
HP TP Desktop Connector
for ACMS
Client Application Programming
Guide

January 2006

This manual describes how to write, develop, and debug desktop client
programs that access HP ACMS applications from the desktop, using the
HP TP Desktop Connector for ACMS client services.

Revision Update Information: This is a revised manual.

Operating System: OpenVMS Alpha Version 8.2
Open VMS I64 Version 8.2-1

Software Version: HP TP Desktop Connector
for ACMS, Version 5.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additonal
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Microsoft and Windows are US registered trademarks of Microsoft Corporation.

Java is a US trademark of Sun Microsystems, Inc.

Printed in the US

Contents

Preface . xi

Part I Components and Design

1 HP TP Desktop Connector Components and Processing

1.1 TP Desktop Connector Components . 1–1
1.1.1 Desktop Client Program Components 1–3
1.1.2 Network Components . 1–4
1.1.3 TP Desktop Connector Gateway for ACMS System

Components . 1–5
1.2 Desktop Client Program Processing . 1–7
1.2.1 TP Desktop Client Services . 1–7
1.2.2 Desktop Client Program Action Routines 1–7
1.2.3 Phases of Desktop Client Program Processing 1–8
1.3 Programming with TP Desktop Software 1–10
1.4 System Management with TP Desktop Software 1–10
1.5 TP Desktop Sample Application . 1–11

2 Designing TP Desktop Connector Solutions

2.1 TP Desktop Connector for ACMS Design Questions 2–1
2.1.1 Understanding Application Requirements 2–2
2.1.2 Choosing Presentation Software . 2–2
2.1.3 Strategy for Implementing the Solution 2–3
2.2 Processing Design . 2–3
2.2.1 NO I/O and I/O Tasks . 2–3
2.2.1.1 NO I/O Task and TP Desktop Connector Interaction 2–4
2.2.1.2 I/O Task and TP Desktop Connector Interaction 2–5
2.2.1.3 Choosing Between I/O and NO I/O Tasks 2–6

iii

2.2.2 Application Design Approaches . 2–7
2.2.2.1 Common ACMS Applications . 2–7
2.2.2.2 Tailored ACMS Applications . 2–8
2.2.2.3 Conversion of a Task: I/O to NO I/O 2–8
2.2.3 Preventing Loss of Work with Local Data Capture 2–9
2.2.4 Event-Driven Systems and the Nonblocking Environment . . . 2–10
2.2.5 Nonblocking Design Considerations . 2–11
2.2.6 TP Desktop Connector Gateway for ACMS Availability 2–12
2.2.7 Error Handling . 2–13
2.2.8 TP Desktop Connector Gateway for ACMS Error

Checking . 2–14
2.3 User Interface Design . 2–15
2.4 Data Design . 2–16
2.4.1 Data Conversion . 2–17
2.4.2 Data Alignment with RISC Architecture Clients and

OpenVMS Servers . 2–17
2.4.3 Data Validation . 2–18
2.4.4 Data Integrity . 2–19
2.4.5 Workspace Design . 2–19
2.4.5.1 Unidirectional and Bidirectional Workspaces 2–21
2.4.6 Data Compression . 2–22
2.5 Design Conclusions . 2–23

3 Developing HP ACMS Applications

3.1 Overall Development on the OpenVMS System 3–1
3.2 Creating Data Definitions for the Desktop System 3–2
3.3 Treating Forms in Task and Task Group Definitions 3–3
3.4 Enabling Version Checking on OpenVMS Systems 3–4
3.4.1 Building the ACMSDI_GET_VERSION Shareable Image . . . 3–5
3.4.2 Defining the Version-Checking Logical Name 3–6
3.5 Getting Desktop Submitter Information . 3–6
3.5.1 Coding the Routine . 3–6
3.5.2 Building the Shareable Image . 3–7
3.6 Debugging TP Desktop Connector Solutions 3–9
3.6.1 Debugging the Desktop Client Program Only 3–9
3.6.2 Debugging NO I/O Tasks . 3–9
3.6.3 Debugging Tasks Called from Desktop Client Programs 3–10
3.6.3.1 Defining the Gateway Process and Network Names 3–13
3.6.3.2 Defining Logical Names . 3–15
3.6.3.3 Required Privileges . 3–17
3.6.3.4 Installing the TP Desktop Connector Gateway for ACMS

Images . 3–17

iv

3.6.3.5 Troubleshooting Problems in Starting Multiple
Gateways . 3–18

3.6.3.6 Starting the TP Desktop Connector Gateway for ACMS
from an ACMS Task . 3–18

3.6.3.7 Running the Task Debugger Session 3–19
3.6.3.8 Selecting a Gateway from a Portable API Client

Program . 3–20
3.6.3.9 Managing TP Desktop Connector Gateways Used for

Debugging Purposes . 3–21
3.6.3.10 Stopping a TP Desktop Connector Gateway for ACMS . . 3–21
3.6.3.11 Restrictions on Using Multiple Gateways 3–22
3.6.4 Debugging Procedure Server Code . 3–23

Part II Portable API Client Development

4 Developing Portable API Client Programs

4.1 Guideline Summary . 4–1
4.1.1 Managing Code on the Desktop Client System 4–1
4.1.2 Structuring Exchange Steps in the Presentation Code 4–1
4.1.3 Data Conversion . 4–3
4.1.4 Preventing Concurrent Use . 4–4
4.2 Generating Workspaces for the Client . 4–5
4.2.1 Generating Workspace Definitions . 4–5
4.2.2 Using the MAKE_RECORDS.COM Utility 4–6
4.2.3 Generating Individual Workspace Definitions 4–7
4.2.4 Coding Workspace Fields . 4–8
4.2.4.1 Initializing Workspaces from ACMS 4–8
4.2.4.2 Initializing Workspaces to ACMS 4–8
4.2.5 Using Data Compression with the Portable API 4–9
4.2.5.1 Activating Data Compression . 4–9
4.2.5.2 Specifying Data Compression for Workspaces 4–10
4.2.6 Data Compression Monitor . 4–13
4.2.6.1 Activating and Deactivating Compression Monitoring . . . 4–14
4.2.6.2 Creating Compression Activity Reports 4–15
4.2.6.3 Creating Customized Reports . 4–16
4.2.7 Choosing the Network Software . 4–18
4.3 Writing Version-Checking Routines . 4–18
4.3.1 Version-Checking Processing . 4–18
4.3.2 Requesting Version Checking . 4–20
4.4 AVERTZ Sample Desktop Client Program 4–20
4.4.1 AVERTZ Components . 4–21

v

4.4.2 AVERTZ Component Processing Flow 4–22
4.4.3 Reusing the CLIENT.EXE Routines . 4–24
4.5 Writing Procedures Using Blocking TP Desktop Client

Services . 4–28
4.5.1 Calling the Sign-In Service . 4–28
4.5.2 Enabling Password Expiration Checking 4–31
4.5.3 Establishing an Exit Handler . 4–32
4.5.4 Calling Tasks and Signing Out . 4–32
4.5.5 Passing Multiple Workspaces on acmsdi_call_task 4–33
4.5.6 Using Unidirectional Workspaces on acmsdi_call_task 4–34
4.5.7 Providing Stub Routines . 4–36
4.6 Writing Presentation Procedures in a Blocking Environment . . . 4–37
4.6.1 Coding for acmsdi_enable and acmsdi_disable 4–43
4.6.2 Coding Return Status Values . 4–43
4.7 Building and Debugging the Desktop Client Program 4–44
4.7.1 Linking the Desktop Client Program 4–44
4.7.2 Maximum Lengths for Environmental Variables 4–45
4.7.3 Debugging the Desktop Client Program with Tasks 4–45
4.8 Using the Desktop Client Program on Other Systems 4–46

5 Using Portable API Extensions for Microsoft Windows

5.1 Event-Driven Processing . 5–1
5.2 Guidelines for Developing Windows Desktop Client Programs . . . 5–4
5.3 AVERTZ Sample Desktop Client Program for Microsoft

Windows . 5–5
5.3.1 AVERTZ Components for Microsoft Windows 5–5
5.3.2 AVERTZ Component Processing Flow 5–7
5.4 Writing Client Procedures Using Nonblocking Services 5–9
5.4.1 Calling Nonblocking Services . 5–9
5.4.2 Setting Up Polling . 5–12
5.4.3 Establishing Session Context . 5–13
5.4.4 Writing a Call to Other Nonblocking Services 5–19
5.4.5 Canceling Active Tasks . 5–19
5.5 Writing Nonblocking Presentation Procedures 5–20
5.6 Writing Memory Allocation Routines . 5–25
5.7 Building and Debugging Windows Desktop Client Programs 5–26
5.8 Debugging the Nonblocking Desktop Client Program with

Tasks . 5–26
5.8.1 Using a Debugger to Step Through the Microsoft Windows

Sample Application . 5–26

vi

6 Using Portable API Extensions for OSF/Motif

6.1 Event-Driven Processing . 6–1
6.2 Guidelines for Developing X Windows Desktop Client

Programs . 6–4
6.3 AVERTZ Sample Desktop Client Program for X Windows 6–5
6.3.1 AVERTZ Components for X Windows 6–5
6.3.2 AVERTZ Component Processing Flow 6–7
6.4 Writing Client Procedures Using Nonblocking Services 6–17
6.4.1 Calling Nonblocking Services . 6–17
6.4.2 Setting Up Polling . 6–20
6.4.3 Establishing Session Context . 6–22
6.4.4 Writing a Call to Other Nonblocking Services 6–27
6.5 Canceling Tasks . 6–27
6.6 Writing Nonblocking Presentation Procedures 6–28
6.7 Special Handling of Workspaces for RISC Client Applications . . . 6–33
6.8 Writing Memory Allocation Routines . 6–38
6.9 Building and Debugging Motif Desktop Client Programs 6–39
6.9.1 Debugging the Nonblocking Desktop Client Program with

Tasks . 6–39
6.9.2 Using a Debugger to Step Through the Motif Sample

Application . 6–39

7 Forced Nonblocking Extension to the Portable API

7.1 Benefits of Forced Nonblocking . 7–1
7.2 Portable API Extensions for Forced Nonblocking 7–2
7.3 Forced Nonblocking Programming Considerations 7–5
7.3.1 Establishing a Forced Nonblocking Session 7–5
7.3.2 Canceling a Task from a Forced Nonblocking Session 7–6
7.3.3 Polling for Messages . 7–6
7.3.4 Obtaining Completion Arguments . 7–7
7.4 Forced Nonblocking Exchange Step Handling 7–8
7.4.1 Enable Exchange Arguments . 7–9
7.4.2 TDMS Read Exchange Step Arguments 7–11
7.4.3 TDMS Write Exchange Step Arguments 7–13
7.4.4 Receiving Exchange Arguments . 7–13
7.4.5 Requesting Exchange Step Arguments 7–15
7.4.6 Send Exchange Step Arguments . 7–17
7.4.7 Transceive Exchange Step Arguments 7–18
7.5 Sending and Receiving Forms Records and Workspaces 7–20
7.5.1 Receiving Send Forms Records and Control Text 7–21
7.5.2 Sending Receive Forms Records and Control Text 7–25

vii

7.5.3 Sending and Receiving TDMS Request Workspaces 7–29
7.6 Forced Nonblocking Flow of Control . 7–31
7.6.1 Structures Declared in Client Application Memory 7–33
7.6.2 Differences Between Standard and Forced Nonblocking 7–34
7.7 Forced Nonblocking Sample Application 7–36
7.7.1 Starting the Forced Nonblocking Sample 7–37
7.7.2 The Main Form . 7–38
7.7.3 Starting and Stopping Polling . 7–39
7.7.4 Forced Nonblocking Sample Sign In 7–39
7.7.5 Calling the ACMS Task from Sample 7–40
7.7.6 Forced Nonblocking Exchange Steps 7–40
7.7.6.1 Forced Nonblocking Enable Exchange Step 7–40
7.7.6.2 Transceive, Send and, Receive Exchange Steps 7–41
7.7.7 Task Completion . 7–42
7.7.8 Signing Out . 7–42
7.7.9 Cancelling the Task . 7–42

A Sample Application Code

B Tools

Index

Examples

2–1 NO I/O Task Actions for TP Desktop Connector Users 2–4
2–2 I/O Task Actions for TP Desktop Connector Users 2–5
3–1 Desktop-Only I/O Task and Task Group Definitions 3–3
4–1 Compression Call Option Type . 4–9
4–2 Portable API Task Call Passing Four Workspaces 4–12
4–3 Record Layout . 4–16
4–4 AVERTZ Reserve Task Exchange Steps 4–26
4–5 Signing In the User . 4–28
4–6 Login Program . 4–30
4–7 Passing Three Workspaces . 4–33
4–8 Passing Unidirectional Workspaces . 4–35
4–9 TRANSCEIVE Presentation Procedure 4–38
4–10 GETSITE Application-Specific Presentation Procedure 4–41
5–1 Nonblocking Service Call and Completion Routine 5–10

viii

5–2 Setting Up Polling . 5–12
5–3 AVERTZ Session Context . 5–14
5–4 Context Passed to Desktop Client Program 5–16
5–5 Call Context Returned with Presentation Procedure 5–16
5–6 Session Context Handling for the User Interface 5–17
5–7 Nonblocking Presentation Procedure Pseudocode 5–20
5–8 Presentation Procedure Completion Pseudocode 5–23
6–1 Nonblocking Service Call and Completion Routine 6–18
6–2 Setting Up Polling Using a Timer Event 6–20
6–3 AVERTZ Session Context . 6–22
6–4 Context Passed to Desktop Client Program 6–24
6–5 Call Context Returned with Presentation Procedure 6–25
6–6 Session Context Handling for the User Interface 6–25
6–7 Nonblocking Presentation Procedure Pseudocode 6–29
6–8 Presentation Procedure Completion Pseudocode 6–31
6–9 OpenVMS to RISC Structure Byte Copy 6–34
6–10 RISC to OpenVMS Structure Byte Copy 6–36
7–1 Visual Basic Sample . 7–10
7–2 ACMSDI_TDMS_READ_EXCH Sample 7–12
7–3 ACMSDI_TDMS_WRITE_EXCH Sample 7–14
7–4 ACMSDI_RECV_EXCH Sample . 7–15
7–5 ACMSDI_REQUEST_EXCH Sample 7–16
7–6 ACMSDI_SEND_EXCH Sample . 7–18
7–7 ACMSDI_TRCV_EXCH Sample . 7–19
7–8 Sending Forms Records . 7–23
7–9 Receiving Forms . 7–26
7–10 TDMS Sample . 7–30
7–11 Creation of a Call Identifier . 7–35

Figures

1–1 TP Desktop Components . 1–2
1–2 TP Desktop Configuration . 1–3
1–3 TP Desktop-Oriented Components . 1–6
1–4 Desktop Client Program Processing Phases 1–9
2–1 Using a Queued Task with TP Desktop Connector 2–10
2–2 Application Node Failover Configuration 2–12

ix

2–3 Submitter Node Failover Configuration 2–13
3–1 Task Debugger Session . 3–16
4–1 Processing of Presentation Procedures 4–3
4–2 CDD Directory Structure . 4–6
4–3 Version-Checking Processing . 4–19
4–4 TP Desktop Connector Sample Components 4–22
4–5 Processing Flow for Nonblocking Sample Desktop Client

Program . 4–23
4–6 Sample Presentation Procedures . 4–25
5–1 Event-Driven Desktop Client Program Processing 5–2
5–2 TP Desktop Connector Sample Components for Microsoft

Windows . 5–6
6–1 Event-Driven Desktop Client Program Processing 6–2
6–2 TP Desktop Connector Sample Components for X

Windows . 6–6
6–3 User Selects a Task . 6–10
6–4 Nonblocking Service . 6–12
6–5 I/O Processing for a Nonblocking Service/Part 1 6–14
6–6 I/O Processing for a Nonblocking Service/Part 2 6–16

Tables

1–1 Transports for OpenVMS Systems . 1–4
2–1 Design Issues . 2–1
3–1 Gateway Communication Keywords . 3–14
4–1 Language and CDD Data-Type Equivalents 4–3
4–2 Status Codes Returned Due to Serialization Violations 4–5
4–3 Portable API Access Types . 4–11
4–4 Maximum Lengths for Environmental Variables 4–45
7–1 Values Returned from acmsdi_poll . 7–2
7–2 Forced Nonblocking Sample Files . 7–37
A–1 TP Desktop Connector API Directories A–1
A–2 TP Desktop Connector Directories . A–2
B–1 Development Tools and Files . B–1
B–2 Runtime Tools . B–3
B–3 General Samples . B–3

x

Preface

This guide describes how to use the HP TP Desktop Connector for ACMS
software to:

• Incorporate TP Desktop Connector client services in a customer-written
desktop client program based on sample code supplied in the kit. The
desktop client program signs the user in to the HP ACMS system, selects
ACMS tasks, and signs the user out of the ACMS system.

• Design, code, build, and debug a desktop client program that uses forms
processing products and interacts with the end user on the desktop system
and a HP ACMS system.

• Manage the desktop system running the desktop client program and the
system running the TP Desktop Connector Gateway for ACMS software.

Intended Audience
This guide is intended for readers with diverse backgrounds:

For ACMS developers:

• Part I is for users who are knowledgeable about desktop presentation tools
and ACMS programming.

• Part II describes development procedures for TP Desktop Connector
applications.

xi

Manual Structure
This manual has the following structure:

Part I Components and Design

Chapter 1 Describes the components of the software and the basic processing
that is performed.

Chapter 2 Explains the design essentials.

Chapter 3 Describes the development to be done on the OpenVMS system.

Part II Portable API Client Development

Chapter 4 Describes the steps to code, debug, and build a desktop client
program that uses TP Desktop Connector client services in a
blocking environment.

Chapter 5 Describes the steps to code, debug, and build a desktop client
program that uses TP Desktop Connector client services in a
Windows event-driven nonblocking environment.

Chapter 6 Describes the stages to code, debug, and build a desktop client
program that uses TP Desktop Connector client services in a Motif,
event-driven, nonblocking environment on OpenVMS.

Chapter 7 Discusses guidelines for building TP Desktop Connector client
programs using the forced nonblocking client services.

Appendixes

Appendix A Lists the locations of code that accompanies the TP Desktop
Connector software.

Appendix B Lists the general purpose tools, include files, and sample programs
in the ACMSDI$EXAMPLES directory.

Related Documents
For information on developing ACMS applications with HP TP Desktop
Connector for ACMS, refer to the following manuals:

• HP TP Desktop Connector for ACMS Getting Started

Introduces you to the TP Desktop Connector software and provides
information for building client applications that call ACMS tasks.

• HP TP Desktop Connector for ACMS Client Services Reference Manual

Provides a list of client services with their format, parameters, and
qualifiers.

• HP TP Desktop Connector for ACMS Gateway Management for ACMS

xii

Describes system management tasks for the gateway.

• HP ACMS for OpenVMS Getting Started

Provides a high-level discussion and examples of the activities to develop,
install, and run a complete application.

If you are new to programming with ACMS software, HP recommends reading
the following books before using the HP TP Desktop Connector for ACMS
product:

• HP ACMS for OpenVMS Writing Applications

Describes procedures to follow using the Application Development Utility
(ADU).

• HP ACMS for OpenVMS Writing Server Procedures

Describes how to write and debug procedures for ACMS applications. Also
supplies reference information for application and system programming
services.

For additional information on ACMS software and on installing the HP ACMS
product, refer to the following manuals:

• HP ACMS for OpenVMS Introduction

Describes basic concepts and terms concerning the ACMS environment.

• HP ACMS for OpenVMS ADU Reference Manual

Describes the details of the syntax for the definitions you create and the
commands you use to build the runtime components.

xiii

• HP ACMS for OpenVMS Installation Guide

Provides installation requirements and steps to install HP TP Desktop
Connector for ACMS software and verify the installation.

• DECtp Implementation Toolkit

Provides valuable extensions to HP DECset tools to tailor them for
developing an ACMS solution. Available through HP Services.

• DECtp Design Toolkit

Provides valuable extensions to DECdesign to help design effective ACMS
solutions. Available through HP Services.

For information on OpenVMS programming tools, refer to this document:

• Using HP DECset

Describes the OpenVMS programming environment, provides helpful hints
about conducting a software project, and shows a case study of HP DECset
tools. Provided with the HP DECset documentation set.

The ACMS documentation also describes how you can use the HP DECset
tools to create an effective development environment.

Conventions
This guide uses the following conventions and symbols:

User Input In examples, user input is differentiated in boldface type
from system output.

$ The dollar sign indicates a generic command line prompt.
This prompt may be different on your system.

Return A key name in a box indicates that you press that key on
the keyboard.

Ctrl/x Press the Ctrl (control) key and hold it down while pressing
the specified key (indicated here by x).

WORD Uppercase text indicates OpenVMS data types, commands,
keywords, logical names, and routines or services; C files
and data structures; Microsoft Windows data structures;
and HyperCard data types.

word In format descriptions, a lowercase word indicates
parameters, variables, and services or procedures.

italics Italic type is used for emphasis and for parameters in text.
Titles of manuals are also italicized.

xiv

[] In format descriptions, square brackets surround a choice of
options; select none, one, several, or all of the choices.

.

.

.
A vertical ellipsis in an example means that information not
directly related to the example has been omitted.

TP Desktop Refers to HP TP Desktop Connector for ACMS software.

CDD Refers to the Oracle CDD product.

Rdb Refers to the Oracle Rdb product.

Windows When used alone, Windows indicates any supported member
of the family of Microsoft Windows operating systems.
Where necessary, specific Windows operating systems are
mentioned. For a list of Microsoft Windows operating
systems supported by the TP Desktop Connector product,
see the product’s Software Product Description (SPD).

xv

Part I
Components and Design

Part I describes the components of the HP TP Desktop Connector for ACMS
client services software and outlines basic design and development issues for
HP ACMS solutions. It also discusses OpenVMS development procedures that
are common across desktop platforms.

1
HP TP Desktop Connector Components

and Processing

This chapter introduces the TP Desktop Connector components and processing
phases.

1.1 TP Desktop Connector Components
The TP Desktop Connector software provides access to HP ACMS systems
from desktop systems running their native operating system, such as Microsoft
Windows. TP Desktop software implements a client/server computing model in
which the following operations are typical:

• The desktop client program makes a request to the TP Desktop Connector
software through an application programming interface (API).

• The TP Desktop Connector Gateway for ACMS (server) responds after
processing the desktop client program request.

In the TP Desktop client/server model, you develop an application solution
comprised of:

• One or more ACMS tasks

• Task group

• Application definitions

• Desktop client program

Figure 1–1 shows a simplified view of the TP Desktop components.

HP TP Desktop Connector Components and Processing 1–1

Figure 1–1 TP Desktop Components

TP Desktop ConnectorClient Program

Base Operating SystemDesktop System

Response

Request

Legend:

Network Link
TAY-0414A-AF

Gateway

You write desktop client programs to run on desktop systems using the TP
Desktop Connector client services. Through the TP Desktop Connector
client services, these desktop client programs send requests to and receive
responses from the ACMS system. The TP Desktop Connector client services
and the embedded network software on the desktop system allow the desktop
system to transmit and receive TP Desktop Connector messages over a
communications medium.

The desktop client program communicates with an ACMS system through
the TP Desktop Connector Gateway for ACMS shown in Figure 1–1.
The TP Desktop Connector client services call the TP Desktop Connector
Gateway for ACMS to execute requests. As an ACMS agent, the TP Desktop
Connector gateway communicates with other ACMS components for the
desktop client program and sends the results of requests back through the
mutually understood interface.

Access through TP Desktop software to an ACMS system requires a software
configuration similar to that shown in Figure 1–2. Although your system need
not be exactly the same as the one shown, your system must have at least:

• Desktop client program

• Network link

• TP Desktop Connector gateway system components

• ACMS TP System

1–2 HP TP Desktop Connector Components and Processing

Figure 1–2 TP Desktop Configuration

Network Link

Customer-Written Code

Legend:

Desktop System

Desktop Client Program

Main Program

TP Desktop Connector
Client Services

OpenVMS System

ACMS System

ACMS Procedure
Server Process

ACMS Application
Execution Controller

(EXC)

TP Desktop Connector
Gateway

TAY-0415A-AI

1.1.1 Desktop Client Program Components
Desktop client programs interact with the user of the desktop system and
access ACMS applications residing on the OpenVMS system. The TP Desktop
components support access to ACMS software through the TP Desktop portable
client services.

The TP Desktop portable client services support the following operating
systems:

• Microsoft Windows

• Tru64 UNIX (See SPD for supported versions.)

• OpenVMS

HP TP Desktop Connector Components and Processing 1–3

The programming interface for the Microsoft Windows, OpenVMS, and Tru64
UNIX operating systems are all the same; both blocking and nonblocking client
programs are supported. In addition, all supported operating systems can
perform I/O tasks.

1.1.2 Network Components
The network software transmits messages between the desktop client program
and the TP Desktop Connector gateway over the network link shown in
Figure 1–2.

Although network software is required for TP Desktop software to work,
the programmer does not need to understand networking to develop desktop
client programs. The network software is largely transparent to the desktop
client program. The TP Desktop client services shield the desktop client
program from both the message protocol used by TP Desktop software and the
networking services used to implement that protocol.

To communicate, both the TP Desktop Connector gateway and the desktop
systems using TP Desktop software must have the appropriate network
software installed. For example, OpenVMS can use either a DECnet or a
TCP/IP transport. The user or system manager must install this software and
ensure that a network connection links the desktop client program to the TP
Desktop Connector gateway.

TP Desktop transparently handles all the network communications necessary
to call ACMS tasks running on an OpenVMS system.

Table 1–1 lists the transports TP Desktop supports on OpenVMS.

Table 1–1 Transports for OpenVMS Systems

Clients Transports

Windows TCP/IP

OpenVMS DECnet, TCP/IP

Tru64 UNIX TCP/IP

Refer to HP TP Desktop Connector for ACMS Gateway Management Guide
for detailed information on specifying a transport for communications.

1–4 HP TP Desktop Connector Components and Processing

1.1.3 TP Desktop Connector Gateway for ACMS System Components
The TP Desktop Connector Gateway for ACMS typically starts during system
initialization. While ACMS software is running, the TP Desktop Connector
gateway accepts TP Desktop sign-in, task start, and sign-out requests from the
desktop client program. After the TP Desktop Connector Gateway for ACMS
ensures that the desktop client program passes the authentication checks on
that OpenVMS system, it processes requests from the program by dispatching
them to the ACMS software. The OpenVMS system on which the TP Desktop
Connector gateway runs consists of these major parts:

• ACMS system and customer-written ACMS applications

• TP Desktop Connector Gateway for ACMS

• Network software

In TP Desktop Connector systems, shown in Figure 1–3, the TP Desktop
Connector gateway performs authentication and task invocation for desktop
systems.

The TP Desktop Connector gateway handles user sign-in and is responsible for
invoking tasks. The EXC calls the TP Desktop Connector gateway to handle
exchange steps, passing the same type of workspaces and other data to the TP
Desktop Connector gateway that it passes to the Command Process (CP).

The TP Desktop Connector gateway fulfills these roles:

• As a gatekeeper, the TP Desktop Connector gateway ensures that users
of desktop client programs are authorized to access the ACMS system. The
users of desktop client programs must pass through the full range of checks
that are applied to a user on a VT terminal logging in to the OpenVMS
system, and signing in to the ACMS system.

• As a dispatcher, the TP Desktop Connector gateway routes requests
between the desktop system and the ACMS system.

For efficiency, the TP Desktop Connector gateway runs as a multithreaded
process. It can handle multiple desktops and multiple requests simultaneously.
The capacity is controlled by factors such as the maximum network links
available on the OpenVMS system, and the licensing scheme. Like all ACMS
processes, the TP Desktop Connector gateway is started before any user
activity is requested. This prestarting takes care of all overhead activities
before a user request is received. The TP Desktop Connector gateway design
ensures effective use of resources, with optimal throughput and response time.

HP TP Desktop Connector Components and Processing 1–5

Figure 1–3 TP Desktop-Oriented Components

Desktop

Application Node

ACMS Components
Distributed ACMS

Requester Node

Desktop

DECforms

DECforms

Database

TAY-0287A-AD

Systems

Components

TP Desktop
Connector
Gateway

Application

Execution
Controller
(EXC)

Systems

Connector
Gateway

Process (SP)
Procedure Server

ACMS-Supplied

User-Written
Client Process

TP Desktop

Command
Process

Because the TP Desktop Connector gateway complements the Command
Process (ACMS CP), using TP Desktop software has no impact on the rest
of the ACMS system. As shown in Figure 1–3, the TP Desktop Connector
gateway and the CP can run on the same system. The ACMS application,
task group, and task definitions, and the server procedures that support a VT
terminal can be used unchanged from a desktop system having TP Desktop
software.

VT terminals and desktop systems can use a single runtime instance of
an ACMS application simultaneously. The desktop systems use their own
presentation procedures, while the VT terminals use HP DECforms form I/O
or TDMS request I/O. The HP DECforms and TDMS runtime libraries are not
used on the desktop system.

The implementation of the TP Desktop Connector gateway as a complement
to the CP ensures that the benefits of the ACMS runtime system are retained.
This includes the efficient processing provided by the ACMS runtime system
and the capabilities that ACMS software supplies in application control,
availability, resource management, event-tracking, and task-level security. TP
Desktop Connector software allows you to take full advantage of the unique
benefits of both the desktop system and the ACMS software environment.

1–6 HP TP Desktop Connector Components and Processing

1.2 Desktop Client Program Processing
This section describes TP Desktop client services, program action routines, and
general processing phases.

1.2.1 TP Desktop Client Services
The TP Desktop client services are callable routines that allow the desktop
client program to do the following:

• Sign a user in to an ACMS system

• Run ACMS tasks

• Sign the user out of the ACMS system

These routines are shown as TP Desktop client services in Figure 1–2.

The desktop client program can run in a blocking, a nonblocking, or a forced
nonblocking environment:

• In the blocking environment, the desktop client program calls a TP
Desktop client service and is blocked awaiting a message from the TP
Desktop Connector gateway.

• With the nonblocking versions of the portable client services, the desktop
client program calls a TP Desktop client service, specifying a completion
routine. The program regains control without having to wait for a message
from the TP Desktop Connector gateway. When an TP Desktop message is
received from the TP Desktop Connector gateway, the completion routine is
called.

• The forced nonblocking environment allows presentation tools like
Visual Basic to issue nonblocking calls even though these tools do not
support pointer types to handle arguments passed by reference.

The nonblocking services are designed for multitasking event-driven systems
like Windows or OSF/Motif.

1.2.2 Desktop Client Program Action Routines
TP Desktop software supports predefined action routines for checking versions
of software on the desktop system. The desktop client program can provide
a routine to check application-defined version information supplied from the
system running the TP Desktop Connector gateway to ensure that software
versions are compatible. See Section 4.3 for information on writing version-
checking routines.

HP TP Desktop Connector Components and Processing 1–7

1.2.3 Phases of Desktop Client Program Processing
A desktop client program passes through several processing phases:

• Initialization phase

During the initialization phase, a desktop client program creates
necessary data structures and performs activities such as setting up the
user interface and establishing a message-polling mechanism.

• Sign-in phase

During the sign-in phase, a desktop client program establishes one or
more sessions with the same TP Desktop Connector gateway or with
different TP Desktop Connector gateways.

The TP Desktop Connector gateway performs these functions:

1. Authenticates the user for user name, password, time of day, and other
OpenVMS login characteristics.

2. Authenticates the user for ACMS sign-in.

3. Assigns a unique session identifier that allows the desktop client
program and the user to distinguish among multiple connections to one
or many ACMS systems by one desktop user.

A desktop client program can have multiple active sign-ins, however, a user
can have only one task active for each sign-in.

• Task-selection phase

During the task-selection phase, a desktop client program requests an
TP Desktop client service to start a task in an ACMS application. The
service sends a request to the TP Desktop Connector gateway to select the
task.

• Task-processing phase

During the task-processing phase, the ACMS system does the following:

1. Checks the task access control list (ACL).

2. Begins processing the task.

3. Dispatches processing steps to procedure server processes.

4. Dispatches exchange steps to the TP Desktop Connector gateway for
transmission to the desktop client program.

5. Determines task flow based on control information returned on each
step.

1–8 HP TP Desktop Connector Components and Processing

6. Completes the task and sends a response to the desktop client
program.

• Sign-out phase

During the sign-out phase, a desktop client program must sign the
user out of the ACMS system. On the desktop system, the desktop client
program calls an TP Desktop client service, which does the following:

1. Sends a request to the TP Desktop Connector gateway to sign the user
out of the ACMS system.

2. Disconnects the network logical link for that session.

Figure 1–4 illustrates the processing phases of a client program.

Figure 1–4 Desktop Client Program Processing Phases

Sign-In

Initialization

Task Selection

Task Processing

Sign-Out

MR-5203-AD

Because of the authentication required during the sign-in phase, it is typically
more efficient to have users remain connected across multiple task-selection
and task-processing phases. The task-selection and task-processing phases
repeat until the desktop client program explicitly requests to end the session.

HP TP Desktop Connector Components and Processing 1–9

1.3 Programming with TP Desktop Software
The TP Desktop software supports the following approaches for developing the
desktop client program for an ACMS application:

• Develop the desktop client program within the desktop environment using
desktop programming languages and tools.

Frequently, this best ensures that the desktop client program takes full
advantage of the capabilities unique to specific desktops.

• Develop the desktop client program within the OpenVMS environment,
using languages and tools portable between OpenVMS and desktop
systems. Move the source code to the desktop system to compile, link, and
debug the program using desktop tools.

You can take advantage of expertise on one platform rather than maintain
expertise across multiple platforms. For example, a desktop client program,
written for the Windows system using portable tools, can also be run on the
OpenVMS system. The programming interface for the TP Desktop client
services for the OpenVMS system is the same as that for Windows. If the
programming language and presentation tool are portable between OpenVMS
and Windows systems, less in-depth expertise for the Windows system is
required to create effective desktop client programs. With this approach, you
can also take advantage of testing source control software available on the
OpenVMS system.

In developing portable applications, you must still take into account certain
differences between operating systems even if you are using portable tools.

Chapter 2 introduces the key design issues to consider in using TP Desktop
software effectively. Later chapters describe how to build a desktop client
program using each of the approaches outlined above, and explain the details
of the TP Desktop client services and presentation code.

1.4 System Management with TP Desktop Software
TP Desktop software provides the ACMSDI$GET_SUBMITTER_INFO system
management service for OpenVMS and a sample program demonstrating its
use. This service can be used in utility programs running on the server to
retrieve information about users currently connected to an ACMS system
through TP Desktop software. The information returned by this service is
necessary when the system manager needs to cancel a desktop client program
session.

1–10 HP TP Desktop Connector Components and Processing

For documentation on the service and the location of a sample program that
uses this service, see the HP TP Desktop Connector for ACMS Client
Services Reference Manual.

See the HP TP Desktop Connector for ACMS Gateway Management Guide
for information on managing TP Desktop systems and using the TP Desktop
system management services. Also, the HP TP Desktop Connector for
ACMS Installation Guide describes those aspects of system management
related to installing TP Desktop.

1.5 TP Desktop Sample Application
Sample desktop client programs provided with TP Desktop software are based
on the vehicle rental application called AVERTZ. The TP Desktop version of
the sample includes similar tasks and procedures as the ACMS version of
AVERTZ. This sample application illustrates the use of TP Desktop software to
create multiplatform solutions supported by a common ACMS application.

This manual discusses design and development issues in the context of this
sample. The sample desktop client programs illustrate many of the most
common design considerations and provide a base of code from which you can
build your solution. Most of the code shown as examples is taken from the
AVERTZ sample application.

The sample desktop client programs are a key resource for understanding
how to design and implement TP Desktop solutions. The software distribution
kit contains sources and executables for each supported desktop system.
After installation of the TP Desktop kit, you can find the source code on
the OpenVMS system on which the kit was installed. Appendix A lists the
directories containing the sample code.

The installation documentation describes how to set up and run the sample
application on the host and the desktop systems. You can examine in detail
how the various issues in building a complex, multiple-environment system are
addressed in at least one solution. The samples are not intended as production
applications. However, they help illustrate how to use TP Desktop software.

HP TP Desktop Connector Components and Processing 1–11

2
Designing TP Desktop Connector

Solutions

This chapter outlines the major considerations in designing a TP Desktop
Connector solution. The focus is on those areas that relate specifically to using
the TP Desktop client services.

For a discussion of HP ACMS design in general, refer to the documents in
the ACMS documentation set listed in the Preface section titled ‘‘Related
Documents’’.

2.1 TP Desktop Connector for ACMS Design Questions
In designing solutions that use TP Desktop Connector software, you face
significant design issues such as those listed in Table 2–1.

Table 2–1 Design Issues

Category Issues

Processing Structuring the desktop client program code
Handling errors
Implementing flow control

User interface design Choosing presentation software
Using graphics and other display tools effectively
Handling multiple sign-ins

Data design Data conversion
Local caching of data
Data compression
Ensuring data integrity
Handling validation

Some key issues, such as the choice of presentation software, span these
categories. These issues are discussed in the following sections.

Designing TP Desktop Connector Solutions 2–1

2.1.1 Understanding Application Requirements
Most important in ensuring an effective design is understanding what you
are trying to build. The requirements of the application in such areas as
performance, expense, usability, availability, data integrity, manageability, and
maintainability may force you into difficult tradeoffs. The requirements you
are addressing can interact or conflict. For example, you may want to increase
message buffer size to improve network performance, but this forces you to
consider adding memory to the machines, which increases cost.

A solution that meets requirements in one area can fall short of requirements
in another. For example, an application that caches much information locally
can have extremely good performance on tasks with local validation. But it can
be costly in management overhead and network traffic to keep the validation
data updated. Or an application that captures transactions and invokes only
NO I/O tasks for periodic transmission of the transactions to a HP ACMS
system may have exceptional availability. But it can restrict the kinds of
validation available on the desktop system and, therefore, decrease the overall
usability of the system.

Having explicit requirements for your application increases your ability to
create an effective design. If you must trade off one requirement over another,
you have better information with which to make your trade-offs.

2.1.2 Choosing Presentation Software
The presentation tool you choose can have a major impact on other design
issues. For example, the presentation capabilities available in COBOL
can be adequate for many character-cell applications. A portable tool like
COBOL provides development benefits that may outweigh limitations in the
application’s user interface. On the other hand, different screen management
tools on the market provide significant enhancements to the user interface,
though at the cost of additional expertise required of the development staff.

HP recommends that you prototype at least part of your solution and then
begin major development. Prototyping helps ensure that you understand any
design issues unique to that tool before you begin implementation. It also
helps to uncover any issues that might arise in using that tool in TP Desktop
presentation code.

2–2 Designing TP Desktop Connector Solutions

2.1.3 Strategy for Implementing the Solution
You can take either of the following approaches to implementing your solution:

• Design, build, and test the ACMS parts of the solution before building the
presentation code.

• Start with the presentation code. After you build an effective user
interface, implement the ACMS parts of the solution.

TP Desktop software supports both of these approaches equally well.
Whichever approach you choose, ensure that the sequence and the context
of messages represented by the task definitions are understood and handled by
your presentation code.

2.2 Processing Design
This section explores the major considerations in designing the processing for
solutions using TP Desktop Connector software. Part II describes how you
structure desktop client programs for each platform.

2.2.1 NO I/O and I/O Tasks
From the point of view of the desktop client program, ACMS tasks fall into two
categories:

• NO I/O (processing only) tasks

This category of task has the NO TERMINAL USER I/O clause in the task
definition. It is written to include only processing steps. The task itself
does not specify input or output to the user; rather, the interaction with
the user occurs outside the task. Any information required within the
task or to be returned by the task is passed as task arguments. That is,
workspaces declared for the task are passed as parameters on the call to
the task and on the return from the task.

Designing TP Desktop Connector Solutions 2–3

• I/O tasks

This category of task has either the FORM I/O clause or the REQUEST I/O
clause in the task definition. For applications that support VT terminals,
most task definitions include both exchange steps and processing steps.
In these tasks, interaction with the user is typically performed in the
exchange steps of the task, using HP DECforms software, TDMS, or other
presentation tools.

2.2.1.1 NO I/O Task and TP Desktop Connector Interaction
Example 2–1 shows a task definition and annotations describing how the task
statements are handled.

Example 2–1 NO I/O Task Actions for TP Desktop Connector Users

REPLACE TASK employee_lookup
USE WORKSPACES
employee_number,
employee_record;

TASK ARGUMENTS ARE
employee_number WITH ACCESS READ, 1
employee_record WITH ACCESS MODIFY;

BLOCK WORK WITH NO TERMINAL I/O 2
PROCESSING
get_employee:

PROCESSING WORK
IS CALL PROCEDURE get_employee 3

IN SERVER employee_server
USING employee_number,

employee_record;
END BLOCK WORK;
END DEFINITION; 4

The annotations in Example 2–1 indicate the following:

1 The task arguments are workspaces passed to and received from the
desktop client program.

2 The task is declared to have no terminal I/O.

NO I/O tasks have no exchange steps, with the NO TERMINAL USER I/O
clause specified for the block.

3 The task calls server procedure get_employee in the ACMS application.

4 The task returns workspaces with possible changes to the desktop client
program.

2–4 Designing TP Desktop Connector Solutions

TP Desktop Connector software handles each NO I/O task by accepting
workspaces and other arguments from the desktop client program at the
start of the task, and sending workspaces and other arguments to the TP
Desktop Connector client services at the end of the task.

2.2.1.2 I/O Task and TP Desktop Connector Interaction
TP Desktop Connector supports tasks that have exchange steps as well as
tasks that have only processing steps. TP Desktop Connector software handles
each exchange step by sending task workspaces and other arguments between
the TP Desktop Connector client services and ACMS by means of the TP
Desktop Connector Gateway for ACMS. Example 2–2 shows a task definition
and annotations describing how the task statements are handled.

Example 2–2 I/O Task Actions for TP Desktop Connector Users

REPLACE TASK employee_lookup
USE WORKSPACES
employee_number,
employee_record;

BLOCK WORK WITH FORM I/O 1
IS
get_employee_number:

EXCHANGE WORK IS
RECEIVE FORM RECORD get_employee_key 2
IN FORM employee_form
RECEIVING employee_number;

get_employee:
PROCESSING WORK
IS CALL PROCEDURE get_employee 3

IN SERVER employee_server
USING employee_number,

employee_record;
display_employee:

EXCHANGE WORK IS
SEND FORM RECORD display_employee_record 4
IN FORM employee_form
SENDING employee_record;

END BLOCK WORK;
END DEFINITION; 5

The annotations in Example 2–2 indicate the following:

1 The task is declared with the FORM I/O clause.

This indicates that HP DECforms syntax is used for the exchange steps.

Designing TP Desktop Connector Solutions 2–5

2 A request is received from the user.

For TP Desktop Connector users, the task receives workspaces and
workspace counts from the desktop client program through the TP Desktop
Connector client services.

For nondesktop users, the HP DECforms request FORMS$RECEIVE is
called by ACMS.

3 The task calls procedure get_employee in the ACMS application.

4 A response is sent to the user.

For TP Desktop Connector users, the task sends workspaces and status
information to the desktop client program through the TP Desktop
Connector client services.

For nondesktop users, the HP DECforms request FORMS$SEND is called
by ACMS.

5 The task ends.

The format of the interaction between the desktop client program and the
ACMS task depends on the following factors:

• The desktop system in use

• Whether the desktop client program uses the blocking or nonblocking form
of the services and presentation code

2.2.1.3 Choosing Between I/O and NO I/O Tasks
TP Desktop Connector software allows you to call I/O tasks (FORM I/O and
REQUEST I/O) and NO I/O tasks (NO TERMINAL I/O) from a desktop client
program. Choosing between I/O and NO I/O tasks is a choice of where to place
control of the application flow. With I/O tasks, the task controls the application
flow. With NO I/O tasks, the client program controls the application flow.

If the application supports only desktop systems or you are optimizing the
ACMS application for desktop access, consider using only NO I/O tasks.

NO I/O tasks fit better with event-driven desktop systems, such as Microsoft
Windows. With these systems, the desktop client program rather than the
ACMS application controls the major processing flow.

NO I/O tasks also allow the greatest freedom in handling the logic in the
desktop client program. However, task invocation can be more expensive
than invoking processing steps within a task. Each task invocation requires
workspace management by the ACMS Application Execution Controller (EXC),
which is considerably more expensive in processor time than the workspace
management done for exchange steps. Also, the ACMS system requires

2–6 Designing TP Desktop Connector Solutions

processor time to set up control structures when the task starts and to clear
the structures when the task ends.

The additional central processor usage for task invocation compared to
processing step invocation is generally small. However, the extra overhead
for task invocation can be a significant factor in a system with high throughput
requirements.

2.2.2 Application Design Approaches
Two approaches to a ACMS solution are the following:

• Common applications

The solution is common to both desktop systems and VT terminals.

• Tailored applications

The solution involves multiple applications in which the tasks are tailored
to either the desktop system or the VT terminal.

2.2.2.1 Common ACMS Applications
TP Desktop Connector software allows you to structure a common ACMS
application to be accessed from both desktop systems and VT terminals. The
task definitions, workspace definitions, task group definition, and application
definition can be the same.

If users at both VT terminals and desktop systems in your enterprise need
to run the same tasks, it is best to have a common ACMS application. This
minimizes your development and maintenance work. If you use a presentation
tool that is portable between OpenVMS and the desktop system, possibly
no additional code is required to support the presentation software on both
platforms.

To use NO I/O tasks in an environment that has both desktop systems and VT
devices, you can take advantage of the task-call-task feature of ACMS. Divide
common processing steps into standalone NO I/O tasks. The desktop client
program calls these NO I/O tasks directly. The VT-terminal users request I/O
tasks that include exchange steps. These I/O tasks then use the task-call-
task feature of ACMS to invoke the common NO I/O tasks as part of their
processing steps. Any task error recovery within the common NO I/O tasks is
shared by both presentation device types.

Maintenance increases slightly in this environment, because flow control is
duplicated in the tasks called by the VT-terminal users and within the desktop
client program.

Designing TP Desktop Connector Solutions 2–7

2.2.2.2 Tailored ACMS Applications
If your TP Desktop Connector solution does not include VT terminals, you can
tailor the ACMS application and design the tasks somewhat differently from a
common application. Use one of the following alternatives:

• Specify the NO TERMINAL USER I/O clause in the task definition, so that
the ACMS tasks are NO I/O rather than I/O tasks.

• If you use FORM I/O or REQUEST I/O tasks, place more flow control in
the desktop presentation code.

ACMS applications that use HP DECforms or TDMS forms for VT-
presentation code can include a significant amount of flow control logic.
Because you can write TP Desktop Connector presentation code in third-
generation languages, you can include similar or more powerful flow control
logic in the desktop client program, just as you include in HP DECforms or
TDMS forms.

However, the ACMS task definition is effective for representing the
structure of a task clearly. For improved maintainability, represent the
flow of a task in its definition rather than controlling the flow through its
step procedures or its exchange steps.

• Have the desktop system focus on data capture, intermittently transmitting
transactions to the ACMS system for processing as queued tasks.

These design approaches can also be applied to solutions that include both VT
terminals and desktop systems. For example, to decrease network traffic, use a
queued task model for the desktop systems and retain an interactive model for
your VT terminals.

TP Desktop Connector software does not preclude optimizing the ACMS
application for desktop systems and retaining a separate but comparable
application for VT terminals. You can optimize the ACMS application by
building separate desktop tasks within the same application definition or by
building alternatives into the task definitions. However, carefully consider the
additional maintenance cost required for such a solution.

2.2.2.3 Conversion of a Task: I/O to NO I/O
If you have I/O tasks and want to incorporate a desktop design in the
application that does not depend on terminal interaction, you can convert the
I/O tasks to NO I/O tasks. Converting an I/O task to a NO I/O task involves
the following steps:

1. Delete the exchange steps.

2. Separate the processing steps into individual tasks.

2–8 Designing TP Desktop Connector Solutions

3. Modify the action clause for each processing step to eliminate references to
exchange steps.

4. Add a TASK ARGUMENTS clause for any workspaces used by a NO I/O
task.

5. Add the NO I/O tasks to the task group definition.

Task conversion can be done without affecting anything else in the application.

2.2.3 Preventing Loss of Work with Local Data Capture
In some applications, desktop systems are most effective as relatively
independent data capture resources. Users work with reference data
stored locally on their personal computer, building up a queue of completed
transactions awaiting their forwarding to a ACMS system. The desktop system
signs in to the ACMS system and uploads the transactions from the desktop
system to the ACMS system.

TP Desktop Connector software can effectively support the data capture model
for desktop systems. Figure 2–1 shows how such a queue-based system can
work.

The TP Desktop Connector software does not directly provide queuing facilities,
for example, services for data capture. The desktop client program can create
and manage a file of transactions to be transmitted to the ACMS system.
It also can determine when to establish the connection, such as at regular
intervals, or when the queue reaches a predefined threshold. The desktop
client program can then use the TP Desktop Connector client services to invoke
tasks in a ACMS application that either process the queued items directly or
run other tasks to move the items into ACMS queues on the ACMS system.

The TP Desktop Connector client services do not guarantee that an item
queued on the desktop system is processed only once. If this guarantee is
required, the application must supply a capability, such as having the receiver
application check a queue item identifier for duplicates before storing a
transaction.

Designing TP Desktop Connector Solutions 2–9

Figure 2–1 Using a Queued Task with TP Desktop Connector

Network Link

Legend:
Customer-Written

Desktop System OpenVMS System

ACMS System

Data Capture

Data

Desktop Client TP Desktop

ACMS Procedure

TAY-0300A-AD

Database

ACMS Application

Program

File

Program

Code

Server Process

Execution
Controller (EXC)

Connector Gateway

TP Desktop
Connector

Queued Task File

2.2.4 Event-Driven Systems and the Nonblocking Environment
In event-driven systems like OSF/Motif and Windows, a program is structured
to include an event-dispatching mechanism (event dispatcher) and a collection
of procedures that this dispatching mechanism invokes as the result of an
event. Ideally, these procedures quickly return control to the event dispatcher
so that other events are dispatched (or processed) without delay. If these
procedures fail to return control quickly, slow and undesirable behavior
in programs can result. This characteristic is especially true for Windows
programs. When a procedure hangs in any given Windows program, the
system cannot give control to another Windows program.

2–10 Designing TP Desktop Connector Solutions

By providing nonblocking services, TP Desktop Connector software allows a
desktop client program to release control to the event dispatcher (in Microsoft
Windows the message dispatching loop) without waiting for the ACMS system
to respond. This nonblocking characteristic is particularly important when the
network delays a response or the ACMS system performs extensive processing.

Because the release of control to the event dispatcher is so critical in event-
driven systems (for getting user input, and so on), TP Desktop Connector
supports nonblocking presentation procedures as well as the basic nonblocking
client services.

For a description of forced nonblocking, see Chapter 7.

2.2.5 Nonblocking Design Considerations
Consider the following when designing your desktop client program for a
nonblocking program and runtime environment:

• Return control to Windows

In event-driven environments, structure desktop client programs to give up
control to the event dispatcher as soon as all of the work is done and that
it can be completed without a significant delay.

For service requests

When requesting a nonblocking version of a TP Desktop Connector
client service, promptly return control to Windows. The program does
not wait for the server response to the request.

For presentation procedures

When a presentation procedure request is received from the desktop
gateway, return control to Windows promptly. The program does not
wait to send a response to the gateway. To use Windows features such
as dialog boxes for exchange step processing, the program must first
return control to Windows to handle the user interaction with the
dialog box.

• Establish a mechanism to poll for incoming TP Desktop Connector
messages

The desktop client program must supply and activate a procedure to
periodically check for messages received from the gateway.

The AVERTZ sample applications for Motif and Microsoft Windows use a
procedure to activate timer events so that pending TP Desktop Connector
Gateway for ACMS messages can be processed. To process a timer event, the
timer-event handler calls the TP Desktop Connector service acmsdi_dispatch_
message to poll for and dispatch messages from the gateway.

Designing TP Desktop Connector Solutions 2–11

2.2.6 TP Desktop Connector Gateway for ACMS Availability
Similar to distributed ACMS configurations for VT-terminal users, a desktop
system can connect a desktop client program to multiple submitter nodes that
in turn invoke applications on application nodes. This can be achieved by
using multiple copies of the desktop client program or a single copy initiating
multiple ACMS sign-ins.

As discussed in Chapter 1, if the application node fails in a distributed
configuration, the user can automatically be routed to another ACMS system
on the next task selection. Having a submitter node responsible for sign-in
distinct from a ACMS system that actually processes the application requests
can provide a high degree of availability without any extra work in the desktop
client program. For example, in Figure 2–2, if the application Node A fails,
the TP Desktop Connector Gateway for ACMS can automatically reroute
subsequent requests to Node B.

Figure 2–2 Application Node Failover Configuration

TP Desktop Connector Application Environment

Desktop System

Node A Node B

TAY-0288A-AD

TP Desktop
Connector

Gateway Node

If the submitter node to which desktop users are currently attached fails, the
TP Desktop Connector client services do not automatically route signed-in
users to a new submitter node. This is true even if the user is connected to one
of several nodes in a VMScluster system. Because authentication of the user
is performed on the submitter node, a failure of the submitter node invalidates
the authentication of the user.

2–12 Designing TP Desktop Connector Solutions

A desktop client program can provide failover for submitter nodes. Because
a desktop client program can support multiple active sign-ins (though not
multiple active tasks within a single sign-in), the user can have sign-ins active
on multiple submitter nodes. The desktop client program explicitly signs the
user in to several submitter nodes. If the primary submitter node fails, the
desktop client program can sense the failure and switch to another sign-in.
The user is already signed in to an alternative system and is ready to continue
operations more rapidly. In this case, as shown in Figure 2–3, the desktop
client program can be written to hide the submitter node failure from the user.

Figure 2–3 Submitter Node Failover Configuration

TP Desktop Connector Application Environment

Desktop System

Node A Node B

TAY-1000A-AD

TP Desktop
Connector
Gateway Node

TP Desktop
Connector
Gateway Node

2.2.7 Error Handling
As with any ACMS solution, some application errors are handled directly
by the ACMS software. For example, fatal errors that are not handled by
customer-written server procedures can cause the ACMS system to cancel a
task. In general, however, the TP Desktop Connector software returns any
error it receives to the desktop client program. Therefore, the desktop client
program can appropriately handle virtually all error conditions.

With TP Desktop Connector sign-in, task call, and sign-out, the desktop client
program can trap the status returned by these operations and take appropriate
action. The ACMSDI return status values identify conditions to which the
desktop client program should respond. These conditions include sign-in

Designing TP Desktop Connector Solutions 2–13

failures, task processing errors, TP Desktop Connector Gateway for ACMS
failures, and other error conditions. For example, ACMSDI_NORMAL is the
return status indicating successful completion of TP Desktop Connector client
services. If the ACMSDI_INTERNAL error is returned, the desktop client
program should end any active tasks, sign the user out of the ACMS system,
and instruct the user to exit from the application.

Error handling for exchange steps in I/O tasks is straightforward. When a
ACMS task is canceled, the TP Desktop Connector Gateway for ACMS reports
a specific error where possible. If the gateway cannot convert a ACMS error to
a specific TP Desktop Connector status, it returns ACMSDI_TASK_FAILED to
the desktop client program.

If the desktop client program encounters an error during its own processing of
an exchange step, that error can be handled within the desktop client program.
The desktop client program can then return status information in a workspace
to be evaluated in the task definition for appropriate action. The desktop
client program can also return any valid OpenVMS error code (including HP
DECforms, TDMS, and application-defined values) to the ACMS system to
instruct ACMS to continue or cancel the task.

2.2.8 TP Desktop Connector Gateway for ACMS Error Checking
The TP Desktop Connector Gateway for ACMS responds to recoverable thread-
level errors by dropping the thread in a controlled way, causing that thread to
be cleaned up while insulating other threads from any ill effects. The gateway
treats some errors (such as access violations) as fatal to the gateway, thereby
dropping all active threads.

These checks detect errors from the following sources:

• Network corruption

If a network router corrupted packets, the gateway fails while trying to
interpret the ill-formed messages, dropping all threads.

Note

TP Desktop provides the option of cyclic redundancy checking (CRC),
which can detect this type of network corruption. See the HP TP
Desktop Connector for ACMS Gateway Management Guide for
information on how to activate this feature.

2–14 Designing TP Desktop Connector Solutions

• TP Desktop client program errors

Client program errors can sometimes destroy or overwrite data that the
TP Desktop client services send to the gateway. Typically, an ID value is
destroyed. When the gateway detects the bad ID, TP Desktop disconnects
that client, rather than causing the gateway to fail.

2.3 User Interface Design
This section discusses the considerations in designing an effective user
interface for your desktop client program. Some aspects of the interface, such
as application flow, are discussed in Section 2.2. This section focuses on those
questions that are most directly related to what the user sees on the display
device.

Following these and other published user interface design principles can
maximize user productivity:

• Consistency across applications

As with any application, strive for a consistent user interface across
applications, so that users do not have to learn new rules to do different
kinds of tasks.

• Appropriate operating metaphors

Provide a model for your interface that is familiar to your users. For
example, just as using a map can help users efficiently locate an office,
using an existing form as a model for a screen display can help users learn
the application.

• Multiple sign-ins

TP Desktop Connector software allows a desktop client program to
establish multiple sign-ins to one or more ACMS systems. Having multiple
sign-ins increases application availability, as discussed in Section 2.2.6.
However, each sign-in increases network resource usage and consumes
licenses. If the application has a large user base, the desktop client
program might need to restrict the number of sign-ins allowed for each
desktop system.

A desktop client program that supports multiple sign-ins can also increase
the user’s ability to work effectively with complex functions. For example,
complementary tasks can be available in different ACMS systems or in
different applications on the same ACMS system. Each sign-in can be
assigned its own window by the desktop client program. The desktop client
program can run a task in each of these windows, allowing the user to cut

Designing TP Desktop Connector Solutions 2–15

and paste information from one window to another, or compare information
in the two windows.

Having the desktop code interact with NO I/O tasks rather than FORM
I/O and REQUEST I/O tasks increases the usefulness of multiple active
sign-ins. The greatest amount of control is retained on the desktop system.
However, even with FORM I/O and REQUEST I/O tasks, having multiple
active sign-ins can significantly increase the ability of the user to pull
together many different tasks to perform a complex activity.

• Effective graphics use

The presentation capabilities of the desktop environment are one of the
great benefits of the desktop. Presentation tools that work within the
desktop environment can provide significant benefits in the following
areas:

Increasing clarity of information presented to the user

Structuring the presentation to increase the usability of the application

Tailoring the presentation to suit individual user needs

Take advantage of presentation capabilities. However, because overuse of
video attributes, fonts, and other features can be confusing, ensure that the
presentation software contributes to the effectiveness of the application.

• Restricting user functions

In event-driven environments, it is important for the user interface to
restrict access to certain functions, such as by dimming icons. The design
of the user interface must prevent the user from invoking tasks that are
invalid under certain conditions. For example, the user interface needs
to prevent a task from being invoked using a sign-in that is currently
processing another task, and to prohibit signing out of the ACMS system
when a task is being processed.

2.4 Data Design
The ability to have presentation code native to desktop systems communicate
with application code native to OpenVMS systems raises many new questions.
The following sections discuss how the software handles differences in data
types between the various environments.

2–16 Designing TP Desktop Connector Solutions

2.4.1 Data Conversion
Because TP Desktop Connector software does not manipulate workspace
contents, it does not constrain what data types are used on the desktop system
or in the ACMS application. However, TP Desktop Connector software does
not automatically handle data conversion between the OpenVMS and desktop
environments. In many cases, you can build your desktop client program such
that data types are compatible between the desktop system and the ACMS
system. If you have incompatible data between the systems, the application
code must perform any conversion required.

The most commonly used data types are readily mapped between OpenVMS
and desktop systems. Part II contains sections that list the data types that
must be converted for each platform.

Typically, data conversion is done most effectively in the desktop client
program. Doing so takes advantage of the processing power of the desktop
system, and ensures the portability of the ACMS application.

2.4.2 Data Alignment with RISC Architecture Clients and OpenVMS
Servers

The RISC architecture requires that data references be naturally aligned. That
is, short words (2 bytes) must be on an even byte boundary. Long words (4
bytes) must be accessed on a boundary evenly divisible by 4.

When Alpha and I64 clients define a C structure, they create padding in
the structure, if necessary, to ensure that each field complies with these
requirements. (The padding is not visible to you.)

OpenVMS, however, does not impose such restrictions on its data objects and
does not pad its structures. The problem arises when data, defined on one of
these machines, is transmitted across the network to the other machine, and
interpreted using the same C structure definitions.

In a TP Desktop application, this is a concern only when ACMS workspaces are
being sent (in either direction) between the client program on a RISC machine
such as Tru64 UNIX Alpha and the ACMS application on OpenVMS.

Consider the following structure:

struct wksp_type
{
char field_1;
short field_2;
char field_3;

} my_wksp;

Designing TP Desktop Connector Solutions 2–17

On an Alpha or an I64 client, my_wksp is stored as:

field_2

TAY-0328-AD

1003 1002 1001

field_1 1000

field_3 1004

pad

On an OpenVMS server, my_wksp is stored as:

field_2

TAY-0329-AD

1003 1002 1001

field_1 1000field_3

If my_wksp is allocated on the OpenVMS server and sent to an Alpha or an
I64 client, the structure definition on the Alpha or an I64 machine is expecting
padding that is not there. At run time, your application on the Alpha or I64
machine generates the following message:

Fixed up unaligned data access for pid nnnn (appl_name) at pc 0xnnnnnn

One approach to dealing with this problem is to allocate new workspaces in
the Alpha or I64 client program, and perform a byte copy of each field of the
incoming OpenVMS server structure into the fields of the new client structure.
For structures going from a RISC machine to OpenVMS, you also need to
perform a byte copy of each field of the RISC structure to the outgoing data
stream. If you are writing a portable application, this solution should not have
an adverse effect when running on non-RISC platforms.

Example 6–9 and Example 6–10 show this approach from the AVERTZ Motif
sample application.

2.4.3 Data Validation
TP Desktop software does not provide a mechanism for data validation on the
desktop system. If you want to cache data on the desktop system for functions
such as range checks and choice lists, the application must be responsible for
handling the distribution of data to the desktop system. The application must
also handle the updating of the local data to ensure that it is up to date.

In many cases, the validation on the desktop system can be restricted to
fairly static and unchanging data. For example, a list of geographic codes can
be built as an external table referenced by the desktop client program with
minimal concern. Less static information, such as part numbers, employment
codes, and site locations, might nonetheless be stable enough so that you can

2–18 Designing TP Desktop Connector Solutions

distribute revised information easily. It is valuable to have as much of this
validation on the desktop system as possible.

Windows desktop client programs can use the TP Desktop version-checking
capability to ensure that the tables are current.

Caching of more dynamic information is also possible. However, it is difficult
with currently available tools to ensure consistency between highly dynamic
data on the desktop system and data in a ACMS system.

2.4.4 Data Integrity
Like ACMS software, TP Desktop software generally relies on the data
management systems employed in the ACMS system to ensure the integrity
of data. For example, the transaction semantics of database and distributed
transaction software ensures that all activities within a transaction are atomic.
TP Desktop relies on the locking capabilities of database software to ensure
that all activities within a database transaction are serialized and that they
can be rolled back, if necessary.

In most cases, complex update transactions imply displaying data to the users,
allowing them to change it, and then applying those changes to the database.
The cost of locking the data while the user looks at and modifies it is typically
prohibitive. Therefore, other mechanisms are generally employed in the
application code to allow the locks to be released during this user interaction.
For example, to ensure that the software can detect changes made by another
user while the lock is released, a copy or a sequence number of the original
data is retained.

TP Desktop software does not alter the data integrity strategies normally
used with ACMS systems. The same issues must be addressed, and the same
solutions generally apply. The areas in which desktop solutions may be more
restricted are in queued transactions and in local caching of data discussed in
Sections 2.2.3 and 2.4.3. Tools that are available in homogeneous OpenVMS
solutions, including distributed solutions, can provide a level of data integrity
for OpenVMS solutions that is not available to solutions involving multiple
platforms.

2.4.5 Workspace Design
As with distributed ACMS systems, the factor having the single greatest effect
on application response time is typically the size of the messages being sent
over the network. In an TP Desktop system, all message traffic during task
processing is based on the workspaces defined for the task. To minimize the
cost of network data transfer on each task invocation, exchange step, and task
end, design the application workspaces with the following guidelines:

Designing TP Desktop Connector Solutions 2–19

• Take advantage of unidirectional workspaces for client programs.

TP Desktop lets you specify whether a workspace containing task
arguments is sent from the client to the gateway (read-only), from the
server to the client (write-only), or in both directions (modify). Using read
or write access reduces the overall network cost of the task. Note that the
read and write are from the perspective of the server. See Section 2.4.5.1
for more information about unidirectional workspaces.

• Take advantage of HP DECforms syntax in task definitions.

Using HP DECforms syntax in the exchange steps allows different size
workspaces in send and receive messages. Other syntax requires that
workspaces be the same size in both directions.

• Keep the workspaces as small as possible.

In tasks with great variations between data sent in one exchange step and
data sent in another, create separate workspaces for each step rather than
reusing a single workspace.

• Minimize the number of workspaces.

A small incremental cost exists for each workspace transmitted either as a
task argument in a NO I/O task or as data on an exchange step. For task
arguments and exchange steps, use as few workspaces as possible, keeping
each workspace and the total data sent as small as possible.

• Transmit a usable amount of data.

In tasks that allow users to scroll through large amounts of data, return
the data one page at a time. By caching each page on the desktop system
as it is sent, you can ensure that the desktop client program does not have
to return to the ACMS system to retrieve data already sent. With this
approach, you ensure that users do not have to wait for numerous relations
to be read from the database and sent to the desktop client program when
the information they need is in the first relation.

• Compress task argument workspaces.

TP Desktop supports compression on task argument workspaces. See
Section 2.4.6 for information on compression.

• Take advantage of data definitions.

If the data is drawn from multiple relations in the database, the workspace
definitions may not map to database relations. However, you can base
workspace definitions on the same field definitions that make up the
database tables.

2–20 Designing TP Desktop Connector Solutions

For TP Desktop performance, the most critical issue is to balance the
workspace size and the number of workspaces. Minimize both the amount
of data transferred in each message between the desktop system and the
ACMS system and the number of messages being sent.

2.4.5.1 Unidirectional and Bidirectional Workspaces
TP Desktop provides a mechanism, called unidirectional workspaces, by
which you can control how data is sent across the network. With unidirectional
workspaces, only those workspaces that actually contain data need to be sent
in either direction. Bidirectional workspaces send data in both directions. By
specifying which workspaces need to go in one direction only, the application
can significantly reduce unnecessary network traffic.

TP Desktop provides three types of workspaces, two of which are unidirec-
tional:

• Read-only (undirectional)

Read-only workspaces contain data that the client application needs to
send to the ACMS task. The task needs to receive the data, but it does not
need to update the workspace (or write into it). Therefore, you need to send
read-only workspaces only in one direction: from the client application to
the task.

Read-only means that these workspaces are read-only from the server’s
perspective. This meaning is consistent with the ACMS task definition
syntax.

• Write-only (unidirectional)

Write-only workspaces contain data that the task needs to send to the
client application. The client application does not send data in these
workspaces to the ACMS task. The ACMS task writes values into these
workspaces to send back to the client application. Therefore, you need to
send write-only workspaces only in one direction: from the ACMS task to
the client application.

These workspaces are write-only from the server’s perspective. This
meaning is consistent with the ACMS task definition syntax.

• Modify (bidirectional)

Modify workspaces contain data that the task needs to send to the ACMS
task. The ACMS task:

— Uses the data in these workspaces.

— Makes updates to the workspaces.

— Returns the updated workspaces to the client application.

Designing TP Desktop Connector Solutions 2–21

Therefore, you must send modify workspaces in two directions: from the
client application to the ACMS task, and from the ACMS task back to the
client application.

Modify workspace is the default. If you do not specify the access type of the
workspace to pass, TP Desktop sends all the workspaces that are passed to it
in both directions.

You specify the access type of the workspace on the call to the acmsdi_call_task
client service. See the HP TP Desktop Connector for ACMS Client Services
Reference Manual for information on the acmsdi_call_task client service.
For information on passing unidirectional workspaces with Visual Basic, see
Chapter 7.

2.4.6 Data Compression
TP Desktop provides compression for task argument workspaces; workspaces
on exchange steps are not compressed by any TP Desktop service. However, TP
Desktop client services can accept compressed exchange-step workspaces and
can decompress them before passing them to client applications. This section
presents the call options required to compress task argument workspaces.
Section 4.2.5 describes how to use compression with the Portable API.

The following rules apply to TP Desktop data compression:

• Data compression for task argument workspaces are initiated by the client
application in the form of requests to the client services layer.

• Compression and decompression of exchange step workspaces are
transparent to the client application.

• Data compression is activated for a call. Once activated, compression can
be requested on a workspace-by-workspace basis.

• Although the client application can request compression for individual
workspaces, the application never sees a compressed workspace, nor
does the client application have access to the algorithm being used for
compression.

• If compression is requested for a MODIFIABLE workspace, attempts are
made to compress that workspace in both directions.

• The client services layer attempts to compress READ-ONLY and
MODIFIABLE workspaces, if requested.

• The client services layer passes the application’s compression requests
to the back-end for MODIFIABLE and WRITE-ONLY workspaces, which
causes ACMS to attempt to compress those workspaces.

2–22 Designing TP Desktop Connector Solutions

• A compression attempt on a workspace can result in the total workspace
size, including workspaces header data, being equal to or greater than
the original, uncompressed, workspace size. If this is the case, the client
services layer sends the workspace in its uncompressed form. The client
application is not informed when this happens.

• If compressed workspaces are sent to an ACMS system, which does not
support data compression, the gateway rejects the task call with a special
error message.

2.5 Design Conclusions
The design issues discussed in this chapter are highly dependent on the design
of the solution as a whole. For example, although applications should generally
avoid using large workspaces, a given application can have excellent reasons
for using them. By understanding all your own application requirements, you
can decide on each of the issues raised in this chapter.

The design topics discussed in this chapter focus on desktop issues. Larger
issues concerning the entire application environment are equally important.
For example, if the data storage and access design of the ACMS system results
in slow response time, that can have as immediate and visible an effect on
the user interface as any decisions about presenting data to the user on the
desktop system. Likewise, confusing flow control is a problem whether it is
embedded in the task definition or in application-specific presentation code.

In creating a desktop solution, be sure to pay close attention to these larger
issues, as well as the desktop-specific concerns. See the documentation for
ACMS, Oracle CDD, Oracle Rdb, and other related products for information on
these other areas of application design.

Designing TP Desktop Connector Solutions 2–23

3
Developing HP ACMS Applications

This chapter presents guidelines for development work you do on the
OpenVMS system for use with desktop client programs.

3.1 Overall Development on the OpenVMS System
Some elements of your TP Desktop Connector solution must be developed
and run under OpenVMS software, regardless of where you develop your
presentation code. One of the key elements of the solution is the ACMS
application called by your desktop client programs. To create the ACMS
application, do the following on the OpenVMS system:

1. Create and populate the databases that your ACMS applications access.

2. Create definitions for the tasks in your ACMS application and workspaces
for these tasks.

3. Write step procedures for the processing steps in your tasks.

4. Write task group and application definitions.

5. Build the task group and application database.

6. Link the procedure server image.

In developing these elements of your desktop solution, you perform exactly
the same steps as in developing ACMS solutions that do not use TP Desktop
Connector software.

Refer to the ACMS documentation listed in the Preface section titled ‘‘Related
Documents’’.

If your solution includes both VT terminals and desktop devices, create the
presentation code for the VT terminals on the OpenVMS system.

If you are not using VT devices and are using FORM I/O or REQUEST I/O
tasks, do not build the HP DECforms form libraries or TDMS request libraries
for the exchange steps in your task definitions. See Section 3.3.

Developing HP ACMS Applications 3–1

3.2 Creating Data Definitions for the Desktop System
The maintenance cost of the ACMS solution can be reduced by having common
data definitions in the ACMS application and in the desktop client program.

Note

The command procedure MAKE_RECORDS.COM found in the
ACMSDI$EXAMPLES directory provides an example that automates
creating common data definitions and converting data for the C and
COBOL languages. You may need to edit the command procedure for
the language you are using.

To ensure common data definitions, create include files for the languages being
used as follows:

1. Define workspaces in CDD software (using the Operator utility CDO).

2. From the CDD definitions, create an include file in each third-generation
language in which your desktop client program is written:

a. Create a dummy OpenVMS program that includes or copies the CDD
definitions from the dictionary.

b. Compile the dummy program to extract the definitions and create a
listing file with their language equivalents.

c. Edit the listing file and extract each definition to create an include
file.

3. Ensure that the include files are compatible with the desktop compiler you
are using.

For example, replace underscores in Microsoft COBOL with dashes, and
convert the data type int in VAX C to long int for Microsoft C.

The include files are for use in the presentation code on the desktop systems.
For example, if the desktop client program is written in C and COBOL, create
the source files for both languages.

3–2 Developing HP ACMS Applications

3.3 Treating Forms in Task and Task Group Definitions
Generally, task and task group definitions are not dependent on whether an
application handles VT or desktop devices. However, if you are using FORM
I/O or REQUEST I/O tasks, the treatment of forms in the task and task group
definitions depends on whether the ACMS application runs without VT devices.

If you are using VT and desktop devices and either FORM I/O or REQUEST
I/O tasks, refer in the task definitions to the real form name or names and in
the task group definition to the real .FORM or .RLB file used by the ACMS
application.

If you use the FORM I/O or REQUEST I/O attribute in your desktop-only task
definitions (as opposed to using tasks with the NO TERMINAL USER I/O
attribute), the task and task group definitions must still refer to actual files.
This reference is necessary because the EXC opens these files when the ACMS
application starts.

You can use names supplied by HP if you do not want to create your own:

• In the task definition, refer to ACMSDI_FORM as the form name.

• In the task group definition, refer to a form library file or a request library
file:

SYS$LIBRARY:ACMSDI$FORM.FORM for FORM I/O tasks

SYS$LIBRARY:ACMSDI$RLB.RLB for REQUEST I/O tasks

The TP Desktop Connector software provides an empty but valid form library
file and a request library file to which the task group definition can refer.
These files are created when you install TP Desktop Connector software on an
OpenVMS system.

Example 3–1 shows definitions of a task and a task group that refer to the file
ACMSDI$FORM.FORM.

Example 3–1 Desktop-Only I/O Task and Task Group Definitions

REPLACE TASK sample_task
WORKSPACES ARE sample_wks1, sample_wks2;
BLOCK WORK WITH FORM I/O 1

(continued on next page)

Developing HP ACMS Applications 3–3

Example 3–1 (Cont.) Desktop-Only I/O Task and Task Group Definitions

EXCHANGE
TRANSCEIVE RECORD sample_rec1, sample_rec2 IN acmsdi_form
SENDING sample_wks1 2
RECEIVING sample_wks2;

.

.

.
END BLOCK WORK;

END DEFINITION;

REPLACE GROUP sample_group
USERNAME IS sample_exc
FORM IS acmsdi_form
IN "sys$library:acmsdi$form.form" 3
WITH NAME acmsdi_form;

SERVER IS
sample_server: DCL PROCESS;

END SERVER;
TASK IS
sample_task: TASK DEFINITION IS sample_task;

END TASK;
END DEFINITION;

The following are the key points in Example 3–1 for a ACMS application
without VT devices:

1 A task definition with FORM I/O signals the requirement for a HP
DECforms form name.

2 The name ACMSDI_FORM refers to the HP DECforms form supplied with
this product.

3 The task group definition shows the full specification for the HP DECforms
form file supplied with this product.

3.4 Enabling Version Checking on OpenVMS Systems
If your desktop client program uses the portable client services, which support
version checking, you can build a program to run on the OpenVMS system to
pass version information to the desktop client program. See Section 4.3 for
information on the processing support for version checking.

Your ACMSDI_GET_VERSION routine can do one of the following checks:

• Look at your ACMS application images to determine versions.

• Use a version number stored in the application database.

3–4 Developing HP ACMS Applications

• Take other approaches to establish the version of the ACMS application
software.

The routine returns a value in its version parameter, a 24-character string.

To do version checking, perform the following operations on the OpenVMS
system:

• Link your ACMSDI_GET_VERSION routine into a shareable image (see
Section 3.4.1).

• Define the system logical name ACMSDI_GET_VERSION on the TP
Desktop Connector Gateway for ACMS system to point to the ACMSDI_
GET_VERSION shareable image file (see Section 3.4.2).

If the logical name is not defined or the action routine cannot be located,
the TP Desktop Connector Gateway for ACMS logs a message in the SWL
and continues without calling the routine.

3.4.1 Building the ACMSDI_GET_VERSION Shareable Image
To create a shareable image that the TP Desktop Connector Gateway for ACMS
calls for checking versions, follow these steps:

1. Edit according to the documented interface the sample file named
ACMSDI_GET_VERSION.C in the ACMSDI$EXAMPLES directory.
HP TP Desktop Connector for ACMS Client Services Reference Manual
describes the interface.

2. Compile the routine:

$ CC ACMSDI_GET_VERSION.C

The next few steps make the routine available to the gateway.

3. Create a linker options file to make the routine externally visible.

The file, for example, ACMSDI_GET_VERSION.OPT, must contain at least
the following line:

UNIVERSAL=ACMSDI_GET_VERSION

4. Link the ACMSDI_GET_VERSION routine into a shareable image using
the compiled routine and the options file:

$ LINK /SHAREABLE=ACMSDI_GET_VERSION.EXE -
_$ ACMSDI_GET_VERSION.OBJ, ACMSDI_GET_VERSION.OPT/OPTIONS

This creates the file ACMSDI_GET_VERSION.EXE in the current default
directory.

5. Place the newly created shareable image in a secure directory.

Developing HP ACMS Applications 3–5

Because the gateway runs with elevated privileges, the ACMSDI_GET_
VERSION routine runs with the same elevated privileges when that
gateway calls it. Securing the image guards against a nonprivileged user
gaining unauthorized privileges.

Section 3.4.2 tells how to point the gateway to the image file.

3.4.2 Defining the Version-Checking Logical Name
The gateway uses a logical name to access the ACMSDI_GET_VERSION
routine as a shareable image (built as described in Section 3.4.1). Define
the system logical name ACMSDI_GET_VERSION to translate to the device,
directory, and file name of the image stored in the secure directory:

$ DEFINE /SYSTEM ACMSDI_GET_VERSION -
_$ SECURE_DEVICE:[SECURE_DIRECTORY]ACMSDI_GET_VERSION

The gateway tries to find and invoke the ACMSDI_GET_VERSION routine
only if a desktop client program signs in to the ACMS system and requests
version checking by specifying it as a submitter option. After the gateway
searches for the shareable image and routine the first time after its restart, the
same image and routine are used until the gateway restarts again.

3.5 Getting Desktop Submitter Information
To gather TP Desktop Connector runtime information, you can provide a
utility program to run on the same system as the gateway. HP TP Desktop
Connector for ACMS Client Services Reference Manual describes the system
management service to use.

A sample image (SHOW_DESKTOP_USERS.EXE), a source file (.C), a linker
options file (.OPT), and a build command procedure (.COM) are stored in the
ACMSDI$EXAMPLES directory to provide guidelines in coding and building
the utility.

3.5.1 Coding the Routine
The caller can request all current desktop submitters or can select desktop
submitters by user name, ACMS submitter identification, or desktop gateway
submitter identification. The following identifications apply to a submitter:

• Desktop gateway submitter identification

The gateway uses this value internally.

• ACMS submitter identification

This is the value shown in the output of the ACMS/SHOW commands.

• TP Desktop Connector submitter identification

3–6 Developing HP ACMS Applications

This identification is supplied on the desktop system when the desktop
client program signs the user in to the ACMS system. It never leaves the
desktop and several desktop systems may have desktop client programs
running with the same identification value. This identification is neither
accepted by nor returned by the ACMSDI$GET_SUBMITTER_INFO
service.

To filter which desktop submitters are reported, the ACMSDI$GET_
SUBMITTER_INFO service applies all selection values provided on the
call. If no selection values are provided, all submitters are reported.

To call the ACMSDI$GET_SUBMITTER_INFO routine, the software must
perform these steps:

1. Initialize the user_context parameter to zero.

2. Enter a program loop that invokes ACMSDI$GET_SUBMITTER_INFO.

To limit the number of submitters reported, specify one or more of the
target_submitter_ID, target_desktop_ID, or target_username parameters. To
have all submitters reported, specify none of the target parameters.

Independent of the selection criteria, build the item list to specify what
information you want reported about each submitter that matches the
criteria. The service reuses the buffers you provide for the output
information for each matching submitter. Have the program copy the
reported information from the buffer to other program-managed storage.

3. Continue looping until ACMSDI$GET_SUBMITTER_INFO returns a
status indicating that no more submitters match the selection criteria.

Because ACMSDI$GET_SUBMITTER_INFO takes a snapshot at the time of
the first call, submitters can sign in to or out of the TP Desktop Connector
system while the program loop calls the service repeatedly. The service always
reports on a consistent set of submitters, the set that is signed in at the time
of the first call. But the return status from the final call indicates whether
the information reported from the snapshot is still valid as of the final call, or
whether the set of submitters changed during the repeated calls.

3.5.2 Building the Shareable Image
The C-language prototype for the ACMSDI$GET_SUBMITTER_INFO routine
and definitions for the item codes are included in the file ACMSDI.H in the
ACMSDI$COMMON directory. Include this file in your C source file to obtain
those definitions.

Developing HP ACMS Applications 3–7

To link your program after you compile it, specify
ACMSDI$VMS:ACMSDI$CLIENT_OBJLIB.OLB as an input object library,
and SYS$SHARE:VAXCRTL.EXE as an input shareable image library. One
way to do this is to create a linker options file (for example, EXAMPLE.OPT)
containing these lines:

ACMSDI$VMS:ACMSDI$CLIENT_OBJLIB/LIB
SYS$SHARE:VAXCRTL/SHARE

Specify the linker options file on the link command:

$ LINK your-program.OBJ, EXAMPLE.OPT/OPT

Store the program in a protected directory.

After you install TP Desktop Connector software, the
ACMSDI$EXAMPLES directory contains an example program SHOW_
DESKTOP_USERS.EXE that uses the ACMSDI$GET_SUBMITTER_INFO
service. SHOW_DESKTOP_USERS.C and .OPT are the C-language source and
the linker options files. The command procedure BUILD_SHOW_DESKTOP_
USERS.COM includes the link command to build the image.

To modify the sample, copy the files to your own directory:

$ COPY ACMSDI$EXAMPLES:*SHOW_DESKTOP_USERS*.* *.*

Compile the program using the following command:

$ CC /INCLUDE=ACMSDI$COMMON: SHOW_DESKTOP_USERS.C

Link the resulting object into an image using this command:

$ @BUILD_SHOW_DESKTOP_USERS

This creates SHOW_DESKTOP_USERS.EXE in your directory. Run the image
using this command:

$ RUN SHOW_DESKTOP_USERS
TP Desktop Connector Desktop Node Local Sign-in Time
Submitter Submitter Transport Username Latest Message Time
2790021 F8360;BD 63571 SMITH 8-FEB-2002 11:19:32.30

DECnet 8-FEB-2002 11:19:32.30

3–8 Developing HP ACMS Applications

3.6 Debugging TP Desktop Connector Solutions
Several approaches are available for you to debug your TP Desktop Connector
solution. You can debug:

• Desktop client program only

• NO I/O tasks

• Tasks called from desktop client programs

• Procedure server code

3.6.1 Debugging the Desktop Client Program Only
During your software development, it is useful to run your desktop client
program independently of the ACMS application. To be able to run the desktop
client program independently, write stub routines that emulate the processing
expected on a call to the ACMS application, and link your desktop client
program with these routines rather than the TP Desktop Connector client
services. After you debug the desktop client program, relink it with the TP
Desktop Connector client services. Part II describes debugging for each type of
desktop system.

3.6.2 Debugging NO I/O Tasks
With ACMS applications that use NO I/O tasks, you can debug both the tasks
and the step procedures without using the desktop system or the gateway.
Use the ACMS Task Debugger to completely simulate the behavior of both the
desktop system and the gateway for the desktop system. This technique works
only for tasks having BLOCK WORK WITH NO I/O declared.

Although the ACMS Task Debugger is not a source-level debugger, it works
with the OpenVMS Debugger so the procedure server (written in any
OpenVMS third-generation language) is accessed by means of the OpenVMS
Debugger. When the procedure server returns to the ACMS task, the ACMS
Task Debugger regains control and allows step, breakpoint, deposit, examine,
and other basic Debugger functions on the ADU task definition code.

To emulate a submitter, make a command file containing deposit statements
that write reasonable test case values into the workspaces used in the call to
the procedure server. When the task is finally activated, arguments to the task
are expressed in workspace data passed to the task. To emulate the submitting
desktop system, load workspace arguments as the desktop client program does
when it calls the task. The ACMS Task Debugger supports command files that
are executed (@filename syntax) at the ACMSDBG prompt. All ACMS Task
Debugger commands can be executed from a command file (including other
command files).

Developing HP ACMS Applications 3–9

After making the command file, debug by following these steps:

1. Start the procedure server with the START SERVER command (before the
task is selected).

2. Set OpenVMS Debugger breakpoints in the procedure server.

Set a breakpoint at TASK-NAME\STEP-LABEL\$BEGIN> for the task
and processing step that calls the procedure server process.

3. Select the task and step to the breakpoint.

4. Execute the command file that sets up the workspace records for the test
case.

5. Examine the workspaces to confirm that they are as needed.

6. Step through the procedure server.

If you compiled and linked the procedure server with /DEBUG options,
the procedure server can be debugged exactly as any third-generation
code under OpenVMS. The ACMS Task Debugger steps into the procedure
server under OpenVMS Debugger control.

If the procedure server was not compiled and built with /DEBUG options,
the OpenVMS Debugger steps through it.

7. Confirm that the results are as expected by examining the data passed out
of the procedure server call.

When the tasks and procedure servers are behaving as expected using this
technique, you can then call the NO I/O tasks from your desktop client
program, using the technique described in Section 3.6.3.

3.6.3 Debugging Tasks Called from Desktop Client Programs
To debug tasks, use the ACMS Task Debugger. The debugging steps are
similar to those described for debugging tasks called from a user-written agent
in Writing Server Procedures.

TP Desktop Connector allows you to bring up multiple copies of the gateway on
a single CPU, and to route a client connection explicitly to one of these copies
of the gateway. This facility, provided only for debugging purposes, allows
multiple developers at the same time and on the same OpenVMS system to
debug tasks called from TP Desktop Connector client programs.

Note

Using multiple gateways on a single CPU is not supported for
production purposes.

3–10 Developing HP ACMS Applications

To use the multiple gateway capability to debug tasks called from client
programs, follow these steps:

1. Define the ACMS$DEBUG_AGENT_TASK logical name in one of the
logical name tables for the user name under which you will be starting a
copy of the gateway. The following example assumes that you are signed in
to an ACMSDI_TEST account:

$ DEFINE/GROUP ACMS$DEBUG_AGENT_TASK "Y"

If your ACMS system and a gateway are currently running, you must
stop and restart them. The ACMS$DEBUG_AGENT_TASK logical name
is recognized only by agent processes in the group for which the logical
name has been defined, and which are started after you have made this
assignment.

2. Create or edit your gateway startup parameter file to define values for the
SERVER_NAME and DECNET_OBJECT keywords. The names can be no
longer than 5 characters.

For example:

• DECnet

SERVER_NAME=SMITH
DECNET_OBJECT=187

• TCP/IP

SERVER_NAME=SMITH
TCPIP_PORT=1022

• Both: DECnet and TCP/IP

SERVER_NAME=SMITH
DECNET_OBJECT=187
TCPIP_PORT=1022

See Section 3.6.3.8 for information on using transports other than DECnet.

3. Run the ACMSDI$STARTUP.COM command procedure to start the TP
Desktop Connector Gateway for ACMS, specifying the gateway startup
parameter file containing your keyword definitions. For example:

$ SUBMIT/USER=ACMSDI_TEST/NOLOG SYS$STARTUP:ACMSDI$STARTUP -
_$ /PARAM= SYS$STARTUP:SMITH.PRM

Developing HP ACMS Applications 3–11

Assuming that the keyword declarations shown in the previous example
are defined in a user-created SMITH.PRM file in SYS$STARTUP, this
command starts a gateway with the process name ACMSDI$SRVSMITH
connected to DECnet object 187. By specifying a user name, you associate
a group logical name table with this gateway that is different from the
logical name table associated with a production version of the gateway.

The ACMSDI_TEST account must have NETMBX, TMPMBX, SYSNAM,
SYSPRV, SYSLCK, and CMKRNL privileges. The process issuing this
command must have NETMBX and CMKRNL privileges.

This command can be incorporated into an ACMS task, using a DCL
process server, so that users starting and stopping the server do not need
to have system privileges. See Section 3.6.3.10.

4. Start an ACMS task debugger session, specifying the /AGENT_HANDLE
qualifier. Set breakpoints, and then type ACCEPT to enable the task
debugger session to receive task calls through your TP Desktop Connector
gateway.

For example:

$ SET PROCESS/PRIV=SHARE
$ ACMS/DEBUG/AGENT_HANDLE=SMITH_TEST PERS_GROUP.TDB/WORKSPACE
ACMSDBG> SET BREAK PERS_UPDATE_TASK
ACMSDBG> START PERS_SERVER
DBG> SET BREAK PERS_GET_RECORD
DBG> GO
ACMSDBG> ACCEPT/CONTINUOUS

Using an agent handle like SMITH_TEST (rather than PERS_GROUP)
enables multiple users to work on the same task group in different task
debugger sessions, at the same time. It is not necessary to create multiple
versions of the task group, only to specify a unique agent handle.

You can use a logical name to associate the agent handle with the
application name used by a client program. See Section 3.6.3.2 for this
information.

5. On the desktop client, set the environmental variable (or logical name, for
OpenVMS clients) ACMSDI_DECNET_OBJECT_node to the object number
you specified in starting the gateway. The node is the DECnet node name
you will be specifying as the submitter-node parameter in ACMSDI_SIGN_
IN. For example, if you are going to connect to ACMTST (in this case,
using DECnet from a OpenVMS client):

$ DEFINE ACMSDI_DECNET_OBJECT_ACMTST 187

3–12 Developing HP ACMS Applications

Run tasks from your client program, specifying SMITH_TEST as the
application name in the ACMSDI_CALL_TASK service. The following
notice appears on the terminal at which you are running the task debugger
process:

ACMSDBG>
Terminal is in SERVER SMITH_TEST

See Section 3.6.3.8 for information on using transports other than DECnet.

6. When you are finished with the debugging session, exit from the task
debugger and stop your gateway process:

ACMSDBG> EXIT
$ @SYS$STARTUP:ACMSDI$SHUTDOWN SMITH

You can also deassign the ACMSDI$DEBUG_AGENT_TASK logical. Or
you can start another task debugger session to debug other tasks in the
same or another group. Note that you must stop your gateway in order to
run another task debugger session, even if you want to bring up the same
task group that you were just debugging.

These steps, and additional options you have in using the multiple server
feature, are explained more fully in the sections that follow.

3.6.3.1 Defining the Gateway Process and Network Names
Multiple gateways on a single OpenVMS system are distinguished from each
other both by their process names and by the network name or object number
they are associated with. These values, as well as resource utilization and
other aspects of the gateway, are determined at gateway startup.

The default name for the gateway is ACMSDI$SERVER. If you start additional
gateways on the node, TP Desktop Connector assigns them process names of
the form ACMSDI$SRV(extension). The (extension) is a user-supplied suffix
of up to 5 characters. This suffix distinguishes one gateway from another, and
forms an OpenVMS process name, which is limited to 15 characters.

The command file SYS$STARTUP:ACMSDI$STARTUP.COM has been
extended to handle the starting of multiple gateways. The naming of the
gateway and whether or not it is considered the primary gateway is determined
by keywords that you can add to a user-created parameter file. The keywords
are SERVER_NAME, DECNET_OBJECT, and TCPIP_PORT

When invoking ACMSDI$STARTUP.COM, the optional parameter file is
used to define logical names from the keywords. The logical names are
defined in the process logical name table, for the process which invokes
ACMSDI$STARTUP.COM. If the keywords are not specified or are specified
as null, the process logical names are not defined. The keywords that control

Developing HP ACMS Applications 3–13

gateway communication are listed in Table 3–1 with their associated logical
names.

Table 3–1 Gateway Communication Keywords

Parameter File Logical Name Default Sample

SERVER_NAME ACMSDI$SERVER_NAME Uses decnet_object DBG1

DECNET_OBJECT ACMSDI$DECNET_OBJECT 87 "TASK=DBG1"

TCPIP_PORT ACMSDI$TCPIP_PORT 1023 1022

For example, you can include the following declarations in a gateway startup
parameter file:

SERVER_NAME=DBG1
DECNET_OBJECT="TASK=DBG1"

This startup file starts a gateway with process name ACMSDI$SRVDBG1,
accessible for clients that specify DBG1 as the DECnet objectname with which
to connect. The object number is assigned by DECnet. The name or number
specified by the DECNET_OBJECT keyword is used to select the DECnet
object that a gateway uses to listen for client connections when the DECnet
transport is active. The DECNET_OBJECT can name a numbered DECnet
object (DECNET_OBJECT = 187) or a named DECnet object (DECNET_
OBJECT = "TASK=DBG1"). If additional gateways using DECnet are started,
DECNET_OBJECT must be defined to be a unique object identifier. The object
name is a suffix of up to 5 characters.

Similarly, the number specified by the TCPIP_PORT keyword specifies the
TCP/IP port number used for client connections. For forced nonblocking calls,
you also have the ability to specify your gateway node TCP/IP port number
dynamically without having to define the environmental variable. See the HP
TP Desktop Connector for ACMS Gateway Management Guide for more
information on setting values for this keyword and specifying the port number
dynamically.

The name specified by the SERVER_NAME keyword is used to distinguish
between multiple gateways on the same node by providing a gateway
naming extension. The value is a name suffix of up to five characters, which
is appended to ACMSDI$SRV to create the process name; for example,
if SERVER_NAME is specified as DBG1, the gateway process name is
ACMSDI$SRVDBG1.

3–14 Developing HP ACMS Applications

If SERVER_NAME is not specified, then the DECNET_OBJECT, or TCPIP_
PORT name is also used to distinguish between gateways. In this case, the
DECNET_OBJECT name, for example, is used as a gateway name suffix (not
including "TASK="). If neither SERVER_NAME nor DECNET_OBJECT is
defined, then the default process name of ACMSDI$SERVER and DECnet
object 87 is used.

Note

A single client process can start multiple sessions to the same gateway
on one node or multiple sessions to individual gateways on different
nodes. However, a single client process cannot start second session
to an alternate gateway on a node to which it already has a gateway
connection established. That is because the client services cannot
distinguish the difference between different gateways on the same node
and multiplex subsequent sessions over the one connection to the initial
gateway. However, you can have multiple client programs active at the
same time on a desktop system and connected to different gateways on
a single node.

3.6.3.2 Defining Logical Names
Before starting the gateway, you must define the logical name, ACMS$DEBUG_
AGENT_TASK, in a logical name table associated with that process. For
example, if you are in the same group as the user name under which the
gateway will be started, you can use this command:

$ DEFINE/PROC ACMS$DEBUG_AGENT_TASK "TRUE"

The ACMS$DEBUG_AGENT_TASK logical name instructs ACMS to direct
task selection requests to task debugger processes rather than to ACMS EXC
processes. If this logical name has been set for a gateway or another ACMS
agent, any task selection handled by that gateway or agent which specifies an
application name for which there is no corresponding task debugger session
fails with the "application not found" message.

This logical name affects only those gateways or agents for which it has been
defined. You can, therefore, have both production and debug systems on the
same OpenVMS node, as long as the ACMS$DEBUG_AGENT_TASK logical
has not been defined for the ACMSDI$SERVER process.

Developing HP ACMS Applications 3–15

The relationship between the application name specified by the client program
and the task debugger process which will receive the task calls can be
established in either of two ways:

• The application name specified in task call is the same as the string
specified in the /AGENT_HANDLE qualifier for the ACMS/DEBUG
command.

• The application name specified in task call is the same as a logical name
in one of the gateway’s logical name tables, whose equivalence name is the
string specified in the /AGENT_HANDLE qualifier for ACMS/DEBUG.

For example, if the current process is in the same group as the name under
which your gateway is started, you can use this command to set up a logical
name for the application:

$ DEFINE/GROUP PERS_APPL SMITH_TEST

In this example, the client program calls tasks in an application named PERS_
APPL. The task debugger session, however, is started with the agent handle
set to SMITH_TEST, as shown in Figure 3–1.

Figure 3–1 Task Debugger Session

define acms$debug_agent_task "true"�
define PERS_APPL SMITH_TEST

/agent_handle = SMITH_TEST

ACMSDI ACMSDBG.EXE

TAY-0183-AD

With this approach, the application names in the client program need not
change to identify unique task debugger sessions for different users.

The logical name relationship between the application name and the agent
handle can be set up by TP Desktop Connector for your gateway process if you
include the DEBUG_APPLICATION_NAME and DEBUG_AGENT_HANDLE
keywords in your startup parameter file. For example:

DEBUG_APPLICATION_NAME = PERS_APPL
DEBUG_AGENT_HANDLE = SMITH_TEST

3–16 Developing HP ACMS Applications

The equated value of the DEBUG_APPLICATION_NAME keyword is used
as the logical name. The equated value of the DEBUG_AGENT HANDLE
keyword is used as the equivalence name. In addition, if you use these
keywords, TP Desktop Connector also sets the ACMS$DEBUG_AGENT_
TASK logical to "TRUE". In this way, you do not need to have GROUP or other
privileges to define these logical names.

3.6.3.3 Required Privileges
Several privileges are required for the user name under which a gateway is
started, regardless of whether named or numbered DECnet objects are used.
These privileges are:

NETMBX
TMPMBX
SYSNAM
SYSPRV
SYSLCK
CMKRNL

When starting the gateway, you can either invoke
SYS$STARTUP:ACMSDI$STARTUP.COM directly, or you can use the SUBMIT
command to start the gateway under a user name other than your own.

To invoke ACMSDI$STARTUP.COM directly, the process invoking the
command procedure must have all six privileges in addition to the DETACH
and OPER privileges.

To invoke ACMSDI$STARTUP.COM with the SUBMIT/USER command, the
process issuing the SUBMIT command must have NETMBX and CMKRNL
privileges. It does not have to have the other privileges listed in this section.
However, the user name specified in the /USER qualifier must have all six
privileges.

3.6.3.4 Installing the TP Desktop Connector Gateway for ACMS Images
If you have many users who are starting gateways, you can install the
gateway images to reduce the image activation and memory utilization
costs for running the gateway. Create a command file (for example,
SYS$STARTUP:ACMSDI$INSTALL.COM), which you invoke from your system
startup file, containing the following commands:

$ INSTALL ADD/OPEN/SHARE SYS$SYSTEM:ACMSDI$SERVER
$ INSTALL ADD/OPEN/SHARE SYS$SHARE:ACMSDI$SERVER_SHR

Developing HP ACMS Applications 3–17

3.6.3.5 Troubleshooting Problems in Starting Multiple Gateways
If you receive an error in starting the gateway, check the Software Event Log
for additional information on why the gateway could not be started. Conditions
that can cause the gateway startup to fail include:

• Another gateway of the same name or with the same DECnet name or
object number is already started.

• Insufficient system resources exist to start the gateway.

• User name quota values are insufficient to start the gateway.

• The process that is starting the gateway or the user name under which the
gateway is being started do not have sufficient privileges.

3.6.3.6 Starting the TP Desktop Connector Gateway for ACMS from an ACMS Task
To minimize the privileges assigned to the individuals who may need to stop
and start the gateway, create an ACMS task that users can invoke to start the
gateway. For example:

REPLACE TASK START_SVR_TASK
BLOCK

PROCESSING IS
DCL COMMAND "SUBMIT/USER=’P1 @SYS$STARTUP:ACMSDI$STARTUP.COM ’P2"
IN START_SVR_SERVER;

END BLOCK;
END DEFINITION;

Define ACMSDI_START_SERVER in the task group as a DCL PROCESS
server. In the application, assign to the gateway a user name that has
NETMBX and CMKRNL privileges so that it can issue the SUBMIT/USER
command; define the ACL for this task to allow access by any appropriate
users. The users can then use the SELECT command from any ACMS menu to
invoke this function:

Selection: SELECT start_svr_appl start_svr_task acmsdi_test test:smith.prm

In this example, acmsdi_test is the user name under which the gateway is
started. SMITH.PRM is the name of the parameter file in the directory pointed
to by the logical name TEST.

3–18 Developing HP ACMS Applications

3.6.3.7 Running the Task Debugger Session
A process running the ACMS Task Debugger (ACMSDBG) is dedicated to
debugging a single ACMS task group. Users use the ACMS/DEBUG to invoke
the ACMSDBG.EXE image in their process. The procedure servers that the
ACMS Task Debugger starts are run in subprocesses associated with the user
process.

To debug a task, the task group definition must be built with the /DEBUG
qualifier:

ADU> BUILD GROUP/DEBUG dbg_task_group

If the task group is not built with /DEBUG, you can start the task group in the
task debugger, set breakpoints, and run tasks. However, you cannot examine
or deposit workspace values.

Compile and link the step procedures with the /DEBUG qualifier. Otherwise,
you cannot set breakpoints, or examine and deposit variables.

Before starting the task debugger, define any logical names you need for your
procedure servers. These include any names you would normally include in the
application definition SERVER LOGICALS clause, or that you would define in
logical name tables accessible to the procedure servers.

To start the ACMS Task Debugger, use ACMS/DEBUG:

• Include the name of the .TDB task group database file containing the tasks
to be run. Only one task group can be debugged at a time.

• Use the /AGENT_HANDLE qualifier to provide the ACMS Task Debugger
with a unique handle to the agent that will be submitting the tasks.

• Use the /WORKSPACE qualifier to enable examining and depositing in
workspaces.

For example:

$ ACMS/DEBUG/WORK/AGENT_HANDLE=SMITH_TEST PERS_GROUP
ACMSDBG> SET BREAK PERS_UPDATE_TASK
ACMSDBG> ACCEPT/CONTINUOUS

SMITH_TEST is the agent handle assigned for this task debugger process.
PERS_GROUP.TDB is the name of the task definition file that you are
debugging. SET BREAK establishes a breakpoint at the start of PERS_
UPDATE_TASK. ACCEPT/CONTINUOUS prepares the task debugger process
to receive task calls from the gateway. At this point, your process waits to
receive either a task call, Ctrl/C, or Ctrl/Y.

Developing HP ACMS Applications 3–19

Make sure that the gateway from which you will be accepting task calls is
on the same OpenVMS system as your task debugger process. With the task
debugger, you cannot use the application routing capability that is available
when you are calling tasks in the normal ACMS runtime system.

The following restrictions apply when running a task debugger session with
/AGENT_HANDLE specified:

• To run tasks in this debugger session, you must invoke them from a client
program through the gateway, or from another ACMS agent. Do not
select tasks from within the task debugger (that is, by using the SELECT
command).

• If you want to end a task, do so from the client program rather than by
using the CANCEL command in the task debugger.

• Make sure that you run only one task at a time in the task debugger
session. If you need to test several tasks at one time (in multiple sign-ins)
from the client program, set up a task debugger session for each of the
sign-ins that you are going to create.

As you complete a task, you can start another task without leaving the task
debugger. You can stop and start procedure servers within that task debugger
session. However, once you exit from that task debugger session, you must
also stop the gateway associated with that session. If you are going to do
further debugging, restart your gateway, then restart your task debugger
session. If you are not going to do any further debugging, also deassign the
ACMS$DEBUG_AGENT_TASK and debug application logical name (if any)
associated with your task debugger session.

3.6.3.8 Selecting a Gateway from a Portable API Client Program
To establish a connection between a client program and a gateway other
than ACMSDI$SERVER (object 87), you must use the logical names (on
OpenVMS) or the environmental variable (on Windows or Tru64 UNIX)
ACMSDI_DECNET_OBJECT_node to define the gateway you want to invoke.
The node in this case is the DECnet node name of the system to which you
want to connect.

You can define one of two equivalence values for the ACMSDI_DECNET_
OBJECT_node logical name or environmental variable:

• object_number

Specifies a DECnet object number, in the range 128 to 255. For example:

> SET ACMSDI_DECNET_OBJECT_ACMTST 187

3–20 Developing HP ACMS Applications

• "task-name"

Specifies the DECnet object name, up to 5 characters. For example:

> SET ACMSDI_DECNET_OBJECT_ACMTST "SMITH"

Similarly, for transports other than DECnet, you define logical names or
environmental variables that specify the port to which you want to connect.
For TCP/IP, define ACMSDI_TCPIP_PORT_host to the same number that you
assigned to the TCPIP_PORT keyword in the gateway startup parameter file.
For example (for Tru64 UNIX):

setenv ACMSDI_TCPIP_PORT_host 1023

You can start multiple sessions from a single client program. However, to
run a task in more than one of those sessions at one time, you must have a
separate task debugger session started for each of the tasks you want to run
simultaneously.

3.6.3.9 Managing TP Desktop Connector Gateways Used for Debugging Purposes
All gateway capabilities, such as ACMSDI$GET_SUBMITTER_INFO, SHOW_
DESKTOP_USERS, and Oracle Trace support, are available with multiple
gateways.

To use ACMSDI$GET_SUBMITTER_INFO, you must define ACMSDI_
DECNET_OBJECT_node on the OpenVMS node on which you are issuing
the ACMSDI$GET_SUBMITTER_INFO service. For example:

$ DEFINE/GROUP ACMSDI_DECNET_OBJECT_0 187

Use 0 rather than the DECnet node name when defining this logical name.
The definition must be in a logical name table visible to the gateway whose
number or name you specify as the equivalence name. Only the information
from that gateway is returned.

3.6.3.10 Stopping a TP Desktop Connector Gateway for ACMS
The command procedure SYS$STARTUP:ACMSDI$SHUTDOWN takes an
optional parameter value to specify a particular gateway process to stop. Use
the process name as the parameter value. For example:

$ @SYS$STARTUP:ACMSDI$SHUTDOWN DBG1

If you do not specify the parameter when invoking
ACMSDI$SHUTDOWN.COM, ACMSDI$SERVER is stopped.

Developing HP ACMS Applications 3–21

3.6.3.11 Restrictions on Using Multiple Gateways
The following restrictions apply when using the multiple gateway feature:

• Multiple gateways are supported for use in debugging only. For production
systems, there must be only one gateway per OpenVMS system; that
gateway must run under the default ACMSDI$SERVER user name, using
the DECnet object 87 that HP has assigned for the gateway.

• TCP/IP has a guaranteed port number of decimal 1023.

Note

Check that the numbers you choose for DECnet object numbers and
TCP/IP port numbers are not taken by another application on your
system.

• The ACMSDI gateway must be running on the same node as the ACMS
task debugger process that will be invoked by it on a task call.

• Only a single submitter can use an ACMSDI gateway started with
ACMS$DEBUG_AGENT_TASK enabled. When the ACMSDI$SERVER
image is started with ACMS$DEBUG_AGENT_TASK, it is identified
as an agent to be used with an ACMS task debugger process. When the
gateway submits a task in an application whose translated name matches a
unique agent handle, that gateway become associated with that particular
ACMSDBG.EXE; the gateway is not accessible to any other task debugger
process.

• After the ACMSDBG debugging session has been terminated, the ACMSDI
gateway associated with that session cannot be used for other users. Nor
can it be used for another task debugger session started by the same
user. The ACMSDI gateway associated with the terminated ACMSDBG
debugging session must be stopped; a gateway using the same name can
then be restarted for another debugging session by the same or a different
user.

• An ACMSDBG debugging session is restricted to a single task group. If the
tasks called by a client program are normally in one application (.ADB file),
but that application contains several task groups (.TDB file), then the task
debugger session and TP Desktop Connector gateway must be stopped and
restarted for each of the task groups.

3–22 Developing HP ACMS Applications

3.6.4 Debugging Procedure Server Code
An online server debugging technique provided on the ACMS system lets
you place procedure servers running on line (that is, outside the ACMS Task
Debugger context and in the ACMS production context) into the OpenVMS
Debugger. However, this technique has no ACMS task-level debugging. The
OpenVMS Debugger is invoked when the procedure server actually starts. See
the ACMS documentation for information on online server debugging.

Developing HP ACMS Applications 3–23

Part II
Portable API Client Development

Part II describes procedures to develop desktop client programs using the
TP Desktop Connector portable API. General design and development issues
are discussed in Part I. Refer to HP TP Desktop Connector for ACMS
Client Services Reference Manual for reference information about each desktop
system.

4
Developing Portable API Client Programs

This chapter provides guidelines for developing desktop client programs for the
portable application programming interface (API). Examples in this chapter
illustrate the use of the blocking form of the TP Desktop Connector client
services.

For information on configuring network transports for any of the client
platforms, refer to the HP TP Desktop Connector for ACMS Gateway
Management Guide.

4.1 Guideline Summary
The following sections summarize the guidelines for developing desktop
programs using the portable API client services.

4.1.1 Managing Code on the Desktop Client System
To effectively manage the relationship between elements of the desktop
client program and the HP ACMS application for I/O tasks, create and use a
library of application-specific presentation procedures that equate one-to-one
to exchange steps. (This is the approach used in the sample application in
Section 4.4.)

4.1.2 Structuring Exchange Steps in the Presentation Code
If you are using I/O tasks in your solution, your desktop client program
includes the following components:

• Main program

Contains procedures for signing the user in to the ACMS system, handling
menus and task selections, and signing the user out of the ACMS system.

Developing Portable API Client Programs 4–1

• Presentation procedures

Contain presentation code for handling interactions with a user to display
and gather data during exchange step execution in an I/O task.

To handle the terminal I/O in an exchange step, a ACMS application typically
calls HP DECforms or TDMS services. However, when using the TP Desktop
Connector software, those calls are made to the desktop client program. Linked
into the desktop client program, customer-written routines provide the logic to
perform the exchange step processing on the desktop system.

TP Desktop software defines the interface for presentation procedures, but the
application developer writes the actual code for the presentation procedures.
Customer-written presentation procedures are called by TP Desktop
Connector client services to handle ACMS exchange steps.

The desktop client program can use any appropriate forms-processing or
presentation tool to interact with the user. Because procedures to handle
task selection can also gather data from the user for input to the task, the
distinction between the desktop client program and presentation procedures is
somewhat arbitrary. However, it is a significant distinction.

Presentation procedures run on behalf of exchange steps in the task on the
ACMS application node. The main part of the desktop client program requests
a task that the TP Desktop Connector Gateway for ACMS handles. When the
task executes an exchange step, the TP Desktop Connector Gateway for ACMS
calls the desktop client program using the same network link. The TP Desktop
Connector client services on the desktop system call the presentation procedure
in the desktop client program. The appropriate customer-written presentation
procedure in the desktop client program executes.

If the TP Desktop Connector software cannot invoke the presentation
procedure, it returns a fatal status to the desktop gateway. The fatal status is
returned to EXC, which decides whether to cancel the task based on the task
definition.

Figure 4–1 shows the execution flow to process presentation procedures.

4–2 Developing Portable API Client Programs

Figure 4–1 Processing of Presentation Procedures

TAY-1001A-AD

Legend:
Customer-Written

PresentationMain

TP Desktop

TP Desktop Connector Client Services

Connector
Gateway

Program Procedures

Code

4.1.3 Data Conversion
Because TP Desktop Connector software does not manipulate workspace
contents, it does not constrain what data types are used on the desktop system
or in the ACMS application. However, TP Desktop Connector software does
not automatically handle data conversion between the OpenVMS and desktop
systems. Windows data types are readily mapped to OpenVMS data types, and
OpenVMS to Windows.

ACMS applications are constrained in their workspace definitions by the data
types supported by CDD software. Table 4–1 shows Microsoft C and Microsoft
COBOL equivalents for some of the more commonly used CDD data types.

Table 4–1 Language and CDD Data-Type Equivalents

CDD Microsoft C Microsoft COBOL

DATE

NUMERIC SIZE n 9(n)

SIGNED BYTE signed char

SIGNED LONGWORD signed long S9(9) COMP-5

SIGNED LONGWORD SCALE -2 S9(7)V9(2) COMP-5

(continued on next page)

Developing Portable API Client Programs 4–3

Table 4–1 (Cont.) Language and CDD Data-Type Equivalents

CDD Microsoft C Microsoft COBOL

SIGNED QUADWORD S9(18) COMP-5

SIGNED QUADWORD SCALE -2 S9(16)V9(2) COMP-5

SIGNED WORD signed short S9(4) COMP-5

SIGNED WORD SCALE -2 S9(2)V9(2) COMP-5

TEXT SIZE n char[n] X(n)

UNSIGNED BYTE unsigned char

UNSIGNED LONGWORD unsigned long 9(9) COMP-5

UNSIGNED QUADWORD 9(18) COMP-5

UNSIGNED WORD unsigned short 9(4) COMP-5

Note that certain CDD data types have no direct equivalents for some
languages. For example, SIGNED WORD SCALE –2 has no direct equivalent
in the Microsoft C language. However, the CDD data type can be supported
indirectly; for example, SIGNED WORD SCALE –2 can be supported in
Microsoft C software by using a signed short and dividing it by 100 before it is
displayed to the user.

The DATE data type has no direct equivalent in desktop languages. You can
allocate the correct length storage for the DATE data type by using a quadword
equivalent in the desktop language. However, routines for converting the
DATE data type from binary to display format are not available on desktop
systems. Therefore, convert a date field to a text field for the workspace using
the 10-character international date format (YYYY MM DD) that HP DECforms
and Rdb software support.

Refer to Using CDD/Repository on VMS Systems and the reference manual
for the desktop language you are using for more information on data-type
compatibility.

4.1.4 Preventing Concurrent Use
TP Desktop Connector portable API client services are serialized (nonreen-
trant) portable API client services do not allow the concurrent execution of
two or more calls from a given submitter or on a given gateway connection.
TP Desktop Connector prevents concurrent calls by rejecting calls made
to the portable API client services while the API is actively executing
instructions from the calling submitter or on the target connection from a
different submitter. TP Desktop Connector does not reject calls if the API is

4–4 Developing Portable API Client Programs

waiting for a reply from the gateway, thereby, allowing nonblocking execution
to proceed.

To avoid serialization violations, do not issue TP Desktop Connector calls
from TP Desktop Connector presentation procedures, completion routines, or
any asynchronous routines (for example, ASTs or UNIX signals). The only
exception is the acmsdi_complete_pp call, which you must issue from the
presentation procedure in nonblocking environments.

Table 4–2 lists the status codes returned to the caller when TP Desktop
Connector rejects a call due to a serialization violation.

Table 4–2 Status Codes Returned Due to Serialization Violations

Status Call Type Currently Executing

ACMSDI_CALLACTV acmsdi_call_task

ACMSDI_CANCELACTV acmsdi_cancel

ACMSDI_DISPATCHACTV acmsdi_dispatch_message

ACMSDI_SIGNINACTV acmsdi_sign_in

ACMSDI_SIGNOUTACTV acmsdi_sign_out

4.2 Generating Workspaces for the Client
TP Desktop Connector provides the command file MAKE_RECORDS.COM,
which generates workspaces for the C and COBOL environments.

4.2.1 Generating Workspace Definitions
The MAKE_RECORDS.COM utility uses CDD to generate the record
definitions of ACMS workspaces needed by client applications. This utility
can generate record definitions of workspaces for:

• C client applications

• COBOL client applications

When you define workspaces in CDD, you can share their definitions between
the ACMS application and the client program. Using the CDD-generated
record definitions, the chances of mismatches between the ACMS application
workspace definitions and the client program workspace definitions are greatly
reduced.

Developing Portable API Client Programs 4–5

4.2.2 Using the MAKE_RECORDS.COM Utility
The MAKE_RECORDS utility is run on OpenVMS to generate either C files,
COBOL files, or both, containing the workspace definitions. These files can
then be transferred down to the desktop system and incorporated into the TP
Desktop Connector client program.

The MAKE_RECORDS utility presumes that you have stored your ACMS
workspace definitions in a specific CDD directory. For example, Figure 4–2
shows the CDD directory structure for the AVERTZ sample application.

Figure 4–2 CDD Directory Structure

Field Form Group Menu TaskWksp

TAY-0184-AD

avertz_cdd

avertz_dev

The definitions for each field of every AVERTZ workspace are defined in the
Field directory. All of the AVERTZ workspaces are then defined (using the field
definitions) in the Wksp directory.

To generate the C structure definitions for all the AVERTZ workspaces, invoke
the following command (on OpenVMS):

$ @MAKE_RECORDS avertz_cdd:avertz_dev.wksp C

where:

• avertz_cdd is a logical name pointing to the specific Oracle CDD dictionary.

• avertz_dev.wksp is the Oracle CDD directory containing the workspaces.

• C specifies the C syntax for the record definition.

For each workspace defined in the avertz_dev.wksp directory, a C header file is
generated in the current directory.

4–6 Developing Portable API Client Programs

To generate COBOL record definitions for all of the AVERTZ workspaces,
invoke the following command:

$ @MAKE_RECORDS avertz_cdd:avertz_dev.wksp COBOL

where:

• avertz_cdd is a logical name pointing to the specific Oracle CDD dictionary.

• avertz_dev.wksp is the Oracle CDD directory containing the workspaces.

• COBOL specifies the COBOL syntax for the record definition.

For each workspace defined in the avertz_dev.wksp directory, a COBOL file is
generated in the current directory.

4.2.3 Generating Individual Workspace Definitions
You can also generate a record definition for a specific workspace using MAKE_
H.COM or MAKE_COBOL.COM.

As an example, one of the AVERTZ workspaces defined in CDD is VR_SITES_
WKSP. This workspace’s record definition is located in the CDD directory,
avertz_cdd:avertz_dev.wksp.

To generate a C header file for VR_SITES_WKSP, specify the following:

$ DEFINE CDD$DEFAULT avertz_cdd:avertz_dev.wksp
$ @MAKE_H vr_sites_wksp

where:

• avertz_cdd is a logical name pointing to the specific CDD dictionary

• avertz_dev.wksp is the CDD directory containing the workspace record

• vr_sites_wksp is the record name

This definition generates VR_SITES_WKSP.H in the current directory.

To generate a COBOL file for VR_SITES_WKSP, specify the following:

$ DEFINE CDD$DEFAULT avertz_cdd:avertz_dev.wksp
$ @MAKE_CBL vr_sites_wksp

where:

• avertz_cdd is a logical name pointing to the specific CDD dictionary

• avertz_dev.wksp is the CDD directory containing the workspace record

• vr_sites_wksp is the record name

This definition generates VR_SITES_WKSP.CBL in the current directory.

Developing Portable API Client Programs 4–7

4.2.4 Coding Workspace Fields
If workspaces are manipulated by C in the desktop client program, some
conversions are necessary. These conversions are the responsibility of the
desktop client program.

4.2.4.1 Initializing Workspaces from ACMS
Character strings in workspaces coming from the TP Desktop Connector
Gateway for ACMS do not have a NULL terminator. If you use regular
C functions in the desktop client program to manipulate the strings in
the workspace, you need to add NULL terminators. See the examples in
the AVERTZ sample applications, particularly the convert_* functions in
wkspaces.c and m_wkspaces.c. (An alternative is to use functions such as
memset and memcpy that do not expect the NULL terminator.)

4.2.4.2 Initializing Workspaces to ACMS
Character strings in workspaces going back to the TP Desktop Connector
Gateway for ACMS must have NULL terminators removed and be padded with
spaces. The desktop client program should initialize these workspace fields to
their expected initial values, for example, zeros or spaces. Initialization can be
done using one of the following methods:

• Explicitly initialize each field in each workspace.

If the desktop client program is written in C, use the memset function. If
using COBOL, then the strings probably are not NULL terminated. If the
desktop client program is written in COBOL, use the MOVE statement.

• Keep a copy of each workspace containing fields preset to their initial
values.

At the beginning of the workspace processing, use the C memcpy function
or the COBOL MOVE statement to copy each field to its corresponding
workspace.

Avoid using the C strcpy function to initialize workspaces or set values of fields
in workspaces. If you do use strcpy, make sure that the NULL terminator
is replaced with a blank character before the workspace is sent back. See
examples in the AVERTZ sample (the init_* functions in wkspaces.c or m_
wkspaces.c). In most cases, the ACMS application is not expecting NULL-
terminated strings. Use the C memset and memcpy functions to set the values
of workspaces.

4–8 Developing Portable API Client Programs

4.2.5 Using Data Compression with the Portable API
TP Desktop Connector provides the call option, ACMSDI_CALL_OPT_
COMPRESS_WKSPS, to activate data compression for task calls. This call
option specifies whether or not to apply data compression to workspaces. The
following sections describe how to activate data compression. In addition, TP
Desktop Connector also provides a Data Compression Monitor that allows you
to gather statistics on the effectiveness of the compression. See Section 4.2.6
for a description of this facility.

4.2.5.1 Activating Data Compression
The ACMSDI.H include file contains the ACMSDI_CALL_OPTION_TYPE
enumeration. The call option type is included in this enumeration to support
the activation of data compression for a task call. The symbol for the call
option is ACMSDI_CALL_OPT_COMPRESS_WKSPS. Example 4–1 shows
the ACMSDI_CALL_OPTION_TYPE enumeration as it appears in ACMSDI.H:

Example 4–1 Compression Call Option Type

/*
** Call task options
*/
typedef enum {

ACMSDI_CALL_OPT_END_LIST = 0, /* end the options list */
ACMSDI_CALL_OPT_OPTIMIZE_WKSPS, /* optimize network traffic on */

/* passed workspaces */
ACMSDI_CALL_OPT_ENABLE, /* Pointer to enable function */
ACMSDI_CALL_OPT_DISABLE, /* Pointer to disable function */
ACMSDI_CALL_OPT_SEND, /* Pointer to send function */
ACMSDI_CALL_OPT_RECEIVE, /* Pointer to receive function */
ACMSDI_CALL_OPT_TRANSCEIVE, /* Pointer to transceive function */
ACMSDI_CALL_OPT_REQUEST, /* Pointer to request function */
ACMSDI_CALL_OPT_CHECK_VERSION, /* Version checking routine */
ACMSDI_CALL_OPT_PASS_TID, /* TID of distributed transaction */
ACMSDI_CALL_OPT_COMPRESS_WKSPS /* activate workspace compression */

} ACMSDI_CALL_OPTION_TYPE;

Prior to issuing acmsdi_call_task, the application program activates data
compression by declaring an ACMSDI_CALL_OPTION array and initializing
one of the array’s elements with the call option type as shown in the following
code example:

Developing Portable API Client Programs 4–9

ACMSDI_CALL_OPTION call_option[2]; /* call option array */

call_option[0].option = ACMSDI_CALL_OPT_COMPRESS_WKSPS;
call_option[1].option = ACMSDI_CALL_OPT_END_LIST;

The ACMSDI_CALL_OPTION array is passed as an argument on acmsdi_call_
task.

4.2.5.2 Specifying Data Compression for Workspaces
If you do not use optimized (unidirectional) workspaces for the task for which
compression is active, data compression is attempted for all workspaces
associated with the task call. In this case, the ACMSDI_WORSKPACE
structure is used to describe each workspace.

When data compression is activated for a call using optimized workspaces, you
can specify compression for individual workspaces with the ACMSDI_INIT_
WORKSPACE_OPT macro. This macro initializes an ACMSDI_WORKSPACE_
OPT structure. When data compression is activated, use one ACMSDI_
WORKSPACE_OPT structure to describe each workspace associated with
the task call; do not use the ACMSDI_WORKSPACE structure if you want to
specify compression for individual workspaces.

The following example shows the ACMSDI_WORKSPACE_OPT structure as
defined in ACMSDI.H:

typedef struct {
unsigned int length;
ACMSDI_ACCESS_TYPE access;
void *data;

} ACMSDI_WORKSPACE_OPT;

The data type ACMSDI_ACCESS_TYPE is defined as a single byte. ACMSDI_
ACCESS_TYPE can have one of six values as defined in ACMSDI.H:

#define ACMSDI_ACCESS_READ ’1’ /* read-only access */
#define ACMSDI_ACCESS_WRITE ’2’ /* write-only access */
#define ACMSDI_ACCESS_MODIFY ’3’ /* modify (read and write) */
#define ACMSDI_ACCESS_READ_COMPRESS ’4’ /* read-only access with compression*/
#define ACMSDI_ACCESS_WRITE_COMPRESS ’5’ /* write-only access with compression*/
#define ACMSDI_ACCESS_MODIFY_COMPRESS ’6’ /*modify (read and write) with compression*/

.

.

.
typedef char ACMSDI_ACCESS_TYPE;

Access types 4, 5, and 6 support data compression.

4–10 Developing Portable API Client Programs

These values specify that TP Desktop Connector client services routines and/or
ACMS are to attempt to compress the workspace. Table 4–3 illustrates the
values which can apply to data elements whose type is ACMSDI_ACCESS_
TYPE:

Table 4–3 Portable API Access Types

Value Specification Description

1 ACMSDI_ACCESS_READ read-only access

2 ACMSDI_ACCESS_WRITE write-only access

3 ACMSDI_ACCESS_MODIFY modify access

4 ACMSDI_ACCESS_READ_COMPRESS read-only/compress

5 ACMSDI_ACCESS_WRITE_COMPRESS write-only/compress

6 ACMSDI_ACCESS_MODIFY_COMPRESS modify/compress

Using the ACMSDI_INIT_WORKSPACE_OPT macro, you initialize the
ACMSDI_WORKSPACE_OPT structure for each workspace before issuing
acmsdi_call_task. Then pass the ACMSDI_WORKSPACE_OPT array as an
argument on acmsdi_call_task.

Example 4–2 illustrates a task call passing four workspaces. The access types
for the workspaces are as follows:

• control_wksp — read-only

• empl_updates — read-only & compressed

• empl_record — write-only & compressed

• dept_record — modifiable & compressed

Developing Portable API Client Programs 4–11

Example 4–2 Portable API Task Call Passing Four Workspaces

struct {
char ctrl_key[5];
char error_msg[80];

} control_wksp;

struct {
int employee_number;
char address_line_1[40];
char address_line_2[40];
char address_line_3[40];
int insurance_code;

} empl_updates;

struct {
int employee_number;
int dept_number;
char first_name[20];
char last_name[25];
char address_line_1[40];
char address_line_2[40];
char address_line_3[40];
int number_dependents;
int insurance_code;

} empl_record;

struct {
int dept_number;
char dept_name[40];
char manager[25];
int number_employees;

} dept_record;

ACMSDI_CALL_OPTION call_option[3]; /* call option array */
ACMSDI_WORKSPACE_OPT wksp_array[4]; /* workspace array */

call_option[0].option = ACMSDI_CALL_OPT_OPTIMIZE_WKSPS;
call_option[1].option = ACMSDI_CALL_OPT_COMPRESS_WKSPS;
call_option[2].option = ACMSDI_CALL_OPT_END_LIST;
ACMSDI_INIT_WORKSPACE_OPT (wksp_array[0],

control_wksp,
ACMSDI_ACCESS_READ);

ACMSDI_INIT_WORKSPACE_OPT (wksp_array[1],
empl_updates,
ACMSDI_ACCESS_READ_COMPRESS);

(continued on next page)

4–12 Developing Portable API Client Programs

Example 4–2 (Cont.) Portable API Task Call Passing Four Workspaces
ACMSDI_INIT_WORKSPACE_OPT (wksp_array[2],

empl_record,
ACMSDI_ACCESS_WRITE_COMPRESS);

ACMSDI_INIT_WORKSPACE_OPT (wksp_array[3],
dept_record,
ACMSDI_ACCESS_MODIFY_COMPRESS);

acmsdi_call_task (&sub_id,
&call_option, /* call option array */
"MYTASK",
"MYAPPL",
"",
stat_msg,
4, /* number of workspaces */
&wksp_array, /* workspace array */
&call_id,
0,0,0);

4.2.6 Data Compression Monitor
The Data Compression Monitor provides you with statistics about the
effectiveness of TP Desktop Connector data compression. When the monitor
is activated, information on each task call and each exchange step callback is
gathered in a monitor log file from which you can generate a variety of reports.

You can request reports with summaries for any combination of the following
entities:

• Submitter node

• User

• ACMS application

• ACMS task

The following information is captured for each task call and for each exchange
step callback:

• Date and time that the call or the callback occurred

• Submitting node identifier

• Signed-in user identifier

• ACMS application name

• ACMS task name

• Call type (task call or exchange step callback type)

Developing Portable API Client Programs 4–13

• Number of workspaces

• For each workspace:

— Access code (READ, WRITE or MODIFY)

— Compression code (Compressed, Uncompressable, or No Attempt to
Compress)

— Uncompressed length

— Compressed length

4.2.6.1 Activating and Deactivating Compression Monitoring
To activate compression monitoring, on the node where the TP Desktop
Connector Gateway for ACMS is running, define the following logical name:

$ DEFINE/SYSTEM ACMSDI$COMPRESSION_STATS Y

Note

You do not need to bring down the TP Desktop Connector Gateway for
ACMS before defining this logical name.

When you define the logical ACMSDI$COMPRESSION_STATS with a value
of Y or y, compression data is written to the compression monitor log file,
ACMSDI$COMPRESSION.LOG. This file is written to the SYS$ERRORLOG:
directory. As each ACMS task call is initiated on the server node, the gateway
checks to see if the ACMSDI$COMPRESSION_STATS logical is defined. If the
logical is defined and if its value is Y or y, data is gathered for the task call
and for any exchange step callbacks that may be associated with the execution
of the task.

To deactivate compression monitoring, redefine the logical name,
ACMSDI$COMPRESSION_STATS, with a value of N or n as follows:

$ DEFINE/SYSTEM ACMSDI$COMPRESSION_STATS N

Or, you can deassign the logical name as follows:

$ DEASSIGN/SYSTEM ACMSDI$COMPRESSION_STATS

Either method causes the gateway to stop gathering compression data for tasks
as they are initiated. However, compression data continues to be gathered
for any task that is executing at the time of deactivation until that task has
finished executing.

4–14 Developing Portable API Client Programs

4.2.6.2 Creating Compression Activity Reports
To create compression activity reports, execute the Data Compression Monitor
(DCM) activity reporting program by entering the following at the DCL prompt:

$ MCR ACMSDI$DCM

Note

DCM writes the report to the SYS$OUTPUT device.

DCM responds with the following prompt:

DCM>

You can select reports for all activities, or for an activity that occurred within a
given timeframe. In addition, you can select reports for any combination of the
following:

• Submitter node

• User ID

• ACMS application

• ACMS task

For example, to request a report for all activities from node "MYPC", running
ACMS task "MYACMSTASK", from 15-SEP-2001 at 12 noon through 16-SEP-
2001 at 11:45 AM, enter the following:

DCM> LIST /SINCE=15-SEP-2001:12:00 /BEFORE=16-SEP-2001:11:45 /NODE=MYPC -
/TASK=MYACMSTASK

This report shows details of all task calls for the selected task from the selected
node in the given timeframe, sorted chronologically, with details for each
workspace. The report also contains a summary showing the total number of
bytes in the uncompressed workspaces, their compressed sizes, and the number
of bytes by which the workspace sizes were reduced.

If you need only the summary information, you can add the /SUMMARY
qualifier to the request. You can also direct reports to a file (as opposed to
being displayed on your screen) with the /OUTPUT qualifier.

See the HP TP Desktop Connector for ACMS Client Services Reference
Manual for a description of the LIST command.

Developing Portable API Client Programs 4–15

4.2.6.3 Creating Customized Reports
DCM provides only one report type. However, by using the SELECT command,
you can select combinations of records from the compression monitor log file
and write them to a different file. You can then create a program that sorts,
summarizes, and displays these records in any way you require. For example,
you may want a report sorted by task name, instead of chronologically as the
standard reports provide, or a report that contains only tasks associated with
a given ACMS application. The following command selects records associated
with the ACMS application, MYAPP, and writes the records to a file named
MYAPP.DAT:

$ ACMSDI$DCM
DCM> SELECT MYAPP.DAT /APPLICATION=MYAPP

You can sort the file MYAPP.DAT, ordering it by (for example) ACMS Task,
Node Name, and User ID. The sorted output can then be submitted to a
user-written reporting program.

The name of the Data Compression Monitor log file is:

SYS$ERRORLOG:ACMSDI$COMPRESSION.LOG

Example 4–3 shows the layout of the records as they appear in the monitor log
file and in the files created using the SELECT command.

The record consists of a fixed section of 109 bytes followed by one section for
each workspace of 12 bytes. All fields are of data type char.

Example 4–3 Record Layout

The record format is:

Field name Offset Length Description
--------------- ------ ------ -------------------------------------
Date/time stamp 0 24 Date and time record was written to

the log in the following format:
www mmm dd hh:mm:ss yyyy
www = day of week
mmm = month
dd = day of month
hh = hour
mm = minute
ss = second
yyyy = year
Example:

Fri Sep 18 13:33:16 2001

(continued on next page)

4–16 Developing Portable API Client Programs

Example 4–3 (Cont.) Record Layout

Node 24 20 Node identification. For TCP/IP this
is the IP address.

User Name 44 20 Identifier of the signed-in user.

Application Name 64 20 ACMS application name.

Task Name 84 20 ACMS task name.

Call Type 104 1 Code which identifies the type of
call:

C = Task Call
S = Send Exchange Step
R = Receive Exchange Step
T = Transceive Exchange Step
D = TDMS Exchange Step

Direction Code 105 1 Direction in which the message was
sent:

D = Message sent to desktop device
H = Message sent to OpenVMS host

Workspace Count 106 3 Number of workspaces

Following the workspace count there is one 12-byte section for each workspace,
starting at offset 109, in the following format:

Uncompressed Length 0 5 Length of workspace in uncompressed
state.

Compressed Length 5 5 Length of workspace in compressed
state.

Access Code 10 1 One of the following:
R = Read Access
W = Write Access
M = Modify Access

Compression Code 11 1 One of the following:
C = Workspace was compressed
U = Workspace was uncompressable
N = No attempt was made to compress

this workspace

Note

To keep the record length small, only the first 20 bytes of the User ID,
Application Name and Task Name fields are captured. The fields are
left-justified and, if necessary, padded with blanks on the right.

Developing Portable API Client Programs 4–17

See the HP TP Desktop Connector for ACMS Client Services Reference
Manual for the Data Compression Monitor commands.

4.2.7 Choosing the Network Software
The client services support DECnet and TCP/IP as transports (OpenVMS
only). The network you use has no effect on how you write the client program.
Specify the transport by linking the appropriate modules into your client
program. See Section 4.8 for more information.

4.3 Writing Version-Checking Routines
TP Desktop Connector software provides entry points to standard action
routines on the desktop system and in the gateway to allow applications to
check for mismatched versions of software on the desktop system and ACMS
systems.

4.3.1 Version-Checking Processing
The following action routines for version checking are defined in the TP
Desktop Connector environment:

• ACMSDI_GET_VERSION on the gateway system (OpenVMS)

The gateway calls this routine on the OpenVMS system whenever it
receives an ENABLE request from the Execution Controller (EXC). The
action routine can return a version string that is then passed to the
desktop client program, allowing a version comparison at the desktop
system.

• acmsdi_check_version on the client system

The TP Desktop Connector client services call this routine whenever they
receive an ENABLE request from the gateway. The action routine can
check the version string passed from the ACMSDI_GET_VERSION routine
on the submitter node and notify the desktop user of any inconsistency.

You can use ACMSDI_GET_VERSION and acmsdi_check_version for example,
to compare the creation date of the desktop client program to the creation
date of the ACMS application at run time. This helps catch errors related to
mismatch of files on the desktop and the OpenVMS systems. If the desktop
files are outdated, desktop users must obtain the correct files on their own. No
special utility is provided.

To use the version-checking capability, you must supply complementary
versions of the action routines on both the OpenVMS submitter node and the
desktop system.

4–18 Developing Portable API Client Programs

The action routines are customer-written. Figure 4–3 shows the processing
that occurs during version checking.

Figure 4–3 Version-Checking Processing

Legend:
Customer-Written

acmsdi_

Desktop Client Program
TP Desktop Connector

ACMS System

1
2

9

acmsdi_enable

Client Main

ACMSDI_
6

3
4

7
510b10a

TAY-0291A-AD

8

Routines

Routine

check_version
Routine

Code

GET_VERSION

Gateway

TP
Desktop
Connector
Client
Services

Figure 4–3 shows the following processing steps related to version checking:

1 The desktop client program requests version checking when it signs in to
the ACMS system (see Section 4.3.2).

2 The desktop client program calls a task that uses FORM I/O.

3 The gateway passes the task call to the ACMS system.

4 ACMS software tells the gateway that the desktop client program has
never accessed the specified form file.

5 The gateway searches for the ACMSDI_GET_VERSION image, calls the
routine, and passes the form file specification (see Section 3.4).

6 The ACMSDI_GET_VERSION routine returns a string in a customer-
determined format.

Developing Portable API Client Programs 4–19

7 The gateway sends a combination acmsdi_enable and acmsdi_check_version
message to the TP Desktop Connector client services on the TP Desktop
Connector system, and includes the form file specification and the version
string.

8 The TP Desktop Connector client services call the acmsdi_check_version
routine in the desktop client program and pass the form file specification
and the version string.

9 Depending on whether the version is acceptable, the acmsdi_check_version
routine returns the FORMS_NORMAL status or any even-valued failure
constant defined in the FORMS.H file.

1 0 The TP Desktop Connector client services can do the following:

a. If FORMS_NORMAL is returned, the TP Desktop Connector client
services call the customer-written presentation procedure acmsdi_
enable and the processing continues.

b. If a failure status is returned, the TP Desktop Connector client services
tell the gateway that the customer-written version check failed.

This failure appears in the audit trail log (ATL) as an error during the
exchange step in the task processing.

4.3.2 Requesting Version Checking
Version checking is requested during a sign-in. Specify the ACMSDI_OPT_
CHECK_VERSION option on the acmsdi_sign_in call as the example in the HP
TP Desktop Connector for ACMS Client Services Reference Manual shows.
If version checking is enabled on the OpenVMS system that runs the gateway,
the action routines are called whenever an ENABLE request is received from
the application (see Section 4.3.1).

4.4 AVERTZ Sample Desktop Client Program
The AVERTZ sample desktop client program, called CLIENT.EXE, is written in
Microsoft C and Microsoft COBOL. Of the numerous third-party presentation
tools available, the sample uses only the forms management capabilities
available in Microsoft COBOL. This is largely to ensure that the sample is as
easily and widely understood as possible. The generic desktop client program
routines for the sample described in Section 4.4.1 are in the C language rather
than COBOL, because the TP Desktop Connector arguments are easier to
manage in C.

4–20 Developing Portable API Client Programs

Because portable tools can be used, much of the development work for the
sample can be done on an OpenVMS system and ported to the desktop system
for compilation, linking, and testing. This enables use of a single development
environment for both the desktop client program and ACMS parts of the
AVERTZ sample application, including using HP DECset tools.

Some presentation tools are not portable. For those portions of nonportable
code, development must be done on the supporting platforms.

Samples are available from HP Services for other presentation tools. Any
native presentation tool callable from COBOL or C that uses a procedural
rather than an event-driven model is usable with TP Desktop Connector
blocking client services.

4.4.1 AVERTZ Components
The TP Desktop Connector components of the CLIENT.EXE sample desktop
client program replace the HP DECforms forms in the ACMS sample
application with routines written in Microsoft COBOL and Microsoft C.

These routines in the desktop client program fall into the following categories:

• Generic client routines

Call the specific TP Desktop Connector client services, for example,
acmsdi_sign_in.

• Application-specific client routines

Interact with the user to get information for signing in to the ACMS
system, selecting tasks, signing out of the ACMS system and other
processing.

• Generic presentation procedures

Gain control during exchange steps, parse workspaces, and call application-
specific presentation procedures.

• Application-specific presentation procedures

Invoke the routines specific to each exchange step. They interact with the
user to display and solicit information related to a specific exchange step.

• TP Desktop Connector client services

Transmit and receive TP Desktop Connector messages (which are hidden
from application-specific routines).

Figure 4–4 shows the categories of routines and their interaction in the sample
desktop client program.

Developing Portable API Client Programs 4–21

The TP Desktop Connector generic presentation procedures are analogous to
the HP DECforms and TDMS services, for example, FORM$TRANSCEIVE and
TSS$REQUEST.

Figure 4–4 TP Desktop Connector Sample Components

Desktop System

Desktop Client Program

TAY-1002A-AD
Network Link

Legend:
Customer-Written

Generic

Application-Specific

Generic Client

Application-Specific

TP Desktop Connector Client Services

TP Desktop

Client Services

Routines

Procedures
Presentation

Procedures
Presentation

Connector
Gateway

Code

4.4.2 AVERTZ Component Processing Flow
The user invokes the main routines in the source file CLIENT.C when starting
the sample desktop client program. Figure 4–5 shows the processing flow of
the desktop client program routines, including both the generic client routines
written in C and the application-specific routines written in COBOL.

4–22 Developing Portable API Client Programs

Figure 4–5 Processing Flow for Nonblocking Sample Desktop Client Program

Generic Client TP Desktop Connector

Legend:
Customer-Written

call client_init

call client _get_task

call acmsdi_sign_in

TAY-0293A-AD

call acmsdi_call_task

call client _terminate

call acmsdi_sign_out

Application-Specific

call LOGIN

call MENU

call LOGOUT

ACMS

ACMS

ACMS

User

User

User

3

2
1

6

5

4

Client Routines Routines Client Services

Code

A main routine sets up the structures needed for calling TP Desktop Connector
software. The routine then calls the generic routines client_init, client_get_
task, and client_terminate, each of which in turn invokes an application-
specific COBOL program to interact with the user, as follows:

1 The generic routine client_init calls the program LOGIN.CBL to get ACMS
sign-in information from the user.

2 The main routine calls the TP Desktop Connector client service acmsdi_
sign_in to sign the user in to the ACMS system.

3 The main routine calls the generic routine client_get_task.

When the sign-in completes, the user can select ACMS tasks. The generic
routine client_get_task calls the application-specific COBOL program
MENU to allow the user to select tasks from the reservation form.

Developing Portable API Client Programs 4–23

4 The main routine calls the TP Desktop Connector client service acmsdi_
call_task to start the ACMS task that the user selected.

When a task completes, the application returns to the MENU routine and
remains in this loop until the user selects EXIT.

5 The generic routine client_terminate is called when the user selects the
option to sign out of the ACMS system.

The generic routine client_terminate calls the application-specific COBOL
program LOGOFF.

6 The main routine calls the TP Desktop Connector client service acmsdi_
sign_out to sign the user out of the ACMS system and log the user out of
the OpenVMS system. The user is signed out of the ACMS system.

The processing model for the sample TP Desktop Connector application
assumes that the user remains signed-in for extended periods of time.

4.4.3 Reusing the CLIENT.EXE Routines
If the processing model described for the sample desktop client program is
similar to the one in your solution, use the C language routines without change
for the particular solution you are building. Simply change the LOGIN.CBL,
MENU.CBL, and LOGOFF.CBL routines to use the chosen presentation tool
and modify the user interface presentation style to suit your users.

To increase the likelihood that you can use some of the sample code with
minimal changes, the CLIENT.EXE desktop client program routines are
organized into two levels: generic and application-specific. Figure 4–6 shows
the relationships among these procedures in handling exchange steps within
the AVERTZ sample.

Reserve is the only task implemented in the TP Desktop Connector version
of AVERTZ. The AVERTZ sample reserve task uses only TRANSCEIVE
statements in its task definition. For this reason, the only generic presentation
procedures that are invoked on the desktop are acmsdi_enable, acmsdi_disable,
and acmsdi_transceive. (Although the C routines do check application-specific
characteristics of the records and record identifications, they are classed as
generic.)

For the AVERTZ sample, the acmsdi_enable procedure simply returns a success
status to the TP Desktop Connector code that invokes it. This sample requires
no enable-related work.

4–24 Developing Portable API Client Programs

Figure 4–6 Sample Presentation Procedures

TAY-1003A-AD

 acmsdi_transceive()

Legend:
Customer-Written

Main

TP Desktop Connector

Generic

TP Desktop Connector

Program

Client Services

Gateway

Code

Procedures
Presentation

Application-
Specific
Presentation
Procedures

SELSITE

GETSITE

SELCUST

SHWCUST

SHWRESV

acmsdi_call_task()

The generic acmsdi_transceive presentation procedure in the TRANS.C source
file looks at the record identifiers of the incoming message to determine what
application-specific presentation procedure to call. The generic presentation
procedure checks the validity of the record arguments and calls the appropriate
application-specific presentation procedure. The application-specific procedures
correspond directly to the exchange steps in the AVERTZ reserve task
definition shown in Example 4–4.

Developing Portable API Client Programs 4–25

Example 4–4 AVERTZ Reserve Task Exchange Steps

REPLACE TASK AVERTZ_CDD_TASK:VR_RESERVE_TASK /LIST
.
.
.

EXCHANGE WORK IS
IF (ctrl_key = "MLTSI") THEN

TRANSCEIVE RECORD list_1, list_2 1
SENDING vr_control_wksp, vr_si_trans_array_wksp
RECEIVING vr_sites_wksp,

vr_reservations_wksp,
vr_customers_wksp,
vr_control_wksp

WITH SEND CONTROL vr_sendctrl_wksp;
ELSE

TRANSCEIVE RECORD list_3, list_2 2
SENDING vr_control_wksp, vr_sites_wksp
RECEIVING vr_sites_wksp,

vr_reservations_wksp,
vr_customers_wksp,
vr_control_wksp

WITH SEND CONTROL vr_sendctrl_wksp;
END IF;

ACTION
IF (ctrl_key = "QUIT") THEN

EXIT TASK;
END IF;
.
.
.

display_cust_info:
EXCHANGE WORK IS

!+
! Multiple customers found, use array to scroll and select one
!-
IF (ctrl_key = "MLTCU") THEN

TRANSCEIVE RECORD list_5, list_6 3
SENDING vr_control_wksp, vr_cu_trans_array_wksp,

vr_rental_classes_wksp, vr_sites_wksp
RECEIVING vr_control_wksp, vr_reservations_wksp,

vr_customers_wksp SHADOW IS vr_customers_shadow_wksp,
vr_trans_wksp SHADOW IS vr_trans_shadow_wksp;

(continued on next page)

4–26 Developing Portable API Client Programs

Example 4–4 (Cont.) AVERTZ Reserve Task Exchange Steps
ELSE
!+
! One or no customer found, send unique customer record
!-

TRANSCEIVE RECORD list_7, list_6 4
SENDING vr_control_wksp, vr_customers_wksp, vr_trans_wksp,

vr_rental_classes_wksp, vr_sites_wksp
RECEIVING vr_control_wksp, vr_reservations_wksp,

vr_customers_wksp SHADOW IS vr_customers_shadow_wksp,
vr_trans_wksp SHADOW IS vr_trans_shadow_wksp;

END IF;

ACTION
CONTROL FIELD ctrl_key

"QUIT" : EXIT TASK;
"CHNGE": MOVE " " TO ctrl_key;

GOTO STEP determine_site;
END CONTROL;

.

.

.
display_resv_no:

EXCHANGE
!+
! Display reservation # and prompt to see if want to check
! car out now.
!-
TRANSCEIVE RECORD list_8, list_9 5
SENDING vr_control_wksp, vr_reservations_wksp
RECEIVING vr_control_wksp,vr_reservations_wksp,

vr_customers_wksp;

ACTION
CONTROL FIELD ctrl_key

"QUIT" : EXIT TASK;
END CONTROL;

.

.

.
END BLOCK WORK;
END DEFINITION;

Callouts 1 through 5 indicate the exchange steps in the task definition.

Dividing the presentation procedures into generic and application-specific
routines isolates in relatively independent modules the presentation code
that is unique to the application. In many cases, you can retain this overall
structure for your application, writing new application-specific procedures

Developing Portable API Client Programs 4–27

equivalent to GETSITE.CBL and SELCUST.CBL. Modify TRANS.C, SEND.C,
RECV.C, ENABLE.C, DISABLE.C, and REQUEST.C to add each application-
specific presentation procedure as an element of the case statement in the
generic presentation procedure that calls it. For an application whose task
definitions use only TRANSCEIVE in its exchange steps, the only generic
procedure you must modify is the acmsdi_transceive procedure in TRANS.C.

See the HP TP Desktop Connector for ACMS Installation Guide for the
names of the AVERTZ source directories and a list of their contents.

4.5 Writing Procedures Using Blocking TP Desktop Client
Services

How you handle the user interface for signing in to the ACMS system,
traversing menus, selecting tasks, and signing out of ACMS is constrained
to some degree by the information you must include in the acmsdi_sign_in,
acmsdi_call_task, and acmsdi_sign_out services. For example, the sign-in
procedure must provide a valid OpenVMS user name and password on the
acmsdi_sign_in service. To accomplish this, you can follow the AVERTZ sample
application provided with TP Desktop Connector software.

4.5.1 Calling the Sign-In Service
In the CLIENT sample desktop client program, the mainline presentation code
calls another routine, client_init, that actually gets the required information
from the user. Alternatively, that presentation code can be included in the
main part of the desktop client program.

The desktop client program must call the acmsdi_sign_in service with
the correct parameters and must handle any error conditions returned.
Example 4–5 shows the call in CLIENT.C to a client_init procedure and to
acmsdi_sign_in.

Example 4–5 Signing In the User

main

char username[MAX_USERNAME + 1] = "",
password[MAX_PASSWORD + 1] = "",
node[MAX_NODENAME + 1] = "",

.

.

.

(continued on next page)

4–28 Developing Portable API Client Programs

Example 4–5 (Cont.) Signing In the User

** Get signin information from user
*/
client_init(node, 1

username,
password);

/*
** Sign into remote ACMS node
*/
status = acmsdi_sign_in(node, 2

username,
password,
0,
&submitter_id);

/*
** Overwrite password for security
*/
for (i = 0; i < MAX_PASSWORD; i++)

password[i] = EOS;

if (status != ACMSDI_NORMAL)
{

fprintf(stderr,"Error signing user %s into node %s.", username, node);
exit;

}

The important points of Example 4–5 are as follows:

1 The call to client_init invokes a sign-in procedure that prompts the user for
the following information:

• Node name identifying the ACMS system to connect to

• User name (the same name for both OpenVMS and ACMS) under
which to log in to that node

• Password for that user name

2 The call to acmsdi_sign_in passes the information obtained from the user
to the ACMS system.

Example 4–6 shows the COBOL code in the LOGON.CBL program for
obtaining the sign-in information from the application user on the desktop
system.

Developing Portable API Client Programs 4–29

Example 4–6 Login Program

PROCEDURE DIVISION USING
NODE-NAME,
USERNAME,
PASSWORD.

000-MAINLINE.
.
.
.

*
* Display login screen
*

MOVE SPACES TO USERNAME, PASSWORD, NODE-NAME.
DISPLAY COLOR-SCREEN.
DISPLAY LOGIN-PANEL.

*
* Get login information from user
*

MOVE "N" TO VALID-DATA-FLAG.
MOVE SPACES TO ERROR-MSG.
MOVE ZEROES TO CURSOR-POSITION.
PERFORM UNTIL VALID-DATA

MOVE "Y" TO VALID-DATA-FLAG
IF (ERROR-MSG NOT EQUAL SPACES)
THEN

DISPLAY ERROR-MSG AT LINE 25 COLUMN 1 WITH BELL
MOVE SPACES TO ERROR-MSG

ELSE
DISPLAY ERROR-MSG AT LINE 25 COLUMN 1

END-IF
ACCEPT LOGIN-PANEL
MOVE ZEROES TO CURSOR-POSITION
IF (USERNAME EQUAL SPACES)
THEN

MOVE "N" TO VALID-DATA-FLAG
MOVE "Username is required" TO ERROR-MSG
MOVE 9 TO CURSOR-LINE
MOVE 35 TO CURSOR-COLUMN

ELSE
IF (PASSWORD EQUAL SPACES)
THEN

MOVE "N" TO VALID-DATA-FLAG
MOVE "Password is required" TO ERROR-MSG
MOVE 10 TO CURSOR-LINE
MOVE 35 TO CURSOR-COLUMN

ELSE

(continued on next page)

4–30 Developing Portable API Client Programs

Example 4–6 (Cont.) Login Program

IF (NODE-NAME EQUAL SPACES)
THEN

MOVE "N" TO VALID-DATA-FLAG
MOVE "Login node is required" TO ERROR-MSG
MOVE 12 TO CURSOR-LINE
MOVE 35 TO CURSOR-COLUMN

END-IF
END-PERFORM.

The program in Example 4–6 uses the Microsoft COBOL presentation
capabilities. You can use other presentation tools that allow developing a
more sophisticated user interface.

Some data validation is performed in the login program shown in Example 4–6.
The presentation procedure can ensure the validity of the data before sending
it to TP Desktop Connector Gateway for ACMS software. Because less invalid
data is communicated, the network traffic between the desktop system and the
ACMS system is minimized.

4.5.2 Enabling Password Expiration Checking
Password expiration checking allows the client application to determine if
the end-user’s password is expiring soon on the gateway node. If password
expiration checking is enabled on both the gateway and on the client’s call to
the acmsdi_sign_in service, TP Desktop Connector client services indicate how
many hours are left until the user’s password expires on the gateway node.

To use the password expiration checking option:

1. Enable the password expiration checking in the gateway:

a. Set the PASSWORD_EXP value in the gateway’s parameters file.

b. Determine how many days before the password expires that you want
the desktop gateway to start sending password expiration warning
messages to TP Desktop Connector clients.

c. Set the value of PASSWORD_EXP with an integer value representing
that number of days.

d. Restart the gateway in order for the values in the gateway’s parameters
file to take effect.

For more information on managing the gateway, see the HP TP Desktop
Connector for ACMS Gateway Management Guide.

Developing Portable API Client Programs 4–31

2. Enable the password expiration checking option in the client program’s call
to acmsdi_sign_in:

a. Declare a buffer (in the client application) that Desktop services can
use to write the number of hours until password expiration.

b. Declare a sign-in options array:

long hours_until_password_expiration;
ACMSDI_OPTION options[2];

c. In the sign-in options array, specify the ACMSDI_OPT_PWD_
EXPIRING option and the address of the variable that will contain
the hours left until password expiration:

options[0].option = ACMSDI_OPT_PWD_EXPIRING;
options[0].pwd_expiring_hrs.address = &hours_until_password_expiration;
options[1].option = ACMSDI_OPT_END_LIST;

3. Check for an ACMSDI_PWDEXPIRING return status after the call to
acmsdi_sign_in(). Applications using nonblocking services should check the
status when the acmsdi_sign_in completion routine is called:

if (status == ACMSDI_PWDEXPRING)
{
printf("Warning ! Your Password Will Be Expiring in %d Hours!",

hours_until_password_expiration);

}

If the acmsdi_sign_in routine returns a status of ACMSDI_PWDEXPIRED,
then the user’s password has already expired.

4.5.3 Establishing an Exit Handler
If the desktop client program uses the standard C routines atexit or onexit to
establish an exit handler, and the exit handler calls acmsdi_sign_out, make the
call to atexit or onexit after the first call to acmsdi_sign_in. If this precaution
is not taken, the exit handling built into TP Desktop Connector occurs before
the desktop client program exit handler call to acmsdi_sign_out, the submitter
or submitters are already signed out, and the desktop client program gets error
statuses that can be ignored.

4.5.4 Calling Tasks and Signing Out
For examples that handle menu traversal, task selection, and sign-out, see the
MENU.CBL and LOGOFF.CBL programs from the AVERTZ sample desktop
client program.

4–32 Developing Portable API Client Programs

4.5.5 Passing Multiple Workspaces on acmsdi_call_task
Some TP Desktop Connector client applications may need to pass workspaces
on the call to the acmsdi_call_task service. Applications that use NO I/O tasks,
for example, must pass workspace data as a parameter of the acmsdi_call_task
service.

To do this, the application must create an array of workspace descriptors,
which is then passed as the workspaces parameter on acmsdi_call_task.

The workspace descriptor type, ACMSDI_WORKSPACE, is used to describe
the size and address of the workspace. The client application can use the
ACMSDI_INIT_WORKSPACE macro to create each ACMSDI_WORKSPACE
descriptor.

The workspace array should contain a workspace descriptor for each workspace
that is to be passed on acmsdi_call_task. Example 4–7 illustrates how an
application passes three workspaces on the acmsdi_call_task() service.

Example 4–7 Passing Three Workspaces

ACMSDI_WORKSPACE wksp_array[3]; /* Declare array of wksp descriptors */

struct {
char ctrl_key[5];
char message[80];

} control_wksp;

struct {
int id_number;
char first_name[15];
char last_name[25];

} employee_record;

struct {
int dept_id;
char dept_name[15];

} department_record;
int status;

/*
** Create the workspace descriptors
*/

(continued on next page)

Developing Portable API Client Programs 4–33

Example 4–7 (Cont.) Passing Three Workspaces

ACMSDI_INIT_WORKSPACE(wksp_array[0], control_wksp);
ACMSDI_INIT_WORKSPACE(wksp_array[1], employee_record);
ACMSDI_INIT_WORKSPACE(wksp_array[2], department_record);

/*
** Pass the number of workspaces passed (3) along with
** the array of workspace descriptors on the call to
** acmsdi_call_task()
*/

status = acmsdi_call_task(submitter_id,
NULL,
"MY_TASK",

"MY_APPL",
NULL,
call_status,
3,
wksp_array,
NULL, NULL, NULL, NULL);

4.5.6 Using Unidirectional Workspaces on acmsdi_call_task
When an application passes workspaces on a call to the acmsdi_call_task
service, the unidirectional-workspaces option allows the application to specify
which of those workspaces are read-only workspaces, which are write-only
workspaces, and which are modify workspaces. See Section 2.4.5.1 to
determine what is meant by read-only and write-only for the purposes of
the unidirectional workspaces feature.

To use the unidirectional-workspaces option:

1. Enable the OPTIMIZE_WORKSPACES option in the client program’s call
to acmsdi_call_task.

2. Create an array of unidirectional-workspace descriptors to be passed on the
call to acmsdi_call_task.

For unidirectional workspaces, the application must use the ACMSDI_
WORKSPACE_OPT type in order to specify an access type for each workspace.
The workspace descriptor type, ACMSDI_WORKSPACE_OPT, is used to
describe the size, address, and access type of the workspace. The access type
of each workspace must be specified as either ACMSDI_ACCESS_READ,
ACMSDI_ACCESS_WRITE, or ACMSDI_ACCESS_MODIFY.

4–34 Developing Portable API Client Programs

The client application can use the ACMSDI_INIT_WORKSPACE_OPT macro
to create each ACMSDI_WORKSPACE_OPT descriptor. The workspace array
should contain a workspace descriptor for each workspace that is to be passed
on acmsdi_call_task. Example 4–8 illustrates how an application passes three
workspaces on the acmsdi_call_task() service.

Example 4–8 Passing Unidirectional Workspaces

ACMSDI_CALL_OPTION call_options[2]; /* Declare call options array */

ACMSDI_WORKSPACE_OPT wksp_array[3]; /* Declare unidirectional wksp
** descriptors array
*/

struct {
char ctrl_key[5];
char message[80];

} control_wksp;

struct {
int id_number;
char first_name[15];
char last_name[25];

} employee_record;

struct {
int dept_id;
char dept_name[15];

} department_record;

int status;

/*
** Create the unidirectional workspace descriptors
*/

ACMSDI_INIT_WORKSPACE_OPT(wksp_array[0], control_wksp, ACMSDI_ACCESS_WRITE);
ACMSDI_INIT_WORKSPACE_OPT(wksp_array[1], employee_record, ACMSDI_ACCESS_READ);
ACMSDI_INIT_WORKSPACE_OPT(wksp_array[2], department_record, ACMSDI_ACCESS_MODIFY);

/*
** Turn on the unidirectional workspace call option
*/

call_options[0].option = ACMSDI_CALL_OPT_OPTIMIZE_WKSPS;
call_options[1].option = ACMSDI_CALL_OPT_END_LIST:

(continued on next page)

Developing Portable API Client Programs 4–35

Example 4–8 (Cont.) Passing Unidirectional Workspaces

/*
** Pass the call options array, along with the number
** of workspaces passed and the array of unidirectional
** workspace descriptors, on the call to acmsdi_call_task()
*/

status = acmsdi_call_task(submitter_id,
call_options,
"MY_TASK",

"MY_APPL",
NULL,
call_status,
3,
wksp_array,
NULL, NULL, NULL, NULL);

Note

The ACMSDI_CALL_OPT_OPTIMIZE_WKSPS option tells the TP
Desktop Connector client services to interpret the array of workspace
descriptors as data type ACMSDI_WORKSPACE_OPT. The workspace
optimization option and the ACMSDI_WORKSPACE_OPT must be
used together, or not at all. Using one without the other produces
unpredictable results.

4.5.7 Providing Stub Routines
ACMS task definitions do not have to include exchange steps, as is the case
with tasks that include only processing steps and specify NO TERMINAL
USER I/O as the I/O method. For these tasks, you do not write presentation
procedures. However, in your desktop client program, you must supply stub
routines for all possible entry points, that is, presentation procedures and
action routines (for example, acmsdi_check_version).

The TP Desktop Connector client services refer to all the presentation
procedures and the acmsdi_check_version routine. If you do not have code
for one or more of these routines in your desktop client program, provide a stub
for the linker to use to resolve these references.

Stubs for all presentation procedures and the acmsdi_check_version routine are
provided in the file PPSTUBS.C. PPSTUBS.C provides stubs for the following
routines:

4–36 Developing Portable API Client Programs

• acmsdi_disable

• acmsdi_enable

• acmsdi_receive

• acmsdi_request

• acmsdi_send

• acmsdi_transceive

• acmsdi_check_version

Note

The file PPSTUBS.C is provided in the ACMSDI$COMMON directory
on the OpenVMS system. Copy this file to the desktop system when
the TP Desktop Connector client services software is installed.

To use this source code, follow these steps:

1. Edit or comment out any of the presentation procedures that you
implement as part of your desktop client program.

2. Edit or comment out the acmsdi_check_version routine if you provide your
own version-checking routine.

3. Compile the module.

Include the resulting object module in build procedure (see Section 4.7).

4.6 Writing Presentation Procedures in a Blocking
Environment

If your ACMS tasks include exchange steps, write presentation procedures in
your desktop client program to handle the interaction with the user required
by these exchange steps. TP Desktop Connector software invokes a given
presentation procedure when it receives from the desktop gateway an exchange
step message corresponding to that procedure.

Your desktop client program must include presentation procedures that
correspond to any of the exchange step types actually used in your task
definitions:

• SEND exchange steps invoke acmsdi_send.

• RECEIVE exchange steps invoke acmsdi_receive.

Developing Portable API Client Programs 4–37

• TDMS READ exchange steps invoke acmsdi_read_msg.

• TDMS WRITE exchange steps invoke acmsdi_write_msg.

• TRANSCEIVE exchange steps invoke acmsdi_transceive.

• REQUEST exchange steps invoke acmsdi_request.

TP Desktop Connector client services call acmsdi_read_msg when a TDMS
Read exchange is received from the TP Desktop Connector Gateway for ACMS
on the host OpenVMS system. The acmsdi_read_msg presentation procedure
displays the prompt, if any, sent from the ACMS task, then acquires the text
from the form’s Message Field to be returned to ACMS.

TP Desktop Connector client services call acmsdi_write_msg when a TDMS
Write exchange is received from the TP Desktop Connector Gateway for
ACMS on the host OpenVMS system. The acmsdi_write_msg presentation
procedure displays the message text sent from the ACMS task in the form’s
Message Field. See the HP TP Desktop Connector for ACMS Client Services
Reference Manual for the syntax of these procedures.

For a FORM I/O task, include the following presentation procedures as well:

• The first exchange step to specify a HP DECforms form invokes the
acmsdi_enable presentation procedure.

• Closing a TP Desktop Connector session invokes the acmsdi_disable
presentation procedure, if any of the tasks used FORM I/O.

See Section 4.6.1 for more information on acmsdi_enable and acmsdi_disable.

In the AVERTZ sample application, these presentation procedures in turn call
routines that correspond to the specific exchange step in which the SEND,
RECEIVE, TRANSCEIVE, or REQUEST keyword is used.

Example 4–9 shows the TRANSCEIVE presentation procedure, in file trans.c
from the AVERTZ sample application.

Example 4–9 TRANSCEIVE Presentation Procedure

long acmsdi_transceive(ACMSDI_FORMS_SESSION_ID *session_id,
char *send_record_id,
long send_record_count,

(continued on next page)

4–38 Developing Portable API Client Programs

Example 4–9 (Cont.) TRANSCEIVE Presentation Procedure
char *recv_record_id,
long recv_record_count,
char *recv_ctl_text,
long *recv_ctl_text_count,
char *send_ctl_text,
long send_ctl_text_count,
short timeout,
ACMSDI_CALL_ID *call_id,
void *call_context,
ACMSDI_FORM_RECORD *send_records,
ACMSDI_FORM_RECORD *recv_records) 1

{
long int sts;
short int i;

if (send_record_id == NULL)
return (FORMS_BADARG);

if (recv_record_id == NULL)
return (FORMS_BADARG);

for (i = 0; i < send_record_count; i++)
{

if (recv_records[i].data_record == NULL)
return (FORMS_INVRECDES);

}

sts = FORMS_NORECORD;

if ((0 == strcmp (send_record_id, "LIST_1")) && 2
(0 == strcmp (recv_record_id, "LIST_2")))

{
/*
** Validate arguments
*/
if ((send_record_count != 2) ||

(recv_record_count != 4))
return (FORMS_BADRECCNT);

if (send_records[0].data_length != 123)
return (FORMS_BADRECLEN);

if (send_records[1].data_length != 1730)
return (FORMS_BADRECLEN);

if (recv_records[0].data_length != 138)
return (FORMS_BADRECLEN);

if (recv_records[1].data_length != 144)
return (FORMS_BADRECLEN);

(continued on next page)

Developing Portable API Client Programs 4–39

Example 4–9 (Cont.) TRANSCEIVE Presentation Procedure

if (recv_records[2].data_length != 255)
return (FORMS_BADRECLEN);

if (recv_records[3].data_length != 123)
return (FORMS_BADRECLEN);

.

.

.
/*
** Call Presentation Procedure
*/

GETSITE (3
session_id,
form_data,
send_ctl_text, /** VR_SENDCTRL_WKSP **/
send_records[0].data_record, /** VR_CONTROL_WKSP **/
send_records[1].data_record, /** VR_SITES_WKSP **/
recv_records[0].data_record, /** VR_SITES_WKSP **/
recv_records[1].data_record, /** VR_RESERVATIONS_WKSP **/
recv_records[2].data_record, /** VR_CUSTOMERS_WKSP **/
recv_records[3].data_record /** VR_CONTROL_WKSP **/

);

sts = FORMS_NORMAL;

} /** end if strcmp **/
.
.
.

return (sts);
}

The following key points are called out in the example:

1 The acmsdi_transceive presentation procedure is called when a
TRANSCEIVE exchange step executes in the ACMS task.

2 The procedure looks at the contents of the send and receive record identifier
fields to determine what second-level, application-specific routine to call.
This is termed the application-specific presentation procedure.

3 The desktop client program runs the presentation procedure.

4–40 Developing Portable API Client Programs

In Example 4–10, the GETSITE.CBL program receives data from the acmsdi_
transceive presentation procedure.

Note

PPGEN.COM is a sample tool that generates these generic presentation
procedures based on task definitions in the TDB. PPGEN.COM
determines the appropriate record counts, data record lengths, and so
on, for each application-specific presentation procedure. PPGEN.COM
is located in ACMSDI$EXAMPLES.

Example 4–10 GETSITE Application-Specific Presentation Procedure

PROCEDURE DIVISION USING
SESSION-ID,
FORM-DATA,
VR-SENDCTRL-WKSP,
CONTROL-IN,
SITES-IN,
VR-SITES-WKSP,
VR-RESERVATIONS-WKSP,
VR-CUSTOMERS-WKSP,
VR-CONTROL-WKSP.

.

.

.
*
* Distribute data
*

PERFORM 010-INITIALIZE-RECS
THRU 010-INITIALIZE-RECS-EXIT.

MOVE SITES-IN TO VR-SITES-WKSP. 1
MOVE CORRESPONDING VR-SITES-WKSP TO FORM-DATA.
MOVE CONTROL-IN TO VR-CONTROL-WKSP.
ACCEPT CURRENT-DATE FROM DATE.
MOVE CORRESPONDING CURRENT-DATE

TO CHECKOUT-DATE-2, RETURN-DATE-2.
MOVE THIS-CENTURY

TO CC OF CHECKOUT-DATE-2,
CC OF RETURN-DATE-2.

.

.

.

(continued on next page)

Developing Portable API Client Programs 4–41

Example 4–10 (Cont.) GETSITE Application-Specific Presentation Procedure

*
* Collect data from screen 2
*

MOVE CORRESPONDING FORM-DATA TO VR-SITES-WKSP.
MOVE CORRESPONDING FORM-DATA TO VR-CUSTOMERS-WKSP.
MOVE CORRESPONDING FORM-DATA TO VR-RESERVATIONS-WKSP.
MOVE CORRESPONDING RETURN-DATE

TO VEHICLE-EXPECTED-RETURN-DATE.
MOVE CORRESPONDING CHECKOUT-DATE

TO VEHICLE-CHECKOUT-DATE.
.
.
.

*
* Validate site and customer
*

IF ((CUSTOMER-ID OF FORM-DATA EQUAL ZERO) AND 3
(CU-LAST-NAME OF FORM-DATA = SPACES AND
CU-FIRST-NAME OF FORM-DATA = SPACES))

THEN
MOVE ’N’ TO VALID-DATA-FLAG
MOVE "Either CUSTOMER ID or NAME is required"

TO MESSAGEPANEL OF VR-CONTROL-WKSP
MOVE 5 TO CURSOR-LINE
MOVE 15 TO CURSOR-COLUMN

ELSE
IF ((SITE-ID OF FORM-DATA EQUAL ZERO) AND

(CITY OF FORM-DATA EQUAL SPACES))
THEN

MOVE ’N’ TO VALID-DATA-FLAG
MOVE "Either SITE ID or CITY is required"

TO MESSAGEPANEL OF VR-CONTROL-WKSP
MOVE 11 TO CURSOR-LINE
MOVE 11 TO CURSOR-COLUMN

END-IF.

IF (NOT VALID-DATA) THEN GO TO 100-GET-DATA-EXIT.
*
* Validate dates and car type
*

.

.

.

(continued on next page)

4–42 Developing Portable API Client Programs

Example 4–10 (Cont.) GETSITE Application-Specific Presentation Procedure

100-GET-DATA-EXIT.
EXIT. 4

.

.

.
END PROGRAM "_GETSITE".

The GETSITE program does the following:

1 Displays to the user the data received from the generic presentation
procedure.

2 Accepts new data.

3 Verifies the data.

4 Returns the new data to the acmsdi_transceive procedure.

4.6.1 Coding for acmsdi_enable and acmsdi_disable
If your tasks use any of the three HP DECforms exchange step types (SEND,
RECEIVE, TRANSCEIVE), supply these presentation procedures:

• acmsdi_enable

Write an acmsdi_enable routine to initialize structures that are used by a
number of presentation procedures. The acmsdi_enable routine is invoked
when a user calls a task that includes a HP DECforms form name that
has not previously been referenced in a task. The acmsdi_enable service
is called once for every user and form combination in a task, not for every
iteration of the same task.

• acmsdi_disable

Write the acmsdi_disable routine to clear structures used by the
presentation procedures. The acmsdi_disable presentation procedure is
invoked when the desktop code issues the acmsdi_sign_out call.

4.6.2 Coding Return Status Values
ACMS software expects specific return values from the presentation
procedures. These values correspond to the HP DECforms forms or the TDMS
request return values that the customer-written procedure server receives as
if the exchange is actually handled by these forms products on the OpenVMS
system. In writing presentation procedures, ensure that the values the desktop
client program returns to the ACMS system are valid OpenVMS status values.

See Appendix B for more information on determining these status values.

Developing Portable API Client Programs 4–43

4.7 Building and Debugging the Desktop Client Program
Compile and link the desktop client program as you would any program.

4.7.1 Linking the Desktop Client Program
Link the executable desktop client program with the debug qualifier initially to
look for these problems:

• Errors in argument order, format, or content in your procedures or in the
invocations of TP Desktop Connector client services

• Invalid return values in presentation procedures

Link the desktop client program with the following types of libraries:

• Application-specific library containing:

– Object files of the presentation procedures and menu procedures in
your desktop client program

– Stub routines for presentation procedures and action routines that your
desktop client program does not use (see Section 4.5.7)

Use the library utility on your desktop system to create a runtime library
from the .OBJ format files.

• Library that contains the TP Desktop Connector client services
(ACMSDI.LIB)

TP Desktop Connector client services are provided through DLLs only. The
ACMSDI.LIB is an import library, not a static-link library.

The ACMSDI.DLL (originally installed as ACMSDIWS.DLL) is built to use
the Winsock over TCP/IP DLL provided on the Windows kit. The Winsock
DLL is called WSOCK32.DLL and must be in a directory where Windows
can locate it at run time.

Follow these steps to use the TCP/IP transport:

1. Select the file ACMSDIWS.DLL.

2. Copy and rename it to ACMSDI.DLL.

3. Place ACMSDI.DLL in the executable path, where it can be located by
the operating system when running the application.

4. Copy the reference library ACMSDI.LIB from the appropriate Windows
directory on the TP Desktop Connector Gateway for ACMS host. See
HP TP Desktop Connector for ACMS Gateway Management Guide
and the HP TP Desktop Connector for ACMS Installation Guide

4–44 Developing Portable API Client Programs

for directions on obtaining the files that match the Windows operating
environment.

• Language library or libraries

Use either the C runtime library, the COBOL runtime library, or both,
depending on which languages you use. These libraries are supplied with
the compilers.

After generating the executable file, run it as you would run any Windows
program.

After you test your presentation code, relink it without the debug qualifier.
See HP TP Desktop Connector for ACMS Gateway Management Guide for a
description of how to manage the application after testing it.

4.7.2 Maximum Lengths for Environmental Variables
The length of values for TP Desktop Connector environment logical names
must not be greater than the maximum lengths indicated in Table 4–4. Using
logical names that have values longer than the indicated maximum length can
produce unpredictable results.

For example:

> set ACMSDI_LOG=my_file_name

where my_file_name is 256 characters or less.

Table 4–4 Maximum Lengths for Environmental Variables

Logical Name Maximum Length of Value

ACMSDI_LOG 256

ACMSDI_MAXBUF 4

ACMSDI_TCPIP_PORT_host 7

4.7.3 Debugging the Desktop Client Program with Tasks
First, debug the presentation code on the desktop system. When the
presentation code runs, debug the desktop client program with the ACMS
software.

Follow these guidelines:

• For debugging tasks, see Section 3.6.3.

• For using desktop client program logging, see HP TP Desktop Connector
for ACMS Gateway Management Guide.

Developing Portable API Client Programs 4–45

4.8 Using the Desktop Client Program on Other Systems
If you use a presentation tool that is portable between OpenVMS and the
runtime environment, you can port the client program to OpenVMS. Porting of
the desktop client program to the desktop system then involves relatively little
work beyond rebuilding the executable images for the desktop client program
and performing verification tests on those executable images.

4–46 Developing Portable API Client Programs

5
Using Portable API Extensions for

Microsoft Windows

This chapter describes developing nonblocking desktop client programs
for event-driven, multitasking environments such as Microsoft Windows.
Examples in this chapter use Windows SDK Version 3.1 code to illustrate
the use of HP TP Desktop Connector for ACMS nonblocking services in an
event-driven environment. However, the same techniques can be used in other
Windows event-driven environments.

You may also want to structure your application to use nonblocking services
if you want to support multiple active sign-ins for failover, or multiple active
tasks. Chapter 4 gives a useful background in the TP Desktop Connector
client services concepts and terminology. For information on designing your
application with nonblocking services, see Chapter 2.

For information on configuring network transports for any of the client
platforms, see the HP TP Desktop Connector for ACMS Client Services
Reference Manual.

5.1 Event-Driven Processing
A Windows desktop client program must yield control to the Windows manager
as quickly as possible so that other event processing can be handled in a timely
way. TP Desktop Connector nonblocking services provide methods to facilitate
yielding control:

• acmsdi_dispatch_message

Receives requests and responses from the gateway and dispatches the
corresponding procedures.

• acmsdi_complete_pp

Sends responses to the gateway when presentation procedures complete.

Using Portable API Extensions for Microsoft Windows 5–1

Figure 5–1 shows the sequence of processing in an event-driven desktop client
program.

Figure 5–1 Event-Driven Desktop Client Program Processing

Window Events
Nonblocking Desktop

ACMS Task

TP Desktop

User Menu

Legend:
Customer-Written

<event-processing>

<event-processing>

<event-processing>

<event-processing>

<event-processing>

acmsdi_call_task()

acmsdi_dispatch_

acmsdi_transceive()

acmsdi_complete_pp()

completion_routine

acmsdi_dispatch_

Timer Event

Dialog Box

User Presses

Message Box

Timer Event

start task

end task

start
presentation

end
presentation

ACTION IS

END BLOCK

BLOCK

EXCHANGE IS

TAY-0295A-AD

Selection

Displayed

OK Button

Displayed

Code

message

message

Client Program

procedure

procedure

WORK

TRANSCEIVE

Connector
Client Services

5–2 Using Portable API Extensions for Microsoft Windows

When the user selects a task from the menu, the desktop client program calls
the acmsdi_call_task service to initiate a ACMS task. In the nonblocking
environment, nonblocking parameters are specified in the call (see the HP
TP Desktop Connector for ACMS Client Services Reference Manual). One
nonblocking parameter is the completion routine, which specifies a routine
address in the desktop client program that the TP Desktop Connector client
service calls when the TP Desktop Connector Gateway for ACMS completes the
task. Because you specify the completion routine parameter in the call, the TP
Desktop Connector client service returns control to the desktop client program
immediately after the start task request is sent to the TP Desktop Connector
Gateway for ACMS.

The desktop client program does not wait for the TP Desktop Connector
gateway to request ACMS software to start a task in a ACMS application.
Instead, the desktop client program returns control to the Windows message-
processing loop for more event processing.

The acmsdi_call_task service also returns a call identification that the
desktop client program supplies to the acmsdi_complete_pp service. The
services use the call identification to associate an active call with a submitter.
A submitter uniquely identifies a sign-in. The acmsdi_sign_in returns
the submitter ID to identify that connection or session for subsequent call-
tasks and sign-out on behalf of that sign-in. In addition, the call ID, which
uniquely identifies a task invocation, is passed to all of its related presentation
procedures. Note that TP Desktop Connector supports, at most, one active task
for each submitter.

Because of an exchange step in the I/O task, the ACMS system starts a
transceive operation. The TP Desktop Connector gateway sends a message to
the desktop client program to start a presentation procedure.

Run as part of the control mechanism established by the desktop client
program, the acmsdi_dispatch_message service polls for the message and,
when the message is received, calls the customer-written presentation
procedure acmsdi_transceive as shown in Figure 5–1. The acmsdi_transceive
routine runs, displays a dialog box, saves pointers to the workspaces, and
returns control to Windows without the user having signaled completion.

The user then has an opportunity to edit or add data to a form in the context
of this exchange step. When the user later presses OK to signal completion,
the desktop client program uses the workspace pointers to store the user-
entered data, and calls the acmsdi_complete_pp service to send the response
status to the TP Desktop Connector Gateway for ACMS. (The desktop client
program does not wait for a response from the TP Desktop Connector gateway.
Generally, it returns control to the Windows message-processing loop as soon

Using Portable API Extensions for Microsoft Windows 5–3

as possible.) Meanwhile, the TP Desktop Connector gateway passes to the
ACMS task any valid workspaces and the status from the completion of the
presentation procedure.

When the task completes on the ACMS system, the TP Desktop Connector
gateway sends the end task message to the desktop system. The TP
Desktop Connector client services dispatch the end task message by calling a
completion routine in the desktop client program. This completion routine is
dispatched by the polling mechanism and acmsdi_dispatch_message.

In this event-driven processing environment, the TP Desktop Connector
gateway sends a message to the desktop client program for the following
reasons:

• To signal the completion of a TP Desktop Connector client service

The desktop client program supplies the address of completion routines
in the nonblocking forms of the acmsdi_sign_in, acmsdi_call_task, and
acmsdi_sign_out services.

• To process an exchange step in the task

The desktop client program supplies presentation procedures structured to
complete their processing separately from starting it.

The TP Desktop Connector client services dispatch the TP Desktop Connector
gateway messages to the desktop client program by the polling mechanism
established.

5.2 Guidelines for Developing Windows Desktop Client
Programs

The following list summarizes general requirements and guidelines for
developing Windows nonblocking desktop client programs as described in this
chapter:

• Write procedures to use nonblocking TP Desktop Connector client services
(see Section 5.4).

Organize functions so that every call to a TP Desktop Connector client
service or a customer-written presentation procedure has a parallel
completion routine.

• Set up polling within the desktop client program (see Section 5.4.2).

Set up a mechanism to retrieve desktop messages. Use this mechanism to
periodically gain control and call the acmsdi_dispatch_message service to
retrieve messages from the TP Desktop Connector gateway.

• Establish session context in the desktop client program (see Section 5.4.3).

5–4 Using Portable API Extensions for Microsoft Windows

Set up structures for handling multiple sessions. Certain data must be
maintained as context for a current session and inactive sessions.

• Write presentation procedures to coexist in the nonblocking environment
(see Section 5.5).

To complete all presentation procedures, use the acmsdi_complete_pp
service in routines separate from the initiating routines.

• Convert data as required between the desktop system and the ACMS
system (see Section 4.1.3).

The following guideline is optional when developing a nonblocking desktop
client program:

• Write an action routine to perform version checking.

The module versionw.c shows a stub version-checking routine (see
Section 4.3).

If you are using Microsoft C, you can use the Programmer’s WorkBench (PWB)
supplied with the Microsoft C compiler. Compiling routines to include a
Browser database of the desktop client-program source code provides helpful
tracing and mapping capabilities similar to those provided by OpenVMS with
Language-Sensitive Editor (LSE) and Source Code Analyzer (SCA).

The remainder of the chapter explains the guidelines using code from the
AVERTZ sample desktop client program.

5.3 AVERTZ Sample Desktop Client Program for Microsoft
Windows

The AVERTZ sample desktop client program for the Windows environment
is written in Microsoft C and follows the standards and practices outlined in
the Microsoft Windows Software Development Kit (SDK) documentation. The
program uses a main window, icons, and dialog boxes to interact with the user.

The program was developed with the PWB software that includes mechanisms
to aid debugging.

5.3.1 AVERTZ Components for Microsoft Windows
A Windows desktop client program has the same high-level components as a
blocking application (see Figure 5–2). However, note the addition of the polling
mechanism as well as how the application-specific presentation procedures
are now broken into two parts. TP Desktop Connector supports, at most, one
active exchange step per task call.

Using Portable API Extensions for Microsoft Windows 5–5

Figure 5–2 TP Desktop Connector Sample Components for Microsoft Windows

TP Desktop Connector Client Program

TAY-1004A-AD

Network Link

Legend:
Customer-Written

Desktop MessageClient Routines

Microsoft Windows Dispatch Message Loop

Generic

Application-Specific End Application-

TP Desktop Connector Client Services

TP Desktop

Procedures
Presentation

Procedures
Specific Presentation

Polling Mechanism
Procedures
Presentation

Code
Gateway
Connector

The AVERTZ.EXE program includes the following functional modules:

• avertz.c

Contains the main window function and program initialization.

5–6 Using Portable API Extensions for Microsoft Windows

• avertzpp.c

Defines all application-specific presentation procedures for the AVERTZ
desktop client program.

• resvform.c

Manages the reservation form for interaction with the user in the AVERTZ
reserve task.

• session.c

Initializes and controls multiple user sign-ins and manages windows, icons,
and menus for multiple user sessions.

• disablew.c, enablew.c, recvw.c, requestw.c, sendw.c, and transw.c

Handles the generic presentation procedures.

The desktop client program allows the user to maintain multiple sign-ins with
the AVERTZ application, VR_DA_APPL. The program controls each sign-in by
associating session context with the user sign-in data.

The desktop client-program user interface presents the following menus with
which the user interacts to sign in to and out of the ACMS system, run ACMS
tasks, and control sessions:

• Session menu

Signs the user in to and out of the ACMS system.

• Rental menu

Lets the user start tasks.

• Select menu

Allows the user to activate a session through a list of active sessions rather
than by selecting an icon.

Program-defined icons represent sessions. The user can double click on an icon
to bring up the form for a specific session. The icons are also visual clues to
active and inactive sessions.

5.3.2 AVERTZ Component Processing Flow
The avertz.c module contains the Windows message-processing loop, program
initialization, and main window function. The following important functions
are performed:

• MainWndProc

Processes Windows messages for the main window.

Using Portable API Extensions for Microsoft Windows 5–7

• client_init

Sets up the control mechanism, a timer, for soliciting TP Desktop
Connector messages.

• InitApplication

Initializes the desktop client program and sets up window processing.

• InitInstance

Creates the main window.

The session.c module contains the following session creation and control
functions:

• NewSession

Creates a new session, signs the user in to the ACMS system with the
acmsdi_sign_in service, and adds the session to the list of active sessions.

• NewSession_Complete

Completes processing of the NewSession function and updates the user
interface. Called when the acmsdi_sign_in service completes.

• ExitSession and ExitSession_Complete

Ends a session by calling the acmsdi_sign_out service and cleans up session
data structures.

• SessionTask_Complete

Updates the user interface accordingly. Called when a task for a given
session completes.

The New command in the session menu presents a dialog box to enable the
user to sign in to the ACMS system, thereby creating a new AVERTZ session.
After the user is signed in to the ACMS system, the desktop client program
maintains session information to track the association between a form or
forms session and the corresponding ACMS submitter identification. The
program also activates other menus to allow the signed-in user to select ACMS
tasks. A session can have only one active task at any given time, but a user
can sign in to the ACMS system many times, allowing multiple tasks to run
simultaneously.

Individual modules handle the generic presentation procedures. For example,
transw.c handles the acmsdi_transceive presentation procedure called from
the ACMS system, validates the parameters, and dispatches control to the
appropriate application-specific presentation procedure.

5–8 Using Portable API Extensions for Microsoft Windows

The avertzpp.c module handles all application-specific presentation procedures
for the AVERTZ desktop client program. Each presentation procedure
comprises an initial routine (for example, Trans_List2_List3) and a completion
routine (for example, End_Trans_List2_List3). The generic presentation
procedures call the initial routine (the first part of the presentation procedure),
which generally displays the data from the workspaces sent by the ACMS
system and returns. When the user signals completion (done entering data)
for this presentation procedure, the corresponding completion routine is called.
The completion routine collects the user-entered data and sends it to the ACMS
system to complete processing of the presentation procedure.

The resvform.c module manages the reservation form for the reserve task,
including field validation and initialization. The reserve routine handles
Windows messages for the dialog boxes. (The reserve routine is the dialog
function that Windows calls whenever the user interacts with the reservation
form.) When the user clicks on the OK or cancel button in the reservation
form, the reserve routine dispatches the completion routine of the current
presentation procedure.

Chapter 6 describes this flow in a Motif environment. See Figure 6–3,
Figure 6–4, Figure 6–5, and Figure 6–6.

5.4 Writing Client Procedures Using Nonblocking Services
Procedures using nonblocking services must be structured as described in the
following sections.

5.4.1 Calling Nonblocking Services
Nonblocking forms of the services have the following differences from blocking
forms:

• The routine calling the TP Desktop Connector client service supplies the
address of a completion routine, the context, and the completion status in
the service call.

When the TP Desktop Connector call-completion message is received from
the desktop gateway, the TP Desktop Connector client service calls the
desktop client program completion routine.

• The TP Desktop Connector client service returns control to the desktop
client program after a request is sent to the TP Desktop Connector
gateway.

This return allows the desktop client program to yield control to Windows
for event processing to continue.

Using Portable API Extensions for Microsoft Windows 5–9

• Because the nonblocking services return control before a request completes,
the desktop client program must not release storage for service argument
data until after it calls the completion routine.

If the calling routine returns before the service completes, the routine
must not use volatile memory for service arguments. For example, in the
C language, volatile memory includes local (automatic) variables and the
arguments passed on routine calls.

Example 5–1 shows the calls in the session.c module to the acmsdi_sign_in
service that creates a new session, and to the companion completion routine
NewSession_Complete that completes the service. The desktop client program
calls the message dispatcher to check for pending replies or requests from
the TP Desktop Connector gateway. When a completion message for a client
service arrives, the message dispatcher calls the completion routine in the
desktop client program.

Example 5–1 Nonblocking Service Call and Completion Routine

BOOL FAR PASCAL NewSession(
HWND hDlg, /* window handle of the dialog box */
WORD message, /* type of message */
WORD wParam, /* message-specific information */
LONG lParam)

{
.
.
.

status = acmsdi_sign_in(
session_ptr->node,
session_ptr->username,
session_ptr->password,
(long) 0,
session_ptr->submitter_id,
&session_ptr->completion_status,
NewSession_Complete, 1
(void *) session_ptr);

if (status == ACMSDI_PENDING) 2
{

.

.

.
void NewSession_Complete(void *call_context) 3

(continued on next page)

5–10 Using Portable API Extensions for Microsoft Windows

Example 5–1 (Cont.) Nonblocking Service Call and Completion Routine

{
session_type *session_ptr;
List session_node;
char session_button_title[MAX_STRING_LENGTH];
int x;
HWND SessionIcon;
int i;

/* Get Session Node For This Sign In Completion */

session_ptr = (session_type *) call_context;

/*
** Check ACMS Return Status
** - If failure occurred, delete session from session list and
** put up a message.
*/

if (session_ptr->completion_status != ACMSDI_NORMAL)
{
DisplayDesktopErrorMessage(session_ptr, session_ptr->completion_status);

.

.

.

The user triggers the call to the acmsdi_sign_in service by selecting the
OK button on the New Session dialog box. The numbers in Example 5–1
correspond to the following explanations:

1 The call specifies the completion routine address.

Specifying the completion routine NewSession_Complete indicates a
nonblocking service.

2 The desktop client program checks for ACMSDI_PENDING to ensure that
the call is sent to the ACMS system.

The user at this point is not signed in to the ACMS system. If a status
other than ACMSDI_PENDING is returned, the completion routine is not
called.

3 When the sign-in completes, the completion message arrives and the
desktop client services invoke the completion routine, NewSession_
Complete.

Using Portable API Extensions for Microsoft Windows 5–11

After the acmsdi_sign_in service returns ACMSDI_PENDING, the desktop
client program receives a submitter identification that is used on subsequent
calls. If a nonblocking call to a TP Desktop Connector service routine returns
a status code other than ACMSDI_PENDING, the completion routine for that
call is not invoked.

5.4.2 Setting Up Polling
In a nonblocking environment, the desktop client program must initiate a
control mechanism to poll for pending ACMS messages. To set up polling, the
desktop client program does the following:

• Activates a control mechanism when the desktop client program starts up

• Has the control mechanism call the acmsdi_dispatch_message service
periodically

The acmsdi_dispatch_message service polls for messages from the TP Desktop
Connector gateway and calls the appropriate customer-supplied completion
routine or presentation procedure, depending on the type of TP Desktop
Connector message received. Example 5–2 shows the sample coding sequence
from the avertz.c module.

Example 5–2 Setting Up Polling

int PASCAL WinMain
{

.

.

.
client_init; 1

.

.

.
long FAR PASCAL MainWndProc
switch (message)

{
case WM_TIMER:

if (wParam == DESKTOP_MESSAGE_TIMER)
{
acmsdi_dispatch_message; 2

}

break;

(continued on next page)

5–12 Using Portable API Extensions for Microsoft Windows

Example 5–2 (Cont.) Setting Up Polling

.

.

.
}

.

.

.
void client_init(void)
{

SetTimer(
hWndMainWindow,
DESKTOP_MESSAGE_TIMER, 3
MESSAGE_CHECK_FREQUENCY,
NULL);

}

Example 5–2 shows the following steps from the module avertz.c:

1 The function client_init establishes the control mechanism (see 3).

2 Windows dispatches the event to the desktop client program.

The acmsdi_dispatch_message routine polls for gateway messages to be
passed to the desktop client program.

3 The routine SetTimer specifies the main window to receive the WM_TIMER
messages.

The desktop client program controls the polling interval with the constant
MESSAGE_CHECK_FREQUENCY.

To notify the desktop client program that a TP Desktop Connector message
from the gateway is pending, the acmsdi_dispatch_message service calls a
customer-supplied completion routine or a generic presentation procedure.

5.4.3 Establishing Session Context
In a nonblocking environment, saving session context globally serves two
purposes. First, it saves the local data for reuse. Second, it allows the desktop
client program to coordinate with message passing between the desktop system
and the ACMS system when there are multiple sign-ins. Also, saving session
context globally gives you a convenient place to store session-related user
interface data such as form IDs and icon IDs.

Using Portable API Extensions for Microsoft Windows 5–13

In the AVERTZ desktop client program, a user can sign in to a ACMS system
in one window and initiate a task from another window. The AVERTZ desktop
client program establishes context and maintains the context as session data
across service calls and presentation procedures. Example 5–3 shows the
definition of data in the session.h file that keeps track of session context.

Example 5–3 AVERTZ Session Context

extern enum request_type {
NO_OUTSTANDING_TASK,
TASK_IN_PROGRESS,
SEND_CTRL_RESV_LIST,
SEND_VR_CONTROL_WKSP,
TRANS_LIST_3_LIST_2,
TRANS_LIST_5_LIST_6,
TRANS_LIST_7_LIST_6,
TRANS_LIST_8_LIST_9,
TRANS_VRH_RCLIST_VRH_RESV_LIST,
TRANS_VR_CTRL_WKSP_LIST_D,
TRANS_LIST_E_LIST_F,
TRANS_LIST_F_LIST_F,
TRANS_LIST_G_LIST_H};

.

.

.
typedef struct {

enum request_type request_id;
char *receive_control_text;
long *receive_control_text_count;
ACMSDI_FORM_RECORD *receive_record;

} exchange_request_type;

typedef struct {
ACMSDI_SUBMITTER_ID *submitter_id; 1
int session_id;
ACMSDI_CALL_ID *call_id; 2
char node[MAX_NODE_LENGTH];
char username[MAX_USERNAME_LENGTH];
char password[MAX_PASSWORD_LENGTH];
char print_file[20];
HWND session_icon;
HWND resv_form;
HWND vehicle_form;
HWND billing_form;

(continued on next page)

5–14 Using Portable API Extensions for Microsoft Windows

Example 5–3 (Cont.) AVERTZ Session Context

HWND message_window;
exchange_request_type *current_exchange_request; 3

int completion_status; 4

char task_status_message[80]; 5
} session_type;

extern session_type *init_session_list;

The following context data is required for a session:

1 submitter ID Returned from the ACMS system at sign-in time

2 call ID Returned by the acmsdi_call_task service

3 current exchange request Needed if the program uses the same form for
multiple exchange steps

4 completion status Updated by the TP Desktop Connector client service
when the task completes

5 task status message Updated by the TP Desktop Connector client service
when the task completes

The session_type structure enables the desktop client program to access data
related to a sign-in session when a Windows operation occurs. The variables
submitter_id, call_id, completion_status, and task_status_message are allocated
by the desktop client program and updated by TP Desktop Connector client
services. The value of the completion_status is updated just before the TP
Desktop Connector client services call the completion routine.

The session context structure is also a useful place to maintain window handles
of user interface objects related to a session. In the sample, the session context
includes window handles for the session’s icon, the session’s menu entry in the
select menu, and window handles for all the forms related to that session.

The AVERTZ.EXE program passes the session context to the acmsdi_call_task
service as the call_context parameter. Whenever the TP Desktop Connector
client services call a task completion routine or a presentation procedure on
behalf of an active ACMS task, the session context is passed to the desktop
client program. For example, you can use a session context to determine which
form in the application to update with data from an incoming presentation
procedure. Example 5–4 shows an example in the avertz.c code where the
session context is passed.

Using Portable API Extensions for Microsoft Windows 5–15

Example 5–4 Context Passed to Desktop Client Program
.
.
.
status = acmsdi_call_task(

current_session_ptr->submitter_id,
NULL,
"VR_RESERVE_TASK",
AVERTZ_APPLICATION_NAME,
NULL,
current_session_ptr->task_status_message,
0,
NULL,
current_session_ptr->call_id,
&(current_session_ptr->completion_status),
SessionTask_Complete,
(void *) current_session_ptr); 1

.

.

.

The parameter at 1 specifies a session context to be passed. The desktop
client program can use that context to determine which form to deal with.
The session context is useful for determining which presentation procedure is
ending and which workspaces are affected (see Section 5.5).

When a presentation procedure later starts as a result of the ACMS task
executing, the session context is passed back to the desktop client program as
shown in the transw.c code in Example 5–5.

Example 5–5 Call Context Returned with Presentation Procedure

long int acmsdi_transceive(ACMSDI_FORMS_SESSION_ID *session_id,
:
ACMSDI_CALL_ID *call_id,
void *call_context,
ACMSDI_FORM_RECORD *send_records,
ACMSDI_FORM_RECORD *recv_records)

{

(continued on next page)

5–16 Using Portable API Extensions for Microsoft Windows

Example 5–5 (Cont.) Call Context Returned with Presentation Procedure

session_type *session_ptr = (session_type *) call_context;
.
.
.

save_sessions_PP_data_ptrs(
session_ptr,
recv_ctl_text,
recv_ctl_text_count,
recv_records);

sts = Trans_List3_List2 (
session_ptr,
send_ctl_text, /** VR_SENDCTRL_WKSP **/
send_records[0].data_record, /** VR_CONTROL_WKSP **/
send_records[1].data_record, /** VR_SITES_WKSP **/
recv_records[0].data_record, /** VR_SITES_WKSP **/
recv_records[1].data_record, /** VR_RESERVATIONS_WKSP **/
recv_records[2].data_record, /** VR_CUSTOMERS_WKSP **/
recv_records[3].data_record /** VR_CONTROL_WKSP **/

);
.
.
.

The code in Example 5–6 shows how session context is used to establish context
for the user interface when the user selects a session icon. The session_type
structure contains the information about the form to display for that submitter.

Example 5–6 Session Context Handling for the User Interface

void select_new_session(
session_type *new_session)

{
session_type *former_current_session_ptr = current_session_ptr;

current_session_ptr = new_session;

/*
** Hide any forms that are displayed for the former current session
*/

if (former_current_session_ptr != NULL)
close_session(former_current_session_ptr);

(continued on next page)

Using Portable API Extensions for Microsoft Windows 5–17

Example 5–6 (Cont.) Session Context Handling for the User Interface

/*
** Redraw the icons of the former and new current session
** (The WM_DRAWITEM case in MainWindowProc will redraw
** the icon buttons when & if their select state changes.
** Therefore, here we turn the select state OFF for the former
** current session, and turn the select state ON for the
** new current session.
*/

if (former_current_session_ptr != NULL)
SendMessage(former_current_session_ptr->session_icon,

BM_SETSTATE, FALSE, NULL);

SendMessage(current_session_ptr->session_icon,
BM_SETSTATE, TRUE, NULL);

/*
** Determine which menus, menu items must be enabled and disabled
*/

if (former_current_session_ptr != NULL)
UncheckSessionInSelectMenu(former_current_session_ptr->session_id);

CheckSessionInSelectMenu(current_session_ptr->session_id);

if ((current_session_ptr->
current_exchange_request)->
request_id == NO_OUTSTANDING_TASK)

{
EnableSessionExit;
EnableRentalMenu;
DisableSearchMenu;

}

else
{

DisableSessionExit;
DisableRentalMenu;
if ((current_session_ptr->
current_exchange_request)->
request_id == TRANS_LIST_3_LIST_2)

(continued on next page)

5–18 Using Portable API Extensions for Microsoft Windows

Example 5–6 (Cont.) Session Context Handling for the User Interface

EnableSearchMenu;
else

DisableSearchMenu;
}

}

5.4.4 Writing a Call to Other Nonblocking Services
A call to the nonblocking acmsdi_call_task or acmsdi_sign_out service must
follow the rules described for other nonblocking services (see Section 5.4.1).
The calling routine specifies the submitter identification returned from the
acmsdi_sign_in service.

The acmsdi_call_task service returns a call identification and call context
that are used in any completion routine (see the HP TP Desktop Connector
for ACMS Client Services Reference Manual), presentation procedure, or
acmsdi_complete_pp service call.

5.4.5 Canceling Active Tasks
TP Desktop Connector allows client programs, written with nonblocking
services, to cancel active tasks running on the gateway node. Being able to
cancel active tasks allows you to create applications that provide a CANCEL
function for the user. The main advantage of being able to cancel a task is
to permit the user to work on other applications, if the response from the
gateway is not immediate. For example, if the user starts a transaction on the
database, you can display three buttons in the dialog box:

• OK — To start the transaction

• ABORT — To abort the dialog without starting any task

• CANCEL — To cancel the task after it has been started

These features are available with through the portable API client services
acmsdi_cancel service. See HP TP Desktop Connector for ACMS Client
Services Reference Manual for a description of this client service.

You cannot use a cancel service in exchange steps. If you call a cancel during a
presentation procedure, TP Desktop Connector returns the message "ACMSDI_
EXCHACTV". If you issue a cancel while another cancel is already in progress,
TP Desktop Connector returns the message "ACMSDI_CANCELACTV". The
cancel completion routine is guaranteed to be called before the task completion
routine.

Using Portable API Extensions for Microsoft Windows 5–19

5.5 Writing Nonblocking Presentation Procedures
Writing a presentation procedure in a nonblocking environment differs from
writing presentation procedures in a blocking environment. A nonblocking
presentation procedure does the following:

• Performs its processing and yields control to Windows without the user
having signaled completion.

In a blocking environment, the desktop client program waits for completion.

• Signals its completion and passes completion status to the desktop gateway
using a TP Desktop Connector service, acmsdi_complete_pp.

In a blocking environment, the desktop client program can wait for task
completion status.

In a nonblocking environment, presentation procedures are generally divided
as follows:

• Initial routine that displays data on the screen.

• Processing that releases control to Windows so that the user can interact
with the form.

• Completion routine that gathers the user-entered data upon the completion
signal and calls the acmsdi_complete_pp service to pass status and data
back to the TP Desktop Connector gateway.

Typically, the initial and completion routines are separate so that data can be
obtained from the user. If user action is not required, such as in a stub routine,
the initial routine can call the acmsdi_complete_pp service, and the completion
routine is not necessary.

Example 5–7 shows pseudocode from several modules in the AVERTZ sample
desktop client program to indicate the flow of processing a presentation
procedure.

Example 5–7 Nonblocking Presentation Procedure Pseudocode

long int acmsdi_transceive(ACMSDI_FORMS_SESSION_ID *session_id, 1
char *send_record_id,
long send_record_count,
char *recv_record_id,
long recv_record_count,
char *recv_ctl_text,
long *recv_ctl_text_count,

(continued on next page)

5–20 Using Portable API Extensions for Microsoft Windows

Example 5–7 (Cont.) Nonblocking Presentation Procedure Pseudocode
char *send_ctl_text,
long send_ctl_text_count,
short timeout,
ACMSDI_CALL_ID *call_id,
void *call_context,
ACMSDI_FORM_RECORD *send_records,
ACMSDI_FORM_RECORD *recv_records)

{

session_type *session_ptr = (session_type *) call_context; 2
.
.
.
if ((0 == strcmp (send_record_id, "LIST_3")) &&

(0 == strcmp (recv_record_id, "LIST_2")))
.
.
.

/*
** Save Pointers To Exchange Step’s Receive Data
** And Call Presentation Procedure
*/

save_sessions_PP_data_ptrs(3
session_ptr,
recv_ctl_text,
recv_ctl_text_count,
recv_records);

sts = Trans_List3_List2 (4
session_ptr,
send_ctl_text, /** VR_SENDCTRL_WKSP **/
send_records[0].data_record, /** VR_CONTROL_WKSP **/
send_records[1].data_record, /** VR_SITES_WKSP **/
recv_records[0].data_record, /** VR_SITES_WKSP **/
recv_records[1].data_record, /** VR_RESERVATIONS_WKSP **/
recv_records[2].data_record, /** VR_CUSTOMERS_WKSP **/
recv_records[3].data_record /** VR_CONTROL_WKSP **/

);

}
int Trans_List3_List2 (5

session_type *session_ptr, . . .)
{

.

.

.
enable_initial_fields(session_ptr->resv_form);

(continued on next page)

Using Portable API Extensions for Microsoft Windows 5–21

Example 5–7 (Cont.) Nonblocking Presentation Procedure Pseudocode

enable_resv_push_buttons(session_ptr->resv_form);

return(FORMS_NORMAL); 6
}

.

.

.
return (sts); 7

}

The code shown in Example 5–7 does the following:

1 The desktop client program is called at the acmsdi_transceive interface.

The reserve task in the AVERTZ sample application triggers an exchange
step. Refer to the reserve task code shown in Example 4–4 for places
where presentation procedures are called. The acmsdi_transceive generic
presentation procedure defined in transw.c is called through the polling
mechanism. The workspaces from the ACMS system are passed to the
AVERTZ desktop client program.

2 The procedure establishes the session context by doing a type conversion
on the call context value.

3 The program saves the addresses of the write and modify arguments.

The acmsdi_transceive function parses the workspaces to determine which
application-specific presentation procedure to call.

4 The generic presentation procedure acmsdi_transceive calls the application-
specific presentation procedure Trans_List3_List2.

5 The Trans_List3_List2 function defined in the avertzpp.c module gets
control to solicit data from the user.

The routine creates the dialog box and displays the data passed in the
workspaces. (The function reserve defined in resvform.c, not shown, paints
the screen and receives control from the Windows message queue.)

6 Control passes to the acmsdi_transceive function.

After the data to display is sent to the dialog box, control is returned to the
generic function.

7 Control passes to Windows.

The desktop client program allows message processing for other activities
to continue.

5–22 Using Portable API Extensions for Microsoft Windows

At this point, the user can enter data in the dialog box and the desktop client
program no longer has control.

To signal that data entry is complete and to pass status back to the TP Desktop
Connector gateway, the user clicks on the OK button in the dialog box some
time after the desktop client program yields control to Windows. Example 5–8
shows the processing in the resvform.c module when the user either signals
completion or cancels the operation.

Example 5–8 Presentation Procedure Completion Pseudocode

case WM_COMMAND: /* message: received a command */

switch (wParam) {
case IDOK : 1
case IDCANCEL :
{

exchange_request_type *exchange_request =
current_session_ptr->current_exchange_request;

switch (exchange_request->request_id) { 2
.
.
.

case TRANS_LIST_3_LIST_2 : 3
End_Trans_List3_List2(current_session_ptr,

wParam);
return(TRUE);

.

.

.
void End_Trans_List3_List2(4

session_type *session_ptr,
WORD button_pressed)

{
receive_record = (session_ptr->current_exchange_request)->receive_record;

sites_wksp = (vr_sites_wksp *) (receive_record[0].data_record);
reservations_wksp = (vr_reservations_wksp *) (receive_record[1].data_record);
customers_wksp = (vr_customers_wksp *) (receive_record[2].data_record);
control_wksp = (vr_control_wksp *) (receive_record[3].data_record);
.
.
.

(continued on next page)

Using Portable API Extensions for Microsoft Windows 5–23

Example 5–8 (Cont.) Presentation Procedure Completion Pseudocode

acmsdi_complete_pp(session_ptr->call_id, FORMS_NORMAL); 5

MessageBox(
session_ptr->resv_form,
"Reservation Data Has Been Submitted.\nWait For Return Data . . . ",
" ",
MB_OK | MB_ICONINFORMATION);

.

.

.
return; 6

}

The code in Example 5–8 does the following:

1 Windows passes a message to the desktop client program when the user
clicks on the OK button in the dialog box.

The reserve function in resvform.c parses the Windows command and
determines which presentation procedure completion routine to call based
on the current exchange request saved for the current session.

2 The session context determines which presentation procedure is
completing.

3 The desktop client program calls the second part of the presentation
procedure.

Based on the pending exchange request, the reserve function calls the
routine End_Trans_List3_List2 in avertzpp.c.

4 The End_Trans_List3_List2 routine gains control.

Using the pointers to workspaces saved when the presentation procedure
began, the routine collects new data entered from the dialog box. The
session context is passed along to the application-specific presentation
procedure completion routine. The completion routine can determine
which workspaces to update and which call identification to pass to the
acmsdi_complete_pp service.

5–24 Using Portable API Extensions for Microsoft Windows

5 The End_Trans_List3_List2 routine sends the updated arguments to the
TP Desktop Connector gateway.

To send a reply to the TP Desktop Connector gateway, the routine calls the
acmsdi_complete_pp service, specifying an OpenVMS completion status and
the call identification that the TP Desktop Connector client services passed
into the program.

6 Control returns to Windows.

5.6 Writing Memory Allocation Routines
The desktop client program allocates and manages memory while coexisting
with the TP Desktop Connector client services and other software on the
desktop platform.

The TP Desktop Connector client services use the malloc and calloc functions.
However, Windows converts these functions to the LocalAlloc function, which
is limited to the 64K bytes in the local heap.

Because messages sent to and received from the TP Desktop Connector
Gateway for ACMS can be quite large (depending on the size of workspaces),
message buffer allocation can fail, if the desktop client program is already
using a substantial portion of the local heap. (Remember that the local heap is
also used for the stack, static data, and global data items.)

Message buffers associated with presentation procedures persist for the
duration of the call, including a period where control returns to Windows
while the user enters data. The use of malloc/calloc with large workspaces can
severely restrict the amount of memory available to the desktop client program
in the local heap.

The TP Desktop Connector client services permit you to specify your own
allocation and free routines for message buffers. These are passed in to
TP Desktop Connector client services using the options parameter on the
acmsdi_sign_in call by specifying the ACMSDI_OPT_MALLOC_ROUTINE and
ACMSDI_OPT_FREE_ROUTINE options (see HP TP Desktop Connector for
ACMS Client Services Reference Manual).

Do not use GlobalAlloc in the TP Desktop Connector client services memory
management routines.

Using Portable API Extensions for Microsoft Windows 5–25

5.7 Building and Debugging Windows Desktop Client
Programs

The build procedure for nonblocking Windows client programs is identical
to the procedure for blocking client programs. See the build instructions in
Section 4.7.

5.8 Debugging the Nonblocking Desktop Client Program with
Tasks

First, debug the presentation code on the desktop system. Use the second
monitor recommended for Windows environments. When the presentation code
runs, debug the desktop client program with the ACMS software. Follow these
guidelines:

• For debugging tasks, see Section 3.6.3.

• For using logging in troubleshooting, see HP TP Desktop Connector for
ACMS Gateway Management Guide.

5.8.1 Using a Debugger to Step Through the Microsoft Windows
Sample Application

To get a better feel for the flow of the nonblocking Desktop application, use a
debugger to step through the Microsoft Windows sample provided on the kit.

Set a breakpoint at the following functions:

• avertz.c

— Search for "IDM_NEW_SESSION", and set a breakpoint at the first C
statement after it.

— Search for "IDM_END_SESSION", and set a breakpoint at the first C
statement after it.

— Search for "IDM_CREATE_RESV", and set a breakpoint at the first C
statement after it.

• session.c

— NewSession

— NewSession_Complete

— SessionTask_Complete

— ExitSession

— ExitSession_Complete

5–26 Using Portable API Extensions for Microsoft Windows

• enablew.c

— acmsdi_enable

• disablew.c

— acmsdi_disable

• transw.c

— acmsdi_transceive

• avertzpp.c

— Trans_List3_List2

— End_Trans_List3_List2

Optionally, you can also set breakpoints to the other presentation
procedures that can be invoked as part of the RESERVE task, for example:

— Trans_List5_List6

— End_Trans_List5_List6

— Trans_List7_List6

— End_Trans_List7_List6

— Trans_List8_List9

— End_Trans_List8_List9

• resvform.c

— Search for "IDOK" in the dialog function, Reserve. Set a breakpoint at
the first C statement after it.

Using Portable API Extensions for Microsoft Windows 5–27

6
Using Portable API Extensions for

OSF/Motif

This chapter describes how to develop nonblocking desktop client programs for
event-driven, multitasking environments such as OSF/Motif and X Windows.

The sample described in this chapter uses X Windows and the OSF/Motif
toolkit. However, the guidelines presented here apply to any X-applications,
including Open Look applications. Chapter 4 gives a useful background in
the Desktop services provided in the portable API. Although the focus in that
chapter is on Microsoft Windows, the basic principles apply to OSF/Motif
and X Windows as well. For information on designing your application with
nonblocking services, see Chapter 2.

For information on configuring network transports for any of the client
platforms, see HP TP Desktop Connector for ACMS Gateway Management
Guide.

6.1 Event-Driven Processing
A Motif desktop client program must yield control to the X Windows system
as quickly as possible so that other event processing can be handled in a
timely way. The following TP Desktop Connector nonblocking services provide
methods to facilitate yielding control:

• acmsdi_dispatch_message

Receives requests and responses from the gateway and dispatches the
corresponding procedures.

• acmsdi_complete_pp

Sends responses to the gateway when presentation procedures complete.

Using Portable API Extensions for OSF/Motif 6–1

Figure 6–1 shows the sequence of processing in an event-driven desktop client
program.

Figure 6–1 Event-Driven Desktop Client Program Processing

Window Events
Nonblocking Desktop

ACMS Task

TP Desktop

User Menu

Legend:
Customer-Written

<event-processing>

<event-processing>

<event-processing>

<event-processing>

<event-processing>

acmsdi_call_task()

acmsdi_dispatch_

acmsdi_transceive()

acmsdi_complete_pp()

completion_routine

acmsdi_dispatch_

Timer Event

Dialog Box

User Presses

Message Box

Timer Event

start task

end task

start
presentation

end
presentation

ACTION IS

END BLOCK

BLOCK

EXCHANGE IS

TAY-0295A-AD

Selection

Displayed

OK Button

Displayed

Code

message

message

Client Program

procedure

procedure

WORK

TRANSCEIVE

Connector
Client Services

6–2 Using Portable API Extensions for OSF/Motif

When the user selects a task from a menu, the desktop client program calls
the acmsdi_call_task service to initiate an ACMS task. In the nonblocking
environment, you specify nonblocking parameters in the call (see Section 9.5).
For example, the address of a completion routine is a nonblocking parameter
that you can include in the desktop client program. The TP Desktop Connector
client service calls the completion routine when the TP Desktop Connector
Gateway for ACMS completes the task. Because the completion routine
parameter is specified in the call, the TP Desktop Connector client service is
treated like a nonblocking service and returns control to the desktop client
program immediately after the start task request is sent to the TP Desktop
Connector gateway. The desktop client program does not wait for the gateway
to request ACMS software to start a task in an ACMS application. Instead,
the desktop client program returns control to XtMainLoop for more event
processing.

The TP Desktop Connector client service also returns a call identification that
the desktop client program supplies to the acmsdi_complete_pp service. The
services use the call identification to associate an active call with a submitter.
Note that TP Desktop Connector supports, at most, one active task for each
submitter.

Because of an exchange step in the I/O task, the ACMS system starts a
transceive operation. The gateway sends a message to the desktop client
program to start a presentation procedure.

The acmsdi_dispatch_message service runs as part of the polling mechanism
established by the desktop client program. The acmsdi_dispatch_message
service polls for the message and, when the message is received, calls the
customer-written presentation procedure acmsdi_transceive. The acmsdi_
transceive routine runs, saves pointers to the workspaces, displays a dialog
box, and returns control to X Windows without the user having to signal
completion.

The user then has an opportunity to edit or add data to a form in the context of
an exchange step. When the user later clicks on OK to signal completion, the
desktop client program uses the saved workspace pointers to store the user-
entered data, and calls the acmsdi_complete_pp service to send the workspaces
and response status to the gateway. (The desktop client program does not wait
for a response from the gateway. It returns control to XtMainLoop as soon as
possible.) Meanwhile, the gateway passes to the ACMS task the workspaces
and the status from the completion of the presentation procedure.

Using Portable API Extensions for OSF/Motif 6–3

When the task completes on the ACMS system, the gateway sends the end
task message to the desktop system. The TP Desktop Connector client
services dispatch the end task message by calling a completion routine in the
desktop client program. This completion routine is dispatched by the polling
mechanism and acmsdi_dispatch_message.

The gateway sends a message to the desktop client program under two
conditions:

• To signal the completion of a TP Desktop Connector client service

The desktop client program supplies the address of completion routines
in the nonblocking forms of the acmsdi_sign_in, acmsdi_call_task, and
acmsdi_sign_out services.

• To process an exchange step in the task

Client services define entry points for presentation procedures that
correspond to all possible exchange steps. The desktop client program
supplies the code that handles these presentation procedures.

The TP Desktop Connector client services dispatch the gateway messages to
the desktop client program by the polling mechanism established.

6.2 Guidelines for Developing X Windows Desktop Client
Programs

The following list summarizes general requirements and guidelines for
developing X Windows nonblocking desktop client programs:

• Write procedures to use nonblocking TP Desktop Connector client services
(see Section 6.4).

Organize functions so that every call to a TP Desktop Connector service
or a customer-written presentation procedure has a parallel completion
routine.

• Set up polling within the desktop client program (see Section 6.4.2).

Set up a mechanism to retrieve desktop messages. Use this mechanism to
periodically gain control and call the acmsdi_dispatch_message service to
retrieve messages from the gateway.

• Establish session context in the desktop client program (see Section 6.4.3).

Set up structures for handling multiple sessions. Certain data must be
maintained as context for a current session and inactive sessions.

6–4 Using Portable API Extensions for OSF/Motif

• Write presentation procedures to coexist in the nonblocking environment
(see Section 6.6).

You must complete all presentation procedures using the
acmsdi_complete_pp service.

• Convert data as required between the desktop system and the ACMS
system (see Section 4.1.3).

Optionally, you can do the following when developing a desktop client program:

• Write an action routine to perform version checking.

The module version.c shows a stub version-checking routine (see
Section 4.3).

The remainder of the chapter explains the guidelines using code from the
AVERTZ sample desktop client program.

6.3 AVERTZ Sample Desktop Client Program for X Windows
The Motif AVERTZ sample desktop client program is written in C and follows
the standards and practices outlined in the OSF/Motif Style Guide. The
program uses a main window, icons, and dialog boxes to interact with the user.

6.3.1 AVERTZ Components for X Windows
A nonblocking X Windows desktop client program has some of the same
high-level components as a blocking Desktop client (see Figure 6–2). Note
the addition of the polling mechanism as well as the application-specific
presentation procedures, which are split into two parts.

The m_avertz.exe program includes the following functional modules:

• m_avertz.c

Contains the main window support routines and the program initialization.

• m_avertzpp.c

Defines all application-specific presentation procedures for the AVERTZ
desktop client program.

• m_resvform.c

Manages the reservation form for interaction with the user in the AVERTZ
reserve task.

Using Portable API Extensions for OSF/Motif 6–5

• m_session.c

Initializes and controls multiple user sign-ins and manages windows, icons,
and menus for multiple user sessions.

• m_disable.c, m_enable.c, m_receive.c, m_request.c, m_send.c, and
m_transceive.c

Handle the generic presentation procedures.

Figure 6–2 TP Desktop Connector Sample Components for X Windows

TP Desktop Connector Client Program

TAY-1005A-AD
Network Link

Legend:
Customer-Written

Client Routines

XT Main Loop

Application-Specific

Generic
Desktop Message

End Application-

TP Desktop Connector Client Services

TP Desktop

Polling Mechanism Presentation
Procedures

Presentation
Procedures

Code

Specific Presentation
Procedures

Connector
Gateway

The desktop client program allows the user to maintain multiple sign-ins with
the AVERTZ application, VR_DA_APPL. The program controls each sign-in by
associating session context with the user sign-in data.

6–6 Using Portable API Extensions for OSF/Motif

The desktop client program user interface presents menus with which the user
interacts to sign in to and out of the ACMS system, run ACMS tasks, and
control sessions:

• Session menu

Signs the user in to and out of the ACMS system.

• Rental menu

Lets the user start tasks.

• Search menu

Allows the user to select site information from a list of available sites.

• Select menu

Allows the user to activate a session through a list of active sessions rather
than by selecting an icon.

Program-defined icons represent sessions. The user can double click on an icon
to bring up forms associated with a specific session. The icons are also visual
clues to active and inactive sessions.

6.3.2 AVERTZ Component Processing Flow
The m_avertz.c module contains the program initialization, XtMainLoop, and
support for the main window. The following important functions are performed:

• main

Initializes the Motif toolkit, registers callbacks, fetches and displays the
main window, and polls for X-events.

• client_init

Sets up the polling mechanism for soliciting TP Desktop Connector
messages.

• CreateReservation

Invoked when the user selects the Create Reservation menu item. Starts
the Reserve task in the ACMS application, VR_DA_APPL, by calling
acmsdi_call_task.

Using Portable API Extensions for OSF/Motif 6–7

The m_session.c module contains the following session creation and control
functions:

• NewSession

Invoked when the user presses the OK button in the session login dialog
box. Creates a new session, signs the user in to the ACMS system with the
acmsdi_sign_in service, and adds the session to the list of active sessions.

• NewSession_Complete

Called when the acmsdi_sign_in service completes. Completes processing
of the NewSession function and updates the user interface accordingly.

• ExitSession and ExitSessionComplete

Ends a session by calling the acmsdi_sign_out service and cleaning up
session data structures.

• SessionTask_Complete

Called when a task for a given session completes. Updates the user
interface accordingly.

The New command in the session menu presents a dialog box to enable the
user to sign in to the ACMS system, thereby creating a new AVERTZ session.
After the user is signed in to the ACMS system, the desktop client program
maintains session information to track, for example, the association between
the form (or forms) of a given session and the corresponding ACMS submitter
identification. The program also activates other menus to allow the signed-in
user to select ACMS tasks. A session can have only one active task at any
given time, but a user can sign in to the ACMS system many times, allowing
multiple tasks to run simultaneously.

Individual modules handle the generic presentation procedures. For example,
m_transceive.c handles the acmsdi_transceive presentation procedure called
from the ACMS system, validates the parameters, and dispatches control to
the appropriate application-specific presentation procedure.

The m_avertzpp.c module handles all application-specific presentation
procedures for the AVERTZ desktop client program. Each presentation
procedure comprises an initial routine, for example, Trans_List3_List2,
and a completion routine, for example, End_Trans_List3_List2. The
generic presentation procedures call the initial routine (the first part of
the presentation procedure), which generally displays the data from the
workspaces sent by the ACMS system and returns. Control returns to
XtMainLoop so that the user can enter and receive data.

6–8 Using Portable API Extensions for OSF/Motif

When the user signals completion (done entering data) for this presentation
procedure, the corresponding completion routine is called. It collects the user-
entered data and sends it to the ACMS system to complete processing of the
presentation procedure.

The m_resvform.c module manages the reservation form for the reserve task,
including field validation and initialization. When the user clicks on the OK or
cancel button in the reservation form, the ResvFormExchangeComplete()
routine dispatches the completion routine of the current presentation
procedure. The following series of figures (Figure 6–3, Figure 6–4, Figure 6–5,
and Figure 6–6) present the flow of a nonblocking service.

Figure 6–3 shows the user selecting the Create Reservation task from the
Rental menu.

Using Portable API Extensions for OSF/Motif 6–9

Figure 6–3 User Selects a Task

DECterm 1

Create Reservation

File Session Rental Search Select

1

2 Button Press

Application Code

43

Event Queue

TAY-0307-AD

Check Out
Check In

main ()
{

initialize ();

XtMainLoop();

}

CreateReservation (widget,
client_data,
call_data)

{
:

}

:

6–10 Using Portable API Extensions for OSF/Motif

The following callouts describe the actions in Figure 6–3:

1 The end user selects the CreateReservation command.

2 The X Windows system indicates this event by sending a ButtonPress event
to the X Windows event queue.

3 In the application’s main() module, XtMainLoop continuously looks at the
X-event queue for incoming events. XtMainLoop pulls the ButtonPress
event off the event queue.

4 XtMainLoop determines that the widget callback registered for this event
is the function CreateReservation(). XtMainLoop then dispatches the
CreateReservation() function in response to the event.

Figure 6–4 shows the flow of code in the nonblocking service.

Using Portable API Extensions for OSF/Motif 6–11

Figure 6–4 Nonblocking Service

2

Client Application Code

6

TAY-0305-AD

:.

:.

End Task

TP Desktop Connector
Message Queue

The VR_RESERVE_TASK Begins

Server Application Code

4

5

3

End Task

1

acmsdi_call_task(Submitter_id,

"VR_RESERVE_TASK",

call_id,
completion status,
session_task_complete
current_session_ptr};

client_init(app_context)
{

XtAppAddTimeOut(app_context,

message_frequency,
check_for_messages,
app_context);

}

}

Check_for_messages()
{

acmsdi_dispatch_message();
XtAppAddTimeOut(app_context,

message_frequency,
check_for_messages,
app_context);

SessionTask_complete (Context)
{
:

}

6–12 Using Portable API Extensions for OSF/Motif

The following callouts describe the flow of code in Figure 6–4:

1 To support nonblocking services, the application sets up a mechanism to
call acmsdi_dispatch_message at periodic intervals. This is normally done
at the application’s initialization time. The client_init() function sets up
the mechanism that periodically calls check_for_messages().

2 Inside the CreateReservation() function, the application initiates the VR_
RESERVE_TASK task by making a call to acmsdi_call_task. To indicate
that this is a nonblocking call, the completion routine parameter is set to
the function pointer, SessionTask_Complete. The application passes the
current_session_ptr as context to be received back when the completion
routine SessionTask_Complete is called.

3 When acmsdi_call_task is invoked, TP Desktop Connector client services
send a Start Task message to the ACMS application. When the ACMS
application receives the message, VR_RESERVE_TASK begins.

4 When VR_RESERVE_TASK completes, TP Desktop Connector services
send an End Task message to the TP Desktop Connector message queue on
the desktop system.

5 Meanwhile, check_for_messages() is being invoked at regular intervals.
When it calls acmsdi_dispatch_message, TP Desktop Connector client
services looks for incoming messages on the message queue. When it
pulls the End Task message off the message queue, it determines that
the completion routine that was specified for this service is SessionTask_
Complete().

6 Then acmsdi_dispatch_message dispatches the function SessionTask_
Complete() in response to the message. The context specified on the
acmsdi_call_task call is passed back as a parameter. The application can
use this application-specific context, for example, to have the user interface
reflect that the task completed.

Figure 6–5 shows the I/O processing of a nonblocking service.

Using Portable API Extensions for OSF/Motif 6–13

Figure 6–5 I/O Processing for a Nonblocking Service/Part 1

Server Application Code

The task begins

Exchange Step

Transceive List3 List2

The Exchange Step
 has Completed

The task ends

1

TAY-0326-AD

Client Application Code

Main()
{
 :
 XtMainLoop;
}

check_for_messages()
{
 acmsdi_dispatch_message();
 return (FALSE);
}

acmsdi_transceive(:
 send_record_id,
 recv_record_id,
 :
 context,
 :
 send_wksps,
 recv_wksps,
 :
)

{
 session_ptr=(session_type *)context;
 if ((send_record_id=="List3") !!
 (recv_record_id=="List2"))
 {
 save_recv_wksp_ptrs_in_session_context(
 session_ptr,
 recv_wksps);
 trans_List3_List2(session_ptr,
 send_wksps);
 }
 :
}

trans_List3_List2(sesion_ptr,
 send_wksps)
{
 session_ptr_current_exchange_step=transList3List2;
 display_form_with_data_sent_from_ACMS
 (send_wksps);
 enable_fields_related_to_trans_list3_list2();
 /* Now control will return to XtMainLoop */
}

3

6

4

5

TP Desktop Connector
Message Queue

2 Start
transceive

The following callouts describe the I/O processing flow for a task that has just
been invoked:

1 In Figure 6–5, the first exchange step of VR_RESERVE_TASK is
Transceive List3 List2. When this exchange step is encountered, an

6–14 Using Portable API Extensions for OSF/Motif

acmsdi_transceive message is sent to the TP Desktop Connector Message
Queue on the desktop system.

2 Meanwhile, acmsdi_dispatch_message() is being called at regular intervals.

3 When TP Desktop Connector pulls the start transceive message off
the message queue, it dispatches the presentation procedure, acmsdi_
transceive().

4 The acmsdi_transceive routine looks at the values of the send_record_id
and the receive_record_id to determine which specific transceive procedure
is being requested. (In Figure 6–5, Transceive_List3_List2 is the specific
transceive procedure specified in the ACMS task, so the send_record_id
is List 3 and the receive_record_id is List 2.) Before leaving the acmsdi_
transceive routine, the application must save the pointers to the receive
workspaces. These pointers are needed later when the application is ready
to load the receive workspaces with the user’s data input.

5 The specific transceive routine Trans_List3_List2() is called.

6 The specific transceive routine puts up a form and enables the fields
associated with this transceive exchange. When this routine completes,
control returns to XtMainLoop().

Figure 6–6 shows the form displayed by the Trans_List3_List2() routine.

Using Portable API Extensions for OSF/Motif 6–15

Figure 6–6 I/O Processing for a Nonblocking Service/Part 2

Avertz Reservation Form

TAY-0327-AD

Application Code Cont..

End_trans_List3_List2 (button_pressed)
{
 Get_recv_wksp_ptrs_from_session_context(
 session_ptr,
 recv_wksps);
 load_wksps_with_data_from_form (recv_wksps);
 acmsdi_complete_pp (FORMS_NORMAL);
}

Site ID: Site Name:
Car Type: Pickup Date:

Rates:
Daily: Weekly: Monthly:

Customer ID:
Name:

Address:

City:
Country:
Phone *:

License *:
Credit Card:

State:
Zip Code:

State: Country:
Credit Card *:

Return Date:

Reservation *

Last Name First Name MI

OK Cancel
Button Press

Client Application Code

Main()

Server Application Code

The task begins

Exchange Step

Transceive List3 List2

The Exchange Step
 has Completed

The task ends

5

6

12

7
8

3

Event Queue

4

{
:

XTMainLoop;
}

6–16 Using Portable API Extensions for OSF/Motif

The following callouts described the processing in Figure 6–6:

1 The user enters data into various fields of the form, and when finished
entering data, the user clicks on the OK button.

2 X Windows puts this ButtonPress event on the X-event queue.

3 XtMainLoop() pulls the ButtonPress event off the event queue.

4 XtMainLoop() determines that the callback registered for this event is in
the function End_Trans_List3_List2().

5 An intermediate routine called ResvFormExchange Complete is invoked. It
determines which specific presentation procedure is completing.

6 In End_Trans_List3_List2, the pointers to the receive workspaces are
retrieved (the application stored them away at the beginning of the
transceive processing). See Figure 6–5, Callout 4. The user’s data input is
retrieved from the form and loaded into the receive workspaces.

7 When the receive workspaces are ready to be sent back to ACMS, the
application notifies the Desktop client services by issuing a call to acmsdi_
complete_pp().

8 TP Desktop Connector then sends the workspaces and a completion status
back to the ACMS application.

6.4 Writing Client Procedures Using Nonblocking Services
The following sections describe how to structure procedures that use
nonblocking services.

6.4.1 Calling Nonblocking Services
Nonblocking forms of the services have the following differences from blocking
forms:

• The routine calling the desktop service supplies the address of a completion
routine, the context, and the completion status in the service call.

When TP Desktop Connector receives the call-completion message from the
gateway, TP Desktop Connector calls the desktop client program completion
routine.

• The TP Desktop Connector client service returns control to the desktop
client program after sending a request to the gateway.

This return allows the desktop client program to yield control to X
Windows, so that event processing can continue.

Using Portable API Extensions for OSF/Motif 6–17

• Because the nonblocking services return control before a request completes,
the desktop client program must not release storage for service argument
data until after it calls the completion routine.

If the calling routine returns before the service completes, the routine
must not use volatile memory for service arguments. For example, in the
C language, volatile memory includes local (automatic) variables and the
arguments passed on routine calls.

The desktop client program periodically calls acmsdi_dispatch_message()
to check for pending replies or requests from the gateway. When the client
service completion message arrives, the acmsdi_dispatch_message() calls the
completion routine in the desktop client program.

Example 6–1 shows the calls in the m_session.c module to the acmsdi_sign_in
service that creates a new session, and to the companion completion routine
NewSession_Complete that completes the service.

Example 6–1 Nonblocking Service Call and Completion Routine

extern void NewSession(
Widget widget,
int *client_data,

XtPointer call_data)
{

.

.

.

status = acmsdi_sign_in(
session_ptr->node,
session_ptr->username,
session_ptr->password,
(long) 0,
session_ptr->submitter_id,
&session_ptr->completion_status,
NewSession_Complete, 1
(void *) session_ptr);

if (status == ACMSDI_PENDING) 2
{

.

.

.
extern void NewSession_Complete(void *call_context) 3

(continued on next page)

6–18 Using Portable API Extensions for OSF/Motif

Example 6–1 (Cont.) Nonblocking Service Call and Completion Routine

{
session_type *session_ptr;
Widget session_icon;
int i;

/* Get Session Node For This Sign In Completion */

session_ptr = (session_type *) call_context;

/*
** Check ACMS Return Status
** - If failure occurred, put up the error message and
** delete session from session list.
*/

if (session_ptr->completion_status != ACMSDI_NORMAL)
{
DisplayDesktopErrorMessage(session_ptr, session_ptr->completion_status);

delete_session_context(session_ptr);

}
else
{

.

.

.

The acmsdi_sign_in service call is triggered by the user selecting the OK
button in the New Session dialog box:

1 The call specifies the completion routine address.

Specifying the completion routine NewSession_Complete indicates a
nonblocking service.

2 The desktop client program checks for ACMSDI_PENDING to ensure that
the call is sent to the ACMS system.

The user at this point is not signed in to the ACMS system. If a status
other than ACMSDI_PENDING is returned, the completion routine is not
called.

3 When the sign-in completes, the completion message arrives and the
desktop service calls the completion routine to handle the status.

Using Portable API Extensions for OSF/Motif 6–19

After the acmsdi_sign_in service returns ACMSDI_PENDING, the desktop
client program receives a submitter identification that is used on subsequent
calls. If a nonblocking call to a TP Desktop Connector client service routine
returns a status code other than ACMSDI_PENDING, the completion routine
for that call is not invoked.

6.4.2 Setting Up Polling
In a nonblocking environment, the desktop client program must initiate a
control mechanism to poll for pending ACMS messages. To set up polling, the
desktop client program does the following:

• Activates a control mechanism when the desktop client program starts up

• Has the control mechanism call the acmsdi_dispatch_message service
periodically

The acmsdi_dispatch_message service polls for messages from the gateway
and calls the appropriate customer-supplied completion routine or presentation
procedure, depending on the type of TP Desktop Connector message received.

Example 6–2 illustrates how to set up polling using a timer event.

Example 6–2 Setting Up Polling Using a Timer Event

/**
FUNCTION: client_init

SUMMARY: Initiates timer mechanism to handle incoming Desktop messages.
**/

static void client_init(XtAppContext app_context) 1
{

/*
** Initiate a timer event to call check_for_messages() after a
** specified delay (MESSAGE_CHECK_FREQUENCY). The check_for_messages()
** routine will then call acmsdi_dispatch_message to process any
** incoming Desktop messages (this includes End-Of-Desktop-Service
** messages and presentation procedure invocation messages).
*/

DesktopMessageTimer = XtAppAddTimeOut(app_context,
MESSAGE_CHECK_FREQUENCY,
check_for_messages,
app_context);

}

(continued on next page)

6–20 Using Portable API Extensions for OSF/Motif

Example 6–2 (Cont.) Setting Up Polling Using a Timer Event

/**
FUNCTION: check_for_messages

SUMMARY: Checks for incoming Desktop messages using the
TP Desktop Connector client service, acmsdi_dispatch_message().

COMMENTS: This routine is invoked as a result of a timer event
and it is responsible for setting the timer to call
itself again.

**/

static void check_for_messages(XtAppContext app_context) 2
{

int status;

/*
** Dispatch any incoming TP Desktop Connector messages:
** If there is a service completion message, a completion
** routine for that service will be dispatched. If there
** is a start exchange step message, a corresponding
** presentation procedure will be dispatched. If there
** are no pending Desktop messages, acmsdi_dispatch_message()
** will return immediately.
*/

status = acmsdi_dispatch_message(); 3

if (status != ACMSDI_NORMAL)
printf("Warning! Error status code (%d) received on ACMSDI_DISPATCH_MESSAGE.\n",

status);

/*
** Reset the timer that calls check_for_messages()
*/

DesktopMessageTimer = XtAppAddTimeOut(app_context,
MESSAGE_CHECK_FREQUENCY,
check_for_messages,
app_context);

}

Example 6–2 shows the following steps from the module m_avertz.c.

1 The function client_init establishes the control mechanism (see 3).

2 The client_init routine initiates a timer-driven callback routine, check_for_
messages, which X Windows invokes after a specified period of time.

Using Portable API Extensions for OSF/Motif 6–21

3 The acmsdi_dispatch_message routine polls for gateway messages to be
passed to the desktop client program.

To notify the desktop client program that a TP Desktop Connector message
from the gateway is pending, the acmsdi_dispatch_message service calls a
customer-supplied completion routine or a generic presentation procedure.

6.4.3 Establishing Session Context
In a nonblocking environment, saving session context globally serves two
purposes. First, it saves the local data for reuse. Second, it allows the desktop
client program to deal with message passing between the desktop system and
the ACMS system when there are single or multiple sign-ins. Also, saving
session context globally gives you a convenient place to store session-related
user interface data such as form IDs and icon IDs.

In the AVERTZ desktop client program, a user can sign in to a ACMS system
in one window and initiate a task from another window. The AVERTZ desktop
client program establishes context and maintains the context as session data
across service calls and presentation procedures. Example 6–3 shows the
definition of data in the session.h file that keeps track of sign-in context.

Example 6–3 AVERTZ Session Context

extern enum request_type {
NO_OUTSTANDING_TASK,
TASK_IN_PROGRESS,
SEND_CTRL_RESV_LIST,
SEND_VR_CONTROL_WKSP,
TRANS_LIST_3_LIST_2,
TRANS_LIST_5_LIST_6,
TRANS_LIST_7_LIST_6,
TRANS_LIST_8_LIST_9,
TRANS_VRH_RCLIST_VRH_RESV_LIST,
TRANS_VR_CTRL_WKSP_LIST_D,
TRANS_LIST_E_LIST_F,
TRANS_LIST_F_LIST_F,
TRANS_LIST_G_LIST_H};

.

.

.
typedef struct {

enum request_type request_id;
char *receive_control_text;

(continued on next page)

6–22 Using Portable API Extensions for OSF/Motif

Example 6–3 (Cont.) AVERTZ Session Context
long *receive_control_text_count;
ACMSDI_FORM_RECORD *receive_record;

} exchange_request_type;

typedef struct {
ACMSDI_SUBMITTER_ID *submitter_id; 1
int session_id;
ACMSDI_CALL_ID *call_id; 2
char node[MAX_NODE_LENGTH];
char username[MAX_USERNAME_LENGTH];
char password[MAX_PASSWORD_LENGTH];
Widget session_icon;
Widget icon_pixmap;
Widget session_menu_item;

Widget resv_form;
Widget resv_form_ids[MAX_RESV_FORM_IDS];
Widget vehicle_form;
Widget billing_form;
exchange_request_type *current_exchange_request; 3

int completion_status; 4

char task_status_message[80]; 5
List message_boxes;

} session_type;

The following context data is required for a session:

1 submitter ID Returned from the ACMS system at sign-in time

2 call ID Returned by the acmsdi_call_task service

3 current exchange request Needed if the program uses the same form for
different exchange steps

4 completion status Updated by the TP Desktop Connector client service
when the task completes

5 task status message Updated by the TP Desktop Connector client service
when the task completes

The session_type structure enables the desktop client program to access data
related to a sign-in session when a Windows operation occurs. The variables
submitter_id, call_id, completion_status, and task_status_message are allocated
by the desktop client program and updated by TP Desktop Connector client
services. The value of the completion_status is updated just before the TP
Desktop Connector client services call the completion routine.

Using Portable API Extensions for OSF/Motif 6–23

The session context structure can also be a useful place to maintain widget IDs
of user interface objects related to a session. In the sample, the session context
includes widget IDs for the session icon, the session’s menu entry in the select
menu, widget IDs for all the forms associated with the session, and all the
fields in those forms, as well as all message boxes.

The m_avertz program passes the session context to the acmsdi_call_task
service as the call_context parameter. Whenever the TP Desktop Connector
client services call a task completion routine or a presentation procedure on
behalf of an active ACMS task, the session context is passed to the desktop
client program. For example, you can use a session context to determine which
form in an application to update with data from an incoming presentation
procedure. Example 6–4 shows an example in the m_avertz.c code where the
session context is passed.

Example 6–4 Context Passed to Desktop Client Program
.
.
.
status = acmsdi_call_task(

current_session_ptr->submitter_id,
NULL,
"VR_RESERVE_TASK",
AVERTZ_APPLICATION_NAME,
NULL,
current_session_ptr->task_status_message,
0,
NULL,
current_session_ptr->call_id,
&(current_session_ptr->completion_status),
SessionTask_Complete,
(void *) current_session_ptr); 1

.

.

.

The parameter at 1 specifies the session context to be passed. When a
presentation procedure later starts as a result of the ACMS task executing, the
session context is passed back to the desktop client program, as shown in the
m_transceive.c code in Example 6–5.

The desktop client program can use that context to determine which form
to deal with. The session context is also useful for determining which
presentation procedure is in progress or is ending, and which workspaces
are affected (see Section 5.5).

6–24 Using Portable API Extensions for OSF/Motif

Example 6–5 Call Context Returned with Presentation Procedure

long int acmsdi_transceive(ACMSDI_FORMS_SESSION_ID *session_id,
.
.
.

ACMSDI_CALL_ID *call_id,
void *call_context,
ACMSDI_FORM_RECORD *send_records,
ACMSDI_FORM_RECORD *recv_records)

{
session_type *session_ptr = (session_type *) call_context;

.

.

.

The sample m_session.c code in Example 6–6 shows how session context is
used to establish context for the user interface when the user selects a session
icon.

The session_type structure contains the information about the form to display
for that submitter.

Example 6–6 Session Context Handling for the User Interface

extern void select_new_session(
session_type *new_session)

{
session_type *former_current_session_ptr = current_session_ptr;

current_session_ptr = new_session;

/*
** If the session that was selected was the current session anyway,
** then there is no need to make any updates to the UI, so return.
*/

if (current_session_ptr == former_current_session_ptr)
return;

(continued on next page)

Using Portable API Extensions for OSF/Motif 6–25

Example 6–6 (Cont.) Session Context Handling for the User Interface

/*
** Hide any forms that are displayed for the former current session
*/

if (former_current_session_ptr != NULL)
close_session(former_current_session_ptr);

/*
** Redraw the icons of the former and new current session
*/

if (former_current_session_ptr != NULL)
redraw_session_icon(former_current_session_ptr);

redraw_session_icon(current_session_ptr);
/*
** The current session is designated in the ’Select’ menu
** with a shaded diamond.
**
** Remove the shaded diamond from the menu entry of the former
** current session and add the shaded diamond to the menu entry
** of the new current session.
*/

if (former_current_session_ptr != NULL)
UncheckSessionInSelectMenu (former_current_session_ptr->session_menu_item);

CheckSessionInSelectMenu (current_session_ptr->session_menu_item);

/*
** Determine which menus, menu items must be enabled and disabled
*/

if ((current_session_ptr->
current_exchange_request)->
request_id == NO_OUTSTANDING_TASK)

{
EnableSessionExit();
EnableRentalMenu();
DisableSearchMenu();

}
else

(continued on next page)

6–26 Using Portable API Extensions for OSF/Motif

Example 6–6 (Cont.) Session Context Handling for the User Interface

{
DisableSessionExit();
DisableRentalMenu();
if ((current_session_ptr->
current_exchange_request)->request_id == TRANS_LIST_3_LIST_2)

EnableSearchMenu();
else

DisableSearchMenu();
}

}

6.4.4 Writing a Call to Other Nonblocking Services
A call to the nonblocking acmsdi_call_task or acmsdi_sign_out service must
follow the rules described for other nonblocking services (see Section 5.4.1).
The calling routine specifies the submitter identification returned from
the acmsdi_sign_in service. The acmsdi_call_task service returns a call
identification and call context that are used in any completion routine (see
HP TP Desktop Connector for ACMS Client Services Reference Manual),
presentation procedure, or acmsdi_complete_pp service call.

6.5 Canceling Tasks
TP Desktop Connector allows client programs, written with nonblocking
services, to cancel active tasks running on the gateway node. Being able to
cancel active tasks allows you to create applications that provide a CANCEL
function for the user. The main advantage of being able to cancel a task is
to permit the user to work on other applications, if the response from the
gateway is not immediate. For example, if the user starts a transaction on the
database, you can display three buttons in the dialog box:

• OK — To start the transaction

• ABORT — To abort the dialog without starting any task

• CANCEL — To cancel the task after it has been started

This functionality is available through the portable API client service acmsdi_
cancel. See HP TP Desktop Connector for ACMS Client Services Reference
Manual for a description of this client service.

Using Portable API Extensions for OSF/Motif 6–27

You cannot use a cancel service in exchange steps. If you call a cancel during a
presentation procedure, TP Desktop Connector returns the message "ACMSDI_
EXCHACTV". If you issue a cancel while another cancel is already in progress,
TP Desktop Connector returns the message "ACMSDI_CANCELACTV". The
cancel completion routine is guaranteed to be called before the task completion
routine.

6.6 Writing Nonblocking Presentation Procedures
Writing a presentation procedure in a nonblocking environment differs from
writing presentation procedures in a blocking environment. A nonblocking
presentation procedure does the following:

• Performs its processing and yields control to X Windows before the user
signals completion

In a blocking environment, the desktop client program waits for completion.

• Signals its completion and passes completion status to the desktop gateway
using a TP Desktop Connector service, acmsdi_complete_pp

In a blocking environment, the desktop client program can wait for task
completion status.

In a nonblocking environment, presentation procedures are generally divided
as follows:

• Initial routine that displays data on the screen

• Processing that releases control to X Windows so that the user can interact
with the form

• Completion routine that gathers the user-entered data upon the completion
signal and calls the acmsdi_complete_pp service to pass status and data
back to the gateway

Typically, the initial and completion routines are separate, so that data can be
obtained from the user. If user action is not required as, for example, in a stub
routine, the initial routine can call the acmsdi_complete_pp service, and the
completion routine is not necessary.

Example 6–7 shows pseudocode from several modules in the AVERTZ sample
desktop client program to indicate the flow of processing a presentation
procedure.

6–28 Using Portable API Extensions for OSF/Motif

Example 6–7 Nonblocking Presentation Procedure Pseudocode

long int acmsdi_transceive(ACMSDI_FORMS_SESSION_ID *session_id, 1
char *send_record_id,
long send_record_count,
char *recv_record_id,
long recv_record_count,
char *recv_ctl_text,
long *recv_ctl_text_count,
char *send_ctl_text,
long send_ctl_text_count,
short timeout,
ACMSDI_CALL_ID *call_id,
void *call_context,
ACMSDI_FORM_RECORD *send_records,
ACMSDI_FORM_RECORD *recv_records)

{

session_type *session_ptr = (session_type *) call_context; 2
.
.
.
if ((0 == strcmp (send_record_id, "LIST_3")) &&

(0 == strcmp (recv_record_id, "LIST_2")))
.
.
.

/*
** Save Pointers To Exchange Step’s Receive Data
** And Call Presentation Procedure
*/

save_sessions_PP_data_ptrs(3
session_ptr,
recv_ctl_text,
recv_ctl_text_count,
recv_records);

sts = Trans_List3_List2 (4
session_ptr,
send_ctl_text, /** VR_SENDCTRL_WKSP **/
send_records[0].data_record, /** VR_CONTROL_WKSP **/
send_records[1].data_record, /** VR_SITES_WKSP **/
recv_records[0].data_record, /** VR_SITES_WKSP **/
recv_records[1].data_record, /** VR_RESERVATIONS_WKSP **/
recv_records[2].data_record, /** VR_CUSTOMERS_WKSP **/
recv_records[3].data_record /** VR_CONTROL_WKSP **/

);

(continued on next page)

Using Portable API Extensions for OSF/Motif 6–29

Example 6–7 (Cont.) Nonblocking Presentation Procedure Pseudocode

}
int Trans_List3_List2 (5

session_type *session_ptr,...)
{

.

.

.
enable_initial_fields(session_ptr->resv_form);

enable_resv_push_buttons(session_ptr->resv_form);

return(FORMS_NORMAL); 6
}

.

.

.
return (ts); 7

}

The code shown in Example 6–7 does the following:

1 The desktop client program is called at the acmsdi_transceive interface.

The reserve task in the VR_DA_APPL application triggers an exchange
step. Refer to the reserve task code shown in Example 4–4 for places
where presentation procedures are called. The acmsdi_transceive generic
presentation procedure defined in m_transceive.c is called through the
polling mechanism. The workspaces from the ACMS system are passed to
the AVERTZ desktop client program.

2 The procedure establishes the session context by doing a type conversion
on the call context value.

The acmsdi_transceive function parses the workspaces to determine which
application-specific presentation procedure to call.

3 The program saves the addresses of the write and modify arguments.

4 The generic presentation procedure acmsdi_transceive calls the application-
specific presentation procedure Trans_List3_List2.

5 The Trans_List3_List2 function defined in the m_avertzpp.c module gains
control to solicit data from the user.

The routine creates the dialog box and displays the data passed in the
workspaces.

6 Control returns to the acmsdi_transceive function.

6–30 Using Portable API Extensions for OSF/Motif

After the data to display is sent to the dialog box, control is returned to the
generic function.

7 Control returns to X Windows.

The desktop client program allows event processing for other activities to
continue.

At this point, the user can enter data in the dialog box and the desktop client
program no longer has control.

To signal that data entry is complete and to pass status back to the gateway,
the user clicks on the OK button in the dialog box some time after the desktop
client program yields control to X Windows. Example 6–8 shows the processing
in the m_resvform.c module when the user either signals completion or cancels
the operation.

Example 6–8 Presentation Procedure Completion Pseudocode

extern void ResvFormExchangeComplete (1
Widget widget,

int *client_data,
XtPointer call_data)

{
int button_pressed = *client_data;

exchange_request_type *exchange_request =
current_session_ptr->current_exchange_request;

switch (exchange_request->request_id) { 2

.

.

.
case TRANS_LIST_3_LIST_2 : 3
End_Trans_List3_List2(current_session_ptr,

button_pressed);
break;

.

.

.
}

void End_Trans_List3_List2(4
session_type *session_ptr,
int button_pressed)

(continued on next page)

Using Portable API Extensions for OSF/Motif 6–31

Example 6–8 (Cont.) Presentation Procedure Completion Pseudocode

{
.
.
.
receive_record = (session_ptr->current_exchange_request)->receive_record;

sites_wksp = (vr_sites_wksp *) (receive_record[0].data_record);
reservations_wksp = (vr_reservations_wksp *) (receive_record[1].data_record);
customers_wksp = (vr_customers_wksp *) (receive_record[2].data_record);
control_wksp = (vr_control_wksp *) (receive_record[3].data_record);
.
.
.
acmsdi_complete_pp(session_ptr->call_id, FORMS_NORMAL); 5

create_session_message(
session_ptr,
AvertzMainWindow,
"Reservation Data Has Been Submitted. \nWait For Return Data...",
" ",
XmDIALOG_WORKING,
NULL,
NULL);

.

.

.

} 6

6–32 Using Portable API Extensions for OSF/Motif

The code in Example 6–8 does the following:

1 X Windows passes a message to the desktop client program when the user
clicks on the OK button in the dialog box.

The reserve function in resvform.c parses the X Windows command and
determines which presentation procedure completion routine to call, based
on the current exchange request saved for the current session.

2 The session context determines which presentation procedure is
completing.

3 The desktop client program calls the second part of the presentation
procedure.

Based on the pending exchange request, the reserve function calls the
routine End_Trans_List3_List2 in m_avertzpp.c.

4 The End_Trans_List3_List2 routine gains control.

Using the pointers to workspaces saved when the presentation procedure
began, the routine collects new data entered from the dialog box. The
session context is passed along to the application-specific presentation
procedure completion routine. The completion routine can determine
which workspaces to update and which call identification to pass to the
acmsdi_complete_pp service.

5 The End_Trans_List3_List2 routine sends the updated arguments to the
gateway.

To send a reply to the gateway, the routine calls the acmsdi_complete_
pp service, specifying an OpenVMS completion status and the call
identification that the TP Desktop Connector client services passed into the
program.

6 Control returns to X Windows.

6.7 Special Handling of Workspaces for RISC Client
Applications

The RISC architecture for Alpha or I64 systems requires that data references
be naturally aligned. That is, short words (2 bytes) must be on an even
byte boundary. Long words (4 bytes) must be accessed on a boundary evenly
divisible by 4.

When an Alpha or an I64 Client defines a C structure, it creates padding
in the structure, if necessary, to ensure that each field complies with these
requirements. (The padding is not visible to you.)

Using Portable API Extensions for OSF/Motif 6–33

An ACMS task running on either an OpenVMS Alpha or an OpenVMS I64
system, however, does not impose such restrictions on its data objects and
does not pad its structures. The problem arises when data, defined on one of
these machines, is transmitted across the network to the other machine, and
interpreted using the same C structure definitions. In a TP Desktop Connector
application, this is a concern only when ACMS workspaces are being sent (in
either direction) between the client program on a RISC machine and the ACMS
application (OpenVMS).

Example 6–9 shows how a sample application client program deals with
incoming workspaces (or send records). Before calling the application-specific
presentation procedure (Trans_List3_List2), the generic presentation procedure
(acmsdi_transceive) dynamically allocates structures for all the incoming
workspaces (the send_records array).

The data in the send_records array is byte copied field by field into the newly
allocated workspaces (load_control_wksp()). These workspaces are then passed
to Trans_List3_List2, where their contents are used to update the display.
Once Trans_List3_List2() returns, acmsdi_transceive() assumes that the
workspaces it dynamically allocated are no longer needed and it frees them.

Example 6–9 OpenVMS to RISC Structure Byte Copy

void load_control_wksp(
vr_control_wksp *control_wksp,

char *data_ptr)
{

memcpy(&control_wksp->ctrl_key,
data_ptr,
sizeof(control_wksp->ctrl_key));

data_ptr = data_ptr + sizeof(control_wksp->ctrl_key);

memcpy(&control_wksp->current_entry,
data_ptr,
sizeof(control_wksp->current_entry));

data_ptr = data_ptr + sizeof(control_wksp->current_entry);
.
.
.

}

(continued on next page)

6–34 Using Portable API Extensions for OSF/Motif

Example 6–9 (Cont.) OpenVMS to RISC Structure Byte Copy
long int acmsdi_transceive(ACMSDI_FORMS_SESSION_ID *session_id,

char *send_record_id,
long send_record_count,
char *recv_record_id,
long recv_record_count,
char *recv_ctl_text,
long *recv_ctl_text_count,
char *send_ctl_text,
long send_ctl_text_count,
short timeout,
ACMSDI_CALL_ID *call_id,
void *call_context,
ACMSDI_FORM_RECORD *send_records,

ACMSDI_FORM_RECORD *recv_records)
{

.

.

.
if ((0 == strcmp (send_record_id, "LIST_3")) &&

(0 == strcmp (recv_record_id, "LIST_2")))
{
.
.
.

/*
** Create the send workspace structures and load their
** fields with the data in the send_records array.
*/

vr_control_wksp *send_control_wksp =
(vr_control_wksp *) malloc(sizeof(vr_control_wksp));

vr_sites_wksp *send_sites_wksp =
(vr_sites_wksp *) malloc(sizeof(vr_sites_wksp));

load_control_wksp(send_control_wksp,
(char *) send_records[0].data_record);

load_sites_wksp(send_sites_wksp,
(char *) send_records[1].data_record);

(continued on next page)

Using Portable API Extensions for OSF/Motif 6–35

Example 6–9 (Cont.) OpenVMS to RISC Structure Byte Copy

sts = Trans_List3_List2 (
session_ptr,
send_ctl_text, /** VR_SENDCTRL_WKSP **/
send_control_wksp, /** VR_CONTROL_WKSP **/
send_sites_wksp, /** VR_SITES_WKSP **/
recv_records[0].data_record, /** VR_SITES_WKSP **/
recv_records[1].data_record, /** VR_RESERVATIONS_WKSP **/
recv_records[2].data_record, /** VR_CUSTOMERS_WKSP **/
recv_records[3].data_record);/** VR_CONTROL_WKSP **/

free(send_control_wksp);
free(send_sites_wksp);

}

.

.

.
}

Example 6–10 shows how a client deals with outgoing workspaces (or receive
records). In the sample application, the workspaces are not allocated until it is
time to pull the data off the form. In the presentation procedure’s completion
routine, End_Trans_List3_List2(), the structures for all the presentation
procedure’s outgoing workspaces (receive records) are allocated. They are then
initialized to guarantee that string fields are padded with blanks.

These structures are then loaded with data retrieved from the form. When
the data retrieval is complete, the contents of the structure are byte copied
field by field to the receive_records array (unload_control_wksp()). (This
receive_records array is the same receive_records array that was originally
passed into the acmsdi_transceive() routine.) Finally, the application calls
acmsdi_complete_pp to send the contents of the receive_records array back to
the ACMS application.

Example 6–10 RISC to OpenVMS Structure Byte Copy

void unload_control_wksp(
vr_control_wksp *control_wksp,
char *data_ptr)

{

(continued on next page)

6–36 Using Portable API Extensions for OSF/Motif

Example 6–10 (Cont.) RISC to OpenVMS Structure Byte Copy

memcpy(data_ptr,
control_wksp->ctrl_key,
sizeof(control_wksp->ctrl_key));

data_ptr = data_ptr + sizeof(control_wksp->ctrl_key);

memcpy(data_ptr,
&(control_wksp->current_entry),
sizeof(control_wksp->current_entry));

data_ptr = data_ptr + sizeof(control_wksp->current_entry);

.

.

.
}

void End_Trans_List3_List2(
session_type *session_ptr,
int button_pressed)

{

receive_record = (session_ptr->current_exchange_request)->receive_record;

sites_wksp = (vr_sites_wksp *) malloc(sizeof(vr_sites_wksp));
reservations_wksp =

(vr_reservations_wksp *) malloc(sizeof(vr_reservations_wksp));
customers_wksp = (vr_customers_wksp *) malloc(sizeof(vr_customers_wksp));
control_wksp = (vr_control_wksp *) malloc(sizeof(vr_customers_wksp));
if(((int) sites_wksp == NULL) ||

((int) reservations_wksp == NULL) ||
((int) customers_wksp == NULL) ||
((int) control_wksp == NULL))

{
DisplayWarningBox(

AvertzMainWindow,
"Application Has Run Out Of Memory. \n\nUnable To Continue.",
"WARNING!!");

return;
}

/*
** Initialize all the workspace fields (set all the
** characters in the character arrays to blanks, etc.).
*/
init_sites_wksp(sites_wksp);
init_reservations_wksp(reservations_wksp);
init_customers_wksp(customers_wksp);
init_control_wksp(control_wksp);

(continued on next page)

Using Portable API Extensions for OSF/Motif 6–37

Example 6–10 (Cont.) RISC to OpenVMS Structure Byte Copy
.
.
.
data_missing = get_initial_fields(session_ptr->resv_form,

sites_wksp,
reservations_wksp,
customers_wksp);

.

.

.
if (!data_missing)
{
.
.
.

/*
** Move the data collected in the workspace structures
** to the location of the original receive records
*/

unload_sites_wksp(sites_wksp, receive_record[0].data_record);
unload_reservations_wksp(reservations_wksp,

receive_record[1].data_record);
unload_customers_wksp(customers_wksp, receive_record[2].data_record);
unload_control_wksp(control_wksp, receive_record[3].data_record);

.

.

.

acmsdi_complete_pp(session_ptr->call_id, FORMS_NORMAL);

}
free(sites_wksp);
free(reservations_wksp);
free(customers_wksp);
free(control_wksp);

}

6.8 Writing Memory Allocation Routines
The desktop client program allocates and manages memory while coexisting
with the TP Desktop Connector client services and other software on the
desktop platform. By default, the TP Desktop Connector client services
use malloc() and free(). However, you do not need to use these services for
environments other than Windows. The TP Desktop Connector client services
permit you to specify your own allocation and free routines for message

6–38 Using Portable API Extensions for OSF/Motif

buffers. These are passed in to TP Desktop Connector client services using the
options parameter on the acmsdi_sign_in call by specifying the ACMSDI_OPT_
MALLOC_ROUTINE and ACMSDI_OPT_FREE_ROUTINE options (see HP
TP Desktop Connector for ACMS Client Services Reference Manual).

6.9 Building and Debugging Motif Desktop Client Programs
For guidelines for building TP Desktop Connector client programs for
OpenVMS and Tru64 UNIX, see the makefiles in the appropriate directory for
your platform.

6.9.1 Debugging the Nonblocking Desktop Client Program with Tasks
Debug the presentation code on the desktop system. When the presentation
code runs, debug the desktop client program with the ACMS software. Follow
these guidelines:

• For debugging tasks, see Section 3.6.3.

• For using logging in troubleshooting (see HP TP Desktop Connector for
ACMS Gateway Management Guide).

6.9.2 Using a Debugger to Step Through the Motif Sample Application
To get a better feel for the flow of a nonblocking Desktop application, use a
debugger to step through the Motif sample provided on the kit. Set breakpoints
in the various files at the following functions:

• m_avertz.c

— CreateReservation

• m_session.c

— NewSession

— NewSession_Complete

— SessionTask_Complete

— ExitSession

— ExitSession_Complete

• m_enable.c

— acmsdi_enable

• m_disable.c

— acmsdi_disable

Using Portable API Extensions for OSF/Motif 6–39

• m_transceive.c

— acmsdi_transceive

• m_avertzpp.c

— Trans_List3_List2

— End_Trans_List3_List2

Optionally, you can also set breakpoints to the other presentation
procedures that can be invoked as part of the RESERVE task, for example:

— Trans_List5_List6

— End_Trans_List5_List6

— Trans_List7_List6

— End_Trans_List7_List6

— Trans_List8_List9

— End_Trans_List8_List9

• m_resvform.c

— ResvFormExchangeComplete

6–40 Using Portable API Extensions for OSF/Motif

7
Forced Nonblocking Extension to the

Portable API

This chapter describes how to use the forced nonblocking feature of TP Desktop
Connector client services to create applications using presentation packages
such as Visual Basic.

The topics in this chapter are:

• Benefits of forced nonblocking

• Portable API extensions

• ACMSDI_FORM_RECORD_BIND structure

• ACMSDI_WORKSPACE_BIND structure

• Structures declared in memory

• Forced nonblocking flow of control

• Forced nonblocking sample application

7.1 Benefits of Forced Nonblocking
Certain desktop application development tools, such as Visual Basic, cannot
handle ACMS exchange steps, because these tools do not support callbacks
from environments such as the C language. Because these tools do not support
pointer types, they cannot accept arguments that are passed by reference,
such as form records. TP Desktop Connector exchange step callbacks expect
the called presentation procedures to accept arguments that are passed by
reference. The TP Desktop Connector portable API nonblocking execution is
activated by passing the address of a completion routine to the acmsdi_call_
task service.

Forced Nonblocking Extension to the Portable API 7–1

The TP Desktop Connector portable API has been extended to support both
exchange steps and nonblocking execution of task calls for development tools
that do not support pointer data types, or whose memory management routines
relocate data. In addition, the extension to the portable API allows support of
acmsdi_cancel service, which must be issued in a nonblocking environment.
The extension to the portable API provides a way for these tools to obtain a
pointer (a 32-bit integer) to their workspace buffers using the acmsdi_return_
pointer service.

7.2 Portable API Extensions for Forced Nonblocking
The extensions to the portable API are:

• ACMSDI_OPT_NONBLK option type

An ACMSDI_OPTION type associated with the acmsdi_sign_in service,
this option type indicates that all calls issued for the session being created
are to be nonblocking, even though no completion address is supplied. The
session created is known as a forced nonblocking session.

When the session is a forced nonblocking session, all calls are nonblocking
even though you do not specify a completion address. Forced nonblocking
sessions do not require a completion address. In fact, if you specify a
completion address when specifying ACMSDI_OPT_NONBLK, you cause
an error condition.

• acmsdi_poll service

This client service returns one of the values in the following table:

Table 7–1 Values Returned from acmsdi_poll

Value Description

ACMSDI_CANCEL_DONE Task cancel call complete.

ACMSDI_DONE Sign-in, sign-out, or task call complete.

ACMSDI_ENABLE_EXCH Enable exchange step has arrived.

ACMSDI_EXEC Call still executing; no message available.

ACMSDI_READY No call executing; no message available.

ACMSDI_RECV_EXCH Receive exchange step has arrived.

(continued on next page)

7–2 Forced Nonblocking Extension to the Portable API

Table 7–1 (Cont.) Values Returned from acmsdi_poll

Value Description

ACMSDI_REQUEST_EXCH TDMS request exchange step has arrived.

ACMSDI_SEND_EXCH Send exchange step has arrived.

ACMSDI_TDMS_READ_EXCH TDMS read exchange has arrived.

ACMSDI_TDMS_WRITE_EXCH TDMS write exchange has arrived.

ACMSDI_TRCV_EXCH Transceive exchange step has arrived.

Use the following acmsdi_poll services instead of acmsdi_dispatch_message
during forced nonblocking sessions:

• acmsdi_bind_msg service

You can use this client service if the status value returned from acmsdi_poll
is either a TDMS read or a TDMS write exchange. The client application
can call an acmsdi_bind_msg service call from the TP Desktop Connector
Gateway for ACMS on the host OpenVMS system. In this case, the
acmsdi_poll service performs one of the following functions:

• Acquires the prompt text, if any, associated with a TDMS read
exchange.

• Sends the message text associated with a TDMS read exchange.

• Acquires the message text associated with a TDMS write exchange.

If the prompt or message text is being acquired, the text is truncated when
the buffer supplied is not large enough to hold the entire text. If the buffer
is larger that the text being acquired, the text is left-justified in the buffer
and right-filled with blank characters.

The acmsdi_bind_msg call is optional. However, if you do not issue this
call, you cannot process arguments received from the gateway or send
arguments back to the gateway.

See HP TP Desktop Connector for ACMS Client Services Reference
Manual for the syntax of this call.

• acmsdi_complete_call service

This client service obtains the completion arguments for acmsdi_call_task,
acmsdi_sign_in, acmsdi_sign_out, and acmsdi_cancel when acmsdi_poll
detects completion status for these services.

Forced Nonblocking Extension to the Portable API 7–3

• A set of client services, one associated with each exchange step type except
TDMS read and TDMS write:

— acmsdi_bind_enable_args

— acmsdi_bind_receive_args

— acmsdi_bind_request_args

— acmsdi_bind_send_args

— acmsdi_bind_transceive_args

These services pass pointers to arguments associated with exchange steps,
except for forms records, send control text, receive control text, and forms
session identifiers. Memory locations for all arguments must exist in the
caller’s address space. The caller passes the arguments by reference, thus
passing pointers to the arguments.

You issue these client service calls after acmsdi_poll returns a value
indicating that an exchange step has arrived (except TDMS read and
TDMS write). TP Desktop Connector copies the arguments to the caller’s
memory locations.

• acmsdi_bind_session_id service

This client service, used during an enable exchange step, sends the forms
session identifier argument to TP Desktop Connector.

• A set of client services for sending and receiving forms records and
workspaces associated with exchange steps:

— acmsdi_bind_receive_recs

This service moves the receive forms records, including receive control
text associated with exchange steps, to TP Desktop Connector. The
buffers are located and copied from the caller’s address space. The
service passes an ACMSDI_FORM_RECORD_BIND array as an
argument. Workspace pointers in ACMSDI_FORM_RECORD_BIND
arrays are acquired with the acmsdi_return_pointer service.

— acmsdi_bind_request_wksps

This service moves workspaces associated with TDMS request exchange
steps either to the caller’s memory, or from the caller’s memory to TP
Desktop Connector. It passes an array of a type of workspace structure,
an ACMSDI_WORKSPACE_BIND array, as an argument. Workspace
pointers in ACMSDI_WORKSPACE_BIND arrays are acquired with
the acmsdi_return_pointer service. See HP TP Desktop Connector
for ACMS Client Services Reference Manual for more information on
this structure.

7–4 Forced Nonblocking Extension to the Portable API

— acmsdi_bind_send_recs

This service moves send forms records associated with exchange steps,
including send control text, to the caller’s memory. It passes an array
of a type of form record structure, an ACMSDI_FORM_RECORD_BIND
array, as an argument. Forms record pointers in the ACMSDI_FORM_
RECORD_BIND array are acquired with the acmsdi_return_pointer
service. See HP TP Desktop Connector for ACMS Client Services
Reference Manual for more information on this structure.

In a forced nonblocking session, the acmsdi_disable callback to the client
application does not occur as part of the acmsdi_sign_out processing.
Instead, the client application must clear the structures used by presentation
procedures without being prompted by the acmsdi_disable callback. In
addition, in a forced nonblocking session, the acmsdi_check_version callback to
the client does not occur. Instead, TP Desktop Connector adds the form version
to the argument list acquired by the application using the acmsdi_bind_enable_
args service. The client application can do the version checking during enable
exchange step processing.

See HP TP Desktop Connector for ACMS Client Services Reference Manual
for the syntax and description of these client services for the forced nonblocking
environment.

7.3 Forced Nonblocking Programming Considerations
The following sections discuss programming considerations when using forced
nonblocking mode.

7.3.1 Establishing a Forced Nonblocking Session
To establish a forced nonblocking session, you request nonblocking calls
without specifying a completion address with the acmsdi_sign_in service
call. Instead, you specify the ACMSDI_OPT_NONBLK option. If the sign-
in succeeds, all calls for the session are nonblocking. Follow these steps to
initialize call options to request forced nonblocking calls. (Note the example
code, written in Visual Basic syntax, has been altered to make it more
readable.)

1. Declare the options array:

Static options(2) As ACMSDI_OPTION

2. Specify forced nonblocking calls in the options array:

options(0).option = ACMSDI_OPT_NONBLK
options(1).option = ACMSDI_OPT_END_LIST

Forced Nonblocking Extension to the Portable API 7–5

3. Pass the options array as the options parameter on acmsdi_sign_in:

status = acmsdi_sign_in(submitter_node$, ’ node to sign-in to
username_str$, ’ user signing in
password_str$, ’ user’s password
options(0), ’ options array
submitter_id, ’ submitter identifier
ByVal 0%, ’ final completion status
0&, ’ completion routine
ByVal 0&) ’ call context

The session is a nonblocking call even though the completion routine address
is 0, because the options argument is set to ACMSDI_OPT_NONBLK. Also, all
subsequent calls for the session are nonblocking. A successful return status is
ACMSDI_PENDING, indicating that the sign-in call has been sent to the
back end.

The final completion status is passed as a long integer with a value of 0,
which TP Desktop Connector interprets as a null pointer. This is done because
its memory location can change before the task completes. When the task
completes, you acquire the final completion status with the acmsdi_complete_
call service.

7.3.2 Canceling a Task from a Forced Nonblocking Session
Presentation tools, like Visual Basic, which do not support pointer types,
need a mechanism that enables them to cancel a task without specifying a
completion routine address. For these tools, TP Desktop Connector provides
the polling service, acmsdi_poll, to detect the completion of a task cancellation.

When a client application detects the completion of a task cancellation, the
completion status argument acquired with the acmsdi_complete_call service
contains the final status of the task cancellation. ACMSDI reports the status
of a task cancellation call before the final status of the task call.

7.3.3 Polling for Messages
The acmsdi_poll service is required in a forced nonblocking session, in place of
the acmsdi_dispatch_message service. Unlike acmsdi_dispatch_message, which
passes no arguments, the acmsdi_poll service passes the submitter identifier
created at sign-in, and, optionally, a location where a pointer to the context of
the task or cancel call can be returned.

You must issue the acmsdi_poll service for a specific submitter, because
acmsdi_poll does not dispatch any messages, but returns the message type of
one message received from the back end. In contrast, the acmsdi_dispatch_
message service dispatches any number of messages (calls any number of
completion routines or presentation procedures) with a single call from the

7–6 Forced Nonblocking Extension to the Portable API

user. Thus, your application must issue acmsdi_poll calls for all submitters
it controls.

You can use the pointer to the call context to determine to which call the
returned status refers. You must declare, and pass by reference, the memory
for the call context in the client application. Because it is unlikely that the
client application supports pointer types, the returned pointer is seen as a 32-
bit integer. Using the acmsdi_return_pointer service, you can obtain a pointer
to the call context as a 32-bit integer. The client application can then compare
the two pointers to identify the call. The pointer is an optional argument,
therefore, you can pass a zero value indicating that no call context is returned.

7.3.4 Obtaining Completion Arguments
When acmsdi_poll detects the completion of an acmsdi_sign_in, acmsdi_
sign_out, acmsdi_call_task, or acmsdi_cancel call in the forced nonblocking
environment, you obtain the arguments form the backend using the acmsdi_
complete_call service. The final completion status is the only argument to
obtain for acmsdi_sign_in, acmsdi_sign_out, and acmsdi_cancel. For acmsdi_
call_task, in addition to the final completion status, you also obtain the ACMS
status message and task argument workspaces.

The third argument in the acmsdi_complete_call service is an ACMSDI_CALL_
ID structure, representing the call ID of the original task call. This argument
is required for calls issued to obtain acmsdi_call_task completion argument,
but must be NULL for all other call types.

Obtain task argument workspaces by passing an array of ACMSDI_
WORKSPACE or ACMSDI_WORKSPACE_OPT structures. You must pass
the same array that you passed on the original acmsdi_call_task service call.
However, because memory management routines may have relocated the
buffers, you must renew the workspace pointers in the ACMSDI_WORKSPACE
or ACMSDI_WORKSPACE_OPT structures using the acmsdi_return_pointer
service prior to issuing acmsdi_complete_call.

The acmsdi_complete_call is required. Until you issue the acmsdi_complete_
call service call, a task call is not considered complete.

The C-language prototype for acmsdi_complete_call is as follows:

int acmsdi_complete_call (ACMSDI_SUBMITTER_ID *subm_id, /*read - required*/
int * completion status, /*write - required*/
ACMSDI_CALL_ID *call_id, /*read - optional*/
char *status_message, /*write - optional*/
void *workspace); /*write - optional*/

Forced Nonblocking Extension to the Portable API 7–7

7.4 Forced Nonblocking Exchange Step Handling
When acmsdi_poll returns a value indicating that an exchange step request
has arrived from the back end, you can issue one of six services to retrieve the
write-only arguments:

• acmsdi_bind_enable_args

• acmsdi_bind_msg

• acmsdi_bind_receive_args

• acmsdi_bind_request_args

• acmsdi_bind_send_args

• acmsdi_bind_transceive_args

For enable exchange steps, you can issue the service, acmsdi_bind_session_id,
to send the Forms Session ID to ACMS.

TP Desktop Connector does not require that you issue these service calls.
However, if you do not issue them, the client application cannot examine the
write-only arguments, and value of blanks are sent to ACMS for Forms Session
ID. TP Desktop Connector does require that you issue the acmsdi_poll service
to read the messages from the back end, and that you issue the acmsdi_
complete_pp service to signal completion of exchange step processing.

Note

Read-only and write-only in reference to arguments are always from
the callee’s point of view. For these services, read-only arguments are
read from the client application’s memory and write-only arguments
written to the client application’s memory. The roles of caller and callee
are reversed from the exchange step callbacks, and therefore, their
read-only and write-only attributes are reversed, with one exception.
The submitter identifier is always the first argument and is always
read-only for these services.

7–8 Forced Nonblocking Extension to the Portable API

7.4.1 Enable Exchange Arguments
When acmsdi_poll returns ACMSDI_ENABLE_EXCH, the client application
can issue an acmsdi_bind_enable_args service call to retrieve the write-only
arguments. You can issue an acmsdi_bind_session_id to send the forms session
ID argument to ACMS. For both calls, the first argument, the submitter ID,
is a read-only argument and must represent the same submitter for which
acmsdi_poll returned ACMSDI_ENABLE_EXCH.

The argument for acmsdi_bind_enable_args are the same as the arguments for
the acmsdi_enable presentation procedure with three exceptions:

• One additional argument, the form’s version, is included on the acmsdi_
bind_enable_args call. The version is included so that version checking
can be performed by the client application as part of the form’s enable
processing.

Note

The acmsdi_check_version callback is not supported for forced
nonblocking sessions.

• The call context is not included because it is returned by the acmsdi_poll
service call.

• The forms session ID argument is not included because it is a read-only
argument that is sent to ACMS using the acmsdi_bind_session_id service
call.

You must declare memory for all arguments in the client application and pass
them by reference.

The C-language prototype for acmsdi_bind_enable_args follows:

int acmsdi_bind_enable_args (ACMSDI_SUBMITTER_ID *sub_id, /*read-required*/
char *file_specification, /*write-optional*/
char *form_specification, /*write-optional*/
char *form_version, /*write-optional*/
char *forms_print_file, /*write-optional*/
char *forms_language, /*write-optional*/
ACMSDI_CALL_ID **call_id);

After the acmsdi_bind_enable_args call has successfully executed, the write-
only arguments contain the value passed from the TP Desktop Connector client
services.

Forced Nonblocking Extension to the Portable API 7–9

The C-language prototype for acmsdi_bind_session_id follows:

int acmsdi_bind_session_id (ACMSDI_SUBMITTER_ID *sub_id, /*read-required*/
ACMSDI_FORMS_SESSION_ID *session_id);

Example 7–1, written in Visual Basic, illustrates:

• Issuance of acmsdi_poll

• Receiving return code ACMSDI_ENABLE_EXCH

• Issuance of acmsdi_bind_enable_args

• Issuance of acmsdi_bind_session_id to send forms session identifier
to ACMS

Example 7–1 Visual Basic Sample

Dim call_id As acmsdi_call_id
Dim subm_id As acmsdi_sub_id
Dim call_id_retr As Long
Dim fs_id As acmsdi_forms_session_id
Dim filespec As String * 256
Dim formspec As String * 256
Dim formversion As String * 256
Dim formprint As String * 256
Dim formlang As String * 256
Static status As Integer
status = acmsdi_poll(subm_id, ByVal 0&)
If status = ACMSDI_ENABLE_EXCH Then

status = acmsdi_bind_enable_args(subm_id,
filespec,
formspec,
formversion,
formprint,
formlang,
call_id_retr)

(continued on next page)

7–10 Forced Nonblocking Extension to the Portable API

Example 7–1 (Cont.) Visual Basic Sample

If status = ACMSDI_NORMAL Then
>>> Process Enable arguments <<<

fs_id.session_id = "FORMS_SESS000251" ’set forms session id
status = acmsdi_bind_session_id(subm_id, fs_id) ’send it to ACMS
If status <> ACMSDI_NORMAL Then

>>> Error processing <<<
End If
status = acmsdi_complete_pp(call_id, FORMS_NORMAL) ’end exchange

Else
>>> Error processing >>>

End If
End If

7.4.2 TDMS Read Exchange Step Arguments
When acmsdi_poll returns ACMSDI_TDMS_READ_EXCH (a TDMS read
exchange step), the client application can issue an acmsdi_bind_msg to retrieve
the prompt text and a second acmsdi_bind_msg to send the message text from
the forms message field. You must declare memory for both arguments in the
client application and pass them by reference.

The C-language prototype for acmsdi_bind_msg follows:

int acmsdi_bind_msg (ACMSDI_SUBMITTER_ID *subm_id, /*read-required*/
short direction, /*read-required*/
short length, /*read-required*/
char *text, /*read or write-required*/
ACMSDI_CALL_ID **call_id); /*write-optional*/

The direction argument is a code indicating one of the following:

• 1 — indicates that the prompt text is being acquired from ACMS.

• 0 — indicates that the message text is being sent to ACMS.

After acquiring the prompt text by issuing an acmsdi_bind_msg with direction
equal to 1, the prompt may be displayed on the form. The client application
then waits for the user to enter message text in the form’s message field.
After the user indicates that the message text is completely entered, the client
application issues a second acmsdi_bind_msg with direction equal to 0 to send
the message text to the server.

The first argument, the submitter ID, is a read-only argument and must
represent the same submitter for which acmsdi_poll returned ACMSDI_
TDMS_READ_EXCH.

Forced Nonblocking Extension to the Portable API 7–11

Example 7–2 illustrates the following:

• Issuance of acmsdi_bind_msg

• Receiving of return code ACMSDI_TDMS_READ_EXCH

• Issuance of acmsdi_bind_msg to retrieve the prompt text

• Issuance of acmsdi_bind_msg to send the message text

Example 7–2 ACMSDI_TDMS_READ_EXCH Sample

Dim subm_id As acmsdi_sub_id
Dim call_id As acmsdi_call_id
Dim direction As Integer
Dim msg_len As Integer
Dim msg_text As String * 80
Dim prompt_len As Integer
Dim prompt_text As String * 40
Dim status As Integer
status = acmsdi_poll(subm_id, ByVal o&)
If status = ACMSDI_TDMS_READ_EXCH Then

direction = 1
prompt_len = 40

status = acmsdi_bind_msg(subm_id,
direction,
prompt_len,
prompt_text,
ByVal 0&)

If status = ACMSDI_NORMAL Then
’

’ display prompt on the form and wait for user
’ to enter message text in the form’s message field

’
direction = 0
msg_len = 80
status = acmsdi_bind_msg(subm_id,

direction,
msg_len,
msg_text,
ByVal 0&)

acmsdi_complete_pp(call_id, TSS_NORMAL)
Else
>>> Error processing <<<

End If
End If

7–12 Forced Nonblocking Extension to the Portable API

7.4.3 TDMS Write Exchange Step Arguments
When acmsdi_poll returns ACMSDI_TDMS_WRITE_EXCH (a TDMS write
exchange step) the client application can issue an acmsdi_bind_msg to retrieve
the message text. You must declare memory for the message text argument in
the client application and pass it by reference.

The C-language prototype for acmsdi_bind_msg follows:

int acmsdi_bind_msg (ACMSDI_SUBMITTER_ID *subm_id, /*read-required*/
short direction, /*read-required*/
short length, /*read-required*/
char *text, /*read or write-required*/
ACMSDI_CALL_ID **call_id); /*write-optional*/

The direction argument is a code indicating that the message text is being
retrieved from ACMS. Its value is 1 to indicate retrieval as opposed to sending
of the text. After acquiring the message text, the message may be displayed on
the form.

The first argument, the submitter ID, is a read-only argument and must
represent the same submitter for which acmsdi_poll returned ACMSDI_
TDMS_WRITE_EXCH.

Example 7–3 illustrates the following:

• Issuance of acmsdi_poll

• Receiving of return code ACMSDI_TDMS_WRITE_EXCH

• Issuance of acmsdi_bind_msg to retrieve the message text

7.4.4 Receiving Exchange Arguments
When acmsdi_poll returns ACMSDI_RECV_EXCH, the client application can
issue and acmsdi_bind_receive_args service call to retrieve the write-only
arguments. The first argument, the submitter ID, is the read-only argument
and must represent the same submitter for which acmsdi_poll returned
ACMSDI_RECV_EXCH. You can compare the second argument, forms session
ID, to the forms session ID sent to ACMS by acmsdi_bind_session_id, to
determine the forms session established earlier during an enable exchange.

The arguments for acmsdi_bind_receive_args are the same as the arguments
for the acmsdi_receive presentation procedure except that the receive control
text and the send control text are not included. These arguments are treated

Forced Nonblocking Extension to the Portable API 7–13

Example 7–3 ACMSDI_TDMS_WRITE_EXCH Sample

Dim subm_id As acmsdi_sub_id
Dim call_id As acmsdi_call_id
Dim direction As Integer
Dim msg_len As Integer
Dim msg_text As String * 80
Dim status As Integer
status = acmsdi_poll(subm_id, ByVal 0&)
If status = ACMSDI_TDMS_WRITE_EXCH Then

direction = 1
msg_len = 80

status = acmsdi_bind_msg(subm_id,
direction,
msg_len,
msg_text,
ByVal 0&)

If status = ACMSDI_NORMAL Then
’

’ display the message on the form’s message field
’
acmsdi_complete_pp(call_id, TSS_NORMAL)

Else
>>> Error processing <<<

End If
End If

as forms records, and, therefore, are handled by acmsdi_bind_receive_recs and
acmsdi_bind_send_recs.

You must declare memory for all arguments in the client application and pass
them by reference.

The C-language prototype for acmsdi_bind_receive_args follows:

int acmsdi_bind_receive_args (ACMSDI_SUBMITTER_ID *sub_id, /*read-required*/
ACMSDI_FORMS_SESSION_ID *fs_id, /*write-optional*/
char *receive_record_id, /*write-optional*/
long *receive_record_count, /*write-optional*/
short *timeout, /*write-optional*/
ACMSDI_CALL_ID **call_id);

After the acmsdi_bind_receive_args has successfully executed, the write-only
arguments contain the values passed from TP Desktop Connector client
services. The client application has the receive record identifier and knows
which set of forms records it needs to send back to ACMS. You can send receive
forms records, including receive control text, to TP Desktop Connector using
the acmsdi_bind_receive_recs service. You can obtain the send control text
using the acmsdi_bind_send_recs service.

7–14 Forced Nonblocking Extension to the Portable API

Example 7–4, written in Visual Basic, illustrates:

• Issuance of acmsdi_poll

• Receiving return code ACMSDI_RECV_EXCH

• Issuance of acmsdi_bind_receive_args

Example 7–4 ACMSDI_RECV_EXCH Sample

Dim Call_id As acmsdi_call_id
Dim subm_id As acmsdi_sub_id
Dim forms_sess_id As acmsdi_forms_session_id
Dim recv_rec_id As String * 256
Dim recv_rec_count As Long
Dim timeout As Integer
Dim call_id_retr As Long
Dim status As Integer
status = acmsdi_poll(subm_id, ByVal 0&)
If status = ACMSDI_RECV_EXCH Then

status = acmsdi_bind_receive_args(subm_id,
forms_sess_id,
recv_rec_id,
recv_rec_count,
timeout,
call_id_retr)

If status = ACMSDI_NORMAL Then ’if all OK and ...
If form_sess_id.session_id = "FORMS_SESS000251" Then ’ ...my session

>>> Process Receive Exchange arguments for my form >>>
acmsdi_complete_pp(call_id, FORMS_NORMAL)

End If
Else

>>> Error processing <<<
End If

End If

7.4.5 Requesting Exchange Step Arguments
When acmsdi_poll returns ACMSDI_REQUEST_EXCH (a TDMS exchange
step) the client application can issue an acmsdi_bind_request_args to retrieve
the write-only arguments. You must declare memory for all arguments in the
client application and pass them by reference.

The C-language prototype for acmsdi_bind_request_args follows:

int acmsdi_bind_request_args (ACMSDI_SUBMITTER_ID *subm_id, /*read-required*/
char *request_name, /*write-optional*/
long *workspace_count, /*write-optional*/
ACMSDI_CALL_ID **call_id); /*write-optional*/

Forced Nonblocking Extension to the Portable API 7–15

After the acmsdi_bind_request_args call has successfully executed, the write-
only arguments contain the values passed from TP Desktop Connector client
services. The client application has the request name and knows which set
of workspaces it will be receiving and sending back to ACMS. Use acmsdi_
bind_request_wksps to receive workspaces from TP Desktop Connector. You
must must modify these workspaces appropriately before issuing a second
acmsdi_bind_request_wksps call to send them back to ACMS.

The first argument, the submitter ID, is a read-only argument and must
represent the same submitter for which acmsdi_poll returned ACMSDI_
REQUEST_EXCH.

Example 7–5 illustrates the following:

• Issuance of acmsdi_poll

• Receiving of return code ACMSDI_REQUEST_EXCH

• Issuance of acmsdi_bind_request_args

Example 7–5 ACMSDI_REQUEST_EXCH Sample

Dim subm_id As acmsdi_sub_id
Dim call_id As acmsdi_call_id
Dim request_name As String *64
Dim workspace_count As Long
Dim call_id_retr As Long
Dim call_id_ref As Long
Dim status As Integer
call_id_ref = acmsdi_return_pointer(call_id)
status = acmsdi_poll(subm_id, ByVal 0&)
If status = ACMSDI_REQUEST_EXCH Then

status = acmsdi_bind_request_args(subm_id,
request_name,
workspace_count,
call_id_retr)

(continued on next page)

7–16 Forced Nonblocking Extension to the Portable API

Example 7–5 (Cont.) ACMSDI_REQUEST_EXCH Sample

If status = ACMSDI_NORMAL Then ’if all OK and ...
If call_id_retr = call_id_ref Then ’ ... it;s the call I made

’
’ check the request name so we’ll know which workspaces we
’ are dealing with
’
If request_name = "MY_REQUEST" Then

>>> Process Request Exchange arguments <<<
acmsdi_complete_pp(call_id, TSS_NORMAL)

End If
End If

Else
>>> Error processing <<<

End If
End If

7.4.6 Send Exchange Step Arguments
When acmsdi_poll returns ACMSDI_SEND_EXCH, the client application can
issue an acmsdi_bind_send_args to retrieve the write-only arguments. You
must declare the memory for all arguments in the client application and pass
them by reference.

The first argument, the submitter ID, is a read-only argument and must
represent the same submitter for which acmsdi_poll returned ACMSDI_SEND_
EXCH. The C-language prototype for acmsdi_send_args follows:

int acms_bind_send_args (ACMSDI_SUBMITTER_ID *subm_id, /*read-required*/
ACMSDI_FORMS_SESSION_ID *fs_id, /*write-optional*/
char *send_record_id, /*write-optional*/
long *send_record_count, /*write-optional*/
short *timeout, /*write-optional*/
ACMSDI_CALL_ID **call_id); /*write-optional*/

After the acmsdi_bind_send_args call has successfully executed, the write-
only arguments contain the values passed from TP Desktop Connector client
services. The client application has the send record identifier and knows which
set of forms records it will be receiving from ACMS. You can receive send
forms records from TP Desktop Connector using the acmsdi_bind_send_recs
service. You can send receive control text to TP Desktop Connector using the
acmsdi_bind_receive_args.

Forced Nonblocking Extension to the Portable API 7–17

Example 7–6, written in Visual Basic, illustrates:

• Issuance of acmsdi_poll

• Receiving of return code ACMSDI_SEND_EXCH

• Issuance of acmsdi_bind_send_args

Example 7–6 ACMSDI_SEND_EXCH Sample

Dim call_id As acmsdi_call_id
Dim subm_id As acmsdi_sub_id
Dim forms_sess_id As acmsdi_forms_session_id
Dim send_rec_id As String * 256
Dim Send_rec_count As Long
Dim timeout As Integer
Dim call_id_retr As Long
Static status As Integer
status = acmsdi_poll(subm_id, ByVal 0&)
If status = ACMSDI_SEND_EXCH Then

status = acmsdi_bind_send_args(subm_id,
forms_sess_id,
send_rec_id,
send_rec_count,
timeout,
call_id_retr)

If status = ACMSDI_NORMAL Then ’ if all OK and ...
If forms_sess_id = "FORMS_SESS000251" Then ’ ... my session

>>> Process Send Exchange arguments <<<
acmsdi_complete_pp(call_id, FORMS_NORMAL)

End If
Else

>>> Error Processing <<<
End If

End If

7.4.7 Transceive Exchange Step Arguments
When acmsdi_poll returns ACMSDI_TRCV_EXCH, the client application can
issue an acmsdi_bind_transceive_args service call to retrieve the write-only
arguments. You must pass memory by reference for all arguments in the client
application. The first argument, submitter ID, is a read-only argument and
must represent the same submitter for which acmsdi_poll returned ACMSDI_
TRCV_EXCH.

7–18 Forced Nonblocking Extension to the Portable API

The C-language prototype for acmsdi_bind_transceive_args follows:

int acmsdi_bind_transceive_args (ACMSDI_SUBMITTER_ID *subm_id, /*read-required*/
ACMSDI_FORMS_SESSION_ID *fs_id, /*write-optional*/
char *send_record_id, /*write-optional*/
long *send_record_count, /*write-optional*/
char *receive_record_id, /*write-optional*/
long *receive_record_count, /*write-optional*/
short *timeout, /*write-optional*/
ACMSDI_CALL_ID **call_id); /*write-optional*/

After the acmsdi_bind_transceive_args call has successfully executed, the
write-only arguments contain the values passed from TP Desktop Connector
client services. The client application has the send record identifier and knows
which set of forms records it needs to send back to ACMS. Use the acmsdi_
bind_send_recs service to receive forms records, including send control text,
from TP Desktop Connector. Use acmsdi_bind_receive_recs to send receive
forms records, including receive control text, to TP Desktop Connector. You can
issue both of these calls before issuing and acmsdi_complete_pp service call.

Example 7–7, written in Visual Basic, illustrates:

• Issuance of acmsdi_poll

• Receiving of return code ACMSDI_TRCV_EXCH

• Issuance of acmsdi_bind_transceive_args

Example 7–7 ACMSDI_TRCV_EXCH Sample

Dim call_id As acmsdi_call_id
Dim subm_id As acmsdi_sub_id
Dim forms_sess_id As acmsdi_forms_session_id
Dim send_rec_id As String * 256
Dim send_rec_count As long
Dim recv_rec_id As String * 256
Dim recv_rec_count As Long
Dim timeout As Integer
Dim call_id_retr As Long
Dim status As Integer

(continued on next page)

Forced Nonblocking Extension to the Portable API 7–19

Example 7–7 (Cont.) ACMSDI_TRCV_EXCH Sample

status = acmsdi_poll(subm_id, ByVal 0&)
If status = ACMSDI_TRCV_EXCH Then

status = acmsdi_bind_transceive_args(subm_id,
forms_sess_id,
send_rec_id,
send_rec_count,
recv_rec_id,
recv_rec_count,
timeout,
call_id_retr)

If status = ACMSDI_NORMAL Then ’ if all OK and ...
If forms_sess_id.session_id = "FORMS_SESS000251" Then ’ ...my session

>>> Process Transceive Exchange arguments <<<
End If

Else
>>> Error processing <<<

End If
End If

7.5 Sending and Receiving Forms Records and Workspaces
TP Desktop Connector provides three forced nonblocking services to send and
receive forms records (for HP DECforms type exchanges) and workspaces (for
TDMS type exchanges) to and from TP Desktop Connector. These services are:

• acmsdi_bind_send_recs

Receives forms records and control text from TP Desktop Connector during
a HP DECforms type of exchange.

• acmsdi_bind_receive_recs

Sends forms records and control text to TP Desktop Connector during a HP
DECforms type of exchange.

• acmsdi_bind_request_wksps

Sends and receives workspaces during a TDMS type of exchange.

You invoke these services after you retrieve exchange step arguments with one
of the services discussed in Section 7.4, because the client application knows
what forms record or workspace array is required to be sent and received.

In addition to forms records, you can receive send control text and receive
control text from and sent to TP Desktop Connector using these services.
TP Desktop Connector does not require that you issue these service calls.
However, if you do not issue them, the client application is not able to examine

7–20 Forced Nonblocking Extension to the Portable API

forms records or workspaces sent from TP Desktop Connector and forms
records and workspaces sent to TP Desktop Connector will contain default
values.

TP Desktop Connector does require that you issue acmsdi_poll to read the
messages from the back end, and that you issue acmsdi_complete_pp to signal
completion of exchange step processing and to write reply messages to the back
end.

Note

In the following sections, send forms records and send control text
are received from TP Desktop Connector. Conversely, receive forms
records and receive control text are sent to TP Desktop Connector. The
adjectives send and receive when applied to forms records and control
text are from the back-end perspective.

7.5.1 Receiving Send Forms Records and Control Text
Send forms records are forms records that are sent from ACMS to the client
application during a send or transceive exchange. Use acmsdi_bind_send_recs
to cause send forms record data to be moved to the client application’s buffer
from TP Desktop Connector. You can also use the acmsdi_bind_send_recs
service to cause send control text to be copied to the application’s buffers from
TP Desktop Connector.

The send record identifier, which you can retrieve with the acmsdi_bind_send_
args and acmsdi_bind_transceive_args, implicitly defines the number and types
of the forms records. The acmsdi_bind_send_recs service passes an array of
ACMSDI_FORM_RECORD_BIND structures as one of its arguments. Each
ACMSDI_FORM_RECORD_BIND structure contains two pointers; one to the
data record and one to the shadow record. You must declare buffers for these
forms records in the client application. If a shadow record is not in use, its
pointer can be NULL.

ACMSDI_FORM_RECORD_BIND structures also contain the lengths of the
buffers in the client application and a field, initially set to zero, in which ACMS
Desktop returns the actual length of the forms records. If the forms record
length is greater than the buffer length, forms records are truncated in the
buffer. If the forms record length is less than the buffer length, the buffer is
not completely filled by forms record data.

Forced Nonblocking Extension to the Portable API 7–21

You can use the acmsdi_bind_send_recs service to request that send control
text be copied to the application from TP Desktop Connector. If the second
argument has a value of 1, send control text is to be copied. A value of 0
specifies that send control text is not to be copied. If you specify the send
control text, you must specify the corresponding ACMSDI_FORM_RECORD_
BIND structure as the first one in the array. When the call terminates, the
rec_len field of the ACMSDI_FORM_RECORD_BIND structure contains the
send control text count as opposed to the send control text length.

The first argument, the submitter ID, is a read-only argument and must
represent the same submitter for which the acmsdi_poll returned ACMSDI_
SEND_EXCH or ACMSDI_TRCV_EXCH.

The C-language prototype for acmsdi_bind_send_recs follows:

int acmsdi_bind_send_recs (ACMSDI_SUBMITTER_ID *subm_id, /*read-required*/
int bind_send_ctrl_text, /*read-required*/
ACMSDI_FORM_RECORD_BIND *send_rec_array); /*write-required*/

You must declare and initialize the array of ACMSDI_FORM_RECORD_BIND
structures before issuing the acmsdi_bind_send_recs call. You can obtain
pointers to the forms record buffers by using the acmsdi_return_pointer
service. Initialize forms records pointers immediately prior to each issuance
of the acmsdi_bind_send_recs service, to assure that they are pointing to the
current locations of the forms record buffers.

Example 7–8 illustrates:

• Declaration of two send forms record buffers (one of which has a shadow
record)

• Declaration of a send control text buffer

• Declaration and initialization of the ACMSDI_FORM_RECORD_BIND

• Call to acmsdi_bind_send_recs

7–22 Forced Nonblocking Extension to the Portable API

Example 7–8 Sending Forms Records

’
’ employee forms record type definition
’
Type employee_rec

badge_nbr As Long
name As String * 35
ss_nbr As String * 11

End Type
’
’ employee shadow type definition (one byte for each employee record field)
’
Type employee_shadow

badge_nbr As String * 1
name As String * 1
ss_nbr As String * 1

End Type
’
’ control forms record type definition
’
Type ctrl_rec

ctrl_count As Integer
total_emps As Integer

End Type
’
’ control text type definition
’
Type ctrl_text

ctrl_string(5) As String * 5
End Type
’
’ forms record and send control text declarations
’
Dim empl As employee_rec
Dim empl_shdw As employee_shadow
Dim ctrl As ctrl_rec
Dim send_ctrl_text As ctrl_text

(continued on next page)

Forced Nonblocking Extension to the Portable API 7–23

Example 7–8 (Cont.) Sending Forms Records
’
’ ACMSDI_FORM_RECORD_BIND array for send forms records
’
Dim send_recs(3) As ACMSDI_FORM_RECORD_BIND
’
’ other declarations
’
Dim subm_id As acmsdi_sub_id
Static status As Long
Const NULL = 0
Dim ctrl_text_flag As Integer
Dim send_ctrl_text_count As Integer
’
’ initialize the send forms records array using acmdi_return_pointer to get
’ forms record buffer pointers (looking like 32-bit integers)
’
send_recs(0).buffer_len = Len(send_ctrl_text)
send_recs(0).record_len = 0
send_recs(0).data_record = acmsdi_return_pointer(send_ctrl_text)
send_recs(0).shadow_buffer_len = 0
send_recs(0).shadow_rec_len = 0
send_recs(0).shadow_record = NULL
send_recs(1).buffer_len = Len(empl)
send_recs(1).rec_len = 0
send_recs(1).data_record = acmsdi_return_pointer(empl)
send_recs(1).shadow_buffer_len = Len(empl_shdw)
send_recs(1).shadow_rec_len = 0
send_recs(1).shadow_record = acmsdi_return_pointer(empl_shdw)
send_recs(2).buffer_len = Len(ctrl)
send_recs(2).rec_len = 0
send_recs(2).data_record = acmsdi_return_pointer(ctrl)
send_recs(2).shadow_buffer_len = 0
send_recs(2).shadow_rec_len = 0
send_recs(2).shadow_record = NULL
’
’ set control text flag to indicate that we want to send control text retrieved
’
ctrl_text_flag = 1
’
’ call to get send forms records
’

(continued on next page)

7–24 Forced Nonblocking Extension to the Portable API

Example 7–8 (Cont.) Sending Forms Records

status = acmsdi_bind_send_recs(subm_id, ctrl_text_flag, send_recs(0))
send_ctrl_text_count = send_recs(0).rec_len
If send_recs(1).buffer_len < send_recs(1).rec_len Then

>>> employee record truncated >>>
ElseIf send_recs(1).buffer_len > send_recs(1).rec_len Then

>>> employee record buffer not completely filled <<<
Else

>>> employee record exactly fits buffer <<<
End If

7.5.2 Sending Receive Forms Records and Control Text
Receive forms records are forms records that are sent from the client
application to ACMS during a receive or transceive exchange. Use acmsdi_
bind_receive_recs to send the client application’s receive forms record buffer
contents to TP Desktop Connector. You can also use acmsdi_bind_receive_recs
service to cause receive control text to be copied to TP Desktop Connector from
the application’s buffers.

The receive record identifier argument, retrieved by either acmsdi_bind_
receive_args or acmsdi_bind_transceive_args, implicitly defines the number
and types of the forms records. The acmsdi_bind_receive_recs service passes an
array of ACMSDI_FORM_RECORD_BIND structures as one of its arguments.
Each ACMSDI_FORM_RECORD_BIND structure contains two pointers; one
to the data record and one to the shadow record. You must declare buffers for
these forms records in the client application. If a shadow record is not in use,
its pointer can be NULL.

ACMSDI_FORM_RECORD_BIND structures also contain the lengths of the
buffers in the client application and a field, initially set to zero, in which TP
Desktop Connector returns the actual length of the forms records. If the forms
record length is greater than the buffer length, the buffer is not large enough
to provide data for the entire forms record. If the forms record length is less
than the buffer length, not all of the data in the buffer is transmitted to the
back end.

You can use the acmsdi_bind_receive_args service to request that receive
control text be copied to TP Desktop Connector. If the second argument has
a value of 1, receive control text is copied. A value of 0 specifies that receive
control text is not copied. If you specify the receive control text, you must
specify its corresponding ACMSDI_FORM_RECORD_BIND structure as the
first one in the array. Initialize the rec_len field to contain the receive control
text count.

Forced Nonblocking Extension to the Portable API 7–25

The first argument, the submitter ID, is a read-only argument and must
represent the same submitter for which acmsdi_poll returned ACMSDI_RECV_
EXCH or ACMSDI_TRCV_EXCH.

The C-language prototype for acmsdi_bind_receive_recs follows:

int acmsdi_bind_receive_recs (ACMSDI_SUBMITTER_ID *subm_id, /*read-required */
int bind_receive_ctrl_text, /*read-required*/
ACMSDI_FORM_RECORD_BIND *recv_rec_array); /*read-required*/

You must declare and initialize the array of ACMSDI_FORM_RECORD_BIND
structures before issuing the acmsdi_bind_receive_recs call. You can obtain
pointers to the forms record buffers using the acmsdi_return_pointer service.
Initialize forms record pointers immediately before each issuance of acmsdi_
bind_receive_recs service to assure that they are pointing to the current
locations of the forms record buffers.

Example 7–9 illustrates:

• Declaration of two receive forms record buffers (one of which has a shadow
record)

• Declaration of a receive control text buffer

• Declaration and initialization of the ACMSDI_FORM_RECORD_BIND
array

• Call to acmsdi_bind_receive_recs

Example 7–9 Receiving Forms

’
’ employee forms record type definition
’
Type employee_rec

badge_nbr As Long
name As String * 35
ss_nbr As String * 11

End Type
’
’ employee shadow type definition (one byte for each employee record field)
’
Type employee_shadow

badge_nbr As String * 1
name As String * 1
ss_nbr As String * 1

End Type

(continued on next page)

7–26 Forced Nonblocking Extension to the Portable API

Example 7–9 (Cont.) Receiving Forms
’
’ control forms record type definition
’
Type ctrl_rec

ctrl_count As Integer
total_emps As Integer

End Type
’
’ control text type definition
’
Type ctrl_text

ctrl_string(5) As String * 5
End Type
’
’ forms record declarations
’
Dim empl As employee_rec
Dim empl_shdw As employee_shadow
Dim ctrl As ctrl_rec
Dim send_ctrl_text As ctrl_text
’
’ ACMSDI_FORM_RECORD_BIND array for receive forms records
’
Dim recv_recs(3) As ACMSDI_FORM_RECORD_BIND
’
’ other declarations
’
Dim subm_id As acmsdi_sub_id
Static status As Long
Const NULL = 0
Dim ctrl_text_flag As Integer
Dim send_ctrl_text_count As Integer

(continued on next page)

Forced Nonblocking Extension to the Portable API 7–27

Example 7–9 (Cont.) Receiving Forms
’
’ initialize receive control text
’
receive_ctrl_text_count = 2
receive_ctrl_text.ctrl_string(0) = "AB001"
receive_ctrl_text.ctrl_string(1) = "CC599"
’
’ initialize the receive forms records array using acmdi_return_pointer to get
’ forms record buffer pointers (looks like 32-bit integers)
’
recv_recs(0).buffer_len = Len(receive_ctrl_text)
recv_recs(0).record_len = receive_ctrl_text_count
recv_recs(0).data_record = acmsdi_return_pointer(receive_ctrl_text)
recv_recs(0).shadow_buffer_len = 0
recv_recs(0).shadow_rec_len = 0
recv_recs(0).shadow_record = NULL
recv_recs(1).buffer_len = Len(empl)
recv_recs(1).rec_len = 0
recv_recs(1).data_record = acmsdi_return_pointer(empl)
recv_recs(1).shadow_buffer_len = Len(empl_shdw)
recv_recs(1).shadow_rec_len = 0
recv_recs(1).shadow_record = acmsdi_return_pointer(empl_shdw)
recv_recs(2).buffer_len = Len(ctrl)
recv_recs(2).rec_len = 0
recv_recs(2).data_record = acmsdi_return_pointer(ctrl)
recv_recs(2).shadow_buffer_len = 0
recv_recs(2).shadow_rec_len = 0
recv_recs(2).shadow_record = NULL
’
’ set control text flag to indicate that we want to receive control text sent
’
ctrl_text_flag = 1
’
’ call to send receive forms records
’
status = acmsdi_bind_receive_recs(subm_id, ctrl_text_flag, recv_recs(0))
If recv_recs(1).buffer_len < recv_recs(1).rec_len Then

>>> client application buffer is too small >>>
ElseIf recv_recs(1).buffer_len > recv_recs(1).rec_len Then

>>> client application buffer is too large <<<
Else

>>> client application buffer is exactly the right size <<<
End If

7–28 Forced Nonblocking Extension to the Portable API

7.5.3 Sending and Receiving TDMS Request Workspaces
Request workspaces are workspaces that are sent from ACMS to the client
application and sent back to ACMS during a TDMS Request exchange. Use
acmsdi_bind_request_wksps to cause request workspace data to be copied
to the client application’s buffers from TP Desktop Connector. After the
workspaces have been modified, use acmsdi_bind_request_wksps service a
second time to send back the modified contents to TP Desktop Connector.

The request name argument, retrieved by the acmsdi_bind_request_
args service, implicitly defines the number and types of the workspaces.
The acmsdi_bind_request_wksps service passes an array of ACMSDI_
WORKSPACE_BIND structures as one of its arguments. Each ACMSDI_
WORKSPACE_BIND structure contains a pointer to the workspace buffer. The
buffers must be declared in the client application.

ACMSDI_WORKSPACE_BIND structures also contain the lengths of the
buffers in the client application and a field, initially set to zero, in which
TP Desktop Connector returns the actual length of the workspaces. If
the workspace length is less than the buffer length, the buffer is not filled
completely by workspace data.

The second argument is an integer indicating the direction in which the
workspaces are sent. A value of 1 indicates that the workspaces are copied into
the application’s buffers from TP Desktop Connector. A value of 0 indicates
that workspaces are copied to TP Desktop Connector from the application’s
buffers.

The first argument, the submitter ID, is a read-only argument and must
represent the same submitter for which acmsdi_poll returned ACMSDI_
REQUEST_EXCH.

The C-language prototype for acmsdi_bind_request_wksps follows:

int acmsdi_bind_request_wksps (ACMSDI_SUBMITTER_ID *subm_id, /*read-required*/
int direction, /*read=required*/
ACMSDI_WORKSPACE_BIND *req_wksp_array); /*read-write-required*/

You must declare and initialize the array of ACMSDI_WORKSPACE_BIND
structures issuing the acmsdi_bind_request_wksps call. Obtain pointers to the
workspace buffers using the acmsdi_return_pointer service. You must initialize
the workspace pointers before each issuance of the acmsdi_bind_request_
wksps service to assure that they are pointing to the current locations of the
workspace buffers.

Forced Nonblocking Extension to the Portable API 7–29

Example 7–10 illustrates:

• Declaration of two TDMS request workspace buffers

• Declaration and initialization of the ACMSDI_WORKSPACE array

• Call to acmsdi_bind_request_wksps

Example 7–10 TDMS Sample

’
’ employee workspace type definition
’
Type employee_wksp

badge_nbr As Long
name As String *35
ss_nbr As String * 11

End Type
’
’ control workspace definition
’
Type ctrl_wksp

ctrl_count As Integer
total_emps As Integer

End Type
’
’ workspace definitions
’
Dim empl As employee_wksp
Dim ctrl As ctrl_wksp
’
’ ACMSDI_WORKSPACE_BIND array for TDMS request workspaces
’
’ other declarations
’
Dim request_wksps(2) As ACMSDI_WORKSPACE_BIND
Dim status As Long
Const TO_ACMS = 0
Const FROM_ACMS = 1

(continued on next page)

7–30 Forced Nonblocking Extension to the Portable API

Example 7–10 (Cont.) TDMS Sample
’
’ initialize the TDMS request workspaces array using acmsdi_return_pointer to
’ get workspace buffer pointers (looks like 32-bit integers)
’
request_wksps(0).buffer_len = Len(empl)
request_wksps(0).wksp_len = 0
request_wksps(0).data = acmsdi_return_pointer(empl)
request_wksps(1).buffer_len = Len(ctrl)
request_wksps(1).wksp_len = 0
request_wksps(1).data = acmsdi_return_pointer(ctrl)
’
’ call to get TDMS request workspaces
’
status = acmsdi_bind_request_wksps(subm_id, FROM_ACMS, request_wksps(0))
If request_wksps(0).buffer_len < request_wksps(0).wksp_len Then

>>> employee record truncated <<<
ElseIf request_wksps(0).buffer_len > request_wksps(0).wksp_len Then

>>> employee record buffer not completely filled <<<

Else
>>> employee record exactly fits buffer <<<
>>> modify workspaces as required <<<

’
’ Having modified the workspaces, now send them back to ACMS
request_wksps(0).data = acmsdi_return_pointer(empl) ’update empl pointer
request_wksps(0).data = acmsdi_return_pointer(ctrl) ’update ctrl pointer
status = acmsdi_bind_request_wksps(subm_id, TO_ACMS, request_wksps(0))

End If

7.6 Forced Nonblocking Flow of Control
The following steps illustrates a typical flow of control for a transceive
exchange step during a forced nonblocking session:

1. The client application issues an acmsdi_sign_in call, specifying the option
ACMSDI_OPT_NONBLK. This option indicates that the session is a forced
nonblocking session.

2. The client application issues an acmsdi_call_task without a completion
address. Because it is a forced nonblocking session, TP Desktop Connector
ACMSDI expects the acmsdi_poll service calls to check for messages from
the back-end application, instead of the acmsdi_dispatch_message service.

Forced Nonblocking Extension to the Portable API 7–31

Note

Issuing an acmsdi_dispatch_message call during a forced nonblocking
session causes an error condition, because TP Desktop has no
completion address at which to dispatch upon task completion.

3. ACMSDI creates a call task message and sends it to the back-end
application.

4. ACMSDI returns ACMSDI_PENDING status to the client application,
indicated that the task call has been successfully sent to the back-end
application.

5. The client application issues an acmsdi_poll service call and receives the
status, ACMSDI_EXEC, indicating that the task is still executing on the
back-end application.

6. A message arrives from the back-end application.

7. The client application issues another acmsdi_poll service call to check for a
message from the back-end application.

8. In response to the acmsdi_poll call, ACMSDI determines that a transceive
exchange step request has been received from the back-end application and
returns the status, ACMSDI_TRCV_EXCH, to the client application.

9. The client application issues an acmsdi_bind_transceive_args service,
passing transceive request arguments by reference.

10. In response to the acmsdi_bind_transceive_args call, ACMSDI moves the
arguments to the client application’s memory locations.

11. From the send and receive record IDs gathered in step 10, the client
application knows which forms records are used. The client application
issues a series of acmsdi_return_pointer calls to obtain pointers to the send
forms records to be placed in the ACMSDI_FORM_RECORD_BIND arrays.

12. The client application issues an acmsdi_bind_send_recs service, passing the
ACMSDI_FORM_RECORD_BIND array for send forms records constructed
in step 11.

13. ACMSDI copies send forms records to the client application’s memory
locations, including send control text. The client application can now
display send forms record data and acquire data from receive forms records
in its presentation procedure.

7–32 Forced Nonblocking Extension to the Portable API

14. The client application issues a series of acmsdi_return_pointer calls to
obtain pointers to the receive forms records to be placed in its ACMSDI_
FORM_RECORD_BIND arrays.

15. The client application issues an acmsdi_bind_receive_recs call, passing
receive forms records to ACMSDI with the ACMSDI_FORM_RECORD_
BIND array constructed for receive forms records in step 14.

16. ACMSDI copies receive forms records from the client application’s memory
locations, including receive control text.

17. The client application issues an acmsdi_complete_pp service call to indicate
that the presentation procedure has completed, passing the status code to
be returned to the back-end application.

18. ACMSDI creates a transceive exchange step response message from the
receive forms records copied from the client application in step 16. The
transceive response message is sent to the back-end application. The client
application can now resume polling for additional exchange steps or task
completion messages.

7.6.1 Structures Declared in Client Application Memory
You allocate certain structures in the client application’s memory and pass
them by reference to TP Desktop Connector. These structures are:

• submitter identifier (ACMSDI_SUBMITTER_ID)

Pass this structure by reference to TP Desktop Connector as an argument
on acmsdi_sign_in service calls. TP Desktop Connector fills in its fields. It
contains a pointer to a submitter structure, which TP Desktop Connector
uses as a session control block. It is subsequently passed by reference as
an argument to acmsdi_call_task and acmsdi_sign_out service calls, and
used by TP Desktop Connector to identify the session.

• call identifier (ACMSDI_CALL_ID)

Pass this structure by reference to TP Desktop Connector as an argument
on acmsdi_call_task service calls. TP Desktop Connector fills in its fields.
It contains a pointer to a call structure, which TP Desktop Connector
uses as a call control block. It is subsequently passed by reference as an
argument on acmsdi_cancel and acmsdi_complete_pp service calls, and
used by TP Desktop Connector to identify the task call.

Forced Nonblocking Extension to the Portable API 7–33

• call context (void *)

Pass this object, created by the client application, to TP Desktop Connector
as an argument on acmsdi_call_task, acmsdi_cancel, acmsdi_sign_in, and
acmsdi_sign_out service calls. This object provides additional information
used by client completion routines and presentation procedures to establish
context for the call.

7.6.2 Differences Between Standard and Forced Nonblocking
In standard nonblocking mode, you pass structures by reference as arguments
on calls from TP Desktop Connector to client application presentation
procedures and completion routines. The pointers to these structures,
originally passed to TP Desktop Connector, are passed back to the client
routines. The client routines then use these pointers to locate the original
structures, which point them to the submitters and calls referenced by the
callbacks. Because applications which require forced nonblocking mode do not
support callback routines or pointers, different rules apply.

TP Desktop Connector uses the submitter identifier on the service calls to
identify the submitter for which the call is issued. For example, the acmsdi_
poll service passes the submitter identifier as a read-only argument. In
response, TP Desktop Connector returns the latest message type received from
the back-end system for that submitter or a return code indicating that no
message is available for the submitter. This differs from the acmsdi_dispatch_
message service, which dispatches all messages that arrive from the back-end
for all submitters.

The services acmsdi_bind_xxxx_args and acmsdi_poll retrieve the call identifier
and call context arguments, pointers to structures existing in the client
application’s memory. Client applications treat these pointers as 32-bit
integers; therefore, for these arguments to be useful to the client application,
use the acmsdi_return_pointer service to obtain reference pointers (as 32-bit
integers) for the structures.

Note

Because data can be moved by memory management routines, you
must issue acmsdi_return_pointer calls in the same procedure where
you issued the original call. Then compare the values of the arguments
against the reference pointers to determine which structure is being
referenced.

7–34 Forced Nonblocking Extension to the Portable API

Example 7–11, written in BASIC, illustrates the creation of a call identifier
on an acmsdi_call_task service call and its later identification during retrieval
of the arguments of an enable exchange callback. The example assumes the
following:

• Submitter identifier, established by the acmsdi_sign_in call, identifies the
TP Desktop Connector signed-in session.

• Call identifier is used as the call context at task completion.

• Session is forced nonblocking.

Example 7–11 Creation of a Call Identifier

Dim subm_id As acmsdi_sub_id ’ submitter id structure
Dim call_id As acmsdi_call_id ’ call id structure

Dim call_id_ref As Long ’ reference to call id
Dim call_id_retr As Long ’ call id retrieved from enable
Dim call_ctxt As Long ’ call context retrieved using acmsdi_poll
Dim forms_sess_id As acmsdi_forms_session_id
Dim filespec As String * 256
Dim formspec As String * 256
Dim formversion As String * 256
Dim formprint As String * 256
Dim formlang As String * 256
Static status as Integer
Static final_status As Long
call_id_ref = acmsdi_return_pointer(call_id)
task_name$ = "MY_TASK"
appl_name$ = "MY_APPL"
status = acmsdi_call_task(subm_id, ’ submitter id structure created at sign-in

ByVal 0&, ’ null call options
task_name$, ’ task name
appl_name$, ’ application name
0&, ’ null selection string
status_msg, ’ status message return location
0&, ’ no workspace count
ByVal 0&, ’ no workspace pointer
call_id, ’ call id structure
ByVal 0&, ’ null final completion status location
0&, ’ null completion routine pointer
call_id) ’ call context same as call id

(continued on next page)

Forced Nonblocking Extension to the Portable API 7–35

Example 7–11 (Cont.) Creation of a Call Identifier
If status = ACMSDI_PENDING Then ’ If nonblocking call sent to back-end

Do ’ loop while the task is executing
status = acmsdi_poll(subm_id, call_ctxt) ’ Note: Instead of a Do
if status <> ACMSDI_EXEC ’ Loop, the acmsdi_poll

Exit Do ’ and code following
End If ’ would probably be

’ issued in a process
Loop ’ kicked off by a timer

If status = ACMSDI_ENABLE_EXCH Then ’ If we have an enable exchange step
’
’ call to retrieve enable arguments
’
status = acmsdi_bind_enable_args(subm_id, ’ submitter id

filespec, ’ file specification
formspec, ’ forms specification
formversion, ’ form version
formprint, ’ print file
formlang, ’ form language
call_id_retr) ’ call id

’
’ check call id against out reference id. If they match,
’ this enable callback is ours
’
If call_id_retr = call_id_ref Then

>>> Enable processing <<<
forms_sess_id,session_id = "SESSION 12345678" ’ session id
status = acmsdi_bind_session_id(subm_id, forms_sess_id) ’send it
acmsdi_complete_pp(call_id, FORMS_NORMAL) ’ finish Enable

’ processing
End If

ElseIf status = ACMSDI_DONE Then ’ If we have task completion
’
’ check call context against our call reference id. If it matches, this
’ is a completion for our task
’
If call_ctxt = call_id_ref Then

>>> Task completion processing >>>
End If

End If
>>> Handle other statuses from acmsdi_poll <<<

7.7 Forced Nonblocking Sample Application
The forced nonblocking sample allows you to initiate API calls and to respond
to exchange steps as they arrive from the back end, thus demonstrating the
use of forced nonblocking API calls. As each exchange step arrives, the sample

7–36 Forced Nonblocking Extension to the Portable API

asks whether or not you want to "bind" the exchange arguments by using one
or more API calls. If you choose to bind the arguments, they are retrieved from
TP Desktop Connector and displayed in a text box.

Note

TP Desktop Connector does not require that exchange step arguments
be bound. You can skip the binding of the basic arguments and bind
only exchange step forms records or workspaces, although this sample
does not demonstrate this feature.

The forced nonblocking sample application is written in Visual Basic and
contains the files listed in the following table:

Table 7–2 Forced Nonblocking Sample Files

File Name Description

FNBSAMPL.MAK Visual Basic project file

FORM1.FRM Main form

FRMLOGIN.FRM Form used to login to TP Desktop Connector

FRMRECVC.FRM Form used to determine receive control text values

ACMSDI.BAS TP Desktop Connector global declarations1

CONSTANT.TXT Visual Basic global declarations2

FORMS.BAS TP Desktop Connector HP DECforms-style message codes
and text1

MTEXT.BAS TP Desktop Connector message text initialization
procedures

NONBLK.BAS Global declarations specific to this sample application

1This file was installed on your system as part of the installation of TP Desktop Connector
Windows APIs. See HP TP Desktop Connector for ACMS Installation Guide.
2This file was installed with Visual Basic.

7.7.1 Starting the Forced Nonblocking Sample
Before you execute the sample, follow these steps:

1. Install TP Desktop Connector on the host server computer and on your PC.

2. Install the forced nonblocking sample on your PC. HP TP Desktop
Connector for ACMS Installation Guide describes how to verify the
installation of the forced nonblocking sample.

Forced Nonblocking Extension to the Portable API 7–37

3. Install the appropriate TP Desktop Connector Dynamic Link Library (DLL)
for the transport to be used, in the directory which contains the forced
nonblocking sample or set a directory path to locate the DLL. Name the
DLL "acmsdi.dll".

Also, you must install the DLL "di_cnv.dll" (used for localization) in that
directory or on that directory path. If no localization is required, a stub
DLL is provided.

4. Check that ACMS is started on the host computer.

5. Create and start the ACMS application and task called by the sample on
the ACMS system. Execute the following command at the $ prompt on the
host computer where TP Desktop Connector has been installed:

$ @ACMSDI$EXAMPLES_ACMS:FNBTASK

6. Check that the TP Desktop Connector Gateway for ACMS software is
started on the host computer.

7. To start the sample execution, bring up the sample project, fnbsampl.mak,
under Visual Basic and depress F5 or select Start from the Run menu. The
main form will be displayed.

7.7.2 The Main Form
The main form contains a set of buttons that allows you to activate various
API calls. It also contains an options box labeled "Exchange Args", which has
two option buttons by which you can choose whether or not you wish to "bind"
exchange step arguments.

The main form contains the following text boxes:

• Last Call

Displays the name of the most current API call that was issued except for
the acmsdi_poll call, which is continuously issued while polling is active.

• Current Exchange

Displays the type of exchange step currently active, if any.

• Messages

Gives you instructions and hints as to the next steps you can take.

• Arguments

Displays exchange step arguments, forms records, and workspaces as they
arrive from the backend.

The activation buttons are discussed in the following sections.

7–38 Forced Nonblocking Extension to the Portable API

7.7.3 Starting and Stopping Polling
The polling button starts and stops polling. When polling is active the acmsdi_
poll API call is periodically issued in a timer-activated Sub procedure named
Timer1_Timer. This button is labeled "Start Polling" if polling is not active
or "Stop Polling" if polling is active. In addition, a text box below the button
contains the word "Polling" when polling is active. You can start or stop polling
at any time using this button. Polling is also automatically stopped and started
at appropriate times in the application’s procedures.

If polling is not active, task call, task cancel, sign-in and sign-out completions
are not detected, nor the arrival of exchange steps. If the application appears
to stall, it may be because polling is not active. If this is the case you can click
this button to start polling.

Hint

When designing your own application, do not allow the user to start
and stop polling but rather, automatically start and stop polling in
the application’s procedures. When polling is active, hide the polling
activity from the user. For example, do not get into a polling loop which
continuously displays the fact that there is no active task.

7.7.4 Forced Nonblocking Sample Sign In
To sign into TP Desktop Connector, click the button labeled "Sign In". The
sample displays the Sign In form (FRMLOGIN.FRM) allowing you to enter the
user name, password, and host node name. The "Cancel" and "OK" buttons
allow you to complete the sign-in attempt or to cancel the sign-in attempt if
you change your mind.

If you choose to complete the sign-in attempt, the application issues the
acmsdi_sign_in API call. The Sign-In form is hidden and the application waits
until acmsdi_poll recognizes the sign-in completion. At that time, an acmsdi_
complete_call API call is issued to retrieve the sign-in call status. The code for
this call can be found in the SigninComplete procedure.

A dialog box is displayed to inform you of the success or failure of the sign-in
attempt. If the dialog box does not appear in a reasonable amount of time, it
may be because polling is stopped. If this is the case, simply click the button
labeled "Start Polling".

Forced Nonblocking Extension to the Portable API 7–39

7.7.5 Calling the ACMS Task from Sample
After you have successfully signed in, you can call the ACMS task,
"FNBTASK", by clicking the "Call Task" button. The text box below this
button contains the words "Task Executing". The sample application issues an
acmsdi_call_task API call in the cmdCallTask_Click procedure.

Dialog boxes are displayed announcing the arrival of exchange steps. Exchange
step arrivals are detected by the acmsdi_poll service, so polling must be active
when the "Call Task" button is clicked. Examine the code found in the Timer
procedure of the Timer1 object (Timer1_Timer) to see how polling is handled
for this sample application.

7.7.6 Forced Nonblocking Exchange Steps
The ACMS task, FNBTASK, issues three HP DECforms-style exchange steps;
transceive, send and receive, in that order. Because these are HP DECforms-
style exchanges, the first exchange step to actually arrive for a given signed-in
session is an enable exchange. If this were an actual HP DECforms session,
this exchange provides the information HP DECforms needs to initialize the
first form. However, in the visual basic environment, enable exchanges are
often ignored.

Exchange steps in this sample are acknowledged using the F1 and F2 keys.
The KeyUp procedure of the Form object (Form_KeyUp) contains the code
which responds to the F1 and F2 keys.

TP Desktop Connector does not require that you issue any of the various
"binds" which are used to retrieve and send exchange step arguments.
However, the acmsdi_complete_pp call is required to signal the end of exchange
step processing. For this sample, the code which issues this call is found in the
CompleteExchange procedure.

7.7.6.1 Forced Nonblocking Enable Exchange Step
After clicking the OK button, which announces the arrival of the enable
exchange, the Message text box contains instructions as to the next step you
can take. You must select "Bind" or "Continue" from the Exchange Args options
box and press the F1 key. If you select "Bind", the enable exchange arguments
are read from TP Desktop Connector with the acmsdi_bind_enable_args call,
and they are displayed in the Arguments text box. If you select "Continue",
acmsdi_bind_enable_args is not issued and the application proceeds directly to
the transceive exchange step.

If you choose to bind the enable arguments, they are displayed in the
Arguments text box. Instructions are displayed in the Messages text box.
The next step is press the F2 key.

7–40 Forced Nonblocking Extension to the Portable API

You then see a dialog box, which announces that a Session Identifier has
been sent to TP Desktop Connector. This session identifier is useful if your
application is written to handle HP DECforms sessions. The session identifier
is sent with an acmsdi_bind_session_id call. The code that issues this call is
found in the Form_KeyUp procedure.

7.7.6.2 Transceive, Send and, Receive Exchange Steps
The code for the transceive, send and receive exchanges is essentially the
same; the differences being primarily in the number and types of arguments
and forms records exchanged. The arrival of each exchange step is announced
by the display of a dialog box. After the dialog is dismissed, instructions
are displayed in the Messages text box. As was the case with the enable
exchange, you are asked to choose whether or not you want to bind the
exchange arguments by choosing "Bind" or "Continue" from the Exchange
Args options box. Then you are instructed to press F1. Exchange arguments
are displayed or not, depending on your choice. The API calls for retrieving the
arguments are:

• acmsdi_bind_transceive_args

The code can be found in the ShowTransceiveArgs procedure.

• acmsdi_bind_send_args

The code can be found in the ShowSendArgs procedure.

• acmsdi_bind_receive_args

The code can be found in the ShowReceiveArgs procedure.

After pressing F1, the exchange arguments are displayed in the Arguments
text box if you chose to bind them. Whether you choose to bind the arguments
or not, the next set of instructions requests that you press F2 to continue. If
you chose to bind the arguments, the send records are displayed next, including
the send control text. The TP Desktop Connector API call issued to retrieve
the send control text and send forms records is acmsdi_bind_send_recs, the
code can be found in the ShowSendRecs procedure.

In either case, pressing F2 eventually causes the Receive Control Text form
(FRMRECVC.FRM) to be displayed. For this ACMS task, the receive control
text is used to instruct the task to sleep for 5 seconds or to return immediately.
If "Sleep" is chosen, the delay may be used to attempt to cancel the ACMS task
using the Cancel Task button.

Forced Nonblocking Extension to the Portable API 7–41

After the Receive Control Text form has been dismissed, the sample application
completes the exchange step by calling acmsdi_bind_receive_recs to send
receive control text and receive forms records back to ACMS and finally, by
calling acmsdi_complete_pp. The code for these calls can be found in the
CompleteExchange procedure.

7.7.7 Task Completion
After the last exchange step has completed, the acmsdi_poll service recognizes
the task completion which arrives from the back end unless you decide to
cancel the task (See Section 7.8.9). The CalltaskComplete procedure is given
control. This procedure issues an acmsdi_complete_call API call to retrieve the
final completion status and task argument workspaces from the back end. A
dialog box is displayed showing the final completion status. After dismissing
the dialog box, if the task completed normally, the task argument workspaces
sent from the ACMS task are displayed in the Messages text box.

You can now either reexecute the task, perhaps trying some different options,
by clicking the Call Task button or sign out by clicking the Sign Out button.

7.7.8 Signing Out
To sign out of TP Desktop Connector, click the button labeled "Sign Out".
The application then issues the acmsdi_sign_out API call. The application
waits until acmsdi_poll recognizes the sign-out completion. At that time, an
acmsdi_complete_call API call is issued to retrieve the sign-out call status. The
code for this call can be found in the SignoutComplete procedure.

A dialog box is displayed to inform you of the success or failure of the sign-out
attempt. If the dialog box does not appear in a reasonable amount of time, it
may be because polling is stopped. If this is the case, simply click the button
labeled "Start Polling".

7.7.9 Cancelling the Task
After dismissing the Receive Control Text form (see Section 7.8.6.2), the
current exchange step is completed and, if you chose to have the ACMS task
"sleep" for 5 seconds, you can use that delay to cancel the task. Click the
Cancel Task button. The application issues an acmsdi_cancel API call in the
cmdCancelTask_Click procedure.

A dialog box is displayed to tell you that the task was or was not successfully
cancelled. After dismissing that dialog box a second dialog box is displayed to
show the final task completion. As in any API service completion the acmsdi_
poll service recognizes both the cancel and the task completion.

7–42 Forced Nonblocking Extension to the Portable API

Because the task cancellation is recognized as a task failure, the Messages
text box shows a set of task failure messages and the actual status message
received from ACMS:

Task was cancelled by task submitter

This represents a normal completion for a cancelled task. However, because
it represents a task failure, polling is automatically stopped. Therefore, to
proceed with another task call or a sign out call, start polling by clicking the
Start Polling button. This is not a recommended way to write your application.
As stated earlier, polling should be transparent to the end user. However, for
this sample application, this technique illustrates the importance of keeping
polling active in order to detect call completions and exchange steps.

Forced Nonblocking Extension to the Portable API 7–43

A
Sample Application Code

This appendix describes where to find sample code that runs on an HP ACMS
system with the TP Desktop Connector Gateway for ACMS and on supported
desktop client systems. To locate the directories containing the code, use the
logical names in Table A–1 and Table A–2.

The logical names in both tables are defined when the TP Desktop Connector
gateway starts (see HP TP Desktop Connector for ACMS Gateway
Management Guide). If they are not defined on your system, consult the
system manager.

Table A–1 TP Desktop Connector API Directories

Logical Name Directory Contents

ACMSDI$COMMON Files common across platforms
needed to compile and link the
client services

ACMSDI$NT_I86 Windows TP Desktop client
services libraries for building
desktop client programs on
Windows systems

ACMSDI$UNIX Tru64 UNIX TP Desktop client
services libraries for building
Tru64 UNIX client programs

ACMSDI$VMS OpenVMS TP Desktop client
services libraries for building
desktop client programs on
OpenVMS systems

(continued on next page)

Sample Application Code A–1

Table A–1 (Cont.) TP Desktop Connector API Directories

Logical Name Directory Contents

ACMSDI$VMS_ALPHA OpenVMS Alpha TP Desktop client
services libraries for building
desktop client programs on
OpenVMS Alpha systems

ACMSDI$VMS_I64 OpenVMS I64 client services
libraries for building desktop
client programs on OpenVMS I64
systems

Note

The logicals for OpenVMS clients point to sys$common:[acmsdi.vms_clients]
directory. The logicals for Non-VMS clients point to
sys$common:[acmsdi.nonvms_clients] directory.

Table A–2 TP Desktop Connector Directories

Logical Name Directory Contents

ACMSDI_AVERTZ_DEFAULT ACMS AVERTZ sources

ACMSDI$EXAMPLES General tools

ACMSDI$EXAMPLES_ACMS AVERTZ task definitions and
database software

ACMSDI$EXAMPLES_MOTIF Motif sample sources

ACMSDI$EXAMPLES_MOTIF_UNIX Platform-specific files: makefile,
executable, and so on, for the
Tru64 UNIX Motif sample

ACMSDI$EXAMPLES_MOTIF_VMS Platform-specific files: makefile,
executable file, and so on, for the
OpenVMS Motif sample

ACMSDI$EXAMPLES_MOTIF_VMS_ALPHA Platform-specific files: makefile,
executable file, and so on, for the
OpenVMS Alpha Motif sample

(continued on next page)

A–2 Sample Application Code

Table A–2 (Cont.) TP Desktop Connector Directories

Logical Name Directory Contents

ACMSDI$EXAMPLES_MSWINDOWS_NT_I86 Program source and executable
file for the Microsoft Windows
nonblocking environment sample
desktop client program

ACMSDI$EXAMPLES_MSWINDOWS_VB Program source and executable
file for the Microsoft Visual Basic
sample desktop client programs

AVERTZ_TDB ACMS AVERTZ sources

Sample Application Code A–3

B
Tools

The ACMSDI$EXAMPLES directory contains a collection of general purpose
tools, include files, and sample programs. Table B–1, Table B–2, and Table B–3
contain the following lists:

• Development tools and files

• Runtime tools

• General samples

Table B–1 Development Tools and Files

Tool Description

FORMS.H Include file that contains HP DECforms status codes.
These status codes can be used by the client program’s
presentation procedures to return valid forms status
values. (These values are used for the HP DECforms-
style presentation procedures: acmsdi_enable, acmsdi_send,
acmsdi_receive, acmsdi_transceive, acmsdi_disable)

MAKE_CBL.COM Command procedure used by the tool
MAKE_RECORDS.COM to generate COBOL include files
for workspace definitions.

MAKE_FORMS_H.COM Command procedure that generates an include file called
forms.h. This header file contains all the status codes
recognized by forms$manager.exe. It can be used by the
client program’s presentation procedures to return valid
forms status values. (These values are used for the HP
DECforms-style presentation procedures: acmsdi_enable,
acmsdi_send, acmsdi_receive, acmsdi_transceive, acmsdi_
disable.) For example:

$ @MAKE_FORMS_H

(continued on next page)

Tools B–1

Table B–1 (Cont.) Development Tools and Files

Tool Description

MAKE_H.COM Command procedure used by the tool
MAKE_RECORDS.COM to generate C include files for
workspace definitions.

MAKE_RECORDS.COM Command procedure that generates C structure definitions
or COBOL record definitions for the ACMS workspaces
used by an application. This tool uses the record definitions
in CDD to generate either C or COBOL include files. For
example:

$ @MAKE_RECORDS cdd-path { COBOL | C }

MAKE_TDMS_H.COM Command procedure that generates an include file called
tdms.h. This header file contains all the status codes
recognized by tssshr.exe. It can be used by the client
program’s presentation procedures to return valid forms
status values. (These values are used for the TDMS-style
presentation procedure, acmsdi_request.) For example:

$ @MAKE_TDMS_H

PPGEN.COM Command procedure that generates presentation procedure
code. This tool uses the ACMS application’s .TDB file to
generate code for the presentation procedures that does the
following:

• Validates the number and size of workspaces passed in
to the presentation procedure.

• Invokes the application-specific presentation proce-
dures. (Names for the application-specific presentation
procedures are based on the names used in the task
definition.)

Stubs for the application-specific presentation procedures
are generated as well. For example:

$ @PPGEN tdb-file-name

TDMS.H Include file that contains TDMS status codes. These status
codes can be used by the client program’s presentation
procedures to return valid forms status values. (These
values are used for the TDMS-style presentation procedure,
acmsdi_request.)

B–2 Tools

Table B–2 Runtime Tools

Tool Description

ACMSDI$CANCEL.COM Command procedure that automatically cancels TP Desktop
Connector users who have been inactive for a specified
period of time.

See the ACMSDI$CANCEL.COM file for instructions on
usage.

SHOW_DESKTOP_
USERS.EXE

Displays submitter information such as user name, client
node name, network transport, and so forth, for all Desktop
users that are currently signed in to the TP Desktop
Connector gateway on this node. For example:

$ RUN SHOW_DESKTOP_USERS

Table B–3 General Samples

Sample Build Procedure Description

ACMSDI_GET_VERSION.COM Command procedure that builds a sample version
of ACMSDI$GET_VERSION.EXE. See also the
ACMSDI_GET_VERSION sources.

BUILD_SHOW_DESKTOP_
USERS.COM

Command procedure that builds a sample, which
demonstrates the use of the ACMSDI$GET_
SUBMITTER_INFO OpenVMS service. See also
the SHOW_DESKTOP_USER sources.

Tools B–3

Index

A
ACMS application

developing, 3–1
ACMSDI$FORM.FORM, 3–3

use, 3–3
ACMSDI$GET_SUBMITTER_INFO service

sample, 3–8
ACMSDI$RLB.RLB, 3–3

use, 3–3
ACMSDI.LIB

library use, 4–44
acmsdi_bind_enable_args service, 7–4
acmsdi_bind_msg, 7–3
acmsdi_bind_receive_args service, 7–4
acmsdi_bind_receive_recs service, 7–4
acmsdi_bind_request_args service, 7–4
acmsdi_bind_request_wksps service, 7–4
acmsdi_bind_send_args service, 7–4
acmsdi_bind_send_recs service, 7–5
acmsdi_bind_session_id service, 7–4
acmsdi_bind_transceive_args service, 7–4
acmsdi_call_task service

in nonblocking environment, 5–19, 6–27
acmsdi_check_version routine

stub, 4–36
use, 4–18

acmsdi_complete_call service, 7–3
acmsdi_complete_pp service

use in nonblocking environment, 5–20,
6–28

acmsdi_disable routine
use, 4–43

acmsdi_dispatch_message service
in nonblocking environment, 5–12, 6–20

acmsdi_enable routine
use, 4–43

ACMSDI_GET_VERSION
building shareable image, 3–5
logical name, 3–5

defining, 3–6
routine

OpenVMS use, 4–18
ACMSDI_INTERNAL

handling, 2–14
ACMSDI_OPT_CHECK_VERSION option

use, 4–20
ACMSDI_OPT_NONBLK option, 7–2
ACMSDI_PENDING

in nonblocking environment, 5–11, 6–19
acmsdi_poll service, 7–2
acmsdi_read_msg, 4–38
acmsdi_sign_in service

example
blocking, 4–28

ACMSDI_TASK_FAILED
description, 2–14

acmsdi_transceive
example

nonblocking, 5–16, 6–25
acmsdi_transceive routine

example
blocking, 4–38
nonblocking pseudocode, 5–20, 6–28

acmsdi_write_msg, 4–38
Action routine

version-checking, 4–18

Index–1

Activating data compression, 4–9
API

See TP Desktop Connector client service
Application

ACMS
common, 2–7
design, 2–1
developing, 3–1

availability, 2–12
debugging, 3–9
mixed VT and desktop, 2–7
processing design, 2–3
queued task, 2–9
requirements, 2–2
sample, 1–11

Application node
failover configuration, 2–12

Availability
increasing desktop gateway, 2–12

AVERTZ.EXE program
component modules, 5–6, 6–5
component processing flow, 5–7, 6–7
menus, 5–7, 6–7
Windows sample, 5–5
X Windows sample, 6–5

AVERTZ sample
desktop client program, 1–11, 4–20

Windows, 5–5
X Windows, 6–5

source locations, A–1

B
Back-end application

See Application, ACMS
Back-end system

See Application, ACMS
Bidirectional workspaces

See Unidirectional workspaces
Blocking service

See also Service and Nonblocking service
environment defined, 1–7

C
Call identification

origin, 5–19, 6–27
Call_context parameter

use in AVERTZ, 5–15, 6–24
Canceling a task, 5–19, 7–6
CDD data type, 4–3
CLIENT.EXE desktop client program

nonblocking sample, 4–20
Client/server model

operations, 1–1
Client service

TP Desktop, 1–7
Client_init routine

purpose, 4–28
Coding

workspace character strings, 4–8
Communication

description, 1–4
Completion routine

example, 5–10, 6–18
in nonblocking service, 5–9, 6–17

Component
desktop, 1–1
desktop client program, 1–3, 4–21

Windows, 5–6
X Windows, 6–5

gateway, 1–5
network, 1–4

Compression, 2–22
Configuration

desktop system, 1–2, 1–3
failover

application node, 2–12
submitter node, 2–13

Context
data required, 5–15, 6–23
example of handling, 5–17, 6–25
in nonblocking environment, 5–13, 6–22

Conversion
data, 4–3

design consideration, 2–17

Index–2

D
Data

context handling, 5–15, 6–23
conversion, 4–3

date in Windows, 4–4
Windows, 5–5
X Windows, 6–5

local restriction, 5–10, 6–18
validation, 4–31

Data alignment, 2–17, 6–33
Data compression, 4–9
Data compression monitor, 4–13
Data compression reports, 4–15
Data definition

creating for desktop, 3–2
Data design

description, 2–16
integrity, 2–19
validation, 2–18
workspace, 2–19

Data type
CDD equivalents, 4–3

Date
type conversion, 4–4

Debugging
desktop client program, 3–9

with tasks, 4–45, 5–26
NO I/O tasks without desktop system,

3–9
Design

ACMS application, 2–1
prototyping, 2–2
user interface, 2–15

Desktop
mixing with terminal, 3–3

Desktop client program
coding for HP DECforms exchange steps,

4–43
component, 1–3

Windows, 5–6
X Windows, 6–5

components, 4–21
I/O task interaction, 2–5

Desktop client program (cont’d)
libraries, 4–44
sample

source code locations, A–1
writing

with blocking services, 4–28
with nonblocking services, 5–4, 6–4

Development
blocking

presentation procedures, 4–37
services, 4–28

code management, 4–1
Microsoft DOS

memory allocation routine, 5–25
nonblocking

guidelines, 5–4
presentation procedures, 5–20
services, 5–9

nonblocking
guidelines, 6–4

OpenVMS system, 3–1
version-checking routine, 4–18

Dispatcher
role definition, 1–5

E
Error

handling application, 2–13
Event-driven processing, 6–1
Exchange step

HP DECforms coding, 4–43
in nonblocking environment, 5–3
presentation procedure with, 4–37

Exit handler
calling, 4–32

F
Failover configuration

submitter node, 2–12, 2–13
Flow control

handling, 2–8

Index–3

Forced nonblocking, 7–1
Forced nonblocking sample, 7–36
Form

library file use, 3–3
treating in ACMS application, 3–3

FORM I/O
coding, 4–43

FORMS.H file
use, 4–20

Front-end system
See Desktop system

G
Gatekeeper

role definition, 1–5
Gateway

as ACMS agent, 1–2
capacity, 1–6
component description, 1–5
increasing availability of desktop, 2–12
TP Desktop Connector

definition, 1–2
Generating workspace definitions, 4–5
Graphics

use, 2–16
Guidelines

nonblocking client, 6–4

H
HP DECforms

desktop client program coding, 4–43

I
I/O task

client procedure, 4–1
definition, 2–3
in nonblocking environment, 5–3
procedure kinds, 4–1

Identification
submitter

ACMS, 3–6
desktop gateway, 3–6

Identification
submitter (cont’d)

TP Desktop Connector, 3–6
Initialization

phase, 1–8
Interface

user
design, 2–15
graphics, 2–16
multiple sign-ins, 2–15

L
Libraries

desktop client program, 4–44
location of API, A–1
network list, 4–45

Logical name
ACMSDI_GET_VERSION use, 3–5
sample directories, A–1

M
Main form, 7–38
MAKE_RECORDS.COM utility, 4–5
Management

code, 4–1
description, 1–10

Memory allocation routine
writing, 5–25

Microsoft Windows
See Windows

Modify workspaces
See Unidirectional workspaces

Multiple gateways, 3–11

N
Network

component description, 1–4
NO I/O task

definition, 2–3
Nonblocking

sample desktop client program, 4–20

Index–4

Nonblocking service
See also Blocking service and Service
ACMSDI_PENDING use with, 5–11,

6–19
calling, 5–9, 6–17
design implications, 2–11
environment defined, 1–7
polling need, 2–11
summary of, 5–1
writing procedures using, 5–9, 6–17

nonreentrant, 4–4

O
Object library

required, 4–44
Windows

linking, 5–26
OpenVMS

ACMSDI$GET_SUBMITTER_INFO
service, 3–8

programming notes, 3–8
OpenVMS to RISC structure byte copy, 6–34

P
Polling, 7–39

example, 5–12, 6–20
nonblocking environment need, 2–11
setting up control mechanism, 5–12, 6–20

Portable API extension, 7–1
Presentation code

building, 4–44
choosing software, 2–2
Microsoft DOS

building
Windows, 5–26

prototyping, 2–2
Presentation procedure

application-specific
blocking, 4–21

example, 4–41
Windows sample, 5–9
X Windows sample, 6–8

blocking

Presentation procedure
blocking (cont’d)

sample, 4–24
writing, 4–37

definition, 4–2
error handling, 2–14
generic

blocking, 4–21
example, 4–38

Windows sample, 5–8
X Windows sample, 6–8

HP DECforms coding, 4–43
nonblocking, 2–11

call context returned with, 5–16,
6–25

completion example, 5–23, 6–31
pseudocode, 5–20, 6–28
writing, 5–20, 6–28

processing flow, 4–2
return status coding, 4–43
stubs, 4–36

Processing
phases, 1–8
presentation procedure, 4–2

Processor usage
NO I/O task, 2–7

Programming
strategies, 1–10

Prototyping
presentation code, 2–2

Q
Queued task

design, 2–9

R
Read-only workspaces

See Unidirectional workspaces
Reports, 4–15
Request

library file use, 3–3

Index–5

Reserve task
definition, 4–25

RISC architecture, 2–17
RISC data alignment, 6–33

S
Sample application, 1–11

desktop client program
nonblocking, 4–20
Windows, 5–5
X Windows, 6–5

source code locations, A–1
Serialization

violations, 4–4
Service

See also Blocking service and Nonblocking
service

blocking
using, 4–28

client
TP Desktop, 1–7

nonblocking, 2–11
definition, 1–7

OpenVMS
desktop client, 1–10

system management, 1–10
Services

TP Desktop Connector client
library locations, A–1

Session
context

data required, 5–15, 6–23
example of handling, 5–17, 6–25
maintenance, 5–13, 6–22

create
Windows sample, 5–8
X Windows sample, 6–8

information
submitter identification, 5–8, 6–8

Sign-in
example

blocking, 4–28
information in procedure, 4–28
multiple active, 5–13, 6–22

Sign-in
multiple active (cont’d)

in Windows sample, 5–8
in X Windows sample, 6–8

multiple design, 2–15
multiple support, 2–13
phase, 1–8
service, 1–7

Sign-out
phase, 1–9

Specifying form names
guidelines, 3–3

Starting the sample, 7–37
Status

coding return
presentation procedure, 4–43

Stepping through
Microsoft Windows Sample, 5–26
Motif sample, 6–39

Storage
nonblocking service release, 5–9, 6–17

Stub routine
description, 4–36

Submitter identification
nonblocking environment, 5–12, 6–20
types of, 3–6
use, 5–19, 6–27

Submitter node
failover configuration, 2–13

T
Task

activity in Windows sample, 5–8
activity in X Windows sample, 6–8
calling, 4–32

event-driven environment, 2–16
categories, 2–3
debugging

desktop client program, 3–9
NO I/O, 3–9

definition approaches, 2–3
exchange step, 4–37
flow control handling, 2–8
form reference, 3–3
I/O, 2–5

Index–6

Task
I/O (cont’d)

comparison with NO I/O, 2–6
converting to NO I/O, 2–8
definition, 2–3
procedure kinds, 4–1

invocation
expense, 2–6
overhead, 2–7

NO I/O
definition, 2–3
freedom, 2–6
processor usage, 2–7

processing phase, 1–8
queued, 2–9
reserve definition, 4–25
sample definition, 3–3
selection phase, 1–8

Task-call-task feature
use in common applications, 2–7

Task definition
I/O

example, 2–5
NO I/O

example, 2–4
Task group

form reference, 3–3
sample definition, 3–3

Terminal
mixing with desktop, 3–3

TP Desktop client service
introduction to, 1–7

TRANSCEIVE
applications using, 4–28

U
Unidirectional workspaces

modifiable, 2–21
read-only, 2–21
write-only, 2–21

Usage
processor, 2–7

User interface
design, 2–15
event-driven environment, 2–16

User interface (cont’d)
software, 2–2

V
Version checking

operations to implement, 3–5
requesting, 4–20
routine

writing, 4–18
Windows, 5–5
X Windows, 6–5

W
Windows

desktop client program
building, 5–26

development guidelines, 5–4
sample, 5–5

Workspace
coding, 4–8
creating, 3–2
design, 2–19

Write-only workspaces
See Unidirectional workspaces

X
X Windows

development guidelines, 6–4
sample, 6–5

Index–7

