
HP X.25 for OpenVMS
Programming Reference
Order Number: AA–Q2P7C–TE

July 2005

This book provides reference information for X.25 and X.29
programmers.

Revision/Update Information: This revised manual supersedes
X.25 for OpenVMS—Programming
Reference, Version 1.1b.

Operating System: OpenVMS I64 Version 8.2 and 8.2-1
OpenVMS Alpha Version 8.2

Software Version: HP X.25 for OpenVMS
Version 2.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

UNIX is a registered trademark of The Open Group.

Printed in the US

Contents

Preface . vii

1 Introduction

1.1 System Services . 1–1
1.1.1 Format of System Service Descriptions . 1–3
1.1.2 Syntax Conventions . 1–4
1.1.3 Common QIO Arguments . 1–4
1.2 Status Codes Returned at System Service Completion 1–5
1.2.1 Common QIO Return Status Codes . 1–5

2 Common System Services

2.1 $ASSIGN — Assign a Channel . 2–2
2.2 $CANCEL — Clear a Virtual Call on a Channel . 2–4
2.3 $CREMBX — Create a Mailbox and Assign a Channel 2–5
2.4 $DASSGN — Deassign the Channel . 2–7
2.5 $GETDVI — Get NV Device Number or Remote DTE Address 2–8
2.5.1 $GETDVI: Get NW or NV Unit Number . 2–9
2.5.2 $GETDVI: Get Remote DTE Address of PAD Connected to NV 2–10
2.6 $QIO(IO$_ACCESS) — Set Up a Virtual Circuit . 2–11
2.7 $QIO(IO$_ACCESS!IO$M_ABORT) — Reject a Call 2–19
2.8 $QIO(IO$_ACCESS!IO$M_ACCEPT) — Accept a Call 2–23
2.9 $QIO(IO$_ACCESS!IO$M_REDIRECT) — Redirect a Call 2–28
2.10 $QIO(IO$_ACPCONTROL) — Declare a Network Process 2–31
2.11 $QIO(IO$_DEACCESS) — Clear a Virtual Circuit 2–39
2.12 $QIO(IO$_READVBLK) — Receive Data . 2–43
2.13 $QIO(IO$_WRITEVBLK) — Transmit Data . 2–45

3 X.25 System Services

3.1 $QIO(IO$_NETCONTROL, PSI$K_INTACK) — Confirm Receipt of an
Interrupt . 3–2

3.2 $QIO(IO$_NETCONTROL, PSI$K_INTERRUPT) — Transmit an
Interrupt . 3–4

3.3 $QIO(IO$_NETCONTROL, PSI$K_RESET) — Reset a Virtual Circuit or
Confirm the Receipt of a Reset . 3–6

3.4 $QIO(IO$_NETCONTROL, PSI$K_RESTART) — Confirm Receipt of a
Restart . 3–8

iii

4 X.29 System Services

4.1 $QIO(IO$_NETCONTROL, PSI$K_X29_READ) — Read X.29 Terminal
Characteristics . 4–3

4.1.1 READ Subfunction: PSI$K_X29_BREAK_ACTION 4–4
4.1.2 READ Subfunction: PSI$K_X29_HANGUP_PARAMS 4–5
4.1.3 READ Subfunction: PSI$K_X29_HOLD_TIMER 4–6
4.1.4 READ Subfunction: PSI$K_X29_HOST_ECHO_PARAMS 4–7
4.1.5 READ Subfunction: PSI$K_X29_INT_ACTION 4–8
4.1.6 READ Subfunction: PSI$K_X29_LOCAL_ECHO_PARAMS 4–9
4.1.7 READ Subfunction: PSI$K_X29_PAD_PARAMS 4–10
4.1.8 READ Subfunction: PSI$K_X29_TEMP_NOHANG 4–12
4.2 $QIO(IO$_NETCONTROL, PSI$K_X29_READ_SPECIFIC) — Read

Specific X.29 Parameters . 4–13
4.2.1 READ_SPECIFIC Subfunction: PSI$K_X29_PAD_PARAMS 4–14
4.3 $QIO(IO$_NETCONTROL, PSI$K_X29_SET) — Set X.29 Terminal

Characteristics . 4–16
4.3.1 SET Subfunction: PSI$K_X29_BREAK_ACTION 4–18
4.3.2 SET Subfunction: PSI$K_X29_HANGUP_PARAMS 4–20
4.3.3 SET Subfunction: PSI$K_X29_HOST_ECHO_PARAMS 4–21
4.3.4 SET Subfunction: PSI$K_X29_HOLD_TIMER 4–23
4.3.5 SET Subfunction: PSI$K_X29_INT_ACTION 4–24
4.3.6 SET Subfunction: PSI$K_X29_LOCAL_ECHO_PARAMS 4–25
4.3.7 SET Subfunction: PSI$K_X29_PAD_PARAMS 4–27
4.3.8 SET Subfunction: PSI$K_X29_PAD_RESELECTION 4–29
4.3.9 SET Subfunction: PSI$K_X29_TEMP_NOHANG 4–31

5 Status Codes Returned at System Service Completion

5.1 Testing the Return Status Code . 5–3
5.2 Special Return Conditions . 5–4
5.2.1 Resource Wait Mode . 5–4
5.2.2 System Service Failure Exception Mode . 5–4
5.3 Obtaining Values for Other Symbolic Codes . 5–5

A Summary of X.25 System Service Calls

A.1 System Services for Setting Up and Clearing Communications A–1
A.2 System Services for Handling Incoming Calls . A–1
A.3 System Services for Handling Control and Data Messages A–2

B Summary of X.29 System Service Calls

B.1 System Services for Setting Up and Clearing Communication B–1
B.2 System Services for Handling Incoming Calls . B–1
B.3 System Services for Reading and Setting PAD Parameters and NV

Terminal Characteristics . B–2
B.4 Terminal Driver Functions . B–2

iv

C Network Connect Block (NCB)

C.1 Description of the NCB . C–1
C.2 NCB Format . C–1
C.3 Data Type Format Definitions . C–1
C.4 NCB Item Functions . C–2
C.5 NCB Item Descriptions . C–5
C.6 Example NCB . C–11

D Mailbox Messages

D.1 Format . D–1
D.2 Mailbox Message Sizes . D–4

E Standard PAD Parameters

F Programming Examples

Index

Figures

4–1 $QIO(IO$_NETCONTROL!PSI$K_X29_READ) Operations 4–11
4–2 $QIO(IO$_NETCONTROL!PSI$K_X29_READ_SPECIFIC)

Operations . 4–14
4–3 $QIO(IO$_NETCONTROL!PSI$K_X29_SET) Operations 4–16
D–1 Mailbox Message Structure . D–1

Tables

1 X.25 Terminology . x
2 X.25 for OpenVMS Client/Server Terminology x
1–1 System Services . 1–2
2–1 Common System Services . 2–1
2–2 Item Codes for a Network Process Declaration Block 2–33
3–1 System Services Specific to X.25 Programming 3–1
4–1 System Services Specific to X.29 Programming 4–1
5–1 Completion Status Information in the IOSB . 5–2
C–1 NCB Item Codes . C–2
C–2 PSI$C_NCB_REASON Codes . C–9
D–1 Mailbox Message Types for X.25 Programming D–3
D–2 Mailbox Message Types for X.29 Programming D–3
E–1 PAD Parameter Codes . E–1
F–1 Programming Examples (OpenVMS I64 and OpenVMS Alpha) F–1
F–2 Program/Language Matrix (OpenVMS I64 and OpenVMS Alpha) F–1
F–3 Programming Examples (OpenVMS VAX) . F–2
F–4 Program/Language Matrix (OpenVMS VAX) . F–2

v

Preface

Manual Objectives
This manual provides reference information for X.25 and X.29 programmers.

The information in this manual applies to the X.25 functionality provided by HP
X.25 for OpenVMS and HP DECnet–Plus for OpenVMS VAX. Note that the X.25
functionality in DECnet–Plus for OpenVMS VAX was formerly provided by VAX
P.S.I. software.

Throughout this manual, the X.25 functionality provided by both HP X.25 for
OpenVMS and HP DECnet–Plus for OpenVMS VAX is referred to generically as
X.25 for OpenVMS.

Audience
This manual is intended for programmers who perform network operations. The
manual assumes that you have knowledge and experience of the following:

• OpenVMS operating system

• OpenVMS system services

• Packet switching

• DECnet–Plus

• A programming language

The manual also assumes that you have some knowledge of general
communications theory, and that you understand X.25 and PSDN terminology.

Structure
The manual is divided into five chapters and six appendices:

• Chapter 1 introduces the system services used for X.25 and X.29
programming, and explains the structure of the reference information.

• Chapter 2 details the system services common to both X.25 and X.29
programming.

• Chapter 3 details the system services specific to X.25 programming.

• Chapter 4 details the system services specific to X.29 programming.

• Chapter 5 describes the status values returned by the system services used
for X.25 and X.29 programming.

• Appendix A provides a summary of the format of the X.25 system services.

• Appendix B provides a summary of the format of the X.29 system services.

• Appendix C describes the structure of the Network Connect Block.

vii

• Appendix D provides reference information about mailbox messages.

• Appendix E contains descriptions of the standard PAD parameters.

• Appendix F describes the X.25 and X.29 programming examples that are
provided in SYS$EXAMPLES:.

Associated Manuals
The following sections describe HP DECnet–Plus for OpenVMS, HP X.25 for
OpenVMS, and HP OpenVMS manuals that either directly describe the X.25 for
OpenVMS software or provide related information.

HP DECnet–Plus for OpenVMS Documentation
The following DECnet–Plus manuals contain information useful to X.25 for
OpenVMS managers, users, and programmers:

• HP DECnet–Plus for OpenVMS —Introduction and User’s Guide

This manual provides general information on DECnet–Plus and describes the
concept of packet switching data networks.

• HP DECnet–Plus for OpenVMS—Installation and Configuration

This manual describes how to install and configure DECnet–Plus for
OpenVMS software. For OpenVMS I64 and OpenVMS Alpha systems, this
manual also describes how to install X.25 for OpenVMS software. Details
on configuring X.25 for OpenVMS on OpenVMS I64 and OpenVMS Alpha
systems are provided in the HP X.25 for OpenVMS—Configuration manual.
For OpenVMS VAX systems, this manual also describes how to install and
configure the X.25 functionality provided by DECnet–Plus for OpenVMS VAX.

• HP DECnet–Plus for OpenVMS—Network Management

This manual provides conceptual and task information about managing and
monitoring a DECnet–Plus network. In addition, the manual devotes a
section to the management of X.25 entities used by DECnet operating over
X.25 data links.

• HP DECnet–Plus for OpenVMS—Network Control Language Reference

This manual provides detailed information on the Network Control Language
(NCL), which is used to manage X.25 for OpenVMS management entities.

HP X.25 for OpenVMS Documentation
The following manuals make up the X.25 for OpenVMS documentation set:

• HP X.25 for OpenVMS—Configuration (OpenVMS I64 and OpenVMS Alpha)

This manual explains how to configure X.25 for OpenVMS software on
OpenVMS I64 and OpenVMS Alpha systems.

• HP X.25 for OpenVMS—Security Guide

This manual describes the X.25 Security model and how to set up, manage,
and monitor X.25 Security to protect your X.25 for OpenVMS system from
unauthorized incoming and outgoing calls.

• HP X.25 for OpenVMS—Problem Solving Guide

This manual provides guidance on how to analyze and correct X.25–related
and X.29–related problems that may occur while using the X.25 for OpenVMS
software. In addition, the manual describes loopback testing for LAPB data
links.

viii

• HP X.25 for OpenVMS—Programming Guide

This manual describes how to write X.25 and X.29 programs to perform
network operations.

• HP X.25 for OpenVMS—Programming Reference

This manual provides reference information for X.25 and X.29 programmers.
It is a companion manual to the HP X.25 for OpenVMS—Programming Guide.

• HP X.25 for OpenVMS—Utilities Guide

This manual describes how to use and manage X.25 Mail and how to use
and manage a host–based PAD to connect to a remote system. It also
describes how to manage the X.29 communication links used for both of
these functions. In addition, this manual explains how to use OpenVMS DCL
SET TERMINAL/X29 commands to manage remote host–based or network
PADs.

• HP X.25 for OpenVMS—Accounting

This manual describes how to use X.25 Accounting to obtain performance
records and information on how X.25 is being used on your system.

HP OpenVMS Documentation
The following OpenVMS manuals contain information useful to X.25 for
OpenVMS managers, users, and programmers:

• The current HP OpenVMS New Features and Documentation Overview
manual

• HP OpenVMS DCL User’s Manual

• HP OpenVMS DCL Dictionary

• HP OpenVMS System Management Utilities Reference Manual

• HP OpenVMS System Services Reference Manual

• HP OpenVMS Guide to System Security

Reader’s Comments
HP welcomes your comments on this manual or any of the X.25 for OpenVMS
documents. Please send comments to either of the following addresses:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
For information about how to order additional documentation and for online
versions of most X.25 for OpenVMS documentation, visit the following World
Wide Web address:

http://www.hp.com/go/openvms/doc/

ix

Terminology
The terminology used in the VAX P.S.I. product has been replaced by the
terminology used in the X.25 for OpenVMS product. Table 1 shows the correlation
between VAX P.S.I. terms and their X.25 for OpenVMS counterparts.

Table 1 X.25 Terminology

VAX P.S.I. X.25 for OpenVMS

VAX P.S.I. X.25 for OpenVMS VAX

Access system X.25 Client system

Native system X.25 Direct Connect system

Multihost system X.25 Connector system

Gateway system X.25 Connector system

In addition to the terms shown in Table 1, the X.25 for OpenVMS documentation
set uses the following standard terms for client systems, server systems, relay
systems, and the X.25 for OpenVMS management entities that represent these
systems:

Table 2 X.25 for OpenVMS Client/Server Terminology

Client system A client system of an X.25 Connector system (and
therefore a client of the X25 Server management
module on the X.25 Connector system.)

Relay Client system A client system of an X.25 Relay system (and therefore
a client of the X25 Relay management module on the
X.25 Relay system.)

Relay–Client A shorthand term for an X25 RELAY CLIENT
management entity on an X.25 Relay system that
contains management information about an actual
Relay Client system.

Relay system An X.25 Direct Connect or Connector system with the
X.25 Relay module enabled.

Server Client system Another term for a Client system.

Server–Client A shorthand term for an X25 SERVER CLIENT
management entity on an X.25 Connector system that
contains management information about one or more
actual X.25 Client systems.

For more information about clients, servers, and relays in X.25 for OpenVMS,
refer to the HP X.25 for OpenVMS—Configuration manual and the HP X.25 for
OpenVMS—Management Guide.

x

Conventions
The following conventions are used in the X.25 for OpenVMS documentation set:

UPPERCASE and
lowercase

The OpenVMS operating system does not differentiate between
lowercase and uppercase characters. Literal strings that
appear in text, examples, syntax descriptions, and function
descriptions can be entered using uppercase characters,
lowercase characters, or a combination of both.

In running text, uppercase characters indicate OpenVMS
DCL commands and command qualifiers; Network Control
Language (NCL) commands and command parameters; other
product–specific commands and command parameters; network
management entities; OpenVMS system logical names; and
OpenVMS system service calls, parameters, and item codes.

Leading uppercase characters, such as Protocol State, indicate
management entity characteristics and management entity
event names. Leading uppercase characters are also used for
the top-level management entities known as modules.

system output This typeface is used in interactive and code examples to
indicate system output. In running text, this typeface is used
to indicate the exact name of a device, directory, or file; the
name of an instance of a network management entity; or an
example value assigned to a DCL qualifier or NCL command
parameter.

user input In interactive examples, user input is shown in bold print.

$ In this manual, a dollar sign ($) is used to represent the
default OpenVMS user prompt.

Ctrl/X In procedures, a sequence such as Ctrl/X indicates that you
must hold down the key labeled Ctrl while you press another
key or a pointing device button.

Return In procedures, a key name is shown enclosed to indicate that
you press the corresponding key on the keyboard.

italic text Italic text indicates variables or book names. Variables include
information that varies in system input and output. In
discussions of event messages, italic text indicates a possible
value of an event argument.

bold text Bold text indicates an important term, or important
information.

() In a command definition, parenthesis indicate that you must
enclose the options in parenthesis if you choose more than one.
Separate the options using commas.

{ } In a command definition, braces are used to enclose sets of
values. The braces are a required part of the command syntax.

[] In a command definition, square brackets are used to enclose
parts of the command that are optional. You can choose one,
none, or all of the options. The brackets are not part of the
command syntax. However, brackets are a required syntax
element when specifying a directory name in an OpenVMS file
specification.

Note

The following conventions apply to multiplatform documentation.

xi

OpenVMS
I64/Alpha

Indicates information specific to OpenVMS I64 and OpenVMS
Alpha. Note that single lines of information specific to
OpenVMS I64 and OpenVMS Alpha are marked ‘‘(OpenVMS
I64 and OpenVMS Alpha)’’ or ‘‘(OpenVMS I64/Alpha)’’.

OpenVMS
VAX

Indicates information specific to OpenVMS VAX. Note that
single lines of information specific to OpenVMS VAX are
marked ‘‘(OpenVMS VAX)’’.

♦ Indicates the end of platform–specific information.

xii

1
Introduction

X.25 for OpenVMS provides a set of system services for you to communicate with
a remote DTE.

This chapter introduces you to the available system services, the format of the
system service descriptions in this manual, and the syntax conventions used.

1.1 System Services
Table 1–1 summarizes the system services that can be used for X.25 and X.29
programming. Details of each system service are given in the following sections:

• Chapter 2 details the system services common to both X.25 and X.29
programming.

• Chapter 3 details the system services specific to X.25 programming.

• Chapter 4 details the system services specific to X.29 programming.

Note

All constants in the program header files associated with the system
services are defined in lowercase.

Example X.25 and X.29 programs are provided in the SYS$EXAMPLES: directory.
Appendix F describes the available example programs.

Introduction 1–1

Table 1–1 System Services

System Service Description

Services Common to X.25 and X.29 Programming (Refer to Chapter 2)

$ASSIGN Assigns a Channel

$CANCEL Clears a Virtual Call on
a Channel

$CREMBX Creates a Mailbox and
Assigns a Channel

$DASSGN Deassigns the Channel

$GETDVI Gets the NV Device
Number or Remote DTE
Address

$QIO(IO$_ACCESS) Sets Up a Virtual Circuit

$QIO(IO$_ACCESS!IO$M_ABORT) Rejects a Call

$QIO(IO$_ACCESS!IO$M_ACCEPT) Accepts a Call

$QIO(IO$_ACCESS!IO$M_REDIRECT) Redirects a Call

$QIO(IO$_ACPCONTROL) Declares a Network
Process

$QIO(IO$_DEACCESS) Clears a Virtual Circuit

$QIO(IO$_READVBLK) Receives Data

$QIO(IO$_WRITEVBLK) Transmits Data

Services Specific to X.25 Programming (Refer to Chapter 3)

$QIO(IO$_NETCONTROL, PSI$K_INTACK) Confirms Receipt of an
Interrupt

$QIO(IO$_NETCONTROL, PSI$K_INTERRUPT) Transmits an Interrupt

$QIO(IO$_NETCONTROL, PSI$K_RESET) Resets a Virtual Circuit
or Confirms Receipt of a
Reset

$QIO(IO$_NETCONTROL, PSI$K_RESTART) Confirms Receipt of a
Restart

Services Specific to X.29 Programming (Refer to Chapter 4)

$QIO(IO$_NETCONTROL, PSI$K_X29_READ) Reads X.29 Terminal
Characteristics

$QIO(IO$_NETCONTROL, PSI$K_X29_READ_SPECIFIC) Reads Specific X.29
Parameters

$QIO(IO$_NETCONTROL, PSI$K_X29_SET) Sets X.29 Terminal
Characteristics

1–2 Introduction

1.1.1 Format of System Service Descriptions
In Chapters 2, 3, and 4, the system services are arranged in alphabetical order.
Each system service description contains an outline of the function of the service,
plus the following items, where applicable:

Format
Shows the macro name, with all keyword arguments listed in order of position.

Arguments
Describes the arguments. Arguments which are unique to X.25 or X.29 operation
are described for each system service. Arguments which are common for all calls
are described in Section 1.1.3.

NCB Contents
Lists the mandatory, optional, and ignored items contained in the Network
Connect Block (NCB). Ignored items are those ignored by the X.25 for OpenVMS
software. If you include other items in the NCB, an error is reported.

Examples
Shows the system service with arguments completed in MACRO–style code.
These examples are very general and you are recommended to refer to your
programming language manual for specific details of implementing the system
service. Example programs are provided in the SYS$EXAMPLES: directory. Refer to
Appendix F.

Return Status
Lists those status codes returned by the service that apply to X.25 for OpenVMS,
and explains what the return status codes mean. Common status codes that may
be returned are listed in Section 1.2.1.

Note

In Chapters 2, 3, and 4, notes that are referred to in the text and tables
are presented at the end of the system service to which they refer.

Introduction 1–3

1.1.2 Syntax Conventions
The following conventions are used in this manual to describe the syntax of the
system services.

1. A character is one of the set of alphanumerics that includes:

• A to Z

• a to z

• 0 to 9

• _ (underscore)

• $ (dollar)

2. All system service names are in UPPERCASE letters, and you must enter
these as shown. Arguments are in italics, and you must replace the argument
shown in the system service format with the precise information requested.

3. Square brackets [] enclose optional keywords and arguments. Do not include
the brackets when entering the system service.

4. You must enter punctuation such as commas and parentheses () as shown in
the format. Use consecutive commas to indicate omitted arguments; you can
omit commas indicating optional arguments at the end of a system service
macro.

1.1.3 Common QIO Arguments
Only those arguments which are unique to X.25 or X.29 operations are described
for each system service. The arguments listed below are common to all system
services, and always have the values shown here:

efn Number of the event flag to be set at request completion. If not specified,
the default is 0.

When QIO begins execution, it clears the specified event flag. The event
flag is set even if the service terminates without queuing an I/O request.

chan I/O channel that is assigned to the device to which the request is
directed. The chan argument is a word value containing the number
of the I/O channel.

iosb I/O status block to receive the final completion status of the I/O
operation. iosb is the address of the quadword I/O status block (see
below).

astadr AST service routine to be executed when the I/O completes. The astadr
argument is the address of a longword value that is the entry mask to
the AST routine. The AST routine executes at the access mode of the
caller of QIO.

astprm AST parameter to be passed to the AST service routine. The astprm
argument is a longword value containing the AST parameter.

For example, for a QIO with the following format, the Arguments section of the
system service description describes only the argument func, and parameters p1
to p6:

$QIO efn,chan,func,iosb,astadr,astprm,p1, p2,p3,p4,p5,p6

The other arguments have the values given in the preceding table.

1–4 Introduction

1.2 Status Codes Returned at System Service Completion
When you request a system service, the status returned to Register 0 (R0)
indicates only whether the request was queued successfully. To check whether
a system service has completed successfully, your program should also examine
the first word of the I/O Status Block (IOSB). There may be further status
information in words 2 and 3. Refer to Table 5–1.

For further information about return status codes, refer to Chapter 5.

1.2.1 Common QIO Return Status Codes
Only those return status codes that are unique to X.25 or X.29 operations are
described for each system service. Unless they are described as having a meaning
specific to X.25 for OpenVMS, status codes have the meanings given below. The
status codes are listed in alphabetical order.

Three of the error codes are severe. They indicate an immediate failure, because
OpenVMS cannot process your system service call. These errors are indicated by
the following status codes:

SS$_ACCVIO Either of the following:

• The argument list, device, mailbox name string, string
descriptor, buffer, or IOSB cannot be read by the caller.

• The channel number, buffer, or IOSB cannot be written by
the caller. If the argument list cannot be read by the caller
(using the $name_G form), the service is not called. This is
a particular meaning of SS$_ACCVIO. It is different from
the meaning listed for many individual system services,
in which the service is called, but one or more specific
arguments are addresses that cannot be read or written by
the caller.

SS$_ILLSER An illegal system service was called.

SS$_INSFARG Not enough arguments were supplied to the service.

In addition to the above status codes, and the codes that apply specifically to X.25
for OpenVMS described with each service, the services may return one or more of
the following codes:

SS$_ABORT PSDN, DECnet or X.25 for OpenVMS software failed during
request processing.

SS$_BADPARAM One or more of the parameters p1 to p6 is not valid for this
QIO.

SS$_CANCEL A $CANCEL service was issued for this channel while the
request was being processed.

SS$_EXQUOTA The process does not have sufficient buffered I/O quota or other
resources to complete the request.

SS$_ILLEFC An illegal event flag number was specified.

SS$_ILLIOFUNC The function code was illegal, or had illegal or conflicting
modifier bits set.

SS$_INSFMEM There is insufficient system dynamic memory to complete the
request.

SS$_IVBUFLEN The format of the NCB item–list is invalid.

SS$_IVCHAN An invalid channel number was specified.

Introduction 1–5

SS$_NOPRIV The process does not have the privileges required for this
function.

SS$_NORMAL Service completed successfully.

SS$_UNASEFC The process is not associated with the cluster containing the
specified event flag.

For more information on return status codes, refer to the OpenVMS system
services documentation.

1–6 Introduction

2
Common System Services

Table 2–1 summarizes the system services common to both X.25 and X.29
programming.

Table 2–1 Common System Services

System Service Description

$ASSIGN Assigns a Channel

$CANCEL Clears a Virtual Call on a Channel

$CREMBX Creates a Mailbox and Assigns a
Channel

$DASSGN Deassigns the Channel

$GETDVI Gets the NV Device Number or
Remote DTE Address

$QIO(IO$_ACCESS) Sets Up a Virtual Circuit

$QIO(IO$_ACCESS!IO$M_ABORT) Rejects a Call

$QIO(IO$_ACCESS!IO$M_ACCEPT) Accepts a Call

$QIO(IO$_ACCESS!IO$M_REDIRECT) Redirects a Call

$QIO(IO$_ACPCONTROL) Declares a Network Process

$QIO(IO$_DEACCESS) Clears a Virtual Circuit

$QIO(IO$_READVBLK) Receives Data

$QIO(IO$_WRITEVBLK) Transmits Data

Common System Services 2–1

2.1 $ASSIGN — Assign a Channel
$ASSIGN obtains a channel number, and associates a (previously created)
mailbox with the channel.

In X.25 programs, you use $ASSIGN to assign a channel to the NW device.

In an X.29 program, you use $ASSIGN to assign a channel to the NW device or
to the NV device.

When your program attempts to assign a channel to NWA0: or NVA0: X.25 for
OpenVMS creates a new device called NWAuu: or NVAuu: (where uu is a unique
unit number), and assigns the channel to that device. $ASSIGN never assigns a
channel to NWA0: or NVA0: .

You will use the number allocated to the NW device in all QIOs which
communicate with a remote DTE. In X.29 programs, you will need to supply
the number of the NV device as the p6 parameter in all QIO calls to the NW
device. Use $GETDVI to discover the unit number allocated to the NV or NW
device.

Note that your program must assign only one channel for each virtual circuit
to the NWAuu device.

In X.25 programs, for a Permanent Virtual Circuit (PVC) you assign a channel to
the device NWA0: (exactly as for an SVC), and then specify the name of the PVC
in the NCB for the $QIO(IO$_ACCESS) service.

Format
$ASSIGN devnam,chan,[acmode],[mbxnam]

Arguments

devnam Address of a quadword character string descriptor pointing to the device
name string.

For X.25 programs, the character string contains NWA0: or a logical name
for NWA0: .

For X.29 programs, the character string contains either NWA0: or NVA0:,
or a logical name definition for either.

chan Address of a word to receive the channel number assigned.

acmode Access mode to be associated with the channel. The specified access mode
must be an access mode less privileged than, or equal in privilege to, the
access mode from which the service was called. The channel allows I/O
operations only from equally privileged, or more privileged, access modes.

mbxnam Address of a quadword character string descriptor pointing to the logical
name string for the mailbox, if required, to be associated with the channel.
An address of 0 implies no mailbox; this is the default value. This mailbox
remains associated with the channel until you delete the mailbox or
deassign the channel ($DASSGN).

2–2 Common System Services

Example
In the following example, the device name is referred to by PSI_DEV. The channel
to the network device is placed in PSI_CHAN. A mailbox, MBX, is assigned to this
channel. No access mode is specified.

;Declaring the data:

PSI_DEV:
.ASCID /_NWA0:/ ; Network device name

PSI_CHAN:
.BLKW 1 ; Mailbox channel

MBX:
.ASCID /SYS$NET/ ; Mailbox logical name

; Using the System Service:

$ASSIGN_S - ; Assign a channel
DEVNAM = PSI_DEV,- ; to network device
CHAN = PSI_CHAN,- ; Channel number
MBXNAM = MBX ; Mailbox name

Return Status

SS$_NORMAL Service successfully completed, a channel has been assigned.

SS$_IVDEVNAM Either no device name was specified, or either the device name
or the mailbox name string contains invalid characters.

SS$_IVLOGNAM The device name or mailbox name string has a length of 0 or
has more than 63 characters.

SS$_NOIOCHAN No channel is available for assignment.

SS$_NOSUCHDEV The specified device or mailbox does not exist.

Common System Services 2–3

2.2 $CANCEL — Clear a Virtual Call on a Channel
The $CANCEL system service cancels all pending I/O requests on the specified
channel. This has the effect of clearing the virtual call in progress on the channel.

You can cancel I/O requests only from an access mode equal to, or more privileged
than, the access mode from which you originally assigned the channel.

When a request currently in progress is cancelled, the driver is notified
immediately. The action taken for I/O requests in progress is similar to that
taken for queued requests:

• The specified event flag is set.

• The first word of the IOSB, if specified, is set to SS$_CANCEL if the I/O
request is queued or to SS$_ABORT if the I/O request is in progress.

• The AST, if specified, is queued.

Outstanding I/O requests are automatically cancelled at image exit.

Format
$CANCEL chan

Arguments

chan Number of the I/O channel on which I/O is to be cancelled.

Example
In this example, the call cancels all pending I/O requests to the network device
on channel PSI_CHAN.

; Declaring the data:

PSI_CHAN:
.BLKW 1 ; Mailbox channel

; Using the System Service

$CANCEL_S - ; Cancel I/O requests
CHAN = PSI_CHAN ; on channel

Return Status

SS$_NORMAL Service successfully completed, I/O has been cancelled on the
specified I/O channel.

SS$_EXQUOTA Process does not have sufficient buffered I/O quota and has
disabled resource wait mode.

SS$_NOPRIV The specified channel is not assigned, or was assigned from a
more privileged access mode.

2–4 Common System Services

2.3 $CREMBX — Create a Mailbox and Assign a Channel
$CREMBX creates a virtual mailbox device named MBAuu:, and assigns an I/O
channel to it.

The system provides the unit number, uu, when it creates the mailbox MBAuu:. If
a mailbox with the specified name already exists, $CREMBX assigns a channel
to the that mailbox. It should not however be used to create a channel to the
mailbox SYS$NET as $CREMBX does not recognize SYS$NET as an existing
mailbox.

Format
$CREMBX [prmflg],chan,[maxmsg],[bufquo],[promsk],[acmode], [lognam]

Arguments

prmflg Specifies whether the mailbox is to be permanent or temporary. This
argument is a longword value: 1 for permanent; 0 for temporary.

chan Address of a word to receive the channel number assigned.

maxmsg Maximum size (in bytes) of a message that can be sent to the mailbox. If
not specified, or specified as 0, OpenVMS provides a default value.

bufquo Number of bytes of system dynamic memory that can be used to buffer
messages sent to the mailbox. This argument is a longword value. For
a temporary mailbox, the value must be less than or equal to the buffer
quota of the process. OpenVMS provides a default value.

promsk Protection mask, specified by a longword value. Cleared bits grant access
to four types of user: world, group, owner, and system. If promsk is not
specified, access is granted to all users.

acmode A longword containing one of the four access modes defined by the
$PSIDEF macro.

lognam The address of a character string descriptor pointing to a logical name
string to be assigned to the mailbox.

Example
In this example $CREMBX is used to create a network device mailbox and assign
the network channel MBX_CHAN.

MBX_CHAN:
.BLKW 1 ; Channel to mailbox

MBX_NAME:
.ASCID /X29_MBX/ ; Mailbox name

;+
; Create network device mailbox and assign network channel.
;-

$CREMBX_S - ; Create mailbox
CHAN = MBX_CHAN,- ; channel
LOGNAM = MBX_NAME ; logical name

BSBW ERROR ; Check for error

Common System Services 2–5

Return Status

SS$_NORMAL Service completed successfully.

SS$_BADPARAM The bufquo argument specified too large a value.

SS$_IVSTSFLG Undefined bit set in the prmflg argument. This argument must
have a value of 1 or 0.

SS$_NOIOCHAN No channel is available for assignment.

SS$_NOPRIV The process does not have the privilege to create this type of
mailbox.

2–6 Common System Services

2.4 $DASSGN — Deassign the Channel
$DASSGN deassigns the logical channel to an NV or NW device.

For channels assigned to NV devices, $DASSGN takes the following action:

• If the channel is the only one assigned to NVAuu:, the terminal characteristic
/HANGUP is set and PSI$K_X29_TEMP_NOHANG is not set, the channel is
released, and the circuit is cleared.

• If the channel is the last one assigned to NVAuu:, the terminal characteristic
/TYPEAHEAD is set and PSI$K_X29_TEMP_NOHANG is set, OpenVMS
begins the login sequence at the X.29 terminal.

Format
$DASSGN chan

Arguments

chan Number of the channel to be deassigned.

Example
In the following example, channel PSI_CHAN is deassigned.

; Declaring the data:

PSI_CHAN:
.BLKW 1 ; Mailbox channel

; Using the System Service:

$DASSGN_S - ; Deassign channel
CHAN = PSI_CHAN ; to network device

Return Status

SS$_NORMAL Service completed successfully, channel has been deassigned.

SS$_NOPRIV The specified channel is not assigned, or was assigned from a
more privileged access mode.

Common System Services 2–7

2.5 $GETDVI — Get NV Device Number or Remote DTE Address
In X.25 programs, you can use $GETDVI to obtain the NW unit number (see
Section 2.5.1).

In X.29 programs, you can use $GETDVI to:

• Obtain the NW unit number (see Section 2.5.1).

• Obtain the NV unit number (see Section 2.5.1).

• Obtain the remote DTE address (see Section 2.5.2).

2–8 Common System Services

2.5.1 $GETDVI: Get NW or NV Unit Number
$GETDVI obtains the unit number allocated by the NW or NV device driver.

The NV unit number is important in X.29 programs, because you need to supply
the NV unit number as the p6 parameter in any QIO request to NWA0: (the X.25
network device).

For details of how to connect an NV device to a VT device, see the HP X.25 for
OpenVMS—Programming Guide.

Format
$GETDVI [efn],[chan],[devnam],itmlst,[iosb],[astadr], [astprm],nullarg

Arguments

chan Number of the channel assigned to the NW or NV device.

itmlst Address of a descriptor block returning the unit number of the NW or NV
device. Specify DVI$_UNIT as the item code.

Example
In the following example, $GETDVI gets the unit number of the NV device, and
returns it in the item–list UNIT_LIST.

NV_CHAN:
.BLKW 1 ; Channel to NV

UNIT_LIST:
.WORD 4 ; length (in bytes) of buffer

; for $GETDVI to output
.WORD DVI$_UNIT ; item code
.LONG NV_UNIT ; Address of buffer for $GETDVI

; to output
.LONG NV_UNIT_LENGTH ; Address of word for $GETDVI

; to put the amount of data output
.LONG 0 ; End of the item-list

IO_STATUS:
.BLKW 4 ;I/O Status block

;+
; Get the unit number of the NV device.
;-

$GETDVIW_S - ; Use this routine to convert
- ; the channel number given to
- ; a unit number.
CHAN = NV_CHAN,- ; channel
ITMLST = UNIT_LIST ; Address of item-list of information.
- ; wanted from system service.
IOSB = IO_STATUS ; Status return

BSBW ERROR ; Check for error

Return Status

SS$_NORMAL Service completed successfully.

Common System Services 2–9

2.5.2 $GETDVI: Get Remote DTE Address of PAD Connected to NV
In X.29 programs, you can use $GETDVI to return a string containing the remote
DTE address of the calling PAD and the name of the local DTE class that the call
was received on.

The remote DTE will only be returned if the PSDN provided the remote DTE
address in the CALL packet. The local DTE class is always returned. The format
of the returned string is:

dte-class.remote-dte-address

Format
$GETDVI [efn],[chan],[devnam],itmlst,[iosb],[astadr], [astprm],nullarg

Arguments

chan Number of the channel assigned to the NV device.

itmlst Address of a descriptor block returning the local DTE class and
the remote DTE address of the PAD for the NV device. Specify
DVI$_TT_ACCPORNAM as the item code.

Example
In this example, $GETDVI gets the remote DTE address of the PAD, and returns
it in the item–list REMDTE_LIST.

PAD_REMDTE_LENGTH: .blkw 1 ; Length of returned string
PAD_REMDTE: .BLKB 64 ; Storage To hold the remote DTE address in
NV_CHAN:

.BLKW 1 ; Channel to NV
REMDTE_LIST:

.WORD 64 ; length (in bytes) of buffer
; for $GETDVI to output

.WORD DVI$_TT_ACCPORNAM ; item code

.LONG PAD_REMDTE ; Address of buffer for $GETDVI
; to output

.LONG PAD_REMDTE_LENGTH ; Address of word for $GETDVI
; to put the amount of data output

.LONG 0 ; End of the item-list
IO_STATUS:

.BLKW 4 ;I/O Status block

;+
; Get the remote DTE address of the PAD
;-

$GETDVIW_S - ; Use this routine to obtain
- ; the local DTE class and
- ; remote DTE.
CHAN = NV_CHAN,- ; channel
ITMLST = REMDTE_LIST ; Address of item-list of information.
- ; wanted from system service.
IOSB = IO_STATUS ; Status return

BSBW ERROR ; Check for error

Return Status

SS$_NORMAL Service completed successfully.

2–10 Common System Services

2.6 $QIO(IO$_ACCESS) — Set Up a Virtual Circuit
The QIO system service with a function code of IO$_ACCESS requests a virtual
circuit to be set up, and can optionally request network facilities. If you subscribe
to the fast select facility, up to 128 bytes of data can be sent with the request
rather than being limited to 16 bytes of data for normal calls. You must also use
this service before data can be transmitted or received on a PVC.

For an SVC, the service completes when the request is either accepted or rejected
by the remote DTE. For a PVC, the call completes without any PSDN activity.
If there is a mailbox associated with the NW device, an NCB is written to the
mailbox with details of the call acceptance or call rejection. Call accept messages
have the code MSG$_CONNECT, and reject messages have the code MSG$_
DISCONNECT.

If the rights identifier PSI$X25_USER is defined on your system, your program
must possess either that rights identifier or BYPASS privilege.

If PSI$X25_USER is not defined on your system, your program must possess
NETMBX privilege.

Note that to set up a virtual circuit requires certain system resources, which are
deducted from the quota for your process. Refer to the HP X.25 for OpenVMS—
Programming Guide for details.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],p2,[p3],[p4],[p5],p6

Arguments

func IO$_ACCESS

p1 Not used.

p2 Starting virtual address of quadword descriptor of the NCB (see
Appendix C).

p3 Not used.

p4 Not used.

p5 Not used.

p6 Unit number of the NV device, for X.29 programs. If the call is handled by
the NW device (in X.25 programs), p6 must be zero. The default value for
p6 is zero.

NCB Contents
Only mandatory, optional, and ignore items are listed in the following table.
Other items will generate an error if you use them.

Common System Services 2–11

PSI$C_NCB Item
Code Meaning Notes

Mandatory items

For PVCs, you must specify:

PVCNAM PVC identifier 2,3

Optional items

CALLED_
EXTENSION

Called address extension 5

CALLING_
EXTENSION

Calling address extension 5

CHARGING_INFO Charging information request

CUG (Bilateral) Closed User Group 1

CUM_TRST_DLY Cumulative transit delay

DTECLASS Name of the DTE Class from
which a member DTE will be used
to make the call

3,4

ETE_TRST_DLY End–to–end transit delay

EXPEDITE Negotiate use of interrupts

FSEL Fast select (no restriction)

FSEL_RES Fast select (restricted response)

LOCFAC Local PSDN facilities

OpenVMS
VAX LOCSUBADR Local subaddress ♦

MAX_TRST_DLY Maximum acceptable transit delay

MIN_THRUCLS Minimum throughput class (data
rate)

NET_USER_ID Network user identifier

PKTSIZE Packet size

RCV_QUOTA Maximum receive buffer bytes 3

REMDTE Remote DTE address 1

REVCHG Reverse charging request

RPOA Remote Port of Access

TEMPLATE Name of template created by
network management containing
specified parameters

THRUCLS Throughput class (maximum data
rate)

TRANSIT_DELAY Maximum transit delay

USERDATA User data field 6

WINSIZE Window size

Ignored items

NULL Null item identifier

2–12 Common System Services

Notes

1. To specify the remote DTE for an SVC, you need to specify the DTE class
using one of the following items:

• DTECLASS

• TEMPLATE (The template should contain a value for the DTE Class
attribute)

In addition, you need to specify one of the following items:

• REMDTE

• CUG (if the CUG is not a BCUG, specify REMDTE also)

• TEMPLATE (The template should contain a value for the Destination
DTE Address attribute or the Selected Group attribute)

2. PVCNAM is used for X.25 programs only.

3. These are the only fields valid with a PVC.

4. The DTE Class could be a Remote DTE Class and may not have any member
DTEs, for example, it could be used by an Access system to make calls
through a Connector system.

5. The called address extension facility is encoded as follows:

• Number of bytes in the facility (1 byte)

• Number of semi–octets in the facility (1 byte)

• The facility itself (up to 32 octets, with 2 digits per byte)

Each of these bytes is encoded so that the low–order semi–octet is in bits
0 to 3, and the high–order semi–octet is in bits 4 to 7.

When the matching is performed, a logical AND is performed on each byte
of the facility with the corresponding byte of the mask and the result is
compared with the corresponding byte of the value. The match succeeds if
all the bytes compare. If the incoming call does not provide at least as many
semi–octets as the extension value specifies, the match fails.

6. The user data field can be up to 16 bytes in length for normal calls and up to
128 bytes in length for fast select calls.

Common System Services 2–13

Examples
X.25 Code Example In this example, the system service, IO$_ACCESS, is called
to set up a virtual circuit. The channel to the network device is PSI_CHAN. The
I/O Status Block is declared as IO_STATUS, and the address of a descriptor of the
NCB to be used is ACCESS_NCB.

; Declaring the data:

PSI_CHAN:
.BLKW 1 ; Mailbox channel

IO_STATUS:
.BLKW 4 ; I/O status block

ACCESS_NCB:
.LONG ACCESS_NCB_LEN ; NCB descriptor
.ADDRESS ACCESS_NCB_BLK

; Using the System Service:

$QIOW_S - ; Issue QIO and wait
CHAN = PSI_CHAN,- ; to network device
FUNC = #IO$_ACCESS,- ; Function is make call
IOSB = IO_STATUS,- ; I/O status block
P2 = #ACCESS_NCB ; Address of call NCB

; descriptor
P6 = 0 ; NV device unit number

; is zero for NW

2–14 Common System Services

X.29 Code Example In this example, the system service IO$_ACCESS is called
to set up a virtual circuit for an X.29 call. The channel to the network device
is NW_CHAN. The I/O Status Block is declared as IO_STATUS, and the address of a
descriptor of the NCB to be used is ACCESS_NCB.

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV Unit number

IO_STATUS:
.BLKW 4 ;I/O Status block

;+
; Network Connect Block:
;-
ACCESS_NCB: ; NCB Descriptor

.LONG ACCESS_NCB_LEN

.ADDRESS ACCESS_NCB_BLK
ACCESS_NCB_BLK: ; NCB to set up a call

DTECLASS: ; DTE Class
.WORD DTECLASS_LEN
.WORD PSI$C_NCB_DTECLASS
.ASCIC /ISO8208/
DTECLASS_LEN = .-DTECLASS

REMOTE_DTE: ; DTE Address
.WORD REMOTE_DTE_LEN
.WORD PSI$C_NCB_REMDTE
.ASCIC /23427341234522/
REMOTE_DTE_LEN = .-REMOTE_DTE

; NO user data
; NO fast select

ACCESS_NCB_LEN = .-ACCESS_NCB_BLK

;+
; Set up a virtual call
;-

$QIOW_S - ; Issue QIO and wait
CHAN = NW_CHAN,- ; to network device
FUNC = #IO$_ACCESS,- ; function is make call
IOSB = IO_STATUS,- ; I/O status block
P2 = #ACCESS_NCB,- ; address of call NCB
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; Check for I/O error

Common System Services 2–15

Return Status

SS$_NORMAL Service queued successfully (R0). Remote DTE has accepted
the request to set up a virtual circuit (IOSB).

SS$_ACCVIO Unable to read the NCB descriptor or the NCB.

SS$_CLEARED The virtual circuit was cleared while this request was being
processed. The remote DTE has rejected the request to set up
a virtual circuit (IOSB).

SS$_DEVNOTMOUNT X.25 for OpenVMS is not installed with X.29 support.
NVDRIVER has not been installed by SYSGEN. X.29 calls
cannot be made. This status is only returned for X.29 calls.

SS$_FILALRACC For SVCs: Invalid unit number for SVC already in use by
another process.

For PVCs (X.25 only): The PVC is already being used by
another process.

SS$_IVBUFLEN The format of the NCB item–list is invalid. Check the
secondary status in the third word of the IOSB. Details of
the secondary status are given below.

SS$_IVDEVNAM The format of the NCB is invalid, or an error was detected
while processing the NCB. Check the secondary status in the
IOSB. Details of the secondary status are given below.

SS$_IVLOGNAM The logical name PSI$NETWORK has a length of 0 or has
more than 63 characters.

SS$_NOLINKS No internal logical channels available.

SS$_NOPRIV The process does not have the privilege(s) required for this
function.

SS$_NOSUCHNODE The PSDN specified in the NCB cannot be accessed from your
system.

SS$_OPINCOMPL A previous call is still in progress on this channel.

SS$_RESULTOVF The translation of the logical name PSI$NETWORK has more
than 16 characters.

Secondary Status Values
The secondary status values are found in the third word of the IOSB.

OpenVMS
VAX

If the first word of the IOSB contains SS$_NORMAL, the third word can have
one or more of the following flags set:

PSI$M_STS_REMDTELNG Remote DTE address too long — address truncated

PSI$M_STS_PKTBAD Invalid packet size — nearest valid size chosen

PSI$M_STS_RPOALNG The length of the RPOA item is not a multiple of 4
digits, and has been truncated

PSI$M_STS_THRBAD Invalid throughput class — nearest valid class chosen

PSI$M_STS_USERLNG Too much user data supplied — data truncated

PSI$M_STS_WINBAD Invalid window size — nearest valid size chosen

PSI$M_STS_WORDBAD The value of one of the transit delay items has been
reduced to 65,535 ♦

If the first word of the IOSB contains SS$_ABORT or SS$_IVDEVNAM, the third
word can contain one of the status values shown in the following table.

2–16 Common System Services

Code Meaning

PSI$C_ERR_BADNAME Bad counted string parameter. Correct and
retry.

PSI$C_ERR_BADPARM Bad parameters specified. This may represent
an internal error. If you are not able to find
a parameter error, contact your local HP
support representative for information about
the variety of service options available to you
and the procedures for submitting software
problem reports.

PSI$C_ERR_CONFLICT Conflicting items specified.

PSI$C_ERR_FACLNG Facilities too long.

PSI$C_ERR_DTENOTAVAILABLE The requested DTE is not available.

PSI$C_ERR_DTENOTINCLASS The requested DTE is not a member of the
specified DTE class.

PSI$C_ERR_DTENOTINGROUP The requested DTE is not a member of the
specified group.

PSI$C_ERR_INVEXP Invalid use of expedited data negotiation.

PSI$C_ERR_INVITEM Invalid item code.

PSI$C_ERR_INVNUM Invalid ASCII number.

PSI$C_ERR_INVTRSTDLY Invalid use of end–to–end transit delay
facility; for example, MAX_TRST_DLY without
ETE_TRST_DLY, or ETE_TRST_DLY without
CUM_TRST_DLY.

PSI$C_ERR_L3ERR Error returned from level 3.

PSI$C_ERR_MANYICI More than one internal call identifier given.

PSI$C_ERR_NOACCESS The X.25 Access module has been disabled or
deleted.

PSI$C_ERR_NODTES No DTE is available on which to make the
call.

PSI$C_ERR_NOICI No internal identifier specified.

PSI$C_ERR_NOL3 Internal error, contact your local HP support
representative for information about the
variety of service options available to you
and the procedures for submitting software
problem reports.

PSI$C_ERR_NOLOCAL The ACP needs more logical workspace
memory. Increase the nonpaged pool and
retry.

PSI$C_ERR_NONONPAG Not enough local workspace memory. Increase
the nonpaged pool and retry.

PSI$C_ERR_NOSUCHDTE The specified DTE is not known.

PSI$C_ERR_NOSUCHDTECLASS The specified DTE class is not known.

PSI$C_ERR_NOSUCHGROUP The specified group is not known.

PSI$C_ERR_NOSUCHPVC The specified PVC is not known (X.25 only).

PSI$C_ERR_NOSUCHSECURITY
DTECLS

The security DTECLASS has not been found.

PSI$C_ERR_NOSUCHTEMPLATE The specified template is not known.

PSI$C_ERR_NOTIMP The requested feature is not yet implemented.

Common System Services 2–17

Code Meaning

PSI$C_ERR_NOTRANS No translation for this name (for example,
unknown user group).

PSI$C_ERR_PVCALRACC Internal error (X.25 only), contact your local
HP support representative for information
about the variety of service options available
to you and the procedures for submitting
software problem reports.

PSI$C_ERR_RECURLMT Recursion limit reached, contact your local HP
support representative for information about
the variety of service options available to you
and the procedures for submitting software
problem reports.

PSI$C_ERR_UNKNOWN Unspecified internal error, contact your local
HP support representative for information
about the variety of service options available
to you and the procedures for submitting
software problem reports.

2–18 Common System Services

2.7 $QIO(IO$_ACCESS!IO$M_ABORT) — Reject a Call
$QIO(IO$_ACCESS!IO$M_ABORT) rejects an incoming request to set up a
virtual circuit.

If you subscribe to the fast select facility, you can use this call to send user data.

Note that you are advised to use the incoming call’s NCB as argument p2 to this
QIO. Find the NCB in the mailbox associated with the channel that received the
call. If you do not use the NCB as p2, the incoming call identifier must be copied
from the incoming NCB.

If the rights identifier PSI$X25_USER is defined on your system, your program
must possess either that rights identifier or BYPASS privilege.

If PSI$X25_USER is not defined on your system, your program must possess
NETMBX privilege.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],p2,[p3],[p4],[p5],[p6]

Arguments

func IO$_ACCESS!IO$M_ABORT

p1 Not used.

p2 Starting virtual address of quadword descriptor of the NCB (see
Appendix C). See Note 1.

p3 Not used.

p4 Not used.

p5 Not used.

p6 Not used.

NCB Contents:
Only mandatory, optional, and ignore items are listed in the following table.
Other items will generate an error if you use them.

Common System Services 2–19

PSI$C_NCB
Item Code Meaning Notes

Mandatory items

ICI Incoming call identifier

Optional items

CALLED_
EXTENSION

Called address extension

CAUSE Code for PSDN clearing a call 2

DIAGCODE Diagnostic code

LOCFACR Local PSDN facilities

RESPDATA Fast select response data 3

Ignored items

ADDR_MOD_RSN Reason for modifying line address

CALLING_
EXTENSION

Calling address extension

CALL_REDIR_ORIG Original DTE filter

CALL_REDIR_RSN Call redirection reason

CUG (Bilateral) Closed User Group

CUM_TRST_DLY Cumulative transit delay

DTECLASS Name of the DTE Class from which a member
DTE is used to make the call

ETE_TRST_DLY End–to–end transit delay

EXPEDITE Negotiate use of interrupts

FLT_PRI Filter priority

FSEL Fast select (no restriction)

FSEL_RES Fast select (restricted response)

LOCFAC Local PSDN facilities

OpenVMS
VAX LOCSUBADR Local subaddress ♦

MAX_TRST_DLY Maximum acceptable transit delay

MIN_THRUCLS Minimum throughput class (data rate)

NET_USER_ID Network user identifier

NULL Null item identifier

PKTSIZE Packet size

RCV_QUOTA Maximum number of receive buffers

REMDTE Remote DTE address

REMSUBADR Remote DTE subaddress

REVCHG Reverse charging request

RPOA Remote Port Of Access

TEMPLATE Name of template created by network
management containing specified parameters

2–20 Common System Services

PSI$C_NCB
Item Code Meaning Notes

Ignored items

THRUCLS Throughput class (maximum data rate)

TRANSIT_DELAY Maximum transit delay

USERDATA User data field

WINSIZE Window size

Notes

1. You are advised to use the incoming call’s NCB as argument p2 to this QIO.
Find the NCB in the mailbox associated with the channel that received the
call. If you do not use the NCB as p2, the incoming call identifier must be
copied from the incoming NCB.

2. This field is ignored unless X.25 for OpenVMS is operating as a DCE (Data
Circuit–terminating Equipment) in order to connect to other DTEs outside
the PSDN. X.25 for OpenVMS can operate as a DCE to connect back–to–back
with another DTE. DTEs cannot use nonzero codes, but DCEs can.

3. Use this field only for fast select calls.

Common System Services 2–21

Example
In the following example, IO$_ACCESS!IO$M_ABORT rejects the request. The
channel to the network device is PSI_CHAN and the NCB descriptor begins at
ABORT_NCB.

; Declaring the data:

PSI_CHAN:
.BLKW 1 ; Mailbox channel

ABORT_NCB:
.BLKQ 1 ; NCB descriptor

; Using the System Service:

$QIOW_S - ; Issue QIO and wait
CHAN = PSI_CHAN,- ; to the network device
FUNC = #IO$_ACCESS!IO$M_ABORT,- ; Function is reject

; request
P2 = #ABORT_NCB ; NCB descriptor address

Return Status

SS$_NORMAL Service successfully queued (R0). Request successfully rejected
(IOSB).

SS$_ACCVIO Unable to read argument p2.

SS$_CLEARED The virtual circuit was cleared while this request was being
processed, or the circuit was in the process of being cleared
when you issued the request.

SS$_FILALRACC Invalid unit number for SVC.

SS$_IVBUFLEN The format of the NCB item–list is invalid. See the secondary
status in the IOSB.

SS$_IVDEVNAM The format of the NCB is invalid, or error detected while
processing the NCB. See the secondary status in the IOSB.

SS$_OPINCOMPL A previous call is still in progress on this channel.

2–22 Common System Services

2.8 $QIO(IO$_ACCESS!IO$M_ACCEPT) — Accept a Call
$QIO(IO$_ACCESS!IO$M_ACCEPT) accepts an incoming request from a remote
DTE (X.25) or a remote PAD (X.29) to set up a virtual circuit.

The parameters requested in the incoming call can be negotiated using this
QIO function. Parameter negotiation can be achieved either by specifying
individual items to be negotiated or by specifying the items in a template (see
NCB TEMPLATE item code). Note that if a template is not defined, the Default
template is used.

A template can also be used to supply parameters that are not defined in the
NCB used to accept the call.

If you subscribe to the fast select acceptance facility, you can use this call to send
user data.

Note that you are advised to use the NCB received as argument p2. Otherwise,
you should copy the incoming call identifier (PSI$C_NCB_ICI) from the received
NCB. Read the NCB in the mailbox associated with the channel that received the
call.

If the rights identifier PSI$X25_USER is defined on your system, your program
must possess either that rights identifier or BYPASS privilege.

If PSI$X25_USER is not defined on your system, your program must possess
NETMBX privilege.

Note that to accept a request to set up a virtual circuit requires certain system
resources which are deducted from the quota for your process. See the HP X.25
for OpenVMS—Programming Guide for details.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],p2,[p3],[p4],[p5],p6

Arguments

func IO$_ACCESS!IO$M_ACCEPT.

p1 Not used.

p2 Starting virtual address of quadword descriptor of the NCB (see
Appendix C).

You are advised to use the incoming call’s NCB as argument p2 to this
QIO. Find the NCB in the mailbox associated with the channel that
received the call. If you do not use the incoming NCB, you must copy the
incoming call destination from that NCB.

p3 Not used.

p4 Not used.

p5 Not used.

p6 Unit number of the NV device (zero for X.25 programs).

NCB Contents:
Only mandatory, optional, and ignored items are listed in the following table.
Other items will generate an error if you use them.

Common System Services 2–23

PSI$C_NCB
Item Code Meaning Notes

Mandatory items

ICI Incoming call identifier

Optional items

CALLED_
EXTENSION

Called address extension 1

CUM_TRST_DLY_R Cumulative transit delay

EXPEDITE Negotiate use of interrupts

LOCFACR Local PSDN facilities

NET_USER_ID Network user identifier

RESPDATA Fast select response data 2

PKTSIZE Packet size

RCV_QUOTA Maximum number of receive
buffers

TEMPLATE Name of template created by
network management containing
specified parameters

3

THRUCLS Throughput class (maximum data
rate)

WINSIZE Window size

Ignored items

ADDR_MOD_RSN Reason for modifying line address

CALLING_
EXTENSION

Calling address extension

CALL_REDIR_ORIG Original DTE filter

CALL_REDIR_RSN Call redirection reason

CUG (Bilateral) Closed User Group

CUM_TRST_DLY Cumulative transit delay

ETE_TRST_DLY End–to-end transit delay

FSEL Fast select (no restriction)

FSEL_RES Fast select (restricted response)

LOCFAC Local PSDN facilities

OpenVMS
VAX LOCSUBADR Local subaddress ♦

MAX_TRST_DLY Maximum acceptable transit delay

MIN_THRUCLS Minimum throughput class (data
rate)

DTECLASS Name of a DTE Class from which
a member DTE is used to make
the call

NULL Null item identifier

FLT_PRI Filter priority

2–24 Common System Services

PSI$C_NCB
Item Code Meaning Notes

Ignored items

REMDTE Remote DTE address

REMSUBADR Remote DTE subaddress

REVCHG Reverse charging request

RPOA Remote Port Of Access

TRANSIT_DELAY Maximum transit delay

USERDATA User data field

Notes

1. The called address extension facility is encoded as follows:

• Number of bytes in the facility (1 byte)

• Number of semi–octets in the facility (1 byte)

• The facility itself (up to 32 octets, with 2 digits per byte)

Each of these bytes is encoded so that the low–order semi–octet is in bits
0 to 3, and the high–order semi–octet is in bits 4 to 7.

When the matching is performed, a logical AND is performed on each byte
of the facility with the corresponding byte of the mask and the result is
compared with the corresponding byte of the value. The match succeeds if
all the bytes compare. If the incoming call does not provide at least as many
semi–octets as the extension value specifies, the match fails.

2. Use this field for fast select calls only.

3. Include all parameters in the template that are to be negotiated or that
are to be supplied if not present in the NCB used to accept the call. If the
TEMPLATE item code is not defined, the Default template is used.

Common System Services 2–25

Examples
In the following example, the request to set up a virtual circuit is accepted with
the IO$_ACCESS!IO$M_ACCEPT call. The channel to the network device is
PSI_CHAN. An I/O status block, IO_STATUS, is to receive the completion status, and
the starting address of the descriptor of the NCB is ACCEPT_NCB.

; Declaring the data:

PSI_CHAN:
.BLKW 1 ; Mailbox channel

IO_STATUS:
.BLKW 4 ; I/O status block

ACCEPT_NCB:
.BLKQ 1 ; NCB descriptor

; Using the System Service:

$QIOW_S - ; Issue QIO and wait
CHAN = PSI_CHAN,- ; to the network device
FUNC = #IO$_ACCESS!IO$M_ACCEPT,- ; Function is accept call
IOSB = IO_STATUS,- ; I/O status block
P2 = ACCEPT_NCB ; NCB descriptor address

In the following example, the request to set up a virtual circuit is accepted
with the IO$_ACCESS!IO$M_ACCEPT call. The channel to the network device
is NW_CHAN. NV_UNIT supplies the NV device number. An I/O status block,
IO_STATUS, is to receive the completion status, and the starting address of the
descriptor of the NCB is ACCEPT_NCB.

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV Unit number

IO_STATUS:
.BLKW 4 ; IO Status block

;+
; Network Connect Block:
;-
ACCEPT_NCB: ; NCB Descriptor

.BLKL 2

;+
; Accept a virtual call
;-
$QIOW_S - ; Issue QIO and wait

CHAN = NW_CHAN,- ; to network device
FUNC = #IO$_ACCESS!IO$M_ACCEPT,- ; function is accept call
IOSB = IO_STATUS, ; I/O status block
P2 = #ACCESS_NCB,- ; address of call NCB
P6 = NV_UNIT ; NV unit number
BSBW IO_ERROR ; Check for I/O error

2–26 Common System Services

Return Status

SS$_NORMAL Service queued successfully (R0). The virtual circuit has been
accepted (IOSB).

SS$_ACCVIO Unable to read argument p2.

SS$_CLEARED The virtual circuit was cleared while this request was being
processed, or the circuit was in the process of being cleared
when you issued the request.

SS$_DEVOFFLINE Local DTE or X.25 Connector node is being shut down.

SS$_FILALRACC Invalid unit number for SVC already in use by another process.

SS$_FILNOTACC No SVC on the specified channel to NV (X.29 only).

SS$_IVDEVNAM The format of the NCB is invalid, or an error was detected
while processing the NCB. Check the secondary status in the
IOSB.

SS$_NOSUCHNODE The incoming call you are trying to accept no longer exists; or,
the incoming call identifier (PSI$C_NCB_ICI) was incorrect; or,
the call is using the facility for fast select (restricted response).

SS$_OPINCOMPL A previous call is still in progress on this channel.

Common System Services 2–27

2.9 $QIO(IO$_ACCESS!IO$M_REDIRECT) — Redirect a Call
$QIO(IO$_ACCESS!IO$M_REDIRECT) redirects an incoming call request to
another process before the call request is accepted or rejected.

The call uses the subaddress and other addressing information specified in the
NCB in the normal way, to associate the new process with the call.

The system service completes when X.25 for OpenVMS redirects the incoming call
request.

Note that you are advised to use the NCB received as argument p2. Otherwise,
you should copy the incoming call identifier (PSI$C_NCB_ICI) from the received
NCB. Read the NCB in the mailbox associated with the channel that received the
call.

To ensure that your process is not searched again, move the priority value from
PSI$C_NCB_FLT_PRI to PSI$C_NCB_FLT_REDPRI.

If the rights identifier PSI$X25_USER is defined on your system, your program
must possess either that rights identifier or BYPASS privilege.

If PSI$X25_USER is not defined on your system, your program must possess
NETMBX privilege.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],p2,[p3],[p4],[p5],[p6]

Arguments

func IO$_ACCESS!IO$M_REDIRECT.

p1 Not used.

p2 Starting virtual address of quadword descriptor of the NCB.

You are advised to use the incoming call’s NCB as argument p2 to this
QIO. Find the NCB in the mailbox associated with the channel that
received the call. If you do not use the NCB as p2, the incoming call
identifier must be copied from the incoming NCB (see Appendix C for
further details).

p3 Not used.

p4 Not used.

p5 Not used.

p6 Not used.

NCB Contents:
Only mandatory, optional, and ignored items are listed in the following table.
Other items will generate an error if you use them.

2–28 Common System Services

PSI$C_NCB
Item Code Meaning

Mandatory items

ICI Incoming call identifier.

In addition to this item code, at least one of the following item codes must be specified:

FILTER Name of filter to which to redirect the call. Note that the filter
to which you redirect the call is not used to rematch the call
parameters.

FLT_REDPRI Redirection priority.

Optional items

CALLED_
EXTENSION

Called address extension

CALL_REDIR_ORIG Original DTE filter

CALL_REDIR_RSN Call redirection reason

OpenVMS
VAX LOCSUBADR Local subaddress ♦

TEMPLATE Name of template created by network management with
specified parameters

USERDATA User data field

Ignored items

ADDR_MOD_RSN Reason for modifying line address

CALLING_
EXTENSION

Calling address extension

CUG (Bilateral) Closed User Group

CUM_TRST_DLY Cumulative transit delay

ETE_TRST_DLY End–to–end transit delay

EXPEDITE Negotiate use of interrupts

FSEL Fast select (no restriction)

FSEL_RES Fast select (restricted response)

LOCFAC Local PSDN facilities

MAX_TRST_DLY Maximum acceptable transit delay

MIN_THRUCLS Minimum throughput class (data rate)

DTECLASS Name of a DTE Class from which a member DTE is used to
make the call

NULL Null item identifier

PKTSIZE Packet size

FLT_PRI Filter priority

RCV_QUOTA Maximum number of receive buffers

REMDTE Remote DTE address

REMSUBADR Remote DTE subaddress

REVCHG Reverse charging request

RPOA Remote Port Of Access

Common System Services 2–29

PSI$C_NCB
Item Code Meaning

Ignored items

THRUCLS Throughput class (maximum data rate)

TRANSIT_DELAY Maximum transit delay

WINSIZE Window size

Example
In this example the QIO is used with function code IO$ACCESS!IO$M_
REDIRECT, to redirect the call according to the parameters in the NCB
REDIRECT_NCB.

; Declaring the data:

PSI_CHAN:
.BLKW 1 ; Mailbox channel

IO_STATUS:
.BLKW 1 ; I/O status block

REDIRECT_NCB:
.BLKQ 1 ; NCB descriptor

; Using the System Service:

$QIOW_S - ; Issue QIO and wait
CHAN = PSI_CHAN,- ; to the network device
FUNC = #IO$_ACCESS!IO$M_REDIRECT,- ; Function is

; redirect call
IOSB = IO_STATUS,- ; I/O status block
P2 = REDIRECT_NCB ; NCB descriptor address

Return Status

SS$_NORMAL Service queued successfully (R0). Request redirected
successfully (IOSB).

SS$_ACCVIO Unable to read argument p2.

SS$_IVBUFLEN The format of the NCB item–list is invalid. See the secondary
status in the IOSB.

SS$_IVDEVNAM Either the format of the NCB is invalid, or an error was
detected while processing the NCB. Check the secondary
status in the IOSB.

SS$_NOSUCHNODE Either the incoming call you are trying to redirect no longer
exists, or the incoming call identifier (PSI$C_NCB_ICI) is
incorrect.

SS$_OPINCOMPL A previous call is still in progress on this channel.

OpenVMS
VAX SS$_TOOMANYREDS This call has been redirected more than eight times, and

cannot be redirected again. ♦

2–30 Common System Services

2.10 $QIO(IO$_ACPCONTROL) — Declare a Network Process
$QIO(IO$_ACPCONTROL) allows the current process to select which incoming
calls it handles.

The network process declaration block specifies the matching parameters for
the filter. Incoming calls are placed in the mailbox associated with the channel
over which this $QIO(IO$_ACPCONTROL) was issued. The calls are selected
according to the following criteria:

• The filter parameters match those of the call.

• Either the filter has the highest priority of those matching the call, or the call
has been redirected from a filter with a priority greater than or equal to that
of the current filter.

The request can specify a number of parameters to identify the incoming calls it
will handle, and these parameters form an X25 ACCESS FILTER entity for your
process. These parameters are shown in Table 2–2.

The filter specified by $QIO(IO$_ACPCONTROL) can be one of two types:

• Static

This type of filter is one that is created using management commands. It is
available until either disabled or deleted.

• Dynamic

This type of filter is created dynamically by defining its characteristics in the
$QIO(IO$_ACPCONTROL) call. A filter created in this way ceases to exist
when the specified channel is deassigned.

The action taken when the $QIO(IO$_ACPCONTROL) call is processed depends
on the filter name specified in the call:

• If the filter name matches a static filter, that filter is used to listen for
incoming calls.

• If the filter name does not match a static filter, a dynamic filter having the
filter characteristics specified in the $QIO(IO$_ACPCONTROL) call is created
and used to listen for incoming calls.

If a filter name is not specified in the $QIO(IO$_ACPCONTROL) call, one of the
following default filters is created:

• If the system service call is an X.25 call (the ACCLVL item code contains the
string ‘‘X25L3’’), a filter having a name of the following format is created:

X25L3-pid-xxxx

where:

pid is the process identifier (in hex)

xxxx is a unique number (in hex)

Common System Services 2–31

• If the system service call is an X.29 call (the ACCLVL item code contains the
string ‘‘X29’’), a filter having a name of the following format is created:

X29-pid-xxxx

where:

pid is the process identifier (in hex)

xxxx is a unique number (in hex)

Further filters can be added by issuing more than one QIO with a function code
of IO$_ACPCONTROL, but you cannot change the information associated with
an existing filter.

Filters can be deleted without stopping your process, by deassigning the channel
over which $QIO(IO$_ACPCONTROL) was issued.

For information about displaying the filters in the X25 Access module, see HP
X.25 for OpenVMS—Management Guide.

All incoming calls whose parameters match those specified in this QIO are placed
in the mailbox associated with the channel over which this QIO request was
issued.

Details of the network process declaration block contents are given below.

Format
$QIO [efn],chan,func, [iosb],[astadr],[astprm], p1,p2,[p3],[p4], [p5],[p6]

Arguments

func IO$_ACPCONTROL

p1 Address of the quadword descriptor of a 5–byte block. The format of the
5–byte block is:

.BYTE NFB$C_DECLNAME

.LONG 0

The contents of the 5–byte block are:

A function type code (one byte)
A longword parameter value

The function type is a symbol defined by the $NFBDEF macro in the
library LIB.MLB.

p2 Starting virtual address of the quadword descriptor of a network process
declaration block (see below).

p3 Not used.

p4 Not used.

p5 Not used.

p6 Not used.

Network Process Declaration Block
The network process declaration block consists of items of information. The items
are of variable length, each item containing the following fields:

Word 1: Length of data in this item, including the length and
type fields.

Word 2: Type code, of the form PSI$C_NTD_code.

Subsequent words: Data (variable length).

2–32 Common System Services

Each type of data has a specific format: single–byte value, counted string, or
longword value. Table 2–2 summarizes the permitted type codes.

Table 2–2 Item Codes for a Network Process Declaration Block

PSI$C_NTD
Item Code Meaning Content

Mandatory item codes

ACCLVL Access level Counted ASCII string, which declares the
filter of either:

• An X25 listener (ACCLVL contains the
string ‘‘X25L3’’)

• An X29 listener (ACCLVL contains the
string ‘‘X29’’)

See Note 1.

Optional item codes

CALLED_DTE Called DTE address Counted string, containing the address of
the DTE originally called. This item is used
after a call has been redirected.

DATMSK Data mask Counted string of up to 16 bytes. X.25
for OpenVMS performs a logical AND
operation between the mask and the user
data of the incoming call; the result of
this operation is compared with the data
specified in PSI$C_NTD_USRDATA. If
PSI$C_NTD_DATMSK is not specified, no
comparison is made.

See Note 2.

EXTMSK Called extension Counted string containing a byte that
specifies the number of semi–octets in
the mask, followed by the mask value of
up to 40 semi–octets. X.25 for OpenVMS
performs a logical AND operation between
the mask and the PSI$C_NCB_CALLED_
EXTENSION field of the incoming call; the
result of this operation is compared with
the data specified in PSI$C_NTD_EXTVAL.
If PSI$C_NTD_EXTMSK is not specified,
no comparison is made.

See Note 3.

EXTVAL Called extension Counted string containing a byte that
specifies the number of semi–octets in
the value, followed by the value of up
to 40 semi–octets. X.25 for OpenVMS
compares the data with the incoming
data masked by PSI$C_NTD_EXTMSK. If
PSI$C_NTD_EXTVAL is not specified, no
comparison is made.

INCDTE Incoming DTE Counted ASCII string, containing the
Called DTE field from an incoming call
packet.

(continued on next page)

Common System Services 2–33

Table 2–2 (Cont.) Item Codes for a Network Process Declaration Block

PSI$C_NTD
Item Code Meaning Content

Optional item codes

FILTER Name of the filter in the
X25 Access module

Counted ASCII string, specifying the name
of:

• A static filter created by network
management.

• A dynamic filter created by $QIO(IO$_
ACPCONTROL) with the specified
filter name. If FILTER is not specified,
then the filter name is derived from
the ACCLVL item code (see the call
description).

DTECLASS DTE Class Counted ASCII string.

FLT_PRI Priority Single–word value, in the range 0 (low) to
65,535 (high). The default priority is 3000.

RCVDTE Receiving DTE Counted ASCII string, containing the
address of the local DTE that received the
call.

REDRSN Redirect reason 32–bit integer, containing one of the
following symbolic values:

• PSI$C_REDRSN_BUSY

• PSI$C_REDRSN_OUT_OF_ORDER

• PSI$C_REDRSN_SYSTEMATIC

REMDTE Remote DTE Counted ASCII string. If not specified, all
remote DTE addresses are handled.

OpenVMS
VAX SAHI Subaddress high 16–bit integer, containing the highest

value of the range of subaddresses to be
handled. If you do not specify a range, all
subaddresses are handled. ♦

OpenVMS
VAX SALO Subaddress low 16–bit integer, containing the lowest

value of the range of subaddresses to be
handled. If you do not specify a range, all
subaddresses are handled. See Note 5. ♦

USRDATA User data Counted ASCII string of up to 16 bytes.
X.25 for OpenVMS compares the user
data with the incoming data masked by
PSI$C_NTD_DATMSK. If USRDATA is not
specified, no comparison is made.

USRGRP Closed user group Counted ASCII string. If not specified, all
closed user groups are handled.

2–34 Common System Services

Notes

1. If ACCLVL = X25L3, you must accept, reject or redirect the call whose details
are in the NCB.

If ACCLVL = X29, the call has been accepted by X.25 for OpenVMS, and you
must assign a channel to the NV device in the mailbox message.

2. When you specify user data and a data mask, the network process performs
a logical AND operation between the mask and the user data field of the
incoming call. The network process then compares the result of this operation
with the user data value contained in the network process declaration block,
and accepts the call only if the values match.

3. The called address extension facility is encoded as follows:

• Number of bytes in the facility (1 byte)

• Number of semi–octets in the facility (1 byte)

• The facility itself (up to 32 octets, with 2 digits per byte)

Each of these bytes is encoded so that the low–order semi–octet is in bits
0 to 3, and the high–order semi–octet is in bits 4 to 7.

When the matching is performed, a logical AND operation is performed
between each byte of the facility and the corresponding byte of the mask and
the result is compared with the corresponding byte of the value. The match
succeeds if all the bytes compare. If the incoming call does not provide at
least as many semi–octets as the extension value specifies, the match fails.

4. The values for the redirect reason code are as follows:

Symbolic Value Meaning

PSI$C_REDRSN_BUSY Busy

PSI$C_REDRSN_OUT_OF_ORDER Out of order

PSI$C_REDRSN_SYSTEMATIC Automatic redirection

OpenVMS
VAX

5. If you want a single subaddress or a range of subaddresses, you must specify
both the lowest and highest values. For a single subaddress, specify the same
value for the SAHI and SALO fields. If you specify a subaddress range, only
calls specifying a subaddress are handled (even if you specify the full range of
0 to 99). If you do not specify a range, all subaddresses are handled. ♦

OpenVMS
I64/Alpha

To filter for specific incoming calls, use the Incoming DTE Address attribute
of the X25 ACCESS FILTER entity, or use the optional PSI$C_NTD_INCDTE
item in the Network Process Declaration block. ♦

6. If the rights identifier PSI$DECLNAME is defined on your system, your
process must possess either that rights identifier or BYPASS privilege.

If PSI$DECLNAME is not defined on your system, your process must possess
NETMBX privilege.

Common System Services 2–35

Examples
X.25 Code Example In the following example, the 5–byte function control block
is at address FUNC_BUF. The descriptor of the network process declaration block is
at address DEC_BUF. The channel to the network device is PSI_CHAN.

; Declaring the data:

PSI_CHAN:
.BLKW 1 ; Mailbox channel

IO_STATUS:
.BLKQ 1 ; I/O status block

FUNC_DESC: ;Function block descriptor
.LONG 5 ;Length
.ADDRESS FUNC_BUF ;Address

FUNC_BUF: ;Function block
.BYTE NFB$C_DECLNAME
.LONG 0

DEC_DESC: ;Declaration descriptor
.LONG DEC_BUF_LEN ;Length
.ADDRESS DEC_BUF ;Address

DEC_BUF: ;Declaration block
ACCLVL:

.WORD ACCLVL_LEN ;Length field

.WORD PSI$C_NTD_ACCLVL ;Type field

.ASCIC "X25L3" ;String

ACCLVL_LEN = .-ACCLVL

;Item list to match called address extension of A15
;

EXTMSK: .WORD EXTMSK_LEN ;Item length
.WORD PSI$C_NTD_EXTMSK ;Item type
.BYTE EXTMSK_COUNT ;Byte count for "counted

;string"
EXTMSK_STR: .BYTE 3 ;Semi-octet count

.BYTE ^FF ;First two semi-octets

.BYTE ^XF0 ;Third semi-octet

EXTMSK_COUNT=.-EXTMSK_STR
EXTMSK_LEN =.-EXTMSK

EXTVAL: .WORD EXTVAL_LEN ;Item length
.WORD PSI$C_NTD_EXTVAL ;Item type
.BYTE EXTVAL_COUNT ;Byte count for "counted

;string"
EXTVAL_STR: .BYTE 3 ;Count in semi-octets

.BYTE ^XA1 ;First two semi-octets

.BYTE ^X50 ;Third semi-octet/

EXTVAL_COUNT=.-EXTVAL_STR
EXTVAL_LEN =.-EXTVAL

DEC_BUF_LEN =.-DEC_BUF
; Using the System Service:

$QIOW_S - ; Issue QIO and wait
CHAN = PSI_CHAN,- ; to the network device
FUNC = #IO$_ACPCONTROL- ; Function is ACP control
IOSB = IO_STATUS,- ; I/O status block
P1 = FUNC_DESC,- ; Function descriptor address
P2 = #DEC_DESC ; Process declaration

; descriptor address

2–36 Common System Services

X.29 Code Example In this example, the QIO with function code IO$_
ACPCONTROL is used to tell X.25 for OpenVMS to accept all X.29 calls. The 5–
byte function control block is at address DECL_BUF. The descriptor of the network
process declaration block is at address NPDB_DESC. The channel to the network
device is NW_CHAN.

NW_CHAN:
.BLKW 1 ; Channel to NW

DECL_DESC:
.LONG 5 ; Five byte buffer
.ADDRESS DECL_BUF ; Address of buffer

DECL_BUF:
.BYTE NFB$C_DECLNAME ; function type
.LONG 0 ; parameter

NPDB_DESC: ; Network Process Declaration
; Buffer descriptor

.LONG NPD_BUF_LEN ; Size of buffer

.ADDRESS NPD_BUF ; Address of buffer
NPD_BUF:
NPD_ITEM1:

.WORD NPD_ITEM1_LEN ; Length of first item

.WORD PSI$C_NTD_ACCLVL ; Access Level

.ASCIC /X29/ ; ASCII counted string
NPD_ITEM1_LEN = . - NPD_ITEM1 ; Calculate the size in words
NPD_BUF_LEN = . - NPD_BUF

;+
; Tell X.25 that we want to accept all X29 calls
;-

$QIOW_S - ; Send a QIO and wait
IOSB = IO_STATUS,- ; I/O status block
CHAN = NW_CHAN,- ; NW channel
FUNC = #IO$_ACPCONTROL,- ; function is write
P1 = DECL_DESC,- ; descriptor of declname block
P2 = #NPDB_DESC ; descriptor of declaration block

BSBW IO_ERROR ; Check system service and IOSB

Common System Services 2–37

Return Status

SS$_NORMAL Service completed successfully. The filter has been added to
the X25 Access module.

SS$_ACCVIO The program cannot read the descriptor for argument p1 or p2;
or the item–list in the Network Process Declaration Block; or
the 5–byte block.

SS$_BADPARAM A logically incorrect item has been specified in the Network
Process Declaration Block. For example, you have attempted
to put the item code PSI$C_NTD_FLT_PRI in the Network
Process Declaration Block when the filter name (specified
using the PSI$C_NTD_FILTER item code) is associated with a
static filter.

SS$_DIRFULL No more room for declared name.

SS$_ILLCNTRFUNC The first byte of the 5–byte block must be NFB$C_
DECLNAME, and the rest of the block must be zeroed.

SS$_IVDEVNAM The format of the NCB is invalid, or an error was detected
while processing the NCB. See the secondary status in the
IOSB.

SS$_NOMBX There is no mailbox associated with the channel on which
$QIO(IO$_ACPCONTROL) was issued.

Secondary Status Values

PSI$C_ERR_
FILTERALREADYSET

The named filter has already been claimed.

PSI$C_ERR_NOACCESS The X.25 Access module has been disabled or deleted.

PSI$C_ERR_NOL3 Internal error. Contact your local HP support
representative for information about the variety of
service options available to you and the procedures for
submitting software problem reports.

2–38 Common System Services

2.11 $QIO(IO$_DEACCESS) — Clear a Virtual Circuit
The QIO system service with a function code of IO$_DEACCESS clears a
switched virtual circuit or confirms receipt of a call cleared message. For PVCs,
this call closes the virtual circuit so that the PVC can be reassigned to another
process.

Note that clearing a virtual circuit can result in loss of data in either direction
(see the HP X.25 for OpenVMS—Programming Guide for details).

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],[p2],[p3],[p4],[p5],p6

Arguments

func IO$_DEACCESS

p1 Not used.

p2 Starting virtual address of quadword descriptor of the NCB. This
parameter is used only if fields for diagnostic codes or local facilities
are specified.

For X.25 calls which use a PVC, do not specify p2, because none of the
NCB fields are valid for a PVC.

p3 Not used.

p4 Not used.

p5 Not used.

p6 Unit number of the NV device.

NCB Contents:
Only mandatory, optional, and ignore items are listed in the following table.
Other items will generate an error if you use them.

PSI$C_NCB
Item Code Meaning Notes

Optional items

CAUSE Code for PSDN clearing a call 1

DIAGCODE Diagnostic code

LOCFAC Local PSDN facilities

USERDATA User data field 2

Ignored items

NULL Null item identifier

Notes

1. This field is ignored unless X.25 for OpenVMS is operating as a DCE (Data
Circuit–terminating Equipment) to connect to other DTEs outside the PSDN.
X.25 for OpenVMS can operate as a DCE, when using the ISO 8208 profile, to
connect back–to–back with another DTE. DTEs cannot use nonzero codes, but
DCEs can.

2. Use this field only for fast select calls. Up to 128 bytes of user data can be
specified.

Common System Services 2–39

Examples
X.25 Code Example In this example the system service QIO is used with
function code IO$_DEACCESS to clear the virtual circuit. The channel to the
network device is PSI_CHAN.

; Declaring the data:

PSI_CHAN:
.BLKW 1 ; Mailbox channel

IO_STATUS:
.BLKW 4 ; I/O status block

CLEAR_NCB_DESC:
.LONG CLR_NCB_LEN ; NCB length
.ADDRESS CLR_NCB ; NCB address

; Using the System Service:

$QIOW_S - ; Issue QIO and wait
CHAN = PSI_CHAN,- ; to the network device
FUNC = #IO$_DEACCESS,- ; Function is clear call
IOSB = IO_STATUS,- ; I/O status block
P2 = #CLEAR_NCB_DESC ; NCB descriptor address

X.29 Code Example In this example the system service QIO is used with
function code IO$_DEACCESS to clear the virtual circuit. The channel to the
network device is PSI_CHAN, and the NV device is NV_UNIT.

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV unit number

IO_STATUS:
.BLKW 4 ; I/O status block

$QIOW_S - ; QIO and wait
IOSB = IO_STATUS,- ; I/O status block
CHAN = NW_CHAN,- ; channel to NW
FUNC = #IO$_DEACCESS,- ; function is clear call
P6 = NV_UNIT ; on NV terminal

BSBW IO_ERROR ; Check system service and IOSB

2–40 Common System Services

Return Status

SS$_NORMAL Service successfully completed, the SVC has been cleared,
or the PVC has been closed.

SS$_ACCVIO Unable to read argument p2.

SS$_FILALRACC Invalid unit number for SVC, or PVC already in use by
another process.

SS$_IVBUFLEN The format of the NCB item–list is invalid. See the
secondary status in the IOSB.

SS$_IVDEVNAM The format of the NCB is invalid, or an error was detected
while processing the NCB. See the secondary status in the
IOSB.

SS$_OPINCOMPL A previous call is still in progress on this channel.

Secondary Status Values
The secondary status values are found in the third word of the IOSB.

OpenVMS
VAX

If the first word of the IOSB contains SS$_NORMAL, the third word can contain
one or more of the following:

PSI$M_STS_LOCDTELNG Local DTE address too long—address truncated.

PSI$M_STS_PKTBAD Invalid packet size specified—nearest valid packet size
chosen.

PSI$M_STS_RPOALNG RPOA item is not a multiple of 4 digits—truncated.

PSI$M_STS_THRBAD Invalid throughput class specified—nearest valid
throughput class chosen.

PSI$M_STS_USERLNG Too much user data supplied—data truncated.

PSI$M_STS_WINBAD Invalid window size specified—nearest valid window
size chosen.

PSI$M_STS_WORDBAD A word facility (one of the transit delay facilities)
reduced to 65,535. ♦

If the first word of the IOSB contains SS$_ABORT or SS$_IVDEVNAM, the third
word can contain one of the following:

PSI$C_ERR_BADNAME Bad counted string parameter. This is
probably due to a user–program error.

PSI$C_ERR_BADPARM Bad parameters specified.

PSI$C_ERR_BAD_PVCNAME Internal error, contact your local HP support
representative for information about the
variety of service options available to you
and the procedures for submitting software
problem reports.

PSI$C_ERR_CONFLICT Conflicting items specified.

PSI$C_ERR_FACLNG Facilities too long.

PSI$C_ERR_INVEXP Invalid use of expedited data negotiation.

PSI$C_ERR_INVITEM Invalid item code.

PSI$C_ERR_INVNUM Invalid ASCII number.

Common System Services 2–41

PSI$C_ERR_
INVTRSTDLY

Invalid use of ISO end–to–end transit
delay facility (PSI$C_NCB_MAX_TRST_
DLY specified without PSI$C_NCB_ETE_
TRST_DLY, or PSI$C_NCB_ETE_TRST_DLY
specified without PSI$C_NCB_CUM_TRST_
DLY).

PSI$C_ERR_L3ERR Error returned from level 3.

PSI$C_ERR_NOLOCAL The ACP has run out of local workspace
memory. Increase the size of virtual memory.

PSI$C_ERR_NONONPAG There is insufficient free nonpaged pool to
complete the request. Increase the size of
nonpaged pool and retry the request.

PSI$C_ERR_RECURLMT Recursion limit reached (probably internal
error in data structures), contact your local
HP support representative for information
about the variety of service options available
to you and the procedures for submitting
software problem reports.

PSI$C_ERR_UNKNOWN Unspecified internal error, contact your local
HP support representative for information
about the variety of service options available
to you and the procedures for submitting
software problem reports.

PSI$C_ERR_
INVTRSTDLY

Invalid use of ISO end–to–end transit
delay facility (PSI$C_NCB_MAX_TRST_
DLY specified without PSI$C_NCB_ETE_
TRST_DLY, or PSI$C_NCB_ETE_TRST_DLY
specified without PSI$C_NCB_CUM_TRST_
DLY).

If the first word of the IOSB contains any status value other than SS$_
NORMAL, SS$_ABORT, or SS$_IVDEVNAM, the contents of the third word
are meaningless.

2–42 Common System Services

2.12 $QIO(IO$_READVBLK) — Receive Data
$QIO(IO$_READVBLK) is used in programs to receive data transmitted from a
remote DTE over the virtual circuit.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], p1,p2,[p3],[p4],[p5],[p6]

Arguments

func IO$_READVBLK

p1 Buffer address.

p2 Buffer length in bytes.

p3 Not used.

p4 Not used.

p5 Not used.

p6 Not used.

Modifiers

IO$M_NOW Use this modifier to determine whether a message or part of a message
has been received. The request with this modifier always completes
immediately. If a message is available, the request completes with a
status of SS$_NORMAL. If no message has been received, the request
completes with a status of SS$_NODATA.

Example
In the following example, IO$_READVBLK needs to know the address and
the size of the buffer where it places incoming data. The address of the buffer
is READBUF and the size is READBUFSIZ. The channel to the network device is
NW_CHAN.

; Declaring the data:

NW_CHAN:
.BLKW 1 ; Network channel

IO_STATUS:
.BLKW 4 ; I/O status block

READBUF:
.BLKB 200 ; Buffer

READBUFSIZ = .-READBUF

; Using the System Service:

$QIOW_S - ; Issue QIO and wait
CHAN = NW_CHAN,- ; to NW
FUNC = #IO$_READVBLK,- ; Function is read
IOSB = IO_STATUS ; I/O status block
P1 = READBUF,- ; Buffer address
P2 = #READBUFSIZE ; and size

Common System Services 2–43

Return Status

SS$_NORMAL Service successfully completed, data received.

SS$_ACCVIO Cannot write to buffer described by arguments p1 and p2.

SS$_CLEARED The virtual circuit was cleared while this request was being
processed, or the circuit was in the process of being cleared
when you issued the request.

SS$_FILNOTACC A virtual circuit does not exist on this channel.

SS$_MEDOFL The PVC has been restarted. Issue a QIO system service call
with a function code of IO$_NETCONTROL and a parameter
of PSI$K_RESTART to confirm the restart and allow normal
operation of the PVC.

SS$_NODATA No data has been received (IO$M_NOW only).

SS$_RESET The virtual circuit was reset while this request was being
processed, or the circuit was in the process of being reset when
you issued the request.

Secondary Status Values
The secondary status values are found in the third word of the IOSB.

If the first word of the IOSB contains SS$_NORMAL, the third word can contain
one or more of the following:

PSI$M_QUALIFIED The data was a qualified message.

PSI$M_MOREDATA The operation (or request) completed before a packet (with the
more data bit not set) was received. This may occur either
because the buffer was not large enough to receive all the
packets of a message, or because the request specified the
IO$M_NOW modifier.

If the first word of the IOSB contains any other status value, the content of the
third word is undefined.

2–44 Common System Services

2.13 $QIO(IO$_WRITEVBLK) — Transmit Data
$QIO(IO$_WRITEVBLK) is used in programs to transmit data over a virtual
circuit.

Note that if your last QIO transmitted data with the IO$M_MORE qualifier,
you can use $QIO(IO$_WRITEVBLK) with a zero data packet to send the
remaining data from the previous QIO. Otherwise, if you send a zero data packet,
$QIO(IO$_WRITEVBLK) will complete with a success status, but no data will be
sent.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], p1,p2,[p3],[p4],[p5],[p6]

Arguments

func IO$_WRITEVBLK

p1 Buffer address.

p2 Buffer length in bytes (maximum is 16,383).

p3 Not used.

p4 Not used.

p5 Not used.

p6 Not used.

Modifiers

IO$M_MORE Use this modifier if you want to associate the data of this IO$_
WRITEVBLK call with the data of the next IO$_WRITEVBLK call;
that is, to indicate that more of the data message is to follow. Use
this modifier to show that more of your data message is to follow
with the next IO$_WRITEVBLK call. See Note 1.

IO$M_QUALIFIED Use this modifier to distinguish a qualified message. Use qualified
messages to specify a message which is different from usual; for
example, a control message during a file transfer.

Notes

1. X.25 for OpenVMS sends packets of data when either of the following
conditions is satisfied:

• A packet is full.

• You issue a QIO IO$_WRITEVBLK without the IO$M_MORE modifier.
This indicates the end of a message to X.25 for OpenVMS.

For example, with a packet size of 128 bytes:

• If you use the IO$_WRITEVBLK operation without the IO$M_MORE
modifier to transmit a message with buffer length of 20 bytes, X.25 for
OpenVMS sends a packet of 20 bytes.

• If you use the IO$_WRITEVBLK operation without the IO$M_MORE
modifier to transmit a message with buffer length of 200 bytes, X.25 for
OpenVMS sends:

– A packet of 128 bytes, which includes the more data bit

– A packet of 72 bytes

Common System Services 2–45

• If you use the IO$_WRITEVBLK operation with the IO$M_MORE
modifier to transmit a message with buffer length of 200 bytes, X.25
for OpenVMS sends a packet of 128 bytes, and starts to fill the next
packet.

• If you request three IO$_WRITEVBLK operations, each with a buffer
length of 20 bytes and the IO$M_MORE modifier, followed by an IO$_
WRITEVBLK operation with a buffer length of 20 bytes and no IO$M_
MORE modifier, X.25 for OpenVMS sends one packet of 80 bytes.

Example
In the following example, IO$_WRITEVBLK needs the address and the length of
the data to be transmitted. Here, the address is in Register 2 (R2) and the length
in Register 3 (R3). The channel to the network device is PSI_CHAN.

; Declaring the data:

PSI_CHAN:
.BLKW 1 ; Channel

IO_STATUS:
.BLKW 4 ; I/O status block

; Using the System Service:

$QIOW_S - ; Issue a QIO and wait
CHAN = PSI_CHAN,- ; to the network device
FUNC = #IO$_WRITEVBLK,- ; Function is write
IOSB = IO_STATUS,- ; I/O status block
P1 = (R2),- ; Buffer address
P2 = R3 ; and size

Return Status

SS$_NORMAL Service successfully completed, buffer has been accepted for
transmission.

SS$_ACCVIO The program does not have read access to the buffer, or cannot
read all the buffer described by arguments p1 and p2.

SS$_CLEARED The virtual circuit was cleared while this request was being
processed, or the circuit was in the process of being cleared
when you issued the request.

SS$_FILNOTACC A virtual circuit does not exist on this channel.

SS$_MEDOFL The PVC has been restarted. Issue a QIO system service call
with a function code of IO$_NETCONTROL and a parameter
of PSI$K_RESTART to confirm the restart and allow normal
operation of the PVC.

SS$_RESET The virtual circuit was reset while this request was being
processed, or the circuit was in the process of being reset when
you issued the request.

2–46 Common System Services

3
X.25 System Services

Table 3–1 summarizes the system services specific to X.25 programming. These
services are detailed in the remainder of this chapter.

Table 3–1 System Services Specific to X.25 Programming

System Service Description

$QIO(IO$_NETCONTROL, PSI$K_INTACK) Confirms Receipt of an
Interrupt

$QIO(IO$_NETCONTROL, PSI$K_INTERRUPT) Transmits an Interrupt

$QIO(IO$_NETCONTROL, PSI$K_RESET) Resets a Virtual Circuit or
Confirms Receipt of a Reset

$QIO(IO$_NETCONTROL, PSI$K_RESTART) Confirms Receipt of a Restart

X.25 System Services 3–1

3.1 $QIO(IO$_NETCONTROL, PSI$K_INTACK) — Confirm Receipt
of an Interrupt

The QIO system service with a function code of IO$_NETCONTROL and a
subfunction of PSI$K_INTACK confirms the receipt of an interrupt.

This service is only valid for X.25 calls. For X.29 calls, the NV device
automatically acknowledges interrupts.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],[p2],[p3],p4,[p5],[p6]

Arguments

func IO$_NETCONTROL

p1 Not used.

p2 Not used.

p3 Not used.

p4 Network control subfunction, PSI$K_INTACK, for confirming an interrupt.

p5 Not used.

p6 Unit number of the NV device. This must be zero in X.25 programs. The
default value is zero.

Example
In the following example, the subfunction of the system service call confirms the
receipt of an interrupt—the subfunction is expressed in p4. The channel to the
network device is INT_CHAN.

; Declaring the data:

INT_CHAN:
.BLKW 1 ; Network channel

IO_STATUS:
.BLKW 4 ; I/O status block

; Using the System Service:

$QIOW_S - ; Issue QIO and wait
CHAN = INT_CHAN,- ; to the network
FUNC = #IO$_NETCONTROL,- ; Function is network

; control
IOSB = IO_STATUS,- ; I/O status block
P4 = #PSI$K_INTACK ; Subfunction is confirm

; interrupt received

Return Status

SS$_NORMAL Service successfully completed, interrupt has been confirmed.

SS$_CLEARED The virtual circuit was cleared while this request was being
processed, or the circuit was in the process of being cleared
when you issued the request.

SS$_FILNOTACC A virtual circuit does not exist on this channel.

3–2 X.25 System Services

SS$_MEDOFL The PVC has been restarted. Issue a QIO system service call
with a function code of IO$_NETCONTROL and a parameter
of PSI$K_RESTART to confirm the restart and allow normal
operation of the PVC.

SS$_NOSOLICIT No interrupt message has been received.

SS$_RESET The virtual circuit was reset while this request was being
processed, or the circuit was in the process of being reset when
you issued the request.

X.25 System Services 3–3

3.2 $QIO(IO$_NETCONTROL, PSI$K_INTERRUPT) — Transmit an
Interrupt

The QIO system service with a function code of IO$_NETCONTROL and a
subfunction of PSI$K_INTERRUPT sends an interrupt over the virtual circuit.

Only one interrupt in each direction can be in progress over a virtual circuit at
any time. Once you have sent an interrupt, it is not possible to send another
until the remote DTE confirms receipt of the first. This is indicated by completion
of the IO$_NETCONTROL operation that you used to send the first interrupt.

Note that a single interrupt may be in progress in each direction. Thus, you may
receive an interrupt, and possibly confirm receipt of this incoming interrupt while
awaiting confirmation of an outgoing one.

This means that cooperating processes could deadlock if they do not allow
asynchronous code to perform an acknowledgment whilst waiting for a
synchronous IO$_NETCONTROL operation to complete.

This service is only valid for X.25 calls. In X.29 calls, the NV device automatically
sends interrupts as required by the X.29 protocol.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], p1,p2,[p3],p4,[p5],[p6]

Arguments

func IO$_NETCONTROL

p1 Buffer address.

p2 Buffer length in bytes. Interrupts can be up to 32 octets long (depending
on the PSDN), though most PSDNs restrict interrupts to one byte.

p3 Not used.

p4 Network control subfunction, PSI$K_INTERRUPT, for transmitting an
interrupt.

p5 Not used.

p6 Not used.

3–4 X.25 System Services

Example
In the following example, the subfunction of the system service call transmits
an interrupt—the subfunction is expressed in p4. The channel to the network
device is INT_CHAN. The interrupt buffer is found at address INTBUF and its size is
INTBUFSIZ.

; Declaring the data:

INT_CHAN:
.BLKW 1 ; Network channel

IO_STATUS:
.BLKW 4 ; I/O status block

INTBUF:
.BLKB 10 ; Interrupt buffer
INTBUFSIZ = .-INTBUF

; Using the System Service:

$QIOW_S - ; Issue QIO and wait
CHAN = INT_CHAN,- ; to the network
FUNC = #IO$_NETCONTROL- ; Function is network

; control
IOSB = IO_STATUS,- ; I/O status block
P1 = INTBUF,- ; Buffer address
P2 = #INTBUFSIZ ; and size
P4 = #PSI$K_INTERRUPT ; Subfunction is interrupt

Return Status

SS$_NORMAL Service successfully completed, interrupt accepted for
transmission.

SS$_ACCVIO The program does not have read access to the buffer.

SS$_CLEARED The virtual circuit was cleared while this request was being
processed, or the circuit was in the process of being cleared
when you issued the request.

SS$_DATAOVERUN More user data than allowed by PSDN. If the PSI$C_NCB_
EXPEDITE item has been used during call set up with a
value of 0, this error is returned for all values of p2 (Refer to
Appendix C).

SS$_FILNOTACC A virtual circuit does not exist for this channel.

SS$_MEDOFL The PVC has been restarted. Issue a QIO system service call
with a function code of IO$_NETCONTROL and a parameter
of PSI$K_RESTART to confirm the restart and allow normal
operation of the PVC.

SS$_OPINCOMPL A previous transmit interrupt request is still in progress.

SS$_RESET The virtual circuit was reset while this request was being
processed, or the circuit was in the process of being reset when
you issued the request.

X.25 System Services 3–5

3.3 $QIO(IO$_NETCONTROL, PSI$K_RESET) — Reset a Virtual
Circuit or Confirm the Receipt of a Reset

The QIO system service with a function code of IO$_NETCONTROL and a
subfunction of PSI$K_RESET resets a virtual circuit or confirms the receipt of a
reset. The service resets a virtual circuit if no reset is outstanding, or confirms
the receipt of a reset if one is outstanding. All pending messages are discarded if
the virtual circuit is reset.

A return status of SS$_NORMAL does not guarantee that the remote DTE
receives the diagnostic code. For example, the remote DTE may not receive the
diagnostic code if a collision of resets occurs within the PSDN.

This service is only used for X.25 calls. In X.29 calls, the NV device automatically
handles resets.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],[p2], [p3],p4,[p5],[p6]

Arguments

func IO$_NETCONTROL

p1 Not used.

p2 Not used.

p3 Diagnostic and cause code in a reset operation, or not used in a reset
confirm operation.

The diagnostic code is specified in the low–order byte, parameter p3, and
the cause code in the next byte. The cause code is ignored unless the
ISO8208 profile is being used.

p4 Network control subfunction, PSI$K_RESET, for resetting or confirming
the reset of a virtual circuit.

p5 Not used.

p6 Not used.

Example
Here, the subfunction of the system service call transmits a reset or confirms
reception of a reset—the subfunction is expressed in p4. The channel to the
network device is NW_CHAN. Because p3 is not specified, the diagnostic code
defaults to 0.

; Declaring the data:

NW_CHAN:
.BLKW 1 ; Network channel

IO_STATUS:
.BLKW 4 ; I/O status block

; Using the System Service:

$QIOW_S - ; Issue QIO and wait
CHAN = NW_CHAN,- ; to NW
FUNC = #IO$_NETCONTROL- ; Function is network

; control
IOSB = IO_STATUS,- ; I/O status block
P4 = #PSI$K_RESET ; Subfunction is reset

3–6 X.25 System Services

Return Status

SS$_NORMAL Service successfully queued (R0). This status indicates that
the X.25 for OpenVMS software has reset the virtual circuit
(and the reset has been confirmed), or confirms the reset of the
virtual circuit (IOSB).

SS$_CLEARED The virtual circuit was cleared while this request was being
processed, or the circuit was in the process of being cleared
when you issued the request.

SS$_FILNOTACC The virtual circuit does not exist on this channel.

SS$_MEDOFL The PVC has been restarted. Issue a QIO system service call
with a function code of IO$_NETCONTROL and a parameter
of PSI$K_RESTART to confirm the restart and allow normal
operation of the PVC.

SS$_OPINCOMPL A previous reset request is still in progress.

X.25 System Services 3–7

3.4 $QIO(IO$_NETCONTROL, PSI$K_RESTART) — Confirm Receipt
of a Restart

The QIO system service with a function code of IO$_NETCONTROL and a
subfunction of PSI$K_RESTART confirms the receipt of a restart on a PVC.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], [p1],[p2],[p3],p4,[p5],[p6]

Arguments

func IO$_NETCONTROL

p1 Not used.

p2 Not used.

p3 Not used.

p4 Network control subfunction, PSI$K_RESTART, for confirming the restart
of a virtual circuit.

p5 Not used.

p6 Not used.

Example
The subfunction of the system service call confirms the receipt of a restart. The
subfunction is named in p4. The channel to the network device is PVC_CHAN.

; Declaring the data:

PVC_CHAN:
.BLKW 1 ; Network channel

IO_STATUS:
.BLKW 4 ; I/O status block

; Using the System Service:

$QIOW_S - ; Issue QIO and wait
CHAN = PVC_CHAN,- ; to the circuit
FUNC = #IO$_NETCONTROL,- ; Function is network

; control
IOSB = IO_STATUS,- ; I/O status block
P4 = #PSI$K_RESTART ; Subfunction is restart

Return Status

SS$_NORMAL Service successfully completed, restart has been confirmed.

SS$_FILNOTACC A virtual circuit does not exist for this channel.

SS$_NOSOLICIT No restart has been received.

SS$_RESET The virtual circuit was reset while this request was being
processed, or the circuit was in the process of being reset when
you issued the request.

3–8 X.25 System Services

4
X.29 System Services

Table 4–1 summarizes the system services specific to X.29 programming. These
services are detailed in the remainder of this chapter.

For X.29 programming, functions supported by the terminal driver are available
at the QIO interface. For details of QIO functions to the NV device, refer to the
OpenVMS device driver documentation.

Table 4–1 System Services Specific to X.29 Programming

System Service Description

$QIO(IO$_NETCONTROL, PSI$K_X29_READ) Reads X.29 Terminal
Characteristics

READ Subfunctions:

PSI$K_X29_BREAK_ACTION Returns the NV Action
Descriptor Block

PSI$K_X29_HANGUP_PARAMS Reads the hangup PAD
parameter template into
a user–specified buffer

PSI$K_X29_HOLD_TIMER Returns the value of the
Hold Timer

PSI$K_X29_HOST_ECHO_PARAMS Reads the host–echo PAD
parameter template into
a user–specified buffer

PSI$K_X29_INT_ACTION Returns the NV Action
Descriptor Block

PSI$K_X29_LOCAL_ECHO_PARAMS Reads the local–echo
PAD parameter template
into a user–specified
buffer

PSI$K_X29_PAD_PARAMS Returns the PAD
Parameter List into
the specified buffer

PSI$K_X29_TEMP_NOHANG Returns the setting of
the TEMP_NOHANG
flag.

(continued on next page)

X.29 System Services 4–1

Table 4–1 (Cont.) System Services Specific to X.29 Programming

System Service Description

$QIO(IO$_NETCONTROL, PSI$K_X29_READ_SPECIFIC) Reads Specific X.29
Parameters

READ_SPECIFIC Subfunction:

PSI$K_X29_PAD_PARAMS Returns specific PAD
parameters into the
specified buffer

$QIO(IO$_NETCONTROL, PSI$K_X29_SET) Sets X.29 Terminal
Characteristics

SET Subfunctions:

PSI$K_X29_BREAK_ACTION Defines the action, or
series of actions, that
NV is to take when an
‘‘Indication–of–Break’’
X.29 message is received

PSI$K_X29_HANGUP_PARAMS Sets the hangup PAD
parameter template

PSI$K_X29_HOST_ECHO_PARAMS Sets the host–echo PAD
parameter template

PSI$K_X29_HOLD_TIMER Sets the Hold Timer to
units of 1/10 of a second

PSI$K_X29_INT_ACTION Sets the actions to be
taken when an interrupt
issued at the X.29
terminal is received
as an X.25 Interrupt

PSI$K_X29_LOCAL_ECHO_PARAMS Sets the local–echo PAD
parameter template

PSI$K_X29_PAD_PARAMS Assigns values to
specified PAD parameters

PSI$K_X29_PAD_RESELECTION Sends a PAD reselection
message to the remote
PAD

PSI$K_X29_TEMP_NOHANG Sets the X.29 terminal to
enable TEMP_NOHANG

4–2 X.29 System Services

4.1 $QIO(IO$_NETCONTROL, PSI$K_X29_READ) — Read X.29
Terminal Characteristics

$QIO(IO$_NETCONTROL, PSI$K_X29_READ) is used in X.29 programs to read
PAD parameters and NV terminal characteristics.

This QIO performs an operation equivalent to the DCL command SHOW
TERMINAL/X29.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], p1,p2,p3,p4,[p5],p6

Arguments

func IO$_NETCONTROL

p1 Buffer address.

p2 Buffer size in bytes. The length of the buffer depends on the parameter
p3.

p3 One of the following Network Control Subfunctions:

PSI$K_X29_BREAK_ACTION
PSI$K_X29_HANGUP_PARAMS
PSI$K_X29_HOLD_TIMER
PSI$K_X29_HOST_ECHO_PARAMS
PSI$K_X29_INT_ACTION
PSI$K_X29_LOCAL_ECHO_PARAMS
PSI$K_X29_PAD_PARAMS
PSI$K_X29_TEMP_NOHANG

These subfunctions are described in subsequent sections.

p4 PSI$K_X29_READ

p5 Not used.

p6 Unit number of the NV device.

X.29 System Services 4–3

4.1.1 READ Subfunction: PSI$K_X29_BREAK_ACTION
PSI$K_X29_BREAK_ACTION returns the NV Action Descriptor Block. The
block contains details of the actions the NV device will take on receiving an
Indication–of–break from the X.29 terminal.

The buffer size should be PSI$K_X29_ACTION_LENGTH (head = 20 bytes) to
ensure the buffer is allocated sufficient space to hold the NV Action Descriptor
Block that is returned.

Refer to the HP X.25 for OpenVMS—Programming Guide for a description of the
NV Action Descriptor Block.

Example

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV unit number

IO_STATUS:
.BLKW 4 ;I/O Status block

DESC_BLOCK:
.BLKB PSI$K_X29_ACTION_LENGTH ; Action Descriptor block

$QIOW_S - ; Issue QIO and wait
IOSB = IO_STATUS,- ; I/O Status block
CHAN = NW_CHAN,- ; Control channel to NW
FUNC = #IO$_NETCONTROL,- ; Function is NETCONTROL
P1 = DESC_BLOCK,- ; address of descriptor block
P2 = #PSI$K_X29_ACTION_LENGTH,- ; length of descriptor block
P3 = #PSI$K_X29_BREAK_ACTION,- ; Subfunction
P4 = #PSI$K_X29_READ,- ; read data
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; check system service and IOSB

Return Status

SS$_NORMAL Service completed successfully. Break actions are returned in
buffer.

SS$_BUFFEROVF Buffer specified in p1 is too small to hold the data returned.

4–4 X.29 System Services

4.1.2 READ Subfunction: PSI$K_X29_HANGUP_PARAMS
This subfunction reads the hangup PAD parameter template into a user–specified
buffer.

The hangup PAD parameter template defines PAD characteristics after an X.29
call has been cleared.

A buffer size of 256 bytes is normally adequate. This allows for 32 parameters.

Refer to the HP X.25 for OpenVMS—Utilities Guide for a description of PAD
parameter templates.

Example

NW_CHAN:
.BLKW 1 ; Channel to NW

IO_STATUS: ; I/O status block
.BLKW 4

TEMPLATE_ENTRIES = 32 ; Allow for 32 parameters
TEMPLATE_BUFFER: ; Buffer to manipulate

.BLKB TEMPLATE_ENTRIES * PSI$K_X29_PARAM_LENGTH
TEMPLATE_BUFFER_LEN = .-TEMPLATE_BUFFER ; template

; Read the hangup PAD parameter template
;
;-

$QIOW_S - ; Issue QIO and wait
CHAN = NW_CHAN,- ; to network device
FUNC = #IO$_NETCONTROL,- ; function is network control
IOSB = IO_STATUS,- ; I/O status block
P1 = TEMPLATE_BUFFER,- ; address of buffer
P2 = #TEMPLATE_BUFFER_LEN,- ; length of buffer
P3 = #PSI$K_X29_HANGUP_PARAMS,-
- ; read subfunction specifies
- ; which template to manipulate
P4 = #PSI$K_X29_READ,- ; NV read operation
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; Check for I/O error

;+

Return Status

SS$_NORMAL Service completed successfully.

SS$_BUFFEROVF Buffer specified in p1 is too small to hold the template.

X.29 System Services 4–5

4.1.3 READ Subfunction: PSI$K_X29_HOLD_TIMER
This parameter returns the value of the Hold Timer into the specified buffer.

The timer value is in units of 1/10 of a second.

The buffer size should be set to 4 bytes to ensure the buffer is allocated sufficient
space to hold the timer value returned.

Example

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV unit number

IO_STATUS:
.BLKW 4 ; I/O status block

TIMER:
.BLKB 4 ; Hold Timer buffer

$QIOW_S - ; Issue QIO and wait
IOSB = IO_STATUS,- ; I/O Status Block
CHAN = NW_CHAN,- ; Control channel to NW
FUNC = #IO$_NETCONTROL,- ;Function is NETCONTROL
P1 = TIMER ; Address of output

; buffer
P2 = #4 ; Length of output

; buffer
P3 = #PSI$K_HOLD_TIMER,- ; Subfunction
P4 = #PSI$K_X29_READ,- ; Read data
P6 = NV_UNIT ; NV Unit number

BSBW IO_ERROR ; Check system service
; and IOSB

Return Status

SS$_NORMAL Service completed successfully. Hold Timer value is returned.

SS$_BUFFEROVF Buffer specified in p1 is too small to hold the value returned.

4–6 X.29 System Services

4.1.4 READ Subfunction: PSI$K_X29_HOST_ECHO_PARAMS
This subfunction reads the host–echo PAD parameter template into a user–
specified buffer.

The host–echo PAD parameter template defines characteristics of the PAD in
host–echo mode.

A buffer size of 256 bytes is normally adequate. This allows for 32 PAD
parameters.

PAD parameter templates are described in the HP X.25 for OpenVMS—Utilities
Guide.

Example

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV unit number

IO_STATUS: ; I/O status block
.BLKQ 1

TEMPLATE_ENTRIES = 32 ; Allow for 32 parameters

TEMPLATE_BUFFER: ; Buffer to manipulate
.BLKB TEMPLATE_ENTRIES * PSI$K_X29_PARAM_LENGTH

TEMPLATE_BUFFER_LEN = .-TEMPLATE_BUFFER ; template

; Read the Host-echo PAD parameter template
;
;-

$QIOW_S - ; Issue QIO and wait
CHAN = NW_CHAN,- ; to network device
FUNC = #IO$_NETCONTROL,- ; function is network control
IOSB = IO_STATUS,- ; I/O status block
P1 = TEMPLATE_BUFFER,- ; address of buffer
P2 = #TEMPLATE_BUFFER_LEN,- ; length of buffer
P3 = #PSI$K_X29_HOST_ECHO_PARAMS,-
- ; read subfunction specifies
- ; which template to manipulate
P4 = #PSI$K_X29_READ,- ; NV read operation
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; Check for I/O error

;+

Return Status

SS$_NORMAL Service completed successfully.

SS$_BUFFEROVF Buffer specified in p1 is too small to hold the template.

X.29 System Services 4–7

4.1.5 READ Subfunction: PSI$K_X29_INT_ACTION
This parameter returns the NV Action Descriptor Block. This contains details of
the actions the NV device will take on receiving an Interrupt message from the
X.29 terminal.

The buffer size should be PSI$K_X29_ACTION_LENGTH (= 20 bytes) to ensure
the buffer is allocated sufficient space to hold the NV Action Descriptor Block
that is returned.

For a description of the NV Action Descriptor Block, refer to the HP X.25 for
OpenVMS—Programming Guide.

Example

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV unit number

IO_STATUS:
.BLKW 4 ;I/O Status block

DESC_BLOCK:
.BLKB PSI$K_X29_ACTION_LENGTH ; Action Descriptor block

$QIOW_S - ; Issue QIO and wait
IOSB = IO_STATUS,- ; I/O Status block
CHAN = NW_CHAN,- ; Control channel to NW
FUNC = #IO$_NETCONTROL,- ; Function is NETCONTROL
P1 = DESC_BLOCK,- ; address of descriptor block
P2 = #PSI$K_X29_ACTION_LENGTH,- ; length of descriptor block
P3 = #PSI$K_X29_INT_ACTION,- ; Subfunction
P4 = #PSI$K_X29_READ,- ; read data
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; check system service and IOSB

Return Status

SS$_NORMAL Service completed successfully. Interrupt actions are returned
in buffer.

SS$_BUFFEROVF Buffer specified in p1 is too small to hold the descriptor
returned.

4–8 X.29 System Services

4.1.6 READ Subfunction: PSI$K_X29_LOCAL_ECHO_PARAMS
This subfunction reads the local–echo PAD parameter template into a user–
specified buffer.

The local–echo PAD parameter template defines characteristics of the PAD in
local–echo mode.

A buffer size of 256 bytes is normally adequate. This allows for 32 PAD
parameters.

PAD parameter templates are described in the HP X.25 for OpenVMS—Utilities
Guide.

Example

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV unit number

IO_STATUS: ; I/O status block
.BLKQ 1

TEMPLATE_ENTRIES = 32 ; Allow for 32 parameters

TEMPLATE_BUFFER: ; Buffer to manipulate
.BLKB TEMPLATE_ENTRIES * PSI$K_X29_PARAM_LENGTH

TEMPLATE_BUFFER_LEN = .-TEMPLATE_BUFFER ; template

; Read the Local-echo PAD parameter template
;
;-

$QIOW_S - ; Issue QIO and wait
CHAN = NW_CHAN,- ; to network device
FUNC = #IO$_NETCONTROL,- ; function is network control
IOSB = IO_STATUS,- ; I/O status block
P1 = TEMPLATE_BUFFER,- ; address of buffer
P2 = #TEMPLATE_BUFFER_LEN,- ; length of buffer
P3 = #PSI$K_X29_LOCAL_ECHO_PARAMS,-
- ; read subfunction specifies
- ; which template
P4 = #PSI$K_X29_READ,- ; NV read operation
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; Check for I/O error

;+

Return Status

SS$_NORMAL Service completed successfully.

SS$_BUFFEROVF Buffer specified in p1 is too small to hold the template.

X.29 System Services 4–9

4.1.7 READ Subfunction: PSI$K_X29_PAD_PARAMS
This subfunction returns the PAD Parameter List into the specified buffer.

The PAD Parameter List contains details of PAD parameters read. The actual
length of the list is returned in the IOSB.

A buffer size of 512 is normally adequate. This allows for 64 PAD parameters.

Refer to the HP X.25 for OpenVMS—Programming Guide for a description of the
PAD Parameter List. Refer to Appendix E for a complete description of the PAD
parameters.

The following example and Figure 4–1 show:

• How the NV device (at the host DTE) communicates with a PAD.

• The contents of Register 0 (R0).

• The contents of the I/O Status Block (IOSB).

Example

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV unit number

IO_STATUS:
.BLKW 4 ;I/O Status block

PARAM_ENTRIES = 64 ; Allow for 64 parameters
PARAM_BUFFER: ; Buffer to manipulate parameters

.BLKB PARAM_ENTRIES * PSI$K_X29_PARAM_LENGTH
PARAM_BUFFER_LEN = .-PARAM_BUFFER

$QIOW_S - ; Issue QIO and wait
IOSB = IO_STATUS,- ; I/O Status block
CHAN = NW_CHAN,- ; Control channel to NW
FUNC = #IO$_NETCONTROL,- ; Function is NETCONTROL
P1 = PARAM_BUFFER,- ; address of Parameter List
P2 = PARAM_BUFFER_LEN,- ; length of Parameter List
P3 = #PSI$K_X29_PAD_PARAMS ; Subfunction
P4 = #PSI$K_X29_READ,- ;read data
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; check system service and IOSB

4–10 X.29 System Services

Figure 4–1 $QIO(IO$_NETCONTROL!PSI$K_X29_READ) Operations

System service call
and status returns NV device PAD Comments

$QIO(IO$_NETCONTROL)

p3=PSI$K_X29_PAD_PARAMS
p4=PSI$K_X29_READ
R0 status: SS$_NORMAL

READ PAD
ALL

Requests all PAD
parameters.

Possible outcomes:

1. Returns all PAD
 parameter. The IOSB
 returns the actual
 length of the data
 block.

2. The PAD fails to
 return a message
 before the NV
 device times out.

PARAMETER
INDICATION

IOSB status: SS$_NORMAL

IOSB status: SS$_TIMEOUT

Return Status

SS$_NORMAL Service completed successfully: PAD parameters are returned
in buffer supplied.

SS$_BUFFEROVF Buffer specified in p1 is too small to hold the descriptor
returned.

SS$_CTRLERR A PAD error message is received in response to a message sent
by NV.

SS$_TIMEOUT No response received from PAD.

X.29 System Services 4–11

4.1.8 READ Subfunction: PSI$K_X29_TEMP_NOHANG
This returns the setting of the TEMP_NOHANG flag into the buffer supplied.

Only bit 0 is used. If PSI$K_X29_TEMP_NOHANG is set, the virtual circuit will
not be cleared on a subsequent $DASSGN call.

The buffer size should be 4 to ensure the buffer is allocated sufficient space to
hold the value returned.

Example

NW_CHAN:
.BLKW 1 ; Channel to NW

TEMP_NOHANG_ON:
.BLKL 1 ; Value of temp nohang

NV_UNIT:
.BLKL 1 ; NV unit number

IO_STATUS:
.BLKW 4 ; I/O Status block

;+
; Read the temp_nohang bit
;-

$QIOW_S - ; QIO and wait
IOSB = IO_STATUS,- ; I/O status block
CHAN = NW_CHAN,- ; channel to NW
FUNC = #IO$_NETCONTROL,- ; function is net control
P1 = TEMP_NOHANG_ON,- ; output buffer
P2 = #4,- ; longword
P3 = #PSI$K_X29_TEMP_NOHANG,-; subfunction
P4 = #PSI$K_X29_READ,- ; NV read operation
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; Check system service and IOSB

Return Status

SS$_NORMAL Service completed successfully: TEMP_NOHANG flag is
returned in the buffer supplied.

SS$_BUFFEROVF The buffer specified in p1 is too small to return the data.

4–12 X.29 System Services

4.2 $QIO(IO$_NETCONTROL, PSI$K_X29_READ_SPECIFIC) —
Read Specific X.29 Parameters

$QIO(IO$_NETCONTROL, PSI$K_X29_READ_SPECIFIC) is used in X.29
programs to read specific PAD parameters.

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], p1,p2,p3,p4,[p5],p6

Arguments

func IO$_NETCONTROL

p1 Buffer address.

p2 Buffer size in bytes. The length of the buffer depends on the parameter
p3.

p3 The following Network Control Subfunction:

PSI$K_X29_PAD_PARAMS

The subfunction is described in the following section.

p4 PSI$K_X29_READ_SPECIFIC

p5 Not used.

p6 Unit number of the NV device.

X.29 System Services 4–13

4.2.1 READ_SPECIFIC Subfunction: PSI$K_X29_PAD_PARAMS
This subfunction returns specific PAD parameters into the specified buffer.

The buffer described by p1 and p2 is read to get a list of the parameters that
should be returned. NV issues an X.29 read parameters message to the PAD,
requesting the parameters listed in the buffer.

On completion of the QIO, the buffer is overwritten with the parameters returned
from the PAD.

For a description of the PAD Parameter List, refer to the HP X.25 for OpenVMS—
Programming Guide. For a complete description of the PAD parameters, refer to
Appendix E.

Figure 4–2 shows:

• How the NV driver (at the host DTE) communicates with a PAD.

• The contents of Register 0 (R0).

• The contents of the I/O Status Block (IOSB).

Figure 4–2 $QIO(IO$_NETCONTROL!PSI$K_X29_READ_SPECIFIC) Operations

System service call
and status returns NV device PAD Comments

$QIO(IO$_NETCONTROL)

p3=PSI$K_X29_PAD_PARAMS
p4=PSI$K_X29_READ_SPECIFIC
R0 status: SS$_NORMAL

READ PAD

Requests specific PAD
parameters.

Possible outcomes:

1. Returns all PAD
 parameter. The IOSB
 returns the actual
 length of the data
 block.

2. The PAD fails to
 return a message
 before the NV
 device times out.

PARAMETER
INDICATION

IOSB status: SS$_NORMAL

IOSB status: SS$_TIMEOUT

4–14 X.29 System Services

Example
In this example, QIO(IO$_NETCONTROL) is used to read the parameters
specified in PARAM_BUFFER (ECHO and network–specific parameter 42).

.MACRO PAD_PARAM_ITEM CODE, VALUE=0, ATTR=0
.WORD CODE ; PSI$W_X29_PARAM_REF
.WORD ATTR ; PSI$W_X29_PARAM_FLAGS
.BYTE VALUE ; PSI$B_X29_PARAM_VALUE
.BYTE 0, 0, 0 ; Must be zero

.ENDM

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV unit number

IO_STATUS: ; I/O status block
.BLKW 4

PARAM_BUFFER:
ECHO: PAD_PARAM_ITEM ; find out the echo setting

CODE=PSI$K_X29_PAR_ECHO
PAD_PARAM_ITEM ; Network specific parameters follow

CODE=0, VALUE=0
PAR42: PAD_PARAM_ITEM ; find network specific parameter 42

CODE=42
PARAM_BUFFER_LEN = .-PARAM_BUFFER ;

;
; Get the PAD parameters
;-

$QIOW_S - ; Issue QIO and wait
CHAN = NW_CHAN,- ; to network device
FUNC = #IO$_NETCONTROL,- ; Function is network control
IOSB = IO_STATUS,- ; I/O status block
P1 = PARAM_BUFFER,- ; Address of buffer
P2 = PARAM_BUFFER_LEN,- ; Length of buffer
P3 = #PSI$K_X29_PAD_PARAMS,- ; Subfunction specifies
- ; read PAD parameters
P4 = #PSI$K_X29_READ_SPECIFIC,- ; NV read specific operation
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; Check for I/O error

Return Status

SS$_NORMAL Service completed successfully: PAD parameters are returned
in buffer supplied.

SS$_CTRLERR A PAD error message is received in response to a message sent
by NV.

SS$_TIMEOUT No response received from PAD.

X.29 System Services 4–15

4.3 $QIO(IO$_NETCONTROL, PSI$K_X29_SET) — Set X.29 Terminal
Characteristics

$QIO(IO$_NETCONTROL, PSI$K_X29_SET) is used in X.29 programs to set
PAD parameters and NV terminal characteristics.

This QIO performs an operation equivalent to the DCL command SET
TERMINAL/X29.

Figure 4–3 shows:

• How the NV device (at the host DTE) communicates with a PAD.

• The contents of Register 0 (R0).

• The contents of the I/O Status Block (IOSB).

Figure 4–3 $QIO(IO$_NETCONTROL!PSI$K_X29_SET) Operations

IOSB status: SS$_TIMEOUT

IOSB status: SS$_BADPARAM

PARAMETER
INDICATION

System service call
and status returns NV device PAD Comments

$QIO(IO$_NETCONTROL)

p3=PSI$K_X29_PAD_PARAMS
p4=PSI$K_X29_SET
R0 status: SS$_NORMAL

READ PAD

Message contains the
PAD parameters to be

Possible outcomes:

1. Returns all PAD
 parameter. The IOSB
 returns the actual
 length of the data
 block.

3. The PAD fails to
 return a message
 before the NV
 device times out.

IOSB status: SS$_NORMAL

set.SET AND

2. The IOSB returns the
 number of the first
 parameter in error,
 and its value.

PARAMETER
INDICATION

OF ERRORS

4–16 X.29 System Services

Format
$QIO [efn],chan,func,[iosb],[astadr],[astprm], p1,p2,p3,p4,[p5],p6

Arguments

func IO$_NETCONTROL

p1 Buffer address.

p2 Buffer size in bytes. The length of the buffer depends on the parameter
p3.

p3 One of the following Network Control Subfunctions:

PSI$K_X29_BREAK_ACTION
PSI$K_X29_HANGUP_PARAMS
PSI$K_X29_HOLD_TIMER
PSI$K_X29_HOST_ECHO_PARAMS
PSI$K_X29_INT_ACTION
PSI$K_X29_LOCAL_ECHO_PARAMS
PSI$K_X29_PAD_PARAMS
PSI$K_X29_PAD_RESELECTION
PSI$K_X29_TEMP_NOHANG

These subfunctions are described in subsequent sections.

p4 PSI$K_X29_SET

p5 Not used.

p6 Unit number of the NV device.

X.29 System Services 4–17

4.3.1 SET Subfunction: PSI$K_X29_BREAK_ACTION
This parameter defines the action, or series of actions, that NV is to take when
an Indication–of–break X.29 message is received.

Usually, PSI$K_X29_BREAK_ACTION is specified for when you issue a BREAK
command while using the host–based PAD.

Parameter p2 specifies the size of the NV Action Descriptor Block. Set p2 either
to PSI$K_X29_ACTION_LENGTH (= 20 bytes), or to a value between 4 and 20
bytes.

Set one or more of the following bits in the 4–byte Action flag (byte 0 to 3):

PSI$V_X29_ACTION_RESET To reset the circuit.

PSI$V_X29_ACTION_PURGE To purge all input in the NV device.

PSI$V_X29_ACTION_CLEAR To clear the call.

Only the first three bits of byte 0 are used.

If you require other actions to be taken, set the counted string PSI$T_X29_
ACTION_STRING in the NV Action Descriptor Block.

For details of the NV Action Descriptor Block, refer to the HP X.25 for
OpenVMS—Programming Guide.

Example

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV Unit number

IO_STATUS:
.BLKW 4 ; I/O Status block

DESC_BLOCK:
.LONG PSI$M_X29_ACTION_PURGE!- ;Descriptor block

PSI$M_X29_ACTION_RESET
;
STRING:

.BYTE STRING_LENGTH-1 ;Count

.BYTE 24 ;^X

.BYTE 15 ;^0
STRING_LENGTH = .-STRING
DESC_LENGTH = .-DESC_BLOCK

;
$QIOW_S - ; Issue QIO and wait
IOSB = IO_STATUS ; I/O Status block
CHAN = NW_CHAN,- ;Control channel to NW
FUNC = #IO$_NETCONTROL,- ;Function is NETCONTROL
P1 = DESC_BLOCK,- ;Address of descriptor block
P2 = #DESC_LENGTH,- ;Length of descriptor block
P3 = #PSI$K_X29_BREAK_ACTION,- ;Subfunction
P4 = #PSI$K_X29_SET,- ;NV set data
P6 = NV_UNIT ;NV Unit number

;
BSBW IO_ERROR ;Check system service and IOSB

4–18 X.29 System Services

Return Status

SS$_NORMAL Service completed successfully: break accepted for
transmission.

SS$_ACCVIO The NV Action Descriptor Block specified in p1 cannot be read.

X.29 System Services 4–19

4.3.2 SET Subfunction: PSI$K_X29_HANGUP_PARAMS
This subfunction sets the hangup PAD parameter template.

The hangup PAD parameter template defines the PAD characteristics after an
X.29 call has been cleared.

Parameter p2 is the size of the PAD parameter buffer. Calculate p2 as follows:

(number of PAD parameters to be set) * PSI$K_X29_PARAM_LENGTH

Refer to the HP X.25 for OpenVMS—Utilities Guide for a description of how to
use PAD parameter templates.

Example
This example sets the hangup PAD parameter template to turn on echo and
editing.

.MACRO PAD_PARAM_ITEM CODE, VALUE=0, ATTR=0
.WORD CODE ; PSI$W_X29_PARAM_REF
.WORD ATTR ; PSI$W_X29_PARAM_FLAGS
.BYTE VALUE ; PSI$B_X29_PARAM_VALUE
.BYTE 0, 0, 0 ; Must be zero

.ENDM

NW_CHAN:
.BLKW 1 ; Channel to NW

IO_STATUS: ; I/O status block
.BLKQ 1

TEMPLATE_BUFFER:
PAD_PARAM_ITEM - ; Turn on Echo

CODE=PSI$K_X29_PAR_ECHO, VALUE=1
PAD_PARAM_ITEM - ; Turn on Editing

CODE=PSI$K_X29_PAR_EDIT, VALUE=1
TEMPLATE_BUFFER_LEN = .-TEMPLATE_BUFFER ; template

;
; Set the PAD parameter template
;-

$QIOW_S - ; Issue QIO and wait
CHAN = NW_CHAN,- ; to network device
FUNC = #IO$_NETCONTROL,- ; Function is net control
IOSB = IO_STATUS,- ; I/O status block
P1 = TEMPLATE_BUFFER,- ; Address of buffer
P2 = TEMPLATE_BUFFER_LEN,- ; Length of buffer
P3 = #PSI$K_X29_HANGUP_PARAMS,-
- ; Subfunction specifies
- ; which template to manipulate
P4 = #PSI$K_X29_SET,- ; NV set operation
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; Check for I/O error

Return Status

SS$_NORMAL Service completed successfully.

SS$_ACCVIO The buffer specified in p1 cannot be read.

4–20 X.29 System Services

4.3.3 SET Subfunction: PSI$K_X29_HOST_ECHO_PARAMS
This subfunction sets the host–echo PAD parameter template.

The host–echo PAD parameter template defines characteristics of the PAD in
host–echo mode.

Parameter p2 is the size of the PAD parameter buffer. Calculate p2 as follows:

(number of PAD parameters to be set) * PSI$K_X29_PARAM_LENGTH

Refer to the HP X.25 for OpenVMS—Utilities Guide for a description of how to
use PAD parameter templates.

If the NV device is in host–echo mode, the NV device will consult the new
template, and configure the PAD according to the instructions in the template.

Example
This example sets the host–echo PAD parameter template so that echo and
editing are turned off, the user’s timeout value is used, and wrap and newline are
turned off.

.MACRO PAD_PARAM_ITEM CODE, VALUE=0, ATTR=0
.WORD CODE ; PSI$W_X29_PARAM_REF
.WORD ATTR ; PSI$W_X29_PARAM_FLAGS
.BYTE VALUE ; PSI$B_X29_PARAM_VALUE
.BYTE 0, 0, 0 ; Must be zero

.ENDM

NW_CHAN:
.BLKW 1 ; Channel to NW

IO_STATUS: ; I/O status block
.BLKQ 1

NV_UNIT:
.BLKL 1 ; NV unit number

TEMPLATE_BUFFER:
PAD_PARAM_ITEM - ; Turn Echo off

CODE=PSI$K_X29_PAR_ECHO, VALUE=0
PAD_PARAM_ITEM - ; Turn Editing off

CODE=PSI$K_X29_PAR_EDIT, VALUE=0
PAD_PARAM_ITEM - ; Use the user’s timeout value

CODE=PSI$K_X29_PAR_TIMEOUT, ATTR=PSI$M_X29_USER_VALUE
PAD_PARAM_ITEM - ; Turn off wrap

CODE=PSI$K_X29_PAR_WRAP, VALUE=0
PAD_PARAM_ITEM - ; Turn off Newline

CODE=PSI$K_X29_PAR_NEW_LINE, VALUE=0
TEMPLATE_BUFFER_LEN = .-TEMPLATE_BUFFER ; template

;
; Set the PAD parameter template
;-

$QIOW_S - ; Issue QIO and wait
CHAN = NW_CHAN,- ; to network device
FUNC = #IO$_NETCONTROL,- ; Function is net control
IOSB = IO_STATUS,- ; I/O status block
P1 = TEMPLATE_BUFFER,- ; Address of buffer
P2 = TEMPLATE_BUFFER_LEN,- ; Length of buffer
P3 = #PSI$K_X29_HOST_ECHO_PARAMS,-
- ; Subfunction specifies
- ; which template to manipulate
P4 = #PSI$K_X29_SET,- ; NV set operation
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; Check for I/O error

X.29 System Services 4–21

Return Status

SS$_NORMAL Service completed successfully.

SS$_ACCVIO The buffer specified in p1 cannot be read.

4–22 X.29 System Services

4.3.4 SET Subfunction: PSI$K_X29_HOLD_TIMER
This parameter sets the Hold Timer to units of 1/10 of a second.

Parameter p2 is the size of the buffer that stores the timer value. Set p2 to 4
bytes.

Set the timer to 0 to transmit all output from NV to the X.29 terminal
immediately.

For details of how the Hold Timer functions in relation to the NV device, refer to
the HP X.25 for OpenVMS—Programming Guide.

Example
In this example the Hold Timer is set to 1/5 second.

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV Unit number

IO_STATUS:
.BLKW 4 ; I/O Status block

HOLD_TIMER:
.LONG 2 ;Hold timer value

;
$QIOW_S - ; Issue QIO and wait
IOSB = IO_STATUS ; I/O Status block
CHAN = NW_CHAN,- ;Control channel to NW
FUNC = #IO$_NETCONTROL,- ;Function is NETCONTROL
P1 = HOLD_TIMER ;New hold timer
P2 = #4 ;Longword
P3 = #PSI$K_X29_HOLD_TIMER,- ;Subfunction
P4 = #PSI$K_X29_SET,- ;NV set data
P6 = NV_UNIT ;NV Unit number

;
BSBW IO_ERROR ;Check system service and IOSB

Return Status

SS$_NORMAL Service completed successfully: Hold Timer is set.

SS$_ACCVIO The timer value specified in the p1 buffer cannot be read.

X.29 System Services 4–23

4.3.5 SET Subfunction: PSI$K_X29_INT_ACTION
This parameter sets the actions to be taken when an interrupt issued at the X.29
terminal is received as an X.25 Interrupt.

Parameter p2 is the size of the NV Action Descriptor Block. Set p2 either to
PSI$K_X29_ACTION_LENGTH (= 20 bytes), or to a value between 4 and 20
bytes.

Set one or more of the following bits in the 4–byte Action flag (byte 0 to 3):

PSI$V_X29_ACTION_RESET To reset the virtual circuit.

PSI$V_X29_ACTION_PURGE To purge all input in the NV device.

PSI$V_X29_ACTION_CLEAR To clear the call.

Only the first three bits of byte 0 are used.

If you require other actions to be taken, set the counted string (PSI$T_X29_
ACTION_STRING) in the NV Action Descriptor Block.

For details of the NV Action Descriptor Block, refer to the HP X.25 for
OpenVMS—Programming Guide.

Example
In the following example, the Typeahead buffer is purged automatically and the
NV input is purged by setting PSI$V_X29_ACTION_PURGE in the Action flag
and Ctrl/Y in the counted string.

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV Unit number

IO_STATUS:
.BLKW 4 ; I/O Status block

DESC_BLOCK: ;Descriptor block
.LONG PSI$M_X29_ACTION_PURGE ;Purge NV

;
STRING:

.BYTE STRING_LENGTH ;Count

.BYTE 25 ;^Y
STRING_LENGTH = .-STRING
DESC_LENGTH = .-DESC_BLOCK

;
$QIOW_S - ; Issue QIO and wait
IOSB = IO_STATUS ; I/O Status block
CHAN = NW_CHAN,- ;Control channel to NW
FUNC = #IO$_NETCONTROL,- ;Function is NETCONTROL
P1 = DESC_BLOCK,- ;Address of descriptor block
P2 = #DESC_LENGTH,- ;Length of descriptor block
P3 = #PSI$K_X29_INT_ACTION,- ;Subfunction
P4 = #PSI$K_X29_SET,- ;NV set data
P6 = NV_UNIT ;NV Unit number

;
BSBW IO_ERROR ;Check system service and IOSB

Return Status

SS$_NORMAL Service completed successfully: interrupt actions are set.

SS$_ACCVIO The NV Action Descriptor Block specified in p1 cannot be read.

4–24 X.29 System Services

4.3.6 SET Subfunction: PSI$K_X29_LOCAL_ECHO_PARAMS
This subfunction sets the local–echo PAD parameter template.

The local–echo PAD parameter template defines characteristics of the PAD in
local–echo mode.

Parameter p2 is the size of the PAD parameter buffer. Calculate p2 as follows:

(number of PAD parameters to be set) * PSI$K_X29_PARAM_LENGTH

Refer to the HP X.25 for OpenVMS—Utilities Guide for a description of how to
use PAD parameter templates.

Example
In the following example the local–echo PAD parameter template is set to
calculate echo, turn editing on, turn off timeouts and set up the newline
parameter.

.MACRO PAD_PARAM_ITEM CODE, VALUE=0, ATTR=0
.WORD CODE ; PSI$W_X29_PARAM_REF
.WORD ATTR ; PSI$W_X29_PARAM_FLAGS
.BYTE VALUE ; PSI$B_X29_PARAM_VALUE
.BYTE 0, 0, 0 ; Must be zero

.ENDM

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV unit number

IO_STATUS: ; I/O status block
.BLKW 4

TEMPLATE_BUFFER:
PAD_PARAM_ITEM - ; Calculate echo

CODE=PSI$K_X29_PAR_ECHO, ATTR=PSI$M_X29_CALCULATE
PAD_PARAM_ITEM - ; Turn Editing on

CODE=PSI$K_X29_PAR_EDIT, VALUE=1
PAD_PARAM_ITEM - ; Turn off timeouts

CODE=PSI$K_X29_PAR_TIMEOUT, VALUE=0
PAD_PARAM_ITEM - ; Set up newline

CODE=PSI$K_X29_PAR_NEW_LINE, VALUE=4
TEMPLATE_BUFFER_LEN = .-TEMPLATE_BUFFER ; template

;
; Set the PAD parameter template
;-

$QIOW_S - ; Issue QIO and wait
CHAN = NW_CHAN,- ; to network device
FUNC = #IO$_NETCONTROL,- ; Function is network control
IOSB = IO_STATUS,- ; I/O status block
P1 = TEMPLATE_BUFFER,- ; Address of buffer
P2 = TEMPLATE_BUFFER_LEN,- ; Length of buffer
P3 = #PSI$K_X29_LOCAL_ECHO_PARAMS,-
- ; Subfunction specifies
- ; which template to manipulate
P4 = #PSI$K_X29_SET,- ; NV set operation
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; Check for I/O error

X.29 System Services 4–25

Return Status

SS$_NORMAL Service completed successfully.

SS$_ACCVIO The buffer specified in p1 cannot be read.

4–26 X.29 System Services

4.3.7 SET Subfunction: PSI$K_X29_PAD_PARAMS
This parameter assigns values to specified PAD parameters.

Parameter p2 is the size of the PAD Parameter List. Calculate p2 as follows:

(number of PAD parameters to be set) * PSI$K_X29_PARAM_LENGTH

The PAD Parameter List consists of PAD parameter items. To set standard PAD
parameters, you should specify the appropriate Parameter Code in the type field,
followed by the required value.

Refer to Appendix E for details of the PAD parameters, and refer to the HP X.25
for OpenVMS—Programming Guide for details of the PAD Parameter List and
how PAD parameter settings may affect NV operation.

To set nonstandard PAD parameters, specify a sequence of items in the PAD
Parameter List, as follows:

Item 1: Parameter code = 0
Parameter value = 0

Item 2: Nonstandard PAD parameter code
Parameter value

Item 3: Nonstandard PAD parameter code
Parameter value

. . . and so on.

For details of the nonstandard PAD facilities that are supported, refer to the
technical documentation supplied by the PSDN.

Example
The following code turns echo off by setting ECHO to zero.

.MACRO PAD_PARAM_ITEM CODE, VALUE=0, ATTR=0
.WORD CODE ; PSI$W_X29_PARAM_REF
.WORD ATTR ; PSI$W_X29_PARAM_FLAGS
.BYTE VALUE ; PSI$B_X29_PARAM_VALUE
.BYTE 0, 0, 0 ; Must be zero

.ENDM

NW_CHAN:
.BLKW 1 ; Channel to NW

NV_UNIT:
.BLKL 1 ; NV Unit number

IO_STATUS:
.BLKW 4 ;I/O status block

PAD_PARAM_BLOCK:
PAD_PARAM_ITEM - ; Turn Echo off

CODE=PSI$K_X29_PAR_ECHO, VALUE=0
PAD_PARAM_LEN = .-PAD_PARAM_BLOCK

;+
; Make sure that the PAD echo parameter is turned off
;-

$QIOW_S - ; QIO and wait
CHAN = NW_CHAN,- ; NW channel
IOSB = IO_STATUS,- ; I/O status block
FUNC = #IO$_NETCONTROL,- ; network control operation
P1 = PAD_PARAM_BLOCK,- ; PAD Parameter List
P2 = #PAD_PARAM_LEN,- ; length of block
P3 = #PSI$K_X29_PAD_PARAMS,-; change PAD parameter
P4 = #PSI$K_X29_SET,- ; NV set operation
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; Check system service and IOSB

X.29 System Services 4–27

Return Status

SS$_NORMAL Service completed successfully: PAD parameters are set.

SS$_ACCVIO The PAD Parameter List specified in p1 cannot be written.

SS$_BADPARAM Unable to set PAD parameters, incorrect specification. Refer to
the description of secondary status values below for details.

SS$_BUFFEROVF Buffer specified in p1 is too small to hold the PAD parameters
that are set and are read back into that buffer.

SS$_CTRLERR A PAD error message is received in response to a message sent
by NV. Refer to the description of secondary status below for
details.

SS$_TIMEOUT No response received from PAD.

Secondary Return Status
Secondary status values are found in the third word of the IOSB.

If the first word of the IOSB contains SS$_BADPARAM, the third word will
contain the PAD parameter number (IOSB word 4 contains the original value).

If the first word of the IOSB contains SS$_CTRLERR, contents of the third word
will be:

Byte 1: X.29 error type
Byte 2: Invalid code

4–28 X.29 System Services

4.3.8 SET Subfunction: PSI$K_X29_PAD_RESELECTION
This subfunction sends a PAD reselection message to the remote PAD.

The NCB item–list contains the parameters to put in the reselection message,
remote DTE address, user data field and facilities.

Parameter p1 is the address of the start of the NCB item–list.

Parameter p2 is the length of the NCB item–list.

NCB Contents:
Only mandatory, optional, and ignore items are listed in the following table.
Other items will generate an error if you use them.

PSI$C_NCB
Item Code Meaning Notes

Mandatory items

RESELECT_DTE Reselection DTE address

Optional items

LOCFAC Local PSDN facilities

USERDATA User data field 1

Ignored items

NULL Null item identifier

Notes

1. The user data field can be up to 16 bytes in length for normal calls and up to
128 bytes in length for fast select calls.

X.29 System Services 4–29

Example
The following example sends a PAD reselection message to the remote PAD, with
DTE address 234273400321, with optional user data and local PSDN facilities.

.MACRO NCB_ITEM_HEADER CODE, LENGTH=0
.WORD 4+(LENGTH)
.WORD CODE

.ENDM
NW_CHAN:

.BLKW 1 ; Channel to NW
IO_STATUS: ; I/O status block

.BLKQ 1
RESELECT_ITEM_LIST:

NCB_ITEM_HEADER psi$c_ncb_reselect_dte, 4+13
.ascic "234273400321"
NCB_ITEM_HEADER psi$c_ncb_user_data, 4+7
.ascic "BARRY"
NCB_ITEM_HEADER psi$c_ncb_locfac, 4+7
.byte 6 ; number of facility bytes
.byte ^x43, ^x07, ^x07 ; Window size of 7
.byte ^x42, ^x0a, ^x0a ; Packet size of 1024

RESELECT_ITEM_LIST_LEN = .-RESELECT_ITEM_LIST
;
; Set the PAD parameter template
;-

$QIOW_S - ; Issue QIO and wait
CHAN = NW_CHAN,- ; to network device
FUNC = #IO$_NETCONTROL,- ; Function is net control
IOSB = IO_STATUS,- ; I/O status block
P1 = RESELECT_ITEM_LIST,- ; Address of buffer
P2 = RESELECT_ITEM_LIST_LEN,- ; Length of buffer
P3 = #PSI$K_X29_PAD_RESELECTION,-
- ; Subfunction specifies
- ; send pad reselection message
P4 = #PSI$K_X29_SET,- ; NV set operation
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; Check for I/O error

Return Status

SS$_NORMAL The PAD reselection message has been sent to the PAD.

SS$_ACCVIO The buffer specified in p1 cannot be read.

SS$_IVBUFLEN The NCB is badly formatted; check the item lengths.

SS$_BADPARAM An item code is invalid or the contents of an item are invalid.

4–30 X.29 System Services

4.3.9 SET Subfunction: PSI$K_X29_TEMP_NOHANG
This parameter sets the X.29 terminal to enable TEMP_NOHANG.

Normally, when the last channel is deassigned from an NV unit, the call is
cleared and all resources used by the unit are returned to the system. This
subfunction temporarily disables terminal hangup and allows the NV unit to be
passed to another process. Refer to the HP X.25 for OpenVMS—Programming
Guide for further details.

When the channel has been deassigned and the login sequence has started,
setting the TEMP_NOHANG flag to 0 does not affect operations.

Set p3 either to 1 (enable TEMP_NOHANG) or to 0 (disable TEMP_NOHANG).
Set p2 (buffer length) to 4 bytes.

Example
The following code enables TEMP_NOHANG.

NW_CHAN:
.BLKW 1 ; Channel to NW

TEMP_NOHANG_ON:
.LONG 1 ; Value to set in temp no hang

NV_UNIT:
.BLKL 1 ; NV unit number

IO_STATUS:
.BLKW 4 ; I/O status block

;+
; Set the temp_nohang bit
;-

$QIOW_S - ; QIO and wait
IOSB = IO_STATUS,- ; I/O status block
CHAN = NW_CHAN,- ; channel to NW
FUNC = #IO$_NETCONTROL,- ; function is net control
P1 = TEMP_NOHANG_ON,- ; value to set
P2 = #4,- ; longword
P3 = #PSI$K_X29_TEMP_NOHANG,-; change NV temp_nohang
P4 = #PSI$K_X29_SET,- ; NV set operation
P6 = NV_UNIT ; NV unit number

BSBW IO_ERROR ; Check system service and IOSB

Return Status

SS$_NORMAL Service completed successfully: TEMP_NOHANG is set.

SS$_ACCVIO The value in the p1 buffer cannot be written.

X.29 System Services 4–31

5
Status Codes Returned at System Service

Completion

When a system service completes, a status code is returned. The system services
used for X.25 for OpenVMS programming place the return status code in Register
0 (R0). Return status codes usually show if the service completed successfully,
although sometimes they simply provide information for your program. Moreover,
a success return status code (severity level = 1) does not necessarily mean that
the program achieved the desired result, but only that the service has completed
all its functions, and has returned control to the calling program. For example,
the return status code SS$_BUFFEROVF, returned when a character string
returned by a service is longer than the buffer provided to receive it, is a success
code.

Note

All of the QIO system service calls return a success status code of
SS$_NORMAL. This indicates only that the request was successfully
queued.

Warning status codes (and some error status codes) show that the service may
have completed part, but not all, of the requested functions.

Generally, return status codes have the same meaning wherever they are
returned. The return status codes for each system service are listed in the
following chapters, together with any special meanings of the status codes for
that system service:

• Chapter 2 for system services common to X.25 and X.29 programming.

• Chapter 3 for system services specific to X.25 programming.

• Chapter 4 for system services specific to X.29 programming.

When your program calls a system service, read the descriptions of the service’s
return status codes to determine whether you want the program to check for
particular return conditions.

When a system service completes, the system services used for X.25 for OpenVMS
programming place the return status code in the first word of the I/O Status
Block (IOSB), in addition to placing the return status code in Register 0 (R0).
Further I/O completion status information is placed in the second, third, and
fourth words of the IOSB, as shown in Table 5–1.

Status Codes Returned at System Service Completion 5–1

Table 5–1 Completion Status Information in the IOSB

IOSB Contents Meaning

Word 1 Return status The completion status code returned by the
system service call.

Word 2 Byte count The number of bytes that have been processed.

For read operations: the number of bytes read.

For IO$_ACCESS operations: the number of bytes
of the NCB processed successfully before an error.

Word 3 Secondary status For IO$_ACCESS and IO$_DEACCESS:

If IOSB word 1 contains SS$_ABORT or SS$_
IVDEVNAM, word 3 contains a secondary
status. In addition, on OpenVMS VAX
systems, if IOSB word 1 contains SS$_
NORMAL, word 3 contains a secondary
status. Otherwise, the contents are
undefined. Details of the secondary statuses
for IO$_ACCESS and IO$_DEACCESS are
provided with the service descriptions in
Section 2.6 and Section 2.11.

For IO$_ACPCONTROL:

If IOSB word 1 contains SS$_IVDEVNAM,
word 3 contains a secondary status.
Otherwise, the contents are undefined.
Details of the secondary status for IO$_
ACPCONTROL are with the service
description in Section 2.10.

For IO$_NETCONTROL(PSI$K_X29_SET,PSI$K_
X29_PAD_PARAMS):

If IOSB word 1 contains SS$_BADPARAM
or SS$_CTRLERR, word 3 contains a
secondary status. Otherwise, the contents
are undefined. Details of the secondary
status for IO$_NETCONTROL(PSI$K_X29_
SET,PSI$K_X29_PAD_PARAMS) are with the
service description in Section 4.3.7.

For IO$_READVBLK:

If IOSB word 1 contains SS$_NORMAL, word
3 contains a secondary status. Otherwise,
the contents are undefined. Details of the
secondary status for IO$_READVBLK are
with the service description in Section 2.12.

Word 4 — Internal information, ignore this field.

Refer to the OpenVMS documentation for further details of the use of
asynchronous system traps (ASTs), I/O status blocks (IOSBs) and event flags.

The operating system does not automatically handle system service failure or
warning conditions. You must test for them, and handle them yourself. This
contrasts with the operating system’s handling of exception conditions that are
detected by the hardware or software. The operating system handles these
exception conditions by default. However, you can override the default handling

5–2 Status Codes Returned at System Service Completion

by declaring a condition handler (refer to the OpenVMS documentation of system
services).

5.1 Testing the Return Status Code
Each language provides a mechanism for testing the return status. Often,
you need check only the low–order bit, such as testing for TRUE (success or
informational return) or FALSE (error or warning return).

However, you can check the entire value for a specific return condition. To permit
this, each language provides a way for your program to determine the values
associated with specific, symbolically defined codes. Always use these symbolic
names when your code tests for specific conditions.

For information on how to test for these symbolically defined codes, see the User’s
Guide for your programming language.

The return status is stored as a binary value in a longword. Depending on your
specific needs, you can test just the low–order bit, the three low–order bits, or the
entire value:

• The low–order bit indicates successful (1) or unsuccessful (0) completion of
the service.

• The three low–order bits, taken together, represent the severity of the error.
Severity code values are:

Value Severity Level

0 Warning

1 Success

2 Error

3 Informational

4 Severe (or fatal) error

5–7 (Reserved)

• The remaining bits (bits 3 to 31) classify the particular return condition and
the operating system component that issued the status code. Note that for
system service return status values, the high–order word (bits 16 through 31)
contains zeros.

Each numeric status code has a symbolic name in the format:

SS$_code

where code is a mnemonic describing the return condition. For example, the most
common successful return is indicated by SS$_NORMAL, and a common error
status code is SS$_ACCVIO (access violation, indicating that the service could not
read an input argument, or write an output argument).

The symbols associated with the different return status values are defined in the
default system library.

Status Codes Returned at System Service Completion 5–3

5.2 Special Return Conditions
Two process execution modes affect the way control is returned to your program
when an error occurs during the execution of a system service. These modes are:

• Resource wait mode

• System service failure exception mode

If you choose to change the default setting for either of these modes, your
program must handle the special conditions that result.

5.2.1 Resource Wait Mode
Many system services require certain system resources for execution. These
resources include system dynamic memory and process quotas for I/O operations.
Normally, when a system service is called and a required resource is not available,
the program is placed in a wait state, until the resource becomes available. The
service then completes execution. This mode is called resource wait mode.

In a real–time environment, however, it may not be practical or desirable for a
program to wait. You can choose to disable resource wait mode in such cases
and control will return immediately to your program with an error status code.
You can enable or disable resource wait mode with the Set Resource Wait Mode
($SETRWM) system service.

How a program responds to the lack of a resource depends on the application, and
the particular service that is being called. In some instances, the program may
want to continue execution and retry the service call later. In other instances, it
may be necessary only to note that the program is being required to wait.

5.2.2 System Service Failure Exception Mode
This mode determines whether control is returned to you in the normal manner
following an error in a system service operation, or whether an exception is
generated. System service failure exception mode is disabled by default: your
program receives control following an error. You can enable and disable system
service failure exception mode with the Set System Service Failure Exception
Mode ($SETSFM) service.

High–level language compilers generate calls to system services for many
statements or instructions in source programs (for example, reads and writes to
files generate calls to VAX RMS, which uses the QIO and QIOW services). If you
enable system service failure exception mode, many different types of errors (such
as an I/O attempt to a nonexistent device or non–numeric input to a mathematics
routine) will generate the message:

%SYSTEM-F-SSFAIL, system service failure exception,...

Because of this, you are recommended not to enable system service failure
exception mode in high–level language programs, except perhaps when
debugging. If you enable system service failure exception mode and do not
declare your own condition handler, many error messages displayed at run time
will be meaningless.

5–4 Status Codes Returned at System Service Completion

5.3 Obtaining Values for Other Symbolic Codes
In addition to the symbolic codes for specific return conditions, many individual
services also have symbolic codes for the offsets, identifiers, or flags associated
with these services. For example, the Create Process ($CREPRC) service,
which is used to create a subprocess or a detached process, has symbolic codes
associated with the various privileges and quotas you can grant to the created
process.

If your language has a method of obtaining values for these symbols, that method
will be explained in the User’s Guide for your programming language. If your
language does not have such a method:

• Write a short MACRO program containing the desired macros.

• Assemble the program and generate a listing. Use the listing to find the
desired symbols and their hexadecimal values.

• Define each symbol with its value within your source program.

Status Codes Returned at System Service Completion 5–5

A
Summary of X.25 System Service Calls

A.1 System Services for Setting Up and Clearing Communications

$ASSIGN devnam,chan,[acmode],[mbxnam]

Assign a channel.

$CANCEL chan

Clear a virtual call on a channel.

$CREMBX [prmflg],chan,[maxmsg], [bufquo],[promsk],[acmode],[lognam]

Create mailbox and assign a channel.

$QIO [efn],chan,IO$_ACCESS,[iosb], [astadr],[astprm], [p1],p2,[p3],[p4],[p5],p6

Set up a virtual circuit.

$QIO [efn],chan,IO$_DEACCESS,[iosb], [astadr],[astprm], [p1],[p2],[p3],[p4],[p5],p6

Clear a virtual circuit.

$DASSGN chan

Deassign a channel.

A.2 System Services for Handling Incoming Calls

$QIO [efn],chan,IO$_ACCESS!IO$M_ACCEPT, [iosb],[astadr],[astprm],[p1],p2, -
[p3],[p4],[p5],p6

Accept a request to set up a virtual circuit.

$QIO [efn],chan,IO$_ACCESS!IO$M_ABORT, [iosb],[astadr],[astprm,[p1],p2, -
[p3],[p4],[p5],[p6]

Reject a request to set up a virtual circuit.

$QIO [efn],chan,IO$_ACCESS!IO$M_REDIRECT, [iosb],[astadr],[astprm],[p1],p2, -
[p3],[p4],[p5],[p6]

Redirect a call request.

$QIO [efn],chan,IO$_ACPCONTROL, [iosb],[astadr],[astprm], p1,p2,[p3],[p4],[p5],[p6]

Declare a process as a network process.

Summary of X.25 System Service Calls A–1

A.3 System Services for Handling Control and Data Messages

$QIO [efn],chan,IO$_READVBLK,[iosb], [astadr][astprm], p1,p2,[p3],[p4],[p5],[p6]

Receive data.

$QIO [efn],chan,IO$_WRITEVBLK, [iosb],[astadr][astprm], p1,p2,[p3],[p4],[p5],[p6]

Transmit data.

$QIO [efn],chan,IO$_NETCONTROL, [iosb],[astadr],[astprm],[p1],[p2],[p3], -
PSI$K_INTACK,[p5],[p6]

Confirm receipt of an interrupt.

$QIO [efn],chan,IO$_NETCONTROL, [iosb],[astadr],[astprm],[p1],[p2],[p3], -
PSI$K_INTERRUPT,[p5],[p6]

Transmit an interrupt.

$QIO [efn],chan,IO$_NETCONTROL, [iosb],[astadr],[astprm],[p1],[p2],[p3], -
PSI$K_RESET,[p5],[p6]

Reset a virtual circuit, or confirm the receipt of a reset.

$QIO [efn],chan,IO$_NETCONTROL, [iosb],[astadr],[astprm],[p1],[p2],[p3],-
PSI$K_RESTART,[p5],[p6]

Confirm receipt of a restart.

$QIO [efn],chan,IO$_NETCONTROL, [iosb],[astadr],[astprm],p1,p2,p3, -
PSI$K_X29_READ,[p5],p6

Read X.29 terminal characteristics.

A–2 Summary of X.25 System Service Calls

B
Summary of X.29 System Service Calls

B.1 System Services for Setting Up and Clearing Communication

$ASSIGN devnam,chan,[acmode],[mbxnam]

Assign a channel.

$GETDVI [efn],[chan],[devnam],itmlst, [iosb],[astadr],[astprm],nullarg

Get NV unit number.

$CREMBX [prmflg],chan,[maxmsg], [bufquo],[promsk],[acmode],[lognam]

Create mailbox and assign a channel.

$QIO [efn],chan,IO$_ACCESS,[iosb], [astadr],[astprm],[p1],p2,[p3,p4,p5], p6

Set up a virtual circuit.

$QIO [efn],chan,IO$_DEACCESS,[iosb], [astadr],[astprm],[p1],[p2],[p3],[p4],[p5], p6

Clear a virtual circuit.

$DASSGN chan

Deassign a channel.

In the above $QIO system service calls, the arguments are as follows:

p2 is the start address of the quadword NCB descriptor.

p6 (where mandatory) is the unit number of the NV device.

B.2 System Services for Handling Incoming Calls

$QIO [efn],chan,IO$_ACPCONTROL, [iosb],[astadr],[astprm],p1,p2

Declare a process as a network process

$QIO [efn],chan,IO$_ACCESS!IO$M_ACCEPT, [iosb], -
[astadr],[astprm],[p1],p2,[p3],[p4],[p5], p6

Accept a request to set up a virtual circuit.

$QIO [efn],chan,IO$_ACCESS!IO$M_ABORT, [iosb], -
[astadr],[astprm],[p1],p2,[p3],[p4],[p5], [p6]

Reject a request to set up a virtual circuit.

$QIO [efn],chan,IO$_ACCESS!IO$M_REDIRECT, [iosb], -
[astadr],[astprm],[p1],p2,[p3],[p4],[p5], [p6]

Redirect a call request.

In IO$_ACPCONTROL:

p1 is the address of the quadword descriptor of a block containing:

.BYTE NFB$C_DECLNAME

.LONG 0

Summary of X.29 System Service Calls B–1

p2 is the address of the quadword descriptor of a Network Process Declaration Block.

In the other $QIO system service calls, the arguments are as follows:

p2 is the start address of the quadword NCB descriptor.

p6 (where mandatory) is the unit number of the NV device.

B.3 System Services for Reading and Setting PAD Parameters and
NV Terminal Characteristics

$QIO [efn],chan,IO$_NETCONTROL, -
[iosb],[astadr],[astprm],p1,p2,p3, PSI$K_X29_READ,[p5],p6

Read X.29 terminal characteristics.

$QIO [efn],chan,IO$_NETCONTROL, [iosb], -
[astadr],[astprm],p1,p2,p3,PSI$K_X29_SET, [p5],p6

Set X.29 terminal characteristics.

For both these system services, the arguments are as follows:

p1 is the buffer address.

p2 is the buffer size (bytes).

p3 is one of the following Network Control Subfunctions:

PSI$K_X29_BREAK_ACTION
PSI$K_X29_HANGUP_PARAMS
PSI$K_X29_HOLD_TIMER
PSI$K_X29_HOST_ECHO_PARAMS
PSI$K_X29_INT_ACTION
PSI$K_X29_LOCAL_ECHO_PARAMS
PSI$K_X29_PAD_PARAMS
PSI$K_X29_PAD_RESELECTION (PSI$K_X29_SET only)
PSI$K_X29_TEMP_NOHANG

p6 is the unit number of the NV device.

B.4 Terminal Driver Functions
The functions supported by the terminal driver are available at the QIO
interface. For details of the terminal driver QIOs, refer to the VMS terminal
driver documentation.

B–2 Summary of X.29 System Service Calls

C
Network Connect Block (NCB)

C.1 Description of the NCB
For each call request, X.25 for OpenVMS constructs a Network Connect Block
(NCB). The NCB holds information about how the call is to be routed across
the PSDN, charging and diagnostic information, and requests for transmission
facilities. It can also contain some user data. Your program uses the NCB to
access and amend this information when it sets up or clears a virtual circuit, or
when it accepts, redirects, or rejects a request to set up a virtual circuit.

This appendix describes the contents and format of the NCB. The format of the
NCB is described in Section C.2. The items that make up the NCB are listed by
function in Section C.4 and defined in alphabetical order in Section C.5.

C.2 NCB Format
A Network Connect Block (NCB) consists of items of information. The items are
of variable length, each item containing the following fields:

Word 1: Length of data in this item (including words 1 and 2).

Word 2: Type code, of the form PSI$C_NCB_code.

Subsequent bytes: Data (variable length).

Each type of data has a specific format: single–byte value,
single word value, counted string, or longword value.

C.3 Data Type Format Definitions
The data type formats used in NCBs are:

single byte An 8–bit field

single word A 16–bit field

longword A 32–bit field

counted string A variable length field where the first octet contains the
number of bytes in the remainder of the field

Network Connect Block (NCB) C–1

C.4 NCB Item Functions
This section describes the content and usage of each NCB item in alphabetical
order. Table C–1 summarizes the items by type.

For an outgoing call request, the NCB must include some routing information.
For an SVC, specify the remote DTE address. For a PVC, specify the PVC
identifier. You may also need to specify the network identifier.

For an incoming call request, X.25 for OpenVMS constructs an NCB with an
appropriate Incoming Call Identifier.

Other items in the NCB are either optional, ignored, or not used, as documented
in the system service descriptions.

If you specify an item that is not used with a particular system service, X.25 for
OpenVMS generates an error. In these cases, you may change the item code to
null, so that you can re–use the NCB without having to delete the length and
data fields for that item.

Your PSDN must subscribe to a facility for your program to be able to specify it.

Table C–1 NCB Item Codes

Code Data (usage)

Routing information

CUG (Bilateral) Closed User Group

DTECLASS Name of the DTE Class from which a member DTE is used to
make the call

FILTER Filter entity

FLT_PRI Destination priority (incoming)

FLT_REDPRI Redirection priority (incoming)

GATEWAY Gateway identifier (reserved usage)

ICI Incoming Call Identifier

OpenVMS
I64/Alpha LOCDTE Local DTE address ♦
OpenVMS

VAX LOCSUBADR Local subaddress ♦
REMDTE Remote DTE address—this must be included in the NCB for

SVCs if a remote DTE address is not defined in the template
used for the call

REMSUBADR Remote subaddress

TEMPLATE Name of template created by network management, with
specified parameters

Routing information: PVC only

PASSWORD User password

PVCNAM PVC identifier—this must be included in the NCB for PVCs

(continued on next page)

C–2 Network Connect Block (NCB)

Table C–1 (Cont.) NCB Item Codes

Code Data (usage)

Routing information: PSDN facilities

ADDR_MOD_RSN Reason for modifying called line address (incoming)

CALLED_EXTENSION Called address extension

CALLING_EXTENSION Calling address extension

CALL_REDIR_ORIG Original DTE destination of redirected call (incoming)

CALL_REDIR_RSN Call redirection reason (incoming)

LOCFAC Local PSDN facilities (outgoing)

LOCFACR Local PSDN facilities (incoming)

NET_USER_ID Network user identifier

RPOA Remote Port Of Access

User data

NULL Null item identifier

USERDATA User data field

User data: SVC only

FSEL Fast select without restriction (outgoing)

FSEL_RES Fast select with restricted response (outgoing)

RESPDATA Fast select response data (outgoing)

Diagnostics

CAUSE Code for PSDN clearing a call

DIAGCODE Diagnostic code

REASON Code for X.25 for OpenVMS clearing a call

Charging information

REVCHG Reverse charging request (outgoing)

Charging information: PSDN facilities

CHARGE_MON Monetary units for charging (incoming)

CHARGE_SEG Segment count for charging (incoming)

CHARGE_TIME Elapse time for charging (incoming)

CHARGING_INFO Charging information request (outgoing)

(continued on next page)

Network Connect Block (NCB) C–3

Table C–1 (Cont.) NCB Item Codes

Code Data (usage)

Transmission facilities

PKTSIZE Packet size (outgoing)

THRUCLS Throughput class (maximum data rate)

RCV_QUOTA Total size of receive buffers (in bytes)

WINSIZE Window size (outgoing)

Transmission parameters: PSDN facilities

CUM_TRST_DLY Cumulative transit delay (outgoing)

CUM_TRST_DLY_R Cumulative transit delay (incoming)

ETE_TRST_DLY End–to–end transit delay (outgoing)

EXPEDITE Negotiate use of expedited data (interrupts)

MAX_TRST_DLY Maximum acceptable transit delay

MIN_THRUCLS Minimum throughput class (for data rate)

TRANSIT_DELAY Requested maximum transit delay

C–4 Network Connect Block (NCB)

C.5 NCB Item Descriptions
PSI$C_NCB_ADDR_MOD_RSN: Reason for modifying called line address

The PSDN specified a code in this item to indicate why it has modified the
address that was called. Your program can specify a PSDN–specific code in
this item to indicate why it has accepted or cleared an incoming call.

Data format: single–byte value in the range 0–255.

PSI$C_NCB_CALLED_EXTENSION: Called address extension

This item specifies an address extension for the destination (See the
description of the IO$ACCESS system service for more information).

Data format: counted string (second byte in the string contains a nibble
count).

PSI$C_NCB_CALLING_EXTENSION: Calling address extension

This item specifies the address extension of the DTE that originated an
incoming call. (See the description of the IO$ACCESS system service for
more information).

Data format: counted string (second byte in the string contains a nibble
count).

PSI$C_NCB_CALL_REDIR_ORIG: Original DTE destination of redirected call

This item specifies the DTE from which a call was redirected.

Data format: counted string.

PSI$C_NCB_CALL_REDIR_RSN: Call redirection reason

This item specifies why the PSDN redirected the call.

Data format: single–byte value in the range 0–255.

PSI$C_NCB_CAUSE: Code for PSDN clearing a call

Your PSDN uses this item to specify a PSDN–specific code indicating why it
cleared a call.

If the ISO8208 profile is being used, your program may specify a value in the
item when it clears a call. Values 1–127 are available if the interface is acting
as a DCE.

Data format: single–byte value in the range 0–255.

PSI$C_NCB_CHARGE_MON: Monetary units for charging

This item specifies the charge for the call in monetary units. It may be
supplied by the PSDN when the call is cleared.

Data format: counted string, PSDN–specific format.

PSI$C_NCB_CHARGE_SEG: Segment count for charging

This item specifies the charge for the call in segment counts. It may be
supplied by the PSDN when the call is cleared.

Data format: counted string, PSDN–specific format.

Network Connect Block (NCB) C–5

PSI$C_NCB_CHARGE_TIME: Elapse time for charging

This item specifies the charge for the call in elapsed time. It may be specified
by the PSDN when the call is cleared.

Data format: counted string, PSDN–specific format.

PSI$C_NCB_CHARGING_INFO: Charging information request

Your program can use this item to request charging information when it sends
a call request.

Data format: no data field.

PSI$C_NCB_CUG: (Bilateral) Closed User Group

This item specifies a (Bilateral) Closed User Group as destination.

Data format: counted string.

PSI$C_NCB_CUM_TRST_DLY: Cumulative transit delay

This item specifies the cumulative transit delay in milliseconds in a call
accept since the original call request.

Data format: single–word value, in the range 0–65,535.

PSI$C_NCB_CUM_TRST_DLY_R: Cumulative transit delay

This item specifies the cumulative transit delay in milliseconds for an
incoming call since the original call request.

Data format: single–word value, in the range 0–65,535.

PSI$C_NCB_DIAGCODE: Diagnostic code

This item specifies a diagnostic code, originated either by your PSDN, or by a
user application.

Data format: single–byte value in the range 0–255.

PSI$C_NCB_DTECLASS: DTE Class

This item specifies the DTE Class from which a DTE is selected to make the
call. This item also points to the Gateway system which will take the call.

Data format: counted string.

PSI$C_NCB_ETE_TRST_DLY: End–to–end transit delay

This item specifies the acceptable transit delay in milliseconds for an outgoing
call from one DTE to the next. This item is used with PSI$C_NCB_CUM_
TRST_DLY.

Data format: single–word value, in the range 0–65,535.

PSI$C_NCB_EXPEDITE: Negotiate use of expedited data (interrupts)

This item specifies how X.25 for OpenVMS is to handle interrupts over a
virtual circuit.

0 = Interrupts not permitted.
1 = Interrupts permitted.

Data format: single–byte value, 0 or 1.

C–6 Network Connect Block (NCB)

PSI$C_NCB_FILTER: Filter entity

Use this item to specify another filter when your program redirects an
incoming call.

Data format: counted string.

PSI$C_NCB_FLT_PRI: Destination priority

This item specifies the priority of the destination that has received an
incoming call.

Data format: single–word value in the range 0–65535.

PSI$C_NCB_FLT_REDPRI: Redirection priority

This item restricts the destinations that are to be searched when an incoming
call is redirected. Only destinations with a priority lower than the specified
priority are searched.

To ensure that your process is not searched again, move the priority value
from PSI$C_NCB_FLT_PRI to PSI$C_NCB_FLT_REDPRI.

Data format: single–word value in the range 0–65535.

PSI$C_NCB_FSEL: Fast select without restriction

This item specifies the Fast Select facility, which allows a DTE to include a
user data field in the call request. The receiving DTE can accept or reject the
call request, and send user data with its response.

The PSDN must subscribe to this facility.

Data format: no data field.

PSI$C_NCB_FSEL_RES: Fast select with restricted response

This item specifies the Fast Select facility, which allows a DTE to include a
user data field in the call request. The restriction prevents the receiving DTE
from accepting the request to set up a virtual circuit, but allows user data to
be sent with the rejection.

The PSDN must subscribe to this facility.

Data format: no data field.

PSI$C_NCB_GATEWAY: Gateway identifier

This item is reserved for future use.

If you use this item, X.25 for OpenVMS returns an error in the IOSB: the
first word contains SS$_IVDEVNAM; the third word contains PSI$C_ERR_
INVITEM.

PSI$C_NCB_ICI: Incoming call identifier

This item identifies the incoming call. Do not modify or specify this item.

Data format: longword.

OpenVMS
I64/Alpha

PSI$C_NCB_LOCDTE: Local DTE address

This item specifies the address of the local DTE in incoming calls.

Data format: counted string. ♦

Network Connect Block (NCB) C–7

PSI$C_NCB_LOCFAC: Local PSDN facilities (outgoing)

Your program can specify coding for local PSDN facilities in this item when
making an outgoing call request.

X.25 for OpenVMS copies the contents of this item into the facilities field of
the call request packet, where they may appear in a different order from that
specified in this item.

Data format: counted string. If required by the PSDN, you should include the
local facilities marker.

PSI$C_NCB_LOCFACR: Local PSDN facilities (incoming)

Your program can specify coding for local PSDN facilities in this item when
accepting or rejecting an incoming call request.

X.25 for OpenVMS copies the contents of this item into the facilities field of
the call request packet, where they may appear in a different order to that
specified in this item.

Data format: counted string. If required by the PSDN, you should include the
local facilities marker.

OpenVMS
VAX

PSI$C_NCB_LOCSUBADR: Local subaddress

X.25 for OpenVMS supplies this item for incoming calls.

Data format: counted string. ♦

PSI$C_NCB_MAX_TRST_DLY: Maximum acceptable transit delay

This item specifies the maximum acceptable transit delay in milliseconds.

Data format: single–word value, in the range 0–65535.

PSI$C_NCB_MIN_THRUCLS: Minimum throughput class

This item specifies the minimum data rate for a virtual circuit.

Data format: single–byte value, in the range 0–15.

PSI$C_NCB_NET_USER_ID: Network user identifier

This item identifies a network user.

Data format: counted string, PSDN–specific format.

PSI$C_NCB_NULL: Null item identifier

Any item containing this code is ignored.

Data format: any format accepted.

PSI$C_NCB_PKTSIZE: Packet size

This item specifies the packet size for an outgoing call, where the packet
size requested is different from the default for the PSDN. The packet size
requested must be valid for the PSDN.

Data format: single–word value, in the range 16–4096. The value must be a
power of 2.

PSI$C_NCB_PVCNAM: PVC identifier

This item specifies a Permanent Virtual Circuit.

Data format: counted string.

C–8 Network Connect Block (NCB)

PSI$C_NCB_RCV_QUOTA: Total size of receive buffers

This item specifies the total size of the buffers (in bytes) that X.25 for
OpenVMS uses to hold received data that has not yet been read by your
application.

Minimum value = (packet-size + 276)
Maximum value = (packet-size + 276) * window-size

These buffer sizes are deducted from the BYTLM quota for your process.

Data format: longword value.

PSI$C_NCB_REASON: Code for X.25 for OpenVMS clearing a call

X.25 for OpenVMS uses this item to specify a code indicating why it cleared a
call. Table C–2 lists the possible symbolic values.

Data format: single–byte value in the range 0–255.

Table C–2 PSI$C_NCB_REASON Codes

Type Code Content

PSI$C_L3_NETWRK PSDN initiated

PSI$C_L3_NETERR PSDN protocol error

PSI$C_L3_LNKDWN Communications link failed

PSI$C_L3_LNKUP Communications link operational

PSI$C_L3_LNKRRT Communications link restarted

PSI$C_L3_GATDISC Connection to Gateway (Multihost node) disconnected

PSI$C_L3_NETDISC Connection to Gateway (Multihost node) lost

PSI$C_L3_LOCMGT Network management function

PSI$C_L3_CALCOL Call collision

PSI$C_L3_NETTIM Timeout on network

PSI$C_NCB_REMDTE: Remote DTE address

This item specifies the address of the remote DTE to which the call is to be
made.

Data format: counted string.

PSI$C_NCB_REMSUBADR: Remote subaddress

This item specifies the subaddress of the remote DTE to which the call is to
be made.

Data format: counted string. The length of this item depends on the PSDN.

PSI$_NCB_RESPDATA: Fast select response data

Your program can add this item when it accepts or rejects an incoming call
that specifies the Fast Select facility.

The PSDN must subscribe to this facility.

Data format: counted string.

PSI$C_NCB_REVCHG: Reverse charging request

This item specifies reverse charging on an outgoing call request.

Data format: no data field.

Network Connect Block (NCB) C–9

PSI$C_NCB_RPOA: Remote Port Of Access

Your program can specify a PSDN–specific code in this item to specify how a
call is to be routed across international networks.

Data format: counted string of a multiple of four ASCII characters, each
representing a value from 0 to 9.

PSI$C_NCB_TEMPLATE: Template

Specifies the template used for making the outgoing call.

Data format: counted string.

PSI$C_NCB_THRUCLS: Throughput class

This item specifies the maximum data rate for a virtual circuit.

Data format: single–byte value, in the range 0–255.

PSI$C_NCB_TRANSIT_DELAY: Requested maximum transit delay

This item specifies the transit delay, in milliseconds, of an outgoing call.

Data format: single–word value, in the range 0–65,535.

PSI$C_NCB_USERDATA: User data field

For an outgoing call request, this item specifies data to be passed to the
remote DTE. However, some character positions may have significance for
your PSDN. Refer to the technical guide for your PSDN for details.

For an incoming call request, this item specifies data originated by the
remote DTE. This item is ignored if it appears in the NCB for accepting or
rejecting an incoming call.

For a fast select call (incoming or outgoing), this item specifies user data
to be included in the clear request packet when clearing the call.

Data format: counted string.

PSI$C_NCB_WINSIZE: Window size

This item specifies the window size for an outgoing call, where the packet
size requested is different from the default for the PSDN. The window size
requested must be valid for the PSDN.

Data format: single–word value, in the range 1–127.

C–10 Network Connect Block (NCB)

C.6 Example NCB
The following example illustrates an NCB that you could use when issuing a fast
select request to set up a virtual circuit. The example identifies a remote DTE
(234219876543), a network (PSS), and includes a remote DTE subaddress (26). As
the NCB specifies fast select, there is also a user data field (containing the string
DATADATADATA).

OPEN_INFO_START:

REMOTE_DTE:
.WORD REMOTE_DTE_LENGTH
.WORD PSI$C_NCB_REMDTE
.ASCIC /234219876543/

REMOTE_DTE_LENGTH = .-REMOTE_DTE

DTECLASS:
.WORD DTECLASS_LENGTH
.WORD PSI$C_NCB_DTECLASS
.ASCIC /PSS/

DTECLASS_LENGTH = .-DTECLASS

REMOTE_DTE_SUB:
.WORD REMOTE_DTE_SUBLEN
.WORD PSI$C_NCB_REMSUBADR
.ASCIC /26/

REMOTE_DTE_SUBLEN = .-REMOTE_DTE_SUB

OPEN_DATA:
.WORD OPEN_DATA_LENGTH
.WORD PSI$C_NCB_USERDATA
.ASCIC /DATADATADATA/

OPEN_DATA_LENGTH = .-OPEN_DATA

FAST_SELECT:
.WORD FAST_SELECT_LENGTH
.WORD PSI$C_NCB_FSEL

FAST_SELECT_LENGTH = .- FAST_SELECT

OPEN_INFO_LENGTH = .- OPEN_INFO_START

Network Connect Block (NCB) C–11

D
Mailbox Messages

If your program is to handle incoming calls, you must associate a mailbox with
the channel to the NW unit. X.25 uses the mailbox to inform your program when
incoming calls arrive, and when interrupts and other network events occur; for
example, call has been cleared, network failure, remote DTE failure.

For incoming calls, your program should read the NCB in the mailbox associated
with the channel that received the call. Your program must quote the incoming
call identifier (PSI$C_NCB_ICI) to accept or reject an incoming call.

If your program makes only outgoing calls, you need not use a mailbox. However,
without using the mailbox, you cannot receive notification of interrupts and other
network events.

D.1 Format
Figure D–1 shows the general format of a mailbox message.

Figure D–1 Mailbox Message Structure

Byte 0Byte 1Byte 2

UNIT MSGTYPE

COUNT 1

COUNT 2

NAME (15 bytes)

Byte 3

Longword

INFORMATION

Mailbox Messages D–1

The contents of a mailbox are as follows:

MSGTYPE (2 bytes) This code indicates the type of INFO. Table D–1 and
Table D–2 detail the types of message that may be found in a mailbox.

UNIT (2 bytes) This is the binary number of the device unit to which the
message applies. For MSG$_CONNECT, the device unit number is
zero.

COUNT1 (1 byte) This is a count of the characters in NAME.

NAME (15 bytes) This is a counted string of up to 15 characters, giving the
name of the device to which the message applies: NVA for X.29 calls,
NWA for X.25 calls.

COUNT2 (1 byte) This is a count of the characters in INFO. When the INFO
field contains an NCB, the length of the NCB should be determined
by subtracting the length of the MSGTYPE, UNIT, COUNT1, NAME,
and COUNT2 fields from the total mailbox message length, which is
placed in the second word of the IO status block. (Since an NCB can
be more than 255 bytes in length, the COUNT2 field may not reflect
the NCB length accurately.)

INFO This is a counted string. The contents depend on the message type,
and are interpreted as shown in Table D–1 and Table D–2.

The value of byte 3 (reason for reset byte) of INFO for MSG$_RESET
is one of the following:

PSI$C_L3_NETWRK Initiated by the PSDN

PSI$C_L3_NETERR PSDN protocol error

PSI$C_L3_LNKDWN Link down

PSI$C_L3_LNKUP Link up

PSI$C_L3_LNKRRT Link restarted

PSI$C_L3_LOCMGT Network management function

Mailbox messages for X.25 and X.29 programming are shown in Table D–1 and
Table D–2.

D–2 Mailbox Messages

Table D–1 Mailbox Message Types for X.25 Programming

Type Code Meaning Mailbox Information

MSG$_INTMSG Interrupt message Interrupt byte

MSG$_CONNECT Incoming call/Call confirm NCB

MSG$_RESET Request to reset the
virtual circuit

Byte 1: Diagnostic code
Byte 2: Cause code
Byte 3: Reason for reset

MSG$_DISCON Either of:

• Incoming request
to clear the virtual
circuit

• Completion of
outgoing request
to clear the virtual
circuit

NCB

MSG$_INCDAT Unsolicited incoming data
available

(Not used)

MSG$_PATHLOST Line restart (PVC only) (Not used)

MSG$_NETSHUT DECnet has shut down
(Network processes only)

(Not used)

Table D–2 Mailbox Message Types for X.29 Programming

Type Code Meaning Mailbox Information

MSG$_CONNECT Incoming call confirm NCB

MSG$_DISCON Incoming call reject NCB

MSG$_TRMUNSOLIC Incoming call NCB

Mailbox Messages D–3

D.2 Mailbox Message Sizes

Caution

You should ensure that the maximum message size of each mailbox is
large enough to hold the expected mailbox messages.

OpenVMS
I64/Alpha

For an Access application of type X25 and X29, X.25 for OpenVMS creates a
mailbox in which to place the incoming call details (the application locates this
mailbox via the logical SYS$NET). By default, X.25 for OpenVMS creates this
mailbox with a maximum message size of 512 bytes, which should be adequate
for most configurations. However, if the incoming call NCB contains Filter and
DTE Class names having a total size of more than 200 bytes, the default value
for the mailbox’s maximum message size may need to be increased.

To increase this value, define the logical name X25$APPL_MBXMXMSG to be the
required size. The logical must be defined in the ‘‘SYSTEM’’ logical name table,
and must be defined before X.25 for OpenVMS is started. For example, add
the following line to SYS$STARTUP:SYSTARTUP_VMS.COM before the command
@SYS$STARTUP:X25$STARTUP.COM:

$ define/system/exec X25$APPL_MBXMXMSG 800

Note that the mailbox’s buffer quota may also need to be increased. The
default buffer quota given to mailboxes created by X.25 for OpenVMS is
the value of the SYSGEN parameter DEFMBXBUFQUO—this may be increased
by defining the logical name X25$APPL_MBXBUFQUO. For example, add
the following line to SYS$STARTUP:SYSTARTUP_VMS before the command
@SYS$STARTUP:X25$STARTUP.COM:

$ define/system/exec X25$APPL_MBXBUFQUO 1600

For more information on the relationship between mailbox message size and
buffer quota, refer to the description of $CREMBX in the OpenVMS System
Services Reference Manual. ♦

D–4 Mailbox Messages

E
Standard PAD Parameters

This appendix describes the standard PAD parameters. Table E–1 lists the
parameter codes and parameter numbers.

Table E–1 PAD Parameter Codes

Parameter
Number Code

1 PSI$K_X29_PAR_ESCAPE

2 PSI$K_X29_PAR_ECHO

3 PSI$K_X29_PAR_FORWARD

4 PSI$K_X29_PAR_TIMEOUT

5 PSI$K_X29_PAR_HOSTSYNC

6 PSI$K_X29_PAR_MESSAGES

7 PSI$K_X29_PAR_BREAK

8 PSI$K_X29_PAR_DISCARD

9 PSI$K_X29_PAR_CRFILL

10 PSI$K_X29_PAR_WRAP

11 PSI$K_X29_PAR_SPEED

12 PSI$K_X29_PAR_TTSYNC

13 PSI$K_X29_PAR_NEW_LINE

14 PSI$K_X29_PAR_LFFILL

15 PSI$K_X29_PAR_EDIT

16 PSI$K_X29_PAR_DELETE

17 PSI$K_X29_PAR_LINE_DELETE

18 PSI$K_X29_PAR_REDISPLAY

19 PSI$K_X29_PAR_DISPLAY_EDIT

20 PSI$K_X29_PAR_RESTRICT_ECHO

21 PSI$K_X29_PAR_PARITY

22 PSI$K_X29_PAR_PAGE_WAIT

Standard PAD Parameters E–1

Parameter 1 (PSI$K_X29_PAR_ESCAPE)
This specifies the ASCII character that the PAD function uses as the Escape
character. For example, a parameter value of 33 specifies ! as the Escape
character. Specify one of the following values:

0 PAD does not enter command mode on receiving an Escape character.

1 PAD enters command mode on receiving the Escape character Ctrl/P .

2 to 31 Specify the Escape character. These values are extensions to the CCITT
values.

32 to 127 Specify the Escape character.

Parameter 2 (PSI$K_X29_PAR_ECHO)
This specifies whether the PAD echoes the input entered at the X.29 terminal.
Refer to the HP X.25 for OpenVMS—Utilities Guide for details of the relationship
between PAD echoing and the OpenVMS local–echo characteristic (SET
TERMINAL/LOCAL_ECHO). Specify one of the following values:

0 No PAD echo.

1 PAD echo.

Parameter 3 (PSI$K_X29_PAR_FORWARD)
This specifies the characters that cause data to be transmitted from the PAD to
the remote DTE. The CCITT values are 0, 2, 6 (2 + 4), 18 (2 + 16) and 126 (2 + 4
+ 8 + 16 + 32 + 64).

0 Forward data whenever a packet is full.

1 Any alphanumeric character (from A to Z, a to z, or 0 to 9).

2 CR

4 ESC , BEL , ENQ , ACK

8 DEL , CAN , DC2

16 EXT , EOT

32 HT , LF , VT , FF

64 Any control character not given previously.

Parameter 4 (PSI$K_X29_PAR_TIMEOUT)
This specifies the Timeout value for forwarding data.

0 Timeout.

1 to 255 Timeout value in units of 1/20 second.

Note that if parameter 15 is set to 1, timeouts are disabled.

E–2 Standard PAD Parameters

Parameter 5 (PSI$K_X29_PAR_HOSTSYNC)
This specifies whether the PAD sends XON and XOFF control characters to the
X.29 terminal in data transfer mode. The host-based PAD treats parameter
values 1 and 2 in the same way. Specify one of the following values:

0 No device control.

1 XON/XOFF device control in data transfer mode.

2 XON/XOFF device control in both command mode and data transfer mode.

Parameter 6 (PSI$K_X29_PAR_MESSAGES)
This specifies whether messages from the PAD are sent to the X.29 terminal.
Permitted values are any combination of the following:

0 PAD messages suppressed.

1 PAD messages transmitted.

4 (In command mode) PAD prompt transmitted.

8 PAD messages in nonstandard format. (This value is ignored by the
host-based PAD.)

Parameter 7 (PSI$K_X29_PAR_BREAK)
This specifies the actions taken by the PAD when the user presses Break . The
OpenVMS Terminal Driver does not recognize Break , and so the host-based
command PAD BREAK is used to simulate the Break action. Legal values are
any combination of the following:

0 No action.

1 PAD sends an Interrupt to the remote DTE.

2 PAD sends a Reset to the remote DTE.

4 PAD sends Indication–of–break to the remote DTE.

8 PAD enters command mode.

16 PAD discards output to the terminal. This setting automatically sets PAD
Parameter 8 (PSI$K_X29_PAR_DISCARD) to value 1 (discard data from
remote DTE).

Parameter 8 (PSI$K_X29_PAR_DISCARD)
This specifies whether the PAD sends output from NV to the X.29 terminal.

This performs a similar function to Ctrl/O . However whereas Ctrl/O requests NV to
discard all output to the PAD, this parameter, if set, requests the PAD to discard
the output received from NV. Hence, for reasons of efficiency and cost, Ctrl/O is
preferred.

Specify one of the following values:

0 Normal data delivery.

1 Discard data from remote DTE.

Standard PAD Parameters E–3

Parameter 9 (PSI$K_X29_PAR_CRFILL)
This specifies the number of padding characters after a Return . Permitted values
are between 0 and 255. Specify a value between 0 and 7.

Parameter 10 (PSI$K_X29_PAR_WRAP)
This specifies the character position where the PAD inserts a Return . For
example, setting a value of 80 requests the PAD to insert a Return after the
80th character, and continue the text that follows on a new line.

This parameter corresponds to the /WRAP and /WIDTH characteristics of the
terminal. Set this parameter to 0 for proper operation of X.29 terminals on
OpenVMS. Otherwise, specify one of the following values:

0 No wraparound.

1 to 255 Specifies the maximum line length that the PAD will print or echo.

Parameter 11 (PSI$K_X29_PAR_SPEED)
This is a read-only parameter. The setting corresponds to the /SPEED
characteristic of the terminal. Do not attempt to set this parameter.

The parameter takes the following values:

Speed
(bits/s)

Parameter
Value

Speed
(bits/s)

Parameter
Value

50 10 1200 3

75 5 75/1200 11

100 9 1800 7

110 0 2400 12

4800 13

134.5 1 9600 14

150 6 19200 15

200 8 48000 16

300 2 56000 17

600 4 64000 18

Parameter 12 (PSI$K_X29_PAR_TTSYNC)
This specifies whether the PAD responds to XON and XOFF control characters
sent from the X.29 terminal. Specify one of the following values:

0 No flow control.

1 Flow control on: the PAD responds to XON and XOFF control characters
from the terminal.

E–4 Standard PAD Parameters

Parameter 13 (PSI$K_X29_PAR_NEW_LINE)
This specifies whether the PAD sends a LF with every Return received from the
X.29 terminal for transmission to NV or received from NV for forwarding to the
X.29 terminal.

Set this parameter to 0 for correct operation of X.29 terminals on OpenVMS.
Otherwise specify one, or a combination, of the following values:

0 No LF inserted after CR .

1 LF inserted after every CR that is transmitted as data to the terminal.

2 LF inserted after every CR that is received as data from the terminal.

4 LF inserted after every CR that is echoed as data to the terminal.

Parameter 14 (PSI$K_X29_PAR_LFFILL)
This specifies the number of padding characters the PAD sends after a LF .
Permitted values are as for PSI$K_X29_PAR_CRFILL.

Parameter 15 (PSI$K_X29_PAR_EDIT)
This parameter controls whether the PAD performs local editing when in data
transfer mode.

You should set this parameter only when the terminal is set to /LOCAL_ECHO.
Specify one of the following values:

0 No local editing in data transfer mode.

1 Editing dependent on PAD parameters 16, 17, 18. This setting disables
the idle timer.

Parameter 16 (PSI$K_X29_PAR_DELETE)
This specifies the ASCII character that the PAD uses as the Delete character.
This parameter is ignored unless parameter 15 is set. Specify a value between 0
and 127:

0 No delete character allowed.

1 to 127 ASCII character code to be used for delete.

Parameter 17 (PSI$K_X29_PAR_LINE_DELETE)
This specifies the ASCII character that the PAD uses as the Line Delete
character. This parameter is ignored unless parameter 15 is set. Specify a
value between 0 and 127.

Parameter 18 (PSI$K_X29_PAR_REDISPLAY)
This specifies the ASCII character that the PAD uses as the Line Redisplay
character. This parameter is ignored unless parameter 15 is set. Specify a value
between 0 and 127.

Standard PAD Parameters E–5

Parameter 19 (PSI$K_X29_PAR_DISPLAY_EDIT)
This controls the type of line editing display, as follows:

0 No display for PAD editing.

1 Hardcopy type.

2 Video terminal type.

3 to 127 ASCII character used to display editing.

Parameter 20 (PSI$K_X29_PAR_RESTRICT_ECHO)
This specifies which characters are not echoed. Legal values are any combination
of the following:

0 All characters echoed.

1 CR

2 LF

4 VT , HT , FF

8 BEL , BS

16 ESC , ENQ

32 ACK , NAK , STX , SOH , EOT , ETB , ETX

64 The editing characters (as set by PSI$K_X29_PAR_DELETE, PSI$K_X29_
PAR_LINE_DELETE, PSI$K_X29_PAR_REDISPLAY_LINE).

128 DEL , and all other control characters.

Parameter 21 (PSI$K_X29_PAR_PARITY)
This controls parity generation and checking. Legal values are any combination
of the following:

0 None.

1 Parity checking.

2 Parity generation.

Parameter 22 (PSI$K_X29_PAR_PAGE_WAIT)
This controls whether the PAD holds the display at the end of each page. Specify
one of the following values:

0 Page wait disabled.

1 to 255 Number of lines to display before waiting.

E–6 Standard PAD Parameters

F
Programming Examples

A number of X.25 and X.29 example programs are provided in the SYS$EXAMPLES:
directory.

OpenVMS
I64/Alpha

Table F–1 describes the example programs supplied on OpenVMS I64 and
OpenVMS Alpha systems. Table F–2 summarizes the languages for which
example programs are provided.

Table F–1 Programming Examples (OpenVMS I64 and OpenVMS Alpha)

Program Description

X25$CHARGING An example of a charging program to analyze X.25
accounting records

X25$RECEIVE One of a pair of demonstration programs that transfer
data entered at the terminal from one OpenVMS
system to another over a Packet Switching Data
Network. See also X25$SEND.

X25$SEND One of a pair of demonstration programs that transfer
data entered at the terminal from one OpenVMS
system to another over a Packet Switching Data
Network. See also X25$RECEIVE.

X25$X29_DESTINATION A simple example of a program in which an X.29
destination prompts the X.29 user for a password
before allowing them to log in.

Table F–2 Program/Language Matrix (OpenVMS I64 and OpenVMS Alpha)

Example Program C COBOL FORTRAN MACRO PASCAL

X25$CHARGING Yes - - - -

X25$RECEIVE Yes Yes Yes Yes Yes

X25$SEND Yes Yes Yes Yes Yes

X25$X29_DESTINATION Yes - - Yes Yes

♦

Programming Examples F–1

OpenVMS
VAX

Table F–3 describes the example programs supplied on OpenVMS VAX systems.
Table F–4 summarizes the languages for which example programs are provided.

Table F–3 Programming Examples (OpenVMS VAX)

Program Description

PSI$CHARGING An example of a charging program to analyze X.25
accounting records

PSI$X25_RECEIVE One of a pair of demonstration programs that transfer
data entered at the terminal from one OpenVMS
system to another over a Packet Switching Data
Network. cf. PSI$X25_SEND.

PSI$X25_SEND One of a pair of demonstration programs that transfer
data entered at the terminal from one OpenVMS
system to another over a Packet Switching Data
Network. cf. PSI$X25_RECEIVE.

PSI$X29_DESTINATION A simple example of a program in which an X.29
destination prompts the X.29 user for a password
before allowing them to log in.

X25$X29_NETPROCESS A simple example of a program in which an X.29
network process validates a password before allowing
the X.29 caller to log in.

X25$X29_NV_UNIT_NUMBER An example that determines the unit number of a
device, given the device name.

X25$X29_OUTGOING A simple example of an X.29 program that is run to
establish an X.29 circuit from a host to a remote PAD.

Table F–4 Program/Language Matrix (OpenVMS VAX)

Example Program BASIC C COBOL FORTRAN MACRO PASCAL

PSI$CHARGING - Yes - - - -

PSI$X25_RECEIVE Yes Yes Yes Yes Yes Yes

PSI$X25_SEND Yes Yes Yes Yes Yes Yes

PSI$X29_DESTINATION - Yes - - Yes Yes

PSI$X29_NETPROCESS - - - - Yes -

PSI$X29_NV_UNIT_NUMBER - - - - Yes -

PSI$X29_OUTGOING - Yes - - Yes Yes

♦

F–2 Programming Examples

Index

A
Access level item code, 2–33
$ASSIGN, 2–2 to 2–3

use for Permanent Virtual Circuits, 2–2
astadr, 1–4
astprm, 1–4

B
Bilateral Closed User Group NCB item, C–6
BREAK parameter, E–3
Buffer size

for NV Action Descriptor Block, 4–4, 4–8
for PAD parameters, 4–9
for PSI$K_X29_BREAK_ACTION, 4–4
for PSI$K_X29_HOLD_TIMER, 4–6
for PSI$K_X29_HOST_ECHO_PARAMS, 4–7
for PSI$K_X29_INT_ACTION, 4–8
for PSI$K_X29_LOCAL_ECHO_PARAMS, 4–9
for PSI$K_X29_TEMP_NOHANG, 4–12

C
Called address extension, 2–13, 2–25, 2–35
Called address extension NCB item, C–5
Called DTE address item code, 2–33
Called extension item code, 2–33
Calling address extension NCB item, C–5
Call redirection reason NCB item, C–5
Calls

using $CANCEL to clear, 2–4
using $QIO(IO$ACCESS!IO$M_ACCEPT) to

accept, 2–23 to 2–27
using $QIO(IO$_ACCESS!IO$M_ABORT) to

reject, 2–19 to 2–22
using $QIO(IO$_ACCESS!IO$M_REDIRECT) to

reject, 2–28 to 2–30
using $QIO(IO$_DEACCESS) to clear, 2–39 to

2–42
$CANCEL, 2–4
chan, 1–4
Channel

using $ASSIGN to associate with a mailbox,
2–2

using $DASSGN to deassign, 2–7

Channel number
using $ASSIGN to obtain, 2–2

Charging information request NCB item, C–6
Charging units NCB item, C–5
Circuit

using $QIO(IO$_ACCESS) to set up, 2–11 to
2–18

Clearing a virtual call with $CANCEL, 2–4
Closed User Group

notes for using $QIO(IO$_ACCESS), 2–11
Closed User Group item code, 2–34
Closed User Group NCB item, C–6
Common system services, 2–1 to 2–46
Completion status information, 5–2
Condition handler, 5–2
Conventions

syntax, 1–4
$CREMBX, 2–5 to 2–6
$CREPRC, 5–5
CRFILL parameter, E–3
CUG

see Closed User Group
Cumulative transit NCB item, C–6

D
$DASSGN, 2–7

virtual circuit not cleared, 4–12
Data

using $QIO(IO$_READVBLK) to receive data,
2–43 to 2–44

using $QIO(IO$_WRITEVBLK) to transmit
data, 2–45 to 2–46

X.25 criteria for sending, 2–45
Data mask item code, 2–33
Data transfer mode

local editing, E–5
DCE

operation as, 2–39
Delete character, E–5
DELETE parameter, E–5
Destination priority NCB item, C–7
Diagnostic code NCB item, C–6
DISCARD parameter, E–3
DISPLAY_EDIT parameter, E–6

Index–1

DTE Class item code, 2–34
DTE Class NCB item, C–6
Dynamic filters, 2–31

E
ECHO parameter, E–2
Editing

in data transfer mode, E–5
EDIT parameter, E–5
efn, 1–4
Elapsed time NCB item, C–6
End–to–end transit delay NCB item, C–6
Error codes, 1–5 to 1–6
Error returns, 5–1
Escape character, E–2
ESCAPE parameter, E–2
Example NCB, C–11
Example programs, F–1 to F–2
Exception conditions, 5–2

overriding default handling, 5–2
Expedited data NCB item, C–6

F
Failure conditions, 5–2
Fast select calls

and $QIO(IO$_ACCESS), 2–13
Fast select NCB item, C–7
Fast select response NCB item, C–9
Filters

using $QIO(IO$_ACPCONTROL) to add, 2–32
using $QIO(IO$_ACPCONTROL) to delete,

2–32
Filter types

dynamic, 2–31
static, 2–31

Format
of numeric status codes, 5–3
of system services, 1–4

Forward character, E–2
Forwarding

timeout, E–2
FORWARD parameter, E–2

G
Gateway identifier NCB item, C–7
$GETDVI, 2–8 to 2–10

to get NW or NV unit number, 2–9
to get the remote DTE address, 2–10
using to connect NV device to VT device, 2–9

H
Hangup, 2–7
Hangup PAD parameter template

using $QIO(IO$_NETCONTROL, PSI$K_X29_
SET, PSI$K_X29_HANGUP_PARAMS) to
set, 4–20

Hangup template
using $QIO(IO$_NETCONTROL, PSI$K_X29_

READ, PSI$K_X29_HANGUP_PARAMS) to
read, 4–5

Hold Timer
using $QIO(IO$_NETCONTROL, PSI$K_X29_

READ, PSI$K_X29_HOLD TIMER) to read,
4–6

using $QIO(IO$_NETCONTROL, PSI$K_X29_
SET, PSI$K_X29_HOLD_TIMER) to set,
4–23

Host–echo PAD parameter template
using $QIO(IO$_NETCONTROL, PSI$K_

X29_READ, PSI$K_X29_HOST_ECHO_
PARAMS) to return, 4–7

using $QIO(IO$_NETCONTROL, PSI$K_X29_
SET, PSI$K_X29_HOST_ECHO_PARAMS)
to set, 4–21 to 4–22

HOSTSYNC parameter, E–3

I
I/O channel

using $CREMBX to assign to mailbox, 2–5
I/O Status Block, 1–5, 5–1 to 5–2

address, 1–4
byte count, 5–2
completion status information, 5–2
status codes, 1–3 to 1–6

Incoming call identifier NCB item, C–7
Incoming calls

mailbox, D–1
using $QIO(IO$ACCESS!IO$M_ACCEPT) to

accept, 2–23 to 2–27
using $QIO(IO$_ACCESS!IO$M_ABORT) to

reject, 2–19 to 2–22
using $QIO(IO$_ACCESS!IO$M_REDIRECT) to

redirect, 2–28 to 2–30
Incoming DTE item code, 2–33
Indication–of–break

using $QIO(IO$_NETCONTROL, PSI$K_X29_
SET, PSI$K_X29_BREAK_ACTION) to set,
4–18 to 4–19

Interrupt action
using $QIO(IO$_NETCONTROL, PSI$K_X29_

READ, PSI$K_X29_INT_ACTION) to
return for X.29 terminal, 4–8

using $QIO(IO$_NETCONTROL, PSI$K_X29_
SET, PSI$K_X29_INT_ACTION) to set for
X.29 terminal, 4–24

Index–2

Interrupts
length, 3–4
using $QIO(IO$_NETCONTROL, PSI$K_

INTACK) to acknowledge for X.25 calls,
3–2 to 3–3

using $QIO(IO$_NETCONTROL, PSI$K_
INTERRUPT) to transmit for X.25 calls,
3–4 to 3–5

IO$_NETCONTROL, PSI$K_X29_READ_
SPECIFIC, 4–13 to 4–15

iosb, 1–4
IOSB

see I/O Status Block
Item codes, 2–33 to 2–34, C–2 to C–4
Items

in network process declaration block, 2–32

L
LFFILL parameter, E–5
Line Delete character, E–5
Line editing display, E–6
Linefeed, E–4
Line Redisplay character, E–5
LINE_DELETE parameter, E–5
Local DTE address NCB item, C–7
Local–echo PAD parameter template

using $QIO(IO$_NETCONTROL, PSI$K_
X29_READ, PSI$K_X29_LOCAL_ECHO_
PARAMS) to read, 4–9

Local–echo parameters
using $QIO(IO$_NETCONTROL, PSI$K_X29_

SET, PSI$K_X29_LOCAL_ECHO_PARAMS)
to set for X.29 terminal, 4–25 to 4–26

Local PSDN facilities NCB item, C–8
Local subaddress NCB item, C–8

M
Mailbox, D–1 to D–4

assigning an I/O channel, 2–5
using $ASSIGN to associate with a channel,

2–2
using $CREMBX to create, 2–5

Mailbox message types
X.25 programming, D–3
X.29 programming, D–3

Maximum acceptable transit delay NCB item,
C–8

MESSAGES item code, E–3
Messages to X.29 terminal, E–3
Minimum throughput class NCB item, C–8
Modifiers for IO$_WRITEVBLK, 2–45
Modifying called line address NCB item, C–5

N
Name of filter item code, 2–34
NCB

see Network Connect Block
NCB data type formats

counted string, C–1
longword, C–1
single byte, C–1
single word, C–1

Network Connect Block, C–1 to C–11
data type formats, C–1
example, C–11
format, C–1
incoming call request, C–2
item codes, C–2 to C–4
item descriptions, C–5 to C–10
item functions, C–2
outgoing call request, C–2
Permanent Virtual Circuits, C–2
Switched Virtual Circuits, C–2
use, C–1

Network process
using $QIO(IO$_ACPCONTROL) to declare,

2–31 to 2–38
Network process declaration block, 2–31 to 2–35

item codes, 2–33 to 2–34
items, 2–32

Network user identifier NCB item, C–8
NEW_LINE parameter, E–4
Nonstandard PAD parameters

using $QIO(IO$_NETCONTROL, PSI$K_X29_
SET, PSI$K_X29_PAD_PARAMS) to set,
4–27

NUI
see Network user identifier

Null item identifier NCB item, C–8
NV Action Descriptor Block

using $QIO(IO$_NETCONTROL, PSI$K_X29_
READ, PSI$K_X29_BREAK_ACTION) to
return break action, 4–4

using $QIO(IO$_NETCONTROL, PSI$K_X29_
READ, PSI$K_X29_INT_ACTION) to
return interrupt action, 4–8

NV device
QIO functions to, 4–1

NV terminal characteristics
using $QIO(IO$_NETCONTROL, PSI$K_X29_

READ) to read, 4–3 to 4–12
using $QIO(IO$_NETCONTROL, PSI$K_X29_

SET) to set, 4–16 to 4–31
NV unit number

using $GETDVI to obtain, 2–9
NW unit number

using $GETDVI to obtain, 2–9

Index–3

O
Object process NCB item, C–7
Outgoing calls

mailbox, D–1

P
Packet size NCB item, C–8
PAD

echo, E–2
Padding characters, E–3, E–5
PAD parameters, E–1 to E–6

codes, 4–27, E–1
list, 4–27
nonstandard, 4–27
standard, E–1
using $QIO(IO$_NETCONTROL, PSI$K_X29_

READ) to read, 4–3 to 4–12
using $QIO(IO$_NETCONTROL, PSI$K_X29_

READ, PSI$K_X29_PAD_PARAMS) to read,
4–10 to 4–11

using $QIO(IO$_NETCONTROL, PSI$K_X29_
READ_SPECIFIC) to read specific, 4–13 to
4–15

using $QIO(IO$_NETCONTROL, PSI$K_
X29_READ_SPECIFIC, PSI$K_X29_PAD_
PARAMS) to read specific, 4–14 to 4–15

using $QIO(IO$_NETCONTROL, PSI$K_X29_
SET, PSI$K_X29_PAD_PARAMS) to set,
4–27 to 4–28

PAD reselection message
using $QIO(IO$_NETCONTROL, PSI$K_X29_

SET, PSI$K_X29_PAD_RESELECTION) to
send, 4–29 to 4–30

PAGE_WAIT parameter, E–6
Parameters

see PAD parameters
Parity

checking, E–6
generation, E–6
item code, E–6

Permanent Virtual Circuit identifier NCB item,
C–8

Permanent Virtual Circuits
construction of NCB, C–2
use of $ASSIGN, 2–2

Priority
for $QIO(IO$_ACCESS!IO$M_REDIRECT),

2–28
Priority item code, 2–34
Privileges

to use $QIO(IO$_ACCESS!IO$M_ABORT),
2–19

to use $QIO(IO$_ACCESS!IO$M_ACCEPT),
2–23

Privileges (cont’d)
to use $QIO(IO$_ACCESS!IO$M_REDIRECT),

2–28
to use $QIO(IO$_ACCESS), 2–11
to use $QIO(IO$_ACPCONTROL), 2–35

Process execution modes
resource wait, 5–4
system service failure exception, 5–4

Process quotas, 5–4
Programming examples, F–1 to F–2
PSDN clearing code NCB item, C–5
PSI$DECLNAME rights identifier, 2–35
PSI$X25_USER rights identifier, 2–11, 2–19,

2–23, 2–28

Q
QIO arguments, 1–4
QIOs

IO$_ACCESS, 2–11 to 2–30
IO$_ACCESS!IO$M_ABORT, 2–19 to 2–22
IO$_ACCESS!IO$M_ACCEPT, 2–23 to 2–27
IO$_ACCESS!IO$M_REDIRECT, 2–28 to 2–30
IO$_ACPCONTROL, 2–31 to 2–38
IO$_DEACCESS, 2–39 to 2–42
IO$_NETCONTROL, 3–2 to 4–31
IO$_NETCONTROL,PSI$K_INTACK, 3–2 to

3–3
IO$_NETCONTROL,PSI$K_INTERRUPT, 3–4

to 3–5
IO$_NETCONTROL,PSI$K_RESET, 3–6 to

3–7
IO$_NETCONTROL,PSI$K_RESTART, 3–8
IO$_NETCONTROL, PSI$K_X29_READ, 4–3

to 4–12
IO$_NETCONTROL, PSI$K_X29_READ,

PSI$K_X29_BREAK_ACTION, 4–4
IO$_NETCONTROL, PSI$K_X29_READ,

PSI$K_X29_HANGUP_PARAMS, 4–5
IO$_NETCONTROL, PSI$K_X29_READ,

PSI$K_X29_HOLD_TIMER, 4–6
IO$_NETCONTROL, PSI$K_X29_READ,

PSI$K_X29_HOST_ECHO_PARAMS, 4–7
IO$_NETCONTROL, PSI$K_X29_READ,

PSI$K_X29_INT_ACTION, 4–8
IO$_NETCONTROL, PSI$K_X29_READ,

PSI$K_X29_LOCAL_ECHO_PARAMS, 4–9
IO$_NETCONTROL, PSI$K_X29_READ,

PSI$K_X29_PAD_PARAMS, 4–10 to 4–11
IO$_NETCONTROL, PSI$K_X29_READ,

PSI$K_X29_TEMP_NOHANG, 4–12
IO$_NETCONTROL, PSI$K_X29_READ_

SPECIFIC, 4–13 to 4–15
IO$_NETCONTROL, PSI$K_X29_READ_

SPECIFIC, PSI$K_X29_PAD_PARAMS,
4–14 to 4–15

IO$_NETCONTROL, PSI$K_X29_SET, 4–16,
4–31

Index–4

QIOs (cont’d)
IO$_NETCONTROL, PSI$K_X29_SET,

PSI$K_X29_BREAK_ACTION, 4–18 to
4–19

IO$_NETCONTROL, PSI$K_X29_SET,
PSI$K_X29_HANGUP_PARAMS, 4–20

IO$_NETCONTROL, PSI$K_X29_SET,
PSI$K_X29_HOLD_TIMER, 4–23

IO$_NETCONTROL, PSI$K_X29_SET,
PSI$K_X29_HOST_ECHO_PARAMS, 4–21
to 4–22

IO$_NETCONTROL, PSI$K_X29_SET,
PSI$K_X29_INT_ACTION, 4–24

IO$_NETCONTROL, PSI$K_X29_SET,
PSI$K_X29_LOCAL_ECHO_PARAMS,
4–25 to 4–26

IO$_NETCONTROL, PSI$K_X29_SET,
PSI$K_X29_PAD_PARAMS, 4–27 to 4–28

IO$_NETCONTROL, PSI$K_X29_SET,
PSI$K_X29_PAD_RESELECTION, 4–29 to
4–30

IO$_NETCONTROL, PSI$K_X29_SET,
PSI$K_X29_TEMP_NOHANG, 4–31

IO$_READVBLK, 2–43 to 2–44
IO$_WRITEVBLK, 2–45 to 2–46
NV device, 4–1
return status codes, 1–5 to 1–6
terminal driver, B–2

Quotas, 5–4

R
R0

see Register 0
Reading

specific X.29 parameters, 4–13 to 4–15
X.29 terminal characteristics, 4–3 to 4–4

Receive buffers
maximum NCB item, C–9

Receiving DTE item code, 2–34
Redirection priority NCB item, C–7
Redirect reason item code, 2–34
REDISPLAY parameter, E–5
Register 0, 1–5, 4–10, 5–1
Remote DTE address

using $GETDVI to obtain, 2–10
Remote DTE address NCB item, C–9
Remote DTE item code, 2–34
Remote Port Of Access NCB item, C–10
Remote subaddress NCB item, C–9
Requested maximum transit delay NCB item,

C–10
Reselection message

using $QIO(IO$_NETCONTROL, PSI$K_X29_
SET, PSI$K_X29_PAD_RESELECTION) to
send, 4–29 to 4–30

Resets
using $QIO(IO$_NETCONTROL, PSI$K_

RESET) to confirm receipt for X.25 calls,
3–6 to 3–7

Resources
response of program to lack of, 5–4

Resource wait mode, 5–4
Restart

using $QIO(IO$_NETCONTROL, PSI$K_
RESTART) to confirm receipt for X.25, 3–8

RESTRICT_ECHO parameter, E–6
Return status, 1–5 to 1–6, 5–1 to 5–5

testing, 5–3
Reverse charging NCB item, C–9
Rights identifier PSI$DECLNAME, 2–35
Rights identifier PSI$X25_USER, 2–11, 2–19,

2–23, 2–28
RPOA

see Remote Port Of Access

S
Secondary status

for $QIO(IO$_ACCESS), 2–16 to 2–18, 5–1 to
5–2

for $QIO(IO$_ACPCONTROL), 2–38, 5–1 to
5–2

for $QIO(IO$_DEACCESS), 2–41 to 2–42, 5–1
to 5–2

for $QIO(IO$_NETCONTROL, PSI$K_X29_
SET, PSI$K_X29_PAD_PARAMS), 5–1 to
5–2

for $QIO(IO$_READVBLK), 5–1 to 5–2
for $QIO(IO_NETCONTROL, PSI$K_X29_SET,

PSI$K_X29_PAD_PARAMS), 2–44
Segment count NCB item, C–5
$SETRWM, 5–4
$SETSFM, 5–4
SET TERMINAL/X29

equivalent QIO, 4–16
SHOW TERMINAL/X29

equivalent QIO, 4–3
Specific PAD parameters

using $QIO(IO$_NETCONTROL, PSI$K_X29_
READ_SPECIFIC) to read, 4–13 to 4–15

using $QIO(IO$_NETCONTROL, PSI$K_
X29_READ_SPECIFIC, PSI$K_X29_PAD_
PARAMS) to read, 4–14 to 4–15

SPEED parameter, E–4
Standard PAD parameters, E–1 to E–6
Static filters, 2–31
Status codes, 1–5 to 1–6, 5–1 to 5–5
Status values, 5–1 to 5–5
Subaddress high item code, 2–34
Subaddress low item code, 2–34
Switched Virtual Circuits

construction of NCB, C–2

Index–5

Symbolic codes, 5–3 to 5–5
Syntax

for system services, 1–4
System dynamic memory, 5–4
System service calls

transmission characteristics, B–2
System service failure exception mode, 5–4

condition handling, 5–4
error messages, 5–4

System services, 1–1 to 1–6, 5–1 to 5–5, A–1 to
A–2, B–1 to B–2

arguments, 1–4
$ASSIGN, 2–2 to 2–3
$CANCEL, 2–4
common, 2–1
completion, 1–5, 5–1 to 5–5
$CREMBX, 2–5 to 2–6
$DASSGN, 2–7
$GETDVI, 2–8 to 2–10
IO$_NETCONTROL, PSI$K_X29_READ_

SPECIFIC, 4–13 to 4–15
$QIO, See also QIOs, 2–11 to 2–46
summary of X.25, A–1 to A–2
summary of X.29, B–1 to B–2
syntax, 1–4
X.25–specific, 3–1

T
Template NCB item, C–10
TEMP_NOHANG

using $QIO(IO$_NETCONTROL, PSI$K_X29_
READ, PSI$K_X29_TEMP_NOHANG) to
read flag, 4–12

using $QIO(IO$_NETWORK, PSI$K_X29_X29_
SET, PSI$K_X29_TEMP_NOHANG) to
enable, 4–31

Terminal driver QIOs, B–2
Testing for failure and warning conditions, 5–2
Testing return status codes, 5–3
Throughput class NCB item, C–10
TIMEOUT parameter, E–2
Timeout value, E–2
Transmission characteristics, B–2

system service calls, B–2
TTSYNC character, E–4
TTSYNC parameter, E–4

U
User data

for $QIO(IO$_ACCESS), 2–13
User data field NCB item, C–10
User data item code, 2–34
User group

notes for using $QIO(IO$_ACCESS), 2–11

V
Virtual calls

using $CANCEL to clear, 2–4
using $QIO(IO$ACCESS!IO$M_ACCEPT) to

accept, 2–23 to 2–27
using $QIO(IO$_ACCESS!IO$M_ABORT) to

reject, 2–19 to 2–22
using $QIO(IO$_ACCESS!IO$M_REDIRECT) to

reject, 2–28 to 2–30
Virtual circuit

using $QIO(IO$_ACCESS) to set up, 2–11 to
2–18

using $QIO(IO$_DEACCESS) to clear, 2–39 to
2–42

using $QIO(IO$_NETCONTROL, PSI$K_
RESET) to reset for X.25 calls, 3–6 to 3–7

W
Wait state, 5–4
Warning conditions, 5–2
Warning returns, 5–1
Window size NCB item, C–10
WRAP parameter, E–4

X
X.25 clearing code NCB item, C–9
X.25 system service calls, A–1 to A–2
X.25 system services, 3–1 to 3–8
X.29 system service calls, B–1 to B–2
X.29 system services, 4–1 to 4–31
X25 Server filter

item code, 2–33
X29 Server filter

item code, 2–33
XOFF, E–3, E–4
XON, E–3, E–4

Index–6

