
OpenVMS Migration Software for VAX to
Alpha Systems

(formerly DECmigrate)

Translating Images

June 2002

This manual describes how to use the VAX Environment Software Translator (VEST) and other OpenVMS
Migration Software for VAX to Alpha Systems tools for translating and porting OpenVMS VAX
applications to OpenVMS Alpha systems.

Revision/Update Information: This is a new manual.

Operating System and Version: OpenVMS Alpha Version 6.2 or higher

Software Version: OpenVMS Migration Software for VAX to Alpha
Systems 1.2

Compaq Computer Corporation
Houston, Texas

1

©2002 Compaq Computer Corporation Compaq. VAX, VMS, POLYCENTER, and the Compaq
logo Registered in U.S. Patent and Trademark Office. OpenVMS is a trademark of Compaq
Information Technologies Group, L.P. in the United states and other countries. All other product
names mentioned herein may be trademarks of their respective companies.

Confidential computer software, a valid license from Compaq is required for possession, use, or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license. Compaq shall not be liable for technical
or editorial errors or omissions contained herein.

The information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

2

Table of Contents

Preface.. 8
Intended Audience ... 8

Part I User's Guide to Translating Images .. 11
1. Introduction to Image Translation.. 12

1.1 Overview of OMSVA... 12
1.1.1 OMSVA Features .. 12
1.1.2 OMSVA Roles within a Migration Strategy.. 13

1.2 Image Translation Tools and Support... 13
1.2.1 VAX Environment Software Translator Utility.. 14

1.2.1.1 VEST Information Files .. 14
1.2.1.2 How VEST Works .. 14
1.2.1.3 Code Analysis-Pass 1 and Pass 2... 14
1.2.1.4 Code Generation.. 15

1.2.2 VEST/DEPENDENCY Command ... 15
1.2.3 FLOWGRAPH Command.. 15
1.2.4 Translated Image Environment ... 16

2. Translating Images.. 17
2.1 Before Translating an Image .. 17
2.2 Running VEST to Translate an Image.. 18

2.2.1 VEST Return Status .. 19
2.2.2 VEST Qualifiers ... 19
2.2.3 VEST Output Files... 19

2.3 Using VEST/DEPENDENCY to Identify Image Dependencies 19
2.3.1 Using the VEST_MMS_DRIVER.COM Command File..................................... 20
2.3.2 Processing the Dependency Graph File.. 20

3. Running Translated Images .. 21
3.1 Running the Translated Image ... 21
3.2 Handling References to a Translated Image .. 21

Part II Developer's Guide to Translating Images.. 23
4. Enhancing Performance and Analyzing Images ... 24

4.1 Using the /AUDIT Qualifier ... 24
4.2 Considering Performance ... 24

4.2.1 Using Performance-related Qualifiers ... 24
4.2.2 Run-Time Statistics ... 25
4.2.3 TIE Feedback and .HIF Files... 26

3

4.2.3.1 VEST /FEEDBACK Qualifier .. 26
4.2.3.2 Controlling TIE Feedback-Logical Names ... 26

4.3 Using VEST Flowgraphs... 27
4.3.1 DHRYSTONE.EXE Flowgraph.. 28
4.3.2 Basic Blocks in Flowgraphs... 28
4.3.3 Arcs in Flowgraphs .. 29
4.3.4 Error Flowgraphs ... 29

4.4 Identifying Data Alignment Problems.. 29
4.4.1 Using the /DST Qualifier and the DSTGRAPH Command................................ 30
4.4.2 Interpreting DSTGRAPH Output ... 30

4.4.2.1 Overall Layout .. 30
4.4.2.2 Syntax and Conventions .. 30

5. Using Information Files ... 33
5.1 Types of Information Files .. 33
5.2 Image Information Files .. 33
5.3 Hand-Edited Information Files .. 33
5.4 .IIF and .HIF File Syntax ... 34

5.4.1 Image Records .. 34
5.4.2 Property Records... 34
5.4.3 Comment records .. 34
5.4.4 Interface Properties ... 34
5.4.5 Specifying Resources as Property Values .. 34
5.4.6 Flag Bits Modified in Processor Status Longword... 35

5.5 Library Information Files ... 36
5.6 .LIF File Syntax ... 36

5.6.1 Renaming records ... 36
5.6.2 Comment records .. 37

6. Translating and Replacing OpenVMS VAX Shareable Images 38
6.1 Interoperability Requirements... 38

6.1.1 /TIE and /NONATIVE_ONLY Qualifiers .. 38
6.1.2 Preserving Upward Compatibility .. 39

6.2 Procedures for Building Shareable Image Variants.. 39
6.2.1 Building the Original OpenVMS VAX Shareable Image.................................... 40
6.2.2 Creating the Translated Shareable Image .. 41

6.2.2.1 Translated Main Image .. 41
6.2.2.2 Native Main Image ... 41

6.2.3 Building a Replacement Shareable Image.. 41

4

6.3 Procedures for Building a Jacket Image... 43
6.3.1 Preparing the Jacket Images Sources .. 43
6.3.2 Preparing the Native Shareable Image ... 46
6.3.3 Translating and Using the Jacket Image... 47

6.4 Symbol Information File (.SIF file) .. 48
6.4.1 .SIF File Syntax ... 48
6.4.2 Creating and Using a .SIF File .. 49

6.5 /JACKET Qualifier... 50
Part III Reference Information .. 51

A. Command Summaries .. 52
VEST... 52

/AUDIT .. 52
/DEBUG.. 54
/DST.. 55
/EXECUTABLE... 55
/FEEDBACK ... 56
/FLOAT ... 56
/FLOWGRAPH.. 56
/IIF... 57
/INCLUDE_DIRECTORY.. 57
/INTERPRET .. 58
/JACKET... 59
/LIF.. 59
/LIST ... 59
/OPTIMIZE.. 60
/PRESERVE ... 61
/RESTRICT... 63
/SHOW.. 64
/SIF ... 66
/TRACEBACK... 66
/VIEW.. 67
/WARNINGS... 68

VEST/DEPENDENCY... 70
/FILE_LIST.. 70
/FLOWGRAPH.. 71
/LIST ... 71
/MMS_DESCRIPTION.. 71

5

/VIEW_EQUIVALENCE_NAMES... 72
DSTGRAPH .. 72

/ALL .. 73
/SCALE_FACTOR .. 73
/SELECT... 73
/SKEW .. 74
/UNALIGNED.. 74
/WIDTH... 74

FLOWGRAPH... 75
/OUTPUT.. 75
/SCALE_FACTOR .. 76
/STARTING_ADDRESS... 76

B. Error and Status Messages .. 77
B.1 Interpreting VEST Messages ... 77

B.1.1 Levels of Debugging and Traceback Information ... 77
B.1.2 Location Information Syntax ... 78

B.2 The Messages .. 79
B.2.1 VEST Messages ... 79
B.2.2 DSTGRAPH Messages... 97
B.2.3 FLOWGRAPH Messages.. 98

C. Debugging Translations.. 100
D. Translation and Performance Restrictions ... 101

D.1 Identifying Restrictions and Performance Issues... 101
D.2 Untranslatable Images ... 101
D.3 Images Translatable with Warnings ... 101
D.4 Images with Undetectable Translation Problems... 101
D.5 Translatable Images with Performance Issues .. 102

E. VAX Instructions ... 103

Examples .. 113

Example 2-1: Translating an Image .. 113
Example 4-1: Audit Information for SIEVE.EXE.. 113
Example 4-2: Run-Time Statistics for SIEVE_TV.EXE... 113
Example 4-3: Requesting and Processing VEST Flowgraphs.. 114
Example 5-1: Excerpt from a Run-Time Library .IIF File... 114
Example A-1: Summary Format.. 114
Example C-1: Forcing Exception PC Correlation.. 114

6

Figures.. 116
Figure 1-1: VEST Processing.. 116
Figure 1-2: Translated Image Environment .. 117
Figure 2-1: SIEVE.EXE Dependency Graph... 118
Figure 4-1: The SIEVE Call Flowgraph... 119
Figure 4-2: DHRYSTONE Flowgraph at 0.33 Scale ... 120
Figure 4-3: Example Subroutine in DHRYSTONE Flowgraph at 1.0 Scale...................... 120
Figure 4-4: Error Graph for DHRYSTONE Basic Block 4CD0_CE................................... 120
Figure 4-5: DSTGRAPH File Showing Unaligned Data .. 120
Figure 6-1: Role of Jacket Image .. 121

Tables ... 122
Table 2-1: VEST Command Qualifiers.. 122
Table 2-2: VEST Output Files ... 123
Table 4-1: VEST Performance Qualifiers.. 124
Table 5-1: Interface Properties.. 125
Table 6-1: .SIF Directive Syntax ... 128
Table A-1: VEST Message Categories ... 129
Table C-1: Problem: Runs Slowly ... 130
Table C-2: Problem: Executes improperly or returns incorrect results 133
Table C-3: Problem: Crashes or exits with fatal messages or access violations.............. 135
Table C-4: Problem: Exceptions never terminate ... 137
Table D-1: Untranslatable Images .. 138
Table D-2: Images Translatable with Warnings .. 139
Table D-3: Images with Undetectable Translation Problems.. 140
Table D-4: Translatable Images with Performance Issues ... 141

7

Preface
Intended Audience
OpenVMS Migration Software for VAX to Alpha Systems (OMSVA) facilitates migrating
OpenVMS VAX applications to OpenVMS Alpha systems by allowing you to translate OpenVMS
VAX images into equivalent OpenVMS Alpha images. OMSVA consists of the VAX Environment
Software Translator (VEST) utility and a collection of programs and command files designed to
ease the translation process. OpenVMS Migration Software for VAX to Alpha Systems
Translating Images documents the VEST utility and explains its use as part of a strategy for
migrating OpenVMS VAX applications to OpenVMS Alpha systems.
This manual addresses:

Users who are translating all or part of an OpenVMS VAX application as part of a
strategy for migrating to an OpenVMS Alpha system
Users who are developing translated shareable images for OpenVMS Alpha systems

In addition, this manual describes VEST's analytical capability and addresses:
Users who are analyzing OpenVMS VAX images to help determine the best migration
strategy for an application
Users who are analyzing OpenVMS VAX images to facilitate migrating source files to
OpenVMS Alpha or modifying source files to create translatable OpenVMS VAX images

Document Structure
This manual consists of three parts:
 Part I: User's Guide to Translating Images

Information in Part I is applicable to all users:
Chapter 1 describes the image translation process and the supporting software
components.
Chapter 2 describes how to use the utilities provided to translate OpenVMS VAX
images.
Chapter 3 describes how to run translated images on OpenVMS Alpha systems.

 Part II: Developer's Guide to Translating Images
Information in Part II is applicable to users who need to maximize translated image
performance; users with access to source code that can be edited either to improve
translation or to prepare source files for rebuilding on OpenVMS Alpha systems; and
users preparing translated shareable images:

Chapter 4 describes how to use the analytical capabilities of VEST to enhance
translation and to identify source problems that affect migration.
Chapter 5 describes image information files, which VEST creates and uses in the
process of image translation.
Chapter 6 describes how to develop translated shareable images that
interoperate with native shareable images on an OpenVMS Alpha system.

 Part III: Reference Information
Information in Part III is applicable to all user categories:

8

Appendix A provides a detailed description of the DSTGRAPH, FLOWGRAPH,
VEST, and VEST /DEPENDENCY command lines and qualifiers.
Appendix B provides an alphabetical listing of all VEST, FLOWGRAPH, and
DSTGRAPH error messages with explanations and recommended user actions,
if applicable.
Appendix C describes translation problems and suggests ways to debug them.
Appendix D lists coding practices and other restrictions that affect the
translatability of OpenVMS VAX images.
Appendix E lists all the VAX instructions in alphabetical order and describes how
VEST handles each one.

Associated Documents
The following OpenVMS Alpha manuals also pertain to migrating OpenVMS VAX
applications:

Migrating to an OpenVMS Alpha System: Planning for Migration provides an overview of
the OpenVMS VAX to OpenVMS Alpha migration process and information to help you
plan a migration. It discusses the decisions you must make in planning a migration and
the ways to get the information you need to make those decisions. In addition, it
describes the migration methods available so that you can estimate the amount of work
required for each method and select the method best suited to a given application.
Migrating to an OpenVMS Alpha System: Recompiling and Relinking Applications
describes how to build an OpenVMS Alpha version of your OpenVMS VAX application by
recompiling and relinking it. It discusses dependencies your application may have on
features of the VAX architecture (such as assumptions about page size, synchronization,
and condition handling) that may need modifying to create a native OpenVMS Alpha
version. In addition, it describes how you can create applications in which native
OpenVMS Alpha components interoperate with translated OpenVMS VAX components.
Migrating to an OpenVMS Alpha System: Porting VAX MACRO Code describes how to
port MACRO code to an OpenVMS Alpha system using the VAX MACRO-32 Compiler
for OpenVMS Alpha. It describes the features of the compiler, presents a methodology
for porting VAX MACRO code, identifies nonportable coding practices, and recommends
alternatives to such practices.
 The manual also provides a reference section with detailed descriptions of the compiler's
qualifiers, directives, and built-ins, and the system macros created for porting to
OpenVMS Alpha Systems.

Conventions
 The following conventions are used in this manual:
. . . A horizontal ellipsis in examples indicates one of the following possibilities:

Additional optional arguments in a statement have been omitted.
The preceding item or items can be repeated one or more times.
Additional parameters, values, or other information can be entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

() In format descriptions, parentheses indicate that, if you choose more than
one option you must enclose the choices in parentheses

9

one option, you must enclose the choices in parentheses.
[] In format descriptions, brackets indicate optional elements. You can

choose one, none, or all of the options. (Brackets are not optional,
however, in the syntax of a directory name in an OpenVMS file
specification, or in the syntax of a substring specification in an assignment
statement.)

{ } In format descriptions, braces surround a required choice of options; you
must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the name of an
argument, an attribute, or a reason. Boldface text is also used to show
user input.

italic text Italic text emphasizes important information, indicates variables, and
indicates complete titles of manuals. Italic text also represents information
that can vary in system messages (for example, Internal error number),
command lines (for example, /PRODUCER= name), and command
parameters in text.

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of
a file, or the abbreviation for a system privilege.

- A hyphen in code examples indicates that additional arguments to the
request are provided on the line that follows.

numbers

All numbers in text are assumed to be decimal, unless otherwise noted.
Nondecimal radixes-binary, octal, or hexadecimal-are explicitly indicated.

10

Part I User's Guide to Translating Images
The chapters in Part I contain the following information:
Topic See
The image translation process and supporting software
components

Chapter 1

Using the VAX Environment Software Translator (VEST) utility to
translate OpenVMS VAX images

Chapter 2

Running translated images on an OpenVMS Alpha system Chapter 3

11

1. Introduction to Image Translation
This chapter discusses the following topics:
Topic See
An overview of OMSVA Section 1.1
A description of OMSVA tools and support Section 1.2

1.1 Overview of OMSVA
OpenVMS Migration Software for VAX to Alpha Systems (OMSVA) facilitates migrating
OpenVMS VAX applications to OpenVMS Alpha systems. A OMSVA utility, the VAX Environment
Software Translator (VEST), converts an OpenVMS VAX executable or shareable image into a
translated image that runs on an OpenVMS Alpha system. When the translated image runs, the
OpenVMS Alpha system transparently supports the image with an environment that allows it to
run as if it were on an OpenVMS VAX system. In that support environment, the average
translated image runs as fast as or faster than the original running on an equivalent OpenVMS
VAX system.
Translating and running an image can be as simple as the following example:

$ vest sieve 1
$ run sieve_tv 2
Sieve of Eratosthenes 3
500 iterations
1899 primes found
time taken : 2 seconds

The OMSVA kit includes the image SIEVE.EXE, which you can find in the directory
SYS$SYSROOT:[SYSHLP.EXAMPLES.VEST] after the product has been installed. Try the
commands shown on your own system. VEST creates the translated image in the current
directory and names it by appending "_TV" to the input image file name. The translated version of
SIEVE.EXE is named SIEVE_TV.EXE. In the previous example, the callouts highlight:
1 The VEST command used to translate an image. The command assumes the file extension to
be .EXE.
2 The DCL command used to run the translated image. The same command is used to run
SIEVE.EXE on an OpenVMS VAX system.
3 The output displayed by the translated image.
VEST can translate many images this easily. However, when you are translating shareable
images or images that are linked against user-written or third-party shareable images, you may
need to take some additional steps. For example, an image may contain dependencies on the
VAX architecture or OpenVMS VAX operating system that can affect translation. In some cases,
you can use VEST qualifiers to accommodate such dependencies. In other cases, you may need
to modify and rebuild source files, if they're available, to avoid the VAX dependencies.
The remainder of this overview discusses OMSVA features (Section 1.1.1) and OMSVA's role
within a migration strategy (Section 1.1.2).

1.1.1 OMSVA Features
OMSVA features include:
Language independence

OMSVA translates an image regardless of the source language.

12

Automated translation
 OMSVA translates an image automatically; it requires no human intervention to analyze
and translate code.

Image analysis
 OMSVA analyzes an image and reports its findings in various forms (messages, listings,
and graphs, for example); these findings are useful not only for translation, but also for
preparing original sources for recompiling and relinking on an OpenVMS Alpha system.

VEST cannot translate all OpenVMS VAX images; some restrictions apply. For example, VEST
will not translate images linked on versions prior to Version 4.0. Furthermore, VEST does not
support certain coding practices because the OpenVMS Alpha system cannot reproduce the
corresponding VAX code correctly. VEST issues an error message when it encounters
unsupported code and may or may not create a translated image, depending on the specific
problem reported.
See Appendix D for a summary of coding practices that are either not supported or not
recommended.

1.1.2 OMSVA Roles within a Migration Strategy
To migrate an OpenVMS VAX application to an OpenVMS Alpha system, the following options
are available:
Rebuilding application source files

Rebuilding source files by recompiling and relinking them is the preferred option because
it achieves better Alpha Alpha performance than image translation. If the source files and
an appropriate compiler are available, you can recompile and relink an application.

Translating the application's OpenVMS VAX images
If either the application sources or the appropriate compiler is not available, then
translating images is the only alternative.

Combining source rebuilding with image translation
Recompiling and relinking source files for some of the application and then translating
images for the remainder of the application is a third migration option. This third option is
possible because the OpenVMS Alpha system supports interoperability; that is, it allows
native and translated images to issue calls to and receive calls from one another.

The combination of application rebuilding and image translation provides a great deal of flexibility
in your migration strategy. For a more detailed discussion of your migration options, see the
OpenVMS Alpha manual Migrating to an OpenVMS Alpha System: Planning for Migration.

1.2 Image Translation Tools and Support
The image translation tools and support include:

The VEST utility, the primary translation tool (see Section 1.2.1).
The VEST/DEPENDENCY command, which determines the order in which to translate a
main image and any shareable images it refers to (see Section 1.2.2).
FLOWGRAPH command, which creates graphical representations, called flowgraphs, of
the OpenVMS VAX image that VEST has analyzed. The flowgraphs are in PostScript
format and are based on VEST-generated files (see Section 4.3).

13

DSTGRAPH command, which illustrates unaligned and skewed data items that VEST
has found in an OpenVMS VAX image. The illustrations are in PostScript format. VEST
can collect the necessary information only if the image has been compiled and linked with
the /DEBUG qualifier (see Section 4.4).

Translated Image Environment (TIE), a native shareable image and other components
within the OpenVMS Alpha operating system that supports translated images at run time
(see Section 1.2.4).

1.2.1 VAX Environment Software Translator Utility
The VEST utility translates executable and shareable images; it accepts an OpenVMS VAX
image file (image.EXE) as input, analyzes the image file to locate VAX code, and then creates a
translated image file (image_TV.EXE). The translated image, which performs the exact same
functions as the original, is an OpenVMS Alpha image consisting of both Alpha AXP code and the
original OpenVMS VAX image. This section first describes text files VEST uses for finding and
analyzing code and then briefly explains how VEST works.
1.2.1.1 VEST Information Files
Information files are text files that provide VEST with additional information to be used during
image translation. The types of information files are as follows:
Image information files

 An image information file (also called an .IIF file) describes the interface to a shareable
image by detailing its entry point properties. When an input image has been linked
against a shareable image, VEST reads the .IIF file for that shareable image. Information
about its entry points allows VEST to generate translated code that properly creates the
linkage between the main and shareable images. When VEST translates a shareable
image, it creates an .IIF file for the image. When VEST translates another image that
refers to the shareable image, it reads the .IIF file created when that shareable image
itself was translated. The OpenVMS Alpha operating system includes .IIF files for all the
translated and native system run-time libraries (RTLs). See Chapter 5 for further details.

Hand-edited information files
 A hand-edited information file (also called an .HIF file) contains information about the
input image VEST is currently translating. The contents of the .HIF file either override
assumptions VEST would make about specific entry points in the image, or augment
what VEST is able to find out on its own. See Chapter 5 for further details.

Symbol information files
 A symbol information file (also called a .SIF file) is a text file that precisely describes and
controls the contents of the global symbol table (GST) and symbol vector in a translated
shareable image. Chapter 6 explains when and how to use .SIF files.

Library information files
A library information file (also called a .LIF file) is a text file that describes how to rename
shareable image references in the translated image depending on the referenced image
section id. This feature allows keeping multiple translated versions of an image (each
with its own .IIF file) on the same system.

 Chapter 5 explains how VEST accesses the information files.

1.2.1.2 How VEST Works
VEST processes an OpenVMS VAX image in two major phases to generate an equivalent
OpenVMS Alpha image: an analysis phase and a code generation phase. Figure 1-1 illustrates
VEST input, processing, and output.
1.2.1.3 Code Analysis-Pass 1 and Pass 2
During the analysis phase, VEST extensively analyzes the input image file to find the entry points,
to separate the code and data, to trace the program flow for later code optimization, and to detect

14

anomalies that cannot be correctly reproduced in the OpenVMS Alpha environment. VEST tries
to find as much code as possible since the TIE must interpret any unfound code at run time.
VEST makes two passes over the image, pass 1 and pass 2, in its search for code. During pass
1, VEST searches for and reads an .IIF file for every shareable library referenced by the input
image. VEST also searches for an optional .HIF file for the input image itself. The .HIF file helps
VEST resolve ambiguities or locate hidden code. During pass 2, VEST tries to parse and
translate portions of the image that did not yield code during pass 1. As VEST analyzes the input
image, it saves information about the image's program flow and structure. VEST eventually uses
the information to create the translated image and, if requested, to produce a flowgraph file. You
can use the flowgraph file to generate PostScript output that graphically represents all or part of
the input image in selectable levels of detail. The flowgraphs are a useful means of understanding
program flow and pinpointing locations in the image that represent problem areas in the source.
1.2.1.4 Code Generation
The second phase of translation generates the translated image, an Alpha AXP image that
includes translated code as well as the complete original OpenVMS VAX image. Translated code
is native Alpha AXP code that performs the same function as the corresponding VAX code in the
original image. When the translated image runs on an OpenVMS Alpha system, it reproduces the
behavior of the original image. VEST command line qualifiers allow you to control the code
generation phase to direct tradeoffs between precise VAX architecture conformance and run-time
performance on the OpenVMS Alpha system.
 If the input image is shareable, VEST also generates an .IIF file, named image.IIF, for the image.
Section 5.2 describes how VEST uses image.IIF files.

1.2.2 VEST/DEPENDENCY Command
The VEST/DEPENDENCY command identifies the dependencies that one or more images have
on shareable images. Using this information, you can determine the correct order in which to
translate a set of images. By translating images in the correct order, you ensure that VEST has
the information it needs about shareable images as it translates each image. (See Section 5.2.)
VEST/DEPENDENCY output includes:

A DEC/Module Management System (MMS) for OpenVMS VAX description file. If your
system includes MMS, a component of the optional layered product DECset for
OpenVMS Alpha, you can use a command file OMSVA provides to invoke MMS and
pass it the description file. The description file directs MMS to execute a series of VEST
commands that translates a set of OpenVMS VAX images in the right order.
A dependency graph file that you process to create a PostScript representation of the
image dependencies. You can use the image dependency graph to determine the correct
order in which to translate the images.

Section 2.3 describes how to use the VEST/DEPENDENCY command, how to use the MMS
input file, and how to process the dependency graph file.

1.2.3 FLOWGRAPH Command
The FLOWGRAPH command creates one or more flowgraphs, formatted in PostScript, that
represent all or part of an image's program flow or that show an image's dependency on
shareable images. The command bases the flowgraphs on an input file created by a VEST or
VEST /DEPENDENCY command. Depending on the selections you make when you issue the
VEST command, a flowgraph can illustrate the internal flow of an entire image, can illustrate the
parts of the image that prompted VEST to issue an error message, or can illustrate the image's
calling structure. The VEST/DEPENDENCY command produces a file from which the
FLOWGRAPH command creates a dependency graph.

15

 Section 4.3 describes how to use the VEST and FLOWGRAPH commands.

1.2.4 Translated Image Environment
The Translated Image Environment (TIE) provides the OpenVMS Alpha system with the
resources that a translated image needs in order to run. A variety of components work together to
support translated image execution:

The translated image, which includes both the original OpenVMS VAX image and
translated code. The translated code includes calls, inserted by VEST, to TIE$SHARE.
These calls initiate processing that is not native to the OpenVMS Alpha operating system.
TIE$SHARE, which is an OpenVMS Alpha shareable image. TIE$SHARE provides
functions that enable the translated image to execute as if it were on an OpenVMS VAX
system. TIE$SHARE functions include:

Managing VAX state information and other information that defines the relationship
between the original VAX code and the translated code.

−

−

−

Implementing OpenVMS VAX features that the translated image requires, such as
exception processing and asynchronous system trap (AST) delivery.

Interpreting VAX code that VEST did not translate.
TIE$EMULAT_TV, which is a translated shareable image that TIE$SHARE calls to perform
complex VAX instructions.
Other features of the OpenVMS Alpha operating system, which work cooperatively with
TIE$SHARE to perform exception processing, to deliver ASTs, and to enable communication
between translated and native images. Automatic jacketing, described in Chapter 6, provides the
interoperability mechanism for most communication between translated and native images; it
provides the bridge between the VAX and Alpha AXP calling standards.
Figure 1-2 shows the interrelationship of the run-time environment components.

16

2. Translating Images
This chapter discusses the following:
Topic See
What to consider before translating an image Section 2.1
Running VEST to translate an image Section 2.2
Using the VEST/DEPENDENCY command to identify image
dependencies

Section 2.3

Related topics in other chapters include:

Topic See
Special considerations when translating shareable images Chapter 6
Running translated images Chapter 3

2.1 Before Translating an Image
Some questions to consider before translating an image are as follows:
Do you want a summary of an image's migration characteristics, that is, features of the image that
affect decisions to rebuild or translate?

 The VEST qualifier /AUDIT analyzes an image and generates a brief summary of
migration characteristics, including whether or not the image sources can be recompiled;
whether or not the image is translatable; whether or not the image includes code that
adversely affects performance; and what the source language or languages are. See the
Appendix A description of VEST for further details about the /AUDIT qualifier.

Are you translating images in the correct order?
 If the OpenVMS VAX image to be translated depends on user-supplied shareable
libraries, use the VEST /DEPENDENCY command to identify the image dependencies
and the proper order in which to translate the interrelated images (Section 2.3). You need
to translate images in the proper order to ensure that required .IIF files are accessible to
VEST as it translates each image. The OpenVMS Alpha operating system includes .IIF
files for all the translated system libraries. If the DEC /Module Management System
(MMS) for OpenVMS VAX is available on your system, you can use the .MMS description
file that VEST/DEPENDENCY generates to do the translations in the correct sequence. If
MMS is not available, you can use VEST/DEPENDENCY to create a graph that illustrates
the dependencies.

Are required information files available to VEST?
 Make sure that any information files VEST needs to translate the image are available.
VEST searches for relevant .IIF, .HIF, and .SIF files in the following locations and in the
following order:
The current default directory
The directory or directories specified as values to the qualifier /INCLUDE_DIRECTORY,
if present in the VEST command line
The directory or directories, if any, defined by the VEST$INCLUDE logical name

Does the OpenVMS VAX image include debugging information?

17

 VEST uses information in an OpenVMS VAX image's debugger symbol table (DST) to
find code and to trace an error encountered at a specific address in the image back to the
line of source corresponding to that address. If you are using VEST to help you identify
migration problems in source files, you need the DST information to be present. Section
B.1.1 describes the relationship between DST information and the /DEBUG and
/TRACEBACK qualifiers used to create the image.

2.2 Running VEST to Translate an Image
The following command translates an OpenVMS VAX executable or shareable image:

VEST[/ qualifier,...] image [.EXE]

Where image is the file name of the OpenVMS VAX image to be translated and the default
extension is .EXE. Section 2.2.2 describes the VEST qualifiers.
If the translation is successful, VEST creates the translated image in your current directory and
names it by appending "_TV" to the input image file name as follows:

image_TV.EXE

Note
 A file name cannot exceed 39 characters in length. Because of this limitation, VEST truncates
any input image file name that exceeds 36 characters in order to append the characters "_TV".

 If VEST encounters errors that prompt ERROR or FATAL level messages, it does not create a
translated image. In this event, the messages explain why the translation was unsuccessful. (See
Appendix D for the definition of a translatable OpenVMS VAX image.)
Example 2-1 shows the successful translation of an image called DHRYSTONE.EXE.
In Example 2-1, the callouts note the following:
 1 A brief directory listing for an OpenVMS VAX image called DHRYSTONE.EXE.
 2 The VEST command line to translate DHRYSTONE.EXE.
 3 A brief directory listing showing the original image and two new files created by VEST:
DHRYSTONE_TV.EXE-the translated image
DHRYSTONE_TV.LIS-the listing file
 4 A command to display the DHRYSTONE_TV.LIS file. The amount of information included in
the listing file depends on the /SHOW qualifier setting. See the description of /SHOW in Appendix
A for details. This listing file first describes the version of VEST, the date and time of the
translation, the command line issued, and header information for the image being translated.
 5 A summary of the VEST messages incurred during the translation. The summary categorizes
the messages as follows:

Standard messages VEST displays by default −

−

−

−

−

Performance messages that note code in the input image that may cause the
translated image to run more slowly

Source analysis messages that point out unconventional code patterns in the input
image that might indicate latent bugs or nonportable features in the source

Synchronization messages that note possible uses of features requiring some form of
synchronization

Verbose messages that report on VEST progress during translation

18

 The amount of detail included in the listing file about these messages depends on the
/WARNINGS qualifier setting. See the description of /WARNINGS in Appendix A. Appendix B
provides a complete listing of all the VEST messages alphabetized by the message identifier (for
example, READING). Refer to Appendix B for an explanation of each message and suggested
user actions, if any.
VEST qualifiers, introduced in Section 2.2.2, allow you to tailor how VEST translates or analyzes
an image.

2.2.1 VEST Return Status
When VEST completes its run, it returns one of the following messages as exit status to DCL:

TRANSOK, Translation completed successfully
TRANSWARN, Translation completed with warnings-review them before using the output
image
TRANSERROR, Translation unsuccessful-no output image created
TRANSFATAL, Translation was impossible

The return status indicates the highest level of severity (INFO, WARNING, ERROR, or FATAL) of
all the messages that VEST issued during its run. The only exception to this rule is that VEST
ignores WARNING messages that you have explicitly disabled. (See the description of
/WARNING in Appendix A.)
VEST/DEPENDENCY returns the equivalent status messages prefixed with DEPEND
(DEPENDOK, for example).

2.2.2 VEST Qualifiers
The VEST command accepts qualifiers that control processing in various ways. Table 2-1
categorizes the qualifiers by function. Refer to Appendix A for a complete description of the VEST
command line and each of the qualifiers listed.

2.2.3 VEST Output Files
VEST can generate several types of output files, depending on the type of image you are
translating and the qualifiers you specify on the command line. Table 2-2 describes each type of
output file, including its default name and the VEST qualifier that controls it.

2.3 Using VEST/DEPENDENCY to Identify Image Dependencies
The VEST/DEPENDENCY command analyzes one or more input images to identify external
references to shareable images. If a referenced shareable image in turn refers to another
shareable image, VEST/DEPENDENCY searches that image for references to any shareable
images, and so on. The VEST/DEPENDENCY command has its own set of qualifiers and its own
syntax; see Appendix A for details.
You can choose how the command deals with the dependency information it collects:

VEST/DEPENDENCY/MMS_DESCRIPTION, the default, creates an MMS description file
called image.MMS. Section 2.3.1 explains how to use a OMSVA command file to execute
the MMS description file.
VEST/DEPENDENCY/FLOWGRAPH creates a file called image.GRAPH. Section 2.3.2
explains how to submit this file to the FLOWGRAPH command to create an image
dependency graph.

19

In the following example, VEST/DEPENDENCY analyzes the SIEVE.EXE image's dependencies
on other shareable images, by default creates an .MMS file, and requests a dependency graph
file:

$ vest/dependency/flowgraph sieve
%VEST-I-READIMAGE, Reading image file VST_00:[VEST.TEST]SIEVE.EXE;
%VEST-I-READIMAGE, Reading image file SYS$COMMON:[SYSLIB]VAXCRTL.EXE;
%VEST-I-READIMAGE, Reading image file SYS$COMMON:[SYSLIB]LIBRTL.EXE;
%VEST-I-READIMAGE, Reading image file SYS$COMMON:[SYSLIB]UVMTHRTL.EXE;

VEST/DEPENDENCY creates the following files in the current directory:
SIEVE.MMS-An MMS description file
SIEVE.GRAPH-An input file used to create a PostScript graph of image dependencies

2.3.1 Using the VEST_MMS_DRIVER.COM Command File
If you have MMS on your system, you can use the OMSVA command file
VEST_MMS_DRIVER.COM to execute the MMS description file. Look for
VEST_MMS_DRIVER.COM in the SYS$SYSTEM: directory, which is where the OMSVA
installation procedure places the command file. The description file instructs MMS to issue VEST
commands in the right order as appropriate; no command is issued to translate any image for
which an up-to-date translated version is already available.
Use the VEST_MMS_DRIVER.COM command file to process the MMS description file; do not
submit it directly to MMS. The command file defines the logical name VEST$FULL_INCLUDE,
required by the MMS description file to execute correctly. The MMS description file itself contains
definitions that describe all the components for the translation and the command needed to
invoke VEST. Depending on individual circumstances, you may choose to edit the MMS file
before using it.
The syntax for invoking the command file is as follows:

@VEST_MMS_DRIVER image [.MMS]

Where:
image[.MMS] is the name of the MMS description file.
The following example processes the SIEVE.MMS file:

$ @vest_mms_driver sieve

In this example, SIEVE.EXE is the only image actually translated. The shareable libraries SIEVE
refers to are VAXCRTL, LIBRTL, and MTHRTL. The translated versions of these libraries and
their information files already exist; retranslating them is unnecessary.

2.3.2 Processing the Dependency Graph File
When the command line includes the /FLOWGRAPH qualifier, the VEST/DEPENDENCY
command creates a .GRAPH file. The FLOWGRAPH command (see Section 4.3) converts the
.GRAPH file into a PostScript image dependency graph. This graph displays the dependencies as
a tree, as shown in
 Figure 2-1.
If MMS is not available, you can translate the images in the proper order by starting with the
image at the bottom of the tree and moving up. You do not need to retranslate any libraries for
which .IIF files are already available.
The following example uses the FLOWGRAPH command to create a dependency graph of the
image SIEVE.EXE called SIEVE.PS and then queues it to a PostScript printer:

$ FLOWGRAPH SIEVE
$ PRINT/QUEUE=HALL01/PARAM=(DATA=POSTSCRIPT) SIEVE.PS

The default input file extension is .GRAPH; the default output file takes the name of the input file
and appends the extension .PS. Note that you cannot rotate the output to be printed in landscape
mode; this is a PostScript restriction.

20

3. Running Translated Images
This chapter discusses the following topics:
Topic See
Running a translated image Section 3.1
Handling references to a translated image Section 3.2

Other run-time topics are discussed in Chapter 4:
Topic See
Capturing run-time statistics on a translated image Section 4.2.2
Using run-time feedback in hand-edited information (.HIF) files to
improve image translation

Section 4.2.3

3.1 Running the Translated Image
To run a translated image, use the DCL RUN command. For example, to run the sample program
SIEVE_TV.EXE (translated in Chapter 1), enter the following command:

$ run sieve_tv
Sieve of Eratosthenes
500 iterations
1899 primes found
time taken : 2 seconds

The Translated Image Environment (TIE) (see Section 1.2.4) issues error messages whenever it
encounters errors while the translated image is running. For message descriptions, use the
OpenVMS Alpha online Help Message utility or refer to the OpenVMS system messages
documentation.
If the logical name TIE$DISPLAY_STATISTICS is defined to be any string other than 0 or
FALSE, the TIE displays statistics about translated image execution when a program exits. See
Section 4.2.2 for details.

3.2 Handling References to a Translated Image
Depending on how a translated image is activated, you may need to reflect the name change
from image.EXE to image_TV.EXE:

If you are using the RUN command, specify the translated image name, as shown in
Section 3.1.
If the image name is specified in a command language definition (CLD) file, either modify
the image name within the CLD file or define a logical name pointing the old name to the
new name.
If a foreign command symbol is used to activate the image, change the symbol definition
to specify the translated image name.
If your translated application includes shareable images not located in SYS$SHARE, you
must define logical names that correctly point to them, that is, that reflect the correct
location and translated image names. For example:

$ DEFINE MYMATH_TV YOUR$DISK:[YOUR_DIR]MYMATH_TV.EXE

Note
When you run a translated image linked against a Compaq supplied shareable image in
SYS$SHARE, the OpenVMS Alpha system automatically activates the correct image-you

21

don't need to redefine the shareable image's logical name. For translated shareable
images in SYS$SHARE not supplied by Compaq, you must explicitly define the
appropriate logical name.

22

Part II Developer's Guide to Translating Images
The chapters in Part II contain the following information:
Topic See
Improving translated image performance; identifying source code
problems that can affect how you rebuild an application for the OpenVMS
Alpha operating system

Chapter 4

Using image information files Chapter 5
Creating translated and native shareable images Chapter 6

23

4. Enhancing Performance and Analyzing Images
This chapter discusses the following topics:
Topic See
Using the /AUDIT qualifier to learn about image characteristics that affect
translating and rebuilding an application

Section 4.1

Affecting a translated image's performance by selecting specific VEST
qualifiers, by studying TIE run-time statistics, and by using run-time
feedback

Section 4.2

Creating and processing VEST flowgraphs Section 4.3
Identifying unaligned and skewed data Section 4.4

4.1 Using the /AUDIT Qualifier
The /AUDIT qualifier instructs VEST to analyze an image and to provide a brief summary
assessment that may help you decide on a migration strategy for your application. The summary,
which is based on error messages issued during the VEST analysis and on information in the
image's debugger symbol table (DST), answers the following questions:

Can the image be recompiled and rebuilt on an OpenVMS Alpha system if the sources
are available? Yes or No.
Can the image be translated? Yes or No.
Does the image include code that would slow its performance as a translated image?
Slow or OK
What source languages were used?

If, for example, auditing determines that an image includes code that is unsupported on the
OpenVMS Alpha operating system, you can modify the sources (if available) to eliminate the
unsupported code. Or if auditing flags a potential performance problem, you can either correct the
source or translate the image with a VEST qualifier that will minimize its effect on performance.
See Appendix A for a detailed description of the /AUDIT qualifier. The description includes a
suggestion for building a file of summary descriptions by issuing a series of VEST/AUDIT
commands and then using DCL commands to extract and compile the summary descriptions.
Example 4-1 shows the listing file for an audit of the SIEVE.EXE program.

4.2 Considering Performance
You can use VEST both to enhance the performance of translated images as well as to ensure
exact VAX behaviors. This section discusses performance-related VEST qualifiers, TIE run-time
statistics, and run-time feedback you can use to improve translated image performance.

4.2.1 Using Performance-related Qualifiers
VEST includes several qualifiers that influence, directly or indirectly, the performance of a
translated image. Table 4-1 briefly describes these qualifiers. Refer to the full qualifier
descriptions in Appendix A for details.

24

4.2.2 Run-Time Statistics
By defining a logical name, you can request that the Translated Image Environment (TIE) display
run-time statistics about translated image execution. The TIE displays these statistics whenever a
program exits as long as one or more translated images were activated during program
execution. For example, if a program's main image is native but calls a translated RTL, the TIE
displays the run-time statistics when the program exits.
These statistics, which pertain to all images activated during program execution, describe the TIE
resources used and all interactions between native and translated images. These statistics are
particularly useful for characterizing translated image performance. For example, the statistics
show how many VAX instructions required interpreting and how many complex VAX instructions
required emulating.
To display the statistics, define the logical name TIE$DISPLAY_STATISTICS to be either 1 or
TRUE or any string other than 0 or FALSE. For example:

$ DEFINE TIE$DISPLAY_STATISTICS TRUE

The TIE writes the statistics to SYS$OUTPUT, which normally points to your terminal. However,
to save the statistics, along with other program output, to a file, define the logical name
SYS$ERROR. For example:

$ DEFINE SYS$ERROR DEV_00::[GROUP.STATS]ERRORS.DAT

To turn off the statistics, redefine the logical name as 0 or FALSE. The statistics will also not be
displayed if the logical name is not defined. For example:

$ DEFINE TIE$DISPLAY_STATISTICS FALSE

or
$ DEASSIGN TIE$DISPLAY_STATISTICS

Example 4-2 shows the statistics displayed for SIEVE_TV.EXE.
The following list explains the statistics from Example 4-2 in detail:
1 This table describes all the TIE lookups. Whenever a translated image does a CALL, a JSB, or
a JMP that could not be resolved by VEST translation, the TIE must determine the target code by
looking up the destination in an internal table. Depending on the results of the lookup, control
passes either to VAX code that must be interpreted, to translated VAX code, or to native code. As
an optimization, the TIE retains information for frequently used lookups in a lookup cache. A
statement following the lookup table notes the percentage of lookups found in the cache.
2 "VAX code located outside translated images" refers to VAX code that an image creates at run
time and which must be interpreted. Such code occurs very rarely.
3 A Fault-on-Execute condition converted to a lookup occurs when translated or native code
attempts to branch to VAX code, which usually happens with RET, RSB, or computed branches.
Depending on the lookup, the TIE either interprets the VAX code or finds the equivalent
translated code.
4 The TIE may need to use the VAX-Instruction Atomicity Controller when an image was
translated with the VEST qualifier /PRESERVE=INSTRUCTION_ATOMICITY. The controller
ensures that translated code equivalent to a complete VAX instruction finishes without
interruption should an asynchronous system trap (AST) or other event occur.
5 This list describes the type and number of complex VAX instructions emulated by the TIE.
6 This statement summarizes the total number of VAX instructions interpreted.
7 This line notes the overall CPU time used to run the program.
8 The autojacketing statistics note the number of times calls occurred between translated and
native routines. The number of calls from translated to native routines is always the same as the

25

number of TIE lookups in the CALLx column of the "Went to Native routines:" row in the table at
the top of the statistics.
9 Finally, the statistics list all the translated images and then all the native images used while the
program ran.

4.2.3 TIE Feedback and .HIF Files
At run time, the TIE can save information about code it has interpreted in a translated image.
When you then retranslate the image, VEST uses that information, called feedback, to create a
more efficient translated image. Repeatedly running and retranslating an image therefore
becomes a simple and effective way to improve run-time performance.
If the TIE interprets code at run time and thereby discovers previously untranslated entry points
within the image, it can write descriptions of the entry points to a hand-edited information file or
.HIF file, a text file that describes entry points in an image (Section 5.3). If a .HIF file does not
already exist for the translated image, the TIE creates one. When you subsequently retranslate
the image, VEST reads the image's .HIF file to locate and translate code it was unable to find
before. You can repeatedly run and then retranslate an image until the TIE needs to interpret little
or no VAX code.
When a program exits, the TIE issues messages to specify each .HIF file it has written to. The
TIE suggests retranslation when a translated image requires interpreting more than 10000
instructions per CPU second. For example:

%TIE-I-HIFENTRY, There was one HIF entry appended to SYS$SCRATCH:DHRYSTONE.HIF
%TIE-I-RETRANSLATE, The TIE interpreted an average of 16965 instructions per CPU
second. Retranslate images that have HIF files to improve performance.

The TIE issues the second message only once per program, no matter how many translated
images actually execute. The number of instructions interpreted is the combined total for the
entire program.
You can control whether or not the TIE saves feedback information either for a specific image or
for all translated images that run while a logical name is defined. Section 4.2.3.1 describes the
/FEEDBACK qualifier, which allows you to enable feedback when you translate an image. Section
4.2.3.2 describes the logical names you can define to control TIE feedback and to override the
effects of the /FEEDBACK qualifier.
4.2.3.1 VEST /FEEDBACK Qualifier
The VEST /FEEDBACK qualifier is one way to control whether or not the TIE saves .HIF
information at run time. The default is /FEEDBACK, which requests that the TIE write entry point
information to a .HIF file when the translated image actually executes. If you specify
/NOFEEDBACK when translating an image, the TIE does not write to .HIF files at run time. The
logical name TIE$FORCE_FEEDBACK allows you to override /NOFEEDBACK at run time.
4.2.3.2 Controlling TIE Feedback-Logical Names
Two logical names pertain to the processing of .HIF files:
TIE$FEEDBACK_DIRECTORY-Defining this logical name specifies a directory for .HIF files.
When recording entry points, the TIE writes to a .HIF file in the specified directory. For example:

 $ DEFINE TIE$FEEDBACK_DIRECTORY DEV_00:[GROUP.HIF]

 For each translated image, the TIE writes to a different .HIF file within the directory. The .HIF file
name matches the name of the translated image the TIE is describing. When a .HIF file already
exists, the TIE appends the new entries to the end of the file. To suppress all feedback, define the
logical name to the null device as follows:

 $ DEFINE TIE$FEEDBACK_DIRECTORY NL:

 If the logical name is not defined, the TIE uses SYS$SCRATCH as the .HIF feedback directory.

26

 TIE$FORCE_FEEDBACK-This logical name's setting overrides the effect of the VEST
/NOFEEDBACK qualifier for all translated images. If you define TIE$FORCE_FEEDBACK to
either 1 or TRUE or any string other than 0 or FALSE, then the TIE writes information to an .HIF
file regardless of the translation setting for all translated images. The following example enables
feedback regardless of the translation setting:

 $ DEFINE TIE$FORCE_FEEDBACK TRUE

 The forced feedback continues until you redefine TIE$FORCE_FEEDBACK. Specifying
/NOFEEDBACK at translation time normally suppresses run-time feedback-that is, the TIE will not
write to .HIF files the information it derives from interpreting code. If TIE$FORCE_FEEDBACK is
undefined or is defined to be either 0 or FALSE, TIE feedback depends on whether the image
was translated with /FEEDBACK or /NOFEEDBACK. Either of the following commands defers to
the translation setting for feedback:

 $ DEFINE TIE$FORCE_FEEDBACK FALSE

 or
 $ DEFINE TIE$FEEDBACK_DIRECTORY NL:

4.3 Using VEST Flowgraphs
Using the /FLOWGRAPH and /VIEW qualifiers in combination, you can request a flowgraph file
and determine its contents. The flowgraph file contains information used by the FLOWGRAPH
command to create one or more PostScript formatted flowgraph files. The function of flowgraphs
is to help you understand an image's structure and to put into context the errors an image incurs
during translation. Also, you can use the /RESTRICT qualifier to confine VEST processing to
specific parts of the image. The resulting flowgraph shows only those parts.
This section describes how to request and process a flowgraph. See Section 4.3.1 for a detailed
description of flowgraph components.
A flowgraph can be one of the following types:

A call flowgraph that charts the image's calling structure and includes the names of the
called routines.
An error flowgraph that charts the routines in the image that incurred VEST error
messages.
A complete flowgraph that charts the program flow of the entire image based on the code
that VEST has found.

Use the /VIEW qualifier to select which of these three kinds of flowgraphs to include in the
flowgraph file and the /VIEW qualifier keywords to select the kind of information to be included
within either an error or a complete flowgraph:

The input machine code
The output machine code
The program source code
Information on entry masks, stack depths, and resources used and set

The command sequence in Example 4-3 requests all three flowgraphs, processes them, and
queues them to a PostScript printer. In the example, graph 1 is the call graph, graph 2 is the error
graph, and graph 3 is the complete graph. Note that graph 2 includes 0 nodes, which indicates
that the graph is empty; that is, the image incurred no errors.
Figure 4-1 shows the SIEVE call graph ("GRAPH 1" in the example).
See Appendix A for a complete description of the FLOWGRAPH command. Note that command
qualifiers allow you to modify the size of the flowgraphs (the /SCALE_FACTOR qualifier) and to
select a portion of the flowgraph (the /STARTING_ADDRESS qualifier).

27

4.3.1 DHRYSTONE.EXE Flowgraph
Figure 4-2 shows the complete flowgraph of an image called DHRYSTONE.EXE at 0.33 scale.
This section refers to this figure to describe the various parts of the flowgraph. The header line 1
has the image name, version, and link date from the image header. Pages are numbered 2 x-y
such that page 1-2 is to the right of page 1-1 and page 5-1 is below page 4-1.
In VEST flowgraphs, each subroutine is a disjoint subgraph. There are no connections shown
between it and any other subroutine. The DHRYSTONE flowgraph includes 13 large rectangles
that represent the main program and 12 subroutines. The rectangles are arranged on the pages
in decreasing order of area, with the largest at the upper left. (The main program 3 happens to fall
near the center of the page.)

4.3.2 Basic Blocks in Flowgraphs
Figure 4-3 shows the printed form of one subroutine in the DHRYSTONE flowgraph. The graph
has 17 basic blocks connected by 20 arcs. A basic block is a sequence of VAX instructions that
are all executed together. The blocks are arranged vertically so that, ignoring loops, each block
falls below all of its predecessors. The blocks are arranged horizontally so that each block tends
to be centered under its predecessors and above its successors. All forward-going arcs are
drawn down and to the right. All loop-closing arcs are drawn up and to the left.
VEST flowgraphs consist of basic blocks in six different shapes.
CALLx entry block

 A CALLx entry block 1 consists of a call mask. It is hexagonal and contains the name of
the block, the name of the procedure if known, and the VAX call mask in hexadecimal.
The name of the block consists of the VAX virtual address of the first byte of the block in
hexadecimal followed by "_CALL". A CALLx entry block is reached by means of a CALLS
or CALLG instruction. The main entry point of an executable image is a CALL entry called
from the OpenVMS operating system.

JSB entry block
 A JSB entry block is oval and contains the name of the block, and the name of the
subroutine if known. The name of the block consists of the VAX virtual address of the first
byte of the block in hexadecimal followed by "_JSB". A JSB entry point is reached by
means of a JSB, BSBB, or BSBW instruction.

Normal block
 A normal block 2 is rectangular and contains the name of the block and all the VAX
instructions within it. The name of the block is simply the VAX virtual address of the first
byte of the block in hexadecimal. A normal block is reached by means of a branch, case,
jump, or return instruction or by falling through from a preceding basic block.

CALLx placeholder block
 A CALLx placeholder 3 block is dashed hexagonal and contains the name of the block,
and the name of the called procedure if known. The name of the block consists of the
VAX virtual address of the first byte of the called procedure in hexadecimal (if known at
translate time, else zero), followed by "_" and a unique hexadecimal number, followed by
"_" and a single digit. A CALLx placeholder block represents the flow in and out of a
procedure and any recorded side effects of that procedure for each call of that procedure.
If Func1 is called from five different places, there will be five different placeholder blocks
for those calls (plus the real call entry block for the actual code of Func1).

JSB placeholder block
 A JSB placeholder block is dashed oval and contains the name of the block, and the
name of the subroutine if known. The name of the block consists of the VAX virtual

28

address of the first byte of the subroutine in hexadecimal (if known at translate time, else
zero), followed by "_" and a unique hexadecimal number, followed by "_" and a single
digit. A JSB placeholder block represents the flow in and out of a subroutine and any
recorded side effects of that subroutine for each call (JSB) of that subroutine.

Exit node block
 An exit node block is octagonal. It contains a summary of the resources set by the
routine and the change in stack depth.

4.3.3 Arcs in Flowgraphs
VEST flowgraphs have two styles of arcs.
Normal arc

 Normal arcs 4 are solid and used almost everywhere.
True branch from a two-way conditional arc

 True arcs 5 are dashed and are used for the taken path of a two-way branch, for
nonfallthrough paths from CASE instructions, and for all but the fallthrough arc of a
CASEx instruction.

In Figure 4-3, the first basic block 1 shows that at address 3208 is a VAX called procedure named
Func2 with call mask 003C (specifying to save and restore R2, R3, R4, and R5).
The second basic block 2 contains four VAX instructions, starting at address 320A.
This block falls into a loop consisting of the next five blocks. The block at 3218 ends with a call to
Func1 3. The placeholder for Func1 shows a normal return connection to the block at 322B.
This block ends with a BNEQ instruction whose true (taken) arc goes to 3235 and whose false
(fallthrough) arc goes to 322F. Similarly, the block at 3235 ends in a two-branch whose true arc 6
loops back to 3218.
The rest is straightforward, except for the call at the end of block 3253. It goes indirectly through
what turns out to be an OpenVMS VAX image fixup vector, pointing to a shareable image. By
parsing the fixup vector and reading an .IIF file for the shareable image VAXCRTL, VEST is able
to identify that the call goes to VAXCRTL:STRCMP, and that routine 7 does a normal return.
Without the .IIF file, VEST would have to make assumptions about the return point.

4.3.4 Error Flowgraphs
Figure 4-4 is an example of an error graph for a routine within DHRYSTONE.EXE. A wide,
dashed pointer connects a shaded hexagonal block describing the error with the basic block in
which the error was discovered. The blocks showing the path that reveals the error are displayed
larger than blocks that are not in the error path. The example shown highlights a code path that
would cause R3 to be read uninitialized.

4.4 Identifying Data Alignment Problems
You can use OMSVA to identify unaligned and skewed data in an OpenVMS VAX image. The
qualifier /DST instructs VEST to collect data information from the debugger symbol table (DST) in
the image and the command DSTGRAPH creates a PostScript output file that shows how the
data is aligned. This capability is useful if you have application source files and can use the data
alignment information to help you port the application to an OpenVMS Alpha system.
Alignment on a natural boundary occurs when a data item's address is a multiple of the data
item's size in bytes. The mixture of byte-sized, word-sized, and larger data types typically found in
data-structure definitions and static data areas in OpenVMS VAX applications can lead to data
not being aligned on natural boundaries. Skewed data is not unaligned, but its layout requires

29

more memory accesses than is strictly necessary. Skewed data's performance impact is small
compared to the performance impact of unaligned data.
OpenVMS VAX systems use microcode to minimize unaligned data's impact on performance. But
on OpenVMS Alpha systems, there is no hardware assistance. Instead, references to unaligned
data trigger a fault, which must be handled by the OpenVMS Alpha operating system unaligned
fault handler. While the fault is being handled, the instruction pipeline must be stopped.
Therefore, the performance cost of an unaligned reference is dramatically higher on an
OpenVMS Alpha system.
See the manuals Migrating to an OpenVMS Alpha System: Planning for Migration and Migrating
to an OpenVMS Alpha System: Recompiling and Relinking Applications for further information
about the importance of data alignment when migrating applications to OpenVMS Alpha.

4.4.1 Using the /DST Qualifier and the DSTGRAPH Command
To begin, you must recompile and relink your OpenVMS VAX program using the /DEBUG or
/DEBUG=ALL qualifier, depending on the source language. The resulting image contains a full
DST that describes the addressing for each variable. Unless you create the image by compiling
and linking with the /DEBUG qualifier, the image will not contain the full DST information VEST
needs. The /DST qualifier instructs VEST to format all the memory references in the DST and to
write them to a file called image.STI. The extension STI stands for symbol table information.
For example:

$ VEST/DST/NOEXECUTABLE/INTERPRET=ALL_CODE DHRYSTONE.EXE

The qualifiers /NOEXECUTABLE and /INTERPRET=ALL_CODE cause VEST to execute quickly
because it does not actually translate code. VEST creates the file DHRYSTONE.STI.
The DSTGRAPH command accepts an image.STI file as input and generates a PostScript file
called image.PS as output. Using command-line qualifiers, you can control which data structures
will be shown and the scale used for the data illustrations. See Appendix A for a detailed
description of the DSTGRAPH command and its qualifiers.

4.4.2 Interpreting DSTGRAPH Output
This section describes how to interpret the DSTGRAPH output. Section 4.4.2.1 describes the
overall layout of the pictures and Section 4.4.2.2 explains the detailed syntax of the information
shown for each module.
4.4.2.1 Overall Layout
The PostScript output shows all the information for each source module in a separate rectangle
that has rounded corners and a heavy border. Figure 4-5 shows an example that describes a
source module called AXDHRYSTONE_GLOBAL_DEF. The rectangles represent individual
modules that have the following characteristics:

A rectangle contains text and structure diagrams in one or more columns.
A rectangle is never wider than one page, but may span multiple pages vertically. The
text and diagrams flow down one column, possibly across many pages, and up to the top
of the next column. When a column spans more than one page, the top and bottom
overlap slightly with the top and bottom of the contiguous pages.
At the default scale (1.0), a rectangle can include two columns of text and diagrams. At
the scale of 0.8, a rectangle can include three columns.
At the scale of 0.75, a page can include up to three rectangles side-by-side. Any scale
below 0.75 becomes unreadable.

4.4.2.2 Syntax and Conventions

30

This section discusses the syntax and conventions used to present the data structure information
for each source module, which includes:
A header line describing the source module
A list of the unaligned or skewed data items identified in the module
Diagrams of the identified data structures
Module Header Line

Above the rectangle representing a module is a header:

module_name [language]

Where module_name is the name of the source module and language is the source language,
which is one of the following DST-supported languages:
VAX Ada VAX COBOL MODULA
VAX BASIC VAX DIBOL VAX PASCAL
BLISS-32 VAX FORTRAN PL/I
VAX C KOALA RPG
C++ VAX MACRO-32 SCAN

List of Variables
Within the rectangle, from the top, is a list of the unaligned or skewed variables identified for the
module. Each line in the list has the following syntax:

status: name_1\name_2\...\name_n [size] @ offset

Where
status UNaligned or SKewed
name_1\name_2\...\name_n A fully qualified variable name. The initial names

(name_1\name_2\ ...) are routine or record names.
Routines and record names are listed in alphabetical
order. Individual variables are listed in numerical
offset order. The final name (name_n) is the variable
itself. To save space, ditto marks (") are used instead
of initial names that match those of the preceding line.
Names longer than 38 characters are truncated to 38
by keeping the first 32 and last 4 characters,
separated by "..". Names that are all upper-case
letters are converted to initial caps to fit more letters of
the name into the diagrams. Refer to the list below
that describes conventions for representing certain
kinds of variables.

[size] The size of the variable in bytes. The number of whole
bytes is in hexadecimal and the number of bits in
partial bytes is given as a fraction. For example:
 [10] equals 10 hexadecimal (16 decimal) bytes [2.7]
equals 2 bytes plus 7 bits

@ offset The offset of the variable from the front of the
containing structure. The same notation is used to
represent the offset that is used to represent variable

31

size (see above). Variable offsets within a record are
given with respect to the front of the record, which is
assumed to be aligned on a boundary determined by
the /WIDTH qualifier (quadword boundary by default)

DSTGRAPH uses the following conventions to represent certain kinds of variables:
Variables at absolute addresses are described as being inside a structure with the name
.Globals., starting at virtual address 0.
Variables specified in the DST as relative to (FP) are described as being inside a
structure with the name .Locals.
Variables specified in the DST as relative to (SP) are described as being inside a
structure with the name .Stack.
Variables specified in the DST as Bliss fields are all described as being inside a single
module-global structure with the name .Blifld. This can result in somewhat jumbled-
looking Bliss data structures.

Data Structure Diagrams
Within each rectangle appear one or more data structure diagrams below the list of the unaligned
or skewed variables. The diagrams are in alphabetical order by variable name and each
represents one of the identified variables. The following list describes the content and format of
each diagram:

The fully qualified name of the entire structure appears immediately above the diagram.
Below the structure name is a series of bars that depict the individual variables within the
structure. The length of each bar corresponds to a number of bytes, which is determined
by the /WIDTH qualifier to the DSTGRAPH command. The default width is 8 bytes, which
corresponds to aligned quadwords.
The shading within each bar indicates the status of the represented variable:

Unaligned variables are shown with white names on a black background. −

−

−

Skewed variables are shown with black letters on a gray background.

Normal variables are shown with black letters on a white background.
Within a structure, DSTGRAPH positions each variable, according to its order in the DST, starting
at the first bar in which it will fit without creating an overlap. Bars are set off by a blank line,
without repeating the structure name. If there are overlapping variables in a structure, the
structure is drawn as multiple stripes, each containing no overlaps.
If a variable name is too long to fit within a bar segment proportional to its size in bits, the point
size of the typeface is first reduced to 83% or 67% of normal. If the name is still too long, it is
truncated on the right until it fits. (Cutting the /WIDTH in half allows twice as much room for each
name.)
To the far right of each bar that contains the start of a variable is the byte offset of the first byte in
hexadecimal. Bytes within a bar are numbered from right to left. At the end of each structure, the
total size in decimal bytes is given. Structure sizes larger than 9999 bytes are given in Kbytes
(multiples of 1024) or Mbytes (multiples of 1,048,576).
Each variable within a structure occupies from one to three bars, starting and ending at positions
proportional to the offsets of the first and last bits of the variable. Were a variable to occupy more
than three lines, DSTGRAPH omits the excess lines and notes the elision by putting double tick
marks on the vertical part of the box for that variable.
Unused bytes in a bar are shown as three dots inside a dashed box.

32

5. Using Information Files
This chapter discusses the following topics:
Topic See
Types of information files Section 5.1
Image information files (.IIF files) Section 5.2
Hand-edited information files (.HIF files) Section 5.3
Information file syntax Section 5.4

5.1 Types of Information Files
The types of information files include: image information files (.IIF files), hand-edited information
files (.HIF files), and symbol information files (.SIF files). Two types, .IIF and .HIF files, are used
and created differently but share the same syntax. The third type, .SIF files, which are discussed
in Section 6.4, have a different syntax and are used to control how VEST orders entries in a
translated image's symbol vector.

5.2 Image Information Files
An image information file is a text file that describes the interface to a shareable image by
detailing its entry point properties. When translating a shareable image, VEST creates a
corresponding .IIF file. VEST then reads that .IIF file whenever it translates an image that refers
to (that is, has image activate fixups to) the corresponding shareable image. The .IIF file
describes the properties of the shareable image's exported interface; that is, the precise locations
that are described in the image's global symbol table (GST). For example, if an image refers to
LIBRTL and MTHRTL, VEST searches for the image information files LIBRTL.IIF and
MTHRTL.IIF. The information in these files allows VEST to generate translated VAX code that
correctly handles references to the shared libraries. Note that the OpenVMS Alpha operating
system includes .IIF files for all the translated run-time libraries.
See Section 2.1 for a description of the directories that VEST searches to find relevant
information files. The individual descriptions in an image.IIF file describe entry properties, such as
the entry type (CALL, JSB, or BRANCH) and the resources read from or written to as a result of
calling the entry (uses and sets properties).

5.3 Hand-Edited Information Files
A hand-edited information file contains information about the input image that VEST is currently
translating. VEST reads .HIF files to augment or override what it can discover about an image
from the image itself. Information in the file points VEST to additional code, correctly specifies an
entry point (as a CALL, JSB, or BRANCH) when the input GST is wrong or ambiguous, and adds
or deletes entry points that the GST describes incorrectly.
A .HIF file can be created in one of two ways:

You can manually create an image.HIF file to provide VEST with information it is unable
to discover itself.
The TIE creates an image.HIF file, or appends information to an existing one, if
interpreting VAX code at run time enables it to identify additional entry points in the
image.

If you retranslate image after the TIE has discovered VAX code, VEST uses the image.HIF file
entries to find more code and thereby create a translated image that requires less interpretation.
You can repeat the process every time the TIE discovers more entry points at run time.

33

5.4 .IIF and .HIF File Syntax
An .IIF or a .HIF file is an ASCII file consisting of single line records of three types: image records,
property records, and comment records.

5.4.1 Image Records
An image record consists of an image name and identification (as they appear in an image
header) and the date and time the image was linked. An image record is always indented by
either spaces or tabs. For example:

Image "TIME", "V1.0", 12-JUN-1992 16:45:26.56

An .IIF file can contain multiple image records for images with different identifications ("V1.0") and
different link times. The records that immediately follow an image record pertain to that image
only.

5.4.2 Property Records
A property record consists of an image offset followed by a property name, optionally followed by
a property value. For example:

+000006981 sets 2 "R0 AP FP SP PC N Z V C" 3

The components of a property record are as follows:
1 The image offset represents the offset in the image to which the property applies. The offset
appears in one of the following formats:

+integer
symbolic_name
symbolic_name-integer
symbolic_name+integer

where integer is a hexadecimal integer value and symbolic_name is a character string defined in
a previous record. The + integer form (+0000698, for example) is the most common image offset
representation to be found in an information file. If the symbolic_name form is used, it must be
defined in a previous record. The last two forms express plus or minus offsets from a
symbolic_name and are very rarely used.
2 The property name is one of the legal property names shown in Table 5-1.
3 The property value is an optional value specific to the property. Each value is either a character
string or a hexadecimal number preceded by a plus or minus sign. See Table 5-1 for a description
of the property values, if any, associated with each property name. When the image name portion
of the property value refers to the current image, a period is used to refer to it.
Note that all property names and values are case-sensitive and all symbol names that contain
white space or special characters must be enclosed in double quotes.

5.4.3 Comment records
A comment record is any line of information preceded by a semicolon. The comment may start a
new line or be included in another record. It can occur anywhere in the file. VEST ignores all
comment records.
Example 5-1 is an excerpt from one of the run-time library's .IIF files.

5.4.4 Interface Properties
Table 5-1 lists all legal property names, their associated values, if any, and a brief description.

5.4.5 Specifying Resources as Property Values
The following property names accept a list of resources as a property value:

sets uses

+sets +uses

34

-sets -uses
The resources that can be included in a property value list are:
The following general purpose VAX registers:
 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
The following special purpose registers:
 PC SP FP AT
 which represent:
PC-the program counter (R15)
SP-the stack pointer (R14)
FP-the frame pointer (R13)
AP-the argument pointer (R12)
The following VAX instructions to indicate how the call returns:

RET RSB REI
The following processor status longword fields:

N Z V C
The following codes indicating registers used to access memory:

M.pc M.sp M.abs M.unk
A value indicating that the VAX PC has to be used as the return address of a call:

 IPC
Example:

"R0 AP FP SP PC N Z V C"

For further information about the register resources, refer to the VAX Architecture Reference
Manual.
Note that the list of resources must be enclosed in quotes. The resources are case sensitive and
must be separated by white space.

5.4.6 Flag Bits Modified in Processor Status Longword
Some OpenVMS VAX Run-time Library Routines (RTLs) modify flag bits in the processor status
longword (PSL) based on input parameters to the routine. VEST is unable to detect this behavior
when it translates an image unless an .IIF file includes one of the interface properties that
describe this behavior, which include:

dv_set_to
fu_set_to
iv_set_to

Most RTLs do not modify PSL flag bits. However, routines that depend on this behavior may turn
off the underflow or overflow bits or deliberately generate and handle overflows. Specifying one of
these property names allows VEST to use correct trap enable values in subsequent Alpha Alpha
instructions. For example, LIB$INT_OVER (in LIBRTL) sets the IV bit to the value of its first
parameter, p1. If this property is not used when required, executing the translated code will fail to
generate an expected integer overflow trap.

35

5.5 Library Information Files
A library information file describes how to rename shareable image references in the translated
image depending on the referenced image section id. This file aids keeping multiple versions of
the same translated library and its .IIF file on the same system. A .LIF file is created manually.

5.6 .LIF File Syntax
A .LIF file is a text file containing records of two types: renaming records and comment records.

5.6.1 Renaming records
A renaming record consists of four fields separated by one or more spaces or tabs: VAX image
name, VAX image global section id, match control and the translated image name. For example:

VAXCRTL 04.000004 GE VAXCRTL_V73 (1)
VAXCRTL 04.000006 GE VAXCRTL_SPEC (2)
VAXCRTL 04.000008 EQ VAXCRTL_V74 (3)

The components of the renaming record are as follows:
1 “VAX image name” is the name of the image, referenced by the VAX image being translated.
VEST converts shareable image references in fixup section and global section names matching
this field.
2 “VAX image global section id” consists of two hexadecimal numbers separated by a dot. These
are major and minor section identifiers. This field and VAX image name are the key fields used
for matching. If there are any duplicate combinations of these fields, it is indeterminate, which one
of such combinations is used for matching.
3 “Match control” is an operator, which indicates how the section id is matched. One of two values
are accepted in this field: GE and EQ. GE indicates that the specified section id and all greater
section ids are matched by this entry if they are not matched by an entry with the greater section
id. EQ indicates that only the specified section id is matched by this entry. The order of the entries
is not sufficient because VEST rearranges them internally while reading the .LIF file.
4 “Translated image name” determines the prefix of the image reference in the translated image
and the name of the .IIF file. The image references are constructed by appending the suffix _TV
to this prefix, so it must not exceed 36 characters in length. If the prefix does exceed this length,
VEST will truncate it.
In the example above, the entry with the section id 04.000004 matches all references to VAXCRTL with
the section id greater or equal to 04.000004. However, the next entry overrides this matching for a single
section id starting (04.000006). Finally, the entry with the section id 04.000008 overrides the matching for
all section ids starting with 04.000008. The following table depicts how the image references are translated
according to the .LIF file consisting of these three records:

Image
reference
(fixup)

Global
section name

Global
section id

Translated image
reference (fixup)

Translated global
section name

Used
entry

VAXCRTL VAXCRTL_002 04.000003 VAXCRTL_TV VAXCRTL_TV_002 none

VAXCRTL VAXCRTL_002 04.000004 VAXCRTL_V73_TV VAXCRTL_V73_TV_002 1

VAXCRTL VAXCRTL_002 04.000005 VAXCRTL_V73_TV VAXCRTL_V73_TV_002 1

VAXCRTL VAXCRTL_002 04.000006 VAXCRTL_SPEC_TV VAXCRTL_SPEC_TV_002 2

VAXCRTL VAXCRTL_002 04.000007 VAXCRTL_V73_TV VAXCRTL_V73_TV_002 1

VAXCRTL VAXCRTL_002 04.000008 VAXCRTL_V74_TV VAXCRTL_V74_TV_002 3

VAXCRTL VAXCRTL_002 04.000009 VAXCRTL_V74_TV VAXCRTL_V74_TV_002 3

VAXCRTLG VAXCRTLG_002 04.000004 VAXCRTLG_TV VAXCRTLG_TV_002 none

36

When there are no matching records for an image name and a section id, the image reference is converted
in the default way. If the .LIF file is not specified on the command line, then all image references are
converted in the default way. Finally, if the same image name is specified in the library information file and
as a value of /JACKET qualifier (or this qualifier has no values specified), /JACKET takes precedence, and
the image reference is not converted.

5.6.2 Comment records
A comment record is any line of information preceded by a semicolon. The comment may start a
new line or be included in another record. It can occur anywhere in the file. VEST ignores all
comment records.

37

6. Translating and Replacing OpenVMS VAX Shareable Images
This chapter discusses the following topics:
Topic See
Interoperability requirements Section 6.1
Procedures for translating and replacing OpenVMS VAX shareable
images

Section 6.2

Procedures for creating a jacket image, needed in rare cases when a
native shareable image cannot completely replace the original
OpenVMS VAX shareable image

Section 6.3

Description of symbol information files (.SIF files), which control how
entries are ordered in a translated image's symbol vector and which
symbols are included in the global symbol table (GST)

Section 6.4

Description of the /JACKET qualifier, used when you create a jacket
image

Section 6.5

6.1 Interoperability Requirements
The OpenVMS Alpha system allows translated and native images to interoperate by sending and
receiving calls to and from one another. The system jackets calls between native and translated
images; that is, it performs the necessary conversions between the VAX and the Alpha calling
standards. When you create native images that call or otherwise communicate with translated
images, you need to use specific linking and compiling qualifiers. Furthermore, if you create a
native shareable image that replaces an OpenVMS VAX image, you need to maintain
compatibility with that image.
The information in this chapter builds on a discussion of interoperability in the manual Migrating to
an OpenVMS Alpha System: Recompiling and Relinking Applications. That manual uses a C
program called MYMATH to illustrate a VAX shareable image and a C program called MYMAIN to
illustrate a main image that calls MYMATH. Using these example programs, the manual
describes how to create native images that make calls to and receive calls from translated
images and highlights the following requirements for interoperability:
Use the compiler qualifier /TIE and linker qualifier /NONATIVE_ONLY to create a native image
that can interoperate with a translated image
Ensure upward compatibility between the symbol vector in a native shareable image and the
transfer vector in the superseded VAX shareable image
The procedures described in this chapter use MYMATH and MYMAIN as examples of creating
native and translated shareable images that interoperate and that preserve compatibility with
previous versions of the images.

6.1.1 /TIE and /NONATIVE_ONLY Qualifiers
The /TIE and /NONATIVE_ONLY qualifiers instruct the compiler and linker respectively to include
code that enables the OpenVMS Alpha system to jacket calls to and from a translated image.
When you specify the /TIE qualifier, the compiler creates procedure signature blocks (PSBs) that
the Translated Image Environment (TIE) needs to properly jacket calls between translated and
native images. When you specify the /NONATIVE_ONLY qualifier on the LINK command line, the
linker includes PSB information created by the compilers in the image. Note that the
interoperability settings for these qualifiers are not the defaults-you must set the /TIE and
/NONATIVE_ONLY settings explicitly. A native image does not interoperate with translated
images unless you use these settings.

38

See Migrating to an OpenVMS Alpha System: Recompiling and Relinking Applications, the
appropriate compiler documentation, and the OpenVMS Linker Utility Manual for further
information about these qualifiers.

6.1.2 Preserving Upward Compatibility
Successive versions of the same shareable image need to be upward compatible by maintaining
the same calling interface so that calling images do not need to be relinked. The OpenVMS
Linker Utility Manual describes how to maintain upward compatibility by using transfer vectors for
OpenVMS VAX images and symbol vectors for OpenVMS Alpha images. Maintaining upward
compatibility is also advisable when creating either (1) a translated shareable image, (2) a native
image that replaces an OpenVMS VAX shareable image, or (3) a native image that replaces a
translated shareable image.
Just as you create consistent transfer vectors when building successive versions of the same
image, you create consistent symbol vectors for translated images and native replacement
images to achieve the same goal. This ensures upward compatibility as you migrate to OpenVMS
Alpha systems. When you translate a shareable image, you can use a symbol information file
(.SIF file) to control how VEST orders the symbol vector in the translated image. When you link a
native replacement image, construct the symbol vector so that it matches the transfer vector of
the original image. If the native image includes new routines, place symbol vector entries for them
after the older routine entries rather than disrupting the original order. You can use whatever
mechanism is convenient to create a symbol vector that keeps the original order. As an example,
Section 6.2.3 discusses using a program to convert information in a .SIF file to entries in a symbol
vector.
If you do not ensure that the transfer and symbol vectors maintain the same entry order, you run
the risk of breaking calling images. VEST may create the correct symbol vector order when
translating one version of the image, but not when translating a subsequent version of the image.
From a different perspective, if you create a native replacement image without regard to the
original order, translated images may not be able to call it because routines are not located at the
expected address. And if you have to create a jacket image because not all routines can be
reproduced in native mode, you may have to rebuild the jacket image to accommodate the new
entry order. This process is complicated and not recommended. Use the procedures shown in
this chapter instead.
For further information about transfer vectors, symbol vectors, and compatibility, refer to the
OpenVMS Linker Utility Manual and VAX MACRO and Instruction Set Reference Manual.

6.2 Procedures for Building Shareable Image Variants
This section describes procedures for the following tasks:

Building the original OpenVMS VAX shareable image (Section 6.2.1)
Creating a translated shareable image (Section 6.2.2)
Building a native replacement image (Section 6.2.3)

The OMSVA kit includes all the example programs used in this section, as well as command files
to build and run them. After installing the kit, the source and command files are located in the
VEST subdirectory of SYS$EXAMPLES. The command files must be executed in the following
order:
 1. First execute BUILD_MYMATH_VAX.COM on an OpenVMS VAX system. The VAX C
compiler is required.
 2. Then execute BUILD_MYMATH_AXP.COM on an OpenVMS Alpha system. The DEC C
compiler is required.

39

The procedure descriptions all follow the same format:
A figure illustrates what kind of images are being created (for example, a translated main
program calling a translated shareable image)
Command or code sequences introduced by headers demonstrate the procedure
When necessary, descriptions clarify what the command or code sequences are doing

Note
These procedures are simplified to illustrate the fundamental steps to creating
interoperable images and do not consider all cases. Your application may need to
consider other factors and/or include different or additional steps.

6.2.1 Building the Original OpenVMS VAX Shareable Image
This procedure for building a shareable image on an OpenVMS VAX system illustrates the use of
a transfer vector.
Create and compile the transfer vector

$ EDIT MYVEC.MAR
 .
 .
 .
.PSECT $CODE$, RD, NOWRT, EXE
.TRANSFER myadd
.MASK myadd
JMP L^myadd+2
.TRANSFER mysub
.MASK mysub
JMP L^mysub+2
.TRANSFER mydiv
.MASK mydiv
JMP L^mydiv+2
.TRANSFER mymul
.MASK mymul
JMP L^mymul+2
.END
$ MACRO MYVEC/OBJ=VAX_MYVEC.OBJ

Make a transfer vector by creating and compiling a VAX MACRO file. Refer to the OpenVMS
Linker Utility Manual and VAX MACRO and Instruction Set Reference Manual for further
information.

Create and build the OpenVMS VAX shareable image
$ CC MYMATH/OBJ=VAX_MYMATH.OBJ
$ LINK/SHAREABLE=VAX_MYMATH,SYS$INPUT:/OPTIONS
VAX_MYVEC.OBJ
VAX_MYMATH.OBJ
SYS$SHARE:VAXCRTL/SHAREABLE
GSMATCH=LEQUAL,2,0
[EXIT]

Compile MYMATH, name the object file VAX_MYMATH, and link it with the transfer vector object
file (MYVEC.OBJ) to create the shareable image.
Create the OpenVMS VAX main image

$ CC MYMAIN/OBJ=VAX_MYMAIN.OBJ
$ LINK VAX_MYMAIN.OBJ,SYS$INPUT/OPTIONS
VAX_MYMATH/SHAREABLE
SYS$SHARE:VAXCRTL/SHAREABLE
[EXIT]

Compile MYMAIN, name the object file VAX_MYMAIN, and link it to the shareable image
VAX_MYMATH.
Define logical name and run main image

$ DEFINE VAX_MYMATH YOUR$DISK:[YOUR_DIR]VAX_MYMATH.EXE
$ RUN/NODEBUG VAX_MYMAIN

Define the logical name VAX_MYMATH so that it points to the location of VAX_MYMATH.EXE.

40

6.2.2 Creating the Translated Shareable Image
This section describes two procedures to be carried out on an OpenVMS Alpha system:

Creating a translated shareable image and a translated main image that calls it (Section
6.2.2.1)
Creating a translated image and a native main image that calls it (Section 6.2.2.2)
For a replacement shareable image, using a .SIF file is recommended to control how
VEST orders the entries in the translated image's symbol vector. Refer to Section 6.4 for
a detailed description of .SIF files.

6.2.2.1 Translated Main Image
This procedure illustrates translating both the shareable and the main images.
Translate main and shareable images

$ VEST VAX_MYMATH
$ VEST VAX_MYMAIN

Translate the shareable image VAX_MYMATH.EXE. VEST automatically produces the file
VAX_MYMATH.IIF. When VEST translates the calling image VAX_MYMAIN, it uses the .IIF file to
correctly translate references to VAX_MYMATH_TV.EXE.
Define logical name and run main image

$ DEFINE VAX_MYMATH_TV YOUR$DISK:[YOUR_DIR]VAX_MYMATH_TV.EXE
$ RUN VAX_MYMAIN_TV

Define the logical name VAX_MYMATH_TV so that it points to the location of
VAX_MYMATH_TV.EXE. When you run VAX_MYMAIN_TV, it successfully calls
VAX_MYMATH_TV.
6.2.2.2 Native Main Image
This procedure illustrates translating the OpenVMS VAX shareable image and creating a native
main image that calls it.
Translate OpenVMS VAX shareable image

$ VEST VAX_MYMATH

Create native main image
$ CC/TIE MYMAIN/OBJ=AXP_MYMAIN
$ LINK/NONATIVE_ONLY AXP_MYMAIN, SYS$INPUT:/OPTIONS
VAX_MYMATH_TV.EXE/SHAREABLE
[EXIT}

Create a native version of the main image MYMAIN called AXP_MYMAIN. Use the /TIE qualifier
when compiling the source and the /NONATIVE_ONLY qualifier when linking the object file. Link
AXP_MYMAIN and VAX_MYMATH_TV together in the same way you would link AXP_MYMAIN
and a native shareable image.
Define logical name and run main image

$ DEFINE VAX_MYMATH_TV YOUR$DISK:[YOUR_DIR]VAX_MYMATH_TV.EXE
$ RUN AXP_MYMAIN

Define the logical name MYMATH_TV so that it points to the location of MYMATH_TV.EXE.
When you run MYMAIN, it successfully calls MYMATH_TV.

6.2.3 Building a Replacement Shareable Image
The following procedure describes a process for creating a native shareable image that replaces
an OpenVMS VAX image. It also demonstrates building a native main image and а translated
main image. In an OpenVMS Alpha system, both native and translated images can call a native
replacement image.
Create .SIF and .IIF files

41

$ VEST VAX_MYMATH.EXE/SIF/NOEXECUTABLE
$ DIRECTORY VAX_MYMATH.*IF

Directory YOUR$DISK:[YOUR_DIR]
VAX_MYMATH.IIF;1
VAX_MYMATH.SIF;1

The first step when creating a native replacement image is to consider compatibility, either with
the original OpenVMS VAX shareable image or with a translated version of the image. In the
latter case, a .SIF file may be available that specifies the correct order for symbol vector entries. If
not, you can retranslate the shareable image with the /SIF qualifier to create one.
It may be convenient to use some kind of automated procedure to create a linker options file that
sets up the symbol vector entries correctly. The OMSVA kit includes an example C program
called SIF2OPT that reads a .SIF file and creates the corresponding SYMBOL_VECTOR= entries
in a linker options file. Note that in some cases, you may need to leave the first
SYMBOL_VECTOR= entry SPARE for compatibility with the translated version of the shareable
image.
You need the .IIF file created in this step for translating OpenVMS VAX main images that call the
native replacement image. The entries in the .IIF file must correspond to the order of the entries
in the native image symbol vector. Translating the OpenVMS VAX shareable image using a .SIF
file that reflects the symbol vector order in the native replacement image guarantees creating an
appropriate .IIF file.
Build native shareable image

$ CC/TIE MYMATH/OBJ=AXP_MYMATH
$ LINK/SHAREABLE/NONATIVE_ONLY AXP_MYMATH, SYS$INPUT:/OPTIONS
SYMBOL_VECTOR=(SPARE_PROCEDURE,-
 myadd=PROCEDURE,-
 mysub=PROCEDURE,-
 SPARE_PROCEDURE,-
 mymul=PROCEDURE)
GSMATCH=LEQUAL,2,0
[EXIT]

Compile the shareable image with the /TIE qualifier and link it with the /NONATIVE_ONLY
qualifier. Include a linker options file that orders the entries according to the order in the original
OpenVMS VAX shareable image and that leaves usv offset 0 spare.
Build native main image

$ CC/TIE MYMAIN/OBJ=AXP_MYMAIN
$ LINK/NONATIVE_ONLY AXP_MYMAIN,SYS$INPUT:/OPTIONS
AXP_MYMATH/SHAREABLE
[EXIT]

Compile and link the main image.
Define logical name and run native main image

$ DEFINE AXP_MYMATH YOUR$DISK:[YOUR_DIR]AXP_MYMATH.EXE
$ RUN/NODEBUG AXP_MYMAIN

Define the shareable image logical name so that it points to the correct location and run the
native main image.
Translate and run OpenVMS VAX main image

$ VEST VAX_MYMAIN
$ DEFINE VAX_MYMATH_TV YOUR$DISK:[YOUR_DIR]AXP_MYMATH.EXE
$ RUN/NODEBUG VAX_MYMAIN_TV

Translate the OpenVMS VAX main images using an .IIF file that reflects the native replacement
image's symbol vector. Define the logical name (in this case, VAX_MYMAIN_TV) to the new
native shareable image and run the translated image. Note that to enable the translated image to
call the native replacement image, you must define the translated image name to refer to the
native image name, as shown in this example.
Note that you must ensure that the idents of VAX_MYMATH_TV and AXP_MYMATH allow image
activation.

42

6.3 Procedures for Building a Jacket Image
A jacket image is a specially constructed translated version of an OpenVMS shareable image.
The jacket image performs tasks like the following:

Implements one or more translated routines that, for one reason or another, must be
available in translated form
Redirects translated calls to the appropriate native routines and returns any results to the
calling image
Converts between calling standards when nonstandard calls are made or when a JSB
branch is used to go between images

Figure 6-1 illustrates the interconnection of the jacket image, the native image that performs most
routines, a translated main image, and a native main image.
To show how a jacket image works and how it relates to other images, the procedures that follow
assume that the routine mydiv cannot be replicated in the native version of MYMATH. Some of
the real reasons for creating a jacket image include:

The original shareable image includes a branchentry or jsb entry. The Alpha AXP call
standard supports call entries only.
A routine provided on OpenVMS VAX is not available on OpenVMS Alpha so the jacket
image includes a routine signaling an error when an image calls the obsolete routine.
Two shareable images, a translated shareable image and a native shareable image
serving a similar purpose, share system resources that need to be coordinated by a
single image.
An OpenVMS VAX image does not use the defined OpenVMS VAX calling standard.

Remember that a jacket image is not required in most cases. Do not create one unless it is really
necessary.
The OMSVA kit includes the source and command files for building the jacket image and native
replacement image illustrated in this section. After installing the kit, the source and command files
are located in the VEST subdirectory of SYS$EXAMPLES. The command files must be executed
in the following order:
 1. First execute BUILD_MYMATH_JACKET_VAX.COM on an OpenVMS VAX system. The VAX
C compiler is required.
 2. Then execute BUILD_MYMATH_JACKET_AXP.COM on an OpenVMS Alpha system. The
DEC C compiler is required.
The procedures for building a jacket image are divided into the following sections:

Preparing the jacket image sources (Section 6.3.1)
Preparing the companion native shareable image (Section 6.3.2)
Building the jacket image (Section 6.3.3)

6.3.1 Preparing the Jacket Images Sources
The jacket image you build on an OpenVMS VAX system serves no useful purpose until it is
translated. The image you construct will only run in translated form on an OpenVMS Alpha
system and will provide an interface to the native replacement image. When you compile and link
the jacket image sources, you are doing so as if you were compiling and linking on OpenVMS
Alpha. Why? Because the jacket image, before you translate it, must already include correct
references to the routines that will be provided by the native replacement image.

43

Fooling the jacket image into including the correct references is the job of the stub image. The
stub image consists solely of a transfer vector with entries that match the corresponding entries in
the native replacement image. The stub's transfer vector omits entries for routines that the jacket
image itself will perform, but reserves 16 bytes within the vector to preserve correct spacing.
(Each entry in an OpenVMS Alpha symbol vector is 16 bytes long.) When you build the actual
native replacement image, you ensure that its symbol vector exactly matches the entries and
spacing given in the stub's transfer vector. Eventually, you translate the jacket image, using the
VEST qualifier /JACKET provided for this special case. At run time, the jacket image can forward
calls to the appropriate native routine at the correct address, which was established when you
linked with the stub image.
The procedure for preparing the jacket image sources include the following steps:

Create a jacket image transfer vector
Create a jacket image source file
Prepare a stub transfer vector
Compile and link the stub
Compile the jacket image source module and link it with the stub image

Create a jacket image transfer vector
$ EDIT MYVEC_JACKET.MAR
 .
 .
.PSECT $CODE$, RD, NOWRT, EXE
.MASK myadd_jkt
JMP L^myadd_jkt+2
.MASK mysub_jkt
JMP L^mysub_jkt+2
.TRANSFER mydiv
.MASK mydiv
JMP L^mydiv+2
.MASK mymul_jkt
JMP L^mymul_jkt+2
.END

Create a transfer vector called MYVEC_JACKET.MAR. Include a .TRANSFER directive only for
routines that the jacket image itself will perform. Omit the .TRANSFER directive for all the
routines that the native replacement image will perform. These are the routines that will be
jacketed.
Native images use the exported symbols; translated images call the entries in the jacket image as
described in the .IIF file. By omitting the .TRANSFER directive, you ensure that the universal
symbol for the routine will not be included in the jacket image's global symbol table (GST). (You
can also use a .SIF file to direct VEST not to include a symbol in the GST; see Section 6.4) This
is necessary to prevent a name conflict , which happens if the same universal symbol appears in
different GSTs. When an image includes a universal symbol in its GST, it exports that symbol.
Either the jacket image or the native replacement image must export each symbol, but not both.
Also, each symbol must be exported by the image that actually performs the routine the symbol
references.
Create a jacket image source file

$ EDIT MYJACKET.C
 .
 .
int myadd_jkt(value_1, value_2)
{
 return myadd(value_1, value_2);
}
int mysub_jkt(value_1, value_2)
{
 return mysub(value_1, value_2);
}
int mydiv(value_1, value_2)

44

 int value_1;
 int value_2;
{
 int result;
 result = value_1 / value_2;
 return(result);
}
int mymul_jkt(value_1, value_2,)
{
 return mymul(value_1, value_2);
}
}

From the original source code, remove the routines that will be jacketed, that is, that the native
replacement image will perform. In that code's stead, insert jacket routines that either pass
control to the corresponding routine in the native image or perform some function required by
your particular application. Leave in place code for any routine that must remain translated and
that the jacket image itself will perform.
Prepare the stub VAX MACRO source file

$ EDIT MYMATH_STUB.MAR
 .
 .
 .
.MACRO looks_like name
.TRANSFER name
.ENTRY name, ^M<R2,R3,R4,R5,R6,R7,R8,R9,R10,R11>
MOVL #1, R0
MOVL #0, R1
RET
.BLKB 7 ; Fill this stub out to be 16 bytes so
 ; it's the same size as a symbol vector
 ; entry.
.ENDM
.MACRO dont_need name
.BLKB 8
.BLKB 8
.ENDM
.PSECT $CODE$, RD, NOWRT, EXE
dont_need spare
looks_like myadd
looks_like mysub
dont_need mydiv
looks_like mymul
.END

The stub source is a VAX MACRO file consisting of a transfer vector with entries that exactly
match the corresponding symbol vector entries in the native symbol vector. In this example, a file
called MYMATH.MAR contains two macros, looks_like and dont_need:
looks_like sets up an entry for a routine to be jacketed. Because it includes a .TRANSFER
directive, the stub image, and, eventually the native image, will export the symbol for the routine.
dont_need sets up an entry for a routine remaining translated. It reserves 16 bytes in the transfer
vector to preserve the ordering of the routines in the corresponding native image symbol vector.
The subsequent code in MYMATH.MAR calls either looks_like or dont_need for each routine.
Compile and link the stub

$ MACRO MYMATH_STUB
$ LINK/SHAREABLE=AXP_MYMATH SYS$INPUT:/OPTIONS
MYMATH_STUB.OBJ
NAME=AXP_MYMATH
GSMATCH=LEQUAL,2,0
[EXIT]

This example uses the NAME= option to name the stub
AXP_MYMATH, the same name as the native replacement shareable image.
Compile the jacket image source module and link it with the stub image

$ MACRO MYVEC_JACKET
$ CC MYJACKET

45

$ LINK/SHAREABLE=MYJACKET SYS$INPUT:/OPTIONS
NAME=VAX_MYMATH
MYVEC_JACKET.OBJ
MYJACKET.OBJ
AXP_MYMATH/SHAREABLE
SYS$SHARE:VAXCRTL/SHAREABLE
GSMATCH=LEQUAL,2,0
[EXIT]

Compile the jacket's transfer vector and the jacket source itself. Then link the jacket image
transfer vector (MYVEC_JACKET.OBJ), the jacket image object file (MYJACKET.OBJ), the stub
image object file, (MYMATH /SHAREABLE), and the VAX C Run-Time Library
(SYS$SHARE:VAXCRTL). The example uses the NAME= option to name the jacket image
VAX_MYMATH, the same name as the translated OpenVMS VAX shareable image.
Compile and link the stub and the jacket image on an OpenVMS VAX system. At this point in the
process, you need to work on an OpenVMS Alpha system to translate, compile, link, and run the
various components that go in to setting up the jacket image, the native replacement image, and
the main images that call them. The next step is to prepare the native shareable image sources.

6.3.2 Preparing the Native Shareable Image
As you prepare the native shareable image that will perform the jacketed routines, you need to
ensure that its symbol vector corresponds to the transfer vector created in the stub image. The
procedure described in this section takes this need into account and includes the following steps:

Generate .SIF and .IIF files
Use the .SIF file to control the symbol vector order
Rename or copy the .IIF file to a .HIF file
Determine the symbol vector ordering and build the native image

Generate .SIF and .IIF files
$ VEST VAX_MYMATH.EXE/SIF/NOEXECUTABLE
$ DIRECTORY VAX_MYMATH.*IF

Directory YOUR$DISK:[YOUR_DIR]
VAX_MYMATH.IIF;1
VAX_MYMATH.SIF;1

Translate the original OpenVMS VAX image to generate a .SIF file and an .IIF file. Use the .SIF
file as described in the next step to control the symbol vector order in both the native replacement
image and the jacket image.
Use the .SIF file to control the symbol vector order
The .SIF file enables you to guarantee the symbol vector order:

Either use VEST to create the .SIF file or create one yourself. Then edit the file so that it
exactly matches the transfer vector created for the stub image. If necessary, ensure that
location 0 in the vector is SPARE for compatibility with the translated jacket image.
Use the .SIF file as a basis for creating the SYMBOL_VECTOR values in the linker
options file for the native replacement image. An option is to create an automated
process that sets up the symbol vector based on the .SIF file. The C program SIF2OPT
from the OMSVA kit, which the installation procedure copies to the SYS$EXAMPLES
directory, is an example of such a procedure-it reads a .SIF file and creates a
corresponding symbol vector in a linker options file.

Save the .SIF file and use it as input when translating the jacket image (Section 6.3.3). When
VEST creates the translated jacket image, it sets up the symbol vector according to the entries in
the .SIF file.

46

Build the native image
$ CC/TIE MYMATH/OBJ=AXP_MYMATH
$ LINK/SHAREABLE/EXE=AXP_MYMATH AXP_MYMATH.OBJ,-
SYS$INPUT:/OPTIONS
SYMBOL_VECTOR=(SPARE_PROCEDURE,-
 myadd=PROCEDURE,-
 mysub=PROCEDURE,-
 SPARE_PROCEDURE,-
 mymul=PROCEDURE)
GSMATCH=LEQUAL,2,0
[EXIT]

Compile and link the native replacement image.

6.3.3 Translating and Using the Jacket Image
The final steps to creating the jacket image are as follows:

Translate the jacket images
Translate a main image
Define a logical name and run the translated main image
Create a native main image
Define a logical name and run the native main image

Translate the stub and jacket images
$ VEST AXP_MYMATH
$ VEST/JACKET=AXP_MYMATH MYJACKET
$ RENAME MYJACKET.IIF VAX_MYMATH.IIF

Translate the stub image. Then translate the jacket image with the /JACKET qualifier specifying
the name of the native replacement image. Make sure that the .SIF file created in Section 6.3.2 is
in one of the VEST include directories. Rename the jacket image .IIF file (MYJACKET.IIF) so that
it appears to be the .IIF file of the original shareable image (VAX_MYMATH.IIF). VEST then uses
this .IIF file when translating main images that depend on the jacket image.
Translate a main image

$ VEST VAX_MYMAIN

Translate a main image, making sure to use the .IIF file created and renamed in the previous
step.
Define logical name and run translated main image

$ DEFINE AXP_MYMATH YOUR$DISK:[YOUR_DIR]AXP_MYMATH.EXE
$ DEFINE VAX_MYMATH_TV YOUR$DISK:[YOUR_DIR]MYJACKET_TV.EXE
$ RUN/NODEBUG VAX_MYMAIN_TV

Define a logical name to assign the name of the original translated shareable image to the
location and name of the jacket image. Then run the main image.
Create a native main image

$ CC/TIE MYMAIN/OBJ=AXP_MYMAIN
$ LINK AXP_MYMAIN, SYS$INPUT:/OPTIONS
AXP_MYMATH/SHAREABLE
[EXIT]

Compile and link a native main image. In most cases, the native replacement image implements
all routines that a native image would call and that were provided by the original shareable image.
However, it is possible that a native image may need to call the jacket image for some routine not
available in native form. In this case, you must also link the native main image with the jacket
image, as follows:

$ CC/TIE MYMAIN/OBJ=AXP_MYMAIN
$ LINK AXP_MYMAIN, SYS$INPUT:/OPTIONS
AXP_MYMATH.EXE/SHAREABLE
MYJACKET_TV.EXE/SHAREABLE
[EXIT]

47

Define logical name and run native main image
$ DEFINE AXP_MYMATH YOUR$DISK:[YOUR_DIR]AXP_MYMATH.EXE
$ RUN MYMAIN_TV

Define the logical name MYMATH so that it points to the location and name of the native
replacement image. If you also link the native main image to the jacket image, you need to define
another logical name as follows:

$ DEFINE MYJACKET_TV YOUR$DISK:[YOUR_DIR]MYJACKET_TV.EXE

6.4 Symbol Information File (.SIF file)
The .SIF file allows you to control the ordering of entries in the symbol vector of the translated
image. Using a .SIF file, you can:

Create a translated image with its symbol vector ordered identically to the transfer vector
of the original image.
Create a translated image with its symbol vector ordered identically to the symbol vector
of a native version of the image.
Create a translated shareable image with the symbol vector ordered identically to a
previously translated version of the image.

When the symbol vector ordering is consistent from version to version, replacing one version with
another is transparent to the images that call it. When the symbol vector ordering is not
consistent, images that call it may no longer work.
When creating a jacket image, use a .SIF file to control which symbols are exported in the GST,
as well as to ensure the symbol vector ordering. (Section 6.3.1 describes another way to control
which symbols are exported - by omitting a .TRANSFER directive for an entry in the jacket stub
transfer vector.) Because a jacket image and its companion native replacement image coexist on
an OpenVMS Alpha system, a name conflict occurs if the GSTs in both images expect the same
symbol names and you link against both images. To avoid the name conflict, you must ensure
that only one GST exports a given symbol name.
Section 6.4.1 defines the .SIF file syntax and Section 6.4.2 explains how to instruct VEST to
suppress entering a symbol name in the GST.

6.4.1 .SIF File Syntax
Each line of text in a .SIF file is a directive that provides VEST with information on how to deal with a
specific symbol in the GST and symbol vector of a shareable image being translated. (This contrasts with
the information in an .IIF or .HIF file, which attaches properties to image offsets.) The following example
is the directive for a symbol named FOO:

sym_name sym_value sv_flag gst_flag usv sym_type sym_flags
FOO 000AB123 +S +G 00000200 00 0E

Each directive is a single line. Spaces or tabs separate the individual fields, which are defined in
Table 6-1.
The following example is a directive for the symbol STRCMP:

STRCMP 00000284 +S +G 000004F0 00 4E

The directive states that the STRCMP symbol's offset within the OpenVMS VAX image is
00000284 and that VEST should add the symbol to the symbol vector (+S) and to the GST (+G).
The following description of STRCMP, which reflects the directive shown above, is extracted from
output generated by the DCL command ANALYZE/IMAGE after the image was translated using a
.SIF file:

Universal Symbol Specification (EGSD$C_SYMG)

48

data type: DSC$K_DTYPE_Z (0) 1
symbol flags:2
 (0) EGSY$V_WEAK 0
 (1) EGSY$V_DEF 1
 (2) EGSY$V_UNI 1
 (3) EGSY$V_REL 1
 (4) EGSY$V_COMM 0
 (5) EGSY$V_VECEP 0
 (6) EGSY$V_NORM 1
psect: 0
value: 1264 (%X'000004F0')3
symbol vector entry (procedure)
 %X'00000000 00030B8C'
 %X'00000000 00030B8C'
symbol: "STRCMP" 4
1 Corresponds to sym_type , the symbol type
2 Corresponds to the low 7 bits of the hex value of sym_flags
3 Corresponds to usv, the symbol vector offset within the translated image
4 Corresponds to sym_name

6.4.2 Creating and Using a .SIF File
Creating a .SIF file is part of the process of creating a translated shareable image or a jacket
image to ensure consistent ordering of symbol vectors from one version of the image to another.
You can either generate a .SIF file yourself or use the VEST /SIF qualifier. The following VEST
command builds a .SIF file:

VEST/SIF image .EXE

VEST writes the file, called image.SIF to your current directory. The defaults that VEST uses as it
writes each directive are as follows for a shareable or jacket image:
Entry Shareable Image Jacket Image
CALL entry +S +G +S -G
JSB entry -S -G -S -G
Relocatable data +S +G +S -G

After you have edited the image.SIF file and are ready to use it for a translation, copy it to one of
the directories that VEST searches for information files (see Section 2.1). If VEST finds the file, it
follows its directives for creating the GST and symbol vector in image_TV.EXE. Note that you use
the /SIF qualifier to create a .SIF file and not to read a .SIF file.
For Any Shareable Image -If the symbol vector of a translated shareable image must conform to
the symbol vector of a native version, first create a .SIF file and then edit each directive as
necessary. For example, edit the usv field of a directive so that it reflects the symbol's position in
the native image's symbol vector. Retranslate the original OpenVMS VAX image with the edited
.SIF file. If you edited the .SIF file correctly, the ordering of the symbol vectors within both the
translated and the native shareable images will correspond exactly.
Alternatively, you can modify the contents of the SYMBOL_VECTOR directive in the options file
for the native image to match the entries in a .SIF file and then relink the native image. The C
program called SIF2OPT, included in the VEST subdirectory of SYS$EXAMPLES, is a procedure
that reads a .SIF file and creates corresponding SYMBOL_VECTOR= entries for a linker options
file.
For a Jacket Image -When you know which symbols to export in a translated jacket image, that is,
to include in the GST, you can edit the .SIF accordingly. (If you have not already edited it to
reflect the symbol vector ordering in the native image, you need to do that first.) Edit the
directives as necessary to tell VEST, which symbols to include in (+G) or delete from (-G) the
GST. Translate the specially prepared jacket image with the edited .SIF file. If you edited the .SIF
file correctly, the GST in the translated jacket image will only export symbols not exported by the
native replacement image.

49

6.5 /JACKET Qualifier
The /JACKET qualifier instructs VEST not to change references to all or some images used by
the image being translated. Normally VEST looks up any references to an external image in that
image's .IIF file (see Section 5.2). It then replaces the references with the corresponding correct
references for the native or translated version of the image, as specified by the usv_offset
property in the .IIF file.
The /JACKET qualifier allows you to specify one or more image names or none at all:

/JACKET-Do not change any references to any shareable images.
/JACKET= image-Do not change references to image, but handle references to any other
images in the normal manner.
/JACKET=(image1,image2...)-Do not change references to any of the list of images, but
handle references to other images in the normal manner.

For example:
$ VEST/JACKET=(SHARE1,SHARE2) SHARE_JACKET.EXE

The special effects of the /JACKET switch are as follows:
The offsets associated with the fixup entries in the input image are used as
corresponding symbol vector offsets in fixup entries in the translated image.
The shareable image list in the fixup section of the translated jacket image still refers to
the original shareable image names. In other words, if SHARE_JACKET.EXE refers to
LIBRTL.EXE, SHARE_JACKET_TV.EXE still refers to LIBRTL.EXE, not
LIBRTL_TV.EXE, which otherwise is the default.

50

Part III Reference Information
The appendices in Part III contain the following information:
Topic See
A detailed description of the DSTGRAPH, FLOWGRAPH, VEST, and
VEST/DEPENDENCY command lines and qualifiers

Appendix A

An alphabetical listing of all VEST, DSTGRAPH, and FLOWGRAPH
messages with explanations and recommended user actions

Appendix B

Debugging problems with translations Appendix C
Coding practices and other restrictions that affect the translatability of
OpenVMS VAX images

Appendix D

An alphabetical listing of all VAX instructions with explanations for how
VEST and TIE handle each one

Appendix E

51

A. Command Summaries

VEST
The VEST utility translates OpenVMS VAX executable and shareable images into functionally
equivalent OpenVMS Alpha images. VEST also allows you to analyze OpenVMS VAX images to
assess both their translatability and their performance as translated images on an OpenVMS
Alpha system.
Format

VEST[/qualifier,...] image[.EXE]

Qualifiers Defaults
/AUDIT /NOAUDIT
/DEBUG Defaults to the state of the input image
/DEPENDENCY See the command description of

VEST/DEPENDENCY
/DST /NODST
/EXECUTABLE /EXECUTABLE
/FEEDBACK /FEEDBACK
/FLOAT /FLOAT=D53_FLOAT
/FLOWGRAPH /NOFLOWGRAPH
/IIF /IIF (ignored if image is not shareable)
/INCLUDE_DIRECTORY /NOINCLUDE_DIRECTORY
/INTERPRET /INTERPRET=NO_CODE
/JACKET /NOJACKET
/LIST /LIST
/LIF /NOLIF
/OPTIMIZE /OPTIMIZE=(ALIGNMENT,SCAN,SCHEDULE)
/PRESERVE /PRESERVE=NONE
/RESTRICT /NORESTRICT
/SHOW /SHOW=MESSAGES
/SIF /NOSIF
/TRACEBACK Defaults to the state of the input image
/VIEW /VIEW=(ERROR=SOURCE_CODE
/WARNINGS /WARNINGS=NONE

/AUDIT
Instructs VEST to analyze the input image and to summarize its migration characteristics.
Default: /NOAUDIT
Format: /AUDIT

52
Qualifier Values: None.

Description
The summary specifies:
Whether the image can be recompiled
Whether the image is translatable
Whether the performance of the translated image will be SLOW or OK
Source language or languages of the image (if known)
The audit summary is a one-line description of an image's migration characteristics that
may help you decide what migration option to choose for the image. You can find the
summary information in the list file after all other messages. Refer to these other
messages to understand how VEST arrived at its characterization of the image. Example
A-1 is an example showing the format of the summary.
The summary for each image is three text lines, each beginning with <SUM>. The first
and second lines serve as the header; the third line provides the actual summary:
The image name column on the left provides the full file specification of the input image.
The four columns on the right define the image's migration characteristics:
Comp YES or NO to indicate whether the image can be recompiled

and rebuilt.
Tran YES or NO to indicate whether the image is translatable.
Perf OK or SLOW to indicate whether the image includes code that

would adversely affect its performance as a translated image.
SLOW indicates that VEST issued at least one performance-
related message while analyzing the image.

Languages Lists the source languages identified in the image's debug
symbol table (DST). The languages pertain only to the image
being analyzed and not to any shareable images it may call.

By issuing a series of VEST/AUDIT commands and then using OpenVMS commands to
extract the summary information, you can build a file of summary descriptions. For
example:

$ VEST/AUDIT IMAGE1
$ VEST/AUDIT IMAGE2
.
.
.
$ VEST/AUDIT IMAGEn
$ SEARCH/OUTPUT=TEMP.1 *.LIS "<SUM>"
$ SEARCH/OUTPUT=TEMP.2 TEMP.1 "<SUM>"
$ SORT/NODUPLICATE TEMP.2 TEMP.3
$ PRINT TEMP.3

When you specify the /AUDIT qualifier, VEST stops parsing code in the image after
16,000 VAX instructions. Using /AUDIT forces the following VEST qualifiers:
 /NOEXECUTABLE
 /NOIIF
 /SHOW=NOMACHINE_CODE
Example

$ VEST/AUDIT DHRYSTONE

This example requests an audit summary for the sample program DHRYSTONE.EXE.
The list file DHRYSTONE_TV.LIS contains the following text:

 VEST V1.1 built at May 7 1993 13:37:35 starting at May 17 1993 15:48:16

53

 with command line:
 VEST/AUDIT DHRYSTONE
 Image "DHRYSTONE_SHR", "V1.0", 13-DEC-1989 10:17:07.95
 ! Message summary by category:
 !
 ! 2 messages in SOURCE_ANALYSIS category:
 ! 2 INFO NONSTDCALLU - Non-standard call uses !AZ
 !
 ! 5 messages in VERBOSE category:
 ! 1 INFO READING - Reading file !AZ
 ! 1 INFO NOHIF - HIF file !AZ not found
 ! 1 INFO PASS1 - Starting analysis pass 1
 ! 1 INFO PASS2 - Starting analysis pass 2
 ! 1 INFO ENDPASS2 - Ending analysis pass 2 -- beginning code
 generation and output
 <SUM> Image name Comp Tran Perf Languages
 <SUM> --- ---- ---- ---- ----------------
 <SUM> VST_00:[STORM.TEST]DHRYSTONE.EXE; YES YES OK C

/DEBUG
Controls whether the translated image invokes the OpenVMS Debugger.
Default: The default is /DEBUG if the input image was linked with the /DEBUG
qualifier or /NODEBUG if the input image was linked with /NODEBUG.
Format: /DEBUG
Qualifier Values: None.
Description

Depending on the compiler and linker options used, an image can contain three levels of
debugging related information:
Level 1 No DST The image was linked or compiled with the

/NOTRACEBACK qualifier.
Level 2 Traceback DST The image was linked and compiled with the

/TRACEBACK qualifier, which is the default
Level 3 Full DST The image was compiled and linked with both the

/DEBUG and /TRACEBACK qualifiers. (A compiler
may require /DEBUG=ALL; see the relevant compiler
documentation.)

By using the /[NO]DEBUG and /[NO]TRACEBACK qualifiers, you can change the level as
follows:
Use /NODEBUG to create a translated image that does not invoke the debugger.
Use the /DEBUG qualifier to create a translated image that invokes the debugger.
/DEBUG forces /TRACEBACK. A debug version of the translated image is useful if you
are developing a translated image by modifying and recompiling source code on an
OpenVMS VAX system, translating the image, and then debugging it on an OpenVMS
Alpha system. Debugging a translated image is different from debugging an OpenVMS
VAX image; a translated image does not support symbolic debugging, either by symbol
name or source line.
See the description of the /TRACEBACK qualifier for further information.
Example

$ VEST/NODEBUG SCALES

Whether or not the SCALES.EXE image was linked with the /DEBUG qualifier, the
translated image SCALES_TV.EXE will not start up the debugger at run time.

$ VEST/DEBUG/TRACEBACK STORM_TRACK

54

Whether or not STORM_TRACK.EXE was linked with the /DEBUG qualifier, the
translated image STORM_TRACK_TV.EXE will start up the debugger at run time. Note
that you must also include the /TRACEBACK qualifier in the VEST command line if the
OpenVMS VAX image was linked with the /NOTRACEBACK qualifier.

/DST
Instructs VEST to collect information about data in the input image and to write that information to
a file for subsequent processing by the DSTGRAPH command.
Default: /NODST
Format: /DST
Description

Use the /DST qualifier together with the DSTGRAPH command to identify any unaligned
or skewed data present in the input image. Unaligned data is data that is not aligned on a
natural boundary. In other words, the data's address is not a multiple of the data item's
size in bytes. Unaligned data adversely affects the translated image's performance on
OpenVMS Alpha systems. Unlike OpenVMS VAX, OpenVMS Alpha systems have no
hardware assistance to minimize the impact of unaligned data on performance. Skewed
data is not unaligned, but its layout requires more memory accesses than are strictly
necessary.
Before using the /DST qualifier, ensure that the input image contains a full debugger
symbol table (DST). A full DST is present if the image was compiled and linked with the
/DEBUG or /DEBUG=ALL qualifier, depending on the source language. The /DST
qualifier instructs VEST to format all the memory references in the input image's DST and
to write the formatted information to a file called image.STI, where STI stands for symbol
table information.
After creating the image.STI file, use the DSTGRAPH command to generate a PostScript
file that illustrates any unaligned or skewed data in the image.

/EXECUTABLE
Enables the creation of a translated image and optionally includes a file specification.
Default: /EXECUTABLE
Format: /EXECUTABLE [=filespec]
Qualifier Values: filespec
Defines the file specification for the translated image.
Description

By default, VEST creates a translated image unless the command line specifies qualifiers
that are incompatible (the /RESTRICT qualifier, for example) and as long as VEST does
not encounter error conditions that prevent image translation. If VEST issues ERROR or
FATAL messages, it does not create a translated image.
If you do not provide a file specification, VEST writes the translated image to the current
directory and names it by appending "_TV" to the input image's file name. For example, if
the name of the OpenVMS VAX image is PROGRAM.EXE, the default name of the
translated image is PROGRAM_TV.EXE.

Note

55

A filename cannot exceed 39 characters in length. Because of this limitation, VEST
truncates any input image file name that exceeds 36 characters to append the characters
"_TV".

/FEEDBACK
Controls whether or not the TIE writes information to an .HIF file about entry points discovered
when interpreting code in the translated image at run time.
Default: /FEEDBACK
Format: /FEEDBACK
Qualifier Values: None.
Description

When /FEEDBACK is enabled, the TIE writes information to an .HIF file about the entry
points it finds when interpreting code. If you specify /NOFEEDBACK when translating an
image, the TIE does not write to an .HIF file at run time. The logical name
TIE$FORCE_FEEDBACK allows you to override /NOFEEDBACK at run time.

/FLOAT
Specifies the arithmetic precision for D-floating operations in the translated image.
Default: /FLOAT=D53_FLOAT
Format: /FLOAT =float-type
Qualifier Values: float-type
Specifies the precision, which can be one of the following:

D53_FLOAT Implement 53-bit precision D-floating arithmetic. VEST converts operands
to
 G-floating format. At run time, G-floating hardware on the OpenVMS
Alpha system performs the arithmetic. Because D53_FLOAT uses
hardware rather than software emulation, it has performance advantages
over D56_FLOAT. It does, however, lose some precision. The three bits of
precision lost are the three least significant bits in the fraction

D56_FLOAT Implement full 56-bit precision for D-floating point operations in the
translated image using software emulation. D56_FLOAT provides 3 bits
more precision than D53_FLOAT, but it loses in performance.

/FLOWGRAPH
Creates a flowgraph file with contents based on selections made by the /VIEW qualifier and
optionally specifies a file name.
Default: /NOFLOWGRAPH
Format: /FLOWGRAPH [=filespec]
Qualifier Values: filespec
Identifies the file specification for the flowgraph file.
Description

56

The flowgraph file contains information used by the FLOWGRAPH command to create
one or more PostScript formatted flowgraph files. A flowgraph can be one of the following
types:
A call flowgraph that charts the image's calling structure and includes the names of the
called routines.
An error flowgraph that charts the routines in the image that incurred VEST error
messages.
A complete flowgraph that charts the program flow of the entire image based on the code
that VEST has found.
Use the /VIEW qualifier to select which of these three kinds of flowgraphs to include in
the flowgraph file and the /VIEW qualifier keywords to select the kind of information to be
included within either an error or a complete flowgraph.
If you do not include a file specification, VEST writes the flowgraph file to the current
directory and defaults to the input image's file name and the extension GRAPH. For
example, if the input image is DATA_TEST.EXE, VEST names the flowgraph file
DATA_TEST.GRAPH.
If you specify the /FLOWGRAPH qualifier and not /VIEW as well, VEST creates a file
containing an error flowgraph, with the name of the input image and the extension
GRAPH.
Use the FLOWGRAPH command to create a PostScript file from the ASCII flowgraph file.
Section 4.3 describes the FLOWGRAPH command and how to print the PostScript files.

/IIF
Enables the generation of an image information file (an .IIF file) when the input image is
shareable and optionally specifies a file name.
Default: /IIF if the input image is shareable. Ignored if the input
image is an executable image.
Format: /IIF [=filespec]
Qualifier Values: filespec
Identifies a file specification for the .IIF file.
Description

The .IIF file describes the properties of a shareable image's exported interface , that is,
the precise locations that are described in the image's global symbol table (GST). See
Section 5.2 for details.
If you do not include a file specification, VEST writes the .IIF file to the current directory
and defaults to the input image's file name and the extension .IIF. For example, if the
input image is SHAREABLE_LIB.EXE, VEST names the .IIF file SHAREABLE_LIB.IIF.

/INCLUDE_DIRECTORY
Specifies one or more directories in which VEST searches for .IIF, .HIF, and .SIF files.
Default: /NOINCLUDE_DIRECTORY
Format: /INCLUDE_DIRECTORY =(dir-spec[,...])
Qualifier Values: dir-spec

57

Identifies a directory that VEST searches for .IIF, .HIF, and .SIF files.
Description

VEST searches for relevant .IIF, .HIF, and .SIF files in the following locations and in the
following order:
The current default directory
The directory or directories specified as values to the /INCLUDE_DIRECTORY qualifier
in the VEST command line
The directory or directories, if any, defined by the VEST$INCLUDE logical name

/INTERPRET
Controls the choice between translation or interpretation for all or specific parts of the input
image.
Default: /INTERPRET=NO_CODE
Format: /INTERPRET [=keyword]
Qualifier Values: keyword
The acceptable values for keyword are as follows:

ALL_CODE Interpret the entire input image.
NO_CODE Do not interpret any code VEST is able to find; that is, translate

all code VEST finds in the input image, including code in
writeable image sections

WRITEABLE_CODE Interpret code in writeable image sections; that is, translate all
code found in non-writeable image sections

Description

VEST tries to find, parse, and translate as much VAX code as possible to minimize the
need for interpreting VAX code at run time. By default, VEST translates code that it finds
in a writeable image section and issues a message (RWTRANSDEF) to warn that the
code could be modified at run time. If the code is modified at run time, the translated
code becomes incorrect. If you know that the code in a writeable image section is not
modified at run time, use the /INTERPRET=NO_CODE qualifier so that VEST does not
issue a warning-level message. If you know that the code is modified, use the
/INTERPRET=WRITEABLE_CODE qualifier to force the code to be interpreted at run
time.
If you specify /INTERPRET without a keyword, the qualifier defaults to
/INTERPRET=ALL_CODE. If you specify /NOINTERPRET, the qualifier is equivalent to
/INTERPRET=NO_CODE.
VEST does not generate an .IIF file either when you specify /INTERPRET,
/INTERPRET=ALL_CODE, or /INTERPRET=WRITEABLE_CODE. Under these
circumstances, the .IIF file could be incorrect since VEST did not analyze untranslated
code.

58

/JACKET
Builds a jacket image from a specially constructed OpenVMS VAX shareable image.
Default: /NOJACKET
Format: /JACKET [=(image-name[,...]])
Qualifier Values: image-name
Identifies the name of an image as specified by "NAME=" in the linker options file.
Description

The /JACKET qualifier is used only if you are creating a jacket image for a shareable
image as described in Chapter 6. The /JACKET qualifier instructs VEST not to change
references to all or some of the shareable images referred to by the input image.
Normally VEST looks up any external references to a shareable image in that image's IIF
file (see Section 5.2). It then replaces the references with the corresponding correct
references for the native or translated version of the image, as specified by usv_offset
property records in the IIF file.
The /JACKET qualifier allows you to specify one or more image names or none at all:
/JACKET-Do not change any references to any shareable images.
/JACKET= image-Do not change references to image, but handle references to any other
images in the normal manner.
/JACKET=(image1,image2...)-Do not change references to the list of images, but handle
references to any other images in the normal manner.
Example

$ VEST/JACKET VAX_SHARE

VEST creates the image VAX_SHARE_TV.EXE with no changes made to any external
image references.

$ VEST/JACKET=(NATIVE1,NATIVE2) PARTJACKET

VEST creates the image PARTJACKET_TV.EXE with no change to references to the
images NATIVE1.EXE and NATIVE2.EXE. All other external image references are
converted as usual.

/LIF
Renames the image references according to the specified library information file.
Default: /NOLIF
Format; /LIF=filespec
Qualifier Values: filespec
Identifies a file specification for the library information file.
Description:

The /LIF command controls how the image references are renamed depending on global
section ids.

/LIST
Requests a list file with contents based on selections made by the /SHOW qualifier and optionally
specifies a file name.

59

Default: /LIST
Format: /LIST [=filespec]
Qualifier Values: filespec
Identifies a file specification for the list file.
Description

The /SHOW command controls the contents of the list file.
If you do not specify a file specification, VEST writes the list file to the current directory,
names it by appending "_TV to the input image's file name, and uses the extension LIS.
For example, if the input image is SIEVE.EXE, the default list file is called SIEVE_TV.LIS.
Example

$ VEST DHRYSTONE

This example shows the listing file DHRYSTONE_TV.LIS:
 VEST V1.1-25 built at Apr 19 1993 13:38:36 starting at May 17 1993 13:43:44
 with command line:
 VEST DHRYSTONE
 Image "DHRYSTONE_SHR", "V1.0", 13-DEC-1989 10:17:07.95
 ! Message summary by category:
 !
 ! 2 messages in SOURCE_ANALYSIS category:
 ! 2 INFO NONSTDCALLU - Non-standard call uses !AZ
 !
 ! 5 messages in VERBOSE category:
 ! 1 INFO READING - Reading file !AZ
 ! 1 INFO NOHIF - HIF file !AZ not found
 ! 1 INFO PASS1 - Starting analysis pass 1
 ! 1 INFO PASS2 - Starting analysis pass 2
 ! 1 INFO ENDPASS2 - Ending analysis pass 2 -- beginning code generation and
output

/OPTIMIZE
Enables and/or disables various types of performance optimizations in the translated image.
Default: /OPTIMIZE=(ALIGNMENT,SCAN,SCHEDULE)
Format: /OPTIMIZE =(keyword[,...])
Qualifier Values: keyword
Specifies a type of performance optimization. The acceptable values for keyword are as follows:
ALL Enable all the optimization choices to generate the most efficient possible

Alpha AXP code in the translated image.
ALIGNMENT[=
option]

Provide hints to VEST about the alignment of data in memory. These hints
enable VEST to generate efficient code sequences to access data. The
keyword option has one of the following values:
LONGWORD Enables VEST to make optimistic alignment assumptions
about data that is up to 4 bytes in size
QUADWORD Enables VEST to make optimistic alignment assumptions
about data that is up to 8 bytes in size. Specifying
ALIGNMENT=QUADWORD may improve the performance of programs
using double precision floating point arithmetic on naturally aligned
data.ALIGNMENT=QUADWORD is the default. Use
/OPTIMIZE=NOALIGNMENT if excessive alignment faults are degrading
translated image performance.

60

NONE Disable all optimizations
SCAN Enable a linear scan (pass 2) during which VEST attempts to find more

code in the input image that was not found in the initial analysis (pass 1).
SCHEDULE Enables VEST to rearrange the generated code so that it executes more

efficiently. This keyword is disabled if
/PRESERVE=INSTRUCTION_ATOMICITY is specified. Specifying
/OPTIMIZE=NOSCHEDULE enables reporting exceptions with accurate
VAX PCs when used in conjunction with the FLOAT_EXCEPTIONS and
INTEGER_EXCEPTIONS keywords with the /PRESERVE qualifier. All
keyword values except ALL and NONE are negatable (NOSCHEDULE,
for example).

Description

Select as many optimizations as you safely can to create a translated image with the
greatest possible performance on OpenVMS Alpha systems.
If you specify /NOOPTIMIZE without a keyword, the qualifier is equivalent to
/OPTIMIZE=NONE. If you specify /OPTIMIZE, the qualifier is equivalent to
/OPTIMIZE=ALL.

/PRESERVE
Preserves specific aspects of VAX behaviors exactly.
Default: /PRESERVE=NONE
Format: /PRESERVE =(keyword[,...])
Qualifier Values: keyword
Identifies a VAX behavior to be preserved in the translated image. The acceptable values for
keyword are as follows:
ABNORMAL_RETURN_BEHA
VIOR

Force VEST to interpret code when a routine modifies the
return address. You may want to use this switch if the
code was written in MACRO-32 and VEST has issued a
WRITECF4 error message. By default, the switch is
disabled and VEST assumes that the code returns
normally even though it has modified the return PC. When
the switch is enabled, VEST does not assume that the
code returns normally, which occurs most often in PL/I
code.

ALL Enable all keywords to preserve complete VAX behavior

61

CONDITION_CODES Materialize the VAX condition codes for all calls to and
returns from JSB entries. Most compiler-generated code
does not require this keyword. Normally, VEST analyzes
the VAX code, determines when the condition codes are
needed and generates code to materialize them.
However, you may need to use the CONDITION_CODES
keyword in some cases. For example, enabling the
keyword becomes necessary when VEST has not
detected a call to or a return from a routine and the VAX
condition codes are used on entering the routine or
immediately after returning from the routine.

FLOAT_EXCEPTIONS Generate code to provide precise VAX floating point
arithmetic exception behavior. To obtain accurate
reporting of VAX PCs for such exceptions, use this
keyword along with /OPTIMIZE=NOSCHEDULE.

INSTRUCTION_ATOMICITY Generate code to provide precise VAX instruction
atomicity. Enabling this keyword ensures that no partial
update of VAX state will be visible to another thread of
execution. Specifying this keyword forces the setting
/OPTIMIZE=NOSCHEDULE. If you attempt to specify
/PRESERVE=INSTRUCTION_ATOMICITY in the same
command line as /OPTIMIZE=SCHEDULE, VEST issues
a warning and gives precedence to the preserve option.

INTEGER_EXCEPTIONS Generate code to provide precise VAX integer arithmetic
exception behavior. To obtain accurate reporting of VAX
PCs for such exceptions, use this keyword along with
/OPTIMIZE=NOSCHEDULE.

MEMORY_ATOMICITY Generate code to provide precise VAX atomic memory
access. This keyword is necessary only when there is
shared data in memory. Shared data can be either explicit
or involuntary. Data is shared explicitly when there are at
least two threads of execution sharing the same piece of
data. Data is shared involuntarily when there are at least
two threads of execution, each accessing data that is not
explicitly shared by the threads, but is contained in the
same 8-byte, naturally aligned location in memory. The
MEMORY_ATOMICITY keyword ensures that updates to
explicitly shared data appear to be atomic and updates to
involuntarily shared data appear not to interfere with each
other.

NONE Enable none of the /PRESERVE keywords.
READ_WRITE_ORDERING
SAFETY

Generate code to preserve precise VAX ordering of
memory accesses. Generate safe code that includes no
assumptions about call targets or resource usage or any
other assumptions that can cause VEST to generate
erroneous translated code based on faulty analysis.

62

SAFETY Turns off all code optimizations. This setting generates
safe code that includes no assumptions about call targets
or resource usage or any other assumptions that can
cause VEST to generate erroneous translated code based
on faulty analysis.

All keyword values except ALL and NONE are negatable
(NOCONDITION_CODES, for example).
Description

The /PRESERVE qualifier ensures precise VAX behaviors for the selected features at the
expense of performance.
If you specify /PRESERVE without a keyword, the qualifier is equivalent to
/PRESERVE=ALL. If you specify /NOPRESERVE, the qualifier is equivalent to
/PRESERVE=NONE. All keyword values except ALL and NONE are negatable.

/RESTRICT
Specifies code processing restrictions.
Default: /NORESTRICT
Format: /RESTRICT =(keyword[,...])
Qualifier Values: keyword
Specifies the type of restriction. The acceptable values for keyword are as follows:
DEPTH= level Restricts the call depth traced to the number of levels specified by

level For example, DEPTH=3 restricts code processing to three
levels of call depth.

ENTRY=(" string "[,...]) Limits the entry points processed to those that include string in the
corresponding symbolic name. Each entry point address is
converted to a symbolic name - this symbolic name appears on
the second line within the appropriate box of an error or complete
flowgraph. If a symbolic name contains string , VEST processes
the corresponding entry point. VEST ignores any symbolic name
that does not contain string . VEST prints the symbolic name for
every entry point processed in the list file.

Note
The quotes in "string " are necessary to preserve the exact upper and lower case settings. If you
omit the quotes, DCL converts all text to upper case

Description

The /RESTRICT qualifier confines VEST processing to specific entry points and specific
call depths in its search for code. If you specify " string" with the ENTRY keyword, VEST
enforces the following qualifier negations:
 /NOEXECUTABLE
 /NOIIF
 /OPTIMIZE=NOSCAN

63

If you specify a null string with the setting /RESTRICT=(ENTRY=""), VEST selects all the
entry points in the image and prints their names in the list file.
To select the routines from a specific module for analysis, use the variable string to
specify the module name, that is, /RESTRICT=(ENTRY="module-name"). You can select
a single routine to analyze by using both the ENTRY and DEPTH keywords; for example,
/RESTRICT=(ENTRY="node_a",DEPTH=1).
You cannot use /RESTRICT to add an entry point. Use an .HIF file for this purpose.

/SHOW
Controls the information to be included in the list file.
Default: /SHOW=MESSAGES
Format: /SHOW =(keyword[,...])
Qualifier Values: keyword
Specifies the type of information to be included in the list file. The acceptable values for keyword
are as follows:
ALL Display everything
INPUT_ MACHINE_CODE Display source machine code.
MACHINE_CODE Display both source machine and target

machine code.
MESSAGES Display messages.
NONE Display the image identification line and

summary only.
SOURCE Include source code if available.
STATISTICS Display VEST statistics that describe

characteristics of the input and output
images, such as the number of blocks,
images, and external references found,
the number of code bytes found, and the
number of VAX instructions translated

Description

If you specify /SHOW without a keyword, the qualifier is equivalent to /SHOW=ALL. If you
specify /NOSHOW, the qualifier is equivalent to /SHOW=NONE.
Example

$ VEST/LIST=SIEVE_5_22_TV.LIS/SHOW=(MESSAGES,STATISTICS) SIEVE

This example generates the following list file:
VEST V1.1-25 built at Apr 19 1993 13:38:36 starting at May 17 1993 17:12:36
with command line:
VEST/LIST=SIEVE_5_22_TV.LIS/SHOW=(MESSAGES,STATISTICS) SIEVE
 Image "SIEVE", "V1.0", 14-OCT-1991 14:20:19.13
! VEST Statistics:
!
! OpenVMS VAX Image : VST_00:[FREAN.STORM.TEST]SIEVE.EXE;.
! : 5 block(s), 8 image sections(s), 3 external reference(s) to 1
image(s).
! Code found : 206 bytes -- 206 in pass 1 (100%) + 0 in pass 2.
! Completed at : May 17 1993 17:12:39.

64

! Completion status : %VEST-I-TRANSOK, Translation completed successfully.
!
! OpenVMS Alpha Image : VST_00:[FREAN.STORM.TEST]SIEVE_TV.EXE;.
! : 51 block(s), 7 image sections(s), 531 external reference(s) to 2
image(s).
! : 45 VAX instructions translated into 260 Alpha AXP instructions.
! Expansion : Instructions: 5.7x Disk blocks: 10.1x.
! Message summary by category:
!
! 5 messages in VERBOSE category:
! 1 INFO READING - Reading file !AZ
! 1 INFO NOHIF - HIF file !AZ not found
! 1 INFO PASS1 - Starting analysis pass 1
! 1 INFO PASS2 - Starting analysis pass 2
! 1 INFO ENDPASS2 - Ending analysis pass 2 -- beginning code generation and
output
$ VEST/LIST/SHOW=(MACHINE_CODE,SOURCE) COBTST_D

This example requests a listing file that includes both the VAX and Alpha AXP machine
code as well as the original source code. This type of listing is useful when you are
debugging translated images. The following excerpt from the listing shows how VEST
lays out the various types of code so you can see how they interrelate:

DCAUS\DCAUS+0 [COBOL] 1
.
.
.
DCAUS\DCAUS\61
\61 MOVE L TO NULL-TIME. 2
\66 PERFORM TIMRB.
 000008BF: MOVL 84(R11),CC(R11) 3
 000008C4: MOVAB B^000008CB,(R11)
 000008C8: BRW 00000B7E
 * 000102D0: LDL R19,FF84(R11) 4
 000102D4: LDA R20,88CB(R15)
 * 000102D8: STL R20,0(R11)
 000102DC: STL R19,FFCC(R11)
 * 000102E0: BR 10DD0
.
.
.

The list file lays out the source code, VAX code and Alpha AXP code as follows:
1 A line identifying the source code module, routine, line number, and, optionally, the
source code language. The source code language appears when the line corresponds to
an entry point in the image. This line is equivalent to the "At:" line in error messages that
identifies a location in the image. VEST derives the location information from the image's
debugger symbol table (DST). Depending on the compiler, the DST may not have the
information VEST needs to pick up the corresponding line of source code at the
beginning of a subroutine.
2 One or more lines of source code beginning at the previously identified location and
corresponding to a basic block of machine code. Each line is equivalent to a "Source:"
line in error messages. To conserve space, VEST compresses white space, truncates the
source line to 63 characters and omits lines that do not actually generate VAX code. The
exactness of the correlation between the line numbers and the actual source depends on
the image's DST, which in turn depends on the compiler that created it.
3 The VAX code corresponding to a basic block. Each line begins with the VAX offset
within the original image.
4 The Alpha AXP code corresponding to the VAX code displayed above and to the right.
Each line begins with the Alpha AXP offset within the translated image. An asterisk
indicates Alpha AXP code equivalent to the beginning of a single translated VAX
instruction.
 Note

65

The asterisk may not be meaningful. By default, scheduling causes the Alpha AXP
instructions corresponding to VAX instructions to be intermixed in many cases. However,
if you translate an image specifying /PRESERVE=INSTRUCTION_ATOMICITY, the
placement of the asterisks is meaningful

/SIF
Creates a symbol information file (.SIF file) for the input image and optionally specifies a file
name.
Default: /NOSIF
Format: /SIF [=filespec]
Qualifier Values: filespec
Specifies the .SIF file to be created. If you specify /SIF without a filespec, VEST creates a file
named image.SIF in the current directory.
Description

You create and use .SIF files when you are working with shareable images that will be
translated repeatedly or must interoperate with native versions of the same images. The
.SIF file that VEST creates describes the global symbol table (GST) and symbol vector
entries in the translated shareable image. The individual descriptions are called directives
. You create and use a .SIF file whenever you need to preserve and control the ordering
or contents of the GST and symbol vector. If you include the .SIF file in the search path
and then retranslate the same image, VEST uses the .SIF directives to determine the
ordering and contents of the new translated image's GST and symbol vector. In the
absence of a .SIF file, VEST creates the symbol vector entries in an undefined order.
You can also specify the /SIF qualifier when a .SIF file for the image already exists in the
search path. In this case, the directives in the existing file determine how VEST defines
the corresponding symbols. The default VEST behavior applies to whatever symbols are
not described in the existing file. VEST then creates a new .SIF file that includes the
directives from the existing file plus directives for the remaining symbols.
See Section 6.4 for further information about creating and using .SIF files.
Example

$ VEST/SIF MYSHR

If MYSHR.EXE is a shareable image, the command creates a file called MYSHR.SIF, a
file that fully describes the contents and layout of the symbol vector and GST of the
translated image MYSHR_TV.EXE. This .SIF file, whether left unchanged or modified by
hand, becomes an input file to future translations of MYSHR.EXE, allowing full control of
the shareable image external interface.

$ VEST/SIF=SIFDIR: MYSHR

VEST writes the file MYSHR.SIF to the directory SIFDIR: rather than to the current
directory.

/TRACEBACK
Controls whether the traceback handler is activated when an error occurs.
Default: /TRACEBACK if the input image was linked with the /TRACEBACK
qualifier; /NOTRACEBACK if the input image was not linked with the /TRACEBACK qualifier.

66

Format: /TRACEBACK
Description

In a translated image, the traceback information consists of hexadecimal rather than
symbolic values.
By default, VEST creates a translated image with the same /TRACEBACK and /DEBUG
settings enabled as those for the input image. By using the /[NO]DEBUG and
/[NO]TRACEBACK qualifiers, you can change the level. See the description of the
/DEBUG qualifier for further information.
If the input image invokes the debugger and includes traceback information but you want
the translated image to do neither, then you must specify both /NOTRACEBACK and
/NODEBUG. If you specify /NOTRACEBACK only, VEST ignores the qualifier when the
input image was linked with /DEBUG.
Example

$ VEST/NOTRACEBACK STORM_GRAPHIC

The /NOTRACEBACK qualifier is useful to VEST when used in the following way. If the
image STORM_GRAPHIC.EXE is normally linked with the /NOTRACEBACK qualifier,
VEST may be able to find more code at translation if the image is relinked with the
/TRACEBACK qualifier and then translated with /NOTRACEBACK. This improves the
translation without affecting the run-time behavior of the image.
If the image terminates with an unhandled exception, no traceback information will be
displayed on the terminal.

$ VEST/TRACEBACK PLANT_DATA

If PLANT_DATA_TV.EXE terminates with an unhandled exception, the terminal displays
information showing the active call chain at the time of the exception. This behavior does
not depend on whether or not the image was linked with /TRACEBACK. The display does
not include information normally derived from a debugger symbol table (DST).

/VIEW
Specifies the types of flowgraphs to place in a graph file.
Default: /VIEW=(ERROR=SOURCE_CODE)
Format: /VIEW =(keyword[,...])
Qualifier Values: keyword
Specifies which types of flowgraph to include in the flowgraph file. The acceptable values for
keyword are as follows:
ALL Include all kinds of graphs
CALL Include a call graph in the flowgraph file.

67

COMPLETE[= (option[,...])] Include a complete flowgraph that includes information
defined by option as follows:
ALL Include all possible option information
INPUT_MACHINE_CODE Include input machine
code
MACHINE_CODE Include input and output machine
code
NONE Include none of the option the option
SOURCE_CODE Include source code, if available
VERBOSE Include information on entry masks,
masks, stack depths, and resources used and set

ERROR[=(option[,...])] Include an error flowgraph that includes information
defined by option. The acceptable values for option are
the same as those defined for the COMPLETE keyword.

NONE Do not include any flowgraphs
Description

See the description of the /FLOWGRAPH qualifier for definitions of the three kinds of
flowgraphs.
/VIEW forces the /FLOWGRAPH qualifier unless you also specify =NONE. If you specify
/VIEW without a keyword, the qualifier is equivalent to /VIEW=ALL. If you specify
/NOVIEW, the qualifier is equivalent to /VIEW=NONE.
Specifying /VIEW=CALL or /VIEW=COMPLETE turns off the default setting
/VIEW=ERROR=SOURCE_CODE unless you explicitly specify this ERROR keyword as
well.

/WARNINGS
Selects messages to be displayed that are otherwise disabled by default or suppresses the
display of messages.
Default: /WARNINGS=NONE
Format: /WARNINGS =keyword[,...])
Qualifier Values: keyword
Specifies a category of message. The acceptable values for keyword are as follows:
ALL[=FULL] Enable all message categories controllable by the

/WARNINGS qualifier. Add =FULL to override the
suppression threshold for these messages.

MESSAGE_ID=([NO]message [,...]) Display or disable one or more specified messages.
Specify message to display a message and override
the suppression threshold level for each. Specify
NOmessage to disable a specific message
(NOVAXDFLOAT, for example). Use a wildcard () *
to specify all messages that begin with one or more
preceding letters (for example, READCF). *

68

PERFORMANCE[=FULL] Display all messages related to performance. Add
=FULL to override the suppression threshold for all
messages of this type.

SOURCE_ANALYSIS[=FULL] Display all messages related to source analysis.
Add =FULL to override the suppression threshold
for all messages of this type.

SYNCHRONIZATION[=FULL] Display all messages related to synchronization.
Add =FULL to override the suppression threshold
for all messages of this type.

VERBOSE[=FULL] Display all verbose messages. Add =FULL to
override the suppression threshold for all messages
of this type.

All keyword values except All and NONE are negatable
(NOPERFORMANCE, for example).

Description
/WARNINGS is equivalent to /WARNINGS=ALL.
/NOWARNINGS is equivalent to /WARNINGS=NONE.
Use the /WARNINGS qualifier to request messages you want VEST to display in addition
to the standard messages VEST displays by default. You can control the additional
message displays in the following ways:
You can select among the following categories of informational messages:
- Performance messages note code in the input image that can cause the translated
image to run more slowly.
- Source analysis messages point out unconventional code patterns in the input image
that can indicate latent bugs or nonportable features in the source.
- Synchronization messages note possible uses of features requiring some form of
synchronization, such as asynchronous system traps (ASTs), asynchronous I/O, or
multiprocessor execution. Messages in this category may mean that you need to use the
/PRESERVE=INSTRUCTION_ATOMICITY or /PRESERVE=MEMORY_ATOMICITY
qualifier.
- Verbose messages report on VEST progress during translation.
 Table A-1 lists the applicable VEST messages by category.
You can choose to lift the VEST suppression threshold on all messages within a category
(for example, SOURCE_ANALYSIS=FULL) or on individual messages
(MESSAGE_ID=(VAXDLOAT). By default, VEST limits the number of times an individual
message is actually displayed and then summarizes the total number of suppressed
messages in the list file. The count equals the number of times VEST would have
displayed the messages if the suppression threshold were lifted.
You can disable individual messages with the /WARNINGS=MESSAGE_ID=NO
message setting. For example, /WARNINGS=MESSAGE_ID=NOWRITEJSBRET
disables all occurrences of the WRITEJSBRET message.
 If you have disabled specific WARNING-level messages and VEST issues no other
WARNING messages, as well as no ERROR or FATAL messages, VEST returns the
status %VEST-I-TRANSOK. In other words, VEST ignores disabled WARNING

69

messages when it determines the exit status that is returned and that is displayed in the
statistics section of the list file.
Use the VEST qualifier /SHOW=STATISTICS to include the counts of suppressed
messages in the list file.
Examples
1.

 $ VEST/WARNINGS=(SOURCE_ANALYSIS=FULL,VERBOSE)

 This example requests the source analysis and verbose messages and lifts the
suppression threshold on the source analysis messages only.
2.

 $ VEST/WARNINGS=(VERBOSE,MESSAGE_ID=(STKUNAL,READCF*))

 This example requests the verbose messages, STKUNAL messages, and all messages
whose identifier begins with READCF. The /MESSAGE_ID qualifier also lifts the
suppression threshold on STKUNAL and READCF messages.
3.

 $ VEST/WARNINGS=(SOURCE_ANALYSIS,MESSAGE_ID=NOVAXPACKED)

 This example requests the source analysis messages with the exception of the
VAXPACKED message.

VEST/DEPENDENCY
The VEST/DEPENDENCY command analyzes one or more input images to identify external
references to shareable images. If a referenced shareable image in turn refers to another
shareable image, VEST/DEPENDENCY searches that image for references to any shareable
images, and so on. Using this information, you can determine the correct order in which to
translate a set of images. By translating images in the correct order, you ensure that VEST has
access to information it needs about shareable images as it translates each image.
By default, VEST/DEPENDENCY creates a VAX/DEC Module Management System (MMS)
description file. Use the command file VEST_MMS_DRIVER.COM to execute this file as
described in the description of the /DEPENDENCY /MMS_DESCRIPTION qualifier.
Format VEST/DEPENDENCY[/qualifier,...] image[.EXE] list[.DAT]/FILE_LIST
Qualifiers Defaults
/FILE_LIST None. Modifies list[.DAT] parameter
/FLOWGRAPH[= filespec] /[NO]FLOWGRAPH
/LIST[= filespec] /[NO]LIST
/MMS_DESCRIPTION[= filespec] /MMS_DESCRIPTION
/VIEW_EQUIVALENCE_NAMES /VIEW_EQUIVALENCE_NAMES=AUTOMATIC

/FILE_LIST
Modifies the VEST/DEPENDENCY parameter, identifying it as the name of a file containing a list
of images to be examined.
Default: None.
Format: /FILE_LIST
Description

70

Use the /FILE_LIST qualifier when you want to examine more than one image at a time.
The /FILE_LIST qualifier is position dependent. It must modify the command parameter,
which specifies a text file listing file specifications. The file specification modified by
/FILE_LIST has a default extension of .DAT. The text file specifies images to be
examined, where each specification starts on a new line in the first position. These image
specifications have a default extension of .EXE. One way to create a list of files is to use
the DIRECTORY command as shown in the following example:

$ DIR/NOHEAD/NOTRAIL/COLUMN=1/OUTPUT= file *.EXE/EXCLUDE=*_TV.EXE

/FLOWGRAPH
Enables the creation of a dependency graph file to be processed by the Flowgraph utility and
optionally specifies a file name.
Default: /NOFLOWGRAPH
Format: /FLOWGRAPH [=filespec]
Qualifier Values: filespec
Identifies the file specification for the flowgraph file.
Description
When you specify /FLOWGRAPH, VEST/DEPENDENCY creates a flowgraph file. The default
name for the file is input.GRAPH, where input is the name of the input image file or the input list
file if the /FILE_LIST qualifier was used. Use the Flowgraph program to convert the file into a
PostScript representation of the image dependencies. The PostScript graph displays the
dependencies as a tree.

/LIST
Requests a list file and optionally specifies a file name.
Default: /NOLIST
Format: /LIST [=filespec]
Qualifier Values: filespec
Identifies a file specification for the list file.
Description

The list file contains error and status messages. If you do not include a file specification,
VEST/DEPENDENCY writes the list file to the current directory and defaults to the input
image's file name with the suffix _TV and the extension LIS. The following is an example
file called SIEVE_TV.LIS:

92-06-22 16:59:13 (VEST T1.0-24 built Jun 19 1992 11:56:18)
VEST/DEPEND/FLOWGRAPH/LIST SCRATCH_DEPEND/FILE_LIST

/MMS_DESCRIPTION
Requests an MMS description file and optionally specifies a file name.
Default: /MMS_DESCRIPTION
Format: /MMS_DESCRIPTION [=filespec]
Qualifier Values: filespec

71

Identifies the file specification for the MMS input file.
Description

The /MMS_DESCRIPTION qualifier enables VEST /DEPENDENCY to create a
VAX/DEC Module Management System (MMS) description file. The file directs MMS to
issue VEST commands that translate interdependent images in the correct order. Use the
VEST_MMS_DRIVER.COM command file to execute the MMS description file; do not
process it directly with MMS. The command file defines the logical name
VEST$FULL_INCLUDE, required by the MMS description file to execute correctly.
Images that have already been translated will not be retranslated.
If you do not include a file specification, VEST/DEPENDENCY writes the MMS file to the
current directory and defaults to the input image's file name and the extension MMS.

/VIEW_EQUIVALENCE_NAMES
Specifies whether the image dependency graph includes a full equivalence name for each image
name.
Default: /VIEW_EQUIVALENCE_NAMES=AUTOMATIC
Format: /VIEW_EQUIVALENCE_NAMES =keyword
Qualifier Values: keyword
The keyword must be one of the following values:
ALWAYS Causes equivalence names to always be shown.
AUTOMATIC Causes an equivalence name to be shown only when it differs from

SYS$SHARE:image.EXE.
NEVER Causes equivalence names never to be shown.
Description

An equivalence name is the full file specification for an image to which a logical name has
been assigned. The graph shows the logical name when an equivalence name is not
shown.

DSTGRAPH
The DSTGRAPH command reads an image.STI file as input and creates a PostScript file
showing diagrams of selected records and modules that highlight unaligned and skewed data.
Before using the DSTGRAPH command, first recompile and relink the source files using the
/DEBUG or /DEBUG=ALL qualifier so that the OpenVMS VAX image includes a full Debug
Symbol Table (DST). Then use the VEST qualifier /DST to create the image.STI file. (See the
description of the VEST command for further details).
The DSTGRAPH command qualifiers allow you to tailor the information included in the PostScript
file:
Use the /UNALIGNED, /SKEW, or /ALL qualifiers to select the type of data to be shown.
Use the /SELECT qualifier to restrict processing to specific data items.
Use the /SCALE_FACTOR to control the size of the rectangles and diagrams.
Use the /WIDTH qualifier to control how much data in bytes is represented in each bar of the
diagrams.

72

If possible, use the information DSTGRAPH provides you about unaligned data to modify data
structures in your application's source files as you port the application to OpenVMS Alpha. See
the manuals Migrating to an OpenVMS Alpha System: Planning for Migration and Migrating to an
OpenVMS Alpha System: Recompiling and Relinking Applications for further information.
Format DSTGRAPH[/qualifier,...] image[.STI]
Qualifiers Default
/ALL Not enabled
/SCALE_FACTOR=[factor] /SCALE_FACTOR=1.0
/SELECT=" string" Not enabled
/SKEW Not enabled
/UNALIGNED /UNALIGNED
/WIDTH=[bytes] /WIDTH=8

/ALL
Flags unaligned and skewed data while depicting all modules and records.
Default: Not enabled
Format: /ALL
Description

The /ALL qualifier causes DSTGRAPH to depict information about all the data in the
image and also to highlight data that is unaligned or skewed.
The /ALL qualifier is not negatable.

/SCALE_FACTOR
Specifies a decimal number that controls the size of the rectangles and data diagrams in the
PostScript output file.
Default: /SCALE_FACTOR=1.0
Format: /SCALE_FACTOR =factor

Qualifier Values: factor
Specifies a decimal number between 0.7 and 2.25.
Description

The /SCALE_FACTOR qualifier allows you to expand or contract the size of the
rectangles and data diagrams. The default scale of 1.0 specifies 6 to 8 point size type for
most data items and two columns per page. A scale of 0.75 results in three columns per
page.
The /SCALE_FACTOR qualifier is not negatable.

/SELECT
Requests that only data items whose names contain string be subject to processing by the
/UNALIGNED, /SKEW, or /ALL qualifiers.

73

Default: Not enabled
Format: /SELECT ="string"
Qualifier Values: "string"
Defines a string representing all or part of a data item name. The quotes around string are
required to preserve case settings.
Description

The /SELECT qualifier allows you to confine DSTGRAPH to considering specific data
items.
The /SELECT qualifier is not negatable.

/SKEW
Specifies that DSTGRAPH include only modules or records that include skewed and unaligned
data in the PostScript output file.
Default: Not enabled
Format: /SKEW
Description

Use /SKEW to include both unaligned and skewed data only. A data item, such as a
character string or array, is skewed if it occupies more bars than necessary in its
DSTGRAPH diagram. The /WIDTH qualifier defines the length in bytes that DSTGRAPH
uses to determine whether or not data is skewed. The default width is a quadword. (See
the description of the /WIDTH qualifier.) For example, an 84-byte array is skewed if it
starts at address 6 and therefore occupies 12 aligned quadwords. The array would be
aligned better if it were to start at address 0 and therefore occupy 11 aligned quadwords.
Skewed data forces the OpenVMS Alpha system to perform more memory accesses than
necessary.
The /SKEW qualifier is not negatable.

/UNALIGNED
Specifies that DSTGRAPH include only the modules or records that include unaligned data items
in the PostScript output file.
Default: /UNALIGNED
Format: /UNALIGNED
Description

Use the /UNALIGNED qualifier to include unaligned data only in the PostScript file. A
data item is unaligned if its address is not a multiple of its own size in bytes.
The /UNALIGNED qualifier is not negatable.

/WIDTH
Specifies the width in bytes of a single bar of data in the PostScript output file.
Default: /WIDTH=8

74
Format: /WIDTH [=bytes]

Qualifier Values: bytes
An integer that must be a power of two and that represents a number of bytes.
Description

The /WIDTH qualifier determines how many bytes of data are depicted in each bar of the
diagrams. The default width of 8 bytes is equivalent to the natural word size of an Alpha
system. Which width you choose depends on the type of skew you are interested in. (See
the description of the /SKEW qualifier.) Specifying /WIDTH=32 draws pictures and
detects skew corresponding to DECchip 21064 32-byte cache blocks. Specifying
/WIDTH=512 draws pictures corresponding to a VAX page.
The /WIDTH qualifier is not negatable.

FLOWGRAPH
The FLOWGRAPH command creates one or more PostScript formatted flowgraphs that
represent all or part of an image's program flow or that show an image's dependency on
shareable images. A .GRAPH file created in one of two ways is the single command parameter:
A .GRAPH file created by the VEST/FLOWGRAPH/VIEW command. Keywords to the /VIEW
qualifier determine the .GRAPH file contents and the types of flowgraphs created by the
FLOWGRAPH command. Three types are possible: a complete flowgraph, a call flowgraph, and
an error flowgraph. See the description of the VEST command for details.
A .GRAPH file created by the VEST/DEPENDENCY /FLOWGRAPH command from which the
FLOWGRAPH command creates a dependency graph. See the description of the
VEST/DEPENDENCY command for details.
Format: FLOWGRAPH[/qualifier,...] image[.GRAPH]
Qualifiers Defaults
/OUTPUT[= filespec] /OUTPUT
/SCALE_FACTOR=[factor] /SCALE_FACTOR=1.0
/STARTING_ADDRESS=[address] None

/OUTPUT
Enables the creation of a PostScript output file and optionally includes a file specification.
Default: /OUTPUT
Format: /OUTPUT [=filespec]
Qualifier Values: filespec
Defines the file specification for the PostScript output file.
Description

By default, FLOWGRAPH creates a PostScript output file that you can either print or
display online using Display PostScript. The types and content of the flowgraphs created
depend on the command used to generate the input .GRAPH file.
If you do not provide a file specification, FLOWGRAPH writes the output file to the current
directory with the same name as the input file and .PS as the extension.

75

/SCALE_FACTOR
Specifies a decimal number that controls the size of the one or more flowgraphs in the output file.
Default: /SCALE_FACTOR=1.0
Format: /SCALE_FACTOR [=factor]
Qualifier Values: factor
Specifies a decimal number.
Description

The default scale factor of 1.0 specifies 6-point text within each flowgraph box and
positions the boxes on a quarter inch grid. Scale factors smaller than 1.0 shrink the text
and boxes, allowing more of the flowgraph to appear on a single page. Scales greater
than 1.0 expand the text and boxes so that less of the graph fits on a single page.
The default scale typically prints up to 8 blocks across a page and up to 20 blocks down
a page. Try the default scale first. FLOWGRAPH tells you how many pages the resulting
graph occupies. If the number is too large, try a smaller scale (the number of pages
decreases as the square of the scale). Scales in the range 0.667 through 1.0 are
readable. Scales down to 0.5 are harder to read. Scales on the order of 0.1 can be useful
to get an overall picture of all the code found. For scales below 0.25, FLOWGRAPH
omits the text inside boxes, thus cutting the size of the PostScript file almost in half.
Scales greater than 1.0 are useful for making slides, or perhaps for Display PostScript on
a low-resolution screen.

/STARTING_ADDRESS
Requests that a complete or error flowgraph document only the basic blocks starting with the
specified address.
Default: None
Format: /STARTING_ADDRESS [=address]
Qualifier Values: address
Specifies a hexadecimal number representing the starting address of a basic block.
Description

This qualifier allows you to narrowly restrict a flowgraph to the basic blocks that start with
the address you specify.

76

B. Error and Status Messages
This appendix discusses the following topics:
Topic See
Interpreting OMSVA messages Section

B.1
Alphabetical listings of VEST, DSTGRAPH and FLOWGRAPH messages Section

B.2

B.1 Interpreting VEST Messages
VEST error and status messages identify many different conditions within an image. For example,
VEST can identify code that affects a translated image's run-time performance or code that
prevents successful translation. Each message has one of the following severity levels:

INFO messages provide descriptive information about the VEST run.
WARNING messages describe questionable code encountered that you need to
investigate. WARNING messages do not prevent VEST from creating a translated image.
ERROR messages indicate a problem in the code that prevents VEST from translating
the input image.
FATAL messages indicate a problem that prevents the translation altogether (input file
not found, for example).

The type and number of error messages that VEST includes in its listing file depend on the
/WARNINGS qualifier setting. In addition to standard messages that VEST displays by default,
you can control the display of performance messages, source analysis messages,
synchronization messages, and verbose messages. Furthermore, each message has an
associated threshold that determines the maximum number of times VEST displays it for any
given translation. See the description of /WARNINGS in Appendix A for further information.
Section B.2 provides explanations for each message and, when feasible, suggests a user action.
A VEST message as it is displayed or written to the log file consists of the facility name (VEST), a
letter indicating the severity level (I, W, E, or F), a message identifier, and a brief explanation of
the error or status. For example:

%VEST- I -FLAGASYNC, Image calls system service SYS$GETDVI which may perform
asynchronous memory access

Additionally, whenever a message pertains to a specific location in the image, VEST displays two
or three additional lines of information. The extent of the information provided depends on the
level of debugging and traceback information present in the input image. VEST uses information
in the DST of an OpenVMS VAX image to trace an error encountered at a specific address in the
image back to the line of source corresponding to that address.
Section B.1.1 describes the possible levels of debugging and traceback information available in
an input image. Section B.1.2 describes the syntax of the location information.

B.1.1 Levels of Debugging and Traceback Information
An image can contain three levels of debugging-related information:
Level Type of DST Description
Level 1 No DST The image was linked or compiled with the

/NOTRACEBACK qualifier

77

Level 2 Traceback DST The image was linked and compiled with the
/TRACEBACK qualifier, which is the default.

Level 3 Full DST The image was compiled and linked with both the
/DEBUG and /TRACEBACK qualifiers. (A compiler may
require DEBUG=ALL; see the relevant compiler
documentation.)

The extent of the information VEST is able to display depends on which level the input image
corresponds to. Level 2 and level 3 messages allow you to trace a possible error condition in the
input image directly back to its corresponding source code. These messages include a line that is
similar in format to that used by the Performance and Coverage Analyzer (PCA) utility to point to
source code from an image. This capability is useful for preparing an OpenVMS VAX applications
either for image translation or source code porting. The following example messages show the
three possible variations:
Level 1:

 %VEST-I-FLAGASYNC, Image calls system service SYS$GETDVI which may
 perform asynchronous memory access
 At: 00007CA0 (00007CA0)
 Input: CALLS S^#08,@#7FFEE410

The level 1 message shows that the FLAGASYNC condition occurs at address 00007CA0 and
the VAX instruction at that address is shown in the "Input:" line. No DST information is available
to trace the location back to source code.
Level 2:

 %VEST-I-FLAGMP, Image calls system service SYS$WAITFR which may indicate
 multiprocessor operation
 At: SHELL$CLI_NAME\shell$cli_name\911 [C] (00005963)
 Input: CALLS S^#01,@#7FFEE078

 The level 2 message uses information available in a traceback DST to describe the module
name, routine, and line in the source code (SHELL$CLI_NAME\shell$cli_name\911), the source
code language (C), and the image address (00005963).
Level 3:

 %VEST-I-VAXPACKED, VAX packed decimal string opcode MULP -- will be emulated
 At: DCAUS\DCAUS\114 [COBOL] (00000A4C)
 Source: COMPUTE RLS-P17 = RLS-P9 * RLS-P7.
 Input: MULP S^#07,A4(R11),S^#09,A8(R11),S^#11,B0(R11)

 The level 3 message takes advantage of a full DST to add the actual line of source code
(Source: COMPUTE RLS-P17 = RLS-P9 RLS-P7.) In all three messages, the * final
"Input:" line describes the VAX instruction found at the image address.

B.1.2 Location Information Syntax
As the examples in Section B.1.1 illustrate, the location information syntax for level 1 messages
differs from the syntax for level 2 and level 3 messages. The following description explains each
syntax in detail:
Level 1 location information syntax:

At: address (address)
Input: vax_instruction
The variables are defined as follows:
address The address in the image that prompted VEST to issue the message

(00007CA0, for example)

78

vax_instruction The VAX instruction at that address (CALLS S^#01,@#7FFEE078, for
example)

Level 2 and level 3 syntax:
At: module\routine\line [language] (address)
[Source: source_line]
Input: vax_instruction

The variables are defined as follows:
module The name of the source program module (DCAUS, for example).
routine The name of the source routine within the module (shell$cli_name, for

example) or the PSECT name if the source language is VAX MACRO-
32

line The line number within the routine or PSECT (114, for example).
language The source language (VAX COBOL, for example).
address The address in the image that prompted VEST to issue the message

(00007CA0, for example).
source_line Level 3 messages only. The corresponding source code line, truncated

to 63 characters and including compressed white space.
vax_instruction The VAX instruction at that address (CALLS S^#01,@#7FFEE078, for

example).

B.2 The Messages
This appendix describes OMSVA error and status messages:
Section B.2.1 describes VEST messages.
Section B.2.2 describes DSTGRAPH messages.
Section B.2.3 describes FLOWGRAPH messages.

B.2.1 VEST Messages
BADCASEFALL, Invalid fallthrough for CASE instruction-may need to use HIF: '+address'
caselimit 'limit'

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has detected a CASEx instruction with a suspect default case.
 User Action: Make an .HIF file entry for the image being translated at 'address' with the
caselimit property set to 'limit'. For example:

 +00000698 caselimit 5

 BADCASELIMIT, CASE instruction has a limit greater than 64K - following assumed and may be
used in HIF: 'address' caselimit 'limit'

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has detected a CASEx instruction with a limit value greater than or
equal to 64K. The message suggests a more realistic value for 'limit'.
 User Action: Make an .HIF file entry for the image being translated at 'address' with the
caselimit property set to 'limit'. For example:

 +00000698 caselimit 5

 BADCASETARG, Invalid target for CASE instruction with non-zero lower bound-may need to use
HIF: 'address' caselimit 'limit'

79
 Facility: VEST, VAX Environment Software Translator utility

 Explanation: VEST has detected a CASEx instruction with a non-zero lower bound and
one of the entries in the displacement table contains an invalid target. The invalid target
may indicate an incorrect caselimit.
 User Action: If the caselimit is incorrect, make a .HIF file entry for the image being
translated at 'address' with the caselimit property set to 'limit'. For example:
 +00000698 caselimit 5

 BADEXE, Image is not translatable because it is not an OpenVMS VAX V4.0 or later image
['text_string']

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST detected that the input image is not translatable. If present,
'text_string' explains why it is not translatable.
 User Action: Check to see that you have specified the correct image.

 CALLENTRY, Untyped GST entry assumed to be a callentry-can override via HIF
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: The global symbol table (GST) in the input image contains many addresses
marked as symbols, some of which may actually be CALL entrypoints. VEST tests each
symbol address to see if it is a CALL entrypoint. If it is, VEST adds the address as a
CALL entrypoint to its list of addresses to be translated.
 User Action: None required. However, you can use an .HIF entry to override the VEST
designation of the specified offset as a CALL entrypoint and make it a JSB entrypoint
instead. For example:
 +00002FFC jsbentry

 CMASKOVERLAP, Call mask at 'address' overlaps previously found code so it won't be
translated-use HIF to override: '+address' caselimit 'limit'

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered a routine at 'address' whose first two bytes (the call
mask) overlap a previously parsed VAX instruction. One of the two parsings is incorrect.
If the routine is executed at run time, VAX code is interpreted in the region of overlap.
 User Action: None required.
 If you want to investigate the code that incurred this error, produce an error flowgraph of
the image to show the conflicting blocks of code. If the overlapping bytes at 'address' are
in fact the target of a call, use an .HIF property ('address' callentry) to direct VEST to
parse the overlapping bytes correctly. If the overlapping bytes are in fact VAX code, then
the calling instruction is not really a VAX instruction; use an .HIF property ('diff_address'
dataentry) to direct VEST away from parsing the calling instruction, or use an .HIF
property ('diff_address' caselimit) if the path came from a CASE instruction 'diff_address'
with no fallthrough path or an incorrectly specified table size. ('diff_address' is an address
other than 'address', which you must determine from examining the error graph for the
image.)
 If the overlap was encountered in the second VEST pass to identify code, an alternative
action is to specify /OPTIMIZE=NOSCAN, which bypasses the second pass.

 DEPENDERROR, Dependency analysis unsuccessful
 Facility: VEST, VAX Environment Software Translator utility

80

 Explanation: VEST/DEPENDENCY encountered one or more ERROR level error
messages. This message is the status code returned to DCL.

 User Action: Review the ERROR level messages VEST /DEPENDENCY issued to
identify the problem.

 DEPENDFATAL, Translation was impossible
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST/DEPENDENCY encountered one or more FATAL level error
messages. This message is the status code returned to DCL. msg_text>(User Action)
Review the FATAL level messages VEST/DEPENDENCY issued to identify the problem.

 DEPENDOK, Dependency analysis completed successfully
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST/DEPENDENCY successfully completed its analysis. This message is
the status code returned to DCL.
 User Action: None.

 DEPENDWARN, Dependency analysis completed with warnings - review them before using
output files.

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST/DEPENDENCY issued at least one WARNING level error message.
This message is the status code returned to DCL.
 User Action: Examine the WARNING level error messages before using an MMS
description file or dependency graph that VEST/DEPENDENCY has created.

 ENDPASS2, Ending analysis pass 2 - beginning code generation and output
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST issues this message at the completion of its second analysis of the
input image.
 User Action: None.

 EXPRCOM, Missing expected ',' in expression 'string' - expression ignored
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: While reading an .IIF or .HIF file, VEST detected a missing comma (,) from
the line indicated.
 User Action: Edit the .IIF or .HIF file specified in the previous READIF message to add
the missing comma. Because VEST generates .IIF files automatically, this message is
more likely to pertain to an .HIF file that has been edited by hand. Retranslate the image
if necessary.

 EXPRERR, Unknown token type in expression 'string'-expression ignored
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered an internal error.
 User Action: Submit a Software Performance Report (SPR) describing the error
message.
 EXPRNYI, Unimplemented token 'string1' in expression 'express' - expression ignored
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: While reading an .IIF or .HIF file, VEST encountered an invalid property
string value or token. Because VEST generates .IIF files automatically, this message is
more likely to pertain to an .HIF file that has been edited by hand.

81

 User Action: Either ignore the message or replace the token with a supported string
value.

 EXPRRPAR, Missing expected ')' in expression 'express' - expression ignored
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: While reading an .IIF or .HIF file, VEST failed to encounter an expected
closing parenthesis in the line indicated. Because VEST generates .IIF files
automatically, this message is more likely to pertain to an .HIF file that has been edited
by hand.
 User Action: Edit the line in the file specified in the previous READING message to add
the closing parenthesis and retranslate the image if necessary.

 EXPRTOK, Invalid token 'string' in expression 'express' - expression ignored
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: While reading an .IIF or .HIF file, VEST encountered an invalid property
value string or token, 'string', which it could not match to any supported property values
for information files. Because VEST generates .IIF files automatically, this message is
more likely to pertain to an .HIF file that has been edited by hand.
 User Action: If necessary, replace the invalid token with one that is supported and
retranslate the image.

 FLAGAST, Image calls system service 'sys_serv' which may use AST routines
 Explanation: VEST has encountered a call to a system service whose normal use
involves asynchronous system trap (AST) threads that can interrupt a main program at
arbitrary points. This message indicates that the image may contain accesses to
variables that are shared between a main thread and an AST thread. Whenever two
threads of execution share memory on nonaligned boundaries, a synchronization
problem may occur.
 User Action: Check the OpenVMS VAX image and the program sources, if possible, to
check for AST routines that share data. If a system call specifies a shared area that is not
an integral multiple of aligned quadwords, Compaq recommends that you rewrite the
original OpenVMS VAX program to align quadwords wherever possible, then retranslate.
 If you cannot rewrite the original program and need to ensure the exact OpenVMS VAX
behavior, retranslate the image with the qualifier /PRESERVE=MEMORY_ATOMICITY.
Because this qualifier adversely affects the performance of the translated image, do not
use it unless absolutely necessary.

 FLAGASYNC, Image calls system service 'sys_serv' which may perform asynchronous memory
access

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered a call to a system service whose normal use
involves asynchronous read or write of a user data buffer or control-block area. This
message indicates that the image may contain accesses to variables that are shared by
the user program and an asynchronous system update (which appears to be done by
another processor). Whenever two threads of execution share memory on nonaligned
boundaries, a synchronization problem may occur.
 User Action: Check the OpenVMS VAX image and the program sources, if possible, to
check for AST routines that share data. If a system call specifies a shared area that is not
an integral multiple of aligned quadwords, Compaq recommends that you rewrite the
original OpenVMS VAX program to align quadwords wherever possible, then retranslate.

82

 If you cannot rewrite the original program and need to ensure the exact VAX behavior,
retranslate the image with the qualifier /PRESERVE=MEMORY_ATOMICITY. Because
this qualifier adversely affects the performance of the translated image, do not use it
unless absolutely necessary.

 FLAGIO, Image calls system service 'sys_serv' which may perform asynchronous I/O
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered a call to a system service whose normal use
involves asynchronous I/O read or write of a user data buffer or control-block area. This
message indicates that the image may contain accesses to variables that are shared by
the user program and an I/O controller (which appears to be another processor).
Whenever two threads of execution share memory on nonaligned boundaries, a
synchronization problem may occur.
 User Action: Check the OpenVMS VAX image and the program sources, if possible, to
check for AST routines that share data. If a system call specifies a shared area that is not
an integral multiple of aligned quadwords, Compaq recommends that you rewrite the
original OpenVMS VAX program to align quadwords wherever possible, then retranslate.
 If you cannot rewrite the original program and need to ensure the exact OpenVMS VAX
behavior, retranslate the image with the qualifier /PRESERVE=MEMORY_ATOMICITY.
Because this qualifier adversely affects the performance of the translated image, do not
use it unless absolutely necessary.

 FLAGMP, Image calls system service 'sys_serv' which may indicate multiprocessor operation
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered a call to a system service whose normal use
involves multiple processes that can run simultaneously on multiple processors.
 User Action: This message indicates that the image may well contain accesses to
variables that are shared by multiple processes. Whenever two threads of execution
share memory on nonaligned boundaries, a synchronization problem may occur. Check
the OpenVMS VAX image and the program sources, if possible, to check for AST
routines that share data. If a system call specifies a shared area that is not an integral
multiple of aligned quadwords, Compaq recommends that you rewrite the original
program to align quadwords wherever possible, then retranslate.
 If you cannot rewrite the original program and need to ensure the exact OpenVMS VAX
behavior, retranslate the image with the qualifier /PRESERVE=MEMORY_ATOMICITY.
Because this qualifier adversely affects the performance of the translated image, do not
use it unless absolutely necessary.

 HIFEMPTY, No usable definitions found in HIF file 'hif_file'
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: The .HIF file specified does not contain any usable definitions. For
example, the image idents in the file do not match the image ident of the image being
translated.
 User Action: Make sure that the appropriate .HIF file is available and retranslate the
image.

 IDENTMISMATCH, Image ident 'ident1' doesn't match ident 'ident2' in file 'file-name'-entries
ignored

 Facility: VEST, VAX Environment Software Translator utility

83

 Explanation: The image's IDENT field does not match the .IIF IDENT field in the IMAGE
record.
 User Action: Rerun VEST with the /IIF qualifier to generate a new .IIF file with a correct
IMAGE record.

 IIFEMPTY, No usable entries found in IIF file 'iif_file'
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: The information file specified does not contain any usable definitions.
 User Action: Make sure that the appropriate information file is available and retranslate
the image.

 IIFINVALID, Invalid qualifier combination (/IIF and /INTERPRET[={ALL_CODE,
WRITEABLE_CODE}])

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: The VEST command line specified either the /INTERPRET, the
/INTERPRET=ALL, or the /INTERPRET=WRITE qualifier in addition to the /IIF qualifier.
Because VEST performs no analysis of interpreted code, using one of the /INTERPRET
settings listed and the /IIF qualifier results in an invalid .IIF file. In the case of
/INTERPRET=WRITEABLE_CODE, the .IIF file is invalid for all code in writable PSECTS,
typically MACRO-32 code.
 User Action: If you need a valid .IIF file for the input image, reissue the VEST command
without the incompatible /INTERPRET setting.

 ILLOPC, Illegal opcode 'instruction'-will be interpreted and will fault if executed
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST decoded the illegal instruction ('instruction') specified in the message.
VEST may have been decoding a part of the image that does not actually include code.
Another possibility is that the image includes the illegal instruction within a part of the
image that is never executed.
 User Action: Use a flowgraph to investigate the location where VEST detected the illegal
instruction. You may be able to ignore the message. If you discover that the "instruction"
is not really code, use a dataentry property record in an .HIF file to tell VEST that the
location contains data.

 ILLOPSPEC, Illegal operand specifier in instruction 'instruction' - will be interpreted and will fault
if executed

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST decoded an illegal instruction. VEST may have been decoding a part
of the image that does not actually include code. Another possibility is that the image
includes the illegal instruction within a part of the image that is never executed.
 User Action: Use a flowgraph to investigate the location where VEST detected the illegal
instruction. You may be able to ignore the message. If you discover that the "instruction"
is not really code, use a dataentry property record in an .HIF file to tell VEST that the
location contains data.

 INSTRMID, Branch target at 'address' overlaps previously found code so it won't be translated-
use HIF to override

 Facility: VEST, VAX Environment Software Translator utility

84

 Explanation: VEST has encountered an instruction that falls into or branches to a target
'address' whose first bytes overlap a previously parsed VAX instruction. One of the two

parsings is incorrect. If the instruction is executed at run time, VAX code is interpreted in
the region of overlap.
 User Action: Produce an error flowgraph of the image to show the conflicting blocks of
code. If the instruction is in fact correct and branches to 'address', use an .HIF property
('address'-1 dataentry) to direct VEST away from the wrong parsing. If the instruction is in
fact correct and falls into 'address', use an .HIF property ('diff_address' dataentry) to
direct VEST away from a wrong parsing of some instruction that appears to lead to
'address', or use an .HIF property ('case_instruction' caselimit) if the path to 'address'
came from a CASE instruction 'case_instruction' with no fallthrough path or a badly
specified table size.
 If the overlapping bytes 'address' are in fact VAX code, then the instruction at 'location' is
not really a VAX instruction. Use an .HIF property ('location' dataentry) to direct VEST
away from parsing 'location', or use an .HIF property ('case_instruction' caselimit) if the
path to 'location' came from a CASE instruction 'case_instruction' with no fallthrough path
or a badly specified table size.
 For both instances of 'case_instruction' described above, examine an error graph for the
image to determine its value.
 If the overlap was encountered in the second VEST pass to identify code, an alternative
action is to specify /OPTIMIZE=NOSCAN to bypass that second pass.

 INTERNE, Internal consistency error - please submit an SPR with the following information:
'text_string'

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered an ERROR-level internal error.
 User Action: Submit a Software Performance Report (SPR) describing the error
message.

 INTERNF, Fatal internal consistency error - please submit an SPR with the following information:
'text_string'

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered a FATAL-level internal error.
 User Action: Submit a Software Performance Report (SPR) describing the error
message.

 INTERNW, Internal consistency warning-please submit an SPR with the following information:
'text_string'

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered an WARNING-level internal error.
 User Action: Submit a Software Performance Report (SPR) describing the error
message. The translated image should run correctly, but use it with caution.

 ISDBASED, Image section 'isd_number' is based-not translatable
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: The image to be translated is a based image-that is, the image has been
linked so that all code and data are tied to fixed addresses. VEST does not support
translating based images.
 User Action: Relink the OpenVMS VAX image without the /BASE link option.

85

 ISDCONFLICT, Image section 'isd_number' has a copy/share conflict with other sections on the
same 64KB page-not translatable

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: By default, the OpenVMS Alpha linker creates image sections on 64K-byte
boundaries, the maximum page size supported by Alpha AXP systems. In contrast,
OpenVMS VAX images assume a page size of 512 bytes. For most images, VEST
automatically resizes and combines image sections as necessary to realign them on 64K-
byte boundaries. However, if an attempt by VEST to align image sections on 64K-byte
boundaries causes an Alpha AXP page to contain both shared and unshared image
sections, VEST cannot translate the image.
 User Action: Relink the image using /BPAGE=16 as a qualifier to the LINK command ($
LINK/BPAGE=16) on an OpenVMS VAX Version 5.5 or later system.

ISDPROTECT, Image section 'isd_number' is protected-not translatable
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: This message indicates that the image contains one or more user-written
system services and is therefore not translatable. VEST issues this message whenever it
encounters an image section descriptor (ISD) that has the protect flag on and is not a
message section.
 User Action: To migrate this program, either recompile the original sources with a native
compiler or rework them and use the MACRO-32 compiler.

 ISDVECTOR, Image section 'isd_number' contains privileged change-mode vectors-not
translatable

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: This message indicates that the image contains one or more user-written
system services and is therefore not translatable. VEST issues this message whenever it
encounters an image section descriptor (ISD) that has the vector flag on and is not a
message section.
 User Action: To migrate this program, either recompile the original sources with a native
compiler or rework them and use the MACRO-32 compiler.

 LINKMISMATCH, Image link time 'date_time1' doesn't match link time 'date_time2'
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: The image's link time does not match the .IIF link time in the IMAGE record.
 User Action: Retranslate the shareable image to create a new .IIF file with a matching
link time.

 LNKSYS, Image is linked against OpenVMS VAX and references symbols in it - not translatable
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: The input image was linked against a specific version of OpenVMS VAX
and references specific symbols in that version. The image is therefore not translatable.
 User Action: If possible, fix the sources to remove the references and then recompile
and relink to create a translatable image.

 LNKSYSOK, Image is linked against OpenVMS VAX but references no symbols in it-translation
possible

 Facility: VEST, VAX Environment Software Translator utility

86

 Explanation: The input image was linked against a specific version of OpenVMS VAX but
is translatable because it makes no references to symbols in that version.
 User Action: None.

 MSGSUPR, Reached limit for 'type' messages-all future occurrences will be suppressed
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered numerous errors of the same type and has
suppressed any further display of messages flagging those types of errors.
 User Action: None required. Use the VEST qualifier /WARNINGS=MESSAGE_ID= type
to remove the threshold for the specified message if you want to be notified every time it
occurs.

 NAMEMISMATCH, Image name 'name1' doesn't match name 'name2' in file 'filename'-entries
ignored

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: The image name identification ('name2') within the file 'filename' does not
match 'name1'. VEST ignores the definitions in 'filename'.
 User Action: If 'filename' is an .IIF file, retranslate the shareable library to obtain a valid
.IIF file. If 'filename' is an .HIF file, run the translated image on an OpenVMS Alpha
system. If the TIE interprets code within the image, it writes entry point information to an
.HIF file. Use that .HIF file to retranslate the original image.

 NOHIF, HIF file 'hif_file' not found
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST was unable to find the file 'hif_file'. When VEST tries to open an
information file, it searches the following directories in the order given:
 · The current default directory
 · The directory or directories specified as values to the /INCLUDE_DIRECTORY
qualifier, if present, in the VEST command line
 · The directory or directories, if any, defined by VEST$INCLUDE
 User Action: To make an .HIF file for the input image available, copy it to one of the
directories described above. Note, however, that an .HIF file is not required for image
translation.

 NOIIF, Error opening interface file 'filename'-will assume default interface
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST was unable to open the specified information file.
 User Action: Make the specified file available to VEST by including it in one of the
following locations:
 · The current default directory
 · The directory or directories specified as values to the /INCLUDE_DIRECTORY
qualifier, if present, in the VEST command line
 · The directory or directories, if any, defined by the VEST$INCLUDE logical name
 When VEST tries to open an information file, it searches the directories listed in the
order given.

 NONSTDCALLS, Non-standard call sets 'resource'

87

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: A call sets the specified resource. This behavior does not conform to the
VAX Calling Standard for that call. Nevertheless, VEST reproduces the exact behavior in
the translated image.
 User Action: None.

 NONSTDCALLU, Non-standard call uses 'resource'
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: A call uses the specified resource. This behavior does not conform to the
VAX Calling Standard for that call. Nevertheless, VEST reproduces the exact behavior in
the translated image.
 User Action: None.

 NOUSVOFS, No symbol vector offset (usv_offset) specified for cross image reference to offset
'address' in 'name'.IIF

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: The file 'name'.IIF contains no symbol vector entry for the offset 'address' in
the image 'name'. VEST uses the offset in the VAX code within the image 'name' instead,
which will cause a slight performance degradation at run time. This message may
indicate that you are using an .IIF file that is out of date or otherwise does not match the
shareable image actually linked to the translated image.
 User Action: Check the file 'name'.IIF to determine why it does not include a symbol
vector entry for 'offset'. It may be necessary to delete existing .IIF and .SIF files and then
recreate them in a two-step process:
 · Translate the shareable image using the /SIF qualifier to create a .SIF file
 · Retranslate the shareable image to create a .IIF file.

 NOVM, No more virtual memory available to create data structures
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST is unable to allocate dynamic memory for data structures. Any VEST
output files are invalid.
 User Action: Increase the page file quota and/or virtual page count. If you have already
reached the maximum quotas, try breaking the image up into two or more smaller
images.

 OPENIN, Error opening 'filename' as input
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST could not open the image file specified in the command line.
 User Action: Reenter the command line with a valid file specification for the image to be
translated.

 OPENOUT, Error opening 'filename' as output
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST was unable to open the identified file 'filename'.
 User Action: Check to determine why VEST could not open the file. (For example, the
/LIST qualifier specified a directory to which you do not have write access or specified a
file version that was open and write-locked.) Reenter the VEST command specifying an
output file that VEST can open.

88

 PASS1, Starting analysis pass 1
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST is starting the parsing of VAX instructions from specified entry points.
 VEST Action: None.

 PASS2, Starting analysis pass 2
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST is starting to scan the input image for VAX instructions that may have
been missed in pass 1.
 User Action: Specify /OPTIMIZE=NOSCAN to bypass pass 2.

 PRIVOPC, Privileged opcode 'opcode' will be interpreted and will fault if executed
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST is designed to translate only user- mode OpenVMS VAX images, but
encountered a VAX instruction 'opcode' that is defined only to work in kernel mode. If the
instruction is actually encountered at run time, the VEST-generated code will do exactly
what the user-mode VAX code will do: take a privileged instruction fault.
 User Action: If the instruction is not a real instruction, use an .HIF property ('location'
dataentry) to direct VEST away from parsing the instruction.
 If the instruction was encountered in the second VEST pass to identify code, either
ignore this message or specify /OPTIMIZE=NOSCAN to bypass the second pass. If the
instruction is real and INTENDED to fault at run time (some languages use HALT, BPT,
or BUGCHK for this purpose), then no user action is needed; treat the message as
informational. If the instruction is real and INTENDED to run in kernel mode, then the
image cannot be translated. Use the MACRO-32 compiler or rewrite the source code.

PRIVSS, Image calls system service ‘service’. Execution of privileged code in a translated context is not
supported.

Facility: VEST, VAX Environment Software Translator utility

Explanation: The image makes a call to the change mode service noted in the PRIVSS message.
VEST can translate the image, but if the translated image calls the service and then attempts to
execute privileged code, a fatal error occurs.

User Action: The user action depends on the image being translated.

 READCF0, Routine reads the condition handler address from its call frame

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered code that reads the VAX call frame. The equivalent
translated code will depend on the emulated OpenVMS VAX environment at run time.
 User Action: None.

 READCF1, Routine reads the mask/PSW longword from its call frame
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered a routine that reads the VAX call frame. The equivalent
translated code will depend on the emulated OpenVMS VAX environment at run time.
 User Action: None.

89
 READCF2, Routine reads the saved AP from its call frame

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered a routine that reads the VAX call frame. The equivalent
translated code will depend on the emulated OpenVMS VAX environment at run time.
 User Action: None.

 READCF3, Routine reads the saved FP from its call frame
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered a routine that reads the VAX call frame. The equivalent
translated code will depend on the emulated OpenVMS VAX environment at run time.
 User Action: None.

 READCF4, Routine reads the return PC from its call frame
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered a routine that reads the VAX call frame. The equivalent
translated code will depend on the emulated OpenVMS VAX environment at run time.
Because this routine reads the return PC, VEST explicitly constructs the VAX PC to
ensure the same behavior as the original code. Reconstructing the PC has a slight effect
on performance at run time because of the extra Alpha AXP coding it requires.
 User Action: None.

 READERR, Error reading 'filename'
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: There was an error reading the file specified in the VEST command line.
The file was the wrong format or there was a protection violation.
 User Action: Enter the name of an image with the correct format and protection.

 READIMAGE, Reading file 'filename'
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST issues this message to identify the image VEST is currently reading
to determine the dependencies that image has on other images.
 User Action: None.

 READING, Reading file 'filename'
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST issues this message to identify the .IIF or .HIF file it is reading.
 User Action: None.

 READJSBRET, JSB routine reads its return PC from the stack
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered a routine that reads the VAX call frame. The equivalent
translated code will depend on the emulated OpenVMS VAX environment at run time.
Because this routine reads the return PC, VEST explicitly constructs the VAX PC to
ensure the same behavior as the original code. Reconstructing the PC has a slight effect
on performance at run time because of the extra Alpha AXP coding it requires.
 User Action: None.

 REJHIF, Rejected HIF entry 'property' ('address') which conflicts with the image or a prior HIF
entry

90

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: In an .HIF file identified in a previous READIF message, VEST has
encountered an entry that conflicts in some way with a previous entry. VEST ignores the
conflicting entry.
 User Action: Check the entry indicated and edit the .HIF file to correct the inconsistency
if that proves to be necessary. You may choose to retranslate the image depending on
the nature of the error you uncover.

 RSTREJDST, Rejected DST entry point 'property' ('address')
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: When the VEST command line includes the /RESTRICT qualifier, VEST
issues this message for each .HIF entry that describes an excluded DST entry point. The
/RESTRICT qualifier requests VEST to explicitly analyze specified parts of an image.
 User Action: None.

 RSTREJGST, Rejected GST entry point 'property' ('address')
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: When the VEST command line includes the /RESTRICT qualifier, VEST
issues this message for each .HIF entry that describes an excluded GST entry point. The
/RESTRICT qualifier requests VEST to explicitly analyze specified parts of an image.
 User Action: None.

 RSTREJHIF, Rejected HIF entry point 'property' ('address')
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: When the VEST command line includes the /RESTRICT qualifier, VEST
issues this message for each .HIF entry that describes an excluded entry point. The
/RESTRICT qualifier requests VEST to explicitly analyze specified parts of an image.
 User Action: None.

 RSTREJTAA, Rejected transfer address array entry point 'property' ('address')
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: When the VEST command line includes the /RESTRICT qualifier, VEST
issues this message for each .HIF entry that describes an excluded vector entry point.
The /RESTRICT qualifier requests VEST to explicitly analyze specified parts of an image.
 User Action: None.

 RSTSELDST, Selected DST entry point 'property' ('address')
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: When the VEST command line includes the /RESTRICT qualifier, VEST
issues this message for each .HIF entry that describes a DST entry point within the part
of the image selected to be analyzed. The /RESTRICT qualifier requests VEST to
explicitly analyze specified parts of an image.
 User Action: None.

 RSTSELGST, Selected GST entry point 'property' ('address')
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: When the VEST command line includes the /RESTRICT qualifier, VEST
issues this message for each .HIF entry that describes a GST entry point within the part

91

of the image selected to be analyzed. The /RESTRICT qualifier requests VEST to
explicitly analyze specified parts of an image.
 User Action: None.

 RSTSELHIF, Selected HIF entry point 'property' ('address')
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: When the VEST command line includes the /RESTRICT qualifier, VEST
issues this message for each .HIF entry that describes an entry point within the part of
the image selected to be analyzed. The /RESTRICT qualifier requests VEST to explicitly
analyze specified parts of an image.
 User Action: None.

 RSTSELSCAN, Selected scan entry point 'property' ('address')
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: When the VEST command line includes the /RESTRICT qualifier, VEST
issues this message for each .HIF entry that describes a scan entry point within the part
of the image selected to be analyzed. The /RESTRICT qualifier requests VEST to
explicitly analyze specified parts of an image.
 User Action: None.

 RSTSELTAA, Selected transfer address array entry point 'property' ('address')
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: When the VEST command line includes the /RESTRICT qualifier, VEST
issues this message for each .HIF entry that describes a vector entry point within the part
of the image selected to be analyzed. The /RESTRICT qualifier requests VEST to
explicitly analyze specified parts of an image.
 User Action: None.

 RWINTERP, Code in writeable image section will be interpreted
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: By default, VEST interprets code in writeable image sections
(/INTERPRET=WRITEABLE_CODE).
 User Action: None if you know that the image sections might be written. If the image
sections are not written to, use the /INTERPRET=NOCODE qualifier to force VEST to
translate rather than interpret code in writeable image sections.

 RWTRANS, Code in writeable image section is being translated
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered code in a writeable image section, which it will
translate (/INTERPRET=NOCODE).
 User Action: To force VEST to interpret rather than translate such code, use the
/INTERPRET=WRITEABLE_CODE qualifier.

 RWTRANSDEF, Code in writeable image section is being translated by default-use
/INTERPRET to override

 Explanation: VEST found code in a writeable image section. By default, VEST translates
such code. This is a WARNING message.
 User Action: Determine whether the code should be interpreted or translated. To force
code in writeable image sections to be interpreted at run time, retranslate the image with

92

the qualifier /INTERPRET=WRITEABLE_CODE. If you want VEST to translate code in
writeable image sections, retranslate the image with the qualifier
/INTERPRET=NO_CODE.

 SHAREABLE, Input is a sharable image-writing IIF file 'filename'
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: This message specifies the name of the .IIF file VEST created for a
shareable image.
 User Action: Make the file 'filename' available to VEST whenever it translates an image
that refers to the version of the shareable image just translated.

 STKMISMATCH, Stack pointer adjustments don't match on all incoming paths-may indicate
source bug

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST analysis indicates that the stack may be unbalanced at the specified
location. The stack is unbalanced if different paths to the same code incur a different
incremental change to the stack. One or more of the paths may never actually occur at
run time. However, the imbalance may indicate source code problems.
 User Action: If you believe the stack imbalance may indicate a problem in the source
code, make a flowgraph of the affected part of the image. The flowgraph may help you
isolate the problem. Otherwise you can ignore this message.

 STKUNAL, Stack pointer is not longword aligned after changing by 'number' bytes-accessing
stack will be slow

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has detected a block of code that changes the stack from longword
aligned to unaligned. This causes performance degradation on OpenVMS VAX systems,
and will cause severe performance degradation of translated code.
 User Action: Compaq recommends that the user rewrite the original OpenVMS VAX
program to keep the stack longword aligned, then retranslate.

 SUSPCASELIMIT, CASE instruction has a non-zero bound-may need to use HIF: 'address'
caselimit 'limit'

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has detected a CASE instruction that may not be a real CASE
instruction.
 User Action: Make an .HIF file entry for the image being translated at 'address' with the
caselimit set to 'limit'.

 SYNTAX, Syntax error in file 'filename': column 'column' in record 'record_text'
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST detected a syntax error at the file location identified in the message.
Most likely, a hand edit to the file introduced a format error.
 User Action: Identify the error in the information file indicated and correct it.

 TRACEBACKON, /NOTRACEBACK was overridden because image was linked /DEBUG-add
/NODEBUG to force /NOTRACEBACK

 Facility: VEST, VAX Environment Software Translator utility

93

 Explanation: If an image includes full debugging information in the debug symbol table
(DST), you must include both the /NOTRACEBACK and the /NODEBUG qualifier in the
VEST command line to create a translated image that omits debugging and traceback
information. This message occurs if the VEST command line includes the
/NOTRACEBACK qualifier but does not include the /NODEBUG qualifier.
 User Action: Retranslate the image specifying both /NOTRACEBACK and /NODEBUG in
the VEST command line if you want the translated image to omit traceback and
debugging information.

 TRANSERROR, Translation unsuccessful-no output image created
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered one or more ERROR level error messages. VEST did
not create a translated image. This message is the status code returned to DCL when
VEST completes its run.
 User Action: Review the ERROR level messages VEST issued to identify the problem.

 TRANSFATAL, Translation was impossible
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered one or more FATAL level error messages. VEST did not
create a translated image. This message is the status code returned to DCL when VEST
completes its run.
 User Action: Review the FATAL level messages VEST issued to identify the problem.

 TRANSOK, Translation completed successfully
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST successfully translated the image and issued INFO level error
messages only. This message is the status code returned to DCL when VEST completes
its run.
 User Action: None.

 TRANSWARN, Translation completed with warnings- review them before using the output image
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has issued at least one WARNING level error message. A
WARNING level message indicates that the translated image may have an error, possibly
due to a problem in the original source code. This message is the status code returned to
DCL when VEST completes its run.
 User Action: Examine the WARNING level messages VEST has issued before using the
translated image.

 UNDSYM, Syntax error in file 'filename': undefined symbol 'symbol'
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: A file offset has been expressed as a symbol, but the symbol is undefined.
 User Action: Either edit the file to define the symbol before using it or use an absolute
offset.

 UNSUPABSREF, Reference to unsupported absolute address 'address' ('space' + 'offset')
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: The image references an absolute address outside the supported range.
The value 'space' is either P0_SPACE, P1_SPACE, or S0_SPACE, each of which

94

represents a region of memory that an image cannot reference. In some cases, 'address'
could be an OpenVMS VAX system service that is unsupported the OpenVMS Alpha
operating system.
 User Action: If possible, rewrite the program to avoid this unsupported reference.

 VARCASELIMIT, CASE instruction has a variable limit operand- will be interpreted
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered a VAX CASE instruction with an unknown table
size. The instruction is almost surely not a real VAX instruction. If 'location' is executed at
run time, VAX code, including the CASE instruction and its target, will be interpreted.
 User Action: If the instruction is not a real instruction, use an .HIF 'location' dataentry
property to direct VEST not to parse the instruction.
 If the instruction was encountered in the second VEST pass of identifying code, an
alternative action is to specify /OPTIMIZE=NOSCAN to bypass the second pass.

 VAXDFLOAT, VAX D_floating opcode 'opcode'-will be emulated (D56) or implemented via
G_floating (D53)

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered a VAX D_floating instruction. D_floating is
supported in one of two ways: by means of the G_floating hardware
/FLOAT=D53_FLOAT or by means of software emulation (/FLOAT=D56_FLOAT). D53 is
fast but loses 3 bits of precision. D56 is slightly slow but gives exact VAX results. Both
are format compatible with existing VAX data structures and data files.
 User Action: If this message occurs, Compaq recommends that you switch the original
OpenVMS VAX program to use the preferred G_floating format, then retranslate. This is
usually a matter of recompiling with /G_FLOAT specified. If changing the original
OpenVMS VAX program to G_floating is not an option, then the user should choose
between D53 and D56.
 If the instruction is not a real instruction, use an .HIF property ('location' dataentry)
property to direct VEST not to parse the instruction.

 VAXHFLOAT, VAX H_floating opcode 'opcode'-will be emulated
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered a VAX H_floating instruction. H_floating is
supported only by means of software emulation, just as on VAX 3000-, 4000-, and 6000-
series machines. This is slightly slow but gives exact VAX results. It is format compatible
with existing VAX data structures and data files.
 User Action: If this message occurs, Compaq recommends that the user rewrite the
original OpenVMS VAX program to use the preferred G_floating format, then retranslate.
If changing the original OpenVMS VAX program to G_floating is not an option, then no
user action is needed. If this message does not occur, the user need not be concerned
with H_floating issues.
 If the instruction is not a real instruction, use an .HIF property ('location' dataentry) to
direct VEST away from parsing the instruction.

 VAXPACKED, VAX packed decimal string opcode 'opcode'-will be emulated
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered a VAX packed- decimal instruction. Packed decimal
is supported only via software emulation, just as on VAX 3000-, 4000-, and 6000-series

95

machines. This is slightly slow but gives exact OpenVMS VAX results. It is format
compatible with existing VAX data structures and data files.
 User Action: If this message occurs, Compaq recommends that the user rewrite the
original OpenVMS VAX program to use binary variables wherever possible, then
retranslate. In VAX COBOL, this means declaring variables COMPUTATIONAL instead
of DISPLAY or COMPUTATIONAL-3, and recompiling with the
/INSTRUCTION_SET=NODECIMAL switch. If changing the original OpenVMS VAX
program to use binary is not an option, then no user action is needed. If this message
does not occur, the user need not be concerned with packed decimal issues.
 If the instruction is not a real instruction, use an .HIF property ('location' dataentry) to
direct VEST away from parsing the instruction.

 VECTOROPC, Vector instruction opcode 'opcode'-will be interpreted and will fault if executed
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST has encountered a OpenVMS VAX vector instruction. Translation
analysis continues, but no output image is written.
 User Action: Vector system services are not supported at run time, so translating
vectorized programs could only result in programs that do not execute. Instead, translate
an existing nonvectorized form of the image, or recompile the program without specifying
vectorization.
 If the instruction is not a real instruction, use an .HIF property ('location' dataentry) to
direct VEST away from parsing the instruction.

 WRITECF0, Routine writes the condition handler address in its call frame
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered code that writes to the VAX call frame. The equivalent
translated code will depend on the emulated OpenVMS VAX environment at run time.
 User Action: None.

 WRITECF1, Routine writes the mask/PSW longword in its call frame
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered code that writes to the VAX call frame. The equivalent
translated code will depend on the emulated OpenVMS VAX environment at run time.
 User Action: None.

 WRITECF2, Routine writes the saved AP in its call frame
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered code that writes to the VAX call frame. The equivalent
translated code will depend on the emulated OpenVMS VAX environment at run time.
 User Action: None.

 WRITECF3, Routine writes the saved FP in its call frame
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered code that writes to the VAX call frame. The equivalent
translated code will depend on the emulated OpenVMS VAX environment at run time.
 User Action: None.

 WRITECF4, Routine writes the return PC in its call frame

96

 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered code that writes to the saved PC in the VAX call frame.
The equivalent translated code will depend on the emulated OpenVMS VAX environment
at run time. In this case, the code may be writing a VAX address into the return PC.
VEST must generate code to map the VAX address back to the equivalent Alpha AXP
address.
 User Action: None.

 WRITEERROR, Error writing file 'filename'
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: While VEST was writing to a file, it encountered a write failure of some kind,
for example, the disk became full or the disk quota was exceeded.
 User Action: Check to determine the condition that caused the write failure. Fix the
problem, if possible, and retranslate the image.

 WRITEJSBRET, JSB routine writes the return PC on the stack
 Facility: VEST, VAX Environment Software Translator utility
 Explanation: VEST encountered code that writes to the VAX call frame. The equivalent
translated code will depend on the emulated OpenVMS VAX environment at run time. In
this case, the code may be writing a VAX address into the return PC. VEST must
generate code to map the VAX address back to the equivalent Alpha AXP address.
 User Action: None.

B.2.2 DSTGRAPH Messages
DSTCLSFAIL, Cannot close output file 'file'

 Facility: DSTGRAPH, DSTgraph command
 Explanation: DSTGRAPH was unable to close the output file.
 User Action: Submit a Software Performance Report (SPR) describing the
circumstances.

 DSTCRTFAIL, Cannot create output file 'file'
 Facility: DSTGRAPH, DSTgraph command
 Explanation: DSTGRAPH was unable to open the output file.
 User Action: Check to determine why DSTGRAPH could not open the file. (For example,
the /OUTPUT qualifier specified a directory to which you do not have write access.)
Reenter the DSTGRAPH command line specifying an output file that DSTGRAPH can
open.

 DSTINTERR, Internal Dstgraph error - submit SPR
 Facility: DSTGRAPH, DSTgraph command
 Explanation: DSTGRAPH has encountered a fatal internal error.
 User Action: Submit a Software Performance Report (SPR) describing the
circumstances.

 DSTWRTFAIL, Cannot write to output file 'file'
 Facility: DSTGRAPH, DSTgraph command

97

 Explanation: While DSTGRAPH was writing to the output file, it encountered a write
failure of some kind; for example, the disk became full or the disk quota was exceeded.

 User Action: Check to determine the condition that caused the write failure. Fix the
problem, if possible, and reenter the command.

 INVDG, Dstgraph file 'file' is invalid or corrupted
 Facility: DSTGRAPH, DSTgraph command
 Explanation: The specified file either does not contain DSTGRAPH information or the
DSTGRAPH file is corrupted.
 User Action: Either specify a valid DSTGRAPH file or rerun VEST to create a new
DSTGRAPH file.

 INVSCALE, Invalid scale factor
 Facility: DSTGRAPH, DSTgraph command
 Explanation: The /SCALE_FACTOR qualifier specified an invalid number. The scale
must be a positive decimal number.
 User Action: Reenter the DSTGRAPH command and specify a valid scale factor.

 INVWIDTH, Invalid width
 Facility: DSTGRAPH, DSTgraph command
 Explanation: The /WIDTH qualifier specified an invalid number. The number specified
must be an integer that is a power of two and that represents a number of bytes.
 User Action: Reenter the DSTGRAPH command and specify a valid integer.

 NODG, Dstgraph file 'file' not found
 Facility: DSTGRAPH, DSTgraph command
 Explanation: DSTGRAPH could not open the file specified in the command line.
 User Action: Reenter the command line with a valid file specification.

B.2.3 FLOWGRAPH Messages
CLSFAIL, Cannot close output file 'file'

 Facility: FLOWGRAPH, Flowgraph command
 Explanation: FLOWGRAPH was unable to close the output file.
 User Action: Submit a Software Performance Report (SPR) describing the
circumstances.

 CRTFAIL, Cannot create output file 'file'
 Facility: FLOWGRAPH, Flowgraph command
 Explanation: FLOWGRAPH was unable to open the output file.
 User Action: Check to determine why VEST could not open the file. (For example, the
/OUTPUT qualifier specified a directory to which you do not have write access.) Reenter
the VEST command line specifying an output file that FLOWGRAPH can open.

 INTERR, Internal Flowgraph error - submit SPR
 Facility: FLOWGRAPH, Flowgraph command
 Explanation: FLOWGRAPH has encountered a fatal internal error.
 User Action: Submit a Software Performance Report (SPR) describing the
circumstances.

 INVFG, Flowgraph file 'file' is invalid or corrupted

98

 Facility: FLOWGRAPH, Flowgraph command
 Explanation: The specified file either does not contain a flowgraph or the flowgraph file is
corrupted.
 User Action: Either specify a valid flowgraph file or rerun VEST to create a new
flowgraph file.

 INVSCALE, Invalid scale factor
 Facility: FLOWGRAPH, Flowgraph command
 Explanation: The /SCALE_FACTOR qualifier specified an invalid number. The scale
must be a positive decimal number.
 User Action: Reenter the FLOWGRAPH command and specify a valid scale factor.

 NOADDR, Cannot find starting address
 Facility: FLOWGRAPH, Flowgraph command
 Explanation: The /STARTING_ADDRESS qualifier specified an address that
FLOWGRAPH could not find in the .GRAPH file.
 User Action: Check the .GRAPH file to determine a correct starting address to specify in
the /STARTING_ADDRESS qualifier.

 NOFG, Flowgraph file 'file' not found
 Facility: FLOWGRAPH, Flowgraph command
 Explanation: FLOWGRAPH could not open the flowgraph file specified in the command
line.
 User Action: Reenter the command line with a valid file specification.

 WRTFAIL, Cannot write to output file 'file'
 Facility: FLOWGRAPH, Flowgraph command
 Explanation: While FLOWGRAPH was writing to the output file, it encountered a write
failure of some kind; for example, the disk became full or the disk quota was exceeded.
 User Action: Check to determine the condition that caused the write failure. Fix the
problem, if possible, and reenter the command.

99

C. Debugging Translations
This appendix includes tables that describe translation problems and suggest solutions for
debugging them. The tables provide information about the following kinds of problems:
For information about the following type of problem See
Image runs slowly Table C-1
Image executes improperly or returns incorrect results Table C-2
Image crashes or exits with fatal messages or access violations Table C-3
Exceptions never terminate Table C-4

To prepare for debugging, gather resources to help you as follows:

Have the following documentation available for reference:

Migrating to an OpenVMS Alpha System: Planning for Migration −

−

−

−

−

−

Migrating to an OpenVMS Alpha System: Recompiling and Relinking Applications
Have available all VEST output files for the application being translated.
If you're not familiar with the application being translated, find someone who is.
Know the answer to the following questions:

Did the image execute correctly on OpenVMS VAX V5.4-3? If the answer is no, the
image is not translatable.

How were the images compiled and linked?

What programming languages were used?

What were the VEST messages reported during translation?
Use the VEST qualifier /WARNINGS=VERBOSE to get as much information from VEST
as possible.

100

D. Translation and Performance Restrictions
This appendix discusses the following topics:
Topic See
How to identify images with translation or performance restrictions Section D.1
Images that cannot be translated Section D.2
Images that translate with WARNING-level error messages Section D.3
Images with compatibility problems not detectable during translation Section D.4
Images with code that adversely affects translated image performance Section D.5

D.1 Identifying Restrictions and Performance Issues
You can use the VAX Environment Software Translator (VEST) utility itself to identify most
translation and performance restrictions in OpenVMS VAX images. During the VEST code
analysis phase, it issues messages that flag and describe problematic code it encounters. If any
message severity is either FATAL or ERROR, VEST does not create a translated image. If the
most severe message level is WARNING, VEST creates a translated image that can run properly
on an OpenVMS Alpha system. However, Compaq recommends that you examine each
WARNING message carefully.
This appendix identifies specific VEST messages that correspond to restrictions and performance
issues. See the message explanations in Appendix B for descriptions of the coding problems
identified.

D.2 Untranslatable Images
Images described in Table D-1 incur FATAL or ERROR messages.

D.3 Images Translatable with Warnings
Images described in Table D-2 incur WARNING messages. Compaq recommends that you
examine each WARNING message carefully. You may determine that the code flagged is not
likely to interfere with the image running translated. In other cases, that may not be true and you
may need to take steps to ensure that the translated version of the image executes properly on
an OpenVMS Alpha system. You may need to make changes to the source code, if available, and
then recompile and relink the image before translating. Or you may need to relink the image with
different options. Or you may be able to eliminate the warning by using specific VEST switches
when you translate the image.
Note that VEST can also issue WARNING messages for reasons other than those identified in
Table D-2.

D.4 Images with Undetectable Translation Problems
The image features described in Table D-3 will not incur error messages but represent
compatibility problems not detectable during translation.
Two of the three features relate to the increase in page size from OpenVMS VAX to OpenVMS
Alpha systems. Page size can affect the amount of virtual memory allocated by memory
management routines and system services. It is also the basis on which protection is assigned to
code and data in memory. The OpenVMS VAX operating system allocates memory in multiples of
512 bytes, whereas OpenVMS Alpha pages range in size from 8KB to 64KB, depending on the
specific hardware platform.

101

When VEST translates an image, it integrates multiple small VAX pages into a single 64KB Alpha
AXP page. The 64KB page assumes the most permissive protection of all the VAX pages
combined within it. In most cases, combining multiple VAX pages within a single Alpha AXP page
does not affect the translated image's function. However, if your code has built-in dependencies
on 512-byte granularity, the translated image may not run properly. For example, suppose your
image depends on trapping attempts to write to a read- only section that has been combined into
a read-write page in the translated image. When the translated image runs on an OpenVMS
Alpha system, the trap will not occur. See the documentation noted in Table D-3 for information
about handling such page dependencies.

D.5 Translatable Images with Performance Issues
Images described in Table D-4 are translatable but include code that affects translated image
performance (for example, requires interpretation at run time). In addition to the pointers to
performance problems that VEST offers, you can use TIE run-time statistics to discover exactly
how the image uses resources that slow performance.

102

E. VAX Instructions
This appendix lists all the VAX instructions and describes how VEST or the Translated Image
Environment (TIE) handles each one at translation or run time. The possible actions are as
follows:
Translated by VEST

 VEST translates the instruction into equivalent Alpha AXP code.
Executed in translated TIE complex instruction routine
Executed in native TIE complex instruction routine

 Complex VAX instructions are too large and complex for VEST to generate in-line.
Instead, the TIE either calls the native image TIE$SHARE, which executes a native
routine that emulates the complex instruction, or calls the translated image
TIE$EMULAT_TV, which runs a translated routine to execute the instruction. The speed
of complex instruction routines depends on how complicated the instruction actually is
and how much data is being operated upon.

Privileged. VEST generates a call to the interpreter. Faults if executed.
 VEST does not translate privileged instructions. If the instruction occurs in code that
executes at run time, a fault is generated.

Vector. VEST generates a call to the interpreter. Faults if executed.
VEST does not translate vector instructions. If the instruction occurs in code that executes at run
time, a fault is generated.
The following table lists all the VAX instructions in alphabetical order and the associated action
for each one:

Instruction Action
ACBB Translated by VEST
ACBD Executed in translated TIE complex instruction routine
ACBF Executed in translated TIE complex instruction routine
ACBG Executed in translated TIE complex instruction routine
ACBH Executed in translated TIE complex instruction routine
ACBL Translated by VEST
ACBW Translated by VEST
ADAWI Translated by VEST
ADDB2 Translated by VEST
ADDB3 Translated by VEST
ADDD2 Executed in native TIE complex instruction routine.
ADDD3 Executed in native TIE complex instruction routine.
ADDF2 Executed in translated TIE complex instruction routine
ADDF3 Executed in translated TIE complex instruction routine
ADDG2 Translated by VEST
ADDG3 Translated by VEST
ADDH2 Executed in native TIE complex instruction routine.

103

Instruction Action
ADDH3 Executed in native TIE complex instruction routine.
ADDL2 Translated by VEST
ADDL3 Translated by VEST
ADDP4 Executed in translated TIE complex instruction routine
ADDP6 Executed in translated TIE complex instruction routine
ADDW2 Translated by VEST
ADDW3 Translated by VEST
ADWC Translated by VEST
AOBLEQ Translated by VEST
AOBLSS Translated by VEST
ASHL Translated by VEST.
ASHP Executed in translated TIE complex instruction routine
ASHQ Translated by VEST.
BBC Translated by VEST.
BBCC Translated by VEST.
BBCCI Translated by VEST.
BBCS Translated by VEST.
BBS Translated by VEST.
BBSC Translated by VEST.
BBSS Translated by VEST.
BBSSI Translated by VEST.
BEQL Translated by VEST.
BGEQU Translated by VEST.
BGTR Translated by VEST.
BGTRU Translated by VEST.
BICB2 Translated by VEST.
BICB3 Translated by VEST.
BICL2 Translated by VEST.
BICL3 Translated by VEST.
BICPSW Translated by VEST.
BICW2 Translated by VEST.
BICW3 Translated by VEST.
BISB2 Translated by VEST.
BISB3 Translated by VEST.
BISL2 Translated by VEST.
BISL3 Translated by VEST.

104

Instruction Action
BISPSW Translated by VEST.
BISW2 Translated by VEST.
BISW3 Translated by VEST.
BITB Translated by VEST.
BITL Translated by VEST.
BITW Translated by VEST.
BLBC Translated by VEST.
BLBS Translated by VEST
BLEQ Translated by VEST
BLEQU Translated by VEST
BLSS Translated by VEST
BLSSU Translated by VEST
BNEQ Translated by VEST
BPT Translated by VEST
BRB Translated by VEST
BRW Translated by VEST
BSBB Translated by VEST
BSBW Translated by VEST
BUGL Privileged VEST generates a call to the interpreter. Faults if executed
BUGW Privileged VEST generates a call to the interpreter. Faults if executed
BVC Translated by VEST
BVS Translated by VEST
CALLG Translated by VEST
CALLS Translated by VEST
CASEB Translated by VEST
CASEL Translated by VEST
CASEW Translated by VEST
CHME Translated by VEST
CHMK Translated by VEST
CHMS Translated by VEST
CHMU Translated by VEST
CLRB Translated by VEST
CLRL Translated by VEST
CLRO Executed in translated TIE complex instruction routine
CLRQ Translated by VEST
CLRW Translated by VEST

105

Instruction Action
CMPB Translated by VEST
CMPC3 Executed in native TIE complex instruction routine
CMPC5 Executed in native TIE complex instruction routine
CMPD Executed in native TIE complex instruction routine
CMPF Executed in translated TIE complex instruction routine
CMPG Translated by VEST
CMPH Executed in native TIE complex instruction routine
CMPL Translated by VEST
CMPP3 Executed in translated TIE complex instruction routine
CMPP4 Executed in translated TIE complex instruction routine
CMPV Translated by VEST
CMPW Translated by VEST
CMPZV Translated by VEST
CRC Executed in translated TIE complex instruction routine
CVTBD Executed in native TIE complex instruction routine
CVTBF Executed in translated TIE complex instruction routine
CVTBG Translated by VEST
CVTBH Executed in native TIE complex instruction routine
CVTBL Translated by VEST
CVTBW Translated by VEST
CVTDB Executed in native TIE complex instruction routine
CVTDF Executed in native TIE complex instruction routine
CVTDH Executed in native TIE complex instruction routine
CVTDL Executed in native TIE complex instruction routine
CVTDW Executed in native TIE complex instruction routine
CVTFB Executed in translated TIE complex instruction routine
CVTFD Executed in native TIE complex instruction routine
CVTFG Executed in translated TIE complex instruction routine
CVTFH Executed in native TIE complex instruction routine
CVTFL Executed in translated TIE complex instruction routine
CVTFW Executed in translated TIE complex instruction routine
CVTGB Translated by VEST
CVTGF Translated by VEST
CVTGH Executed in native TIE complex instruction routine
CVTGL Translated by VEST
CVTGW Translated by VEST

106

Instruction Action
CVTHB Executed in native TIE complex instruction routine
CVTHD Executed in native TIE complex instruction routine
CVTHF Executed in native TIE complex instruction routine
CVTHG Executed in native TIE complex instruction routine
CVTHL Executed in native TIE complex instruction routine
CVTHW Executed in native TIE complex instruction routine
CVTLB Translated by VEST
CVTLD Executed in native TIE complex instruction routine
CVTLF Executed in translated TIE complex instruction routine
CVTLG Translated by VEST
CVTLH Executed in native TIE complex instruction routine
CVTLP Executed in translated TIE complex instruction routine
CVTLW Translated by VEST
CVTPL Executed in translated TIE complex instruction routine
CVTPS Executed in translated TIE complex instruction routine
CVTPT Executed in translated TIE complex instruction routine
CVTRDL Executed in native TIE complex instruction routine
CVTRFL Executed in translated TIE complex instruction routine
CVTRGL Translated by VEST
CVTRHL Executed in native TIE complex instruction routine
CVTSP Executed in translated TIE complex instruction routine
CVTTP Executed in translated TIE complex instruction routine
CVTWB Translated by VEST
CVTWD Executed in native TIE complex instruction routine
CVTWF Executed in translated TIE complex instruction routine
CVTWG Translated by VEST
CVTWH Executed in native TIE complex instruction routine
CVTWL Translated by VEST
DECB Translated by VEST
DECL Translated by VEST
DECW Translated by VEST
DIVB2 Executed in native TIE complex instruction routine
DIVB3 Executed in native TIE complex instruction routine
DIVD2 Executed in native TIE complex instruction routine
DIVD3 Executed in native TIE complex instruction routine
DIVF2 Executed in translated TIE complex instruction routine

107

Instruction Action
DIVF3 Executed in translated TIE complex instruction routine
DIVG2 Translated by VEST
DIVG3 Translated by VEST
DIVH2 Executed in native TIE complex instruction routine
DIVH3 Executed in native TIE complex instruction routine
DIVL2 Executed in native TIE complex instruction routine
DIVL3 Executed in native TIE complex instruction routine
DIVP Executed in translated TIE complex instruction routine
DIVW2 Executed in native TIE complex instruction routine
DIVW3 Executed in native TIE complex instruction routine
EDITPC Executed in translated TIE complex instruction routine
EDIV Executed in native TIE complex instruction routine
EMODD Executed in translated TIE complex instruction routine
EMODF Executed in translated TIE complex instruction routine
EMODG Executed in translated TIE complex instruction routine
EMODH Executed in translated TIE complex instruction routine
EMUL Translated by VEST
EXTV Translated by VEST
EXTZV Translated by VEST
FFC Translated by VEST
FFS Translated by VEST
HALT Privileged VEST generates a call to the interpreter. Faults if executed
INCB Translated by VEST
INCL Translated by VEST
INCW Translated by VEST
INDEX Translated by VEST
INSQHI Translated by VEST
INSQTI Translated by VEST
INSQUE Translated by VEST
INSV Translated by VEST
JMP Translated by VEST
JSB Translated by VEST
LDPCTX Privileged VEST generates a call to the interpreter. Faults if executed
LOCC Executed in native TIE complex instruction routine
MATCHC Executed in translated TIE complex instruction routine
MCOMB Translated by VEST

108

Instruction Action
MCOML Translated by VEST
MCOMW Translated by VEST
MFPR Privileged VEST generates a call to the interpreter. Faults if executed
MFVP Vector VEST generates a call to the interpreter. Faults if executed
MNEGB Translated by VEST
MNEGD Executed in native TIE complex instruction routine
MNEGF Executed in translated TIE complex instruction routine
MNEGG Translated by VEST
MNEGH Executed in native TIE complex instruction routine
MNEGL Translated by VEST
MNEGW Translated by VEST
MOVAB Translated by VEST
MOVAL Translated by VEST
MOVAO Executed in translated TIE complex instruction routine
MOVAQ Translated by VEST
MOVAW Translated by VEST
MOVB Translated by VEST
MOVC3 Executed in native TIE complex instruction routine
MOVC5 Executed in native TIE complex instruction routine
MOVD Executed in native TIE complex instruction routine
MOVF Executed in translated TIE complex instruction routine
MOVG Translated by VEST
MOVH Executed in native TIE complex instruction routine
MOVL Translated by VEST
MOVO Executed in translated TIE complex instruction routine
MOVP Executed in translated TIE complex instruction routine
MOVPSL Translated by VEST
MOVQ Translated by VEST
MOVTC Executed in translated TIE complex instruction routine
MOVTUC Executed in translated TIE complex instruction routine
MOVW Translated by VEST
MOVZBL Translated by VEST
MOVZBW Translated by VEST
MOVZWL Translated by VEST
MTPR Privileged VEST generates a call to the interpreter. Faults if executed
MULB2 Translated by VEST

109

Instruction Action
MULB3 Translated by VEST
MULD2 Executed in native TIE complex instruction routine
MULD3 Executed in native TIE complex instruction routine
MULF2 Executed in translated TIE complex instruction routine
MULF3 Executed in translated TIE complex instruction routine
MULG2 Translated by VEST
MULG3 Translated by VEST
MULH2 Executed in native TIE complex instruction routine
MULH3 Executed in native TIE complex instruction routine
MULL2 Translated by VEST
MULL3 Translated by VEST
MULP Executed in translated TIE complex instruction routine
MULW2 Translated by VEST
MULW3 Translated by VEST
NOP Translated by VEST
POLYD Executed in translated TIE complex instruction routine
POLYF Executed in translated TIE complex instruction routine
POLYG Executed in translated TIE complex instruction routine
POLYH Executed in translated TIE complex instruction routine
POPR Executed in native TIE complex instruction routine
PROBER Translated by VEST
PROBEW Translated by VEST
PUSHAB Translated by VEST
PUSHAL Translated by VEST
PUSHAO Executed in translated TIE complex instruction routine
PUSHAQ Translated by VEST
PUSHAW Translated by VEST
PUSHL Translated by VEST
PUSHR Executed in native TIE complex instruction routine
REI Executed in native TIE complex instruction routine
REMQHI Translated by VEST
REMQTI Translated by VEST
REMQUE Translated by VEST
RET Executed in native TIE complex instruction routine
ROTL Translated by VEST
RSB Translated by VEST

110

Instruction Action
SBWC Translated by VEST
SCANC Executed in native TIE complex instruction routine
SKPC Executed in native TIE complex instruction routine
SOBGEQ Translated by VEST
SOBGTR Translated by VEST
SPANC Executed in native TIE complex instruction routine
SUBB2 Translated by VEST
SUBB3 Translated by VEST
SUBD2 Executed in native TIE complex instruction routine

Executed in native TIE complex instruction routine
SUBF2 Executed in translated TIE complex instruction routine
SUBF3 Executed in translated TIE complex instruction routine

SUBD3

SUBG2 Translated by VEST
SUBG3 Translated by VEST
SUBH2 Executed in native TIE complex instruction routine
SUBH3 Executed in native TIE complex instruction routine
SUBL2 Translated by VEST
SUBL3 Translated by VEST
SUBP4 Executed in translated TIE complex instruction routine
SUBP6 Executed in translated TIE complex instruction routine
SUBW2 Translated by VEST
SUBW3 Translated by VEST
SVPCTX Privileged VEST generates a call to the interpreter. Faults if executed
TSTB
TSTD Executed in native TIE complex instruction routine
TSTF Executed in translated TIE complex instruction routine

Translated by VEST
TSTH

Translated by VEST

TSTG
Executed in native TIE complex instruction routine

TSTL Translated by VEST
TSTW Translated by VEST
VGATHL Vector VEST generates a call to the interpreter. Faults if executed
VGATHQ Vector VEST generates a call to the interpreter. Faults if executed
VLDL Vector VEST generates a call to the interpreter. Faults if executed
VLDQ Vector VEST generates a call to the interpreter. Faults if executed
VSADDD Vector VEST generates a call to the interpreter. Faults if executed
VSADDF Vector VEST generates a call to the interpreter. Faults if executed

111

Instruction Action
VSADDG
VSADDL Vector VEST generates a call to the interpreter. Faults if executed

Vector VEST generates a call to the interpreter. Faults if executed
VSSUBD Vector VEST generates a call to the interpreter. Faults if executed
VSSUBF Vector VEST generates a call to the interpreter. Faults if executed
VSSUBG
VSSUBL Vector VEST generates a call to the interpreter. Faults if executed

Vector VEST generates a call to the interpreter. Faults if executed
VVADDF Vector VEST generates a call to the interpreter. Faults if executed

Vector VEST generates a call to the interpreter. Faults if executed

VSMERGE

Vector VEST generates a call to the interpreter. Faults if executed

VVADDD

VVADDG Vector VEST generates a call to the interpreter. Faults if executed
VVADDL Vector VEST generates a call to the interpreter. Faults if executed
VVMERGE Vector VEST generates a call to the interpreter. Faults if executed

Vector VEST generates a call to the interpreter. Faults if executed
Vector VEST generates a call to the interpreter. Faults if executed
Vector VEST generates a call to the interpreter. Faults if executed
Vector VEST generates a call to the interpreter. Faults if executed
Translated by VEST
Translated by VEST
Translated by VEST
Translated by VEST
Translated by VEST
Translated by VEST

VVSUBD
VVSUBF
VVSUBG
VVSUBL
XORB2
XORB3
XORL2
XORL3
XORW2
XORW3

112

Examples
Example 2-1: Translating an Image

$ directory/brief 1

DHRYSTONE.EXE;1
Total of 1 file.

$ directory/brief
Directory VST_00:[VEST.TEST] 3

Total of 3 files.
$ type dhrystone_tv.lis 4

May 17 1993 13:43:44 with command line:
VEST DHRYSTONE

! Message summary by category: 5
!

! 2 INFO NONSTDCALLU - Non-standard call uses !AZ
!

! 1 INFO READING - Reading file !AZ
! 1 INFO NOHIF - HIF file !AZ not found

! 1 INFO PASS2 - Starting analysis pass 2
! 1 INFO ENDPASS2 - Ending analysis pass 2 -- beginning

Example 4-1: Audit Information for SIEVE.EXE
May 17 1993 20:55:13 with command line:
VEST/AUDIT SIEVE

! Message summary by category:
!

Directory VST_00:[VEST.TEST]

$ vest dhrystone 2

DHRYSTONE.EXE;1 DHRYSTONE_TV.EXE;1 DHRYSTONE_TV.LIS;1

VEST V1.1-25 built at Apr 19 1993 13:38:36 starting at

 Image "DHRYSTONE_SHR", "V1.0", 13-DEC-1989 10:17:07.95

! 2 messages in SOURCE_ANALYSIS category:

! 5 messages in VERBOSE category:

! 1 INFO PASS1 - Starting analysis pass 1

code generation and output

VEST V1.1-25 built at Apr 19 1993 13:38:36 starting at

 Image "SIEVE", "V1.0", 14-OCT-1991 14:20:19.13

! 5 messages in VERBOSE category:
! 1 INFO READING - Reading file !AZ
! 1 INFO NOHIF - HIF file !AZ not found
! 1 INFO PASS1 - Starting analysis pass 1
! 1 INFO PASS2 - Starting analysis pass 2
! 1 INFO ENDPASS2 - Ending analysis pass 2
 -- beginning code generation and output
<SUM> Image name Comp Tran Perf Languages
<SUM> ------------------------------------ ---- ---- ---- ----------------
<SUM> VST_00:[VEST.TEST]SIEVE.EXE; YES YES OK C

Example 4-2: Run-Time Statistics for SIEVE_TV.EXE
$ define tie$display_statistics true
$ run sieve_tv
Sieve of Eratosthenes
500 iterations
1899 primes found
time taken : 1 seconds
TIE Run-time Statistics:
 TIE Lookups: CALLx JSB JMP 1
 ==
 Went to VAX routines: 0 3 3

 Went to Native routines: 71 N.A. N.A.
 --

 Entries in the lookup cache were found 57% of the time.
 There were no calls to the interpreter for VAX code located outside
2

 Stayed in Translated routines: 48 19 0

 Total: 119 22 3

 translated images.

113

 There were no Fault-On-Execute conditions converted to Lookups.
3
 The VAX-Instruction Atomicity Controller was never used. 4
 There were 187 TIE-based ''complex instructions'' executed: 5
Instruction REI (02) : 3
Instruction RET (04) : 101
Instruction MOVC3 (28) : 24
Instruction SPANC (2B) : 3
Instruction MOVC5 (2C) : 22
Instruction LOCC (3A) : 29
Instruction EDIV (7B) : 5
 There were 6 VAX instructions interpreted. 6
 CPU time used: 0 00:00:01.26 7
 Autojacketing Statistics: 8
 There were 2 calls from native to translated routines.
 There were 71 calls from translated to native routines.
 5 translated images were used: 9
SIEVE_TV created by VEST V1.1-25 of Apr 19 1993 13:38:36
VAXCRTL_D56_TV created by VEST V1.1-25 of Apr 19 1993 13:38:36
MTHRTL_D53_TV created by VEST V1.1-25 of Apr 19 1993 13:38:36
LIBRTL_D56_TV created by VEST V1.1-25 of Apr 19 1993 13:38:36
 10 native images were used:
TIE$SHARE
DECC$SHR
DPML$SHR
LIBRTL
LIBOTS
SYS$BASE_IMAGE
SYS$PUBLIC_VECTORS
TIE$MESSAGES
DECC$MSG
SHRIMGMSG
$ deassign tie$display_statistics

 Example 4-3: Requesting and Processing VEST Flowgraphs
$ vest/flowgraph/view=all/noexe sieve
$ flowgraph sieve
GRAPH 1: 4 nodes 7 arcs ACYCLIC 1 page written.
GRAPH 2: 0 nodes 0 arcs ACYCLIC 0 pages written.
GRAPH 3: 27 nodes 32 arcs 2 pages written.
$ print/queu=ps_queue/param=data=postscript sieve.ps

Example 5-1: Excerpt from a Run-Time Library .IIF File
; IIF Generated by VEST (T1.0-24 Jun 23 1992 13:10:29)
 Image "LIBRTL", "V05-001"
+00000430 usv_offset +0290
+00000430 sets "R0 M.sp"
+00000430 uses "R1 AP FP SP PC RET M.sp M.unk"
+00000430 callentry "LIB$INT_OVER"
+00000438 usv_offset +02A0
+00000438 sets ""
+00000438 uses "R0 R1 AP FP SP PC RET M.pc M.sp M.unk"

+00000420 usv_offset +0270
.

<SUM> Image name Comp Tran Perf
Languages
<SUM> ----------------------------.....------------- ---- ---- ---- -----------
<SUM> VST_00:[GROUP.TEST]FLOWGRAPH.EXE;1 YES YES OK PASCAL

+00000438 callentry "LIB$LOCC"

Example A-1: Summary Format

Example C-1: Forcing Exception PC Correlation

Code sample showing PC correlation

114

 .sbttl pli$nonloc_goto - non-local goto processing
;
; check for proper frame
;
20$: cmpl r1,stk_l_fp(r0) ; is the next frame the last?
 beql 40$; if eql then yes
 movab w^norm_signal,-(sp) ;address normal signal ret addr
 cmpl stk_l_pc(r0),(sp)+ ;does this frame point there?
 beql 25$;if eql, yes, special case
 movab w^error_signal,-(sp) ;address error signal ret addr
 cmpl stk_l_pc(r0),(sp)+ ;does this frame point there?
 beql 25$;if eql, yes, special case
 movab b^canned_return,stk_l_pc(r0); force return in this module
 brb 27$;cont
25$: movab b^unwind_signal,stk_l_pc(r0); force return for signal frame
27$: movl stk_l_fp(r0),r0 ; link to next frame on stack
 probew #3,#stk_l_pc,(r0) ; frame accessible?
 beql fatal_error ; if eql then insuff frames
 brb 20$; continue search
 .
 .
 .
unwind_signal:
 nop ;different than canned_return;
canned_return:
 tstl stk_l_cnd_hnd(fp) ; frame have condition handler?
 beql 100$; if eql then no
Code sample from PLI Conditional Handler Dispatcher
;
; call with r1 as establisher's frame pointer
;
30$: clrl (fp) ; disable fatal exception vector
 .
 .
 .
 callg (ap),@cnd_l_addr(r3) ; call handler with our arg list
norm_signal: ; condition handler stack key
 movab w^fatal_exception,(fp) ; setup a condition handler
 .
 .
 .
 rsb ; and do so

115

Figures
Figure 1-1: VEST Processing

Image.EXE

VEST creates a
translated image
in two phases:

1.Find and
analyze code;
read related .IIF
and .HIF files.

2.Create
translated image
that includes
Alpha code and
original image.

image_TV.EXE

image_TV.LIS

image.GRAPH

image.IIF

image.SIF

image.STI

OpenVMS VAX image

VEST Command Line $VEST[qualifiers…] image.EXE

VEST Processing

Translated Image

List File

Optional Output
Files Flowgraph File

Image Information File

Symbol Information File

Symbol Table Information File

116

Figure 1-2: Translated Image Environment

Translated Image
Environment

TIE$SHARE

Jacketing
Interface

Exception
Handling

System Service
Emulation

VAX State
Manager

VAX
Interpreter

Complex
Instructions

(TIE$_EMULAT_TV)

Jacketing
Interface

Exception
Handling

System Service
Callback

OpenVMS AXP

Native
Images

Translated
Main and Shareable

Images

117

Figure 2-1: SIEVE.EXE Dependency Graph
 Image Dependency Graph for AXP00[GROUP.TEST]SIEVE.EXE;

SIEVE

VAXCTRL

MTHRTL

LIBRTL

.

.

.

118

Figure 4-1: The SIEVE Call Flowgraph

2400 CE
SIEVE\main\105 [C]
mask=00FC

VAXCRTL:0 _JE
VAXCRTL:C$MAIN

VAXCRTL:104_CE
VAXCRTL:PRINTF

VAXCRTL:24C_CE
VAXCRTL:TIME

.

.

.

CALL graph: SIEVE V1.0

119

Figure 4-2: DHRYSTONE Flowgraph at 0.33 Scale
Figure 4-3: Example Subroutine in DHRYSTONE Flowgraph at
1.0 Scale
Figure 4-4: Error Graph for DHRYSTONE Basic Block 4CD0_CE
Figure 4-5: DSTGRAPH File Showing Unaligned Data

120

Figure 6-1: Role of Jacket Image

MYMAIN_TV.EXE MYMAIN.EXE

MYMATH.EXE

MYJACKET_TV.EX

MYMATH.EXE
The native shareable image

MYJACKET_TV.EXE
The translated jacket image

MYMAIN_TV.EXE
A translated main program

MYMAIN.EXE
A native main program

1

2

3

4

The jacket image MYJACKET_TV intercepts all calls from translated images to the
shareable image MYMATH_TV and either services the calls itself or forwards them
to MYMATH. Native main image calls go directly to MYMATH, except for calls
to MYJACKET_TV that have no equivalent in the native version of the shareable
image.

1

2

3
4

121

Tables
Table 2-1: VEST Command Qualifiers
Category Qualifiers
List file and message displays /LIST

/SHOW
/WARNINGS

Output files /EXECUTABLE
/FLOWGRAPH
/IIF
/LIST
/SIF

Performance considerations /FEEDBACK
/FLOAT
/INTERPRET
/OPTIMIZE
/PRESERVE

Auditing and flowgraph /AUDIT
/DST
/FLOWGRAPH
/RESTRICT
/VIEW

Shareable libraries /IIF
/JACKET
/SIF

Information files /FEEDBACK
/IIF

/SIF
/INCLUDE_DIRECTORY

122

Table 2-2: VEST Output Files
Default name Qualifier(s) Description
image_TV.EXE /EXECUTABLE[=filespec] The translated image. VEST truncates

any input image file name that exceeds
36 characters in order to append "_TV"
and not exceed the 39-character limit on
file names.

Default: /EXECUTABLE

image_TV.LIS /LIST[= filespec]/SHOW The list file. The /SHOW qualifier
determines what the list file contains. By
default it includes the VEST messages. Default: /LIST

/SHOW=MESSAGES
 image .IIF /IIF[= filespec]

Default: /IIF for a shareable
image; ignored for a main
image

] The image information file (.IIF file),
which describes a shareable image's
entry points. VEST ignores the /IIF
qualifier when translating an executable
image. See for details. Section 5.2

image .GRAPH /FLOWGRAPH
/VIEW=ERROR

The flowgraph file, which contains data
about the input image's program flow.
The /VIEW qualifier determines the kind
of data included in the file. The
FLOWGRAPH command uses this data
to create PostScript formatted diagrams
of the image. See for
details.

Default: /NOFLOWGRAPH

Section 4.3

image .SIF /SIF[=filespec] The symbol information file (.SIF file),
which describes the contents of the
global symbol table (GST) and symbol
vector in a translated shareable image.
See for details.

Default: /NOSIF

Section 6.4
image .STI /DST The symbol table information file (.STI)

file, which describes the format of all
memory references in the debugger
symbol table (DST) of the input image.
See .

Default: /NODST

Section 4.4

123

Table 4-1: VEST Performance Qualifiers
Qualifier Description
/FEEDBACK Translate an image with /FEEDBACK enabled so that the TIE can

record any entry points it finds when it interprets code. The TIE writes
the information to an .HIF file. When you retranslate the image, VEST
uses the .HIF file to locate and translate the code that was previously
interpreted. (See .) Section 4.2.3

/FLOAT Use this qualifier to choose between D53 and D56 floating point
operations in the translated image. D53 is faster because it uses
hardware emulation; D56 is slower because it uses software
emulation.

 /INTERPRET Use this qualifier to control how much code to interpret at run time: all,
none, or code in writeable image sections.

 /OPTIMIZE Use this qualifier to choose from a variety of code optimizations
pertaining to data alignment, pass 2 of a VEST analysis, and
instruction scheduling. In general, the more optimizations you enable,
the better the performance.

/PRESERVE Use this qualifier to select VAX characteristics you need to preserve
exactly. These characteristics include condition codes, floating point
exceptions, instruction atomicity, integer exceptions, memory
atomicity, and read/write ordering. The more you choose to preserve,
the slower the translated software runs.

124

Table 5-1: Interface Properties
Property Name Property Value Description
absolute_ok Specifies OpenVMS Alpha support for the

entry point; present only in P1_SPACE.IIF
and S0_SPACE.IIF files; is always attached to
the same offset as a callentry, jsbentry, or
branchentry.

astback p n

branchentry Defines a branchentry; indicates the start of a
basic block of code.

p n Specifies the parameter of a called routine
that is itself a callentry; is always attached to
the same offset as a callentry, jsbentry, or
branchentry. n is a decimal number.

None

Specifies the parameter of a called routine
that is itself a callentry called as an AST
routine (p2, for example); is always attached
to the same offset as a callentry, jsbentry, or
branchentry. n is a decimal number.

None

callback

callentry [symbolic_name] Defines a callentry and an optional symbolic
name for the image offset.

 caselimit 2 + integer Specifies maximum number of cases, where
integer is a hexadecimal number.

dataentry 2 [+byte_count] Defines the image region as data, not code; if
specified, +byte_count determines the
number of bytes from the associated offset to
be considered data. If the image region
actually is code, this property forces VEST to
interpret it. byte_count is a hexadecimal
number.

 dataentry [symbolic_name]

delta_sp Specifies a change in the stack pointer by the
routine; is always attached to the same offset
as a callentry, jsbentry, or branchentry.

1 p n

external None Specifies an entry point to be exported.
flagif message_id

Within a .IIF file only, defines a dataentry, or
data cell, and an optional symbolic name for
the image offset.

+/-integer

dv_set_to Upon return from the routine at the specified
address, the VAX decimal overflow trap
enable bit (DV) in the processor status word
(PSW) has been set to the value of the routine
parameter p n.

2

Causes VEST to issue a message of the type
specified if a (FLAGAST, for call is made to an
entry with one of these properties. example)

125

Property Name Property Value Description
fu_set_to 1 Upon return from the routine at the specified

address, the VAX floating underflow trap
enable bit (FU) in the PSW has been set to
the value of routine parameter p n.

p n

iv_set_to 1 p n Upon return from the routine at the specified
address, the VAX integer overflow trap enable
bit (IV) in the PSW has been set to the value
of the routine parameter p n .

jmpback p n Specifies the parameter of a called routine
that is a branchentry; is always attached to
the same basic block as the call or jsb
placeholder. Note that the code jumped back
to must execute in the same context as the
calling basic block. Use the unkctxt_jmpback
property if the code jumped to modifies any
registers, thus changing the context.

jsbentry [symbolic_name
]

Defines a JSB entry point and an optional
name for the image offset.

noreturn None

 sets

Specifies a routine that does not return; is
always attached to the same offset as a
callentry or jsbentry

list of resources
in the form "R0
R1..."

Specifies resources set by routine

3

+sets list of resources
in the form "R0
R1..."

Adds resources to those determined by VEST

3

 -sets list of resources
in the form "R0
R1..."

Removes resources from those determined by
VEST.

3

symbol symbolic_name Defines a symbolic name for the image offset.
unkctxt_jmpback p n Specifies the parameter of a called routine

that is a branchentry. To be used when the
called routine modifies any registers, thus
changing the context. In contrast to the
jmpback property, VEST makes no
assumptions about the CALL frame or register
contents when the called routine jumps to p n
and does not connect the jumped to code to
the calling basic block.

uses list of resources
in the form "R0
R1..."

Specifies resources used by routine.

2 list of resources
in the form "R0
R1..."

Adds resources to those determined by
VEST.

3

+uses

3

126

Property Name Property Value Description
-uses 2 list of resources

in the form "R0
R1..."

Removes resources from those determined by
VEST.

3

usv_offset + integer Specifies usv offset for global symbols in
image; integer is a hexadecimal value.

 See for information about using this property name. 1 Section 5.4.6
2 For use in .HIF files only.
3 See for a list of the resources you can specify. Section 5.4.5

127

Table 6-1: .SIF Directive Syntax
Field Meaning
sym_name The case-sensitive name of the symbol.
sym_value The OpenVMS VAX image offset in hexadecimal associated with

sym_name for relocatable symbols or the value of an absolute symbol.
You can obtain this value from the output of the DCL command
ANALYZE/IMAGE for the OpenVMS VAX image.

sv_flag Either
 +S to add sym_name to the symbol vector or
 -S to exclude sym_name from the symbol vector

gst_flag Either
 +G to add sym_name to the GST or
 -G to exclude sym_name from the GST

usv The offset in hexadecimal from the start of the symbol vector at which to
place sym_name ; if usv equals 0xFFFFFFFF, add sym_name to the end
of the symbol vector after all other symbols have been preallocated. Never
specify usv 0, which is reserved for VEST use. Note that usv must be a
multiple of 16. Ignored if -S is used.

sym_type The data type in hexadecimal VEST should specify in the GST entry if
gst_flag equals +G. The data types are defined in the VAX Procedure
Calling and Condition Handling Standard in the VAX Architecture Guide ,

. Ignored if -G is used. Appendix C
 sym_flags A hexadecimal number specifying the flags in the GST entry if gst_flag

equals +G. The flags are defined according to the characteristics of the
symbol as outlined in the chapter on VAX Object Language in the
OpenVMS Linker Utility Manual . Ignored if -G is used.

128

Table A-1: VEST Message Categories
Performance Source Analysis Synchronization Verbose
STKUNAL NONSTDCALLS FLAGAST ENDPASS2
VAXDFLOAT NONSTDCALLU FLAGASYNC NOHIF
VAXHFLOAT READCF0 FLAGIO PASS1
VAXPACKED READCF1 FLAGMP PASS2
 READCF2 READING
 READCF3 RWINTERP
 READCF4 RWTRANS
 READJSBRET
 STKMISMATCH
 WRITECF0

129

Table C-1: Problem: Runs Slowly
Symptom Action Further information
 Translated image
runs, but slowly.

Define the logical names
TIE$FORCE_FEEDBACK
and
TIE$DISPLAY_STATISTIC
S, which request the TIE to
provide information about
translated image execution.
Issue the following
command to request .HIF
feedback files: $ DEFINE
TIE$FORCE_FEEDBACK
"T" Issue the following
command to request the
TIE run-time statistics: $
DEFINE
TIE$FORCE_FEEDBACK
"T"

A translated image should run at
approximately the same speed as the
original image running on a comparable
OpenVMS VAX system.
Defining the logical name
TIE$FORCE_FEEDBACK forces the TIE
to use a .HIF file to record points found
when interpreting See Section 4.2.3 for
detailed information about .HIF files and
run-time feedback.
Defining the logical name
TIE$DISPLAY_STATISTICS causes the
TIE to display statistics about all the
translated images activated during
program execution. The statistics may
help you figure out why your image is
running slowly. See for a
detailed description of the statistics, to
which some of the following problem
descriptions refer.

Section 4.2.2Rerun the translated image
to obtain a .HIF feedback
file and run-time statistics.

TIE writes to a
.HIF file when the
program
completes its run.

See for further information. Retranslate the image with
the .HIF file available to
VEST and rerun the
translated program

Section 4.2.3

 TIE statistics
include Fault-on-
Execute (FOE)
conditions
converted to
lookups

Use the debugger to find
FOE problems. Type SET
BREAK/EXCEPTION and
record addresses at which
FOEs occur. Then use the
VEST machine code listing
for the image to map the
addresses back to the
original VAX code.

The record addresses that the debugger
locates point you to the translated code
at which the FOEs are occur. ring. FOEs
typically occur when code pushes an
address on the stack and then branches
to it-a PUSHAB followed by an RSB
instruction, for example. The number of
FOEs reported determine whether fixing
them is worth the effort since on a DEC
7000 running OpenVMS VAX Alpha, the
TIE processes up to 25,000 FOEs per
second.

130

Symptom Action Further information
 TIE statistics
describe complex
instructions used.

Classes of complex instructions include
character string, D-56 floating point, H
character string, D-56 floating point, H

Appendix E

TIE statistics show
number of
instructions
interpreted

Enable .HIF feedback and
rerun the image. Then
retranslate the image with
the .HIF file

 Symptom statements that follow
describe various reasons why the TIE
interprets code.

If possible, recode the
instruction so VEST can
translate it.

For example, in the following case
statement, VEST cannot determine what
the CASE limit is:

If possible, recompile the
program using a qualifier
that instructs the compiler
not to use certain sets of
instructions. For example,
the COBOL qualifier
/INSTRUCTION_SET
allows you to disable
generation of packed
decimal instructions. An
OpenVMS VAX COBOL
program compiled with this
qualifier runs faster when
translated.

See for a list of VAX complex
instructions and the way in which the TIE
handles each instruction.

On a DEC 7000 running OpenVMS
Alpha, the TIE interprets up to 40,000
instructions per second. If the number of
instructions the TIE interprets is relatively
large, then taking steps to avoid
interpreting code is worthwhile. The same
effort may not be worthwhile if the
number of instructions interpreted is
relatively small.

VEST encountered
an instruction that
it cannot translate

 CASE sel, base, (R3)
 As a result, VEST cannot translate the
instruction and the TIE must interpret it.

A branch was
made to code that
wasn't found
during translation.

Enable .HIF feedback and
rerun the image. Then
retranslate the image with
the .HIF file

See the beginning of this table for
instructions on obtaining .HIF feed back
and for detailed
information.

Section 4.2.3

 A branch was
made to code in a
write able image
section descriptor
(ISD) and
/INTERPRET=WR
ITEABLE was
specified during
translation.

This problem usually occurs only in VAX
MACRO-32 code.

If no self-modifying code
exists in the image, modify
the offending PSECT
statement to specify
NOWRT or retranslate the
image with the VEST
qualifier /NOINTERPRET. If
self-modifying code exists,
move all static code out of
the writeable ISD, leaving
only self-modifying code.

Isolating self-modifying code limits the
amount of run-time interpretation required
to make the translated program work
properly.

131

Symptom Action Further information
Unnecessary restrictions on VEST
behavior significantly impact
performance. The restrictive VEST
qualifiers include:

Translated image
runs slowly and
restrictive VEST
options were used

Use restrictive VEST
qualifiers only when
necessary. When possible,
split off the part of the
program that needs to be
restricted and create a
separate shareable image.
For example, if only one
routine encounters dirty
zeros during computation,
split off the routine into a
separate shareable image
and then translate it with
the /PRESERVE=FLOAT
qualifier with out affecting
the rest of the program.

 /FLOAT
 /INTERPRET
 /OPTIMIZE
 /PRESERVE
Software uses dirty zeros to indicate an
array element that hasn't been filled in. A
dirty zero occurs when the exponent
equals 0, the sign bit equals 0,
 and the mantissa does not equal 0. On
OpenVMS VAX systems, a dirty zero is
computationally the same as a clean
zero. But on OpenVMS Alpha systems, a
dirty zero results in a fault. The TIE
provides support for dirty zeros, but you
must first translate the image using the
/PRESERVE=FLOAT qualifier.

132

Table C-2: Problem: Executes improperly or returns incorrect
results
Symptom Action Further information
Floating point results
include precision
errors.

If the image uses D floating point, check to
see if the image really needs56 bits of
precision. If it does, re translate with the
/FLOAT=D56_FLOAT qualifier. If the image
uses D floating point, if you translated it with
the point, if you translated it with
the/FLOAT=D56_FLOAT qualifier, and
 precision errors still occur, then the image
uses either native routines to perform some
computations or translated run-time libraries
(RTLs) with insufficient precision. If you
need full D-56 precision, substitute
translated RTLs with 56 bits of precision for
the native routines. For example, issue a
command like the following:
 $ DEFINE MTHRTL_TV MTHRTL_D56_TV

The Alpha AXP
hardware supports 53-
bit mantissas (D-53).
By default, VEST
translates images
using hardware D
floating support.
Native routines using
D floating point always
use D-53. Only
translated images
provide support for D-
56.

Translated image
uses unsupported
system services.

Old source code often
includes unsupported
system services to
perform common tasks
for which system
services were not yet
available.

Check the source code of the translated
caller to verify that it passes the types of
data expected by the native routine.
 If the interface to the native routine has
been changed intentionally, provide a jacket
routine to convert from one interface to the
other.

 If the native code was written in VAX
MACRO-64, check the signature array to
see if it contains the correct values.

If the image was linked with the SYSLIB
qualifier, relink the image without it. If user
code within the image calls unsupported
system services, rewrite the code to use
only system services supported by
OpenVMS VAX.

Parameters passed
incorrectly from
translated to native
routines.

 Otherwise, fix the parameters of the native
routine.

133

Symptom Action Further information
WHEN statements in
VAX BASIC
programs execute
improperly or not at
all.

Retranslate the image with the VEST
qualifier/OPTIMIZE=NOSCHEDULE.

BASIC implements
WHEN statements
using a PC correlation
table. Code scheduling
blurs the line between
VAX instructions and
prevents correlation
from working. The
correlation table
assumes that code for
a particular line is
sequential and is not
scheduled with code
from other lines that
may be outside the
scope of the WHEN
statement.

Translated image
produces erratic
results

If the image uses global sections and
requires byte or word granularity, retranslate
the image with the VEST qualifier
/PRESERVE=MEMORY_ATOMICITY to
avoid word tearing.
 If the image requires VAX style instruction
atomicity because data sharing occurs
between AST threads and normal code,
retranslate the image with the VEST qualifier
/PRESERVE=INSTRUCTION_ATOMICITY.

If the image shares
data between
execution threads,
then you need to set
/PRESERVE qualifiers
properly when you
translate the image.

Translated
shareable images do
not work properly

Check the following: What .HIF and .IIF files
are used when translating the shareable and
main images? Use the qualifier
/WARNINGS=VERBOSE to determine
which files VEST reads.
Are the image_TV logicals defined? Is a .SIF
file used to keep the visible interface of a
shareable image the same from one
translation to another? If not, then you need
to relink or retranslate all images that
depend on that particular shareable image.

See Chapter 6 for
information about
translating shareable
images and using .SIF
files.

134

Table C-3: Problem: Crashes or exits with fatal messages or
access violations
Symptom Action Further information
Translated image exits
with fatal system
message
TRANSCALLER or is
printed only when the
offset of the
NOCALLTRANS.

Recompile the native
code using the/TIE
qualifier and relink it
using
the/NONATIVE_ONLY
qualifier.
If the native code was
written in VAX MACRO-
64, you must code
signature arrays into the
procedure descriptors for
the routines contained in
native code.

The TRANSCALLER message
includes the address of the
procedure descriptor. of the
offending image. This message is
printed only when the offset of the
signature array is 0. If the offset is 1,
then the default signature
information is being used. If greater
than 1, then the field is an offset to
the signature array. These
structures are described in detail in
the OpenVMS Alpha 32-bit Calling
Standard. The NOCALLTRANS
message indicates that the
autojacketing routine
EXE$NATIVE_TO_TRANSLATED
detected that the caller doesn't have
a procedure signature array. in The
VAX MACRO-64 Assembler for
OpenVMS Alpha does not support
the /TIE qualifier because you must
code the procedure signature block
by hand. When coding procedure
descriptors, you must specify a
procedure signature block if the
routine is to be callable by translated
code.

Translated image
crashes with the
message HPARITH

Examine the summary
bits: If the summary is 2,
a dirty zero was reported.
Retranslate the image
with the
/PRESERVE=FLOAT
qualifier. If the summary
is 8, a floating point
overflow was
encountered. Retranslate
with the
/FLOAT=D56_FLOAT
qualifier.

The summary bits indicate the
reasons for the crash. If the image
uses D floating point, it may be
encountering an overflow be cause
of rounding at the last three bits of
precision.

135

Translated image incurs
an access violation.

Check to see if the
program dynamically sets
restrictive page
protections and depends
on VAX page size. If it
does, remove the
dependency on VAX
page size. Relinking the
OpenVMS VAX image
with the /BPAGE=16
qualifier may help if the
pages being protected
are not mixed in an image
section descriptor (ISD)
with pages for which the
protection is not changed
at run time. Use the
VEST qualifier
/SHOW=MACHINE_COD
E to get a machine code
listing. Then use the
listing to analyze the
access violation.

OpenVMS Alpha Version 5.4-2 or
later provides an item code for
SYS$GETSYI that gives the page
size at run time. For programs linked
on previous versions of OpenVMS
VAX, you must code carefully to
avoid page size dependencies.
If the original program was compiled
and linked with /DEBUG, then the
VEST machine code listing includes
symbolic information that can be
used to track problems back to
source code.

136

Table C-4: Problem: Exceptions never terminate
Symptom Action Further information
Exceptions never
terminate or the image
crashes when
exception handlers are
used.

Check to see that the
exception PC is not
correlated with some
program action. Check to
see if the program performs
its own stack unwinds.
Check to see if the program
knows how many frames to
unwind at a particular
location.

In some cases, it may be possible
to force VEST to generate code that
handles this properly. See Example
C-1. In other cases it may be
necessary to recode to eliminate the
need for PC correlation.
Since OpenVMS VAX and
OpenVMS Alpha stacks are
interlaced, a program performing its
own stack unwinds may
inadvertently unwind OpenVMS
Alpha frames. Only use
SYS$UNWIND to perform stack
unwinds.
 The only safe way to determine
how many frames to unwind within
an exception context is to use the
depth count in the mechanism
array.

Exception handler
changes values in
registers by modifying
the signal array

Rewrite the affected code. This behavior is unsupported.

Exception handler
modifies the PSL or is
dependent on values
in the PSL.

Rewrite the affected code The program status longword (PSL)
is not available in an exception
handler. The OpenVMS Alpha
system reports the Alpha AXP
program status (PS).

Exception handler
changes the PC.

Rewrite the affected code
to use SYS$UNWIND.

Changing the PC in the signal array
and then specifying
SS$_CONTINUE or using
SYS$UNWIND only works if the
original PC and new PC are
translated or in VAX code.

137

Table D-1: Untranslatable Images
Description Message
Images linked prior to VAX VMS Version 4.0 BADEXE
Images that have user-written system services or other nonuser-mode
code

ISDPROTECT
ISDVECTOR

Images linked against a specific version of VMS and that reference
system space

LNKSYS

Images that make direct reference to system space ad dresses UNSUPABSREF
Images that make absolute reference to P1 space outside the supported
range of OpenVMS VAX system service vector entries, which includes all
system services prefixed by SYS$ (SYS$QIOW through
SYS$EVDPOSTEVENT)

UNSUPABSREF

Images that make absolute reference to P0 space addresses not mapped
by any image

UNSUPABSREF

Images that are based, that is, they have been linked such that code and
data are tied to fixed addresses

ISDBASED

Images that cannot be translated because VEST cannot include both
shared and unshared writeable image sections in a single Alpha AXP
page

ISDCONFLICT

138

Table D-2: Images Translatable with Warnings
Description Message
Images that contain vector instructions VECTOROPC
Images that contain privileged instructions PRIVOPC
Images that modify return addresses WRITECF4 WRITEJSBRET
Images that modify the call frame WRITECF0 WRITECF1

WRITECF2 WRITECF3

139

Table D-3: Images with Undetectable Translation Problems
Description Where to find information
Images that depend on 512-byte page protection
granularity

Migrating to an OpenVMS Alpha
System: Planning for Migration
Migrating to an OpenVMS Alpha
System: Recompiling and Relinking
Applications

Images that depend on global sections being
aligned on 512-byte boundaries

Migrating to an OpenVMS Alpha
System: Planning for Migration
Migrating to an OpenVMS Alpha
System: Recompiling and Relinking
Applications

Images that use most of the VAXP0 or P1 space or
are otherwise sensitive to the space taken up by
the Translated Image Environment (TIE) and
translated code, for example, an image that
allocates a lot of dynamic memory

Undetectable

140

Table D-4: Translatable Images with Performance Issues
Description Message
Images that include self-modifying VAX code, which must be interpreted RWINTERP
Images that generate VAX code at run time, which must be interpreted Undetectable

Images with code that inspects the instruction stream (I-stream); VEST
generates slower RET and RSB code in this case

READCF4
READJSBRET

Images that depend on D_floating, H_floating, or packed-decimal
instructions; these instructions require software emulation

VAXDFLOAT
VAXHFLOAT
VAXPACKED

141

	Preface
	
	
	Intended Audience
	
	Part I: User's Guide to Translating Images
	Part II: Developer's Guide to Translating Images
	Part III: Reference Information
	Associated Documents
	Conventions

	Part I User's Guide to Translating Images
	1. Introduction to Image Translation
	1.1 Overview of OMSVA
	1.1.1 OMSVA Features
	
	Language independence
	Automated translation
	Image analysis

	1.1.2 OMSVA Roles within a Migration Strategy
	
	Rebuilding application source files
	Translating the application's OpenVMS VAX images
	Combining source rebuilding with image translation

	1.2 Image Translation Tools and Support
	1.2.1 VAX Environment Software Translator Utility
	1.2.1.1 VEST Information Files
	Image information files
	Hand-edited information files
	Symbol information files
	Library information files

	1.2.1.2 How VEST Works
	1.2.1.3 Code Analysis-Pass 1 and Pass 2
	1.2.1.4 Code Generation

	1.2.2 VEST/DEPENDENCY Command
	1.2.3 FLOWGRAPH Command
	1.2.4 Translated Image Environment

	2. Translating Images
	2.1 Before Translating an Image
	2.2 Running VEST to Translate an Image
	2.2.1 VEST Return Status
	2.2.2 VEST Qualifiers
	2.2.3 VEST Output Files

	2.3 Using VEST/DEPENDENCY to Identify Image Dependencies
	2.3.1 Using the VEST_MMS_DRIVER.COM Command File
	2.3.2 Processing the Dependency Graph File

	3. Running Translated Images
	3.1 Running the Translated Image
	3.2 Handling References to a Translated Image

	Part II Developer's Guide to Translating Images
	4. Enhancing Performance and Analyzing Images
	4.1 Using the /AUDIT Qualifier
	4.2 Considering Performance
	4.2.1 Using Performance-related Qualifiers
	4.2.2 Run-Time Statistics
	4.2.3 TIE Feedback and .HIF Files
	4.2.3.1 VEST /FEEDBACK Qualifier
	4.2.3.2 Controlling TIE Feedback-Logical Names

	4.3 Using VEST Flowgraphs
	4.3.1 DHRYSTONE.EXE Flowgraph
	4.3.2 Basic Blocks in Flowgraphs
	
	CALLx entry block
	JSB entry block
	Normal block
	CALLx placeholder block
	JSB placeholder block
	Exit node block

	4.3.3 Arcs in Flowgraphs
	
	Normal arc
	True branch from a two-way conditional arc

	4.3.4 Error Flowgraphs

	4.4 Identifying Data Alignment Problems
	4.4.1 Using the /DST Qualifier and the DSTGRAPH Command
	4.4.2 Interpreting DSTGRAPH Output
	4.4.2.1 Overall Layout
	4.4.2.2 Syntax and Conventions

	5. Using Information Files
	5.1 Types of Information Files
	5.2 Image Information Files
	5.3 Hand-Edited Information Files
	5.4 .IIF and .HIF File Syntax
	5.4.1 Image Records
	5.4.2 Property Records
	5.4.3 Comment records
	5.4.4 Interface Properties
	5.4.5 Specifying Resources as Property Values
	5.4.6 Flag Bits Modified in Processor Status Longword

	5.5 Library Information Files
	5.6 .LIF File Syntax
	5.6.1 Renaming records
	5.6.2 Comment records

	6. Translating and Replacing OpenVMS VAX Shareable Images
	6.1 Interoperability Requirements
	6.1.1 /TIE and /NONATIVE_ONLY Qualifiers
	6.1.2 Preserving Upward Compatibility

	6.2 Procedures for Building Shareable Image Variants
	6.2.1 Building the Original OpenVMS VAX Shareable Image
	6.2.2 Creating the Translated Shareable Image
	6.2.2.1 Translated Main Image
	6.2.2.2 Native Main Image

	6.2.3 Building a Replacement Shareable Image

	6.3 Procedures for Building a Jacket Image
	6.3.1 Preparing the Jacket Images Sources
	
	Create a jacket image transfer vector
	Create a jacket image source file
	Prepare the stub VAX MACRO source file
	Compile and link the stub
	Compile the jacket image source module and link it with the stub image

	6.3.2 Preparing the Native Shareable Image
	
	Generate .SIF and .IIF files
	Use the .SIF file to control the symbol vector order
	Build the native image

	6.3.3 Translating and Using the Jacket Image
	
	Translate the stub and jacket images
	Translate a main image
	Define logical name and run translated main image
	Create a native main image
	Define logical name and run native main image

	6.4 Symbol Information File (.SIF file)
	6.4.1 .SIF File Syntax
	6.4.2 Creating and Using a .SIF File

	6.5 /JACKET Qualifier

	Part III Reference Information
	A. Command Summaries
	VEST
	/AUDIT
	/DEBUG
	/DST
	/EXECUTABLE
	/FEEDBACK
	/FLOAT
	/FLOWGRAPH
	/IIF
	/INCLUDE_DIRECTORY
	/INTERPRET
	/JACKET
	/LIF
	/LIST
	/OPTIMIZE
	/PRESERVE
	/RESTRICT
	/SHOW
	/SIF
	/TRACEBACK
	/VIEW
	/WARNINGS

	VEST/DEPENDENCY
	/FILE_LIST
	/FLOWGRAPH
	/LIST
	/MMS_DESCRIPTION
	/VIEW_EQUIVALENCE_NAMES

	DSTGRAPH
	/ALL
	/SCALE_FACTOR
	/SELECT
	/SKEW
	/UNALIGNED
	/WIDTH

	FLOWGRAPH
	/OUTPUT
	/SCALE_FACTOR
	/STARTING_ADDRESS

	B. Error and Status Messages
	B.1 Interpreting VEST Messages
	B.1.1 Levels of Debugging and Traceback Information
	
	Level 1:
	Level 2:
	Level 3:

	B.1.2 Location Information Syntax

	B.2 The Messages
	B.2.1 VEST Messages
	B.2.2 DSTGRAPH Messages
	B.2.3 FLOWGRAPH Messages

	C. Debugging Translations
	D. Translation and Performance Restrictions
	D.1 Identifying Restrictions and Performance Issues
	D.2 Untranslatable Images
	D.3 Images Translatable with Warnings
	D.4 Images with Undetectable Translation Problems
	D.5 Translatable Images with Performance Issues

	E. VAX Instructions
	
	
	
	Translated by VEST
	Executed in translated TIE complex instruction routine
	Executed in native TIE complex instruction routine
	Privileged. VEST generates a call to the interpreter. Faults if executed.
	Vector. VEST generates a call to the interpreter. Faults if executed.

	Examples
	Example 2-1: Translating an Image
	Example 4-1: Audit Information for SIEVE.EXE
	Example 4-2: Run-Time Statistics for SIEVE_TV.EXE
	Example 4-3: Requesting and Processing VEST Flowgraphs
	Example 5-1: Excerpt from a Run-Time Library .IIF File
	Example A-1: Summary Format
	Example C-1: Forcing Exception PC Correlation

	Figures
	Figure 1-1: VEST Processing
	Figure 1-2: Translated Image Environment
	Figure 2-1: SIEVE.EXE Dependency Graph
	Figure 4-1: The SIEVE Call Flowgraph
	Figure 4-2: DHRYSTONE Flowgraph at 0.33 Scale
	Figure 4-3: Example Subroutine in DHRYSTONE Flowgraph at 1.0 Scale
	Figure 4-4: Error Graph for DHRYSTONE Basic Block 4CD0_CE
	Figure 4-5: DSTGRAPH File Showing Unaligned Data
	Figure 6-1: Role of Jacket Image

	Tables
	Table 2-1: VEST Command Qualifiers
	Table 2-2: VEST Output Files
	Table 4-1: VEST Performance Qualifiers
	Table 5-1: Interface Properties
	Table 6-1: .SIF Directive Syntax
	Table A-1: VEST Message Categories
	Table C-1: Problem: Runs Slowly
	Table C-2: Problem: Executes improperly or returns incorrect results
	Table C-3: Problem: Crashes or exits with fatal messages or access violations
	Table C-4: Problem: Exceptions never terminate
	Table D-1: Untranslatable Images
	Table D-2: Images Translatable with Warnings
	Table D-3: Images with Undetectable Translation Problems
	Table D-4: Translatable Images with Performance Issues

