
HP DECset for OpenVMS

Code Management System
Callable Routines Reference Manual
Order Number: AA–QJEWC–TK

July 2005

This reference manual describes and provides reference information for the
set of callable routines for the Code Management System (CMS).

Revision/Update information: This is a revised manual.

Operating System Version: OpenVMS I64 Version 8.2

OpenVMS Alpha Version 7.3–2 or 8.2

OpenVMS VAX Version 7.3

Windowing System Version: DECwindows Motif for OpenVMS I64
Version 1.5

DECwindows Motif for OpenVMS Alpha
Version 1.3–1 or 1.5

DECwindows Motif for OpenVMS VAX
Version 1.2–6

Software Version: HP DECset Version 12.7 for OpenVMS

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a US trademark of Sun Microsystems, Inc.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Printed in the US

Contents

Preface . vii

1 Using CMS Callable Routines

1.1 Generating Interface Descriptions Using SDL 1–1
1.2 Calling CMS Routines . 1–2
1.3 Rules for Writing Programs that Call CMS Routines 1–4
1.4 Passing Arguments to CMS Routines . 1–4
1.4.1 Data Types . 1–6
1.4.2 The Library Data Block . 1–8
1.4.3 The Fetch Data Block . 1–10
1.4.4 Specifying Flags as Arguments . 1–11
1.4.5 Masks . 1–12
1.4.6 Output Strings . 1–13
1.5 Condition Values Returned . 1–14
1.5.1 CMS$_EOF Condition Value . 1–14
1.5.2 CMS$_INUSE, CMS$_WAITING, and CMS$_PROCEEDING

Messages . 1–14
1.6 Using Callback Routines . 1–15
1.6.1 Rules for Writing Callback Routines 1–16
1.6.2 Callback Routines Used by CMS$CMS 1–17
1.6.2.1 The Confirmation Routine . 1–17
1.6.2.2 The Prompt Routine . 1–17
1.6.2.3 The Output Routine . 1–18
1.6.3 Passing Strings Between CMS and Callback Routines 1–18
1.6.3.1 Specifying End of Input . 1–19
1.6.3.2 Determining End of Output . 1–19
1.6.4 Callback Return Codes . 1–19
1.7 Handling Error Conditions . 1–20
1.8 Writing an Error-Message Handler . 1–21
1.9 Linking with the CMS Image . 1–24

iii

2 CMS Routine Descriptions

CMS$ANNOTATE . 2–2
CMS$ASYNCH_TERMINATE . 2–11
CMS$CMS . 2–12
CMS$COPY_CLASS . 2–17
CMS$COPY_ELEMENT . 2–20
CMS$COPY_GROUP . 2–24
CMS$CREATE_CLASS . 2–27
CMS$CREATE_ELEMENT . 2–29
CMS$CREATE_GROUP . 2–37
CMS$CREATE_LIBRARY . 2–39
CMS$DELETE_CLASS . 2–45
CMS$DELETE_ELEMENT . 2–47
CMS$DELETE_GENERATION . 2–49
CMS$DELETE_GROUP . 2–53
CMS$DELETE_HISTORY . 2–55
CMS$DIFFERENCES . 2–62
CMS$DIFFERENCES_CLASS . 2–82
CMS$FETCH . 2–95
CMS$FETCH_CLOSE . 2–101
CMS$FETCH_GET . 2–102
CMS$FETCH_OPEN . 2–106
CMS$GET_STRING . 2–110
CMS$INSERT_ELEMENT . 2–111
CMS$INSERT_GENERATION . 2–114
CMS$INSERT_GROUP . 2–118
CMS$MODIFY_CLASS . 2–121
CMS$MODIFY_ELEMENT . 2–125
CMS$MODIFY_GENERATION . 2–130
CMS$MODIFY_GROUP . 2–132
CMS$MODIFY_LIBRARY . 2–135
CMS$MODIFY_RESERVATION . 2–139
CMS$PUT_STRING . 2–142
CMS$REMARK . 2–144
CMS$REMOVE_ELEMENT . 2–146
CMS$REMOVE_GENERATION . 2–149

iv

CMS$REMOVE_GROUP . 2–152
CMS$REPLACE . 2–155
CMS$RETRIEVE_ARCHIVE . 2–163
CMS$REVIEW_GENERATION . 2–165
CMS$SET_ACL . 2–169
CMS$SET_LIBRARY . 2–173
CMS$SET_NOLIBRARY . 2–177
CMS$SHOW_ACL . 2–179
CMS$SHOW_ARCHIVE . 2–183
CMS$SHOW_CLASS . 2–189
CMS$SHOW_ELEMENT . 2–193
CMS$SHOW_GENERATION . 2–199
CMS$SHOW_GROUP . 2–209
CMS$SHOW_HISTORY . 2–214
CMS$SHOW_LIBRARY . 2–222
CMS$SHOW_RESERVATIONS . 2–228
CMS$SHOW_REVIEWS_PENDING . 2–236
CMS$SHOW_VERSION . 2–242
CMS$UNRESERVE . 2–244
CMS$VERIFY . 2–248

A Summary of CMS Entry Points

B Examples of Calling CMS

B.1 Calling CMS from Ada . B–1
B.2 Calling CMS from Basic . B–9
B.3 Calling CMS from BLISS . B–10
B.4 Calling CMS from C . B–12
B.5 Calling CMS from COBOL . B–14
B.6 Calling CMS from Fortran . B–16
B.7 Calling CMS from Pascal . B–17
B.8 Calling CMS from PL/I (Alpha and VAX Only) B–20
B.9 Calling CMS from SCAN . B–21

v

Index

Examples

1–1 Calling CMS Routines . 1–3
1–2 Passing a Concurrent Flag to CMS$CREATE_ELEMENT . . . 1–11
1–3 Using a Bitmask . 1–13
1–4 Using a Message-Handler Routine . 1–22
B–1 Ada Example . B–1
B–2 Calling CMS$SHOW_ELEMENT from Basic B–9
B–3 Calling CMS$SHOW_ELEMENT from BLISS B–10
B–4 Calling CMS$SHOW_ELEMENT from C B–12
B–5 Calling CMS$SHOW_ELEMENT from COBOL B–14
B–6 Calling CMS$SHOW_ELEMENT from Fortran B–16
B–7 Calling CMS$SHOW_ELEMENT from Pascal B–17
B–8 Calling CMS$SHOW_ELEMENT from PL/I (Alpha and VAX

Only) . B–20
B–9 SCAN Example . B–22

Figures

1–1 A CMS Library Data Block . 1–9
1–2 A String Identifier . 1–18
2–1 Statistics Array . 2–223

Tables

1–1 Data Types of Objects Passed to CMS Routines 1–7
1–2 Passing Concurrent Flag Values . 1–12

vi

Preface

This reference manual describes the set of callable routines for the HP Code
Management System for OpenVMS (CMS). CMS is an online library system
that helps track software development and maintenance. This manual provides
reference information on how to use the CMS callable routines.

Intended Audience
This reference manual is intended for programmers who have a working
knowledge of CMS, the OpenVMS operating system, and the languages used to
call CMS.

Document Structure
This reference manual contains the following chapters and appendixes:

• Chapter 1 provides an overview, general rules, and other information that
you need to know to use the routines.

• Chapter 2 contains detailed descriptions of each routine. The routines are
listed in alphabetical order with the routine name at the top of every page
of each routine description.

• Appendix A lists each routine name and the arguments that you can pass
to the routine.

• Appendix B provides examples of calling CMS from different languages.

Related Documents
The following documents might also be helpful when using CMS:

• The HP DECset for OpenVMS Installation Guide contains instructions for
installing CMS.

• The Code Management System for OpenVMS Release Notes contain added
information on the use and maintenance of CMS.

vii

• The HP DECset for OpenVMS Guide to the Code Management System
contains introductory and conceptual information about CMS.

• The CMS Client User’s Guide describes the installation and use of the CMS
Client software in a Microsoft Windows environment.

• The HP DECset for OpenVMS Code Management System Reference Manual
describes all the commands available for CMS.

• The Using HP DECset for OpenVMS Systems manual contains information
on using the the other components of DECset.

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

References to Other Products
Some older products that DECset components worked with previously may
no longer be available or supported by HP. References in this manual to such
products serve as examples only and do not imply that HP has conducted
recent interoperability testing.

See the Software Product Description for a current list of supported products
that are warranted to interact with DECset components.

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either
of the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation
For information about how to order additional documentation, visit the
following World Wide Web address:

http://www.hp.com/go/openvms/doc/order

viii

Conventions
The following typographic conventions may be used in this manual:

Convention Description

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key
or a pointing device button.

Return In examples, a key name enclosed in a box indicates
that you press a key on the keyboard. In text, a key
name is not enclosed in a box.

KP n A sequence such as KP1 indicates that you must press
the key labeled with the number or character n on the
numeric keypad.

. . . A horizontal ellipsis in a figure or example indicates
the following possibilities:

• Additional optional arguments in a statement have
been omitted.

• The preceding item or items can be repeated one
or more times.

• Additional parameters, values, or other informa-
tion can be entered.

.

.

.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being described.

() In command format descriptions, parentheses indicate
that you must enclose multiple choices in parentheses.

[] In command format descriptions, brackets indicate
optional choices. You can choose one or more items or
no items. Do not type the brackets on the command
line. However, you must include the brackets in the
syntax for OpenVMS directory specifications and for a
substring specification in an assignment statement.

{} In command format descriptions, braces indicate
required choices; you must choose at least one of the
items listed. Do not type the braces on the command
line.

ix

Convention Description

bold type Bold type represents the introduction of a new term. It
also represents the name of an argument, an attribute,
or a reason.

Example This typeface indicates code examples, command
examples, and interactive screen displays. In text,
this type also identifies URLs, UNIX commands and
pathnames, PC-based commands and folders, and
certain elements of the C programming language.

italic type Italic type indicates important information, complete
titles of manuals or variables. Variables include
information that varies in system output (for
example, Internal error number), in command lines
(/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the
device type).

UPPERCASE TYPE Uppercase indicates the name of a command, routine,
file, file protection code, or the abbreviation of a system
privilege.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command
or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

x

1
Using CMS Callable Routines

The HP Code Management System for OpenVMS (CMS) provides a set of
routines that you can use to access and manipulate CMS libraries from your
programs. You should have an understanding of the basic CMS concepts and
syntax before you use these routines.

To use the CMS routines, follow these steps:

1. Include in your program the appropriate declarations and calls to the
routines.

2. Compile the program.

3. Link the compiled code with the CMS image.

4. Run the executable image.

As with the DCL-level interface, you can use files for input to and output from
the CMS routines. You can also write routines that process input, output,
and messages. The symbols for status condition codes are defined in the CMS
image and are available for use in your program.

This chapter provides the basic information you need to know to call CMS
routines. For descriptions of each routine, see Chapter 2. The examples in
Chapters 1 and 2 of this manual are written in Fortran; Appendix B shows
examples of calling CMS from Fortran and other languages. For more detailed
information about using CMS, see the HP DECset for OpenVMS Guide to the
Code Management System.

1.1 Generating Interface Descriptions Using SDL
To ease the writing of programs that use the CMS callable rou-
tines, an OpenVMS Structure Definition Language (SDL) descrip-
tion of the CMS callable routines is available. This programming
language-independent description can be used to generate an interface
description for supported programming languages. The descrip-
tion is contained in the file CMS$ROUTINES.SDL, located in the
SYS$SYSROOT:[SYSHLP.EXAMPLES.CMS] directory.

Using CMS Callable Routines 1–1

Using CMS Callable Routines
1.1 Generating Interface Descriptions Using SDL

The supported languages are as follows:

Ada
Basic
Bliss
C
Fortran
Macro
Pascal
PL/I (Alpha and VAX only)

For example, to generate an Ada package specification for the CMS callable
routines on an OpenVMS system, use the following command:

$ SDL/LANGUAGE=ADA SYS$SYSROOT:[SYSHLP.EXAMPLES.CMS]CMS$ROUTINES.SDL

This generates an Ada package specification, called CMS$ROUTINES, which
includes definitions of the types, constants, and entry points of the CMS
interface.

The SDL output generated from the SDL compiler varies in its
comprehensiveness depending on the programming language being used.
Therefore, it might be desirable to manually enhance the output before use.
The examples of code throughout this manual do not assume the use of the
SDL compiler; instead, they show how enhanced interface descriptions are
used.

1.2 Calling CMS Routines
There is an entry point into CMS for each DCL-level command. In general,
routines have the same names as the DCL-level commands. (An exception
is the CMS RESERVE command, for which there is no corresponding
CMS$RESERVE routine. To reserve an element in the CMS callable interface,
you must specify the reserve argument in a call to the CMS$FETCH routine.)

When your program calls a CMS routine, it must pass arguments that provide
CMS with information about elements, the library history, or whatever part of
the CMS library you want to access. In addition to providing this information,
your program must also allocate space for a library data block (LDB). An
LDB is a user-allocated structure that CMS uses to maintain basic information
about the library being accessed. For more information about the LDB, see
Section 1.4.2.

1–2 Using CMS Callable Routines

Using CMS Callable Routines
1.2 Calling CMS Routines

Example 1–1 shows two calls to CMS from a Fortran program. The first
call creates a library; the second creates a library element from a file named
LUCY.DIAMONDS. In this case, CMS searches for LUCY.DIAMONDS in the
current (default) directory at the time of the calls to CMS.

Example 1–1 Calling CMS Routines

INTEGER*4 LDB(50)
INTEGER*4 STATUS
CHARACTER*14 DIR 1
CHARACTER*13 ELEMENT

INTEGER*4 CMS$CREATE_LIBRARY 2
INTEGER*4 CMS$CREATE_ELEMENT

DIR = ’[LENNON.SONGS]’ 3
ELEMENT = ’LUCY.DIAMONDS’

STATUS = CMS$CREATE_LIBRARY(LDB,DIR) 4
IF (.NOT. STATUS) GO TO 50
STATUS = CMS$CREATE_ELEMENT(LDB,ELEMENT) 5

.

.

.
END

$ CREATE/DIRECTORY [LENNON.SONGS]
$ FORTRAN cmsprogram
$ LINK cmsprogram 6
$ RUN cmsprogram

Key to Example 1–1:

1 The LDB is declared as an integer array; the library directory and element
name variables are declared as character strings.

2 The CMS routines are declared as routines returning integer values.

3 The directory and element names are assigned to the character string
variables.

4 The call to the CMS$CREATE_LIBRARY routine includes arguments for
the LDB and the empty directory to be used for the library.

Using CMS Callable Routines 1–3

Using CMS Callable Routines
1.2 Calling CMS Routines

5 The call to the CMS$CREATE_ELEMENT routine includes arguments
for the LDB and the element name. Because the element is being created
in the library referenced in the CMS$CREATE_LIBRARY call, it is not
necessary to use CMS$SET_LIBRARY.

6 The execution sequence includes DCL commands that create the library
directory and compile, link, and run the program.

1.3 Rules for Writing Programs that Call CMS Routines
The following list describes the rules to follow when you write programs that
call CMS routines:

• Most of the CMS routines are not AST-reentrant; therefore, you should
not call a CMS routine (except CMS$ASYNCH_TERMINATE) from an
AST routine that might currently be interrupting the execution of a CMS
routine.

• If your program uses event flags, you must use the OpenVMS Run-Time
Library (RTL) routines provided for this purpose (LIB$RESERVE_EF,
LIB$GET_EF, and LIB$FREE_EF). These routines coordinate the use of
the event flags between your program and CMS.

• Do not modify the contents of the LDB.

• Except for the CMS$ASYNCH_TERMINATE, CMS$GET_STRING, and
CMS$PUT_STRING routines, do not call CMS from within callback or
message-handler routines. Doing so can result in a deadlock condition,
where the latest call waits to lock the library that the earlier call is
holding locked. See Section 1.8 for information about message routines and
Section 1.6 for information about callback routines.

1.4 Passing Arguments to CMS Routines
The OpenVMS Procedure Calling and Condition Handling Standard specifies
three methods of passing arguments to routines:

• By reference

• By descriptor

• By immediate value

CMS accepts arguments that are passed by reference or by descriptor, as
defined for each routine. CMS returns status codes by immediate value. For
information about the arguments for each call, see the individual routine
descriptions in Chapter 2.

1–4 Using CMS Callable Routines

Using CMS Callable Routines
1.4Passing Arguments to CMS Routines

When you pass an argument by reference, you specify that the address of
the argument’s storage location is passed to the CMS routine. CMS expects
objects such as the LDB, user-supplied routines, and flag values to be passed
by reference.

When you pass an argument by descriptor, you specify that the address of a
descriptor data structure is passed to the CMS routine. CMS expects character
strings to be passed by descriptor.

If you are using callback routines (see Section 1.6) you must use the
CMS$GET_STRING and CMS$PUT_STRING routines to pass strings between
the callback routine and CMS.

Each argument in a call to a CMS routine is evaluated according to the
position that it occupies in the argument list. Therefore, you must be sure to
specify null arguments correctly. If you omit an argument and do not include
a placeholder in the call, CMS cannot correctly interpret the arguments that
follow.

For example, the format of a call to the CMS$CREATE_ELEMENT routine is
as follows (see Chapter 2 for a complete description of the
CMS$CREATE_ELEMENT routine):

CMS$CREATE_ELEMENT(library_data_block,
element_name,
[remark],
[history],
[notes],
[position],
[keep],
[reserve],
[concurrent],
[reference_copy],
[input_file],
[input_routine],
[user_arg],
[msg_routine],
[review])

The arguments for the LDB and the element name are required; the other
arguments, shown in brackets ([]), are optional. For example, the following
routine call passes only the required arguments:

CALL CMS$CREATE_ELEMENT(LDB,ELEMENT)

Using CMS Callable Routines 1–5

Using CMS Callable Routines
1.4Passing Arguments to CMS Routines

In this case, CMS searches the current default directory for a file with the
name specified in the ELEMENT argument. Instead of using an existing file
to create an element, you might want to write a routine to provide input for
CMS$CREATE_ELEMENT. The following example shows a call that uses an
input routine:

CALL CMS$CREATE_ELEMENT(LDB,ELEMENT,,,,,,,,,,INPUT)

This call creates an element with the name specified in the ELEMENT
argument and uses data supplied by the INPUT routine. You must include
the intervening commas as placeholders. For example, if you had used only
one comma, CMS would interpret the input routine parameter as the remark
argument.

Note that trailing null arguments are not included in the previous examples.
You can omit null arguments when they occur at the end of the argument list,
if it is allowed by the programming language you are using. For example, the
CMS$CREATE_CLASS routine can accept four arguments, but it might not be
necessary to include placeholders for the optional (unused) arguments in the
call. For example, the following calls from Fortran have the same result:

CALL CMS$CREATE_CLASS(LDB,CLASS,,)
CALL CMS$CREATE_CLASS(LDB,CLASS)

To omit arguments in a language that does not allow variable-length argument
lists, you must pass the placeholder 0 by value, which CMS treats as a null
argument.

1.4.1 Data Types
The routine descriptions in Chapter 2 indicate the data type of each argument
(or object) you pass to CMS (such as an LDB or element name). Table 1–1
describes the different data types for these objects.

All objects except character strings are passed by reference. Programs that
call CMS routines must use the descriptor mechanism to pass character
strings to CMS. CMS uses a string identifier to pass character strings to
callback routines. See Section 1.6 for information about callback routines, and
Section 1.6.3 for information about string identifiers.

1–6 Using CMS Callable Routines

Using CMS Callable Routines
1.4Passing Arguments to CMS Routines

Table 1–1 Data Types of Objects Passed to CMS Routines

Data Type Description

address Indicates a location in memory containing either data or code.
String identifiers are addresses of string descriptors. CMS uses
string identifiers to pass character strings to callback routines. For
information about string identifiers, see Section 1.6.3. For information
about callback routines, see Section 1.6.

char_string Indicates a character-coded string. Character strings are passed by
descriptor.

cntrlblk Indicates a control block. A control block is a structure that is
interpreted by CMS. The LDB and the FDB are control blocks.

procedure Indicates a procedure (or routine) that you pass to a CMS routine.
You pass callback routines and message routines to CMS by specifying
the entry mask of the routine in the call. When you pass routines to
CMS, the argument list must contain a pointer to the entry mask.
(A compiler normally generates the entry mask as the first word of
the routine.) Usually, you pass routines by reference; for examples of
passing routine addresses to CMS, see Appendix B. For information
about message routines, see Section 1.8. For information about callback
routines, see Section 1.6.

longword_
signed

Indicates a 32-bit value. Flags (see Section 1.4.4) and signed integer
counts are passed as signed longwords.

mask_
longword

Indicates a longword mask. A mask is a group of flags or a bitmask to
be interpreted by CMS. For example, you can use a mask to specify the
IGNORE values for the CMS$DIFFERENCES routine.

date_time Indicates a quadword system time value. This data type specifies a
time value in the 64-bit system time format. Transaction times and file
creation or revision times are expressed in the date_time data type.

undefined Indicates an argument that CMS does not modify. These are intended
for your use only; CMS passes these arguments to callback routines.
For more information about user-defined arguments, see Section 1.6.

vector_
longword_
unsigned

Indicates a one-dimensional longword array. The signal and mechanism
arrays that CMS passes to message routines are of type
vector_longword_unsigned. For information about message routines,
see Section 1.8.

Using CMS Callable Routines 1–7

Using CMS Callable Routines
1.4Passing Arguments to CMS Routines

1.4.2 The Library Data Block
The library data block (LDB) is a data structure that CMS uses to maintain
information about the state of a particular CMS library. It is a required
argument for most routine calls that access a library.

You must declare an integer array of 50 longwords to be used for an LDB.
Then, use either the CMS$CREATE_LIBRARY or CMS$SET_LIBRARY
routine to associate the LDB with one or more CMS libraries. When you
specify the LDB in a call to a CMS routine, CMS accesses that corresponding
library or list of libraries.

The CMS$CREATE_LIBRARY and CMS$SET_LIBRARY commands allocate
virtual memory to maintain the CMS library context. To free virtual memory
before your program exits CMS, or before you initialize a library data block
with another CMS$CREATE_LIBRARY or CMS$SET_LIBRARY routine, you
should call CMS$SET_NOLIBRARY. The CMS$SET_NOLIBRARY routine
ensures that any virtual memory is deallocated.

Caution

The LDB is designed to be filled by CMS. You should not modify the
contents of the LDB (except for the fifth and sixth longword; see the
following section). Using an LDB that you have modified might corrupt
your library.

1–8 Using CMS Callable Routines

Using CMS Callable Routines
1.4Passing Arguments to CMS Routines

Figure 1–1 shows an LDB.

Figure 1–1 A CMS Library Data Block

LENGTH

RETURN STATUS

LIBRARY DIRECTORY SPECIFICATION

(DESCRIPTOR)

USER PARAMETER

OCCLUSION MASK

RESERVED
FOR CMS

32 0

ZK−1902−GE

The first longword in the LDB contains a count of the total number of
longwords used in the LDB. Although this count might be less than the
total space allocated for the data block, you should not use any part of the
LDB for your own purposes (except for the fifth and sixth longword). The
second longword contains the return status for the call to CMS (the same
value placed in R0). The third and fourth longwords contain a character string
descriptor that points to the library directory specification for the entire search
list of libraries. You can use the fifth longword to pass arguments to your
callback routines. You should do this after entering CMS$SET_LIBRARY,
which initializes the library.

Using CMS Callable Routines 1–9

Using CMS Callable Routines
1.4Passing Arguments to CMS Routines

If the value you want to pass cannot be represented by a longword, the fifth
longword in the LDB should contain a pointer to the value, rather than the
value itself. The sixth longword contains an occlusion mask containing four
occlusion flags. By default, the occlusion mask is set to 0, enabling occlusion
for all CMS objects. You specify occlusion on the CMS command line with the
/OCCLUDE qualifier. You specify occlusion in a callable routine by setting
the bit position in the occlusion mask. The following table shows the symbols
defined for the occlusion mask.

Symbol Bit Position Mask Value

CMS$M_OCC_NOCLASS 0 1

CMS$M_OCC_NOELEMENT 1 2

CMS$M_OCC_NOGROUP 2 4

CMS$M_OCC_NOOTHER 3 8

See the HP DECset for OpenVMS Guide to the Code Management System for
more information on occlusion.

The remaining entries in the LDB are reserved for CMS.

1.4.3 The Fetch Data Block
The fetch data block (FDB) contains status information about the library.
It is used as an argument only in calls to the CMS$FETCH_OPEN,
CMS$FETCH_GET, and CMS$FETCH_CLOSE routines. You use these
routines when you want to fetch an element from the library one line at a time.
For the descriptions of these routines, see Chapter 2.

Each element generation that you fetch with the line-by-line fetch routines
requires a separate FDB. You must declare an array of five longwords to be
used for each FDB.

Caution

The FDB is designed to be filled by CMS. You should not modify the
contents of the FDB. Using an FDB that you have modified might
corrupt your library.

1–10 Using CMS Callable Routines

Using CMS Callable Routines
1.4Passing Arguments to CMS Routines

1.4.4 Specifying Flags as Arguments
Some CMS routines recognize flags that specify certain actions. For example,
to reserve an element, you specify a flag in a call to CMS$FETCH. A flag is a
longword integer variable that is set to true (1) or false (0). You can set these
flags to 1 or 0 as necessary, then pass the address of the flag as an argument
to the CMS routine. CMS checks the low-order bit to determine the value of
the flag.

Example 1–2 shows a call to CMS$CREATE_ELEMENT from Fortran. The
call contains a flag that directs CMS to create an element that does not allow
concurrent access.

Example 1–2 Passing a Concurrent Flag to CMS$CREATE_ELEMENT

INTEGER*4 LDB(50)
CHARACTER*10 ELEMENT
INTEGER*4 CONCURRENT 1

.

.

.
STATUS = CMS$SET_LIBRARY(LDB,DIRECTORY)

.

.

.
CONCURRENT = 0 2
STATUS = CMS$CREATE_ELEMENT(LDB,ELEMENT,,,,,,,CONCURRENT) 3

.

.

.

Key to Example 1–2:

1 The concurrent flag is declared as type INTEGER.

2 The flag is later set to 0.

3 The concurrent flag is then passed by reference to the
CMS$CREATE_ELEMENT routine. (In Fortran, variables of type
INTEGER are passed by reference.)

In Example 1–2, when the CMS$CREATE_ELEMENT routine is called, the
position in the argument list corresponding to the concurrent flag contains an
address of a location containing the value 0. CMS interprets the concurrent
flag as follows: a value of 1 indicates concurrent access and a value of 0
indicates no concurrent access. Thus, CMS creates an element that cannot be
concurrently reserved.

Using CMS Callable Routines 1–11

Using CMS Callable Routines
1.4Passing Arguments to CMS Routines

You must pass flag values by reference for CMS to interpret them correctly. If
you use the immediate value mechanism to pass the value 0 to a CMS routine,
CMS interprets the argument list entry of 0 to mean an unspecified argument.
An unspecified, or default, argument might have a different meaning than you
intend; therefore, you must use the correct syntax for the calling language to
ensure the correct representation on the argument stack.

Table 1–2 shows the effects of using different methods to pass the concurrent
flag in a call to CMS$CREATE_ELEMENT.

Table 1–2 Passing Concurrent Flag Values

Call Semantics Argument List Result

Unspecified argument 0 Concurrency allowed

Passing 0 by value 0 Concurrency allowed

Passing 0 by reference Address pointing to location
containing the value 0

Concurrency not allowed

Passing 1 by value 1 Probable access violation

Passing 1 by reference Address pointing to location
containing the value 1

Concurrency allowed

1.4.5 Masks
Some routines (for example, CMS$ANNOTATE, CMS$DIFFERENCES,
CMS$DIFFERENCES_CLASS, and CMS$DELETE_HISTORY) accept some
of their arguments in the form of masks. A mask is a longword value that is
interpreted as a bitmask. A bitmask is an integer value that is interpreted as
a set of bits, some of them ‘‘on’’ and some ‘‘off.’’ For each of the masks, CMS
recognizes specific values that determine the action of the routine. Each of
these values is defined as a universal symbol; thus, you have access to them
when you link with the CMS image.

Example 1–3 shows a call to CMS$SHOW_HISTORY from Fortran. The call
contains a transaction mask that directs CMS to produce only reservation and
replacement transactions for a particular element.

1–12 Using CMS Callable Routines

Using CMS Callable Routines
1.4Passing Arguments to CMS Routines

Example 1–3 Using a Bitmask

CHARACTER*16 LIBNAME
CHARACTER*10 ELEMENT

INTEGER*4 LDB(50)
INTEGER*4 TRANSACTIONS 1

EXTERNAL CMS$M_CMD_RESERVE 2
EXTERNAL CMS$M_CMD_REPLACE
EXTERNAL OUTPUT_ROUTINE

TRANSACTIONS = IOR(%LOC(CMS$M_CMD_RESERVE),%LOC(CMS$M_CMD_REPLACE)) 3

LIBNAME = ’[HARRISON.SONGS]’
ELEMENT = ’BROWN.SHOE’
CALL CMS$SET_LIBRARY(LDB,LIBNAME)
CALL CMS$SHOW_HISTORY(LDB,OUTPUT_ROUTINE,,ELEMENT,,,,TRANSACTIONS) 4

.

.

.

Key to Example 1–3:

1 TRANSACTIONS is declared as type (longword) INTEGER for the bitmask
argument to be passed to CMS$SHOW_HISTORY.

2 External symbols for the bitmask (CMS$M_CMD_RESERVE and
CMS$M_CMD_REPLACE) are declared.

3 The IOR intrinsic function sets the bits in the TRANSACTIONS mask.

4 CMS is called; CMS calls OUTPUT_ROUTINE once for each reservation
and replacement of the specified element.

1.4.6 Output Strings
Some routines provide character strings as output. These strings are allocated
by the routine and need to be freed by the caller after use. The outputs are
provided using a descriptor mechanism and write access. To free the allocated
space, use the following OpenVMS library routine:

STR$FREE1_DX

Note that this applies only to the outputs from callable routines and not to
the arguments passed to callback routines. The space used for arguments to
callback routines is freed by the CMS implementation and need not be freed by
the callback.

Using CMS Callable Routines 1–13

Using CMS Callable Routines
1.5 Condition Values Returned

1.5 Condition Values Returned
The return value of a call to a CMS routine is a standard 32-bit OpenVMS
condition code. CMS returns the value in register 0, and places it in the second
longword of the LDB (see Section 1.4.2).

The CMS condition codes are declared as universal symbols; therefore, you
have access to these symbols when you link your program with the CMS
image. The languages supported for accessing the defined symbols are: Ada,
Basic, Bliss, C, COBOL, DIBOL, Fortran, Macro, Pascal, PL/I (Alpha and VAX
only), and SCAN.

The following example shows a sample Ada statement:

X: CONSTANT UNSIGNED_LONGWORD :=SYSTEM.IMPORT_VALUE(~EXTERNAL_SYMBOL~);

Section 1.8 describes how to write routines to handle messages generated by
CMS. See the HP DECset for OpenVMS Guide to the Code Management System
for a complete listing of CMS diagnostic messages.

1.5.1 CMS$_EOF Condition Value
When you provide a routine to handle input or output, the return value
CMS$_EOF is used to indicate end-of-file. For information about writing
routines for input and output, see Section 1.6.

1.5.2 CMS$_INUSE, CMS$_WAITING, and CMS$_PROCEEDING
Messages

If another user is accessing a library when your program calls CMS to access
the same library, CMS issues the CMS$_INUSE message and waits until
the library is unlocked before executing your transaction. During this time,
CMS periodically issues the CMS$_WAITING message. When the library is
available, CMS issues the CMS$_PROCEEDING message and then executes
your transaction.

If, instead of waiting, you prefer to abort the transaction from the message
routine, you should have the message routine call
CMS$ASYNCH_TERMINATE. This routine returns control to CMS, so it
cleans up resources and exits properly.

1–14 Using CMS Callable Routines

Using CMS Callable Routines
1.6 Using Callback Routines

1.6 Using Callback Routines
Typically, CMS uses files for input and output. For example, when you pass an
element name to the CMS$CREATE_ELEMENT routine, CMS searches your
default directory for a file that has the same name as the specified element.
However, you can provide callback routines to handle input and output.

A callback routine is a routine that you specify in a call to CMS, and which
in turn is invoked by CMS. You pass callback routines by specifying the
entry mask of the routine in the call to the CMS routine. As a result, the
argument list contains the address of the entry mask for the routine (CMS
uses the CALLG and CALLS procedure call instructions to invoke callback
routines). Usually, you pass routines by reference, but the method that you use
to pass the routine address is dependent on the language that you are using.
For examples of programs that pass routine addresses to CMS routines, see
Appendix B.

In most cases, you cannot specify both an input file and input routine (or an
output file and output routine) in a single call. (An exception is that you can
specify both files and routines in a single call to CMS$DIFFERENCES.) CMS
routines that allow you to provide input routines are as follows:

• CMS$CREATE_ELEMENT

• CMS$DIFFERENCES

• CMS$REPLACE

CMS routines that allow you to provide output routines are as follows:

• CMS$ANNOTATE

• CMS$DELETE_HISTORY

• CMS$DIFFERENCES

• CMS$DIFFERENCES_CLASS

• CMS$SHOW_keyword

The CMS$CMS routine allows you to specify input, output, confirm, and
prompt routines. See the description of the CMS$CMS routine in Chapter 2
for more information.

Using CMS Callable Routines 1–15

Using CMS Callable Routines
1.6 Using Callback Routines

1.6.1 Rules for Writing Callback Routines
The following list describes the rules to follow when you write callback
routines:

• Every callback routine must return control to CMS. If your routine does
not return control to CMS, CMS cannot finish the transaction and the
library remains locked. (If your library becomes locked, you must use the
VERIFY/RECOVER command to unlock it.) In addition, any resources
used to process the command are not released.

• Callback routines must return a defined condition value to CMS. You can
use CMS$_NORMAL, CMS$_EXCLUDE, and CMS$_STOPPED to indicate
successful completion of the callback routine, or you can return a condition
code from an OpenVMS system service or other system software. CMS
checks for the CMS$_EXCLUDE and CMS$_STOPPED values, and checks
the low-order bit to determine if the status code indicates success. For
information about callback return codes, see Section 1.6.4. If the callback
routine returns a failure code, CMS exits with a primary status of
CMS$_USERERR.

• CMS$ASYNCH_TERMINATE, CMS$GET_STRING and
CMS$PUT_STRING are the only CMS routines that you can use within a
callback routine (see Section 1.6.3).

• When writing callback routines for CMS$DIFFERENCES and
CMS$DIFFERENCES_CLASS, you cannot depend on the order in which
CMS calls these callback routines. The calling sequence is not synchronous.

All routines that allow you to use callback input or output routines also provide
an argument in the call syntax for your own use. CMS does not modify this
value; it passes this value to the callback routine. This argument is labeled
user_arg in the syntax of a call to CMS and user_param in the syntax of a
call to a callback routine. (The term argument is used to identify an object
that you pass to a CMS routine. The term parameter is used to identify an
object that a CMS routine passes to a callback routine.)

When you do not specify user_arg in the call to CMS, the call frame entry
for user_param points to a location containing the value 0. In this case,
user_param is allocated as read-only storage. You receive an access violation
error if you attempt to modify user_param under these circumstances. CMS
allows you to pass arguments to callback routines by supplying a value in the
fifth longword of the LDB. See Section 1.4.2 for more information.

1–16 Using CMS Callable Routines

Using CMS Callable Routines
1.6 Using Callback Routines

1.6.2 Callback Routines Used by CMS$CMS
The CMS$CMS routine provides a full command-line level interface into CMS;
however, it performs no I/O to the terminal other than error messages. To
perform confirmations, prompting, or display output, you must supply callback
routines. The following sections describe these callback routines.

1.6.2.1 The Confirmation Routine
The CMS$CMS routine uses a caller-supplied callback routine for confirmation
messages (for example, the results of a /CONFIRM qualifier, or when a module
is being reserved or replaced with concurrent reservations in effect).

There are two ways you can set this callback routine:

• By specifying the confirm_routine argument to CMS$CMS, which affects
the command being parsed and executed

• By specifying the confirm_routine argument to CMS$CREATE_LIBRARY
or CMS$SET_LIBRARY, which affects all operations performed using that
LDB (until you reinitialize the LDB by performing another
CMS$CREATE_LIBRARY or CMS$SET_LIBRARY operation)

If you do not specify a confirm callback, CMS does not request confirmation. It
operates as if a callback had been specified and had returned the string ‘‘YES’’.
CMS then proceeds with the operation.

For more information on confirmation routines, see the description of the
CMS$CMS routine in Chapter 2.

1.6.2.2 The Prompt Routine
The CMS$CMS routine uses a caller-supplied callback routine to prompt when
CMS encounters an incomplete command line.

You set the address of the prompt routine by specifying the prompt_routine
argument to CMS$CMS.

If you do not specify a prompt callback, CMS does not prompt you, but operates
as if a callback had been specified and had returned the status RMS$_EOF
(except in the case of prompting for a CMS remark, where the status is
RMS$_NORMAL). The RMS$_EOF return status causes termination of
command parsing (as if the user had pressed Ctrl/Z at the DCL prompt).

For more information on command-line prompting, see the description of the
CMS$CMS routine in Chapter 2.

Using CMS Callable Routines 1–17

Using CMS Callable Routines
1.6 Using Callback Routines

1.6.2.3 The Output Routine
The CMS$CMS routine uses a caller-supplied callback routine for all terminal
output (for example, the results of a SHOW or HELP command, or the listing
of concurrent reservations for REPLACE and RESERVE).

There are two ways you can specify this routine:

• By specifying the output_routine argument to CMS$CMS, which affects
the command being parsed and executed

• By specifying the output_routine argument to CMS$CREATE_LIBRARY
or CMS$SET_LIBRARY, which affects all operations performed using that
LDB (until you reinitialize the LDB by performing another
CMS$CREATE_LIBRARY or CMS$SET_LIBRARY operation)

CMS directs output to SYS$OUTPUT if the message or output callback
routines are not specified.

Note that if /OUTPUT is specified to redirect terminal output to a file, CMS
opens, writes to, and closes the file normally and does not use the output
callback routine.

For more information on output routines, see the description of the CMS$CMS
routine in Chapter 2.

1.6.3 Passing Strings Between CMS and Callback Routines
CMS provides routines for passing strings between a callback routine and a
CMS routine. CMS passes a string (such as an element name) to a callback
routine using a string identifier. A string identifier is the address of a string
descriptor. CMS passes string identifiers by reference. Figure 1–2 shows the
relationship between the string identifier and the passed string.

Figure 1–2 A String Identifier

CALL FRAME

STRING IDENTIFIER STRING
DESCRIPTOR

STRING

ZK−2005−GE

1–18 Using CMS Callable Routines

Using CMS Callable Routines
1.6 Using Callback Routines

Within callback routines, you use the CMS$GET_STRING routine to process
an output string from CMS, and the CMS$PUT_STRING routine to provide
a string for input to CMS. You can manipulate the descriptors directly if the
language allows it (as BLISS or C does, for example). See the descriptions of
CMS$GET_STRING and CMS$PUT_STRING for more information.

1.6.3.1 Specifying End of Input
CMS passes an eof_status parameter to the input callback routines invoked
by the CMS$CREATE_ELEMENT and CMS$REPLACE routines. Every time
an input callback routine returns control to CMS, CMS checks the eof_status
parameter for a value of true (1). When CMS encounters a true value in
eof_status, the current input record (passed by CMS$PUT_STRING) is
assumed to be insignificant. Thus, when you pass the last input record to
CMS, you must wait until the next invocation of the callback routine to set
eof_status to true.

It is important to specify a true status at the appropriate time during a
wildcard or group CMS$REPLACE transaction. For more information about
CMS$REPLACE, see Chapter 2.

1.6.3.2 Determining End of Output
CMS sets the eof_status parameter to true after the last record has been
passed to the callback routine. CMS does not set eof_status to true until
the next invocation of the callback routine. Thus, when the callback routine
encounters the end of output, the contents of output_record are undefined.

1.6.4 Callback Return Codes
Each time a callback routine returns control to CMS, CMS checks the low-order
bit of the callback return code to determine success or failure. A success code
directs CMS to continue processing; if there is more data for processing, CMS
calls the callback routine again. Under certain circumstances, CMS also checks
for CMS$_EXCLUDE and CMS$_STOPPED. CMS$_EXCLUDE directs CMS
to continue processing, but it also indicates that the current record does not
meet some requirement established by the callback routine. CMS$_STOPPED
is used to halt a wildcard transaction.

For example, the CMS$DELETE_HISTORY routine calls the output callback
routine once for each record to be deleted. The callback routine must return
one of two values, CMS$_NORMAL to direct CMS to delete the record from
the history file, or CMS$_EXCLUDE to prevent CMS from deleting the history
record.

Using CMS Callable Routines 1–19

Using CMS Callable Routines
1.6 Using Callback Routines

The CMS$SHOW_HISTORY routine provides another example of using
CMS$_EXCLUDE. CMS passes a parameter to the callback routine that
indicates whether the transaction is unusual. If the callback routine
checks only for unusual transactions and there are none, it returns
CMS$_EXCLUDE each time control is transferred to CMS. As a result,
the CMS$SHOW_HISTORY routine returns CMS$_NOHIS (no history records
found).

If the callback routine encounters an error during processing, it should abort
the CMS call by returning an error status. This causes the CMS call to exit
using CMS$_USERERR. To abort the transaction from the message routine
without returning an error status, you should have the message routine call
CMS$ASYNCH_TERMINATE to allow CMS to clean up resources.

For a list of the primary return codes, see the description of each routine in
Chapter 2.

1.7 Handling Error Conditions
CMS handles error conditions in one of two ways:

• If the condition is not fatal, CMS calls a message handler. You can provide
a message routine to handle messages (see Section 1.8). If you do not
provide a message routine, CMS calls its own message handler.

• If the condition is fatal, CMS signals the error. Fatal conditions are those
situations where execution cannot continue. CMS does not call the message
routine (if supplied) under these circumstances.

If you have established a condition handler in the calling program and the
condition handler encounters a fatal return value, do not return a value of
SS$_CONTINUE from the condition handler or resignal SS$_CONTINUE, and
do not issue additional calls to CMS until you have exited and reentered the
image. The fatal error indicates that CMS cannot continue with the current
invocation of the image.

If you supply a routine for input or output (see Section 1.6) and you establish
a condition handler within this routine, do not exit from the image (through
either the condition handler or the routine itself). In addition, do not unwind
the stack beyond the call to the user-supplied routine.

To exit the image, you should return an error (any status with the low bit
clear) from your routine, causing CMS to terminate with CMS$_USERERR
status. CMS$_USERERR status indicates that a callback routine returned an
error.

1–20 Using CMS Callable Routines

Using CMS Callable Routines
1.8 Writing an Error-Message Handler

1.8 Writing an Error-Message Handler
By default, CMS directs all diagnostic messages to SYS$OUTPUT and
SYS$ERROR. However, you can write your own routine to handle messages.
When you specify the msg_routine argument to any CMS routine, CMS
passes control to your message handler instead of using the default handler.
CMS does not call your message-handler routine if a fatal condition occurs,
but instead notifies you by signaling the condition. If you receive a fatal error
message, you should exit and reenter CMS—do not attempt to recall CMS
within the same image invocation if CMS detected a fatal error.

You pass a message routine by specifying the entry mask of the routine in
the call to the CMS routine. This places the address of the routine entry
mask in the argument list (CMS uses the CALLG and CALLS procedure
call instructions to invoke message routines). In general, you pass message
routines by reference, but the method you use to pass the routine address
depends on the language you are using. For examples of programs that pass
routine addresses to CMS routines, see Appendix B.

With each call to msg_routine, CMS passes the following parameters in the
order shown:

(signal_array, mechanism_array, library_data_block)

signal_array
Type: vector_longword_unsigned
Access: read
Mechanism: by reference
Specifies a standard OpenVMS signal array.

mechanism_array
Type: vector_longword_unsigned
Access: read
Mechanism: by reference
Specifies a standard OpenVMS mechanism array.

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference
Specifies a valid LDB. Although the LDB can be modified, you should not
change its contents. If you do so, you might corrupt your CMS library.

Using CMS Callable Routines 1–21

Using CMS Callable Routines
1.8 Writing an Error-Message Handler

The following list describes rules to follow when you write message-handling
routines:

• Do not invoke any CMS routines from a message routine (except
CMS$ASYNCH_TERMINATE, CMS$GET_STRING, or
CMS$PUT_STRING).

• Do not unwind the stack, because it might corrupt your library.

• Do not use the LIB$ESTABLISH Run-Time Library routine to enable
the message routine as the exception handler for a CMS call. CMS uses
its own exception handlers and calls the user-supplied message routine
under the correct circumstances. (The message routine is only for handling
messages, not for general exception handling during the execution of a
CMS routine.)

Example 1–4 shows a Fortran program that specifies a message-handling
routine in the call to the CMS$MODIFY_CLASS routine.

Example 1–4 Using a Message-Handler Routine

10 INTEGER*4 LDB(50)
INTEGER*4 STATUS
CHARACTER*14 DIR
CHARACTER*8 CLASS,NEWNAME

C
INTEGER*4 CMS$MODIFY_CLASS
INTEGER*4 CMS$SET_LIBRARY
EXTERNAL MSG 1

C
100 DIR = ’[LENNON.SONGS]’

CLASS = ’PRE_1968’
NEWNAME = ’PRE_1970’

C
STATUS = CMS$SET_LIBRARY(LDB,DIR)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))
STATUS = CMS$MODIFY_CLASS(LDB,CLASS,,NEWNAME,,,MSG) 2
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

C
END

C

(continued on next page)

1–22 Using CMS Callable Routines

Using CMS Callable Routines
1.8 Writing an Error-Message Handler

Example 1–4 (Cont.) Using a Message-Handler Routine

INTEGER*4 FUNCTION MSG(SIGNAL,MECH,LIBDB)
INTEGER*4 SIGNAL(16),SIGNAL_COPY(16),MECH(5) 3
INTEGER*4 LIBDB(50)
EXTERNAL CMS$_MODIFIED
EXTERNAL SYS$PUTMSG

IF (.NOT. SIGNAL(2)) THEN
DO I=1,16
SIGNAL_COPY(I) = SIGNAL(I)
END DO
SIGNAL_COPY(1) = SIGNAL_COPY(1) - 2 4
CALL SYS$PUTMSG(SIGNAL_COPY)

ENDIF
MSG = 1 5
RETURN
END

Key to Example 1–4:

1 The message routine is declared as an external routine.

2 The call to CMS$MODIFY_CLASS includes the address of the message
routine.

3 The message routine is written as a function so it returns a value to CMS.
In this case, 16 longwords are declared for the signal array; however, the
size required is dependent on the number of messages that are generated.
An additional array is declared to make a copy of the signal array. The
mechanism array requires five longwords.

4 The message-handler routine checks the signal array for an error. If
the test fails, the message routine returns control to CMS. If the test is
successful, the signal array is copied and the longword count of the copied
signal array is altered (in effect removing the PC and PSL at the end
of the array). The array is then in a form that is compatible with the
SYS$PUTMSG routine, which displays the message on the terminal.

5 The return value is set to true (1), and control is returned to CMS.

Using CMS Callable Routines 1–23

Using CMS Callable Routines
1.9 Linking with the CMS Image

1.9 Linking with the CMS Image
You do not have to specify the CMS shareable image in your LINK command
because the installation procedure inserts CMSSHR.EXE into the default
system shareable image library (SYS$LIBRARY:IMAGELIB.OLB), which is
automatically searched by the linker.

Use the following LINK command syntax to link your program with CMS:

LINK filename[,...]

You can explicitly reference the CMS shareable image
(SYS$SHARE:CMSSHR.EXE) by specifying the /SHAREABLE linker option, as
follows:

$ LINK filename[,...],SYS$INPUT/OPTIONS Return

CMSSHR/SHAREABLE
Ctrl/Z

1–24 Using CMS Callable Routines

2
CMS Routine Descriptions

This chapter describes the purpose of each CMS routine, the arguments
and parameters used in routine calls, and the return status. For more
information about diagnostic messages, see the HP DECset for OpenVMS Code
Management System Reference Manual.

An argument in the call syntax represents the object that you pass to a CMS
routine. A parameter in the call syntax represents an object that a CMS
routine passes to a callback routine. A comma list for an object indicates
that you can specify more than one of the indicated objects by separating each
object with a comma. Each argument and parameter description lists the
data type, access to the object, and passing mechanism. The data types are
standard OpenVMS data types (see Section 1.4.1). The access to an object is
defined from the perspective of the called routine. The different types of access
to the object are as follows:

• Read access – The routine can only read data.

• Modify access – The routine can both read from and write to the address.

• Write access – The routine writes into the address without reading the
contents.

The passing mechanism indicates how the argument list is interpreted. The
reference mechanism indicates that the argument list entry is the address of
the object. The descriptor mechanism indicates that the argument list entry is
an address that points to a descriptor containing the address of the object.

Each argument is evaluated according to the position it occupies in the
argument list. Therefore, you must be sure you specify null arguments
correctly. If you omit an argument and do not include a placeholder in the
call, CMS cannot correctly interpret the arguments that follow. For more
information about specifying null arguments, see Section 1.4.

Brackets ([]) surrounding arguments indicate that the enclosed item is
optional.

CMS Routine Descriptions 2–1

CMS$ANNOTATE

CMS$ANNOTATE

Creates a line-by-line file listing the changes made in each specified element
generation.

Format

CMS$ANNOTATE (library_data_block,
element_expression,
[generation_expression],
[merge_generation_expression],
[append],
[full],
[output_file],
[output_routine],
[user_arg],
[msg_routine],
[format])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements, or groups of elements, to be annotated.
Wildcards and a comma list are allowed. CMS creates one output file for each
annotated element unless you also specify the append argument.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library.

2–2 CMS Routine Descriptions

CMS$ANNOTATE

generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the generation to be annotated. If you do not provide a generation
number or class name, CMS annotates the latest generation on the main line
of descent.

merge_generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the element generation to be merged into the annotated generation.

append
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to append the output to a file. If you set
the flag to 1, CMS appends the output to a file. If you set the flag to 0, CMS
creates as many new output files as necessary. CMS ignores this argument if
you provide an output routine.

When you set the append flag to 1, CMS appends the output to an existing
file indicated by the output_file argument. If you do not specify an output file,
CMS appends the output to a file with the same file name as the element file
with the file type of .ANN. If no such file exists, CMS creates one.

full
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to produce an annotated listing that indicates
the file creation time, file revision time, and record format for the file used to
create each generation, and shows the deletion history of the element. If you
set the flag to 1, CMS produces a full listing. If you set the flag to 0, CMS
produces a normal, annotated listing.

CMS Routine Descriptions 2–3

CMS$ANNOTATE

output_file
type: char_string
access: read
mechanism: by descriptor

Specifies the name of the output file. By default, the file name is the element
file name with the file type of .ANN. Use this argument if you want the output
file to have a different name, or if you want CMS to put the file in a directory
other than your current, default directory. Wildcards are allowed.

If you provide an output file specification and do not set the append flag to
1, CMS creates one output file for each element annotated. If more than
one element is annotated and you do not include wildcards in the output file
specification, CMS creates successive versions of the specified output file. (Note
that if you provide a directory specification, but no file name or file type, CMS
creates one output file for each element annotated and places each output file
in the specified directory. In this case, each output file is named according to
the default naming convention.) If you specify an output file, you cannot also
specify an output routine.

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes data output by CMS$ANNOTATE.
CMS calls the output routine once for each line of data. If you specify an
output routine, you cannot also specify an output file. See Section 1.6 for
information about the parameters that CMS passes to the callback routine.

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine
argument, using the same mechanism that you used to pass it to CMS.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

2–4 CMS Routine Descriptions

CMS$ANNOTATE

format
type: mask_longword
access: read
mechanism: by reference

Specifies the type of formatting to be performed on the data before it is placed
in the output file. You must specify either the output_file or output_routine
arguments with this argument. By default, the flag is set to 1, indicating
ASCII output.

The format argument specifies a data format and data partition size. The
following table lists recognized data formats.

Data Format
Bit
Position

Mask
Value Action

CMS$M_ASCII 0 1 Specifies that data be presented
as if each byte represents a value
in the ASCII character set. This
option is most useful when files
contain text. If no data partition
is specified, data is partitioned
into records. This option is the
default.

CMS$M_DECIMAL 1 2 Specifies that each value be
displayed as a decimal numeral.
If no data partition is specified,
data is partitioned into longwords.
You cannot specify both
CMS$M_DECIMAL and
CMS$M_RECORDS.

CMS$M_
HEXADECIMAL

2 4 Specifies that each value be
displayed as a hexadecimal
numeral. If no data partition is
specified, data is partitioned into
longwords. You cannot specify
both CMS$M_HEXADECIMAL
and CMS$M_RECORDS.

CMS Routine Descriptions 2–5

CMS$ANNOTATE

Data Format
Bit
Position

Mask
Value Action

CMS$M_OCTAL 3 8 Specifies that each value be
displayed as an octal numeral. If
no data partition is specified, data
is partitioned into longwords. You
cannot specify both
CMS$M_OCTAL and
CMS$M_RECORDS.

A data partition is the size that data in each record is to be broken into before
it is formatted. The following table lists the recognized data partitions.

Data Partition
Bit
Position

Mask
Value Action

CMS$M_BYTE 16 65,536 Specifies that the data displayed
is to be partitioned into bytes. By
default, records are not partitioned
further unless the data format option
indicates otherwise.

CMS$M_
LONGWORD

17 131,072 Specifies that the data displayed is to
be partitioned into longword values.
This is the default partitioning for
CMS$M_DECIMAL,
CMS$M_HEXADECIMAL, and
CMS$M_OCTAL.

CMS$M_
RECORDS

18 262,144 Specifies that no further partitioning
of data is to occur beyond the record
partitioning already in the file. This
partitioning is most useful when the
files contain text. You can specify
CMS$M_RECORDS only by itself or
in conjunction with ASCII. It cannot
be used with any other options. This
qualifier is the default.

2–6 CMS Routine Descriptions

CMS$ANNOTATE

Data Partition
Bit
Position

Mask
Value Action

CMS$M_WORD 19 524,288 Specifies that the data displayed
be partitioned into word values.
By default, data records are not
partitioned further unless the data
format indicates otherwise.

Callback Routine Parameters
When you provide an output routine to process the output of CMS$ANNOTATE,
CMS passes the following parameters in the order shown with each call to
output_routine:

(first_call, library_data_block, user_param, element_id,
output_record_id, eof_status)

The callback routine must return a value to CMS. CMS checks the low-order
bit of that value for success (1) or failure (0) status. The following parameter
descriptions define the access to the object from the perspective of the callback
routine.

first_call
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine
is the first call. CMS sets the flag to 1 if the current call is the first call.
Otherwise, this flag is set to 0.

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

CMS Routine Descriptions 2–7

CMS$ANNOTATE

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$ANNOTATE. If you
did not specify a user argument in the call syntax, this parameter points to a
read-only storage location containing the value 0. CMS passes the parameter
user_param to your routine using the same mechanism that you used to pass
it to CMS$ANNOTATE.

element_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the element name. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

output_record_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the line of data produced by CMS$ANNOTATE.
Use the CMS$GET_STRING routine to translate the string identifier. For
information about string identifiers, see Section 1.6.3.

eof_status
type: longword_signed
access: read
mechanism: by reference

Specifies the end-of-file status. CMS changes the value of eof_status from
false (0) to true (1) after the last record has been passed to the output routine.
When eof_status is true, the contents of output_record_id are undefined.
See Section 1.6.3.2 for more information on determining the end of output.

2–8 CMS Routine Descriptions

CMS$ANNOTATE

Description

The CMS$ANNOTATE routine documents the development of an element. This
routine creates an output file that contains an annotated listing. By default,
the file name is the same as the element name with the file type .ANN. The
annotated listing file contains two parts:

• A history

• A source-file listing

The history includes the generation number, date, time, user, and remark of
the transaction that created each generation of the element. In addition, if
you specify the FULL argument, the history also includes information about
file creation and revision times, and record format and attributes. Element
generations are listed in reverse chronological order. The generation numbers
of the specified generation and its ancestors are marked with an asterisk (*).

The source-file listing contains all the lines inserted or modified from
generation 1 to the specified generation. The listing does not show lines
deleted from the file. CMS inserts consecutive line numbers in the listing
unless editor-assigned line numbers already exist. (The line numbers start
with 1 for the first line and increase by 1 for each line.) The generation field
starts at the first character position of each line. It contains the generation
number of the most recent generation in which the line was inserted or
modified. The generation field is blank if a line is unchanged since
generation 1.

The following table lists the possible return codes for this function.

Return Code Description Status

CMS$_ANNOTATED CMS annotated the
element.

Success

CMS$_ANNOTATIONS CMS annotated one or more
elements.

Success

CMS$_ERRANNOTATIONS CMS annotated zero
or more elements and
encountered errors during
the transaction.

Error

CMS$_NOANNOTATE CMS did not annotate the
specified element.

Error

CMS$_NOREF Error accessing library. Error

CMS Routine Descriptions 2–9

CMS$ANNOTATE

Return Code Description Status

CMS$_USERERR User routine returned an
error to CMS.

Error

2–10 CMS Routine Descriptions

CMS$ASYNCH_TERMINATE

CMS$ASYNCH_TERMINATE

Simulates a keyboard Ctrl/C (cancel). This routine enables calling programs to
specify to the CMS function currently in progress that cancellation has been
requested.

Format

CMS$ASYNCH_TERMINATE

Arguments

None.

Description

The CMS$ASYNCH_TERMINATE routine requests CMS to terminate
processing at the next convenient point, just as if the user presses Ctrl/C
during command execution. This termination might not occur immediately and
in fact may not occur at all, depending on the operation.

You can call CMS$ASYNCH_TERMINATE from your own Ctrl/C handler,
anywhere in your program, callback routines, and AST routines.

CMS$ASYNCH_TERMINATE sets a flag so CMS can recognize it at a
convenient time. This flag is usable with both CMS$CMS and other lower-level
callable CMS routines. CMS clears this flag on entry to a top-level callable
routine.

CMS Routine Descriptions 2–11

CMS$CMS

CMS$CMS

Is a high-level entry point that enables calling programs to pass a DCL
command line to CMS for processing. This function parses and executes
the command line, then returns to the calling program.

Format

CMS$CMS ([command_line],
[msg_routine],
[prompt_routine],
[confirm_routine],
[output_routine],
[width])

Arguments

command_line
type: char_string
access: read
mechanism: by descriptor

Specifies the address of a string descriptor that contains a command line. If
you specify 0, CMS uses the prompt_routine argument to prompt you for a
command line. If you do not specify this argument or a prompt routine, CMS
returns the error RMS$_EOF (end-of-file detected).

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

prompt_routine
type: procedure
access: read
mechanism: by reference

Specifies the address of a callback routine used instead of direct terminal input
when a response is required from the user. This routine is used to handle
missing command parameters and command continuation lines.

2–12 CMS Routine Descriptions

CMS$CMS

If this parameter is not specified, CMS does not prompt for missing command-
line components—it returns RMS$_EOF. This return value causes the
command line interpreter (CLI) to terminate command processing.

The prompt callback routine is called with two parameters:

• string_id— Specifies a string identifier passed by reference for the prompt
string, which can then be displayed to the user. Use CMS$GET_STRING
to retrieve the string value.

• flag— Specifies a longword passed by reference, which designates the
specific type of information being requested: 0 indicates a command line, 1
indicates a missing parameter, and 2 indicates a remark. The caller must
determine what to do in each situation.

The prompt_routine argument must use CMS$PUT_STRING to return
user input to CMS. Note that this convention is not compatible with direct
use of LIB$GET_INPUT. However, it serves the same purpose as in other
callable CMS routines in that it prevents difficulties due to the differing
string descriptor support of various languages.

confirm_routine
type: procedure
access: read
mechanism: by reference

Specifies the address of a callback routine used instead of direct terminal
input when either the /CONFIRM qualifier is specified, or a module is being
reserved, unreserved, or replaced with concurrent reservations in effect.

This routine can work in either of two modes. It can return a string or
the status of whatever operation it used to obtain the string (for example,
LIB$GET_INPUT or $QIO status).

The following table lists the possible return values for this function.

String Meaning

YES, 1, true Indicates positive confirmation
ALL Indicates positive confirmation and that future actions

of the current call to CMS should be carried out without
confirmation

NO, 0, false Indicates negative confirmation

CMS Routine Descriptions 2–13

CMS$CMS

String Meaning

QUIT Indicates negative confirmation and that CMS performs no
further actions

The routine might return a CMS confirmation status code, as shown in the
following table:

Return Code Meaning

CMS$_CONFIRM Yes
CMS$_NOCONFIRM No
CMS$_ALL All
CMS$_STOPPED Quit

If the callback routine returns one of these codes, any string supplied through
CMS$PUT_STRING is ignored.

For confirmations where ALL and QUIT are not meaningful (such as to confirm
a concurrent reservation), ALL is equivalent to YES and QUIT is equivalent to
NO.

If an invalid response is given, CMS prompts you again. Note that any
response can be abbreviated to a single character. If a null string is returned,
CMS defaults to NO. If a confirm routine is not specified, CMS does not prompt
you; instead, it assumes positive confirmation (YES).

The confirm callback routine is called with the string_id parameter:

• string_id— Specifies a string identifier passed by reference for the prompt
string, which can then be displayed to the user. Use CMS$GET_STRING
to retrieve the string value.

The confirm_routine argument should use CMS$PUT_STRING to return the
user input string (if any) to CMS. Note that this convention is not compatible
with direct use of LIB$GET_INPUT. However, it serves the same purpose as in
other callable CMS routines in that it prevents difficulties due to the differing
string descriptor support of various languages.

2–14 CMS Routine Descriptions

CMS$CMS

output_routine
type: procedure
access: read
mechanism: by reference

Specifies the address of a callback routine to handle output usually sent
to SYS$OUTPUT. For example, all output from a SHOW command is
directed to SYS$OUTPUT by default (in the absence of an overriding
/OUTPUT qualifier). Reporting concurrent reservations or replacements
(for FETCH, RESERVE, REPLACE, and UNRESERVE commands) is always
to SYS$OUTPUT. This callback also receives the output for the commands
FETCH/OUTPUT=SYS$OUTPUT:, DIFFERENCE/OUTPUT=SYS$OUTPUT:,
and so forth.

If output_routine is not specified, CMS writes all output to SYS$OUTPUT.

The output callback routine is called with two parameters:

• string_id— Specifies a string identifier passed by reference for the output
string, which can then be displayed to the user. Use CMS$GET_STRING
to retrieve the string value.

• flag— Specifies a longword passed by reference, which is set to –1 on the
first invocation of the callback routine for a sequence of output. The flag is
0 for each following record of the sequence. After the final record of data
in the output sequence, a final invocation of the callback sets the flag to 1,
indicating that the output sequence is complete; in this case, the string_id
argument is invalid because the final record has already been processed.
The string_id parameter is valid when the flag is either –1 or 0.

For any call to a CMS entry point, it is possible to have more than
one output sequence. For example, in a call to CMS$CMS with the
command string FETCH/OUTPUT=TT: *.*, the text of each file is a
separate output segment. In addition, the listing of concurrent reservations
and replacements for each file is a separate output segment.

CMS Routine Descriptions 2–15

CMS$CMS

width
type: longword_signed
access: read
mechanism: by reference

Specifies the maximum width of text that can be sent to the output callback
routine. If this argument is not specified, the terminal width is used. If this is
unavailable, the width defaults to the translation of CMS$WIDTH (if defined)
or to 132 characters.

Description

CMS$CMS can return all CMS return codes and CLI$ errors.

2–16 CMS Routine Descriptions

CMS$COPY_CLASS

CMS$COPY_CLASS

Copies an existing class to form a new class. The
CMS$COPY_CLASS transaction preserves all class data and history.

Format

CMS$COPY_CLASS (library_data_block,
input_class_expression,
output_class_expression,
[remark],
[source_library_data_block],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB for the library in which the copy is to be placed.

input_class_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the class or classes to be copied. Wildcards and a comma list are
allowed.

You must include a period (.) in the class expression to select one or more
classes from the complete list of classes in the library. If you do not include a
period, CMS interprets the parameter as a group name and makes selections
based on the list of groups established in the library.

output_class_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the name for the new class. The output_class_expression name
cannot be the same as any existing class in the output library.

CMS Routine Descriptions 2–17

CMS$COPY_CLASS

The output_class_expression value can be the same as the input_class_
expression value only if you also specify a source library data block that
points to a different library than the library data block.

You cannot use 00CMS as a class name component because it is reserved for
CMS. If you used a comma list or wildcard in the input_class_expression, a
wildcard must be used in the
output_class_expression.

If you specify the source_library_data_block argument, the
output_class_expression argument is optional.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

source_library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB for the library from which the class is to be copied.
When the copy is performed on different libraries and you specify the source_
library_data_block argument, the output_class_expression argument is
optional. By default, CMS searches the library associated with
library_data_block.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$COPY_CLASS routine uses an existing library class to create a
new class in the same library or in another library. The original class is left
unchanged. The class history, file characteristics, and attributes are copied in
full.

2–18 CMS Routine Descriptions

CMS$COPY_CLASS

CMS must be able to create one new class for each old class. When you
use wildcards in the input class specification, CMS builds a list of classes
to be copied. CMS uses this list as the point of reference during the copy
transactions. If the output class specification does not allow CMS to create a
new class for each class in the input list, the results might not be what you
intend.

If the existing class has the reference copy attribute enabled and the target
library has a reference copy directory, CMS creates a reference copy for the
new class and assigns the reference copy attribute to the new class. If there
is no reference copy directory for the target library, the new class will not have
the reference copy attribute, even if the existing class does.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_COPIED CMS copied the specified class. Success
CMS$_COPIES CMS copied one or more classes. Success
CMS$_ERRCOPIES CMS copied zero or more classes,

but encountered errors during the
transaction.

Error

CMS$_NOCOPY CMS was unable to copy the
specified class.

Error

CMS$_NOREF Error accessing the library. Error

Example

INTEGER*4 LDB(50)
CHARACTER*50 SOURCE_CLASS_NAME,DESTINATION_CLASS_NAME

CALL CMS$COPY_CLASS(LDB,SOURCE_CLASS_NAME, DESTINATION_CLASS_NAME)

This call to CMS$COPY_CLASS copies a class between libraries. The newly
created destination class is populated with the same element generations as
those in the source class.

CMS Routine Descriptions 2–19

CMS$COPY_ELEMENT

CMS$COPY_ELEMENT

Copies an existing element to form a new element. The
CMS$COPY_ELEMENT transaction preserves all element data and history.

Format

CMS$COPY_ELEMENT (library_data_block,
input_element_expression,
output_element,
[remark],
[source_library_data_block],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB for the library in which the copy is to be placed.

input_element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the element or group of elements to be copied. Wildcards and a
comma list are allowed.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and therefore selects
elements based on the list of groups established in the library.

output_element
type: char_string
access: read
mechanism: by descriptor

Specifies the element name for the new element. The output_element name
cannot be the same as any existing element name in the output library.

2–20 CMS Routine Descriptions

CMS$COPY_ELEMENT

The output_element name can be the same as input_element_expression
only if you also specify a source library data block that points to a different
library than the library data block.

You cannot use 00CMS as the file name component of an element name
because it is reserved for CMS. If you used a comma list or wildcard in the
input_element_expression, a wildcard must be used in the
output_element.

If you specify the source_library_data_block argument, the
output_element argument is optional.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

source_library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB for the library from which the element is to be
copied. When the copy is performed on different libraries and you specify the
source_library_data_block argument, the output_element argument is
optional. By default, CMS searches the library associated with
library_data_block.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$COPY_ELEMENT routine uses an existing library element to create
a new element in the same library or in another library. The original element
is left unchanged. The generation history, file characteristics, and element
attributes are copied in full.

CMS Routine Descriptions 2–21

CMS$COPY_ELEMENT

CMS must be able to create one new element for each old element. When you
use wildcards or a group name in the input element specification, CMS builds
a list of elements to be copied. CMS uses this list as the point of reference
during the copy transactions. If the output element specification does not allow
CMS to create a new element for each element in the input list, the results
might not be what you intend.

For example, the following combination of wildcard expressions produces only
one new element:

input element specification - *.FOR
output element specification - NDATA.*

The first element that matches the input specification (*.FOR) produces one
new element named NDATA.FOR. Each successive element that matches the
input specification generates an error message because CMS can create only
one unique element name from the given combination of wildcard expressions.

If the existing library element has the reference copy attribute enabled and
the target library has a reference copy directory, CMS creates a reference
copy for the new element and assigns the reference copy attribute to the
new element. If there is no reference copy directory for the target library, the
new element will not have the reference copy attribute, even if the existing
element does.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_COPIED CMS copied the specified element. Success
CMS$_COPIES CMS copied one or more elements. Success
CMS$_ERRCOPIES CMS copied zero or more elements,

but encountered errors during the
transaction.

Error

CMS$_NOCOPY CMS was unable to copy the
specified element.

Error

CMS$_NOREF Error accessing the library. Error

2–22 CMS Routine Descriptions

CMS$COPY_ELEMENT

Example

CHARACTER*10 DIR,SOURCE_DIR
CHARACTER*10 ELEMENT 1
CHARACTER*26 REMARK

INTEGER*4 LDB(50) 2
INTEGER*4 SOURCE_LDB(50)
INTEGER*4 STATUS

INTEGER*4 CMS$SET_LIBRARY 3
INTEGER*4 CMS$COPY_ELEMENT

DIR = ’[COMP.LIB]’
SOURCE_DIR = ’[BASE.LIB]’ 4
ELEMENT = ’TSTDAT.FOR’
REMARK = ’Transfer from base library’
STATUS = CMS$SET_LIBRARY(LDB,DIR) 5
IF (.NOT. STATUS) CALL LIB$STOP(%VAL (STATUS))
STATUS = CMS$SET_LIBRARY(SOURCE_LDB,SOURCE_DIR)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL (STATUS))
STATUS = CMS$COPY_ELEMENT(LDB,ELEMENT,,REMARK,SOURCE_LDB) 6
IF (.NOT. STATUS) CALL LIB$STOP(%VAL (STATUS))
END

Key to Example:

1 Character-string variables are declared for the directory specifications,
element name, and remark.

2 The LDBs are declared as 50–word integer arrays.

3 The CMS routines are declared external to the program.

4 The character-string variables are assigned the appropriate values.

5 The CMS$SET_LIBRARY routine is called once for each library to be
accessed.

6 The destination LDB, element name, remark, and source LDB are passed
to the CMS$COPY_ELEMENT routine.

Two commas are specified between the ELEMENT and the REMARK
arguments; the second comma is required as a placeholder for the omitted
argument (the output element name). In this case, it is not necessary
to provide an output element name. Because the source and destination
libraries are different, CMS creates a new element with the same name (as
long as the destination library does not already contain an element with
that name).

CMS Routine Descriptions 2–23

CMS$COPY_GROUP

CMS$COPY_GROUP

Copies an existing group to form a new group. The
CMS$COPY_GROUP transaction preserves all group data and history.

Format

CMS$COPY_GROUP (library_data_block,
input_group_expression,
output_group_expression,
[remark],
[source_library_data_block],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB for the library in which the copy is to be placed.

input_group_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the group or groups to be copied. Wildcards and a comma list are
allowed.

output_group_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the name for the new group. The output_group_expression name
cannot be the same as any existing group in the output library.

The output_group_expression value can be the same as the input_group_
expression value only if you also specify a source library data block that
points to a different library than the library data block.

2–24 CMS Routine Descriptions

CMS$COPY_GROUP

You cannot use 00CMS as a group name component because it is reserved for
CMS. If you used a comma list or wildcard in the input_group_expression, a
wildcard must be used in the output_group_expression.

If you specify the source_library_data_block argument, the
output_group_expression argument is optional.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

source_library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB for the library from which the group is to be
copied. When the copy is performed on different libraries and you specify
the source_library_data_block argument, the output_group_expression
argument is optional. By default, CMS searches the library associated with
library_data_block.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$COPY_GROUP routine uses an existing library group to create a
new group in the same library or in another library. The original group is left
unchanged. The group history, file characteristics, and attributes are copied in
full.

CMS Routine Descriptions 2–25

CMS$COPY_GROUP

CMS must be able to create one new group for each old group. When you
use wildcards in the input group specification, CMS builds a list of groups
to be copied. CMS uses this list as the point of reference during the copy
transactions. If the output group specification does not allow CMS to create a
new group for each group in the input list, the results might not be what you
intend.

If the existing group has the reference copy attribute enabled and the target
library has a reference copy directory, CMS creates a reference copy for the
new group and assigns the reference copy attribute to the new group. If
there is no reference copy directory for the target library, the new group will
not have the reference copy attribute, even if the existing group does.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_COPIED CMS copied the specified group. Success
CMS$_COPIES CMS copied one or more groups. Success
CMS$_ERRCOPIES CMS copied zero or more groups,

but encountered errors during the
transaction.

Error

CMS$_NOCOPY CMS was unable to copy the
specified group.

Error

CMS$_NOREF Error accessing the library. Error

Example

CHARACTER*8 SOURCE_GROUP_NAME
CHARACTER*8 DESTINATION_GROUP_NAME
EXTERNAL CMS$COPY_GROUP
SOURCE_GROUP_NAME =’V1’
DESTINATION_GROUP_NAME =’V2’

CALL CMS$COPY_GROUP (LDB, SOURCE_GROUP_NAME,
DESTINATION_GROUP_NAME)

This call to CMS$COPY_GROUP copies a group between libraries. The newly
created destination group is populated with the same elements as those in the
source group.

2–26 CMS Routine Descriptions

CMS$CREATE_CLASS

CMS$CREATE_CLASS

Creates an empty class in one or more CMS libraries.

Format

CMS$CREATE_CLASS (library_data_block,
class_name,
[remark],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

class_name
type: char_string
access: read
mechanism: by descriptor

Specifies the class to be created. Class and group names must be unique; CMS
returns an error if you specify a name currently in use for an existing class or
group. If a previously used class or group name has been removed with the
CMS$DELETE_CLASS or CMS$DELETE_GROUP routine, you can use that
name again with CMS$CREATE_CLASS. Wildcards are not allowed, but a
comma list is allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file and associated with
the class.

CMS Routine Descriptions 2–27

CMS$CREATE_CLASS

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$CREATE_CLASS routine establishes a class. Once a class is
established, you can place any set of element generations into that class by
using the CMS$INSERT_GENERATION routine. The CMS$CREATE_CLASS
routine does not place any generations in the created class.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_CREATED CMS created the class. Success
CMS$_CREATES CMS created one or more classes. Success
CMS$_ERRCREATES CMS created zero or more classes,

but encountered errors during the
transaction.

Error

CMS$_NOCREATE CMS did not create the specified
class.

Error

CMS$_NOREF Error accessing the library. Error

2–28 CMS Routine Descriptions

CMS$CREATE_ELEMENT

CMS$CREATE_ELEMENT

Creates a new element in a CMS library or in the first library of a search list,
if one was specified.

Format

CMS$CREATE_ELEMENT (library_data_block,
element_name,
[remark],
[history],
[notes],
[position],
[keep],
[reserve],
[concurrent],
[reference_copy],
[input_file],
[input_routine],
[user_arg],
[msg_routine],
[review])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_name
type: char_string
access: read
mechanism: by descriptor

Specifies the new element to be created. The element_name argument is
required. Wildcards and a comma list are allowed; however, you cannot use
wildcards if you specify input_routine.

CMS Routine Descriptions 2–29

CMS$CREATE_ELEMENT

If you do not specify the input_file argument, the element name must
correspond to an existing file in your current, default directory. The name
cannot be the same as any existing element name in the library. You cannot
use the file name 00CMS because it is reserved for CMS.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the creation remark string to be logged in the history file and
associated with the element and the first generation of the element.

history
type: char_string
access: read
mechanism: by descriptor

Specifies the history string. If you include the history argument in the
call, CMS establishes or changes the history attribute for the element. If
an element has a history attribute, its history is included in the file when it
is retrieved by the CMS$FETCH routine. To disable the history attribute,
specify a zero-length string. For a detailed explanation of the history element
attribute, see the HP DECset for OpenVMS Guide to the Code Management
System.

notes
type: char_string
access: read
mechanism: by descriptor

Specifies the notes string. If you include the notes argument in the call,
CMS establishes or changes the notes attribute for the element. If an element
has a notes attribute, notes are embedded in the lines of the file when it is
retrieved by the CMS$FETCH routine. To disable the notes attribute, specify
a zero-length string. Any element that has the notes attribute must have the
position attribute. For a detailed explanation of the notes attribute, see the HP
DECset for OpenVMS Guide to the Code Management System.

2–30 CMS Routine Descriptions

CMS$CREATE_ELEMENT

position
type: longword_signed
access: read
mechanism: by reference

Specifies the position value to be used with the notes attribute. The position
attribute determines the character position at which the note is to begin on the
line. The position value must be an integer greater than zero. Any element
that has the position attribute must have the notes attribute. For a detailed
explanation of the position attribute, see the HP DECset for OpenVMS Guide
to the Code Management System.

keep
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that prevents CMS from deleting copies of the input file after
the element is created. By default, the flag is set to 0, indicating that CMS
should delete the copies of the file in your default directory (or the area
indicated by the input_file argument) after creating the new element. Set
the flag to 1 to prevent CMS from deleting the copies of the input file. These
settings can also be set library-wide, as well as by element.

reserve
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to establish a reservation for the new
element. By default, the flag is set to 0, and CMS does not mark the element
as reserved. Set the reserve flag to 1 to reserve the element. In this case,
CMS ignores the value of the keep flag and does not delete the file used to
create the element.

concurrent
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating the access to the element. By default, the flag is
set to 1, and CMS allows concurrent reservations of the element. Set the
concurrent flag to 0 to prohibit concurrent reservations. These settings can
also be set library-wide, as well as by element.

CMS Routine Descriptions 2–31

CMS$CREATE_ELEMENT

reference_copy
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS is to maintain a reference copy of the
element when a new main-line generation is created.

If you do not specify this argument and a reference copy directory is already
established, CMS enables the reference copy attribute for the element, and
creates the reference copy.

If you specify a 0, or if you do not specify this argument and a reference copy
directory is not established, CMS creates the element but does not enable the
reference_copy attribute for the element, and does not create the reference
copy.

If you specify a 1 for this argument and the reference copy directory is not
established, you get an error.

input_file
type: char_string
access: read
mechanism: by descriptor

Specifies the name of the file to be used to create the element. If you specify
an input file, you cannot also specify an input routine. Wildcards are allowed,
but must match the wildcards specified in element_name.

Use this argument if you want the element to be created from a file with a
different name than that specified by the element_name argument. You can
also use this argument to direct CMS to search a different location other than
your current, default directory. When you specify an input file in an alternate
directory, CMS deletes the file from the alternate directory (unless you specify
the keep or reserve argument).

input_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine that provides data for the CMS$CREATE_
ELEMENT transaction. CMS calls this routine once for each line of data
until the callback routine indicates the end-of-file.

2–32 CMS Routine Descriptions

CMS$CREATE_ELEMENT

If you specify an input routine, you cannot also specify an input file, nor can
you specify wildcards in the element_name argument. See Section 1.6 for
information about the parameters that CMS passes to the input routine.

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the input_routine
argument, using the same mechanism that you used to pass it to CMS.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

review
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS is to automatically mark new
generations as pending review. By default, the flag is set to 0, and CMS
marks new generations of the element as pending review only if the reserved
generation was either rejected or has a review pending. Set the flag to 1 to
indicate that new generations should be marked for review.

Callback Routine Parameters
When you write an input routine to provide data for
CMS$CREATE_ELEMENT, CMS passes the following parameters in the order
shown with each call to input_routine:

(first_call, library_data_block, user_param, element_id,
eof_status, sequence_flag, sequence_number)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

CMS Routine Descriptions 2–33

CMS$CREATE_ELEMENT

first_call
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the input routine
is the first call. CMS sets the flag to 1 if the current call is the first call.
Otherwise, this is set to 0.

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$CREATE_ELEMENT.
If you did not specify a user argument, this parameter points to a read-only
storage location containing the value 0. CMS passes user_param to your
routine using the same mechanism that you used to pass it to
CMS$CREATE_ELEMENT.

element_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the element name. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

eof_status
type: longword_signed
access: modify
mechanism: by reference

Specifies the end-of-file status. The input routine must change the value
of eof_status from false (0) to true (1) to indicate to CMS that input is
terminated. When eof_status is true, CMS ignores the contents of the current
input record (passed by CMS$PUT_STRING).

2–34 CMS Routine Descriptions

CMS$CREATE_ELEMENT

Therefore, you must set eof_status to true in the call following the last
significant input record. See Section 1.6.3.1 for more information on specifying
the end of input.

sequence_flag
type: longword_signed
access: write
mechanism: by reference

Specifies a flag that directs CMS to create a sequenced element file. By default,
the flag is set to 0, indicating that the input is not sequenced. Set the flag to 1
to direct CMS to create a sequenced element file.

sequence_number
type: longword_signed
access: write
mechanism: by reference

Specifies a signed integer that indicates the sequence number of the input line.
A value in the range of 1 to 65,536 characters indicates the sequence number.

When you use a callback routine to provide input for CMS$CREATE_
ELEMENT, CMS uses the time of the CMS$CREATE_ELEMENT transaction
as the file creation and revision times associated with generation 1 of the new
element. CMS also uses the following record format and record attributes
when you use a callback input routine. If you provide unsequenced input,
generation 1 of the new element has variable-length records with the carriage
return record attribute. If you provide sequenced input, the element generation
has VFC 2-byte records with the carriage return record attribute.

Description

The CMS$CREATE_ELEMENT routine creates the first generation of a new
element from a file in your current, default directory, or from the file specified
by the input_file argument. After the element is created, CMS deletes the
file used to create the new element (and any earlier versions of the file in the
same directory, or the entire search list if the file is located in a search list).
If you specify either the keep or reserve argument, CMS does not delete the
file. When you create an element, you can also define the attributes (history,
notes, position, concurrent access, reference copy, and review) for the element
or establish a reservation.

CMS Routine Descriptions 2–35

CMS$CREATE_ELEMENT

CMS stores the creation date and time, format, revision date and time, file
revision number, file characteristics, and any attributes of the file used to
create the new element. When you fetch or reserve an element generation,
CMS restores the times and file revision number associated with the file used
to create the element generation. You can also obtain this information by using
the CMS$SHOW_GENERATION routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_CREATED CMS created the specified new
element.

Success

CMS$_CREATES CMS created one or more elements. Success
CMS$_ERRCREATES CMS created zero or more

elements, but encountered errors
during the transaction.

Error

CMS$_NOCREATE CMS did not create the specified
element.

Error

CMS$_NOREF Error accessing the library. Error
CMS$_USERERR User routine returned an error to

CMS.
Error

2–36 CMS Routine Descriptions

CMS$CREATE_GROUP

CMS$CREATE_GROUP

Creates an empty group in one or more CMS libraries.

Format

CMS$CREATE_GROUP (library_data_block,
group_name,
[remark],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

group_name
type: char_string
access: read
mechanism: by descriptor

Specifies the group to be created. Group and class names must be unique;
CMS returns an error if you specify a name currently in use for an existing
group or class. However, if a previously used group or class name has been
removed with the CMS$DELETE_GROUP or CMS$DELETE_CLASS routine,
you can use that name again with CMS$CREATE_GROUP. Wildcards are not
allowed, but a comma list is allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file and associated with
the group.

CMS Routine Descriptions 2–37

CMS$CREATE_GROUP

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$CREATE_GROUP routine establishes a group. (For more
information about groups, see the HP DECset for OpenVMS Guide to the
Code Management System.) Once a group is established, you can place
elements or groups into that group by using the CMS$INSERT_ELEMENT or
CMS$INSERT_GROUP routine. The CMS$CREATE_GROUP routine does not
place any elements or groups in the created group.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_CREATED CMS created the specified group. Success
CMS$_CREATES CMS created one or more groups. Success
CMS$_ERRCREATES CMS created zero or more groups,

but encountered errors during the
transaction.

Error

CMS$_NOCREATE CMS did not create the group. Error
CMS$_NOREF Error accessing the library. Error

2–38 CMS Routine Descriptions

CMS$CREATE_LIBRARY

CMS$CREATE_LIBRARY

Creates a new CMS library in an existing empty directory, and adds that
library to the passed library search list context.

Format

CMS$CREATE_LIBRARY (library_data_block,
directory,
[remark],
[reference_copy_dir],
[msg_routine],
[confirm_routine],
[output_routine],
[width],
[position],
[positional_dir_spec]
[revision_time],
[auto_create],
[concurrent],
[0],
[keep],
[extended_filenames],
[long_variant_names])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies a valid LDB. The LDB might not be initialized, depending on whether
you also specify the position and positional_dir_spec arguments.

If the position and positional_dir_spec arguments are specified, the
library data block must have already been initialized by a previous call
to CMS$CREATE_LIBRARY or CMS$SET_LIBRARY. If the position and
positional_dir_spec arguments are not specified, the library data block is
initialized by this call and points to the specified directory.

CMS Routine Descriptions 2–39

CMS$CREATE_LIBRARY

directory
type: char_string
access: read
mechanism: by descriptor

Specifies an existing directory. The directory must not contain any files or
subdirectories, or be an eighth-level directory. A directory to be used as a CMS
library cannot be your current, default directory. Wildcards are not allowed,
but a comma list is allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

reference_copy_dir
type: char_string
access: read
mechanism: by descriptor

Specifies a valid OpenVMS directory to be used for reference copies of elements.
The directory cannot be a CMS library. Wildcards are not allowed.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

confirm_routine
type: procedure
access: read
mechanism: by reference

Specifies the address of the entry mask of a confirmation callback routine. For
information about callback routines, see Section 1.6.

2–40 CMS Routine Descriptions

CMS$CREATE_LIBRARY

output_routine
type: procedure
access: read
mechanism: by reference

Specifies the address of the entry mask of a terminal output callback routine.
For information about callback routines, see Section 1.6.

width
type: longword_signed
access: read
mechanism: by reference

Specifies the maximum width of text that can be sent to the output callback
routine. If this argument is not specified, the terminal width is used. If this is
unavailable, the width defaults to the translation of CMS$WIDTH (if defined),
or to 132 characters.

position
type: longword_signed
access: read
mechanism: by reference

Specifies the position value to be used with the positional_dir_spec
argument. The position value determines the position in the library search list
at which the new library or libraries are to be inserted, or whether the new
library or libraries are to supersede the existing library search list.

The following table shows the possible values and corresponding results. You
can specify only one of these values.

Value Result

0 Indicates that a new library or libraries should supersede the
existing library list. This is the default.

1 Indicates that the new library or libraries should be inserted after
an existing library in the library search list specified with the
positional_dir_spec argument.

2 Specifies that the new library or libraries should be inserted before
an existing library in the library search list specified with the
positional_dir_spec argument.

CMS Routine Descriptions 2–41

CMS$CREATE_LIBRARY

positional_dir_spec
type: char_string
access: read
mechanism: by descriptor

Specifies the name of a library in the current library search list before or after
which the new library or libraries are to be inserted (depending on the value of
the position argument).

If you omit the positional_dir_spec argument and specify a value of 1 for the
position argument, new libraries are appended to the existing library search
list. If you omit the positional_dir_spec argument and specify a value of 2
for the position argument, new libraries are inserted at the beginning of the
existing library search list. If the position argument is specified as 0 or is
omitted, the positional_dir_spec argument is ignored.

revision_time
type: longword_signed
access: read
mechanism: by reference

Controls whether CMS uses the original file revision time or the file storage
time when a file is created in the CMS library. The default flag is set to 0,
indicating the use of the original file revision time. Set the flag to 1 to use the
file storage time.

auto_create
type: longword_aligned
access: read
mechanism: by reference

Specifies a flag that directs CMS to automatically create the library directory.
A value of 1 tells CMS to automatically create the library directory. If the
value of the flag is 0, CMS will not create the library directory. If the
reference_copy_dir parameter has been set, the reference copy is also created
automatically.

concurrent
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating access to the elements. By default, the flag is set to
0, and CMS allows concurrent reservations of the elements. Set this flag to
1 to prohibit concurrent reservations across the library, unless an individual
element setting overrides it.

2–42 CMS Routine Descriptions

CMS$CREATE_LIBRARY

0
type: reserved for CMS
access: reserved for CMS
mechanism: by value

Specifies a required argument reserved for use by CMS. You must either
pass a value of 0 or include a placeholder for this argument in the call to the
CMS$CREATE_LIBRARY routine, so the call frame entry for this argument
contains a 0.

keep
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that prevents CMS from deleting copies of the input file after
the element is created. By default, the flag is set to 0, indicating that CMS
should delete all the copies of the file in your default directory (or the area
indicated by the input_file argument) after creating the new element. Set the
flag to 1 to prevent CMS from deleting input files across the library, unless an
individual element setting overrides it.

extended_filenames
type: longword_signed
access: read
mechanism: by reference

Only valid on OpenVMS versions that support extended file specifications.
The default 0 value does not allow extended file names. The value 1 allows
extended file names.

long_variant_names
type: mask_longword
access: read
mechanism: by reference

Specifies whether variant names longer than a single character are allowed.
The default value 0 does not allow long variant names. The value 1 allows
variant names up to 255 alphabetic characters in length.

CMS Routine Descriptions 2–43

CMS$CREATE_LIBRARY

Description

The CMS$CREATE_LIBRARY routine builds CMS control files in a directory
so it can be used as a CMS library. Once you have established a library with
the CMS$CREATE_LIBRARY routine, you can call other CMS routines to
manipulate the library using the same LDB now initialized and can be used by
other routines. Your CMS library is set to the library directory specified in the
directory argument.

The CMS$CREATE_LIBRARY routine establishes a CMS library search-list
context with one or more CMS library directories. Once the search-list context
has been established, you can use the resulting LDB in calls to other CMS
routines.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_CREATED CMS created the library. Success
CMS$_NOCREATE CMS did not create the library. Error
CMS$_NOEXTENDED This version of CMS does not allow

the use of extended filenames.
Error

CMS$_
NOEXTENDEDREF

The reference copy directory is
located on a disk that does not
allow the use of extended filenames.

Error

2–44 CMS Routine Descriptions

CMS$DELETE_CLASS

CMS$DELETE_CLASS

Deletes one or more classes from a CMS library.

Format

CMS$DELETE_CLASS (library_data_block,
class_expression,
[remark],
[msg_routine],
[remove_contents])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

class_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more classes to be deleted. Wildcards and a comma list are
allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

CMS Routine Descriptions 2–45

CMS$DELETE_CLASS

remove_contents
type: longword_signed
access: read
mechanism: by reference

Determines whether CMS removes the current contents of each class specified
by class_expression prior to deletion. By default, the flag is set to 0, and
CMS does not remove generations from each class. If you set the value to 1,
CMS removes all element generations from each class prior to deleting the
class itself.

Description

The CMS$DELETE_CLASS routine deletes one or more classes from a CMS
library. If a class contains one or more element generations, set remove_
contents to 1 to remove the content of the class prior to deletion. Otherwise,
CMS issues an error message and does not delete the class. You cannot delete
a class set to READ_ONLY. (See the CMS$REMOVE_GENERATION and
CMS$MODIFY_CLASS routines for more information.)

Even though a class is deleted, records of transactions that created and used
the class are retained in the project history. You can reuse the deleted class
name to create a new class. However, there is no distinction between the two
classes in the project history, except that their transactions are separated by
entries for DELETE CLASS and CREATE CLASS commands.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_DELETED CMS deleted the class. Success
CMS$_DELETIONS CMS deleted one or more classes. Success
CMS$_ERRDELETIONS CMS deleted zero or more classes,

but encountered errors during the
transaction.

Error

CMS$_NODELETE CMS did not delete the class. Error
CMS$_NOREF Error accessing the library. Error

2–46 CMS Routine Descriptions

CMS$DELETE_ELEMENT

CMS$DELETE_ELEMENT

Deletes one or more elements from a CMS library. The element cannot be in
any groups, have current reservations or reviews pending, and there can be no
generations of it in any classes.

Format

CMS$DELETE_ELEMENT (library_data_block,
element_expression,
[remark],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements to be deleted. Wildcards
and a comma list are allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

CMS Routine Descriptions 2–47

CMS$DELETE_ELEMENT

Description

The CMS$DELETE_ELEMENT routine deletes one or more elements from
a CMS library. If the element is set to /REFERENCE_COPY and there is
a current reference copy directory for the CMS library, CMS deletes the
corresponding file (if it exists) from the reference copy directory. There cannot
be any existing reservations for the element, and the element cannot have
any generations with reviews pending. The element cannot be a member of a
group, nor can one of its generations belong to a class. If it is reserved, you
must cancel the reservation (using the CMS$UNRESERVE routine) or replace
the element in the library (using the CMS$REPLACE routine) before you can
delete the element. If the element belongs to any groups or classes, use the
CMS$REMOVE_ELEMENT or CMS$REMOVE_GENERATION routine to
remove it. If the element has a review pending, use the
CMS$REVIEW_GENERATION routine to resolve the review pending status.

Even though an element is deleted, records of transactions that created and
used the element are retained in the project history. You can reuse the deleted
element name to create a new element. However, there is no distinction
between the two elements in the project history, except that their transactions
are separated by entries for DELETE ELEMENT and CREATE ELEMENT
commands.

You cannot restore a deleted element.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_DELETED CMS deleted the element. Success
CMS$_DELETIONS CMS deleted one or more elements. Success
CMS$_ERRDELETIONS CMS deleted zero or more

elements, but encountered errors
during the transaction.

Error

CMS$_NODELETE CMS did not delete the element. Error
CMS$_NOREF Error accessing the library. Error

2–48 CMS Routine Descriptions

CMS$DELETE_GENERATION

CMS$DELETE_GENERATION

Deletes one or more generations of one or more elements.

Format

CMS$DELETE_GENERATION (library_data_block,
element_expression,
[remark],
[generation_expression], 1

[after_generation],1

[before_generation],1

[from_generation],1

[to_generation],1

[archive_file],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements whose generations are to
be deleted. Wildcards and a comma list are allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

1 A generation or range of generations must be specified with a combination of one or
more of these arguments.

CMS Routine Descriptions 2–49

CMS$DELETE_GENERATION

generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the particular generation to be deleted. If you do not specify this
argument and do not specify either from_generation or to_generation, the
most recent generation on the main line of descent (1+) is deleted. You cannot
combine generation_expression with any of the following arguments:
from_generation, to_generation, after_generation, and
before_generation.

after_generation
type: char_string
access: read
mechanism: by descriptor

Specifies the start of a range of generations to be deleted, excluding the
specified generation. You cannot combine both after_generation and
from_generation, or both after_generation and generation_expression.
You must specify the end of the range with either the before_generation or
to_generation argument.

before_generation
type: char_string
access: read
mechanism: by descriptor

Specifies the end of a range of generations to be deleted, excluding the specified
generation. You cannot combine both before_generation and to_generation,
or both before_generation and generation_expression. You must specify
the start of the range with either the after_generation or from_generation
argument.

from_generation
type: char_string
access: read
mechanism: by descriptor

Specifies the start of a range of generations to be deleted, including the
specified generation. You cannot combine both from_generation and
after_generation, or both from_generation and generation_expression.
You must specify the end of the range with either the before_generation or
to_generation argument.

2–50 CMS Routine Descriptions

CMS$DELETE_GENERATION

to_generation
type: char_string
access: read
mechanism: by descriptor

Specifies the end of a range of generations to be deleted, including the specified
generation. You cannot combine both to_generation and before_generation,
or both to_generation and generation_expression. You must specify the
start of the range with either the after_generation or from_generation
argument.

archive_file
type: char_string
access: read
mechanism: by descriptor

Specifies that an archive file is to be created for every element specified in
the element_expression argument. A new file is created for each element.
By default, if you do not specify the element_expression argument or if you
specify a wildcard, CMS creates an output file with the same name as the
element and the file type .CMS_ARCHIVE, and places the file in your default
directory.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$DELETE_GENERATION routine removes information about one
or more generations of elements from the library. Once a generation is
deleted, it cannot be restored to the CMS library. If the generation or range
of generations to be deleted has a direct descendant generation (that is, a
descendant generation on the same line of descent), the changes associated
with those generations are combined, and those changes are combined with
the changes in the descendant generation. If there is no descendant generation
(that is, the generation or range of generations to be deleted is at the end of the
line of descent), the changes associated with those generations are discarded.

CMS Routine Descriptions 2–51

CMS$DELETE_GENERATION

You can specify a single generation with the generation_expression
argument. You can also specify a range of generations with either the
after_generation or from_generation arguments to delimit the beginning of
a range, and either the before_generation or to_generation arguments to
delimit the end of a range. These sets of arguments can be paired to specify
ranges with inclusive or exclusive endpoints.

If you delete the latest generation on the main line of descent of an element
that has the reference copy attribute, CMS deletes the generation’s reference
copy and creates a new reference copy that corresponds to the generation that
is now the latest generation on the main line of descent.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_GENDELETED CMS deleted the generation. Success
CMS$_GENDELETIONS CMS deleted one or more

generations.
Success

CMS$_ERRGENDELETIONS CMS deleted zero or more
generations, but encountered errors
during the transaction.

Error

CMS$_NOGENDELETED CMS did not delete the specified
generation.

Error

CMS$_NOREF Error accessing the library. Error

2–52 CMS Routine Descriptions

CMS$DELETE_GROUP

CMS$DELETE_GROUP

Deletes one or more groups from a CMS library. The group cannot be a
member of any other groups.

Format

CMS$DELETE_GROUP (library_data_block,
group_expression,
[remark],
[msg_routine],
[remove_contents])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

group_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups to be deleted. Wildcards and a comma list are
allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

CMS Routine Descriptions 2–53

CMS$DELETE_GROUP

remove_contents
type: longword_signed
access: read
mechanism: by reference

Determines whether CMS removes the current contents of each group specified
by group_expression prior to deletion. By default, the flag is set to 0, and
CMS does not remove elements from each group. If you set the value to 1,
CMS removes all elements from each group prior to deleting the group itself.

Description

The CMS$DELETE_GROUP routine deletes one or more groups from a CMS
library. If a group contains one or more elements, set remove_contents to 1
to remove the content of the group prior to deletion. Otherwise, CMS issues
an error message and does not delete the group. You cannot delete a group
set to READ_ONLY. For information on changing the READ_ONLY attribute,
see the description of the CMS$MODIFY_GROUP routine. If the group is not
empty, use the CMS$REMOVE_ELEMENT routine to remove any elements
from the group, or use the CMS$REMOVE_GROUP routine to remove any
other groups from the group. If the group belongs to any other groups, use the
CMS$REMOVE_GROUP routine to remove it.

Even though a group is deleted, records of transactions that created and used
the group are retained in the project history. You can reuse the deleted group
name to create a new group. However, there is no distinction between the two
groups in the project history, except that their transactions are separated by
entries for DELETE GROUP and CREATE GROUP commands.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_DELETED CMS deleted the group. Success
CMS$_DELETIONS CMS deleted one or more groups. Success
CMS$_ERRDELETIONS CMS deleted zero or more groups,

but encountered errors during the
transaction.

Error

CMS$_NODELETE CMS did not delete the group. Error
CMS$_NOREF Error accessing the library. Error

2–54 CMS Routine Descriptions

CMS$DELETE_HISTORY

CMS$DELETE_HISTORY

Deletes all or part of the library history.

Format

CMS$DELETE_HISTORY (library_data_block,
[remark],
before,
[transaction_mask],
[output_routine],
[user_arg],
[msg_routine],
[object],
[user])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

before
type: date_time
access: read
mechanism: by reference

Specifies a binary date and time value that CMS uses when deleting the
library history. This argument is required.

CMS Routine Descriptions 2–55

CMS$DELETE_HISTORY

transaction_mask
type: mask_longword
access: read
mechanism: by reference

Specifies one or more transaction records to be passed to output_routine.
When you provide the transaction-mask argument, CMS passes only the
history records for the indicated commands. The following table shows the
symbols defined for the transaction_mask argument.

Symbol
Bit
Position

Mask
Value Command

CMS$M_CMD_COPY 0 1 COPY CLASS
COPY ELEMENT
COPY GROUP

CMS$M_CMD_CREATE 1 2 CREATE CLASS
CREATE ELEMENT
CREATE GROUP
CREATE LIBRARY

CMS$M_CMD_DELETE 2 4 DELETE CLASS
DELETE ELEMENT
DELETE GENERATION
DELETE GROUP
DELETE HISTORY

CMS$M_CMD_FETCH 3 8 FETCH
CMS$M_CMD_INSERT 4 16 INSERT ELEMENT

INSERT GENERATION
INSERT GROUP

CMS$M_CMD_MODIFY 5 32 MODIFY CLASS
MODIFY ELEMENT
MODIFY GENERATION
MODIFY GROUP
MODIFY LIBRARY
MODIFY RESERVATION

CMS$M_CMD_REMARK 6 64 REMARK

2–56 CMS Routine Descriptions

CMS$DELETE_HISTORY

Symbol
Bit
Position

Mask
Value Command

CMS$M_CMD_REMOVE 7 128 REMOVE ELEMENT
REMOVE GENERATION
REMOVE GROUP

CMS$M_CMD_REPLACE 8 256 REPLACE
CMS$M_CMD_RESERVE 9 512 RESERVE
CMS$M_CMD_UNRESERVE 10 1024 UNRESERVE
CMS$M_CMD_VERIFY 11 2048 VERIFY
CMS$M_CMD_SET 14 16,384 SET ACL
CMS$M_CMD_ACCEPT 16 65,536 ACCEPT GENERATION
CMS$M_CMD_CANCEL 17 131,072 CANCEL REVIEW
CMS$M_CMD_MARK 18 262,144 MARK GENERATION
CMS$M_CMD_REJECT 19 524,288 REJECT GENERATION
CMS$M_CMD_REVIEW 20 1,048,576 REVIEW GENERATION

The mask values are defined as universal symbols in the CMS image. You can
use OR with these values to allow combinations of the values. This transaction
mask is the same as the transaction mask used for the CMS$SHOW_HISTORY
routine.

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes data output by
CMS$DELETE_HISTORY. CMS calls the output routine once for each record
to be deleted from the library history. See Section 1.6 for information about the
parameters that CMS passes to the callback routine.

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine
argument, using the same mechanism that you used to pass it to CMS.

CMS Routine Descriptions 2–57

CMS$DELETE_HISTORY

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

object
type: char_string
access: read
mechanism: by descriptor

Specifies a string that contains the name of the object whose history is to be
deleted.

user
type: char_string
access: read
mechanism: by descriptor

Specifies a string that contains the name of the CMS user whose history is to
be deleted.

Callback Routine Parameters
When you provide an output routine to process the output of
CMS$DELETE_HISTORY, CMS passes the following parameters in the order
shown with each call to output_routine:

(first_call, library_data_block, user_param, time, user_id,
command_id, object_id, remark_id, unusual)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

first_call
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine
is the first call. CMS sets the flag to 1 if the current call is the first call.
Otherwise, this is set to 0.

2–58 CMS Routine Descriptions

CMS$DELETE_HISTORY

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$DELETE_HISTORY.
If you did not specify a user argument, this parameter points to a read-only
storage location containing the value 0. CMS passes user_param to your
routine using the same mechanism that you used to pass it to
CMS$DELETE_HISTORY.

time
type: date_time
access: read
mechanism: by reference

Specifies a quadword binary date and time value for the time of the
transaction.

user_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the user name. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

command_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the command name. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

CMS Routine Descriptions 2–59

CMS$DELETE_HISTORY

object_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the element, group, or class involved in the
transaction. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3.

remark_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

unusual
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the transaction is unusual. CMS sets
the flag to 1 if the transaction is unusual. Otherwise, this is set to 0.

Description

The CMS$DELETE_HISTORY routine deletes all or part of the library history.
Whenever you delete part of the library history, CMS records two transactions.
As with other commands that modify the contents of the library, CMS records
the DELETE HISTORY transaction. In addition, CMS logs a REMARK
transaction at the point in the library that corresponds to the before value.
The REMARK transaction record includes the remark text: ‘‘PREVIOUS
HISTORY DELETED.’’ Both the REMARK and the DELETE HISTORY
transactions are unusual transactions. When you use the SHOW HISTORY
command, CMS identifies unusual transactions by displaying an asterisk (*) in
the first column of the transaction record.

You use a callback routine to control the action of the
CMS$DELETE_HISTORY routine. To delete a history record, the callback
routine must return a value of CMS$_NORMAL. To prevent CMS from deleting
a history record, the callback routine must return a value of CMS$_EXCLUDE.
In addition, you can use the transaction_mask argument that directs CMS to
select for deletion only a specified set of transaction records.

2–60 CMS Routine Descriptions

CMS$DELETE_HISTORY

Therefore, you can control the deletion transaction by filtering each history
record, or by filtering a specified set of transaction records.

If you do not provide a callback routine, CMS deletes all history records prior
to the specified before value.

To delete the history record, the callback routine must return a value of
CMS$_NORMAL. To prevent CMS from deleting the history record, the
callback routine must return a value of CMS$_EXCLUDE.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_HISTDEL CMS deleted the indicated number
of records.

Success

CMS$_NODELETE CMS did not delete any history
records.

Error

CMS$_NOREF Error accessing the library. Error
CMS$_USERERR User routine returned an error to

CMS.
Error

CMS Routine Descriptions 2–61

CMS$DIFFERENCES

CMS$DIFFERENCES

Compares two files, two generations of elements, or a file and a generation. If
the files are different, CMS$DIFFERENCES creates a file containing the lines
that differ between the two files. If the files are the same, it issues a message
to that effect and does not create a differences file.

Format

CMS$DIFFERENCES (library_data_block,1

[user_arg],
[input_file1],
[input_routine1],
[generation_expression_1],
[input_file2],
[input_routine2],
[generation_expression_2],
[output_file],
[output_routine],
[append],
[ignore_mask],
[nooutput],
[parallel],
[full],
[format],
[width],
[msg_routine],
[page_break],
[skip_lines],
[begin_sentinel],
[end_sentinel])

1 This is a required parameter only if you also specify a generation_expression
parameter.

2–62 CMS Routine Descriptions

CMS$DIFFERENCES

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies the LDB for the library to be used in the differences transaction. You
specify this argument only if you specify one or both of the
generation_expression_1 or generation_expression_2 arguments.

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to a callback routine
(input_routine1, input_routine2, or output_routine) each time the routine
is called by CMS. CMS passes the value to the routine using the same
mechanism that you used to pass it to CMS.

input_file1
type: char_string
access: read
mechanism: by descriptor

Specifies the primary input file to be used in the CMS$DIFFERENCES
transaction. You can specify both an input routine and input file (see
Section 1.6). If you do not specify a primary input file, you must provide a
primary input routine (using the input_routine1 argument) and either a
secondary input file (input_file2) or routine (input_routine2). You cannot
specify wildcards or a comma list.

input_routine1
type: procedure
access: read
mechanism: by reference

Specifies a callback routine that provides records for the CMS$DIFFERENCES
transaction. You must provide the input_routine1 argument if you do not
provide the input_file1 argument. See Section 1.6 for information about the
parameters that CMS passes to the input routine.

CMS Routine Descriptions 2–63

CMS$DIFFERENCES

generation_expression_1
type: char_string
access: read
mechanism: by descriptor

Specifies an element generation or a class name in the CMS library indicated
by the library_data_block argument. If you specify this argument, CMS
searches for an element with the name specified by input_file1.

input_file2
type: char_string
access: read
mechanism: by descriptor

Specifies a secondary input file for comparison against the contents of
input_file1, or input provided by input_routine1. You cannot specify
wildcards or a comma list.

If you do not specify either input_file2 or input_routine2, CMS uses the
next lower version of the primary input file. If you do not specify input_file2
but you specify generation_expression1, CMS uses the latest version of
input_file1 in your current default directory.

If you specify input_routine2 and you want CMS to use the next lower
version of the primary input file, specify empty brackets ([]) as input_file2.

input_routine2
type: procedure
access: read
mechanism: by reference

Specifies a secondary callback routine that provides records for comparison
with the contents of input_file1, or input provided by input_routine1. See
Section 1.6 for information about the parameters that CMS passes to the input
routine.

generation_expression_2
type: char_string
access: read
mechanism: by descriptor

Specifies an element generation or a class name in the CMS library indicated
by the library_data_block parameter. If you specify this argument, CMS
searches for an element with the name specified by input_file2.

2–64 CMS Routine Descriptions

CMS$DIFFERENCES

output_file
type: char_string
access: read
mechanism: by descriptor

Specifies the name of the output file. Use this argument if you want to specify
a particular name for the output file, or if you want CMS to put the file in
a directory other than your current default directory. If you do not specify
output_file, nooutput, or output_routine, CMS creates a new file with the
file name from input_file1 and the file type .DIF. Wildcards are not allowed.

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes the output of CMS$DIFFERENCES.
See Section 1.6 for information about the parameters that CMS passes to the
callback routine.

append
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to append the output to a file. If you set
the flag to 1, CMS appends the output to a file. If you set the flag to 0, CMS
creates a new file (input_file1.DIF). CMS ignores this argument if you provide
an output routine.

When you set the append flag to 1, CMS appends the output to an existing
file indicated by the output_file argument. If you do not specify an output
file, CMS appends the output to the default file (input_file1.DIF). If no such file
exists, CMS creates one.

ignore_mask
type: mask_longword
access: read
mechanism: by reference

Specifies one or more values for /IGNORE. You can specify up to five different
actions by setting the appropriate bits in the mask. The following table shows
the symbols defined for the ignore_mask argument.

CMS Routine Descriptions 2–65

CMS$DIFFERENCES

Symbol
Bit
Position

Mask
Value Action

CMS$M_IGNORE_FORM 0 1 Ignore form-feed
characters.

CMS$M_IGNORE_LEAD 1 2 Ignore blank or tab
characters at the
beginning of nonblank
lines.

CMS$M_IGNORE_TRAIL 2 4 Ignore blank or tab
characters at the end of
nonblank lines.

CMS$M_IGNORE_SPACE 3 8 Compress all multiple
spaces, tabs, or
combinations of spaces or
tabs to single spaces.

CMS$M_IGNORE_CASE 4 16 Ignore differences in case
for characters A to Z.

CMS$M_IGNORE_
HISTORY

5 32 Ignore history records
found in the compared
files.

CMS$M_IGNORE_NOTES 6 64 Ignore notes text found
in the compared files.

The mask values are defined as universal symbols in the CMS image. You can
use OR with these values to allow combinations of the values. If you omit the
ignore_mask argument, CMS does not ignore any fields during the differences
transaction.

nooutput
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that prohibits CMS$DIFFERENCES output. By default,
the flag is set to 0, and CMS produces output as designated by the other
arguments. If you set the flag to 1, CMS executes a fast form of the
comparison. In this case, CMS exits when it encounters the first difference
and returns CMS$_DIFFERENT. If there are no differences, CMS returns
CMS$_IDENTICAL.

2–66 CMS Routine Descriptions

CMS$DIFFERENCES

parallel
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether the output is in parallel format. By default,
the flag is set to 0, and CMS does not display the output in parallel format. If
you set the flag to 1, the differences from the first file (or input routine) are
displayed on the left and differences from the second file (or input routine) are
displayed on the right. This qualifier can only be used with record partitions.

full
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to generate an extended listing that includes
identical lines as well as lines that are different between the two input
streams. If you set the flag to 1, CMS generates an extended listing. If you do
not specify this argument or if you set the flag to 0, the output includes only
the differences.

format
type: mask_longword
access: read
mechanism: by reference

Specifies the type of formatting to be performed on the data before it is
placed into the output file. You must specify either the output_file or
output_routine arguments with this argument. By default, the flag is
set to 1, indicating formatted output. If you set the flag to 0, CMS produces
unformatted output.

The format argument specifies a data format, data partition size, and whether
a list of generation differences should be included in the output. The following
table lists the recognized data formats.

CMS Routine Descriptions 2–67

CMS$DIFFERENCES

Data Format
Bit
Position

Mask
Value Action

CMS$M_ASCII 0 1 Specifies that data be presented
as if each byte represents a value
in the ASCII character set. This
option is most useful when files
contain text. If no data partition
is specified, data is partitioned
into records. This option is the
default.

CMS$M_DECIMAL 1 2 Specifies that each value be
displayed as a decimal numeral.
If no data partition is specified,
data is partitioned into longwords.
You cannot specify both
CMS$M_DECIMAL and
CMS$M_RECORDS.

CMS$M_
HEXADECIMAL

2 4 Specifies that each value be
displayed as a hexadecimal
numeral. If no data partition is
specified, data is partitioned into
longwords. You cannot specify
both CMS$M_HEXADECIMAL
and CMS$M_RECORDS.

CMS$M_OCTAL 3 8 Specifies that each value be
displayed as an octal numeral. If
no data partition is specified, data
is partitioned into longwords. You
cannot specify both
CMS$M_OCTAL and
CMS$M_RECORDS.

A data partition is the size that data in each record is to be broken into before
it is formatted. The following table lists the recognized data partitions.

2–68 CMS Routine Descriptions

CMS$DIFFERENCES

Data Partition
Bit
Position

Mask
Value Action

CMS$M_BYTE 16 65,536 Specifies that the data displayed
is to be partitioned into bytes. By
default, records are not partitioned
further unless the data format option
indicates otherwise.

CMS$M_
LONGWORD

17 131,072 Specifies that the data displayed is to
be partitioned into longword values.
This is the default partitioning for
CMS$M_DECIMAL,
CMS$M_HEXADECIMAL, and
CMS$M_OCTAL.

CMS$M_
RECORDS

18 262,144 Specifies that no further partitioning
of data is to occur beyond the record
partitioning already in the file. This
partitioning is most useful when the
files contain text. You can specify
CMS$M_RECORDS by itself only, or
in conjunction with ASCII. It cannot
be used with any other options. This
qualifier is the default for ASCII.

CMS$M_WORD 19 524,288 Specifies that the data displayed
be partitioned into word values.
By default, data records are not
partitioned further unless the data
format indicates otherwise.

The format argument also contains a bit flag indicating that a list of
generation differences is to be included in the output file. By default, the
flag is set to 0, indicating that generation differences are not to be included.
Set the flag to 1 to include generation differences in the output file. You specify
the flag as follows:

CMS Routine Descriptions 2–69

CMS$DIFFERENCES

Generation Differences
Bit
Position

Mask
Value Action

CMS$M_
GENERATION_DIF

23 8,388,608 Specifies that a list of generation
differences is to be displayed. By
default, generation differences
are not displayed.

width
type: longword_signed
access: read
mechanism: by reference

Specifies the page width value for CMS$DIFFERENCES output. The value
can be from 48 to 500. By default, the default value is the same as the device
page width for terminal devices and 132 otherwise.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

page_break
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating that page breaks are to be included in the output
file. By default, the flag is set to 0, indicating that page breaks are converted
to the string ‘‘ ’’ in the output file. Set the flag to 1 to include page breaks in
the output file.

skip_lines
type: longword_signed
access: read
mechanism: by reference

Specifies a positive integer value indicating the number of lines at the
beginning of each file to be ignored during the comparison. By default, no
lines are skipped.

2–70 CMS Routine Descriptions

CMS$DIFFERENCES

begin_sentinel
type: char_string
access: read
mechanism: by descriptor

Specifies a string used to delimit a section of text to be ignored during the
comparison. The string must be shorter than 65,536 characters, must be
contained within a single record, and cannot be the same string as
end_sentinel. If this argument is specified, end_sentinel must also be
specified.

end_sentinel
type: char_string
access: read
mechanism: by descriptor

Specifies a string used to delimit a section of text to be ignored during the
comparison. The string must be shorter than 65,536 characters, must be
contained within a single record, and cannot be the same string as
begin_sentinel. If this argument is specified, begin_sentinel must also be
specified.

Callback Routine Parameters
If you write input routines to provide input data to CMS$DIFFERENCES,
CMS passes the following parameters in the order shown with each call to
input_routine1 or input_routine2:

(first_call, library_data_block, user_param, input_record_id,
eof_flag, file_name_id, generation_id, action,
sequence_flag, sequence_number)

The action parameter enables you to control the flow of data from the input
file to CMS. The callback routine must return a defined condition code to CMS.
The following parameter descriptions define the access to the object from the
perspective of the callback routine.

first_call
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the input routine
is the first call. CMS sets the flag to 1 if the current call is the first call.
Otherwise, this is set to 0.

CMS Routine Descriptions 2–71

CMS$DIFFERENCES

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library. This parameter does not contain any
significant information if input is not being taken from a CMS library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$DIFFERENCES. If you
did not specify a user argument, this parameter points to a read-only storage
location containing the value 0. CMS passes user_param to your routine
using the same mechanism that you used to pass it to CMS$DIFFERENCES.

input_record_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the line of data being passed to
CMS$DIFFERENCES. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3.

eof_flag
type: longword_signed
access: modify
mechanism: by reference

Specifies a flag that indicates the end-of-file status. If there is no input file for
this input stream, CMS sets eof_flag to false (0). The callback routine must
set this flag to true (1) when input is finished.

If there is an input file for this input stream (for example, this input routine is
being used as an input filter), CMS changes the value of eof_flag from false to
true when it encounters the end of the input file. Optionally, the input (filter)
routine can change the value to true before the end of the input file is reached
to terminate input prematurely.

When eof_flag is set to true, CMS ignores the contents of the current input
record (input_record_id or the string passed by CMS$PUT_STRING).
Therefore, the input routine must set eof_flag to true in the call following
the last significant input record.

2–72 CMS Routine Descriptions

CMS$DIFFERENCES

file_name_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the input file name. If you do not specify an
input file for the data stream, file_name_id does not contain any meaningful
data.

generation_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the generation number. The string identifier
points to a descriptor for a null string if the input is not coming from a CMS
library.

action
type: longword_signed
access: modify
mechanism: by reference

Specifies a value that controls the flow of data to CMS. It does not contain any
meaningful information if the input routine is the only source of data for that
input stream (that is, if no input file is specified).

The value of this argument affects the status of the line of data passed
in input_record. The following table shows the possible values and
corresponding results.

Value Result

0 Directs CMS to reject the current line of data. If you specify 0, you
cannot modify input_record.

1 Directs CMS to accept the current line of data. In this case, you can
modify the input record by using CMS$PUT_STRING to pass a new
string to CMS.

CMS Routine Descriptions 2–73

CMS$DIFFERENCES

Value Result

2 Directs CMS to add data to the input stream before including the
current line. You must use CMS$PUT_STRING to pass a new string
descriptor to CMS in order to insert new data lines. (Note that you
can call CMS$PUT_STRING only once during a single execution of
the callback routine.) The current data line (input_record) is saved
and passed again with the next call to the user routine.

sequence_flag
type: longword_signed
access: modify
mechanism: by reference

Specifies a flag that directs CMS to create a sequenced element file. By default,
the flag is set to 0, indicating that input is not sequenced. Set the flag to 1
to direct CMS to create a sequenced element file. If there is no input file,
the callback routine can set this flag. If there is no input file, the input is
unsequenced.

sequence_number
type: longword_signed
access: write
mechanism: by reference

Specifies a signed integer that indicates the sequence number of the input line.
The sequence number is a value in the range of 1 to 65,536 characters.

Formatted Output Callback Routine Parameters
When you provide an output routine to process output text from
CMS$DIFFERENCES, CMS passes different parameters depending on the
value of the format argument. You must specify either the output_file or
output_routine arguments with the format argument. By default, format
is set to 1, indicating formatted output. If you set the flag to 0, CMS produces
unformatted output.

2–74 CMS Routine Descriptions

CMS$DIFFERENCES

When you do not specify the format argument in the original call to
CMS$DIFFERENCES, CMS produces formatted output as records of ASCII
text. CMS passes the following parameters in the order shown with each call
to output_routine:

(first_call, library_data_block, user_param, output_record_id,
eof_flag, file_name_id, action)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

first_call
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine
is the first call. CMS sets the flag to 1 if the current call is the first call.
Otherwise, this is set to 0.

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library. This parameter does not contain any
significant information if input is not being taken from a CMS library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$DIFFERENCES. If you
did not specify a user argument, this parameter points to a read-only storage
location containing the value 0. CMS passes user_param to your routine
using the same mechanism that you used to pass it to CMS$DIFFERENCES.

CMS Routine Descriptions 2–75

CMS$DIFFERENCES

output_record_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the line of data being passed from
CMS$DIFFERENCES. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3.

eof_flag
type: longword_signed
access: read
mechanism: by reference

Specifies the end-of-file status. CMS changes the value of eof_flag from
false (0) to true (1) after the last record has been passed to the output routine.
When eof_flag is true, the contents of output_record_id are undefined. See
Section 1.6.3.2 for more information on determining the end of output.

file_name_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the output file name. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

action
type: longword_signed
access: modify
mechanism: by reference

Specifies a value that controls the flow of data from CMS. The value of this
argument affects the status of the line of data referenced by
output_record_id.

2–76 CMS Routine Descriptions

CMS$DIFFERENCES

The following table shows the possible values and corresponding results.

Value Result

0 Directs CMS to reject the current line of data. If you specify 0, you
cannot modify the output_record.

1 Directs CMS to accept the current line of data. In this case, you can
modify the output record by using CMS$PUT_STRING to pass a new
string to CMS.

2 Directs CMS to add data to the output stream before including
the current line. You must use CMS$PUT_STRING to pass a new
string to CMS in order to insert new data lines. (Note that you can
call CMS$PUT_STRING only once during a single execution of the
callback routine.) The current data line (output_record) is saved
and passed again with the next call to the user routine.

Unformatted Output Callback Routine Parameters
When you specify the format argument in the original call to
CMS$DIFFERENCES by setting format to 0, CMS produces unformatted
output. CMS passes the following parameters in the order shown with each
call to output_routine:

(first_call, library_data_block, user_param, output_record_id,
eof_flag, line_number1, line_number2)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

first_call
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine
is the first call. CMS sets the flag to 1 if the current call is the first call.
Otherwise, this is set to 0.

CMS Routine Descriptions 2–77

CMS$DIFFERENCES

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library. This parameter does not contain any
significant information if input is not being taken from a CMS library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$DIFFERENCES. If you
did not specify a user argument, this parameter points to a read-only storage
location containing the value 0. CMS passes user_param to your routine
using the same mechanism that you used to pass it to CMS$DIFFERENCES.

output_record_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the line of data being passed from
CMS$DIFFERENCES. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3.

eof_flag
type: longword_signed
access: read
mechanism: by reference

Specifies the end-of-file status. CMS changes the value of eof_flag from false
(0) to true (1) after the last record has been passed to the output routine.
When eof_flag is true, the contents of output_record_id are undefined. See
Section 1.6.3.2 for more information on determining the end of output.

2–78 CMS Routine Descriptions

CMS$DIFFERENCES

line_number1
type: longword_signed
access: read
mechanism: by reference

Specifies the sequence number (if the input is sequenced), or the record number
if the line originated from the first input stream (input_file1 or
input_routine1.) This is –1 if the line did not originate in the first input
stream.

line_number2
type: longword_signed
access: read
mechanism: by reference

Specifies the sequence number (if the input is sequenced) or the record number
if the line originated from the second input stream (input_file2 or
input_routine2.) This is –1 if the line did not originate in the second input
stream.

Description

The CMS$DIFFERENCES routine compares the contents of two files. If CMS
finds differences, it creates a file containing a listing of those differences. If
the files are the same, it issues a message to that effect and does not create
a differences file. By default, CMS compares two files not located in a CMS
library. However, you can direct CMS to use element generations from a CMS
library.

A difference is defined as one of the following:

• A line or lines in one file and not in the other.

• N lines in one file that replace M lines in the other file. N and M might not
be equal.

CMS outputs only the lines that differ, unless you set the full argument to 1.

There is a heading at the beginning of the differences file that includes the
name of the user that issued the command, the date and time the command
was issued, and the file specifications of the two files being compared. If you
direct CMS to use element generations and if you set the
CMS$M_GENERATION_DIF flag bit in the format argument to 1, the
differences listing contains a section labeled ‘‘Generation Differences’’ that
contains the replacement history for the element. Each generation used in the
comparison is identified by an asterisk (*) in the first column of the transaction
record. The differences between the files are contained in a section labeled

CMS Routine Descriptions 2–79

CMS$DIFFERENCES

‘‘Text Differences.’’ By default, each difference is formatted with the line or
lines from the first file followed by the differing line or lines from the second
file. If a difference consists of a line or lines that exist in one file but not in the
other, only the lines from the file containing the additional text are displayed.

CMS$DIFFERENCES establishes two input streams for comparison of data.
You can use any combination of input files and input routines to provide data
for the CMS$DIFFERENCES routine:

• You can use input files to provide data for one or both input streams.

• You can use input routines to provide data for one or both input streams.

• You can use input routines to filter one or both of the input streams coming
from files. When you use an input routine to filter data from an input file,
CMS provides a means of specifying the action to be taken for each line of
input data.

In addition, you can use an output routine to process the output of the
differences transaction.

Note

If you supply two input routines, CMS does not necessarily call them in
a synchronous fashion. Therefore, you cannot rely on any established
order for the calls to the input routines. In addition, if you supply an
output routine, you cannot rely on a particular sequence of calls to the
output routine relative to the calls to the input routines.

When using CMS$DIFFERENCES with a CMS library search list, if both
input_file_1 and input_file_2 are element generation specifications, both of
the elements must reside in the same library of the library search list.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_BADFORMAT Invalid format specification. Error
CMS$_DIFFERENT Input streams are different. Informational
CMS$_IDENTICAL Input streams are identical. Success
CMS$_NOACCESS User does not have the required

access to the library.
Error

2–80 CMS Routine Descriptions

CMS$DIFFERENCES

Return Code Description Status

CMS$_NOFILE No input file found. Error
CMS$_NOREF Error accessing the library. Error
CMS$_OPENIN1 Error opening the first input file. Error
CMS$_OPENIN2 Error opening the second input file. Error
CMS$_OPENOUT Error opening the output file. Error
CMS$_QUALCONFLICT Cannot specify both output file and

nooutput.
Error

CMS$_READIN Error reading the input stream. Error
CMS$_UNFOUT Cannot specify unformatted output. Error
CMS$_UNSUPFRMT Error appending to file of this

format.
Error

CMS$_USERERR User routine returned an error to
CMS.

Error

Examples

1. CHARACTER*12 FILE1
EXTERNAL CMS$DIFFERENCES

FILE1 = ’COMTRANS.COM’
CALL CMS$DIFFERENCES(,,FILE1)
END

This call to CMS$DIFFERENCES includes one file specification; CMS
searches for the latest two versions of COMTRANS.COM in the current
default directory. Note that the placeholders are required for the optional
LDB and user-defined arguments.

2. CALL CMS$DIFFERENCES(LDB,,FILE1,,GEN1)

This example shows a call to CMS$DIFFERENCES that uses a library
element and the corresponding file in the current, default directory.
Because a second file is not provided, CMS uses the latest version of the
file specified by FILE1 in the default directory.

CMS Routine Descriptions 2–81

CMS$DIFFERENCES_CLASS

CMS$DIFFERENCES_CLASS

Compares the member generations in two classes. If the members differ
between classes, CMS$DIFFERENCES_CLASS creates a file listing the
differences. If the members in both classes are the same, CMS issues a
message to that effect and does not create a differences file.

Format

CMS$DIFFERENCES_CLASS (library_data_block,
class_expression1,
class_expression2,
[append],
[format],
[full],
[ignore_mask],
[nooutput],
[parallel],
[show_mask],
[width],
[output_file],
[output_routine],
[user_arg],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies the LDB for the library to be used in the differences transaction.

class_expression1
type: char_string
access: read
mechanism: by descriptor

Specifies the primary class name to be used in the CMS$DIFFERENCES_
CLASS transaction. You cannot specify wildcards or a comma list.

2–82 CMS Routine Descriptions

CMS$DIFFERENCES_CLASS

class_expression2
type: char_string
access: read
mechanism: by descriptor

Specifies a secondary class name to be used in the CMS$DIFFERENCES_
CLASS transaction. You cannot specify wildcards or a comma list.

append
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to append the output to a file. If you set
the flag to 1, CMS appends the output to a file. If you set the flag to 0, CMS
creates a new file (output_file1.DIF). CMS ignores this argument if you provide
an output routine.

format
type: mask_longword
access: read
mechanism: by reference

Specifies the type of formatting to be performed on the data before it is
placed into the output file. You must specify either the output_file or
output_routine arguments with this argument. By default, the flag is
set to 1, indicating formatted output. If you set the flag to 0, CMS produces
unformatted output.

The format argument specifies a data format, data partition size, and whether
a list of generation differences should be included in the output. The following
table lists the recognized data formats.

CMS Routine Descriptions 2–83

CMS$DIFFERENCES_CLASS

Data Format
Bit
Position

Mask
Value Action

CMS$M_ASCII 0 1 Specifies that data be presented
as if each byte represents a value
in the ASCII character set. This
option is most useful when files
contain text. If no data partition
is specified, data is partitioned
into records. This option is the
default.

CMS$M_DECIMAL 1 2 Specifies that each value be
displayed as a decimal numeral.
If no data partition is specified,
data is partitioned into longwords.
You cannot specify both
CMS$M_DECIMAL and
CMS$M_RECORDS.

CMS$M_
HEXADECIMAL

2 4 Specifies that each value be
displayed as a hexadecimal
numeral. If no data partition is
specified, data is partitioned into
longwords. You cannot specify
both CMS$M_HEXADECIMAL
and CMS$M_RECORDS.

CMS$M_OCTAL 3 8 Specifies that each value be
displayed as an octal numeral. If
no data partition is specified, data
is partitioned into longwords. You
cannot specify both
CMS$M_OCTAL and
CMS$M_RECORDS.

A data partition is the size that data in each record is to be broken into before
it is formatted. The following table lists the recognized data partitions.

2–84 CMS Routine Descriptions

CMS$DIFFERENCES_CLASS

Data Partition
Bit
Position

Mask
Value Action

CMS$M_BYTE 16 65,536 Specifies that the data displayed
is to be partitioned into bytes. By
default, records are not partitioned
further unless the data format option
indicates otherwise.

CMS$M_
LONGWORD

17 131,072 Specifies that the data displayed is to
be partitioned into longword values.
This is the default partitioning for
CMS$M_DECIMAL,
CMS$M_HEXADECIMAL, and
CMS$M_OCTAL.

CMS$M_
RECORDS

18 262,144 Specifies that no further partitioning
of data is to occur beyond the record
partitioning already in the file. This
partitioning is most useful when the
files contain text. You can specify
CMS$M_RECORDS by itself only, or
in conjunction with ASCII. It cannot
be used with any other options. This
qualifier is the default for ASCII.

CMS$M_WORD 19 524,288 Specifies that the data displayed
be partitioned into word values.
By default, data records are not
partitioned further unless the data
format indicates otherwise.

The format argument also contains a bit flag indicating that a list of
generation differences is to be included in the output file. By default, the
flag is set to 0, indicating that generation differences are not to be included.
Set the flag to 1 to include generation differences in the output file.

CMS Routine Descriptions 2–85

CMS$DIFFERENCES_CLASS

You specify the flag as follows:

Generation Differences
Bit
Position

Mask
Value Action

CMS$M_
GENERATION_DIF

23 8,388,608 Specifies that a list of generation
differences is to be displayed. By
default, generation differences
are not displayed.

full
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to generate an extended listing that includes
identical lines as well as lines that are different between the two input
streams. If you set the flag to 1, CMS generates an extended listing. If you do
not specify this argument or if you set the flag to 0, the output includes only
the differences.

ignore_mask
type: mask_longword
access: read
mechanism: by reference

Specifies whether CMS ignores the first variant of a generation. The value
CMS$M_IGNORE_FIRST_VARIANT directs CMS to ignore any differences
where the generation in one class is the first variant of the generation in the
second class. Specify the value 0 to have CMS treat the first variant as a
difference. If you omit the ignore_mask argument, CMS does not ignore any
fields during the differences transaction.

nooutput
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that prohibits CMS$DIFFERENCES_CLASS output. By
default, the flag is set to 0, and CMS produces output as designated by the
other arguments. If you set the flag to 1, CMS executes a fast form of the
comparison. In this case, CMS exits when it encounters the first difference
and returns CMS$_DIFFERENT. If there are no differences, CMS returns
CMS$_IDENTICAL.

2–86 CMS Routine Descriptions

CMS$DIFFERENCES_CLASS

parallel
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether the output is in parallel format. By default,
the flag is set to 0, and CMS does not display the output in parallel format. If
you set the flag to 1, the differences from the first file (or input routine) are
displayed on the left and differences from the second file (or input routine) are
displayed on the right. This qualifier can only be used with record partitions.

show_mask
type: mask_longword
access: read
mechanism: by reference

Specifies one or more values for /SHOW. You can specify up to five different
actions by setting the appropriate bits in the mask. The following table shows
the symbols defined for the show_mask argument.

Symbol
Bit
Position

Mask
Value Action

CMS$M_ELEMENT_DIF 0 1 Include differences
where an element is
in one class but not the
other.

CMS$M_GENERATIONAL_
DIF

1 2 Include differences
where one member
generation differs from
the other by more
than just its variant.
Directs CMS to show
the difference if the
generation in one
class differs from the
generation in the other
class and the primary
generation is not a
variant of the other.

CMS Routine Descriptions 2–87

CMS$DIFFERENCES_CLASS

Symbol
Bit
Position

Mask
Value Action

CMS$M_VARIANT_DIF 2 4 Include differences
where one member
generation differs
from the other by its
variant. Directs CMS
to show the difference
if the generation in one
class differs from the
generation in the other
class and the primary
generation is a variant of
the other.

The mask values are defined as universal symbols in the CMS image. You
can use OR with these values to allow combinations of the values. A null
parameter or a 0 value directs CMS to show all types of differences by default.

width
type: longword_signed
access: read
mechanism: by reference

Specifies the page width value for CMS$DIFFERENCES_CLASS output. The
value can be from 48 to 500. By default, the default value is the same as the
device page width for terminal devices and 132 otherwise.

output_file
type: char_string
access: read
mechanism: by descriptor

Specifies the name of the output file. Use this argument if you want to specify
a particular name for the output file, or if you want CMS to put the file in
a directory other than your current default directory. If you do not specify
output_file, nooutput, or output_routine, CMS creates a new file with the
file name output_file1 and the file type .DIF. Wildcards are not allowed.

2–88 CMS Routine Descriptions

CMS$DIFFERENCES_CLASS

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes the output of CMS$DIFFERENCES_
CLASS. See Section 1.6 for information about the parameters that CMS passes
to the callback routine.

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to a callback routine
(input_routine1, input_routine2, or output_routine) each time the routine
is called by CMS. CMS passes the value to the routine using the same
mechanism that you used to pass it to CMS.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Unformatted Output Callback Routine Parameters
When you specify the format argument in the original call to
CMS$DIFFERENCES_CLASS by setting format to 0, CMS produces
unformatted output. CMS passes the following parameters in the order shown
with each call to output_routine:

(first_call, library_data_block, user_param, eof_flag,
diff_flag, output_record_id1, output_record_id2,
entry_number1, entry_number2)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

CMS Routine Descriptions 2–89

CMS$DIFFERENCES_CLASS

first_call
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine
is the first call. CMS sets the flag to 1 if the current call is the first call.
Otherwise, this is set to 0.

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library. This parameter does not contain any
significant information if input is not being taken from a CMS library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$DIFFERENCES_
CLASS. If you did not specify a user argument, this parameter points to
a read-only storage location containing the value 0. CMS passes user_
param to your routine using the same mechanism that you used to pass it
to CMS$DIFFERENCES_CLASS.

eof_flag
type: longword_signed
access: read
mechanism: by reference

Specifies the end-of-file status. CMS changes the value of eof_flag from false
(0) to true (1) after the last record has been passed to the output routine.
When eof_flag is true, the contents of diff_flag, output_record_id1, output_
record_id2, entry_number1, and entry_number2 are undefined.

diff_flag
type: longword_signed
access: read
mechanism: by reference

Specifies whether the two records are different. If diff_flag value is false (0),
the two records are the same, even though they may differ textually. This
can occur when a full listing is requested, there are generation members

2–90 CMS Routine Descriptions

CMS$DIFFERENCES_CLASS

that differ between the two classes, but the members are not flagged as
different due to the values of the show mask and ignore_mask arguments to
CMS$DIFFERENCES_CLASS.

If diff_flag value is true (1), the output_record_id1, entry_number1,
output_record_id2, and entry_number2 describe generation members for
the same element whose generation number differs between the two classes.
In addition, if the value of one of the entry numbers is –1, it means that this
element exists in one class but not the other.

output_record_id1
type: address
access: read
mechanism: by reference

Specifies a string identifier for the generation member being passed from
CMS$DIFFERENCES_CLASS() for class_expression1. This parameter is
only valid if entry_number1 contains a value other than –1.

The string has the following format:

element-name(generation-name) "generation comment"

If both output_record_id1 and output_record_id2 are supplied on the
same call, they identify different generations of the same element. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

output_record_id2
type: address
access: read
mechanism: by reference

Specifies a string identifier for the generation member being passed from
CMS$DIFFERENCES_CLASS() for class_expression2. This parameter is
only valid if entry_number1 contains a value other than –1.

The string has the following format:

element-name(generation-name) "generation comment"

If both output_record_id1 and output_record_id2 are supplied on the
same call, they identify different generations of the same element. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

CMS Routine Descriptions 2–91

CMS$DIFFERENCES_CLASS

entry_number1
type: longword_signed
access: read
mechanism: by reference

Specifies the position of the generation member in the list of members for
class_expression1. The generation members are labeled from 1-n.

If a particular element is a member of one class but not the other, the element
has a different entry number in each class. This parameter is –1 if an entry
from class_expression1 is not being specified by this call. Meaning, the
element is in class_expression2 but not class_expression1.

entry_number2
type: longword_signed
access: read
mechanism: by reference

Specifies the position of the generation member in the list of members for
class_expression2. The generation members are labeled from 1-n.

If a particular element is a member of one class but not the other, the element
has a different entry number in each class. This parameter is –1 if an entry
from class_expression2 is not being specified by this call. Meaning, the
element is in class_expression1 but not class_expression2.

Description

The CMS$DIFFERENCES_CLASS routine compares the contents of two
classes. If CMS finds differences between class membership, it creates a file
containing a listing of those differences. If the classes are the same, it issues a
message to that effect and does not create a differences file.

CMS outputs only the lines that differ, unless you set the full argument to 1.

There is a heading at the beginning of the differences file that includes the
name of the user that issued the command, the date and time the command
was issued, and the specifications of the two classes being compared.

Each element generation used in the comparison is identified by an asterisk
(*) in the first column of the transaction record. The differences between the
classes are contained in a section labeled ‘‘Differences.’’

In addition, you can use an output routine to process the output of the
differences transaction.

2–92 CMS Routine Descriptions

CMS$DIFFERENCES_CLASS

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_BADFORMAT Invalid format specification. Error
CMS$_DIFFCLASS Differences between the compared

classes were detected.
Informational

CMS$_IDENTCLASS The classes being compared are
identical.

Success

CMS$_NOACCESS User does not have the required
access to the library.

Error

CMS$_NOREF Error accessing the library. Error
CMS$_OPENOUT Error opening the output file. Error
CMS$_QUALCONFLICT Cannot specify both output file and

nooutput.
Error

CMS$_UNFOUT Cannot specify unformatted output. Error
CMS$_UNSUPFRMT Error appending to file of this

format.
Error

CMS$_USERERR User routine returned an error to
CMS.

Error

Examples

1. INTEGER*4 CMS$SET_LIBRARY,
1 CMS$DIFFERENCES_CLASS,
1 LDB(50)
CHARACTER*9 DIR
CHARACTER*5 F_CLASS
CHARACTER*6 S_CLASS

DIR = ’[.CMSLIB]’
F_CLASS = ’FIRST’
S_CLASS = ’SECOND’
STATUS = CMS$SET_LIBRARY (LDB, DIR)

IF (STATUS) THEN
MEMBER_FLAG = 1
STATUS = CMS$DIFFERENCES_CLASS (LDB,F_CLASS,S_CLASS)
ENDIF

This call to CMS$DIFFERENCES_CLASS shows difference between
the two classes (FIRST and SECOND) in a CMS library. It creates a
differences file (FIRST.DIF) that contains the names of the generations
that differ between the two classes.

CMS Routine Descriptions 2–93

CMS$DIFFERENCES_CLASS

If the elements each class are the same, CMS issues a message to that
effect and does not create a differences file.

2. CALL CMS$DIFFERENCES_CLASS (LDB,F_CLASS,S_CLASS,,,,,,,CMS$M_ELEM)

This call to CMS$DIFFERENCES_CLASS shows differences where an
element is in one class but not the other. It ignores the elements which are
same in both classes but have different generations.

2–94 CMS Routine Descriptions

CMS$FETCH

CMS$FETCH

Retrieves a copy of an element from a CMS library. You can also specify the
reserve argument to direct CMS to establish a reservation for a generation of
the element.

Format

CMS$FETCH (library_data_block,
element_expression,
[remark],
[generation_expression],
[merge_generation_expression],
[reserve],
[nohistory],
[nonotes],
[concurrent],
[output_file],
[msg_routine],
[nooutput],
[history],
[notes],
[position])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements to be fetched (or
reserved). Wildcards and a comma list are allowed.

CMS Routine Descriptions 2–95

CMS$FETCH

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.
If you do not specify a remark and you do not establish a reservation, CMS
does not record the transaction in the library history.

generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the generation to be retrieved. If you do not specify a generation
number or class name, CMS fetches the latest generation on the main line of
descent.

merge_generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the element generation to be merged into the fetched generation.
This argument can be a generation number or class name.

reserve
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to establish a reservation for the fetched
element. By default, the flag is set to 0, and CMS fetches the element without
establishing a reservation. Set this flag to 1 to reserve the element.

2–96 CMS Routine Descriptions

CMS$FETCH

nohistory
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to suppress the element history. By default,
the flag is set to 0, and CMS provides the element history in the output file
only if the history attribute is established for the element. If you set this flag
to 1, CMS does not include the element history in the output file.

nonotes
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to suppress generation notes. By default, the
flag is set to 0, and the file contains generation notes only if the notes attribute
is established for the element. If you set this flag to 1, CMS does not include
generation notes in the output file.

concurrent
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating the access to the element. By default, the flag is
set to 1, and CMS allows concurrent reservations of the element. Set the
concurrent flag to 0 to prohibit concurrent reservations.

output_file
type: char_string
access: read
mechanism: by descriptor

Specifies the name of the output file. Use this argument if you want the output
file to have a different name than the element, or if you want CMS to put the
file in a directory other than your default directory. Wildcards are allowed. If
you do not specify an output file name, CMS gives the file the same name as
the element. This parameter is ignored if nooutput is specified as true.

Use caution when providing output file specifications. For example, if you fetch
a group of elements and you provide an output file specification that does not
allow CMS to assign a unique name to each fetched element file, CMS creates
as many files with the same name as necessary.

CMS Routine Descriptions 2–97

CMS$FETCH

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

nooutput
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates that CMS should execute the fetch or reserve
operation without creating an output file. By default, the flag is set to 0 and
CMS creates an output file. When you specify this argument, CMS does not
perform file I/O; this causes CMS to operate faster than if you specify the null
device (NLA0: or NL:) as the output file. This argument is useful for reserving
an element that you will not use as the replacement file.

history
type: char_string
access: read
mechanism: by descriptor

Specifies the history string. If you include this argument in the call, CMS
includes the history in the retrieved file. If you specify history and reserve,
CMS establishes the history string for the reservation. If you do not specify
history, CMS uses the value of the element’s current history attribute. This
argument is useful to temporarily override an existing history format string.
If an element has a history attribute, its history is included in the file when
it is retrieved by CMS$FETCH. To disable the history attribute, specify a
zero-length string. For a detailed explanation of the history attribute, see the
HP DECset for OpenVMS Guide to the Code Management System.

notes
type: char_string
access: read
mechanism: by descriptor

Specifies the notes string. If you include this argument in the call, CMS
includes the notes in the retrieved file. If you specify notes and reserve, CMS
establishes the notes string for the reservation. If you do not specify notes,
CMS uses the value of the element’s current notes attribute. This argument is
useful to temporarily override an existing notes format string. If an element

2–98 CMS Routine Descriptions

CMS$FETCH

has a notes attribute, notes are added to the ends of the lines of the file when
it is retrieved by CMS$FETCH. To disable the notes attribute, specify a zero-
length string. Any element that has the notes attribute must have the position
attribute. For a detailed explanation of the notes attribute, see the HP DECset
for OpenVMS Guide to the Code Management System.

position
type: longword_signed
access: read
mechanism: by reference

Specifies the position value to be used with the notes attribute. The position
attribute determines the character position at which the note is to begin on
the line. The position value must be an integer greater than zero. If you
specify notes and the element does not already have the position attribute
established, you must also specify the position argument. For a detailed
explanation of the position attribute, see the HP DECset for OpenVMS Guide
to the Code Management System.

Description

The CMS$FETCH routine delivers a copy of the specified element generation
to your current, default directory or to the file specified in the output_file
parameter. If you did not specify a value of 1 for the reserve argument, CMS
does not allow you to replace a fetched element.

The presence or absence of a remark determines whether the CMS FETCH
transaction is recorded in the library history. If you do not specify a remark
and do not establish a reservation, CMS does not record the transaction.

When you retrieve an element from a CMS library, CMS restores the file
creation and revision times. The file placed in your directory has the same
creation and revision times as the file used to create the generation you are
fetching. CMS does not restore the file expiration date or file backup date.

If you specify the reserve argument, each element indicated by the
element_expression argument is marked reserved in the library database.
Usually, after you have modified the element, you return a reserved element to
the library with the CMS$REPLACE routine. Alternatively, you can cancel the
reservation with the CMS$UNRESERVE routine.

CMS marks the reserved generation as a predecessor generation. This
information is used to determine the generation number of the successor
created by the REPLACE command. For more information on creating
successive generations with the RESERVE and REPLACE commands, see the
HP DECset for OpenVMS Guide to the Code Management System.

CMS Routine Descriptions 2–99

CMS$FETCH

If a version of the element file already exists in your default directory when
you call CMS$FETCH, CMS creates a new version with the next higher version
number.

If CMS encounters an element data file that has a bad checksum or was
not closed by CMS, it retrieves the file but changes the success status to a
warning status. If you want to know only if the file was retrieved, use the
LIB$MATCH_COND routine to compare the returned status to the CMS
return codes.

When fetching a concurrent reservation, you must specify the
confirm_routine argument in the call to CMS$SET_LIBRARY or
CMS$CREATE_LIBRARY (before calling CMS$FETCH), or you are not warned
of any concurrent reservations, and the fetch transaction continues. To receive
a confirmation prompt when there are existing concurrent reservations, you
must specify the routine in the call to CMS$SET_LIBRARY or CMS$CREATE_
LIBRARY.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_FETCHED CMS fetched the element. Success
CMS$_FETCHES CMS fetched one or more elements. Success
CMS$_ERRFETCHES CMS fetched zero or more

elements, but encountered errors
during the transaction.

Error

CMS$_ERRESERVATIONS CMS reserved zero or more
elements, but encountered errors
during the transaction.

Error

CMS$_NOFETCH CMS did not fetch the element. Error
CMS$_NOREF Error accessing the library. Error
CMS$_NORESERVATION CMS did not reserve the

element.
Error

CMS$_RESERVATIONS CMS reserved one or more
elements.

Success

CMS$_RESERVED CMS reserved the element. Success

2–100 CMS Routine Descriptions

CMS$FETCH_CLOSE

CMS$FETCH_CLOSE

Terminates a fetch transaction initiated by CMS$FETCH_OPEN. Use the
CMS$FETCH_CLOSE routine with the CMS$FETCH_GET and
CMS$FETCH_OPEN routines.

Format

CMS$FETCH_CLOSE (fetch_data_block,
[msg_routine])

Arguments

fetch_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an open FDB.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$FETCH_CLOSE routine terminates a line-by-line fetch transaction.
You use this routine after a combination of CMS$FETCH_OPEN and
CMS$FETCH_GET calls. If you do not end the fetch transaction with a
call to CMS$FETCH_CLOSE, the library is left in a locked state.

For an example of a line-by-line fetch transaction, see the description of the
CMS$FETCH_GET routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_INVFETDB Invalid fetch data block Error

CMS Routine Descriptions 2–101

CMS$FETCH_GET

CMS$FETCH_GET

Retrieves one line of data from an element. Use this routine with the
CMS$FETCH_OPEN and CMS$FETCH_CLOSE routines.

Format

CMS$FETCH_GET (fetch_data_block,
output_record,
[sequence_number],
[generation_number],
[msg_routine])

Arguments

fetch_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an open FDB.

output_record
type: char_string
access: write
mechanism: by descriptor

Specifies a string descriptor that CMS fills in with the line of data retrieved
from the library element. If the notes attribute is established for the element
and you do not suppress notes in the call to CMS$FETCH_OPEN, the output
record includes the notes string.

sequence_number
type: longword_signed
access: write
mechanism: by reference

Specifies a location that CMS fills in with the sequence number of the data
line, if any. CMS sets the value to –1 if there is no sequencing. If the value
is in the range of 0 to 65,535, it is the sequence number of the data line. By
default, CMS does not attempt to provide any sequence information.

2–102 CMS Routine Descriptions

CMS$FETCH_GET

generation_number
type: char_string
access: write
mechanism: by descriptor

Specifies a string descriptor to be filled in by CMS. CMS uses this argument
to provide the generation number associated with the line of data. By default,
CMS does not provide the generation information.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$FETCH_GET routine retrieves a single line of data from an element
that you have opened with a call to CMS$FETCH_OPEN. After you have
completed the series of CMS$FETCH_GET calls required to retrieve the entire
element, you must end the fetch transaction with a call to
CMS$FETCH_CLOSE.

CMS returns RMS$_EOF after the last record of the element has been fetched.
When CMS$FETCH_GET returns RMS$_EOF, the contents of output_record
are undetermined. You must invoke CMS$FETCH_GET as a function in order
to determine end-of-file.

You should call CMS$FETCH_GET using the exact same FDB previously used
by the last call to CMS$FETCH_GET.

When you execute a line-by-line transaction, you cannot reserve an element,
and CMS does not enter the transaction in the library history.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_INVFETDB Invalid fetch data block Error
RMS$_EOF End-of-file Warning

CMS Routine Descriptions 2–103

CMS$FETCH_GET

Example

CHARACTER*11 LIBNAME
CHARACTER*9 ELE1,ELE2
CHARACTER*80 LINE
INTEGER STATUS,STATUS1,STATUS2
INTEGER*4 CMS$FETCH_GET
INTEGER*4 CMS$FETCH_OPEN
INTEGER*4 CMS$FETCH_CLOSE
EXTERNAL CMS$_EOF

DIMENSION FDB1(5),FDB2(5)

LIBNAME = ’[DBASE.LIB]’
ELE1 = ’TEST1.TST’
ELE2 = ’TEST2.TST’

STATUS = CMS$FETCH_OPEN(FDB1,LIBNAME,ELE1)
IF (.NOT. STATUS) GOTO 60 1
STATUS = CMS$FETCH_OPEN(FDB2,LIBNAME,ELE2)
IF (.NOT. STATUS) GOTO 60

30 STATUS1 = CMS$FETCH_GET(FDB1,LINE) 2
IF (STATUS1) CALL PRINTLINE(LINE)

40 STATUS2 = CMS$FETCH_GET(FDB2,LINE) 3
IF (STATUS2) CALL PRINTLINE(LINE)

IF (STATUS1) GOTO 30 4
IF (STATUS2) GOTO 40

STATUS = CMS$FETCH_CLOSE(FDB1) 5
STATUS = CMS$FETCH_CLOSE(FDB2)

60 END

C routine to handle output string

INTEGER FUNCTION PRINTLINE(STRING)
CHARACTER*80 STRING
PRINT 90,STRING
RETURN

90 FORMAT(’ ’,A)
END

Key to Example:

1 CMS$FETCH_OPEN is called once for each file to be fetched. Because
the program uses two FDBs, it can fetch parallel lines from the elements
without reinitializing the FDB each time the element is changed.

2–104 CMS Routine Descriptions

CMS$FETCH_GET

2 CMS$FETCH_GET is called for the first element. The fetched data line is
displayed until CMS returns RMS$_EOF (severity level warning).

3 CMS$FETCH_GET is called for the second element, until end-of-file is
encountered.

4 The tests for end-of-file transfer control.

5 Once end-of-file is encountered for both elements, CMS$FETCH_CLOSE is
called for each element.

CMS Routine Descriptions 2–105

CMS$FETCH_OPEN

CMS$FETCH_OPEN

Begins a line-by-line fetch transaction. Use the CMS$FETCH_OPEN routine
with the CMS$FETCH_GET and CMS$FETCH_CLOSE routines.

Format

CMS$FETCH_OPEN (fetch_data_block,
directory,
element_name,
[generation_expression],
[nohistory],
[nonotes],
[actual_generation],
[msg_routine])

Arguments

fetch_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an FDB to be opened.

directory
type: char_string
access: read
mechanism: by descriptor

Specifies an existing directory that contains the CMS library where the
element is located. Wildcards and comma lists are not allowed.

Note

The directory argument has the following restrictions:

• Cannot contain wildcard characters

• Cannot be a comma list of directory specifications

• Cannot be a search list logical name

2–106 CMS Routine Descriptions

CMS$FETCH_OPEN

element_name
type: char_string
access: read
mechanism: by descriptor

Specifies the element to be fetched. Wildcards are not allowed.

generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the generation of the element to be fetched. By default, CMS fetches
the latest generation on the main line of descent.

nohistory
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to suppress the element history. By default,
the flag is set to 0, and CMS provides the element history in the output file
only if the history attribute is established for the element. If you set this flag
to 1, CMS does not include the element history in the output file.

nonotes
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to suppress generation notes. By default, the
flag is set to 0, and the file contains generation notes only if the notes attribute
is established for the element. If you set this flag to 1, CMS does not include
generation notes in the output file.

actual_generation
type: char_string
access: write
mechanism: by descriptor

Specifies a string descriptor to be filled in by CMS. CMS uses this argument to
provide the number of the generation accessed by calls to CMS$FETCH_GET.
This is useful when you use a class name as the generation expression and
want to know the generation number.

CMS Routine Descriptions 2–107

CMS$FETCH_OPEN

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$FETCH_OPEN routine initiates a line-by-line fetch transaction.
You use this routine with CMS$FETCH_CLOSE and CMS$FETCH_GET
calls. You can execute concurrent fetch transactions by issuing multiple
calls to CMS$FETCH_OPEN. You must define a unique FDB for each call to
CMS$FETCH_OPEN. The FDB identifies the data stream to be processed by
CMS$FETCH_GET.

When you execute a line-by-line fetch transaction, you cannot reserve an
element or merge element generations. CMS does not enter the transaction in
the library history.

The CMS$FETCH_OPEN routine locks the CMS library for read access.
This lock is held until CMS$FETCH_CLOSE is called or your program exits.
Therefore, to prevent CMS from locking your library longer than necessary, call
CMS$FETCH_OPEN in your source program as close as possible to the calls to
CMS$FETCH_GET. Similarly, call CMS$FETCH_CLOSE as soon as possible
after the calls to CMS$FETCH_GET.

Note

Do not use CMS$FETCH_OPEN with a library search list.

The directory argument has the following restrictions:

• Cannot contain wildcard characters

• Cannot be a comma list of directory specifications

• Cannot be a search list logical name

For an example of a line-by-line fetch transaction, see the description of the
CMS$FETCH_GET routine.

2–108 CMS Routine Descriptions

CMS$FETCH_OPEN

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_INVFETDB Invalid fetch data block. Error
CMS$_NOFETCH CMS could not fetch the

element.
Error

CMS$_NOREF Error accessing the library. Error
CMS$_SEQUENCED The retrieved element is

sequenced.
Success

CMS Routine Descriptions 2–109

CMS$GET_STRING

CMS$GET_STRING

Translates a string identifier.

Format

CMS$GET_STRING (string_id,
string)

Arguments

string_id
type: address
access: read
mechanism: by reference

Specifies a string identifier. This is the address of the string descriptor
containing the string that CMS passes to the callback routine.

string
type: char_string
access: write
mechanism: by descriptor

Specifies a string descriptor that CMS fills in with the character string
indicated by string_id. The method you use to provide this argument depends
on the language from which you are calling CMS. For examples of calling CMS
from different languages, see Appendix B.

Description

The CMS$GET_STRING routine translates a string_id that CMS passes to
a callback routine. To use CMS$GET_STRING, you supply a character string
variable, which is then filled by CMS. CMS$GET_STRING can return the same
condition codes as the STR$COPY_DX function. For information about the
STR$ condition codes, see the description of the STR$COPY_xx routines in the
OpenVMS Run-Time Library (RTL) documentation. For examples of programs
that contain calls to the CMS$GET_STRING routine, see Appendix B.

2–110 CMS Routine Descriptions

CMS$INSERT_ELEMENT

CMS$INSERT_ELEMENT

Places one or more elements in the specified group or groups.

Format

CMS$INSERT_ELEMENT (library_data_block,
element_expression,
group_expression,
[remark],
[if_absent],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the name of the element or group of elements to be inserted into
group_name. Wildcards and a comma list are allowed.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library.

group_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups into which the elements, indicated by
element_expression, are being inserted. Wildcards and a comma list are
allowed.

CMS Routine Descriptions 2–111

CMS$INSERT_ELEMENT

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

if_absent
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to insert the element only if that element
does not already belong to the group. If you do not specify this argument and
the group already contains the element, CMS returns an error. Set the flag
to 1 to direct CMS to insert the element only if it is absent. If the element is
already in the group, CMS takes no action and returns CMS$_NORMAL.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$INSERT_ELEMENT routine places one or more elements into one
or more existing groups (see the description of the CMS$CREATE_GROUP
routine). If you use the CMS$INSERT_ELEMENT routine to insert group A
into group B, group B contains all the elements that belong to group A when
the insertion transaction completes. If the contents of group A change at a
later time, the contents of group B are not affected.

You cannot insert any elements into a group that has the READ_ONLY
attribute. For information on the READ_ONLY and NOREAD_ONLY
attributes, see the description of the CMS$MODIFY_GROUP routine.

2–112 CMS Routine Descriptions

CMS$INSERT_ELEMENT

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRINSERTIONS CMS inserted zero or more
elements, but encountered errors
during the transaction.

Error

CMS$_INSERTED CMS inserted the element. Success
CMS$_INSERTIONS CMS inserted one or more

elements.
Success

CMS$_NOINSERT CMS did not insert the element. Error
CMS$_NOREF Error accessing the library. Error

CMS Routine Descriptions 2–113

CMS$INSERT_GENERATION

CMS$INSERT_GENERATION

Places one or more element generations in the specified class or classes.

Format

CMS$INSERT_GENERATION (library_data_block,
element_expression,
class_expression,
[remark],
[generation_expression],
[always],
[supersede],
[if_absent],
[msg_routine],
[before])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements whose generations are to
be inserted into the class or classes. Only one generation of a given element
can belong to a specific class. Wildcards and a comma list are allowed.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library.

2–114 CMS Routine Descriptions

CMS$INSERT_GENERATION

class_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more classes into which the element generation is to be
inserted. Wildcards and a comma list are allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the generation expression indicating which generation of the element
is to be inserted into the class or classes. By default, CMS inserts the latest
generation on the main line of descent.

always
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to insert the element generation into the
class, regardless of whether it already belongs to the class. To always insert
the element generation, set this flag to 1. By default (and if you do not
specify other arguments that affect the insertion transaction), CMS inserts the
element generation only if the class does not already contain a generation from
that element.

When you specify always and the class already contains a generation of the
given element, the existing element generation is removed from the class and
the new generation takes its place.

CMS Routine Descriptions 2–115

CMS$INSERT_GENERATION

supersede
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS inserts the element generation if the
class already contains another generation of that element. By default, the flag
is set to 0, and CMS does not supersede any existing class association for the
element. If you set the flag to 1, CMS supersedes the previous class association
for that element. When you set this flag, and the class does not contain a
generation from the specified element, CMS returns an error.

if_absent
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to insert the generation only if a generation
of the element does not already belong to the class. If you do not specify this
argument and the class already contains a generation from that element, CMS
returns an error. Set the flag to 1 to direct CMS to insert the generation only
if it is absent. If the generation is already in the class, CMS takes no action
and returns an error.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

before
type: date_time
access: read
mechanism: by reference

Specifies a binary date and time value that CMS uses to select the generation
to insert into the class.

2–116 CMS Routine Descriptions

CMS$INSERT_GENERATION

Description

The CMS$INSERT_GENERATION routine places one or more specified
element generations into one or more classes. The class or classes must
already exist. (See the description of the CMS$CREATE_CLASS routine.) A
class can contain only one generation of an element. You cannot insert any
generations into a class that has the READ_ONLY attribute. For information
on the READ_ONLY and NOREAD_ONLY attributes, see the description of the
CMS$MODIFY_CLASS routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRINSERTIONS CMS inserted zero or more
generations, but encountered errors
during the transaction.

Error

CMS$_GENINSERTED CMS inserted the generation. Success
CMS$_GENNOINSERT CMS did not insert the

generation.
Error

CMS$_INSERTIONS CMS inserted one or more
generations.

Success

CMS$_NOREF Error accessing the library. Error

CMS Routine Descriptions 2–117

CMS$INSERT_GROUP

CMS$INSERT_GROUP

Places one or more groups into the specified group or groups.

Format

CMS$INSERT_GROUP (library_data_block,
sub_group_expression,
group_expression,
[remark],
[if_absent],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

sub_group_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups to be inserted into group_expression. Wildcards
and a comma list are allowed.

group_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups into which sub_group_expression is to be
inserted. Wildcards and a comma list are allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

2–118 CMS Routine Descriptions

CMS$INSERT_GROUP

if_absent
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to insert the group only if that group does
not already belong to the group. If you do not specify this argument and the
group already contains the group, CMS returns an error. Set the flag to 1 to
direct CMS to insert the group only if it is absent. If the group is already in
the group, CMS takes no action and returns an error.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$INSERT_GROUP routine inserts one or more existing groups into
one or more other existing groups. (See the description of the
CMS$CREATE_GROUP routine.) When you use the CMS$INSERT_GROUP
routine to insert group A into group B, the elements that can be accessed
through group B change as the contents of group A change. CMS does not
allow you to define recursive groups. For example, you cannot insert group A
into group B if group A already contains group B.

You cannot insert any groups into a group that has the READ_ONLY attribute.
For information on the READ_ONLY and NOREAD_ONLY attributes, see the
description of the CMS$MODIFY_GROUP routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRINSERTIONS CMS inserted zero or more groups,
but encountered one or more errors
during the transaction.

Error

CMS$_INSERTED CMS inserted the groups. Success
CMS$_INSERTIONS CMS inserted one or more groups. Success
CMS$_NOINSERT CMS did not insert the group. Error

CMS Routine Descriptions 2–119

CMS$INSERT_GROUP

Return Code Description Status

CMS$_NOREF Error accessing the library. Error

2–120 CMS Routine Descriptions

CMS$MODIFY_CLASS

CMS$MODIFY_CLASS

Changes the characteristics of the specified class or classes.

Format

CMS$MODIFY_CLASS (library_data_block,
class_expression,
[remark],
[new_name],1

[new_remark],1

[read_only],1

[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

class_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more classes to be modified. Wildcards and a comma list are
allowed, unless you specify new_name.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

1 At least one of these arguments is required.

CMS Routine Descriptions 2–121

CMS$MODIFY_CLASS

new_name
type: char_string
access: read
mechanism: by descriptor

Specifies the new class name. Class names and group names must be unique;
CMS returns an error if you specify a name already used for an existing class
or group. If a previously used class or group name has been removed by a
DELETE CLASS or DELETE GROUP transaction, you can use that name
again. You cannot specify wildcards or a comma list. In addition, if you specify
the new_name argument, you cannot specify wildcards or a comma list in the
class_expression argument.

new_remark
type: char_string
access: read
mechanism: by descriptor

Specifies a new remark to be substituted for the existing creation remark for
the class.

read_only
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that changes the access to the class. If you set the flag to 1,
CMS sets the class to READ_ONLY. If you set the flag to 0, CMS sets the class
to NOREAD_ONLY. By default, the existing access is not changed.

If you want to change the attributes of a READ_ONLY class, you can set the
read_only flag to 0 in the same call that you use to change other attributes.
In addition, you can change the attributes of a NOREAD_ONLY class and set
the class to READ_ONLY in the same call.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

2–122 CMS Routine Descriptions

CMS$MODIFY_CLASS

Description

The CMS$MODIFY_CLASS routine changes the characteristics of one or more
classes. You can change the following characteristics:

• The name of the class.

• The remark associated with the CMS CREATE CLASS command for the
specified class.

• The access to the class (READ_ONLY or NOREAD_ONLY). You cannot
change the contents or the name of a class that has been set to
READ_ONLY.

You must specify one or more of the new_name, new_remark, or
read_only arguments in the call to CMS$MODIFY_CLASS. If a class is set
to READ_ONLY, you must change it to NOREAD_ONLY to change any other
characteristics.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRMODIFIES CMS modified zero or more classes,
but encountered one or more errors
during the transaction.

Error

CMS$_MODIFICATIONS CMS modified one or more classes. Success
CMS$_MODIFIED CMS modified the class. Success
CMS$_NOMODIFY CMS did not modify the class. Error
CMS$_NOREF Error accessing the library. Error

Example

CHARACTER*14 DIR
CHARACTER*8 CLASS 1
CHARACTER*8 NEWNAME

INTEGER*4 READONLY 2
INTEGER*4 LDB(50) 3

INTEGER*4 CMS$SET_LIBRARY 4
INTEGER*4 CMS$MODIFY_CLASS

DIR = ’[LENNON.SONGS]’
CLASS = ’PRE_1968’ 5
NEWNAME = ’PRE_1970’
READONLY = 1

CMS Routine Descriptions 2–123

CMS$MODIFY_CLASS

STATUS = CMS$SET_LIBRARY(LDB,DIR) 6
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))
STATUS = CMS$MODIFY_CLASS(LDB,CLASS,,NEWNAME,,READONLY) 7
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))
END

Key to Example:

1 Character string variables are declared for the directory specification,
existing class name, and new class name.

2 A longword integer variable is declared for the read_only flag.

3 The LDB is declared as a 50–word integer array.

4 The CMS routines are declared external to the program.

5 The character string variables are assigned values and the read_only flag
is set to change the access to the class.

6 CMS$SET_LIBRARY is called to initialize the LDB.

7 CMS$MODIFY_CLASS is called with the library_data_block,
class_expression, new_name, and read_only arguments. Extra commas
are used as placeholders for the omitted arguments. Note that you can
change the access to the class in the same call that you use to change the
characteristics (in this case, the class name).

2–124 CMS Routine Descriptions

CMS$MODIFY_ELEMENT

CMS$MODIFY_ELEMENT

Changes the characteristics of each specified element.

Format

CMS$MODIFY_ELEMENT (library_data_block,
element_expression,
[remark],
[new_name],1

[new_remark],1

[history],1

[notes],1

[position],1

[concurrent],1

[reference_copy],1

[msg_routine],
[review] 1)

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements to be modified. Wildcards
and a comma list are allowed, unless you specify new_name.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library.

1 At least one of these arguments is required.

CMS Routine Descriptions 2–125

CMS$MODIFY_ELEMENT

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

new_name
type: char_string
access: read
mechanism: by descriptor

Specifies the new element name. You cannot use 00CMS as the file name
component of an element name because it is reserved for CMS. If you specify
this argument, you cannot specify wildcards or a comma list in the
element_expression argument.

new_remark
type: char_string
access: read
mechanism: by descriptor

Specifies a new remark to be substituted for the existing creation remark
for the element. If you change this remark, the remark associated with
generation 1 of the element is not altered. To change the remark associated
with generation 1 of the element, use CMS$MODIFY_GENERATION.

history
type: char_string
access: read
mechanism: by descriptor

Specifies the history string. If you include the history argument in the call,
CMS establishes or changes the history attribute for the element. By default,
CMS does not alter the existing history attribute (if any). If an element has a
history attribute, its history is included in the file when it is retrieved by the
CMS$FETCH routine. To disable the history attribute, specify a zero-length
string. For a detailed explanation of the history attribute, see the HP DECset
for OpenVMS Guide to the Code Management System.

2–126 CMS Routine Descriptions

CMS$MODIFY_ELEMENT

notes
type: char_string
access: read
mechanism: by descriptor

Specifies the notes string. If you include the notes argument in the call,
CMS establishes or changes the notes attribute for the element. By default,
CMS does not alter the existing notes attribute (if any). If an element has a
notes attribute, notes are added to the ends of the lines of the file when it is
retrieved by the CMS$FETCH routine. To disable the notes attribute, specify
a zero-length string. Any element that has the notes attribute must have the
position attribute. For a detailed explanation of the notes attribute, see the HP
DECset for OpenVMS Guide to the Code Management System.

position
type: longword_signed
access: read
mechanism: by reference

Specifies the position value to be used with the notes attribute. The position
attribute determines the character position at which the note is to begin on the
line. The position value must be an integer greater than zero. Any element
that has the position attribute must have the notes attribute. For a detailed
explanation of the position attribute, see the HP DECset for OpenVMS Guide
to the Code Management System.

concurrent
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating the access to the element. Set the flag to 1
to allow concurrent reservations of the element. Set the concurrent flag
to 0 to prohibit concurrent reservations. By default, the existing concurrency
characteristic is not changed.

CMS Routine Descriptions 2–127

CMS$MODIFY_ELEMENT

reference_copy
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS is to maintain a reference copy of the
element when a new main line generation is created. If you set the flag to 1,
CMS creates a reference copy for the element and enables the reference_copy
attribute for the element. If you set the flag to 0, CMS deletes the reference
copy and disables the reference copy attribute from the element.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

review
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS is to automatically mark new
generations as pending review. By default, the flag is set to 0, and CMS
marks new generations of the element as pending review only if the reviewed
generation was either rejected or has a review pending. Set the flag to 1 to
indicate that new generations should be marked for review.

Description

The CMS$MODIFY_ELEMENT routine changes the characteristics of one or
more elements. You can alter the following characteristics:

• Concurrent access to the element

• The history string inserted in the element history when the element is
reserved or fetched

• The notes string and related position attribute

2–128 CMS Routine Descriptions

CMS$MODIFY_ELEMENT

• The element name

• The creation remark stored in the library history

• The reference copy attribute of the element

• The review attribute of the element

You must specify one or more of the new_name, new_remark, concurrent,
history, notes, position, reference_copy, or review arguments in the call
to CMS$MODIFY_ELEMENT. If a generation of the element is currently
reserved, you can change only the remark, reference copy, and review
attributes of the element.

If you specify the new_name, notes and position, or history arguments, the
reference copy directory is updated (provided the reference copy attribute is
set).

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRMODIFIES CMS modified zero or more
elements, but encountered one or
more errors during the transaction.

Error

CMS$_MODIFICATIONS CMS modified one or more
elements.

Success

CMS$_MODIFIED CMS modified the element. Success
CMS$_NOMODIFY CMS did not modify the element. Error
CMS$_NOREF Error accessing the library. Error

CMS Routine Descriptions 2–129

CMS$MODIFY_GENERATION

CMS$MODIFY_GENERATION

Alters information associated with one or more generations of an element.

Format

CMS$MODIFY_GENERATION (library_data_block,
element_expression,
[remark],
[generation_expression],
new_remark,
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements whose generations are to
be modified. Wildcards and a comma list are allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the particular generation to be modified. By default, the most recent
generation on the main line of descent is modified.

2–130 CMS Routine Descriptions

CMS$MODIFY_GENERATION

new_remark
type: char_string
access: read
mechanism: by descriptor

Specifies a new remark to be stored with the generation being modified. You
must specify this argument. The remark associated with the element is not
altered, even if you modify the remark for generation 1. To change the remark
associated with the element, use the CMS$MODIFY_ELEMENT routine. If
you change this remark, the remark associated with the element is not altered.
To change the remark associated with the element, use the routine
CMS$MODIFY_ELEMENT.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$MODIFY_GENERATION routine enables you to change the remark
associated with each generation of an element in the library.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRMODIFIES CMS modified zero or more
generations, but encountered errors
during the transaction.

Error

CMS$_MODIFICATIONS CMS modified one or more
generations.

Success

CMS$_MODIFIED CMS modified the generation. Success
CMS$_NOMODIFY CMS did not modify the specified

generation.
Error

CMS$_NOREF Error accessing the library. Error

CMS Routine Descriptions 2–131

CMS$MODIFY_GROUP

CMS$MODIFY_GROUP

Alters the information associated with one or more groups.

Format

CMS$MODIFY_GROUP (library_data_block,
group_expression,
[remark],
[new_name],1

[new_remark],1

[read_only],1

[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

group_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups to be modified. Wildcards and a comma list are
allowed, unless you specify new_name.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

1 At least one of these arguments is required.

2–132 CMS Routine Descriptions

CMS$MODIFY_GROUP

new_name
type: char_string
access: read
mechanism: by descriptor

Specifies the new name of the group. You cannot specify wildcards or a comma
list. If you specify this argument, you cannot specify wildcards or a comma list
in the group_name argument.

new_remark
type: char_string
access: read
mechanism: by descriptor

Specifies a new remark to be substituted for the existing creation remark for
the group.

read_only
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that changes the access to the group. If you set the flag to 1,
CMS sets the group to READ_ONLY. If you set the flag to 0, CMS sets the
group to NOREAD_ONLY. By default, the existing access is not changed.

If you want to change the attributes of a READ_ONLY group, you can set the
read_only flag to 0 in the same call that you use to change other attributes.
In addition, you can change the attributes of a NOREAD_ONLY group and set
the group to READ_ONLY in the same call.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

CMS Routine Descriptions 2–133

CMS$MODIFY_GROUP

Description

The CMS$MODIFY_GROUP routine changes the characteristics of one or more
groups. You can alter the following characteristics:

• The name of the group.

• The remark associated with the CREATE GROUP command for the
specified group.

• The access to the group (READ_ONLY or NOREAD_ONLY). You cannot
change the contents of a group set to READ_ONLY access.

You must specify one or more of the new_name, new_remark, or
read_only arguments in the call to CMS$MODIFY_GROUP. If a group is set
to NOREAD_ONLY, you must change it to READ_ONLY to change any other
characteristics.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRMODIFIES CMS modified zero or more groups,
but encountered one or more errors
during the transaction.

Error

CMS$_MODIFICATIONS CMS modified one or more groups. Success
CMS$_MODIFIED CMS modified the group. Success
CMS$_NOMODIFY CMS did not modify the group. Error
CMS$_NOREF Error accessing the library. Error

2–134 CMS Routine Descriptions

CMS$MODIFY_LIBRARY

CMS$MODIFY_LIBRARY

Changes the characteristics of a CMS library.

Format

CMS$MODIFY_LIBRARY (library_data_block,
[remark],
reference_copy_dir,
[msg_routine],
[revision_time],
[concurrent],
[0],
[keep],
[extended_filenames],
[long_variant_names])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

reference_copy_dir
type: char_string
access: read
mechanism: by descriptor

Specifies a valid OpenVMS directory to be used for reference copies of elements,
or a zero-length string to disable the reference copy directory. The directory
cannot be a CMS library. Wildcards are not allowed. This argument is
required.

CMS Routine Descriptions 2–135

CMS$MODIFY_LIBRARY

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

revision_time
type: longword_signed
access: read
mechanism: by reference

Controls whether CMS uses the original file revision time or the file storage
time when a file is created in the CMS library. The default flag is set to 0,
indicating the use of the original file revision time. Set the flag to 1 to use the
file storage time.

concurrent
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating access to the elements. By default, the flag is
set to 0, and CMS allows concurrent reservations of the elements. Set the
concurrent flag to 1 to prohibit concurrent reservations across the library,
unless an individual element setting overrides it.

0
type: reserved for CMS
access: reserved for CMS
mechanism: by value

Specifies a required argument reserved for use by CMS. You must either
pass a value of 0, or include a placeholder for this argument in the call to
the CMS$CREATE_LIBRARY routine, so that the call frame entry for this
argument contains a 0.

keep
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that prevents CMS from deleting copies of the input file after
the element is created. By default, the flag is set to 0, indicating that CMS
should delete all the copies of the file in your default directory (or the area

2–136 CMS Routine Descriptions

CMS$MODIFY_LIBRARY

indicated by the input_file argument) after creating the new element. Set the
flag to 1 to prevent CMS from deleting input files across the library, unless an
individual element setting overrides it.

extended_filenames
type: longword_signed
access: read
mechanism: by reference

Only valid on OpenVMS versions that support extended file specifications.
The default 0 value does not allow extended file names. The value 1 allows
extended file names.

long_variant_names
type: mask_longword
access: read
mechanism: by reference

Specifies whether variant names longer than a single character are allowed.
The default value 0 does not allow long variant names. The value 1 allows
variant names up to 255 alphabetic characters in length.

Description

The CMS$MODIFY_LIBRARY routine alters the connection between the
reference copy directory and the CMS library.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_MODIFIED CMS modified the library. Success
CMS$_NOMODIFY CMS did not modify the library. Error
CMS$_NOREF Error accessing the specified

library.
Error

CMS$_NOEXTENDED This version of CMS does not allow
the use of extended file names.

Error

CMS$_
NOEXTENDEDREF

The reference copy directory is
located on a disk that does not
allow the use of extended file
names.

Error

CMS Routine Descriptions 2–137

CMS$MODIFY_LIBRARY

Return Code Description Status

CMS$_EXTFOUND The library contains extended file
names and cannot be set to no
extended file names.

Error

2–138 CMS Routine Descriptions

CMS$MODIFY_RESERVATION

CMS$MODIFY_RESERVATION

Alters the remark information associated with one or more reservations.

Format

CMS$MODIFY_RESERVATION (library_data_block,
element_expression,
[generation_expression],
[identification_number],
[modify_command_remark],
new_remark_for_reservation,
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements whose reservation
remarks are to be changed. Wildcards and a comma list are allowed.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library.

generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the generation of an element reservation that is to be changed.

CMS Routine Descriptions 2–139

CMS$MODIFY_RESERVATION

identification_number
type: longword_signed
access: read
mechanism: by reference

Specifies the reserved generation of the element whose remark is to be
changed. CMS assigns a unique reservation identification number to each
element when it is reserved. If an element generation has only one reservation,
you can replace that reservation by specifying the generation expression.
However, if multiple reservations exist for the element generation, you must
specify the identification number of the exact reservation to be replaced.
Use the CMS$SHOW_RESERVATIONS routine to determine the reservation
number of a generation.

modify_command_remark
type: char_string
access: read
mechanism: by descriptor

Specifies the new remark string to be logged in the history file along with the
command.

new_remark_for_reservation
type: char_string
access: read
mechanism: by descriptor

Specifies the new remark string to replace the remark string currently
associated with the reservation.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

2–140 CMS Routine Descriptions

CMS$MODIFY_RESERVATION

Description

The CMS$MODIFY_RESERVATION routine alters the remark string currently
associated with one or more reservations. new_remark_for_reservation
contains a string that is used to replace the remark currently associated with
the reservation identified by element_expression, generation_expression,
and identification_number.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRMODIFIES CMS modified zero or more element
reservations but encountered one or
more errors during the transaction.

Error

CMS$_MODIFICATIONS CMS modified one or more element
reservations.

Success

CMS$_MODIFIED CMS modified the specified element
reservation.

Success

CMS$_NOMODIFY CMS did not modify the element
reservation.

Error

CMS$_NOREF Error accessing the library. Error

Example

INTEGER*4 LDB(50)
CHARACTER*50 ELEMENTNAME

NEWREMARK
ELEMENTNAME=’SAMPLE.C’
NEWREMARK=’FIXING PROBLEM REPORT 154’

CALL CMS$MODIFY_RESERVATION(LDB, ELEMENTNAME,,,, NEWREMARK,)

This call to CMS$MODIFY_RESERVATION finds the latest generation of the
element sample.c in the library specified by CMS$LIB. It then checks the
reservation for the current user and replaces the original reservation remark
with the new remark value, as declared by NEWREMARK.

CMS Routine Descriptions 2–141

CMS$PUT_STRING

CMS$PUT_STRING

Passes a string from a callback routine to CMS.

Format

CMS$PUT_STRING (string)

Arguments

string
type: char_string
access: read
mechanism: by descriptor

Specifies a string to be passed to CMS.

Description

The CMS$PUT_STRING routine provides the method of passing strings
to CMS from within a callback routine. You must use this routine within
the callback routines that provide input for the CMS$CREATE_ELEMENT,
CMS$DIFFERENCES, and CMS$REPLACE routines.

CMS accepts only one input string during a single execution of an input
callback routine. Thus, you should call CMS$PUT_STRING only once during a
single execution of a callback routine. CMS returns CMS$_NORMAL after the
first call to CMS$PUT_STRING. If you call CMS$PUT_STRING again before
the callback routine returns control to CMS, the string buffer is overwritten
with the new string. In this case, CMS returns CMS$_MULTCALL with a
warning severity level.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_MULTCALL You have called
CMS$PUT_STRING more than
once during a single invocation of
an input callback routine.

Warning

2–142 CMS Routine Descriptions

CMS$PUT_STRING

Example

INTEGER*4 FUNCTION INPUT_ROUTINE (FIRST_CALL,LIBDB,USER_PARAM,
1 ELEMENT_ID,EOF_STATUS,SEQUENCE_FLAG,SEQUENCE_NUM)

IMPLICIT INTEGER*4 (A-Z)
EXTERNAL CMS$PUT_STRING
INTEGER*4 LIBDB(50)
CHARACTER*80 DATA_LINE
LOGICAL FIRST_CALL

IF (FIRST_CALL) CALL OPEN_FILE 1
READ (1,END=100) DATA_LINE
CALL CMS$PUT_STRING(DATA_LINE) 2
INPUT_ROUTINE = 1
GO TO 200

100 EOF_STATUS = %LOC(CMS$_EOF) 3
CALL CLOSE_FILE
INPUT_ROUTINE = 1
RETURN

200
END

Key to Example:

1 During the first invocation of the input routine, a routine is called to open
the input file.

2 The string supplied by the READ statement is passed to CMS with the
CMS$PUT_STRING routine.

3 When end-of-file is encountered by the READ statement, eof_status is set,
the input file is closed, and control is transferred back to CMS.

For additional examples of programs that contain calls to the
CMS$PUT_STRING routine, see Appendix B.

CMS Routine Descriptions 2–143

CMS$REMARK

CMS$REMARK

Places a remark in the library history.

Format

CMS$REMARK (library_data_block,
remark,
[msg_routine],
[unusual])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.
This argument is required.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

unusual
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the transaction is unusual, and marks it
as an unusual occurrence in the history file with the command. Set the flag to
1 if the transaction is unusual. Otherwise, set it to 0. By default, the remark
is not an unusual occurrence.

2–144 CMS Routine Descriptions

CMS$REMARK

Description

The CMS$REMARK routine adds a remark to the library history. You can
include up to 1,000 characters in a remark string. The remark is recorded in
the library history in the following format:

date time username REMARK "remark"

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_NOREF Error accessing the library. Error
CMS$_NOREMARK CMS did not enter the remark in

the library history.
Error

CMS$_REMARK CMS entered the remark in the
library history.

Success

CMS Routine Descriptions 2–145

CMS$REMOVE_ELEMENT

CMS$REMOVE_ELEMENT

Removes one or more elements from each specified group.

Format

CMS$REMOVE_ELEMENT (library_data_block,
element_expression,
group_expression,
[remark],
[if_present],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements to be removed. Wildcards
and a comma list are allowed.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library.

group_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups from which the elements (indicated by
element_expression) are to be removed. Wildcards and a comma list are
allowed.

2–146 CMS Routine Descriptions

CMS$REMOVE_ELEMENT

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

if_present
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to remove the element from the group only if
it already belongs to the group. If you set the flag to 1 and the element does
not belong to the group, CMS returns CMS$_NORMAL. If you use wildcards in
the element_expression argument, CMS ignores the value of the if_present
flag and assumes the value to be 1. If you specify a single element, do not
specify if_present (or if you set the flag to 0), and the element does not belong
to the group, CMS returns an error.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$REMOVE_ELEMENT routine removes one or more elements from
each specified group. The routine does not delete the elements from the library,
but there is no longer any association between the elements and the groups.
You cannot remove any elements from a group that has the READ_ONLY
attribute. For information on the READ_ONLY and NOREAD_ONLY
attributes, see the description of the CMS$MODIFY_GROUP routine.

CMS Routine Descriptions 2–147

CMS$REMOVE_ELEMENT

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERREMOVALS CMS removed zero or more
elements, but encountered one or
more errors during the transaction.

Error

CMS$_NOREF Error accessing the library. Error
CMS$_NOREMOVAL CMS did not remove the element. Error
CMS$_REMOVALS CMS removed one or more

elements.
Success

CMS$_REMOVED CMS removed the element. Success

2–148 CMS Routine Descriptions

CMS$REMOVE_GENERATION

CMS$REMOVE_GENERATION

Removes one or more element generations from each specified class.

Format

CMS$REMOVE_GENERATION (library_data_block,
element_expression,
class_expression,
[remark],
[if_present],
[msg_routine],
[generation])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements whose generations are to
be removed. Wildcards and a comma list are allowed.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library.

class_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more classes from which the element generation is to be
removed. Wildcards and a comma list are allowed.

CMS Routine Descriptions 2–149

CMS$REMOVE_GENERATION

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

if_present
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to remove the element generation from the
class only if it already belongs to the class. If you set the flag to 1 and the
class does not contain a generation from the element, CMS returns
CMS$_NORMAL. If you use wildcards in the element_expression argument,
CMS ignores the value of the if_present flag and assumes the value to be 1. If
you specify a single element, do not specify if_present (or if you set the flag to
0), and the element does not belong to the class, CMS returns an error.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

generation
type: char_string
access: read
mechanism: by descriptor

Specifies a string descriptor containing the generation to be removed. CMS
returns an error if the generation is not located in the class, and if the
element_expression argument does not contain a wildcard or a group.

Description

The CMS$REMOVE_GENERATION routine removes one or more element
generations from each specified class. The routine does not delete the element
or the generation from the library, but the generation is no longer associated
with the class. You cannot remove any generations from a class that has the
READ_ONLY attribute.

2–150 CMS Routine Descriptions

CMS$REMOVE_GENERATION

For information on the READ_ONLY and NOREAD_ONLY attributes, see the
description of the CMS$MODIFY_CLASS routine.

To remove one element generation from a class and replace it with another
generation of the same element, specify the supersede argument to the
CMS$INSERT_GENERATION routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERREMOVALS CMS removed zero or more
generations, but encountered one or
more errors during the transaction.

Error

CMS$_GENNOREMOVE CMS did not remove the
generation.

Error

CMS$_GENREMOVED CMS removed the generation. Success
CMS$_NOREF Error accessing the library. Error
CMS$_REMOVALS CMS removed one or more

generations.
Success

CMS Routine Descriptions 2–151

CMS$REMOVE_GROUP

CMS$REMOVE_GROUP

Removes one or more groups from another group or groups.

Format

CMS$REMOVE_GROUP (library_data_block,
sub_group_expression,
group_expression,
[remark],
[if_present],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

sub_group_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups to be removed from group_expression.
Wildcards and a comma list are allowed.

group_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups from which sub_group_expression is to be
removed. Wildcards and a comma list are allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

2–152 CMS Routine Descriptions

CMS$REMOVE_GROUP

if_present
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to remove sub_group_expression from
group_expression only if it belongs to the group. If you set the flag to 1 and
group_expression does not contain sub_group_expression, CMS returns
CMS$_NORMAL. When either group name contains wildcards, CMS ignores
the value of the if_present flag and assumes the value to be 1. If you specify
a single group, do not specify if_present (or if you set the if_present flag to
0), and sub_group_expression does not belong to group_expression, CMS
returns an error.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$REMOVE_GROUP routine removes one or more groups from
another group or groups. The routine does not delete the group from the
library, but there is no longer any association between the respective groups.
You cannot remove any groups from a group that has the
READ_ONLY attribute. For information on the READ_ONLY and
NOREAD_ONLY attributes, see the description of the CMS$MODIFY_GROUP
routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERREMOVALS CMS removed zero or more groups,
but encountered one or more errors
during the transaction.

Error

CMS$_NOREF Error accessing the library. Error
CMS$_NOREMOVAL CMS did not remove the group. Error
CMS$_REMOVALS CMS removed one or more groups. Success

CMS Routine Descriptions 2–153

CMS$REMOVE_GROUP

Return Code Description Status

CMS$_REMOVED CMS removed the group. Success

2–154 CMS Routine Descriptions

CMS$REPLACE

CMS$REPLACE

Returns one or more reserved generations to the library and creates a new
generation of one or more elements to identify the changes.

Format

CMS$REPLACE (library_data_block,
element_expression,
[remark],
[variant],
[reserve],
[keep],
[input_file],
[input_routine],
[user_arg],
[msg_routine],
[if_changed],
[generation_expression],
[identification_number],
[insert_into_class])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more reserved elements or groups of elements to be replaced.
Wildcards and a comma list are allowed.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library.

CMS Routine Descriptions 2–155

CMS$REPLACE

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

variant
type: char_string
access: read
mechanism: by descriptor

Specifies an alphabetic character used to label the variant line of descent. If
you specify this argument, CMS starts a variant line of descent. The number
of the new generation is the predecessor’s number, followed by the variant
letter, followed by the numeral 1.

If an element generation is reserved more than once, the replaced generations
cannot be on the same line of descent. Thus, one can be replaced as a direct
descendant of the reserved generation and the rest must be replaced as
variants.

reserve
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to extend the reservation established for the
generation. By default, the flag is set to 0, and CMS does not reserve the new
generation. Set the reserve flag to 1 to extend the reservation. In this case,
CMS ignores the value of the keep flag and does not delete the file used to
create the new generation.

keep
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that prevents CMS from deleting the input files. If you set the
value of the flag to 1, CMS does not delete the files. By default, the flag is set
to 0 and CMS deletes the files across the library, unless an individual element
setting overrides it.

Note that if you set the reserve flag to 1, CMS does not delete the file,
regardless of the value of the keep flag.

2–156 CMS Routine Descriptions

CMS$REPLACE

input_file
type: char_string
access: read
mechanism: by descriptor

Specifies the location of the file whose contents are used to create a new
generation of the element whose reservation is being replaced. If you specify
an input file, you cannot also specify an input routine. Wildcards are allowed.

Use this argument if the input file name is different from the name of the
reserved generation’s element, or if the file is in some directory other than your
current, default directory. If you provide a directory specification, but no file
name or file type, CMS searches the specified directory for a file with the same
name as the element whose generation is being replaced. When you specify
an input file in an alternate directory, CMS deletes the file from the alternate
location (unless you specify the keep or reserve argument).

input_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine that provides data for the CMS$REPLACE
transaction. CMS calls this routine once for each line of data until the callback
routine indicates the end of the file. If you specify an input routine, you cannot
also specify an input file. See Section 1.6 for information about the parameters
that CMS passes to the input routine.

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the input_routine
argument, using the same mechanism that you used to pass it to CMS.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

CMS Routine Descriptions 2–157

CMS$REPLACE

if_changed
type: longword_signed
access: read
mechanism: by reference

Specifies that a new generation is to be created only if the input file is different
from the generation that was reserved. If there are no changes, the reservation
is canceled (the generation is unreserved) and the input file is not deleted.
By default, a new generation is created, regardless of the existence of any
differences.

generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the reserved generation of the element to be replaced into the
library. This argument can be used when you have multiple reservations on
the same element, but not on the same generation of the same element. If
multiple reservations exist for the element generation, you must specify the
identification number of the exact reservation to be unreserved (canceled).

identification_number
type: longword_signed
access: read
mechanism: by reference

Specifies the reserved generation of the element to be replaced into the library.
CMS assigns a unique reservation identification number to each element when
it is reserved. If an element generation has only one reservation, you can
replace that reservation by specifying the generation expression. However,
if multiple reservations exist for the element generation, you must specify
the identification number of the exact reservation to be replaced. Use the
CMS$SHOW_RESERVATIONS routine to determine the reservation number of
a generation.

insert_into_class
type: char_string
access: read
mechanism: by descriptor

Specifies one or more classes into which newly created generations are to be
inserted. Wildcards and a comma list are allowed.

2–158 CMS Routine Descriptions

CMS$REPLACE

Callback Routine Parameters
When you write an input routine to provide data for CMS$REPLACE, CMS
passes the following parameters in the order shown with each call to
input_routine:

(first_call, library_data_block, user_param, element_id,
eof_status, sequence_flag, sequence_number)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

first_call
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the input routine is
the first call. CMS sets the flag to 1 if it is the first call. Otherwise, it is set to
0.

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$REPLACE. If you did not
specify a user argument, this parameter points to a read-only storage location
containing the value 0. CMS passes user_param to your routine using the
same mechanism that you used to pass it to CMS$REPLACE.

element_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the element name. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

CMS Routine Descriptions 2–159

CMS$REPLACE

When you use a callback routine to replace an element, CMS passes the name
of the element in this parameter. If you are replacing more than one element
(by specifying a group name, wildcards, or a comma list in the
element_expression argument in the call to CMS$REPLACE), CMS advances
to the next reservation each time you set the eof_status parameter to true (1).

eof_status
type: longword_signed
access: modify
mechanism: by reference

Specifies the end-of-file status. The input routine must change the value
of eof_status from false (0) to true (1) to indicate to CMS that input is
terminated. When eof_status is true, CMS ignores the contents of the current
input record (passed by CMS$PUT_STRING). Therefore, you must set
eof_status to true in the call following the last significant input record. See
Section 1.6.3.1 for more information on specifying the end of input.

When you indicate that you are replacing more than one element (by using
a group name or wildcard expression), CMS builds the list of elements to be
replaced by comparing the element expression with the list of elements that
you have reserved. As the transaction progresses, you must set eof_status at
the appropriate time to direct CMS to finish the current element replacement
and continue to the next element on the list.

sequence_flag
type: longword_signed
access: write
mechanism: by reference

Specifies a flag that directs CMS to create a sequenced element generation. By
default, the flag is set to 0, indicating that input is not sequenced. Set the flag
to 1 to direct CMS to create a sequenced element generation.

sequence_number
type: longword_signed
access: write
mechanism: by reference

Specifies a location that you fill in with a signed integer that indicates the
sequence number of the line being replaced. This is a value in the range 1 to
65,536.

2–160 CMS Routine Descriptions

CMS$REPLACE

Description

The CMS$REPLACE routine transfers the latest version of a file corresponding
to a reserved element generation from your current, default directory to your
CMS library, thus creating a new generation. You can direct CMS to use a
file in a different location by specifying the input_file argument. After the
reservation is replaced, CMS deletes the file used to create the new generation
(and any earlier versions of the file in the same directory). If you specify
either the keep or the reserve argument, CMS does not delete the file. The
element must have been reserved by the user who is replacing it, unless you
have BYPASS access to the element (see the HP DECset for OpenVMS Guide
to the Code Management System). After the replace transaction is completed,
the reservation is ended. CMS stores the creation date and time, revision
date and time, and file revision number of the file used to create the new
generation. When you fetch or reserve an element generation, CMS restores
the times and file revision number associated with the file used to create
the element generation. You can also obtain this information by using the
CMS$SHOW_GENERATION routine.

By default, the number of the new generation is the number of its predecessor
with the rightmost level number increased by 1.

When making a concurrent replacement, you must specify the
confirm_routine argument in the call to CMS$SET_LIBRARY or
CMS$CREATE_LIBRARY (before calling CMS$REPLACE), or you are
not warned of any concurrent reservations, and the replace transaction
continues. To receive a confirmation prompt when there are existing concurrent
reservations, you must specify the routine in the call to CMS$SET_LIBRARY
or CMS$CREATE_LIBRARY.

When you use a callback routine to provide input for CMS$REPLACE, CMS
uses the time of the replacement transaction as the file creation and revision
times associated with the new generation of the element. CMS also uses the
following record format and record attributes when you use a callback input
routine. If you provide unsequenced input, the new generation of the element
has variable-length records with the carriage return record attribute. If you
provide sequenced input, the element generation has VFC 2-byte records with
the carriage return record attribute (contains variable-length records–first two
bytes are the length of the record).

If the element you are replacing has the reference copy attribute enabled,
CMS updates the reference copy for the element in the reference copy directory.

CMS Routine Descriptions 2–161

CMS$REPLACE

Replacing an Element Generation with the History or Notes Attribute
If you reserve a generation of an element with the history attribute and then
replace it, the REPLACE command strips the history records from the input
file before creating the new generation. That is, it does not copy the history
into your CMS library. If you add text to the file in or above the history
(relative to #B), or in or below the history (relative to #H), the REPLACE
command issues an error message and the command is not executed.

If you reserve a file with embedded notes and then replace it, the REPLACE
command does not copy the notes to the CMS library. If, while editing the file,
you insert text that looks like an embedded note, it is deleted when the file is
replaced.

For more information about concurrent reservations and replacements, and for
information on embedded histories and notes, see the HP DECset for OpenVMS
Guide to the Code Management System.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERREPLACEMENTS CMS replaced zero or more
elements, but encountered one or
more errors during the transaction.

Error

CMS$_GENCREATED CMS replaced the element. Success
CMS$_NOCHANGE CMS did not change the

element, but did reserve it.
Success

CMS$_NOREF Error accessing the library. Error
CMS$_NOREPLACE CMS did not replace the

element.
Error

CMS$_REPLACEMENTS CMS replaced one or more
elements.

Success

CMS$_USERERR User routine returned an error to
CMS.

Error

2–162 CMS Routine Descriptions

CMS$RETRIEVE_ARCHIVE

CMS$RETRIEVE_ARCHIVE

Retrieves one or more generations from one or more archive files.

Format

CMS$RETRIEVE_ARCHIVE ([library_data_block],
archive_file_spec,
[generation_spec],
[output_file_spec],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies the LDB for the current library. This argument is optional.

archive_file_spec
type: char_string
access: read
mechanism: by descriptor

Specifies the address of a string descriptor containing the name of the archive
file. Wildcards and a comma list are allowed.

generation_spec
type: char_string
access: read
mechanism: by descriptor

Specifies the address of a string descriptor containing the number of the
generation to be retrieved from the archive file. Wildcards are allowed. By
default, if you do not specify a generation number on this argument, CMS
retrieves the latest generation of the archived element.

CMS Routine Descriptions 2–163

CMS$RETRIEVE_ARCHIVE

output_file_spec
type: char_string
access: read
mechanism: by descriptor

Specifies the address of a string descriptor containing the file specification of
an output file into which CMS retrieves the archived generations. Wildcards
are allowed. One version of the output file specification is created for each
generation retrieved.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Description

The CMS$RETRIEVE_ARCHIVE routine retrieves one or more generations
of an element from one or more archive files. By default, CMS restores the
latest generation of an existing element that has been archived. CMS puts the
generation into a file in your default directory and gives it the same name as
the element from which it was archived. You can override this default behavior
by using the output_file_spec argument.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRETRIEVALS CMS retrieved zero or more
generations, but one or more errors
occurred.

Error

CMS$_NORETRIEVE Error retrieving generation. Error
CMS$_NOTFOUND CMS could not find the specified

object.
Error

CMS$_RETRIEVALS CMS retrieved one or more
generations.

Success

CMS$_RETRIEVED Generation retrieved from archive
file.

Success

2–164 CMS Routine Descriptions

CMS$REVIEW_GENERATION

CMS$REVIEW_GENERATION

Associates a review comment with each specified element generation currently
under review, and enables you to change the review status of each specified
generation.

Format

CMS$REVIEW_GENERATION (library_data_block,
element_expression,
action,
[remark],
[generation_expression],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements whose generations are to
be reviewed. Wildcards and a comma list are allowed.

action
type: longword_signed
access: read
mechanism: by reference

Specifies the review action to be taken. The following table lists the possible
actions.

CMS Routine Descriptions 2–165

CMS$REVIEW_GENERATION

Action Description

CMS$K_ACCEPT = 0 Specifies that the generation, which must
currently have a review pending, is to be accepted
and removed from the pending review list.

CMS$K_CANCEL = 1 Specifies that the pending review for this
generation is to be canceled.

CMS$K_MARK = 2 Specifies that this generation is to be marked as
pending review, and placed on the review pending
list.

CMS$K_REJECT = 3 Specifies that the generation, which must
currently have a review pending, is to be rejected
and removed from the review pending list.

CMS$K_REVIEW = 4 Specifies that the remark be associated as a
review remark with the specified generation,
which must currently have a review pending.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file, and, if you specified
CMS$K_REVIEW as the action argument, the remark string is associated
with the generation.

generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies which generation is to be reviewed. If you do not specify this
argument, the element’s most recently created generation that has a review
pending will be reviewed, unless the action was CMS$K_MARK, in which case
the most recent generation on the main line of descent (1+) is marked.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

2–166 CMS Routine Descriptions

CMS$REVIEW_GENERATION

Description

The CMS$REVIEW_GENERATION routine causes a generation of an element
to undergo review, be placed on the library’s review pending list, or be removed
from the list and marked as accepted or rejected.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ACCEPTANCES CMS accepted one or more
generations.

Success

CMS$_ACCEPTED CMS accepted the generation. Success
CMS$_CANCELATIONS CMS canceled one or more reviews. Success
CMS$_CANCELED CMS canceled the review. Success
CMS$_ERRACCEPTANCES CMS accepted zero or more

generations, but encountered errors
during the transaction.

Error

CMS$_ERRCANCELATIONS CMS canceled zero or more reviews,
but encountered errors during the
transaction.

Error

CMS$_ERRMARKS CMS marked zero or more
generations, but encountered errors
during the transaction.

Error

CMS$_ERRREJECTIONS CMS rejected zero or more
generations, but encountered errors
during the transaction.

Error

CMS$_ERRREVIEWS CMS associated the review remark
with zero or more generations,
but encountered errors during the
transaction.

Error

CMS$_ILLACT Illegal review action specified. Error
CMS$_MARKED CMS marked the generation for

review.
Success

CMS$_MARKS CMS marked one or more
generations for review.

Success

CMS$_NOACCEPT CMS did not accept the specified
generation.

Error

CMS Routine Descriptions 2–167

CMS$REVIEW_GENERATION

Return Code Description Status

CMS$_NOCANCEL CMS did not cancel the specified
review.

Error

CMS$_NOMARK CMS did not mark the specified
generation.

Error

CMS$_NOREF Error accessing the library. Error
CMS$_NOREJECT CMS did not reject the specified

generation.
Error

CMS$_NOREVIEW CMS did not associate the review
remark with the generation.

Error

CMS$_REJECTED CMS rejected the generation. Success
CMS$_REJECTIONS CMS rejected one or more

generations.
Success

CMS$_REVIEWED CMS associated the review remark
with the generation.

Success

CMS$_REVIEWS CMS associated the review remark
with one or more generations.

Success

2–168 CMS Routine Descriptions

CMS$SET_ACL

CMS$SET_ACL

Manipulates the access control list (ACL) on various objects in the CMS library.

Format

CMS$SET_ACL (library_data_block,
object_type,
object_expression,
[remark],
[acl],
[after],
[default],
[delete],
[like],
[new],
[replace],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

object_type
type: longword_signed
access: read
mechanism: by reference

Specifies a value indicating what type of object is represented by
object_expression. There is no default type. The object type must be one of
the following values:

• CMS$K_ACL_ELEMENT = 1

• CMS$K_ACL_CLASS = 2

CMS Routine Descriptions 2–169

CMS$SET_ACL

• CMS$K_ACL_GROUP = 3

• CMS$K_ACL_LIBRARY = 4

• CMS$K_ACL_COMMAND = 5

object_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more objects whose ACLs are to be modified. Wildcards and a
comma list are allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

acl
type: char_string
access: read
mechanism: by descriptor

Specifies an ACL to be associated with the object.

after
type: char_string
access: read
mechanism: by descriptor

A string specifying the ACL in the existing ACL after which this new list
(specified by the acl argument) is to be added.

default
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates that the ACL to be placed on the object is the
default for objects of that type. By default, the flag is set to 0. You must set
the flag to 1 to place the default ACL on the objects.

2–170 CMS Routine Descriptions

CMS$SET_ACL

delete
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates that the ACL entry or entries (specified by the
acl argument) are to be removed from the object. If the acl argument is not
specified and delete is set to 1, the entire ACL is deleted. By default, the flag
is set to 0, indicating that the ACL entry remains on the object. You must set
the flag to 1 to remove the ACL from the object.

like
type: char_string
access: read
mechanism: by descriptor

A string specifying the object whose ACL is to be copied to this object. You
do not need to pass the acl argument if a value for like is passed. The object
specified by the like argument must be the same type as the object being
modified.

new
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates that the ACL (specified by the acl argument) is
to supersede any existing ACL on the object.

replace
type: char_string
access: read
mechanism: by descriptor

A string specifying the ACL entry or entries that should replace the access
control entries (ACEs) specified on the acl argument. Any ACEs specified on
the acl argument must be listed in the order in which they appear in the ACL.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

CMS Routine Descriptions 2–171

CMS$SET_ACL

Description

The CMS$SET_ACL routine manipulates the ACL associated with the specified
object. The action taken on the ACL depends on the parameters specified. The
after, default, delete, like, new, and replace arguments cannot be specified
in the same call.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRMODACLS CMS modified zero or more ACLs,
but encountered errors during the
transaction.

Error

CMS$_MODACL CMS modified the ACL. Success
CMS$_MODACLS CMS modified one or more ACLs. Success
CMS$_NOMODACL CMS did not modify the specified

ACL.
Error

CMS$_NOREF Error accessing the library. Error

2–172 CMS Routine Descriptions

CMS$SET_LIBRARY

CMS$SET_LIBRARY

Enables access to an existing CMS library. This routine initializes a library
data block for use with other CMS callable routines.

Format

CMS$SET_LIBRARY (library_data_block,
directory,
[msg_routine],
[verify],
[confirm_routine],
[output_routine],
[width],
[position],
[positional_dir_spec])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies a valid LDB. The LDB might not be initialized, depending on whether
you also specify the position and positional_dir_spec arguments.

If the position and positional_dir_spec arguments are specified, the LDB
must have already been initialized by a previous call to
CMS$CREATE_LIBRARY or CMS$SET_LIBRARY. If the position and
positional_dir_spec arguments are not specified, the LDB is initialized by
this call and points to the specified directory.

directory
type: char_string
access: read
mechanism: by descriptor

Specifies a single directory, or a list of directories separated by commas. Each
must contain a valid CMS library. If the directory argument specifies a
logical name, it must translate into one or more library directory specifications.
Wildcards are not allowed.

CMS Routine Descriptions 2–173

CMS$SET_LIBRARY

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

verify
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that causes CMS to perform validity checking on the CMS
library. If you do not specify this argument, the flag is set to 1, and CMS
performs validity checking. If you set the flag to 0, CMS suppresses validity
checking. Validity checking improves performance and avoids the possibility of
waiting for a locked library.

confirm_routine
type: procedure
access: read
mechanism: by reference

Specifies the address of the entry mask of a confirmation callback routine.
Specify this argument to confirm an action such as a delete or replace
transaction.

output_routine
type: procedure
access: read
mechanism: by reference

Specifies the address of the entry mask of a terminal output callback routine.

width
type: longword_signed
access: read
mechanism: by reference

Specifies the maximum width of text that can be sent to the output callback
routine. If this argument is not specified, the terminal width is used. If this is
unavailable, the width defaults to the translation of CMS$WIDTH (if defined),
or to 132 characters.

2–174 CMS Routine Descriptions

CMS$SET_LIBRARY

position
type: longword_signed
access: read
mechanism: by reference

Specifies the position value to be used with the positional_dir_spec
argument. The position value determines the position in the library search list
at which the new library or libraries are to be inserted, or whether the new
library or libraries are to supersede the existing library search list.

The following table shows the possible values and corresponding results. You
can specify only one of the following values.

Value Result

0 Indicates that a new library or libraries should supersede the
existing library list. This is the default.

1 Indicates that the new library or libraries should be inserted after
an existing library in the library search list specified with the
positional_dir_spec argument.

2 Specifies that the new library or libraries should be inserted before
an existing library in the library search list specified with the
positional_dir_spec argument.

positional_dir_spec
type: char_string
access: read
mechanism: by descriptor

Specifies the name of a library in the current library search list before or after
which the new library or libraries are to be inserted (depending on the value of
the position argument).

If you omit the positional_dir_spec argument and specify a value of 1 for the
position argument, new libraries are appended to the existing library search
list. If you omit the positional_dir_spec argument and specify a value of 2
for the position argument, new libraries are inserted at the beginning of the
existing library search list. If the position argument is omitted or has the
value 0, the positional_dir_spec argument is ignored.

CMS Routine Descriptions 2–175

CMS$SET_LIBRARY

Description

The CMS$SET_LIBRARY routine establishes a CMS library search list context
with one or more CMS library directories. You should call
CMS$SET_LIBRARY before you make calls to any other routines. Once the
search list context has been established, you can use the resulting LDB in
calls to other CMS routines. The specified directories must contain valid CMS
libraries that were created with the CMS$CREATE_LIBRARY routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_CONTROLC Ctrl/C interrupt has been handled. Warning
CMS$_LIBSET Successful completion. (This

message is not passed to the
message handler.)

Success

CMS$_NOREF Error accessing the library. Error

2–176 CMS Routine Descriptions

CMS$SET_NOLIBRARY

CMS$SET_NOLIBRARY

Removes one or more libraries from the current library search list.

Format

CMS$SET_NOLIBRARY (library_data_block,
[directory])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

directory
type: char_string
access: read
mechanism: by descriptor

Specifies a single directory, or a list of directories separated by commas. Each
must contain a valid CMS library. If this argument specifies a logical name, it
must translate into one or more library directory specifications. Wildcards are
not allowed.

Description

The CMS$SET_NOLIBRARY routine removes one or more libraries from the
current library search list (see the HP DECset for OpenVMS Guide to the
Code Management System for more information on library search lists). This
routine should be called after all other calls to CMS routines have been made
to deallocate the virtual memory used to store the CMS library search list
context.

If you do not specify a directory, all the libraries in the library search list
are removed from the search list and the LDB becomes invalid. In this
case, you must reinitialize the LDB with a CMS$CREATE_LIBRARY or
CMS$SET_LIBRARY command before reusing it in subsequent calls to other
CMS routines.

CMS Routine Descriptions 2–177

CMS$SET_NOLIBRARY

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_LIBLISMOD One or more libraries have been
removed from the library list.

Informational

CMS$_LIBLISNOTMOD One or more libraries have not
been removed from the library list.

Informational

2–178 CMS Routine Descriptions

CMS$SHOW_ACL

CMS$SHOW_ACL

Displays the ACL associated with one or more specified objects.

Format

CMS$SHOW_ACL (library_data_block,
output_routine,
object_type,
[user_arg],
[object_expression],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine to process the output of CMS$SHOW_ACL. You
must specify this routine. See Section 1.6 for information about the parameters
that CMS passes to the output routine.

object_type
type: longword_signed
access: read
mechanism: by reference

A value indicating what type of object is represented by object_expression.
There is no default type. The object type must be one of the following values:

• CMS$K_ACL_ELEMENT = 1

• CMS$K_ACL_CLASS = 2

CMS Routine Descriptions 2–179

CMS$SHOW_ACL

• CMS$K_ACL_GROUP = 3

• CMS$K_ACL_LIBRARY = 4

• CMS$K_ACL_COMMAND = 5

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine
argument, using the same mechanism you used to pass it to CMS.

object_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more objects whose ACLs are to be displayed. Wildcards and a
comma list are allowed.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Callback Routine Parameters
You must provide an output routine to process the output of
CMS$SHOW_ACL. CMS passes the following parameters in the order shown
with each call to output_routine:

(first_call, library_data_block, user_param, object_id, ace_id)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

2–180 CMS Routine Descriptions

CMS$SHOW_ACL

first_call
type: longword_unsigned
access: read
mechanism: by reference

Indicates whether the current call to the output routine contains information
about a new ACL. The value of this parameter also indicates whether it is the
first call to the output routine. The following table shows the possible values of
this argument:

Value Result

0 Indicates that the call contains the first ACE of a new ACL (after the
first call).

1 Indicates the first call to the output routine. The ace_id argument
contains the first ACE of the first ACL.

2 Indicates that the call contains the next ACE in the current ACL.

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_ACL. If you
did not specify a user argument, this parameter points to a read-only storage
location containing the value 0. CMS passes user_param to your routine
using the same mechanism that you used to pass it to CMS$SHOW_ACL.

object_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the object name. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

CMS Routine Descriptions 2–181

CMS$SHOW_ACL

ace_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the object’s ACL entry. Use the
CMS$GET_STRING routine to translate the string identifier.

Description

The CMS$SHOW_ACL routine retrieves and passes the ACL for the specified
object to the output routine one ACE at a time.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRPAREXP Error parsing element
expression.

Error

CMS$_ILLOBJTYP Illegal object type. Error
CMS$_NOCLS No classes found. Warning
CMS$_NOCMD No commands found. Warning
CMS$_NOELE No elements found. Warning
CMS$_NOGRP No groups found. Warning
CMS$_NOOBJ No objects found. Warning
CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified

object.
Error

CMS$_NOWLDCARD Wildcards are not allowed in
generation expressions.

Error

2–182 CMS Routine Descriptions

CMS$SHOW_ARCHIVE

CMS$SHOW_ARCHIVE

Displays information about the contents of one or more archive files.

Format

CMS$SHOW_ARCHIVE (archive_file_spec,
output_routine,
[user_arg],
[msg_routine])

Arguments

archive_file_spec
type: char_string
access: read
mechanism: by descriptor

Specifies the address of a string descriptor containing the name of one or more
archive files. Wildcards and a comma list are allowed.

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine to process the output of CMS$SHOW_ARCHIVE.

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine
argument, using the same mechanism you used to pass it to CMS.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

CMS Routine Descriptions 2–183

CMS$SHOW_ARCHIVE

Callback Routine Parameters
You must provide an output routine to process the output of CMS$SHOW_
ARCHIVE. CMS passes the following parameters in the order shown with each
call to output_routine:

(new_file, user_param, archive_history_id, generation_id,
user_name_id, trans_time, creation_time, revision_time,
remark_id, format, attributes, revision_number,
record_size, review_status)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

new_file
type: longword_signed
access: read
mechanism: by reference

Indicates whether the current call to the output routine contains information
about a new archive file. The value of this parameter also indicates whether
it is the first call to the output routine. The following table shows the possible
values of this argument.

Value Result

0 Indicates that the call contains generation information about a new
archive file (after the first call).

1 Indicates the first call to the output routine.
2 Indicates that the call contains information about the same file as

the previous call.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_ARCHIVE. If you
did not specify a user argument, this parameter points to a read-only storage
location containing the value 0. CMS passes this argument to your routine
using the same mechanism that you used to pass it to
CMS$SHOW_ARCHIVE.

2–184 CMS Routine Descriptions

CMS$SHOW_ARCHIVE

archive_history_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the archive history line, which contains the
element and date the archive file was created. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

generation_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the generation number. Use the CMS$GET_
STRING routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

user_name_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the name of the user who created the element
generation. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3.

trans_time
type: date_time
access: read
mechanism: by reference

Specifies a quadword containing the date and time of the transaction that
created the generation.

creation_time
type: date_time
access: read
mechanism: by reference

Specifies a quadword containing the creation date and time of the file used to
create the generation.

CMS Routine Descriptions 2–185

CMS$SHOW_ARCHIVE

revision_time
type: date_time
access: read
mechanism: by reference

Specifies a quadword containing the date and time the file used to create the
generation was revised.

remark_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

format
type: longword_signed
access: read
mechanism: by reference

Specifies the record format of the file used to create the element generation.
The value of the longword corresponds to the record format field (FAB$B_RFM)
in the file access block. The value is contained in the low-order byte of the
passed longword. For more information about the RFM field, see the OpenVMS
Record Management Services Reference Manual.

attributes
type: longword_signed
access: read
mechanism: by reference

Specifies the record attributes of the file used to create the element generation.
The value of the longword corresponds to the record attributes field (FAB$B_
RAT) in the file access block. The value is contained in the low-order byte. For
more information about the RAT field, see the OpenVMS Record Management
Services Reference Manual.

revision_number
type: longword_signed
access: read
mechanism: by reference

Specifies the revision number of the file used to create the element generation.

2–186 CMS Routine Descriptions

CMS$SHOW_ARCHIVE

record_size
type: longword_signed
access: read
mechanism: by reference

Specifies the record size for files with fixed-length records. The low-order two
bytes of this parameter contain the maximum record size for the generation
(regardless of record format). This value corresponds to the FAB$W_MRS field
in the file access block. A record size of zero indicates that no maximum record
size was stored when this generation was created.

review_status
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates the review status for the element generation.
The following table shows the possible values of this argument.

Value Result

0 Indicates that the generation has been accepted
1 Indicates that the generation does not have a review pending
2 Indicates that the generation does have a review pending
3 Indicates that the generation was rejected

Description

The CMS$SHOW_ARCHIVE routine provides information about one or more
specified archive files. The following table lists the possible return values for
this function.

Return Code Description Status

CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified

object.
Error

CMS$_NULLSTR Null string is not allowed. Error
CMS$_OPENARC Error opening archive file. Error
CMS$_READERR Error reading archive file. Error

CMS Routine Descriptions 2–187

CMS$SHOW_ARCHIVE

Return Code Description Status

CMS$_USERERR User routine returned an error to
CMS.

Error

2–188 CMS Routine Descriptions

CMS$SHOW_CLASS

CMS$SHOW_CLASS

Provides information about one or more classes in a CMS library.

Format

CMS$SHOW_CLASS (library_data_block,
output_routine,
[user_arg],
[class_expression],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine to process the output of CMS$SHOW_CLASS.
CMS calls this routine once for each class that matches the class argument.
See Section 1.6 for information about the parameters that CMS passes to the
output routine.

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine
argument, using the same mechanism that you used to pass it to CMS.

CMS Routine Descriptions 2–189

CMS$SHOW_CLASS

class_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more classes to be displayed. Wildcards and a comma list are
allowed. By default, CMS produces a list of all classes in the library.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Callback Routine Parameters
You must provide an output routine to process the output of
CMS$SHOW_CLASS. CMS passes the following parameters in the order shown
with each call to output_routine:

(first_call, library_data_block, user_param, class_id, remark_id,
read_only)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

first_call
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine
is the first call. CMS sets the flag to 1 if the current call is the first call.
Otherwise, this is set to 0.

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

2–190 CMS Routine Descriptions

CMS$SHOW_CLASS

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_CLASS. If you
did not specify a user argument, this parameter points to a read-only storage
location containing the value 0. CMS passes user_param to your routine
using the same mechanism that you used to pass it to CMS$SHOW_CLASS.

class_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the class name. Use the CMS$GET_STRING
routine to translate the string identifier. For information about interpreting
strings passed to callback routines, see Section 1.6.3.

remark_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

read_only
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether the contents of the class list can be modified.
CMS sets the flag to 1 if the class list is set to READ_ONLY access. If the flag
is set to 0, the class list can be modified.

Description

The CMS$SHOW_CLASS routine provides information about one or more
established classes. If you specify more than one class, CMS processes the
class list in alphabetical order. CMS calls the output routine once for each
class that you specify.

CMS Routine Descriptions 2–191

CMS$SHOW_CLASS

The following information is passed in each call to the output routine:

• Class name

• Creation remark

• Read-only status

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRPAREXP Error parsing class. Error
CMS$_NOCLS No classes found. Warning
CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified

class.
Error

CMS$_USERERR User routine returned an error to
CMS.

Error

2–192 CMS Routine Descriptions

CMS$SHOW_ELEMENT

CMS$SHOW_ELEMENT

Provides information about one or more elements in a CMS library.

Format

CMS$SHOW_ELEMENT (library_data_block,
output_routine,
[user_arg],
[element_expression],
[member_list],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes the output of
CMS$SHOW_ELEMENT. CMS calls this routine once for each element
described by the element_expression argument. See Section 1.6 for
information about the parameters that CMS passes to the output routine.

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine
argument, using the same mechanism that you used to pass it to CMS.

CMS Routine Descriptions 2–193

CMS$SHOW_ELEMENT

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements. Wildcards and a comma
list are allowed. If you do not explicitly specify one or more elements, CMS
produces a list of all elements in the library.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and therefore selects
elements based on the list of groups established in the library.

member_list
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to produce a list of the groups to which the
element belongs (see the description of the group_list_id callback parameter).
If you set the flag to 0, CMS does not generate a group list. Set the flag to 1 to
direct CMS to generate the list.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Callback Routine Parameters
You must provide an output routine to process the output of
CMS$SHOW_ELEMENT. CMS passes the following parameters in the order
shown with each call to output_routine:

(first_call, library_data_block, user_param, element_id,
remark_id, history_string_id, notes_string_id, position,
concurrent, reference_copy, group_list_id, review)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

2–194 CMS Routine Descriptions

CMS$SHOW_ELEMENT

first_call
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine
is the first call. CMS sets the flag to 1 if the current call is the first call.
Otherwise, this is set to 0.

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_ELEMENT.
If you did not specify a user argument, this parameter points to a read-only
storage location containing the value 0. CMS passes user_param to your
routine using the same mechanism that you used to pass it to
CMS$SHOW_ELEMENT.

element_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the element name. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

remark_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

CMS Routine Descriptions 2–195

CMS$SHOW_ELEMENT

history_string_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the history string. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

notes_string_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the notes string. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

position
type: longword_signed
access: read
mechanism: by reference

Specifies the position value for the generation notes.

concurrent
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates the concurrent access to the element. CMS sets
the flag to 1 if concurrent reservations of the element are allowed. Otherwise,
this is set to 0.

reference_copy
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates the reference copy attribute. CMS sets the flag
to 1 if a reference copy is being maintained in the current reference copy
directory (if any). Otherwise, this is set to 0.

2–196 CMS Routine Descriptions

CMS$SHOW_ELEMENT

group_list_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the list of groups to which the element belongs.
Use the CMS$GET_STRING routine to translate the string identifier. For
information about string identifiers, see Section 1.6.3.

This parameter is significant only if you specify the member_list argument
in the call to CMS$SHOW_ELEMENT. If you do not specify the member_list
argument, the group list is a null string.

review
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS is to automatically mark new
generations as pending review. CMS sets the flag to 1 if newly created
generations are automatically marked for review. Otherwise, this is set to
0.

Description

The CMS$SHOW_ELEMENT routine provides information about one or more
elements. If you specify more than one element, CMS processes the element
list in alphabetical order. CMS calls the output routine once for each element
that you specify. The following information is passed in each call to the output
routine:

• Element name

• Creation remark

• Member list

• History

• Notes

• Position

• Concurrent attribute

• Reference copy attribute

• Review attribute

CMS Routine Descriptions 2–197

CMS$SHOW_ELEMENT

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRPAREXP Error parsing element
expression.

Error

CMS$_NOELE No elements found. Warning
CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the

specified element.
Error

CMS$_USERERR User routine returned an error to
CMS.

Error

2–198 CMS Routine Descriptions

CMS$SHOW_GENERATION

CMS$SHOW_GENERATION

Displays information about one or more element generations in a CMS library.

Format

CMS$SHOW_GENERATION (library_data_block,
output_routine,
[user_arg],
[element_expression],
[generation_expression],
[from_generation_expression],
[ancestors],
[descendants],
[member_list],
[msg_routine],
[before],
[since])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes the output of
CMS$SHOW_GENERATION. CMS calls this routine once for each generation
indicated in the call to this function. When you specify ancestors or
descendants, CMS calls the output routine once for each generation included
in the specified range of ancestors or descendants for the particular element.
See Section 1.6 for information about the parameters that CMS passes to the
output routine.

CMS Routine Descriptions 2–199

CMS$SHOW_GENERATION

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine
argument, using the same mechanism that you used to pass it to CMS.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements. Wildcards and a comma
list are allowed. If you do not explicitly specify one or more elements, CMS
produces generation information about all elements in the library.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library.

generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the particular generation of the element to be displayed. By default,
CMS displays information about the latest generation (1+) on the main line of
descent.

from_generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the generation that begins the list of ancestors. If you specify this
argument in a call to CMS$SHOW_GENERATION, you must also specify the
ancestors argument in the same call.

2–200 CMS Routine Descriptions

CMS$SHOW_GENERATION

ancestors
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to output information about the ancestors
of the specified generation. By default, the flag is set to 0, and CMS outputs
information only about the specified generation. If you set the flag to 1,
CMS outputs information about the ancestors of the specified generation in
addition to the specified generation. You cannot specify both ancestors and
descendants in the same call.

descendants
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to output information about the descendants
of the specified generation. By default, the flag is set to 0, and CMS outputs
information about only the specified generations. If you set the flag to 1, CMS
outputs information about both the generation and the descendants of the
specified generation. In this case, the default for generation_expression is
generation 1. You cannot specify both descendants and ancestors in the
same call.

member_list
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to produce a list of the classes to which the
element generation belongs. By default, the flag is set to 0, and CMS does
not generate the list. If you set the flag to 1, CMS generates the list (see
Section 1.6 for information about the class_list_id parameter).

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

CMS Routine Descriptions 2–201

CMS$SHOW_GENERATION

before
type: date_time
access: read
mechanism: by reference

Specifies the quadword date and time value that CMS uses to select generation
information for output. CMS outputs information about element generations
that occurred before the specified date and time. This value must be specified
in the absolute time value format. If a date and time value of 0 is specified,
CMS outputs a list of element generations up to the present date and time.

since
type: date_time
access: read
mechanism: by reference

Specifies the quadword date and time value that CMS uses to select generation
information for output. CMS outputs information about element generations
that occurred after the specified date and time. This value must be specified in
the absolute time value format. If a date and time value of 0 is specified, CMS
outputs a list of element generations for the present date, up to the current
time.

Callback Routine Parameters
You must provide an output routine to process the output of CMS$SHOW_
GENERATION; CMS passes the following parameters in the order shown with
each call to output_routine:

(new_element, library_data_block, user_param, element_id,
generation_id, user_name_id, trans_time, creation_time,
revision_time, remark_id, class_list_id, format,
attributes, revision_number, reservations, record_size,
review_status)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

new_element
type: longword_signed
access: read
mechanism: by reference

Indicates whether the current call to the output routine contains information
about a generation of a new element. When you specify ancestors or
descendants in the call to CMS$SHOW_GENERATION, CMS calls the output

2–202 CMS Routine Descriptions

CMS$SHOW_GENERATION

routine once for each generation included in the specified range of ancestors
or descendants for the particular element. The value of this parameter also
indicates whether it is the first call to the output routine. The following table
shows the possible values of this argument.

Value Result

0 Indicates that the call contains generation information about a new
element (after the first call)

1 Indicates the first call to the output routine
2 Indicates that the call contains information about the same element

as the previous call

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_GENERATION.
If you did not specify a user argument, this parameter points to a read-only
storage location containing the value 0. CMS passes user_param to your
routine using the same mechanism that you used to pass it to
CMS$SHOW_GENERATION.

element_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the element name. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

CMS Routine Descriptions 2–203

CMS$SHOW_GENERATION

generation_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the generation number. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

user_name_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the name of the user who created the element
generation. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3.

trans_time
type: date_time
access: read
mechanism: by reference

Specifies a quadword containing the date and time of the transaction that
created the element generation.

creation_time
type: date_time
access: read
mechanism: by reference

Specifies a quadword containing the creation date and time of the file used to
create the element generation.

revision_time
type: date_time
access: read
mechanism: by reference

Specifies a quadword containing the revision date and time of the file used to
create the element generation.

2–204 CMS Routine Descriptions

CMS$SHOW_GENERATION

remark_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

class_list_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the list of classes to which the generation
belongs. Use the CMS$GET_STRING routine to translate the string identifier.
For information about string identifiers, see Section 1.6.3.

This parameter is significant only if you specify the member_list argument in
the call to CMS$SHOW_GENERATION. If you do not specify member_list,
the class_list_id parameter is a null string.

format
type: longword_signed
access: read
mechanism: by reference

Specifies the record format of the file used to create the element generation.
The value of the longword corresponds to the record format field (FAB$B_RFM)
in the file access block. The value is contained in the low-order byte of the
passed longword. For more information about the RFM field, see the OpenVMS
Record Management Services Reference Manual.

attributes
type: longword_signed
access: read
mechanism: by reference

Specifies the record attributes of the file used to create the element generation.
The value of the longword corresponds to the record attributes field (FAB$B_
RAT) in the file access block. The value is contained in the low-order byte. For
more information about the RAT field, see the OpenVMS Record Management
Services Reference Manual.

CMS Routine Descriptions 2–205

CMS$SHOW_GENERATION

revision_number
type: longword_signed
access: read
mechanism: by reference

Specifies the revision number of the file used to create the element generation.

reservations
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether any current reservations are established
for the element generation. If the flag is set to 1, the element generation is
reserved.

record_size
type: longword_signed
access: read
mechanism: by reference

Specifies the record size for files with fixed-length records. The low-order two
bytes of this parameter contain the maximum record size for the generation
(regardless of record format). This value corresponds to the FAB$W_MRS field
in the file access block. A record size of zero indicates that no maximum record
size was stored when this generation was created.

review_status
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates the review status for the element generation.
The following table shows the possible values of this argument.

Value Result

0 Indicates that the generation has been accepted
1 Indicates that the generation does not have a review pending
2 Indicates that the generation has a review pending
3 Indicates that the generation has been rejected

2–206 CMS Routine Descriptions

CMS$SHOW_GENERATION

Description

The CMS$SHOW_GENERATION routine provides information about one
or more element generations. If you specify more than one element, CMS
processes the element list in alphabetical order. CMS calls the output routine
once for each element that you specify. When you specify ancestors or
descendants, CMS produces a list of generations in reverse chronological
order. (In this case, CMS calls the output routine once for each generation
included in the specified range of ancestors or descendants for the particular
element.) The following information is passed in each call to the output
routine:

• Element name

• Generation number

• User name

• Transaction date and time (quadword)

• Creation date and time of the file used in the replace transaction
(quadword)

• Revision date and time of the file used in the replace transaction
(quadword)

• Creation remark

• Class list

• Reservation status

• File characteristics

• Review status

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_GENNOTFOUND Specified generation not found. Error
CMS$_ERRPAREXP Error parsing element

expression.
Error

CMS$_ILLCHAR Illegal character in generation
expression.

Error

CMS$_NOELE No elements found. Warning

CMS Routine Descriptions 2–207

CMS$SHOW_GENERATION

Return Code Description Status

CMS$_NOGEN No generation match. Error
CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified

element.
Error

CMS$_NOWLDCARD Wildcards are not allowed in
generation expressions.

Error

CMS$_USERERR User routine returned an error to
CMS.

Error

2–208 CMS Routine Descriptions

CMS$SHOW_GROUP

CMS$SHOW_GROUP

Provides information about one or more groups in a CMS library.

Format

CMS$SHOW_GROUP (library_data_block,
output_routine,
[user_arg],
[group_expression],
[msg_routine],
[contents])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes the output of
CMS$SHOW_GENERATION. CMS calls this routine once for each group
indicated in the call to CMS$SHOW_GROUP. See Section 1.6 for information
about the parameters that CMS passes to the output routine.

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine
argument, using the same mechanism that you used to pass it to CMS.

CMS Routine Descriptions 2–209

CMS$SHOW_GROUP

group_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups. Wildcards and a comma list are allowed. If you
do not explicitly specify one or more groups, CMS produces a list of all groups
in the library.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

contents
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to produce a list of the elements and groups
contained in this group. You can specify an integer value (n) that directs
CMS to display nested groups down to and including the level indicated by
n. For example, a value of 1 displays one nested level of contents; a value of
2 displays two nested levels of contents. You can also specify a value of –1 to
display all levels of contained groups or elements.

Callback Routine Parameters
You must provide an output routine to process the output of
CMS$SHOW_GROUP. CMS passes the following parameters in the order
shown with each call to output_routine:

(first_call, library_data_block, user_param, group_id,
remark_id, read_only, level, contents_id)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

2–210 CMS Routine Descriptions

CMS$SHOW_GROUP

first_call
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine
is the first call. CMS sets the flag to 1 if the current call is the first call.
Otherwise, this is set to 0.

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_GROUP. If you
did not specify a user argument, this parameter points to a read-only storage
location containing the value 0. CMS passes user_param to your routine
using the same mechanism that you used to pass it to CMS$SHOW_GROUP.

group_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the group name. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

remark_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

CMS Routine Descriptions 2–211

CMS$SHOW_GROUP

read_only
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether the contents of the group list can be
modified. CMS sets the flag to 1 if the group list is set to READ_ONLY access.
If the flag is set to 0, the group list can be modified.

level
type: longword_signed
access: read
mechanism: by reference

Specifies a value indicating the current level of contents information passed
through the contents_id parameter. The level argument is significant only if
you also specified the contents argument in the call to CMS$SHOW_GROUP.

contents_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the list of elements or groups of elements
contained in this group. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3.
This parameter is significant only if you specified the contents argument in
the call to CMS$SHOW_GROUP. Otherwise, this parameter points to a null
descriptor.

Description

The CMS$SHOW_GROUP routine provides information about one or more
established groups. If you specify more than one group, CMS processes the
group list in alphabetical order. CMS calls the output routine once for each
group that you specify. The following information is passed in each call to the
output routine:

• Group name

• Creation remark

• Read-only status

• Contents

• Member list

2–212 CMS Routine Descriptions

CMS$SHOW_GROUP

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRPAREXP Error parsing group. Error
CMS$_NOGRP No groups found. Warning
CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified

class.
Error

CMS$_USERERR User routine returned an error to
CMS.

Error

CMS Routine Descriptions 2–213

CMS$SHOW_HISTORY

CMS$SHOW_HISTORY

Provides (in chronological order) records of transactions performed on a CMS
library.

Format

CMS$SHOW_HISTORY (library_data_block,
output_routine,
[user_arg],
[object_name],
[user],
[before],
[since],
[transaction_mask],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes the output of
CMS$SHOW_HISTORY. CMS calls this routine once for each history record
that meets the criteria imposed by the arguments passed to this function.
See Section 1.6 for information about the parameters that CMS passes to the
output routine.

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine
argument, using the same mechanism that you used to pass it to CMS.

2–214 CMS Routine Descriptions

CMS$SHOW_HISTORY

object_name
type: char_string
access: read
mechanism: by descriptor

Specifies the name of the element, group, or class. Wildcards and a comma list
are allowed.

If you include a period (.) in the object_name string, CMS selects history
records based on the element or class names that match the string. If you
do not include a period, CMS selects history records based on group or class
names that match the object_name string.

user
type: char_string
access: read
mechanism: by descriptor

Specifies the name of the user about whom CMS is to output information. By
default, CMS outputs information about all library users.

before
type: date_time
access: read
mechanism: by reference

Specifies the quadword binary date and time value that CMS uses to select
transactions for output. CMS outputs information about transactions that
occurred before the specified date and time. You must specify this argument in
the absolute time value format. If you specify a date and time value of 0, CMS
outputs a list of transactions up to the present day and time.

since
type: date_time
access: read
mechanism: by reference

Specifies the quadword binary date and time value that CMS uses to select
transactions for output. CMS outputs information about transactions that
occurred after the specified date and time. You must specify this argument in
the absolute time value format. If you specify a date and time value of 0, CMS
outputs a list of transactions up to the present day and time.

CMS Routine Descriptions 2–215

CMS$SHOW_HISTORY

transaction_mask
type: mask_longword
access: read
mechanism: by reference

Specifies one or more transactions records to be passed to output_routine.
When you provide the transaction_mask argument, CMS passes only the
history records for the indicated commands. The following table shows the
symbols defined for this argument.

Symbol
Bit
Position Mask Value Command

CMS$M_CMD_COPY 0 1 COPY CLASS
COPY ELEMENT
COPY GROUP

CMS$M_CMD_CREATE 1 2 CREATE CLASS
CREATE ELEMENT
CREATE GROUP
CREATE LIBRARY

CMS$M_CMD_DELETE 2 4 DELETE CLASS
DELETE ELEMENT
DELETE GROUP
DELETE HISTORY

CMS$M_CMD_FETCH 3 8 FETCH
CMS$M_CMD_INSERT 4 16 INSERT ELEMENT

INSERT GENERATION
INSERT GROUP

CMS$M_CMD_MODIFY 5 32 MODIFY CLASS
MODIFY ELEMENT
MODIFY GROUP
MODIFY LIBRARY
MODIFY RESERVATION

CMS$M_CMD_REMARK 6 64 REMARK
CMS$M_CMD_REMOVE 7 128 REMOVE ELEMENT

REMOVE GENERATION

2–216 CMS Routine Descriptions

CMS$SHOW_HISTORY

Symbol
Bit
Position Mask Value Command

REMOVE GROUP
CMS$M_CMD_REPLACE 8 256 REPLACE
CMS$M_CMD_RESERVE 9 512 RESERVE
CMS$M_CMD_UNRESERVE 10 1024 UNRESERVE
CMS$M_CMD_VERIFY 11 2048 VERIFY
CMS$M_CMD_SET 14 16,384 SET ACL
CMS$M_CMD_ACCEPT 16 65,536 ACCEPT GENERATION
CMS$M_CMD_CANCEL 17 131,072 CANCEL REVIEW
CMS$M_CMD_MARK 18 262,144 MARK GENERATION
CMS$M_CMD_REJECT 19 524,288 REJECT GENERATION
CMS$M_CMD_REVIEW 20 1,048,576 REVIEW GENERATION

The mask values are defined as universal symbols in the CMS image.
You can use OR with these values to enable combinations of the values.
This transaction mask is the same as the transaction mask used by the
CMS$DELETE_HISTORY routine.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Callback Routine Parameters
You must provide an output routine to process the output of
CMS$SHOW_HISTORY. CMS passes the following parameters in the order
shown with each call to output_routine:

(first_call, library_data_block, user_param, time, user_id,
command_id, object_id, remark_id, unusual)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

CMS Routine Descriptions 2–217

CMS$SHOW_HISTORY

first_call
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine
is the first call. CMS sets the flag to 1 if the current call is the first call.
Otherwise, this is set to 0.

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_HISTORY. If you
did not specify a user argument, this parameter points to a read-only storage
location containing the value 0. CMS passes user_param to your routine
using the same mechanism that you used to pass it to CMS$SHOW_HISTORY.

time
type: date_time
access: read
mechanism: by reference

Specifies a quadword binary date and time value for the time of the
transaction.

user_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the user name. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

2–218 CMS Routine Descriptions

CMS$SHOW_HISTORY

command_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the command name. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

object_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the element, group, or class involved in the
transaction. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3.

remark_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

unusual
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the transaction is unusual. CMS sets
the flag to 1 if the transaction is unusual. Otherwise, this is set to 0.

Description

The CMS$SHOW_HISTORY routine provides information about library
transactions. CMS calls the output routine once for each transaction record.
The following information is passed in each call to the output routine:

• Transaction time

• User name associated with the transaction

• Command as entered (command name, subcommand name, option,
qualifiers, and parameters)

CMS Routine Descriptions 2–219

CMS$SHOW_HISTORY

• Remark entered with the command

• Unusual status

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ABSTIM Absolute date-time value required. Error
CMS$_NOHIS No history records found. Warning
CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success
CMS$_NOSINCE Error executing a since operation. Error
CMS$_TIMEORDER BEFORE and since time values

cannot be resolved.
Error

CMS$_USERERR User routine returned an error to
CMS.

Error

Example

IMPLICIT INTEGER*4 (A-Z)
INTEGER*4 LDB(50)
CHARACTER*14 DIR

EXTERNAL CMS$_NOHIS
INTEGER*4 CMS$SET_LIBRARY
INTEGER*4 CMS$SHOW_HISTORY
INTEGER*4 OUTPUT_ROUTINE

DIR = ’[LENNON.SONGS]’

STATUS = CMS$SET_LIBRARY(LDB,DIR)
IF (.NOT. STATUS) GO TO 1000
STATUS = CMS$SHOW_HISTORY(LDB,OUTPUT_ROUTINE)
IF (STATUS .EQ. %LOC(CMS$_NOHIS)) GO TO 1000

.

.

.
1000 END
C

INTEGER*4 FUNCTION OUTPUT_ROUTINE (FIRST_CALL,LIBDB,USER_PARAM,
1 TIME,USER_ID,COMMAND_ID,
2 OBJECT_ID,REMARK_ID,UNUSUAL)

2–220 CMS Routine Descriptions

CMS$SHOW_HISTORY

INTEGER*4 UNUSUAL
EXTERNAL CMS$_NORMAL
EXTERNAL CMS$_EXCLUDE
OUTPUT_ROUTINE = %LOC(CMS$_NORMAL)
IF (.NOT. UNUSUAL) THEN

OUTPUT_ROUTINE = %LOC(CMS$_EXCLUDE)
ENDIF

RETURN
END

This example checks only for unusual transactions; if there are no unusual
transactions, the callback routine returns CMS$_EXCLUDE each time control
is transferred to CMS. As a result, the CMS$SHOW_HISTORY routine returns
CMS$_NOHIS (no history records found) and the routine transfers control
elsewhere.

CMS Routine Descriptions 2–221

CMS$SHOW_LIBRARY

CMS$SHOW_LIBRARY

Provides information about the current library.

Format

CMS$SHOW_LIBRARY (library_data_block,
[reference_copy_dir],
[statistics],
[msg_routine],
[verify],
[output_routine],
[user_arg])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

reference_copy_dir
type: char_string
access: write
mechanism: by descriptor

Specifies a descriptor that CMS fills in with the specification for the reference
copy directory (if any).

statistics
type: vector_longword_unsigned
access: write
mechanism: by reference

Specifies an array of 10 longwords that CMS fills in with information about the
library. Figure 2–1 shows the content of the statistics array. Each entry in the
array is an integer count of the number of indicated objects (elements, groups,
classes, and so on).

2–222 CMS Routine Descriptions

CMS$SHOW_LIBRARY

Figure 2–1 Statistics Array

Elements

Groups

Classes

Reservations

Concurrent Replacements

Reviews Pending

Reserved for CMS

ZK−2006−GE

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

verify
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that causes CMS to lock the library as part of the
CMS$SHOW_LIBRARY routine. By default, the flag is set to 1, indicating that
locking is performed. The library must be locked for CMS to fill in the
reference_copy_dir and statistics parameters. If verify is specified as 0,
CMS returns zeros in these parameters. Library locking is also necessary for
CMS to determine basic library integrity. If recovery is necessary, it is not
detected until another operation is performed.

CMS Routine Descriptions 2–223

CMS$SHOW_LIBRARY

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes output of CMS$SHOW_LIBRARY.
See Section 1.6 for information about the parameters that CMS passes to the
output routine.

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine
argument, using the same mechanism that you used to pass it to CMS.

Callback Routine Parameters
You must provide an output routine to process the output of
CMS$SHOW_LIBRARY. CMS passes the following parameters in the order
shown with each call to output_routine:

(verify, first_call, user_param, library_spec_id,
reference_copy_id, statistics_block, revision_time,
concurrent, 0, keep, extended_filenames)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

verify
type: longword_signed
access: read
mechanism: by reference

Specifies the value passed to the CMS$SHOW_LIBRARY routine. This value
is passed to the output routine to determine if the reference_copy_id and
statistics_block contents are valid.

first_call
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine
is the first call. CMS sets the flag to 1 if the current call is the first call.
Otherwise, this is set to 0.

2–224 CMS Routine Descriptions

CMS$SHOW_LIBRARY

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_RESERVATIONS.
If you did not specify a user argument, this parameter points to a read-only
storage location containing the value 0. CMS passes user_param to your
routine using the same mechanism that you used to pass it to
CMS$SHOW_RESERVATIONS.

library_spec_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for a library directory specification. If the current
library search list consists of more than one library, successive calls to
output_routine return all individual library directory specifications, one at
a time. Use the CMS$GET_STRING routine to translate the string identifier.
For information about string identifiers, see Section 1.6.3.

reference_copy_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the reference copy directory specification. If
there is no reference copy directory, the length of the string is 0.

statistics_block
type: vector_longword_unsigned
access: read
mechanism: by reference

Specifies an array of 10 longwords that CMS fills with information about the
library. See Figure 2–1 for information about the content of the statistics array.
Each entry in the array is an integer count of the number of indicated objects
(elements, groups, classes, and so on).

CMS Routine Descriptions 2–225

CMS$SHOW_LIBRARY

revision_time
type: longword_signed
access: read
mechanism: by reference

Indicates whether CMS used the file revision time, or the original file storage
time, when the element was created or modified. The value 1 indicates the file
revision time, whereas the value 0 indicates the original file storage time.

concurrent
type: longword_signed
access: read
mechanism: by reference

Contains a value indicating the access to the object. The value 1 indicates no
concurrent reservations are allowed, whereas the value 0 indicates concurrent
reservations are allowed.

0
type: reserved for CMS
access: reserved for CMS
mechanism: by value

Specifies a required parameter reserved for use by CMS. You must either
pass a value of 0 or include a placeholder for this argument in the call to the
CMS$SHOW_LIBRARY routine.

keep
type: longword_signed
access: read
mechanism: by reference

Contains the value of the KEEP attribute, which prevents CMS from deleting
copies of the input file. The value 0 indicates that CMS should delete all the
copies of the file, whereas the value 1 indicates that CMS should keep all the
input files.

extended_filenames
type: longword_signed
access: read
mechanism: by reference

Only valid on OpenVMS versions supporting extended file specifications.
The default 0 value does not allow extended file names. The value 1 allows
extended file names.

2–226 CMS Routine Descriptions

CMS$SHOW_LIBRARY

Description

The CMS$SHOW_LIBRARY routine identifies the reference copy directory
(if any) for the current library. This routine also provides information about the
number of elements, current reservations, concurrent replacements, reviews
pending, and classes and groups in the library.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success

CMS Routine Descriptions 2–227

CMS$SHOW_RESERVATIONS

CMS$SHOW_RESERVATIONS

Provides information about all current reservations and concurrent
replacements in effect at the time the routine is called.

Format

CMS$SHOW_RESERVATIONS (library_data_block,
output_routine,
[user_arg],
[element_expression],
[generation_expression],
[user],
[msg_routine],
[identification_number])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes CMS$SHOW_RESERVATIONS
output. CMS calls this routine once for each reservation or concurrent
replacement in effect for each element generation indicated in the call to
CMS$SHOW_RESERVATIONS. This argument is required. See Section 1.6 for
information about the parameters that CMS passes to the output routine.

2–228 CMS Routine Descriptions

CMS$SHOW_RESERVATIONS

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine
argument, using the same mechanism that you used to pass it to CMS. See
Section 1.6 for information about the parameters that CMS passes to the
output routine.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements. Wildcards and a comma
list are allowed. By default, CMS outputs information about any existing
reservations for generations of all elements in the library.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library.

generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the particular generation of the element to be displayed. By default,
CMS displays information about any existing reservations for all generations
of the elements indicated by element_expression.

user
type: char_string
access: read
mechanism: by descriptor

Specifies the user name that CMS uses to select reservation information for
output. By default, CMS outputs information about any existing reservations
for all library users.

CMS Routine Descriptions 2–229

CMS$SHOW_RESERVATIONS

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

identification_number
type: longword_signed
access: read
mechanism: by reference

Specifies the reserved generation of the element to be displayed. CMS assigns
a unique reservation identification number to each element when it is reserved.

Callback Routine Parameters
You must provide an output routine to process the output of CMS$SHOW_
RESERVATIONS. CMS passes the following parameters in the order shown
with each call to output_routine:

(new_element, library_data_block, user_param, element_id,
generation_id, time, user_id, remark_id, concurrent,
merge_generation_id, nonotes, nohistory, access,
reservation_id)

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

new_element
type: longword_signed
access: read
mechanism: by reference

Indicates whether the current call to the output routine contains information
about a generation of a new element. If there are any concurrent reservations
or concurrent replacements for a given element, CMS calls the output routine
once for each concurrent reservation and replacement. The value of this
parameter also indicates whether it is the first call to the output routine.

2–230 CMS Routine Descriptions

CMS$SHOW_RESERVATIONS

The following table shows the possible values of this argument.

Value Result

0 Indicates that the call contains reservation information about the
next element in the list of elements specified by the
element_expression argument (after the first call)

1 Indicates the first call to the output routine
2 Indicates that the call contains information about the same element

as the previous call

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_RESERVATIONS.
If you did not specify a user argument, this parameter points to a read-only
storage location containing the value 0. CMS passes user_param to your
routine using the same mechanism that you used to pass it to
CMS$SHOW_RESERVATIONS.

element_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the element name. Use the CMS$GET_
STRING routine to translate the string identifier. For information about
string identifiers, see Section 1.6.3.

CMS Routine Descriptions 2–231

CMS$SHOW_RESERVATIONS

generation_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the generation number. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

time
type: date_time
access: read
mechanism: by reference

Specifies a quadword binary date and time value for the time of the
transaction.

user_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the user name. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

remark_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING
routine to translate the string identifier. For information about string
identifiers, see Section 1.6.3.

2–232 CMS Routine Descriptions

CMS$SHOW_RESERVATIONS

concurrent
type: longword_signed
access: read
mechanism: by reference

Specifies a value that indicates the status of the transaction. The following
table shows the possible values for this argument.

Value Result

–1 Concurrent replacement
0 Current reservation
1 Concurrent reservation

merge_generation_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the merge generation. Use the
CMS$GET_STRING routine to translate the string identifier. If there is no
merge generation, the length of the string is 0. For information about string
identifiers, see Section 1.6.3.

nonotes
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS suppressed notes in the reservation
transaction. If the flag is set to 1, notes were suppressed; if the flag is set to 0,
notes were not suppressed.

nohistory
type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS suppressed the element history in the
reservation transaction. If the flag is set to 1, the history was not included in
the output file; if the flag is set to 0, the element history was included.

CMS Routine Descriptions 2–233

CMS$SHOW_RESERVATIONS

access
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates the access allowed to the element. The following
table shows the possible values for this argument.

Value Result

0 Concurrent reservations are allowed.
1 Concurrent reservations are not allowed.
3 The existing reservation does not allow other reservations.

reservation_id
type: longword_signed
access: read
mechanism: by reference

Returns the identification number of the reservation.

Description

The CMS$SHOW_RESERVATIONS routine provides information about the
reservations and concurrent replacements in effect for one or more elements in
a library. If you specify more than one element, CMS processes the element list
in alphabetical order. CMS calls the output routine once for each reservation.

The following reservation information is passed in each call to the output
routine:

• Element name

• Generation number

• Time of reservation or replacement

• User name

• Remark

• Concurrent status

2–234 CMS Routine Descriptions

CMS$SHOW_RESERVATIONS

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRPAREXP Error parsing element
expression.

Error

CMS$_ILLCHAR Illegal character in generation
expression.

Error

CMS$_NOREF Error accessing the library. Error
CMS$_NORES No reservations found. Warning
CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified

element.
Error

CMS$_NOWLDCARD Wildcards are not allowed in
generation expression.

Error

CMS$_USERERR User routine returned an error to
CMS.

Error

CMS Routine Descriptions 2–235

CMS$SHOW_REVIEWS_PENDING

CMS$SHOW_REVIEWS_PENDING

Displays a list of element generations that currently have review pending
status. This routine also displays any review remarks that have been
associated with the generation currently under review.

Format

CMS$SHOW_REVIEWS_PENDING (library_data_block,
output_routine,
[user_arg],
[element_expression],
[generation_expression],
[user],
[msg_routine])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine
type: procedure
access: read
mechanism: by reference

Specifies a callback routine to process the output of
CMS$SHOW_REVIEWS_PENDING. This argument is required. See
Section 1.6 for information about the parameters that CMS passes to the
output routine.

user_arg
type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine
argument, using the same mechanism that you used to pass it to CMS. See
Section 1.6 for information about the parameters that CMS passes to the
output routine.

2–236 CMS Routine Descriptions

CMS$SHOW_REVIEWS_PENDING

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements whose generations with
reviews pending are to be displayed. Wildcards and a comma list are allowed.
If you do not specify this argument, all element generations pending review in
the library are displayed.

generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the particular generation of the element to be displayed. By default,
reviews pending for all of the element’s generations are displayed.

user
type: char_string
access: read
mechanism: by descriptor

Specifies the name of the user whose generations with pending reviews are to
be displayed. By default, pending reviews for generations created by all users
are displayed.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

Callback Routine Parameters
You must provide an output routine to process the output of
CMS$SHOW_REVIEWS_PENDING. CMS passes the following parameters in
the order shown with each call to output_routine:

(new_element, library_data_block, user_param, element_id,
generation_id, generation_time, generation_user_id,
generation_remark_id, review_time, review_user_id,
review_remark_id)

CMS Routine Descriptions 2–237

CMS$SHOW_REVIEWS_PENDING

The callback routine must return a defined condition code to CMS. The
following parameter descriptions define the access to the object from the
perspective of the callback routine.

new_element
type: longword_unsigned
access: read
mechanism: by reference

Indicates whether the current call to the output routine contains information
about a generation of a new element. If more than one generation of an
element has a review pending, CMS calls the output routine for each pending
review. If the CMS$SHOW_REVIEWS_PENDING routine is called multiple
times with information about the same generation of the same element,
these calls contain review remark information. The following table shows
the possible values of this argument.

Value Result

0 Indicates that the call contains information about a different element
than the previous call

1 Indicates the first call to the output routine
2 Indicates that the call contains information about a different

generation of the same element as the previous call
3 Indicates that the call contains information about the same

generation of the same element as the previous call

library_data_block
type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param
type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to
CMS$SHOW_REVIEWS_PENDING. If you did not specify a user argument,
this parameter points to a read-only storage location containing the value 0.

2–238 CMS Routine Descriptions

CMS$SHOW_REVIEWS_PENDING

CMS passes user_param to your routine using the same mechanism that you
used to pass it to CMS$SHOW_REVIEWS_PENDING.

element_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the element name. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

generation_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the generation number. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

generation_time
type: date_time
access: read
mechanism: by reference

Specifies a binary quadword date-time value representing the time the
generation was created.

generation_user_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the name of the user who created the
generation.

generation_remark_id
type: address
access: read
mechanism: by reference

Specifies the remark entered when the generation was replaced. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

CMS Routine Descriptions 2–239

CMS$SHOW_REVIEWS_PENDING

review_time
type: date_time
access: read
mechanism: by reference

Specifies a binary quadword date-time value representing the time the
generation was placed under review, or the date and time the review remark
was entered.

review_user_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the name of the user who marked the generation
for review or the user who entered the review remark. Use the
CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3.

review_remark_id
type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark entered when the generation or the
review of the generation was marked. Use the CMS$GET_STRING routine
to translate the string identifier. For information about string identifiers, see
Section 1.6.3.

Description

The CMS$SHOW_REVIEWS_PENDING routine retrieves information about
generations with reviews pending and passes that information to the output
routine. If this routine is called multiple times with information about the
same generation of the same element, these calls contain review remark
information.

2–240 CMS Routine Descriptions

CMS$SHOW_REVIEWS_PENDING

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRPAREXP Error parsing element
expression.

Error

CMS$_ILLCHAR Illegal character in generation
expression.

Error

CMS$_NOREF Error accessing the library. Error
CMS$_NOREV No pending reviews were found for

the generations.
Error

CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified

element.
Error

CMS$_NOWLDCARD Wildcards are not allowed in
generation expression.

Error

CMS$_USERERR User routine returned an error to
CMS.

Error

CMS Routine Descriptions 2–241

CMS$SHOW_VERSION

CMS$SHOW_VERSION

Provides version identification of the CMS system currently in use.

Format

CMS$SHOW_VERSION ([full],1

[brief],1

[absolute] 1)

Arguments

full
type: char_string
access: write
mechanism: by descriptor

Specifies a descriptor to be filled in by CMS. The full form of the version
identification includes the product identification string and the version number.

brief
type: char_string
access: write
mechanism: by descriptor

Specifies a descriptor to be filled in by CMS. The brief form of version
identification includes only the version number.

absolute
type: longword_unsigned
access: write
mechanism: by reference

Specifies a longword to receive the monotonic version number for the current
version of CMS. This value will be higher with each successive release of
CMS. For example, the following are sample version numbers returned by this
parameter:

1 At least one of these arguments is required.

2–242 CMS Routine Descriptions

CMS$SHOW_VERSION

Literal Version
Number Absolute Version Number

3.7 100177
3.8 100184
3.9 100189
4.0 100191
4.1 100194
4.2 100205
4.3 100209

Description

The CMS$SHOW_VERSION routine identifies the version of CMS currently in
use.

Example

CHARACTER*8 SHORTVER
EXTERNAL CMS$SHOW_VERSION
CALL CMS$SHOW_VERSION(,SHORTVER)
PRINT 50,SHORTVER

50 FORMAT (’ ’,A)

END

This passes only the argument for the brief form of version identification.

CMS Routine Descriptions 2–243

CMS$UNRESERVE

CMS$UNRESERVE

Cancels a reservation for one or more generations.

Format

CMS$UNRESERVE (library_data_block,
element_expression,
[remark],
0,
[delete_file],
[msg_routine],
[generation_expression],
[identification_number],
[delete_file_spec])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements with a reservation to be
canceled.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library. Wildcards and a comma
list are allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

2–244 CMS Routine Descriptions

CMS$UNRESERVE

0
type: reserved for CMS
access: reserved for CMS
mechanism: by value

Specifies a required argument reserved for use by CMS. You must either
pass 0 by value, or include a placeholder for this argument in the call to the
CMS$UNRESERVE routine, so the call frame entry for this argument contains
a 0.

delete_file
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to delete the files with the same file name
and file type in your default directory (unless you specify another location by
also specifying the delete_file_spec argument). By default, the flag is set
to 0, and CMS does not delete any files. If you set the flag to 1, CMS deletes
the corresponding files from your default directory.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

generation_expression
type: char_string
access: read
mechanism: by descriptor

Specifies the reserved generation of the element to be unreserved. This
argument can be used when you have multiple reservations on the
same element, but not on the same generation of the same element. If
multiple reservations exist for the element generation, you must specify the
identification number of the exact reservation to be unreserved (canceled).

CMS Routine Descriptions 2–245

CMS$UNRESERVE

identification_number
type: longword_signed
access: read
mechanism: by reference

Specifies the reserved generation of the element to be unreserved. CMS
assigns a unique reservation identification number to each element when it is
reserved. If an element generation has only one reservation, you can unreserve
(cancel) that reservation by specifying the generation expression. However, if
multiple reservations exist for the element generation, you must specify the
identification number of the exact reservation to be unreserved (canceled).
Use the CMS$SHOW_RESERVATIONS routine to determine the reservation
number of a generation.

delete_file_spec
type: char_string
access: read
mechanism: by descriptor

Specifies the files to be deleted and their location. All the versions of the
specified file are deleted. Any valid OpenVMS file specification can be used;
however, it cannot contain a node name or file version number. By default,
CMS uses the current default device and directory. If the delete_file_spec
argument is omitted or contains a zero, CMS uses the delete_file argument (if
specified) to determine what files should be deleted. If the delete_file_spec
argument contains a file specification, the delete_file argument is ignored. If
none of these arguments is specified, no files are deleted.

Description

The CMS$UNRESERVE routine cancels an existing reservation.

Each reservation of an element is assigned a unique reservation identification
number. If an element generation has only one reservation, you can
unreserve (cancel) that reservation by specifying the generation expression. If
multiple reservations exist for the element generation, you must specify the
identification number of the reservation to be unreserved (canceled).

When canceling a concurrent reservation, you must specify the
confirm_routine argument in the call to CMS$SET_LIBRARY or
CMS$CREATE_LIBRARY (before calling CMS$UNRESERVE), or you are
not warned of any concurrent reservations, and the unreserve transaction
continues. To receive a confirmation prompt when there are existing concurrent
reservations, you must specify the routine in the call to CMS$SET_LIBRARY
or CMS$CREATE_LIBRARY.

2–246 CMS Routine Descriptions

CMS$UNRESERVE

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRUNRESERVES CMS canceled zero or more
reservations and encountered
one or more errors during the
transaction.

Error

CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success
CMS$_NOUNRESERVE CMS did not cancel the

reservation.
Error

CMS$_UNRESERVED CMS canceled the reservation. Success
CMS$_UNRESERVES CMS canceled one or more

reservations.
Success

CMS Routine Descriptions 2–247

CMS$VERIFY

CMS$VERIFY

Performs a series of checks on your CMS library to confirm that the library
structure and library files are in a valid form.

Format

CMS$VERIFY (library_data_block,
[element_expression],
[remark],
[recover],
[repair],
[msg_routine],
[output_file],
[warn_on_repair],
[file_attributes])

Arguments

library_data_block
type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression
type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements to be verified.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library. Wildcards and a comma
list are allowed.

remark
type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

2–248 CMS Routine Descriptions

CMS$VERIFY

recover
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to execute a recovery transaction. By default,
the flag is set to 0, and CMS does not execute the recovery procedure. Set
the flag to 1 to recover the library. You cannot use both the recover and the
repair arguments in the same call to CMS$VERIFY.

repair
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to execute a repair transaction. By default,
the flag is set to 0, and CMS does not execute the repair procedure. Set the
flag to 1 to repair the library or the elements indicated by the
element_expression argument. You cannot use both the recover and the
repair arguments in the same call to CMS$VERIFY.

msg_routine
type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-
handler routine, see Section 1.8.

output_file
type: char_string
access: read
mechanism: by descriptor

Specifies the name of the output file.

warn_on_repair
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to output messages indicating that problems
have been repaired as warnings. By default, these messages are informational
messages. If any warnings are reported and the repair is successful, the status
of the return code CMS$_REPAIRED will be changed from success to warning.

CMS Routine Descriptions 2–249

CMS$VERIFY

file_attributes
type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to repair only problems with file attributes,
mainly for element data files and reference copies. By default, all problems are
repaired.

Description

The CMS$VERIFY routine performs a series of consistency checks on your
library. If you call CMS$VERIFY under normal conditions, the routine
executes successfully, indicating that the information in your library is correct.
However, if the data in the library is invalid, the routine returns an error
message saying that there is an error in the verification of the library. In this
case, you must recover or repair the library as indicated by the error message.
You cannot use both the recover and the repair arguments in the same call
to CMS$VERIFY.

Recovery and repair transactions are marked as unusual occurrences in the
library history. For more information about the verify transaction, see the HP
DECset for OpenVMS Guide to the Code Management System.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_NORECOVER CMS did not recover the library. Error
CMS$_NOREF Error accessing the library. Error
CMS$_NOREPAIR CMS did not repair the library. Error
CMS$_NOVERIFY CMS did not verify the library. Error
CMS$_RECOVERED CMS recovered the library. Success
CMS$_REPAIRED CMS repaired the library. Success
CMS$_VERIFY CMS verified the library. Success

2–250 CMS Routine Descriptions

A
Summary of CMS Entry Points

This appendix summarizes the arguments and parameters of each CMS
routine.

CMS$ANNOTATE(library_data_block,
element_expression,
[generation_expression],
[merge_generation_expression],
[append],
[full],
[output_file],
[output_routine],
[user_arg],
[msg_routine],
[format])

CMS$ASYNCH_TERMINATE

This routine has no arguments.

Summary of CMS Entry Points A–1

Summary of CMS Entry Points

CMS$CMS([command_line],
[msg_routine],
[prompt_routine],
[confirm_routine],
[output_routine],
[width])

CMS$COPY_CLASS(library_data_block,
input_class_expression,
output_class_expression,
[remark],
[source_library_data_block],
[msg_routine])

CMS$COPY_ELEMENT(library_data_block,
input_element_expression,
output_element,
[remark],
[source_library_data_block],
[msg_routine])

CMS$COPY_GROUP(library_data_block,
input_group_expression,
output_group_expression,
[remark],
[source_library_data_block],
[msg_routine])

CMS$CREATE_CLASS(library_data_block,
class_name,
[remark],
[msg_routine])

CMS$CREATE_ELEMENT(library_data_block,
element_name,
[remark],
[history],
[notes],
[position],
[keep],
[reserve],
[concurrent],
[reference_copy],
[input_file],
[input_routine],
[user_arg],
[msg_routine],
[review])

CMS$CREATE_GROUP(library_data_block,
group_name,
[remark],
[msg_routine])

A–2 Summary of CMS Entry Points

Summary of CMS Entry Points

CMS$CREATE_LIBRARY(library_data_block,
directory,
[remark],
[reference_copy_dir],
[msg_routine],
[confirm_routine],
[output_routine],
[width],
[position],
[positional_dir_spec],
[revision_time],
[auto_create],
[concurrent],
[0],
[keep],
[extended_filenames],
[long_variant_names])

CMS$DELETE_CLASS(library_data_block,
class_expression,
[remark],
[msg_routine],
[remove_contents])

CMS$DELETE_ELEMENT(library_data_block,
element_expression,
[remark],
[msg_routine])

CMS$DELETE_GENERATION(library_data_block,
element_expression,
[remark],
[generation_expression],
[after_generation],
[before_generation],
[from_generation],
[to_generation],
[archive_file],
[msg_routine])

A generation or range of generations must be specified with a combination of
one or more of the after_generation, before_generation, from_generation,
or to_generation arguments.

Summary of CMS Entry Points A–3

Summary of CMS Entry Points

CMS$DELETE_GROUP(library_data_block,
group_expression,
[remark],
[msg_routine],
[remove_contents])

CMS$DELETE_HISTORY(library_data_block,
[remark],
before,
[transaction_mask],
[output_routine],
[user_arg],
[msg_routine],
[object],
[user])

CMS$DIFFERENCES([library_data_block],
[user_arg],
[input_file1],
[input_routine1],
[generation_expression_1],
[input_file2],
[input_routine2],
[generation_expression_2],
[output_file],
[output_routine],
[append],
[ignore_mask],
[nooutput],
[parallel],
[full],
[format],
[width],
[msg_routine],
[page_break],
[skip_lines],
[begin_sentinel],
[end_sentinel])

The library_data_block argument is a required parameter only if you also
specify a generation_expression parameter.

A–4 Summary of CMS Entry Points

Summary of CMS Entry Points

CMS$DIFFERENCES_CLASS(library_data_block,
class_expression1,
class_expression2,
[append],
[format],
[full],
[ignore_mask],
[nooutput],
[parallel],
[show_mask],
[width],
[output_file],
[output_routine],
[user_arg],
[msg_routine])

CMS$FETCH(library_data_block,
element_expression,
[remark],
[generation_expression],
[merge_generation_expression],
[reserve],
[nohistory],
[nonotes],
[concurrent],
[output_file],
[msg_routine],
[nooutput],
[history],
[notes],
[position])

CMS$FETCH_CLOSE(fetch_data_block,
[msg_routine])

CMS$FETCH_GET(fetch_data_block,
output_record,
[sequence_number],
[generation_number],
[msg_routine])

CMS$FETCH_OPEN(fetch_data_block,
directory,
element_name,
[generation_expression],
[nohistory],
[nonotes],
[actual_generation],
[msg_routine])

CMS$GET_STRING(string_id,
string)

Summary of CMS Entry Points A–5

Summary of CMS Entry Points

CMS$INSERT_ELEMENT(library_data_block,
element_expression,
group_expression,
[remark],
[if_absent],
[msg_routine])

CMS$INSERT_GENERATION(library_data_block,
element_expression,
class_expression,
[remark],
[generation_expression],
[always],
[supersede],
[if_absent],
[msg_routine],
[before])

CMS$INSERT_GROUP(library_data_block,
sub_group_expression,
group_expression,
[remark],
[if_absent],
[msg_routine])

CMS$MODIFY_CLASS(library_data_block,
class_expression,
[remark],
[new_name],
[new_remark],
[read_only],
[msg_routine])

At least one of the new_name, new_remark, or read_only arguments is
required.

CMS$MODIFY_ELEMENT(library_data_block,
element_expression,
[remark],
[new_name],
[new_remark],
[history],
[notes],
[position],
[concurrent],
[reference_copy],
[msg_routine],
[review])

A–6 Summary of CMS Entry Points

Summary of CMS Entry Points

At least one of the new_name, new_remark, history, notes, position,
concurrent, reference_copy, or review arguments is required.

CMS$MODIFY_GENERATION(library_data_block,
element_expression,
[remark],
[generation_expression],
new_remark,
[msg_routine])

CMS$MODIFY_GROUP(library_data_block,
group_expression,
[remark],
[new_name],
[new_remark],
[read_only],
[msg_routine])

At least one of the new_name, new_remark, or read_only arguments is
required.

CMS$MODIFY_LIBRARY(library_data_block,
[remark],
reference_copy_dir,
[msg_routine],
[revision_time],
[concurrent],
[0],
[keep],
[extended_filenames],
[long_variant_names])

CMS$MODIFY_RESERVATION(library_data_block),
element_expression,
[generation_expression],
[identification_number],
[modify_command_remark],
new_remark_for_reservation,
[msg_routine])

CMS$PUT_STRING(string)

CMS$REMARK(library_data_block,
remark,
[msg_routine],
[unusual])

CMS$REMOVE_ELEMENT(library_data_block,
element_expression,
group_expression,
[remark],
[if_present],
[msg_routine])

Summary of CMS Entry Points A–7

Summary of CMS Entry Points

CMS$REMOVE_GENERATION(library_data_block,
element_expression,
class_expression,
[remark],
[if_present],
[msg_routine],
[generation])

CMS$REMOVE_GROUP(library_data_block,
sub_group_expression,
group_expression,
[remark],
[if_present],
[msg_routine])

CMS$REPLACE(library_data_block,
element_expression,
[remark],
[variant],
[reserve],
[keep],
[input_file],
[input_routine],
[user_arg],
[msg_routine],
[if_changed],
[generation_expression],
[identification_number],
[insert_into_class])

CMS$RETRIEVE_ARCHIVE([library_data_block],
archive_file_spec,
[generation_spec],
[output_file_spec],
[msg_routine])

CMS$REVIEW_GENERATION(library_data_block,
element_expression,
action,
[remark],
[generation_expression],
[msg_routine])

CMS$SET_ACL(library_data_block,
object_type,
object_expression,
[remark],
[acl],
[after],
[default],
[delete],
[like],
[new],

A–8 Summary of CMS Entry Points

Summary of CMS Entry Points

[replace],
[msg_routine])

CMS$SET_LIBRARY(library_data_block,
directory,
[msg_routine],
[verify],
[confirm_routine],
[output_routine],
[width],
[position],
[positional_dir_spec])

CMS$SET_NOLIBRARY(library_data_block,
[directory])

CMS$SHOW_ACL(library_data_block,
output_routine,
object_type,
[user_arg],
[object_expression],
[msg_routine])

CMS$SHOW_ARCHIVE(archive_file_spec,
output_routine,
[user_arg],
[msg_routine])

Summary of CMS Entry Points A–9

Summary of CMS Entry Points

CMS$SHOW_CLASS(library_data_block,
output_routine,
[user_arg],
[class_expression],
[msg_routine])

CMS$SHOW_ELEMENT(library_data_block,
output_routine,
[user_arg],
[element_expression],
[member_list],
[msg_routine])

CMS$SHOW_GENERATION(library_data_block,
output_routine,
[user_arg],
[element_expression],
[generation_expression],
[from_generation_expression],
[ancestors],
[descendants],
[member_list],
[msg_routine],
[before],
[since])

CMS$SHOW_GROUP(library_data_block,
output_routine,
[user_arg],
[group_expression],
[msg_routine],
[contents],
[member_list])

CMS$SHOW_HISTORY(library_data_block,
output_routine,
[user_arg],
[object_name],
[user],
[before],
[since],
[transaction_mask],
[msg_routine])

CMS$SHOW_LIBRARY(library_data_block,
[reference_copy_dir],
[statistics],
[msg_routine],
[verify],
[output_routine],
[user_arg])

A–10 Summary of CMS Entry Points

Summary of CMS Entry Points

CMS$SHOW_RESERVATIONS(library_data_block,
output_routine,
[user_arg],
[element_expression],
[generation_expression],
[user],
[msg_routine],
[identification_number])

CMS$SHOW_REVIEWS_PENDING(library_data_block,
output_routine,
[user_arg],
[element_expression],
[generation_expression],
[user],
[msg_routine])

CMS$SHOW_VERSION([full],
[brief],
[absolute])

At least one of these arguments is required.

CMS$UNRESERVE(library_data_block,
element_expression,
[remark],
0,
[delete_file],
[msg_routine],
[generation_expression],
[identification_number],
[delete_file_spec])

CMS$VERIFY(library_data_block,
[element_expression],
[remark],
[recover],
[repair],
[msg_routine],
[control],
[output_file],
[warn_on_repair],
[file_attributes])

Summary of CMS Entry Points A–11

B
Examples of Calling CMS

This appendix shows examples of calling the CMS$SHOW_ELEMENT routine
from the Ada, Basic, BLISS, C, COBOL, Fortran, Pascal, PL/I, and SCAN
languages. Each program uses an output routine to display a list of the library
elements and the groups to which each element belongs.

B.1 Calling CMS from Ada
Example B–1 shows a call to CMS$SHOW_ELEMENT from Ada.

Example B–1 Ada Example

with SYSTEM;
use SYSTEM; 1
package CONDITION_HANDLING_UTILITIES is

type COUNT is new INTEGER;

type STATUS_TYPE is
record

SEVERITY : COUNT range 0..2**3-1;
CODE : COUNT range 0..2**12-1;
FAC_SP : BOOLEAN;
FAC_NO : COUNT range 0..2**12-1;
INHIB_MSG : BOOLEAN;
FILLER_1 : COUNT range 0..2**3-1;

end record;

(continued on next page)

Examples of Calling CMS B–1

Examples of Calling CMS
B.1 Calling CMS from Ada

Example B–1 (Cont.) Ada Example

function SS_NORMAL return STATUS_TYPE;
pragma INLINE(SS_NORMAL);

type SIGARG_TYPE(ARGS : NATURAL) is
record

NAME : STATUS_TYPE;
ARGn : UNSIGNED_LONGWORD_ARRAY(2..ARGS);

end record;

package MCHARG_PKG is

type COUNT is new INTEGER;

subtype COUNT_NATURAL is COUNT range 0..COUNT’last;
subtype COUNT_POSITIVE is COUNT range 1..COUNT’last;

FRAME : constant COUNT := COUNT_NATURAL’first;
DEPTH : constant COUNT := FRAME + 1;
SAVR0 : constant COUNT := DEPTH + 1;
SAVR1 : constant COUNT := SAVR0 + 1;

type MCHARG_COMPONENT_ARRAY is
array(COUNT_POSITIVE range <>) of SYSTEM.UNSIGNED_LONGWORD;

type MCHARG_TYPE(ARGS : COUNT_NATURAL) is
record

ARGn : MCHARG_COMPONENT_ARRAY(1..ARGS);
end record;

private
for MCHARG_TYPE use
record

ARGS at 0 range 0..31;
-- ARGn at 4 range 0...;
end record;

end;

subtype MCHARG_TYPE is MCHARG_PKG.MCHARG_TYPE;

procedure PUTMSG (
MSGVEC : in SIGARG_TYPE;
ACTRTN : in SYSTEM.ADDRESS := ADDRESS_ZERO;
FACNAM : in STRING := STRING’NULL_PARAMETER;
ACTPRM : in SYSTEM.UNSIGNED_LONGWORD := 0);

(continued on next page)

B–2 Examples of Calling CMS

Examples of Calling CMS
B.1 Calling CMS from Ada

Example B–1 (Cont.) Ada Example

private
for STATUS_TYPE use
record

SEVERITY at 0 range 0..2;
CODE at 0 range 3..14;
FAC_SP at 0 range 15..15;
FAC_NO at 0 range 16..27;
INHIB_MSG at 0 range 28..28;
FILLER_1 at 0 range 29..31;

end record;

for SIGARG_TYPE use
record

ARGS at 0 range 0..31;
NAME at 4 range 0..31;

-- ARGn at 8 range 0...;
end record;

pragma INTERFACE(SYS, PUTMSG);
pragma IMPORT_PROCEDURE(PUTMSG,

external => "SYS$PUTMSG",
mechanism => (REFERENCE,

VALUE,
DESCRIPTOR(S),
VALUE));

end;

package body CONDITION_HANDLING_UTILITIES is

function SS_NORMAL return STATUS_TYPE is
begin
return STATUS_TYPE’(SEVERITY => 1, CODE => 0, FAC_SP => FALSE,

FAC_NO => 0, INHIB_MSG => FALSE, FILLER_1 => 0);

end;
end;

with CONDITION_HANDLING_UTILITIES, SYSTEM;
use CONDITION_HANDLING_UTILITIES, SYSTEM;
package CMS is

type LDB_TYPE is 2
limited private;

type FDB_TYPE is
limited private;

(continued on next page)

Examples of Calling CMS B–3

Examples of Calling CMS
B.1 Calling CMS from Ada

Example B–1 (Cont.) Ada Example

type FLAG_TYPE is
new BOOLEAN;

procedure GET_STRING(
STATUS : out STATUS_TYPE;
STRING_ID : in ADDRESS;
STRING : out STANDARD.STRING);

procedure SET_LIBRARY(
STATUS : out STATUS_TYPE;
LIBRARY_DATA_BLOCK : in out LDB_TYPE;
DIRECTORY : in STRING;
MSG_ROUTINE : in ADDRESS := ADDRESS_ZERO);

procedure SHOW_ELEMENT(
STATUS : out STATUS_TYPE;
LIBRARY_DATA_BLOCK : in out LDB_TYPE;
OUTPUT_ROUTINE : in ADDRESS;
USER_ARG : in UNSIGNED_LONGWORD := 0;
ELEMENT_EXPRESSION : in STRING := "*.*";
MEMBER_FLAG : in FLAG_TYPE := FALSE;
MSG_ROUTINE : in ADDRESS := ADDRESS_ZERO);

-- Examples of OUTPUT_ROUTINE and MESSAGE_ROUTINE declarations
--
-- procedure OUTPUT_ROUTINE(
-- STATUS : out STATUS_TYPE;
-- FIRST_CALL : in FLAG_TYPE;
-- LDB : in out LDB_TYPE;
-- USER_PARAM : in UNSIGNED_LONGWORD;
-- ELEMENT_ID : in ADDRESS;
-- REMARK_ID : in ADDRESS;
-- HISTORY_STRING_ID : in ADDRESS;
-- NOTES_STRING_ID : in ADDRESS;
-- POSITION : in INTEGER;
-- CONCURRENT : in FLAG_TYPE;
-- REFERENCE_COPY : in FLAG_TYPE;
-- GROUP_LIST_ID : in ADDRESS
-- REVIEW : in FLAG_TYPE);
-- pragma EXPORT_VALUED_PROCEDURE(OUTPUT_ROUTINE,
-- external => "<some unique symbol>");
--

(continued on next page)

B–4 Examples of Calling CMS

Examples of Calling CMS
B.1 Calling CMS from Ada

Example B–1 (Cont.) Ada Example

-- procedure MSG_ROUTINE(
-- STATUS : out STATUS_TYPE;
-- SIGNAL_ARRAY : in SIGARG_TYPE;
-- MECHANISM_ARRAY : in MCHARG_TYPE;
-- LIB_DB : in out LDB_TYPE);
-- pragma EXPORT_VALUED_PROCEDURE(MSG_ROUTINE,
-- external => "<some unique symbol>");

private
-- Library Data Block
--
type LDB_TYPE is
record

LENGTH : INTEGER;
RETURN_STATUS : STATUS_TYPE;
LIB_DIR_LEN : NATURAL range 0..65_535;
LIB_DIR_DTYPE : UNSIGNED_BYTE;
LIB_DIR_CLASS : UNSIGNED_BYTE;
LIB_DIR_ADDRESS : ADDRESS;
PRIVATE_PART : UNSIGNED_LONGWORD_ARRAY(1..46);

end record;

for LDB_TYPE use
record

LENGTH at 0 range 0..31;
RETURN_STATUS at 4 range 0..31;
LIB_DIR_LEN at 8 range 0..15;
LIB_DIR_DTYPE at 10 range 0..7;
LIB_DIR_CLASS at 11 range 0..7;
LIB_DIR_ADDRESS at 12 range 0..31;
PRIVATE_PART at 16 range 0..46*32-1;

end record;

for LDB_TYPE’size use 32*50;

-- Fetch Data Block
--
type FDB_TYPE is

new SYSTEM.UNSIGNED_LONGWORD_ARRAY(1..5);
for FDB_TYPE’size use 32*5;

-- The FLAG_TYPE must occupy a whole longword
--
for FLAG_TYPE’size use 32;

(continued on next page)

Examples of Calling CMS B–5

Examples of Calling CMS
B.1 Calling CMS from Ada

Example B–1 (Cont.) Ada Example

-- Routines
--
pragma INTERFACE(CMS, GET_STRING);
pragma IMPORT_VALUED_PROCEDURE(GET_STRING,

external => "CMS$GET_STRING",
mechanism => (VALUE,

REFERENCE,
DESCRIPTOR(S)));

pragma INTERFACE(CMS, SET_LIBRARY);
pragma IMPORT_VALUED_PROCEDURE(SET_LIBRARY,

external => "CMS$SET_LIBRARY",
mechanism => (VALUE,

REFERENCE,
DESCRIPTOR(S),
VALUE));

pragma INTERFACE(CMS, SHOW_ELEMENT);
pragma IMPORT_VALUED_PROCEDURE(SHOW_ELEMENT,

external => "CMS$SHOW_ELEMENT",
mechanism => (VALUE,

REFERENCE,
VALUE,
REFERENCE,
DESCRIPTOR(S),
REFERENCE,
VALUE));

end;

function LAST_NON_BLANK(STRING : STANDARD.STRING) return NATURAL is
L : NATURAL := STRING’last;
begin

loop
exit when L < STRING’first or else STRING(L) /= ’ ’;
L := L - 1;
end loop;

return L;
end;

with LAST_NON_BLANK;
function TRIM(STRING : STANDARD.STRING) return STANDARD.STRING is 3

begin
return STRING(STRING’first..LAST_NON_BLANK(STRING));
end;

(continued on next page)

B–6 Examples of Calling CMS

Examples of Calling CMS
B.1 Calling CMS from Ada

Example B–1 (Cont.) Ada Example

with CMS, CONDITION_HANDLING_UTILITIES, SYSTEM, TEXT_IO, TRIM;
use CMS, CONDITION_HANDLING_UTILITIES, SYSTEM, TEXT_IO; 4
procedure OUTPUT_ROUTINE(

STATUS : out STATUS_TYPE;
FIRST_CALL : in FLAG_TYPE;
LDB : in out LDB_TYPE;
USER_PARAM : in UNSIGNED_LONGWORD;
ELEMENT_ID : in ADDRESS;
REMARK_ID : in ADDRESS;
HISTORY_STRING_ID : in ADDRESS;
NOTES_STRING_ID : in ADDRESS;
POSITION : in INTEGER;
CONCURRENT : in FLAG_TYPE;
REFERENCE_COPY : in FLAG_TYPE;
GROUP_LIST_ID : in ADDRESS;

REVIEW : in FLAG_TYPE)
is GET_STATUS : STATUS_TYPE;

STRING : STANDARD.STRING(1..65_535);
begin
GET_STRING(GET_STATUS, ELEMENT_ID, STRING);
PUT_LINE(TRIM(STRING));
GET_STRING(GET_STATUS, GROUP_LIST_ID, STRING);
PUT_LINE(TRIM(STRING));
STATUS := SS_NORMAL;
end;

pragma EXPORT_VALUED_PROCEDURE(OUTPUT_ROUTINE,
external=>"OUTPUT_ROUTINE");

(continued on next page)

Examples of Calling CMS B–7

Examples of Calling CMS
B.1 Calling CMS from Ada

Example B–1 (Cont.) Ada Example

with CMS, CONDITION_HANDLING_UTILITIES, STARLET, SYSTEM;
use CMS, CONDITION_HANDLING_UTILITIES, STARLET, SYSTEM;
procedure MSG_ROUTINE(5

STATUS : out STATUS_TYPE;
SIGNAL_ARRAY : in SIGARG_TYPE;
MECHANISM_ARRAY : in MCHARG_TYPE;
LIB_DB : in out LDB_TYPE)
is
begin
case SIGNAL_ARRAY.NAME.SEVERITY is
when STS_K_WARNING | STS_K_ERROR | STS_K_SEVERE =>

declare
COPY : SIGARG_TYPE(SIGNAL_ARRAY.ARGS) := SIGNAL_ARRAY;
begin
COPY.NAME.SEVERITY := STS_K_INFO;
PUTMSG(COPY);
end;

when others =>
null;

end case;
STATUS := CONDITION_HANDLING_UTILITIES.SS_NORMAL;
end;

pragma EXPORT_VALUED_PROCEDURE(MSG_ROUTINE,
external=>"MSG_ROUTINE");

with CMS, CONDITION_HANDLING_UTILITIES, MSG_ROUTINE, OUTPUT_ROUTINE, TRIM;
use CMS, CONDITION_HANDLING_UTILITIES;
procedure SHOW_ELEMENT_EXAMPLE is

LDB : LDB_TYPE;
STATUS : STATUS_TYPE;
begin

SET_LIBRARY(STATUS, LDB, "CMS$LIB",
MSG_ROUTINE => MSG_ROUTINE’address);

SHOW_ELEMENT(STATUS, LDB, OUTPUT_ROUTINE’address,
MEMBER_FLAG => TRUE, MSG_ROUTINE => MSG_ROUTINE’address);

end;

Key to Example B–1:

1 This section sets up and establishes the message-handling package.

2 This section sets up and establishes the CMS interface package.

3 The TRIM routine is created, which trims blank spaces off the ends of
strings.

B–8 Examples of Calling CMS

Examples of Calling CMS
B.1 Calling CMS from Ada

4 The callback output routine (which will get passed to
CMS$SHOW_ELEMENT) is declared.

5 The callback message routine is declared.

B.2 Calling CMS from Basic
Example B–2 shows a call to CMS$SHOW_ELEMENT from Basic.

Example B–2 Calling CMS$SHOW_ELEMENT from Basic

DIM LONG LIB_DB(50) ! Declaration for the library data block

! EXTERNAL declarations for CMS routines and the output routine
!
EXTERNAL LONG FUNCTION CMS$SET_LIBRARY (LONG, STRING)
EXTERNAL LONG FUNCTION CMS$SHOW_ELEMENT (LONG, LONG, STRING, STRING, LONG, LONG)
EXTERNAL LONG OUTPUT_ROUTINE ! Declare OUTPUT_ROUTINE as an external long

! integer, so the starting address of the routine
! can be passed as a parameter.

DECLARE LONG RETURN_STATUS, MEMBER_FLAG

RETURN_STATUS = CMS$SET_LIBRARY (LIB_DB(0), "CMS$LIB")
MEMBER_FLAG = 1
RETURN_STATUS = CMS$SHOW_ELEMENT (LIB_DB(0), OUTPUT_ROUTINE, , , MEMBER_FLAG,)

END

! The output routine
!
SUB OUTPUT_ROUTINE (LONG F_FIRST, &

RFA LDB, USR_PARAM, &
LONG ELEMENT_ID, REMARK_ID, HISTORY_ID, &

NOTES_ID, POSITION, CONCURRENT, &
REF_COPY, GROUP_LIST_ID, REVIEW)

DECLARE STRING ELEMENT_NAME, GROUP_LIST_NAMES, LONG RETURN_STATUS

! EXTERNAL declaration for CMS$GET_STRING (used to translate string identifiers
! into a form that Basic can understand)
!
EXTERNAL LONG FUNCTION CMS$GET_STRING (LONG, STRING)

(continued on next page)

Examples of Calling CMS B–9

Examples of Calling CMS
B.2 Calling CMS from Basic

Example B–2 (Cont.) Calling CMS$SHOW_ELEMENT from Basic

! Display the results
!
RETURN_STATUS = CMS$GET_STRING (ELEMENT_ID, ELEMENT_NAME)
RETURN_STATUS = CMS$GET_STRING (GROUP_LIST_ID, GROUP_LIST_NAMES)
PRINT ,ELEMENT_NAME
PRINT ,GROUP_LIST_NAMES

END SUB

B.3 Calling CMS from BLISS
Example B–3 shows a call to CMS$SHOW_ELEMENT from BLISS.

Example B–3 Calling CMS$SHOW_ELEMENT from BLISS

MODULE SHOWELE (MAIN = MAIN, ADDRESSING_MODE (EXTERNAL = GENERAL)) =
BEGIN

FORWARD ROUTINE
MAIN,
OUTPUT_ROUTINE;

EXTERNAL ROUTINE
CMS$SET_LIBRARY, ! EXTERNAL declarations for CMS routines
CMS$SHOW_ELEMENT, ! and LIB$ routine for output
LIB$PUT_OUTPUT;

GLOBAL ROUTINE MAIN =
BEGIN

LOCAL
LDB : VECTOR[50], ! Declaration for library data block and
STATUS; ! a variable for return value from calls

STATUS = CMS$SET_LIBRARY (LDB, %ASCID ’CMS$LIB’);
IF NOT .STATUS
THEN ! Exit with error code if

RETURN .STATUS; ! unable to set library

STATUS = CMS$SHOW_ELEMENT (LDB, OUTPUT_ROUTINE, 0, 0, %REF(1)); 1
IF NOT .STATUS
THEN ! Exit with error code if call

RETURN .STATUS; ! to CMS$SHOW_ELEMENT fails

(continued on next page)

B–10 Examples of Calling CMS

Examples of Calling CMS
B.3 Calling CMS from BLISS

Example B–3 (Cont.) Calling CMS$SHOW_ELEMENT from BLISS

RETURN 1; ! Exit with success value
END;

ROUTINE OUTPUT_ROUTINE (FIRST_CALL, LIBDB, USER_PARAM, ELEMENT_ID, REMARK_ID,
HISTORY_ID, NOTES_ID, POSITION, ACCESS, REF_COPY,
GROUP_LIST_ID, REVIEW) =

BEGIN

BIND
ELEMENT_NAME = ..ELEMENT_ID, ! BIND declaration for
GROUP_LIST_NAME = ..GROUP_LIST_ID; ! string identifiers

LIB$PUT_OUTPUT (ELEMENT_NAME); 2
LIB$PUT_OUTPUT (GROUP_LIST_NAME);

RETURN 1;

END;

END
ELUDOM

Key to Example B–3:

1 The member list flag is set to true (1) in the call to
CMS$SHOW_ELEMENT. By using the %REF function, the call frame
contains the address of a temporary data segment containing the value 1.

2 Within the callback routine it is not necessary to use the
CMS$GET_STRING routine to manipulate string identifiers. BLISS
allows you to use the dot operator to specify the address path. The BIND
declaration is used as a more concise method of handling the string
identifiers that CMS passes to the output routine.

Examples of Calling CMS B–11

Examples of Calling CMS
B.4Calling CMS from C

B.4 Calling CMS from C
Example B–4 shows a call to CMS$SHOW_ELEMENT from C.

Example B–4 Calling CMS$SHOW_ELEMENT from C

#include stdio

#include descrip /* OPENVMS DESCRIPTOR DEFINITIONS */

/* DESCRIPTOR MACROS */

#define builddesc(name) \
struct dsc$descriptor name = {0, DSCK_DTYPE_T, DSCK_CLASS_D, 0}

#define filldesc(name, str) \
name.dsc$w_length = strlen(str); \
name.dsc$a_pointer = str

main()
{

int lib_db[50];
int output_routine ();
int f_member_list = 1;
char *lib_name = "CMS$LIB";

builddesc (d_lib); /* BUILD A DESCRIPTOR FOR THE LIBRARY NAME */
filldesc (d_lib, lib_name); /* FILL IN THE DESCRIPTOR */

/* PASS THE LIBRARY DATA BLOCK AND THE LIBRARY NAME DESCR. BY REFERENCE */
cms$set_library (&lib_db, &d_lib);

/* PASS THE LDB, entry point, AND FLAG FOR THE MEMBER LIST BY REFERENCE */
cms$show_element (&lib_db, output_routine, 0, 0, &f_member_list, 0);

}

/* THE OUTPUT ROUTINE */

output_routine (a_f_first_call, a_lib_db, a_user_param, element_id, remark_id,
history_string_id, notes_string_id, position, concurrent,
ref_copy, group_list_id, review)

(continued on next page)

B–12 Examples of Calling CMS

Examples of Calling CMS
B.4Calling CMS from C

Example B–4 (Cont.) Calling CMS$SHOW_ELEMENT from C

int *a_f_first_call, *a_lib_db, *a_user_param, **remark_id, **history_string_id,
**notes_string_id, *position, *concurrent, *ref_copy, *review;

struct dsc$descriptor **element_id, **group_list_id; 1
{

char *string_from_cms; /* TO HOLD STRING EXTRACTED FROM DESCRIPTOR */
struct dsc$descriptor_s *descriptor; /* VARIABLE TO HANDLE STRING IDs */
char *calloc();
descriptor = *element_id; 2
string_from_cms = calloc (1, descriptor -> dsc$w_length + 1);
strncpy (string_from_cms, descriptor -> dsc$a_pointer, 3

descriptor -> dsc$w_length);
printf ("%s\n", string_from_cms);
descriptor = *group_list_id;
string_from_cms = calloc (1, descriptor -> dsc$w_length + 1);
strncpy (string_from_cms, descriptor -> dsc$a_pointer, 4

descriptor -> dsc$w_length);
printf ("%s\n", string_from_cms);

return (1);
}

Because C enables you to manipulate addresses directly, it is not necessary
to use the CMS$GET_STRING routine when you are calling CMS from the C
language. This example illistrates one way to handle the string identifiers.

Key to Example B–4:

1 The strings containing the element name and the group list are passed by
string identifier. To handle the extra level of indirection, the element_id
and group_list_id parameters are declared with two asterisk operators.

2 The address of the element name descriptor is put in the contents of
descriptor.

3 Descriptor is then used as an argument to the calloc and strncpy
functions to provide the string for output.

4 The same steps are used to handle the group list string.

Examples of Calling CMS B–13

Examples of Calling CMS
B.5 Calling CMS from COBOL

B.5 Calling CMS from COBOL
Example B–5 shows a call to CMS$SHOW_ELEMENT from COBOL.

Example B–5 Calling CMS$SHOW_ELEMENT from COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. SHOELE.
*
* SHOW ELEMENT
*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 LIB_DB PIC X(200).
01 LIBRARY PIC X(21) VALUE "CMS$LIB".

* The flag signaling /MEMBER
*
01 MEM PIC S9 VALUE 1.

* The user-supplied output routine.
*
01 OUT_ROUT PIC S9(9) COMP VALUE EXTERNAL OUTP.

/
PROCEDURE DIVISION.
0.

CALL "CMS$SET_LIBRARY" USING BY REFERENCE LIB_DB
BY DESCRIPTOR LIBRARY.

CALL "CMS$SHOW_ELEMENT" USING BY REFERENCE LIB_DB
BY VALUE OUT_ROUT
BY VALUE 0
BY VALUE 0
BY REFERENCE MEM.

EXIT PROGRAM.

The program SHOELE contains a declaration for the callback routine (named
OUTP) that handles output from CMS$SHOW_ELEMENT. The following
example shows this subroutine. You must compile OUTP separately to pass
the address of the routine to CMS.

In the following example, the callback routine OUTP must be located in a
separate module to allow the main program SHOELE to reference its address.

B–14 Examples of Calling CMS

Examples of Calling CMS
B.5 Calling CMS from COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. OUTP.
*
* Output subroutine for SHOW ELEMENT
*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Strings to hold the data extracted from the descriptors;
* status to be returned to CMS.
*
01 ELEMENT_NAME PIC X(15).
01 GROUP_LIST_NAMES PIC X(100).
01 CALL_STATUS_VAL COMP PIC 9(9).
01 RET_STATUS_VAL COMP PIC 9(9).
LINKAGE SECTION.

01 F_FIRST_CALL PIC 99.
01 LIB_DATA_BLOCK PIC X(200).
01 USER_PARAM PIC 99.
01 ELEMENT_ID PIC 9(9).
01 REMARK_ID PIC 9(9).
01 HISTORY_ID PIC 9(9).
01 NOTES_ID PIC 9(9).
01 POSITION_VAL PIC 9(9).
01 CONCURRENT_FLAG PIC 9(9).
01 REF_COPY PIC 9(9).
01 GROUP_LIST_ID PIC 9(9).
01 REVIEW PIC 9(9).
/
PROCEDURE DIVISION USING F_FIRST_CALL

LIB_DATA_BLOCK
USER_PARAM
ELEMENT_ID
REMARK_ID
HISTORY_ID
NOTES_ID
POSITION_VAL
CONCURRENT_FLAG
REF_COPY
GROUP_LIST_ID
REVIEW

GIVING RET_STATUS_VAL.

0.

* Extract the string data from the descriptors.
*

MOVE 1 to CALL_STATUS_VAL.
CALL "CMS$GET_STRING" USING ELEMENT_ID

BY DESCRIPTOR ELEMENT_NAME
GIVING CALL_STATUS_VAL.

Examples of Calling CMS B–15

Examples of Calling CMS
B.5 Calling CMS from COBOL

IF (CALL_STATUS_VAL = 1)
DISPLAY ELEMENT_NAME
CALL "CMS$GET_STRING" USING GROUP_LIST_ID

BY DESCRIPTOR GROUP_LIST_NAMES
GIVING CALL_STATUS_VAL

IF (CALL_STATUS_VAL = 1)
DISPLAY GROUP_LIST_NAMES

END-IF

END-IF

* Return the call status to CMS.
*

MOVE CALL_STATUS_VAL TO RET_STATUS_VAL.

EXIT PROGRAM.

B.6 Calling CMS from Fortran
Example B–6 shows a call to CMS$SHOW_ELEMENT from Fortran.

Example B–6 Calling CMS$SHOW_ELEMENT from Fortran

IMPLICIT INTEGER*4 (A-Z)
INTEGER*4 CMS$SET_LIBRARY, 1
1 CMS$SHOW_ELEMENT,
1 LDB(50),
1 MEMBER_FLAG
EXTERNAL OUTPUT_ROUTINE 2

STATUS = CMS$SET_LIBRARY (LDB, ’CMS$LIB’)
IF (STATUS) THEN

MEMBER_FLAG = 1
STATUS = CMS$SHOW_ELEMENT (LDB, OUTPUT_ROUTINE, , , MEMBER_FLAG)

END IF

END

INTEGER*4 FUNCTION OUTPUT_ROUTINE (FIRST_CALL, LIBDB, USER_PARAM, 3
1 ELEMENT_ID, REMARK_ID, HISTORY_ID,
1 NOTES_ID, POSITION, ACCESS,
1 REF_COPY, GROUP_LIST_ID, REVIEW)
IMPLICIT INTEGER*4 (A-Z)
INTEGER*4 LIBDB(50)
CHARACTER ELEMENT_NAME*80,
1 GROUP_LIST_NAMES*80
EXTERNAL CMS$GET_STRING

(continued on next page)

B–16 Examples of Calling CMS

Examples of Calling CMS
B.6 Calling CMS from Fortran

Example B–6 (Cont.) Calling CMS$SHOW_ELEMENT from Fortran

CALL CMS$GET_STRING (ELEMENT_ID, ELEMENT_NAME) 4
CALL CMS$GET_STRING (GROUP_LIST_ID, GROUP_LIST_NAMES)
PRINT *, ELEMENT_NAME
PRINT *, GROUP_LIST_NAMES

OUTPUT_ROUTINE = 1
RETURN
END

Key to Example B–6:

1 The CMS routines are declared as INTEGER*4 so the return status is
available for error checking.

2 The output routine is declared EXTERNAL to pass the address of the
routine to CMS.

3 The output routine is written as a function because it must return a value
to CMS.

4 CMS$GET_STRING is used to translate the string identifier and provide
access to the element name and group list strings.

B.7 Calling CMS from Pascal
Example B–7 shows a call to CMS$SHOW_ELEMENT from Pascal.

Example B–7 Calling CMS$SHOW_ELEMENT from Pascal

PROGRAM SHOELE (INPUT, OUTPUT); (* SHOW ELEMENT *)

TYPE
LDB = ARRAY [1..50] OF INTEGER;
STRING = VARYING [256] OF CHAR;

VAR
LIB_DB : LDB;
LIBNAM : STRING;
MEMBER_FLAG : INTEGER;

(* External CMS routines *)

(continued on next page)

Examples of Calling CMS B–17

Examples of Calling CMS
B.7 Calling CMS from Pascal

Example B–7 (Cont.) Calling CMS$SHOW_ELEMENT from Pascal

PROCEDURE CMS$SET_LIBRARY
(%REF LIB_DB : LDB;

%DESCR LIBDIR : STRING);
EXTERNAL;

PROCEDURE CMS$SHOW_ELEMENT
(%REF LIB_DB : LDB;

FUNCTION OUTPUT_ROUTINE
(VAR FIRST : INTEGER;

VAR LIB : LDB;
VAR PARAM : INTEGER;
VAR ELEMENT : INTEGER;
VAR REMARK : INTEGER;
VAR HISTORY : INTEGER;
VAR NOTES : INTEGER;
VAR POSITION : INTEGER;
VAR CONCURRENT : INTEGER;
VAR REF_COPY : INTEGER;
VAR GROUP_LIST : INTEGER;
VAR REVIEW : INTEGER) : INTEGER;

%IMMED USER_PARAM : INTEGER := 0;
%IMMED ELEMENT_EXP : INTEGER := 0;
%REF MEMBER_FLAG : INTEGER;
%IMMED MSG_ROUTINE : INTEGER := 0);

EXTERNAL;

PROCEDURE CMS$GET_STRING
(%REF DATA : INTEGER;

%DESCR DEST : STRING);
EXTERNAL;

(* The output routine *)

FUNCTION OUTPUT_ROUTINE
(VAR FIRST : INTEGER;

VAR LIB : LDB;
VAR PARAM_ID : INTEGER;
VAR ELEMENT_ID : INTEGER;
VAR REMARK_ID : INTEGER;
VAR HISTORY_ID : INTEGER;
VAR NOTES_ID : INTEGER;
VAR POSITION : INTEGER;
VAR CONCURRENT : INTEGER;
VAR REF_COPY : INTEGER;
VAR GROUP_LIST_ID : INTEGER;
VAR REVIEW : INTEGER) : INTEGER;

(continued on next page)

B–18 Examples of Calling CMS

Examples of Calling CMS
B.7 Calling CMS from Pascal

Example B–7 (Cont.) Calling CMS$SHOW_ELEMENT from Pascal

VAR
ELEMENT_NAME : STRING;
GROUP_LIST_NAMES : STRING;

BEGIN
(* NOTE: this routine must return a value equivalent to

true, or CMS will assume the user is returning an error. *)

(* write out the actual data *)

CMS$GET_STRING (ELEMENT_ID, ELEMENT_NAME);
WRITELN (ELEMENT_NAME);
CMS$GET_STRING (GROUP_LIST_ID, GROUP_LIST_NAMES);
WRITELN (GROUP_LIST_NAMES);
OUTPUT_ROUTINE := 1;

END; (* end of output routine *)

(* Main program body - Set the CMS library, set the member flag to true,
and call CMS$SHOW_ELEMENT *)

BEGIN

LIBNAM := ’CMS$LIB’;
CMS$SET_LIBRARY (LIB_DB, LIBNAM);
MEMBER_FLAG := 1;
CMS$SHOW_ELEMENT (LIB_DB, %IMMED OUTPUT_ROUTINE, , , MEMBER_FLAG);

END.

Key to Example B–7:

1 The formal parameter list for the CMS$SHOW_ELEMENT routine
includes declarations for all of the actual parameters that you can pass to
the routine. The list includes several %IMMED declarations that assign
a value of zero to the parameter. Because the actual parameter list does
not override these declarations, the call frame contains a zero in the
position allocated for each of these unused parameters. The zero serves as
a placeholder; thus, the member flag argument is interpreted as being in
the correct position.

2 Note that the actual parameter list in the call to CMS$SHOW_ELEMENT
specifies the %IMMED passing mechanism for the callback routine
argument. This is necessary to generate the address of the entry point in
the call frame.

Examples of Calling CMS B–19

Examples of Calling CMS
B.8 Calling CMS from PL/I (Alpha and VAX Only)

B.8 Calling CMS from PL/I (Alpha and VAX Only)
Example B–8 shows a call to CMS$SHOW_ELEMENT from PL/I. Note that
PL/I is not supported on the OpenVMS I64 platform.

Example B–8 Calling CMS$SHOW_ELEMENT from PL/I (Alpha and VAX Only)

SHOELMEM: PROCEDURE OPTIONS (MAIN);

/* SHOW ELEMENT/MEMBER */

DECLARE MEMBER_FLAG FIXED BINARY (31);
DECLARE LIB_DB(50) FIXED BINARY (31);
DECLARE LIBDIR CHARACTER(50) VARYING;

DECLARE CMS$SET_LIBRARY ENTRY ((50) FIXED BINARY (31),
CHARACTER(*) VARYING);

DECLARE CMS$SHOW_ELEMENT ENTRY ((50) FIXED BINARY (31), /* ldb */
ENTRY VALUE, 1 /* routine */
FIXED BINARY (31), /* user param */
CHARACTER (*), /* elem-expr */
FIXED BINARY (31), /* group-list flag */
ENTRY VALUE) /* msg routine */

OPTIONS (VARIABLE); 2

DECLARE CMS$GET_STRING ENTRY (FIXED BINARY(31),
CHARACTER(*) VARYING);

LIBDIR = ’CMS$LIB’;
MEMBER_FLAG = 1;

CALL CMS$SET_LIBRARY (LIB_DB, LIBDIR);
CALL CMS$SHOW_ELEMENT (LIB_DB, OUTPUT_ROUTINE, , , MEMBER_FLAG); 3

/* the output routine */

OUTPUT_ROUTINE : PROCEDURE (FIRST, LDB, PARAM, ELEMENT, COMM, HIST, NOTES, POS,
CONC, REFCOP, GROUP_LIST, REVIEW)

RETURNS (FIXED BINARY(31) VALUE);

DECLARE FIRST FIXED BINARY(1),
LDB (50) FIXED BINARY(31),
(PARAM, ELEMENT, COMM, HIST, NOTES, POS, CONC, REFCOP, GROUP_LIST,

REVIEW) FIXED BINARY(31);
DECLARE ELEMENT_NAME CHARACTER(79) VARYING;
DECLARE GROUP_LIST_NAMES CHARACTER(120) VARYING;

/* write the lines of data */

(continued on next page)

B–20 Examples of Calling CMS

Examples of Calling CMS
B.8 Calling CMS from PL/I (Alpha and VAX Only)

Example B–8 (Cont.) Calling CMS$SHOW_ELEMENT from PL/I (Alpha and VAX Only)

CALL CMS$GET_STRING (ELEMENT, ELEMENT_NAME);
PUT SKIP LIST (ELEMENT_NAME);
CALL CMS$GET_STRING (GROUP_LIST, GROUP_LIST_NAMES);
PUT SKIP LIST (GROUP_LIST_NAMES);
RETURN (1);

END OUTPUT_ROUTINE;

END;

Key to Example B–8:

1 The output routine must be passed by value to place the address of the
entry point in the call frame.

2 If you specify the OPTIONS(VARIABLE) attribute in the routine
declaration, you can omit unnecessary arguments from the call to the
CMS routine.

3 Although the OPTIONS(VARIABLE) attribute is used, you must use
commas as placeholders for intermediate arguments. You do not need to
include placeholders for trailing default arguments.

B.9 Calling CMS from SCAN
Example B–9 shows the use of CMS$FETCH_OPEN, CMS$FETCH_GET,
and CMS$FETCH_CLOSE to retrieve the latest generation of an element
and replace all white space with a single space. The file is then written to
SYS$OUTPUT.

Examples of Calling CMS B–21

Examples of Calling CMS
B.9 Calling CMS from SCAN

Example B–9 SCAN Example

MODULE cms_example;

!+
! This example program accesses the CMS library pointed to by the CMS$LIB
! logical name. It prompts for an element name, and then displays its
! contents.
!-

!+
! Declarations.
!-
TYPE cms_fdb : FILL (20); 1

CONSTANT cms$_normal EXTERNAL INTEGER;
CONSTANT rms$_eof EXTERNAL INTEGER;
CONSTANT scn$_endinpstm EXTERNAL INTEGER;
CONSTANT ss$_normal EXTERNAL INTEGER;

EXTERNAL PROCEDURE cms$fetch_open
(REFERENCE cms_fdb,

DESCRIPTOR DYNAMIC STRING,
DESCRIPTOR DYNAMIC STRING,
DESCRIPTOR DYNAMIC STRING,
REFERENCE BOOLEAN,
REFERENCE BOOLEAN,
DESCRIPTOR DYNAMIC STRING,
REFERENCE INTEGER) OF INTEGER;

EXTERNAL PROCEDURE cms$fetch_get
(REFERENCE cms_fdb,

DESCRIPTOR DYNAMIC STRING,
REFERENCE INTEGER,
DESCRIPTOR DYNAMIC STRING,
REFERENCE INTEGER) OF INTEGER;

EXTERNAL PROCEDURE cms$fetch_close
(REFERENCE cms_fdb,

REFERENCE INTEGER) OF INTEGER;

!+
! Global values shared between the procedures.
!-
DECLARE fdb : cms_fdb;
DECLARE status : INTEGER;
DECLARE buffer : DYNAMIC STRING;

(continued on next page)

B–22 Examples of Calling CMS

Examples of Calling CMS
B.9 Calling CMS from SCAN

Example B–9 (Cont.) SCAN Example

!+
! Simple token and macro to compress a sequence of blanks and tabs
! to a single blank.
!-
TOKEN space { { ’ ’ | s’ht’ }... };
MACRO compress TRIGGER { space }; 2

ANSWER ’ ’;
END MACRO /* compress */;

!+
! Input procedure to read the lines of the CMS element.
!-
PROCEDURE read_line

(buffer_length : INTEGER, 3
buffer_ptr : POINTER TO FIXED STRING (132)) OF INTEGER;

status = cms$fetch_get(fdb, buffer, *, *, *);
IF status = rms$_eof 4
THEN

RETURN scn$_endinpstm;
ELSE

buffer_length = LENGTH(buffer);
buffer_ptr -> = buffer;
RETURN ss$_normal;

END IF;

END PROCEDURE /* read_line */;

!+
! Main procedure that "opens" the cms element, scans the input
! stream, and "closes" the cms element.
!-
PROCEDURE main MAIN;

DECLARE element_name : DYNAMIC STRING;

READ PROMPT (’element name: ’) element_name; 5
status = cms$fetch_open (fdb, ’CMS$LIB’, element_name,

*, TRUE, TRUE, *, *); 6

(continued on next page)

Examples of Calling CMS B–23

Examples of Calling CMS
B.9 Calling CMS from SCAN

Example B–9 (Cont.) SCAN Example

START SCAN
INPUT PROCEDURE read_line
OUTPUT FILE ’sys$output’;

status = cms$fetch_close(fdb, *);

END PROCEDURE /* main */;

END MODULE /* cms_example */;

Key to Example B–9:

1 A fetch data block of 20 bytes (five longwords) is declared.

2 The compress macro performs the space compression.

3 Procedure read_line calls CMS$FETCH_GET to read the lines.

4 At the end of the input, the program returns SCN$_ENDINPSTM to
indicate that there is no more data.

5 This line prompts the user to provide an element name.

6 Asterisks mean that these parameters are being omitted.

B–24 Examples of Calling CMS

Index

A
Access control list, 2–169
Access types, 2–1
Address data type, 1–7
ANNOTATE, 2–2 to 2–10
Argument

data type, 1–6
flag, 1–11
history, 2–30

FETCH, 2–98
MODIFY_ELEMENT, 2–126

notes
CREATE_ELEMENT, 2–30
FETCH, 2–98
MODIFY_ELEMENT, 2–127

null, 1–6
passing, 1–4 to 1–7
placeholder, 1–6
position

CREATE_ELEMENT, 2–31
FETCH, 2–99
MODIFY_ELEMENT, 2–127

user-defined, 1–16
ASYNCH_TERMINATE, 2–11
Attribute

notes, 2–30, 2–98, 2–127
position, 2–31, 2–99, 2–127
reference copy, 2–19, 2–22, 2–26, 2–32,

2–128

B
Bitmasks, 1–12
By descriptor passing mechanism, 1–5
By immediate value passing mechanism,

1–4
By reference passing mechanism, 1–5

C
Callback routine, 1–15 to 1–20

command line, 1–17
confirmation, 1–17
output, 1–18
prompt, 1–17
writing, 1–16

Calling CMS routines, 1–2 to 1–4
Char_string data type, 1–7
Class

copying, 2–17
creating, 2–27
deleting, 2–45
modifying, 2–121
showing, 2–189

CMS$ANNOTATE, 2–2 to 2–10
CMS$ASYNCH_TERMINATE, 2–11
CMS$CMS, 2–12 to 2–16
CMS$COPY_CLASS, 2–17 to 2–19
CMS$COPY_ELEMENT, 2–20 to 2–23
CMS$COPY_GROUP, 2–24 to 2–26
CMS$CREATE_CLASS, 2–27 to 2–28
CMS$CREATE_ELEMENT, 2–29 to 2–36

Index–1

CMS$CREATE_GROUP, 2–37 to 2–38
CMS$CREATE_LIBRARY, 2–39 to 2–44
CMS$DELETE_CLASS, 2–45 to 2–46
CMS$DELETE_ELEMENT, 2–47 to 2–48
CMS$DELETE_GENERATION, 2–49 to

2–52
CMS$DELETE_GROUP, 2–53 to 2–54
CMS$DELETE_HISTORY, 2–55 to 2–61
CMS$DIFFERENCES, 2–62 to 2–81
CMS$DIFFERENCES_CLASS, 2–82 to 2–94
CMS$FETCH, 2–95 to 2–100
CMS$FETCH_CLOSE, 2–101
CMS$FETCH_GET, 2–102 to 2–105
CMS$FETCH_OPEN, 2–106 to 2–109
CMS$GET_STRING, 2–110
CMS$INSERT_ELEMENT, 2–111 to 2–113
CMS$INSERT_GENERATION, 2–114 to

2–117
CMS$INSERT_GROUP, 2–118 to 2–120
CMS$MODIFY_CLASS, 2–121 to 2–124
CMS$MODIFY_ELEMENT, 2–125 to 2–129
CMS$MODIFY_GENERATION, 2–130 to

2–131
CMS$MODIFY_GROUP, 2–132 to 2–134
CMS$MODIFY_LIBRARY, 2–135 to 2–138
CMS$MODIFY_RESERVATION, 2–139 to

2–141
CMS$PUT_STRING, 2–142 to 2–143
CMS$REMARK, 2–144 to 2–145
CMS$REMOVE_ELEMENT, 2–146 to

2–148
CMS$REMOVE_GENERATION, 2–149 to

2–151
CMS$REMOVE_GROUP, 2–152 to 2–154
CMS$REPLACE, 2–155 to 2–162
CMS$RETRIEVE_ARCHIVE, 2–163 to

2–164
CMS$REVIEW_GENERATION, 2–165 to

2–168
CMS$SET_ACL, 2–169 to 2–172
CMS$SET_LIBRARY, 2–173 to 2–176
CMS$SET_NOLIBRARY, 2–177 to 2–178
CMS$SHOW_ACL, 2–179 to 2–182

CMS$SHOW_ARCHIVE, 2–183 to 2–188
CMS$SHOW_CLASS, 2–189 to 2–192
CMS$SHOW_ELEMENT, 2–193 to 2–198
CMS$SHOW_GENERATION, 2–199 to

2–208
CMS$SHOW_GROUP, 2–209 to 2–213
CMS$SHOW_HISTORY, 2–214 to 2–221
CMS$SHOW_LIBRARY, 2–222 to 2–227
CMS$SHOW_RESERVATIONS, 2–228 to

2–235
CMS$SHOW_REVIEWS_PENDING, 2–236

to 2–241
CMS$SHOW_VERSION, 2–242 to 2–243
CMS$UNRESERVE, 2–244 to 2–247
CMS$VERIFY, 2–248 to 2–250
CMS$WIDTH, 2–16, 2–41, 2–174
CMS$_EOF, 1–14, 1–19
CMS$_EXCLUDE, 1–19
CMS$_EXCLUDE return code, 2–60
CMS$_INUSE, 1–14
CMS$_NORMAL, 1–19
CMS$_PROCEEDING, 1–14
CMS$_STOPPED, 1–19
CMS$_WAITING, 1–14
CMS image, 1–24
CMS routines

See individual routines
CMSSHR.EXE shareable image, 1–24
Cntrlblk data type, 1–7
Command-line routine, 1–17
Concurrent flag example, 1–11
Condition values, 1–14
Confirmation callback routine, 1–17
Confirmation prompts, 1–17
COPY_CLASS, 2–17 to 2–19
COPY_ELEMENT, 2–20 to 2–23
COPY_GROUP, 2–24 to 2–26
CREATE_CLASS, 2–27 to 2–28
CREATE_ELEMENT, 2–29 to 2–36
CREATE_GROUP, 2–37 to 2–38
CREATE_LIBRARY, 2–39 to 2–44

Index–2

D
Data block

fetch, 1–10
library, 1–8 to 1–10

Data types, 1–6 to 1–7
Date_time data type, 1–7
DELETE_CLASS, 2–45 to 2–46
DELETE_ELEMENT, 2–47 to 2–48
DELETE_GENERATION, 2–49 to 2–52
DELETE_GROUP, 2–53 to 2–54
DELETE_HISTORY, 2–55 to 2–61
DIFFERENCES, 2–62 to 2–81
DIFFERENCES_CLASS, 2–82 to 2–94

E
Element

copying, 2–20
creating, 2–29
deleting, 2–47
inserting, 2–111
modifying, 2–125
removing, 2–146
showing, 2–193

Entry points
See individual routines

Error conditions, 1–20
Error message-handler writing, 1–20

F
FDB

See Fetch data block
FETCH, 2–95 to 2–100
Fetch data block, 1–10
FETCH_CLOSE, 2–101
FETCH_GET, 2–102 to 2–105
FETCH_OPEN, 2–106 to 2–109
Flag, 1–11 to 1–12

G
Generating SDL interface descriptions, 1–1
Generation

deleting, 2–49
inserting, 2–114
modifying, 2–130
removing, 2–149
reviewing, 2–165
showing, 2–199

GET_STRING, 2–110
Group

copying, 2–24
creating, 2–37
deleting, 2–53
inserting, 2–118
modifying, 2–132
naming, 2–37
removing, 2–152
showing, 2–209

H
History

argument, 2–30, 2–98, 2–126
deleting, 2–55
list, 2–30, 2–98, 2–126
showing, 2–214

I
Image

CMS, 1–24
INSERT_ELEMENT, 2–111 to 2–113
INSERT_GENERATION, 2–114 to 2–117
INSERT_GROUP, 2–118 to 2–120

L
LDB

See Library data block
LIB$ESTABLISH routine, 1–22
Library

creating, 2–39
modifying, 2–135

Index–3

Library (cont’d)
removing, 2–177
setting, 2–173
show, 2–222

Library data block, 1–8 to 1–10
content, 1–10
definition, 1–2
size, 1–8

Library selection, 2–173, 2–176
Linking with the CMS image, 1–24
Longword_signed data type, 1–7

M
Masks, 1–12
Mask_longword data type, 1–7
Mechanism array, 1–21
Message-handler routine, 1–21 to 1–22
MODIFY_CLASS, 2–121 to 2–124
MODIFY_ELEMENT, 2–125 to 2–129
MODIFY_GENERATION, 2–130 to 2–131
MODIFY_GROUP, 2–132 to 2–134
MODIFY_LIBRARY, 2–135 to 2–138
MODIFY_RESERVATION, 2–139 to 2–141

N
Notes attribute, 2–30
Null argument, 1–6

O
Output routine, 1–18

P
Passing arguments to CMS routines, 1–4
Passing mechanisms, 1–4
Passing string descriptors, 1–5
Passing string identifiers, 1–18
Placeholder argument, 1–6
Position attribute, 2–31
Predecessor, 2–99
Procedure data type, 1–7

Prompt routine, 1–17
PUT_STRING, 2–142 to 2–143

R
Reference copy attribute, 2–32
REMARK, 2–144 to 2–145
REMOVE_ELEMENT, 2–146 to 2–148
REMOVE_GENERATION, 2–149 to 2–151
REMOVE_GROUP, 2–152 to 2–154
REPLACE, 2–155 to 2–162
Reservations

modifying, 2–139
Reserving an element, 2–95
RETRIEVE_ARCHIVE, 2–163 to 2–164
Return codes, 1–14

CMS$_EOF, 1–14, 1–19
CMS$_EXCLUDE, 1–19, 2–60
CMS$_INUSE, 1–14
CMS$_NORMAL, 1–19
CMS$_PROCEEDING, 1–14
CMS$_STOPPED, 1–19
CMS$_WAITING, 1–14

REVIEW_GENERATION, 2–165 to 2–168
Routines

See individual routines

S
SDL interface descriptions, 1–1
SET_ACL, 2–169 to 2–172
SET_LIBRARY, 2–173 to 2–176
SET_NOLIBRARY, 2–177 to 2–178
Shareable image, 1–24
SHOW_ACL, 2–179 to 2–182
SHOW_ARCHIVE, 2–183 to 2–188
SHOW_CLASS, 2–189 to 2–192
SHOW_ELEMENT, 2–193 to 2–198
SHOW_GENERATION, 2–199 to 2–208
SHOW_GROUP, 2–209 to 2–213
SHOW_HISTORY, 2–214 to 2–221
SHOW_LIBRARY, 2–222 to 2–227
SHOW_RESERVATIONS, 2–228 to 2–235

Index–4

SHOW_REVIEWS_PENDING, 2–236 to
2–241

SHOW_VERSION, 2–242 to 2–243
Signal array, 1–21
String descriptor, 1–5
String identifier, 1–18
Structure Definition Language

See SDL
SYS$SHARE:CMSSHR.EXE shareable

image, 1–24

U
Undefined data type, 1–7

Universal symbol, 1–14
UNRESERVE, 2–244 to 2–247
User-defined argument, 1–16

V
Value

condition, 1–14
Vector_longword_unsigned data type, 1–7
VERIFY, 2–248 to 2–250

W
Writing callback routines, 1–16
Writing message-handler routines, 1–22

Index–5

