
DECnet-Plus
FTAM Programming
Order Number: AA–PJ1EF–TE

November 1996

This manual provides information about the FTAM application
programming interface (FTAM API) that is part of the DECnet-Plus
product set.

Revision/Update Information: This is a revised manual.

Operating Systems: OpenVMS VAX Version 7.1
OpenVMS Alpha Version 7.1
Digital UNIX Version 4.0

Software Versions: DECnet-Plus for OpenVMS Version 7.1
DECnet/OSI for Digital UNIX
Version 4.0
FTAM Version 3.2

Digital Equipment Corporation
Maynard, Massachusetts

November 1996

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1996. All rights reserved.

The following are trademarks of Digital Equipment Corporation: Bookreader, DDCMP, DEC,
DECdirect, DECnet, DECNIS, DECserver, DECsystem, DECwindows, Digital, DNA, InfoServer,
OpenVMS, PATHWORKS, ULTRIX, VAX, VAX DOCUMENT, VAXcluster, VAXstation, VMS,
VMScluster, and the DIGITAL logo.

The following is a third-party trademark:

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Co. Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

Preface . v

1 Introduction

1.1 Overview of the FTAM API . 1–2
1.2 Using the FTAM API . 1–2
1.2.1 Setting up an Association . 1–2
1.2.2 Typical FTAM Protocol Exchange . 1–3
1.2.3 Typical FTAM API Call Sequence . 1–3
1.3 Mapping Block Types to Primitives . 1–4
1.4 Handling FTAM API Calls . 1–4
1.5 Managing the User Buffer . 1–4
1.6 Handling User Data . 1–5
1.7 Using Document Types . 1–5
1.7.1 Using the FTAM-1 Document Type . 1–5
1.7.2 Using the FTAM-2 Document Type . 1–6
1.7.3 Using the FTAM-3 Document Type . 1–6
1.7.4 Using the NBS-9 Document Type . 1–6
1.7.5 Default Document Type Parameter Values . 1–7
1.8 Passive Versus Active Responders . 1–7
1.9 Using Presentation Addresses . 1–8
1.9.1 Matching NSAPs and Templates . 1–9
1.10 FTAM API Version 3.0 Applications With Version 3.2 1–9
1.11 FTAM API Restrictions . 1–10

2 Building and Running FTAM API Programs

2.1 Compiling Programs with DEC C on OpenVMS VAX 2–1
2.2 Linking Programs on OpenVMS . 2–1
2.3 Running Programs on OpenVMS . 2–1
2.4 Compiling and Linking Programs on Digital UNIX 2–2
2.5 FTAM API Example Files . 2–2

3 FTAM File Services

3.1 Service Sequences . 3–1
3.1.1 Creating a New File and Writing Data . 3–2
3.1.2 Deleting a File Using Grouping . 3–2
3.1.3 Reading and Changing Attributes . 3–2
3.1.4 Performing a Series of Writes and Reads . 3–3
3.1.5 Transferring a File to a Peer System . 3–3
3.1.6 Canceling a Data Transfer . 3–4
3.2 FTAM File Services and Parameters . 3–4
3.3 Parameter Block Description . 3–7

iii

3.4 Parameter Description . 3–8

4 Data Structures

4.1 FTAM Parameter Block . 4–1
4.2 String Descriptor Specification . 4–4
4.3 Binary Descriptor Specification . 4–4
4.4 File Names . 4–5
4.5 Diagnostics . 4–5
4.6 Contents Type Lists . 4–6
4.7 Contents Type Parameter . 4–6
4.8 Document Type Parameters . 4–6
4.9 Application-Entity Entry . 4–7
4.10 Application-Entity Address . 4–8
4.11 Network Selector and Transport Options Queue (Version 3.0 Only) 4–8
4.12 Network Selector and Transport Provider Queue (Version 3.2 Only) 4–8
4.13 Transport Template Queue (Version 3.2 Only) . 4–9
4.14 Concurrency Control . 4–9
4.15 Access Control . 4–10
4.16 Access Passwords . 4–10
4.17 File Access Data Unit . 4–11
4.18 File Access Data Unit Access Context . 4–12
4.19 Charging . 4–12
4.20 User Buffer . 4–12

5 Function Calls

osif_assign_port . 5–2
osif_deassign_port . 5–5
osif_get_event . 5–7
osif_give_buffer . 5–10
osif_send . 5–12

A Error Messages

B Diagnostic Errors

Index

Tables

3–1 FTAM Primitives and Corresponding Parameters 3–4

iv

Preface

Intended Audience
The audience for this manual is OSI application programmers who require a
basic understanding of the upper-layer standards implemented by Digital’s FTAM
(File Transfer, Access, and Management) product.

Related Documents
DECnet-Plus FTAM and Virtual Terminal Use and Management provides
additional information on the FTAM software.

Read the Release Notes before you read any other document in this set.

For additional information on the DECnet-Plus products and services, access the
Digital OpenVMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

Reader’s Comments
Digital welcomes your comments on this manual or any of the DECnet-Plus
documents. Send us your comments through any of the following channels:

Internet openvmsdoc@zko.mts.dec.com

Fax 603 881-0120, Attention: OSSG Documentation, ZKO3-4/U08

Mail OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

v

Telephone and Direct Mail Orders

DTN: 264−4446

approved distributor

Fax: 603−884−3960

800−267−6215

U.S. Software Supply Business

809−781−0505

Digital Equipment Corporation

Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

8 Cotton Road

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Nashua, NH 03063−1260

Digital Equipment Caribbean, Inc.

DECdirect

Puerto Rico

800−DIGITAL

3 Digital Plaza, 1st Street, Suite 200

800−344−4825

International

P.O. Box 11038
Metro Office Park

Location

Internal Orders

San Juan, Puerto Rico 00910−2138

603−884−4446

Write

Fax: 613−592−1946

Fax

Canada

Call

Fax: 809−749−8300

Local Digital subsidiary or

U.S.A.

ZK−7654A−GE

Fax: 800−234−2298

Conventions
The following conventions apply to this book.

Convention Meaning

special type Indicates a literal example of system output or user input. In
text, indicates command names, keywords, node names, file
names, directories, utilities, and tools. On a DECnet-Plus for
OpenVMS, Digital UNIX, or ULTRIX™ system, enter the word
or phrase in the exact case shown.

You can abbreviate command keywords to the smallest
number of characters that OpenVMS, Digital UNIX, NCL,
DECdns, DECdts, and the other utilities accept, usually three
characters.

lowercase/
UPPERCASE

Because Digital UNIX software is case sensitive, you must type
all literal input in the case shown.

italic Indicates a variable.

Return Indicates that you press the Return key.

Ctrl/x Indicates that you press the Control key while you press the
key noted by x.

bold Indicates a new term defined either in the text or in the
DECnet-Plus for OpenVMS Introduction and User’s Guide
glossary or important text.

vi

Convention Meaning

command() Cross-references to specific command documentation include
the section number in the reference manual where the
commands are documented. For example: See the ocp(1)
command. This indicates that you can find the material on the
ocp command in Section 1 of the reference pages.

[] Square brackets indicate optional arguments. You can enter as
many as you want.

... Horizontal ellipsis points indicate that the preceding item can
be repeated one or more times.

.

.

.

In examples, vertical ellipsis points represent either user input
or system input that has been omitted to emphasize specific
information.

% The default user prompt in multiuser mode.

The default superuser prompt.

Other conventions are:

• All numbers are decimal unless otherwise noted.

• All Ethernet addresses are hexadecimal.

vii

1
Introduction

Accessing the FTAM protocol through a programmable interface, such as
Digital’s FTAM application programming interface (FTAM API), requires a basic
understanding of the portions of the complex FTAM protocol that are supported
by Digital’s FTAM products. This manual explains the syntax and programming
codes of the FTAM API.

Digital’s FTAM products are communications products that support file transfer
and basic file management between open systems. An open system is a computer
system that contains implementations of the seven layers of the Open Systems
Interconnection (OSI) Reference Model for communications.

The FTAM API provides an interface to the FTAM protocol machine. The FTAM
API is consistent with all the specified FTAM file service primitives and with the
structure and scope of other Digital OSI upper layer programming interfaces.

The FTAM API provides the functions specified in the FTAM standard (ISO
8571-3) by supporting the following:

• Functional Units

Read

Write

File Access

Limited File Management

Enhanced File Management

Grouping

FADU Locking

• Service Classes

Unconstrained

Management

Transfer

Transfer and Management

Access

• Attribute Groups

Storage

Security

• Document Types

FTAM-1

Introduction 1–1

Introduction

FTAM-2

FTAM-3

NBS-9

Note

This document describes both the FTAM API Version 3.0 and the FTAM
API Version 3.2. Sections specific to either Version 3.0 or Version 3.2 are
designated in the text. See Section 1.10 for issues around using FTAM
API applications written to earlier versions of the FTAM API with Version
3.2.

1.1 Overview of the FTAM API
The FTAM API is a low-level interface providing access to the FTAM protocol
machine. To use the FTAM API, you must have a good working knowledge of the
FTAM standard. You should obtain a copy of the FTAM standard (ISO 8571) for
active reference purposes.

The FTAM API consists of the following function calls. Chapter 5 describes these
calls in detail.

• osif_assign_port and osif_deassign_port are used to create and tear down
the connection to the remote system.

• osif_give_buffer is used locally to pass buffers to the FTAM API.

• osif_send and osif_get_event are used to send and receive FTAM service
primitives to and from the remote system.

Similar to the OSAK API, the FTAM API is a parameter block interface. That
parameter block is the osifpb structure. The osifpb is used by the FTAM API
user to specify which FTAM service primitive to send and what the parameters
should be. It is also used by the FTAM API to tell the API user which FTAM
service primitive was received and what the parameters are. The osifpb
structure contains a field for each parameter in any of the FTAM primitives. In
this document, parameter refers to a field of the osifpb structure.

Chapter 4 describes the osifpb structure and the other structures used by the
FTAM API.

1.2 Using the FTAM API
This section shows a typical way that the FTAM API can be used to establish an
association and perform a protocol exchange sequence with the peer entity.

1.2.1 Setting up an Association
The first call to the FTAM API is to the routine osif_assign_port. This routine
returns a port identifier which is the local identifier of the association.

Before requesting any additional services, use the osif_give_buffer call to
provide FTAM with buffers for receiving inbound events. FTAM returns these
buffers on subsequent osif_get_event calls.

1–2 Introduction

Introduction
1.2 Using the FTAM API

1.2.2 Typical FTAM Protocol Exchange
A typical FTAM protocol exchange can resemble the following:

Operation FTAM Primitives

Send: f-initialize-request

Receive: f-initialize-response

Send: f-begin-group-request

f-create-request

f-open-request

f-end-group-request

Receive: f-begin-group-response

f-create-response

f-open-response

f-end-group-response

Send: f-write-request

Send: f-data-request, f-data-request, ...

Send: f-data-end-request

Send: f-transfer-end-request

Receive: f-transfer-end-response

Send: f-terminate-request

Receive: f-terminate-response

1.2.3 Typical FTAM API Call Sequence
To implement this typical protocol exchange, you should expect to see the
following calls to the FTAM API:

Call Purpose

osif_send send the f-initialize-request

osif_get_event receive the f-initialize-response

osif_send send the f-begin-group-request

osif_send send the f-create-request

osif_send send the f-open-request

osif_send send the f-end-group-request

osif_get_event receive the f-begin-group-response

osif_get_event receive the f-create-response

osif_get_event receive the f-open-response

osif_get_event receive the f-end-group-response

.

.

.

Introduction 1–3

Introduction
1.3 Mapping Block Types to Primitives

1.3 Mapping Block Types to Primitives
The FTAM service primitives available through the FTAM API map to a set of
constants that must be set in the osif_block_type parameter of the osifpb
structure. These constants are described in Section 4.1.

These values determine the type of FTAM service primitive that a particular
osifpb structure represents. The block type will be set to one of the defined
constants upon receipt of an incoming FTAM event. A single value refers to
either a request or an indication depending on the context in which the osifpb
structure is used.

For example, if an F-INITIALIZE-request is to be sent to an FTAM responder,
then the osif_block_type parameter must be set to OSIF_PBDEF_INIT_REQ.
The osif_send function call can then be used to send the F-INITIALIZE-request
to the remote responder. If the responder receives an osifpb as part of
an osif_get_event function call and the osif_block_type parameter is
set to OSIF_PBDEF_INIT_REQ, then the osifpb received describes an
F-INITIALIZE-indication.

1.4 Handling FTAM API Calls
Except for the osif_get_event call, all FTAM API calls are blocking in nature.
Blocking means that control does not return to the user program until the
requested call has completed successfully or unsuccessfully. The osif_get_event
call may be used either in blocking or non-blocking mode. If it is used in non-
blocking mode, the osif_get_event call can poll for events by using the timeout
parameter.

1.5 Managing the User Buffer
The FTAM API must be provided with buffers after a port is assigned but before
any other operations. This is accomplished with calls to osif_give_buffer.
Once you give the FTAM API a buffer and the structure that points at the
buffer (osif_buffer_list structure) through the osif_give_buffer function call,
the FTAM API owns the buffer. You should not try to use the buffer until the
FTAM API returns the buffer to you. Buffers are returned to the user when you
deassign the port using the buffer_list argument of the osif_deassign_port
function call or when an event is received by the osif_get_event function call.

If the API has insufficient buffers to complete an osif_get_event request, the
call returns an OSIF_FAILURE status and the OSIF_NOBUFFS error. If this
situation occurs, your application should provide additional buffers using the
osif_give_buffer call and retry the osif_get_event call.

To avoid this situation, use the osif_give_buffer call before each call to
osif_get_event:

osif_give_buffer(...)
osif_get_event(...)

When an event is received successfully, the osif_get_event call might return
user buffers in the osifpb structure using the osif_returned_buffer parameter.
The osif_returned_buffer parameter might also return a null value. The
osif_returned_buffer parameter is a pointer to the osif_buffer_list
structure which points at the user buffer. Once you have finished using all
the parameters in an osifpb structure, you can reuse the buffers that the
osif_returned_buffer parameter points at by passing them back to the FTAM
API using the osif_give_buffer call. Do not return buffers to the FTAM API

1–4 Introduction

Introduction
1.5 Managing the User Buffer

before you are finished using them, because information might be lost in the
process.

1.6 Handling User Data
The user data, which corresponds to the F-DATA service primitive, is passed
to the FTAM API through the osif_userdata parameter of the osifpb.
osif_userdata is implemented as an osif_sdesc structure, which contains
a pointer to the data buffer containing the user’s file data, and an integer which
is the buffer length. Only one buffer can be used for each transfer. The FTAM
API does not support buffer chains. The FTAM API owns the buffer (that is, the
user should not change it) until the call returns. If the buffer contents change,
the unpredictable results might cause the call to fail.

For outgoing F-DATA requests, the buffer used is supplied by the user. Its
allocation is a local matter. The data buffer becomes available to the user when
the osif_send function returns.

For incoming F-DATA indications, the specified buffer in the osif_userdata
parameter is taken from the osif_give_buffer pool. The buffer may or
may not become available to the user upon receipt of the F-DATA-indication
(osif_get_event call). Buffers will be owned by the FTAM API until the API
relinquishes control of the buffer through the use of the osif_returned_buffer
parameter.

1.7 Using Document Types
Document types provide information about a file, including its intended use,
structure, and scope. The four supported document types are:

• FTAM-1 — Unstructured text files

• FTAM-2 — Sequential text files

• FTAM-3 — Unstructured binary files

• NBS-9 — NBS file directories

1.7.1 Using the FTAM-1 Document Type
An FTAM-1 document type indicates that data is sent as a stream of characters.
The buffer and buffer length must be specified in the osif_userdata parameter.
Carriage control conversion is not supplied by the FTAM API and must be
performed by the FTAM API user before passing the F-DATA to the FTAM API.
The FTAM protocol machine handles the encoding of the data. Optional escape
sequences specifying ISO character set designation are stripped from incoming
data before it is delivered to the user by the FTAM protocol machine.

The following values are supported for the FTAM-1 document type parameters:

Maximum string length OSIF_MSL_UNLIMITED Unlimited

Integer>0 Size given

String significance OSIF_STRSIG_VAR Variable

OSIF_STRSIG_FIX Fixed

OSIF_STRSIG_NS Not significant

Universal class number OSIF_UC_PRINTABLE PrintableString

OSIF_UC_IA5 IA5String

Introduction 1–5

Introduction
1.7 Using Document Types

OSIF_UC_GRAPHIC GraphicString

OSIF_UC_VISIBLE VisibleString

OSIF_UC_GENERAL GeneralString

1.7.2 Using the FTAM-2 Document Type
An FTAM-2 document type indicates that data is delivered to the user one file
access data unit (FADU) at a time. The user receives one osifpb structure per
FADU which points to the FADU through the osif_userdata parameter.

The following values are supported for the FTAM-2 document type parameters:

Maximum string length OSIF_MSL_UNLIMITED Unlimited

Integer>0 Size Given

String significance OSIF_STRSIG_VAR Variable

OSIF_STRSIG_FIX Fixed

OSIF_STRSIG_NS Not significant

Universal class number OSIF_UC_PRINTABLE PrintableString

OSIF_UC_IA5 IA5String

OSIF_UC_GRAPHIC GraphicString

OSIF_UC_VISIBLE VisibleString

OSIF_UC_GENERAL GeneralString

1.7.3 Using the FTAM-3 Document Type
An FTAM-3 document type indicates that data is sent as a stream of octets.
The buffer and buffer length must be specified in the osif_userdata parameter.
The FTAM protocol machine handles the encoding of the data. Optional escape
sequences specifying ISO character set designation are stripped from incoming
data before it is delivered to the user by the FTAM protocol machine.

The following values are supported for the FTAM-3 document type parameters:

Maximum string length OSIF_MSL_UNLIMITED Unlimited

Integer>0 Size Given

String significance OSIF_STRSIG_VAR Variable

OSIF_STRSIG_FIX Fixed

OSIF_STRSIG_NS Not significant

1.7.4 Using the NBS-9 Document Type
An NBS-9 document type indicates that FTAM initiators can read the contents of
a remote directory file. More information on the NBS-9 document type is in the
NIST special publication, Stable Implementation Agreements for Open Systems
Interconnection Protocols Version 2 Edition 1. The file contents are defined by the
following abstract syntax (NBS-AS2):

NBS_AS2 DEFINITIONS ::=
BEGIN
FileDirectoryEntry ::=[PRIVATE 2] Read-Attributes
ReadAttributes ::=ISO8571-FTAM.ReadAttributes
End

1–6 Introduction

Introduction
1.7 Using Document Types

Thus, the file contents consist of records that are made up of the syntax of
an F-READ-ATTRIBUTE-response primitive. As a result, FTAM API users
receiving NBS-9 data receive an osifpb structure with all the relevant
F-READ-ATTRIBUTE-response parameters filled in for each entry in the remote
directory.

The NBS-9 document type parameters are defined as a bit string in the
osif_attribute_names parameter of the osifpb. The bit string consists of
the following bits:

read-filename(0)
read-permitted-actions(1)
read-contents-type(2)
read-storage-account(3)
read-date-and-time-of-creation(4)
read-date-and-time-of-last-modification(5)
read-date-and-time-of-last-read-access(6)
read-date-and-time-of-last-attribute-modification(7)
read-identity-of-creator(8)
read-identity-of-last-modifier(9)
read-identity-of-last-reader(10)
read-identity-of-last-attribute-modifier(11)
read-file-availability(12)
read-filesize(13)
read-future-filesize(14)
read-access-control(15)
read-legal-qualifications(16)
read-private-use(17)

1.7.5 Default Document Type Parameter Values
For the ISO document types (FTAM-1, FTAM-2, and FTAM-3), the following
default parameter values apply if one of the supported values listed for each
document type is not specified.

• If the maximum string length parameter is not specified, then the default
value is unlimited.

• There is no default for the string significance parameter. If the parameter is
not specified, then the length of the character strings is less than or equal to
the maximum string length given.

• If the universal class number parameter is not specified, then the default
value is GraphicString.

1.8 Passive Versus Active Responders
With the FTAM API, you can design an FTAM responder that is either an active
application or a passive application.

To use a passive application, do the following:

• Specify OSIF_ASSIGN_REDIRECT as the value for the port_flags argument
of the osif_assign_port call.

• On OpenVMS, declare your FTAM responder as an OSAK application. Refer
to DECnet-Plus FTAM and Virtual Terminal Use and Management, Chapter
10, for instructions on how to perform this operation. Once your responder

Introduction 1–7

Introduction
1.8 Passive Versus Active Responders

is declared, the OSAK Server starts up your responder when a connection
request arrives for its address.

• On Digital UNIX, start the FTAM listener and specify your FTAM responder
as the responder to use. Refer to DECnet-Plus FTAM and Virtual Terminal
Use and Management, Chapter 12, for information about starting up a
listener.

Once started, the FTAM listener starts up your responder when a connection
request arrives for the specified address.

To use an active application, do the following:

• Specify OSIF_ASSIGN_RESPONDER as the value for the port_flags
argument of the osif_assign_port call.

• On both OpenVMS and Digital UNIX, start the responder by running the
responder executable image directly in a process.

1.9 Using Presentation Addresses
A presentation address (p-address) specifies service access points (SAPs) for
the service providers of all the upper layers to be accessed. For Digital’s FTAM
product, a p-address always contains presentation, session, and transport
selectors. It also must have an NSAP. This information is contained in the
osif_local_p_addrs and osif_peer_p_addrs parameters of the osifpb. The
osif_ae_entry structure is used for these parameters.

The field p_address of the osif_ae_entry structure is used for the upper layer
SAPs. The SAPs should be specified in the following format:

psap.ssap.tsap.

Field descriptions:

psap is the presentation service access point. Its value can be any string.

ssap is the session service access point. Its value can be any string.

tsap is the transport service access point.

The p-address value can include character strings or octet strings. Octet strings
must be preceded by %x (or %X). Each selector is terminated on its right by a
delimiter (.). If a particular selector is not required, the delimiter (.) must still be
included.

For example, if the SSAP is not required, then the format of the p-address might
resemble the following:

PSAP..TSAP.

For the FTAM API Version 3.0, the nsap_queue field of the osif_ae_entry
structure contains the NSAP, provider, and template information, where:

nsap is the network service access point. For a remote or local system, you must ask
the system manager of the network manager for this information.

provider is the transport type in use.

template defines the transport template in use.

1–8 Introduction

Introduction
1.9 Using Presentation Addresses

For the FTAM API Version 3.2, the NSAP and provider information is contained
in a linked list pointed to by the nsap_queue_ptr field of the osif_ae_entry
structure. The template information is contained in a linked list pointed to by the
template_queue_ptr field of the osif_ae_entry structure. Chapter 3 provides
more details about these data structures.

1.9.1 Matching NSAPs and Templates
FTAM API Version 3.2 provides the ability to disassociate specific NSAPs from
specific templates. That is, there is no one-to-one correlation between NSAP and
template as there is in Version 3.0. The user provides a list of potential NSAPs,
along with the type of network service that each NSAP is expected to use, and a
list of potential transport templates.

The OSAK constants OSAK_C_CLNS, OSAK_C_CONS or OSAK_C_RFC1006
are used to indicate whether the NSAP is appropriate for a CLNS, CONS or
RFC 1006 network service. Note that OSAK_C_RFC1006 is only valid for use on
DECnet-Plus for Digital UNIX or DECnet-Plus for OpenVMS Version 6.0 or later.

When the FTAM API passes the NSAP and template lists to OSAK, OSAK
attempts to establish an association with each appropriate NSAP/template pair.

For example, suppose two NSAPs and two templates are passed:

NSAP List Template List

%x21 (CLNS) OSIT$LOOP_CONS

%x22 (CONS) OSIT$LOOP_CLNS

OSAK matches the first template in the list with an appropriate NSAP (in this
case, the second NSAP in the list), and constructs a final address to attempt an
association. Using our example, the address looks something like:

OSIT$LOOP_CONS%x22

If the association attempt fails with this particular template/NSAP pair, OSAK
continues searching the NSAP list looking for another NSAP appropriate for
a CONS connection. Once OSAK attempts all possible combinations within
the NSAP list for the first template, OSAK attempts an association with
the next template in the template list, repeating the template/NSAP pairing
operation until an association is established, or until all valid combinations of
template/NSAPs have been attempted.

1.10 FTAM API Version 3.0 Applications With Version 3.2
As discussed in Section 1.9, with FTAM API Version 3.2, the osif_ae_entry
structure is enhanced to provide additional addressing capabilities. In Version
3.2, the osif_ae_entry structure contains two additional fields (see Section 4.9).

This change requires that FTAM API applications written to earlier versions
of the API be recompiled and relinked. However, no code changes are required
unless you want to use the new addressing capabilities.

The FTAM API checks the nsap_queue[0].nsap.length field of the
osif_ae_entry structure to determine which API format is in use. If the
value of length is non-zero, the API determines that the FTAM Version 3.0 format
is being used and ignores the new fields in the osif_ae_entry structure. If the
value of length is zero, the API determines that the Version 3.2 format is being

Introduction 1–9

Introduction
1.10 FTAM API Version 3.0 Applications With Version 3.2

used. In this case, the API ignores the nsap_queue array and instead looks for
information in the new fields.

1.11 FTAM API Restrictions
The following list describes known restrictions.

• This manual describes FTAM parameters that are part of attribute groups
not supported in the FTAM API code. Parameters for unsupported attribute
groups should not be used when programming with the FTAM API. For
example, the use of abstract-syntax names and constraint set names causes
unknown results and should not be used.

• The osif_protocol_error vector and the osif_prot_error_count variable
are not filled in if OSIF_PROTOCOL_ERROR is returned by any function
call. OSIF_PROTOCOL_ERROR is used to signal that an error has occurred
at a lower layer. The osif_protocol_error vector is used to list all the errors
that have occurred in the lower layers.

• The FTAM API only supports a buffer list with one buffer. In other words,
one P_DATA must be contained in one user buffer. The size of user buffers
passed to the FTAM API must be at least 8K bytes. If the buffer is less than
8K, then the user receives the OSIF_NOBUFFS error for the osif_get_event
function call.

• If a contents type list is not specified in the F-INITIALIZE-request primitive,
the FTAM API sends all the supported document types.

• The checkpoint window parameter defaults to one even though the recovery
functional unit is not supported.

• An error should be returned by the service provider when a universal class
number is specified with FTAM-3 files on F-OPEN and F-CREATE requests.
Currently, the universal class number information is ignored and no error is
returned.

• The osif_fadu_locking parameter of the F-OPEN-request primitive is
specified in the documentation and the osif.h file, but it is not used by the
FTAM API.

1–10 Introduction

2
Building and Running FTAM API Programs

The programs that you have written for the Digital FTAM application
programming interface (FTAM API) can be built on different operating systems.
The following sections detail the differences you need to consider for the
supported operating systems. For examples of the items discussed, see the FTAM
API example files described in Section 2.5.

2.1 Compiling Programs with DEC C on OpenVMS VAX
The FTAM API object library on OpenVMS VAX is built with VAX C. If you are
compiling your FTAM API application with DEC C, you must specify certain
qualifiers on the CC command, as follows:

$ CC/EXTERN_MODEL=COMMON_BLOCK/SHARE_GLOBALS example.c

example.c is the name of your program that uses the FTAM API.

2.2 Linking Programs on OpenVMS
To link programs using the OpenVMS operating system, use the following
command:

$ LINK example.obj, API.OPT/OPTION

example.obj is the name of your program object file. API.OPT is a file containing
the following lines for OpenVMS VAX:

sys$library:osif$fmsg_ptr.obj, -
sys$library:osif$api.olb/lib, -
sys$library:osif$asn1code.olb/lib, -
sys$share:osak$osakshr.exe/share, -
sys$share:osak$prv.exe/share, -
sys$share:vaxcrtl.exe/share

Note that even if you are using DEC C instead of VAX C on your VAX system,
you must link with VAXCRTL.EXE. For OpenVMS Alpha, API.OPT is the
same except do not link with VAXCRTL.EXE (DECC$SHR.EXE is pulled in
automatically for you).

2.3 Running Programs on OpenVMS
The following items must be set up properly in order for FTAM API programs to
run on OpenVMS.

• FTAM must be able to find the contents type database. This database is
contained in the file SYS$LIBRARY:OSIF$OIDS.TXT. You may either create
the logical name FTAMOIDS that points to the database, or copy the database
to the file FTAMOIDS in the directory where the API application is run.

Building and Running FTAM API Programs 2–1

Building and Running FTAM API Programs
2.3 Running Programs on OpenVMS

• OSAK requires the following privileges to be turned on in the process that is
running the FTAM API program:

NETMBX,TMPMBX,SYSNAM,SYSLCK,PRMMBX

2.4 Compiling and Linking Programs on Digital UNIX
FTAM on Digital UNIX Version 3.0 and later ships with a sharable library
(the FTAM API on previous versions shipped a static library for the API). The
following example shows how to build with the sharable library. See also the
makefile for the FTAM API example files for an example of how to build.

To compile and link C programs using the Digital UNIX operating system Version
3.0 and later, use the following command:

cc example.c -lftam -o example

where

cc is the command used to compile and link your program.

example.c is the name of your program that uses the FTAM API.

-lftam specifies the FTAM sharable library.

-o example specifies the name of the executable file that is created.

2.5 FTAM API Example Files
Sample programs are provided written in C to demonstrate how to use the
FTAM API calls. Build files are provided to demonstrate how to compile and
link programs that use the FTAM API. These example programs create, rename,
and delete a file on the system running the example responder. The example
programs are located in the following files:

On OpenVMS:

sys$examples:osif_api_exam.c initiator side

sys$examples:osif_api_resp.c responder side

sys$examples:osif_api_bld.com build command procedure

sys$examples:osif_api_bld.opt linker options file

On Digital UNIX:

/usr/examples/ftamapi/ftam_api_example.c initiator side

/usr/examples/ftamapi/ftam_resp.c responder side

/usr/examples/ftamapi/Makefile makefile

On OpenVMS, the address information supplied in the example programs work
without modification if the example initiator and example responder are run on
the same OpenVMS system.

On Digital UNIX, most of the the address information supplied in the example
programs work without modification when running on the same system. However,
you must set the following variable in the initiator to be the NSAP of the system:

REMOTE_NSAP NSAP of system running responder

If you wish to run the initiator and responder on different systems, see comments
in the example programs themselves for instructions.

To compile and link the example program, use the provided build files as follows.

2–2 Building and Running FTAM API Programs

Building and Running FTAM API Programs
2.5 FTAM API Example Files

On OpenVMS:

$ set default sys$common:[syshlp.examples]
$ @osif_api_bld.com

On Digital UNIX:

cd /usr/examples/ftamapi
make

To run the example programs, first run the example reponder in one process,
then run the example initiator in a second process. Note that the example
responder does not use the OSAK server on OpenVMS or the ftam_listener on
Digital UNIX. The example responder executable is an active application (see
Section 1.8 for a discussion of passive versus active responders).

Building and Running FTAM API Programs 2–3

3
FTAM File Services

This chapter describes FTAM services and the sequences in which FTAM services
can or must occur. It also describes the parameters used by the services. For
additional details, refer to the FTAM standard (ISO 8571-3 and ISO 8571-4).

3.1 Service Sequences
In using the FTAM API, you must be aware of service sequences. These
sequences are closely tied to the FTAM regimes. The following list summarizes
the sequences and functions of FTAM phases. It also shows the correlations
between different phases. For example, Phase 1 is associated with Phase 8
because establishing and ending an association are two activities that are closely
related.

Phase 1: Establishing an association

Phase 2: Selecting or creating a file

Phase 3: Opening a file

Phase 4: Locating a FADU
Phase 5: Transferring FADUs and erasing a FADU

Phase 6: Closing a file

Phase 7: Releasing a file

Phase 8: Ending an association

Each of these phases provides specific services as follows.

Phase 1: F-INITIALIZE

Phase 2: F-CREATE, F-SELECT, F-READ-ATTRIBUTE, F-CHANGE-ATTRIBUTE

Phase 3: F-OPEN

Phase 4: F-LOCATE

Phase 5: F-READ, F-WRITE, F-DATA, F-DATA-END, F-TRANSFER-END,
F-CANCEL, F-ERASE

Phase 6: F-CLOSE

Phase 7: F-DELETE, F-DESELECT

Phase 8: F-TERMINATE, F-U-ABORT

Grouping is a convenience that allows you to combine several services into a
single communications unit. Grouping functions can occur at many points within
an association. Note that the service specifications used here represent the full
series of service primitives associated with each service.

FTAM File Services 3–1

FTAM File Services
3.1 Service Sequences

When using grouping, you must understand that service classes introduce
restrictions. Service classes are defined as combinations of functional units.
As a result, grouping can occur only in certain sequences as outlined in the
FTAM standard (ISO 8571-3, Annex E). Matching F-BEGIN-GROUP and
F-END-GROUP services must occur within the same regime.

The following sections show some sample service sequences that you might use
when performing various operations.

3.1.1 Creating a New File and Writing Data

F-INITIALIZE

F-CREATE

F-OPEN

F-LOCATE

F-WRITE

F-DATA

F-DATA-END

F-TRANSFER-END

F-CLOSE

F-DESELECT

F-TERMINATE

3.1.2 Deleting a File Using Grouping

F-INITIALIZE

F-BEGIN-GROUP

F-SELECT

F-DELETE

F-END-GROUP

F-TERMINATE

3.1.3 Reading and Changing Attributes

F-INITIALIZE

F-BEGIN-GROUP

F-SELECT

F-READ-ATTRIBUTE

F-CHANGE-ATTRIBUTE

F-DESELECT

F-END-GROUP

F-TERMINATE

3–2 FTAM File Services

FTAM File Services
3.1 Service Sequences

3.1.4 Performing a Series of Writes and Reads

F-INITIALIZE

F-BEGIN-GROUP

F-SELECT

F-OPEN

F-END-GROUP

F-LOCATE

F-WRITE

F-DATA

F-DATA-END

F-TRANSFER-END

F-READ

F-DATA

F-DATA-END

F-TRANSFER-END

F-BEGIN-GROUP

F-CLOSE

F-DESELECT

F-END-GROUP

F-TERMINATE

3.1.5 Transferring a File to a Peer System

F-INITIALIZE

F-BEGIN-GROUP

F-CREATE

F-OPEN

F-END-GROUP

F-LOCATE

F-WRITE

F-DATA

F-DATA-END

F-TRANSFER-END

F-BEGIN-GROUP

F-CLOSE

F-DESELECT

F-END-GROUP

F-TERMINATE

FTAM File Services 3–3

FTAM File Services
3.1 Service Sequences

3.1.6 Canceling a Data Transfer
In this service sequence, the F-CANCEL can be issued during the data transfer
phase, in place of F-DATA or F-DATA-END.

F-INITIALIZE

F-BEGIN-GROUP

F-SELECT

F-OPEN

F-END-GROUP

F-LOCATE

F-READ or F-WRITE

F-DATA | F-CANCEL

F-DATA-END | F-CANCEL

F-TRANSFER-END

F-BEGIN-GROUP

F-CLOSE

F-DESELECT

F-END-GROUP

F-U-ABORT

3.2 FTAM File Services and Parameters
When programming with the FTAM application programming interface (FTAM
API), you must be aware of how the FTAM standard is implemented. The
FTAM primitives are used in various service sequences to provide the FTAM
file services. Each primitive has associated parameters that map to specific
descriptors in the osifpb parameter block. These relationships are shown in
Table 3–1.

Table 3–1 FTAM Primitives and Corresponding Parameters

FTAM Primitive Parameters Descriptors

F-BEGIN-GROUP Threshold osif_threshold†

F-CANCEL Action Result osif_action_result

Diagnostic osif_diagnostic

F-CHANGE-ATTRIBUTE Action Result osif_action_result‡

Attributes osif_filename
osif_storage_account
osif_file_availability
osif_future_filesize
osif_access_control
osif_legal_qualification

Diagnostic osif_diagnostic‡

F-CLOSE Action Result osif_action_result

Diagnostic osif_diagnostic

†Used for request primitives only.
‡Used for response primitives only.

(continued on next page)

3–4 FTAM File Services

FTAM File Services
3.2 FTAM File Services and Parameters

Table 3–1 (Cont.) FTAM Primitives and Corresponding Parameters

FTAM Primitive Parameters Descriptors

F-CREATE State Result osif_state_result‡

Action Result osif_action_result‡

Override osif_override†

Initial Attributes osif_filename
osif_permitted_actions
osif_contents_type
osif_storage_account
osif_file_availability
osif_future_filesize
osif_access_control
osif_legal_qualification

Create Password osif_create_password†

Requested Access osif_requested_access†

Access Passwords osif_access_passwords†

Concurrency Control osif_concurrency_control†

Account osif_account†

Diagnostic osif_diagnostic‡

F-DATA osif_userdata

F-DATA-END Action Result osif_action_result†

Diagnostic osif_diagnostic†

F-DELETE Action Result osif_action_result‡

Charging osif_charging‡

Diagnostic osif_diagnostic‡

F-DESELECT Action Result osif_action_result‡

Charging osif_charging‡

Diagnostic osif_diagnostic‡

F-END-GROUP — —

F-ERASE Action Result osif_action_result‡

FADU Identity osif_fadu†

Diagnostic osif_diagnostic‡

F-INITIALIZE State Result osif_state_result‡

Action Result osif_action_result‡

Protocol Version osif_protocol_id

Implementation
Information

osif_implementation_
information

Presentation Context
Management

osif_pres_ctx_mgmt

Service Class osif_service_class

Functional Units osif_functional_units

Attribute Groups osif_attribute_groups

†Used for request primitives only.
‡Used for response primitives only.

(continued on next page)

FTAM File Services 3–5

FTAM File Services
3.2 FTAM File Services and Parameters

Table 3–1 (Cont.) FTAM Primitives and Corresponding Parameters

FTAM Primitive Parameters Descriptors

FTAM Quality of Service osif_ftam_qual_service

Contents Type List osif_contents_type_list

Initiator Identity osif_initiator_identity†

Account osif_account†

Filestore Password osif_filestore_password†

Diagnostic osif_diagnostic‡

Checkpoint Window osif_checkpoint_window

Calling Presentation
Address and Application
Title

osif_local_p_addrs

Called Presentation
Address and Application
Title

osif_peer_p_addrs

F-LOCATE Action Result osif_action_result‡

FADU Identity osif_fadu

FADU Lock osif_fadu_lock†

Diagnostic osif_diagnostic‡

F-OPEN State Result osif_state_result‡

Action Result osif_action_result‡

Processing Mode osif_processing_mode†

Contents Type osif_contents_type

Concurrency Control osif_concurrency_control

Enable FADU Locking osif_fadu_locking†

Diagnostic osif_diagnostic‡

Activity Identifier osif_activity_ident†

Recovery Mode osif_recovery_mode

F-P-ABORT Action Result osif_action_result†

Diagnostic osif_diagnostic†

F-READ FADU Identity osif_fadu†

Access Context osif_access_context†

FADU Lock osif_fadu_lock†

F-READ-ATTRIBUTE Action Result osif_action_result‡

Attribute Names osif_attribute_names†

Attributes‡ osif_filename
osif_permitted_actions
osif_contents_type
osif_storage_account
osif_date_time_creation

†Used for request primitives only.
‡Used for response primitives only.

(continued on next page)

3–6 FTAM File Services

FTAM File Services
3.2 FTAM File Services and Parameters

Table 3–1 (Cont.) FTAM Primitives and Corresponding Parameters

FTAM Primitive Parameters Descriptors

osif_date_time_last_attmod
osif_date_time_last_read
osif_date_time_last_modif
osif_identity_creator
osif_identity_last_modify
osif_identity_last_reader
osif_identity_last_attmod
osif_file_availability
osif_filesize
osif_future_filesize
osif_access_control
osif_legal_qualification

Diagnostic osif_diagnostic‡

F-SELECT State Result osif_state_result‡

Action Result osif_action_result‡

Attributes osif_filename

Requested Access osif_requested_access†

Access Passwords osif_access_passwords†

Concurrency Control osif_concurrency_control†

Account osif_account†

Diagnostic osif_diagnostic‡

F-TERMINATE Charging osif_charging‡

F-TRANSFER-END Action Result osif_action_result‡

Diagnostic osif_diagnostic‡

F-U-ABORT Action Result osif_action_result†

Diagnostic osif_diagnostic†

F-WRITE FADU Operation osif_fadu_operation†

FADU Identity osif_fadu†

FADU Lock osif_fadu_lock†

†Used for request primitives only.
‡Used for response primitives only.

3.3 Parameter Block Description
The FTAM API provides all the service primitives offered by ISO 8571 through
the use of function calls and data structures. The function calls allow services to
be performed, and the data structures provide a way for entering and receiving
FTAM parameters from the FTAM protocol machine. The information provided
by the parameter block is referenced by the osif_send and osif_get_event calls
described in Chapter 5.

The FTAM parameter block (osifpb) describes the FTAM protocol data unit
transmitted between peer entities. All of the parameters used by the FTAM
primitives, the application-wide types, and the file attribute types are associated
with a particular descriptor that has a particular format. Section 3.4 provides
more details about the parameters and descriptors.

FTAM File Services 3–7

FTAM File Services
3.3 Parameter Block Description

Parameters are assigned to the osifpb parameter block through simple
assignment statements. The address or value of the parameters must be
stored in the address or value field of the descriptor in osifpb, depending on
whether it is a string or an integer. If the value is a bit string, the value field
of the descriptor is filled in directly. The length of the parameters must also be
assigned. If the length is not assigned, the parameter is ignored.

If your parameter requires a choice of values, there is a type field that must be
used to specify the type of data. For example, if a parameter can be encoded as
an octet string or a graphic string, the type field must reflect the type. The type
field is also used to specify a Null type parameter. The possible values for the
type field and their ASN.1 universal codes are:

OSIF_UC_BOOLEAN BOOLEAN

OSIF_UC_INTEGER INTEGER

OSIF_UC_BIT BIT STRING

OSIF_UC_OCTET OCTET STRING

OSIF_UC_NULL NULL

OSIF_UC_OBJECT_ID OBJECT IDENTIFIER

OSIF_UC_OBJECT_DSC ObjectDescriptor

OSIF_UC_EXTERNAL EXTERNAL

OSIF_UC_REAL REAL

OSIF_UC_ENUMERATED ENUMERATED

OSIF_UC_NUMERIC NumericString

OSIF_UC_PRINTABLE PrintableString

OSIF_UC_T61 T61String

OSIF_UC_VIDEOTEXT VideotexString

OSIF_UC_IA5 IA5String

OSIF_UC_UTCTIME UTCTime

OSIF_UC_GENERALTIME GeneralizedTime

OSIF_UC_GRAPHIC GraphicString

OSIF_UC_VISIBLE VisibleString

OSIF_UC_GENERAL GeneralString

If the parameter has a default and the length is zero, the default is applied by
the FTAM API. If the length is a non-zero value, then the default is not applied.

Chapter 4 provides more details on the FTAM parameter block data structure
(osifpb) and the other data structures used by the FTAM API to pass parameter
information.

3.4 Parameter Description
This section describes the parameters of osifpb and their possible values. The
parameters are listed alphabetically. For more details about their usage, refer to
the FTAM standard (ISO 8571-3 and ISO 8571-4).

3–8 FTAM File Services

FTAM File Services
3.4 Parameter Description

osif_access_context (Access Context)
Specifies the file access structure for read operations. See Section 4.18 for more
information.

osif_access_control (Access Control attribute)
Defines conditions under which file access is valid. This value is set at file
creation, but it can be altered by the change attribute action. A condition consists
of one or two terms stating the type of access allowed (an action list term or
a concurrency access term), together with a set of zero to three terms testing
for matching attribute values (initiator identity, access passwords, or calling
AE-title). See Section 4.15 for more information.

osif_access_passwords (Access Passwords)
Provides passwords for the actions specified in the requested access parameter.
This parameter is available only if the security attribute group has been
negotiated. See Section 4.16 for more information.

osif_account (Account)
Identifies the account to charge for the cost of a regime establishment. It is used
to set the current account activity attribute. If this parameter is not specified,
the activity attribute is unset or retains its previous value. The current account
activity attribute reverts to its previous value at the end of a regime.

osif_action_result (Action Result)
Passes on summarized information that is available in the diagnostic parameter.
It has the following possible values.

OSIF_SR_SUCCESS success, the default value

OSIF_TRANSIENT_ERROR transient-error

OSIF_PERMANENT_ERROR permanent-error

osif_activity_ident (Activity Identifier)
Used only when the recovery functional unit has been negotiated on
F-INITIALIZE. Its value (an integer) is used in reestablishing the data-transfer
regime after a failure.

osif_application_context (Application Context Name)
Represents the properties of the association. The initiator proposes a name that
the responder may accept and return or the responder may return a different
name. The application context name returned by the responder is used for the
established association.

osif_attribute_groups (Attribute Groups)
Negotiates the set of optional file attribute groups available for the association.
The default value is null (empty). The following values are also possible.

OSIF_ATG_STORAGE storage

OSIF_ATG_SECURITY security

OSIF_ATG_PRIVATE private

osif_attribute_names (Attribute Names)
Indicates which file attributes from the kernel or negotiated attribute groups are
read. The possible groups are the kernel group, the storage group, the security
group, and the private group.

FTAM File Services 3–9

FTAM File Services
3.4 Parameter Description

The kernel group has the following possible values for file attributes.

OSIF_ATT_FILENAME file name

OSIF_ATT_PERMITTED_ACTIONS permitted actions

OSIF_ATT_CONTENTS_TYPE contents type

The storage group has the following possible values for file attributes.

OSIF_ATT_STORAGE_ACCOUNT storage account

OSIF_ATT_CREATION_TIME date and time of creation

OSIF_ATT_MODIFICATION_TIME date and time of last modification

OSIF_ATT_READ_TIME date and time of last read access

OSIF_ATT_ATTRIBUTE_MODIFICATION_
TIME

date and time of last attribute modification

OSIF_ATT_CREATOR_ID identity of creator

OSIF_ATT_MODIFIER_ID identity of last modifier

OSIF_ATT_READER_ID identity of last reader

OSIF_ATT_ATTRIBUTE_MODIFIER_ID identity of last attribute modifier

OSIF_ATT_FILE_AVAILABILITY file availability

OSIF_ATT_FILESIZE file size

OSIF_ATT_FUTURE_FILESIZE future file size

The security group has the following possible values for file attributes.

OSIF_ATT_ACCESS_CONTROL access control

OSIF_ATT_LEGAL_QUALIFICATIONS legal qualifications

The private group has the following possible value for file attributes.

OSIF_ATT_PRIVATE_USE private use

osif_block_size
Passes the size of the osifpb parameter block.

osif_block_type
Passes the function code for the FTAM primitive. See Section 4.1 for more
information.

osif_character_sets
Describes the character sets used in the file if they are different from the default,
ISO 646.

osif_charging (Charging)
Passes cost information attributed to the account during the regime being
released. This parameter can be used only if the account parameter was specified
at the beginning of the regime. See Section 4.19 for more information.

osif_checkpoint_window (Checkpoint Window)
Used only when the recovery functional unit has been negotiated, this
parameter indicates the maximum number of checkpoints that may remain
unacknowledged. This integer value is inserted only by the sender and is used for
F-INITIALIZE-request and F-INITIALIZE-response.

osif_concurrency_control (Concurrency Control)
Defines the possible actions on a file and their respective access locks during a
file-select or file-open regime. See Section 4.14 for more information.

3–10 FTAM File Services

FTAM File Services
3.4 Parameter Description

osif_contents_type (Contents Type attribute)
Identifies the abstract data type of the file contents. Its value is either a
document type with optional parameters or an abstract syntax and a constraint
set name. See Section 4.7 for more information.

osif_contents_type_list (Contents Type List)
Lists the document types and abstract syntaxes and allows the negotiation of
presentation context when establishing the FTAM regime. This parameter is
mandatory in certain classes if the presentation context management functional
unit is not being negotiated. See Section 4.6 for more information.

osif_create_password (Create Password)
Describes the access control parameter create-password used by
F-CREATE-request as a character or octet string.

osif_date_time_creation (Date and Time of Creation attribute)
Indicates when the file was created in GeneralizedTime. It is set by the
responder when the file is created and refers to the local date and time of the
responder. If this parameter is not supported, set the type field of the descriptor
to OSIF_UC_NULL. It cannot be altered by the change attribute action.

osif_date_time_last_attmod (Date and Time of Last Attribute Modification
attribute)
Indicates when a file attribute value was last modified in GeneralizedTime.
If this parameter is not supported, set the type field of the descriptor to
OSIF_UC_NULL. It is altered by the responder whenever the change attribute
action is successfully performed on one or more attributes. This attribute is not
modified by an implicit change to an attribute and it cannot be altered by the
change attribute action.

osif_date_time_last_modif (Date and Time of Last Modification attribute)
Indicates when the file contents were last modified in GeneralizedTime.
If this parameter is not supported, set the type field of the descriptor to
OSIF_UC_NULL. It is altered by the responder whenever the file has been
opened for modification or extension and is closed. This attribute is not altered
unless the file is opened to allow change of the contents. It is not altered when
the file attributes are changed.

osif_date_time_last_read (Date and Time of Last Read Access attribute)
Indicates when the file contents were last read in GeneralizedTime. If
this parameter is not supported, set the type field of the descriptor to
OSIF_UC_NULL. It is altered by the responder whenever the file has been
opened for reading and is closed. This attribute is not altered unless the file is
opened and it cannot be altered by the change attribute action.

osif_diagnostic (Diagnostic)
Provides more details about the information given in the action result parameter
for a successful action, a transient error, or a permanent error. See Section 4.5
for more information.

osif_fadu (FADU Identity)
Specifies the target FADU to be used for file operations. The value of this
parameter depends on the file operation. See Section 4.17 for more information.

FTAM File Services 3–11

FTAM File Services
3.4 Parameter Description

osif_fadu_lock (FADU Lock)
Sets individual FADU locks on or off. If this parameter is not specified, the locks
remain unchanged. Setting the locks ON changes the value from "not required"
to "no access" and from "shared" to "exclusive" until the lock is set OFF, the
FADU is erased, or the file is closed. Setting the lock OFF causes the lock to
change back to its original value. The values for setting the locks ON and OFF
are:

OSIF_FADU_LOCK_OFF off

OSIF_FADU_LOCK_ON on

osif_fadu_locking (Enable FADU Locking)
Indicates whether locking is on a per-FADU basis or on a file basis as a Boolean
value. This parameter is available only if the storage attribute group has been
negotiated and the concurrency control parameter is present.

osif_fadu_operation (FADU Operation)
Indicates the action to be taken by the filestore provider on receiving transferred
data.

osif_file_availability (File Availability attribute)
Indicates the availability of the file. This parameter appears only in response
PDUs and has the following possible values:

no-value-available indicates that no value is available for this attribute by setting
the type field to OSIF_UC_NULL.

actual-values indicates when a file is available as follows:

OSIF_IMMEDIATE_AVAILABILITY — immediate availability

OSIF_DEFERRED_AVAILABILITY — deferred availability

osif_filename (File name attribute)
Describes a list of the file name parameters by providing a pointer to the osif_fn
structure. This attribute is set at file creation, but can be altered by the change
attribute action. See Section 4.4 for more information.

osif_filesize (File size attribute)
Indicates the size of the file. This parameter appears only in response PDUs and
has the following possible values:

no-value-available indicates that no value is available for this attribute by
setting the type field to OSIF_UC_NULL

actual-values indicates the size of a file

osif_filestore_password (Filestore Password)
Used by the responder to authenticate the initiator identity parameter. It is a
character or octet string.

osif_ftam_qual_service (FTAM Quality of Service)
Indicates the susceptibility of the external file service user to errors. This
parameter has the following possible values:

OSIF_FQOS_NO_RECOVERY no-recovery, not susceptible to errors and no
error recovery provided

OSIF_FQOS_CLASS_1_RECOVERY class-1-recovery, susceptible to errors that
damage the data-transfer regime

3–12 FTAM File Services

FTAM File Services
3.4 Parameter Description

OSIF_FQOS_CLASS_2_RECOVERY class-2-recovery, susceptible to errors that
damage the open or data-transfer regimes

OSIF_FQOS_CLASS_3_RECOVERY class-3-recovery, susceptible to errors that
damage the select, open, or data-transfer
regimes, or that disconnect the association

osif_functional_units (Functional Units)
Negotiates the file service functional units (except the kernel) available from the
negotiated service class for the association. This parameter has the following
values:

OSIF_FU_READ read

OSIF_FU_WRITE write

OSIF_FU_FILE_ACCESS file-access

OSIF_FU_LIMIT_FILE_MGMT limited-file-management

OSIF_FU_ENH_FILE_MGMT enhanced-file-management

OSIF_FU_GROUPING grouping

OSIF_FU_FADU_LOCKING FADU-locking

OSIF_FU_RECOVERY recovery

OSIF_FU_RESTART_DATA_XFR restart-data-transfer

osif_future_filesize (Future File size attribute)
Indicates the size in octets to which a file may grow due to modification and
extension. This integer value is set at file creation, but it can be altered by the
change attribute action.

osif_identity_creator (Identity of Creator attribute)
Indicates the value of the current initiator identity activity attribute at file
creation as a GraphicString. This attribute cannot be altered by using the change
attribute action.

osif_identity_last_attmod (Identity of Last Attribute Modifier attribute)
Indicates the value of the current initiator identity as a GraphicString whenever
the change attribute action is successfully performed on one or more attributes.
This attribute cannot be changed using the change attribute action.

osif_identity_last_modify (Identity of Last Modifier attribute)
Indicates the value of the current initiator identity activity attribute as a
GraphicString whenever the file has been opened for modification or extension
and is closed. This attribute cannot be altered by using the change attribute
action.

osif_identity_last_reader (Identity of Last Reader attribute)
Indicates the value of the current initiator identity activity attribute as a
GraphicString whenever the file has been opened for reading and is closed. This
attribute cannot be altered using the change attribute action.

osif_implementation_information (Implementation Information)
Needed only if you want to distinguish versions of implementations on different
equipment.

osif_initiator_identity (Initiator Identity)
Identifies the calling user as a GraphicString.

FTAM File Services 3–13

FTAM File Services
3.4 Parameter Description

osif_legal_qualification (Legal Qualification attribute)
Indicates if the legal qualification for the security attribute group is available.
This parameter appears only in response PDUs and has the following possible
values:

no-value-available indicates that no value is available for this attribute by
setting the type field to OSIF_UC_NULL.

actual-values indicates a value for the legal qualification attribute.

osif_local_p_addrs (Local Address (host system))
The structure containing the application entity addresses (AP-title and
AE-qualifier), presentation selector, session selector, transport selector, and
up to five network service access points and transport options (template and
provider).

osif_peer_p_addrs (Target Address (system accepting the connection))
The structure containing the application entity addresses (AP-title and
AE-qualifier), presentation selector, session selector, transport selector, and
up to five network service access points and transport options (template and
provider).

osif_override (Override)
Defines the action to take if the named file already exists according to one of the
following values:

OSIF_OVR_CREATE_FAILURE create-failure

OSIF_OVR_SELECT_OLD_FILE select-old-file

OSIF_OVR_DEL_CRE_OLD_ATTRIB delete-and-create-with-old-attributes

OSIF_OVR_DEL_CRE_NEW_ATTRIB delete-and-create-with-new-attributes

osif_permitted_actions (Permitted Actions attribute)
Optional parameter that indicates the available actions and FADU identity
groups with the following values:

OSIF_PA_READ read

OSIF_PA_INSERT insert

OSIF_PA_REPLACE replace

OSIF_PA_EXTEND extend

OSIF_PA_ERASE erase

OSIF_PA_READ_ATTRIBUTE read-attribute

OSIF_PA_CHANGE_ATTRIBUTE change-attribute

OSIF_PA_DELETE_FILE delete-file

OSIF_PA_TRAVERSAL traversal

OSIF_PA_REVERSE_TRAVERSAL reverse-traversal

OSIF_PA_RANDOM_ORDER random-order

osif_pres_ctx_mgmt (Presentation Context Management)
Indicates whether the context management functional unit is used during the
FTAM open and recovery procedures as a Boolean value.

3–14 FTAM File Services

FTAM File Services
3.4 Parameter Description

osif_processing_mode (Processing Mode)
Establishes a subset of the valid actions negotiated in the select regime for use
within the open regime being established. It indicates the valid actions performed
as a result of access control and bulk data transfer requests and determines the
filestore actions that the responding entity can perform. The possible values are:

OSIF_PM_READ read

OSIF_PM_INSERT insert

OSIF_PM_REPLACE replace

OSIF_PM_EXTEND extend

OSIF_PM_ERASE erase

osif_prot_error_count (Protocol Error Count)
Indicates the number of returned errors. See Chapter 5 for more information.

osif_protocol_error
Contains a list of layer-specific errors. See Chapter 5 for more information.

osif_protocol_id (Protocol Version)
Indicates the protocol version. This parameter has a default value of version-1.

osif_recovery_mode (Recovery Mode)
Indicates the error recovery facilities available during the current open regime
and the points at which data transfer can resume according to one of the following
values:

0 none

1 at-start-of-file

2 at-any-active-checkpoint

osif_requested_access (Requested Access)
Indicates the actions performed when a file is selected or recovered according to
the following values:

OSIF_AR_READ read

OSIF_AR_INSERT insert

OSIF_AR_REPLACE replace

OSIF_AR_EXTEND extend

OSIF_AR_ERASE erase

OSIF_AR_READ_ATTRIBUTE read-attribute

OSIF_AR_CHANGE_ATTRIBUTE change-attribute

OSIF_AR_DELETE_FILE delete-file

osif_returned_buffer
Is a pointer to osif_buffer_list structure. Buffers are returned to the user
through this value. A null value can be returned. See Section 1.5 for more
information.

osif_scratchpad
Used by osifpb to manipulate data. See Section 4.1 for more information.

FTAM File Services 3–15

FTAM File Services
3.4 Parameter Description

osif_service_class (Service Class)
Indicates the capability of the initiator. This parameter has the following possible
values:

OSIF_CLASS_UNCONST unconstrained-class

OSIF_CLASS_MGMT management-class

OSIF_CLASS_XFR transfer-class

OSIF_CLASS_XFR_MGMT transfer-and-management-class

OSIF_CLASS_ACCESS access-class

osif_state_result (State Result)
Indicates the result of state changes. This parameter has the following values:

OSIF_SR_SUCCESS success

OSIF_SR_FAILURE failure

osif_storage_account (Storage Account attribute)
Identifies the accountable authority responsible for accumulated file storage
charges as a GraphicString.

osif_threshold (Threshold)
Specifies the number of primitives within a group that are analyzed without
failing before any part of the group can succeed.

osif_userdata
Describes the buffer containing the F-DATA as a string descriptor.

3–16 FTAM File Services

4
Data Structures

The data structures described in this chapter allow the FTAM API to enter and
receive FTAM parameters from the FTAM protocol machine. You will find that
within the structures, ASN.1 sequences and sets are implemented as linked lists.

4.1 FTAM Parameter Block
The osifpb structure is the main data structure of the FTAM API. This structure
contains a parameter for each parameter in any of the FTAM primitives. The
FTAM primitives are distinguished by the osif_block_type parameter. The set
of valid block types are:

Function Code FTAM Service Primitive

OSIF_PBDEF_P_ABORT F-P-ABORT

OSIF_PBDEF_U_ABORT F-U-ABORT

OSIF_PBDEF_BG_REQ F-BEGIN-GROUP-request,
F-BEGIN-GROUP-indication

OSIF_PBDEF_BG_RSP F-BEGIN-GROUP-response,
F-BEGIN-GROUP-confirm

OSIF_PBDEF_CHAT_REQ F-CHANGE-ATTRIBUTES-request,
F-CHANGE-ATTRIBUTES-indication

OSIF_PBDEF_CHAT_RSP F-CHANGE-ATTRIBUTES-response,
F-CHANGE-ATTRIBUTES-confirm

OSIF_PBDEF_CRE_REQ F-CREATE-request, F-CREATE-indication

OSIF_PBDEF_CRE_RSP F-CREATE-response, F-CREATE-confirm

OSIF_PBDEF_CLOSE_REQ F-CLOSE-request, F-CLOSE-indication

OSIF_PBDEF_CLOSE_RSP F-CLOSE-response, F-CLOSE-confirm

OSIF_PBDEF_DATA_REQ F-DATA-request, F-DATA-indication

OSIF_PBDEF_DATA_END_REQ F-DATA-END-request,
F-DATA-END-indication

OSIF_PBDEF_DELETE_REQ F-DELETE-request, F-DELETE-indication

OSIF_PBDEF_DELETE_RSP F-DELETE-response, F-DELETE-confirm

OSIF_PBDEF_DESELECT_REQ F-DESELECT-request,
F-DESELECT-indication

OSIF_PBDEF_DESELECT_RSP F-DESELECT-response,
F-DESELECT-confirm

OSIF_PBDEF_EG_REQ F-END-GROUP-request,
F-END-GROUP-indication

OSIF_PBDEF_INIT_REQ F-INITIALIZE-request,
F-INITIALIZE-indication

Data Structures 4–1

Data Structures
4.1 FTAM Parameter Block

Function Code FTAM Service Primitive

OSIF_PBDEF_INIT_RSP F-INITIALIZE-response,
F-INITIALIZE-confirm

OSIF_PBDEF_NODE_DE_REQ Node descriptor data element

OSIF_PBDEF_OPEN_REQ F-OPEN-request, F-OPEN-indication

OSIF_PBDEF_OPEN_RSP F-OPEN-response, F-OPEN-confirm

OSIF_PBDEF_RAT_REQ F-READ-ATTRIBUTES-request,
F-READ-ATTRIBUTES-indication

OSIF_PBDEF_RAT_RSP F-READ-ATTRIBUTES-response,
F-READ-ATTRIBUTES-confirm

OSIF_PBDEF_READ_REQ F-READ-request, F-READ-indication

OSIF_PBDEF_SEL_REQ F-SELECT-request, F-SELECT-indication

OSIF_PBDEF_SEL_RSP F-SELECT-response, F-SELECT-confirm

OSIF_PBDEF_TERM_REQ F-TERMINATE-request,
F-TERMINATE-indication

OSIF_PBDEF_TERM_RSP F-TERMINATE-response,
F-TERMINATE-confirm

OSIF_PBDEF_TRANSFER_END_REQ F-TRANSFER-END-request,
F-TRANSFER-END-indication

OSIF_PBDEF_TRANSFER_END_RSP F-TRANSFER-END-response,
F-TRANSFER-END-confirm

OSIF_PBDEF_WRITE_REQ F-WRITE-request, F-WRITE-indication

OSIF_PBDEF_CANCEL_REQ F-CANCEL-request, F-CANCEL-indication

OSIF_PBDEF_CANCEL_RSP F-CANCEL-response, F-CANCEL-confirm

OSIF_PBDEF_LOCATE_REQ F-LOCATE-request, F-LOCATE-indication

OSIF_PBDEF_LOCATE_RSP F-LOCATE-response, F-LOCATE-confirm

OSIF_PBDEF_ERASE_REQ F-ERASE-request, F-ERASE-indication

OSIF_PBDEF_ERASE_RSP F-ERASE-response, F-ERASE-confirm

The use of the parameters is dependent on the FTAM primitive type. Any
parameters that are not within the scope of the specific FTAM primitive type are
ignored by the FTAM API. The relationship between the FTAM primitives and
the parameters is shown in Table 3–1.

The osifpb structure has two parts — one for specific parameters and one for
variable data. The osif_scratchpad descriptor is used to distinguish these parts.

For specific parameters, usage of the scratch pad for request and response
primitives is a local issue for the FTAM API user. The allocated data can be
passed to the FTAM API locally through static or dynamic means or the data can
be referenced by the osifpb descriptors and stored in the scratch pad.

For variable data, the usage of the scratch pad for indication and response
primitives is different. The scratch pad is filled in by the FTAM API and the
underlying FTAM protocol machine. As a result, the osifpb structures may point
into the buffer supplied by the osif_give_buffer call or they may point to the
scratch pad. The buffers from the osif_give_buffer call are returned to the
FTAM API user in the osif_returned_buffer descriptor.

4–2 Data Structures

Data Structures
4.1 FTAM Parameter Block

The following osifpb structure includes all the parameters that can be used by
the FTAM API.

struct osifpb {

unsigned int osif_block_type; /* block identifier */
unsigned int osif_block_size; /* size of the block */
struct osif_buffer_list *osif_returned_buffer;
struct osif_prot_err osif_protocol_error;
int osif_prot_error_count;

struct osif_faduac osif_access_context;
struct osif_access_ctl osif_access_control;
struct osif_apwd osif_access_passwords;
struct osif_sdesc osif_account;
struct osif_bdesc osif_action_result;
struct osif_bdesc osif_activity_ident;
struct osif_sdesc osif_application_context;
struct osif_sdesc osif_arc_length;
struct osif_bdesc osif_attribute_groups;
struct osif_bdesc osif_attribute_names;
struct osif_bdesc osif_character_sets;
struct osif_charging_pb *osif_charging;
struct osif_bdesc osif_checkpoint_window;
struct osif_cc osif_concurrency_control;
struct osif_ct osif_contents_type;
struct osif_ctl *osif_contents_type_list;
struct osif_sdesc osif_create_password;
struct osif_sdesc osif_date_time_creation;
struct osif_sdesc osif_date_time_last_attmod;
struct osif_sdesc osif_date_time_last_modif;
struct osif_sdesc osif_date_time_last_read;
struct osif_sdesc osif_delete_password;
struct osif_access_ctl osif_delete_values;
struct osif_sdesc osif_define_context;
struct osif_diagnostics_pb *osif_diagnostic;
struct osif_sdesc osif_encryption_name;
struct osif_faduid osif_fadu;
struct osif_bdesc osif_fadu_lock;
struct osif_sdesc osif_fadu_locking;
struct osif_bdesc osif_fadu_operation;
struct osif_fn *osif_filename;
struct osif_bdesc osif_filesize;
struct osif_bdesc osif_file_availability;
struct osif_sdesc osif_filestore_password;
struct osif_sdesc osif_ftam_coded;
struct osif_bdesc osif_ftam_qual_service;
struct osif_bdesc osif_functional_units;
struct osif_bdesc osif_future_filesize;
struct osif_sdesc osif_initiator_identity;
struct osif_sdesc osif_identity_creator;
struct osif_sdesc osif_identity_last_attmod;
struct osif_sdesc osif_identity_last_modify;
struct osif_sdesc osif_identity_last_reader;
struct osif_sdesc osif_implementation_information;
struct osif_access_ctl osif_insert_values;
struct osif_sdesc osif_legal_qualification;
struct osif_ae_entry osif_local_p_addrs;
struct osif_bdesc osif_override;
struct osif_ae_entry osif_peer_p_addrs;
struct osif_bdesc osif_permitted_actions;
struct osif_bdesc osif_pres_ctx_mgmt;
struct osif_bdesc osif_processing_mode;
struct osif_sdesc osif_protocol_id;
struct osif_sdesc osif_remove_context;

Data Structures 4–3

Data Structures
4.1 FTAM Parameter Block

struct osif_bdesc osif_requested_access;
struct osif_bdesc osif_recovery_mode;
struct osif_bdesc osif_service_class;
struct osif_bdesc osif_session_version;
struct osif_bdesc osif_state_result;
struct osif_sdesc osif_storage_account;
struct osif_bdesc osif_threshold;
struct osif_sdesc osif_user_coded;
struct osif_sdesc osif_userdata; /* User data used to */
int osif_reserved; /* Reserved for alignment */
unsigned char osif_scratchpad[SCRATCHPAD_SIZE];

};

More information on the descriptors and their associated parameters is found in
Section 3.2 and Section 3.4.

4.2 String Descriptor Specification
String parameters can be either character, bit, or octet strings. The following
osif_sdesc structure is used to specify the string descriptor.

struct osif_sdesc {
unsigned char *address;
unsigned short length;
unsigned char type;
unsigned char class;
};

Field descriptions:

address A pointer to the specified string.

length The length of the specified string.

type Defines the type of the string. For example, OSIF_UC_GRAPHIC or
OSIF_UC_OCTET.

class Defines the class of the string. For internal use only; users do not need to
specify any value.

4.3 Binary Descriptor Specification
Binary parameters are integers. The following osif_bdesc structure is used to
specify the binary descriptor.

struct osif_bdesc {
unsigned value;
unsigned short length;
unsigned char type;
unsigned char class;
};

Field descriptions:

value The value of the specified integer.

length The length of the integer in bytes.

type Defines the type of the integer.

class Defines the class of the integer. For internal use only; users do not need to
specify any value.

4–4 Data Structures

Data Structures
4.4 File Names

4.4 File Names
File names can be specified as a sequence of graphic strings. Most profiles restrict
file names to one element. The following osif_fn structure is used to pass a file
name to the FTAM protocol machine as a Null terminated linked list.

struct osif_fn {
struct osif_fn *next;
struct osif_sdesc filename;
};

Field descriptions:

next A pointer to the next filename element.

filename The osif_sdesc string descriptor describing the filename.

4.5 Diagnostics
Diagnostics are returned as part of a response primitive. Diagnostics
can be passed as a sequence that is a Null terminated linked list. The
osif_diagnostics_pb structure follows.

struct osif_diagnostics_pb {
struct osif_diagnostics_pb *next
struct osif_bdesc diagnostic_type;
struct osif_bdesc error_identifier;
struct osif_bdesc error_observer;
struct osif_bdesc error_source;
struct osif_bdesc suggested_delay;
struct osif_sdesc further_details;
};

Field descriptions:

next A pointer to the next diagnostic in the sequence.

diagnostic_type One of the following values describing the type:

OSIF_INFORMATIVE_ERROR — informative

OSIF_TRANSIENT_ERROR — transient

OSIF_PERMANENT_ERROR — permanent

error_identifier A value describing the error that matches the diagnostic errors
found in ISO 8571-3. For your convenience, these values and
corresponding information are listed in Appendix B.

error_observer One of the following values indicating the observer of the error:

OSIF_INITIATING_USER — initiating file service user

OSIF_INITIATING_FPM — initiating file protocol machine

OSIF_RESPONDING_FPM — the responding file protocol
machine

OSIF_RESPONDING_USER — the responding file service user
(filestore)

error_source One of the following values indicating the presumed source of
the error.

OSIF_NO_CATEGORIZATION — no categorization possible

OSIF_SUPPORTING_SERVICE — service supporting the file
protocol machines

suggested_delay The integer describing the suggested delay.

Data Structures 4–5

Data Structures
4.5 Diagnostics

further_details The character string describing any extra information about
the error that the implementation wishes to provide.

4.6 Contents Type Lists
Contents type lists are part of the F-INITIALIZE service primitive. They are
Null terminated linked lists of osif_ctl structures. They describe the abstract
syntaxes supported by FTAM implementations and are used for negotiating
the abstract syntaxes between cooperating FTAM providers. The contents
type list element contains either a document type name or an abstract syntax
name. If both are specified in the same osif_ctl structure, then the error
OSIF_BAD_CNTTYLST is returned.

struct osif_ctl {
struct osif_ctl *next
struct osif_sdesc abstract_syntax_name;
struct osif_sdesc document_name;
};

Field descriptions:

next A pointer to the next contents type list.

abstract_syntax_name The character string describing the abstract syntax name.

document_name The character string describing the document type name.

4.7 Contents Type Parameter
The contents type parameter is an optional parameter of the F-CREATE and
F-OPEN primitives. The contents type specifies either a document type name
with its associated document parameters or an abstract syntax name/constraint
set name pair. Do not specify both in the same osif_ct structure.

struct osif_ct {
struct osif_sdesc abstract_syntax_name;
struct osif_sdesc constraint_set_name;
struct osif_sdesc document_name;
struct osif_dt_subparms document_param;
};

Field descriptions:

abstract_syntax_name The character string describing the abstract syntax name.

constraint_set_name The character string describing the constraint set name.

document_name The character string describing the document type name, for
example, FTAM-1 or NBS-9.

document_param The document type parameters for the specified document.

4.8 Document Type Parameters
Document type parameters are specified as part of the contents type structure
osif_ct. These parameters are associated with each specification of the document
type and describe the contents of the document type.

4–6 Data Structures

Data Structures
4.8 Document Type Parameters

struct osif_dt_subparms {
struct osif_bdesc max_string_length;
struct osif_bdesc string_significance;
struct osif_bdesc universal_class;
struct osif_bdesc attribute_names;
struct osif_bdesc max_record_length;
struct osif_bdesc record_significance;
};

Field descriptions:

max_string_length An integer describing the string length.

string_significance An integer describing the significance of strings.

universal_class An integer describing the type of strings found in the
document.

attribute_names For specifying an NBS-9 document type.

max_record_length An integer describing the maximum length of records found in
the document.

record_significance An integer describing the significance of records in the
document.

4.9 Application-Entity Entry
The application-entity entry is included as a parameter of the F-Initialize
primitive. Some of the fields of this structure are used for FTAM API Version 3.0
and some are used for FTAM API Version 3.2.

struct osif_ae_entry {
struct osif_ae_addr ae_addr;
struct osif_sdesc p_address; /* psap.ssap.tsap. */
struct osif_nsap_entry nsap_queue[OSIF_MAX_NSAPS];
struct osif_nsap_queue *nsap_queue_ptr;
struct osif_template_queue *template_queue_ptr;
};

Field descriptions:

ae_addr The structure containing the AP-title and AE-qualifier.

p_address The field containing a character string specifying the psel.ssel.tsel.
address.

Field descriptions:

• psel — is the presentation selector

• ssel — is the session selector

• tsel — is the transport selector

nsap_queue The structure containing network selectors and transport options for
FTAM API Version 3.0.

nsap_queue_
ptr

A pointer to a linked list of structures containing network selectors and
transport providers for FTAM API Version 3.2.

template_
queue_ptr

A pointer to a linked list of transport template names for FTAM API
Version 3.2.

Data Structures 4–7

Data Structures
4.10 Application-Entity Address

4.10 Application-Entity Address
The applications-entity address consists of both an application-entity qualifier
and an application-title:

struct osif_ae_addr {
struct osif_sdesc ae_qualifier
struct osif_sdesc ap_title;
}:

Field descriptions:

ae_qualifier The character string describing the AE-qualifier.

ap_title The character string describing the AP-title. If integers are being used,
this must be a pointer to an integer.

4.11 Network Selector and Transport Options Queue (Version 3.0
Only)

The network selector and transport options queue is defined as follows:

struct osif_nsap_entry {
struct osif_sdesc nsap;
struct osif_sdesc template;
struct osif_sdesc provider;
};

Field descriptions:

nsap The network service access point (NSAP). You can define up to five NSAPs
and use multihoming to establish a connection. Each time a connection
attempt fails, the initiator uses the next NSAP until either a connection is
established or no NSAPs remain.

template A character string defining which transport template is used. By default,
the transport template called "default" is used.

provider A character string specifying either the transport provider called "OSI" (for
OSI transport services), or "RFC1006" (for TCP/IP services). By default,
the transport provider called "OSI" is used.

4.12 Network Selector and Transport Provider Queue (Version 3.2
Only)

The network selector and transport provider queue is defined as follows:

struct osif_nsap_queue {
struct osif_nsap_queue *next;
struct osif_sdesc nsap;
struct osif_sdesc provider;
struct osif_bdesc network_svc;
};

Field descriptions:

next A pointer to the next NSAP queue entry.

nsap The network service access point. You can define up to five NSAPs and use
multihoming to establish a connection. See Section 1.9.1 for a description
of how the NSAPs and transport templates are used.

4–8 Data Structures

Data Structures
4.12 Network Selector and Transport Provider Queue (Version 3.2 Only)

provider A character string specifying either the transport provider called "OSI" (for
OSI transport services), or "RFC1006" (for TCP/IP services). By default,
the transport provider called "OSI" is used.

network_svc A constant used to indicate whether the NSAP is appropriate for CLNS,
CONS, or RFC1006 network service. Valid values are the OSAK constants
OSAK_C_CLNS, OSAK_C_CONS, or OSAK_C_RFC1006.

4.13 Transport Template Queue (Version 3.2 Only)
The transport template queue is defined as follows:

struct osif_template_queue {
struct osif_template_queue *next;
struct osif_sdesc template_name;
};

Field descriptions:

next A pointer to the next template queue entry.

template_
name

A character string defining which transport template is used. By default,
the transport template called "default" is used. See Section 1.9 for a
description of how the NSAPs and transport templates are used.

4.14 Concurrency Control
The concurrency control parameter is found in the F-SELECT, F-CREATE, and
F-OPEN primitives. It is used by initiators to request locks on actions performed
on remote files. The osif_cc structure follows.

struct osif_cc {
struct osif_bdesc change_attrib_cc;
struct osif_bdesc delete_file_cc;
struct osif_bdesc erase_cc;
struct osif_bdesc extend_cc;
struct osif_bdesc insert_cc;
struct osif_bdesc read_attrib_cc;
struct osif_bdesc read_cc;
struct osif_bdesc replace_cc;
};

Field descriptions:

change_attrib_cc The bit string describing the concurrency key for change
attributes.

delete_file_cc The bit string describing the concurrency key for delete.

erase_cc The bit string describing the concurrency key for erase.

extend_cc The bit string describing the concurrency key for extend.

insert_cc The bit string describing the concurrency key for insert.

read_attrib_cc The bit string describing the concurrency key for read
attributes.

read_cc The bit string describing the concurrency key for read.

replace_cc The bit string describing the concurrency key for replace.

Each field above may have one of these values:

OSIF_CC_NOT_REQUIRED not required

OSIF_CC_SHARED shared

Data Structures 4–9

Data Structures
4.14 Concurrency Control

OSIF_CC_EXCLUSIVE exclusive

OSIF_CC_NO_ACCESS no-access

4.15 Access Control
The following osif_access_ctl structure allows you to specify the security
required for file operations.

struct osif_access_ctl {
struct osif_access_ctl *next;
struct osif_sdesc no_value_avail
struct osif_bdesc action_list;
struct osif_cc concurrency_access;
struct osif_sdesc identity;
struct osif_apwd passwords;
struct osif_ae_addr location;
};

Field descriptions:

*next Points to the next access control structure in the list.

action_list Lists the actions (read, insert, replace, extend, erase, read
attribute, change attribute, and delete file) that must be
matched with the access request attributes.

concurrency_access The optional concurrency key value that corresponds to
concurrency locks (not required, shared, exclusive, and no
access) for each action.

identity An optional value that must match the initiator identity for
the association.

passwords An optional value that lists a password for each action
that must match the corresponding password in the access
passwords attribute.

location An optional application-entity title value that must match the
application-entity title attribute.

4.16 Access Passwords
Access passwords are part of the access control structure and are part of the
F-CREATE and F-READ-ATTRIBUTES primitives. The following osif_apwd
structure provides the mechanism for setting access passwords as required by the
security attribute group.

struct osif_apwd {
struct osif_sdesc chng_attrib_password;
struct osif_sdesc delete_password;
struct osif_sdesc erase_password;
struct osif_sdesc extend_password;
struct osif_sdesc insert_password;
struct osif_sdesc read_attrib_password;
struct osif_sdesc read_password;
struct osif_sdesc replace_password;
};

Field descriptions:

chng_attrib_password The character or octet string describing the password for
change attributes.

4–10 Data Structures

Data Structures
4.16 Access Passwords

delete_password The character or octet string describing the password for
delete.

erase_password The character or octet string describing the password for erase.

extend_password The character or octet string describing the password for
extend.

insert_password The character or octet string describing the password for
insert.

read_attrib_password The character or octet string describing the password for read
attributes.

read_password The character or octet string describing the password for read.

replace_password The character or octet string describing the password for
replace.

Note that the type field of the osif_sdesc structure must be set to
OSIF_UC_GRAPHIC or OSIF_UC_OCTET depending on the semantics of
the password.

4.17 File Access Data Unit
The following osif_faduid structure specifies the target FADU to be used for file
operations.

struct osif_faduid {
struct osif_bdesc fadu_number;
struct osif_bdesc fadu_ref_begin_end;
struct osif_bdesc fadu_ref_first_last;
struct osif_bdesc fadu_ref_relative;
struct osif_bdesc name_list;
struct osif_bdesc single_name;
};

Field descriptions:

fadu_number Specifies the selected node by its number in the preorder
traversal sequence for the file access structure.

fadu_ref_begin_end Indicates that the "next" FADU in the preorder traversal list
will be the first one in the file structure if this parameter
is set to OSIF_FADU_ID_BEGIN, or that the "previous"
FADU is the last FADU in the file structure if it is set to
OSIF_FADU_ID_END.

fadu_ref_first_last Identifies the first FADU in the preorder traversal
sequence for the file structure if this parameter is set to
OSIF_FADU_ID_FIRST, or the last FADU if it is set to
OSIF_FADU_ID_LAST.

fadu_ref_relative Identifies the location of FADUs in terms of "previous,"
"current," and "next" in relation to the currently identified
FADU and the preorder traversal sequence of the file access
structure by setting this value to OSIF_FADU_ID_PREVIOUS,
OSIF_FADU_ID_CURRENT, and OSIF_FADU_ID_NEXT
respectively.

name_list Specifies a path of FADU identifiers from the root node of the
file to the node to be located.

single_name Identifies the specified FADU.

Data Structures 4–11

Data Structures
4.18 File Access Data Unit Access Context

4.18 File Access Data Unit Access Context
The following osif_faduac structure is used to specify the file access structure
for read operations.

struct osif_faduac {
struct osif_bdesc fadu_context;
struct osif_bdesc fadu_level;
};

Field descriptions:

fadu_context Indicates one of the following file access structures:

OSIF_ACC_CTX_HA — Hierarchical all data units (HA)

OSIF_ACC_CTX_HN — Hierarchical no data units (HN)

OSIF_ACC_CTX_FA — Flat all data units (FA)

OSIF_ACC_CTX_FL — Flat one level data units (FL)

OSIF_ACC_CTX_FS — Flat single data unit (FS)

OSIF_ACC_CTX_UA — Unstructured all data units (UA)

OSIF_ACC_CTX_US — Unstructured single data unit (US)

fadu_level An optional value used only if FL access context is selected.

4.19 Charging
The following osif_charging_pb structure is a Null terminated linked list
that passes cost information attributed to the account during the regime being
released.

struct osif_charging_pb {
struct osif_charging_pb *next;
struct osif_sdesc charging_unit;
struct osif_bdesc charging_value;
struct osif_sdesc resource_identifier;
};

Field descriptions:

*next A pointer to the next charging structure.

charging_unit A GraphicString charging unit.

charging_value An integer charging value.

resource_identifier A GraphicString resource identifier.

4.20 User Buffer
The osif_buffer_list structure is for user data buffers. Information in these
buffers is referenced by the osifpb structure. These buffers are returned to the
user as a result of a successful osif_get_event or osif_deassign_port call.

struct osif_buffer_list {
struct osif_buffer_list *next;
int buffer_length;
char *bufferptr;
};

4–12 Data Structures

Data Structures
4.20 User Buffer

Field descriptions:

*next A pointer to the next buffer list structure.

buffer_length An integer describing the length of the buffer.

*bufferptr A pointer to the beginning of the user buffer.

Data Structures 4–13

5
Function Calls

This chapter describes the following FTAM application programming interface
(FTAM API) function calls:

• osif_assign_port

• osif_deassign_port

• osif_get_event

• osif_give_buffer

• osif_send

A success or failure value is returned as an indicator. Specific information
detailing the cause of a failure is returned in the error_code argument.
If the error_code argument is set to osif_protocol_error, then the
osif_protocol_error vector contains a list of layer-specific errors in a null
terminated list. The osif_protocol_error_count variable will be set to the
number of returned errors.

The rest of this chapter describes the calls and refers to osifpb and its
descriptors which were described in Section 4.1 and Section 3.4.

Function Calls 5–1

osif_assign_port

osif_assign_port

Creates a communication port.

Syntax
status=osif_assign_port(port_id,pb_ptr,port_flags,error_code)

Argument Data Type Passing Mechanism Access

port_id unsigned longword by reference write only

pb_ptr osifpb structure by reference read only

port_flags unsigned longword by value read only

error_code unsigned longword by reference write only

C Binding
osif_assign_port(port_id,pb_ptr,port_flags,error_code)
unsigned *port_id;
struct osifpb *pb_ptr;
unsigned port_flags;
unsigned *error_code;

Arguments

port_id
This argument is a reference to a communication port. It is used as an identifier
to map FTAM events to a specific process. Subsequent API functions must use
this identifier.

pb_ptr
This argument is a pointer to the osifpb structure, which is used to pass values
to the FTAM API. This argument is required if the program acts as a responder.
This argument must be zero (null pointer) if the program acts as an initiator.

port_flags
This argument incidates if the initiator or the responder is using
osif_assign_port function call. It accepts the following values:

OSIF_ASSIGN_INITIATOR initiator
OSIF_ASSIGN_RESPONDER responder (active)
OSIF_ASSIGN_REDIRECT responder (passive)

For more information about active and passive FTAM responders, see Section 1.8.

error_code

The error_code argument provides further information if the status returned
from the call is OSIF_FAILURE.

5–2 Function Calls

osif_assign_port

Description

This function call is used to establish a port for communication. A port identifier
is returned to the caller to be used in subsequent calls involving the particular
association. A port must be assigned for each FTAM initialization regime to be
established. This call allows users to open connections to the FTAM protocol
machine. It can be used by an initiator or a responder.
If the initiator is using this call, the pb_ptr argument has no values that need
to be passed to the FTAM API and the error_code argument is set if an error
occurs.
If the responder is using this call, the pb_ptr argument must be passed to the
FTAM API with the following fields filled in (note that the local NSAP does not
have to be specified):

Local AE-qualifier osif_local_p_addrs.ae_addr.ae_qualifier.address
osif_local_p_addrs.ae_addr.ae_qualifier.length

Local AP-title osif_local_p_addrs.ae_addr.ap_title.address
osif_local_p_addrs.ae_addr.ap_title.length

Local presentation address osif_local_p_addrs.p_address.address
osif_local_p_addrs.p_address.length

Return Values

OSIF_FAILURE A port could not be assigned. The value returned
in the argument error_code provides further
details. Possible values are:
OSIF_NOMEM — There was not enough memory
for the operation
OSIF_NOPORT — The call did not have a port
identifier

OSIF_SUCCESS A port was assigned.

Examples

This example illustrates the use of the osif_assign_port function by an
initiator.

unsigned status;
unsigned error_status;
unsigned port_id;

status = osif_assign_port (&port_id,
NULL,
OSIF_ASSIGN_INITIATOR,
&error_status);

This example illustrates the use of the osif_assign_port function by a
responder. In this case, the local AE-qualifier and AP-title are null.

unsigned status;
unsigned error_status;
unsigned port_id;

struct osifpb assign_pb;

memset(&assign_pb, 0, sizeof(assign_pb));

Function Calls 5–3

osif_assign_port

assign_pb.osif_local_p_addrs.p_address.address =
(unsigned char *)LOCAL_P_ADDRESS;

assign_pb.osif_local_p_addrs.p_address.length =
strlen (LOCAL_P_ADDRESS);

status = osif_assign_port(&port_id,
&assign_pb,
OSIF_ASSIGN_RESPONDER,
&error_status);

5–4 Function Calls

osif_deassign_port

osif_deassign_port

Destroys a communication port.

Syntax
status=osif_deassign_port(port_id,user_buffer_listptr,port_flags,error_code)

Argument Data Type Passing Mechanism Access

port_id unsigned longword by value read only

user_buffer_listptr pointer to
osif_buffer_list
structure

by reference write only

port_flags unsigned longword by value read only

error_code unsigned longword by reference write only

C Binding
osif_deassign_port(port_id,user_buffer_listptr,port_flags,error_code)
unsigned port_id;
struct osif_buffer_list **user_buffer_listptr;
unsigned port_flags;
unsigned *error_code;

Arguments

port_id
This argument is a reference to a communication port.

user_buffer_listptr
This argument contains a list of the buffers previously owned by the FTAM API
that are being returned to the user upon deassignment of the port.

port_flags
This argument has a value of OSIF_ASSIGN_INITIATOR or OSIF_ASSIGN_
RESPONDER and indicates if the intiator or the responder is using the
osif_deassign_port call.
This argument should be the same as the port_flags argument passed to the
osif_assign_port call, except that if OSIF_ASSIGN_REDIRECT was used on
osif_assign_port, OSIF_ASSIGN_RESPONDER should be used here.

error_code
The error_code argument provides further information if the status returned
from the call is OSIF_FAILURE.

Function Calls 5–5

osif_deassign_port

Description

This function call is used to destroy a communication port. A reference to the
port to be destroyed is provided by the caller. This call allows users to close
connections to the FTAM protocol machine.

Return Values

OSIF_FAILURE The port could not be deassigned. The value
returned in the argument error_code provides
further details. A possible value is:
OSIF_INVPORT — The call contained an invalid
port identifier

OSIF_SUCCESS The port was deassigned.

Example

This example illustrates the use of the osif_deassign_port function by an
initiator.

unsigned status;
unsigned error_status;
unsigned port_id;
struct osif_buffer_list *buffer_list;
struct osif_buffer_list *buf_entry;
struct osif_buffer_list *tmp_buf_entry;

status = osif_deassign_port (port_id,
&buffer_list,
OSIF_ASSIGN_INITIATOR,
&error_status);

if (buffer_list)
{

for (buf_entry = buffer_list; buf_entry;)
{
free(buf_entry->bufferptr);
tmp_buf_entry = buf_entry;
buf_entry = buf_entry->next;
free(tmp_buf_entry);
}

}

5–6 Function Calls

osif_get_event

osif_get_event

Solicits inbound events from the FTAM API.

Syntax
status=osif_get_event(port_id,pb_ptr,timeout,error_code)

Argument Data Type Passing Mechanism Access

port_id unsigned longword by value read only

pb_ptr osifpb structure by reference write only

timeout signed longword by value read only

error_code unsigned longword by reference write only

C Binding
osif_get_event(port_id,pb_ptr,timeout,error_code)
unsigned port_id;
struct osifpb *pb_ptr;
long timeout;
unsigned *error_code;

Arguments

port_id
This argument is the reference of the communication port which is being solicited
for reception of inbound events.

pb_ptr
This argument is a reference to the osifpb user parameter block supplied by
the user to the FTAM API. The FTAM API fills in the appropriate parameters
to describe the contents of the received protocol data unit (PDU). For example,
the osif_block_type parameter determines the type of FTAM event received.
If parameters have default values, they are applied by the FTAM API if the
parameter is not present in the PDU.
This call can be used to allow the reuse of buffers. If the *osif_returned_buffer
parameter is filled in, the FTAM API user may reuse any of the buffers on the
list. However, buffers must not be reused until all the information in the received
osifpb has been processed or information will be lost.

timeout
This argument is the time in seconds indicating how long the osif_get_event
call should wait before returning to the user. If timeout is a positive value, it
indicates the time in seconds to wait for the call to complete. A timeout value
of OSIF_WAIT_INFINITE indicates a synchronous call and the call blocks
indefinitely until an event is received. A timeout value of OSIF_WAIT_NONE
indicates a poll and the call returns immediately.

Function Calls 5–7

osif_get_event

error_code
The error_code argument provides further information if the status returned
from the call is OSIF_FAILURE.

Description

This function is used to solicit inbound events on a specified port. This call
receives an incoming FTAM event in either synchronous or asynchronous mode,
depending on the value of the timeout argument.

For FTAM primitives, this call will populate the osifpb user parameter block
with the function code corresponding to the type of primitive received as well
as the primitive-specific attribute values (or length/address pairs in the case of
strings).

For FTAM data, this call will:

• Copy the file data to a suitably-sized user-supplied buffer (if available).

• Fill in the user parameter block with the F-DATA function code.

• Fill in the data address parameter of the F-DATA user parameter block with
the address of the buffer containing the file data.

The osif_get_event call must be used in conjunction with the osif_give_buffer
function call. The osif_give_buffer call provides user-supplied buffers to the
FTAM API which uses these buffers to generate FTAM events. If no buffers have
been supplied through the osif_give_buffer call, then the osif_get_event call
will fail.

Return Values

OSIF_FAILURE The FTAM protocol data unit could not be
received. The value returned in the argument
error_code provides further details. Possible
values are:
OSIF_INVPORT — The call contained an invalid
port identifier
OSIF_NO_EVENT — The event was not found
during the timeout period
OSIF_NOBUFFS — Buffers were unavailable or
not large enough
OSIF_NOMEM — There was not enough memory
for the operation
OSIF_XPORTFAILURE — There were failures at
the Transport level
OSIF_RECOVERY_EVENT - There is a recovery
in progress

OSIF_SUCCESS A PDU was successfully received and passed to
the caller.

5–8 Function Calls

osif_get_event

Example

This example illustrates the use of the osif_get_event function.

unsigned port_id;
unsigned status;
unsigned error_status;
struct osifpb f_initialize_response;

memset(&f_initialize_response, 0, sizeof(f_initialize_response));

status = osif_get_event(port_id,
&f_initialize_response,
OSIF_WAIT_INFINITE,
&error_status);

Function Calls 5–9

osif_give_buffer

osif_give_buffer

Posts a linked list of buffers to the port for reception of inbound events.

Syntax
status=osif_give_buffer(port_id,user_buffer_listptr,error_code)

Argument Data Type Passing Mechanism Access

port_id unsigned longword by value read only

user_buffer_listptr osif_buffer_list
structure

by reference read only

error_code unsigned longword by reference write only

C Binding
osif_give_buffer(port_id,user_buffer_listptr,error_code)
unsigned port_id;
struct osif_buffer_list *user_buffer_listptr;
unsigned *error_code;

Arguments

port_id

This argument is a reference to the port to which the buffers are being posted.

user_buffer_listptr
This argument is the address of a linked list of buffers being posted to the
interface for use in receiving inbound events. Buffers are returned to the user as
data (never as parameter blocks) on reception of inbound events (osif_get_event)
or when the port is deassigned (osif_deassign_port).

error_code
The error_code argument provides further information if the status returned
from the call is OSIF_FAILURE.

Description

This routine is used to post buffers to a port for the purpose of receiving inbound
events. These buffers are used by the interface to return inbound events to the
user. The buffers are returned to the user on either osif_get_event calls or on
an osif_deassign_port call. Buffers returned on an osif_deassign_port call
are unused and the contents are undefined.

5–10 Function Calls

osif_give_buffer

Return Values

OSIF_FAILURE The buffers could not be posted to the interface.
The value returned in the argument error_code
provides further details. Possible values are:
OSIF_INVPORT — The call contained an invalid
port identifier
OSIF_NOMEM — There was not enough memory
for the operation

OSIF_SUCCESS The buffers were successfully posted to the
interface.

Example

This example illustrates the use of the osif_give_buffer function.

unsigned status;
unsigned error_status;
unsigned port_id;
struct osif_buffer_list *buffer_list;
int i;

for (i=0; i<5; i++)
{

buffer_list = (struct osif_buffer_list *)
malloc(sizeof(struct osif_buffer_list));

if (!buffer_list)
exit(0);

buffer_list->next = 0;
buffer_list->buffer_length = 8*1024;
buffer_list->bufferptr = (char *) malloc(8*1024);

status = osif_give_buffer(port_id,
buffer_list,
&error_status);

}

Function Calls 5–11

osif_send

osif_send

Sends an FTAM protocol data unit to the cooperating implementation.

Syntax
status=osif_send(port_id,pb_ptr,error_code)

Argument Data Type Passing Mechanism Access

port_id unsigned longword by value read only

pb_ptr osifpb structure by reference read only

error_code unsigned longword by reference write only

C Binding
osif_send(port_id,pb_ptr,error_code)
unsigned port_id;
struct osifpb *pb_ptr;
unsigned *error_code;

Arguments

port_id
This argument is the reference of the communication port on which to send the
protocol data unit.

pb_ptr
This argument is the address of the parameter block whose contents are to be
encoded and sent to the peer entity.

error_code
The error_code argument provides further information if the status returned
from the call is OSIF_FAILURE.

Description

This routine is used to send a protocol data unit (PDU) to a cooperating
implementation. Upon invocation, it validates each parameter of the osifpb
user parameter block. If any of the parameters in osifpb are invalid, the
interface returns with an error. If all parameters are valid, then an FTAM PDU
is encoded and posted to the lower layers.

This call is used to create all the request and response FTAM PDUs. All the
parameters required by the specific FTAM service primitive must be in the
osifpb that is passed to this call.

5–12 Function Calls

osif_send

Return Values

OSIF_FAILURE The FTAM protocol data unit could not be sent.
The value returned in the argument error_code
provides further details. Possible values are
listed in Appendix A.

OSIF_SUCCESS A PDU was successfully encoded and posted to
the lower layers.

Example

This example illustrates the use of the osif_send function.

unsigned port_id; /* port id */
char *init_id = "username"; /* initiator id */
char *fs_passwd = "password"; /* filestore password */
unsigned status; /* Call completion status */
unsigned error_status; /* Additional status info value */
struct osifpb f_initialize_request; /* Request parameter block */

struct osif_ctl ctlblk_1; /* Temp structures for building */
struct osif_ctl ctlblk_2; /* a contents type list */
struct osif_ctl ctlblk_3;

/*
* Zero fill the parameter block and
* contents type list blocks
*/
memset (&f_initialize_request, 0, sizeof(f_initialize_request));
memset (&ctlblk_1, 0, sizeof(ctlblk_1));
memset (&ctlblk_2, 0, sizeof(ctlblk_2));
memset (&ctlblk_3, 0, sizeof(ctlblk_3));

/*
* Set the f-initialize function code in the parameter block
*/
f_initialize_request.osif_block_type = OSIF_PBDEF_INIT_REQ;
f_initialize_request.osif_block_size = sizeof(f_initialize_request);

/*
* Store the systems presentation address in the parameter block
*/
f_initialize_request.osif_local_p_addrs.p_address.address =

(unsigned char *)LOCAL_P_ADDRESS;
f_initialize_request.osif_local_p_addrs.p_address.length =

strlen (LOCAL_P_ADDRESS);
f_initialize_request.osif_local_p_addrs.nsap_queue[0].nsap.address =

(unsigned char *)LOCAL_NSAP;
f_initialize_request.osif_local_p_addrs.nsap_queue[0].nsap.length =

strlen (LOCAL_NSAP);
f_initialize_request.osif_local_p_addrs.nsap_queue[0].template.address =

(unsigned char *)LOCAL_TEMPLATE;
f_initialize_request.osif_local_p_addrs.nsap_queue[0].template.length =

strlen (LOCAL_TEMPLATE);
f_initialize_request.osif_local_p_addrs.nsap_queue[0].provider.address =

(unsigned char *)LOCAL_PROVIDER;
f_initialize_request.osif_local_p_addrs.nsap_queue[0].provider.length =

strlen (LOCAL_PROVIDER);

Function Calls 5–13

osif_send

/*
* Store the remote systems presentation address in the parameter block
*/
f_initialize_request.osif_peer_p_addrs.p_address.address =

(unsigned char *)REMOTE_P_ADDRESS;
f_initialize_request.osif_peer_p_addrs.p_address.length =

strlen (REMOTE_P_ADDRESS);
f_initialize_request.osif_peer_p_addrs.nsap_queue[0].nsap.address =

(unsigned char *)REMOTE_NSAP;
f_initialize_request.osif_peer_p_addrs.nsap_queue[0].nsap.length =

strlen (REMOTE_NSAP);
f_initialize_request.osif_peer_p_addrs.nsap_queue[0].template.address =

(unsigned char *)REMOTE_TEMPLATE;
f_initialize_request.osif_peer_p_addrs.nsap_queue[0].template.length =

strlen (REMOTE_TEMPLATE);
f_initialize_request.osif_peer_p_addrs.nsap_queue[0].provider.address =

(unsigned char *)REMOTE_PROVIDER;
f_initialize_request.osif_peer_p_addrs.nsap_queue[0].provider.length =

strlen (REMOTE_PROVIDER);

/*
* Propose the transfer, management, and transfer and management
* service class. Note that the FTAM responder will choose the
* service class it will support for this association.
*/
f_initialize_request.osif_service_class.length = 4;
f_initialize_request.osif_service_class.value =

(OSIF_CLASS_XFR_MGMT |
OSIF_CLASS_MGMT |
OSIF_CLASS_XFR);

/*
* Propose the read, write, limited file management, enhanced file
* management and grouping functional units.
*/
f_initialize_request.osif_functional_units.length = 4;
f_initialize_request.osif_functional_units.value =

(OSIF_FU_READ |
OSIF_FU_WRITE |
OSIF_FU_LIMIT_FILE_MGMT |
OSIF_FU_ENH_FILE_MGMT |
OSIF_FU_GROUPING);

/*
* Propose the storage attribute group
*/
f_initialize_request.osif_attribute_groups.length = 4;
f_initialize_request.osif_attribute_groups.value =

OSIF_ATG_STORAGE | OSIF_ATG_SECURITY;

/*
* Set the FTAM Quality of Service to no recovery
*/
f_initialize_request.osif_ftam_qual_service.length = 4;
f_initialize_request.osif_ftam_qual_service.value =

OSIF_FQOS_NO_RECOVERY;

/*
* Tell the responder which files type we can support
* add FTAM-1, FTAM-2 and FTAM-3 to the contents_type_list
*/
ctlblk_1.document_name.address = (unsigned char *)"FTAM-1";
ctlblk_1.document_name.length = strlen(ctlblk_1.document_name.address);
ctlblk_1.next = &ctlblk_2;

ctlblk_2.document_name.address = (unsigned char *)"FTAM-2";
ctlblk_2.document_name.length = strlen(ctlblk_2.document_name.address);
ctlblk_2.next = &ctlblk_3;

5–14 Function Calls

osif_send

ctlblk_3.document_name.address = (unsigned char *)"FTAM-3";
ctlblk_3.document_name.length = strlen(ctlblk_3.document_name.address);
ctlblk_3.next = 0;

f_initialize_request.osif_contents_type_list = &ctlblk_1;

/*
* Store the filestore password and the initiator id in the
* parameter block.
* Note that the type field of the sdesc structure is used for the
* filestore password. This is because the password could be encoded
* as either a graphic string or an octet string. The type field
* tells the asn1 encoder how to encode this parameter.
*/
f_initialize_request.osif_filestore_password.address =

(unsigned char *)fs_passwd;
f_initialize_request.osif_filestore_password.length =

strlen(f_initialize_request.osif_filestore_password.address);
f_initialize_request.osif_filestore_password.type = OSIF_UC_GRAPHIC;

f_initialize_request.osif_initiator_identity.address =
(unsigned char *) init_id;

f_initialize_request.osif_initiator_identity.length =
strlen(f_initialize_request.osif_initiator_identity.address);

/*
* Send the f-initialize request to the remote responder
*/
status = osif_send(port_id,

&f_initialize_request,
&error_status);

Function Calls 5–15

A
Error Messages

The following table is a list of messages specific to the FTAM API. It also includes
a short explanation of the error message.

These are returned in the error_code argument of the osif_send call.

Message Meaning

OSIF_BAD_ACCCNTX Bad access context

OSIF_BAD_ACCCNTRL Bad access control

OSIF_BAD_ACCPWD Bad access password

OSIF_BAD_ACCOUNT Bad account

OSIF_BAD_ACTID Bad activity identifier

OSIF_BAD_ACTRES Bad action result

OSIF_BAD_APPCNTX Bad application contexts

OSIF_BAD_ARCLEN Bad arc length

OSIF_BAD_ATTNAM Bad attribute name

OSIF_BAD_ATTRGRP Bad attribute groups

OSIF_BAD_CCCNTRL Bad concurrency control

OSIF_BAD_CHARGE Bad charging

OSIF_BAD_CHATPWD Bad change attribute password

OSIF_BAD_CHKPWIN Bad checkpoint window

OSIF_BAD_CNTTYLST Bad contents type list

OSIF_BAD_CNTTYPE Bad contents type

OSIF_BAD_CREPWD Bad create password

OSIF_BAD_DELCNTX Bad delete contexts

OSIF_BAD_DELPWD Bad delete password

OSIF_BAD_DELVAL Bad delete value

OSIF_BAD_DIAG Bad diagnostic

OSIF_BAD_DTCRE Bad date and time of creation

OSIF_BAD_DTLATMD Bad date and time of last attribute modification

OSIF_BAD_DTLMOD Bad date and time of last modification

OSIF_BAD_DTLSTRD Bad date and time of last read

OSIF_BAD_ERAPWD Bad erase password

OSIF_BAD_EXTPWD Bad extend password

OSIF_BAD_FADU Bad file access data unit

OSIF_BAD_FADULK Bad FADU lock

Error Messages A–1

Error Messages

Message Meaning

OSIF_BAD_FADULKG Bad enable FADU locking

OSIF_BAD_FADUOP Bad FADU operation

OSIF_BAD_FILEAV Bad file availability

OSIF_BAD_FILENM Bad file name

OSIF_BAD_FILESZ Bad file size

OSIF_BAD_FSPWD Bad filestore password

OSIF_BAD_FQOS Bad FTAM quality of service

OSIF_BAD_FUNITS Bad functional units

OSIF_BAD_FUTFISZ Bad future file size

OSIF_BAD_IDCRE Bad identity of creator

OSIF_BAD_IDLATMD Bad identity of last attribute modifier

OSIF_BAD_IDLMOD Bad identity of last modifier

OSIF_BAD_IDLREAD Bad identity of last reader

OSIF_BAD_IMPINFO Bad implementation information

OSIF_BAD_INITID Bad initiator identity

OSIF_BAD_INSPWD Bad insert password

OSIF_BAD_INVAL Bad insert values

OSIF_BAD_LAEQUAL Bad local AE-qualifier

OSIF_BAD_LAPTITLE Bad local AP-title

OSIF_BAD_LEQUAL Bad legal qualification

OSIF_BAD_LPADDR Bad local presentation address

OSIF_BAD_OVRRIDE Bad override

OSIF_BAD_PERACT Bad permitted actions

OSIF_BAD_PCTXMGT Bad presentation context management

OSIF_BAD_PROMODE Bad processing mode

OSIF_BAD_PROTID Bad protocol version

OSIF_BAD_PRVUSE Bad private use

OSIF_BAD_RAEQUAL Bad remote AE-qualifier

OSIF_BAD_RAPTITLE Bad remote AP-title

OSIF_BAD_RDATPWD Bad read attribute password

OSIF_BAD_RDPWD Bad read password

OSIF_BAD_RECMODE Bad recovery mode

OSIF_BAD_REMCNTX Bad remove contexts

OSIF_BAD_REQACC Bad requested access

OSIF_BAD_RPADDR Bad remote presentation address

OSIF_BAD_RPLPWD Bad replace password

OSIF_BAD_SRVCLASS Bad service class

OSIF_BAD_STOACC Bad storage account

OSIF_BAD_STRES Bad state result

OSIF_BAD_THRES Bad threshold

A–2 Error Messages

Error Messages

Message Meaning

OSIF_BAD_USRDATA Bad user data

OSIF_BADITEMSIZE The call contained a bad item size

OSIF_FAILURE The operation failed

OSIF_INVPORT The call contained an invalid port identifier

OSIF_NO_EVENT The event was not found during the timeout period

OSIF_NOBUFFS Buffers were unavailable or not large enough

OSIF_NOMEM There was not enough memory for the operation

OSIF_NOPORT The call did not have a port identifier

OSIF_PARAMNORD The parameter could not be read

OSIF_PARAMNOWRT The parameter could not be written

OSIF_PROTOCOL_ERROR There are layer-specific protocol errors

OSIF_RECOVERY_EVENT There is a recovery in progress

OSIF_SUCCESS The operation succeeded

OSIF_XPORTFAILURE There were failures at the Transport level

Error Messages A–3

B
Diagnostic Errors

This chapter provides all the constants returned as error identifiers with the
osif_diagnostic described in Section 3.4.

The identifiers and reason codes from ISO 8571-3 are provided with the following
list of constants.

Identifier Constant Reason

General FTAM Diagnostics

0 OSIF_GEN_NOREASON No reason

1 OSIF_GEN_RESPERR Responder error (unspecific)

2 OSIF_GEN_SYSSHUT System shutdown

3 OSIF_GEN_MGMT FTAM management problem
(unspecific)

4 OSIF_GEN_MGMACCT FTAM management, bad account

5 OSIF_GEN_MGMSECURITY FTAM management, security not
passed

6 OSIF_GEN_DELAY Delay may be encountered

7 OSIF_GEN_INITERR Initiator error (unspecific)

8 OSIF_GEN_SUBSERR Subsequent error

9 OSIF_GEN_INSFRSRC Temporal insufficiency of resources

10 OSIF_GEN_VFSSEC Access request violates VFS
security

11 OSIF_GEN_LCLSEC Access request violates local
security

Diagnostic Errors B–1

Diagnostic Errors

Identifier Constant Reason

Protocol and Supporting Service Related Diagnostics

1000 OSIF_PRO_CNFPRMVAL Conflicting parameter values

1001 OSIF_PRO_UNSPRMVAL Unsupported parameter values

1002 OSIF_PRO_MNDPARAM Mandatory parameter not set

1003 OSIF_PRO_UNSPARAM Unsupported parameter

1004 OSIF_PRO_DUPPARAM Duplicated parameter

1005 OSIF_PRO_ILLPRMTYP Illegal parameter type

1006 OSIF_PRO_UNSPRMTYP Unsupported parameter types

1007 OSIF_PRO_PROT FTAM protocol error (unspecific)

1008 OSIF_PRO_PROTPROC FTAM protocol error, procedure
error

1009 OSIF_PRO_PROTFUNC FTAM protocol error, functional
unit error

1010 OSIF_PRO_PROTCORR FTAM protocol error, corruption
error

1011 OSIF_PRO_LWRLYR Lower layer failure

1012 OSIF_PRO_LWRLYRADRS Lower layer addressing error

1013 OSIF_PRO_TIMEOUT Timeout

1014 OSIF_PRO_SYSSHUT System shutdown

1015 OSIF_PRO_ILLGRP Illegal grouping sequence

1016 OSIF_PRO_GRPTHRSH Grouping threshold violation

1017 OSIF_PRO_PDUINC Specific PDU request inconsistent
with the current requested access

B–2 Diagnostic Errors

Diagnostic Errors

Identifier Constant Reason

Association Related Diagnostics

2000 OSIF_ASC_ASCNOTALL Association with user not allowed

2001 OSIF_ASC_NOTDEFINED (not assigned)

2002 OSIF_ASC_SRVCCLS Unsupported service class

2003 OSIF_ASC_FUNCUNI Unsupported functional unit

2004 OSIF_ASC_ATTGRP Attribute group error (unspecific)

2005 OSIF_ASC_ATTGRPNS Attribute group not supported

2006 OSIF_ASC_ATTGRPNA Attribute group not allowed

2007 OSIF_ASC_BADACCT Bad account

2008 OSIF_ASC_ASCMGM Association management
(unspecific)

2009 OSIF_ASC_ASCMGMADRS Association management - bad
address

2010 OSIF_ASC_ASCMGMACCT Association management - bad
account

2011 OSIF_ASC_CHKWINDLRG Checkpoint window error - too
large

2012 OSIF_ASC_CHKWINDSML Checkpoint window error - too
small

2013 OSIF_ASC_CHKWINDUNS Checkpoint window error -
unsupported

2014 OSIF_ASC_COMMQOS Communications QoS not
supported

2015 OSIF_ASC_INITID Initiator identity unacceptable

2016 OSIF_ASC_CTXMGMT Context management refused

2017 OSIF_ASC_ROLLBACK Rollback not available

2018 OSIF_ASC_CTLCUTRESP Contents type list cut by responder

2019 OSIF_ASC_CTLCUTPRES Contents type list by presentation
service

2020 OSIF_ASC_INVPWD Invalid filestore password

2021 OSIF_ASC_INCSVC Incompatible service classes

Diagnostic Errors B–3

Diagnostic Errors

Identifier Constant Reason

Selection Related Diagnostics

3000 OSIF_SEL_FILNOTFND File name not found

3001 OSIF_SEL_SELATTR Selection attributes not matched

3002 OSIF_SEL_INITATT Initial attributes not possible

3003 OSIF_SEL_BADATTNAM Bad attribute name

3004 OSIF_SEL_NONEXFILE Non-existent file

3005 OSIF_SEL_FILEXISTS File already exists

3006 OSIF_SEL_FILNOCREATE File cannot be created

3007 OSIF_SEL_FILNODELETE File cannot be deleted

3008 OSIF_SEL_CONCTLNA Concurrency control not available

3009 OSIF_SEL_CONCTLNS Concurrency control not supported

3010 OSIF_SEL_CONCTLNP Concurrency control not possible

3011 OSIF_SEL_MORERESLOCK More restrictive lock

3012 OSIF_SEL_FILEBUSY File busy

3013 OSIF_SEL_FILENA File not available

3014 OSIF_SEL_ACSCTLNA Access control not available

3015 OSIF_SEL_ACSCTLNS Access control not supported

3016 OSIF_SEL_ACSCTLINC Access control inconsistent

3017 OSIF_SEL_FILNAMTRNC File name truncated

3018 OSIF_SEL_INITATTALT Initial attributes altered

3019 OSIF_SEL_BADACCT Bad account

3020 OSIF_SEL_SELECTOLD Override selected existing file

3021 OSIF_SEL_RECROLD Override deleted and recreated file
with old attributes

3022 OSIF_SEL_RECRNEW Create override deleted and
recreate file with new attributes

3023 OSIF_SEL_OVERRIDE Create override - not possible

3024 OSIF_SEL_AMBFILSPEC Ambiguous file specification

3025 OSIF_SEL_INVCREPWD Invalid create password

3026 OSIF_SEL_INVDELPWD Invalid delete password on override

3027 OSIF_SEL_BADATTVAL Bad attribute value

3028 OSIF_SEL_RQSTACCS Requested access violates
permitted actions

3029 OSIF_SEL_FUNCUNIT Functional unit not available for
requested access

3030 OSIF_SEL_CREATED File created but not selected

B–4 Diagnostic Errors

Diagnostic Errors

Identifier Constant Reason

File Management Related Diagnostics

4000 OSIF_MNG_ATTNONEX Attribute nonexistent

4001 OSIF_MNG_ATTNOREAD Attribute cannot be read

4002 OSIF_MNG_ATTNOCHNG Attribute cannot be changed

4003 OSIF_MNG_ATTNS Attribute not supported

4004 OSIF_MNG_BADATTNAM Bad attribute name

4005 OSIF_MNG_BADATTVAL Bad attribute value

4006 OSIF_MNG_ATTPARSUP Attribute partially supported

4007 OSIF_MNG_ATTVALND Additional set attribute value not
distinct

Access Related Diagnostics

5000 OSIF_ACC_BADFADU Bad FADU (unspecific)

5001 OSIF_ACC_BADFADUSIZ Bad FADU - size error

5002 OSIF_ACC_BADFADUTYP Bad FADU - type error

5003 OSIF_ACC_BADFADUPS Bad FADU - poorly specified

5004 OSIF_ACC_BADFADULOC Bad FADU - bad location

5005 OSIF_ACC_FADUNONEXI FADU does not exist

5006 OSIF_ACC_FADUNA FADU not available (unspecific)

5007 OSIF_ACC_FADUNARD FADU not available for reading

5008 OSIF_ACC_FADUNAWR FADU not available for writing

5009 OSIF_ACC_FADUNALOC FADU not available for location

5010 OSIF_ACC_FADUNAERA FADU not available for erasure

5011 OSIF_ACC_FADUNOINS FADU cannot be inserted

5012 OSIF_ACC_FADUNORPL FADU cannot be replaced

5013 OSIF_ACC_FADUNOLOC FADU cannot be located

5014 OSIF_ACC_BADDETYP Bad data element type

5015 OSIF_ACC_OPERNA Operation not available

5016 OSIF_ACC_OPERNS Operation not supported

5017 OSIF_ACC_OPERINC Operation inconsistent

5018 OSIF_ACC_CONCTLNA Concurrency control not available

5019 OSIF_ACC_CONCTLNS Concurrency control not supported

5020 OSIF_ACC_CONCTLINC Concurrency control inconsistent

5021 OSIF_ACC_PRCMODNA Processing mode not available

5022 OSIF_ACC_PRCMODNS Processing mode not supported

5023 OSIF_ACC_PRCMODINC Processing mode inconsistent

5024 OSIF_ACC_ACSCTXNA Access context not available

5025 OSIF_ACC_ACSCTXNS Access context not supported

5026 OSIF_ACC_BADWRITE Bad write (unspecific)

5027 OSIF_ACC_BADREAD Bad read (unspecific)

5028 OSIF_ACC_LCLERR Local failure (unspecific)

Diagnostic Errors B–5

Diagnostic Errors

Identifier Constant Reason

Access Related Diagnostics

5029 OSIF_ACC_LCLFILSPACE Local failure - filespace exhausted

5030 OSIF_ACC_LCLDATCORR Local failure - data corrupted

5031 OSIF_ACC_LCLDEVFAIL Local failure - device failure

5032 OSIF_ACC_FUTSIZEXC Future file size exceeded

OSIF_ACC_UNDEFINED

5034 OSIF_ACC_FUTSIZINC Future file size increased

5035 OSIF_ACC_FUNCUNIT Functional unit invalid in
processing mode

5036 OSIF_ACC_CNTTYPINC Contents type inconsistent

5037 OSIF_ACC_CNTTYPSMPL Contents type simplified

5038 OSIF_ACC_DUPFADUNAM Duplicate FADU name

5039 OSIF_ACC_DMGSELOPEN Damage to select/open regime

5040 OSIF_ACC_FADULOCKNA FADU locking not available on file

5041 OSIF_ACC_FADULOCKED FADU locked by another user

Recovery Related Diagnostics

6000 OSIF_REC_BADCHKPNT Bad checkpoint (unspecific)

6001 OSIF_REC_ACTVNOTUNI Activity not unique

6002 OSIF_REC_CHKOUTWIND Checkpoint outside window

6003 OSIF_REC_ACTVNOEXIST Activity no longer exists

6004 OSIF_REC_ACTVNORECOG Activity not recognized

6005 OSIF_REC_NODOCKET No docket

6006 OSIF_REC_CORDOCKET Corrupt docket

6007 OSIF_REC_WAITRESTART File waiting restart

6008 OSIF_REC_BADRECPNT Bad recovery point

6009 OSIF_REC_NONEXRECPNT Non-existent recovery point

6010 OSIF_REC_RECMODNA Recovery mode not available

6011 OSIF_REC_RECMODINC Recovery mode inconsistent

6012 OSIF_REC_RECMODRED Recovery mode reduced

6013 OSIF_REC_ACSCTLNA Access control not available

6014 OSIF_REC_ACSCTLNS Access control not supported

6015 OSIF_REC_ACSCTLINC Access control inconsistent

6016 OSIF_REC_CNTTYPINC Contents type inconsistent

6017 OSIF_REC_CNTTYPSMPL Contents type simplified

B–6 Diagnostic Errors

Index

A
Access control, 4–10
Access passwords, 4–10
Application-entity

address, 4–8
qualifier, 4–8
title, 4–8

Application-entity entry, 4–7
Association

setting up, 1–2
Attributes

changing, 3–2
reading, 3–2

B
Binary descriptor specification, 4–4
Block types and primitives

mapping, 1–4
Blocking calls

handling, 1–4

C
Call sequence

example of, 1–3
Charging, 4–12
Compiling programs

on Digital UNIX, 2–2
on OpenVMS, 2–1

Concurrency control, 4–9
Contents type lists, 4–6
Contents type parameter, 4–6

D
Data structures, 4–1

AE-qualifier, 4–8
AP-title, 4–8
osifpb, 4–1
osif_access_ctl, 4–10
osif_ae_entry, 4–7
osif_apwd, 4–10
osif_bdesc, 4–4
osif_buffer_list, 4–12
osif_cc, 4–9

Data structures (cont’d)
osif_charging_pb, 4–12
osif_ct, 4–6
osif_ctl, 4–6
osif_diagnostics_pb, 4–5
osif_dt_subparms, 4–6
osif_faduac, 4–12
osif_faduid, 4–11
osif_fn, 4–5
osif_sdesc, 4–4

Descriptors in osifpb
osif_access_context, 3–8
osif_access_control, 3–9
osif_access_passwords, 3–9
osif_account, 3–9
osif_action_result, 3–9
osif_activity_ident, 3–9
osif_application_context, 3–9
osif_attribute_groups, 3–9
osif_attribute_names, 3–9
osif_block_size, 3–10
osif_block_type, 3–10
osif_charging, 3–10
osif_checkpoint_window, 3–10
osif_concurrency_control, 3–10
osif_contents_type, 3–10
osif_contents_type_list, 3–11
osif_create_password, 3–11
osif_date_time_creation, 3–11
osif_date_time_last_attmod, 3–11
osif_date_time_last_modif, 3–11
osif_date_time_last_read, 3–11
osif_diagnostic, 3–11
osif_fadu, 3–11
osif_fadu_lock, 3–11
osif_fadu_locking, 3–12
osif_fadu_operation, 3–12
osif_filename, 3–12
osif_filesize, 3–12
osif_filestore_password, 3–12
osif_file_availability, 3–12
osif_ftam_qual_service, 3–12
osif_functional_units, 3–13
osif_future_filesize, 3–13
osif_identity_creator, 3–13
osif_identity_last_attmod, 3–13
osif_identity_last_modify, 3–13

Index–1

Descriptors in osifpb (cont’d)
osif_identity_last_reader, 3–13
osif_implementation_information, 3–13
osif_initiator_identity, 3–13
osif_legal_qualification, 3–13
osif_local_p_addrs, 3–14
osif_override, 3–14
osif_peer_p_addr, 3–14
osif_permitted_actions, 3–14
osif_pres_ctx_mgmt, 3–14
osif_processing_mode, 3–14
osif_protocol_error, 3–15
osif_protocol_id, 3–15
osif_prot_error_count, 3–15
osif_recovery_mode, 3–15
osif_requested_access, 3–15
osif_returned_buffer, 3–15
osif_scratchpad, 3–15
osif_service_class, 3–15
osif_state_result, 3–16
osif_storage_account, 3–16
osif_threshold, 3–16
osif_userdata, 3–16

Descriptors in osif_character_sets
osif_character_sets, 3–10

Diagnostics, 4–5
error identifiers, B–1

Digital UNIX
compiling programs, 2–2
example files, 2–2
linking programs, 2–2

Document type parameters, 4–6
Document types

default parameter values, 1–7
FTAM-1, 1–5
FTAM-2, 1–6
FTAM-3, 1–6
NBS-9, 1–6
using, 1–5

E
Error messages, A–1

F
File access data unit, 4–11
File access data unit access context, 4–12
File deletion

using grouping, 3–2
File names, 4–5
FTAM API

overview, 1–2
using, 1–2

FTAM API function calls, 5–1
destroying a communication port, 5–5
establishing a communication port, 5–2
osif_assign_port, 5–2

FTAM API function calls (cont’d)
osif_deassign_port, 5–5
osif_get_event, 5–7
osif_give_buffer, 5–10
osif_send, 5–12
posting buffers, 5–10
sending a PDU, 5–12
soliciting inbound events, 5–7

FTAM parameter block, 4–1
FTAM-1 document type, 1–5
FTAM-2 document type, 1–6
FTAM-3 document type, 1–6

G
Grouping

canceling data transfer, 3–4
changing attributes, 3–2
file deletion using, 3–2
file transfer, 3–3
performing reads, 3–3
performing writes, 3–3
reading attributes, 3–2

L
Linking programs

on Digital UNIX, 2–2
on OpenVMS, 2–1

M
Mapping

primitives and block types, 1–4
Models

OSI reference, 1–1

N
NBS-9 document type, 1–6
Network selector and transport options queue

Version 3.0 only, 4–8
Network selector and transport provider queue

Version 3.2 only, 4–8
Non-blocking calls

handling, 1–4
NSAPs and templates

matching, 1–9

O
Open system

definition of, 1–1
OpenVMS

compiling programs, 2–1
example files, 2–2
linking programs, 2–1
running programs, 2–1

Index–2

osifpb
data structures, 4–1
parameter descriptions, 3–8
parameter values, 3–8

Overview
FTAM API, 1–2

P
Parameter block

description of, 3–7
Parameter descriptions

of osifpb, 3–8
Presentation address

format, 1–8
using, 1–8

Primitives and block types
mapping, 1–4

Protocol exchange
example of, 1–3

R
Responders

passive versus active, 1–7

Restrictions
FTAM API, 1–10

Running programs
on OpenVMS, 2–1

S
Service sequences

samples of, 3–2
using FTAM API, 3–1

String descriptor specification, 4–4

T
Templates and NSAPs

matching, 1–9
Transport template queue

Version 3.2 only, 4–9

U
User buffer, 4–12

managing, 1–4
User data

handling, 1–5

Index–3

