
HP TP Web Connector
Getting Started

January 2006

This document introduces you to the HP TP Web Connector product whose
components run on Windows and OpenVMS platforms. The document also
contains reference and usage information for:

• Building client programs that call ACMS tasks from various web, Java,
and C-language interfaces

• Managing the environment in which the client programs run

Revision/Update Information: This is a revised document.

Operating System: OpenVMS Alpha Version 8.2
OpenVMS I64 Version 8.2-1

Software Version: HP TP Web Connector
Version 5.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additonal
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Microsoft and Windows are US registered trademarks of Microsoft Corporation.

Java is a US registered trademark of Sun Microsystems, Inc.

Printed in the US

Contents

Preface . xi

1 Introduction to TPware Technology

1.1 TPware Products . 1–1
1.2 Transaction Processing Through TPware 1–1
1.3 TPware Technology and HP TP Web Connector Capabilities 1–2
1.4 Stub Generation and Adapters . 1–3
1.5 Adapter Behavior . 1–4
1.5.1 Input Language Adapters . 1–4
1.5.2 Output Adapters . 1–5
1.6 Thread Controller . 1–5
1.7 TPware Management . 1–6

2 Overview of Building a Client Interface

2.1 General Steps in Building a Client Interface 2–1
2.2 Generating a UUID . 2–2
2.3 Specifying Call Attributes and Management Information 2–3
2.3.1 Call Attributes for Calling ACMS Tasks 2–3
2.4 Exception Information . 2–4
2.4.1 The STDL EINFO Definition . 2–4
2.4.1.1 Exception Class . 2–5
2.4.1.2 Exception Code and Exception Code Group 2–5
2.4.1.3 Exception Level . 2–5
2.4.1.4 Exception Source . 2–5
2.4.1.5 Exception Location . 2–6
2.4.2 Examining Returned Exception Information 2–6
2.4.2.1 TPware Error Codes . 2–7
2.4.2.2 ACMS Client Error Codes . 2–7
2.5 Taking the Next Step . 2–8

iii

3 Preparing ACMS Applications for Client Access

3.1 HP TP Web Connector Components . 3–1
3.1.1 ACMSADU Extensions . 3–2
3.1.2 HP TP Web Connector Gateway for ACMS 3–2
3.2 Running the ACMSADU Extension . 3–3
3.2.1 Group_task Translation . 3–3
3.2.2 Actions During Group_task Translation 3–4
3.2.3 Application_group Translation . 3–4
3.2.4 Actions During Application_group Translation 3–5
3.2.5 Using the Output of Application_group Translation 3–5
3.2.6 ACMSADU Extension Restrictions . 3–6
3.2.7 Converting Records . 3–6
3.2.8 Translating Data Types from OpenVMS to STDL 3–7
3.2.9 Translation of Other Record and Field Properties 3–9

4 Compiling STDL Applications

4.1 STDL Compiler Environment Setup . 4–1
4.2 Using the STDL Compiler . 4–1

5 Using the Client Build Utility

5.1 Building Client Programs . 5–1
5.1.1 Building an Automation Client . 5–2
5.1.2 Building a C Client . 5–2
5.2 The Graphical User Interface . 5–3

6 Writing and Building C and Asynchronous Clients

6.1 Steps for Writing and Building the Client 6–1
6.2 C-Language Support . 6–3
6.2.1 Function Prototypes and Argument Passing 6–4
6.2.1.1 Task Call Function Prototype Format 6–4
6.2.1.2 ACMS Task Call Arguments . 6–4
6.2.2 STDL to C Data Type Mapping . 6–5
6.2.2.1 Additional ACMS to C Data Type Support 6–6
6.2.3 Structures for STDL Data Types . 6–6
6.2.4 STDL Identifier to C Identifier Conversion 6–7
6.3 Specifying the Call Attributes String . 6–8
6.3.1 Calling ACMS Tasks with Call Attributes 6–8
6.4 Using the Asynchronous C Interface . 6–9
6.4.1 Asynchronous Call Thread Use . 6–9

iv

6.4.2 Using C Clients with the Asynchronous C Adapter 6–9
6.5 Using the einfo Structure to Check Status 6–10
6.5.1 Exception Information Header File . 6–10
6.5.2 Exception Class Header File . 6–11
6.5.3 Examining Exception Information in C 6–11
6.6 Next Steps . 6–12

7 Writing Automation Servers and Clients

7.1 Steps for Building an Automation Server 7–1
7.2 Automation Objects and STDL Support . 7–4
7.2.1 Supplied Objects . 7–4
7.2.2 STDL-Generated Automation Objects 7–5
7.2.3 STDL Identifier to Automation Name Conversion 7–6
7.2.4 Automation Data Type Support . 7–6
7.2.4.1 JScript Date Fields . 7–7
7.3 Calling Tasks from Automation Clients . 7–8
7.4 Specifying the Call Attributes String . 7–9
7.4.1 Calling ACMS Tasks with Call Attributes 7–9
7.5 Automation Errors and Status Checking 7–10
7.5.1 Automation Runtime Errors . 7–10
7.5.2 Examining Exception Information in Automation 7–10
7.6 Next Steps . 7–11

8 Writing Java Clients

8.1 Overview of Java Client Development . 8–1
8.2 Steps for Building a Java Client . 8–2
8.3 Java Classes and STDL Support . 8–5
8.3.1 Einfo Java Class and Access Support 8–5
8.3.2 STDL-Generated Java Classes and Methods 8–6
8.3.2.1 STDL Compiler Name Conversion 8–6
8.3.2.2 Task Group Class and Methods . 8–7
8.3.2.3 Record Classes and Methods . 8–7
8.3.3 Java Data Type Support . 8–9
8.4 Calling Tasks from Java Clients . 8–9
8.5 Specifying the Call Attributes in a Java Client 8–13
8.5.1 Using Call Attributes with the Java Adapter 8–14
8.5.2 Using Call Attributes with the JavaBeans Adapter 8–14
8.5.3 Runtime Processing of Call Attributes 8–15
8.6 Java Runtime Errors . 8–15
8.6.1 Accessing Error Text in the Java Adapter Environment 8–16

v

8.6.2 Accessing Error Text in the JavaBeans Adapter
Environment . 8–16

8.7 IDE Interaction with a Java Adapter . 8–16
8.8 Next Steps . 8–17
8.8.1 Java Client Setup . 8–17
8.8.2 Management Environment Setup . 8–18

9 Performing Setup Operations

9.1 Calling STDL Tasks from IIS . 9–1
9.1.1 Establishing Thread Usage Semantics Settings 9–1
9.1.2 Thread Usage Semantics Setting for Calling ACMS Tasks . . 9–1
9.2 Setting Up the IIS . 9–2
9.3 Environment Variables and IIS . 9–2
9.4 Oracle Web Application Server . 9–2
9.5 DLL Caching in IIS . 9–3
9.5.1 Stopping and Starting Internet Information Services 9–3
9.6 Locating ISAPI DLLs . 9–3

10 Managing the Client Interface

10.1 Supplying Management Information . 10–1
10.1.1 Management Information Sources . 10–1
10.1.2 Management Information by Groups 10–2
10.2 Using the Management GUI . 10–2
10.2.1 Computer Settings . 10–3
10.2.2 Using Shared Settings . 10–3
10.2.2.1 Using Local Settings . 10–3
10.2.2.2 Using Shared Remote Settings . 10–3
10.2.2.3 Restrictions on Registry Access . 10–4
10.2.3 Threads Settings . 10–5
10.2.3.1 Thread Usage Semantics Settings 10–5
10.2.3.2 Specifying Thread Usage Semantics Settings 10–6
10.2.3.3 When Thread Usage Semantics Settings Take Effect 10–7
10.2.3.4 Deleting Thread Usage Semantics Settings 10–8
10.2.4 ACMS Gateway Adapter Settings . 10–8
10.2.4.1 Configuring a New ACMS Group 10–9
10.2.4.2 Changing ACMS Gateway Adapter Group Settings 10–9
10.2.4.3 Deleting ACMS Gateway Adapter Group Settings 10–10
10.3 Setting Up the ACMS Gateway Adapter Environment 10–10
10.3.1 Specifying an ACMS Gateway Adapter Error Log File 10–10
10.3.2 Specifying a TCP/IP Port Number for Calls to ACMS

Tasks . 10–11

vi

11 Managing the HP TP Web Connector Gateway for ACMS

11.1 HP TP Web Connector Gateway for ACMS Software 11–1
11.2 Controlling the HP TP Web Connector Gateway for ACMS 11–2
11.2.1 Gateway Starting Requirements . 11–2
11.2.2 Editing the System Startup File . 11–3
11.2.3 Starting the Gateway from DCL . 11–3
11.2.4 Gateway Startup Parameter File . 11–4
11.2.5 Setting Up the TCP/IP Port Numbers 11–6
11.2.5.1 Specifying the TCP/IP Port Number for the Gateway

Process . 11–6
11.2.5.2 Specifying the Gateway TCP/IP Port Number for the

Client . 11–7
11.2.6 Stopping the Gateway Process . 11–7
11.2.7 Editing the System Shutdown File . 11–7
11.2.8 Gateway Error Processing . 11–8
11.3 Tuning the Gateway . 11–8
11.3.1 Tuning the Gateway Process . 11–8
11.3.2 Overriding Default Process Quotas . 11–8
11.3.3 General Tuning Guidelines . 11–10

A TPware Error Logging

A.1 Error Logging Overview . A–1
A.2 Use of the Platform Event Log Facility . A–2
A.3 Enabling and Disabling Error Logging to a File A–2
A.3.1 Enabling Error Logging to a File on Windows Systems A–2
A.3.2 Disabling Error Logging to a File . A–3
A.4 Viewing Records in the TPware Error Log File A–3
A.4.1 Error Log Utility Syntax . A–3
A.4.2 Sample Commands and Output . A–5

Index

Examples

2–1 EINFO Data Type Definition . 2–4
6–1 C Representation of an STDL Data Type Definition 6–7
6–2 C Structure Definition for the einfo Variable 6–10
8–1 The Java Adapter Sample add_task Call 8–10
8–2 The JavaBeans Adapter Sample add_number Call 8–11

vii

11–1 Gateway Startup Parameter File . 11–4
11–2 Gateway Process Quota Data File . 11–9
A–1 Specifying a Time Interval with the stdlog Utility A–5
A–2 stdlog Utility Sample Output . A–5

Figures

1–1 Connecting Web Clients to TP Applications 1–2
1–2 ACMS Adapter Technology . 1–4
3–1 ACMSADU Translation Model . 3–2

Tables

1–1 Adapters Supported by HP TP Web Connector 1–5
2–1 ACMS Gateway Adapter Call Attribute Values 2–3
3–1 Integer Support for the ACMS Gateway Adapter 3–7
3–2 Floating Point and Complex Data Type Support for the

ACMS Gateway Adapter . 3–8
3–3 Decimal Data Type Support for the ACMS Gateway

Adapter . 3–8
3–4 Other Data Type Support for the ACMS Gateway

Adapter . 3–9
4–1 HP TP Web Connector Input Adapters 4–2
4–2 HP TP Web Connector Output Adapters 4–3
5–1 Files Generated for a Client Build . 5–2
6–1 C Client Adapter Specifications . 6–2
6–2 C Client Adapter-Dependent Link Input 6–3
6–3 Mapping STDL Data Types to C Data Types 6–5
6–4 Mapping of Additional ACMS Data Types to C Data

Types . 6–6
7–1 Automation Server Output Adapters 7–2
7–2 Automation Server Adapter-Dependent Link Input 7–3
7–3 Automation Data Type Mapping . 7–7
8–1 Optional Build Environment Variables for Java Tools 8–3
8–2 Java Client Adapters . 8–4
8–3 Java Client Adapter-Dependent Link Input 8–5
8–4 Java Data Type Mapping . 8–9
10–1 Output Adapter Thread Usage Semantics Settings 10–6

viii

11–1 Gateway Keywords . 11–5
11–2 TCP/IP Port Categories and Numbers 11–6
11–3 Gateway Process Quotas . 11–9
A–1 stdlog Option Flags and Default Values A–4

ix

Preface

This document provides reference and usage information that enables you to
use the HP TP Web Connector product.

Intended Audience
This document is intended for the following audiences:

• Application programmers who need reference information about developing
client programs with the HP TP Web Connector product to call ACMS
tasks from various web, Java, Automation, and C-language interfaces.

• Information technology (IT) managers and system managers who need
reference information about how to set up client programs developed with
the HP TP Web Connector product and how to manage the HP TP Web
Connector Gateway for ACMS on an OpenVMS system.

Operating System Information
For information about the versions of the operating system and other software
that are compatible with this version of the HP TP Web Connector product,
refer to the product’s Software Product Description (SPD). Use the SPD to
verify which versions of your operating system are compatible with this version
of the HP TP Web Connector product.

Structure
This document has the components shown in the following table:

Component Description

Chapter 1 Provides an overview of how the HP TP Web Connector
product allows client systems to call HP transaction
processing (TP) applications.

xi

Component Description

Chapter 2 Introduces the general procedures for building TPware
interfaces for client systems to access ACMS tasks.

Chapter 3 Describes HP TP Web Connector components used for
development on the ACMS system and for runtime support
and management on a Windows system. Explains the
use of the development components to translate ACMS
applications so that you can build a client interface to access
the ACMS applications.

Chapter 4 Describes the STDL compiler option flags used in generating
HP TP Web Connector client programs.

Chapter 5 Explains how to use the TPware client build utility to create
a client interface.

Chapter 6 Describes writing and building C and asynchronous clients.

Chapter 7 Discusses writing Automation servers and clients.

Chapter 8 Describes steps for writing and building Java clients.

Chapter 9 Describes application set-up operations.

Chapter 10 Explains how to use the TPware management utility
on a Windows system to customize runtime settings for
connecting HP TP Web Connector client programs that run
on a Windows system and ACMS applications.

Chapter 11 Describes procedures for managing the HP TP Web
Connector Gateway for ACMS on an OpenVMS system.

Appendix A Describes TPware error logging support.

Associated Documents
HP TP Web Connector Installation Guide explains the installation of this
product and related options.

Conventions
This document uses the following conventions:

Convention Description

italic type Italic type emphasizes important information and indicates complete
titles of documents. In format descriptions, it indicates variable
parts of input that you must supply.

xii

Convention Description

bold type New terms are highlighted in boldface type where they are defined
in the text.

user input In examples, user input is differentiated in boldface font from
system output.

monospace
text

Words in monospaced font in text indicate names of files, commands
and options, user interface elements such as menu names, objects
stored on the system, or system output used in examples.

lowercase Commands that you enter (except where the command line includes
an environment variable) are in lowercase.

UPPERCASE Uppercase text indicates STDL syntax. Environment variables are
in uppercase. Key words on the OpenVMS system are also indicated
by uppercase text.

[] In command syntax, square brackets enclose an optional choice or
choices.

.

.

.

In examples, a vertical ellipsis indicates that information not
directly related to the example has been omitted.

Windows When used alone, Windows indicates any supported member of the
family of Microsoft Windows operating systems. Where necessary,
specific Windows operating systems are mentioned. For a list of
Microsoft Windows operating systems supported by the HP TP Web
Connector product, see the product’s Software Product Description
(SPD).

xiii

1
Introduction to TPware Technology

This chapter provides an overview of the technology used by HP TP Web
Connector software.

1.1 TPware Products
TPware is a set of components from which several TP-related products are
created. Different components are used to create different products. These
products are as follows:

• HP TP Web Connector

• HP TP Desktop Connector

This document describes the HP TP Web Connector product, which allows web
servers to call ACMS tasks .

1.2 Transaction Processing Through TPware
TPware software connects a web server and an ACMS TP application. As
a TPware product, HP TP Web Connector software provides a C-language
interface, an Automation interface, and a Java-language interface for
connecting a client to your web server application.

HP TP Web Connector produces objects that you can easily use to connect a
web server to your application. For example, in the Microsoft environment,
HP TP Web Connector might create an Automation server that can be used
with any software that supports Automation, such as the Internet Information
Server (IIS), Microsoft Office, or Visual Basic. In the Microsoft environment,
the interfaces are compatible with the Microsoft components architecture, or
Common Object Model (COM). The Microsoft-compatible interface connects
any Microsoft COM object to an ACMS application with minimal programming
effort.

Introduction to TPware Technology 1–1

For other environments (for example, Microsoft environments that do not
support Automation), HP TP Web Connector software translates the extracted
information into a C program format. The C program format can be called
from any software program that supports C program callouts; for example, the
Netscape Web Server. The C program interface is available for connecting any
other type of web server or client to an ACMS application. The C program
interface easily connects any Windows program capable of calling a C program
to such an application.

1.3 TPware Technology and HP TP Web Connector
Capabilities

Using TPware technology, HP TP Web Connector software expands the
capabilities of World Wide Web servers by enabling them to access ACMS tasks
. For example, Figure 1–1 shows the connection between a web browser and a
TP application with TPware code executing in the web server.

Figure 1–1 Connecting Web Clients to TP Applications

Web Server

Web TPTP
HTTP Call

ML014072

StubBrowser

HTML Server

Application

Javascript)
(VB Script,

or ISAPI

Side Script

Application

HP TP Web Connector software accomplishes this connection by enabling the
creation of code called a TP stub that translates calls between web servers
and TP applications. Using a web browser, the user accesses a page on a web
server. The page can be an HTML page containing server-side scripts with
either references to Automation objects, references to a shared library (for
example, a DLL on a Windows system) or references to an Oracle Web Request
Broker (WRB) cartridge loaded on the web server.

The script, shared library, or WRB cartridge processes the incoming request
and gathers information needed for the transaction. With the gathered
transaction information, the server then performs the following operations:

• Calls a TP application through a TP stub.

• Interprets the results from the TP application.

1–2 Introduction to TPware Technology

• Displays those results to the end user.

An Oracle WRB is the main controlling component under the Oracle Web
Application Server architecture. The WRB is implemented as a CORBA-
compliant object request broker and keeps track of the system execution and
controls and provides services for the cartridges. The cartridges are written in
C and perform the application logic. The cartridges are loaded by and interface
with the WRB.

The TP application can be a TDL task executing under ACMS software on an
OpenVMS platform .

1.4 Stub Generation and Adapters
HP TP Web Connector software uses TP stub technology to support the
generation of interfaces that allow clients (including web browsers) to call
tasks using a variety of language interfaces and communications mechanisms.
For example, Figure 1–2 shows how a TP stub composed of .

To accomplish this stub-based calling mechanism, HP TP Web Connector
divides the functionality of the TP stub into halves called adapters. Adapters
convert calls from one format to another format. One half of the TP stub,
the input adapter, takes an incoming call or communications message
and transforms it into a standard form called the TPware standard call.
The other half, the output adapter, takes the TPware standard call and
transforms it into the appropriate form for the TP application (either a
procedure call or a communications message). For example, if you were writing
an Automation client to call ACMS tasks, you would use an adapter stub with
an Automation input adapter and an ACMS Gateway output adapter. You
would include this adapter stub in your client application to translate the input
language calls to the proper format of output communications messages that
invoke ACMS tasks.

Using adapters, TPware software extends the capabilities of stubs. By
supporting stubs with various types of adapters, HP TP Web Connector
software can support different language interfaces and communications
mechanisms. Table 1–1 describes the adapters that HP TP Web Connector
supports.

Introduction to TPware Technology 1–3

Figure 1–2 ACMS Adapter Technology

Client Stub

ACMS
Gateway

ACMS RPC

ML014073

ACMS
Gateway
Adapter
(output)

C
Adapter
(input)

C
Client

S
ta

nd
ar

d
C

al
l

ACMS

1.5 Adapter Behavior
HP TP Web Connector uses both input adapters and output adapters. Sections
1.5.1 and 1.5.2 describe their behavior.

1.5.1 Input Language Adapters
Input adapters are produced for clients that are written in a particular
language or that use a particular calling mechanism. The input adapters
present to a client the following characteristics of an interface:

• A way to call each procedure within the interface and pass arguments

HP TP Web Connector interfaces (for example, ACMS applications and
STDL task groups) consist of one or more procedures. Each procedure can
take one or more arguments, each of which can be input, output, or inout.

• A way to retrieve exception information

After a call is completed and control returns to the client, the client must
have access to exception information generated during any part of the call
processing.

• A way to specify the attributes for a call

The client specifies call attributes to pass information to the output
adapter on a call. The attributes being passed depend on the output
adapter. For example, the ACMS Gateway adapter can take three call
attributes: application, node, and authentication.

1–4 Introduction to TPware Technology

Table 1–1 Adapters Supported by HP TP Web Connector

Description Comment

Input Adapters Asynchronous Allows clients written in the C or C++
language to handle multiple active calls
(for example, ISAPI or WRB cartridge clients)

Automation Allows calls from clients using Microsoft
Automation technology

C Allows clients written in the C or C++
language to perform synchronous calls (for
example, ISAPI or WRB cartridge clients)

Java or JavaBeans Allows calls from Java-language clients

Output
Adapters

ACMS Gateway Calls ACMS tasks through the HP TP Web
Connector Gateway for ACMS

1.5.2 Output Adapters
Output adapters convert calls into the communications messages required
to invoke remote tasks. They use a particular communications protocol and
specify the following:

• Which call attributes it handles

• Which of the handled call attributes is the default attribute

A default attribute is the attribute that provides information about the
location of the server application.

1.6 Thread Controller
On Windows platforms, the HP TP Web Connector product provides a thread
controller that limits the number of connections to the called server machine.
A thread controller is useful in a process that services multiple users and that
can execute in multiple threads. The ability to control the connection limit
decreases memory used in the called server to maintain network links and
improves application performance by making more memory available to the
application.

For example, a web server that services Automation clients runs in a single
process, handles multiple concurrent requests, and uses a separate thread
for each request. When you build such a multiple-user process, HP TP Web
Connector provides a mechanism in the adapter code to optimize thread usage
and supports a management interface that allows you to specify information

Introduction to TPware Technology 1–5

to adjust thread usage with the needs of the TP applications being called (see
Section 1.7).

The thread controller serves as a virtual TP monitor and increases performance
for TP applications in the following ways:

• Solves problems with insufficient stack space to execute calls.

• Optimizes database access by allowing calls to processing procedures to be
executed on a dedicated set of threads.

• Reduces I/O contention within the database by allowing application
programmers to limit the number of threads that are concurrently
executing processing procedures in a processing group. Additional client
threads queue, waiting for a free thread.

For applications with many client threads, such as a web application, the
thread controller can be especially useful.

1.7 TPware Management
HP TP Web Connector software provides a graphic user interface (GUI) utility
that runs on Windows systems to allow you to enter management information.
The management GUI installed with your HP TP Web Connector product
allows you to specify management information for the following resources:

• Call attributes

• Thread pools

The management GUI allows you to specify information used when the output
adapter calls TP applications.

The capabilities of the management GUI depend on the TPware products that
are installed on a Windows system. When a manageable adapter is installed
on a Windows system, the management interface for that adapter is enabled
on that system. The information that you enter through the management GUI
is stored locally on the system being managed (see Chapter 10).

1–6 Introduction to TPware Technology

2
Overview of Building a Client Interface

This chapter discusses the general procedure for building a client interface to
your current application. Also see the online instructions for building samples
supplied with the HP TP Web Connector product.

2.1 General Steps in Building a Client Interface
The HP TP Web Connector product builds a client interface to an existing TP
application executing under ACMS software. To build a client, follow these
general steps:

1. On the server development system, find the source code for the existing TP
application.

• If you are developing a client program to access existing ACMS tasks,
do the following:

a. Using the ACMSADU extension installed on the ACMS server
development system, process the TDL source files to generate a
source file that contains an STDL task group specification and data
type definitions for the ACMS tasks. See Chapter 3 for instructions
on preparing TDL applications.

b. Copy the generated source file from the OpenVMS system to the
client development system.

c. Edit the generated STDL task group specification to supply a valid
UUID (see Section 2.2).

2. On the client development system to which you copied the STDL
source code, establish the environment for using the STDL compiler
(see Section 4.1).

3. On the client development system, use the STDL compiler to process the
STDL source files and to produce the output that facilitates client program
development (see Section 4.2).

Overview of Building a Client Interface 2–1

Note

When building Automation or C clients, you can perform this STDL
compile step and, for Automation clients, the subsequent build step
using the client build utility GUI (see Chapter 5).

4. Build the client interface.

See the following chapters that explain the specific steps for using the
STDL compiler, for building the client executable, and for setting up
management for different types of clients:

• Chapter 6 for writing and building C and asynchronous clients

• Chapter 7 for writing Automation clients

• Chapter 8 for writing Java clients

• Chapter 9 for setting up applications

5. On a Windows client execution system, set up the management
environment for the client interface (see Chapter 10).

2.2 Generating a UUID
If you are developing a client that calls an ACMS task, replace the default zero
UUID in your generated STDL task group specification with a valid UUID.

To generate a UUID use the guidgen application.

1. Invoke guidgen from either a DOS command line or the Tools menu item
in Microsoft Visual C++. See the HP TP Web Connector SPD for supported
versions of Microsoft Visual C++.

2. Select the Registry Format menu and Copy command to copy the UUID to
the Windows clipboard.

3. Paste the UUID into the generated STDL task group specification.

4. After you paste the UUID, replace the braces, ({) and (}), with double
quotes (").

2–2 Overview of Building a Client Interface

2.3 Specifying Call Attributes and Management Information
When your client calls ACMS tasks , it can pass information such as
destination and authentication to output adapters on each call. HP TP
Web Connector software does this through the use of the call attributes. A
call attribute has the following syntax:

name:value [:value] [, . . .]

If the client specifies a call attribute value without specifying a name for it,
then a default name is assumed. Section 2.3.1 describes the call attributes and
default value for each adapter that supports passing call attributes.

If you omit a call attribute or specify a null call attributes string,
the management GUI possibly provides the attribute information (see
Section 10.2).

2.3.1 Call Attributes for Calling ACMS Tasks
The ACMS Gateway adapter uses call attributes from either the client or from
management information. The client program can specify the call attributes as
a string using the following syntax:

application[:name],node[:name],authorization[:account-name:password]

Table 2–1 describes the call attributes and values.

Table 2–1 ACMS Gateway Adapter Call Attribute Values

Call Attribute Value Description

Application[:name] Name of the ACMS application (STDL task group name)
being called

Node[:name] Name of the TCP/IP node on which the ACMS gateway
resides

Authorization[: OpenVMS authorization information, requiring two values
separated by a colon (:) character

account-name: Name of the OpenVMS user account under which the task
call is made

password] Password for the OpenVMS user account under which the
task call is made

By default, the application called is taken from the STDL task group name.
The application attribute value accommodates the situation in which the
client wants to call numerous ACMS applications that all contain the same
number of tasks, with the same task names, and all take the same number of

Overview of Building a Client Interface 2–3

similarly defined arguments. The software assigns to the DLL the name under
which the task group is compiled, but overrides the application being called at
runtime based on the value of this call attribute. Refer to Section 10.2.4 for
further descriptions of these attributes. For example, a call attributes string
for a client program might be:

"application:add_acms_appl,node:bigwig.corp.com,authentication:jones:sam"

Note

Do not use spaces in the string.

In the example, the application attribute has the value add_acms_appl,
the node attribute has the value bigwig.corp.com, and the authentication
attribute has the value jones:sam (the username and password to use for the
call).

If you omit a call attribute or specify a null call attributes string, the
management GUI provides the attribute information.

2.4 Exception Information
EINFO is the STDL mechanism for storing exception information generated
during a call.

2.4.1 The STDL EINFO Definition
The coding for the STDL EINFO definition is shown in Example 2–1.

Example 2–1 EINFO Data Type Definition

TYPE EINFO IS
RECORD

ECLASS INTEGER;
ECODE INTEGER;
EPROC TEXT CHARACTER SET SIMPLE-LATIN SIZE 32;
EPGROUP TEXT CHARACTER SET SIMPLE-LATIN SIZE 32;
ESOURCE INTEGER;
ECGROUP UUID;

END RECORD;

When an exception is returned to the caller, the following information is
available:

• Exception class

• Exception code and exception code group

2–4 Overview of Building a Client Interface

• Exception level

• Exception source

• Exception location

Sections 2.4.1.1 to 2.4.1.5 describe the information. Section 2.4.2 describes how
a caller examines the returned exception information.

2.4.1.1 Exception Class
An exception class is a grouping of exception conditions that is based on the
type of recovery action that can be taken and that allows for portable exception
handling. The exception class identifies the exception type as a nontransaction
exception or as a transaction exception. Each exception class is initially raised
as a specific exception type. The exception type can change depending on how
the exception is reported.

2.4.1.2 Exception Code and Exception Code Group
An exception code is a detailed classification of an exception condition. For
application-generated exceptions, the exception code is portable and is defined
in a message group definition associated with the STDL task group.

2.4.1.3 Exception Level
An exception level is a classification of exception conditions based on whether
the exception was generated by the execution of a called task that propagated
the exception to the calling client.

An exception level is defined as either current or propagated. An exception
level is defined as current when the current task execution generates the
exception and when an exception is encountered during the invocation of a
task.

An exception level is defined as propagated when the execution of a task
called by the client interface generates the exception. A client cannot
distinguish between a current exception and a propagated exception.

2.4.1.4 Exception Source
An exception source is a classification of exception conditions based on whether
the exception was raised by the application or by the TPware runtime system.
A value of zero indicates that the exception was raised by the system. A value
of one indicates that the exception was raised by the application.

Overview of Building a Client Interface 2–5

2.4.1.5 Exception Location
The exception location consists of the following text fields in EXCEPTION-
INFO-WORKSPACE that contain names describing where the exception
occurred:

• The name of the task (if the task raised the exception) in which the
exception occurred, or an arbitrary string filled in by the application

• The name of the task group (if the task raised the exception) in which the
exception occurred, or an arbitrary string filled in by the application

When an exception is raised in a task, the system sets the exception procedure
to the task name, and the exception procedure group to the task group name.

2.4.2 Examining Returned Exception Information
Client programs examine the language-specific implementation of the STDL
EINFO information upon completion of the call to the task. The TPware
runtime system returns an exception by setting the STDL-defined external
variable with agreed-upon standard values. The client program examines the
exception data from the EINFO record returned as a result of the task call to
determine whether an exception is raised.

1. If the ECLASS field contains a value of zero, no exception is returned and
output arguments are returned.

2. If the ECLASS field contains a nonzero value, the following conditions
apply:

• An exception is returned. The ECODE field contains a nonzero value that
indicates which exception occurred.

• Output arguments are undefined.

3. If an exception is returned, the client program can examine the ESOURCE
field to determine whether the exception was generated by the system
(exception source is 0) or by the application (exception source is 1).

HP TP Web Connector provides an implementation-specific means to check
these fields. For example, if the client is written in C, the einfo.h file defines
the C structure einfo that the program can access to check status. When an
exception is returned to the C program, the EINFO information is available in
members of the einfo structure. The fields in the EINFO data type definition
correspond to members of the einfo structure in C.

Sections 2.4.2.1 and 2.4.2.2 explain the possibilities for error codes in the ECODE
field.

2–6 Overview of Building a Client Interface

2.4.2.1 TPware Error Codes
If the ECODE field contains a value from 01 to 255 (0x01 to 0xFF), this signals a
TPware runtime exception or data conversion errors in the output adapter. The
TPware runtime exceptions and errors are described in the file stdlrt_msg.h.

The file is located in a directory with a name in the following format:

install-directory\ stdl\ include

For example, if you installed the product in the C:\tpware directory, then the
STDL message file is located at:

C:\tpware\stdl\include\stdlrt_msg.h

If the client calls an ACMS task (uses the ACMS Gateway adapter), the ECODE
field can alternatively contain an ACMS client error code (see Section 2.4.2.2).

The software provides language-dependent code that returns the error message
text translated from the value in the ECODE field, as follows:

• For the C language clients, see Section 6.2.

• For Automation clients, see Section 7.5.

• For Java clients, see Section 8.3.1.

2.4.2.2 ACMS Client Error Codes
If the client calls an ACMS task (uses the ACMS Gateway adapter), the ECODE
field can contain either a TPware error code (see Section 2.4.2.1) or a value
from -3000 to -3199 (0xFFFFF448 to 0xFFFFF381). The negative value signals
an ACMS Gateway adapter runtime exception. If this exception is related to
an ACMS error, text related to the error may be found in an argument passed
back to the client in the task call (see Section 6.2.1.2).

These exceptions are described in the file acmsda_client_messages.txt located
in a directory with a name in the following format:

install-directory\ stdl\ include

For example, if you installed the product in the C:\tpware directory, then the
client message file is located at:

C:\tpware\stdl\include\acmsda_client_messages.txt

Overview of Building a Client Interface 2–7

2.5 Taking the Next Step
If your client is accessing an ACMS application, go to Chapter 3 for a
description of the steps necessary to prepare ACMS applications for client
access.

Chapter 4 describes the STDL compiler. This compiler generates the TP stubs
from the application’s STDL task group specification files. You can use this
compiler for all client types.

Chapter 5 describes the client build utility that you can use if you are building
Automation or C clients. This build utility simplifies the processes used when
using the STDL compiler.

Chapters 6 to 8 present specific procedures for different types of clients.

Chapter 9 discusses various setup tasks on the client that you must perform
before you run your client program.

2–8 Overview of Building a Client Interface

3
Preparing ACMS Applications for Client

Access

If your client is going to call ACMS tasks, you need to perform some processing
on the ACMS development system where the ACMS application is defined.
This chapter explains how the HP TP Web Connector components on ACMS
systems are used so that client programs, including web clients, can be built to
access ACMS applications.

3.1 HP TP Web Connector Components
If your client calls ACMS tasks, use HP TP Web Connector components that
you install and run on an ACMS system. The HP TP Web Connector software
includes the following components that support the generation and use of client
programs that access ACMS applications:

• HP ACMS Application Definition Utility (ACMSADU) extension

Enables ACMSADU to translate an ACMS application into an STDL task
group specification.

• A gateway

Supports the ACMS RPC protocol between the ACMS Gateway output
adapters on the calling system and ACMS applications on the called
system (see Chapter 11).

The HP TP Web Connector components on the OpenVMS system (the
ACMSADU extension and the gateway) reside on systems running ACMS
software. The components can be on the same ACMS system or on different
ACMS systems (refer to HP TP Web Connector Installation Guide).

Preparing ACMS Applications for Client Access 3–1

3.1.1 ACMSADU Extensions
The extensions in the modified ACMSADU image enable you to translate an
ACMS application to an STDL task group specification. HP TP Web Connector
extension commands allow you to control the translation. ACMSADU performs
the following HP TP Web Connector functions:

• Extracts information about ACMS tasks and records.

• Translates the extracted information to STDL format.

• Writes the translated information in a form that the STDL compiler can
read.

Figure 3–1 shows how ACMSADU reads the application, group, task, and
record definitions from the Common Data Dictionary (CDD).

Figure 3–1 ACMSADU Translation Model

ML014076

ACMS
CDD

Tasks

Applications

GROUP.WDB

appl_name.stdl

Groups
Workspaces

ADU
ACMS
ADU

(stdl source)

ACMSADU produces as output an intermediate group file, from which it
produces the STDL task group specification, including record definitions and
task group headers with records as arguments.

3.1.2 HP TP Web Connector Gateway for ACMS
The gateway runs on an ACMS system and connects the ACMS Gateway
adapter on the client system to the ACMS system on which the target
application is running. You provide information that enables the connection
between your client program and the ACMS tasks being called (see
Section 10.2). Use command procedures provided with the software to control
and manage the gateway (see Chapter 11).

3–2 Preparing ACMS Applications for Client Access

3.2 Running the ACMSADU Extension
Translating applications from TDL to STDL performs the following operations:

• Group_task translation (see Section 3.2.1)

• Application_group translation (see Section 3.2.3)

• Record definition translation and conversion (see Section 3.2.7)

You perform these operations with HP TP Web Connector qualifiers for
the ACMSADU BUILD GROUP and ACMSADU BUILD APPLICATION
commands. Refer to HP ACMS for OpenVMS ADU Reference Manual for a
listing of qualifiers.

Section 3.2.2 describes the actions that occur during group_task translation,
and Section 3.2.4 describes the actions that occur during application_group
translation.

3.2.1 Group_task Translation
Group_task translation produces temporary files containing ACMS task and
task group information. Group_task translation must be performed for every
ACMS group that comprises an application.

Synopsis
The command syntax is:

BUILD GROUP acms_group_name [/STDL]

Description
The acms_group_name parameter refers to the name of the ACMS group.

The /STDL qualifier directs ACMSADU to output task and record information
that is used for the final translation to STDL. The output file produced by
/STDL has a name in the following format:

GROUP.WDB

The .WDB file type indicates the intermediate-format web database file. The
BUILD GROUP command writes the file to the default directory (refer to HP
ACMS for OpenVMS ADU Reference Manual for information on DEFAULT
TASK GROUP FILE).

The /NOSTDL qualifier instructs ACMSADU not to produce the intermediate-
format file. The default parameter is /NOSTDL.

Preparing ACMS Applications for Client Access 3–3

3.2.2 Actions During Group_task Translation
During group_task translation, ACMSADU performs the following actions:

• Reads information from the CDD.

• Processes the read information.

• Creates the intermediate-format file.

ACMSADU processes the group description and the description of any tasks
and records associated with that group. ACMSADU builds descriptions of
all records according to the CDD information. Then, ACMSADU creates a
description of all tasks in the group along with the names of records used as
parameters to those tasks. The intermediate-format file in which ACMSADU
writes all this information is used as input to the application_group translation
(see Section 3.2.3).

3.2.3 Application_group Translation
Application_group translation reads the group names specified in the
application from the CDD and translates the intermediate-format group
file built from the group_task translation to its equivalent STDL task group
specification (see Section 3.2.1).

Synopsis
The command syntax is:

BUILD APPLICATION application_name [/STDL]

Description
The parameter application_name refers to the name of an ACMS application.

The /STDL qualifier directs the translator during the ACMSADU BUILD
APPLICATION to generate STDL code using the intermediate-format group
file that was created during the ACMSADU BUILD GROUP compilation. The
output is a file with a name in the following format:

application_name.STDL

Note

As indicated by this format, ACMSADU creates an STDL task group
specification but applies the ACMS application name as the STDL task
group name.

3–4 Preparing ACMS Applications for Client Access

ACMSADU generates in the default directory an STDL source file containing a
task group specification and related data type definitions. The output file name
application_name is derived from the ACMS application name. You use this
file to create the client interface (see Section 3.2.5).

3.2.4 Actions During Application_group Translation
ACMSADU accesses the CDD to find the group name and reads application
information from the CDD including the ACMS group name. Then ACMSADU
uses the application name to locate and to read the corresponding group
temporary file. Next, ACMSADU processes the internal descriptions of the
records and writes them in STDL format with duplicate names removed (see
Section 3.2.6 for the restrictions).

After each task name is processed, ACMSADU generates the STDL TASK
ARGUMENT statement, which includes the task parameters and an indication
as to whether they are input or output. The arguments are as follows:

• A record containing a text field of 256 characters for the selection string as
an input argument.

• A record containing a text field of 80 characters for the extended status as
an output argument.

• Any arguments defined in the TDL task definition, in order.

The resulting file that ACMSADU generates contains an STDL task group
specification that you use in the next stage of development (see Section 3.2.5).
See Section 3.2.6 for information on ACMSADU restrictions.

3.2.5 Using the Output of Application_group Translation
Use the file containing the STDL task group specification that ACMSADU
generates (see Section 3.2.3) to generate the adapters for the client. The next
steps you take are on the client development platform, as follows:

1. Copy the STDL task group specification to the client development system
on which you have HP TP Web Connector installed and to the directory in
which you are going to build the client.

2. Edit the STDL task group specification on the client development system
to provide a nonzero UUID (see Section 2.2).

3. Follow the procedures for the type of client, as follows:

• For the C client, see Chapter 6.

• For the Automation server, see Chapter 7.

• For the Java client, see Chapter 8.

Preparing ACMS Applications for Client Access 3–5

3.2.6 ACMSADU Extension Restrictions
ACMSADU has the following restrictions:

• One ACMS task group per application

Each application is limited to exactly one ACMS task group.

• An ACMS task cannot be renamed in the ACMS application definition.

• Exchange I/O not supported

Exchange I/O statements are not supported. Refer to the HP ACMS for
OpenVMS ADU Reference Manual for information on building no I/O
tasks.

• COLUMN MAJOR feature not supported

HP TP Web Connector software does not allow the reordering of rows and
columns of an array to support the COLUMN MAJOR feature of the CDD.

• Record names must be unique

All record names within a group must resolve to a unique name. STDL
record names are the CDD simple names. If two CDD record names have
the same simple name, edit the source code to differentiate the two records.

• All tasks are processed as GLOBAL

ACMS software allows tasks to be identified as LOCAL or GLOBAL in
the task, group, and application definitions. For the purposes of STDL
translation, all tasks are processed as GLOBAL tasks. Therefore, when
you build an application with the /STDL qualifier, all tasks appear in the
.STDL file that the ACMSADU utility creates. If a HP TP Web Connector
client calls a LOCAL ACMS task, the runtime system flags the call as an
error.

3.2.7 Converting Records
ACMS software uses records to allow data to be passed from user agents or
forms acting as agents, through the ACMS system to ACMS servers, and back
to the caller. These records are buffers containing record-like structures made
up of fields. Each field has a name, a data type, and other attributes.

The data descriptions used by ACMS software to describe records are defined
by either the CDDL utility in DMU format or the CDO utility in CDO format,
and then are placed into the CDD. Record descriptions are extracted from
the CDD by various OpenVMS and user programs, including agents, forms
systems, the ACMS system, and OpenVMS compilers when compiling ACMS
servers. When creating an STDL task group specification from an ACMS

3–6 Preparing ACMS Applications for Client Access

application, ACMSADU extracts record descriptions from the CDD and
translates them to STDL format.

3.2.8 Translating Data Types from OpenVMS to STDL
Fields within the ACMS records all have an OpenVMS data type. ACMSADU
creates the #Pragma statements in the generated data type definitions. During
compiling, ACMSADU selects a corresponding STDL data type for each
OpenVMS data type that can be expressed in the CDD. Not all OpenVMS data
types are represented in STDL, so the ACMS Gateway adapter makes some
conversions at runtime according to the ACMSADU selections. Tables 3–1 to
3–4 summarize the OpenVMS data type support for the HP TP Web Connector
Gateway for ACMS software. Those data types labeled NOT SUPPORTED are
flagged as warnings by the STDL compiler.

Table 3–1 describes integer support.

Table 3–1 Integer Support for the ACMS Gateway Adapter

OpenVMS Data Type STDL Data Type
OpenVMS Pragma Data
Type

SIGNED BYTE INTEGER SIZE 1 None

UNSIGNED BYTE UNSIGNED INTEGER SIZE 1 None

SIGNED WORD INTEGER SIZE 2 None

UNSIGNED WORD UNSIGNED INTEGER SIZE 2 None

SIGNED LONGWORD INTEGER SIZE 4 None

UNSIGNED LONGWORD UNSIGNED INTEGER SIZE 4 None

SIGNED QUADWORD ARRAY SIZE 8 OF OCTET None

UNSIGNED QUADWORD ARRAY SIZE 8 OF OCTET None

SIGNED OCTAWORD ARRAY SIZE 16 OF OCTET None

UNSIGNED OCTAWORD ARRAY SIZE 16 OF OCTET None

Table 3–2 describes floating point and complex data type support.

Preparing ACMS Applications for Client Access 3–7

Table 3–2 Floating Point and Complex Data Type Support for the ACMS Gateway
Adapter

OpenVMS Data Type STDL Data Type OpenVMS Pragma Data Type

F_FLOATING FLOAT SIZE 4 F_FLOATING

D_FLOATING FLOAT SIZE 8 D_FLOATING

G_FLOATING FLOAT SIZE 8 G_FLOATING

H_FLOATING ARRAY SIZE 16 OF OCTET None

S_FLOATING FLOAT SIZE 4 None

T_FLOATING FLOAT SIZE 8 None

F_FLOATING COMPLEX RECORD
R FLOAT SIZE 4;
I FLOAT SIZE 4;
END RECORD;

F_FLOATING for each field

D_FLOATING COMPLEX RECORD
R FLOAT SIZE 8;
I FLOAT SIZE 8;
END RECORD;

D_FLOATING for each field

G_FLOATING COMPLEX RECORD
R FLOAT SIZE 8;
I FLOAT SIZE 8;
END RECORD;

G_FLOATING for each field

H_FLOATING COMPLEX ARRAY SIZE 32 OF OCTET None

Table 3–3 describes decimal data type support.

Table 3–3 Decimal Data Type Support for the ACMS Gateway Adapter

OpenVMS Data Type STDL Data Type1
OpenVMS Pragma Data
Type

PACKED DECIMAL DECIMAL STRING SIZE X PACKED DECIMAL

UNSIGNED NUMERIC DECIMAL STRING SIZE X UNSIGNED NUMERIC

LEFT OVERPUNCH NUMERIC DECIMAL STRING SIZE X LEFT OVERPUNCH
NUMERIC

LEFT SEPARATE NUMERIC DECIMAL STRING SIZE X LEFT SEPARATE
NUMERIC

1The maximum SIZE for the decimal data type is limited to 18.

(continued on next page)

3–8 Preparing ACMS Applications for Client Access

Table 3–3 (Cont.) Decimal Data Type Support for the ACMS Gateway Adapter

OpenVMS Data Type STDL Data Type1
OpenVMS Pragma Data
Type

RIGHT OVERPUNCH NUMERIC DECIMAL STRING SIZE X RIGHT OVERPUNCH
NUMERIC

RIGHT SEPARATE NUMERIC DECIMAL STRING SIZE X RIGHT SEPARATE
NUMERIC

ZONED NUMERIC DECIMAL STRING SIZE X ZONED NUMERIC

1The maximum SIZE for the decimal data type is limited to 18.

Table 3–4 describes other data type support.

Table 3–4 Other Data Type Support for the ACMS Gateway Adapter

OpenVMS Data Type STDL Data Type
OpenVMS Pragma Data
Type

DATE DATE VMS DATE

VARYING STRING Not supported

3.2.9 Translation of Other Record and Field Properties
Other properties may be defined in the CDD for records and fields. ACMSADU
supports translation of the following property to STDL:

OCCURS
The OCCURS field declares fixed-length, one-dimensional arrays.

OCCURS n TIMES

Preparing ACMS Applications for Client Access 3–9

4
Compiling STDL Applications

This chapter presents environment information and STDL command line
reference material for use with HP TP Web Connector software in generating
adapter stubs used for client access to TP applications.

Note

For information about invoking the STDL compiler through the client
build utility graphical user interface (GUI) on a Windows system, see
Chapter 5.

4.1 STDL Compiler Environment Setup
To run the STDL compiler, you must register the environment variables needed
by the compiler. From a command window, run the stdl_set_version.bat
batch file from the directory named in the following format:

install-directory\ stdl\bin

The value install-directory is the drive and directory in which you installed the
HP TP Web Connector software. For example, if you installed the product in
the C:\tpware directory, you would type the following:

C:\tpware\stdl\bin\stdl_set_version.bat

When execution completes, the STDL development environment is set up.

4.2 Using the STDL Compiler
The stdl command invokes the STDL compiler. The STDL compiler translates
STDL definitions and specifications contained in the input source file and
produces both object code to link with the clients and other outputs to aid
source code development. For the HP TP Web Connector product, the STDL
compiler generates adapter stubs used for client access to STDL tasks and
ACMS applications.

Compiling STDL Applications 4–1

Synopsis
The stdl command syntax is:

stdl [-cswLMNX]

[-a in_adapter:out_adapter]

[-h directory] [-i path]

[-o directory] [-S include]

[-u uuid] [-v version] source-file-name

source-file-name
The input STDL source file designated by source-file-name must contain a task
group specification. Use a nonqualified or fully qualified file name as input to
the stdl command. All files specified with nonqualified names must be in the
current working directory. The compiler appends the .stdl suffix to the name
of the STDL input source file if you omit a suffix in the source file name.

Option Flags
-a in_adapter:out_adapter
Specifies an input adapter and an output adapter to provide interfaces between
a calling client and a task.

Input adapters are described in Table 4–1.

Table 4–1 HP TP Web Connector Input Adapters

Adapter Description

async Provides an asynchronous interface for a C-language client. To
start the task call, the client calls an adapter procedure whose
function prototype is generated by the STDL compiler. The call
returns before the task call completes. When the task completes,
the adapter invokes the callback routine provided by the client (see
Section 6.4).

auto Provides an interface for a client developed in an Automation
language (see Section 7.3).

c Provides a synchronous interface for a C-language client (see
Section 6.2).

(continued on next page)

4–2 Compiling STDL Applications

Table 4–1 (Cont.) HP TP Web Connector Input Adapters

Adapter Description

java Provides an interface for a Java client. The Java classes that
represent the application objects present their data record fields as
public members (see Section 8.3).

javabeans Provides an interface similar to JavaBeans for a Java client. The
Java classes that represent the application objects present their data
record fields through accessor methods (see Section 8.3).

Output adapters are described in Table 4–2.

Table 4–2 HP TP Web Connector Output Adapters

Adapter Description

acmsda Produces an interface that calls ACMS tasks using ACMS RPC
communications.

The flag produces an adapter stub that contains the particular input adapter
suited to the language in which you developed the client and a specific output
adapter designed to call the task. Based on the input and output adapters
specified, other output files are produced (see the section titled ‘‘Compilation
Output’’ later in this chapter).

-c
Generates a C header file (see the section titled ‘‘Compilation Output’’ later in
this chapter). Use this option for clients that use a C or asynchronous C input
adapter. The file is written either into the current working directory or into
the directory specified by the -h flag.

-h directory
Specifies a directory into which the STDL compiler generates C header files.
By default, the compiler generates the C header files in the current working
directory.

-i path
Specifies a directory search path for STDL #INCLUDE and #CINCLUDE
files. A path argument must be either a legal directory specification or an
environment variable. If you specify multiple arguments, separate each by a
semicolon (;), and enclose environment variables in percent characters (%).

Compiling STDL Applications 4–3

For example:

/a/b;/b/b;%PATH%
C:a\a;D:b\b;%PATH%

The compiler searches for the #INCLUDE or #CINCLUDE files in the following
order:

• Path containing the top-level source file

• Path specified by the -i flag

• Directories listed in the STDL_INCLUDE_PATH environment variable

-L
Produces a line-numbered source code listing file (see the section titled
‘‘Compilation Output’’ later in this chapter). Use the -S include flag with
this flag to include in the listing file the contents of the files specified in the
#INCLUDE and #CINCLUDE directives.

-M
Specifies that the STDL source files use Multivendor Integration Architecture
(MIA) syntax. The default is X/Open syntax.

-N
Terminates with a null character each string contained in workspaces in the
STDL source files. The default is to pad with space characters unused storage
in strings in workspaces.

-o directory
Specifies a drive and directory into which the compiler generates output files
(see the section titled ‘‘Compilation Output’’ later in this chapter). By default,
the compiler generates these output files in the current working directory.

-s
Performs only syntax and semantic checks on the input source file. Does not
generate any output files. By default, the compiler generates output as directed
by other options.

-S include
When used with the -L flag, includes in the line-numbered source code listing
file the contents of the files in the #INCLUDE and #CINCLUDE directives. If
you specify the -L flag without the -S include flag, the compiler includes only
the input source file in the listing file.

4–4 Compiling STDL Applications

-u uuid
Specifies the default universal unique identifier (UUID) for the first processing
group specification in the input file that does not have a UUID specified in the
STDL syntax. If the input file contains a processing group specification with
no UUID specified, this flag is required. The -u flag applies only to processing
groups that you are compiling, not to processing groups to which the STDL
source refers. A UUID value comprises hexadecimal digits (X) grouped as
follows:

"XXXXXXXX-XXXX-XXXX-XXXXXXXXXXXX"

-v version
Specifies the default version number for any task group or processing
group specification in the input file that does not designate a version in the
specification syntax. The compiler defaults to assigning a version of 0.0 for
any processing group with no syntax-specified version unless you specify a
version with the -v flag. For version, specify a decimal literal without a sign.
Processing group specifications included for reference only do not require a
version number on the command line.

-w
Suppresses warning messages. The default is to display warning messages.

-X
Specifies that the STDL source files contain X/Open syntax.

The STDL compiler defaults to X/Open STDL syntax. To compile Multivendor
Integration Architecture (MIA) syntax, use the -M flag.

Description
The STDL compiler generates adapter stubs used for client access to ACMS
tasks. (Task compilation is not supported.) The compiler directs output to the
current working directory, the directory containing the top-level input source
files, or to directories specified by the option flags or by the values set by
environment variables.

The compiler converts the names of the task groups as follows:

• Changes the letters to lowercase

• Replaces any hyphen characters (-) with underscore characters (_).

Compiling STDL Applications 4–5

Compilation Output
The STDL compiler generates the following output files based on the contents
of the STDL source files and on the flags used during compilation:

• Listing file with a name in the following format:

source-file-name.lis

The value source-file-name is the same name as the input source file and
has a suffix of .lis that signifies a listing file.

This file contains line-numbered source code statements, with error
messages inserted directly under each source line containing an error,
and a summary report. The file is generated when you use the -L flag.

• C header file with a name in the following format:

source-file-name.h

The value source-file is same name as the input source file and has a file
type of .h to designate a C header file. The header file contains function
prototypes and C-language definitions for STDL data types. This file is
generated when you use the -c flag but omit the -s flag.

Include this file in any C programs that call ACMS tasks, or that refer to
STDL data type definitions.

• Adapter stub

The name is in the following format:

group_in_adapter_out_adapter.obj

This file uses the converted name of the task group (group) and contains
the adapter stub created with the -a flag and with the adapters specified
in the in_adapter and out_adapter arguments. (If you specify an
asynchronous input adapter, c appears in the name, not async.)

The compiler generates the adapter stub if you use the -a flag but not the
-s flag.

Link the adapter stub as follows:

With the C client executable if the input adapter is c or async (see
Chapter 6)

With the resource file group_auto.res if the input adapter is auto (to
create an Automation server DLL, see Section 7.1)

• Resource file with a name in the following format:

group_auto.res

4–6 Compiling STDL Applications

This file uses the name of the task group group and provides access to a
type library for use with an Automation adapter. The compiler generates
this file if you specify the -a flag with an auto input adapter.

To create an Automation server DLL, link this OLE resource object with
an adapter stub that includes an Automation adapter, with a name in the
following format:

group_auto_out_adapter.obj

See Section 7.1.

• Java archive file with a name in the following format:

group_out_adapter.jar

This standalone file contains the Java classes for the task group with group
as the converted name of the task group. The compiler generates this file
if you specify the -a flag with java or javabeans as the input adapter. The
file is used at runtime.

Compiling STDL Applications 4–7

5
Using the Client Build Utility

This chapter describes how to use the TPware client build utility and its GUI
to build Automation or C clients on client systems.

5.1 Building Client Programs
The TPware client build utility provides a GUI that makes it easier for you to
create Automation or C clients. You provide input through the GUI, and the
utility creates the files needed to build the client program.

As input, you provide the utility with an STDL task group file name, an input
adapter type, an output adapter type, and an output directory name. The
utility places the created files in the specified output directory along with a
log file that describes the results of running the utility, including errors if any
occurred. The utility notifies you whether the build succeeded or failed.

Although the client build utility eliminates some of the complexity of having
to create a makefile (the utility creates the client makefile), you need to refer
to Chapter 2 and the specific client chapters for other steps associated with
creating a client.

Using the client build utility requires that you fulfill the following
prerequisites:

• Your client development must be on a supported client platform. See the
HP TP Web Connector SPD for supported client platforms.

• Visual Studio must be in the path.

• Your STDL task group specification must contain a valid UUID. If you use
ACMSADU to create your task group, generate the UUID and insert it
into the task group’s STDL code before using the client build utility (see
Section 2.2).

• You must copy your STDL task group specification file and any related files
(such as a file containing data type definitions) from your server system to
your client system.

Using the Client Build Utility 5–1

• Your STDL task group specification must contain only one task group.

The following sections describe some differences in the way the utility builds
specific clients.

5.1.1 Building an Automation Client
If the input adapter type that you specify is Automation, the utility creates
a makefile that invokes the STDL compiler and the platform linker to create
a DLL that is invoked by the Automation client. The utility performs the
following operations:

1. Invokes the STDL compiler to create the required object files in a
temporary subdirectory.

2. Invokes the linker to link all object files from this subdirectory into the
DLL.

3. Places the DLL in the output directory.

See Chapter 7 for information about registering this DLL and other steps for
creating an Automation client.

5.1.2 Building a C Client
If the input adapter type that you specify is C, the utility creates a makefile
that invokes the STDL compiler to create build files in the output directory.
As shown in Table 5–1, the files generated for building a client depend on the
output adapter type that you specify.

Table 5–1 Files Generated for a Client Build

Adapter Type File Type File Name

ACMS Header input_file_name.h

Object task_group_name_c_acmsda.obj

A header file (.h) is a file that you include in your C compile. Object files (.obj)
are files that you link with your C client.

See Chapter 6 for more information about linking object files and libraries with
your C client.

5–2 Using the Client Build Utility

5.2 The Graphical User Interface
The client build utility allows you to easily enter your requisite build
information through a GUI. By using the GUI, you do not need to use the
STDL command-line interface and, in the case of Automation clients, you do
not need to write a client build makefile.

To invoke the client build utility, choose TPware Client Build Utility from the
TPware program group. When the TPware Client Build Utility screen opens,
enter the information that is appropriate for the client that you want to build:

1. Enter the STDL Filename of your STDL task group specification, or click
the Browse button to select the file name.

2. Enter an Output Directory name, or click the Browse button to select
a directory. The utility generates output in this directory. If you do not
specify an output directory, the utility generates the output files in the
same directory that contains the input (that is, the same directory as the
STDL task group specification file).

3. From the Input Adapter Type drop-down list, select one of the following:

• C

• Automation

4. From the Output Adapter Type drop-down list, select the output adapter
type from a list that might include any of the following (depending on the
TPware products that you have installed):

• ACMS

5. Click the OK button. When the build is completed, the utility displays a
message that notifies you whether the build was successful and gives you
the option to view the log file.

In the output directory, the utility creates a subdirectory for temporary files.
When the build is completed successfully, the utility deletes this subdirectory.

The utility also creates a log file, makefile, and a batch file in the output
directory. If the object files or the DLL are created successfully, the utility
deletes the makefile and batch file. However, if errors occur, the utility retains
these files for debugging purposes.

Using the Client Build Utility 5–3

Before invoking the makefile that invokes the STDL compiler, the utility runs
the stdl_set_version.bat batch file to set up the environment for the STDL
compiler to run successfully. The location of stdl_set_version.bat depends
on an environment variable (STDL_DEV_DIR) that is set during installation
of the product (see Section 4.1). If the utility cannot find this file via the
environment variable, an error occurs.

5–4 Using the Client Build Utility

6
Writing and Building C and Asynchronous

Clients

Client programs written in C can call:

• TDL tasks executing under an ACMS system

6.1 Steps for Writing and Building the Client
To build a client program written in C, do the following:

1. Obtain the HP-related client development components depending on the
type of tasks being called and the type of platform on which the client and
server are being developed.

• Perform the following steps to obtain the components:

a. Copy to the client development system a task group specification
and any related files from an ACMS system (see Section 2.1).

b. Compile the STDL task group specification.

Note

When building a C client program you can perform the compile step
using the client build utility GUI (see Chapter 5) rather than the
command line interface described here. However, this utility does not
support asynchronous clients.

On the STDL compiler command line, use the -c flag and the
-a flag. See Section 4.2 for the complete stdl command syntax.
With the -a flag, supply the appropriate input adapter and output
adapter from those shown in Table 6–1.

Writing and Building C and Asynchronous Clients 6–1

Table 6–1 C Client Adapter Specifications

Specification Purpose

Input
Adapters

async Executes asynchronous calls to ACMS tasks .

c Executes synchronous calls to ACMS tasks or.

Output
Adapters

acmsda Calls ACMS tasks.

For example:

stdl -c -a c:acmsda test_task_group

The command generates a C header file and produces a C input
adapter and a acmsda output adapter in the generated adapter
stub. The compilation produces files with names in the following
format:

group.h

group_c_out_adapter.obj

The format conventions are:

group Converted name of the compiled STDL task group
specification. When developing client interfaces for
ACMS applications, the group name prefix is the ACMS
application_name prefix (see Section 3.2.3).

c Value for either the C or asynchronous input adapter.
If you specify an asynchronous input adapter, c appears
in the name, not async.

out_adapter One of the values for the specified output adapters
listed in Table 6–1.

See the section titled ‘‘Compilation Output’’ in Section 4.2.

2. Write the client procedures.

a. Use the header file to code the task calls (see Section 6.2).

b. Decide whether to use the call attributes string (see Section 6.3).

c. If the C client program that you are building executes asynchronous
calls, see also Section 6.4.

d. Check status. After the call to the task, access STDL status using the
einfo structure (see Section 6.5).

3. Compile the client program.

6–2 Writing and Building C and Asynchronous Clients

4. Link the following items to produce the client image. This step is the same
for C or asynchronous C clients.

• Objects and libraries that depend on the type of task that the C client
calls and the output adapter used, as shown in Table 6–2.

Table 6–2 C Client Adapter-Dependent Link Input

If Client Calls... Input File Name Comment

ACMS tasks (uses the
acmsda adapter)

group_c_acmsda.obj The adapter stub for the ACMS
application (STDL task group)

stdl_acmsda.lib ACMS Gateway adapter
runtime link library

• Client program files

All of the object files

Any libraries required by the object files

• The TPware runtime library:

stdl_rtm.lib

5. If your client uses the Microsoft Internet Information Server Application
Programming Interface (ISAPI) to access TP applications, ensure that IIS
can locate and cache the appropriate ISAPI DLLs for your C client (see
Sections 9.6 and 9.5.1).

6.2 C-Language Support
The STDL compiler generates C header files to support client development.
Include the following files in your C client:

• Group header file source-file-name.h—Contains the following source code:

Function prototypes that define the interface to the tasks and the
structure definitions for arguments passed to the called tasks (see
Sections 6.2.1 to 6.2.4). The STDL compiler generates the contents
based on the tasks defined in the task group specification.

A generated function for specifying the call attributes string (see
Section 6.3).

The stdl_srtl_translate_ecode function to return the error message
text translated from the value in the ecode field (see Section 6.5.3).

Writing and Building C and Asynchronous Clients 6–3

• Exception information header file einfo.h—Contains the C structure
definition for the einfo external variable (see Section 6.5.1).

• Exception class header file eclass.h—Equates the symbolic name (class
identifier) for each exception class with its exception class value (see
Section 6.5.2).

6.2.1 Function Prototypes and Argument Passing
The STDL compiler creates a function prototype that contains a C external
task name function declaration for each noncomposable task in a task group
specification. The function prototypes are written to the group header file and
have the formats described in Sections 6.2.1.1 and 6.2.1.2.

6.2.1.1 Task Call Function Prototype Format
Unless the calls are to ACMS applications (see Section 6.2.1.2), generated
function prototypes have the following format:

converted-task-name([argument [,...]])

Task names are converted to function names according to the rules for
identifiers (see Section 6.2.4). Task function declarations do not have a return
value, and all arguments are passed as pointers.

In the client program, call the C procedure for the tasks as normal procedure
calls.

For each task argument, declare a variable using the STDL data type definition
from the group header file.

6.2.1.2 ACMS Task Call Arguments
If the calls are to ACMS applications, functions have two extra arguments in
the following format:

converted-task-name(string,status[,argument [,...]])

The extra arguments are:

string A selection string, consisting of one STDL record containing one
256-character field of data type ISO-LATIN-1 text.

status An extended status string, consisting of one STDL record containing
one 80-character field of data type ISO-LATIN-1 text. This extended
status is message text associated with an ACMS error returned from
the ACMS application.

See Section 2.4.2.2.

6–4 Writing and Building C and Asynchronous Clients

6.2.2 STDL to C Data Type Mapping
The group header file contains C definitions corresponding to record data type
definitions in the STDL source files. Table 6–3 maps the STDL data types
to the C data types. The STDL compiler generates header files with these
mappings.

Table 6–3 Mapping STDL Data Types to C Data Types

STDL C

ARRAY SIZE n OF type type id[n]

ARRAY SIZE n OF ARRAY SIZE m
OF type

type id[n] [m]

ARRAY SIZE n TO m
DEPENDING ON number
OF type 1

struct rec {
long int number ;
type id[n] ;

} ;

DECIMAL STRING SIZE a SCALE b char id[a+1] 2

INTEGER long id (or equivalent
signed long, long int or
signed long int)

OCTET unsigned char id

TYPE rec IS RECORD
id IS type ; END ;

struct rec {
type id; } ;

TEXT SIZE n CHARACTER SET
ISO-LATIN-1
ISO-LATIN-2
SIMPLE-LATIN

char id[n]

UUID uuid_t id 3

1The number of repetitions of a variable length array is mapped as a record rec containing the
number of repetitions and the repeated array.
2The data transferred is a character string in ISO 6093:1985, signed NR1 format, consisting of a
row of one sign (or blank character) and digits that do not include characters indicating a decimal
point. The user program should convert the representation to a decimal number.
3The uuid_t value is a typedef for the DCE UUID.
Key to Variables

a, b, m, n—An appropriate decimal number
id, number, rec—An appropriate name
type—A valid STDL data type or a user-defined data type identifier

Writing and Building C and Asynchronous Clients 6–5

6.2.2.1 Additional ACMS to C Data Type Support
If you are developing a client to call an ACMS application, additional data
types are supported. The ACMSADU provides compilation support for some
OpenVMS data types and the ACMS Gateway adapter provides runtime
support (see Section 3.2.8). Data types in addition to those supported by
STDL are supported for writing clients for ACMS applications as shown in
Table 6–4.

Table 6–4 Mapping of Additional ACMS Data Types to C Data Types

STDL C

DATE char[17] where the bytes are in the
following format:

YYYYMMDDHHmmSSttt

For example, New Year 2002 at midnight is
"20020101000000000".

FLOAT SIZE 4 float

FLOAT SIZE 8 double

INTEGER SIZE 1 char

INTEGER SIZE 2 short

INTEGER SIZE 4 int

UNSIGNED INTEGER SIZE 1 unsigned char

UNSIGNED INTEGER SIZE 2 unsigned short

UNSIGNED INTEGER SIZE 4 unsigned int

6.2.3 Structures for STDL Data Types
C definitions of STDL data types have the struct format shown in
Example 6–1.

The data type identifier from the STDL data type definition is used as the
name of the C structure tag. Each field definition within the STDL record is a
named member of the C structure. The order and number of the members of
the structure within the C include file match the order and number of the field
definitions in the STDL definition.

6–6 Writing and Building C and Asynchronous Clients

Example 6–1 C Representation of an STDL Data Type Definition

struct data-type-identifier {

c_mapping_for_field_type field-1-name ;

c_mapping_for_field_type field-2-name ;

.
.
.

} ;

A field definition that refers to a previously defined data type identifier has the
following format:

struct data-type-identifier field-name.

All comments in the data type definition appear in the generated C header file.

The STDL compiler represents DEPENDING ON as an array definition with
the number of repetitions being defined by the application program:

TYPE rec_id IS RECORD
number_id INTEGER ;
array_id ARRAY SIZE n TO m DEPENDING ON number_id OF type ;

END ;

The values n and m represent numbers. Simple arrays within structures
(records) are not null terminated.

6.2.4 STDL Identifier to C Identifier Conversion
The C identifiers are derived from the corresponding STDL identifiers
according to the following rules:

• All uppercase Latin characters are converted to lowercase.

• Hyphens (-) are converted to underscores (_).

• No other characters are changed.

The C language does not support Kanji characters in identifiers.

Writing and Building C and Asynchronous Clients 6–7

6.3 Specifying the Call Attributes String
The C client passes to the C input adapter call attributes as a pointer to
a string using a procedure generated by the STDL compiler. The function
declaration for specifying the call attributes string is:

void group_set (char * attributes_string)

The value for group is the converted name of the task group. The attributes_
string argument represents values passed to the output adapter.

The values that you can pass to the output adapter vary with each output
adapter (see Section 2.3). The information passed on the call is kept by the
input adapter on a per-thread/per-group basis. If a thread calls tasks in more
than one group, the thread must call the group_set procedure for each group
for which it intends to set the call attributes. For example, if a thread calls
ACMS applications, any login information set for one application is not used
when calling another application.

If the client program provides a new call attributes string, the previous call
attributes string is overwritten. If the client program provides a null string for
the call attributes string, then subsequent calls made to that group from that
thread will have no call attributes string.

If an error is encountered in the group_set procedure, the error is returned in
the einfo structure (see Section 6.5).

6.3.1 Calling ACMS Tasks with Call Attributes
To call ACMS tasks (that is, use the ACMS Gateway adapter acmsda) with call
attributes, your source code creates a string with the call attribute information.
For example:

char call_attr[100] = "application:add_acms_appl,
node:nodea,
authentication:usera:mypassword";

Note

Do not use spaces in the string.

Use the group_set function generated when you compiled the STDL task group
specification to supply the address of the call attribute string. For example:

add_acms_appl_set(&call_attr);

When the client program calls a task, the call attribute values specified in the
call_attr array are passed to the output adapter.

6–8 Writing and Building C and Asynchronous Clients

6.4 Using the Asynchronous C Interface
The asynchronous input adapter allows a C client to execute asynchronous
calls to ACMS tasks . The client thread must allocate the storage for the task
arguments either on the heap or in static storage rather than in stack storage.
The call made by the client thread returns before the task call completes and
can do other work.

6.4.1 Asynchronous Call Thread Use
The output adapter for the asynchronous call executes on a separate thread
from the client. After the called task executes, the runtime system executes a
completion routine specified by the client thread on the same thread used
for the output adapter. Use the management GUI to select the thread usage
semantics that are best suited for your application (see Section 10.2.3).

6.4.2 Using C Clients with the Asynchronous C Adapter
The client program must include the header file generated by the STDL
compiler.

The client thread performs each call to a task as follows:

• Uses the same name that an STDL C client would use.

• Passes two additional arguments as the first and second arguments:

The address of the completion routine

Defines the completion routine as a _ _stdcall procedure that returns
a void and accepts one argument: a pointer to void.

If the client passes STDL_C_SYNCHRONOUS as the completion
routine address, the call is made synchronously and the completion
routine is not called.

If the client passes NULL as the completion routine address, the call
executes asynchronously, the output adapter executes on a separate
thread, but no callback is made.

A pointer to void to pass to the completion routine

This argument is passed to the completion routine, allowing it to
establish the required context.

The client thread typically does the following:

• Allocates all of the task arguments on the heap.

• Passes, as the completion routine parameter, the address of a structure
containing all of the arguments.

Writing and Building C and Asynchronous Clients 6–9

• Checks the einfo structure after starting the asynchronous call (see
Section 6.5).

If the client thread receives einfo status that indicates no error, the client
thread successfully started the asynchronous call, and the runtime system
always calls the completion routine.

• In the completion routine, checks the einfo structure. (This variable is
thread-safe.)

Any error encountered in the execution of the called task is returned to the
completion routine in the einfo structure.

6.5 Using the einfo Structure to Check Status
A C client executing either synchronous or asynchronous calls uses the einfo
structure to check STDL EINFO status returned from the task call (see
Section 2.4).

6.5.1 Exception Information Header File
The C structure definition that corresponds to the STDL EINFO data type
definition is shown in Example 6–2.

Example 6–2 C Structure Definition for the einfo Variable

#ifndef EINFO_H
#define EINFO_H

.

.

.
#define einfo tps_rpc_get_einfo()->info

typedef struct
{
struct

{
int eclass;
int ecode;

(continued on next page)

6–10 Writing and Building C and Asynchronous Clients

Example 6–2 (Cont.) C Structure Definition for the einfo Variable

char eproc[32];
char epgroup[32];
int esource;
uuid_t ecgroup;
} info;

} tps_rpc_einfo_t;

/* function prototypes */

tps_rpc_einfo_t *tps_rpc_get_einfo();

#endif

The members in the einfo structure in C correspond to the fields in the STDL
EINFO data type definition. The STDL compiler generates the C-language
version of the STDL EINFO data type for use in C clients and servers.

6.5.2 Exception Class Header File
The eclass.h header file contains for each exception class identifier a C define
statement using the following format:

#define class-identifier exception-class-value

For example:

#define ap_invocation_fault -3

The value class-identifier is the exception class and exception-class-value is
the equivalent integer. Section 2.4 provides a summary of STDL exception
information.

6.5.3 Examining Exception Information in C
C client programs examine the einfo structure upon completion of a procedure
call. The runtime system returns an exception by setting the STDL-defined
external variable einfo. To determine whether an exception is raised,
the C client program examines the exception data supplied in the einfo
external structure when the call returns. For example, use the structure
member einfo.eclass to determine whether an exception is returned and use
einfo.ecode to process the exception (see Section 2.4.2).

HP TP Web Connector software provides a function to retrieve the message
text associated with the value found in the einfo.ecode field. For example:

printf("Error on task call: %s\n\n", stdl_srtl_translate_ecode(einfo.ecode));

Writing and Building C and Asynchronous Clients 6–11

6.6 Next Steps
After you test and debug the client, set up the management environment.

1. Use the management GUI to establish runtime connections and
parameters.

• If the client calls ACMS tasks, set up parameters (see Section 10.2.4).

• For all clients, establish the thread usage semantics setting. Thread
control applies in the following circumstances:

If the client uses the ACMS Gateway output adapter, setting
the thread control restricts the number of connections made to
the called server machine. If there are too many connections
(no limit is set), calls beyond a certain limit fail because of
resource exhaustion. (The number of connections on the called
server machine is controlled by a TCP/IP Services for OpenVMS
parameter.)

Use the Threads tab in the management GUI to establish the thread
usage semantics setting (see Section 10.2.3).

2. Set up error logging for the client (see Appendix A).

3. If the client calls an ACMS task, set up the ACMS Gateway adapter
environment (see Section 10.3).

6–12 Writing and Building C and Asynchronous Clients

7
Writing Automation Servers and Clients

Client programs developed with an Automation language (for example, Visual
Basic, Visual J++, VBScript, and JScript) can call:

• Tasks in TDL task groups executing under ACMS software

For Java clients developed using Visual J++, the STDL compiler generates
COM objects that you register and import into the Visual J++ project as
Java classes. You use in your client application the generated Java classes
to set and obtain record attributes and invoke tasks. For information on
how to program using Java classes generated from COM objects, refer to the
documentation provided with Microsoft Visual J++.

To write an Automation client, follow these general steps:

1. Build an Automation server for the Automation clients to use (see
Section 7.1).

2. Code the client calls to tasks through the Automation server following the
guidelines in Sections 7.2 and 7.3.

7.1 Steps for Building an Automation Server
Use the STDL compiler to generate an adapter stub containing an Automation
input adapter and an output adapter that can call your TP application. Using
this stub, create an in-process Automation server. An automation server
converts Automation client calls to the format of call designated by the output
adapter in the stub.

To build an Automation server, perform the following steps:

1. Copy to the client development system the task group specification and any
related files from an ACMS system (see Section 2.1).

Writing Automation Servers and Clients 7–1

2. Compile the STDL task group specification.

Note

For ease of use, you can perform the compile and link steps using the
client build utility GUI (see Chapter 5).

On the STDL compile command line, specify input and output adapters
with the -a flag. See Section 4.2 for the complete stdl command syntax.
Use auto for the input adapter and supply the appropriate output adapter
from those shown in Table 7–1.

Table 7–1 Automation Server Output Adapters

Specification Purpose

acmsda Calls ACMS tasks using a gateway

For example:

stdl -a auto:acmsda add_acms_appl

The command creates an Automation input adapter and an ACMS Gateway
output adapter in the generated adapter stub. The compilation produces
files with names in the following format:

group_auto_out_adapter.obj

group_auto.res

The format conventions are:

group Converted name of the compiled STDL task group specification.
When developing client interfaces for ACMS applications, the
group name prefix is the ACMS application_name prefix (see
Section 3.2.3).

out_adapter Name of one of the output adapters from Table 7–1.

res Resource file for the Automation server.

See the section titled ‘‘Compilation Output’’ in Section 4.2.

3. Write the Automation server, using STDL-generated Automation code for
the task group being accessed.

• Access data structures using STDL-generated methods (see
Section 7.2).

• Call tasks using STDL-generated methods (see Section 7.3).

7–2 Writing Automation Servers and Clients

• Handle exceptions from task calls using TPware-supplied objects (see
Section 7.2.1).

4. Specifying the /DLL qualifier to the linker to produce the Automation
server DLL, link the following items:

• Objects and libraries that depend on the type of task that the
Automation server calls and the output adapter used, as shown in
Table 7–2.

Table 7–2 Automation Server Adapter-Dependent Link Input

If Client Calls... Input File Name Comment

ACMS tasks (uses the
acmsda adapter)

group_auto_acmsda.obj The adapter stub for the ACMS
application (the STDL task
group)

stdl_acmsda.lib ACMS Gateway adapter
runtime link library

• The resource file for the task group, with a name in the following
format:

group_auto.res

The value group is the converted name of the compiled STDL task
group specification.

• The following libraries:

stdl_rtm.lib
stdl_auto.lib
ole32.lib
oleaut32.lib
uuid.lib

5. Export the following procedures (these are implemented by the Automation
server stub):

DllGetClassObject
DllCanUnloadNow
DllRegisterServer
DllUnregisterServer

6. After an Automation server is built, register it with COM using regsvr32
to allow it to be used by a client program. For example:

regsvr32 add_acms_appl_auto_acmsda.dll

Writing Automation Servers and Clients 7–3

This regsvr32 command on the Automation DLL registers the type library.
The name of the type library is in the following format:

group_Type_Library

The value group is the converted name of the task group specification. For
example, registering the add_acms_appl Automation server assigns the
type library name as follows:

add_acms_appl_Type_Library

If you rebuild an Automation server and change the STDL task group
specification or records used, you must first uninstall the original server
with regsvr32 and the /u flag.

7.2 Automation Objects and STDL Support
The HP TP Web Connector software provides Automation objects and the
STDL compiler generates Automation objects for the client interface. Sections
7.2.1 to 7.2.4 describe the objects and their properties.

7.2.1 Supplied Objects
The following standard Automation objects are supplied with HP TP Web
Connector software:

STDL.stdl_einfo
STDL.stdl_uuid

These objects are installed when you install the HP TP Web Connector
software.

The STDL.stdl_einfo object is used to store STDL status information in a
Microsoft Automation environment. This object has the following Automation
properties described using Visual Basic data types:

eclass AS LONG
ecode AS LONG
ecode_string AS STRING
eproc AS STRING
epgroup AS STRING
esource AS STRING
ecgroup AS STDL.stdl_uuid

The STDL.stdl_uuid object is used to store the STDL universal unique
identifier (UUID). This object has the following Automation properties
described using a Visual Basic data type:

uuid_string AS STRING

7–4 Writing Automation Servers and Clients

7.2.2 STDL-Generated Automation Objects
The STDL compiler generates Automation objects based on the contents of
the task group specification. The Automation client maps a task group to an
Automation object as follows:

• One Automation object for each task group

• A method for each task

• A property named einfo that points to an STDL.stdl_einfo object that
contains exception information for an STDL call (see Section 7.2.1)

• A property named ecode_string that contains the text of the
message associated with the value of the error code returned in the
STDL.stdl_einfo.ecode property (see Section 7.5.2).

• A property named call_attributes that Automation clients can access to
specify call attribute values to pass to communications adapters on each
call (see Section 7.4)

• Automation objects for STDL records

The Automation object generated for a group has a name in the following
format:

group.Group

The value for group is the converted name of the task group (see Section 7.2.3).

Within the group Automation object, the STDL compiler creates a method for
each task in the task group specification.

HP TP Web Connector software uses Automation objects to model STDL
records. Because Automation does not directly support records, the STDL
compiler generates an Automation object for each record used as an argument
by a task in the task group being called.

The Automation object for each record has a name in the following format:

group.record-name

The compiler creates one of these objects in each of the following cases:

• The STDL data type is used as an argument to a task in the task group.

The value record-name is derived from the STDL data type identifier that
specifies the record layout.

• The STDL data type identifier is used as a data type for a field within
another record object being generated for the task group (X/Open syntax
only).

Writing Automation Servers and Clients 7–5

The value record-name is derived from the STDL data type identifier that
specifies the record layout.

• An embedded record is used as a data type for a field within another record
object being generated for the task group.

The compiler gives the object a name in the following format:

group.field-name_record

The value field-name is derived from the STDL field name.

The compiler creates an object for each argument to be passed to a task. If an
STDL record is used for more than one argument or is included in more than
one other STDL record, the compiler generates only one STDL record object.

For each field within the record, the object has one Automation property.
The property name is derived from the STDL field name and the type of the
property depends on the STDL field type (see Section 7.2.4).

You can use an object browser (for example, the Visual Basic object viewer) to
examine objects defined by the generated Automation server.

7.2.3 STDL Identifier to Automation Name Conversion
The compiler derives Automation names from the corresponding STDL
identifiers according to the following rules:

• All uppercase Latin characters are converted to lowercase.

• Hyphen characters (-) are converted to underscore characters (_).

• No other characters are changed.

7.2.4 Automation Data Type Support
When the STDL compiler generates an Automation object for each STDL
record (see Section 7.2.2), each field from an STDL record is represented by
a property within the generated record object. The type of the property is
determined by the STDL data type of the field as shown in Table 7–3.

7–6 Writing Automation Servers and Clients

Table 7–3 Automation Data Type Mapping

Automation Data Type

STDL Data Type C Visual Basic

ARRAY 1 1

DATE DATE DATE

DECIMAL STRING BSTR STRING

FLOAT SIZE 4 float SINGLE

FLOAT SIZE 8 double DOUBLE

INTEGER SIZE 1 short INTEGER

INTEGER SIZE 2 short INTEGER

INTEGER SIZE 4 long LONG

OCTET unsigned char BYTE

RECORD Record object2 Record object2

TEXT CHARACTER SET ISO-LATIN-1 BSTR STRING

TEXT CHARACTER SET ISO-LATIN-2 3 3

TEXT CHARACTER SET ISO-UCS-2 3 3

UNSIGNED INTEGER SIZE 1 unsigned char BYTE

UNSIGNED INTEGER SIZE 2 short INTEGER

UNSIGNED INTEGER SIZE 4 long LONG

UUID BSTR STRING

1Array references are to the base data type starting with an index of zero.
2An Automation object for the record is created (see Section 7.2.2).
3This data type support is not implemented.

7.2.4.1 JScript Date Fields
In JScript, date fields in workspaces are NOT JScript date objects, but are
instead Automation dates. JScript dates are the number of milliseconds after
January 1, 1970 UTC. For example:

// Date below has value 0 for EST zone (note month 11 is December)
date1 = new Date(1969,11,31,19,0,0);

Assigning JScript dates to workspace dates is illegal. For example:

workspace.datefield = new Date(1969,11,31,19,0,0);

The software returns the Microsoft JScript runtime error ’800a01b6’, Object
doesn’t support this property or method.

Writing Automation Servers and Clients 7–7

Automation dates are formatted as days.fractions past 12/30/1899. The
following assignments are legal:

// Date below is January 1,1999 at 12:00 noon
workspace.datefield = 36161.5;

// Date below is January 1,1900 at 1:00 AM
workspace.datefield = 2.041666;

7.3 Calling Tasks from Automation Clients
To call tasks within a task group, write the Automation client to perform the
following actions:

1. If the client is written in Visual Basic, import the task group type library
having a name in the following format:

group Type Library for ActiveX Access

2. Create an object for each record to be passed as an argument to the task.

This is done by referencing the record object name (group.record-name) in
one of the following ways:

• In a CreateObject service

You can use the Server.CreateObject method to create objects with
session, page, or application scope. Objects with page scope are created
each time the user accesses the page and are destroyed when the server
finishes processing the current page. After session objects are created,
they remain in existence until the current session either is abandoned
or times out.

• By using object references in Visual Basic

For example, for the add_number record in the add_task_group, the object
name is add_task_group.add_number.

If the client calls an ACMS task, the first two arguments are the selection
string and status.

3. Fill in data in the record objects as necessary.

The fields within the record objects are referenced as Automation
properties of the created record object (see Section 7.2.2).

4. Create an object for the task group in one of the following ways:

• By referring to the group object in a CreateObject service with a name
in the following format:

group.Group

7–8 Writing Automation Servers and Clients

The value group is the converted name of the task group.

• By using object references in Visual Basic

For example, the group object name for add_task_group is:

add_task_group.Group

5. Optionally, set the call attributes string (see Section 7.4).

6. Within the task group object, call the task as a method.

7. Check the exception information contained in the group object for the
status of the call to the task (see Section 7.5.1).

7.4 Specifying the Call Attributes String
Automation clients specify call attributes by referencing an Automation
property on the group object (see Section 2.3). This property has the name
call_attributes.

When a new group object is created, the call_attributes property is null.
The Automation client can set the call_attributes property for use on
subsequent method calls using that group object. If the Automation client
provides a new call attributes string, the new string overwrites the old string.
If the Automation client sets the call attributes string to null, then subsequent
method calls on that object will have no call attributes string.

The Automation input adapter does not interpret the contents of the call
attributes string. Any error in the contents of the string is not returned
until the next call on that group object. If an error occurs, a runtime error is
signaled (see Section 7.5.1).

7.4.1 Calling ACMS Tasks with Call Attributes
To call ACMS tasks (that is, use the ACMS Gateway adapter acmsda) with
call attributes, your source code sets the property call_attributes of the task
group object with the call attribute information. For example, if the program
creates an instance of a task object named acms as follows:

Set acms = CreateObject("add_acms_appl.group")

The program then simply sets the call_attributes property using the method
call on the appropriate task group object. For example:

Writing Automation Servers and Clients 7–9

acms.call_attributes = ("application:add_acms_appl,node:a,authentication:usra:psswrd")

Note

Do not use spaces in the string.

When the client program calls a task, the call attribute values specified in
the acms.call_attributes method call are passed to the output adapter at
runtime.

7.5 Automation Errors and Status Checking
Two types of error can be returned when calling a task.

• An Automation runtime error (see Section 7.5.1).

• A task call exception (see Section 7.5.2)

7.5.1 Automation Runtime Errors
Automation runtime error values are returned using a 32-bit number known as
a result handle (HRESULT). Microsoft defines the structure of the HRESULT
value.

Automation errors returned by the adapter begin at the HRESULT value
0x80041001. To determine an STDL error code from the HRESULT format,
subtract 0x80041000 from the Automation error code value:

STDL-error-code = <Automation-error-code-value> - 0x80041000

STDL error codes and their corresponding messages are described in a message
file (see Section 2.4.2.1).

7.5.2 Examining Exception Information in Automation
On each task call, the code should check the exception information for the
status passed back with the call. If an exception occurs, the adapter sets
the eclass property within the STDL.stdl_einfo object to the nonzero
value returned from the task call and the ecode property within the
STDL.stdl_einfo object to a nonzero value representing the STDL error
code returned.

If no error occurs, the adapter sets the eclass property within the
STDL.stdl_einfo object to zero. Use the ecode_string property on the
task group object to extract the message text associated with the value of any
error returned. For example:

7–10 Writing Automation Servers and Clients

Dim acms As Object
Set acms = CreateObject("add_acms_appl.group")
Call acms.add_task(ss, es, input1, input2, answer)
Msgbox ("ecode string = " & CStr(acms.ecode_string))

The CStr function extracts the text from the property on the acms object.

7.6 Next Steps
After you build and debug the client, set up the management environment for
the client.

1. Use the management GUI to establish runtime parameters.

• If the client calls ACMS tasks, set up parameters (see Section 10.2.4).

• For all clients, establish the thread usage semantics setting. Thread
control applies in the following circumstances:

If the client uses the ACMS Gateway output adapter, setting
the thread control restricts the number of connections made to
the called server machine. If there are too many connections
(no limit is set), calls beyond a certain limit fail because of
resource exhaustion. (The number of connections on the called
server machine is controlled by a TCP/IP Services for OpenVMS
parameter.)

See Section 10.2.3.

2. Set up error logging for the client (see Appendix A).

3. If the client calls ACMS tasks, set up the ACMS Gateway adapter
environment (see Section 10.3).

Writing Automation Servers and Clients 7–11

8
Writing Java Clients

A client program developed with the Java language can call tasks in one of the
following environments:

• TDL task groups executing under ACMS

8.1 Overview of Java Client Development
Support is provided for the following kinds of programs developed with the
Java language:

• Clients developed using Microsoft Visual J++.

• Clients developed using the Sun Microsystems Java Development Kit
(JDK). See the HP TP Web Connector SPD for supported versions.

For Java clients developed using Visual J++, the interface is provided through
an Automation input adapter and COM objects (see Section 7.1).

For Java clients developed using the JDK, the interface is provided through
the generated Java input adapter as described in this chapter. The Java client
comprises the application code that you write and STDL-generated Java input
adapter code.

Use the STDL compiler to generate an adapter stub containing a Java input
adapter and an output adapter designated by the type of task calls that the
client makes. The adapter stub is used to build a Java client.

The Java input adapter created as part of the generated adapter stub contains
the following code.

• Java Native Interface (JNI) code

Contained within the DLL that also contains the output adapter, the JNI
code is the interface between the Java components of the stub and the
TPware runtime.

Writing Java Clients 8–1

• Java code

Created as a collection of classes representing the task group specification
and its records, this code is the interface between the client application and
the JNI code.

Thus, your client does not invoke the JNI code directly. You use the Java
classes in the client to call tasks. The Java code in the input adapter calls
the JNI code to convert the task calls to the format designated by the output
adapter that you specify for the adapter stub.

To write a Java client, follow these general steps:

1. Generate the adapter stub and related code for the Java client (see
Section 8.2).

2. Code the client application including calls to tasks, following the
appropriate guidelines (see Section 8.3).

3. Build the Java client and related runtime code (see Section 8.2).

8.2 Steps for Building a Java Client
The Java client can call a task on an ACMS system. To build a Java client
with an adapter stub, perform the following steps:

1. Set up Java-specific environment variables.

In addition to using stdl_set_version (see Section 4.1) and setting up
your C/C++ programming environment, define the environment variables
specific to your Java environment.

(The .bat-style examples assume that your working directory is C:\work,
and that the JDK was installed in the C:\jdk1.1.6 directory.)

• PATH

Define in the PATH environment variable the JDK bin directory and
the directory containing the JNI DLL that is generated by the build.
Place the standard JDK directory in the path before any other JDK
environments installed on the machine. For example:

set path=c:\jdk1.1.6\bin;c:\work;%path%

• INCLUDE

Define in the INCLUDE environment variable the standard JDK and
win32-specific directories. For example:

set include=c:\jdk1.1.6\include;c:\jdk1.1.6\include\win32;%include%

8–2 Writing Java Clients

• CLASSPATH

Define in the CLASSPATH environment variable your working
directory and the directory for the standard JDK classes. Place these
directories before those for any alternative JDK classes. For example:

set classpath=.;..;c:\jdk1.1.6\lib\classes.zip;%classpath%

Before actually running the adapter code, specify in the CLASSPATH
environment variable the path for the JAR file that is generated by the
build (see Section 8.8.1).

2. Optionally, define build environment variables for Java tools that are used
(see Table 8–1).

Table 8–1 Optional Build Environment Variables for Java Tools

Name Purpose

STDL_JAVA_JAR_OPTIONS Overrides default JAR command
line options

STDL_JAVA_JAVAC_OPTIONS Overrides default JAVAC command
line options

STDL_JAVA_JDK_HOME Specifies the location of the JDK
installation root

Use these environment variables only to change default operations for the
Java tools that the STDL compiler calls.

3. Copy to the client development system a task group specification and any
related files from an ACMS system (see Section 2.1).

4. Compile the STDL task group specification.

On the STDL compile command line, specify input and output adapters
with the -a flag. See Section 4.2 for the complete STDL compiler command
syntax. Supply the appropriate input adapter and output adapter from
those shown in Table 8–2.

Writing Java Clients 8–3

Table 8–2 Java Client Adapters

Specification Purpose

Input
Adapters

java The Java classes that represent the application
objects present their data record fields as public
members.

javabeans The Java classes that represent the application
objects present their data record fields through
accessor methods.

Output
Adapters

acmsda Calls ACMS tasks using a gateway.

For example:

stdl -a java:acmsda add_acms_appl

The command creates a Java input adapter and an ACMS Gateway output
adapter in the generated adapter stub. The compilation produces the
following files: †

• A Java archive with a name in the following format:†

group_out_adapter.jar

• A Java adapter stub with a name in the following format:†

group_java_out_adapter.obj

The format conventions are:

group Converted name of the compiled STDL task group specification
(see Section 8.3.2.1).

out_adapter Name of one of the output adapters from Table 8–2.

See the section titled ‘‘Compilation Output’’ in Section 4.2.

5. Write the Java client, using STDL-generated Java classes for the task
group being accessed (see Section 8.3).

6. Link the components by producing the DLL for the Java client. Specifying
the /DLL qualifier to the linker, link the following items:

• The TPware runtime library:

stdl_rtm.lib

† The valuegroup is a converted name (see Section 8.3.2.1).

8–4 Writing Java Clients

• Objects and libraries that depend on the type of task that the client
calls and the output adapter that the client uses, as shown in
Table 8–3.

Table 8–3 Java Client Adapter-Dependent Link Input

If Client Calls... Input File Name Comment

ACMS tasks (uses
acmsda adapter)

group_java_acmsda.obj The adapter stub for the ACMS
application (the STDL task
group)

stdl_acmsda.lib ACMS Gateway adapter
runtime link library

After you perform the link operations and before you run the client, see
Section 8.8 for other steps to perform.

8.3 Java Classes and STDL Support
The HP TP Web Connector software provides the native runtime environment.
The STDL compiler generates Java classes and the Java Native Interface (JNI)
for the client. Sections 8.3.1 to 8.3.3 describe the objects and their properties.
See Sections 8.3.3 through 8.6 for information on coding the Java client.

8.3.1 Einfo Java Class and Access Support
The Java class Einfo is supplied for each task group to store STDL status
information in a Java environment. The task group class has a property called
einfo with a property type of Einfo.

The support for this class depends on whether you use java or javabeans as
the input adapter in the -a flag on the STDL command line.

• For the java input adapter, this class has the following public fields:

public int eclass
public int ecode
public String ecodeString
public String eproc
public String epgroup
public int esource
public String ecgroup

Writing Java Clients 8–5

• For the javabeans input adapter, this class has the following public
accessor methods:

int getEclass() void setEclass(int)
int getEcode() void setEcode(int)
String getEcodeString()
String getEproc() void setEproc(String)
String getEpgroup() void setEpgroup(String)
int getEsource() void setEsource(int)
String getEcgroup() void setEcgroup(String)

See Examples 8–1 and 8–2 for sample code and Section 8.6 for coding
guidelines.

8.3.2 STDL-Generated Java Classes and Methods
The STDL compiler generates Java classes and methods based on the contents
of the task group specification. The Java client maps a task group to Java
classes and methods as follows:

• Name conversion (see Section 8.3.2.1)

• One Java class for each task group (called a task group class) and an
invocation method for each task (see Section 8.3.2.2).

• Classes for STDL records (data type identifiers) and for STDL arguments
(workspaces) used by a task in the task group; and support for accessing
the record classes created (see Section 8.3.2.3).

• Support for Java clients to specify call attribute values to pass to the
output adapter on each call (see Section 8.5).

8.3.2.1 STDL Compiler Name Conversion
When processing the STDL task group specification and related code, the
STDL compiler derives the group name and class names from STDL identifiers
as follows:

• Changes the task group name (group) or an STDL record name to
lowercase. If you are developing a client interface for an ACMS application,
the group name prefix is the ACMS application_name prefix (see
Section 3.2.3).

• Replaces any hyphen characters (-) with underscore characters (_).

• Changes the first character of the name to uppercase.

8–6 Writing Java Clients

8.3.2.2 Task Group Class and Methods
Within the Java class generated for a task group, the STDL compiler creates
an invocation method for each task in the task group specification. To enable
a client program to invoke each task in the task group, the task group class
group contains an invocation method for each task, in the following format.

group.task_name([argument [,...]]);

The name task_name for each invocation method is the same as the
corresponding converted task name. This format is for both the java and
javabeans adapters.

If the client is calling an ACMS application, methods have two extra arguments
in the following format:

group.task_name(string,status[,[argument [,...]]);

The extra arguments are:

string A selection string, consisting of one STDL record containing one
256-character field of data type ISO-LATIN-1 text.

status An extended status string, consisting of one STDL record containing
one 80-character field of data type ISO-LATIN-1 text. This extended
status is message text associated with an ACMS error returned from
the ACMS application.

The task group class encapsulates an Einfo class to process exception
information returned from a task call (see Section 8.3.1).

8.3.2.3 Record Classes and Methods
HP TP Web Connector software uses Java classes to model STDL records. The
STDL compiler generates a Java class for each record in a task and a class for
each argument to be passed to a task. The Java class for an STDL record has
a name in the following format:

record-name_field-name

The value record-name is derived from the STDL data type identifier
that specifies the record layout according to the conversion rules (see
Section 8.3.2.1). The value field-name is derived from the STDL field name
according to the conversion rules (see Section 8.3.2.1).

The compiler creates one of these record classes in each of the following cases:

• The STDL data type identifier is used as an argument to a task in the task
group.

Writing Java Clients 8–7

• The STDL data type identifier is used as a data type for a field within
another record object being generated for the task group (X/Open syntax
only).

The value record-name is derived from the STDL data type identifier that
specifies the field record layout according to the conversion rules (see
Section 8.3.2.1).

• An embedded record is used as a data type for a field within another record
class being generated for the task group.

If an STDL data type identifier is used for more than one argument or is
included in more than one other STDL record, the compiler generates only one
STDL record class.

Support for fields depends on whether you use java or javabeans as the input
adapter in the -a flag on the STDL command line.

• For the java input adapter, public fields are created, with names in the
following format:

public data-type field-name

The public field name is derived from the STDL field name according to the
conversion rules (see Section 8.3.2.1). The data type data-type depends on
the STDL field type (see Section 8.3.3).

To support call attributes, the task group object has a public field defined
(see Section 8.5).

• For the javabeans input adapter, for each field within the record classes
generated, both a get and a set accessor method are created, with names
in the following format:

setfield-name(data-type)

data-type getfield-name()

The method name is derived from the STDL field name according to the
conversion rules (see Section 8.3.2.1). The data type data-type depends on
the STDL field type (see Section 8.3.3).

To support call attributes, the task group object has a property that can be
accessed by set and get accessor methods (see Section 8.5).

You can use a class browser in an integrated development environment (IDE)
to examine objects defined by the generated Java classes.

8–8 Writing Java Clients

8.3.3 Java Data Type Support
When the STDL compiler generates Java classes for STDL records (see
Section 8.3.2), each field from an STDL record is given a data type as shown in
Table 8–4.

Table 8–4 Java Data Type Mapping

STDL Data Type Java Data Type Comment

ARRAY 1

DATE Date

DECIMAL STRING String

FLOAT SIZE 4 float 32-bit IEEE 754

FLOAT SIZE 8 double 64-bit IEEE 754

INTEGER SIZE 1 byte

INTEGER SIZE 2 short

INTEGER SIZE 4 int

OCTET byte A signed quantity

RECORD Record object 2

TEXT CHARACTER SET ISO-LATIN-1 String Unicode characters

TEXT CHARACTER SET ISO-LATIN-2 String 3

TEXT CHARACTER SET ISO-UCS-2 String 3

UNSIGNED INTEGER SIZE 1 byte Signed value

UNSIGNED INTEGER SIZE 2 short Signed value

UNSIGNED INTEGER SIZE 4 int Signed value

1Array references are to the base data type starting with an index of zero.
2A Java object for the record is created (see Section 7.2.2).
3This data type support is not implemented.

8.4 Calling Tasks from Java Clients
To call tasks within a task group, write the Java client to perform the actions
shown in the following examples. Example 8–1 shows a client generated from
using the java input adapter.

Writing Java Clients 8–9

Example 8–1 The Java Adapter Sample add_task Call

class AddMtsClient
{

int add(int x, int y) throws Exception
{

1 Add_task_group_mts taskGroup = new Add_task_group_mts();
2 Add_number inp1 = new Add_number();

Add_number inp2 = new Add_number();
Add_number result = new Add_number();

3 inp1.Data = x;
inp2.Data = y;

4 taskGroup.add_task(inp1, inp2, result);

5 if (taskGroup.einfo.eclass != 0 || taskGroup.einfo.ecode != 0)
{

System.out.println("Einfo error on task call");
System.out.println("eclass = " + taskGroup.einfo.eclass);
System.out.println("ecode = 0x" + Integer.toHexString(taskGroup.einfo.ecode));
System.out.println("eproc = " + taskGroup.einfo.eproc);
System.out.println("epgroup = " + taskGroup.einfo.epgroup);
System.out.println("esource = " + taskGroup.einfo.esource);
throw new Exception("Application error");

}
6 return result.Data;

}

static public void main(String args[]) {
add_mts_client addMtsClient = new add_mts_client();
if (args.length != 2) {

System.out.println("Usage: x y");
}
else {

try {
int x = Integer.parseInt(args[0]);
int y = Integer.parseInt(args[1]);
System.out.println("Answer = " + addMtsClient.add(x, y));

}
catch (NumberFormatException e) {

System.out.println("Invalid Input");
}
catch (Exception e) {

System.out.println(e);
}

}
}

}

The items in the following list correspond to the callouts in Example 8–1.

1 Create the object that represents the task group itself. Use the new method
and refer to the task group class name Add_task_group_mts.

8–10 Writing Java Clients

2 Create an object for each record to be used by the Add_task_group_mts
object. Use the new method and refer to the class name. In this example,
three Add_number objects are created.

3 Fill in the data in the record objects as necessary. Directly access the
public fields within the record argument.

4 Call the task. Use the add_task invocation method within the
Add_task_group_mts task group object, and pass the three Add_number
argument parameters.

5 Directly access the Einfo object and its fields in the Add_task_group_mts
task group object to determine the result of the task call.

6 Obtain the numeric result of the task call by directly accessing the output
Add_number object.

Example 8–2 shows a client generated from using the javabeans input adapter.

Example 8–2 The JavaBeans Adapter Sample add_number Call

1 import java.beans.*;
import java.io.*;
class AddMtsClient {

int add(int x, int y) throws Exception {
try {

2 Add_task_group_mts addTaskGroupMts =
(Add_task_group_mts) Beans.instantiate(null, "Add_task_group_mts");

3 Einfo einfo = (Einfo) Beans.instantiate(null, "Einfo");
Add_number inp1 =

(Add_number) Beans.instantiate(null, "Add_number");
Add_number inp2 =

(Add_number) Beans.instantiate(null, "Add_number");
Add_number result =

(Add_number) Beans.instantiate(null, "Add_number");

4 inp1.setData(x);
inp2.setData(y);

5 addTaskGroupMts.add_number(inp1, inp2, result);

(continued on next page)

Writing Java Clients 8–11

Example 8–2 (Cont.) The JavaBeans Adapter Sample add_number Call

6 einfo = addTaskGroupMts.getEinfo();
7 if (einfo.getEclass() != 0 || einfo.getEcode() != 0) {

System.out.println("Einfo error on task call");
System.out.println("Einfo.eclass = " + einfo.getEclass());
System.out.println("Einfo.ecode = 0x" + Integer.toHexString(einfo.getEcode()));
System.out.println("Einfo.eproc = " + einfo.getEproc());
System.out.println("Einfo.epgroup = " + einfo.getEpgroup());
System.out.println("Einfo.esource = " + einfo.getEsource());
throw new Exception("Application error");

}
8 return result.getData();

}
catch (UnsatisfiedLinkError e)
{

System.out.println("Unable to locate matching DLL add_task_group_mts_java_mts[_g].dll");
throw e;

}
catch (ClassNotFoundException e) {

System.out.println("Unable to locate an application class");
throw e;

}
catch (IOException e) {

System.out.println("Unable to load an application class");
throw e;

}
}

static public void main(String args[]) {
add_mts_client addMtsClient = new add_mts_client();
if (args.length != 2) {

System.out.println("Usage: x y");
}
else {

try {
int x = Integer.parseInt(args[0]);
int y = Integer.parseInt(args[1]);
System.out.println("Answer = " + addMtsClient.add(x, y));

}
catch (NumberFormatException e) {

System.out.println("Invalid Input");
}
catch (Exception e) {

System.out.println(e);
}

}
}

}

The items in the following list correspond to the callouts in Example 8–2.

1 Import the classes.

8–12 Writing Java Clients

2 Create the object that represents the task group itself. Use the
Beans.instantiate method and refer to the task group class name
Add_task_group_mts.

3 Create an object for each record to be used by the Add_task_group_mts
object. This includes the implicitly used einfo object and objects that are
explicitly passed as arguments to the Add_task_group_mts.add_number
method. Use the Beans.instantiate method and refer to the class name.
In this example, three Add_number class objects and one Einfo class object
are created.

4 Fill in the data in the record objects as necessary. The fields within the
record argument and Einfo objects are accessed through their get and set
accessor methods.

5 Call the task. Use the add_number invocation method within the
Add_task_group_mts task group object, and pass the three Add_number
argument parameters.

6 Obtain the contents of the Einfo object from the Add_task_group_mts
object through the getEinfo accessor method and update the local einfo
object with the returned information.

7 Examine the einfo object using its accessor methods to determine the
result of the task call.

8 Obtain the numeric result of the task call by accessing the output return
object using its getData accessor method.

8.5 Specifying the Call Attributes in a Java Client
A Java client can specify call attributes using one of two techniques depending
on whether you use java or javabeans as the input adapter in the -a flag on
the STDL command line.

• If you use java as the input adapter, directly set the call_attributes field
(see Section 8.5.1).

• If you use javabeans as the input adapter, refer to a String property in the
task group class named call_attributes (see Section 8.5.2).

The values that you specify in the call attributes depend on the output adapter
that the client program uses. For more information on call attributes support
for each output adapter, see Section 2.3.

Writing Java Clients 8–13

8.5.1 Using Call Attributes with the Java Adapter
If the Java client program is using the java input adapter and calling an
output adapter that supports call attributes, use the call_attributes field on
the task group object. The field is defined in the following format:

public String call_attributes

The program creates a string to hold the call attributes. For example, if the
program calls an ACMS task:

String attr = new String("application:add_acms_appl,node:a,authentication:ua:pwrd");

Note

Do not use spaces in the string.

The program must refer to the task group object created using the task group
class generated for that group and then set the call_attributes field on the
task group object under which the task calls are made. For example:

add_acms_appl AddAcmsAppl = new add_acms_appl();
.
.
.

AddAcmsAppl.call_attributes = attr;

The values in attr are assigned to the task group object call_attributes
field. For details of the runtime processing of call attributes, see Section 8.5.3.

8.5.2 Using Call Attributes with the JavaBeans Adapter
If you use javabeans as the input adapter, refer to a String property in the
task group class named call_attributes. The call_attributes property has
the following accessor methods:

setCall_attributes(String)

String getCall_attributes()

If the Java client program is using the javabeans input adapter and calling
an output adapter that supports call attributes, use the set accessor method
setCall_attributes on the task group object. The program can create a string
to hold the call attributes to be specified. For example, if the program calls an
ACMS task:

8–14 Writing Java Clients

String attr = new String("application:add_acms_appl,node:a,authentication:ua:pwrd")

Note

Do not use spaces in the string.

To specify the attribute values, the program must refer to the task group
object created using the task group class and then supply the string to the set
accessor method. For example:

add_acms_appl AddAcmsAppl = (add_acms_appl) Beans.instantiate(null,"add_acms_appl");
.
.
.

AddAcmsAppl.setCall_attributes(attr);

For details of the runtime processing of call attributes, see Section 8.5.3.

8.5.3 Runtime Processing of Call Attributes
When a new group object is created, the call attributes are null. Using the
group object, the client can set the call attributes value for use on subsequent
method invocations. If the client provides a new call attributes value, the new
value overwrites the old value. If the client sets the call attributes value to
null, subsequent method invocations on that object have no call attributes
value.

The input adapter does not interpret the contents of the call attributes value.
Any error in the value is not returned until the next invocation on that group
object.

For more information on call attributes support for each output adapter, see
Section 2.3.

8.6 Java Runtime Errors
Java-related runtime error values are returned by one of the following
techniques.

• Throwing an exception

• Throwing an error

HP TP Web Connector native environment errors or errors returned from the
application server are returned in the Einfo class (see Section 8.3.1). STDL
ecode error codes that can be returned and their corresponding messages are
described in Section 2.4.2. The STDL eclass codes are specified in the eclass.h
file.

Writing Java Clients 8–15

8.6.1 Accessing Error Text in the Java Adapter Environment
In the java adapter environment, access the ecodeString field directly to
retrieve message text related to an error returned from a task call. For
example:

System.out.println("ecodeString = " + taskGroup.einfo.ecodeString);

The field is accessed in the einfo object contained in the taskGroup object.

8.6.2 Accessing Error Text in the JavaBeans Adapter Environment
In the javabeans adapter environment, use the getEcodeString() public
accessor method in the Einfo Java class to retrieve message text related to an
error returned from a task call. For example:

einfo = taskGroup.getEinfo();
.
.
.

System.out.println("einfo.ecodeString = " + einfo.getEcodeString());

This code could display the following in an error situation:

einfo.ecodeString = ACMSDI_INVLOGIN, Invalid login attempt

On a successful call, this code displays the following:

einfo.ecodeString = Normal completion

8.7 IDE Interaction with a Java Adapter
If you use javabeans as the input adapter with the -a flag, the generated
classes provide a partial implementation of the JavaBeans standard. The Java
input adapter defines the Java classes that the client uses. Discover these
classes by using one of the following:

• A Java-aware IDE environment

• The normal JDK BeanBox

The extent of introspection support depends on the capabilities of the
development environment that you use. Default discovery is provided by
the STDL compiler naming conventions for methods and properties. Simple
BeanInfo classes provide introspection support for the classes generated for the
following items:

• One for each task group class

• One for each Einfo class

8–16 Writing Java Clients

• One for each record class

These BeanInfo classes are additional files in the STDL-generated Java
archive.

The following are javabeans adapter restrictions:

• No graphic representation of the adapter classes is provided.

• No additional development objects for property editors are provided.

• No additional Bean customizers are provided.

• No implementation of Bean serialization is provided.

8.8 Next Steps
After you build the Java client, set up the client (see Section 8.8.1) and the
management environment (see Section 8.8.2).

8.8.1 Java Client Setup
To run and successfully access a TP application, a Java client depends on the
Java adapter classes and the Java adapter JNI code.

Keep the Java adapter stub DLL and the JAR file containing the Java adapter
classes synchronized. Both files must be generated from the same STDL
build so that procedures in the DLL match procedures in the JAR file. If the
procedures do not match, an UnsatisfiedLinkError is thrown.

Ensure that the Java client can locate and use the Java adapter classes. The
JAR file containing the Java adapter classes must be available with other class
libraries used by the client. Make the file available by adding its path to the
classpath environment variable. For example:

java -classpath add_acms_appl_acmsda.jar;%classpath% add_acms_client 1 1

The command runs a console application in the same directory as the JAR
file and explicitly names the JAR file and existing classpath environment
variable. For convenient use, place the command in a .bat file.

If any task group classes in the JAR file are instantiated, the Java Virtual
Machine locates and loads the adapter stub DLL and performs initialization
operations. If the DLL location is not in the executable path when the Java
client runs, an UnsatisfiedLinkError is thrown.

Writing Java Clients 8–17

To run the Java client under a debugger, rename or copy the adapter stub DLL
and append _g to the name of the DLL. For example:

C:\java> copy add_acms_appl_java_acmsda.dll add_acms_appl_java_acmsda_g.dll
C:\java>

The Java Virtual Machine requires that the _g be appended to the DLL name.

8.8.2 Management Environment Setup
Set up the management environment for the client. Perform the following
steps.

1. Use the management GUI to establish runtime parameters.

• If the client calls ACMS tasks, set up parameters (see Section 10.2.4).

• For all clients, establish the thread usage semantics setting (see
Section 10.2.3). Thread control applies in the following circumstances:

If the client uses the ACMS Gateway output adapter, setting
the thread control restricts the number of connections made to
the called server machine. If there are too many connections
(no limit is set), calls beyond a certain limit fail because of
resource exhaustion. (The number of connections on the called
server machine is controlled by a TCP/IP Services for OpenVMS
parameter.)

2. Set up error logging for the client (see Appendix A).

3. If the client calls ACMS tasks, set up the ACMS Gateway adapter
environment (see Section 10.3).

8–18 Writing Java Clients

9
Performing Setup Operations

This chapter describes various application set-up operations.

9.1 Calling STDL Tasks from IIS
If the client calls tasks (ACMS tasks) from Internet Information Server (IIS),
use the management GUI to establish the thread usage semantics setting for
the task group.

9.1.1 Establishing Thread Usage Semantics Settings
Establishing the thread usage semantics setting avoids stack overflows and
limits the number of concurrent connections. When an Active Server Page calls
an Automation object within IIS, the amount of free stack space remaining is
very limited.

9.1.2 Thread Usage Semantics Setting for Calling ACMS Tasks
If your client calls ACMS tasks, set the thread usage semantics setting to
Execute call on a separate thread, but limit the number of TPware threads
and set the thread limit.

Each active call between a thread using the ACMS Gateway output adapter
on the Windows system and the HP TP Web Connector Gateway for ACMS
process on the OpenVMS system uses a separate TCP/IP connection. This
connection usage can cause the gateway to exhaust process and system
resources, including TCP/IP sockets. Choose an appropriate value for the
thread limit so that the number of threads is sufficient to handle the expected
load, but not so high as to cause the HP TP Web Connector Gateway for ACMS
process to exceed its OpenVMS quotas or consume all available TCP/IP sockets.
See Section 10.2.3 for the steps to set the thread usage semantics.

Performing Setup Operations 9–1

9.2 Setting Up the IIS
Before you run an ASP application, make sure that the Internet Information
Server (IIS) has read and execute access to the directory containing the .asp
files. Refer to your web server documentation for instructions on how to add
virtual directories and to set permissions. Before running the samples in the
Internet Service Manager, copy the files to an empty directory before using
them and add, as a virtual directory, the directory with a name in the following
format:

install-directory\ stdl\ samples\web

The value for install-directory is the location in which you installed the
product.

9.3 Environment Variables and IIS
To load any newly added systemwide environment variables that are needed
by IIS, shut down and restart the Windows system. For more information on
managing IIS, see either the Microsoft online documentation or knowledge
base articles at the Microsoft World Wide Web site.

9.4 Oracle Web Application Server
Oracle WRB cartridge applications generally follow the ISAPI model. Built as
a DLL, the cartridge contains the application code that runs in the web server
with the input and output adapters. The application code and adapters form
the client side of the web-server based application.

To run cartridges with the Oracle Application Web Server, register the
cartridges with the WRB. When registering a cartridge, you give it a name
by which it can be referred in the HTML document. For example, in the add
sample code, the cartridge name is used in the action attribute of the form
used to pass in numbers to be added. If the path to the cartridge can be
located, the cartridge is invoked and uses the WRB API to gather information
from other fields in the form. The cartridge calls through the adapter to invoke
the TP task.

When the TP task completes, the cartridge can obtain the results from the
parameters that it passed. The cartridge can again use the WRB API to
generate HTML commands and text, to create dynamically a new Web page,
and to request that the WRB display the generated HTML source code. Sample
HTML code supplied with the product include some specific steps to build and
install the add cartridge.

9–2 Performing Setup Operations

9.5 DLL Caching in IIS
When an ASP application creates an Automation object, IIS loads the
Automation server (that is, the DLL). After the DLL is loaded, IIS caches it
in memory indefinitely to improve performance. If you need to unload the
DLL (for example, to recompile or overwrite it), stop and restart the Internet
Information Services (see Section 9.5.1).

See the Microsoft knowledge base for more information on the lifetime of a
COM component under IIS and ASP.

9.5.1 Stopping and Starting Internet Information Services
If you need to unload a DLL (for example, either an Automation DLL or an
ISAPI DLL) to either recompile or overwrite it, perform the following steps:

1. Flush the IIS DLL cache using one of the following techniques.

• In a Command Prompt window, enter the following command:

net stop IISadmin

• Perform the equivalent operations in the Internet Service Manager.

2. Recompile or overwrite the DLL.

3. Restart all the Internet Information Services using one of the following
techniques:

• In a Command Prompt window, enter the following command:

net start IISadmin

• Perform the equivalent operations in the Internet Service Manager.

See the Microsoft knowledge base articles at the Microsoft World Wide Web
site for more information on ISAPI DLLs and the IIS.

9.6 Locating ISAPI DLLs
IIS must be able to locate any ISAPI DLLs. To ensure this and to avoid having
to specify the exact paths, put the ISAPI DLLs in the same directory as the
HTML application.†

† In the sample applications, the ISAPI DLLs are expected to be in the same directory
as the HTML application.

Performing Setup Operations 9–3

10
Managing the Client Interface

This chapter describes procedures you use to manage the environment on a
client system running the HP TP Web Connector product:

• Supplying management information (see Section 10.1)

• Using the management GUI (see Section 10.2)

• Setting up the ACMS Gateway adapter environment if your client calls
ACMS tasks (see Section 10.3)

On a client system, you can log errors (see Appendix A).

10.1 Supplying Management Information
In general, the management GUI provides information to the TPware thread
controller and various adapters.

10.1.1 Management Information Sources
Whenever the thread controller or an adapter runtime needs information, it
uses the following sources (the first listed has the highest precedence):

1. The call attributes (if any) from the client program

Call attributes can supply only some of the required information. Thread
control information cannot be supplied this way.

2. Local settings

You supply local settings through the local management GUI. Local
settings are used if the information is not or cannot be supplied as a call
attribute.

3. Remote settings (if Sharing is enabled)

Through the management GUI, you can name a remote node from which
management information is retrieved. The TPware runtime caches the
remote settings on the local node.

4. Cached information from the remote node (if Sharing is enabled)

Managing the Client Interface 10–1

If an attempt is made to use settings from a remote node and that node
cannot be reached, then the last information (if any) retrieved from that
node is used.

10.1.2 Management Information by Groups
The management GUI gives you the ability to customize management settings
that are specific to your applications and environment. You can enter settings
at two levels:

• A group whose name you supply

• The Default group

Entering an attribute for a named group allows you to tailor that management
attribute for a specific task group. Entering an attribute for the Default group
sets up a value that is common for all task groups. For example, setting thread
usage semantics for the Default group allows the runtime system to use this
setting if it cannot find an entry for a particular task group.

10.2 Using the Management GUI
Find the management GUI in the TPware program group. The utility may
have any combination of the following tabs:

• Computer for selecting the system on which you want to manage HP TP
Web Connector components (see Section 10.2.1)

• Sharing for specifying either of the following:

That this computer uses local settings with the option to share its
settings with other clients

That the computer you are managing uses shared management settings
from a remote node

See Section 10.2.2.

• Threads for supplying thread usage semantics for clients running on the
computer system that you are managing (see Section 10.2.3)

• ACMS for setting parameters for the ACMS Gateway adapter on the
computer that you are managing (see Section 10.2.4)

The management tabs available depend on the TPware products and options
you have installed.

10–2 Managing the Client Interface

10.2.1 Computer Settings
The Computer tab allows you to select either the local node or a remote node
for management. This setting defaults to the local node.

When you change the node, the tabs displayed reflect the options installed on
that node. If you choose Share Local Settings, all the tabs appear.

The name of the computer being managed appears in the title bar.

10.2.2 Using Shared Settings
The Sharing tab allows you to set up a particular node from which multiple
clients can read their management settings. If many client nodes need the
same management settings, you can reduce setup time on each client node by
using the shared-settings feature.

The Sharing tab allows you to do the following:

• Choose the local node as the source for the management settings (see
Section 10.2.2.1).

• Choose a remote node as the source for the management settings that will
apply to the node that you are managing (see Section 10.2.2.2).

10.2.2.1 Using Local Settings
If you click Use Local Settings, the management settings are read from the
local registry. You can also click Share Local Settings if you want to share
this node’s settings with other client nodes. By sharing settings, you can
choose that node as the remote source for management information for another
computer that you are managing.

10.2.2.2 Using Shared Remote Settings
If you click Use Remote Settings, then you need to supply the Remote Node
Name on which these management settings exist. In this context, remote node
means another node on which you have configured management GUI settings
and have enabled Share Local Settings.

Each time a setting is read from a remote node, that setting is written to a
local cache. The local cache is used when the remote node is unreachable.

If you change your remote node, or if you switch from Use Remote Settings to
Use Local Settings, the management GUI warns that all cached entries will
be deleted and prompts you to confirm this action. If you confirm, then the
GUI deletes all cached settings. If you do not confirm, the GUI redisplays the
original settings.

Managing the Client Interface 10–3

If you select Use Remote Settings, but have configured local management
settings (including the Default group settings), the local settings override the
remote settings.

10.2.2.3 Restrictions on Registry Access
On Windows platforms, there are various restrictions that affect how a
client user account accesses a remote node’s registry at runtime to obtain
management information.

The following restrictions apply if the remote node is:

• A server in the domain:

When the client is logged into the domain

All users have access, regardless of whether the guest account on the
remote node is enabled or not.

When the client is not logged into the domain

If a user has an account on the remote node, the password for the
remote account must match the password for the local account. If the
guest account is enabled on the remote node, all users have access, and
the password restriction does not apply.

• A server not in the domain:

If a user has an account on the remote node, the password for the remote
account must match the password for the local account. However, if the
guest account is enabled on the remote node, all users have access.

The following restrictions apply if the remote node is:

• A workstation in the domain:

When the client is logged into the domain

The user must be a member of the domain admin group, regardless of
whether the guest account on the remote node is enabled.

When the client is not logged into the domain

The user must have an account (with matching password) on the
remote node and be in the domain admin group for that node.

• A workstation not in the domain:

The user must have an account (with matching password) on the remote
node and be in the domain admin group for that node.

10–4 Managing the Client Interface

10.2.3 Threads Settings
Each thread in a multithreaded process (for example, a web server) uses
system resources to do its work. To better manage the allocation of system
resources among threads, you can manage the number of active threads
servicing each call.

By managing the maximum number of active execution threads, you put a
throttle value on the calls made to the server. Incoming requests are queued
until an execution thread is free. By adjusting the maximum number of active
threads, you can optimize resource usage on the both the client and server
nodes.

The Threads tab allows you to specify thread usage semantics that the TPware
or the adapter runtime systems use. This information is supplied through local
settings, remote settings, or cached settings (see Section 10.1).

10.2.3.1 Thread Usage Semantics Settings
To specify the thread usage semantics for a task group, the Threads tab has
the following thread usage semantics settings available:

• Execute call on the caller’s thread

This setting is suitable when the user volume is low and you do not need to
limit the number of concurrent calls to the server. This is the default usage
semantics setting for all input adapters. However, if this setting is in effect
when a client is using an C asynchronous input adapter, then the Execute
call on a separate thread semantic setting is used instead.

• Execute call on a separate thread

This setting is suitable when the user volume is low or when the calling
thread runs out of stack space under the Execute call on the caller’s
thread setting. This setting uses more system resources than the Execute
call on the caller’s thread setting, because the HP TP Web Connector
runtime creates as many additional threads as it needs to handle the user
load.

• Execute call on a separate thread, but limit maximum threads to _ _

This setting has the same benefits as the Execute call on a separate
thread setting, but is suitable for servers with high user volume. Using
this setting, you can limit the number of threads that are created on the
calling end. Limiting the number of threads limits concurrency in the
server procedures. For some types of server applications, this limit can
increase performance.

Managing the Client Interface 10–5

In contrast, if you specify the Execute call on a separate thread setting,
the software creates a separate thread for each concurrent request. The
result is that the called server can consume excessive resources and
contribute to degraded performance.

• Execute call on the caller’s thread, but limit maximum threads to _ _

This setting has the same benefits as the Execute call on a separate
thread setting, but is suitable for servers with high user volume. Using
this setting, you can limit the number of concurrent calls that can be
made to the called server. Limiting the number of concurrent calls
limits concurrency in the server procedures. For some types of server
applications, this limit can increase performance.

Table 10–1 specifies the thread settings that you should use for a particular
output adapter.

Table 10–1 Output Adapter Thread Usage Semantics Settings

Output Adapter

Execute call
on the caller’s
thread

Execute call on a
separate thread

Execute call on a
separate thread,
but limit maximum
threads to _ _

Execute call on
caller’s thread,
but limit maximum
threads to _ _

C OK1 OK OK OK

ACMS Gateway OK Not needed2 Recommended to
avoid overloading
the ACMS Gateway

Recommended to
avoid overloading
the ACMS Gateway

1OK means that this setting works for the output adapter and that your selection depends on your situation.
2Not needed indicates those cases in which executing the output adapter on a separate thread does not
provide any advantage unless the number of threads is limited.

10.2.3.2 Specifying Thread Usage Semantics Settings
To specify the thread usage semantics setting for a task group, perform these
steps:

1. Click the Threads tab. The Default group entry appears in the Group Name
drop-down box.

2. If you are configuring the Default group or an existing group, omit this
step. To configure a new group that does not use default settings, do the
following.

a. Click the New Group button. The New Group dialog box appears.

b. In the New Group dialog box, enter the group name.

c. Click the Add button to add the group to the Group Name list box.

10–6 Managing the Client Interface

The New Group dialog box remains displayed, in case you want to enter
multiple group names.

d. When you finish entering group names, click the Done button.

3. Select a group from the Group Name list box (initially, the Default group
appears in the box). Do the following for the selected group.

a. Specify thread usage semantics for the group in the Group Name
box by clicking the appropriate radio button. Use the guidelines in
Section 10.2.3.1 to set the appropriate threads usage semantics for your
application.

b. If the selected semantics setting allows you to limit the number of
threads, enter a positive integer value for the thread limit.

Repeat these steps for each selected group.

4. When you finish specifying the thread usage semantics settings for one
or more groups, click the Save button. The Execution Semantics fields for
Default remain empty until you click the appropriate semantics setting
and click Save.

See Section 10.2.3.3 for an explanation of when threads settings take effect.

If there are any unsaved changes, a dialog box asks whether you want to save
all changes.

10.2.3.3 When Thread Usage Semantics Settings Take Effect
Settings for the maximum number of threads take effect immediately if, and
only if, the following conditions apply:

• The settings are local.

• The node is being managed locally.

If you modify a group’s thread limit, the change takes effect immediately. It is
not necessary to restart a client to have the modifications take effect.

Restart a client to have the modifications take effect if one of the following
conditions applies.

• An application uses remote settings.

• The node is managed remotely.

• You change a group’s thread usage semantics setting.

• You apply settings for the first time.

• You remove settings.

Managing the Client Interface 10–7

10.2.3.4 Deleting Thread Usage Semantics Settings
To delete the thread usage semantics setting of a group, do the following:

1. Click the Threads tab.

2. Select the group from the Group Name list box.

3. Click the Delete button.

See Section 10.2.3.3 for when threads settings take effect.

If a group is not listed in the Group Name list box, that group has the thread
usage semantics setting of the Default group. If you do not specify the
semantics setting for the Default group, an unlisted group has the default
semantics setting, Execute call on the caller’s thread, as described in
Section 10.2.3.1.

10.2.4 ACMS Gateway Adapter Settings
The ACMS tab allows you to provide information related to the ACMS Gateway
adapter. The STDL task group (for which you provide this information) is
generated by the ACMSADU extension and given the ACMS application name
as its task group name.

When you click the ACMS tab, the Default group entry appears in the Group
Name drop-down box, but the ACMS Gateway adapter settings fields for
Default remain empty until you enter the relevant information and click Save.
Configuring the Default group allows the runtime system to use these default
settings if it cannot find an entry for a particular task group.

The ACMS Gateway adapter settings that you need to provide are:

• Server Node: The TCP/IP node on which the ACMS Gateway resides.
Running on an ACMS system, the ACMS Gateway connects the ACMS
Gateway adapter in the client on the Windows system to the ACMS tasks
running on the OpenVMS system.

• Username: The name of the user account on the OpenVMS system that
clients use for ACMS calls.

• Password: The password for the OpenVMS user account that clients use for
ACMS calls. (The password is not echoed.)

When the ACMS tab settings of a specified group change, all newly started
clients see the changed settings. Clients that are running when the changes
take effect do not see the changes. Ensure that you restart all clients that call
the group so that the modifications take effect.

10–8 Managing the Client Interface

If the gateway node uses a TCP/IP port that is different from the default, you
also need to provide that information through an environment variable (see
Section 10.3.2).

If the client specifies call attributes, they override all management settings.

10.2.4.1 Configuring a New ACMS Group
You need to configure a new ACMS group when the group is the Default group
or any task group that does not use the default settings. If you want a group
to use the Default group settings, do not perform the following configuration
procedure for that group (the runtime system applies default group information
to any group without an entry). The procedures differ for changing the settings
of an existing ACMS group (see Section 10.2.4.2).

To configure a new ACMS task group, perform the following steps:

1. Click the ACMS tab. The Default group automatically appears in the Group
Name box.

2. If you are configuring the Default group or an existing group, omit this
step. To configure a new group that does not use default settings, do the
following.

a. Click the New Group button. The New Group dialog box appears.

b. In the New Group dialog box, enter the group name.

c. Click the Add button to add the group to the Group Name list box.

3. Enter specific Server Node, Username, and Password information for the
group shown in the Group Name box.

4. Click the Save button.

5. If you have already set the thread usage semantics for the ACMS Default
group, omit this step. Otherwise, click the Threads tab and select the
desired thread usage semantics for the group (see Section 10.2.3.1).

10.2.4.2 Changing ACMS Gateway Adapter Group Settings
To change the ACMS Gateway adapter settings of a group, perform the
following steps:

1. Click the ACMS tab.

2. Select a group from the Group Name list box to view its settings.

3. Type in the new information for Server Node, Username, and Password for
the group shown in the Group Name box.

4. After you make changes, save them by clicking the Save button.

Managing the Client Interface 10–9

5. Restart all clients that call the group so the modifications take effect.

If there are any unsaved changes, a dialog box asks whether you want to save
all changes.

10.2.4.3 Deleting ACMS Gateway Adapter Group Settings
To delete the settings of a group, perform the following steps:

1. Click the ACMS tab.

2. Select the group in the Group Name list box.

3. Click the Delete button.

4. Restart all clients that call the group so the modifications take effect.

If a group does not appear in the Group Name list box, that group uses the
settings for the Default group, provided that you have entered the Default
group settings.

10.3 Setting Up the ACMS Gateway Adapter Environment
If your client calls ACMS tasks, you may need to do the following:

• Specify an ACMS Gateway adapter error log file (see Section 10.3.1).

• Specify a TCP/IP port number (see Section 10.3.2).

10.3.1 Specifying an ACMS Gateway Adapter Error Log File
To diagnose problems with communications between the ACMS Gateway
adapter and the HP TP Web Connector Gateway for ACMS, specify a file on
the client system in which the runtime system writes exception information. In
the process in which the client runs, define the following environment variable
with the full path and name of a file that holds the exception information:

STDL_ACMSDA_LOG

If the environment variable is defined when the client starts, the runtime
system creates the file. If a file of the same name exists, the software appends
information to it. Examine the file with any editor that can read ASCII text.

These exceptions are described in the file acmsda_client_messages.txt located
in the installation directory.

On a Windows system, the directory has a name in the following format:

install-directory\ stdl\ include

10–10 Managing the Client Interface

For example, if you installed the product in the c:\tpware directory, then the
client message file is located at:

c:\tpware\stdl\include\acmsda_client_messages.txt

10.3.2 Specifying a TCP/IP Port Number for Calls to ACMS Tasks
If the OpenVMS node running the gateway process defines a TCP/IP port
number different from the default (see Table 11–1) , the client process needs to
know that port number.

To specify the gateway node’s TCP/IP port number in the client process, define
the following environment variable with the node-name of the node running
the gateway process:

STDL_ACMSDA_PORT_node-name

For the value of the environment variable, supply the integer number of the
port used on the gateway node.

Managing the Client Interface 10–11

11
Managing the HP TP Web Connector

Gateway for ACMS

This chapter provides introductory, management, and tuning information about
the HP TP Web Connector Gateway for ACMS software.

• Section 11.1 introduces the HP TP Web Connector Gateway for ACMS.

• Section 11.2 describes procedures for managing the HP TP Web Connector
Gateway for ACMS process on the OpenVMS system.

• Section 11.3 provides information for tuning HP TP Web Connector
Gateway for ACMS parameters to optimize performance.

11.1 HP TP Web Connector Gateway for ACMS Software
Software called the HP TP Web Connector Gateway for ACMS provides
the connection between the ACMS Gateway output adapter running in HP
TP Web Connector clients and tasks being called in applications running on
an ACMS system. The term gateway used throughout this chapter refers to
the HP TP Web Connector Gateway for ACMS software. When you install the
gateway software on an ACMS system, you choose whether to install HP TP
Web Connector Gateway for ACMS software with or without the ACMSADU
extension (refer to HP TP Web Connector Installation Guide).

Set up and use the gateway as follows:

1. On a Windows system on which you have installed TPware components,
use the management GUI to provide information that allows the connection
between the ACMS Gateway adapter and the gateway (see Section 10.2.4).

2. On an ACMS system on which you have installed the gateway software,
have the gateway process running. OpenVMS command procedures are
provided to control the process (see Section 11.2).

You can run multiple gateway processes on the same system (see
Table 11–1).

Managing the HP TP Web Connector Gateway for ACMS 11–1

3. On the systems on which HP TP Web Connector clients run, specify the
TCP/IP port number that the ACMS Gateway adapter uses to communicate
with the gateway (see Section 10.3.2). If a gateway process uses the default
port number, no setup operations for TCP/IP port numbers are required on
the gateway and client systems.

At runtime, the ACMS Gateway adapter uses TCP/IP to communicate with
the gateway. Using management information that you provide to the client
program, the ACMS Gateway adapter finds the system on which the gateway
runs.

Using information that you supply to the gateway process, the gateway
receives the call from the ACMS Gateway adapter and invokes the called
task on the ACMS system. The gateway uses the ACMS RPC protocol to
communicate with the ACMS application. The gateway also returns status
from the called task to the client that invoked the task.

11.2 Controlling the HP TP Web Connector Gateway for
ACMS

Sections 11.2.1 to 11.2.7 discuss starting, setting up, and stopping the gateway.
Section 11.3 discusses specifying gateway process quotas.

11.2.1 Gateway Starting Requirements
Run the gateway under either the user name SYSTEM or another user name
with a [1,4] UIC with the following OpenVMS privileges:

CMKRNL
NETMBX
SECURITY
SYSLCK
SYSNAM
SYSPRV
TMPMBX

To properly start the gateway, the user name must be an authorized ACMS
agent. Use ACMSUDU to authorize the user name.

11–2 Managing the HP TP Web Connector Gateway for ACMS

11.2.2 Editing the System Startup File
To start the gateway, use the following command procedure found in the system
startup directory:

SYS$STARTUP:ACMSDA$STARTUP.COM

Add to the OpenVMS system startup file the command line that starts the
gateway process. If you separate the startup procedures into modules, make
sure that you add the lines to the correct file.

Position the startup command line for the gateway after the line that invokes
the ACMS startup command procedure.

Note

Start the ACMS system first and then start the gateway.

Starting the gateway automatically enables the use of TCP/IP protocols.

The gateway supports the use of a parameter file to customize settings at
runtime. See Sections 11.2.4 and 11.3.2.

11.2.3 Starting the Gateway from DCL
If you need to start the gateway at times other than at OpenVMS startup, run
the command procedure from the gateway account (see Section 11.2.1). Use the
following commands to restart the gateway:

$ @SYS$STARTUP:ACMSDA$SHUTDOWN
.
.
.

$ @SYS$STARTUP:ACMSDA$STARTUP
%RUN-S-PROC_ID, identification of created process is 42600450
$

The following example shows the batch startup method, using SYSTEM as the
gateway account:

$ SUBMIT/USER=SYSTEM/NOLOG SYS$STARTUP:ACMSDA$STARTUP
Job ACMSDA$STARTUP (queue SYS$BATCH, entry 1208) started on SYS$BATCH
$

This command procedure defines some logical names and issues a RUN
command to start the gateway in a detached process with the correct privileges
and a default set of qualifiers specifying the process quotas. To alter the
quotas, follow the guidelines given in Section 11.3.2.

Managing the HP TP Web Connector Gateway for ACMS 11–3

If the ACMS system is stopped, requests made through the ACMS Gateway
adapter are refused until the ACMS system is available. The gateway process
continues running. It detects when the ACMS system restarts and processes
new requests.

If a TPware client has trouble calling an ACMS task, verify that the gateway
process is running under an account that satisfies the requirements described
in Section 11.2.1. If the gateway process is running under a user name that
does not satisfy the requirements, shut down the gateway and restart it under
the appropriate user name.

11.2.4 Gateway Startup Parameter File
The parameter file is a user-specified ASCII text file that lists overrides to
gateway runtime quotas and defaults. Provided for starting the gateway, the
ACMSDA$STARTUP.COM file can read an optional parameter file that you
can supply. HP provides the following default parameter file:

ACMSDA$STARTUP.PRM

You can use the file as supplied or modify it to suit local needs.

The parameter file can contain customized settings such as user name quotas
and OpenVMS parameters. The parameter file defines logical names from
keywords that determine the gateway characteristics according to the following
rules:

• The logical names are defined in the process logical name table for the
process that invokes the gateway startup command procedure.

• If the keywords are not specified or are specified as null, the process logical
names are not defined.

• For those keywords that take a value, use an equal sign (=) with or
without spaces between the keyword and the value.

• Enclose multiple values in parentheses, separating each value with a
comma (,).

Example 11–1 is a sample parameter file.

Example 11–1 Gateway Startup Parameter File

!
! To select the Port numbers and gateway host
!

(continued on next page)

11–4 Managing the HP TP Web Connector Gateway for ACMS

Example 11–1 (Cont.) Gateway Startup Parameter File

TCPIP_PORT = 1023
!
! For Multiple Gateways for Debugging purposes
!
SERVER_NAME = DBG1
!
! OpenVMS Parameters
!
AST_LIMIT = 100
BUFFER_LIMIT = 65535
ENQUEUE_LIMIT = 200
EXTENT = 2000
FILE_LIMIT = 100
IO_BUFFERED = 300
IO_DIRECT = 100
MAXIMUM_WORKING_SET = 750
PAGE_FILE = 100000
PRIORITY = 4
QUEUE_LIMIT = 20
WORKING_SET = 150

To specify the parameter file to start the gateway in batch mode, use a
command in the following format:

SUBMIT/USERNAME=SYSTEM SYS$STARTUP:ACMSDA$STARTUP /PARAM=SYS$STARTUP:file-name

The value file-name is the name of the parameter file that you supply.
Table 11–1 contains the list of keywords for parameters that you can include in
this file.

Table 11–1 Gateway Keywords

Keyword Meaning

SERVER_NAME Defines a gateway-name extension to distinguish
between multiple gateways on the same node. The
value is a name of up to 5 characters appended to
ACMSDA$SRV to create the process name.

(continued on next page)

Managing the HP TP Web Connector Gateway for ACMS 11–5

Table 11–1 (Cont.) Gateway Keywords

Keyword Meaning

TCPIP_PORT Defines the number to be used by the gateway
for its TCP/IP port. The default is 1022. This
value must match the value used in clients (see
Section 11.2.5.)

11.2.5 Setting Up the TCP/IP Port Numbers
If a gateway process is going to use a port number other than the default (see
Table 11–1), clients calling ACMS tasks with the ACMS Gateway adapter must
specify the port number that the gateway is using. Perform the following setup
operations.

1. Set up the port number on the gateway (see Section 11.2.5.1).

2. Use that value for the port number in clients that call through the gateway
(see Section 11.2.5.2).

If a gateway process uses the default port number, no setup operations for
TCP/IP port numbers are required on the gateway and client systems.

11.2.5.1 Specifying the TCP/IP Port Number for the Gateway Process
TCP/IP uses numeric port numbers as endpoints of communication. Table 11–2
lists the categories and ranges of port numbers.

Table 11–2 TCP/IP Port Categories and Numbers

Category Port Numbers

Reserved privileged ports 0 to 255

Privileged ports 256 to 1023

Nonprivileged ports 1024 to 65 535

Port number 1023 is the highest unassigned privileged port number.

A numeric port number specifies the object to which the gateway connects. A
gateway process automatically uses one of the privileged ports by default (see
Table 11–1). If a gateway process cannot use the default value for the port
number, you must assign it an available and unreserved port number from the
values shown in Table 11–2.

11–6 Managing the HP TP Web Connector Gateway for ACMS

To assign a TCP/IP port number to the gateway, specify TCPIP_PORT in the
startup parameter file, which is optionally passed to the gateway startup
command file. For example:

TCPIP_PORT=1023

The example assigns the port number 1023 (see Example 11–1). This port
number is the same value that you set for the client to connect through the
gateway (see Section 11.2.5.2).

11.2.5.2 Specifying the Gateway TCP/IP Port Number for the Client
The ACMS Gateway adapter through which a client calls an ACMS task uses
the same default value of the TCP/IP port number as that used by the gateway
process. If you set up the gateway process to use a TCP/IP port number other
than the default value (see Section 11.2.5.1), you must specify the same number
for the client. The port number that you specify for the client must match the
port number used by the gateway. For more information, see Section 10.3.2.

11.2.6 Stopping the Gateway Process
To stop the gateway process, use the following command procedure found in
the system startup directory:

SYS$STARTUP:ACMSDA$SHUTDOWN.COM

Run the procedure from the account that is authorized as the ACMS agent (see
Section 11.2.1). For example:

$ @SYS$STARTUP:ACMSDA$SHUTDOWN
$

The command procedure cancels all active tasks, shuts down the gateway,
and deassigns the logical names. This ensures that the gateway process exits
properly.

11.2.7 Editing the System Shutdown File
To have the gateway process stop automatically when the OpenVMS system
is shut down, edit the system shutdown file located in the system startup
directory. Find the following line in the file:

$ @SYS$STARTUP:ACMSTOP.COM
$

At any point before the line that stops the ACMS system, add the following
command line to the system shutdown file:

$ @SYS$STARTUP:ACMSDA$SHUTDOWN.COM

Managing the HP TP Web Connector Gateway for ACMS 11–7

The command procedure shuts down the gateway properly before the ACMS
system shuts down.

11.2.8 Gateway Error Processing
Gateway errors are logged in the ACMS Software Error log (SWLUP). To
evaluate gateway error information on the OpenVMS gateway system, see the
following file.

SYS$HELP:ACMSDA$GATEWAY_MESSAGES.TXT

Examine this file to evaluate and respond to gateway errors.

11.3 Tuning the Gateway
The following sections describe tuning the gateway by setting system
parameters, overriding quotas, and setting a maximum buffer size.

11.3.1 Tuning the Gateway Process
Because the size and nature of the load on the gateway varies widely from site
to site, monitor the behavior of the gateway process and adjust its parameters
and quotas according to the demand placed on it, as you would any OpenVMS
process. Section 11.3.2 describes the mechanism to override the default
gateway process quotas.

11.3.2 Overriding Default Process Quotas
Override the default runtime process quotas for the gateway by supplying a file
specification on the startup command line.

To use the parameter file to start the gateway, modify the startup command
line so that it specifies the parameter file. For example:

$ @SYS$STARTUP:ACMSDA$STARTUP.COM SYS$STARTUP:ACMSDA$STARTUP.PRM

To perform the same function in batch mode from the DCL command line,
enter the SUBMIT command. For example:

$ SUBMIT/USER=SYSTEM/NOLOG SYS$STARTUP:ACMSDA$STARTUP-
_$ /PARAMETER=(SYS$STARTUP:ACMSDA$STARTUP.PRM)
Job ACMSDA$STARTUP (queue SYS$BATCH, entry 1209) started on SYS$BATCH
$

Completely specify the data file; that is, device, directory, name, and type. If
the specified data file cannot be accessed, the gateway uses default values for
process quotas.

11–8 Managing the HP TP Web Connector Gateway for ACMS

The data file contains lines in the following format:

value-name=desired-value

Example 11–2 shows a sample data file.

Example 11–2 Gateway Process Quota Data File

! Override default values for HP TP Web Connector Gateway for ACMS start-up
!
Page_file = 15000
Working_set = 700 ! Required to support VERY_LARGE application

To comment a line, use an exclamation point (!) to introduce the comment text.
To make the text readable, use space and tab characters. Table 11–3 shows the
values available for overriding.

Table 11–3 Gateway Process Quotas

Process Quota Summary Description

Alpha
Default
Value1

I64
Default
Value1

AST_LIMIT Number of outstanding
asynchronous system traps
(ASTs) allowed

250 250

BUFFER_LIMIT Maximum buffered I/O memory
(bytes)

65,536 65,536

ENQUEUE_LIMIT Maximum outstanding locks
allowed

2,000 2,000

EXTENT Maximum physical memory
(pages)

20,000 20,000

FILE_LIMIT Maximum open files 100 100

IO_BUFFERED Maximum outstanding buffered
I/O operations

300 300

IO_DIRECT Maximum in-progress direct
(disk) I/O operations

150 150

MAXIMUM_WORKING_SET Working set maximum size
(pages)

4,000 4,000

1Information about tuning guidelines appears in Section 11.3.3.

(continued on next page)

Managing the HP TP Web Connector Gateway for ACMS 11–9

Table 11–3 (Cont.) Gateway Process Quotas

Process Quota Summary Description

Alpha
Default
Value1

I64
Default
Value1

PAGE_FILE Maximum reserved pages in
page file

100,000 100,000

PRIORITY Base process priority 4 4

QUEUE_LIMIT Maximum outstanding timer
queue entries

20 20

WORKING_SET Number of working set pages 2,000 2,000

1Information about tuning guidelines appears in Section 11.3.3.

For more information on the quotas, refer to the RUN command description
in the OpenVMS DCL documentation. Section 11.3.3 explains some tuning
guidelines for the gateway.

11.3.3 General Tuning Guidelines
Use the following guidelines for deciding on initial values for quotas.

• When you set initial values for the gateway quotas, assume that the
gateway is working under the heaviest load you expect. Specifically, in
computing buffered I/O limit or page file quotas, compute the quotas for
the moment when:

The maximum number of clients have concurrent task calls
outstanding.

Client programs have task calls outstanding that represent the largest
total passed workspace sizes.

The guidelines let you use as much information as you have about your
workload. For example, you may know that, although 40 client programs
are running, at most 30 have task calls in progress at the same time.

• Alternatively, apply the guidelines assuming that the maximum number of
client programs are calling tasks at the same time. This more conservative
approach may overestimate the actual required quota values, but it is more
tolerant of changes in your workload over time and is easier to analyze.

11–10 Managing the HP TP Web Connector Gateway for ACMS

A
TPware Error Logging

TPware software supports recording of runtime errors that cannot be returned
to the client process. The software attempts to log these errors and any
additional information required to help diagnose the problem indicated by the
errors.

A.1 Error Logging Overview
If the TPware software encounters an error at runtime, it attempts to return
the error to the client program. If the error cannot be returned to the client,
or if additional information should be logged to help diagnose a primary error,
TPware attempts to log the primary error and any additional information. The
software uses one of the following types of error logging:

• Error logging to a platform event log facility

By default, TPware software writes error information to a central event log
facility specific to the platform (see Section A.2).

• Error logging to a file

If you define stdl_log_file as a system environment variable, TPware
software writes error information to the TPware error log file defined by
the environment variable (see Section A.3).

The stdlog utility is used to view records in a TPware error log file (see
Section A.4).

You can use the STDL_SOURCE_TRACE environment variable to have information
about the source of the error included in the log. If you set the environment
variable to the value TRUE, the runtime system includes in the log the number
of the source line and the name of the file containing the application source
related to the error.

TPware Error Logging A–1

A.2 Use of the Platform Event Log Facility
TPware software writes error information to a platform event log facility if you
do not log errors to a TPware error log file. The software uses the Windows
Application Event Log as the event log facility.

A.3 Enabling and Disabling Error Logging to a File
Enable TPware error logging to a file by defining a system environment
variable named stdl_log_file. Supply as a value for stdl_log_file the
specification of the file to which the error information is to be written.

A.3.1 Enabling Error Logging to a File on Windows Systems
On a Windows 2000 system, if the system environment variable stdl_log_file
is defined, error information is logged to the TPware file. Define a system
environment variable as follows:

1. From the desktop, double click My Computer.

2. In the My Computer window, double click Control Panel.

3. In the Control Panel window, double click the System icon.

4. In the System Properties window, click the Environment tab.

5. In the Environment window under the System Variables list, do the
following:

a. Click on an existing system environment variable.

b. Click in the Variable text box and type stdl_log_file.

c. Click in the Value text box and enter the full path and name for the
error log file for that system. The value entered for stdl_log_file
must be a valid path and file name. For example:

d:\tpwaresamples\myerror.log

d. Click the Set button.

e. Click the OK button.

6. Reboot the system for the change to take effect.

TPware errors are subsequently logged to the file specified by the
stdl_log_file environment variable. If the file does not exist, the software
creates it. If the file exists, error logging information is appended to it.

A–2 TPware Error Logging

A.3.2 Disabling Error Logging to a File
To disable error logging to the TPware error log file, delete the system
environment variable named stdl_log_file. If the system environment
variable stdl_log_file is not defined, the results depend on the operating
system (see Section A.1).

A.4 Viewing Records in the TPware Error Log File
If error logging to a file is enabled on the client system (see Section A.3), use
the TPware stdlog utility to view records in the TPware error log file.

A.4.1 Error Log Utility Syntax
Open a Command Prompt window and run the stdlog utility.

Synopsis
Use the following syntax:

stdlog [option-flag ...]

You can use the stdlog utility in interactive mode or single command mode.

If you enter the stdlog command alone or without the -l flag, the utility
enters interactive mode. If the environment variable stdl_log_file is defined,
the software opens and displays the related file. If the environment variable is
not defined, the utility runs and displays the following prompt:

Enter the log file name:

At the file name prompt, enter the name of the file in the current directory and
press Enter. If the file is not in the current directory, enter the full path. The
utility displays the specified file and redisplays the prompt.

At the prompt, press Ctrl + C to stop the utility and return control to the
Command Prompt window.

If you specify the stdlog command and option flags, you can issue the entire
command in one line. The utility executes the single command and returns
control to the command prompt.

Option Flag Default Values
All default options are applied to extracting information from the log file. The
names and default values of the option flags are shown in Table A–1.

TPware Error Logging A–3

Table A–1 stdlog Option Flags and Default Values

Option Flag Default

-b [date-time] Displays records with all times before the current
date and time of day.

-l log-file-name Displays records in the file specified by the
definition of the stdl_log_file environment
variable. Otherwise, prompts for the name of the
log file to access.

-s [date-time] Displays records with all times since the earliest
date and time of day.

Option Flags
-b [yyyy-mm-dd [-hh:mm [:ss [.ttt]]]]
Displays error records that have been logged before the specified absolute date
and time of day, expressed in Coordinated Universal Time (UTC) format where:

yyyy Year from 0000 to 9999

mm Month of the year from 01 to 12

dd Day of the month from 01 to 31

hh Hour of the day from 00 to 23

mm Minutes from 00 to 59

ss Seconds from 00 to 59

ttt Thousandths of seconds from 000 to 999

If you omit the flag, the software displays all records before the current date
and time of day.

If you specify -b, but omit the date and time of day, the software displays the
records before 00:00:00 on the current date.

If you specify -b and a date, but omit the time, the software displays the
records before 00:00:00 on the specified date.

-l log-file-name
Displays the specified log file log-file-name from the current working directory.
If the file is not in the current working directory, specify the full path of the file
to display.

If you omit the flag and the stdl_log_file environment variable is not defined,
the utility prompts for a file name.

A–4 TPware Error Logging

-s [yyyy-mm-dd [-hh:mm [:ss [.ttt]]]]
Displays error records that have been logged since the specified absolute date
and time of day, expressed in UTC format where:

yyyy Year from 0000 to 9999

mm Month of the year from 01 to 12

dd Day of the month from 01 to 31

hh Hour of the day from 00 to 23

mm Minutes from 00 to 59

ss Seconds from 00 to 59

ttt Thousandths of seconds from 000 to 999

If you omit the flag, the software displays all error records since the earliest
date and time of day.

If you specify -s, but omit the date and time of day, the software displays error
records since 00:00:00 on the current date.

If you specify -s and the date, but omit the time of day, the software displays
error records since 00:00:00 on the specified date.

A.4.2 Sample Commands and Output
Example A–1 shows a command to select error records from a file located in
the current working directory using a time interval specified by -s and -b
flags.

Example A–1 Specifying a Time Interval with the stdlog Utility

C:\tpwarelogdir> stdlog -l my.log -s 1998-09-09 -b 1998-09-10
.
.
.

C:\tpwarelogdir>

The file my.log in the current directory is opened. The command displays error
records written during the 24-hour period since 00:00:00 on September 9, 1998
and before 00:00:00 on September 10, 1998.

A sample of the stdlog output is shown in Example A–2.

Example A–2 stdlog Utility Sample Output

(continued on next page)

TPware Error Logging A–5

Example A–2 (Cont.) stdlog Utility Sample Output

**
STDL Log Report
d:\tpwaresamples\myerror.log
1998-09-21-09:43:09.810
**
SELECTION CRITERIA:
Before:
Since:
Format: SYSTEM
Type:
**
**
USER: SYSTEM
TIME: 1998-09-20-15:43:09.543
POSTED BY: Client Process
PID: 483
TYPE: Fault
SEVERITY: error
%STDL-E-SRTLCALLGRPBAD, Group init error
**

The display consists of heading lines and one record for each TPware error
enclosed by lines of asterisk (*) characters. The heading lines contain:

• The full path of the error log file

• The date and time of the day on which the stdlog utility created the report

• Selection criteria used

On the Before: line, the date and time of day on a -b flag.

On the Since: line, the date and time of day on a -s flag.

The record for each error shows:

• On the USER: line, the name of the user running the client program when
the error occurred.

• On the TIME: line, the day, date, time of day, and year when the record was
posted.

• On the PID: line, the process identification of the program posting the error
record.

• On the TYPE line, the Fault error type. Only faults are logged.

• On the SEVERITY: line, the text error for all errors, primary and secondary.

A–6 TPware Error Logging

• On the line under the SEVERITY: line, the text describing the error, with
any symbolic error code.

The format for the date and time of day is:

yyyy-mm-dd-hh:mm:ss.ttt

yyyy Year from 0000 to 9999

mm Month of the year from 01 to 12

dd Day of the month from 01 to 31

hh Hour of the day from 00 to 23

mm Minutes from 00 to 59

ss Seconds from 00 to 59

ttt Thousandths of seconds from 000 to 999

TPware Error Logging A–7

Index

A
Accessor method

getCall_attributes, 8–14
Java field, 8–8
setCall_attributes, 8–14

ACMS
HP TP Web Connector Gateway for, 11–1
thread usage semantics setting, 9–1
web access to, 1–2

ACMSADU
application_group translation, 3–4
BUILD APPLICATION command, 3–4
BUILD GROUP command, 3–3
extension, 3–2

functions, 3–2
group_task translation, 3–3
restrictions, 3–6
translation model, 3–2

ACMSDA$GATEWAY_MESSAGES.TXT,
11–8

ACMSDA$SHUTDOWN, 11–7
procedure use, 11–3, 11–7

ACMSDA$SRV, 11–5
ACMSDA$STARTUP

parameter file, 11–4
procedure use, 11–3, 11–8

acmsda output adapter, 6–2, 7–2, 8–4
acmsda_client_messages.txt, 2–7, 10–10
ACMS Gateway adapter

call attributes, 2–3
compile

Automation, 7–2
C client, 6–1

ACMS Gateway adapter
compile (cont’d)

Java, 8–3
data type conversion, 3–7
error logging, 10–10
link

Automation, 7–3
C, 6–3
Java, 8–5

management settings, 10–8 to 10–10
port number specification, 10–11

ACMS management settings tab, 10–8
Adapter

Automation server, 7–2
behavior, 1–4
C client, 6–1
data type mapping

Automation, 7–6
C, 6–5
Java, 8–9

function, 1–3
input, 1–3, 1–5, 4–2

asynchronous, 6–9
Automation, 7–1
behavior, 1–4
Java, 8–2

Java, 8–3
language, 1–4
management, 1–6
output, 1–3, 1–5, 4–3
stub

flag to produce, 4–3
name format, 4–6

supported, 1–4

Index–1

Adapters
Automation server, 7–2

ADU
See ACMSADU and ACMSADU extension

Application call attribute, 2–3
Application object, 7–8
Applications

managing, 10–1
Application_group translation, 3–4
Archive, 8–4
Array, 8–9

ACMS
floating point, 3–8
floating point complex, 3–8
integer, 3–7
one-dimensional, 3–9
support, 3–6

Automation format, 7–7
C format

fixed-length, 6–5
one dimension, 6–5
two dimensions, 6–5
variable-length, 6–5

AST limit gateway default value, 11–9
Asynchronous adapter, 6–9

compile, 6–1
thread use, 6–9

async input adapter, 6–2
Automation adapter

data type mapping, 7–6
specifying, 7–2

Automation client, 7–1
call attributes

property, 7–5
specifying, 7–9

calling task, 7–8
Automation error code, 7–10
Automation object

accessing, 7–8
group, 7–5, 7–8
record, 7–5

embedded, 7–6
records, 7–5
standard

STDL.stdl_uuid, 7–4

Automation object (cont’d)
STDL.stdl_einfo, 7–4
supplied, 7–4

Automation server
adapters, 7–2
building, 7–1 to 7–4

steps, 7–1
call conversion, 7–1
COM registration, 7–3
IIS setup, 9–2
linked objects, 7–3
linking, 7–3
rebuild, 7–4
stub, 7–2
type library, 7–2, 7–4
using in client, 7–5

B
BeanInfo classes, 8–16
Buffered I/O

limit default value, 11–9
operations default value, 11–9

BUILD APPLICATION command, 3–4
BUILD GROUP command, 3–3

C
Cache in IIS, 9–3
Call attributes

ACMS tasks, 2–3
Automation

property, 7–5
specifying, 7–9

C, 6–8
example, 6–8

default value, 2–3
definition, 1–4
format, 2–3
Java

specifying, 8–13
Call_attributes

Java property, 8–14

Index–2

Call_attributes property
Automation, 7–5

Cartridge, 1–2
use, 9–2

C client
ACMS task call arguments, 6–4
adapters, 6–1
asynchronous calls, 6–9
asynchronous interface, 6–9
call attributes

specifying, 6–8
data type mapping, 6–5
einfo handling, 6–10
exception handling, 6–11
function prototypes and argument

passing, 6–4
header file

file name, 6–2
generating, 6–2
STDL-generated, 6–3

identifier conversion, 6–7
ISAPI, 6–3
language support, 6–3
linking, 6–2
programming steps, 6–1
STDL record representation, 6–6
writing, 6–1

C header
compiler flag, 4–3
directory compiler flag, 4–3
file name format, 4–6

c input adapter, 6–2
Class

exception, 2–5
Java, 8–5

BeanInfo, 8–16
embedded record name format, 8–7
fields, 8–5
public accessor methods, 8–6
STDL name conversion, 8–6
STDL record mapping, 8–7
task group, 8–6

Classpath environment variable, 8–17

Client program
Automation server, 7–1
C, 6–1

asynchronous interface, 6–9
calling tasks

Automation, 7–8
C, 6–4
Java, 8–9, 8–11

EINFO processing, 2–6
exception handling, 2–6
Java, 8–1

COLUMN MAJOR support, 3–6
Command

BUILD APPLICATION, 3–4
BUILD GROUP, 3–3
stdlog, A–3

Completion routine, 6–9
address, 6–9
argument, 6–9

Computer tab, 10–3
CreateObject service, 7–8
Current exception level, 2–5

D
Data type

ACMS Gateway adapter
decimal, 3–8
floating point, 3–7
integer, 3–7
other, 3–9

Automation adapter, 7–6
field

Java, 8–9
identifier

C representation, 6–6
Java, 8–6

Java adapter, 8–9
translating ACMS, 3–7

DATE, 6–6
ACMS Gateway adapter, 3–9
Java format, 8–9
JScript format, 7–7

Index–3

Date-time format, A–4, A–5
error log, A–7

Decimal
ACMS Gateway adapter, 3–8
C string format, 6–5

Default attribute, 1–5
Direct I/O gateway default value, 11–9
DLL

Automation server
procedures, 7–3

ISAPI
cache, 9–3
caching, 9–3
locating, 9–3

DllCanUnloadNow, 7–3
DllGetClassObject, 7–3
DllRegisterServer, 7–3
DllUnregisterServer, 7–3

E
eclass

define format, 6–11
header file, 6–4

eclass.h, 6–4
ecode_string property, 7–5

example, 7–10
einfo

Automation object, 7–4
header file, 6–3
Java client

accessor methods, 8–6
fields, 8–5

property, 7–5
struct definition, 6–10

Einfo
Java class, 8–5

EINFO
checking, 2–6

Automation, 7–10
C client, 6–10
Java client, 8–13

data type definition, 2–4

einfo.h, 6–3
Enqueue limit gateway default value, 11–9
Environment variables

error logging, A–1
Java, 8–3
STDL compiler

Windows, 4–1
Error codes

ACMS client, 2–7
Automation, 7–10
symbolic in error log, A–6
TPware, 2–7

Error logging
HP TP Web Connector Gateway for

ACMS, 11–8
platform, A–1
to a file

ACMS Gateway adapter, 10–10
TPware, A–1

disabling, A–3
enabling, A–2

TPware, A–1
sample output, A–5
viewing records, A–3

Exception
class, 2–5

C field, 6–10
checking in client program, 2–6

code, 2–5
Automation-derived, 7–10
Automation property, 7–10
C field, 6–10

code group
C field, 6–10

header file, 6–3
level, 2–5

current, 2–5
propagated, 2–5

location, 2–6
procedure

C field, 6–10
procedure group

C field, 6–10
source, 2–5

C field, 6–10

Index–4

Exception
source (cont’d)

checking in client program, 2–6
Exchange I/O support, 3–6
Execute call

on caller’s thread
limit maximum, 10–6

on separate thread, 10–5
limit maximum, 10–5

Export, 7–3
Extent gateway default value, 11–9

F
Field

Automation treatment, 7–6
C representation, 6–6
Java treatment, 8–7
translating ACMS, 3–9

Fields, 8–5
File limit gateway default value, 11–9
FLOAT, 6–6
Floating point

ACMS Gateway adapter, 3–7
Automation format, 7–7
C format, 6–6
Java format, 8–9

G
Gateway

See HP TP Web Connector Gateway for
ACMS

getCall_attributes, 8–14
Group

ACMS translation, 3–4
Automation, 7–5
Automation object, 7–8
changing settings, 10–9
configuring new, 10–9
deleting, 10–10
header file, 6–3
type library, 7–4

GROUP.WDB, 3–3
Group_set function, 6–8
Group_task translation, 3–3
Guidgen, 2–2

H
Header file, 4–6

generating, 6–2
TPware-provided, 6–3, 6–4

HP TP Web Connector
adapters used

input, 1–5
output, 1–5

components
on ACMS systems, 3–1

data type conversion
decimal, 3–8
floating point, 3–7
integer, 3–7
other, 3–9

operation, 1–2
web client connection, 1–2

HP TP Web Connector Gateway for ACMS,
11–1

controlling, 11–2 to 11–8
error processing, 11–8
multiple on same node, 11–5
process name, 11–5
process quotas, 11–8

defaults, 11–9
starting, 11–2

command procedure, 11–3
startup parameter file, 11–4
stopping, 11–7
tuning, 11–8 to 11–10

HRESULT, 7–10, 8–15
HTML page, 1–2

I
Identifier conversion

C, 6–7
Java, 8–6

Index–5

IIS
See Internet Information Server (IIS)

Include file path compiler flag, 4–3
Integer

Automation format, 7–7
C format, 6–5, 6–6
Java format, 8–9

INTEGER, 6–6
Integer ACMS Gateway adapter, 3–7
Internet Information Server (IIS), 1–1

DLL caching, 9–3
environment variables, 9–2
setting up, 9–2
thread usage semantics setting, 9–1

ISAPI
C client, 6–3
DLL

caching, 9–3
creating, 7–3
locating, 9–3
procedures exported, 7–3
registering type library, 7–4

J
Java adapter

Beans restrictions, 8–17
data type mapping, 8–9
stub, 8–4

javabeans input adapter, 8–4
Java class

BeanInfo, 8–16
Einfo, 8–5
record

embedded, 8–7
records, 8–7
using in client, 8–6

Java client, 8–1
archive, 8–4
building, 8–2

overview, 8–1
steps, 8–2

calling task, 8–9, 8–11
JDK, 8–1
link, 8–4

Java client (cont’d)
linking

Windows, 8–4 to 8–5
Microsoft Visual J++, 8–1
output adapters, 8–3
setup, 8–17

debugger, 8–18
management environment, 8–18

java input adapter, 8–4

L
Level

exception, 2–5
current, 2–5
propagated, 2–5

Library
ole32, 7–3
oleaut32, 7–3
stdl_acmsda, 6–3, 7–3, 8–5
stdl_auto, 7–3
stdl_rtm, 6–3, 7–3, 8–4
uuid, 7–3

Link
Automation server, 7–3
C client, 6–2
Java client, 8–4

Listing
compiler flag, 4–4
file name format, 4–6

Locks outstanding limit gateway default
value, 11–9

M
Management

client interface, 10–1
GUI, 10–2

introduction, 1–6
tabs, 10–2

HP TP Web Connector Gateway for
ACMS, 11–1

Management GUI
Windows restrictions, 10–4

Index–6

Messages
ACMSDA$GATEWAY_MESSAGES.TXT,

11–8
acmsda_client_messages.txt, 2–7, 10–10
communications, 1–5
stdlrt_msg.h, 2–7

Method, 7–5
client use, 7–9
Java

invocation, 8–6
public accessor, 8–6

MIA compiler flag, 4–4

N
Name conversion

Java, 8–6
Net start command, 9–3
Net stop command, 9–3
Nontransaction exception

exception class role, 2–5

O
Object

Automation
accessing, 7–8
group name format, 7–5
mapping

STDL group, 7–5
STDL record, 7–5

record name format, 7–5
embedded, 7–6

supplied, 7–4
Java

accessing, 8–11, 8–13
creating, 8–10, 8–12, 8–13
JDK, 8–1
mapping

STDL group, 8–6
STDL record, 8–9

JavaBeans
Microsoft Visual J++, 7–1

OCCURS, 3–9
Octet

Automation format, 7–7
C format, 6–5
Java format, 8–9

OLE
type library, 4–7

ole32.lib, 7–3
oleaut32.lib, 7–3
Output compiler flag, 4–4

P
Page file gateway default value, 11–9
Page object, 7–8
Port

number assignment
client, 11–7

changing, 10–11
gateway, 11–6

number categories, 11–6
Priority gateway default value, 11–10
Process quotas

HP TP Web Connector Gateway for
ACMS, 11–8

Propagated exception level, 2–5
Property

call_attributes
Automation, 7–5
Java, 8–14

ecode
Automation, 7–10

einfo
Automation, 7–5
Java, 8–5

field
Automation, 7–6

OCCURS, 3–9

Q
Quotas

HP TP Web Connector Gateway for ACMS
initial values, 11–10

Index–7

R
Record

ACMS
converting, 3–6
name rules, 3–6
translating, 3–9

Automation treatment, 7–5
accessing, 7–8
writing to fields, 7–8

C format, 6–5
field mapping, 6–6

Java treatment, 8–7
Register, 7–3
Registry access restrictions, 10–4
Resource file, 4–6

link Automation, 7–3
Restrictions

ACMSADU, 3–6
javabeans adapter, 8–17
registry access, 10–4

Result handle, 7–10, 8–15

S
Server

See also HP TP Web Connector Gateway
for ACMS

calling TP application, 1–2
writing Automation, 7–1

SERVER_NAME, 11–5
Session object, 7–8
setCall_attributes, 8–14
Shared settings, 10–3
Shutdown

HP TP Web Connector Gateway for
ACMS, 11–7

Source
exception, 2–5

EINFO field, 2–4
Source include compiler flag, 4–4
Standard call, 1–3

Startup
HP TP Web Connector Gateway for

ACMS, 11–2
STDL.stdl_einfo, 7–4
STDL.stdl_uuid, 7–4
STDL compiler

environment setup
Windows, 4–1

syntax, 4–2
stdlog utility

sample output, A–5
stdlog utility, A–3

-b, A–4
date format, A–7
-l, A–4
mode

interactive, A–3
single command, A–3

option flag
default value, A–3

-s, A–4
sample output, A–5
syntax, A–3

stdlrt_msg.h, 2–7
STDL task group specification

See Task group specification
stdl_acmsda.lib, 6–3, 7–3, 8–5
STDL_ACMSDA_LOG, 10–10
STDL_ACMSDA_PORT_node-name, 10–11
stdl_auto.lib, 7–3
STDL_C_SYNCHRONOUS, 6–9
STDL_JAVA_JAR_OPTIONS, 8–3
STDL_JAVA_JAVAC_OPTIONS, 8–3
STDL_JAVA_JDK_HOME, 8–3
stdl_log_file, A–1, A–2
stdl_rtm.lib, 6–3, 7–3, 8–4
stdl_set_version.bat, 4–1
STDL_SOURCE_TRACE, A–1
stdl_srtl_translate_ecode function,

6–3
example, 6–11

String
C decimal format, 6–5
padding compiler flag, 4–4

Index–8

Stub
adapter

flag to produce, 4–3
name format, 4–6

Automation server, 7–2
Java, 8–4
Java client building, 8–2
split functionality, 1–3
TP, 1–2

Syntax
BUILD APPLICATION command, 3–4
BUILD GROUP command, 3–3
stdlog utility, A–3

Syntax compiler flag, 4–4

T
Task

ACMS GLOBAL, 3–6
call

Automation client, 7–8
C client, 6–4
C client for ACMS, 6–4
Java client, 8–7, 8–9, 8–11
Java client ACMS format, 8–7

renaming restriction, 3–6
Task group

ACMS Gateway adapter settings, 10–8
name conversion, 4–5
thread usage semantics, 10–5

change, 10–6
delete, 10–8

Task group specification
ACMS generation, 3–3 to 3–5

steps, 3–3
compile

Automation server, 7–1
Java client, 8–3
output files, 6–2, 7–2, 8–4

TCP/IP
port numbers, 11–6

TCPIP_PORT, 11–6, 11–7
Text

format
C, 6–5

Thread controller, 1–5
Threads

asynchronous call use, 6–9
settings tab, 10–5
usage semantics, 10–5

ACMS tasks, 9–1
change, 10–6
delete, 10–8

Threads settings, 10–5
Throttle value, 10–5
Time format, A–4, A–5

error log, A–7
Timer queue entries gateway default value,

11–10
TPware

management GUI, 1–6, 10–2
products, 1–1
runtime library, 6–3, 7–3, 8–4
standard call, 1–3

Translation, 3–3
application_group, 3–4
group_task, 3–3

Tuning
HP TP Web Connector Gateway for

ACMS, 11–8
Type library

Automation server, 7–2, 7–4
Visual Basic name, 7–8

U
UTC format, A–4, A–5
UUID

Automation object, 7–4
C format, 6–5
compiler flag, 4–4
generation, 2–2

uuid.lib, 7–3

V
Variable-length array

C, 6–5

Index–9

Version compiler flag, 4–5
Version setting, 4–1
Visual Basic

type library name, 7–8

W
Warning messages compiler flag, 4–5
Web browser, 1–2

Web Request Broker, 1–2
Working set gateway

default value, 11–10
maximum size default value, 11–9

WRB, 1–2

X
X/Open compiler flag, 4–5

Index–10

