
HP OpenVMS Version 8.3 New
Features and Documentation
Overview
Order Number: BA322-90046

July 2006

This manual describes the new features associated with the OpenVMS
Alpha and OpenVMS for Integrity servers Version 8.3 operating systems
and provides an overview of the documentation that supports this
software.

Revision/Update Information: This is a new manual.

Software Version: OpenVMS I64 Version 8.3
OpenVMS Alpha Version 8.3

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Java is a U.S. trademark of Sun Microsystems, Inc.

Kerberos is a trademark of the Massachusetts Institute of Technology.

Linux is a U.S registered trademark of Linus Torvalds.

Macintosh is a registered trademark of Apple Corporation.

Microsoft and Windows are trademarks of Microsoft Corporation in the U.S. and/or other countries.

UNIX is a registered trademark of the Open Group.

ZK6679

The HP OpenVMS documentation set is available on CD.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . ix

Part I OpenVMS Version 8.3 New Features

1 Summary of HP OpenVMS Version 8.3 New Features

1.1 Summary Table . 1–1

2 General User Features

2.1 New Integrity Server Support . 2–1
2.2 Batch Queue Job Limit Increased . 2–1
2.3 DCL Commands and Lexical Functions . 2–1
2.3.1 Ctrl/T Support for Remote Process . 2–2
2.3.2 DCL Permanent Symbols . 2–2
2.3.3 Customizing the Output of Ctrl/T . 2–3
2.3.4 JOB_LOGIN Keyword Added to /SINCE Qualifier 2–3
2.3.5 I/O Size Limit Increased for COPY Command 2–3
2.3.6 Increase Maximum Prompt Size . 2–3
2.4 Hyper-Threading (I64 Only) . 2–4
2.5 HP Instant Capacity (iCAP) and HP Temporary Instant Capacity (TiCAP)

(I64 Only) . 2–4
2.6 License Management Facility (LMF) Changes and Enhancements 2–5
2.6.1 LMF Compliance Report . 2–5
2.6.2 License Terminology Change (I64 Only) . 2–5
2.7 HP nPartition Provider for OpenVMS (I64 Only) . 2–6
2.8 HP Pay per Use (PPU) (I64 only) . 2–6
2.9 HP Superdome Hybrid Servers Support (I64 Only) 2–7
2.10 HP Web-Based Enterprise Management Services for OpenVMS

(WBEM) . 2–7

3 System Management Features

3.1 BACKUP Utility Enhancements . 3–1
3.1.1 Dynamic Volume Expansion (DVE) Support in OpenVMS Backup

Utility . 3–1
3.1.1.1 Volume Expansion Size . 3–1
3.1.1.2 Logical Volume Size . 3–2
3.1.2 Encrypting BACKUP Save Sets . 3–2
3.1.3 Additional CTRL/T Messages . 3–3
3.1.4 New /PROGRESS_REPORT Qualifier . 3–3
3.1.5 New /IO_LOAD Qualifier . 3–3
3.2 CD and DVD Optical-Media Recording Tools . 3–3
3.3 OpenVMS for Integrity Servers Cluster Satellite Support 3–4

iii

3.3.1 Differences between Alpha and I64 Satellites 3–4
3.3.2 Collecting Information from the Satellite System 3–5
3.3.3 Setting up the Satellite System for Booting and Crashing 3–5
3.3.4 Defining the Satellite System to the Boot Server 3–5
3.3.5 Booting the Satellite . 3–6
3.3.6 Additional Tasks on the Satellite System . 3–6
3.4 Dynamic Lock Remastering—LOCKRMWT . 3–7
3.5 Encryption for OpenVMS . 3–8
3.5.1 AES Features . 3–8
3.5.2 /CREATE_KEY /AES Command Qualifier . 3–9
3.5.3 AES Key-Length Requirements . 3–9
3.5.4 Literal Key Values and ASCII Compression . 3–9
3.5.5 XOR Key Flag, or Key Folding . 3–9
3.5.6 ENCRYPT$DEFINE_KEY() API . 3–10
3.5.7 Notes on Keys . 3–10
3.5.8 Deleting AES Keys . 3–11
3.5.9 ENCRYPT$DELETE_KEY() API . 3–11
3.5.10 File Encryption and Decryption . 3–12
3.5.10.1 File Encrypt and Decrypt Default Mode—DESCBC 3–12
3.5.10.2 Specifying the AES Data Algorithm and AES Key Algorithm 3–12
3.5.10.3 Specifying Only the Key Algorithm . 3–13
3.5.11 ENCRYPT$ENCRYPT_FILE() API . 3–14
3.5.12 Record Encryption/Decryption . 3–14
3.5.13 Data Encryption/Decryption . 3–15
3.5.14 Lengths and Block Mode Padding . 3–15
3.5.15 New AES Encryption Key, Flag Mask, and Value 3–15
3.5.16 Unsupported AES Encryption Operations . 3–16
3.6 Monitor Utility Enhancements . 3–17
3.6.1 Align Command (I64 Only) . 3–17
3.6.2 New Classname Qualifiers for the PROCESSES Class 3–18
3.6.3 MONITOR PROCESSES/TOPSUPERVISOR Example 3–18
3.7 Multipath Enhancement for Active-Active Feature of EVA and MSA

Controllers . 3–19
3.8 OpenVMS Cluster Interconnect . 3–19
3.9 OpenVMS Operating System Media Patch-Related Menu Option 3–20
3.10 PCSI Utility Enhancements . 3–20
3.10.1 PRODUCT ANALYZE PDB . 3–21
3.10.2 Automatic Verification of the Product Database 3–21
3.10.3 Support for ODS-5 Volumes . 3–21
3.10.4 Support for Secure Delivery of Product Kits . 3–22
3.10.5 Defaults Changed on Two Qualifiers . 3–23
3.11 SANCP Utility . 3–23
3.12 SAS Utility (I64 Only) . 3–23
3.13 SCACP utility . 3–23
3.13.1 Data Compression Management . 3–24
3.13.2 Multi-Gigabit Scaling . 3–24
3.14 HP OpenVMS I64 Serial Multiplexer (MUX) Support (I64 Only) 3–24
3.15 Spinlock Trace Utility (SPL) . 3–25
3.16 HP OpenVMS System Analysis Tools . 3–25
3.16.1 System Dump Debugger . 3–25

iv

3.16.2 System Dump Analyzer . 3–25
COLLECT . 3–27
SHOW CLASS . 3–28
SHOW EFI (I64 Only) . 3–29
SHOW VHPT (I64 Only) . 3–30
VALIDATE POOL . 3–32
VALIDATE PROCESS . 3–33
CLUE REGISTER . 3–35
CLUE SCSI . 3–37
SDA$CBB_BOOLEAN_OPER . 3–38
SDA$CBB_CLEAR_BIT . 3–39
SDA$CBB_COPY . 3–40
SDA$CBB_FFC . 3–41
SDA$CBB_FFS . 3–42
SDA$CBB_INIT . 3–43
SDA$CBB_SET_BIT . 3–44
SDA$CBB_TEST_BIT . 3–45
SDA$DELETE_PREFIX . 3–46
SDA$FID_TO_NAME . 3–47
SDA$GET_FLAGS . 3–49

3.16.3 ANALYZE Command Qualifier . 3–50
3.16.4 DUMP Command Qualifiers . 3–50
3.16.5 SEARCH Command Qualifier . 3–50
3.16.6 New SHOW CLUSTER Command Qualifier . 3–50
3.16.7 SHOW CRASH Qualifier . 3–50
3.16.8 SHOW DUMP Command Qualifiers . 3–51
3.16.9 SDA SHOW PROCESS Qualifier . 3–51
3.16.10 Keywords Added to SHOW RESOURCES/STATUS Command 3–51
3.16.11 SHOW UNWIND Qualifier . 3–51
3.17 System Parameters . 3–51
3.18 System Service Logging Enhancements . 3–53
3.19 SYS$ACM-Enabled LOGINOUT.EXE and SETP0.EXE Images for LDAP

Authentication . 3–54
3.20 Time Zones Added . 3–54
3.21 Virtual LAN (VLAN) Support in OpenVMS . 3–55
3.21.1 VLAN Support Details . 3–57
3.21.2 Managing VLAN on Your System . 3–58
3.21.2.1 Probing a Switch Port . 3–58
3.21.2.2 Creating a VLAN Device . 3–58
3.21.2.3 Deactivating a Virtual LAN Device . 3–59
3.21.2.4 Displaying VLAN Device Information . 3–59
3.21.3 VLAN Troubleshooting . 3–59
3.22 Volume Shadowing for OpenVMS . 3–61
3.22.1 Automatic Bitmap Creation on Volume Processing 3–61
3.22.2 New SET SHADOW /RESET Qualifier . 3–62

v

4 Mastering Optical Media on OpenVMS

4.1 LD, CD, and DVD Device Concepts . 4–1
4.1.1 Logical Disk Devices . 4–1
4.1.2 CD and DVD Devices . 4–1
4.2 General Steps for Mastering Data Disks . 4–2
4.3 Examples . 4–5

5 Programming Features

5.1 C Run-Time Library Enhancements . 5–1
5.1.1 Symbolic Link and POSIX-Compliant Pathname Support 5–1
5.1.2 Byte-Range Locking . 5–2
5.1.3 New C RTL Functions . 5–2
5.1.4 C RTL TCP/IP Header File Updates . 5–2
5.2 CDSA for OpenVMS and Secure Delivery . 5–2
5.3 Deadlock Wait . 5–4
5.4 Debugger New Features . 5–4
5.4.1 Improved C++ Support for Operator Names . 5–4
5.4.2 Use of SET MODULE Command is Now Optional 5–5
5.4.3 New Qualifier for SHOW STACK Command . 5–5
5.4.4 Change to Default Data Type for Untyped Storage Locations 5–5
5.4.5 Improved Overloaded Symbol Support in SHOW SYMBOL

Command . 5–5
5.4.6 GNAT Pro (Ada 95) Compiler Support Now Available on Integrity

Server Systems (I64 Only) . 5–6
5.4.7 Debugging Programs Loaded into P2 Space Now Supported 5–6
5.4.8 SET WATCH Command Has Been Improved . 5–6
5.4.9 Not a Thing (NaT) Support for Integer Registers 5–6
5.4.10 Improved Debugger Usability: Automatic Module Loading Now

Available . 5–7
5.4.11 Improved Support for C++ Destructors . 5–7
5.4.12 Support for C++ Template Names . 5–7
5.4.13 Improved Support for Ada Programs . 5–7
5.5 Kerberos for OpenVMS . 5–8
5.6 Linker Utility Enhancements . 5–9
5.7 Listing Demangled and Mangled Names with the Librarian (I64 Only)

. 5–10
5.8 HP MACRO Compiler for OpenVMS Alpha Systems 5–12
5.9 Record Management System (RMS) Enhancements 5–12
5.9.1 RMS CONVERT/FDL and CREATE/FDL Enhancements 5–12
5.9.2 RMS Global Buffer Enhancements for Indexed Files 5–13
5.9.3 New Form of Global Buffers Specification . 5–13
5.9.4 New Fields Added to XABFHC . 5–14
5.9.5 New RMS Field Values . 5–15
5.9.6 New RMS Per-File Management Options for Sizing Global Buffer

Cache . 5–16
5.9.7 Size of Global Buffer Cache Connected to File (XAB$_GBC) 5–16
5.9.8 Global Buffer Count (XAB$_GBC32) . 5–16
5.9.9 Global Buffer Flags (XAB$_GBCFLAGS) . 5–17
5.10 HP SSL for OpenVMS . 5–18
5.11 System Services New Information and New Item Codes 5–19
5.11.1 $GETDVI: New Item Codes and Item Code Information 5–19
5.11.1.1 New $GETDVI Item Codes . 5–19
5.11.1.2 $GETDVI Item Code Information . 5–19

vi

5.11.2 $GETJPI New Item Code . 5–20
5.11.3 $GETSYI New Item Codes . 5–20
5.11.4 $GETDVI, $GETJPI, $GETLKI, $GETQUI, and $GETSYI Service

Information . 5–20
5.11.5 $GETUAI New Item Codes . 5–20
5.11.6 Additional Changes to System Services . 5–20
5.12 Traceback Facility . 5–20

6 InfoServer Utility

6.1 InfoServer Utility Overview . 6–1
6.1.1 InfoServer Usage Summary . 6–1
6.1.2 InfoServer Commands . 6–2

CREATE SERVICE . 6–3
DELETE SERVICE . 6–7
EXIT . 6–10
HELP . 6–11
SAVE . 6–12
SET SERVICE . 6–15
SHOW SERVER . 6–18
SHOW SERVICES . 6–19
SHOW SESSIONS . 6–21
SPAWN . 6–23
START SERVER . 6–24

7 Associated Products Features

7.1 Distributed NetBeans for OpenVMS . 7–1
7.2 Secure Web Browser for OpenVMS . 7–1
7.3 Secure Web Server for OpenVMS . 7–1
7.4 HP TCP/IP Services for OpenVMS Version 5.6 . 7–2
7.5 Web Services Integration Toolkit for OpenVMS . 7–3

Part II OpenVMS Documentation

8 OpenVMS Documentation Overview

9 OpenVMS Printed and Online Documentation

9.1 Printed Documentation . 9–1
9.1.1 OpenVMS Media Kit Documentation . 9–2
9.1.2 OpenVMS Documentation Sets . 9–2
9.1.3 Operating Environments Extensions Documentation Set (I64

Only) . 9–4
9.1.4 Documentation for System Integrated Products 9–5
9.1.5 Archived OpenVMS Documentation . 9–5
9.2 Authoring Tool for OpenVMS Documentation . 9–5
9.3 Online Documentation on CD . 9–6
9.3.1 Online Formats . 9–6
9.4 Online Documentation on the OpenVMS Web Site 9–6
9.5 Online Help . 9–6

vii

10 Descriptions of OpenVMS Manuals

10.1 Manuals in the OpenVMS Media Kit . 10–1
10.2 Manuals in the OpenVMS Base Documentation Set 10–2
10.3 Additional Manuals in the OpenVMS Full Documentation Set 10–3
10.4 RMS Journaling Manual . 10–7
10.5 Manuals in the OpenVMS for Integrity Servers OE Extensions Kit 10–8
10.6 Archived Manuals . 10–9

Index

Figures

3–1 Virtual LAN . 3–56
3–2 LAN Failover Support . 3–57
5–1 ACP-QIO Record Attributes Area . 5–15

Tables

1–1 Summary of OpenVMS Version 8.3 Software Features 1–1
2–1 Updates to DCL Commands and DCL Documentation 2–1
2–2 Updates to DCL Lexicals and Lexicals Documentation 2–2
3–1 Differences Between Alpha and Integrity Server Satellites 3–4
3–2 MONITOR utility Classname Qualifiers for the PROCESSES

Class . 3–18
3–3 . 3–31
9–1 OpenVMS Media Kit Manuals . 9–2
9–2 OpenVMS Full Documentation Set (QA-001AA-GZ.8.3/BA554MN) . . . 9–3
9–3 System Integrated Products Documentation . 9–5
10–1 Archived OpenVMS Manuals . 10–9
10–2 Archived Networking Manuals and Installation Supplements 10–10

viii

Preface

Intended Audience
This manual is intended for general users, system managers, and programmers
who use the HP OpenVMS operating system.

This document describes the new features related to Version 8.3 of the OpenVMS
operating system. For information about how some of the new features might
affect your system, read the release notes before you install, upgrade, or use
Version 8.3.

Document Structure
This manual contains the following parts and chapters:

• Part I, OpenVMS Version 8.3 New Features

Chapter 1 summarizes the new OpenVMS software features.

Chapter 2 describes new features of interest to general users of the
OpenVMS operating system.

Chapter 3 describes new features that are applicable to the tasks
performed by system managers.

Chapter 4 introduces the COPY/RECORDABLE_MEDIA (CDDVD) utility.

Chapter 5 describes new features that support programming tasks.

Chapter 6 describes the InfoServer utility, which is now supported on
OpenVMS Alpha as well as OpenVMS for Integrity servers.

Chapter 7 describes significant layered product new features.

• Part II, OpenVMS Documentation

Chapter 8 describes the OpenVMS documentation changes from the
previous version.

Chapter 9 describes how the documentation is delivered.

Chapter 10 describes each manual in the OpenVMS documentation set.

Related Documents
For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

ix

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation
For information about how to order additional documentation, visit the following
Web site:

http://www.hp.com/go/openvms/doc/order

Conventions
The following conventions may be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

x

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xi

Part I
OpenVMS Version 8.3 New Features

1
Summary of HP OpenVMS Version 8.3 New

Features

OpenVMS Version 8.3 delivers the highest possible levels of availability,
scalability, flexibility, performance, and security that are required for operating
in a 24x365 environment. OpenVMS continues to enhance its availability and
performance by including new technology in the base operating system and in the
OpenVMS Cluster software environment, as well as support for new HP Integrity
servers.

1.1 Summary Table
OpenVMS Version 8.3 includes all the capabilities of OpenVMS Version 8.2 and
Version 8.2–1 as well as the new features added to the OpenVMS operating
system. Table 1-1 summarizes each feature provided by OpenVMS Version 8.3
and presents these features according to their functional component (general
user, system management, programming, and associated products).

Table 1–1 Summary of OpenVMS Version 8.3 Software Features

General User Features

Features Description

New supported Integrity server
systems

Support for new entry-level, mid-range, and high-end Integrity servers.

Batch queue maximum increased Job limit increased to 65535.

Ctrl/T support for remote process Ability to define new symbol DCL$CTRLT_PID to point to a remote
process ID.

Customized output of Ctrl/T Ability to define new symbol DCL$CTRLT.

DCL commands and lexical
functions

New and changed DCL commands, qualifiers, and lexical functions.

DCL permanent symbols Two new symbols added to $FACILITY and $IDENT.

DCL prompt size increased Maximum prompt size increased from 32 to 64 characters.

Keyword added to /SINCE
qualifier

JOB_LOGIN keyword added.

Hyper-Threading (I64 only) Allows processors to create a second virtual core that allows additional
efficiencies of processing.

HP Instant Capacity (iCAP) and
HP Temporary Instant Capacity
(TiCAP) (I64 only)

New HP pricing solutions products for cell-based Integrity servers.

I/O size limit increased Maximum block size limit increased for COPY command.

(continued on next page)

Summary of HP OpenVMS Version 8.3 New Features 1–1

Summary of HP OpenVMS Version 8.3 New Features
1.1 Summary Table

Table 1–1 (Cont.) Summary of OpenVMS Version 8.3 Software Features

General User Features

Features Description

LMF enhancement Ability to change location of target compliance report.

HP nPartition Provider (I64
only)

Now ported to OpenVMS Version 8.3

HP Pay per use (PPU) (I64 only) HP On Demand Solutions product for cell-based Integrity servers.

HP Superdome servers support
(I64 only)

Based on HP sx1000 chipset, OpenVMS can support configurations with
both PA-RISC nPartitions and Intel® Itanium® 2 nPartitions in the
same server.

Web-Based Enterprise
Management Services for
OpenVMS (WBEM)

Industry-standard enterprise management framework.

System Management Features

Features Description

BACKUP Ctrl/T message Expanded to include more information during an interactive backup
operation

BACKUP /IO_LOAD qualifier Provides the ability to increase or decrease the number of simultaneous
read I/Os on your system

BACKUP /PROGRESS_REPORT
qualifier

Sends backup information to the current output device

BACKUP save-set encryption With the addition of the ENCRYPT and DECRYPT commands, uses
an AES encryption algorithm and a user-specified key to encrypt and
decrypt a BACKUP save set.

CD and DVD optical media tools New tools for recording CD and DVD optical media.

Cluster interconnect Provides data compression and multi-gigabit line speed.

Cluster satellite boot Cluster satellite boot support is now available in OpenVMS for Integrity
servers, as well as OpenVMS Alpha.

Dynamic lock remastering The method by which decisions are made to remaster lock trees has
been updated.

Dynamic volume expansion
(DVE) support

Added to the BACKUP utility.

Encryption The Encryption for OpenVMS layered product functionality has been
integrated into the operating system.

InfoServer utility Now supported on OpenVMS Alpha as well as OpenVMS for Integrity
servers. Provides features of the InfoServer hardware product on
AlphaServers and Integrity servers running OpenVMS. The InfoServer
utility can be used to upgrade or install the OpenVMS operating system
on AlphaServers or Integrity servers.

MONITOR ALIGN command
(I64 only)

New command added to the Monitor utility.

MONITOR class name qualifiers
for PROCESSES class

Used to monitor per-process-based modes usage.

Multipath enhancement New active-active feature of EVA and MSA controllers added.

(continued on next page)

1–2 Summary of HP OpenVMS Version 8.3 New Features

Summary of HP OpenVMS Version 8.3 New Features
1.1 Summary Table

Table 1–1 (Cont.) Summary of OpenVMS Version 8.3 Software Features

System Management Features

Features Description

Patch-related menu option OpenVMS operating system distribution media main menu now
includes a new option to perform patch-related operations.

PCSI utility enhancements New features include manual verification, automatic verification, full
ODS-5 support, and validation of signed product kits.

SANCP utility Allows you to limit the number of active I/Os a host may have across all
paths to logical unit numbers (LUN) on a given Fibre Channel storage
port.

SAS utility (I64 only) Configures Integrated RAID (IR) functionality for the HP 8 Internal
Port Serial Attached SCSI Host Bus Adapter (SAS Controller)

SCACP data compression SET VC/COMPRESSION (or /NOCOMPRESSION) commands enable or
disable sending compressed data by specified virtual circuits (VCs).

SCACP multi-gigabit scaling Allows use of /WINDOW=RECEIVE_SIZE and /WINDOW=TRANSMIT_
SIZE qualifiers to override the automatically calculated receive and
transmit window sizes.

HP OpenVMS I64 Serial
Multiplexer (MUX) Support
for Integrity servers (I64 only)

Allows use of USB to add serial lines to Integrity servers.

Spinlock Trace Utility Display enhanced.

HP System Analysis Tools
utilities

System Dump Debugger is now available on OpenVMS for Integrity
servers. Several new System Dump Analyzer commands and qualifiers
have been added.

System parameters Several new system parameters have been added to this release:

• EXECSTACKPAGES

• GB_CACHEALLMAX

• GB_DEFPERCENT

• IO_PRCPU_BITMAP

• LOCKRMWT

• SCH_HARD_OFFLD

• SCH_SOFT_OFFLD

• SCHED_FLAGS

• SMP_CPU_BITMAP

• SMP_PRCPU_BITMAP

• VCC_PAGESIZE

• VCC_RSVD

(continued on next page)

Summary of HP OpenVMS Version 8.3 New Features 1–3

Summary of HP OpenVMS Version 8.3 New Features
1.1 Summary Table

Table 1–1 (Cont.) Summary of OpenVMS Version 8.3 Software Features

System Management Features

Features Description

System Service Logging SSLOG has been enhanced.

Time zones Additional time zones now supported by adding them to the database.

UCM changes for device
management

Automatically configures devices that you plug into the system.

Virtual LAN (VLAN) support in
OpenVMS

Adds support for IEEE 802.1Q (VLAN) in OpenVMS.

HP Volume Shadowing for
OpenVMS enhancements

Addition of these new features:

• Automatic bitmap creation on volume processing

• New SET SHADOW qualifier /RESET

Programming Features

Features Description

Common Data Security
Architecture (CDSA)

New features include Secure Delivery and support for Human
Recognition Service Standard (HRS).

HP C Run-Time Library (CRTL)
enhancements

The following enhancements have been added:

• Symbolic link and POSIX-compliant pathnames

• Byte-range locking

• New functions

• TCP/IP header file updates

Deadlock wait New item code, PPROP$C_DEADLOCK_WAIT, provides the ability to
use sub-second deadlock wait for the lock manager.

Items codes Addition of these new item codes:

• DEVICE_MAX_IO_SIZE

• VOLUME_RETAIN_MAX

• VOLUME_RETAIN_MIN

• MAILBOX_INITIAL_QUOTE

• MAILBOX_BUFFER_QUOTA

HP Kerberos for OpenVMS
enhancements

New features added to Kerberos for OpenVMS. Kerberos Version 3.0 for
OpenVMS is based on MIT Kerberos V5 Release 1.4.1.

Library utility enhancement (I64
only)

Ability to list demangled and mangled names.

Linker utility enhancement /DNI qualifier and DEMANGLED_SYMBOLS keyword for /FULL
qualifier.

HP MACRO Compiler for
OpenVMS Alpha systems
enhancements

Upgraded to use the latest GEM backend for Alpha systems, added a
new /ARCHITECTURE DCL qualifier, and other enhancements.

(continued on next page)

1–4 Summary of HP OpenVMS Version 8.3 New Features

Summary of HP OpenVMS Version 8.3 New Features
1.1 Summary Table

Table 1–1 (Cont.) Summary of OpenVMS Version 8.3 Software Features

Programming Features

Features Description

Record Management System
(RMS) enhancements

Several enhancements made to RMS.

HP Secure Sockets Layer (SSL)
for OpenVMS enhancements

New features added to SSL. HP SSL Version 1.3 is based on OpenSSL
0.9.7e

USB generic driver Provides a $QIO-based API for users to add support for USB devices.

Associated Products Features

Features Description

HP Distributed NetBeans for
OpenVMS

Allows running the NetBeans IDE on desktop system.

HP OpenVMS Management
Station Version 3.3

OpenVMS Management Station Version 3.3 is included with OpenVMS
Alpha Version 8.3.

HP Secure Web Browser for
OpenVMS

Version 1.7-13 provided with OpenVMS Version 8.3.

HP Secure Web Server for
OpenVMS

Version 2.1 provided with OpenVMS Version 8.3.

HP TCP/IP Services for
OpenVMS

Version 5.6 supported on OpenVMS Version 8.3.

HP Web Services Integration
Toolkit for OpenVMS

Provides a set of individual tools.

Prior to getting started with OpenVMS Version 8.3, see the HP OpenVMS Version
8.3 Release Notes and the HP OpenVMS Version 8.3 Upgrade and Installation
Manual.

Summary of HP OpenVMS Version 8.3 New Features 1–5

2
General User Features

This chapter provides information about new features for all users of the HP
OpenVMS Alpha and OpenVMS for Integrity servers operating systems.

2.1 New Integrity Server Support
OpenVMS Version 8.3 supports new entry-level, midrange, and high-end Integrity
server systems. In addition, OpenVMS Version 8.3 continues to support all of
the Integrity servers and options supported in OpenVMS Version 8.2 and Version
8.2–1.

2.2 Batch Queue Job Limit Increased
In OpenVMS Version 8.3, the maximum job limit on batch queues is increased
from 255 to 65535.

2.3 DCL Commands and Lexical Functions
Table 2–1 and Table 2–2 summarize new and changed DCL commands,
qualifiers, and lexical functions for OpenVMS Version 8.3. A few additional
new features related to DCL usage are described in the following sections. For
more information, see the online help or the HP OpenVMS DCL Dictionary.

Table 2–1 Updates to DCL Commands and DCL Documentation

DCL Command Documentation Update

DEASSIGN New /[NO]LOG qualifier.

DECRYPT New command.

DIFFERENCES New WHITE_SPACE keyword for /IGNORE.

ENCRYPT New command.

READ New /WAIT qualifier; new LT and LE keywords for /MATCH.

SEARCH New keywords for /WILDCARD qualifier.

SEARCH /STATISTICS qualifier now defines several DCL symbols with the statistics
information.

SET New /RMS_RELATED_CONTEXT qualifier.

SET FILE Seven new *DATE keywords added to the /ATTRIBUTES qualifier table. Five
new global buffer options added for RMS.

(continued on next page)

General User Features 2–1

General User Features
2.3 DCL Commands and Lexical Functions

Table 2–1 (Cont.) Updates to DCL Commands and DCL Documentation

DCL Command Documentation Update

SHOW DEVICES Support added to display the last path switch times for multipath devices
when /FULL is specified. For LAN devices, the /FULL qualifier updated
to display default and current MAC address information, the LAN protocol
in use (if applicable), the speed of the data link, and various other enabled
characteristics, such as auto-negotiation, duplex mode, and jumbo frames.

SHOW LICENSE Command updated to show all licenses in the OE database to be displayed
with one command.

SHOW PROCESS Q key option added to /CONTINUOUS qualifier.

SYNCHRONIZE/TIME_
OUT=n

New command that allows the user to specify the number of seconds to wait
before terminating the SYNCH command.

Table 2–2 Updates to DCL Lexicals and Lexicals Documentation

DCL Lexical Documentation Update

F$CUNITS New lexical function.

F$FILE_ATTRIBUTES Two new item codes, GBC32 and GBCFLAGS.

F$GETDVI New item codes added.

F$LICENSE New optional argument to specify license producer.

F$MATCH_WILD New lexical function.

2.3.1 Ctrl/T Support for Remote Process
You can define the new symbol DCL$CTRLT_PID to point to a remote process ID.
If you have the necessary privileges, you can then display Ctrl/T information for
that process. The remote process can be a different process on the same system
or a process on a different system in the cluster. The following example shows
how a privileged user on NODE1 can define DCL$CTRLT_PID to view process
information for user JSMITH on NODE2.

$ <Ctrl/T>
NODE1::SYSTEM 17:40:55 (DCL) CPU=00:00:00.16 PF=212 IO=98 MEM=146
$
$ DCL$CTRLT_PID="23800436" !Define symbol to point to remote process ID
$
$ <Ctrl/T>
NODE2::JSMITH 17:41:12 LOOPER CPU=01:28:05.17 PF=2700 IO=594 MEM=322
$

2.3.2 DCL Permanent Symbols
On an image rundown, DCL populates the $SEVERITY and $STATUS symbols.
With Version 8.3, two new symbols are added, $FACILITY and $IDENT, which
contain the facility number and the message number.

$ EXIT %X10911A02
$ SHOW SYMBOL $STATUS
$STATUS == "%X10911A02"

$ SHOW SYMBOL $FACILITY
$FACILITY == "%X00000091"

$ SHOW SYMBOL $IDENT
$IDENT == "%X00000340"

$ SHOW SYMBOL $SEVERITY
$SEVERITY == "2"

2–2 General User Features

General User Features
2.3 DCL Commands and Lexical Functions

2.3.3 Customizing the Output of Ctrl/T
By defining the new symbol DCL$CTRLT, users can augment the traditional
Ctrl/T output with the text defined for DCL$CTRLT. This technique can be used
to indicate progress in user applications or for debugging purposes. The following
example demonstrates the use of DCL$CTRLT within a command procedure. The
command procedure is running in a loop that updates the symbol DCL$CTRLT to
indicate the number of loop iterations executed so far.

$ TYPE CTRLT_LOOP.COM
$ inner=0
$ outer=0
$ loop:
$ loop1:
$ if inner .gt. 20000 then goto end_loop1
$ inner=inner+1
$ dcl$ctrlt=F$FAO("Inner loop count is !SL !/ -
_$ Outer loop count is !SL",inner,outer)
$ goto loop1
$ end_loop1:
$ inner=0
$ outer=outer+1
$ goto loop
$
$ @CTRLT_LOOP

NODE1::JSMITH 10:46:37 (DCL) CPU=00:03:42.68 PF=13453 IO=6743 MEM=187
Inner loop count is 12306
Outer loop count is 0
NODE1::JSMITH 10:46:43 (DCL) CPU=00:03:49.19 PF=13455 IO=6744 MEM=187
Inner loop count is 19200
Outer loop count is 2
.
.
.

2.3.4 JOB_LOGIN Keyword Added to /SINCE Qualifier
You can now specify /SINCE=JOB_LOGIN in any command that accepts the
/SINCE qualifier (except SHOW LICENSE). JOB_LOGIN refers to the login time
of the master process in the job. For example, PIPE creates a subprocess for each
pipe segment; therefore /SINCE=LOGIN cannot be effectively used in a pipe.

$ PIPE DIRECTORY/SINCE=LOGIN | SEARCH SYS$INPUT TEST
%SEARCH-I-NOMATCHES, no strings matched
$
$ PIPE DIRECTORY/SINCE=JOB_LOGIN | SEARCH SYS$INPUT TEST
TEST.TXT;1

2.3.5 I/O Size Limit Increased for COPY Command
The maximum per-I/O block count supported for the COPY command has been
increased to 2**31 –1. Note that the block count is reduced if necessary to the
maximum supported by the device driver performing the I/O. For example, the
maximum I/O size supported by SCSI Fibre Channel drivers is currently 256
blocks.

2.3.6 Increase Maximum Prompt Size
The maximum DCL prompt size has been increased from 32 characters to 64
characters to accommodate special prompts and escape sequences, which some
users require.

General User Features 2–3

General User Features
2.4 Hyper-Threading (I64 Only)

2.4 Hyper-Threading (I64 Only)
OpenVMS for Integrity servers Version 8.3 supports Hyper-Threading with
nPartitions on dual-core Intel Itanium 2 processors. Hyper-Threading provides
the ability for processors to create a second logical CPU on a single core that may
allow additional efficiencies of processing. For example, a dual-core processor
with Hyper-Threading active provides four logical CPUs, two on each core.

The EFI Shell cpuconfig command can enable and disable Hyper-Threading
for an nPartition whose processors support it. Recent releases of the nPartition
Command and Partition manager also support Hyper-Threading.

The effect that hyperthreads have on performance depends heavily on
the application mix that is running. HP recommends that you start with
hyperthreads turned off and experiment later. Two CPUs that share a core when
hyperthreading is enabled are referred to as cothreads. The SHOW CPU/BRIEF
and SHOW CPU/FULL commands now provide information about cothreads. For
example:

$ show cpu/brief 3

System: XYZZY, HP rx4640

CPU 3 State: RUN CPUDB: 820DB480 Handle: 000060A0
Owner: 000004CB8 Current: 000004C8 Partition 0 (XYZZY)
COTHd: 1

In this example, COTHd: 1 indicates that CPU 3 and CPU 1 share the same core.

A sample cpuconfig command output looks like this:

Shell> cpuconfig

PROCESSOR MODULE INFORMATION

of L3 L4 Family/
CPU Logical Cache Cache Model Processor
Module CPUs Speed Size Size (hex.) Rev State
----- ------- ------ ------ ------ --------- --- -----
0 4 1.4 GHz 6 MB None 20/00 CO Active

CPU threads are turned on.

For information about the cpuconfig command, see the HP OpenVMS Version 8.3
Upgrade and Installation Manual. For information about Hyper-Threading and
nPartitions, see the HP System Partition Guide: Administration for nPartitions.

2.5 HP Instant Capacity (iCAP) and HP Temporary Instant Capacity
(TiCAP) (I64 Only)

OpenVMS Version 8.3 now supports iCAP, which is the HP Utility Pricing
Solutions product for cell-based Integrity servers that has a pricing model based
on purchasing components (processors, cell boards, and memory). With Instant
Capacity you initially purchase a specified number of activated components and
pay a Component without Usage Rights (CWUR) fee for a specified number of
deactivated components. To activate a component, you pay the balance of the
component price and license it through the application of a codeword obtained
from the secure iCAP web portal. Components can be instantly activated without
requiring a reboot.

2–4 General User Features

General User Features
2.5 HP Instant Capacity (iCAP) and HP Temporary Instant Capacity (TiCAP) (I64 Only)

OpenVMS Version 8.3 also supports TiCAP, an HP product that enables customers
to purchase prepaid processor-activation rights for a specified (temporary)
period of time. Temporary capacity is in increments, such as 20-day or 30-day
increments, where a day equals 24 hours for a core.

For more information about iCAP and TiCAP, see the HP Instant Capacity User’s
Guide, at the following Web site:

http://docs.hp.com/en/hplex.html#Utility%20Pricing

2.6 License Management Facility (LMF) Changes and
Enhancements

The following sections describe the changes and enhancements to the License
Management Facility.

2.6.1 LMF Compliance Report
You can now change the target account for LMF compliance reports. LMF
sends the compliance report to the account defined by the logical name
LMF$COMPLIANCE_CONTACT_ACCOUNT, but the default account is still
the SYSTEM account.

2.6.2 License Terminology Change (I64 Only)
The licensing and terminology for OpenVMS for Integrity servers has changed
from Per Processor License (PPL) to Per Core License (PCL). With the
introduction of the dual-core Intel Itanium 2 processor, the term ‘‘processor’’
does not mean what it meant previously. With dual-core Intel Itanium 2 systems,
each processor contains 2 cores, and these systems are licensed by the number
of active cores. On a system other than a dual-core Intel Itanium 2 system, core
equals processor.

PCL implements the licensing model on OpenVMS for Integrity servers. In the
PCL model, a product is licensed according to the number of active processor
cores on the system, not the static rating scheme used for Alpha and VAX
systems. Each active processor core requires one PCL unit. If you increase or
decrease the number of active processor cores on a system, the requirement for
PCL licenses changes.

A PCL license is required to run operating environments, OE products purchased
separately (like clustering), and many standalone products on OpenVMS for
Integrity servers.

PCL licenses offer flexibility because you can purchase licenses in the exact
number you need, and you can move the licenses to other processors. If you
upgrade or reconfigure your system with additional processor cores, you purchase
additional PCL licenses.

LMF constantly checks the number of PCL licenses against the number of active
processor cores and enforces a soft compliance model. Any changes to the system
are noted and are checked for compliance.

To implement PCL, the Hardware_ID option CPU_SOCKETS=n is changed to
SOCKETS=n. Also, the SHOW LICENSE/CHARGE command is updated to
display the number of active cores on the system.

General User Features 2–5

General User Features
2.6 License Management Facility (LMF) Changes and Enhancements

The HP OpenVMS License Management Utility Manual has not been updated for
this release with the new terminology. As you read the manual, take note of the
following terminology changes:

• Per Processor License is now Per Core License.

• PPL is now PCL.

• CPU is now processor core.

• CPU_SOCKETS=n is now SOCKETS=n.

Note the following definitions:

• Processor — The component that plugs into a processor socket. The processor
can contain more than one processor core.

• Processor module — The packaging of one or more processors to connect into
a single socket on a system bus.

• Core — The actual data-processing engine within a cell-based processor. A
single processor can contain multiple cores.

• Processor socket — The system board socket into which a processor attaches.

Note

Any previous PPL licenses continue to be supported, and no changes
are required. You can also combine PCL licenses with the existing PPL
licenses.

2.7 HP nPartition Provider for OpenVMS (I64 Only)
The HP nPartition Provider is now ported to OpenVMS Version 8.3 in support of
Instant Capacity (iCAP) features on cell-based Integrity servers.

Note, the OpenVMS Version 8.3 nPartition Provider does not support local or
remote nPartition management tasks, such as remote WBEM connections to the
nPartition Provider running on OpenVMS Version 8.3.

2.8 HP Pay per Use (PPU) (I64 only)
OpenVMS Version 8.3 supports Pay per use for cell-based Integrity server
systems leased through HP Finance. PPU enables customers to pay for only the
processing cycles that they actually consume. There are two types of PPU:

• Percent CPU

Continuously monitors the utilization of every CPU in the system.

• Active CPU

Continuously counts the number of active CPUs in the system.

The system manager can instantly activate inactive CPUs to cope with additional
loads. With both Percent CPU and Active CPU, the utilization data is sent to a
separate Utility Meter and then to the secure HP PPU Web portal, where you can
obtain various usage reports within 48 hours. (Note that Instant Capacity and
Pay per use are mutually exclusive on any cell-based Integrity server.)

2–6 General User Features

General User Features
2.8 HP Pay per Use (PPU) (I64 only)

For more information about PPU, see the HP Pay per use (PPU) User’s Guide, at
the following Web site:

http://docs.hp.com/en/hplex.html#Utility%20Pricing

2.9 HP Superdome Hybrid Servers Support (I64 Only)
HP Superdome servers based on the HP sx1000 chipset can support
configurations with both PA-RISC nPartitions and Intel Itanium 2 nPartitions in
the same server.

Specific hardware, firmware, operating systems, and management tools are
required for including both PA-RISC nPartitions and Intel Itanium 2 nPartitions
on Superdome hybrid servers.

The HP OpenVMS for Integrity servers Version 8.3 release is supported on
Superdome hybrid servers in an nPartition with the Intel Itanium 2 single-core
processor with 9 MB cache.

For details and requirements, see the HP Superdome Hybrid Servers: Intel
Itanium 2 and PA-RISC nPartition Mixing on the following Web site:

http://docs.hp.com

This document is available in the Systems Hardware area, under the HP
Integrity Superdome Server and HP 9000 Superdome Server headings.

2.10 HP Web-Based Enterprise Management Services for OpenVMS
(WBEM)

WBEM is an optional product available on HP OpenVMS for Integrity server
systems that provides an industry-standard enterprise management framework
and resource description. The WBEM structured framework is capable of being
extended and uses Internet standards. Developers of management applications
can take advantage of work previously done to expose resource information and
operations. For example, developers can take code that was developed for a
specific platform or application and use it with WBEM for the same purposes.

General User Features 2–7

3
System Management Features

This chapter provides information about new features, changes, and
enhancements for system managers.

3.1 BACKUP Utility Enhancements
OpenVMS Version 8.3 contains several enhancements to the Backup utility:

• Dynamic volume expansion (DVE)

• Save-set encryption

• A more complete Ctrl/T message displayed during an interactive backup
operation

• A new /PROGRESS_REPORT qualifier that sends the expanded BACKUP
messages to the current output device

• A new /IO_LOAD qualifier that affects the number of simultaneous READ
I/Os on your system

For more information about all of these enhancements, see the HP OpenVMS
System Management Utilities Reference Manual.

3.1.1 Dynamic Volume Expansion (DVE) Support in OpenVMS Backup Utility
Beginning with OpenVMS Version 8.3, volume expansion size is recorded in
the save-set header when you perform image backup to a save set. Previously,
BACKUP had no knowledge of DVE when initializing an output volume. This
meant that, in performing disk-to-disk backup or restoring a save set, BACKUP
did not preserve the volume expansion size or the logical volume size.

3.1.1.1 Volume Expansion Size
BACKUP/LIST now displays the volume expansion size if it exists in the save
set. When you restore a save set (or perform a disk-to-disk backup), the target
device inherits the volume expansion limit from the save set. If the save set does
not include expansion size, BITMAP.SYS is sized as it was in previous versions of
OpenVMS.

/IGNORE=LIMIT Option
A new option, /IGNORE=LIMIT, prevents the target device from inheriting the
expansion limit.

/LIMIT Qualifier
The new qualifier /LIMIT allows you to specify the expansion size limit during
restore or save operations regardless of the value stored in the save-set header,
which matches how the /LIMIT qualifier of the INITIALIZE utility works.

System Management Features 3–1

System Management Features
3.1 BACKUP Utility Enhancements

3.1.1.2 Logical Volume Size
By default, the logical volume size is not preserved because restoring a save set
of 2GB to a 4GB disk, for example, would result in only 2GB of available disk
space.

/SIZE Qualifier
To preserve the logical volume size, use the /SIZE qualifier. When you specify
/SIZE, the geometry of the target device is determined by the logical size rather
than calling $GETDVI to find out the physical limits of the device.

The /SIZE qualifier uses an optional value as the new logical size of the target
device. This new value overrides any existing value in the save set, which
matches how the /SIZE qualifier in the INITIALIZE utility works.

/NOINITIALIZE Qualifier
A restriction in using BACKUP/NOINITIALIZE is that this command does
not preserve the DVE characteristics of the output device. The reason is that
the target device is mounted foreign, preventing OpenVMS from obtaining the
expansion size and the logical size. To overcome this restriction, use the /LIMIT
and /SIZE qualifiers.

The chapter ‘‘Managing Storage Media’’ in HP OpenVMS System Manager’s
Manual contains a section that explains DVE in more detail.

3.1.2 Encrypting BACKUP Save Sets
The OpenVMS Backup utility provides protection against file or volume
corruption by creating functionally equivalent backup copies. BACKUP creates
save sets, which are written in BACKUP format so that only BACKUP can
interpret the data in a save set. When you create save sets, you can protect them
further by encrypting them.

OpenVMS Version 8.3 includes the following new encryption features:

• Support for Advanced Encryption Standard (AES) encryption algorithms

• Support for the following AES keywords for the ALGORITHM option:

AESCBC AESCFB
AESECB AESOFB

Each of these modes can have a user-defined secret key in one of three
different lengths (128, 192, and 256) for a total of 12 possible key
combinations. If you specify =AES after the ALGORITHM option, the
default is AESCBC128.

• Ability to encrypt the data in a save set using the AES encryption algorithm
specified by the user.

3–2 System Management Features

System Management Features
3.1 BACKUP Utility Enhancements

Note

Standalone BACKUP, which is a version of the Backup utility that runs
without the support of the OpenVMS operating system, does not support
the /ENCRYPT qualifier.

3.1.3 Additional CTRL/T Messages
When you use BACKUP to back up or restore data interactively, you can press
Ctrl/T to display the progress of the operation. In OpenVMS Version 8.3, this
information is increased in one of the following situations:

• When you restore a save set from disk

• When you perform an image backup (using save set) to tape or disk

The additional information now displayed is the following:

• The percentage of the operation already completed

• An estimate of the time required to complete the operation

You can use the new /PROGRESS_REPORT qualifier to send the expanded
message to the current output device.

3.1.4 New /PROGRESS_REPORT Qualifier
When you include the new /PROGRESS_REPORT qualifier while performing the
BACKUP operations described in Section 3.1.3, a message indicating the progress
of the BACKUP operation is sent to the output device.

3.1.5 New /IO_LOAD Qualifier
In OpenVMS Version 8.3, BACKUP is optimized to work more efficiently with
new storage controllers. You can use the /IO_LOAD qualifier to increase or
decrease the number of simultaneous READ I/Os that occur on your system.

The format of the command and qualifier is the following:

BACKUP /IO_LOAD=n

where n is an integer whose value can be between 1 and the process AST limit.
The default value is 8, which is used if the /IO_LOAD qualifier is omitted from
the command line.

3.2 CD and DVD Optical-Media Recording Tools
OpenVMS Version 8.3 supports new tools for recording CD and DVD optical
media. These tools permit OpenVMS users to easily and directly record locally
mastered disk volumes or disk image files onto a CD-R, CD-RW, DVD+R, or
DVD+RW optical-media recording device. The resulting optical-media data disks
generated by the recording tools can be used as part of data-archiving operations,
mastering software distribution, and similar tasks.

The COPY/RECORDABLE_MEDIA command and related tools and diagnostics
are intended to supplement and to eventually replace existing uses of the
SYS$MANAGER:CDRECORD.COM CD optical-media recording tool.

For the COPY/RECORDABLE_MEDIA command, see the HP OpenVMS System
Management Utilities Reference Manual and for support requirements and
capabilities, see Chapter 4 in this manual.

System Management Features 3–3

System Management Features
3.3 OpenVMS for Integrity Servers Cluster Satellite Support

3.3 OpenVMS for Integrity Servers Cluster Satellite Support
OpenVMS Version 8.3 supports cluster satellite booting for OpenVMS for
Integrity server (I64) systems. The manner and requirements for I64 satellite
systems differs greatly from those for Alpha. Read this section thoroughly before
attempting to add an I64 system to your cluster.

3.3.1 Differences between Alpha and I64 Satellites
Table 3–1 lists the differences between Alpha and Integrity server satellites.

Table 3–1 Differences Between Alpha and Integrity Server Satellites

Alpha Integrity Servers

Boot Protocol MOP PXE
(BOOTP/DHCP/TFTP)

Crash Dumps May crash to remote system disk
or to local disk via Dump Off the
System Disk (DOSD)

Requires DOSD. Crashing
to the remote disk is not
possible.

Error Log Buffers Always written to the remote
system disk.

Error log buffers are
written to the same disk
as DOSD.

File protections No different than standard
system disk.

Requires that all loadable
execlets are W:RE
(the default case) and
that certain files have
ACL access via the
VMS$SATELLITE_
ACCESS identifier.

Satellite
Any OpenVMS Version 8.3 system or a nPartition of a cell-based system can be
used as a satellite. Support for nPartitions may require a firmware upgrade.

Satellite boot is supported over the core I/O LAN adapters only. All satellite
systems must contain at least one local disk to support crash dumps and saving
of the error log buffers across reboots. Diskless systems will not be able to take
crash dumps in the event of abnormal software termination.

Boot Server
All Integrity server systems supported by OpenVMS Version 8.3 are supported
as boot servers. At this time, HP does not support cross-architecture booting
for Integrity server satellite systems, so any cluster containing Integrity server
satellite systems must have at least one Integrity server system to act as a boot
node as well.

Required Software

• OpenVMS Version 8.3

• HP TCP/IP Services for OpenVMS Version 5.6 or later

As with other satellite systems, the system software is read off of a disk served
by one or more nodes to the cluster. The satellite system disk may be the same
as the boot server´s system disk but need not be. Unlike with Alpha satellites,
where it was recommended but not required that the system disk be mounted on
the boot server, I64 satellite systems require that the system disk be mounted on
the boot server.

3–4 System Management Features

System Management Features
3.3 OpenVMS for Integrity Servers Cluster Satellite Support

TCP/IP must be installed on the boot server´s system disk. OpenVMS Version 8.3
must be installed on both the boot server´s system disk and the satellite´s system
disk if different.

TCP/IP must be configured with BOOTP, TFTP and one or more interfaces
enabled. At least one configured interface must be connected to a segment visible
to the satellite systems. The boot server and all satellite systems will require
an IP address. Please see the HP TCP/IP Services for OpenVMS Version 5.6
Installation and Configuration for details about configuring TCP/IP Services for
OpenVMS.

3.3.2 Collecting Information from the Satellite System
If the satellite has a local disk with a version of OpenVMS installed, log in. If not,
you may boot the installation DVD and select option 8 (Execute DCL commands
and procedures) and execute the following commands:

$ LANCP :== $LANCP
$ LANCP SHOW CONFIG

LAN Configuration:
Device Parent Medium/User Version Link Speed Duplex Size MAC Address Current Address Type
------ ------ ----------- ------- ---- ----- ------ ---- ---------------- ---------------- ----
EIB0 Ethernet X-16 Up 1000 Full 1500 00-13-21-5B-86-49 00-13-21-5B-86-49 UTP i82546
EIA0 Ethernet X-16 Up 1000 Full 1500 00-13-21-5B-86-48 00-13-21-5B-86-48 UTP i82546

Record the MAC address for the adapter you will use for booting. You will need
it when defining the satellite system to the boot server. If the current address
differs from the MAC address, use the MAC address.

3.3.3 Setting up the Satellite System for Booting and Crashing
If the satellite has a local disk with a version of OpenVMS installed, log in.
If not, you may boot the installation DVD and select option 8 (Execute DCL
commands and procedures.) Use SYS$MANAGER:BOOT_OPTIONS.COM to add
a boot menu option for the network adapter from which you are booting. The
procedure will ask you if this network entry is for a satellite boot and if so, it will
set the Memory Disk boot option flag (0x200000) for that boot menu entry. The
memory disk flag is required for satellite boot.

If you intended to use the system primarily for satellite boot, place the network
boot option at position 1. The satellite system also requires DOSD (Dump Off the
System Disk) for crash dumps and saving the unwritten error log buffers across
reboots and crashes. BOOT _OPTIONS.COM may also be used to manage the
DOSD device list. You may wish to create the DOSD device list at this time. See
the HP OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and
Complex Systems for information about setting up a DOSD device list.

3.3.4 Defining the Satellite System to the Boot Server
I64 Satellite systems boot via the PXE protocol. On OpenVMS, PXE is handled
by BOOTP from the TCPIP product. If you are using more than one I64 boot
server in your cluster, be sure the BOOTP database is on a common disk. See the
TCPIP documentation for information on configuring TCPIP components. TCPIP
must be installed, configured and running before attempting to define a satellite
system.

On an I64 boot server, log in to the system manager´s or other suitably privileged
account. Execute the command procedure SYS$MANAGER:CLUSTER_CONFIG_
LAN.COM. (CLUSTER_CONFIG.COM, which configures satellite nodes using
DECnet, does not support I64 systems. It will, however, automatically invoke

System Management Features 3–5

System Management Features
3.3 OpenVMS for Integrity Servers Cluster Satellite Support

CLUSTER_CONFIG_LAN for I64 systems.) CLUSTER_CONFIG_LAN is a menu-
driven command procedure designed to help you configure satellite systems. The
menus are context-sensitive and may vary depending on architecture and
installed products. If you are unfamiliar with the procedure, please see refer
to the System Management documentation for a more extensive overview of
CLUSTER_CONFIG_LAN.

The essential information required to add an I64 satellite includes the node´s
SCS node name, SCS system ID, and hardware address. In addition, you will
need to know the satellite´s IP address, network mask, and possibly gateway
addresses. If you are unfamiliar with these concepts, please refer to the TCPIP
documentation. The procedure will create a system root for the satellite.

CLUSTER_CONFIG_LAN should perform all steps required to make the satellite
system bootable. If you choose local paging and swapping files, you will be
prompted to boot the satellite system into the cluster so that the files may be
created. If not, paging and swapping files will be created on the served system
disk and you may boot the satellites at your convenience.

3.3.5 Booting the Satellite
If you have previously added an option to the boot menu, select that option. If you
haven’t, please see your hardware documentation for the steps required to boot
from a network adapter. Be sure to set the environment variable VMS_FLAGS
to include the memory disk boot flag (0x200000). The system will detail boot
progress in the form of a system message when VMS_LOADER is obtained from
the network, followed by one period character written to the console device for
every file downloaded to start the boot sequence and last by a message indicating
that IPB (the primary bootstrap image) has been loaded.

Note the following example:

Loading.: Satellite Boot EIA0 Mac(00-13-21-5b-86-48)
Running LoadFile()

CLIENT MAC ADDR: 00 13 21 5B 86 48
CLIENT IP: 16.116.43.79 MASK: 255.255.248.0 DHCP IP: 0.240.0.0

TSize.Running LoadFile()

Starting: Satellite Boot EIA0 Mac(00-13-21-5b-86-48)
Loading memory disk from IP 16.116.43.78
..
Loading file: 13DKA0:[SYS10.SYSCOMMON.SYSEXE]IPB.EXE from IP 16.116.43.78
%IPB-I-SATSYSDIS, Satellite boot from system device 13DKA0:

HP OpenVMS Industry Standard 64 Operating System, Version V8.3
© Copyright 1976-2006 Hewlett-Packard Development Company, L.P.

Upon first full boot, the satellite system will run AUTOGEN and reboot.

3.3.6 Additional Tasks on the Satellite System
If you had not done so previously, create the dump file for DOSD at this time.
Edit the SYS$STARTUP:SYCONFIG.COM file and add commands to mount the
DOSD device. In order for the error log buffers to be recovered, the DOSD device
must be mounted in SYCONFIG.

3–6 System Management Features

System Management Features
3.4 Dynamic Lock Remastering—LOCKRMWT

3.4 Dynamic Lock Remastering—LOCKRMWT
The method by which OpenVMS makes decisions to remaster lock trees is
updated for OpenVMS Version 8.3. Prior to Version 8.3, the decision-making
method was based on the system parameter LOCKDIRWT. Lock trees migrated
to nodes with higher LOCKDIRWT values. If nodes had the same value of
LOCKDIRWT, then lock trees migrated to the node with higher activity—the
amount of higher activity was an extremely small hard-coded threshold and often
resulted in lock trees thrashing between nodes.

Version 8.3 implements a new system parameter, lock master weight
(LOCKRMWT). This parameter has a range of zero (0) to 10 and a default
value of 5. The value of this parameter indicates the weight of the node’s
willingness to master lock trees. The larger the weight, the greater the likelihood
of a tree moving to the node. The values of 0 and 10 are special. A zero indicates
that a node does not want to master trees unless the node is the only node with
any locks on the resource tree. Any trees mastered on a node with a zero are
moved to an interested node as long as the interested node has a LOCKRMWT
greater than 0. The value of 10 indicates that a node always wants to master
lock trees. If a node with a LOCKRMWT lower than 10 masters a lock tree and a
node with a value of 10 is interested, the lock tree remasters to the node with a
value of 10.

In other cases, the difference between the current master and the remote node’s
LOCKRMWT is computed. The larger the difference, the greater the likelihood of
the tree being remastered. In the case of nodes having the same LOCKRMWT,
the tree is remastered when there is approximately 13% more activity on the
remote node. If the remote node had an 8 and the current master a 5, the
difference is 3 in this case, the lock tree would move to the remote node at about
2% more activity. In the case of the remote node having a 1 and the current
master a 9, then the difference is -8. In this particular case, the lock tree is
remastered to the remote node even if doing about 200% more activity than the
current master.

The new LOCKRMWT parameter is dynamic and thus can be changed with
SYSGEN on the running system. In addition, lock remastering still honors the
PE1 system parameter) where a lock tree with more locks than the value in PE1
is not remastered. The LOCKDIRWT parameter no longer controls any aspects of
dynamic lock remastering. This parameter now only determines the likelihood of
the node managing resource directory entries.

In a mixed-version cluster, the interaction between Version 8.3 nodes and nodes
prior to Version 8.3 (which do not have a LOCKRMWT system parameter, still
follows the old rules of using LOCKDIRWT. To avoid the situation of a lock tree
constantly moving around the cluster, there is one exception to the above rule.
A Version 8.3 master node never remasters a lock tree to a pre-Version 8.3 node
if an interested node with a higher LOCKDIRWT value exists. This exception is
necessary because the pre-Version 8.3 nodes immediately remaster the lock tree
to the node with the higher LOCKDIRWT.

The SHOW CLUSTER utility is enhanced to display the LOCKRMWT system
parameter for the nodes in the cluster. To view LOCKRMWT, use the command
ADD RM_WT or ADD MEMBERS/ALL. For pre-Version 8.3 nodes, this field is
displayed as **** to indicate these nodes do not have a LOCKRMWT system
parameter.

System Management Features 3–7

System Management Features
3.5 Encryption for OpenVMS

3.5 Encryption for OpenVMS
OpenVMS Version 8.3 integrates the former Encryption for OpenVMS software
product into the operating system. This eliminates the requirement for a separate
product installation and product license. In addition, OpenVMS Version 8.3 now
includes support for the Advanced Encryption Standard (AES) algorithm, which
allows OpenVMS users, system managers, security managers, or programmers to
secure their files, save sets, or application data with AES encryption.

Encryption is used to convert sensitive or otherwise private data to an
unintelligible form called cipher text. This is done for the purpose of data
confidentiality. Decryption reverses this process, taking the unintelligible cipher
text and converting the data back into its original form, called plain text.
Encryption and decryption are also known as encipher and decipher.

3.5.1 AES Features
AES encryption provides the following features and compatibility:

• The former data encryption standard (DES) algorithm is maintained for use
with existing DES data and their applications. All the functions that existed
with DES continue to provide that same level of DES support.

• AES encryption is integrated with BACKUP for encrypting and decrypting
save sets with AES or with DES.

• Command-line use of AES encryption remains the same with only minor
changes to qualifiers.

• ENCRYPT$ application program interface (API) changes are minimal with
only textual parameter or flag changes required to use the AES algorithm.

• AES encryption supports the AES algorithm with four different cipher modes.
With each mode, a secret key can be specified by the user in three different
lengths (128, 192, and 256 bits), for a total of 12 different cipher and decipher
operations:

— AESCBC128 ! Cipher Block Chaining

— AESCBC192 ! Cipher Block Chaining

— AESCBC256 ! Cipher Block Chaining

— AESECB128 ! Electronic Code Book

— AESECB192 ! Electronic Code Book

— AESECB256 ! Electronic Code Book

— AESCFB128 ! Cipher Feedback

— AESCFB192 ! Cipher Feedback

— AESCFB256 ! Cipher Feedback

— AESOFB128 ! Output Feedback

— AESOFB192 ! Output Feedback

— AESOFB256 ! Output Feedback

3–8 System Management Features

System Management Features
3.5 Encryption for OpenVMS

• These additional AES algorithm, modes, and key sizes are specified in
the algorithm parameter to the ENCRYPT$ENCRYPT_FILE(), and
ENCRYPT$INIT() APIs or specified in the algorithm-name parameter
for the ENCRYPT$GENERATE_KEY() API.

3.5.2 /CREATE_KEY /AES Command Qualifier
The AES keys (as well as DES keys) are created with the ENCRYPT command-
line qualifier /CREATE_KEY. However, for AES keys, the /AES qualifier must be
added:

$ ENCRYPT /CREATE_KEY keyname "This is my secret key" / AES

This currently generates an AES key with a key length of 21 characters. You can
specify any length key as long as it meets the key-length minimum requirement
and does not exceed Encrypt’s maximum number of characters (approximately
240).

3.5.3 AES Key-Length Requirements
The AES key requirements are the actual number of bits used for each of the AES
modes. This is actually the minimum number of bytes needed for the encryption
or decryption operation. The minimum required key sizes are as follows:

• 128 bit mode = 16 byte key

• 192 bit mode = 24 byte key

• 256 bit mode = 32 byte key

3.5.4 Literal Key Values and ASCII Compression
Note that literal key values are not normally compressed and are passed as is
to the encryption algorithm. Literal key values can be ASCII, HEX, or binary.
However, ASCII DES key values are compressed if the descriptor data type is of
data type DSCK_TYPE_T, DSCK_TYPE_VT or DSC$K_TYPE_VT. AES keys
are not compressed. Other descriptor data types allow the DES literal key value
to not be compressed and to pass through unchanged.

Literal keys values are specified at the command line with the /HEX qualifier
or with the literal key flag to the ENCRYPT$DEFINE _KEY() routine. Literal
key values can also be passed directly to the ENCRYPT$INIT() routine using
the key-type argument and passing the value in the key-name descriptor. DES
ASCII key values specified at the command line are subject to compression
whether they are quoted or not quoted.

3.5.5 XOR Key Flag, or Key Folding
Encrypt will XOR any extra characters within a key to fold the bytes onto
themselves, creating the number of bytes for the algorithm and key size for AES
(or DES). This means that the maximum number of bytes (240) can be specified
for a key value, but only 32 bytes are stored for AES and only 8 bytes are stored
for DES when the key is created.

When this key is used, the original key is recovered, decrypted from storage.
But only an 8-byte (folded) key are used for DES, and only 16-, 24-, or a 32-byte
(folded) keys are used for AES, depending on the selected AES key size for the
cypher operation.

System Management Features 3–9

System Management Features
3.5 Encryption for OpenVMS

The key size is specified as part of the algorithm-name parameter. For
example, ‘‘AESCBC256’’ is specified to one of the following APIs or in the
/DATA_ALGORITHM or /KEY_ALGORITHM qualifier to the file ENCRYPT and
DECRYPT command:

• ENCRYPT$ENCRYPT_FILE()

• ENCRYPT$INIT()

• ENCRYPT$GENERATE_KEY()

Creating an AES Key Example
The following example creates a 32-byte AES key. The key is encrypted with AES
(currently AESCBC128) and is stored under the name ENCRYPTKEYMY_KEY
in the process logical name table (by default). The key is flagged as an AES key
to distinguish it from a DES key:

$ encrypt/create MY_KEY "This is a sample ASCII key value" /aes/log

%ENCRYPT-S-KEYDEF, key defined for key name = MY_KEY

3.5.6 ENCRYPT$DEFINE_KEY() API
AES and DES keys can also be created with the Encrypt application program
interface (API), ENCRYPT$DEFINE_KEY(). The key flags are used to
distinguish the type of key (name or literal key value), and the logical name
table to store the key.

There is also an AES key flag mask ENCRYPT$M_KEY_AES, and value
ENCRYPT$V_KEY_AES, that is used to create an AES key.

ENCRYPT$DEFINE_KEY (key-name , key-value , key-flags)

A random key value can be generated with the ENCRYPT$GENERATE_KEY()
API.

ENCRYPT$GENERATE_KEY (algorithm-name , key-length
[,factor-a] [,factor-b] [,factor-c]
[,key buffer])

AES Key Flag
The following AES mask can be used in addition to (OR with) other flags for the
key-flags parameter (as a longword by reference). An associated AES key value
can be used for testing the bit within the program. Use the KEY_AES key flag to
specify an AES key with the ENCRYPT$DEFINE_KEY(), ENCRYPT$DELETE_
KEY(), and ENCRYPT$GENERATE_KEY() APIs:

• ENCRYPT$M_KEY_AES

• ENCRYPT$V_KEY_AES

3.5.7 Notes on Keys
The following list provides information about keys:

• AES keys are created, encrypted (always with AESCBC128 and a master
key), and stored in a logical name table. During an encrypt operation, the key
is fetched, decrypted, and used as a 16-, 24- or 32-byte key, depending on the
chosen algorithm and key size for the encrypt or cypher operation.

• Nonliteral DES keys are compressed, that is, converted to uppercase. Only
the characters A–Z, 0˙-9, dollar sign ($), period (.), and underscore (_) are
allowed, all others are converted to spaces, and multiple spaces are removed.
AES ASCII key values are not compressed.

3–10 System Management Features

System Management Features
3.5 Encryption for OpenVMS

• Care must be used when creating keys to ensure they meet the minimum key
length when later used for the algorithm/key size selected. This was not a
problem with 8-byte DES keys. Any key (literal or nonliteral) that is longer
in length than necessary is folded for the proper 16-, 24- or 32-byte key size.

• The key name is a logical name for the key as stored in the logical name
table (SYSTEM, JOB, GROUP, or PROCESS ˘- the default). The value can be
ASCII (normal text keys), or hexadecimal/binary. When creating a literal key
(key-flags = ENCRYPT$M_LITERAL_KEY), the value is stored as a literal
value and it is not compressed.

• Care must also be used later when supplying the key to the
ENCRYPT$INIT() API to match the key stored in the logical name table.
That is, the descriptor type determines how the DES key is handled — as
text to be compressed or as a binary value not to be compressed. AES key
values are not compressed. The key flag (1= literal, 0=name) determines
how the key-name parameter is interpreted; as a literal value passed directly
to INIT, or key name for logical name lookup, translation and decryption.
Note the errors that can result if an incorrect key type is used, for example,
the key flag = 0 (name) and a literal key value is provided instead of a key
name. An error could also occur trying to provide a key name to be used as
a literal value. For the ENCRYPT$INIT() API, key name descriptors of type
DSCK_DTYPE_T, DSCK_DTYPE_VT, and DSC$K_DTYPE_Z all specify
that the key value should be compressed for DES keys. AES key values are
not compressed.

• Errors can result when using the ENCRYPT$GENERATE_KEY() to generate
AES keys and specifying key lengths that are not multiples of 16.

3.5.8 Deleting AES Keys
AES (and DES) keys are deleted or removed with the encrypt command-line
qualifier /REMOVE_KEY or with the API ENCRYPT$DELETE_KEY():

$ ENCRYPT/REMOVE_KEY KEYNAME /AES

The user´s secret key is encrypted with a master key and stored in a logical name
table (PROCESS, JOB, GROUP or SYSTEM—ENCRYP$SYSTEM table), the
default is the PROCESS logical name table. To delete a key in a table other than
the PROCESS logical name table, the appropriate qualifier (/JOB, /GROUP, or
/SYSTEM) must also be specified in the ENCRYPT /REMOVE_KEY command.

Because the user´s secret key name is unique, only one key with the same
name can exist in the same logical name table, whether this is a DES key or
an AES key. This means that the /AES qualifier is unnecessary, although it is
implemented nevertheless.

3.5.9 ENCRYPT$DELETE_KEY() API
To remove the key from the logical name table with the Encrypt API, specify the
name of the key to be deleted. The flags specify which logical name table.

ENCRYPT$DELETE_KEY (key-name , key-flags)

System Management Features 3–11

System Management Features
3.5 Encryption for OpenVMS

AES Key Flag
The following AES mask can be used in addition to (OR with) other flags for the
key-flags parameter (as a longword by reference). An associated AES key value
can be used for testing the bit within the program. Use the KEY_AES key flag to
specify an AES key with the ENCRYPT$DEFINE_KEY(), ENCRYPT$DELETE_
KEY(), and ENCRYPT$GENERATE_KEY() APIs.

• ENCRYPT$M_KEY_AES

• ENCRYPT$V_KEY_AES

3.5.10 File Encryption and Decryption
Once a key has been created, a user can encrypt and decrypt files. This can be
accomplished at the command line with the ENCRYPT and DECRYPT commands,
or by using the ENCRYPT$ENCRYPT_FILE() API.

File encryption encrypts RMS files in fixed-length, 512-byte records. The file
characteristics and attributes of the file are preserved, for example, the file
creation and modify date, and whether the file was organized as sequential or
indexed, and its record format (STREAM_LF, VAR, or other). A user specifies
a key to be used for the encryption of a file and a data algorithm. But, the
user’s key is used to encrypt the random key, initialization vector (IV), and data
algorithm in the random key record. Using the data algorithm specified by the
user, it is the random key that encrypts the file’s attributes and feature records
and its data records, .

When decrypting the file, the key that the user specifies is used to decrypt
the random-key record, which retrieves the random (data) key, IV, and data
algorithm. Then the file attributes, feature records, and data records are
decrypted with the random key, IV, and data algorithm from the fixed-length
512-byte records, and then restored to its original format and

3.5.10.1 File Encrypt and Decrypt Default Mode—DESCBC
By default, when encrypting a file from the command line, Encrypt uses the
DESCBC algorithm to encrypt the file. That is, if a key or data algorithm is not
specified on the command line, the DESCBC algorithm and mode is used.

An example that encrypts the file file-name using the key key-name to an output
file with the file name of file-name using DESCBC is:

$ ENCRYPT file-name key-name

The following command is used to decrypt the file with DESCBC:

$ DECRYPT file-name key-name

3.5.10.2 Specifying the AES Data Algorithm and AES Key Algorithm
To select an algorithm other than the DESCBC default when encrypting files,
Encrypt accepts the data and key algorithm qualifiers with the DCL ENCRYPT
command and the key algorithm qualifier with the DECRYPT command.

When encrypting files with AES, specify both /DATA_
ALGORITHM=AESmmmkkk and /KEY_ALGORITHM=AESmmmkkk:

• mmm defines the AES mode: ECB, CBC, CFB, or OFB

• kkk defines the key size: 128, 192, or 256 bits (for 16-, 24- or 32-byte keys)

3–12 System Management Features

System Management Features
3.5 Encryption for OpenVMS

Encrypt expects that the key matches the key algorithm. An AES key must be
used with an AES key algorithm, and a DES key must be used with the DES
key algorithm. Although the data algorithm will default to DES if the /DATA_
ALGORITHM=AESmmmkkk is not specified for the ENCRYPT command. The
same holds true when working with DES keys and KEY_ALGORITHM=DES, the
data is protected with a strong algorithm, but the key is not.

Note

The capability of mixing AES with DES key and data algorithms has been
disabled in OpenVMS Version 8.3, and any attempt to do so result in an
ENCRYPT$_AESMIXDES error condition.

When decrypting files with AES, specify only the /KEY_
ALGORITHM=AESmmmkkk qualifier. That is because the key algorithm is
used to decrypt the random-key record that contains the random key that is then
used to decrypt the data records of the file. Specifying the data algorithm is not
necessary and, in fact, gives an unrecognized-qualifier error message.

Note

For an encrypt operation, if the /DATA_ALGORITHM=AES is specified
without the /KEY_ALGORITHM, an error occurs. The default algorithm
DESCBC is used to encrypt the random key record that contains the
random key and file information. However, Encrypt expects that the
user´s key matches the KEY algorithm; if not, an error occurs. That is,
if the key-name is an AES key name and value, when the key is fetched
from the logical name table and then is decrypted with the DES master
key, the key decrypts garbage, and the operation fails with:

%STR-F-FATINTERR, fatal internal error

ENCRYPT /DATA_ALGORITHM=AES /KEY_ALGORITHM=AES
AES has a default encryption and decryption routine (AESCBC128) that is
used when AES is specified without a mode and key size (that is, only /AES is
specified). This could be used as a shortcut for AES file encryption. For example:

$ ENCRYPT file-name key-name /KEY=AES /DATA=AES

3.5.10.3 Specifying Only the Key Algorithm
To select an algorithm other than the DESCBC default when decrypting
files, Decrypt accepts only the key algorithm qualifier with the DCL
DECRYPT command. When decrypting with AES, specify only the /KEY_
ALGORITHM=AESmmmkkk qualifier, where mmm defines the AES mode

Only the key algorithm needs to be specified. The data algorithm is stored with
other file information in the encrypted file within a key record. The key record
was encrypted with the user-specified encryption key when the file was encrypted.
During the decrypt operation, the user´s key is used to decrypt the key record that
contains the data key (a random key generated during the encrypt), along with
its algorithm is then used to decrypt the remaining data records in the file.

System Management Features 3–13

System Management Features
3.5 Encryption for OpenVMS

3.5.11 ENCRYPT$ENCRYPT_FILE() API
AES File Flag
This is the command format for the ENCRYPT$ENCRYPT_FILE() API:

ENCRYPT$ENCRYPT_FILE(input-file, output-file,
key-name, algorithm, file-flags,
item-list)

There is an additional FILE_AES flag mask (and value) that is used with
the ENCRYPT$ENCRYPT_FILE() API when encrypting files using an AES
algorithm. The ENCRYPT$ENCRYPT_FILE_FLAGS are used to control file
operations such as cipher direction, file compression and so on. The FILE_AES
flag controls file AES initialization and encryption operations, and also to flag an
AES key:

• ENCRYPT$M_FILE_AES

• ENCRYPT$V_FILE_AES

The optional item list is used to override the data algorithm parameter. The
intent is to substitute one algorithm for another that is similar in function but
different in name. You override the name of the algorithm in the random-key
record with the name of the algorithm provided by the user in the override
descriptor. This provides a way to open files that were encrypted with algorithm
name that may be different than the algorithm name in the

3.5.12 Record Encryption/Decryption
File records can be encrypted and decrypted with the Encrypt API:

ENCRYPT$ENCRYPT_ONE_RECORD (input, output, key-name, algorithm)

ENCRYPT$DECRYPT_ONE_RECORD (input, output, key-name, algorithm)

To utilize AES for one record ciphers, an AES key must first be created, which
is stored in the logical name table (encrypted). The key name of an AES key
is specified and an address of a descriptor that contains the ASCII text for the
selected AESmmmkkk (mode and key size) algorithm. Note that the input and
output buffers (descriptor addresses) are also provided.

These one-record APIs assume that a key already exists in the logical name
table key storage. These APIs are primarily used to encrypt and decrypt small
amounts of data or only a few records. This is because there are overhead
operations involved when calling the ENCRYPT$ENCRYPT_ONE_RECORD()
API. Calling this API also calls the ENCRYPT$INIT(), ENCRYPT$ENCRYPT()
or ENCRYPT$DECRYPT() function, and the ENCRYPT$FINI() function. An
INIT, DECRYPT, and FINI function are also called recursively within the first
INIT to decrypt the key in logical name storage, using the key name specified by
the user in the key-name parameter.

HP recommends that you do not use the ENCRYPT$xxCRYPT_ONE_RECORD()
calls if many records need to be enciphered or deciphered. Instead, HP
recommends that the ENCRYPT$ENCRYPT() and ENCRYPT$DECRYPT() API
functions be used for normal operations. This implies that the ENCRYPT$INIT()
function is also used to initialize the context prior to encryption or decryption,
and that the ENCRYPT$FINI() API is used to free memory structures prior to
application exit.

3–14 System Management Features

System Management Features
3.5 Encryption for OpenVMS

3.5.13 Data Encryption/Decryption
The ENCRYPT$ENCRYPT() and ENCRYPT$DECRYPT() routines are used by
applications to cryptographically process up to 64K bytes of data.

ENCRYPT$ENCRYPT (context, input, output [,output-length] [,initialization-vector]
ENCRYPT$DECRYPT (context, input, output [,output-length] [,initialization-vector]

These routines require initializing an encryption context with ENCRYPT$INIT()
routine, prior to calling ENCRYPT$ENCRYPT() or ENCRYPT$DECRYPT() to
encipher or decipher the data blocks. The ENCRYPT$FINI() routine is called at
the end to free the context data structures.

The output buffer must be able to accommodate a padded block to an increment
of the block length. For AES, this is 16 bytes (8 bytes for DES). The output-length
value and initialization-vector (IV) parameter are optional. The output-length is
the number of bytes written (encrypted or decrypted).

The AES IV is a reference pointer to a 16-byte value. Internal structures have
been expanded to accommodate AES. The DES IV is a quadword reference to an
8-byte value.

3.5.14 Lengths and Block Mode Padding
The AES block-mode algorithms (AESCBCxxx and AESECBxxx pad the data to
even 16-byte block boundaries. For AES, 1 byte encrypts and decrypts to 16 bytes,
72 bytes to 80, and so forth. The AES padding character is a hexadecimal number
of bytes indicating the number of bytes padded. For example, the 1-byte encrypt
pad would be 15 characters of 0F following the 1 encrypted byte of data (08 08
... 08) of 8 bytes following the 72 bytes of data. DESECB and DESCBC modes
always pad with characters of zeros. The character stream modes (AESCFBxxx,
AESOFBxxx, DESCFB) do not pad the data and the output-length parameter
matches the actual number of bytes.

3.5.15 New AES Encryption Key, Flag Mask, and Value
There are no new AES encryption API routines. However, to accommodate the
AES algorithm and the various key-length values, an additional AES key and
AES file flag mask and value are added to OpenVMS Version 8.3.

• AES key flag

The KEY_AES mask value specified an AES key (as a longword by reference)
to the ENCRYPT$DEFINE_KEY(), ENCRYPT$DELETE_KEY(), and
ENCRYPT$GENERATE_KEY() APIs:

— ENCRYPT$M_KEY_AES

— ENCRYPT$V_KEY_AES

• AES file flag

An additional FILE_AES flag mask (and value) is used with the
ENCRYPT$ENCRYPT_FILE() API when encrypting files that use an AES
algorithm.

The ENCRYPT$ENCRYPT_FILE_FLAGS flags are used to control file
operations such as cipher direction, file compression, and so on. The FILE_
AES flag controls file AES initialization and encryption operations and also
flags the following AES keys:

System Management Features 3–15

System Management Features
3.5 Encryption for OpenVMS

— ENCRYPT$M_FILE_AES

— ENCRYPT$V_FILE_AES

The AES algorithm, mode, and a key length (128, 192, or 256 bits) are specified
in the algorithm parameter for the ENCRYPT$ENCRYPT_FILE(), and
ENCRYPT$INIT() APIs, or the are specified in the algorithm-name parameter
for the ENCRYPT$GENERATE_KEY() API. This parameter is in the form of a
character string descriptor reference (pointer), as follows:

• Block mode ciphers

— AESCBC128 ! Cipher Block Chaining

— AESCBC192 ! Cipher Block Chaining

— AESCBC256 ! Cipher Block Chaining

— AESECB128 ! Electronic Code Book

— AESECB192 ! Electronic Code Book

— AESECB256 ! Electronic Code Book

• Stream mode ciphers

— AESCFB128 ! Cipher Feedback

— AESCFB192 ! Cipher Feedback

— AESCFB256 ! Cipher Feedback

— AESOFB128 ! Output Feedback

— AESOFB192 ! Output Feedback

— AESOFB256 ! Output Feedback

Note

AESCBC128 is the default cipher and is also used for encryption
and decryption of the user´s key for storage of logical names.
These ciphers are searched in the order in which they are stored
in their algorithm table (as listed) within the new image file
SYS$SHARE:ENCRYPT$ALG$AES.EXE file.

3.5.16 Unsupported AES Encryption Operations
The following AES encryption operations are not supported and, therefore, are
not recommended:

• Message Authentication Code (MAC)

The Message Authentication Code (MAC) detects any modifications made to
a file´s data or to its security settings. Currently, only DES is supported for
MAC operations. AES is not supported.

The MAC is used with the /AUTHENTICATE command qualifier. The MAC
encrypts the file´s data (and security attributes), storing then in two separate
databases (Db). To detect file modifications, the MAC is recalculated and
compared with the Db MAC.

3–16 System Management Features

System Management Features
3.5 Encryption for OpenVMS

The authentication codes are generated with the /UPDATE qualifier, and are
logged or displayed with the /OUTPUT=file-name qualifier. For example:

$ encrypt /AUTHENTICATE /UPDATE *.exe KeyName /out=tt:

The MAC also uses an IV, but DESCBC is the underlying algorithm and mode
for the keyed file MAC. The MAC is the final DESCBC encrypted block of the
file´s data, the file´s security attributes.

• ENCRYPT/COMPRESS

Using ENCRYPT/COMPRESS with BACKUP file save sets is not
recommended, because of errors encountered during their decryption. This
usually happens with larger save sets created with a /GROUP_SIZE not equal
to zero.

ENCRYPT/COMPRESS works properly but decryption might fail. This can be
catastrophic if the /DELETE qualifier is used, deleting the original BACKUP
save-set file during the encrypt operation.

• Encrypting files with AES

Specify both the /DATA=AESmmmkkk and the /KEY=AESmmmkkk algorithm
when encrypting AES files, where mmm is the mode (CBC,ECB,CFB, or OFB)
and kkk is the key size (128, 192, or 256 bits).

• Mixing AES and DES keys and algorithms

Encrypt expects that the key matches the key algorithm. An AES key must
be used with an AES key algorithm, and a DES key must be used with the
DES key algorithm. The data algorithm can default to DES if you specify
an AES /KEY_ALGORITHM qualifier together with an AES key without
specifying AES for the /DATA_ALGORITHM qualifier. For security reasons,
we disallow this by signaling an ENCRYPT$_AESMIXDES error at the
command line. The same holds true when working with DES keys and KEY_
ALGORITHM=DES; the data is protected with a strong algorithm but the
key is not. This command-line capability of mixing key and data algorithms
between DES and AES has been disabled in OpenVMS 8.3. Note that other
errors can result when mixing AES and DES keys and algorithms.

3.6 Monitor Utility Enhancements
The following sections describe enhancements to the Monitor utility.

3.6.1 Align Command (I64 Only)
The Monitor utility has been enhanced to display information about alignment
faults. This new MONITOR ALIGN command is valid only on OpenVMS for
Integrity servers and helps troubleshoot performance problems on Integrity
server systems.

The MONITOR ALIGN class displays a rate of alignment faults for each mode
(kernel, executive, supervisor and user) along with the total alignment faults per
second. If the alignment fault rate per second is very high, use the Alignment
Fault utility (FLT), which is run through SDA, to analyze the cause of the
alignment faults.

On Integrity server systems, all alignment faults are handled by the operating
system, hence counters can be incremented to track the alignment fault rate. On
Alpha, alignment faults are fixed in PALcode in the console so counters cannot be

System Management Features 3–17

System Management Features
3.6 Monitor Utility Enhancements

ticked without much overhead. For this reason, the MONITOR ALIGN command
is only available on Integrity servers.

The header include file $MONDEF has also been enhanced to include the record
definitions for the new ALIGN class. Previously, the constants for each class type
record have not been provided, but in Version 8.3 $MONDEF also includes the
symbolic constant definitions for the class numbers as MNR_CLS$K_xxx.

Note the following example:

$ monitor align
ALIGNMENT FAULT STATISTICS

on node MTDIB9
11-JAN-2006 16:58:07.25

CUR AVE MIN MAX

Kernel Alignment Faults 19529.00 19529.00 19529.00 19529.00
Exec Alignment Faults 7581.00 7581.00 7581.00 7581.00
Super Alignment Faults 0.00 0.00 0.00 0.00
User Alignment Faults 164972.00 164972.00 164972.00 164972.00

Total Alignment Faults 192082.00 192082.00 192082.00 192082.00

3.6.2 New Classname Qualifiers for the PROCESSES Class
The four new classname qualifiers for the MONITOR utility PROCESSES class
can be used to monitor per-process-based modes usage. They are useful in
helping to identify the top consumers of the various CPU modes. If, for example,
the MONITOR MODES command shows that an excessive amount of supervisor
mode is being used, the new MONITOR PROCESSES/TOPSUPERVISOR display
will reveal which process—and hence, which user—is responsible.

The new qualifiers are described in the following table:

Table 3–2 MONITOR utility Classname Qualifiers for the PROCESSES Class

Command and Qualifier Description

MONITOR PROCESSES /TOPKERNEL Top kernel mode usage per process

MONITOR PROCESSES /TOPEXECUTIVE Top executive mode usage per process

MONITOR PROCESSES /TOPSUPERVISOR Top supervisor mode usage per
process

MONITOR PROCESSES /TOPUSER Top user mode usage per process

See the HP OpenVMS System Management Utilities Reference Manual, in the
MONITOR chapter, for more detailed information.

3.6.3 MONITOR PROCESSES/TOPSUPERVISOR Example
The new MONITOR PROCESSES/TOPSUPERVISOR qualifier allows you to
see which processes are top consumers of CPU in supervisor mode. For more
information about these qualifiers, see the HP OpenVMS System Management
Utilities Reference Manual.

The following example will appear in the section ‘‘Using Live Display Monitoring’’
in the chapter ‘‘Getting Information About the System’’ in the next version of the
HP OpenVMS System Manager’s Manual.

Example:

$ MONITOR PROCESSES/TOPSUPERVISOR

3–18 System Management Features

System Management Features
3.6 Monitor Utility Enhancements

This command displays a bar graph showing the 16 processes that are the top
consumers of CPU time in supervisor mode. Values are expressed in units of
clock ticks (10ms) per second.

The command produces a display similar to the following:

OpenVMS Monitor Utility
TOP SUPERVISOR MODE PROCESSES

on node QUEBIT
7-DEC-2005 14:04:24.19

0 25 50 75 100
+ - - - - + - - - - + - - - - + - - - - +

74E000AD BATCH_3 5 **
74E000AC BATCH_2 4 *
74E000AA BATCH_1 3 *
74E000AB _RTA3: 3 *

3.7 Multipath Enhancement for Active-Active Feature of EVA and
MSA Controllers

The controllers of the Enterprise Virtual Array (EVA) 4000/6000/8000 storage
systems and of the MSA1500 storage system provide ‘‘active optimized’’ (AO) and
‘‘active non-optimized’’ (ANO) paths. This feature will also be offered in the EVA
3000/5000 storage systems. There is a read I/O performance penalty for using the
ANO paths.

The OpenVMS multipath capability has been enhanced to distinguish between
the AO and the ANO paths to improve I/O performance. Users should notice
a performance improvement, which will vary depending on I/O size and queue
depth. The longer the queue depth, the greater the improvement users will
notice.

For more information about the OpenVMS multipath capability, refer to
Guidelines for OpenVMS Cluster Configurations. For more information about the
controllers on these storage systems, visit:

http://www.hp.com/country/us/en/prodserv/storage.html

For more information about the EVA 4000/6000/8000 controllers, select Browse by
capacity, Enterprise, and select the storage system of interest.

Similarly, for more information about the EVA 3000 and 4000 controllers, select
Browse by capacity, Mid-range, and select the storage system of interest. For
more information about the MSA 1500 controller, select Browse by capacity,
Entry-level, MSA 1500.

3.8 OpenVMS Cluster Interconnect
The following features are added to the LAN-based cluster communications driver
(PEdriver) in in OpenVMS Version 8.3:

• Data compression

• Multi-gigabit line speed & long distance performance scaling

Data compression may be used to reduce the time to transfer data between
two OpenVMS nodes when the LAN speed between them is limiting the data
transfer rate, and there is idle CPU capacity available. For example, it may
be used to reduce shadow copy times, or improve MSCP serving performance
between Disaster Tolerant Clusters sites connected by relatively low-speed links

System Management Features 3–19

System Management Features
3.8 OpenVMS Cluster Interconnect

such as E3 or DS3, FDDI, or 100Mb Ethernet. PEdriver data compression can
be enabled by using SCACP, Availability Manager, or the NISCS_PORT_SERV
sysgen parameter.

The number of packets in flight between nodes needs to increase proportionally to
both the speed of LAN links and the inter-node distance. Historically, PEdriver
had fixed transmit and receive windows (buffering capacity) of 31 outstanding
packets. Beginning with OpenVMS Version 8.3, PEdriver now automatically
selects transmit and receive window sizes (sometimes called pipe quota by other
network protocols) based on the speed of the current set of local and remote LAN
adapters being used for cluster communications between nodes. Additionally,
SCACP and Availability Manager now provide management override of the
automatically-selected window sizes.

For more information, see the SCACP utility chapter, and NISCS_PORT_SERV
in the HP OpenVMS System Management Utilities Reference Manual and the HP
OpenVMS Availability Manager User’s Guide.

3.9 OpenVMS Operating System Media Patch-Related Menu Option
The OpenVMS operating system distribution media main menu now includes a
new option (7) that enables you to perform patch-related operations. When you
select option 7, you are brought to a submenu that provides options enabling you
to search the patch kits, install patches, remove recent patches for which there is
recovery data, and to show and delete recovery data. As a result, you can perform
these operations even when the operating system cannot be booted (in which case
you cannot use the PCSI PRODUCT command). This example shows the menu
options:

Please choose one of the following:

1) Upgrade, install or reconfigure OpenVMS I64 Version X8.3-BBV
2) Display layered products that this procedure can install
3) Install or upgrade layered products
4) Show installed products
5) Reconfigure installed products
6) Remove installed products
7) Find, Install, or Undo patches; Show or Delete Recovery Data
8) Execute DCL commands and procedures
9) Shut down this system

Enter CHOICE or ? for help: (1/2/3/4/5/6/7/8/9/?)

Although options 2 and 3 of the main menu can still be used to perform patch
operations, HP recommends that you use the new option 7 submenu operations;
the functionality provided by these operations is more extensive and more
reliable. For example, when you install patches using the new submenu option,
recovery data is saved automatically. In addition, the new options allow you to
specify locations on which to perform the operations (in addition to the default
target device). You can use wildcards to specify locations.

3.10 PCSI Utility Enhancements
OpenVMS Version 8.3 contains the following enhancements for the PCSI utility:

• Manual verification of the product database using the PRODUCT ANALYZE
PDB command

• Automatic verification of the product database using the PRODUCT INSTALL
command

3–20 System Management Features

System Management Features
3.10 PCSI Utility Enhancements

• Full support for ODS-5 volumes

• Validation of signed product kits performed by several PRODUCT commands

3.10.1 PRODUCT ANALYZE PDB
The new PRODUCT ANALYZE PDB command verifies the structural integrity of
the product database and, in some circumstances, performs minor repairs. This
command:

• Reads all SYS$SYSTEM:*.PCSI$DATABASE files that are referenced in the
root file PCSI$ROOT.PCSI$DATABASE.

• Checks all fields in these files for correct syntax.

• Automatically performs minor repair when a known corruption pattern can
be identified and a repair is feasible.

• Provides instructions on how to rebuild the database if an unrecoverable
corruption is found.

For information on optional qualifiers for the command, see the POLYCENTER
Software Installation utility chapter in the HP OpenVMS System Management
Utilities Reference Manual.

3.10.2 Automatic Verification of the Product Database
The PRODUCT INSTALL command has been enhanced to automatically verify
the product database at the start of the operation and again when the product
database is updated. The verification and repair actions are similar to those
provided by the PRODUCT ANALYZE PDB command. Other PRODUCT
commands that modify the database (such as PRODUCT RECONFIGURE
and PRODUCT REMOVE) also perform a verification pass.

3.10.3 Support for ODS-5 Volumes
The PCSI utility now provides full support for enhanced ODS-5 directory and
file specification syntax. Prior to OpenVMS Version 8.3, product kits could be
installed on ODS-5 disks, but all files were placed on the destination volume
using ODS-2 syntax rules (for example, file names were in upper case only).
With ODS-5 support, the kit developer can create a kit that installs files utilizing
enhanced syntax such as:

• Upper, lower, and mixed case names

• Multiple dots in file specifications

• Extended character set

• Long names

The technique used to specify enhanced syntax is to quote the name specification
parameter of the DIRECTORY or FILE statement in the product description file
(PDF). For example, consider a PDF file that contains the following two lines:

file [test]file_one.txt ;
file "[test]File_Two.txt" ;

If the destination disk is an ODS-5 volume, the PCSI utility for OpenVMS Version
8.3 will install the first file as FILE_ONE.TXT and the second file as File_Two.txt.
For compatibility with older versions of the PCSI utility, an unquoted specification
is changed to all uppercase characters.

System Management Features 3–21

System Management Features
3.10 PCSI Utility Enhancements

In addition, the product developer can test whether a volume is ODS-2 or ODS-5
by use of a new PDF statement of the form:

IF (< FILESYSTEM { ODS-2 | ODS-5 } [VOLUME { DESTINATION | SYSTEM }] >) ;

For example, to conditionally process statements if the destination volume is
ODS-5, the following lines can be used:

IF (< FILESYSTEM ods-5 VOLUME destination >) ;

...

END IF ;

3.10.4 Support for Secure Delivery of Product Kits
Several PRODUCT commands have been enhanced to support Secure Delivery of
product kits. See Section 5.2 for an overview of Secure Delivery. The following
capabilities have been added to the PCSI utility:

• All PRODUCT commands that read product kits will validate signed kits
before use if their associated digital signature file (also referred to as a
manifest) is present in the source directory. These commands are PRODUCT
CONFIGURE, COPY, EXTRACT, INSTALL, LIST, RECONFIGURE, and
REGISTER PRODUCT. A digital signature file has the same file name and
file type as the product kit with an "_ESW" appended to the file type. For
example, HP-I64VMS-TEST-V0100–1.PCSI$COMPRESSED_ESW.

• The new PCSI utility can install unsigned kits and older versions of the PCSI
utility can install signed kits except that they will not be validated.

• Kit validation can be disabled by use of the /OPTIONS=NOVALIDATE_KIT
qualifier.

• The PRODUCT COPY command will copy both the specified kits and their
manifest files (if present).

• The PRODUCT SHOW HISTORY command has a new field called VAL which
indicates the validation status of a product. Possible status codes are:

• VAL — kit was successfully validated

• SYS — kit was installed from OS media during an OpenVMS installation
or upgrade, but not validated

• (U) — kit was not validated because it was unsigned

• (M) — kit was not validated because no manifest file was found in the
kit’s source directory

• (D) — kit was not validated because validation was disabled by user
request

• (C) — kit was not validated because CDSA was not operational

• <hyphen> — not applicable for the operation (such as removal of a
product)

• <blank> — operation was performed by a version of the PCSI utility that
does not support secure delivery

• The output from the PRODUCT LIST command contains additional
information such as whether the kit is signed and a manifest file has been
found.

3–22 System Management Features

System Management Features
3.10 PCSI Utility Enhancements

For more information about PRODUCT commands and qualifiers that support
secure delivery, see the POLYCENTER Software Installation utility chapter in
the HP OpenVMS System Management Utilities Reference Manual.

3.10.5 Defaults Changed on Two Qualifiers
In OpenVMS Version 8.3, default values for certain qualifiers are changed for the
following commands:

• PRODUCT INSTALL

The following defaults are changed:

— The /RECOVERY_MODE qualifier is now the default when you install a
product. (This is a change from /NORECOVERY_MODE as the default.)

— The /SAVE_RECOVERY_DATA qualifier is now the default when
you install patch and mandatory update kits. (This is a change from
/NOSAVE_RECOVERY_DATA as the default.)

• PRODUCT RECONFIGURE

The /RECOVERY_MODE qualifier is now the default when you reconfigure a
product. (This is a change from /NORECOVERY_MODE as the default.)

3.11 SANCP Utility
The SANCP utility allows you to limit the number of active I/Os a host may have
across all paths to Logical Unit Numbers (LUN) on a given Fibre Channel storage
port. A storage port can be selected by a discrete or wildcarded port World Wide
ID (WWID) or by a product ID substring.

The SANCP utility processes a command and qualifiers passed to it on the
command line, allowing it to be executed from a DCL script, or it prompts you if
started with no command. For more information about the SANCP utility, see the
SANCP Help facility.

3.12 SAS Utility (I64 Only)
The SAS utility (SAS$UTIL)is an OpenVMS system management and diagnostic
tool that is capable of configuring Integrated RAID (IR) functionality for the HP 8
Internal Port Serial Attached SCSI Host Bus Adapter (SAS Controller).

Integrated RAID (IR) is used where extra performance, storage capacity, or
redundancy of a RAID configuration, or all three, are required. OpenVMS
Version 8.3 supports only Integrated RAID 1 or Integrated Mirroring (IM) and its
associated Global Hot Spare capability.

For more detailed information, see the HP OpenVMS System Management
Utilities Reference Manual.

3.13 SCACP utility
The following new features are added to the SCACP utility in OpenVMS
Version 8.3:

• Data compression

• Multi-gigabit & distance performance scaling

These new features are described in the following sections.

System Management Features 3–23

System Management Features
3.13 SCACP utility

3.13.1 Data Compression Management
The SCACP SET VC command now includes a /COMPRESSION (or
/NOCOMPRESSION) qualifier, which enables or disables sending compressed
data by the specified PEdriver VCs. The default is /NOCOMPRESSION.

You can also enable the VC use of compression by setting bit 3 of the NISCS_
PORT_SERV system parameter. The /NOCOMPRESSION qualifier does not
override compression enabled by setting bit 2 of NISCS_PORT_SERV.

3.13.2 Multi-Gigabit Scaling
You can use the SET VC COMMAND /WINDOW=RECEIVE_SIZE=value and
/WINDOW=TRANSMIT_SIZE=value qualifiers to override the automatically
calculated receive and transmit window sizes for a PEdriver VC. The
/WINDOW=NORECEIVE_SIZE and /WINDOW=NOTRANSMIT_SIZE qualifiers
can be used to remove management override of the window sizes. You can use
/WINDOW=(NORECEIVE_SIZE,NOTRANSMIT_SIZE) to remove the override
from both transmit and receive window sizes with a single command.

These new command qualifiers can be used to ensure that the VC has enough
buffering to receive, and can transmit sufficient packets before waiting for return
acknowledgments, to attain maximum bandwidth between nodes. To avoid
unnecessary VC closures, these commands have restrictions on the order that
they are issued. For information about these restrictions, see the HP OpenVMS
System Management Utilities Reference Manual and the SCACP Help facility.

The new SCACP command, CALCULATE WINDOW_SIZE, can be used to
determine the maximum window size that the VC should be using. This
command has two required qualifiers, /DISTANCE=KILOMETERS (or MILES)=n
and /SPEED=s, where n is the cable route distance between the two nodes, and s
is the total bandwidth of all links being used for cluster communications between
the nodes.

The SCACP SHOW VC command now displays if compression is enabled on a VC,
and there are new columns for the management settings for transmit and receive
window size.

For more information, see the SCACP utility chapter, and NISCS_PORT_SERV
in the HP OpenVMS System Management Utilities Reference Manual and HP
OpenVMS Availability Manager User’s Guide.

3.14 HP OpenVMS I64 Serial Multiplexer (MUX) Support (I64 Only)
RS232 serial lines and multiplexers are used for a variety of tasks, from
traditional terminal connections to low-speed system-to-system communications
and even communications with remote instruments. OpenVMS has traditionally
supported adding serial lines at the same time as option-card-based multiplexers.
This solution requires dedicating I/O slots; it also limits the choices of option
cards available.

With the widespread adoption of the Universal Serial Bus (USB) on industry-
standard platforms, OpenVMS has moved away from option-card-based
multiplexers and has adopted USB to add serial lines to HP Integrity servers.
Rather than using one or two option-card solutions with 8 or 16 lines for all
configurations, you can now configure USB to meet your exact requirements.

Testing shows that the USB-based serial multiplexers perform as well as (or
better than) their option-card counterparts and cause very low overhead to the
system. In fact, the overhead is lower than option-card-based multiplexers.

3–24 System Management Features

System Management Features
3.14 HP OpenVMS I64 Serial Multiplexer (MUX) Support (I64 Only)

For more information about HP MUX support, see the HP OpenVMS System
Management Utilities Reference Manual.

3.15 Spinlock Trace Utility (SPL)
The Spinlock Trace utility available through SDA has been changed to report
the various spinlock hold and wait times in nanoseconds instead of cycles. This
allows for easy comparison of information collected among systems with different
cycle counter frequencies.

The display has also been enhanced to show the full 64-bit address of PCs as
we are moving code to run in P2 and S2 space. Also the decoding of the PC
address has been enhanced to show the module, routine and offset for I64. The
SPL ANALYZE and SPL SHOW COLLECT commands displays the additional PC
decoding by default, but SPL SHOW TRACE [/SUMMARY] shows the information
only if the /FULL qualifier is specified because the display is already congested.

3.16 HP OpenVMS System Analysis Tools
The following sections describe the new features provided in the System Analysis
Tools utilities. The HP OpenVMS System Analysis Tools Manual is not updated
for this release, but the additions and changes noted in this manual and in the
HP OpenVMS Version 8.3 Release Notes have been included in online help for
the SDA utility and in related commands for ANALYZE and System Service
Logging.

3.16.1 System Dump Debugger
The System Dump Debugger (SDD) is now supported on OpenVMS for Integrity
servers as well as on OpenVMS Alpha.

3.16.2 System Dump Analyzer
The following sections describe the following new SDA or SDA extension
commands and new callable routine extensions, as well as several new qualifiers
for SDA commands:

• COLLECT command

• SHOW CLASS command

• SHOW EFI command

• SHOW VHPT command

• VALIDATE POOL command

• VALIDATE PROCESS command

• CLUE REGISTER

• CLUE SCSI

• SDA$CBB_BOOLEAN_OPER routine

• SDA$CBB_CLEAR_BIT routine

• SDA$CBB_COPY routine

• SDA$CBB_FFC routine

• SDA$CBB_FFS routine

• SDA$CBB_INIT routine

System Management Features 3–25

System Management Features
3.16 HP OpenVMS System Analysis Tools

• SDA$CBB_SET_BIT routine

• SDA$CBB_TEST_BIT routine

• SDA$DELETE_PREFIX routine

• SDA$FID_TO_NAME routine

• SDA$GET_FLAGS routine

The Common Bitmask Block (CBB) routines, SDA$CBB_xxx, are designed for use
with local copies of the CBB structures that describe the CPUs in use in a system.
The CBB structures are assumed to be at least CBB$K_STATIC_BLOCK bytes
in length. The definitions of the various CBB constants and field names used by
these routines can be found in CBBDEF.H in SYS$LIBRARY:SYS$LIB_C.TLB.

The set of routines is not intended to be an exhaustive set of all possible CBB-
related operations, but provides those operations known to be needed. They may
not work as expected with CBB structures set up for any purpose other than to
describe CPUs.

3–26 System Management Features

COLLECT

COLLECT

Collects file identification to file name translation data on both OpenVMS Alpha
and OpenVMS for Integrity servers, and processes unwind data only on OpenVMS
for Integrity servers.

Format

COLLECT [qualifiers]

Parameters

None

Qualifiers

/LOG
Displays information on the progress of the COLLECT command, for example,
the name of the process being scanned, or (on Integrity servers) the name of an
image whose unwind data is being collected.

/SAVE [= file-name]
Writes collection data to a separate file. By default, a file of type .COLLECT with
the same name as the dump file is created in the same directory as the dump file.

/UNDO
Removes all the file or unwind data from an earlier COLLECT command from
SDA’s memory. COLLECT/UNDO does not affect the file or unwind data already
appended to the dump file being analyzed, or already written to a separate
collection file.

Description

When a dump is being analyzed, it is useful to have data available that cannot
be written to the dump file at the time of the system crash. This data includes
the full file specification associated with a file identification. On OpenVMS
for Integrity servers, it also contains the unwind data for images activated in
processes.

If the dump is being analyzed on the system where it is originally written,
this data can be collected for use in the current SDA session using the
COLLECT command. If the dump is being copied for analysis elsewhere, the
COPY/COLLECT command can be used to collect the data and append it to the
copy being written. If the COPY/COLLECT command is used after a COLLECT
command, the data already collected is appended to the dump copy.

For all file or unwind data to be collected successfully, all disks that were
mounted at the time of the system crash should be remounted and accessible to
the process running SDA.

If the COPY and the COLLECT cannot be done as a single step, a
COLLECT/SAVE command writes the collection to a separate file that can be
used later with the dump file. A subsequent COPY command combines the two
files.

System Management Features 3–27

SHOW CLASS

SHOW CLASS

Displays information about scheduling classes that are active in the system or
dump being analyzed.

Format

SHOW CLASS [class-name | /ALL]

Parameters

class-name
Name of the class to be displayed.

Qualifiers

/ALL
Indicates that details of all active classes are to be displayed.

Description

SDA displays information about active scheduling classes in the system. By
default, a summary of the classes is displayed.

3–28 System Management Features

SHOW EFI (I64 Only)

SHOW EFI (I64 Only)

Displays information from the Extensible Firmware Interface (EFI) data
structures. Currently, the only display provided by SDA is the EFI memory
map.

Format

SHOW EFI /MEMMAP [=ALL] [range]

Parameters

range
The entry or range of entries to be displayed, expressed using the following
syntax:

m—Displays the entry m.
m:n—Displays the entries from m to n.
m;n—Displays n entries starting at m.

You cannot specify a range with /MEMMAP=ALL.

Qualifiers

/MEMMAP [=ALL]
Displays the EFI memory map. This qualifier is required. By default, only
entries in the EFI memory map with the runtime attribute are displayed. If the
/MEMMAP=ALL qualifier is specified, all entries are displayed.

You cannot specify the /MEMMAP=ALL qualifier and supply a range of entries to
be displayed.

Description

SDA locates the EFI memory map in the system or dump and displays the
contents. If no range is given, SDA also displays information about the location
and size of the memory map.

System Management Features 3–29

SHOW VHPT (I64 Only)

SHOW VHPT (I64 Only)

Displays data from the Virtual Hash Page Table.

Format

SHOW VHPT [/CPU = { n | * } [/ALL] [range]]

Parameters

range
The entry or range of entries to be displayed, expressed using the following
syntax:

m—Displays the VHPT entry m.
m:n—Displays the VHPT entries from m to n.
m;n—Displays n VHPT entries starting at m.

A range can only be provided if a single CPU is specified with the /CPU qualifier.

Qualifiers

/CPU = { n | * }
Indicates that the detailed contents of the VHPT for one or all CPUs is to be
displayed. The default action is for a summary of VHPT information to be
displayed.

/ALL
Displays all VHPTs for the specified CPU(s). Without /ALL, only entries that
have a valid tag are displayed.

Description

Displays contents of the Virtual Hash Page Table on an OpenVMS I64 system.
By default, a summary of the VHPT entries is displayed. If CPUs are specified,
details of individual VHPT entries are displayed for the CPUs. If a single CPU is
specified, specific VHPT entries for that CPU are displayed.

In the detailed display, the columns are as follows:

3–30 System Management Features

SHOW VHPT (I64 Only)

Table 3–3

Entry VHPT Entry Number

Bits One or more of the following flags:

P—Present
A—Accessed
D—Dirty
E—Exception deferral
I—Tag invalid (only seen if /ALL is specified)

MA One of the following memory attributes:

WB—Write Back
UC—Uncacheable
UCE—Uncacheable Exported
WC—Write Coalescing
NaT—NaTPage

AR/PL The access rights and privilege level of the page.
Consists of a number (0-7) and a letter (K, E, S, or
U) that determines access to the page in each mode.

KESU The access allowed to the page in each mode. This is
an interpretation of the AR/PL values in the previous
column. For an explanation of the access codes, see HP
OpenVMS System Analysis Tools Manual.

Physical address The starting physical address for this VHPT entry.
Page size The size of the page represented by this VHPT entry.

Page sizes for VHPT entries range from 4KB to 4GB.
Not all possible pages sizes are used by OpenVMS for
Integrity servers.

Tag The translation tag for the VHPT entry.
Quad4 Information recorded by OpenVMS for Integrity servers

for debugging purposes. The contents of this quadword
are subject to change.

System Management Features 3–31

VALIDATE POOL

VALIDATE POOL

Checks all free pool packets for POOLCHECK-style corruption, using the same
algorithm as the system pool allocation routines when generating a POOLCHECK
bugcheck and system dump.

Format

VALIDATE POOL { /ALL (d) | /BAP | /NONPAGED | /PAGED }
[/HEADER | /MAXIMUM_BYTES [= n] /SUMMARY]

Parameters

None

Qualifiers

/ALL
Checks free packets for all pool types (nonpaged pool, paged pool, and bus-
addressable pool). This is the default.

/BAP
Checks free packets in bus-addressable pool.

/HEADER
Displays only the first 16 bytes of any corrupted free packets found.

/MAXIMUM_BYTES[=n]
Displays only the first n bytes of any corrupted free packets found. If you specify
/MAXIMUM_BYTES without a value, the default is 64 bytes.

/NONPAGED
Checks free packets in nonpaged pool.

/PAGED
Checks free packets in paged pool.

/SUMMARY
Displays only a summary of corrupted pool packets found.

Description

The VALIDATE POOL command displays information about corrupted free
pool packets. It is useful only if pool checking is enabled using either the
POOLCHECK or the SYSTEM_CHECK system parameters. (For information
about these system parameters, see the HP OpenVMS System Management
Utilities Reference Manual).

3–32 System Management Features

VALIDATE PROCESS

VALIDATE PROCESS

Performs validation of process data structures. Currently, the only validation
available is to check free process pool packets for POOLCHECK-style corruption,
using the same algorithm as the system pool allocation routines when generating
a POOLCHECK bugcheck and system dump.

Format

VALIDATE PROCESS/POOL [= { P0 | P1 | IMGACT | ALL (d) }]
[/ADDRESS = pcb-address | process name | ALL
| /ID = nn | /INDEX = nn | /NEXT | /SYSTEM]
[/HEADER | /MAXIMUM_BYTES [= n]
/SUMMARY]

Parameters

ALL
Indicates that all processes in the system are to be validated.

process-name
Name of the process to be validated. The process name can contain up to 15
uppercase letters, numerals, an underscore (_), dollar sign ($), colon (:), and
some other printable characters. If it contains any other characters (including
lowercase letters), you might need to enclose the process name in quotation marks
(" ").

Qualifiers

/ADDRESS = pcb-address
Specifies the process control block (PCB) address of the process to be validated.

/HEADER
Displays only the first 16 bytes of any corrupted free packets found.

/ID = nn
/INDEX = nn
Specifies the process to be validated by its index into the system’s list of software
PCBs, or by its process identification. You can supply the following values for nn:

• Process index itself.

• Process identification (PID) or extended PID longword, from which SDA
extracts the correct index. The PID or extended PID of any thread of a
process with multiple kernel threads can be specified. Any thread-specific
data displayed by further commands is for the given thread.

To obtain these values for any given process, issue the SDA command SHOW
SUMMARY/THREADS. The /ID=nn and /INDEX=nn qualifiers can be used
interchangeably.

/MAXIMUM_BYTES[=n]
Displays only the first n bytes of any corrupted free packets found. If you specify
/MAXIMUM_BYTES without a value, the default is 64 bytes.

System Management Features 3–33

VALIDATE PROCESS

/NEXT
Causes SDA to locate the next process in the process list and validate that
process. If there are no further processes in the process list, SDA returns an
error.

/POOL[= { P0 | P1 | IMGACT | ALL (d) }]
Process pool validation is to be performed. This qualifier is required. Use of a
keyword on the /POOL qualifier allows the user to specify which process pool is
to be validated (P0, P1, or Image Activator Pool). The default is to validate all
process pools.

/SUMMARY
Displays only a summary of corrupted pool packets found.

/SYSTEM
This qualifier is provided for compatibility with SET PROCESS/SYSTEM and
SHOW PROCESS/SYSTEM. There is no pool associated with the system process
that can be validated. SDA sets its current process context to the system process
and outputs the following text:

Options ignored for System process: POOL

Description

The VALIDATE PROCESS command validates the process specified by process-
name, the process specified in the /ID or /INDEX qualifier, the next process in
the system’s process list, the system process, or all processes. The VALIDATE
PROCESS command performs an implicit SET PROCESS command under
certain uses of its qualifiers and parameters, as noted previously. By default, the
VALIDATE PROCESS command validates the SDA current process, as defined in
HP OpenVMS System Analysis Tools Manual.

Currently, the only validation available is to check free pool packets for
POOLCHECK-style corruption. The command is useful only if pool checking
is enabled using either the POOLCHECK or the SYSTEM_CHECK system
parameters. (For information on these system parameters, see the HP OpenVMS
System Management Utilities Reference Manual.

If a process is specified using process-name, /ADDRESS, /ID, /INDEX, /NEXT, or
/SYSTEM, that process becomes the SDA current process for future commands.

3–34 System Management Features

CLUE REGISTER

CLUE REGISTER

Displays the active register set for the crash CPU. The CLUE REGISTER
command is valid only for analyzing crash dumps.

Format

CLUE REGISTER [/CPU [cpu-id | ALL]
| /PROCESS [/ADDRESS=n | INDEX=n
| /IDENTIFICATION=n | process-name | ALL]]

Parameters

ALL
When used with /CPU, it requests information about all CPUs in the system.
When used with /PROCESS, it requests information about all processes that exist
in the system.

cpu-id
When used with /CPU, it gives the number of the CPU for which information
is to be displayed. Use of the cpu-id parameter causes the CLUE REGISTER
command to perform an implicit SET CPU command, making the indicated CPU
the current CPU for subsequent SDA commands.

process-name
When used with /PROCESS, it gives the name of the process for which
information is to be displayed. Use of the process-name parameter, the
/ADDRESS qualifier, the /INDEX qualifier, or the /IDENTIFICATION qualifier
causes the CLUE REGISTER command to perform an implicit SET PROCESS
command, making the indicated process the current process for subsequent SDA
commands. You can determine the names of the processes in the system by
issuing the SHOW SUMMARY command.

The process-name can contain up to 15 letters and numerals, including the
underscore (_) and dollar sign ($). If it contains any other characters, you must
enclose the process-name in quotation marks (" ").

Qualifiers

/ADDRESS=n
Specifies the PCB address of the desired process when used with CLUE
REGISTER/PROCESS.

/CPU [cpu-id | ALL]
Indicates that the registers for a CPU are required. Specify the CPU by its
number or use ALL to indicate all CPUs.

/IDENTIFICATION=n
Specifies the identification of the desired process when used with CLUE
REGISTER/PROCESS.

/INDEX=n
Specifies the index of the desired process when used with CLUE
REGISTER/PROCESS.

System Management Features 3–35

CLUE REGISTER

/PROCESS [process-name | ALL]
Indicates that the registers for a process are required. The process should be
specified with either one of the qualifiers /ADDRESS, /IDENTIFICATION, or
/INDEX, or by its name, or by using ALL to indicate all processes.

Description

The CLUE REGISTER command displays the active register set of the crash
CPU. It also identifies any known data structures, symbolizes any system virtual
addresses, interprets the processor status (PS), and attempts to interpret R0 as a
condition code.

If neither /CPU nor /PROCESS is specified, the parameter (cpu-id or process-
name) is ignored and the registers for the SDA current process are displayed.

3–36 System Management Features

CLUE SCSI

CLUE SCSI

Displays information related to SCSI and Fibre Channel.

Format

CLUE SCSI {/CONNECTION=n | /PORT=n | /REQUEST=n | /SUMMARY}

Qualifiers

/CONNECTION=scdt-address
Displays information about SCSI connections and decodes the SCSI connection
descriptor data structure identified by the SCDT address.

/PORT=spdt-address
Displays all or a specific port descriptor identified by its SPDT address.

/REQUEST=scdrp-address
Displays information about SCSI requests and decodes the SCSI class driver
request packet identified by the SCDRP address.

/SUMMARY
Displays a summary of all SCSI and FC ports and devices and their type and
revisions.

System Management Features 3–37

System Management Features
SDA$CBB_BOOLEAN_OPER

SDA$CBB_BOOLEAN_OPER

Performs a Boolean operation on a pair of CBBs.

Format

int sda$cbb_boolean_oper (CBB_PQ input_cbb, CBB_PQ output_cbb, int
operation);

Arguments

input_cbb
OpenVMS usage address
type CBB structure
access read only
mechanism by reference

The address of the first (input) CBB structure.

output_cbb
OpenVMS usage address
type CBB structure
access read/write
mechanism by reference

The address of the second (output) CBB structure.

operation
OpenVMS usage longword
type longword (unsigned)
access read only
mechanism by value

The desired operation from the following list:

• CBB$C_OR—The logical sum of the two CBBs is performed and the result (B
= A | B) is written to the output CBB.

• CBB$C_BIC—The logical product with complement of the two CBBs is
performed and the result (B = B & ~A) is written to the output CBB.

Description

The desired Boolean operation is performed on the two CBB structures, and the
result is written to the second (output) structure.

Condition Values Returned

SS$_WASCLR The value 0 is returned if no bits are set in the
resulting output CBB.

SS$_WASSET The value 1 is returned if any bit is set in the
resulting output CBB.

SS$_BADPARAM The number of valid bits in the input and output
CBBs are different.

3–38 System Management Features

System Management Features
SDA$CBB_CLEAR_BIT

SDA$CBB_CLEAR_BIT

Clears the specified bit in a CBB.

Format

int sda$cbb_clear_bit (CBB_PQ cbb, int bit);

Arguments

cbb
OpenVMS usage address
type CBB structure
access read/write
mechanism by reference

The address of the CBB structure to be modified.

bit
OpenVMS usage longword
type longword (unsigned)
access read only
mechanism by value

The bit in the CBB to be cleared. If the bit number is -1, clears all bits.

Description

The specified bit (or all bits) in the CBB is cleared.

Condition Values Returned

SS$_NORMAL Successful completion
SS$_BADPARAM The bit number is out of range

System Management Features 3–39

System Management Features
SDA$CBB_COPY

SDA$CBB_COPY

Copies the contents of one CBB to another.

Format

int sda$cbb_copy (CBB_PQ input_cbb, CBB_PQ output_cbb);

Arguments

input_cbb
OpenVMS usage address
type CBB structure
access read only
mechanism by reference

The address of the CBB structure to be copied.

output_cbb
OpenVMS usage address
type CBB structure
access write only
mechanism by reference

The address of the CBB structure to receive the copy.

Description

The specified CBB is copied.

Condition Values Returned

None

3–40 System Management Features

System Management Features
SDA$CBB_FFC

SDA$CBB_FFC

Locates the first clear bit in a CBB.

Format

int sda$cbb_ffc (CBB_PQ cbb, int start_bit);

Arguments

cbb
OpenVMS usage address
type CBB structure
access read only
mechanism by reference

The address of the CBB structure to be searched.

start_bit
OpenVMS usage longword
type longword (unsigned)
access read only
mechanism by value

The first bit in the CBB to be checked.

Description

The CBB structure is searched, starting at the specified bit, for a clear bit.

Condition Values Returned

Bit_number If a clear bit is found, its bit number is returned.
If no clear bit is found (all bits from start_bit to
cbb->cbb$l_valid_bits are set), then the number
of valid bits is returned.

System Management Features 3–41

System Management Features
SDA$CBB_FFS

SDA$CBB_FFS

Locates the first set bit in a CBB.

Format

int sda$cbb_ffs (CBB_PQ cbb, int start_bit);

Arguments

cbb
OpenVMS usage address
type CBB structure
access read only
mechanism by reference

The address of the CBB structure to be searched.

start_bit
OpenVMS usage longword
type longword (unsigned)
access read only
mechanism by value

The first bit in the CBB to be checked.

Description

The CBB structure is searched, starting at the specified bit, for a set bit.

Condition Values Returned

Bit_number If a set bit is found, its bit number is returned.
If no set bit is found (all bits from start_bit to
cbb->cbb$l_valid_bits are clear), then the number
of valid bits is returned.

3–42 System Management Features

System Management Features
SDA$CBB_INIT

SDA$CBB_INIT

Initializes a CBB structure to a known state.

Format

void sda$cbb_init (CBB_PQ cbb);

Arguments

cbb
OpenVMS usage address
type CBB structure
access read only
mechanism by reference

The address of the CBB structure to be initialized.

Description

The fields of the CBB that describe its layout are initialized as necessary for a
CPU CBB. The actual bitmask is zeroed.

Condition Values Returned

None

System Management Features 3–43

System Management Features
SDA$CBB_SET_BIT

SDA$CBB_SET_BIT

Sets the specified bit in a CBB.

Format

int sda$cbb_set_bit (CBB_PQ cbb,int bit);

Arguments

cbb
OpenVMS usage address
type CBB structure
access read/write
mechanism by reference

The address of the CBB structure to be modified.

bit
OpenVMS usage longword
type longword (unsigned)
access read only
mechanism by value

The bit in the CBB to be set. If the bit number is -1, set all bits.

Description

The specified bit (or all bits) in the CBB is set.

Condition Values Returned

SS$_NORMAL Successful completion.
SS$_BADPARAM The bit number is out of range.

3–44 System Management Features

System Management Features
SDA$CBB_TEST_BIT

SDA$CBB_TEST_BIT

Tests the specified bit in a CBB.

Format

int sda$cbb_test_bit (CBB_PQ cbb,int bit);

Arguments

cbb
OpenVMS usage address
type CBB structure
access read only
mechanism by reference

The address of the CBB structure to be tested.

bit
OpenVMS usage longword
type longword (unsigned)
access read only
mechanism by value

The bit in the CBB to be tested.

Description

The specified bit in the CBB is tested and its value returned.

Condition Values Returned

SS$_WASSET The specified bit was set.
SS$_WASCLR The specified bit was clear.
SS$_BADPARAM The bit number is out of range.

System Management Features 3–45

System Management Features
SDA$DELETE_PREFIX

SDA$DELETE_PREFIX

Deletes all symbols with the specified prefix.

Format

void sda$delete_prefix (char *prefix);

Arguments

prefix
OpenVMS usage char_string
type character string
access read only
mechanism by reference

The address of the prefix string.

Description

This routine searches the SDA symbol table and deletes all symbols that begin
with the specified string.

Condition Values Returned

None

3–46 System Management Features

System Management Features
SDA$FID_TO_NAME

SDA$FID_TO_NAME

Translates a file identification (FID) into the equivalent file name.

Format

int sda$fid_to_name (char *devptr, unsigned short *fidptr, char *bufptr, int buflen);

Arguments

devptr
OpenVMS usage char_string
type character string
access read only
mechanism by reference

The address of the device name string. The device name must be supplied in
allocation-class device name (ALLDEVNAM) format, but any leading underscores
or trailing colons are ignored.

fidptr
OpenVMS usage address
type file identification
access read only
mechanism by reference

The address of the three-word file identification.

bufptr
OpenVMS usage char_string
type character string
access write only
mechanism by reference

The address of a string buffer into which to store the file name string.

buflen
OpenVMS usage longword
type longword (unsigned)
access read only
mechanism by value

The maximum length of the string buffer.

Description

When analyzing the current system, this routine calls LIB$FID_TO_NAME to
translate the file identification into a file name. When analyzing a dump, if there
is a file data collection available and the specified disk and file identification
is included in the collection, the recorded file name is returned. If there is no
collection (for the entire system, this disk, or just this file), this routine returns
the error condition SDA$_NOCOLLECT.

System Management Features 3–47

System Management Features
SDA$FID_TO_NAME

Condition Values Returned

SDA$_SUCCESS File identification successfully translated.
SDA$_COLLECT No collection available for the system, the

specified disk, or the file identification.
Others An error occurred when LIB$FID_TO_NAME

was called.

3–48 System Management Features

System Management Features
SDA$GET_FLAGS

SDA$GET_FLAGS

Obtains environment flags that indicate how SDA is being used.

Format

int sda$get_flags (SDA_FLAGS *flagaddr);

Arguments

flagaddr
OpenVMS usage address
type SDA_FLAGS structure
access write only
mechanism by reference

The address of the location where the environment flags are to be returned.

Description

SDA provides a set of flag bits that indicate whether it is being used to analyze
the current system, a system dump, a process dump, and so on. The set of bits is
defined in SDA_FLAGSDEF.H in SYS$LIBRARY:SYS$LIB_C.TLB.

Condition Values Returned

None

System Management Features 3–49

System Management Features
SDA$GET_FLAGS

3.16.3 ANALYZE Command Qualifier
The new SDA ANALYZE command /COLLECTION qualifier indicates to SDA
that the file ID translation data or unwind data can be found in a separate file.
If you specify this qualifier, it should follow the /CRASH_DUMP qualifier in the
command string. Use the following format:

/CRASH_DUMP/COLLECTION = collection-file-name

SDA can provide additional information when analyzing a dump if a collection
has been made of file identification translation data (on both OpenVMS Alpha and
OpenVMS for Integrity servers) and of unwind data (on OpenVMS for Integrity
servers only). This data is usually saved when the dump file is copied using the
SDA COPY/COLLECT command, but it can be saved to a separate file using the
COLLECT/SAVE command.

By default, COLLECT/SAVE creates a .COLLECT file with the same name and
in the same directory as the dump file. A subsequent ANALYZE/CRASH_DUMP
command uses this file automatically. If the collection file is in a different
location or if the collection previously appended to the dump file is incomplete
(for example, a disk was not mounted at the time of the SDA COPY), the
/COLLECTION qualifier can be used to specify an alternate collection file.

At least one field of the collection file name must be specified, and other fields
default to the highest generation of the same file name and location as the dump
file, with a file type of .COLLECT.

3.16.4 DUMP Command Qualifiers
The SDA DUMP command has the following new qualifiers:

• /BYTE—Outputs each data item as a byte.

• /NOSUPPRESS—Indicates that SDA should not suppress leading zeroes
when displaying data in hexadecimal format.

• /WORD—Outputs each data item as a WORD.

3.16.5 SEARCH Command Qualifier
The SDA SEARCH command has the new /IGNORE_CASE qualifier, which
indicates to SDA that, when searching for a string, the case of any alphabetic
characters should be ignored. The default behavior is to search for an exact
match. This qualifier is ignored for value searches.

3.16.6 New SHOW CLUSTER Command Qualifier
The SDA SHOW CLUSTER command has the new /CIRCUIT=pb-addr qualifier,
which displays only the OpenVMS Cluster system information for a specific
path, where pb-addr is the address of its path block. This qualifier is mutually
exclusive with the /ADDRESS=n, /CSID=csid, and /NODE=name qualifiers. If
you specify the /CIRCUIT=pb-addr qualifier, the SHOW CLUSTER command
displays only the information from the specified path block.

3.16.7 SHOW CRASH Qualifier
The SDA SHOW CRASH command has the new /ALL qualifier, which displays
exception data for all CPUs. By default, the registers (on Alpha) or exception
frame contents (on Integrity servers) are omitted from the display for any CPUs
with CPUEXIT or DBGCPUEXIT bugchecks.

3–50 System Management Features

System Management Features
SDA$GET_FLAGS

3.16.8 SHOW DUMP Command Qualifiers
The following new qualifiers have been added to the SHOW DUMP command:

• /COLLECTION[= { ALL | n }]

Displays the contents of the file identification and/or unwind data collection
appended to a copy of the dump using COPY/COLLECT or written to a
separate collection file using COLLECT/SAVE. By default, a summary of the
collection is displayed. You can specify that the details of a single entry or all
entries are to be displayed. The n is the start block number of the collection
entry, as displayed in the collection summary.

• /FILE= { COLLECTION | DUMP }

If a separate collection file is in use, the /FILE qualifier indicates to which file
the SHOW DUMP command applies. By default, SHOW DUMP/SUMMARY,
SHOW DUMP/HEADER, SHOW DUMP/COLLECTION and SHOW
DUMP/ALL commands apply to both files. By default, SHOW DUMP/BLOCK
applies to the dump file. All other qualifiers can apply only to the dump file.

3.16.9 SDA SHOW PROCESS Qualifier
The SDA SHOW PROCESS command has the new /CHECK qualifier, which
checks all free process pool packets for POOLCHECK-style corruption,in exactly
the same way that the system does when generating a POOLCHECK crash
dump.

3.16.10 Keywords Added to SHOW RESOURCES/STATUS Command
The following new keywords have been added to the SHOW
RESOURCES/STATUS qualifier:

• RM_FORCE—Forced tree move

• RM_FREEZE—Freeze resource tree on this node

• RM_INTEREST—Remaster due to master having no interest

• XVAL_VALID—Last value block was long block

3.16.11 SHOW UNWIND Qualifier
The SDA SHOW UNWIND command has the new qualifier, /IMAGE=name,
which displays the details of every unwind descriptor for the specified system
images (wildcards allowed).

3.17 System Parameters
A number of system parameters are introduced in OpenVMS Version 8.3. The
following table contains brief descriptions of these new parameters. (More
detailed descriptions of the parameters are in the HP OpenVMS System
Management Utilities Reference Manual.)

Parameter Description

EXECSTACKPAGES (Alpha and I64) EXECSTACKPAGES controls the number of
pages allocated for each RMS exec stack.

System Management Features 3–51

System Management Features
3.17 System Parameters

Parameter Description

GB_CACHEALLMAX (Alpha and I64) If a file is connected to RMS with the RMS
global buffer DEFAULT option enabled, the number of blocks
cached is either a maximum of the GB_CACHEALLMAX
parameter or a percentage of the file, whichever results in a
larger global count.

GB_DEFPERCENT (Alpha and I64) If a file is connected to RMS with the RMS
global buffer ‘‘DEFAULT’’ option enabled, either a percentage
(GB_DEFPERCENT) of the file is cached or up to GB_
CACHEALLMAX blocks of it are cached, whichever results
in a larger global buffer count.

IO_PRCPU_BITMAP (Alpha and I64) This parameter forms a bitmap representing
up to 1024 CPUs. Bits set in this bitmap indicate CPUs
that are available for use as Fast Path preferred CPUs. IO_
PRCPU_BITMAP defaults to all bits set. (CPU 0 through CPU
1023 are all enabled for Fast Path port assignment.)

You may want to disable the primary CPU from serving
as a preferred CPU by leaving its bit clear in IO_PRCPU_
BITMAP. This reserves the primary CPU for non-Fast-Path IO
operations to use.

LOCKRMWT Can have a value from 0 to 10 and defaults to 5. Remaster
decisions are based on the difference in lock remaster weights
between the master and a remote node. LOCKRMWT is a
dynamic parameter.

SCD_HARD_OFFLD The scheduler hard off-load parameter is a CPU bitmask
parameter. The bits correspond to CPU IDs. For any bit set,
the OpenVMS scheduler does not schedule processes on this
CPU unless the process has hard affinity set for the CPU. The
bit corresponding to the primary CPU is ignored. SCH_HARD_
OFFLD is a DYNAMIC parameter.

SCH_SOFT_OFFLD The scheduler soft off-load parameter is a CPU bitmask
parameter. The bits correspond to CPU IDs. For any bit set,
the OpenVMS scheduler tries to avoid scheduling processes
on this CPU. However, if no other idle CPUs exist, processes
are still scheduled on this CPU. SCH_SOFT_OFFLD is a
DYNAMIC parameter.

SCHED_FLAG This special parameter is used by HP and is subject to change.
Do not change this parameter unless HP recommends that you
do so.

SMP_CPU_BITMAP (Alpha and I64) This parameter indicates that the
corresponding CPU is a bitmap representing up to 1024 CPUs.
Each bit set in this bitmap indicates that the corresponding
CPU automatically attempts to join the active set in an
OpenVMS symmetric multiprocessing environment when
the instance is booted.

VCC_PAGESIZE (Alpha and I64) VCC_PAGESIZE is a special parameter
reserved for HP use only. Extended File Cache intends to
use this parameter in future versions.

VCC_RSVD (Alpha and I64) VCC_RSVD is a special parameter reserved
for HP use only. Extended File Cache intends to use this
parameter in future versions.

3–52 System Management Features

System Management Features
3.18 System Service Logging Enhancements

3.18 System Service Logging Enhancements
The system service logging (SSLOG) mechanism has been enhanced for OpenVMS
Version 8.3:

• When a system service request is logged, the CPU, kernel thread, and POSIX
threads IDs from which the service was requested are now recorded.

The ANALYZE/SSLOG utility displays this new information with other
details from each entry.

You can selectively display entries based on these characteristics through new
/SELECT values:

Value Description

CPU CPU ID

KTID Kernel thread ID

TID POSIX thread ID

• It is possible to have system service requests logged only to the process’s
buffers and not to a file. This is, however, of very limited use and not
recommended, because accessing any of the information logged would require
finding the logging buffers in memory or in a crashdump and formatting them
manually.

You specify this type of logging through a new value for the SET
PROCESS/SSLOG qualifier FLAGS value:

SET PROCESS/SSLOG=(STATE=ON[, FLAGS=[NO]FILE])

The default value for this flags is FILE.

• A process can be created with system service logging enabled. This happens
automatically when a process with logging enabled creates a subprocess:
logging characteristics of the parent are propagated to the child.

Also, you can explicitly create a process with logging enabled with a new
$RUN command qualifier. The syntax for the RUN command is

RUN /SSLOG_ENABLE=([COUNT=x][,SIZE=y]
[,FLAGS=([NO]ARG,[NO]FILE))]

Alternatively, you can request the $CREPRC system service with the
following new parameters:

– Flag PRC$M_SSLOG_ENABLE in argument stsflag, when set, requests
that system service logging be enabled in the new process.

– You can specify logging characteristics through item list entry types
PRCC_SSLOG_FLAGS, PRCC_SSLOG_BUFSIZE, and PRC$C_
SSLOG_BUFCNT.

Regardless of how the process is created, logging does not begin until after
the process’s first image has been fully activated.

System service logging is described in detail in the HP OpenVMS System Analysis
Tools Manual.

System Management Features 3–53

System Management Features
3.19 SYS$ACM-Enabled LOGINOUT.EXE and SETP0.EXE Images for LDAP Authentication

3.19 SYS$ACM-Enabled LOGINOUT.EXE and SETP0.EXE Images
for LDAP Authentication

Important

The images described in this section are ‘‘pre-production’’ images and are
not qualified for production use. Once additional rigorous ‘‘production-
quality’’ testing and qualification is completed, a maintenance update
(ECO) will be made available to allow for production use deployments of
the SYS$ACM-enabled loginout and setp0 images.

This release provides optional LOGINOUT.EXE and SETP0.EXE (SET
PASSWORD) images that use the SYS$ACM system service for user
authentication and password changes.

When these images are used, login and password change requests are sent to the
SYS$ACM service and handled by the ACME_SERVER process’s authentication
agents.

A VMS authentication agent is configured by default to service standard VMS
login and password-change requests. In addition, you can install an LDAP
authentication agent that services login and password-change requests using an
LDAP version 3 directory server.

For more information, see the SYS$HELP:ACME_DEV_README.TXT file.

3.20 Time Zones Added
OpenVMS Version 8.3 provides 544 time zones based on the time-zone public
database named tzdata2006b. Five new time zones have been added in OpenVMS
Version 8.3:

Australia/Currie
America/Coral_Harbour
America/Indiana/Vincennes
America/Indiana/Petersburg
America/Moncton

An additional 12 time zones were added in Version 8.2–1 but were not
documented:

America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Comodrivadavia
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/San_Juan
America/Argentina/Tucuman
America/Argentina/Ushuaia
Europe/Mariehamn

These new time zones will be added to an appendix in the HP OpenVMS System
Manager’s Manual the next time it is updated.

3–54 System Management Features

System Management Features
3.20 Time Zones Added

The following time zones have been deleted:

• SystemV/AST4ADT

• SystemV/EST5EDT

• SystemV/CST6CDT

• SystemV/MST7MDT

• SystemV/PST8PDT

• SystemV/YST9YDT

• SystemV/AST4

• SystemV/EST5

• SystemV/CST6

• SystemV/MST7

• SystemV/PST8

• SystemV/YST9

• SystemV/HST10

Note

With the passage of the Energy Policy Act in 2005 in the United States,
starting in March 2007; daylight saving time (DST) will begin on the
second Sunday in March (instead of the current first Sunday in April).
DST will end on the first Sunday in November (instead of the current last
Sunday in October). The latest time-zone rules have been incorporated
into OpenVMS Version 8.3.

Patch kits for OpenVMS Versions 7.3–2, 8.2, and 8.2–1 are provided on
the OpenVMS Alpha Version 8.3 Operating System CD and the OpenVMS
for Integrity servers Version 8.3 DVD.

3.21 Virtual LAN (VLAN) Support in OpenVMS
Virtual LAN (VLAN) is a mechanism for segmenting a LAN broadcast domain
into smaller sections. The IEEE 802.1Q specification defines the operation and
behavior of a VLAN. The OpenVMS implementation adds IEEE 802.1Q support
to selected OpenVMS LAN drivers so that OpenVMS can now route VLAN tagged
packets to LAN applications using a single LAN adapter.

You can use VLAN to do the following:

• Segment specific LAN traffic on a network for the purposes of network
security or traffic containment, or both.

• Use VLAN isolated networks to simplify address management

System Management Features 3–55

System Management Features
3.21 Virtual LAN (VLAN) Support in OpenVMS

VLAN Design
In OpenVMS, VLAN presents a virtual LAN device to LAN applications. The
virtual LAN device associates a single IEE 802.1Q tag with communications over
a physical LAN device. The virtual device provides the ability to run any LAN
application (for example, SCA, DECnet, TCP/IP, or LAT) over a physical LAN
device, allowing host-to-host communications as shown in Figure 3–1.

Note

DECnet-Plus and DECnet Phase IV can be configured to run over a VLAN
device.

Figure 3–1 Virtual LAN

DECNET

NIC

VLAN
CAPABLE
SWITCH

TCP/IP LAT

VLA
TAG 2

VLB
TAG 58

VLZ
TAG 1958

VM-1193A-AI

OpenVMS VLAN has been implemented through a new driver,
SYS$VLANDRIVER.EXE, which provides the virtual LAN devices. Also,
existing LAN drivers have been updated to handle VLAN tags. LANCP.EXE
and LANACP.EXE have been updated with the ability to create and deactivate
VLAN devices and to display status and configuration information.

3–56 System Management Features

System Management Features
3.21 Virtual LAN (VLAN) Support in OpenVMS

The OpenVMS VLAN subsystem was designed with particular attention to
performance. Thus, the performance cost of using VLAN support is negligible.

When configuring VLAN devices, keep in mind that VLAN devices share the same
locking mechanism as the physical LAN device. For example, running OpenVMS
cluster protocol on a VLAN device along with the underlying physical LAN device
does not result in increased benefit and might, in fact, hinder performance.

3.21.1 VLAN Support Details
All supported Gigabit and 10-Gb (I64-only) LAN devices are capable of handling
VLAN traffic on Alpha and I64 systems.

The following list describes additional details of VLAN-related support:

• Switch support

For VLAN configuration, the only requirement of a switch is conformance
to the IEEE 802.1Q specification. The VLAN user interface to the switch is
not standard; therefore, you must pay special attention when you configure a
switch and especially when you configure VLANs across different switches.

• LAN Failover support

Figure 3–2 illustrates LAN Failover support.

Figure 3–2 LAN Failover Support

EICEIA EIB

LLA

VLA VLB VLC

VM-1192A-AI

VLAN on LLDevice VLAN on normal device
NOTE: multiple VLANS on a
single physical device

You can create VLAN devices using a LAN Failover set as a source if all
members of the set are VLAN-capable devices. However, you cannot build a
Failover set using VLAN devices.

• Supported capabilities

VLAN devices inherit the capability of the underlying physical LAN device,
including fast path, auto-negotiation, and jumbo frame setting. If a capability
needs to be modified, you must modify the underlying physical LAN device.

System Management Features 3–57

System Management Features
3.21 Virtual LAN (VLAN) Support in OpenVMS

• Restrictions

No support exists for satellite booting over a VLAN device. The OpenVMS
LAN boot drivers do not include VLAN support; therefore, you cannot use a
VLAN device to boot an OpenVMS system.

Currently, no support exists in OpenVMS for automatic configuration of
VLAN devices. You must create VLAN devices explicitly using LANCP
commands.

3.21.2 Managing VLAN on Your System
Before creating a VLAN device, make sure that the hosting VLAN-capable
physical LAN device is connected to a VLAN-capable switch. Also make sure that
the selected switch port is configured to handle VLAN-tagged traffic.

The following sections contain additional VLAN management details.

3.21.2.1 Probing a Switch Port
To make it easier to manage VLAN devices, OpenVMS LAN includes limited
support for IEEE 802.1Q management functions. A LANCP qualifier helps you
probe a switch port and list VLAN configuration information. The new command
is the following:

LANCP> SHOW DEVICE PHYSICAL-LAN-DEVICE/VLAN

After you enter the command, LANCP listens for IEEE 802.1Q GVRP (Generic
Attribute Registration Protocol) VLAN Registration Protocol packets and displays
the following:

• The VLAN tags that have been configured on the switch port

• The VLAN devices that have been configured on the physical LAN device

For example:

LANCP> SHOW DEVICE LLB /VLAN

Listening for VLAN configuration on LLBO
VLAN tag 190 configured as VLB
VLAN tag 206 configured as VLJ
VLAN tag 207 not configured

This command shows VLAN information only if GVRP capability is enabled on
the switch port.

3.21.2.2 Creating a VLAN Device
To create a VLAN device, enter a LANCP command using the following format:

LANCP> SET DEVICE VLc/VLAN_DEVICE=PHYSICAL-LAN-DEVICE/
TAG=value

where:

• VLc is the name of the virtual LAN device (c is the controller letter a - z).

• PHYSICAL-LAN-DEVICE is the LN device that will host the VLAN.

• value is the IEEE 802.1Q tag. (The valid range is 1 - 4095.)

For example:

LANCP> SET DEVICE VLA/VLAN=EIB/TAG=42

This command fails if the physical LAN device does not exist, if the physical LAN
device is not VLAN-capable, or if the VLAN tag is invalid.

3–58 System Management Features

System Management Features
3.21 Virtual LAN (VLAN) Support in OpenVMS

Associating a Text Description with a LAN Device
Also new in this version of OpenVMS, you can associate a text description with
a LAN device. You do this by entering a LANCP SET or DEFINE DEVICE
command with the qualifier /DESCRIPTION=<quoted-string> to provide the
additional context. For example, to identify a VLAN device as part of the
‘‘Finance VLAN’’, enter the following command:

LANCP> SET DEVICE VLA/DESCRIPTION="Finance VLAN"

3.21.2.3 Deactivating a Virtual LAN Device
Note

The deactivation functionality has not yet been completed at the time of
Field Test. Watch for updates during Field Test for this capability.

To deactivate a VLAN device, use the following command format:

LANCP> SET DEVICE VLc/NOVLAN

This command fails if the device is in use, that is, if other applications are still
using the device.

3.21.2.4 Displaying VLAN Device Information
To display information about the VLAN device, enter the LANCP commands
SHOW DEVICE and SHOW CONFIGURATION. For example:

LANCP> SHOW DEVICE VLK/CHARACTERISTICS

Device Characteristics VLKO:
Value Characteristic
_____ ______________
...
"206" VLAN 802.1Q tag
"1" VLAN device flags

"Procurve 2315 P15" VLAN description
Link Up Link state

Device Parent Medium/User Version Link Speed Duplex Size MAC Address Current Address Type
------ ------ ----------- ------- ---- ----- ------ ---- ----------------- ----------------- ----
EWA0 Ethernet X-51 Up 1000 Full 1500 00-D0-59-61-72-F3 AA-00-04-00-1B-4D UTP DEGXA-TA
EWB0 Ethernet X-51 Up 100 Full 1500 00-D0-59-61-72-D8 00-D0-59-61-72-D8 UTP DEGXA-TA
EWC0 Ethernet X-59 Up 1000 Full 1500 00-60-CF-21-71-9C AA-00-00-21-71-9C UTP DEGPA-TA
EWD0 Ethernet X-59 Up 1000 Full 1500 00-60-CF-20-9A-C6 00-60-CF-20-9A-C6 UTP DEGPA-TA
EIA0 Ethernet X-16 Up 1000 Full 1500 00-12-79-9E-20-AE AA-00-04-00-1B-4D UTP AB352A
EIB0 Ethernet X-16 Up 1000 Full 1500 00-12-79-9E-20-AF 00-12-79-9E-20-AF UTP AB352A
LLB0 Ethernet X-19 Up 1000 Full 1500 AA-00-00-21-71-9C AA-00-00-21-71-9C DEGPA-TA
VLB0 Ethernet X-BA1 Up 1000 Full 1500 AA-00-00-21-71-9C AA-00-00-21-71-9C LLB
VLC0 Ethernet X-BA1 Up 1000 Full 1500 00-12-79-9E-20-AF 00-12-79-9E-20-AF UTP EIB
VLD0 Ethernet X-BA1 Down 100 Full 1500 00-00-00-00-00-00 00-00-00-00-00-00
VLJ0 Ethernet X-BA1 Up 1000 Full 1500 AA-00-00-21-71-9C AA-00-00-21-71-9C LLB
VLK0 Ethernet X-BA1 Up 1000 Full 1500 00-12-79-9E-20-AE AA-00-04-00-1B-4D UTP EIA

3.21.3 VLAN Troubleshooting
Most VLAN problems are related to configuration. A list of things to check when
you are troubleshooting a VLAN problem:

1. To OpenVMS, not all LAN devices are VLAN-capable. If you attempt to
create a VLAN device on a non-VLAN-capable device, LANCP displays an
error message.

System Management Features 3–59

System Management Features
3.21 Virtual LAN (VLAN) Support in OpenVMS

To verify that a LAN device is VLAN-capable, use SDA to check device
characteristics by entering the following commands:

$ ANALYZE/SYSTEM

SDA> SHOW LAN/DEVICE=physical-device-name
or
SDA> LAN DEVICE/DEVICE=physical-device-name

VLAN bit 4 should be set in the device characteristics, which the text string
‘‘VLAN’’ indicates.

2. Verify that VLAN capability is enabled on the switch port that is connected
to your LAN device and that the correct VLAN tag is configured. If GVRP
is enabled on the switch, you can verify that the VLAN tag is enabled by
entering the following LANCP command:

LANCP> SHOW DEVICE physical-device-name/VLAN

This command displays the VLAN tags configured on the switch port. Next,
verify that the tag displayed is the one that was used to create the VLAN
device.

3. Verify that the VLAN device was configured correctly. Enter the following
command to see the characteristics and status maintained by the VLAN
driver:

LANCP> SHOW DEVICE vlan-device-name/INTERNAL_COUNTERS

For example:

LANCP> SHOW DEVICE VLC/INTERNAL_COUNTERS

Device Internal Counters VLCO:
Value Counter
_____ _______

--- Internal Driver Counters ---
" EIB" Device name
00000001 Device Flag 1 <online>

190 VLAN Tag ID
86514000 Physical LSB

11834 Failure status
FFFFFFFF 805E28CC Failure PC

Check the following:

a. The device name and tag should be the same as those specified when you
created the VLAN device.

b. Verify that the ‘‘online’’ bit is set on the Device Flag 1 field; if not, the
failure status might provide more information.

c. The physical LSB field is the address of the LAN physical device LSB
(LAN Station Block) structure. To look at the characteristics and status
of this device, enter the following commands:

$ ANALYZE/SYSTEM

SDA> LAN DEVICE/ADDRESS=physical LSB address

For more information about OpenVMS VLAN support, see the HP OpenVMS
System Management Utilities Reference Manual.

3–60 System Management Features

System Management Features
3.22 Volume Shadowing for OpenVMS

3.22 Volume Shadowing for OpenVMS
The following new features for HP Volume Shadowing for OpenVMS are available
in OpenVMS Version 8.3:

• Automatic bitmap creation on volume processing

• New SET SHADOW qualifier, /RESET

3.22.1 Automatic Bitmap Creation on Volume Processing
Automatic bitmap creation on volume processing means that an existing HBMM
bitmap is made available to function as a minicopy bitmap when connectivity to
one or more shadow set members is lost and is not restored during the shadow
member timeout period.

When such connectivity is lost, the shadow set is paused for volume processing—
that is, writes and reads are temporarily suspended until connectivity is restored
or the timeout period (established by the value of SHADOW_MBR_TMO) expires,
whichever comes first.

If connectivity is not restored by the end of the timeout period, the member or
members are expelled from the shadow set, read and write I/O to the remaining
member or members resumes, and the bitmap keeps track of the writes. The
bitmap, whose name has changed from HBMMx to rrsex, functions as a minicopy
bitmap for the member or members that were expelled.

Note

While one or two members are expelled and after all members are
restored to membership in the shadow set, the HBMM bitmap
functionality remains in effect. The HBMM bitmap functionality is
useful in the case of an expelled member only when the shadow set has
three members and one member is expelled.

When connectivity is restored to one of the expelled shadow set members, you can
mount it back into the shadow set. If the expelled member’s metadata matches a
bitmap that exists, it is used for a minicopy operation to restore that member to
the shadow set. If a second shadow set member was removed at the same time,
that member can also use that bitmap. After the members are restored to the
shadow set, the name of the bitmap reverts to its HBMM bitmap name.

The reasons to minimize the time when one or more members are expelled from a
shadow set are:

• During a period of reduced membership of the shadow set, data availability is
at risk.

• If a shadow set member is expelled, reads and writes to the remaining
members continue. The more writes that take place before the expelled
member or members are returned, the longer it takes to restore the member
or members to the shadow set. This is especially significant in a disaster
tolerant (DT) configuration.

Before the introduction of automatic bitmap creation on volume processing,
returning expelled members to a shadow set, after connectivity was restored, was
a lengthy process. The expelled members could be returned only by undergoing
a full copy. The availability of a bitmap enables the use of a minicopy operation,
which takes considerably less time than a full copy operation.

System Management Features 3–61

System Management Features
3.22 Volume Shadowing for OpenVMS

To enable automatic bitmap creation on volume processing, you need to establish
an HBMM policy for the shadow sets, and include the new MULTIUSE keyword
in the policy. For more information, refer to the HBMM chapter in the HP
OpenVMS Version 8.2 New Features and Documentation Overview manual.

3.22.2 New SET SHADOW /RESET Qualifier
The /RESET qualifier to the SET SHADOW command is introduced in this
release. SET SHADOW/RESET=COUNTERS resets the shadowing-specific
counters that are maintained for each shadow set.

The counters that are reset to 0 are:

HBMM Reset Count
Copy Hotblocks
Copy Collisions
SCP Merge Repair Cnt
APP Merge Repair Cnt

You can display the current settings of these counters using the SHOW SHADOW
command.

The HBMM Reset Count refers to how many times the RESET_THRESHOLD
value was met. The RESET_THRESHOLD is the setting which determines how
frequently a bitmap is cleared. With the ability to clear the HBMM Reset Count,
system managers can better gauge the rate of threshold resets.

For a complete description of SET SHADOW/RESET, refer to the HP OpenVMS
DCL Dictionary: N–Z and DCL Help.

3–62 System Management Features

4
Mastering Optical Media on OpenVMS

This chapter describes the creation (or mastering) of CD or DVD media on
OpenVMS.

The process of mastering CD or DVD media includes the following tasks:

1. Creating a disk volume structure in a staging area

2. Populating that structure with the required files

3. Copying the master onto the target optical media

On OpenVMS, you must use a logical disk (LD) device as the staging area and
DCL commands such as INITIALIZE, MOUNT, COPY, and BACKUP to generate
and populate the disk volume in the staging area. You can then copy the contents
of the disk volume by using the COPY/RECORDABLE_MEDIA command.

4.1 LD, CD, and DVD Device Concepts
The following sections discuss concepts that pertain to mastering optical media
on OpenVMS.

4.1.1 Logical Disk Devices
A logical disk (LD) device provides a mechanism for staging the master copy
of the data to be written to the optical media. You can create the source
for the recording operation using an LD disk device and then enter the
COPY/RECORDABLE_MEDIA command to transfer the master onto the optical
media.

You use the LD utility to create and manage LD disk devices. You can then
initialize, mount, and access these LD disk devices using standard OpenVMS
DCL commands.

For more information about LD disk devices, see the HP OpenVMS System
Manager’s Manual.

4.1.2 CD and DVD Devices
You can use various recording formats with optical media devices. In general,
OpenVMS can read formats that correspond to the target device you use.

OpenVMS can record the following four media formats:

Format Description

CD-R Compact Disc Recordable

CD-RW Compact Disc Rewritable

DVD+R Digital Versatile Disc Recordable

Mastering Optical Media on OpenVMS 4–1

Mastering Optical Media on OpenVMS
4.1 LD, CD, and DVD Device Concepts

Format Description

DVD+RW Digital Versatile Disc Rewritable

The particular characteristics and capabilities of the target CD and DVD devices
are specific to the system, the recording device, and the recording media. For
example, the local hardware and software configuration can further restrict
the maximum permissible CD recording speed to a value less than the speed
supported by the CD recording device. You might attempt to record a CD from
an OpenVMS system that does not have the I/O bandwidth you need to keep the
data cache of the target CD device from underflowing. However, such attempts
can result in recording errors and failures, and can waste recording media.

Recording devices can support a variety of recording formats and media.
Conversely, OpenVMS or a particular device might not support a particular
recording format. For the currently supported device hardware and their
associated platform configurations, see the following Web site:

http://www.hp.com/go/server/

Find your particular I64 or Alpha platform, and then look for the support matrix
for that platform.

4.2 General Steps for Mastering Data Disks
The steps for mastering (sometimes called recording or burning) optical media are
the following:

1. Start to create an OpenVMS logical disk (LD) by entering the following
command:

$ @SYS$STARTUP:LD$STARTUP.COM

Note

LD$STARTUP requires the TMPMBX, NETMBX, and SYSLCK privileges.
The COPY/RECORDABLE_MEDIA command, used later in these steps,
is installed with the necessary privileges.

Enter this command only once each time the OpenVMS system is booted.
To have the system perform the command for you, include the command in
your site-specific SYS$MANAGER:SYSTARTUP_VMS.COM system startup
procedure. In this way, the command executes each time the OpenVMS
system is bootstrapped.

2. Create a logical disk (LD) to act as the staging area for your media master.
This LD disk device appears and operates like a standard physical disk
device but also provides flexibility because it can be easily sized or resized. In
addition, you can create or delete the device as needed.

The LD driver, which enables you to connect to and manage an LD disk
device, uses a back-up storage file that allows the contents of the LD disk
device to be preserved over a reboot. The capacity of the LD disk device—and
the corresponding size of the back-up file—must be equal to or larger than
the size of the files and the volume structure data to be stored. The capacity
of the LD disk device must also be equal to or smaller than the capacity of
the target optical media. The contents of the master must fit on the target
media.

4–2 Mastering Optical Media on OpenVMS

Mastering Optical Media on OpenVMS
4.2 General Steps for Mastering Data Disks

Approximate maximum capacities are usually the following:

Media Maximum Blocks Capacity

CD-R 1,200,000 blocks 600 MB/s

CD-RW 1,400,000 blocks 700 MB/s

Single-layer
DVD+R

9,180,416 blocks 4.6 GB/s

Single-layer
DVD+RW

9,180,416 blocks 4.6 GB/s

You can create sizes up to the maximum for the target media. Because optical
media uses a sector size of 4 blocks (2048 bytes), you must always create
and use an LD disk device with a capacity that is a multiple of 4 blocks. HP
recommends that you use a multiple of 16 blocks.

3. To create your LD master, first create an LD backing storage file for the
master. Use a command similar to the following:

$ LD CREATE /size=9180416 filespec.ISO

You need to create this LD storage file only once.

4. Connect the LD storage file to an LD logical disk. Use a command similar to
the following:

$ LD CONNECT filespec.ISO LDA1:

You need to reconnect the LD disk device once each time the OpenVMS
system bootstraps. You can include the LD CONNECT command in the
SYSTARTUP_VMS.COM site-specific system startup and have the system
execute the command for you each time the system bootstraps.

5. Prepare the master for use.

Consider erasing the LD master completely before proceeding. This action
prevents you from unintentionally disclosing confidential information about
your local system. You can erase the disk master in various ways, including
using the DCL command INITIALIZE/ERASE if you are creating an ODS-2
or ODS-5 volume structure.

If you choose to use the OpenVMS ODS-2 or ODS-5 volume structure for
your target media, use the DCL command INITIALIZE to create the volume
structures. Then use the standard MOUNT command to make the master
disk volume accessible to other OpenVMS commands:

Use commands similar to the following:

$ INITIALIZE LDA1: volume-label -
/SYSTEM [/ERASE] [/...] -
[/CLUSTER=n] [/STRUCTURE=n] [/...]

$ MOUNT LDA1: volume-label

6. Once the volume structure is available, you can copy the data onto the
master.

The data to be copied onto the LD master can include data files, installation
kits, executable images, tools, or other files. As with a standard physical disk
formatted as an ODS-2 or ODS-5 volume, you can use the BACKUP, COPY,
CREATE/DIRECTORY, and other standard DCL commands and procedures to
create the contents of the LD master.

Mastering Optical Media on OpenVMS 4–3

Mastering Optical Media on OpenVMS
4.2 General Steps for Mastering Data Disks

If you plan to use ODS-2 or ODS-5 volume structures, avoid placing
OpenVMS security identifiers or ACLs on the master. These are system
specific and can unexpectedly allow or deny access when you mount or access
the recorded media on other OpenVMS systems.

7. After copying your selected contents onto the LD disk device containing the
master, dismount the device using a command similar to the following:

$ DISMOUNT LDA1:

8. Record the contents of the LD master onto the optical media.

First place the appropriate blank media in the optical media disk drive. Then
enter a command similar to the following:

$ COPY/RECORDABLE_MEDIA LDA1: DQA0: -
_$ [/FORMAT][/BELL][/SPEED=speed][/VERIFY]

This command copies the contents of the LDA1: master to the target device.

In this example, note the following:

• The target device is assumed to be DQA0: and is assumed to have
rewritable media loaded. The particular target device name can vary
according to your local hardware configuration.

• The /FORMAT qualifier is applicable only with rewritable media; it causes
the rewritable media to be erased and to be prepared for recording.

• Specifying the /SPEED qualifier reduces the recording speed from the
default speed calculation; this might be necessary if your attempted CD
or DVD recordings fail with buffer underrun or data starvation errors, or
(when recording CD formats) if you use underrated CD media (that is, CD
media rated for speeds less than those of your CD recording device).

You can use /SPEED to select the CD or DVD recording speed up to the
I/O performance of the local OpenVMS system. Use of this qualifier is
limited to the maximum recording speed ratings for the target drive and
for the target recording media.

Remember that /SPEED is more a go-slow than a go-fast mechanism. You
need to choose to ‘‘go slow’’ when something goes wrong, such as when you
use low-quality media or partially defective media.

Differences exist between CD and DVD media in encoding a maximum
speed:

• CD media does not encode a maximum speed, although the media is
manufactured with a maximum speed rating. Because there is no encoded
limit, you can easily exceed the rated speed when recording.

• DVD media encodes a maximum speed; the recording speed cannot exceed
the rated limit for the media.

Regardless of the media, other limits within the configuration can dictate a
lower maximum recording speed; above this maximum speed, the recording
operation fails.

The /BELL qualifier specifies that a bell sound on completion of the operation.

After the recording operation completes, the /VERIFY qualifier requests that
OpenVMS read and compare the contents of the recorded media with the
input data.

4–4 Mastering Optical Media on OpenVMS

Mastering Optical Media on OpenVMS
4.2 General Steps for Mastering Data Disks

9. After successfully mastering your optical media, and you no longer need
the particular LD logical disk for mastering, you can recover the disk
storage occupied by the associated back-up storage file. Enter the following
commands to disconnect and remove the LDA1: device from the system. You
can then delete the back-up storage file:

$ LD DISCONNECT LDA1:
$ DELETE filespec.ISO;*

4.3 Examples
Example of Mastering Optical Media
The following sequence of commands shows how to create a 600 MB CD-R media
recording on a CD-capable recording device, using an LD disk LDA600:. Its
storage copy file is stored on the device DISK$SCRATCH:. The sequence assumes
that a blank CD-R disk is loaded into the target DQA0: drive. A directory
is created, and the user’s LOGIN.COM file is copied into the directory. After
recording is complete, the recorded media contains a single OpenVMS directory
called [DATA].

$ @SYS$STARTUP:LD$STARTUP
$ LD CREATE DISK$SCRATCH:[000000]CD600.ISO/SIZE=1200000
$ LD CONNECT DISK$SCRATCH:[000000]CD600.ISO LDA600:
$ INITIALIZE/ERASE/SYSTEM LDA600: CDDATA
$ MOUNT/SYSTEM LDA600: CDDATA
$ CREATE/DIRECTORY LDA600:[DATA]
$ COPY SYS$LOGIN:LOGIN.COM LDA600:[DATA]
$ DISMOUNT LDA600:
$ COPY/RECORDABLE_MEDIA LDA600: DQA0:/VERIFY/BELL
$ LD DISCONNECT LDA600:
$ DELETE DISK$SCRATCH:[000000]CD600.ISO;

Example of Formatting and Recording Data onto a DVD
The following example shows how to format and then record the data stored on a
LDA600: disk master onto a DVD+RW drive and its associated DVD+RW media.
This media is located on device DQA0:.

$ COPY/RECORDABLE_MEDIA LDA600: DQA0:/FORMAT

HP OpenVMS CD-R/RW and DVD+R/RW Utility, V1.0-1 Copyright 1976,
2006 Hewlett-Packard Development Company, L.P.

Output device vendor: HL-DT-ST
Output device product name: DVD+RW GCA-4040N
Output device revision: 1.15
Commencing media format operation Formatting may require up to an hour
Output medium format: DVD+RW
Input data from: LDA600:
Writing data to: DQA0:
Input data size: 1200000 blocks

Starting operation at: 08:48:17

16 sectors written

Mastering Optical Media on OpenVMS 4–5

Mastering Optical Media on OpenVMS
4.3 Examples

30000 sectors written; estimated completion in 00:07:36; at 08:56:44 37000
sectors written; estimated completion in 00:07:37; at 08:56:57 46000
sectors written; estimated completion in 00:07:15; at 08:56:50 57000
sectors written; estimated completion in 00:06:43; at 08:56:34 71000
sectors written; estimated completion in 00:06:33; at 08:56:48 88000
sectors written; estimated completion in 00:05:56; at 08:56:39 110000
sectors written; estimated completion in 00:05:23; at 08:56:42 137000
sectors written; estimated completion in 00:04:37; at 08:56:41 171000
sectors written; estimated completion in 00:03:33; at 08:56:33 213000
sectors written; estimated completion in 00:02:23; at 08:56:32 266000
sectors written; estimated completion in 00:00:59; at 08:56:36 300000
sectors written; operation completed

Operation completed at: 08:56:32
Elapsed time for operation: 00:08:14
Synchronizing with output device cache
Processing completed
$

4–6 Mastering Optical Media on OpenVMS

5
Programming Features

This chapter describes new features relating to application and system
programming in this version of the HP OpenVMS operating system.

5.1 C Run-Time Library Enhancements
The following sections describe the C Run-Time Library (RTL) enhancements
included in OpenVMS Version 8.3. These enhancements provide improved UNIX
portability, standards compliance, and the flexibility of additional user-controlled
feature selections. New C RTL functions are also included. For more details,
refer to the HP C Run-Time Library Reference Manual for OpenVMS Systems.

5.1.1 Symbolic Link and POSIX-Compliant Pathname Support
OpenVMS Version 8.3 and higher provides Open Group-compliant symbolic-link
support and POSIX-compliant pathname support. This support is intended
to help partners and customers who port UNIX and LINUX applications to
OpenVMS or who use a UNIX style development environment to reduce the
application development costs and complexity previously associated with such
porting efforts.

Although this support is present, it does not guarantee 100% compatibility of
UNIX files on OpenVMS systems. There may be some cases where developers
still need to make modifications to UNIX or LINUX applications when porting
them to OpenVMS.

The following OpenVMS features are provided to support symbolic links and
POSIX pathname processing:

• The following Open Group compliant symbolic-link functions are added to the
C Run-Time Library:

symlink
readlink
unlink
realpath
lchown
lstat

• Existing C RTL functions such as creat, open, delete, and remove, now
behave in accordance with Open Group specifications for symbolic links.

• RMS allows the C RTL to implement the above-mentioned functions.
RMS routines such as SYS$OPEN, SYS$CREATE, SYS$PARSE, and
SYS$SEARCH now support symbolic links.

• The contents of symbolic links on OpenVMS are interpreted as POSIX
pathnames when encountered during pathwalks and searches. POSIX
pathnames are now supported in OpenVMS and are usable through C RTL
and RMS interfaces.

Programming Features 5–1

Programming Features
5.1 C Run-Time Library Enhancements

• A new feature logical DECC$POSIX_COMPLIANT_PATHNAMES is added to
the C RTL to indicate that an application is operating in a POSIX-compliant
mode.

• The DCL command CREATE/SYMLINK is used to create a symbolic link.

• The DCL command SET ROOT is provided to create the system POSIX root.

• Two GNV utilities, mnt and umnt, are provided to set mount points.

• DCL commands and utilities are modified to behave appropriately when
acting on and encountering symbolic links.

• The TCP/IP Services for OpenVMS Network File System (NFS) client and
server are enhanced to support symbolic links on ODS5 volumes.

• Relevant GNV utilities such as ln (which can create a symbolic link) and ls
(which can display the contents of a symbolic link) are updated to provide
access to and management of symbolic links.

For more information on symbolic links and POSIX pathname processing, see
Chapter 12 of the HP C Run-Time Library Reference Manual.

5.1.2 Byte-Range Locking
The C RTL supports byte-range file locking using the F_GETLK, F_SETLK,
and F_SETLKW commands of the fcntl function, as defined in the X/Open
specification. The OpenVMS lock manager is used to implement this feature.
Byte-range file locking is allowed across clusters. You can only use offsets that
fit into 32-bit unsigned integers. For more information, see the fcntl function in
the HP C Run-Time Library Reference Manual.

5.1.3 New C RTL Functions
In addition to the symbolic link functions listed in Section 5.1.1, the following
new functions based on the X/Open specification have been added to the C RTL:

crypt
setkey
encrypt
fchmod

5.1.4 C RTL TCP/IP Header File Updates
The CRTL ships header files for users to call TCP/IP. These headers have had
numerous problems, making some of them unusable for anything beyond trivial
TCP/IP programming.

Previously, corrected headers have shipped with several releases of TCP/IP
in their examples area. This enhancement to the C RTL now places those
corrected headers in the C RTL header library (DECC$RTLDEF.TLB). For more
information, see the C RTL section of the OpenVMS Version 8.3 Release Notes.

5.2 CDSA for OpenVMS and Secure Delivery
CDSA Version 2.2 for OpenVMS is based on the CDSA open source project. In
addition, the CDSA implementation on OpenVMS is based on the Intel V2.0
Release 3 reference platform. New features in CDSA Version 2.2 for OpenVMS
include Secure Delivery and support for HRS (Human Recognition Service
Standard). These features are described in the following list.

5–2 Programming Features

Programming Features
5.2 CDSA for OpenVMS and Secure Delivery

• Support for HRS (Human Recognition Service Standard)

CDSA Version 2.2 for OpenVMS contains support for HRS (Human
Recognition Service). HRS is a CSSM (Common Security Services Manager)
EMM (Elective Module Manager). It provides a generic authentication service
that is suited for use with any form of human authentication (biometrics) for
operation with CDSA.

The HRS is designed for use by both application developers and biometric
technology developers. It covers the basic functions of enrollment, verification,
and identification, and includes a database interface to allow a biometric
service provider (BSP) to manage the identification population for optimum
performance.

• Secure Delivery

Secure Delivery uses public key and digital signature technology to implement
a system that provides OpenVMS users with the ability to authenticate and
validate files from OpenVMS and third-party OpenVMS vendors.

Secure Delivery allows you to create digital signatures for files, so that the
file and associated manifest can be delivered over an unsecured channel such
as the Internet or CD/DVD media. Once the files are in place on the target
system, the manifest is used to authenticate the originator and validate the
contents of the target file. If the target file or manifest has been tampered
with in any way, the validation process fails. If the certificates used to sign
the file have been revoked, the validation process fails.

Secure Delivery has been integrated into PCSI, which automatically ensures
that software installed on OpenVMS was not tampered with prior to
installation. PCSI checks for the existence of a manifest for any kits that
are being installed. If no manifest is found, PCSI issues a warning and asks
if you want to proceed. If a manifest is found but does not match the kit,
the installation is aborted. The PCSI database contains an indication as to
whether a kit used Secure Delivery on installation.

Most kits included on the OpenVMS Version 8.3 distribution media have been
signed using Secure Delivery. On OpenVMS I64, layered product kits that
have a manifest and are installed during or after the OpenVMS upgrade
are validated. On OpenVMS Alpha, layered product kits that have a manifest
and are installed after the OpenVMS upgrade are validated.

Kits created before the Secure Delivery process was enabled in OpenVMS
Version 8.3 can be installed on OpenVMS Version 8.3. These kits will be
marked as unsigned, rather than as a validated kit in the PCSI history file.
Products installed before Version 8.3 will have a blank validation status in
the PCSI history.

For more information, refer to HP Open Source Security for OpenVMS, Volume 1:
Common Data Security Architecture.

For additional information about CDSA, see the Common Data Security
Architecture Web site at the following location:

http://sourceforge.net/projects/cdsa/

Programming Features 5–3

Programming Features
5.3 Deadlock Wait

5.3 Deadlock Wait
OpenVMS V8.3 now supports the ability for a process to declare a sub-second
deadlock wait time for the lock manager. This can be done with the $SET_
PROCESS_PROPERTIES system service and the new item code PPROP$C_
DEADLOCK_WAIT. The sub-second deadlock wait time overrides the system
parameter DEADLOCK_WAIT time. In addition, the $GETJPI system service
and F$GETJPI lexical function allow the retrieval of this time by using the item
codes of JPI$_DEADLOCK_WAIT and DEADLOCK_WAIT. See the HP OpenVMS
System Services Reference Manual and HP OpenVMS DCL Dictionary for more
information on the usage.

The system parameter DEADLOCK_WAIT is in second units, so the smallest
value you can set is 1 second. The sub-second deadlock wait time set via the
system service $SET_PROCESS_PROPERTIES is valid only for the current
image and is cleared during image rundown. The parameter passed is in 100nsec
units and cannot exceed 1 sec. If the value is too small, then it is increased to
a minimum value of 10msec. You can also call this system service to clear a
previously set sub-second value by passing a parameter value of zero. Note the
following example:

[...]
#define TEN_MSEC 100000

uint64 dead_wait;
uint64 prev_value;

//
// Set a 0.5 second deadlock wait time for the current process
//
dead_wait = 50 * TEN_MSEC;
status = sys$set_process_properties (0, 0, 0, PPROP$C_DEADLOCK_WAIT, dead_wait, &prev_value);
[...]

5.4 Debugger New Features
The following sections describe new features of the OpenVMS Debugger on
OpenVMS Version 8.3.

5.4.1 Improved C++ Support for Operator Names
Support has been improved for C++ operator names, now on Alpha systems as
well as Integrity server systems. In particular, user-defined operator names are
now supported. Prior to this change, you would have to enclose an operator name
in %NAME.

For example:

DBG> SHOW SYMBOL /FULL operator ==
routine C::operator==

type signature: bool operator==(C)
code address: 198716, size: 40 bytes
procedure descriptor address: 65752

DBG> SET BREAK operator==

5–4 Programming Features

Programming Features
5.4 Debugger New Features

5.4.2 Use of SET MODULE Command is Now Optional
Now available on Alpha systems as well as I64 systems, the OpenVMS Debugger
can now set modules automatically, making use of an explicit SET MODULE
command optional. There are two reasons for this feature:

• The debugger recognizes global symbol names and can determine from the
symbol the module in which it is declared.

• The debugger automatically loads the module information when you specify
the module name in a debugger command. For example, if you type:

DBG> SET BREAK X\Y

the debugger ensures that the module information for module X is loaded
and then it locates the information for the routine named Y. Previously,
the debugger complained that the information in module X was not loaded,
whereas now, the debugger loads it automatically.

5.4.3 New Qualifier for SHOW STACK Command
Now on Alpha systems as well as Integrity server systems, the SHOW STACK
command accepts a /START_LEVEL=n qualifier that directs SHOW STACK to
begin displaying stack information at call frame level n.

For example, to see the stack information for only frame 3, type the following
command:

DBG> SHOW STACK/START=3 1

To see the details for the 4th and 5th stack frames, type the following command:

DBG> SHOW STACK/START=4 2

5.4.4 Change to Default Data Type for Untyped Storage Locations
Now on Alpha systems as well as Integrity server systems, the default data
type for untyped storage locations has been changed from longword (32 bits) to
quadword (64 bits). Note that storage locations with data type information will
continue to be displayed according to the related type.

5.4.5 Improved Overloaded Symbol Support in SHOW SYMBOL Command
Now on Alpha systems as well as Integrity server systems, the SHOW SYMBOL
command has been enhanced to recognize overloaded symbol names. Previously,
it just printed the various overloaded names. With the enhancement, it now
prints each name and the associated information with that name. For example:

DBG> show symbol/full g
overloaded name C::g

routine C::g(char)
type signature: void g(char)
address: 132224, size: 128 bytes

routine C::g(long)
type signature: void g(long)
address: 132480, size: 96 bytes

Programming Features 5–5

Programming Features
5.4 Debugger New Features

5.4.6 GNAT Pro (Ada 95) Compiler Support Now Available on Integrity Server
Systems (I64 Only)

The GNAT Pro (Ada 95) compiler is now supported on OpenVMS for Integrity
servers systems. For information on this product, contact AdaCore directly.

Note that HP is not porting the HP Ada (Ada 83) compiler from OpenVMS Alpha
to OpenVMS for Integrity servers.

5.4.7 Debugging Programs Loaded into P2 Space Now Supported
The OpenVMS Version 8.3 Debugger now allows you to debug programs loaded
into P2 space.

5.4.8 SET WATCH Command Has Been Improved
Watchpoints on a location in memory (called static watchpoints) sometimes
fail to notice writes by asynchronous system services and on occasion, might
even cause failures of writes by asynchronous system services. For example, an
asynchronous write by SYS$QIO to its IOSB output parameter may fail if that
IOSB is being watched directly or even if it simply lives on the same page as an
active static watchpoint.

The debugger now attempts to notice this condition. When it suspects a problem,
the debugger warns the user about potential collisions between static watchpoints
and asynchronous system services. For example:

DBG> g
%DEBUG-I-ASYNCSSWAT, possible asynchronous system service and static watchpoint collision
break at LARGE_UNION\main\%LINE 24192+60
DBG> sho call
module name routine name line rel PC abs PC
*LARGE_UNION main 24192 00000000000003A0 00000000000303A0
*LARGE_UNION __main 24155 0000000000000110 0000000000030110

FFFFFFFF80B90630 FFFFFFFF80B90630
DBG> ex/sour %line 24192
module LARGE_UNION
24192: sstatus = sys$getsyi (EFN$C_ENF, &sysid, 0, &syi_ile, &myiosb, 0, 0);

Type HELP MESSAGE ASYNCSSWAT in the debugger to learn more about the
actions to take when this condition is detected.

5.4.9 Not a Thing (NaT) Support for Integer Registers
Previously, the debugger did not inform the user when an integer register’s NaT
bit was set. The user had to examine the register’s bit in the %GRNAT0 register
to learn this information. In the following example, integer registers R9 and R10
have their NaT bits set:

DBG> ex %r9:%r12
TEST\%R9: 0000000000000000
TEST\%R10: 0000000000000000
TEST\%R11: 0000000000000000
TEST\%SP: 000000007AC8FB70
DBG> ex/bin grnat0 <9,4,0>
TEST\%GRNAT0+1: 0110
DBG>

The debugger now displays the string "NaT" when the integer register’s NaT bit
is set. For example:

5–6 Programming Features

Programming Features
5.4 Debugger New Features

DBG> ex %r9:%r12
TEST\%R9: 0000000000000000
TEST\%R10: NaT
TEST\%R11: NaT
TEST\%SP: 000000007AC8FB70
DBG> ex/bin grnat0 <9,4,0>
TEST\%GRNAT0+1: 0110
DBG>

Users can still see the actual physical value in a NaT register by specifying a
type override. For example:

DBG> ex %r10
TEST\%R10: NaT
DBG> ex/quad %r10
TEST\%R10: 0000000000000000
DBG>

5.4.10 Improved Debugger Usability: Automatic Module Loading Now
Available

The debugger now automatically loads the symbol table for a module when the
module names appear in a path name. Previously, a command like SET BREAK
M\R, for example, would fail with an "unknown symbol R" error if the symbols
for module M were not loaded. Now, the command succeeds; the debugger loads
the symbols for module M first and is then able to locate the symbol R.

5.4.11 Improved Support for C++ Destructors
The debugger now recognizes C++ destructor names. Previously, the user was
required to enclose the destructor name with the %NAME lexical. This is no
longer required. The following example shows the new behavior:

DBG> examine C::~C
C::~C: alloc r35 = ar.pfs, 3F, 01, 00
DBG>
DBG> ex/source ~C
module CXXDOCEXAMPLE

37: ~C() {}

5.4.12 Support for C++ Template Names
The debugger now recognizes and supports C++ template names. For example:

DBG> e Map<string, int>::operator[]
Map<string, int>::operator[]: alloc r34 = ar.pfs, 1E, 05, 00

5.4.13 Improved Support for Ada Programs
The debugger now provides partial support for programs written in Ada. The
debugger understands most Ada constructs, including packages, child units,
procedures, variables, simple data types, and modular types. Support for more
complicated data types, such as tagged types and pointers to unconstrained
arrays, is expected in a future release.

Programming Features 5–7

Programming Features
5.5 Kerberos for OpenVMS

5.5 Kerberos for OpenVMS
Kerberos Version 3.0 for OpenVMS is based on MIT Kerberos V5 Release 1.4.1.
(The previous version of Kerberos, Version 2.1, was based on MIT Kerberos V5
Release 1.2.6.)

New features in Kerberos Version 3.0 are described in the following list.

• Upgrade to MIT Kerberos V5 Release 1.4.1

Kerberos for OpenVMS Version 3.0 upgrades the code base to MIT Kerberos
V5 Release 1.4.1. For a list of major and minor changes in each release
of MIT Kerberos, see the Readme file for each release available from the
following Web site:

http://web.mit.edu/kerberos/historical.html

• Kerberos ACME Agent

Kerberos for OpenVMS Version 3.0 includes the Kerberos ACME agent as
part of an Advanced Developer’s Kit (ADK). (This support is an addition to
the existing Kerberos authentication provided by the Kerberos utilities that
are a standard part of MIT Kerberos. It provides functionality similar to the
pam_krb5 utility on UNIX systems using Kerberos.)

In previous versions of OpenVMS, Kerberos for OpenVMS users were
required to perform multiple login steps: once to log in to OpenVMS itself,
and once to obtain Kerberos credentials. These steps worked with separate
principal, or user, names and with separate passwords.

To use the Kerberos ACME agent, install and setup the ACME Login
Advanced Developer’s Kit. See the SYS$HELP:ACME_DEV_README.TXT
file for information about installation and set up. See the HP Open Source
Security for OpenVMS, Volume 3: Kerberos for information about how to
configure the Kerberos ACME agent.

The user authentication will be processed against Kerberos´s KDC database
instead of the OpenVMS UAF (User Authorization File). This new feature
will give OpenVMS system managers additional flexibility: it will be possible
to consolidate user databases so that multiple OpenVMS systems and clusters
can be configured to automatically use a single KDC for user authentication.

• Support for AES Encryption

Kerberos for OpenVMS now includes support for AES (Advanced Encryption
Standard). AES is a symmetric key encryption technique which replaces
the commonly used Data Encryption Standard (DES). In June 2003 the U.S.
Government (NSA) announced that AES is secure enough to protect classified
information up to the top secret level, which is the highest security level.

• Support for Kerberized SSH

Kerberos for OpenVMS supports the Kerberized SSH functionality enabled
in HP TCP/IP Services Version 5.6 for OpenVMS. Kerberized SSH allows you
to use Kerberos credentials with your SSH (secure shell) connection. (SSH
allows you to log into another computer over a network, to execute commands
in a remote machine, and to move files from one machine to another.)

• TCP Support in Client Libraries

Kerberos for OpenVMS includes TCP support in client libraries. This is a
Microsoft interoperability enhancement for tickets with a great deal of PAC
data.

5–8 Programming Features

Programming Features
5.5 Kerberos for OpenVMS

• Thread-safe KRB5 Libraries

• RPCSEC_GSS Authentication in the Kerberos RPC Library

Kerberos performs authentication as a trusted third-party authentication service
by using conventional (shared secret key) cryptography. Kerberos provides a
means of verifying the identities of principals, without relying on authentication
by the host operating system, without basing trust on host addresses, without
requiring physical security of all the hosts on the network, and under the
assumption that packets traveling along the network can be read, modified, and
inserted at will. After a client and server have used Kerberos to prove their
identity, they can also encrypt all of their communications to assure privacy and
data integrity.

For more detailed information, refer to HP Open Source Security for OpenVMS,
Volume 3: Kerberos.

For information about downloading the latest version of Kerberos for OpenVMS,
see the following Web site:

http://h71000.www7.hp.com/openvms/products/kerberos/

For additional information about Kerberos, see the MIT Kerberos Web site at the
following location:

http://web.mit.edu/kerberos/www/

5.6 Linker Utility Enhancements
The object modules generated by C, C++, Ada, and possibly other compilers can
have symbol names in the symbol table that have been altered; a process that is
commonly referred to as ‘‘mangling’’. These names are the symbol names visible
to the linker, which the linker uses for symbol resolution.

The reason for mangling can be an overload feature in the programming language
or simply the need to uniquely shorten names. When you link such modules
and get an undefined-symbol message, the linker displays only the symbol
name from the object module’s symbol table (that is, the mangled name). This
processing makes it difficult to match the undefined, mangled symbol with
the demangled, source code name. Therefore, to support upcoming compilers
that produce display-name information (DNI), the linker can now process that
information. In addition, the linker displays the source code name; that is, the
linker can demangle the undefined symbol name. Further, if there is demangling
information for universal symbols (that is, those to be exported from a shareable
image), the linker can include that information in the generated shareable
images.

The symbol resolution process remains unchanged. The linker still uses the
mangled symbol names for symbol definitions and to resolve symbol references.
The symbol vector option remains the same as well; it still requires the names
found in the symbol tables—the mangled names.

You can use the new command-line qualifier, /DNI, to control the processing of the
demangling information. Specify /DNI (the default) to allow the linker to attempt
symbol-name demangling and move the necessary demangling information into
the shareable image being created. Specify /NODNI when:

Programming Features 5–9

Programming Features
5.6 Linker Utility Enhancements

• You do not want the demangled names to be displayed.

• You do not want the demangling information to be moved into the shareable
image.

You can request a new map section containing a translation table for the global
symbol definitions. This table correlates the mangled symbol names with their
demangled equivalents. By default, the linker does not generate this section
in the map file. To request this section, specify the key word DEMANGLED_
SYMBOLS to the /FULL qualifier. As with other keywords for the /FULL
qualifier, specify the /MAP qualifier. Finally, specify the /DNI qualifier. The
translation table in the map can be helpful to verify the symbol vector entries.

The following edited example shows how the demangled name is displayed in a
linker message:

$ cre foo.cxx
extern double foo (int) ;
double bar (void) { return foo (123); }

Ctrl/Z

$ cxx foo
$ link foo
%ILINK-W-NUDFSYMS, 1 undefined symbol:
%ILINK-I-UDFSYM, CXX$_Z3FOOI1RLFMIE
%ILINK-W-USEUNDEF, undefined symbol CXX$_Z3FOOI1RLFMIE referenced

source code name: "double foo(int)"
section: .text
offset: %X0000000000000020 slot: 2
module: FOO
file: DISK$USER:[JOE]FOO.OBJ;1

$

The demangling information section is part of the object module or shareable
image. The information needed to demangle the symbol name can be entirely
contained within that section, or that information can include the name of a
facilitator routine name and shareable image name to perform the demangling.
This shareable image is usually located in SYS$LIBRARY and is provided by
the language run-time environment already present on OpenVMS or is provided
during the installation of the language compiler. If the facilitator routine is
required, the linker attempts to activate the image and call the routine. If this
fails at any point—for example, if the routine is not found in the shareable image
or the image could not be located—then the linker displays an informational
message indicating the problem. The link operation, as well as propagation of the
demangling information into a shareable image, is independent of the success or
failure of calling the facilitating routine.

5.7 Listing Demangled and Mangled Names with the Librarian (I64
Only)

The LIBRARY command now accepts the /DEMANGLED_SYMBOLS qualifier.
When you use this qualifier, the Librarian lists symbols from an ELF object or
ELF shareable image library that were altered by a language processor (also
known as mangling) and prints their corresponding demangled name (that is, the
name found in the source code). Mangled names are output as external symbols
from an object module (or, as universal symbols from a shareable image). One
reason for the language processor to mangle names is function overloading; a
feature of the C++ language.

5–10 Programming Features

Programming Features
5.7 Listing Demangled and Mangled Names with the Librarian (I64 Only)

The Librarian stores the symbols that are emitted from an object module or
shareable image. These symbols may include mangled symbols. The information
needed to demangle these symbol names, along with a possible name of a
facilitating shareable image, is contained in the object module or shareable
image.

For an ELF object library, object modules are fully contained in the library. To
retrieve the demangling information, the object module is mapped into memory
and searched. It may be the case that language-specific demangling shareable
images are also mapped into memory and activated. The symbols are read from
the object library module and demangled with the information provided by the
module. The library’s symbol-name table is scanned to mark which of the object
library module’s symbols are in the library’s symbol-name table. Subsequent
modules are processed in the same way, and a listing is then generated.

For ELF shareable image libraries, the shareable image is not stored in the
library. This is similar to OpenVMS Alpha and OpenVMS VAX shareable image
libraries. Instead, only the exported symbols and other minimal information is
stored in the library. As a result, the Librarian searches for the shareable image,
external to the library, in order to obtain the demangling information.

The Librarian performs a three-step search; stopping when it successfully obtains
a file:

1. First, the Librarian performs a logical name translation on the library
module’s name.

2. Failing that, the Librarian then searches for a module name with an
extension of .EXE in the disk and directory in which the library resides.

3. If that fails, the Librarian finally looks in the device and directory indicated
by the logical IA64$LIBRARY for a file with a filename of the library module
and with a .EXE extension. If the Librarian finds a file specification, it maps
it into memory and perform the same steps described above for ELF object
libraries.

You can use the existing /OUTPUT= qualifier to direct the generated output from
the demangling process to a file specification you choose. When you do not specify
the /OUTPUT= qualifier, the Librarian by default places the output into a file in
the current disk and directory, with the filename the same as the filename of the
library and the extension .LIS as the file type.

You can also limit which library modules are selected for demangling by using the
existing /ONLY= qualifier.

For example, to display the demangled symbols from an object library and have
the output sent to the terminal screen, enter the following DCL command at the
command line prompt:

$ LIBRARY /DEMANGLED_SYMBOLS /OUTPUT=SYS$OUTPUT OBJLIB.OLB

The following example captures the demangled symbol output to the file
DUMP.LIS of the SHAREIMG.OLB shareable image library:

$ LIBRARY /DEMANGLED_SYMBOLS /OUTPUT=DUMP.LIS SHAREIMG.OLB

The following example captures the demangled symbol output to the default file
specification SYS$DISK:[]SHAREIMG.LIS of the SHAREIMG.OLB shareable
image library:

$ LIBRARY /DEMANGLED_SYMBOLS SHAREIMG.OLB

Programming Features 5–11

Programming Features
5.7 Listing Demangled and Mangled Names with the Librarian (I64 Only)

The following example captures the demangled symbol output to the default
file specification SYS$DISK:[]OBJLIB.LIS of the object module MY_OBJ in the
OBJLIB.OLB object library:

$ LIBRARY /DEMANGLED_SYMBOLS /ONLY=MY_OBJ OBJLIB.OLB

5.8 HP MACRO Compiler for OpenVMS Alpha Systems
The MACRO compiler has been upgraded to use the latest GEM backend for
Alpha systems. In addition, several enhancements have been made:

• An /ARCHITECTURE qualifier has been provided. Possible values are
GENERIC, HOST, EV4, EV5, EV56, EV6, EV67, and EV7. For architecture
values of EV56 and later, the compiler now automatically generates Alpha
byte/word instructions for corresponding VAX operations. In addition, the
instruction scheduler will use the /ARCHITECTURE value as appropriate.

• The machine code listing has been improved including command line
summary and symbolic names for most PAL calls.

• Three additional Alpha instruction builtins have been added:

_ _ EVAX_CTLZ <RQ,WQ> Generate a CTLZ instruction (count leading zeros)

_ _ EVAX_CTPOP <RQ,WQ> Generate a CTPOP instruction (count bits)

_ _ EVAX_CTTZ <RQ,WQ> Generate a CTTZ instruction (count trailing
zeros) These new builtins are also accepted by the I64 compiler and
equivalent Itanium instructions are generated.

• The name of the compiler image has been renamed to
SYS$SYSTEM:MACRO.EXE. The prior SYS$SYSTEM:ALPHA_MACRO.EXE
image has been left on the kit in the event that the new compiler produces
incorrect results. The new compiler is used by OpenVMS engineering as the
compiler used to build the system itself so there has already been extensive
testing. The prior SYS$SYSTEM:ALPHA_MACRO.EXE compiler will be
removed in a future release.

5.9 Record Management System (RMS) Enhancements
The following sections describe the RMS enhancements provided in OpenVMS
Version 8.3.

5.9.1 RMS CONVERT/FDL and CREATE/FDL Enhancements
The CONVERT/FDL and CREATE/FDL routines have been enhanced to allow
an FDL string to be passed as the FDL file specification. If the /FDL qualifier
value is a quoted string and is not a quoted POSIX pathname, then it is passed
to the FDL parser as an FDL string. Quoted values within the string must be
designated with double quotes. See the HP OpenVMS Utility Routines Manual
FDL section for details of using an FDL string.

Note the following examples:

$ CONVERT/FDL="TITLE ""This is an FDL string"";File;org SEQ;Record;size 80" -
_$(input_file: output_file:)

$ CREATE/FDL="record;format fixed;size 100" file.dat

5–12 Programming Features

Programming Features
5.9 Record Management System (RMS) Enhancements

5.9.2 RMS Global Buffer Enhancements for Indexed Files
Prior to the OpenVMS Version 8.3 release, RMS global buffers were exclusively
mapped to P0 (32-bit address) space. This restricted the overall per-process limit
to less than 1 GB for the total number of global buffers specified for all files
accessed by a process. This per-process limit forced RMS users to compromise on
the number of global buffers specified for each file. It also constrained the per-file
maximum size allowed for a global cache (currently, 32767 buffers).

To improve the overall scalability and performance of RMS global buffers, this
release introduces the following global buffer enhancements for indexed files:

• Mapping RMS global buffers for indexed files to P2 (64-bit address) space in
order to remove the overall per-process limit of less than 1 GB. No application
changes are required to utilize global buffers for indexed files mapped to P2
space. However, global buffers must be enabled on an indexed file to take
advantage of the enhancement.

• Increasing the per-file maximum size allowed for a global cache from a signed
word (32767) to a signed longword (2.1 billion) for indexed files. To take
advantage of the per-file maximum size increase, new options must be used
with the SET FILE/GLOBAL_BUFFER qualifier.

Because RMS global buffers are local to each node, these enhancements were
designed so they could be implemented on OpenVMS Alpha and OpenVMS for
Integrity servers Version 8.3 nodes in a mixed cluster environment without
requiring any changes to OpenVMS VAX or earlier version nodes. The Version
8.3 Alpha and Integrity server nodes will be able to increase the global cache
size on an indexed file, while other nodes continue to operate on the file with the
pre-Version 8.3 global cache size. This is particularly attractive, because it allows
users to phase in Version 8.3 (or later) Alpha or Integrity server nodes that can
support larger global buffer caches for indexed files into clusters with earlier
versions of OpenVMS, including nodes running OpenVMS VAX.

5.9.3 New Form of Global Buffers Specification
There are now two forms of the SET FILE/GLOBAL_BUFFER command:

1. SET FILE/[NO]GLOBAL_BUFFER[=n file name]

Where n sets the old value for the number of global buffers that can be shared
(limited to a maximum of 32767). This makes the file compatible with prior
versions of OpenVMS and stores in the original location in the file’s header.

2. SET FILE/[NO]GLOBAL_BUFFER[=keyword[=n]] file name

Where keyword can be:

• COUNT=n—The value n sets the longword count of the number of global
buffers.

• PERCENT=p—The value p expresses the size of the global cache as a
percent of the total number of blocks currently used in the file.

• DEFAULT—Requests RMS at runtime to recalculate the global cache
size based on an algorithm that makes use of two global buffer SYSGEN
parameters, GB_CACHEALLMAX and GB_DEFPERCENT.

The value n sets the new value stored in a different location in a file’s header.

Programming Features 5–13

Programming Features
5.9 Record Management System (RMS) Enhancements

For example, the following commands do four distinctly different things:

1. $ SET FILE/GLOBAL_BUFFER=20 NEWFILE.DAT ! Sets the compatibility (old)
global buffer count (limited)

2. $ SET FILE/GLOBAL_BUFFER=COUNT=1000 NEWFILE.DAT ! Sets the new global
buffer count (unlimited)

3. $ SET FILE/GLOBAL_BUFFER=PERCENT=50 INVENTORY.DAT ! Tells RMS to
calculate the count as a percentage of the file

4. $ SET FILE/GLOBAL_BUFFER=DEFAULT INV.INX ! Tells RMS to calculate the
count based on the total file size

Global buffers specified with the old syntax (SET FILE/GLOBAL_BUFFER=n)
stores settings in the file header in one location, while the new syntax (SET
FILE/GLOBAL_BUFFER=keyword[=n]) are stored elsewhere in the file’s header
and are used to implement the new variation of global buffers, allowing more
buffers and automatic adjustments for file growth.

Note You can specify only one version of the global buffer qualifier in a
command string. Here’s an example of using both the old and new global buffer
specifications to set the old compatibility global buffer count value (for OpenVMS
versions prior to Version 8.3) to 100 and the new value (Version 8.3 and later) to
10000:

$ SET FILE/GLOBAL_BUFFER=100 NEWFILE.DAT
$ SET FILE/GLOBAL_BUFFER=COUNT=10000 NEWFILE.DAT

In a clustered environment with mixed OpenVMS versions, the same file can be
opened on different nodes with different global buffer counts. For nodes prior to
Version 8.3, use the old compatibility setting, and for Version 8.3 nodes and later
use the new values.

5.9.4 New Fields Added to XABFHC
Two new fields have been added to the read-only XABFHC (file header
characteristics):

Field Offset Bytes Description

XAB$B_RECATTR_FLAGS 1 Flags for record attribute area

XAB$L_GBC32 4 Enhanced longword global
buffer count

The field descriptions for these fields are the following:

• XAB$L_GBC32 — Enhanced longword global buffer count or percentage. If
the XAB$V_GBC_PERCENT flag is set in the XAB$B_RECATTR_FLAGS
field, the field contains a percentage.

• XAB$B_RECATTR_FLAGS — Flags for record attribute area in file header.
The following flags are currently implemented:

— XAB$V_GBC_PERCENT — This flag indicates the value in the global
buffer count is expressed as a percent of the total number of blocks
currently used in the file. This allows the size to dynamically grow over
time because RMS recalculates the actual size to be mapped based on the
current total number of blocks used in the file. The size is determined
at run time each time the global cache is created by the first accessor on

5–14 Programming Features

Programming Features
5.9 Record Management System (RMS) Enhancements

a node. Users can also specify a percentage greater than 100 percent to
allow for rapid growth for a file that, once opened, is closed infrequently.

— XAB$V_GBC_DEFAULT — This flag requests RMS at run time to
recalculate the global cache size based on an algorithm that uses two
global buffer (GB) SYSGEN parameters, GB_CACHEALLMAX and
GB_DEFPERCENT. If the default option is enabled, and if the size (in
blocks) of the file is less than or equal to the specified size for the GB_
CACHEALLMAX parameter, RMS allocates sufficient global buffers to
cache the whole file. If the size (in blocks) is greater than the specified
size for the GB_CACHEALL MAX parameter, RMS allocates sufficient
global buffers to cache the percentage of the file indicated by the GB_
DEFPERCENT (global buffer default percent) parameter.

5.9.5 New RMS Field Values
The following field values have been added:

Field Value Meaning

FAT$L_GBC32 Enhanced longword global buffer count

FAT$RECATTR_FLAGS Record attributes flags. The following bit values are
defined:

FAT$M_GBC_PERCENT—Interpret value in
FAT$L_GBC32 as a percent instead of count
FAT$M_GBC_DEFAULT—RMS should set default
for global buffer count and ignore any values in
FAT$W_GBC or FAT$L_GBC32

Figure 5–1, from the HP OpenVMS I/O User’s Reference Manual, has been
updated to reflect the new fields.

Figure 5–1 ACP-QIO Record Attributes Area

31 24 23 16 15 8 7 0

ZK-0641-AI

4

8

12

16

20

24

28

FAT$W_RSIZE FAT$B_RATTRIB FAT$B_RTYPE*

FAT$L_EFBLK

FAT$L_HIBLK

FAT$B_VFCSIZE

FAT$B_RECATTR_FLAGS

FAT$B_BKTSIZE FAT$W_FFBYTE

FAT$W_DEFEXT FAT$W_MAXREC

FAT$L_GBC32

FAT$W_GBC
(alias FAT$W_GBC16)

FAT$W_VERSIONS Not Used

Reserved

*FAT$V_RTYPE Bits 0 3; FAT$V_FILEORG Bits 4 7

Programming Features 5–15

Programming Features
5.9 Record Management System (RMS) Enhancements

5.9.6 New RMS Per-File Management Options for Sizing Global Buffer Cache
This release introduces two new per-file management options that allow simpler
sizing of the global buffer cache for all RMS file organizations (sequential,
relative, and indexed). These new options augment the existing global buffer
count option:

• PERCENT — Rather than specifying a global buffer count as the size, users
can express the size of the global cache as a percent of the current total
number of blocks used in the file. This allows the size to dynamically grow
over time, because RMS recalculates the actual size to be mapped based on
the current total number of blocks used in the file. The size is determined at
run time when the global cache is initially created by the first accessor of the
file on a node. Users can also specify a percentage greater than 100 percent
to allow for rapid growth for a file that, once opened, is closed infrequently.

• DEFAULT — The user can choose an option requesting that at run time each
time the global cache is created by the first accessor on a node, RMS calculate
a global cache size based on some file characteristics.

The RMS global buffer count (GBC) default is based on an algorithm that uses
two new global buffer (GB) SYSGEN parameters: GB_CACHEALLMAX and
GB_DEFPERCENT. If the default option is enabled, and if the size (in blocks)
of the file is less than or equal to the size specified for the GB_CACHEALLMAX
parameter, RMS allocates sufficient global buffers to cache the whole file.

If the size (in blocks) is greater than the specified size for the GB_
CACHEALLMAX parameter, RMS allocates sufficient global buffers to cache
the percentage of the file specified by the GB_DEFPERCENT (global buffer
default percent) parameter. A percentage greater than 100 percent can be
specified to provide space in the cache for the file to grow.

5.9.7 Size of Global Buffer Cache Connected to File (XAB$_GBC)
The XAB$_GBC item code can be used with an item list XAB on a $CONNECT or
$DISPLAY with a SENSEMODE operation to sense the actual number of global
buffers connected to a file when the global section for the file was created by the
first accessor on the respective node.

The XAB$_GBC item code requires a 4-byte buffer to return the cache size that
was connected. You cannot use a SETMODE with this item.

This option is not supported for DECnet operations; it is ignored.

5.9.8 Global Buffer Count (XAB$_GBC32)
The XAB$_GBC32 item code can be used with an item list XAB on a $CREATE
with A SETMODE operation. It sets the longword global buffer count as a
permanent attribute in the record-attribute area of the file header when a file
is created. You can also use it with an item list XAB on a $CONNECT with a
SETMODE to override at run time the permanent attribute in the file header.
The override applies only if the process is the first connector of the cache on the
respective node.

You cannot sense the global buffer count connected to a file using the XAB$_
GBC32 item code. Use the XAB$_GBC item code to sense the actual global-buffer
count.

5–16 Programming Features

Programming Features
5.9 Record Management System (RMS) Enhancements

The XAB$_GBC32 item code requires a 4-byte buffer to store the cache size that
can be requested as either an actual count or a percentage of the total number
of blocks in the file at run time. To specify the cache size as a percent, the XAB
item list must also include the XAB$_GBCFLAGS item code; otherwise, the cache
size value provided with the XAB$_GBC32 item code is interpreted as a count.

You can specify a maximum value of %x7FFFFFFF as the count for an indexed
file; sequential and relative file organizations are restricted to a maximum of
32767. You can specify a percentage that is greater than 100 percent to allow for
rapid growth for a file that, once opened, is closed infrequently.

Note that this option is not supported for DECnet operations; it is ignored.

5.9.9 Global Buffer Flags (XAB$_GBCFLAGS)
The XAB$_GBCFLAGS item code can be used with an item list XAB on a
$CREATE with a SETMODE operation. It sets the global buffer flags value as a
permanent attribute in the record attributes area of the file header when a file
is created. You can also use it with an item list XAB on a $CONNECT with a
SETMODE to override at run time the permanent attribute in the file header.
The override applies only if the process is the first connector of the cache on the
respective node.

You can sense the global buffer flags value using the XAB$_GBCFLAGS item
code with an item list XAB on a $CONNECT or $DISPLAY with a SENSEMODE
operation. The global buffer flags used in calculating the global buffer count
when the global section for the file was created by the first connector is returned.

The two available flags are:

• XAB$M_GBC_PERCENT — Indicates the value in the global buffer count is
expressed as a percent of the total number of blocks currently in the file. This
allows the size to grow dynamically over time, because RMS recalculates the
actual size to be mapped based on the current total number of blocks used
in the file. The size is determined at run time each time the global cache
is created by the first accessor on a node. You can also specify a percentage
greater than 100 percent to allow for rapid growth for a file that, once opened,
is closed infrequently.

• XAB$M_GBC_DEFAULT — Requests RMS at run time to recalculate the
global cache size based on an algorithm that makes use of two global buffer
(GB) SYSGEN parameters: GB_CACHEALLMAX and GB_DEFPERCENT. If
the default option is enabled, and if the size (in blocks) of the file is less than
or equal to the specified size for the GB_CACHEALLMAX parameter, RMS
allocates sufficient global buffers to cache the whole file. If the size (in blocks)
is greater than the specified size for the GB_CACHEALLMAX parameter,
RMS allocates sufficient global buffers to cache the percentage of the file
specified by the GB_DEFPERCENT (global buffer default percent) parameter.

The XAB$_GBCFLAGS item code requires a 4-byte buffer to store the flag value
of either XAB$_GBC_PERCENT or XAB$_GBC_DEFAULT.

Note, this option is not supported for DECnet operations; it is ignored.

Programming Features 5–17

Programming Features
5.10 HP SSL for OpenVMS

5.10 HP SSL for OpenVMS
Secure Sockets Layer (SSL) is the open standard security protocol for the secure
transfer of sensitive information over the Internet. HP SSL Version 1.3 is based
on OpenSSL 0.9.7e. (The previous version of HP SSL was based on OpenSSL
0.9.7d.)

Support for HP SSL is provided on OpenVMS I64, OpenVMS Alpha, and
OpenVMS VAX.

HP SSL Version 1.3 is now included in the OpenVMS operating system as a SIP
(system integrated product) instead of as a layered product. Version 1.3 also
includes the bug fixes included in OpenSSL 0.9.7e. These features are described
in the following list:

• SSL as SIP (System Integrated Product)

SSL for OpenVMS is now installed automatically when you install or
upgrade to OpenVMS Version 8.3. You no longer need to install the PCSI file
separately.

• Bug Fixes in OpenSSL 0.9.7e

The major changes between OpenSSL 0.9.7d and OpenSSL 0.9.7e are as
follows:

Fixed race condition when CRLs are checked in a multithreaded
environment.

Added Delta CRL to extension code.

Fixed s3_pkt.c so alerts are sent properly.

Reduced chances of duplicate issuer name and serial numbers (in violation
of RFC3280) using the OpenSSL certificate creation utilities.

HP SSL addresses these three fundamental security concerns about
communication over the Internet and other TCP/IP networks:

• SSL server authentication — Allows a user to confirm a server’s identity.
SSL-enabled client software can use standard techniques of public-key
cryptography to check whether a server’s certificate and public ID are valid
and have been issued by a Certificate Authority (CA) listed in the client’s list
of trusted CAs. Server authentication is used, for example, when a PC user
is sending a credit card number to make a purchase on the web and wants to
check the receiving server’s identity.

• SSL client authentication — Allows a server to confirm a user’s identity.
Using the same techniques as those used for server authentication, SSL-
enabled server software can check whether a client’s certificate and public ID
are valid and have been issued by a Certificate Authority (CA) listed in the
server’s list of trusted CAs. Client authentication is used, for example, when
a bank is sending confidential financial information to a customer and wants
to check the recipient’s identity.

• An encrypted SSL connection — Requires all information sent between a
client and a server to be encrypted by the sending software and decrypted
by the receiving software, thereby providing a high degree of confidentiality.
Confidentiality is important for both parties to any private transaction. In
addition, all data sent over an encrypted SSL connection is protected with
a mechanism that automatically detects whether data has been altered in
transit.

5–18 Programming Features

Programming Features
5.10 HP SSL for OpenVMS

For more detailed information, refer to HP Open Source Security for OpenVMS,
Volume 2: HP SSL for OpenVMS.

For information about downloading the latest version of HP SSL for OpenVMS,
see the following Web site:

http://h71000.www7.hp.com/openvms/products/ssl/

For additional information about OpenSSL, see the OpenSSL Web site at the
following location:

http://www.openssl.org/

5.11 System Services New Information and New Item Codes
New item codes have been added for several system services. More information
about some item codes has been added as well. These topics are discussed in the
following sections.

5.11.1 $GETDVI: New Item Codes and Item Code Information
OpenVMS Version 8.3 contains the new item codes and item code information
described in the following sections.

5.11.1.1 New $GETDVI Item Codes
New $GETDVI item codes are the following:

DVI$_DEVICE_MAX_IO_SIZE
DVI$_FC_HBA_FIRMWARE_REV
DVI$_LAN_ALL_MULTICAST_MODE
DVI$_LAN_AUTONEG_ENABLED
DVI$_LAN_DEFAULT_MAC_ADDRESS
DVI$_LAN_FULL_DUPLEX
DVI$_LAN_JUMBO_FRAMES_ENABLED
DVI$_LAN_LINK_STATE_VALID
DVI$_LAN_LINK_UP
DVI$_LAN_MAC_ADDRESS
DVI$_LAN_PROMISCUOUS_MODE
DVI$_LAN_PROTOCOL_NAME
DVI$_LAN_PROTOCOL_TYPE
DVI$_LAN_SPEED
DVI$_MAILBOX_BUFFER_QUOTA
DVI$_MAILBOX_INITIAL_QUOTA
DVI$_PREFERRED_CPU_BITMAP
DVI$_VOLUME_PENDING_WRITE_ERR
DVI$_VOLUME_RETAIN_MAX
DVI$_VOLUME_RETAIN_MIN
DVI$_VOLUME_SPOOLED_DEV_CNT
DVI$_VOLUME_WINDOW

5.11.1.2 $GETDVI Item Code Information
For item codes that return a string data type, failure to pass in a buffer that is
large enough to hold the returned data results in silent data truncation. When
$GETDVI completes, HP recommends that you check the returned length field of
an item list descriptor for each item code that can return a string.

If the returned length is equal to the size of the buffer allocated to hold the
returned data, the data might have been truncated. In that case, call $GETDVI
iteratively with a larger buffer until the length of the returned data is less than
the size of the buffer allocated.

Programming Features 5–19

Programming Features
5.11 System Services New Information and New Item Codes

Unless the description of an item code specifies otherwise, HP recommends that
you use a buffer of 32 bytes to hold the returned string. $GETDVI pads the
unused portion of the buffer with null characters.

5.11.2 $GETJPI New Item Code
The $GETJPI system service contains the new JPI$_DEADLOCK_WAIT item
code.

5.11.3 $GETSYI New Item Codes
The $GETSYI system service contains the following new item codes:

SYS$_ACTIVE_CPU_BITMAP
SYI$_AVAIL_CPU_MASk
SYI$_BOOT_DEVICE
SYI$_IO_PRCPU_BITMAP
SYI$_POWERED_CPU_BITMAP

5.11.4 $GETDVI, $GETJPI, $GETLKI, $GETQUI, and $GETSYI Service
Information

HP strongly recommends the use of the EFN$C_ENF ‘‘no event flag’’ value as the
event flag if you are not using an event flag to externally synchronize with the
completion of this system service call. The $EFNDEF macro defines EFN$C_ENF.
For more information, see the HP OpenVMS Programming Concepts Manual.

5.11.5 $GETUAI New Item Codes
The $GETUAI system service contains the following new item codes:

UAI$V_DISPWDSYNCH
UAI$V_VMSAUTH

5.11.6 Additional Changes to System Services
Entries have been added or changed in $IO_FASTPATH and $PROCESS_
AFFINITY related to the new CPU namespace project. Other additions and
changes have been made to $SET_PROCESS_PROPERTIESW related to system
service logging.

For more detailed information, see the HP OpenVMS System Services Reference
Manual.

5.12 Traceback Facility
A callable interface that symbolizes program locations now exists on both
OpenVMS Alpha and OpenVMS for Integrity servers. Previously, this interface
was only available on OpenVMS for Integrity servers.

On Alpha systems, the new interface is called TBK$ALPHA_SYMBOLIZE, which
is similar to the TBK$I64_SYMBOLIZE routine on Integrity server systems.

The Integrity server routine interface (TBK$I64_SYMBOLIZE) has changed
from the previous release to match the Alpha routine interface (TBK$ALPHA_
SYMBOLIZE) available in this release. This change is backwards-compatible;
that is, the former interface is no longer documented but is supported for
programs that currently use it.

5–20 Programming Features

Programming Features
5.12 Traceback Facility

Both interfaces support callers in USER, SUPER and EXEC mode. Previously on
OpenVMS for Integrity servers, only USER mode callers were supported.

For complete information on the Traceback symbolize routines for Integrity
servers and Alpha, see the HP OpenVMS Utility Routines Manual.

Programming Features 5–21

6
InfoServer Utility

This chapter provides a description of the InfoServer utility feature now
supported on OpenVMS Alpha as well as OpenVMS for Integrity servers. This
chapter includes a comparison between the InfoServer hardware and InfoServer
application and a reference for the InfoServer utility commands.

6.1 InfoServer Utility Overview
The InfoServer application allows you to create a service for a virtual disk device
on the local area network.

Virtual disk devices include the following:

• DVD drives

• Certain disk drives: SCSI and Fibre Channel

• CD drives

• Partitions (the equivalent of container files)

Comparison of InfoServer Hardware and the InfoServer Application
The new InfoServer application on OpenVMS differs from previous InfoServer
hardware in a number of important ways. Some of the most notable are the
following:

• The use of DCL-style command syntax

• The requirement that a device must be mounted before you can create a
service for it

• Support for creating services for DVD drives

• No support for tape devices

• No support for CD-R (CD-recordable) drives.

• No automount support

6.1.1 InfoServer Usage Summary
You can use the InfoServer utility commands to do the following:

• Create and delete services for virtual disk devices on a local area network

• Save a list of active InfoServer services

• Modify the attributes of existing services

• Display information about servers and the nodes connected to services

• Display service-specific information about one or more services

• Start the LASTport/disk server and set various server and cache
characteristics.

InfoServer Utility 6–1

InfoServer Utility
6.1 InfoServer Utility Overview

You can invoke the InfoServer in the following ways:

• Use the RUN command

To invoke the InfoServer using the RUN command, enter the following at the
DCL command prompt:

$ RUN SYS$SYSTEM:ESS$INFOSERVER

The system responds by displaying the InfoServer utility prompt. You can
then enter an InfoServer command. For example:

InfoServer> SHOW SERVER

After the InfoServer executes the command, the system continues to display
the InfoServer> prompt until you exit the utility.

• Define the InfoServer as a foreign command

You can define the InfoServer as a foreign command by entering the following
at the DCL prompt or in a startup or login command file:

$ InfoServer :== ESSINFOSERVER

After you execute the login command file, you can enter the INFOSERVER
command at the DCL prompt to invoke the utility:

$ INFOSERVER

Note the following:

If you use InfoServer as a foreign command and also enter an InfoServer
command, the utility terminates after it executes the command and
returns you to the DCL command prompt. For example:

$ InfoServer SHOW SERVER
$

If you use InfoServer as a foreign command without specifying an
InfoServer command, the utility displays the InfoServer> prompt, at
which point you can enter commands. For example:

$ InfoServer
InfoServer> SHOW SERVER

Note

All InfoServer commands require SYSPRV and OPER privileges.

To exit the InfoServer utility, enter the EXIT command at the InfoServer> prompt
or press Ctrl/Z.

For information about the InfoServer utility, enter the HELP command at the
InfoServer> prompt.

6.1.2 InfoServer Commands
The following sections describe and provide examples of InfoServer commands.

6–2 InfoServer Utility

InfoServer
CREATE SERVICE

CREATE SERVICE

Creates a service for a specified device or partition.

Usage rules:

• All devices must be mounted systemwide to prevent them from being
dismounted when a process logs out.

• A device that has read/write service must be mounted /FOREIGN so that it is
not visible to OpenVMS.

• A device that has read-only service must be mounted with either the
/NOWRITE qualifier or the /FOREIGN qualifier so that no one can change it
locally.

• A partition can be served off a disk that is mounted for either read-only or
read/write access to OpenVMS.

• Support for partitions is limited in this release.

Format

CREATE SERVICE serviceName device-or-partitionName

Parameter

serviceName
The name by which the service is known to the local area network. The service
name can consist of alphanumeric characters and dollar signs ($). It can be 255
characters or fewer in length.

device-or-partitionName
The device or partition name is the name of the OpenVMS disk device or partition
as it is to be known to the local area network. The name of the device or partition
that you enter must have been created previously.

Explanations of device and partition names follow.

• Device names

Devices served to the local area network are OpenVMS disk devices; use
OpenVMS device names when you specify an InfoServer device name. Note
that the device name must either match exactly the name that the SHOW
SERVICES command displays or must contain wildcards.

In the InfoServer utility, wildcards, where supported, are the same as those
used in OpenVMS. The percent (%) character matches exactly one character.
The asterisk (*) character matches zero or more characters.

A disk specification must end with a colon.

• Partition names

Partitions are container files that are served to the network. As such, they
have OpenVMS file names with a default file type of .ESS$PARTITION.
Partition names, including the device, directory, and file name, can be no
more than 242 characters in length.

InfoServer Utility 6–3

InfoServer
CREATE SERVICE

Support for partitions is limited in this version. HP strongly suggests that
you use LD devices to support partitioned hard drives. See the DCL command
LD HELP for more information.

Qualifiers

/CLASS=className
Specifies a subset of the complete LASTport Disk (LAD) name space.

The purpose of class names is to subdivide name spaces so that clients see only
those names that are meaningful to them. The use of class names also allows two
services to have the same name and not conflict with one another.

For example, you can use different class names for different on-disk structures
that several client systems use. You might use SERVICEA/CLASS=ODS-2 for
some client systems and SERVICEA/CLASS=ISO_9660 for other client systems.
The service has the same name (SERVICEA), but the class names are different.

The class name you use depends on the client systems that will connect to the
service being created. The default class name is ODS_2. For example, OpenVMS
systems use the ODS_2 name space when attempting to mount an InfoServer
device. Note that OpenVMS clients can solicit only those services that are in the
ODS_2 service class.

Valid class names are the following:

V2.0 Names understood by PCSA MS-DOS Clients
Unformatted Virtual disk has no format
MSDOS MSDOS virtual disks
ODS_2 VMS virtual disks
UNIX UNIX virtual disks
ISO_9660 ISO 9660 CD format
HIGH_SIERRA MS-DOS CD format
APPLE Macintosh HFS format
SUN Sun format

/ENCODED_PASSWORD=hexstring
The SAVE command creates this qualifier. Because passwords are not stored
in plain text, the hashed password value is written out as part of the SAVE
operation so that the service can be recreated without revealing the password.

Note that if you edit the command procedure that the SAVE command creates
and change the service name, the encoded password value is no longer valid. You
need to set another password on the service using the /PASSWORD qualifier.

/PASSWORD=passwordString
/NOPASSWORD (default)
Specifies an optional service access control password. The client system must
specify the password to access the service.

The password string can be up to 39 alphanumeric ASCII characters in length. If
no password is specified, the client system is not required to provide a password
to access the service.

The text password is hashed and stored in encrypted form in memory with the
other service information.

/RATING=DYNAMIC
/RATING=STATIC=value
Clients use the service rating to select a service in the case of multiple matching
services. The service with the highest service rating is selected.

6–4 InfoServer Utility

InfoServer
CREATE SERVICE

The system adjusts the dynamic service rating based on load. You can also set a
static rating between 0 and 65535. The system does not adjust static ratings.

One use of static ratings is to migrate clients from one copy of a service to
another. If you set a static rating of 0 on services you want to migrate clients
away from, no new clients will connect to a 0-rated service; instead, they will
connect to higher-rated services. When all current clients have disconnected from
a service, you can safely delete it.

/READAHEAD (default)
/NOREADAHEAD
When a disk read is required to fill a cache block, the /READAHEAD qualifier
specifies that the read is to be from the first block requested to the end of the
bucket boundary. Readahead can speed up sequential operations by preloading
disk blocks that are needed into the cache.

If you specify both the /READAHEAD and the /READBEHIND qualifiers, any
block requested within a cache bucket causes the entire bucket range of blocks to
be read into the cache.

/READBEHIND
/NOREADBEHIND (default)
When a disk read is required to fill a cache block, the /READBEHIND qualifier
specifies that the read is to include all blocks from the beginning of the cache
bucket boundary up to and including the requested blocks.

If you specify both the /READAHEAD and the /READBEHIND qualifiers, any
block requested within a cache bucket causes the entire bucket range of blocks to
be read into the cache.

/READERS=number (default is READERS=1000)
/NOREADERS
Specifies the maximum number of simultaneous client connections allowed for
read access. The default is 1000 readers. A value of 0 indicates write-only access.

If a client requests read-only or read/write access to a service, the system counts
this as one reader.

/WRITERS
/NOWRITERS (default)
Specifies that the service is to allow access to a single writer.

Examples

1. $ SHOW DEVICE MOVMAN$DQA0:/full

Disk MOVMAN$DQA0:, device type Compaq CRD-8322B, is online, file-oriented
device, shareable, served to cluster via MSCP Server, error logging is
enabled.

Error count 0 Operations completed
Owner process "" Owner UIC [SYSTEM]
Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
Reference count 0 Default buffer size 512
Total blocks 16515072 Sectors per track 63
Total cylinders 16384 Tracks per cylinder 16

InfoServer Utility 6–5

InfoServer
CREATE SERVICE

$ MOUNT/SYSTEM dqa0 OVMSIPS11

Volume is write locked
OVMSIPS11 mounted on _MOVMAN$DQA0:

$ InfoServer
InfoServer> CREATE SERVICE VMS_SIPS_V11 _MOVMAN$DQA0:

%INFOSRVR-I-CRESERV, service VMS_SIPS_V11 [ODS-2] created for
_MOVMAN$DQA0:.

This example shows how to create a service for a CD device:

• The SHOW DEVICE . . . /FULL command displays a complete list of
information about the _MOVMAN$DQA0 CD.

• The MOUNT/SYSTEM command mounts the OVMSIPS11 volume on the
_MOVMAN$DQA0: CD.

• The InfoServer CREATE SERVICE command creates the VMS_SIPS_V11
service on the _MOVMAN$DQA0 CD.

2. $ LD CREATE KIT1/SIZE-100000
$ DIRECTORY KIT1

Directory DKB0:[DISKS]

KIT1.DSK;1 100000/100008 29-APR-2005 14:14:43.49

Total of 1 file, 100000/100008 blocks.

$ LD CONNECT KIT1

%LD-I-UNIT, Allocated device is MOVMAN$LDA1:

$ CREATE SERVICE TEST_KIT_1 MOVMAN$LDA1:

%INFOSRVR-I-CRESERV, service TEST_KIT_1 [ODS-2] created for
_MOVMAN$LDA1:

This example shows how to create a service for a logical disk (LD) device:

• The LD CREATE KIT1 command creates a contiguous file, KIT1, that can
be used as a logical disk.

• The DIRECTORY KIT1 command provides information about KIT1.

• The LD CONNECT KIT1 connects the logical disk file, KIT1, to the logical
disk device MOVMAN$LDA1:.

• The INITIALIZE command formats the MOVMAN$LDA1: LD device.

• The MOUNT command makes the LD device available for processing.

• The CREATE SERVICE command creates the TEST_KIT_1 service on the
_MOVMAN$LDA1 LD device.

6–6 InfoServer Utility

InfoServer
DELETE SERVICE

DELETE SERVICE

Deletes one or more services.

Format

DELETE SERVICE serviceName [device-or-partitionName]

Parameters

serviceName
The name by which the service is known to the local area network. The service
name can consists of alphanumeric characters and dollar signs ($). It can be up
to and include 255 characters. Wildcards are permitted.

In the InfoServer utility, wildcards, where supported, are those used in OpenVMS.
The percent (%) character matches exactly one character. The asterisk (*)
character matches zero or more characters.

device-or-partitionName
The device or partition name is the name of the OpenVMS disk device or partition
as it is to be known to the local area network. The name of the device or partition
that you enter must have been created previously.

Explanations of device and partition names follow.

• Device names

Devices served to the local area network are OpenVMS disk devices; use
OpenVMS device names when you specify an InfoServer device name. Note
that the device name must either match exactly the name that the SHOW
SERVICES command displays or must contain wildcards.

In the InfoServer utility, wildcards, where supported, are those used in
OpenVMS. The percent (%) character matches exactly one character. The
asterisk (*) character matches zero or more characters.

A disk specification must end with a colon.

• Partition names

Partitions are container files that are served to the network. As such, they
have OpenVMS file names with a default file type of .ESS$PARTITION.
Partition names, including the device, directory, and file name, can be no
more than 242 characters in length.

The partition name can be used to further identify the specific service
selected.

Support for partitions is limited in this version. HP strongly suggests that
you use LD devices to support partitioned hard drives. See the DCL command
LD HELP for more information.

Qualifiers

/CLASS=className
Specifies a subset of the complete LASTport Disk (LAD) name space.

The purpose of class names is to subdivide name spaces so that clients see only
those names that are meaningful to them. The use of class names also allows two
services to have the same name and not conflict with one another.

InfoServer Utility 6–7

InfoServer
DELETE SERVICE

For example, you can use different class names for different on-disk structures
that several client systems use. You might use SERVICEA/CLASS=ODS-2 for
some client systems and SERVICEA/CLASS=ISO_9660 for other client systems.
The service has the same name, SERVICEA, but the class names are different.

The class name you use depends upon the client systems that will connect to the
service being created. The default class name is ODS_2. For example, OpenVMS
systems use the ODS_2 name space when attempting to mount an InfoServer
device. Note that OpenVMS clients can solicit only those services that are in the
ODS_2 service class.

Valid class names are the following:

V2.0 Names understood by PCSA MS-DOS Clients
Unformatted Virtual disk has no format
MSDOS MSDOS virtual disks
ODS_2 VMS virtual disks
UNIX UNIX virtual disks
ISO_9660 ISO 9660 CD format
HIGH_SIERRA MS-DOS CD format
APPLE Macintosh HFS format
SUN Sun format

/CONFIRM (default)
/NOCONFIRM
Confirm the deletion of a service. If there are any connections, even though
/NOCONFIRM has been entered, the system forces a confirmation.

Controls whether a request is issued before each delete operation to confirm that
the operation should be performed on that service. The following responses are
valid:

YES NO QUIT
TRUE FALSE Ctrl/Z
1 0 ALL

Return (key)

Usage notes:

• You can use any combination of uppercase and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, T, TR, or TRU for TRUE); however, these abbreviations must be
unique.

• Affirmative answers are YES, TRUE, and 1. Negative answers include NO,
FALSE, 0, and pressing Return.

• Entering QUIT or pressing Ctrl/Z indicates that you want to stop processing
the command at that point.

• When you respond by entering ALL, the command continues to process, but
no further prompts are displayed.

/DISCONNECT
/NODISCONNECT (default)
Overrides the default prompting for confirmation if you attempt to delete a
service that has sessions connected to it. If a service has connected sessions and
the /DISCONNECT qualifier is not supplied, you are prompted to confirm service
deletion.

To delete services without being prompted at all, specify both the /NOCONFIRM
and /DISCONNECT qualifiers.

6–8 InfoServer Utility

InfoServer
DELETE SERVICE

Example

$ SHOW SERVICES

Service Name [Service Class] Device or File
-------------------- --------------- --------------------------
HUDSON [ODS-2] _MOVERS$LDA1: [1 Connection]
BAFFIN [ODS-2] _MOVERS$LDA1:
FUNDY [ODS-2] _MOVERS$LDA1:
3 services found.

$ DELETE SERVICE HUDSON

Service HUDSON has 1 session connected!
Delete service HUDSON [ODS-2] for _MOVERS$LDA1:? [N]:

The first command displays three services, including one session connection. The
second command deletes the HUDSON service. It displays messages indicating
that HUDSON had one session connected and that this service has been deleted.

InfoServer Utility 6–9

InfoServer
EXIT

EXIT

Terminates the program. Alternatively, you can press Ctrl/Z to exit from the
program.

Format

EXIT

6–10 InfoServer Utility

InfoServer
HELP

HELP

Online InfoServer help.

ESS$INFOSERVER is the user interface for the LASTport/Disk server
implemented as an application on OpenVMS. It is similar in behavior to the
hardware InfoServer product although not identical to it.

Format

HELP [topic]

Parameters

topic
The topic for which help is requested.

Example

$ INFOSERVER HELP SHOW SESSIONS

This command displays help about the InfoServer command SHOW SESSIONS.

InfoServer Utility 6–11

InfoServer
SAVE

SAVE

Saves the current set of active services as a set of commands in a command
procedure. You can then invoke the command procedure to reproduce the current
services when you reboot the system.

Format

SAVE procedureName

Parameters

procedureName
Creates a command procedure that restores the current server state. The
procedure name is the OpenVMS file name of the command procedure to be
created. If you do not specify a file type, the type defaults to .COM.

The default procedure name is ESS$LAD_SERVICES.COM.

Example

$ SHOW SERVICES

Service Name [Service Class] Device or File
-------------------- --------------- --------------
BASELEVEL_A [ODS-2] _INFOS$LDA1:
BASELEVEL_B [ODS-2] _INFOS$LDA2:
BASELEVEL_C [ODS-2] _INFOS$LDA3:
BASELEVEL_D [ODS-2] _INFOS$LDA4:

FIELD_TEST_BASELEVEL [ODS-2] _INFOS$LDA2:
CURRENT_BASELEVEL [ODS-2] _INFOS$LDA3:
EXPERIMENTAL_BASELEVEL

[ODS-2] _INFOS$LDA4:
%INFOSRVR-I-FOUND, 7 services found.

$ SAVE BASELEVELS

6–12 InfoServer Utility

InfoServer
SAVE

$! Created by the OpenVMS InfoServer SAVE command on 22-APR-2005
14:34:02.48
$ Set NoOn
$ Infoserver := ESSINFOSERVER
$!
$! The comment for each service includes the current device name.
$!
$!***
$! BASELEVEL_A [ODS_2] - _BILBO$LDA1: !
$!***
$ LD Connect/Symbol _BILBO$DKB0:[DISKS]BASELEVEL_A.DSK;1 "
$ LD_UNIT_1 := LDA’LD_UNIT’: #
$ If $STATUS Then Mount/System/NoWrite ’LD_UNIT_1’ BASELEVELA $
$ INFOSERVER Create Service BASELEVEL_A ’LD_UNIT_1’ - %

/Class=ODS_2/Readers=1000/NoWriters -
/Readahead/NoReadbehind -
/Rating=Dynamic

$!***
$! BASELEVEL_B [ODS_2] - _BILBO$LDA2:
$!***
$ LD Connect/Symbol _BILBO$DKB0:[DISKS]BASELEVEL_B.DSK;1
$ LD_UNIT_2 := LDA’LD_UNIT’:
$ If $STATUS Then Mount/System/NoWrite ’LD_UNIT_2’ BASELEVELB
$ INFOSERVER Create Service BASELEVEL_B ’LD_UNIT_2’ -

/Class=ODS_2/Readers=1000/NoWriters -
/Readahead/NoReadbehind -
/Rating=Dynamic

$!***
$! BASELEVEL_C [ODS_2] - _BILBO$LDA3:
$!***
$ LD Connect/Symbol _BILBO$DKB0:[DISKS]BASELEVEL_C.DSK;1
$ LD_UNIT_3 := LDA’LD_UNIT’:
$ If $STATUS Then Mount/System/NoWrite ’LD_UNIT_3’ BASELEVELC
$ INFOSERVER Create Service BASELEVEL_C ’LD_UNIT_3’ -

/Class=ODS_2/Readers=1000/NoWriters -
/Readahead/NoReadbehind -
/Rating=Dynamic

$!***
$! BASELEVEL_D [ODS_2] - _BILBO$LDA4:
$!***
$ LD Connect/Symbol _BILBO$DKB0:[DISKS]BASELEVEL_D.DSK;1
$ LD_UNIT_4 := LDA’LD_UNIT’:
$ If $STATUS Then Mount/System/NoWrite ’LD_UNIT_4’ BASELEVELD
$ INFOSERVER Create Service BASELEVEL_D ’LD_UNIT_4’ -

/Class=ODS_2/Readers=1000/NoWriters -
/Readahead/NoReadbehind -
/Rating=Dynamic -
/Encoded_Password=481C6B9081E742C2

! Invalid if service name changes &
$!***
$! FIELD_TEST_BASELEVEL [ODS_2] - _BILBO$LDA2:
$!***
$ INFOSERVER Create Service FIELD_TEST_BASELEVEL ’LD_UNIT_2’ - ’

/Class=ODS_2/Readers=1000/NoWriters -
/Readahead/NoReadbehind -
/Rating=Dynamic

$!***
$ INFOSERVER Create Service CURRENT_BASELEVEL ’LD_UNIT_3’ -

/Class=ODS_2/Readers=1000/NoWriters -
/Readahead/NoReadbehind -
/Rating=Dynamic

$!***
$! EXPERIMENTAL_BASELEVEL [ODS_2] - _BILBO$LDA4:
$!***
$ INFOSERVER Create Service EXPERIMENTAL_BASELEVEL ’LD_UNIT_4’ -

InfoServer Utility 6–13

InfoServer
SAVE

/Class=ODS_2/Readers=1000/NoWriters -
/Readahead/NoReadbehind -
/Rating=Dynamic -
/Encoded_Password=01F1D7374C0B81EC
! Invalid if service name changes (

$ Exit

The SHOW SERVICES command in this example displays the services that are
currently offered by the server. There is a set of software baselevels, each on its
own logical disk and served to the LAN. The baselevels are labeled a through
d, but, in addition, names help users so that they do not need to remember the
corresponding letters.

Note that devices LDA2, LDA3, and LDA4 have two services assigned to each
one.

The numbers in the example correspond to the numbers of the following
explanations.

! The comment for each device contains the name of the device at the time the
SAVE command was executed. LD devices are pseudodisk devices and might
change unit numbers every time they are connected.

" This command connects an LD device to the container file and assigns the
unit number to the DCL symbol LD_UNIT.

A unique symbol is created for each device assigned to a container file.

$ This command mounts the device specifying the label of the volume that the
device had at the time of the SAVE command.

% The InfoServer service is re-created for the device.

& The experimental baselevel services are password protected. For security, the
password is stored in the command procedure in prehashed format. Note that
both services have the same password, but the hash is different.

’ Because FIELD_TEST_BASELEVEL and BASELEVEL_B point to the same
LD device, no attempt is made to create another device, and the correct unit
(symbol LD_UNIT_2) is used to refer to the previously created unit.

(See explanation #6.

6–14 InfoServer Utility

InfoServer
SET SERVICE

SET SERVICE

Modifies the attributes of an existing service.

Format

SET SERVICE serviceName [device-or-partitionName]

Parameters

serviceName
The name by which the service is known to the local area network. The service
name can consist of alphanumeric characters or dollar signs ($). It can be up to
255 characters in length.

device-or-partitionName
The device or partition name is the name of the OpenVMS disk device or partition
as it is to be known to the local area network. The name of the device or partition
that you enter must have been created previously.

Explanations of device and partitions names follow.

• Device names

Devices served to the local area network are OpenVMS disk devices; use
OpenVMS device names when you specify an InfoServer device name. Note
that the device name must either match exactly the name that the SHOW
SERVICES command displays or must contain wildcards.

In the InfoServer utility, wildcards, where supported, are those used in
OpenVMS. The percent (%) character matches exactly one character. The
asterisk (*) character matches zero or more characters.

A disk specification must end with a colon.

• Partition names

Partitions are container files that are served to the network. As such, they
have OpenVMS file names with a default file type of .ESS$PARTITION.
Partition names, including the device, directory, and file name, can be no
more than 242 characters in length.

The partition name can be used to further identify the specific service
selected.

Support for partitions is limited in this version. HP strongly suggests that
you use LD devices to support partitioned hard drives. See the DCL command
LD HELP for more information.

Qualifiers

/CLASS=className
Specifies a subset of the complete LASTport Disk (LAD) name space.

The purpose of class names is to subdivide name spaces so that clients see only
those names that are meaningful to them. The use of class names also allows two
services to have the same name and not conflict with one another.

InfoServer Utility 6–15

InfoServer
SET SERVICE

For example, you can use different class names for different on-disk structures
that several client systems use. You might use SERVICEA/CLASS=ODS-2 for
some client systems and SERVICEA/CLASS=ISO_9660 for other client systems.
The service has the same name (SERVICEA), but the class names are different.

The class name you use depends upon the client systems that will connect to the
service being created. The default class name is ODS_2. For example, OpenVMS
systems use the ODS_2 name space when attempting to mount an InfoServer
device. Note that OpenVMS clients can solicit only those services that are in the
ODS_2 service class.

Valid class names are the following:

V2.0 Names understood by PCSA MS-DOS Clients
Unformatted Virtual disk has no format
MSDOS MSDOS virtual disks
ODS_2 VMS virtual disks
UNIX UNIX virtual disks
ISO_9660 ISO 9660 CD format
HIGH_SIERRA MS-DOS CD format
APPLE Macintosh HFS format
SUN Sun format

/PASSWORD=passwordString
/NOPASSWORD
Specifies an optional service access control password. The client system must
specify the password to access the service.

The password string can be up to 39 alphanumeric ASCII characters in length. If
no password is specified, the client is not required to provide a password to access
the service.

The text password is hashed and stored in encrypted form in memory with the
other service information.

/RATING=DYNAMIC
/RATING=STATIC=value
Clients use service rating to select a service in the case of multiple matching
services. The service with the higher service rating is selected.

The system adjusts the dynamic service rating based on load.

A static rating between 0 and 65535 can also be set. Static ratings are not
adjusted by the system.

/READAHEAD
/NOREADAHEAD
When a disk read is required to fill a cache lock, specifies that the read should be
from the first block requested to the end of the bucket boundary. Readahead can
speed up sequential operations by pre-loading disk blocks that are needed into
the cache.

If both the /READAHEAD and the /READBEHIND qualifiers are specified, any
block requested within a cache bucket causes the entire bucket range of blocks to
be read into the cache.

6–16 InfoServer Utility

InfoServer
SET SERVICE

/READBEHIND
/NOREADBEHIND
When a disk read is required to fill a cache block, specifies that the read should
include all blocks from the beginning of the cache bucket boundary up to and
including the requested block.

If both the /READAHEAD and the /READBEHIND qualifiers are specified, any
block requested within a cache bucket causes the entire bucket range of blocks to
be read into the cache.

/READERS=number
Specifies the maximum number of client connections allowed for read access.

Example

$ INFOSERVER SET SERVICE FUNDY/NOPASSWORD

Service FUNDY [ODS-2] modified.

$ INFOSERVER SHOW SERVICES FUNDY/FULL

FUNDY [ODS-2] Access: Read-only
File or device: _MOVERS$LDA1: [750000 blocks]
Flags: 00000000D2 {No Writers,Static Rating,Readbehind,Readahead}
Rating: Static, 42 Password: Disabled
Max Readers: 1000 Max Writers: 0
Curr Readers: 0 Curr Writers: 0
Reads: 0 Writes: 0
Blocks Read: 0 Blocks Written: 0

The first command in this example modifies the FUNDY service so that the client
does not need to enter a password to access the service. The second command
displays the FUNDY service, showing that the use of a password has been
disabled. (In the second example, notice that the use of a password is enabled for
the FUNDY service.)

InfoServer Utility 6–17

InfoServer
SHOW SERVER

SHOW SERVER

Displays information about the server (that is, the system that provides services).

Format

SHOW SERVER

Example

$ INFOSERVER SHOW SERVER

Node MOVERS [COMPAQ Professional Workstation XP1000] running OpenVMS XALD-
BL2

LASTport/Disk Server Version 1.2

Max Services: 64 Write Quota: 0
Cache Buckets: 4096 Cache Bucket Size: 32 blocks
Cache Size: 67108864 bytes
Hits: 478 Hit Percentage: 59%
Misses: 328

Current Sessions: 0 Peak Sessions: 1

Read Write
Requests: 40 0
Blocks: 319 0
Errors: 0 0
Aborted: 0 0
Conflicts: 0 0

This command displays information about the server that provides services to the
client. The information displayed includes the following:

• The maximum number of services this server can offer simultaneously

• The current size of the cache

• Cache effectiveness statistics

• Current and maximum historical number of clients connected simultaneously

• I/O statistics

6–18 InfoServer Utility

InfoServer
SHOW SERVICES

SHOW SERVICES

The SHOW SERVICES command displays service-specific information for one or
all services offered by the server. This information includes the device number
associated with the service and the number of connected sessions.

The SHOW SERVICES command supports wildcard expressions. In the
InfoServer utility, wildcards, where supported, are those used in OpenVMS. The
percent (%) character matches exactly one character. The asterisk (*) character
matches zero or more characters.

Format

SHOW SERVICES [serviceName] [options...]

Parameters

serviceName
The name by which the service is known to the local area network. The service
name consists of alphanumeric characters or dollar signs ($). It can be up to 255
characters in length. If omitted, the service name defaults to ALL services.

In the InfoServer utility, wildcards, where supported, are the same as those used
in OpenVMS. The percent (%) character matches exactly one character. The
asterisk (*) character matches zero or more characters.

Qualifiers

/BRIEF (default)
The BRIEF option provides an abbreviated one-line summary of information for
each service selected. BRIEF is the default.

/FULL
The FULL option provides all the service-specific information for the services
selected.

Examples

1. INFOSERVER> SHOW SERVICES

Service Name [Service Class] Device or File
-------------------- --------------- --------------------------
HUDSON [ODS-2] _MOVERS$LDA1:
BAFFIN [ODS-2] _MOVERS$LDA1:
FUNDY [ODS-2] _MOVERS$LDA1:
3 services found.

This command displays the one-line default BRIEF summary of all the
services that are connected.

InfoServer Utility 6–19

InfoServer
SHOW SERVICES

2. INFOSERVER> SHOW SERVICES/FULL

HUDSON [ODS-2] Access: Read-only
File or device: _MOVERS$LDA1: [750000 blocks]
Flags: 0000000082 {No Writers,Readahead}
Rating: Dynamic, 65535 Password: Disabled
Max Readers: 1000 Max Writers: 0
Curr Readers: 0 Curr Writers: 0
Reads: 0 Writes: 0
Blocks Read: 0 Blocks Written: 0

BAFFIN [ODS-2] Access: Read-only
File or device: _MOVERS$LDA1: [750000 blocks]
Flags: 0000000082 {No Writers,Readahead}
Rating: Dynamic, 65535 Password: Disabled
Max Readers: 1000 Max Writers: 0
Curr Readers: 0 Curr Writers: 0
Reads: 0 Writes: 0
Blocks Read: 0 Blocks Written: 0

FUNDY [ODS-2] Access: Read-only
File or device: _MOVERS$LDA1: [750000 blocks]
Flags: 00000000D2 {No Writers,Static Rating,Readbehind,Readahead}
Rating: Static, 42 Password: Enabled
Max Readers: 1000 Max Writers: 0
Curr Readers: 0 Curr Writers: 0
Reads: 0 Writes: 0
Blocks Read: 0 Blocks Written: 0

3 services found.

This command displays all of the service-specific information for all the
services that are connected. Notice that passwords are disabled on the
HUDSON and BAFFIN services and enabled on the FUNDY service.

6–20 InfoServer Utility

InfoServer
SHOW SESSIONS

SHOW SESSIONS

Displays information about client nodes that are connected to services.

Format

SHOW SESSIONS [serviceName] [device-or-partitionName]]

Parameters

serviceName
The name by which the service is known to the local area network. The service
name can consist of alphanumeric characters, dollar signs ($), and wildcards. It
can be up to 255 characters in length. If omitted, the service name defaults to all
services.

In the InfoServer utility, wildcards, where supported, are those used in OpenVMS.
The percent (%) character matches exactly one character. The asterisk (*)
character matches zero or more characters.

device-or-partitionName
The device or partition name is the name of the OpenVMS disk device or partition
as it is to be known to the local area network. The name of the device or partition
that you enter must have been created previously.

Explanations of device and partition names follow.

• Device names

Devices served to the local area network are OpenVMS disk devices; use
OpenVMS device names when you specify an InfoServer device name. Note
that the device name must either match exactly the name that the SHOW
SERVICES command displays or must contain wildcards.

In the InfoServer utility, wildcards, where supported, are the same as those
used in OpenVMS. The percent (%) character matches exactly one character.
The asterisk (*) character matches zero or more characters.

A disk specification must end with a colon.

• Partition names

Partitions are container files that are served to the network. As such, they
have OpenVMS file names with a default file type of .ESS$PARTITION.
Partition names, including the device, directory, and file name, can be no
more than 242 characters in length.

Support for partitions is limited in this version. HP strongly suggests that
you use LD devices to support partitioned hard drives. See the DCL command
LD HELP for more information.

Qualifiers

/ALL
Display all services that match the selection criteria even if no clients have
connections. If this qualifier is omitted, only those services with clients connected
are displayed.

InfoServer Utility 6–21

InfoServer
SHOW SESSIONS

Examples

1. $ INFOSERVER SHOW SESSIONS

HUDSON [ODS-2] _MOVERS$LDA1: [1 Connection]
1 service found.

2. $ INFOSERVER SHOW SESSIONS/ALL

HUDSON [ODS-2] _MOVERS$LDA1: [1 Connection]

BAFFIN [ODS-2] _MOVERS$LDA1:

FUNDY [ODS-2] _MOVERS$LDA1:
3 services found.

In the first example, this command displays only the session that has a client
connection, HUDSON. In the second example, this command displays all
sessions, even those with no client connections.

6–22 InfoServer Utility

InfoServer
SPAWN

SPAWN

Spawns a process to execute a DCL command. If you do not enter a command,
the command terminal is attached to the spawned process. If you do enter a
command, that command is executed and, upon completion of the command,
control returns to the parent process.

Format

SPAWN [DCL Command]

Example

InfoServer> SPAWN DIRECTORY

.

.

.
(output)

.

.

.

InfoServer>

This command spawns a process to execute a DCL command DIRECTORY.
Following execution of the command, control returns to the InfoServer process.

InfoServer Utility 6–23

InfoServer
START SERVER

START SERVER

This command starts the LASTport/Disk server and sets various server and cache
characteristics.

Usually this command is executed by SYS$STARTUP:ESS$LAD_STARTUP.COM
using data from SYS$STARTUP:ESS$LAD_STARTUP.DAT. HP strongly
recommends that you make all modifications in the SYS$STARTUP:ESS$LAD_
STARTUP.DAT file.

You can use the START SERVER command interactively to use its qualifiers to
change server settings as long as no services are currently defined.

Format

START SERVER

Qualifiers

/BUFFER_SIZE=n
The InfoServer block cache is structured as an array of fixed-size buffers (also
called buckets.) The /BUFFER_SIZE qualifier determines the size of each
bucket. (The /CACHE qualifier determines the number of buckets.)

The numeric value of this parameter is an integer between 3 and 8, inclusive,
representing the bucket size in 512-byte blocks as follows:

3 - 8 blocks (default)
4 - 16 blocks
5 - 32 blocks
6 - 64 blocks
7 - 128 blocks
8 - 256 blocks

Bucket sizes that are larger than 32 blocks are not appropriate for most users.
The OpenVMS client segments I/O requests that are larger than 31 blocks into
31-block chunks, and the default bucket readahead behavior might result in
unnecessary I/O activity to the disk.

/CACHE = number-of-buckets (default = 512)
The InfoServer block cache is structured as an array of fixed-size buffers (also
called buckets. The /CACHE qualifier determines the number of buckets in the
cache. (The /BUFFER_SIZE qualifier determines the size of each bucket.)

Numbers larger than 16384 can adversely affect performance. Consider
increasing the /BUFFER_SIZE qualifier to reach the desired cache size.

/MAXIMUM_SERVICES = maxservice (default = 256)
Sets the maximum service count for the server. This is the maximum number
of services that can be defined at one time. Each service descriptor consumes
nonpaged pool; however, unused service slots consume only 4 bytes each.

The maximum value is 1024.

/WRITE_QUOTA = n (default = 0)
Number of simultaneous synchronous writes permitted within the server. The
default of zero means that all write operations are performed synchronously.

6–24 InfoServer Utility

InfoServer
START SERVER

Example

$ InfoServer SHOW SERVER

Node BILBO [HP rx2600 (900MHz/1.5MB)] running OpenVMS XAR8-D2Y
LASTport/Disk Server Version 1.2

Max Services: 64 Write Quota: 0
Cache Buckets: 2048 Cache Bucket Size: 32 blocks
Cache Size: 33554432 bytes
Hits: 0 Hit Percentage: 0%
Misses: 0

Current Sessions: 0 Peak Sessions: 0

Read Write
Requests: 0 0
Blocks: 0 0
Errors: 0 0
Aborted: 0 0
Conflicts: 0 0

$ InfoServer START SERVER/MAXIMUM_SERVICES=128/CACHE=2048/BUFF=5/WRITE=0

%INFOSRVR-I-STARTED, LASTport/Disk server started.

$ InfoServer SHOW SERVER

Node BILBO [HP rx2600 (900MHz/1.5MB)] running OpenVMS XAR8-D2Y
LASTport/Disk Server Version 1.2

Max Services: 128 Write Quota: 0
Cache Buckets: 2048 Cache Bucket Size: 32 blocks
Cache Size: 33554432 bytes
Hits: 0 Hit Percentage: 0%
Misses: 0

Current Sessions: 0 Peak Sessions: 0

Read Write
Requests: 0 0
Blocks: 0 0
Errors: 0 0
Aborted: 0 0
Conflicts: 0 0

The first command in this example displays the current information about the
server. The second command starts the server and increases the maximum
number of services for the server. The third command displays the new
information about the server, showing the increased number of maximum
services.

InfoServer Utility 6–25

7
Associated Products Features

This chapter describes significant new features of OpenVMS operating system
associated products. For a listing and directory information about the OpenVMS
associated products, refer to the Read Before Installing letter appropriate for your
operating system.

7.1 Distributed NetBeans for OpenVMS
Distributed NetBeans for OpenVMS allows you to run the NetBeans IDE on
your desktop system and develop applications on a remote OpenVMS Alpha or
OpenVMS I64 system.

Distributed NetBeans Version 1.1 contains all of the functionality provided in
NetBeans for OpenVMS plug-in modules: C/C++, COBOL, FORTRAN, and
PASCAL language support, and MMS, BASH, DCL, CMS, and EDT keypad
support. Distributed NetBeans supports access to your files and CMS libraries
(including CMS groups) using a built-in FTP filesystem in addition to Samba for
OpenVMS and Advanced Server.

For additional information about Distributed NetBeans for OpenVMS and to
download the latest kits and documentation, see the following Web site:

http://www.hp.com/products/openvms/distributednetbeans/

7.2 Secure Web Browser for OpenVMS
Secure Web Browser Version 1.7-13 for OpenVMS is based on Mozilla M1.7.13
and includes important security bug fixes.

For additional information about the Secure Web Browser for OpenVMS and to
download the latest kits and documentation, see the following Web site:

http://www.hp.com/products/openvms/securewebbrowser/

7.3 Secure Web Server for OpenVMS
Secure Web Server Version 2.1 for OpenVMS is based on Apache 2.0.52. New
features include support for suEXEC and mod_dav, and the lifting of the
STREAM_LF restriction present in Version 2.0.

Also available are new versions of PHP (CSWS_PHP Version 1.3), mod_perl
(CSWS_PERL Version 2.1), Perl (PERL Version 5.8-6), and Tomcat (CSWS_JAVA
Version 3.0) for use with the new Secure Web Server.

For additional information about the Secure Web Server for OpenVMS and to
download the latest kits and documentation, see the following Web site:

http://www.hp.com/products/openvms/securewebserver/

Associated Products Features 7–1

Associated Products Features
7.4 HP TCP/IP Services for OpenVMS Version 5.6

7.4 HP TCP/IP Services for OpenVMS Version 5.6
HP TCP/IP Services for OpenVMS Version 5.6 supports OpenVMS Version 8.3.
The following new features are provided in TCP/IP Version 5.6:

• BIND 9 resolver

New version of the BIND resolver, including the ability to resolve DNS entries
by way of the IPv6 transport. This represents a major upgrade from V5.5 and
other recent releases, which provided resolver functionality based on BIND 8.

• DNS/BIND Version 9.3.1 server

New version of the BIND server, which brings several incremental
improvements related to security and stability.

• NFS client TCP support

NFS client TCP support added, allows the NFS client as well as the server
to run over TCP, in addition to the more-traditional UDP mode of operation.
This can be useful when mounting file systems across a Wide Area Network
or traversing a firewall.

• NFS Server support for Integrity servers

Includes NFS server support for OpenVMS Integrity server platforms.

• NFS Symbolic Link Support

Provides the ability for the NFS server to recognize symbolic links and create
them as necessary.

• NTP security update (SSL)

New NTP features offer cryptographic security, enhancing the protection
against an attacker trying to compromise the accuracy of your system clock.

• SMTP multiple domains in a zone

SMTP now recognizes more than one domain name for direct local delivery.

• SSH upgrade with Kerberos support

TCP/IP Services Version 5.6 for OpenVMS introduces SSH support for
Kerberos, the network authentication protocol from Massachusetts Institute
of Technology. The SSH password authentication method has been enhanced
to support Kerberos. Three new SSH authentication methods based on
Kerberos are now supported:

— gssapi-with-mic

— kerberos-2@ssh.com

— kerberos-tgt-2@ssh.com

For more information about Kerberos, see to the HP Open Source Security for
OpenVMS, Volume 3: Kerberos.

• TELNET upgrade with Kerberos support

Support added for the TELNET server and client with the upgraded Kerberos
version that ships with OpenVMS Version 8.3.

• TELNET Server Device Limit

The TELNET server is no longer limited to 9999 sessions or TN devices.

7–2 Associated Products Features

Associated Products Features
7.4 HP TCP/IP Services for OpenVMS Version 5.6

• IPv6 support for LPD and TELNETSYM

Both LPD and TELNETSYM printing software now allow you to print by way
of the IPv6 transport.

• FTP performance enhancements for OpenVMS Plus Mode

Streamlining was performed for the FTP service, specifically addressing the
case where both server and client are OpenVMS systems.

• Improved interface configuration in TCPIP$CONFIG

The menu-driven process of defining local interfaces and IP addresses has
been significantly reworked to provide better support for failSAFE IP.

• Encryption for OpenVMS is now installed as part of the OpenVMS
installation

The menu-driven process of defining local interfaces and IP addresses has
been significantly reworked to provide better support for failSAFE IP.

7.5 Web Services Integration Toolkit for OpenVMS
Web Services Integration Toolkit Version 1.1 for OpenVMS provides a set of
individual tools to significantly help you develop a JavaBean to expose legacy
application logic. These tools are designed to be valuable either individually or in
combination.

The Web Services Integration Toolkit for OpenVMS provides tools that help you
to:

• Create an XML IDL file

Create an XML interface definition file (IDL) that describes the interface to
be exposed.

• Generate components

Generate a WSIT server interface wrapper and a WSIT JavaBean. Optionally,
generate Java® or Java Server Page (JSP) clients.

• Use the generated code

Call the generated WSIT JavaBean from the technology of your choice,
including BEA Web Logic Server, Apache Axis, Java Message Service, Java
Remote Method Invocation, Java Enterprise Edition (Java EE) or another
JavaBean. Use the Java client with a command-line interface, or use the JSP
client with a Web browser.

• Optionally, convert your existing BridgeWorks connections to an XML IDL file

Optionally, convert your existing BridgeWorks connections to an XML IDL file
that you can use with the Web Services Integration Toolkit.

For additional information about the Web Services Integration Toolkit for
OpenVMS and to download the latest kits and documentation, see the following
Web site:

http://www.hp.com/products/openvms/wsit/

Associated Products Features 7–3

Part II
OpenVMS Documentation

8
OpenVMS Documentation Overview

The OpenVMS Version 8.3 documentation contains fifteen revised manuals and
four new release documents:

• Revised manuals

• HP OpenVMS Availability Manager User’s Guide

• HP C Run-Time Library Reference Manual for OpenVMS Systems

• HP OpenVMS DCL Dictionary: A–M

• HP OpenVMS DCL Dictionary: N–Z

• HP OpenVMS Delta/XDelta Debugger Manual

• HP OpenVMS Linker Utility Manual

• HP OpenVMS Management Station Overview and Release Notes

• HP Open Source Security for OpenVMS, Volume 1: Common Data Security
Architecture

• HP Open Source Security for OpenVMS, Volume 2: HP SSL for OpenVMS

• HP Open Source Security for OpenVMS, Volume 3: Kerberos

• HP OpenVMS System Management Utilities Reference Manual: A–L

• HP OpenVMS System Management Utilities Reference Manual: M–Z

• HP OpenVMS System Services Reference Manual: A–GETUAI

• HP OpenVMS System Services Reference Manual: GETUTC–Z

• HP OpenVMS Utility Routines Manual

• New release documents:

• HP OpenVMS Version 8.3 Upgrade and Installation Manual

• HP OpenVMS Version 8.3 New Features and Documentation Overview

• HP OpenVMS Version 8.3 Release Notes

• Guide to HP OpenVMS Version 8.3 Media

OpenVMS Documentation Overview 8–1

9
OpenVMS Printed and Online Documentation

OpenVMS documentation is provided, in the following ways:

• Printed documentation

If you need paper documents, you can purchase most OpenVMS manuals
in the form of printed documentation sets. Individual OpenVMS hardcopy
documents cannot be purchased separately but are available in kits. One
exception is the Porting Applications from HP OpenVMS Alpha to HP
OpenVMS Industry Standard 64 for Integrity Servers, which you can order in
hardcopy.

• Online documentation on CD

All OpenVMS manuals are available in online formats on CD that also
includes the documentation for many associated products. You automatically
receive the documentation CD in your OpenVMS media kit.

• Online documentation on the OpenVMS documentation Web site

You can preview or read any OpenVMS document, including archived
manuals, on the OpenVMS Web site.

• Online help

You can quickly display online help for OpenVMS commands, utilities, and
system routines when you need task-related information.

The following sections describe each format in which OpenVMS documentation is
provided and specifies the titles that are available in that format.

9.1 Printed Documentation
Some printed documentation comes with your OpenVMS Media Kit. All other
printed manuals are orderable in kits. This section describes the OpenVMS
printed documentation offerings, which are categorized as follows:

• Media kit

• Documentation sets:

– Base

– Full

– Operating Environment Extensions

• System-integrated products

• Archived manuals

OpenVMS Printed and Online Documentation 9–1

OpenVMS Printed and Online Documentation
9.1 Printed Documentation

9.1.1 OpenVMS Media Kit Documentation
The OpenVMS Media Kit, for both OpenVMS Alpha and OpenVMS for Integrity
servers systems, contains the documents you need to get started with the latest
version of the OpenVMS operating system.

Table 9–1 lists the books included in the OpenVMS media kit. The books you
receive are determined by whether you are a new or a service customer. New
customers receive all books; service customers receive only new books and books
that have been updated since the last release.

Note

The HP OpenVMS License Management Utility Manual, Guide to HP
OpenVMS Version 8.3 Media, and HP OpenVMS Version 8.3 Upgrade and
Installation Manual are provided only in the OpenVMS Media kit and,
therefore, are not part of the OpenVMS Full Documentation set (described
in Section 9.1.2).

Table 9–1 OpenVMS Media Kit Manuals

Manual Order Number

HP OpenVMS License Management Utility Manual AA-PVXUG-TK

Guide to HP OpenVMS Version 8.3 Media BA322-90048

HP OpenVMS Version 8.3 New Features and Documentation Overview BA322-90046

HP OpenVMS Version 8.3 Upgrade and Installation Manual BA322-90045

HP OpenVMS Version 8.3 Release Notes BA322-90047

9.1.2 OpenVMS Documentation Sets
OpenVMS documentation is available in the following documentation sets:

Documentation
Set Description Alpha Order Number

Integrity
Server
Order
Number

Full Set Intended for users who
need extensive explanatory
information for all major
OpenVMS resources.
Contains all the OpenVMS
documentation in one
offering. Includes the Base
Documentation set.

QA-001AA-GZ.8.3 BA554MN

Base Set Subset of the Full
Documentation set. Intended
for general users and system
managers of small standalone
systems. Includes the most
commonly used OpenVMS
manuals.

QA-09SAA-GZ.8.3 BA555MN

There is one common documentation set for both OpenVMS Alpha and OpenVMS
for Integrity servers systems. OpenVMS Alpha documentation set and the
OpenVMS for Integrity servers documentation set contain the identical books

9–2 OpenVMS Printed and Online Documentation

OpenVMS Printed and Online Documentation
9.1 Printed Documentation

with one exception. The OpenVMS Alpha documentation set contains the COM,
Registry, and Events for HP OpenVMS Developer’s Guide, which is an Alpha-
only document. Table 9–2 lists the manuals in the OpenVMS Base and Full
Documentation sets. For a description of each manual, see Section 10.2.

Table 9–2 OpenVMS Full Documentation Set (QA-001AA-GZ.8.3/BA554MN)

Manual Order Number

OpenVMS Base Documentation Set
QA-09SAA-
GZ.8.3/BA555MN

HP OpenVMS DCL Dictionary: A–M1 AA-PV5KL-TK

HP OpenVMS DCL Dictionary: N–Z1 AA-PV5LL-TK

HP OpenVMS Guide to System Security AA-Q2HLH-TE

HP OpenVMS System Management Utilities Reference Manual: A–L1 AA-PV5PK-TK

HP OpenVMS System Management Utilities Reference Manual: M–Z1 AA-PV5QK-TK

HP OpenVMS System Manager’s Manual, Volume 1: Essentials AA-PV5MJ-TK

HP OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and
Complex Systems

AA-PV5NJ-TK

OpenVMS User’s Manual AA-PV5JG-TK

HP OpenVMS Version 8.3 New Features and Documentation Overview2 BA322-90003

HP OpenVMS Version 8.3 Release Notes2 BA322-90004

Additional Books in the Full Documentation Set QA-001AA-GZ.8.3

HP OpenVMS Availability Manager User’s Guide1 AA-RNSJE-TE

COM, Registry, and Events for HP OpenVMS Developer’s Guide3 AA-RSCWC-TE

HP C Run-Time Library Reference Manual for OpenVMS Systems1 AA-RSMUD-TE

Compaq C Run-Time Library Utilities Reference Manual AA-R238C-TE

Compaq Portable Mathematics Library AA-PV6VE-TE

DECamds User’s Guide AA-Q3JSE-TE

DEC Text Processing Utility Reference Manual AA-PWCCD-TE

Extensible Versatile Editor Reference Manual AA-PWCDD-TE

Guidelines for OpenVMS Cluster Configurations AA-Q28LH-TK

Guide to Creating OpenVMS Modular Procedures AA-PV6AD-TK

Guide to OpenVMS File Applications AA-PV6PE-TK

Guide to the POSIX Threads Library AA-QSBPD-TE

Guide to the DEC Text Processing Utility AA-PWCBD-TE

HP Open Source Security for OpenVMS, Volume 1: Common Data Security
Architecture1

AA-RSCUC-TE

HP Open Source Security for OpenVMS, Volume 2: HP SSL for OpenVMS1 AA-RSCVD-TE

HP Open Source Security for OpenVMS, Volume 3: Kerberos1 AA-RUEBC-TE

HP OpenVMS Alpha Partitioning and Galaxy Guide AA-REZQD-TE

1Revised for Version 8.3.
2New for Version 8.3.
3Alpha only - Provided only in QA-001AA-GZ.8.3

(continued on next page)

OpenVMS Printed and Online Documentation 9–3

OpenVMS Printed and Online Documentation
9.1 Printed Documentation

Table 9–2 (Cont.) OpenVMS Full Documentation Set (QA-001AA-GZ.8.3/BA554MN)

Manual Order Number

Additional Books in the Full Documentation Set QA-001AA-GZ.8.3

HP OpenVMS Guide to Upgrading Privileged-Code Applications AA-QSBGE-TE

HP OpenVMS System Analysis Tools Manual AA-REZTE-TE

HP OpenVMS Calling Standard AA-QSBBE-TE

HP OpenVMS Cluster Systems AA-PV5WF-TK

HP OpenVMS Command Definition, Librarian, and Message Utilities Manual AA-QSBDE-TE

HP OpenVMS Debugger Manual AA-QSBJE-TE

HP OpenVMS Delta/XDelta Debugger Manual1 AA-PWCADF-TE

HP OpenVMS I/O User’s Reference Manual AA-PV6SG-TK

HP OpenVMS Linker Utility Manual1 AA-PV6CDF-TK

HP OpenVMS MACRO Compiler Porting and User’s Guide AA-PV64DE-TE

HP OpenVMS Management Station Overview and Release Notes1 AA-QJGCH-TE

OpenVMS Performance Management AA-R237C-TE

Porting Applications from HP OpenVMS Alpha to HP OpenVMS Industry
Standard 64 for Integrity Servers

BA442-90001

HP OpenVMS Programming Concepts Manual, Volume I AA-RNSHD-TK

HP OpenVMS Programming Concepts Manual, Volume II AA-PV67H-TK

OpenVMS Record Management Services Reference Manual AA-PV6RE-TK

OpenVMS Record Management Utilities Reference Manual AA-PV6QD-TK

HP OpenVMS RTL General Purpose (OTS$) Manual AA-PV6HE-TK

HP OpenVMS RTL Library (LIB$) Manual AA-QSBHE-TE

OpenVMS RTL Screen Management (SMG$) Manual AA-PV6LD-TK

OpenVMS RTL String Manipulation (STR$) Manual AA-PV6MD-TK

OpenVMS System Messages: Companion Guide for Help Message Users AA-PV5TD-TK

HP OpenVMS System Services Reference Manual: A–GETUAI1 AA-QSBMH-TE

HP OpenVMS System Services Reference Manual: GETUTC–Z1 AA-QSBNH-TE

HP OpenVMS Utility Routines Manual1 AA-PV6EG-TK

OpenVMS VAX RTL Mathematics (MTH$) Manual AA-PVXJD-TE

OpenVMS VAX System Dump Analyzer Utility Manual AA-PV6TD-TE

POLYCENTER Software Installation Utility Developer’s Guide AA-Q28MF-TK

VAX MACRO and Instruction Set Reference Manual AA-PS6GD-TE

HP Volume Shadowing for OpenVMS AA-PVXMK-TE

1Revised for Version 8.3.

9.1.3 Operating Environments Extensions Documentation Set (I64 Only)
The Operating Environments Extensions Documentation Set includes manuals
that support the products that are included in the OEs. See Section 10.5 for a list
of these documents.

9–4 OpenVMS Printed and Online Documentation

OpenVMS Printed and Online Documentation
9.1 Printed Documentation

9.1.4 Documentation for System Integrated Products
System Integrated Products (SIPs) are included in the OpenVMS software,
but you must purchase separate licenses to enable them. Table 9–3 shows the
documentation associated with System Integrated Products.

Table 9–3 System Integrated Products Documentation

System Integrated Product Related Documentation

HP Galaxy Software
Architecture on OpenVMS Alpha

The documentation is included in the OpenVMS Full Documentation
Set.

OpenVMS Clusters The OpenVMS Cluster documentation is included in the OpenVMS Full
Documentation Set.

RMS Journaling for OpenVMS RMS Journaling for OpenVMS manual is provided in
HTML format on the OpenVMS Documentation Web site:
http://www.hp.com/go/openvms/doc

Volume Shadowing for OpenVMS The documentation is included in the OpenVMS Full Documentation
Set.

9.1.5 Archived OpenVMS Documentation
OpenVMS continuously updates, revises, and enhances the OpenVMS operating
system documentation. From time to time, manuals are archived. You can access
the archived manuals online from the HP OpenVMS Version 8.3 Documentation
CD or from the following Web site:

http://www.hp.com/go/openvms/doc

For a list of the archived OpenVMS manuals, see Section 10.6.

9.2 Authoring Tool for OpenVMS Documentation
OpenVMS Documentation team is continuing to introduce books that have been
authored and published using a tool based on the Standard Generalized Markup
Language (SGML). SGML is an industry standard and will provide many benefits
to both the customer and OpenVMS documentation.

Readers will notice a difference in appearance between books produced from
SGML and others in the documentation set. This is true for HTML, PDF, and
printed formats and is a natural result of the new authoring environment.

The following Version 8.3 books have been produced with this new tool:

• HP Open Source Security for OpenVMS, Volume 2: HP SSL for OpenVMS

• HP Open Source Security for OpenVMS, Volume 3: Kerberos

• HP OpenVMS Version 8.3 Upgrade and Installation Manual

• Guide to HP OpenVMS Version 8.3 Media

• HP Open Source Security for OpenVMS, Volume 3: Kerberos

• HP OpenVMS I/O User’s Reference Manual

• HP OpenVMS System Manager’s Manual, Volume 1: Essentials

• HP OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and
Complex Systems

OpenVMS Printed and Online Documentation 9–5

OpenVMS Printed and Online Documentation
9.3 Online Documentation on CD

9.3 Online Documentation on CD
Online documentation for the OpenVMS operating system and many associated
products is provided on one CD for both OpenVMS systems and Windows
platforms. This CD is an ISO 9660 Level 2 CD that is readable on Windows® and
OpenVMS systems.

9.3.1 Online Formats
The documentation CD contains documentation in the following formats:

Documentation Available Formats

Current OpenVMS manuals HTML, PDF

HP OpenVMS Version 8.3 Upgrade and Installation
Manual

HTML, PDF

HP OpenVMS Version 8.3 Release Notes HTML, PDF

HP OpenVMS Version 8.3 New Features and
Documentation Overview

HTML, PDF

Layered product documents HTML, PDF

Bookreader files are no longer available on the documentation CD.

For information about how to access documents on the documentation CD , see
the HP OpenVMS Version 8.3 Upgrade and Installation Manual.

9.4 Online Documentation on the OpenVMS Web Site
You can access OpenVMS manuals in various online formats from the following
OpenVMS Web site:

http://www.hp.com/go/openvms/doc

This site contains links to current versions of manuals in the OpenVMS Full
Documentation Set as well as to manuals for selected layered products.

9.5 Online Help
The OpenVMS operating system provides online help for the commands, utilities,
and system routines documented in the Full Documentation set.

You can use the Help Message facility to quickly access online descriptions
of system messages. In addition, you can add your own source files, such as
messages documentation that you have written to the Help Message database.

9–6 OpenVMS Printed and Online Documentation

OpenVMS Printed and Online Documentation
9.5 Online Help

The OpenVMS System Messages: Companion Guide for Help Message Users
manual explains how to use the Help Message facility. You can also access DCL
Help for Help Message by entering:

$ HELP HELP/MESSAGE

Reference information for OpenVMS utility routines is also included in online
help.

OpenVMS Printed and Online Documentation 9–7

10
Descriptions of OpenVMS Manuals

This chapter provides summary descriptions for the following OpenVMS
documentation:

• Manuals in the OpenVMS Media Kit (Section 10.1)

• Manuals in the OpenVMS Base and Full Documentation sets (Section 10.2
and Section 10.3)

• RMS Journaling manual (Section 10.4)

• Manuals in the OpenVMS for Integrity servers OE Extensions Kit

• Archived manuals (Section 10.6)

10.1 Manuals in the OpenVMS Media Kit
Guide to HP OpenVMS Version 8.3 Media
Provides information about the OpenVMS Version 8.3 operating system and
documentation CD. Lists the contents of the OpenVMS Alpha and the OpenVMS
for Integrity servers Version 8.3 media kits, includes pointers to installation
information, and gives instructions about how to access manuals on the
documentation CD.

HP OpenVMS License Management Utility Manual
Describes the License Management Facility (LMF), the OpenVMS license
management tool. LMF includes the License Management Utility (LICENSE)
and VMSLICENSE.COM, the command procedure you use to register, manage,
and track software licenses.

HP OpenVMS Version 8.3 Upgrade and Installation Manual
Provides step-by-step instructions for installing the OpenVMS Alpha and
OpenVMS for Integrity servers operating systems on their respective platforms.
Includes information about booting, shutdown, backup, and licensing procedures.

HP OpenVMS Version 8.3 New Features and Documentation Overview
Describes new and improved components for the Integrity server and Alpha
operating systems for the Version 8.3 release. Includes information about
OpenVMS documentation changes for Version 8.3 as well as the printed and
online OpenVMS documentation offerings.

HP OpenVMS Version 8.3 Release Notes
Describes changes to the software; installation, upgrade, and compatibility
information; new and existing software problems and restrictions; and software
and documentation corrections.

Descriptions of OpenVMS Manuals 10–1

Descriptions of OpenVMS Manuals
10.2 Manuals in the OpenVMS Base Documentation Set

10.2 Manuals in the OpenVMS Base Documentation Set
HP OpenVMS DCL Dictionary
Describes the DIGITAL Command Language (DCL) and provides an alphabetical
listing of detailed reference information and examples for all DCL commands and
lexical functions. This manual is in two volumes.

HP OpenVMS Guide to System Security
Describes the security features available in the OpenVMS Alpha and VAX
operating systems. Explains the purpose and proper application of each feature
in the context of specific security needs.

HP OpenVMS System Management Utilities Reference Manual
Presents reference information about the utilities you can use to perform system
management tasks on your system as well as the tools to control and monitor
system access and resources. Includes a description of the AUTOGEN command
procedure. This manual is in two volumes.

HP OpenVMS System Manager’s Manual, Volume 1: Essentials
Provides instructions for setting up and maintaining routine operations such
as starting up the system, installing software, and setting up print and batch
queues. Also explains routine disk and magnetic tape operations.

HP OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and
Complex Systems
Describes how to configure and control the network, how to monitor the system,
and how to manage system parameters. Also includes information about
OpenVMS Cluster systems, network environments, and DECdtm functionality.

OpenVMS User’s Manual
Provides an overview of the operating system and presents basic concepts, task
information, and reference information that allow you to perform daily computing
tasks. Describes how to work with files and directories. Also includes these
additional topics:

• Sending messages with the Mail utility and the Phone utility

• Using the Sort/Merge utility

• Using logical names and symbols

• Writing command procedures

• Editing files with the EVE and EDT text editors

HP OpenVMS Version 8.3 New Features and Documentation Overview
Describes new and improved components for the OpenVMS Alpha and OpenVMS
for Integrity servers operating systems for the Version 8.3 release. Includes
information about OpenVMS documentation changes for Version 8.3 as well as
the printed and online OpenVMS documentation offerings.

HP OpenVMS Version 8.3 Release Notes
Describes changes to the software; installation, upgrade, and compatibility
information; new and existing software problems and restrictions; and software
and documentation corrections.

10–2 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.3 Additional Manuals in the OpenVMS Full Documentation Set

10.3 Additional Manuals in the OpenVMS Full Documentation Set
HP OpenVMS Availability Manager User’s Guide
Describes how to use the HO Availability Manager system management tool, from
either an OpenVMS Alpha or a Windows node, to monitor one or more OpenVMS
nodes on an extended local area network (LAN) or to target a specific node or
process for detailed analysis.

COM, Registry, and Events for HP OpenVMS Developer’s Guide
For programmers developing applications that move easily between the OpenVMS
and Windows NT environments. Read this manual if you are encapsulating
existing OpenVMS applications or data, or creating new COM applications for
OpenVMS systems. It also provides information for those who want to use the
OpenVMS Registry to store information about their OpenVMS systems alone,
or who want to use the OpenVMS Registry as a shared repository for both
OpenVMS and Windows NT registry information. This manual was formerly
available online as the OpenVMS Connectivity Developer Guide.

HP C Run-Time Library Reference Manual for OpenVMS Systems
Provides reference information on the functions and macros found in the
HP C RTL that perform I/O operations, character and string manipulation,
mathematical operations, error detection, subprocess creation, system access, and
screen management. Includes portability concerns between operating systems,
and describes the HP C for OpenVMS socket routines used for writing Internet
application programs for the TCP/IP protocol.

Compaq C Run-Time Library Utilities Reference Manual
Provides detailed usage and reference information about the Run-Time Library
utilities for managing localization and time zone data in international software
applications.

Compaq Portable Mathematics Library
Documents the mathematics routines in the Compaq Portable Mathematics
Library (DPML), supplied only with OpenVMS Alpha systems. VAX programmers
should refer to the OpenVMS VAX RTL Mathematics (MTH$) Manual.

DECamds User’s Guide
Provides information for installing and using the DECamds software. DECamds
is a system management tool that lets you monitor, diagnose, and track events in
OpenVMS system and OpenVMS Cluster environments.

DEC Text Processing Utility Reference Manual
Describes the DEC Text Processing Utility (DECTPU) and provides reference
information about the EDT Keypad Emulator interfaces to DECTPU.

Extensible Versatile Editor Reference Manual
Contains command reference information about the EVE text editor. Also
provides a cross-reference between EDT and EVE commands.

Guidelines for OpenVMS Cluster Configurations
This manual provides information to help you choose systems, interconnects,
storage devices, and software. It can help you configure these components
to achieve high availability, scalability, performance, and ease of system
management. Detailed directions using SCSI and Fibre Channel in an OpenVMS
Cluster system are also included in this manual.

Descriptions of OpenVMS Manuals 10–3

Descriptions of OpenVMS Manuals
10.3 Additional Manuals in the OpenVMS Full Documentation Set

Guide to Creating OpenVMS Modular Procedures
Describes how to perform a complex programming task by dividing it into
modules and coding each module as a separate procedure.

Guide to OpenVMS File Applications
Contains guidelines for designing, creating, and maintaining efficient data files
by using Record Management Services (RMS). This manual is intended for
application programmers and designers responsible for programs that use RMS
files, especially if performance is an important consideration.

Guide to the POSIX Threads Library
Describes the POSIX Threads Library (formerly named DECthreads) package,
HP’s multithreading run-time libraries. Use the routines in this package to create
and control multiple threads of execution within the address space provided by
a single process. Offering both usage tips and reference synopses, this document
describes three interfaces: routines that conform to the IEEE POSIX 1003.1c
standard (called pthread), routines that provide thread-related services in
nonthreaded applications (called thread-independent services or tis), and a set of
HP proprietary routines (called cma) that provide a stable, upwardly compatible
interface.

Guide to the DEC Text Processing Utility
Provides an introduction to developing DECTPU programs.

HP Open Source Security for OpenVMS, Volume 1: Common Data Security
Architecture
For application developers who want to use the Common Data Security
Architecture (CDSA) to add security to their programs. Describes CDSA, gives
information about installation and initialization, and provides example programs.
Contains the CDSA application programming interface modules.

HP Open Source Security for OpenVMS, Volume 2: HP SSL for OpenVMS
For application developers who want to protect communication links to OpenVMS
applications with HP Secure Sockets Layer (HP SSL) for OpenVMS. Contains
installation instructions, release notes, and provides example programs. Includes
programming information and a reference section for the OpenSSL application
programming interface modules.

HP Open Source Security for OpenVMS, Volume 3: Kerberos
For application programmers who want to implement the Kerberos protocol that
uses string cryptography, so that a client can proves identity to a server (and a
server can provide its identity to a client) across an insecure network connection.

HP OpenVMS Alpha Partitioning and Galaxy Guide
Provides complete details about how to use all of the OpenVMS Galaxy features
and capabilities available in OpenVMS Alpha Version 7.3–2. Includes procedures
for creating, managing, and using OpenVMS Galaxy computing environments on
AlphaServer 8400, 8200, and 4100 systems.

HP OpenVMS Guide to Upgrading Privileged-Code Applications
Explains the OpenVMS Alpha Version 7.0 changes that might impact Alpha
privileged-code applications and device drivers as a result of the OpenVMS Alpha
64-bit virtual addressing and kernel threads support provided in OpenVMS Alpha
Version 7.0.

Privileged-code applications from versions prior to OpenVMS Alpha Version 7.0
might require the source-code changes described in this guide.

10–4 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.3 Additional Manuals in the OpenVMS Full Documentation Set

HP OpenVMS System Analysis Tools Manual
Describes the following system analysis tools in detail, while also providing a
summary of the dump off system disk (DOSD) capability and the DELTA/XDELTA
debugger:

• System Dump Analyzer (SDA)

• System Code Debugger (SCD)

• System Dump Debugger (SDD)

• Watchpoint utility

Intended primarily for the system programmer who must investigate the causes
of system failures and debug kernel mode code, such as a device driver.

HP OpenVMS Calling Standard
Documents the calling standard for the OpenVMS I64, Alpha, and VAX operating
systems.

HP OpenVMS Cluster Systems
Describes procedures and guidelines for configuring and managing OpenVMS
Cluster systems. Also describes how to provide high availability, building-block
growth, and unified system management across clustered systems.

HP OpenVMS Command Definition, Librarian, and Message Utilities Manual
Contains descriptive and reference information about the following utilities:

• Command Definition utility

• Librarian utility

• Message utility

HP OpenVMS Debugger Manual
Explains the features of the OpenVMS Debugger for programmers.

HP OpenVMS Delta/XDelta Debugger Manual
Describes the Delta/XDelta utility used to debug programs that run in privileged
processor mode or at an elevated interrupt priority level.

HP OpenVMS I/O User’s Reference Manual
Contains the information that system programmers need to program I/O
operations using the device drivers that are supplied with the operating system.

HP OpenVMS Linker Utility Manual
Describes how to use the Linker utility to create images that run on OpenVMS
systems. Also explains how to control a link operation with link qualifiers and
link options.

HP OpenVMS MACRO Compiler Porting and User’s Guide
Describes how to port existing VAX MACRO assembly language code to an
OpenVMS Alpha system by using the features of the MACRO-32 compiler. It also
describes how to port existing OpenVMS Alpha code to OpenVMS I64 systems.
Also documents how to use the compiler’s 64-bit addressing support.

Descriptions of OpenVMS Manuals 10–5

Descriptions of OpenVMS Manuals
10.3 Additional Manuals in the OpenVMS Full Documentation Set

HP OpenVMS Management Station Overview and Release Notes
Provides an overview and release notes for OpenVMS Management Station
and describes how to get started using the software. OpenVMS Management
Station is a powerful, Microsoft Windows based management tool for system
managers and others who perform user account and printer management tasks
on OpenVMS systems.

OpenVMS Performance Management
Introduces and explains the techniques used to optimize performance on an
OpenVMS system.

Porting Applications from HP OpenVMS Alpha to HP OpenVMS Industry
Standard 64 for Integrity Servers
Provides a framework for application developers who are migrating from HP
OpenVMS Alpha to HP OpenVMS Industry Standard 64 for Integrity Servers.

HP OpenVMS Programming Concepts Manual
Describes concepts such as process creation, kernel threads and the kernel
threads process structure, interprocess communication, process control, data
sharing, condition handling, and ASTs. This two-volume manual uses system
services, utility routines, and run-time library (RTL) routines to illustrate
mechanisms for utilizing OpenVMS features.

OpenVMS Record Management Services Reference Manual
Provides reference and usage information for all programmers who use RMS data
files.

OpenVMS Record Management Utilities Reference Manual
Contains descriptive and reference information about the following RMS utilities:

• Analyze/RMS_File utility

• Convert and Convert/Reclaim utilities

• File Definition Language facility

HP OpenVMS RTL General Purpose (OTS$) Manual
Documents the general-purpose routines contained in the OTS$ facility of the
OpenVMS Run-Time Library. Indicates which routines are specific to I64, Alpha
or VAX, as well as how routines function differently on each system.

HP OpenVMS RTL Library (LIB$) Manual
Documents the general-purpose routines contained in the LIB$ facility of the
OpenVMS Run-Time Library. Indicates which routines are specific to I64, Alpha
or VAX, as well as how routines function differently on each system.

OpenVMS RTL Screen Management (SMG$) Manual
Documents the screen management routines contained in the SMG$ facility of
the OpenVMS Run-Time Library. Indicates which routines are specific to Alpha
or VAX, as well as how routines function differently on each system.

OpenVMS RTL String Manipulation (STR$) Manual
Documents the string manipulation routines contained in the STR$ facility of the
OpenVMS Run-Time Library. Indicates which routines are specific to Alpha or
VAX, as well as how routines function differently on each system.

10–6 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.3 Additional Manuals in the OpenVMS Full Documentation Set

OpenVMS System Messages: Companion Guide for Help Message Users
Describes features of the Help Message facility, a tool that you can use to display
message descriptions. Describes the HELP/MESSAGE command and qualifiers
and also includes detailed information about customizing the Help Message
database. Also provides descriptions of messages that can occur when the system
and Help Message are not fully operable.

HP OpenVMS System Services Reference Manual
Presents the set of routines that the operating system uses to control resources,
allow process communication, control I/O, and perform other such operating
system functions. This manual is in two volumes.

HP OpenVMS Utility Routines Manual
Describes the routines that allow a program to use the callable interface of
selected OpenVMS utilities.

OpenVMS VAX RTL Mathematics (MTH$) Manual
Documents the mathematics routines contained in the MTH$ facility of
the OpenVMS Run-Time Library, which is relevant only to programmers
using OpenVMS VAX. (Alpha programmers should refer to Compaq Portable
Mathematics Library.)

OpenVMS VAX System Dump Analyzer Utility Manual
Explains how to use the System Dump Analyzer utility to investigate system
failures and examine a running OpenVMS VAX system. VAX programmers
should refer to this manual; Alpha and I64 programmers should refer to the
OpenVMS Alpha System Dump Analyzer Utility Manual.

POLYCENTER Software Installation Utility Developer’s Guide
Describes the procedure and provides guidelines for developing software products
that will be installed using the POLYCENTER Software Installation utility.
Intended for developers who are designing installation procedures for software
products layered on the OpenVMS operating system.

VAX MACRO and Instruction Set Reference Manual
Documents both the assembler directives of VAX MACRO and the VAX instruction
set.

HP Volume Shadowing for OpenVMS
Describes how to provide high data availability with phase II volume shadowing.

10.4 RMS Journaling Manual
RMS Journaling for OpenVMS Manual
Describes the three types of RMS Journaling as well as other OpenVMS
components that support RMS Journaling. This manual also describes the
RMS Recovery utility (which is used to recover data saved using journaling), the
transaction processing system services, and system management tasks required
when using RMS Journaling.

Descriptions of OpenVMS Manuals 10–7

Descriptions of OpenVMS Manuals
10.5 Manuals in the OpenVMS for Integrity Servers OE Extensions Kit

10.5 Manuals in the OpenVMS for Integrity Servers OE Extensions
Kit

The following list contains manuals relevant to the OpenVMS I64 Operating
Environments.

• HP DECwindows Motif for OpenVMS Installation Guide

• HP DECwindows Motif for OpenVMS New Features

• HP DECwindows Motif for OpenVMS Documentation Overview

• HP DECwindows Motif for OpenVMS Management Guide

• HP DECnet-Plus for OpenVMS Installation and Configuration

• HP DECnet-Plus for OpenVMS Introduction and User’s Guide

• HP DECnet-Plus Network Management

• HP DECnet-Plus for OpenVMS DECdts Programming Reference

• HP DECnet-Plus for OpenVMS DECdts Management

• HP DECnet-Plus for OpenVMS DECdns Management

• HP DECnet-Plus for OpenVMS Network Management Quick Reference Guide

• HP DECnet-Plus for OpenVMS OSAK Programming

• HP DECnet-Plus for OpenVMS OSAK Programming Reference

• HP DECnet-Plus for OpenVMS OSAK SPI Programming Reference

• HP DECnet-Plus for OpenVMS Problem Solving Manual

• HP DECnet-Plus for OpenVMS Programming Manual

• HP DECnet-Plus for OpenVMS FTAM and Virtual Terminal User and
Management

• HP DECnet-Plus for OpenVMS Problem Solving

• HP DECnet-Plus for OpenVMS Network Control Language Reference

• HP DECnet-Plus for OpenVMS Planning Guide

• HP TCP/IP Services for OpenVMS Installation and Configuration

• HP TCP/IP Services for OpenVMS Sockets API and System Services
Programming

• HP TCP/IP Services for OpenVMS Concepts and Planning

• HP TCP/IP Services for OpenVMS SNMP Programming Reference

• HP TCP/IP Services for OpenVMS ONC RPC Programming

• HP TCP/IP Services for OpenVMS Tuning and Troubleshooting

• HP TCP/IP Services for OpenVMS Guide to SSH for OpenVMS

• HP TCP/IP Services for OpenVMS Management

• HP TCP/IP Services for OpenVMS Management Command Reference

• HP TCP/IP Services for OpenVMS Management Command Quick Reference
Card

• HP TCP/IP Services for OpenVMS User’s Guide

10–8 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.5 Manuals in the OpenVMS for Integrity Servers OE Extensions Kit

• HP TCP/IP Services for OpenVMS UNIX Command Equivalents Reference
Card

• HP TCP/IP Services for OpenVMS Guide to IPv6

• HP DECprint Supervisor (DCPS) for OpenVMS User’s Guide

• HP DECprint Supervisor (DCPS) for OpenVMS Software Installation

• HP DECprint Supervisor (DCPS) for OpenVMS Manager’s Guide

• HP DCE for OpenVMS Product Guide

• HP DCE for OpenVMS Reference Guide

• HP DCE for OpenVMS Installation and Configuration Guide

10.6 Archived Manuals
Table 10–1 lists the OpenVMS manuals that have been archived. Note that most
information from the archived manuals has been incorporated in other documents
or online help.

Table 10–1 Archived OpenVMS Manuals

Manual Order Number

A Comparison of System Management on OpenVMS AXP and
OpenVMS VAX

AA-PV71B-TE

Building Dependable Systems: The OpenVMS Approach AA-PV5YB-TE

Creating an OpenVMS Alpha Device Driver from an OpenVMS VAX
Device Driver

AA-R0Y8A-TE

Creating an OpenVMS AXP Step 2 Device Driver from a Step 1
Device Driver

AA-Q28TA-TE

Creating an OpenVMS AXP Step 2 Device Driver from an OpenVMS
VAX Device Driver

AA-Q28UA-TE

Guide to OpenVMS AXP Performance Management AA-Q28WA-TE

Guide to OpenVMS Performance Management AA-PV5XA-TE

Migrating an Application from OpenVMS VAX to OpenVMS Alpha AA-KSBKB-TE

Migrating an Environment from OpenVMS VAX to OpenVMS Alpha AA-QSBLA-TE

Migrating to an OpenVMS AXP System: Planning for Migration AA-PV62A-TE

Migrating to an OpenVMS AXP System: Recompiling and Relinking
Applications

AA-PV63A-TE

OpenVMS Alpha Guide to 64-Bit Addressing and VLM Features AA-QSBCC-TE

OpenVMS Alpha System Dump Analyzer Utility Manual AA-PV6UC-TE

OpenVMS Alpha Version 7.3–1 New Features and Documentation
Overview

AA-RSHYA-TE

OpenVMS Alpha Version 7.3–1 Release Notes AA-RSD0A-TE

OpenVMS AXP Device Support: Developer’s Guide AA-Q28SA-TE

OpenVMS AXP Device Support: Reference AA-Q28PA-TE

OpenVMS Bad Block Locator Utility Manual AA-PS69A-TE

(continued on next page)

Descriptions of OpenVMS Manuals 10–9

Descriptions of OpenVMS Manuals
10.6 Archived Manuals

Table 10–1 (Cont.) Archived OpenVMS Manuals

Manual Order Number

OpenVMS Compatibility Between VAX and Alpha AA-PYQ4C-TE

OpenVMS Developer’s Guide to VMSINSTAL AA-PWBXA-TE

OpenVMS DIGITAL Standard Runoff Reference Manual AA-PS6HA-TE

OpenVMS EDT Reference Manual AA-PS6KA-TE

OpenVMS Exchange Utility Manual AA-PS6AA-TE

OpenVMS Glossary AA-PV5UA-TK

OpenVMS Guide to Extended File Specifications AA-REZRB-TE

OpenVMS Master Index AA-QSBSD-TE

OpenVMS National Character Set Utility Manual AA-PS6FA-TE

OpenVMS Obsolete Features Manual AA-PS6JA-TE

OpenVMS Programming Environment Manual AA-PV66B-TK

OpenVMS Programming Interfaces: Calling a System Routine AA-PV68B-TK

OpenVMS RTL DECtalk (DTK$) Manual AA-PS6CA-TE

OpenVMS RTL Parallel Processing (PPL$) Manual AA-PV6JA-TK

OpenVMS Software Overview AA-PVXHB-TE

OpenVMS SUMSLP Utility Manual AA-PS6EA-TE

OpenVMS System Messages and Recovery Procedures Reference
Manual: A–L

AA-PVXKA-TE

OpenVMS System Messages and Recovery Procedures Reference
Manual: M–Z

AA-PVXLA-TE

OpenVMS Terminal Fallback Utility Manual AA-PS6BA-TE

OpenVMS VAX Card Reader, Line Printer, and LPA11–K I/O User’s
Reference Manual

AA-PVXGA-TE

OpenVMS VAX Device Support Manual AA-PWC8A-TE

OpenVMS VAX Device Support Reference Manual AA-PWC9A-TE

OpenVMS VAX Patch Utility Manual AA-PS6DA-TE

OpenVMS Wide Area Network I/O User’s Reference Manual AA-PWC7A-TE

PDP-11 TECO User’s Guide AA-K420B-TC

POLYCENTER Software Installation Utility User’s Guide AA-Q28NA-TK

TCP/IP Networking on OpenVMS Systems AA-QJGDB-TE

Standard TECO Text Editor and Corrector for the VAX, PDP-11,
PDP-10, and PDP-8

Available only on
CD

Table 10–2 lists the networking manuals and installation supplements that have
been archived.

Table 10–2 Archived Networking Manuals and Installation Supplements

Manual Order Number

DECnet for OpenVMS Guide to Networking AA-PV5ZA-TK

(continued on next page)

10–10 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.6 Archived Manuals

Table 10–2 (Cont.) Archived Networking Manuals and Installation Supplements

Manual Order Number

DECnet for OpenVMS Network Management Utilities AA-PV61A-TK

DECnet for OpenVMS Networking Manual AA-PV60A-TK

OpenVMS VAX Upgrade and Installation Supplement: VAX 8820,
8830, 8840

AA-PS6MA-TE

OpenVMS VAX Upgrade and Installation Supplement: VAX 8200,
8250, 8300, 8350

AA-PS6PA-TE

OpenVMS VAX Upgrade and Installation Supplement: VAX 8530,
8550, 8810 (8700), and 8820–N (8800)

AA-PS6QA-TE

OpenVMS VAX Upgrade and Installation Supplement: VAX 8600,
8650

AA-PS6UA-TE

VMS Upgrade and Installation Supplement: VAX-11/780, 785 AA-LB29B-TE

VMS Upgrade and Installation Supplement: VAX-11/750 AA-LB30B-TE

Descriptions of the archived OpenVMS manuals are as follows:

A Comparison of System Management on OpenVMS AXP and OpenVMS VAX
Discusses system management tools, the impact of Alpha page sizes on system
management operations, the system directory structure, interoperability issues,
and performance information. Designed for system managers who need to learn
quickly how to manage an OpenVMS Alpha system.

Building Dependable Systems: The OpenVMS Approach
Offers practical information about analyzing the dependability requirements of
your business applications and deciding how to use your computing systems to
support your dependability goals. This information is complemented by technical
summaries of the dependability features of OpenVMS and related hardware and
layered software products.

Creating an OpenVMS Alpha Device Driver from an OpenVMS VAX Device
Driver
Describes the procedures for converting a device driver used on OpenVMS VAX
to a device driver that runs on OpenVMS Alpha. This book also contains data
structures, routines, and macros for maintaining an Alpha driver written in
Macro-32.

Creating an OpenVMS AXP Step 2 Device Driver from a Step 1 Device Driver
Provides information for upgrading a Step 1 device driver (used in earlier versions
of OpenVMS AXP) to a Step 2 device driver. A Step 2 device driver is required for
OpenVMS AXP Version 6.1.

Creating an OpenVMS AXP Step 2 Device Driver from an OpenVMS VAX Device
Driver
Provides information for migrating a device driver used on OpenVMS VAX to a
Step 2 device driver used on OpenVMS AXP Version 6.1.

Guide to OpenVMS AXP Performance Management
Introduces and explains the techniques used to optimize performance on an
OpenVMS Alpha system.

Guide to OpenVMS Performance Management
Introduces and explains the techniques used to optimize performance on an
OpenVMS VAX system.

Descriptions of OpenVMS Manuals 10–11

Descriptions of OpenVMS Manuals
10.6 Archived Manuals

Migrating an Application from OpenVMS VAX to OpenVMS Alpha
Describes how to create an OpenVMS Alpha version of an OpenVMS VAX
application. Provides an overview of the VAX to Alpha migration process and
information to help you plan a migration. It discusses the decisions you must
make in planning a migration and the ways to get the information you need to
make those decisions. In addition, this manual describes the migration methods
available so that you can estimate the amount of work required for each method
and select the method best suited to a given application.

Migrating an Environment from OpenVMS VAX to OpenVMS Alpha
Describes how to migrate a computing environment from an OpenVMS VAX
system to an OpenVMS Alpha system or a mixed-architecture cluster. Provides
an overview of the VAX to Alpha migration process and describes the differences
in system and network management on VAX and Alpha computers.

Migrating to an OpenVMS AXP System: Planning for Migration
Describes the general characteristics of RISC architectures, compares the Alpha
architecture to the VAX architecture, and presents an overview of the migration
process and a summary of migration tools provided by HP. The information in
this manual is intended to help you define the optimal migration strategy for
your application.

Migrating to an OpenVMS AXP System: Recompiling and Relinking
Applications
Provides detailed technical information for programmers who must migrate
high-level language applications to OpenVMS Alpha. Describes how to set
up a development environment to facilitate the migration of applications,
helps programmers identify application dependencies on elements of the
VAX architecture, and introduces compiler features that help resolve these
dependencies. Individual sections of this manual discuss specific application
dependencies on VAX architectural features, data porting issues (such as
alignment concerns), and the process of migrating VAX shareable images.

OpenVMS Alpha Guide to 64-Bit Addressing and VLM Features
Introduces and describes OpenVMS Alpha operating system support for 64-bit
virtual addressing and Very Large Memory (VLM). Intended for system and
application programmers, this guide highlights the features and benefits of
OpenVMS Alpha 64-bit and VLM capabilities. It also describes how to use these
features to enhance application programs to support 64-bit addresses and to
efficiently harness very large physical memory.

OpenVMS Alpha System Dump Analyzer Utility Manual
Explains how to use the System Dump Analyzer utility to investigate system
failures and examine a running OpenVMS Alpha system. Alpha programmers
should refer to this manual; VAX programmers should refer to the OpenVMS VAX
System Dump Analyzer Utility Manual.

OpenVMS AXP Device Support: Developer’s Guide
Describes how to write a driver for OpenVMS Alpha for a device not supplied by
Compaq.

OpenVMS AXP Device Support: Reference
Provides the reference material for the Writing OpenVMS Alpha Device Drivers
in C by describing the data structures, macros, and routines used in device-driver
programming.

10–12 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.6 Archived Manuals

OpenVMS Bad Block Locator Utility Manual
Describes how to use the Bad Block Locator utility to locate bad blocks on older
types of media.

OpenVMS Compatibility Between VAX and Alpha
Compares and contrasts OpenVMS on VAX and Alpha computers, focusing on the
features provided to end users, system managers, and programmers.

OpenVMS Developer’s Guide to VMSINSTAL
Describes the VMSINSTAL command procedure and provides guidelines for
designing installation procedures that conform to standards recommended by
Compaq. Intended for developers who are designing installation procedures for
software products layered on the OpenVMS operating system.

OpenVMS DIGITAL Standard Runoff Reference Manual
Describes the DSR text-formatting utility.

OpenVMS EDT Reference Manual
Contains complete reference information for the EDT editor.

OpenVMS Exchange Utility Manual
Describes how to use the Exchange utility to transfer files between some foreign
format volumes and OpenVMS native volumes.

OpenVMS Glossary
Defines terms specific to OpenVMS that are used throughout the documentation.

OpenVMS Guide to Extended File Specifications
Provides an overview of Extended File Specifications and describes the overall
differences and impact Extended File Specifications introduce to the OpenVMS
environment.

OpenVMS Master Index
Offers an edited compilation of indexes from the manuals in the OpenVMS Full
Documentation set.

OpenVMS National Character Set Utility Manual
Describes how to use the National character set utility to build NCS definition
files.

OpenVMS Obsolete Features Manual
Presents the DCL commands, system services, RTL routines, and utilities made
obsolete by VMS Version 4.0 through Version 5.0. Includes an appendix of DCL
commands, RTL routines, and utilities eliminated from VMS Version 4.0.

OpenVMS Programming Environment Manual
Provides a general description of Compaq products and tools that define the
programming environment. Introduces facilities and tools such as the compilers,
the linker, the debugger, the System Dump Analyzer, system services, and routine
libraries.

OpenVMS Programming Interfaces: Calling a System Routine
Describes the OpenVMS programming interface and defines the standard
conventions to call an OpenVMS system routine from a user procedure. The
Alpha and VAX data type implementations for various high-level languages are
also presented in this manual.

Descriptions of OpenVMS Manuals 10–13

Descriptions of OpenVMS Manuals
10.6 Archived Manuals

OpenVMS RTL DECtalk (DTK$) Manual
Documents the DECtalk support routines contained in the DTK$ facility of the
OpenVMS Run-Time Library.

OpenVMS RTL Parallel Processing (PPL$) Manual
Documents the parallel-processing routines contained in the PPL$ facility of the
OpenVMS Run-Time Library. Indicates which routines are specific to Alpha or
VAX, as well as how routines function differently on each system.

OpenVMS Software Overview
Provides an overview of the OpenVMS operating system and some of its available
products.

OpenVMS SUMSLP Utility Manual
Describes how to use the SUMSLP batch-oriented editor to update source files.

OpenVMS System Messages and Recovery Procedures Reference Manual
Contains an alphabetical listing of the errors, warnings, and informational
messages issued by the operating system. Also provides the meaning of each
message and a statement of the action to be taken in response to each message.
This manual is in two volumes.

OpenVMS Terminal Fallback Utility Manual
Describes how to use the Terminal Fallback utility to manage the libraries,
character conversion tables, and terminal parameters that are available within
this utility.

OpenVMS VAX Card Reader, Line Printer, and LPA11–K I/O User’s Reference
Manual
Describes the card reader, laboratory peripheral accelerator, and line printer
drivers on OpenVMS VAX.

OpenVMS VAX Device Support Manual
Describes how to write an OpenVMS VAX driver for a device not supplied by
Compaq.

OpenVMS VAX Device Support Reference Manual
Provides the reference material for the OpenVMS VAX Device Support Manual
by describing the data structures, macros, and routines used in device-driver
programming.

OpenVMS VAX Patch Utility Manual
Describes how to use the Patch utility to examine and modify executable and
shareable OpenVMS VAX images.

OpenVMS Wide Area Network I/O User’s Reference Manual
Describes the DMC11/DMR11, DMP11 and DMF32, DR11-W and DRV11-WA,
DR32, and asynchronous DDCMP interface drivers on OpenVMS VAX.

PDP–11 TECO User’s Guide
Describes the operating procedures for the PDP-11 TECO (Text Editor and
Corrector) program.

POLYCENTER Software Installation Utility User’s Guide
Provides information on the POLYCENTER Software Installation utility, a
new component that lets you install and manage software products that are
compatible with the utility.

10–14 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.6 Archived Manuals

TCP/IP Networking on OpenVMS Systems
Provides an introductory overview of TCP/IP networking and describes OpenVMS
DCL support for TCP/IP capabilities.

Descriptions of OpenVMS Manuals 10–15

Index

A
ACME

Kerberos, 5–8
Ada language support, 5–6
Advanced Encryption Standard, 3–8
AES encryption, 3–8
Align command, 3–17
Automatic bitmap creation

minicopy operation, 3–61

B
BACKUP utility

contains DVE support, 3–1
CTRL/T message, 3–3
enhancements, 3–1
/IO_LOAD qualifier, 3–3
/PROGRESS_REPORT qualifier, 3–3
standalone, 3–3

C
CD record, 3–3
CDSA, 5–2

HRS support, 5–3
Secure Delivery, 5–3

CLUE REGISTER command, 3–35
/ADDRESS qualifier, 3–35
/CPU qualifier, 3–35
/IDENTIFICATION qualifier, 3–35
/INDEX qualifier, 3–35
/PROCESS qualifier, 3–36

CLUE SCSI command, 3–37
/CONNECTION qualifier, 3–37
/PORT qualifier, 3–37
/REQUEST qualifier, 3–37
/SUMMARY qualifier, 3–37

Cluster Interconnect new features, 3–19
Cluster satellite boot, 3–4
COPY command

performance enhancement, 2–3
size limit removed, 2–3

CREATE SERVICE command
in InfoServer utility, 6–3

/CREATE_KEY qualifier, 3–9
C Run-Time Library (RTL) Enhancements, 5–1
CSWB

See Secure Web Browser
CSWS

See Secuire Web Server
Ctrl/T

customizing the output for, 2–3
output for remote process, 2–2

D
DCL$CTRLT, 2–3
DCL$CTRLT_PID, 2–2
DCL command enhancements, 2–1
DCL symbols

new, 2–2
Deadlock wait, 5–4
Debugger, 5–4

Ada
improved support for, 5–7

Ada language support, 5–6
automatic module loading, 5–7
C++ destructor support, 5–7
C++ template name support, 5–7
default data type, 5–5
improved C++ support, 5–4
new /START_LEVEL qualifier for SHOW

STACK, 5–5
Not a Thing (NaT) support, 5–6
overloaded symbol support in SHOW SYMBOL,

5–5
SET MODULE command, 5–5
SET WATCH command improvements, 5–6
support for P2 space, 5–6

DELETE SERVICE command
in InfoServer utility, 6–7

Device drivers
debugging, 10–5
supplied with OpenVMS, 10–5
writing, 10–4

Digital signature file, 3–22
Distributed NetBeans, 7–1
DVD record, 3–3
DVE

See Dynamic Volume Expansion

Index–1

Dynamic lock remastering, 3–7
Dynamic Volume Expansion (DVE)

support in BACKUP, 3–1

E
Encryption, 3–8

of save sets, 3–2
EVA storage controllers

active-active path support, 3–19
EXECSTACKPAGES system parameter, 3–51
EXIT command

in InfoServer utility, 6–10

F
$FACILITY symbol, 2–2

G
GB_CACHEALLMAX system parameter, 3–51
GB_DEFPERCENT system parameter, 3–52
Global buffer

item codes
XAB$_GBC, 5–16
XAB$_GBC32, 5–16
XAB$_GBCFLAGS, 5–17

H
HELP/MESSAGE facility, 9–7
HELP command, 9–7

in InfoServer utility, 6–11
Hybrid, 2–7
Hyper-Threading, 2–4

I
I64 Serial Multiplexer (MUX), 3–24
iCAP, 2–4
$IDENT symbol, 2–2
InfoServer utility

commands
CREATE SERVICE, 6–3
DELETE SERVICE, 6–7
EXIT, 6–10
HELP, 6–11
SAVE, 6–12
SET SERVICE, 6–15
SHOW SERVER, 6–18
SHOW SERVICES, 6–19
SHOW SESSIONS, 6–21
SPAWN, 6–23
START SERVER, 6–24

exiting, 6–2
invoking, 6–1

Instant capacity
See iCAP

Integrity servers, 2–1
IO_PRCPU_BITMAP system parameter, 3–52

K
Kerberized SSH, 5–8
Kerberos, 5–8

AES encryption, 5–8
Kerberos ACME, 5–8
Kerberos V5 Release 1.4.1, 5–8

L
LAN cluster interconnect new features, 3–19
Lexical function enhancements, 2–1
Librarian

OpenVMS I64
listing demangled and mangled names,

5–10
Linker utility

OpenVMS I64
DEMANGLED_SYMBOLS keyword for

/FULL qualifier, 5–9
/DNI qualifier for demangling, 5–9

LMF
compliance report, 2–5
license change, 2–5
terminology change, 2–5

LOCKRMWT system parameter, 3–7, 3–52
Logical volume size

preserve by using BACKUP/SIZE, 3–2

M
Manifest

See Digital signature file
MONITOR PROCESSES

/TOPSUPERVISOR qualifier, 3–18
Monitor utility, 3–17
MSA1500 storage controller

active-active path support, 3–19
Multiplexer

See I64 Serial Multiplexer
MUX

See I64 Serial Multiplexer

N
NetBeans, 7–1
New Features

Debugger, 5–4
nPartition Provider, 2–6
nPartitions, 2–7

Index–2

O
OpenSSL, 5–18

bug fixes, 5–18

P
Patch-related menu option, 3–20
Pay per use, 2–6
PCL, 2–5
PCSI utility, 3–20
PEdriver new features, 3–19
POLYCENTER Software Installation utility, 3–20
PPL, 2–5
PPU, 2–6
Prompt size, 2–3

Q
Qualifiers

/ALL, 3–50
/BYTE, 3–50
/CHECK, 3–51
/CIRCUIT, 3–50
/COLLECTION, 3–50, 3–51
/FILE, 3–51
/IGNORE_CASE, 3–50
/IMAGE, 3–51
/NOSUPPRESS, 3–50
/WORD, 3–50

R
RESET_THRESHOLD keyword, 3–62
RMS

CONVERT/FDL, 5–12
CREATE/FDL, 5–12

RMS global buffer
index files, 5–13
keyword, 5–13

S
SANCP utility, 3–23
SAS utility, 3–23
SAVE command

in InfoServer utility, 6–12
Save sets

encrypting, 3–2
SCACP utility

data compression, 3–24
multi-gigabit scaling, 3–24

SCHED_FLAG system parameter, 3–52
SCH_HARD_OFFLD system parameter, 3–52
SCH_SOFT_OFFLD system parameter, 3–52

SDA callable routines
SDA$CBB_BOOLEAN_OPER, 3–38
SDA$CBB_CLEAR_BIT, 3–39
SDA$CBB_COPY, 3–40
SDA$CBB_FFC, 3–41
SDA$CBB_FFS, 3–42
SDA$CBB_INIT, 3–43
SDA$CBB_SET_BIT, 3–44
SDA$CBB_TEST_BIT, 3–45
SDA$DELETE_PREFIX, 3–46
SDA$FID_TO_NAME, 3–47
SDA$GET_FLAGS, 3–49

SDA commands
COLLECT, 3–26
SHOW EFI, 3–29
SHOW VHPT, 3–30
VALIDATE POOL, 3–32
VALIDATE PROCESS, 3–33

SDD
See System Dump Debugger

Secure Delivery, 3–22, 5–3
Secure Web Browser, 7–1
Secure Web Server, 7–1
Servers

I64
adding serial lines, 3–24

SET SERVICE command
in InfoServer utility, 6–15

SET SHADOW command
/RESET qualifier, 3–61

SHOW CLASS command, 3–28
SHOW SERVER command

in InfoServer utility, 6–18
SHOW SERVICES command

in InfoServer utility, 6–19
SHOW SESSIONS command

in InfoServer utility, 6–21
/SINCE qualifier

new JOB_LOGIN keyword, 2–3
SMP_CPU_BITMAP system parameter, 3–52
SPAWN command

in InfoServer utility, 6–23
Spinlock Trace utility, 3–25
SSL, 5–18
SSL as SIP, 5–18
START SERVER command

in InfoServer utility, 6–24
Superdome servers, 2–7
System Analysis Tools, 3–25
System Dump Debugger (SDD), 3–25
System management

invoking the InfoServer utility, 6–1
System parameters

new in Version 8.3, 3–51
System services

new item code information, 5–19
new system service information, 5–19

Index–3

T
TCP/IP Services for OpenVMS, 7–1
Temporary Instant Capacity

See TiCAP
TiCAP, 2–4
Time zones

additional, 3–54
Traceback, 5–20

V
VCC_PAGESIZE system parameter, 3–52

VCC_RSVD system parameter, 3–52
VLAN, 3–55
Volume expansion size

recorded in save-set header, 3–1
Volume Shadowing for OpenVMS, 3–61

W
WBEM, 2–7
Web-Based Enterprise Management Services

See WBEM
Web Services Integration Toolkit

See WSIT
WSIT, 7–3

Index–4

