE qualifier. When you specify /ERASE, the
OpenVMS operating system overwrites the location in which the input file was
stored with the data security pattern. The data no longer exists.

The following command specifies that after SAVEDMAIL.MAI is encrypted, the
input file is erased with the data security pattern before being deleted.

$ ENCRYPT /DELETE /ERASE SAVEDMAIL.MAI TWENTYFIVECENTS

3.2.6 Encryption Algorithms
Files are encrypted using a randomly generated data key. One benefit of this
procedure is that two files identical in plaintext form and encrypted with the
same command are not identical in their encrypted form.

The Encryption for OpenVMS implementation of DES uses the following modes of
the DES algorithm:

• Cipher Block Chaining (DESCBC)

• Electronic Codebook (DESECB)

• Cipher Feedback (DESCFB)

These modes perform the encryption operation differently, as follows:

• DESCBC (default)

1. Input is taken in 8-byte blocks.

2. DESCBC performs an exclusive OR operation (XOR) on each block. (An
XOR is a bit-by-bit modulo-2 addition without carrying. For example, the
result of performing an XOR on the binary numbers 001 and 111 is 110.)

The first XOR operation is performed on the first block of input and the
initialization vector. (An initialization vector is used to start the chaining
of data because there is no ciphertext to affect the encryption of the first
block of data.)

3. The resulting block is encrypted.

4. The next XOR operation is performed on the resulting block of ciphertext
and the next block of plaintext, and so on.

5. If fewer than 8 bytes are left for the last iteration, the block is padded
with bytes of arbitrary value.

6. Each block of 8 bytes is encrypted under the same key value.

7. The DESCBC algorithm is used to encrypt the data key and the
initialization vector. The encrypted key and initialization vector are
stored with the encrypted file. The DESCBC algorithm is also used by
default to encrypt the file data.

• DESECB

1. Input is taken in 8-byte blocks.

2. If the input consists of less than 8 bytes, it is padded with nulls.

3–10 Using the Encryption for OpenVMS Features

3. Each block is processed under the DES algorithm with the same key.

4. The result is an 8-byte block of output that is independent of all other
blocks of output.

• DESCFB

1. Input is taken as a series of 1-byte quantities.

2. They are shifted to the left and concatenated with the results of previous
iterations.

3. DESCFB uses an initialization vector in the first iteration.

4. Only the exact number of bytes specified in the input are used.

5. The output byte count equals the input byte count (no padding).

For details about the advantages of each mode, see one of the numerous texts
available on this subject.

3.2.7 Encryption Algorithm Qualifiers
You can choose an encryption algorithm for encrypting either the data key or the
file data. Figure 3–1 shows the relationship of encryption keys and algorithms.
The figure shows that:

• To encrypt the key — use the /KEY_ALGORITHM qualifier to specify an
algorithm other than DESCBC.

• To encrypt the file — use the /DATA_ALGORITHM qualifier to specify an
algorithm other than DESCBC.

Figure 3–1 Relationship of Keys and Algorithms

ZK−8664A−GE

Data

Data Algorithm

Key Algorithm

Encrypted

Data
Key

User−Supplied
Key

The qualifier you use affects the correct decryption procedure:

• If you use the /DATA_ALGORITHM qualifier to encrypt, you do NOT need to
specify this algorithm when you decrypt.

• If you use the /KEY_ALGORITHM qualifier to encrypt, you DO need to
specify this algorithm when you decrypt.

Using the Encryption for OpenVMS Features 3–11

3.2.7.1 /KEY_ALGORITHM Qualifier
To specify an algorithm other than DESCBC to encrypt the key and initialization
vector, use the /KEY_ALGORITHM qualifier. This qualifier has the format:

/KEY_ALGORITHM={DESCBC (default) | DESECB | DESCFB}

For example, the following command uses the DESCFB algorithm with the
TWENTYFIVECENTS key to protect the data key and the initialization vector.

$ ENCRYPT /KEY_ALGORITHM=DESCFB SAVEDMAIL.MAI TWENTYFIVECENTS

3.2.7.2 /DATA_ALGORITHM Qualifier
To specify an algorithm for encrypting files other than the default, use the /DATA_
ALGORITHM qualifier. This qualifier has the format:

/DATA_ALGORITHM={DESCBC (default) | DESECB | DESCFB}

For example, the following command encrypts the SAVEDMAIL.MAI file using
the Cipher Feedback mode of the DES algorithm (DESCFB).

$ ENCRYPT /DATA_ALGORITHM=DESCFB SAVEDMAIL.MAI TWENTYFIVECENTS

If you use the default value of DESCBC for the /DATA_ALGORITHM qualifier
when encrypting a file, this qualifier is optional for decrypting the file.

3.2.8 File Compression
To reduce the size of the plaintext file before encrypting it, use the /COMPRESS
qualifier. Data compression can save media space when physically transporting
encrypted files and can save time when electronically transporting encrypted files
across a network.

Compression efficiency depends on the structure of the data in your file. Evaluate
a performance tradeoff when deciding whether or not to use this qualifier.
Decryption is generally faster on a compressed file, but encryption takes longer.
You might choose to use the /COMPRESS qualifier when the following conditions
apply:

• The file will be decrypted many times.

• The file is at least 200 disk blocks in size.

The following command compresses the SAVEDMAIL.MAI file before encrypting
it.

$ ENCRYPT /COMPRESS SAVEDMAIL.MAI TWENTYFIVECENTS

Note

If you use the /COMPRESS qualifier when encrypting a file, you need
not specify this qualifier when decrypting the file. If necessary, the file is
automatically decompressed when it is decrypted.

3–12 Using the Encryption for OpenVMS Features

3.2.9 Displaying the Version Number
To identify the version of Encryption software running on your system, use the
/VERSION qualifier. For example:

$ ENCRYPT /VERSION
Copyright (c) Compaq 2001, Digital Equipment Corporation. 1978, 1997. All
rights reserved.
Compaq Encryption V1.6)

3.3 Authenticating Files
Authentication is the checking of files to determine whether or not they have
been modified.

The ENCRYPT /AUTHENTICATE command detects any modification of either
plaintext or ciphertext files. The software calculates a Message Authentication
Code (MAC) based on the contents of the files and associates it with one or
more files. An additional MAC is created that is based on security settings
unless you specifically request that the security MAC not be created. At a
later time, when you want to check file integrity, the software recalculates the
MACs and then compares the current and stored MACs. Before you use the
ENCRYPT /AUTHENTICATE command, complete the process that associates
MACs with files (see Section 3.3.1).

The ENCRYPT /AUTHENTICATE command has the following syntax:

ENCRYPT /AUTHENTICATE file-spec key-name [qualifiers]

where

file-spec is the name of the file you want to check.

key-name is the name of the key.
Specify a 1-to-243-character string.

qualifiers are options that control the encryption process or the selection of files you
want to encrypt

A summary report on the authentication operation is displayed on SYS$OUTPUT.

The following qualifiers are valid with ENCRYPT /AUTHENTICATE:

• /[NO]DATABASE[=file-spec]

Specifies a file in which to store binary MAC values created by using the file
contents as input

• /LOG

Displays the results of the authentication operation for each file

• /MULTIPLE_FILES

Indicates that the file-spec parameter represents a list of file names to be
checked

• /[NO]OUTPUT[=file-spec]

Specifies a file in which to store readable MAC values

• /[NO]SECURITY[=file-spec]

Generates a MAC using the file’s security settings: owner, protection settings,
and optional ACL, and specifies the file in which to store the binary MAC
values.

Using the Encryption for OpenVMS Features 3–13

• /[NO]UPDATE

Associates new MAC values with one or more files

In addition, you can use all the file selection qualifiers available to the ENCRYPT
command: /BACKUP, /BEFORE, /BY_OWNER, /CONFIRM, /EXCLUDE,
/EXPIRED, /MODIFIED, and /SINCE (see Section 3.2.4).

The following sections describe how to use the /DATABASE, /LOG, /SECURITY,
/OUTPUT, and /UPDATE qualifiers with ENCRYPT /AUTHENTICATE.

3.3.1 Associating MACs with Files
To associate MACs with a file or to replace former MAC values with new MAC
values, use the /UPDATE qualifier. The /UPDATE qualifer updates two different
MACs created from file contents and from security settings. The following
command creates MAC values for all files in the current directory.

$ ENCRYPT /AUTHENTICATE *.* whitehen /UPDATE

%ENCRYPT-I-SUMMARY1, Summary: Files successfully authenticated: 0
%ENCRYPT-I-SUMMARY2, Files failing authentication: 0
%ENCRYPT-I-SUMMARY3, Files not in database: 3
%ENCRYPT-I-SECSUMM1, Summary: Security settings authenticated: 0
%ENCRYPT-I-SECSUMM2, Security settings failing authentication: 0
%ENCRYPT-I-SECSUMM3, Security settings not in database: 3

Two sets of summary information are displayed: the first set applies to the MAC
values generated from the file contents, the second set applies to the MAC values
generated from the security settings. Because this is the first time MACs are
associated with these files, none are reported as authenticated (summary message
1 for each set) or as having failed authentication (summary message 2 for each
set). The last message in each set reports that no previous MACs were associated
with these files.

The MACs are stored in a binary database. Therefore, you cannot specify
/NODATABASE or /NOSECURITY with /UPDATE. For more information, see
Section 3.3.3.

3.3.2 Checking Files
With no other qualifiers, the ENCRYPT /AUTHENTICATE command compares
previous MACs with current MACs. In addition, the software reports on files
with no currently associated MACs.

The following command reports on the status of all the files in the current
directory.

$ ENCRYPT /AUTHENTICATE *.* whitehen

%ENCRYPT-I-NOUPDATE, database will not be updated with new authentication codes
%ENCRYPT-I-SUMMARY1, Summary: Files successfully authenticated: 3
%ENCRYPT-I-SUMMARY2, Files failing authentication: 0
%ENCRYPT-I-SUMMARY3, Files not in database: 0
%ENCYRPT-I-SECSUMM1, Summary: Security settings authenticated: 3
%ENCYRPT-I-SECSUMM2, Security settings failing authenticated: 0
%ENCYRPT-I-SECSUMM3, Security settings not in database:0

3–14 Using the Encryption for OpenVMS Features

3.3.3 Specifying a File for MACs Generated from File Contents
A database file stores MAC values in binary format. By default,
binary MAC values created from the file contents are stored in
SYS$LOGIN:ENCRYPT$MAC.DAT. You can use the /DATABASE qualifier to
store the MAC values in an alternate file.

The following command selects an alternate file in which to store the MAC
values.

$ ENCRYPT /AUTHENTICATE *.com whitehen /DATABASE=[MACS]MACCHECK.DAT /UPDATE

%ENCRYPT-I-NEWDB, New authentication code database has been created
%ENCRYPT-I-SUMMARY1, Summary: Files successfully authenticated: 0
%ENCRYPT-I-SUMMARY2, Files failing authentication: 0
%ENCRYPT-I-SUMMARY3, Files not in database: 6

When you specify /NODATABASE, the MAC values are not stored. The next time
you use the ENCRYPT /AUTHENTICATE command, the files are treated as new
since there are no current MAC values to check.

3.3.4 Specifying a Security MAC File
MAC entries based on security settings are automatically generated and stored
in a security database when the /UPDATE qualifier is used (see Section 3.3.1).
If you do not want to generate a MAC value based on security settings, use the
/NOSECURITY qualifier on the ENCRYPT /AUTHENTICATE command line.

The entries in the security database are generated by using the security settings:
owner, protection settings, and an ACL if one is associated with the file. By
default, security MAC values are stored in the database ENCRYPT$SEC.DAT.
You can use the /SECURITY qualifier to store security MAC values in an
alternate file.

The following command selects an alternate file in which to store security MAC
values.

$ ENCRYPT /AUTHENTICATE *.com seveneleven /SECURITY=SECURITYMAC.DAT /UPDATE

%ENCYRPT-I-NEWSECDB, New authentication security settings database has been created
%ENCRYPT-I-SUMMARY1, Summary: Files successfully authenticated: 0
%ENCRYPT-I-SUMMARY2, Files failing authentication: 0
%ENCRYPT-I-SUMMARY3, Files not in database: 3
%ENCRYPT-I-SECSUMM1, Summary: Security settings authenticated: 0
%ENCRYPT-I-SECSUMM2, Security settings failing authentication: 0
%ENCRYPT-I-SECSUMM3, Security settings not in database: 3

3.3.5 Specifying a Listing File
In addition to a binary MAC database, Encryption stores MAC values and status
information in readable form. By default, readable MAC values are stored in
SYS$LOGIN:ENCRYPT$MAC.LIS.

To store readable values in an alternate file, use the /OUTPUT qualifier.
The file extension defaults to .LIS. For example, this command specifies
SYS$LOGIN:08MAC.LIS as the listing file:

$ ENCRYPT /AUTHENTICATE *.* whitehen /OUTPUT=08MAC

%ENCRYPT-I-NOUPDATE, database will not be updated with new authentication codes
%ENCRYPT-I-SUMMARY1, Summary: Files successfully authenticated: 6
%ENCRYPT-I-SUMMARY2, Files failing authentication: 0
%ENCRYPT-I-SUMMARY3, Files not in database: 0

Using the Encryption for OpenVMS Features 3–15

To display the listing on SYS$OUTPUT, enter:

$ TYPE 08MAC.LIS

File Integrity Report 22-APR-2001 10:50:22.62 Compaq Encryption V1.6 Page 1
Authentication database: DISK_1:[000000.SCRATCH]ENCRYPT$MAC.DAT;1

File name Stored MAC Current MAC Status
================================== ================= =========== ======
DISK_1[SCRATCH]EXAMPLE.FILE;1 90E70CB4E8E96BBF (same)
owner: [1,1] prot: (RWED, RWED, RWED,)
DISK_1[SCRATCH]PICTURE.SLS;1 FCAD115A72E7934A (same)
owner: [1,1] prot: (RWED, RWED, RWED,)
DISK_1[SCRATCH]RELEASE.TXT;1 11375BD8D504ABB3 (same)
owner: [1,1] prot: (RWED, RWED, RWED,)
DISK_1[SCRATCH]RELEASE_NOTES.PS;3 2632027C133A8B5F (same)
owner: [1,1] prot: (RWED, RWED, RWED,)
DISK_1[SCRATCH]SCHEDULE.LIST;3 852D440358FBFF95 (same)
owner: [1,1] prot: (RWED, RWED, RWED,)
DISK_1[SCRATCH]WATCH_MAIL.COM;5 B75D00EC4991662C (same)
owner: [1,1] prot: (RWED, RWED, RWED,)

Summary: Files successfully authenticated: 6
Files failing authentication: 0
Files not in database: 0

Summary: Security settings authenticated: 6
Security settings failing authentication: 0
Security settings not in database: 0

To suppress the creation of this listing, use the /NOOUTPUT qualifier.

3.3.6 Logging the Authentication Operation
To display the results of the authentication operation on each file, use the /LOG
qualifier. For example, the following command displays the results of each file
authentication on your terminal screen.

$ ENCRYPT /AUTHENTICATE /LOG *.* whitehen

%ENCRYPT-I-NOUPDATE, database will not be updated with new authentication codes
%ENCRYPT-S-AUTHMATCH, File DISK_1:[SCRATCH]EXAMPLE.TXT;1 successfully authenticated
%ENCRYPT-S-SECAUTHMATCH, Security settings for DISK_1:[SCRATCH]EXAMPLE.TXT successfully authenticated
%ENCRYPT-S-AUTHMATCH, File DISK_1:[SCRATCH]TEST.TXT;1 successfully authenticated.
%ENCRYPT-S-SECAUTHMATCH, Security settings for DISK_1:[SCRATCH]TEST.TXT successfully authenticated
%ENCRYPT-S-AUTHMATCH, File DISK_1:[SCRATCH]RELEASE.TXT;2 successfully authenticated.
%ENCRYPT-S-SECAUTHMATCH, Security settings for DISK_1:[SCRATCH]RELEASE.TXT successfully authenticated
%ENCRYPT-I-SUMMARY1, Summary: Files successfully authenticated: 6
%ENCRYPT-I-SUMMARY2, Files failing authentication:0
%ENCRYPT-I-SUMMARY3, Files not in database:0

%ENCRYPT-I-SECSUMM1, Summary: Security settings authenticated: 6
%ENCRYPT-I-SECSUMM2, Security settings failing authentication:0
%ENCRYPT-I-SECSUMM3, Security settings not in database:0

3.4 Deleting Key Definitions
When a key outlives its usefulness, delete it from a key storage table. Enter
the ENCRYPT /REMOVE_KEY command and specify the name under which the
encrypted key value was stored in the key table. The key name is the character
string previously defined with an ENCRYPT /CREATE_KEY command.

The ENCRYPT /REMOVE_KEY command has the following format:

ENCRYPT /REMOVE_KEY key-name [qualifiers]

3–16 Using the Encryption for OpenVMS Features

By default, the ENCRYPT /REMOVE_KEY command deletes the key definition
from the process key storage table. Logging out a process also removes a key
definition from the process key storage table.

To remove a key definition from the job, group, or system storage table, specify
the /JOB, /GROUP, or /SYSTEM qualifier with the ENCRYPT /REMOVE_KEY
command. Just as you need privileges to create group or system keys, you need
privileges to delete them.

For example, the following command deletes the HAMLET key from the system
key storage table:

$ ENCRYPT /REMOVE_KEY HAMLET /SYSTEM

To verify key removal, use the /LOG qualifier with the
ENCRYPT /REMOVE_KEY command. The following command reports that
the key HAMLET is removed:

$ ENCRYPT /REMOVE_KEY HAMLET /SYSTEM /LOG

%ENCRYPT-S-KEYDEL, key deleted for key name = HAMLET

3.5 Decrypting Files
To gain access to the data in an encrypted file, decrypt the file using the
DECRYPT command. Follow these steps:

1. Specify the same key used to encrypt the file.

See if you need to redefine the key using the ENCRYPT /CREATE_KEY
command. For example, if the key was in the process key storage table and
the process logged out, the key is no longer defined.

2. Specify the algorithm with the /KEY_ALGORITHM qualifier, if you did not
encrypt the file with the default algorithm.

The DECRYPT command has the following format:

DECRYPT file-spec key-name [qualifiers]

where

file-spec is the name of the file.

key-name is the name of the key.

qualifiers are options that control the decryption process or the selection of files you
want to decrypt

3.5.1 Input File Specification
For the ciphertext file, which is the file to be decrypted, specify a file that resides
on disk and that is not a directory file.

To specify multiple input files to the DECRYPT command, use wildcard
characters in the file specification. To control file selection, specify the appropriate
DECRYPT command qualifiers (see Section 3.5.4). Do not use wildcard characters
to specify directory files or files containing bad blocks.

Using the Encryption for OpenVMS Features 3–17

3.5.2 Output File Specification
The result of the decryption operation is a plaintext file. One plaintext file is
created for each input file that is decrypted. By default, the DECRYPT command
writes each plaintext file to a separate output file with a file specification that
defaults to the input file specification with a version number that is one higher
than that of the input file.

You can specify an alternate output file specification with the /OUTPUT qualifier.
When specifying the /OUTPUT qualifier, you specify those parts of the file
specification that you want to be different from the defaults. You do not need
to specify an entire file specification; any fields omitted in the file specification
default to the input file specification.

For example, the following DCL command selects for decryption all files in the
current directory matching the wildcard file specification of *.ENC. The /OUTPUT
qualifier specifies that any output files created have a file type of COM.

$ DECRYPT *.ENC/OUTPUT=.COM FRANCISSCOTT

3.5.3 Displaying Processing Information
By default, information about the decryption operation is not displayed on
SYS$COMMAND. To display this information, use the /SHOW qualifier. The
/SHOW qualifier has the format:

/SHOW=keyword

or

/SHOW=(keyword-list)

Specify one or more of the following keywords:

• FILES (Section 3.5.3.1)

• STATISTICS (Section 3.5.3.2)

3.5.3.1 FILES Keyword
Use the FILES keyword to display the input and output file specifications as
decryption proceeds. For example, /SHOW=FILES in the following command
specifies that each input and output file specification be displayed as it is
decrypted.

$ DECRYPT /SHOW=FILES *.COM FRANCISSCOTT

%ENCRYPT-S-DECRYPTED, DISK2:[FLYNN]MOVE.COM.3 decrypted to
DISK2:[FLYNN]MOVE.COM;4 (8 blocks)

.

.

.

3.5.3.2 STATISTICS Keyword
Use the STATISTICS keyword to display encryption stream statistics after the
completion of each file decryption operation. The statistics displayed are:

Bytes processed
Internal records processed
CPU time consumed within the encryption algorithm

3–18 Using the Encryption for OpenVMS Features

The following command specifies that the decryption stream statistics be
displayed on SYS$COMMAND.

$ DECRYPT /SHOW=STATISTICS *.COM FRANCISSCOTT

%ENCRYPT-S-STATISTICS, encryption stream statistics:
Total Records: 65
Total Bytes: 4083
Total Time: 00:00:00:01.63

.

.

.

3.5.4 Specifying Files to Decrypt
You can use the DECRYPT command to specify multiple input files by using
wildcard characters in the input file specification. The command also provides the
following qualifiers for selecting files:

• /BACKUP

• /BEFORE

• /BY_OWNER

• /CONFIRM

• /EXCLUDE

• /EXPIRED

• /MODIFIED

• /SINCE

The following sections describe these qualifiers.

3.5.4.1 /BACKUP Qualifier
The /BACKUP qualifier selects files for decryption according to the date of their
most recent backup. This qualifier is meaningful only when used with either the
/BEFORE or the /SINCE qualifier. The /BACKUP qualifier has the format:

/BACKUP /BEFORE[=time]

/BACKUP /SINCE[=time]

where

time is an OpenVMS time.

For more information on time specifications, see the OpenVMS DCL Dictionary.
If you do not specify a time, TODAY is used. TODAY is the current day, month,
and year at 00:00:00.

The following command selects for decryption all files in the current directory
matching the wildcard file specification of *.COM that had backup copies made
before 00:00:00 15-APR-2001.

$ DECRYPT /BACKUP /BEFORE=15-APR-2001 *.COM FRANCISSCOTT

Do not use the /BACKUP qualifier with either the /EXPIRED or the /MODIFIED
qualifier.

Using the Encryption for OpenVMS Features 3–19

3.5.4.2 /BEFORE Qualifier
The /BEFORE qualifier selects files for decryption that have a creation date
before the time specified with the qualifier. The /BEFORE qualifier has the
format:

/BEFORE[=time]

where

time is an OpenVMS time.

For more information on time specifications, see the OpenVMS DCL Dictionary.
If you do not specify a time, TODAY is used. TODAY is the current day, month,
and year at 00:00:00.

The following command selects for decryption all files in the current directory
matching the wildcard file specification of *.COM that were created before
00:00:00 15-APR-2001.

$ DECRYPT /BEFORE=15-APR-2001 *.COM FRANCISSCOTT

3.5.4.3 /BY_OWNER Qualifier
Use the /BY_OWNER qualifier to select files for decryption that have a particular
owner User Identification Code (UIC). If no UIC is specified with the qualifier, the
UIC of the current process is used. The /BY_OWNER qualifier has the format:

/BY_OWNER=uic

where

uic is the UIC of the owner of the file.

For more information on UIC format, see the OpenVMS DCL Dictionary. The
following command selects for decryption all files in the current directory owned
by the user whose UIC is [FLYNN] that match the wildcard file specification of
*.COM.

$ DECRYPT /BY_OWNER=[FLYNN] *.COM FRANCISSCOTT

3.5.4.4 /CONFIRM Qualifier
By default, all input files specified on the command line are processed without
confirming that each file is selected for decryption. Use the /CONFIRM qualifier
if you want a prompt with the name of each file selected for decryption. Your
response controls whether or not a particular file is decrypted.

You can choose any of the following responses:

Response Meaning

YES Decrypt the file.

NO or Return Do not decrypt the file. This is the default.

QUIT or Ctrl/Z Do not decrypt the file or any subsequent files.

ALL Decrypt the file and all subsequent files.

The following command selects all files in the current directory matching the
wildcard file specification of *.COM for decryption. Because the /CONFIRM
qualifier is specified, the user is prompted on a file-by-file basis to confirm that
each file is to be decrypted. Because the prompt is answered in the affirmative
for the file MOVE.COM;3, the output file MOVE.COM;4 is created.

3–20 Using the Encryption for OpenVMS Features

$ DECRYPT /CONFIRM *.COM FRANCISSCOTT

Decrypt DISK2:[FLYNN]MOVE.COM;3 ? [N] YES

3.5.4.5 /EXCLUDE Qualifier
Use the /EXCLUDE qualifier to exclude one or more files from a decryption
operation. If a file matches the file specification provided with the qualifier, the
file is not decrypted. The /EXCLUDE qualifier has the format:

/EXCLUDE=(file-spec[,...])

where

file-spec is the file specification of the file to remain encrypted.

When specifying only one file, you can omit the parentheses. Wildcard characters
are allowed in the file specification. With the /EXCLUDE qualifier, there is no
default for the file specification.

Since directory files are never encrypted, you need not specify them with the
/EXCLUDE qualifier. However, if you do specify /EXCLUDE=*.DIR, you will not get
the warning message %ENCRYPT-W-FILNODIR, file encryption of directories is
not supported, filename.dir.

The following command selects for decryption all files in the current directory
that match the wildcard file specification of *.COM, except LOGIN.COM, which is
specified with /EXCLUDE.

$ DECRYPT /EXCLUDE=LOGIN.COM *.COM FRANCISSCOTT

3.5.4.6 /EXPIRED Qualifier
The /EXPIRED qualifier selects files for decryption according to the dates on
which they expire. (The expiration date is set with the SET FILE/EXPIRATION_
DATE command.) This qualifier is meaningful only when used with either the
/BEFORE or the /SINCE qualifier. The /EXPIRED qualifier has the format:

/EXPIRED /BEFORE[=time] /EXPIRED /SINCE[=time]

where

time is an OpenVMS time.

For more information on time specifications, see the OpenVMS DCL Dictionary.
If you do not specify a time, TODAY is used. TODAY is the current day, month,
and year at 00:00:00.

The following command selects for decryption all files in the current directory
matching the wildcard file specification of *.COM that expire after 00:00:00
15-APR-2001.

$ DECRYPT /EXPIRED /SINCE=15-APR-2001 *.COM FRANCISSCOTT

Do not use the /EXPIRED qualifier with either the /BACKUP or the /MODIFIED
qualifier.

Using the Encryption for OpenVMS Features 3–21

3.5.4.7 /MODIFIED Qualifier
The /MODIFIED qualifier selects files for decryption according to the dates on
which they were last modified. This qualifier is meaningful only when used with
either the /BEFORE or the /SINCE qualifier. The /MODIFIED qualifier has the
format:

/MODIFIED /BEFORE[=time] /MODIFIED /SINCE[=time]

where

time is an OpenVMS time.

For more information on time specifications, see the OpenVMS DCL Dictionary.
If you do not specify a time, TODAY is used. TODAY is the current day, month,
and year at 00:00:00.

The following command selects for decryption all files in the current directory
matching the wildcard file specification of *.COM that were modified after
00:00:00 15-APR-2001.

$ DECRYPT /MODIFIED /SINCE=15-APR-2001 *.COM FRANCISSCOTT

Do not use the /MODIFIED qualifier with either the /BACKUP or the /EXPIRE
qualifier.

3.5.4.8 /SINCE Qualifier
The /SINCE qualifier selects files for decryption that have a creation date after
the time specified with the qualifier. The /SINCE qualifier has the format:

/SINCE[=time]

where

time is an OpenVMS time.

For more information on time specifications, see the OpenVMS DCL Dictionary.
If you do not specify a time, TODAY is used. TODAY is the current day, month,
and year at 00:00:00.

The following command selects for decryption all files in the current directory
matching the wildcard file specification of *.COM that were created after 00:00:00
15-APR-2001.

$ DECRYPT /SINCE=15-APR-2001 *.COM FRANCISSCOTT

3.5.5 Deleting Decrypted Files
By default, the input file is retained after a file is decrypted and written to the
resulting output file. To save space, after you have decrypted a file, you may want
to remove the encrypted file from your disk.

You can use the DCL DELETE command with the /ERASE qualifier to remove
the contents of the file from the disk, or you can use the /DELETE and /ERASE
qualifiers with the DECRYPT command.

3–22 Using the Encryption for OpenVMS Features

3.5.5.1 /DELETE Qualifier
The /DELETE qualifier deletes the input file after the decryption operation
completes and the output file is written and closed. If you have multiple versions
of the input file, they are not all deleted. /DELETE acts on only the version of the
input file that you encrypted.

The following command specifies that the SAVEDMAIL.MAI file be decrypted
using the TWENTYFIVECENTS encryption key. Because the /DELETE qualifier
is specified, the input file is deleted after the output file is written.

$ DECRYPT /DELETE SAVEDMAIL.MAI TWENTYFIVECENTS

3.5.5.2 /ERASE Qualifier
To prevent disk scavenging, use the /ERASE qualifier with the /DELETE qualifier.
For example, the following command decrypts the SAVEDMAIL.MAI file using
the TWENTYFIVECENTS encryption key, erases the input file with the data
security pattern, and deletes the file.

$ DECRYPT /DELETE /ERASE SAVEDMAIL.MAI TWENTYFIVECENTS

With the following command, the SAVEDMAIL.MAI file is decrypted using the
TWENTYFIVECENTS encryption key, but the input file is not erased with the
data security pattern before being deleted.

$ DECRYPT /DELETE /NOERASE SAVEDMAIL.MAI TWENTYFIVECENTS

3.5.6 Algorithm Qualifiers
The algorithm qualifier you use to encrypt determines the correct decryption
procedure:

• If you use the /DATA_ALGORITHM qualifier to encrypt, do not specify this
algorithm when you decrypt.

• If you use the /KEY_ALGORITHM qualifier to encrypt, specify this algorithm
when you decrypt.

The /KEY_ALGORITHM qualifier has the format:

/KEY_ALGORITHM=algorithm

where

algorithm is one of the following values:

• DESCBC (the default)

• DESECB

• DESCFB

For example, if SAVEDMAIL.MAI is encrypted with /KEY_
ALGORITHM=DESCFB, decrypt the file with the same /KEY_
ALGORITHM=DESCFB qualifier, as follows:

$ ENCRYPT /KEY_ALGORITHM=DESCFB SAVEDMAIL.MAI TWENTYFIVECENTS

$ DECRYPT /KEY_ALGORITHM=DESCFB SAVEDMAIL.MAI TWENTYFIVECENTS

Using the Encryption for OpenVMS Features 3–23

3.6 Encrypting Save Sets
The OpenVMS BACKUP utility provides protection against file or volume
corruption by creating functionally equivalent backup copies. Files created by
BACKUP are called save sets and are written in BACKUP format so that
only BACKUP can interpret the data in a save set. See the OpenVMS System
Management Utilities Reference Manual for more information on the BACKUP
utility. When you create save sets, you can also encrypt them by using the
BACKUP /ENCRYPT command.

Note

Standalone BACKUP, which is a version of the BACKUP utility that runs
without the support of the OpenVMS operating system, does not support
the /ENCRYPT qualifier.

BACKUP /ENCRYPT requires a key. All the files in the save set are encrypted
under the same key. When you use the /ENCRYPT qualifier to specify a write
operation for an encrypted save set, the BACKUP utility creates a key by
generating a 16-byte random number from the time of day and other transient
data. To make this random number even more random, BACKUP encrypts this
16-byte value once using itself as a key with the DESCBC algorithm. The first
eight bytes of the result are used as the encrypting key for the save set, and the
second eight bytes are used as the initialization vector for the context area.

One benefit of this procedure is that two save sets created with the same
command from the same set of files are not identical in their encrypted form.

You can override the system-generated encrypting key and initialization vector by
issuing either of the following commands:

• ENCRYPT /CREATE_KEY

• BACKUP /ENCRYPT=(VALUE=key-value)

For greater security, specify the /ENCRYPT qualifier with no parameters. The
software prompts you for a key value. When you enter it, the software does not
echo what you type and, for verification, prompts you to retype the value.

If you define a key with the ENCRYPT /CREATE_KEY command, specify that key
name on the BACKUP command line with the /ENCRYPT=(NAME=key-name)
qualifier.

By default, BACKUP encrypts save set data using the DESCBC algorithm. The
key and algorithm you specify to override the defaults are used to encrypt only
the data key and the initialization vector.

BACKUP places the result of the encryption operation in the save set as a
BACKUP attribute subrecord of the BACKUP summary record. At the time of a
save set restore or listing operation, BACKUP uses the system-generated key or
the key you supplied to decrypt the data key and the initialization vector value.

The BACKUP command qualifier /SAVE_SET is both an input save set qualifier
and an output save set qualifier, as follows:

• When you specify the /SAVE_SET and /ENCYRPT qualifiers with an output
save set specification, BACKUP writes file data (including file names and
attributes) in an encrypted form into the save set.

3–24 Using the Encryption for OpenVMS Features

• When you specify /SAVE_SET with an input save set specification, BACKUP
uses the decryption key specified to access the file name, attributes, and data
from the save set records. The ENCRYPT option decrypts the data files after
BACKUP reads the data files from the save set medium and processes them
according to the remaining qualifiers of the BACKUP command.

The following example creates an encrypted BACKUP file of the default directory,
as follows:

1. ENCRYPT /CREATE_KEY defines a key, SANFRANCISCO, with this value:
A city set on a hill cannot be hid.

2. BACKUP /ENCRYPT saves all the files in the default directory in a save set
named 28JULSAVE.BCK and encrypts the save set.

On device MKA600:, the data used to encrypt the file names, attributes, and
all the other file data are encrypted with the default encryption algorithm
DESCBC. The process uses the key defined as SANFRANCISCO.

$ ENCRYPT /CREATE_KEY SANFRANCISCO "A city set on a hill cannot be hid"
$ BACKUP /ENCRYPT=(NAME=SANFRANCISCO) * MKA600:28JULSAVE.BCK /SAVE_SET

The following example creates a save set of the latest version of all the files on a
disk. The save set is encrypted using the DESCFB algorithm and the key value
Make peace.

$ BACKUP /ENCRYPT=(VALUE="Make peace",ALGORITHM=DESCFB) *.* 28JULSAVE /SAVE_SET

3.6.1 Restoring Files
When you encrypt a save set, BACKUP does not store the information within
the save set. Consequently, to decrypt an encrypted save set, specify /ENCRYPT
with the RESTORE command so that BACKUP searches for the data encryption
control record.

If you restore an unencrypted save set and mistakenly specify /ENCRYPT,
BACKUP ignores the incorrect qualifier. If you try to restore an encrypted
saveset without the /ENCYRPT qualifier or with a key name, you get the error
message:

%BACKUP-F-ENCSAVSET, save set is encrypted, /ENCRYPT must be specified

The following commands restore file SALARY.DAT from a save set created with a
BACKUP /ENCRYPT command:

$ ENCRYPT /CREATE_KEY CASTERBRIDGE "And all her shining keys"
$ BACKUP /ENCRYPT=(NAME=CASTERBRIDGE)
_$ From: MKA600:28JULSAVE.BCK /SELECT=SALARY.DAT
_$ To: SALARY28J.DAT

BACKUP tries to decrypt an encrypted save set by:

1. Decrypting the encryption data that was saved in an attribute subrecord.

2. Comparing a 32-bit checksum of the decrypted data key with the stored value.

3. If there is a match, BACKUP assumes the data key is valid and restores the
save set.

Using the Encryption for OpenVMS Features 3–25

4. If BACKUP finds a mismatch, which is likely if the data key or algorithm you
specified in the BACKUP command is incorrect, the utility displays:

%BACKUP-F-ENCKEYMAT, the supplied decryption key does not yield a readable save set

3.6.2 Encrypting Distribution Files
BACKUP /ENCRYPT can create a distribution disc that is useful only to a
customer who has the key used to encrypt the save sets in the distribution kit.

In the following example, three keys are defined with ENCRYPT /CREATE_KEY
commands. With each of these keys, a software distribution disc is created with
each product encrypted into its respective save set under a unique key.

$ ENCRYPT /CREATE_KEY SDXKEY "SDX V9.0 kit 99804034671838302"
$ BACKUP /ENCRYPT=(NAME=SDXKEY) /REWIND -
_From: MASTER:[SDXKIT]*.* MKA600:SDXKIT /SAVE_SET

$ ENCRYPT /CREATE_KEY RQPKEY "RQP V4.5 kit FWTEBCJDITROEMMKAZXRYTC"
$ BACKUP /ENCRYPT=(NAME=RQPKEY) -
_From: MASTER:[RQPKIT]*.* MKA600:RQPKIT /SAVE_SET

$ ENCRYPT /CREATE_KEY WOLKEY "WOL V2.0 kit 28374UEJDTLHGD84JF849SK95KD0"
$ BACKUP /ENCRYPT=(NAME=WOLKEY) -
_From: MASTER:[WOLKIT]*.* MKA600:WOLKIT /SAVE_SET

The resulting save sets can be restored on a customer’s system only if the
customer has received the appropriate key by licensing arrangement.

For example, the following commands restore save set WOLKIT:

$ ENCRYPT /CREATE_KEY WOLKEY "WOL V2.0 kit 28374UEJDTLHGD84JF849SK95KD0"
$ BACKUP /ENCRYPT=(NAME=WOLKEY) MKA600:WOLKIT /SAVE_SET SYSTEM:[RQPKIT]*.*

In the following example, the save set SDXKIT is restored without typing the
key name and key value on the command line. Instead, the BACKUP /ENCRYPT
command prompts for this information, which is not echoed on your screen.

$ BACKUP /ENCRYPT /REWIND MKA600:SDXKIT /SAVE_SET SYSTEM:[SDXKIT]*.*
Enter Key Value: (input not echoed)
Verify: (input not echoed)

3–26 Using the Encryption for OpenVMS Features

4
Programming with Encryption for OpenVMS

Routines

To program encryption operations into applications, use the
Encryption for OpenVMS callable routines. Encryption provides the following
routines, listed by function:

• Defining, generating, and deleting keys (Section 4.2):

ENCRYPT$DEFINE_KEY

ENCRYPT$GENERATE_KEY

ENCRYPT$DELETE_KEY

• Encrypting and decrypting files (Section 4.3):

ENCRYPT$ENCRYPT

ENCRYPT$ENCRYPT_FILE

ENCRYPT$DECRYPT

• Encrypting and decrypting records (Section 4.4):

ENCRYPT$DECRYPT_ONE_RECORD

ENCRYPT$ENCRYPT_ONE_RECORD

• Intializing and terminating the context area (Section 4.4):

ENCRYPT$INIT

ENCRYPT$FINI

• Returning statistics (Section 4.4):

ENCRYPT$STATISTICS

Installation Note

To use the programming interface from an image that was installed
with privileges, ensure that the system startup procedure installs the
ENCRYPSHR shareable image as a known image (see Section 2.4).

Programming with Encryption for OpenVMS Routines 4–1

4.1 How the Routines Work
You can call the Encryption for OpenVMS routines from any language that
supports the OpenVMS Calling Standard. After it is called, each routine:

• Performs its function

• Returns a 32-bit status code value for the calling program to determine
success or failure

• Returns control to the calling program

The callable routines do not provide all the options of the file selection qualifiers
available with the DCL ENCRYPT and DECRYPT commands. The functions
of /BACKUP, /BEFORE, /BY_OWNER, /CONFIRM, /EXCLUDE, /EXPIRED,
/SINCE, and /SHOW are supported only at the DCL-interface level. For more
information, see the Guide to Creating OpenVMS Modular Procedures.

4.1.1 DES Key and Data Semantics
The NBS document FIPS-PUB-46 describes the operation of the DES algorithm
in detail. The bit-numbering conventions in the NBS document are different from
OpenVMS numbering conventions.

If you are using Encryption for OpenVMS routines in conjunction with an
independently developed DES encryption system, ensure that you are familiar
with the relationship between the NBS and OpenVMS numbering conventions.
Table 4–1 highlights the differences.

Table 4–1 Comparison of NBS and OpenVMS Numbering Conventions

NBS Encryption for OpenVMS

Numbers bits from left to right. Numbers bits from right to left.

Displays bytes in memory from left
to right.

Displays bytes in memory from right to left.

Handles keys and data in 8-byte
blocks (see Figure 4–1).

Handles 8-byte blocks in OpenVMS display order
(see Figure 4–2).

Treats keys and data as byte
strings.

Treats keys and data as character strings.

The "most significant byte" is byte
1.

Same.

In DES keys, the parity bits are
DES bits 8, 16, 24, and so forth.

In DES keys, the parity bits are OpenVMS bits 0,
8, 16, and so forth.

DES keys, when expressed as
strings of hexadecimal digits, are
given starting with the high digit of
byte 1, then the low digit of byte 1,
then the high digit of byte 2, and so
forth, through the low digit of byte
8.

Same.

To convert a hexadecimal key string into the 8-byte binary key, convert from hex
to binary one byte at a time. For example, a quadword hex-to-binary conversion,
using the library subroutine OTS$CVT_TZ_L, yields an incorrect, byte-reversed
key.

4–2 Programming with Encryption for OpenVMS Routines

Figure 4–1 OpenVMS Numbering Overlay on FIPS-46 Numbering

ZK−8665A−GE

byte 1

byte 5

byte 4

byte 8

0
8

7
1

15
9

8
16

16
24

31
25

24
32

23
17

(OpenVMS numbering)
(DES numbering)

3239
40

47
33 41

40 48
48 56

63 56
57 64

55
49

(OpenVMS numbering)
(DES numbering)

(NBS view)

Figure 4–2 NBS Numbering Overlay on an OpenVMS Quadword

ZK−8666A−GE

byte 4

byte 8

byte 1

byte 5

07
8

15
19

816
1624

31
25

24
32

23
17

(OpenVMS numbering)
(DES numbering)

3239
40

47
3341

4048
4856

63 56
57 64

55
49

(OpenVMS numbering)
(DES numbering)

(OpenVMS view)

4.2 Maintaining Keys
When you use the Encryption routines, first define the key that will be used
in the encryption operation. Similarly, to decrypt a file specify the same key.
Table 4–2 describes the callable routines that maintain keys.

Table 4–2 Routines for Maintaining Keys

Routine Description

ENCRYPT$DEFINE_KEY Creates a key definition with a key name and a key
value. Puts the definition into a key storage table.

Similar to the ENCRYPT /CREATE_KEY
command.

ENCRYPT$DELETE_KEY Removes a key definition from a key storage
table. Uses the key name to identify the key to
be removed.

Similar to the ENCRYPT /REMOVE_KEY
command.

ENCRYPT$GENERATE_KEY Generates random key values.

When you call these routines, use the following arguments:

• With ENCRYPT$DEFINE_KEY

To pass the values for the key name and key value, use the key-name
and the key-value arguments.

To specify a key storage table, use the key-flags argument.

Programming with Encryption for OpenVMS Routines 4–3

To specify other key options, use the key-flags argument.

To override key compression, use the key-flags argument.

• With ENCRYPT$DELETE_KEY

To pass the key name, use the key-name argument.

To specify the key storage table in which the key resides, use the
key-flags argument.

• With ENCRYPT$GENERATE_KEY

To define the length of the key, use the key-length argument.

To specify the buffer into which the generated key is to be placed, use the
key-buffer argument.

To specify the algorithm that will use the key, use the algorithm-name
argument.

To optionally pass three arbitrary values for added security, use
the factor-a, factor-b, and factor-c arguments. These values are
randomizing factors when the routine generates a key value. For
example, the factors might be:

. Time an operation started

. Size of a certain stack

. Copy of the last command line

4.3 Operations on Files
The ENCRYPT$ENCRYPT_FILE routine is similar to the DCL ENCRYPT and
DECRYPT commands in that you use this routine with entire files.

The ENCRYPT$ENCRYPT_FILE routine specifies the key, the input file
specification, the output file specification, and other file operation information.

Specify the type of operation, either encryption or decryption, with the file-flags
argument.

ENCRYPT$ENCRYPT_FILE does not require a prior call to ENCRYPT$INIT.

4.4 Operations on Records and Blocks
To operate on small records or blocks of data, use the following routines:

• ENCRYPT$ENCRYPT_ONE_RECORD

• ENCRYPT$DECRYPT_ONE_RECORD

These routines are a shorthand form of the ENCRYPT$INIT,
ENCRYPT$ENCRYPT, ENCRYPT$DECRYPT, ENCRYPT$FINI sequence of
calls.

Do not use these routines for data larger than a few records.

4–4 Programming with Encryption for OpenVMS Routines

4.5 Routine Descriptions
This section describes the syntax of each callable routine. The routines are listed
alphabetically.

4.5.1 Specifying Arguments
Each routine’s argument list shows the mandatory arguments first, followed
by the optional arguments. Brackets ([]) identify optional arguments in the
argument list.

For example, this format line shows that the required arguments are context,
input, and output, and that the optional arguments are output-length and p1:

ENCRYPT$DECRYPT context ,input ,output [,output-length] [,p1]

When you specify arguments, follow these guidelines:

• The order is important. Specify arguments in the order in which they appear
in the argument list.

• Separate each argument with a comma.

• Pass a zero value for each optional argument that you omit.

4.5.2 Bitmasks
Constants are associated with the symbolic names of the bitmasks
used by the Encryption routines. These constants are defined in the
ENCRYPT_STRUCTURES files that are provided with the kit.

The examples directory, ENCRYPT$EXAMPLES, has a copy of the
ENCRYPT_STRUCTURES file in each supported programming language.

4.5.3 Error Handling
By default, Encryption signals error conditions with messages. To intercept a
message that is inappropriate for your application, supply a condition handler.

For information about implementing condition handlers, see your programming
language reference manual. For additional documentation, see:

• The OpenVMS Programming Interfaces: Calling a System Routine — provides
full information about data types, access type, and passing mechanisms

• ENCRYPT$EXAMPLES:ENCRYPT$EXAMPLES.TXT — online file that
contains descriptions of files with sample application programs

Programming with Encryption for OpenVMS Routines 4–5

ENCRYPT$DECRYPT

ENCRYPT$DECRYPT

Decrypts the next record of ciphertext according to the algorithm specified in the
ENCRYPT$INIT call.

Format

ENCRYPT$DECRYPT context ,input ,output [,output-length] [,p1]

Arguments

context
type: longword integer (signed)
access: write only
mechanism: by reference

Context area initialized when ENCRYPT$INIT completes execution. The context
argument is the address of a longword of unspecified interpretation that is used
to convey context between encryption operations.

input
type: char_string
access: read only
mechanism: by descriptor

Ciphertext record that ENCRYPT$DECRYPT is to decrypt. The input argument
is the address of a descriptor pointing to a byte-aligned buffer containing the
input record to the decryption operation.

output
type: char_string
access: write only
mechanism: by descriptor

Plaintext record that results when ENCRYPT$DECRYPT completes execution.
The output argument is the address of a descriptor pointing to a byte-aligned
buffer that will contain the output record from the decryption operation.

If the descriptor is dynamic and insufficient space is allocated to contain the
output record, storage will be allocated from dynamic memory. If insufficient
space exists to contain the output of the operation, then an error status is
returned.

The ENCRYPT$DECRYPT routine adjusts the length of the output descriptor,
if possible, to reflect the actual length of the output string. If the descriptor
type is not DSC$K_DTYPE_VS (varying string), DSC$K_DTYPE_V (varying), or
DSC$K_DTYPE_D (dynamic), the routine takes the actual output count from the
output-length argument.

output-length
type: word integer
access: write only
mechanism: by reference

Optional argument.

4–6 Programming with Encryption for OpenVMS Routines

ENCRYPT$DECRYPT

Number of bytes that ENCRYPT$DECRYPT wrote to the output buffer. The
output-length argument is the address of a word containing the number of bytes
written to the output buffer, including any bytes of pad characters generated by
the selected algorithm to meet length requirements of the input buffer, if any.
Output length does not count padding in the case of a fixed-length string.

Some encryption algorithms have specific requirements for the length of the input
and output strings. In particular, DESECB and DESCBC pad input data with
from 1 to 7 bytes to form complete 64-bit blocks for operation. The values of the
pad characters are indeterminate.

When you decrypt fewer than 8 bytes, present the full 8 bytes resulting from
the ENCRYPT$ENCRYPT to ENCRYPT$DECRYPT. Retain the byte count of
the input data in order to strip trailing pad bytes after a subsequent decryption
operation.

p1
type: quadword
access: read only
mechanism: by reference

Optional argument. The p1 argument is the address of a quadword initialization
vector used to seed the two modes of the DES algorithm for which it is applicable
(DESECB and DESCFB). If this argument is omitted, the initialization
vector used is the residue of the previous use of the specified context block.
ENCRYPT$INIT initializes the context block with an initialization vector of zero.

Description

The ENCRYPT$DECRYPT routine decrypts the next record of ciphertext
according to the algorithm specified in the ENCRYPT$INIT call. Any errors
encountered in the operation are returned as status values. The message
authentication mode (DESMAC) is not supported by ENCRYPT$DECRYPT.

The ENCRYPT$DECRYPT routine returns a 32-bit status code indicating the
success or failure of the routine’s operation.

Condition Values Returned

SS$_NORMAL Record successfully decrypted.
ENCRYPT$xyz An error reported by the Encryption software.

xyz identifies the message (see Appendix B).
SS$_xyz A return status from a called system service. xyz

identifies the return status.

Programming with Encryption for OpenVMS Routines 4–7

ENCRYPT$DECRYPT_ONE_RECORD

ENCRYPT$DECRYPT_ONE_RECORD

Decrypts a small amount of data on a decrypt stream.

Format

ENCRYPT$DECRYPT_ONE_RECORD input ,output ,key-name ,algorithm

Arguments

input
type: char_string
access: read only
mechanism: by descriptor

Ciphertext record to be decrypted. The input argument is the address of a string
descriptor pointing to a byte-aligned buffer containing the input record to be
decrypted.

output
type: char_string
access: write only
mechanism: by descriptor

Plaintext record resulting when ENCRYPT$DECRYPT_ONE_RECORD completes
execution. The output argument is the address of a string descriptor pointing to
a byte-aligned buffer that will contain the plaintext record.

If the descriptor is dynamic and insufficient space is allocated to contain the
output record, storage is allocated from dynamic memory. If insufficient space
exists to contain the output of the operation, an error is returned.

The ENCRYPT$DECRYPT_ONE_RECORD routine adjusts the length of the
output descriptor, if possible, to reflect the actual length of the output string.

key-name
type: char_string
access: read only
mechanism: by descriptor

Key used to initialize the decrypt stream. The key-name argument is the
address of a string descriptor pointing to the name of the previously defined user
key to be used.

algorithm
type: char_string
access: read only
mechanism: by descriptor

Algorithm used for the decryption operation. The algorithm argument is the
address of a string descriptor pointing to a code for the selected algorithm. The
algorithm code is an ASCII string. Specify the descriptor type value as one of the
following:

• DSC$K_DTYPE_T (text)

• DSC$K_DTYPE_VT (varying text)

4–8 Programming with Encryption for OpenVMS Routines

ENCRYPT$DECRYPT_ONE_RECORD

• DSC$K_DTYPE_Z (unspecified)

The following algorithms are valid:

• DESCBC (default)

• DESECB

• DESCFB

Description

In some applications, only a small amount of data needs to be decrypted on a
particular decrypt stream. The ENCRYPT$DECRYPT_ONE_RECORD routine
allows you to perform such a decryption operation.

The ENCRYPT$DECRYPT_ONE_RECORD routine is a shorthand form of the
ENCRYPT$INIT, ENCRYPT$DECRYPT, and ENCRYPT$FINI sequence of calls.
However, using ENCRYPT$DECRYPT_ONE_RECORD repeatedly to decrypt
records of a file is extremely inefficient.

The ENCRYPT$DECRYPT_ONE_RECORD routine returns a 32-bit status code
indicating the success or failure of the routine’s operation.

Condition Values Returned

SS$_NORMAL Operation performed.
ENCRYPT$xyz An error reported by the Encryption software.

xyz identifies the message (see Appendix B).
SS$_xyz A return status from a called system service. xyz

identifies the return status.

Programming with Encryption for OpenVMS Routines 4–9

ENCRYPT$DEFINE_KEY

ENCRYPT$DEFINE_KEY

Places a key definition into the process, group, job, or system key storage table.

Format

ENCRYPT$DEFINE_KEY key-name ,key-value ,key-flags

Arguments

key-name
type: char_string
access: read only
mechanism: by descriptor

Name of the key defined when ENCRYPT$DEFINE_KEY completes execution.
The key-name argument is the address of a string descriptor pointing to a
char_string that is interpreted as the name of the key to be defined. A maximum
of 243 characters is permitted.

Note

Key names beginning with ENCRYPT$ are reserved for Compaq.

key-value
type: char_string
access: read only
mechanism: by descriptor

Key value defined when ENCRYPT$DEFINE_KEY completes execution. The
key-value argument is the address of a string descriptor pointing to a vector of
unsigned byte values that are assigned to the named key. A maximum of 240
bytes may be assigned.

key-flags
type: longword
access: read only
mechanism: by reference

Flags that ENCRYPT$DEFINE_KEY uses when defining a key. The key-flags
argument is the address of a longword containing flags that control the key
definition process.

Each flag has a symbolic name. The constants associated with these names are
defined in the ENCRYPT$EXAMPLES:ENCRYPT_STRUCTURES files in various
programming languages. Table 4–3 defines the function of each flag.

4–10 Programming with Encryption for OpenVMS Routines

ENCRYPT$DEFINE_KEY

Table 4–3 ENCRYPT$DEFINE_KEY Flags

Flag Function
Symbolic Name Function

ENCRYPT$M_KEY_PROCESS Places definition in process table
ENCRYPT$M_KEY_GROUP Places definition in group table
ENCRYPT$M_KEY_JOB Places definition in job table
ENCRYPT$M_KEY_SYSTEM Places definition in system table
ENCRYPT$M_KEY_LITERAL Stores key without compressing

Description

The ENCRYPT$DEFINE_KEY routine places a key definition into the process,
group, job, or system key storage table. The key value supplied with the routine
is processed as specified and placed in the key storage table under the indicated
name. The ENCRYPT$DEFINE_KEY routine does not interpret the key value.

By default, keys are treated as char_string keys, using the Digital Multinational
Character Set and are compressed before being inserted into the key storage
table. The compression proceeds as follows:

1. The string is converted to uppercase characters.

2. The digits 0 through 9 are left unchanged.

3. All characters except letters, digits, dollar signs, periods, and underscores are
converted to spaces.

4. All sequences of multiple spaces (or characters that have been converted into
spaces) are converted into single spaces.

When a char_string key is retrieved from key storage for use as a DES key, it is
folded into an 8-byte key by exclusive OR-ing 8-byte segments of the key string
together, and then applying odd parity to each byte by modifying the sign bit (bit
7).

The key flag ENCRYPT$M_KEY_LITERAL specifies that the key string supplied
is a binary key. A binary key is not compressed, but is placed into key storage as
is. When a binary key is used as a DES key, it is likewise folded into an 8-byte
key by exclusive OR-ing 8-byte segments together. Odd parity is then applied by
modifying the low bit (bit 0) of each byte.

The ENCRYPT$DEFINE_KEY routine returns a 32-bit status code indicating the
success or failure of the routine’s operation.

Condition Values Returned

SS$_NORMAL Key has been defined.
ENCRYPT$xyz An error reported by the Encryption software.

xyz identifies the message (see Appendix B).
SS$_xyz A return status from a called system service. xyz

identifies the return status.

Programming with Encryption for OpenVMS Routines 4–11

ENCRYPT$DELETE_KEY

ENCRYPT$DELETE_KEY

Deletes a key definition from a key storage table.

Format

ENCRYPT$DELETE_KEY key-name ,key-flags

Arguments

key-name
type: char_string
access: read only
mechanism: by descriptor

Name of the key removed from a key storage table when
ENCRYPT$DELETE_KEY completes execution. The key-name argument is
the address of a string descriptor pointing to a char_string that is interpreted as
the name of the key to be deleted. A maximum of 243 characters is permitted.

key-flags
type: longword
access: read only
mechanism: by reference

Key table from which ENCRYPT$DELETE_KEY removes a key. The key-flags
argument is a longword containing flags that control the deletion process. The
following flags are available:

ENCRYPT$M_KEY_PROCESS Deletes a key from process table
ENCRYPT$M_KEY_GROUP Deletes a key from group table
ENCRYPT$M_KEY_JOB Deletes a key from job table
ENCRYPT$M_KEY_SYSTEM Deletes a key from system table

Description

The ENCRYPT$DELETE_KEY routine deletes a key definition from a key
storage table. The ENCRYPT$DELETE_KEY routine returns a 32-bit status code
indicating the success or failure of the routine’s operation.

Condition Values Returned

SS$_NORMAL Key has been deleted.
ENCRYPT$xyz An error reported by the Encryption software.

xyz identifies the message (see Appendix B).
SS$_xyz A return status from a called system service. xyz

identifies the return status.

4–12 Programming with Encryption for OpenVMS Routines

ENCRYPT$ENCRYPT

ENCRYPT$ENCRYPT

Transforms the next record of plaintext according to the algorithm you specify
in the ENCRYPT$INIT call. This routine performs either an encryption or
decryption operation.

Format

ENCRYPT$ENCRYPT context ,input ,output [,output-length] [,p1]

Arguments

context
type: longword integer (signed)
access: write only
mechanism: by reference

Context area initialized when ENCRYPT$INIT completes execution. The context
argument is the address of a longword of unspecified interpretation that is used
to convey context between encryption operations.

input
type: char_string
access: read only
mechanism: by descriptor

Plaintext record to encrypt. The input argument is the address of a descriptor
pointing to a byte-aligned buffer containing the input record to the encryption
operation.

output
type: char_string
access: write only by descriptor
mechanism:

Ciphertext record that results when ENCRYPT$ENCRYPT completes execution.
The output argument is the address of a descriptor pointing to a byte-aligned
buffer that will contain the output record from the encryption operation.

If the descriptor is dynamic and insufficient space is allocated to contain the
output record, storage is allocated from dynamic memory.

ENCRYPT$ENCRYPT adjusts the length of the output descriptor, if possible, to
reflect the actual length of the output string. If the descriptor type is not DSC$K_
DTYPE_VS (varying string), DSC$K_DTYPE_V (varying), or DSC$K_DTYPE_D
(dynamic), the routine takes the actual output count from the output-length
argument.

output-length
type: word integer
access: write only
mechanism: by reference

Optional argument. Number of bytes that ENCRYPT$ENCRYPT wrote to the
output buffer. The output-length argument is the address of a word containing
the number of bytes written to the output buffer.

Programming with Encryption for OpenVMS Routines 4–13

ENCRYPT$ENCRYPT

Some encryption algorithms have specific requirements for the length of the input
and output strings. In particular, DESECB and DESCBC pad input data with
from 1 to 7 bytes to form complete 64-bit blocks for operation. The values of the
pad characters are indeterminate.

When you decrypt fewer than 8 bytes, preserve and present to
ENCRYPT$DECRYPT the full 8 bytes resulting from ENCRYPT$ENCRYPT.
Retain the byte count of the input data in order to strip trailing pad bytes after a
subsequent decryption operation.

p1
type: quadword
access: read only
mechanism: by reference

Optional argument. The p1 argument is the address of a quadword initialization
vector used to seed the three modes (DESECB, DESCFB, and DESMAC) of the
DES algorithm for which it is applicable.

If you omit this argument, the initialization vector used is the residue of the
previous use of the specified context block. ENCRYPT$INIT initializes the
context block with an initialization vector of zero.

Description

The ENCRYPT$ENCRYPT routine transforms the next record of plaintext
according to the algorithm specified in the ENCRYPT$INIT call. Any
errors encountered in the operation are returned as status values. The
ENCRYPT$ENCRYPT routine returns a 32-bit status code indicating the success
or failure of the routine’s operation.

Condition Values Returned

SS$_NORMAL Record successfully encrypted.
ENCRYPT$xyz An error reported by the Encryption software.

xyz identifies the message (see Appendix B).
SS$_xyz A return status from a called system service. xyz

identifies the return status.

4–14 Programming with Encryption for OpenVMS Routines

ENCRYPT$ENCRYPT_FILE

ENCRYPT$ENCRYPT_FILE

Encrypts or decrypts data files.

Format

ENCRYPT$ENCRYPT_FILE input-file ,output-file ,key-name ,algorithm ,file-flags
,item-list

Arguments

input-file
type: char_string
access: read only
mechanism: by descriptor

Name of the input file that ENCRYPT$ENCRYPT_FILE is to process. The input-
file argument is the address of a string descriptor pointing to the file specification
string for the input file.

Wildcard characters are valid. To specify multiple input files, you must use
wildcard characters.

output-file
type: char_string
access: read only
mechanism: by descriptor

Name of the output file that ENCRYPT$ENCRYPT_FILE is to generate. The
output-file argument is the address of a string descriptor pointing to the file
specification for the output file to be processed.

You can use wildcard characters. To specify the same names for the output and
input files, use a null character as the output-file argument.

key-name
type: char_string
access: read only
mechanism: by descriptor

Name of the key used when ENCRYPT$ENCRYPT_FILE processes files. The
key-name argument is the address of a string descriptor pointing to the name of
the key to be used in initializing the encrypt or decrypt stream used for each file
processed.

algorithm
type: char_string
access: read only
mechanism: by descriptor

Name of the algorithm that ENCRYPT$ENCRYPT_FILE uses to initialize the
process stream. The algorithm argument is the address of a string descriptor
pointing to the name of the algorithm.

The following algorithms are valid:

• DESCBC (default)

• DESECB

Programming with Encryption for OpenVMS Routines 4–15

ENCRYPT$ENCRYPT_FILE

• DESCFB

file-flags
type: longword
access: read only
mechanism: by reference

Flags that specify how ENCRYPT$ENCRYPT_FILE performs the file operation.
The file-flags argument is the address of a longword containing a mask of flags.
Table 4–4 shows the function of each flag.

Table 4–4 ENCRYPT$ENCRYPT_FILE Flags

Flag Function

ENCRYPT$M_FILE_COMPRESS Compresses file data before encryption.
ENCRYPT$M_FILE_ENCRYPT Flag set: encrypts the file.

Flag clear: decrypts the file.
ENCRYPT$M_FILE_DELETE Deletes the input file when the operation

completes.
ENCRYPT$M_FILE_ERASE Erases the file with the security data

pattern before deleting it.
ENCRYPT$M_FILE_KEY_VALUE Flag set: Treats the key value as a literal

value and does not compress it.

Flag clear: Treats the key value as a
text string that can be compressed.

If the KEY_NAME parameter is present,
this flag is ignored.

item-list
type: item_list_3
access: read only
mechanism: by descriptor

Item list used to specify additional arguments for the
ENCRYPT$ENCRYPT_FILE routine. The item-list argument is the address
of an item list. The following item-code is valid:

ENCRYPT$K_DATA_ALGORITHM
type: 3 longwords
access: read only
mechanism: by descriptor

Algorithm to be used to encrypt the file. This argument specifies the address and
length of the name string of the algorithm.

The following algorithms are valid:

• DESCBC (default)

• DESECB

• DESCFB

4–16 Programming with Encryption for OpenVMS Routines

ENCRYPT$ENCRYPT_FILE

Description

The ENCRYPT$ENCRYPT_FILE routine either encrypts or decrypts data files
from within an application.

The routine uses the user key and the specified algorithm to protect only the
randomly generated key and the initialization vector that are used with the
DESCBC algorithm to encrypt the file.

The ENCRYPT$ENCRYPT_FILE routine returns a 32-bit status code indicating
the success or failure of the routine’s operation.

When you use this routine, do not also use ENCRYPT$INIT or ENCRYPT$FINI.

Condition Values Returned

SS$_NORMAL Record successfully encrypted.
ENCRYPT$xyz An error reported by the Encryption software.

xyz identifies the message (see Appendix B).
SS$_xyz A return status from a called system service. xyz

identifies the return status.

Programming with Encryption for OpenVMS Routines 4–17

ENCRYPT$ENCRYPT_ONE_RECORD

ENCRYPT$ENCRYPT_ONE_RECORD

Encrypts a small amount of data in an encrypt stream.

Format

ENCRYPT$ENCRYPT_ONE_RECORD input ,output ,key-name ,algorithm

Arguments

input
type: char_string
access: read only
mechanism: by descriptor

Plaintext record to be encrypted. The input argument is the address of a string
descriptor pointing to a byte-aligned buffer containing the input record to be
encrypted.

output
type: char_string
access: write only
mechanism: by descriptor

Ciphertext record resulting when the routine completes execution. The output
argument is the address of a string descriptor pointing to a byte-aligned buffer
that will contain the ciphertext record.

If the descriptor is dynamic, and insufficient space is allocated to contain the
output record, storage is allocated from dynamic memory. If insufficient space
exists to contain the output of the operation, an error is returned.

The ENCRYPT$ENCRYPT_ONE_RECORD routine adjusts the length of the
output descriptor, if possible, to reflect the actual length of the output string.

key-name
type: char_string
access: read only
mechanism: by descriptor

Key used to initialize the encrypt stream. The key-name argument is the
address of a string descriptor pointing to the name of the previously defined user
key to be used.

algorithm
type: char_string
access: read only
mechanism: by descriptor

Algorithm used for the encryption operation. The algorithm argument is the
address of a string descriptor pointing to a code for the selected algorithm. The
algorithm code is an ASCII string. For descriptor type value, use one of the
following:

• DSC$K_DTYPE_T (text)

• DSC$K_DTYPE_VT (varying text)

4–18 Programming with Encryption for OpenVMS Routines

ENCRYPT$ENCRYPT_ONE_RECORD

• DSC$K_DTYPE_Z (unspecified)

The following algorithms are valid:

• DESCBC (default)

• DESECB

• DESCFB

Description

To encrypt only a small amount of data, use the ENCRYPT$ENCRYPT_ONE_
RECORD routine.

The ENCRYPT$ENCRYPT_ONE_RECORD routine is a shorthand form of the
ENCRYPT$INIT, ENCRYPT$ENCRYPT, and ENCRYPT$FINI sequence of calls.
However, using ENCRYPT$ENCRYPT_ONE_RECORD repeatedly to encrypt
records of a file is extremely inefficient.

The ENCRYPT$ENCRYPT_ONE_RECORD routine returns a 32-bit status code
indicating the success or failure of the routine’s operation.

Condition Values Returned

SS$_NORMAL Operation performed.
ENCRYPT$xyz An error reported by the Encryption software.

xyz identifies the message (see Appendix B).
SS$_xyz A return status from a called system service. xyz

identifies the return status.

Programming with Encryption for OpenVMS Routines 4–19

ENCRYPT$FINI

ENCRYPT$FINI

Disassociates the encryption context and releases it.

Format

ENCRYPT$FINI context

Arguments

context
type: longword integer (signed)
access: read/write
mechanism: by reference

Context area terminated when ENCRYPT$FINI completes execution. The
context argument is the address of a longword initialized by the ENCRYPT$INIT
routine.

Description

The ENCRYPT$FINI routine disassociates the indicated encryption context and
releases it. The ENCRYPT$FINI routine returns a 32-bit status code indicating
the success or failure of the routine’s operation.

Condition Values Returned

SS$_NORMAL Encryption context successfully terminated.
ENCRYPT$xyz An error reported by the Encryption software.

xyz identifies the message (see Appendix B).
SS$_xyz A return status from a called system service. xyz

identifies the return status.

4–20 Programming with Encryption for OpenVMS Routines

ENCRYPT$GENERATE_KEY

ENCRYPT$GENERATE_KEY

Generates a random key value.

Format

ENCRYPT$GENERATE_KEY algorithm-name ,key-length [,factor-a] [,factor-b]
[,factor-c] [,key buffer]

Arguments

algorithm-name
type: char_string
access: read only
mechanism: by descriptor

The name of the algorithm that will use the generated key.

key-length
type: word unsigned
access: read only
mechanism: by reference

Unsigned integer indicating the size of the key to be generated. The key-length
argument is the address of an unsigned word containing a value that indicates
the length of the key.

factor-a, factor-b, factor-c
type: char_string
access: read only
mechanism: by descriptor

Optional arguments. The factor-a, factor-b, and factor-c arguments are
operation-dependent data used as randomizing factors when the routine generates
a key value. For example, the factors might be:

• Time an operation started

• Size of a certain stack

• Copy of the last command line

key-buffer
type: char_string
access: write
mechanism: by descriptor

Buffer into which the generated key is to be placed. The key-buffer argument is
the address of a string descriptor referencing the appropriate buffer.

If you specify a class D descriptor, dynamic memory is allocated to contain the
entire key.

Programming with Encryption for OpenVMS Routines 4–21

ENCRYPT$GENERATE_KEY

Description

The ENCRYPT$GENERATE_KEY routine generates a random key value. The
ENCRYPT$GENERATE_KEY routine returns a 32-bit status code indicating the
success or failure of the routine’s operation.

Condition Values Returned

SS$_NORMAL Key has been created.
ENCRYPT$xyz An error reported by the Encryption software.

xyz identifies the message (see Appendix B).
SS$_xyz A return status from a called system service. xyz

identifies the return status.

4–22 Programming with Encryption for OpenVMS Routines

ENCRYPT$INIT

ENCRYPT$INIT

Initializes the context for the encryption operation.

Format

ENCRYPT$INIT context ,algorithm ,key-type ,key-name [,p1]

Arguments

context
type: longword integer signed
access: write only
mechanism: by reference

Context area that is initialized. The context argument is the address of a
longword of unspecified interpretation that is used to convey context between
encryption operations. An uninitialized context longword is defined to be zero and
is initialized to nonzero by this routine. The context area itself is allocated from
process dynamic memory.

algorithm
type: char_string
access: read/write
mechanism: by descriptor

Algorithm used for the encryption operation. The algorithm argument is the
address of a string descriptor pointing to a code for the selected algorithm. The
algorithm code is an ASCII string. For descriptor type value, use one of the
following:

DSC$K_DTYPE_T (text)
DSC$K_DTYPE_VT (varying text)
DSC$K_DTYPE_Z (unspecified)

The following algorithms are valid:

• DESCBC (default)

• DESECB

• DESCFB

key-type
type: longword logical unsigned
access: read only
mechanism: by reference

Code specifying how ENCRYPT$INIT is to interpret the key-name argument.
The key-type argument is the address of an unsigned longword indicating
whether key-name is the name of the key or the key value. If you specify:

Key-type as 0 ENCRYPT$INIT interprets key-name as a
descriptor pointing to the key name string.

Key-type as 1 ENCRYPT$INIT interprets key-name as the
descriptor for the value of the key to be used.

Programming with Encryption for OpenVMS Routines 4–23

ENCRYPT$INIT

key-name
type: char_string
access: read only
mechanism: by descriptor

Key that ENCRYPT$INIT passes to the selected encryption routine. The key-
name argument is the address of a character string descriptor containing the
name of the key or the address of the actual key value. ENCRYPT$INIT’s
interpretation of this argument depends on the value of key-type. If this
argument is:

The key name Actual key value is retrieved from key storage by
the selected encryption routine.

A key value It is stored with a temporary name, which is passed
to the selected encryption routine.

If the key-name argument is used to specify a key value (that is, if key-type has
been specified as 1), the key-name string descriptor type field determines whether
the key value is to be treated as a char_string or as a binary value to be used
exactly as specified.

If the descriptor type is DSC$K_DTYPE_T (char_string), DSC$K_DTYPE_VT
(varying char_string), or DSC$K_DTYPE_Z (unspecified), the value is treated as
a text string to be compressed.

All other descriptor types are treated as though the key value is to be used
exactly as specified.

p1
type: quadword
access: read only
mechanism: by reference

Optional argument. The p1 argument is the address of a quadword initialization
vector used to seed the three modes of the DES algorithm that uses an
initialization vector. These modes are: DESCBC (default), DESCFB, and
DESMAC.

Description

ENCRYPT$INIT initializes the context for the encryption operation.
ENCRYPT$INIT creates pre-initialized key tables in the context area to speed
the encryption or decryption process. Before you can re-use a context with a new
algorithm, key, or other values specified with ENCRYPT$INIT, terminate the old
context with a call to ENCRYPT$FINI.

Note

Always initialize the context with ENCRYPT$INIT when you change the
operation from encryption to decryption, or from decryption to encryption.

ENCRYPT$INIT returns a 32-bit status code indicating the success or failure of
the routine’s operation.

4–24 Programming with Encryption for OpenVMS Routines

ENCRYPT$INIT

Condition Values Returned

SS$_NORMAL Initialization successfully completed.
ENCRYPT$xyz An error reported by the Encryption software.

xyz identifies the message (see Appendix B).
SS$_xyz A return status from a called system service. xyz

identifies the return status.

Programming with Encryption for OpenVMS Routines 4–25

ENCRYPT$STATISTICS

ENCRYPT$STATISTICS

Gains access to the statistics maintained by the Encryption software.

Format

ENCRYPT$STATISTICS context ,code ,destination ,return-length

Arguments

context
type: longword
access: read only
mechanism: by reference

Context area initialized by ENCRYPT$INIT. The context argument is the
address of a longword initialized by the ENCRYPT$INIT routine.

code
type: longword
access: read only
mechanism: by reference

Code specifying the desired statistic. The code argument is the address of a
longword containing the code. The only accepted value is 1, which indicates that
ENCRYPT$STATISTICS is to return all statistics to the destination buffer.

destination
type: char_string
access: write only
mechanism: by descriptor

Buffer into which ENCRYPT$STATISTICS places the statistics. The destination
argument is the address of a string descriptor describing the buffer. Ensure that
the destination buffer is at least 20 bytes long and contains:

• One longword indicating the number of times the primitive has been entered
referencing this encryption stream

• One quadword indicating the total bytes processed for this stream

• One quadword indicating the total CPU time, in OpenVMS time format, spent
on processing requests for this stream

return-length
type: longword
access: write only
mechanism: by reference

Number of bytes written to the destination buffer. The return-length argument
is the address of a word containing the number of bytes.

4–26 Programming with Encryption for OpenVMS Routines

ENCRYPT$STATISTICS

Description

To track the progress and performance of an encryption operation, the
Encryption for OpenVMS software maintains statistics in the context area.
You can access these statistics with the ENCRYPT$STATISTICS routine. The
ENCRYPT$STATISTICS routine returns a 32-bit status code indicating the
success or failure of the routine’s operation.

Condition Values Returned

SS$_NORMAL Statistics returned.
ENCRYPT$xyz An error reported by the Encryption software.

xyz identifies the message (see Appendix B).
SS$_xyz A return status from a called system service. xyz

identifies the return status.

Programming with Encryption for OpenVMS Routines 4–27

A
Command Reference

This appendix describes the syntax of the Encryption for OpenVMS commands
and qualifiers. The command descriptions are presented in alphabetical order.

The Encryption-related commands are:

• BACKUP /ENCRYPT

• DECRYPT

• ENCRYPT

• ENCRYPT /AUTHENTICATE

• ENCRYPT /CREATE_KEY

• ENCRYPT /REMOVE_KEY

Enter these commands at the DCL prompt ($).

Command Reference A–1

BACKUP /ENCRYPT

BACKUP /ENCRYPT

Creates and restores encrypted save sets. Specify the /ENCRYPT qualifier in any
part of the BACKUP command line.

For additional security, specify the /ENCRYPT qualifier with no parameters and
press Return . The command prompts you for a key value. When you enter a
value, the software does not echo what you type and, for verification, prompts you
to retype the value.

Format

BACKUP /ENCRYPT=(NAME=key-name | VALUE=key-value [, ALGORITHM=algorithm])

/ENCRYPT Values

NAME=key-name
Required if you do not specify key-value.

Existing key name previously created and stored in the key storage table with
the ENCRYPT /CREATE_KEY command.

Specify either the name or the value of a key, but not both. For added security,
specify neither, and the system prompts you. Your input is not echoed.

VALUE=key-value
Required if you do not specify key-name.

Interactively defines a value for the key. Specify one of the following:

• Character string enclosed in quotation marks (" "). Specify from 1 to 243
alphanumeric characters. Dollar signs and underscores are valid.

• Hexadecimal constant using the digits 0 to 9 and A to F.

Specify either the name or the value of a key, but not both. For added security,
specify neither, and the system prompts you. Your input is not echoed.

ALGORITHM=DESCBC (default) | DESECB | DESCFB
Algorithm used to encrypt the initialization vector and the key you supply.

A–2 Command Reference

DECRYPT

DECRYPT

Decrypts files previously encrypted with the ENCRYPT command.

Format

DECRYPT input-file key-name [qualifiers]

Parameters

input-file
File names of the files to decrypt. If you use wildcard characters, do not include
directory files or files with bad blocks.

key-name
Key name previously stored in the key storage table with the ENCRYPT
/CREATE_KEY command.

Qualifiers

/BACKUP[= time]
Selects files according to the dates of their most recent backup.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /BACKUP with /EXPIRED or /MODIFIED.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/BEFORE[= time]
Selects files that have a creation time before the time you specify.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/BY_OWNER[=uic]
/NOBY_OWNER
Selects files with the owner UIC you specify.

If you omit uic, the UIC of the current process is used. For more information on
specifying UIC format, see the OpenVMS User’s Manual.

/CONFIRM
/NOCONFIRM
Controls whether or not a confirmation request is displayed before each
decryption, as follows:

Response Meaning

YES Decrypts the file
NO or Return Does not decrypt the file (default)
QUIT or Ctrl/Z Does not decrypt the file or any subsequent files
ALL Decrypts the file plus all subsequent files

Command Reference A–3

DECRYPT

/DELETE
/NODELETE
Default: /NODELETE.

Controls whether or not the input files are deleted after the decryption operation
is complete and the output file is written and closed.

/ERASE
/NOERASE
Controls whether or not the input files are erased with the data security pattern
before being deleted. By default, the location in which the data was stored is not
overwritten with the data security pattern. The /ERASE qualifier must be used
with /DELETE.

/EXCLUDE=file-spec
/NOEXCLUDE
Excludes the specified files from the decryption operation. You can use wildcard
characters. You do not need to enter an entire file specification. Any field that
you omit defaults to the input file specification.

Because directory files are never encrypted, you need not specify them.

/EXPIRED[=time]
Selects files according to the dates on which they expire.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /EXPIRED with /BACKUP or /MODIFIED.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/KEY_ALGORITHM=DESCBC (default) | DESECB | DESCFB
Algorithm by which the key and the initialization vector are protected within the
encrypted file. Specify the same algorithm that you used to encrypt the key, if not
the default.

/MODIFIED[=time]
Selects files according to the dates on which they were last modified.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /MODIFIED with /BACKUP or /EXPIRED.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/OUTPUT=file-spec
Alternate output file name for the decryption operation.

By default, each input file decrypted is written to a separate output file that
is one version higher than that of the input file. When using the /OUTPUT
qualifier, specify the parts of the file specification different from the defaults. You
do not need to provide an entire file specification. Any field that you omit defaults
to the input file specification.

/SHOW=(keyword-list)
Controls whether or not the following information about the decryption operation
is displayed on SYS$COMMAND:

A–4 Command Reference

DECRYPT

Keyword Meaning

FILES Displays input and output file names on
SYS$COMMAND

STATISTICS Displays the encryption stream statistics:

• Bytes processed

• Internal records processed

• CPU time consumed within the encryption algorithm

/SINCE[=time]
Selects files that have a creation date before the time you specify.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/STATISTICS
Same as /SHOW=STATISTICS.

Command Reference A–5

ENCRYPT

ENCRYPT

Encrypts files. Before you enter this command, create a key with the
ENCRYPT /CREATE_KEY command.

Format

ENCRYPT input-file key-name [qualifiers]

Parameters

input-file
File names of the files to encrypt. If you use wildcard characters, do not include
directory files or files with bad blocks.

key-name
Key name previously stored in the key storage table with the ENCRYPT
/CREATE_KEY command.

Qualifiers

/BACKUP[= time]
Selects files according to the dates of their most recent backup.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /BACKUP with /EXPIRED or /MODIFIED.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/BEFORE[= time]
Selects files that have a creation time before the time you specify.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/BY_OWNER[=uic]
/NOBY_OWNER
Selects files with the owner UIC you specify.

If you omit uic, the UIC of the current process is used. For more information on
specifying UIC format, see the OpenVMS User’s Manual.

/COMPRESS
/NOCOMPRESS
Optional. Default: /NOCOMPRESS.

Controls whether or not data compression occurs before a file is encrypted.

/CONFIRM
/NOCONFIRM
Controls whether or not a confirmation request is displayed before each
encryption, as follows:

A–6 Command Reference

ENCRYPT

Response Meaning

YES Encrypts the file
NO or Return Does not encrypt the file (default)
QUIT or Ctrl/Z Does not encrypt the file or any subsequent files
ALL Encrypts the file plus all subsequent files

/DATA_ALGORITHM=DESCBC (default) | DESECB | DESCFB
Algorithm used to encrypt the file. It is used with the randomly generated key to
perform encryption.

/DELETE
/NODELETE
Controls whether or not the input files are deleted after the encryption operation
is complete and the output file is written and closed. By default, the input file is
not deleted.

/ERASE
/NOERASE
Controls whether or not the input files are erased with the data security pattern
before being deleted. By default, the location in which the data was stored is not
overwritten with the data security pattern. The /ERASE qualifier must be used
with /DELETE.

/EXCLUDE=file-spec
/NOEXCLUDE
Excludes the specified files from the encryption operation. You can use wildcard
characters. You do not need to enter an entire file specification. Any field that
you omit defaults to the input file specification.

Beacuse directory files are never encrypted, you need not specify them.

/EXPIRED[=time]
Selects files according to the dates on which they expire.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /EXPIRED with /BACKUP or /MODIFIED.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/KEY_ALGORITHM=DESCBC (default) | DESECB | DESCFB
Algorithm by which the key and the initialization vector are to be protected
within the encrypted file. The command uses this algorithm with the key
you supply to encrypt the randomly generated data encryption key and the
initialization vector stored within the file.

/MODIFIED[=time]
Selects files according to the dates on which they were last modified.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /MODIFIED with /BACKUP or /EXPIRED.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

Command Reference A–7

ENCRYPT

/OUTPUT=file-spec
Alternate output file name for the encryption operation. By default, each input
file encrypted is written to a separate output file that is one version higher than
the highest version of the input file. When using the /OUTPUT qualifier, specify
the parts of the file specification different from the defaults. You do not need to
provide an entire file specification. Any field that you omit defaults to the input
file specification.

/SHOW=keyword-list
Controls whether or not the following information about the encryption operation
is displayed on SYS$COMMAND:

Keyword Meaning

FILES Displays input and output file names on
SYS$COMMAND

STATISTICS Displays the encryption stream statistics:

• Bytes processed

• Internal records processed

• CPU time consumed within the encryption algorithm

/SINCE[=time]
Selects files that have a creation date before the time you specify.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/STATISTICS
Same as /SHOW=STATISTICS.

/VERSION
Displays the version number of the Encryption for OpenVMS software running on
your system.

A–8 Command Reference

ENCRYPT /AUTHENTICATE

ENCRYPT /AUTHENTICATE

Associates a Message Authenticate Code (MAC) value with one or more files and
checks for any modification of either plaintext or ciphertext files.

Format

ENCRYPT /AUTHENTICATE file-spec key-name [qualifiers]

Parameters

file-spec
File names of the files to authenticate. Behavior can be modified with the
/MULTIPLE_FILES qualifier.

key-name
Key name previously stored in the key storage table with the ENCRYPT
/CREATE_KEY command.

Qualifiers

/BACKUP[= time]
Selects files according to the dates of their most recent backup.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /BACKUP with /EXPIRED or /MODIFIED.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/BEFORE=time
Selects files that have a creation time before the time you specify.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/BY_OWNER[=uic]
/NOBY_OWNER
Selects files with the owner UIC you specify.

If you omit uic, the UIC of the current process is used. For more information on
specifying UIC format, see the OpenVMS User’s Manual.

/CONFIRM
/NOCONFIRM
Controls whether or not a confirmation request is displayed before each
authentication, as follows:

Response Meaning

YES Authenticates the file
NO or Return Does not authenticate the file (default)
QUIT or Ctrl/Z Does not authenticate the file or any subsequent

files

Command Reference A–9

ENCRYPT /AUTHENTICATE

Response Meaning

ALL Encrypts the file plus all subsequent files

/DATABASE= file-spec
/NODATABASE
File name of the file in which to store binary MAC values.

Generates a MAC using the file contents. If you do not specify a file name, the
file name SYS$LOGIN:ENCRYPT$MAC.DAT is used.

/EXCLUDE=file-spec
/NOEXCLUDE
Excludes the specified files from the authentication operation. You can use
wildcard characters. You do not need to enter an entire file specification. Any
field that you omit defaults to the input file specification.

Because directory files are never encrypted, you need not specify them.

/EXPIRED[=time]
Selects files according to the dates on which they expire.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /EXPIRED with /BACKUP or /MODIFIED.

If you omit a time value, TODAY is used. For more information on time
specifications, see the OpenVMS User’s Manual.

/LOG
Displays the results of the authentication operation.

/MODIFIED[=time]
Selects files according to the dates on which they were last modified.

This qualifier is relevant only when used with the /BEFORE or the /SINCE
qualifier. In addition, do not use /MODIFIED with /BACKUP or /EXPIRED.

If you omit a time value, TODAY is used. For more information on time
specifications, see the OpenVMS User’s Manual.

/MULTIPLE_FILES
Indicates that the file-spec parameter contains a list of file names to be checked.
The file-spec file is opened and each record is read and treated as a file-spec.

/OUTPUT=file-spec
/NOOUTPUT
File name of the file in which to store readable MAC values. These MAC values
represent both the file contents as well as the security settings. If you do not
specify a file name, the default file name SYS$LOGIN:ENCRYPT$MAC.LIS is
used.

/SECURITY=file-spec
/NOSECURITY
File name of the file in which to store binary MAC values. If you do not specify a
file name, the default file name ENCRYPT$SEC.DAT is used.

Generates a MAC using the file’s security settings: owner, protection settings,
and optional ACL

A–10 Command Reference

ENCRYPT /AUTHENTICATE

/SINCE[=time]
Selects files that have a creation time before the time you specify.

If you omit time, TODAY is used. For more information on time specifications,
see the OpenVMS User’s Manual.

/UPDATE
/NOUPDATE
Associates new MAC values with one or more files.

Command Reference A–11

ENCRYPT /CREATE_KEY

ENCRYPT /CREATE_KEY

Creates a key definition to be used for encrypting files. The key is a string that
represents the name under which the encryption key is stored in the key storage
table.

Format

ENCRYPT /CREATE_KEY key-name key-value [qualifiers]

Parameters

key-name
Name under which the encryption key will be stored in the key storage table.
Specify a character string, as follows:

• Valid length: 1 to 243 alphanumeric characters.

• Valid: dollar signs and underscores.

• Case sensitive: no.

Use a name that has meaning to you, to help you remember it.

Note

Key names beginning with ENCRYPT$ are reserved for Compaq.

key-value
String representing the value of the encryption key. Specify either ASCII text or
a hexadecimal constant, as follows:

• ASCII text string (default)

Length: 8 to 240 characters.

The string is not case sensitive.

If you use characters other than alphanumeric characters, for example,
blank spaces, enclose the string in quotation marks (" ").

• Hexadecimal constant

Use the /HEXADECIMAL qualifier.

Valid characters: 0 to 9, A to F.

Valid minimum length: 15 characters.

Do not enclose the value in quotation marks.

Qualifiers

/GROUP
Enters the key definition in the group key storage table.

A–12 Command Reference

ENCRYPT /CREATE_KEY

/HEXADECIMAL
/NOHEXADECIMAL
Specifies that the value for the key is a hexadecimal number. Default: key values
are interpreted as ASCII text characters (see the description of the key-value
parameter).

/JOB
Enters the key definition in the job key storage table.

/LOG
Verifies successful creation of the key.

/PROCESS
Enters the key definition in the process key storage table.

/SYSTEM
Enters the key definition in the system key storage table.

Examples

1.

$ ENCRYPT /CREATE_KEY HAMLET
_ Key value: "And you yourself shall keep the key of it"

This command defines a key named HAMLET with character string value
And you yourself shall keep the key of it.

2.

$ ENCRYPT /CREATE_KEY /HEXADECIMAL ARCANE 2F4A98F46BBC11D

This example defines a key named ARCANE with hexadecimal value
2F4A98F46BBC11D.

Command Reference A–13

ENCRYPT /REMOVE_KEY

ENCRYPT /REMOVE_KEY

Deletes a key definition from a key storage table.

Format

ENCRYPT /REMOVE_KEY key-name [qualifiers]

Parameters

key-name
Key name previously stored in the key storage table with the ENCRYPT
/CREATE_KEY command.

Qualifiers

/GROUP
Deletes the key definition from the group key storage table.

/JOB
Deletes the key definition from the job key storage table.

/PROCESS
Deletes the key definition from the process key storage table.

/SYSTEM
Deletes the key definition from the system key storage table.

A–14 Command Reference

B
Error Messages

The Encryption for OpenVMS commands can generate error and information
messages. For descriptions of these messages and possible corrective actions, see
the following sections:

• Messages produced by the ENCRYPT, ENCRYPT /CREATE_KEY,
ENCRYPT /AUTHENTICATE, ENCRYPT /REMOVE_KEY, and DECRYPT
commands (Section B.1)

• Messages produced by the Encryption option of the BACKUP utility
(Section B.2)

B.1 ENCRYPT and DECRYPT Messages
The error messages documented in this section can be produced from the
following commands:

• ENCRYPT /CREATE_KEY

• ENCRYPT /REMOVE_KEY

• ENCRYPT

• ENCRYPT /AUTHENTICATE

• DECRYPT

ALGONEWAY, algorithm is one-way and not suitable for file encryption,
Explanation: The specified algorithm and mode cannot be used to decrypt
data. Encryption does not let you encrypt files without being able to decrypt
them.
User Action: Choose a different algorithm or mode.

ALGNOTSPEC, algorithm name specification is a required parameter,
Explanation: You omitted the name of the algorithm in a call to an
Encryption routine.
User Action: Specify a three-character long algorithm name.

ALGSUBNOT, algorithm submode option not supported,
Explanation: You supplied a submode parameter to an encryption primitive
entry point that is not supported by the available implementation.
User Action: Verify that the contents of the algorithm control mask
parameter are correct for the selected algorithm.

AUTHGEN, Authentication code generated for file: file-spec,
Explanation: A message authentication code (MAC) has been calculated for
an existing file.
User Action: No action required.

Error Messages B–1

AUTHMATCH, File file-spec successfully authenticated,
Explanation: The computed message authentication code (MAC) for the file
matches the previously stored MAC.
User Action: No action required.

AUTHMISM, File authentication code mismatch for file: file-spec,
Explanation: The contents of the file have changed because the MAC does
not match the one stored in the database. This may indicate file tampering.
User Action: First check the contents of the file, and then make sure that it
belongs in your directory.

CONINIERR, unable to initialize the work area for the algorithm selected,
Explanation: The context and work area contain inconsistent check data
and are assumed to be corrupted or incorrectly initialized.
User Action: Verify that the following took place:

• The proper sequence of initialize, encrypt or decrypt, and finalize calls
was made when referencing the context area.

• The context area in allocated memory was not corrupted by other
programming actions.

CONLENERR, context area length error,
Explanation: The context and work area supplied to the encryption
primitive routine was not long enough for the encryption primitive routine to
operate. This error is expected only if you make direct use of the encryption
primitive entry points when the ENCRYPT$ library routines attempt to
allocate the correct length of the context area from free memory.
User Action: Verify that the symbol used as the size of the context area
is correct for the selected algorithm and that the resulting size reflects the
minimum requirements for the encryption primitive routine.

CONNOTINI, context area not yet initialized,
Explanation: The Context Block has not been initialized by either
ENCRYPT$INIT or ENCRYPT$K_FNC$INIT.
User Action: Check your program to be sure that the Context Block is
initialized before an encryption or decryption operation.

CONPOIINI, context area pointer is already initialized or nonzero,
Explanation: An initialize call contained a nonzero context pointer.
User Action: Verify that the proper sequence of initialize, encrypt or decrypt,
and finalize calls has referenced the pointer to the context area.

CRC FAIL, CRC comparison indicates tampered or corrupted file, file-spec,
Explanation: The cyclic redundancy check (CRC) value for the original
plaintext file does not match the value of the decrypted file. Although the file
has been saved, changes have occurred in the ciphertext file.
User Action: Do not rely on data in this file. Attempt to recover lost or
corrupted information from backups or from the owner.

B–2 Error Messages

CRECONTIG, unable to create file as contiguous, file-spec,
Explanation: When a file is encrypted, file attributes are preserved in the
encrypted file. One of the attributes specifies whether or not the original
plaintext file was contiguous. When the file is decrypted, an attempt is made
to create the output file with the same attribute. If the file cannot be created
contiguously, this message results and a noncontiguous file is created.
User Action: If file contiguity is important, free up sufficient space on the
output disk device so that it can contain the file in contiguous disk blocks.
Purge files, delete unnecessary files, or select a different output device.

DBOPEN, Cannot open database file file-spec,
Explanation: Encryption could not access the database file you specified.
User Action: Check accompanying error messages for more information.

DBUNRDBL, Database is unreadable; check for correct key,
Explanation: You specified an incorrect encryption key. Only one key may
be used for each database.
User Action: Use the correct key. Specify the same key you used when you
originally updated the MAC.

DECRYPTED, file decrypted as specified,
Explanation: The file was decrypted as specified.
User Action: None.

ENCRYPTED, file encrypted as specified,
Explanation: The file was encrypted as specified.
User Action: None.

FILBADBLK, file contains bad blocks, processing not attempted, file-spec,
Explanation: You tried to encrypt a file containing bad blocks.
User Action: Ensure that any wildcard file specification does not include
the name of the file that triggers this error. Do not delete the file before
consulting with your system manager about how to recover the contents of
the file or how to remove it from your directory.

FILDISKONLY, file encryption/decryption is supported for disk files only, file-
spec,
Explanation: You attempted an encryption operation on either an input or
output file that does not reside on a disk device, the only devices that are
supported.
User Action: Copy the files to a disk device before attempting an encryption
or decryption operation.

FILNODIR, file encryption of directories is not supported, file-spec,
Explanation: You attempted a file encryption operation on a directory file.
The file encryption services are intended for user files only. The encryption
and decryption of directories is not supported.
User Action: Ensure that any wildcard file specification does not include
directory files. If you are at DCL level, use the /EXCLUDE=.DIR qualifier
in the ENCRYPT or DECRYPT commands. If you are operating at the
application program interface level, filter each file specification before calling
ENCRYPT$ENCRYPT_FILE.

Error Messages B–3

To encrypt whole directory structures, use the BACKUP utility with the
/ENCRYPT qualifier.

FILNOPPF, file encryption of a process-permanent file is not supported, file-spec,
Explanation: You attempted a file encryption operation on a process-
permanent file. Process-permanent files, even though they can reside on a
disk as batch or log files, are presented to a process as though they were
record devices and cannot be treated as disk files.
User Action: Reconstruct the batch or command file to copy input data to
a temporary disk file before encrypting or decrypting the data to a disk file;
then copy it to the output log as appropriate.

FILESTRUCT, input file structure error, file-spec,
Explanation: An internal logic error occurred when data from a compressed,
encrypted file was decompressed.
User Action: Contact your Compaq support representative.

FILSTRUNS, structure of encrypted file is unsupported, file-spec,
Explanation: A file encrypted with the file encryption routine contains
a routine version number to track any future enhancements of the file
structure. If a file created by a later version of the software is presented to
an earlier version for decryption, this message results.

Encryption is upward compatible — files encrypted with the current
Encryption for OpenVMS version can be decrypted using a later version. But,
the reverse is not necessarily always possible.

This error can also indicate an attempt to decrypt a file using the incorrect
key.
User Action: None. The file cannot be decrypted with the current software
version.

HIGHVER, creating output file for which higher versions exist, file-spec,
Explanation: When creating an output file during file encryption or
decryption, you supplied an output file specification that forced the creation of
a file with a version number lower than another file in the directory.
User Action: If this is not the intended action, provide a file specification
that does not force a version number value with the /OUTPUT=filename
qualifier.

ILLALGMOD, algorithm submode selection unknown or unsupported,
Explanation: This error indicates that you specified a submode code that
the indicated algorithm does not support. This error results only if there is a
parameter error in a direct call to an encryption primitive routine.
User Action: Verify that the algorithm selected makes use of the submode
code supplied.

ILLALGSEL, algorithm selection unknown or unsupported,
Explanation: You supplied an algorithm code to a function that is not
supported or installed on this system.
User Action: None. That algorithm may not be used in this installation.

B–4 Error Messages

ILLDESTYP, illegal descriptor type for specifying parameter,
Explanation: You passed a descriptor address as a parameter to the routine
returning this error. The descriptor type field indicates that this descriptor
type is not supported for passing of parameters.
User Action: Verify that the descriptors passed conform to the specified type
requirements. It may be necessary to explicitly initialize the descriptor type
field to avoid default or uninitialized values.

IMGVERNEQ, algorithm image version is no longer supported,
Explanation: An upgrade to a newer version of the software is incomplete.
Former Encryption for OpenVMS images remain on your system.
User Action: Re-install the Encryption for OpenVMS software.

INCKEYDEF, incompatible key definition,
Explanation: The specified key does not meet the requirements of the
specified algorithm.
User Action: Select a different key value or, if the key value has been
randomly generated as part of the user application, generate another value.

INPLENERR, input length does not meet algorithm requirements,
Explanation: The input data length is not valid. The DESECB and
DESCBC modes require input data that is a multiple of 8 bytes in length.
The basic algorithm operates only on 64 bits of data in each pass. Ensure
that the input data length is a multiple of 8 bytes.
User Action: Revise the input data length to be a multiple of 8 bytes.

INSCONSPA, insufficient context space to support this algorithm’s needs,
Explanation: The ENCRYPT$INIT function attempted to allocate space
from dynamic memory for a buffer to contain the encryption stream context
and work area. This memory allocation failed.
User Action: Increase the process parameters to permit more virtual
memory, or reconstruct your application to leave more virtual memory
available for system library and encryption functions.

INSTALLIT, key translation error in Encryption for OpenVMS indicates that
product installation may not be complete,
Explanation: The Encryption startup procedure
SYS$STARTUP:ENCRYPT$START.COM has not executed.
User Action: Execute the startup procedure from the system manager’s
account.

INVARGCOU, invalid argument count for ENCRYPT$ routine,
Explanation: You did not supply enough arguments to one of the Encryption
for OpenVMS library routines to initiate the indicated function.
User Action: Verify the call format and specify the correct number of
arguments.

INVARGVAL, invalid argument value and/or count,
Explanation: The routine issuing this message was called with an invalid
argument count or value.
User Action: Verify the callable routine sequences.

Error Messages B–5

INVFLAGS, invalid options flags specified,
Explanation: Invalid option flag bits were set in the flags argument to an
Encryption routine.
User Action: Correct the program to properly initialize unused bits in the
flags argument longword to zero.

INVROUNDUP, invalid algorithm block buffer roundup specification,
Explanation: An internal error has occurred.
User Action: Contact your Compaq support representative.

INVWEAK_KEY, key rejected; use of weak key for file encryption is invalid,
Explanation: A weak key was specified for a file encryption operation.
User Action: Specify a different key value.

KEYBUFCKS, checksum of encrypted file key is invalid,
Explanation: The checksum of the stored random key (under which the file
is actually encrypted) is incorrect following decryption using the specified
decryption key. This usually means that the incorrect key has been specified.
User Action: Determine the correct key with which to decrypt the file.

KEYLENERR, key length does not meet algorithm requirements,
Explanation: The key length does not contain enough characters. The DES
algorithm requires a minimum of 8 bytes for its key string. Other algorithms
may have other requirements.
User Action: Redefine a key containing more characters.

KEYPARERR, key parity error,
Explanation: The DES algorithm requires that the key string extracted from
key storage have odd-bit parity in each byte. In normal operating mode, the
algorithm forces odd parity before using the key. Under certain conditions,
the encryption primitive routine can be called directly with parameters that
suppress the forcing of odd parity. In that case, if the key has incorrect parity,
this error will be returned.
User Action: Revise the DES call parameter to force generation of odd
parity, or reinsert the key string into key storage and indicate that odd parity
is to be set.

KEYTRNERR, unable to obtain key value from key storage,
Explanation: You supplied a key name that is not found in the key storage
table.
User Action: Verify that the key is defined as intended and that the name is
supplied to the initialize function correctly.

KEYUNKNOW, key name unknown,
Explanation: You specified a key incorrectly.
User Action: Verify the key name (for example, check the spelling) and
specify it correctly.

B–6 Error Messages

NEWDB, new authentication code database has been created,
Explanation: A new database is created to store binary message
authentication code (MAC) values.
User Action: No action required.

NEWSECDB, New authentication security settings database has been created,
Explanation: A new security database is created to store binary message
authentication code (MAC) values.
User Action: None.

NODECRYPT, decrypt operations are not permitted on this context/stream,
Explanation: Decryption is not permitted when the context has been
initialized for encryption.
User Action: Reinitialize the context to permit decryption.

NOENCRYPT, encrypt operations not permitted on this context/stream,
Explanation: Encryption is not permitted when the context has been
initialized for decryption.
User Action: Reinitialize the context to permit encryption.

NOENTRY, file file-spec does not appear in the authentication database,
Explanation: The file does not have an associated message authentication
code (MAC) stored in the MAC database. The file is either new, renamed, or
has not been associated with a MAC.

Sometimes this message is an indication of file tampering.
User Action: Determine whether the file belongs in this database.

NOKGENROU, no key generation routine is provided for this algorithm,
Explanation: The specified algorithm did not contain a random key
generation routine.
User Action: Contact your Compaq support representative.

NOKTSTROU, no key filter routine is provided for this algorithm,
Explanation: The specified algorithm did not contain a key filter routine.
User Action: Contact your Compaq support representative.

NOTAUTHDB, file file-spec is not an authentication database,
Explanation: The file you specified is not a database created by the
Encryption for OpenVMS software. It is not usable as an authentication
database.
User Action: Use a different file specification.

NOTDEL, error prevents deletion of file file-spec,
Explanation: You specified the /DELETE qualifier when encrypting or
decrypting a file, but you lack delete access to this file.
User Action: Change the file protection and delete the file using the DCL
DELETE command.

Error Messages B–7

NOTESTROU, no test routine is available for this algorithm,
Explanation: The specified algorithm did not contain a test routine.
User Action: Contact your Compaq support representative.

NOTHEXVAL, key value not hexadecimal constant,
Explanation: You specified a key value that is not a hexadecimal constant
with ENCRYPT /CREATE_KEY /HEXADECIMAL.
User Action: Either remove the /HEXADECIMAL qualifier or ensure that
the key value string is composed of digits in the range 0 to 9 and A to F.

NOTSECDB, Setting is not in security database,
Explanation: The file you specified is not a security database created
by the Encryption for OpenVMS software. It is not usable as a security
authentication database.
User Action: Validate that the file specification is correct. The Encryption
for OpenVMS software creates the file ENCRYPT$MAC_SEC.DAT in the
SYS$LOGIN directory by default.

NOTYETIMP, this function is not yet implemented,
Explanation: The call requested a function that has not been implemented.
User Action: Contact your Compaq support representative.

OUTLENERR, output length does not meet algorithm requirements,
Explanation: You did not supply an output buffer long enough to hold the
output from the encryption or decryption operation. Because some algorithms
increase or decrease data-byte count, check the requirements of the different
algorithms.
User Action: Supply a larger output buffer.

PARSEFAIL, error parsing file-spec,
Explanation: Encryption could not locate the file you specified in an
ENCRYPT or a DECRYPT command.
User Action: Check the file name that you specified. An accompanying RMS
message gives additional information about the error. Re-enter the command
using the correct file name.

SECAUTHGEN, Security authentication code generated for filename,
Explanation: A message authentication code (MAC) has been calculated for
the specified file based on the file’s security settings.
User Action: None.

SECAUTHMATCH, Security settings for filename successfully authenticated,
Explanation: The computed message authentication code (MAC) for the file
matches the previous stored MAC in the security database.
User Action: None.

B–8 Error Messages

SECAUTHMISM, Security authentication code mismatch for file filename,
Explanation: The security settings of the file have changed because the
message authentication code (MAC) does not match the MAC stored in the
security database. This may indicate security settings tampering.
User Action: Perform a $ DIRECTORY/SECURITY on the file to validate
the file has the proper security settings.

SECNOENTRY, Security entry for filename does not appear in security
database,
Explanation: The file does not have an assoicated message authentication
code (MAC) stored in the security database. The file is either new, renamed,
or has not been associated with a MAC. Sometimes this message is an
indication of file tampering.
User Action: Determine whether the file belongs in this database.

SECSUMM1, Summary: Security settings authenticated: n,
Explanation: Lists the number of files whose message authentication codes
(MACs) match previously stored MACs.
User Action: None.

SECSUMM2, Security settings failing authentication: n,
Explanation: Lists the number of files whose message authentication codes
(MACs) do not match previously stored MACs.
User Action: None.

SECSUMM3, Security settings not in database: n,
Explanation: Lists the number of files with no associated message
authentication codes (MACs).
User Action: None.

SECUPDENT, Authentication code for security settings of file filename has been
updated,
Explanation: The message authentication code (MAC) based upon the
security settings of the file have been updated with a new MAC in the
security database.
User Action: None.

STATISTICS, encryption stream statistics,
Explanation: This message precedes the display of encryption statistics
when the /SHOW qualifier has been specified with either the STATISTICS or
the ALL keyword.
User Action: None. This is a success message.

SUMMARY1, Files successfully authenticated: n,
Explanation: Lists the number of files whose message authentication codes
(MACs) match previously stored MACs.
User Action: No action required.

Error Messages B–9

SUMMARY2, Files failing authentication: n,
Explanation: Lists the number of files whose MACs do not match previously
stored MACs.
User Action: No action required.

SUMMARY3, Files not in database: n,
Explanation: Lists the number of files with no associated MACs.
User Action: No action required.

TESTFAIL, test failed. Test Number: n,
Explanation: One of the tests for the encryption primitive routine failed,
indicating that the algorithm is not operating correctly.
User Action: Contact the supplier of the algorithm.

UNSFTR, Feature feature-name, written by product version version-number is not
supported,
Explanation: Encryption is unable to decrypt the specified file correctly.
When the severity is W, the file is decrypted, but a processing feature is
omitted. When the severity is E, the file is not decrypted.
User Action: Decrypt the file on a system running the Encryption for
OpenVMS version displayed in the error message. Or, upgrade to the current
version of Encryption for OpenVMS.

UNSAGTFMT, algorithm dispatch table format is not supported,
Explanation: An upgrade to a newer version of Encryption for OpenVMS is
incomplete. Former Encryption images remain on your system.
User Action: Re-install the Encryption fpr OpenVMS software.

UPDENTRY, authentication code for file file-spec has been updated,
Explanation: The message authentication code (MAC) in the database file is
updated to a new MAC.
User Action: No action required.

UPDSECENT, Security authentication code for file filename has been updated,
Explanation: A new MAC, based upon the security settings of the file that
was specified, has been created and stored in the security settings database.
User Action: None.

WEAK_KEY, key value is rejected by key filter as weak or incompatible,
Explanation: The specified key value is rejected as a weak key by the
encryption primitive routine.
User Action: You can choose to use the weak key for encryption or you can
specify a different key value.

B.2 BACKUP Utility Messages
The BACKUP /ENCRYPT command can produce the following messages.

BACNOTENC, backup set is not encrypted. Ignoring /ENCRYPT qualifier,
Explanation: The save set is not encrypted.
User Action: None. The save set is restored without decryption.

B–10 Error Messages

DECRYPERR, error encountered in encryption facility while decrypting a backup
record,
Explanation: An error has occurred decrypting save-set data. The
accompanying message gives additional information about the error.
User Action: Depends on the specific error.

ENCALGNOT, specified encryption algorithm is not supported in this copy of
BACKUP,
Explanation: You specified an unsupported encryption algorithm to the
algorithm keyword.
User Action: Re-enter the command, using a supported encryption
algorithm.

ENCBSRNOT, internal error. BACKUP Summary, Record required for decryption
not found,
Explanation: The BACKUP Summary Record that contains the data key
under which the save set is encrypted was not found at the start of the save
set. It is possible that the save set was not encrypted.
User Action: None. The save set is probably corrupted and cannot be
restored. If the save set was in fact not encrypted, it can be recovered by
omitting the /ENCRYPT qualifier.

ENCFINERR, error encountered closing an encryption stream,
Explanation: An error has occurred cleaning up the encryption context. The
accompanying message gives additional information about the error.
User Action: Depends on the specific error.

ENCINIERR, an error was encountered initializing an encryption stream,
Explanation: An error has occurred initializing the encryption operation.
The accompanying message gives additional information about the error.
User Action: Depends on the specific error.

ENCKEYMAT, the supplied decryption key does not yield a readable save set,
Explanation: The checksum on the decrypted data key and initialization
vector does not match the checksum that was stored previously. This usually
means that an incorrect key name or value has been specified.
User Action: Determine the correct key to decrypt the save set.

ENCNOTSUP, encryption of save sets is not supported in this copy of BACKUP,
Explanation: This version of BACKUP does not support encryption.
User Action: Use another version of BACKUP that supports encryption.

ENCQUAIGN, encryption not supported for this copy operation. Ignoring
/ENCRYPT qualifier,
Explanation: BACKUP supports encryption only in save sets, not in
file-to-file or volume-to-volume copy operations.
User Action: Re-enter the command, either omitting the /ENCRYPT
qualifier or using a save set, as your needs determine.

Error Messages B–11

ENCRYPERR, error encountered in encryption facility while encrypting a backup
record,
Explanation: An error has occurred encrypting save-set data. The
accompanying message gives additional information about the error.
User Action: Depends on the specific error.

ENCSAVSET, save set is encrypted. /ENCRYPT must be specified,
Explanation: The save set is encrypted and, therefore, cannot be read.
User Action: Decrypt the save set. Specify the correct key with the
/ENCRYPT qualifier.

KEYLENERR, entered key value is too long,
Explanation: The key specified is too long for the encryption algorithm.
User Action: Re-enter the command using a shorter key.

KEYNOTVER, key value not entered identically as verification,
Explanation: The key values entered to the key and verification prompts
are different.
User Action: Re-enter the keys, taking care to type the same value both
times.

B–12 Error Messages

Index

A
Algorithm

used by Encryption, 1–1
Application programming

See Routines
Authentication

definition of, 1–3
ENCRYPT/AUTHENTICATE command

syntax, A–9
overview, 1–3

B
BACKUP utility, 3–24 to 3–26

BACKUP/ENCRYPT command, 3–24
DESCBC algorithm, 3–24
syntax, A–2

/SAVE_SET qualifier, 3–24
standalone, 3–24

C
Callable routines

See Routines
Calling Standard

requirements, 4–2
Ciphertext

definition of, 1–1
Commands

See also individual commands
syntax descriptions, A–1 to B–1
tutorial, 3–1 to 3–26

D
Data Encryption Standard

See DES
DCL commands

See Commands
See individual commands

DECRYPT command
format, 3–17
purpose, 3–17
syntax, A–3

Decryption
definition of, 1–2
prerequisite, 1–2, A–14
requirements, 3–4, 3–17

DES
documented in FIP, 1–1
implemented in Encryption for OpenVMS, 1–1
modes, 3–10

E
ENCRYPT$MAC.LIS

for storing MAC values, 3–15
ENCRYPT/AUTHENTICATE command

syntax, A–9
ENCRYPT/CREATE_KEY command

syntax, A–12
verifying, 3–2

ENCRYPT/REMOVE_KEY command
syntax, A–14

ENCRYPT command
syntax, A–6

Encryption
definition of, 1–1
ENCRYPT command, 3–4
of save sets, 3–24, A–2
prerequisite, 1–1, 3–4, A–6, A–12

Encryption process
overview, 1–1 to 1–4
steps in, 1–1
tutorial, 3–1 to 3–26

F
Federal Information Processing Standard

See FIP
FIP

encryption standard, 1–1

I
Installation, 2–1 to 2–6

from CD, 2–3
post-installation tasks, 2–5
pre-installation tasks, 2–1
requirements, 2–1
running, 2–3

Index–1

Interfaces
callable routines, 1–3, 4–1 to A–1
DCL commands, 1–3, 3–1 to 3–26

K
Key

creating
ENCRYPT/CREATE_KEY command

syntax, A–12
data key

definition of, 1–1
definition of, 1–1
deleting

ENCRYPT/REMOVE_KEY command
syntax, A–14

functions of, 1–1
used with decryption, 1–2
used with encryption, 1–1
weak

avoiding, 3–2
definition of, 3–2

L
License registration, 2–2
LMF

registering your license, 2–2

M
MAC

calculated, 1–3, 3–13
file contents, 3–13, 3–14
security, 3–13, 3–14
specifying database, 3–15
used by ENCRYPT/AUTHENTICATE command,

A–9
values and status stored, 3–15

Message Authentication Code
See MAC

N
NBS

DES documentation, 1–1

O
OpenVMS Calling Standard

requirements, 4–2

P
PAK

registering, 2–2

Plaintext
definition of, 1–1

POLYCENTER Software Installation procedure,
2–1

Product overview, 1–1 to 1–4
Programming

See Routines

R
Routines

See also individual routines
ENCRYPT$DECRYPT, 4–6
ENCRYPT$DECRYPT_ONE_RECORD, 4–8
ENCRYPT$DEFINE_KEY, 4–10
ENCRYPT$DELETE_KEY, 4–12
ENCRYPT$ENCRYPT, 4–13
ENCRYPT$ENCRYPT_FILE, 4–15
ENCRYPT$ENCRYPT_ONE_RECORD, 4–18
ENCRYPT$FINI, 4–20
ENCRYPT$GENERATE_KEY, 4–21
ENCRYPT$INIT, 4–23
ENCRYPT$STATISTICS, 4–26
overview, 4–1 to 4–5
programming interface, 1–3
syntax descriptions, 4–5 to A–1

S
Save sets

encrypting, 3–24, A–2
/SAVE_SET qualifier

of BACKUP command, 3–24
Security

ACL-based, 1–1
encryption-based, 1–1
UIC-based, 1–1

Syntax
See Commands
See Routines

SYS$LOGIN:ENCRYPT$MAC.LIS
for storing MAC values, 3–15

W
Weak keys

See Key

Index–2

