
HP X.25 for OpenVMS
Programming Guide
Order Number: AA–Q2P6C–TE

July 2005

This manual describes how to write X.25 and X.29 programs to perform
network operations.

Revision/Update Information: This revised manual supersedes X.25
for OpenVMS—Programming Guide,
Version 1.1b.

Operating System: OpenVMS I64 Version 8.2 and 8.2-1
OpenVMS Alpha Version 8.2

Software Version: HP X.25 for OpenVMS
Version 2.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

UNIX is a registered trademark of The Open Group.

Printed in the US

Contents

Preface . vii

1 Introduction to X.25 and X.29 Communications

1.1 Communicating Over a PSDN . 1–1
1.2 X.25 Communications and X.29 Communications 1–1
1.2.1 NW Device . 1–1
1.2.2 NV Device . 1–1
1.2.3 TT Device . 1–3
1.3 Interaction of the NV Device, the PAD, and the X.29 Terminal 1–4
1.3.1 Transfer of Data from the PAD to the TT Device 1–5
1.3.2 Transfer of Data from the TT Device to the PAD 1–6

2 Introduction to X.25 and X.29 Programming

2.1 Establishing a Virtual Circuit . 2–1
2.2 Using the X.25 Library . 2–1
2.3 Using System Services . 2–2
2.4 Data Structures . 2–2
2.4.1 The Network Connect Block (NCB) . 2–3
2.4.1.1 How to Set Up a Network Connect Block . 2–3
2.4.2 The Mailbox . 2–3
2.5 MACRO Coding . 2–4
2.5.1 Argument Lists . 2–4
2.6 High–level Language Coding . 2–4
2.7 System Resources Required for a Virtual Circuit . 2–5

3 Using System Services to Handle Calls

3.1 Setting Up and Clearing Communications . 3–3
3.1.1 Creating a Mailbox . 3–3
3.1.2 Assigning the Control and Data Channels . 3–3
3.1.3 Connection as a Virtual Terminal (VT) . 3–4
3.1.4 Requesting a Virtual Circuit . 3–4
3.1.5 Clearing a Call . 3–6
3.2 Handling Incoming Calls . 3–7
3.2.1 Defining a Network Process and Specifying Which Incoming Calls

Your Process Will Handle . 3–7
3.2.2 Assigning a Channel for Receiving Data . 3–8
3.2.3 Accepting an Incoming X.25 Call Request . 3–8
3.2.4 Rejecting an Incoming X.25 Call Request . 3–10
3.2.5 Redirecting an Incoming X.25 Call Request . 3–11
3.3 Transmitting and Receiving Data in an X.25 Program 3–12
3.3.1 Transmitting Data . 3–12

iii

3.3.2 Receiving Data . 3–13
3.4 Transmitting and Confirming Receipt of Interrupts 3–14
3.5 Resetting a Virtual Circuit and Confirming a Reset 3–16
3.6 Confirming Receipt of a Restart . 3–17
3.7 Handling Accepted X.29 Calls . 3–17
3.8 Transferring NV Devices Between Processes . 3–18
3.9 Using a Permanent Virtual Circuit . 3–18

4 Writing an X.25 Program

4.1 Minimum Configuration Entities . 4–2
4.1.1 Incoming Calls . 4–3
4.1.2 Outgoing Calls . 4–3
4.2 Writing a Program to Handle an Incoming Call . 4–4
4.2.1 Using a Network Process . 4–4
4.2.2 Using an Access Application . 4–6
4.3 Writing a Program to Make an Outgoing Call . 4–9

5 Writing an X.29 Program

5.1 Writing a Program to Handle an Incoming Call from a PAD 5–2
5.1.1 X.25 Listener in the APPLICATION Entity . 5–2
5.1.2 X.25 Listener Declared as a Network Process 5–4
5.1.3 X.29 Listener in the APPLICATION Entity . 5–6
5.1.4 X.29 Listener Declared as a Network Process 5–7
5.1.5 How to Find the Remote DTE Address . 5–8
5.2 Writing a Program to Make an Outgoing Call to a Remote PAD 5–9
5.2.1 Writing a Program to Make an Outgoing Call 5–9

6 Setting Characteristics of the PAD, the NV Device, and the X.29
Terminal

6.1 Setting PAD Parameters . 6–1
6.1.1 Setting PAD Interrupt and Break Actions . 6–2
6.1.2 Setting Nonstandard PAD Parameters . 6–5
6.2 Setting NV Actions for Interrupt and Indication–of–Break 6–5
6.2.1 The NV Action Descriptor Block . 6–6
6.3 Setting X.29 Terminal Characteristics . 6–8
6.3.1 Setting Echo Mode . 6–8
6.3.2 Setting 7–Bit ASCII and Parity . 6–8

A Example of Parsing the Device Name String

Index

iv

Figures

1–1 X.25 and X.29 Communications Links . 1–2
1–2 Action of the NV Device with the PAD and the X.29 Terminal 1–4
1–3 Data Transfer Between the PAD and the NV Device and the NV

Device and the TT Device . 1–5
3–1 Set Up a Virtual Circuit — Call Accepted . 3–5
3–2 Set Up a Virtual Circuit — Call Rejected by Remote DTE 3–5
3–3 Set Up a Virtual Circuit — Call Rejected by Network 3–6
3–4 Clear a Virtual Circuit . 3–7
3–5 Accept a Request to Set Up a Virtual Circuit . 3–10
3–6 Reject a Request to Set Up a Virtual Circuit . 3–11
3–7 Transmit Data . 3–13
3–8 Receive Data . 3–14
3–9 Transmit an Interrupt . 3–15
3–10 Confirm Receipt of an Interrupt . 3–15
3–11 Reset a Virtual Circuit . 3–16
3–12 Confirm the Receipt of a Reset . 3–17
6–1 Response to INTERRUPT, with PAD Parameter 7 Set to 1 6–3
6–2 Response to INTERRUPT, with PAD Parameter 7 Set to 5 6–3
6–3 Response to INTERRUPT, with PAD Parameter 7 Set to 21 6–4
6–4 NV Action Descriptor Block . 6–7

Tables

1 X.25 Terminology . x
2 X.25 for OpenVMS Client/Server Terminology x
1–1 Facilities Offered by X.25 and X.29 Programming 1–3
3–1 System Services . 3–1
3–2 Function Codes for the $QIO System Services 3–2
6–1 PAD Interrupt and Indication–of–Break Messages 6–2

v

Preface

This manual describes how to write X.25 and X.29 programs to perform network
operations.

The information in this manual applies to the X.25 functionality provided by HP
X.25 for OpenVMS and HP DECnet–Plus for OpenVMS VAX. Note that the X.25
functionality in DECnet–Plus for OpenVMS VAX was formerly provided by VAX
P.S.I. software.

Throughout this manual, the X.25 functionality provided by both HP X.25 for
OpenVMS and HP DECnet–Plus for OpenVMS VAX is referred to generically as
X.25 for OpenVMS.

This manual uses the term Packet Switching Data Network (PSDN) to refer to
any public or private packet switching network that X.25 for OpenVMS supports.

Audience
The manual assumes that you have knowledge and experience of:

• The OpenVMS operating system

• OpenVMS system services

• Packet switching

• DECnet–Plus

• A programming language

The manual also assumes that you have a knowledge of general communications
theory, and that you understand X.25 and PSDN terminology.

Structure
The manual is divided into six chapters and one appendix:

• Chapter 1, Introduction to X.25 and X.29 Communications, introduces you to
X.25 and X.29 communications.

• Chapter 2, Introduction to X.25 and X.29 Programming, introduces X.25 and
X.29 programming.

• Chapter 3, Using System Services to Handle Calls, describes how to use
system services to handle X.25 and X.29 calls.

• Chapter 4, Writing an X.25 Program, describes how to write programs to
handle X.25 calls.

• Chapter 5, Writing an X.29 Program, describes how to write programs to
handle X.29 calls.

vii

• Chapter 6, Setting Characteristics of the PAD, the NV Device, and the X.29
Terminal, describes how to handle the characteristics of the PAD, the X.29
terminal, and the NV device.

• Appendix A, Example of Parsing the Device Name String, provides an example
program. Additional example programs are provided in SYS$EXAMPLES: and
described in the HP X.25 for OpenVMS—Programming Reference.

Associated Manuals
The following sections describe HP DECnet–Plus for OpenVMS, HP X.25 for
OpenVMS, and HP OpenVMS manuals that either directly describe the X.25 for
OpenVMS software or provide related information.

HP DECnet–Plus for OpenVMS Documentation
The following DECnet–Plus manuals contain information useful to X.25 for
OpenVMS managers, users, and programmers:

• HP DECnet–Plus for OpenVMS —Introduction and User’s Guide

This manual provides general information on DECnet–Plus and describes the
concept of packet switching data networks.

• HP DECnet–Plus for OpenVMS—Installation and Configuration

This manual describes how to install and configure DECnet–Plus for
OpenVMS software. For OpenVMS I64 and OpenVMS Alpha systems, this
manual also describes how to install X.25 for OpenVMS software. Details
on configuring X.25 for OpenVMS on OpenVMS I64 and OpenVMS Alpha
systems are provided in the HP X.25 for OpenVMS—Configuration manual.
For OpenVMS VAX systems, this manual also describes how to install and
configure the X.25 functionality provided by DECnet–Plus for OpenVMS VAX.

• HP DECnet–Plus for OpenVMS—Network Management

This manual provides conceptual and task information about managing and
monitoring a DECnet–Plus network. In addition, the manual devotes a
section to the management of X.25 entities used by DECnet operating over
X.25 data links.

• HP DECnet–Plus for OpenVMS—Network Control Language Reference

This manual provides detailed information on the Network Control Language
(NCL), which is used to manage X.25 for OpenVMS management entities.

HP X.25 for OpenVMS Documentation
The following manuals make up the X.25 for OpenVMS documentation set:

• HP X.25 for OpenVMS—Configuration (OpenVMS I64 and OpenVMS Alpha)

This manual explains how to configure X.25 for OpenVMS software on
OpenVMS I64 and OpenVMS Alpha systems.

• HP X.25 for OpenVMS—Security Guide

This manual describes the X.25 Security model and how to set up, manage,
and monitor X.25 Security to protect your X.25 for OpenVMS system from
unauthorized incoming and outgoing calls.

• HP X.25 for OpenVMS—Problem Solving Guide

viii

This manual provides guidance on how to analyze and correct X.25–related
and X.29–related problems that may occur while using the X.25 for OpenVMS
software. In addition, the manual describes loopback testing for LAPB data
links.

• HP X.25 for OpenVMS—Programming Guide

This manual describes how to write X.25 and X.29 programs to perform
network operations.

• HP X.25 for OpenVMS—Programming Reference

This manual provides reference information for X.25 and X.29 programmers.
It is a companion manual to the HP X.25 for OpenVMS—Programming Guide.

• HP X.25 for OpenVMS—Utilities Guide

This manual describes how to use and manage X.25 Mail and how to use
and manage a host–based PAD to connect to a remote system. It also
describes how to manage the X.29 communication links used for both of
these functions. In addition, this manual explains how to use OpenVMS DCL
SET TERMINAL/X29 commands to manage remote host–based or network
PADs.

• HP X.25 for OpenVMS—Accounting

This manual describes how to use X.25 Accounting to obtain performance
records and information on how X.25 is being used on your system.

HP OpenVMS Documentation
The following OpenVMS manuals contain information useful to X.25 for
OpenVMS managers, users, and programmers:

• The current HP OpenVMS New Features and Documentation Overview
manual

• HP OpenVMS DCL User’s Manual

• HP OpenVMS DCL Dictionary

• HP OpenVMS System Management Utilities Reference Manual

• HP OpenVMS System Services Reference Manual

• HP OpenVMS Guide to System Security

Reader’s Comments
HP welcomes your comments on this manual or any of the X.25 for OpenVMS
documents. Please send comments to either of the following addresses:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
For information about how to order additional documentation and for online
versions of most X.25 for OpenVMS documentation, visit the following World
Wide Web address:

http://www.hp.com/go/openvms/doc/

ix

Terminology
The terminology used in the VAX P.S.I. product has been replaced by the
terminology used in the X.25 for OpenVMS product. Table 1 shows the correlation
between VAX P.S.I. terms and their X.25 for OpenVMS counterparts.

Table 1 X.25 Terminology

VAX P.S.I. X.25 for OpenVMS

VAX P.S.I. X.25 for OpenVMS VAX

Access system X.25 Client system

Native system X.25 Direct Connect system

Multihost system X.25 Connector system

Gateway system X.25 Connector system

In addition to the terms shown in Table 1, the X.25 for OpenVMS documentation
set uses the following standard terms for client systems, server systems, relay
systems, and the X.25 for OpenVMS management entities that represent these
systems:

Table 2 X.25 for OpenVMS Client/Server Terminology

Client system A client system of an X.25 Connector system (and
therefore a client of the X25 Server management
module on the X.25 Connector system.)

Relay Client system A client system of an X.25 Relay system (and therefore
a client of the X25 Relay management module on the
X.25 Relay system.)

Relay–Client A shorthand term for an X25 RELAY CLIENT
management entity on an X.25 Relay system that
contains management information about an actual
Relay Client system.

Relay system An X.25 Direct Connect or Connector system with the
X.25 Relay module enabled.

Server Client system Another term for a Client system.

Server–Client A shorthand term for an X25 SERVER CLIENT
management entity on an X.25 Connector system that
contains management information about one or more
actual X.25 Client systems.

For more information about clients, servers, and relays in X.25 for OpenVMS,
refer to the HP X.25 for OpenVMS—Configuration manual and the HP X.25 for
OpenVMS—Management Guide.

x

Conventions
The following conventions are used in the X.25 for OpenVMS documentation set:

UPPERCASE and
lowercase

The OpenVMS operating system does not differentiate between
lowercase and uppercase characters. Literal strings that
appear in text, examples, syntax descriptions, and function
descriptions can be entered using uppercase characters,
lowercase characters, or a combination of both.

In running text, uppercase characters indicate OpenVMS
DCL commands and command qualifiers; Network Control
Language (NCL) commands and command parameters; other
product–specific commands and command parameters; network
management entities; OpenVMS system logical names; and
OpenVMS system service calls, parameters, and item codes.

Leading uppercase characters, such as Protocol State, indicate
management entity characteristics and management entity
event names. Leading uppercase characters are also used for
the top-level management entities known as modules.

system output This typeface is used in interactive and code examples to
indicate system output. In running text, this typeface is used
to indicate the exact name of a device, directory, or file; the
name of an instance of a network management entity; or an
example value assigned to a DCL qualifier or NCL command
parameter.

user input In interactive examples, user input is shown in bold print.

$ In this manual, a dollar sign ($) is used to represent the
default OpenVMS user prompt.

Ctrl/X In procedures, a sequence such as Ctrl/X indicates that you
must hold down the key labeled Ctrl while you press another
key or a pointing device button.

Return In procedures, a key name is shown enclosed to indicate that
you press the corresponding key on the keyboard.

italic text Italic text indicates variables or book names. Variables include
information that varies in system input and output. In
discussions of event messages, italic text indicates a possible
value of an event argument.

bold text Bold text indicates an important term, or important
information.

() In a command definition, parenthesis indicate that you must
enclose the options in parenthesis if you choose more than one.
Separate the options using commas.

{ } In a command definition, braces are used to enclose sets of
values. The braces are a required part of the command syntax.

[] In a command definition, square brackets are used to enclose
parts of the command that are optional. You can choose one,
none, or all of the options. The brackets are not part of the
command syntax. However, brackets are a required syntax
element when specifying a directory name in an OpenVMS file
specification.

Note

The following conventions apply to multiplatform documentation.

xi

OpenVMS
I64/Alpha

Indicates information specific to OpenVMS I64 and OpenVMS
Alpha. Note that single lines of information specific to
OpenVMS I64 and OpenVMS Alpha are marked ‘‘(OpenVMS
I64 and OpenVMS Alpha)’’ or ‘‘(OpenVMS I64/Alpha)’’.

OpenVMS
VAX

Indicates information specific to OpenVMS VAX. Note that
single lines of information specific to OpenVMS VAX are
marked ‘‘(OpenVMS VAX)’’.

♦ Indicates the end of platform–specific information.

xii

1
Introduction to X.25 and X.29 Communications

1.1 Communicating Over a PSDN
HP X.25 for OpenVMS allows a local DTE to use a remote DTE as though the
user were directly connected to it.

The kind of program you write to achieve this depends on the remote DTE:

• To communicate with a packet–mode DTE, you write an X.25 program.

• To communicate with a character–mode DTE, you write an X.29 program.

• To communicate with a Packet Assembler/Disassembler (PAD), you write an
X.29 program.

1.2 X.25 Communications and X.29 Communications
This section introduces the components of an X.25 and an X.29 communications
link.

Figure 1–1 shows the components in an X.25 and an X.29 communications link.

The CCITT (Comité Consultatif International Télégraphique et Téléphonique) has
established recommendations which define the interfaces between the standard
components of a communications link across a PSDN. For details of these
recommendations, refer to the HP DECnet–Plus for OpenVMS —Introduction and
User’s Guide.

1.2.1 NW Device
In X.25 communications, the NW device (or X.25 network device, or NWA0:)
processes control data and user data which passes between the X.25 program and
X.25 for OpenVMS.

In X.29 communications, the NW device processes system services relating to
network control, which are issued by the X.29 program, and passes them to the
NV device.

1.2.2 NV Device
The NV device is used in X.29 communications to handle data transfer across an
X.25 network. The NV device uses the X.29 protocol which connects the user’s
X.29 program to the PAD.

Introduction to X.25 and X.29 Communications 1–1

Introduction to X.25 and X.29 Communications
1.2 X.25 Communications and X.29 Communications

Figure 1–1 X.25 and X.29 Communications Links

PSDN

An X.25 communications link:

An X.29 communications link:

Packet−mode DTE

X.25
Client

NW
Device

User and
control

data
channel

Packet−mode DTE

PAD

X.29 terminal

PSDN

NW
Device

NV
Device

TT
Device

X.25
Program

X.29
Program

Control data

channel

User data

channel

Packet−mode DTE

X.25
Client

1–2 Introduction to X.25 and X.29 Communications

Introduction to X.25 and X.29 Communications
1.2 X.25 Communications and X.29 Communications

1.2.3 TT Device
The TT device processes system services relating to user data, which are issued
by the X.29 program, and passes them to the NV device. The OpenVMS terminal
driver controls the TT device.

For descriptions of the other components in the X.25 and X.29 communications
links, refer to the HP DECnet–Plus for OpenVMS —Introduction and User’s
Guide.

The differences between X.25 communications and X.29 communications are
described in Table 1–1.

Table 1–1 Facilities Offered by X.25 and X.29 Programming

X.25 Communications X.29 Communications

In an X.25 physical link, the remote
terminal is a packet–mode DTE which
connects directly to the PSDN.

In an X.29 physical link, the remote X.29
terminal connects to the PSDN through a
PAD.

In X.25 communications, both control
data and user data pass between the
X.25 program and X.25 for OpenVMS
through an NW device.

In X.29 communications, user data passes
between the X.29 program and X.25 for
OpenVMS through an NV device, and control
data passes between the X.29 program and
X.25 for OpenVMS through an NW device.
The reasons for this are:

• The NV device is necessary for X.29
communications, to convert user data and
control data to the X.29 protocol.

• Local terminal system services are
handled by the TT (or VT) device.
However, network system services (such
as PAD services) can only be processed by
the NW device.

X.25 programming offers the user
program the full range of X.25 facilities
and features offered by X.25 for
OpenVMS.

X.29 programming offers the user program a
subset of X.25 features through the NV device,
plus X.29–specific facilities.

Major facilities offered:

• Call setup

• Call clearing

• User data

• Reset

• Interrupt

Major facilities offered:

• Call setup

• Call clearing

• User data

• SET and READ PAD parameters

• OpenVMS terminal driver interface

Host–to–host communications require
X.25 programs.

Terminal–to–host communications require
X.29 programs.

Data channels through an NV device to an
X.29 terminal requires TT device programs.

Section 1.3 provides some details of how the X.29 communications link works.

Introduction to X.25 and X.29 Communications 1–3

Introduction to X.25 and X.29 Communications
1.3 Interaction of the NV Device, the PAD, and the X.29 Terminal

1.3 Interaction of the NV Device, the PAD, and the X.29 Terminal
Figure 1–2 illustrates the actions the NV device takes in response to actions from
and changes in the characteristics of the PAD and the X.29 terminal.

Figure 1–2 Action of the NV Device with the PAD and the X.29 Terminal

X.25 Actions

NV Actions you can control

NV Device

X.29 terminal

X.25
Client

NW Device

TT or VT
Device

X.29
Program

Packet−mode DTE

PAD Actions

Terminal Actions

Characteristics

NV Actions that are automatic

NV Actions

PAD

PSDN
INTERRUPT
BREAK

RESET
CLEAR

READ PAD PARAMETERS
SET PAD PARAMETERS
HANGUP

HOST_ECHO
LOCAL_ECHO
IO$_SETMODE
IO$_SETCHAR

Read PAD parameters
Set PAD parameters

RESET
CLEAR

Interrupt action
Break action
Select PAD parameter template for HOST_ECHO
Select PAD parameter template for LOCAL_ECHO
Select PAD parameter template for HANGUP

1–4 Introduction to X.25 and X.29 Communications

Introduction to X.25 and X.29 Communications
1.3 Interaction of the NV Device, the PAD, and the X.29 Terminal

Figure 1–3 shows how data is transferred between the PAD and the NV device
and between the NV device and the TT device.

Figure 1–3 Data Transfer Between the PAD and the NV Device and the NV
Device and the TT Device

Transmit
buffer

NV Device

X.29 terminal

X.25
Client

NW Device

TT or VT Device

Packet−mode DTE

PAD

PSDN

Receive
buffer

Edit
buffer

Receive
buffer

Typeahead
buffer

X.29

Program

Control data channel

User data

channel

PAD Parameters: 3 − FORWARD
4 − TIMEOUT

Terminal Characteristics
HOLD_TIMER

1.3.1 Transfer of Data from the PAD to the TT Device
The PAD transfers data from the X.29 terminal to the TT device as follows:

• Characters of data typed in by the user arrive at the PAD and are stored in
the PAD’s edit buffer.

• The characters stay in the PAD’s edit buffer until one of the following criteria
is met:

– The edit buffer is full.

– The PAD receives a forwarding character from the X.29 terminal.
Forwarding characters are determined by the PAD forwarding
characteristic.

– The time since the first character arrived exceeds a timeout period,
determined by the timeout characteristic of the PAD.

– The user of the X.29 terminal removes the characters from the buffer, for
example, by pressing the delete key.

The PAD then forms a packet of the characters in the edit buffer, and sends
the packet to the NV device over the PSDN.

• The packets arriving at the NV device are stored in the receive buffer of the
NV device, where they are disassembled.

Introduction to X.25 and X.29 Communications 1–5

Introduction to X.25 and X.29 Communications
1.3 Interaction of the NV Device, the PAD, and the X.29 Terminal

• The characters in the receive buffer of the NV device are sent to the TT
device, where they go into the TT typeahead buffer.

• The characters in the typeahead buffer are sent to the user program when a
Read QIO is issued.

1.3.2 Transfer of Data from the TT Device to the PAD
The TT device transfers data to the PAD as follows:

• The TT device sends characters to the NV device, where they are stored in a
transmit buffer.

• The characters stay in the transmit buffer until one of the following criteria
is met:

– The transmit buffer is full.

– No more data is available from the TT device, and the Hold Timer = 0.

– No more data is available from the TT device, and the Hold Timer
expires.

• The NV device forms a packet of the characters in the transmit buffer, and
sends the packet to the PAD.

1–6 Introduction to X.25 and X.29 Communications

2
Introduction to X.25 and X.29 Programming

This chapter gives general guidance on:

• Establishing a virtual circuit (refer to Section 2.1).

• Using the X.25 library1 (refer to Section 2.2).

• The use of system services in communications (refer to Section 2.3).

• The use of data structures (refer to Section 2.4).

• Coding in MACRO and in high–level languages (refer to Sections 2.5 and 2.6).

• The system resources you need to make outgoing calls and accept incoming
calls (refer to Section 2.7).

2.1 Establishing a Virtual Circuit
To pass messages across a PSDN, your program must first establish a virtual
circuit to a remote DTE. For incoming calls, you do this by accepting an incoming
call request. For outgoing calls, you send a request to connect to the remote DTE.

Note that for communications with an X.29 terminal you can only use a Switched
Virtual Circuit (SVC). An SVC is a virtual circuit that is established temporarily
for the duration of a call. You cannot use a Permanent Virtual Circuit (PVC).

When your program has established a virtual circuit, it can use the virtual circuit
to send and receive messages, and to issue control and synchronization requests
to the X.29 terminal.

2.2 Using the X.25 Library
You must include the X.25 library in every program you write for X.25 for
OpenVMS.

How you include the X.25 library depends on the language you are using:

• For MACRO, use the following command:

.LIBRARY "SYS$LIBRARY:PSILIB"

Declare the symbols specific to X.25 for OpenVMS by specifying the following
symbol in the program:

$PSIDEF

1 On OpenVMS VAX systems, this library is also referred to as the VAX P.S.I. Library

Introduction to X.25 and X.29 Programming 2–1

Introduction to X.25 and X.29 Programming
2.2 Using the X.25 Library

• For most of the major languages, include the source file which contains
definitions.

The languages for which this applies, and their source files are:

FORTRAN PSILIB.FOR

C PSILIB.H

PASCAL PSILIB.PAS

BLISS32 PSILIB.R32 (this is used to build PSILIB.L32)

MACRO PSILIB.MLB

ADA PSILIB.ADA

• For any other language, create your own definition file in one of the following
ways:

– Use the definition file for another language to create your own definition
file.

– For a high–level language, write a MACRO module including the
following:

.LIBRARY "SYS$LIBRARY:PSILIB"
$PSIDEF <==>,<::>

Assemble this file and link the resulting object file with your program.

2.3 Using System Services
X.25 for OpenVMS programs use OpenVMS system services to communicate over
a PSDN. Your program uses the system services to:

• Assign and deassign channels logically connecting you to the PSDN (or to
another machine in the case of a point–to–point link).

• Specify which calls your process will handle.

• Set up and clear the virtual circuits that carry your data over the PSDN.

• Send and receive data.

• Issue control and synchronization requests.

Each programming language supported by OpenVMS has a mechanism for calling
system services. See the relevant programming language user guide for details.

For further details of using the system services, refer to Chapter 3.

2.4 Data Structures
This section introduces the data structures that you use for X.25 and X.29
programming:

• The Network Connect Block (NCB)—This is described in Section 2.4.1.

• The Mailbox—This is described in Section 2.4.2.

2–2 Introduction to X.25 and X.29 Programming

Introduction to X.25 and X.29 Programming
2.4 Data Structures

2.4.1 The Network Connect Block (NCB)
The Network Connect Block (NCB) is a user–generated data structure composed
of a number of variable–length items. Each item consists of a Length field, a
Type Code field, and a variable–length Data field. The Type Code field identifies
the item. For details of the NCB structure and item types, and a summary of the
mandatory and optional fields in the NCB, refer to the HP X.25 for OpenVMS—
Programming Reference manual; that manual also contains an example of an
NCB.

The Network Connect Block is used by:

• Your program to pass information about outgoing calls to X.25 for OpenVMS.

• X.25 for OpenVMS to pass information about incoming calls to your program.

• X.25 for OpenVMS to pass information about call clears and call confirmations
to your program.

The NCB is used to set up, accept, redirect, reject, and clear virtual circuits.

2.4.1.1 How to Set Up a Network Connect Block
Type codes are used to specify information in the Network Connect Block. The
type codes that can be used depend on the $QIO system service requested. Some
type codes are mandatory, others are optional.

Full details of the type codes associated with each $QIO system service are given
in the HP X.25 for OpenVMS—Programming Reference manual.

Note that:

• For outgoing calls, the most convenient way to specify information about the
call is to use the type code PSI$C_NCB_TEMPLATE to specify the name of
the template you want to use. Provided that the template has been defined
correctly, you need only specify the name of the template to provide the
information for the call.

• If you are a member of a Bilateral Closed User Group, no remote DTE address
is required.

2.4.2 The Mailbox
X.25 for OpenVMS uses a mailbox to pass NCB information to a program. The
NCB:

• Contains the information you need to know about an incoming call.

• Informs you of network events (for example, when a call has been cleared).

It is advisable to associate a mailbox with each NW or NV device you use to
accept or make a call. If you do not, you will receive only indirect notification of
network events.

Use the $CREMBX system service to create a mailbox before you assign a channel
to your network device with the $ASSIGN system service.

Section 3.1.1 describes how to create a mailbox.

For detailed information about the mailbox, refer to the HP X.25 for OpenVMS—
Programming Reference manual, where the mailbox structure and mailbox
message types are described.

Introduction to X.25 and X.29 Programming 2–3

Introduction to X.25 and X.29 Programming
2.5 MACRO Coding

2.5 MACRO Coding
System service macros generate argument lists and CALL instructions
to call system services. These macros are located in the system library
SYS$LIBRARY:STARLET.MLB. This library is searched automatically for
unresolved references when you assemble a source program. Symbols and
macro definitions specific to X.25 for OpenVMS are contained in the library
SYS$LIBRARY:PSILIB.MLB. Always include this library in any MACRO application
programs that you write, and declare any symbols specific to X.25 for OpenVMS,
as described in Chapter 4 and Chapter 5.

You need to know the MACRO rules for assembly–language coding to be able to
understand the material presented in this section. Full details of the rules are
provided in the VAX MACRO and Instruction Set Reference Manual.

2.5.1 Argument Lists
The arguments required by a system service are shown in the system service
descriptions in the HP X.25 for OpenVMS—Programming Reference manual. The
Macro Format for each system service shows the positional dependencies and
keyword names of each argument.

All arguments are longwords. The first longword in the list must contain, in
its low–order byte, the number of arguments in the remainder of the list. The
remaining three bytes must be zeros.

If you omit an optional argument in a system service macro instruction, the
macro supplies a default value for the argument.

For details of the generic macro forms used for coding calls to system services,
refer to the MACRO documentation.

2.6 High–level Language Coding
Each high–level language supported by OpenVMS provides a mechanism for
calling an external procedure and passing arguments to that procedure. However,
the type of mechanism and the terminology used vary from one language to
another.

OpenVMS system services are external procedures that accept arguments. There
are three ways to pass arguments to system services:

• By value. The argument is the actual value to be passed (a number or a
symbolic representation of a numeric value).

• By reference. The argument is the address of an area or field that contains
the value. An argument passed by reference is usually expressed as a label
associated with an area or field. (In fact, one common error is to pass a
numeric value without indicating that it is passed by value. If the compiler
assumes the numeric value is an address, a run–time access violation error
may occur when, for example, the image tries to access virtual address 0 or
1.)

• By descriptor. This argument is also an address, but of a special data
structure called a character string descriptor. Descriptors are explained
fully in the HP OpenVMS OpenVMS Record Management Services Reference
Manual.

2–4 Introduction to X.25 and X.29 Programming

Introduction to X.25 and X.29 Programming
2.7 System Resources Required for a Virtual Circuit

2.7 System Resources Required for a Virtual Circuit
To set up a virtual circuit requires certain system resources, which are deducted
from the quota for your process.

The quota allocation is the same for both SVCs and PVCs.

A virtual circuit counts as an open file for quota purposes. Therefore, for each
virtual circuit you set up your FILLM quota for open files decreases by one.

A certain amount of buffered I/O byte count (BYTLM) quota is also deducted.
This space is used to buffer receive data that has not yet been requested by your
application program. The default amount taken is the smaller of:

(packet-size + 276) * 7

or

(packet-size + 276) * window-size

You can request a different value for this quota (in bytes) by using the PSI$C_
NCB_RCV_QUOTA NCB item. The minimum value is:

(packet-size + 276)

The maximum value is:

(packet-size + 276) * window-size

If you exceed this quota, X.25 for OpenVMS tells the PSDN that it is unable to
receive more data. This can cause your application to run slowly.

Introduction to X.25 and X.29 Programming 2–5

3
Using System Services to Handle Calls

This chapter introduces the system services you can use to handle X.25 and X.29
calls, and describes how to use them.

This chapter describes how to use system services to:

• Set up and clear communications

• Handle incoming calls

• Send and receive data

In X.29 programs, you can use system services to handle PAD and NV
characteristics. For details of how to do this, refer to Chapter 6.

The system services and their uses are shown in Table 3–1 and Table 3–2.

Table 3–1 System Services

Call Use

$ASSIGN Assign a channel.

$GETDVI One of the following:

• Get the unit number allocated to an NW device.

• Get the unit number allocated to an NV device (X.29 only).

• Get the network and remote DTE address of the PAD,
using the NV device (X.29 only).

$CREMBX Create a mailbox.

$DASSGN Deassign a channel.

$QIO, $QIOW Set up a virtual circuit and transfer data. See Table 3–2 for
supported function codes.

When you have associated a channel with a device, you use the $QIO (Queue I/O
Request) or $QIOW (Queue I/O Request and Wait) system service to:

• Specify which calls your process will handle.

• Set up and clear the virtual circuit.

• Send and receive data messages.

• Issue control and synchronization requests over the virtual circuit.

• Handle PAD, NV, and terminal characteristics (X.29 programs only).

Using System Services to Handle Calls 3–1

Using System Services to Handle Calls

The $QIO service and the $QIOW service are identical in every way, except that:

• $QIO completes asynchronously; that is, it returns to your program
immediately after queuing the I/O request. It does not wait for the operation
to complete.

• $QIOW completes synchronously; that is, it waits until the operation has
completed before returning to your program.

Throughout this manual and the HP X.25 for OpenVMS—Programming Reference
manual, the term $QIO is used to mean either $QIO or $QIOW.

For further information about $QIO and $QIOW services, refer to the OpenVMS
system services documentation.

You tell the $QIO to perform a particular function, by means of function codes.
The function codes relevant to X.25 and X.29 communications are listed in
Table 3–2.

Table 3–2 Function Codes for the $QIO System Services

Function Use

IO$_ACCESS Set up a virtual circuit.

IO$_DEACCESS Clear a virtual circuit.

IO$_ACCESS!IO$M_ACCEPT Accept a request to set up a virtual
circuit.

IO$_ACCESS!IO$M_REDIRECT Redirect a request to set up a virtual
circuit.

IO$_ACCESS!IO$M_ABORT Reject a request to set up a virtual
circuit.

IO$_ACPCONTROL Declare a network process.

IO$_NETCONTROL

• Transmit an interrupt or a reset
request.

• Confirm receipt of an interrupt, a
reset request, or a restart.

IO$_WRITEVBLK Transmit data.

IO$_READVBLK Receive data.

IO$_NETCONTROL, PSI$K_X29_READ Read PAD parameters or NV terminal
characteristics.

IO$_NETCONTROL, PSI$K_X29_READ_
SPECIFIC

Read specific PAD parameters or NV
terminal characteristics.

IO$_NETCONTROL, PSI$K_X29_SET Set specific PAD parameters or NV
terminal characteristics.

In addition, the functions supported by the terminal driver are available at the
$QIO interface. For details of the terminal driver $QIOs, refer to the OpenVMS
terminal driver documentation.

3–2 Using System Services to Handle Calls

Using System Services to Handle Calls
3.1 Setting Up and Clearing Communications

3.1 Setting Up and Clearing Communications
This section describes how to set up and clear communications for X.25 and X.29
programming. It describes how to:

• Create a mailbox – refer to Section 3.1.1.

• Assign the control and data channels – refer to Section 3.1.2.

• Connect the NV device to the OpenVMS terminal driver as a virtual
terminal – refer to Section 3.1.3.

• Request a virtual circuit – refer to Section 3.1.4.

• Clear a call – refer to Section 3.1.5.

3.1.1 Creating a Mailbox
If your program is to handle incoming calls, you must use a mailbox to receive
notification of their arrival. You can then use the specified mailbox to receive
messages of network events and interrupts.

If your program makes outgoing calls only, and you do not want direct notification
of network events, you need not create a mailbox. Note, however, that without a
mailbox you cannot receive interrupts.

There are two ways to create a mailbox:

• Use the $CREMBX system service. Use the $ASSIGN call to associate the
mailbox with the NW or NV device you use to make or accept the call. The
mailbox remains associated with the NW or NV device until you either delete
the mailbox, or deassign the channel.

• Use a run–time library routine, LIB$ASN_WTH_MBX. This routine:

1. Creates a temporary mailbox.

2. Assigns a channel to the mailbox.

3. Assigns a channel to the NW or NV device.

This routine creates a unique mailbox every time it is called. For a complete
description of this routine, refer to the OpenVMS documentation of run–time
library routines.

For a description of the mailbox structure and message types, refer to the HP
X.25 for OpenVMS—Programming Reference manual.

3.1.2 Assigning the Control and Data Channels
There are two ways to assign a channel to a device and associate a mailbox with
it:

• Use $ASSIGN to obtain a channel and associate a mailbox with it.

For an X.25 program, explicitly assign a channel to the device NWA0:. The
X.25 for OpenVMS software creates a new device called NWAuu:, where uu
is a unique unit number, and assigns the channel to that device. $ASSIGN
does not assign a channel to NWA0:.

Always assign one such channel for each virtual circuit and never explicitly
assign another channel to the NWAuu that is in use for other operations.

Using System Services to Handle Calls 3–3

Using System Services to Handle Calls
3.1 Setting Up and Clearing Communications

• If your program creates a mailbox, use the run–time library routine
LIB$ASN_WTH_MBX to create a mailbox, and assign a channel to the
NW or NV device, as described in Section 3.1.1.

To find the unit number, uu, of the NW device, issue $GETDVI on the same
channel.

3.1.3 Connection as a Virtual Terminal (VT)
If the NV device is connected to the OpenVMS terminal driver as a VT (virtual
terminal) device, your program must use a special procedure to calculate the unit
number of the NV device.

If there is a VT device associated with the NV terminal, the $GETDVI system
service call returns information about the VT device. In particular, DVI$_UNIT
returns the unit number of the VT device, not the unit number of the NV device.

To obtain the unit number of the NV device:

1. Issue $GETDVI with the item code DVI$_TT_PHYDEVNAM to obtain the
physical device name of the terminal.

2. Determine the unit number of the NV device by parsing the device name
string that $GETDVI returns.

For an example of how to parse a device name string to extract the device unit
number, refer to Appendix A.

3.1.4 Requesting a Virtual Circuit
Use $QIO(IO$_ACCESS) to set up a virtual circuit to a remote DTE, and
optionally request network facilities. If you subscribe to the fast select facility,
you can use this call to send 128 instead of 16 bytes of user data.

Also use this call before transmitting or receiving data on a Permanent Virtual
Circuit (PVC). For a PVC, specify the name of the PVC in the NCB.

You must supply an NCB to inform X.25 for OpenVMS how you want the virtual
circuit to be set up. For details of how to set up an NCB, refer to Section 2.4.1.1.

Note that you must always specify the length of the NCB in the descriptor.

Certain system resources are used to set up a virtual circuit. For details of the
system resources you require to set up virtual circuits, refer to Section 2.7.

Figure 3–1, Figure 3–2, and Figure 3–3 show the request for a virtual circuit
being accepted, being rejected by the remote DTE, and being rejected by the
network.

3–4 Using System Services to Handle Calls

Using System Services to Handle Calls
3.1 Setting Up and Clearing Communications

Figure 3–1 Set Up a Virtual Circuit — Call Accepted

System service
call and status
returns

Local DTE PSDN Remote DTE Comments

CALL
REQUEST

The IOSB status
indicates success of
the request to set up
a virtual circuit. The two

$QIO
(IO$_ACCESS)

R0 status:
SS$_NORMAL

IOSB status:
SS$_NORMAL
Mailbox

INCOMING
CALL

CALL
ACCEPT

CALL
CONFIRM

The R0 status indicates
that the system service
was queued
successfully.

The remote DTE
accepts the request.

MSG$_CONNECT
and NCB DTEs can now

exchange data
messages.

Figure 3–2 Set Up a Virtual Circuit — Call Rejected by Remote DTE

System service
call and status
returns

Local DTE PSDN Remote DTE Comments

CALL
REQUEST

The IOSB status
indicates rejection of
the request to set up
a virtual circuit.

$QIO
(IO$_ACCESS)

R0 status:
SS$_NORMAL

IOSB status:
SS$_CLEARED
Mailbox

INCOMING
CALL

The R0 status indicates
that the system service
was queued
successfully.

The remote DTE
rejects the request.

MSG$_DISCON
and NCB

CLEAR
REQUEST

CLEAR
INDICATION

Using System Services to Handle Calls 3–5

Using System Services to Handle Calls
3.1 Setting Up and Clearing Communications

Figure 3–3 Set Up a Virtual Circuit — Call Rejected by Network

System service
call and status
returns

Local DTE PSDN Remote DTE Comments

CALL
REQUEST

The IOSB status
indicates rejection of
the request to set up
a virtual circuit.

$QIO
(IO$_ACCESS)

R0 status:
SS$_NORMAL

IOSB status:
SS$_CLEARED
Mailbox

CLEAR
INDICATION

The R0 status indicates
that the system service
was queued
successfully.

The PSDN rejects the
request.

MSG$_DISCON
and NCB

3.1.5 Clearing a Call
You can clear a call in either of the following ways:

• Use the $DASSGN call to deassign the channel and immediately terminate
all communication.

Issue the $DASSGN call only after all communication between DTEs over
that channel is complete. The call releases the channel, disassociates the
mailbox from the channel, and terminates communication immediately.

• Use the $QIO(IO$_DEACCESS) operation to clear a virtual circuit. Also use
this operation when you have finished transmitting or receiving data over a
PVC.

Clearing a virtual circuit uses NCBs only for diagnostic codes and local
facilities. Use the diagnostic code field (PSI$C_NCB_DIAGCODE) of the
NCB to contain user–specified codes that show reasons for clearing the
virtual circuit. You can also specify or modify local facilities by adding a local
facilities field (PSI$C_NCB_LOCFAC) to the NCB.

Note that clearing a virtual circuit can result in loss of data in either
direction. Clear a virtual circuit only when you know that the remote DTE
has received all your data, or you have received all the data from the remote
DTE. It is advisable, therefore, to have a method of confirming receipt of data
before clearing a virtual circuit.

If you are transferring data in a single direction only (for example, a file
transfer), terminate the transfer using a shutdown message recognized by
both ends. You can use the qualified data subchannel for this purpose. On
receipt of the shutdown termination message, the circuit can be cleared.

If you are transferring data in both directions, use two termination messages.
When one application (the requestor) wants to terminate the call, it sends
the other application (the responder) a shutdown message after transmitting
all of its data. When the responder receives this shutdown message, it can
complete its data transfer, then return a message to the requestor indicating

3–6 Using System Services to Handle Calls

Using System Services to Handle Calls
3.1 Setting Up and Clearing Communications

that the shutdown can be performed. On receiving the message, the requestor
can then clear the call.

Figure 3–4 shows how a virtual circuit is cleared.

Figure 3–4 Clear a Virtual Circuit

System service
call and status
returns

Local DTE PSDN Remote DTE Comments

Remote DTE confirms
the clear request.CLEAR

REQUEST

The IOSB status
indicates that the
remote DTE has
confirmed the request

$QIO
(IO$_DEACCESS)

R0 status:
SS$_NORMAL

CLEAR
INDICATION

CLEAR
CONFIRM

CLEAR
CONFIRM

to clear the virtual
circuit.

IOSB status:
SS$_NORMAL
Mailbox
MSG$_DISCON
and NCB

3.2 Handling Incoming Calls
This section describes how to:

• Define a network process, and specify which incoming calls your process will
handle – refer to Section 3.2.1.

• Assign a channel to receive data – refer to Section 3.2.2.

• Accept an incoming X.25 call request – refer to Section 3.2.3.

• Reject an incoming X.25 call request – refer to Section 3.2.4.

• Redirect an incoming X.25 call request – refer to Section 3.2.5.

3.2.1 Defining a Network Process and Specifying Which Incoming Calls Your
Process Will Handle

X.25 and X.29 programs can issue $QIO(IO$_ACPCONTROL) calls to declare
themselves as network processes. Each $QIO(IO$_ACPCONTROL) call specifies
a filter to be used in determining which incoming calls the process will handle.

The filter specified in a $QIO(IO$_ACPCONTROL) call can be one of two types:

• Static

This type of filter is one that is created using management commends. It is
available until either disabled or deleted.

Using System Services to Handle Calls 3–7

Using System Services to Handle Calls
3.2 Handling Incoming Calls

• Dynamic

This type of filter is created dynamically by defining its characteristics in the
$QIO(IO$_ACPCONTROL) call. A filter created in this way ceases to exist
when the specified channel is deassigned.

The IO$_ACPCONTROL call defines a number of other parameters to identify
the incoming calls that the process will handle. Some of these parameters are
the template, local subaddress, the remote DTE address, the user data field, and
user group identification. A full list of parameters is provided in the HP X.25 for
OpenVMS—Programming Reference manual.

When it has matched the parameters of an incoming call with those of a network
process, X.25 for OpenVMS puts the NCB for the incoming call in the mailbox
associated with the channel over which the IO$_ACPCONTROL was issued.

Your process can then accept, reject, or redirect the incoming call.

If you want the process to handle calls that match another combination of
parameters, have the process issue another $QIO(IO$_ACPCONTROL).

The parameters used to identify acceptable incoming calls are contained in a
Network Process Declaration Block (NPDB). This block consists of a string of
variable length items. Each item has a two–word header giving its length (in
bytes) and its type. The type codes, their description, and use are given in the
HP X.25 for OpenVMS—Programming Reference manual.

3.2.2 Assigning a Channel for Receiving Data
To receive incoming calls, you first have to assign a channel (as with transmitting
a call). Use the $ASSIGN system service to obtain a channel and to associate a
mailbox with this channel.

For further details about this system service, refer to Section 3.1.2.

3.2.3 Accepting an Incoming X.25 Call Request
Use $QIO(IO$_ACCESS!IO$M_ACCEPT) to accept an incoming request to set up
a virtual circuit. This $QIO call also allows you to negotiate facilities requested
by the incoming call. If you subscribe to the fast select acceptance facility with no
restriction on response, you can also use $QIO(IO$_ACCESS!IO$M_ACCEPT) to
send user data.

You are advised to use the NCB received in the incoming call as an argument
to this $QIO. Issue $QIO(IO$_READVBLK) to read the NCB from the mailbox
associated with the control channel to NWAuu:. If you create a new NCB to
accept the call, the new NCB must contain the incoming call identification field
(PSI$C_NCB_ICI) from the mailbox’s NCB to associate the channel with the
received call.

If the incoming call specifies fast select with no restriction on response and you
wish to reply with user data, add a response data field (PSI$C_NCB_RESPDATA)
to the NCB. Accepting the call changes it to a normal call request, and your
program can read and transmit messages as usual.

You can modify the following items in the NCB and hence negotiate the associated
facilities:

• Throughput class (PSI$C_NCB_THRUCLS)

• Packet size selection (PSI$C_NCB_PKTSIZE)

• Window size selection (PSI$C_NCB_WINSIZE)

3–8 Using System Services to Handle Calls

Using System Services to Handle Calls
3.2 Handling Incoming Calls

• Expedited data negotiation (PSI$C_NCB_EXPEDITE)

• Called address extension (PSI$C_NCB_CALLED_EXTENSION)

• Local facilities (PSI$C_NCB_LOCFACR)

The items to be negotiated can either be specified individually in the NCB or
collectively in a template using the PSI$C_NCB_TEMPLATE item code. Note
that if the PSI$C_NCB_TEMPLATE item code is not specified, the template
Default is used.

A template can also be used to specify parameters that are not defined in the
NCB used to accept the call. In addition to the negotiated items, the following
items can be added to the NCB:

• Template (PSI$C_NCB_TEMPLATE)

• Network user identification (PSI$C_NCB_NET_USER_ID)

• Charging information request (PSI$C_NCB_CHARGING_INFO)

• Cumulative transit delay for accepting an incoming call
(PSI$C_NCB_CUM_TRST_DLY_R)

• Receive quota (PSI$C_NCB_RCV_QUOTA)

To accept a request to set up a virtual circuit you require certain system
resources, which are deducted from the quota for your process. This is described
in Section 2.7. If you want to change the limit on the quota that X.25 for
OpenVMS will use, place a PSI$C_NCB_RCV_QUOTA item in the NCB.

X.25 for OpenVMS identifies the incoming calls that have been accepted by using
the incoming call identification field (PSI$C_NCB_ICI). Never modify this field.

The operation completes when an acceptance is sent to the remote DTE.

If your process fails in attempting to accept the incoming call (for example,
because the process has insufficient quota), X.25 for OpenVMS rejects the call.

Figure 3–5 shows how a request to set up a virtual circuit is accepted.

Using System Services to Handle Calls 3–9

Using System Services to Handle Calls
3.2 Handling Incoming Calls

Figure 3–5 Accept a Request to Set Up a Virtual Circuit

System service
call and status
returns

Local DTE PSDN Remote DTE Comments

Remote DTE requests
a virtual circuit.

CALL
REQUEST

INCOMING
CALL

Mailbox
MSG$_CONNECT
and Incoming Call NCB

CALL
ACCEPTED

$QIO
(IO$_ACCESS
!IO$M_ACCEPT)

CALL
CONFIRM

R0 status:
SS$_NORMAL
Mailbox not used

The IOSB status
indicates only that
you have accepted
the call.

3.2.4 Rejecting an Incoming X.25 Call Request
Use the $QIO(IO$_ACCESS!IO$M_ABORT) operation to reject a request to set
up a virtual circuit. If you subscribe to the fast select acceptance facility, IO$_
ACCESS!IO$M_ABORT also offers you the option of returning data to the calling
DTE.

You are advised to use the NCB received as part of the incoming call as an
argument to this $QIO. Find the NCB in the mailbox associated with the channel
which received the call.

If the incoming call specifies fast select with or without restriction on response,
and you wish to reply with some data, add a response data field (PSI$C_NCB_
RESPDATA) to the NCB.

You can specify a diagnostic code field (PSI$C_NCB_DIAGCODE) to contain
user–specified codes that show reasons for the rejection.

You can also specify or modify local facilities by adding a local facilities field
(PSI$C_NCB_LOCFACR) to the NCB.

You may modify the called address extension facility (PSI$C_NCB_CALLED_
EXTENSION) in the NCB.

If you create a new NCB to reject the call, always copy the incoming call
identification field (PSI$C_NCB_ICI) from the received NCB.

The operation completes when X.25 for OpenVMS sends the rejection to the
remote DTE.

Figure 3–6 shows how a request to set up a virtual circuit is rejected.

3–10 Using System Services to Handle Calls

Using System Services to Handle Calls
3.2 Handling Incoming Calls

Figure 3–6 Reject a Request to Set Up a Virtual Circuit

System service
call and status
returns

Local DTE PSDN Remote DTE Comments

Remote DTE requests
a virtual circuit.

CALL
REQUEST

INCOMING
CALL

Mailbox
MSG$_CONNECT
and Incoming Call NCB

$QIO
(IO$_ACCESS
!IO$M_ABORT)

R0 status:
SS$_NORMAL
Mailbox not used

CLEAR
REQUEST

CLEAR
INDICATION

3.2.5 Redirecting an Incoming X.25 Call Request
Use the $QIO(IO$_ACCESS!IO$M_REDIRECT) operation to redirect a request
to set up a virtual circuit to another process, before the request is accepted or
rejected. $QIO(IO$_ACCESS!IO$M_REDIRECT) uses the fields, specified in the
NCB in the normal way, to associate the request with a new process.

You are advised to use the NCB received as part of the incoming call as an
argument to this $QIO. Find the NCB in the mailbox associated with the channel
which received the call. You can modify the following fields in the NCB or add
them if they are not present in the original call:

• Local subaddress (PSI$C_NCB_LOCSUBADR)

• User data (PSI$C_NCB_USERDATA)

• Called address extension (PSI$C_NCB_CALLED_EXTENSION)

• Call redirection original address (PSI$C_NCB_CALL_REDIR_ORIG)

• Call redirection reason (PSI$C_NCB_CALL_REDIR_RSN)

You may add the following fields:

• Filter name (PSI$C_NCB_FILTER)

• Redirect priority (PSI$C_NCB_FLT_REDPRI)

Note: If you use PSIC_NCB_FILTER, PSIC_NCB_FLT_REDPRI is ignored.

Do not modify the incoming call identification field.

If you create a new NCB to redirect the call, X.25 for OpenVMS copies all fields
not specified in the new NCB from the received NCB.

This $QIO allows you to write a process to receive some, or all, of the requests
to set up a virtual circuit, and to redirect these requests to other processes using
your own algorithms.

Using System Services to Handle Calls 3–11

Using System Services to Handle Calls
3.2 Handling Incoming Calls

To redirect the request, you must return the NCB to the incoming call handler
after doing at least one of the following:

• Add a filter name field to the NCB.

• Add a redirect priority field to the NCB.

Always pass on the incoming call identification information.

The redirect priority causes X.25 for OpenVMS to exclude filters that have
a priority greater than or equal to the redirect priority. For example, you could
change the filter priority item in the received NCB to the redirect priority and use
the same NCB in the redirect request. The destination search would effectively
restart after your destination and continue down the priority order.

The operation completes when X.25 for OpenVMS redirects the call.

3.3 Transmitting and Receiving Data in an X.25 Program
Both the local DTE and the remote DTE can send and receive data. To do this,
the local DTE and the remote DTE must have a protocol which signals:

• When the DTE is starting to send data. To do this, the DTE sends messages
with an IO$_WRITEVBLK operation.

• When data transfer has finished.

When the data transfer has ended, one of the two DTEs must clear the virtual
circuit. It is advisable that the receiving DTE and not the sending DTE should
clear the circuit because data transmitted, but not yet received by the receiving
DTE, may otherwise be lost when the circuit is cleared. For details on clearing a
call, refer to Section 3.1.5.

3.3.1 Transmitting Data
To send data over a virtual circuit, use the $QIO(IO$_WRITEVBLK) operation.

For full details of $QIO(IO$_WRITEVBLK), refer to the HP X.25 for OpenVMS—
Programming Reference manual. Figure 3–7 shows how data is transmitted over
a virtual circuit.

3–12 Using System Services to Handle Calls

Using System Services to Handle Calls
3.3 Transmitting and Receiving Data in an X.25 Program

Figure 3–7 Transmit Data

System service
call and status
returns

Local DTE PSDN Remote DTE Comments

The IOSB status
indicates that the
DATA packet is just
about to be passed to

$QIO
(IO$_WRITEVBLK)

R0 status:
SS$_NORMAL

IOSB status:
SS$_NORMAL

DATA

DATA

the DCE.

3.3.2 Receiving Data
To receive data transmitted from a remote DTE, use the $QIO(IO$_READVBLK)
operation.

When a packet of data arrives, the NW device does one of the following:

• If a $QIO(IO$_READVBLK) system service has been issued, the NW device
transfers the packet into the user’s buffer.

• If a $QIO(IO$_READVBLK) system service has not been issued, the NW
device will place a message in the mailbox. The message code is MSG$_
INCDAT, and this indicates that there is a packet of data waiting to be read.

Note that receiving a MSG$_INCDAT message does not guarantee that there
is data to be read. Depending on the structure of the application, there may be
none, one or many packets waiting, at the time the application processes the
MSG$_INCDAT message.

There may be no packets waiting to be read if the application read data before it
processed the MSG$_INCDAT message.

If more than one packet arrives, it will take more than one read to receive all the
data.

For full details of $QIO(IO$_READVBLK), refer to the HP X.25 for OpenVMS—
Programming Reference manual. Figure 3–8 shows how data is received.

Using System Services to Handle Calls 3–13

Using System Services to Handle Calls
3.3 Transmitting and Receiving Data in an X.25 Program

Figure 3–8 Receive Data

System service
call and status
returns

Local DTE PSDN Remote DTE Comments

Remote DTE
transmits data..

Mailbox
MSG$_INCDAT

$QIO
(IO$_READVBLK)

R0 status:
SS$_NORMAL

DATA

DATA

IOSB status:
SS$_NORMAL

The QIO system
service reads data
from the buffer. The
window is turned to
acknowledge receipt
of the data.

3.4 Transmitting and Confirming Receipt of Interrupts
An interrupt is a message which passes between DTEs outside the normal flow of
data messages. You use system services to handle interrupts for X.25 programs.
In X.29 programs, interrupts are handled by the NV device. Section 6.2 describes
how to control the interrupt action for the NV device.

To transmit an interrupt, use the IO$_NETCONTROL operation with a
parameter of PSI$K_INTERRUPT.

Figure 3–9 shows the transmission of an interrupt.

To confirm receipt of interrupts, use the IO$_NETCONTROL operation with a
parameter of PSI$K_INTACK.

Figure 3–10 shows the confirmation of an interrupt.

3–14 Using System Services to Handle Calls

Using System Services to Handle Calls
3.4 Transmitting and Confirming Receipt of Interrupts

Figure 3–9 Transmit an Interrupt

System service
call and status
returns

Local DTE PSDN Remote DTE Comments

The IOSB status
indicates that the
remote DTE has
confirmed the interrupt.

$QIO
(IO$_NETCONTROL)

R0 status:
SS$_NORMAL

IOSB status:
SS$_NORMAL
Mailbox not used

The remote DTE
confirms the interrupt.

INTERRUPT

INTERRUPT

INTERRUPT
CONFIRM

INTERRUPT
CONFIRM

p4=PSI$K_INTERRUPT

Figure 3–10 Confirm Receipt of an Interrupt

System service
call and status
returns

Local DTE PSDN Remote DTE Comments

Remote DTE sends
an interrupt.

Mailbox
MSG$_INTMSG
and 1−byte message

$QIO
(IO$_ACCESS)
p4=PSI$K_INTACK

R0 status:
SS$_NORMAL
Mailbox not used

The IOSB status
indicates only that
you have confirmed
the interrupt.

INTERRUPT

INTERRUPT

INTERRUPT
CONFIRM

INTERRUPT
CONFIRM

Using System Services to Handle Calls 3–15

Using System Services to Handle Calls
3.5 Resetting a Virtual Circuit and Confirming a Reset

3.5 Resetting a Virtual Circuit and Confirming a Reset
In X.25 programs, you use the IO$_NETCONTROL call, with a parameter of
PSI$K_RESET, to reset a virtual circuit and confirm receipt of a reset request.

The call resets the virtual circuit to its initial conditions (and all pending
messages are discarded) or confirms receipt of a reset.

Note that a return status of SS$_NORMAL does not guarantee that the remote
DTE receives the diagnostic code. Reception of the diagnostic code may be
prevented if a collision of resets occurs within the network.

Figure 3–11 shows a virtual circuit being reset, and Figure 3–12 shows the
confirmation of a reset.

Figure 3–11 Reset a Virtual Circuit

System service
call and status
returns

Local DTE PSDN Remote DTE Comments

Remote DTE confirms
the reset.

RESET
REQUEST

The IOSB status
indicates that the
remote DTE has
confirmed the reset.

$QIO
(IO$_NETCONTROL)

R0 status:
SS$_NORMAL

RESET
INDICATION

IOSB status:
SS$_NORMAL
Mailbox not used

RESET
CONFIRM

RESET
CONFIRM

p4=PSI$K_RESET

3–16 Using System Services to Handle Calls

Using System Services to Handle Calls
3.5 Resetting a Virtual Circuit and Confirming a Reset

Figure 3–12 Confirm the Receipt of a Reset

System service
call and status
returns

Local DTE PSDN Remote DTE Comments

Remote DTE requests
to reset the virtual

Mailbox
MSG$_RESET
and:

$QIO
(IO$_NETCONTROL)
p4=PSI$K_RESET

R0 status:
SS$_NORMAL
Mailbox not used

The IOSB status
indicates only that
you have confirmed
the reset.

RESET
INDICATION

RESET
INDICATION

RESET
CONFIRM

RESET
CONFIRM

circuit.

Diagnostic code,
Cause code, and
Reason for reset code

3.6 Confirming Receipt of a Restart
In X.25 programs, you can confirm the receipt of a restart on a PVC, by using the
IO$_NETCONTROL call, with a parameter of PSI$K_RESTART.

When a restart is received from the PSDN, all interrupts and resets are
considered to have been acknowledged, all SVCs are cleared and all PVCs are
restarted.

The restart is indicated by the message MSG$_PATHLOST in the mailbox and
you acknowledge the restart with the IO$_NETCONTROL operation.

When the link to the other end breaks, the MSG$_PATHLOST message is placed
in the mailbox:

• When the link goes down.

• When (and if) the link comes back up. This is when the PVC is usable again.

3.7 Handling Accepted X.29 Calls
An X.29 program can either handle the incoming call itself or start the login
sequence.

To enable the X.29 terminal to log on, issue:

1. $QIO(IO$_NETCONTROL,PSIK_X29_SET, PSIK_X29_TEMP_NOHANG)
to disable temporarily the terminal characteristic /HANGUP.

2. $QIO(IO$_SETMODE) to ensure that typeahead is on.

3. $DASSGN to deassign the data channel to the NV driver.

To handle the call yourself, issue $QIOs to the NV device as described in the
OpenVMS terminal driver documentation.

Interrupts and resets are handled by the NV device, and do not require
intervention by a user program.

Using System Services to Handle Calls 3–17

Using System Services to Handle Calls
3.8 Transferring NV Devices Between Processes

3.8 Transferring NV Devices Between Processes
To pass control to another process, you must coordinate the transfer of control; for
example, by using a mailbox to transfer information between the two processes.

Suppose that process A accepted the call, control of which is to be passed to
process B. The sequence of operations is as follows:

1. Process A issues:

• $QIO(IO$_SETCHAR) to set the terminal characteristic TT$M_
NOTYPEAHEAD permanently (physically). This stops the terminal
being passed to OpenVMS LOGINOUT while it is not assigned to a
particular process.

• $QIO(IO$_NETCONTROL, PSIK_X29_SET, PSIK_X29_TEMP_
NOHANG) to disable temporarily the terminal characteristic /HANGUP.
This prevents $DASSGN from deleting the NV device.

• $DASSGN to release the NV device from process A.

2. Process A tells process B to use the NV device (for example, by sending
mailbox messages).

3. Process B issues:

• $ASSIGN to assign the NV device to process B.

• $QIO(IO$_SETCHAR) to clear the terminal characteristic TT$M_
NOTYPEAHEAD permanently (physically), or $QIO(IO$_SETMODE) to
clear TT$M_NOTYPEAHEAD temporarily (logically).

Note

The NV device is protected by OpenVMS device security. This means that
process B will need the appropriate privileges to use the terminal.

For details of the terminal driver $QIOs, refer to the OpenVMS terminal driver
documentation.

3.9 Using a Permanent Virtual Circuit
To use X.25 over a Permanent Virtual Circuit (PVC), initially assign a channel to
the device NWA0: using the $ASSIGN system service (refer to Section 3.1.2) and
then access the circuit using $QIO(IO$_ACCESS) (refer to Section 3.1.4). Specify
the name of the PVC in the PSI$C_NCB_PVCNAM field of the NCB when using
IO$_ACCESS. To set up a PVC requires certain system resources; these are the
same as for SVCs (refer to Section 2.7).

Before transmitting or receiving data over a PVC, you are advised to reset
the circuit using $QIO(IO$_NETCONTROL) (refer to Section 3.5) and wait for
completion of the reset. You are also advised to set up some form of handshake
procedure, depending on the application, so that both ends of the PVC are aware
that the other is ready to transmit or receive data.

Transmit and receive data using $QIO(IO$_WRITEVBLK) and $QIO(IO$_
READVBLK) (refer to Section 3.3) and transmit and confirm receipt of interrupts
using $QIO(IO$_NETCONTROL) (refer to Section 3.4) as for SVCs.

3–18 Using System Services to Handle Calls

Using System Services to Handle Calls
3.9 Using a Permanent Virtual Circuit

When you finish transmitting and receiving data, deaccess the circuit using
$QIO(IO$_DEACCESS) (refer to Section 3.1.5) and deassign the channel using
$DASSGN (refer to Section 3.1.5) as for SVCs.

If at any time you receive MSG$_PATHLOST in the mailbox, this shows
that a restart has taken place for the DTE, and that some data, interrupt
data and resets could have been lost. Confirm this message using $QIO(IO$_
NETCONTROL) (refer to Section 3.6) before making further use of the PVC.

If you receive MSG$_DISCON in the mailbox, this means that the DECnet logical
link to the X.25 Connector node has been lost. To reconnect to the PVC, use
$QIO(IO$_DEACCESS), followed by $QIO(IO$_ACCESS).

Using System Services to Handle Calls 3–19

4
Writing an X.25 Program

This chapter describes how to write X.25 programs to handle an incoming call
and to make an outgoing call.

This chapter consists of three sections:

• Section 4.1, Minimum Configuration Entities, lists the configuration entities
that must be defined before an incoming call can be received and an outgoing
call can be made.

• Section 4.2, Writing a Program to Handle an Incoming Call, describes how to
write a program to handle an incoming call.

• Section 4.3, Writing a Program to Make an Outgoing Call, describes how to
write a program to make an outgoing call.

Example programs are provided in the SYS$EXAMPLES: directory and summarized
in the HP X.25 for OpenVMS—Programming Reference manual.

Writing an X.25 Program 4–1

Writing an X.25 Program
4.1 Minimum Configuration Entities

4.1 Minimum Configuration Entities
A system needs to be configured correctly to make and receive calls. This section
lists the configuration entities that must be created for incoming and outgoing
calls.

Note that the entities listed can be defined using the configuration program
provided in X.25 for OpenVMS or by issuing NCL commands directly.

The following entities must be created to receive incoming calls or make outgoing
calls:

• X25 ACCESS

• X25 ACCESS SECURITY DTE CLASS

• X25 ACCESS SECURITY DTE CLASS REMOTE DTE

• X25 ACCESS DTE CLASS

• For Client systems:

a. X25 CLIENT

• For Direct Connect systems:

a. X25 PROTOCOL

b. X25 PROTOCOL DTE

c. For synchronous connections:

– LAPB

– LAPB LINK

– MODEM CONNECT

– MODEM CONNECT LINE

– DEVICE1

– DEVICE UNIT1

d. For LAN connections:

– LLC2

– LLC2 SAP

– LLC2 SAP LINK

e. For XOT connections:

– XOT

– XOT SAP

– XOT SAP LINK

The X25 ACCESS SECURITY DTE CLASS and X25 ACCESS SECURITY
DTE CLASS REMOTE DTE entities are used to configure security on the
system. Details on setting up system security are provided in the HP X.25 for
OpenVMS—Security Guide.

The X25 CLIENT entity performs operations involved in receiving incoming calls
from, and making calls to, a Connector system.

1 Required only for devices that need microcode to be loaded.

4–2 Writing an X.25 Program

Writing an X.25 Program
4.1 Minimum Configuration Entities

The entities listed for Direct Connect systems are used to configure a DTE. If you
use the X.25 configuration program these entities will be created for you when
you configure a DTE.

The X25 ACCESS DTE CLASS entity is used to group DTEs for a Direct Connect
system. When you make an outgoing call you must specify a DTE Class for the
outgoing call. The software will then select a DTE for the call. For a Client
system, the DTE class specified points to one or more Connector systems that will
make the outgoing call on behalf of the Client system.

4.1.1 Incoming Calls
To receive incoming calls, the following entities must be created in addition to
those entities specified in Section 4.1:

1. X25 ACCESS FILTER

2. X25 ACCESS SECURITY FILTER

The X25 ACCESS FILTER entity is used to determine which calls a process
will handle. You do not need to create a static filter if dynamic filters are
used. Details on static and dynamic filters are provided in the HP X.25 for
OpenVMS—Management Guide.

The X25 ACCESS SECURITY FILTER entity is used with the SECURITY DTE
CLASS and SECURITY DTE CLASS REMOTE DTE entities to provide security
for incoming calls.

4.1.2 Outgoing Calls
To make an outgoing call, the X25 ACCESS TEMPLATE entity can be created in
addition to those entities specified in Section 4.1.

The X25 ACCESS TEMPLATE entity needs to be created only if you intend to
use the specified template to make an outgoing call. A template does not need to
be created to make an outgoing call, but creating a template is a convenient way
of specifying the call parameters to be used for an outgoing call.

If a template is created, an X.25 application can reference the template and the
call parameters set up in the template are used to make the outgoing call. You
can therefore change call parameters without recompiling the X.25 application.
For example, by placing the DTE address of the DTE to be called in the template
you can change the address without recompiling the X.25 application. Details
on creating templates are provided in the HP X.25 for OpenVMS—Management
Guide.

Writing an X.25 Program 4–3

Writing an X.25 Program
4.2 Writing a Program to Handle an Incoming Call

4.2 Writing a Program to Handle an Incoming Call
In order to receive incoming X.25 calls, a program may be written either as a
Network Process or as an X25 Access Application. A Network Processes is started
manually, and registers itself as an X.25 listener, while an X25 Access Application
is invoked by an X25 ACCESS APPLICATION entity each time an incoming call
matches one of the X25 ACCESS APPLICATION entity’s filters.

4.2.1 Using a Network Process
Your program can declare itself to be a Network Process, and enter its own filters
in the X25 Access module.

To receive incoming calls, an X.25 Network Process must direct X25 Access to
listen on one or more filters, and specify a mailbox into which the incoming call
notifications will be placed.

When an incoming call matches one of the filters, an NCB describing the call is
placed in the mailbox. The Network Process can then read the NCB and accept,
reject, or redirect the call.

The programming steps for writing a Network Process are:

1. Include the X.25 library
Include the X.25 library in any program you write. Section 2.2 describes how
to use the X.25 library.

2. Declare a Network Process Declaration Block
The Network Process Declaration Block (NPDB) is used to pass information
to the X.25 for OpenVMS software.

Define this data structure, and its contents, in the appropriate place in your
program (for example, at the head of the program in MACRO). The NPDB
contains information defining the filters your program needs to use.

3. Create a mailbox and assign channels
You can either:

• Issue the $CREMBX system service to create the mailbox, and then issue
the $ASSIGN system service to associate the mailbox with the NW device
and assign a control channel to that NW device.

or

• Use the run–time library routine LIB$ASN_WTH_MBX to create a
mailbox, assign a channel to the mailbox and assign a control channel to
a new NW device.

For further information on creating mailboxes and assigning channels, refer
to Sections 3.1.1 and 3.1.2 respectively.

4. Declare a Network Process
Issue a $QIO(IO$_ACPCONTROL) system service request on the NW device
created in step 3 to declare a Network Process.

In the Network Process Declaration Block (parameter p2), set the Access
Level to ‘‘X25L3’’ and specify the required filter parameters. Refer to the
HP X.25 for OpenVMS—Programming Reference manual for details of the
IO$_ACPCONTROL function.

4–4 Writing an X.25 Program

Writing an X.25 Program
4.2 Writing a Program to Handle an Incoming Call

5. Read the Incoming Call NCB from the mailbox
Issue a $QIO(IO$_READVBLK) system service request on the mailbox
created in step 3 to wait for an incoming call. (When an incoming X.25 call
matches one of the filters specified in step 4, an NCB containing details of the
call will be placed in the mailbox).

Refer to the HP X.25 for OpenVMS—Programming Reference manual for
details of mailbox message and NCB formats.

6. Accept, Reject or Redirect the call
Your program can use the details contained in the incoming call NCB to
decide whether to Accept, Reject (clear), or Redirect (match against another
filter) the call.

To accept the call, perform one of the following actions:

• To accept the call without negotiating facilities, issue a $QIO(IO$_
ACCESS!IO$M_ACCEPT) system service request on the NW channel,
specifying the incoming call NCB (from step 5) as parameter p2.

• To accept the call subject to negotiated facilities, create an NCB
containing the Incoming Call Identifier (which can be obtained from
the NCB read in step 5), and the required facilities. The required
facilities can either be specified as individual item codes in the NCB
or collectively in a template using the TEMPLATE item code. Issue a
$QIO(IO$_ACCESS!IO$M_ACCEPT) system service request on the NW
channel, specifying the new NCB as parameter p2.

For further information on accepting a call, refer to Section 3.2.3. The HP
X.25 for OpenVMS—Programming Reference manual describes how to specify
facilities in an NCB.

To reject the call, issue a $QIO(IO$_ACCESS!IO$M_ABORT) system service
request on the NW channel, specifying the incoming call NCB as parameter
p2. For further information on rejecting a call, refer to Section 3.2.4.

To redirect the call, create an NCB containing the Incoming Call Identifier
for the call (which can be obtained from the NCB read in step 5) and either
the filter name or filter priority to be used when rematching the call. Issue
a $QIO(IO$_ACCESS!IO$M_REDIRECT) system service request on the NW
channel, specifying the new NCB as parameter p2. For further information
on redirecting a call, refer to Section 3.2.5.

7. Receive and send data
When you have accepted the call, use the $QIO(IO$_READVBLK) system
service on the NW channel to read incoming data.

Use $QIO(IO$_WRITEVBLK) to send data.

For further information on receiving and sending data, refer to Section 3.3.

8. Clear the virtual circuit
When you have finished sending your data, clear the virtual circuit by using
the $QIO(IO$_DEACCESS) system service (refer to Section 3.1.5 for further
information on clearing the virtual circuit).

9. Deassign the channels
If you do not want to make another connection to a remote DTE then your
program must deassign the mailbox and NWA0: channels it has been using
by issuing a $DASSGN system service request (refer to Section 3.1.5 for more
information).

Writing an X.25 Program 4–5

Writing an X.25 Program
4.2 Writing a Program to Handle an Incoming Call

Note that it is the responsibility of the user program to confirm RESETS and
INTERRUPTS. As RESETS may be received at any time, make sure that your
application allows for this. For further information about confirming receipt of
RESETS, refer to Section 3.5. For further information about confirming receipt of
INTERRUPTS, refer to Section 3.4.

4.2.2 Using an Access Application
When X.25 for OpenVMS delivers an incoming call to an X.25 listener in the X25
ACCESS APPLICATION entity, it creates a mailbox, and places the NCB for the
incoming call in the mailbox. Note that these actions are performed only if the
maximum number of incoming call activations for the relevant application has
not been reached or the Maximum Activations attribute of the APPLICATION
entity has been set to zero. If the maximum number has been reached, the call
will be cleared.

X.25 for OpenVMS then creates a process under the user name specified in the
entry in the APPLICATION entity. This process runs the OpenVMS LOGINOUT
image to verify the user name and password from the APPLICATION entity. If
they are invalid, the call is cleared. If they are valid, X.25 for OpenVMS:

1. Equates SYS$NET to the mailbox containing the NCB.

2. Invokes the LOGIN.COM procedure (if it exists) for the account.

3. Starts the command procedure (filename.COM) specified in the APPLICATION
entity’s File attribute.

4. Creates a log file named after the command procedure (filename.LOG) in
SYS$LOGIN:.

The command procedure can execute DCL commands, and it can also run a
program to accept, redirect, or reject the incoming call.

The programming steps for writing an Access Application are:

1. Include the X.25 library
Include the X.25 library in any program you write. Section 2.2 describes how
to use the X.25 library.

2. Assign a channel to mailbox ‘‘SYS$NET’’
When X.25 for OpenVMS invokes the application, the logical name SYS$NET
references the mailbox from which the incoming call NCB may be read.

Use the $ASSIGN system service to assign a channel to SYS$NET. Note that
$CREMBX should not be used to assign a channel to SYS$NET. $CREMBX
does not recognize SYS$NET as an existing mailbox and will create a new
mailbox if used.

3. Assign a control channel to the X.25 network device
Use the system service $ASSIGN to create a new NW device, and assign a
channel to it.

4. Read the Incoming Call NCB from the mailbox
Issue a $QIO(IO$_READVBLK) system service request on the mailbox from
step 2 to read the incoming call NCB.

Refer to the HP X.25 for OpenVMS—Programming Reference manual for
details of mailbox message and NCB formats.

4–6 Writing an X.25 Program

Writing an X.25 Program
4.2 Writing a Program to Handle an Incoming Call

5. Accept, Reject, or Redirect the call
Your program can use the details contained in the incoming call NCB to
decide whether to Accept, Reject (clear), or Redirect (match against another
filter) the call.

To accept the call, perform one of the following actions:

• To accept the call without negotiating facilities, issue a $QIO(IO$_
ACCESS!IO$M_ACCEPT) system service request on the NW channel,
specifying the incoming call NCB (from step 4) as parameter p2.

• To accept the call subject to negotiated facilities, create an NCB
containing the Incoming Call Identifier (which can be obtained from
the NCB read in step 4), and the required facilities. The required
facilities can either be specified as individual item codes in the NCB
or collectively in a template using the TEMPLATE item code. Issue a
$QIO(IO$_ACCESS!IO$M_ACCEPT) system service request on the NW
channel, specifying the new NCB as parameter p2.

For further information on accepting a call, refer to Section 3.2.3. The HP
X.25 for OpenVMS—Programming Reference manual describes how to specify
facilities in an NCB.

To reject the call, issue a $QIO(IO$_ACCESS!IO$M_ABORT) system service
request on the NW channel, specifying the incoming call NCB as parameter
p2. For further information on rejecting a call, refer to Section 3.2.4.

To redirect the call, create an NCB containing the Incoming Call Identifier
for the call (which can be obtained from the NCB read in step 4) and either
the filter name or filter priority to be used when rematching the call. Issue
a $QIO(IO$_ACCESS!IO$M_REDIRECT) system service request on the NW
channel, specifying the new NCB as parameter p2. For further information
on redirecting a call, refer to Section 3.2.5.

6. Receive and send data
When you have accepted the call, use the $QIO(IO$_READVBLK) system
service on the NW channel to read incoming data.

Use $QIO(IO$_WRITEVBLK) to send data.

For further information on receiving and sending data, refer to Section 3.3.

7. Clear the virtual circuit
When you have finished sending your data, clear the virtual circuit by using
the $QIO(IO$_DEACCESS) system service (refer to Section 3.1.5 for further
information on clearing the virtual circuit).

8. Deassign the channels
If you do not want to make another connection to a remote DTE then your
program must deassign the mailbox and NWA0: channels it has been using
by issuing a $DASSGN system service request (refer to Section 3.1.5 for more
information).

Note

You must define an X25 ACCESS APPLICATION entity for the
application. The HP X.25 for OpenVMS—Management Guide describes
how to define an X25 ACCESS APPLICATION entity.

Writing an X.25 Program 4–7

Writing an X.25 Program
4.2 Writing a Program to Handle an Incoming Call

Note that it is the responsibility of the user program to confirm RESETs and
INTERRUPTs. As RESETs may be received at any time, make sure that your
application allows for this. For further information about confirming receipt of
RESETS, refer to Section 3.5. For further information about confirming receipt of
INTERRUPTS, refer to Section 3.4.

4–8 Writing an X.25 Program

Writing an X.25 Program
4.3 Writing a Program to Make an Outgoing Call

4.3 Writing a Program to Make an Outgoing Call
A program to make an outgoing call comprises the following steps:

1. Include the X.25 library
Include the X.25 library in any program you write. Section 2.2 describes how
to use the X.25 library.

2. Declare the Network Connect Block
The Network Connect Block is used to pass information to the X.25 for
OpenVMS software. Define this data structure, and its contents, in the
appropriate place in your program (for example, at the head of the program in
MACRO). The NCB is where you request optional facilities from the network,
among other things (refer to Section 2.4 for more details).

3. Create a mailbox and assign channels
Do one of the following:

• Issue the $CREMBX system service to create the mailbox, and then issue
the $ASSIGN system service to associate the mailbox with the NW device
and assign a control channel to that NW device.

• Use the run–time library routine, LIB$ASN_WTH_MBX to create a
mailbox, assign a channel to the mailbox and assign a channel to the NW
device.

For further information on creating a mailbox and assigning a channel, refer
to Section 3.1.1 and Section 3.1.2.

4. Set up a virtual circuit
Set up a virtual circuit to the remote DTE using the NW channel you have
just assigned. The $QIO(IO$_ACCESS) system service sets up the virtual
circuit (refer to Section 3.1.4 for further information on setting up virtual
circuits).

5. Examine IOSB status returns
If the status returned is SS$_NORMAL, then the call has been accepted. If
the status return is SS$_CLEARED, then the call has been rejected. Any
other status indicates that the call was never made.

6. Read control messages from the mailbox
Queue an outstanding read on the mailbox created in step 3 so that you can
receive control messages such as clears, interrupts, and resets.

To read mailbox data, issue a $QIO(IO$_READVBLK) system service request.

7. Send and receive data
To send data across the virtual circuit to a remote DTE, use the
$QIO(IO$_WRITEVBLK) system service on the NW channel.

To receive data, issue $QIO(IO$_READVBLK).

For further information on sending and receiving data, refer to Section 3.3.

8. Clear the virtual circuit
When you have finished sending your data, clear the virtual circuit by using
the $QIO(IO$_DEACCESS) system service (refer to Section 3.1.5 for further
information on clearing the virtual circuit).

Writing an X.25 Program 4–9

Writing an X.25 Program
4.3 Writing a Program to Make an Outgoing Call

9. Deassign the channels
If you do not want to make another connection to a remote DTE then your
program must deassign the mailbox and NWA0: channels it has been using
by issuing a $DASSGN system service request (refer to Section 3.1.5 for more
information).

Note that it is the responsibility of the user program to confirm RESETS and
INTERRUPTS. As RESETS may be received at any time, make sure that your
application allows for this. For further information about confirming receipt of
RESETS, refer to Section 3.5. For further information about confirming receipt of
INTERRUPTS, refer to Section 3.4.

4–10 Writing an X.25 Program

5
Writing an X.29 Program

This chapter describes how to write programs to handle an incoming call from a
PAD, and to make an outgoing call to a remote PAD.

This chapter consists of two sections:

• Section 5.1 describes how to write a program to handle an incoming call from
a remote PAD.

• Section 5.2 describes how to make an outgoing call to a remote PAD.

Example programs are provided in the SYS$EXAMPLES: directory and summarized
in the HP X.25 for OpenVMS—Programming Reference manual.

Writing an X.29 Program 5–1

Writing an X.29 Program
5.1 Writing a Program to Handle an Incoming Call from a PAD

5.1 Writing a Program to Handle an Incoming Call from a PAD
An incoming X.29 call may be delivered to any of the following types of listener:

• An X.25 listener represented by an X25 ACCESS APPLICATION entity.
Section 5.1.1 describes how to write an X.29 program to handle an incoming
call delivered to this type of listener.

• An X.25 listener declared as a Network Process. Section 5.1.2 describes how
to write an X.29 program to handle an incoming call delivered to this type of
listener.

• An X.29 listener represented by an X25 ACCESS APPLICATION entity.
Section 5.1.3 describes how to write an X.29 program to handle an incoming
call delivered to this type of listener.

The application can be one of two types:

– X29

– X29 login

If the application type is X29, an X.29 program is invoked to handle the call.

If the application type is X29 login, X.25 for OpenVMS starts the OpenVMS
login sequence. In this case, an X.29 program is not required to handle the
X.29 call.

• An X.29 listener declared as a Network Process. Section 5.1.4 describes
how to write a program to handle an incoming call delivered to this type of
listener.

If the incoming call is not delivered to any of the above listeners, the call will be
cleared.

5.1.1 X.25 Listener in the APPLICATION Entity
When X.25 for OpenVMS delivers an incoming call to an X.25 listener in the X25
ACCESS APPLICATION entity, it creates a mailbox, and places the NCB for the
incoming call in the mailbox. Note that these actions are performed only if the
maximum number of incoming call activations for the relevant application has
not been reached or the Maximum Activations attribute of the APPLICATION
entity has been set to zero. If the maximum number has been reached, the call
will be cleared.

X.25 for OpenVMS then creates a process under the user name specified in the
entry in the APPLICATION entity. This process runs the OpenVMS LOGINOUT
image to verify the user name and password from the APPLICATION entity. If
they are invalid, the call is cleared. If they are valid, X.25 for OpenVMS:

1. Equates SYS$NET to the mailbox containing the NCB.

2. Invokes the LOGIN.COM procedure (if it exists) for the account.

3. Starts the command procedure (filename.COM) specified in the APPLICATION
entity’s File attribute.

4. Creates a log file named after the command procedure (filename.LOG) in
SYS$LOGIN:.

The command procedure can execute DCL commands, and it can also run a
program to accept, redirect, or reject the incoming call.

5–2 Writing an X.29 Program

Writing an X.29 Program
5.1 Writing a Program to Handle an Incoming Call from a PAD

The programming steps are as follows:

1. Include the X.25 library
Include the X.25 library in any program you write. Section 2.2 describes how
to use the X.25 library.

2. Assign a control channel to the X.25 network device
Use the system service $ASSIGN to create a new NW device (NWAuu:), and
assign a channel to it. Your X.29 program uses this channel as a control
channel for the virtual circuit.

3. Assign a channel to the mailbox
When X.25 for OpenVMS invokes the application, the logical name SYS$NET
references the mailbox from which the incoming call NCB may be read.

Use the $ASSIGN system service to assign a channel to SYS$NET. Note that
$CREMBX should not be used to assign a channel to SYS$NET. $CREMBX
does not recognize SYS$NET as an existing mailbox and will create a new
mailbox if used.

4. Read the Incoming Call NCB from the mailbox
Issue a $QIO(IO$_READVBLK) system service request on the mailbox from
step 3 to read the incoming call NCB.

Refer to the HP X.25 for OpenVMS—Programming Reference manual for
details of mailbox message and NCB formats.

5. Accept, Reject, or Redirect the call
Your program can use the details contained in the incoming call NCB to
decide whether to Accept, Reject (clear), or Redirect (match against another
filter) the call.

To accept the call:

a. Use $ASSIGN to assign a channel to the NV device.

b. Use $GETDVI to discover the unit number uu of that device.

c. Use $QIO(IO$_ACCESS!IO$M_ACCEPT) on the control channel created
in step 2, specifying the NCB, from step 4, as parameter p2, and the NV
unit number as parameter p6.

In accepting the incoming call, your program may either allow the X.29
terminal to log on to the host OpenVMS system, or directly connect the X.29
terminal to an application process.

To reject the call, issue a $QIO(IO$_ACCESS!IO$M_ABORT) system service
request on the control channel created in step 2, specifying the incoming call
NCB, from step 4, as parameter p2.

To redirect the call, create an NCB containing the Incoming Call Identifier
for the call (which can be obtained from the NCB read in step 4) and either
the filter name or filter priority to be used when rematching the call. Use a
$QIO(IO$_ACCESS!IO$M_REDIRECT) system service request on the NW
channel, specifying the new NCB as parameter p2.

6. Interact with terminal
When the virtual circuit has been set up, your program can receive and
transmit data by issuing QIOs to the NV device as described in the OpenVMS
terminal driver documentation.

Writing an X.29 Program 5–3

Writing an X.29 Program
5.1 Writing a Program to Handle an Incoming Call from a PAD

7. Clear the virtual circuit
You can clear the virtual circuit to the remote terminal either by using
$DASSGN to deassign the last channel to the NV device, or explicitly by
issuing a $QIO(IO$_DEACCESS) system service request.

8. Deassign the channels
If you do not want to make another connection to a remote DTE then your
program must deassign the mailbox and NWAuu: channels it has been using
by issuing a $DASSGN system service request (refer to Section 3.1.5 for more
information).

Note that interrupts and resets are handled by the NV device, and do not require
intervention by a user program. For further details of how to use the system
services, refer to Chapter 3.

5.1.2 X.25 Listener Declared as a Network Process
Your program can declare itself to be a Network Process, and enter its own filters
in the X25 Access module.

To receive incoming calls, an X.25 Network Process must direct X25 Access to
listen on one or more filters, and specify a mailbox into which the incoming call
notifications will be placed.

When an incoming call matches one of the filters, an NCB describing the call is
placed in the mailbox. The Network Process can then read the NCB and accept,
reject, or redirect the call.

The programming steps are as follows:

1. Include the X.25 library
Include the X.25 library in any program you write. Section 2.2 describes how
to use the X.25 library.

2. Declare a Network Process Declaration Block
The Network Process Declaration Block (NPDB) is used to pass information
to the X.25 for OpenVMS software.

Define this data structure, and its contents, in the appropriate place in your
program (for example, at the head of the program in MACRO). The NPDB
contains information defining the filters your program needs to use.

3. Create a mailbox and assign channels
Do one of the following:

• Issue the $CREMBX system service to create the mailbox, and then issue
the $ASSIGN system service to associate the mailbox with the NW device
and assign a control channel to that NW device.

• Use the run–time library routine LIB$ASN_WTH_MBX to create a
mailbox, assign a channel to the mailbox and assign a control channel to
the NW device.

For further information on creating a mailbox and assigning a channel, refer
to Sections 3.1.1 and 3.1.2 respectively.

Your X.29 program uses the channel to the NW device as a control channel
for the virtual circuit.

4. Declare a network process
Issue a $QIO(IO$_ACPCONTROL) system service request on the NW device
created in step 3 to declare a Network Process.

5–4 Writing an X.29 Program

Writing an X.29 Program
5.1 Writing a Program to Handle an Incoming Call from a PAD

In the Network Process Declaration Block (parameter p2), set the Access
Level to ‘‘X25L3’’ and specify the required filter parameters. Refer to the
HP X.25 for OpenVMS—Programming Reference manual for details of the
IO$_ACPCONTROL function.

5. Read the Incoming Call NCB from the mailbox
Issue a $QIO(IO$_READVBLK) system service request on the mailbox
created in step 3 to wait for an incoming call. (When an incoming X.25 call
matches one of the filters specified in step 4, an NCB containing details of the
call will be placed in the mailbox).

Refer to the HP X.25 for OpenVMS—Programming Reference manual for
details of mailbox message and NCB formats.

6. Accept, Reject, or Redirect the call
Your program can use the details contained in the incoming call NCB to
decide whether to Accept, Reject (clear), or Redirect (match against another
filter) the call.

To accept the call:

a. Use $ASSIGN to assign a channel to the NV device.

b. Use $GETDVI to discover the unit number uu of that device.

c. Use $QIO(IO$_ACCESS!IO$M_ACCEPT) on the control (NW) channel
created in step 3, specifying the NCB, from step 5, as parameter p2, and
the NV unit number as parameter p6. This system service invokes the
X.29 protocol.

To reject the call, issue a $QIO(IO$_ACCESS!IO$M_ABORT) system service
request on the control (NW) channel created in step 3, specifying the incoming
call NCB, from step 5, as parameter p2.

To redirect the call, create an NCB containing the Incoming Call Identifier
for the call (which can be obtained from the NCB read in step 5) and either
the filter name or filter priority to be used when rematching the call. Use a
$QIO(IO$_ACCESS!IO$M_REDIRECT) system service request on the control
(NW) channel, specifying the new NCB as parameter p2.

7. Interact with terminal
When the virtual circuit has been set up, your program can issue QIOs to the
NV device, as described in the OpenVMS terminal driver documentation.

8. Clear the virtual circuit
When you have finished sending your data, clear the virtual circuit by using
the $QIO(IO$_DEACCESS) system service (refer to Section 3.1.5 for further
information on clearing the virtual circuit).

9. Deassign the channels
If you do not want to make another connection to a remote DTE then your
program must deassign the mailbox and NWAuu: channels it has been using
by issuing a $DASSGN system service request (refer to Section 3.1.5 for more
information).

Note that interrupts and resets are handled by the NV device, and do not require
intervention by the user program.

Writing an X.29 Program 5–5

Writing an X.29 Program
5.1 Writing a Program to Handle an Incoming Call from a PAD

5.1.3 X.29 Listener in the APPLICATION Entity
X.25 for OpenVMS accepts an incoming call when it delivers the call to an X.29
listener in the X25 ACCESS APPLICATION entity.

As the call has been accepted, your program cannot use the system service
request $QIO(IO$_ACCESS!IO$M_REDIRECT) to redirect the call to another
listener. However, your program may pass the NV device to another process
(refer to Chapter 3).

X.25 for OpenVMS handles incoming calls as follows:

1. Creates an NV device.

2. Accepts the incoming call.

3. Creates a mailbox and places the NCB in the mailbox.

4. Equates SYS$NET to the mailbox containing the NCB.

5. Invokes (if it exists) the LOGIN.COM procedure for the account.

6. Starts the command procedure (filename.COM) specified in the APPLICATION
entity of the listener.

7. Creates a log file named after the command procedure (filename.LOG) in
SYS$LOGIN:.

The command procedure can execute DCL commands, and it can also run a
program to handle the NV device. The programming steps are as follows:

1. Include the X.25 library
Include the X.25 library in any program you write. Section 2.2 describes how
to use the X.25 library.

2. Assign a control channel to the X.25 network device
Use the system service $ASSIGN to create a new NW device (NWAuu:), and
assign a channel to it. Your X.29 program uses this channel as a control
channel for the virtual circuit.

3. Assign a channel to the mailbox
When X.25 for OpenVMS invokes the application, the logical name SYS$NET
references the mailbox from which the incoming call NCB may be read.

Use the $ASSIGN system service to assign a channel to SYS$NET. Note that
$CREMBX should not be used to assign a channel to SYS$NET. $CREMBX
does not recognize SYS$NET as an existing mailbox and will create a new
mailbox if used.

4. Read the NCB and NV unit number from the mailbox
Issue $QIO(IO$_READVBLK) to read the NCB and the NV unit number from
the mailbox. For details of $QIO(IO$_READVBLK), refer to the OpenVMS
I/O documentation.

5. Assign a data channel
Use $ASSIGN to assign a channel to the NV device. To perform this action,
convert the NV unit number to a device name string and then use $ASSIGN
to assign a channel to the NV device.

6. If Typeahead is required, set the X.29 terminal to Typeahead
This will clear the TT$_NOTYPEAHEAD characteristic. Do this by issuing
$QIO(IO$_SETMODE). For details of $QIO(IO$_SETMODE), refer to the
OpenVMS system services documentation.

5–6 Writing an X.29 Program

Writing an X.29 Program
5.1 Writing a Program to Handle an Incoming Call from a PAD

7. Interact with terminal
When the virtual circuit has been set up, your program can issue QIOs to the
NV device, as described in the OpenVMS terminal driver documentation.

8. Clear the virtual circuit
You can clear the virtual circuit to the remote terminal either by using
$DASSGN to deassign the channel to NV, or explicitly by using $QIO(IO$_
DEACCESS).

9. Deassign the channels
If you do not want to make another connection to a remote DTE then your
program must deassign the mailbox and NWAuu: channels it has been using
by issuing a $DASSGN system service request (refer to Section 3.1.5 for more
information).

Note that:

• Interrupts and resets are handled by the NV device, and do not require
intervention by a user program. Refer to Chapter 3 for further details of how
to use the system services.

• When the call is cleared, the NV device performs a hangup. This causes
the NV device to go off line. Any further QIOs will fail with the status code
SS$_DEVINACT. For an X.29 listener, this does not cause the process to be
deleted. Your application must detect and handle hangups itself.

5.1.4 X.29 Listener Declared as a Network Process
Your program can enter its own filters in the X25 Access module by declaring
itself to be a Network Process.

The programming steps are as follows:

1. Include the X.25 library
Include the X.25 library in any program you write. Section 2.2 describes how
to use the X.25 library.

2. Declare a Network Process Declaration Block
The Network Process Declaration Block (NPDB) is used to pass information
to the X.25 for OpenVMS software.

Define this data structure, and its contents, in the appropriate place in your
program (for example, at the head of the program in MACRO). The NPDB
contains information defining the filters your program needs to use.

3. Create a mailbox and assign channels
Do one of the following:

• Issue the $CREMBX system service to create the mailbox, and then issue
$ASSIGN to associate the mailbox with the NW device and assign a
control channel to that NW device.

• Use the run–time library routine LIB$ASN_WTH_MBX to create a
mailbox, assign a channel to the mailbox and assign a control channel to
the NW device.

For further information on creating a mailbox and assigning a channel, refer
to Section 3.1.1 and Section 3.1.2.

Your X.29 program uses the channel to the NW device as a control channel
for the virtual circuit.

Writing an X.29 Program 5–7

Writing an X.29 Program
5.1 Writing a Program to Handle an Incoming Call from a PAD

4. Declare a Network Process
Issue $QIO(IO$_ACPCONTROL) to declare a Network Process. In the
Network Process Declaration Block (parameter p2), set the Access Level to
‘‘X29’’ and specify the required filter parameters. Refer to the HP X.25
for OpenVMS—Programming Reference manual for details on the IO$_
ACPCONTROL system service call.

5. Read the NCB and NV unit number from the mailbox
Issue $QIO(IO$_READVBLK) to read the NCB containing the NV unit
number from the mailbox. (For details of the mailbox contents, refer to the
HP X.25 for OpenVMS—Programming Reference manual. For details of
$QIO(IO$_READVBLK), refer to the OpenVMS I/O documentation.) This
QIO will complete when X.25 for OpenVMS has delivered an incoming call to
your listener and written an NCB into the mailbox.

6. Assign a data channel
Use $ASSIGN to assign a data channel to NVAuu:. To perform this action,
convert the NV unit number to a device name string and then use $ASSIGN
to assign a channel to the NV device.

7. If Typeahead is required, set the X.29 terminal to Typeahead
This will clear the TT$_NOTYPEAHEAD characteristic. Do this by issuing
$QIO(IO$_SETMODE). For details of $QIO(IO$_SETMODE), refer to the
OpenVMS system services documentation.

8. Interact with terminal
As the virtual circuit has already been set up, your program can issue QIOs to
the NV device, as described in the OpenVMS terminal driver documentation.

9. Clear the virtual circuit
You can clear the virtual circuit to the remote terminal either by using
$DASSGN to deassign the channel to NV, or explicitly by using $QIO(IO$_
DEACCESS) through the NW control channel.

10. Deassign the channels
If you do not want to make another connection to a remote DTE then your
program must deassign the mailbox and NWA0: channels it has been using
by issuing a $DASSGN system service request (refer to Section 3.1.5 for more
information).

11. Remove the filters from the X25 Access module
To remove the filters from the X25 Access module, issue $DASSGN to
deassign the channel to the NW device that was used to declare the Network
Process.

Note that interrupts and resets are handled by the NV device, and do not require
intervention by a user program. Refer to Chapter 3 for further details of how to
use the system services.

5.1.5 How to Find the Remote DTE Address
To find the remote DTE address of the calling PAD, you can use either system
services, or Digital Command Language (DCL):

• Using system services, issue the call $GETDVI with the item
DVI$_TT_ACCPORNAM.

• Using DCL, issue the command:

$ WRITE SYS$OUTPUT F$GETDVI("TT","TT_ACCPORNAM")

5–8 Writing an X.29 Program

Writing an X.29 Program
5.1 Writing a Program to Handle an Incoming Call from a PAD

Either method returns the information in the form:

dte-class.remote-dte-address

where dte-class is the local DTE Class on which the call was received (truncated
to 16 characters). For example:

SONNET.567890123456

5.2 Writing a Program to Make an Outgoing Call to a Remote PAD
You can use an X.29 program to make outgoing calls to a remote X.29 terminal if
the remote terminal uses a PAD that is set up to receive incoming calls.

Your program can request a virtual circuit to a PAD at another DTE by issuing
the system service $QIO(IO$_ACCESS). Note that to use the X.29 programming
interface, the system service request should specify an NV device for the circuit.
This is because your program controls the virtual circuit by issuing system
services to the NW device associated with the control channel, and passes
messages through the NV device associated with the data channel.

When the PAD accepts your call request, the program can either:

• Process the call itself.

• Pass the NV device to an application process (refer to Section 3.7).

• Start the login sequence, so that the user at the X.29 terminal can log in
(refer to Section 3.7).

5.2.1 Writing a Program to Make an Outgoing Call
The basic steps for writing an X.29 program to make an outgoing call to the PAD
at a remote DTE are as follows:

1. Include the X.25 library
Include the X.25 library in any program you write. Section 2.2 describes how
to use the X.25 library.

2. Create a Network Connect Block (NCB)
The Network Connect Block is used to pass information to the X.25 for
OpenVMS software. Define this data structure and its contents in the
appropriate place in your program (for example, at the head of a program
in MACRO). The NCB contains, among other things, requests for optional
facilities.

3. Assign a data channel
Your program must assign a data channel to the NV device, and create an
NVAuu: device, using the $ASSIGN system service.

4. Find the number of the NV device
Use the system service $GETDVI to discover the number, uu, of the NV
device.

5. Assign a control channel
Use the system service $ASSIGN to create a new NW device and assign a
channel to it. Your X.29 program uses this channel as a control channel for
the virtual circuit. Note that a single NW device can be used by more than
one NV device.

Writing an X.29 Program 5–9

Writing an X.29 Program
5.2 Writing a Program to Make an Outgoing Call to a Remote PAD

6. Set up a virtual circuit
Set up a virtual circuit to the remote DTE using the channel you have
assigned to the NW device. Use the system service $QIO(IO$_ACCESS),
supplying an NCB as parameter p2, and specifying the NV unit number as
parameter p6.

7. Examine IOSB status returns
If the status returned is SS$_NORMAL, then the call has been accepted. If
the status return is SS$_CLEARED, then the call has been rejected. Any
other status indicates that the call was never made.

If the remote DTE accepts the request, your program should go through steps 8
to 10. Otherwise, your program should perform step 10.

8. Interact with terminal
To interact with the terminal, your program can:

• Pass control to another process (refer to Section 3.7).

• Handle the NV device itself, by issuing QIOs to the NV device as
described in the OpenVMS terminal driver documentation.

9. Clear the virtual circuit
When you have finished sending data, clear the virtual circuit by one of the
following:

• Use the $DASSGN system service to clear the last channel to NV.

• Use $QIO(IO$_DEACCESS) on the NW control channel.

10. Deassign the channels
Finally, your program must deassign the data and control channels it has
been using, with the $DASSGN system service. This deletes the NV and NW
devices.

5–10 Writing an X.29 Program

6
Setting Characteristics of the PAD, the NV

Device, and the X.29 Terminal

6.1 Setting PAD Parameters
You can tailor the behavior of the PAD to match the formatting and transmission
requirements of the X.29 terminal. These requirements include definitions for
such characteristics as:

• Echo of characters typed at the terminal

• Completion and forwarding of packets

• Formatting and editing facilities

PAD characteristics are controlled by PAD parameters, which you can set. There
are four ways to set PAD parameters:

• Issue commands to the PAD during a PAD command session. The commands
and their use are described in the HP X.25 for OpenVMS—Utilities Guide.

• Issue the SET TERMINAL/X29/PARAMETERS command to change
individual PAD parameters. This command and its parameters are described
in the HP X.25 for OpenVMS—Utilities Guide.

• Issue QIOs to set individual PAD parameters. Such parameters are described
in this chapter and Chapter 3.

• Issue SET TERMINAL/X29/TEMPLATE commands or QIOs to change PAD
parameter templates. The SET TERMINAL/X29/TEMPLATE command is
described in the HP X.25 for OpenVMS—Utilities Guide. The QIOs are
described in the HP X.25 for OpenVMS—Programming Reference manual.

The PAD parameters themselves are described in the HP X.25 for OpenVMS—
Programming Reference manual.

Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal 6–1

Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal
6.1 Setting PAD Parameters

6.1.1 Setting PAD Interrupt and Break Actions
Your program can control the meaning of the control requests for Interrupt and
for Indication–of–Break by setting PAD parameter 7 (break). Do this by issuing
the system service $QIO(IO$_NETCONTROL,PSI$K_X29_SET) with subfunction
PSI$K_X29_PAD_PARAMS. For details of this parameter, refer to the HP X.25
for OpenVMS—Programming Reference manual.

Table 6–1 summarizes the actions relevant to Interrupt and Indication–of–
Break.

Table 6–1 PAD Interrupt and Indication–of–Break Messages

PAD
Parameter 7 PAD Action

0 No action

1 Send Interrupt to the NV unit

4 Send Indication–of–Break to the NV unit

5 Send Interrupt, followed by Indication–of–Break

16 Discard output to X.29 terminal, and set PAD Parameter 8 (Discard
output)

21 Send Interrupt, followed by Indication–of–Break to the NV unit.
Discard output to X.29 terminal, and set PAD Parameter 8 (Discard
output)

Figure 6–1, Figure 6–2, and Figure 6–3 show the action of the PAD and the NV
device in response to INTERRUPT, with PAD parameter 7 set to 1, 5, and 21.

6–2 Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal

Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal
6.1 Setting PAD Parameters

Figure 6–1 Response to INTERRUPT, with PAD Parameter 7 Set to 1

PAD NV device TT device Comments

INTERRUPT

INTERRUPT
CONFIRM

data=01

Perform interrupt
action

Press the Break key.

SEND
ACTION
STRING

The default is to purge the NV
device receive buffer, and send
 Ctrl/Y to the TT device.

Figure 6–2 Response to INTERRUPT, with PAD Parameter 7 Set to 5

PAD NV device TT device Comments

INTERRUPT
CONFIRM

data=00

Press the Break key.

SEND
ACTION
STRING

INTERRUPT

INDICATION
OF BREAK

The data indicates that an
indication−of−break is on the
way.

Perform break action

The break action occurs after
both the interrupt and the
indication−of−break have
arrived. It does not matter
which arrives first.

The default is to send Ctrl/O
to the TT device to discard
the output.

Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal 6–3

Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal
6.1 Setting PAD Parameters

Figure 6–3 Response to INTERRUPT, with PAD Parameter 7 Set to 21

PAD NV device TT device Comments

data=00

Press the Break key.

SEND
ACTION
STRING

Break action

No more output is printed at
the terminal.

INTERRUPT
CONFIRM

INTERRUPT

INDICATION
OF BREAK

PAD
PARAMETER
8=1

SET PAD
PARAMETER

8=0

The break action occurs after
both the interrupt and the
indication−of−break have
arrived. It does not matter
which arrives first.

The default is to send Ctrl/O
to the TT device to discard the
output.

Setting PAD parameter 8 to 0
stops the PAD discarding the
output.

6–4 Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal

Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal
6.1 Setting PAD Parameters

6.1.2 Setting Nonstandard PAD Parameters
To set nonstandard parameters, specify a sequence of PAD parameter items as
follows:

Item 1: PAD parameter code = 0
Parameter value = 0

Item 2: Nonstandard PAD parameter code
Parameter value

Item 3: Nonstandard PAD parameter code
Parameter value

. . . and so on.

For details of the nonstandard PAD facilities that are supported, refer to the
technical documentation supplied by the PSDN.

6.2 Setting NV Actions for Interrupt and Indication–of–Break
The NV device usually queues data from the X.29 terminal in the order received.
However, your program can define other actions when the NV device receives an
Interrupt or an Indication–of–Break.

Your program can configure the NV device to take any combination of the
following actions:

• Purge all data in the receive buffer of the NV device (this is the default
Interrupt action).

• Purge all data in the transmit buffer of the NV device.

• Reset the virtual circuit (note that this may cause some data to be lost).

• Clear the call.

• Pass an action string of data and/or control characters to the OpenVMS
terminal driver, as though it had been entered from the X.29 terminal.

The type of information that may be sent in the action string includes:

Ctrl/X Normally, this causes the OpenVMS terminal driver to purge its
Typeahead buffer.

Ctrl/O Normally, this causes the OpenVMS terminal driver to discard all the
output currently being sent to the X.29 terminal.

Ctrl/Y Normally, this causes the OpenVMS terminal driver to request the
attention of the command language interpreter; for example, DCL.

You define NV device actions by entering action flags and an action string into a
data structure called the NV Action Descriptor Block.

• Action flags determine what action the NV device takes on receiving an
Interrupt or Indication–of–Break.

• The action string is sent to the OpenVMS terminal driver after the actions
specified by the action flags have been performed. The action string passes
data and/or control characters to the OpenVMS terminal driver.

Default Interrupt Action
The default Interrupt action is:

1. Purge the NV device receive buffer.

2. Send Ctrl/Y to the terminal driver to get the attention of DCL.

Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal 6–5

Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal
6.2 Setting NV Actions for Interrupt and Indication–of–Break

Modifying the Interrupt Action
To modify the Interrupt action:

1. Specify the actions for the NV device in the action flags of the NV Action
Descriptor Block. Specify also the data to send to the OpenVMS terminal
driver in the action strings of the NV Action Descriptor Block. For details of
how to use the NV Action Descriptor Block, refer to Section 6.2.1.

2. Issue the $QIO(IO$_NETCONTROL,PSI$K_X29_SET) with the subfunction
PSI$K_X29_INT_ACTION, to set the action flags and the action strings. You
issue this QIO on the control channel to NW, specifying the NV device number
as argument p6.

Default Break Action
The default Break action is:

• Send Ctrl/O to the terminal driver to discard all the output in the transmit
buffer.

Modifying the Break Action
To change the Break action:

1. Specify the actions for the NV device in the action flags of the NV Action
Descriptor Block. Specify also the data to send to the OpenVMS terminal
driver in the action strings of the NV Action Descriptor Block. For details of
how to use the NV Action Descriptor Block, refer to Section 6.2.1.

2. Issue the $QIO(IO$_NETCONTROL,PSI$K_X29_SET) with the subfunction
PSI$K_X29_BREAK_ACTION, to set the action flags and the action strings.
You issue this QIO on the control channel to NW, specifying the NV device
number as argument p6.

6.2.1 The NV Action Descriptor Block
The NV Action Descriptor Block is a data structure of between 4 and 20 bytes,
comprising:

1. The action flags PSI$L_X29_ACTION_FLAGS (one longword)

2. The action string PSI$T_X29_ACTION_STRING (up to 15 bytes)

For symbolic programming, the start location of the action string is
PSI$T_X29_ACTION_STRING, and the maximum length of the string is
PSI$S_X29_ACTION_STRING.

The action flags occupy the first four bytes. They determine what action the NV
driver should take on receiving an Interrupt or an Indication–of–Break. Only
the first three bits of byte 0 are used, and these bits contain the following action
flags:

Bit 0 PSI$V_X29_ACTION_RESET resets the virtual circuit.

Bit 1 PSI$V_X29_ACTION_PURGE purges all input in the NV driver. Enter this
action flag to ensure that the terminal driver processes the action string.

Bit 2 PSI$V_X29_ACTION_CLEAR clears the call. The remainder of the Action flag
longword must be zero.

The action string PSI$T_X29_ACTION_STRING is a counted string of up to 15
bytes.

6–6 Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal

Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal
6.2 Setting NV Actions for Interrupt and Indication–of–Break

Figure 6–4 NV Action Descriptor Block

Byte 0Byte 1Byte 2

Longword 5

Longword 4

Longword 3

Longword 2COUNT

ACTION STRING (15 bytes)

Longword 1

Action flags
(bits 0 to 2 only)

Byte 3

Longword

Figure 6–4 illustrates the format of the NV Action Descriptor Block.

Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal 6–7

Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal
6.3 Setting X.29 Terminal Characteristics

6.3 Setting X.29 Terminal Characteristics
You can use several SET TERMINAL commands to control the X.29 terminal.
The following sections describe some of these commands.

6.3.1 Setting Echo Mode
The OpenVMS terminal driver can operate in either local–echo or host–echo
mode. The OpenVMS system default is host–echo mode. However, the system
default can be set to local–echo. Refer to the HP X.25 for OpenVMS—Utilities
Guide for details of how to do this.

To set the OpenVMS echo mode, you can either use DCL commands, or issue
QIOs.

To set the OpenVMS echo mode with DCL commands, use the command SET
TERMINAL.

For local–echo mode, use the following command:

$ SET TERMINAL/LOCAL_ECHO

For host–echo mode, use the following command:

$ SET TERMINAL/NOLOCAL_ECHO

To set the OpenVMS terminal mode using QIOs, issue $QIO(IO$_SETMODE) to
the NV device.

To select LOCAL_ECHO mode, set TT$M_NOECHO and TT2$M_LOCALECHO.

To select HOST_ECHO mode, clear TT$M_NOECHO and TT2$M_LOCALECHO.

To set the PAD echo mode, use the system service $QIO(PSI$K_X29_SET) with
the subfunction PSI$K_X29_PAD_PARAMS.

Note that in host–echo mode, the user input is echoed by the OpenVMS terminal
driver, and the PAD echo must be turned off. Otherwise, the user at the X.29
terminal sees each input character twice.

In local–echo mode, the PAD echoes the user data.

6.3.2 Setting 7–Bit ASCII and Parity
You can set up the OpenVMS terminal driver to communicate with systems which
use 7–bit ASCII, by specifying 7–bit ASCII and even parity. To do this, use the
following command:

$ SET TERMINAL/NOEIGHT/PARITY=EVEN

You can set up 7–bit ASCII and even parity as the system default. For details of
how to do this, refer to the HP X.25 for OpenVMS—Utilities Guide.

6–8 Setting Characteristics of the PAD, the NV Device, and the X.29 Terminal

A
Example of Parsing the Device Name String

The following program parses a device name string to extract the device unit
number.

.title dev-unit - get the device unit number

$dvidef ; define DVI symbols

.macro itm3 buflen=4, itmcod, bufadr, retlen=0
.word buflen
.word itmcod
.address bufadr
.address retlen

.endm

tt: .ascid "tt"
chan: .blkw 1
unit_number: .blkl 1
phy_name_len: .blkl 1
phy_name: .blkb 64

dvi_list:
itm3 itmcod=dvi$_tt_phydevnam,-

buflen=64,-
bufadr=phy_name,-
retlen=phy_name_len

.long 0 ; end of the getdvi item list

;
; FAO variables
;
format: .ascid ~Device name: "!AD" Unit number: !SL~
buf: .blkb 80
bufdesc: .long bufdesc-buf

.address buf

.entry main,^m<>
;
; Assign a channel to the users terminal
;
$assign_s -

devnam = tt, chan = chan
blbc r0, exit

Example of Parsing the Device Name String A–1

Example of Parsing the Device Name String

>

;
; Get the physical device name
;
$getdviw_s -

chan = chan, itmlst = dvi_list
blbc r0, exit

;
; Convert the unit number from the phydevnam into binary
;
pushab phy_name
pushl phy_name_len
calls #2, get_unit_number
movl r0, unit_number
;
; Display the result
;
$fao_s ctrstr = format, outbuf = bufdesc, outlen = bufdesc,-

p1 = phy_name_len, p2 = #phy_name,-
p3 = unit_number

blbc r0, exit
pushal bufdesc
calls #1, g^lib$put_output

exit: ret
;
; get_unit_number - return the unit number from the device name
; string
;
; This routine assumes that a device name is of the form
; <anything>...<non-digits>... <digits>... <non-digits>...
; This routine scans for the digits at the end of the device name.
;
; Typically this routine is passed a string like "_NVA213:"
; obtained from $GETDVI.
;

.entry get_unit_number, ^M<r2,r3,r4>
movl 8(ap), r2 ; pointer to device name
movzwl 4(ap), r3 ; length of the string
clrl r0 ; the unit number

10$:
decl r3 ; see if there is any string left
beql 40$; exit if not
movb (r2)[r3], r1 ; get byte from end of string
cmpb r1, #^A"0" ; see if its a digit
blssu 10$
cmpb r1, #^A"9"
bgtru 10$

A–2 Example of Parsing the Device Name String

Example of Parsing the Device Name String

>

;
; Found the last char that is a digit
;
movl r3, r4 ; remember the last

20$: decl r3
beql 40$
movb (r2)[r3], r1 ; get byte from end of string
cmpb r1, #^A"0" ; see if its a digit
blssu 30$; if not branch to convert code
cmpb r1, #^A"9"
blequ 20$; still a digit so scan further

30$: incl r3 ; offset to first digit
cmpl r3, r4
bgtr 40$
movzbl (r2)[r3], r1 ; get the digit
mull #10, r0 ; unit = unit * 10
movab -^A"0"(r1)[r0], r0 ; unit = unit + digit - "0"
brb 30$

40$:
; result is in R0
ret

.end main

Example of Parsing the Device Name String A–3

Index

A
Accepting incoming calls, 3–8 to 3–10, 5–3, 5–5

control to process, 3–17 to 3–18
enabling X.29 terminal to log on, 3–17
negotiating facilities, 3–8
options, 3–17 to 3–18
system resources, 3–9
use of Network Connect Block, 3–8

Action Descriptor Block
see NV Action Descriptor Block

Action flags, 6–5 to 6–7
Action string, 6–5

information, 6–5
maximum length, 6–6
start location, 6–6
symbolic programming, 6–6

Address
of remote DTE, 5–8

Argument lists, 2–4
MACRO, 2–4
MACRO coding, 2–4
omitting optional arguments, 2–4

ASCII
7–bit, 6–8

$ASSIGN, 3–8, 5–3, 5–6, 5–8
Assigning a channel, 3–3 to 3–4, 3–8, 5–3, 5–6,

5–8
Permanent Virtual Circuits, 3–3
system service, 3–3
to receive data, 3–8
to the NW device, 3–3
use of mailbox, 3–3

Assigning a data channel, 5–8
Assigning control and data channels, 3–3 to 3–4

B
BASIC coding

see High–level language coding
BCUG

see Bilateral Closed User Group
Bilateral Closed User Group, 2–3

identifying remote destinations, 2–3

7–bit ASCII, 6–8
BLISS

see High–level language coding
Break action, 6–2 to 6–7

default, 6–6
default for NV device, 6–6
NV device, 6–5 to 6–7

Buffered I/O byte count, 2–5
BYTLM quota, 2–5

C
Calling PAD

DTE address, 5–8
CALL instructions, 2–4
Calls

clearing, 3–6 to 3–7
incoming, 3–7 to 3–12

CCITT recommendations, 1–1
C coding

see High–level language coding
Channels

assigning, 3–3 to 3–4
Characteristics

of NV device, 6–5 to 6–7
of PAD, 6–1 to 6–5
of X.29 terminal, 6–8

Clearing a call, 3–6 to 3–7
Clearing a virtual circuit, 5–5, 5–7, 5–8, 5–10

lost data, 3–6
transferring data in both directions, 3–6
transferring data in one direction, 3–6
use of Network Connect Block, 3–6

COBOL coding
see High–level language coding

Coding
high–level languages, 2–4
MACRO, 2–4

Comité Consultatif International Télégraphique et
Téléphonique

see CCITT recommendations
Command language interpreter, 6–5
Command session

on PAD, 6–1

Index–1

Confirmation
of INTERRUPTs, 4–8
of INTERRUPTS, 4–6, 4–10
of RESETs, 4–8
of RESETS, 4–6, 4–10
receipt of interrupts, 3–14 to 3–15
receipt of restart, 3–17
reset, 3–16 to 3–17

Control channel
assigning, 3–3 to 3–4
to NW device, 5–9
use by X.29 program, 5–9

Control data
X.25, 1–3
X.29, 1–3

D
$DASSGN, 3–6, 5–4, 5–5, 5–7, 5–8
Data channel, 5–8

assigning, 3–3 to 3–4
to NV device, 5–9

Data transfer
between NV device and TT device, 1–5 to 1–6
between PAD and NV device, 1–5 to 1–6
PAD to TT device, 1–5 to 1–6
TT device to PAD, 1–6

Deassigning a channel, 3–6
Declaring a network process, 3–7 to 3–8, 5–4, 5–8
Defaults

Break action, 6–6
Interrupt action, 6–5

Deleting
NV device, 5–10
NW device, 5–10

Disabling HANGUP, 3–17 to 3–18
DTE address

of calling PAD, 5–8
DVI$_TT_PHYDEVNAM, 3–4
DVI$_UNIT, 3–4
Dynamic filters, 3–8

E
Echo mode, 6–8

setting for OpenVMS, using DCL, 6–8
setting for OpenVMS, using QIOs, 6–8
setting for PAD, 6–8

Edit buffer, 1–5 to 1–6
Error

run–time access violation, 2–4
Even parity, 6–8
Examples

extracting device unit number, A–1 to A–3

F
Facilities

X.25 programming, 1–3
X.29 programming, 1–3

Facility requests
modification, 3–8

Fast select, 3–4, 3–8
Fast selection acceptance, 3–8
FILLM quota, 2–5
Filter entities, 3–8

removal, 3–8
Filters

removal from X25 Access module, 5–5, 5–8
Filter types

dynamic, 3–8
static, 3–7

Format
of NV Action Descriptor Block, 6–7

FORTRAN coding
see High–level language coding

Forwarding character
from X.29 terminal, 1–5

G
$GETDVI, 5–3

DVI$_TT_PHYDEVNAM, 3–4
DVI$_UNIT, 3–4

Guidelines
for X.25 and X.29 programming, 2–1 to 2–4
for X.25 programming, 4–1 to 4–10
for X.29 programming, 5–1 to 5–10

H
Handling incoming calls, 3–7 to 3–12
Handshake

for Permanent Virtual Circuit, 3–18
Hangup, 5–7
HANGUP

disabling, 3–17 to 3–18
High–level language coding, 2–4
High–level languages, 2–2
Hold Timer, 1–6
Host–echo mode

OpenVMS terminal driver, 6–8
Host–to–host communications, 1–3

I
I/O byte count, 2–5
Incoming call identification field, 3–8
Incoming calls, 3–7 to 3–12, 4–4 to 4–8, 5–2 to

5–5
acceptance, 5–3, 5–5
accepted, 3–17 to 3–18

Index–2

Incoming calls (cont’d)
programming steps, 5–2 to 5–8
redirection, 3–11 to 3–12, 5–3, 5–5
rejection, 3–10 to 3–11, 5–3, 5–5
to X.25 listener declared as network process,

5–4 to 5–5
to X.25 listener in the Application entity, 5–2

to 5–4
to X.29 listener declared as network process,

5–7 to 5–8
to X.29 listener in the Application entity, 5–6

to 5–7
Incoming requests to set up a virtual circuit, 3–11

to 3–12
Indication–of–break, 6–2 to 6–7

NV action, 6–5 to 6–7
Information

in action string, 6–5
Interfaces

for X.29 communications, 1–1
Interrupt

changing action for NV device, 6–5
default action, 6–5

Interrupt action, 6–2 to 6–7
default NV action, 6–5
NV action, 6–5 to 6–7
PAD parameter 7 set to 1, 6–3
PAD parameter 7 set to 21, 6–4
PAD parameter 7 set to 5, 6–3

Interrupts, 3–17, 5–4, 5–5, 5–7, 5–8
confirmation of, 4–6, 4–8, 4–10
confirming receipt, 3–14 to 3–15
definition, 3–14
transmitting, 3–14 to 3–15

IO$_ACCESS, 3–4, 4–9, 5–9, 5–10
IO$_ACCESS!IO$M_ABORT, 3–10
IO$_ACCESS!IO$M_ACCEPT, 3–8
IO$_ACCESS!IO$M_REDIRECT, 3–11
IO$_ACPCONTROL, 3–7 to 3–8, 5–4, 5–8

parameters, 3–7 to 3–8
IO$_DEACCESS, 3–6, 5–5, 5–7
IO$_NETCONTROL, 3–14, 3–16, 3–17
IO$_READVBLK, 3–13, 5–3, 5–5, 5–6
IO$_SETMODE, 5–6, 5–8
IO$_WRITEVBLK, 3–12, 4–9

L
LIB$ASN_WTH_MBX, 3–3, 5–7
Library routing, 5–7
Listeners

X.25, 5–2 to 5–8
X.29, 5–6 to 5–8
X25 Server, 5–4 to 5–5

Local–echo mode
OpenVMS terminal driver, 6–8

Local facilities field, 3–6
LOGIN.COM, 4–6, 5–2
Lost data

on clearing calls, 3–6
when using a Permanent Virtual Circuit, 3–19

Lost logical link
when using a Permanent Virtual Circuit, 3–19

M
MACRO, 2–1

argument lists, 2–4
calling system services, 2–4
CALL instructions, 2–4
coding, 2–4
format for system services, 2–4
macro definitions, 2–4
symbols specific to X.25, 2–4
system library, 2–4

Macro definitions, 2–4
Mailbox, 2–3, 3–18, 4–4, 4–6, 5–2, 5–4

contents, 5–8
notification of events, 2–3
use, 2–3
use in assigning channels, 3–3

Management object
see object name

Modes of operation
OpenVMS system default, 6–8
OpenVMS terminal driver, 6–8

Modifying facility requests, 3–8
MSG$_DISCON, 3–19
MSG$_INCDAT, 3–13
MSG$_PATHLOST, 3–17, 3–19

N
NCB

see Network Connect Block
Negotiating call facilities, 3–8
Network Connect Block, 2–3, 3–4, 4–9

address, 2–3
checking, 5–3
contents, 2–3
in program to handle outgoing calls, 5–9
local facilities field, 3–6
mandatory information, 3–4
reading, 5–3, 5–5, 5–6, 5–8
to redirect incoming requests, 3–11 to 3–12
use, 2–3
use in accepting incoming requests, 3–8 to 3–9
use in clearing a virtual circuit, 3–6
use in setting up virtual circuits, 3–4
use to reject an incoming call request, 3–10

Network device
see NW device

Index–3

Network facilities, 3–4
Network process, 3–7 to 3–8

declaring, 5–4, 5–8
declaring a process as, 3–7 to 3–8
X.25 listener, 5–4 to 5–5
X.29 listener, 5–7 to 5–8

Network process declaration block, 3–8
Nonstandard PAD parameters, 6–5
NVA0:

see NV device
NV Action Descriptor Block, 6–5 to 6–7

format, 6–7
NV device, 1–1 to 1–6, 5–7, 5–9

assigning a data channel, 5–9
Break action, 6–5 to 6–7
changing break action, 6–6
changing interrupt action, 6–5
characteristics, 6–5 to 6–7
data transfer, 1–5 to 1–6
deleting, 5–10
handling by X.29 program, 5–10
Indication–of–break, 6–5 to 6–7
Interrupt action, 6–5 to 6–7
passing to another process, 5–6
QIOs, 3–17, 5–3, 5–5, 5–7, 5–8
transfer between processes, 3–18

NV device number, 5–9
NV unit number

reading, 5–6, 5–8
NWA0:

see NW device
NW device, 1–1, 3–3, 4–6, 5–3, 5–6, 5–9

assigning a channel to, 3–3
assigning a control channel, 5–9
deleting, 5–10
X.25, 1–3
X.29, 1–3

O
Object name

for redirecting an incoming call, 3–12
OpenVMS echo mode

setting using QIOs, 6–8
setting with DCL, 6–8

OpenVMS LOGINOUT image, 4–6, 5–2
OpenVMS system services

see System services
OpenVMS terminal driver, 1–3

modes of operation, 6–8
Outgoing calls, 4–9 to 4–10

acceptance by PAD, 5–9
handling by VAX P.S.I., 5–9
programming steps, 5–9 to 5–10
requirements of PAD, 5–9
to remote PAD, 5–9 to 5–10

P
Packet assembly, 1–5
Packet disassembly, 1–5
PAD

acceptance of calls, 5–9
behavior and characteristics, 6–1 to 6–4
Break action, 6–2 to 6–4
calls from, 5–2
command session, 6–1
data transfer, 1–5 to 1–6
echo mode, 6–8
Indication–of–break, 6–2 to 6–4
Interrupt action, 6–2 to 6–4
outgoing calls to, 5–9 to 5–10

PAD parameters
changing, 6–1 to 6–5
nonstandard, 6–5
using QIOs to set, 6–1
ways to set, 6–1

PAD parameter templates, 6–1
Parameters

for IO$_ACPCONTROL, 3–7 to 3–8
Parity, 6–8
Parsing device name string, A–1 to A–3
PASCAL coding

see High–level language coding
Permanent Virtual Circuits, 2–1, 3–18 to 3–19

assigning a channel, 3–3
handshake, 3–18
lost data, 3–19
lost logical link, 3–19
reconnection, 3–19
resetting, 3–18
restart, 3–17

Physical device name, 3–4
Physical link

X.25, 1–3
X.29, 1–3

Priority, 3–12
redirection, 3–12

Processes
transfer of NV devices between, 3–18

Programming
high–level languages, 2–2, 2–4

Programming guidelines, 2–1 to 2–4
Programming steps

for incoming call to X.29 listener declared as
network process, 5–7 to 5–8

for incoming call to X.29 listener in the
Application entity, 5–6 to 5–7

Protocols
for transmitting and receiving data, 3–12

PSI$C_NCB_ICI, 3–8

Index–4

PSI$C_NCB_RESPDATA, 3–8
PSI$K_INTACK, 3–14
PSI$K_INTERRUPT, 3–14
PSI$K_RESET, 3–16
PSI$K_RESTART, 3–17
PSI$S_X29_ACTION_STRING, 6–6
PSI$T_X29_ACTION_STRING, 6–6
PSI$V_X29_ACTION_CLEAR, 6–6
PSI$V_X29_ACTION_PURGE, 6–6
PSI$V_X29_ACTION_RESET, 6–6
Purging the typeahead buffer, 6–5
PVC

see Permanent Virtual Circuits

Q
QIOs, 2–2, 3–1

read, 1–6
terminal driver, 3–2
to NV device, 3–17, 5–3, 5–5, 5–7, 5–8
uses, 2–2

QIOW
see QIOs

Queue I/O Requests
see QIOs

Quota, 2–5
BYTLM, 2–5
exceeding, 2–5
FILLM, 2–5

R
Reading

NCB, 5–3, 5–6, 5–8
NV unit number, 5–6, 5–8
the NCB, 5–5

Read QIO, 1–6
Receive buffer, 1–5 to 1–6
Receiving data, 3–13 to 3–14
Redirecting an incoming call, 3–11 to 3–12, 5–3

completion, 3–12
Network Connect Block, 3–11 to 3–12
object name, 3–12

Redirection an incoming call, 5–5
Redirect priority, 3–12
Rejecting an incoming call, 5–3, 5–5
Rejecting an incoming request, 3–10 to 3–11

completion, 3–10
creating a Network Connect Block, 3–10
diagnostic code field, 3–10
incoming call identification field, 3–10
local facilities field, 3–10
response data field, 3–10
use of Network Connect Block, 3–10

Remote DTE
address, 5–8

Removal
of filter entities, 3–8

Reset
confirmation, 3–16 to 3–17, 4–6, 4–8, 4–10
definition, 3–16

Resets, 3–17, 5–4, 5–5, 5–7, 5–8
Resetting

Permanent Virtual Circuit, 3–18
virtual circuit, 3–16 to 3–17

Restart, 3–17
confirming receipt, 3–17
on a Permanent Virtual Circuit, 3–17

Run–time access violation error, 2–4
Run–time library routine, 5–7

S
Sending data

see Transmitting data
SET TERMINAL/X29/PARAMETERS, 6–1
SET TERMINAL/X29/TEMPLATE, 6–1
Setting up and clearing communications, 3–3 to

3–7
Setting up virtual circuits, 3–4, 4–9

Bilateral Closed User Group, 2–3
system resources, 2–5
use of Network Connect Block, 3–4

Seven bit ASCII, 6–8
SS$_DEVINACT, 5–7
SS$_NORMAL

and receipt of diagnostic code, 3–16
Static filters, 3–7
Status codes

SS$_DEVINACT, 5–7
SS$_NORMAL, 3–16

Switched Virtual Circuits (SVCs), 2–1
Symbolic programming, 6–6
SYS$NET, 4–6, 5–2, 5–3, 5–6
System resources

for accepting an incoming request, 3–9
for setting up a virtual circuit, 2–5

System services, 2–2, 3–1 to 3–19
$ASSIGN, 5–3, 5–6, 5–8
calling, 2–2
$DASSGN, 5–4, 5–5, 5–8
$GETDVI, 5–3
IO$_ACCESS, 5–9, 5–10
IO$_ACPCONTROL, 5–8
IO$_DEACCESS, 5–4, 5–5
IO$_READVBLK, 5–3, 5–6
IO$_SETMODE, 5–6, 5–8
MACRO format, 2–4
programming languages, 2–2
to handle X.29 calls, 3–17 to 3–18
uses, 2–2
X.29, 3–17 to 3–18

Index–5

T
Terminal driver, 1–3
Terminal driver $QIOs, 3–2
Timeout

characteristic of PAD, 1–5
Transfer of NV devices between processes, 3–18
Transmit buffer

see Edit buffer
Transmitting data, 3–12 to 3–13
Transmitting interrupts, 3–14 to 3–15
TT$_NOTYPEAHEAD, 5–6, 5–8
TT device, 1–3

data transfer, 1–5 to 1–6
Typeahead, 3–17 to 3–18, 5–6, 5–8
Typeahead buffer, 1–6, 6–5

purging, 6–5

U
Unit number

for network device, 3–3
User data

X.25, 1–3
X.29, 1–3

V
VAX P.S.I. library, 2–1
Virtual circuits, 5–4, 5–5, 5–7, 5–8, 5–9, 5–10

accepting an incoming request, 3–8 to 3–10
clearing, 5–4, 5–5, 5–7, 5–8, 5–10
for incoming calls, 2–1
for outgoing calls, 2–1
redirecting an incoming call, 3–11 to 3–12
rejecting an incoming request, 3–10 to 3–11
requesting, 5–9
resetting, 3–16 to 3–17
setting up, 3–4, 4–9, 5–10
use, 2–1

Virtual Terminal device, 3–4
VT device, 1–3

see Virtual Terminal device

X
X.25 communications, 1–1 to 1–3
X.25 communications link, 1–2
X.25 library, 2–1
X.25 listener, 5–2 to 5–5

in the Application entity, 5–2 to 5–4
X.25 listener declared as a network process, 5–4

to 5–5
X.25 network device

see NW device

X.25 physical link, 1–3
X.25 programming

guidelines, 4–1 to 4–10
X.25 programs

handling incoming calls, 4–4 to 4–8
handling outgoing calls, 4–9 to 4–10
writing, 4–1 to 4–8

X.29 communications
interfaces, 1–1

X.29 communications link, 1–2
X.29 listener, 5–2

in the Application entity, 5–6 to 5–7
with Login flag set to TRUE, 5–2

X.29 listener declared as network process, 5–7 to
5–8

X.29 physical link, 1–3
X.29 programming guidelines, 5–1 to 5–10
X.29 programs

handling incoming calls, 5–2 to 5–8
handling outgoing calls, 5–9 to 5–10
writing, 5–1 to 5–10

X.29 Server listener, 5–7 to 5–8
X.29 terminal

characteristics, 6–8
X25 Access module

removing filters, 5–5, 5–8

Index–6

