
HP DECset for OpenVMS
Source Code Analyzer Command-
Line Interface and Callable Routines
Reference Manual
Order Number: AA–QJEYC–TK

July 2005

This reference manual provides information on using the HP Source
Code Analyzer callable interface and the HP Source Code Analyzer Query
Language.

Revision/Update information: This is a revised manual.

Operating System Version: OpenVMS I64 Version 8.2

OpenVMS Alpha Version 7.3–2 or 8.2

OpenVMS VAX Version 7.3

Windowing System Version: DECwindows Motif for OpenVMS I64
Version 1.5

DECwindows Motif for OpenVMS Alpha
Version 1.3–1 or 1.5

DECwindows Motif for OpenVMS VAX
Version 1.2–6

Software Version: HP DECset Version 12.7 for OpenVMS

HP Language-Sensitive Editor/Source
Code Analyzer Version 5.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

OSF and Motif are trademarks of The Open Group in the US and other countries.

Printed in the US

The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . vii

1 Introduction

1.1 Platform-Specific Information for Using SCA on OpenVMS 1–1
1.1.1 SCA$LIBRARY Logical Name . 1–1
1.1.2 SCA Private Files . 1–1
1.1.3 Command Language Syntax . 1–2
1.1.4 Default Settings on OpenVMS Systems 1–3

2 Using the SCA Callable Interface

2.1 Overview . 2–1
2.2 Message Handling . 2–2
2.3 Rules for Calling SCA Routines . 2–2
2.3.1 Rules for Calling SCA Routines from LSE/HP DECTPU 2–2
2.4 Callable Command Interface . 2–4
2.5 Callable Query Interface . 2–6
2.5.1 Data Models . 2–6
2.5.2 Handles . 2–7
2.5.3 Entities . 2–7
2.5.4 Attributes . 2–7
2.5.5 Example of the Callable Query Interface 2–14
2.6 Callable SCA Routines . 2–17
2.6.1 Callable Command Interface Routines 2–17
2.6.2 Callable Query Initialization/Cleanup Routines 2–18
2.6.3 Callable Query Question-Building Routines 2–18
2.6.4 Callable Query Result Manipulation Routines 2–18

iii

2.6.5 Callable Query Miscellaneous Routines 2–19
SCA$ASYNCH_TERMINATE . 2–20
SCA$CLEANUP . 2–21
SCA$DO_COMMAND . 2–22
SCA$GET_ATTRIBUTE . 2–25
SCA$GET_ATTRI_KIND_T . 2–27
SCA$GET_ATTRI_VALUE_T . 2–28
SCA$GET_CURRENT_QUERY . 2–30
SCA$GET_INPUT . 2–31
SCA$GET_OCCURRENCE . 2–33
SCA$INITIALIZE . 2–36
SCA$LOCK_LIBRARY . 2–37
SCA$PUT_OUTPUT . 2–38
SCA$QUERY_CLEANUP . 2–39
SCA$QUERY_COPY . 2–40
SCA$QUERY_FIND . 2–41
SCA$QUERY_GET_ATTRIBUTE . 2–42
SCA$QUERY_GET_ATTRI_KIND_T . 2–44
SCA$QUERY_GET_ATTRI_VALUE_T . 2–45
SCA$QUERY_GET_NAME . 2–47
SCA$QUERY_GET_OCCURRENCE . 2–48
SCA$QUERY_INITIALIZE . 2–50
SCA$QUERY_PARSE . 2–51
SCA$QUERY_SELECT_OCCURRENCE 2–53
SCA$SELECT_OCCURRENCE . 2–54
SCA$UNLOCK_LIBRARY . 2–55

3 Using the SCA Query Language

3.1 Basic Concepts . 3–1
3.2 SCA Query Language Tutorial . 3–2
3.2.1 Simple Queries . 3–4
3.2.2 Using the EXPAND Function to Find Related

Occurrences . 3–7
3.2.3 Using Logical Operators to Select Information 3–8
3.2.4 The Current Query . 3–11
3.2.5 Structured Relationship Expressions 3–12
3.2.6 Nonstructured Relationship Expressions 3–15
3.2.7 Other Relationships . 3–17

iv

3.2.8 The IN Function . 3–21
3.2.9 Path Names . 3–21
3.2.10 Combined Relationship Examples . 3–23

4 Evaluating SCA Query Expressions

4.1 Query Expression Syntax . 4–3
4.2 Operator Precedence and Associativity . 4–4
4.3 Default Parenthesizing . 4–4
4.4 Semantics . 4–5
4.5 Attribute-Selection Expressions . 4–6
4.5.1 Name Selection . 4–6
4.5.2 Symbol-Class Selection . 4–7
4.5.3 Symbol Domain Selection . 4–8
4.5.4 Occurrence Selection . 4–9
4.5.5 File Specification Selection . 4–11
4.6 Operator Expressions . 4–11
4.6.1 Path-Name Expressions . 4–11
4.6.2 Intersection Expressions . 4–12
4.6.3 Union Expressions . 4–12
4.6.4 Exclusive-Or Expressions . 4–12
4.7 Function-Call Expressions . 4–12
4.7.1 Parameter Association . 4–13
4.7.2 Negation Function . 4–13
4.7.3 Expansion Function . 4–14
4.7.4 Indicated Function . 4–14
4.7.5 Query Usage Function . 4–14
4.7.5.1 The Current Query . 4–14
4.7.6 Relationship Functions . 4–15
4.7.6.1 Individual Relationship Functions 4–15
4.7.6.2 Relationship Parameters . 4–16
4.7.7 The IN Function . 4–17
4.8 Abbreviation Rules . 4–18

Index

v

Tables

1 Conventions Used in This Reference viii
4–1 Attribute Selection Expressions . 4–1
4–2 Binary Operators . 4–1
4–3 Nonrelationship Function Expressions 4–2
4–4 Function Names . 4–2
4–5 Function Parameters . 4–3
4–6 Query Expression Forms . 4–4

vi

Preface

This reference manual provides information about using the HP Source Code
Analyzer (SCA) callable interface and the SCA Query Language.

Intended Audience
This manual is intended for experienced programmers and technical managers.

Document Structure
This reference contains the following chapters:

• Chapter 1 describes the SCA concepts and provides platform-specific
information for using SCA on OpenVMS systems1.

• Chapter 2 describes the SCA callable interface and provides information on
message handling and rules for calling SCA routines. It also describes the
SCA callable routines.

• Chapter 3 describes the features of the SCA Query Language and
demonstrates its use for simple and advanced operations.

• Chapter 4 describes the rules governing the use of the SCA Query
Language and provides information for evaluating query expressions.

Associated Documents
The following documents might be helpful when using SCA:

• Guide to DIGITAL Source Code Analyzer for OpenVMS Systems—Describes
the HP Source Code Analyzer (SCA) and explains how to get started using
its basic features.

1 OpenVMS systems refers to OpenVMS VAX, OpenVMS Alpha and OpenVMS I64
systems.

vii

• HP DECset for OpenVMS Language-Sensitive Editor/Source Code Analyzer
Reference Manual—Provides a command dictionary for the LSE and SCA
command language.

SCA is a component of the HP DECset tool kit. For more information on
other HP DECset components, see the reference manuals for the individual
components.

References to Other Products
Some older products that HP DECset components previously worked with
might no longer be available or supported by HP. Any reference in this manual
to such products does not imply actual support, or that recent interoperability
testing has been conducted with these products.

Note

These references serve only to provide examples to those who continue
to use these products with HP DECset.

Refer to the Software Product Description for a current list of the products that
the HP DECset components are warranted to interact with and support.

Conventions
Table 1 lists the conventions used in this manual.

Table 1 Conventions Used in This Reference

Convention Description

$ A dollar sign ($) represents the OpenVMS DCL system
prompt.

Return In interactive examples, a label enclosed in a box
indicates that you press a key on the terminal, for
example, Return .

Ctrl/x The key combination Ctrl/x indicates that you must
press the key labeled Ctrl while you simultaneously
press another key, for example, Ctrl/Y or Ctrl/Z.

(continued on next page)

viii

Table 1 (Cont.) Conventions Used in This Reference

Convention Description

KPn The phrase KPn indicates that you must press the key
labeled with the number or character n on the numeric
keypad, for example, KP3 or KP-.

file-spec, ... A horizontal ellipsis following a parameter, option,
or value in syntax descriptions indicates additional
parameters, options, or values you can enter.

. . . A horizontal ellipsis in a figure or example indicates
that not all of the statements are shown.

.

.

.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being described.

() In format descriptions, if you choose more than one
option, parentheses indicate that you must enclose the
choices in parentheses.

[] In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or all
of the choices.

{} In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

boldface text Boldface text represents the introduction of a new
term.

monospaced boldface text Boldface, monospace text represents user input in
interactive examples.

italic text Italic text represents book titles, parameters,
arguments, attributes, and information that can
vary in system messages (for example, Internal error
number).

UPPERCASE Uppercase indicates the name of a command, routine,
file, file protection code, or the abbreviation of a system
privilege.

lowercase Lowercase in examples indicates that you are to
substitute a word or value of your choice.

mouse The term mouse refers to any pointing device, such as
a mouse, puck, or stylus.

(continued on next page)

ix

Table 1 (Cont.) Conventions Used in This Reference

Convention Description

MB1,MB2,MB3 MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button.

x

1
Introduction

HP Source Code Analyzer (SCA) is a multilanguage, interactive cross-reference
and static analysis tool. SCA helps you understand software projects by
enabling you to make inquiries about the contents of the code. With SCA,
you can quickly locate information about any program symbol and see the
relationships to other symbols.

SCA stores compiler-generated information about a set of source files in an
SCA library. You can perform various queries on the library and then, based
on query results, navigate to locations of interest in the original source code.

1.1 Platform-Specific Information for Using SCA on
OpenVMS

This section describes information about logical names, private SCA files, the
command language syntax, and default settings for OpenVMS systems.

1.1.1 SCA$LIBRARY Logical Name
Whenever you set an SCA library from within SCA, it defines the logical name
SCA$LIBRARY to refer to the library set. To retain the setting of your SCA
library from one SCA invocation to another, leave this logical name pointing to
your SCA library directory. Alternatively, you can set this logical name before
an SCA invocation to make SCA point to an appropriate library automatically.

1.1.2 SCA Private Files
SCA creates private files that should not be modified or removed.

After you create an SCA library, you might notice the SCA$EVENT.DAT file in
your directory.

Note

This file comprises your SCA library. Do not delete or modify this file.
To delete an SCA library, use the SCA command DELETE LIBRARY.

Introduction 1–1

Introduction
1.1 Platform-Specific Information for Using SCA on OpenVMS

1.1.3 Command Language Syntax
SCA has two command languages available: VMS and Portable. The VMS
command language is the original SCA command language that has always
been present in SCA, and has remained the most used. The Portable command
language is a more recent command language devised for use in environments
other than OpenVMS.

Some commands, such as REPORT, are available only in Portable, whereas
others, like SPAWN and ATTACH, are available only in VMS. The choice of
default command language is made at HP DECset installation time, but can
always be changed.

This guide presents examples in the VMS command language setting.

Note

The online SCA Help provides either individual command descriptions
or a list of all command descriptions.

To get help on a topic, use one of the following methods:

• At the SCA character-cell format’s command line, type HELP, then
enter the desired topic name.

• In the SCA HP DECwindows format, choose Enter Commands . . .
from the Commands menu, then issue the following command :

SCA> HELP Command_Definitions

If you often use commands that can be invoked in only one command language,
you might want to change the default command language setting. To set the
default command language, enter one of the following commands at the SCA>
prompt:

SCA> SET COMMAND LANGUAGE VMS

SCA> SET COMMAND LANGUAGE PORTABLE

1–2 Introduction

Introduction
1.1 Platform-Specific Information for Using SCA on OpenVMS

1.1.4 Default Settings on OpenVMS Systems
The following settings are active by default on OpenVMS systems:

• OpenVMS-style, command language syntax

• Case-insensitive querying

• Hyphen-insensitive querying

• OpenVMS-style, wildcard-character searching

• Elimination of duplicate occurrences and symbols resulting from multiple
inclusions of a single include file

Introduction 1–3

2
Using the SCA Callable Interface

With the SCA callable interface, you can use SCA within independent
application programs. You can integrate SCA into alternative user-interfaces
and generate specialized reports based on SCA information.

The SCA callable interface provides a set of callable routines. You should have
an understanding of basic SCA concepts before using these routines.

This chapter contains the following information:

• An overview of the SCA callable interface

• A description of message handling

• The rules for calling SCA routines

• A description of the callable command interface

• A description of the callable query interface

• The callable SCA routines

2.1 Overview
The SCA callable interface contains two components. The first is a set of
callable command routines. The callable command routines comprise a high-
level interface that you must always use, regardless of the type of application.
This provides a very simple callable interface to SCA that is sufficient for most
applications.

The second component is a set of callable query routines. The callable query
routines comprise a lower-level interface to the FIND command. When you use
this interface, your application has control over the specification of queries and
the manipulation of query results.

Using the SCA Callable Interface 2–1

Using the SCA Callable Interface
2.2 Message Handling

2.2 Message Handling
The SCA callable interface handles all messages the same way—it signals
them. If you want control over the display of such messages, you must
establish a condition handler. Establishing a condition handler is optional.

2.3 Rules for Calling SCA Routines
Programs that call SCA routines must follow these rules:

• To free all dynamic memory associated with the interface routines and data
structures, you must call SCA$CLEANUP to terminate callable SCA.

• Most SCA routines are not asynchronous system trap (AST)
reentrant; therefore, you should not call an SCA routine (except
SCA$ASYNCH_TERMINATE) from an AST routine that might currently
be interrupting an SCA routine.

• Your program must not disable ASTs. If they are disabled in the user code
prior to the SCA routine call, SCA will not behave as expected.

• If your program uses event flags, you must use the OpenVMS Run-
Time Library (RTL) routines (LIB$RESERVE_EF, LIB$GET_EF, and
LIB$FREE_EF) to coordinate the use of event flags between your program
and SCA.

• Except for SCA$ASYNCH_TERMINATE, do not call SCA from within an
SCA callback routine or from within a routine that is handling a condition
signaled by SCA.

• Your program must not unwind when handling a condition signaled by
SCA.

2.3.1 Rules for Calling SCA Routines from LSE/HP DECTPU
A subset of the SCA callable interface routines can be called from HP Text
Processing Utility (HPTPU) code executed from within the HP Language-
Sensitive Editor (LSE). The following list describes rules for calling SCA
routines from HP DECTPU:

• You must use LSE to execute your HP DECTPU code. The SCA routines
are not available from the version of HP DECTPU provided with OpenVMS
software.

2–2 Using the SCA Callable Interface

Using the SCA Callable Interface
2.3 Rules for Calling SCA Routines

• LSE uses the HP DECTPU variable LSE$SCA_COMMAND_CONTEXT to
store the command context created when initializing SCA. When you call
the SCA routine SCA$QUERY_INITIALIZE, you must pass this variable
as the command-context parameter. You should not change this variable.

• Only the following routines are available:

SCA$QUERY_CLEANUP

SCA$QUERY_COPY

SCA$QUERY_FIND

SCA$QUERY_GET_ATTRIBUTE

SCA$QUERY_GET_ATTRI_KIND_T

SCA$QUERY_GET_ATTRI_VALUE_T

SCA$QUERY_GET_DESCRIPTION

SCA$QUERY_GET_OCCURRENCE

SCA$QUERY_GET_NAME

SCA$QUERY_INITIALIZE

SCA$QUERY_PARSE

SCA$QUERY_SELECT_OCCURRENCE

Note that you cannot call SCA$INITIALIZE or SCA$CLEANUP from
HP DECTPU. LSE will handle the calls to the following routines for you
automatically.

• SCA query contexts and entity handles are represented as HP DECTPU
integers.

• SCA attribute constants, of the form SCA$K_ATTRI_attribute_name, are
defined as TPU constants in the following file:

SYS$LIBRARY:SCA$QUERY_CALLABLE.TPU

You must read and execute this file before using any of the
SCA$K_ATTRI_attribute_name constants.

Using the SCA Callable Interface 2–3

Using the SCA Callable Interface
2.4 Callable Command Interface

2.4 Callable Command Interface
The callable command routines comprise the high-level interface that you
must always use, regardless of the type of application. This provides a simple
callable interface to SCA that is sufficient for most applications.

Use the SCA$INITIALIZE routine to initialize SCA. You must call this
routine before any other SCA routine. SCA$INITIALIZE creates a command-
context. A command-context is represented as a longword-sized value
that SCA$INITIALIZE returns to the application. This command-context
value must be passed to all of the other command routines, and to the
SCA$QUERY_INITIALIZE routine.

Use the SCA$CLEANUP routine to terminate a command-context. It frees the
SCA internal data structures and severs all connections to SCA libraries and
servers.

Typically, an application has only one command-context at a time.
However, you can call SCA$INITIALIZE more than once without calling
SCA$CLEANUP. Each call to SCA$INITIALIZE creates a separate command-
context. Each separate command-context behaves independently from all other
command-contexts. With more than one command-context, an application can
query two different virtual libraries at the same time without having to reset
the virtual library. Note that process quotas might place limits on the number
of command-contexts you can run simultaneously.

For each command-context created by a call to SCA$INITIALIZE, there must
be a call to SCA$CLEANUP in order to properly shut down that context. The
process invoking SCA will not terminate normally until such a call to clean up
the context is made.

Use the SCA$DO_COMMAND routine to execute SCA commands. For all
commands except FIND, SCA$DO_COMMAND is the only available routine
for executing an SCA command. It gives the application control over the
character-cell user interface of any SCA command.

In addition, there are two routines, SCA$LOCK_LIBRARY and
SCA$UNLOCK_LIBRARY, for creating and deleting write-locks on current
virtual library lists. With the SCA$LOCK_LIBRARY routine, you can lock
the virtual library so it cannot be modified between successive calls to the
SCA$DO_COMMAND or SCA$QUERY_FIND routines.

2–4 Using the SCA Callable Interface

Using the SCA Callable Interface
2.4 Callable Command Interface

Example of the SCA Callable Interface
The following is an example of an application routine using the SCA callable
command interface. This example shows a simple routine that automatically
loads .ANA files following compilation.

ROUTINE load_ana_file(ana_file_spec : _string) =
!++
! FUNCTIONAL DESCRIPTION:
!
! LOAD_ANA_FILE loads the .ANA file specified as ANA_FILE_SPEC
! into the current SCA library.
!
! MACROS:
!
! _COPY_STRING concatenates several strings into a single
! destination string. It is similar to STR$CONCAT.
! _DYNAMIC_STRING declares and initializes a dynamic string descriptor.
! _FREE_STRING releases the memory described by a dynamic string
! descriptor.
! _STRING declares a string descriptor, but does not initialize it.
!--

BEGIN
LOCAL

cmdline : _dynamic_string
sca_context;

! Initialize SCA.
!
sca$initialize(sca_context);

! Load the .ANA file.
!
_copy_string(cmdline, ’LOAD ’, .ana_file_spec)
sca$do_command(sca_context, cmdline);

! Free the memory associated with the dynamic string descriptor.
!
_free_string(cmdline);

! Cleanup SCA.
!
sca$cleanup(sca_context)
END;

Using the SCA Callable Interface 2–5

Using the SCA Callable Interface
2.5 Callable Query Interface

2.5 Callable Query Interface
The callable query routines comprise the second component of the SCA callable
interface. This component is a lower-level interface to the FIND command.
Using this interface, an application has control over the specification of queries
and the manipulation of query results.

As with the callable command interface, you begin using the callable query
interface by entering an SCA$QUERY_INITIALIZE routine. However, instead
of creating a command-context, this routine initializes a query-context.
As with the callable command interface, SCA$QUERY_INITIALIZE must
be called before any other query routine. A query-context is represented
as a longword-sized value that SCA$QUERY_INITIALIZE returns to the
application. This query-context value must be passed to many of the other
query routines.

Similarly, you use the SCA$QUERY_CLEANUP routine to end a query-context
using SCA. It frees the internal data structures that represent the query.

Typically, an application uses several query-contexts at the same time. Each
call to SCA$QUERY_INITIALIZE creates a separate query-context.

In SCA, the term query refers to both a question and its corresponding result.
There is a one-to-one correspondence between a query and a query-context.
A query-context first expresses a question. The SCA$QUERY_FIND routine
then evaluates the query. This creates a query result. Finally, the result
is analyzed. You can then enter the SCA$QUERY_SELECT_OCCURRENCE
routine to use the results of one query in forming the question of another
query.

Definitions required to use the SCA callable query interface are stored in
files called SYS$LIBRARY:SCA$QUERY_CALLABLE.*. Each language
has its own definition file. For example, the Pascal definition file is called
SYS$LIBRARY:SCA$QUERY_CALLABLE.PAS.

2.5.1 Data Models
The callable query interface uses an entity-relationship-attribute data model.
Entities are atomic elements of the database. Two entities can have a
relationship. A relationship has associated with it two entities—one is the
source, the other is the target. Both entities and relationships have attributes.

In the SCA callable query interface, the only kind of entity that is presented
is occurrence. These occurrences have many attributes; for example, an
occurrence can have a name.

2–6 Using the SCA Callable Interface

Using the SCA Callable Interface
2.5 Callable Query Interface

2.5.2 Handles
The callable query interface uses handles to refer to entities and attributes.
Handles are generic. You can use a particular handle to refer to an entity or
an attribute, or with any query-context.

A handle is a longword-value. Before using a handle for the first time, it must
be set to zero. Thereafter, you can use it in a routine that requires a handle as
an output parameter, such as SCA$QUERY_GET_OCCURRENCE. After that
you can use it either as an output or input parameter.

After you use a handle to refer to something, it becomes dependent on the
query-context that contains its referent. If a query-context is deleted, any
handles associated with that query-context become invalid. An invalid handle
must be reinitialized before you use it again; that is, it must be set to zero.
Any use of a query-context as an output parameter also invalidates any
associated handles. This includes any question-building routine, such as
SCA$QUERY_PARSE and SCA$QUERY_FIND.

SCA attempts to detect the use of an invalid handle and signal an error
message. Such use is considered a programmer error on the part of the
application.

2.5.3 Entities
Entities are atomic elements of the database and have attributes. In SCA,
entities are occurrences of symbols. For example, if a routine declares a local
variable STATUS and uses it in calls to other routines, the declaration as
well as the uses of this variable are distinct occurrences of a symbol named
STATUS. Each such occurrence is an entity.

An entity is referred to with a handle. A handle that refers to an entity is
called an entity handle. You can use the SCA$QUERY_GET_OCCURRENCE
routine to visit all of the entities in a particular query result.

2.5.4 Attributes
Entities have attributes that provide information about the entity. You use
attributes to do different things, such as express questions and retrieve results.

The SCA callable query interface supports a number of different kinds of
attributes. Each attribute-kind has associated with it an attribute-value of a
particular data type. All attribute-values are returned as character strings.

Using the SCA Callable Interface 2–7

Using the SCA Callable Interface
2.5 Callable Query Interface

The following is the list of attribute-kinds:

• SCA$K_ATTRI_APPEARANCE

• SCA$K_ATTRI_DOMAIN

• SCA$K_ATTRI_EXPRESSION

• SCA$K_ATTRI_LANGUAGE

• SCA$K_ATTRI_NAME

• SCA$K_ATTRI_OCCURRENCE_CLASS

• SCA$K_ATTRI_SYMBOL_CLASS

• SCA$K_ATTRI_MACH_DSIZE

• SCA$K_ATTRI_MACH_DTYPE

• SCA$K_ATTRI_PASSING_MECHANISM

• SCA$K_ATTRI_FILE_SPEC

• SCA$K_ATTRI_BEGIN_RECORD_NUMBER

• SCA$K_ATTRI_NAME_RECORD_NUMBER

• SCA$K_ATTRI_BEXE_RECORD_NUMBER

• SCA$K_ATTRI_END_RECORD_NUMBER

• SCA$K_ATTRI_BEGIN_CHAR_OFFSET

• SCA$K_ATTRI_NAME_CHAR_OFFSET

• SCA$K_ATTRI_BEXE_CHAR_OFFSET

• SCA$K_ATTRI_END_CHAR_OFFSET

• SCA$K_ATTRI_ALL

You can use the SCA$K_ATTRI_ALL attribute-kind in calls to
SCA$QUERY_GET_ATTRIBUTE to find all attributes, regardless of kind.

Some attribute-kinds correspond to attribute-names in the Query Language
that have similar names. For example, the SCA$K_ATTRI_NAME attribute-
kind corresponds to the NAME attribute-name. Other attribute-kinds have a
different representation at the command line, and some attribute-kinds, such
as SCA$K_ATTRI_PASSING_MECHANISM, have no equivalent in the Query
Language.

2–8 Using the SCA Callable Interface

Using the SCA Callable Interface
2.5 Callable Query Interface

Attribute Retrieval
Attribute-retrieval is the process of getting attributes of entities in a query
result. Attributes are retrieved using the SCA$QUERY_GET_ATTRIBUTE
and SCA$QUERY_GET_ATTRI_VALUE_T routines.

There are two ways to use these routines. The first way is to use the get-
attribute-value routine to find the value of a particular attribute-kind for an
entity. For example, if OCC is a handle to an occurrence whose name you want
to retrieve into the string-descriptor NAME, use the following call:

sca$query_get_attri_value_t(occ, name, %REF(sca$k_attri_name));

The string-descriptor NAME now contains the name of the occurrence, for
example, XYZ.

You retrieve the value of any attribute as a character-string. For example, you
can use the following call to retrieve a string representation of the symbol-class
in the string-descriptor SYMBOL_CLASS:

sca$query_get_attri_value_t(occ,
symbol_class,
%REF(sca$k_attri_symbol_class));

The string-descriptor SYMBOL_CLASS now describes the character string
VARIABLE.

The second way is to use the SCA$QUERY_GET_ATTRIBUTE routine to get
more than one attribute for an entity, by returning a handle to an attribute.
You can then use that handle in calls to SCA$QUERY_GET_ATTRI_VALUE_T
to get the value of the attribute.

In addition, with the SCA$QUERY_GET_ATTRI_KIND_T routine, you can
get the kind of the attribute. The following example shows how to use this
routine, and highlights the manipulation of attributes:

Using the SCA Callable Interface 2–9

Using the SCA Callable Interface
2.5 Callable Query Interface

ROUTINE dump_entity(entity) =
!++
! FUNCTIONAL DESCRIPTION
!
! Display all of the attributes of an entity.
!
! FORMAL PARAMETERS:
!
! entity
! The address of an SCA handle describing the entities whose
! attributes are to be displayed.
!
! MACROS:
!
! _COPY_STRING concatenates several strings into a single
! destination string. It is similar to STR$CONCAT.
! _DYNAMIC_STRING declares and initializes a dynamic string descriptor.
! _FREE_STRING releases the memory described by a dynamic string
! descriptor.
!--

BEGIN
LOCAL

attribute : INITIAL(0), ! handle for attributes
display_line : _dynamic_string, ! one line of display output
iteration_ctx : INITIAL(0), ! iteration-context
kind : _dynamic_string, ! attribute-kind as a string
value: _dynamic_string; ! attribute-value as a string

! Loop once for every attribute of the specified entity.
!
WHILE sca$query_get_attribute(.entity,

%REF(sca$k_attri_all),
attribute,
iteration_ctx) DO

BEGIN
! Get the attribute-kind and the attribute-value.
!
sca$query_get_attri_kind_t(attribute, kind);
sca$query_get_attri_value_t(attribute, value);

! Create a line of output (e.g., "NAME=FOO") and write it out.
!
_copy_string(display_line, kind, ’=’, value);
lib$put_output(display_line);
END;

_free_string(display_line, kind, value)
END;

2–10 Using the SCA Callable Interface

Using the SCA Callable Interface
2.5 Callable Query Interface

The possible attributes are as follows:

• Appearance—Specify the occurrence-appearance attribute with the
SCA$K_ATTRI_APPEARANCE attribute-kind. The
occurrence-appearance attribute indicates that the name of the symbol
appears in the source code, or that it was hidden.

The occurrence-appearance attribute corresponds to portions of the
occurrence-class attribute in the Query Language. In particular,
it corresponds to the attribute-selection expressions occ=visible and
occ=hidden.

• Symbol Domain— Specify the symbol-domain attribute with the
SCA$K_ATTRI_DOMAIN attribute-kind. The symbol-domain attribute
indicates the range of source code in which a symbol has the potential of
being used.

The symbol-domain attribute corresponds to the
domain=symbol-domain-value attribute-selection expression in the Query
Language.

• Expression— Specify the occurrence-expression attribute with the
SCA$K_ATTRI_EXPRESSION attribute-kind. The
occurrence-expression attribute indicates that the occurrence explicitly
appears in the source file, or that the occurrence was implicit. For example,
in Fortran, you can implicitly declare a variable. As a Fortran programmer,
you might think that the variable is not declared. The SCA view is that it
is declared, but it is declared implicitly.

The occurrence-expression attribute corresponds to the portions of
the occurrence-class attribute in the Query Language. In particular,
it corresponds to the attribute-selection expressions occ=explicit and
occ=implicit.

• Language— Specify the language attribute with the
SCA$K_ATTRI_LANGUAGE attribute-kind. The language attribute
indicates the programming language of the occurrence.

The language attribute does not correspond to anything in the Query
Language.

Using the SCA Callable Interface 2–11

Using the SCA Callable Interface
2.5 Callable Query Interface

• Name— Specify the name attribute with the SCA$K_ATTRI_NAME
attribute-kind. The name attribute indicates the name of the symbol.

• Occurrence Class— Specify the occurrence-class attribute with the
SCA$K_ATTRI_OCCURRENCE_CLASS attribute-kind. The
occurrence-class attribute indicates the kind of occurrence.

The occurrence-class attribute corresponds to the occurrence=occurrence-
class-value attribute-selection expression.

• Symbol Class— Specify the symbol-class attribute with the
SCA$K_ATTRI_SYMBOL_CLASS attribute-kind. The symbol-class
attribute indicates the kind of symbol.

The symbol-class attribute corresponds to the symbol=symbol-class-value
attribute-selection expression.

• Passing Mechanism— Specify the passing-mechanism attribute with
the
SCA$K_ATTRI_PASSING_MECHANISM attribute-kind. The
passing-mechanism attribute applies only to argument declarations. It
indicates the mechanism by which an argument is passed to a routine.

The passing-mechanism attribute does not correspond to anything in the
Query Language.

• File Specification— Specify the file-specification attribute with the
SCA$K_ATTRI_FILE_SPEC attribute-kind. The file-specification
attribute describes the file specification of the source file that contains
the occurrence.

The file-specification attribute does not correspond to anything in the
Query Language.

2–12 Using the SCA Callable Interface

Using the SCA Callable Interface
2.5 Callable Query Interface

• Begin Record Number— Specify the begin-record-number attribute
with the
SCA$K_ATTRI_BEGIN_RECORD_NUMBER attribute-kind. The
begin-record-number describes the source-file record number at the
beginning of the lexical range of a declaration. It is not applicable to
references, which are assumed to have a single lexical location.

The begin-record-number attribute does not correspond to anything in
the Query Language.

• Name Record Number— Specify the name-record-number attribute
with the SCA$K_ATTRI_NAME_RECORD_NUMBER attribute-kind. The
name-record-number attribute describes the source-file record number
where the name of the symbol appears.

The name-record-number attribute does not correspond to anything in
the Query Language.

• Begin Executable Record Number— Specify the
begin-executable-record-number attribute with the
SCA$K_ATTRI_BEXE_RECORD_NUMBER attribute-kind. The
begin-executable-record-number attribute describes the source-file
record number where the executable part of a routine begins. This
attribute is primarily applicable to primary routine declarations.

The begin-executable-record-number attribute does not correspond to
anything in the Query Language.

• End Record Number— Specify the end-record-number attribute with
the SCA$K_ATTRI_END_RECORD_NUMBER attribute-kind. The
end-record-number attribute describes the source-file record number
at the end of the lexical range of a declaration. It is not applicable to
references, which are assumed to have a single lexical location.

The end-record-number attribute does not correspond to anything in the
Query Language.

Using the SCA Callable Interface 2–13

Using the SCA Callable Interface
2.5 Callable Query Interface

• Begin Character Offset— Specify the begin-character-offset attribute
with the SCA$K_ATTRI_BEGIN_CHAR_OFFSET attribute-kind. The
begin-character-offset attribute describes the source-file character offset
at the beginning of the lexical range of a declaration. It is not applicable to
references, which are assumed to have a single lexical location.

The begin-character-offset attribute does not correspond to anything in
the Query Language.

• Name Character Offset— Specify the name-character-offset attribute
with the SCA$K_ATTRI_NAME_CHAR_OFFSET attribute-kind. The
name-character-offset attribute describes the source-file character offset
where the name of the symbol appears.

The name-character-offset attribute does not correspond to anything in
the Query Language.

• Begin Executable Character Offset— Specify the
begin-executable-character-offset attribute with the
SCA$K_ATTRI_BEXE_CHARACTER_OFFSET attribute-kind. The
begin-executable-character-offset attribute describes the source-file
character offset where the executable part of a routine begins. This
attribute is primarily applicable to primary routine declarations.

The begin-executable-character-offset attribute does not correspond to
anything in the Query Language.

• End Character Offset— Specify the end-character-offset attribute with
the SCA$K_ATTRI_END_CHAR_OFFSET attribute-kind. The
end-character-offset attribute describes the source-file character offset
of the end of the lexical range of a declaration. It is not applicable to
references, which are assumed to have a single lexical location.

The end-character-offset attribute does not correspond to anything in the
Query Language.

2.5.5 Example of the Callable Query Interface
The following example is an application using the callable query interface. It
shows the building of questions, their evaluation, and the use of the query
results.

2–14 Using the SCA Callable Interface

Using the SCA Callable Interface
2.5 Callable Query Interface

ROUTINE display_tags_of_decl(sca_cmd_ctx, decl_name : _string) =
!++
! FUNCTIONAL DESCRIPTION
!
! Display info about all the tags associated with primary
! declarations with the specified name.
!
! FORMAL PARAMETERS:
!
! sca_cmd_ctx
! An SCA command-context. It has already been initialized.
! The SCA library has already been set.
!
! decl_name
! Name of the declaration.
!
! MACROS:
!
! _COPY_STRING concatenates several strings into a single
! destination string. It is similar to STR$CONCAT.
! _DYNAMIC_STRING declares and initializes a dynamic string descriptor.
! _FREE_STRING releases the memory described by a dynamic string
! descriptor.
! _STRING declares a string descriptor, but does not initialize it.
!--

BEGIN
LOCAL

all_tags_query, ! query context for "SYMBOL=TAG"
cmdline : _dynamic_string, ! temp for holding FIND command line
decl : INITIAL(0), ! handle for the named declarations
decl_query, ! query context for the named decls
particular_decl_query, ! query context for particular decl
tag : INITIAL(0), ! handle for tag declarations
tag_name : _dynamic_string, ! holds the tag name strings
tag_query; ! query context for tags

! Initialize the necessary query contexts.
!
sca$query_initialize(.sca_cmd_ctx, all_tags_query);
sca$query_initialize(.sca_cmd_ctx, decl_query);
sca$query_initialize(.sca_cmd_ctx, particular_decl_query);
sca$query_initialize(.sca_cmd_ctx, tag_query);

! Lock the virtual library so that it cannot change out from under
! us. If this is not done, there is a chance that the call to
! SCA$QUERY_SELECT_OCCURRENCE will fail, since the specified
! occurrence is made obsolete if its module is updated.
!
sca$lock_library(.sca_cmd_ctx);

Using the SCA Callable Interface 2–15

Using the SCA Callable Interface
2.5 Callable Query Interface

! Form the question: all of the primary declarations with the
! specified name.
!
_copy_string(cmdline, ’occ=primary AND ’, .decl_name);
sca$query_parse(decl_query, cmdline);
_free_string(cmdline);

! Evaluate that question.
!
sca$query_find(decl_query);

! Form the question: SYMBOL=TAG.
!
sca$query_parse(all_tags_query, _ascid(’symbol=tag’));

! Now we visit each of the primary declarations described by DECL_QUERY.
!
WHILE sca$query_get_occurrence(decl_query, decl) DO

BEGIN
! So we have our hands on a named-declaration. Now we want
! to find its corresponding tag declarations. Begin by
! creating a query question that describes the name-decl.
!
sca$query_select_occurrence(particular_decl_query, decl);

! Then we get the name of that query.
!
sca$query_get_name(particular_decl_query,

particular_decl_query_name);

! Form the question:
! CONTAINING(@name-of-decl-query, SYMBOL=TAG, RESULT=BEGIN)
!
_copy_string(

cmdline,
’CONTAINING(BEGIN=SYMBOL=TAG, RESULT=BEGIN, END=@’,
.particular_decl_query_name);

sca$query_parse(tag_query, cmdline);

! Evaluate that query.
!
sca$query_find(tag_query);

2–16 Using the SCA Callable Interface

Using the SCA Callable Interface
2.5 Callable Query Interface

! Visit each of the tags
!
WHILE sca$query_get_occurrence(tag_query, tag) DO

BEGIN
! Now that we’ve finally got our hands on a tag declaration,
! let’s check out its name.
!
sca$query_get_attri_value_t(tag,

tag_name,
%REF(sca$k_attri_name));

!
! TAG_NAME is now a string descriptor describing the
! name of the tag.

[~etcetera~]
END

END;

_free_string(cmdline, tag_name, tag_query_name);

sca$unlock_library(.sca_cmd_ctx);

sca$query_cleanup(.sca_cmd_ctx, all_tags_query);
sca$query_cleanup(.sca_cmd_ctx, decl_query);
sca$query_cleanup(.sca_cmd_ctx, particular_decl_query);
sca$query_cleanup(.sca_cmd_ctx, tag_query);
END;

2.6 Callable SCA Routines
The callable SCA routines are described in this section. The callable SCA
routines are divided into the following categories:

• Callable command-interface routines

• Callable query initialization and cleanup routines

• Callable query question-building routines

• Callable query result-manipulation routines

• Callable query miscellaneous routines

2.6.1 Callable Command Interface Routines
The following are callable command interface routines:

• SCA$ASYNCH_TERMINATE

• SCA$CLEANUP

• SCA$DO_COMMAND

• SCA$GET_INPUT

Using the SCA Callable Interface 2–17

Using the SCA Callable Interface
2.6 Callable SCA Routines

• SCA$INITIALIZE

• SCA$LOCK_LIBRARY

• SCA$PUT_OUTPUT

• SCA$UNLOCK_LIBRARY

2.6.2 Callable Query Initialization/Cleanup Routines
The following are callable query initialization and cleanup routines:

• SCA$QUERY_CLEANUP

• SCA$QUERY_INITIALIZE

2.6.3 Callable Query Question-Building Routines
The following are callable query question-building routines:

• SCA$QUERY_PARSE

• SCA$QUERY_SELECT_OCCURRENCE

• SCA$SELECT_OCCURRENCE

2.6.4 Callable Query Result Manipulation Routines
The following are callable query result manipulation routines:

• SCA$GET_ATTRIBUTE

• SCA$GET_ATTRI_KIND_T

• SCA$GET_ATTRI_VALUE_T

• SCA$GET_OCCURRENCE

• SCA$QUERY_GET_ATTRIBUTE

• SCA$QUERY_GET_ATTRI_KIND_T

• SCA$QUERY_GET_ATTRI_VALUE_T

• SCA$QUERY_GET_OCCURRENCE

2–18 Using the SCA Callable Interface

Using the SCA Callable Interface
2.6 Callable SCA Routines

2.6.5 Callable Query Miscellaneous Routines
The following are callable query miscellaneous routines:

• SCA$GET_CURRENT_QUERY

• SCA$QUERY_COPY

• SCA$QUERY_FIND

• SCA$QUERY_GET_NAME

Using the SCA Callable Interface 2–19

SCA$ASYNCH_TERMINATE

SCA$ASYNCH_TERMINATE

Sets a flag indicating that a Ctrl/C has been issued.

Format

SCA$ASYNCH_TERMINATE command_context

Argument

command_context
type: $SCA_COMMAND_CONTEXT
access: read/write
mechanism: by reference

SCA command-context value

Condition Value Returned

SCA$_NORMAL Normal successful completion

Description

The SCA$ASYNCH_TERMINATE routine sets a flag indicating that a Ctrl/C
has been issued.

2–20 Using the SCA Callable Interface

SCA$CLEANUP

SCA$CLEANUP

Shuts down the SCA callable command interface, which frees all dynamic
memory associated with the interface routines and data structures.

Format

SCA$CLEANUP command_context

Argument

command_context
type: $SCA_COMMAND_CONTEXT
access: read/write
mechanism: by reference

SCA command-context value

Condition Value Returned

SCA$_NORMAL The SCA callable command interface has been
successfully shut down.

Description

The SCA$CLEANUP routine shuts down the SCA callable command interface,
which frees all dynamic memory associated with the interface routines and
data structures.

Using the SCA Callable Interface 2–21

SCA$DO_COMMAND

SCA$DO_COMMAND

Parses an SCA subsystem command and invokes command processing, if the
command is syntactically correct.

Format

SCA$DO_COMMAND command_context,
command_string
[,parameter_routine]
[,continuation_routine]
[,continuation_prompt]
[,user_argument]
[,confirm_routine]
[,topic_routine]
[,display_routine]

Arguments

command_context
type: $SCA_COMMAND_CONTEXT
access: read/write
mechanism: by reference

SCA command-context value.

command_string
type: character string
access: read-only
mechanism: by descriptor

SCA subsystem command

parameter_routine
type: procedure
access: read-only
mechanism: by reference

Routine that prompts for required parameters. You can specify
SCA$GET_INPUT or a compatible routine. If this parameter is omitted or a
routine address of 0 is specified, commands with missing parameters fail and
display a command-line interface (CLI) error message.

2–22 Using the SCA Callable Interface

SCA$DO_COMMAND

continuation_routine
type: procedure
access: read-only
mechanism: by reference

Routine that prompts for the remainder of a continued command (that is, a
command that ends with a hyphen). You can specify SCA$GET_INPUT or a
compatible routine. If this parameter is omitted or a routine address of 0 is
specified, no continuation prompting is performed.

continuation_prompt
type: character string
access: read-only
mechanism: by descriptor

Command continuation prompt string (for example, SCA>). This parameter
must be specified if the continuation_routine parameter is specified.

user_argument
type: longword
access: read-only
mechanism: by reference

User-specified value to be passed to any action routine (other than CLI prompt
routines) called by this routine.

confirm_routine
type: procedure
access: read-only
mechanism: by value

Command confirmation prompt routine to be used by commands supporting
a /CONFIRM qualifier. You can specify SCA$GET_INPUT or a compatible
routine. If this argument is omitted, the /CONFIRM qualifier is not supported.

topic_routine
type: procedure
access: read-only
mechanism: by value

Help topic prompt routine. You can specify SCA$GET_INPUT or a compatible
routine. If this routine returns an error, command processing is terminated. If
this argument is omitted, no help prompting is performed.

Using the SCA Callable Interface 2–23

SCA$DO_COMMAND

display_routine
type: procedure
access: read-only
mechanism: by value

Routine to be called to display one line of command output. You can specify
SCA$PUT_OUTPUT or a compatible routine. If this routine returns an error,
command processing is terminated. If this argument is omitted, no display
routine is called.

Condition Values Returned

All SCA condition values and
many system values.

Description

The SCA$DO_COMMAND routine parses an SCA subsystem command and
invokes command processing, if the command is syntactically correct.

2–24 Using the SCA Callable Interface

SCA$GET_ATTRIBUTE

SCA$GET_ATTRIBUTE

Gets a handle to an attribute of an entity.

Format

SCA$GET_ATTRIBUTE entity,
attribute_kind,
attribute_handle,
[,iteration_context]

Arguments

entity
type: $SCA_HANDLE
access: read-only
mechanism: by reference

SCA entity handle describing the entity or relationship whose attributes are
being obtained

attribute_kind
type: $SCA_ATTRIBUTE_KIND
access: read-only
mechanism: by reference

Kind of attribute to be obtained

You can specify any attribute-kind with this routine.

attribute_handle
type: $SCA_HANDLE
access: write-only
mechanism: by reference

SCA attribute handle to describe the obtained attribute

iteration_context
type: $SCA_ITERATION_CONTEXT
access: read/write
mechanism: by reference

Iteration-context. This longword must contain 0 on the first call to this routine
for a particular iteration. This routine uses the longword to maintain the
iteration context. The caller must not change the contents of the longword.

Using the SCA Callable Interface 2–25

SCA$GET_ATTRIBUTE

Condition Values Returned

SCA$_NORMAL An attribute has been successfully returned.
SCA$_NONE Warning. An attribute has not been returned.

Either there are no such attributes in the
entity, or there are no more attributes.

Description

The SCA$GET_ATTRIBUTE routine gets a handle to an attribute of an entity.

If the iteration_context parameter is not specified, this routine finds
the first attribute of the specified kind (attribute_kind) and updates
attribute_handle to describe that attribute.

In general, several attributes can be associated with a particular entity. With
this routine, you can find all of those attributes by using the iteration_
context parameter.

2–26 Using the SCA Callable Interface

SCA$GET_ATTRI_KIND_T

SCA$GET_ATTRI_KIND_T

Gets an attribute kind.

Format

SCA$GET_ATTRI_KIND_T attribute_handle,
attribute_kind

Arguments

attribute_handle
type: $SCA_HANDLE
access: read-only
mechanism: by reference

SCA handle describing an attribute whose attribute-kind is to be obtained.

attribute_kind
type: character string
access: write-only
mechanism: by descriptor

Kind of attribute.

Condition Value Returned

SCA$_NORMAL An attribute kind has been successfully
returned.

Description

The SCA$GET_ATTRI_KIND_T routine returns the kind of any attribute as a
character string.

Using the SCA Callable Interface 2–27

SCA$GET_ATTRI_VALUE_T

SCA$GET_ATTRI_VALUE_T

Gets an attribute value.

Format

SCA$GET_ATTRI_VALUE_T handle,
attribute_value
[,attribute_kind]

Arguments

handle
type: $SCA_HANDLE
access: read/write
mechanism: by reference

SCA attribute handle describing either an attribute or an entity whose value is
to be obtained.

attribute_value
type: character string
access: read/write
mechanism: by descriptor

Value of the attribute being selected.

attribute_kind
type: $SCA_ATTRIBUTE_KIND
access: read/write
mechanism: by reference

Kind of attribute to be obtained.

Condition Values Returned

SCA$_NORMAL An attribute value has been successfully
returned.

SCA$_NONE Warning. An attribute-value has not been
returned. There are no such attributes in the
entity. This condition can be returned only if
this routine is processing an entity.

2–28 Using the SCA Callable Interface

SCA$GET_ATTRI_VALUE_T

Description

The SCA$GET_ATTRI_VALUE_T routine returns the value of any attribute as
a character string.

If the handle describes an attribute, this routine returns the value of that
attribute. In this case, the attribute_kind parameter must not be specified.

If the handle describes an entity, this routine returns the value of the first
attribute of that entity that is of the kind specified by the attribute_kind
parameter. In this case, the attribute_kind parameter must be specified.

If you want to get more than one attribute value of a particular kind for
an entity, use the routine SCA$GET_ATTRIBUTE. This applies only to the
attribute-kinds SCA$K_ATTRI_NAME and SCA$K_ATTRI_ALL.

The value of any kind of attribute can be returned by this routine, except
for SCA$K_ATTRI_ALL. This routine will convert to character string those
attributes whose data type is not character string.

This routine does not accept the attribute-kind SCA$K_ATTRI_ALL as the
value of the attribute_kind parameter. It is not meaningful to get just the
first attribute without regard to attribute-kind.

Using the SCA Callable Interface 2–29

SCA$GET_CURRENT_QUERY

SCA$GET_CURRENT_QUERY

Gets the name of the current query in the given command-context.

Format

SCA$GET_CURRENT_QUERY command_context,
query_name

Arguments

command_context
type: $SCA_COMMAND_CONTEXT
access: read/write
mechanism: by reference

SCA command-context.

query_name
type: character string
access: write-only
mechanism: by descriptor

Name of the current query in the context of the given command-context.

Condition Value Returned

SCA$_NORMAL The name of the current query has been
successfully retrieved.

Description

The SCA$GET_CURRENT_QUERY routine gets the name of the current query
in the given command-context.

2–30 Using the SCA Callable Interface

SCA$GET_INPUT

SCA$GET_INPUT

Gets one record of ASCII text from the current controlling input device
specified by SYS$INPUT.

Format

SCA$GET_INPUT get_string,
[,prompt_string]
[,output_length]
[,user_argument]

Arguments

get_string
type: character string
access: write-only
mechanism: by descriptor

Buffer to receive the line read from SYS$INPUT. The string is returned by a
call to STR$COPY_DX.

prompt_string
type: character string
access: read-only
mechanism: by descriptor

Prompt message displayed on the controlling terminal. A valid prompt consists
of text followed by a colon (:), a space, and a no carriage-return and line-feed
combination. The maximum size of the prompt message is 255 characters. If
the controlling input device is not a terminal, this argument is ignored.

output_length
type: word
access: write-only
mechanism: by reference

Word to receive the actual length of the GET-STRING line, not counting any
padding in the case of a fixed string. If the input line is truncated, this length
reflects the truncated string.

Using the SCA Callable Interface 2–31

SCA$GET_INPUT

user_argument
type: _UNSPECIFIED
access: read-only
mechanism: by reference

User-specified value passed to the routine calling this action routine.

Condition Values Returned

SCA$_NORMAL An input line was returned.
Failure completion code from
LIB$GET_INPUT

Description

The SCA$GET_INPUT routine gets one record of ASCII text from the current
controlling input device specified by SYS$INPUT.

2–32 Using the SCA Callable Interface

SCA$GET_OCCURRENCE

SCA$GET_OCCURRENCE

Returns an occurrence from the query specified by the query_name argument.

Format

SCA$GET_OCCURRENCE command_context,
query_name,
occurrence
[,order]

Arguments

command_context
type: $SCA_COMMAND_CONTEXT
access: read/write
mechanism: by reference

SCA command-context.

query_name
type: character string
access: read-only
mechanism: by descriptor

Name of the query in the command-context.

occurrence
type: $SCA_HANDLE
access: read/write
mechanism: by reference

SCA occurrence handle that describes an occurrence.

order
type: $SCA_OCC_SORT_ORDER
access: read-only
mechanism: by reference

Order of retrieval of occurrences from the query result.

Using the SCA Callable Interface 2–33

SCA$GET_OCCURRENCE

Condition Values Returned

SCA$_NORMAL An occurrence has been successfully returned.
SCA$_NEWNAME An occurrence has been successfully returned.

This occurrence has a different name from
the occurrence that was returned by the
previous call to this routine with this query
context. This condition implies that this new
occurrence is also of a different symbol.

SCA$_NEWITEM An occurrence has been successfully returned.
This new occurrence is of a different symbol
from the occurrence that was returned by the
previous call to this routine with this query
context.

SCA$_NOMORE Warning. An occurrence has not been
returned. The traversal of the query result
has been exhausted.

Description

The SCA$GET_OCCURRENCE routine returns an occurrence from the query
specified by the query_name argument.

If the occurrence handle supplied is 0, the routine returns a handle to the first
occurrence in the query represented by the query_name argument. If the
occurrence handle supplied on input represents a valid occurrence, the routine
returns a handle to the next occurrence in the query result. To be valid, the
occurrence handle supplied on input must refer to an occurrence in the query
represented by the query_name argument.

The query name supplied is interpreted in the context of the command-context
identified by the command_context argument.

The order of retrieval of the occurrences is defined by the optional order
argument. The possible values for this argument are as follows:

• SCA$K_OCCURRENCE_ORDER_DEFAULT

• SCA$K_OCCURRENCE_ORDER_LEXICAL

When SCA$K_OCCURRENCE_ORDER_LEXICAL is used for this argument,
the order of retrieval of occurrences from any module coincides with their
lexical order within that module.

2–34 Using the SCA Callable Interface

SCA$GET_OCCURRENCE

When SCA$K_OCCURRENCE_ORDER_DEFAULT is used for this argument,
the order of retrieval of occurrences is undefined.

The default value for the order argument is
SCA$K_OCCURRENCE_ORDER_DEFAULT.

Using the SCA Callable Interface 2–35

SCA$INITIALIZE

SCA$INITIALIZE

Initializes the SCA callable command interface.

Format

SCA$INITIALIZE command_context

Argument

command_context
type: $SCA_COMMAND_CONTEXT
access: write-only
mechanism: by reference

SCA command-context value to be initialized. This value is passed as an
argument to other SCA$xxx routines.

Condition Value Returned

SCA$_NORMAL The SCA callable command interface has been
successfully initialized.

Description

The SCA$INITIALIZE routine initializes the SCA callable command interface.
Note that corresponding to each call to this routine, a call to SCA$CLEANUP
must be made so the process invoking SCA terminates normally.

2–36 Using the SCA Callable Interface

SCA$LOCK_LIBRARY

SCA$LOCK_LIBRARY

Locks all the physical libraries in the current virtual library list so they cannot
be modified.

Format

SCA$LOCK_LIBRARY command_context

Argument

command_context
type: $SCA_COMMAND_CONTEXT
access: read/write
mechanism: by reference

SCA command-context.

Condition Value Returned

SCA$_NORMAL The libraries have been successfully locked.

Description

The SCA$LOCK_LIBRARY routine locks all the physical libraries in the
current virtual library list so they cannot be modified.

Using the SCA Callable Interface 2–37

SCA$PUT_OUTPUT

SCA$PUT_OUTPUT

Writes a record to the current controlling output device specified by
SYS$OUTPUT.

Format

SCA$PUT_OUTPUT string,
user_argument

Arguments

string
type: character string
access: read only
mechanism: by descriptor

String to be written to SYS$OUTPUT. You can concatenate one or more
additional character strings with the primary string to form a single output
record. You can specify a maximum of 20 strings. The maximum resulting
record length is 255 characters.

user_argument
type: _UNSPECIFIED
access: read only
mechanism: by reference

User-specified value passed to the routine calling this action routine.

Condition Values Returned

SCA$_NORMAL The string was successfully written to
SYS$OUTPUT.

Failure completion code from
the HP RMS $PUT service

Description

The SCA$PUT_OUTPUT routine writes a record to the current controlling
output device specified by SYS$OUTPUT.

2–38 Using the SCA Callable Interface

SCA$QUERY_CLEANUP

SCA$QUERY_CLEANUP

Cleans up an SCA query context, which frees all dynamic memory associated
with the query.

Format

SCA$QUERY_CLEANUP query_context

Argument

query_context
type: $SCA_QUERY_CONTEXT
access: read/write
mechanism: by reference

SCA query context to be cleaned up.

Condition Value Returned

SCA$_NORMAL The query context has been successfully
cleaned up.

Description

The SCA$QUERY_CLEANUP routine cleans up an SCA query context, which
frees all dynamic memory associated with the query.

Using the SCA Callable Interface 2–39

SCA$QUERY_COPY

SCA$QUERY_COPY

Copies a query from SRC_QUERY_CONTEXT to DST_QUERY_CONTEXT.

Format

SCA$QUERY_COPY src_query_context,
dst_query_context

Arguments

src_query_context
type: $SCA_QUERY_CONTEXT
access: read/write
mechanism: by reference

SCA query context that describes the query to be copied.

dst_query_context
type: $SCA_QUERY_CONTEXT
access: read/write
mechanism: by reference

SCA query context into which the query is to be copied.

Condition Value Returned

SCA$_NORMAL The query expression has been successfully
copied.

Description

The SCA$QUERY_COPY routine copies a query from
SRC_QUERY_CONTEXT to DST_QUERY_CONTEXT. This will copy whatever
is in SRC_QUERY_CONTEXT, whether that is a question, or a question and a
result.

2–40 Using the SCA Callable Interface

SCA$QUERY_FIND

SCA$QUERY_FIND

Finds the occurrences that match the query expression specified by
QUERY_CONTEXT.

Format

SCA$QUERY_FIND query_context

Argument

query_context
type: $SCA_QUERY_CONTEXT
access: read/write
mechanism: by reference

SCA query context that describes a query expression to be evaluated.

Condition Values Returned

SCA$_NORMAL The query expression has been successfully
evaluated.

SCA$_NOOCCUR No occurrences match the query expression.
SCA$_RESULTEXISTS The query already has a result prior to this

call.

Description

The SCA$QUERY_FIND routine finds the occurrences that match the query
expression specified by QUERY_CONTEXT.

Using the SCA Callable Interface 2–41

SCA$QUERY_GET_ATTRIBUTE

SCA$QUERY_GET_ATTRIBUTE

Gets the handle to an attribute of an entity.

Format

SCA$QUERY_GET_ATTRIBUTE entity,
attribute_kind,
attribute_handle,
[,iteration_context]

Arguments

entity
type: $SCA_HANDLE
access: read-only
mechanism: by reference

SCA entity handle describing the entity or relationship whose attributes are
being obtained.

attribute_kind
type: $SCA_ATTRIBUTE_KIND
access: read-only
mechanism: by reference

Kind of attribute to be obtained.

Any attribute-kind can be specified on this routine.

attribute_handle
type: $SCA_HANDLE
access: write-only
mechanism: by reference

SCA attribute handle to describe the obtained attribute.

iteration_context
type: $SCA_ITERATION_CONTEXT
access: read/write
mechanism: by reference

The iteration-context. This longword must contain 0 on the first call to this
routine for a particular iteration. This routine uses the longword to maintain
the iteration context. The caller must not change the contents of the longword.

2–42 Using the SCA Callable Interface

SCA$QUERY_GET_ATTRIBUTE

Condition Values Returned

SCA$_NORMAL An attribute has been successfully returned.
SCA$_NONE Warning. An attribute has not been returned.

Either there are no such attributes in the
entity, or there are no more attributes.

Description

The SCA$QUERY_GET_ATTRIBUTE routine gets a handle to an attribute of
an entity.

If the iteration_context parameter is not specified, this routine finds
the first attribute of the specified kind (attribute_kind) and updates
attribute_handle to describe that attribute.

In general, several attributes can be associated with a particular entity.
With this routine, you can find all of those attributes by using the
iteration_context parameter.

Using the SCA Callable Interface 2–43

SCA$QUERY_GET_ATTRI_KIND_T

SCA$QUERY_GET_ATTRI_KIND_T

Gets an attribute kind.

Format

SCA$QUERY_GET_ATTRI_KIND_T attribute_handle,
attribute_kind

Arguments

attribute_handle
type: $SCA_HANDLE
access: read-only
mechanism: by reference

SCA handle describing an attribute whose attribute-kind is to be obtained.

attribute_kind
type: character string
access: write-only
mechanism: by descriptor

Kind of the attribute.

Condition Value Returned

SCA$_NORMAL An attribute kind has been successfully
returned.

Description

The SCA$QUERY_GET_ATTRI_KIND_T routine returns the kind of any
attribute as a character string.

2–44 Using the SCA Callable Interface

SCA$QUERY_GET_ATTRI_VALUE_T

SCA$QUERY_GET_ATTRI_VALUE_T

Gets an attribute value.

Format

SCA$QUERY_GET_ATTRI_VALUE_T handle,
attribute_value
[,attribute_kind]

Arguments

handle
type: $SCA_HANDLE
access: read/write
mechanism: by reference

SCA handle describing either an attribute or an entity whose value is to be
obtained.

attribute_value
type: character string
access: read/write
mechanism: by descriptor

The (string) value of the attribute being selected.

attribute_kind
type: $SCA_ATTRIBUTE_KIND
access: read/write
mechanism: by reference

The kind of attribute to be obtained.

Condition Values Returned

SCA$_NORMAL An attribute value has been successfully
returned.

SCA$_NONE Warning. An attribute-value has not been
returned. There are no such attributes in the
entity. This condition can be returned only if
this routine is processing an entity.

Using the SCA Callable Interface 2–45

SCA$QUERY_GET_ATTRI_VALUE_T

Description

The SCA$QUERY_GET_ATTRI_VALUE_T routine returns the value of any
attribute as a character string.

If the handle describes an attribute, this routine returns the value of that
attribute. In this case, the attribute_kind parameter must not be specified.

If the handle describes an entity, this routine returns the value of the first
attribute of that entity that is of the kind specified by the attribute_kind
parameter. In this case, the attribute_kind parameter must be specified.

If you want to get more than one attribute value of a particular kind for an
entity, use the routine SCA$QUERY_GET_ATTRIBUTE. This applies only to
the attribute-kinds SCA$K_ATTRI_NAME and SCA$K_ATTRI_ALL.

The value of any kind of attribute can be returned by this routine except
for SCA$K_ATTRI_ALL. This routine will convert to character string those
attributes whose data type is not character string.

This routine does not accept the attribute-kind SCA$K_ATTRI_ALL as the
value of the attribute_kind parameter. It is not meaningful to get just the
first attribute without regard to attribute-kind.

2–46 Using the SCA Callable Interface

SCA$QUERY_GET_NAME

SCA$QUERY_GET_NAME

Returns the name of a query.

Format

SCA$QUERY_GET_NAME query_context,
query_name

Arguments

query_context
type: $SCA_QUERY_CONTEXT
access: read/write
mechanism: by reference

SCA query context whose name is to be obtained.

query_name
type: character string
access: write-only
mechanism: by descriptor

The name of the query.

Condition Value Returned

SCA$_NORMAL The query name has been successfully
returned.

Description

The SCA$QUERY_GET_NAME routine returns the name of a query.

Using the SCA Callable Interface 2–47

SCA$QUERY_GET_OCCURRENCE

SCA$QUERY_GET_OCCURRENCE

Gets the next occurrence in the query result that is specified as the query_
context argument.

Format

SCA$QUERY_GET_OCCURRENCE query_context,
entity_handle

Arguments

query_context
type: $SCA_QUERY_CONTEXT
access: read/write
mechanism: by reference

An SCA query context whose occurrences are to be obtained.

entity_handle
type: $SCA_HANDLE
access: read/write
mechanism: by reference

An SCA entity handle that describes an entity.

Condition Values Returned

SCA$_NORMAL An occurrence has been successfully returned.
SCA$_NEWNAME An occurrence has been successfully returned.

This occurrence has a different name from
the occurrence that was returned by the
previous call to this routine with this query
context. This condition implies that this new
occurrence is also of a different symbol.

SCA$_NEWITEM An occurrence has been successfully returned.
This new occurrence is of a different symbol
from the occurrence that was returned by the
previous call to this routine with this query
context.

2–48 Using the SCA Callable Interface

SCA$QUERY_GET_OCCURRENCE

SCA$_NOMORE Warning. An occurrence has not been
returned. The traversal of the query result
has been exhausted.

Description

The SCA$QUERY_GET_OCCURRENCE routine successively returns every
occurrence in a query result. It provides one pass through all the occurrences.

Using the SCA Callable Interface 2–49

SCA$QUERY_INITIALIZE

SCA$QUERY_INITIALIZE

Initializes an SCA query context.

Format

SCA$QUERY_INITIALIZE command_context,
query_context

Arguments

command_context
type: $SCA_COMMAND_CONTEXT
access: read-only
mechanism: by reference

An SCA command-context.

query_context
type: $SCA_QUERY_CONTEXT
access: write-only
mechanism: by reference

An SCA query-context to be initialized. This value is passed as an argument to
other SCA query routines (SCA$QUERY_xxx).

Condition Value Returned

SCA$_NORMAL The query context has been successfully
initialized.

Description

The SCA$QUERY_INITIALIZE routine initializes an SCA query context.
This routine must be called before any other SCA query routines
(SCA$QUERY_xxx).

2–50 Using the SCA Callable Interface

SCA$QUERY_PARSE

SCA$QUERY_PARSE

Parses a query-expression command string and sets up a query context, if the
command is syntactically correct.

Format

SCA$QUERY_PARSE query_context, query_expression_string
[,query_expression_length]

Arguments

query_context
type: $SCA_QUERY_CONTEXT
access: read-only
mechanism: by reference

An SCA query context that describes the indicated query expression.

query_expression_string
type: character string
access: read-only
mechanism: by descriptor

A query expression string.

query_expression_length
type: longword
access: write-only
mechanism: by reference

Length of the query expression returned from the parser.

Using the SCA Callable Interface 2–51

SCA$QUERY_PARSE

Condition Values Returned

SCA$_NORMAL The query expression string has been
successfully parsed.

SCA$_MORETEXT Warning. The query expression string
has been successfully parsed, but the
text following the query expression is
not a legal part of the query expression.
This condition is returned only if the
query_expression_length parameter is
specified. If the query_expression_length
parameter is not specified, this routine insists
that the whole query_expression_string
argument be a legal query expression; in this
case, all errors are signaled.

Description

The SCA$QUERY_PARSE routine parses a query expression string and sets
up a query context, if the command is syntactically correct.

2–52 Using the SCA Callable Interface

SCA$QUERY_SELECT_OCCURRENCE

SCA$QUERY_SELECT_OCCURRENCE

Creates a query expression that matches a specific entity.

Format

SCA$QUERY_SELECT_OCCURRENCE query_context,
entity_handle

Arguments

query_context
type: $SCA_QUERY_CONTEXT
access: read/write
mechanism: by reference

An SCA query context that describes a specific entity.

entity_handle
type: $SCA_HANDLE
access: read/write
mechanism: by reference

An SCA entity handle describing the entity that the newly defined query
context is to match.

Condition Value Returned

SCA$_NORMAL A query expression has been successfully
defined.

Description

The SCA$QUERY_SELECT_OCCURRENCE routine creates a query
expression that matches a specific entity. You use this routine to specify
queries based on the results of previous queries. The entity_handle
parameter is obtained by traversing the results of a previous query evaluation.
Typically, the query context of the entity_handle parameter is not the same
as the query_context parameter. However, they can be the same. If they are
the same query context, then that previous query is replaced with the query
defined by this routine and, as a result, entity_handle becomes invalid.

Using the SCA Callable Interface 2–53

SCA$SELECT_OCCURRENCE

SCA$SELECT_OCCURRENCE

Creates a query that matches a specific occurrence.

Format

SCA$SELECT_OCCURRENCE occurrence,
query_name

Arguments

occurrence
type: $SCA_HANDLE
access: read-only
mechanism: by reference

An SCA occurrence handle describing the occurrence that the newly created
query is to match.

query_name
type: character string
access: write-only
mechanism: by descriptor

The name of the newly created query. This query is created in the context of
the same command-context as that in which the input occurrence handle is
defined.

Condition Values Returned

SCA$_NORMAL A query expression has been successfully
defined.

Description

Use this routine to create new queries based on the results of previous queries.
The occurrence handle parameter is obtained by traversing the results of a
previous query evaluation.

2–54 Using the SCA Callable Interface

SCA$UNLOCK_LIBRARY

SCA$UNLOCK_LIBRARY

Unlocks all the physical libraries in the current virtual library list so they can
be modified.

Format

SCA$UNLOCK_LIBRARY command_context

Argument

command_context
type: $SCA_COMMAND_CONTEXT
access: read/write
mechanism: by reference

An SCA command-context.

Condition Value Returned

SCA$_NORMAL The libraries have been successfully unlocked.

Description

The SCA$UNLOCK_LIBRARY routine unlocks all the physical libraries in the
current virtual library list so they can be modified.

Using the SCA Callable Interface 2–55

3
Using the SCA Query Language

The SCA Query Language is an enhancement to the FIND command. By
entering queries, you can both broaden and refine your use of SCA. With
the SCA Query Language, you can make explicit queries of a large system
and selectively limit queries to the results of previous query operations.
Specifically, you can do the following:

• Analyze source code by using both file and symbol information.

• Use names to select symbols.

• Use other attributes to select symbols.

• Specify precise search parameters.

• Use relationship functions to query relationships between symbols.

Additional features of the SCA Query Language are also described in this
chapter.

3.1 Basic Concepts
The SCA Query Language is based on the concept of a query expression. A
query expression is a general algebraic expression in the form of a parameter
to the FIND command. It is used to extract specific information from SCA
libraries. A query expression can contain subexpressions joined by query
operators or functions. A query operator is either a logical operator (such as
AND or OR), or a relationship function (such as CONTAINING or CALLING).

The SCA Query Language uses two primary elements: symbols and
occurrences. A symbol is an abstract entity in a program. An occurrence is
any use of a symbol in source code.

A symbol can be a variable, routine, field within a record, or any other clearly
distinguishable item in a program. Each symbol has a name. Symbols also
have attributes called symbol attributes. One symbol attribute is its class.
Symbol classes include variable, literal, macro, function, or task. Symbols also
have domain attributes, for example, global or inheritable.

Using the SCA Query Language 3–1

Using the SCA Query Language
3.1 Basic Concepts

A symbol has associated with it a set of occurrences. In addition, every
occurrence has a corresponding symbol.

An occurrence has attributes called occurrence attributes. Occurrence
attributes supply additional information about the use of the symbol. For
example, an occurrence can be a declaration or reference.

3.2 SCA Query Language Tutorial
With the SCA Query Language, you can perform a wide range of operations
from simple to complex queries. This section contains a set of these operations,
which are based on a C module. It begins with simple queries and gradually
introduces more sophisticated ways to use the query language. The FIND
commands demonstrated in this section are entered relative to an SCA library
describing the following C module:

1 #include <stdio.h>
363 #include <strng.h>
413 #include "openfiles.h"
442 #include "types.h"
501
502 extern int trnlit__openin,
503 trnlit__openout,
504 trnlit__badorig,
505 trnlit__badrepl,
506 trnlit__null,
507 trnlit__compnull,
508 trnlit__complete;
509
510
511 int expand_string (param_string str, code_vector codes,
512 param_string error_text);
513
514
515 void build_table (code_vector orig_vector, code_vector repl_vector,
516 code_vector_length orig_length, code_vector_length repl_length,
517 boolean complement, trans_table table);
518
519 void copy_file (FILE *in_file, FILE *out_file, trans_table table);
520
521 void write_error (int error_status, int extra_status, char *err_text);
522
523 int read_command_line (int argc, char *argv[],
524 FILE *in_file, FILE *out_file, trans_table table);
525
526 main (int argc, char *argv[])
527 {
528 1 FILE *in_file;
529 1 FILE *out_file;
530 1 trans_table table;

3–2 Using the SCA Query Language

Using the SCA Query Language
3.2 SCA Query Language Tutorial

531 1
532 1 read_command_line (argc, argv, in_file, out_file, table);
533 1 copy_file (in_file, out_file, table);
534 1 return trnlit__complete;
535 1 }
536
537 int read_command_line (int argc, char *argv[],
538 FILE *in_file, FILE *out_file, trans_table table)
539 {
540 1 param_string in_file_name;
541 1 param_string orig_chars_string;
542 1 param_string repl_chars_string;
543 1 param_string out_file_name;
544 1 code_vector orig_vector;
545 1 code_vector repl_vector;
546 1 code_vector_length orig_len;
547 1 code_vector_length repl_len;
548 1 int status;
549 1 param_string err_text;
550 1 boolean complement_originals;
551 1
552 1 orig_len = 0;
553 1 repl_len = 0;
554 1
555 1 in_file_name = argv[1];
556 1 orig_chars_string = argv[2];
557 1 repl_chars_string = argv[3];
558 1 out_file_name = argv[4];
559 1
560 1 open_in (in_file, in_file_name, "", trnlit__openin);
561 1
562 1 err_text = "";
563 1 if (strlen (orig_chars_string) == 0)
564 1 {
565 2 status = trnlit__null;
566 2 }
567 1 else
568 1 {
569 2 complement_originals = (orig_chars_string[0] == ’-’);
570 2 if (complement_originals)
571 2 {
572 3 strncpy (orig_chars_string, &orig_chars_string[1],
573 3 strlen(orig_chars_string) - 1);
574 3 };
575 2 if (strlen(orig_chars_string) == 0)
576 2 {
577 3 status = trnlit__compnull;
578 3 }
579 2 else
580 2 {
581 3 status = expand_string (orig_chars_string, orig_vector, err_text);
582 3 };

Using the SCA Query Language 3–3

Using the SCA Query Language
3.2 SCA Query Language Tutorial

583 2 };
584 1
585 1 if (status != 1)
586 1 {
587 2 write_error (trnlit__badorig, status, err_text);
588 2 return status;
589 2 };
590 1
591 1 status = expand_string (repl_chars_string, repl_vector, err_text);
592 1 if (status != 1)
593 1 {
594 2 write_error (trnlit__badrepl, status, err_text);
595 2 return status;
596 2 };
597 1
598 1 build_table (orig_vector, repl_vector, orig_len, repl_len,
599 1 complement_originals, table);
600 1
601 1 open_out (out_file, out_file_name, "", in_file, trnlit__openout);
603 1 }

The examples shown in this chapter are based on using SCA in standalone
mode. When you use LSE, some results appear differently. For the sake of
clarity, the following description is presented in the context of case sensitivity
being turned off. If that is not the case, make sure you enter query expressions
in the proper case.

3.2.1 Simple Queries
The simplest query specifies symbols based on the name of the symbol. For
example, to get information about all the occurrences of symbols named
ORIG_VECTOR, enter the following command:

FIND orig_vector

The result is as follows:

ORIG_VECTOR argument
TRANSLIT\515 function parameter declaration

ORIG_VECTOR variable
TRANSLIT\544 variable definition declaration
TRANSLIT\581 read reference
TRANSLIT\598 read reference

%SCA-S-OCCURS, 4 occurrences found (2 symbols, 1 name)

This display shows that SCA found two symbols named ORIG_VECTOR. The
first symbol is the argument defined on line 515 of the sample program. This
symbol has only one occurrence.

3–4 Using the SCA Query Language

Using the SCA Query Language
3.2 SCA Query Language Tutorial

The second symbol is a variable and has three occurrences. The first
occurrence is the declaration of the variable and indicates that it is the
ORIG_VECTOR symbol defined on line 544 of the sample program. The next
two occurrences are references to this variable.

You can restrict the query in several ways. For example, to get only
declarations of symbols named ORIG_VECTOR, enter the following command:

FIND orig_vector AND occurrence=declaration

The result is as follows:

ORIG_VECTOR argument
TRANSLIT\515 function parameter declaration

ORIG_VECTOR variable
TRANSLIT\544 variable definition declaration

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 1 name)

To get only read references of symbols named ORIG_VECTOR, enter the
following command:

FIND orig_vector AND occurrence=read

The result is as follows:

ORIG_VECTOR variable
TRANSLIT\581 read reference
TRANSLIT\598 read reference

%SCA-S-OCCURS, 2 occurrences found (1 symbol, 1 name)

The previous two examples show query selection based on occurrence
attributes.

With the SCA Query Language, you can use wildcards. For example, to display
information about procedures and functions without regard to their names,
enter the following command:

FIND * AND symbol=routine

Because the name attribute is a wildcard, it can be left out completely. The
following command is equivalent to the previous one:

FIND symbol=routine

The result of this command is similar to the following sample:

BUILD_TABLE procedure
TRANSLIT\515 void function declaration
TRANSLIT\598 call reference

COPY_FILE procedure
TRANSLIT\519 void function declaration
TRANSLIT\533 call reference

Using the SCA Query Language 3–5

Using the SCA Query Language
3.2 SCA Query Language Tutorial

...

VSPRINTF function
TRANSLIT\132 function declaration

WRITE_ERROR procedure
TRANSLIT\521 void function declaration
TRANSLIT\587 call reference
TRANSLIT\594 call reference

%SCA-S-OCCURS, 87 occurrences found (73 symbols, 73 names)

This example shows query selection based on symbol attributes. You can
combine both symbol and occurrence attributes in one query. For example, to
find the primary declarations of routines, enter the following command:

FIND symbol=routine AND occurrence=primary

The result is as follows:

MAIN function
TRANSLIT\526 function definition declaration

READ_COMMAND_LINE function
TRANSLIT\537 function definition declaration

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

The previous examples also show the use of logical operators to form more
complex queries based on subqueries. For more information on logical
operators, see the section Section 3.2.3 later in this chapter.

You can further restrict the previous query by adding an expression that
distinguishes module-specific symbols from those that (potentially) span
multiple modules. To display the primary declaration of intermodule routines
(only those that have the potential of spanning multiple modules), enter the
following command:

FIND symbol=routine AND occurrence=primary AND domain=multi_module

Because the example is simple, the domain selection does not alter the earlier
result, which is as follows:

MAIN function
TRANSLIT\526 function definition declaration

READ_COMMAND_LINE function
TRANSLIT\537 function definition declaration

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

You can abbreviate attribute-selection expressions. For example, you can
abbreviate the preceding command as follows:

FIND symb=rout AND occ=prim AND doma=mult

3–6 Using the SCA Query Language

Using the SCA Query Language
3.2 SCA Query Language Tutorial

3.2.2 Using the EXPAND Function to Find Related Occurrences
The process of expanding a set of occurrences to include all the occurrences of
the corresponding set of symbols is called expansion.

To perform an expansion operation, SCA first finds all the occurrences that
match the given expression. SCA then finds all the symbols that correspond to
that set of occurrences. Finally, the result of the query is all the occurrences of
those symbols.

For example, to display all the occurrences of routines that have primary
declarations in the current SCA library, enter the following command:

FIND EXPAND (occurrence=primary AND symbol=routine)

The result is as follows:

MAIN function
TRANSLIT\526 function definition declaration

READ_COMMAND_LINE function
TRANSLIT\523 function declaration
TRANSLIT\532 call reference
TRANSLIT\537 function definition declaration

%SCA-S-OCCURS, 4 occurrences found (2 symbols, 2 names)

The parenthetical expression is the same query used earlier. The addition
of the expansion operation causes the result to contain all occurrences of the
symbols found, not just those specified by the subexpression.

You can follow an expansion with more restrictions. For example, to display
the call references of routines that have primary declarations in the SCA
library being queried, enter the following command:

FIND EXPAND (occurrence=primary AND symbol=routine) AND occ=call

This is an example of a nested query expression. The inner query expression,
EXPAND (occurrence=primary AND symbol=routine), is evaluated first, which
results in a set of all the occurrences of routines for which there are primary
declarations. That set of occurrences is the input to the outer query expression,
which has the following form:

query-expression AND occ=call

The outer query expression removes all occurrences that are not call-references.

The result is as follows:

READ_COMMAND_LINE function
TRANSLIT\532 call reference

%SCA-S-OCCURS, 1 occurrence found (1 symbol, 1 name)

Using the SCA Query Language 3–7

Using the SCA Query Language
3.2 SCA Query Language Tutorial

In another example of expansion, to display declarations of symbols that have
write references, enter the following command:

FIND EXPAND (occ=write) AND occ=decl

To evaluate this query, SCA begins by finding the set of write reference
occurrences. Next, SCA expands this set to include all occurrences of these
symbols. Finally, the new set is intersected with the set containing all
declaration occurrences.

The result is as follows:

COMPLEMENT_ORIGINALS variable
TRANSLIT\550 variable definition declaration

ERR_TEXT variable
TRANSLIT\549 variable definition declaration

IN_FILE_NAME variable
TRANSLIT\540 variable definition declaration

ORIG_CHARS_STRING variable
TRANSLIT\541 variable definition declaration

ORIG_LEN variable
TRANSLIT\546 variable definition declaration

OUT_FILE_NAME variable
TRANSLIT\543 variable definition declaration

REPL_CHARS_STRING variable
TRANSLIT\542 variable definition declaration

REPL_LEN variable
TRANSLIT\547 variable definition declaration

STATUS variable
TRANSLIT\548 variable definition declaration

%SCA-S-OCCURS, 9 occurrences found (9 symbols, 9 names)

3.2.3 Using Logical Operators to Select Information
The SCA Query Language can apply logical operators to the results of other
query expressions. The logical operator expressions that are supported are
union (OR), intersection (AND), negation (NOT), and exclusive-or (XOR), as
follows:

• Union—Uses the OR logical operator to merge two sets, which results in a
set containing all occurrences that exist in either set.

• Intersection—Identifies occurrences that exist in two different sets,
which results in a set containing each occurrence that exists in both sets;
occurrences that appear in only one of the sets are not included. The
intersection operator is AND.

• Negation—Identifies occurrences that are not in the set. The negation
operator is NOT.

3–8 Using the SCA Query Language

Using the SCA Query Language
3.2 SCA Query Language Tutorial

• Exclusive-or—Selects the unique occurrences in two different sets, which
results in a set containing all occurrences that exist in only one of the sets.
The exclusive-or operator is XOR.

For example, if you want to find all the symbols that have TABLE in their
name, but you want to exclude those symbols whose name is TABLE, enter the
following command:

FIND *table* AND NOT table

The result is as follows:

BUILD_TABLE procedure
TRANSLIT\515 void function declaration
TRANSLIT\598 call reference

TRANS_TABLE type
TRANSLIT\495 typedef definition declaration
TRANSLIT\517 reference
TRANSLIT\519 reference
TRANSLIT\524 reference
TRANSLIT\530 reference
TRANSLIT\538 reference

%SCA-S-OCCURS, 8 occurrences found (2 symbols, 2 names)

If you want to find all symbols with names that begin with ORIG, but not those
symbols that have read or write references, enter the following command:

FIND orig* AND NOT EXPAND(occ=read OR occ=write)

The result is as follows:

ORIG_LENGTH argument
TRANSLIT\516 function parameter declaration

ORIG_VECTOR argument
TRANSLIT\515 function parameter declaration

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

The previous query can also be written as follows:

FIND orig* AND NOT EXPAND occ=(read,write)

To display the declarations of all symbols that are both read and written, enter
the following command:

FIND (EXPAND(occ=read) AND EXPAND(occ=write)) AND occ=decl

Using the SCA Query Language 3–9

Using the SCA Query Language
3.2 SCA Query Language Tutorial

The result is as follows:

COMPLEMENT_ORIGINALS variable
TRANSLIT\550 variable definition declaration

ERR_TEXT variable
TRANSLIT\549 variable definition declaration

IN_FILE_NAME variable
TRANSLIT\540 variable definition declaration

ORIG_CHARS_STRING variable
TRANSLIT\541 variable definition declaration

ORIG_LEN variable
TRANSLIT\546 variable definition declaration

OUT_FILE_NAME variable
TRANSLIT\543 variable definition declaration

REPL_CHARS_STRING variable
TRANSLIT\542 variable definition declaration

REPL_LEN variable
TRANSLIT\547 variable definition declaration

STATUS variable
TRANSLIT\548 variable definition declaration

%SCA-S-OCCURS, 9 occurrences found (9 symbols, 9 names)

Alternatively, to display the declarations of all symbols that are either read or
written, but not both, enter the following command:

FIND (EXPAND(occ=read) XOR EXPAND(occ=write)) AND occ=decl

The result is as follows:

ARGC argument
TRANSLIT\526 function parameter definition declaration

ARGV argument
TRANSLIT\526 function parameter definition declaration

...

TRNLIT__OPENIN variable
TRANSLIT\502 variable declaration

TRNLIT__OPENOUT variable
TRANSLIT\503 variable declaration

%SCA-S-OCCURS, 20 occurrences found (20 symbols, 17 names)

To find all the symbols that are declared but never referenced, enter the
following command:

FIND NOT EXPAND occ=ref

3–10 Using the SCA Query Language

Using the SCA Query Language
3.2 SCA Query Language Tutorial

This finds all occurrences of the symbols that are never referenced. The result
is as follows:

pointer
TRANSLIT\419 pointer definition declaration (hidden)

pointer
TRANSLIT\419 pointer definition declaration (hidden)

...

__STRING_LOADED macro
TRANSLIT\369 macro definition declaration (hidden)

__WHENCE argument
TRANSLIT\279 function parameter declaration

%SCA-S-OCCURS, 557 occurrences found (557 symbols, 167 names)

If you enter this command and realize that your chosen languages and code
practices tend to give some unimportant cases of declared but not referenced
symbols (like modules and formal parameters), you might want to further
qualify your request by entering the following command:

FIND (NOT EXPAND occ=ref) AND NOT "" AND NOT -
symbol=(module,argument,type,macro)

The result is a display that removes symbols with null names, as well as
modules, parameters (called ARGUMENTS), types, and macros from the set
of occurrences of the symbols that are never referenced. The result in the
example library is still large; segments of it follow:

COMPRESS component
TRANSLIT\494 struct or union member definition declaration

CTERMID function
TRANSLIT\349 function declaration

...

_FLAG component
TRANSLIT\19 struct or union member definition declaration

_PTR component
TRANSLIT\17 struct or union member definition declaration

%SCA-S-OCCURS, 76 occurrences found (76 symbols, 76 names)

3.2.4 The Current Query
SCA maintains a current query. A current query is the result of the
previously entered query, or the one to which you are set using the NEXT
QUERY, PREVIOUS QUERY, and GOTO QUERY commands. The current
query is specified the same way as any other query. The name of the current
query is SCA$CURRENT_QUERY.

Using the SCA Query Language 3–11

Using the SCA Query Language
3.2 SCA Query Language Tutorial

The following is an example of a command sequence using the current query:

FIND *table* AND NOT table
FIND (NOT @sca$current_query) AND symbol=routine AND occurrence=decl

The @ function defaults to the current query. Consequently, you can also write
the previous commands as follows:

FIND *table* AND NOT table
FIND (NOT @()) AND symbol=routine AND occ=decl

You can assign a name to a query by using the NAME option of the FIND
command. A query remains available for use throughout a given invocation
of SCA, unless it is explicitly deleted using the DELETE QUERY command.
If you do not name a query, SCA automatically assigns a name to it. For
example, the previous command sequence can be rewritten as follows:

FIND -NAME table *table* AND NOT table
FIND -NAME routine_decls symbol=routine AND occ=decl
FIND (NOT @table) AND @routine_decls

You can use the SHOW QUERY command to display all currently available
queries. For example, if you follow the previous set of FIND commands with a
SHOW QUERY command, the result is as follows:

Name Query expression Description

table *table* AND NOT table (none)
routine_decls

symbol=routine AND occ=decl
(none)

(*) 1 (NOT @table) AND @routine_decls
(none)

3.2.5 Structured Relationship Expressions
With the SCA Query Language, you can select occurrences based on their
relationship to other occurrences. For example, enter the following command:

FIND CALLED_BY read_command_line

The result is as follows:

READ_COMMAND_LINE function calls
BUILD_TABLE procedure
EXPAND_STRING function
OPEN_IN procedure
OPEN_OUT procedure
STRLEN function
STRNCPY function
WRITE_ERROR procedure

%SCA-S-OCCURS, 12 occurrences found (8 symbols, 8 names)

3–12 Using the SCA Query Language

Using the SCA Query Language
3.2 SCA Query Language Tutorial

You can interpret the previous command as, ‘‘Find what is called by
READ_COMMAND_LINE.’’

You can ask the reverse question, ‘‘Find what is calling
READ_COMMAND_LINE,’’ by entering the following command:

FIND CALLING read_command_line

The result is as follows:

MAIN function calls
READ_COMMAND_LINE function

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

You can use the depth parameter to request that more than one level of
structure be displayed. The depth parameter sets the number of levels of
structure that you want SCA to trace. By default, one level of structure is
traced.

To request a depth level of 2, enter the following command:

FIND CALLED_BY(main, depth=2)

The result is as follows:

MAIN function calls
COPY_FILE procedure
READ_COMMAND_LINE function calls

BUILD_TABLE procedure
EXPAND_STRING function
OPEN_IN procedure
OPEN_OUT procedure
STRLEN function
STRNCPY function
WRITE_ERROR procedure

%SCA-S-OCCURS, 15 occurrences found (10 symbols, 10 names)

You can use the DEPTH=ALL option to specify that all levels of call
relationship are to be traced. To trace all call relationships from MAIN
down, enter the following command:

FIND CALLED_BY(main, depth=all)

Because the example program is so simple, this command gives the same result
as the previous command.

If you want to know if one routine can be called from within another directly
or indirectly (for example, to display all of the paths of the call-graph that lead
from MAIN to STRLEN), enter the following command:

FIND CALLED_BY(main, strlen, depth=all)

Using the SCA Query Language 3–13

Using the SCA Query Language
3.2 SCA Query Language Tutorial

The result is as follows:

MAIN function calls
READ_COMMAND_LINE function calls

STRLEN function
%SCA-S-OCCURS, 6 occurrences found (3 symbols, 3 names)

You can interpret the previous command as, ‘‘Find what is called by MAIN,
tracing any number of levels of structure, but include only the paths that lead
to STRLEN.’’

One common problem with call-tree displays is that they often contain a large
percentage of lines describing routines that are not a part of the application
under development. These are routines supplied as part of your operating
system, as runtime support for your programming language, or some other set
of routines that are viewed by the developer as being a part of the base system.
Having these utility routines in a call-tree is often a nuisance, because they
make it difficult to see the most important structure of the call tree.

The primary declarations of such utility routines are not described in the SCA
library of an application.

FIND CALLED_BY(main, EXPAND(occ=primary), depth=all)

You can interpret the preceding command as, ‘‘Find what is called by MAIN,
tracing any number of levels of structure, but include only the paths that lead
to routines that have primary declarations.’’ A more succinct interpretation
is, ‘‘Trace the calls from MAIN through the routines that have primary
declarations.’’

The result is as follows:

MAIN function calls
READ_COMMAND_LINE function

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

You have even more control over the tracing of relationships by using the
TRACE parameter. The TRACE parameter specifies a query expression. As
the CALLED_BY function iteratively traces the calls, it continues tracing
the called-by relationship only through the occurrences that match the trace-
expression, which is specified as the value of the TRACE parameter.

For example, to display all of the paths of the call graph from MAIN down,
except the call relationships traced through the routine
READ_COMMAND_LINE, enter the following command:

FIND CALLED_BY(main, depth=all, trace=(NOT read_command_line))

3–14 Using the SCA Query Language

Using the SCA Query Language
3.2 SCA Query Language Tutorial

The result is as follows:

MAIN function calls
COPY_FILE procedure
READ_COMMAND_LINE function

%SCA-S-OCCURS, 3 occurrences found (3 symbols, 3 names)

Note that READ_COMMAND_LINE is included in the result, but the tracing of
the called-by relationship does not continue through READ_COMMAND_LINE.

The TRACE parameter does not affect the first iteration. That first iteration is
controlled by the BEGIN parameter.

Note that you can terminate tracing the called-by relationship through
READ_COMMAND_LINE and you can exclude calls to
READ_COMMAND_LINE, by entering the following command:

FIND CALLED_BY(build_table, -
NOT read_command_line, -
depth=all, -
trace=(NOT read_command_line))

This command displays all the paths of the call-graph from MAIN down, except
it will not match calls to the routine READ_COMMAND_LINE. As a result,
READ_COMMAND_LINE is not included in the display. The result is as
follows:

MAIN function calls
COPY_FILE procedure

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

3.2.6 Nonstructured Relationship Expressions
There is a simple but important difference between the commands about
to be described here and those described in the previous section. Both sets
of commands use information about the relationships between occurrences.
However, the commands described in the previous sections use that
relationship information to create a collection of occurrences and the
relationships between those occurrences. The commands described in the
following sections discard the relationship information from the query
result. Consequently, these relationship-query expressions are considered
nonstructured because the result is solely a flat set of occurrences.

Nonstructured relationship expressions are realized by using the result-
parameter of the relationship functions. For example, you saw in the previous
section the results of the following command:

FIND CALLED_BY read_command_line

Using the SCA Query Language 3–15

Using the SCA Query Language
3.2 SCA Query Language Tutorial

The result is as follows:

READ_COMMAND_LINE function calls
BUILD_TABLE procedure
EXPAND_STRING function
OPEN_IN procedure
OPEN_OUT procedure
STRLEN function
STRNCPY function
WRITE_ERROR procedure

%SCA-S-OCCURS, 12 occurrences found (8 symbols, 8 names)

A nonstructured version of the same command is as follows:

FIND CALLED_BY(read_command_line, result=nostructure)

The result is as follows:

BUILD_TABLE procedure
TRANSLIT\598 call reference

EXPAND_STRING function
TRANSLIT\581 call reference
TRANSLIT\591 call reference

OPEN_IN procedure
TRANSLIT\560 call reference

OPEN_OUT procedure
TRANSLIT\601 call reference

READ_COMMAND_LINE function
TRANSLIT\537 function definition declaration

STRLEN function
TRANSLIT\563 call reference
TRANSLIT\573 call reference
TRANSLIT\575 call reference

STRNCPY function
TRANSLIT\572 call reference

WRITE_ERROR procedure
TRANSLIT\587 call reference
TRANSLIT\594 call reference

%SCA-S-OCCURS, 12 occurrences found (8 symbols, 8 names)

You can also use the result-parameter to restrict the result to just the
beginning or just the end of the relationship expression. For example, if you
want to identify the routines that call C RTL routines for string manipulation,
enter the following command:

FIND CALLING(str*, result=begin)

The result is as follows:

READ_COMMAND_LINE function
TRANSLIT\537 function definition declaration

%SCA-S-OCCURS, 1 occurrence found (1 symbol, 1 name)

3–16 Using the SCA Query Language

Using the SCA Query Language
3.2 SCA Query Language Tutorial

You can interpret this command as, ‘‘Find what is calling STR*, and report
only the caller, READ_COMMAND_LINE, not the callee, STR*.’’

If you want to find all the occurrences of routines that call RTL routines,
expand the result of the previous query expression by entering the following
command:

FIND EXPAND CALLING(str*, result=begin)

The result is as follows:

READ_COMMAND_LINE function
TRANSLIT\523 function declaration
TRANSLIT\532 call reference
TRANSLIT\537 function definition declaration

%SCA-S-OCCURS, 3 occurrences found (1 symbol, 1 name)

You can also find routines that call STR* indirectly by entering the following
command:

FIND CALLING(str*, depth=all, result=begin)

This command asks for the routines that call an RTL routine either directly or
indirectly. The result is as follows:

MAIN function
TRANSLIT\526 function definition declaration

READ_COMMAND_LINE function
TRANSLIT\537 function definition declaration

%SCA-S-OCCURS, 2 occurrences found (2 symbols, 2 names)

3.2.7 Other Relationships
The TYPING and CONTAINING commands also enable you to query a
software system. For example, you can determine the type of the routine
parameter TABLE by entering the following command:

FIND TYPING table

The result is as follows:

TRANS_TABLE type types
TABLE argument
TABLE argument
TABLE argument
TABLE variable
TABLE argument

%SCA-S-OCCURS, 10 occurrences found (6 symbols, 2 names)

Using the SCA Query Language 3–17

Using the SCA Query Language
3.2 SCA Query Language Tutorial

You can trace these type relationships through multiple levels. Suppose
TRANS_TABLE is defined as follows:

#define min_code 0
#define max_code 258

typedef int code_value; /* min_code .. max_code */

typedef struct {
code_value trans_value;
boolean compress;

} trans_table[max_code - min_code + 1];

You can trace multiple levels by entering the following command:

FIND TYPING(table, depth=all)

The result is as follows:

TABLE argument is typed by
TRANS_TABLE type is typed by

array is typed by
array index is typed by
. UNSIGNED INT scalar type
array component is typed by

record is typed by
COMPRESS component is typed by
. enumeration type is typed by
. FALSE constant is typed by
. . INT scalar type
. TRUE constant is typed by
. INT scalar type (See above)
TRANS_VALUE component is typed by

INT scalar type (See above)
TABLE argument is typed by

TRANS_TABLE type (See above)
TABLE argument is typed by

TRANS_TABLE type (See above)
TABLE variable is typed by

TRANS_TABLE type (See above)
TABLE argument is typed by

TRANS_TABLE type (See above)
%SCA-S-OCCURS, 26 occurrences found (17 symbols, 9 names)

You can also find all variables of type INT by entering the following command:

FIND TYPED_BY(int, symbol=variable, result=begin)

3–18 Using the SCA Query Language

Using the SCA Query Language
3.2 SCA Query Language Tutorial

The result is as follows:

ORIG_LEN variable
TRANSLIT\546 variable definition declaration

REPL_LEN variable
TRANSLIT\547 variable definition declaration

STATUS variable
TRANSLIT\548 variable definition declaration

TRNLIT__BADORIG variable
TRANSLIT\504 variable declaration

TRNLIT__BADREPL variable
TRANSLIT\505 variable declaration

TRNLIT__COMPLETE variable
TRANSLIT\508 variable declaration

TRNLIT__COMPNULL variable
TRANSLIT\507 variable declaration

TRNLIT__NULL variable
TRANSLIT\506 variable declaration

TRNLIT__OPENIN variable
TRANSLIT\502 variable declaration

TRNLIT__OPENOUT variable
TRANSLIT\503 variable declaration

%SCA-S-OCCURS, 10 occurrences found (10 symbols, 10 names)

You can interpret the previous command as, ‘‘Find the symbols that are typed-
by INT and that match the query expression, SYMBOL=VARIABLE, and
return just the beginning of the typed-by relationship.’’

There is a general containment relationship. You can use it to get a declaration
tree. To show the (primary) declaration structure of routines and variables in
the module TRANSLIT, enter the following command:

FIND CONTAINED_BY(translit,
symbol=(routine, variable) and occurrence=primary,
depth=all)

Using the SCA Query Language 3–19

Using the SCA Query Language
3.2 SCA Query Language Tutorial

The first parameter says, ‘‘Begin at TRANSLIT.’’ The second parameter says,
‘‘End with primary declarations of routines or variables.’’ The third parameter
says, ‘‘Repeat any number of levels.’’ The result is as follows:

TRANSLIT module contains
MAIN function contains
. IN_FILE variable
. OUT_FILE variable
. TABLE variable
READ_COMMAND_LINE function contains

COMPLEMENT_ORIGINALS variable
ERR_TEXT variable
IN_FILE_NAME variable
ORIG_CHARS_STRING variable
ORIG_LEN variable
ORIG_VECTOR variable
OUT_FILE_NAME variable
REPL_CHARS_STRING variable
REPL_LEN variable
REPL_VECTOR variable
STATUS variable

%SCA-S-OCCURS, 17 occurrences found (17 symbols, 17 names)

You can use the containment relationship to specify more precisely which
symbol you want. To request all the occurrences of symbols named
READ_COMMAND_LINE that are directly contained by the module
TRANSLIT, enter the following command:

FIND CONTAINED_BY(translit, read_command_line, result=begin)

The result is as follows:

READ_COMMAND_LINE function
TRANSLIT\523 function declaration
TRANSLIT\537 function definition declaration

%SCA-S-OCCURS, 2 occurrences found (1 symbol, 1 name)

Alternatively, to request all the occurrences of symbols named
READ_COMMAND_LINE that are directly or indirectly contained by the
module TRANSLIT, enter the following command:

FIND CONTAINED_BY(translit, read_command_line, depth=all, result=begin)

The result is as follows:

READ_COMMAND_LINE function
TRANSLIT\523 function declaration
TRANSLIT\532 call reference
TRANSLIT\537 function definition declaration

%SCA-S-OCCURS, 3 occurrences found (1 symbol, 1 name)

3–20 Using the SCA Query Language

Using the SCA Query Language
3.2 SCA Query Language Tutorial

3.2.8 The IN Function
The CONTAINED_BY function is so general that even the most common
queries involve the specification of several parameters. Therefore, the IN
function has been defined as a special case of the CONTAINED_BY function.

The IN function returns all of the specified occurrences that are contained
directly or indirectly (DEPTH=ALL) by a specified (set of) occurrences. See
Chapter 4 for more information.

As an example, the FIND CONTAINED_BY command in the previous section
can be more simply written as follows:

FIND IN(translit, read_command_line)

You can interpret this command as, ‘‘Find all occurrences in TRANSLIT named
READ_COMMAND_LINE.’’

To find all occurrences in TRANSLIT, including those nested within
declarations of TRANSLIT, you omit the second parameter, as shown in
the following command:

FIND IN translit

As another example, imagine that you are working on a compiler project
and you have defined a query named PARSER to contain the list of all the
modules that make up the parser. To find all the occurrences of symbols named
STRLEN contained directly or indirectly within the parser modules, enter the
following command:

FIND IN(@parser, strlen)

3.2.9 Path Names
The SCA query language accepts path-name notation. For example, to find
only symbols named IN_FILE that are declared directly within MAIN, enter
the following command:

FIND main\in_file

The result is as follows:

IN_FILE variable
TRANSLIT\528 variable definition declaration
TRANSLIT\532 read reference
TRANSLIT\533 read reference

%SCA-S-OCCURS, 3 occurrences found (1 symbol, 1 name)

Alternatively, you can enter the following command:

FIND read_command_line\in_file

Using the SCA Query Language 3–21

Using the SCA Query Language
3.2 SCA Query Language Tutorial

The result is as follows:

IN_FILE argument
TRANSLIT\538 function parameter definition declaration
TRANSLIT\560 read reference
TRANSLIT\601 read reference

%SCA-S-OCCURS, 3 occurrences found (1 symbol, 1 name)

You can build up path names repeatedly to increase precision. For example,
the previous display can be produced by entering the following command:

FIND translit\read_command_line\in_file

You can use wildcards within path names. For example, the previous display
could also have been produced by entering the following command:

FIND translit*\in_file

You can interpret this command as, ‘‘Find symbols named IN_FILE that are
declared within any primary declaration that is contained within the primary
declaration of TRANSLIT.’’

You can specify that any number of containment levels are acceptable. This is
done by leaving out a path name, as in the following command:

FIND translit\\in_file

You can interpret this command as, ‘‘Find symbols named IN_FILE that are
declared directly or indirectly by the primary declaration of TRANSLIT.’’ The
result is as follows:

IN_FILE variable
TRANSLIT\528 variable definition declaration
TRANSLIT\532 read reference
TRANSLIT\533 read reference

IN_FILE argument
TRANSLIT\538 function parameter definition declaration
TRANSLIT\560 read reference
TRANSLIT\601 read reference

%SCA-S-OCCURS, 6 occurrences found (2 symbols, 1 name)

You can include a general query expression as a path name by entering the
following command:

FIND (mod1 OR mod2)\\code

You can interpret this command as, ‘‘Find symbols named CODE that are
declared directly or indirectly by the primary declaration of either MOD1 or
MOD2.’’

3–22 Using the SCA Query Language

Using the SCA Query Language
3.2 SCA Query Language Tutorial

Similarly, if you are working on a compiler project, and you have defined a
query named PARSER to contain the list of all the modules that make up the
parser, then to find all of the symbols named CODE that are declared in the
parser, enter the following command:

FIND @parser\\code

3.2.10 Combined Relationship Examples
You can combine more than one relationship function into one query.
If you want to know whether it is possible for a call to the routine
READ_COMMAND_LINE to modify a global variable, you need to consider
not only READ_COMMAND_LINE itself, but also the whole call tree from
READ_COMMAND_LINE down. You can find out by entering the following
command:

FIND IN(CALLED_BY(read_command_line, depth=all), -
sym=var AND occ=write AND domain=multi)

The result is as follows:

%SCA-W-NOOCCUR, no symbol occurrence matches your selection criteria

In a still more complicated query, you might want to find all the occurrences
of symbols of type TRANS_TABLE that are contained within the call-tree from
MAIN down. To make this query, enter the following command:

FIND IN(CALLED_BY(main, depth=all), -
EXPAND TYPED_BY(trans_table, result=begin))

The result is as follows:

TABLE variable
TRANSLIT\530 variable definition declaration
TRANSLIT\532 read reference
TRANSLIT\533 read reference

TABLE argument
TRANSLIT\538 function parameter definition declaration
TRANSLIT\599 read reference

%SCA-S-OCCURS, 5 occurrences found (2 symbols, 1 name)

You can use the TRACE parameter to restrict a query to a particular subset of
a program.

If you were a developer working on a LOAD command, and the module
LOAD contained one entry point, LOAD_FILE, you could show all the call
relationships within the module LOAD beginning with the routine LOAD_FILE
by entering the following command:

FIND CALLED_BY(load_file, depth=all, trace=IN(load))

Using the SCA Query Language 3–23

Using the SCA Query Language
3.2 SCA Query Language Tutorial

This command shows all calls that occur within module LOAD, but traces
through only the routines whose primary declaration is within LOAD. For
example, if LOAD_FILE calls to a routine READ_EVENT whose primary
declaration is outside of LOAD, the call to READ_EVENT shows up in the
display, but no calls within READ_EVENT are included. This is because
tracing is turned off outside of the module LOAD.

Alternatively, to trace call relationships from LOAD_FILE down, but display
calls only to routines whose primary declaration occurs within LOAD, enter
the following command:

FIND CALLED_BY(load_file, IN(load), depth=all, trace=IN(load))

You can interpret this command (through the TRACE parameter) as, ‘‘Continue
tracing the called-by relationship only through routines whose primary
declaration occurs within LOAD;’’ and (through the BEGIN parameter),
‘‘Include only the paths that end with routines whose primary declaration
occurs within LOAD.’’ Consequently, this command does not include calls to
READ_EVENT.

You can trace all call relationships from LOAD_FILE down, subject to only
one limitation—each path must end with a routine whose primary declaration
occurs within LOAD. Because the TRACE expression has been defaulted (to *),
this command traces the called-by expression through any routine as long as
the path eventually leads back to a routine declared in LOAD. You can perform
this operation by entering the following command:

FIND CALLED_BY(load_file, IN(load), depth=all)

3–24 Using the SCA Query Language

4
Evaluating SCA Query Expressions

This chapter describes the rules governing the use of the SCA Query Language.
The following tables provide an overview of the components of the SCA Query
Language.

Table 4–1 lists attribute selection expressions.

Table 4–1 Attribute Selection Expressions

Attribute Syntax Example

name name foo

symbol class symbol=symbol_class symbol=argument

symbol domain domain=symbol_domain domain=global

occurrence class occurrence=occ_class occurrence=primary

file specification file=file_spec file="foo.c"

See the Section 4.5 section later in this chapter for a list of attribute-selection
values and their meanings.

Table 4–2 lists the binary operators.

Table 4–2 Binary Operators

Type Syntax Example

path name exp1\exp2 subrx\y

exp1\\exp2 routa\\y

intersection exp1 AND exp2 a AND occurrence=declaration

union exp1 OR exp2 symbol=argument OR symbol=variable

(continued on next page)

Evaluating SCA Query Expressions 4–1

Evaluating SCA Query Expressions

Table 4–2 (Cont.) Binary Operators

Type Syntax Example

exclusive or exp1 XOR exp2 occurrence=read XOR occurrence=write

Table 4–3 lists nonrelationship function expressions.

Table 4–3 Nonrelationship Function Expressions

Function Syntax Example

negation NOT query expression l* AND NOT lib*

expansion EXPAND query expression EXPAND (occurrence=primary)

indicated INDICATED() EXPAND INDICATED()

query usage @query name @any_query and domain=module

Relationship function expressions have the following general syntax:

rel_function_name(end=query_expression,
begin=query_expression,
depth=n,
result=result_keyword,
trace=query_expression)

Table 4–4 and Table 4–5 describe the syntax in more detail.

Table 4–4 Function Names

Function Name/Example Description

CALLING X Displays what routines call X

CALLED_BY (A,B,DEPTH=ALL) Displays the call tree from A to B

TYPING (Y,DEPTH=ALL) Displays the type information of Y

TYPED_BY REAL Displays all symbols of type REAL

CONTAINED (X,SYMBOL=ROUTINE) Displays all routines in X

CONTAINING (DOMAIN=GLOBAL,
SYMBOL=MODULE, RESULT=BEGIN,
DEPTH=ALL)

Displays modules that contain globally
defined symbols

4–2 Evaluating SCA Query Expressions

Evaluating SCA Query Expressions

Table 4–5 Function Parameters

Parameter Type Default

END query expression *

BEGIN query expression *

DEPTH integer 1

RESULT keyword value STRUCTURE

TRACE query expression *

See the Section 4.7.6.2 section later in this chapter for a list of RESULT
keyword values and their meanings.

4.1 Query Expression Syntax
This section defines the syntax of a query expression. The following example
is a high-level description of the syntax. It defines, for example, the form of
a function call, but it does not describe which functions are available. The
low-level details are described in later sections.

query-expression ::= attribute-selection-expression |
binary-op-expression |
function-call-expression |
(query-expression)

attribute-selection-expression ::= actual-parameter

binary-op-expression ::= query-expression binary-operator query-expression

binary-operator ::= AND | OR | XOR | \ | \\

function-call-expression ::= function-name actual-parameter |
function-name ([actual-parameter],...)

function-name ::= nonwildcard-string

actual-parameter ::= named-actual-parameter | positional_actual_parameter

named-actual-parameter ::= formal-parameter-name = actual-parameter-value

positional_actual_parameter ::= actual-parameter-value

formal-parameter-name ::= nonwildcard-string

actual-parameter-value ::= query-expression | name-expression |

keyword-list | range-list | number

keyword-list ::= keyword | (keyword,...)

keyword ::= nonwildcard-string

number ::= digit... | ALL

Evaluating SCA Query Expressions 4–3

Evaluating SCA Query Expressions
4.1 Query Expression Syntax

range-list ::= range | (range,...)

range ::= number | number:number

name-expression ::= simple-string | "complex-string"

nonwildcard-string ::= {letter | digit | graphic-character}...

simple-string ::= {letter | digit | graphic-character |
wildcard-character | escape-character}...

complex-string ::= any-character...

letter ::= any-alphabetic-character

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

graphic-character ::= - | _ | $

wildcard-character ::= * | %

escape-character ::= &

4.2 Operator Precedence and Associativity
Table 4–6 is a syntax diagram that gives the forms of query expressions. The
forms are grouped into priority levels, and an associativity is given for each
priority level. In Table 4–6:

exp1 = query-expression
exp2 = query-expression

Table 4–6 Query Expression Forms

Priority Operator Expression Associates from

highest function-name actual-parameter right to left

exp1 \ exp2, exp1 \\ exp2 left to right

exp1 AND exp2 left to right

exp1 OR exp2 left to right

lowest exp1 XOR exp2 left to right

4.3 Default Parenthesizing
Default parenthesizing for query expressions is determined by the operator
priorities and associativity given in the previous diagram. The following rules
apply:

• Parenthesize the functions and operators of a given expression in order of
descending priority. That is, first parenthesize all function calls (highest

4–4 Evaluating SCA Query Expressions

Evaluating SCA Query Expressions
4.3 Default Parenthesizing

priority), parenthesize path name expressions (\ and \\) (next highest
priority), and so on.

• If an expression contains several occurrences of the same operator, then
parenthesize those operators in the order indicated by their associativity.

When an operator is parenthesized, the parentheses surround the operator and
its operands.

As an example of the application of these rules, consider the following query
expression:

CALLING CALLED_BY x OR y AND NOT z

This expression contains two binary operators (OR and AND) and three
function calls (CALLING, CALLED_BY, and NOT). There are many ways in
which it could be explicitly parenthesized, including the following:

CALLING CALLED_BY(x) OR y AND NOT (z)

CALLING(CALLED_BY(x)) OR y AND NOT(z)

CALLING(CALLED_BY(x)) OR (y AND NOT(z))

(CALLING(CALLED_BY(x)) OR (y AND NOT(z)))

4.4 Semantics
SCA evaluates a query expression as follows:

1. Evaluate the operands of the expression.

2. Calculate an expression by applying the operator. The value obtained from
this step is the value of the expression.

The order in which SCA evaluates the operands of a query expression is not
defined. Because query expressions have no side effect, the order of evaluation
does not matter. Furthermore, expressions are not necessarily evaluated from
the innermost to the outermost, but they are evaluated in a semantically
equivalent way.

The value of a query expression is a collection of symbol occurrences
and, possibly, relationships between occurrences. A query result that has
information about relationships between occurrences is called a structured
query result. A nonstructured collection of occurrences has no interoccurrence
relationship information.

Evaluating SCA Query Expressions 4–5

Evaluating SCA Query Expressions
4.5 Attribute-Selection Expressions

4.5 Attribute-Selection Expressions
An attribute-selection expression selects occurrences based on the setting of
occurrence and symbol attributes. An attribute-selection expression has the
following form:

attribute-selection-exp ::= [attribute-name =] actual-parameter

If no attribute name is specified, Name is assumed.

SCA supports the following types of attribute selection:

• Name

• Symbol class

• Symbol domain

• Occurrence class

• File specification

The rest of this section describes attribute selection in more detail.

4.5.1 Name Selection
A name-selection expression selects occurrences that have names matching a
specified name expression.

A name-selection expression has the following form, where a name-
expression is a string of characters, possibly including wildcards:

name-selection-exp ::= name-expression |
name=name-expression |
name=(name-expression,...)

A name expression that includes a wildcard character is equivalent to a
union of all the names that match the name-selection expression. A list of
name expressions is equivalent to a union of name-selection expressions,
each having a single name expression. Given these rules, the following three
examples are equivalent:

name=(namexp1, namexp2)

name=namexp1 OR name=namexp2

namexp1 OR namexp2

4–6 Evaluating SCA Query Expressions

Evaluating SCA Query Expressions
4.5 Attribute-Selection Expressions

When a string is enclosed in quotation marks, the string can contain any
ASCII character except a quotation mark. If you want a quotation mark in
such a string, it must be represented by two successive quotation marks. For
example, to find the name x"y, specify the following:

FIND "x""y"

You can override the wildcard characters (% and *) using the ampersand (&).
If you want an ampersand in a string, it must be represented by two successive
ampersands. For example:

• Use the name expression &* to find the name consisting of a single
asterisk.

• Use the name expression && to find the name consisting of a single
ampersand.

Enclosing a complex string in quotation marks itself does not affect the case
sensitivity of the matching. If case sensitivity has been turned off, string
matching is not sensitive to the case of the string specified in the name
expression. If case sensitivity has been turned on, string matching is sensitive
to the case of the string specified, regardless of whether it is quoted.

Note that although a hyphen (-) is allowed in a simple name, a command line
that ends in a hyphen is a continued command.

4.5.2 Symbol-Class Selection
A symbol-class-selection expression selects occurrences whose symbol class
is one of those specified in the symbol-class-selection expression. A
symbol-class-selection expression has the following form:

symbol-class-selection-exp ::= symbol=symbol-class |
symbol=(symbol-class,...)

The symbol-class is one of the following keywords:

• ARGUMENT—Formal argument (such as a routine argument or macro
argument)

• CLASS—Any C++ class object construct defined by union, structure, or
class statements

• COMPONENT, FIELD—Component of a record

• CONSTANT, LITERAL—Named compile-time constant value

• EXCEPTION—Exception

• FILE—File

Evaluating SCA Query Expressions 4–7

Evaluating SCA Query Expressions
4.5 Attribute-Selection Expressions

• FUNCTION, PROCEDURE, PROGRAM, ROUTINE, SUBROUTINE—
Callable program function

• GENERIC—Generic unit

• KEYWORD—Keyword (as defined in the LSE environment file for comment
processing)

• LABEL—User-specified label

• MACRO—Macro

• MODULE, PACKAGE—Collection of logically related elements

• PLACEHOLDER—Marker where program text is needed

• PSECT—Program section

• TAG—Comment heading

• TASK—Task

• TYPE—User-defined type

• UNBOUND—Unbound name

• VARIABLE—Program variable

• OTHER—Any other class of symbol

You use one or more of the generic (multilanguage) keywords to request specific
classes of symbols. Because different languages use different terminology,
several alternatives are provided for some classes of symbols.

A list of symbol classes is equivalent to a union of symbol-class-selection
expressions, each having a single symbol class.

4.5.3 Symbol Domain Selection
A symbol-domain-selection expression selects occurrences whose symbol
domain is one of those specified in the symbol-domain-selection expression.

A symbol’s domain is the range of source code in which the symbol has the
potential of being used. For example, a C static declaration creates a symbol
that has a module-specific symbol domain; it cannot be used outside of that
module. On the other hand, a regular C module-level declaration creates
a symbol that has a multimodule symbol domain; it has the potential of
being used in more than one module. The symbol domain of a GLOBAL is
multimodule regardless of how many modules there are in which the symbol is
used.

4–8 Evaluating SCA Query Expressions

Evaluating SCA Query Expressions
4.5 Attribute-Selection Expressions

A symbol-domain-selection expression has the following form:

symbol-domain-selection-exp ::= domain=symbol-domain |
domain=(symbol-domain,...)

The symbol-domain is one of the following keywords:

• INHERITABLE—Able to be inherited into other modules (for example, by
means of Pascal environment or Ada compilation system mechanisms)

• GLOBAL—Known to multiple modules through linker global symbol
definitions

• PREDEFINED—Defined by the language (examples: FORTRAN sin,
Pascal writeln)

• MULTI_MODULE—Domain spans more than one module
(domain=multi_module is equivalent to domain=(inheritable,global,
predefined)

• MODULE_SPECIFIC—Domain is limited to one module

• INCLUDE_FILE—Symbol whose most significant declaration occurs in a
source include file.

A list of symbol domains is equivalent to a union of symbol-domain-selection
expressions, each having a single symbol domain.

4.5.4 Occurrence Selection
An occurrence-selection expression selects occurrences whose occurrence
class is one of those specified in the occurrence-selection expression. An
occurrence-selection expression has the following form:

occurrence-selection-exp ::= occurrence=occurrence-class |
occurrence=(occurrence-class,...)

The occurrence-class is one of the following keywords:

Declarations

• PRIMARY—Most significant declaration (such as FUNCTION)

• ASSOCIATED—Associated declaration (such as EXTERNAL)

• DECLARATION—Both PRIMARY and ASSOCIATED declarations

References

• READ, FETCH—Fetch of a symbol value:

– DIRECT_FETCH

– INDIRECT_FETCH

Evaluating SCA Query Expressions 4–9

Evaluating SCA Query Expressions
4.5 Attribute-Selection Expressions

• WRITE, STORE—Assignment of a symbol value:

– DIRECT_STORE

– INDIRECT_STORE

• ADDRESS, POINTER—Reference to the location of a symbol:

– DIRECT_ADDRESS

– INDIRECT_ADDRESS

• CALL—Call to a routine or macro:

– DIRECT_CALL

– INDIRECT_CALL

• COMMAND_LINE—Command-line file reference

• INCLUDE, REQUIRE—Source-file include reference

• PRECOMPILED, ENVIRONMENT, LIBRARY—Precompiled file include
reference

• BASE—Any base class of a C++ class

• FRIEND—Any friend of a C++ class

• MEMBER—Any member of a C++ class

• SEPARATE—Any Ada package or subprogram unit defined as SEPARATE

• USE—Any USE of an Ada package or subprogram unit, or USE of a HP
Fortran 90 module

• WITH—Any WITH of an Ada package or subprogram unit

• REFERENCE—All of the previous references

• OTHER—Any other kind of reference (such as a macro expansion or use of
a constant)

Other Occurrence Classes

• EXPLICIT—Explicitly declared

• IMPLICIT—Implicitly declared

• VISIBLE—Occurrence appears in the source

• HIDDEN—Occurrence does not appear in the source

• COMPILATION_UNIT—Occurrence is a compilation unit

• LIMITED—Any Ada limited private type

4–10 Evaluating SCA Query Expressions

Evaluating SCA Query Expressions
4.5 Attribute-Selection Expressions

• PRIVATE—Any private C++ object, or Ada private type

• PROTECTED—Any protected C++ object

• PUBLIC—Any public C++ object

• VIRTUAL—Any virtual C++ object

4.5.5 File Specification Selection
A file-specification-selection expression selects occurrences whose source
position is in one of the files specified in the file-specification-selection
expression. A file-specification-selection expression has the following form:

file-spec-selection-exp ::= file_spec=name-expression |
file_spec=(name-expression,...)

The name-expression is a name expression that is interpreted as a file
specification.

4.6 Operator Expressions
This section describes the operators you use with the SCA Query Language.
The value of an operator expression is a set of occurrences and relationships.
SCA query expression operators are similar to functions in high-level
languages, such as Pascal and Ada. Operator expressions have an operator
name, enclosed by two operands, which are query expressions. The result of an
operator expression is a query-expression result.

4.6.1 Path-Name Expressions
A path-name expression identifies symbols based on the nesting of primary
declarations. A path-name expression has the following form:

pathname-expression ::= exp1 \ exp2 |
exp1 \\ exp2

The path name operators (\ and \\) are special cases of the general
CONTAINED_BY function. The expression exp1 \ exp2 is equivalent to
the following expression:

EXPAND CONTAINED_BY(exp1 AND occ=primary,
exp2 AND occ=primary,
result=begin,
depth=all,
trace="")

Evaluating SCA Query Expressions 4–11

Evaluating SCA Query Expressions
4.6 Operator Expressions

The expression exp1 \\ exp2 is equivalent to the following expression:

EXPAND CONTAINED_BY(exp1 AND occ=primary,
exp2 AND occ=primary,
result=begin,
depth=all)

4.6.2 Intersection Expressions
An intersection expression identifies occurrences that exist in two different
sets. The intersection expression has the following form:

intersection-expression ::= exp1 AND exp2

The value of this expression is a set containing each occurrence that exists in
both sets (exp1 and exp2); occurrences that appear in only one of the sets are
not included.

4.6.3 Union Expressions
A union expression merges two sets. The union expression has the following
form:

union-expression ::= exp1 OR exp2

The value of this expression is a set containing all occurrences that exist in
either set (exp1 or exp2).

4.6.4 Exclusive-Or Expressions
An exclusive-or expression selects the unique occurrences in two different
sets. The exclusive-or expression has the following form:

exclusive-or-expression ::= exp1 XOR exp2

The value of this expression is a set containing all occurrences that exist in
exactly one of the sets (exp1 and exp2); occurrences that appear in both sets
are not included.

4.7 Function-Call Expressions
The form of a function-call expression is as follows:

function-name([actual-parameter],...)

A parameter list consists of zero, one, or more parameters. Each parameter
has a data type and a default value. A data type is either a query expression,
name expression, keyword list, range list, or number.

4–12 Evaluating SCA Query Expressions

Evaluating SCA Query Expressions
4.7 Function-Call Expressions

An actual parameter list can be empty if the function has no parameters or
if you are using default values for all of the parameters. In this case, the
function-call expression is written as function-name().

If the actual parameter list consists of exactly one parameter, the parentheses
can be dropped. This form of the function-call expression is as follows:

function-name actual-parameter

4.7.1 Parameter Association
A function call must pass one actual parameter for each formal parameter. The
actual parameter is either listed explicitly in the function call, or supplied by
means of a default value.

One way to establish the correspondence between actual and formal
parameters is to give the parameter in each list the same position. That
is, the association of the actual and formal parameters proceeds from left
to right, item by item, through both lists. This form of association is called
positional.

Another way of establishing correspondence is to specify the formal parameter
name and the actual parameter being passed to it. You can associate an actual
parameter with a formal parameter by using the assignment operator (=). The
actual parameters in the call do not have to appear in the same order that
the formal parameters appeared in the declaration. This form of association is
called named.

You can use both positional and named actual parameters in the same call.
However, you must still supply at most one actual parameter for any formal
parameter, and you must list the positional parameters first.

4.7.2 Negation Function
The negation function finds occurrences that do not match a query expression.
The negation function has the following form:

FUNCTION NOT(query_expression : query-expression = *)

The result of a call to this function is a set containing all occurrences that
are not contained in query_expression. Note that the expression NOT()
evaluates to the empty set.

Evaluating SCA Query Expressions 4–13

Evaluating SCA Query Expressions
4.7 Function-Call Expressions

4.7.3 Expansion Function
The expansion function expands a set of occurrences to include all the
occurrences of the symbols that correspond to the original occurrence set.

The expansion function has the following form:

FUNCTION EXPAND(query_expression : query-expression = *)

See the section Section 3.2.2 section in Chapter 3 section for an example of the
expansion function.

4.7.4 Indicated Function
The indicated function is available only from within LSE. The indicated
function matches the occurrence at which the cursor is pointing. The indicated
function has the following form:

FUNCTION INDICATED

The indicated function has no parameters. Thus, a call to the indicated
function must have the following form:

INDICATED()

An indicated function can be nested within other query expressions.

4.7.5 Query Usage Function
A query usage function incorporates the results of a previous query into a new
query expression. The query usage function has the following form:

FUNCTION @(query_name : query-name = sca$current_query)

The value of this expression is that of the expression that is specified as
query_name. The default query is the current query, SCA$CURRENT_QUERY.

4.7.5.1 The Current Query
The current query specifies the result of the previous query, or the one to which
you are set using the NEXT QUERY, PREVIOUS QUERY, and GOTO QUERY
commands. The name of the current query is SCA$CURRENT_QUERY. The
current query is used as follows:

@sca$current_query

Because the @ function defaults to the current query, this expression can also
be written as follows:

@()

4–14 Evaluating SCA Query Expressions

Evaluating SCA Query Expressions
4.7 Function-Call Expressions

The following is an example of a command sequence using the current query:

FIND *table*
FIND @sca$current_query AND symbol=routine

Alternatively, you can write the previous commands as follows:

FIND *table*
FIND @() AND symbol=routine

4.7.6 Relationship Functions
A relationship function selects occurrences based on relationships between
occurrences. There are two kinds of relationship expressions: structured-
relationship and nonstructured-relationship.

A structured-relationship expression selects both occurrences and
relationships between them. A structured-relationship expression preserves
relationship information in the value of the expression. The result of such an
expression is a structured query result.

A nonstructured-relationship expression selects occurrences based on
relationships between occurrences. A nonstructured-relationship expression
uses information about the relationships between occurrences, but does not
preserve relationship information in the result of the expression. The result of
such an expression is a nonstructured query result.

All the relationship functions have the same set of parameters (see Table 4–5).
A relationship function has the following form:

FUNCTION function-name(end : query-expression = *,
begin : query-expression = *,
depth : number = 1,
result : keyword-list = structure,
trace : query-expression = *)

4.7.6.1 Individual Relationship Functions
This section describes the individual relationship functions. There are two
kinds of relationship functions: basic functions and inverse functions. You
can transform every basic function into its corresponding inverse function by
removing the ING at the end of the function and adding ED_BY.

For example, you can transform the basic function CALLING to the
inverse function, CALLED_BY. The two commands, CALLING(y,x) and
CALLED_BY(x,y), produce the same result: a graph of call relationships
from X to Y.

Evaluating SCA Query Expressions 4–15

Evaluating SCA Query Expressions
4.7 Function-Call Expressions

Relationship Functions

• CALLING
CALLED_BY

The CALLING relationship finds those occurrences in begin-exp that are
call occurrences in end-exp. Typically, if not exclusively, declarations in
begin-exp call references in end-exp. The CALLED_BY relationship finds
those occurrences in begin-exp that are called by occurrences in end-exp.

• CONTAINING
CONTAINED_BY

The CONTAINING relationship finds those occurrences in begin-exp that
contain occurrences in end-exp. The CONTAINED_BY relationship finds
those occurrences in begin-exp that contain occurrences in end-exp.

• TYPING
TYPED_BY

The TYPING relationship finds each occurrence in begin-exp that
determines the type of an occurrence in end-exp. The TYPED_BY
relationship finds each occurrence in begin-exp whose type is one of the
occurrences in end-exp.

4.7.6.2 Relationship Parameters
Relationship parameters determine the precise semantics of a relationship
expression. The following is a list of relationship parameters and how you use
them.

END=end-expression
Specifies those occurrences at which the tracing of relationships can end. Only
paths that end on one of these occurrences are included in the result. The
default is end=*.

BEGIN=begin-expression
Specifies those occurrences at which the tracing of relationships can begin.
Only paths that begin on one of these occurrences are included in the result.
The default is begin=*.

DEPTH=depth-level
Specifies the number of levels of structure to be traced. The default depth-level
is 1. Depth=all indicates that there is no limit to the number of levels of
structure that are to be traced.

4–16 Evaluating SCA Query Expressions

Evaluating SCA Query Expressions
4.7 Function-Call Expressions

RESULT=result-keyword-list
In this syntax, result-keyword-list is one or more of the following keywords:

• [NO]STRUCTURE—Indicates whether relationship information is to be
preserved in the query result.

• ANY_PATH—Indicates that any path that traces from the begin-
expression to the end-expression will satisfy the query. SCA will return
the first complete paths it finds. By default, all such paths are returned.

• BEGIN—Indicates that only those occurrences that begin the relationship
graph are to be included in the result. RESULT=BEGIN implies a
NOSTRUCTURE result.

• END—Indicates that only those occurrences that end the relationship
graph are to be included in the result. RESULT=END implies a
NOSTRUCTURE result.

The default is RESULT=STRUCTURE.

TRACE=trace-expression
A query expression whose result specifies those occurrences through which
relationship tracing is to be continued. The trace parameter does not affect
the first iteration. That first iteration is controlled by the begin parameter.
The default is trace=*.

4.7.7 The IN Function
The IN function restricts a set of occurrences to those occurrences that are
directly or indirectly contained by another set of occurrences.

The IN function has the following form:

FUNCTION IN(end : query-expression = *,
begin : query-expression = *) =

The IN function is a special case of the CONTAINED_BY function. It has been
included in the set of predefined functions because it provides a particularly
useful subset of the capabilities of the CONTAINED_BY function. For example:

IN (end=x, begin=y)

The expression is equivalent to the following:

CONTAINED_BY (end=x and DECLARATION=PRIMARY,
begin=y,

result=begin,
depth=all)

Evaluating SCA Query Expressions 4–17

Evaluating SCA Query Expressions
4.8 Abbreviation Rules

4.8 Abbreviation Rules
You can abbreviate attribute-selection formal parameter names and attribute-
selection actual parameter keywords to their first four characters. You
can truncate these names and keywords to fewer characters as long as the
truncation is unique. For example, the symbol-class-selection attribute name
is the only such name that begins with S. Therefore, you can abbreviate the
symbol attribute name to just one character.

Attribute-selection, actual parameter keywords work the same way.

Special considerations apply when you use these names and keywords in
command procedures. To ensure readability, you should not abbreviate at all.
If you do abbreviate, never abbreviate to fewer than four characters, or you
risk the possibility that your command procedure might not be compatible with
future releases of SCA.

You can abbreviate only attribute-selection formal parameter names and
attribute-selection actual parameter keywords.

4–18 Evaluating SCA Query Expressions

Index

A
Abbreviation rules, 4–18
Associativity and operator precedence, 4–4
ASYNCH_TERMINATE, 2–20
Attributes

domain, 3–1
occurrence, 3–2
symbol, 3–1

Attribute selection expressions, 4–1

B
Binary operators, 4–1

C
CLEANUP, 2–21
Command languages, 1–2
Current query, 3–11

D
Default parenthesizing, 4–4
Domain attributes, 3–1
DO_COMMAND, 2–22 to 2–24

E
Exclusive-or logical operator expression,

4–12
EXPAND function

using to find related occurrences, 3–7

Expansion, 3–7
Expansion function, 4–14
Expressions

attribute selection, 4–1
exclusive-or, 3–9, 4–12
file specification selection, 4–11
intersection, 3–8, 4–12
negation, 3–8
path-name, 4–11
union, 3–8, 4–12

F
File specification selection expression, 4–11
FIND command, 3–1
Function

expansion, 4–14
indicated, 4–14
names, 4–2
negation, 4–13
query usage, 4–14

G
GET_ATTRIBUTE, 2–25 to 2–26
GET_ATTRI_KIND_T, 2–27
GET_ATTRI_VALUE_T, 2–28 to 2–29
GET_CURRENT_QUERY, 2–30
GET_INPUT, 2–31 to 2–32
GET_OCCURRENCE, 2–33 to 2–35

Index–1

I
Indicated function, 4–14
Individual relationship functions, 4–15
IN function, 3–21, 4–17
INITIALIZE, 2–36
Intersection logical operator expression, 3–8

L
LOCK_LIBRARY, 2–37
Logical operators

using to select information, 3–8

M
Message handling, 2–2

N
Named association, 4–13
Name selection, 4–6
Negation function, 4–13
Negation operator logical expression, 3–8
Nonrelationship function expressions, 4–2
Nonstructured relationship expressions,

3–15

O
Occurrence attributes, 3–2
occurrence-class, 4–9
Occurrence selection, 4–9
Operator expressions

exclusive or, 4–1
intersection, 4–1
path name, 4–1
union, 4–1

Operator precedence and associativity, 4–4

P
Parameter association

function-call expression, 4–13
Parameters

relationship, 4–16
Path-name expressions, 4–11
Path names

Query Language, 3–21
Portable command language, 1–2
Positional association, 4–13
PUT_OUTPUT, 2–38

Q
Queries

simple, 3–4
Query expression, 3–1
Query expression forms, 4–4
Query Language, 3–1 to 3–24

abbreviation rules, 4–18
attribute-selection expressions, 4–6

file specification, 4–11
name, 4–6
occurrence, 4–9
symbol-class, 4–7
symbol domain, 4–8

concepts, 3–1
current query, 3–11, 4–14
defaults, 4–4
evaluation, 3–1, 4–1
exclusive-or expressions, 4–12
EXPAND function, 3–7
expansion function, 4–14
file specification selection, 4–11
function-call expressions, 4–12

negation, 4–13
parameter association, 4–13

indicated function, 4–14
individual relationship functions, 4–15
IN function, 3–21, 4–17
intersection expressions, 4–12
logical operators, 3–8
name selection, 4–6

Index–2

Query Language (cont’d)
negation function, 4–13
occurrence

definition of, 3–1
occurrence selection, 4–9
operator expressions, 4–11

exclusive-or, 4–12
intersection, 4–12
pathname, 4–11
union, 4–12

operators, 4–4
overview, 3–1
parameter association, 4–13
path names, 3–21

expressions, 4–11
query usage function, 4–14
relationship examples, 3–23
relationship expressions

nonstructured, 3–15
structured, 3–12

relationship functions, 4–15
relationship parameters, 4–16
relationships, 3–17
rules, 4–1 to 4–18
semantics, 4–5
simple queries, 3–4
symbol

definition of, 3–1
symbol-class selection, 4–7
symbol domain selection, 4–8
syntax, 4–3
tutorial, 3–2
union expressions, 4–12

Query operator, 3–1
Query usage function, 4–14
QUERY_CLEANUP, 2–39
QUERY_COPY, 2–40
QUERY_FIND, 2–41
QUERY_GET_ATTRIBUTE, 2–42 to 2–43
QUERY_GET_ATTRI_KIND_T, 2–44
QUERY_GET_ATTRI_VALUE_T, 2–45 to

2–46
QUERY_GET_NAME, 2–47

QUERY_GET_OCCURRENCE, 2–48 to
2–49

QUERY_INITIALIZE, 2–50
QUERY_PARSE, 2–51 to 2–52
QUERY_SELECT_OCCURRENCE, 2–53

R
Relationship functions, 4–15

individual, 4–15
Relationship parameters, 4–16
Routines

rules for calling SCA, 2–2

S
SCA

callable interface
callable query interface

appearance, 2–11
symbol domain, 2–11

SCA$ASYNCH_TERMINATE, 2–20
SCA$CLEANUP, 2–21
SCA$DO_COMMAND, 2–22 to 2–24
SCA$GET_ATTRIBUTE, 2–25 to 2–26
SCA$GET_ATTRI_KIND_T, 2–27
SCA$GET_ATTRI_VALUE_T, 2–28 to 2–29
SCA$GET_CURRENT_QUERY, 2–30
SCA$GET_INPUT, 2–31 to 2–32
SCA$GET_OCCURRENCE, 2–33 to 2–35
SCA$INITIALIZE, 2–36
SCA$LOCK_LIBRARY, 2–37
SCA$PUT_OUTPUT, 2–38
SCA$QUERY_CLEANUP, 2–39
SCA$QUERY_COPY, 2–40
SCA$QUERY_FIND, 2–41
SCA$QUERY_GET_ATTRIBUTE, 2–42 to

2–43
SCA$QUERY_GET_ATTRI_KIND_T, 2–44
SCA$QUERY_GET_ATTRI_VALUE_T, 2–45

to 2–46
SCA$QUERY_GET_NAME, 2–47

Index–3

SCA$QUERY_GET_OCCURRENCE, 2–48
to 2–49

SCA$QUERY_INITIALIZE, 2–50
SCA$QUERY_PARSE, 2–51 to 2–52
SCA$QUERY_SELECT_OCCURRENCE,

2–53
SCA$SELECT_OCCURRENCE, 2–54
SCA$UNLOCK_LIBRARY, 2–55
SELECT_OCCURRENCE, 2–54
Semantics

query expression, 4–5
Structured relationship expressions, 3–12

Symbol attributes, 3–1
Symbol-class selection, 4–7
Symbol-domain selection, 4–8

U
Union expressions, 4–12
Union logical operator expression, 3–8
UNLOCK_LIBRARY, 2–55

V
VMS command language, 1–2

Index–4

