
DECnet/OSI forVMS
VAX WANDD Programming
Part Number: AA–PHEPB–TE

Revision/Update Information: This is a revised manual.

Software Versions: DECnet/OSI for VMS Version 5.5

Operating System Version: VMS Version 5.5 and later

First Printing, April 1992

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1992.

All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DDCMP, DEC, DECnet,
DECrouter, DECUS, DECvoice, DNA, MASSBUS, MicroVAX, Packetnet, PDP, Q–bus, Q22–bus,
RSX, ULTRIX, UNIBUS, VAX, VAXcluster, VMS, VT, and the DIGITAL Logo.

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . ix

Part I Programming Tasks

1 Introduction to the DECnet/OSI Drivers

1.1 Understanding Modular Management . 1–1
1.2 Writing a Program for the VAX WAN Device Drivers 1–3
1.2.1 Using the Obsolete Interface . 1–4

2 Setting Up and Using Datalinks

2.1 Setting Up DECnet/OSI Modules . 2–1
2.2 Using the Service Interface . 2–1
2.2.1 Setting Up Datalinks . 2–2
2.2.1.1 Assigning a Channel . 2–2
2.2.1.2 Opening a Port . 2–2
2.2.1.3 Enabling an Attention AST . 2–2
2.2.1.4 Starting the Protocol . 2–2
2.2.1.5 Clearing Buffers . 2–2
2.2.1.6 Getting Information About the Port . 2–3
2.2.1.7 Shutting Down the Protocol . 2–3
2.2.1.8 Closing the Port . 2–3
2.2.2 Exchanging Data . 2–3
2.2.2.1 Reading Data . 2–3
2.2.2.2 Writing Data . 2–3

3 Programming Problems

3.1 Introduction to Problem Solving . 3–1
3.2 Loopback . 3–1
3.2.1 STARTLOOP DRIVER . 3–1
3.2.2 STARTLOOP DEVICE . 3–2
3.2.3 STARTLOOP CONNECTOR . 3–2
3.2.4 STARTLOOP LOCAL . 3–2
3.2.5 STARTLOOP REMOTE . 3–3
3.2.6 STARTLOOP EXTERNAL . 3–3
3.3 Problems and System Failure . 3–3
3.3.1 Copying System Dump Files . 3–5

iii

Part II Programming Reference Information

4 I/O Function Codes and Status Returns

4.1 Overview of I/O Operations . 4–1
4.1.1 WANDRIVER . 4–1
4.1.2 QIOs to WANDRIVER . 4–1
4.2 Setting Up, Controlling, and Using Datalink Circuits 4–3
4.2.1 Open a Port . 4–4
4.2.1.1 Item-Lists for the Attributes of Ports . 4–5
4.2.2 Enable Attention AST . 4–8
4.2.3 Start Up Protocol . 4–10
4.2.4 Shut Down Protocol . 4–11
4.2.5 Getting Port Information . 4–12
4.2.6 Clean . 4–14
4.2.7 Close a Port . 4–15
4.3 $QIOs for Exchanging User Data . 4–16
4.3.1 Read . 4–16
4.3.2 Write . 4–17
4.4 Returns in the Input/Output Status Block (IOSB) 4–18
4.5 Using the $CANCEL System Service . 4–18

A DEC HDLC

A.1 Optional Functions . A–2
A.2 Classes of Procedure . A–3

B User-Written Datalink Protocols

B.1 The DDCMP Framing Routine . B–1
B.2 The HDLC and SDLC Framing Routines . B–2
B.3 BISYNC . B–3
B.4 GENBYTE . B–3
B.4.1 The Framing Routine . B–3
B.4.2 QIO Parameters Used in GENBYTE Operation B–4
B.4.2.1 IO$_SETMODE P2 Parameter . B–4
B.4.2.2 IO$_WRITEBLK P4 Parameter . B–5
B.4.3 Other Aspects of GENBYTE Operation . B–5
B.4.4 How to Use GENBYTE . B–5
B.5 A Sample GENBYTE Macro-32 Framing Routine for a Subset of the IBM

BISYNC Protocol . B–7

C Example Programs

C.1 Programs That Use the WANDRIVER Interface . C–1
C.1.1 WANDRIVER Program That Sends Data . C–1
C.1.2 WANDRIVER Program That Receives Data . C–5
C.2 Programs That Use the Obsolete Interface . C–10
C.2.1 QIO Program That Sends Data . C–10
C.2.2 QIO Program That Receives Data . C–17

iv

D Obsolete Features of the $QIO Interface

D.1 Read . D–2
D.2 Write . D–2
D.3 Set Mode and Set Characteristics . D–4
D.3.1 Set Controller Mode . D–5
D.3.1.1 P1 Parameter . D–5
D.3.1.2 P2 Parameter . D–6
D.3.1.3 P3 Parameter . D–11
D.3.2 Set DDCMP Mode . D–11
D.3.3 Shut Down Controller . D–13
D.3.4 Shut Down DDCMP . D–13
D.3.5 Enable Attention AST . D–14
D.3.5.1 Status Bits . D–14
D.3.5.2 Error Summary Bits . D–15
D.3.6 Using Non-DDCMP Protocols . D–15
D.3.6.1 BISYNC . D–15
D.3.6.2 GENBYTE . D–16
D.3.6.3 Parameters for GENBYTE Operation . D–17
D.4 Sense Mode . D–18
D.4.1 The IO$_CLEAN Function . D–19
D.5 Getting Information About the Drivers . D–19
D.5.1 DSB32, DSF32, DSH32, DST32, DSV11, DSW21, DSW41, and DSW42

Driver Characteristics . D–20
D.5.2 DSB32, DSF32, DSH32, DST32, DSV11, DSW21, DSW41, and DSW42

Device and Line Status . D–21
D.5.3 DSB32, DSF32, DSH32, DST32, DSV11, DSW21, DSW41, and DSW42

Error Summary . D–21
D.6 Reading the Modem Signals . D–21
D.7 The I/O Status Block . D–22

E Management

E.1 Differences Between the V1.1 VAX WAN Device Drivers and the V2.0
VAX WAN Device Drivers . E–1

E.1.1 Integration with DECnet . E–1
E.1.2 Managing the VAX WAN Device Drivers . E–1
E.1.2.1 Using WANDRIVER . E–1
E.1.2.2 Using the Obsolete Interface . E–2
E.2 NCL Commands . E–2

F How to Program DSF32 Failover Sets

F.1 The $QIO Interface . F–1
F.2 Function Codes . F–1
F.3 Using the Failover Set Commands . F–2
F.3.1 The ADD Command . F–2
F.3.2 The REMOVE Command . F–3
F.3.3 The SET/CURRENT Command . F–3
F.3.4 The SHOW Command . F–4
F.3.4.1 Failover Set State . F–5
F.3.4.2 Cable State . F–6
F.3.4.3 Failover Set Configuration State . F–6
F.4 Returning Status . F–7

v

Index

Examples

3–1 Typical NCL SHOW Commands for a DEC HDLC Implementation . . . 3–4

Figures

1–1 The Generic Drivers and DECnet/OSI . 1–3
3–1 What the Loopback Tests Do . 3–2
4–1 The Format of an Item . 4–5
4–2 The Format of the IOSB . 4–18
B–1 A DDCMP Frame . B–1
D–1 P1 Characteristics Buffer (Set Controller) . D–6
D–2 P2 Extended Characteristics Buffer . D–7
D–3 P1 Characteristics Buffer (Set DDCMP) . D–12
D–4 Longword Returned by $GETDVI . D–20
D–5 IOSB Contents . D–22
D–6 IOSB Reporting Invalid Parameter . D–23
F–1 Format of Quadword Buffer . F–2
F–2 Format of Individual SET/CURRENT Entry . F–4
F–3 Format of Individual SHOW Entry . F–5
F–4 Failover Set State Longword . F–5
F–5 Cable State Longword . F–6
F–6 Failover Set Configuration State Longword . F–7
F–7 Status Return IOSB . F–7

Tables

1–1 Differences Between DECnet/OSI and Phase IV Drivers 1–1
4–1 VAX WAN Device Drivers I/O Functions . 4–1
4–2 Reasons for SS$_SSFAIL on an IO$_CREATE Request 4–5
4–3 Sample Item Lengths . 4–6
4–4 Settable Open Port Items . 4–6
4–5 Meaning of Status Bits . 4–8
4–6 Meaning of Error Bits . 4–9
4–7 Read-Only Open Port Items . 4–12
4–8 Link Up Item-List . 4–13
4–9 Reasons for SS$_SSFAIL on a IO$_WRITELBLK Request 4–17
B–1 Extra P2 Parameters for GENBYTE . B–5
D–1 Obsolete I/O Functions . D–1
D–2 Driver Characteristics . D–6
D–3 P2 Extended Characteristics Values . D–8
D–4 Clock Speed Values (hertz) . D–10
D–5 P2 Extended Characteristics Values . D–13
D–6 Unit and Line Status . D–14
D–7 Error Summary Bits . D–15

vi

D–8 BISYNC Control Character Exceptions . D–15
D–9 GENBYTE Framing Interface Description . D–17
D–10 GENBYTE Additional Parameters . D–18
D–11 Device Characteristics . D–19
D–12 DSB32, DSF32, DSH32, DST32, DSV11, DSW21, DSW41, and DSW42

Driver Characteristics . D–20
D–13 DSB32, DSF32, DSH32, DST32, DSV11, DSW21, DSW41, and DSW42

Device and Line Status . D–21
D–14 DSB32, DSF32, DSH32, DST32, DSV11, DSW21, DSW41 and DSW42

Error Summary . D–21
D–15 Completion Status Returns . D–22

vii

Preface

Manual Objectives
This manual explains how to use the programming interface to the VAX WAN
device drivers.

Note that this manual describes WAN Device Driver functionality for Digital’s
ADVANTAGE-NETWORKS DECnet/OSI for VMS product; it does not refer to
existing Phase IV products.

Audience
Some readers will have experience of the QIO interface available with previous
versions of this product. All readers are expected to have some experience of an
assembly language, such as VAX MACRO, or a high-level programming language,
to understand the examples in the manual.

The Structure of the Manual
The manual is divided into two parts:

• Part I—Programming Tasks

• Part II—Reference Information

Part I consists of three chapters that explain how to carry out various
programming tasks:

• Chapter 1 introduces the DECnet/OSI drivers.

• Chapter 2 tells you how to set up and use datalinks.

• Chapter 3 gives information that may be useful in solving problems with the
programming interface.

Part II contains a single chapter that provides reference information that
a programmer needs regularly. There are also five appendixes containing
information that a programmer may need from time to time:

• Chapter 4 gives reference information about the programming interface.

• Appendix A gives information about DEC HDLC.

• Appendix B gives information necessary for writing datalink protocols.

• Appendix C provides example programs that use both the new pseudo-driver
(WANDRIVER) and the programming interface available with previous
versions of the VAX WAN Device Drivers.

• Appendix D describes the programming interface used for previous versions.

• Appendix E describes the differences between the DECnet/OSI drivers and
previous versions, and gives information about managing the generic drivers.

ix

Associated Manuals
Product Documentation
DECnet/OSI for VMS Installation and Configuration describes how to install and
configure the VAX WAN Device Drivers. It also provides technical specifications
of the individual devices and drivers.

DECnet/OSI for VMS Network Management provides information about setting
up wide area connections.

VMS Documentation

• Overview of VMS Documentation

• VMS Master Index

• Extended Documentation Set:

• System Management Subkit

• Programming Subkit

• VMS Install Utility Manual

• VMS System Messages and Recovery Procedures Reference Volume

Conventions Used in This Manual
Convention Meaning

[] Brackets in QIO requests enclose optional arguments. For example:

IO$_SETCHAR P1,[P2],P3,[P6].

... Horizontal ellipses indicate that irrelevant characters or QIO
arguments have been omitted. For example:

This file defines most of the XF$... symbolic names described in this
section.

.

.

.

Vertical ellipses in coding examples indicate that irrelevant lines of
code have been omitted. For example:

LOGNAM: .ASCID /SYS$INPUT/
.
.
.
;DETERMINE TERMINAL NAME

$GETDVI_S -
DEVNAME=LOGNAM, -
ITMLST=DVILIST

- Hyphens in coding examples indicate that additional arguments in the
QIO request are provided on the following line(s). See the code example
above for an example of this.

italics This indicates variable information.

Special type Indicates a literal example of system output or user input.

Numbers Unless otherwise noted, all numbers in the text are decimal.
Nondecimal radixes (binary, octal, or hexadecimal) are explicitly
indicated in the coding examples.

Return Key names are shown enclosed to indicate that you must press a key
on the keyboard.

Ctrl/x This symbol indicates that you must press the CTRL key at the same
time as you press another key. For example, Ctrl/C , Ctrl/Y , and so on.

x

Part I
Programming Tasks

This part of the programming manual explains the concepts introduced for the
DECnet/OSI VAX WAN Device Drivers, and goes through the tasks involved in
programming them.

Part I contains three chapters:

• Chapter 1 introduces the VAX WAN Device Drivers (in the context of
DECnet/OSI networking), and outlines the differences between this version
and previous versions of the VAX WAN Device Drivers.

• Chapter 2 outlines the programming tasks involved in using the interface to
the VAX WAN Device Drivers.

• Chapter 3 indicates various sources of problem-solving information,
explains the various loopback tests, and describes how to submit a Software
Performance Report (SPR), if necessary.

1
Introduction to the DECnet/OSI Drivers

The programming interface enables you to write applications programs that
use the VAX WAN Device Drivers directly by means of $QIO calls to the
pseudo-driver WANDRIVER, which passes your instructions and data on to the
network management entities. The network management entities are controlled
using commands in the Network Control Language (NCL).

In addition, programs written for previous versions of the VAX WAN Device
Drivers are still supported. However, Digital recommends that new programs
should be written with the interface that uses WANDRIVER.

This chapter has sections that introduce:

• The director–entity management model (Section 1.1).

• Writing programs to use WANDRIVER (Section 1.2).

1.1 Understanding Modular Management
DECnet/OSI (which implements Phase V of the Digital Network Architecture)
differs from DECnet Phase IV in a number of ways. In particular:

• Networks can contain many more nodes.

• DECnet/OSI integrates OSI architecture and protocols with DNA.

• There is a more powerful and modular network model.

Suitably privileged users can manage DECnet/OSI management modules by
using the Network Command Language (NCL) (documented in the DECnet/OSI
for VMS Network Control Language Reference).

Table 1–1 summarizes the ways that the DECnet/OSI drivers differ from the
Phase IV drivers, and Figure 1–1 gives an overview of the difference.

Table 1–1 Differences Between DECnet/OSI and Phase IV Drivers

DECnet/OSI Feature Phase IV Feature

Works with DECnet/OSI Independent of DECnet

Management of drivers and data exchange
separated

Management and data exchange
intermixed

(continued on next page)

Introduction to the DECnet/OSI Drivers 1–1

Table 1–1 (Cont.) Differences Between DECnet/OSI and Phase IV Drivers

DECnet/OSI Feature Phase IV Feature

$QIO calls go to the pseudo-driver
(WANDRIVER), which uses the services of the
selected datalink layer entity to exchange data
with the remote system. This manual refers to
these calls as generic.

$QIO calls go to individual drivers

Improved problem solving through increased
visibility of manageable parameters

Limited information about drivers
available only through SENSEMODE
calls

The Common Trace Facility (CTF) No tracing facility

Figure 1–1 illustrates the relationship between the generic device drivers and
DECnet/OSI.

1–2 Introduction to the DECnet/OSI Drivers

Figure 1–1 The Generic Drivers and DECnet/OSI

User program

WANDRIVER

Datalink entity

Modem Connect

Service
interface

Network
Management

Manageable
DECnet/OSI
entities

1.2 Writing a Program for the VAX WAN Device Drivers
Before you use the DECnet/OSI VAX WAN Device Drivers, the necessary
management entities need to be set up on the system or systems on which your
program will run. These entities are:

• MODEM CONNECT.

• DEVICE (only if the datalink will use a device that has loadable firmware,
such as the DSV11, DSB32, DSF32, DSW21, DSW41, or DSW42).

• The appropriate one or any combination of HDLC, DDCMP, and LAPB (the
datalink layer entity or entities that your set up requires will depend on the
communications hardware that you have installed).

• FRAME (only if you are using a protocol other than those provided by the
generic VAX WAN Device Drivers).

Introduction to the DECnet/OSI Drivers 1–3

These entities are set up during configuration both of the VAX WAN Device
Drivers and of DECnet/OSI. Check that they exist by running NCL and issuing
the commands:

SHOW NODE your-node DEVICE ALL ATTRIBUTES 1
SHOW NODE your-node MODEM CONNECT ALL ATTRIBUTES
SHOW NODE your-node datalink-entity ALL ATTRIBUTES

where:

your-node is the node that you want information about. You can omit
NODE your-node if you issue the command from that node.

datalink-entity is whichever of the DECnet/OSI datalink entities you are
using.

1 Necessary only if the datalink uses the DSV11, DSB32, DSF32, DSW21,
DSW41, or DSW42.

If the necessary entities are not running, see the relevant chapters in the
DECnet/OSI for VMS Network Control Language Reference for information about
creating and enabling them.

When your network is appropriately set up, you can then go on to set up and
manage individual datalinks, and send and receive data over those datalinks
using WANDRIVER. (See Chapter 2, which outlines the steps you have to take
when you are setting up and using datalinks.)

Chapter 3 deals with problems you may meet in using the VAX WAN Device
Drivers.

In some cases, you may want to use a program that was written for a previous
version of the VAX WAN Device Drivers. Before doing so, see Appendix D.

1.2.1 Using the Obsolete Interface
The word ‘‘obsolete’’ is used throughout this book to refer to the interface
available with previous versions of the VAX WAN Device Drivers, which is
retained for compatibility with programs that are already in use. This interface
is not obsolete in the sense of not being supported.

You cannot use the generic drivers and the obsolete interface at the same
time on the same unit of a device. The obsolete QIOs cannot be issued to a
VAX WAN Device Drivers unit if that unit is defined, at the time of the call,
to be the COMMUNICATIONS PORT for a Modem Connect line child entity
(COMMUNICATIONS PORT is a DECnet/OSI characteristic attribute). See
Appendix D.

1–4 Introduction to the DECnet/OSI Drivers

2
Setting Up and Using Datalinks

This chapter explains the tasks involved in making service interface calls to
WANDRIVER. Part II gives the detailed reference information that you will need
to perform these tasks.

2.1 Setting Up DECnet/OSI Modules
To use the VAX WAN Device Drivers, you need at least two DECnet/OSI
management modules running on your system (three, if you are using a DSV11 or
DSB32):

• MODEM CONNECT

• The appropriate datalink layer entity

• DEVICE (for DSV11, DSB32, DSF32, DSW21, DSW41, or DSW42)

The DECnet/OSI for VMS initialization procedure creates the Modem Connect
module and the necessary datalink module or modules. If your hardware requires
it, you create the Device module when the installation procedure for the VAX
WAN Device Drivers runs the command file WANDD$STARTUP.COM (see
DECnet/OSI for VMS Installation and Configuration).

You can create new modules, or reconfigure ones already created, by using NCL.

2.2 Using the Service Interface
To use a line, you use these QIOs:

• IO$_CREATE

• IO$_DELETE

• IO$_SETMODE

• IO$_SENSEMODE

• IO$_READLBLK

• IO$_WRITELBLK

• IO$_CLEAN

Section 2.2.1 explains how to use the QIOs to set up the V2.0 VAX WAN Device
Drivers for data transfer. Section 2.2.2 explains how to use QIOs for reading and
writing data. Full reference information about using the QIOs can be found in
Chapter 4. For details of the obsolete QIO interface, see Appendix D.

Setting Up and Using Datalinks 2–1

2.2.1 Setting Up Datalinks
Before using a datalink to exchange data, you must:

1. Assign a channel to WANDRIVER (see Section 2.2.1.1)

2. (Optionally) enable an attention AST (see Section 2.2.1.3)

3. Open a port (see Section 2.2.1.2)

4. Start the protocol (also explained in Section 2.2.1.4)

At any time, you may flush both the read and write buffers (see Section 2.2.1.5).
You can also get information about an open port (see Section 2.2.1.6)

To close the service interface, you must:

5. Enable an attention AST (see Section 2.2.1.3)

6. Shut down the protocol (see Section 2.2.1.7)

7. Close the port when the AST completes (see Section 2.2.1.8)

8. Deassign the channel

2.2.1.1 Assigning a Channel
To use WANDRIVER, you must first assign a channel to it by calling the
$ASSIGN system service. Specify WAN0 as the device name when assigning
the channel.

$ASSIGN creates a new Unit Control Block (UCB), and allocates a channel to it.
Use the channel number returned by $ASSIGN in all subsequent $QIO operations
to this device.

2.2.1.2 Opening a Port
To open a port, you use the IO$_CREATE call.

2.2.1.3 Enabling an Attention AST
You enable an attention AST in order to get information about the progress of
your program and the datalink it is using. Typical events that you would need
your program to take into account would be:

• The link is up (and your program can continue to read and write).

• The link is down (in which case you would need further information about
where and why the failure occurred).

• The datalink module is unavailable for some other reason.

To enable an attention AST, you use the IO$_SETMODE call with an IO$M_
ATTNAST modifier. Table 4–5 and Table 4–6 list possible return statuses and
what they mean.

2.2.1.4 Starting the Protocol
To start a datalink protocol, you use the IO$_SETMODE call with an IO$M_
STARTUP modifier.

2.2.1.5 Clearing Buffers
If you are using the Frame module, you can choose to clear out either the write
buffers or the read buffers or both. Do this at any time by issuing an IO$_CLEAN
call, and use the modifiers to select which buffers you want cleared out.

2–2 Setting Up and Using Datalinks

2.2.1.6 Getting Information About the Port
To get information about an open port, you use the IO$_SENSEMODE call. The
returns show you the characteristics for the port associated with the channel that
you issue the QIO on.

2.2.1.7 Shutting Down the Protocol
To shut down a datalink protocol, you use the IO$_SETMODE call with an IOM_
SHUTDOWN modifier.

2.2.1.8 Closing the Port
To close the port, you use the IO$_DELETE call.

2.2.2 Exchanging Data
You use the IO$_READLBLK call to receive a buffer of data. You use the IO$_
WRITELBLK call to send a buffer of data.

2.2.2.1 Reading Data
To retrieve a message that has arrived in a read buffer, use the IO$_READLBLK
call. Use the P1 and P2 parameters of the call to specify the address and length
of the buffer.

If no received messages are available, the driver stores the receive request and
returns it when a received message arrives from the datalink.

Use the IO$M_NOW qualifier to force the driver to return the receive request
immediately. If there are no messages in the read buffer, the IO$READLBLK call
returns with the status SS$_ENDOFFILE.

2.2.2.2 Writing Data
To put a message into a write buffer, use the IO$_WRITELBLK call. Use the P1
and P2 parameters of the call to specify the address and length of the message.

On a half-duplex line, if you are using the Frame module, use the IO$M_MORE
qualifier to force the driver to keep the Request to Send (RTS) signal asserted
after transmitting a message.

Setting Up and Using Datalinks 2–3

3
Programming Problems

3.1 Introduction to Problem Solving
Use these new facilities to help with problem solving:

1. The Common Trace Facility (CTF). This tool lets you trace protocol activities
at various levels in your DECnet/OSI network by specifying the appropriate
tracepoint or tracepoints. For details, see the DECnet/OSI for VMS Common
Trace Facility Use manual.

2. Modular network management. Many things hidden in Phase IV are visible
with DECnet/OSI management. This is particularly so in the case of modem
signals. Whereas in Phase IV you could not find out what modem signals
were being sent, the DECnet/OSI Modem Connect module gives you:

• Read access to each of the interchange circuits

• Information on the state of the physical interface

3.2 Loopback
The NCL commands STARTLOOP and STOPLOOP enable you to start and stop
loopback tests on a line. A parameter to the STARTLOOP command enables you
to specify any one of several types of loopback test. The loopback tests you can do
are:

• STARTLOOP DRIVER

• STARTLOOP DEVICE

• STARTLOOP LOCAL

• STARTLOOP REMOTE

• STARTLOOP CONNECTOR

• STARTLOOP EXTERNAL

Figure 3–1 gives an overview of the different kinds of loopback test. Sections
3.2.1 to 3.2.6 give further details about using the different tests.

3.2.1 STARTLOOP DRIVER
In this test, the software simply turns transmit data into receive data. It does
not exercise the device.

Programming Problems 3–1

Figure 3–1 What the Loopback Tests Do

startloop

startloop

startloop

startloop

Communications

Loopback

Local modem

Modem Connect

Remote modem
startloop

startloop
driver

device

connector

local

external

remote

device

connector

3.2.2 STARTLOOP DEVICE
In this test, the data loops back inside the device, as near as possible to the line’s
transmitters and receivers.

3.2.3 STARTLOOP CONNECTOR
This test tells the software that:

• The network manager has physically inserted a loopback connector
(somewhere between the device and the local modem).

• The system under test will need to generate its own clock.

In this test the data loops back outside the distribution panel of the device and
before the modem.

3.2.4 STARTLOOP LOCAL
In this test, the data loops back inside the local modem. This test requires a
modem that recognizes and supports CCITT 141 (‘local loopback’).

3–2 Programming Problems

3.2.5 STARTLOOP REMOTE
In this test, the data loops back inside the remote modem. This test requires two
cooperating modems, with the local modem recognizing and supporting CCITT
140 (‘remote loopback’).

3.2.6 STARTLOOP EXTERNAL
This test tells the software that:

• The network manager has physically switched the modem so that it loops
back.

• The system under test is receiving clock signals from some external source.

In this test the data loops back at the external device, which is in loopback mode.

3.3 Problems and System Failure
This section describes what to do if the system fails and you believe the failure is
caused by the VAX WAN Device Drivers.

Collect the following information, and send it with a Software Performance
Report (SPR) form to Digital at the address shown on the form. Explain your
VAX WAN Device Drivers configuration, quoting the appropriate version number.

1. Clearly define the problem (one problem on each SPR form).

State:

• Whether or not the problem is consistently reproducible, and if so, how to
reproduce the problem.

• How frequently the problem occurs.

• Whether there are any factors related to the problem, for example, heavy
use of the system, low line-speed, or the use of particular communication
devices.

2. Give the priority of the problem.

• Priority 1

Major loss of functions. For example, the VAX WAN Device Drivers
consistently crashes the system.

• Priority 2

Some loss of functions. For example, performance degradation, data
transfer rate falls by a considerable amount.

• Priority 3

Some impact on the user, manual intervention required. For example, an
NCL command is required when there is a link or line failure, to turn the
line off and back on again.

• Priority 4

Functions can run with no significant impact on the user, problem can
easily be worked around. For example, you may only need to alter the
order in which certain NCL commands are entered.

• Priority 5

Programming Problems 3–3

No system modifications needed to return to normal functions.
For example, you have a suggestion, want some advice, or find a
documentation error.

3. Please provide details of your software configuration:

• A listing of the output from NCL SHOW commands for all the attributes
of:

Each Modem Connect line you are using

Each LOGICAL LINK and LOGICAL STATION (if it exists) for each
datalink you are using

Example 3–1 gives examples.

• The version number of any replacement components you may have.

4. Please provide details of your hardware configuration:

• Details of CPU type.

• Details of all the communication devices (revision levels and speeds) on
the CPU.

• CSR and vector addresses of the device you are using.

You can find them out by issuing the command:

SYSGEN> SHOW/CONFIGURATION

5. Please provide exact details of any event messages and error messages
displayed.

6. If the problem occurs each time a particular user program is run, please
submit the sources of the program on a floppy disk or magnetic tape.

7. If the problem concerns a line error or a protocol error at Level 1 or Level 2,
use the Common Trace Facility to record line traffic, and submit the binary
file obtained. If you have a Datascope, you can make problem resolution
quicker and easier by also submitting a Datascope trace (either as a listing,
or on a tape), giving details of the type of Datascope used.

8. If the system fails or you need to force a system crash, submit the system
dump file with your SPR (not the analyzed output).

For details of how to force a system crash, please refer to the Operating
System documentation.

Example 3–1 Typical NCL SHOW Commands for a DEC HDLC Implementation

NCL> SHOW NODE FRED MODEM CONNECT LINE * ALL ATTRIBUTES
NCL> SHOW NODE FRED HDLC LINK * ALL ATTRIBUTES
NCL> SHOW NODE FRED HDLC LINK ACCOUNTS LOGICAL STATION * ALL ATTRIBUTES

3–4 Programming Problems

3.3.1 Copying System Dump Files
You may use the System Dump Analyzer COPY command to copy the dump file to
another location. Use the BACKUP utility to create a backup saveset containing
the dump file and any additional information. To do this, use the commands:

BACKUP SYS$SYSTEM:[filenames]/IGNORE=BACKUP MUA0:name/SAVE/REWIND
BACKUP SYS$SYSTEM:[filenames]/IGNORE=BACKUP device:name/SAVE/INIT

where filenames is a list of the files containing any additional information that
you are providing, and name is the name you give the saveset.

For more information on using BACKUP, refer to the VMS Backup Utility
Manual.

Programming Problems 3–5

Part II
Programming Reference Information

Part II gives only reference information. In order to program the VAX WAN
Device Drivers you need to read Part I first, and then refer to Part II for detailed
information.

Part II is divided between information that a programmer needs regularly and
information needed only occasionally.

There is one chapter:

• Chapter 4 gives reference information about the $QIO interface.

There are five appendixes:

• Appendix A gives information about DEC HDLC.

• Appendix B gives information about writing your own datalink protocols.

• Appendix C gives sample programs, both for WANDRIVER and for the
V1.2-like interface.

• Appendix D gives information on the obsolete (V1-like) interface.

• Appendix E gives information on management (particularly the Network
Control Language—NCL)

4
I/O Function Codes and Status Returns

4.1 Overview of I/O Operations
4.1.1 WANDRIVER

WANDRIVER is the pseudo-driver that supports a QIO interface to the DECnet
/OSI datalink service interfaces. In V2.0 of the VAX WAN Device Drivers, you
make QIO calls to WANDRIVER which relays your instructions and I/O, through
the datalink service interfaces, to the appropriate devices.

For compatibility with V1-style programs, the programming interfaces to drivers
specific to individual devices are still supported (see Appendix D).

4.1.2 QIOs to WANDRIVER
In DECnet/OSI, the tasks of managing datalinks and using them for exchanging
data are separated. You use QIO requests to the VAX WAN Device Drivers to do
the following:

• Set up the service interfaces of datalinks managed by DECnet/OSI entities
(see Section 4.2).

• Exchange user data (see Section 4.3).

Table 4–1 lists these QIO requests and their function codes.

Table 4–1 VAX WAN Device Drivers I/O Functions

Function Code Arguments Modifiers Function

Managing Circuits

IO$_CREATE P1,P2 none Open a port

IO$_DELETE none none Close a port

IO$_SETMODE [P1,[P2],P3] IO$M_STARTUP
IO$M_SHUTDOWN
IO$M_ATTNAST

Set datalink
characteristics and
state for subsequent
operations

IO$_
SENSEMODE

P2 none Get information about
an open port

IO$_CLEAN none IO$M_
READATTNAST
IO$M_WRATTNAST

For HDLC, SDLC,
and LAPB, stops
outstanding reads
and/or writes

(continued on next page)

I/O Function Codes and Status Returns 4–1

Table 4–1 (Cont.) VAX WAN Device Drivers I/O Functions

Function Code Arguments Modifiers Function

Exchanging Data

IO$_READLBLK P1,P2 IO$M_NOW Read a logical block

IO$_
WRITELBLK

P1,P2 IO$M_MORE† Write a logical block

†Only for half-duplex operation.

In Sections 4.2 and 4.3, there is a subsection for each call. In each subsection
there is reference information broken down like this:

• Format

• Returns in R0

• Arguments

• Notes

In Sections 4.2 and 4.3, there is no information on the common argument chan
that must be specified in all calls. The argument chan is the channel number
that the $ASSIGN system service returned when you assigned to WANA0. It is
passed by value.

Section 4.4 gives information about the Input/Output Status Block (IOSB).

4–2 I/O Function Codes and Status Returns

4.2 Setting Up, Controlling, and Using Datalink Circuits
There are three stages in managing a circuit:

1. Setting up a datalink entity (usually, while you are configuring your network)
via the network management interface.

2. Creating and specifying the characteristics of a particular datalink via the
service interface.

3. Continuing to manage the datalink entity from day to day.

To manage the datalink itself (items 1 and 3), refer to the DECnet/OSI for
VMS Network Control Language Reference manual. To set up, control, and use a
particular datalink service interface (item 2), you use the $QIO calls detailed in:

• Section 4.2.1–Opening a port

• Section 4.2.2–Enabling an attention AST

• Section 4.2.3–Starting up the protocol

• Section 4.2.4–Shutting down the protocol

• Section 4.2.5–Getting port information

• Section 4.2.6–Clean/flushing the datalink

• Section 4.2.7–Closing the port

• Section 4.3.1–Receiving data

• Section 4.3.2–Transmitting data

I/O Function Codes and Status Returns 4–3

4.2.1 Open a Port
The IO$_CREATE call creates a port to a datalink entity that has already been
set up, either with NCL or with the programming calls used for management.

Format
SYS$QIO chan, IO$_CREATE, [iosb], P1, P2

Returns

ss$_accvio A QIO argument is not accessible to the user process.

ss$_illiofunc Illegal I/O function code or modifiers specified.

ss$_insfarg Required P1 parameter not specified.

ss$_ivlognam P1 datalink name not in correct format.

ss$_insfmem Driver failed to allocate a nonpaged pool buffer.

ss$_exquota Could not allocate a nonpaged pool buffer because of quota
limitations.

ss$_badparam Unknown datalink entity name specified.
or
Illegal item in P2 itemlist

ss$_ivbuflen The buffer size requested was too large.

ss$_ssfail Your request to open a port has failed for some other reason. A
code specifying the reason is given in the second longword of
the IOSB.

Possible reasons are given in Table 4–2.

ss$_nosuchobj Could not connect to specified datalink entity.

ss$_devactive Port is already open.

ss$_disconnect The port was closed down while the open was being performed.

Notes
P2 is optional for DDCMP and FRAME ports.

P2 is not optional for LAPB and HDLC ports.

For LAPB you must at least specify the preferred buffer size item (dll$k_
preferred_buffer_size) in the item list (see Table 4–4).

For HDLC you must at least specify the protocol ID item (dll$k_protocolID) in the
item list (see Table 4–4).

4–4 I/O Function Codes and Status Returns

Table 4–2 Reasons for SS$_SSFAIL on an IO$_CREATE Request

Code Value Reason

dll$_no_such_entity 8356 You have specified an entity that does not exist.

dll$_entity_in_use 10500 The entity specified in the Open Port call is in
use.

dll$_ins_res 292 Your system has insufficient resources to meet
the request.

dll$_unsup_profile
(applicable only to LAPB
ports)

268 The profile specified in your call is not
supported.

dll$_inval_entity 10492 The entity specified in the request was not of the
required type.

dll$_fatalerr 692 There has been an internal fatal error. Please
submit an SPR.

Arguments

P1 The address of a quadword descriptor of the name (or logical name) of the
datalink. The P1 parameter is mandatory. Datalink names are in this
format:

ProtocolModule.LinkName[.StationName]

Replace ProtocolModule with either DDCMP, HDLC, LAPB or FRAME. You
must specify a LinkName. You must specify StationName for all datalinks
except FRAME and LAPB.

P2 If not zero, the address of a quadword descriptor of an item-list of
parameters for a port on the specified datalink. For further details, see
Section 4.2.1.1.

Notes

1. If P1 and P2 buffers are valid, the driver opens a port with the LinkName
and (except in the FRAME or LAPB entity) StationName specified in the call.

2. IO$_CREATE takes no modifiers.

4.2.1.1 Item-Lists for the Attributes of Ports
The P2 parameter of an IO$_CREATE call is the address of a quadword descriptor
that points to an item-list in which items have the format shown in Figure 4–1:

Figure 4–1 The Format of an Item

Item code Item length

Item’s value

31 16 15 0

I/O Function Codes and Status Returns 4–5

The item-list is a block of memory that is virtually contiguous. It contains one or
more items, which consist of these fields:

• Item length

• Item code

• Item value

Item Length
The Item length includes both the length of the Item length and the length of
the Item type, and is expressed in bytes. For example, an item whose value
was a longword would have an Item Length of 8: that is, two bytes for the Item
length, two bytes for the Item type, and four bytes for the longword value itself.
So although the length always depends on the value, the length of the item is not
equal to the length of the value (see Table 4–3).

Table 4–3 Sample Item Lengths

Length of Value Length of Item

Byte 5

Word 6

Integer 6

Longword 8

String length of string + 4

Local Entity Name A Local Entity Name is itself an item-list.

Item Code
The Item code is any of the codes listed in Table 4–4 or Table 4–8.

Item Value
An Item value can itself be an item-list.

Table 4–4 Settable Open Port Items

Value Item Code Item Type Description

100 dll$k_auto_start† Byte A boolean value that tells the datalink
to try to start automatically, after the
Open Port has completed successfully.
This parameter does not affect whether
the datalink attempts to restart itself
following a link failure.

If the setting of this parameter is
TRUE, the client need not issue
an Initialise Protocol function after
opening a port.

The default setting is TRUE.

† Not applicable to FRAME ports.

(continued on next page)

4–6 I/O Function Codes and Status Returns

Table 4–4 (Cont.) Settable Open Port Items

Value Item Code Item Type Description

101 dll$k_auto_restart† Byte A boolean value that tells the datalink
that it should always attempt to
restart the protocol itself after a link
failure.

The default setting is TRUE.

7 dll$k_preferred_
buffer_size 1�2�4

Longword The buffer size that the client would
like to use. Where negotiation takes
place, this value is used as the
preferred maximum data size.

6 dll$k_minimum_
buffer_size2�3

Longword The minimum buffer size that the
client is prepared to accept. If the
datalink performs negotiation of
the buffer size, it should not allow
negotiation below this value. This
value should be greater than or equal
to 262 if you are using DEC HDLC.

8 dll$k_protocolID2 Word The protocol ID that must be
exchanged with the remote station.
The link is used only if both stations
use the same ID.

9 dll$k_DECuserdata2 String The user data to be transferred as part
of the initialization sequence to the
remote station, if possible.

10 dll$k_profile3 String The datalink profile name that the
client wants to use. The datalink
checks that this matches the profile
in use on this datalink. If the actual
profile does not match the named
profile, the datalink returns the error
dll$_unsup_profile.

This item is optional. If it is not
specified, the datalink does no
checking.

106 dll$k_buffer_limit Byte This is a boolean value that the
datalink may pass to the device driver.
If TRUE, the driver limits the receive
buffer to its initial value. If FALSE,
the driver uses the initial value as a
minimum, and allocates more buffers
whenever it sends full buffers to the
user program. The default setting is
FALSE.

1Applicable to FRAME Ports.
2Applicable to HDLC Ports.
3Applicable to LAPB Ports.
4Applicable to DDCMP Ports.
† Not applicable to FRAME ports.

I/O Function Codes and Status Returns 4–7

4.2.2 Enable Attention AST
This function requests that an attention AST is delivered to the requesting
process after one of the following events:

• The driver has set or cleared any of the status or error bits. See Table 4–5
and Table 4–6 for meanings of different settings of the status and error bits.

• Data has arrived and there is no read request outstanding.

The user is informed only once whenever either of these conditions occurs.

Format
SYS$QIO chan, IO$SETMODE!IO$M_ATTNAST, [iosb],P1,[P2],P3

Returns

ss$_insfmem Driver failed to allocate a nonpaged pool buffer.

ss$_exquota Could not allocate a nonpaged pool buffer because of quota
limitations.

Arguments

P1 The address of an AST service routine (or 0 to disable ASTs).

P2 User parameter for the AST routine.

P3 Access mode to deliver AST (0 to 3, corresponding to the VMS access mode
chosen). If you specify a more privileged access mode than the current
access mode of the calling process, the AST is delivered in the current
access mode. Otherwise, the AST is delivered in the access mode you have
specified.

Notes

1. You may use the Enable Attention AST function at any time, regardless of the
condition of the driver and port status bits.

2. After an AST fires, it must be reenabled by another Enable Attention AST
function before an AST can fire again.

3. The AST quota (ASTLM) for your process limits how many ASTs can be
requested.

4. When the attention AST service is delivered, the top byte of the AST
parameter is the byte specified in the P2 parameter that set up the attention
AST. The lowest three bytes contain the status and error bits, listed in Tables
4–5 and 4–6.

Table 4–5 Meaning of Status Bits

Code Value Meaning When Set

dll$m_sts_active 1 The link is up.

dll$m_sts_receive_data_ready 2 There is received data waiting in the
driver for the user to read.

dll$m_sts_physical_loopback 4 Data is looping back at the physical
layer.

4–8 I/O Function Codes and Status Returns

Table 4–6 Meaning of Error Bits

Code Value Meaning When Set

dll$m_err_remote_restart 256 The remote station is restarting.

dll$m_err_insuff_resources 512 There are insufficient system resources
to provide the service called.

dll$m_err_physical_layer_down 1024 The physical layer is not available.

dll$m_err_negotiation_failure 2048 There has been a negotiation failure
(DEC HDLC only).

dll$m_err_maintenance_mode 4096 The datalink has been set to
maintenance mode.

dll$m_err_disabled 8192 The physical layer communications port
is disabled.

dll$m_err_threshold_exceeded 16384 Datalink receive or transmit threshold
exceeded.

I/O Function Codes and Status Returns 4–9

4.2.3 Start Up Protocol
Starts up the datalink protocol.

Format
$QIO chan, IO$_SETMODE!IO$M_STARTUP [,iosb]

Returns

ss$_disconnect The port was closed down while it was being started up.

ss$_devinact The port has not yet opened, or has not successfully opened.

ss$_illiofunc Illegal I/O function code or modifiers specified.

ss$_insfmem Driver failed to allocate a nonpaged pool buffer.

ss$_exquota Could not allocate a nonpaged pool buffer because of quota
limitations.

ss$_nosuchdev Port has not yet been opened.

Notes

1. IO$_SETMODE with the IO$M_STARTUP qualifier takes no parameters.

4–10 I/O Function Codes and Status Returns

4.2.4 Shut Down Protocol
Shuts down the datalink protocol.

Format
$QIO chan, IO$_SETMODE!IO$M_SHUTDOWN [,iosb]

Returns

ss$_illiofunc Illegal I/O function code or modifiers specified.

ss$_insfmem Driver failed to allocate a nonpaged pool buffer.

ss$_exquota Could not allocate a nonpaged pool buffer because of quota
limitations.

ss$_nosuchdev Port has not yet been opened.

ss$_disconnect The port was closed down while it was being started up.

ss$_devinact The port has not yet opened, or has not successfully opened.

Notes

1. IO$_SETMODE with the IO$M_SHUTDOWN qualifier takes no parameters.

I/O Function Codes and Status Returns 4–11

4.2.5 Getting Port Information
To get information about an open port, you use the IO$_SENSEMODE call.

Format
SYS$QIO chan, IO$_SENSEMODE, [iosb], ,P2

Returns

ss$_accvio A QIO argument is not accessible to the user process.

ss$_illiofunc Illegal I/O function code or modifiers specified.

ss$_insfarg Required P2 parameter not specified.

ss$_bufferovf Item-list is too large to fit into user’s buffer.

Arguments

P2 The address of a quadword descriptor. The length field of the descriptor
contains the length of the buffer pointed to by the address field of the
descriptor.

The driver returns in the buffer described by this descriptor the following
(in the item-list format discussed in Section 4.2.1.1):

• All the Open Port items (see Tables 4–4 and 4–7)

• All the items in the Link Up output item-list (for sequenced HDLC ports
only—see Table 4–8)

The Link Up items will only be present if the link is up when the IO$_
SENSEMODE request is received.

Table 4–7 Read-Only Open Port Items

Value Item Code Item Type Description

1 dll$k_dl_entity Local
Entity
Name

Local Entity Name of the datalink
and/or logical station.

5 dll$k_port_entity Local
Entity
Name

The name of the newly created
datalink port entity.

2 dll$k_client Local
Entity
Name

The local entity name of the client
subentity.

11 dll$k_actual_
buffer_size 1

Integer The negotiated buffer size for use over
the link. In the case of HDLC, the
datalink returns this value in the Link
Up Item-List (Table 4–8).

106 dll$k_buffer_limit 1 Byte A boolean value that the datalink may
pass to the driver. If the setting is
TRUE, the driver limits its receive
buffers to its initial number. If FALSE,
the driver uses this number as a
minimum, and allocates more buffers
whenever it sends full buffers to the
user program. The default setting is
FALSE.

1Applicable to HDLC Ports.

4–12 I/O Function Codes and Status Returns

Table 4–8 Link Up Item-List

Value Item Code Item Type Description

11 dll$k_actual_
buffer_size

Integer The negotiated buffer size for use over
the link.

8 dll$k_protocolID Word The protocol ID proposed by the remote
station, if supplied.

9 dll$k_DECuserdata String The user data received from the remote
station, if supplied.

I/O Function Codes and Status Returns 4–13

4.2.6 Clean
For the Frame datalink only, an IO$_CLEAN function can stop either outstanding
write requests, or outstanding read requests, or both, depending on modifiers. By
default, IO$_CLEAN stops outstanding Write requests only.

Format
$QIO chan, IO$_CLEAN[!IO$M_READATTN|IO$M_WRTATTN] [, iosb]

Returns

ss$_illiofunc Illegal I/O function code or modifiers specified.
or
IO$_CLEAN not supported for this datalink.

ss$_insfmem Driver failed to allocate a nonpaged pool buffer.

ss$_exquota Could not allocate a nonpaged pool buffer because of quota
limitations.

ss$_devinact The port has not completed opening.

ss$_nosuchdev The port has not been opened.

ss$_abort Clean already in progress.

Notes
The modifiers work in this way:

• If you specify just one modifier, an IO$_CLEAN request stops either read
requests or write requests.

• If you specify both modifiers, an IO$_CLEAN request stops both read requests
and write requests.

• If you specify neither modifier, an IO$_CLEAN request stops only write
requests

4–14 I/O Function Codes and Status Returns

4.2.7 Close a Port
Closes a port.

Format
SYS$QIO chan, IO$_DELETE [, iosb]

Returns

ss$_illiofunc Illegal I/O function code or modifiers specified.

ss$_devinact Port has not been opened.

Notes

1. IO$_DELETE takes no function code modifier.

I/O Function Codes and Status Returns 4–15

4.3 $QIOs for Exchanging User Data
The generic drivers do not differentiate between logical, virtual, and physical I/O
functions.

4.3.1 Read
A Read function transfers incoming data into the buffer you specify.

Format
SYS$QIO chan, IO$_READLBLK[!IO$M_NOW] [,iosb], P1, P2

Returns

ss$_accvio A QIO argument is not accessible to the user process.

ss$_illiofunc Illegal I/O function code or modifiers specified.

ss$_badparam Receive request 0 length, or greater than maximum transmit
buffer size.

ss$_bufferovf Message was received successfully, but was too large to fit into
user’s buffer.

ss$_endoffile IO$M_NOW modifier was specified on the read QIO, but no
completed reads were available.

ss$_abort QIO has been aborted.

ss$_nosuchdev The port has not been opened.

ss$_devinact The port has not completed opening.

Arguments

P1 The address of a buffer for a message that the driver receives.

P2 The length of the same buffer.

Notes

1. The status return SS$_ENDOFFILE (if the IO$M_NOW modifier is specified)
indicates that there is no data to be read in the driver.

4–16 I/O Function Codes and Status Returns

4.3.2 Write
Format
SYS$QIO chan, IO$_WRITELBLK[!IO$M_NOW], [iosb], P1, P2

Returns

ss$_accvio A QIO argument is not accessible to the user process.

ss$_illiofunc Illegal I/O function code or modifiers specified.

ss$_badparam Transmit request 0 length, or greater than the receive buffer
size.

ss$_exquota Could not allocate a nonpaged pool buffer due to quota
limitations.

ss$_nosuchdev Port has not been opened.

ss$_devinact The port has not completed opening.

ss$_abort QIO has been aborted.

ss$_ssfail There has been some other error. Reasons are given in the
second longword of the IOSB: see Table 4–9.

Table 4–9 Reasons for SS$_SSFAIL on a IO$_WRITELBLK Request

Code Value Meaning When Set

dll$m_sts_active 0 The datalink is not running.

dll$m_err_not_sent 32768 The buffer has not been sent because
the datalink is unavailable. Try again.

dll$m_err_physical_layer_down 1024 The physical layer has failed.

dll$m_err_disabled 8192 The datalink port is being closed.

dll$m_err_fatalerr 65536 There has been an internal fatal error.

Arguments

P1 The address of a buffer that holds a message for the driver to send.

P2 The length of the same buffer.

Notes

1. The drivers put your data in a system buffer before transmitting it.

2. For the Frame datalink, on half-duplex lines, the write functions can take
the modifier IO$M_MORE. This keeps Request To Send (RTS) asserted in
half-duplex communications, after a message is transmitted. Without this
modifier, the driver drops RTS.

3. If the link is unavailable, the driver does not attempt to pass data to the
datalink. The driver holds the data in an internal queue until the datalink
indicates that the link is available again.

I/O Function Codes and Status Returns 4–17

Figure 4–2 The Format of the IOSB

transfer size completion status

error
summary status characteristics

+2 0

+4

4.4 Returns in the Input/Output Status Block (IOSB)
The format of the I/O Status Block (IOSB) is shown in Figure 4–2.

As well as the completion status, the first longword of the IOSB returns the size
(in bytes) of the data transfer.

The second longword of the IOSB contains the DEVDEPEND longword. See
Table 4–5 and Table 4–6 for meanings of different settings of the status and error
bits.

4.5 Using the $CANCEL System Service
When you call the $CANCEL system service, outstanding attention ASTs are
flushed and a close port operation is initiated. A close port operation flushes
back all outstanding I/O, returns resources, and disconnects and shuts down the
service interface into the datalink.

Note that using $CANCEL is slightly different than what happens when using
the obsolete QIO interface. If you just want to abort outstanding I/O requests,
you must use the Clean operation. See Section 4.2.6 for more information about
the Clean operation.

4–18 I/O Function Codes and Status Returns

A
DEC HDLC

This appendix gives reference details of DEC HDLC. A DEC HDLC module
can exchange data only with another DEC HDLC module, or one that uses a
compatible implementation of HDLC.

Section A.1 lists the optional functions provided for in ISO 7809. These are
implementation options. Section A.1 also indicates which of them are either
optional (for the user), required, or not implemented in DEC HDLC. Notes give
further details of functions implemented in DEC HDLC.

Section A.2 lists which of the classes of procedure are available in DEC HDLC,
and specifies the link type to which each class applies.

DEC HDLC A–1

A.1 Optional Functions
Optional
Procedure
Number Additional Function Provided

DEC HDLC Implementation
Details

1 Ability to exchange identification and/or
characteristics

Required1

2 Improved reporting of I frame sequence
errors

Optional2

3 More efficient recovery from I frame
sequence errors

No

4 Ability to exchange information fields
(whether or not operational) without
affecting I frame sequence numbers

Required3

5 Ability to initialize/request intialization No

6 Ability to do unnumbered group and
all-station polling

No4

7 Greater than single-octet addressing No

8 Delete I responses (limits remote station
to using I frames for commands)

No

9 Delete I commands (limits remote station
to using I frames for responses)

No

10 Ability to use extended sequence
numbering (modulo 128)

Optional5

11 One-way reset (for BAC only) No

12 Ability to do basic datalink test No

13 Ability to request logical disconnection No

14 32-bit frame checking sequence (FCS) Optional6

1. The Exchange Identification (XID) function lets Datalink Layer entities
exchange parameters and chacteristics of operation before or during normal
working. This function has three prime uses:

• Exchanging information before setting up a logical data-link for Network
Layer traffic.

• Accommodating a limited amount of higher-layer information (for
example, in security applications).

• Indicating a local change in data-link parameter values (for example,
because of congestion).

Within DEC HDLC, the remote station must transmit an XID response
using the general purpose XID information field identifier. The datalink
parameters must be in accordance with International Standard ISO 8885,
and the addresses in accordance with International Standard ISO 8471. The
XID frame must itself contain a user data field in DEC HDLC format, with –
at least—the HDLC protocol identifier and version.

2. The Improved Performance function allows for the reporting of I frames
received out of sequence, by means of the REJ frame. A REJ frame requests
transmission or retransmission of frames with a sequence number later than
the last one successfully received.

For DEC HDLC, if the option is denied, no REJ transmission will take place.
Checkpointing will be necessary to recover from line errors.

A–2 DEC HDLC

3. The Unnumbered Information (UI) function allows for the sending of higher-
layer information at any time with no impact on the ordering of I frames. On
a highly reliable, error-free line, the exclusive use of UI frames may be the
logical choice.

A DEC HDLC link will not initialize if the UI support is denied. The remote
station must also respond correctly to UI frames with the protocol identifier
in the DEC HDLC format used by the Maintenance Operations Protocol.

4. It is possible to poll out of the running state, using DISC frames.

5. The Extended Sequence Numbering function defines the sequence numbering
for I frames as modulo 128. The greater modulus value allows for larger send
and receive windows. This function’s prime use is over connections where
there is a long propagation delay (for example, a satellite link).

DEC HDLC selects this optional function according to the setting of the
ACTUAL SEQUENCE MODULUS parameter for the datalink.

6. The 32-bit FCS function provides for a higher level of accuracy in error
detection.

DEC HDLC selects this optional function according to the PREFERRED CRC
TYPE specified and the capacity of the device in use for the datalink. Note
that in V2.0 of the VAX WAN Device Drivers only the DSF32 can support a
32-bit CRC.

A.2 Classes of Procedure

Class Link Type

Number Name Number Name

1 Balanced ABM 0 Balanced1

2 Unbalanced NRM—primary 1 Primary2

3 Unbalanced NRM—secondary 2 Secondary2

1DEC HDLC supports Class 1 only on a full-duplex line.
2DEC HDLC supports Classes 2 and 3 only on a half-duplex line.

For further details of the HDLC protocol, see the International Standards ISO
3309, ISO 4335 (with its DADs), and ISO 7809 (with its DADs). Programmers
who need to write their own datalink protocol should refer to Appendix B.

DEC HDLC A–3

B
User-Written Datalink Protocols

If you want to write your own datalink protocol, you must make calls to the
Frame module. The Frame module does only the framing for the type of line
protocol being used.

See the DECnet/OSI for VMS Network Control Language Reference manual for
information on manageable attributes of the frame datalink.

This appendix gives a brief description and provides usage notes for each of these
framing routines:

• DDCMP

• HDLC

• BISYNC

• GENBYTE

B.1 The DDCMP Framing Routine
Note for DDCMP users

This section applies only to implementations of the DDCMP protocol that
are not supplied by Digital.

DDCMP (Digital Data Communications Message Protocol) is a byte-oriented
protocol that can be used on synchronous or asynchronous, half- or full-duplex,
serial or parallel, and point-to-point or multi-point systems.

Figure B–1 shows the way a DDCMP frame is made up.

Figure B–1 A DDCMP Frame

class count [addr] CRC1 Info field CRC2

User-Written Datalink Protocols B–1

Notes
DDCMP framing checks these fields only:

1. CLASS

Eight bits. There are three classes of message: Data (81), Control (05), and
Maintenance (90).

2. COUNT

This 14-bit field is used in Data and Maintenance messages to indicate the
number of characters that will follow the header, forming the information part
of the message. In Control messages, the first eight bits indicate the kind of
Control message it is.

There are also two flag bits.

3. The DDCMP framing routine checks only that the two octets used by DDCMP
for sequence and response are present.

4. ADDRESS

Not checked by the framing routine.

5. CRC1

This 16-bit field is a check just on the header information. In Control
messages, the frame stops here.

6. CRC2

A second check (also 16-bits), on the Information field.

DDCMP framing also checks that the length of the frame is valid.

B.2 The HDLC and SDLC Framing Routines
Note for HDLC users

This section applies only to implementations of HDLC protocols that are
not supplied by Digital.

Notes
The HDLC framing routine checks these fields only:

1. FLAGS

A bit pattern of 01111110 at the beginning and end of the frame.

2. ADDRESS

An optional address check of the next 8 (or possibly 16) bits. (SDLC only)

3. CRC

A frame check that is either CRC_CCITT (16 bits) or CRC_AUTODINII (32
bits). (HDLC only)

B–2 User-Written Datalink Protocols

B.3 BISYNC
BISYNC is IBM’s Binary Synchronous Communications Protocol. BISYNC is a
character-oriented protocol, used for transmission between IBM computers and
batch and video display terminals.

B.4 GENBYTE
Note

GENBYTE is not supported for calls to the WANDRIVER interface. It is
available only to users of the obsolete interface, and is unchanged from
the GENBYTE available with earlier versions of the VAX WAN Device
Drivers.

The GENBYTE protocol is supported by the DMB32 and DMF32 device drivers.
GENBYTE enables receive message framing to be tailored to suit a particular
user-written protocol. This facility allows protocols not specifically supported by
the driver, or by the device’s firmware, to have their own rules for framing receive
messages.

GENBYTE enables the users framing routine to become part of the driver’s
interrupt processing context. When GENBYTE is the line protocol, incoming
data is passed, character by character, to the user’s framing routine, which then
decides whether the driver should:

• Ignore the character completely.

• Buffer the character as part of the frame being composed.

• Buffer the character and overwrite the previously buffered character.

The framing routine also tells the driver whether the latest incoming character
terminates the frame in the desired protocol, and if the receive frame should be
posted for I/O completion.

B.4.1 The Framing Routine
You must write your own framing routine and load it into nonpaged pool.
Because it is in nonpaged pool, the framing routine must be written in position-
independent code. You pass the address of your routine to the driver when you
start the line.

The address of the framing routine is kept in the driver’s database for the line.
The driver also maintains for each GENBYTE line a context quadword, which is
used by the framing interface for keeping state information while it is framing the
receive message. The context quadword and the value of the incoming character
constitute the total amount of information given to the framing routine. Thus,
any protocol-specific context held by the framing routine must be kept in the
context quadword since there is no other per-line data available to the framing
routine.

The value of the context quadword at the start of the frame is defined in the
SETMODE QIO P2 buffer. The framing routine can make use of the quadword
in any way it wishes (for example, to hold counts and finite state machine states
indicating which characters to expect next). At the end of each frame, the context
quadword is reset to its initial value.

User-Written Datalink Protocols B–3

The driver calls your framing routine using a JSB instruction in the following
manner:

IPL = Driver’s fork IPL

R0 = Address of the framing routine context quadword for the line

R1 = Incoming character in the low byte

Your framing routine must preserve all the registers it uses (except R0 and R1).
It may update the context quadword, but must not change any other system data
structures.

On return to the driver, the framing routine holds the following parameters:

R1 = The incoming character

R0 = Indication of what the driver should do with the character

Bits set in R0 signify:

Bit 0 If clear, buffer the character in the next position. If set, use bit 1.

Bit 1 If clear, ignore the character. If set, buffer the character in the previous position
(that is, overwrite the last character buffered).

Bit 2 If set, complete and return the framed buffer to the user. (Buffer character
according to bits 0 and 1.) If clear, ignore.

So the following values of the least significant byte of R0 indicate:

0 = Buffer character in next position.

1 = Ignore character.

2 = Invalid code.

3 = Buffer character in previous position.

4 = Buffer character in the next position. Complete the frame.

5 = Ignore character. Complete the frame.

6 = Invalid code.

7 = Buffer character in previous position. Complete the frame.

Note that the framing routine should execute as few instructions as possible for
each character, otherwise data may be lost. Ten instructions is a typical upper
limit.

B.4.2 QIO Parameters Used in GENBYTE Operation
Select GENBYTE by setting the NMA$C_LINPR_PRO parameter in the
SETMODE startup QIO to the value NMA$C_LINPR_BSY. (Since GENBYTE
does not distinguish between line and circuit, the IO$M_CTRL subfunction
modifier must always be specified in the startup QIO.)

Note that your process requires CMKRNL privilege to select GENBYTE mode,
since access to system code in nonpaged pool is implied.

B.4.2.1 IO$_SETMODE P2 Parameter
Use any of the following parameters for the P2 argument to the SETMODE
(controller) QIO function:

NMA$C_PCLI_PRO (with value = NMA$C_PRO_BSY)
NMA$C_PCLI_DUP
NMA$C_PCLI_BFN
NMA$C_PCLI_BUS
NMA$C_PCLI_CON

B–4 User-Written Datalink Protocols

However, there are extra parameters for the P2 argument specifically for
GENBYTE. See Table B–1 for details.

Table B–1 Extra P2 Parameters for GENBYTE

Parameter ID Meaning

NMA$C_PCLI_SYC The SYNC character used by the device. Defaults to 32 hex.

NMA$C_PCLI_NMS The number of SYNC characters to precede a transmit. The
default is 8.

NMA$C_PCLI_FRA The address of your protocol framing routine in nonpaged system
address space. This parameter must be specified.

NMA$C_PCLI_STI1
NMA$C_PCLI_STI2

These two parameters contain the initial value of the framing
routine context quadword. The SETMODE startup QIO sets the
context quadword to this initial value. When the framing routine
signals end-of-frame to the driver, the context quadword is reset
to this initial value.

B.4.2.2 IO$_WRITEBLK P4 Parameter
In GENBYTE mode, the IO$_WRITEBLK QIO function has an extra optional P4
parameter. If P4 is zero, the parameter is ignored; if P4 is nonzero, the parameter
must point to an 8-byte buffer in your program. The contents of this buffer are
immediately copied to the context quadword for the line. You can use this facility
to indicate to the framing routine that a different type of frame is expected next.
Note that the initial quadword value is always used to reset the context quadword
at the end of each received frame.

B.4.3 Other Aspects of GENBYTE Operation
An IO$_CLEAN QIO stops all outstanding transmit and receive I/O operations.

The driver for a DMA device operates in a degraded mode when running in
GENBYTE. This is because it has to examine repeatedly the contents of the
receive buffer that is in progress to check whether there are new characters to
be passed to the framing routine. Thus, the maximum line speed that the device
driver supports in GENBYTE mode is less than that supported by other protocols
used by the driver. An upper limit of 9.6K baud for GENBYTE is typical.

B.4.4 How to Use GENBYTE
Writing a framing routine for GENBYTE is relatively straightforward. Getting
it loaded into system space, and providing the address of the framing routine,
needs care. Remember that a GENBYTE framing routine effectively augments
the VMS executive on line. Take great care to ensure that you have designed the
GENBYTE interface correctly: an improperly designed interface can crash the
system.

Example techniques you might use are as follows:

• The framing routine could be loaded as part of a pseudo-device driver, which
can return the framing routine entry point address in response to some I/O
request, such as IO$_INITIALIZE.

• Alternatively, use a suitably privileged process to allocate nonpaged pool, and
copy the framing routine code into the nonpaged pool buffer. Ensure that the
framing routine is written in position-independent code. This approach would
enable the framing routine to be unloaded from nonpaged pool when it is no
longer required and the line has been shut down.

User-Written Datalink Protocols B–5

Once the framing routine had been loaded into nonpaged pool and its entry point
address has been identified, a CMKRNL-privileged process (the "starter-process")
can issue an IO$_SETMODE QIO to start up the line into GENBYTE mode. If
the starter-process is the only process that will perform data transfers over the
line, then it can proceed to issue IO$_WRITELBLK and IO$_READLBLK QIOs.
If other user-processes are required to transfer data over the line, then either
they must have SHARE privilege, or else run images installed with SHARE
privilege. SHARE privilege is required so that the process can assign to the line
at the same time as the starter-process.

Section B.5 contains an example GENBYTE routine.

B–6 User-Written Datalink Protocols

B.5 A Sample GENBYTE Macro-32 Framing Routine for a Subset of
the IBM BISYNC Protocol

.SBTTL MACROS
;
; Macro to simplify CASE instructions
;

.MACRO SELECT INDEX,VECLIST,TYPE=W,PREFIX1=<>,PREFIX2=<>,?DISPL0
;
; Inputs: Index = Case index
; Veclist = A list of pairs of values <<val,adr>,...,<val,adr>>
; which indicate the branch to take for various values
; of the index. If the index value does not appear in
; the list, control goes to immediately after the macro.
; Prefix1 = An optional prefix that will precede the ’val’ field
; in the ’veclist’ pairs - used for abbreviating symbolic
; values in the list.
; Prefix2 = An optional prefix that will precede the ’adr’ field
; in the ’veclist’ pairs - used for abbreviating symbolic
; values in the list.
; If the ’adr’ field is null, then the address for this
; pair is taken as the concatenation of ’val’ and ’prefix2’
;

.MACRO $$MAX NUM,IGNORE

.IIF EQ $$MXSW, $$HIGH=NUM
$$MXSW=1
.IIF LT $$HIGH-NUM, $$HIGH=NUM
.ENDM $$MAX

.MACRO $$MIN NUM,IGNORE

.IIF EQ $$MNSW, $$LOW=NUM
$$MNSW=1
.IIF GT $$LOW-NUM, $$LOW=NUM
.ENDM $$MIN

.MACRO $$GENDISPL VALUE,LABEL,PFIX1=<>,PFIX2=<>

.IF EQ $$DISPL-PFIX1’’VALUE

.IIF NB <LABEL> , .SIGNED_WORD PFIX2’’LABEL-DISPL0

.IIF B <LABEL> , .SIGNED_WORD PFIX2’’VALUE-DISPL0

.IIF EQ 1-$$GENSW, .ERROR ; Duplicate occurrence of VALUE
$$GENSW=1
.ENDC
.ENDM $$GENDISPL

$$MXSW=0
$$MNSW=0

.IRP TUPLE,<VECLIST>
$$MAX PREFIX1’’TUPLE
$$MIN PREFIX1’’TUPLE
.ENDR

$$BASE=$$LOW
$$LIMIT=$$HIGH-$$LOW
$$DISPL=$$BASE

CASE’TYPE INDEX,#$$BASE,#$$LIMIT
DISPL0:

.REPT $$LIMIT+1
$$GENSW=0
.IRP TUPLE,<VECLIST>
$$GENDISPL TUPLE,PFIX1=<PREFIX1>,PFIX2=<PREFIX2>
.ENDR
.IIF EQ $$GENSW, .WORD 2*<$$LIMIT+1>
$$DISPL=$$DISPL+1
.ENDR
.ENDM SELECT

User-Written Datalink Protocols B–7

;
; Macro to define EBCDIC constants.
;

.MACRO EBC$DEF
EBC$_SPA = 64
EBC$_SOH = 1
EBC$_STX = 2
EBC$_ETX = 3
EBC$_ETB = 38
EBC$_EOT = 55
EBC$_DLE = 16
EBC$_NAK = 61
EBC$_ENQ = 45
EBC$_AK0 = 112
EBC$_AK1 = 97
EBC$_IGS = 29
EBC$_IRS = 30
EBC$_DC1 = 17
EBC$_DC2 = 18
EBC$_DC3 = 19
EBC$_HT = 5
EBC$_ITB = 31
EBC$_NL = 21
EBC$_SYN = 50
EBC$_RVI = 124
EBC$_WACK = 107
EBC$_SLH = 97
EBC$_ESC = 39
EBC$_PAD = 255
.MACRO EBC$DEF
.ENDM EBC$DEF
.ENDM EBC$DEF

;
; Macro to define BISYNC receive states.
;

.MACRO ST_DEF
ST_START = 0
ST_NTTX = 1
ST_STOP1 = 2
ST_STOP = 3
ST_NTTX_ITB = 4
ST_NTTX_ITB1 = 5
ST_XPR = 6
ST_XPR_DLE = 7
ST_XPR_SYN = 8
ST_XPR_ITB = 9
ST_XPR_ITB1 = 10
ST_BINARY = 11
ST_DLE_FIRST = 12
ST_XPR_NEW = 13
ST_SLAVELOOP = 14
.MACRO ST_DEF
.ENDM ST_DEF
.ENDM ST_DEF

;
; Genbyte framing return code status bits.
;

GENB$M_BUFFER_CHAR = 1@0
GENB$M_BUFFER_IN_PREV_POS = 1@1
GENB$M_COMPLETE_READ = 1@2

B–8 User-Written Datalink Protocols

;
; Set status for driver to buffer the character in R1 in the
; next position in the buffer.
;

.MACRO BUFFER_CURRENT
CLRL R0
.ENDM BUFFER_CURRENT

;
; Set status for driver to buffer character in R1 in previous position
; in buffer, overwriting previous character buffered.
;

.MACRO BUFFER_PREVIOUS
MOVL #GENB$M_BUFFER_CHAR!GENB$M_BUFFER_IN_PREV_POS,R0
.ENDM BUFFER_PREVIOUS

;
; Set status for driver to ignore the character.
;

.MACRO IGNORE_CHAR
MOVL #GENB$M_BUFFER_CHAR,R0
.ENDM IGNORE_CHAR

;
; Set status for driver to buffer character in current position,
; and then to complete the read.
;

.MACRO COMPLETE_FRAME
MOVL #GENB$M_COMPLETE_READ,R0
.ENDM COMPLETE_FRAME

;
.SBTTL FRAMING ROUTINE

;
EBC$DEF ; EBCDIC character definitions
ST_DEF ; Framing routine definitions

;
; NOTE: Framing routine assumes that the first byte of the
; state quadword is the BISYNC receive state.
;

RCV$B_RCVSTATE = 0 ; Receive state-machine state
RCV$B_ITBCNT = 1 ; ITB count in state quadword
RCV$W_BIN_COUNT = 2 ; Byte count (when in binary state)

;
; Initial values of state quadword. Set up when the line is started.
; Reset when a frame completes.
;

NY$C_INIT_STATE = ST_START!<256*7> ; START state. Max 7 ITBs
NY$C_BINARY_STATE = ST_BINARY ; Binary receive start state
NY$C_SLAVE_STATE = ST_SLAVELOOP ; Slave receive start state

User-Written Datalink Protocols B–9

;
; ===
; = *** FRAMING ROUTINE FOR BISYNC *** =
; ===
;
FRAMING_ROUTINE::
;
; Select what to do next based on the current state of the
; BISYNC state-machine maintained by this framing routine.
;

SELECT (R0),TYPE=B,-
<START,-
NTTX,-
STOP1,-
STOP,-
NTTX_ITB,-
NTTX_ITB1,-
XPR,-
XPR_DLE,-
XPR_SYN,-
XPR_ITB,-
XPR_ITB1,-
BINARY,-
DLE_FIRST,-
XPR_NEW,-
SLAVELOOP,-
>,PREFIX1=<ST_>,PREFIX2=<FRAME_>

;
; Start of frame
;
FRAME_START:

CMPB #EBC$_DLE,R1 ; Is it transparent text or a response?
BNEQ 10$; NEQ if no
MOVB #ST_DLE_FIRST,(R0) ; Say first character was a DLE
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

10$: BBC R1,RSPMASK,20$; 1 byte response (NAK,ENQ,EOT) ?
BRW FRAME_STOP ; Complete receive with 1 byte response

20$: MOVB #ST_NTTX,(R0) ; Non-transparent text state

;
; Non-transparent text
;
FRAME_NTTX:

BBS R1,CCHRMASK,FRAME_CTRL ; BBS if control character
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

FRAME_CTRL:
CMPB #EBC$_ITB,R1 ; Internal CRC next?
BNEQ 10$; NEQ if no
MOVB #ST_NTTX_ITB,(R0) ; Signal first CRC byte next
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

10$: CMPB #EBC$_SYN,R1 ; SYN in text?
BNEQ 20$; NEQ if no
IGNORE_CHAR ; Say character is to be ignored
RSB ; Return to driver

20$: CMPB #EBC$_ENQ,R1 ; Is it a forward abort?
BEQL FRAME_STOP ; Go signal end of frame
MOVB #ST_STOP1,(R0) ; CRC next
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

B–10 User-Written Datalink Protocols

;
; Second character of frame following DLE
;
FRAME_DLE_FIRST:

CMPB #EBC$_STX,R1 ; Is it a transparent text block
BNEQ 10$; NEQ if no
MOVB #ST_XPR,(R0) ; Say we’re in transparent text mode
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

10$: BRB FRAME_STOP ; Assume last character of response

;
; Transparent text
;
FRAME_XPR:

CMPB #EBC$_DLE,R1 ; Is it a DLE
BEQL 10$; EQL if yes
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

10$: MOVB #ST_XPR_DLE,(R0) ; DLE state next
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

;
; Transparent text, DLE state
;
FRAME_XPR_DLE:

CMPB #EBC$_ITB,R1 ; Is it an internal CRC?
BNEQ 10$; NEQ if no
MOVB #ST_XPR_ITB,(R0) ; Set transparent ITB state next
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

10$: CMPB #EBC$_SYN,R1 ; Is it a SYN in text
BNEQ 20$; NEQ if no
MOVB #ST_XPR_SYN,(R0) ; Set state to overwrite previous DLE
IGNORE_CHAR ; Say ignore this character
RSB ; Return to driver

20$: BBS R1,CCHRMASK,40$; Branch if control character
CMPB #EBC$_STX,R1 ; Is it an STX?
BNEQ 30$; NEQ if no
MOVB #ST_XPR,(R0) ; Go back to transparent text state
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

30$: CMPB #EBC$_DLE,R1 ; Is it a DLE
BNEQ FRAME_STOP ; Abort receive for any other character
MOVB #ST_XPR,(R0) ; Go back to transparent text state
BUFFER_CURRENT ; Have second DLE buffered
RSB ; Return to driver

40$: MOVB #ST_STOP1,(R0) ; Say stop after two CRC bytes
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

User-Written Datalink Protocols B–11

;
; Non-transparent first internal CRC byte state
;
FRAME_NTTX_ITB:

MOVB #ST_NTTX_ITB1,(R0) ; Second CRC byte state next
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

;
; Non transparent second internal CRC byte state
;
FRAME_NTTX_ITB1:

MOVB #ST_NTTX,(R0) ; Non-transparent text state next
BRB FRAME_ITB_END ; Do common end of ITB processing

;
; End of frame
;
FRAME_STOP:

MOVQ #NY$C_INIT_STATE,(R0) ; Set next state to new frame
COMPLETE_FRAME ; End of frame, buffer character
RSB ; Return to driver

;
; Transparent first CRC byte state
;
FRAME_XPR_ITB:

MOVB #ST_XPR_ITB1,(R0) ; Second CRC byte next
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

;
; Transparent second CRC byte state
;
FRAME_XPR_ITB1:

MOVB #ST_XPR_NEW,(R0) ; New internal record state
FRAME_ITB_END:

DECB RCV$B_ITBCNT(R0) ; One more internal record received
BLEQ FRAME_STOP ; LEQ if more than 7 ITBs - give up
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

;
; Transparent text, DLE SYN was received (DLE has been buffered)
;
FRAME_XPR_SYN:

CMPB #EBC$_DLE,R1 ; Is it a DLE
BNEQ 10$; NEQ if no
MOVB #ST_XPR_DLE,(R0) ; Transparent DLE state next
IGNORE_CHAR ; Ignore this DLE, one already buffered
RSB ; Return to driver

10$: MOVB #ST_XPR,(R0) ; Go back to normal transparent text
BUFFER_PREVIOUS ; Buffer character, overwriting DLE
RSB ; Return to driver

;
; First byte of final CRC state
;
FRAME_STOP1:

MOVB #ST_STOP,(R0) ; Final byte next
BUFFER_CURRENT ; Buffer character in current position
RSB ; Return to driver

B–12 User-Written Datalink Protocols

;
; New record state
;
FRAME_XPR_NEW:

CMPB #EBC$_SYN,R1 ; Is it the leading SYN char
BEQL 10$; EQL if yes
MOVB #ST_XPR,(R0) ; Go back to transparent text state
BRW FRAME_XPR ; Go process the character

10$: IGNORE_CHAR ; Ignore the SYN
RSB ; Return to driver

;
; Binary read - used for diagnostic QIOs - Buffer till count runs out
;
FRAME_BINARY:

DECW RCV$W_BIN_COUNT(R0) ; One more byte
BEQL FRAME_STOP ; EQL if done - complete buffer & reset

; state to text
BUFFER_CURRENT ; Buffer character in current position
RSB ; And return

;
; Slaveloop read - for diagnostic slave test - Buffer till PAD received
;
FRAME_SLAVELOOP:

CMPB #EBC$_PAD,R1 ; Is it end of frame?
BEQL 10$; EQL if yes
BUFFER_CURRENT ; Buffer character in current position
RSB ; And return

10$: ; End of slaveloop frame
MOVL #GENB$M_BUFFER_CHAR!GENB$M_COMPLETE_READ,R0 ; End frame, ignore char
RSB

;
.SBTTL Data Tables

;
; Macros to generate a table of 256 bits - all zeros
; except for the bits corresponding to the character
; codes specified in the parameter list.
;

.MACRO MASK_TABLE TABLE,CHARLIST

.IRP CHAR,<CHARLIST>
MASK_INCLUDE_CHAR TABLE,\CHAR

.ENDR
TABLE:

M$ = 0
.REPT 8

MASK_LONGWORD TABLE,\M$
M$ = M$+1

.ENDR

.ENDM MASK_TABLE

.MACRO MASK_LONGWORD TABLE,INDEX

.IIF DF TABLE’’INDEX , .LONG TABLE’’INDEX

.IIF NDF TABLE’’INDEX , .LONG 0

.ENDM MASK_LONGWORD

.MACRO MASK_INCLUDE_CHAR TABLE,CHAR
M$NUM = CHAR / 32
M$BIT = CHAR - <M$NUM * 32>
MASK_INCLUDE_BIT TABLE,\MNUM,\MBIT
.ENDM MASK_INCLUDE_CHAR

.MACRO MASK_INCLUDE_BIT TABLE,INDEX,BIT

.IIF NDF TABLE’’INDEX , TABLE’’INDEX = 0
TABLE’’INDEX = TABLE’’INDEX ! <1 @ BIT>
.ENDM MASK_INCLUDE_BIT

;
; Control character table (CCHRMASK)
;

MASK_TABLE CCHRMASK,-
<EBC$_ITB,EBC$_ETX,EBC$_EOT,EBC$_SYN,EBC$_ENQ,EBC$_ETB>

User-Written Datalink Protocols B–13

;
; 1 byte response table (RSPMASK)
;

MASK_TABLE RSPMASK,-
<EBC$_NAK,EBC$_EOT,EBC$_ENQ>

;
; End of Framing routine
;
FRAMING_ROUTINE_END::
;
; Length of framing routine area
;
FRAMING_ROUTINE_LENGTH == FRAMING_ROUTINE - FRAMING_ROUTINE_END
;
;

.END

B–14 User-Written Datalink Protocols

C
Example Programs

This appendix gives the listings of four programs written in C, divided between
the WANDRIVER interface (Section C.1) and the obsolete interface (Section C.2).

Note that a number of example programs, written in C and Ada, are placed in
the SYS$EXAMPLES directory when you install the VAX WAN Device Drivers.
See the DECnet/OSI for VMS Installation and Configuration manual for a list of
these files.

C.1 Programs That Use the WANDRIVER Interface
Section C.1.1 issues write requests to WANDRIVER; Section C.1.2 issues read
requests to WANDRIVER.

C.1.1 WANDRIVER Program That Sends Data
/*
**
** INCLUDE FILES
**
**/

#include <stdio.h>
#include <starlet.h>
#include iodef
#include descrip
#include ssdef
#include "xmdef.h"
#include "nmadef.h"
#include "dl_external.h"
#include "dll_external.h"

Example Programs C–1

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** This program sends data to a device using the WANdriver interface
** to the DECnet/OSI datalinks
** The program requires the HDLC module with link name ’HDLCL1’ and
** logical station name ’LS2’.
**
** FORMAL PARAMETERS:
**
** none
**
** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
** none
**
** COMPLETION CODES
**
** Success/Fail codes
**
**
** SIDE EFFECTS:
**
** none
**--
**/

void ATT_AST(long status); /* Function declaration */

/***/

typedef struct /* Definition of structure */
{ /* of io status block */
short cond_value; /* Word length condition value */
short count; /* No of bytes of data transfered */
int info; /* Device specific information */
} io_statblk;

/***/

typedef struct /* Definition of structure of item list */
{
short item_length;
short item_code;
int item_value;
} p2_param_item;

/***/

p2_param_item p2_list = { /* Initialising item list */
6,
dll$K_PROTOCOLID,
0x0103
};

C–2 Example Programs

int p2_desc[2] = { /* Definition of P2 */
6, /* descriptor of item list */
&p2_list

};
int status;
int message_no = 0;
int i = 0; /* loop count for write */
short assgnd_chan;
io_statblk iosb,iosb2,iosb3,iosb4;
char secstr[12];

/**
* MAIN ROUTINE *
**/

main()
{

$DESCRIPTOR (terminal, "wan0:");
$DESCRIPTOR (datalink, "HDLC.HDLCL1.LS2");

/***
* ASSIGN A CHANNEL FOR QIO *
***/

if (((status = SYS$ASSIGN(&terminal, &assgnd_chan, 0, 0)) & 1) != 1)
LIB$STOP(status);

/***
* OPEN A PORT *
***/

if (((status = SYS$QIOW(0, assgnd_chan, (IO$_CREATE),
&iosb,0,0,&datalink,&p2_desc,0,0,0,0)) & 1) != 1)

LIB$STOP(status);

/***
* START THE DATALINK PROTOCOL *
***/

if (((status = SYS$QIOW(0, assgnd_chan, (IO$_SETMODE | IO$M_STARTUP),
&iosb2,0,0,0,0,0,0,0,0)) & 1) != 1)

LIB$STOP(status);

/***
* ENABLE ATTENTION AST *
***/

if (((status = SYS$QIOW(0, assgnd_chan, (IO$_SETMODE | IO$M_ATTNAST),
&iosb3,0,0,ATT_AST,200,0,0,0,0)) & 1) != 1)

LIB$STOP(status);

/***
* WRITE DATA *
***/

for (i = 0; i < 20; i++) {
sprintf(secstr,"MESSAGE %03d",i);
if (((status = SYS$QIOW(0, assgnd_chan, IO$_WRITEVBLK, &iosb4, 0,

0, secstr, sizeof(secstr)-1,0, 32,0, 0)) & 1) != 1)
LIB$STOP(status);

if (iosb4.cond_value != 1) {
LIB$STOP (iosb4.cond_value);
printf("Write not successful\n");

}
}

}
/*************** End of main ***************************/

Example Programs C–3

/**
* Attention Asynchronous System Trap routine *
***/

void ATT_AST(long status)
/*
**++
** FUNCTIONAL DESCRIPTION:
**
** Attention Asynchronous System Trap routine called when an
** attention AST is posted
**
** FORMAL PARAMETERS:
**
** none
**
** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
** none
**
** COMPLETION CODES:
**
** none
**
** SIDE EFFECTS:
**
** none
**
**--
**/
{

if ((status && dll$m_sts_active) == 1)
printf("LINK IS UP\n");

else
printf("LINK IS DOWN");

if ((status && dll$m_sts_receive_data_ready) == 0)
printf("There is received data waiting to be read\n");

else
;

if ((status && dll$m_sts_physical_loopback) == 0)
printf("Data is looping back at the physical layer\n");

else
;

if ((status && dll$m_err_remote_restart) == 0)
printf("The remote station is restarting\n");

else
;

if ((status && dll$m_err_insuff_resources) == 0)
printf("There are insufficient system resources to provide the

service called\n");
else

;

if ((status && dll$m_err_physical_layer_down) == 0)
printf("The DECnet/OSI physical layer is not available\n");

else
;

C–4 Example Programs

if ((status && dll$m_err_negotiation_failure) == 0)
printf("There has been a negotiation failure\n");

else
;

if ((status && dll$m_err_maintenance_mode) == 0)
printf("The modem has been set to maintenance mode\n");

else
;

if ((status && dll$m_err_disabled) == 0)
printf("The device is disabled\n");

else
;

if ((status && dll$m_err_threshold_exceeded) == 0)
printf("A system resource has been exceeded\n");

else
;

/***
* RE-ENABLE ATTENTION AST *
***/

if (((status = SYS$QIOW(0, assgnd_chan, (IO$_SETMODE | IO$M_ATTNAST),
&iosb3,0,0,ATT_AST,200,0,0,0,0)) & 1) != 1)

LIB$STOP(status);

}

/********** End of ATT_AST routine *****************************/

/**/
/* END OF PROGRAMME */
/**/

C.1.2 WANDRIVER Program That Receives Data

/*
**
** INCLUDE FILES
**
**/

#include <stdio.h>
#include <starlet.h>
#include iodef
#include descrip
#include ssdef
#include "xmdef.h"
#include "nmadef.h"
#include "dl_external.h"
#include "dll_external.h"

Example Programs C–5

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** This program sends data to a device using the WANdriver interface
** to the DECnet/OSI datalinks
** The program requires the HDLC module with link name ’HDLCL1’ and
** logical station name ’LS2’.
**
** FORMAL PARAMETERS:
**
** none
**
** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
** none
**
** COMPLETION CODES
**
** Success/Fail codes
**
**
** SIDE EFFECTS:
**
** none
**--
**/

void ATT_AST(long status); /* Function declarations */
void ast(char *string);

/***/

typedef struct /* Definition of structure */
{ /* of io status block */
short cond_value; /* Word length condition value */
short count; /* No of bytes of data transfered */
int info; /* Device specific information */
} io_statblk;

typedef struct /* Definition of structure of item list */
{
short item_length;
short item_code;
int item_value;
} p2_param_item;

/***/

p2_param_item p2_list = {
6,
dll$K_PROTOCOLID,
0x0103
};

int p2_desc[2] = { /* Definition of P2 */
6, /* descriptor of item list */
&p2_list

};

int i = 0;
int status;
short assgnd_chan;
io_statblk iosb,iosb2,iosb3,iosb4;
char secstr[12];

C–6 Example Programs

/**
* MAIN ROUTINE *
**/

main()
{

$DESCRIPTOR (pseudo_driver, "wan0:");
$DESCRIPTOR (datalink, "HDLC.HDLCL1.LS2");

/***
* ASSIGN A CHANNEL FOR QIO *
***/

if (((status = SYS$ASSIGN(&pseudo_driver, &assgnd_chan, 0, 0)) & 1) != 1)
LIB$STOP(status);

/***
* OPEN A PORT *
***/

if (((status = SYS$QIOW(0, assgnd_chan, (IO$_CREATE),
&iosb2,0,0,&datalink,&p2_desc,0,0,0,0)) & 1) != 1)

LIB$STOP(status);

/***
* START THE DATALINK PROTOCOL *
***/

if (((status = SYS$QIOW(0, assgnd_chan, (IO$_SETMODE | IO$M_STARTUP),
&iosb3,0,0,0,0,0,0,0,0)) & 1) != 1)

LIB$STOP(status);

/***
* ENABLE ATTENTION AST *
***/

if (((status = SYS$QIOW(0, assgnd_chan, (IO$_SETMODE | IO$M_ATTNAST),
&iosb,0,0,ATT_AST,200,0,0,0,0)) & 1) != 1)

LIB$STOP(status);

/***
* READ DATA *
***/

if (((status = SYS$QIO(0, assgnd_chan, IO$_READVBLK, &iosb4, ast, secstr,
secstr, sizeof(secstr)-1,0, 0,0, 0)) & 1) != 1)

LIB$STOP(status);
SYS$HIBER();

}

/********** End of MAIN **/

/**
* Attention Asynchronous System Trap routine *
***/

Example Programs C–7

void ATT_AST(long status)
/*
**++
** FUNCTIONAL DESCRIPTION:
**
** Attention Asynchronous System Trap routine called when an
** attention AST is posted
**
** FORMAL PARAMETERS:
**
** none
**
** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
** none
**
** COMPLETION CODES:
**
** none
**
** SIDE EFFECTS:
**
** none
**
**--
**/
{

if ((status && dll$m_sts_active) == 1)
printf("LINK IS UP\n");

else
printf("LINK IS DOWN");

if ((status && dll$m_sts_receive_data_ready) == 0)
printf("There is received data waiting to be read\n");

else
;

if ((status && dll$m_sts_physical_loopback) == 0)
printf("Data is looping back at the physical layer\n");

else
;

if ((status && dll$m_err_remote_restart) == 0)
printf("The remote station is restarting\n");

else
;

if ((status && dll$m_err_insuff_resources) == 0)
printf("There are insufficient system resources to provide the

service called\n");
else

;

if ((status && dll$m_err_physical_layer_down) == 0)
printf("The DECnet/OSI physical layer is not available\n");

else
;

if ((status && dll$m_err_negotiation_failure) == 0)
printf("There has been a negotiation failure\n");

else
;

C–8 Example Programs

if ((status && dll$m_err_maintenance_mode) == 0)
printf("The modem has been set to maintenance mode\n");

else
;

if ((status && dll$m_err_disabled) == 0)
printf("The device is disabled\n");

else
;

if ((status && dll$m_err_threshold_exceeded) == 0)
printf("A system resource has been exceeded\n");

else
;

/***
* RE-ENABLE ATTENTION AST *
***/

if (((status = SYS$QIOW(0, assgnd_chan, (IO$_SETMODE | IO$M_ATTNAST),
&iosb3,0,0,ATT_AST,200,0,0,0,0)) & 1) != 1)

LIB$STOP(status);

}

/********** End of ATT_AST routine *****************************/

/**
* Asynchronous System Trap routine *
***/

void ast(char *strng)
/*
**++
** FUNCTIONAL DESCRIPTION:
**
** Asynchronous System Trap routine called when an AST is posted
**
** FORMAL PARAMETERS:
**
** none
**
** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
** none
**
** COMPLETION CODES:
**
** none
**
** SIDE EFFECTS:
**
** none
**
**--
**/
{

i++;
printf("Received data is: %s\n",strng);

/***
* RE-ISSUE READ *
***/

Example Programs C–9

if (iosb4.cond_value != 1) {
LIB$STOP (iosb4.cond_value);
printf("Device write not successful\n");

}
if (((status = SYS$QIO(0, assgnd_chan, IO$_READVBLK, &iosb4, ast, secstr,

secstr, sizeof(secstr)-1,0, 0,0, 0)) & 1) != 1)
LIB$STOP(status);

if (i == 20) {
SYS$WAKE();
exit();

}
}

/******************** End of AST routine ****************************/

/**/
/* END OF PROGRAMME */
/**/

C.2 Programs That Use the Obsolete Interface
Section C.2.1 issues write requests to the obsolete interface; Section C.2.2 issues
read requests to the obsolete interface.

C.2.1 QIO Program That Sends Data

/*
**
** INCLUDE FILES
**
**/

#include <stdio.h>
#include iodef
#include descrip
#include ssdef
#include "xmdef.h"
#include "nmadef.h"
#define MAX_SIZE 1030
#define DST32_DEVICE 0
#define DMB32_DEVICE 1
#define DMF32_DEVICE 2
#define DSH32_DEVICE 3
#define DSB32_DEVICE 4
#define DSV11_DEVICE 5
#define DSF32_DEVICE 6
#define DSW_DEVICE 7

C–10 Example Programs

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** This program sends data to a device using the QIO interface
** It is an example of interfacing to the hdlc framing routine
** and is not meant to provide a reliable datalink between two machines
**
** FORMAL PARAMETERS:
**
** Command line parameters: Program name set up as a symbol
** e.g prog :== syssysroot:[sysmgr]prog.c
** Device name on which program is being run
** e.g SJA0:
**
** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
** none
**
** COMPLETION CODES
**
** Success/Fail codes
**
**
** SIDE EFFECTS:
**
** none
**--
**/

void get_device_name(void); /* Declaration of functions */
void send_data(void); /* */

/***/

typedef struct /* Definition of structure */
{ /* of longword (6 bytes) */
short int device;
unsigned char controller;
unsigned char unit;
}dev_name;

Example Programs C–11

dev_name string_of_devices[7] = { /* Initialisation of array */
’si’, /* of structures */
10,
1,

’xg’,
10,
1,
’zs’,
1,
2,
’sl’,
10,
2,
’sj’,
5,
2,
’sf’,
10,
2,
’zt’,
3,
2
};

/***/

typedef struct /* Definition of structure */
{ /* of io status block */
short cond_value; /* Word length condition value */
short count; /* No of bytes of data transfered */
int info; /* Device specific information */
} io_statblk;

/***/

typedef struct /* Definition of structure */
{ /* of parameter P1 */
short not_used1; /* Un-used */
short max_mess_size; /* Max message size */
short characteristics; /* Defines operational mode of driver */
short not_used2; /* Un-used */
} p1_param;

/**/

typedef struct /* definition of structure */
{ /* of parameter P2 */
short int pr_col_mode; /* Protocol identifier */
int pr_col_val; /* Protocol value */
short int dev_mode; /* Device mode */
int dev_value; /* Associated mode value */
short int cloc_gen; /* Internal clock mode */
int cloc_val; /* Associated clockvalue */
short int full_dup; /* Full-duplex mode */
int dup_val; /* Associated mode value */
short int buf_nums; /* No of receive buffers */
int buf_val; /* Associated number */
short int max_tr_rec; /* Max transmit $ Receive size */
int max_tr_rec_val; /* Value */
short int num_synchar; /* Number of synch characters */
int synchar_val; /* Value */
short int encod_tech; /* Encoding Technique */
int tech_val; /* Associated value */
short int clock_speed; /* Clock speed */
int speed_val; /* Value */
} p2_param;

C–12 Example Programs

/**/

p2_param p2 = { /* initialisation of P2 */
NMAC_PCLI_PRO, NMAC_LINPR_LAPB, /* p2 buffer */
NMAC_PCLI_CON, NMAC_LINCN_NOR,
NMAC_PCLI_CLO, NMAC_LINCL_EXT,
NMAC_PCLI_DUP, NMAC_DPX_FUL,
NMA$C_PCLI_BFN, 4,
NMA$C_PCLI_BUS, MAX_SIZE,
NMA$C_PCLI_NMS, 6,
NMAC_PCLI_NRZI, NMAC_STATE_OFF,
NMA$C_PCLI_LNS, 19200

};

io_statblk iosb,iosb2,iosb3; /* I/O status blocks */
int status; /* holds status return value */
short assgnd_chan; /* Holds channel number returned */

/* from SYS$ASSIGN */
char str1[2] = ":",str2[6],str3[9]; /* General purpose strings */
int device_flag = -1;
int number_of_devices = 7;
short int *input_arg; /* Number of command line arguments */
int unit,mat;
unsigned char type_of_device[2],contrl;
int c,l = 0,i = 0;
char message_1[1024] = "This is message 1"; /* Data to be sent */
char message_2[1024] = "This is message 2";
char message_3[1024] = "This is message 3";
char message_4[1024] = "This is message 4";

struct dsc$descriptor_s p2_desc = { /* Definition of P2 */
sizeof(p2), /* descriptor */
DSC$K_DTYPE_T,
DSC$K_CLASS_S,
&p2

};

/**
* MAIN ROUTINE *
**/

main(int argc, char *argv[])
{

$DESCRIPTOR (terminal, str3); /* Defines devic */
for (i=1; i<1023; i++) message_1[i]=66;
mat=sscanf(argv[1], "%2c%c%d", &type_of_device, &contrl, &unit);
sprintf(str3,"%c%c%c%d:",type_of_device[0],type_of_device[1],

contrl,unit);
terminal.dsc$w_length = strlen(str3);

get_device_name(); /* Obtain name of device over which program */
/* is to be run */

/***
* ASSIGN A CHANNEL FOR QIO *
***/

if (((status = SYS$ASSIGN(&terminal, &assgnd_chan, 0, 0)) & 1) != 1)
LIB$STOP(status);

/**
* SHUT DOWN OF CONTROLLER *
**/

if (((status =
SYS$QIOW(0,assgnd_chan,(IO$_SETMODE|IO$M_CTRL|IO$M_SHUTDOWN),
&iosb,0,0,0,0,0,0,0,0)) & 1) != 1)
LIB$STOP(status);

Example Programs C–13

if (iosb.cond_value != 1) {
printf("Shutdown not successful\n");
LIB$STOP (iosb.cond_value);

}

/**
* START UP OF CONTROLLER *
**/

if (((status =
SYS$QIOW(0,assgnd_chan,(IO$_SETMODE|IO$M_CTRL|IO$M_STARTUP),
&iosb,0,0,0,&p2_desc,4,0,0,0)) & 1) != 1)
LIB$STOP(status);

if (iosb.cond_value != 1) { /* Check for success */
printf("Physical layer startup not successful\n");
LIB$STOP (iosb.cond_value);

}

send_data(); /* Transmit data */

}

/************** End of main ***********************************/

/**
* FUNCTION get_device_name *
**/

void get_device_name(void)

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** This function obtains the name of the device and sets the
** appropriate flag. It also rejects invalid inputs
**
** FORMAL PARAMETERS:
**
** none
**
** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
** sets variable ’device_flag’
**
** COMPLETION CODES:
**
** none
**
** SIDE EFFECTS:
**
** none
**
**--
**/
{

input_arg = type_of_device;

C–14 Example Programs

for (i = 0; i < number_of_devices; i++) {
if (string_of_devices[i].device == *input_arg) {

if ((contrl >= ’a’) &&
(contrl < (’a’+ string_of_devices[i].controller))) {

if ((unit >= 0) && (unit < string_of_devices[i].unit)) {
device_flag = i;
break;

}
else {

printf("Invalid device unit\n");
break;

}
}
else {

printf("Invalid device controller\n");
break;

}
}
else if (i == (number_of_devices-1))

printf("Invalid device name\n");
}

if (device_flag >= 0) {
switch(device_flag) {

case 0: device_flag = DMB32_DEVICE;
break;

case 1: device_flag = DMF32_DEVICE;
break;

case 2: device_flag = DST32_DEVICE;
break;

case 3: device_flag = DSB32_DEVICE;
break;

case 4: device_flag = DSV11_DEVICE;
break;

case 5: device_flag = DSF32_DEVICE;
break;

case 6: device_flag = DSW_DEVICE;
break;

}
}
else

exit();

}

/*********** End of function get_device_name ***************/

/***
* FUNCTION SEND_DATA *
**/

void send_data(void)

Example Programs C–15

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** This function writes data to a device
**
** FORMAL PARAMETERS:
**
** none
**
** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
** none
**
** COMPLETION CODES:
**
** Success/fail code
**
** SIDE EFFECTS:
**
** none
**
**--
**/
{

printf("Sending data: \n"); /* Send Data */

if (((status = SYS$QIOW(0,assgnd_chan,IO$_WRITEVBLK,&iosb3,0,0,
message_1,sizeof(message_1)-1,0,32,0,0))&1) != 1)

LIB$STOP(status);

if (((status = SYS$QIOW(0,assgnd_chan,IO$_WRITEVBLK,&iosb3,0,0,
message_2,sizeof(message_2)-1,0,32,0,0))&1) != 1)

LIB$STOP(status);

if (((status = SYS$QIOW(0,assgnd_chan,IO$_WRITEVBLK,&iosb3,0,0,
message_3,sizeof(message_3)-1,0,32,0,0))&1) != 1)

LIB$STOP(status);

if (((status = SYS$QIOW(0,assgnd_chan,IO$_WRITEVBLK,&iosb3,0,0,
message_4,sizeof(message_4)-1,0,32,0,0))&1) != 1)

LIB$STOP(status);

}

/**************** End of function send_data *************************/

/***
* END OF PROGRAM *
***/

C–16 Example Programs

C.2.2 QIO Program That Receives Data

/*
**
** INCLUDE FILES
**
**/

#include <stdio.h>
#include iodef
#include descrip
#include ssdef
#include "xmdef.h"
#include "nmadef.h"
#define MAX_SIZE 1030
#define DST32_DEVICE 0
#define DMB32_DEVICE 1
#define DMF32_DEVICE 2
#define DSH32_DEVICE 3
#define DSB32_DEVICE 4
#define DSV11_DEVICE 5
#define DSF32_DEVICE 6
#define DSW_DEVICE 7

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** This program reads data from a device using the QIO interface
** It is an example of interfacing to the hdlc framing routine
** and is not meant to provide a reliable datalink between two machines
**
** FORMAL PARAMETERS:
**
** Command line parameters: Program name set up as a symbol
** e.g prog :== syssysroot:[sysmgr]prog.c
** Device name on which program is being run
** e.g SJA0:
**
** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
** none
**
** COMPLETION CODES
**
** Success/Fail codes
**
**
** SIDE EFFECTS:
**
** none
**--
**/

void ast(char *); /* */
void get_device_name(void); /* Declaration of functions */
void send_data(void); /* */
void read_data(); /* */

/***/

Example Programs C–17

typedef struct /* Definition of structure */
{ /* of longword (6 bytes) */
short int device;
unsigned char controller;
unsigned char unit;
}dev_name;

dev_name string_of_devices[7] = { /* Initialisation of array */
’si’, /* of structures */
10,
1,

’xg’,
10,
1,
’zs’,
1,
2,
’sl’,
10,
2,
’sj’,
5,
2,
’sf’,
10,
2,
’zt’,
3,
2
};

/***/

typedef struct /* Definition of structure */
{ /* of io status block */
short cond_value; /* Word length condition value */
short count; /* No of bytes of data transfered */
int info; /* Device specific information */
} io_statblk;

/***/

typedef struct /* Definition of structure */
{ /* of parameter P1 */
short not_used1; /* Un-used */
short max_mess_size; /* Max message size */
short characteristics; /* Defines operational mode of driver */
short not_used2; /* Un-used */
} p1_param;

/**/

C–18 Example Programs

typedef struct /* definition of structure */
{ /* of parameter P2 */
short int pr_col_mode; /* Protocol identifier */
int pr_col_val; /* Protocol value */
short int dev_mode; /* Device mode */
int dev_value; /* Associated mode value */
short int cloc_gen; /* Internal clock mode */
int cloc_val; /* Associated clockvalue */
short int full_dup; /* Full-duplex mode */
int dup_val; /* Associated mode value */
short int buf_nums; /* No of receive buffers */
int buf_val; /* Associated number */
short int max_tr_rec; /* Max transmit $ Receive size */
int max_tr_rec_val; /* Value */
short int num_synchar; /* Number of synch characters */
int synchar_val; /* Value */
short int encod_tech; /* Encoding Technique */
int tech_val; /* Associated value */
short int clock_speed; /* Clock speed */
int speed_val; /* Value */
} p2_param;

/**/

p2_param p2 = { /* initialisation of P2 */
NMAC_PCLI_PRO, NMAC_LINPR_LAPB, /* p2 buffer */
NMAC_PCLI_CON, NMAC_LINCN_NOR,
NMAC_PCLI_CLO, NMAC_LINCL_EXT,
NMAC_PCLI_DUP, NMAC_DPX_FUL,
NMA$C_PCLI_BFN, 4,
NMA$C_PCLI_BUS, MAX_SIZE,
NMA$C_PCLI_NMS, 6,
NMAC_PCLI_NRZI, NMAC_STATE_OFF,
NMA$C_PCLI_LNS, 19200

};

io_statblk iosb,iosb2,iosb3; /* I/O status blocks */
int status; /* Holds status return value */
short assgnd_chan; /* Holds channel number */

/* returned from SYS$ASSIGN */
char str1[2] = ":",str2[6],str3[9],strng[150]; /* General purpose strings */
int device_flag = -1;
int number_of_devices = 7;
short int *input_arg; /* Number of command line arguments */
int unit,mat;
unsigned char type_of_device[2],contrl;
int c,l = 0,i = 0;

struct dsc$descriptor_s p2_desc = { /* Definition of P2 */
sizeof(p2), /* descriptor */
DSC$K_DTYPE_T,
DSC$K_CLASS_S,
&p2

};

/**
* MAIN ROUTINE *
**/

main(int argc, char *argv[])
{

$DESCRIPTOR (terminal, str3); /* Defines device */
mat=sscanf(argv[1], "%2c%c%d", &type_of_device, &contrl, &unit);
sprintf(str3,"%c%c%c%d:",type_of_device[0],type_of_device[1],

contrl,unit);
terminal.dsc$w_length = strlen(str3);

Example Programs C–19

get_device_name(); /* Obtain name of device over */
/* which program is to be run*/

/***
* ASSIGN A CHANNEL FOR QIO *
***/

if (((status = SYS$ASSIGN(&terminal, &assgnd_chan, 0, 0)) & 1) != 1)
LIB$STOP(status);

/**
* SHUT DOWN OF CONTROLER *
**/

if (((status = SYS$QIOW(0, assgnd_chan,
(IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN),
&iosb,0,0,0,0,0,0,0,0)) & 1) != 1)

LIB$STOP(status);

if (iosb.cond_value != 1) {
printf("Shutdown not successful\n");
LIB$STOP (iosb.cond_value);

}

/**
* START UP OF CONTROLLER *
**/

if (((status = SYS$QIOW(0, assgnd_chan,
(IO$_SETMODE|IO$M_CTRL|IO$M_STARTUP),
&iosb,0,0,0,&p2_desc,4,0,0,0)) & 1) != 1)

LIB$STOP(status);

if (iosb.cond_value != 1) { /* Check for success */
printf("Physical layer startup not successful\n");
LIB$STOP (iosb.cond_value);

}

read_data(); /* Read data from device */

}

/************ END OF MAIN ************************************/

/**
* Asynchronous System Trap routine *
***/

C–20 Example Programs

void ast(char *strng)
/*
**++
** FUNCTIONAL DESCRIPTION:
**
** Asynchronous System Trap routine called when an AST is posted
**
** FORMAL PARAMETERS:
**
** none
**
** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
** none
**
** COMPLETION CODES:
**
** none
**
** SIDE EFFECTS:
**
** none
**
**--
**/
{

printf("Received data is: %s\n",strng);

}

/******************** End of AST routine ****************************/

/**
* FUNCTION get_device_name *
**/

void get_device_name(void)

Example Programs C–21

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** This function obtains the name of the device and sets the
** appropriate flag. It also rejects invalid inputs
**
** FORMAL PARAMETERS:
**
** none
**
** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
** sets variable ’device_flag’
**
** COMPLETION CODES:
**
** none
**
** SIDE EFFECTS:
**
** none
**
**--
**/
{

input_arg = type_of_device;

for (i = 0; i < number_of_devices; i++) {
if (string_of_devices[i].device == *input_arg) {

if ((contrl >= ’a’) &&
(contrl < (’a’+ string_of_devices[i].controller))) {

if ((unit >= 0) && (unit < string_of_devices[i].unit)) {
device_flag = i;
break;

}
else {

printf("Invalid device unit\n");
break;

}
}
else {

printf("Invalid device controller\n");
break;

}
}
else if (i == (number_of_devices-1))

printf("Invalid device name\n");
}

C–22 Example Programs

if (device_flag >= 0) {
switch(device_flag) {

case 0: device_flag = DMB32_DEVICE;
break;

case 1: device_flag = DMF32_DEVICE;
break;

case 2: device_flag = DST32_DEVICE;
break;

case 3: device_flag = DSB32_DEVICE;
break;

case 4: device_flag = DSV11_DEVICE;
break;

case 5: device_flag = DSF32_DEVICE;
break;

case 6: device_flag = DSW_DEVICE;
break;

}
}
else

exit();

}

/*********** End of function get_device_name ***************/

/***
* FUNCTION READ_DATA *
**/

void read_data(void)

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** This function reads data from a device
**
** FORMAL PARAMETERS:
**
** none
**
** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
** none
**
** COMPLETION CODES:
**
** Success/fail code
**
** SIDE EFFECTS:
**
** none
**
**--
**/
{

/* Read Data */

if (((status = SYS$QIOW(0,assgnd_chan,IO$_READVBLK,&iosb2,
ast,strng,strng,sizeof(strng)-1,0,0,0,0))&1) != 1)

LIB$STOP(status);

Example Programs C–23

if (((status = SYS$QIOW(0,assgnd_chan,IO$_READVBLK,&iosb2,
ast,strng,strng,sizeof(strng)-1,0,0,0,0))&1) != 1)

LIB$STOP(status);

if (((status = SYS$QIOW(0,assgnd_chan,IO$_READVBLK,&iosb2,
ast,strng,strng,sizeof(strng)-1,0,0,0,0))&1) != 1)

LIB$STOP(status);

if (((status = SYS$QIOW(0,assgnd_chan,IO$_READVBLK,&iosb2,
ast,strng,strng,sizeof(strng)-1,0,0,0,0))&1) != 1)

LIB$STOP(status);

}

/**************** End of function read_data *************************/

/***
* END OF PROGRAM *
***/

C–24 Example Programs

D
Obsolete Features of the $QIO Interface

If you choose not to use the programming calls designed for management together
with the $QIO interface to WANDRIVER to set up and control datalinks, you can
continue to use the QIO calls that were the only option for previous versions of
the VAX WAN Device Drivers.

Section E.1.2.2 explains:

• How to use QIOs to start a device.

• How calls to the V1.1-like interface create DECnet/OSI entities.

Table D–1 lists the calls; Section D.3 and Section D.4 give further details.

The key to the values in the TYPE column is as follows:

L Logical

V Virtual

P Physical

H Only for half-duplex operation

Table D–1 Obsolete I/O Functions

Function Code
and Arguments Type Modifiers Function

IO$_READLBLK
P1,P2

L IO$M_NOW Read logical block

IO$_READVBLK
P1,P2

V IO$M_NOW Read virtual block

IO$_READPBLK
P1,P2

P IO$M_NOW Read physical block

IO$_WRITELBLK
P1,P2

L IO$M_LASTBLOCK
(H)

Write logical block

IO$_WRITEVBLK
P1,P2

V IO$M_LASTBLOCK
(H)

Write virtual block

IO$_WRITEPBLK
P1,P2

P IO$M_LASTBLOCK
(H)

Write physical block

IO$_SETMODE
P1,[P2],P3

L IO$M_CTRL
IO$M_SHUTDOWN
IO$M_STARTUP
IO$M_ATTNAST

Set driver characteristics
and state for subsequent
operations

(continued on next page)

Obsolete Features of the $QIO Interface D–1

Table D–1 (Cont.) Obsolete I/O Functions

Function Code
and Arguments Type Modifiers Function

IO$_SETCHAR
P1,[P2],P3

P IO$M_CTRL
IO$M_SHUTDOWN
IO$M_STARTUP
IO$M_ATTNAST

Set driver characteristics
and state for subsequent
operations

IO$_SENSEMODE
P1,P2

L IO$M_CTRL
IO$M_RD_MODEM
IO$M_CLR_COUNT
IO$M_RD_COUNT

Sense driver characteristics
and return them in specified
buffer(s)

IO$_CLEAN L None For HDLC and SDLC, stops
all outstanding transmits. For
BISYNC and GENBYTE, stops
all outstanding I/O operations.
Not to be used with DDCMP.

Generally, the drivers do not differentiate between logical, virtual, and physical
I/O functions. However, you must have the required privilege to request a
physical or logical function (for physical functions, PHY_IO privilege; for logical
functions, LOG_IO privilege).

D.1 Read
A Read function transfers incoming data into the buffer you specify.

VAX/VMS provides three function codes:

• IO$_READLBLK—read logical block

• IO$_READVBLK—read virtual block

• IO$_READPBLK—read physical block

The drivers store data as they receive it, and copy it to the buffer you specify.

The parameters for the three function codes are:

• P1—The starting virtual address of the buffer to receive the data.

• P2—The size of the buffer in bytes. P2 must not be larger than the maximum
Receive message size (set in a previous IO$SETMODE call). If a larger
message is received, a status of SS$_BUFFEROVF is returned in the I/O
status block (IOSB).

The Read functions can take the modifier IO$M_NOW. This completes the read
operation immediately with a received message. If no message is available when
IO$M_NOW is applied, a status of SS$_ENDOFFILE is returned in the IOSB.

D.2 Write
A Write function transfers data from the buffer you specify and transmits the
data down the line.

VMS provides three function codes:

• IO$_WRITELBLK—write logical block

• IO$_WRITEVBLK—write virtual block

D–2 Obsolete Features of the $QIO Interface

• IO$_WRITEPBLK—write physical block

The drivers put your data in a system buffer before transmitting it.

The parameters for the three function codes are:

• P1—The starting virtual address of the buffer holding your data.

• P2—The size (in bytes) of the buffer holding your data. P2 must not be larger
than the maximum Send message size (set in a previous IO$SETMODE call).

On half-duplex lines, to turn the line at the end of a sequence of buffers, the
Write functions use the modifier, IO$M_LASTBLOCK.

• IO$M_LASTBLOCK forces the driver to drop Request To Send (RTS) after the
transmit is sent. Use IO$M_LASTBLOCK with your final IO$_WRITE call to
indicate the final piece of data in a transmit sequence. If the IO$_WRITE call
includes IO$M_LASTBLOCK, this data (but no subsequent data) will be sent
to the device for transmission.

The line direction is left indeterminate until there is an indication from the
driver that Clear to Send (CTS) has been dropped and Carrier Detect (DCD)
has been raised. The line direction is then set to RECEIVE and will remain
so until DCD is dropped. However, if a transmit is queued before DCD is
detected, the line direction is again set to TRANSMIT.

Note

IO$M_MORE is still supported to provide Phase IV compatibility for
DMB32, DMF32, DUP11 and DPV11 devices.

To use IO$M_MORE on these devices, define the system-wide logical
name VWDD$CUSTOM_PHASE4_dev-c-u to to be TRUE.

dev-c-u is defined as follows:

dev Represents the device (DMB, DMF, DUP, or DPV)

c Represents the controller number

u Represents the unit number of the device

The following example shows the commands that define a DPV11 and
DMB32:

$ DEFINE/SYSEM/EXECUTIVE_MODE VWDD$CUSTOM_PHASE4_DPV-0-0 TRUE

$ DEFINE/SYSEM/EXECUTIVE_MODE VWDD$CUSTOM_PHASE4_DMB-1-0 TRUE

IO$M_MORE forces the driver to keep Request To Send (RTS) asserted.
Use IO$M_MORE on every block except the last. If the IO$_WRITE
call includes IO$M_MORE, this data (and at least the next block of data
written) will be sent to the device for transmission. If the IO$_WRITE
call does not include the IO$M_MORE modifier, the RTS will be dropped
on completion of the transmit.

To have the DMF32 operate as did the Phase IV driver in GENBYTE
mode, you must set the logical name as previously discussed. For
example:

$ DEFINE/SYSEM/EXECUTIVE_MODE VWDD$CUSTOM_PHASE4_DMF-0-0 TRUE

If this logical name is defined and if the DMF is operating in GENBYTE
mode, the line will be turned at the end of each frame transmitted.

Obsolete Features of the $QIO Interface D–3

• You can issue several read QIOs one after the other. These will be accepted
whatever the direction of the line at the time of issue and will not be aborted
if the line changes to TRANSMIT.

• If there is no carrier from the receiving end, the first write QIO you issue
will place the line into the TRANSMIT state. Hence, Request To Send (RTS)
will be raised and, when Clear To Send (CTS) is raised, the data will be
transmitted.

• Any transmits are queued until DCD is dropped. RTS is then raised and the
transmits queued for transmission until a transmit either without IO$M_
MORE or with IO$M_LASTBLOCK comes through.

In summary, to prevent the line being turned:

• Use the IO$M_LASTBLOCK modifier on the last block only.

• Use the IO$M_MORE modifier on every block except the last (but ONLY
when the logical name VWDD$CUSTOM_PHASE4_dev-c-u is defined).

D.3 Set Mode and Set Characteristics
The Set Mode and Set Characteristics functions control driver operations.
Principally, the Set Mode and Set Characteristics functions are used to:

• Specify the protocol to be used

• Specify the line speed

• Specify full- or half-duplex operation

• Specify CRC type (where applicable)

• Allocate buffers

• Specify message size

• Request an attention AST

• Specify loopback mode

• Enable/disable the internal clock and set the clock speed

The functions that perform these and other tasks are described in the following
sections.

VAX/VMS defines five types of Set Mode function:

• Set/Start Controller mode (see Section D.3.1)

• Set DDCMP mode (see Section D.3.2)

• Shut down controller (see Section D.3.3)

• Shut down DDCMP (see Section D.3.4)

• Enable attention AST (see Section D.3.5)

VAX/VMS provides two function codes:

• IO$_SETMODE—set mode

• IO$_SETCHAR—set characteristics (requires physical I/O privilege)

D–4 Obsolete Features of the $QIO Interface

D.3.1 Set Controller Mode
This function sets and (optionally) starts the drivers. For DDCMP operation,
both the drivers and the DDCMP protocol must be initialized and started. See
Section D.3.2 for instructions on starting the DDCMP protocol.

VAX/VMS provides four combinations of function code and modifier:

• IO$_SETMODE!IO$M_CTRL—set driver characteristics

• IO$_SETCHAR!IO$M_CTRL—set driver characteristics

• IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP—set driver characteristics
and start the driver

• IO$_SETCHAR!IO$M_CTRL!IO$M_STARTUP—set driver characteristics and
start the driver

If the modifier IO$M_STARTUP is specified, the driver is started and the modem
is enabled. If IO$M_STARTUP is not specified, the driver characteristics are
simply modified.

The parameters for the function codes are:

• P1—The virtual address of a quadword characteristics buffer. For further
information, see Section D.3.1.1.

• P2—Optional. The address of a descriptor for an extended characteristics
buffer. For further information, see Section D.3.1.2.

• P3—Number of Receive message blocks to allocate. For further information,
see Section D.3.1.3.

Note that if both the P1 and P2 parameters are specified, the P2 parameter
values supersede the P1 parameter values. The P2 parameter NMA$C_PCLI_
BFN (see Table D–3) also supersedes any P3 parameter.

Parameters P1, P2, and P3 are described in more detail in Section D.3.1.1,
Section D.3.1.2, and Section D.3.1.3.

D.3.1.1 P1 Parameter
P1 is the virtual address of a quadword characteristics buffer. This parameter is
used only for DDCMP. Figure D–1 shows the format of this buffer.

Obsolete Features of the $QIO Interface D–5

Figure D–1 P1 Characteristics Buffer (Set Controller)

not used

maximum message size not used

characteristics

+2 0

+4

The second word of the first longword (‘maximum message size’) holds the
maximum length for transmitted and received messages.

The first word of the second longword (‘characteristics’) defines the operational
mode of the driver.

Table D–2 lists the driver characteristics that can be set in the second longword.
The $XMDEF macro defines these values.

Table D–2 Driver Characteristics

Characteristic Meaning

XM$M_CHR_LOOPB Sets loopback mode

XM$M_CHR_HDPLX Sets half-duplex operation

D.3.1.2 P2 Parameter
P2 is optional. It is the address of a descriptor that defines an extended
characteristics buffer.

The extended characteristics buffer that P2 points to consists of a series of 6-byte
entries. The first word contains the parameter identifier (ID), and the longword
that follows contains a value that can be associated with that parameter ID.
Figure D–2 shows the format of this buffer.

Table D–3 shows the parameter IDs and possible values that can be specified in
the P2 buffer (the notes referred to are at the end of the table). The $NMADEF
macro defines these values.

D–6 Obsolete Features of the $QIO Interface

Figure D–2 P2 Extended Characteristics Buffer

longword value

parameter id

parameter id

longword value

etc.

Obsolete Features of the $QIO Interface D–7

Table D–3 P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCLI_PRO Protocol mode. The following values can be specified:

NMA$C_LINPR_POI DDCMP point-to-point
(default)

NMA$C_LINPR_BISYNC IBM bisynchronous
protocol (see Note 1)

NMA$C_LINPR_BSY GENBYTE operation (see
Note 2)

NMA$C_LINPR_LAPB HDLC operation (LAPB)

NMA$C_LINPR_LAPBE HDLC operation (LAPBE)

NMA$C_LINPR_SDLC SDLC bit stuff mode

NMA$C_LINPR_SWIFT SWIFT BISYNC variant -
DSF32 only

NMA$C_LINPR_CHIPS CHIPS BISYNC variant -
DSF32 only

NMA$C_PCLI_DUP Duplex mode (see Note 3 for defaults). The following values
can be specified:

NMA$C_DPX_FUL Full-duplex

NMA$C_DPX_HAL Half-duplex (see
Section D.2)

NMA$C_PCLI_CON Device mode. The following values can be specified:

NMA$C_LINCN_NOR Normal (default)

NMA$C_LINCN_LOO Loopback

NMA$C_PCLI_BFN Number of Receive buffers to preallocate (minimum = 1; for
defaults, see Note 5). May be provided here or as P3 argument
(see Section D.3.1.3). If included, supersedes the P3 argument.

NMA$C_PCLI_BUS Maximum Transmit and Receive message length (for defaults
and maximum values, see Note 6).

NMA$C_PCLI_NMS Number of sync characters to precede message. The number
used is protocol-dependent (default = 8).

NMA$C_PCLI_CODE Character code used for IBM bisynchronous protocol. See Note
7.

NMA$C_PCLI_CRC Type of CRC. The following values can be specified:

0 CRC–CCITT preset to 1s

1 CRC–CCITT preset to 0s

2 LRC/VRC odd

3 CRC–16

4 VRC odd

5 VRC even

6 LRC/VRC even

7 No error control
For defaults and possible values, see Note 8.

(continued on next page)

D–8 Obsolete Features of the $QIO Interface

Table D–3 (Cont.) P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCLI_NRZI Data encoding technique. The following values can be
specified:

NMA$C_STATE_OFF NRZ encoding (default)

NMA$C_STATE_ON NRZI encoding

NMA$C_PCLI_CLO Controls generation of a clock signal. The following values can
be specified (see Note 9):

NMA$C_LINCL_EXT Clock signal disabled (default)

NMA$C_LINCL_INT Clock signal enabled

NMA$C_PCLI_LNS Controls the speed of the clock signal enabled by NMA$C_
PCLI_CLO. Values vary according to the device concerned (see
Note 10).

NMA$C_PCLI_RTT Retransmit timer for full-duplex point-to-point mode and
selection timer for half-duplex point-to-point mode. DDCMP
only. Specify time in milliseconds (default = 3000).

NMA$C_PCLI_TRI Tributary mode address. Values in the range 0 to 255 are
valid. Value 255 represents the multicast address and, when
specified, will only allow reception of frames with an address of
255. If SDLC is operating, tributary mode is set automatically.

Notes:

1. BISYNC is supported by the DSV11, DPV11, DUP11, DMB32, DMF32,
DSF32, DSH32, DST32, DSW21, DSW41, and DSW42.

2. GENBYTE is supported by the DMF32, DMB32, DPV, and DUP only.

3. The default duplex mode for each protocol is:

DDCMP—Full-duplex
HDLC—Full-duplex (no half-duplex mode with HDLC)
SDLC—Half-duplex
BISYNC—Half-duplex

4. Default number of buffers allocated:

DDCMP—4
HDLC—6
SDLC—4
BISYNC—2

5. Default message length (in bytes):

DDCMP—576
HDLC—128
SDLC—280
BISYNC—280

Maximum message length (in bytes):

DDCMP—4096
HDLC—4106
SDLC—4106
BISYNC—4106

Obsolete Features of the $QIO Interface D–9

6. Indicate EBCDIC character coding for the DSV11 using the value NMA$C_
CODE_EBCDIC. For the DUP11, the DPV11, the DMB32, the DMF32, and
the DSF32, the following values can be specified:

Value Meaning

NMA$C_CODE_ASCII ASCII character code

NMA$C_CODE_EBCDIC EBCDIC character code (default)

7. Default values and possible values for the CRC depend on the line protocol:

DDCMP: CRC–16 only
HDLC: CRC–CCITT preset to 1s only
SDLC: CRC–CCITT preset to 1s only
BISYNC: CRC–16 only
GENBYTE: None

8. Digital recommends that NMA$C_PCLI_CLO be left at its default value. Set
the line speed using the NMA$C_PCLI_LNS parameter only when NMA$_
PCLI_CLO sets the internal clock. Setting the line speed with NMA$_PCLI_
LNS when NMA$_PCLI_CLO sets an external clock has no effect on the
line speed used by the device. Note that there is no method of obtaining the
current value of the line speed parameter.

9. NMA$C_PCLI_LNS controls the speed of the clock signal enabled by NMA$C_
PCLI_CLO. Table D–4 lists the values allowed.

Table D–4 Clock Speed Values (hertz)

DSB32
Values

DSH32
and DST32
Values

DSF32
Values

DSV11
Values

DSW21,
DSW41,
and DSW42
Values

0 0 0 0 0

600 600 – – –

1200 1200 1200 – –

1800 – – – –

2000 2000 2000 – –

2400 2400 2400 – –

4800 4800 4800 – –

9600§ 9600 9600 9600§ 9600

14400 – – – –

19200 19200 19200 19200 19200

– 38400 38400 38400 38400§

48000 – – – –

56000 – – – –

64000 – – – –

– – – 72000 –

§Default clock speed

(continued on next page)

D–10 Obsolete Features of the $QIO Interface

Table D–4 (Cont.) Clock Speed Values (hertz)

DSB32
Values

DSH32
and DST32
Values

DSF32
Values

DSV11
Values

DSW21,
DSW41,
and DSW42
Values

76800 – – – –

96000 – – – –

128000 – – 128000 128000

– – – 256000 256000

– -1 -1 – -1

Key to Speeds:

0 - Clock is disabled

-1 - Highest clock speed consistent with selected protocol and cable configuration

D.3.1.3 P3 Parameter
P3 is the number of Receive message blocks you are allocating for incoming data.
This parameter is used only for DDCMP.

D.3.2 Set DDCMP Mode
The Set DDCMP Mode function allows you to set and start the DDCMP protocol.
Specifically, the information in this section explains how you set up DDCMP
circuit parameters (hence, the parameter ID codes described contain the PCCI
identifier).

Four combinations of function code and modifier are provided:

• IO$_SETMODE—modify DDCMP characteristics

• IO$_SETCHAR—modify DDCMP characteristics

• IO$_SETMODE!IO$M_STARTUP—start DDCMP protocol

• IO$_SETCHAR!IO$M_STARTUP—start DDCMP protocol

These codes take the following arguments:

• P1—The virtual address of a quadword characteristics buffer (optional).
Figure D–3 shows the format of this buffer.

• P2—The address of a descriptor for an extended characteristics buffer
(optional).

The following characteristic can be set in the second longword of the P1
Characteristics Buffer:

XM$V_CHR_MOP—set DDCMP to maintenance mode

The P2 buffer consists of a series of 6-byte entries. The first word contains the
parameter identifier (ID), and the longword that follows contains one of the
values that can be associated with the parameter ID. Figure D–2 shows the
format for this buffer.

Obsolete Features of the $QIO Interface D–11

Figure D–3 P1 Characteristics Buffer (Set DDCMP)

not used

not used

characteristics

0

+4

Table D–5 lists the parameter IDs and values that can be specified in the P2
buffer.

D–12 Obsolete Features of the $QIO Interface

Table D–5 P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCCI_MTR1 An integer value in the range 1-100, indicating the maximum
number of data messages in a row transmitted before
deselecting (default = 4)

NMA$C_PCCI_MST Maintenance mode. The following values can be specified:

Value Meaning

NMA$C_STATE_ON DDCMP in maintenance mode

NMA$C_STATE_OFF DDCMP not in maintenance
mode (default)

NMA$C_PCLI_TRI Tributary mode address. Values in the range 1 to 64 are valid
(default = 1).

1Not implemented by the DSF32, DSH32, DST32, DSW21, DSW41, or DSW42.

If both P1 and P2 characteristics are specified, the P2 characteristics supersede
the P1 characteristics.

On receipt of the QIO request for a device, the driver starts the protocol.

D.3.3 Shut Down Controller
This function ends driver operations and halts the protocol and the line. To
restart the driver, issue a IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP or
IO$_SETCHAR!IO$M_CTRL!IO$M_STARTUP request (see Section D.3.1).

Note that the defaults are not reset on shutdown, but only on DEASSIGN.
The VAX WAN Device Drivers use their previous settings on a restart after a
shutdown. To change the settings after a shutdown, use the P2 parameter as
described in Section D.3.1.2.

VAX/VMS provides two combinations of function code and modifier:

• IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN—shut down driver

• IO$_SETCHAR!IO$M_CTRL!IO$M_SHUTDOWN—shut down driver

D.3.4 Shut Down DDCMP
This function halts the DDCMP protocol. The attached device cannot be used
until DDCMP is restarted.

VAX/VMS provides two combinations of function code and modifier:

• IO$_SETMODE!IO$M_SHUTDOWN—shut down DDCMP

• IO$_SETCHAR!IO$M_SHUTDOWN—shut down DDCMP

These codes take no arguments.

Obsolete Features of the $QIO Interface D–13

D.3.5 Enable Attention AST
This function requests that an attention AST is delivered to the requesting
process after one of the following events:

• The driver has set or cleared an error summary bit.

• The driver has set or cleared any of the unit status bits (see Table D–6 and
Table D–7).

• Data has arrived and there is no waiting IO$_READ request.

All outstanding attention ASTs are delivered after one of these events.

You may use the Enable Attention AST function at any time after the line is
started, regardless of the condition of the driver and line status bits.

VAX/VMS provides two combinations of function code and modifier:

• IO$_SETMODE!IO$M_ATTNAST—enable attention AST

• IO$_SETCHAR!IO$M_ATTNAST—enable attention AST

The parameters for the two function codes are:

• P1—The address of an AST service routine (or 0 to disable ASTs).

• P2–User parameter for the AST routine.

• P3–Access mode to deliver AST (0 to 3, corresponding to the VMS access
mode chosen). If you specify a more privileged access mode than the current
access mode of the calling process, the AST is delivered at the current access
mode. Otherwise, the AST is delivered at the access mode you have specified.

After an AST occurs, it must be reenabled by another Enable Attention AST
function before an AST can occur again. Note that the AST quota (ASTLM) for
your process limits how many ASTs can be requested.

D.3.5.1 Status Bits
The status bits show the status of the unit and the line. They can only be read.

Table D–6 lists the status values and their meanings. The values are defined by
the $XMDEF macro.

Table D–6 Unit and Line Status

Status Meaning

XM$M_STS_ACTIVE Device and selected protocol are active (does not indicate
establishment of a link to the remote device)

XM$M_STS_DISC Modem disconnected. This bit will be returned in the field
IRP$L_IOST2 if the driver has detected an incorrect modem
status (returns a fatal error with DDCMP)

XM$M_STS_BUFFAIL Receive buffer allocation failed

XM$M_STS_DCHK Message received with CRC error (only returned in IOSB)

D–14 Obsolete Features of the $QIO Interface

D.3.5.2 Error Summary Bits
The error summary bits are set when an error occurs. They are read-only
bits. Errors (other than XM$M_ERR_LOST) cause shutdown of the DDCMP
circuit. The circuit has to be restarted. Table D–7 lists the error values and their
meanings.

Table D–7 Error Summary Bits

Error Summary Bit Meaning

XM$M_ERR_MAINT DDCMP maintenance message

XM$M_ERR_START DDCMP start message received

XM$M_ERR_FATAL Hardware or software error occurred on controller

XM$M_ERR_TRIB Hardware or software error occurred on circuit

XM$M_ERR_LOST Data lost when a message was received that was
longer than the specified maximum message size

XM$M_ERR_THRESH Receive, transmit, or select threshold errors

D.3.6 Using Non-DDCMP Protocols
The HDLC, SDLC, BISYNC and GENBYTE protocols do not have the concept of
line and circuit. Therefore, only $QIO requests that include the function modifier
IO$M_CTRL are allowed. VMS does not acknowledge the characteristics set in
either P1 or P3 for this mode of operation.

Note that you must have CMKRNL privilege to run either the DMF32 or the
DMB32 in GENBYTE mode.

D.3.6.1 BISYNC
You must construct and pass a complete BISYNC frame to the DMB32, DSV11,
DPV11, DUP11, DSF32, DSH32, DST32, DSW21, DSW41, or DSW42 when using
the driver in BISYNC mode. This frame must include all framing and control
characters (for example, the DLE, STX, ETB, and ETX characters). You must
also correctly position space in the frame to insert checksums (if you specify
no NMA$C_PCLI_CRC parameter, the driver supplies CRC–16 by default).
When allowing space in the buffer, note that DLE octets inserted to maintain
transparency could as much as double the received message size: in accordance
with the BISYNC specification, the DLE octets are not included in the blockcheck.
Other control characters are included in the blockcheck.

The read buffer contains the data received from the line. In general, control
characters and CRCs are included in the buffer, except those listed in Table D–8.

Table D–8 BISYNC Control Character Exceptions

Control
Character

Format in Read
Buffer Comments

SYN Stripped (in non-transparent mode; DLE SYN stripped in transparent
mode)

ENQ Included Frames terminated by ENQ do not have their CRC
checked.

(continued on next page)

Obsolete Features of the $QIO Interface D–15

Table D–8 (Cont.) BISYNC Control Character Exceptions

Control
Character

Format in Read
Buffer Comments

NAK Included Frames terminated by NAK do not have their CRC
checked.

EVT Included Frames terminated by EVT do not have their CRC
checked.

ACK Included Frames terminated by ACK do not have their CRC
checked.

ACK0 Included Frames terminated by ACK0 (DLE, 0) do not have
their CRC checked.

ACK1 Included Frames terminated by ACK1 (DLE, 1) do not have
their CRC checked.

WACK Included Frames terminated by WACK (DLE, ;) do not have
their CRC checked.

RVI Included Frames terminated by RVI (DLE, <) do not have their
CRC checked.

ITB Included Frames with intermediate CRCs are reported as good
only if all the CRCs are good.

DLE Included (but
DLE SYNs
removed)

If the CRC is reported by the device as bad, the read QIO is returned with SS$_
DATACHK in the IOSB, and the XM$M_STS_DCHK error bit is set.

D.3.6.2 GENBYTE
The GENBYTE protocol allows protocols not specifically supported by the DMB32
or DMF32 firmware to have their own rules for framing receive messages.

In order to provide support for each protocol’s special framing rules, the DMB32
and DMF32 drivers provide a special framing interface. You must write your
own framing routine using the facilities provided by these drivers (as described
in Section D.3.6.3) and load this routine into nonpaged pool. Because it is in
nonpaged pool, your routine must be written in position-independent code. The
address of your routine is passed to the driver on startup of the device.

The purpose of your framing routine is to tell the driver how to frame each byte of
the received data message and when the received message is complete and ready
to be posted.

The address of your routine is kept in the driver’s UCB. The driver also maintains
a quadword that is used by the framing interface for holding state information
while it is framing the receive message. Your framing routine is called by the
driver at FORK IPL through use of a JSB instruction. The input and the output
to the framing interface are described in the Table D–9.

D–16 Obsolete Features of the $QIO Interface

Table D–9 GENBYTE Framing Interface Description

Input Contents

R0 Address of quadword of state information (this register is free to be
used during the operation of your routine).

R1
(Bits 0-7)

Character to examine. The high-order bit of R1 is set if this is the first
character of a new frame.

Output Contents

R0 Status information for the driver. The following bits are defined:

XG$V_BUFFER_CHAR If clear, buffer the character in the
next position; if set, action depends
on value of bit XG$V_BUFFER_IN_
PREV_POS.

XG$V_BUFFER_IN_PREV_
POS

If XG$V_BUFFER_CHAR clear, then
ignore this bit. If clear, ignore the
character. If set, overwrite the last
buffered character.

XG$V_COMPLETE_READ If clear, ignore. If set, return the
framed buffer to the user (character is
buffered or discarded according to the
state of the previous two bits).

Note:

1. After the driver has completed a framed receive data message, the driver
resets the quadword of state information to the value passed on startup.
This means that the driver resets error information along with success
information.

2. The bit XM$M_STS_DISC is set if the driver times out while waiting for the
CTS signal to be present on the device. This bit is in the device-dependent
status returned in the second longword of the IOSB.

While a user of the generic drivers need not be aware of which driver and device
is responding to the $QIOs issued, a user of the obsolete interface will be aware of
differences between different drivers. Two differences between the drivers follow:

1. Only DMB32, DMF32, DPV, and DUP support GENBYTE.

2. The framing routine for the DMB32, DMF32, DPV, and DUP is found in
non-paged pool and non-privileged access is denied.

D.3.6.3 Parameters for GENBYTE Operation
In GENBYTE mode, use any of the following parameters for the P2 argument to
the Set Controller function (as already described in Table D–3):

NMA$C_PCLI_PRO
NMA$C_PCLI_DUP
NMA$C_PCLI_BFN
NMA$C_PCLI_BUS
NMA$C_PCLI_CON

Obsolete Features of the $QIO Interface D–17

However, there are extra parameters for the P2 argument, specifically for the
GENBYTE mode of operation. See Table D–10 for details.

Table D–10 GENBYTE Additional Parameters

Parameter ID Meaning

NMA$C_PCLI_SYC The sync character used by the device. Defaults to 32
hexadecimal.

NMA$C_PCLI_NMS The number of sync characters to precede a transmit. The
default is 8.

NMA$C_PCLI_BPC The number of bits per character (5,6,7, or 8). The default is 8.

NMA$C_PCLI_FRA The address of your protocol framing routine (in nonpaged
system address space). This parameter must be specified.

NMA$C_PCLI_STI1
NMA$C_PCLI_STI2

These two parameters contain the initial value for the
quadword of framing routine state information.

NMA$C_PCLI_TMO Specifies the timeout (in seconds) when waiting for CTS during
transmit operations.

D.4 Sense Mode
The Sense Mode function returns the driver characteristics (excluding the line
speed characteristic) in the specified buffer(s).

VAX/VMS provides two function codes:

• IO$_SENSEMODE!IO$M_CTRL—read driver characteristics

• IO$_SENSEMODE!IO$M_CTRL!IO$M_RD_COUNTS—read counters

The parameters for the IO$_SENSEMODE!IO$M_CTRL function code are:

• P1—Optional. The address of a two-longword buffer for driver characteristics.
See Figure D–1.

• P2—Optional. The address of a descriptor that defines a driver extended
characteristics buffer. See Figure D–2.

If all the characteristics cannot be stored in the buffer you specify, the IOSB
returns:

• SS$_BUFFEROVF in the first word

• The size (in bytes) of the extended characteristics buffer in the second word

Note that the size of the buffer returned may differ from the size of the buffer you
specified. This happens when the sizes of the characteristics definitions do not fit
exactly into the buffer. For example, if the driver has eight 6-byte characteristics
to return (total 48 bytes) and the buffer is 20 bytes long, only 3 characteristics
will be returned (total 18 bytes).

For a description of the IOSB, see Section D.7.

The parameters for the IO$_SENSEMODE!IO$M_CTRL!IO$M_RD_COUNTS
function code are described in Part II of the VMS I/O User’s Reference Manual,
in the sections describing Sense Mode and Read Internal Counters.

D–18 Obsolete Features of the $QIO Interface

D.4.1 The IO$_CLEAN Function
For HDLC and SDLC, an IO$_CLEAN function stops all outstanding Transmits.
In both cases, the status return is SS$_ABORT. Use of IO$_CLEAN does not
affect any modem signals.

D.5 Getting Information About the Drivers
To get information about DSB32, DSF32, DSH32, DST32, DSV11, DSW21,
DSW41 and DSW42 characteristics, use the Get Device/Volume Information
($GETDVI) system service. For information on $GETDVI, see the VMS System
Services Volume.

For the driver concerned, $GETDVI returns the following information:

• Driver device characteristics

• Driver device class

• Driver device type

• Maximum message size

• Driver status

• Line status

To get the driver’s characteristics, call $GETDVI with item code DVI$_
DEVCHAR. Table D–11 lists these characteristics, which are defined by the
$DEVDEF macro.

Table D–11 Device Characteristics

Static Bits
(always set) Meaning

DEV$M_AVL Device available. Set when UCB (Unit Control Block) initialized

DEV$M_IDV Input device

DEV$M_NET Network device. Set for terminal port if it is a network device

DEV$M_ODV Output device

To get the driver’s device class, call $GETDVI with item code DVI$_DEVCLASS.
The device class for DSB32, DSF32, DSH32, DST32, DSV11, DSW21, DSW41,
and DSW42 drivers is DC$_SCOM.

To get the driver’s device type, call $GETDVI with item code DVI$_DEVTYPE.
The drivers’ device types are:

• DSB32—DT$_SL_DSB32

• DSF32—DT$_SF_DSF32

• DSH32—DT$_ZS_DSH32

• DST32—DT$_ZS_DST32

• DSV11—DT$_SJ_DSV11

• DSW21—DT$_ZT_DSW

• DSW41—DT$_ZT_DSW

• DSW42—DT$_ZT_DSW

Obsolete Features of the $QIO Interface D–19

The $DCDEF macro defines the device class and device type names.

To get the maximum message size, call $GETDVI with item code DVI$_
DEVBUFSIZ. The maximum message size is the maximum Send- or Receive-
message size you have defined for that driver. Note that, on modem-controlled
lines, transmission errors increase as message size increases.

To get driver status and error information, call $GETDVI with item code DVI$_
DEVDEPEND. $GETDVI returns a longword containing this information. The
format of the longword is shown in Figure D–4.

Figure D–4 Longword Returned by $GETDVI

Specific
errors

Error
summary

Status Characteristics

LKG−6406−92R

0123

The longword contains:

• Driver characteristics (byte 0)

• Driver and line status (byte 1)

• Driver error summary (byte 2)

• Driver specific error(s) (byte 3 - not used)

The contents of these fields are described in the following sections.

D.5.1 DSB32, DSF32, DSH32, DST32, DSV11, DSW21, DSW41, and DSW42
Driver Characteristics

The driver characteristic bits govern the DDCMP operating mode. These bits are
defined by the $XMDEF macro and can be set using a Set Mode function or read
by a Sense Mode function).

Table D–12 lists the values and meanings of the driver characteristics.

Table D–12 DSB32, DSF32, DSH32, DST32, DSV11, DSW21, DSW41, and DSW42
Driver Characteristics

Characteristic Meaning

XM$M_CHR_HDPLX Sets half-duplex operation

XM$M_CHR_LOOPB Sets loopback mode

XM$M_CHR_MOP DDCMP maintenance mode

D–20 Obsolete Features of the $QIO Interface

D.5.2 DSB32, DSF32, DSH32, DST32, DSV11, DSW21, DSW41, and DSW42
Device and Line Status

These bits show the status of the driver and of the line. Set or clear these bits
only when the driver and the circuit are inactive.

Table D–13 lists the status values and their meanings. The values are defined by
the $XMDEF macro.

Table D–13 DSB32, DSF32, DSH32, DST32, DSV11, DSW21, DSW41, and DSW42
Device and Line Status

Status Meaning

XM$M_STS_ACTIVE Driver and selected protocol are active (indicates establishment
of a link to the remote device only in full-duplex mode)

XM$M_STS_BUFFAIL Receive buffer allocation failed

XM$M_STS_DISC Modem disconnected. This bit is returned in the field IRP$L_
IOST2 if the driver has detected an incorrect modem status.

XM$M_STS_DCHK Message received with CRC error (only returned in IOSB)

D.5.3 DSB32, DSF32, DSH32, DST32, DSV11, DSW21, DSW41, and DSW42
Error Summary

The driver error summary bits are set when an error occurs. They are read-only
bits. Errors (other than XM$M_ERR_LOST) cause shutdown of the DDCMP
circuit. The circuit needs to be restarted.

Table D–14 lists the error values and their meanings.

Table D–14 DSB32, DSF32, DSH32, DST32, DSV11, DSW21, DSW41 and DSW42
Error Summary

Error Summary Bit Meaning

XM$M_ERR_FATAL Hardware or software error occurred on the driver

XM$M_ERR_THRESH Receive, Transmit, or Select threshold errors

XM$M_ERR_LOST Data lost because longer message received than the
specified maximum message size

XM$M_ERR_MAINT DDCMP maintenance message received

XM$M_ERR_START DDCMP start message received

XM$M_ERR_TRIB Hardware or software error occurred on circuit

D.6 Reading the Modem Signals
This function reads the current modem status. VAX/VMS provides the following
combination of function code and modifier:

• IO$_SENSEMODE!IO$M_CTRL!IO$M_RD_MODEM—read line unit modem
status

This takes the following argument:

• P1—The address of a longword buffer which stores the modem status. One or
more of the following bits can be set in the buffer:

Obsolete Features of the $QIO Interface D–21

Bit Meaning

XM$V_MDM_CARRDET Receiver is active (carrier sense)

XM$V_MDM_CTS Data can be transmitted (CTS)

XM$V_MDM_DSR Modem is in service (DSR)

XM$V_MDM_RTS Request to send data from USART (RTS)

XM$V_MDM_DTR Line unit is available and on line

D.7 The I/O Status Block
The format of the I/O status block (IOSB) for the obsolete interface is shown in
Figure D–5. The format of an IOSB reporting an invalid SET MODE or SET
CHAR parameter is shown in Figure D–6.

Figure D–5 IOSB Contents

transfer size completion status

error
summary status characteristics

+2 0

+4

Table D–15 lists the completion status returns, and the VMS System Messages
and Recovery Procedures Reference Volume provides explanations and suggested
user actions for these returns.

Table D–15 Completion Status Returns

SS$_ABORT SS$_ACCVIO SS$_BADPARAM

SS$_BUFFEROVF SS$_CONNECFAIL SS$_DEVACTIVE

SS$_DEVICEFULL SS$_DEVINACT SS$_DEVOFFLINE

SS$_ENDOFFILE SS$_EXQUOTA SS$_INSFMEM

SS$_NOPRIV SS$_NOSUCHDEV SS$_NOSUCHOBJ

As well as the completion status, the first longword of the IOSB returns one of
two values:

• The size (in bytes) of the data transfer

• The size (in bytes) of the extended characteristics buffer returned by a Sense
Mode function

D–22 Obsolete Features of the $QIO Interface

The second longword of the IOSB returns three values:

• The driver characteristics (see Table D–2)

• The driver and line status (see Table D–6)

• The driver error summary (see Table D–7)

When the IOSB reports an invalid SET MODE or SET CHAR parameter, the
format of the IOSB is as shown in Figure D–6.

Figure D–6 IOSB Reporting Invalid Parameter

completion status

+2 0

+4

failed parameter

Obsolete Features of the $QIO Interface D–23

E
Management

E.1 Differences Between the V1.1 VAX WAN Device Drivers and the
V2.0 VAX WAN Device Drivers

Many of the differences between previous versions of the VAX WAN Device
Drivers and the generic VAX WAN Device Drivers are due to the differences
between DECnet Phase IV (under which the VAX WAN Device Drivers could not
be controlled by the network manager) and DECnet/OSI (under which they can).

DECnet/OSI separates management from service. The management modules are
managed by NCL, and the service interfaces are used by either Digital products
or specific user programs.

The generic drivers are all controlled by a pseudo-driver (WANDRIVER) which
uses the service interface to the datalink entities. There is a $QIO interface to
the pseudo-driver. WANDRIVER forwards your $QIO calls through the DECnet
/OSI entities to whichever device driver is applicable. For more information about
WANDRIVER, see Chapter 4.

E.1.1 Integration with DECnet
Previous versions of the VAX WAN Device Drivers were independent of DECnet:
it was possible to run them without running DECnet. DECnet did not need to
be involved with the drivers, although in many networks, DECnet ran over VAX
WAN Device Drivers links provided by previous versions of the VAX WAN Device
Drivers.

The generic VAX WAN Device Drivers are integrated with DECnet. For VAX
WAN Device Drivers to run, you need only install and configure DECnet/OSI.

E.1.2 Managing the VAX WAN Device Drivers
E.1.2.1 Using WANDRIVER

NCL gives you much more control over your network than was possible with
DECnet Phase IV. The characteristics, status, and counters relating to each entity
and subentity can be individually seen, and characteristics can be changed.

Because the generic VAX WAN Device Drivers work closely with DECnet/OSI,
solving operational problems with the drivers is different: NCL commands make
information easier to inspect and easier to act on. In the case of modem signals,
for example, in previous versions of the VAX WAN Device Drivers (with only the
obsolete interface) there was no way of reading them. With DECnet/OSI, NCL
SHOW commands make information about line usage visible to the user.

Management E–1

E.1.2.2 Using the Obsolete Interface
Using the obsolete interface, you can, as in earlier versions, use $QIO calls to
start a device in DDCMP mode (both DDCMP framing and Level 2 protocol).

Alternatively, you can have framing only for any of the following:

BISYNC
HDLC
GENBYTE
SDLC

Starting a device creates or modifies the DECnet/OSI management entities, but
this is invisible to the user. While the obsolete programming interface is in use,
the network manager will be able to see (through NCL) these temporary entities:

• DDCMP and MODEM CONNECT (for DDCMP-mode calls)

• FRAME and MODEM CONNECT (for drivers using BISYNC, HDLC,
GENBYTE or SDLC)

Note

Any attempt to manage these entities directly using NCL may lead to
unpredictable failures.

E.2 NCL Commands
This section assumes that all the necessary entities (Modem Connect and any
applicable datalink entity) already exist; they are created during initialization of
your system. For further details about any of these commands, see the DECnet
/OSI for VMS Network Control Language Reference manual.

Issuing NCL Commands for Modem Connect
To use the generic drivers by means of $QIO calls to WANDRIVER, first issue
these NCL commands in order to CREATE, SET and ENABLE a Modem Connect
LINE:

NCL> CREATE MODEM CONNECT LINE line-name COMMUNICATION PORT port-name
NCL> SET MODEM CONNECT LINE line-name MODEM CONTROL full|none
NCL> ENABLE MODEM CONNECT LINE line-name

Replace line-name with the name of your Modem Connect line and port-name
with the name of the port that your datalink will use.

Issuing NCL Commands for DDCMP
If you are going to use the DDCMP module, you must then CREATE, SET and
ENABLE a DDCMP link with a named station.

NCL> CREATE DDCMP LINK link-name PROTOCOL point|tributary
NCL> CREATE DDCMP LINK link-name LOGICAL STATION station-name
NCL> SET DDCMP LINK link-name PHYSICAL LINE MODEM CONNECT LINE line-name
NCL> ENABLE DDCMP LINK link-name LOGICAL STATION station-name
NCL> ENABLE DDCMP LINK link-name

Replace the variables like this:

link-name is the name you want to give to the DDCMP LINK

E–2 Management

line-name is the name of the Modem Connect LINE created with the
CREATE MODEM CONNECT LINE command

station-name is the name that you want to give to the LOGICAL STATION

Doing this sets up a port. Sections 2.2.1 and 2.2.2 show you how to use this port.

Issuing NCL Commands for HDLC
If you are going to use the HDLC module, you must then CREATE, SET and
ENABLE a HDLC link with a named station.

NCL> CREATE HDLC LINK link-name LINK TYPE balanced|primary|secondary
NCL> CREATE HDLC LINK link-name LOGICAL STATION station-name
NCL> SET HDLC LINK link-name PHYSICAL LINE MODEM CONNECT LINE line-name,-
_NCL> PREFERRED LOCAL STATION ADDRESS address
NCL> ENABLE HDLC LINK link-name LOGICAL STATION station-name
NCL> ENABLE HDLC LINK link-name

Replace the variables like this:

link-name is the name you want to give to the HDLC LINK

line-name is the name of the Modem Connect LINE created with the
CREATE MODEM CONNECT LINE command

address is a number in the range 1-253

station-name is the name you want to give to the LOGICAL STATION

Issuing NCL Commands for LAPB
If you are going to use the LAPB module, you must then CREATE, SET and
ENABLE a LAPB link with a named station.

NCL> CREATE LAPB LINK link-name PROFILE profile-name
NCL> SET LAPB LINK link-name PHYSICAL LINE MODEM CONNECT LINE line-name
NCL> ENABLE LAPB LINK link-name

Replace the variables like this:

link-name is the name you want to give to the LAPB LINK

profile-name is the name of the PROFILE you want to use

line-name is the name of the Modem Connect LINE created with the
CREATE MODEM CONNECT LINE command

Issuing NCL Commands for FRAME
Even if you are using a specially written datalink protocol, you use the Frame
module to integrate your datalink with DECnet/OSI.

NCL> CREATE FRAME LINK link-name PROTOCOL ddcmp|hdlc|sdlc|bisync|genbyte
NCL> SET FRAME LINK link-name PHYSICAL LINE MODEM CONNECT LINE line-name
NCL> ENABLE FRAME LINK link-name

Replace the variables like this:

link-name is the name you want to give to the Frame LINK

line-name is the name of the Modem Connect LINE created with the
CREATE MODEM CONNECT LINE command

For further information on the Frame module, see Appendix B.

Management E–3

F
How to Program DSF32 Failover Sets

This section explains how to manage failover sets using the programmable
interface to the SFDRIVER. The DECnet/OSI for VMS Installation and
Configuration describes failover sets and failover set management.

F.1 The $QIO Interface
The SFDRIVER supports a $QIO interface to receive system management
commands. This interface is used by the WANDD$FSM utility to create and
modify failover set membership information. You can use this $QIO interface to
implement your own failover set management utility.

To manage a failover set, your program must first perform a $ASSIGN to allocate
a channel to the appropriate SF device (the DECnet/OSI for VMS Installation
and Configuration) describes how you create SF devices). Your program can then
issue $QIO function codes to control the failover set device.

F.2 Function Codes
The SFDRIVER supports the following $QIO function codes:

• IO$_CREATE

• IO$_DELETE

• IO$_MODIFY

• IO$_ACCESS

You send a $QIO function code to the SFDRIVER to:

• Describe the command you are issuing

• Provide the address of a buffer (in the P1 parameter) which contains further
details of the action to be performed

When calling the IO$_CREATE, IO$_DELETE, and IO$_MODIFY function
codes, the address in P1 must point to a quadword buffer. When calling the
IO$_ACCESS function code, the address in P1 must point to a three longword
buffer.

The function codes correspond to the following Failover Set Manager commands:

• IO$_CREATE for the ADD command

• IO$_DELETE for the REMOVE command

• IO$_MODIFY for the SET/CURRENT command

• IO$_ACCESS for the SHOW command

The content of the P1 argument depends on the function code you use and this
content is described in the following sections. (Where entries are ignored, the
diagrams are marked with Read As Zero (RAZ).)

How to Program DSF32 Failover Sets F–1

The symbolic codes used are supplied on the WAN Device Driver’s kit and after
installation can be found in SYS$LIBRARY. The symbol files are:

• WANDD$FSMDEF.MLB for MACRO programs

• WANDD$FSMDEF.R32 for BLISS programs

• WANDD$FSMDEF.H for C programs

F.3 Using the Failover Set Commands
This section describes how you use the failover set commands when programming
the DSF32.

F.3.1 The ADD Command
The ADD command allows you to add one or two physical controllers to a failover
set. Your quadword buffer must contain one entry only, detailing which physical
controllers to add. Figure F–1 shows the format of the quadword buffer.

Figure F–1 Format of Quadword Buffer

Controller 2

Ignored − RAZ

1

Code

3

0

Controller 1

2

LKG−6226−92R

The Code byte takes the following values:

• DSF$K_ITEM_PC1 where only one device is being added to the failover set.

• DSF$K_ITEM_PC2 where two devices are being added to the failover set.

Use the Controller 1 and Controller 2 bytes to specify the physical controller you
are adding to the failover set. When you are adding only one physical controller,
the Controller 2 byte is ignored.

Use the following constants in the Controller 1 or the Controller 2 byte to specify
the physical controller:

Constant Controller

1 DSF$K_PC_SMB

2 DSF$K_PC_SMC

3 DSF$K_PC_SMD

4 DSF$K_PC_SME

6 DSF$K_PC_SMG

7 DSF$K_PC_SMH

F–2 How to Program DSF32 Failover Sets

Constant Controller

8 DSF$K_PC_SMI

9 DSF$K_PC_SMJ

If the failover set is not empty, the SFDRIVER will ensure that only one physical
controller can be added. If the failover set is already full, the SFDRIVER will
reject your command. The SFDRIVER will return an invalid quadword buffer
format error if any other values are found in the buffer.

F.3.2 The REMOVE Command
The REMOVE command allows you to remove one or two members from a failover
set. The buffer must contain one entry, detailing which physical controllers you
wish removed. The format of the quadword buffer is the same as shown in
Figure F–1.

The Code byte takes the following values:

• DSF$K_ITEM_PC1 where only one device is being removed from the failover
set. set.

• DSF$K_ITEM_PC2 where two devices are being removed from the failover
set.

Use the Controller 1 and Controller 2 bytes to specify the physical controller you
are removing from the failover set. When you are removing only one physical
controller, the Controller 2 byte is ignored.

Use the following constants in the Controller 1 or the Controller 2 byte to specify
the physical controller:

Constant Controller

1 DSF$K_PC_SMB

2 DSF$K_PC_SMC

3 DSF$K_PC_SMD

4 DSF$K_PC_SME

6 DSF$K_PC_SMG

7 DSF$K_PC_SMH

8 DSF$K_PC_SMI

9 DSF$K_PC_SMJ

F.3.3 The SET/CURRENT Command
The SET/CURRENT command allows you to change which physical controller is
currently active in a failover set. The SET/CURRENT command causes a manual
failover of the failover set from one physical controller to the one specified in your
buffer. Figure F–2 shows the format of the SET/CURRENT entry. Figure F–2
shows the format of the SET/CURRENT entry.

How to Program DSF32 Failover Sets F–3

Figure F–2 Format of Individual SET/CURRENT Entry

Ignored − RAZ

1

Code

3

0

New controller

2

LKG−6227−92R

Ignored − RAZ

The Code byte must contain the value DSF$K_ITEM_PC.

The New Controller byte must indicate a valid physical controller: that is, one
made a member of the failover set by a previous ADD command. If the New
Controller byte does not indicate a valid physical controller, the SFDRIVER
returns an invalid buffer error.

Use the following constants in the New Controller byte to specify the new physical
controller of the failover set:

Constant Controller

1 DSF$K_PC_SMB

2 DSF$K_PC_SMC

3 DSF$K_PC_SMD

4 DSF$K_PC_SME

6 DSF$K_PC_SMG

7 DSF$K_PC_SMH

8 DSF$K_PC_SMI

9 DSF$K_PC_SMJ

F.3.4 The SHOW Command
The SHOW command allows you to obtain information about the current state
of the failover set. This command requires a three longword format item-list.
The item-list consists of a series of information entries and is terminated by a
longword set to zero. The format of each item-list entry is shown in Figure F–3.
The programming libraries shipped on the kit supply the structure definitions
you require to access the item-list.

F–4 How to Program DSF32 Failover Sets

Figure F–3 Format of Individual SHOW Entry

Ignored − RAZRequest code

LKG−6228−92R

1st Longword of Returned Info or Zero

2nd Longword of Returned Info or Zero

The request codes can have the following values:

• DSF$K_ITEM_PC which denotes a request for Failover Set State

• DSF$K_ITEM_CS which denotes a request for Cable State

• DSF$K_ITEM_FS which denotes a request for Failover Set Configuration
State

F.3.4.1 Failover Set State
When you request Failover Set State, the driver returns zero, one, or two
longwords of information. The number of nonzero longwords returned tells you
the number of members currently in the failover set. The driver will clear any
longwords not used, and will not assume they are supplied as zero. The format of
each longword is shown in Figure F–4.

Figure F–4 Failover Set State Longword

3

Reserved

2

Flags

1

State

0

DSF$K_PC_SM

LKG−6229−92R

x

The low byte contains a constant identifying the physical device which is a
member of this Failover Set. The state field contains the state of the physical
unit. Possible values are listed below:

• DSF$K_STANDBY which means that the physical device is standing by

• DSF$K_CURRENT which means that the physical device is currently the
active controller for this Failover Set

• DSF$K_FAILED which means that the physical device is broken

The flags field contains the following flags:

• DSF$M_INIT which means the physical device has completed its initialization
successfully

How to Program DSF32 Failover Sets F–5

F.3.4.2 Cable State
When Cable State is requested, the driver returns zero, one, or two longwords of
information. One longword will be initialised for each current physical member of
the failover set. The format of each longword is shown in Figure F–5.

Figure F–5 Cable State Longword

0

Controller100
Pin

20
Pin

100−Pin
Partner

20−Pin
Partner

32 28 24 16 8

LKG−6230−92R

The Controller byte contains a constant identifying the physical device to which
the cable state information refers.

The 20-pin Partner and 100-pin Partner bytes contain constants identifying the
physical devices connected through the 20-pin and 100 pin cables, respectively.

The top byte is split into two 4-bit fields: the 20-pin field and the 100-pin field.
The values in these fields indicate the current state of the 20-pin and the 100-pin
connections.

For the 20-pin connection, the values are as follows:

• DSF$K_20_GOOD—there is a good connection between the physical device
and the partner at the other end of the 20-pin cable.

• DSF$K_20_NONE—there is no 20-pin cable connection (in this case, the
20-pin byte is set to 0).

• DSF$K_20_UNKNOWN—the state of the 20-pin connection is unknown (in
this case, the 20-pin byte is set to 0).

For the 100-pin connection, the values are as follows:

• DSF$K_100_GOOD—there is a good connection between the physical device
and the partner at the other end of the 100-pin cable.

• DSF$K_100_NONE—there is no 100-pin cable connection (in this case, the
100-pin byte is set to 0).

• DSF$K_100_UNKNOWN—the state of the 100-pin connection is unknown (in
this case, the 100-pin byte is set to 0).

F.3.4.3 Failover Set Configuration State
When Failset Configuration State is requested, the driver returns one longword of
information in the second longword of the item-list. The format of this longword
is shown in Figure F–6.

F–6 How to Program DSF32 Failover Sets

Figure F–6 Failover Set Configuration State Longword

State

LKG−6231−92R

FlagsCable_ConfigUnused

The state field describes the current state of the failover set. Possible values for
this field are as follows:

• DSF$K_NULL which means that the failset is empty

• DSF$K_SINGLE which means that the failset contains one physical controller

• DSF$K_PARTNERED which means the failset contains two physical members
in separate zones

• DSF$K_INVALID which means the failset state is invalid

The CABLE_CONFIG field describes the driver’s perception of the validity of the
physical cabling of the failover set. Possible values which may be returned are
shown below:

• DSF$K_GOOD which means the cable configuration is good

• DSF$K_BAD which means the cable configuration is bad

• DSF$K_UNKNOWN which means the cable setup cannot be determined (for
example, if one zone is stopped the cable state can not be determined)

The DECnet/OSI for VMS Installation and Configuration describes the correct
configuration of cables.

F.4 Returning Status
Figure F–7 shows the IOSB used by the driver to return its status.

Figure F–7 Status Return IOSB

Status

1

3

0

FSM Status

2

LKG−6232−92R

The driver returns a $QIO success (SS$_NORMAL) return status code with errors
indicated in the IOSB, except for the SS$_NOOPER return, which is returned as
a $QIO status.

How to Program DSF32 Failover Sets F–7

The following status returns can be returned by the driver in the IOSB. The
Status byte can return these values:

• SS$_ACCVIO which means an error has been returned for an inaccessible
item-list entry, as determined by a PROBEW

• SS$_BADPARAM which means an error has been returned because there is a
problem with the item-list format. An FSMCMD error should be returned for
any error processing the item-list in the device-dependent field of the IOSB.
The device dependent field of the IOSB should contain the byte offset into the
item-list of the field, which is in error in the high word.

• SS$_NOOPER which means that the process does not have OPER privilege

• SS$_NORMAL which means successful completion of the command

If the Status byte contains SS$_BADPARAM, then the FSM Status byte contains
one of these values:

• FSMCMD$K_ERR_BAD_ITEMLIST which means that the item-list is in the
wrong state

• FSMCMD$K_ERR_BAD_LC which means invalid logical controller value

• FSMCMD$K_ERR_BAD_PC which means invalid physical controller value

• FSMCMD$K_ERR_DUPLICATE_INFO which means information has been
requested twice in a SHOW item-list

• FSMCMD$K_ERR_EMPTY_FAILSET which means you cannot remove the
device from the failover set because it is already empty

• FSMCMD$K_ERR_NO_LC which means that no logical controller has been
specified

• FSMCMD$K_ERR_NO_PC which means that no physical controller has been
specified

• FSMCMD$K_ERR_NOSCHDEV which means the device does not exist

• FSMCMD$K_ERR_ONLY_ONE_SLOT which means two controllers are being
added but there is only one slot in the failover set

• FSMCMD$K_ERR_PC_ACTIVE which means the physical controller is
currently active and cannot be removed

• FSMCMD$K_ERR_PC_ALREADY_ACTIVE which means the physical
controller is already active on a SET/CURRENT command

• FSMCMD$K_ERR_PC_BROKE which means that the device driver has
detected that the specified physical device is faulty

• FSMCMD$K_ERR_PC_IN_USE which means that the physical controller is
already in use within a failover set

• FSMCMD$K_ERR_PC_NOT_IN_FAILSET which means the physical device
is not in the failover set

• FSMCMD$K_ERR_TOO_MANY_PCS which means there are too many PC
items

• FSMCMD$K_ERR_SAME_ZONE which means that same zone partnership is
not allowed

F–8 How to Program DSF32 Failover Sets

Index

A
Access

mode
and AST delivery, 4–8, D–14
codes, 4–8, D–14

$ASSIGN
assigning a channel to WANDRIVER, 2–2

AST
access mode for delivery, 4–8, D–14
function codes, 4–8, D–14
quota (ASTLM), 4–8, D–14
requesting, 2–2, 4–8, D–4, D–14
service routine, 4–8, D–14
typical cases for using, 2–2
use at any time, 4–8, D–14

ASTLM quota, 4–8, D–14

B
BISYNC protocol, D–15

framing and control characters, B–3, D–15
space for CRC, D–15

Buffer
allocation, D–4
default number, D–9
for extended characteristics, D–22

C
Characteristics

DST32, D–19
DST32 driver, D–18

Characteristics buffer
structure, D–5

Clock
setting, D–4

Clock speeds, D–11
Common receive pool, D–11
Completion status

shown in IOSB, 4–18, D–22
Control circuits, 4–1
CRC type

default/possible values, B–2, D–10
specification, D–4

CTS, D–17

D
Data transfer

size recorded, D–22
$DCDEF macro, D–20
DDCMP module

no need to use Frame, B–1
DDCMP protocol

maintenance mode, D–11
operating mode, D–20
set DDCMP mode, D–11
starting, D–11
three classes, B–2

DEC HDLC module
no need to use Frame, B–2

DECnet/OSI
See also modular management
DECnet/OSI for VMS configuration, 1–4, 2–1
integration of OSI and DNA, 1–1
modular network model, 1–1
number of nodes, 1–1

$DEVDEF macro, D–19
Device

and line status, D–21
characteristics, D–19
class, D–19
type, D–19

DMB32
CMKRNL privilege for GENBYTE, D–15
driver state information, D–17
driver UCB, D–16
modem status register, D–21
running non-DDCMP protocols, D–15
shut down

on fatal error, D–15
special framing interface, D–16

input and output to, D–16
DMF32

CMKRNL privilege for GENBYTE, D–15
driver state information, D–17
driver UCB, D–16
special framing interface, D–16

input and output to, D–16

Index–1

Driver
error information, D–20
information, D–19
maximum message size, D–20

DSB32
characteristics, D–20

values and meanings, D–20
obtaining information about, D–19

DSF32
characteristics, D–20
obtaining information about, D–19

DSH32
characteristics, D–20
obtaining information about, D–19

DST32
characteristics, D–18, D–20

values and meanings, D–20
errors

information, D–20
obtaining information about, D–19
operational mode defined, D–6
P2 parameter IDs allowed, D–6
setting and starting, D–5
status bits, D–21

DSV11
characteristics, D–20

values and meanings, D–20
obtaining information about, D–19
shut down, D–13

DSW21
characteristics, D–20
obtaining information about, D–19

DSW41
characteristics, D–20
obtaining information about, D–19

DSW42
characteristics, D–20
obtaining information about, D–19

Duplex mode
default values, D–9

E
Enable Attention AST, 4–8 to 4–9
Error

information longword described, D–20
reporting, D–15
return values, D–23
summary, D–21

Extended characteristics buffer, D–22
size, D–18
structure, D–6

F
Failure

system, 3–3 to 3–5
Full and half-duplex operation, D–4
Functions

Clean, 4–14
codes, 4–1
Control circuits, 4–1
Delete, 4–15
IO$_SETMODE to enable attention AST, 4–8
IO$_SETMODE to shut down protocol, 4–11
IO$_SETMODE to start up protocol, 4–10
Read, 4–1, 4–16, D–2
Sense Mode, D–18, D–20
Set Characteristics, D–4
Set Mode, D–4, D–20
Write, 4–1, 4–17, D–2

G
GENBYTE

privileges, B–4
protocol, B–3, D–16

example framing routine, B–7
framing receive messages, D–16
framing routine and, B–3
general points, D–17
how to use, B–5
parameters, D–17
QIO parameters used in, B–4

$GETDVI, D–19
$GETDVI system service, D–19

H
Half-duplex mode

and RTS, 4–17, D–4
HDLC protocol

stopping all transmits, 4–14, D–19

I
I/O functions, 4–1, 4–16, D–2
I/O Status Block

see IOSB
Interrupts

see AST
IO$SETMODE qualifiers

IO$M_SHUTDOWN, 4–11
IO$_CLEAN

Format, 4–14
Returns, 4–14

IO$_CREATE
Arguments, 4–5
Format, 4–4
Returns, 4–4

Index–2

IO$_DELETE
Format, 4–15
Returns, 4–15

IO$_READLBLK
Returns, 4–16

IO$_READLBLOCK
Arguments, 4–16
Format, 4–16

IO$_SENSEMODE
Arguments, 4–12
Format, 4–12
Returns, 4–12

IO$_SETMODE qualifiers
IO$M_ATTNAST, 4–8
STARTUP, 4–10

IO$_SETMODE!IO$M_ATTNAST
Arguments, 4–8
Format, 4–8
Returns, 4–8

IO$_SETMODE!IO$M_SHUTDOWN
Format, 4–11
Returns, 4–11

IO$_SETMODE!IO$M_STARTUP
Format, 4–10
Returns, 4–10

IO$_WRITELBLK
Arguments, 4–17
Format, 4–17
Returns, 4–17

IOSB, 4–16, 4–18, D–2, D–17, D–22, D–23
and completion status, 4–18, D–22
and invalid parameter, D–23
structure, 4–18, D–22

L
LAPB protocol

stopping all transmits, 4–14
Line speed, D–4
LOG_IO privilege, D–2
Loopback mode, D–4
Loopback test, 3–1

different kinds, 3–1
Loopback tests

See also STARTLOOP commands

M
Macros

$DCDEF, D–20
$DEVDEF, D–19
$NMADEF, D–6
$XMDEF, D–6, D–14, D–20, D–21

Maintenance mode DDCMP, D–11
Message size

maximum, D–20
obsolete interface

default lengths for different protocols, D–9

Message size
obsolete interface (cont’d)

maximum lengths for different protocols,
D–9

maximum receive length, D–2
maximum send length, D–3

Message size specification, D–4
Modem

function code, D–21
registers not cleared, D–19
status buffer, D–21
status register, D–21

Modem controlled lines
and increased errors, D–20

Modular management, 1–1
See also programming calls
differences between V1 and V2 VAX WAN

Device Drivers, 1–3, E–1
NCL commands for pre-requisite entities, 1–4
Network Command Language, 1–1
networking problems more easily diagnosed,

E–1

N
Network management

entities, 1–1
$NMADEF macro, D–6
No message available

return status, 4–16, D–2

O
Obsolete interface, 2–1

compatibility, 1–1, 1–4
restrictions on use, 1–4
where documented, 1–4

Open port
Item code, 4–6 to 4–7
Item length, 4–6

P
P2 parameter

extended characteristics, D–12
IDs listed, D–6

Parameter ID
listed, D–13

PHY_IO privilege, D–2
Priority

of problems, 3–3 to 3–4
Privilege

to run GENBYTE, B–4
Problem solving

tools
Common Trace Facility, 3–1
NCL displays, 3–1

Index–3

Programming
calls

See also obsolete interface
clearing buffers, 2–2
closing a port, 2–3
enabling an attention AST, 2–2
for management, 1–1
getting information about an open port,

2–3
needed after data exchange, 2–2
needed before data exchange, 2–2
needed during data exchange, 2–2
opening a port, 2–2
$QIO calls, 1–1
$QIOs for controlling the VAX WAN Device

Drivers, 2–1, 2–2 to 2–3
$QIOs for exchanging data, 2–1, 2–3
QIOs listed, 2–1
shutting down a datalink, 2–3
starting a datalink, 2–2
to pseudo-driver, 1–1, E–1

Protocol
BISYNC, B–3, D–15
DDCMP, B–2, D–11
GENBYTE, B–3
HDLC, 4–14, D–15, D–19
operation, D–15
SDLC, 4–14, D–15, D–19
specifying, D–4
starting, 2–2
stopping, 2–3

Q
Quota

ASTLM, 4–8, D–14

R
Read, 4–1, 4–16, D–2

function codes, 4–16, D–2
Reading

data
using IO$M_NOW, 2–3

Receive message, D–2
blocks allocated, D–11
size, D–2

Return status
explanations and recovery, D–22

S
SDLC protocol

stopping all transmits, 4–14, D–19
Send-message size, 4–17, D–3
Sense Mode, D–18, D–20

function codes, D–18

Set Characteristics, D–4
Set Controller Mode, D–5

and GENBYTE protocol, D–17
function codes, D–5

Set Mode, D–4, D–20
three types of, D–4

Shut down
controller (obsolete interface), D–13
DDCMP, D–13

Shut Down Protocol, 4–11
SPR, 3–3 to 3–5

contents, 3–3 to 3–4
priority of problems, 3–3 to 3–4

Start Up Protocol, 4–10
STARTLOOP commands

STARTLOOP CONNECTOR, 3–2
STARTLOOP DEVICE, 3–2
STARTLOOP DRIVER, 3–1
STARTLOOP EXTERNAL, 3–3
STARTLOOP LOCAL, 3–2
STARTLOOP REMOTE, 3–3

Status returns, D–22, D–23
setting and clearing bits, D–14, D–21
SS$_BUFFEROVF, D–2
SS$_ENDOFFILE, 4–16, D–2

System Dump Analyzer, 3–5
System failure, 3–3 to 3–5
System services

$GETDVI, D–19

T
Transmit

and RTS with half-duplex mode, 4–17, D–4
Transmit and Receive

maximum message size, D–6, D–20
messages, 4–17, D–3

U
UCB, 2–2, D–16

V
V1.2 VAX WAN Device Drivers, 1–1
V2.0 VAX WAN Device Drivers

and V1.2 VAX WAN Device Drivers on one
network, 1–4

pseudo-driver, 1–2
relation to DECnet/OSI, 1–3, E–1
relation to DECnet/OSI (figure), 1–2
separation of management and data

transmission, 1–1
VAX WAN Device Drivers

problems more easily diagnosed, 1–2

Index–4

W
WANDRIVER

see also $ASSIGN
Write, 4–1, D–2

function codes, D–2
Writing data

using IO$M_MORE, 2–3

X
$XMDEF macro, D–6, D–14, D–20, D–21

Index–5

