
HP X.25 for OpenVMS
Security Guide
Order Number: AA–Q2P2C–TE

July 2005

This manual explains how to set up, manage, and monitor X.25 Security
to protect your X.25 system from unauthorized incoming calls and to
prevent unauthorized outgoing calls.

Revision/Update Information: This revised manual supersedes X.25
for OpenVMS—Security Guide, Version
1.1b.

Operating System: OpenVMS I64 Version 8.2 and 8.2-1
OpenVMS Alpha Version 8.2

Software Version: HP X.25 for OpenVMS
Version 2.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

UNIX is a registered trademark of The Open Group.

Printed in the US

Contents

Preface . vii

Part I Introductory Information

1 Overview

1.1 Security in Packet Switching Data Networks . 1–1
1.2 Introduction to X.25 Security . 1–1
1.3 X.25 Security Protection Mechanisms . 1–2
1.3.1 Agents and Their Rights Identifiers . 1–2
1.3.2 Objects and Their Access Levels . 1–2
1.3.3 Access Control Lists . 1–3
1.3.4 X.25 Security–Specific Identifiers . 1–4

2 The X.25 Security Model

2.1 The X.25 Security Model . 2–1
2.2 Filter Security . 2–2
2.3 DTE Class Security . 2–3
2.4 Bilateral Closed User Group Security . 2–4
2.5 Permanent Virtual Circuit Security . 2–5
2.6 Connector System Security . 2–6

3 How the X.25 Security Model Is Used

3.1 Introduction . 3–1
3.2 Verifying Incoming Calls . 3–1
3.2.1 Verifying Incoming Calls to an X.25 Direct Connect System 3–1
3.2.2 Verifying Incoming Calls to an X.25 Client System 3–4
3.3 Verifying Outgoing Calls . 3–6
3.3.1 Verifying Outgoing Calls from an X.25 Direct Connect System 3–6
3.3.2 Verifying Outgoing Calls from an X.25 Client System 3–8
3.4 Verifying Access to PVCs . 3–12
3.5 Remote DTE Entity Selection . 3–13
3.6 The ACL Matching Procedure . 3–14
3.6.1 Null ACLs . 3–15
3.6.2 Null Rights Identifiers . 3–15
3.6.3 The Order of ACL Entries . 3–15

iii

Part II How to Manage X.25 Security

4 Managing X.25 Security

4.1 Introduction . 4–1
4.2 Planning Security for Your System . 4–2
4.2.1 Planning Filter Security . 4–2
4.2.2 Planning DTE Class and Remote DTE Security 4–3
4.2.3 Planning PVC Security . 4–4
4.2.4 Planning Group Security . 4–4
4.3 Example Security Setup . 4–6
4.4 Setting Up an Open System . 4–9

5 Monitoring X.25 Security

5.1 Introduction . 5–1
5.2 Monitoring Security . 5–1
5.2.1 Security Events . 5–1
5.2.2 Security Counters . 5–2
5.2.3 Monitoring Events and Counters . 5–2
5.2.4 Monitoring the Status of Security Entities . 5–3
5.2.5 Monitoring Match–all Security . 5–4

Part III Reference Information

A The X.25 Security Verification Procedures

A.1 Verifying Outgoing Calls . A–2
A.1.1 Finding the Agent’s Rights Identifiers . A–2
A.1.2 Finding the DTE Class . A–2
A.1.3 Finding the Security DTE Class . A–2
A.1.4 Matching the Called DTE Address Against Remote DTE Entities A–2
A.1.5 Determining the Agent’s Level of Access to the Selected Remote

DTE . A–3
A.1.6 What Happens if X.25 Security Blocks Access? A–3
A.2 Verifying Outgoing Calls Using Bilateral Closed User Groups A–5
A.2.1 Finding the Agent’s Rights Identifiers . A–5
A.2.2 Finding the Group Entity and the Destination DTE Address A–5
A.2.3 Finding the DTE Class . A–5
A.2.4 Finding the Security DTE Class . A–5
A.2.5 Verifying the Agent’s Level of Access to the Selected BCUG A–5
A.2.6 What Happens if X.25 Security Blocks Access? A–6
A.3 Verifying Incoming Calls . A–8
A.3.1 Finding the Security DTE Class . A–8
A.3.2 Matching the Calling DTE Address Against Remote DTE Entities . . . A–8
A.3.3 Finding the Rights Identifiers for the Selected Remote DTE A–8
A.3.4 Finding the Filter That Matches the Call . A–8
A.3.5 Finding the Security Filter . A–8
A.3.6 Verifying the Access Level to the Filter . A–8
A.3.7 What Happens if X.25 Security Blocks Access? A–9
A.4 Verifying Incoming Calls Using Bilateral Closed User Groups A–11
A.4.1 Finding the Group Entity . A–11
A.4.2 Finding the Rights Identifiers . A–11
A.4.3 Subsequent Verification Procedure . A–11

iv

A.4.4 What Happens if X.25 Security Blocks Access? A–11
A.5 Verifying Access to Permanent Virtual Circuits . A–13
A.5.1 Finding Rights Identifiers . A–13
A.5.2 Finding the PVC Entity . A–13
A.5.3 Verifying the Access Level to the PVC . A–13
A.5.4 What Happens if X.25 Security Blocks Access? A–13

B X.25 Security Events

B.1 Incoming Call Failed . B–1
B.2 Incoming Call Blocked . B–2
B.3 Outgoing Call Blocked . B–2
B.4 Outgoing Call Configuration Error . B–3
B.5 PVC Access Blocked . B–3

C X.25 Security–Specific Identifiers

Index

Figures

2–1 Entities Used by X.25 Security . 2–1
2–2 Filter Security . 2–2
2–3 DTE Class Security . 2–3
2–4 BCUG Group Security . 2–4
2–5 PVC Security . 2–5
2–6 Connector System Security . 2–6
3–1 Example Incoming Call (X.25 Direct Connect Systems) 3–2
3–2 Local DTE Security (incoming calls) . 3–2
3–3 Example Incoming Call (X.25 Client Systems) 3–4
3–4 Example Outgoing Call (X.25 Direct Connect System) 3–6
3–5 Local DTE Security (outgoing calls) . 3–7
3–6 Example Outgoing Call from an X.25 Client System 3–8
3–7 X.25 Client System Security . 3–9
3–8 Connector System Security . 3–10
3–9 Remote DTEs with Valid RAPs . 3–13
3–10 The Ordering of ACL Entries . 3–16
4–1 Example Configuration . 4–6
A–1 How X.25 Security Verifies Outgoing Calls . A–4
A–2 How X.25 Security Verifies Outgoing Calls using BCUGs A–7
A–3 How X.25 Security Verifies Incoming Calls . A–10
A–4 How X.25 Security Verifies Incoming Calls Using BCUGs A–12
A–5 How X.25 Security Verifies Access to PVCs . A–14

v

Tables

1 X.25 Terminology . x
2 X.25 for OpenVMS Client/Server Terminology x
1–1 Access Levels . 1–3
1–2 Agents and Objects . 1–3
3–1 ACL Matching . 3–14
5–1 X.25 Access Module Security Counters . 5–2
5–2 Entity–Specific Security Counters . 5–2
5–3 Status Attributes . 5–3
B–1 Incoming Call Failed—Arguments . B–1
B–2 Incoming Call Failed—Reasons . B–1
B–3 Incoming Call Blocked—Arguments . B–2
B–4 Outgoing Call Blocked—Arguments . B–2
B–5 Outgoing Call Configuration Error—Arguments B–3
B–6 Outgoing Call Configuration Error—Reasons . B–3
B–7 PVC Access Blocked—Arguments . B–3

vi

Preface

This manual explains how to set up, manage, and monitor X.25 Security to:

• Protect your X.25 system from unauthorized incoming calls

• Prevent unauthorized outgoing calls

The information in this manual applies to the X.25 functionality provided by HP
X.25 for OpenVMS and HP DECnet–Plus for OpenVMS VAX. Note that the X.25
functionality in DECnet–Plus for OpenVMS VAX was formerly provided by VAX
P.S.I. software.

Throughout this manual, the X.25 functionality provided by both HP X.25 for
OpenVMS and HP DECnet–Plus for OpenVMS VAX is referred to generically as
X.25 for OpenVMS.

Audience
This manual is for network managers who are familiar with networking concepts
and DECnet–Plus. This manual assumes you have read the HP X.25 for
OpenVMS—Management Guide.

This manual also assumes that you understand and have experience with:

• Local Area Networks (LANs)

• Wide Area Networks (WANs)

• Installation of software products on OpenVMS systems

• X.25 communications

Structure
This manual is divided into three parts:

– Part I contains introductory information on X.25 Security.

– Part II contains task oriented information that details how to set up, manage,
and monitor X.25 Security.

– Part III contains reference information.

Associated Manuals
The following sections describe HP DECnet–Plus for OpenVMS, HP X.25 for
OpenVMS, and HP OpenVMS manuals that either directly describe the X.25 for
OpenVMS software or provide related information.

vii

HP DECnet–Plus for OpenVMS Documentation
The following DECnet–Plus manuals contain information useful to X.25 for
OpenVMS managers, users, and programmers:

• HP DECnet–Plus for OpenVMS —Introduction and User’s Guide

This manual provides general information on DECnet–Plus and describes the
concept of packet switching data networks.

• HP DECnet–Plus for OpenVMS—Installation and Configuration

This manual describes how to install and configure DECnet–Plus for
OpenVMS software. For OpenVMS I64 and OpenVMS Alpha systems, this
manual also describes how to install X.25 for OpenVMS software. Details
on configuring X.25 for OpenVMS on OpenVMS I64 and OpenVMS Alpha
systems are provided in the HP X.25 for OpenVMS—Configuration manual.
For OpenVMS VAX systems, this manual also describes how to install and
configure the X.25 functionality provided by DECnet–Plus for OpenVMS VAX.

• HP DECnet–Plus for OpenVMS—Network Management

This manual provides conceptual and task information about managing and
monitoring a DECnet–Plus network. In addition, the manual devotes a
section to the management of X.25 entities used by DECnet operating over
X.25 data links.

• HP DECnet–Plus for OpenVMS—Network Control Language Reference

This manual provides detailed information on the Network Control Language
(NCL), which is used to manage X.25 for OpenVMS management entities.

HP X.25 for OpenVMS Documentation
The following manuals make up the X.25 for OpenVMS documentation set:

• HP X.25 for OpenVMS—Configuration (OpenVMS I64 and OpenVMS Alpha)

This manual explains how to configure X.25 for OpenVMS software on
OpenVMS I64 and OpenVMS Alpha systems.

• HP X.25 for OpenVMS—Security Guide

This manual describes the X.25 Security model and how to set up, manage,
and monitor X.25 Security to protect your X.25 for OpenVMS system from
unauthorized incoming and outgoing calls.

• HP X.25 for OpenVMS—Problem Solving Guide

This manual provides guidance on how to analyze and correct X.25–related
and X.29–related problems that may occur while using the X.25 for OpenVMS
software. In addition, the manual describes loopback testing for LAPB data
links.

• HP X.25 for OpenVMS—Programming Guide

This manual describes how to write X.25 and X.29 programs to perform
network operations.

• HP X.25 for OpenVMS—Programming Reference

This manual provides reference information for X.25 and X.29 programmers.
It is a companion manual to the HP X.25 for OpenVMS—Programming Guide.

• HP X.25 for OpenVMS—Utilities Guide

viii

This manual describes how to use and manage X.25 Mail and how to use
and manage a host–based PAD to connect to a remote system. It also
describes how to manage the X.29 communication links used for both of
these functions. In addition, this manual explains how to use OpenVMS DCL
SET TERMINAL/X29 commands to manage remote host–based or network
PADs.

• HP X.25 for OpenVMS—Accounting

This manual describes how to use X.25 Accounting to obtain performance
records and information on how X.25 is being used on your system.

HP OpenVMS Documentation
The following OpenVMS manuals contain information useful to X.25 for
OpenVMS managers, users, and programmers:

• The current HP OpenVMS New Features and Documentation Overview
manual

• HP OpenVMS DCL User’s Manual

• HP OpenVMS DCL Dictionary

• HP OpenVMS System Management Utilities Reference Manual

• HP OpenVMS System Services Reference Manual

• HP OpenVMS Guide to System Security

Reader’s Comments
HP welcomes your comments on this manual or any of the X.25 for OpenVMS
documents. Please send comments to either of the following addresses:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
For information about how to order additional documentation and for online
versions of most X.25 for OpenVMS documentation, visit the following World
Wide Web address:

http://www.hp.com/go/openvms/doc/

ix

Terminology
The terminology used in the VAX P.S.I. product has been replaced by the
terminology used in the X.25 for OpenVMS product. Table 1 shows the correlation
between VAX P.S.I. terms and their X.25 for OpenVMS counterparts.

Table 1 X.25 Terminology

VAX P.S.I. X.25 for OpenVMS

VAX P.S.I. X.25 for OpenVMS VAX

Access system X.25 Client system

Native system X.25 Direct Connect system

Multihost system X.25 Connector system

Gateway system X.25 Connector system

In addition to the terms shown in Table 1, the X.25 for OpenVMS documentation
set uses the following standard terms for client systems, server systems, relay
systems, and the X.25 for OpenVMS management entities that represent these
systems:

Table 2 X.25 for OpenVMS Client/Server Terminology

Client system A client system of an X.25 Connector system (and
therefore a client of the X25 Server management
module on the X.25 Connector system.)

Relay Client system A client system of an X.25 Relay system (and therefore
a client of the X25 Relay management module on the
X.25 Relay system.)

Relay–Client A shorthand term for an X25 RELAY CLIENT
management entity on an X.25 Relay system that
contains management information about an actual
Relay Client system.

Relay system An X.25 Direct Connect or Connector system with the
X.25 Relay module enabled.

Server Client system Another term for a Client system.

Server–Client A shorthand term for an X25 SERVER CLIENT
management entity on an X.25 Connector system that
contains management information about one or more
actual X.25 Client systems.

For more information about clients, servers, and relays in X.25 for OpenVMS,
refer to the HP X.25 for OpenVMS—Configuration manual and the HP X.25 for
OpenVMS—Management Guide.

x

Conventions
The following conventions are used in the X.25 for OpenVMS documentation set:

UPPERCASE and
lowercase

The OpenVMS operating system does not differentiate between
lowercase and uppercase characters. Literal strings that
appear in text, examples, syntax descriptions, and function
descriptions can be entered using uppercase characters,
lowercase characters, or a combination of both.

In running text, uppercase characters indicate OpenVMS
DCL commands and command qualifiers; Network Control
Language (NCL) commands and command parameters; other
product–specific commands and command parameters; network
management entities; OpenVMS system logical names; and
OpenVMS system service calls, parameters, and item codes.

Leading uppercase characters, such as Protocol State, indicate
management entity characteristics and management entity
event names. Leading uppercase characters are also used for
the top-level management entities known as modules.

system output This typeface is used in interactive and code examples to
indicate system output. In running text, this typeface is used
to indicate the exact name of a device, directory, or file; the
name of an instance of a network management entity; or an
example value assigned to a DCL qualifier or NCL command
parameter.

user input In interactive examples, user input is shown in bold print.

$ In this manual, a dollar sign ($) is used to represent the
default OpenVMS user prompt.

Ctrl/X In procedures, a sequence such as Ctrl/X indicates that you
must hold down the key labeled Ctrl while you press another
key or a pointing device button.

Return In procedures, a key name is shown enclosed to indicate that
you press the corresponding key on the keyboard.

italic text Italic text indicates variables or book names. Variables include
information that varies in system input and output. In
discussions of event messages, italic text indicates a possible
value of an event argument.

bold text Bold text indicates an important term, or important
information.

() In a command definition, parenthesis indicate that you must
enclose the options in parenthesis if you choose more than one.
Separate the options using commas.

{ } In a command definition, braces are used to enclose sets of
values. The braces are a required part of the command syntax.

[] In a command definition, square brackets are used to enclose
parts of the command that are optional. You can choose one,
none, or all of the options. The brackets are not part of the
command syntax. However, brackets are a required syntax
element when specifying a directory name in an OpenVMS file
specification.

Note

The following conventions apply to multiplatform documentation.

xi

OpenVMS
I64/Alpha

Indicates information specific to OpenVMS I64 and OpenVMS
Alpha. Note that single lines of information specific to
OpenVMS I64 and OpenVMS Alpha are marked ‘‘(OpenVMS
I64 and OpenVMS Alpha)’’ or ‘‘(OpenVMS I64/Alpha)’’.

OpenVMS
VAX

Indicates information specific to OpenVMS VAX. Note that
single lines of information specific to OpenVMS VAX are
marked ‘‘(OpenVMS VAX)’’.

♦ Indicates the end of platform–specific information.

xii

Part I
Introductory Information

This part of the manual describes how X.25 Security works. There are three
chapters:

• Chapter 1—provides an introduction to X.25 Security.

• Chapter 2—describes the X.25 Security model.

• Chapter 3—describes how the X.25 Security model is used to verify incoming
and outgoing calls, and access to Permanent Virtual Circuits.

1
Overview

This chapter provides an introduction to security in Packet Switching Data
Networks (PSDNs).

This chapter will help you to understand:

• Why securing your system is necessary

• The security protection mechanisms provided by X.25 for OpenVMS

If you are new to X.25 or to Packet Switching Data Networks, it is recommended
that you read the manual HP DECnet–Plus for OpenVMS —Introduction and
User’s Guide before continuing to read this manual.

The remainder of this guide details how to set up, manage, and monitor security.

1.1 Security in Packet Switching Data Networks
There are many Packet Switching Data Networks (PSDNs) throughout the
world. Most of these PSDNs are public and are interconnected by gateways. For
this reason, it is realistic to talk about a worldwide public data network, with
thousands of connected systems, and many more remote terminals using public
or private packet assemblers/disassemblers (PADs).

X.25 for OpenVMS provides access to many public and private PSDNs. If your
system is connected to a public PSDN, users on your system have the potential to
connect to other, outside systems. Conversely, users of outside systems have the
potential to connect to your system.

The potential to connect to other systems has many advantages. However, for
security reasons, the ability to control access to and from systems connected to
PSDNs must be provided.

Some public PSDNs provide optional security facilities such as the use of
passwords, Closed User Groups (CUG), and incoming only and outgoing only
DTEs. For more information on the security facilities offered by your public
PSDN, refer to your PSDN documentation or consult your PSDN authority.

1.2 Introduction to X.25 Security
X.25 Security allows you to set up, manage, and monitor an X.25 system to:

• Protect it from unauthorized incoming calls

• Prevent unauthorized outgoing calls

X.25 Security can therefore be used to control access to and from PSDNs used by
your system. By using X.25 Security, you can decide:

• Which remote DTEs are permitted to use the applications on your system

• Which users on your X.25 system are permitted to make outgoing calls and
which remote DTEs they can call

Overview 1–1

Overview
1.2 Introduction to X.25 Security

• Which Connector systems can be accessed by which X.25 Client systems

• Which PVCs can be accessed

1.3 X.25 Security Protection Mechanisms
The main components of the X.25 Security protection mechanisms are:

• Rights identifiers

• Access levels

These components (described in Sections 1.3.1 and 1.3.2) are defined in an Access
Control List (ACL) for each security entity. Further details about ACLs are given
in Section 1.3.3 and details about security entities are given in Chapter 2.

1.3.1 Agents and Their Rights Identifiers
Rights identifiers are labels used to identify a specific agent or a group of agents.
An agent is the initiator of a call; it can be a specific user or an application
program. For example, you could create the following rights identifiers:

CALL_AUSTPAC Could specify that an agent in possession of that right can attempt
to call AUSTPAC DTEs.

PAYROLL Could specify the payroll department in your company.

OUT_REV Could specify that an agent in possession of that right can attempt
to make outgoing reverse charge calls.

Note

Rights identifiers containing an asterisk (*) should not be created. For
example, do not create rights identifiers such as PAY* and OUT*ND.

The way X.25 Security obtains rights identifiers for outgoing calls depends upon
the type of system you are using:

• On X.25 Direct Connect and X.25 Client systems, X.25 Security obtains
rights identifiers from the local process. On an X.25 for OpenVMS
system, X.25 Security does this by obtaining the right identifiers from
SYS$SYSTEM:RIGHTSLIST.DAT.

• On Connector systems, X.25 Security obtains the rights identifiers from the
SECURITY NODES entity (refer to Section 2.6).

1.3.2 Objects and Their Access Levels
Access levels are defined by X.25 Security and specify the access to particular
objects for a specific agent or group of agents. An object can be:

• An X.25 filter, for incoming calls

• A remote DTE, for outgoing calls

You grant access to an object by creating an Access Control List (ACL) in which
you specify the rights identifiers of an agent and the access to the associated
object that you want that agent to have. Table 1–1 shows the type of access you
can specify and its meaning.

1–2 Overview

Overview
1.3 X.25 Security Protection Mechanisms

Table 1–1 Access Levels

Access Meaning

None No access.

Remote_Charge X.25 Security only permits outgoing calls that specify the
reverse charging facility.

X.25 Security only permits incoming calls that do not contain
the reverse charge facility.

The Remote_Charge access level means the local system never
pays for calls.

All Allows all possible modes of operation.

Table 1–2 summarizes the relationships between call types, agents, and objects
on which security is applied for each type of system.

Table 1–2 Agents and Objects

Type of System Type of Call Agent Object

X.25 Direct Connect
or X.25 Client

Incoming Remote DTE Filter

Outgoing Local user or process Remote DTE

Connector Incoming Remote DTE Filter

Outgoing Security Nodes
(accessing systems)

Remote DTE

Relay Incoming Remote DTE Filter

Outgoing Not available Not available

1.3.3 Access Control Lists
An Access Control List (ACL) consists of one or more Access Control Entries
(ACEs) that grant or deny an agent access to a particular system object.

Each ACE contains an Identifier field that defines one or more agents (using their
rights identifiers), and an associated Access field that defines the level of access
to be given to the specified agents.

An ACL has the following format:

acl {[Identifier = { rights-identifiers1 }, Access = access-level1],
[Identifier = { rights-identifiers2 }, Access = access-level2],
... }

This format shows that each ACE consists of a set of rights identifiers followed by
an access level (refer to Section 1.3.2 for details of specifying access levels).

A set of rights identifiers can contain one or more identifiers. For example, the
following ACL has two ACEs each having a single rights identifier:

{[Identifier={CALL_AUSTPAC},Access=All],[Identifier={*},Access=None]}

In this example, agents with the rights identifier of CALL_AUSTPAC have the access
level All. Agents with any other rights identifier (indicated by the wildcard *)
have the access level None.

Overview 1–3

Overview
1.3 X.25 Security Protection Mechanisms

As a further example, consider the following ACL:

{[Identifier={CALL_AUSTPAC, PAYROLL, OUT_REV},Access=All],
[Identifier={*},Access=None]}

In this example, agents with the rights identifiers CALL_AUSTPAC, PAYROLL, and
OUT_REV have the access level All. Any agent not possessing all the rights
identifiers in the first ACE has the access level None.

Note

To be granted an access level, an agent must possess all the rights
identifiers in an ACE. For further details on the ACL matching procedure,
refer to Section 3.6.

Any pair of the following delimiters can be used when defining an ACL:

() { } []

For example, any of the following ACL formats are valid:

acl ([Identifier = { rights-identifiers1 }, Access = access-level1],
[Identifier = { rights-identifiers2 }, Access = access-level2],
...)

acl {(Identifier = (rights-identifiers1), Access = access-level1),
(Identifier = (rights-identifiers2), Access = access-level2),
... }

acl {[Identifier = [rights-identifiers1], Access = access-level1],
(Identifier = { rights-identifiers2 }, Access = access-level2),
... }

Throughout the rest of this manual, the convention used for the delimiters is that
shown in the ACL format at the start of this section.

1.3.4 X.25 Security–Specific Identifiers
In addition to the standard X.25 security entities, access to an X.25 for OpenVMS
system is controlled by two rights identifiers:

PSI$X25_USER The rights identifier that you must grant to any user or process
that is permitted to access X.25 for OpenVMS when a QIO IO$_
ACCESS system service is requested.

PSI$DECLNAME The rights identifier that you must grant to any process that
is permitted to declare itself a network process when a QIO
IO$_ACPCONTROL system service is requested.

These rights identifiers must be defined in the System Rights Database using the
OpenVMS AUTHORIZE utility before the X.25 for OpenVMS software is loaded.
If the identifiers are not defined before the software is loaded, but are defined
subsequently, they have no effect and users require only NETMBX privilege to
send calls via X.25 for OpenVMS.

Details of how X.25 Security handles system service requests using these rights
identifiers are given in Appendix C.

1–4 Overview

2
The X.25 Security Model

This chapter describes the X.25 Security model. It will help you to understand
the tasks described in Part II of this manual.

2.1 The X.25 Security Model
Security is designed within the framework of a distributed X.25 Security model.
The X.25 Security model provides facilities for protecting:

• Filters

• DTE Classes (and hence remote DTEs)

• Bilateral Closed User Groups (BCUGs)

• Permanent Virtual Circuits (PVCs)

• Connector systems

The entities used by X.25 Security are shown in Figure 2–1 and described further
in Sections 2.2 to 2.6.

Figure 2–1 Entities Used by X.25 Security

X25 Protocol X25 Access X25 Server

Group DTE

PVC

Security
Filter

Security
DTE Class

Remote
DTE

Security
Nodes

= Entity containing security information

The X.25 Security Model 2–1

The X.25 Security Model
2.2 Filter Security

2.2 Filter Security
Access to a filter is controlled by a SECURITY FILTER entity associated with
that filter. The SECURITY FILTER entity defines access control information (in
the form of an Access Control List (ACL)) that determines whether to permit a
caller (based on rights identifiers in the appropriate SECURITY DTE CLASS
REMOTE DTE entity) access to the application associated with the filter.

As many SECURITY FILTER entities as necessary can be created. Each filter
can have its own SECURITY FILTER entity or a single SECURITY FILTER
entity can be used to protect all filters.

Figure 2–2 shows the relationship between filters and associated SECURITY
FILTER entities. In this figure, two filters are protected by the SECURITY
FILTER entity Branch and a third filter is protected by the SECURITY FILTER
entity Copy.

Figure 2–2 Filter Security

Filter

Security Filter (Branch)

Security Filter (Branch)

Security Filter (Copy)

ACL

ACL

ACL

Security Filter Branch

Security Filter Copy

X.25 Access

2–2 The X.25 Security Model

The X.25 Security Model
2.3 DTE Class Security

2.3 DTE Class Security
Access to a DTE class is controlled by a SECURITY DTE CLASS entity associated
with that DTE class. Each SECURITY DTE CLASS entity can maintain several
REMOTE DTE child entities which provide protection information for a specific
DTE or all DTEs associated with a specified DTE class. Each DTE class can
specify the name of a SECURITY DTE CLASS entity. The protection information
for a DTE (defined by a REMOTE DTE entity) consists of:

• A Remote Address Prefix (RAP), against which the remote DTE address in an
incoming call or outgoing call is matched

• Rights identifiers, which are used to define the rights that an incoming call
is assigned (which control access to FILTER entities via their associated
SECURITY FILTER entities, refer to Section 2.2)

• An Access Control List (ACL), which determines whether an outgoing call
using the DTE class is permitted, based on the rights identifiers assigned to
the calling process or SECURITY NODE entity

Figure 2–3 shows the relationship between a SECURITY DTE CLASS entity and
five SECURITY DTE CLASS REMOTE DTE entities.

Figure 2–3 DTE Class Security

1234

Security DTE Class

Remote DTE

RAP:
ACL:

Remote DTE

RAP:
ACL:

Remote DTE

RAP:
ACL:

Remote DTE

RAP:
ACL:

12341 1234123

Rights Identifiers Rights Identifiers Rights Identifiers

Rights Identifiers

Remote DTE

RAP:
ACL:

123412345

Rights Identifiers

The X.25 Security Model 2–3

The X.25 Security Model
2.4 Bilateral Closed User Group Security

2.4 Bilateral Closed User Group Security
Notes

This type of security is relevant only to X.25 Direct Connect and
Connector systems.

This section applies only to members of Bilateral Closed User Groups
(BCUGs). Members of regular Closed User Groups (CUGs) use the same
X.25 Security methods used on normal incoming and outgoing calls as
discussed in Sections 2.2 and 2.3. To use a CUG member, you specify
the DTE class, the group name, and the DTE address. Thus security is
controlled by the specified DTE class and DTE address as with normal
incoming and outgoing calls.

The security matching procedure that must be performed on calls between
members of a Bilateral Closed User Group (BCUG) differs from that which is
performed on normal incoming and outgoing calls. Although a DTE class is
provided to X.25 for OpenVMS, no remote DTE address is passed to X.25 for
OpenVMS or to the called DTE. Instead, the call is assumed to be incoming from,
or outgoing to, the other DTE in the BCUG. To properly handle security on the
local system, X.25 Security must know the remote DTE address so that it can use
this address in the security matching procedure to determine whether the call
request is permissible.

To provide the remote DTE address required by the X.25 Security algorithms,
the X25 PROTOCOL GROUP entity is used. This entity defines the name of the
BCUG, its sole local member, its type (BCUG), and the remote DTE address of
the other DTE in the BCUG. The specified DTE class and the GROUP entity’s
Remote DTE Address characteristic are used to identify the SECURITY DTE
CLASS REMOTE DTE entity whose ACLs provide protection for the BCUG.

Details of the security matching procedure are given in Section 3.6.

Figure 2–4 shows the X25 PROTOCOL GROUP entity.

Figure 2–4 BCUG Group Security

X.25 Protocol

Members
Type
Remote DTE Address

Group

2–4 The X.25 Security Model

The X.25 Security Model
2.5 Permanent Virtual Circuit Security

2.5 Permanent Virtual Circuit Security
Note

This type of security is relevant only to X.25 Direct Connect and
Connector systems.

A X25 PROTOCOL PVC entity defines the operation of a PVC that is associated
with a DTE. A characteristic in the PVC entity defines an ACL that controls the
use of that PVC.

Figure 2–5 shows the structure of the PVC entity.

Figure 2–5 PVC Security

X25 Protocol

DTE

PVC

Channel
Packet Size
Window Size
ACL

ACL

The X.25 Security Model 2–5

The X.25 Security Model
2.6 Connector System Security

2.6 Connector System Security
The X25 SERVER SECURITY NODES entity contains a set of Distributed Name
Service (DECdns) node full names and the rights identifiers associated with
the set of nodes. This entity supplies the rights identifiers when agents make
outgoing calls through Connector systems.

Figure 2–6 shows the structure of the SECURITY NODES entity.

Figure 2–6 Connector System Security

X25 Server

Security Nodes

Nodes (Full Names)
Rights ID

2–6 The X.25 Security Model

3
How the X.25 Security Model Is Used

3.1 Introduction
Different parts of the X.25 Security Model must interact to ensure that an X.25
for OpenVMS system is secure. This chapter describes how the X.25 Security
model is used. Specifically, it describes how X.25 Security:

• Verifies incoming calls (refer to Section 3.2)

• Verifies outgoing calls (refer to Section 3.3)

• Verifies access to PVCs (refer to Section 3.4)

• Selects the REMOTE DTE entity to use (refer to Section 3.5)

• Uses Access Control Lists (refer to Section 3.6)

3.2 Verifying Incoming Calls
This section provides a general overview of the call verification procedure for
incoming calls:

• Section 3.2.1 describes how X.25 Security verifies incoming calls to an X.25
Direct Connect System.

• Section 3.2.2 describes how X.25 Security verifies incoming calls to an X.25
Client System.

The descriptions detail how the entities described in Chapter 1 and Chapter 2 are
used to verify calls.

The descriptions in Sections 3.2.1 and 3.2.2 do not apply to calls between member
DTEs of a Bilateral Closed User Group (BCUG). Details of how X.25 Security
verifies such calls are given in Appendix A.

3.2.1 Verifying Incoming Calls to an X.25 Direct Connect System
This section describes how X.25 Security verifies an incoming call to an X.25
Direct Connect system, that is, a call from a remote DTE to the local DTE.

In the example shown in Figure 3–1, remote DTE REM1 (DTE address
123412345678) is attempting to make a call to an enquiry database on the
local DTE LOC1. Security on the local DTE is set up as shown in Figure 3–2.

How the X.25 Security Model Is Used 3–1

How the X.25 Security Model Is Used
3.2 Verifying Incoming Calls

Figure 3–1 Example Incoming Call (X.25 Direct Connect Systems)

Calling DTE

X.25 Direct Connect

DTE address:

DTE Class: branch_link

LOC1

REM1

123412345678

Filter: enquiry_database

PSDN

System

Figure 3–2 Local DTE Security (incoming calls)

LOCAL SECURITY

Security DTE Class:
security_branch_link

DTE Class:
branch_link

Filter:
enquiry_database

security_enquiry_database
Security Filter:

Security DTE Class:
security_branch_link

Remote DTE
1111123
no_enquiry
ACL

RAP:
Rights:
ACL:

Remote DTE

RAP:
Rights:
ACL:

1234123*

ACL:

use_enquiry_db

{[Identifier={use_enquiry

ACL

_db},Access=All],
[Identifier={no_enquiry}, Access=None]}

Security Filter:
security_enquiry_database

Remote DTE

RAP:
Rights:
ACL:

1234
no_enquiry
ACL

3–2 How the X.25 Security Model Is Used

How the X.25 Security Model Is Used
3.2 Verifying Incoming Calls

The security set up shown in Figure 3–2 means that:

• DTE CLASS entity branch_link is protected by the SECURITY DTE
CLASS entity security_branch_link. This is a placeholder for a number of
REMOTE DTE entities, which are defined as child entities of the SECURITY
DTE CLASS entity.

The child entities identify the calling DTEs that are permitted to call the
local DTE. Each REMOTE DTE entity has a Remote Address Prefix (RAP),
which is used as a key when matching the DTE address of one of the calling
DTEs to one of the REMOTE DTE entities. RAPs can include a wildcard (*)
which matches any character (including a null character) or set of characters
following the specified characters. For more information on how to use
wildcards, refer to Section 3.5.

• FILTER entity enquiry_database (which is used to listen for calls to
the enquiry database) is protected by the SECURITY FILTER entity
security_enquiry_database.

When an incoming call arrives for the local DTE, X.25 Security selects the
REMOTE DTE entity having the RAP that most closely matches the calling DTE
address. Then, X.25 Security assigns the rights identifiers from the selected
REMOTE DTE entity to the incoming call. The DTE address matching process is
described more fully in Section 3.5.

In the example shown in Figures 3–1 and 3–2, the best match for remote DTE
REM1 (DTE address 123412345678) is the RAP 1234123*. This means that rights
identifier use_enquiry_db is assigned to the incoming call.

Once X.25 Security has assigned rights identifiers to the calling DTE, it:

1. Finds the filter that matches the call (from the call parameters). In this
example, FILTER entity enquiry_database.

2. Finds the security filter associated with this filter. In this example, it is
SECURITY FILTER entity security_enquiry_database.

3. Matches the rights identifier assigned to the calling DTE against the rights
identifiers defined in the ACEs specified for the ACL of the security filter.

• If there is a match, the Access field of the ACE is used by X.25 Security to
determine what happens to the call. The call can be accepted or rejected.

• If there is no match, X.25 Security clears the call.

ACL matching is described in Section 3.6.

In the above example, the use_enquiry_db rights identifier matches with the first
ACE in the ACL of the SECURITY FILTER entity security_enquiry_database.
The access level associated with the rights identifier use_enquiry_db is All. This
means that the call is permitted (refer to Table 1–1).

How the X.25 Security Model Is Used 3–3

How the X.25 Security Model Is Used
3.2 Verifying Incoming Calls

3.2.2 Verifying Incoming Calls to an X.25 Client System
This section describes how X.25 Security verifies an incoming call to an X.25
Client system, that is, a call from a remote DTE that is forwarded by a Connector
system to an X.25 Client system.

In the example shown in Figure 3–3, remote DTE REM1 (DTE address
123412345678) is attempting to make a call to an enquiry database on X.25
Client system CLT1 via Connecter system GTWY1. Security on the X.25 Client
system (the local DTE) is identical to that shown in Figure 3–2.

Figure 3–3 Example Incoming Call (X.25 Client Systems)

Calling DTE

X.25 Client System

Connector System

DTE address:

DTE Class: branch_link

GTWY1

CLT1

REM1

123412345678

Filter: enquiry_database

PSDN

When an incoming call arrives for the X.25 Client system via the Connector
system, X.25 Security selects the REMOTE DTE entity having the RAP that most
closely matches the calling DTE address. Then, X.25 Security assigns the rights
identifiers from the selected REMOTE DTE entity to the incoming call. The DTE
address matching process is described more fully in Section 3.5.

In the above example, the best match for remote DTE REM1 (DTE address
123412345678) is the RAP 1234123*. This means that rights identifier
use_enquiry_db is assigned to the incoming call.

3–4 How the X.25 Security Model Is Used

How the X.25 Security Model Is Used
3.2 Verifying Incoming Calls

Once X.25 Security has assigned rights identifiers to the calling DTE, it:

1. Finds the filter that matches the call (from the call parameters). In this
example, the FILTER entity enquiry_database.

2. Finds the security filter associated with this filter. In this example, the
SECURITY FILTER entity security_enquiry_database.

3. Matches the rights identifier assigned to the calling DTE against the rights
identifiers defined in the ACEs specified for the ACL of the security filter.

• If there is a match, the Access field of the ACE is used by X.25 Security to
determine what happens to the call. The call can be accepted or rejected.

• If there is no match, X.25 Security clears the call.

ACL matching is described in Section 3.6.

In the above example, the use_enquiry_db rights identifier matches with the first
ACE in the ACL of the SECURITY FILTER entity security_enquiry_database.
The access level associated with the rights identifier use_enquiry_db is All. This
means that the call is permitted (refer to Table 1–1).

How the X.25 Security Model Is Used 3–5

How the X.25 Security Model Is Used
3.3 Verifying Outgoing Calls

3.3 Verifying Outgoing Calls
This section provides a general overview of the call verification procedure for
outgoing calls:

• Section 3.3.1 describes how X.25 Security verifies outgoing calls from an X.25
Direct Connect System.

• Section 3.3.2 describes how X.25 Security verifies outgoing calls from an X.25
Client System.

The descriptions detail how the entities described in Chapter 1 and Chapter 2 are
used to verify calls.

The descriptions in Sections 3.3.1 and 3.2.2 do not apply to calls between member
DTEs of a Bilateral Closed User Group (BCUG). Details of how X.25 Security
verifies such calls are given in Appendix A.

3.3.1 Verifying Outgoing Calls from an X.25 Direct Connect System
This section explains how X.25 Security verifies an outgoing call from an X.25
Direct Connect system, that is, from a local DTE connected directly to a PSDN.

Figure 3–4 Example Outgoing Call (X.25 Direct Connect System)

Remote DTE

X.25 Direct Connect

DTE address:

DTE Class: branch_link

LOC1

REM1

123412345678

System Name: Bradman

PSDN

System

In Figure 3–4 a user of the local DTE LOC1 is attempting to call remote DTE REM1
(DTE address 123412345678). Security is set up as shown in Figure 3–5.

On the local DTE, X.25 Security looks in the file SYS$SYSTEM:RIGHTSLIST.DAT for
the rights identifiers associated with the user’s process. For this example, the
rights identifier associated with the user’s process is SYS.

3–6 How the X.25 Security Model Is Used

How the X.25 Security Model Is Used
3.3 Verifying Outgoing Calls

Figure 3–5 Local DTE Security (outgoing calls)

branch_link

security_branch_link

DTE Class

Security DTE Class:

security_branch_link
Security DTE Class

Remote DTE

RAP:
Rights:
ACL:

rights_ids
ACL

1111123 *

Remote DTE

RAP:
Rights:
ACL: ACL

1234
rights_ids

*

rights_ids

[Identifier={LA},Access=Remote_charge
[Identifier={*},Access=None]}

],
{[Identifier={SYS}, Access=All],

Remote DTE

1234123 *RAP:
Rights:
ACL:

LOCAL SECURITY − X.25 Direct Connect System: Bradman

X.25 Security then:

1. Finds the DTE CLASS entity (branch_link) to use for the outgoing call. This
is specified in the user’s request, or in a template.

2. Finds the SECURITY DTE CLASS entity (security_branch_link) specified
in the DTE CLASS entity (if it does not exist, the call fails).

3. Matches the called DTE address in the call request (123412345678) against
the RAP attributes of the available SECURITY DTE CLASS REMOTE DTE
entities. The matching process is described in Section 3.5.

4. Finds a RAP (1234123*) that best matches the called DTE address (if there is
no matching RAP, the call fails).

5. Matches the rights identifiers for the process that requested the call (SYS)
with the rights identifiers defined in the ACEs in the ACL belonging to the
REMOTE DTE entity.

6. Uses the Access field of the ACE (Access=All) to determine what to do with
the call.

If the verifications are successful, the call is passed to the PSDN.

To summarize the preceding example, remote DTE REM1 (DTE address
123412345678) matches the REMOTE DTE entity having a RAP of 1234123*.
The rights identifier SYS matches with the first ACE in the ACL. The access level
associated with the rights identifier SYS is Access = ALL, which means that the
call is permitted.

How the X.25 Security Model Is Used 3–7

How the X.25 Security Model Is Used
3.3 Verifying Outgoing Calls

3.3.2 Verifying Outgoing Calls from an X.25 Client System
For outgoing calls from an X.25 Client system, X.25 Security performs two
verifications; one at the X.25 Client system and one at the Connector system.

• At the X.25 Client system, X.25 Security looks in the file
SYS$SYSTEM:RIGHTSLIST.DAT for the rights identifiers associated with the
user’s process. For this example, the rights identifiers associated with the
user’s process is SYS.

• At the Connector system, X.25 Security obtains rights identifiers from a
SECURITY NODES entity.

In the example shown in Figure 3–6, X.25 Client system CLT1 is attempting to
make a call to remote DTE REM1 (DTE address 123412345678) through Connector
system GTWY1.

Figure 3–6 Example Outgoing Call from an X.25 Client System

Called DTE

X.25 Client System

Connector System

DTE address:

DTE Class:

DTE Class:

branch_link

branch_link

GTWY1

CLT1

REM1

123412345678

Rights Identifier: SYS

PSDN

3–8 How the X.25 Security Model Is Used

How the X.25 Security Model Is Used
3.3 Verifying Outgoing Calls

Figure 3–7 X.25 Client System Security

branch_link

client_branch_link

DTE Class

Security DTE Class:

Remote DTE

RAP:
Rights:
ACL:

rights_ids
ACL

1111123 *

Remote DTE

RAP:
Rights:
ACL: ACL

1234
rights_ids

*

client_branch_link
Security DTE Class

rights_ids

[Identifier={LA},Access=Remote_charge
[Identifier={*},Access=None]}

],
{[Identifier={SYS}, Access=All],

Remote DTE

1234123RAP:
Rights:
ACL:

*

Security on the X.25 Client system is set up as shown in Figure 3–7.

X.25 Security looks in SYS$SYSTEM:RIGHTSLIST.DAT for the rights identifiers
associated with the process. X.25 Security then:

1. Finds the DTE CLASS entity (branch_link) to use for the outgoing call. This
is specified in the user’s request or in a template. Note the DTE class name
must match a DTE CLASS entity with the exact same name on the Connector
system.

2. Finds the SECURITY DTE CLASS entity (client_branch_link) specified in
the DTE CLASS entity. If it does not exist, the call fails.

3. Matches the called DTE address (123412345678) in the request against the
RAP attributes of the SECURITY DTE CLASS REMOTE DTE entities. The
matching process is described in Section 3.5.

4. Finds a RAP (1234123*) that best matches the called DTE address. If there is
no matching RAP, the call fails.

5. Matches the rights identifiers (SYS) for the process that requested the call
with the Identifier fields of the ACEs in the ACL belonging to the remote
DTE.

6. Uses the Access field of the ACE (Access = All) to determine what to do with
the call.

If the verifications are successful, the call is passed to the Connector system.

How the X.25 Security Model Is Used 3–9

How the X.25 Security Model Is Used
3.3 Verifying Outgoing Calls

To summarize the preceding example, DTE CLASS entity branch_link is used
for the outgoing call. Associated with this DTE class is SECURITY DTE CLASS
entity client_branch_link which has three SECURITY DTE CLASS REMOTE
DTE entities. Remote DTE 123412345678 best matches the REMOTE DTE entity
with a RAP of 1234123*. The SYS rights identifier of the process that initiated the
call matches with the first ACE in the ACL of RAP 1234123*. The Access field
of this ACE is Access = All, which means that the call is permitted by the X.25
Client system and is forwarded to the Connector system.

Figure 3–8 Connector System Security

DTE Class:

Security DTE Class:

Security DTE Class:

Remote DTE

Remote DTE

Remote DTE

RAP: 1234
Rights:
ACL:

RAP: 1234123*
Rights:

RAP: 1111123

ACL:

Rights:
ACL:

branch_link

security_branch_link

security_branch_link

rights_id

rights_id

rights_id
ACL ACL

((Identifiers=(call_branch),Access=all)
 (Identifiers=(nopay_call_branch), Access= remote_charge)

(Identifiers=(*),Access=none))

Security Nodes

DEC:.eng.comms.dessie
DEC:.eng.comms.orchid

Rights Identifier: call_branch

DEC:.eng.comms.clt1Nodes:

Security on the Connector system is set up as shown in Figure 3–8.

At the Connector system, X.25 Security performs another verification. Each
Connector system has one or more SECURITY NODES entities, which contain
DECdns node names and the rights identifiers associated with them. The
DECdns node names are the names of the X.25 Client systems to be granted the
associated rights identifiers.

When an outgoing call reaches a Connector system, X.25 Security:

1. Searches the SECURITY NODES entities to find a node name that matches
the X.25 Client system’s node name (DEC:.eng.comms.clt1).

2. When it finds a match, associates the rights identifier (call_branch) in the
SECURITY NODES entity with the call request.

3. Finds the DTE CLASS entity (branch_link) to use for the outgoing call. This
is specified in the call request. Note the DTE class name must match a DTE
CLASS entity with the exact same name on the Client system.

4. Finds the SECURITY DTE CLASS entity (security_branch_link). If it does
not exist, the call fails.

3–10 How the X.25 Security Model Is Used

How the X.25 Security Model Is Used
3.3 Verifying Outgoing Calls

5. Matches the Called DTE Address field in the call request (123412345678)
against the RAP of the SECURITY DTE CLASS REMOTE DTE entities. The
matching process is described in Section 3.5.

6. Finds a RAP (1234123*) that best matches the called DTE address (if there is
no matching RAP, the call fails).

7. Matches the rights identifier for the call (call_branch) with the Identifier
fields of the ACEs in the ACL belonging to the remote DTE.

8. When it finds a match, uses the Access field in the ACE (Access = All) to
determine what to do with the call.

To summarize the preceding example, the agent on X.25 Client system CLT1 is
given the rights identifiers call_branch at the Connector system. Remote DTE
12312345678 best matches the REMOTE DTE entity with a RAP of 1234123*.
The call_branch rights identifier matches with the first ACE in the ACL. The
Access field of this ACE is Access = All, which means that the call is permitted
by the Connector system and is sent to the remote DTE.

How the X.25 Security Model Is Used 3–11

How the X.25 Security Model Is Used
3.4 Verifying Access to PVCs

3.4 Verifying Access to PVCs
Note

Verification of access to PVCs is relevant only to X.25 Direct Connect and
Connector systems.

X.25 Security determines whether an application is permitted access to a PVC.
Verification is made at the X.25 Direct Connect or Connector system where the
PVCs exist.

Each PVC entity has an ACL that controls access to the PVC. To determine the
access to a PVC, X.25 Security:

1. Finds the rights identifiers to associate with the user:

• On X.25 Direct Connect systems, X.25 Security looks in the OpenVMS file
SYS$SYSTEM:RIGHTSLIST.DAT for the rights identifiers.

• On X.25 Connector systems, X.25 Security finds rights identifiers from the
SECURITY NODES entity (refer to Section 3.3.2);

2. Finds the PVC entity to use from the PVC access request.

3. Matches the rights identifiers for the user that requested access to the PVC
with the Identifier fields of ACEs in the ACL belonging to the PVC entity.

4. When it finds a match, uses the Access field in the selected ACE to determine
what to do with the call.

3–12 How the X.25 Security Model Is Used

How the X.25 Security Model Is Used
3.5 Remote DTE Entity Selection

3.5 Remote DTE Entity Selection
Each SECURITY DTE CLASS entity should have at least one subordinate/child
REMOTE DTE entity. Each REMOTE DTE entity contains a remote address
prefix (RAP) and the ACL associated with that prefix. The RAP can be a wildcard
(*), or a series of digits from 0 to 9, or a combination of both. The wildcard can
be positioned anywhere in the series of digits. Figure 3–9 shows examples of
valid RAPs.

Figure 3–9 Remote DTEs with Valid RAPs

1234

Security DTE Class

Remote DTE

RAP:
ACL:

Remote DTE

RAP:
ACL:

Remote DTE

RAP:
ACL:

Remote DTE

RAP:
ACL:

12341 1234123

Rights Identifiers

Rights Identifiers

* * *

*

Remote DTE

RAP:
ACL:

123412345 *

Rights IdentifiersRights Identifiers

Rights Identifiers

To find the rights identifiers and the ACL associated with a DTE address, the
DTE address matching algorithm examines each of the available REMOTE DTE
entities of the SECURITY DTE CLASS entity. The RAP of each REMOTE DTE
entity is compared to the called or calling DTE address and the best match
determined.

The RAP matching algorithm defines a best match as the longest sequence
of matching digits from the start of the RAP, between the RAP and the DTE
address. For example, suppose that the DTE address 123456789 is being verified
against the following RAPs:

RAP : *
RAP : 1*
RAP : 123*
RAP : 123456
RAP : 123456*

DTE Address : 123456789

The best match is the RAP of 123456* because it has the longest sequence of
matching digits.

If there is no match for the DTE address, X.25 Security selects the REMOTE
DTE entity with the wildcard RAP (RAP : *). X.25 Security also selects the
REMOTE DTE entity with the wildcard RAP if the DTE address is null.

If there is no match and no wildcard RAP, X.25 Security clears the call.

As a further example of the matching process, suppose that your system has
the REMOTE DTE entities shown in Figure 3–9 and the called or calling DTE
address is 123412333333. X.25 Security selects the REMOTE DTE entity with
the RAP 1234123* as the best match.

How the X.25 Security Model Is Used 3–13

How the X.25 Security Model Is Used
3.6 The ACL Matching Procedure

3.6 The ACL Matching Procedure
The ACL matching procedure is performed only after a REMOTE DTE entity has
been selected (refer to Section 3.5).

The X.25 Security ACL verification procedure uses the same algorithm for
incoming and outgoing calls. X.25 Security performs a search of the ACL and
attempts to match the rights identifiers possessed by the agent with the set
of rights identifiers possessed by each ACE in the ACL. For a match to be
successful, the agent must possess all the rights identifiers specified in one of the
ACEs. If the agent contains additional rights identifiers (over and above those
defined in the matching ACE) they are ignored. Table 3–1 shows the possible
outcomes of a search.

Table 3–1 ACL Matching

Search Result Level

Match found The ACE is selected and the search terminated. The Access
field of the ACE determines what happens to the call.

Match not found The access level is taken as being None.

The rights identifier of
an ACE is a wildcard

Any set of agent rights is taken as matching this ACE. The
Access field of the ACE determines what happens to the call.

To illustrate the ACL matching procedure, the following example shows the
outcome of attempts to match a number of agent rights identifiers with the
following ACL:

ACL = {[Identifier = {AA,BB,DD}, Access = All],
[Identifier = {CC}, Access = Remote_Charge],
[Identifier = {*}, Access = None]}

Agent Rights
Identifiers Result of ACL Matching Procedure

CC Match found (second ACE); search terminated; call permitted
only on a remote charge basis.

AA,BB,DD Match found (first ACE); search terminated; call permitted
without restrictions.

AA,BB Match found (third ACE); search terminated; call not
permitted. The agent’s rights identifiers do not match the first
ACE as the agent does not possess all the rights identifiers
specified.

GG Match found (third ACE); search terminated; call not
permitted.

CC,FF Match found (second ACE)—identifier FF is ignored; search
terminated; call permitted only on a remote charge basis.

3–14 How the X.25 Security Model Is Used

How the X.25 Security Model Is Used
3.6 The ACL Matching Procedure

3.6.1 Null ACLs
A null ACL is an ACL without entries and is represented using the following
format:

{ }

A null ACL does not allow any agents to have access to the objects it protects and
is equivalent to the following match–all ACL:

{[Identifier = {*}, Access = None]}

This ACL has a wildcard rights identifier that matches any set of agent rights
identifiers and an access level that does not permit calls to be accepted.

Whenever an entity is created, it is assigned a null ACL. This ensures that
system objects have maximum protection as soon as the associated entities are
created. The null ACL remains in effect until an alternative, more specific, ACL
is defined (set) for the entity.

3.6.2 Null Rights Identifiers
If no rights identifiers have been defined for a remote DTE, that DTE is said to
have a null rights identifier.

Null rights identifiers match wildcard ACEs. For example, if the following ACE
has been defined:

{[Identifier = {*}, Access = level]}

then the wildcard (*) matches all occurrences of zero or more characters
and therefore encompasses the null rights identifier. In this case, the access
level given to the null rights identifier is specified by level, where level is All,
Remote_Charge, or None.

3.6.3 The Order of ACL Entries
The order of ACEs in an ACL is important. The ACL matching algorithm
searches each ACE in turn for the first rights identifier match it can find. When
a match is found, the search is terminated. If a match occurs in an ACE specified
later in the ACL, it is ignored.

ACLs can be created to provide several levels of protection to system objects.
However, care must be taken to position ACEs in an ACL so that the greatest
protection occurs nearest the end of the ACL. For example, you may want to
apply greater protection to calls that you pay for than to calls that the remote
DTE pays for. In this case, you would define ACEs in the ACL of the REMOTE
DTE entity in the order shown in Figure 3–10.

The ACEs in Figure 3–10 ensure that:

• Agents with the rights identifier 21 can make outgoing reverse charge calls
and accept incoming non–reverse charge calls.

• Agents with the rights identifier 22 can make any type of call.

• Agents with rights identifiers other than 21 or 22 match with the wildcard
entry and are not permitted to make or accept calls.

How the X.25 Security Model Is Used 3–15

How the X.25 Security Model Is Used
3.6 The ACL Matching Procedure

Figure 3–10 The Ordering of ACL Entries

Top of ACL,
highest level of access,
lowest level of protection

Bottom of ACL,
lowest level of access,
highest level of projection

Level of Protection Access Control List

[

 Identifier={*},Access=None

={21},Identifier Access=Remote_Charge]

Identifier= {22},Access=All[]

[]

3–16 How the X.25 Security Model Is Used

Part II
How to Manage X.25 Security

This part of the manual explains how to manage X.25 Security. Each section is
task oriented. This part of the manual assumes that:

• You have installed and configured X.25 for OpenVMS.

• Your system is operational.

• You have read the HP X.25 for OpenVMS—Management Guide.

• You have the HP DECnet–Plus for OpenVMS—Network Control Language
Reference manual available to obtain full details of NCL commands. This
manual is needed only if you intend to edit the NCL script produced by the
configuration program or intend to enter NCL commands interactively.

• You have read Part I of this manual.

4
Managing X.25 Security

4.1 Introduction
This chapter describes the tasks you will need to perform to plan and manage
X.25 Security. General X.25 management tasks (for example, managing filters
and DTE classes) are described in the HP X.25 for OpenVMS—Management
Guide.

OpenVMS
I64/Alpha

To change the security of your X.25 system, do one of the following:

• Run the ADVANCED mode of the configuration program, revising the current
security definitions, and then reboot the system.

• Override the current security definitions with new ones defined in the
relevant user NCL script file and then execute the revised user NCL script
files.

• Issue NCL commands interactively.

Note

It is recommended that changes to security be made by performing one
of the first two actions as these are the only methods which ensure that
the specified security is used each time the system is booted. The third
method makes only temporary changes to security; such changes are lost
the next time the system is booted.

For details on using the X.25 configuration program, refer to the HP X.25
for OpenVMS—Configuration manual. For details of issuing NCL commands
interactively, refer to the HP X.25 for OpenVMS—Management Guide. Full
details of the syntax of each NCL command are given in the HP DECnet–Plus for
OpenVMS—Network Control Language Reference manual. ♦

OpenVMS
VAX

To change the security of your X.25 system, do one of the following:

• Run the configuration program, revise the current security definitions, and
then reboot the system.

• Override the current security definitions with new ones defined in the NCL
script file and then execute the revised NCL script file.

• Issue NCL commands interactively.

Note

It is recommended that changes to security are made by using the
configuration program as this is the only method which ensures that the
specified security is used each time the system is booted. Issuing NCL

Managing X.25 Security 4–1

Managing X.25 Security
4.1 Introduction

commands interactively makes only temporary changes to security; such
changes are lost the next time the system is booted.

For details on using the X.25 configuration program, refer to the HP DECnet–Plus
for OpenVMS—Installation and Configuration manual. For details on issuing
NCL commands interactively, refer to the HP X.25 for OpenVMS—Management
Guide. Full details of the syntax of each NCL command are given in the HP
DECnet–Plus for OpenVMS—Network Control Language Reference manual. ♦

4.2 Planning Security for Your System
To control incoming and outgoing calls, you need to:

• Create SECURITY FILTER entities to protect the filters on your system.

• Create SECURITY DTE CLASS entities (and REMOTE DTE child entities) to
protect the DTEs on your system.

• Set the ACLs in the X25 PROTOCOL DTE PVC entities to specify who can
access PVCs.

• Set the Remote DTE Address attribute of the X25 PROTOCOL GROUP
entities (type BCUG only) to match the X25 ACCESS SECURITY DTE
CLASS REMOTE DTE entity that is to control access to the group.

• Specify which nodes can use Connector nodes by setting up X25 SERVER
SECURITY NODES entities.

4.2.1 Planning Filter Security
If you have the same security requirements for all the filters on your system, you
need only create one SECURITY FILTER entity. In this security filter, specify an
ACL to control access. Once you have defined the security filter, you will need to
modify the Security Filter characteristic of each FILTER entity so that it points
to the defined security filter.

If you have different security requirements for different filters, you should create
more than one security filter. For example, suppose you have defined two filters,
called x29 and app, that listen for calls to applications x.29 and app and you want
to allow all agents to use application app but restrict access to application x.29.
In this case, you should set up the following SECURITY FILTER entities:

• app_security, having the ACL:

{[Identifier = {*}, Access = All]}

This ACL allows agents with any rights identifiers access to the FILTER
entity app.

• x29_security, having the ACL:

{[Identifier = {USE_X29}, Access = All], [Identifier = {*}, Access = None]}

This ACL restricts the use of the FILTER entity x29 to agents with the
USE_X29 rights identifier; agents not having this identifier are not permitted
to access the filter x29.

By using several security filters, you can clearly define the security requirements
for each filter.

4–2 Managing X.25 Security

Managing X.25 Security
4.2 Planning Security for Your System

The following example details the NCL commands required to set up incoming
call security for the example just described:

ncl> create x25 access security filter APP_SECURITY
ncl> set x25 access security filter APP_SECURITY ACL -
_ncl> {[Identifier={*}, Access=All]}
ncl> create x25 access security filter X29_SECURITY
ncl> set x25 access security filter X29_SECURITY ACL -
_ncl> {[Identifier={USE_X29}, Access=All], [Identifier={*}, Access=None]}
ncl> set x25 Access filter APP security filter APP_SECURITY
ncl> set x25 Access filter x29 security filter x29_SECURITY
ncl>

4.2.2 Planning DTE Class and Remote DTE Security
Each SECURITY DTE CLASS entity is a parent for the SECURITY DTE CLASS
REMOTE DTE entities associated with it. You can create one or more SECURITY
DTE CLASS entities on your system.

The number of REMOTE DTE entities you need to set up depends on your
security requirements. For example, if you want all the DTEs in a particular
network to have the same rights identifiers and be controlled by the same
ACL, you can set up a single REMOTE DTE entity having the Data Network
Identification Code (DNIC) of the network. Note that DNICs apply only to public
networks.

If you want to specify different security levels for different DTEs or groups
of DTEs you need to set up REMOTE DTE entities for several DTE address
prefixes. For example, you could create REMOTE DTE entities with the following
prefixes:

123412345678 1
123412345677

1234123* 2
1234113*

1234* 3

1 These are full DTE addresses. Creating REMOTE DTE entities with full DTE
address prefixes allows you to define the security information for a specific
DTE.

2 These address prefixes could be for DTEs from specific areas. Creating
REMOTE DTE entities like this allows you to define security information for
a specific group of DTEs.

3 This address prefix is a DNIC. Creating a REMOTE DTE entity with a DNIC
prefix allows you to define security information for all the DTEs in a public
network.

In general, the finer the security control required, the greater the number of
REMOTE DTE entities that must be defined.

SECURITY DTE CLASS entities should be set up using the X.25 for OpenVMS
configuration program. See Section 4.1 for information about using the X.25
configuration program.

Managing X.25 Security 4–3

Managing X.25 Security
4.2 Planning Security for Your System

Alternatively, NCL commands can be issued interactively. For example, suppose
you want to set up outgoing security to a DTE class called galaxy so that only
users with the rights identifier AUSTPAC are permitted to make calls. This can be
achieved using the following NCL commands:

ncl> create x25 access security dte class sec-1 1
ncl> create x25 access security dte class sec-1 -
_ncl> remote dte FRED remote address prefix 1234 2
ncl> set x25 access security dte class sec-1 remote -
_ncl> dte fred acl {[Identifier = {AUSTPAC}, Access = All]} 3

ncl> set x25 access dte class galaxy security dte class sec-1 4

1 Creates SECURITY DTE CLASS entity sec-1.

2 Create REMOTE DTE entity fred and assigns it a remote address prefix
(RAP) of 1234.

3 Defines the ACL for REMOTE DTE entity fred.

4 Assign the SECURITY DTE CLASS entity sec-1 to DTE CLASS entity
galaxy.

4.2.3 Planning PVC Security
Security information is part of an X25 PROTOCOL DTE PVC entity. You need
to work out who you want to be able to use a PVC and then set up an ACL to
control access.

Note that for PVCs, the REMOTE_CHARGE access level provides the same
access as ALL.

4.2.4 Planning Group Security
Notes

Closed User Group (CUG) security can only be set up on the Direct
Connect or Connector systems; X25 PROTOCOL GROUP entities cannot
be defined on X.25 Client systems.

Planning security for members of a normal Closed User Group (CUG) is
no different than planning security for individual remote DTEs. When
you use a member of a CUG, you must specify the DTE class, the group,
and the remote DTE address. As with individual DTEs, the DTE class
specifies a DTE CLASS entity whose Security DTE Class attribute
specifies a SECURITY DTE CLASS entity. The REMOTE DTE child
entities of the SECURITY DTE CLASS entity and the supplied remote
DTE address are used in the address matching process described in
Sections 4.2.1 and 4.2.2. In this case, the CUG group does not hold any
security information. However, it does result in the connection using the
CUG facilities offered by the PSDN. In point–to–point connections, the
group index number is simply passed to the remote DTE in the Facilities
field of the Call packet.

Bilateral Closed User Groups (BCUGs) differ from CUGs in that they consist of
only two DTEs, one of which is a member of a GROUP entity on the local system.
Therefore, the remote DTE is uniquely identified by the use of the BCUG; no
remote DTE address is necessary. However, for local security purposes, the
address of the remote DTE address must be known. To set up BCUG group
security, you must define in the GROUP entity the exact DTE address of the
remote DTE in the specified BCUG. In this sense, even though they do not

4–4 Managing X.25 Security

Managing X.25 Security
4.2 Planning Security for Your System

directly contain rights identifiers or ACLs, BCUG GROUP entities indirectly
control security on the local system.

BCUG group security should be set up using the X.25 configuration program. See
Section 4.1 for information about using the X.25 configuration program.

Alternatively, you can enter NCL commands interactively. For example, to define
group security for BCUG bistar that contains this system and another system
having the DTE address 123456, enter the following commands:

ncl> create x25 protocol group bistar 1

ncl> set x25 protocol group bistar type bcug 2

ncl> set x25 protocol group bistar remote dte address 123456 3

1 Creates Group bistar.

2 Sets the type of the group to BCUG.

3 Sets the DTE address of the other system in the BCUG to 123456. This
DTE address is used to match against the RAPs defined in the SECURITY
DTE CLASS REMOTE DTE entities to obtain the REMOTE DTE entity
whose ACL determines the access to the BCUG. The REMOTE DTE entities
searched belong to the SECURITY DTE CLASS entity referenced by the DTE
CLASS entity specified by the user. This DTE class should contain the local
DTE used to connect to the remote member of the BCUG.

Managing X.25 Security 4–5

Managing X.25 Security
4.3 Example Security Setup

4.3 Example Security Setup
This section uses a simple example configuration to show how to use NCL to
configure the security–related components of an X.25 system. Figure 4–1 shows
the example configuration.

The example configuration consists of two DTEs:

• A local DTE on the Connector system DEC:.REO.CBN.FRED. An X.25 Client
system, DEC:.REO.CBN.YAGA, uses this DTE on the Connector system to gain
access to the PSDN.

• A remote DTE called BRISBANE, with DTE address 123412345678.

The NCL script following Figure 4–1 sets up security for this configuration.

Figure 4–1 Example Configuration

DEC:.REO.CBN.FRED

X.25 Client System

Connector System

Remote DTE

DEC:.REO.CBN.YAGA

BRISBANE

DTE address:
123412345678

DTE−0

PSDN

4–6 Managing X.25 Security

Managing X.25 Security
4.3 Example Security Setup

The following NCL script extract illustrates the NCL commands to set up security
on the Connector system for the configuration shown in Figure 4–1. Notes about
the NCL commands are provided after the NCL script.

.

.

.

create x25 access security DTE class austpac 1

create x25 access security DTE class austpac remote dte brisbane - 2
remote address prefix 123412345678

set x25 access security DTE class austpac remote dte brisbane - 3
rights identifiers { x25$mail,login }

set x25 access security DTE class austpac remote dte brisbane - 4
acl { -

(identifiers=(walter), access=all), -
(identifiers=(davison), access=all), -
(identifiers=(managers), access=all), -
(identifiers=(waters), access=remote_charge), -
(identifiers=(walker), access=remote_charge), -
(identifiers=(*), access=none) -

}

create x25 access security filter x25$mail 5
set x25 access security filter x25$mail -
acl { -

(identifiers=(x25$mail), access=all), - 6
(identifiers=(*), access=none)

}

create x25 server security nodes access-managers 7
set x25 server security nodes access-managers -
rights identifiers { managers } 8

set x25 server security nodes access-managers nodes -
{ DEC:.REO.CBN.YAGA } 9

set x25 protocol dte dte-0 pvc pvc-0 - 1 0

acl { -
(identifiers=(walter), access=all), -
(identifiers=(davison), access=all), -
(identifiers=(managers), access=all), -
(identifiers=(*), access=none) -

}

set x25 protocol group brisbane_group - 1 1

remote dte address 123412345678

set x25 access dte class austpac security dte class austpac 1 2

set x25 access filter x25$mail security filter x25$mail 1 3

.

.

.

Managing X.25 Security 4–7

Managing X.25 Security
4.3 Example Security Setup

1 The local system supports a single DTE CLASS entity, austpac. This
command creates a SECURITY DTE CLASS entity called austpac, which
controls access to this DTE CLASS entity (which has already been set up as
part of DTE configuration and has its Security DTE Class attribute set to
austpac).

2 This command creates a REMOTE DTE entity (brisbane) corresponding to
the remote DTE called BRISBANE. The RAP associated with this remote DTE
is a full DTE address, indicating that this REMOTE DTE entity refers to a
particular remote DTE rather than to a group of remote DTEs.

3 This command specifies that incoming calls from remote DTE BRISBANE are to
be granted the rights identifiers x25$mail and login.

4 This command sets the ACL for the REMOTE DTE entity brisbane. This
controls the type of access granted to local users who make calls to the remote
DTE. Users making calls to BRISBANE will require the rights identifiers
walter, davison, or managers to make any sort of call (access level ALL). The
rights identifiers waters or walker are required to make outgoing reverse
charge only calls. Callers with none of these rights identifiers will be blocked.

5 This command creates the SECURITY FILTER entity x25$mail to protect
the application x25$mail from remote callers. (The application x25$mail has
already been set up prior to this section of the configuration; the application’s
Filters attribute references a FILTER entity whose Security Filter attribute
references the SECURITY FILTER entity x25$mail.) Note that remote callers
must be assigned rights identifiers from a REMOTE DTE entity; if no rights
identifiers are assigned, incoming calls are blocked. The rights identifiers
assigned to the remote caller will be matched against the ACL held by the
SECURITY FILTER entity guarding the FILTER entity that matches the
incoming call parameters. If the SECURITY FILTER entity contains no ACL,
the incoming call is blocked.

6 This command specifies the access to be granted to incoming calls to the
application x25$mail. Callers with rights identifier x25$mail have all access;
other callers are blocked.

7 This command creates a SECURITY NODES entity, which is used to control
access to the network by a set of Client systems using this Connector system.

8 This command specifies that the rights identifier managers is to be granted
to users on nodes associated with the SECURITY NODES entity access-
managers.

9 This command associates the SECURITY NODES entity access-managers
with node yaga.

1 0 This command specifies the ACL that controls access by local users to the
PVC called pvc-0. The ACL is the same as for the REMOTE DTE entity
brisbane. For PVCs, the REMOTE_CHARGE access level provides the same
access as ALL.

1 1 This command sets up group security for a bilateral closed user group
consisting of the local DTE and remote DTE BRISBANE. This BCUG is called
brisbane_group. The Remote DTE Address attribute associates the group
with the REMOTE DTE entity brisbane, for which ACL and rights identifiers
have already been set up.

1 2 This command specifies that security for the DTE CLASS entity austpac is
controlled by the SECURITY DTE CLASS entity austpac.

4–8 Managing X.25 Security

Managing X.25 Security
4.3 Example Security Setup

1 3 This command specifies that security for the FILTER entity x25$mail is
controlled by the SECURITY FILTER entity x25$mail.

4.4 Setting Up an Open System
An open system is one that allows any agent access to any object. By setting up
an open system you are, in effect, turning off security on your system.

To set up an open system, define the following ACL:

{[Identifier = {*}, Access = All]}

for the following entities:

• SECURITY FILTER

• REMOTE DTE

• PVC (Direct Connect and Connector systems only)

The entities and their corresponding ACLs should be set up by running the X.25
for OpenVMS configuration program.

Alternatively, you can enter NCL commands interactively. For example, to set up
an open system for the REMOTE DTE entity fred, enter the following commands:

ncl> create x25 access security filter open
ncl> set x25 access security filter open -
_ncl> acl {[Identifier = {*}, Access = All]}
ncl> set x25 access filter * security filter open
ncl> create x25 access security dte class open
ncl> create x25 access security dte class open remote dte fred -
_ncl> remote address prefix *
ncl> set x25 access security dte class open remote dte fred -
_ncl> acl {[Identifier = {*}, Access = All]}
ncl> set x25 access dte class * security dte class open

You will also need to assign at least one rights identifier to entities that contain
a rights identifier list; these entities being:

• REMOTE DTE

• SECURITY NODES (for Connector systems only)

For example:

ncl> set x25 access security dte class default remote dte match_all -
_ncl> rights identifiers (network)

ncl> set x25 server security nodes all_nodes -
_ncl> rights identifiers (network)

Managing X.25 Security 4–9

5
Monitoring X.25 Security

5.1 Introduction
Once you have set up security, you must monitor the system regularly to verify
that your system is secured as you intended and to detect:

• Any unauthorized attempts to access your system

• Any attempts by unauthorized users to make calls from your system

Security problems can be accidental or malicious. An accidental problem is
probably the result of an error in an ACL, causing a rights identifier match to
fail. A malicious problem is caused by unauthorized users attempting to make
calls to or from your system.

X.25 Security allows you to monitor your system and to correct these problems.

5.2 Monitoring Security
To monitor security, you can:

• Set up event logging to monitor events

• Look at entity counters

• Look at the status of entities

• Use the X.25 Accounting utility

Appendix A describes the X.25 Security call verification procedures and describes
the events generated and the counters that are incremented when each type of
verification fails.

You can monitor incoming and outgoing calls using the X.25 Accounting utility.
Details of this utility are given in the HP X.25 for OpenVMS—Accounting
manual.

5.2.1 Security Events
An event log contains messages that record changes in the status of the system.
For example, every time security blocks an incoming call, an event message is
logged. Event logging is the primary tool for monitoring and problem solving
your system. The HP DECnet–Plus for OpenVMS—Network Management manual
describes how to set up event logging on your system. X.25 Security–specific
events are described in Appendix B.

Monitoring X.25 Security 5–1

Monitoring X.25 Security
5.2 Monitoring Security

5.2.2 Security Counters
The X25 Access module maintains several security counters which record the
number of times security blocked access to or from your system. The X25 Access
counters are described in Table 5–1.

Table 5–1 X.25 Access Module Security Counters

Counter Description

Incoming Calls Blocked The total number of incoming calls blocked by security.

Outgoing Calls Blocked The total number of outgoing calls blocked by security.

Outgoing Call
Configuration Errors

The total number of times outgoing calls failed because of the
misconfiguration of the security management databases.

PVC Accesses Blocked The total number of PVC accesses blocked by security.

In addition to the counters maintained by X25 Access, some of the X.25 Security
entities maintain counters. These counters are described in Table 5–2.

Table 5–2 Entity–Specific Security Counters

Entity Counter Description

FILTER Incoming Calls Blocked The total number of times security has blocked
an incoming call that matched the specified
filter.

REMOTE
DTE

Incoming Calls Blocked The total number of times security has blocked
an incoming call that matched the RAP on the
specified remote DTE.

Outgoing Calls Blocked The total number of times security has blocked
an outgoing call that specified a destination
DTE address that matched the RAP on the
specified remote DTE.

SECURITY
NODES

Outgoing Calls Blocked The total number of times that security has
blocked outgoing calls or PVC access requests
from nodes represented by the specified entity.

PVC Accesses Blocked The total number of times security has blocked
access to this PVC.

GROUP Incoming Calls Blocked The total number of times security has stopped
a call that specified the named BCUG from
accessing a filter.

Outgoing Calls Blocked The total number of times security has blocked
an outgoing call that used the named BCUG.

5.2.3 Monitoring Events and Counters
You can find out about security problems on your system in three ways:

• View the event logs.

• View the X25 Access module or entity–specific counters to see if any of them
have recorded a large number of blocked calls.

• Analyze the output from the X.25 for OpenVMS Accounting utility.

If you notice a security problem, look at the event that was generated.

5–2 Monitoring X.25 Security

Monitoring X.25 Security
5.2 Monitoring Security

If the problem was caused by an incoming call:

1. Look at the event to determine:

• Which application was attacked

• The source of the attack

2. Look at the counters on the filter and remote DTE and try to correlate them
with the events.

3. Take action to solve the problem. If the calling DTE should be allowed
to make calls to the destination on your system that it attempted to call,
examine the ACL associated with the FILTER entity and the rights identifiers
associated with the REMOTE DTE entities.

If the call was blocked correctly, and the problem recurs, contact the relevant
PSDN authority and notify them of the problem.

If the problem was caused by an outgoing call:

1. Look at the event to determine:

• The source of the call

• The destination DTE

2. Look at the counters on the remote DTE or group and correlate them with the
events.

3. Take action to solve the problem. If the call should have succeeded, examine
the ACLs associated with the REMOTE DTE or GROUP entities. Also, verify
that the agent has the correct rights identifiers.

If security blocked the call correctly, locate the initiator of the call and take
the appropriate action to rectify the problem.

5.2.4 Monitoring the Status of Security Entities
The SECURITY DTE CLASS and the SECURITY FILTER entities have the
status attributes shown in Table 5–3.

Table 5–3 Status Attributes

Entity Status Attribute Description

SECURITY
DTE CLASS

Guarded DTE
Classes

The names of the DTE CLASS entities protected
by this SECURITY DTE CLASS entity.

SECURITY
FILTER

Guarded Filters The names of the FILTER entities protected by
this SECURITY FILTER entity.

Use these status attributes to verify your security set-up. For example, the
following command displays the DTE CLASS entities guarded by the SECURITY
DTE CLASS entity x121:

ncl> show x25 access security dte class x121 all status

Monitoring X.25 Security 5–3

Monitoring X.25 Security
5.2 Monitoring Security

5.2.5 Monitoring Match–all Security
If you have set up match–all ACLs, for example, to block calls from particular
countries, you will have set up ACLs similar to the following example:

{[Identifier = {*}, Access = None]}

If you have ACLs like this associated with short remote address prefixes (for
example, DNIC only) and you find a large number of incoming call blocked
events, you will need to locate the specific DTEs attempting to break into your
system. Look at the event log to find out which remote DTE is attempting
to break into your system. Monitor the specific remote DTE by setting up a
REMOTE DTE entity with the full DTE address of the suspect DTE as the RAP.
Specify no access on the ACL you associate with the RAP. For example:

ncl> create x25 access security -
_ncl> dte class bill remote dte catch-hacker -
_ncl> remote address prefix 123412345678

ncl> set x25 access security dte -
_ncl> class bill remote dte catch-hacker acl -
_ncl> {[Identifier = {*}, Access = None]}

If you do not have the event logs available, you can find out a specific remote DTE
by a process of elimination. For example, if you have a large number of incoming
access blocked events on a REMOTE DTE entity with the RAP 1234, determine
the address of the remote DTE attempting to break-in as follows:

1. Set up REMOTE DTE entities with the following prefixes:

1234
12340
12341

.

.

.
12349

2. For each entity, specify the Access field of the ACE as None for any calling
DTE.

3. Monitor the counters to find out which REMOTE DTE entity registers
break-in attempts.

4. Repeat step 1 by adding one more digit to the prefix you identify and deleting
all the ones you have discounted. For example:

1234
123410
123411
123412

.

.

.
123419

5. Repeat the process until you have identified the DTE address of the problem
DTE.

5–4 Monitoring X.25 Security

Part III
Reference Information

A
The X.25 Security Verification Procedures

This appendix describes how X.25 Security verifies:

• Outgoing calls (Section A.1)

• Outgoing calls using BCUGs (Section A.2)

• Incoming calls (Section A.3)

• Incoming calls using BCUGs (Section A.4)

• Access to PVCs (Section A.5)

The X.25 Security Verification Procedures A–1

The X.25 Security Verification Procedures
A.1 Verifying Outgoing Calls

A.1 Verifying Outgoing Calls
This section describes how X.25 Security verifies outgoing calls. Any differences
in the verification procedure for different types of system (X.25 Direct Connect,
X.25 Client, or Connector) are identified. This section does not apply to outgoing
calls that specify a BCUG or a PVC.

Figure A–1 illustrates the outgoing call verification procedure.

A.1.1 Finding the Agent’s Rights Identifiers
Local System
The rights identifiers are relevant only to the local node (on Client systems they
are not passed between the X.25 Client system and the Connector system). The
identifiers are defined in the file SYS$SYSTEM:RIGHTSLIST.DAT.

Connector System
When X25 Server is the agent, X.25 Security finds the rights identifiers from in
the SECURITY NODES entities. X.25 Security then:

1. Identifies the full name of the accessing system from the Session Control
Connect Initiate message.

2. Matches the X.25 Client system node name against the Nodes characteristics
of the SECURITY NODES entities. The matching algorithm is a simple
comparison of full names. If the match is successful, X.25 Security grants the
rights identifiers associated with the selected SECURITY NODES entity to
the X.25 Client system.

A.1.2 Finding the DTE Class
The DTE class is supplied either explicitly by the agent or implicitly as a
characteristic of the selected template.

A.1.3 Finding the Security DTE Class
X.25 Security finds the SECURITY DTE CLASS entity to use from the Security
DTE Class characteristic of the selected DTE CLASS entity.

If the named SECURITY DTE CLASS entity does not exist the call fails and X.25
Security logs the Outgoing Call Configuration Error event specifying the reason
as ‘‘Security DTE Class Not Found’’.

A.1.4 Matching the Called DTE Address Against Remote DTE Entities
The agent can specify the destination DTE address in the call request.
Alternatively, the address is obtained from the selected TEMPLATE entity or
from the REACHABLE ADDRESS entities.

X.25 Security matches the destination DTE address against the remote address
prefixes specified in the REMOTE DTE child entities of the chosen SECURITY
DTE CLASS entity. Refer to Section 3.5 for details of the matching algorithm.
The selected REMOTE DTE entity contains the ACL that X.25 Security uses to
determine the access level to the remote DTE. If no match is found, the call is
blocked.

A–2 The X.25 Security Verification Procedures

The X.25 Security Verification Procedures
A.1 Verifying Outgoing Calls

A.1.5 Determining the Agent’s Level of Access to the Selected Remote DTE
X.25 Security matches the agent’s rights identifiers (found in Section A.1.1)
against the ACL. The ACL matching algorithm is described in Section 3.6.

If a match is found, the associated access level is used to determine whether the
call is permitted by the local system. If the local system is an X.25 Client system,
X.25 Security repeats the outgoing call verification at the Connector system.

A.1.6 What Happens if X.25 Security Blocks Access?
If the access controls specified on the REMOTE DTE entity do not allow the agent
the level of access it requests, the call fails. X.25 Security then:

• Logs the Outgoing Call Blocked event—this event indicates whether the call
was blocked at the Connector system or on the local system.

• Increments the Outgoing Calls Blocked counter on the X25 Access module.

• Increments the Outgoing Calls Blocked counter on the REMOTE DTE entity.

Appendix B describes X.25 Security events.

The X.25 Security Verification Procedures A–3

The X.25 Security Verification Procedures
A.1 Verifying Outgoing Calls

Figure A–1 How X.25 Security Verifies Outgoing Calls

Access
allowed ?

X25 Access Entity
Increment Outgoing

Calls Blocked counter

Remote DTE Entity
Increment Outgoing

Calls Blocked counter

Verify agent’s
level of access

to the Remote DTE

Call Blocked

Search Remote
DTE entities for the

closest match

Entity Found ? No

Yes

Find agent’s rights

Find DTE Class
and DTE address

Find Security DTE
Class entity

Security DTE Class
attribute of DTE Class

Call request or templateFrom

From

From
the Security Nodes database

Match
Found ?

No

Yes

No

Yes

Security DTE
Class Not Found

Call Fails:

Call Blocked:
Outgoing Call

Blocked

Call Blocked:
Outgoing Call

Blocked

Call is sent to
network

The SYS$SYSTEM:RIGHTSLIST.DAT file
or

A–4 The X.25 Security Verification Procedures

The X.25 Security Verification Procedures
A.2 Verifying Outgoing Calls Using Bilateral Closed User Groups

A.2 Verifying Outgoing Calls Using Bilateral Closed User Groups
X.25 Security uses a different procedure to verify outgoing calls that use BCUGs.
The description in this section only applies to calls that specify a BCUG.

Note

X.25 Security performs outgoing call verification only at the X.25
Direct Connect and Connector system; no outgoing call verification is
performed at the X.25 Client system.

Figure A–2 illustrates the outgoing call verification procedure.

A.2.1 Finding the Agent’s Rights Identifiers
Local System
The rights identifiers are relevant only to the local node (on Client systems they
are not passed between the X.25 Client system and the Connector system). The
identifiers are defined in the file SYS$SYSTEM:RIGHTSLIST.DAT.

Connector System
The X25 Server module finds the node name of the X.25 Client system from the
Session Control Connect Initiate message.

X.25 Security matches the full name of the X.25 Client system against the Nodes
characteristic of the SECURITY NODES entities.

The matching algorithm is a simple comparison of full names. If the match is
successful, X.25 Security grants the rights identifiers associated with the selected
SECURITY NODES entity to the agent.

A.2.2 Finding the Group Entity and the Destination DTE Address
The X25 PROTOCOL GROUP entity to be used is specified either explicitly or as
a characteristic of the selected template.

X.25 Security obtains the address of the destination DTE from the Remote DTE
Address attribute of the BCUG’s GROUP entity.

A.2.3 Finding the DTE Class
The DTE class is supplied either explicitly by the agent or implicitly as a
characteristic of the selected template.

A.2.4 Finding the Security DTE Class
X.25 Security finds the SECURITY DTE CLASS entity to use from the Security
DTE Class characteristic of the selected DTE CLASS entity.

If the named SECURITY DTE CLASS entity does not exist the call fails and X.25
Security logs the Outgoing Call Configuration Error event specifying the reason
as ‘‘Security DTE Class Not Found’’.

A.2.5 Verifying the Agent’s Level of Access to the Selected BCUG
With the SECURITY DTE CLASS entity and the destination DTE address
now known, X.25 Security uses the security verification process described in
Section A.1.4 and Section A.1.5.

The X.25 Security Verification Procedures A–5

The X.25 Security Verification Procedures
A.2 Verifying Outgoing Calls Using Bilateral Closed User Groups

A.2.6 What Happens if X.25 Security Blocks Access?
If the access controls on the referenced REMOTE DTE entity do not allow the
agent the requested level of access, X.25 Security:

• Logs the Outgoing Call Blocked event.

• Increments the Outgoing Calls Blocked counter on the X25 Access module.

• Increments the Outgoing Calls Blocked counter on the GROUP entity.

• Increments the Outgoing Calls Blocked counter on the REMOTE DTE entity.

If X25 Server is the agent and X.25 Security blocks the call at the Connector
system, X.25 Security performs the following actions at the Connector system:

• Logs the Outgoing Call Blocked event.

• Increments the Outgoing Calls Blocked counter on the X25 Access module.

• Increments the Outgoing Calls Blocked counter on the GROUP entity.

• Increments the Outgoing Calls Blocked counter on the SECURITY NODES
entity.

• Logs the Outgoing Calls Blocked event at the X.25 Client system, specifying
the BCUG name and indicating that the call was blocked at the Connector
system.

A–6 The X.25 Security Verification Procedures

The X.25 Security Verification Procedures
A.2 Verifying Outgoing Calls Using Bilateral Closed User Groups

Figure A–2 How X.25 Security Verifies Outgoing Calls using BCUGs

Access
allowed ?

X25 Access Entity
Increment Outgoing

Calls Blocked counter

Group Entity
Increment Outgoing

Calls Blocked counter

Verify agent’s
level of access

to the Remote DTE

Call Blocked

Search Remote
DTE entities for the

closest match

Entity Found ? No

Yes

Find agent’s rights

Find DTE Class

Find Security DTE
Class entity

Security DTE Class
attribute of DTE Class

Call request or templateFrom

From

From
the Security Nodes database

Match
Found ?

No

Yes

No

Yes

Security DTE
Class Not Found

Call Fails:

Call Blocked:
Outgoing Call

Blocked

Call Blocked:
Outgoing Call

Blocked

Call is sent to
network

Find Group entity Call request or templateFrom

Find Remote DTE From BCUG
Address attribute

Remote DTE Entity
Increment Outgoing

Calls Blocked counter

The SYS$SYSTEM:RIGHTSLIST.DAT file
or

The X.25 Security Verification Procedures A–7

The X.25 Security Verification Procedures
A.3 Verifying Incoming Calls

A.3 Verifying Incoming Calls
This section describes how X.25 Security verifies incoming calls. The description
applies to X.25 Direct Connect, X.25 Client, and Connector systems. This section
does not apply to incoming calls on a BCUG.

Figure A–3 shows the incoming call verification procedure.

The following sections explain the verification procedure.

A.3.1 Finding the Security DTE Class
The DTE entity carrying the incoming call has an Inbound DTE Class attribute.
X.25 Security finds the SECURITY DTE CLASS entity to use from the Security
DTE Class characteristic of the DTE CLASS entity.

If the named SECURITY DTE CLASS entity does not exist, X.25 Security
rejects the call and logs the Incoming Call Failed event, specifying the reason as
‘‘Security DTE Class Not Found’’.

A.3.2 Matching the Calling DTE Address Against Remote DTE Entities
X.25 Security obtains the sending DTE address from the call information. X.25
Security then matches the DTE address against the Remote Address Prefix
attributes specified in the REMOTE DTE child entities of the chosen SECURITY
DTE CLASS entity. Section 3.5 describes the matching algorithm.

A.3.3 Finding the Rights Identifiers for the Selected Remote DTE
The Rights Identifiers characteristic of the REMOTE DTE entity selected by the
matching algorithm supplies the rights identifiers to associate with the incoming
call.

A.3.4 Finding the Filter That Matches the Call
X25 Access matches a filter to the call. Matching a filter is described in the HP
X.25 for OpenVMS—Management Guide.

A.3.5 Finding the Security Filter
X.25 Security finds the Security Filter to use from the Security Filter
characteristic of the FILTER entity.

If the named SECURITY FILTER entity does not exist, the X25 Access module
rejects the call and logs the Incoming Call Failed event specifying the reason as
‘‘Security Filter Not Found’’.

A.3.6 Verifying the Access Level to the Filter
X.25 Security matches the remote DTE’s rights identifiers (found in Section A.3.3)
against the ACL characteristic of the selected SECURITY FILTER entity. The
access verification procedure is described in Section 3.6.

If the access controls permit the level of access requested by the agent, the
incoming call is passed to the listener for that filter at the local system.

A–8 The X.25 Security Verification Procedures

The X.25 Security Verification Procedures
A.3 Verifying Incoming Calls

A.3.7 What Happens if X.25 Security Blocks Access?
If the access controls specified in the selected SECURITY FILTER entity do not
permit the remote DTE the level of access it requests, the X25 Access module
clears the call. X.25 Security then:

• Logs the Incoming Call Blocked event.

• Increments the Incoming Calls Blocked counter on the X25 Access module.

• Increments the Incoming Calls Blocked counter on the REMOTE DTE entity.

• Increments the Incoming Calls Blocked counter on the FILTER entity.

Appendix B describes X.25 Security events.

The X.25 Security Verification Procedures A–9

The X.25 Security Verification Procedures
A.3 Verifying Incoming Calls

Figure A–3 How X.25 Security Verifies Incoming Calls

Find Security DTE
Class to use

Find Filter that matches this call

Find Security Filter

No

Yes

Entity found ?
Call Cleared:

Security DTE Class
not found

Match calling DTE
address against

Remote DTE entities

Match found ?

Yes

Find Rights identifiers

Compare remote DTE’s
rights identifiers against

security filter ACL

Security DTE Class
attribute of DTE ClassFrom

Yes

From

X25 Access Entity
Increment Incoming

Selected Remote DTE

Remote DTE Entity

Calls Blocked counter

Increment Incoming
Calls Blocked counter

Call Cleared:
Access level
taken as None

No

No
Match found ? Clear Call

Pass call to
Listener

Filter Entity
Increment Incoming

Calls Blocked counter

Matching FilterFrom

Call Blocked:
Incoming Call

Blocked

Yes

No
Filter found ?

Incoming Call
Failed: Security Filter

Not Found

A–10 The X.25 Security Verification Procedures

The X.25 Security Verification Procedures
A.4 Verifying Incoming Calls Using Bilateral Closed User Groups

A.4 Verifying Incoming Calls Using Bilateral Closed User Groups
X.25 Security uses a different procedure to verify incoming calls that use BCUGs.
The description in this section only applies to calls that specify a BCUG in the
call packet.

Figure A–4 illustrates the incoming call verification procedure.

A.4.1 Finding the Group Entity
The incoming call contains a group number. X.25 Security attempts to match
the group number and calling DTE against the Members characteristic of each
of the GROUP entities. X.25 Security selects a GROUP entity that contains the
matching pair of values.

A.4.2 Finding the Rights Identifiers
X.25 Security uses the Members attribute of the GROUP entity to obtain the local
X25 PROTOCOL DTE entity. This entity’s Inbound DTE Class attribute specifies
the DTE CLASS entity to use. This entity’s Security Class DTE attribute specifies
the SECURITY DTE CLASS to use. The Remote DTE Address attribute of the
GROUP entity provides the DTE address to match against the Remote Address
Prefix attributes specified in the REMOTE DTE child entities of the chosen
SECURITY DTE CLASS entity. Section 3.5 describes the matching algorithm.

The Rights Identifiers characteristic of the REMOTE DTE entity selected by the
matching algorithm supplies the rights identifiers to associate with the incoming
call.

A.4.3 Subsequent Verification Procedure
The remainder of the call verification procedure is identical to that given in
Sections A.3.4 to A.3.6.

A.4.4 What Happens if X.25 Security Blocks Access?
If the access controls specified on the selected SECURITY FILTER entity do not
permit the remote DTE the level of access it requests, the X25 Access module
clears the call. X.25 Security:

• Logs the Incoming Call Blocked event.

• Increments the Incoming Calls Blocked counter on the GROUP entity.

• Increments the Incoming Calls Blocked counter on the FILTER entity.

• Increments the Incoming Calls Blocked counter on the X25 Access module.

• Increments the Incoming Calls Blocked counter on the REMOTE DTE entity.

Appendix B describes X.25 Security events.

The X.25 Security Verification Procedures A–11

The X.25 Security Verification Procedures
A.4 Verifying Incoming Calls Using Bilateral Closed User Groups

Figure A–4 How X.25 Security Verifies Incoming Calls Using BCUGs

Find Group Number

Find Filter that matches this call

Find Security Filter

and called DTE name

Match found ?

against Group Members

Yes

characteristic

Find Rights identifiers

Compare remote DTE’s
rights identifiers against

security filter ACL

Call PacketFrom

Yes

From

X25 Access Entity
Increment Incoming

Selected Remote DTE

Group Entity

Calls Blocked counter

Increment Incoming
Calls Blocked counter

Call Cleared:
Access level
taken as None

No

No
Match found ? Clear Call

Pass call to
Listener

Filter Entity
Increment Incoming

Calls Blocked counter

Matching FilterFrom

Call Blocked:
Incoming Call

Blocked

Yes

No
Filter found ?

Incoming Call
Failed: Security Filter

Not Found

Match group number

A–12 The X.25 Security Verification Procedures

The X.25 Security Verification Procedures
A.5 Verifying Access to Permanent Virtual Circuits

A.5 Verifying Access to Permanent Virtual Circuits
X.25 Security determines whether an application is authorized to connect to, and
use, a PVC. This section describes how X.25 Security performs this verification.
The description applies only to X.25 Direct Connect and Connector systems.

Figure A–5 shows the PVC verification procedure.

A.5.1 Finding Rights Identifiers
The rights identifiers are found using the methods described in Section A.1.1.

A.5.2 Finding the PVC Entity
X.25 Security finds the PVC entity to use from the PVC access request.

A.5.3 Verifying the Access Level to the PVC
X.25 Security attempts to match the agent’s rights identifiers against the ACL
characteristic of the selected PVC entity. The access level verification mechanism
is described in Section 3.6.

If the access controls permit the agent’s requested access level, X.25 Security
allows the agent to use the PVC.

A.5.4 What Happens if X.25 Security Blocks Access?
PVC access fails if the access controls on the specified PVC entity do not allow
the agent’s requested level of access. If this occurs, X.25 Security:

• Logs the PVC Access Blocked event.

• Increments the Accesses Blocked counter on the PVC entity.

• Increments the PVC Accesses Blocked counter on the X25 Access module.

If X25 Server is the agent and PVC access fails at the Connector system, X.25
Security:

• Logs the PVC Access Blocked event.

• Increments the Accesses Blocked counter on the PVC entity.

• Increments the PVC Accesses Blocked counter on the X25 Access module.

• Increments the Outgoing Calls Blocked counter on the SECURITY NODES
entity at the Connector system.

• Logs the PVC Access Blocked event at the X.25 Client system, indicating that
the block occurred at the Connector system.

For details of X.25 Security events, refer to Appendix B.

The X.25 Security Verification Procedures A–13

The X.25 Security Verification Procedures
A.5 Verifying Access to Permanent Virtual Circuits

Figure A–5 How X.25 Security Verifies Access to PVCs

Access
allowed ?

X25 Access Entity
Increment PVC Accesses

Blocked counter

PVC Entity
Increment Accesses

Blocked counter

PVC Access Blocked

Find the PVC entity

Examine access level

to use

to the PVC

From PVC access request

No

Yes

Call Blocked:
Outgoing Call

Blocked

Use PVC

Find X25 Access client
Rights Identifiers

Security Nodes Entity
Increment Outgoing Calls

Blocked counter

A–14 The X.25 Security Verification Procedures

B
X.25 Security Events

This appendix describes the X25 Access module events that indicate call failures
caused by X.25 Security. Sections B.1 to B.5 describe the events. Each section:

• Describes the event

• Lists the security-related arguments that may be present

• Lists the reasons that could have caused the event (where appropriate)

B.1 Incoming Call Failed
The Incoming Call Failed event indicates that an incoming call from the X25
Access module has failed. Table B–1 lists the arguments for this event.

Table B–1 Incoming Call Failed—Arguments

Argument Description

Security DTE Class The name of the SECURITY DTE CLASS entity that was referenced
by the selected DTE CLASS entity.

Security Filter The name of the SECURITY FILTER entity that was referenced by
the selected FILTER entity.

Group The name of the BCUG that matches the CUG number specified in
the call packet.

Sending DTE The DTE address of the calling DTE. This argument is only used
when the incoming call is not delivered through a BCUG.

Table B–2 lists the possible reasons for this event.

Table B–2 Incoming Call Failed—Reasons

Reason Description Action

Security Filter Not
Found

The SECURITY FILTER entity
named by the selected FILTER
entity was not found.

Create the SECURITY FILTER
entity or name another
SECURITY FILTER entity
in the FILTER entity.

Security DTE Class
Not Found

The SECURITY DTE CLASS
entity named by the selected
DTE CLASS entity was not
found.

Create the SECURITY DTE
CLASS entity or name another
SECURITY DTE CLASS entity
in the DTE CLASS entity.

X.25 Security Events B–1

X.25 Security Events
B.2 Incoming Call Blocked

B.2 Incoming Call Blocked
The Incoming Call Blocked event indicates that an incoming call from the X25
Protocol module (or X25 Client module in an X.25 Client system) was blocked
(rejected) by the X25 Access module security mechanisms. Table B–3 lists the
arguments for this event.

Table B–3 Incoming Call Blocked—Arguments

Argument Description

Filter The name of the X25 Access Filter that matched the call.

Inbound DTE Class The DTE class name that the X25 Protocol module DTE entity
associates with the incoming call. It identifies the SECURITY DTE
CLASS entity to use for remote DTE matching.

Security DTE Class
Remote DTE

The name of the SECURITY DTE CLASS REMOTE DTE entity
whose remote address prefix was selected by the matching
algorithm. This argument is only used when the incoming call
is not delivered through a BCUG.

Sending DTE The DTE address of the calling DTE. This argument is only used
when the incoming call is not delivered through a BCUG.

Group The name of the BCUG which matches the CUG number specified
in the call packet. This argument is only used when the incoming
call is delivered through a BCUG and will only be present at the
Connector system as GROUP entities do not exist at the X.25 Client
system.

B.3 Outgoing Call Blocked
The Outgoing Call Blocked event indicates that the client of the X25 Access
module is not allowed to make this call. Table B–4 lists the arguments for this
event.

Table B–4 Outgoing Call Blocked—Arguments

Argument Description

Client The name of the entity that attempted to make the call.

Source The name of the entity that performed the IO$ACCESS request.
For X.25 Client systems, this argument identifies the client of
X25 Access at the X.25 Client system when the call is blocked by
security on the Connector system.

DTE Class The DTE Class named in the call. This argument is used only when
the call does not specify a BCUG.

Destination DTE The called DTE address.

Security DTE Class
Remote DTE

The name of the SECURITY DTE CLASS REMOTE DTE entity
whose remote address prefix was selected by the matching
algorithm. This argument is only used when the call does not
specify a BCUG.

Blocked By Identifies where the security block occurred (local security or
Connector system security). If you are managing an X.25 Client
system, this argument allows you to identify the system at which
the problem occurred.

(continued on next page)

B–2 X.25 Security Events

X.25 Security Events
B.3 Outgoing Call Blocked

Table B–4 (Cont.) Outgoing Call Blocked—Arguments

Argument Description

Group The name of the BCUG specified in the call. This argument is only
used when the call specifies a BCUG and will be present only at the
Connector system as GROUP entities do not exist at the X.25 Client
system.

B.4 Outgoing Call Configuration Error
The Outgoing Call Configuration Error event indicates that a call failed due
to incorrect configuration of the security databases. Table B–5 lists the argument
for this event.

Table B–5 Outgoing Call Configuration Error—Arguments

Argument Description

Security DTE Class The name of the SECURITY DTE CLASS entity named by the
selected DTE CLASS entity. This argument is present only when
the reason for the event is Security DTE Class Not Found.

Table B–6 lists the possible reasons for this event.

Table B–6 Outgoing Call Configuration Error—Reasons

Reason Description Action

Security DTE Class
Not Found

The SECURITY DTE CLASS
entity named by the selected
DTE CLASS entity was not
found.

Create the SECURITY DTE
CLASS entity or name another
SECURITY DTE CLASS entity
in the DTE CLASS entity.

B.5 PVC Access Blocked
The PVC Access Blocked event indicates that the client of the X25 Access
module is not permitted to access this PVC. Table B–7 shows the arguments for
this event.

Table B–7 PVC Access Blocked—Arguments

Argument Description

Client The name of the entity that tried to access the PVC.

Source The name of the entity that tried to access the PVC. For X.25 Client
systems, this argument identifies the client of X25 Access at the
X.25 Client system when the call is blocked by security on the
Connector system.

PVC The name of the PVC.

(continued on next page)

X.25 Security Events B–3

X.25 Security Events
B.5 PVC Access Blocked

Table B–7 (Cont.) PVC Access Blocked—Arguments

Argument Description

Blocked By Identifies where the security block occurred (X.25 Client system
security or Connector system security). If you are managing an
X.25 Client system, this argument allows you to identify the system
at which the problem occurred.

B–4 X.25 Security Events

C
X.25 Security–Specific Identifiers

This appendix describes how X.25 Security handles system service requests using
the rights identifiers PSI$X25_USER and PSI$DECLNAME.

In addition to the standard X.25 security entities, access to an X.25 for OpenVMS
system is controlled by two rights identifiers:

PSI$X25_USER The rights identifier that you must grant to any user or process
that is permitted to access X.25 for OpenVMS when a QIO IO$_
ACCESS system service is requested.

PSI$DECLNAME The rights identifier that you must grant to any process that
is permitted to declare itself a network process when a QIO
IO$_ACPCONTROL system service is requested.

These rights identifiers must be defined in the System Rights Database using the
OpenVMS AUTHORIZE utility before the X.25 for OpenVMS software is loaded.
If the identifiers are not defined before the software is loaded, but are defined
subsequently, they have no effect and users require only NETMBX privilege to
send calls via X.25 for OpenVMS.

When a user issues an IO$_ACCESS QIO, X.25 Security first determines whether
the PSI$X25_USER identifier has been defined:

• If PSI$X25_USER has been defined, X.25 Security determines whether the
user is an owner of PSI$X25_USER –

– If the user is an owner, the user is permitted to make the IO$_ACCESS
system service call.

– If the user is not an owner, X.25 Security determines whether the user
has BYPASS privilege:

– If the user has BYPASS privilege, the user is permitted to make the
IO$_ACCESS system service call.

– If the user does not have BYPASS privilege, the user is not permitted
to make the IO$_ACCESS system service call.

• If PSI$X25_USER has not been defined, X.25 Security determines whether
the user has NETMBX privilege –

– With NETMBX privilege, the user is permitted to make the IO$_ACCESS
system service call.

– Without NETMBX privilege, the user is not permitted to make the
IO$_ACCESS system service call.

Note that a check for BYPASS privilege is made only if PSI$X25_USER is
defined.

X.25 Security–Specific Identifiers C–1

X.25 Security–Specific Identifiers

When a process requests an IO$_ACPCONTROL system service, X.25 Security
first determines whether the PSI$DECLNAME identifier has been defined:

• If PSI$DECLNAME has been defined, X.25 Security determines whether the
process is an owner of PSI$DECLNAME –

– If the process is an owner, it is permitted to make the IO$_ACPCONTROL
system service call.

– If the process is not an owner, X.25 Security determines whether the
process has BYPASS privilege:

– If the process has BYPASS privilege, it is permitted to make the
IO$_ACPCONTROL system service call.

– If the process does not have BYPASS privilege, it is not permitted to
make the IO$_ACPCONTROL system service call.

• If PSI$DECLNAME has not been defined, X.25 Security determines whether
the process has NETMBX privilege –

– With NETMBX privilege, the process is permitted to make the
IO$_ACPCONTROL system service call.

– Without NETMBX privilege, the process is not permitted to make the
IO$_ACPCONTROL system service call.

Note that a check for BYPASS privilege is made only if PSI$DECLNAME is
defined.

C–2 X.25 Security–Specific Identifiers

Index

A
Access Control List, 1–3 to 1–4, 2–2, 2–3, 2–5,

3–3, 3–5, 3–7, 3–9, 3–11, 3–12
entry, 1–3
levels of protection, 3–15
matching algorithm, 3–14

match found, 3–14
match not found, 3–14

rights identifiers, 1–2
Access Control List Entries, 1–3, 3–15

order, 3–15
searching, 3–15

Access levels, 1–2
ACE

see Access Control List Entries
ACL

see Access Control List
Agent

defined, 1–2

B
Bilateral Closed User Group security

see Group security

C
Calling DTE, 3–3
Call verification procedures

incoming calls, 3–1
outgoing calls, 3–6

Closed User Group security
see Group security

D
DECdns node names, 2–6, 3–10
Distributed Name Service

see DECdns node names
DTE address

matching algorithm, 3–13
DTE Class security, 2–3

planning, 4–3

DTE PVC entity, 2–5

F
Filter security, 2–2

planning, 4–2

G
Group security

Access Control List, 2–4
BCUGs, 2–4
planning, 4–4
Rights identifiers, 2–4

I
Identifiers

PSI$DECLNAME, 1–4, C–1
PSI$X25_USER, 1–4, C–1

Introduction to X.25 Security, 1–1

M
Managing

groups, 4–4 to 4–5
incoming security, 4–3

Managing X.25 Security
introduction, 4–1

Matching algorithm
ACL, 3–13
DTE address, 3–13

Matching the remote DTE address with a Remote
DTE entity, 3–13

Monitoring
X.25 Security, 5–1 to 5–4

N
NCL, 4–1
Null rights identifiers, 3–15

Index–1

O
Open system

setting up, 4–9

P
Packet Switching Data Networks

controlling access to and from, 1–1
public, 1–1
security, 1–1

Planning
DTE Class security, 4–3
filter security, 4–2
Group security, 4–4
PVC security, 4–4
X.25 Security, 4–2

PSDN
see Packet Switching Data Networks

PSI$DECLNAME identifier, 1–4, C–1
PSI$X25_USER identifier, 1–4, C–1
PVC, 3–12
PVC Security

planning, 4–4

R
RAP

see Remote Address Prefix
Remote Address Prefix, 2–3, 3–3, 3–4, 3–13
Remote DTE, 3–3, 3–4

ACL, 3–13
entity, 2–3
Remote Address Prefix, 3–13
rights identifiers, 3–13
selecting the best match, 3–13

Rights identifiers, 1–2, 2–3, 3–3, 3–4, 3–6, 3–12
local process, 1–2
obtained from a Security Nodes entity, 1–2
obtaining for outgoing calls, 1–2

S
Security DTE Class, 2–3, 3–3, 3–13
Security events, B–1 to B–4, C–1

Incoming Call Blocked, B–2
arguments, B–2

Incoming Call Failed, B–1
arguments, B–1
reasons, B–1

Outgoing Call Blocked, B–2
arguments, B–2

Outgoing Call Configuration Error, B–3
arguments, B–3
reasons, B–3

PVC Access Blocked, B–3
arguments, B–3

Security Nodes security, 2–6, 3–8, 3–10
rights identifiers, 2–6

Security verification
for PVCs, A–13

determining the access level, A–13
finding rights identifiers, A–13
finding the PVC Entity, A–13
what happens if security blocks access,

A–13
incoming calls, A–8 to A–9

finding rights identifiers, A–8
finding the filter that matches the call,

A–8
finding the Security DTE Class, A–8
finding the Security Filter, A–8
matching the DTE against remote DTE

entities, A–8
verifying the access level, A–8
what happens if security blocks access,

A–9
incoming calls using BCUGs, A–11 to A–12

finding the filter, A–11
finding the group, A–11
finding the rights identifiers, A–11
what happens if security blocks access,

A–11
outgoing calls, A–2 to A–3

determining the access level, A–3
finding rights identifiers, A–2
finding the DTE Class, A–2
finding the Security DTE Class, A–2
matching the DTE address against remote

DTEs, A–2
what happens if access is blocked, A–3

outgoing calls using BCUGs, A–5 to A–6
finding rights identifiers, A–5
finding the DTE Class, A–5
finding the group, A–5
finding the Security DTE Class, A–5
verifying the access level, A–5
what happens if security blocks access,

A–6
Security verification procedures, A–1 to A–13
Setting up security, 4–6
SYS$SYSTEM:RIGHTSLIST.DAT, 3–12

V
Verifying access to PVCs, 3–12
Verifying incoming calls, 3–1, 3–4
Verifying outgoing calls

from X.25 Client systems, 3–8
from X.25 Direct Connect systems, 3–6

Index–2

W
Wildcards, 3–3

X
X.25 Client systems

verifying incoming calls, 3–4
verifying outgoing calls, 3–8

X.25 Security
agents, 1–2
identifiers specific to security, 1–4, C–1
incoming call verification, 3–1 to 3–5
managing, 4–1 to 4–9
objects, 1–3
outgoing call verification, 3–6 to 3–11
planning, 4–2 to 4–5
PSI$DECLNAME identifier, 1–4, C–1
PSI$X25_USER identifier, 1–4, C–1
turning off, 4–9
verifying access to PVCs, 3–12
verifying incoming calls, 3–1

verifying incoming calls to X.25 Client systems,
3–4

verifying outgoing calls
from an X.25 Direct Connect systems, 3–6

verifying outgoing calls from an X.25 Client
system, 3–8

X.25 Security model
DTE Class security, 2–3
DTE PVC entity, 2–5
entities, 2–1
filter security, 2–2
Group security, 2–4
introduction, 1–1, 2–1
introduction to using, 3–1
PVC security, 2–5
Security DTE Class entity, 2–3
Security DTE Class Remote DTE entity, 2–3
Security Filter entity, 2–2
Security Nodes entity, 2–6

X.25 Security Protections Mechanisms
Access Control List, 1–2
rights identifiers, 1–2

Index–3

