
HP DECwindows Motif for
OpenVMS
New Features
Order Number: AA–RT2CC–TE

January 2005

This manual describes new features and enhancements that pertain to
the DECwindows Motif Version 1.5 software.

Revision/Update Information: This manual supersedes the HP
DECwindows Motif for OpenVMS
Alpha New Features for Version 1.3–1.

Operating Systems: OpenVMS I64 Version 8.2

OpenVMS Alpha Version 8.2

Software Versions: DECwindows Motif for OpenVMS I64
Version 1.5

DECwindows Motif for OpenVMS
Alpha Version 1.5

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Java is a US trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of The Open Group.

The X device is a trademark of X/Open Company Ltd. in the UK and other countries.

Printed in the US

ZK6663

Contents

Preface . ix

1 Introduction

2 General User Features

2.1 General DECwindows Motif Environment . 2–1
2.1.1 Support for Internet Protocol Version 6 (IPv6) Transport 2–1
2.1.2 Extended File Specification (EFS) Support . 2–2
2.1.2.1 File Selection Popup Window . 2–2
2.1.2.2 New Desktop and the File Manager Application 2–2
2.1.2.3 Traditional Desktop and the FileView Application 2–2
2.1.2.4 The Programming Libraries . 2–2
2.1.2.5 Translated Image Support (TIS) Library . 2–2
2.1.3 Color Customizer Example Program . 2–3
2.1.3.1 Supported Displays . 2–3
2.1.3.2 Supported Applications . 2–3
2.1.3.3 Building the Color Customizer on OpenVMS Systems 2–3
2.1.3.4 Running the Color Customizer . 2–4
2.1.3.5 Modifying the DECW$LOGIN.COM File . 2–4
2.1.3.6 Command Interface Summary . 2–4
2.1.3.7 Changing the Mapping Between Color Resources and Color

Cells . 2–5
2.1.3.8 Using the Customizer with DECterm Windows 2–6
2.1.3.9 Changing the Default Value of the Automatic Shadowing Toggle

Button . 2–6
2.1.3.10 Using the Customizer on Multihead Systems 2–6
2.1.3.11 Using the XSETROOT_CUST.EXE Demonstration Program 2–7
2.1.4 Drag-and-Drop Support . 2–7
2.1.5 Tear-Off Menu Support . 2–8
2.2 New Desktop Environment . 2–8
2.2.1 Updated Welcome Message . 2–8
2.2.2 Setting the File Manager Refresh Rate . 2–8
2.2.3 Selecting Screens on Application Launch . 2–8
2.2.4 Front Panel Icons Support MB3 Operations . 2–9
2.3 Traditional Desktop Environment . 2–9
2.3.1 Resource Added for DECwindows XUI Applications 2–9
2.4 Applications . 2–9
2.4.1 CDA Viewer . 2–9
2.4.1.1 Using the CDA Viewer to View Asian-Language Text 2–9
2.4.1.1.1 Specifying an Options File . 2–10
2.4.1.1.2 Defining Logical Names . 2–10
2.4.1.2 Converting Files That Contain Asian-Language Characters 2–11
2.4.1.3 Dynamic Font Support . 2–12

iii

2.4.1.4 Enhanced Display Performance . 2–13
2.4.1.5 Pack and Unpack Applications . 2–13
2.4.1.5.1 Pack Application Syntax . 2–14
2.4.1.5.2 Unpack Application Syntax . 2–14
2.4.1.5.3 Error Messages . 2–15
2.4.1.6 New CDA Viewer Error Message . 2–16
2.4.2 DECterm . 2–16
2.4.2.1 New Default Font Sizes . 2–16
2.4.2.2 Scrolling Using the Keyboard . 2–16
2.4.2.3 ReGIS Input Cursors and Escape Sequences 2–17
2.4.2.4 Automatic Window Positioning . 2–17
2.4.3 Window Manager . 2–17
2.4.3.1 Overlay Support . 2–17
2.5 Tools and Utilities . 2–18
2.5.1 AccessX Keyboard Utility (accessx) . 2–19
2.5.1.1 The AccessX Configuration File . 2–20
2.5.1.2 Default Resource Settings . 2–21
2.5.2 X Authority Utility (xauth) . 2–22
2.5.2.1 The X Authority File . 2–24
2.5.2.1.1 Format of an X Authority File Entry . 2–25
2.5.2.1.2 Specifying an X Authority File . 2–26
2.5.2.2 Invoking xauth and Entering Commands 2–26
2.5.2.3 IPv6 Considerations . 2–27
2.5.2.4 Accessing Online Help . 2–27
2.5.2.5 Creating an X Authority File . 2–27
2.5.2.6 Displaying File Information . 2–27
2.5.2.7 Viewing and Editing File Entries . 2–28
2.5.2.8 Generating Authorization Keys . 2–31
2.5.3 X Keyboard Compiler Utility (xkbcomp) . 2–31
2.5.4 Window Dump to Print File (xpr) Utility . 2–33

3 System Management Features

3.1 Installation and Upgrade Information . 3–1
3.1.1 DECW$STARTUP Log File . 3–1
3.2 Security and Authorization . 3–1
3.2.1 Support for ACME Subsystem (Alpha Only) . 3–1
3.3 X Display Server Management . 3–2
3.3.1 New Parameter for Enabling IPv6 Support in the Font Server 3–2

4 Programming Features

4.1 General Run-Time and Programming Environment 4–1
4.1.1 Multithreading Support . 4–1
4.1.2 Binary Compatibility . 4–1
4.1.2.1 Use of Asynchronous System Traps (ASTs) 4–2
4.1.2.2 Levels of Thread Safety and Concurrency 4–2
4.1.2.3 Enabling Support for Multithreading . 4–4
4.1.2.4 Developing Applications with Thread-Aware Images 4–5
4.2 Application Programming . 4–6
4.2.1 CDA Programming . 4–6
4.2.1.1 Changes to the CDA Programming Interface 4–6
4.2.1.2 Changes to CDA External Reference Processing 4–7
4.2.1.3 Restructuring CDA Shareable Images . 4–8

iv

4.2.2 DECterm Programming . 4–8
4.2.2.1 ReGIS Input Cursors . 4–8
4.2.2.2 Page-Movement Escape Sequences . 4–9
4.3 OSF/Motif Toolkit (Xm) Programming . 4–9
4.3.1 Drag-and-Drop Enabled Widgets . 4–9
4.4 HP Extensions to Motif (DXm) Programming . 4–10
4.4.1 SVN Widget Supports Extended Selection . 4–10
4.4.2 DXmCSText Input Method Support . 4–10
4.5 X Toolkit Intrinsics (Xt) Programming . 4–11
4.5.1 New Functions Available with X11R6.6 Upgrade 4–11
4.5.2 Support for Easy Resource Configuration . 4–12
4.5.3 New Option for CompositeClassExtensionRec 4–13
4.5.4 New Default Format for XtResolvePathname 4–13
4.5.5 XtAppMainLoop Routine . 4–13
4.6 X Window System Library (Xlib) . 4–14
4.6.1 IPv6 Considerations . 4–14
4.6.2 New Functions Available with X11R6.6 Upgrade 4–14
4.6.3 Updated Client-Side Extension Library . 4–15
4.6.4 Support for LCNs . 4–16
4.6.5 Updated X11 Environment Variable Parsing . 4–17
4.6.6 Additional Non-C Language Bindings Available with X11R6.6 4–17
4.6.6.1 CLOSE OM . 4–17
4.6.6.2 CONTEXTUAL DRAWING . 4–18
4.6.6.3 CONVERT CASE . 4–18
4.6.6.4 DESTROY OC . 4–18
4.6.6.5 DIRECTIONAL DEPENDENT DRAWING 4–18
4.6.6.6 DISPLAY OF OM . 4–19
4.6.6.7 EXTENDED MAX REQUEST SIZE . 4–19
4.6.6.8 INIT IMAGE . 4–19
4.6.6.9 INIT THREADS . 4–19
4.6.6.10 INTERNAL CONNECTION NUMBERS . 4–20
4.6.6.11 LOCALE OF OM . 4–20
4.6.6.12 LOCK DISPLAY . 4–20
4.6.6.13 OPEN OM . 4–20
4.6.6.14 PROCESS INTERNAL CONNECTION . 4–21
4.6.6.15 REGISTER IM INSTANTIATE Callback . 4–21
4.6.6.16 SET AUTHORIZATION . 4–21
4.6.6.17 UNLOCK DISPLAY . 4–21
4.6.6.18 UNREGISTER IM INSTANTIATE Callback 4–22
4.6.7 Support for Additional Fonts . 4–22
4.6.7.1 Additional 75-dpi Fonts . 4–23
4.6.7.2 Additional 100-dpi Fonts . 4–27
4.6.7.3 Additional Common Fonts . 4–32
4.6.7.4 Bitstream Speedo Scalable Fonts . 4–34
4.6.7.5 Agfa Monotype TrueType Scalable Fonts . 4–34
4.6.7.6 Adobe Type1 Fonts . 4–35
4.6.8 UIDPATH Environment Variable . 4–35
4.6.9 Client Side Extension Library . 4–36
4.7 X Window System Extensions and Protocols . 4–36

v

4.7.1 Additional X Display Server Extensions Supported with X11R6.6 4–36
4.7.1.1 Application Group Extension (XC-APPGROUP) 4–37
4.7.1.2 Big Requests Extension (BIG-REQUESTS) 4–38
4.7.1.3 Colormap Utilization Policy Extension (TOG-CUP) 4–38
4.7.1.4 Extended Visual Information Extension (EVI) 4–39
4.7.1.5 Low-Bandwidth X Extension (LBX) . 4–39
4.7.1.6 Security Extension (SECURITY) . 4–40
4.7.1.7 XC-MISC Extension . 4–41
4.7.1.8 X Double Buffer Extension (DBE) . 4–41
4.7.1.9 XINERAMA Extension . 4–42
4.7.1.10 X Keyboard Extension (XKB) . 4–42
4.7.1.11 X Synchronization Extension (SYNC) . 4–43
4.7.2 Server Extensions Updated for X11R6.6 . 4–44
4.7.3 Inter-Client Exchange (ICE) Protocol Support 4–44
4.7.3.1 Multithreading Considerations . 4–45
4.7.3.2 Differences from the Standard Implementation 4–46
4.7.3.3 IPv6 Considerations . 4–47
4.7.4 X Session Management Protocol (XSMP) Support 4–47
4.7.4.1 Multithreading Considerations . 4–48
4.7.4.2 Differences from the Standard Implementation 4–48
4.7.5 MIT Shared Memory Extension (MIT-SHM) Support 4–49
4.7.5.1 How to Use Shared Memory Extension . 4–49
4.7.5.2 Using Shared Memory XImages . 4–50
4.7.5.3 Using Shared Memory Pixmaps . 4–53
4.7.6 X Image Extension (XIE) Support . 4–53
4.8 Transport Programming . 4–54
4.8.1 Support for the LAT Transport Interface Available 4–54
4.8.2 Support for the Logical Connection Number (LCN) Interface 4–54
4.8.2.1 LCN Functions . 4–55
4.8.2.1.1 Initializing Thread Support . 4–55
4.8.2.1.2 Allocating Connection Numbers . 4–55
4.8.2.1.3 Querying Status and Signaling Input 4–55
4.8.3 LCN Routines . 4–56
4.8.3.1 DECW$LCN_ALLOCATE . 4–56
4.8.3.2 DECW$LCN_CLEAR_x_READY . 4–57
4.8.3.3 DECW$LCN_FREE . 4–58
4.8.3.4 DECW$LCN_SELECT . 4–59
4.8.3.5 DECW$LCN_SELECT_ONE . 4–61
4.8.3.6 DECW$LCN_SET_x_READY . 4–63
4.8.3.7 DECW$LCN_THREAD_INIT . 4–64

Index

Tables

1–1 Directory of Features for DECwindows Motif Version 1.5 1–1
2–1 Asian Language Codes for Options Files . 2–10
2–2 Logical Names for Specifying Text Encoding . 2–11
2–3 Languages and Associated Basic Fonts . 2–12
2–4 AccessX Keyboard Utility Options . 2–20
2–5 Default AccessX Resource Settings . 2–21
2–6 X Authority Utility Options . 2–23

vi

2–7 X Authority Utility Commands . 2–23
2–8 xauth Transport Actions . 2–27
2–9 Keyboard Compiler Options . 2–32
2–10 Window Dump to Print File Options . 2–34
4–1 Level of Thread Safety for DECwindows Motif Images 4–2
4–2 Multithreading Functions . 4–4
4–3 New Header File Names . 4–7
4–4 Names of Shareable Images . 4–8
4–5 ReGIS Input Cursors—Cursor styles and Values 4–9
4–6 Drag-and-Drop Widgets . 4–10
4–7 New Xt Functions Supported for X11R6.6 . 4–11
4–8 New Xlib Functions Supported for X11R6.6 . 4–14
4–9 Additional 75-dpi Fonts (.PCF File Extension) 4–23
4–10 Additional 100-dpi Fonts (.PCF File Extension) 4–27
4–11 Additional Common Fonts (.PCF File Extension) 4–32
4–12 Bitstream Speedo Scalable Fonts (.SPD File Extension) 4–34
4–13 Agfa Monotype TrueType Scalable Fonts (.TTF File Extension) 4–34
4–14 Adobe Type1 Scalable Fonts (.PCA File Extension) 4–35

vii

Preface

This document describes the new features introduced with the HP DECwindows
Motif for OpenVMS Version 1.5 (DECwindows Motif) software on the OpenVMS
I64 and OpenVMS Alpha platforms. For information about how these features
might affect your system, read the release notes before you install, upgrade, or
use the DECwindows Motif Version 1.5 software.

The features in this manual are cumulative from DECwindows Motif for
OpenVMS Version 1.0 and indicate any undocumented items that still pertain
to the software. For previous features, a label within the description indicates
when the feature was introduced.

Intended Audience
This manual is intended for system managers, users, and programmers who work
with DECwindows Motif.

Document Structure
This manual is structured as follows:

• Chapter 1 provides an overview of the current release.

• Chapter 2 describes features of interest to general users of the DECwindows
Motif software.

• Chapter 3 describes features related to system and network management.

• Chapter 4 describes features that support application and system
programmers.

Related Documents
For additional information about OpenVMS or DECwindows Motif products and
services, visit the following web site:

http://www.hp.com/go/openvms

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

ix

How To Order Additional Documentation
For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The following product names may appear in this manual:

• HP OpenVMS Industry Standard 64 for Integrity servers

• OpenVMS I64

• I64

All three names—the longer form and the two abbreviated forms—refer to
the version of the OpenVMS operating system that runs on the Intel Itanium
architecture.

All uses of DECwindows and DECwindows Motif refer to the HP DECwindows
Motif for OpenVMS software; and all uses of X server and X display server refer
to the DECwindows X11 Display Server. Additionally, all uses of DECwindows
XUI (X User Interface) refer to the DECwindows product prior to DECwindows
Motif Version 1.0.

The following typographic conventions may be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that
you must enclose the choices in parentheses if you choose more
than one.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

x

[|] In command format descriptions, vertical bars separating
items inside brackets indicate that you choose one, none, or
more than one of the options.

{ } In command format descriptions, braces indicate required
elements; you must choose one of the options listed.

text style This text style represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

In the HTML version of this document, this convention appears
as italic text.

italic text Italic text emphasizes important information and indicates
complete titles of manuals and variables. Variables include
information that varies in system messages (Internal error
number), in command lines (/PRODUCER=name), and in
command parameters in text (where dd represents the
predefined code for the device type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type

Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xi

1
Introduction

This chapter summarizes the features associated with the DECwindows Motif
Version 1.5 software. Version 1.5 is a major release that includes support for
the HP OpenVMS Industry Standard 64 for Integrity Servers (OpenVMS I64)
platform, the Internet Protocol Version 6 (IPv6) transport, and ACME security
(Alpha only).

Table 1–1 lists all the items added during this release and cross-references the
sections in which they are described.

For a detailed description of the corrections, changes, and known problems
associated with this release, see the HP DECwindows Motif for OpenVMS Release
Notes manual.

Table 1–1 Directory of Features for DECwindows Motif Version 1.5

Title Section

General User Features

Support for Internet Protocol Version 6 (IPv6) Transport Section 2.1.1

Tool and Utility Features

xauth: IPv6 Considerations Section 2.5.2.3

Installation and Upgrade Features

DECW$STARTUP Log File Section 3.1.1

Security and Authorization Features

Support for ACME Subsystem (Alpha Only) Section 3.2.1

X Display Server Management Features

New Parameter for Enabling IPv6 Support in the Font Server Section 3.3.1

X Window System Library (Xlib) Features

IPv6 Considerations Section 4.6.1

X Window System Extension and Protocol Features

ICE: IPv6 Considerations Section 4.7.3.3

Introduction 1–1

2
General User Features

This chapter provides information about new features that pertain to all users of
DECwindows Motif.

2.1 General DECwindows Motif Environment
This section describes new features that are common to both the New Desktop
and Traditional DECwindows Desktop environments.

2.1.1 Support for Internet Protocol Version 6 (IPv6) Transport
V1.5

DECwindows Motif now supports the Internet Protocol Version 6 (IPv6) transport
in addition to the existing support for the Internet Protocol Version 4 (IPv4)
transport. Included in this release is support for the transport names described
in the X11R6.6 and X11R6.7 specifications published by the X.Org Foundation
(formerly X.Org).

Use of the IPv6 transport is enabled with the new global symbol
DECW$IPV6_SUPPORT, which can be defined in the startup file
SYS$MANAGER:DECW$PRIVATE_APPS_SETUP.COM.

Support for the IPv6 transport affects many DECwindows Motif components–from
the display device to functions in the Inter-Client Exchange (ICE) library. See
one or more of the following manuals (or sections in this manual) to learn about
IPv6 support and its use.

For information about... See the...

X Window System support for
transport names

X.Org Foundation web site (http://www.x.org)

Enabling IPv6 support, valid
display name formats, host
name translation, and using
with font and proxy servers

HP DECwindows Motif for OpenVMS Management Guide

Impact on the SET DISPLAY
command

HP OpenVMS DCL Dictionary and DCL online help

Impact on the xauth utility Section 2.5.2.3

Impact on X Library (Xlib)
routines

Section 4.6.1

Impact on ICE library
routines

Section 4.7.3.3

General User Features 2–1

General User Features
2.1 General DECwindows Motif Environment

2.1.2 Extended File Specification (EFS) Support
V1.2–5

In general, DECwindows Motif supports the Extended File Specifications (EFS)
option available with OpenVMS. The interface either supports the new ODS-5
file names, as described in the following sections, or provides an error message
indicating that the particular component does not support the new names.

2.1.2.1 File Selection Popup Window
The standard file selection popup window used by most DECwindows Motif
applications fully supports ODS-5 style file names. The window supports deep
directories, case preservation, and extended-length file names. The window
supports entry of file names using the extended file name character and displays
files using the extended file name character set using the circumflex character
(^).

See the current OpenVMS documentation for more specific information about
using deep directories and the extended file name character set.

2.1.2.2 New Desktop and the File Manager Application
With an ODS-5 volume, the File Manager application supports deep directories,
case preservation, and extended-length file names. File Manager supports entry
of file names using the extended file name character and displays files using the
extended file name character set using the circumflex character (^).

Any custom File Manager command extensions must be modified to support EFS.

See the current OpenVMS documentation for more specific information about
using deep directories and the extended file name character set.

2.1.2.3 Traditional Desktop and the FileView Application
The FileView application supports case preservation and creates files with the
extended file name character set, but does not support any operations on its files.

FileView also supports extended-length file names and deep directory structures
with the additional restriction that a total file specification cannot exceed 235
8-bit characters in length.

Exceeding this limit causes an error message for some menu items.

2.1.2.4 The Programming Libraries
The programming libraries fully support deep directories and extended-length file
names. However, the libraries do not support case preservation or the extended
file name character set.

2.1.2.5 Translated Image Support (TIS) Library
The translated image support (TIS) library has not been updated to support EFS.

2–2 General User Features

General User Features
2.1 General DECwindows Motif Environment

2.1.3 Color Customizer Example Program
V1.2

The color customizer example program allows you to dynamically control the
colors of your workstation environment. Window, icon, and window manager
colors can be changed individually or as part of a palette switch. You can control
mapping between resources and color cells, as well as the size and contents of
the palette set. Also, automatic shadowing with the standard Motif shadowing
algorithms is supported.

2.1.3.1 Supported Displays
The color customizer supports any display using pseudocolor or grayscale visuals.
This includes most 4- and 8-plane workstation displays.

2.1.3.2 Supported Applications
The color customizer can affect the colors of any applications that use the current
release of the X Toolkit Intrinsics (Xt) included with X Window System Version 11
Release 5 (X11R5) or greater. Applications from other vendors and versions of the
library previous to X11R5 are unaffected.

Note

If the color customizer is used to control the colors of applications that
have their own color customization dialog boxes (like the Session Manager,
Window Manager, and DECwindows Mail), those application-specific color
customization dialog boxes may not reflect the correct current color values
while the customizer is running the application. This is normal; use the
customizer instead of the application-specific dialog box to change these
color values.

2.1.3.3 Building the Color Customizer on OpenVMS Systems
To build the color customizer on OpenVMS systems, perform the following steps:

1. Copy the files to a private directory. For example:

$ SET DEFAULT SYS$LOGIN
$ CREATE/DIRECTORY [.CUSTOMIZER]
$ SET DEFAULT [.CUSTOMIZER]
$ COPY DECW$EXAMPLES:CUSTOM.C []
$ COPY DECW$EXAMPLES:CUSTOM.UIL []
$ COPY DECW$EXAMPLES:CUSTOMIMAGE.DAT []
$ COPY DECW$EXAMPLES:XSETROOT_CUST.C []
$ COPY DECW$EXAMPLES:BUILD_CUSTOMIZER.COM []

2. Build the customizer using the following command:

$ @BUILD_CUSTOMIZER.COM

This command procedure creates the following output files:

CUSTOM.UID
CUSTOM.EXE
XSETROOT_CUST.EXE

General User Features 2–3

General User Features
2.1 General DECwindows Motif Environment

2.1.3.4 Running the Color Customizer
To run the color customizer, perform the following steps:

1. Copy the files CUSTOM.UID and CUSTOM.EXE, which were created during
the customizer build, to the directory where the customizer will be run. A
typical location is the directory SYS$LOGIN or the directory DECW$USER_
DEFAULTS.

2. Copy the files CUSTOM.DAT and DXMDEFAULTS.DAT from the directory
DECW$EXAMPLES to the directory DECW$USER_DEFAULTS.

3. Run the executable file CUSTOM.EXE as follows:

$ RUN CUSTOM

Note

Only the colors of applications invoked after the customizer starts will be
affected. For this reason, start the customizer as the first X application
during the login process.

2.1.3.5 Modifying the DECW$LOGIN.COM File
As noted in Section 2.1.3.4, the color customizer should be the first X application
started during the login process. Do this by starting it as a subprocess from
within the DECW$LOGIN.COM file. Add a command to wait approximately 10
seconds between customizer startup and the startup of other applications.

For example, add the following lines to the DECW$LOGIN.COM file:

$! Starting the color customizer
$ DISPLAY = F$LOGICAL("DECW$DISPLAY")
$ SPAWN/NOWAIT/OUTPUT=’DISPLAY’ RUN SYS$LOGIN:CUSTOM.EXE
$ WAIT 0:0:10

See Using DECwindows Motif for OpenVMS and HP DECwindows Motif
for OpenVMS Management Guide for more information on modifying
DECW$LOGIN.COM.

2.1.3.6 Command Interface Summary
A box containing a list of available palettes is in the leftmost section of the Color
Customizer window. Click on the desired palette to see the colors take affect.

Below the palettes are two arrays of colored buttons, representing the
dynamically allocated color cells for normal and shadow colors. To find out
what resources are affected by a color cell, click and hold the arrow button next
to the color cell.

Hint

As a shortcut, you can click on the screen facsimile in the rightmost
corner of the dialog box. If the portion you click on is colored by one of the
resource values controlled by the customizer, the pop-up window for the
appropriate color button is displayed.

2–4 General User Features

General User Features
2.1 General DECwindows Motif Environment

To modify a single color cell, click on the corresponding color button. A colormix
widget pops up; as you modify the color, these modifications are reflected in your
workstation environment. Use the colormix widget reset button to return to the
starting color at any time. You can also change the color cell you are modifying
by clicking on a different color button while the colormix widget is displayed.

The automatic shadowing option causes shadow and select colors to be
automatically updated when their corresponding background colors are changed.
The standard Motif shadowing algorithms are used for these calculations.

Use the File menu to modify, add, and delete color palettes as follows:

• To modify an existing palette, select the palette, change the colors, and choose
Save Palette from the File menu.

• To add a new palette, select an existing palette, modify the colors as
necessary, and choose Save Palette As... from the File menu. A message
box prompts you for the name of the new palette.

• To delete a palette, select the palette and choose Delete Palette from the File
menu.

Changes made through the File menu automatically update the CUSTOM.DAT
file, which contains the resource defaults.

The File menu Exit button causes the customizer application to exit. A warning
dialog is displayed first. Note that the color cells allocated by the customizer
(and used by the currently running applications) will be deallocated. After the
customizer exits, if the colors of the currently running applications are not
correct, the applications should be restarted to restore normal colors. Usually,
there is no need to exit the color customizer; it is typically kept running at all
times, like the Session Manager.

2.1.3.7 Changing the Mapping Between Color Resources and Color Cells
The file DXMDEFAULTS.DAT allows you to control how many dynamic color
cells are allocated and what resources are affected. This file contains resource
specifications like the following:

*background: DXmDynamicWindowBackground
*foreground: DXmDynamicWindowForeground
*topShadowColor: DXmDynamicWindowTopShadow

When the customizer is started, the file DXMDEFAULTS.DAT is written to a
property on the root window. Any application that is subsequently run and that
uses the correct version of Xt merges these resources with its normal resource
database. Resource specifications in this file take precedence over specifications
with equivalent resource names in other resource default files.

The resource values within the file DXMDEFAULTS.DAT have a special
format. For each unique color value in this file that begins with the string
"DXmDynamic", a color button is created in the color customizer. If the
string "Shadow" is encountered in a name, the color button is placed in the
shadow button box rather than the normal color button box. If a color value
string ends with the suffix "Background", it is linked to any color buttons
with identical prefixes and suffixes of "TopShadow", "BottomShadow", or
"SelectColor" for purposes of automatic shadowing. If a color value named
"DXmDynamicScreenBackground" is encountered, the color cell allocated is
used by the customizer to set the root window background color.

General User Features 2–5

General User Features
2.1 General DECwindows Motif Environment

You can edit the file DXMDEFAULTS.DAT and define resources to use the same
color cells. You can have separate dynamic color cells, for scroll bar widgets or for
your DECwindows Mail application, for example, by adding the following lines to
the file DXMDEFAULTS.DAT:

Mail*background: DXmDynamicMyMailBackground
Mail*foreground: DXmDynamicMyMailForeground
Mail*topShadowColor: DXmDynamicMyMailTopShadow
Mail*bottomShadowColor: DXmDynamicMyMailBottomShadow

Adding the previous lines to the file DXMDEFAULTS.DAT and restarting the
customizer causes four new color cells to be allocated and four new color buttons
to be added to the customizer interface. These buttons are assigned default
color values (usually black or white) for each palette. These defaults can then be
modified for each palette through the customizer interface.

Note

The text of the DXMDEFAULTS.DAT file is read and parsed by the
color customizer. The parsing algorithm does not allow comments,
incorrect spacing, or incorrect resource specifications. If this file or the
CUSTOM.DAT resource file become corrupt, the customizer cannot start
correctly. To resolve the problem, copy the versions of CUSTOM.DAT and
DXMDEFAULTS.DAT from the DECW$EXAMPLES directory into your
login directory.

2.1.3.8 Using the Customizer with DECterm Windows
To change the colors of DECterm windows, copy the DECterm resource
specifications from the file DXMDEFAULTS.DAT and add them to the
DECterm resource defaults file DECW$USER_DEFAULTS:DECW$TERMINAL_
DEFAULT.DAT. For example, add the following lines to the DECterm resource
defaults file:

DECW$TERMINAL.main.terminal.background: DXmDynamicTerminalBackground
DECW$TERMINAL.main.terminal.foreground: DXmDynamicTerminalForeground

This allows the DECterm window colors to be customized with the color
customizer.

2.1.3.9 Changing the Default Value of the Automatic Shadowing Toggle Button
The default value of the automatic shadowing toggle button is set using the
Custom.autoShadow resource in the CUSTOM.DAT file as follows:

Custom.autoShadowing: False

The default value is True.

2.1.3.10 Using the Customizer on Multihead Systems
The color customizer affects only applications started on the same screen as
the customizer. On most multihead systems, you can start a different color
customizer for each screen and have a different palette in effect on each
screen. On multihead systems using XINERAMA, a single instance of the color
customizer affects all applications, since the screens function as a single logical
screen.

2–6 General User Features

General User Features
2.1 General DECwindows Motif Environment

The color customizer can be configured so that it is invoked once and affects
all applications regardless of where they are started. This mode is invoked by
modifying the Custom.multiScreen resource in the CUSTOM.DAT file as follows:

Custom.multiScreen: True

The default value is False.

2.1.3.11 Using the XSETROOT_CUST.EXE Demonstration Program
The XSETROOT_CUST.EXE demonstration program, created during the
customizer build, is a modified version of the X utility xsetroot that is used
to set a bitmap on the root window. The XSETROOT_CUST.EXE program
uses DXmDynamicScreenBackground and DXmDynamicScreenForeground as
the background and foreground colors of the specified bitmap. If your
DXMDEFAULTS.DAT file contains entries for these two dynamic colors, then
use the customizer to dynamically modify the colors of your bitmap.

For example:

$ XSETROOT_CUST :== "SYSLOGIN:XSETROOT_CUST.EXE"
$ XSETROOT_CUST -BITMAP your_xbm_file.XBM

2.1.4 Drag-and-Drop Support
V1.2

The drag-and-drop feature lets you move or copy screen objects. This feature is
provided primarily for programmers who choose to incorporate drag-and-drop into
their applications. For example, you can move text from a text entry area and
paste it elsewhere.

All DECwindows Motif applications except Notepad support the drag-and-drop
feature. DECwindows Mail supports the drag-and-drop feature in all windows
except the main message area, where DECwindows Mail has its own drag-and-
drop; you can use MB2 to move messages around with the SVN interface.

To drag and drop text into a new location:

1. Select the text to be copied or moved with MB1.

2. To move the text, press and hold MB2; to copy the text, press and hold
Ctrl/MB2.

A move or copy icon appears.

3. Drag the icon to the location where you want to drop the text and release
MB2.

If the object is highlighted as you drag the icon across it, you can drop the
text into that location.

For a list of the widgets that support drag-and-drop functionality, see
Section 4.3.1.

General User Features 2–7

General User Features
2.1 General DECwindows Motif Environment

2.1.5 Tear-Off Menu Support
V1.2

Most DECwindows Motif applications allow you to tear off pull-down and popup
menus. Tear-off menus let you keep frequently used menus displayed without
repeatedly pulling them down or popping them up.

To tear off a menu:

1. Display a pull-down or popup menu.

If the menu is a tear-off menu, a dotted line is displayed at the top of the
menu.

2. Click on the dotted line with MB1.

The menu remains active until it is closed or until the parent application is
closed.

To close a tear-off menu:

1. Click on the Window menu button in the tear-off menu.

2. Choose the Close menu item.

2.2 New Desktop Environment
This section describes new features related to the New Desktop environment.

2.2.1 Updated Welcome Message
V1.2–6

The welcome message in the Login Screen now displays a host name regardless
of the transport. If the DECnet transport is configured, the DECnet host name
is displayed. If the TCP/IP transport is configured, the TCP/IP host name is
displayed. If neither transport is configured, a default message of ‘‘Welcome to
OpenVMS’’ is displayed.

2.2.2 Setting the File Manager Refresh Rate
V1.2–6

You can now specify that the File Manager periodically update its view on the
New Desktop by adjusting the Dtfile.rereadTime setting in the DTFILE.DAT
resource file. The value of this setting represents the seconds elapsed between
checking for changes in the viewed directories. Note that this setting does not
work when viewing search lists.

2.2.3 Selecting Screens on Application Launch
V1.2–5

You can graphically select the screen on which a new application is displayed
when launched from either the Front Panel, the File Manager, or the Application
Manager. By default, the new application appears on the current screen (that
is, the screen containing the mouse pointer). The feature allows you to drop
an application icon from the File Manager or Application Manager onto one of
the numbered screen controls of the Set Default Screen window. This starts the
application on the selected screen without changing the current screen.

2–8 General User Features

General User Features
2.2 New Desktop Environment

The Set Default Screen window is activated by selecting the ‘‘Set Default Screen’’
application in the Application Manager’s Desktop Tools folder. You can start
a separate instance of the Set Default Screen window on each screen. The
highlighting of the default screen is synchronized across all instances of the Set
Default Screen window.

2.2.4 Front Panel Icons Support MB3 Operations
V1.2–4

The New Desktop Front Panel supports mouse button 3 (MB3) operations. When
the cursor is placed over a Front Panel icon and you press MB3, a subpanel or
menu appears. The menu items are as follows:

• Top item–The label of the menu.

• Second item–The application that starts if you single click on the icon.

• Third item–Add or delete a subpanel, depending on whether a subpanel
already exists for the control panel.

Caution

If the third item is ‘‘Delete Subpanel’’, this change is difficult to reverse
without reinstalling the kit.

2.3 Traditional Desktop Environment
This section describes new features related to the traditional DECwindows
desktop environment.

2.3.1 Resource Added for DECwindows XUI Applications
V1.0

The resource Mwm*useDECMode has been added to allow previous versions of
DECwindows XUI applications to behave correctly with the Motif Window
Manager. In particular, this resource is used to control focus, window placement,
multiline icons, and the window’s initial state (normal or minimized).

2.4 Applications
The following sections describe new features related to specific DECwindows
Motif applications.

2.4.1 CDA Viewer
This section describes features related to the Compound Document Architecture
(CDA) Viewer application.

2.4.1.1 Using the CDA Viewer to View Asian-Language Text
V1.2–3

You can use the CDA Viewer in two ways to view text files that contain Asian
characters:

• Specify an options file to the CDA Viewer application.

• Define logical names at the DCL command level or in a LOGIN.COM file.

General User Features 2–9

General User Features
2.4 Applications

Refer to the DECwindows Motif for OpenVMS Applications Guide for information
about using the CDA Viewer.

2.4.1.1.1 Specifying an Options File Specify an options file by including a
one-line entry in the file in the following format:

TEXT TEXT_ENCODING text_encoding_value

• TEXT is the format.

• TEXT_ENCODING is the option you specify to CDA.

• text_encoding_value is the value of the codeset. (See Table 2–1 for a list of
values.)

Table 2–1 shows the languages, codesets, and text-encoding values.

Table 2–1 Asian Language Codes for Options Files

Language Codeset Text Encoding Value

Japanese DEC Kanji DEC_KANJI

Japanese Super DEC Kanji SDECKANJI

Traditional Chinese DEC Hanyu DEC_HANYU

Simplified Chinese DEC Hanzi DEC_HANZI

Korean DEC Korean DEC_HANGUL

The following table shows examples of one-line entries.

Options File One-Line Entry

HANYU.CDA$OPTIONS TEXT TEXT_ENCODING DEC_HANYU

HANZI.CDA$OPTIONS TEXT TEXT_ENCODING DEC_HANZI

HANGUL.CDA$OPTIONS TEXT TEXT_ENCODING DEC_HANGUL

To view the EXAMPLES_CUSTOMERS.TXT file that contains Japanese
text in DEC Kanji, use your editor to create an options file called
KANJI.CDA$OPTIONS. Add the following one-line entry to the file:

TEXT TEXT_ENCODING DEC_KANJI

When you access the file through the Options File dialog box with the CDA
Viewer, the EXAMPLES_CUSTOMERS.TXT file is viewable in the DEC Kanji
codeset (Japanese language).

2.4.1.1.2 Defining Logical Names The second option to enable viewing files
in Asian languages is to specify the text file and encoding value by defining two
logical names:

• DDIF$READ_TEXT_GL

• DDIF$READ_TEXT_GR

2–10 General User Features

General User Features
2.4 Applications

Table 2–2 shows the logical names and associated encoding values.

Table 2–2 Logical Names for Specifying Text Encoding

DDIF$READ_TEXT_GL DDIF$READ_TEXT_GR Encoding Value

LATIN1 MCS MCS

LATIN1 LATIN1 ISO Latin–1

LATIN1 KATAKANA ASCII–Kana

LATIN1 KANJI DEC Kanji

ROMAN MCS Roman–MCS

ROMAN LATIN1 Roman

ROMAN KANJI Roman–Kanji

ROMAN KATAKANA Roman–Kana

LATIN1 HANZI DEC Hanzi

LATIN1 HANGUL DEC Hangul

LATIN1 HANYU DEC Hanyu

You can define the logical names on the DCL command line or in your
LOGIN.COM file. For example:

$ DEFINE DDIF$READ_TEXT_GL LATIN1
$ DEFINE DDIF$READ_TEXT_GR KANJI

Note that this example defines the text encoding for DEC Kanji (see Table 2–2).

2.4.1.2 Converting Files That Contain Asian-Language Characters
V1.2–3

You can convert an Asian-language text file to another format by specifying
an options file or by defining the logical names DDIF$READ_TEXT_GL and
DDIF$READ_TEXT_GR as discussed in Section 2.4.1.1.1 and Section 2.4.1.1.2.

The format for converting a document from TEXT to another format is as follows:

$ CONVERT/DOCUMENT/OPTION=language.CDA$OPTIONS filename.TXT/FORMAT=TEXT -
_$ filename.output_extension/FORMAT=output_format

For example, to convert a traditional Chinese language text file to a DDIF file,
enter the following command line:

$ CONVERT/DOCUMENT/OPTION=HANYU.CDA$OPTIONS -
_$ GUIDELINES_PERSONNEL.TXT/FORMAT=TEXT GUIDELINES_PERSONNEL.DDIF

Note that this command line does not include the /FORMAT=DDIF qualifier;
DDIF is the default.

The output file, GUIDELINES_PERSONNEL.DDIF, contains language data.

General User Features 2–11

General User Features
2.4 Applications

You can also create Asian language PostScript files from a DDIF, DTIF, or text
(ASCII) file. For example, to convert a DDIF file to PostScript (.PS) format, enter
the following command:

$ CONVERT/DOCUMENT filename.DDIF filename.PS/FORMAT=PS

Note

Convert only DDIF and DTIF files that contain language data to Asian
language PostScript format.

When you print an Asian language PostScript file on a PostScript printer, ensure
that the required language fonts are available on the printer. Otherwise, the
PostScript file defaults to a basic set of fonts. If these fonts do not exist, the
PostScript file defaults to Courier fonts. Table 2–3 shows the languages and their
associated basic fonts.

Table 2–3 Languages and Associated Basic Fonts

Language Basic Fonts

Japanese Ryumin-Light-EUC-H or Ryumin-Light-Hankaku

Hanyu Sung-Light-CNS11643, Sung-Light-DTSCS

Hangul Munjo

Hanzi XiSong-GB2312-80

Note

Vertical writing is not supported by the CDA converters. All vertical text
is printed horizontally.

2.4.1.3 Dynamic Font Support
V1.2

As well as supporting a static-table for the fonts supported by the DECfonts
Typeface Collection Version 1.2, the CDA Run-Time Services includes support for
dynamic font lookup. This enables the CDA Viewer to use new fonts as they are
installed on the system.

Dynamic font support is implemented using the WRITE$FONTS.INI file, which
you can maintain using the Font utility provided with either DECwrite or
DECpresent. If a document contains a font not found in the static tables, the
CDA Viewer tries to open the WRITE$FONTS.INI file and search for the font. If
the font is not found or if the system does not contain a WRITE$FONTS.INI file,
the viewer uses a fallback font.

The WRITE$FONTS logical name references an initialization file used to provide
font definitions to the CDA Viewer.

The default location for the WRITE$FONTS.INI file is SYS$LIBRARY, but, if the
logical name WRITE$FONTS is defined, the CDA Viewer uses the logical name
definition to search for the WRITE$FONTS.INI file.

2–12 General User Features

General User Features
2.4 Applications

Full path support is included, so any of the following definitions are valid:

WRITE$FONTS Logical Name Resulting File

Undefined SYS$LIBRARY:WRITE$FONTS.INI

DISK:[DIRECTORY] DISK:[DIRECTORY]WRITE$FONTS.INI

SYS$LOGIN: SYS$LOGIN:WRITE$FONTS.INI

.TMP SYS$LIBRARY:WRITE$FONTS.TMP

DISK:[DIRECTORY]FILE DISK:[DIRECTORY]FILE.INI

2.4.1.4 Enhanced Display Performance
V1.2

The current version of CDA Run-Time Services includes a performance
enhancement that decreases the time it takes to display the first page of a
CDA document. Other applications that use the CDA Viewer to view documents
(for example, DECwindows Mail) also benefit from this enhancement.

The CDA Viewer enables this performance enhancement feature by default. You
can disable the feature as follows:

$ DEFINE CDA_QUICK_FIRST_PAGE FALSE

The CDA Viewer might not display some documents correctly when this feature
is enabled. If you encounter such a problem, disable the feature and invoke the
CDA Viewer again.

2.4.1.5 Pack and Unpack Applications
V1.2

CDA Run-Time Services includes two standalone applications that can be used
for transferring CDA documents across a network. The CDA Pack application
packages a CDA document along with all of its externally referenced files into a
single file that can be copied between systems or mailed to other users. The CDA
Unpack application reads a file that is packaged by the CDA Pack application
and creates a copy of the original document file and all its externally referenced
files.

These applications allow you to copy CDA documents between systems without
copying externally referenced files separately or correcting external file reference
information after copying documents.

To use these applications, add the following lines to your LOGIN.COM file (or add
the lines to the SYS$MANAGER:SYLOGIN.COM file):

$ PACK == "SYSSYSTEM:CDA$PACK.EXE"
$ UNPACK == "SYSSYSTEM:CDA$UNPACK.EXE"

These lines enable you to use the symbols PACK and UNPACK to invoke the
Pack and Unpack applications, respectively.

General User Features 2–13

General User Features
2.4 Applications

2.4.1.5.1 Pack Application Syntax The CDA Pack application creates a single
output file that contains the contents of a .DDIF or .DTIF input file. The single
output file also includes the files that are referenced by the .DDIF or .DTIF input
file.

The format of the PACK command is as follows:

$ PACK input-file-spec output-file-spec

The following sections explain the format of the PACK command.

input-file-spec
Specifies the name of the primary .DDIF or .DTIF input file.

output-file-spec
Specifies the name of the output file that is created by the PACK application. If
you do not specify a device or directory, the output file is created in the current
default directory.

Qualifiers:

/[NO]SKIP_MISSING
Controls whether the Pack application continues processing if it cannot find one
or more of the files that are listed as external references in the input file. The
names of any missing files are sent to SYS$ERROR when the Pack application
is completed. If you specify /NOSKIP_MISSING, the Pack application does not
create an output file if any of the externally referenced files are missing. The
default is /SKIP_MISSING.

/[NO]CONTROLLED_COPY
Controls whether the output file includes only those external references that
specify COPY_REFERENCE as the value of the ERF_CONTROL item in the
input file. If you specify /NOCONTROLLED_COPY, the Pack application includes
all referenced files, regardless of the value of the ERF_CONTROL item. The
default is /NOCONTROLLED_COPY.

/ALWAYS_ENCODE
Controls whether an output file is created when there are no external references
in the input file, or if none of the externally referenced files are found. The
default is not to create an output file in these cases. If an output file is not
created for these reasons, the Pack application returns the CDA_W_NOOUTFIL
status code.

For example:

$ PACK MYFILE.DDIF TEST.PACK

2.4.1.5.2 Unpack Application Syntax The CDA Unpack application unpacks
an input file created by the Pack application. The output files are the .DDIF
or .DTIF file that is packed by the Pack application, as well as a file for each
external reference in the .DDIF or .DTIF file. The Unpack application sends a
list of created files to SYS$ERROR.

The format of the UNPACK command is as follows:

$ UNPACK input-file-spec

The following sections explain the format of the UNPACK command.

2–14 General User Features

General User Features
2.4 Applications

input-file-spec
Specifies the name of the input file that is created by the Pack application.

Qualifier:

/OUTPUT=output-file-spec
Specifies the file name and location of the files created by the Unpack application.

If you specify an output file name without a directory name, the Unpack
application creates the main .DDIF or .DTIF file with the file name you specify in
the current default directory. It also creates all externally referenced files in the
current default directory.

If you specify a directory name without a file name, the Unpack application
creates the main .DDIF or .DTIF file and all externally referenced files in the
specified directory. The main .DDIF or .DTIF file has the same name as the file
packed by the Pack application.

If you specify a directory name and a file name, the Unpack application creates
the main .DDIF or .DTIF file and all the externally referenced files, in the
specified directory. The main .DDIF or .DTIF file has the file name you specify.

For example:

$ UNPACK TEST.PACK
Output file DISK$:[SMITH]MYFILE.DDIF created.
Output file DISK$:[SMITH]FIGURE_1.DDIF created.

$ UNPACK TEST.PACK/OUTPUT=[SMITH.UNPACK]
Output file DISK$:[SMITH.UNPACK]MYFILE.DDIF created.
Output file DISK$:[SMITH.UNPACK]FIGURE_1.DDIF created.

$ UNPACK TEST.PACK/OUTPUT=[SMITH.UNPACK]NEW_FILE.DDIF
Output file DISK$:[SMITH.UNPACK]MYFILE.DDIF renamed NEW_FILE.DDIF
Output file DISK$:[SMITH.UNPACK]FIGURE_1.DDIF created.

2.4.1.5.3 Error Messages This section describes messages associated with the
CDA Pack and Unpack applications.

FILESPEC, Missing filespec: file-name
Severity: Informational
Explanation: The Pack application cannot locate an external file included
as an external reference in the .DDIF or .DTIF file or in one of the files
referenced in the .DDIF or .DTIF file.

NOOUTFIL, No output file was created.
Severity: Warning
Explanation: The Pack application cannot find external references in the
.DDIF or .DTIF document to be packed, and you did not specify the /ALWAYS_
ENCODE qualifier.

OUTFILE, Output file created: file-name
Severity: Informational
Source: CDA_UNPACK
Explanation: The Unpack application created the specified file while
unpacking a file created by the Pack application.

General User Features 2–15

General User Features
2.4 Applications

2.4.1.6 New CDA Viewer Error Message
V1.2

The CDA Viewer issues the following message if it is unable to create the
application context:

DRMCTXFAIL, DVR could not create application context, aborting
Level: Error
Explanation: The CDA Viewer ends because an attempt to create the
application context using the Resource Manager failed, which is usually
caused by insufficient memory.
User Action: Reduce the system load and start the application again.

2.4.2 DECterm
This section describes features that pertain to the DECterm application.

2.4.2.1 New Default Font Sizes
V1.2–4

In previous releases, the default DECterm font size for the ‘‘big’’ and ‘‘little’’ fonts
were chosen by point size. This depended on whether 75 or 100 dpi fonts were
installed first in the font path. Starting with DECwindows Motif for OpenVMS
Version 1.2–4, DECterm chooses its default fonts by pixel size.

The following table shows the two behaviors.

Prior Releases Since Version 1.2–4

Default Font Size (in pixels) 100 751 100 75

Big font 25 18 18 18

Little font 18 14 14 14

175 dpi fonts or 100 dpi fonts on a 15-inch monitor

In addition, on 100-dpi displays DECterm now uses the big font by default. This
results in DECterm using the same font size (18 pixels) on 100-dpi displays as it
did in prior releases. On displays that are less than 325 mm wide, DECterm also
now uses a bigger default font.

Follow these steps to use the same font as in previous releases (14 pixels):

1. From the Options menu, select the Window... item.

2. Choose Little Font. Click on Apply.

3. If the new default font is too small, click on the Big Font button and change
the pixel size in the Other text entry field from 18 to 25.

2.4.2.2 Scrolling Using the Keyboard
V1.2–3

You can now scroll through text using the keyboard by pressing the Ctrl key and
arrow keys or by pressing the Prev or Next key on the editing keypad.

2–16 General User Features

General User Features
2.4 Applications

2.4.2.3 ReGIS Input Cursors and Escape Sequences
V1.2–3

The DECterm application supports all ReGIS input cursors:

• Crosshair

• Diamond

• Rubber-band line

• Rubber-band rectangle

For a shape other than the diamond cursor when n is equal to 1, define the
logical name DECW$TERM_REGIS_CURSOR as one of the numbers defined in
the SYS$LIBRARY:DECW$CURSOR file.

V1.2

The following escape sequences are supported by DECterm:

• All page movement sequences (NP, PP, PPA, PPB, and PPR).

• One rectangular area operation sequence (DECCRA).

• The DECLFKC sequence.

• The ReGIS command S(C(In)) supports the rubber-band rectangle cursor and
the diamond cursor.

See Section 4.2.2.1, ReGIS Input Cursors for additional information about escape
sequences in DECwindows Motif software.

2.4.2.4 Automatic Window Positioning
V1.1

A resource has been defined to manage repositioning a DECterm window when
a resize operation forces part of the window off the screen. If a DECterm
window is enlarged by using the Options/Window dialog box or by entering
a SET TERMINAL/PAGE=nn or SET TERMINAL/WIDTH=nn command, the
controller moves the newly resized DECterm window so that it can be viewed in
its entirety. If you prefer DECterm not to move, add the following line to your
DECW$TERMINAL_DEFAULT.DAT file:

DECW$TERMINAL.main.terminal.autoAdjustPosition: off

2.4.3 Window Manager
This section describes features that pertain to the Motif Window Manager
application.

2.4.3.1 Overlay Support
V1.2–3

The latest version of the Motif Window Manager (MWM) supports overlays and
utilizes additional planes of memory, which are available on some 3D graphics
accelerators. The Window Manager places borders and banners for all the
windows into these extra planes of memory and thereby reduces the number
of expose events for your applications that use overlays.

You may need to modify your existing applications that use overlays to avoid
potential problems with the colormap. HP recommends that you set up your
system to share the overlay colormap with the Window Manager, as the hardware
supports only one colormap for the overlay planes.

General User Features 2–17

General User Features
2.4 Applications

See the associated documentation for your 3D graphic accelerator to determine if
overlays are supported.

Setting Up the Overlay Colormap
To modify your applications to share the overlay colormap with the Window
Manager, query the server property name SERVER_OVERLAY_COLORMAPS.
When you make the query, the server returns the 32-bit value for the overlay
Colormap ID.

To set up your system to share the overlay colormap with the Window Manager,
edit the files SYS$COMMON:[VUE$LIBRARY.SYSTEM]VUE$MWM.COM and
SYS$COMMON:[SYSMGR]DECW$MWM.COM. Change the following line in each
file:

$ mwm -multiscreen

Edit this line by adding the -Overlay command-line option as follows:

$ mwm -multiscreen "-Overlay"

Note that if you create and install your own colormap, the following problems can
result:

• Colors flash on the screen when the colormap is changed.

• Border and banner colors also change when you change the colors of your
colormap.

Restrictions
The following restrictions apply when you enable the Window Manager to use
overlays:

• The Window Manager supports only single-screen systems and does not
function correctly with multiple graphics devices (multihead).

• If you select a Matte Size value other than ‘‘None’’ from the Window Manager
options list, the Matte color may not be correct; that is, the color does not
match the selection and is occasionally transparent.

• If you select ‘‘Show feedback when moving or resizing windows’’ from the
Workspace Options menu, the window with the feedback information causes
expose events.

• When you move windows by showing the outline of the window, the outline
appears to go below the window borders and banners.

• Window borders are occasionally and randomly displayed in clear or black.
If this problem occurs, select the restart option from the Workspace menu to
restart the Window Manager.

2.5 Tools and Utilities
The following sections describe new features related to specific X Window System
utilities ported to DECwindows Motif.

2–18 General User Features

General User Features
2.5 Tools and Utilities

2.5.1 AccessX Keyboard Utility (accessx)
V1.3

The AccessX Keyboard utility (accessx) is a client application that enables you to
set one or more AccessX keyboard enhancements available with the X Keyboard
extension (XKB). These enhancements make it easier for users with disabilities
to interact with workstation input devices (keyboard and mouse).

Specifically, AccessX enhancements for XKB offer the following capabilities:

• Sticky Keys – Allows you to perform multikey operations with one hand,
one finger, or a mouth stick. You can use this feature to enter certain
uppercase letters and punctuation characters without having to hold down
the Shift key. This feature also makes it easier to enter control sequences,
such as Ctrl/C.

• Mouse Keys (also known as Dead Mouse) – Lets you map actions that
you would perform with a mouse to keys on the numeric keyboard or other
keys that you specify. With this feature, you can use one finger or a mouth
stick to move the cursor to different areas of the screen, manipulate menus,
and select, cut, and paste text.

• Toggle Keys – Provides audio feedback when the Shift Lock (Caps Lock)
key is pressed. This feature helps users who might have difficulty seeing
the keyboard light indicator for the Shift Lock key or users who are using a
keyboard that does not provide light indicators for any keyboard settings.

• Repeat Keys – Allows you to adjust the auto-repeat keyboard mechanism
speed or to turn it off entirely. With this feature turned on, you can set your
keyboard so that holding down a key for a longer than average time does not
cause a repeat entry of that character.

• Slow Keys – Makes the keys less likely to respond when brushed
accidentally. With this feature turned on, the computer accepts only
keystrokes that are held for a certain length of time. The computer ignores
light keystrokes that are held only for a moment.

• Bounce Keys – Eliminates the problem of pressing a key and then
accidentally pressing it again before moving to another key. You can set
this feature to tell the computer not to process a second pressing of a key
unless a certain length of time elapses between each pressing.

• Time Out – Shuts off the AccessX features (except for Repeat Keys) on a
workstation after a specified period of time. If you are sharing a workstation
and have set AccessX features, the settings are turned off automatically
before the next use. To retain the AccessX settings at all times, you can turn
off the Time Out feature.

The settings for these capabilities are stored as X resource specifications available
from an AccessX configuration file. This utility reads the appropriate file
(either for the client or server) and adjusts the resource settings depending upon
the changes you make.

See Section 2.5.1.1 and Section 2.5.1.2 to learn more about the configuration file
and its default values. For information about enabling and using XKB and X
Keyboard keymaps, see the HP DECwindows Motif for OpenVMS Management
Guide.

General User Features 2–19

General User Features
2.5 Tools and Utilities

To run this utility, define accessx as a foreign command, and copy the UID file to
DECW$USER_DEFAULTS:

$ accessx :== "$DECW$EXAMPLES:ACCESSX.EXE"
$ COPY DECW$EXAMPLES:ACCESSX.UID DECW$USER_DEFAULTS:ACCESSX.UID

The command format for accessx is as follows:

$ accessx [-options...]

You can run accessx by entering the command at the DCL prompt, with or
without options. The options, described in Table 2–4, allow you to specify which
configuration file to load and choose whether to display the status of the editing
session. If no options are specified, the client configuration file is loaded by
default.

Table 2–4 AccessX Keyboard Utility Options

Options Description

-client Instructs accessx to load and use the custom settings in the
client configuration file. This is the default option.

-server Instructs accessx to load and use the default, system-wide
settings maintained in the server configuration file.

-status Displays the status window when accessx is started.

-vmods Uses the names for virtual modifiers in the status window. For
example, with the -vmods option, accessx displays NumLock
instead of Mod5.

Once invoked, the accessx dialog box is displayed, which lets you select the
AccessX features that you want to enable. It also provides a test area that
allows you to preview your settings before applying them to a DECwindows Motif
session.

For detailed information on the controls and menu options in the dialog box, see
the online help available from the Help menu option.

2.5.1.1 The AccessX Configuration File
The AccessX configuration file is an X resource file used to store and load specific
AccessX settings for the client. The default client configuration file is located
in DECW$USER_DEFAULTS:ACCESSX.DAT and is created the first time you
choose Save Settings.

You can choose to edit the file directly or use the accessx utility (with the -client
or -server option) to modify the settings. Note that any comments inserted in
this file are deleted when you perform a save settings action.

The format for entries in this file follow the standard X resource specification
format, which is:

*resource:value

For example:

*BounceKeysToggle.set:False

Since an application can consist of a combination of input widgets (such as, push
buttons and a scroll bar), you can use the widget class and name identifiers to
create additional resource specifications.

2–20 General User Features

General User Features
2.5 Tools and Utilities

2.5.1.2 Default Resource Settings
Table 2–5 lists the AccessX resources and their default values. These are default
settings maintained by the server and also represent the initial settings in the
client configuration file, prior to modification.

Table 2–5 Default AccessX Resource Settings

Resource Value

*BounceKeysToggle.set False

*EnableAccessXToggle.set True

*KRGDebounceScale.decimalPoints 1

*KRGDebounceScale.maximum 40

*KRGDebounceScale.minimum 1

*KRGDebounceScale.value 3

*KRGRepeatDelayScale.decimalPoints 2

*KRGRepeatDelayScale.maximum 400

*KRGRepeatDelayScale.minimum 1

*KRGRepeatDelayScale.value 66

*KRGRepeatRateScale.decimalPoints 2

*KRGRepeatRateScale.maximum 400

*KRGRepeatRateScale.minimum 1

*KRGRepeatRateScale.value 4

*KRGSlowKeysDelayScale.decimalPoints 1

*KRGSlowKeysDelayScale.maximum 40

*KRGSlowKeysDelayScale.minimum 1

*KRGSlowKeysDelayScale.value 3

*MouseKeysToggle.set False

*MouseAccelScale.decimalPoints 1

*MouseAccelScale.maximum 40

*MouseAccelScale.minimum 1

*MouseAccelScale.value 20

*MouseDelayScale.decimalPoints 1

*MouseDelayScale.maximum 40

*MouseDelayScale.minimum 1

*MouseDelayScale.value 3

*MouseMaxSpeedScale.decimalPoints 0

*MouseMaxSpeedScale.maximum 500

*MouseMaxSpeedScale.minimum 1

*MouseMaxSpeedScale.value 300

*RepeatKeysToggle.set True

*ShowStatusToggle.set False

*SlowKeysOnAcceptToggle.set True

(continued on next page)

General User Features 2–21

General User Features
2.5 Tools and Utilities

Table 2–5 (Cont.) Default AccessX Resource Settings

Resource Value

*SlowKeysOnPressToggle.set True

*SlowKeysToggle.set False

*SoundOnOffToggle.set True

*StickyKeysToggle.set False

*StickyModSoundToggle.set True

*StickyTwoKeysToggle.set True

*TimeOutScale.decimalPoints 0

*TimeOutScale.maximum 10

*TimeOutScale.minimum 1

*TimeOutScale.value 2

*TimeOutToggle.set False

*ToggleKeysToggle.set False

2.5.2 X Authority Utility (xauth)
V1.3

The X Authority utility (xauth) enables you to manage the contents of one
or more X authority files. The X authority file contains information used to
authorize client connections to the X server.

This utility is typically used to extract authorization records from one system
and combine them with the records on another system, such as when granting
access to additional users or enabling remote logins. The actual record entries
vary depending on the authentication scheme currently in use.

In contrast to other X Window System utilities that are available with
DECwindows Motif, xauth is included as a part of OpenVMS Alpha and
OpenVMS I64 operating systems. The xauth commands are case-insensitive
and available directly from the DCL command line, xauth command line, or from
a batch file.

The command format for xauth is as follows:

$ xauth [-f authfile] [-options...] [command]

Table 2–6 defines the available options.

2–22 General User Features

General User Features
2.5 Tools and Utilities

Table 2–6 X Authority Utility Options

Options Description

-f authfile Specifies the name of the X authority file. Version numbers
are not allowed. If a display device is specified on the
command line, xauth will use the X authority file referenced
by the display device. Otherwise, xauth will use the default
X authority file used by client applications. This file is
the X authority file referenced by the DECW$DISPLAY
display device, the DECW$XAUTHORITY logical, or
SYS$LOGIN:DECW$XAUTHORITY.DECW$XAUTH.

-q Specifies that xauth operate in quiet mode. Status messages
are not displayed. This is the default setting if the output from
xauth is not directed to a terminal.

-v Specifies that xauth operate in verbose mode. Status message
are printed. This is the default setting if the output from xauth
is directed to a terminal.

-i Specifies that xauth ignore file locks. Normally, xauth will
refuse to read or edit any files that have been locked by another
program (such as, by another instance of xauth) and not timed
out.

-b Specifies that xauth break file locks before proceeding. Use this
option only to clean up stale locks.

-n Specifies that xauth not interpret the host name when the list
command is used. Instead, xauth displays the literal value as it
appears in the X authority file.

Table 2–7 defines the available commands.

Table 2–7 X Authority Utility Commands

Commands Description

add Adds or replaces the specified entries.

extract Extracts and writes the specified entries to a new X authority
file.

exit Saves and closes the file and exits the xauth utility. (Available
from the xauth command line only.)

remove Deletes the specified entries.

merge Appends entries from another X authority file.

nextract Extracts the specified entries in numerical format.

nmerge Merges the specified entries presented in numerical format.

list Displays a listing of entries in the X authority file.

nlist Displays a listing of entries in numerical format.

(continued on next page)

General User Features 2–23

General User Features
2.5 Tools and Utilities

Table 2–7 (Cont.) X Authority Utility Commands

Commands Description

generate Used to generate a new authorization key. Requires that
DECwindows Motif be installed and the SECURITY extension be
enabled on the X display server. The generate command creates
a key that applies to all entries with a matching IPv4 or IPv6
host address. It is not limited to the IP address of the host used
to connect to the display server.

help Displays information about the parameters and options for this
utility. Subtopic help is also available by typing a question mark
(?) at the command prompt.

info Provides a brief overview of the X authority file.

quit Closes the xauth utility without applying any changes.
(Available from the xauth command line only.)

source Runs xauth commands from a command file.

2.5.2.1 The X Authority File
The X authority file is a binary data file that contains information used to
authorize connections to the X display server on a system running DECwindows
Motif Version 1.3 or higher.

Each time a client application attempts to connect to an X server system that
uses an authorization protocol, it references the current X authority file to
determine the appropriate authorization key to apply in order to authenticate
the connection. Each authorization key consists of the protocol name and token,
which can be one of the following depending on the protocol in use:

• MIT-MAGIC-COOKIE-1 + random numeric code

• MIT-KERBEROS-5 + encrypted string (cached separately)

By default, an X authority file is created automatically the first time a user
logs into a desktop on a system configured for MIT-MAGIC-COOKIE-1 or MIT-
KERBEROS-5 authentication. The file is stored in that user’s OpenVMS login
directory (SYS$LOGIN:DECW$XAUTHORITY.DECW$XAUTH). Each time the
user subsequently logs into a desktop on that system, a new authorization key is
generated, passed to the X server, and written to the user’s X authority file. This
key controls access to the X server during the DECwindows Motif session.

A separate X authority file can be manually defined on a server level (using
the DECW$SERVER_XAUTHORITY symbol) for those client applications that
require access to the X server outside of the normal DECwindows Motif login
process.

If the SECURITY extension is enabled, authorization keys can also be manually
generated. Manually-generated keys can be used to further restrict server
access. The generated key is stored in the X authority file on the client system
overwriting any value already present for the specified display server. The key
can be distributed to different client systems to allow connections to a specific
server and can be revoked to stop subsequent connections.

Generated keys are assigned an authorization ID that associates the key with
the user who generated the key. As a result, only the user who generated the key
can revoke the key.

2–24 General User Features

General User Features
2.5 Tools and Utilities

2.5.2.1.1 Format of an X Authority File Entry Each entry in an X authority
file corresponds to a particular X display server and is composed of three main
components:

display-name protocol token

display-name
Identifies the name of the X display to which you are authorizing access. The
display name follows the supported display name format described in HP
DECwindows Motif for OpenVMS Management Guide:

[transport/]host:[:]server[.screen]

This format enables you to use a single X authority file to grant varying levels of
access to different X display servers and connection families.

For example, the following entries grant access to the local display server on
node HUBBUB and the remote display server on node ZEPHYR via the DECnet
transport:

local/HUBBUB:0 MIT-MAGIC-COOKIE-1 cfcc5ef98f9718f90154f355c0ae9f62
decnet/ZEPHYR::0 MIT-MAGIC-COOKIE-1 cfcc5ef98f9718f90154f355c0ae9f62

• [transport/]
Identifies the network transport used to connect to an X display server.
See HP DECwindows Motif for OpenVMS Management Guide for a list of
the supported transport values. If a transport value is not specified, the
default value is interpreted from the format of the remaining portions of the
display-name entry, for example:

Host address and one colon (116.94.24.187:0) (TCP/IP)
Two colons (::0 or ZEPHYR::0) (DECnet)
No host name or address and one colon (:0) (local)

• host[:]
Identifies the name of the host system where the X display server is located.
A value of 0 is interpreted as the local host, which is the default. The type
of host is determined by the transport value. See HP DECwindows Motif for
OpenVMS Management Guide for a full list of valid host name and address
formats.

• :server
Identifies the server. This value is required and must be preceded by a single
colon (:). Typically the value for a single-server system is :0. If you are
specifying a display on a multi-server system (such as when using a proxy
server), additional values may apply depending on the number of servers
in the configuration. If you have specified a display device (with the SET
DISPLAY command), the server portion of the entry is assumed from the
device specification.

• [.screen]
Identifies the screen. On OpenVMS Alpha and OpenVMS I64 systems, the
screen value is not held in the X authority file and is ignored when included
in a command. All screens on a single server have the same authorization.

protocol
Indicates the authentication protocol in use. Valid values are MIT-MAGIC-
COOKIE-1 and MIT-KERBEROS-5.

General User Features 2–25

General User Features
2.5 Tools and Utilities

token
A random alphanumeric string that functions as a password authorizing a server
connection. The format of the token depends on the authorization scheme in
use. MIT-MAGIC-COOKIE-1 uses a 128-bit string known as a magic cookie.
MIT-KERBEROS-5 uses an encrypted string to authorize server connections. This
string is stored separately. The token entry in the X authority file represents the
encoded location of the Kerberos keytab file and associated principal name, which
is referenced by the server to locate the encrypted string.

2.5.2.1.2 Specifying an X Authority File By default, the X authority
file referenced by client applications and the xauth utility is defined as
SYS$LOGIN:DECW$XAUTHORITY.DECW$XAUTH. You can override this
default and specify an alternate X authority file in either of the following ways:

• You can create alternate X authority files and switch between them using
the DECW$XAUTHORITY logical. For example, the following command
changes the X authority file in use for the current DECwindows Motif session
to UNTRUSTED.DECW$AUTH:

$ DEFINE DECW$XAUTHORITY SYS$MANAGER:[SYSMGR]UNTRUSTED.DECW$XAUTH

The logical definition remains in use until it is redefined or an alternate value
is specified using the SET DISPLAY/XAUTHORITY command.

• If a display device is used to create a client connection to an X
server, you can specify an alternate X authority file using the SET
DISPLAY/CREATE/XAUTHORITY command. Note that the file specified
on this command line overrides both the default and any file referenced by
the DECW$XAUTHORITY logical.

2.5.2.2 Invoking xauth and Entering Commands
You can choose to enter commands interactively from DCL, or enter the utility
and issue commands from the xauth command line.

Note that SYS$LOGIN:DECW$XAUTHORITY.DECW$XAUTH is the default X
authority file. If you want to work with an alternate file, use the -f option on the
command line to specify the filename, as follows:

$ XAUTH -f SYS$SYSROOT:[SYSMGR]UNTRUSTED.DECW$XAUTH
Using authority file SYS$SYSROOT:[SYSMGR]UNTRUSTED.DECW$XAUTH

xauth>

Tips and Shortcuts

• If you are working with an X authority file other than the default, and plan
to enter a series of commands, use the XAUTH -f command to enter the
utility; then issue the subsequent commands from the utility command line.
Otherwise, you will need to reenter the fully-qualified filename with each
xauth command issued from the DCL command line.

• When adding a file entry, you can specify a period (.) in place of the
value MIT-MAGIC-COOKIE-1. The period is replaced by the name of the
authentication protocol.

2–26 General User Features

General User Features
2.5 Tools and Utilities

2.5.2.3 IPv6 Considerations
V1.5

Note that xauth interprets certain transport values slightly different than in most
other DECwindows Motif interfaces. Table 2–8 describes how xauth interprets
each transport.

Table 2–8 xauth Transport Actions

With this Transport
Value... xauth Commands Affect...

INET All entries in the X authority file whose host address matches
any of the IPv4 addresses associated with the same TCP/IP
host.

INET6 All entries in the X authority file whose host address matches
any of the IPv4 or IPv6 addresses associated the same
TCP/IP host.

TCPIP or TCP All entries in the X authority file as if INET or INET6 had
been specified, depending on the setting of DECW$IPV6_
SUPPORT.

2.5.2.4 Accessing Online Help
To display a brief list of the available xauth commands or a summary of their
function, issue either the XAUTH ? or XAUTH HELP command.

2.5.2.5 Creating an X Authority File
Use the XAUTH -f ADD command to manually create an X authority file.
You must manually create an X authority file for the server when enabling
authentication outside of a DECwindows Motif session. You can also choose to
create additional user X authority files to store alternate authentication settings,
such as for authorizing untrusted network connections.

An X authority file name can consist of any characters currently supported by
OpenVMS; however, the file extension is restricted to a maximum of 37 characters
and version numbers are not allowed.

The -f option specifies the name of the X authority file, and the ADD command
creates the file by adding an entry. If you do not enter a fully-qualified filename,
the new X authority file is written to the current directory by default.

For example, the following command creates a new X authority file
UNTRUSTED.DECW$XAUTH to be used to authorize untrusted network
connections:

$ XAUTH -f UNTRUSTED.DECW$XAUTH ADD :0 .
cfcc5ef98f9718f90154f355c0ae9f62

2.5.2.6 Displaying File Information
To assist with debugging file access and write issues, xauth includes a command
that displays summary information about a particular X authority file. Use the
XAUTH INFO command to display information about an X authority file, such as
the current lock status and change history.

General User Features 2–27

General User Features
2.5 Tools and Utilities

For example, the following command displays summary information about the X
authority file UNTRUSTED.DECW$XAUTH:

$ XAUTH -f SYS$SYSROOT:[SYSMGR]UNTRUSTED.DECW$XAUTH INFO
Authority file: SYS$SYSROOT:[SYSMGR]UNTRUSTED.DECW$XAUTH
File new: no
File locked: yes
Number of entries: 2
Changes honored: yes
Changes made: no
Current input: command line

2.5.2.7 Viewing and Editing File Entries
Each X authority file assumes the default protections of the account and directory
in which it resides. If you have the appropriate privileges, you can view or edit
the contents of an X authority file. To ensure the appropriate level of security,
access to this file is typically limited to either the local SYSTEM account, the file
owner, or both.

Note

When an X authority file is open for viewing or editing, one or more
lock files are created by adding -L or -C to the file extension (such as,
*.DECW$XAUTH-C). This renders the X authority file locked from further
use. When the file is closed, the lock is subsequently removed, and the
lock files deleted.

If a DECwindows Motif session is terminated abruptly, one or more locked
files can remain. Use the XAUTH command with options -b or -i to either
break or ignore the locks and gain access to the file.

Displaying File Entries
Use the XAUTH LIST command to display the contents of an X authority file.

For example, the following XAUTH command displays the entries in the X
authority file UNTRUSTED.DECW$XAUTH:

$ XAUTH -f UNTRUSTED.DECW$XAUTH LIST
local/ZEPHYR:0 MIT-MAGIC-COOKIE-1 cfcc5ef98f9718f90154f355c0ae9f62
decnet/ZEPHYR::0 MIT-MAGIC-COOKIE-1 cfcc5ef98f9718f90154f355c0ae9f62
116.94.24.187:0 MIT-MAGIC-COOKIE-1 cfcc5ef98f9718f90154f355c0ae9f62

Note

TCP/IP is considered the default transport for X authority file entries. As
a result, the transport portion of the display name is assumed and not
displayed for entries that use the TCP/IP transport.

To limit the list to entries related to a particular display, enter the display name
at the end of the XAUTH LIST command, as follows:

$ XAUTH -f UNTRUSTED.DECW$XAUTH LIST ZEPHYR::0
decnet/ZEPHYR::0 MIT-MAGIC-COOKIE-1 cfcc5ef98f9718f90154f355c0ae9f62

2–28 General User Features

General User Features
2.5 Tools and Utilities

With the TCPIP transport, multiple addresses may correspond to the same
display name. When displaying X authority file entries, it may be difficult to
distinguish which entry applies to which address. To differentiate the entries, use
the -n qualifier to list them in numeric format, as follows:

$ XAUTH LIST
test13_2:0 MIT-MAGIC-COOKIE-1 12
test13_2:0 MIT-MAGIC-COOKIE-1 23
$ XAUTH -n LIST
#0006#fe800000000000000200f8fffe101905#:0 MIT-MAGIC-COOKIE-1 12
#0000#c0a70209#:0 MIT-MAGIC-COOKIE-1 23

Adding and Removing File Entries
Use the XAUTH ADD and XAUTH REMOVE commands to add entries to or
delete entries from an X authority file.

If you have created a display device (using the SET DISPLAY command), you can
specify the device name on the xauth command line to insert or remove entries
related to the display device. Typically, the X authority file entry for a display
device corresponds to the display server specified by the SET DISPLAY command.
However, if the SET DISPLAY command specifies that a proxy server be used, the
file entry pertains to that proxy server.

For example, the following X authority file has a single entry for the LOCAL
transport on node ZEPHYR. To use the same authorization key for the DECnet
transport and to specify that Kerberos be used when connecting to remote
node HUBBUB, you could add the following entries to the X authority file
UNTRUSTED.DECW$XAUTH:

$ XAUTH -f UNTRUSTED.DECW$XAUTH
Using authority file untrusted.decw$xauth

xauth> LIST
local/ZEPHYR:0 MIT-MAGIC-COOKIE-1 cfcc5ef98f9718f90154f355c0ae9f62

xauth> ADD ::0 . cfcc5ef98f9718f90154f355c0ae9f62
xauth> ADD HUBBUB::0 MIT-KERBEROS-5 ""

General User Features 2–29

General User Features
2.5 Tools and Utilities

xauth> LIST
local/ZEPHYR:0 MIT-MAGIC-COOKIE-1 cfcc5ef98f9718f90154f355c0ae9f62
decnet/ZEPHYR::0 MIT-MAGIC-COOKIE-1 cfcc5ef98f9718f90154f355c0ae9f62
decnet/HUBBUB::0 MIT-KERBEROS-5

xauth> EXIT
Writing X authority file untrusted.decw$xauth

Client applications running on systems in the same cluster share a single X
authority file. As a result, in cluster configurations, adding an entry for the
DECnet transport to the local system grants client applications running on other
nodes in the cluster access to that system.

To discontinue remote access to HUBBUB, you could use the XAUTH REMOVE
command to remove the entry, as follows:

$ XAUTH -f UNTRUSTED.DECW$XAUTH
Using authority file untrusted.decw$xauth

xauth> REMOVE HUBBUB::0
1 entries removed

xauth> LIST
local/ZEPHYR:0 MIT-MAGIC-COOKIE-1 cfcc5ef98f9718f90154f355c0ae9f62
decnet/ZEPHYR::0 MIT-MAGIC-COOKIE-1 cfcc5ef98f9718f90154f355c0ae9f62

xauth> EXIT
Writing X authority file untrusted.decw$xauth

Copying Entries Between Files
Use one or more of the following XAUTH commands to copy entries for a
particular display from one X authority file to another.

This enables you to use an existing entry to grant another user access to a
particular display or to obtain access to a remote host from the current display
device.

• EXTRACT – Creates a new X authority file whose entries match those in the
original file.

• MERGE – Appends the contents of one file to another, replacing entries for
the same display name or adding entries for different names.

• NEXTRACT and NMERGE – These commands are designed to be used with
the PIPE command. NEXTRACT extracts file entries in a text format that
can then be used as input for the NMERGE command.

For example, the following command extracts the X authority file entry for
the local transport from the file UNTRUSTED.DECW$XAUTH and adds it to
a new X authority file NEW_XAUTHORITY.DECW$XAUTH:

$ PIPE XAUTH -f UNTRUSTED.DECW$XAUTH NEXTRACT SYS$OUTPUT :0 | -
_$ XAUTH -f NEW_XAUTHORITY.DECW$XAUTH NMERGE SYS$INPUT

These commands can also be used with the rsh command to copy entries from an
X authority file on an OpenVMS host to an X authority file on a remote UNIX
system. For example, the following command extracts the entry for TCP/IP access
(TCPIP/0:0) and adds it to the current file for user SMITH on the remote UNIX
system FLOPSY:

$ PIPE XAUTH -f UNTRUSTED.DECW$XAUTH NEXTRACT - TCPIP/0:0 | -
_$ rsh/user=smith/password=secret flopsy "xauth nmerge -"

2–30 General User Features

General User Features
2.5 Tools and Utilities

Note

When using the PIPE and XAUTH commands to pass information to a
UNIX host, you must press Ctrl/C to terminate the connection to the
UNIX host and return control to OpenVMS.

2.5.2.8 Generating Authorization Keys
When the SECURITY extension is enabled on an X display server, you can
generate additional authorization keys. Generated keys enable you to further
manage server access and control the type of operations performed over the
connection. For example, you can revoke a generated key at will, set it to expire
after a certain time period, or use it to further grant or restrict the operations (at
the X atom level) that can be performed over the connection.

Use the XAUTH GENERATE command to produce a new authorization key. Note
that the generated key overwrites any existing key for the current session. To
preserve the existing key, specify an alternate X authority file on the XAUTH
command line.

For example, the following commands specify the alternate X authority file
UNTRUSTED.DECW$XAUTH, generate and display a new key for the local
display, and write the generated key to the alternate file:

$ XAUTH -f UNTRUSTED.DECW$XAUTH
Using authority file untrusted.decw$xauth

xauth> LIST :0
local/ZEPHYR:0 MIT-MAGIC-COOKIE-1 cfcc5ef98f9718f90154f355c0ae9f62

xauth> GENERATE :0

xauth> LIST :0
local/ZEPHYR:0 MIT-MAGIC-COOKIE-1 cfcc4ff77f3709c46222c355f0ea1c93

xauth> EXIT
Writing X authority file untrusted.decw$xauth

2.5.3 X Keyboard Compiler Utility (xkbcomp)
V1.3

The Keyboard Compiler utility (xkbcomp) compiles X Keyboard source files into
loadable X Keyboard layout (.XKM) files. Using xkbcomp, you can customize the
standard layouts provided with the X Window System by creating or modifying
the component source files.

For information about enabling and using XKB and X Keyboard keymaps, see the
HP DECwindows Motif for OpenVMS Management Guide.

To run this utility, define xkbcomp as a foreign command:

$ xkbcomp == "SYSSYSTEM:DECW$XKBCOMP"

General User Features 2–31

General User Features
2.5 Tools and Utilities

The command format for xkbcomp is as follows:

$ xkbcomp [-options...] input-file [output-file]

Table 2–9 Keyboard Compiler Options

Option Description

-a Specifies that all user actions be displayed.

-C Creates a C header file during compilation.

-em1 message Prints the specified message before printing any informational
or error messages.

-emp message Prints the specified message at the start of each line of
messages.

-eml message Prints the specified message after any informational or error
messages.

-dflts Specifies that the compiler generate default values for any
missing parameters.

-I [directory] Specifies the top level directory for include statements. A
comma-separated list of multiple directories is allowed.

-l [flags] Specifies that a list of matching keymap files be displayed, where
flags can be one or more of the following options:

f: lists fully-specified filenames
h: lists hidden keymap files
l: generates a long list
p: lists partial keymap files
r: lists recursive subdirectories

The default of -l with no flags turns all options off.

-map keymap file Specifies the keymap file to compile.

-merge Merges the keymap file with the keymap currently residing on
the server.

-o file Specifies the fully-qualified name of the compiled keymap
(.XKM) file.

-optional parts Specifies optional components of a keymap file, where parts can
be any combination of:

c: compatibility map
g: geometry
k: keycodes
s: symbols
t: types

Note that errors in specifying optional components are not fatal.

-R [DIRECTORY] Specifies the directory in which the component source files are
located.

-synch Forces keymap synchronization.

-w [level] Sets the warning level for compiler errors, ranging from 0 (none)
to all (10).

-xkb Generates an X keyboard (.XKB) source file.

-xkm Generates a compiled keymap (.XKM) file.

For information about the keyboard components database, see the HP
DECwindows Motif for OpenVMS Management Guide.

2–32 General User Features

General User Features
2.5 Tools and Utilities

2.5.4 Window Dump to Print File (xpr) Utility
V1.2

The Window Dump to Print File utility prints an X Window dump using the xpr
program.

The xpr program receives as input a window dump file produced by the Window
Dump utility (xwd) and formats it for output on the following printers:

• PostScript

• DIGITAL LN03 or LA100

• IBM PP3812 page printer

• HP LaserJet (or other PCL printers)

• HP PaintJet

To use the xpr program, define xpr as a user-defined command:

$ xpr == "$DECW$UTILS:XPR"

You must specify an input file. The xpr program prints the largest possible
representation of the window on the output page. Options allow the user to
add headers and trailers, specify margins, adjust the scale and orientation, and
append multiple window dumps to a single output file.

Use the following command format:

$ xpr input_file [options...]

Options include:

-append filename -noff -output filename
-compact
-device {ln03 | la100 | ps | lw | pp | ljet | pjet | pjetxl}
-dump
-gamma correction
-gray {2 | 3 | 4}
-height inches -width inches
-header string -trailer string
-landscape -portrait
-left inches -top inches
-noposition
-nosixopt
-plane n
-psfig
-render type
-report
-rv
-scale scale
-slide
-split n-pages

Table 2–10 defines the available options.

General User Features 2–33

General User Features
2.5 Tools and Utilities

Table 2–10 Window Dump to Print File Options

Option Description

-device devtype Specifies the device on which the file is printed.

Currently supported devices:

la100 DIGITAL LA100.

ln03 DIGITAL LN03.

ljet HP LaserJet series and other monochrome PCL
devices such as ThinkJet, QuietJet, RuggedWriter,
HP series, and HP-series printers.

pjet HP PaintJet (color mode).

pjetxl HP PaintJet XL Color Graphics Printer (color
mode).

pp IBM PP3812.

ps PostScript printer.

lw LaserWriter is equivalent to -device ps and is
provided only for backwards compatibility.

The default is PostScript.

-scale scale Affects the size of the window on the page. The PostScript,
LN03, and HP printers can translate each bit in a window
pixel map into a grid of a specified size. For example, each
bit might translate into a 3x3 grid. This would be specified by
-scale 3. By default, a window is printed with the largest scale
that will fit onto the page for the specified orientation.

-height inches Specifies the maximum height of the page.

-width inches Specifies the maximum width of the page.

-left inches Specifies the left margin in inches. Fractions are allowed. By
default the window is centered in the page.

-top inches Specifies the top margin for the picture in inches. Fractions
are allowed.

-header string Specifies a header string to be printed above the window.

-trailer string Specifies a trailer string to be printed below the window.

-landscape Forces the window to be printed in landscape mode. By
default, a window is printed so that its longest side follows
the long side of the paper.

-portrait Forces the window to be printed in portrait mode. By default a
window is printed so that its longest side follows the long side
of the paper.

-plane number Specifies which bit plane to use in an image. The default is
to use the entire image and map values into black and white
based on color intensities.

-gray Uses a 2x2, 3x3, or 4x4 gray scale conversion on a color image,
rather than mapping to strictly black and white. This doubles,
triples, or quadruples the effective width and height of the
image.

-rv Forces the window to print in reverse video.

-compact Uses run-length encoding for compact representation of
windows with white pixels.

(continued on next page)

2–34 General User Features

General User Features
2.5 Tools and Utilities

Table 2–10 (Cont.) Window Dump to Print File Options

Option Description

-output filename Specifies an output file name.

-append filename Specifies a file name previously produced by xpr to which the
window is to be appended.

-noff When specified in conjunction with -append, the window
appears on the same page as the previous window.

-split n-pages Allows the user to split a window onto several pages. This
might be necessary for very large windows that would
otherwise cause the printer to overload and print the page
in an obscure manner.

-psfig Suppresses translation of the PostScript picture to the center
of the page.

-density dpi Indicates dot-per-inch density to be used by the HP printer.

-cutoff level Changes the intensity level where colors are mapped to
either black or white for monochrome output on a LaserJet
printer. The level is expressed as percentage of full brightness.
Fractions are allowed.

-noposition Causes header, trailer, and image positioning command
generation to be bypassed for LaserJet, PaintJet and PaintJet
XL printers.

-gamma correction Changes the intensity of the colors printed by the PaintJet XL
printer. The correction is a floating-point value in the range
0.00 to 3.00. Consult the operator’s manual to determine the
correct value for the specific printer.

-render algorithm Allows the PaintJet XL printer to render the image with
the best quality versus performance tradeoff. Consult the
operator’s manual to determine the available algorithms.

-slide filename Allows overhead transparencies to be printed using the
PaintJet and PaintJet XL printers.

The program contains the following limitations:

• Support for PostScript output currently cannot use the -append, -noff, or -split
options.

• The -compact option is only supported for PostScript output. It compresses
white space but not black space, so it is not useful for reverse-video windows.

• For color images, map directly to PostScript image support.

Program limitations with an LN03 printer:

• The current version of xpr can print most X Windows that are not larger than
two-thirds of the screen.

For example, the LN03 prints a large Emacs window, but fails when trying to
print the entire screen.

General User Features 2–35

General User Features
2.5 Tools and Utilities

• The LN03 has memory limitations that cause it to incorrectly print large or
complex windows. The two most common errors encountered are ‘‘band too
complex’’ and ‘‘page memory exceeded’’ and are described as follows:

‘‘band too complex’’

A window may have a particular six pixel row that contains too many
changes (from black to white to black). This causes the printer to drop
part of the line and possibly drop parts of the page. The printer flashes
the number ‘‘1’’ on its front panel when this problem occurs. A possible
solution to this problem is to increase the scale of the picture or to split
the picture onto two or more pages.

‘‘page memory exceeded’’

This occurs if the picture contains too much black space, or if the picture
contains complex half-tones, such as the background color of a display.
When this problem occurs, the printer automatically splits the picture
onto two or more pages. The number ‘‘5’’ may flash on its front panel. As
a possible solution to the problem, it might be necessary to either cut and
paste or to rework the application to produce a less complex picture.

Program limitations with a LA100 printer:

• The picture is always printed in portrait mode.

• The scale is ignored.

• The scale factor will be different in the horizontal and vertical directions.

Program limitations with an HP printer:

• If the -density option is not specified, 300 dots-per-inch (dpi) is assumed for
the ljet device and 90-dpi for the pjet device. The LaserJet printer supports
300-, 150-, 100-, and 75-dpi. Consult the operator’s manual to determine the
densities supported by other printers.

• If the -scale option is not specified, the image is expanded to fit the printable
page area.

• The default printable page area is 8x10.5 inches. Other paper sizes can be
accommodated using the -height and -width options.

• Note that a 1024x768 image fits the default printable area when processed at
100-dpi with scale=1; the same image can also be printed using 300-dpi with
scale=3, but it requires more data to be transferred to the printer.

• The xpr program may be tailored for use with monochrome PCL printers
other than the LaserJet. To print on a ThinkJet (HP 2225A) printer, invoke
xpr as follows:

xpr -density 96 -width 6.667 filename

To print black-and-white output on a PaintJet printer, invoke xpr as follows:

xpr -density 180 filename

• The monochrome intensity of a pixel is computed as 0.30*R + 0.59*G +
0.11*B. If the computed intensity of a pixel is less than the -cutoff level, it
prints white. This maps light-on-dark display images to black-on-white hard
copy. The default cutoff intensity is 50% of full brightness. For example,
specifying -cutoff 87.5 means that a pixel will be displayed as black if the
computed intensity is less than 85% of full brightness.

2–36 General User Features

General User Features
2.5 Tools and Utilities

• A LaserJet printer must be configured with sufficient memory to print the
image. To print a full page at 300-dpi, approximately 2 MB of printer memory
is required.

• Color images are produced on the PaintJet printer at 90-dpi. The PaintJet
is limited to 16 colors from its 330 color palette on each horizontal print
line. The xpr program issues a warning message if more than 16 colors are
encountered on a line. Xpr programs the PaintJet for the first 16 colors
encountered on each line and uses the nearest matching programmed value
for other colors on the line.

• Specifying the -rv option on the PaintJet printer causes black and white to be
interchanged on the output image. No other colors are changed.

• Multiplane images must be recorded by xwd in ZPixmap format. Single-plane
(monochrome) images may be in either XYPixmap or ZPixmap format.

• Some PCL printers do not recognize image positioning commands. Output for
these printers is not centered on the page, and header and trailer strings may
not appear where expected.

• The -gamma and -render options are supported only on the PaintJet XL
printers.

• The -slide option is not supported on LaserJet printers.

• The -split option is not supported on HP printers.

• The -gray option is not supported on HP or IBM printers.

General User Features 2–37

3
System Management Features

This chapter provides information about new features and enhancements related
to DECwindows Motif system management.

3.1 Installation and Upgrade Information
The following sections describe features that pertain to installing and upgrading
DECwindows Motif systems.

3.1.1 DECW$STARTUP Log File
V1.5

When you start DECwindows Motif using the command
@SYS$MANAGER:DECW$STARTUP RESTART, a startup log file is now created.
This log file records activity from the detached process that invokes DECwindows
Motif, which can be useful in diagnosing startup problems.

The name of the log file is SYS$MANAGER:DECW$STARTUP_n.LOG, where n
represents the server number. The default server number value is 0; hence, the
default filename is DECW$STARTUP_0.LOG. If you have set the server number
to a value other than 0, that value is then used in the name of the corresponding
log file.

To minimize disk space usage, the log files are purged periodically. A maximum
of three versions of a startup log file are kept on disk.

For more information on the DECwindows Motif startup procedure, see the HP
DECwindows Motif for OpenVMS Management Guide.

3.2 Security and Authorization
The following sections describe features that pertain to maintaining system and
network security of DECwindows Motif systems.

3.2.1 Support for ACME Subsystem (Alpha Only)
V1.5

The Authentication and Credentials Management Extensions (ACME) subsystem
features of OpenVMS Alpha are now supported by DECwindows. The following
dialog boxes and screens support access checks using ACME:

• Login dialog box (New Desktop)

• Lock Screen dialog box (New Desktop)

• Start Session dialog box (Traditional DECwindows Desktop)

• Pause Session screen (Traditional DECwindows Desktop)

System Management Features 3–1

System Management Features
3.2 Security and Authorization

All ACME features are supported, including intrusion detection and remote
authentication. See the HP OpenVMS Guide to System Security for a detailed
description of the ACME subsystem and its components.

3.3 X Display Server Management
The following sections describe features that pertain to managing the
DECwindows X11 Display Server.

3.3.1 New Parameter for Enabling IPv6 Support in the Font Server
V1.5

A new server parameter, DECW$IPV6_FONT_SUPPORT, has been added that
controls how the TCP transport is interpreted when specifying font servers either
through use of the DECW$FONT_SERVER parameter or through the use of an
explicit font server path. In addition, the DECW$FONT_SERVER parameter now
accepts an expanded set of transport values.

To set these parameters for the server process, do the following:

1. Edit the SYS$MANAGER:DECW$PRIVATE_SERVER_SETUP.COM file.

2. Define both the DECW$FONT_SERVER and DECW$IPV6_FONT_SUPPORT
parameters as required.

3. Save the file and restart the server.

DECW$FONT_SERVER
The transport options available through this parameter have been expanded
to include all valid transports, as described in the HP DECwindows Motif for
OpenVMS Management Guide.

DECW$IPV6_FONT_SUPPORT
This parameter controls the interpretation of the TCP or TCPIP transport
name in the DECW$FONT_SERVER definition and whenever a client explicitly
specifies a font server path. Set the parameter to one of the following values:

• TCP_IS_INET6

The TCP and TCPIP transport names are interpreted as synonyms for the
INET6 transport. Using this value enables IPv6 as the default transport
between the display server and its font servers when the TCP or TCPIP
transport name is specified. Note that this setting requests the IPv6 transport
be used as a default. If the IPv6 transport is not available for the specified
node, the IPv4 transport is used.

• DISABLED

The TCP and TCPIP transport names are interpreted as synonyms for the
INET transport. This is the default value if the parameter is undefined.
Using this value sets IPv4 as the transport between the display server and its
font server when a TCP or TCPIP transport name is specified. A client can
still request the IPv6 transport by explicitly specifying the INET6 transport
in its font server path.

3–2 System Management Features

4
Programming Features

This chapter describes new features relating to application and system
programming in the DECwindows Motif environment. This includes extensions,
libraries, and functions made available as part of the X11R6.6 and X11R6.7
implementation as well as those that are specific to the DECwindows Motif
environment.

For information on how to program X Window System applications, see the X
Window System and X Window System Toolkit (Scheifler and Gettys) series of
manuals described in the HP DECwindows Motif for OpenVMS Documentation
Overview.

4.1 General Run-Time and Programming Environment
The following sections describe features related to general DECwindows Motif
programming environment.

4.1.1 Multithreading Support
V1.3

DECwindows Motif now supports multithreaded client applications. Client
applications that use the HP POSIX Threads Library or HP Ada tasks are now
fully supported in the DECwindows Motif Version 1.3 or higher environment.

Additionally, each of the following libraries are now fully thread-safe, supporting
simultaneous calls from multiple threads:

X Library (Xlib)
X Toolkit Intrinsics (Xt)
X Window System Extensions library
Inter-Client Exchange (ICE) library
X Session Management Protocol (XSMP) library

4.1.2 Binary Compatibility
V1.3

Client applications linked against previous versions of DECwindows Motif are
binary compatible, with the exception of those applications that use any changed
or retired Xlib entry points documented in this manual and the HP DECwindows
Motif for OpenVMS Release Notes.

Programming Features 4–1

Programming Features
4.1 General Run-Time and Programming Environment

Existing applications require recompilation against the X11R6.6-compatible X
Window System libraries if they produce a shared image potentially used by other
multithreaded applications and that image uses:

• Any of the following macros defined in DECW$INCLUDE:XLIBINT.H and is
intended for use in a multithreaded environment:

LockDisplay
UnlockDisplay
LockMutex
UnlockMutex

• The ConnectionNumber macro or XConnectionNumber function and assumes
the return value is an event flag.

Note that recompiling unmodified applications (those that use the previous
version of the CompositeClassExtensionRec structure) against the updated
library functions may generate Xt warning messages.

4.1.2.1 Use of Asynchronous System Traps (ASTs)
In the past, DECwindows Motif supported application calls from user-mode and
normal-mode AST handlers. With DECwindows Motif Version 1.3 and higher,
applications calls from AST handlers are only supported for existing, unmodified
applications (compiled against the X11R5 libraries).

New applications compiled against the X11R6.6 libraries should not call
functions (other than XtNoticeSignal) from AST handlers even in single-threaded
environments.

Applications compiled against the updated libraries should either use multiple
threads if a higher level of concurrency is required or call XtNoticeSignal so that
AST events are processed in the Xt main loop.

4.1.2.2 Levels of Thread Safety and Concurrency
New and existing DECwindows Motif shared images can be grouped according to
the following levels of thread safety:

• Thread-safe–The image can be called concurrently from multiple threads.

• Thread-aware–The image can be used in an application that includes
multiple threads. However, the application code must avoid making
concurrent calls to the image, typically by using a global lock.

• Thread-unsafe–The image cannot be used in any application that has
multiple thread support enabled.

Table 4–1 shows the current thread safety level for each of the DECwindows
Motif shared images. Note that all images in the Translated Image Environment
are thread-unsafe.

Table 4–1 Level of Thread Safety for DECwindows Motif Images

Image Level of Thread Safety

DECW$AILSHR.EXE unsafe

DECW$AILSHRR5.EXE unsafe

(continued on next page)

4–2 Programming Features

Programming Features
4.1 General Run-Time and Programming Environment

Table 4–1 (Cont.) Level of Thread Safety for DECwindows Motif Images

Image Level of Thread Safety

DECW$BKRSHR.EXE aware

DECW$BKRSHR12.EXE aware

DECW$D2DXLIBSHR.EXE aware

DECW$DWTLIBSHR.EXE aware

DECW$DXMLIBSHR.EXE aware

DECW$DXMLIBSHR12.EXE aware

DECW$ICELIB.EXE safe

DECW$LCNLIBSHR.EXE safe

DECW$MAILSHR.EXE unsafe

DECW$MAILSHR12.EXE unsafe

DECW$MRMLIBSHR12.EXE aware

DECW$PRINTWGTSHR.EXE aware

DECW$SMSHR.EXE safe

DECW$TERMINALSHR.EXE aware

DECW$TERMINALSHR12.EXE aware

DECW$XEXTLIBSHR.EXE safe

DECW$XLIBSHR.EXE safe

DECW$XMLIBSHR.EXE aware

DECW$XMLIBSHR12.EXE aware

DECW$XMULIBSHR.EXE aware

DECW$XMULIBSHRR5.EXE aware

DECW$XTLIBSHRR5.EXE safe

DECW$XTRAPLIBSHR.EXE aware

DECW$XTRAPLIBSHRR5.EXE aware

DECW$XTSHR.EXE aware

In addition to thread safety, the updated libraries offer varying levels of
concurrency when called from multiple threads:

• Xlib and X Window System Extension libraries
For most operations, Xlib and X Window System Extension libraries allow a
single concurrent operation on each display connection. If XOpenDisplay is
called twice to open two separate server connections, both connections can
be operated upon at the same time. However, there are a few operations for
which a global lock is needed to prevent corruption of global data.

Note that XSelectAsyncInput and XSelectAsyncEvent are not supported if
multithreading has been enabled by a call to XInitThreads. In general, use of
XSelectAsyncEvent and XSelectAsyncInput is discouraged since they are non-
standard functions. The equivalent functionality can be obtained by using
threaded Xlib functions.

• Xt library
For most operations, Xt allows a single concurrent operation on each
application context. There are a few operations for which a global lock is
needed to prevent corruption of global data.

Programming Features 4–3

Programming Features
4.1 General Run-Time and Programming Environment

• ICE and XSMP libraries
ICE and XSMP operations allow a single concurrent operation on each ICE
connection.

• Transport library
The transport library is used to communicate between the client application
and the X server and between multiple client applications that use the ICE
library. The final level of the transport code (which can communicate via
global sections, DECnet, or TCP/IP) executes in OpenVMS inner mode, and as
a result is serialized by the operating system.

Running on only one kernel thread at a time, this code temporarily blocks
all other kernel threads making OpenVMS system calls that execute in
inner mode. However, whenever the transport code is blocked, such as when
waiting for a connection to open or for a reply to arrive, it is blocked at user
mode allowing other threads to execute and use the transport.

4.1.2.3 Enabling Support for Multithreading
To enable multithreading, a client application must include initial calls to the
multithreading functions in Table 4–2. The specific functions called by the
application depend on the shared image(s) in use.

Table 4–2 Multithreading Functions

Function In Image Enables Multithreading For

DECW$LCN_
THREAD_INIT

DECW$LCNLIBSHR Transport Interface

IceInitThreads DECW$ICELIB ICE and XSMP

XInitThreads DECW$XLIBSHR Xlib and X Extensions

XtToolkitThreadInitialize DECW$XTLIBSHRR5 Xt

Note that IceInitThreads and XInitThreads implicitly call DECW$LCN_
THREAD_INIT. The interface to DECW$LCN_THREAD_INIT is described in
Section 4.8.2.

These functions have no arguments and return a success status upon successful
initialization. To ensure successful initialization, be sure to:

• Link the image with threads.

• Verify there is adequate process memory.

• Issue the initialization call prior to making any other call.

In addition to calling one of the multithreading functions, a client application
must also be linked against the POSIX Threads Library. For example:

$ LINK THREAD_ICO/THREADS SYS$INPUT/OPT
SYS$LIBRARY:DECW$XLIBSHR/SHARE
SYS$LIBRARY:PTHREAD$RTL/SHARE

Explicit links against the threads library are not required if the application calls
POSIX thread functions (such as, pthread_create).

4–4 Programming Features

Programming Features
4.1 General Run-Time and Programming Environment

4.1.2.4 Developing Applications with Thread-Aware Images
If a thread-aware image is used in a multithreaded application, the image must
not accept concurrent calls nor make calls to other images that could change the
state of the thread-aware image.

Note that if a thread-aware application uses the XtAppMainLoop or XtMainLoop
function for dispatch handling, calls to the image will be made from callback
functions. Xt makes these callbacks with an exclusive lock held on the application
context. To avoid conflicts and deadlocks, applications that use a thread-aware
image should include calls to XtAppLock before and XtAppUnlock after each call,
or sequence of calls, to the image. The application must also call XtProcessLock
and XtProcessUnlock to protect the thread-aware image against changes made by
Xt to process global data.

In the following example, an application contains a background thread that
constantly checks for error situations and displays an error message when a
problem occurs. The main program thread first initializes thread support, creates
the application context, creates the background thread, and then enters the
Xtmain loop:

static XtAppContext app_context;

int main ()
{

.

.

.
MrmInitialize ();
XInitThreads ();
XtToolkitThreadInitialize();
XtToolkitInitialize();
app_context = XtCreateApplicationContext();
.
.
.
pthread_create (&thread, 0, backgroundCode, 0);
.
.
.
XtAppMainLoop(app_context)

}

Code for the background thread is as follows:

void* backgroundCode (void* data)
{

.

.

.
if (problem_detected)
{

XtAppLock (app_context);
XtProcessLock();
if (! dlog) dlog = XmcreateWarningDialog (...);

XtManageChild(dlog);
XSync(display, 0);
XtProcessUnlock();
XtAppUnlock(app_context);

}
.
.
.

}

Programming Features 4–5

Programming Features
4.1 General Run-Time and Programming Environment

Callbacks for handling the main events of the application do not require changes
for multithreading, since they are called with the application context already
locked.

Worker Threads
Each of the DECwindows Motif libraries can create worker threads to support
multithreading. These threads are identified by their name, which begins with
the string DECW$.

Worker threads typically operate at an elevated priority to prevent task inversion,
where a high-priority application thread is waiting for the worker thread to
complete its operation. Note that worker threads are typically used for short
duration tasks, such as responding to an internal AST or sending a status
broadcast to all threads waiting for a particular activity.

Upcalls and Kernel Threads
In general, DECwindows Motif supports client applications either with or without
upcalls or multiple kernel threads enabled. However, to avoid problems with
priority inversion, HP recommends that upcalls be enabled for all applications
that use XtAppAddInput. If upcalls cannot be enabled, then HP recommends
assigning the same priority to all threads that use DECwindows Motif.

For example, an application calls XtAppAddInput to request a response to an
OpenVMS event flag. The worker thread executes a SYS$WFLOR system call to
wait for the event flag. Without upcalls enabled, this thread remains available
even though there is no event flag set. And as a result, lower priority threads
would not be scheduled.

Cancellation Points
Although some calls in the thread-safe libraries include cancellation points, the
action of canceling threads that are executing DECwindows Motif functions is not
supported. Canceled threads may hold locks, which can block other threads.

Multiple Application Contexts
Note that multiple application contexts should not be used with multiple threads
and thread-aware images. Thread-aware images may contain process global data
that requires a single lock to control the data. However, multiple calls to thread-
aware images may be made from Xt event handling functions prior to acquiring
the lock.

4.2 Application Programming
The following sections describe features related to application programming.

4.2.1 CDA Programming
This section describes features and changes related to CDA programming.

4.2.1.1 Changes to the CDA Programming Interface
V1.2

This section describes the changes to the programming interface for this version
of CDA Run-Time Services.

This version provides a new set of header files that define CDA constants, types,
and routines using portable naming conventions. By using these new naming
conventions, you can use a wider variety of C compilers to minimize the amount
of system-specific code in your CDA applications.

4–6 Programming Features

Programming Features
4.2 Application Programming

The names of the new set of header files are the same as the names of the
previous set of header files, except that the dollar sign ($) has been removed.
For example, the cda$msg.h include file is now called cdamsg.h. Other examples
include the following: The DDIF$K_DSC_MAJOR_VERSION symbol is now
declared as DDIF_K_DSC_MAJOR_VERSION, and the CDA$_NORMAL status
value is now defined as CDA_NORMAL.

The previous set of header files is also included in this version, but these files will
no longer be updated. Changes introduced since the release of DECwindows Motif
Version 1.1 (for example, the new definitions for audio support), are available only
in the new set of header files. To use the new CDA features, change the file
names in your source code.

The new set of header files supplements the previous set of header files. If you
want to write ANSI-compliant applications using CDA definitions and CDA
Toolkit calls, use the new set of header files. However, you can continue to use
the header files that define symbols containing the dollar sign ($) provided you
choose a non-ANSI compilation mode.

By using the previous set of header files, you can successfully build existing
source code that uses the previous naming conventions.

See Table 4–3 for a list of new header file names.

Table 4–3 New Header File Names

Previous Name New Name

cda$def.h cdadef.h

cda$msg.h cdamsg.h

ddif$def.h ddifdef.h

dtif$def.h dtifdef.h

cda$ptp.h cdaptp.h

cda$typ.h cdatyp.h

dvr$msg.h dvrmsg.h

dvr$cc_def.h dvrccdef.h

dvr$cc_ptp.h dvrccptp.h

dvr$decw_def.h dvrwdef.h

dvr$decw_ptp.h dvrwptp.h

4.2.1.2 Changes to CDA External Reference Processing
V1.2

CDA Run-Time Services supports relative file specifications for external
references. Relative references are also supported: that is, a reference where
the directory path is not fully specified but is relative to the directory path of the
parent document.

Programming Features 4–7

Programming Features
4.2 Application Programming

4.2.1.3 Restructuring CDA Shareable Images
V1.2

The CDA Viewer includes two shareable images to allow installation on systems
where DECwindows is not installed.

In DECwindows Motif for OpenVMS Version 1.2 software, shareable images that
use the X services were renamed. Table 4–4 lists the shareable images in the
various versions of the CDA Viewer.

Table 4–4 Names of Shareable Images

CDA Version Image Name Description

Version 1.6 CDA$ACCESS CDA Run-Time Services shareable image.

DDIF$VIEWSHR Callable viewer widget.

Version 1.7 CDA$ACCESS CDA Run-Time Services shareable image.

DDIF$VIEWSHR
DDIF$DECW_
VIEWSHR
DDIF$CC_VIEWSHR

The DDIF$DECW_VIEWSHR widget is
a callable viewer widget that uses the
LIB$FIND_IMAGE_SYMBOL routine
to invoke the DDIF$DECW_VIEWSHR
(DECwindows interface) and DDIF$CC_
VIEWSHR (character-cell interface)
widgets.

Version 1.8A or
later

CDA$ACCESS CDA Run-Time Services shareable image.

DDIF$VIEWSHR12 The DDIF$VIEWSHR12 widget is
a callable viewer widget that uses
LIB$FIND_IMAGE_SYMBOL to invoke the
DDIF$DECW_VIEWSHR12 (DECwindows
interface) and DDIF$CC_VIEWSHR
(character-cell interface) widgets.

By using the LIB$FIND_IMAGE_SYMBOL routine to reference the entry points
to the DDIF$DECW_VIEWSHR, DDIF$DECW_VIEWSHR12, and DDIF$CC_
VIEWSHR images, an application can dynamically determine whether it can
execute in a given environment. The DDIF$VIEW.EXE application now replaces
this routine.

The previous DDIF$VIEWSHR.EXE shareable image is still included to maintain
compatibility with applications linked against it. However, new applications (and
previous applications that take advantage of new features) should use the new
shareable images.

4.2.2 DECterm Programming
This section describes features and changes related to DECterm programming.

4.2.2.1 ReGIS Input Cursors
V1.2–3

DECterm supports the following input cursors: cross-hair, rubber-band line,
diamond, and rubber-band rectangle. To select input cursors use the S(C(In))
command. Table 4–5 shows the values of n.

4–8 Programming Features

Programming Features
4.2 Application Programming

Table 4–5 ReGIS Input Cursors—Cursor styles and Values

Cursor Style Variable n

Cross-hair Omitted

Cross-hair (default) 0

Diamond 1

Cross-hair 2

Rubber-band line 3

Rubber-band rectangle 4

Note

If a shape other than the diamond cursor is desired when n is equal to 1,
define the logical name DECW$DECTERM_REGIS_CURSOR to be one of
the numbers defined in the SYS$LIBRARY:DECW$CURSOR.H file.

4.2.2.2 Page-Movement Escape Sequences
V1.2

The following page-movement escape sequences are implemented in DECterm:

NP <CSI> Pn U Next Page
PP <CSI> Pn V Previous Page
PPA <CSI> Pn P Page Position Absolute
PPB <CSI> Pn R Page Position Backward
PPR <CSI> Pn Q Page Position Relative

Note that ‘‘Pn’’ is the number of pages to move; the exception is PPA, where ‘‘Pn’’
is the actual page number.

Note

DECterm does not support cursor coupling; the cursor is always bound to
the current (displayed) page.

4.3 OSF/Motif Toolkit (Xm) Programming
The following sections contain features related to OSF/Motif Toolkit (Xm)
programming.

4.3.1 Drag-and-Drop Enabled Widgets
V1.2

The drag-and-drop feature lets you move or copy information between widgets.
This feature is provided primarily for programmers to incorporate the feature
into their applications.

All DECwindows Motif for OpenVMS Version 1.2 and higher applications support
the drag-and-drop feature, with the exception of Notepad. DECwindows Mail
supports drag-and-drop in all windows except the main message area, where
DECwindows Mail has its own drag-and-drop feature; you can use MB2 to move
messages around with the SVN interface.

Programming Features 4–9

Programming Features
4.3 OSF/Motif Toolkit (Xm) Programming

Drag-and-drop functionality has been implemented in the widgets listed in
Table 4–6.

Table 4–6 Drag-and-Drop Widgets

Widget Drag Operation Drop Operation

XmText copy and move copy and move

XmTextField copy and move copy and move

XmLabel copy

XmPushButton copy

XmToggleButton copy

XmList copy

For information about how to include additional drag-and-drop functionality
in applications and for an example of a drag-and-drop program, see the Open
Software Foundation: OSF/Motif Programmer’s Guide, Revision 1.2 manual.

4.4 HP Extensions to Motif (DXm) Programming
The following sections describe features related to HP (Digital) Extensions to
Motif (DXm) programming.

4.4.1 SVN Widget Supports Extended Selection
V1.2–6

The Structured Visual Navigation (SVN) widget now allows users to extend a
range of selection using the Shift+Down-Arrow key sequence. Note that this
change has also been applied to the sample program SVNMSAMPLE.C.

4.4.2 DXmCSText Input Method Support
V1.2

X11R5 input method support was added to the DXmCSText widget. Specify input
methods using the vendor shell XmNinputMethod resource. However, to maintain
backward compatibility, the existing input method resources DXmNinputMethod
and DXmNinputMethodType are still available.

4–10 Programming Features

Programming Features
4.5 X Toolkit Intrinsics (Xt) Programming

4.5 X Toolkit Intrinsics (Xt) Programming
The following sections describe features related to the X Toolkit Intrinsics (Xt).

4.5.1 New Functions Available with X11R6.6 Upgrade
V1.3

The following functions from X11R6.6 have been added to Xt.

Table 4–7 New Xt Functions Supported for X11R6.6

Function Name Description

XtAppAddBlockHook Registers a block hook procedure.

XtAppAddSignal Registers a signal callback.

XtAppGetExitFlag Supports controlled exit from main loop in a
multithreaded application by returning the flag set
by XtAppSetExitFlag.

XtAppLock Locks the application context in a multithreaded
application.

XtAppSetExitFlag Supports controlled exit from main loop in a
multithreaded application by setting a flag in the
application context.

XtAppUnlock Releases an application context lock.

XtCancelSelectionRequest Cancels a multiple selection request.

XtChangeManagedSet Simultaneously removes from and adds to the
geometry managed set of a composite widget.

XtCreateSelectionRequest Adds to a multiple selection request.

XtDispatchEventToWidget Dispatches an event to a specified widget.

XtGetClassExtension Locates a class extension record of an object class.

XtGetDisplays Lists the open displays associated with an application
context.

XtGetKeyboardFocusWidget Determines which widget would be the end result of
keyboard event forwarding for a keyboard event on a
specified widget.

XtGetSelectionParameters Gets target parameters needed to perform a selection
conversion.

XtHooksOfDisplay Retrieves the hook registration object for the specified
display.

XtInsertEventTypeHandler Registers an event handler procedure by event type.

XtIsSessionShell Widget subclass verification function for the session
shell widget.

XtLastEventProcessed Retrieves the last event processed by XtDispatchEvent.

XtNoticeSignal Notifies the X Toolkit that a signal has occurred.

XtOpenApplication Convenience function to initialize intrinsics, create an
application context, open a display connection, and
create an application shell.

XtProcessLock Locks the X Toolkit process lock.

XtProcessUnlock Releases the X Toolkit process lock.

(continued on next page)

Programming Features 4–11

Programming Features
4.5 X Toolkit Intrinsics (Xt) Programming

Table 4–7 (Cont.) New Xt Functions Supported for X11R6.6

Function Name Description

XtRegisterDrawable Associates a drawable with a widget so that the
drawable receives events as if part of the widget.

XtRegisterExtensionSelector Registers a procedure to receive extension events for a
widget.

XtRemoveBlockHook Discontinues use of a block hook procedure.

XtRemoveEventTypeHandler Removes a registration created by
XtInsertEventTypeHandler.

XtRemoveSignal Removes a registered signal callback.

XtReleasePropertyAtom Releases a reservation made by
XtReservePropertyAtom.

XtReservePropertyAtom Reserves a unique atom for selection requests on a
widget.

XtSendSelectionRequest Sends a multiple selection request.

XtSessionGetToken With the new session shell widget, gets an additional
token for a save callback response with a deferred
outcome.

XtSessionReturnToken Returns a token obtained using XtSessionGetToken
when checkpoint processing is complete.

XtSetEventDispatcher Registers the event dispatcher procedure for events of
the specified type.

XtSetSelectionParameters Associates target parameters with a selection.

XtToolkitThreadInitialize Initializes multithreaded support.

XtUnregisterDrawable Removes an association set by XtRegisterDrawable.

XtVaOpenApplication Convenience function to initialize intrinsics, create an
application context, open a display connection, and
create an application shell.

In addition, two new variables are provided in support of the new session shell
widget:

sessionShellClassRec
sessionShellWidgetClass

See the X Toolkit Intrinsics - C Language Interface, X Window System, X Version
11 Release 6.4 specification available from X.Org for detailed information about
each of these functions and variables.

4.5.2 Support for Easy Resource Configuration
V1.3

Setting and changing resources in X Window System applications can be difficult
for both the application developer and the end user. Resource Configuration
Management (RCM) addresses this problem by changing the X Intrinsics to
immediately modify a resource for the specified widget and each child widget in
the hierarchy. As a result:

• No sourcing of resource files is required.

• The application does not need to be restarted for the new resource values to
take effect.

4–12 Programming Features

Programming Features
4.5 X Toolkit Intrinsics (Xt) Programming

• The change occurs immediately.

RCM was made available as part of the X11R6.4 release and is now available
with DECwindows Motif Version 1.3. However, note that RCM is not a standard
part of the X Toolkit Intrinsics. It is neither an X Consortium standard nor part
of the X Window System specifications. As a result, there are currently no public
customization tools that take advantage of this feature.

If you are interested in learning more about RCM, see the X Toolkit Intrinsics -
C Language Interface, X Window System, X Version 11 Release 6.4 Release Notes
available from X.Org.

4.5.3 New Option for CompositeClassExtensionRec
V1.3

With X11R6, some modifications were made to the widget internals, as described
in the X Window System Toolkit manual.

In particular, a new option in the Composite Class extension record enables you
to make bundled changes to the managed set of a Composite widget. Widgets
that define a change-managed procedure that performs additions and deletions
to the managed set of children in a single invocation should set allows_change_
managed_set option to TRUE in the extension record.

For more information about the impact this new option may have on existing
applications, see the HP DECwindows Motif for OpenVMS Release Notes.

4.5.4 New Default Format for XtResolvePathname
V1.2–6

In XtResolvePathname, the default pathname is required to have certain
properties when either no other path information is present in the call, or
when it is referenced by the environment variable XFILESEARCHPATH. The
former default OpenVMS format of the pathname consisted of a type-name-suffix
substitution. The modified pathname now reflects the 6-part fallback, as specified
by X11 Release 6.

The new pathname behavior is enabled by setting the DECW$VSW_COMPLIANT
variable, as follows:

$ DEFINE DECW$VSW_COMPLIANT 1

4.5.5 XtAppMainLoop Routine
V1.2–5

Previously, if a program entered its event loop, (for example, by calling
XtAppMainLoop) without having opened a display or specified a timer or event
flag for the program to wait for (by calling XtAppAddTimeout or XtAppAddInput),
Xlib terminated the program with the following error message:

X Toolkit Error: Error in XMultiplexInput

Starting with DECwindows Motif for OpenVMS Version 1.2–5, if there is nothing
to wait for, Xlib stalls waiting for input instead of terminating with an error
status.

Programming Features 4–13

Programming Features
4.5 X Toolkit Intrinsics (Xt) Programming

To allow Xlib to process events at a later time, applications should provide some
means of regaining control, such as specifying an event flag (on DECwindows
Motif for OpenVMS Version 1.2–6 and previous systems) or a logical connection
number (on DECwindows Motif Version 1.3 and higher systems) by calling
XtAppAddInput.

4.6 X Window System Library (Xlib)
The following sections describe features related to X Window System library
(Xlib).

4.6.1 IPv6 Considerations
V1.5

The Xlib library now supports both IPv4- and IPv6-compliant transport names
discussed in HP DECwindows Motif for OpenVMS Management Guide.

The XOpenDisplay function cannot be called from a user-mode AST when IPv6
support is enabled. This function uses the TCP/IP Services getaddrinfo function
which is not supported in user-mode ASTs. If your program must use the
XOpenDisplay function from within a user-mode AST, you must ensure that the
program is run in an environment where the DECW$IPV6_SUPPORT logical is
defined as ‘‘DISABLED’’.

4.6.2 New Functions Available with X11R6.6 Upgrade
V1.3

As part of the core system upgrade to X11R6.6, the following functions listed in
Table 4–8 have been added to the X Window System Library (Xlib). Note that all
functions are included in the current version of the DECW$XLIBSHR image.

Table 4–8 New Xlib Functions Supported for X11R6.6

Function Name Description

_XAllocTemp Thread-safe allocation of scratch data space for use by
extension writers.

_XFreeTemp Frees the scratch data space allocated by _XAllocTemp.

XCloseOM Closes the specified output method.

XcmsSetCCCOfColormap Sets the color conversion context for the specified
colormap.

XAddConnectionWatch Establishes a watch procedure callback for when
internal connections are opened or closed.

XConvertCase Obtains the uppercase and lowercase forms of a
KeySym.

XContextualDrawing Indicates whether text drawn with the current font set
includes context-dependent drawing.

XCreateOC Creates an output context within the specified output
method.

XDestroyOC Destroys an output context.

XDirectionalDependentDrawing Indicates whether the drawing functions implement
text directionality.

(continued on next page)

4–14 Programming Features

Programming Features
4.6 X Window System Library (Xlib)

Table 4–8 (Cont.) New Xlib Functions Supported for X11R6.6

Function Name Description

XDisplayOfOM Returns the display associated with the specified
output method.

XESetBeforeFlush Defines a procedure that will be called just before data
is sent to the X server.

XExtendedMaxRequestSize Returns the maximum request size using extended
length encoding (the BIG-REQUESTS extension).

XGetAtomNames Returns the names associated with the specified X
atoms.

XGetOCValues Obtains the current output context values.

XGetOMValues Obtains the current output method values.

XInitThreads Initializes support for multiple threads.

XInternalConnectionNumbers Returns a list of the internal connections open for a
specified display.

XInternAtoms Returns atoms for an array of names.

XLocaleOfOM Returns the locale associated with the specified output
method.

XLockDisplay Locks a display to protect against concurrent access
from multiple threads.

XOMOfOC Returns the output method associated with the
specified output context.

XOpenOM Opens an X output method for the specified locale and
modifiers.

XProcessInternalConnection Processes input available on an internal connection.

XReadBitmapFileData Reads a bitmap from a file and returns it as data.

XRegisterIMInstantiateCallback Registers an input method callback.

XRemoveConnectionWatch Removes a watch procedure established by
XAddConnectionWatch.

XSetOCValues Specifies one or more output context values.

XSetOMValues Specifies one or more output method values.

XUnlockDisplay Removes a lock established by XLockDisplay.

XUnregisterIMInstantiateCallback Unregisters an input method instantiation callback.

See the Xlib - C Language X Interface, X Consortium Standard, X Version 11,
Release 6.4 specification available from X.Org for detailed information about each
of these functions.

4.6.3 Updated Client-Side Extension Library
V1.3

The client-side extension library (DECW$XEXTLIBSHR) has been updated
to support multithreading and new header files for the following extensions
available as part of the upgrade to X11R6.6:

• Application Group (XC-APPGROUP)

• Colormap Utilization Policy (TOG-CUP)

• Extended Visual Information (EVI)

Programming Features 4–15

Programming Features
4.6 X Window System Library (Xlib)

• Low-Bandwidth X (LBX)

• Security (SECURITY)

• Synchronization (SYNC)

• X Double Buffer (DBE)

• XINERAMA (formerly PanoramiX)

• X Print (Xp)

All extensions in the library (new and existing) have been made thread-safe
(as described in Section 4.1.1). In addition, the minor version of the library
has been updated from 2,2 to 2,3 to prevent images linked against the updated
DECW$XEXTLIBSHR from loading the incorrect version of the library.

Also, function names longer than 31 characters have been replaced by macro
definitions compatible with the current version of the OpenVMS Linker.

See Section 4.7.1 for an overview of each of these extensions. For instructions on
how to link to this library, see Section 4.6.9.

4.6.4 Support for LCNs
V1.3

Xlib now provides an alternate means of obtaining connection numbers for
connections to DECwindows Motif Version 1.3 or higher servers. The logical
connection number (LCN) interface was specifically designed to support the
communication needs of X11R6 systems and is intended as a replacement for the
EFN mechanism.

The following functions and macros are designed for use with the new LCN
interface:

• XAddConnectionWatch function (registers watch procedure)

• XInternalConnectionNumbers function

• XConnectionNumber function

• ConnectionNumber macro

These Xlib functions and macros are described in the Xlib - C Language X
Interface, X Consortium Standard, X Version 11, Release 6.4 specification available
from X.Org.

Note for compatibility with DECwindows Motif for OpenVMS Version 1.2–6
and earlier clients, the existing event flag mechanism remains unchanged,
and the XtAppAddInput function accepts both EFNs and LCNs. However, HP
recommends that new applications, in particular ones that use multithreading,
use LCNs. When Xlib has multithreading enabled, EFNs are not available. If a
multithreaded application uses EFNs without multithreading enabled in Xlib, the
EFN should be restricted to a single thread–the same thread used for all X calls.

For more information about the LCN interface and its available routines, see
Section 4.8.2.

4–16 Programming Features

Programming Features
4.6 X Window System Library (Xlib)

4.6.5 Updated X11 Environment Variable Parsing
V1.3

Xlib now accepts the equivalent X11 Release 6 (X11R6) POSIX-compliant forms of
the following environment variables:

OpenVMS Form X11R6 Form

DECW$DISPLAY DISPLAY

DECW$RESOURCE_NAME RESOURCE_NAME1

1Also requires the symbol DECW$VSW_COMPLIANT.

On connection to the X display server, Xlib checks the variable name. If the
OpenVMS variable is not defined, Xlib checks for the X11R6 equivalent before
returning a status value.

4.6.6 Additional Non-C Language Bindings Available with X11R6.6
Non-C language bindings (such as Fortran and Pascal) for the following Xlib
functions have been added to DECwindows Motif Version 1.3. These bindings are
in addition to those documented in the DECwindows Motif for OpenVMS Guide to
Non-C Bindings.

X$CLOSE_OM
X$CONTEXTUAL_DRAWING
X$CONVERT_CASE
X$DESTROY_OC
X$DIRECTIONAL_DEPENDENT_DRAWING
X$DISPLAY_OF_OM
X$EXTENDED_MAX_REQUEST_SIZE
X$INIT_IMAGE
X$INIT_THREADS
X$INTERNAL_CONNECTION_NUMBERS
X$LOCALE_OF_OM
X$LOCK_DISPLAY
X$OPEN_OM
X$PROCESS_INTERNAL_CONNECTION
X$REGISTER_IM_INSTANTIATE_CB
X$SET_AUTHORIZATION
X$UNLOCK_DISPLAY
X$UNREGISTER_IM_INSTANTIATE_CB

4.6.6.1 CLOSE OM
OpenVMS Format
status_return = X$CLOSE_OM

(om)

Argument Information
Argument Usage Data Type Access Mechanism

status_return longword longword write value

om identifier uns longword read reference

Programming Features 4–17

Programming Features
4.6 X Window System Library (Xlib)

4.6.6.2 CONTEXTUAL DRAWING
OpenVMS Format
status_return = X$CONTEXTUAL_DRAWING

(font_set)

Argument Information
Argument Usage Data Type Access Mechanism

status_return cond_value longword write value

font_set identifier uns longword read reference

4.6.6.3 CONVERT CASE
OpenVMS Format
X$CONVERT_CASE

(sym, lower, upper)

Argument Information
Argument Usage Data Type Access Mechanism

sym uns longword uns longword read reference

lower uns longword uns longword write reference

upper uns longword uns longword write reference

4.6.6.4 DESTROY OC
OpenVMS Format
X$DESTROY_OC

(oc)

Argument Information
Argument Usage Data Type Access Mechanism

oc uns longword uns longword write reference

4.6.6.5 DIRECTIONAL DEPENDENT DRAWING
OpenVMS Format
status_return = X$DIRECTIONAL_DEPENDENT_DRAWING

(font_set)

Argument Information
Argument Usage Data Type Access Mechanism

status_return cond_value longword write value

font_set identifier uns longword read reference

4–18 Programming Features

Programming Features
4.6 X Window System Library (Xlib)

4.6.6.6 DISPLAY OF OM
OpenVMS Format
display_return = X$DISPLAY_OF_OM

(om)

Argument Information
Argument Usage Data Type Access Mechanism

display_return identifier uns longword write value

om uns longword uns longword read reference

4.6.6.7 EXTENDED MAX REQUEST SIZE
OpenVMS Format
req_size_return = X$EXTENDED_MAX_REQUEST_SIZE

(display)

Argument Information
Argument Usage Data Type Access Mechanism

req_size_return longword longword write value

display identifier uns longword read reference

4.6.6.8 INIT IMAGE
OpenVMS Format
status_return = X$INIT_IMAGE

(ximage)

Argument Information
Argument Usage Data Type Access Mechanism

status_return cond_value longword write value

ximage record x$image read reference

4.6.6.9 INIT THREADS
OpenVMS Format
status_return = X$INIT_THREADS

Argument Information
Argument Usage Data Type Access Mechanism

status_return cond_value longword write value

Programming Features 4–19

Programming Features
4.6 X Window System Library (Xlib)

4.6.6.10 INTERNAL CONNECTION NUMBERS
OpenVMS Format
status_return = X$INTERNAL_CONNECTION_NUMBERS

(display, fdptr, nptr)

Argument Information
Argument Usage Data Type Access Mechanism

status_return cond_value longword write value

display identifier uns longword read reference

fdptr longword longword write reference

nptr longword longword write reference

4.6.6.11 LOCALE OF OM
OpenVMS Format
return_value = X$LOCALE_OF_OM

(om, return_string)

Argument Information
Argument Usage Data Type Access Mechanism

return_value longword longword write value

om uns longword uns longword read reference

return_string char_string character string write descriptor

4.6.6.12 LOCK DISPLAY
OpenVMS Format
X$LOCK_DISPLAY

(display)

Argument Information
Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

4.6.6.13 OPEN OM
OpenVMS Format
om_return = X$OPEN_OM

(display, db, str1, str2)

Argument Information
Argument Usage Data Type Access Mechanism

om_return uns longword uns longword write reference

display identifier uns longword read reference

db identifier uns longword read reference

str1 char_string character string read descriptor

str2 char_string character string read descriptor

4–20 Programming Features

Programming Features
4.6 X Window System Library (Xlib)

4.6.6.14 PROCESS INTERNAL CONNECTION
OpenVMS Format
X$PROCESS_INTERNAL_CONNECTION

(display, fdptr)

Argument Information
Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

fdptr longword longword read reference

4.6.6.15 REGISTER IM INSTANTIATE Callback
OpenVMS Format
return_value = X$REGISTER_IM_INSTANTIATE_CB

(display, database, name_str, class_str, callback, client_data)

Argument Information
Argument Usage Data Type Access Mechanism

return_value longword longword write value

display identifier uns longword read reference

database identifier uns longword read reference

name_str char_string character string read descriptor

class_str char_string character string read descriptor

callback procedure proc entry mask read value

client_data char_string character string read descriptor

4.6.6.16 SET AUTHORIZATION
OpenVMS Format
X$SET_AUTHORIZATION

(name, data)

Argument Information
Argument Usage Data Type Access Mechanism

name char_string character string read descriptor

data char_string character string read descriptor

4.6.6.17 UNLOCK DISPLAY
OpenVMS Format
X$UNLOCK_DISPLAY

(display)

Argument Information
Argument Usage Data Type Access Mechanism

display identifier uns longword read reference

Programming Features 4–21

Programming Features
4.6 X Window System Library (Xlib)

4.6.6.18 UNREGISTER IM INSTANTIATE Callback
OpenVMS Format
return_value = X$UNREGISTER_IM_INSTANTIATE_CB

(display, database, name_str, class_str, callback, client_data)

Argument Information
Argument Usage Data Type Access Mechanism

return_value longword longword write value

display identifier uns longword read reference

database identifier uns longword read reference

name_str char_string character string read descriptor

class_str char_string character string read descriptor

callback procedure proc entry mask read value

client_data char_string character string read descriptor

4.6.7 Support for Additional Fonts
V1.3

DECwindows Motif Version 1.3 offers support for the following additional fonts
and font technologies:

• Agfa Monotype Windows-Compatible TrueType fonts – To ensure
fast, high-quality text rendering capabilities, DECwindows Motif includes
the iType font rendering technology from Agfa Monotype Corporation along
with a number of scalable fonts, including the Albany, Cumberland, Screen,
and Thorndale type families. These fonts are identical in screen and printer
metrics to the Windows core fonts Arial, Courier, and Times New Roman.
Agfa Monotype’s Windows-compatible fonts are part of the Enhanced Screen
Quality (ESQ) line of TrueType fonts optimized for viewing at any resolution.

For more information about the iType technology, visit the Agfa Monotype
web site (http://www.agfamonotype.com).

• X11R6.6 fonts – As part of the standard X11R6.6 implementation,
DECwindows Motif now includes the 75- and 100-dpi versions of the
Bitstream Charter and Adobe Utopia font families.

• Previously undocumented fonts – These fonts include the 75-dpi, 100-
dpi, and common versions of the Lucida, Present Bullets, Fixed Width, Sun
Open Look Glyph, and VT330 font families, and well as a set of language-
specific and miscellaneous fonts. Also included are the Bitstream Speedo,
Adobe Type1 Courier, and Utopia scalable fonts.

The following sections further describe the new font families, which can be loaded
as described in Chapter 8 of the VMS DECwindows Guide to Xlib (Release 4)
Programming: MIT C Binding manual. Each section provides the following
information:

• Location and format of the font files

• List of the individual font file and font names in X Logical Font Description
(XLFD) format

4–22 Programming Features

Programming Features
4.6 X Window System Library (Xlib)

The file and font names are provided in a series of tables that are intended
to supplement the existing font tables found in Appendix C of the VMS
DECwindows Guide to Xlib (Release 4) Programming: MIT C Binding manual.

Note

File names containing consecutive underscore characters (_) or hyphens
(-) may appear to contain a space between the consecutive characters. In
all cases, the space is not present in the font name.

4.6.7.1 Additional 75-dpi Fonts
Table 4–9 lists the new and previously undocumented 75-dpi fonts and their file
names. The files for these fonts are located in the following directory:

DECW$SYSCOMMON:[SYSFONT.DECW.75DPI]

Table 4–9 Additional 75-dpi Fonts (.PCF File Extension)

File Name Font Name

Charter

CHARTER08 -Bitstream-Charter-Medium-R-Normal- -8-80-75-75-P-45-ISO8859-1

CHARTER10 -Bitstream-Charter-Medium-R-Normal- -10-100-75-75-P-56-ISO8859-1

CHARTER12 -Bitstream-Charter-Medium-R-Normal- -12-120-75-75-P-67-ISO8859-1

CHARTER14 -Bitstream-Charter-Medium-R-Normal- -15-140-75-75-P-84-ISO8859-1

CHARTER18 -Bitstream-Charter-Medium-R-Normal- -19-180-75-75-P-106-ISO8859-1

CHARTER24 -Bitstream-Charter-Medium-R-Normal- -25-240-75-75-P-139-ISO8859-1

CHARTER_BOLD_ITALIC08 -Bitstream-Charter-Bold-I-Normal- -8-80-75-75-P-50-ISO8859-1

CHARTER_BOLD_ITALIC10 -Bitstream-Charter-Bold-I-Normal- -10-100-75-75-P-62-ISO8859-1

CHARTER_BOLD_ITALIC14 -Bitstream-Charter-Bold-I-Normal- -15-140-75-75-P-93-ISO8859-1

CHARTER_BOLD_ITALIC12 -Bitstream-Charter-Bold-I-Normal- -12-120-75-75-P-74-ISO8859-1

CHARTER_BOLD_ITALIC18 -Bitstream-Charter-Bold-I-Normal- -19-180-75-75-P-117-ISO8859-1

CHARTER_BOLD_ITALIC24 -Bitstream-Charter-Bold-I-Normal- -25-240-75-75-P-154-ISO8859-1

CHARTER_ITALIC08 -Bitstream-Charter-Medium-I-Normal- -8-80-75-75-P-44-ISO8859-1

CHARTER_ITALIC10 -Bitstream-Charter-Medium-I-Normal- -10-100-75-75-P-55-ISO8859-1

CHARTER_ITALIC12 -Bitstream-Charter-Medium-I-Normal- -12-120-75-75-P-65-ISO8859-1

CHARTER_ITALIC14 -Bitstream-Charter-Medium-I-Normal- -15-140-75-75-P-82-ISO8859-1

CHARTER_ITALIC18 -Bitstream-Charter-Medium-I-Normal- -19-180-75-75-P-103-ISO8859-1

CHARTER_ITALIC24 -Bitstream-Charter-Medium-I-Normal- -25-240-75-75-P-136-ISO8859-1

CHARTER_BOLD08 -Bitstream-Charter-Bold-R-Normal- -8-80-75-75-P-50-ISO8859-1

CHARTER_BOLD10 -Bitstream-Charter-Bold-R-Normal- -10-100-75-75-P-63-ISO8859-1

CHARTER_BOLD12 -Bitstream-Charter-Bold-R-Normal- -12-120-75-75-P-75-ISO8859-1

(continued on next page)

Programming Features 4–23

Programming Features
4.6 X Window System Library (Xlib)

Table 4–9 (Cont.) Additional 75-dpi Fonts (.PCF File Extension)

File Name Font Name

Charter

CHARTER_BOLD14 -Bitstream-Charter-Bold-R-Normal- -15-140-75-75-P-94-ISO8859-1

CHARTER_BOLD18 -Bitstream-Charter-Bold-R-Normal- -19-180-75-75-P-119-ISO8859-1

CHARTER_BOLD24 -Bitstream-Charter-Bold-R-Normal- -25-240-75-75-P-157-ISO8859-1

Lucida

LUCIDABRIGHT08 -B&H-LucidaBright-Medium-R-Normal- -8-80-75-75-P-45-ISO8859-1

LUCIDABRIGHT10 -B&H-LucidaBright-Medium-R-Normal- -10-100-75-75-P-56-ISO8859-1

LUCIDABRIGHT12 -B&H-LucidaBright-Medium-R-Normal- -12-120-75-75-P-68-ISO8859-1

LUCIDABRIGHT14 -B&H-LucidaBright-Medium-R-Normal- -14-140-75-75-P-80-ISO8859-1

LUCIDABRIGHT18 -B&H-LucidaBright-Medium-R-Normal- -18-180-75-75-P-103-ISO8859-1

LUCIDABRIGHT19 -B&H-LucidaBright-Medium-R-Normal- -19-190-75-75-P-109-ISO8859-1

LUCIDABRIGHT24 -B&H-LucidaBright-Medium-R-Normal- -24-240-75-75-P-137-ISO8859-1

LUCIDABRIGHT_
DEMIITALIC08

-B&H-LucidaBright-Demibold-I-Normal- -8-80-75-75-P-48-ISO8859-1

LUCIDABRIGHT_
DEMIITALIC10

-B&H-LucidaBright-Demibold-I-Normal- -10-100-75-75-P-59-ISO8859-1

LUCIDABRIGHT_
DEMIITALIC12

-B&H-LucidaBright-Demibold-I-Normal- -12-120-75-75-P-72-ISO8859-1

LUCIDABRIGHT_
DEMIITALIC14

-B&H-LucidaBright-Demibold-I-Normal- -14-140-75-75-P-84-ISO8859-1

LUCIDABRIGHT_
DEMIITALIC18

-B&H-LucidaBright-Demibold-I-Normal- -18-180-75-75-P-107-ISO8859-1

LUCIDABRIGHT_
DEMIITALIC19

-B&H-LucidaBright-Demibold-I-Normal- -19-190-75-75-P-114-ISO8859-1

LUCIDABRIGHT_
DEMIITALIC24

-B&H-LucidaBright-Demibold-I-Normal- -24-240-75-75-P-143-ISO8859-1

LUCIDABRIGHT_ITALIC08 -B&H-LucidaBright-Medium-I-Normal- -8-80-75-75-P-45-ISO8859-1

LUCIDABRIGHT_ITALIC10 -B&H-LucidaBright-Medium-I-Normal- -10-100-75-75-P-57-ISO8859-1

LUCIDABRIGHT_ITALIC12 -B&H-LucidaBright-Medium-I-Normal- -12-120-75-75-P-67-ISO8859-1

LUCIDABRIGHT_ITALIC14 -B&H-LucidaBright-Medium-I-Normal- -14-140-75-75-P-80-ISO8859-1

LUCIDABRIGHT_ITALIC18 -B&H-LucidaBright-Medium-I-Normal- -18-180-75-75-P-102-ISO8859-1

LUCIDABRIGHT_ITALIC19 -B&H-LucidaBright-Medium-I-Normal- -19-190-75-75-P-109-ISO8859-1

LUCIDABRIGHT_ITALIC24 -B&H-LucidaBright-Medium-I-Normal- -24-240-75-75-P-136-ISO8859-1

LUCIDABRIGHT_DEMI08 -B&H-LucidaBright-Demibold-R-Normal- -8-80-75-75-P-47-ISO8859-1

LUCIDABRIGHT_DEMI10 -B&H-LucidaBright-Demibold-R-Normal- -10-100-75-75-P-59-ISO8859-1

LUCIDABRIGHT_DEMI12 -B&H-LucidaBright-Demibold-R-Normal- -12-120-75-75-P-71-ISO8859-1

LUCIDABRIGHT_DEMI14 -B&H-LucidaBright-Demibold-R-Normal- -14-140-75-75-P-84-ISO8859-1

LUCIDABRIGHT_DEMI18 -B&H-LucidaBright-Demibold-R-Normal- -18-180-75-75-P-107-ISO8859-1

LUCIDABRIGHT_DEMI19 -B&H-LucidaBright-Demibold-R-Normal- -19-190-75-75-P-114-ISO8859-1

(continued on next page)

4–24 Programming Features

Programming Features
4.6 X Window System Library (Xlib)

Table 4–9 (Cont.) Additional 75-dpi Fonts (.PCF File Extension)

File Name Font Name

Lucida

LUCIDABRIGHT_DEMI24 -B&H-LucidaBright-Demibold-R-Normal- -24-240-75-75-P-143-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS08

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-8-80-75-75-m-50-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS10

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-10-100-75-75-m-60-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS12

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-12-120-75-75-m-70-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS14

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-14-140-75-75-m-90-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS18

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-18-180-75-75-m-110-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS19

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-19-190-75-75-m-110-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS24

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-24-240-75-75-m-140-ISO8859-1

LUCIDATYPEWRITER_SANS08 -B&H-LucidaTypewriter-Medium-R-Normal-Sans-8-80-75-75-m-50-ISO8859-1

LUCIDATYPEWRITER_SANS10 -B&H-LucidaTypewriter-Medium-R-Normal-Sans-10-100-75-75-m-60-ISO8859-1

LUCIDATYPEWRITER_SANS12 -B&H-LucidaTypewriter-Medium-R-Normal-Sans-12-120-75-75-m-70-ISO8859-1

LUCIDATYPEWRITER_SANS14 -B&H-LucidaTypewriter-Medium-R-Normal-Sans-14-140-75-75-m-90-ISO8859-1

LUCIDATYPEWRITER_SANS18 -B&H-LucidaTypewriter-Medium-R-Normal-Sans-18-180-75-75-m-110-ISO8859-1

LUCIDATYPEWRITER_SANS19 -B&H-LucidaTypewriter-Medium-R-Normal-Sans-19-190-75-75-m-110-ISO8859-1

LUCIDATYPEWRITER_SANS24 -B&H-LucidaTypewriter-Medium-R-Normal-Sans-24-240-75-75-m-140-ISO8859-1

LUCIDA_BOLDITALICSANS08 -B&H-Lucida-Bold-I-Normal-Sans-8-80-75-75-P-49-ISO8859-1

LUCIDA_BOLDITALICSANS10 -B&H-Lucida-Bold-I-Normal-Sans-10-100-75-75-P-67-ISO8859-1

LUCIDA_BOLDITALICSANS12 -B&H-Lucida-Bold-I-Normal-Sans-12-120-75-75-P-79-ISO8859-1

LUCIDA_BOLDITALICSANS14 -B&H-Lucida-Bold-I-Normal-Sans-14-140-75-75-P-92-ISO8859-1

LUCIDA_BOLDITALICSANS18 -B&H-Lucida-Bold-I-Normal-Sans-18-180-75-75-P-119-ISO8859-1

LUCIDA_BOLDITALICSANS19 -B&H-Lucida-Bold-I-Normal-Sans-19-190-75-75-P-122-ISO8859-1

LUCIDA_BOLDITALICSANS24 -B&H-Lucida-Bold-I-Normal-Sans-24-240-75-75-P-151-ISO8859-1

LUCIDA_BOLDSANS08 -B&H-Lucida-Bold-R-Normal-Sans-8-80-75-75-P-50-ISO8859-1

LUCIDA_BOLDSANS10 -B&H-Lucida-Bold-R-Normal-Sans-10-100-75-75-P-66-ISO8859-1

LUCIDA_BOLDSANS12 -B&H-Lucida-Bold-R-Normal-Sans-12-120-75-75-P-79-ISO8859-1

LUCIDA_BOLDSANS14 -B&H-Lucida-Bold-R-Normal-Sans-14-140-75-75-P-92-ISO8859-1

LUCIDA_BOLDSANS18 -B&H-Lucida-Bold-R-Normal-Sans-18-180-75-75-P-120-ISO8859-1

LUCIDA_BOLDSANS19 -B&H-Lucida-Bold-R-Normal-Sans-19-190-75-75-P-122-ISO8859-1

LUCIDA_BOLDSANS24 -B&H-Lucida-Bold-R-Normal-Sans-24-240-75-75-P-152-ISO8859-1

LUCIDA_ITALICSANS08 -B&H-Lucida-Medium-I-Normal-Sans-8-80-75-75-P-45-ISO8859-1

LUCIDA_ITALICSANS10 -B&H-Lucida-Medium-I-Normal-Sans-10-100-75-75-P-59-ISO8859-1

LUCIDA_ITALICSANS12 -B&H-Lucida-Medium-I-Normal-Sans-12-120-75-75-P-71-ISO8859-1

(continued on next page)

Programming Features 4–25

Programming Features
4.6 X Window System Library (Xlib)

Table 4–9 (Cont.) Additional 75-dpi Fonts (.PCF File Extension)

File Name Font Name

Lucida

LUCIDA_ITALICSANS14 -B&H-Lucida-Medium-I-Normal-Sans-14-140-75-75-P-82-ISO8859-1

LUCIDA_ITALICSANS18 -B&H-Lucida-Medium-I-Normal-Sans-18-180-75-75-P-105-ISO8859-1

LUCIDA_ITALICSANS19 -B&H-Lucida-Medium-I-Normal-Sans-19-190-75-75-P-108-ISO8859-1

LUCIDA_ITALICSANS24 -B&H-Lucida-Medium-I-Normal-Sans-24-240-75-75-P-136-ISO8859-1

LUCIDA_SANS08 -B&H-Lucida-Medium-R-Normal-Sans-8-80-75-75-P-45-ISO8859-1

LUCIDA_SANS10 -B&H-Lucida-Medium-R-Normal-Sans-10-100-75-75-P-58-ISO8859-1

LUCIDA_SANS12 -B&H-Lucida-Medium-R-Normal-Sans-12-120-75-75-P-71-ISO8859-1

LUCIDA_SANS14 -B&H-Lucida-Medium-R-Normal-Sans-14-140-75-75-P-81-ISO8859-1

LUCIDA_SANS18 -B&H-Lucida-Medium-R-Normal-Sans-18-180-75-75-P-106-ISO8859-1

LUCIDA_SANS19 -B&H-Lucida-Medium-R-Normal-Sans-19-190-75-75-P-108-ISO8859-1

LUCIDA_SANS24 -B&H-Lucida-Medium-R-Normal-Sans-24-240-75-75-P-136-ISO8859-1

Present Bullets

PRESENT_BULLETS8_75 -DEC-PresentBullets-Medium-R-Normal- -8-80-75-75-P-76-DEC-FontSpecific

PRESENT_BULLETS10_75 -DEC-PresentBullets-Medium-R-Normal- -10-100-75-75-P-96-DEC-FontSpecific

PRESENT_BULLETS12_75 -DEC-PresentBullets-Medium-R-Normal- -12-120-75-75-P-114-DEC-FontSpecific

PRESENT_BULLETS14_75 -DEC-PresentBullets-Medium-R-Normal- -14-140-75-75-P-134-DEC-FontSpecific

PRESENT_BULLETS18_75 -DEC-PresentBullets-Medium-R-Normal- -18-180-75-75-P-172-DEC-FontSpecific

PRESENT_BULLETS24_75 -DEC-PresentBullets-Medium-R-Normal- -24-240-75-75-P-229-DEC-FontSpecific

PRESENT_BULLETS36_75 -DEC-PresentBullets-Medium-R-Normal- -36-360-75-75-P-343-DEC-FontSpecific

PRESENT_BULLETS48_75 -DEC-PresentBullets-Medium-R-Normal- -48-480-75-75-P-458-DEC-FontSpecific

PRESENT_BULLETS72_75 -DEC-PresentBullets-Medium-R-Normal- -72-720-75-75-P-686-DEC-FontSpecific

Utopia

UTOPIA10 -Adobe-Utopia-Regular-R-Normal- -10-100-75-75-P-56-ISO8859-1

UTOPIA12 -Adobe-Utopia-Regular-R-Normal- -12-120-75-75-P-67-ISO8859-1

UTOPIA14 -Adobe-Utopia-Regular-R-Normal- -15-140-75-75-P-79-ISO8859-1

UTOPIA18 -Adobe-Utopia-Regular-R-Normal- -19-180-75-75-P-101-ISO8859-1

UTOPIA24 -Adobe-Utopia-Regular-R-Normal- -25-240-75-75-P-135-ISO8859-1

UTOPIA_BOLD10 -Adobe-Utopia-Bold-R-Normal- -10-100-75-75-P-59-ISO8859-1

UTOPIA_BOLD12 -Adobe-Utopia-Bold-R-Normal- -12-120-75-75-P-70-ISO8859-1

UTOPIA_BOLD14 -Adobe-Utopia-Bold-R-Normal- -15-140-75-75-P-82-ISO8859-1

UTOPIA_BOLD18 -Adobe-Utopia-Bold-R-Normal- -19-180-75-75-P-105-ISO8859-1

UTOPIA_BOLD24 -Adobe-Utopia-Bold-R-Normal- -25-240-75-75-P-140-ISO8859-1

UTOPIA_BOLD_ITALIC10 -Adobe-Utopia-Bold-I-Normal- -10-100-75-75-P-58-ISO8859-1

UTOPIA_BOLD_ITALIC12 -Adobe-Utopia-Bold-I-Normal- -12-120-75-75-P-70-ISO8859-1

UTOPIA_BOLD_ITALIC14 -Adobe-Utopia-Bold-I-Normal- -15-120-75-75-P-70-ISO8859-1

(continued on next page)

4–26 Programming Features

Programming Features
4.6 X Window System Library (Xlib)

Table 4–9 (Cont.) Additional 75-dpi Fonts (.PCF File Extension)

File Name Font Name

Utopia

UTOPIA_BOLD_ITALIC18 -Adobe-Utopia-Bold-I-Normal- -19-180-75-75-P-105-ISO8859-1

UTOPIA_BOLD_ITALIC24 -Adobe-Utopia-Bold-I-Normal- -25-240-75-75-P-140-ISO8859-1

UTOPIA_ITALIC10 -Adobe-Utopia-Regular-I-Normal- -10-100-75-75-P-55-ISO8859-1

UTOPIA_ITALIC12 -Adobe-Utopia-Regular-I-Normal- -12-120-75-75-P-67-ISO8859-1

UTOPIA_ITALIC14 -Adobe-Utopia-Regular-I-Normal- -15-140-75-75-P-79-ISO8859-1

UTOPIA_ITALIC18 -Adobe-Utopia-Regular-I-Normal- -19-180-75-75-P-100-ISO8859-1

UTOPIA_ITALIC24 -Adobe-Utopia-Regular-I-Normal- -25-240-75-75-P-133-ISO8859-1

4.6.7.2 Additional 100-dpi Fonts
Table 4–10 lists the new and previously undocumented 100-dpi fonts and their
file names. The files for these fonts are located in the following directory:

DECW$SYSCOMMON:[SYSFONT.DECW.100DPI]

Table 4–10 Additional 100-dpi Fonts (.PCF File Extension)

File Name Font Name

Charter

CHARTER08_100DPI -Bitstream-Charter-Medium-R-Normal- -11-80-100-100-P-61-ISO8859-1

CHARTER10_100DPI -Bitstream-Charter-Medium-R-Normal- -14-100-100-100-P-78-ISO8859-1

CHARTER12_100DPI -Bitstream-Charter-Medium-R-Normal- -17-120-100-100-P-95-ISO8859-1

CHARTER14_100DPI -Bitstream-Charter-Medium-R-Normal- -19-140-100-100-P-106-ISO8859-1

CHARTER18_100DPI -Bitstream-Charter-Medium-R-Normal- -25-180-100-100-P-139-ISO8859-1

CHARTER24_100DPI -Bitstream-Charter-Medium-R-Normal- -33-240-100-100-P-183-ISO8859-1

CHARTER_BOLD08_100DPI -Bitstream-Charter-Bold-R-Normal- -11-80-100-100-P-69-ISO8859-1

CHARTER_BOLD10_100DPI -Bitstream-Charter-Bold-R-Normal- -14-100-100-100-P-88-ISO8859-1

CHARTER_BOLD12_100DPI -Bitstream-Charter-Bold-R-Normal- -17-120-100-100-P-107-ISO8859-1

CHARTER_BOLD14_100DPI -Bitstream-Charter-Bold-R-Normal- -19-140-100-100-P-119-ISO8859-1

CHARTER_BOLD18_100DPI -Bitstream-Charter-Bold-R-Normal- -25-180-100-100-P-157-ISO8859-1

CHARTER_BOLD24_100DPI -Bitstream-Charter-Bold-R-Normal- -33-240-100-100-P-206-ISO8859-1

CHARTER_BOLD_ITALIC08_
100DPI

-Bitstream-Charter-Bold-I-Normal- -11-80-100-100-P-68-ISO8859-1

CHARTER_BOLD_ITALIC10_
100DPI

-Bitstream-Charter-Bold-I-Normal- -14-100-100-100-P-86-ISO8859-1

CHARTER_BOLD_ITALIC12_
100DPI

-Bitstream-Charter-Bold-I-Normal- -17-120-100-100-P-105-ISO8859-1

CHARTER_BOLD_ITALIC14_
100DPI

-Bitstream-Charter-Bold-I-Normal- -19-140-100-100-P-117-ISO8859-1

CHARTER_BOLD_ITALIC18_
100DPI

-Bitstream-Charter-Bold-I-Normal- -25-180-100-100-P-154-ISO8859-1

(continued on next page)

Programming Features 4–27

Programming Features
4.6 X Window System Library (Xlib)

Table 4–10 (Cont.) Additional 100-dpi Fonts (.PCF File Extension)

File Name Font Name

Charter

CHARTER_BOLD_ITALIC24_
100DPI

-Bitstream-Charter-Bold-I-Normal- -33-240-100-100-P-203-ISO8859-1

CHARTER_ITALIC08_100DPI -Bitstream-Charter-Medium-I-Normal- -11-120-100-100-P-92-ISO8859-1

CHARTER_ITALIC10_100DPI -Bitstream-Charter-Medium-I-Normal- -14-120-100-100-P-92-ISO8859-1

CHARTER_ITALIC12_100DPI -Bitstream-Charter-Medium-I-Normal- -17-120-100-100-P-92-ISO8859-1

CHARTER_ITALIC14_100DPI -Bitstream-Charter-Medium-I-Normal- -19-140-100-100-P-103-ISO8859-1

CHARTER_ITALIC18_100DPI -Bitstream-Charter-Medium-I-Normal- -25-180-100-100-P-136-ISO8859-1

CHARTER_ITALIC24_100DPI -Bitstream-Charter-Medium-I-Normal- -33-240-100-100-P-179-ISO8859-1

Lucida

LUCIDABRIGHT08_100DPI -B&H-LucidaBright-Medium-R-Normal- -11-80-100-100-P-63-ISO8859-1

LUCIDABRIGHT10_100DPI -B&H-LucidaBright-Medium-R-Normal- -14-100-100-100-P-80-ISO8859-1

LUCIDABRIGHT12_100DPI -B&H-LucidaBright-Medium-R-Normal- -17-120-100-100-P-96-ISO8859-1

LUCIDABRIGHT14_100DPI -B&H-LucidaBright-Medium-R-Normal- -20-140-100-100-P-114-ISO8859-1

LUCIDABRIGHT18_100DPI -B&H-LucidaBright-Medium-R-Normal- -25-180-100-100-P-142-ISO8859-1

LUCIDABRIGHT19_100DPI -B&H-LucidaBright-Medium-R-Normal- -26-190-100-100-P-149-ISO8859-1

LUCIDABRIGHT24_100DPI -B&H-LucidaBright-Medium-R-Normal- -34-240-100-100-P-193-ISO8859-1

LUCIDABRIGHT_DEMI08_
100DPI

-B&H-LucidaBright-Demibold-R-Normal- -11-80-100-100-P-66-ISO8859-1

LUCIDABRIGHT_DEMI10_
100DPI

-B&H-LucidaBright-Demibold-R-Normal- -14-100-100-100-P-84-ISO8859-1

LUCIDABRIGHT_DEMI12_
100DPI

-B&H-LucidaBright-Demibold-R-Normal- -17-120-100-100-P-101-ISO8859-1

LUCIDABRIGHT_DEMI14_
100DPI

-B&H-LucidaBright-Demibold-R-Normal- -20-140-100-100-P-118-ISO8859-1

LUCIDABRIGHT_DEMI18_
100DPI

-B&H-LucidaBright-Demibold-R-Normal- -25-180-100-100-P-149-ISO8859-1

LUCIDABRIGHT_DEMI19_
100DPI

-B&H-LucidaBright-Demibold-R-Normal- -26-190-100-100-P-155-ISO8859-1

LUCIDABRIGHT_DEMI24_
100DPI

-B&H-LucidaBright-Demibold-R-Normal- -34-240-100-100-P-202-ISO8859-1

LUCIDABRIGHT_
DEMIITALIC08_100DPI

-B&H-LucidaBright-Demibold-I-Normal- -11-80-100-100-P-66-ISO8859-1

LUCIDABRIGHT_
DEMIITALIC10_100DPI

-B&H-LucidaBright-Demibold-I-Normal- -14-100-100-100-P-84-ISO8859-1

LUCIDABRIGHT_
DEMIITALIC12_100DPI

-B&H-LucidaBright-Demibold-I-Normal- -17-120-100-100-P-101-ISO8859-1

LUCIDABRIGHT_
DEMIITALIC14_100DPI

-B&H-LucidaBright-Demibold-I-Normal- -20-140-100-100-P-119-ISO8859-1

LUCIDABRIGHT_
DEMIITALIC18_100DPI

-B&H-LucidaBright-Demibold-I-Normal- -25-180-100-100-P-149-ISO8859-1

(continued on next page)

4–28 Programming Features

Programming Features
4.6 X Window System Library (Xlib)

Table 4–10 (Cont.) Additional 100-dpi Fonts (.PCF File Extension)

File Name Font Name

Lucida

LUCIDABRIGHT_
DEMIITALIC19_100DPI

-B&H-LucidaBright-Demibold-I-Normal- -26-190-100-100-P-156-ISO8859-1

LUCIDABRIGHT_
DEMIITALIC24_100DPI

-B&H-LucidaBright-Demibold-I-Normal- -34-240-100-100-P-203-ISO8859-1

LUCIDABRIGHT_ITALIC08_
100DPI

-B&H-LucidaBright-Medium-I-Normal- -11-80-100-100-P-63-ISO8859-1

LUCIDABRIGHT_ITALIC10_
100DPI

-B&H-LucidaBright-Medium-I-Normal- -14-100-100-100-P-80-ISO8859-1

LUCIDABRIGHT_ITALIC12_
100DPI

-B&H-LucidaBright-Medium-I-Normal- -17-120-100-100-P-96-ISO8859-1

LUCIDABRIGHT_ITALIC14_
100DPI

-B&H-LucidaBright-Medium-I-Normal- -20-140-100-100-P-113-ISO8859-1

LUCIDABRIGHT_ITALIC18_
100DPI

-B&H-LucidaBright-Medium-I-Normal- -25-180-100-100-P-142-ISO8859-1

LUCIDABRIGHT_ITALIC19_
100DPI

-B&H-LucidaBright-Medium-I-Normal- -26-190-100-100-P-148-ISO8859-1

LUCIDABRIGHT_ITALIC24_
100DPI

-B&H-LucidaBright-Medium-I-Normal- -34-240-100-100-P-194-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS08_100DPI

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-11-80-100-100-m-70-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS10_100DPI

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-14-100-100-100-m-80-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS12_100DPI

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-17-120-100-100-m-100-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS14_100DPI

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-20-140-100-100-m-120-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS18_100DPI

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-25-180-100-100-m-150-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS19_100DPI

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-26-190-100-100-m-159-ISO8859-1

LUCIDATYPEWRITER_
BOLDSANS24_100DPI

-B&H-LucidaTypewriter-Bold-R-Normal-Sans-34-240-100-100-m-200-ISO8859-1

LUCIDATYPEWRITER_
SANS08_100DPI

-B&H-LucidaTypewriter-Medium-R-Normal-Sans-11-80-100-100-m-70-ISO8859-1

LUCIDATYPEWRITER_
SANS10_100DPI

-B&H-LucidaTypewriter-Medium-R-Normal-Sans-14-100-100-100-m-80-ISO8859-1

LUCIDATYPEWRITER_
SANS12_100DPI

-B&H-LucidaTypewriter-Medium-R-Normal-Sans-17-120-100-100-m-100-ISO8859-1

LUCIDATYPEWRITER_
SANS14_100DPI

-B&H-LucidaTypewriter-Medium-R-Normal-Sans-20-140-100-100-m-120-ISO8859-1

LUCIDATYPEWRITER_
SANS18_100DPI

-B&H-LucidaTypewriter-Medium-R-Normal-Sans-25-180-100-100-m-150-ISO8859-1

LUCIDATYPEWRITER_
SANS19_100DPI

-B&H-LucidaTypewriter-Medium-R-Normal-Sans-26-190-100-100-m-159-ISO8859-1

LUCIDATYPEWRITER_
SANS24_100DPI

-B&H-LucidaTypewriter-Medium-R-Normal-Sans-34-240-100-100-m-200-ISO8859-1

(continued on next page)

Programming Features 4–29

Programming Features
4.6 X Window System Library (Xlib)

Table 4–10 (Cont.) Additional 100-dpi Fonts (.PCF File Extension)

File Name Font Name

Lucida

LUCIDA_BOLDITALICSANS08_
100DPI

-B&H-Lucida-Bold-I-Normal-Sans-11-80-100-100-P-69-ISO8859-1

LUCIDA_BOLDITALICSANS10_
100DPI

-B&H-Lucida-Bold-I-Normal-Sans-14-100-100-100-P-90-ISO8859-1

LUCIDA_BOLDITALICSANS12_
100DPI

-B&H-Lucida-Bold-I-Normal-Sans-17-120-100-100-P-108-ISO8859-1

LUCIDA_BOLDITALICSANS14_
100DPI

-B&H-Lucida-Bold-I-Normal-Sans-20-140-100-100-P-127-ISO8859-1

LUCIDA_BOLDITALICSANS18_
100DPI

-B&H-Lucida-Bold-I-Normal-Sans-25-180-100-100-P-159-ISO8859-1

LUCIDA_BOLDITALICSANS19_
100DPI

-B&H-Lucida-Bold-I-Normal-Sans-26-190-100-100-P-166-ISO8859-1

LUCIDA_BOLDITALICSANS24_
100DPI

-B&H-Lucida-Bold-I-Normal-Sans-34-240-100-100-P-215-ISO8859-1

LUCIDA_BOLDSANS08_100DPI -B&H-Lucida-Bold-R-Normal-Sans-11-80-100-100-P-70-ISO8859-1

LUCIDA_BOLDSANS10_100DPI -B&H-Lucida-Bold-R-Normal-Sans-14-100-100-100-P-89-ISO8859-1

LUCIDA_BOLDSANS12_100DPI -B&H-Lucida-Bold-R-Normal-Sans-17-120-100-100-P-108-ISO8859-1

LUCIDA_BOLDSANS14_100DPI -B&H-Lucida-Bold-R-Normal-Sans-20-140-100-100-P-127-ISO8859-1

LUCIDA_BOLDSANS18_100DPI -B&H-Lucida-Bold-R-Normal-Sans-25-180-100-100-P-158-ISO8859-1

LUCIDA_BOLDSANS19_100DPI -B&H-Lucida-Bold-R-Normal-Sans-26-190-100-100-P-166-ISO8859-1

LUCIDA_BOLDSANS24_100DPI -B&H-Lucida-Bold-R-Normal-Sans-34-240-100-100-P-216-ISO8859-1

LUCIDA_ITALICSANS08_
100DPI

-B&H-Lucida-Medium-I-Normal-Sans-11-80-100-100-P-62-ISO8859-1

LUCIDA_ITALICSANS10_
100DPI

-B&H-Lucida-Medium-I-Normal-Sans-14-100-100-100-P-80-ISO8859-1

LUCIDA_ITALICSANS12_
100DPI

-B&H-Lucida-Medium-I-Normal-Sans-17-120-100-100-P-97-ISO8859-1

LUCIDA_ITALICSANS14_
100DPI

-B&H-Lucida-Medium-I-Normal-Sans-20-140-100-100-P-114-ISO8859-1

LUCIDA_ITALICSANS18_
100DPI

-B&H-Lucida-Medium-I-Normal-Sans-25-180-100-100-P-141-ISO8859-1

LUCIDA_ITALICSANS19_
100DPI

-B&H-Lucida-Medium-I-Normal-Sans-26-190-100-100-P-147-ISO8859-1

LUCIDA_ITALICSANS24_
100DPI

-B&H-Lucida-Medium-I-Normal-Sans-34-240-100-100-P-192-ISO8859-1

LUCIDA_SANS08_100DPI -B&H-Lucida-Medium-R-Normal-Sans-11-80-100-100-P-63-ISO8859-1

LUCIDA_SANS10_100DPI -B&H-Lucida-Medium-R-Normal-Sans-14-100-100-100-P-80-ISO8859-1

LUCIDA_SANS12_100DPI -B&H-Lucida-Medium-R-Normal-Sans-17-120-100-100-P-96-ISO8859-1

LUCIDA_SANS14_100DPI -B&H-Lucida-Medium-R-Normal-Sans-20-140-100-100-P-114-ISO8859-1

(continued on next page)

4–30 Programming Features

Programming Features
4.6 X Window System Library (Xlib)

Table 4–10 (Cont.) Additional 100-dpi Fonts (.PCF File Extension)

File Name Font Name

Lucida

LUCIDA_SANS18_100DPI -B&H-Lucida-Medium-R-Normal-Sans-25-180-100-100-P-142-ISO8859-1

LUCIDA_SANS19_100DPI -B&H-Lucida-Medium-R-Normal-Sans-26-190-100-100-P-147-ISO8859-1

LUCIDA_SANS24_100DPI -B&H-Lucida-Medium-R-Normal-Sans-34-240-100-100-P-191-ISO8859-1

Present Bullets

PRESENT_BULLETS8_100 -DEC-PresentBullets-Medium-R-Normal- -8-80-100-100-P-105-DEC-FontSpecific

PRESENT_BULLETS10_100 -DEC-PresentBullets-Medium-R-Normal- -10-100-100-100-P-123-DEC-FontSpecific

PRESENT_BULLETS12_100 -DEC-PresentBullets-Medium-R-Normal- -12-120-100-100-P-154-DEC-FontSpecific

PRESENT_BULLETS14_100 -DEC-PresentBullets-Medium-R-Normal- -14-140-100-100-P-172-DEC-FontSpecific

PRESENT_BULLETS18_100 -DEC-PresentBullets-Medium-R-Normal- -18-180-100-100-P-229-DEC-FontSpecific

PRESENT_BULLETS24_100 -DEC-PresentBullets-Medium-R-Normal- -24-240-100-100-P-305-DEC-FontSpecific

PRESENT_BULLETS36_100 -DEC-PresentBullets-Medium-R-Normal- -36-360-100-100-P-458-DEC-FontSpecific

PRESENT_BULLETS48_100 -DEC-PresentBullets-Medium-R-Normal- -48-480-100-100-P-609-DEC-FontSpecific

PRESENT_BULLETS72_100 -DEC-PresentBullets-Medium-R-Normal- -72-720-100-100-P-952-DEC-FontSpecific

Utopia

UTOPIA10_100DPI -Adobe-Utopia-Regular-R-Normal- -14-100-100-100-P-75-ISO8859-1

UTOPIA12_100DPI -Adobe-Utopia-Regular-R-Normal- -17-120-100-100-P-91-ISO8859-1

UTOPIA14_100DPI -Adobe-Utopia-Regular-R-Normal- -19-140-100-100-P-105-ISO8859-1

UTOPIA18_100DPI -Adobe-Utopia-Regular-R-Normal- -25-180-100-100-P-135-ISO8859-1

UTOPIA24_100DPI -Adobe-Utopia-Regular-R-Normal- -33-240-100-100-P-180-ISO8859-1

UTOPIA_BOLD10_100DPI -Adobe-Utopia-Bold-R-Normal- -14-100-100-100-P-78-ISO8859-1

UTOPIA_BOLD12_100DPI -Adobe-Utopia-Bold-R-Normal- -17-120-100-100-P-93-ISO8859-1

UTOPIA_BOLD14_100DPI -Adobe-Utopia-Bold-R-Normal- -19-140-100-100-P-108-ISO8859-1

UTOPIA_BOLD18_100DPI -Adobe-Utopia-Bold-R-Normal- -25-180-100-100-P-140-ISO8859-1

UTOPIA_BOLD24_100DPI -Adobe-Utopia-Bold-R-Normal- -33-240-100-100-P-186-ISO8859-1

UTOPIA_BOLDITALIC10_
100DPI

-Adobe-Utopia-Bold-I-Normal- -14-100-100-100-P-78-ISO8859-1

UTOPIA_BOLDITALIC12_
100DPI

-Adobe-Utopia-Bold-I-Normal- -17-120-100-100-P-93-ISO8859-1

UTOPIA_BOLDITALIC14_
100DPI

-Adobe-Utopia-Bold-I-Normal- -19-140-100-100-P-109-ISO8859-1

UTOPIA_BOLDITALIC18_
100DPI

-Adobe-Utopia-Bold-I-Normal- -25-180-100-100-P-139-ISO8859-1

UTOPIA_BOLDITALIC24_
100DPI

-Adobe-Utopia-Bold-I-Normal- -33-240-100-100-P-186-ISO8859-1

UTOPIA_ITALIC10_100DPI -Adobe-Utopia-Regular-I-Normal- -14-100-100-100-P-74-ISO8859-1

UTOPIA_ITALIC12_100DPI -Adobe-Utopia-Regular-I-Normal- -17-120-100-100-P-89-ISO8859-1

(continued on next page)

Programming Features 4–31

Programming Features
4.6 X Window System Library (Xlib)

Table 4–10 (Cont.) Additional 100-dpi Fonts (.PCF File Extension)

File Name Font Name

Utopia

UTOPIA_ITALIC14_100DPI -Adobe-Utopia-Regular-I-Normal- -19-140-100-100-P-104-ISO8859-1

UTOPIA_ITALIC18_100DPI -Adobe-Utopia-Regular-I-Normal- -25-180-100-100-P-134-ISO8859-1

UTOPIA_ITALIC24_100DPI -Adobe-Utopia-Regular-I-Normal- -33-240-100-100-P-179-ISO8859-1

4.6.7.3 Additional Common Fonts
Table 4–11 lists previously undocumented Common fonts and their file names.
The files for these fonts are located in the following directory:

DECW$SYSCOMMON:[SYSFONT.DECW.COMMON]

Table 4–11 Additional Common Fonts (.PCF File Extension)

File Name Font Name

Fixed Width

5X7 -Misc-Fixed-Medium-R-Normal- -7-70-75-75-C-50-ISO8859-1

7X14B -Misc-Fixed-Bold-R-Normal- -14-130-75-75-C-70-ISO8859-1

7X14RK -Misc-Fixed-Medium-R-Normal- -14-130-75-75-C-70-JISX0201.1976-0

8X16RK -Sony-Fixed-Medium-R-Normal- -16-120-100-100-C-80-JISX0201.1976-0

12X24 -Sony-Fixed-Medium-R-Normal- -24-170-100-100-C-120-ISO8859-1

12X24RK -Sony-Fixed-Medium-R-Normal- -24-170-100-100-C-120-JISX0201.1976-0

Sun Open Look Glyph

OLGL10 -Sun-Open Look Glyph- - - - -10-100-75-75-P-101-SunOLGlyph-1

OLGL12 -Sun-Open Look Glyph- - - - -12-120-75-75-P-113-SunOLGlyph-1

OLGL14 -Sun-Open Look Glyph- - - - -14-140-75-75-P-128-SunOLGlyph-1

OLGL19 -Sun-Open Look Glyph- - - - -19-190-75-75-P-154-SunOLGlyph-1

VT330

VT33018 -DEC-VT330-Medium-R-Normal- -20-180-75-75-C-100-ISO8859-1

VT33036 -DEC-VT330-Medium-R-Normal- -40-360-75-75-C-200-ISO8859-1

VT330_BOLD18 -DEC-VT330-Bold-R-Normal- -20-180-75-75-C-100-ISO8859-1

VT330_BOLD36 -DEC-VT330-Bold-R-Normal- -40-360-75-75-C-200-ISO8859-1

VT330_BOLD_DBLWIDE18 -DEC-VT330-Bold-R-Double Wide- -20-180-75-75-C-200-ISO8859-1

VT330_BOLD_DBLWIDE_
DECTECH18

-DEC-VT330-Bold-R-Double Wide- -20-180-75-75-C-200-DEC-DECTech

VT330_BOLD_DECTECH18 -DEC-VT330-Bold-R-Normal- -20-180-75-75-C-100-DEC-DECTech

VT330_BOLD_DECTECH36 -DEC-VT330-Bold-R-Normal- -40-360-75-75-C-200-DEC-DECTech

VT330_BOLD_NARROW18 -DEC-VT330-Bold-R-Narrow- -20-180-75-75-C-60-ISO8859-1

VT330_BOLD_NARROW36 -DEC-VT330-Bold-R-Narrow- -40-360-75-75-C-120-ISO8859-1

(continued on next page)

4–32 Programming Features

Programming Features
4.6 X Window System Library (Xlib)

Table 4–11 (Cont.) Additional Common Fonts (.PCF File Extension)

File Name Font Name

VT330

VT330_BOLD_NARROW_
DECTECH18

-DEC-VT330-Bold-R-Narrow- -20-180-75-75-C-60-DEC-DECTech

VT330_BOLD_NARROW_
DECTECH36

-DEC-VT330-Bold-R-Narrow- -40-360-75-75-C-120-DEC-DECTech

VT330_BOLD_WIDE18 -DEC-VT330-Bold-R-Wide- -20-180-75-75-C-120-ISO8859-1

VT330_BOLD_WIDE_
DECTECH18

-DEC-VT330-Bold-R-Wide- -20-180-75-75-C-120-DEC-DECTech

VT330_DBLWIDE18 -DEC-VT330-Medium-R-Double Wide- -20-180-75-75-C-200-ISO8859-1

VT330_DBLWIDE_DECTECH18 -DEC-VT330-Medium-R-Double Wide- -20-180-75-75-C-200-DEC-DECTech

VT330_DECTECH18 -DEC-VT330-Medium-R-Normal- -20-180-75-75-C-100-DEC-DECTech

VT330_DECTECH36 -DEC-VT330-Medium-R-Normal- -40-360-75-75-C-200-DEC-DECTech

VT330_NARROW18 -DEC-VT330-Medium-R-Narrow- -20-180-75-75-C-60-ISO8859-1

VT330_NARROW36 -DEC-VT330-Medium-R-Narrow- -40-360-75-75-C-120-ISO8859-1

VT330_NARROW_DECTECH18 -DEC-VT330-Medium-R-Narrow- -20-180-75-75-C-60-DEC-DECTech

VT330_NARROW_DECTECH36 -DEC-VT330-Medium-R-Narrow- -40-360-75-75-C-120-DEC-DECTech

VT330_WIDE18 -DEC-VT330-Medium-R-Wide- -20-180-75-75-C-120-ISO8859-1

VT330_WIDE_DECTECH18 -DEC-VT330-Medium-R-Wide- -20-180-75-75-C-120-DEC-DECTech

Language-Specific Fonts

HANGLG16 -Daewoo-Gothic-Medium-R-Normal- -16-120-100-100-C-160-KSC5601.1987-0

HANGLM16 -Daewoo-Mincho-Medium-R-Normal- -16-120-100-100-C-160-KSC5601.1987-0

HANGLM24 -Daewoo-Mincho-Medium-R-Normal- -24-170-100-100-C-240-KSC5601.1987-0

HEB6X13 -Misc-Fixed-Medium-R-SemiCondensed- -13-120-75-75-C-60-ISO8859-8

HEB8X13 -Misc-Fixed-Medium-R-Normal- -13-120-75-75-C-80-ISO8859-8

JISKAN16 -JIS-Fixed-Medium-R-Normal- -16-150-75-75-C-160-JISX0208.1983-0

JISKAN24 -JIS-Fixed-Medium-R-Normal- -24-230-75-75-C-240-JISX0208.1983-0

K14 -Misc-Fixed-Medium-R-Normal- -14-130-75-75-C-140-JISX0208.1983-0

Miscellaneous Fonts

NIL2 -Misc-Nil-Medium-R-Normal- -2-20-75-75-C-10-Misc-FontSpecific

Programming Features 4–33

Programming Features
4.6 X Window System Library (Xlib)

4.6.7.4 Bitstream Speedo Scalable Fonts
Table 4–12 lists the previously undocumented Bitstream Speedo scalable fonts
and their file names. The files for these fonts are located in the following
directory:

DECW$SYSCOMMON:[SYSFONT.DECW.SPEEDO]

Table 4–12 Bitstream Speedo Scalable Fonts (.SPD File Extension)

File Name Font Name

Charter

FONT0648 -Bitstream-Charter-Medium-R-Normal- -0-0-0-0-P-0-ISO8859-1

FONT0649 -Bitstream-Charter-Medium-I-Normal- -0-0-0-0-P-0-ISO8859-1

FONT0709 -Bitstream-Charter-Bold-R-Normal- -0-0-0-0-P-0-ISO8859-1

FONT0710 -Bitstream-Charter-Bold-I-Normal- -0-0-0-0-P-0-ISO8859-1

Courier

FONT0419 -Bitstream-Courier-Medium-R-Normal- -0-0-0-0-m-0-ISO8859-1

FONT0582 -Bitstream-Courier-Medium-I-Normal- -0-0-0-0-m-0-ISO8859-1

FONT0583 -Bitstream-Courier-Bold-R-Normal- -0-0-0-0-m-0-ISO8859-1

FONT0611 -Bitstream-Courier-Bold-I-Normal- -0-0-0-0-m-0-ISO8859-1

4.6.7.5 Agfa Monotype TrueType Scalable Fonts
Table 4–13 lists the new Agfa Monotype TrueType scalable fonts and their file
names. The files for these fonts are located in the following directory:

DECW$SYSCOMMON:[SYSFONT.DECW.TRUETYPE]

Table 4–13 Agfa Monotype TrueType Scalable Fonts (.TTF File Extension)

File Name Font Name

Albany (Similar to Arial)

ALBANYBD -Agfa Monotype-Albany-Bold-R-Normal- -0-0-0-0-P-0-ISO8859-1

ALBANYBI -Agfa Monotype-Albany-Bold-I-Normal- -0-0-0-0-P-0-ISO8859-1

ALBANYIT -Agfa Monotype-Albany-Medium-I-Normal- -0-0-0-0-P-0-ISO8859-1

ALBANY_ _ -Agfa Monotype-Albany-Medium-R-Normal- -0-0-0-0-P-0-ISO8859-1

Cumberland (Similar to Courier)

CUMBB -Agfa Monotype-Cumberland-Bold-R-Normal- -0-0-0-0-M-0-ISO8859-1

CUMBBI -Agfa Monotype-Cumberland-Bold-I-Normal- -0-0-0-0-M-0-ISO8859-1

CUMBI -Agfa Monotype-Cumberland-Medium-I-Normal- -0-0-0-0-M-0-ISO8859-1

CUMBR -Agfa Monotype-Cumberland-Medium-R-Normal- -0-0-0-0-M-0-ISO8859-1

(continued on next page)

4–34 Programming Features

Programming Features
4.6 X Window System Library (Xlib)

Table 4–13 (Cont.) Agfa Monotype TrueType Scalable Fonts (.TTF File Extension)

File Name Font Name

Screen

SAN_M_21 -Agfa Monotype-Screen Sans-Medium-R-Normal- -0-0-0-0-M-0-ISO8859-1

SAN_P_21 -Agfa Monotype-Screen Sans-Medium-R-Normal- -0-0-0-0-P-0-ISO8859-1

SRF_M_21 -Agfa Monotype-Screen Serif-Medium-R-Normal- -0-0-0-0-M-0-ISO8859-1

SRF_P_21 -Agfa Monotype-Screen Serif-Medium-R-Normal- -0-0-0-0-P-0-ISO8859-1

Thorndale (Similar to Times New Roman)

THOBI_ _ _ -Agfa Monotype-Thorndale-Bold-I-Normal- -0-0-0-0-P-0-ISO8859-1

THOB_ _ _ _ -Agfa Monotype-Thorndale-Bold-R-Normal- -0-0-0-0-P-0-ISO8859-1

THOI_ _ _ _ -Agfa Monotype-Thorndale-Medium-I-Normal- -0-0-0-0-P-0-ISO8859-1

THOR_ _ _ _ -Agfa Monotype-Thorndale-Medium-R-Normal- -0-0-0-0-P-0-ISO8859-1

4.6.7.6 Adobe Type1 Fonts
Table 4–14 lists previously undocumented Adobe Type1 fonts and their file names.
The files for these fonts are located in the following directory:

DECW$SYSCOMMON:[SYSFONT.DECW.TYPE1]

Table 4–14 Adobe Type1 Scalable Fonts (.PCA File Extension)

File Name Font Name

Courier

COUR -Adobe-Courier-Medium-R-Normal- -0-0-0-0-P-0-ISO8859-1

COURI -Adobe-Courier-Medium-I-Normal- -0-0-0-0-P-0-ISO8859-1

COURB -Adobe-Courier-Bold-R-Normal- -0-0-0-0-P-0-ISO8859-1

COURBI -Adobe-Courier-Bold-I-Normal- -0-0-0-0-P-0-ISO8859-1

Utopia

UTRG_ _ _ _ -Adobe-Utopia-Medium-R-Normal- -0-0-0-0-P-0-ISO8859-1

UTI_ _ _ _ _ -Adobe-Utopia-Medium-I-Normal- -0-0-0-0-P-0-ISO8859-1

UTB_ _ _ _ _ -Adobe-Utopia-Bold-R-Normal- -0-0-0-0-P-0-ISO8859-1

UTBI_ _ _ _ -Adobe-Utopia-Bold-I-Normal- -0-0-0-0-P-0-ISO8859-1

4.6.8 UIDPATH Environment Variable
V1.2–6

When opening a hierarchy, DECwindows Motif searches the DECW$USER_
DEFAULTS and DECW$SYSTEM_DEFAULTS areas for the User Interface
Definition (UID) file. On UNIX systems, the search path is defined using the
UIDPATH variable and its fallbacks.

Now DECwindows Motif also checks for the UIDPATH variable if the UID
file is not found using either of the OpenVMS symbols listed above. This
variable references a UNIX-style pathname (for example, /foo/bar) and allows

Programming Features 4–35

Programming Features
4.6 X Window System Library (Xlib)

the substitutions strings as specified by X11 standards. For more information on
the UIDPATH variable, see the OSF/Motif Programmer’s Reference.

Note

The UIDPATH variable does not work with OpenVMS directory
specifications. Use the DECW$xxx_DEFAULTS logicals to specify
OpenVMS-style search paths.

4.6.9 Client Side Extension Library
V1.1

Starting with DECwindows Motif for OpenVMS Version 1.1, Xlib added a client
side library, DECW$XEXTLIBSHR.EXE, that allows OpenVMS clients to issue
Shape, XInput, Multibuffer, and Shared Memory extension requests to servers
that provide these features.

You must modify the linking file options for client applications that issue
these extension requests to link to the Xlib extensions shareable image in
SYS$LIBRARY:DECW$XEXTLIBSHR.EXE. Add the following line to your linker
options file:

SYS$LIBRARY:DECW$XEXTLIBSHR/SHARE

For more information on Shape, XInput, and Multibuffer extensions, see the
following text files in SYS$HELP:

DECW$SHAPE.TXT
DECW$XINPUT.TXT
DECW$MULTIBUFFER.TXT

4.7 X Window System Extensions and Protocols
The following sections describe features related to X Window System extensions,
protocols, and their libraries.

4.7.1 Additional X Display Server Extensions Supported with X11R6.6
V1.3

The following X11R6.6 protocol X Window System extensions have been
integrated into the DECwindows X11 Display Server and are now supported
by DECwindows Motif:

• Application Group (XC-APPGROUP)

• Big Requests (BIG-REQUESTS)

• Colormap Utilization Policy (TOG-CUP)

• Extended Visual Information (EVI)

• Low-Bandwidth X (LBX)

• Security (SECURITY)

• Synchronization (SYNC)

• XC-MISC

• X Double Buffer (DBE)

4–36 Programming Features

Programming Features
4.7 X Window System Extensions and Protocols

• XINERAMA (formerly PanoramiX)

• X Keyboard (XKB)

BIG-REQUESTS, EVI, SYNC, TOG-CUP, and XC-MISC are a permanent
part of the DECwindows X11 Display Server and are always enabled. DBE,
LBX, SECURITY, XC-APPGROUP, XINERAMA, and XKB are dynamically
loadable using the DECW$SERVER_EXTENSIONS parameter defined in the
DECW$PRIVATE_SERVER_SETUP.COM file. With this symbol, each extension
is converted to a shareable image, which is run at server startup. Note that some
combinations of extensions can result in conflict; see HP DECwindows Motif for
OpenVMS Management Guide for instructions on enabling these extensions.

To access these these extensions, link applications against one or more of the
following libraries:

Extension Library

DBE
EVI
LBX
SECURITY
SYNC
TOG-CUP
XC-APPGROUP
XINERAMA

DECW$XEXTLIBSHR

BIG-REQUESTS
XC-MISC
XKB

DECW$XLIBSHR

For more information about the updates made to the client-side extension library
in support of X11R6.6, see Section 4.6.3.

The following sections briefly describe each extension, its function, and any
variances from the standard X11R6.6 implementation provided by the X.Org
Foundation. For a detailed description of each extension protocol and the
available server requests, see the X Window System (Scheifler and Gettys) series
of manuals described in the HP DECwindows Motif for OpenVMS Documentation
Overview, or visit the X.Org Foundation web site (http://www.x.org) for protocol
and library specifications.

4.7.1.1 Application Group Extension (XC-APPGROUP)
XC-APPGROUP enables multiple programs to manage X Window applications
on the desktop. This extension allows X applications to be embedded into the
window of another program, such as a web browser.

Sets of one or more applications, known as an Application Group, are managed
by a controlling application, known as the Application Group Leader. The group
shares the Substructure-Redirect attribute of the window with the Application
Manager and one or more Application Group Leaders.

Code that uses XC-APPGROUP must include the following header files:

include "DECW$INCLUDE:Xlib.h"
include "DECW$INCLUDE:Xag.h"

Programming Features 4–37

Programming Features
4.7 X Window System Extensions and Protocols

This extension is dynamically loadable (along with the SECURITY extension) at
server startup; see the HP DECwindows Motif for OpenVMS Management Guide.
Call the following routine to check if XC-APPGROUP is available on the server
system:

Bool XagQueryVersion (
Display *dpy,
int *major_version_return,
int *minor_version_return

);

The following table lists each argument and its description.

Argument Description

dpy An input parameter that contains the current display.

major_version_
return

Major version number of the extension implementation. Returned by
XagQueryVersion.

minor_version_
return

Minor version number of the extension implementation. Returned by
XagQueryVersion.

4.7.1.2 Big Requests Extension (BIG-REQUESTS)
BIG-REQUESTS enables a client application to extend the length field of a
protocol request from 218 bytes to a 32-bit value. This is useful for clients and
other extensions that frequently transmit complex information to the display
server.

The only callable function associated with this extension is
XExtendedMaxRequestSize, which has been incorporated into Xlib. As such,
it is always available when connected to an X Window system that offers this
extension.

4.7.1.3 Colormap Utilization Policy Extension (TOG-CUP)
TOG-CUP provides the following colormap management capabilities to the display
server:

• A mechanism for a special application (such as a colormap manager) to
recognize special colormap requirements. For example, this extension enables
an application to locate and initialize a default colormap.

• A policy that encourages colormap sharing and reduces colormap flashing on
low-end 8-bit frame buffers.

• A behavior in the color allocation scheme that reduces colormap flashing
when colormaps are not shared.

Specifically, the TOG-CUP protocol provides methods that query the server for
a list of reserved colormap entries and initialize shareable colormap entries
at specific locations. If the core protocol does not contain information about
the returned pixel values, the AllocColor and AllocNamedColor requests look
in the default colormap for a matching color. If a match is found and the
corresponding cell in the private colormap is empty, the color is allocated to
that cell in the private colormap rather than the first available location. This
minimizes colormap flashing when the main window’s default visual class is using
a private colormap and is set to GrayScale, PseudoColor, or DirectColor.

4–38 Programming Features

Programming Features
4.7 X Window System Extensions and Protocols

Code that uses the TOG-CUP extension must include the following header files:

include "DECW$INCLUDE:Xlib.h"
include "DECW$INCLUDE:Xcup.h"

This extension is a fixed part of the display server and is always enabled. Call
the following routine to check if the TOG-CUP extension is available on the server
system:

Bool XcupQueryVersion (display, &major, &minor)
Display *display,
int major,minor;

Note that client applications must call XcupQueryVersion before calling any other
TOG-CUP function.

The following table lists each argument and its description.

Argument Description

display An input parameter that contains the current display.

major Major version number of the extension implementation. Returned by
XcupQueryVersion.

minor Minor version number of the extension implementation. Returned by
XcupQueryVersion.

4.7.1.4 Extended Visual Information Extension (EVI)
EVI enables a client to query the display server for additional information about
core X visuals, such as colormap information and framebuffer levels. Note that
this extension only provides support for client applications and not other X
Window System extensions.

Code that uses EVI must include the following header files:

include "DECW$INCLUDE:Xlib.h"
include "DECW$INCLUDE:Xevi.h"

This extension is a fixed part of the display server and is always enabled. Call
the following routine to check if EVI is available on the server system:

Bool XeviQueryExtension (
Display *dpy

);

The following table lists each argument and its description.

Argument Description

dpy An input parameter that contains the current display.

4.7.1.5 Low-Bandwidth X Extension (LBX)
LBX is a network-transparent protocol for running X Window System applications
over transport channels whose bandwidth and latency are significantly lower
than that available in local area networks. LBX combines a variety of caching
and reencoding techniques that reduce the volume of data sent over the network.

By using a proxy server as an intermediary between the client applications and
the X server, low-bandwidth/high-latency communication is maintained between
the proxy and X server. The proxy server reencodes and compresses requests,
events, replies and errors, as well as the resulting data stream. Additionally,

Programming Features 4–39

Programming Features
4.7 X Window System Extensions and Protocols

the proxy can cache information from the server to provide low-latency replies to
client applications.

A proxy can serve multiple client applications and does not prevent clients from
connecting directly to the server. The proxy can combine calls from multiple
client applications into a single data stream.

Use of LBX is transparent to clients. The only interface to LBX available to client
code is a query to check the availability of LBX. Code that uses this query must
include the following header files:

include "DECW$INCLUDE:Xlib.h"
include "DECW$INCLUDE:Xlbx.h"

This extension is dynamically loadable at server startup; see the HP
DECwindows Motif for OpenVMS Management Guide. Call the following routines
to check if LBX has been loaded and is available on the server system:

Bool XLbxQueryVersion(
Display *display,
int *major_version_return,
int *minor_version_return

);

The following table lists each argument and its description.

Argument Description

display An input parameter that contains the current display.

major_version_
return

Major version number of the extension implementation. Returned by
XLbxQueryVersion.

minor_version_
return

Minor version number of the extension implementation. Returned by
XLbxQueryVersion.

4.7.1.6 Security Extension (SECURITY)
SECURITY contains a new protocol that provides for enhanced X server security.
This extension adds the concepts of trusted and untrusted client connections
to the X Window System protocol. The trust status of a client is determined by
the authorization method used during the startup of a connection. All clients
using host- or user-based authorization are considered trusted. Clients using
token-based authorization protocols may be either trusted or untrusted depending
on the authorization data included in the connection request.

The requests in SECURITY permit a trusted client to create multiple
authorization entries related to a single authorization protocol. Each entry is
tagged with a trust status, which is then associated with any client using that
authorization entry.

When a connection identifying an untrusted client is accepted, the client is
restricted from performing certain operations that would steal or modify data
that is held by the server for trusted clients. An untrusted client performing a
disallowed operation will receive protocol errors.

When a client is untrusted, the server can also limit the extensions that are
available to the client. Each X protocol extension is responsible for defining what
operations are permitted to untrusted clients. By default, the entire extension is
hidden to untrusted clients.

4–40 Programming Features

Programming Features
4.7 X Window System Extensions and Protocols

With DECwindows Motif, the following extensions (standard and non-standard)
are defined as secure:

BIG-REQUESTS
LBX
XC-MISC

All other extensions are considered insecure. See the HP DECwindows Motif
for OpenVMS Management Guide for more information on how to select an
appropriate authentication method and specify trusted or untrusted connections.

Code that uses SECURITY must include the following header files:

include "DECW$INCLUDE:Xlib.h"
include "DECW$INCLUDE:security.h"

This extension is dynamically loadable (along with the XC-APPGROUP extension)
at server startup; see HP DECwindows Motif for OpenVMS Management Guide.
Call the following routine to check if SECURITY is available on the server
system:

Bool XSecurityQueryExtension (
Display *dpy,
int *major_version_return,
int *minor_version_return

);

The following table lists each argument and its description.

Argument Description

dpy An input parameter that contains the current display.

major_version_
return

Major version number of the extension implementation. Returned by
XSecurityQueryExtension.

minor_version_
return

Minor version number of the extension implementation. Returned by
XSecurityQueryExtension.

4.7.1.7 XC-MISC Extension
XC-MISC allows client applications to retrieve previously-used resource ID ranges
from the X server. Xlib handles this function automatically. This extension
is useful for long-running applications that use many resource IDs over their
runtime life.

Since the XC-MISC functions are part of Xlib, they are a standard part of the
client. As such, they are are always available when connected to an X Window
system that offers this extension.

4.7.1.8 X Double Buffer Extension (DBE)
DBE provides a way to display flicker-free animation on an X Window system and
is intended as a replacement to the Multibuffering extension. Successive frames
of an animation sequence are rendered into the back buffer while the previously
rendered frame is displayed in the front buffer. When a new frame is ready, the
back and front buffers swap roles, making the new frame visible. Only completely
rendered frames are shown; these frames remain visible during the entire time it
takes to display the new frame.

Code that uses DBE must include the following header files:

include "DECW$INCLUDE:Xlib.h"
include "DECW$INCLUDE:Xdbe.h"

Programming Features 4–41

Programming Features
4.7 X Window System Extensions and Protocols

This extension is dynamically loadable at server startup; see the HP
DECwindows Motif for OpenVMS Management Guide. Call the following routine
to check if the extension has been loaded and is available on the server system:

Bool XdbeQueryExtension (
Display *dpy,
int *major_version_return,
int *minor_version_return

);

The following table lists each argument and its description.

Argument Description

dpy An input parameter that contains the current display.

major_version_
return

Major version number of the extension implementation. Returned by
XdbeQueryExtension.

minor_version_
return

Minor version number of the extension implementation. Returned by
XdbeQueryExtension.

4.7.1.9 XINERAMA Extension
XINERAMA (formerly known as PanoramiX) enables a system configured with
multiple video monitors (multiheaded system) to function as a single large screen.
This extension allows application windows and cursor movement to span multiple
screens and move from one screen to another.

The overall size of the composite screen equals the combined size of all screens.
Monitor configurations can be easily modified by enabling this extension in
conjunction with the associated screen symbols (such as DECW$SERVER_
SCREENS). See the HP DECwindows Motif for OpenVMS Management Guide for
the complete list of logicals associated with this extension and for instructions on
how to setup and configure a multiheaded system that uses XINERAMA.

Note

This extension is only supported in a homogeneous graphics environment,
which consists of common display devices, visual classes, depths,
resolutions, etc. In addition, there may be some restrictions if operating
in 3D mode (such as with the OpenGL layered product). See HP
DECwindows Motif for OpenVMS Release Notes for the current
restrictions regarding this extension.

4.7.1.10 X Keyboard Extension (XKB)
XKB enhances the control and customization of the keyboard under the X Window
System by providing the following:

• Support for the ISO9996 standard for keyboard layouts

• Compatibility with the core X keyboard handling

• Standard methods for handling keyboard LEDs and locking modifiers

• Support for keyboard geometry

Note that all AccessX extension features for people with physical impairments
have been incorporated into XKB. These accessibility features include StickyKeys,
SlowKeys, BounceKeys, MouseKeys, and ToggleKeys, as well as complete control
over the autorepeat delay rate.

4–42 Programming Features

Programming Features
4.7 X Window System Extensions and Protocols

Code that uses XKB must minimally include the following header files:

include "DECW$INCLUDE:Xlib.h"
include "DECW$INCLUDE:XKBlib.h"

To modify keyboard geometry descriptions, the names and identifiers of the
predefined bells, or X Keyboard map definitions, additionally include the following
header files:

include "DECW$INCLUDE:XKBgeom.h"
include "DECW$INCLUDE:XKBbells.h"
include "DECW$INCLUDE:XKM.h"
include "DECW$INCLUDE:XKMformat.h"
include "DECW$INCLUDE:XKBfile.h"
include "DECW$INCLUDE:XKBrules.h"
include "DECW$INCLUDE:XKBconfig.h"

This extension is dynamically loadable at server startup; see the HP
DECwindows Motif for OpenVMS Management Guide. Call the following routine
to check if the extension has been loaded and is available on the server system:

Bool XkbQueryExtension(
Display *dpy,
int *opcodeReturn,
int *eventBaseReturn,
int *errorBaseReturn,
int *majorReturn,
int *minorReturn

);

The following table lists each argument and its description.

Argument Description

dpy An input parameter that contains the current display.

opcodeReturn Major operation code of the extension. Returned by
XkbQueryExtension.

eventBaseReturn Base event code of the extension. Returned by XkbQueryExtension.

errorBaseReturn Base error code of the extension. Returned by XkbQueryExtension.

majorReturn Major version number of the extension implementation. Returned by
XkbQueryExtension.

minorReturn Minor version number of the extension implementation. Returned by
XkbQueryExtension.

4.7.1.11 X Synchronization Extension (SYNC)
SYNC provides primitive calls that synchronize requests from multiple clients
on different hosts running different operating systems. This extension enables
applications to make the best use of buffering resources within the client, server,
and network and eliminates network errors that can occur when two systems are
running a distributed application.

Multimedia applications can use this extension to synchronize streams of audio,
video, and graphics data. For example, simple animation applications can be
implemented without having to use round-trip requests.

Code that uses SYNC must include the following header files:

include "DECW$INCLUDE:Xlib.h"
include "DECW$INCLUDE:sync.h"

Programming Features 4–43

Programming Features
4.7 X Window System Extensions and Protocols

This extension is a fixed part of the display server and is always enabled. Call
the following routines to check if the extension has been loaded and is available
on the server system:

Bool XSyncQueryExtension(
Display *dpy,
int *event_base_return,
int *error_base_return

);

Status XSyncInitialize(
Display *dpy,
int *major_version_return,
int *minor_version_return

);

The following table lists each argument and its description.

Argument Description

dpy An input parameter that contains the current display.

event_base_
return

An output parameter that indicates the base event code for the
extension.

error_base_
return

An output parameter that indicates the base error code for the
extension.

major_version_
return

Major version number of the extension implementation. Returned by
XSyncInitialize.

minor_version_
return

Minor version number of the extension implementation. Returned by
XSyncInitialize.

4.7.2 Server Extensions Updated for X11R6.6
V1.3

The following existing X Window System extensions have been updated:

• DEC XTrap (DEC-XTRAP) and X Test (XTEST) – Now disabled with the
DECW$SERVER_DISABLE_TEST parameter

• MIT Screen Saver (MIT-SCREEN-SAVER) – Updated to work with
XINERAMA

• Multibuffering (MBE) – New XmbufClearBufferArea function

• MIT Miscellaneous (MIT-SUNDRY-NONSTANDARD)

• MIT Shared Memory (MIT-SHM)

• Non-Rectangular Window Shape (SHAPE)

• X Image Extension (XIE) – Supports V3.0 and not the adopted standard of
V5.0

4.7.3 Inter-Client Exchange (ICE) Protocol Support
V1.3

The Inter-Client Exchange (ICE) Protocol provides support for direct X Window
System client-to-client communication without using the X server. This
means that DECwindows Motif client applications can use ICE rather than
connect to the X server. The standard protocol provides the basic mechanisms
for establishing and closing network transport connections, performing
authentication, negotiating versions, and reporting errors. The protocols running

4–44 Programming Features

Programming Features
4.7 X Window System Extensions and Protocols

within an ICE connection are known a subprotocols, of which Session Manager
(described in Section 4.7.4) is a member.

A new client-side library, DECW$ICELIB, is provided. Code that uses ICE must
include the following header file:

include "DECW$INCLUDE:Icelib.h"

The following sections describe the implementation of ICE provided with
DECwindows Motif, highlighting any variances from or restrictions posed by the
standard implementation. For a detailed description of the ICE protocol and the
available server requests, see the X Window System (Scheifler and Gettys) series
of manuals described in the HP DECwindows Motif for OpenVMS Documentation
Overview, or visit the X.Org Foundation web site (http://www.x.org) for protocol
and library specifications.

4.7.3.1 Multithreading Considerations
The ICE library supports multithreading after IceInitThreads has been called.
IceInitThreads must be the first call on the ICE library if multithreading is
required. Programs that call IceInitThreads must have been linked against
PTHREAD$RTL.

The following sections further describe issues with using ICE functions in a
multithreaded environment.

Lock Nesting
Locks held by IceLockConn and IceAppLockConn are recursive. The
corresponding unlock routine must be called the same number of times as the
lock routine.

Deleting IceConn Objects
IceConn objects can be deleted by:

• IceProcessMessages returning IceProcessMessagesConnectionClosed

• IceCloseConnection returning IceClosedNow

In these cases, the IceConn object is freed without validation even though locks
may still be held. To avoid race conditions, ensure that the deleted IceConn object
is not being used by another thread.

Non-Atomic Functions and Macros
The following subset of the ICE functions that prepare and read messages are not
atomic and do not acquire locks:

IceGetHeader
IceGetHeaderExtra
IceSimpleMessage
IceErrorHeader
IceWriteData
IceWriteData16
IceWriteData32
IceSendData
IceWritePad
IceReadSimpleMessage
IceReadCompleteMessage
IceDisposeCompleteMessage
IceReadMessageHeader
IceReadData
IceReadData16

Programming Features 4–45

Programming Features
4.7 X Window System Extensions and Protocols

IceReadData32
IceReadPad

Any multithreaded application that uses one or more of these macros or functions
must explicitly acquire a lock on the connection before creating a message, and
release the lock after the message is prepared. For read operations, this action is
not required since the ICE process callbacks automatically lock the connection.

For example, the following is sample code for creating a message:

IceAppLockConn (iceConn);
IceGetHeaderExtra (iceConn, _SmcOpcode, SM_RegisterClient,

SIZEOF (smRegisterClientMsg), WORD64COUNT (extra),
smRegisterClientMsg, pMsg, pData);

*((CARD32 *) pData) = len;
pData += 4;

memcpy (pData, previousId, len);
pData += (len + 3) & (~3);
IceAppUnLockConn (iceConn);

Since an ICE connection can be shared between protocols, every protocol must
use these locks, even if the protocol can only be used by a single thread.

Opening Connections
DECwindows Motif restricts multithreaded applications from concurrently calling
IceOpenConnection and IceCloseConnection. IceOpenConnection can accept
concurrent calls to itself as long as IceCloseConnection is not called at the same
time.

ICE can maintain two open connections for the same protocol by using a major
opcode check to the IceOpenConnection call. Since a protocol is registered only
after it calls IceProtocolSetup, a conflict can occur if two threads simultaneously
establish ICE connections for the same protocol and request that the connection
is not shared.

To prevent this conflict from occurring, code for opening an ICE connection with a
major opcode check should follow a format similar to the following:

IceConn conn;
IceProtocolSetupStatus status;
while (1) {

conn = IceOpenConnection (....)
if (conn == 0) break;
status = IceProtocolSetup (...)
if (status != IceProtocolAlreadyActive) break;
IceCloseConnection (conn);
/* Try again as another thread set up the protocol on this connection */

}

4.7.3.2 Differences from the Standard Implementation
The following sections describe differences from and issues in the standard ICE
implementation provided with X11R6.6.

Connection and Protocol Authentication
The implementation of ICE included with DECwindows Motif does not include
any authentication mechanisms for ICE connections. All listen objects must use
IceSetHostBasedAuthProc to register host-based authentication.

4–46 Programming Features

Programming Features
4.7 X Window System Extensions and Protocols

For protocol authentication, all authentication schemes provided when the
protocol is registered are permitted. This differs from the standard ICE
implementation, where only those those schemes defined in the ICE Authority
(IceAuth) file are allowed.

Object Name Changes
The sample implementation of ICE provided by the X.Org Foundation contained
objects whose name differed from that described in the ICE specification. The
following table lists those objects and specifies which name was used in the
DECwindows Motif implementation of ICE.

Documented Object
Name Implemented Object Name

IceGetContext IceConnectionGetContext

major_opcode majorOpcode

minor_opcode minorOpcode

IceGetHeaderExtra Structure
The header structure used with IceGetHeaderExtra must have a sizeof value that
is a multiple of 8 bytes.

4.7.3.3 IPv6 Considerations
V1.5

For ICE clients, the ICE library has been upgraded to support all the transport
names described in the HP DECwindows Motif for OpenVMS Management Guide.

For ICE servers, specifying a value of TCPIP or TCP now opens listen sockets on
all configured TCP/IP interfaces. If some of the interfaces are IPv6 interfaces, the
library supports accepting connections on IPv6 interfaces.

After using the IceListenForConnections call, you can use the
IceComposeNetworkIdList call to obtain the address for the TCP/IP listen object
in the format "tcp/hostname", where hostname is the value of the system logical
TCPIP$INET_HOST. Use of the generic TCP transport allows the listen object to
be used by both IPv4-based and IPv6-based peers.

The host-based authentication callback is provided the peer’s host name as
returned by the TCP/IP Services getnameinfo function. If the peer’s host name is
unavailable, the callback is provided with the peer’s host address in either IPv4
or IPv6 format (depending on the protocol used to establish the connection). If
the address is an IPv4-mapped IPv6 address, the address is converted to an IPv4
address before being provided to the callback. If the getnameinfo returns a name
that includes a scope identifier, the scope identifier is included in the value passed
to the callback.

4.7.4 X Session Management Protocol (XSMP) Support
V1.3

The X Session Management Protocol (XSMP) provides a standard way for users
to save client sessions. Each session is controlled by a network service known as
the session manager. The session manager issues commands that direct client
applications to save their state information for use during subsequent sessions.

This protocol is built on top of ICE, which manages the client connections to the
session manager server.

Programming Features 4–47

Programming Features
4.7 X Window System Extensions and Protocols

Code that uses XSMP must include the following header files:

include "DECW$INCLUDE:SM.h"
include "DECW$INCLUDE:SMlib.h"
include "DECW$INCLUDE:SMproto.h"

The following sections describe the implementation of XSMP provided with
DECwindows Motif, highlighting any variances from or restrictions posed
by the standard implementation. For a detailed description of the XSMP
protocol and the available server requests, see the X Window System (Scheifler
and Gettys) series of manuals described in the HP DECwindows Motif for
OpenVMS Documentation Overview, or visit the X.Org Foundation web site
(http://www.x.org) for protocol and library specifications.

4.7.4.1 Multithreading Considerations
The implementation of XSMP is thread safe, using locks on the underlying ICE
connection as needed. All send message operations are thread cancellation points;
all callback operations are made by locking the associated ICE connection.

When SmcOpenConnection is called, it opens an ICE connection and
processes messages until the session manager registers the client. The open
connection subsequently causes a series of ICE watch procedures to be called.
Typically, these procedures add the connection to a list monitored for input.
IceProcessMessages is called when input to the list arrives. The thread issuing
the IceProcessMessages calls will be blocked if it tries to handle a new connection.

4.7.4.2 Differences from the Standard Implementation
The following sections describe differences from and issues in the standard XSMP
implementation provided with X11R6.6.

SmcCloseConnection and SmsCleanUp
In the standard implementation, SmcCloseConnection disables shutdown
negotiation for an ICE connection, which results in abrupt termination of
the connection. This can prevent the session manager from receiving all
SmCloseConnection messages.

In the DECwindows Motif implementation, shutdown negotiation is enabled.
SmcCloseConnection returns SmcClosedASAP, and the connection is closed only
after the session manager calls SmsCleanUp.

Note also that the sample session manager code does not specify whether
SmsCleanUp closes an ICE Connection. In the DECwindows Motif
implementation, an IceCloseConnection call is issued.

POSIX Property Names and Data Type Definitions
The standard specification defines the data types and property names supported
for POSIX. The DECwindows Motif implementation specifies the property
names; however, the data types definitions are not provided, since they may
vary based on the use of session manager in the OpenVMS Alpha and OpenVMS
I64 environments.

SmsGenerateClientId and IPv6
On a host where the primary TCP/IP interface limited to IPv6, the ID generated
by SmsGenerateClientId will follow the IPv6 format (as defined in the X11R6.7
specification published by the X.Org Foundation).

4–48 Programming Features

Programming Features
4.7 X Window System Extensions and Protocols

4.7.5 MIT Shared Memory Extension (MIT-SHM) Support
V1.2

Shared memory extension support provides the capability to share memory
XImages. This is a version of the XImage interface where the actual image data
is stored in a shared-memory segment. Consequently, the image does not need
to be moved through the Xlib interprocess communication channel. For large
images, use of this extension can result in dramatic performance increases.

Support for shared memory pixmaps is also provided. Shared memory pixmaps
are two-dimensional arrays of pixels in a format specified by the X server, where
the image data is stored in the shared memory segment. Through the use of
shared memory pixmaps, you can change the contents of these pixmaps without
using any Xlib routines.

These routines are included in the client side extension library. See Section 4.6.9
for details on linking this library.

4.7.5.1 How to Use Shared Memory Extension
Code that uses the shared memory extension must include the following header
files:

include "DECW$INCLUDE:Xlib.h"
include "DECW$INCLUDE:shm.h"
include "DECW$INCLUDE:XShm.h"

Any code that uses the shared memory extension should first check that the
server provides the extension. In some cases, such as running over the network,
the extension does not work.

To check if the shared memory extension is available on your system, call one of
the following routines:

Status XShmQueryExtension (display)
Display *display

Status XShmQueryVersion (display, major, minor, pixmaps)
Display *display;
int *major, *minor;
Bool *pixmaps

The following table lists each argument and its description.

Argument Description

display The current display.

If the shared memory extension is used, the return value from either
function is True. Otherwise, your program operates using conventional
Xlib calls.

major Major version number of the extension implementation. Returned by
XShmQueryVersion.

minor Minor version number of the extension implementation. Returned by
XShmQueryVersion.

pixmaps True, indicates that shared memory pixmaps are supported.

Programming Features 4–49

Programming Features
4.7 X Window System Extensions and Protocols

4.7.5.2 Using Shared Memory XImages
The following sequence shows the process for creating and using shared memory
XImages:

1. Create the shared memory XImage structure.

2. Create a shared memory segment to store the image data.

3. Attach the shared memory segment.

4. Inform the server about the shared memory segment.

5. Use the shared memory XImage.

The following sections explain each step in this process:

Step 1—Creating a Shared Memory XImage Structure
To create a shared memory XImage, use the XShmCreateImage routine, which
has the following format:

XImage *XShmCreateImage (display, visual, depth, format, data,
shminfo, width, height)

Display *display;
Visual *visual;
unsigned int depth, width, height;
int format;
char *data;
XShmSegmentInfo *shminfo;

Most of the arguments are the same as for XCreateImage (See the X Window
System for a description of the XCreateImage routine.) Note that there are no
offset, bitmap_pad, or bytes_per_line arguments. These quantities are set by the
server, and your code needs to abide by them. Unless you have already allocated
the shared memory segment (see step 2), you pass in NULL for the data pointer.

The argument shminfo is a pointer to a structure of type XShmSegmentInfo.
Allocate one of these structures so that it has a lifetime at least as long as that
of the shared memory XImage. There is no need to initialize this structure before
the call to XShmCreateImage.

If successful, an XImage structure is returned, which you can use for the
subsequent steps.

Step 2—Creating the Shared Memory Segment
Create the shared memory segment after the creation of the XImage because the
XImage returns information that indicates how much memory to allocate.

The following example illustrates how to create the segment:

shminfo.shmid = shmget (IPC_PRIVATE,
image->bytes_per_line * image->height, IPC_CREAT|0777);

This example assumes that you called your shared memory XImage structure.
A return value of 0 indicates the shared memory allocation has failed. Use the
bytes_per_line field, not the width you used to create the XImage, as they may be
different.

Note that the shared memory ID returned by the system is stored in the shminfo
structure. The server needs that ID to attach itself to the segment.

4–50 Programming Features

Programming Features
4.7 X Window System Extensions and Protocols

Step 3—Attaching the Shared Memory Segment
Attach the shared memory segment to your process as in the following example:

shminfo.shmaddr = image->data = shmat (shminfo.shmid, 0, 0);

The address returned by shmat is stored in both the XImage structure and the
shminfo structure.

To finish supplying arguments in the shminfo structure, decide how you want the
server to attach to the shared memory segment, and set the shminfo.readOnly
field as follows:

shminfo.readOnly = False;

If you set the structure to True, the server cannot write to this segment, and
XShmGetImage calls fail.

Note

The shared memory segment routines are provided with DECwindows
Motif. Using global sections, these routines emulate the shared memory
routines on UNIX systems.

Step 4—Informing the Server About the Shared Memory Segment
Tell the server to attach to your shared memory segment as in the following
example:

Status XShmAttach (display, shminfo);

If successful, a nonzero status is returned, and your XImage is ready for use.

Step 5—Using the Shared Memory XImage
To write a shared memory XImage into an X drawable, use the XShmPutImage
routine. The XShmPutImage routine uses the following format:

XShmPutImage (display, d, gc, image, src_x, src_y,
dest_x, dest_y, width, height, send_event)

Display *display;
Drawable d;
GC gc;
XImage *image;
int src_x, src_y, dest_x, dest_y;
unsigned int width, height;
Bool send_event;

The interface is identical to the XPutImage routine (see the X Window System),
except for one additional parameter, send_event. If this parameter is passed as
True, the server generates a completion event when the image write is complete.
This allows your program to know when it is safe to begin manipulating the
shared memory segment again.

Programming Features 4–51

Programming Features
4.7 X Window System Extensions and Protocols

The completion event is of the type XShmCompletionEvent, which is defined as
follows:

typedef struct {
inttype; /* of event */
unsigned long serial; /* # of last request processed */
Bool send_event; /* true if came from a SendEvent request */
Display *display; /* Display the event was read from */
Drawable drawable; /* drawable of request */
int major_code; /* ShmReqCode */
int minor_code; /* X_ShmPutImage */
ShmSeg shmseg; /* the ShmSeg used in the request */
unsigned long offset; /* the offset into ShmSeg used */

} XShmCompletionEvent;

To determine the event type value that is used at run time, use the
XShmGetEventBase routine as in the following example:

int CompletionType = XShmGetEventBase (display) + ShmCompletion;

Note

If you modify the shared memory segment before the arrival of the
completion event, the results may be inconsistent.

To read image data into a shared memory XImage, use the XShmGetImage
routine, which uses the following format:

Status XShmGetImage (display, d, image, x, y, plane_mask)
Display *display;
Drawable d;
XImage *image;
int x, y;
unsigned long plane_mask;

The following table lists each argument and its description.

Argument Description

display The display of interest.

d The source drawable.

image The destination XImage.

x X-offset within the source drawable.

y Y-offset within the source drawable.

plane_mask The planes that are to be read.

To destroy a shared memory XImage, first instruct the server to detach from it,
then destroy the segment itself. The following example illustrates how to destroy
a shared memory XImage:

XShmDetach (display, shminfo);
XDestroyImage (image);
shmdt (shminfo.shmaddr);
shmctl (shminfo.shmid, IPC_RMID, 0);

4–52 Programming Features

Programming Features
4.7 X Window System Extensions and Protocols

4.7.5.3 Using Shared Memory Pixmaps
Unlike X images, for which any image format is usable, the shared memory
extension supports only a single format for the data stored in a shared memory
pixmap (XYPixmap or ZPixmap). This format is independent of the depth of the
image and independent of the screen. (For 1-bit pixmaps the format is irrelevant.)

The XShmPixmapFormat routine returns the shared memory pixmap format for
the server. The XShmPixmapFormat routine has the following format:

int XShmPixmapFormat (display)
Display *display;

Your application can only use shared memory pixmaps in the format returned
by the XShmPixmapFormat routine (including bits-per-pixel). To create a shared
memory pixmap do the following:

• Create a shared memory segment and shminfo structure exactly the
same way as is listed for shared memory XImages steps 1 through 4 (see
Section 4.7.5.2). While it is not necessary to create an XImage first (step 1),
doing so incurs little overhead and provides an appropriate bytes_per_line
value to use.

• Call the XShmCreatePixmap routine, which has the following format:

Pixmap XShmCreatePixmap (display, d, data, shminfo, width,
height, depth);

Display *display;
Drawable d;
char *data;
XShmSegmentInfo *shminfo;
unsigned int width, height, depth;

The arguments are the same as for XCreatePixmap (see the X Window
System) except for two additional parameters, data and shminfo. The data
parameter is the pointer to the shared memory segment and is the same
as the shminfo.shmaddr field. The shminfo parameter is the same as the
previous structure.

If successful, a pixmap is returned, which you can manipulate. You can
manipulate its contents directly through the shared memory segment. Shared
memory pixmaps are destroyed with the XFreePixmap routine, although
you should detach and destroy the shared memory segment (see step 4 in
Section 4.7.5.2).

4.7.6 X Image Extension (XIE) Support
V1.1

Starting with DECwindows Motif for OpenVMS Version 1.1, DECwindows Motif
supports the X Image Extension (XIE). XIE allows image display processing using
resources on the server side of the X client-server model. XIE eliminates the need
to transmit image data repeatedly from the client to the server and also allows
data to be transmitted in compressed form, reducing the network load.

DECwindows Motif includes the XIE client side shareable library
(XIE$SHRLIB.EXE) and C language header files. These allow applications
to communicate with any X11 server that supports the XIE extension.

Programming Features 4–53

Programming Features
4.7 X Window System Extensions and Protocols

An XIE program uses a structure called the XIEImage to describe image data
on the client side. This general mechanism describes data that the destination
server is incapable of processing. Consult the documentation for the server
system for information on what data types and sizes are supported. Unless
the documentation specifies different limits, the server is capable of processing
unsigned byte (UdpK_DTypeBU), unaligned bit field (UdpK_DTypeVU), and
aligned bit field (UdpK_DTypeV) data, with a maximum depth of 8 bits per pixel
per component. The XIE client library supports these data types, as well as
unsigned word (UdpK_DTypeWU), and a depth of up to 16 bits per pixel per
component.

Although the XIE protocol and programming interface have been standardized for
X11R6, DECwindows Motif has not yet migrated to the latest implementation of
this protocol.

4.8 Transport Programming
The following sections contain features related to DECwindows Motif transport
interfaces.

4.8.1 Support for the LAT Transport Interface Available
V1.3–1

Support for the DECwindows Motif interface to the LAT transport, which was
withdrawn with DECwindows Motif Version 1.3, has been restored and is
available on the OpenVMS Alpha and OpenVMS I64 platforms. This support
enables users to start LAT X sessions and communicate over low-capacity
networks with systems running DECwindows Motif Version 1.3–1 or higher. It
also allows client applications running on these DECwindows Motif systems to
use the LAT transport to connect to X terminal systems.

Note that the restored LAT interface included with the OpenVMS operating
system can be used as a valid network transport for communication with the
DECwindows Motif Version 1.3–1 (or greater) and OpenVMS Version 7.3–2 (or
greater) display servers. However, use with any other communication protocols
in the X11R6.6 environment is not supported. This includes communication by or
with the following:

• Inter-Client Exchange (ICE) and Session Manager protocols

• Low-Bandwidth X (LBX) proxy servers

• Proxy manager applications

• Font servers

Additionally, HP does not support the use of a token-based authentication protocol
(such as MIT-MAGIC-COOKIE-1 or MIT-KERBEROS-5) with the restored LAT
transport interface.

4.8.2 Support for the Logical Connection Number (LCN) Interface
V1.3

DECwindows Motif now includes an interface for determining when an I/O
channel is ready and available for use. The logical connection number (LCN)
interface is now used to signal when DECwindows Motif I/O channels are
available, including those for Inter-Client Exchange (ICE), local and remote X
server, and for Input Method Server connections.

4–54 Programming Features

Programming Features
4.8 Transport Programming

Previously, DECwindows Motif used an OpenVMS event flag number (EFN) to
signal when input was received from the X server. However, EFNs cannot be
used safely in a multithreaded environment. The LCN interface allows multiple
threads to handle the same, or different, connections without any thrashing or
unnecessary delays.

The following sections further describe the functions of the LCN interface and
provide detailed information about the supported routines.

4.8.2.1 LCN Functions
The principal function of the LCN interface is to test the readiness of an I/O
channel. The design of the interface is based on the UNIX select function, which
tests the state of UNIX file descriptors and returns when one of them is ready or
a timeout occurs.

On OpenVMS, the LCN routines perform the following operations:

• Initialize support for multithreading

• Allocate a connection number

• Query the status of a connection number

• Signal when input is available

4.8.2.1.1 Initializing Thread Support LCN routines can execute in a single-
threaded environment using EFNs to signal input or in a multithreaded
environment using POSIX Threads routines. Multithreading is enabled with
the DECW$LCN_THREAD_INIT routine.

With multithreading enabled, the select routines (DECW$LCN_SELECT_ONE
and DECW$LCN_SELECT) can be called concurrently from multiple kernel
threads in user mode and one kernel thread in exec mode. Calls from user mode
ASTs are not allowed.

With single threading, the select routines can be called from user mode and exec
mode ASTs. Note, however, that the only concurrent calls allowed are one call
from user mode followed by one call from an AST in user mode.

4.8.2.1.2 Allocating Connection Numbers LCNs are allocated to a connection
using the DECW$LCN_ALLOCATE routine. Values for LCNs start at 64 to
distinguish them from local event flags. The maximum number of concurrently
allocated LCNs equals the open file limit of the process. If the quota is 0, a
default value of 1023 is used. If the quota exceeds the maximum value, a value of
2047 is used.

Once an LCN is allocated, it is unavailable for reuse until freed by the
DECW$LCN_FREE routine.

4.8.2.1.3 Querying Status and Signaling Input Each LCN has three status
flags, which signify whether an LCN is ready and has received input from a
particular operation. Each flag can be either set (1) using the DECW$LCN_
SET_x_READY routine or cleared (0) using the DECW$LCN_CLEAR_x_READY
routine.

Programming Features 4–55

Programming Features
4.8 Transport Programming

Input is signaled by setting the appropriate ready flag. The following table lists
each LCN flag and describes when it is typically set and cleared.

Flag Description

read ready Set when there is data available to read.

write ready Set when there is space in internal buffers to which data can be
written.

except ready Set when there is high-priority (exceptional) input.

Each flag can be set individually, and a select operation can test any combination
of them. There are two routines that essentially mirror the UNIX select function,
and test the ready state of an LCN. DECW$LCN_SELECT selects and tests the
status of a range of LCNs or EFNs. DECW$LCN_SELECT_ONE performs the
same function, however only tests the status of a single LCN.

4.8.3 LCN Routines
This section describes each of the LCN routines, which are available from the
library image DECW$LCNLIBSHR.EXE. To support use from protected images
that cannot use the client library, some functions are also available as part of the
X Transport system services (DECW$XPORT_SERVICES).

4.8.3.1 DECW$LCN_ALLOCATE
Assigns an LCN.

Format
DECW$LCN_ALLOCATE lcn

Returns

type: longword (unsigned)
access: write
mechanism: by value

Returns a longword condition value in R0. Condition values returned by this
routine are listed under Condition Values Returned.

Arguments
lcn
type: longword
access: write only
mechanism: by reference

The value of the allocated LCN.

Description
DECW$LCN_ALLOCATE assigns a logical connection number. Initially, each
allocated LCN is assigned with all ready flags (read, write, and except) in the
clear state (0). The state of these flags can be changed using the DECW$LCN_
SET_x_READY routines.

Once allocated, the LCN cannot be reused until it is released by DECW$LCN_
FREE. DECW$LCN_ALLOCATE must be called before any query, wait, or
signaling operations can be performed.

DECW$LCN_ALLOCATE is both thread- and AST-reentrant and is callable from
exec and lower modes.

4–56 Programming Features

Programming Features
4.8 Transport Programming

The equivalent function of DECW$LCN_ALLOCATE is also available as a system
service (DECW$XPORT_LCN_ALLOCATE) from the set of transport-common
routines (DECW$XPORT_SERVICES.EXE).

Condition Values Returned

SS$_NORMAL Routine successfully completed.

DECW$_INSFMEM There is insufficient memory to perform the operation.

DECW$_NOFREELCN All LCNs are currently allocated.

4.8.3.2 DECW$LCN_CLEAR_x_READY
Changes the ready bit for read, write, or except operations to the clear state.

Format
DECW$LCN_CLEAR_READ_READY lcn [, prior]

DECW$LCN_CLEAR_WRITE_READY lcn [, prior]

DECW$LCN_CLEAR_EXCEPT_READY lcn [, prior]

Returns

type: longword (unsigned)
access: write
mechanism: by value

Returns a longword condition value in R0. Condition values returned by this
routine are listed under Condition Values Returned.

Arguments
lcn
type: longword
access: read only
mechanism: by value

The value of the LCN whose ready bit for read, write, and except operations will
be changed to the clear state (0).

[prior]
type: longword
access: write only
mechanism: by reference

The previous state of the associated ready flag, either clear (0) or set (1).

Description
DECW$LCN_CLEAR_x_READY clears the read, write, or except ready bit of an
LCN. This indicates that the LCN is not available for input from the specified
operations.

These routines are thread- and AST-reentrant and callable from exec and lower
modes.

The equivalent functions of DECW$LCN_CLEAR_x_READY are also available
as system services (DECW$XPORT_LCN_CLEAR_x) from the set of transport-
common routines (DECW$XPORT_SERVICES.EXE). Note that when using the
system service, the prior argument is required; use a 0 value to prevent the prior
state from being returned.

Programming Features 4–57

Programming Features
4.8 Transport Programming

Condition Values Returned

SS$_NORMAL Routine successfully completed.

DECW$_NOT_INITIALIZED The LCN has not been initialized; DECW$LCN_
ALLOCATE must be called prior to this operation.

DECW$_INVLCN The LCN has not been allocated.

4.8.3.3 DECW$LCN_FREE
Deassigns an allocated LCN.

Format
DECW$LCN_FREE lcn

Returns

type: longword (unsigned)
access: write
mechanism: by value

Returns a longword condition value in R0. Condition values returned by this
routine are listed under Condition Values Returned.

Arguments
lcn
type: longword
access: read only
mechanism: by value

The value of the LCN to be freed.

Description
DECW$LCN_FREE deassigns the specified LCN. Once freed, the LCN is
available for immediate reallocation.

This routine is thread- and AST-reentrant and callable from exec and lower
modes.

The equivalent function of DECW$LCN_FREE is also available as a system
service (DECW$XPORT_LCN_FREE) from the set of transport-common routines
(DECW$XPORT_SERVICES.EXE).

Note

If either DECW$LCN_SELECT_ONE or DECW$LCN_SELECT has been
called to test a state of the LCN which has been freed, then the status
DECW$_INVLCN is returned from the select call.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

SS$_INSFMEM There is insufficient memory to perform the operation.

DECW$_NOT_INITIALIZED The LCN has not been initialized; DECW$LCN_
ALLOCATE must be called prior to this operation.

DECW$_INVLCN The LCN has not been allocated or is protected.

4–58 Programming Features

Programming Features
4.8 Transport Programming

4.8.3.4 DECW$LCN_SELECT
Tests the ready state(s) of one or more LCNs and returns when one of the tested
states is set, a timeout occurs, or a specified OpenVMS event flag is set.

Format
DECW$LCN_SELECT retcount, rmask, wmask, emask, [timeout], [efn], [efn_mask]

Returns

type: longword (unsigned)
access: write
mechanism: by value

Returns a longword condition value in R0. Condition values returned by this
routine are listed under Condition Values Returned.

Arguments
retcount
type: longword
access: write only
mechanism: by reference

The total number of entries set in the three mask structures (rmask, wmask,
emask).

rmask, wmask, emask
type: mask
access: read,write
mechanism: by reference

Specifies whether to check the read (rmask), write (wmask), or exception (emask)
status of one or more LCNs. A value indicates that the status check be performed;
a null value indicates that no check be made. On completion, the mask is updated
to reflect which LCNs have their ready state set.

The format of each mask is an array of word values. The first entry is the
number of remaining entries in the array. Each subsequent entry represents an
LCN value.

timeout
type: quadword
access: read only
mechanism: by reference

The time by which the select operation will timeout if no input is received. The
time value is expressed in OpenVMS binary delta-time format. A null value
indicates no timeout. A value of 0 indicates the operation is in polling mode and
will timeout immediately if none of the specified status bits are set.

efn
type: longword
access: read only
mechanism: by value

An event flag number (EFN) in the cluster to which the efn_mask argument
applies. EFNs are typically used for single-threaded or inner-mode operations. In
this environment, efn identifies an event flag for the wait operation.

Programming Features 4–59

Programming Features
4.8 Transport Programming

If no EFN value is provided in single-thread mode, SYS$HIBER and SYS$WAKE
are used. In these instances, SYS$HIBER must not be used concurrently within
the process. In particular, POSIX Threads must not be loaded into the image,
even if not in use.

For multithreaded, user mode operations, this argument can be optional
depending on whether an EFN has been provided previously to DECW$LCN_
THREAD_INIT. If the EFN was specified and the value of efn_mask is 0, the
argument is optional. Otherwise the value of this argument is required and will
be used as if it had been provided to DECW$LCN_THREAD_INIT.

efn_mask
type: longword
access: read only
mechanism: by value

A mask of EFNs to be tested. Requires the efn argument.

Description
DECW$LCN_SELECT waits until one of the specified LCN ready states has
been set, timed out, or until the event flag condition is met. This routine checks
whether the selected LCNs have been allocated and returns an error (DECW$_
INVLCN) if one or more LCNs have either not been allocated or freed for reuse.

With multithreading enabled, this routine is thread-reentrant and callable from
exec or lower modes. Calls from ASTs are not supported.

With single threading, the select routines can be called from user mode and exec
mode ASTs. Note, however, that the only concurrent calls allowed are one call
from user mode followed by one call from an AST in user mode.

Condition Values Returned

SS$_NORMAL Routine successfully completed. One or more LCNs have
their ready bit set as indicated in the updated mask
values.

SS$_EXQUOTA A process quota has been exceeded, this can be due to the
timer entry or AST limit quota.

SS$_INSFMEM There is insufficient memory to perform the operation.

SS$_UNASEFC The process is not associated with the cluster that
contains the specified event flag.

DECW$_BAD_EFN_
CLUSTER

An event flag was not provided to DECW$LCN_THREAD_
INIT, or the specified flag resides in a different event flag
cluster.

DECW$_EFN_SET One or more event flags in the mask have been set.

DECW$_INVARG The array count in a read, write, or exception mask, or
the timeout value is not valid.

DECW$_INVLCN One or more LCNs have not been allocated or were freed
during the operation.

DECW$_NOHIBER This call was made from inner-mode with multithreading
enabled. No EFN was specified.

DECW$_PTHREAD_
INVALID

A POSIX Threads routine returned an unexpected error.

DECW$_TIMEDOUT The end of the timeout period was reached.

4–60 Programming Features

Programming Features
4.8 Transport Programming

4.8.3.5 DECW$LCN_SELECT_ONE
Tests the ready state of an LCN and returns when one of the tested states is set,
a timeout occurs, or a specified OpenVMS event flag is set.

Format
DECW$LCN_SELECT_ONE lcn, read, write, except, [timeout], [efn], [efn_mask]

Returns

type: longword (unsigned)
access: write
mechanism: by value

Returns a longword condition value in R0. Condition values returned by this
routine are listed under Condition Values Returned.

Arguments
lcn
type: longword
access: read only
mechanism: by value

The value of the LCN.

read, write, except
type: longword
access: write only
mechanism: by reference

Specifies whether to check the read, write, or exception status of an LCN. A
non-zero value signifies that the status check be performed and the result stored
in the referenced address on completion. A zero or null value indicates that no
check be made.

timeout
type: quadword
access: read only
mechanism: by reference

The time by which the select operation will timeout if no input is received. The
time value is expressed in OpenVMS binary delta-time format. A null value
indicates no timeout. A value of 0 indicates the operation is in polling mode and
will timeout immediately if none of the specified status bits are set.

efn
type: longword
access: read only
mechanism: by value

An event flag number (EFN) in the cluster to which the efn_mask argument
applies. EFNs are typically used for single-threaded or inner-mode operations. In
this environment, efn identifies an event flag for the wait operation.

If no EFN value is provided in single-thread mode, SYS$HIBER and SYS$WAKE
are used. In these instances, SYS$HIBER must not be used concurrently within
the process. In particular, POSIX Threads must not be loaded into the image,
even if not in use.

Programming Features 4–61

Programming Features
4.8 Transport Programming

For multithreaded, user mode operations, this argument can be optional
depending on whether an EFN has been provided previously to DECW$LCN_
THREAD_INIT. If the EFN was specified and the value of efn_mask is 0, the
argument is optional. Otherwise the value of this argument is required and will
be used as if it had been provided to DECW$LCN_THREAD_INIT.

efn_mask
type: longword
access: read only
mechanism: by value

A mask of EFNs to be tested. Requires the efn argument.

Description
DECW$LCN_SELECT_ONE waits until one of the specified LCN ready states has
been set, timed out, or until the event flag condition is met. This routine checks
whether the selected LCN has been allocated and returns an error (DECW$_
INVLCN) if the LCN has not been allocated or freed for reuse.

With multithreading enabled, this routine is thread-reentrant and callable from
exec or lower modes. Calls from ASTs are not supported.

With single threading, the select routines can be called from user mode and exec
mode ASTs. Note, however, that the only concurrent calls allowed are one call
from user mode followed by one call from an AST in user mode.

Condition Values Returned

SS$_NORMAL Routine successfully completed. One or more LCNs have
their ready bit set as indicated in the updated mask
values.

SS$_EXQUOTA A process quota has been exceeded, this can be due to the
timer entry or AST limit quota.

SS$_INSFMEM There is insufficient memory to perform the operation.

SS$_UNASEFC The process is not associated with the cluster that
contains the specified event flag.

DECW$_BAD_EFN_
CLUSTER

An event flag was not provided to DECW$LCN_THREAD_
INIT, or the specified flag resides in a different event flag
cluster.

DECW$_INVARG The timeout period or EFN is not accessible or within the
range of valid values.

DECW$_INVLCN The LCN has not been allocated or was freed during the
operation.

DECW$_NOHIBER This call was made from inner-mode with multithreading
enabled. No EFN was specified.

DECW$_PTHREAD_
INVALID

A POSIX Threads routine returned an unexpected error.

DECW$_TIMEDOUT The end of the timeout period was reached.

4–62 Programming Features

Programming Features
4.8 Transport Programming

4.8.3.6 DECW$LCN_SET_x_READY
Signals that input from a read, write, or exception operation has been received by
changing the ready bit to the set state.

Format
DECW$LCN_SET_READ_READY lcn

DECW$LCN_SET_WRITE_READY lcn

DECW$LCN_SET_EXCEPT_READY lcn

Returns

type: longword (unsigned)
access: write
mechanism: by value

Returns a longword condition value in R0. Condition values returned by this
routine are listed under Condition Values Returned.

Arguments
lcn
type: longword
access: read only
mechanism: by value

The value of the LCN whose ready bit will be changed to the set state (1).

Description
DECW$LCN_SET_x_READY sets the read, write, or except ready bit of an LCN.
This signals input has been received from the specified operations.

These routines are thread- and AST-reentrant and callable from exec and lower
modes. When any of the DECW$LCN_SET_x_READY routines are called from
exec mode with multithreading enabled, the call declares a user mode AST. This
AST performs the signaling for any user-mode processes that are currently in a
wait state.

The equivalent functions of DECW$LCN_SET_x_READY are also available as
system services (DECW$XPORT_LCN_SET_x) from the set of transport-common
routines (DECW$XPORT_SERVICES.EXE).

Condition Values Returned

SS$_NORMAL Routine successfully completed.

SS$_EXQUOTA The current memory quota has been exceeded.

SS$_INSFMEM There is insufficient memory to perform the operation.

DECW$_INVLCN The LCN has not been allocated.

DECW$_NOT_INITIALIZED The LCN has not been initialized; DECW$LCN_
ALLOCATE must be called prior to this operation.

Programming Features 4–63

Programming Features
4.8 Transport Programming

4.8.3.7 DECW$LCN_THREAD_INIT
Initializes multithreading support for LCN operations.

Format
DECW$LCN_THREAD_INIT [efn]

Returns

type: longword (unsigned)
access: write
mechanism: by value

Returns a longword condition value in R0. Condition values returned by this
routine are listed under Condition Values Returned.

Arguments
efn
type: longword
access: read only
mechanism: by value

The value of the specified EFN. When multithreading is enabled, an EFN value
must be specified when performing select operations (DECW$LCN_SELECT or
DECW$LCN_SELECT_ONE) with event flag masks. The EFN is supplied either
by DECW$LCN_THREAD_INIT or from the first select call that provides an efn
argument.

The value of the efn argument must match the value supplied for any previous
select operations or calls to DECW$LCN_THREAD_INIT. The event flag must
also be in the same event flag cluster as the efn value supplied to subsequent
select or initialization operations.

Description
DECW$LCN_THREAD_INIT enables multithreaded LCN operations. This
routine is only callable from user mode with user mode ASTs enabled and can be
called multiple times by a single process.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

DECW$_CHANGED_EFN An event flag was specified that differs from that specified
in a previous initialization or select call.

DECW$_INSFMEM There is insufficient memory to perform the operation.

DECW$_NOPTHREADRTL The POSIX Thread Library (PTHREAD$RTL) has not
been loaded.

DECW$_NOTUSERMODE This routine was not called from user mode.

DECW$_PTHREAD_
INVALID

A POSIX Thread routine returned an unexpected error.

4–64 Programming Features

Index

A
accessx

See AccessX Keyboard utility
AccessX features

overview, 2–19
setting with utility, 2–20

AccessX Keyboard utility (accessx), 2–19
configuration file, 2–20
resource settings, 2–21

ACME
See Authentication and Credentials

Management Extensions (ACME)
Agfa Monotype iType rasterizer, 4–22
Application Group extension (XC-APPGROUP),

4–37
Application Manager

selecting screen for application display, 2–8
Asynchronous system traps (ASTs), 4–2
Authentication and Credentials Management

Extensions (ACME), 3–1

B
Big Requests extension (BIG-REQUESTS), 4–38

C
CDA

applications, 2–13
dynamic font support, 2–12
packing, 2–14
unpacking, 2–14

changes to external reference processing, 4–7
converters, 2–11
converting Asian-language text files, 2–11
defining logical names, 2–10
interface changes, 4–6
internationalization support, 2–9
message, 2–16
packing and unpacking error messages, 2–15
programming, 4–6
restructuring of shareable images, 4–8
specifying an options file, 2–10
WRITE$FONTS logical name, 2–12

Color Customizer, 2–3
auto shadowing toggle button, 2–6
building, 2–3
command summary, 2–4
mapping color resources and color cells, 2–5
modifying DECW$LOGIN.COM, 2–4
running, 2–4
supported

applications, 2–3
displays, 2–3

using on multiheaded systems, 2–6
xsetroot_cust demo, 2–7

Colormap Utilization Policy extension (TOG-CUP),
4–38

CompositeClassExtensionRec
new option, 4–13

Compound Document Architecture
See CDA

D
DBE

See X Double Buffer extension
DECterm

automatic window positioning, 2–17
escape sequences, 2–17
font sizes, 2–16
page-movement sequences, 4–9
programming, 4–8
ReGIS input cursors, 4–8
scrolling using the keyboard, 2–16

DECW$IPV6_FONT_SUPPORT parameter, 3–2
DECW$IPV6_SUPPORT global symbol, 2–1
DECW$LCN_ALLOCATE routine, 4–55, 4–56
DECW$LCN_CLEAR_x_READY routine, 4–55,

4–57
DECW$LCN_FREE routine, 4–58
DECW$LCN_SELECT routine, 4–59
DECW$LCN_SELECT_ONE routine, 4–61
DECW$LCN_SET_x_READY routine, 4–55, 4–63
DECW$LCN_THREAD_INIT routine, 4–55, 4–64
DECW$STARTUP procedure

log file, 3–1
DECW$XAUTHORITY logical, 2–26
DECwindows Extensions to Motif

DXmCSText widget
input method support, 4–10

Index–1

Drag-and-drop, 2–7
DXmCSText widget

input method support, 4–10

E
Easy resource configuration, 4–12
EFS

See Extended File Specifications
Escape sequences

DECterm, 2–17
EVI

See Extended Visual Information extension
Extended File Specifications (EFS)

File Manager support, 2–2
file selection popup, 2–2
FileView support, 2–2
programming library support, 2–2
Support overview, 2–2
translated image support, 2–2

Extended Visual Information extension (EVI),
4–39

F
File Manager

refreshing views, 2–8
selecting screen for application display, 2–8

Fonts
Common

Fixed Width, 4–32
Language-Specific, 4–33
Miscellaneous, 4–33
Sun Open Look Glyph, 4–32
VT330, 4–32

75 dpi
Charter, 4–23
Lucida, 4–24
Present Bullets, 4–26
Utopia, 4–26

100 dpi
Charter, 4–27
Lucida, 4–28
Present Bullets, 4–31
Utopia, 4–31

Scalable
Adobe Courier, 4–35
Adobe Utopia, 4–35
Agfa Monotype Albany, 4–34
Agfa Monotype Cumberland, 4–34
Agfa Monotype Screen, 4–35
Agfa Monotype Thorndale, 4–35
Bitstream Charter, 4–34
Bitstream Courier, 4–34

Font server
proxy server

support with IPv6, 3–2

Front Panel
selecting screen for application display, 2–8
support for MB3 operations, 2–9

G
Global symbols

DECW$IPV6_SUPPORT, 2–1

H
Header files

languages, 4–17
HP Extensions to Motif, 4–10

I
ICE

See Inter-Client Exchange protocol
Input cursors

cross-hair, 4–8
diamond, 4–8
rubber-band line, 4–8
rubber-band rectangle, 4–8
selecting, 4–8

Inter-Client Exchange protocol (ICE), 4–44
client-side library, 4–45
differences from the X11R6.6 implementation,

4–46
IPv6 considerations, 4–47
multithreading considerations, 4–45

Internationalization
converting files, 2–11
viewing files, 2–9

Internet Protocol Version 6 transport
See IPv6

IPv6, 2–1
changes to ICE library, 4–47
impact on xauth, 2–27
support with font server, 3–2
Xlib changes, 4–14

K
Keyboard

scrolling in DECterm, 2–16

L
Language bindings, 4–17
LBX

See Low-Bandwidth X extension
LCN

See Logical Connection Number interface
Log files

DECW$STARTUP_n.LOG, 3–1

Index–2

Logical Connection Number (LCN) interface, 4–54
allocating connection numbers, 4–55
functions, 4–55
initializing thread support, 4–55
querying status, 4–55
related Xlib routines, 4–16
routines, 4–56

DECW$LCN_ALLOCATE, 4–56
DECW$LCN_CLEAR_x_READY, 4–57
DECW$LCN_FREE, 4–58
DECW$LCN_SELECT, 4–59
DECW$LCN_SELECT_ONE, 4–61
DECW$LCN_SET_x_READY, 4–63
DECW$LCN_THREAD_INIT, 4–64

signaling input, 4–55
Logical names

defining in the CDA Viewer, 2–10
Login screen

welcome message, 2–8
Low-Bandwidth X (LBX) extension, 4–39

M
MIT Shared Memory extension (MIT-SHM), 4–49
Motif

variables
UIDPATH, 4–35

Motif Window Manager
resource for XUI application support, 2–9

Multithreading
binary compatibility, 4–1
enabling support for existing applications, 4–4
supported libraries, 4–1
thread safety and concurrency, 4–2
use of ASTs, 4–2

N
New Desktop

logging in, 2–8

O
Options file

specifying, 2–10
Overlay support

See also Window Manager
colormap

avoiding potential problems, 2–17
modifying applications, 2–17, 2–18
sharing overlay colormaps with the Window

Manager, 2–18

R
Rasterizer

See Agfa Monotype iType rasterizer
ReGIS input cursors

See also Input cursors

S
Security extension (SECURITY), 4–40
Shared memory

creating and using XImages, 4–50
extension support, 4–49
pixmaps, 4–53

Startup
log file, 3–1

SVN widget
extended selection, 4–10

SYNC
See X Synchronization extension

T
Tear-off menus

using, 2–8
TOG-CUP

See Colormap Utilization Policy extension
Toolkit

changes to CompositeClassExtensionRec, 4–13
easy resource configuration, 4–12
extensions

DXmCSText widget, 4–10
SVN widget, 4–10

Translated image support
Extended File Specifications (EFS), 2–2

Transports
LAT interface support, 4–54

U
Utilities

AccessX Keyboard utility (accessx), 2–19
Window Dump to Print File utility (xpr), 2–33
X Authority utility (xauth), 2–22
X Keyboard Compiler utility (xkbcomp), 2–31

W
Window Dump to Print File utility (xpr), 2–33
Window Manager

overlay support, 2–17

Index–3

X
X$CLOSE_OM routine, 4–17
X$CONTEXTUAL_DRAWING routine, 4–18
X$CONVERT_CASE routine, 4–18
X$DESTROY_OC routine, 4–18
X$DIRECTIONAL_DEPENDENT_DRAWING

routine, 4–18
X$DISPLAY_OF_OM routine, 4–19
X$EXTENDED_MAX_REQUEST_SIZE routine,

4–19
X$INIT_IMAGE routine, 4–19
X$INIT_THREADS routine, 4–19
X$INTERNAL_CONNECTION_NUMBERS

routine, 4–20
X$LOCALE_OF_OM routine, 4–20
X$LOCK_DISPLAY routine, 4–20
X$OPEN_OM routine, 4–20
X$PROCESS_INTERNAL_CONNECTION routine,

4–21
X$REGISTER_IM_INSTANTIATE_CB routine,

4–21
X$SET_AUTHORIZATION routine, 4–21
X$UNLOCK_DISPLAY routine, 4–21
X$UNREGISTER_IM_INSTANTIATE_CB routine,

4–22
xauth

See X Authority utility
X authority file

adding and removing file entries, 2–29
copying entries between files, 2–30
creating, 2–27
definition, 2–24
displaying file entries, 2–28
format, 2–25
generating authorization keys, 2–31
specifying, 2–26
viewing file information, 2–27

X Authority utility (xauth), 2–22
entering commands, 2–26
IPv6 considerations, 2–27
viewing and editing files, 2–28

XC-APPGROUP
See Application Group extension

XC-MISC extension, 4–41
X Display Server

extensions, 4–44
Application Group extension, 4–37
Big Requests extension, 4–38
Colormap Utilization Policy extension,

4–38
Extended Visual Information extension,

4–39
Low-Bandwidth X extension, 4–39
MIT Shared Memory extension (MIT-SHM),

4–49
Security extension, 4–40

X Display Server
extensions (cont’d)

XC-MISC extension, 4–41
X Double Buffer extension, 4–41
XINERAMA extension, 4–42
X Keyboard extension, 4–42
X Synchronization extension, 4–43

parameters
DECW$IPV6_FONT_SUPPORT, 3–2

shared memory pixmaps, 4–53
shared memory XImages, 4–50
supported extensions, 4–36

X Double Buffer extension (DBE), 4–41
X Image extension, 4–53
XINERAMA extension, 4–42
X Keyboard Compiler utility (xkbcomp), 2–31
X Keyboard extension (XKB), 4–42
Xlib

changes for IPv6 support, 4–14
client-side extension library updates for

X11R6.6, 4–15
extensions

client side library, 4–36
LCN support, 4–16
routines

XAddConnectionWatch, 4–14
_XAllocTemp, 4–14
XCloseOM, 4–14
XcmsSetCCCOfColormap, 4–14
XContextualDrawing, 4–14
XConvertCase, 4–14
XCreateOC, 4–14
XDestroyOC, 4–14
XDirectionalDependentDrawing, 4–14
XDisplayOfOM, 4–14
XESetBeforeFlush, 4–15
XExtendedMaxRequestSize, 4–15
_XFreeTemp, 4–14
XGetAtomNames, 4–15
XGetOCValues, 4–15
XGetOMValues, 4–15
XInitThreads, 4–15
XInternalConnectionNumbers, 4–15
XInternAtoms, 4–15
XLocaleOfOM, 4–15
XLockDisplay, 4–15
XOMOfOC, 4–15
XOpenOM, 4–15
XProcessInternalConnection, 4–15
XReadBitmapFileData, 4–15
XRegisterIMInstantiateCallback, 4–15
XRemoveConnectionWatch, 4–15
XSetOCValues, 4–15
XSetOMValues, 4–15
XUnlockDisplay, 4–15
XUnregisterIMInstantiateCallback, 4–15

updates for X11R6.6, 4–14
variables

Index–4

Xlib
variables (cont’d)

DISPLAY, 4–17
RESOURCE_NAME, 4–17

XmNinputMethod resource
using the shell to specify input methods, 4–10

xpr
See Window Dump to Print File utility

X Session Management protocol (XSMP), 4–47
differences from the X11R6.6 implementation,

4–48
multithread considerations, 4–48

XSMP
See X Session Management protocol

X Synchronization extension (SYNC), 4–43
XtAppMainLoop routine, 4–13
X Toolkit

routines
XtAppAddBlockHook, 4–11
XtAppAddSignal, 4–11
XtAppGetExitFlag, 4–11
XtAppLock, 4–11
XtAppMainLoop, 4–13
XtAppSetExitFlag, 4–11
XtAppUnlock, 4–11
XtCancelSelectionRequest, 4–11
XtChangeManagedSet, 4–11
XtCreateSelectionRequest, 4–11
XtDispatchEventToWidget, 4–11
XtGetClassExtension, 4–11
XtGetDisplays, 4–11
XtGetKeyboardFocusWidget, 4–11
XtGetSelectionParameters, 4–11
XtHooksOfDisplay, 4–11
XtInsertEventTypeHandler, 4–11
XtIsSessionShell, 4–11
XtLastEventProcessed, 4–11
XtNoticeSignal, 4–11
XtOpenApplication, 4–11
XtProcessLock, 4–11
XtProcessUnlock, 4–11
XtRegisterDrawable, 4–11
XtRegisterExtensionSelector, 4–12
XtReleasePropertyAtom, 4–12
XtRemoveBlockHook, 4–12
XtRemoveEventTypeHandler, 4–12
XtRemoveSignal, 4–12
XtReservePropertyAtom, 4–12
XtResolvePathname, 4–13
XtSendSelectionRequest, 4–12
XtSessionGetToken, 4–12
XtSessionReturnToken, 4–12
XtSetEventDispatcher, 4–12
XtSetSelectionParameters, 4–12
XtToolkitThreadInitialize, 4–12
XtUnregisterDrawable, 4–12
XtVaOpenApplication, 4–12

X Toolkit (cont’d)
updates for X11R6.6, 4–11
variables

sessionShellClassRec, 4–12
sessionShellWidgetClass, 4–12

Index–5

